-
Notifications
You must be signed in to change notification settings - Fork 10
/
element.cc
114 lines (106 loc) · 3.79 KB
/
element.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/* Copyright 2019 Stanford
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gnn.h"
LegionRuntime::Logger::Category log_element("element");
Tensor Model::add(const Tensor& _input1, const Tensor& _input2)
{
Element* op = new Element(*this, _input1, _input2, EW_TYPE_ADD);
layers.push_back(op);
return op->outputs[0];
}
Element::Element(const Model& model,
const Tensor& _input1,
const Tensor& _input2,
ElementType _elementType)
: GnnOp(_input1, _input2), elementType(_elementType)
{
assert(_input1.numDim == _input2.numDim);
for (int i = 0; i < _input1.numDim; i++)
assert(_input1.dims[i] == _input2.dims[i]);
// output
numOutputs = 1;
switch (_input1.type) {
case Tensor::NODE_TENSOR:
{
outputs[0] = model.create_node_tensor<DATATYPE>(_input1.dims[0]);
break;
}
case Tensor::EDGE_TENSOR:
{
outputs[0] = model.create_edge_tensor<DATATYPE>(_input1.dims[0]);
break;
}
default:
{
assert(false);
}
}
}
void Element::init(const Model& model)
{}
void Element::forward(const Model& model)
{
Context ctx = model.ctx;
Runtime* runtime = model.runtime;
IndexLauncher launcher(ELEMENT_FWD_TASK_ID, model.taskIS,
TaskArgument(this, sizeof(Element)), model.taskArgs);
// regions[0]: input0
launcher.add_region_requirement(
RegionRequirement(inputs[0].part, 0/*projection*/,
READ_ONLY, EXCLUSIVE, inputs[0].region,
MAP_TO_ZC_MEMORY));
launcher.add_field(0, FID_DATA);
// regions[1]: input1
launcher.add_region_requirement(
RegionRequirement(inputs[1].part, 0/*projection*/,
READ_ONLY, EXCLUSIVE, inputs[1].region,
MAP_TO_ZC_MEMORY));
launcher.add_field(1, FID_DATA);
// regions[2]: output
launcher.add_region_requirement(
RegionRequirement(outputs[0].part, 0/*projection*/,
WRITE_ONLY, EXCLUSIVE, outputs[0].region,
MAP_TO_ZC_MEMORY));
launcher.add_field(2, FID_DATA);
runtime->execute_index_space(ctx, launcher);
}
void Element::backward(const Model& model)
{
Context ctx = model.ctx;
Runtime* runtime = model.runtime;
IndexLauncher launcher(ELEMENT_BWD_TASK_ID, model.taskIS,
TaskArgument(this, sizeof(Element)), model.taskArgs);
// regions[0]: output_grad
launcher.add_region_requirement(
RegionRequirement(outputs[0].part_grad, 0/*projection*/,
READ_ONLY, EXCLUSIVE, outputs[0].region_grad,
MAP_TO_ZC_MEMORY));
launcher.add_field(0, FID_DATA);
// regions[1]: input0_grad
launcher.add_region_requirement(
RegionRequirement(inputs[0].part_grad, 0/*projection*/,
resetInputGrads[0] ? WRITE_ONLY : READ_WRITE,
EXCLUSIVE, inputs[0].region_grad,
MAP_TO_ZC_MEMORY));
launcher.add_field(1, FID_DATA);
// regions[2]: input1_grad
launcher.add_region_requirement(
RegionRequirement(inputs[1].part_grad, 0/*projection*/,
resetInputGrads[1] ? WRITE_ONLY : READ_WRITE,
EXCLUSIVE, inputs[1].region_grad,
MAP_TO_ZC_MEMORY));
launcher.add_field(2, FID_DATA);
runtime->execute_index_space(ctx, launcher);
}