-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparticle_filter.cpp
170 lines (149 loc) · 4.7 KB
/
particle_filter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
//
// Created by jaysh on 4/29/2018.
//
#include <random>
#include <algorithm>
#include <iostream>
#include <numeric>
#include <math.h>
#include <iostream>
#include <sstream>
#include <string>
#include <iterator>
#include <float.h>
#include <time.h>
#include "particle_filter.h"
#include "Eigen/Dense"
//#include "Eigen"
#include "tools.h"
using Eigen::MatrixXd;
using Eigen::VectorXd;
using namespace std;
ParticleFilter::ParticleFilter() {}
ParticleFilter::~ParticleFilter() {}
double gaussian(double mu, double sigma, double x)
{
double num = (exp(-pow((x-mu), 2))/(2.0*pow(sigma, 2)));
double den = sqrt(2.0*3.14*(pow(sigma, 2)));
double gauss = num/den;
return gauss;
}
void ParticleFilter::perform_pf(double x, double y) {
VectorXd current_meas = VectorXd(2);
current_meas << x, y;
if (!is_initialized)
{
num_particles = 25; /* number of particles which is a hyper-parameter */
default_random_engine gen; /* random_generator */
previous_meas = VectorXd(2);
double std[] = {0.8, 0.8};
normal_distribution<double> dist_x(x, std[0]);
normal_distribution<double> dist_y(y, std[1]);
// =========================================================
// Creating particles and their state normally distributed
// ======================================================
for (unsigned int i = 0; i < num_particles; i++)
{
Particle particle;
particle.id = i;
particle.x = dist_x(gen);
particle.y = dist_y(gen);
particle.weight = 1.0;
particles.push_back(particle);
}
previous_meas << x, y;
is_initialized = true;
disp_particle(particles);
return;
}
for (unsigned int i = 0; i < num_particles; i++)
{
particles.at(i).x = particles.at(i).x + current_meas(0) - previous_meas(0);
particles.at(i).y = particles.at(i).y + current_meas(1) - previous_meas(1);
}
VectorXd sense_meas = VectorXd(land_mrks.size());
for (unsigned int i = 0; i < land_mrks.size(); i++)
{
float x = current_meas(0);
float y = current_meas(1);
vector<float> land_mrk = land_mrks.at(i);
float dist = sqrt(pow(x-land_mrk.at(0), 2)+pow(y-land_mrk.at(1), 2));
sense_meas(i) = dist;
}
updateWeights(sense_meas, current_meas);
re_sample();
previous_meas = current_meas;
disp_particle(particles);
return;
}
void ParticleFilter::updateWeights(const Eigen::VectorXd &sense_meas, const Eigen::VectorXd ¤t_meas)
{
float tot = 0;
for (unsigned int i = 0; i < num_particles; i++)
{
particles.at(i).weight = measure_prob(particles.at(i), sense_meas, current_meas);
tot = tot + particles.at(i).weight;
}
for (unsigned int i = 0; i < num_particles; i++)
{
particles.at(i).weight = particles.at(i).weight/tot;
}
}
double ParticleFilter::measure_prob(const Particle ¤t_particle, const Eigen::VectorXd &sense_meas, const Eigen::VectorXd &measurement)
{
srand(time(NULL));
double prob = 1.0;
double dist;
double random_number;
for (unsigned int i = 0; i < land_mrks.size(); i++)
{
float x = measurement(0);
float y = measurement(1);
vector<float> land_mrk = land_mrks.at(i);
dist = sqrt(pow(current_particle.x - land_mrk.at(0), 2)+pow(current_particle.x - land_mrk.at(1), 2));
double den = sense_meas(i);
random_number = rand()%(int)(dist+den);
//std::cout << "random_number = " << i << " " << random_number << std::endl;
prob = prob * random_number/sense_meas(i);
}
// std::cout << "============================ " << std::endl;
return prob;
}
void ParticleFilter::re_sample()
{
std::vector<Particle> new_particles;
srand(time(NULL));
for (unsigned int i = 0; i < num_particles; i++)
{
double sum_alpha = 0.0;
double random_number;
random_number = (double)rand() / (double)(RAND_MAX);
for (unsigned int j = 0; j < num_particles; j++)
{
sum_alpha = sum_alpha + particles.at(j).weight;
// std::cout << "sum_alpha = " << sum_alpha << ", random_number = " << random_number << std::endl;
if (sum_alpha >= random_number)
{
new_particles.push_back(particles.at(j));
break;
}
}
}
particles = new_particles;
}
void ParticleFilter::disp_particle(const vector<Particle> & vect)
{
double highest_weight = INT_MIN;
vector<Particle>::const_iterator it;
for (it = vect.begin() ; it != vect.end(); ++it)
{
Particle particle = *it;
if (particle.weight > highest_weight)
{
highest_weight = particle.weight;
best_particle = particle;
}
// std::cout << "id = " << particle.id << ", x = " << particle.x << ", y = " << particle.y << ", weight = " << particle.weight << std::endl;
}
//std::cout << "best_particle" << " x = " << best_particle.x << ", y = " << best_particle.y << std::endl;
}