forked from atifrahman/HAWK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
log_reg_case.cpp
813 lines (717 loc) · 23.9 KB
/
log_reg_case.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
#include <cstring>
#include <pthread.h>
#include <semaphore.h>
#include <iostream>
#include <fstream>
#include <vector>
#include "lr.h"
#include "specialfunctions.h"
#define eps 1e-30
#define PCA_COUNT 10
#define MAX_LINE_LENGTH 512
#define CLASS_NAME_LENGTH 256
#define CLASS_NAME1 "Case"
#define CLASS_NAME2 "Control"
#define MALE "M"
#define FEMALE "F"
#define CHUNK_SIZE 10000
#define GENDER_INFO_FILE_NAME "gwas_info.txt"
// #define DEBUG
using namespace std;
// variables, semaphores and mutex used to sync and control thread life
pthread_mutex_t done_count_lock;
int done_count;
int thread_exit_signal;
sem_t all_start;
sem_t all_done;
ifstream con_file;
ifstream feature_z_file;
ifstream ind_file;
ifstream case_total_file;
ifstream control_total_file;
ifstream cov_file;
ifstream gender_info_file;
// These variables are global to ease the passing to multiple threads
int start_indx;
int num_of_thread;
int current_chunk_no;
int PC;
int cov_count;
string covfile;
string gender_info_file_name;
int read_row_count;
int NULL_MODEL_FEATURE_COUNT;
int ALT_MODEL_FEATURE_COUNT;
int mx_iter;
double learn_rate;
std::vector<std::vector<double> > Z;
std::vector<std::vector<double> > C;
std::vector<double> Y;
std::vector<unsigned long long int> totals;
std::vector<unsigned long long int> case_totals;
std::vector<unsigned long long int> control_totals;
std::vector<std::vector<unsigned long long int> > kmercounts;
std::vector<double> output;
std::vector<std::vector<double> > global_features_NULL;
std::vector<std::vector<double> > global_features_ALT;
std::vector<double> null_model;
struct thread_info
{
int thread_no;
};
int open_file_connection();
int find_row_count();
void init_sync_primitve();
void * worker_thread_func(void *thread_no_as_ptr);
void printmodel(vector<double>model){
for(size_t i = 0; i<model.size(); ++i){
cout<<model[i]<<" ";
}
cout<<"\n";
}
int main(int argc,char **argv)
{
num_of_thread = 1;
PC = 2;
covfile = "";
cov_count = 0;
gender_info_file_name = "";
for(int i = 0; i<argc; ++i){
if(strcmp(argv[i],"-t")==0){
num_of_thread = atoi(argv[i+1]);
}
else if(strcmp(argv[i],"-c")==0){
int ll = strlen(argv[i+1]);
for(int j = 0; j<ll; ++j){
covfile.push_back(argv[i+1][j]);
}
}
else if(strcmp(argv[i],"-p")==0){
PC = atoi(argv[i+1]);
}
else if(strcmp(argv[i],"-s")==0){
gender_info_file_name = GENDER_INFO_FILE_NAME;
}
}
if(open_file_connection()) {
cout<<"Error in opening file"<<std::endl;
return 0;
}
learn_rate = 0.1;
mx_iter = 25;
unsigned int nrow = find_row_count();
//Y.size() and nrow are equal
Z = std::vector<std::vector<double> >(nrow,std::vector<double>(PCA_COUNT,0));
Y = std::vector<double>(nrow);
std::vector<double>RAWC;
totals = std::vector<unsigned long long int>(nrow);
#ifdef DEBUG
std::vector<int> gender_info_ref(nrow);
#endif
for(unsigned int l=0;l<Y.size();l++)
{
char buf[MAX_LINE_LENGTH];
char class_name[CLASS_NAME_LENGTH];
for(int l1=0;l1<PCA_COUNT;l1++)
{
feature_z_file>>Z[l][l1];
}
/*
* because each line's 3rd string (which is last) is of importance
* just take three string input from the line and keep the last
*/
ind_file.getline(buf,MAX_LINE_LENGTH-1);
stringstream sstream(buf);
// works only if class name is 3rd non alpha numeric seperated string of line\t'
sstream>>class_name;
#ifdef DEBUG
std::cout<<class_name<<'\t';
#endif
sstream>>class_name;
#ifdef DEBUG
std::cout<<class_name<<'\t';
if(strcmp(class_name,MALE)==0){
gender_info_ref[l] = 1;
}
else if(strcmp(class_name,FEMALE)==0){
gender_info_ref[l] = 0;
}
#endif
sstream>>class_name;
#ifdef DEBUG
std::cout<<class_name<<std::endl;
#endif
if(strcmp(class_name,"Case")==0) {
Y[l] = 1.0;
}
else {
Y[l] = 0.0;
}
// as case_total_kmers.txt may have less entry than case_kmer_counts.txt+control_kmer_counts.txt
if(!case_total_file.eof()){
unsigned long long int tmp;
case_total_file>>tmp;
if(!case_total_file.eof() && !case_total_file.fail()){
case_totals.push_back(tmp);
}
}
// as control_total_kmers.txt may have less entry than case_kmer_counts.txt+control_kmer_counts.txt
if(!control_total_file.eof()){
unsigned long long int tmp;
control_total_file>>tmp;
if(!control_total_file.eof() && !control_total_file.fail()){
control_totals.push_back(tmp);
}
}
}
// construct totals
for(unsigned int l=0;l<case_totals.size();l++)
{
totals[l]=case_totals[l];
}
for(unsigned int l=0;l<control_totals.size();l++)
{
totals[l+case_totals.size()]=control_totals[l];
}
//release the file connections
feature_z_file.close();
ind_file.close();
case_total_file.close();
control_total_file.close();
// extracting sequence information
// needed to sequence sex confounder info from gwas_info.txt and covariate info
// according to the sequence of samples in gwas_eigenstratX.ind
// this would be probably cleaner if we used map<sample_id, class_id> from the begining
std::vector<int> case_indx_info;
std::vector<int> control_indx_info;
char token[512];
for(int line_no=0;line_no < nrow;line_no++){
gender_info_file>>token;
gender_info_file>>token;
gender_info_file>>token;
if(strcmp(token,CLASS_NAME1)==0){
case_indx_info.push_back(line_no);
}
else if(strcmp(token,CLASS_NAME2)==0){
control_indx_info.push_back(line_no);
}
}
// rewinding gwas_info.txt file stream for future read
gender_info_file.clear(); // needed before seekg if not c++11
gender_info_file.seekg(0,ios::beg);
//reading covariate file...
//like Z, i dunno how much PC is there
if((int)covfile.size()>0){
double cc;
while(cov_file>>cc){
RAWC.push_back(cc);
}
int sz = (int)RAWC.size();
// first store them according to gwas_info.txt provided sample sequence
std::vector<std::vector<double> > C_tmp(nrow,std::vector<double>(sz/nrow,0));
int k = 0;
for(int i = 0; i<nrow; ++i){
for(int j = 0; j<(sz/nrow); ++j){
C_tmp[i][j] = RAWC[k];
k++;
}
}
cov_count = sz/nrow;
cov_file.close();
// now store them in sequence according to gwas_eigenstratX.ind
// first all case samples (stably sort) then the control samples (stably sort) information are filled
// inside C
// we use earlier individually stored sequence of case sample index and sequence of control sample index
C = std::vector<std::vector<double> >(nrow,std::vector<double>(sz/nrow,0));
int C_fillup_indx = 0;
for(int i = 0; i<case_indx_info.size(); ++i){
int indx = case_indx_info[i];
for(int j = 0; j<C_tmp[indx].size(); ++j){
C[C_fillup_indx][j] = C_tmp[indx][j];
}
C_fillup_indx++;
}
for(int i = 0; i<control_indx_info.size(); ++i){
int indx = control_indx_info[i];
for(int j = 0; j<C_tmp[indx].size(); ++j){
C[C_fillup_indx][j] = C_tmp[indx][j];
}
C_fillup_indx++;
}
}
// similarly read gender covariate
// reading gender covariate from gender info file of each read seq
// assumption is same no. of line corresponds to same read seq. both in feature_z file
// and gender info file
// if only one seq. gender is unknown (not MALE or FEMALE) this info will not be used
int unknown_gender = nrow;
std::vector<int> gender_info;
if((int)gender_info_file_name.size()>0){
std::vector<int> gender_info_tmp(nrow);
gender_info = std::vector<int>(nrow);
char token[512];
for(int line_no=0;line_no < nrow;line_no++){
gender_info_file>>token;
gender_info_file>>token;
if(strcmp(token,MALE)==0){
gender_info_tmp[line_no] = 1;
unknown_gender--;
}
else if(strcmp(token,FEMALE)==0){
gender_info_tmp[line_no] = 0;
unknown_gender--;
}
gender_info_file>>token;
}
int gender_fillup_indx = 0;
for(int i = 0; i<case_indx_info.size(); ++i){
int indx = case_indx_info[i];
gender_info[gender_fillup_indx] = gender_info_tmp[indx];
gender_fillup_indx++;
}
for(int i = 0; i<control_indx_info.size(); ++i){
int indx = control_indx_info[i];
gender_info[gender_fillup_indx] = gender_info_tmp[indx];
gender_fillup_indx++;
}
}
#ifdef DEBUG
cout<<"gender infor file name "<<gender_info_file_name<<std::endl;
cout<<"unknown gender count " << unknown_gender << std::endl;
cout<<"nrow : "<<nrow<<std::endl;
cout<<"Z"<<std::endl;
for(int l=0;l<nrow;l++)
{
for(int l1=0;l1<PCA_COUNT;l1++)
{
cout<<Z[l][l1]<<' ';
}
cout<<std::endl;
}
cout<<"Y"<<std::endl;
for(int l=0;l<nrow;l++)
{
cout<<Y[l]<<' ';
}
cout<<std::endl;
cout<<"totals"<<std::endl;
for(int l=0;l<nrow;l++)
{
cout<<totals[l]<<' ';
}
cout<<std::endl;
cout<<"covariate count " << cov_count <<std::endl;
for(int i=0;i<C.size();i++)
{
for(int j = 0; j<C[i].size(); ++j){
std::cout<<C[i][j]<<' ';
}
std::cout<<std::endl;
}
cout<<std::endl;
if(case_indx_info.size() + control_indx_info.size() == C.size()) {
std::cout << "covariate sample count and case+control sample count match" << std::endl;
}
if(gender_info_ref.size() == gender_info.size()) {
std::cout << "gender information sample count and case+control sample count match" << std::endl;
}
int correct = 1;
for(int i=0;i<gender_info_ref.size();i++)
{
if(gender_info_ref[i]!=gender_info[i]){
correct = 0;
}
}
std::cout << "gender_info correctness " << correct << std::endl;
#endif
/*
* below matrix creation is done for fitting glm using glm function
* 4th column of matrix will be different for each sample (as per understanding)
*/
int chunk_size = CHUNK_SIZE;
NULL_MODEL_FEATURE_COUNT = 1+PC+cov_count+1;
// if gender_info read and every seq. gender is known it means gender info is read.
// So, one more feature
if(gender_info_file_name.size()>0 && unknown_gender==0){
NULL_MODEL_FEATURE_COUNT++;
}
ALT_MODEL_FEATURE_COUNT = 1+NULL_MODEL_FEATURE_COUNT;
global_features_NULL = std::vector<std::vector<double> >(nrow,std::vector<double>(NULL_MODEL_FEATURE_COUNT));
global_features_ALT = std::vector<std::vector<double> >(nrow,std::vector<double>(ALT_MODEL_FEATURE_COUNT));
for(unsigned int l=0;l<nrow;l++)
{
global_features_NULL[l][0] = 1;
global_features_ALT[l][0] = 1;
for(unsigned int z = 0; z<PC; ++z){
global_features_NULL[l][z+1] = Z[l][z];
global_features_ALT[l][z+1] = Z[l][z];
}
for(unsigned int c = 0; c<cov_count;++c){
global_features_NULL[l][1+PC+c] = C[l][c];
global_features_ALT[l][1+PC+c] = C[l][c];
}
if(unknown_gender==0){
global_features_NULL[l][1+PC+cov_count] = gender_info[l];
global_features_ALT[l][1+PC+cov_count] = gender_info[l];
global_features_NULL[l][1+PC+cov_count+1] = totals[l];
global_features_ALT[l][1+PC+cov_count+1] = totals[l];
}
else{
global_features_NULL[l][1+PC+cov_count] = totals[l];
global_features_ALT[l][1+PC+cov_count] = totals[l];
}
}
// data standardization
std::vector<double> mean(global_features_NULL.size(), 0), std_dev(global_features_NULL.size(), 0);
// mean calculation
for(size_t i = 0; i<global_features_NULL.size(); ++i){
for(size_t j = 1; j<global_features_NULL[0].size(); ++j){
mean[j] += global_features_NULL[i][j];
}
}
for(size_t i = 1; i<global_features_NULL[0].size(); i++){
mean[i] /= global_features_NULL.size();
}
// std. dev. calculation and standardization
for(size_t i = 0; i<global_features_NULL.size(); ++i){
for(size_t j = 1; j<global_features_NULL[0].size(); ++j){
std_dev[j] += (global_features_NULL[i][j]-mean[j])*(global_features_NULL[i][j]-mean[j]);
}
}
for(size_t i = 1; i<global_features_NULL[0].size(); i++){
std_dev[i] /= global_features_NULL.size();
std_dev[i] = sqrt(std_dev[i]);
}
// data standardization
for(size_t i = 0; i<global_features_NULL.size(); ++i){
for(size_t j = 1; j<global_features_NULL[0].size(); ++j){
// don't do standardization if std. dev is zero
if (fabs(std_dev[j]) > 1e-305) {
global_features_NULL[i][j] = (global_features_NULL[i][j]-mean[j])/std_dev[j];
global_features_ALT[i][j] = (global_features_ALT[i][j]-mean[j])/std_dev[j];
}
}
}
bool singularity_error = false;
bool nan_error = false;
double model_error = 0;
int exit_iteration = 0;
null_model = glm_irls(global_features_NULL, Y, 0.1, 25, singularity_error, nan_error, model_error, exit_iteration);
if(singularity_error || nan_error){
std::cerr << "Error while null model optimizing at kmer " << current_chunk_no*CHUNK_SIZE << " to "<< current_chunk_no*CHUNK_SIZE+read_row_count << std::endl;
std::cerr << "singularity error : " << singularity_error << " nan error : " << nan_error << std::endl;
std::cerr << "Null model optimization has exited early due to singularity error" << std::endl;
std::cerr << "Achived error " << model_error << " , Exited at iteration " << exit_iteration << std::endl;
}
output = std::vector<double>(CHUNK_SIZE);
int chunkread = 0;
/*
* First we will init sync primitive to create a signal for threads
* to start
*/
init_sync_primitve();
// Then create the thread(s)
std::vector<pthread_t> thread_list(num_of_thread);
for(int l=0;l<num_of_thread;l++)
{
thread_info *info = new thread_info;
info->thread_no = l;
pthread_create(&thread_list[l], NULL, worker_thread_func, (void *)info);
}
current_chunk_no = 0;
while(true)
{
char buf[MAX_LINE_LENGTH];
kmercounts.clear();
for(read_row_count=0;read_row_count<chunk_size;read_row_count++)
{
con_file>>buf>>buf>>buf>>buf;
if(con_file.eof()) {
break;
}
kmercounts.push_back(std::vector<unsigned long long int>(Y.size()));
for(unsigned int l=0;l<Y.size();l++)
{
con_file>>kmercounts[read_row_count][l];
}
}
//kmercounts er size protibar CHUNK_SIZE kore bartese
//kmercounts er each row te 15 ta column
#ifdef DEBUG_THREAD
/*
* loop to see extraction from con_file is done correctly
*/
cout<<"Portion of kmercounts : "<<std::endl;
for(int l=0;l<chunk_size;l++)
{
for(int l1=0;l1<Y.size();l1++)
{
cout<<kmercounts[l][l1]<<' ';
}
cout<<std::endl;
}
#endif
//read_row_count is equal to CHUNK_SIZE
//shudhu sesh bar ektu kom hoite pare
/*
* Below for loop can be done in parallel. The plan is to divide the
* available iteration to multiple thread. If one thread is complete
* it will increase a signal variable from sequence of signal and go to sleep.
* If all signals are marked than main thread will write the result in stdout then
* read more data and signal the worker thread to restart. Main thread will act
* as a watcher.
*
* Every thread will do interleaved reading from kmercounts and write to
* particular loaction exclusive to thread. As it's write operation is not in
* same memory address for different thread no synchrnization needed
*/
pthread_mutex_lock(&done_count_lock);
/*
* done_count holds how many thread has completed their part
* done_count is 0. So that, last thread to complete this iteration
* can read the done_count and signal main thread appropriately
*/
done_count = 0;
pthread_mutex_unlock(&done_count_lock);
sem_init(&all_done, 0, 0);
// sem_init(&all_start, 0, num_of_thread-1);
for(int l=0;l<num_of_thread;l++) sem_post(&all_start);
sem_wait(&all_done);
// all_done semphore is posted, means all outputs are prepared.
// So, dump them to stdout
for(int l=0;l<read_row_count;l++)
{
cout<<output[l]<<endl;
}
//cout<<"write"<<endl;
cout.flush();
//cout<<"flush"<<endl;
if(read_row_count < chunk_size) {
thread_exit_signal = 1;
for(int l=0;l<num_of_thread;l++) sem_post(&all_start);
break;
}
start_indx += read_row_count;
current_chunk_no++;
}
return 0;
}
int open_file_connection()
{
con_file.open("case_out_w_bonf_top.kmerDiff");
feature_z_file.open("pcs.evec");
ind_file.open("gwas_eigenstratX.ind");
case_total_file.open("case_total_kmers.txt");
control_total_file.open("control_total_kmers.txt");
if((int)covfile.size()>0){
char cvv[200];
for(int i = 0; i<(int)covfile.size();++i){
cvv[i] = covfile[i];
cvv[i+1] = '\0';
}
cov_file.open(cvv);
if(!cov_file){
cout<<covfile<<" not found";
return 1;
}
}
if((int)gender_info_file_name.size()>0){
char gifn[200];
for(int i = 0; i<(int)gender_info_file_name.size();i++){
gifn[i] = gender_info_file_name[i];
}
gifn[gender_info_file_name.size()] = '\0';
gender_info_file.open(gifn);
if(!gender_info_file){
cout<<gender_info_file_name<<" not found";
return 1;
}
}
if(!con_file) {
cout<<"case_out_w_bonf_top.kmerdiff not found";
return 1;
}
if(!feature_z_file) {
cout<<"pcs.evec not found";
return 1;
}
if(!ind_file) {
cout<<"gwas_eigenstratX.ind not found";
return 1;
}
if(!case_total_file) {
cout<<"case_total_kmers.txt not found";
return 1;
}
if(!control_total_file) {
cout<<"control_total_kmers.txt not found";
return 1;
}
return 0;
}
int find_row_count()
{
int nrow = 0;
char buf[MAX_LINE_LENGTH];
while(!case_total_file.eof())
{
case_total_file.getline(buf,MAX_LINE_LENGTH-1);
if(!case_total_file.eof()){
nrow++;
}
}
while(!control_total_file.eof())
{
control_total_file.getline(buf,MAX_LINE_LENGTH-1);
if(!control_total_file.eof()){
nrow++;
}
}
case_total_file.clear(); // needed before seekg if not c++11
case_total_file.seekg(0,ios::beg);
control_total_file.clear(); // needed before seekg if not c++11
control_total_file.seekg(0,ios::beg);
return nrow;
}
void init_sync_primitve()
{
sem_init(&all_start, 0, 0);
sem_init(&all_done, 0, 0);
pthread_mutex_init(&done_count_lock, 0);
thread_exit_signal = 0;
}
void * worker_thread_func(void *arg)
{
int thread_no = ((thread_info *)arg)->thread_no;
int interleave = num_of_thread;
std::vector<double> counts(Y.size());
std::vector<std::vector<double> > thread_local_features_ALT(global_features_ALT);
while(true)
{
sem_wait(&all_start);
if(thread_exit_signal==1) {
break;
}
for(int l=thread_no;l<read_row_count;l+=interleave)
{
for(unsigned int l1=0;l1<Y.size();l1++)
{
counts[l1] = kmercounts[l][l1]/(double)totals[l1];
}
//create the fourth column of matrix
for(unsigned int l1=0;l1<Y.size();l1++)
{
thread_local_features_ALT[l1][ALT_MODEL_FEATURE_COUNT-1] = counts[l1];
}
// data standardization
double mean = 0, std_dev = 0;
// mean calculation
for(size_t i = 0; i<thread_local_features_ALT.size(); ++i){
size_t j = thread_local_features_ALT[0].size() - 1;
mean += thread_local_features_ALT[i][j];
}
mean /= thread_local_features_ALT.size();
// std. dev. calculation and standardization
for(size_t i = 0; i<thread_local_features_ALT.size(); ++i){
size_t j = thread_local_features_ALT[0].size() - 1;
std_dev += (thread_local_features_ALT[i][j]-mean)*(thread_local_features_ALT[i][j]-mean);
}
std_dev /= thread_local_features_ALT.size();
std_dev = sqrt(std_dev);
// data standardization
// don't do standardization if std. dev is zero
if (fabs(std_dev) < 1e-305) {
for(size_t i = 0; i<thread_local_features_ALT.size(); ++i){
size_t j = thread_local_features_ALT[0].size() - 1;
thread_local_features_ALT[i][j] = (thread_local_features_ALT[i][j]-mean)/std_dev;
}
}
bool singularity_error = false;
bool nan_error = false;
double model_error = 0;
int exit_iteration = 0;
std::vector<double> alt_model;
double learn_rate_tmp = learn_rate;
int iter = mx_iter;
alt_model = glm_irls(thread_local_features_ALT,Y,learn_rate_tmp,iter,singularity_error, nan_error, model_error, exit_iteration);
if(singularity_error || nan_error) {
std::cerr << "Error while alt model optimizing at kmer " << current_chunk_no*CHUNK_SIZE << " to "<< current_chunk_no*CHUNK_SIZE+read_row_count << std::endl;
std::cerr << "singularity error : " << singularity_error << " nan error : " << nan_error << std::endl;
std::cerr << "Alt model optimization has exited early due to singularity error" << std::endl;
std::cerr << "Achived error " << model_error << " , Exited at iteration " << exit_iteration << std::endl;
}
double alt_likelihood = 1.0;
for(int dat = 0; dat < thread_local_features_ALT.size(); ++dat){
std::vector<double> data(thread_local_features_ALT[0].size());
for(int j = 0; j<thread_local_features_ALT[0].size(); ++j){
data[j] = thread_local_features_ALT[dat][j];
}
double p = predict(alt_model, data);
if( Y[dat] == 1){
alt_likelihood = alt_likelihood*p;
}
else{
alt_likelihood = alt_likelihood*(1.0-p);
}
if(alt_likelihood <= 0.0){
std::cerr << "Nan error will happen as or alt_likelihood is <=0 while estimating alt_liklelihood_ratio at kmer no. "
<< current_chunk_no*CHUNK_SIZE+l << " at thread " << thread_no << std::endl;
std::cerr << "alt likelihood : " << alt_likelihood << std::endl;
std::cerr << "glm alt model prediction without sigmoid for last kmer : " << linear_predictor(alt_model, data) << std::endl;
std::cerr << "glm alt model prediction with sigmoid for last kmer : " << predict(alt_model, data) << std::endl;
std::cerr << "glm null model prediction without sigmoid for last kmer : " << linear_predictor(null_model, data) << std::endl;
std::cerr << "glm null model prediction with sigmoid for last kmer : " << predict(null_model, data) << std::endl;
break;
}
}
double null_likelihood = 1.0;
for(int dat = 0; dat < global_features_NULL.size(); ++dat){
std::vector<double> data(global_features_NULL[0].size());
for(int j = 0; j<global_features_NULL[0].size(); ++j){
data[j] = global_features_NULL[dat][j];
}
double p = predict(null_model, data);
if( ((int)Y[dat]) == 1){
null_likelihood = null_likelihood*p;
}
else{
null_likelihood = null_likelihood*(1.0-p);
}
}
if((null_likelihood)==0 && (alt_likelihood)==0.0) {
null_likelihood = 0.001;
alt_likelihood = 1.0;
}
double likelihood_ratio = null_likelihood/alt_likelihood;
double log_likelihood_ratio = -2.0*(log(likelihood_ratio));
if(std::isnan(null_likelihood) || std::isnan(alt_likelihood) ||
std::isnan(likelihood_ratio) || std::isnan(log_likelihood_ratio) || log_likelihood_ratio < 0.0){
std::cerr << "Nan error happend or log_likelihood_ratio is <0 while estimating log_liklelihood_ratio at kmer no. "
<< current_chunk_no*CHUNK_SIZE+l << " at thread " << thread_no << std::endl;
std::cerr << "alt model : ";
for(size_t i=0;i<alt_model.size();i++)
{
std::cerr << alt_model[i] << ' ';
}
std::cerr << std::endl;
std::cerr << "likelihood ratio : " << likelihood_ratio << std::endl;
std::cerr << "null likelihood : " << null_likelihood << std::endl;
std::cerr << "alt likelihood : " << alt_likelihood << std::endl;
std::cerr << "log likelihood ratio : " << log_likelihood_ratio << std::endl;
}
if(fabs(log_likelihood_ratio)<eps || log_likelihood_ratio<0.0){
std::cerr << "Due to log_likelihood_ratio<0, assuming null likelihood==alt likelihood, therefore log_likelihood_ratio == 0" << std::endl;
log_likelihood_ratio = 0.0;
std::cerr << "after setting log_likelihood_ratio to zero chi-square value (with dof 1) = " << alglib::chisquarecdistribution(1, log_likelihood_ratio) << std::endl;
}
output[l] = alglib::chisquarecdistribution(1, log_likelihood_ratio);
}
pthread_mutex_lock(&done_count_lock);
done_count++;
if(done_count==num_of_thread) {
sem_post(&all_done);
}
pthread_mutex_unlock(&done_count_lock);
}
// delete ((thread_info *)arg);
}