-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_dummy.py
159 lines (142 loc) · 7.79 KB
/
train_dummy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from torch.optim import Adam, lr_scheduler
import torch
import argparse
from utils.dataloader import QM9Dataset, DataLoader
from utils.dummy_data import DummyDataset
from utils.dummy_data import DummyDataset
from layers.transformer import TransformerModel
from layers.bagofwords import BagOfWordsModel, BagOfWordsType
import wandb
parser = argparse.ArgumentParser()
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_heads', default=3, type=int)
parser.add_argument('--embedding_dim', default=64, type=int)
parser.add_argument('--dropout', default=0.0, type=float)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--num_epochs', default=10, type=int)
parser.add_argument('--batch_size', default=248, type=int)
parser.add_argument('--edge_encoding', default=1, type=int)
parser.add_argument('--epsilon_greedy', default=0.2, type=float)
parser.add_argument('--num_masks', default=1, type=int)
parser.add_argument('--num_fake', default=0, type=int)
parser.add_argument('--num_same', default=0, type=int)
parser.add_argument('--name_postfix', default='', type=str)
parser.add_argument('--use_cuda', default=True, type=bool)
parser.add_argument('--debug', default=False, type=bool)
parser.add_argument('--scaffold', default=False, type=bool)
parser.add_argument('--model',choices=['BoN','BoA','Transformer'], default='Transformer')
parser.add_argument('--gamma',default=1, type=float)
parser.add_argument('--num_classes',default=4, type=int)
parser.add_argument('--num_samples',default=1000,type=int)
parser.add_argument('--max_length',default=15,type=int)
parser.add_argument('--ambiguity',default=False, type=bool)
parser.add_argument('--num_bondtypes',default=1,type=int)
args = parser.parse_args()
train_file = 'data/adjacency_matrix_train_scaffold.pkl' if args.scaffold else 'data/adjacency_matrix_train.pkl'
validation_file = 'data/adjacency_matrix_validation_scaffold.pkl' if args.scaffold else 'data/adjacency_matrix_validation.pkl'
training = DummyDataset(num_masks=args.num_masks,
epsilon_greedy=args.epsilon_greedy,
num_fake=args.num_fake,
num_classes=args.num_classes,
num_samples=args.num_samples,max_length=args.max_length,
ambiguity=args.ambiguity,
num_bondtypes=args.num_bondtypes)
train_dl = DataLoader(
training,
batch_size=args.batch_size)
# Create multiple validation dlators, one for 25, 50 and 75% masked atoms
val_dls = []
if args.num_fake == 0:
for masks in range(1, 6):
val_set = DummyDataset(num_masks=masks,
num_classes=args.num_classes,
num_samples=args.num_samples,
max_length=args.max_length,
ambiguity=args.ambiguity,
num_bondtypes=args.num_bondtypes)
val_dl = DataLoader(
val_set,
batch_size=args.batch_size)
val_dls.append(val_dl)
if args.num_masks == 0:
for fakes in range(1, 6):
val_set = DummyDataset(num_fake=fakes,
num_classes=args.num_classes,
num_samples=args.num_samples,
max_length=args.max_length,
ambiguity=args.ambiguity,
num_bondtypes=args.num_bondtypes)
val_dl = DataLoader(
val_set,
batch_size=args.batch_size)
val_dls.append(val_dl)
if args.model =='Transformer':
model = TransformerModel(num_layers=args.num_layers,
num_heads=args.num_heads,
embedding_dim=args.embedding_dim,
dropout=args.dropout,
edge_encoding=args.edge_encoding,
use_cuda=args.use_cuda,
name=(
"Transformer"
f"_num_masks={args.num_masks}"
f"_num_fake={args.num_fake}"
f"_num_same={args.num_same}"
f"_num_layers={args.num_layers}"
f"_num_heads={args.num_heads}"
f"_embedding_dim={args.embedding_dim}"
f"_dropout={args.dropout}"
f"_lr={args.lr}"
f"_edge_encoding={args.edge_encoding}"
f"_epsilon_greedy={args.epsilon_greedy}"
f"{args.name_postfix}"
)
)
elif args.model == 'BoA':
model = BagOfWordsModel(num_layers=args.num_layers,
embedding_dim=args.embedding_dim,
BagOfWordsType=BagOfWordsType.ATOMS,
use_cuda=args.use_cuda,
name=(
"BagOfAtoms"
f"_num_masks={args.num_masks}"
f"_num_fake={args.num_fake}"
f"_num_same={args.num_same}"
f"_num_layers={args.num_layers}"
f"_embedding_dim={args.embedding_dim}"
f"_lr={args.lr}"
f"_epsilon_greedy={args.epsilon_greedy}"
f"_bow_type={BagOfWordsType.ATOMS}"
f"{args.name_postfix}"
)
)
elif args.model == 'BoN':
model = BagOfWordsModel(num_layers=args.num_layers,
embedding_dim=args.embedding_dim,
BagOfWordsType=BagOfWordsType.NEIGHBOURS,
use_cuda=args.use_cuda,
name=(
"BagOfNeighbours"
f"_num_masks={args.num_masks}"
f"_num_fake={args.num_fake}"
f"_num_same={args.num_same}"
f"_num_layers={args.num_layers}"
f"_embedding_dim={args.embedding_dim}"
f"_lr={args.lr}"
f"_epsilon_greedy={args.epsilon_greedy}"
f"_bow_type={BagOfWordsType.NEIGHBOURS}"
f"{args.name_postfix}"
)
)
def optimizer_fun(param): return Adam(param, lr=args.lr)
if not args.debug:
wandb.init(project="language_of_molecules_dummy", name=model.name)
wandb.config.update(args)
wandb.watch(model)
model.train_network(train_dl, val_dls,
num_epochs=args.num_epochs,
eval_after_epochs=1,
log_after_epochs=1,
optimizer_fun=optimizer_fun,
save_model=True,
scheduler_fun=lambda optimizer:lr_scheduler.ExponentialLR(optimizer, args.gamma))