forked from namisan/mt-dnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepro.py
352 lines (307 loc) · 17.4 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright (c) Microsoft. All rights reserved.
import os
import json
import tqdm
import pickle
import re
import collections
import argparse
from sys import path
from data_utils.vocab import Vocabulary
from pytorch_pretrained_bert.tokenization import BertTokenizer
from data_utils.log_wrapper import create_logger
from data_utils.label_map import GLOBAL_MAP
from data_utils.glue_utils import *
DEBUG_MODE=False
MAX_SEQ_LEN = 512
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
logger = create_logger(__name__, to_disk=True, log_file='bert_data_proc_512.log')
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length.
Copyed from https://github.com/huggingface/pytorch-pretrained-BERT
"""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def build_data(data, dump_path, max_seq_len=MAX_SEQ_LEN, is_train=True, tolower=True):
"""Build data of sentence pair tasks
"""
with open(dump_path, 'w', encoding='utf-8') as writer:
for idx, sample in enumerate(data):
ids = sample['uid']
premise = bert_tokenizer.tokenize(sample['premise'])
hypothesis = bert_tokenizer.tokenize(sample['hypothesis'])
label = sample['label']
_truncate_seq_pair(premise, hypothesis, max_seq_len - 3)
input_ids =bert_tokenizer.convert_tokens_to_ids(['[CLS]'] + hypothesis + ['[SEP]'] + premise + ['[SEP]'])
type_ids = [0] * ( len(hypothesis) + 2) + [1] * (len(premise) + 1)
features = {'uid': ids, 'label': label, 'token_id': input_ids, 'type_id': type_ids}
writer.write('{}\n'.format(json.dumps(features)))
def build_qnli(data, dump_path, max_seq_len=MAX_SEQ_LEN, is_train=True, tolower=True, gold_path=None):
"""Build QNLI as a pair-wise ranking task
"""
with open(dump_path, 'w', encoding='utf-8') as writer:
for idx, sample in enumerate(data):
ids = sample['uid']
premise = bert_tokenizer.tokenize(sample['premise'])
hypothesis_1 = bert_tokenizer.tokenize(sample['hypothesis'][0])
hypothesis_2 = bert_tokenizer.tokenize(sample['hypothesis'][1])
label = sample['label']
_truncate_seq_pair(premise, hypothesis_1, max_seq_len - 3)
input_ids_1 =bert_tokenizer.convert_tokens_to_ids(['[CLS]'] + hypothesis_1 + ['[SEP]'] + premise + ['[SEP]'])
type_ids_1 = [0] * ( len(hypothesis_1) + 2) + [1] * (len(premise) + 1)
_truncate_seq_pair(premise, hypothesis_2, max_seq_len - 3)
input_ids_2 =bert_tokenizer.convert_tokens_to_ids(['[CLS]'] + hypothesis_2 + ['[SEP]'] + premise + ['[SEP]'])
type_ids_2 = [0] * ( len(hypothesis_2) + 2) + [1] * (len(premise) + 1)
features = {'uid': ids, 'label': label, 'token_id': [input_ids_1, input_ids_2], 'type_id': [type_ids_1, type_ids_2], 'ruid':sample['ruid'], 'olabel':sample['olabel']}
writer.write('{}\n'.format(json.dumps(features)))
def build_data_single(data, dump_path, max_seq_len=MAX_SEQ_LEN):
"""Build data of single sentence tasks
"""
with open(dump_path, 'w', encoding='utf-8') as writer:
for idx, sample in enumerate(data):
ids = sample['uid']
premise = bert_tokenizer.tokenize(sample['premise'])
label = sample['label']
if len(premise) > max_seq_len - 3:
premise = premise[:max_seq_len - 3]
input_ids =bert_tokenizer.convert_tokens_to_ids(['[CLS]'] + premise + ['[SEP]'])
type_ids = [0] * ( len(premise) + 2)
features = {'uid': ids, 'label': label, 'token_id': input_ids, 'type_id': type_ids}
writer.write('{}\n'.format(json.dumps(features)))
def parse_args():
parser = argparse.ArgumentParser(description='Preprocessing GLUE/SNLI/SciTail dataset.')
parser.add_argument('--seed', type=int, default=13)
parser.add_argument('--root_dir', type=str, default='data')
args = parser.parse_args()
return args
def main(args):
root = args.root_dir
assert os.path.exists(root)
######################################
# SNLI/SciTail Tasks
######################################
scitail_train_path = os.path.join(root, 'SciTail/tsv_format/scitail_1.0_train.tsv')
scitail_dev_path = os.path.join(root, 'SciTail/tsv_format/scitail_1.0_dev.tsv')
scitail_test_path = os.path.join(root, 'SciTail/tsv_format/scitail_1.0_test.tsv')
snli_train_path = os.path.join(root, 'SNLI/train.tsv')
snli_dev_path = os.path.join(root, 'SNLI/dev.tsv')
snli_test_path = os.path.join(root, 'SNLI/test.tsv')
######################################
# GLUE tasks
######################################
multi_train_path = os.path.join(root, 'MNLI/train.tsv')
multi_dev_matched_path = os.path.join(root, 'MNLI/dev_matched.tsv')
multi_dev_mismatched_path = os.path.join(root, 'MNLI/dev_mismatched.tsv')
multi_test_matched_path = os.path.join(root, 'MNLI/test_matched.tsv')
multi_test_mismatched_path = os.path.join(root, 'MNLI/test_mismatched.tsv')
mrpc_train_path = os.path.join(root, 'MRPC/train.tsv')
mrpc_dev_path = os.path.join(root, 'MRPC/dev.tsv')
mrpc_test_path = os.path.join(root, 'MRPC/test.tsv')
qnli_train_path = os.path.join(root, 'QNLI/train.tsv')
qnli_dev_path = os.path.join(root, 'QNLI/dev.tsv')
qnli_test_path = os.path.join(root, 'QNLI/test.tsv')
qqp_train_path = os.path.join(root, 'QQP/train.tsv')
qqp_dev_path = os.path.join(root, 'QQP/dev.tsv')
qqp_test_path = os.path.join(root, 'QQP/test.tsv')
rte_train_path = os.path.join(root, 'RTE/train.tsv')
rte_dev_path = os.path.join(root, 'RTE/dev.tsv')
rte_test_path = os.path.join(root, 'RTE/test.tsv')
wnli_train_path = os.path.join(root, 'WNLI/train.tsv')
wnli_dev_path = os.path.join(root, 'WNLI/dev.tsv')
wnli_test_path = os.path.join(root, 'WNLI/test.tsv')
stsb_train_path = os.path.join(root, 'STS-B/train.tsv')
stsb_dev_path = os.path.join(root, 'STS-B/dev.tsv')
stsb_test_path = os.path.join(root, 'STS-B/test.tsv')
sst_train_path = os.path.join(root, 'SST-2/train.tsv')
sst_dev_path = os.path.join(root, 'SST-2/dev.tsv')
sst_test_path = os.path.join(root, 'SST-2/test.tsv')
cola_train_path = os.path.join(root, 'CoLA/train.tsv')
cola_dev_path = os.path.join(root, 'CoLA/dev.tsv')
cola_test_path = os.path.join(root, 'CoLA/test.tsv')
######################################
# Loading DATA
######################################
scitail_train_data = load_scitail(scitail_train_path, GLOBAL_MAP['scitail'])
scitail_dev_data = load_scitail(scitail_dev_path, GLOBAL_MAP['scitail'])
scitail_test_data = load_scitail(scitail_test_path, GLOBAL_MAP['scitail'])
logger.info('Loaded {} SciTail train samples'.format(len(scitail_train_data)))
logger.info('Loaded {} SciTail dev samples'.format(len(scitail_dev_data)))
logger.info('Loaded {} SciTail test samples'.format(len(scitail_test_data)))
snli_train_data = load_snli(snli_train_path, GLOBAL_MAP['snli'])
snli_dev_data = load_snli(snli_dev_path, GLOBAL_MAP['snli'])
snli_test_data = load_snli(snli_test_path, GLOBAL_MAP['snli'])
logger.info('Loaded {} SNLI train samples'.format(len(snli_train_data)))
logger.info('Loaded {} SNLI dev samples'.format(len(snli_dev_data)))
logger.info('Loaded {} SNLI test samples'.format(len(snli_test_data)))
multinli_train_data = load_mnli(multi_train_path, GLOBAL_MAP['snli'])
multinli_matched_dev_data = load_mnli(multi_dev_matched_path, GLOBAL_MAP['snli'])
multinli_mismatched_dev_data = load_mnli(multi_dev_mismatched_path, GLOBAL_MAP['snli'])
multinli_matched_test_data = load_mnli(multi_test_matched_path, GLOBAL_MAP['snli'], is_train=False)
multinli_mismatched_test_data = load_mnli(multi_test_mismatched_path, GLOBAL_MAP['snli'], is_train=False)
logger.info('Loaded {} MNLI train samples'.format(len(multinli_train_data)))
logger.info('Loaded {} MNLI matched dev samples'.format(len(multinli_matched_dev_data)))
logger.info('Loaded {} MNLI mismatched dev samples'.format(len(multinli_mismatched_dev_data)))
logger.info('Loaded {} MNLI matched test samples'.format(len(multinli_matched_test_data)))
logger.info('Loaded {} MNLI mismatched test samples'.format(len(multinli_mismatched_test_data)))
mrpc_train_data = load_mrpc(mrpc_train_path)
mrpc_dev_data = load_mrpc(mrpc_dev_path)
mrpc_test_data = load_mrpc(mrpc_test_path, is_train=False)
logger.info('Loaded {} MRPC train samples'.format(len(mrpc_train_data)))
logger.info('Loaded {} MRPC dev samples'.format(len(mrpc_dev_data)))
logger.info('Loaded {} MRPC test samples'.format(len(mrpc_test_data)))
qnli_train_data = load_qnli(qnli_train_path, GLOBAL_MAP['qnli'])
qnli_dev_data = load_qnli(qnli_dev_path, GLOBAL_MAP['qnli'])
qnli_test_data = load_qnli(qnli_test_path, GLOBAL_MAP['qnli'], is_train=False)
logger.info('Loaded {} QNLI train samples'.format(len(qnli_train_data)))
logger.info('Loaded {} QNLI dev samples'.format(len(qnli_dev_data)))
logger.info('Loaded {} QNLI test samples'.format(len(qnli_test_data)))
qnnli_train_data = load_qnnli(qnli_train_path, GLOBAL_MAP['qnli'])
qnnli_dev_data = load_qnnli(qnli_dev_path, GLOBAL_MAP['qnli'])
qnnli_test_data = load_qnnli(qnli_test_path, GLOBAL_MAP['qnli'], is_train=False)
logger.info('Loaded {} QNLI train samples'.format(len(qnli_train_data)))
logger.info('Loaded {} QNLI dev samples'.format(len(qnli_dev_data)))
logger.info('Loaded {} QNLI test samples'.format(len(qnli_test_data)))
qqp_train_data = load_qqp(qqp_train_path)
qqp_dev_data = load_qqp(qqp_dev_path)
qqp_test_data = load_qqp(qqp_test_path, is_train=False)
logger.info('Loaded {} QQP train samples'.format(len(qqp_train_data)))
logger.info('Loaded {} QQP dev samples'.format(len(qqp_dev_data)))
logger.info('Loaded {} QQP test samples'.format(len(qqp_test_data)))
rte_train_data = load_rte(rte_train_path, GLOBAL_MAP['rte'])
rte_dev_data = load_rte(rte_dev_path, GLOBAL_MAP['rte'])
rte_test_data = load_rte(rte_test_path, GLOBAL_MAP['rte'], is_train=False)
logger.info('Loaded {} RTE train samples'.format(len(rte_train_data)))
logger.info('Loaded {} RTE dev samples'.format(len(rte_dev_data)))
logger.info('Loaded {} RTE test samples'.format(len(rte_test_data)))
wnli_train_data = load_wnli(wnli_train_path)
wnli_dev_data = load_wnli(wnli_dev_path)
wnli_test_data = load_wnli(wnli_test_path, is_train=False)
logger.info('Loaded {} WNLI train samples'.format(len(wnli_train_data)))
logger.info('Loaded {} WNLI dev samples'.format(len(wnli_dev_data)))
logger.info('Loaded {} WNLI test samples'.format(len(wnli_test_data)))
sst_train_data = load_sst(sst_train_path)
sst_dev_data = load_sst(sst_dev_path)
sst_test_data = load_sst(sst_test_path, is_train=False)
logger.info('Loaded {} SST train samples'.format(len(sst_train_data)))
logger.info('Loaded {} SST dev samples'.format(len(sst_dev_data)))
logger.info('Loaded {} SST test samples'.format(len(sst_test_data)))
stsb_train_data = load_sts(stsb_train_path)
stsb_dev_data = load_sts(stsb_dev_path)
stsb_test_data = load_sts(stsb_test_path, is_train=False)
logger.info('Loaded {} STS-B train samples'.format(len(stsb_train_data)))
logger.info('Loaded {} STS-B dev samples'.format(len(stsb_dev_data)))
logger.info('Loaded {} STS-B test samples'.format(len(stsb_test_data)))
cola_train_data = load_cola(cola_train_path)
cola_dev_data = load_cola(cola_dev_path)
cola_test_data = load_cola(cola_test_path, is_train=False)
logger.info('Loaded {} COLA train samples'.format(len(cola_train_data)))
logger.info('Loaded {} COLA dev samples'.format(len(cola_dev_data)))
logger.info('Loaded {} COLA test samples'.format(len(cola_test_data)))
mt_dnn_root = os.path.join(root, 'mt_dnn')
if not os.path.isdir(mt_dnn_root):
os.mkdir(mt_dnn_root)
# BUILD SciTail
scitail_train_fout = os.path.join(mt_dnn_root, 'scitail_train.json')
scitail_dev_fout = os.path.join(mt_dnn_root, 'scitail_dev.json')
scitail_test_fout = os.path.join(mt_dnn_root, 'scitail_test.json')
build_data(scitail_train_data, scitail_train_fout)
build_data(scitail_dev_data, scitail_dev_fout)
build_data(scitail_test_data, scitail_test_fout)
logger.info('done with scitail')
# BUILD SNLI
snli_train_fout = os.path.join(mt_dnn_root, 'snli_train.json')
snli_dev_fout = os.path.join(mt_dnn_root, 'snli_dev.json')
snli_test_fout = os.path.join(mt_dnn_root, 'snli_test.json')
build_data(snli_train_data, snli_train_fout)
build_data(snli_dev_data, snli_dev_fout)
build_data(snli_test_data, snli_test_fout)
logger.info('done with snli')
# BUILD MNLI
multinli_train_fout = os.path.join(mt_dnn_root, 'mnli_train.json')
multinli_matched_dev_fout = os.path.join(mt_dnn_root, 'mnli_matched_dev.json')
multinli_mismatched_dev_fout = os.path.join(mt_dnn_root, 'mnli_mismatched_dev.json')
multinli_matched_test_fout = os.path.join(mt_dnn_root, 'mnli_matched_test.json')
multinli_mismatched_test_fout = os.path.join(mt_dnn_root, 'mnli_mismatched_test.json')
build_data(multinli_train_data, multinli_train_fout)
build_data(multinli_matched_dev_data, multinli_matched_dev_fout)
build_data(multinli_mismatched_dev_data, multinli_mismatched_dev_fout)
build_data(multinli_matched_test_data, multinli_matched_test_fout)
build_data(multinli_mismatched_test_data, multinli_mismatched_test_fout)
logger.info('done with mnli')
mrpc_train_fout = os.path.join(mt_dnn_root, 'mrpc_train.json')
mrpc_dev_fout = os.path.join(mt_dnn_root, 'mrpc_dev.json')
mrpc_test_fout = os.path.join(mt_dnn_root, 'mrpc_test.json')
build_data(mrpc_train_data, mrpc_train_fout)
build_data(mrpc_dev_data, mrpc_dev_fout)
build_data(mrpc_test_data, mrpc_test_fout)
logger.info('done with mrpc')
qnli_train_fout = os.path.join(mt_dnn_root, 'qnli_train.json')
qnli_dev_fout = os.path.join(mt_dnn_root, 'qnli_dev.json')
qnli_test_fout = os.path.join(mt_dnn_root, 'qnli_test.json')
build_data(qnli_train_data, qnli_train_fout)
build_data(qnli_dev_data, qnli_dev_fout)
build_data(qnli_test_data, qnli_test_fout)
logger.info('done with qnli')
qnli_train_fout = os.path.join(mt_dnn_root, 'qnnli_train.json')
qnli_dev_fout = os.path.join(mt_dnn_root, 'qnnli_dev.json')
qnli_test_fout = os.path.join(mt_dnn_root, 'qnnli_test.json')
qnli_dev_gold_fout = os.path.join(mt_dnn_root, 'qnli_gold_dev.tsv')
build_qnli(qnnli_train_data, qnli_train_fout)
build_qnli(qnnli_dev_data, qnli_dev_fout)
build_qnli(qnnli_train_data, qnli_test_fout)
logger.info('done with qnli')
qqp_train_fout = os.path.join(mt_dnn_root, 'qqp_train.json')
qqp_dev_fout = os.path.join(mt_dnn_root, 'qqp_dev.json')
qqp_test_fout = os.path.join(mt_dnn_root, 'qqp_test.json')
build_data(qqp_train_data, qqp_train_fout)
build_data(qqp_dev_data, qqp_dev_fout)
build_data(qqp_test_data, qqp_test_fout)
logger.info('done with qqp')
rte_train_fout = os.path.join(mt_dnn_root, 'rte_train.json')
rte_dev_fout = os.path.join(mt_dnn_root, 'rte_dev.json')
rte_test_fout = os.path.join(mt_dnn_root, 'rte_test.json')
build_data(rte_train_data, rte_train_fout)
build_data(rte_dev_data, rte_dev_fout)
build_data(rte_test_data, rte_test_fout)
logger.info('done with rte')
wnli_train_fout = os.path.join(mt_dnn_root, 'wnli_train.json')
wnli_dev_fout = os.path.join(mt_dnn_root, 'wnli_dev.json')
wnli_test_fout = os.path.join(mt_dnn_root, 'wnli_test.json')
build_data(wnli_train_data, wnli_train_fout)
build_data(wnli_dev_data, wnli_dev_fout)
build_data(wnli_test_data, wnli_test_fout)
logger.info('done with wnli')
stsb_train_fout = os.path.join(mt_dnn_root, 'stsb_train.json')
stsb_dev_fout = os.path.join(mt_dnn_root, 'stsb_dev.json')
stsb_test_fout = os.path.join(mt_dnn_root, 'stsb_test.json')
build_data(stsb_train_data, stsb_train_fout)
build_data(stsb_dev_data, stsb_dev_fout)
build_data(stsb_test_data, stsb_test_fout)
logger.info('done with stsb')
sst_train_fout = os.path.join(mt_dnn_root, 'sst_train.json')
sst_dev_fout = os.path.join(mt_dnn_root, 'sst_dev.json')
sst_test_fout = os.path.join(mt_dnn_root, 'sst_test.json')
build_data_single(sst_train_data, sst_train_fout)
build_data_single(sst_dev_data, sst_dev_fout)
build_data_single(sst_test_data, sst_test_fout)
logger.info('done with sst')
cola_train_fout = os.path.join(mt_dnn_root, 'cola_train.json')
cola_dev_fout = os.path.join(mt_dnn_root, 'cola_dev.json')
cola_test_fout = os.path.join(mt_dnn_root, 'cola_test.json')
build_data_single(cola_train_data, cola_train_fout)
build_data_single(cola_dev_data, cola_dev_fout)
build_data_single(cola_test_data, cola_test_fout)
logger.info('done with cola')
if __name__ == '__main__':
args = parse_args()
main(args)