-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathupernet.yml
305 lines (305 loc) · 9.76 KB
/
upernet.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
Collections:
- Name: UPerNet
Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
Paper:
URL: https://arxiv.org/pdf/1807.10221.pdf
Title: Unified Perceptual Parsing for Scene Understanding
README: configs/upernet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13
Version: v0.17.0
Converted From:
Code: https://github.com/CSAILVision/unifiedparsing
Models:
- Name: upernet_r50_512x1024_40k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-50
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 235.29
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 6.4
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.1
mIoU(ms+flip): 78.37
Config: configs/upernet/upernet_r50_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth
- Name: upernet_r101_512x1024_40k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-101
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 263.85
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 7.4
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.69
mIoU(ms+flip): 80.11
Config: configs/upernet/upernet_r101_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth
- Name: upernet_r50_769x769_40k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-50
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 568.18
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 7.2
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.98
mIoU(ms+flip): 79.7
Config: configs/upernet/upernet_r50_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth
- Name: upernet_r101_769x769_40k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-101
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 641.03
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 8.4
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.03
mIoU(ms+flip): 80.77
Config: configs/upernet/upernet_r101_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth
- Name: upernet_r50_512x1024_80k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-50
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.19
mIoU(ms+flip): 79.19
Config: configs/upernet/upernet_r50_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth
- Name: upernet_r101_512x1024_80k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-101
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.4
mIoU(ms+flip): 80.46
Config: configs/upernet/upernet_r101_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth
- Name: upernet_r50_769x769_80k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-50
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.39
mIoU(ms+flip): 80.92
Config: configs/upernet/upernet_r50_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth
- Name: upernet_r101_769x769_80k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-101
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.1
mIoU(ms+flip): 81.49
Config: configs/upernet/upernet_r101_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth
- Name: upernet_r50_512x512_80k_ade20k
In Collection: UPerNet
Metadata:
backbone: R-50
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 42.74
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 8.1
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 40.7
mIoU(ms+flip): 41.81
Config: configs/upernet/upernet_r50_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth
- Name: upernet_r101_512x512_80k_ade20k
In Collection: UPerNet
Metadata:
backbone: R-101
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 49.16
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.1
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.91
mIoU(ms+flip): 43.96
Config: configs/upernet/upernet_r101_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth
- Name: upernet_r50_512x512_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: R-50
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.05
mIoU(ms+flip): 42.78
Config: configs/upernet/upernet_r50_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth
- Name: upernet_r101_512x512_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: R-101
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.82
mIoU(ms+flip): 44.85
Config: configs/upernet/upernet_r101_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth
- Name: upernet_r50_512x512_20k_voc12aug
In Collection: UPerNet
Metadata:
backbone: R-50
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 43.16
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 6.4
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 74.82
mIoU(ms+flip): 76.35
Config: configs/upernet/upernet_r50_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth
- Name: upernet_r101_512x512_20k_voc12aug
In Collection: UPerNet
Metadata:
backbone: R-101
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 50.05
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.5
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.1
mIoU(ms+flip): 78.29
Config: configs/upernet/upernet_r101_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth
- Name: upernet_r50_512x512_40k_voc12aug
In Collection: UPerNet
Metadata:
backbone: R-50
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 75.92
mIoU(ms+flip): 77.44
Config: configs/upernet/upernet_r50_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth
- Name: upernet_r101_512x512_40k_voc12aug
In Collection: UPerNet
Metadata:
backbone: R-101
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.43
mIoU(ms+flip): 78.56
Config: configs/upernet/upernet_r101_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth