forked from HIPS/autograd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmm_em.py
87 lines (63 loc) · 2.79 KB
/
hmm_em.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from __future__ import division, print_function
import autograd.numpy as np
import autograd.numpy.random as npr
from autograd.scipy.misc import logsumexp
from autograd import value_and_grad as vgrad
from functools import partial
from os.path import join, dirname
import string
def EM(init_params, data, callback=None):
def EM_update(params):
natural_params = list(map(np.log, params))
loglike, E_stats = vgrad(log_partition_function)(natural_params, data) # E step
if callback: callback(loglike, params)
return list(map(normalize, E_stats)) # M step
def fixed_point(f, x0):
x1 = f(x0)
while different(x0, x1):
x0, x1 = x1, f(x1)
return x1
def different(params1, params2):
allclose = partial(np.allclose, atol=1e-3, rtol=1e-3)
return not all(map(allclose, params1, params2))
return fixed_point(EM_update, init_params)
def normalize(a):
def replace_zeros(a):
return np.where(a > 0., a, 1.)
return a / replace_zeros(a.sum(-1, keepdims=True))
def log_partition_function(natural_params, data):
if isinstance(data, list):
return sum(map(partial(log_partition_function, natural_params), data))
log_pi, log_A, log_B = natural_params
log_alpha = log_pi
for y in data:
log_alpha = logsumexp(log_alpha[:,None] + log_A, axis=0) + log_B[:,y]
return logsumexp(log_alpha)
def initialize_hmm_parameters(num_states, num_outputs):
init_pi = normalize(npr.rand(num_states))
init_A = normalize(npr.rand(num_states, num_states))
init_B = normalize(npr.rand(num_states, num_outputs))
return init_pi, init_A, init_B
def build_dataset(filename, max_lines=-1):
"""Loads a text file, and turns each line into an encoded sequence."""
encodings = dict(list(map(reversed, enumerate(string.printable))))
digitize = lambda char: encodings[char] if char in encodings else len(encodings)
encode_line = lambda line: np.array(list(map(digitize, line)))
nonblank_line = lambda line: len(line) > 2
with open(filename) as f:
lines = f.readlines()
encoded_lines = list(map(encode_line, list(filter(nonblank_line, lines))[:max_lines]))
num_outputs = len(encodings) + 1
return encoded_lines, num_outputs
if __name__ == '__main__':
np.random.seed(0)
np.seterr(divide='ignore')
# callback to print log likelihoods during training
print_loglike = lambda loglike, params: print(loglike)
# load training data
lstm_filename = join(dirname(__file__), 'lstm.py')
train_inputs, num_outputs = build_dataset(lstm_filename, max_lines=60)
# train with EM
num_states = 20
init_params = initialize_hmm_parameters(num_states, num_outputs)
pi, A, B = EM(init_params, train_inputs, print_loglike)