forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparseCsrTensor.cpp
1286 lines (1138 loc) · 58.5 KB
/
SparseCsrTensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Basic functions on sparse tensors
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/InitialTensorOptions.h>
#include <ATen/Layout.h>
#include <ATen/Parallel.h>
#include <ATen/SparseCsrTensorImpl.h>
#include <ATen/SparseCsrTensorUtils.h>
#include <ATen/SparseTensorImpl.h>
#include <ATen/native/LinearAlgebraUtils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_convert_indices_from_csr_to_coo.h>
#include <ATen/ops/_nnz_native.h>
#include <ATen/ops/_pin_memory_native.h>
#include <ATen/ops/_sparse_compressed_tensor_unsafe_native.h>
#include <ATen/ops/_sparse_csr_tensor_unsafe_native.h>
#include <ATen/ops/_sparse_csc_tensor_unsafe_native.h>
#include <ATen/ops/_sparse_bsr_tensor_unsafe_native.h>
#include <ATen/ops/_sparse_bsc_tensor_unsafe_native.h>
#include <ATen/ops/_sparse_compressed_tensor_with_dims_native.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe_native.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
#include <ATen/ops/_validate_sparse_compressed_tensor_args_native.h>
#include <ATen/ops/_validate_sparse_csr_tensor_args_native.h>
#include <ATen/ops/_validate_sparse_csc_tensor_args_native.h>
#include <ATen/ops/_validate_sparse_bsr_tensor_args_native.h>
#include <ATen/ops/_validate_sparse_bsc_tensor_args_native.h>
#include <ATen/ops/aminmax.h>
#include <ATen/ops/ccol_indices_native.h>
#include <ATen/ops/clone_native.h>
#include <ATen/ops/col_indices_native.h>
#include <ATen/ops/copy_native.h>
#include <ATen/ops/crow_indices_native.h>
#include <ATen/ops/dense_dim_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like_native.h>
#include <ATen/ops/empty_native.h>
#include <ATen/ops/is_pinned_native.h>
#include <ATen/ops/resize_as_sparse_native.h>
#include <ATen/ops/resize_native.h>
#include <ATen/ops/row_indices_native.h>
#include <ATen/ops/select_native.h>
#include <ATen/ops/select_copy.h>
#include <ATen/ops/select_copy_native.h>
#include <ATen/ops/sparse_compressed_tensor_native.h>
#include <ATen/ops/sparse_csr_tensor_native.h>
#include <ATen/ops/sparse_csc_tensor_native.h>
#include <ATen/ops/sparse_bsr_tensor_native.h>
#include <ATen/ops/sparse_bsc_tensor_native.h>
#include <ATen/ops/sparse_dim_native.h>
#include <ATen/ops/values_native.h>
#include <ATen/ops/_validate_compressed_sparse_indices.h>
#include <ATen/ops/where.h>
#endif
namespace at::native {
using namespace at::sparse_csr;
namespace {
bool solve_arange(const Tensor& input, int64_t& start, int64_t& end, int64_t& step) {
/*
This function solves the equation
input == arange(start, end, step)
for integers start, end, and step, if possible. If the solution
exists, returns true.
*/
int64_t n = input.numel();
if (n == 0) {
// a trivial solution
start = end = 0;
step = 1;
} else if (n == 1) {
// a simple solution
start = input[0].item<int64_t>();
end = start + 1;
step = 1;
} else {
Tensor first_last = input.slice(0, 0, n, n - 1).cpu();
int64_t start_candidate = first_last[0].item<int64_t>();
int64_t end_candidate = first_last[1].item<int64_t>() + 1;
if (end_candidate - start_candidate == n) {
// a special solution
start = start_candidate;
end = end_candidate;
step = 1;
} else {
// detect if general solution exists
Tensor possible_steps = input.slice(0, 1).sub(input.slice(0, 0, n - 1));
Tensor possible_step = possible_steps[0];
if ((possible_steps.eq(possible_step)).all().item<bool>()) {
start = start_candidate;
end = end_candidate;
step = possible_step.item<int64_t>();
} else {
// no solution
return false;
}
}
}
return true;
}
} // end anonymous namespace
/*
Validate the arguments to sparse compressed (CSR, CSC, BSR, and BSC)
tensor factory functions.
The CSR and BSR invariants for PyTorch are outlined in
https://pearu.github.io/csr_tensor_invariants.html
https://pearu.github.io/bsr_tensor_invariants.html
that in what follows are generalized for all sparse compressed
formats with support to batched and dense dimensions.
*/
static void _validate_sparse_compressed_tensor_args_worker(const Tensor& compressed_indices, const Tensor& plain_indices, const Tensor& values, const IntArrayRef size, const Layout& layout) {
// Layout must be Sparse Compressed, 2.4
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(layout, "validate_sparse_compressed_tensor_args", [&]{});
const std::string layout_name = layoutToString(layout, /*upper=*/ true);
const std::string compressed_indices_name = compressedIndicesName(layout);
const std::string plain_indices_name = plainIndicesName(layout);
const std::string compressed_dim_name = compressedDimName(layout);
const std::string plain_dim_name = plainDimName(layout);
// Layout Invariants
// Re 3.5 and 3.6: in the case of compressed/plain indices tensors,
// we require contiguity per-patch basis, that is, the last stride
// of these indices must be 1. The reasoning for this is that
// indices tensors within a patch are "atomic" in the sense that
// sliced compressed/plain indices would not represent the indices
// of any sparse compressed tensor as the slicing would break the
// description of the tensor index structure.
// 2.1
TORCH_CHECK(plain_indices.layout() == kStrided,
"expected ", plain_indices_name, " to be a strided tensor but got ", plain_indices.layout(), " tensor");
// 2.2
TORCH_CHECK(compressed_indices.layout() == kStrided,
"expected ", compressed_indices_name, " to be a strided tensor but got ", compressed_indices.layout(), " tensor");
const int base_ndim = 2; // corresponds to compressed and plain indices
const auto batch_ndim = compressed_indices.dim() - 1;
const int block_ndim = AT_DISPATCH_PLAIN_SPARSE_COMPRESSED_LAYOUTS(
layout, "validate_sparse_compressed_tensor_args",
[&] { return 0; }, [&] { return 2; });
const auto dense_ndim = values.dim() - batch_ndim - block_ndim - 1;
// 2.3
TORCH_CHECK(values.layout() == kStrided,
"expected values to be a strided tensor but got ", values.layout(), " tensor");
// 3.7 is dropped, that is, values tensor does not need to be
// contiguous, in general. Particular algorithms on sparse
// compressed tensors may require contiguity though.
// Shape and Strides invariants
// 3.2
TORCH_CHECK(
batch_ndim >= 0,
compressed_indices_name, " must have dimensionality >= 1 but got ", compressed_indices.dim());
// 3.3
TORCH_CHECK(
compressed_indices.dim() == plain_indices.dim(),
compressed_indices_name, " and ", plain_indices_name, " dimensionalities must be equal but got ",
compressed_indices.dim(), " and ", plain_indices.dim(), ", respectively");
// 3.4
TORCH_CHECK(
dense_ndim >= 0,
"values must have dimensionality > sum of batch and block dimensionalities (=",
batch_ndim, " + ", block_ndim, ") but got ", values.dim());
// 3.5
TORCH_CHECK(plain_indices.stride(-1) == 1,
"expected ", plain_indices_name, " to be a contiguous tensor per batch");
// 3.6
TORCH_CHECK(compressed_indices.stride(-1) == 1,
"expected ", compressed_indices_name, " to be a contiguous tensor per batch");
// 3.1
TORCH_CHECK(
static_cast<int>(size.size()) == batch_ndim + base_ndim + dense_ndim,
"tensor dimensionality must be sum of batch, base, and dense dimensionalities (=",
batch_ndim, " + ", base_ndim, " + ", dense_ndim, ") but got ", size.size());
// For CSR/CSC formats, we define blocksize=(1, 1) so that checking
// the sparse compressed tensor invariants can be unified with the
// BSR/BSC invariants.
// 3.10
DimVector blocksize{
(block_ndim == 2 ? std::max<int64_t>(1, values.size(batch_ndim + 1)) : 1),
(block_ndim == 2 ? std::max<int64_t>(1, values.size(batch_ndim + 2)) : 1),
};
TORCH_INTERNAL_ASSERT(blocksize.size() == 2 && blocksize[0] > 0 && blocksize[1] > 0);
// All batch sizes must be the same and consistent with tensor batchsize, 3.1, 3.8, 3.9, 3.10
DimVector batchsize = DimVector(size.slice(0, batch_ndim));
DimVector compressed_indices_batchsize = DimVector(compressed_indices.sizes().slice(0, batch_ndim));
DimVector plain_indices_batchsize = DimVector(plain_indices.sizes().slice(0, batch_ndim));
DimVector values_batchsize = DimVector(values.sizes().slice(0, batch_ndim));
const int64_t values_nnz = values.size(batch_ndim);
DimVector values_blocksize = DimVector(values.sizes().slice(batch_ndim + 1, block_ndim));
DimVector values_densesize = DimVector(values.sizes().slice(batch_ndim + 1 + block_ndim, dense_ndim));
TORCH_CHECK(
batchsize == compressed_indices_batchsize && batchsize == plain_indices_batchsize && batchsize == values_batchsize,
"all batch dimensions of ", compressed_indices_name," (=", compressed_indices_batchsize, "), ", plain_indices_name," (=",
plain_indices_batchsize, "), and values (=", values_batchsize, ") must be equal to tensor batch dimensions (=",
batchsize, ")");
// A tensor constitutes of full blocks, 3.1
for (int i=0; i<block_ndim; i++) {
TORCH_CHECK(size[batch_ndim + i] % blocksize[i] == 0,
"tensor shape[", batch_ndim + i, "] (=", size[batch_ndim + i],
") must be divisible with blocksize[", i, "] (=", blocksize[i],
") as defined by values shape");
}
const int64_t nrows = size[batch_ndim] / blocksize[0];
const int64_t ncols = size[batch_ndim + 1] / blocksize[1];
auto [compressed_dim_size, plain_dim_size] = AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(layout, "validate_sparse_compressed_tensor_args",
[&] { return std::make_tuple(nrows, ncols); },
[&] { return std::make_tuple(ncols, nrows); });
// 3.8
TORCH_CHECK(
compressed_indices.size(-1) == compressed_dim_size + 1,
compressed_indices_name, ".shape[-1] must be equal to the number of ",
compressed_dim_name, "s + 1 (=", compressed_dim_size + 1, "), but got ", compressed_indices.size(-1));
// 3.9, 3.10
TORCH_CHECK(
plain_indices.size(-1) == values_nnz,
plain_indices_name, ".shape[-1] must be equal to nnz (=", values_nnz,
") as defined by values.shape[", batch_ndim, "], but got ", plain_indices.size(-1));
// Type Invariants
auto compressed_indices_type = compressed_indices.scalar_type();
auto plain_indices_type = plain_indices.scalar_type();
// 1.1, 1.2, 1.3
TORCH_CHECK(
compressed_indices_type == plain_indices_type,
compressed_indices_name, " and ", plain_indices_name, " must have the same dtype, bot got ",
compressed_indices_type, " and ", plain_indices_type, ", respectively");
TORCH_CHECK(
compressed_indices_type == kInt || compressed_indices_type == kLong,
compressed_indices_name, " and ", plain_indices_name, " dtype must be Int or Long, but got ",
compressed_indices_type);
if (compressed_indices.is_meta()) {
TORCH_CHECK(values_nnz == 0, "expected nnz to be 0 for sparse ", layout_name, " meta tensor but got ", values_nnz);
} else {
// Indices invariants
at::_validate_compressed_sparse_indices(
/*is_crow = */layout == kSparseCsr || layout == kSparseBsr,
compressed_indices,
plain_indices,
compressed_dim_size,
plain_dim_size,
values_nnz);
}
// Device Invariants
// 4.1
TORCH_CHECK(
values.device().type() == kCPU || values.device().type() == kCUDA || values.device().type() == kMeta,
"device type of values (",
values.device().type(),
") must be CPU or CUDA or Meta");
// 4.2, 4.3, 4.4
TORCH_CHECK(
compressed_indices.get_device() == values.get_device(),
"device of ", compressed_indices_name, " (=",
compressed_indices.device(),
") must match device of values (=",
values.device(),
")");
TORCH_CHECK(
compressed_indices.get_device() == plain_indices.get_device(),
"device of ", compressed_indices_name, " (=",
compressed_indices.device(),
") must match device of ", plain_indices_name, " (=",
plain_indices.device(),
")");
TORCH_CHECK(
compressed_indices.is_pinned() == values.is_pinned(),
"memory pinning of ", compressed_indices_name, " (=",
compressed_indices.is_pinned(),
") must match memory pinning of values (=",
values.is_pinned(),
")");
TORCH_CHECK(
compressed_indices.is_pinned() == plain_indices.is_pinned(),
"memory pinning of ", compressed_indices_name, " (=",
compressed_indices.is_pinned(),
") must match memory pinning of ", plain_indices_name, " (=",
plain_indices.is_pinned(),
")");
// Autograd Invariants
//
// These are internal asserts because users should not be able to
// create non-floating point dtype tensors with requires_grad flag
// set to true.
TORCH_INTERNAL_ASSERT(!compressed_indices.requires_grad());
TORCH_INTERNAL_ASSERT(!plain_indices.requires_grad());
}
void _validate_sparse_compressed_tensor_args(const Tensor& compressed_indices, const Tensor& plain_indices, const Tensor& values, IntArrayRef size, Layout layout) {
_validate_sparse_compressed_tensor_args_worker(compressed_indices, plain_indices, values, size, layout);
}
void _validate_sparse_csr_tensor_args(const Tensor& crow_indices, const Tensor& col_indices, const Tensor& values, IntArrayRef size) {
_validate_sparse_compressed_tensor_args_worker(crow_indices, col_indices, values, size, kSparseCsr);
}
void _validate_sparse_csc_tensor_args(const Tensor& ccol_indices, const Tensor& row_indices, const Tensor& values, IntArrayRef size) {
_validate_sparse_compressed_tensor_args_worker(ccol_indices, row_indices, values, size, kSparseCsc);
}
void _validate_sparse_bsr_tensor_args(const Tensor& crow_indices, const Tensor& col_indices, const Tensor& values, IntArrayRef size) {
_validate_sparse_compressed_tensor_args_worker(crow_indices, col_indices, values, size, kSparseBsr);
}
void _validate_sparse_bsc_tensor_args(const Tensor& ccol_indices, const Tensor& row_indices, const Tensor& values, IntArrayRef size) {
_validate_sparse_compressed_tensor_args_worker(ccol_indices, row_indices, values, size, kSparseBsc);
}
// Construction of CSR, CSC, BSR, and BSC tensors.
// Note: The usage of "Csr" in names like SparseCsrTensor,
// SparseCsrCPU, SparseCsrCUDA, and SparseCsrTensorImpl exists because
// of historical reasons (that ought to be removed in future) and does
// not mean that the corresponding functionality would be CSR layout
// only specific.
static SparseCsrTensor new_compressed_tensor(const TensorOptions& options) {
// TODO: remove this comment after enabling autograd support for CSR tensor
// constructor.
// TORCH_INTERNAL_ASSERT(impl::variable_excluded_from_dispatch());
Layout layout = AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(options.layout(), "new_compressed_tensor", [&] { return the_layout; });
DispatchKey dispatch_key = DispatchKey::Undefined;
switch(options.device().type()) {
case kCPU:
dispatch_key = DispatchKey::SparseCsrCPU;
break;
case kCUDA:
dispatch_key = DispatchKey::SparseCsrCUDA;
break;
case kMeta:
dispatch_key = DispatchKey::SparseCsrMeta;
break;
case kPrivateUse1:
dispatch_key = DispatchKey::SparseCsrPrivateUse1;
break;
default:
TORCH_CHECK_NOT_IMPLEMENTED(false, "Could not run 'new_compressed_tensor' from the '", options.device(), "' device.)");
}
return detail::make_tensor<SparseCsrTensorImpl>(DispatchKeySet(dispatch_key), options.device(), layout, options.dtype());
}
Tensor sparse_compressed_tensor_with_dims(
int64_t nnz,
int64_t dense_dim,
c10::IntArrayRef size,
c10::IntArrayRef blocksize,
ScalarType index_dtype,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory) {
// sparse_compressed_tensor_with_dims is a generalization of empty
// that enables the specification of nnz, dense_dim, blocksize, and
// index_dtype for sparse compressed tensors.
//
// sparse_compressed_tensor_with_dims indices and values tensors are
// created as empty tensors, so the returned sparse compressed
// tensor will not satisfy the sparse compressed tensor
// invariants. The caller is responsible for initializing the
// indices tensors properly.
TORCH_CHECK(layout, "sparse_compressed_tensor_with_dims: expected sparse compressed tensor layout but got none");
Layout layout_ = layout.value();
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(layout_, "sparse_compressed_tensor_with_dims", [&]{});
constexpr int64_t sparse_dim = 2;
int64_t batch_dim = size.size() - dense_dim - sparse_dim;
TORCH_CHECK(batch_dim >= 0, "sparse_compressed_tensor_with_dims: dimensionality must be at least dense_dim(=",
dense_dim, ") + sparse_dim(=", sparse_dim, "), but got ", size.size());
TORCH_CHECK(nnz >= 0, "sparse_compressed_tensor_with_dims: nnz must be non-negative, got ", nnz);
auto plain_indices_size = DimVector(size.slice(0, batch_dim));
auto compressed_indices_size = DimVector(size.slice(0, batch_dim));
auto values_size = DimVector(size.slice(0, batch_dim));
plain_indices_size.push_back(nnz);
values_size.push_back(nnz);
if (layout_ == kSparseBsr || layout_ == kSparseBsc) {
TORCH_CHECK(blocksize.size() == (size_t)sparse_dim, "sparse_compressed_tensor_with_dims: blocksize needs to be a tuple of size ",
sparse_dim, ", but got ", blocksize.size());
auto d0 = (layout_ == kSparseBsr ? 0 : 1);
auto d1 = (layout_ == kSparseBsr ? 1 : 0);
TORCH_CHECK(blocksize[0] > 0 && blocksize[1] > 0, "sparse_compressed_tensor_with_dims: blocksize needs to be positive, but got ", blocksize);
auto compressed_size = size[compressedDimension(layout_, size, dense_dim)];
auto plain_size = size[plainDimension(layout_, size, dense_dim)];
TORCH_CHECK(compressed_size % blocksize[d0] == 0, "sparse_compressed_tensor_with_dims: dimension ",
compressedDimension(layout_, size, dense_dim), " must be multiple of blocksize[", d0, "](=", blocksize[d0], ") but got ", compressed_size);
TORCH_CHECK(plain_size % blocksize[d1] == 0, "sparse_compressed_tensor_with_dims: dimension ", plainDimension(layout_, size, dense_dim),
" must be multiple of blocksize[", d1, "](=", blocksize[d1], ") but got ", plain_size);
compressed_indices_size.push_back(compressed_size / blocksize[d0] + 1);
values_size.append(DimVector(blocksize));
} else {
TORCH_CHECK(blocksize.size() == 0, "sparse_compressed_tensor_with_dims: blocksize cannot be specified for non-block layout ", layout_);
compressed_indices_size.push_back(size[compressedDimension(layout_, size, dense_dim)] + 1);
}
values_size.append(DimVector(size.slice(batch_dim + sparse_dim, dense_dim)));
TORCH_CHECK(
index_dtype == ScalarType::Int || index_dtype == ScalarType::Long,
"indices dtype must be Int or Long, but got ", index_dtype);
TensorOptions options_ = TensorOptions().layout(Layout::Strided).device(device).pinned_memory(pin_memory);
auto compressed_indices = at::empty(compressed_indices_size, options_.dtype(index_dtype));
auto plain_indices = at::empty(plain_indices_size, options_.dtype(index_dtype));
auto values = at::empty(values_size, options_.dtype(dtype));
TensorOptions options = TensorOptions().dtype(dtype).layout(layout_).device(device).pinned_memory(pin_memory);
SparseCsrTensor self = new_compressed_tensor(options);
if (pin_memory.value_or(false) && !values.is_pinned()) {
get_sparse_csr_impl(self)->set_member_tensors(compressed_indices.pin_memory(), plain_indices.pin_memory(), values.pin_memory(), size);
} else {
get_sparse_csr_impl(self)->set_member_tensors(compressed_indices, plain_indices, values, size);
}
return self;
}
Tensor _sparse_compressed_tensor_unsafe_symint(
const Tensor& compressed_indices,
const Tensor& plain_indices,
const Tensor& values,
c10::SymIntArrayRef size,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory) {
if (!layout) {
AT_ERROR("sparse_compressed_tensor_unsafe expected sparse compressed tensor layout but got none");
}
Layout layout_ = layout.value();
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(layout_, "sparse_compressed_tensor_unsafe", [&]{});
if (at::globalContext().checkSparseTensorInvariants()) {
_validate_sparse_compressed_tensor_args_worker(compressed_indices, plain_indices, values, C10_AS_INTARRAYREF_SLOW(size), layout_);
}
TensorOptions options = TensorOptions().dtype(dtype).layout(layout_).device(device).pinned_memory(pin_memory);
SparseCsrTensor self = new_compressed_tensor(options);
if (pin_memory.value_or(false) && !values.is_pinned()) {
get_sparse_csr_impl(self)->set_member_tensors(compressed_indices.pin_memory(), plain_indices.pin_memory(), values.pin_memory(), size);
} else {
get_sparse_csr_impl(self)->set_member_tensors(compressed_indices, plain_indices, values, size);
}
return self;
}
template <Layout required_layout>
Tensor _sparse_compressed_tensor_unsafe_template(const Tensor& compressed_indices,
const Tensor& plain_indices,
const Tensor& values,
IntArrayRef size,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory) {
Layout layout_ = layout.value_or(required_layout);
TORCH_CHECK(layout_ == required_layout, "sparse compressed layout must be ",required_layout, " but got ", layout_);
if (at::globalContext().checkSparseTensorInvariants()) {
_validate_sparse_compressed_tensor_args_worker(compressed_indices, plain_indices, values, size, layout_);
}
TensorOptions options = TensorOptions().dtype(dtype).layout(layout_).device(device).pinned_memory(pin_memory);
SparseCsrTensor self = new_compressed_tensor(options);
if (pin_memory.value_or(false) && !values.is_pinned()) {
get_sparse_csr_impl(self)->set_member_tensors(compressed_indices.pin_memory(), plain_indices.pin_memory(), values.pin_memory(), size);
} else {
get_sparse_csr_impl(self)->set_member_tensors(compressed_indices, plain_indices, values, size);
}
return self;
}
#define SPARSE_COMPRESSED_TENSOR_UNSAFE(KIND, REQUIRED_LAYOUT) \
Tensor _sparse_##KIND##_tensor_unsafe(const Tensor& compressed_indices, \
const Tensor& plain_indices, \
const Tensor& values, \
IntArrayRef size, \
std::optional<ScalarType> dtype, \
std::optional<Layout> layout, \
std::optional<Device> device, \
std::optional<bool> pin_memory) { \
return _sparse_compressed_tensor_unsafe_template<REQUIRED_LAYOUT>(compressed_indices, plain_indices, values, size, dtype, layout, device, pin_memory); \
}
SPARSE_COMPRESSED_TENSOR_UNSAFE(csr, kSparseCsr);
SPARSE_COMPRESSED_TENSOR_UNSAFE(csc, kSparseCsc);
SPARSE_COMPRESSED_TENSOR_UNSAFE(bsr, kSparseBsr);
SPARSE_COMPRESSED_TENSOR_UNSAFE(bsc, kSparseBsc);
static DimVector _estimate_sparse_compressed_tensor_size(
const Tensor& compressed_indices,
const Tensor& plain_indices,
const Tensor& values,
Layout layout) {
const int block_ndim = AT_DISPATCH_PLAIN_SPARSE_COMPRESSED_LAYOUTS(layout, "estimate_sparse_compressed_tensor_size", [&] { return 0; }, [&] { return 2; });
const int base_ndim = 2; // corresponds to compressed and plain indices
const auto batch_ndim = compressed_indices.dim() - 1;
const std::string compressed_indices_name = compressedIndicesName(layout);
const std::string plain_indices_name = plainIndicesName(layout);
TORCH_CHECK(
batch_ndim >= 0,
compressed_indices_name, " must have dimensionality >= 1 but got ", compressed_indices.dim());
TORCH_CHECK(
compressed_indices.dim() == plain_indices.dim(),
compressed_indices_name, " and ", plain_indices_name, " dimensionalities must be equal but got ",
compressed_indices.dim(), " and ", plain_indices.dim(), ", respectively");
const int64_t dense_ndim = values.dim() - batch_ndim - block_ndim - 1;
TORCH_CHECK(
dense_ndim >= 0,
"values must have dimensionality > sum of batch and block dimensionalities (=",
batch_ndim, " + ", block_ndim, ") but got ", values.dim());
DimVector blocksize{
(block_ndim == 2 ? std::max<int64_t>(1, values.size(batch_ndim + 1)) : 1),
(block_ndim == 2 ? std::max<int64_t>(1, values.size(batch_ndim + 2)) : 1)
};
DimVector size = DimVector(compressed_indices.sizes().slice(0, batch_ndim));
int64_t compressed_dim_size = (compressed_indices.dim() > 0 && compressed_indices.size(-1) > 0 ? compressed_indices.size(-1) - 1 : 0);
int64_t plain_dim_size = AT_DISPATCH_INTEGRAL_TYPES(plain_indices.scalar_type(), "estimate_sparse_compressed_tensor_size",
[&]() -> int64_t {
if (plain_indices.numel() > 0) {
return plain_indices.max().item<scalar_t>() + 1;
} else {
return 0;
}
});
AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(layout, "estimate_sparse_compressed_tensor_size",
[&]{
size.push_back(compressed_dim_size * blocksize[0]);
size.push_back(plain_dim_size * blocksize[1]);
},
[&]{
size.push_back(plain_dim_size * blocksize[0]);
size.push_back(compressed_dim_size * blocksize[1]);
});
for (int i=0; i<dense_ndim; i++) {
int64_t j = batch_ndim + 1 + block_ndim + i;
size.push_back((j < values.dim() ? values.size(j) : 1));
}
TORCH_CHECK(
static_cast<int>(size.size()) == batch_ndim + base_ndim + dense_ndim,
"tensor dimensionality must be sum of batch, base, and dense dimensionalities (=",
batch_ndim, " + ", base_ndim, " + ", dense_ndim, ") but got ", size.size());
return size;
}
// TODO: This constructor should probably use an ATen abstract method in order
// to make autograd dispatch available for the CSR constructor. See the relevant
// note in native_functions.yaml.
Tensor sparse_compressed_tensor(
const Tensor& compressed_indices,
const Tensor& plain_indices,
const Tensor& values,
IntArrayRef size,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory) {
if (!layout) {
AT_ERROR("sparse_compressed_tensor expected sparse compressed tensor layout but got none");
}
Layout layout_ = layout.value();
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(layout_, "sparse_compressed_tensor", [&]{});
// See [Note: hacky wrapper removal for TensorOptions]
TensorOptions options = TensorOptions().dtype(dtype).layout(layout_).device(device).pinned_memory(pin_memory);
return at::_sparse_compressed_tensor_unsafe(
compressed_indices,
plain_indices,
values,
size,
optTypeMetaToScalarType(options.dtype_opt()),
options.layout_opt(),
options.device_opt(),
options.pinned_memory_opt());
}
Tensor sparse_compressed_tensor(
const Tensor& compressed_indices,
const Tensor& plain_indices,
const Tensor& values,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory) {
if (!layout) {
AT_ERROR("sparse_compressed_tensor expected sparse compressed tensor layout but got none");
}
Layout layout_ = layout.value();
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(layout_, "sparse_compressed_tensor", [&]{});
DimVector size = _estimate_sparse_compressed_tensor_size(compressed_indices, plain_indices, values, layout_);
// See [Note: hacky wrapper removal for TensorOptions]
TensorOptions options = TensorOptions().dtype(dtype).layout(layout_).device(device).pinned_memory(pin_memory);
return at::_sparse_compressed_tensor_unsafe(
compressed_indices,
plain_indices,
values,
size,
optTypeMetaToScalarType(options.dtype_opt()),
options.layout_opt(),
options.device_opt(),
options.pinned_memory_opt());
}
#define SPARSE_COMPRESSED_TENSOR(KIND, REQUIRED_LAYOUT) \
Tensor sparse_##KIND##_tensor(const Tensor& compressed_indices, \
const Tensor& plain_indices, \
const Tensor& values, \
std::optional<ScalarType> dtype, \
std::optional<Layout> layout, \
std::optional<Device> device, \
std::optional<bool> pin_memory) { \
if (layout) { \
TORCH_CHECK(layout.value() == REQUIRED_LAYOUT, "sparse " # KIND " layout must be ", REQUIRED_LAYOUT, " but got ", layout.value()); \
} \
std::optional<Layout> layout_(REQUIRED_LAYOUT); \
return at::native::sparse_compressed_tensor(compressed_indices, plain_indices, values, dtype, layout_, device, pin_memory); \
} \
Tensor sparse_##KIND##_tensor(const Tensor& compressed_indices, \
const Tensor& plain_indices, \
const Tensor& values, \
IntArrayRef size, \
std::optional<ScalarType> dtype, \
std::optional<Layout> layout, \
std::optional<Device> device, \
std::optional<bool> pin_memory) { \
if (layout) { \
TORCH_CHECK(layout.value() == REQUIRED_LAYOUT, "sparse " # KIND " layout must be ", REQUIRED_LAYOUT, " but got ", layout.value()); \
} \
std::optional<Layout> layout_(REQUIRED_LAYOUT); \
return at::native::sparse_compressed_tensor(compressed_indices, plain_indices, values, size, dtype, layout_, device, pin_memory); \
}
SPARSE_COMPRESSED_TENSOR(csr, kSparseCsr)
SPARSE_COMPRESSED_TENSOR(csc, kSparseCsc)
SPARSE_COMPRESSED_TENSOR(bsr, kSparseBsr)
SPARSE_COMPRESSED_TENSOR(bsc, kSparseBsc)
Tensor empty_sparse_compressed_symint(
SymIntArrayRef size,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory,
std::optional<MemoryFormat> optional_memory_format) {
// TODO: Don't specialize
return empty_sparse_compressed(C10_AS_INTARRAYREF_SLOW_ALLOC(size), dtype, layout, device, pin_memory, optional_memory_format);
}
// Warning: ideally, torch.empty(..., layout=<sparse compressed
// format>) ought to be unsupported because it does not return a valid
// sparse compressed tensor without initialization of compressed
// indices. The implementation below is kept for BC.
Tensor empty_sparse_compressed(
IntArrayRef size,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory,
std::optional<MemoryFormat> optional_memory_format) {
check_size_nonnegative(size);
TORCH_CHECK(size.size() >= 2, "torch.empty: Only batched sparse compressed (non-block) tensors are supported, but got size ", size);
// Strided is the default layout for torch.empty.
Layout layout_ = layout.value_or(Layout::Strided);
// torch.empty cannot be used to create blocked tensors because its
// API lacks a method to specify the block size.
AT_DISPATCH_SPARSE_COMPRESSED_NONBLOCK_LAYOUTS(layout_, "empty_sparse_compressed", [&]{});
int64_t nnz = 0;
auto compressed_indices_size = DimVector(size.slice(0, size.size() - 2));
auto plain_indices_and_values_size = DimVector(size.slice(0, size.size() - 2));
compressed_indices_size.push_back(size[compressedDimension(layout_, size)] + 1);
plain_indices_and_values_size.push_back(nnz);
TensorOptions options = TensorOptions().dtype(ScalarType::Long).layout(Layout::Strided).device(device).pinned_memory(pin_memory);
auto compressed_indices = at::empty(compressed_indices_size, options);
auto plain_indices = at::empty(plain_indices_and_values_size, options);
auto values = at::empty(plain_indices_and_values_size, options.dtype(dtype));
// torch.empty on produces garbage so that the resulting empty
// sparse compressed tensor may fail to satisfy the following
// compressed sparse tensor invariants:
//
// compressed_indices[..., 0] == 0
// compressed_indices[..., -1] == nnz.
// compressed_indices must be non-decreasing sequence
//
// Therefore, avoid using empty to create sparse compressed
// tensors. Instead, use compressed sparse constructors directly or
// other factory functions such as torch.zeros, etc.
return at::_sparse_compressed_tensor_unsafe(compressed_indices,
plain_indices,
values,
size,
dtype,
layout,
device,
pin_memory);
}
const Tensor& resize_sparse_csr_(
const Tensor& self,
IntArrayRef size,
std::optional<MemoryFormat> optional_memory_format) {
check_size_nonnegative(size);
TORCH_CHECK(size.size() >= 2, "torch.resize_: Only batched sparse CSR matrices are supported, but got size ", size);
TORCH_CHECK(
self.size(-1) <= size[size.size() - 1],
"torch.resize_: Resizing columns of sparse CSR tensors to a smaller value is not supported. ",
"The original number of columns is ",
self.size(-1),
" while the requested new number of columns is ", size[size.size() - 1], ".");
get_sparse_csr_impl(self)->resize_(self._nnz(), size);
return self;
}
Tensor& copy_sparse_compressed_(Tensor& self, const Tensor& src, bool non_blocking) {
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(self.layout(), "copy_sparse_compressed_", [&]{});
TORCH_CHECK(
self.layout() == src.layout(),
"torch.copy_: copy of sparse compressed tensors having different layouts is not supported.",
" self layout is ", self.layout(), " and src layout is ", src.layout());
TORCH_CHECK(
self._nnz() == src._nnz(), // actually, values copy allows different shapes as long as operands are broadcastable
"torch.copy_: only sparse compressed tensors with the same number of specified elements are supported.");
auto self_compressed_dim = compressedDimension(self.layout(), self.sizes());
auto src_compressed_dim = compressedDimension(src.layout(), src.sizes());
auto self_compressed_dims = self.size(self_compressed_dim);
auto src_compressed_dims = src.size(compressedDimension(src.layout(), src.sizes()));
if (self_compressed_dim == src_compressed_dim) {
TORCH_CHECK(self_compressed_dims == src_compressed_dims,
"torch.copy_: expected shapes of self and src to match along dimension ",
self_compressed_dim, " for ",
self.layout(), " layout but the corresponding dimensions of self and src are ",
self_compressed_dims, " and ", src_compressed_dims, ", respectively.");
} else {
TORCH_CHECK(self_compressed_dims == src_compressed_dims,
"torch.copy_: expected shapes of self and src to match along dimensions ",
self_compressed_dim, " and ", src_compressed_dim, ", respectively, for ",
self.layout(), " layout but the corresponding dimensions of self and src are ",
self_compressed_dims, " and ", src_compressed_dims, ", respectively.");
}
AT_DISPATCH_PLAIN_SPARSE_COMPRESSED_LAYOUTS(self.layout(), "copy_sparse_compressed_",
[&]{},
[&]{
auto self_values = self.values();
auto src_values = src.values();
auto self_blocksize = DimVector(self_values.sizes().slice(self_values.dim()-2, 2));
auto src_blocksize = DimVector(src_values.sizes().slice(src_values.dim()-2, 2));
TORCH_CHECK(self_blocksize == src_blocksize,
"torch.copy_: copy of sparse compressed tensors having different block sizes is not supported.",
" self and src block sizes are ", self_blocksize, " and ", src_blocksize, ", respectively.");
});
AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(self.layout(), "copy_sparse_compressed_",
[&]{
self.crow_indices().copy_(src.crow_indices(), non_blocking);
self.col_indices().copy_(src.col_indices(), non_blocking);
},
[&]{
self.ccol_indices().copy_(src.ccol_indices(), non_blocking);
self.row_indices().copy_(src.row_indices(), non_blocking);
});
self.values().copy_(src.values(), non_blocking);
return self;
}
// Access members of CSR tensors.
int64_t _nnz_sparse_csr(const SparseCsrTensor& self) {
return get_sparse_csr_impl(self)->nnz();
}
Tensor values_sparse_csr(const Tensor& self) {
return get_sparse_csr_impl(self)->values().alias();
}
Tensor crow_indices_sparse_csr(const Tensor& self) {
return AT_DISPATCH_SPARSE_ROW_COMPRESSED_LAYOUTS(self.layout(),
"crow_indices",
[&]{ return get_sparse_csr_impl(self)->compressed_indices().alias(); });
}
Tensor col_indices_sparse_csr(const Tensor& self) {
return AT_DISPATCH_SPARSE_ROW_COMPRESSED_LAYOUTS(self.layout(),
"col_indices",
[&]{ return get_sparse_csr_impl(self)->plain_indices().alias(); });
}
Tensor ccol_indices_sparse_csr(const Tensor& self) {
return AT_DISPATCH_SPARSE_COL_COMPRESSED_LAYOUTS(self.layout(),
"ccol_indices",
[&]{ return get_sparse_csr_impl(self)->compressed_indices().alias(); });
}
Tensor row_indices_sparse_csr(const Tensor& self) {
return AT_DISPATCH_SPARSE_COL_COMPRESSED_LAYOUTS(self.layout(),
"row_indices",
[&]{ return get_sparse_csr_impl(self)->plain_indices().alias(); });
}
Tensor crow_indices_default(const Tensor& self) {
TORCH_CHECK(false, "crow_indices expected sparse row compressed tensor layout but got ", self.layout());
}
Tensor col_indices_default(const Tensor& self) {
TORCH_CHECK(false, "col_indices expected sparse row compressed tensor layout but got ", self.layout());
}
Tensor ccol_indices_default(const Tensor& self) {
TORCH_CHECK(false, "ccol_indices expected sparse column compressed tensor layout but got ", self.layout());
}
Tensor row_indices_default(const Tensor& self) {
TORCH_CHECK(false, "row_indices expected sparse column compressed tensor layout but got ", self.layout());
}
int64_t sparse_dim_sparse_csr(const SparseCsrTensor& self) {
return get_sparse_csr_impl(self)->sparse_dim();
}
int64_t dense_dim_sparse_csr(const SparseCsrTensor& self) {
return get_sparse_csr_impl(self)->dense_dim();
}
const SparseCsrTensor& resize_as_sparse_compressed_(
const SparseCsrTensor& self,
const SparseCsrTensor& src) {
auto src_layout = src.layout();
auto self_layout = self.layout();
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(
src_layout, "resize_as_sparse_compressed_: src ", []() {});
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(
self_layout, "resize_as_sparse_compressed_: self ", []() {});
// Note: The impl method does all required checking to see if resize/data copy
// on member tensors is required.
get_sparse_csr_impl(self)->resize_as_sparse_compressed_tensor_(src);
return self;
}
SparseCsrTensor clone_sparse_compressed(
const SparseCsrTensor& self,
std::optional<c10::MemoryFormat> optional_memory_format) {
TORCH_CHECK(
!optional_memory_format.has_value(),
"unsupported memory format option ",
optional_memory_format.value());
TensorOptions options = self.options();
auto compressed_indices = AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(self.layout(),
"clone_sparse_compressed",
[&]{ return self.crow_indices(); },
[&]{ return self.ccol_indices(); });
auto plain_indices = AT_DISPATCH_ROW_SPARSE_COMPRESSED_LAYOUTS(self.layout(),
"clone_sparse_compressed",
[&]{ return self.col_indices(); },
[&]{ return self.row_indices(); });
return at::_sparse_compressed_tensor_unsafe(
compressed_indices.clone(),
plain_indices.clone(),
self.values().clone(),
self.sizes(),
optTypeMetaToScalarType(options.dtype_opt()),
options.layout_opt(),
options.device_opt(),
options.pinned_memory_opt());
}
Tensor empty_like_sparse_csr(
const Tensor& self,
std::optional<ScalarType> dtype,
std::optional<Layout> layout,
std::optional<Device> device,
std::optional<bool> pin_memory,
std::optional<c10::MemoryFormat> optional_memory_format) {
TensorOptions options_ = TensorOptions().dtype(dtype).layout(layout).device(device).pinned_memory(pin_memory);
TensorOptions options =
self.options()
.merge_in(options_)
.merge_memory_format(optional_memory_format);
TORCH_CHECK(options.layout() == self.layout(),
"empty_like with different sparse layout is not supported (self is ",
self.layout(), " but you requested ", options.layout(), ")");
if (options.layout() == kSparseCsr) {
auto result = at::native::_sparse_csr_tensor_unsafe(
self.crow_indices().to(options.device(), self.crow_indices().dtype(), false, true),
self.col_indices().to(options.device(), self.col_indices().dtype(), false, true),
at::empty(self.values().sizes(), options.layout(kStrided)),
self.sizes(),
optTypeMetaToScalarType(options.dtype()),
self.layout(),
options.device());
return result;
} else if (options.layout() == kSparseCsc) {
auto result = at::native::_sparse_csc_tensor_unsafe(
self.ccol_indices().to(options.device(), self.ccol_indices().dtype(), false, true),
self.row_indices().to(options.device(), self.row_indices().dtype(), false, true),
at::empty(self.values().sizes(), options.layout(kStrided)),
self.sizes(),
optTypeMetaToScalarType(options.dtype()),
self.layout(),
options.device());
return result;
} else if (options.layout() == kSparseBsr) {
auto result = at::native::_sparse_bsr_tensor_unsafe(
self.crow_indices().to(options.device(), self.crow_indices().dtype(), false, true),
self.col_indices().to(options.device(), self.col_indices().dtype(), false, true),
at::empty(self.values().sizes(), options.layout(kStrided)),
self.sizes(),
optTypeMetaToScalarType(options.dtype()),
self.layout(),
options.device());
return result;
} else if (options.layout() == kSparseBsc) {
auto result = at::native::_sparse_bsc_tensor_unsafe(
self.ccol_indices().to(options.device(), self.ccol_indices().dtype(), false, true),
self.row_indices().to(options.device(), self.row_indices().dtype(), false, true),
at::empty(self.values().sizes(), options.layout(kStrided)),
self.sizes(),
optTypeMetaToScalarType(options.dtype()),
self.layout(),
options.device());
return result;
} else if (options.layout() == kStrided) {
return at::native::empty_like(self, dtype, layout, device, pin_memory, optional_memory_format);
} else {
TORCH_CHECK(false, "Layout ", options.layout(), " is not supported");
}
}
template <bool require_view, bool require_copy>
Tensor select_sparse_csr_worker(const Tensor& self, int64_t dim, int64_t index) {
#ifndef STRIP_ERROR_MESSAGES
constexpr const char* select_name = (require_view ? "select()" : "select_copy()");
#endif
AT_DISPATCH_ALL_SPARSE_COMPRESSED_LAYOUTS(
self.layout(), "select", []() { return; });
TORCH_CHECK_INDEX(
self.dim() != 0, select_name, " cannot be applied to a 0-dim tensor.");
dim = maybe_wrap_dim(dim, self.dim());
auto size = self.size(dim);
if (index < -size || index >= size) {
TORCH_CHECK_INDEX(
false,
select_name, ": index ",
index,
" out of range for tensor of size ",
self.sizes(),
" at dimension ",
dim);
}
if (index < 0) {
index += size;
}
auto select_strided = [](const Tensor& self, int64_t dim, int64_t index) {
if (require_copy) {
return at::select_copy(self, dim, index);
} else {
return self.select(dim, index);
}
};
TORCH_INTERNAL_ASSERT(dim >= 0 && dim < self.dim());