forked from atifrahman/HAWK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix_methods.h
202 lines (170 loc) · 4.99 KB
/
matrix_methods.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <cstring>
#include <vector>
using namespace std;
#define D_matrix std::vector<vector<double> >
D_matrix from_vector_to_D(std::vector<double>x){
D_matrix dummy;
for(int i = 0; i<(int)x.size(); ++i){
std::vector<double>line;
dummy.push_back(line);
dummy[i].push_back(x[i]);
}
return dummy;
}
void printMatrix(D_matrix mm){
for(size_t i = 0; i < mm.size(); ++i){
for(size_t j = 0; j < mm[0].size(); ++j){
cerr << setw(10) << mm[i][j] << "\t";
}
cerr << endl;
}
cerr << endl;
return;
}
D_matrix initNewMatrix(int r, int c, double val){
D_matrix newMat;
for(int i = 0; i < r; i++){
std::vector<double> emptyRow(c, val);
newMat.push_back(emptyRow);
}
return newMat;
}
D_matrix initUnitMatrix(int r, int c){
D_matrix newMat;
for(int i = 0; i < r; i++){
std::vector<double> emptyRow;
for(int j = 0; j < c; j++){
if(i == j){
emptyRow.push_back(1);
} else {
emptyRow.push_back(0);
}
}
newMat.push_back(emptyRow);
}
return newMat;
}
D_matrix initMatWithRandom(int r, int c) {
D_matrix newMat;
int factor1 = 7, factor2 = 3;
for (int i = 0; i < r; i++) {
vector<double> row;
for (int j = 0; j < c; j++) {
double data = (((i + 1) * factor1) + (j + 1) * factor2) / 4.2;
row.push_back(data);
factor1 += (rand() % 13);
factor2 += (rand() % 7);
}
newMat.push_back(row);
}
return newMat;
}
D_matrix multiply(D_matrix m1, D_matrix m2){
D_matrix ans;
for(int i = 0; i<m1.size(); ++i){
std::vector<double>line(m2[0].size(),0);
ans.push_back(line);
}
if(m1[0].size()!=m2.size()){
cout<<"cannot multiply\n";
return ans;
}
for(size_t i = 0; i<m1.size(); ++i){
for(size_t j = 0; j<m2[0].size(); ++j){
for(size_t k = 0; k<m1[0].size(); ++k){
ans[i][j] = ans[i][j] + m1[i][k]*m2[k][j];
}
}
}
return ans;
}
// Doolittle algorithm
void luDecomposition(D_matrix matOriginal, int n, D_matrix &matLower, D_matrix &matUpper) {
matLower = initNewMatrix(n, n, 0);
matUpper = initNewMatrix(n, n, 0);
// Decomposing matrix into Upper and Lower
// triangular matrix
for (int i = 0; i < n; i++) {
// Upper Triangular
for (int k = i; k < n; k++) {
// Summation of L(i, j) * U(j, k)
double sum = 0;
for (int j = 0; j < i; j++) {
sum += (matLower[i][j] * matUpper[j][k]);
}
// Evaluating U(i, k)
matUpper[i][k] = matOriginal[i][k] - sum;
}
// Lower Triangular
for (int k = i; k < n; k++) {
if (i == k)
matLower[i][i] = 1; // Diagonal as 1
else {
// Summation of L(k, j) * U(j, i)
double sum = 0;
for (int j = 0; j < i; j++){
sum += (matLower[k][j] * matUpper[j][i]);
}
// Evaluating L(k, i)
matLower[k][i] = (matOriginal[k][i] - sum) / matUpper[i][i];
}
}
}
}
D_matrix inverse(D_matrix matOriginal, int n, bool &singular, bool &nan){
D_matrix matLower, matUpper;
luDecomposition(matOriginal, n, matLower, matUpper);
D_matrix matInverse = initNewMatrix(n, n, 0);
double det = 1;
for(int inverse_col = 0; inverse_col < n; inverse_col++){
vector<double> b;
for(int j = 0; j < n; j++){
if(inverse_col == j){
b.push_back(1);
} else {
b.push_back(0);
}
}
vector<double> y(n, 0);
det *= matLower[0][0];
// Forward substitution. Solve: Ly=b
y[0] = b[0];
for(int row = 1; row < n; row++){
double sum = 0;
for(int col = 0; col < n; col++){
sum += matLower[row][col] * y[col];
}
y[row] = b[row] - sum;
det *= matLower[row][row];
}
vector<double> x(n, 0);
// Backward substitution. Solve: Ux=y
x[n-1] = y[n-1] / matUpper[n - 1][n - 1];
det *= matUpper[n - 1][n - 1];
for(int row = n - 2; row > -1; row--){
double sum = 0;
for(int col = row + 1; col < n; col++){
sum += matUpper[row][col] * x[col];
}
x[row] = (y[row] - sum) / matUpper[row][row];
det *= matUpper[row][row];
}
for(int j = 0; j < n; j++){
matInverse[j][inverse_col] = x[j];
}
}
if(det == 0){
singular = true;
} else if(std::isnan(det)){
nan = true;
}
else {
singular = false;
nan = false;
}
return matInverse;
}