-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
63 lines (47 loc) · 2.42 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from numpy import exp, random, array, dot
class NeuralNetwork():
def __init__(self):
# Seed the random number generator, so it generates the same numbers
# every time the program runs
random.seed(1)
# We model a single neuron, with 3 input connections and 1 output connection.
# we assign random weights to a 3 x 1 matrix, with value in the range -1 to 1
self.synaptic_weights = 2 * random.random((3, 1)) - 1
# The sigmoid function, which describe an s shape curve
# we pass the weighted sum of the inputs through this function
# to normalize them between 0 and 1
def __sigmoid(self, x):
return 1 / (1 + exp(-x))
# gradient of sigmoid curve
def __sigmoid_derivative(self, x):
return x * (1-x)
def train (self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iterations in xrange(number_of_training_iterations):
# pass the training set through our neural net
output = self.predict(training_set_inputs)
# calculate the error
error = training_set_outputs - output
# multiply the error by the input ad again by the gradient of the sigmoid curve (gradient descent)
adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))
# adjust the weights
self.synaptic_weights += adjustment
def predict(self, inputs):
# pass inputs through our nueral network (our single neuron)
return self.__sigmoid(dot(inputs, self.synaptic_weights))
if __name__ == '__main__':
# initialise a signle neuron neural network
neural_network = NeuralNetwork()
print "Random starting synaptic weights:"
print neural_network.synaptic_weights
# The training set. We have 4 examples, each consisting of 3 input values
# and 1 output value
training_set_inputs = array([[0,0,1], [1,1,1], [1,0,1], [0,1,1]])
training_set_outputs = array([[0,1,1,0]]).T
# train the neural network using a training set.
# Do it 10,000 times and make small adjustments each time
neural_network.train(training_set_inputs, training_set_outputs, 10000)
print "New synaptic weights after training: "
print neural_network.synaptic_weights
# Test the neural network with a new situation.
print "Considering new situation [1, 0, 0] -> ?: "
print neural_network.predict(array([1, 0, 0]))