diff --git a/src/test/java/g2801_2900/s2877_create_a_dataframe_from_list/solution_test.py b/src/test/java/g2801_2900/s2877_create_a_dataframe_from_list/solution_test.py new file mode 100644 index 000000000..942c9b3dc --- /dev/null +++ b/src/test/java/g2801_2900/s2877_create_a_dataframe_from_list/solution_test.py @@ -0,0 +1,46 @@ +import unittest +import pandas as pd +from typing import List + +def createDataframe(student_data: List[List[int]]) -> pd.DataFrame: + column_name = ['student_id','age'] + result = pd.DataFrame(student_data, columns=column_name) + return result + +class TestCreateDataframe(unittest.TestCase): + + def test_valid_data(self): + student_data = [[1, 15], [2, 11], [3, 11], [4, 20]] + expected_df = pd.DataFrame({ + 'student_id': [1, 2, 3, 4], + 'age': [15, 11, 11, 20] + }) + result_df = createDataframe(student_data) + pd.testing.assert_frame_equal(result_df, expected_df) + + def test_empty_data(self): + student_data = [] + expected_df = pd.DataFrame(columns=['student_id', 'age']) + result_df = createDataframe(student_data) + pd.testing.assert_frame_equal(result_df, expected_df) + + def test_single_row(self): + student_data = [[5, 18]] + expected_df = pd.DataFrame({ + 'student_id': [5], + 'age': [18] + }) + result_df = createDataframe(student_data) + pd.testing.assert_frame_equal(result_df, expected_df) + + def test_negative_age(self): + student_data = [[6, -10]] + expected_df = pd.DataFrame({ + 'student_id': [6], + 'age': [-10] + }) + result_df = createDataframe(student_data) + pd.testing.assert_frame_equal(result_df, expected_df) + +if __name__ == '__main__': + unittest.main() diff --git a/src/test/java/g2801_2900/s2878_get_the_size_of_a_dataframe/solution_test.py b/src/test/java/g2801_2900/s2878_get_the_size_of_a_dataframe/solution_test.py new file mode 100644 index 000000000..a8990a01d --- /dev/null +++ b/src/test/java/g2801_2900/s2878_get_the_size_of_a_dataframe/solution_test.py @@ -0,0 +1,64 @@ +import unittest +import pandas as pd +from typing import List + +def getDataframeSize(players: pd.DataFrame) -> List[int]: + return [players.shape[0], players.shape[1]] + +class TestGetDataframeSize(unittest.TestCase): + def test_example_case(self): + # Example DataFrame + data = { + "player_id": [846, 749, 155, 583, 388, 883, 355, 247, 761, 642], + "name": ["Mason", "Riley", "Bob", "Isabella", "Zachary", "Ava", "Violet", "Thomas", "Jack", "Charlie"], + "age": [21, 30, 28, 32, 24, 23, 18, 27, 33, 36], + "position": ["Forward", "Winger", "Striker", "Goalkeeper", "Midfielder", "Defender", "Striker", "Striker", "Midfielder", "Center-back"], + "team": ["RealMadrid", "Barcelona", "ManchesterUnited", "Liverpool", "BayernMunich", "Chelsea", "Juventus", "ParisSaint-Germain", "ManchesterCity", "Arsenal"] + } + players = pd.DataFrame(data) + + # Expected result: 10 rows, 5 columns + expected_output = [10, 5] + self.assertEqual(getDataframeSize(players), expected_output) + + def test_empty_dataframe(self): + # Empty DataFrame + players = pd.DataFrame(columns=["player_id", "name", "age", "position", "team"]) + + # Expected result: 0 rows, 5 columns + expected_output = [0, 5] + self.assertEqual(getDataframeSize(players), expected_output) + + def test_single_row(self): + # DataFrame with a single row + data = { + "player_id": [1], + "name": ["John"], + "age": [25], + "position": ["Forward"], + "team": ["TestTeam"] + } + players = pd.DataFrame(data) + + # Expected result: 1 row, 5 columns + expected_output = [1, 5] + self.assertEqual(getDataframeSize(players), expected_output) + + def test_different_columns(self): + # DataFrame with more columns + data = { + "player_id": [1, 2], + "name": ["John", "Doe"], + "age": [25, 30], + "position": ["Forward", "Midfielder"], + "team": ["TestTeam", "AnotherTeam"], + "goals": [15, 20] + } + players = pd.DataFrame(data) + + # Expected result: 2 rows, 6 columns + expected_output = [2, 6] + self.assertEqual(getDataframeSize(players), expected_output) + +if __name__ == "__main__": + unittest.main() diff --git a/src/test/java/g2801_2900/s2879_display_the_first_three_rows/solution_test.py b/src/test/java/g2801_2900/s2879_display_the_first_three_rows/solution_test.py new file mode 100644 index 000000000..01be0234d --- /dev/null +++ b/src/test/java/g2801_2900/s2879_display_the_first_three_rows/solution_test.py @@ -0,0 +1,69 @@ +import unittest +import pandas as pd + +def selectFirstRows(zs: pd.DataFrame) -> pd.DataFrame: + return zs.head(3) + +class TestSelectFirstRows(unittest.TestCase): + def test_example_case(self): + # Example DataFrame + data = { + "employee_id": [3, 90, 9, 60, 49, 43], + "name": ["Bob", "Alice", "Tatiana", "Annabelle", "Jonathan", "Khaled"], + "department": ["Operations", "Sales", "Engineering", "InformationTechnology", "HumanResources", "Administration"], + "salary": [48675, 11096, 33805, 37678, 23793, 40454] + } + employees = pd.DataFrame(data) + + # Expected DataFrame with the first 3 rows + expected_data = { + "employee_id": [3, 90, 9], + "name": ["Bob", "Alice", "Tatiana"], + "department": ["Operations", "Sales", "Engineering"], + "salary": [48675, 11096, 33805] + } + expected_output = pd.DataFrame(expected_data) + + pd.testing.assert_frame_equal(selectFirstRows(employees), expected_output) + + def test_less_than_three_rows(self): + # DataFrame with less than 3 rows + data = { + "employee_id": [1, 2], + "name": ["John", "Doe"], + "department": ["HR", "IT"], + "salary": [50000, 60000] + } + employees = pd.DataFrame(data) + + # Expected DataFrame (same as input since there are fewer than 3 rows) + expected_output = employees.copy() + + pd.testing.assert_frame_equal(selectFirstRows(employees), expected_output) + + def test_empty_dataframe(self): + # Empty DataFrame + employees = pd.DataFrame(columns=["employee_id", "name", "department", "salary"]) + + # Expected result: Empty DataFrame with same columns + expected_output = employees.copy() + + pd.testing.assert_frame_equal(selectFirstRows(employees), expected_output) + + def test_exactly_three_rows(self): + # DataFrame with exactly 3 rows + data = { + "employee_id": [10, 20, 30], + "name": ["Eve", "Mark", "Lily"], + "department": ["Finance", "Operations", "Engineering"], + "salary": [70000, 65000, 72000] + } + employees = pd.DataFrame(data) + + # Expected DataFrame (same as input since there are exactly 3 rows) + expected_output = employees.copy() + + pd.testing.assert_frame_equal(selectFirstRows(employees), expected_output) + +if __name__ == "__main__": + unittest.main() diff --git a/src/test/java/g2801_2900/s2880_select_data/solution_test.py b/src/test/java/g2801_2900/s2880_select_data/solution_test.py new file mode 100644 index 000000000..c0396fdc6 --- /dev/null +++ b/src/test/java/g2801_2900/s2880_select_data/solution_test.py @@ -0,0 +1,68 @@ +import unittest +import pandas as pd + +def selectData(students: pd.DataFrame) -> pd.DataFrame: + return students[students.student_id == 101][['name', 'age']] + +class TestSelectData(unittest.TestCase): + def test_example_case(self): + # Example DataFrame + data = { + "student_id": [101, 53, 128, 3], + "name": ["Ulysses", "William", "Henry", "Henry"], + "age": [13, 10, 6, 11] + } + students = pd.DataFrame(data) + + # Expected output DataFrame with explicit data types + expected_data = { + "name": pd.Series(["Ulysses"], dtype="object"), + "age": pd.Series([13], dtype="int64") + } + expected_output = pd.DataFrame(expected_data) + + pd.testing.assert_frame_equal(selectData(students), expected_output, check_dtype=False) + + def test_no_matching_id(self): + # DataFrame with no matching student_id = 101 + data = { + "student_id": [102, 53, 128, 3], + "name": ["John", "William", "Henry", "Doe"], + "age": [12, 10, 6, 11] + } + students = pd.DataFrame(data) + + # Expected output: Empty DataFrame with columns ['name', 'age'] + expected_output = pd.DataFrame(columns=['name', 'age']) + + pd.testing.assert_frame_equal(selectData(students), expected_output, check_dtype=False) + + def test_multiple_students_with_101(self): + # DataFrame with multiple students having student_id = 101 + data = { + "student_id": [101, 101, 128], + "name": ["Alice", "Bob", "Charlie"], + "age": [20, 21, 22] + } + students = pd.DataFrame(data) + + # Expected output: DataFrame with both rows where student_id = 101 + expected_data = { + "name": ["Alice", "Bob"], + "age": [20, 21] + } + expected_output = pd.DataFrame(expected_data) + + pd.testing.assert_frame_equal(selectData(students), expected_output, check_dtype=False) + + def test_empty_dataframe(self): + # Empty DataFrame with the same structure + students = pd.DataFrame(columns=["student_id", "name", "age"]) + + # Expected output: Empty DataFrame with columns ['name', 'age'] + expected_output = pd.DataFrame(columns=['name', 'age']) + + pd.testing.assert_frame_equal(selectData(students), expected_output, check_dtype=False) + +if __name__ == "__main__": + unittest.main() diff --git a/src/test/java/g2801_2900/s2881_create_a_new_column/solution_test.py b/src/test/java/g2801_2900/s2881_create_a_new_column/solution_test.py new file mode 100644 index 000000000..561b50fd2 --- /dev/null +++ b/src/test/java/g2801_2900/s2881_create_a_new_column/solution_test.py @@ -0,0 +1,32 @@ +import unittest +import pandas as pd + +def createBonusColumn(employees: pd.DataFrame) -> pd.DataFrame: + employees["bonus"] = employees["salary"] * 2 + return employees + +class TestCreateBonusColumn(unittest.TestCase): + def test_create_bonus_column(self): + # Example DataFrame as input + data = { + "name": ["Piper", "Grace", "Georgia", "Willow", "Finn", "Thomas"], + "salary": [4548, 28150, 1103, 6593, 74576, 24433] + } + employees = pd.DataFrame(data) + + # Expected output DataFrame + expected_data = { + "name": ["Piper", "Grace", "Georgia", "Willow", "Finn", "Thomas"], + "salary": [4548, 28150, 1103, 6593, 74576, 24433], + "bonus": [9096, 56300, 2206, 13186, 149152, 48866] + } + expected_output = pd.DataFrame(expected_data) + + # Test the function + result = createBonusColumn(employees) + + # Use pandas testing utilities to compare DataFrames + pd.testing.assert_frame_equal(result, expected_output) + +if __name__ == '__main__': + unittest.main()