diff --git a/ogzaf/calibrate.py b/ogzaf/calibrate.py index e147dc1..8aaa4e9 100644 --- a/ogzaf/calibrate.py +++ b/ogzaf/calibrate.py @@ -16,13 +16,8 @@ def __init__( self, p, estimate_tax_functions=False, - estimate_beta=False, estimate_chi_n=False, estimate_pop=False, - tax_func_path=None, - iit_reform={}, - guid="", - data="cps", client=None, num_workers=1, demographic_data_path=None, @@ -35,14 +30,8 @@ def __init__( p (OG-Core Specifications object): model parameters estimate_tax_functions (bool): whether to estimate tax function parameters - estimate_beta (bool): whether to estimate beta estimate_chi_n (bool): whether to estimate chi_n estimate_pop (bool): whether to estimate population - tax_func_path (str): path to tax function parameter - estimates - iit_reform (dict): IIT reform dictionary - guid (str): unique identifier for reform - data (str): type of data to use in tax function client (Dask client object): client num_workers (int): number of workers demographic_data_path (str): path to save demographic data @@ -57,24 +46,8 @@ def __init__( if not os.path.exists(output_path): os.makedirs(output_path) self.estimate_tax_functions = estimate_tax_functions - self.estimate_beta = estimate_beta self.estimate_chi_n = estimate_chi_n self.estimate_pop = estimate_pop - if estimate_tax_functions: - self.tax_function_params = self.get_tax_function_parameters( - p, - iit_reform, - guid, - data, - client, - num_workers, - run_micro=True, - tax_func_path=tax_func_path, - ) - # if estimate_beta: - # self.beta_j = estimate_beta_j.beta_estimate(self) - # if estimate_chi_n: - # chi_n = self.get_chi_n() # Macro estimation self.macro_params = macro_params.get_macro_params() @@ -95,12 +68,6 @@ def __init__( else: self.io_matrix = np.array([[1.0]]) - # eta estimation - # self.eta = transfer_distribution.get_transfer_matrix() - - # zeta estimation - # self.zeta = bequest_transmission.get_bequest_matrix() - # demographics if estimate_pop: self.demographic_params = demographics.get_pop_objs( @@ -139,13 +106,9 @@ def __init__( # method to return all newly calibrated parameters in a dictionary def get_dict(self): dict = {} - # if self.estimate_beta: - # dict["beta_annual"] = self.beta # if self.estimate_chi_n: # dict["chi_n"] = self.chi_n - # dict["eta"] = self.eta - # dict["zeta"] = self.zeta - # dict.update(self.macro_params) + dict.update(self.macro_params) dict["e"] = self.e dict["alpha_c"] = self.alpha_c dict["io_matrix"] = self.io_matrix diff --git a/ogzaf/income.py b/ogzaf/income.py index fe8457d..1f577e9 100644 --- a/ogzaf/income.py +++ b/ogzaf/income.py @@ -414,7 +414,6 @@ def get_e_orig(age_wgts, abil_wgts, plot_path=None): + (two * (ages_short**2)) + (three * (ages_short**3)) ) - abil_paths = np.exp(log_abil_paths) # New estimated coefficients for ZAF after adjustment by income (J) and by age (S) const = np.array(