forked from flame/blis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08level2.c
329 lines (241 loc) · 9.52 KB
/
08level2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of The University of Texas nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include "blis.h"
int main( int argc, char** argv )
{
num_t dt;
dim_t m, n;
inc_t rs, cs;
obj_t a, x, y, b;
obj_t* alpha;
obj_t* beta;
//
// This file demonstrates level-2 operations.
//
//
// Example 1: Perform a general rank-1 update (ger) operation.
//
printf( "\n#\n# -- Example 1 --\n#\n\n" );
// Create some matrix and vector operands to work with.
dt = BLIS_DOUBLE;
m = 4; n = 5; rs = 0; cs = 0;
bli_obj_create( dt, m, n, rs, cs, &a );
bli_obj_create( dt, m, 1, rs, cs, &x );
bli_obj_create( dt, 1, n, rs, cs, &y );
// Set alpha.
alpha = &BLIS_ONE;
// Initialize vectors 'x' and 'y'.
bli_randv( &x );
bli_setv( &BLIS_MINUS_ONE, &y );
// Initialize 'a' to 1.0.
bli_setm( &BLIS_ONE, &a );
bli_printm( "x: set to random values", &x, "%4.1f", "" );
bli_printm( "y: set to -1.0", &y, "%4.1f", "" );
bli_printm( "a: initial value", &a, "%4.1f", "" );
// a := a + alpha * x * y, where 'a' is general.
bli_ger( alpha, &x, &y, &a );
bli_printm( "a: after ger", &a, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &x );
bli_obj_free( &y );
//
// Example 2: Perform a general matrix-vector multiply (gemv) operation.
//
printf( "\n#\n# -- Example 2 --\n#\n\n" );
// Create some matrix and vector operands to work with.
dt = BLIS_DOUBLE;
m = 4; n = 5; rs = 0; cs = 0;
bli_obj_create( dt, m, n, rs, cs, &a );
bli_obj_create( dt, 1, n, rs, cs, &x );
bli_obj_create( dt, 1, m, rs, cs, &y );
// Notice that we created vectors 'x' and 'y' as row vectors, even though
// we often think of them as column vectors so that the overall problem
// dimensions remain conformal. Note that this flexibility only comes
// from the fact that the operation requires those operands to be vectors.
// If we were instead looking at an operation where the operands were of
// general shape (such as with the gemm operation), then typically the
// dimensions matter, and column vectors would not be interchangeable with
// row vectors and vice versa.
// Set the scalars to use.
alpha = &BLIS_ONE;
beta = &BLIS_ONE;
// Initialize vectors 'x' and 'y'.
bli_setv( &BLIS_ONE, &x );
bli_setv( &BLIS_ZERO, &y );
// Randomize 'a'.
bli_randm( &a );
bli_printm( "a: randomized", &a, "%4.1f", "" );
bli_printm( "x: set to 1.0", &x, "%4.1f", "" );
bli_printm( "y: initial value", &y, "%4.1f", "" );
// y := beta * y + alpha * a * x, where 'a' is general.
bli_gemv( alpha, &a, &x, beta, &y );
bli_printm( "y: after gemv", &y, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &x );
bli_obj_free( &y );
//
// Example 3: Perform a symmetric rank-1 update (syr) operation.
//
printf( "\n#\n# -- Example 3 --\n#\n\n" );
// Create some matrix and vector operands to work with.
dt = BLIS_DOUBLE;
m = 5; rs = 0; cs = 0;
bli_obj_create( dt, m, m, rs, cs, &a );
bli_obj_create( dt, 1, m, rs, cs, &x );
// Set alpha.
alpha = &BLIS_ONE;
// Initialize vector 'x'.
bli_randv( &x );
// Zero out all of matrix 'a'. This is optional, but will avoid possibly
// displaying junk values in the unstored triangle.
bli_setm( &BLIS_ZERO, &a );
// Mark matrix 'a' as symmetric and stored in the lower triangle, and
// then randomize that lower triangle.
bli_obj_set_struc( BLIS_SYMMETRIC, &a );
bli_obj_set_uplo( BLIS_LOWER, &a );
bli_randm( &a );
bli_printm( "x: set to random values", &x, "%4.1f", "" );
bli_printm( "a: initial value (zeros in upper triangle)", &a, "%4.1f", "" );
// a := a + alpha * x * x^T, where 'a' is symmetric and lower-stored.
bli_syr( alpha, &x, &a );
bli_printm( "a: after syr", &a, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &x );
//
// Example 4: Perform a symmetric matrix-vector multiply (symv) operation.
//
printf( "\n#\n# -- Example 4 --\n#\n\n" );
// Create some matrix and vector operands to work with.
dt = BLIS_DOUBLE;
m = 5; rs = 0; cs = 0;
bli_obj_create( dt, m, m, rs, cs, &a );
bli_obj_create( dt, 1, m, rs, cs, &x );
bli_obj_create( dt, 1, m, rs, cs, &y );
// Set the scalars to use.
alpha = &BLIS_ONE;
beta = &BLIS_ONE;
// Initialize vectors 'x' and 'y'.
bli_setv( &BLIS_ONE, &x );
bli_setv( &BLIS_ZERO, &y );
// Zero out all of matrix 'a'. This is optional, but will avoid possibly
// displaying junk values in the unstored triangle.
bli_setm( &BLIS_ZERO, &a );
// Mark matrix 'a' as symmetric and stored in the upper triangle, and
// then randomize that upper triangle.
bli_obj_set_struc( BLIS_SYMMETRIC, &a );
bli_obj_set_uplo( BLIS_UPPER, &a );
bli_randm( &a );
bli_printm( "a: randomized (zeros in lower triangle)", &a, "%4.1f", "" );
bli_printm( "x: set to 1.0", &x, "%4.1f", "" );
bli_printm( "y: initial value", &y, "%4.1f", "" );
// y := beta * y + alpha * a * x, where 'a' is symmetric and upper-stored.
bli_symv( alpha, &a, &x, beta, &y );
bli_printm( "y: after symv", &y, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &x );
bli_obj_free( &y );
//
// Example 5: Perform a triangular matrix-vector multiply (trmv) operation.
//
printf( "\n#\n# -- Example 5 --\n#\n\n" );
// Create some matrix and vector operands to work with.
dt = BLIS_DOUBLE;
m = 5; rs = 0; cs = 0;
bli_obj_create( dt, m, m, rs, cs, &a );
bli_obj_create( dt, 1, m, rs, cs, &x );
// Set the scalars to use.
alpha = &BLIS_ONE;
// Initialize vector 'x'.
bli_setv( &BLIS_ONE, &x );
// Zero out all of matrix 'a'. This is optional, but will avoid possibly
// displaying junk values in the unstored triangle.
bli_setm( &BLIS_ZERO, &a );
// Mark matrix 'a' as triangular, stored in the lower triangle, and
// having a non-unit diagonal. Then randomize that lower triangle.
bli_obj_set_struc( BLIS_TRIANGULAR, &a );
bli_obj_set_uplo( BLIS_LOWER, &a );
bli_obj_set_diag( BLIS_NONUNIT_DIAG, &a );
bli_randm( &a );
bli_printm( "a: randomized (zeros in upper triangle)", &a, "%4.1f", "" );
bli_printm( "x: initial value", &x, "%4.1f", "" );
// x := alpha * a * x, where 'a' is triangular and lower-stored.
bli_trmv( alpha, &a, &x );
bli_printm( "x: after trmv", &x, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &x );
//
// Example 6: Perform a triangular solve (trsv) operation.
//
printf( "\n#\n# -- Example 6 --\n#\n\n" );
// Create some matrix and vector operands to work with.
dt = BLIS_DOUBLE;
m = 5; rs = 0; cs = 0;
bli_obj_create( dt, m, m, rs, cs, &a );
bli_obj_create( dt, 1, m, rs, cs, &b );
bli_obj_create( dt, 1, m, rs, cs, &y );
// Set the scalars to use.
alpha = &BLIS_ONE;
// Initialize vector 'x'.
bli_setv( &BLIS_ONE, &b );
// Zero out all of matrix 'a'. This is optional, but will avoid possibly
// displaying junk values in the unstored triangle.
bli_setm( &BLIS_ZERO, &a );
// Mark matrix 'a' as triangular, stored in the lower triangle, and
// having a non-unit diagonal. Then randomize that lower triangle.
bli_obj_set_struc( BLIS_TRIANGULAR, &a );
bli_obj_set_uplo( BLIS_LOWER, &a );
bli_obj_set_diag( BLIS_NONUNIT_DIAG, &a );
bli_randm( &a );
// Load the diagonal. By setting the diagonal to something of greater
// absolute value than the off-diagonal elements, we increase the odds
// that the matrix is not singular (singular matrices have no inverse).
bli_shiftd( &BLIS_TWO, &a );
bli_printm( "a: randomized (zeros in upper triangle)", &a, "%4.1f", "" );
bli_printm( "b: initial value", &b, "%4.1f", "" );
// solve a * x = alpha * b, where 'a' is triangular and lower-stored, and
// overwrite b with the solution vector x.
bli_trsv( alpha, &a, &b );
bli_printm( "b: after trsv", &b, "%4.1f", "" );
// We can confirm the solution by comparing the product of a and x to the
// original value of b.
bli_copyv( &b, &y );
bli_trmv( alpha, &a, &y );
bli_printm( "y: should equal initial value of b", &y, "%4.1f", "" );
// Free the objects.
bli_obj_free( &a );
bli_obj_free( &b );
return 0;
}
// -----------------------------------------------------------------------------