Skip to content

Latest commit

 

History

History
59 lines (44 loc) · 1.91 KB

Customize_Assessor.md

File metadata and controls

59 lines (44 loc) · 1.91 KB

Customize Assessor

NNI supports to build an assessor by yourself for tuning demand.

If you want to implement a customized Assessor, there are three things to do:

  1. Inherit the base Assessor class
  2. Implement assess_trial function
  3. Configure your customized Assessor in experiment YAML config file

1. Inherit the base Assessor class

from nni.assessor import Assessor

class CustomizedAssessor(Assessor):
    def __init__(self, ...):
        ...

2. Implement assess trial function

from nni.assessor import Assessor, AssessResult

class CustomizedAssessor(Assessor):
    def __init__(self, ...):
        ...

    def assess_trial(self, trial_history):
        """
        Determines whether a trial should be killed. Must override.
        trial_history: a list of intermediate result objects.
        Returns AssessResult.Good or AssessResult.Bad.
        """
        # you code implement here.
        ...

3. Configure your customized Assessor in experiment YAML config file

NNI needs to locate your customized Assessor class and instantiate the class, so you need to specify the location of the customized Assessor class and pass literal values as parameters to the __init__ constructor.

assessor:
  codeDir: /home/abc/myassessor
  classFileName: my_customized_assessor.py
  className: CustomizedAssessor
  # Any parameter need to pass to your Assessor class __init__ constructor
  # can be specified in this optional classArgs field, for example 
  classArgs:
    arg1: value1

Please noted in 2. The object trial_history are exact the object that Trial send to Assessor by using SDK report_intermediate_result function.

More detail example you could see: