-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_batch.py
199 lines (175 loc) · 6.73 KB
/
evaluate_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
'''
Created on Apr 15, 2016
Evaluate the performance of Top-K recommendation:
Protocol: leave-1-out evaluation
Measures: Hit Ratio and NDCG
(more details are in: Xiangnan He, et al. Fast Matrix Factorization for Online Recommendation with Implicit Feedback. SIGIR'16)
@author: hexiangnan
'''
import math
import heapq # for retrieval topK
import multiprocessing
import numpy as np
from time import time
import tensorflow as tf
# Global variables that are shared across processes
_model = None
_testRatings = None
_testNegatives = None
_K = None
_sess = None
_input_user = None
_input_item = None
_rating_matrix = None
_train = None
def evaluate_model(model, testRatings, testNegatives, K, num_thread, sess, input_user, input_item, rating_matrix, train):
"""
Evaluate the performance (Hit_Ratio, NDCG) of top-K recommendation
Return: score of each test rating.
"""
global _model
global _testRatings
global _testNegatives
global _K
global _sess
global _input_user
global _input_item
global _rating_matrix
global _train
_model = model
_testRatings = testRatings
_testNegatives = testNegatives
_K = K
_sess = sess
_input_user = input_user
_input_item = input_item
_rating_matrix = rating_matrix
_train = train
# batch_size=16
# batch_len = len(_testRatings)//batch_size
# batch_len_last = len(_testRatings)%batch_size
batch_len=_model.batch_len
batch_size = len(_testRatings)//batch_len
batch_len_last = len(_testRatings)%batch_len
hits, ndcgs = [],[]
if(num_thread > 1): # Multi-thread
pool = multiprocessing.Pool(processes=num_thread)
res = pool.map(eval_one_rating, range(len(_testRatings)))
pool.close()
pool.join()
hits = [r[0] for r in res]
ndcgs = [r[1] for r in res]
return (hits, ndcgs)
# Single thread
time_1 = time()
for idx in xrange(batch_size+1):
# if idx%(batch_size//100)==0:
# print ("%d/100 done...,[%.1f s]")%(idx/(batch_size//100),time()-time_1)
# time_1=time()
(hr,ndcg) = eval_batch_rating(idx, batch_len, batch_size, batch_len_last)
if idx%16==0:
print ("%d/%d done...,[%.1f s]") % (idx, batch_size, time() - time_1)
hits.extend(hr)
ndcgs.extend(ndcg)
return (hits, ndcgs)
def eval_batch_rating(idx, batch_len, batch_size, batch_len_last):
if idx<batch_size:
ratings = _testRatings[idx*batch_len:(idx+1)*batch_len] #(batch_len,2)
items = _testNegatives[idx*batch_len:(idx+1)*batch_len] #(batch_len,len_items)
elif idx==batch_size:
ratings = _testRatings[idx*batch_len:] #(batch_len,2)
items = _testNegatives[idx*batch_len:] #(batch_len,len_items)
batch_len = batch_len_last
len_items = len(items[0])
sess = _sess
input_user = _input_user
input_item = _input_item
rating_matrix = _rating_matrix
# train = _train
users = np.expand_dims(np.array(ratings)[:,0],axis=1) #(batch_len,)
users_rep = np.repeat(users,len_items+1,axis=1) #(batch_len,len_items+1)
users_rep = users_rep.flatten() #(batch_len*(len_items+1),)
gtItem = np.array(ratings)[:,1] #(batch_len,)
items = np.append(np.array(items),np.expand_dims(gtItem,axis=1),axis=1)#(batch_len,len_items+1)
# print "shape of input_user"
# print users_rep.shape
# Get prediction scores
predictions = np.array([])
for i in xrange(len_items+1):
predictions_this = sess.run(_model.predict,
feed_dict={input_user: np.expand_dims(
users_rep[i*batch_len:(i+1)*batch_len], axis=1),#(batch_len*(len_items+1),1)
input_item: np.expand_dims(
items.flatten()[i*batch_len:(i+1)*batch_len], axis=1),
rating_matrix: _train})
if i==0:
predictions=predictions_this
else:
predictions = np.append(predictions, predictions_this,axis=0)
#predictions: (batch_len*(len_items+1),1) a = np.random.randint(0, 20, (10, 10))
# print "Shape of predictions:"
# print predictions.shape
predictions = np.reshape(predictions,[batch_len,len_items+1])
predictions_topk = np.argsort(predictions, axis=1)[:, -_K:]
# predictions_topk = np.argpartition(predictions, np.argmin(predictions, axis=1))[:, -_K:]
predictions_topk = np.flip(predictions_topk,axis=1) #batch_len*_K
row_index = np.repeat(np.expand_dims(np.arange(batch_len),axis=1),_K,axis=1).flatten()
column_index = predictions_topk.flatten()
rank_array = items[row_index,column_index].reshape((batch_len,_K))
hr = getHitRatio_batch(rank_array, gtItem)
ndcg = getNDCG_batch(rank_array, gtItem)
return (hr, ndcg)
def getHitRatio_batch(rank_array, gtItem):
rank_array = rank_array-np.expand_dims(gtItem,1)
rank_array_zero = np.equal(rank_array,0.)
hits = np.sum(rank_array_zero,axis=1) #(batch_len,)
return hits.tolist()
def getNDCG_batch(rank_array, gtItem):
rank_array = rank_array-np.expand_dims(gtItem,1)
rank_array_zero = np.equal(rank_array,0.) #batch_len*_K
vectors = np.zeros(shape=(rank_array.shape[0],)) #batch_len
for i,vector in enumerate(rank_array_zero):
if np.sum(vector)==0:
vectors[i]=np.inf
elif np.sum(vector)==1:
vectors[i]=np.where(vector==True)[0][0]
vectors = np.log(2)/np.log(vectors+2)
return vectors.tolist()
def eval_one_rating(idx):
rating = _testRatings[idx]
items = _testNegatives[idx]
sess = _sess
input_user=_input_user
input_item=_input_item
rating_matrix=_rating_matrix
# train= _train
u = rating[0]
gtItem = rating[1]
items.append(gtItem)
# Get prediction scores
map_item_score = {}
users = np.full(len(items), u, dtype = 'int32')
predictions = sess.run(_model.predict,
feed_dict={input_user:np.expand_dims(users, axis=1),
input_item:np.expand_dims(np.array(items), axis=1),
rating_matrix:_train})
for i in xrange(len(items)):
item = items[i]
map_item_score[item] = predictions[i]
items.pop()
# Evaluate top rank list
ranklist = heapq.nlargest(_K, map_item_score, key=map_item_score.get)
hr = getHitRatio(ranklist, gtItem)
ndcg = getNDCG(ranklist, gtItem)
return (hr, ndcg)
def getHitRatio(ranklist, gtItem):
for item in ranklist:
if item == gtItem:
return 1
return 0
def getNDCG(ranklist, gtItem):
for i in xrange(len(ranklist)):
item = ranklist[i]
if item == gtItem:
return math.log(2) / math.log(i+2)
return 0