-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_exp1_word-prediction.py
82 lines (67 loc) · 2.34 KB
/
run_exp1_word-prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# ~~~~~~~~~~~~~~~~~~~ EXPERIMENT 1: WORD PREDICTION
import numpy as np
import pandas as pd
import argparse
from tqdm import tqdm
from utils import io
if __name__ == "__main__":
TASK = "word_pred"
# Parse command-line arguments.
args = io.parse_args()
# Set random seed.
np.random.seed(args.seed)
# Meta information.
meta_data = {
"model": args.model,
"seed": args.seed,
"task": TASK,
"eval_type": args.eval_type,
"data_file": args.data_file,
"timestamp": io.timestamp()
}
# Set up model and other model-related variables.
model = io.initialize_model(args)
kwargs = {}
# Read corpus data.
df = pd.read_csv(args.data_file)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MAIN LOOP
# Initialize results and get model outputs on each item.
results = []
for _, row in tqdm(list(df.iterrows()), total=len(df.index)):
# Create prompt and get outputs.
prompt, logprob_of_continuation, logprobs = \
model.get_logprob_of_continuation(
row.prefix,
row.continuation,
task=TASK,
options=None,
return_dist=True,
**kwargs # defined above in model initialization
)
# Store results in dictionary.
res = {
"item_id": row.item_id,
"prefix": row.prefix,
"prompt": prompt,
"gold_continuation": row.continuation,
"logprob_of_gold_continuation": logprob_of_continuation,
}
# Deal with logprobs: different cases for OpenAI and Huggingface.
if args.model_type == "openai":
res["top_logprobs"] = logprobs
elif args.dist_folder is not None:
# Save full distribution over vocab items
# (only corresponding to the first subword token).
model.save_dist_as_numpy(
logprobs,
f"{args.dist_folder}/{row.item_id}.npy"
)
# Record results for current item.
results.append(res)
# Combine meta information with model results into one dict.
output = {
"meta": meta_data,
"results": results
}
# Save outputs to specified JSON file.
io.dict2json(output, args.out_file)