-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdevelopment_script.py
executable file
·302 lines (257 loc) · 9 KB
/
development_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python3
from timecode import Timecode
import time
import os
def bitstring_to_bytes(s, bytecount=1, byteorder='big'):
return int(s, 2).to_bytes(bytecount, byteorder)
# binary big-endian
def bbe(n, bits=8):
# terminal condition
retval = ''
if n == 0:
retval = '0'
else:
retval = bbe(n//2, None) + str(n%2)
if bits is None:
return retval
else:
return (('0'*bits) + retval)[-bits:]
# binary, little-endian
def ble(n, bits=8):
# terminal condition
retval = ''
if n == 0:
retval = '0'
else:
retval = str(n%2) + ble(n//2, None)
if bits is None:
return retval
else:
return (retval + ('0'*bits))[0:bits]
def cint(n, bytecount=2):
return n.to_bytes(bytecount, byteorder='little')
def units_tens(n):
return n % 10, int(n/10)
# GENERATE BINARY-CODED DATA FOR LTC
# ACCORDING TO https://en.wikipedia.org/wiki/Linear_timecode
# everything is encoded little endian
# so to encode the number 3 with four bits, we have 1100
def ltc_encode(timecode, as_string=False):
LTC = ''
HLP = ''
hrs, mins, secs, frs = timecode.frames_to_tc(timecode.frames)
frame_units, frame_tens = units_tens(frs)
secs_units, secs_tens = units_tens(secs)
mins_units, mins_tens = units_tens(mins)
hrs_units, hrs_tens = units_tens(hrs)
#frames units / user bits field 1 / frames tens
LTC += ble(frame_units,4) + '0000' + ble(frame_tens,2)
HLP += '---{u}____-{t}'.format(u=frame_units, t=frame_tens)
#drop frame / color frame / user bits field 2
LTC += '00'+'0000'
HLP += '__'+'____'
#secs units / user bits field 3 / secs tens
LTC += ble(secs_units,4) + '0000' + ble(secs_tens,3)
HLP += '---{u}____--{t}'.format(u=secs_units, t=secs_tens)
# bit 27 flag / user bits field 4
LTC += '0' + '0000'
HLP += '_' + '____'
#mins units / user bits field 5 / mins tens
LTC += ble(mins_units,4) + '0000' + ble(mins_tens,3)
HLP += '---{u}____--{t}'.format(u=mins_units, t=mins_tens)
# bit 43 flag / user bits field 6
LTC += '0' + '0000'
HLP += '_' + '____'
#hrs units / user bits field 7 / hrs tens
LTC += ble(hrs_units,4) + '0000' + ble(hrs_tens,2)
HLP += '---{u}____--{t}'.format(u=hrs_units, t=hrs_tens)
# bit 58 clock flag / bit 59 flag / user bits field 8
LTC += '0' + '0' + '0000'
HLP += '_' + '_' + '____'
# sync word
LTC += '0011111111111101'
HLP += '################'
if as_string:
return LTC
else:
return bitstring_to_bytes(LTC, bytecount=10)
def ltc(timecode):
print(ltc_encode(timecode));
def mtc_encode(timecode, as_string=False):
# MIDI bytes are little-endian
# Byte 0
# 0rrhhhhh: Rate (0–3) and hour (0–23).
# rr = 000: 24 frames/s
# rr = 001: 25 frames/s
# rr = 010: 29.97 frames/s (SMPTE drop-frame timecode)
# rr = 011: 30 frames/s
# Byte 1
# 00mmmmmm: Minute (0–59)
# Byte 2
# 00ssssss: Second (0–59)
# Byte 3
# 000fffff: Frame (0–29, or less at lower frame rates)
hrs, mins, secs, frs = timecode.frames_to_tc(timecode.frames)
framerate = timecode.framerate
rateflags = {
'24': 0,
'25': 1,
'29.97': 2,
'30': 3
}
rateflag = rateflags[framerate] * 32 # multiply by 32, because the rate flag starts at bit 6
# print('{:8} {:8} {:8} {:8}'.format(hrs, mins, secs, frs))
if as_string:
b0 = bbe(rateflag + hrs, 8)
b1 = bbe(mins)
b2 = bbe(secs)
b3 = bbe(frs)
# print('{:8} {:8} {:8} {:8}'.format(b0, b1, b2, b3))
return b0+b1+b2+b3
else:
b = bytearray([rateflag + hrs, mins, secs, frs])
# debug_string = ' 0x{:02} 0x{:02} 0x{:02} 0x{:02}'
# debug_array = [ord(b[0]), ord(b[1]), ord(b[2]), ord(b[3])]
# print(debug_string.format(debug_array))
return b
def mtc_full_frame(timecode):
# if sending this to a MIDI device, remember that MIDI is generally little endian
# but the full frame timecode bytes are big endian
mtc_bytes = mtc_encode(timecode)
# mtc full frame has a special header and ignores the rate flag
return bytearray([0xf0, 0x7f, 0x7f, 0x01, 0x01]) + mtc_bytes + bytearray([0xf7])
def mtc_quarter_frame(timecode, piece=0):
# there are 8 different mtc_quarter frame pieces
# see https://en.wikipedia.org/wiki/MIDI_timecode
# and https://web.archive.org/web/20120212181214/http://home.roadrunner.com/~jgglatt/tech/mtc.htm
# these are little-endian bytes
# piece 0 : 0xF1 0000 ffff frame
mtc_bytes = mtc_encode(timecode)
this_byte = mtc_bytes[3 - piece//2] #the order of pieces is the reverse of the mtc_encode
if piece % 2 == 0:
# even pieces get the low nibble
nibble = this_byte & 15
else:
# odd pieces get the high nibble
nibble = this_byte >> 4
return bytearray([0xf1, piece * 16 + nibble])
def run(fps, realtime=True, duration=None, renderer=print):
tc1 = Timecode(fps, '00:00:00:00')
frame_size = 1/fps
app_start = time.time()
while 1:
if not realtime:
tc1.next()
renderer(tc1)
else:
now_time = time.time() - app_start
if now_time > tc1.frame_number * frame_size:
renderer(tc1)
tc1.next()
time.sleep(0.001)
if tc1.frame_number * frame_size > duration:
break
def write_wave_file(f, data):
header = gen_wave_header(data)
f.write(header)
f.write(data)
def gen_wave_header(data, rate=44100, bits=8, channels=1):
# integers are stored in C format
# where 0x0000 + 1 = 0x0100 AND 0xFF00 + 1 = 0x0001
# the following header has a specified length
header_length = 4+4+4+4+4+2+2+4+4+2+2+4+4
data_length = len(data)
file_length = header_length + data_length
header = b''
header += b'RIFF' # ascii RIFF
header += cint(file_length,4) # file size data
header += b'WAVE' # ascii WAVE
header += b'fmt ' # includes trailing space
header += cint(16,4) # length of format data (16)
header += cint(1,2) # type of format (1 is PCM)
header += cint(channels,2) # number of channels
header += cint(rate,4) # 44100 sample rate
header += cint(rate * bits * channels / 8, 4) # (sample rate * bits per sample * channels) / 8
header += cint(bits * channels / 8, 2) # (bits per sample * channels) / 8
header += cint(bits,2) # bits per sample
header += b'data' # marks the beginning of the data section
header += cint(data_length,4) # size of the data section
return header
def make_ltc_wave(fps=24, duration=60, sample_rate=44100, sample_bits=8):
max_val = 2**sample_bits - 1 # 2^8 - 1 = 0b11111111
# each frame has 80 bytes, and each byte is represented by two "notes"
# to represent a 0, we use FF FF or 00 00
# to represent a 1, we use FF 00 or 00 FF
# every double-note must start with the opposite of the previous half note
# generate the timecode data for the entire duration
tc = Timecode(fps, '00:01:00:00')
tc_encoded = []
print('Generating Timecode Stream')
for i in range(int(duration * fps) + 1):
# this is the first frame
e = ltc_encode(tc, as_string=True)
tc_encoded.append(e)
tc.next()
# lists are faster than string concatenation even when joining them at the end
tc_encoded = ''.join(tc_encoded)
print('Generating "Double Pulse" Data Stream')
double_pulse_data = ''
next_is_up = True
for byte_char in tc_encoded:
if byte_char == '0':
if next_is_up:
double_pulse_data += '11'
else:
double_pulse_data += '00'
next_is_up = not next_is_up
else:
double_pulse_data += '10' if next_is_up else '01'
# at this point, we have a string of zeroes and ones
# now, we just need to map them to pulse data over the
# duration of the data stream
print('Creating PCM Data Stream')
total_samples = int(sample_rate * duration)
data = bytearray(total_samples)
for sample in range(total_samples):
ratio = sample/total_samples
pct = int(ratio * 100)
if sample % 1000 == 0:
print(f' COMPUTING: {total_samples}:{sample} -- {pct}%', end='\r')
# how far along in the bytestream are we?
# there are 160 double-pulses per frame
double_pulse_position = len(double_pulse_data) * ratio
dpp_intpart = int(double_pulse_position)
this_val = int(double_pulse_data[dpp_intpart])
# # This code was used when I thought I needed to smooth
# # out the pulses. Turns out that smoothing isn't needed
# dpp_fracpart = double_pulse_position - dpp_intpart
# try:
# next_val = int(double_pulse_data[dpp_intpart+1])
# except:
# next_val = this_val
# #scale the value
# if dpp_fracpart < .5:
# dpp_fracpart *= .5
# else:
# dpp_fracpart += (1 - dpp_fracpart) * .5
# inc = (next_val - this_val) * dpp_fracpart
# scaled_val = int((this_val + inc) * max_val)
# data[sample] = scaled_val
data[sample] = this_val * max_val
print()
print('Writing WAV File')
wave_file_name = 'ltc-{}fps-{}secs.wav'.format(fps, duration)
f = open(wave_file_name, 'wb')
write_wave_file(f, data)
f.close()
tc = Timecode(24, '00:01:00:00')
for i in range(24*100):
tc.next()
b = mtc_full_frame(tc)
tmp = []
for j in range(10):
tmp.append(hex(b[j]))
print ('full frame: ' + ' '.join(tmp))
for j in range(8):
qf = mtc_quarter_frame(tc, j)
print('{} {}'.format(hex((qf[0])),hex((qf[1]))))