forked from open-mmlab/mmtracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
selsa_faster_rcnn_r101_dc5_1x_imagenetvid.py
50 lines (48 loc) · 1.39 KB
/
selsa_faster_rcnn_r101_dc5_1x_imagenetvid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
_base_ = [
'../../_base_/models/faster_rcnn_r50_dc5.py',
'../../_base_/datasets/imagenet_vid_fgfa_style.py',
'../../_base_/default_runtime.py'
]
model = dict(
type='SELSA',
pretrains=None,
detector=dict(
pretrained='torchvision://resnet101',
backbone=dict(depth=101),
roi_head=dict(
type='SelsaRoIHead',
bbox_head=dict(
type='SelsaBBoxHead',
num_shared_fcs=2,
aggregator=dict(
type='SelsaAggregator',
in_channels=1024,
num_attention_blocks=16)))))
# dataset settings
data = dict(
val=dict(
ref_img_sampler=dict(
_delete_=True,
num_ref_imgs=14,
frame_range=[-7, 7],
method='test_with_adaptive_stride')),
test=dict(
ref_img_sampler=dict(
_delete_=True,
num_ref_imgs=14,
frame_range=[-7, 7],
method='test_with_adaptive_stride')))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[2, 5])
# runtime settings
total_epochs = 7
evaluation = dict(metric=['bbox'], interval=7)