forked from nidem/kerberoast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkerberos.py
180 lines (153 loc) · 5.92 KB
/
kerberos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/local/bin/python2 -tt
import hashlib
import hmac
from pyasn1.type import univ, char, useful, tag
from pyasn1.codec.ber import encoder, decoder
import datetime
import base64
import sys
#REF: http://tools.ietf.org/id/draft-brezak-win2k-krb-rc4-hmac-03.txt
#T = 1 for TS-ENC-TS in the AS-Request
#T = 8 for the AS-Reply
#T = 7 for the Authenticator in the TGS-Request
#T = 8 for the TGS-Reply
#T = 2 for the Server Ticket in the AP-Request
#T = 11 for the Authenticator in the AP-Request
#T = 12 for the Server returned AP-Reply
#T = 15 in the generation of checksum for the MIC token
#T = 0 in the generation of sequence number for the MIC token
#T = 13 in the generation of checksum for the WRAP token
#T = 0 in the generation of sequence number for the WRAP token
#T = 0 in the generation of encrypted data for the WRAPPED token
def ntlmhash(s):
hash = hashlib.new('md4', s.encode('utf-16le')).digest()
return hash
#return binascii.hexlify(hash)
def rc4crypt(key, data):
x = 0
box = range(256)
for i in range(256):
x = (x + box[i] + ord(key[i % len(key)])) % 256
box[i], box[x] = box[x], box[i]
x = 0
y = 0
out = []
for char in data:
x = (x + 1) % 256
y = (y + box[x]) % 256
box[x], box[y] = box[y], box[x]
out.append(chr(ord(char) ^ box[(box[x] + box[y]) % 256]))
return ''.join(out)
#print decoder.decode(enc)
#define KERB_ETYPE_RC4_HMAC 23
KERB_ETYPE_RC4_HMAC = 23
#define KERB_ETYPE_RC4_HMAC_EXP 24
def decrypt(key, messagetype, edata):
#DECRYPT (K, fRC4_EXP, T, edata, edata_len, data, data_len)
#{
# if (fRC4_EXP){
# *((DWORD *)(L40+10)) = T;
# HMAC (K, L40, 14, K1);
# }else{
# HMAC (K, &T, 4, K1);
# }
K1 = hmac.new(key, chr(messagetype) + "\x00\x00\x00", hashlib.md5).digest() # \x0b = 11
# memcpy (K2, K1, 16);
K2 = K1
# if (fRC4_EXP) memset (K1+7, 0xAB, 9);
# HMAC (K1, edata, 16, K3); // checksum is at edata
K3 = hmac.new(K1, edata[:16], hashlib.md5).digest()
# RC4(K3, edata + 16, edata_len - 16, edata + 16);
ddata = rc4crypt(K3, edata[16:])
# data_len = edata_len - 16 - 8;
# memcpy (data, edata + 16 + 8, data_len);
#
# // verify generated and received checksums
# HMAC (K2, edata + 16, edata_len - 16, checksum);
checksum = hmac.new(K2, ddata, hashlib.md5).digest()
# if (memcmp(edata, checksum, 16) != 0)
# printf("CHECKSUM ERROR !!!!!!\n");
#}
if checksum == edata[:16]:
#print "Decrypt Checksum: %s" % str(checksum).encode('hex') # == edata[:16])
#print "Checksum Calc: %s" % str(checksum).encode('hex')
#print "Checksum Pkct: %s" % str(edata[:16]).encode('hex')
#print messagetype
#print data
#print "Nonce: %s" % ddata[:8].encode('hex')
#return ddata[8:] # first 8 bytes are nonce, the rest is data
#return {
# 'data': ddata[8:],
# 'nonce': ddata[:8]
#}
return ddata[8:], ddata[:8]
else:
#print "CHECKSUM ERROR!"
return None, None
def encrypt(key, messagetype, data, nonce):
# if (fRC4_EXP){
# *((DWORD *)(L40+10)) = T;
# HMAC (K, L40, 10 + 4, K1);
# }else{
# HMAC (K, &T, 4, K1);
# }
K1 = hmac.new(key, chr(messagetype) + "\x00\x00\x00", hashlib.md5).digest() # \x0b = 11
# memcpy (K2, K1, 16);
K2 = K1
# if (fRC4_EXP) memset (K1+7, 0xAB, 9);
# add_8_random_bytes(data, data_len, conf_plus_data);
ddata = nonce + data
# HMAC (K2, conf_plus_data, 8 + data_len, checksum);
checksum = hmac.new(K2, ddata, hashlib.md5).digest()
# HMAC (K1, checksum, 16, K3);
K3 = hmac.new(K1, checksum, hashlib.md5).digest()
#print "K3: %s" % K3.encode('hex')
# RC4(K3, conf_plus_data, 8 + data_len, edata + 16);
# print "EN DDATA: %s" % ddata[:32].encode('hex')
edata = rc4crypt(K3, ddata)
# memcpy (edata, checksum, 16);
# edata_len = 16 + 8 + data_len;
return checksum + edata
def zerosigs(data):
d = map(ord, data)
for i in range(5, 21): # zero out the 16 char sig, KDC
d[len(d) - i] = 0
for i in range(29, 45): # zero out the 16 char sig, Server
d[len(d) - i] = 0
retval = "".join(map(chr, d))
#print retval.encode('hex')
return retval
def chksum(K, T, data):
data = zerosigs(data)
# K = the Key
#T = the message type, encoded as a little-endian four-byte integer
#Ksign = HMAC(K, "signaturekey") //includes zero octet at end
SIGNATUREKEY = 'signaturekey\x00'
Ksign = hmac.new(K, SIGNATUREKEY, hashlib.md5).digest()
#tmp = MD5(concat(T, data))
tmp = hashlib.md5(T + data).digest()
#CHKSUM = HMAC(Ksign, tmp)
chksum = hmac.new(Ksign, tmp, hashlib.md5).digest()
return chksum
def getservsig(encchunk):
return str(encchunk[-44:-28])
def getprivsig(encchunk):
return str(encchunk[-20:-4])
def printdecode(kerbpayload, ktype=2):
d = decoder.decode(kerbpayload)
if ktype == 32:
#print "Protocol Version (pvno): " + str(d[0][0])
print "Message Type: " + str(d[0][1])
print "Realm: " + str(d[0][2])
print "Principal: " + str(d[0][3][1][0])
print "Ticket Version (tkt-vno): " + str(d[0][4][0])
print "Ticket Realm: " + str(d[0][4][1])
#print "Name-Type (Service & Instance): " + str(d[0][4][2][0])
print "Server, Name: " + str(d[0][4][2][1][0])
print "Server, Name: " + str(d[0][4][2][1][1])
#print "Data: " + str(d[0][4][3][2]).encode('hex')
#print "Encryption Type: : " + str(d[0][5][0])
#print "Data: " + str(d[0])
#print "Server Realm: " + str(d[0][4][2][4])
elif ktype == 2:
print "a"