-
Notifications
You must be signed in to change notification settings - Fork 0
/
02_analyses.R
939 lines (845 loc) · 31 KB
/
02_analyses.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
library(tidyverse)
library(scales)
getwd()
load("rda/02_cleaned_data_20200430.rda")
dim(data)
View(data)
names(data)
#PROFILES####
#q25 sex####
data %>%
group_by(Q25) %>%
tally() %>%
mutate(Percent=n/sum(n)*100)
data %>%
group_by(Region, Q25) %>%
tally() %>%
mutate(Percent=n/sum(n)*100)
data %>%
group_by(Region, Q13_1c, Q25) %>%
tally() %>%
mutate(Percent=n/sum(n)*100)
#q23 age####
data %>%
summarise(Mean=mean(Q23))
data %>%
group_by(Region) %>%
summarise(Mean=mean(Q23))
data %>%
group_by(Region, Q13_1c) %>%
summarise(Mean=mean(Q23))
#Q20 Have you reached the end of your journey?####
data %>%
group_by(Q20) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q20) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, Q20) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=24)
#AWARENESS####
#c1 Have you heard of coronavirus?####
summary(data$c1)
#All have replied yes
#c2 Have you seen people acting more cautiously####
data %>%
group_by(c2) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c2) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c2) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=24)
#c3 I am worried about catching coronavirus####
levels(data$c3)
data$c3 <- factor(data$c3, levels = c("Strongly disagree", "Disagree", "Neither agree nor disagree", "Agree", "Strongly agree", "Refused"))
data %>%
group_by(c3) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c3) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c3) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=50)
#c4 I am worried about transmitting coronavirus####
levels(data$c4)
data$c4 <- factor(data$c4, levels = c("Strongly disagree", "Disagree", "Neither agree nor disagree", "Agree", "Strongly agree", "Refused"))
data %>%
group_by(c4) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c4) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c4) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=50)
#c5 I know about coronavirus and how to protect myself and others####
levels(data$c5)
data$c5 <- factor(data$c5, levels = c("Strongly disagree", "Disagree", "Neither agree nor disagree", "Agree", "Strongly agree", "Refused"))
data %>%
group_by(c5) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c5) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c5) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=50)
#c11 What are the symptoms of coronavirus? (multi-select)####
data %>%
select(13:21) %>%
pivot_longer(cols = 1:9, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 13:21) %>%
pivot_longer(cols = 3:11, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 13:21) %>%
pivot_longer(cols = 3:11, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=60)
#c12 Which groups are most at risk from the disease? (multi-select)####
data %>%
select(23:32) %>%
pivot_longer(cols = 1:10, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 23:32) %>%
pivot_longer(cols = 3:12, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 23:32) %>%
pivot_longer(cols = 3:12, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=61)
#c13 What are you currently doing to protect yourself against coronavirus? (multi-select)####
data %>%
select(34:43) %>%
pivot_longer(cols = 1:10, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 34:43) %>%
pivot_longer(cols = 3:12, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 34:43) %>%
pivot_longer(cols = 3:12, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=61)
#c14 If you aren't taking measures, what are the reasons? (multi-select)####
data %>%
select(45:50) %>%
pivot_longer(cols = 1:6, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/57*100, digits = 1)) %>%
print(n=50)
#c15 Have you been tested for coronavirus?####
data %>%
group_by(c15) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c15) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c15) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=24)
#c31 Do you think you are able to practice the recommended 1.5 metre of distance between people?####
data %>%
group_by(c31) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c31) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c31) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=24)
#c32 Where do you currently live?####
data %>%
group_by(c32) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c32) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c32) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=60)
#INFORMATION####
#c6 If you have received information on coronavirus and how to protect yourself, who did you receive it from?####
data %>%
select(55:70) %>%
pivot_longer(cols = 1:16, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 55:70) %>%
pivot_longer(cols = 3:18, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 55:70) %>%
pivot_longer(cols = 3:18, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=100)
#c7 Through what means did you receive the information (type of media)? (multi-select)####
data %>%
select(72:80) %>%
pivot_longer(cols = 1:9, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 72:80) %>%
pivot_longer(cols = 3:11, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 72:80) %>%
pivot_longer(cols = 3:11, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=100)
#c8 What kinds of social media? (multi-select, N = 700)####
data %>%
select(82:93) %>%
pivot_longer(cols = 1:12, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/700*100, digits = 1)) %>%
print(n=50)
data %>%
filter(!is.na(c8)) %>% #discard those that don't use social media
group_by(Region) %>%
mutate(N_region_part = length(Region)) %>% #get n by region
select(189, 192, 82:93) %>%
pivot_longer(cols = 3:14, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region_part*100, digits = 1)) %>%
print(n=50)
data %>%
filter(!is.na(c8)) %>% #discard those that don't use social media
group_by(Q13_1c) %>%
mutate(N_country_part = length(Q13_1c)) %>% #get n by country
select(6, 192, 82:93) %>%
pivot_longer(cols = 3:14, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country_part*100, digits = 1)) %>%
print(n=100)
#c10 Who do you think is a trustworthy source of information on coronavirus? (multi-select)####
data %>%
select(95:110) %>%
pivot_longer(cols = 1:16, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 95:110) %>%
pivot_longer(cols = 3:18, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 95:110) %>%
pivot_longer(cols = 3:18, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=100)
#HEALTHCARE####
#c17 If you had coronavirus and needed healthcare, would you be able to access health services today?####
data %>%
group_by(c17) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c17) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c17) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=25)
#c18 What are the barriers to accessing health services? (multi-select)####
data %>%
select(113:125) %>%
pivot_longer(cols = 1:13, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 113:125) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 113:125) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=100)
#ASSISTANCE####
#c26 Q55 Are you in need of extra help since the coronavirus outbreak began?####
data %>%
group_by(c26) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c26) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c26) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=25)
#c27 What kind of extra help? (multi-select, n=1,014)####
data %>%
select(154:166) %>%
pivot_longer(cols = 1:13, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1014*100, digits = 1)) %>%
print(n=50)
data %>%
filter(c26 == "Yes") %>% #discard those that don't need extra help
group_by(Region) %>%
mutate(N_region_part = length(Region)) %>% #get n by region
select(189, 192, 154:166) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region_part*100, digits = 1)) %>%
print(n=50)
data %>%
filter(c26 == "Yes") %>%#discard those that don't need extra help
group_by(Q13_1c) %>%
mutate(N_country_part = length(Q13_1c)) %>% #get n by country
select(6, 192, 154:166) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country_part*100, digits = 1)) %>%
print(n=100)
#c23 Have you received additional assistance since the coronavirus crisis began?####
data %>%
group_by(c23) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c23) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c23) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=25)
#c24 What assistance was that? (multi-select, n=249)####
data %>%
select(128:140) %>%
pivot_longer(cols = 1:13, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/249*100, digits = 1)) %>%
print(n=50)
data %>%
filter(c23 == "Yes") %>%#discard those that didn't receive help
group_by(Region) %>%
mutate(N_region_part = length(Region)) %>% #get n by region
select(189, 192, 128:140) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region_part*100, digits = 1)) %>%
print(n=50)
data %>%
filter(c23 == "Yes") %>%#discard those that didn't receive help
group_by(Q13_1c) %>%
mutate(N_country_part = length(Q13_1c)) %>% #get n by country
select(6, 192, 128:140) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country_part*100, digits = 1)) %>%
print(n=100)
#c25 Who did you receive it from? (multi-select, n=249)####
data %>%
select(142:151) %>%
pivot_longer(cols = 1:10, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/249*100, digits = 1)) %>%
print(n=50)
data %>%
filter(c23 == "Yes") %>% #discard those that didn't receive help
group_by(Region) %>%
mutate(N_region_part = length(Region)) %>% #get n by region
select(189, 192, 142:151) %>%
pivot_longer(cols = 3:12, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region_part*100, digits = 1)) %>%
print(n=50)
data %>%
filter(c23 == "Yes") %>%#discard those that didn't receive help
group_by(Q13_1c) %>%
mutate(N_country_part = length(Q13_1c)) %>% #get n by country
select(6, 192, 142:151) %>%
pivot_longer(cols = 3:12, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country_part*100, digits = 1)) %>%
print(n=100)
#IMPACT ON MIGRANTS' LIVES####
#c20 What impact has the crisis had on your day-to-day life? (multi-select)####
data %>%
select(168:174) %>%
pivot_longer(cols = 1:7, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 168:174) %>%
pivot_longer(cols = 3:9, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 168:174) %>%
pivot_longer(cols = 3:9, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=100)
#c21 Have you lost income due to coronavirus restrictions?####
data %>%
group_by(c21) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c21) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c21) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=25)
#IMPACT ON JOURNEY####
#C19 What impact has the coronavirus crisis had on your migration journey? (multi-select)####
data %>%
select(177:187) %>%
pivot_longer(cols = 1:11, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
count(Answer) %>%
mutate(Percent = round(n/1173*100, digits = 1)) %>%
print(n=50)
data %>%
select(189, 190, 177:187) %>%
pivot_longer(cols = 3:13, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
data %>%
select(6, 191, 177:187) %>%
pivot_longer(cols = 3:13, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Q13_1c, N_country) %>%
count(Answer) %>%
mutate(Percent = round(n/N_country*100, digits = 1)) %>%
print(n=100)
#C29 Have you changed your plans as a result of the coronavirus outbreak?####
data %>%
group_by(c29) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, c29) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
data %>%
group_by(Region, Q13_1c, c29) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
print(n=50)
#FIGURES####
#Figure 1, 1.5 metre distance####
fig1_data <- data %>%
group_by(Region, c31) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>% print()
fig1 <- fig1_data %>%
mutate(c31=fct_relevel(c31, "Refused", "Don´t know", "No", "Yes")) %>%
ungroup() %>%
mutate(Region=fct_relevel(Region, "West Africa", "North Africa", "Latin America")) %>%
ggplot(aes(fill=c31, y=Percent))+
geom_col(aes(x=Region, y=Percent), width = 0.47)+
xlab("")+
theme_bw()+
coord_flip()+
scale_y_continuous(breaks = seq(0, 100, by = 10))+
theme(legend.title = element_blank())+
theme(legend.position = c(0.70, 0.95), legend.direction = "horizontal", legend.title = element_blank())+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))
fig1
#Figure 2, Who did you receive information from?####
fig2_data <- data %>%
select(189, 190, 55:70) %>%
pivot_longer(cols = 3:18, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
fig2 <- fig2_data %>%
ungroup() %>%
mutate(Region=fct_relevel(Region, "West Africa", "North Africa", "Latin America")) %>%
mutate(Answer = reorder(Answer, Percent)) %>%
ggplot(aes(fill=Region))+
geom_col(aes(x=Answer, y=Percent), width = 0.6, position = position_dodge2(preserve = "single", padding = 0))+
ylab("Percent")+
xlab("")+
theme_bw()+
scale_y_continuous(breaks = seq(0, 100, by = 5)) +
coord_flip()+
theme(legend.title = element_blank())+
theme(legend.position = c(0.80, 0.15), legend.direction = "vertical", legend.title = element_blank())+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))
fig2
#Figure 3, Barriers to healthcare####
fig3_data <- data %>%
select(189, 190, 113:125) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
fig3 <- fig3_data %>%
ungroup() %>%
mutate(Region=fct_relevel(Region, "West Africa", "North Africa", "Latin America")) %>%
mutate(Answer = recode(Answer,
'Discrimination against foreigners limits access to services' = "Discrimination against foreigners",
'General insecurity and conflict prevent me from accessing healthcare' = "General insecurity",
'I am afraid of being reported to authorities, or arrest, or deportation' = "Afraid of being reported",
'I don\'t have the money to pay for health services' = "I don't have the money",
'I don\'t have the right or the legal documentation to access health services here' = "I don't have the right/documentation",
'The advice for testing and treating coronavirus is unclear here' = "The advice is unclear here",
'Services are overwhelmed and access is difficult for everyone' = "Services are overwhelmed",
'I don\'t know where to go for healthcare' = "I don't know where to go", 'Other (specify)'="Other")) %>%
mutate(Answer = reorder(Answer, Percent)) %>%
ggplot(aes(fill=Region))+
geom_col(aes(x=Answer, y=Percent), width = 0.6, position = position_dodge2(preserve = "single", padding = 0))+
ylab("Percent")+
xlab("")+
theme_bw()+
scale_y_continuous(breaks = seq(0, 100, by = 5)) +
coord_flip()+
theme(legend.title = element_blank())+
theme(legend.position = c(0.80, 0.15), legend.direction = "vertical", legend.title = element_blank())+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))
fig3
#Figure 4, Assistance####
fig4_received <- data %>% #N=249
filter(c23 == "Yes") %>%#discard those that didn't receive help
group_by(Region) %>%
mutate(N_region_part = length(Region)) %>% #get n by region
select(189, 192, 128:140) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region_part*100, digits = 1)) %>%
print(n=50)
fig4_needed <- data %>% #N=1,014
filter(c26 == "Yes") %>%#discard those that don't need extra help
group_by(Region) %>%
mutate(N_region_part = length(Region)) %>% #get n by region
select(189, 192, 154:166) %>%
pivot_longer(cols = 3:15, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region_part) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region_part*100, digits = 1)) %>%
print(n=50)
fig4 <- fig4_received %>%
ungroup() %>%
ggplot(aes(fill=Region))+
geom_col(aes(x=Answer, y=Percent), width = 0.6, position = position_dodge2(preserve = "single", padding = 0))+
ylab("Percent")+
xlab("")+
theme_bw()+
labs(caption = "Number of respondents
Latin America: received = 99, needed = 277
North Africa: received = 78, needed = 441
West Africa: received = 72, needed = 296")+
scale_y_continuous(breaks = seq(0, 100, by = 10)) +
theme(legend.title = element_blank())+
theme(legend.position = "none")+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))+
theme(axis.text.x = element_text(angle = 40, hjust = 1))+
facet_grid(rows = vars(Region))+
geom_point(data = fig4_needed, aes(x=Answer, y=Percent))+
geom_line(data = fig4_needed, aes(x=Answer, y=Percent, group=Region))+
scale_x_discrete(labels=c("Access to health services"="Health services", "Distribution of sanitary items (sanitizer/ mask/ gloves/ etc)"="Sanitizer, masks, gloves", "Cash to pay for health services"="Cash for health services", "Documentation to access health services"="Documentation", "Information about the virus: symptoms/ what to do if I have symptoms/ how to protect myself"="Information", "Other basic needs: food, water, shelter"="Food, water, shelter", "Access to work and livelihoods"="Access to work", "Psychological assistance"="Psychological support", "Other (specify)"="Other"))
fig4
#Figure 5, Impact on life####
fig5_data <- data %>%
select(189, 190, 168:174) %>%
pivot_longer(cols = 3:9, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
fig5 <- fig5_data %>%
ungroup() %>%
mutate(Answer = recode(Answer, 'Other (specify)' = "Other")) %>%
mutate(Region=fct_relevel(Region, "West Africa", "North Africa", "Latin America")) %>%
mutate(Answer = reorder(Answer, Percent)) %>%
ggplot(aes(fill=Region))+
geom_col(aes(x=Answer, y=Percent), width = 0.6, position = position_dodge2(preserve = "single", padding = 0))+
ylab("Percent")+
xlab("")+
theme_bw()+
scale_y_continuous(breaks = seq(0, 100, by = 5)) +
coord_flip()+
theme(legend.title = element_blank())+
theme(legend.position = c(0.80, 0.15), legend.direction = "vertical", legend.title = element_blank())+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))
fig5
#Figure 6, Impact on journey####
fig6_data <- data %>%
select(189, 190, 177:187) %>%
pivot_longer(cols = 3:13, names_to = "Options", values_to = "Answer") %>%
filter(!is.na(Answer)) %>%
group_by(Region, N_region) %>%
count(Answer) %>%
mutate(Percent = round(n/N_region*100, digits = 1)) %>%
print(n=50)
fig6 <- fig6_data %>%
ungroup() %>%
mutate(Answer = recode(Answer, 'Other (specify)' = "Other", 'I\'ve been delayed because I was sick, or because I had to stop and take care of people who got sick' = "Delayed because I or other people were sick",
'I feel too afraid to move (to continue my journey or return)' = "I feel to afraid to move",
'Increased difficulty moving around inside countries'="Increased difficulty moving around",
'I was going to be resettled, but this is now delayed'="About to be resettled, but now delayed",
'Disembarked / deported back to previous country'="Deported back to previous country")) %>%
mutate(Region=fct_relevel(Region, "West Africa", "North Africa", "Latin America")) %>%
mutate(Answer = reorder(Answer, Percent)) %>%
ggplot(aes(fill=Region))+
geom_col(aes(x=Answer, y=Percent), width = 0.6, position = position_dodge2(preserve = "single", padding = 0))+
ylab("Percent")+
xlab("")+
theme_bw()+
scale_y_continuous(breaks = seq(0, 100, by = 5)) +
coord_flip()+
theme(legend.title = element_blank())+
theme(legend.position = c(0.80, 0.15), legend.direction = "vertical", legend.title = element_blank())+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))
fig6
# NOT RUN {
require(devEMF)
# }
# NOT RUN {
# open file "bar.emf" for graphics output
emf("fig4.emf")
# produce the desired graph(s)
plot(fig4)
dev.off() #turn off device and finalize file
# }
#TABLE####
table_demographics <- data.frame(Region=c("Latin America", "", "North Africa", "", "West Africa", "", "", "Overall"), Country=c("Colombia", "Peru", "Libya", "Tunisia", "Burkina Faso", "Mali", "Niger", ""), n=c(250, 63, 211, 305, 98, 101, 145, 1173), `Percent women` = c(71, 51, 30, 33, 42, 24, 27, 41), `Mean age`=c(34, 32, 31, 29, 29, 27, 30, 30)) %>% print()
?kable
#SHINY APP####
library(shiny)
ui <- fluidPage(
radioButtons(inputId = "location",
label = "Location",
choices = levels(data$Region)),
plotOutput("bar")
)
server <- function(input, output) {
output$bar <- renderPlot({
fig1_data %>%
mutate(c31=fct_relevel(c31, "Refused", "Don´t know", "No", "Yes")) %>%
ungroup() %>%
ggplot(aes(fill=c31, y=Percent))+
geom_col(aes(x=input$location, y=Percent), width = 0.47, position = "dodge")+
xlab("")+
theme_bw()+
theme(legend.title = element_blank())+
theme(legend.position = c(0.70, 0.95), legend.direction = "horizontal", legend.title = element_blank())+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))+
coord_flip()
})
}
shinyApp(ui = ui, server = server)
#SHINY APP 2####
library(shiny)
ui <- fluidPage(
radioButtons(inputId = "location",
label = "Location",
choices = levels(data$Region)),
plotOutput("bar")
)
server <- function(input, output) {
output$bar <- renderPlot({
data %>%
group_by(Region, c31) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>%
mutate(c31=fct_relevel(c31, "Refused", "Don´t know", "No", "Yes")) %>%
ungroup() %>%
ggplot(aes(fill=c31, y=Percent))+
geom_col(aes(x=input$location, y=Percent), width = 0.47, position = "dodge")+
xlab("")+
theme_bw()+
theme(legend.title = element_blank())+
theme(legend.position = c(0.70, 0.95), legend.direction = "horizontal", legend.title = element_blank())+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))+
coord_flip()
})
}
shinyApp(ui = ui, server = server)
data %>%
group_by(Region, c31) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1))
fig1_data <- data %>%
group_by(Region, c31) %>%
tally() %>%
mutate(Percent=round(n/sum(n)*100, digits = 1)) %>% print()
fig1 <- fig1_data %>%
mutate(c31=fct_relevel(c31, "Refused", "Don´t know", "No", "Yes")) %>%
ungroup() %>%
mutate(Region=fct_relevel(Region, "West Africa", "North Africa", "Latin America")) %>%
ggplot(aes(fill=c31, y=Percent))+
geom_col(aes(x=Region, y=Percent), width = 0.47)+
xlab("")+
theme_bw()+
coord_flip()+
scale_y_continuous(breaks = seq(0, 100, by = 10))+
theme(legend.title = element_blank())+
theme(legend.position = c(0.70, 0.95), legend.direction = "horizontal", legend.title = element_blank())+
scale_fill_discrete(guide = guide_legend(reverse = TRUE))
fig1
#app template####
ui <- fluidPage(
sliderInput(inputId = "num",
label = "Choose a number",
value = 25, min = 1, max = 100),
plotOutput("hist")
)
server <- function(input, output) {
output$hist <- renderPlot({
hist(rnorm(input$num)) #note we take 'num' from inputId above--this is the number defined by the user. Yes in other words, the input of the user defines the output to return
})
}
shinyApp(ui = ui, server = server)