forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmachine_pwm.c
688 lines (599 loc) · 25.2 KB
/
machine_pwm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2021 Damien P. George
* Copyright (c) 2018 Alan Dragomirecky
* Copyright (c) 2020 Antoine Aubert
* Copyright (c) 2021 Ihor Nehrutsa
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <math.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "driver/ledc.h"
#include "esp_err.h"
#define PWM_DBG(...)
// #define PWM_DBG(...) mp_printf(&mp_plat_print, __VA_ARGS__); mp_printf(&mp_plat_print, "\n");
// Total number of channels
#define PWM_CHANNEL_MAX (LEDC_SPEED_MODE_MAX * LEDC_CHANNEL_MAX)
typedef struct _chan_t {
// Which channel has which GPIO pin assigned?
// (-1 if not assigned)
gpio_num_t pin;
// Which channel has which timer assigned?
// (-1 if not assigned)
int timer_idx;
} chan_t;
// List of PWM channels
STATIC chan_t chans[PWM_CHANNEL_MAX];
// channel_idx is an index (end-to-end sequential numbering) for all channels
// available on the chip and described in chans[]
#define CHANNEL_IDX(mode, channel) (mode * LEDC_CHANNEL_MAX + channel)
#define CHANNEL_IDX_TO_MODE(channel_idx) (channel_idx / LEDC_CHANNEL_MAX)
#define CHANNEL_IDX_TO_CHANNEL(channel_idx) (channel_idx % LEDC_CHANNEL_MAX)
// Total number of timers
#define PWM_TIMER_MAX (LEDC_SPEED_MODE_MAX * LEDC_TIMER_MAX)
// List of timer configs
STATIC ledc_timer_config_t timers[PWM_TIMER_MAX];
// timer_idx is an index (end-to-end sequential numbering) for all timers
// available on the chip and configured in timers[]
#define TIMER_IDX(mode, timer) (mode * LEDC_TIMER_MAX + timer)
#define TIMER_IDX_TO_MODE(timer_idx) (timer_idx / LEDC_TIMER_MAX)
#define TIMER_IDX_TO_TIMER(timer_idx) (timer_idx % LEDC_TIMER_MAX)
// Params for PWM operation
// 5khz is default frequency
#define PWM_FREQ (5000)
// 10-bit resolution (compatible with esp8266 PWM)
#define PWM_RES_10_BIT (LEDC_TIMER_10_BIT)
// Maximum duty value on 10-bit resolution
#define MAX_DUTY_U10 ((1 << PWM_RES_10_BIT) - 1)
// https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/ledc.html#supported-range-of-frequency-and-duty-resolutions
// duty() uses 10-bit resolution or less
// duty_u16() and duty_ns() use 16-bit resolution or less
// Possible highest resolution in device
#if (LEDC_TIMER_BIT_MAX - 1) < LEDC_TIMER_16_BIT
#define HIGHEST_PWM_RES (LEDC_TIMER_BIT_MAX - 1)
#else
#define HIGHEST_PWM_RES (LEDC_TIMER_16_BIT) // 20 bit for ESP32, but 16 bit is used
#endif
// Duty resolution of user interface in `duty_u16()` and `duty_u16` parameter in constructor/initializer
#define UI_RES_16_BIT (16)
// Maximum duty value on highest user interface resolution
#define UI_MAX_DUTY ((1 << UI_RES_16_BIT) - 1)
// How much to shift from the HIGHEST_PWM_RES duty resolution to the user interface duty resolution UI_RES_16_BIT
#define UI_RES_SHIFT (UI_RES_16_BIT - HIGHEST_PWM_RES) // 0 for ESP32, 2 for S2, S3, C3
#if SOC_LEDC_SUPPORT_REF_TICK
// If the PWM frequency is less than EMPIRIC_FREQ, then LEDC_REF_CLK_HZ(1 MHz) source is used, else LEDC_APB_CLK_HZ(80 MHz) source is used
#define EMPIRIC_FREQ (10) // Hz
#endif
// Config of timer upon which we run all PWM'ed GPIO pins
STATIC bool pwm_inited = false;
// MicroPython PWM object struct
typedef struct _machine_pwm_obj_t {
mp_obj_base_t base;
gpio_num_t pin;
bool active;
int mode;
int channel;
int timer;
int duty_x; // PWM_RES_10_BIT if duty(), HIGHEST_PWM_RES if duty_u16(), -HIGHEST_PWM_RES if duty_ns()
int duty_u10; // stored values from previous duty setters
int duty_u16; // - / -
int duty_ns; // - / -
} machine_pwm_obj_t;
STATIC bool is_timer_in_use(int current_channel_idx, int timer_idx);
STATIC void set_duty_u16(machine_pwm_obj_t *self, int duty);
STATIC void set_duty_u10(machine_pwm_obj_t *self, int duty);
STATIC void set_duty_ns(machine_pwm_obj_t *self, int ns);
STATIC void pwm_init(void) {
// Initial condition: no channels assigned
for (int i = 0; i < PWM_CHANNEL_MAX; ++i) {
chans[i].pin = -1;
chans[i].timer_idx = -1;
}
// Prepare all timers config
// Initial condition: no timers assigned
for (int i = 0; i < PWM_TIMER_MAX; ++i) {
timers[i].duty_resolution = HIGHEST_PWM_RES;
// unset timer is -1
timers[i].freq_hz = -1;
timers[i].speed_mode = TIMER_IDX_TO_MODE(i);
timers[i].timer_num = TIMER_IDX_TO_TIMER(i);
timers[i].clk_cfg = LEDC_AUTO_CLK; // will reinstall later according to the EMPIRIC_FREQ
}
}
// Deinit channel and timer if the timer is unused
STATIC void pwm_deinit(int channel_idx) {
// Valid channel?
if ((channel_idx >= 0) && (channel_idx < PWM_CHANNEL_MAX)) {
// Clean up timer if necessary
int timer_idx = chans[channel_idx].timer_idx;
if (timer_idx != -1) {
if (!is_timer_in_use(channel_idx, timer_idx)) {
check_esp_err(ledc_timer_rst(TIMER_IDX_TO_MODE(timer_idx), TIMER_IDX_TO_TIMER(timer_idx)));
// Flag it unused
timers[chans[channel_idx].timer_idx].freq_hz = -1;
}
}
int pin = chans[channel_idx].pin;
if (pin != -1) {
int mode = CHANNEL_IDX_TO_MODE(channel_idx);
int channel = CHANNEL_IDX_TO_CHANNEL(channel_idx);
// Mark it unused, and tell the hardware to stop routing
check_esp_err(ledc_stop(mode, channel, 0));
// Disable ledc signal for the pin
// gpio_matrix_out(pin, SIG_GPIO_OUT_IDX, false, false);
if (mode == LEDC_LOW_SPEED_MODE) {
gpio_matrix_out(pin, LEDC_LS_SIG_OUT0_IDX + channel, false, true);
} else {
#if LEDC_SPEED_MODE_MAX > 1
#if CONFIG_IDF_TARGET_ESP32
gpio_matrix_out(pin, LEDC_HS_SIG_OUT0_IDX + channel, false, true);
#else
#error Add supported CONFIG_IDF_TARGET_ESP32_xxx
#endif
#endif
}
}
chans[channel_idx].pin = -1;
chans[channel_idx].timer_idx = -1;
}
}
// This called from Ctrl-D soft reboot
void machine_pwm_deinit_all(void) {
if (pwm_inited) {
for (int channel_idx = 0; channel_idx < PWM_CHANNEL_MAX; ++channel_idx) {
pwm_deinit(channel_idx);
}
pwm_inited = false;
}
}
STATIC void configure_channel(machine_pwm_obj_t *self) {
ledc_channel_config_t cfg = {
.channel = self->channel,
.duty = (1 << (timers[TIMER_IDX(self->mode, self->timer)].duty_resolution)) / 2,
.gpio_num = self->pin,
.intr_type = LEDC_INTR_DISABLE,
.speed_mode = self->mode,
.timer_sel = self->timer,
};
if (ledc_channel_config(&cfg) != ESP_OK) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("PWM not supported on Pin(%d)"), self->pin);
}
}
STATIC void set_freq(machine_pwm_obj_t *self, unsigned int freq, ledc_timer_config_t *timer) {
if (freq != timer->freq_hz) {
// Find the highest bit resolution for the requested frequency
unsigned int i = LEDC_APB_CLK_HZ; // 80 MHz
#if SOC_LEDC_SUPPORT_REF_TICK
if (freq < EMPIRIC_FREQ) {
i = LEDC_REF_CLK_HZ; // 1 MHz
}
#endif
#if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(5, 0, 0)
// original code
i /= freq;
#else
// See https://github.com/espressif/esp-idf/issues/7722
int divider = (i + freq / 2) / freq; // rounded
if (divider == 0) {
divider = 1;
}
float f = (float)i / divider; // actual frequency
if (f <= 1.0) {
f = 1.0;
}
i = (unsigned int)roundf((float)i / f);
#endif
unsigned int res = 0;
for (; i > 1; i >>= 1) {
++res;
}
if (res == 0) {
res = 1;
} else if (res > HIGHEST_PWM_RES) {
// Limit resolution to HIGHEST_PWM_RES to match units of our duty
res = HIGHEST_PWM_RES;
}
// Configure the new resolution and frequency
timer->duty_resolution = res;
timer->freq_hz = freq;
timer->clk_cfg = LEDC_USE_APB_CLK;
#if SOC_LEDC_SUPPORT_REF_TICK
if (freq < EMPIRIC_FREQ) {
timer->clk_cfg = LEDC_USE_REF_TICK;
}
#endif
// Set frequency
esp_err_t err = ledc_timer_config(timer);
if (err != ESP_OK) {
if (err == ESP_FAIL) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("unreachable frequency %d"), freq);
} else {
check_esp_err(err);
}
}
// Reset the timer if low speed
if (self->mode == LEDC_LOW_SPEED_MODE) {
check_esp_err(ledc_timer_rst(self->mode, self->timer));
}
}
// Save the same duty cycle when frequency is changed
if (self->duty_x == HIGHEST_PWM_RES) {
set_duty_u16(self, self->duty_u16);
} else if (self->duty_x == PWM_RES_10_BIT) {
set_duty_u10(self, self->duty_u10);
} else if (self->duty_x == -HIGHEST_PWM_RES) {
set_duty_ns(self, self->duty_ns);
}
}
// Calculate the duty parameters based on an ns value
STATIC int ns_to_duty(machine_pwm_obj_t *self, int ns) {
ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)];
int64_t duty = ((int64_t)ns * UI_MAX_DUTY * timer.freq_hz + 500000000LL) / 1000000000LL;
if ((ns > 0) && (duty == 0)) {
duty = 1;
} else if (duty > UI_MAX_DUTY) {
duty = UI_MAX_DUTY;
}
return duty;
}
STATIC int duty_to_ns(machine_pwm_obj_t *self, int duty) {
ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)];
int64_t ns = ((int64_t)duty * 1000000000LL + (int64_t)timer.freq_hz * UI_MAX_DUTY / 2) / ((int64_t)timer.freq_hz * UI_MAX_DUTY);
return ns;
}
#define get_duty_raw(self) ledc_get_duty(self->mode, self->channel)
STATIC void pwm_is_active(machine_pwm_obj_t *self) {
if (self->active == false) {
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("PWM inactive"));
}
}
STATIC uint32_t get_duty_u16(machine_pwm_obj_t *self) {
pwm_is_active(self);
int resolution = timers[TIMER_IDX(self->mode, self->timer)].duty_resolution;
int duty = ledc_get_duty(self->mode, self->channel);
if (resolution <= UI_RES_16_BIT) {
duty <<= (UI_RES_16_BIT - resolution);
} else {
duty >>= (resolution - UI_RES_16_BIT);
}
return duty;
}
STATIC uint32_t get_duty_u10(machine_pwm_obj_t *self) {
pwm_is_active(self);
return get_duty_u16(self) >> 6; // Scale down from 16 bit to 10 bit resolution
}
STATIC uint32_t get_duty_ns(machine_pwm_obj_t *self) {
pwm_is_active(self);
return duty_to_ns(self, get_duty_u16(self));
}
STATIC void set_duty_u16(machine_pwm_obj_t *self, int duty) {
pwm_is_active(self);
if ((duty < 0) || (duty > UI_MAX_DUTY)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty_u16 must be from 0 to %d"), UI_MAX_DUTY);
}
ledc_timer_config_t timer = timers[TIMER_IDX(self->mode, self->timer)];
int channel_duty;
if (timer.duty_resolution <= UI_RES_16_BIT) {
channel_duty = duty >> (UI_RES_16_BIT - timer.duty_resolution);
} else {
channel_duty = duty << (timer.duty_resolution - UI_RES_16_BIT);
}
int max_duty = (1 << timer.duty_resolution) - 1;
if (channel_duty < 0) {
channel_duty = 0;
} else if (channel_duty > max_duty) {
channel_duty = max_duty;
}
check_esp_err(ledc_set_duty(self->mode, self->channel, channel_duty));
check_esp_err(ledc_update_duty(self->mode, self->channel));
/*
// Bug: Sometimes duty is not set right now.
// Not a bug. It's a feature. The duty is applied at the beginning of the next signal period.
// Bug: It has been experimentally established that the duty is setted during 2 signal periods, but 1 period is expected.
// See https://github.com/espressif/esp-idf/issues/7288
if (duty != get_duty_u16(self)) {
PWM_DBG("set_duty_u16(%u), get_duty_u16():%u, channel_duty:%d, duty_resolution:%d, freq_hz:%d", duty, get_duty_u16(self), channel_duty, timer.duty_resolution, timer.freq_hz);
ets_delay_us(2 * 1000000 / timer.freq_hz);
if (duty != get_duty_u16(self)) {
PWM_DBG("set_duty_u16(%u), get_duty_u16():%u, channel_duty:%d, duty_resolution:%d, freq_hz:%d", duty, get_duty_u16(self), channel_duty, timer.duty_resolution, timer.freq_hz);
}
}
*/
self->duty_x = HIGHEST_PWM_RES;
self->duty_u16 = duty;
}
STATIC void set_duty_u10(machine_pwm_obj_t *self, int duty) {
pwm_is_active(self);
if ((duty < 0) || (duty > MAX_DUTY_U10)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty must be from 0 to %u"), MAX_DUTY_U10);
}
set_duty_u16(self, duty << (UI_RES_16_BIT - PWM_RES_10_BIT));
self->duty_x = PWM_RES_10_BIT;
self->duty_u10 = duty;
}
STATIC void set_duty_ns(machine_pwm_obj_t *self, int ns) {
pwm_is_active(self);
if ((ns < 0) || (ns > duty_to_ns(self, UI_MAX_DUTY))) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("duty_ns must be from 0 to %d ns"), duty_to_ns(self, UI_MAX_DUTY));
}
set_duty_u16(self, ns_to_duty(self, ns));
self->duty_x = -HIGHEST_PWM_RES;
self->duty_ns = ns;
}
/******************************************************************************/
#define SAME_FREQ_ONLY (true)
#define SAME_FREQ_OR_FREE (false)
#define ANY_MODE (-1)
// Return timer_idx. Use TIMER_IDX_TO_MODE(timer_idx) and TIMER_IDX_TO_TIMER(timer_idx) to get mode and timer
STATIC int find_timer(unsigned int freq, bool same_freq_only, int mode) {
int free_timer_idx_found = -1;
// Find a free PWM Timer using the same freq
for (int timer_idx = 0; timer_idx < PWM_TIMER_MAX; ++timer_idx) {
if ((mode == ANY_MODE) || (mode == TIMER_IDX_TO_MODE(timer_idx))) {
if (timers[timer_idx].freq_hz == freq) {
// A timer already uses the same freq. Use it now.
return timer_idx;
}
if (!same_freq_only && (free_timer_idx_found == -1) && (timers[timer_idx].freq_hz == -1)) {
free_timer_idx_found = timer_idx;
// Continue to check if a channel with the same freq is in use.
}
}
}
return free_timer_idx_found;
}
// Return true if the timer is in use in addition to current channel
STATIC bool is_timer_in_use(int current_channel_idx, int timer_idx) {
for (int i = 0; i < PWM_CHANNEL_MAX; ++i) {
if ((i != current_channel_idx) && (chans[i].timer_idx == timer_idx)) {
return true;
}
}
return false;
}
// Find a free PWM channel, also spot if our pin is already mentioned.
// Return channel_idx. Use CHANNEL_IDX_TO_MODE(channel_idx) and CHANNEL_IDX_TO_CHANNEL(channel_idx) to get mode and channel
STATIC int find_channel(int pin, int mode) {
int avail_idx = -1;
int channel_idx;
for (channel_idx = 0; channel_idx < PWM_CHANNEL_MAX; ++channel_idx) {
if ((mode == ANY_MODE) || (mode == CHANNEL_IDX_TO_MODE(channel_idx))) {
if (chans[channel_idx].pin == pin) {
break;
}
if ((avail_idx == -1) && (chans[channel_idx].pin == -1)) {
avail_idx = channel_idx;
}
}
}
if (channel_idx >= PWM_CHANNEL_MAX) {
channel_idx = avail_idx;
}
return channel_idx;
}
/******************************************************************************/
// MicroPython bindings for PWM
STATIC void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "PWM(Pin(%u)", self->pin);
if (self->active) {
mp_printf(print, ", freq=%u", ledc_get_freq(self->mode, self->timer));
if (self->duty_x == PWM_RES_10_BIT) {
mp_printf(print, ", duty=%d", get_duty_u10(self));
} else if (self->duty_x == -HIGHEST_PWM_RES) {
mp_printf(print, ", duty_ns=%d", get_duty_ns(self));
} else {
mp_printf(print, ", duty_u16=%d", get_duty_u16(self));
}
int resolution = timers[TIMER_IDX(self->mode, self->timer)].duty_resolution;
mp_printf(print, ", resolution=%d", resolution);
mp_printf(print, ", (duty=%.2f%%, resolution=%.3f%%)", 100.0 * get_duty_raw(self) / (1 << resolution), 100.0 * 1 / (1 << resolution)); // percents
mp_printf(print, ", mode=%d, channel=%d, timer=%d", self->mode, self->channel, self->timer);
}
mp_printf(print, ")");
}
// This called from pwm.init() method
STATIC void mp_machine_pwm_init_helper(machine_pwm_obj_t *self,
size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_freq, ARG_duty, ARG_duty_u16, ARG_duty_ns };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty_u16, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_duty_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args,
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
int channel_idx = find_channel(self->pin, ANY_MODE);
if (channel_idx == -1) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM channels:%d"), PWM_CHANNEL_MAX); // in all modes
}
int duty = args[ARG_duty].u_int;
int duty_u16 = args[ARG_duty_u16].u_int;
int duty_ns = args[ARG_duty_ns].u_int;
if (((duty != -1) && (duty_u16 != -1)) || ((duty != -1) && (duty_ns != -1)) || ((duty_u16 != -1) && (duty_ns != -1))) {
mp_raise_ValueError(MP_ERROR_TEXT("only one of parameters 'duty', 'duty_u16' or 'duty_ns' is allowed"));
}
int freq = args[ARG_freq].u_int;
// Check if freq wasn't passed as an argument
if (freq == -1) {
// Check if already set, otherwise use the default freq.
// It is possible in case:
// pwm = PWM(pin, freq=1000, duty=256)
// pwm = PWM(pin, duty=128)
if (chans[channel_idx].timer_idx != -1) {
freq = timers[chans[channel_idx].timer_idx].freq_hz;
}
if (freq <= 0) {
freq = PWM_FREQ;
}
}
if ((freq <= 0) || (freq > 40000000)) {
mp_raise_ValueError(MP_ERROR_TEXT("freqency must be from 1Hz to 40MHz"));
}
int timer_idx;
int current_timer_idx = chans[channel_idx].timer_idx;
bool current_in_use = is_timer_in_use(channel_idx, current_timer_idx);
if (current_in_use) {
timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, CHANNEL_IDX_TO_MODE(channel_idx));
} else {
timer_idx = chans[channel_idx].timer_idx;
}
if (timer_idx == -1) {
timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, ANY_MODE);
}
if (timer_idx == -1) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM timers:%d"), PWM_TIMER_MAX); // in all modes
}
int mode = TIMER_IDX_TO_MODE(timer_idx);
if (CHANNEL_IDX_TO_MODE(channel_idx) != mode) {
// unregister old channel
chans[channel_idx].pin = -1;
chans[channel_idx].timer_idx = -1;
// find new channel
channel_idx = find_channel(self->pin, mode);
if (CHANNEL_IDX_TO_MODE(channel_idx) != mode) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM channels:%d"), PWM_CHANNEL_MAX); // in current mode
}
}
self->mode = mode;
self->timer = TIMER_IDX_TO_TIMER(timer_idx);
self->channel = CHANNEL_IDX_TO_CHANNEL(channel_idx);
// New PWM assignment
if ((chans[channel_idx].pin == -1) || (chans[channel_idx].timer_idx != timer_idx)) {
configure_channel(self);
chans[channel_idx].pin = self->pin;
}
chans[channel_idx].timer_idx = timer_idx;
self->active = true;
// Set timer frequency
set_freq(self, freq, &timers[timer_idx]);
// Set duty cycle?
if (duty_u16 != -1) {
set_duty_u16(self, duty_u16);
} else if (duty_ns != -1) {
set_duty_ns(self, duty_ns);
} else if (duty != -1) {
set_duty_u10(self, duty);
} else if (self->duty_x == 0) {
set_duty_u10(self, (1 << PWM_RES_10_BIT) / 2); // 50%
}
}
// This called from PWM() constructor
STATIC mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type,
size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 2, true);
gpio_num_t pin_id = machine_pin_get_id(args[0]);
// create PWM object from the given pin
machine_pwm_obj_t *self = mp_obj_malloc(machine_pwm_obj_t, &machine_pwm_type);
self->pin = pin_id;
self->active = false;
self->mode = -1;
self->channel = -1;
self->timer = -1;
self->duty_x = 0;
// start the PWM subsystem if it's not already running
if (!pwm_inited) {
pwm_init();
pwm_inited = true;
}
// start the PWM running for this channel
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_pwm_init_helper(self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
// This called from pwm.deinit() method
STATIC void mp_machine_pwm_deinit(machine_pwm_obj_t *self) {
int channel_idx = CHANNEL_IDX(self->mode, self->channel);
pwm_deinit(channel_idx);
self->active = false;
self->mode = -1;
self->channel = -1;
self->timer = -1;
self->duty_x = 0;
}
// Set's and get's methods of PWM class
STATIC mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) {
pwm_is_active(self);
return MP_OBJ_NEW_SMALL_INT(ledc_get_freq(self->mode, self->timer));
}
STATIC void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) {
pwm_is_active(self);
if ((freq <= 0) || (freq > 40000000)) {
mp_raise_ValueError(MP_ERROR_TEXT("freqency must be from 1Hz to 40MHz"));
}
if (freq == timers[TIMER_IDX(self->mode, self->timer)].freq_hz) {
return;
}
int current_timer_idx = chans[CHANNEL_IDX(self->mode, self->channel)].timer_idx;
bool current_in_use = is_timer_in_use(CHANNEL_IDX(self->mode, self->channel), current_timer_idx);
// Check if an already running timer with the same freq is running
int new_timer_idx = find_timer(freq, SAME_FREQ_ONLY, self->mode);
// If no existing timer was found, and the current one is in use, then find a new one
if ((new_timer_idx == -1) && current_in_use) {
// Have to find a new timer
new_timer_idx = find_timer(freq, SAME_FREQ_OR_FREE, self->mode);
if (new_timer_idx == -1) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("out of PWM timers:%d"), PWM_TIMER_MAX); // in current mode
}
}
if ((new_timer_idx != -1) && (new_timer_idx != current_timer_idx)) {
// Bind the channel to the new timer
chans[self->channel].timer_idx = new_timer_idx;
if (ledc_bind_channel_timer(self->mode, self->channel, TIMER_IDX_TO_TIMER(new_timer_idx)) != ESP_OK) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("failed to bind timer to channel"));
}
if (!current_in_use) {
// Free the old timer
check_esp_err(ledc_timer_rst(self->mode, self->timer));
// Flag it unused
timers[current_timer_idx].freq_hz = -1;
}
current_timer_idx = new_timer_idx;
}
self->mode = TIMER_IDX_TO_MODE(current_timer_idx);
self->timer = TIMER_IDX_TO_TIMER(current_timer_idx);
// Set the frequency
set_freq(self, freq, &timers[current_timer_idx]);
}
STATIC mp_obj_t mp_machine_pwm_duty_get(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_u10(self));
}
STATIC void mp_machine_pwm_duty_set(machine_pwm_obj_t *self, mp_int_t duty) {
set_duty_u10(self, duty);
}
STATIC mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_u16(self));
}
STATIC void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16) {
set_duty_u16(self, duty_u16);
}
STATIC mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) {
return MP_OBJ_NEW_SMALL_INT(get_duty_ns(self));
}
STATIC void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns) {
set_duty_ns(self, duty_ns);
}