forked from namisan/mt-dnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
352 lines (306 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright (c) Microsoft. All rights reserved.
import argparse
import json
import os
import random
from datetime import datetime
from pprint import pprint
import numpy as np
import torch
from data_utils.glue_utils import submit, eval_model
from data_utils.label_map import DATA_META, GLOBAL_MAP, DATA_TYPE, DATA_SWAP, TASK_TYPE, generate_decoder_opt
from data_utils.log_wrapper import create_logger
from data_utils.utils import set_environment
from mt_dnn.batcher import BatchGen
from mt_dnn.model import MTDNNModel
from pytorch_pretrained_bert.modeling import BertModel
from pytorch_pretrained_bert.modeling import BertConfig
def model_config(parser):
parser.add_argument('--update_bert_opt', default=0, type=int)
parser.add_argument('--multi_gpu_on', action='store_false')
parser.add_argument('--mem_cum_type', type=str, default='simple',
help='bilinear/simple/defualt')
parser.add_argument('--answer_num_turn', type=int, default=5)
parser.add_argument('--answer_mem_drop_p', type=float, default=0.1)
parser.add_argument('--answer_att_hidden_size', type=int, default=128)
parser.add_argument('--answer_att_type', type=str, default='bilinear',
help='bilinear/simple/defualt')
parser.add_argument('--answer_rnn_type', type=str, default='gru',
help='rnn/gru/lstm')
parser.add_argument('--answer_sum_att_type', type=str, default='bilinear',
help='bilinear/simple/defualt')
parser.add_argument('--answer_merge_opt', type=int, default=1)
parser.add_argument('--answer_mem_type', type=int, default=1)
parser.add_argument('--answer_dropout_p', type=float, default=0.1)
parser.add_argument('--answer_weight_norm_on', action='store_true')
parser.add_argument('--dump_state_on', action='store_true')
parser.add_argument('--answer_opt', type=int, default=0, help='0,1')
parser.add_argument('--label_size', type=str, default='3,3,2')
parser.add_argument('--mtl_opt', type=int, default=1)
parser.add_argument('--ratio', type=float, default=0.5)
parser.add_argument('--mix_opt', type=int, default=0)
parser.add_argument('--max_seq_len', type=int, default=512)
parser.add_argument('--init_ratio', type=float, default=1)
return parser
def data_config(parser):
parser.add_argument('--log_file', default='mt-dnn-train.log', help='path for log file.')
parser.add_argument("--init_checkpoint", default='mt_dnn/bert_model_base.pt', type=str)
parser.add_argument('--data_dir', default='data/mt_dnn')
parser.add_argument('--data_sort_on', action='store_true')
parser.add_argument('--name', default='farmer')
parser.add_argument('--train_datasets', default='mnli')
parser.add_argument('--test_datasets', default='mnli_mismatched,mnli_matched')
parser.add_argument('--pw_tasks', default='qnnli', type=str)
return parser
def train_config(parser):
parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available(),
help='whether to use GPU acceleration.')
parser.add_argument('--log_per_updates', type=int, default=500)
parser.add_argument('--epochs', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--batch_size_eval', type=int, default=8)
parser.add_argument('--optimizer', default='adamax',
help='supported optimizer: adamax, sgd, adadelta, adam')
parser.add_argument('--grad_clipping', type=float, default=0)
parser.add_argument('--global_grad_clipping', type=float, default=1.0)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--learning_rate', type=float, default=5e-5)
parser.add_argument('--momentum', type=float, default=0)
parser.add_argument('--warmup', type=float, default=0.1)
parser.add_argument('--vb_dropout', action='store_false')
parser.add_argument('--dropout_p', type=float, default=0.1)
parser.add_argument('--dropout_w', type=float, default=0.000)
parser.add_argument('--bert_dropout_p', type=float, default=0.1)
# EMA
parser.add_argument('--ema_opt', type=int, default=0)
parser.add_argument('--ema_gamma', type=float, default=0.995)
# scheduler
parser.add_argument('--have_lr_scheduler', dest='have_lr_scheduler', action='store_false')
parser.add_argument('--multi_step_lr', type=str, default='10,20,30')
parser.add_argument('--freeze_layers', type=int, default=-1)
parser.add_argument('--embedding_opt', type=int, default=0)
parser.add_argument('--lr_gamma', type=float, default=0.5)
parser.add_argument('--bert_l2norm', type=float, default=0.0)
parser.add_argument('--scheduler_type', type=str, default='ms', help='ms/rop/exp')
parser.add_argument('--output_dir', default='checkpoint')
parser.add_argument('--seed', type=int, default=2018,
help='random seed for data shuffling, embedding init, etc.')
parser.add_argument('--task_config_path', type=str, default='configs/tasks_config.json')
return parser
parser = argparse.ArgumentParser()
parser = data_config(parser)
parser = model_config(parser)
parser = train_config(parser)
args = parser.parse_args()
output_dir = args.output_dir
data_dir = args.data_dir
args.train_datasets = args.train_datasets.split(',')
args.test_datasets = args.test_datasets.split(',')
args.pw_tasks = list(set([pw for pw in args.pw_tasks.split(',') if len(pw.strip()) > 0]))
pprint(args)
os.makedirs(output_dir, exist_ok=True)
output_dir = os.path.abspath(output_dir)
set_environment(args.seed, args.cuda)
log_path = args.log_file
logger = create_logger(__name__, to_disk=True, log_file=log_path)
logger.info(args.answer_opt)
tasks_config = {}
if os.path.exists(args.task_config_path):
with open(args.task_config_path, 'r') as reader:
tasks_config = json.loads(reader.read())
def dump(path, data):
with open(path ,'w') as f:
json.dump(data, f)
def main():
logger.info('Launching the MT-DNN training')
opt = vars(args)
# update data dir
opt['data_dir'] = data_dir
batch_size = args.batch_size
train_data_list = []
tasks = {}
tasks_class = {}
nclass_list = []
decoder_opts = []
dropout_list = []
for dataset in args.train_datasets:
prefix = dataset.split('_')[0]
if prefix in tasks: continue
assert prefix in DATA_META
assert prefix in DATA_TYPE
data_type = DATA_TYPE[prefix]
nclass = DATA_META[prefix]
task_id = len(tasks)
if args.mtl_opt > 0:
task_id = tasks_class[nclass] if nclass in tasks_class else len(tasks_class)
task_type = TASK_TYPE[prefix]
pw_task = False
if prefix in opt['pw_tasks']:
pw_task = True
dopt = generate_decoder_opt(prefix, opt['answer_opt'])
if task_id < len(decoder_opts):
decoder_opts[task_id] = min(decoder_opts[task_id], dopt)
else:
decoder_opts.append(dopt)
if prefix not in tasks:
tasks[prefix] = len(tasks)
if args.mtl_opt < 1: nclass_list.append(nclass)
if (nclass not in tasks_class):
tasks_class[nclass] = len(tasks_class)
if args.mtl_opt > 0: nclass_list.append(nclass)
dropout_p = args.dropout_p
if tasks_config and prefix in tasks_config:
dropout_p = tasks_config[prefix]
dropout_list.append(dropout_p)
train_path = os.path.join(data_dir, '{}_train.json'.format(dataset))
logger.info('Loading {} as task {}'.format(train_path, task_id))
train_data = BatchGen(BatchGen.load(train_path, True, pairwise=pw_task, maxlen=args.max_seq_len),
batch_size=batch_size,
dropout_w=args.dropout_w,
gpu=args.cuda,
task_id=task_id,
maxlen=args.max_seq_len,
pairwise=pw_task,
data_type=data_type,
task_type=task_type)
train_data_list.append(train_data)
opt['answer_opt'] = decoder_opts
opt['tasks_dropout_p'] = dropout_list
args.label_size = ','.join([str(l) for l in nclass_list])
logger.info(args.label_size)
dev_data_list = []
test_data_list = []
for dataset in args.test_datasets:
prefix = dataset.split('_')[0]
task_id = tasks_class[DATA_META[prefix]] if args.mtl_opt > 0 else tasks[prefix]
task_type = TASK_TYPE[prefix]
pw_task = False
if prefix in opt['pw_tasks']:
pw_task = True
assert prefix in DATA_TYPE
data_type = DATA_TYPE[prefix]
dev_path = os.path.join(data_dir, '{}_dev.json'.format(dataset))
dev_data = None
if os.path.exists(dev_path):
dev_data = BatchGen(BatchGen.load(dev_path, False, pairwise=pw_task, maxlen=args.max_seq_len),
batch_size=args.batch_size_eval,
gpu=args.cuda, is_train=False,
task_id=task_id,
maxlen=args.max_seq_len,
pairwise=pw_task,
data_type=data_type,
task_type=task_type)
dev_data_list.append(dev_data)
test_path = os.path.join(data_dir, '{}_test.json'.format(dataset))
test_data = None
if os.path.exists(test_path):
test_data = BatchGen(BatchGen.load(test_path, False, pairwise=pw_task, maxlen=args.max_seq_len),
batch_size=args.batch_size_eval,
gpu=args.cuda, is_train=False,
task_id=task_id,
maxlen=args.max_seq_len,
pairwise=pw_task,
data_type=data_type,
task_type=task_type)
test_data_list.append(test_data)
logger.info('#' * 20)
logger.info(opt)
logger.info('#' * 20)
all_iters =[iter(item) for item in train_data_list]
all_lens = [len(bg) for bg in train_data_list]
num_all_batches = args.epochs * sum(all_lens)
if len(train_data_list)> 1 and args.ratio > 0:
num_all_batches = int(args.epochs * (len(train_data_list[0]) * (1 + args.ratio)))
model_path = args.init_checkpoint
state_dict = None
if os.path.exists(model_path):
state_dict = torch.load(model_path)
config = state_dict['config']
config['attention_probs_dropout_prob'] = args.bert_dropout_p
config['hidden_dropout_prob'] = args.bert_dropout_p
opt.update(config)
else:
logger.error('#' * 20)
logger.error('Could not find the init model!\n The parameters will be initialized randomly!')
logger.error('#' * 20)
config = BertConfig(vocab_size_or_config_json_file=30522).to_dict()
opt.update(config)
model = MTDNNModel(opt, state_dict=state_dict, num_train_step=num_all_batches)
####model meta str
headline = '############# Model Arch of MT-DNN #############'
###print network
logger.info('\n{}\n{}\n'.format(headline, model.network))
# dump config
config_file = os.path.join(output_dir, 'config.json')
with open(config_file, 'w', encoding='utf-8') as writer:
writer.write('{}\n'.format(json.dumps(opt)))
writer.write('\n{}\n{}\n'.format(headline, model.network))
logger.info("Total number of params: {}".format(model.total_param))
if args.freeze_layers > 0:
model.network.freeze_layers(args.freeze_layers)
if args.cuda:
model.cuda()
for epoch in range(0, args.epochs):
logger.warning('At epoch {}'.format(epoch))
for train_data in train_data_list:
train_data.reset()
start = datetime.now()
all_indices=[]
if len(train_data_list)> 1 and args.ratio > 0:
main_indices =[0] * len(train_data_list[0])
extra_indices=[]
for i in range(1, len(train_data_list)):
extra_indices += [i] * len(train_data_list[i])
random_picks=int(min(len(train_data_list[0]) * args.ratio, len(extra_indices)))
extra_indices = np.random.choice(extra_indices, random_picks, replace=False)
if args.mix_opt > 0:
extra_indices = extra_indices.tolist()
random.shuffle(extra_indices)
all_indices = extra_indices + main_indices
else:
all_indices = main_indices + extra_indices.tolist()
else:
for i in range(1, len(train_data_list)):
all_indices += [i] * len(train_data_list[i])
if args.mix_opt > 0:
random.shuffle(all_indices)
all_indices += [0] * len(train_data_list[0])
if args.mix_opt < 1:
random.shuffle(all_indices)
for i in range(len(all_indices)):
task_id = all_indices[i]
batch_meta, batch_data= next(all_iters[task_id])
model.update(batch_meta, batch_data)
if (model.updates) % args.log_per_updates == 0 or model.updates == 1:
logger.info('Task [{0:2}] updates[{1:6}] train loss[{2:.5f}] remaining[{3}]'.format(task_id,
model.updates, model.train_loss.avg,
str((datetime.now() - start) / (i + 1) * (len(all_indices) - i - 1)).split('.')[0]))
for idx, dataset in enumerate(args.test_datasets):
prefix = dataset.split('_')[0]
label_dict = GLOBAL_MAP.get(prefix, None)
dev_data = dev_data_list[idx]
if dev_data is not None:
dev_metrics, dev_predictions, scores, golds, dev_ids= eval_model(model, dev_data, dataset=prefix,
use_cuda=args.cuda)
for key, val in dev_metrics.items():
logger.warning("Task {0} -- epoch {1} -- Dev {2}: {3:.3f}".format(dataset, epoch, key, val))
score_file = os.path.join(output_dir, '{}_dev_scores_{}.json'.format(dataset, epoch))
results = {'metrics': dev_metrics, 'predictions': dev_predictions, 'uids': dev_ids, 'scores': scores}
dump(score_file, results)
official_score_file = os.path.join(output_dir, '{}_dev_scores_{}.tsv'.format(dataset, epoch))
submit(official_score_file, results, label_dict)
# test eval
test_data = test_data_list[idx]
if test_data is not None:
test_metrics, test_predictions, scores, golds, test_ids= eval_model(model, test_data, dataset=prefix,
use_cuda=args.cuda, with_label=False)
score_file = os.path.join(output_dir, '{}_test_scores_{}.json'.format(dataset, epoch))
results = {'metrics': test_metrics, 'predictions': test_predictions, 'uids': test_ids, 'scores': scores}
dump(score_file, results)
official_score_file = os.path.join(output_dir, '{}_test_scores_{}.tsv'.format(dataset, epoch))
submit(official_score_file, results, label_dict)
logger.info('[new test scores saved.]')
model_file = os.path.join(output_dir, 'model_{}.pt'.format(epoch))
model.save(model_file)
if __name__ == '__main__':
main()