-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbeam_search.py
750 lines (673 loc) · 31.9 KB
/
beam_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
# coding=utf-8
# Copyright 2018 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of beam search with penalties."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import commons
import tensorflow as tf
from tensorflow.python.ops import inplace_ops
from tensorflow.python.util import nest
# Assuming EOS_ID is 1
EOS_ID = 1
# Default value for INF
INF = 1. * 1e7
def _merge_beam_dim(tensor):
"""Reshapes first two dimensions in to single dimension.
Args:
tensor: Tensor to reshape of shape [A, B, ...]
Returns:
Reshaped tensor of shape [A*B, ...]
"""
shape = commons.shape_list(tensor)
shape[0] *= shape[1] # batch -> batch * beam_size
shape.pop(1) # Remove beam dim
return tf.reshape(tensor, shape)
def _unmerge_beam_dim(tensor, batch_size, beam_size):
"""Reshapes first dimension back to [batch_size, beam_size].
Args:
tensor: Tensor to reshape of shape [batch_size*beam_size, ...]
batch_size: Tensor, original batch size.
beam_size: int, original beam size.
Returns:
Reshaped tensor of shape [batch_size, beam_size, ...]
"""
shape = commons.shape_list(tensor)
new_shape = [batch_size] + [beam_size] + shape[1:]
return tf.reshape(tensor, new_shape)
def _expand_to_beam_size(tensor, beam_size):
"""Tiles a given tensor by beam_size.
Args:
tensor: tensor to tile [batch_size, ...]
beam_size: How much to tile the tensor by.
Returns:
Tiled tensor [batch_size, beam_size, ...]
"""
tensor = tf.expand_dims(tensor, axis=1)
tile_dims = [1] * tensor.shape.ndims
tile_dims[1] = beam_size
return tf.tile(tensor, tile_dims)
def get_state_shape_invariants(tensor):
"""Returns the shape of the tensor but sets middle dims to None."""
shape = tensor.shape.as_list()
for i in range(1, len(shape) - 1):
shape[i] = None
return tf.TensorShape(shape)
def compute_batch_indices(batch_size, beam_size):
"""Computes the i'th coordinate that contains the batch index for gathers.
Batch pos is a tensor like [[0,0,0,0,],[1,1,1,1],..]. It says which
batch the beam item is in. This will create the i of the i,j coordinate
needed for the gather.
Args:
batch_size: Batch size
beam_size: Size of the beam.
Returns:
batch_pos: [batch_size, beam_size] tensor of ids
"""
batch_pos = tf.range(batch_size * beam_size) // beam_size
batch_pos = tf.reshape(batch_pos, [batch_size, beam_size])
return batch_pos
def fast_tpu_gather(params, indices, name=None):
"""Fast gather implementation for models running on TPU.
This function use one_hot and batch matmul to do gather, which is faster
than gather_nd on TPU. For params that have dtype of int32 (sequences to
gather from), batch_gather is used to keep accuracy.
Args:
params: A tensor from which to gather values.
[batch_size, original_size, ...]
indices: A tensor used as the index to gather values.
[batch_size, selected_size].
name: A string, name of the operation (optional).
Returns:
gather_result: A tensor that has the same rank as params.
[batch_size, selected_size, ...]
"""
with tf.name_scope(name):
dtype = params.dtype
def _gather(params, indices):
"""Fast gather using one_hot and batch matmul."""
if dtype != tf.float32:
params = tf.to_float(params)
shape = commons.shape_list(params)
indices_shape = commons.shape_list(indices)
ndims = params.shape.ndims
# Adjust the shape of params to match one-hot indices, which is the
# requirement of Batch MatMul.
if ndims == 2:
params = tf.expand_dims(params, axis=-1)
if ndims > 3:
params = tf.reshape(params, [shape[0], shape[1], -1])
gather_result = tf.matmul(
tf.one_hot(indices, shape[1], dtype=params.dtype), params)
if ndims == 2:
gather_result = tf.squeeze(gather_result, axis=-1)
if ndims > 3:
shape[1] = indices_shape[1]
gather_result = tf.reshape(gather_result, shape)
if dtype != tf.float32:
gather_result = tf.cast(gather_result, dtype)
return gather_result
# If the dtype is int32, use the gather instead of one_hot matmul to avoid
# precision loss. The max int value can be represented by bfloat16 in MXU is
# 256, which is smaller than the possible id values. Encoding/decoding can
# potentially used to make it work, but the benenfit is small right now.
if dtype == tf.int32:
gather_result = tf.batch_gather(params, indices)
else:
gather_result = _gather(params, indices)
return gather_result
def _create_make_unique(inputs):
"""Replaces the lower bits of each element with iota.
The iota is used to derive the index, and also serves the purpose to
make each element unique to break ties.
Args:
inputs: A tensor with rank of 2 and dtype of tf.float32.
[batch_size, original_size].
Returns:
A tensor after element wise transformation, with dtype the same as inputs.
[batch_size, original_size].
Raises:
ValueError: If the rank of the input tensor does not equal 2.
"""
if inputs.shape.ndims != 2:
raise ValueError("Input of top_k_with_unique must be rank-2 "
"but got: %s" % inputs.shape)
height = inputs.shape[0]
width = inputs.shape[1]
zeros = tf.zeros([height, width], dtype=tf.int32)
# Count_mask is used to mask away the low order bits to ensure that every
# element is distinct.
log2_ceiling = int(math.ceil(math.log(int(width), 2)))
next_power_of_two = 1 << log2_ceiling
count_mask = ~(next_power_of_two - 1)
count_mask_r0 = tf.constant(count_mask)
count_mask_r2 = tf.fill([height, width], count_mask_r0)
# Smallest_normal is the bit representation of the smallest positive normal
# floating point number. The sign is zero, exponent is one, and the fraction
# is zero.
smallest_normal = 1 << 23
smallest_normal_r0 = tf.constant(smallest_normal, dtype=tf.int32)
smallest_normal_r2 = tf.fill([height, width], smallest_normal_r0)
# Low_bit_mask is used to mask away the sign bit when computing the absolute
# value.
low_bit_mask = ~(1 << 31)
low_bit_mask_r0 = tf.constant(low_bit_mask, dtype=tf.int32)
low_bit_mask_r2 = tf.fill([height, width], low_bit_mask_r0)
iota = tf.tile(tf.expand_dims(tf.range(width, dtype=tf.int32), 0),
[height, 1])
# Compare the absolute value with positive zero to handle negative zero.
input_r2 = tf.bitcast(inputs, tf.int32)
abs_r2 = tf.bitwise.bitwise_and(input_r2, low_bit_mask_r2)
if_zero_r2 = tf.equal(abs_r2, zeros)
smallest_normal_preserving_sign_r2 = tf.bitwise.bitwise_or(
input_r2, smallest_normal_r2)
input_no_zeros_r2 = tf.where(
if_zero_r2, smallest_normal_preserving_sign_r2, input_r2)
# Discard the low-order bits and replace with iota.
and_r2 = tf.bitwise.bitwise_and(input_no_zeros_r2, count_mask_r2)
or_r2 = tf.bitwise.bitwise_or(and_r2, iota)
return tf.bitcast(or_r2, tf.float32)
def _create_topk_unique(inputs, k):
"""Creates the top k values in sorted order with indices.
Args:
inputs: A tensor with rank of 2. [batch_size, original_size].
k: An integer, number of top elements to select.
Returns:
topk_r2: A tensor, the k largest elements. [batch_size, k].
topk_indices_r2: A tensor, indices of the top k values. [batch_size, k].
"""
height = inputs.shape[0]
width = inputs.shape[1]
neg_inf_r0 = tf.constant(-np.inf, dtype=tf.float32)
ones = tf.ones([height, width], dtype=tf.float32)
neg_inf_r2 = ones * neg_inf_r0
inputs = tf.where(tf.is_nan(inputs), neg_inf_r2, inputs)
# Select the current largest value k times and keep them in topk_r2. The
# selected largest values are marked as the smallest value to avoid being
# selected again.
tmp = inputs
topk_r2 = tf.zeros([height, k], dtype=tf.float32)
for i in range(k):
kth_order_statistic = tf.reduce_max(tmp, axis=1, keepdims=True)
k_mask = tf.tile(tf.expand_dims(tf.equal(tf.range(k), tf.fill([k], i)), 0),
[height, 1])
topk_r2 = tf.where(k_mask, tf.tile(kth_order_statistic, [1, k]), topk_r2)
ge_r2 = tf.greater_equal(inputs, tf.tile(kth_order_statistic, [1, width]))
tmp = tf.where(ge_r2, neg_inf_r2, inputs)
log2_ceiling = int(math.ceil(math.log(float(int(width)), 2)))
next_power_of_two = 1 << log2_ceiling
count_mask = next_power_of_two - 1
mask_r0 = tf.constant(count_mask)
mask_r2 = tf.fill([height, k], mask_r0)
topk_r2_s32 = tf.bitcast(topk_r2, tf.int32)
topk_indices_r2 = tf.bitwise.bitwise_and(topk_r2_s32, mask_r2)
return topk_r2, topk_indices_r2
def top_k_with_unique(inputs, k):
"""Finds the values and indices of the k largests entries.
Instead of doing sort like tf.nn.top_k, this function finds the max value
k times. The running time is proportional to k, which is be faster when k
is small. The current implementation supports only inputs of rank 2.
In addition, iota is used to replace the lower bits of each element, this
makes the selection more stable when there are equal elements. The
overhead is that output values are approximated.
Args:
inputs: A tensor with rank of 2. [batch_size, original_size].
k: An integer, number of top elements to select.
Returns:
top_values: A tensor, the k largest elements in sorted order.
[batch_size, k].
indices: A tensor, indices of the top_values. [batch_size, k].
"""
unique_inputs = _create_make_unique(tf.cast(inputs, tf.float32))
top_values, indices = _create_topk_unique(unique_inputs, k)
top_values = tf.cast(top_values, inputs.dtype)
return top_values, indices
def compute_topk_scores_and_seq(sequences, scores, scores_to_gather, flags,
beam_size, batch_size, prefix="default",
states_to_gather=None, use_tpu=False):
"""Given sequences and scores, will gather the top k=beam size sequences.
This function is used to grow alive, and finished. It takes sequences,
scores, and flags, and returns the top k from sequences, scores_to_gather,
and flags based on the values in scores.
This method permits easy introspection using tfdbg. It adds three named ops
that are prefixed by `prefix`:
- _topk_seq: the tensor for topk_seq returned by this method.
- _topk_flags: the tensor for topk_finished_flags returned by this method.
- _topk_scores: the tensor for tokp_gathered_scores returned by this method.
Args:
sequences: Tensor of sequences that we need to gather from.
[batch_size, beam_size, seq_length]
scores: Tensor of scores for each sequence in sequences.
[batch_size, beam_size]. We will use these to compute the topk.
scores_to_gather: Tensor of scores for each sequence in sequences.
[batch_size, beam_size]. We will return the gathered scores from here.
Scores to gather is different from scores because for grow_alive, we will
need to return log_probs, while for grow_finished, we will need to return
the length penalized scores.
flags: Tensor of bools for sequences that say whether a sequence has reached
EOS or not
beam_size: int
batch_size: int
prefix: string that will prefix unique names for the ops run.
states_to_gather: dict (possibly nested) of decoding states.
use_tpu: A bool, whether to compute topk scores and sequences on TPU.
Returns:
Tuple of
(topk_seq [batch_size, beam_size, decode_length],
topk_gathered_scores [batch_size, beam_size],
topk_finished_flags[batch_size, beam_size])
"""
if not use_tpu:
_, topk_indexes = tf.nn.top_k(scores, k=beam_size)
# The next three steps are to create coordinates for tf.gather_nd to pull
# out the topk sequences from sequences based on scores.
# batch pos is a tensor like [[0,0,0,0,],[1,1,1,1],..]. It says which
# batch the beam item is in. This will create the i of the i,j coordinate
# needed for the gather
batch_pos = compute_batch_indices(batch_size, beam_size)
# top coordinates will give us the actual coordinates to do the gather.
# stacking will create a tensor of dimension batch * beam * 2, where the
# last dimension contains the i,j gathering coordinates.
top_coordinates = tf.stack([batch_pos, topk_indexes], axis=2)
# Gather up the highest scoring sequences. For each operation added, give
# it a concrete name to simplify observing these operations with tfdbg.
# Clients can capture these tensors by watching these node names.
def gather(tensor, name):
return tf.gather_nd(tensor, top_coordinates, name=(prefix + name))
topk_seq = gather(sequences, "_topk_seq")
topk_flags = gather(flags, "_topk_flags")
topk_gathered_scores = gather(scores_to_gather, "_topk_scores")
if states_to_gather:
topk_gathered_states = nest.map_structure(
lambda state: gather(state, "_topk_states"), states_to_gather)
else:
topk_gathered_states = states_to_gather
else:
_, topk_indexes = top_k_with_unique(scores, k=beam_size)
# Gather up the highest scoring sequences. For each operation added, give
# it a concrete name to simplify observing these operations with tfdbg.
# Clients can capture these tensors by watching these node names.
topk_seq = fast_tpu_gather(sequences, topk_indexes, prefix + "_topk_seq")
topk_flags = fast_tpu_gather(flags, topk_indexes, prefix + "_topk_flags")
topk_gathered_scores = fast_tpu_gather(scores_to_gather, topk_indexes,
prefix + "_topk_scores")
if states_to_gather:
topk_gathered_states = nest.map_structure(
# pylint: disable=g-long-lambda
lambda state: fast_tpu_gather(state, topk_indexes,
prefix + "_topk_states"),
states_to_gather)
else:
topk_gathered_states = states_to_gather
return topk_seq, topk_gathered_scores, topk_flags, topk_gathered_states
def beam_search(symbols_to_logits_fn,
initial_ids,
beam_size,
decode_length,
vocab_size,
alpha,
states=None,
eos_id=EOS_ID,
stop_early=True,
use_tpu=False):
"""Beam search with length penalties.
Requires a function that can take the currently decoded symbols and return
the logits for the next symbol. The implementation is inspired by
https://arxiv.org/abs/1609.08144.
When running, the beam search steps can be visualized by using tfdbg to watch
the operations generating the output ids for each beam step. These operations
have the pattern:
(alive|finished)_topk_(seq,scores)
Operations marked `alive` represent the new beam sequences that will be
processed in the next step. Operations marked `finished` represent the
completed beam sequences, which may be padded with 0s if no beams finished.
Operations marked `seq` store the full beam sequence for the time step.
Operations marked `scores` store the sequence's final log scores.
The beam search steps will be processed sequentially in order, so when
capturing observed from these operations, tensors, clients can make
assumptions about which step is being recorded.
WARNING: Assumes 2nd dimension of tensors in `states` and not invariant, this
means that the shape of the 2nd dimension of these tensors will not be
available (i.e. set to None) inside symbols_to_logits_fn.
Args:
symbols_to_logits_fn: Interface to the model, to provide logits.
Shoud take [batch_size, decoded_ids] and return [batch_size, vocab_size]
initial_ids: Ids to start off the decoding, this will be the first thing
handed to symbols_to_logits_fn (after expanding to beam size)
[batch_size]
beam_size: Size of the beam.
decode_length: Number of steps to decode for.
vocab_size: Size of the vocab, must equal the size of the logits returned by
symbols_to_logits_fn
alpha: alpha for length penalty.
states: dict (possibly nested) of decoding states.
eos_id: ID for end of sentence.
stop_early: a boolean - stop once best sequence is provably determined.
use_tpu: A bool, whether to do beam search on TPU.
Returns:
Tuple of
(decoded beams [batch_size, beam_size, decode_length]
decoding probabilities [batch_size, beam_size])
"""
batch_size = commons.shape_list(initial_ids)[0]
# Assume initial_ids are prob 1.0
initial_log_probs = tf.constant([[0.] + [-INF] * (beam_size - 1)])
# Expand to beam_size (batch_size, beam_size)
alive_log_probs = tf.tile(initial_log_probs, [batch_size, 1])
# Expand each batch and state to beam_size
alive_seq = _expand_to_beam_size(initial_ids, beam_size)
alive_seq = tf.expand_dims(alive_seq, axis=2) # (batch_size, beam_size, 1)
if use_tpu:
alive_seq = tf.tile(alive_seq, [1, 1, decode_length + 1])
if states:
states = nest.map_structure(
lambda state: _expand_to_beam_size(state, beam_size), states)
else:
states = {}
# Finished will keep track of all the sequences that have finished so far
# Finished log probs will be negative infinity in the beginning
# finished_flags will keep track of booleans
finished_seq = tf.zeros(commons.shape_list(alive_seq), tf.int32)
# Setting the scores of the initial to negative infinity.
finished_scores = tf.ones([batch_size, beam_size]) * -INF
finished_flags = tf.zeros([batch_size, beam_size], tf.bool)
def grow_finished(finished_seq, finished_scores, finished_flags, curr_seq,
curr_scores, curr_finished):
"""Given sequences and scores, will gather the top k=beam size sequences.
Args:
finished_seq: Current finished sequences.
[batch_size, beam_size, current_decoded_length]
finished_scores: scores for each of these sequences.
[batch_size, beam_size]
finished_flags: finished bools for each of these sequences.
[batch_size, beam_size]
curr_seq: current topk sequence that has been grown by one position.
[batch_size, beam_size, current_decoded_length]
curr_scores: scores for each of these sequences. [batch_size, beam_size]
curr_finished: Finished flags for each of these sequences.
[batch_size, beam_size]
Returns:
Tuple of
(Topk sequences based on scores,
log probs of these sequences,
Finished flags of these sequences)
"""
if not use_tpu:
# First append a column of 0'ids to finished to make the same length with
# finished scores
finished_seq = tf.concat(
[finished_seq,
tf.zeros([batch_size, beam_size, 1], tf.int32)], axis=2)
# Set the scores of the unfinished seq in curr_seq to large negative
# values
curr_scores += (1. - tf.to_float(curr_finished)) * -INF
# concatenating the sequences and scores along beam axis
curr_finished_seq = tf.concat([finished_seq, curr_seq], axis=1)
curr_finished_scores = tf.concat([finished_scores, curr_scores], axis=1)
curr_finished_flags = tf.concat([finished_flags, curr_finished], axis=1)
return compute_topk_scores_and_seq(
curr_finished_seq, curr_finished_scores, curr_finished_scores,
curr_finished_flags, beam_size, batch_size, "grow_finished",
use_tpu=use_tpu)
def grow_alive(curr_seq, curr_scores, curr_log_probs, curr_finished, states):
"""Given sequences and scores, will gather the top k=beam size sequences.
Args:
curr_seq: current topk sequence that has been grown by one position.
[batch_size, beam_size, i+1]
curr_scores: scores for each of these sequences. [batch_size, beam_size]
curr_log_probs: log probs for each of these sequences.
[batch_size, beam_size]
curr_finished: Finished flags for each of these sequences.
[batch_size, beam_size]
states: dict (possibly nested) of decoding states.
Returns:
Tuple of
(Topk sequences based on scores,
log probs of these sequences,
Finished flags of these sequences)
"""
# Set the scores of the finished seq in curr_seq to large negative
# values
curr_scores += tf.to_float(curr_finished) * -INF
return compute_topk_scores_and_seq(curr_seq, curr_scores, curr_log_probs,
curr_finished, beam_size, batch_size,
"grow_alive", states, use_tpu=use_tpu)
def grow_topk(i, alive_seq, alive_log_probs, states):
r"""Inner beam search loop.
This function takes the current alive sequences, and grows them to topk
sequences where k = 2*beam. We use 2*beam because, we could have beam_size
number of sequences that might hit <EOS> and there will be no alive
sequences to continue. With 2*beam_size, this will not happen. This relies
on the assumption the vocab size is > beam size. If this is true, we'll
have at least beam_size non <EOS> extensions if we extract the next top
2*beam words.
Length penalty is given by = (5+len(decode)/6) ^ -\alpha. Pls refer to
https://arxiv.org/abs/1609.08144.
Args:
i: loop index
alive_seq: Topk sequences decoded so far [batch_size, beam_size, i+1]
alive_log_probs: probabilities of these sequences. [batch_size, beam_size]
states: dict (possibly nested) of decoding states.
Returns:
Tuple of
(Topk sequences extended by the next word,
The log probs of these sequences,
The scores with length penalty of these sequences,
Flags indicating which of these sequences have finished decoding,
dict of transformed decoding states)
"""
# Get the logits for all the possible next symbols
if use_tpu and states:
flat_ids = tf.reshape(
tf.slice(alive_seq, [0, 0, i], [batch_size, beam_size, 1]),
[batch_size * beam_size, -1])
else:
flat_ids = tf.reshape(alive_seq, [batch_size * beam_size, -1])
# (batch_size * beam_size, decoded_length)
if states:
flat_states = nest.map_structure(_merge_beam_dim, states)
flat_logits, flat_states = symbols_to_logits_fn(flat_ids, i, flat_states)
states = nest.map_structure(
lambda t: _unmerge_beam_dim(t, batch_size, beam_size), flat_states)
elif use_tpu:
flat_logits = symbols_to_logits_fn(flat_ids, i)
else:
flat_logits = symbols_to_logits_fn(flat_ids)
logits = tf.reshape(flat_logits, [batch_size, beam_size, -1])
# Convert logits to normalized log probs
candidate_log_probs = commons.log_prob_from_logits(logits)
# Multiply the probabilities by the current probabilities of the beam.
# (batch_size, beam_size, vocab_size) + (batch_size, beam_size, 1)
log_probs = candidate_log_probs + tf.expand_dims(alive_log_probs, axis=2)
length_penalty = tf.pow(((5. + tf.to_float(i + 1)) / 6.), alpha)
curr_scores = log_probs / length_penalty
# Flatten out (beam_size, vocab_size) probs in to a list of possibilities
flat_curr_scores = tf.reshape(curr_scores, [-1, beam_size * vocab_size])
if use_tpu:
topk_scores, topk_ids = top_k_with_unique(
flat_curr_scores, k=beam_size * 2)
else:
topk_scores, topk_ids = tf.nn.top_k(flat_curr_scores, k=beam_size * 2)
# Recovering the log probs because we will need to send them back
topk_log_probs = topk_scores * length_penalty
# Work out what beam the top probs are in.
topk_beam_index = topk_ids // vocab_size
topk_ids %= vocab_size # Unflatten the ids
if not use_tpu:
# The next three steps are to create coordinates for tf.gather_nd to pull
# out the correct sequences from id's that we need to grow.
# We will also use the coordinates to gather the booleans of the beam
# items that survived.
batch_pos = compute_batch_indices(batch_size, beam_size * 2)
# top beams will give us the actual coordinates to do the gather.
# stacking will create a tensor of dimension batch * beam * 2, where the
# last dimension contains the i,j gathering coordinates.
topk_coordinates = tf.stack([batch_pos, topk_beam_index], axis=2)
# Gather up the most probable 2*beams both for the ids and
# finished_in_alive bools
topk_seq = tf.gather_nd(alive_seq, topk_coordinates)
if states:
states = nest.map_structure(
lambda state: tf.gather_nd(state, topk_coordinates), states)
# Append the most probable alive
topk_seq = tf.concat([topk_seq, tf.expand_dims(topk_ids, axis=2)], axis=2)
else:
# Gather up the most probable 2*beams both for the ids and
# finished_in_alive bools
topk_seq = fast_tpu_gather(alive_seq, topk_beam_index)
if states:
states = nest.map_structure(
lambda state: fast_tpu_gather(state, topk_beam_index), states)
# Update the most probable alive
topk_seq = tf.transpose(topk_seq, perm=[2, 0, 1])
topk_seq = inplace_ops.alias_inplace_update(topk_seq, i + 1, topk_ids)
topk_seq = tf.transpose(topk_seq, perm=[1, 2, 0])
topk_finished = tf.equal(topk_ids, eos_id)
return topk_seq, topk_log_probs, topk_scores, topk_finished, states
def inner_loop(i, alive_seq, alive_log_probs, finished_seq, finished_scores,
finished_flags, states):
"""Inner beam search loop.
There are three groups of tensors, alive, finished, and topk.
The alive group contains information about the current alive sequences
The topk group contains information about alive + topk current decoded words
the finished group contains information about finished sentences, that is,
the ones that have decoded to <EOS>. These are what we return.
The general beam search algorithm is as follows:
While we haven't terminated (pls look at termination condition)
1. Grow the current alive to get beam*2 topk sequences
2. Among the topk, keep the top beam_size ones that haven't reached EOS
into alive
3. Among the topk, keep the top beam_size ones have reached EOS into
finished
Repeat
To make things simple with using fixed size tensors, we will end
up inserting unfinished sequences into finished in the beginning. To stop
that we add -ve INF to the score of the unfinished sequence so that when a
true finished sequence does appear, it will have a higher score than all the
unfinished ones.
Args:
i: loop index
alive_seq: Topk sequences decoded so far [batch_size, beam_size, i+1]
alive_log_probs: probabilities of the beams. [batch_size, beam_size]
finished_seq: Current finished sequences.
[batch_size, beam_size, i+1]
finished_scores: scores for each of these sequences.
[batch_size, beam_size]
finished_flags: finished bools for each of these sequences.
[batch_size, beam_size]
states: dict (possibly nested) of decoding states.
Returns:
Tuple of
(Incremented loop index
New alive sequences,
Log probs of the alive sequences,
New finished sequences,
Scores of the new finished sequences,
Flags indicating which sequence in finished as reached EOS,
dict of final decoding states)
"""
# Each inner loop, we carry out three steps:
# 1. Get the current topk items.
# 2. Extract the ones that have finished and haven't finished
# 3. Recompute the contents of finished based on scores.
topk_seq, topk_log_probs, topk_scores, topk_finished, states = grow_topk(
i, alive_seq, alive_log_probs, states)
alive_seq, alive_log_probs, _, states = grow_alive(
topk_seq, topk_scores, topk_log_probs, topk_finished, states)
finished_seq, finished_scores, finished_flags, _ = grow_finished(
finished_seq, finished_scores, finished_flags, topk_seq, topk_scores,
topk_finished)
return (i + 1, alive_seq, alive_log_probs, finished_seq, finished_scores,
finished_flags, states)
def _is_finished(i, unused_alive_seq, alive_log_probs, unused_finished_seq,
finished_scores, unused_finished_in_finished, unused_states):
"""Checking termination condition.
We terminate when we decoded up to decode_length or the lowest scoring item
in finished has a greater score that the highest prob item in alive divided
by the max length penalty
Args:
i: loop index
alive_log_probs: probabilities of the beams. [batch_size, beam_size]
finished_scores: scores for each of these sequences.
[batch_size, beam_size]
Returns:
Bool.
"""
max_length_penalty = tf.pow(((5. + tf.to_float(decode_length)) / 6.), alpha)
# The best possible score of the most likely alive sequence.
lower_bound_alive_scores = alive_log_probs[:, 0] / max_length_penalty
if not stop_early:
# by considering the min score (in the top N beams) we ensure that
# the decoder will keep decoding until there is at least one beam
# (in the top N) that can be improved (w.r.t. the alive beams).
# any unfinished beam will have score -INF - thus the min
# will always be -INF if there is at least one unfinished beam -
# which means the bound_is_met condition cannot be true in this case.
lowest_score_of_finished_in_finished = tf.reduce_min(finished_scores)
else:
# by taking the max score we only care about the first beam;
# as soon as this first beam cannot be beaten from the alive beams
# the beam decoder can stop.
# similarly to the above, if the top beam is not completed, its
# finished_score is -INF, thus it will not activate the
# bound_is_met condition. (i.e., decoder will keep going on).
# note we need to find the max for every sequence eparately - so, we need
# to keep the batch dimension (see axis=1)
lowest_score_of_finished_in_finished = tf.reduce_max(finished_scores,
axis=1)
bound_is_met = tf.reduce_all(
tf.greater(lowest_score_of_finished_in_finished,
lower_bound_alive_scores))
return tf.logical_and(
tf.less(i, decode_length), tf.logical_not(bound_is_met))
inner_shape = tf.TensorShape([None, None, None])
if use_tpu:
inner_shape = tf.TensorShape([batch_size, beam_size, decode_length + 1])
if use_tpu:
state_struc = nest.map_structure(lambda state: state.get_shape(), states)
else:
state_struc = nest.map_structure(get_state_shape_invariants, states)
(_, alive_seq, alive_log_probs, finished_seq, finished_scores,
finished_flags, states) = tf.while_loop(
_is_finished,
inner_loop, [
tf.constant(0), alive_seq, alive_log_probs, finished_seq,
finished_scores, finished_flags, states
],
shape_invariants=[
tf.TensorShape([]),
inner_shape,
alive_log_probs.get_shape(),
inner_shape,
finished_scores.get_shape(),
finished_flags.get_shape(),
state_struc
],
parallel_iterations=1,
back_prop=False)
alive_seq.set_shape((None, beam_size, None))
finished_seq.set_shape((None, beam_size, None))
# Accounting for corner case: It's possible that no sequence in alive for a
# particular batch item ever reached EOS. In that case, we should just copy
# the contents of alive for that batch item. tf.reduce_any(finished_flags, 1)
# if 0, means that no sequence for that batch index had reached EOS. We need
# to do the same for the scores as well.
finished_seq = tf.where(
tf.reduce_any(finished_flags, 1), finished_seq, alive_seq)
finished_scores = tf.where(
tf.reduce_any(finished_flags, 1), finished_scores, alive_log_probs)
return finished_seq, finished_scores, states