-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtftrt_example.py
134 lines (111 loc) · 3.57 KB
/
tftrt_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import keras
from keras.models import load_model
from keras import backend as K
import tensorflow as tf
from tensorflow.contrib import tensorrt as tftrt
import copy
import numpy as np
import sys
import time
import utils.ascii as helper
import utils.dataset as data
class FrozenGraph(object):
def __init__(self, model, shape):
shape = (None, shape[0], shape[1], shape[2])
x_name = 'image_tensor_x'
with K.get_session() as sess:
x_tensor = tf.placeholder(tf.float32, shape, x_name)
K.set_learning_phase(0)
y_tensor = model(x_tensor)
y_name = y_tensor.name[:-2]
graph = sess.graph.as_graph_def()
graph0 = tf.graph_util.convert_variables_to_constants(sess, graph, [y_name])
graph1 = tf.graph_util.remove_training_nodes(graph0)
self.x_name = [x_name]
self.y_name = [y_name]
self.frozen = graph1
class TfEngine(object):
def __init__(self, graph):
g = tf.Graph()
with g.as_default():
x_op, y_op = tf.import_graph_def(
graph_def=graph.frozen, return_elements=graph.x_name + graph.y_name)
self.x_tensor = x_op.outputs[0]
self.y_tensor = y_op.outputs[0]
config = tf.ConfigProto(gpu_options=
tf.GPUOptions(per_process_gpu_memory_fraction=0.5,
allow_growth=True))
self.sess = tf.Session(graph=g, config=config)
def infer(self, x):
y = self.sess.run(self.y_tensor,
feed_dict={self.x_tensor: x})
return y
class TftrtEngine(TfEngine):
def __init__(self, graph, batch_size, precision):
tftrt_graph = tftrt.create_inference_graph(
graph.frozen,
outputs=graph.y_name,
max_batch_size=batch_size,
max_workspace_size_bytes=1 << 30,
precision_mode=precision,
minimum_segment_size=2)
opt_graph = copy.deepcopy(graph)
opt_graph.frozen = tftrt_graph
super(TftrtEngine, self).__init__(opt_graph)
self.batch_size = batch_size
def infer(self, x):
num_tests = x.shape[0]
y = np.empty((num_tests, self.y_tensor.shape[1]), np.float32)
batch_size = self.batch_size
for i in range(0, num_tests, batch_size):
x_part = x[i : i + batch_size]
y_part = self.sess.run(self.y_tensor,
feed_dict={self.x_tensor: x_part})
y[i : i + batch_size] = y_part
return y
def verify(result, ans):
num_tests = ans.shape[0]
error = 0
for i in range(0, num_tests):
a = np.argmax(ans[i])
r = np.argmax(result[i])
if (a != r) : error += 1
if (error == 0) : print('PASSED')
else : print('FAILURE')
def main():
# load pre-trained model
model = load_model("nhwc_model.h5")
model.summary()
# load mnist dataset
x_test, y_test = data.get_test_dataset()
batch_size = 1000
img_h = x_test.shape[1]
img_w = x_test.shape[2]
helper.print_ascii(x_test[0], img_h, img_w)
# use Keras to do infer
t0 = time.time()
y_keras = model.predict(x_test)
t1 = time.time()
print('Keras time', t1 - t0)
data.verify(y_keras, y_test)
frozen_graph = FrozenGraph(model, (img_h, img_w, 1))
tf_engine = TfEngine(frozen_graph)
t0 = time.time()
y_tf = tf_engine.infer(x_test)
t1 = time.time()
print('Tensorflow time', t1 - t0)
verify(y_tf, y_keras)
tftrt_engine = TftrtEngine(frozen_graph, batch_size, 'FP32')
t0 = time.time()
y_tftrt = tftrt_engine.infer(x_test)
t1 = time.time()
print('TFTRT time', t1 - t0)
verify(y_tftrt, y_keras)
tftrt_engine = TftrtEngine(frozen_graph, batch_size, 'FP16')
t0 = time.time()
y_tftrt = tftrt_engine.infer(x_test)
t1 = time.time()
print('TFTRT_FP16 time', t1 - t0)
verify(y_tftrt, y_keras)
if __name__ == "__main__":
main()