-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRobustDKIFitting.m
705 lines (597 loc) · 25.2 KB
/
RobustDKIFitting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
function [dt, b0, mkpred, list] = RobustDKIFitting(dwi, grad, mask)
% RobustDKIFitting provides a novel strategy "Voxel Quality Transfer" for the robust estimation of the diffusion kurtosis tensor.
% The technique is build upon the fact that (1) the powder kurtosis is a good proxy of the mean kurtosis and
% (2) the powder kurtosis is more robust metric than the mean kurtosis. Note that the powder kurtosis is the AKC,
% estimated from powder-averaged diffusion-weighted MRI data
%
% -----------------------------------------------------------------------------------
% please cite: https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28730
% ------------------------------------------------------------------------------------
%
% Although we demonstrated a significant improvement in the precision
% and robustness in the estimation of the DKI model parameters, the
% proposed technique might benefit from furhter development, including
% optimization in terms of computation speed.
%
% Note that this first code release does not allow for parallel
% processing and the rather slow NLS estimator is used.
%
% Feel free to contact Rafael Henriques or Jelle Veraart if you'd like
% to contribute to this project.
%
% Usage:
% ------
% [b0, dt] = RobustDKIFitting(dwi, grad, mask)
%
% Required input:
% ---------------
% 1. dwi: diffusion-weighted images.
% [x, y, z, ndwis]
%
% Important: We recommend that you apply denoising, gibbs correction, motion-
% and eddy current correction to the diffusion-weighted image
% prior to tensor fitting. Thes steps are not includede in this
% tools, but we are happy to assist ([email protected]).
%
% 2. grad: diffusion encoding information (gradient direction 'g = [gx, gy, gz]' and b-values 'b')
% [ndwis, 4]
% format: [gx, gy, gx, b]
%
% IMPORTANT: "shell" your b-values before running this
% code.
%
% 3. mask (boolean; [x, y, x]), providing a mask limits the
% calculation to a user-defined region-of-interest.
%
% Output:
% -------
% 1. dt, diffusion kurtosis tensor. The tensor elements are stored
% in the following way
% [Dxx Dxy Dxz Dyy Dyx Dzz Wxxxx Wxxxy Wxxxz Wxxyy Wxxyz Wxxzz Wxyyy Wxyyz Wxyzz Wxzzz Wyyyy Wyyyz Wyyzz Wyzzz Wyzzz]
% 2. b0, estimated non-diffusion weighted image
% 3. mkpred, predicted mean kurtosis using Voxel Quality Transfer.
% This is not the estimated mean kurtosis.
%
%
% Copyright (c) 2021 New York University
%
% This Source Code Form is subject to the terms of the Mozilla Public
% License, v. 2.0. If a copy of the MPL was not distributed with this file,
% You can obtain one at http://mozilla.org/MPL/2.0/
%
% This code is distributed WITHOUT ANY WARRANTY; without even the
% implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%
% For more details, contact: [email protected]
extraRobustness = true;
%% Step 1: prepare data
% We (a) do some quick input checks, (b) vectorize the data to avoid handling with 4D data
% structures and nested loops, and (c) build the DKI-specific b-matrix.
dwi = double(dwi);
dwi(dwi<=0)=eps;
scaleFact = 1000/max(dwi(:));
dwi = dwi*scaleFact;
[x, y, z, ndwis] = size(dwi);
if ~exist('grad','var') || size(grad,1) ~= ndwis || size(grad,2) ~= 4
error('');
end
grad = double(grad);
grad(:,1:3) = bsxfun(@rdivide,grad(:,1:3),sqrt(sum(grad(:,1:3).^2,2))); grad(isnan(grad)) = 0;
bval = grad(:, 4);
if ~exist('mask','var') || isempty(mask)
mask = true(x, y, z);
end
y = vectorize(dwi, mask);
bmat = bmatrix(grad);
[~, nvox] = size(y);
%% Step 2: Regular NLS fit
% We perform a regular (unconstrained) NLS fit. The fit is initiated
% with a LLS fit. This estimate will be the final result for all "good"
% voxels.
start = bmat\log(y); %
options = optimset('lsqnonlin');
options = optimset(options,'Jacobian','on','TolFun',1e-8,'TolX', ...
1e-8,'MaxIter',10000,'Display','off');
% this is still very slow. It would be possible to switch everything
% to WLLS to reduce the computation time.
for i = 1:nvox
nls(:,i) = lsqnonlin(@(x)ObjF(x,double(bmat),double(y(:, i))),double(start(:,i)),[],[],options);
end
clear start
y_hat = exp(bmat*nls);
dt.nls = W2K(nls(2:22, :));
%% Step 3: Classify voxels
% Let's define the bad voxels, we expect AKC to be possitive in all
% directions.
[akc, Td, Tk] = AKC(dt.nls);
mk.nls = mean(akc, 1);
list.accept = all(akc>-eps);
list.remove = any(akc<0);
list.MK.negative = mk.nls<0;
list.MK.outlier = mk.nls<-2;
list.N = nvox;
Dsum = dt.nls(1,:).^2 + dt.nls(4,:).^2 + dt.nls(6, :).^2 + 2*dt.nls(2, :).^2 + 2*dt.nls(3, :).^2 + 2*dt.nls(5, :).^2;
md.nls = (dt.nls(1,:) + dt.nls(4,:) + dt.nls(6,:))/3;
%% Step 4: Powder Kurtosis
% Computation of the powder kurtosis.
% We must include strategy to correct for this automatically. TODO.
bvals = unique(bval);
for j = 1:numel(bvals)
idx = bval==bvals(j);
s(j, :) = mean(y(idx, :), 1);
end
s(s<1) = 1;
iB = [ones(size(bvals)), -bvals, 1/6*bvals.^2];
x = pinv(iB)*log(s);
iD = x(2, :);
iW = x(3, :);
iK = iW ./ iD.^2;
list.IK.negative = iK<0;
list.IK.outlier = iK<-2;
if extraRobustness
% we've experienced some data sets in which the powder kurtosis shows a
% few black voxels. We aim to improve the robustness by
% replacing those few black voxels by the estimate of smoothed data.
S = vectorize(s, mask);
S(isnan(S)) = 0;
h = fspecial('gaussian', [5, 5], 1.25/(2*sqrt(2*log(2))));
for k = 1:size(S, 3)
for l = 1:size(S, 4)
S(:,:,k,l) = filter2(h, S(:,:,k,l), 'same');
end
end
tmpmask = vectorize(iK, mask)<0;
s = vectorize(S, tmpmask);
s(s<1) = 1;
x = pinv(iB)*log(s);
iK(list.IK.negative) = x(3, :) ./ x(2, :).^2;
list.IK.negative = iK<0;
list.IK.outlier = iK<-2;
end
%% Step 5: Voxel Quality Transfer
% We train a mapping between the powder kurtosis and the mean kurtosis from the good voxels ... and apply them to the bad.
psi = 2/5 * Dsum./(md.nls.^2) - 6/5;
idx = list.accept & ~list.IK.negative & psi<1;
err = (mk.nls(idx)-iK(idx)) ./ mk.nls(idx);
bnds = prctile(err, [1, 99]);
err = (mk.nls-iK) ./ mk.nls;
idx = list.accept & ~list.IK.negative & psi<1 & err<bnds(2) & err>bnds(1);
[P.training, P.combs] = createDesignMatrix([iK(1, idx)', md.nls(1, idx)', Dsum(1, idx)']);
P.coef = pinv(P.training)*mk.nls(1, idx)';
%Predict mean kurtosis
X = createDesignMatrix([iK(1, :)', md.nls(1, :)', Dsum(1, :)']);
mk.predicted = (X*P.coef)';
mk.predicted(isnan(mk.predicted)) = 0;
%% Step 6 Compute Regularization term
% Tuning the "alpha" parameter is a challenge for most regularized estimators. That's not different here.
mse.nls = nanmedian(sum((y_hat-y).^2)/size(y, 1));
mse.mk = nanmedian((mk.predicted(idx) - mk.nls(idx)).^2);
alpha = 0.1 *mse.nls ./ mse.mk; % can we increase?
%% Step 7: Regularized fit with constrained fit as a starting point.
% regularized
[C, d] = createConstraints();
opts = optimset('Display', 'off', 'Algorithm', 'interior-point', 'MaxIter', 10000, 'TolCon', 1e-8, 'TolFun', 1e-8, 'TolX', 1e-8);
options = optimset('fminunc');
options = optimset(options,'Jacobian','on','TolFun',1e-8,'TolX', ...
1e-8,'MaxIter',10000,'Display','off');
reg = nls;
idx = find(list.remove);
for i = 1:numel(idx)
try
start(:, idx(i)) = lsqlin(double(bmat),double((log(y(:, idx(i))))),-C, d, [],[],[],[],[],opts);
reg(:,idx(i)) = fminunc(@(x)regObjF(x,double(bmat),double(y(:, idx(i))), mk.predicted(idx(i)), Td, Tk, alpha),double(start(:,idx(i))),options);
catch
reg(:,idx(i)) = NaN;
end
end
dt.reg = W2K(reg(2:22, :));
b0.reg = exp(min(15,reg(1, :)))/scaleFact;
%% Step 8: Quality Control
[akc, Td, Tk] = AKC(dt.reg);
list.notSolvedAfterFirstTry = mean(akc, 1)<0;
%% Step 8: Update the remaining black voxels with stronger regularization and constrained fit
if extraRobustness
options = optimset('fmincon');
options = optimset(options,'Jacobian','on','TolFun',1e-8,'TolX', ...
1e-8,'MaxIter',10000,'Display','off');
idx = find(list.notSolvedAfterFirstTry);
for i = 1:numel(idx)
try
reg(:,idx(i)) = fmincon(@(x)regObjF(x,double(bmat),double(y(:, idx(i))), mk.predicted(idx(i)), Td, Tk, 10*alpha),double(start(:,idx(i))), -C, d, [],[], [], [], [], options);
catch
reg(:,idx(i)) = NaN;
end
end
dt.reg = W2K(reg(2:22, :));
b0.reg = exp(min(15,reg(1, :)))/scaleFact;
end
%% Step 9: write output
dt = vectorize(dt.reg, mask);
b0 = vectorize(b0.reg, mask);
mkpred = vectorize(mk.predicted, mask);
end
function [C, d] = createConstraints()
dir = [0.382517725304416 -0.748614094922528 0.541532202838631;-0.266039846728327 0.963894740823927 0.0113898448076587;-0.128563443377023 0.800867622029815 0.584878186472493;0.691696803043553 0.485345502199397 0.534785261721136;0.776929615593511 -0.627201085171846 0.0547646891069225;-0.314229418625565 0.891550800503996 0.326185595314880;-0.984699447847175 0.0338717154803320 0.170937720529697;0.729869942283584 0.134539815263771 0.670215566411097;0.0491118066650937 0.613801560175467 0.787931262974286;0.615167937666214 0.786762996419759 0.0507187926916626;-0.504930428375015 -0.548805916531712 0.666226184175323;0.514775318788445 0.353967263592948 0.780841563616317;-0.306616550550256 0.577152309970495 0.756889359169743;-0.644455563348338 0.445243323148325 0.621639292565402;0.888177219438464 0.244852048242751 0.388829913126405;-0.115867623474531 0.331617270421714 0.936271691224516;0.312724982544119 -0.262437525100548 0.912868901163732;-0.348318356641730 -0.328727572647744 0.877845376707953;0.622993255900061 -0.170127400464004 0.763502502100944;-0.870285082134136 -0.0832402149084147 0.485463636575162;0.879693901263504 -0.0847887289384472 0.467920411528283;0.375735817168569 0.624963320743740 0.684283160264539;-0.763508679267313 0.569075961898599 0.305298290648126;0.895786299773340 -0.371201461149296 0.244492086536589;0.431182280410191 0.0594580709470589 0.900303603713504;-0.927083085686508 -0.288337655567580 0.239537781186549;0.208899044398678 0.833216349905585 0.511968459477078;-0.671275756453876 -0.252498824452251 0.696873878436771;-0.385511621254227 -0.908766073079027 0.159765497834991;-0.501120479467597 0.703268192077924 0.504273849281930;-0.578440272143465 0.801933906922628 0.149361509400528;0.986601726072896 -0.0507533113495985 0.155052041254001;0.0472262384668294 -0.790665651327184 0.610424041311968;0.957038035873056 0.279601625450131 0.0768188058868917;-0.497573767044291 -0.0342706449545790 0.866744408256408;0.537095370960702 0.746985750118871 0.391842891490881;0.174500355902118 -0.559258086805823 0.810419655568845;-0.0648836431571087 -0.997212186937296 0.0368506048036694;-0.200896533381969 0.00230971954655800 0.979609742739793;-0.436037609875685 0.290696319170598 0.851684714430502;0.332217034685261 0.924381756972555 0.187483890618005;0.115538097684954 0.0265470728743124 0.992948236770250;-0.167448247267712 -0.594347070791611 0.786582890691377;-0.931940478288593 0.352679013976080 0.0842879471104161;0.749660835628331 -0.375215305423717 0.545180801295148;-0.112213298457421 -0.929475988744578 0.351400856567817;-0.596160909541517 -0.730179079768923 0.333812344592648;0.211077351410955 0.350067854669890 0.912632921194583;-0.325168748302559 -0.780267672863407 0.534273004943793;-0.717210613875971 0.128994202815781 0.684813427864535;-0.0218381924490005 -0.303713916706869 0.952512965869302;0.213275433291729 -0.924500457406975 0.315931153589701;-0.810453788321924 -0.574858547954973 0.112704511168551;0.665549405791414 -0.637998127347686 0.387301404530814;0.489520321770316 -0.495410872500818 0.717591751612200;0.514060443295042 -0.837385561080287 0.185815184346054;-0.757892441488769 -0.466692556842526 0.455847676885577;0.00471100435105065 0.958734616992657 0.284263505603424;0.800137357904460 0.555340864988139 0.226664360144898;-0.872328992553570 0.265326196661285 0.410663046932313;];
ndir = size(dir, 1);
[W_ind, W_cnt] = createTensorOrder(4);
C = [zeros(ndir, 7), W_cnt(ones(ndir, 1), :).*dir(:,W_ind(:, 1)).*dir(:,W_ind(:, 2)).*dir(:,W_ind(:, 3)).*dir(:,W_ind(:, 4))];
d = zeros([1, size(C, 1)]);
end
function b = bmatrix(grad)
bval = grad(:, 4);
ndwis = size(grad, 1);
[D_ind, D_cnt] = createTensorOrder(2);
[W_ind, W_cnt] = createTensorOrder(4);
bS = ones(ndwis, 1);
bD = D_cnt(ones(ndwis, 1), :).*grad(:,D_ind(:, 1)).*grad(:,D_ind(:, 2));
bW = W_cnt(ones(ndwis, 1), :).*grad(:,W_ind(:, 1)).*grad(:,W_ind(:, 2)).*grad(:,W_ind(:, 3)).*grad(:,W_ind(:, 4));
b = [bS, -bval(:, ones(1, 6)).*bD, (bval(:, ones(1, 15)).^2/6).*bW];
end
function [X, cnt] = createTensorOrder(order)
X = nchoosek(kron([1, 2, 3], ones(1, order)), order);
X = unique(X, 'rows');
for i = 1:size(X, 1)
cnt(i) = factorial(order) / factorial(nnz(X(i, :) ==1))/ factorial(nnz(X(i, :) ==2))/ factorial(nnz(X(i, :) ==3));
end
end
function [s, mask] = vectorize(S, mask)
if nargin == 1
mask = ~isnan(S(:,:,:,1));
end
if ismatrix(S)
n = size(S, 1);
[x, y, z] = size(mask);
s = NaN([x, y, z, n], 'like', S);
for i = 1:n
tmp = NaN(x, y, z, 'like', S);
tmp(mask(:)) = S(i, :);
s(:,:,:,i) = tmp;
end
else
for i = 1:size(S, 4)
Si = S(:,:,:,i);
s(i, :) = Si(mask(:));
end
end
end
function [akc, Td, Tk] = AKC(dt)
dir = get256dirs();
[D_ind, D_cnt] = createTensorOrder(2);
[W_ind, W_cnt] = createTensorOrder(4);
Td = (dir(:,D_ind(1:6,1)).*dir(:,D_ind(1:6,2))) * diag(D_cnt);
adc = Td * dt(1:6, :);
md = sum(dt([1 4 6],:),1)/3;
Tk = (prod(reshape(dir(:,W_ind),[],15,4),3))*diag(W_cnt);
akc = Tk*dt(7:21, :);
akc = (akc .* repmat(md.^2, [size(adc, 1), 1]))./(adc.^2);
end
function [E, J] = regObjF(x,bmat, y, iW, Td, Tk, alpha)
S = exp(bmat*x);
ny = numel(y);
E1 = sum((y - S).^2)/ny;
tmp = -2*(y-S).*S;
J1 = sum(tmp(:, ones(1, 22)).*bmat)/ny;
g = Td*x(2:7); dg = Td;
f = Tk*x(8:22); df = Tk;
gg = 1 ./(g.^2); gg = gg(:, ones(1, 15));
ff = f ./ (g.^3); ff = [ff, ff, ff, ff, ff, ff];
mw = sum(f./g.^2)/256;
E2 = (iW-mw).^2;
term1 = [zeros(1, 7), sum(gg.*df)/256];
term2 = [0, sum(2*ff.*dg)/256, zeros(1, 15)];
J2 = -2*(iW-mw)* (term1 - term2);
E = E1 + alpha*E2;
J = J1 + alpha*J2;
E = E';
end
function [F, J] = regObjF2(x, bmat, y, mkpred, Td, Tk, alpha)
% data fidelity term
S = exp(bmat*x);
ny = numel(y);
F1 = sum((y - S).^2)/ny; %[1x1]
tmp = -2*(y-S).*S;
J1 = sum(tmp(:, ones(1, 22)).*bmat)/ny; %[1x22]
% regularization term - compute "MK"
adc = Td*x(2:7);
awc = Tk*x(8:22);
mk = sum(awc ./ adc.^2)/256;
F2 = (mkpred-mk).^2;
% derivative of MK to x(1)
dmk_dx(1) = 0;
% derivative of MK to x(2:7)
dmk_dx(2:7) = 1/256*sum(-2*awc(:, [1 1 1 1 1 1]).*Td ./ (adc(:,[1 1 1 1 1 1]).^3));
% derivative of MK to x(8:22)
dmk_dx(8:22) = 1/256*sum(1./(adc(:, [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]).^2) .* Tk);
J2 = -2*(mkpred-mk)* dmk_dx;
F = F1 + alpha*F2;
J = J1 + alpha*J2;
end
function [F,J] = ObjF(dt,b,dwi)
dwi_hat = exp(b*dt);
F = dwi_hat-dwi;
J = dwi_hat(:,ones(1, size(b,2))).*b;
end
function dt = W2K(dt)
D_apprSq = 1./(sum(dt([1 4 6],:),1)/3).^2;
dt(7:21,:) = dt(7:21,:) .* D_apprSq(ones(15,1),:);
end
function [X, combs] = createDesignMatrix(params)
[Ntraining, ~] = size(params);
combs = [0 0 0; ...
1 0 0; ...
2 0 0; ...
3 0 0; ...
0 1 0; ...
0 2 0; ...
0 3 0; ...
0 0 1; ...
0 0 2; ...
0 0 3; ...
1 1 0; ...
0 1 1; ...
1 0 1];
ncombs = size(combs, 1);
for i = 1:Ntraining
for j = 1:ncombs
X(i, j) = prod(params(i, :).^combs(j, :));
end
end
end
function dir = get256dirs()
dir = [0 0 1.0000
0.5924 0 0.8056
-0.7191 -0.1575 -0.6768
-0.9151 -0.3479 0.2040
0.5535 0.2437 0.7964
-0.0844 0.9609 -0.2636
0.9512 -0.3015 0.0651
-0.4225 0.8984 0.1202
0.5916 -0.6396 0.4909
0.3172 0.8818 -0.3489
-0.1988 -0.6687 0.7164
-0.2735 0.3047 -0.9123
0.9714 -0.1171 0.2066
-0.5215 -0.4013 0.7530
-0.3978 -0.9131 -0.0897
0.2680 0.8196 0.5063
-0.6824 -0.6532 -0.3281
0.4748 -0.7261 -0.4973
0.4504 -0.4036 0.7964
-0.5551 -0.8034 -0.2153
0.0455 -0.2169 0.9751
0.0483 0.5845 0.8099
-0.1909 -0.1544 -0.9694
0.8383 0.5084 0.1969
-0.2464 0.1148 0.9623
-0.7458 0.6318 0.2114
-0.0080 -0.9831 -0.1828
-0.2630 0.5386 -0.8005
-0.0507 0.6425 -0.7646
0.4476 -0.8877 0.1081
-0.5627 0.7710 0.2982
-0.3790 0.7774 -0.5020
-0.6217 0.4586 -0.6350
-0.1506 0.8688 -0.4718
-0.4579 0.2131 0.8631
-0.8349 -0.2124 0.5077
0.7682 -0.1732 -0.6163
0.0997 -0.7168 -0.6901
0.0386 -0.2146 -0.9759
0.9312 0.1655 -0.3249
0.9151 0.3053 0.2634
0.8081 0.5289 -0.2593
-0.3632 -0.9225 0.1305
0.2709 -0.3327 -0.9033
-0.1942 -0.9790 -0.0623
0.6302 -0.7641 0.1377
-0.6948 -0.3137 0.6471
-0.6596 -0.6452 0.3854
-0.9454 0.2713 0.1805
-0.2586 -0.7957 0.5477
-0.3576 0.6511 0.6695
-0.8490 -0.5275 0.0328
0.3830 0.2499 -0.8893
0.8804 -0.2392 -0.4095
0.4321 -0.4475 -0.7829
-0.5821 -0.1656 0.7961
0.3963 0.6637 0.6344
-0.7222 -0.6855 -0.0929
0.2130 -0.9650 -0.1527
0.4737 0.7367 -0.4825
-0.9956 0.0891 0.0278
-0.5178 0.7899 -0.3287
-0.8906 0.1431 -0.4317
0.2431 -0.9670 0.0764
-0.6812 -0.3807 -0.6254
-0.1091 -0.5141 0.8507
-0.2206 0.7274 -0.6498
0.8359 0.2674 0.4794
0.9873 0.1103 0.1147
0.7471 0.0659 -0.6615
0.6119 -0.2508 0.7502
-0.6191 0.0776 0.7815
0.7663 -0.4739 0.4339
-0.5699 0.5369 0.6220
0.0232 -0.9989 0.0401
0.0671 -0.4207 -0.9047
-0.2145 0.5538 0.8045
0.8554 -0.4894 0.1698
-0.7912 -0.4194 0.4450
-0.2341 0.0754 -0.9693
-0.7725 0.6346 -0.0216
0.0228 0.7946 -0.6067
0.7461 -0.3966 -0.5348
-0.4045 -0.0837 -0.9107
-0.4364 0.6084 -0.6629
0.6177 -0.3175 -0.7195
-0.4301 -0.0198 0.9026
-0.1489 -0.9706 0.1892
0.0879 0.9070 -0.4117
-0.7764 -0.4707 -0.4190
0.9850 0.1352 -0.1073
-0.1581 -0.3154 0.9357
0.8938 -0.3246 0.3096
0.8358 -0.4464 -0.3197
0.4943 0.4679 0.7327
-0.3095 0.9015 -0.3024
-0.3363 -0.8942 -0.2956
-0.1271 -0.9274 -0.3519
0.3523 -0.8717 -0.3407
0.7188 -0.6321 0.2895
-0.7447 0.0924 -0.6610
0.1622 0.7186 0.6762
-0.9406 -0.0829 -0.3293
-0.1229 0.9204 0.3712
-0.8802 0.4668 0.0856
-0.2062 -0.1035 0.9730
-0.4861 -0.7586 -0.4338
-0.6138 0.7851 0.0827
0.8476 0.0504 0.5282
0.3236 0.4698 -0.8213
-0.7053 -0.6935 0.1473
0.1511 0.3778 0.9135
0.6011 0.5847 0.5448
0.3610 0.3183 0.8766
0.9432 0.3304 0.0341
0.2423 -0.8079 -0.5372
0.4431 -0.1578 0.8825
0.6204 0.5320 -0.5763
-0.2806 -0.5376 -0.7952
-0.5279 -0.8071 0.2646
-0.4214 -0.6159 0.6656
0.6759 -0.5995 -0.4288
0.5670 0.8232 -0.0295
-0.0874 0.4284 -0.8994
0.8780 -0.0192 -0.4782
0.0166 0.8421 0.5391
-0.7741 0.2931 -0.5610
0.9636 -0.0579 -0.2611
0 0 -1.0000
-0.5924 0 -0.8056
0.7191 0.1575 0.6768
0.9151 0.3479 -0.2040
-0.5535 -0.2437 -0.7964
0.0844 -0.9609 0.2636
-0.9512 0.3015 -0.0651
0.4225 -0.8984 -0.1202
-0.5916 0.6396 -0.4909
-0.3172 -0.8818 0.3489
0.1988 0.6687 -0.7164
0.2735 -0.3047 0.9123
-0.9714 0.1171 -0.2066
0.5215 0.4013 -0.7530
0.3978 0.9131 0.0897
-0.2680 -0.8196 -0.5063
0.6824 0.6532 0.3281
-0.4748 0.7261 0.4973
-0.4504 0.4036 -0.7964
0.5551 0.8034 0.2153
-0.0455 0.2169 -0.9751
-0.0483 -0.5845 -0.8099
0.1909 0.1544 0.9694
-0.8383 -0.5084 -0.1969
0.2464 -0.1148 -0.9623
0.7458 -0.6318 -0.2114
0.0080 0.9831 0.1828
0.2630 -0.5386 0.8005
0.0507 -0.6425 0.7646
-0.4476 0.8877 -0.1081
0.5627 -0.7710 -0.2982
0.3790 -0.7774 0.5020
0.6217 -0.4586 0.6350
0.1506 -0.8688 0.4718
0.4579 -0.2131 -0.8631
0.8349 0.2124 -0.5077
-0.7682 0.1732 0.6163
-0.0997 0.7168 0.6901
-0.0386 0.2146 0.9759
-0.9312 -0.1655 0.3249
-0.9151 -0.3053 -0.2634
-0.8081 -0.5289 0.2593
0.3632 0.9225 -0.1305
-0.2709 0.3327 0.9033
0.1942 0.9790 0.0623
-0.6302 0.7641 -0.1377
0.6948 0.3137 -0.6471
0.6596 0.6452 -0.3854
0.9454 -0.2713 -0.1805
0.2586 0.7957 -0.5477
0.3576 -0.6511 -0.6695
0.8490 0.5275 -0.0328
-0.3830 -0.2499 0.8893
-0.8804 0.2392 0.4095
-0.4321 0.4475 0.7829
0.5821 0.1656 -0.7961
-0.3963 -0.6637 -0.6344
0.7222 0.6855 0.0929
-0.2130 0.9650 0.1527
-0.4737 -0.7367 0.4825
0.9956 -0.0891 -0.0278
0.5178 -0.7899 0.3287
0.8906 -0.1431 0.4317
-0.2431 0.9670 -0.0764
0.6812 0.3807 0.6254
0.1091 0.5141 -0.8507
0.2206 -0.7274 0.6498
-0.8359 -0.2674 -0.4794
-0.9873 -0.1103 -0.1147
-0.7471 -0.0659 0.6615
-0.6119 0.2508 -0.7502
0.6191 -0.0776 -0.7815
-0.7663 0.4739 -0.4339
0.5699 -0.5369 -0.6220
-0.0232 0.9989 -0.0401
-0.0671 0.4207 0.9047
0.2145 -0.5538 -0.8045
-0.8554 0.4894 -0.1698
0.7912 0.4194 -0.4450
0.2341 -0.0754 0.9693
0.7725 -0.6346 0.0216
-0.0228 -0.7946 0.6067
-0.7461 0.3966 0.5348
0.4045 0.0837 0.9107
0.4364 -0.6084 0.6629
-0.6177 0.3175 0.7195
0.4301 0.0198 -0.9026
0.1489 0.9706 -0.1892
-0.0879 -0.9070 0.4117
0.7764 0.4707 0.4190
-0.9850 -0.1352 0.1073
0.1581 0.3154 -0.9357
-0.8938 0.3246 -0.3096
-0.8358 0.4464 0.3197
-0.4943 -0.4679 -0.7327
0.3095 -0.9015 0.3024
0.3363 0.8942 0.2956
0.1271 0.9274 0.3519
-0.3523 0.8717 0.3407
-0.7188 0.6321 -0.2895
0.7447 -0.0924 0.6610
-0.1622 -0.7186 -0.6762
0.9406 0.0829 0.3293
0.1229 -0.9204 -0.3712
0.8802 -0.4668 -0.0856
0.2062 0.1035 -0.9730
0.4861 0.7586 0.4338
0.6138 -0.7851 -0.0827
-0.8476 -0.0504 -0.5282
-0.3236 -0.4698 0.8213
0.7053 0.6935 -0.1473
-0.1511 -0.3778 -0.9135
-0.6011 -0.5847 -0.5448
-0.3610 -0.3183 -0.8766
-0.9432 -0.3304 -0.0341
-0.2423 0.8079 0.5372
-0.4431 0.1578 -0.8825
-0.6204 -0.5320 0.5763
0.2806 0.5376 0.7952
0.5279 0.8071 -0.2646
0.4214 0.6159 -0.6656
-0.6759 0.5995 0.4288
-0.5670 -0.8232 0.0295
0.0874 -0.4284 0.8994
-0.8780 0.0192 0.4782
-0.0166 -0.8421 -0.5391
0.7741 -0.2931 0.5610
-0.9636 0.0579 0.2611];
end