-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCommonRobotArmConfigurations.cdf
3089 lines (3016 loc) · 134 KB
/
CommonRobotArmConfigurations.cdf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.cdf.text *)
(*** Wolfram CDF File ***)
(* http://www.wolfram.com/cdf *)
(* CreatedBy='Mathematica 10.2' *)
(*************************************************************************)
(* *)
(* The Mathematica License under which this file was created prohibits *)
(* restricting third parties in receipt of this file from republishing *)
(* or redistributing it by any means, including but not limited to *)
(* rights management or terms of use, without the express consent of *)
(* Wolfram Research, Inc. For additional information concerning CDF *)
(* licensing and redistribution see: *)
(* *)
(* www.wolfram.com/cdf/adopting-cdf/licensing-options.html *)
(* *)
(*************************************************************************)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 1064, 20]
NotebookDataLength[ 135931, 3065]
NotebookOptionsPosition[ 108505, 2458]
NotebookOutlinePosition[ 134738, 3019]
CellTagsIndexPosition[ 134625, 3013]
WindowTitle->Common Robot Arm Configurations
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
ButtonBox[
GraphicsBox[RasterBox[CompressedData["
1:eJztvXmUXldxL8p6zzeKUCRHkqVWz3O3utWTutWjWq1u9dz9SdbgSZ7AI1OY
zTzYYAaDAeMRCBAgkITRBG5CSBjuS2KbKe+9mwQCa717c1+A/HnXBfL+5rxT
e6yqXft8p1uyJNubtYrznb1r1/Cr2lXbZ1ty662vPH3n//a85z3vtb+b/9/p
W94w95rX3PKmM5flL8fedNcdt/7v+Y+unL7+O897Hgw+Odf5PxOdb+pIlChR
oqeZLnadS5QoUaJEiRJdIPqtoYttR6JEzzT67ZNp/yRKVIZ+W0AX27ZEiS4W
Fe2LzeyVjcpLlOjZQOd1X/7fC51ZogtP/1ei5wRd7DxL9Mzb5+Xld110/xIl
SpQoUaJEiRIlSpQoUaJEiRIlSpTo6ab/tro/0Xmn7uq0kigRojI5k+gZRf/P
ORDUkf9eiroTJUqUKFGiRIkSJUqUKFGiRIkSJUqU6FlN/2O1+38mSpTo4tO/
JnrW0H8X6L+tFBPm/Vf0jNHFztdEiRIlSpQo0QWj3xq62HYkSvRMo9/+j7R/
EiUqQ78toIttW6JEF4uK9sVm9spG5SVK9Gyg87ovf3PteFZE/4HoN+x3QNcg
isgpwxudvyZGY4T3PwSq5tv5JBnLsQIqjsHG1/G5It1Fcsc2qH+zeqrJ2Cie
m9V/LnZWi2H5ffbcpImCcT33/5GxSTR3sahcDfj1NZ5+ldcqiTCPXztRNTfO
Ne8KSdXVkP4jt/E/hBr8H4YUn90XERmJEiVKlChRokSJEiVKlChRokSJEiVK
VJYGWjtyas/682d//hxo8dTPSPFJ42YOZA0qeR1urK+lLScuJ+dry3naOpx+
pa/VyrPjmpRdOQ3adWYNvA+1d+ZjXYoUbwtQm6O+Vni2Zn3N7Yr6mzuUfODr
U9Sun81t6He7+d1u+KwfVp6WqfxpRmR4+w1PH7ID9Grb2s0TyQX+Vi97AAjr
UXMam77WDoRnW0hGln0fUHa2Eb3W937nn8fBrgf9A06uwaPZ8Li1FhOwsdXE
z9tHbIXfKpZmbWs7sbkPYtSK7dTPAednqyGEPfBZ7I1cpQ+wbja6m31eqafL
MY81tcPY2Or97Gs1scR2trYH1NfS7tZp3+16kxOWz/428wMoLk5nS4fJVe1D
X0uH2Rd+D/n1Xu9As5eJ95SLd6vPa7wntd/4Ha1x+7vd70mWT7Z+eFkdJuZG
FopPn60lpJ60GZtRfsAeb2rNBnLqa+vMelo7s97mThX/3taG7EBrY3agrVlR
X1urjo0hnY8QrxZNrXbO/G71PJpaswNqTs/j31oGlm/elRwsW78faNU6D7R4
WQfg2dysqBc9exWffva6NciGFvrUsoBXv/t1rUanscnqRDLd+hY6rm1udTKt
3ANkjZbZm491tDdm3S2NOU+zmWtWudqVU2cep96c+hshbi2mRuB92+rrFKtZ
tOa0+VqB8tDXFpxTuObruA5g+TYnbB2E2tDc4Wu2q+Edpk77eh7U+BgRXmR3
c7s83oLesd7YPOGje5esdXo6qG2BrdxX7E8HXed86cgCnAhhnRHdgc4Owb6I
XD4eyMQ4CWsJHh0yX3NHOM/1FPkcsxf7HcSB28b5Ge4YMwGPvTUN2Z69OdU0
qie8qzHybCRjey3f3kb9ey8d32NkUltYzjUzm5o5jih3pTwgfnUw7LgcIfYS
jty+QA73p0heLB86mB1SvAQ/+F7nenBcxTxuz0KsmO1k7/J8E7AWawirO1K9
itVNfF4ssj/Ic7anOO687op2CTnH9zGvQwR/4UnO8NwHIb58nwd1vYPK5T2I
2M9zRvA7wIzXCakOxeLB1/Hckezm9vJ9JOVAR0QejzteJ/EJOS7uJ64L5zH7
zWsb/+c4SVaQOxLmXEZ7KFOqq1IN4jVR6sPBftf8bQ2titoNtTW0Ze2NrW7c
zrU1tlGeBvxu+BrNeKP+7eW2eGrUz2Av5bZBr3F9y/aioG81hH0L9TjSy1Df
sn1tj+1veC0aU/ymNzp79trxBt9PnY5GqqcmpD3GD8e7V5pDfu318iwOGpNG
Z8dexEf1NQY2c4z27G0MMSXY0HODi8PeRm9TjaCbnzX2hrh4n9gZJOILjQvC
BeUJ9YHGfQ+Th313Y05/I7KN4SfkH7d7j7GX2yTnUiOT3xj6iPeBjY9kA4sB
PvdZOQRTcT+ZNXupz1ZG6lupb11KfUvUJ55/uT3cRuYrkS/lmmRDQWzxWZTn
HJ/neyGwOZbLXH8JamF48Tzi43z/8/N/UB+EfOV+8loRxIxhHuAj5EeQj5K9
wl6J7XspJrHawOXy8UAmyxcxBkKuE9s7wnmuR7BNn9fgXOfPdm2Nrebs1krO
dv7Zxs51mNrQurZwvrHVnPsEPFqYnzwW0Vh57C7btS/7T7tqsst2wjOnnTXq
HRPMXQa/7ZzldWPo9047798vUzJq0Jhe73UjfWgNsQPJvszasJON4zGypsbb
jwnLJrbZOS/zMiVjH7UVr0F8XvY+P4dt3uUxcdg4/GN+7GMYhjhdFviCZKOn
x28f4bts1z6KgbVl1z6qi+HuZdi4Unz4uxgH/nS5SG2nuYnGdnr+y5hdPmd5
zH2eXob8sTjTvPUYXIbWXhaRR/xg/uEccvju8jbgXMX6L3PrbU7tI/aGe2if
yzFiu5hPfl95Hh6zfU6u920fwxTbsY/5wOS59dR/HCu81ucny02eW9gPkiNC
HIL96t8pXpG8R/uE7n0fX+/DXk279uqx34d5/Q7j1t7LED6XCfs02APYTmkv
YRnB/qF7IPAX4XcZyvcYLqEdyPagvliM9wV2hnXU/74Mxzaaf3JeXIb94bUW
jXsfWf7wmmZ5sS24/7GcCsatT+7J9wLLOV7LpLiz2F+2k6/ZF/oh1Kn/xPYb
10Pq0S4cS+PHTlx/cB7zOonfpXgwvCJ8ND7ynvE2U9nkTMFyntRHnFe72H7E
OYbiinM8qHEklyQ8WD/AvZjXNWwnx2gX1ZPOfZw/nfvSuY/GCMtP57507gvy
sfS5D8neyWK30+fVc/3cl/oWkxfERIhz6lvE3tS3qPzUt1LfCvIx9S1Wb9ie
QPlI64vct+Q66n+n7xWxnOc60D4ga/aFfqTvFcjHfYGPz6TvFX6v2r3Ez2cS
hvuIvt/ZXZvTvmxLTr+zSz/VbxjfVWvGNY/l1fy15AlrFZ9dQ+TS9Vuk8V3e
BrfOraml+nbVOj4+b2W69bs8D9bl/eNraxl/LmsXXreP6OZ2+jEqA2PscUN+
Y7m70Npd3k6PHfPR8XmbtmA/dzP7mQ+/w2Ta2GzBax3u3i6in/iIcsLibG1z
MmoDux0eYg7QWDp72VruJ47FFmLjPuYTyxGkewtbT3nknCH8dm+gnAvzS/AV
59uufUI8aYyCfRehLcGeQLjt8nXA72kpL/eZWMZyILSX7LVg7/CY8b1CMdqC
7WV739cVKXfCvfg7zC63j5D8LaSuhPlI6tguvDavsVBn1Tt67rTjmBDP7hov
exetF8425AfNc44XjmmY61sYnxtHOtweEHoByQuMQ2CDHItwT2E7eJ3DvLXC
/kZ1Afsa+M3yZZd/37KL+hHWIlZbTc3awsdQbZVyfUuARWTvk3xj8RRJsNFh
wH4H8oW6hvEhewv3izBuAc48N3m/jdmC8SB8vP4gW0l/4fUAy6V9Y8tuapPb
xzxnI/0z1kPw+i3knIX2m5TnKC85brzPb2E20bpo+wXFIJ37hDy0vqZzH9pT
3q507qNxD9fxvYtjyfNL8DWd+0huBjF5Rpz7pHzhczwGfN891859HCu8dyjm
qW/xmPK6gvcvzndqR+pbQn6mvpX61u7Ut0J7ONV6zMm+e671LYpP+l4h5IyE
b5GNDgP2O5Av1LX0vSLM2Uj/jPUQvP7p/l7h9nmADc9pIRZG1+9eUadpD3ty
gvE9tWi+tnDdVr7WPWvDcTx2RRXePVhHrbYJrdti5QX8tbKeCG2V7IlhE/gj
4LEHySRz2q4tzheB9sTntnI+aT3CY6vRv5X7QnDk6/exp9a1dQ/6LWJb6/Rg
PP3veodNEG9si8m9rQU+bt1DbYviIGEXievWaDxZTPYIMoX3rdyu6N6JxFT6
jZ+i3wxzpNPnJF67T5CBxg3fFuwzj80ejq8UL8Szh+exsNeYjK2SbWX2uFRH
Su5tjVctW8/1MV93G7I25r+37kbjMbJrq+XyHoZzQQ5UrUV7MOk4bBUxq6X8
EVyr1chANukvJWRVq9HofSupebVyfcdzkfhuNfPBejQm13k2XgYnhlW8HrE8
LbCN1Hmp7uzxWElyovVEygssJ9jPgizJB2HdVq4fj200Z7jtOW2JxCdqk53n
mEl8uOY6m02fDHpwBKOI3GicijBJ5764/TiXi9Zt+txn7C7EvoSdJeJb7tzH
qZY9mQzcD9m683fuK87hrQX1rGqMz8u5T86brTF5WGbh3on4JfXbAr+rn/t4
rCM5YPi2sHNTeD6oLcSX5IVULwv6RIhz+X399J/7Ijaj2lnUT6vlhmiXoKMw
72O1aA+mS+Dcx3k2g1PqW6lvpb6FbEp9K8jt1LfiNqe+FeIe5G/6XhHzJX2v
oHPpe8XG8JT5aU3ait6fv7c+pwbztL81bSPv9ei9XlgnvUuEZYXEdco6YnrD
NdvYU14fzm0T/Nwm6vTvfH4bwvL5e3Os9+Tje+oKKNeBfsNzm6Hns3HKX18s
ey/icXjY2NdREnXVVxmro3Y4ufVepqTL8RiM9ljbEGZ7sXzq67aoXfUGG88X
8kpr64jd2xxOdead40Sx4LGrpm8bWk9jLMchngdcD/Yf60Lvzo8YlliOFGf6
lO2P47yN2b+tqpxqvvOcxzkYp2p7uvpvnBPYX+r7VkR/cPNkTlNZZ2+b+ueZ
55u+sJXFqGhfb9sTxiKWQ27c5HRxfSuu6ZZnm6tvMRmYpLEGs7/i+otjw8e5
Hu/ntihfvbAG28WxKupvsn6OWTz/qH7uQ8yOcH212Pp3uQfTtdtEXbLdxXsN
+0Bt2hZgFvLS2MTHfbzDuNK8pb2ex3sbk01lVMvJIgxitpddH46Xi4VUv9K5
j8+d/3Nfub3BYxjmRJgzxT7lVMNzLqwtxXlWLWekel8tVwTcg3NfLLfjMaI+
4n0dq/PxPA7rQTE+8XpQVNek3CmzZ2J7m/vPa6hsq4wPr3O8BlSzP44z74Hb
qsqp5nu1NTKd+7kv5m9sT8ZqVAOjIhm4LlTPIekMc2mf+4pwkzGUa1vMr83n
U+pbsv7Ut1LfKrdnYnub+4918b0s2RLLFR5n+kx9i/tbrf7yGlVU62W7n719
q0xsYng2MBnpe0UYl/S9gveRZ9f3CklfuC9CrP3a36tpzH5vX2O2fZ95mndF
Nei9Rnjfx37XNPgxMu7HtuNnDZOzL+QTKbJGnKuhOrdzHmxDzDeLkSCb40f5
GjTVMMpjsJ29w3ObITy+jdHvQQxr0BhaHzwNbd/rn9u5LY6/Plhv7SE2cN2C
H/F3rWM70qPs4TiZ39bW7VbWXmabZEMEU8Jb1U5qo6XtiM/jWE/Wb9vrnw6v
Il3CXJAb3BfnT/3m5O6l/BbfbUgPz0f3m8UhJhts42u3YZw4LjhX9zaI/nuq
NzqYHBsnjofKr3pjo92fdg7VNTseqzGgN5/fbiiwE/3W/tabGPk+DPSn91Wy
v/vk1dm/fv3mbH62X9+zqr1Bnw4/jrlIYS5sR0RstPst6ier0UItrVaPST/h
dV6qo1I95j0oUtepzgb03hDwby9tQ4PA24D6SEPGfRXtl3qb8Qn3oyK7eE/2
zwaTj4Idgk6xX1eLb004t70mMi7pFeaieVWDYuj2LvfZ8jV4rGP5WiU/o75y
zGpkm0PMGkLdLOfE3yVzJxrf6LmlIVjHz13p3FeEn4BNBD+RT7CR1woem+1W
DqPteC/E7I7k73aul2DWEF3P91c0bkW11OZHjbCfInkv5oqQd9sZRWWXtjPM
e15/yV6P1LCyNUjyh2Mi1yipN5WQK+HM9AS1oigXRNlhzQl6r6RLijHPZ465
hFUw3+BkBzWsprHkuQ/3/YKcqgn5NxIfjEEs98N93CDKKzzrVBm7aOc+53Pq
W4X5VlT3MUaxes6xLbJPin9NGJvUt1LfIvsuErPUtyJYBfOpbz1j+hbXGbFR
zqP0vSKmU8zPavEVanX6XiH7f8l9rxB8KYwD8uPy2uZsR06X1zVlO+rgqd93
1Db53zBeq+fsU82buR3uCTL8OiWzFs2bdzdfi5516Gl5sV40r20zety40a3k
NRl9dK1dY9ftQHZcjvReXotkI1vwmh1I3o46io3Sz2lfU7bdPnPs9XhDTjo+
l8OYidUOs9e3m+cOsw92OB70uxb/bjTyQt2O1LvWr/ntuF+3fZ+e07Ib3BkV
CGzZYd/t/jJ6rY7txGczz20AjM375fm8xqxRjV1e68d31HrbNG6+Lnt/DSbG
5mDcYKp8qW1wmNk4bDf+W10ekyaPiYsdHddYNjg/rT4SP2uD4mlyZHHAeDl/
nbxG977DyfYx34F4dqA1ODbbsR/EZ+wbzj2DlY13DdJn473P20jsq22kPju5
eBzpqKV+OJvdWJOz3+Hr8MZxtPZhbBt1bpn5y/eZ/LK5ZXPN8dqcY7lQ6/ku
x7wkXtY+NIb2zg67f5D/cJf1sbev5OP1erwGYWz3meH3+dPofbf7ytqK9vF2
FGu895wf5vfltmabp67RTbRG4vqH6zGql74uN5v66ev3Dky2B9geU+vr9+VG
t+XZ4ep1k6/fQc9BPavO137eB7jdTo7T1Yz6SVO2g9tv7LP2Xo7stP2Q9DBs
n8MYrcV2s35D+hrGDfc6hI+TFetXrI/7MYwVxQBj7+LE+hzODdoHmyLj+FzA
+nttE/Lf54GPfejD5cSuJo+lgO8ON8b0oBhSv1i+4L6P+z/KeY8Zk1PLbBdy
2M+hM5TbX3JeuP1XR+3C+ez8wsRjQfxL575zOvexfUd8rEX1zMj7fbx3UR3F
/l2Of+O4830r1Dga8ya/lsUKx9zXYprzhKeW+V/LcCJxofOXBzjSPe7j1YQw
R3uZxLKJxCrcN7YXeXtwjmNdNNci+43sBxzvJmqjqw8s71h9IPkj9NkddQwn
vJ7VBVLrrCy8b4U1tA74uNv9xONL4ojy1u/tpsA+z4POUKSmoJypRbnHaozH
h/nC88v1DX+28fuA53sTiiXaf7XMR4x/rdfD6xs+C9BeEcZ8B8Y3wAzZTfKH
r2kifuFzGNePe/0lee7DNYXXr1qMm8c+9a3Ut1LfwrlG93rqWzSfU99qJvak
voVijPJqQ33L+dAU+Bb2HFqP0vcKFq86ihetzxgrikH6XsHyBdUn0rcuxe8V
NrZC7yH1ju8DlGO7GlqznfUt2c4GQ+o3jLXqZwN6t2P1elytJdTifzuZdE3I
20Jl1Atrc9rlxgVdZC2d3xXzh63bVc/kEFvwWAt9OpmAB8Iwp99X1Kyfdfrs
p56W+Hsel/DZyJ6cv8nLqaXzOw0FuuoxNYW/iawmpKcRvTcyW60+QZ773UTx
ML93YpyCZ4u3KcCsqTomAdm5JmNzk5OrsHI2NlGc6pAPzG8J+zDOTfS9FsUG
663mF8ehtpnZ00QpFgOcB9Z24oOP804is8DG2mbEi7FmWHA8ov4UYMr1mOfO
IL9NDtX5nNrpYurzS+3ZfO0u+5uQHvf5qPPX5y3Ctxbj6e20d0aY/ux9xxXZ
u7bL3V0axruR5imrFTulXKxrYjnr/d1psIC6qGojjDU0o1qOa69Qo4M6jsbq
hdpK+KSeIOmV1gm9ph71BvfewuRxfyJ21kt6Wxkukf4R9L0iv2yfMLz13NZI
z3W2C3051qsCeyN6MJ7I/l1cN9Ebk1OkV47zrtg6FE/CwzEO4h7LB4yVkA+B
v/YMQW3DtuwiZyczh/nr0Rkklt8cHxJ37h/nseewavFAOe3sTOe+83fui2DC
Yxnsz0juFuyXoBaw/bAL52h9NZ1S/JheEf8Wpi8WoxZBFt5Hku9y3sr7JYKJ
FA9ST3x8ZDt4/vJ6ImMvr6V5Gq13RX5F48njxWs8j6VgeyS+Ye+L2Fjf6v/Z
h2DNsIieHbg/BZiKdY7XpFgP4Tni/Y/t4WC8PlJvo/1XeCfrIrHheRqMC1gS
ORSDXei5C/FcWue+1LdS3xJ8isUs9a3ivEx9q9jG1LdS34rGqzUr37ekdQJ2
Zn36XtFakHcFNZjPsR6bvle0CDg8E75XxOSXiInJyd2NbdkVTe05+eduRPo9
H29sp88mvE7zWH7g0U8kx+jRaz1hWW69k9lGxnY7Pe2hfW698aHR2tFudHs+
a5fkt9PVSP2zPnme9uwKZI/TA7IbYH2eDzntzvHebXJpt/perAm+Hdvv4/Zb
uXp339IRqbGWbG61osjO22/RXp6uOfCu9eJnThDvBmuTpl2Idpsc221kKB35
89S112enrruB2LXL6kc+Wb3arlYkl+rUeJjxRm2Twkph1ubGbe/a7f4Zptlg
6G32ttBxbUOze/YNdmcr8wez5s4OYze23drY6vzHv/0zH6/3PvB4qt8uji25
vqGsP9frbcMYNQdx8LhQ23Td0vEFmeAHyRkb83och2ZiL41zK/XJ5MhOY9fU
ZJ/S09JhsKpDGBtbnH02B5iP7v6nrgVhomUfzsnlrlvfwmxvZthQnTuNruau
jmxlYSg7PNVHYuVi1NhicqvN55fJNZt7eq7N8yl82tya3WRNC/3tcPX/XGT1
g10Qf7pnmvSzrin7/PuOK4KxnWq8yeEM74dNHBxOdXSvWazA3v6h/bm+g1lr
nt+xPe73W5unRlsrUS1r9LV0N6+ruCayWi7X4vx3I17TRmoy7QF0bLc4b22M
1WEm3/qHesgVAXn7iV2NdM1uM0Z8E3qC7IPQQxrbWG/iMqwvYX9y/bARy+Kx
YfFivd720yt4r3M9kMogT6cXxcPlUUQewbg943hh/Hl/9viFvd/54fIN93Dq
Oz6PuB5vzymN7VQn4tlNYuDleEyoDTwPqb32jBKeL2hsUb4RvFl8sS/oHLU7
sIvndjr3nbdzH88R4re8Z4k/jdT33ZItZF+gmDWGdTr0QbAjwFKoKcRfqc4h
GY3WllgNoH3Bx4PWIZ33Juca2zMeb5e/pAcIe4/lToBbNB95veO6Qt89n1C/
ER54n/J6Eu5RXNvYHsC50SjZIcW5nfokxJ7kSyP1g+xTtNdpzRF6HbGPxUmo
e5JdVibFAtc8qfexOonng3pp62iYQ1cEtst1KTYf9gPKc0UTt4XtcxIHuobX
WbmOWjme/FkP7Y+LfO5LfSv1rdS3Ut8K45z6Fq2fqW9dSn2L603fK8K9Ktbo
9L2Cxu05+r0C2457Ht0jYW3Az70tHTl1umeN+t2JxjrcWDDX3GGeds7ydwRr
qR5Msbn4mhpRhsTHdXO+2Bqrg66vieo0v3M89jS352SeTZbasjNnb8qy7LfZ
O99zXx7HFk8NQK3ZsdXjav7BRx+jdz71rWrN//rV/1LzQPBby2k1cloVwdj/
+2//pnjOnL3RjLchvW16rKlVzWu+m9Q72T85z56cHnzsMafT0oOPfkQ932H0
7zF+/O3f/70ia4slokflbqvD5W///gm1xmIEtNf9zp+Nfhz+W0ISff79J7LX
3HYka+3qcJjusZjk+E1P9WV//0fXkDXwfu2Vox6PnNYWh9Xc+uJBg5HHAnQA
WTztcy3nhTVrao3W3drdkX3w9YuyPoh1vm6PolY1B7bvaWwjtrzmthk1Z2N7
Xb4W9HPfP37PqvG7zcjV6+84O+l81rYxPxSmOg+wP7DuHz9/PcP3ePaXj5zW
6xpQzubP6cN92TfyOe3HjJNl/XJ5kPO/5tYjRDb89jwtJgYHTQyGA6x9DHR8
YS2PK8i85w+OmRxrc3m11/ze68bas9fedlSt2etyztNetAbTa01csGz7tPnS
2t2Zx38pjP+JUXq/lj8BW6ArGpoV2fnbr5vM/msQhxMKb+2/31+QVxyHj9+z
puy4wsQY7Gvb35V9/B1rWtb9J1R9Ar9tzdqbk6t5zZ1C/ewQ6iCaaw5roVzL
i3oArrtSDfb6aS/qRONSbaY2Yh3eztCGGmlds9Ydw0bupWHPIu/NHah/cnxl
XywG1JZOtB7jtJl+G/OPYx/KqhHHqG3aZ5o3yl6Ue0GeNeNziIQR1iH7VOPO
LNXOIdLZIXb2KIpXAc7NPNf5XiqWz3GoQdj4/JDyW8BFOB+lcx/fj7G8kHNH
rhF8z3eyeGNsS+QQi3s8b4rwr1an5Brs80zwL8irIrxYTjI8alp8Pu/lmDVL
tkr5EstHoWY0S1gU5XIMdx9rHye856W8jO9JkqPNku1hTaDxitXGov2Bfjdz
PdUolBWvzXJdknKzRvBNihX1mdomnSGC80Nztb0n5FVwnpDiG9EX5ZViS99j
tSY8S3SoHhjW7c5L4NyX+lb5fUkxSX1LwjzEL/WtuM9SrH2cPE/qWwU5UJCb
qW+F78+OvtXJfoe5k75XpO8V0l4qri3Pne8VMWxcLWsW7ERjtW3dntq78mcX
HbPj7d1mzvy2lM/XuTFhbVs3WmvHuvI1WAaS2+bluvG2buFpdTPe9u5Qj3p2
GT+6qI52WW6IC7fN6G5HOls7s31AbebZ6mvVvfe9T93n/Nd/+qdsb1NrHoM2
9718b2Nbdu970HyjHqtpbHXj9773fVlX/0FF9773PjcG62tyuuoGfU/28GMf
za7Of3f1D+vv1Dkp3lw/fKveB9+rc7rG8ANvjfmGrfel/qYNsu060An2Lq4d
V/Zh3dqPdnOP9YR6r2lpd3S1pMfUhL994glF8Htfa07wzPNSEWBn8cv54fv7
h964lFWWR7LK0ki2ntPZK8eyD71hyd1hDA/3mm/z2q6D+TuMw13LzHS/wv3g
SK/6ng/j7T3dCjtYs744ouRUloa1nYra1PML959QhMfAd7DB3rvYeFrZd56d
Uu/DIz3ZJ8z9wcz0oMMLCMbgPmWvwVxTW/ba2/V9Cby37+9W9oN+qwdsAN+/
8ehpNWfvYuA5Mz2gscpxAfs6e7qcP9aPfS0oDs06TmCbXXdQ4diqnh8ydzKw
TuWtzdncBoVtbgNgNzx8QNtv/cp9sHGw/sA9UPv+LkV27K7bjpgYtLkYwNP5
ZHCxtsMY+Ai63/HyY+o3jAFOd15/2I3bHKtR+xDllcmxu27X91g1rbq+7jNP
927GXF62ojWAX7PPY/3UGLv457bU5HZBTtr7o5nDA25v77X3inCnZO6N95g7
SxWHHHdYW6NwGVY4K//t/RPCC2I2PHJA6T97clzpfxHoN7bBnv/EO9bV+NlT
49nskSFXq2pbu/Jnl3qvxTXZUJ2pi3W4FuI+0W5qq6u/tM6TftEWeQa/u4Se
Ean9uP7G+ldUDu5D1s98TOhDdaTuG15k70LlpKKxo3NZ98FRJ3ts5lh25vqb
su6hUSdjoXKlwwbGgQfLwfbAvwewf2jU6QbZoMNipfiNPd1Dh9S/LzB29Bix
FfQpHVg+wgvWWB6wp9bZedLZptd53GCN4jWxAp2g3/ZabZfm3X/Q2jWnMKhr
1/PdBw85OzQmGlPQOTYzR/Adz98Vjz1ztHcr/SAX5r1+g5HDVMvfb3jHlJyT
DD/9O4zFlQbXUaS7y9lrcbZ7A9693zye3bkPx7TPSHcdPzO1099WtseCnamC
/dNlZHaR9UG+p3NfpDZwXMK4BHUngg+ZJ3UthhWtL64G41os2FFneOqEePs6
znHrJjqi9uA4ifNdga7C2LbzNUy2lOfMhzAXugp8wXZgPKhO8s7t4XlI+pSs
u64d5R7PJZG6/N51+4vi5uLrsGA4Cn2b7IV25k+QpyxXpT3M/K7jGOEckNba
GuXsEvKoCPuinA10STFFWGG9xB+fl2RPSfWA22j4+V4N7OD7iuQO1hnDQiDG
WxfI9ueYYC+xuF2Mc1/qW6lv8TqS+hbHI/Wt1LcQT+pbYv6k7xVYb5eLT5jb
3nYeuzoSO6HekRjwfcvyme/hIKewrZF5Fsdwv/FYSb2S1UHXazF2KFfau8k7
t6OOY+6wpH2kjtgo1Spqd51kL+8vQSwEP/E5gu+hoB7xWhzG7un4XkGx5Tlc
VDe8vIaOHk2dQPv1k4yhcfXcH/J2ChQbl9Zx/RJ/9B2PF81x+/Z7vR1l9MRk
e6rPZdZ3dGf1tne7mtmZ/d0TT7g/09Q9OKzuEvaZe6V9Te3Z1//iL/38wLCb
gz9fBXPqvcXTZ//0T9Wc/i7fkb3rvvertbWtHQHB+Lve93401pldc+ML1Dg8
1Tds9R3bPHN5f2fumKx8rb8tG5+Z1fLuex+yR99JwRqsQ+u5Weu54eZcLtJj
MAGqa4Wc7UTn2i5POR/Mw/f6190x621VsrQu+C4P8w+8YVm972vWNj/wxiX1
7b6ztzvAr7N3v17fomWcWNF3AvB0OgwWX7j/SkWW166za44vjSh9wyN9+m7m
9qMOF2vLE390TW4P2NduZLQbn44G8YIxmLPvXbmtPg4dTvb1p8YV3+zMkF97
O12LY+H8UDHo0HEwOFqdTgfCC2y391/WjuPLxvf8CfxWF8x5DLSsJz51jbpH
0WvbXe4DHiCby9QxaCc+aNtPuHGLCffzna+YVzGvM72E5pJ/Qi6BLpV7bSbP
4Oneu6gMvIbMGyxz3SOH+oOYWt8AA8hHnIPuXrHZ1wKHNcnXDpWvVpbNPxJP
tC+6+nrcHgPb6vJxu3+sP1Cj6vNeoGuWprJ1LqiLUv0MeshG6jWTJ/YKqTdF
dIt2sD4kyY36QHV+/FOfyb75rW+r569//Zvs6rymwtyrX/9mNf7Bhx7Jnvr+
D7LekTElD35bWcD7wYcedu9qLufpHR7LfvwvP80++KBeq2Tm41ffIPDnz3ve
/d7si195XM2Bzle/4c1q/LaXvEy9X53XYa4b6Jt/o+0GG3/xy18a22HdH6g5
64tet1/5oOx6yNp1sxqHd2ujbNcjxC7QuXzilFo7MbuQwf8UPvkc8ANZfEGG
tRNk6Lhom0Au8Dj9DtNHnI/YZhsjjp/C1q3bj2KxP1s+fkqtw2sUzn9j/dmf
2/geaqPJD4y3tvFmd/bgsQDSmPQoTCAHSuVwLK+lc524R9K5b+N6y8QiggfW
Xy0G0XiUsSlmX4Gt3F6MkcLO4l3Cho4imTH8kY1R7CK1uwhrbnNhbzK+SrxF
+qU8D3J8A7GL6RXzuijeMfuknr1J+7jOavWhWp0IxjZbdyJ5UlQby7xvNJYb
inMVXilGsfNLaawukXNf6lvyeOpbxbamvuV9lXhT3yqnM/Wtc4hzFd5nc996
Bn2vKMalJ9RTbb909Mh2ufGSuBGcS9TRaPxwvee2bbCeBnyR3lwtBzoK8noz
JPbXmB6OZwzfSA3rKMqtiE2l9yrv72X6M9vD+e/m7gPnjZrE8d5Nr5flXSiq
Zjeb7+rNmhT1ZI2dQCb+cFfY3qXucv7zX35DPe982cuzutYOTy0dZv4v3Tx8
q548Oifwdyp6UT4Gc5NHj2X1bZ3Zu9+n77Hgu3q9+iavn0AwDvP1bV2KwJ7r
bnqhGr/u5heqd03aVuABW//xn//Jyag3euvMvZiS1+p12DsprcOOgx59Xwb6
6ome7pz/yezvnnwyazTnTMCs0eQyjGGC7/Cvv3MO2dql5FmfPvzGZXV/ge39
q0fPqHGLWT0mZCM8r1zRfw4GnmoMyf7iB65UZN8tXblyyKw5pGS85MZp9b6/
ryd/70A6OrN7Xzmv7jK8Tn83x+W+3tyXcBmcbjw9ofiOHR1yfvi1Xc4Pi5f1
A8faxtuu61a203h/8f4rFWHsuO+YVKzAr5x31Nzt3Hhqwq23sbjhlLZ/dLRf
lFnXJsUA66L4gC/3vnJB5UFDR3eQQ5r0+BvyXAJdwGd57W9Mdg38dmtM/lLq
yl7q4t+L4mni/woTf5SDFle7t7sP6Dx/8Q2HyX6XchZ0AC/obGD7itsFT+B9
w52zzn/YZ015nQJqNLVrI7V6M/W5KbquV5BZxpbeyO+NyonZKK/l9v/kX37q
fn/p8a9m1+a1DtZ+7wc/FNfj8Wty3gceftTJtXPw97a+9o1vUb8PH1vK/vpb
31a/QfYDDz0qyrLUPzrhxkG2tsfzN0Vs17wvML8fCdbF7eoV9RTZhQlkAm5a
rsYN83F8V0+eCXRg/dciTO37Jz/9xyIGWIZf1xvxoTe742WvUHZWy4FqNoby
tc5PfvozSj5gC/OAGcxtbK/xvO0V8/Z80XP63Fcaj3PBsvy684NdzMcy2PSW
5A3tjdm+2Vp+7rHejKyN+33udm00Z0P+C7HnyuZodVviff98YPr05dv58qUM
P5d7/mL+9J37Ut86P3m0Ob9S3yof/9S3zoddqW+dz1invnWu8Skb92f294qN
x0SWVRrPrnOLXbmaU71WbNTXYt6N1c1zpTIYlMvT80Wh/ziHN6LvfNjW1tuf
tecEz1ZDbb0D6t3TAHtGqKdgzqxtDcb7ArntJeS2C+tiOuO2yetbeyQ7Bgr9
a90P6/ry54GsZX9v1gLx7erJaX92/QtuVXc5L375K7J/+/m/ZZ/7s89nDe2d
iuCb9Flzp7R64mT2q1/9Kp//MzV31twBnTV3TY2WOrrUmJ2D9/e8/371rr9T
U4JxmIfv102dmq5/wS1qHJ5N5pt2cyee1/L/4hvfUDoweXld7n7g7598Iqcn
lb6mzm4lozl/WjnwtLKbujQBP1Bzd4/K/dacWvKaB9i12B4GGObz8B3+jS+a
02uVbPstXvv40puOKJ7e/gPa73Z9T/Tgm1ayk6ujOY1lp9ZG9e81TePjAwaT
7vx9TPGfWh9z9jcZ+V/6wJWK7LvVadfAsxHdczjs230M6Jy+G9F3C3NOZpOx
hfC2e37Qc9OZSTX/Lriv+cL12TcfPUNijdc2wRiK6Zc+cFKRjkGPwxLowMAB
Je+vHjuT65hyGJ1cGVX3geC/irfJP5jTvo9qPYj8nQniy3HX6ztN3nQh/Ea1
f6sUT4yVjQHWA7EGXoj9G3O/Idaw/l2vXjQ5pe/pbT61uJrbk+fSMcWr96ih
TkM5Lu4dzfs1+wlZHCE/YR7nThAXFU/tv/dJ4woYWex0zuJ8HVNPm9+Qpz5f
6b5qYvYB6f1zzO01hUdeq1r39+m6pWpXrKYOiONhLce1tlptLkMDeQ0eEGRX
r+Hl+lS8r7UWyOd+f/+HP3S8H37ksexsXu/h/Re//Hf1DvTlr/559qKXv5Lx
9ytemNdyB9yck9ODdPQMEP42xz+QzSwuKx3w/jff/k5WOX01leNs/ZGSafs8
2PRHn/ms4oO1mncgWAd3KliexeD7ZvzBfPx6y9+j7QWeo4srol0Yy5/89Kfq
t8boVdm9971f2WT1Wx3cLowjHicY9fh1liAuNq5SLNottj/4IbJ1IIgLPh/E
bIHxdsH2NhRrToDT6978VoUVYDM0PpXJ54/YXhXmesK8T+c+tq83ce6DPUl9
ojgTv5GcVltTJdlBfapue3Fs5Ppt5bUX6sNzAwXvBXGsQu0BjgiDnpAXY9rK
3vm+1D1EyoNiHPHe4D0oyOUeFkfpN+mJfdRO7nvAH+Zie09/PC97Cnpz2ZrB
ZYt7sYRs539fnG8De1SU3yPFJVbLimTw/VvkaxHGAk8sP5B9srwBWUZpiu/7
4lyzYxf63Jf6VlGOiDmW+lYVTFPfEnM59a247NS34jnB7Et9y+t9JnyvOCdb
iNz4vhFrY6m+LNeOsM8PFMautYfK4LnY3ovrmMcpiF9VLIV+WKovYX4pp8vX
Aft9oa0nxj8g9Jc4tZP1Jc9SEi4b+l7RX9gXMB/NdT3e2TeY0xCiwZD6hxiP
xFtmPCLfjvfbJxoja2IyOC+TZ947JHn9kg42BnIsibYMZB0HcvkHdB3TvfqA
utNq7T6Q3Xf/B9VdzsChsexPPv95dZfVZO4ZgB772MfU/VVTR5e619HzXe4O
6Iabb1H3NnAvZOkGcw8FT/hOfd/9H1Dviq+rJ2vJxzT1qHGYb1HjverPjt3w
wtv0+hfemtvYo+6QwFb97FG8L33lq7Incnvs33eIScvbb2T2KD4g+24J5Fs9
8N5q7quAnnjqKUX6rHBA4aax61P4Odqv/76+N734GLFR29mr5J5Z13/H3pn1
MYOVvvsqoje96JjDxK8fdzIV5Tq+9MGTivy41TmG1uxX8uDd++/xCed6kA3m
XsHI5bz9g/3ZNx87o/87YF+4XtnyqXsrig/msEy+1uIE9OV8HRCJt8pR7dPS
sUNKLujgWMF9S7O564R8O23wOp1j0ELyDd2Z5LweozE15+6KOvertXgO8zaz
PPIx0O9gq7XzyU9dq+YeevNq9vIXHFX5oqgH0wH/zH2GXIK1Op8OoLzqRXsB
8Ol19KYXz7M1lNfL7HF7KBYX8M/eK1pMLB5FZPPzzLr+s2xnKhPIlgOh7fCe
+6v3z7zyHTBo7/G9vAMor10dQo3tCupiQR3ux3NS/WY12/Lj/tLv13YQGbF+
IOng9qH3fqx/SOgJRbbKev/lpz9z71/5869lN95ym3r/1ne+63g+9cefM+ND
6i5pZOqIkvmSV7xKzVkbrSz4865veMvb1e/ZpVUlF+ZBhuXvcLqHsoce/YiS
xf2GcWuPl8/x1L89r113u5MFNmu77s/teltgl9c/mI1MTjt+Pf7qaOxAhsKp
X+MFNLu0pnRrP0N8YY2zycQF9NwAtvdjjHishogv9jfYC3MqFp/9nJOp9PbT
9eCL9p/mmMd10Ni4FtgONnmMjhD77doTV11rbDqi5Fis5TMPPucIZxnxbCO9
p3Pfps59gb1cX1HdYjb0D9Hf/TG/WXyRbR0iZp46ysaP1LoizItiG1vHfI76
ycdjOEg5XTRfZu0g25cF/JEcKLQd+9wv8VXJm2r7qQz+/RHbirDur7aW51GZ
faOpi+ydongPRvQX1amN1KaN5kuZeODaIO2fuM4uQVdXP1/DZAa5G4kDwZOO
X5xzH5cX01sF99S3Ut+quhdjsY2tYz6nvlXF5g3s18JYcLuL6ksEr9S3NhkP
XBuk/RPX+dzqWzGMJDtK5F+Qc17v+fheUS5n2J7rl2QWrQ19kvfIRvO9Wp5X
83kje6XAziB3ymBJ49nhcliyt2QO9XuZXUGNK4tb2Zxk+VgV54i84HtFibwk
a0L/9g8O53RQPwcQDcboIP09cNCsORiuk2QNSHIEHSAP2+XG0TOnbvO7e0CS
eTC0dxDZWehn6Gv3ILPDycnnBoYUaYwHsk74Ltyr/z2sJ556MvvnH/84a+vu
zd78trere52Z+UX33f+f/vmfs7/4xl/lv7uz++6/380fP3VG/b7xllv0t/Gu
nlxGj5Jz0y36fujEmavz9wPZ+z6g78rUd2qgbkP5bxiHefjd3tOb04Hs5lv0
PRY82/f35WN92t6ePjXvnvs1te3v1ZTr9vJ6nb4nnnxK3WPptWZdruvmW42e
/Nlm5Hb06G/nTz71lKJOuE/N8VLYHfD4Weo4oP9uuje/ZN7YZW2zz97sqsqk
4rnq+KSxqVfdb7z5xceUza3GdqDDU8OK95Zrp9XattzOq0/oewF4Ov/363sP
e/9jdbWbu5Crjpu7hPwJ72829xzYf4sH2P5PX7iB4ON82m/5Pa+X05s9/Ja1
7B/ztSsLo9oPG2O0pk3p6qU2GB+8H6ecHx3m/gLy0/N5O9pQzK3/Cj8zZn2/
qjLhcLV5p/yCO5P898r8KMFI8/Qa/HTMgAe/w9Ph1KNxdDYYXJ/89LXZX3/k
qmxweMDlhMqrA315PtH8cfmkxvtVPr3FYKwxOWXk6yfYPn14xO2JjvzZmdNb
XrJgsPU5bJ+Ao48b2jvmN+Shi7/B2Puk754OTx00/o+7vabv0A6o+zmYU/7m
79NTIyaHjzgbO6y9vX2G+t078ILP4HunIn3mA+ruHzL1C9W7AVZ7Bw76MTKv
n90DB8P+MUDrLpUf6SdYdlCj+bjQH3iNdn1I6E+xHiXRgNCvzNhnPvcn2be/
893sM5/9k+w3v/lNdvNtdyj9L3vVa7Jvf/e7ev67/0X3qJx+8KN/yB7/2tez
hz/y0eynP/uZ+g08j//515QM6Gmj0zNqDniA/+Zb71BrQTaMa/6vK34YP3n1
WcUH/I9/7WuKf3513ej6mrFpWNkHa4FuyseAH35bPcAzv1pxNsI66Ht2bnT6
KLXLyLXvDz+mn+A7seuxjyI7fC696W13Z+95/wfcb5Bt46V+57ww/+3v/Bdl
J9xz2XjF7AXfMUajh2fUerBB+Q6YDXoZciy+jvho3lucQSbYDOPKxjzGsEbF
2vj4a4T3D370I5UnBCO2l4APMAYf3qhkozMPP9+4vRfuk+4gV4v2W5l9kM59
wbkP8XYLdncTfuaboW4xthwH9hv50R3kBLJvANdctp7FLcAR2439EPl4XziI
fEA2BjkRq/NVYkN6ksCDxrtj+Q3YENypLd3cLrzXjG8B9o6/IMcH2O/YPnHY
2fggn3DceHyYbJ+DrH9zG4r6rOQTl8n7Pt4DUrzL7sPArgLMpf3N7Ud7qZv4
KqzPeXu4f7EaQmoV8zladw76WLLzTLetO3h/ifmC9Ul1b5jOs/yK9ZSLcu5L
fUvwM/Utsj71rdS3ons/9S3Lm/rWBexbz7DvFVH8WU0P/7lSiiHay7G+LPnF
sKZ7Qa7L3YPU3uCsYCg2zn0J/AtsxvlXUC9ILzlI1pP6V2QXrpG410l1IZZf
Ul7xfSzFZNDW24O0ttgc4bnI9pLf+zyG8h6V8wrpKey3Uv4MZwcOHtI0fMj/
Lk0jkd9UXq96Hw3XM529UT3C2g3bPSK8jzA5I0jeKHqOFOrpHRpR1JPj2WOx
hW/D8O8g9A2oe5yPfeIT6jvzyPiken//Bz6YtXf3ZkcXlty9ENxZ2Pult7z9
bvW9/le//lX2sY/na3sP+G/VOYE8mOtU3+0PZO//4IfUOnUn1NvnCL5hK335
vBqDb9g5zwtuu0ONv/Xue7KuAwOa+gyZ3519ht+SkanlPeB1HdB3Uj//+c/1
WF+/0/PWu99h9LxD2Yr1/PwXP8/+6q//OsdqUOHlczn/3W8wVDSgvsO/9aUL
+bp+Z6/WMaD0XHNC34Fcc2LKYNKXPfLWNXXX0YHwAHrlC/Xf8TZz5JCWkcu8
5sopNfbKW+aYz/3qzgTIY6DHrZy1xXGlE57wftu1RxyPJbDj0+8+Ye5UtGzg
BRv1PZ4nGIM7D4vvVz50SpH1NSCEt71rsbK6zF0OPEHGk5++DsVgkMTc2WDl
GRy/nK/7stLf58Y83pMeE2ODujN56bwbB1/ue+1yYDeMeT/7VexUDF4452RZ
uYC/wq8X6ch97UT50K3uZAZM7hiyOQX51W/ubPLnW1+24HIKfsPzLYZAF8y9
Ks8Fj1W/4oHxo3neKOz6zVy/1r++pO/2brtuxu8pg6mL/wFzZ5s/fVz7XKxB
t8aqj+ANOaFysLdfyQTZEMtH3rbu7eCExpWvL1tUvqv9BWfdwYOuZtkaJtbA
YV47eT0Waiuul/j3UKS+D1s9JWr9MNY7KvBwewQ5vJ5LY1IPCfi0rjPXXZ/T
2ezRj34se+EdL3LzS+vH1RyWo95zGS+8485s4uicHjt7fcAHBLImZuYcTvB7
MZe5VMFytQ0wB/yg0/pE7BnWui2f9QPGHI+Jj1734sDmwK5h3dtB58TMMcW3
tHbc901u1zDNL2sPvI/nT2e7wYTieJbE64c/+gf3ju2dMHIoRtpmMRbEnxET
yxvk/EW2YVujsT571uNtYkVidJCde8i+qZLHRXlObB6NjJfJ+Wp6n7vnvrhN
oxGcI1jxWjnM7YvpsnxV6qYoJ5I7on7zPoRjhbAZiumoosuOR3MV6SjqQRKO
RTjYnBxmVIhdDK+CvUD4qsSH01CJ2Eq48f0nUsgb4FE1fyJzVWuW5S/hU5Ed
PPccToaEHh3EMSo/FtMRKlvSUUjVzk0RHKUzU+QcUhgri7s4f4mc+1LfimOb
+paAS5H+1LdS36qGTyxOMf7Ut1LfeuZ/r4jHsaC+YpxK9Rfta2/ZnKvW4yWd
Q6G+Qn5cRy3/kP0t2DUs5JehoE4V9SoRrxL2ViOX6wVnpY3IDvZOiMnT8r1i
M/YinoGRMfX33Skyv/vtb/M+eCjkCda593FK+Xi/mh9H68bZ2nE/NoLGsMwR
Qae1LecdJHaMx+3FMg5hm/m7t38Q2+Bs8fb2D4OPo1lfjmefOW/2Do6ofyfi
1jtfpO5xXvmau7LuPv1d+8c//nH2jW9+U/0ZD7hHgvn5JfPtukffE33+C1/M
efuyP/zEJ9T7Lbffke1X3+oH1O9f//pX2R9+8pPZ/n499oEPfVjx7Ydv+YoG
HMH4Bz70gPq9H6h/KJdxpxqHu6TFtfWspx/+HY6h7O53vjP/PZSNT89kT33v
e9mZa8+6OwCgDzyg9dDxIcWr9XzY8Y4dPpL9+Cc/oXpyHYDL3e+8V43ffe+7
sgODw1mfOv8MexoaVmei3vzZO6j/nMrb/mDRrPd6rQ1nT04rHniqudzP604e
dt/vAaeefLyyMpk99enrsq88cNrZuX/Ar4e52aOjWm6O46tvPeb+Tre3KTkg
eyg7NDac/c1Hrlb8GB875mTkY7AO1t9x9qjSpWnIyXU2D4B9E+pu57G3VpR+
sBn8hjGw3eoH2SAX7FDy1LjXhX2DeAJmX3nglPPD4nhiZSo7nsuF34++bT17
9W3HvDyFq8VwQWFo881iC0+dU34Nxgp0v++uFe9nn7YTfoNP779r1dlOYjAz
qv3MycYAnjbuEL+/+ejV2ej4iMupsYnR7O0vX9Znacifg/rZN2TySd3X6HwC
TD1O+fq+QeLDZ95zQtl3COQb/N72B0tqzR+/58pc7yE1BvrvuP6otiHnA5vA
/rnZMWUTkNWF+UAHxAPIYmJzBfS6nMgJ8sZhanwFOa++Tf/5L4hZz6C+mwJ7
Hs+xsTG1pPfPUtab8/QO2X2W16u89/Tl/aA/7+1Qw4K66WrjOKvD46RuDqJ1
g5IMW+NHaG0ldf8Ql5vXddKDxqluXuuDvsJ705iTF10T9AZGI+OZ3C/078c+
9vHs1he9ONIbpV7KZbGeF/Bye8dluSO6j7/tnndmV5+9icka91iMSJiaddff
6HjVb7FH8p4f4jiIxgcDGUIOxPKC4fWjf/g/TTzH1b+n8arXvi73WbBBzOVI
v4/hH6yTziwU32Li8qW8ouODNs4jbH2RPnxWcTGWciud+zZ67qO/USyCvcbz
e9yt9TrkveP2acSXQWcrkuHm+Bohp0cimI2E8sIaNJ6JPkdxZ2vBbjF3q+Rz
Qa0J9XGMpVrD1vCc41gJ+TZo6m3IV3afWzkWFxx7nHvC2ljfKsBmUMx9/3uw
tDwpR7j8EFPcE8KaMh7xVRgjfDy3CmJs/Yz2fFaHYr1KyKVBVEf6+ZpY/RxB
9VeUK/mpqb9qv5FysFqO8J4h2XG+z31CHhAbUt8SsUp9i/qW+paMVepbLBYh
T+pbqW9tvG+FcXmmfK+Q+y7Od45xLGZSb2a60frY9wqx9pT4XsF5Rft4bkRq
8dP1vcLvbc+bvldIY0LdieWWGT84Nmlogj7H7e+JcH58UliH3/26IfLuaZi9
DxE9wu9xPzYczEs0KZDgC+HFsiV/wM7QxqHRcUWDqo6N5tjq78Jwp/WhBx9U
9zUT00ez3gF9L/HxT35SjcGfHfnCl76k7nj29/Xr+4Cc4E4IxoB3/PCMuyOC
OyF7L/TU97+XTRw5mh0YPKi+y3/ww/p+qXdgKH/XdJu5Q8ME62DN7Xe+WL1/
8ctfVs/vff/72S9+8Qv1+55735VNzcyqMXj/yb/8JF/3fXV3Bu+f+KNPZQeG
Dpr7ghH1G+TCekvwDryw5uqzN1A9v9R6vvSVryicBoBGGNlv6/A8eEh9h79b
3VEMO53gh6XrTx9RPDfkTz02rJ6vMd/6n/rMder7PvyG5/jkqJLTN6Tv0G44
c8TN2Sesgd+Pvb2SXbk6pe4XsBx4v3JtCmExnL9Pu3VfRTLuf92a0tNn7lXg
N4zDvQfIgSeQHRufPGR8Hc4mJseULDtn9WtMloz+g2Tc0g1nZpzex83dj7pr
ye366ofPOGxg/v2vWyVYWdvh99jEIZdrbzf3OZhgTGOu/87Gu9W7jg1g/Tiy
3/pp49Cn7B9WsSuKgcZD854kOJ9xMgHLm646inLpkCabS8P6rhlyCfhxDrm7
rvz3/Kz+s3WvvX3B3IX5NR95+3GlB/TCE8YW5iYVhifXDhfEf9jTQR0PIJfP
JqfBV44VxOYAXq9kjGT3v37NxQzHU8d9WD15rIBP4zKqa1beB1T9GuU1mtXA
8VidDevxsFhfi8b83FBUvlDPx6V1Um8q7lPxfiH1JskubQvcz193481VbKiO
QZHtw6Jc3JdjuPHYxLAJbfyTP/u86X1y3yyOc3FP9fjhHqv9HMLrxqk8sMn+
nplfyL77f/xtjv+7BN3cZynPZJt47OU1RdghvnFuA45nLAc2g7N0ZimTd5Pp
3BfJUencF7W5mqwAx6K11WpItZgX6SrCphqWks4quRjklix/KNBTbW/Q92FR
R3Heyz0nhlWZfVeyJkRz2D/l/lMdh1iuF9uyMZ4hIrt4X3Beup+lZwS/oI5W
87sKfuOy7UOiPaFfdA3ikeSOS/skFk95n9G9wvNkIvgds9XzUh0X69zHKfWt
GM6Tgmw5V1Lfitki7ZWIvNS3Ij7EfAprU/U1ks2xmJXDs4gn9S3uI+JJfSsS
DxnLZ/L3irhvsZwpqmuy7Rfje4XP6aJaEltfJo8nNvy9Iu5rmNvPze8VRfnO
c5fyH5o4nB2aRMTfFU2FPJjwmOLNaWLKvE+7+RHMw38jXSOCHvhvsTuZE9zO
KWr7xJTsC7fb2Yj5w98jTD7YN4Jty+UMT5j4wrdgd681ln3vB/repv+g+fYM
d0gv0ndIcJcE9zxf/NKX0bf0g9mHPqzvvlYqx9X37v6hkeza62/MHnjoweyB
Bx/Krr3hRnPPc0g9Bw4eysf1GvjzFf1AB0eyqaNz2R0vfom7M4LfIGcgn5ue
ncvufMlL8uexbO3Eldk73/3u7MMPPZydvelmdWc8eGhU0dkbb8o+/PDDag54
1o+fVHd16r7O8MDvszfemJ294aZscHg0u+v1b1T88JyeO6bvqnIeWAsyHjR6
huAe1WDl9pzF71A+Zr+xj+j/xtI9r1jR/o7Yu68R5/9dd+g/87J4bMrcW4xo
yucWF6ayu+5cVOtvvmo2t/eQIrBff8sfzQ4fnlD3H4cPj2dLOf87cl7gP1WZ
1roMAQ/MveSm+WwqX6NlaQwsFvC8+erZ7J5XrmSvy/UuLU75eaQTbAHbQDfw
WbmDuU+Ao5KNZJ4+fkTxaL5jap3iMbadqhzJPnr3cYXDTblsILBxwNh3Op8H
HsD05qvnsnfk9r0+16vlaB3gu7VF+39EY6xwH1HYAsb3vHzFxGQ5uzHHZHF+
ysXlJvsOPgyPOnxAv7Uffjs/zVPHYFbFYNHEQPNOaxnDh0juDRic3/GK1dyX
1ezma+ZUzuAa7uo4jI+OqZwDP8E3sB/yQ/un94yj4UMk58A+wAb0AeYqFrnO
e3LdywuHzb97MO5iDLaAXa+7c0mt8/lh/z0PHU/n28ioi6WIFVoPBH4oyn1a
Xjys4gj2vPTm+ezw9IS2J+eD32Az+PLRu08ou86cOKr22TDQuD6Xj4zndTev
YSOmfo5M4to7RWu2VHsRjfDay+st7hm4N0xK8gVZUs/gMie9Tt9PfL0fCeRN
0dpPfOX6rL143RQbP+x0WEypffn7FOZFOE5MMf4pilng65SAEfN5Atmg/J+i
a11/xvFEc1JsuFw0T+PJ+zPD3caE9Fw0hnQSO3C/ls4U+DwgnlUY1tK7sgGf
E6Y8H4/ZpI+5OzeI56QQ4yB/Gd8oPnME5zOf037vhWe2EexfOvex9Rs/9+EY
h3sH5QjZz97vkei+ELDle4DkCMVuhPsf5DXdc3LtFGoh18/3HZLjsMJ2sjiN
4D1ja7WrRcK+FGPF8HGYR3C0+wT7w/ay3ycoD5F+XOOl+jxCsJlieiwPq0kk
NyJ5zGIn9oIJbyP1EfNJeclziuPG82CK9vlgjzH8yX6d8nomqJ6RQv7DqMZN
RfU5Huyv+Azz1+onOoR6SGvxtMdU3M+4xod1IOjvwnkjrH0sNoF+LlOQw89D
l8S5L/WtqN2pb/l85blDbBfijfUL+x7nWupbqW8FcSLYpr4V5i+3j8viuD7b
+paUNzFc0vcKeZ8xzNP3ikjuR7B3NuB6jPYtjxmuN5OXxvcKXP+D9aQO0ZwZ
P3xE0/QR/ztG04iq8W6GYnKfLn0btUOgsalpRxC7UZNX8N/Bmp1fVHdIX3n8
8Wzo0Ki6j9Hfqg+5P5sEz7te/wb1HV1/zz+U3fmSl6pxuPOBNeq+x9KopXFC
Dz78sFpzEPHqb92jahzujpwctG4YaGxcf8tW37MNjck0bCg2HtK4p3GsYzI7
BOT++YSTnofv7CNj+r/F9M5XrjK/DRa5Tx+754Ti4bgMEx/HiW1V7R9n9rP1
MSy0j5OFOBZjtkmccz8BI8Ah8Hnc+kNjELMTyyQYGlxfcI3+b4PBM8Ca5dV5
o3EBE+SHypkq+TRiZFic6F7xND3tcy6WQ2S/jKOYc5J4S+XAJNI1yWRMRkiW
D77c+6o1su+gVo2anjN2WNewi1ZzzwvNnFuNvxi97Zz73AZ83hT/JUrTF8KX
EvIvZr5cKD3p3JfoAuM6pp54/12YujV2znlwidXX6L49x155oX242Dhe0Jhf
wLzn2F7yWG/AztS3El1gXFPfOo/Yp771NFPqW88Y/NP3imc2pe8V54XGIuNT
R45qmjnqf+P3GU+TR9iYeZ+cEWRIv2cievgY0xvoi9lchqrZiOXH1mJMpmdy
/hn1nMjxnFC4wjfhw9kb3/IWdYf07ve+131THjHf/L/1rW+5v+tv9ti8uo8Z
RvcB6v7rq49nh8Yn9HdnQ6MTOY0jUt+jJ7OHH3lUrfH8+ns2PGH8oUceyQ6N
6TmyfnJKEdg7NpnbDd+0EY3aJ8xP+XdPfs0om9e/c9kThgzPeP4EjManDAFu
0wY72A92fPKwsWvKfYeH+4iRiUnjp6ZrTuo/b/KH74D/bpG+s1B+TXhydmCf
mK2ijxNTlOz4VIjR2BSjCJYOT/Z7VFgT4Mr1ItvAz3e9el1h4fy2GFgZU17O
OJIpyXdyGZZAt16n/75GeLo8nAx5Fe5YD8dmCvnC/Xd2Tbu1o4xX5RL4AnfJ
eU5NmLrm9yLKJxtfwOlV+u/jw/c97v4nf95r5teXZ9A+85gGeSDYTn5zPjbm
8m9SwEjIGe23v0O38RwVeMFe8AVyY8ysA5ow+07VMKhfOUVrs1CHba2ctD0g
VlvN+2RRvY71n1g95rpmEG+JHoNtwf1rEskhvxXvrGiH2I+wPVwfey/yXXyX
erCA0ST/LfTpWK+LxorHcYb1fz4X67Mzgu6I3Kr9uCgmxI5ZcX2Ak4QBzxfp
LBCzN4b3TGjHJJMp+cRzKXY2CvgjckVb07mvEJModpEaGcstaS6KV0mfgloc
88nxhXVtkskKsZkl+qK1piBXMF9Qb4SaPlmI/6zstxBfbmvcx2LMg30RwT1W
UyZjvku4lslTQa+TIdSaaO8qGpPGq+XrjJCTzA6+1vXbGe9DrJdIdbfafiK5
wHtSlRjGeMW+znN1JtRH8kDSHfGPn1Gi+6hsHsfsjuD3dJ37Ut+qYle1+BVg
EsWu2h6J5GLqW/H8SH0rorcKpb4Vty/1rWLfLmbfKszzCL7pe4U8lr5XwPO5
9b2iEDO8Z4T9AX+/3JGjc/qZ0/RR8zTj9redx++K96hfg39Ps3XTR6mMI4HM
2fw5G+o56gnLwTZwHVEbkK/Yfu7TNOLFmByZpVjpudnscE7TOa6HbX6YO60/
/txn1R3SqauuNt+Up4J7p3/56U/V+9jEpPvuD3cBP83Hf/nvv9Tfp3OagHsf
9Z3efoPOaUoTjD/y2GNK3rjhx/cp3/7Od7Lf/ObX2Zve+tbsBbfc6uQATcLT
3CHBfdzUkRn6nKbvmKbM/Z29x5vK5ViyMifM70mQP30ErT+i1gNeh+3T4Hf4
CL0bBBvhO/zH33kyu+36BUW3n13IXnHLUj52pZr75y/emB1fnSW+TZh7jUl0
T8Z9wPZPGtsnnQ/Tzn4rx85PTjMMpvXvKYQZn5+cpnqn2NgUGrdEsLfvxq5J
dw/hbbz9hqXsPa+t6LHDRwK+yXwt1sfjOkVs9vGjeqazE2tz2btfU8lOrM/R
XMrp6w9dnb35ZWvErslpRsQf7LvJIckmiRDuh1F9O0xqLuIHLPI98+7X6Pu+
2/I8Arr17Lx6vlzl1Ek19+E3n9D7ifhn7Fe5wPbLdIilaKt5PviWKxXhvLPk
85DlKiKXJ0dYXvOY5ba+O8+JO/LcsHYdRngdnjE17OhsUC99TZyldVeorcE6
oV4fYbXc1e2jrPZWefo6PxvIt3VZ7AORei/2HFLnhX5xVHgyH47wOdajAv85
xXxHvTLo3XYdspnbj31QGLIex7Hg/bUw1pEeXW2t1PNJHKTzxVFZbxA31vPD
9bN03ObVUTnvjwhYEpwlTARcjnCb+H7huYfPWvzJxvgZh2CC1zL807mvxLlP
work4iyVK+S0hH1sT/D9HfjDY8RxitWSyDjnj8WVYBTBksYO9Zijs6JOnO/S
vsb4hvKL18dqFbVhlvBJNZ/XFlLr2Tyvf9xmHNMjRwXs3fsswSmo0Wyv0P1N
e7u0T2K5yHOQ80i5GMWd2Ud8Z3ZFc5rpOcLHBL24F+I6DbgU7UFe33ANDvYC
t4fZFdQcKQ6RGk7qobOhyplMyANxn0r7y41fuHNf6lshnqlvMTwkHAW8Ut8S
YowxEHKEz6e+Fc/J1LcEOwVMnwt9K8g14enxTN8rSO3g8WZ5nr5XRPbUs+h7
hdwnqf9if0f2Hz02L9LssQX0vqD+zFCcNz5n1xetm43whuOynJjM6naVk1Xo
x9wxRTNACt9j+pyT089+9rPs3//9l/q7+hF/xwN3CS+89XZ17/ToYx9R38fV
/QL6jv3Zz31OzV917XXum7OlafTbvj/20Y8qfneXckR/34bnmWuuzb7z3e+q
+R/+6EeBDJ0rs+6paI72D+XXLB/DPXLW0TT7jemI6b9AM4qOmackc07ZCQT3
ChJ9/eGr1b3N4uJRd5dh/ZueEXRbW41PSi+yF9vP1+qzw2zgb2A7w0uc5/YU
EZYRtdHUMOy/45vz80zuEcH/MHamTtp3lns8HyEu773rOI39bCQOVSnML2I7
y1OVS3M0p2bm5rw/YOPRo8q+opx61W0r7j7N+zaLcOU2zRXgKvk6l/3nh69R
NB31O9wvfB/OYAyO8vyYozFge9BhZQjqmKv78+Vr/Gzs9/zGau0sqrFOjpMR
r/3nVucXxF5BfVpgNlbva5JNs8IaP1a9t22oLwWYeh2Sr7wXSzr8mUDCQ8Bx
vig2oc0SPqEtMZwWhJjxc8sC8U/ydSO5VJQzxF4BB+5rzPey+V68PzeSW+nc
t5H9hWMn7xkus3wsNpdvVE/xmoUw74KaXWRv6HMZ/ItzXdcZ3g+4TzEdcdnl
8jqGl+5lvMbEcY/N+3yQ+kCxPdX2Tbh2Y31F9GU+bkupfbKhfJJ6VoQ3crYo
PH/Mb7Y+hDlYzh9pDwp7LoiZ5JOQL/Oynmr1Xs7LS+PcVw2LuJzUt1Lfqu57
LD9S30p9i1DqW6lvlY43kpO+V5TwN32vSN8ryq0pznP/+9jC4gZoKZszv+eq
8Erzc8Jv/Ky2httSjWczNko8RXxz8wuOZuf9ftHfhs23Zrjr4HcP6Pv/EXLn
gO5HzB0J/h5/lNAxQ3OUb5bqleRZGfYbtt0nnHjtiPEUzUfJYDaLMcRy7R2h
8UX+3h/eJ80gbMr6gGtoWb9i89XGJXvKrAnnva0zLhf8vap7L8CgDC6kxnDZ
+B5XGA/7R7H+zeYS3odzKK8CP9x98xy9LzL7UBHKNbpf4phKvabsHorLWCgd
s2j+sHyI7T9LZfqAqoeLYQ0vUzvL1PiycqV1RfJjcsv2tHPpIRuRx/vkZuyr
1rdi9m2sB5fjKbJ/s/o25/fSpjApOx6L22Z8i8VEOi+Vis/iueCbzn1leaXa
VBSzqufLDdi70fw6V72b3aex+n2+47UxHdXzarN5VxTrMmvC+bitUg06l5ou
15mlgKdIfhm/z6Xml8mD8PdSdP3mMNl4/sVlyH1qM3GMreFUFtun89wnykp9
a2N4bTCeqW+Vp9S3NrYmnE99a6N5EP5OfetS61tl5ZbFWaq1G9G3UVw3wxPz
IZZjG5VT1r5zqRHV5s5XLm/e7+fe94oy9ko8C0vLiJb0c3GJjRfQIl+/FBnn
a7GuJcbP1xdRzNYiH5b8M/B1KVy7KMnT7/P5+vm8RuqnJo0t+q4O34zn0Pfj
uXlyFzV7DBP6Nu++z/PngpJvSevAdMzQPJJ5zMibVzyzZo2WQXPC+7KoacG8
LywRP63fx/DYAsYA0wJbK8via/39lvdjluB5jOJ1TONE/JpfCPUsFPhg/Cb2
z1ts+PrQ99CnRSJX61vMeN4E7wt8HucYj9sCsZOMkd8LKBY81lIcFiIyaQ4e
YzlZpL84/pJNFLsQ99gavifRvpyjuXOU3X3Omqffg3yvLPi9IuVCzFZsD8KV
yiiOi5xXWG4x/n6PUxvlehipm1LNLqzdQl2NzM1H+wWXsRSRvcSeIFMeL9c3
jK/Ir3mJd5HbIMgq1de8nfNV+1BZ7Ev4GMgocw4owrQM3iHNB3ZwPHncN3MG
kHg2yi+tl+xE/kTjL+ueL+Tje7bAtsLzWDr3bfTcV9U/yZ9Frqds/hb4tIgo
ukeszyafqmLMYhPwm7NvqbhVy6my8zy/SsQqqMfh+vlAVyx+Un4X4yP1p3kx
3kV2V8Or2r6TemRxr8T5EpfJ9nHUxmo5XGRTJCZF8a1GQZ5sBHvGX6rXVsmX
UnEryivJ9rJycKxL1k2pZlfFoyj2VWpo6lsU/9S3quCU+paoL/UtKiv1rSrx
qZIvqW+59/S9wtuZvldIeG60b5axfzP80vpYfV2+CN8rYnGVYkPlLq2s5rSS
LefP5fy5pJ6rZtz+XkG0Stbgdz+2gtbnY8ucl5Jbs8zmlq1NK4Fty2jdMvEB
27NK7FkmclaQbZa4H9QXPLeMMFlcXs6WcjyXclmLS/C+gmJhvhGbb8YLhvD3
ZpjztGTWeP5FICGGi4rM3MKSuJ7eAWgdVtYiyh/lw/KK9gE9YVzpYeNLZs7z
mfElsyaYxzLCdYFskOMwXHTf6Of5fYy9FzHf5gEH55/zadnpxbqWlmTbqP/U
3nB+OZTL9GId0rolhJfjX8Jzy8QOSbaNh84HXS+W+PzSMrKPxXTJ20RjFuKB
c0fZubiM8nPJvYd2UhyoTSsU46UwD+P5SdcuLfP4GbutnWivqbwJ7uVsLhk+
VC+5LTY+sg8YzwI+NObjLcXC77EljgGJM81d9XtxmfBhHYovqP8rpA7jGmxr
NebntZjWTT6G1i2HY0tCrecypb7k6ziVWdSfaM8xcpaF3gb+Wp+Xwx7nZC2v
BD1HxYrZGfY/jh/uMXR+met1vqwwOYLvy1yvhDWXv+JkL6/EsA/XU35qP48t
99Xj7H2T+/1KxuO+zPBbZj74XFlFfrGYLPuzgXSO4DkjnQ+ofglXCbcVti/w
WSjMGXw+4jGXzmLU5nTuO5dz3xL2kfvAMCc2LjNbiA8Iw2WOK5Zl80T2GdvN
YyTliZSHdL/w/cr8XKZ2SjiGOSrIXg5jGeYuqvHWxmWaszSvqR/Ly3H5vP7x
Wkv3KZPL9Ib5SNeJfYrUoxVihyQb18+w3vgaR2sSxTusH2Fd53G1OBLMl1cj
dvLcxTaxWrYc5mE8P+na5RUeP1xP8H6L9zG/76Qaz+MQ80GuK1Lv5vLkWPg9
JtU6ubevuDW0frD9E+Q2PxtdyHMflyXtfRyH1LdS35LqQupbqW+FuYJxTH0r
9a3z17fCWh/ERogZ/+fWWO0OfWO5mb5XMPkrWfpeweMS7kvec8I6HMZNqmd0
X9DaFa4LawWOm1QzJax4LFbW1rPV1bVsdc3SunquGFqVyPCv2Ge+xvPT9SuG
n8iz76uG2G/Oj8esPmzPCrdrDdu3TvlWqV8rzH7sx8oq9WHV2MjtW15dzcdX
1RPT0vIKiZt92nuKJXt/ZO4DaH57/hUj3+rQv9ecHvjNzwRLy3y/YJmrBm9v
68qKodVVM6/fsW84TqtBTBAhe6nNqzSmayyPMJ+zRe9Pf09jv73756LFz/Dh
GFCcVn2OYd0kT9a9D7aGIXtIfgV7Y13MMc+7TvIH74NVhCvPRWwzzzFHK2jO
xXKN4L8sxGVZGLdrpXXLIHNF5sW5tLxC9SieFfSe/6Z1h+5Ri4f2fT2SLxG8
DP+ytRfZR/pZcN+0TO543D835mT3xzLxG43hfWDtXwlxJnivFI9hP3n9pPUL
479mKLQ1ZgfHkssmdX9ViFckLno/rAcycR3FmAW1BPWXwJ7VMO60xq8Tm33t
QnuQ7cPAt9VQvhvnPWp1ndkc4riyKuDAZPLfYfxtr1qX1yG8ef3g4wHPKoqV
w2ydxnWV1jE/HvZQji2PKa+jUo7jXrPK5AW5g+p47OyywmQFe2mV4YdzCWOA
cAns5ft1jfLR85KvWdzOcH6d2r8mYcH4gvxA8ki+p3Mf7tHYh9i5L9hDKGf4
vMOL93+hnkr4+zGKeeBTRJ6PEYsz38cB5jRO0flCm0MsaJ8Ic8z/lusqsYnV
Y1onae4H+5id+5x/Qk+QfCBrV8M5nFPncu6TaiuuV1ger4GSTWLMVikONH7r
8digXAp63No6jR2ruUEds9izXkbqTgwvYs96YF9Qq3jtxz6vUuK1RqoFK6vU
P1k3XSuNYfsCm6L54M9aUl0U7WBYRmuQELOiuGz23Jf6lrdHkuPtTH0r9a3U
tyS8w/ilvkXyM/WtaFzS9wrZH2onlcl/h/FP3ytwrEjuCDUvWl+EfMZ1lMp+
Zn2vkOwP8o3Fc5XhvLZeydbX13Oq5L/XHeGxdTdu3ytuTD0reA7LqBB5a8Ec
1llB+ipEn7fHk5dZcU+/xvyuyLZwPwMfKxWkh+NTIbzrFT1n66DG1J8x1lg9
8TVx1ZG9X1HvZs0akrXmZK+7cXzeXXO6qD4sZ3UdaB3ZtK7HrJ5KiAuJX2Wd
+L/OsSaxqjgcLUZOdiUeizWD4xrxy9YshNMaxZDPUey9TTZWYVx57tCx9QCX
dZarNmcqAf9a4GuYp36dxFshNkaxQ36vonxRtla8r3RPVgJddG8ynRWai6s8
N9fX/RzKz/VK6F+og+97XGvCmPiY+rn1QLb5bXId750VtA9t/qyaPMN5Reu6
xZTlPKt/LjcqiK9Csab7M6y1uq5yfFA+VvheDOvrOtnvtgasIVsqCEOsr+Jw
X0d8ci57viB+FpcKxoLnntdP1le8n25/IBnrtiZVUC1C9od9wPvE96LdH+H+
pPm3LoyF9Q/3o4qzP6yZdG9L/S3sbbSO8ljhWMj9k+vmtUGqh2Gdt+tI367E
cQnPD2H/tPWT5xseWwvmeD5J+UrrQlj/w3z2cfM1JvQrxGp9HcfCxomvLcIn
zGMa23XUpyvuN60dNP9wPeH5l859537u43UkFlNpn/M9znsHjaOMTbjnWS+t
+Lru6ySSc4mc+6IxIZhXmB0RPp6zz+Jzn9y3pNrO48RrXvG5j/Y0lptB37W5
E/p3Ic99uC/xOEv1KnaWiu7BTZz7KG+F6PZ1leOD8rHkuY/4WMF1ANWMS+zc
l/qWbIu031PfCnFJfSuMYepbuC6lvuX3TuhH6lu+zqTvFWHfjfUDqScEuZi+
Vwh7V8pXWhfC+h/ms4+brzGhXyFW6+s4FjZOfG0RPmEe09iuoz5dcb/l856U
q2F+r9l9ROStZ5XjlZyOEzpuxyrHw2cF8fLf5v24elZCHs5bAV3hGKwFGcdz
fAKdirdANtcfo0rBfMXMF/EY+ccZNn6v+Xyq2N+Y0F6tVGj+eR70tHLJesZf
YWtRXlcq6wLfejS2x2P4ER54npDnUSwxXmLcKnQd9R/X7TW/f9bomYjjAZgX
xj9mr5RvhK9CY078EfZNBeUIwQ3/rkTnA9y4jWTPcXsrgo1hbI4H60rsFxen
dTVnY0Z/C3ZJdQT2eyQ2wXhFmAt8C+WFewr1hDVcl4V8Qnko57YQnzK5J+Vg
Qd5VKpUCnhL7rGDPHUcxPl5mX9i8k2JG6nO1fRhiKOXCcVeTI7kaqynOBrr2
eFDvIjKiOVsFC2GPYhuOH0c4sd9RG1iOE3yK4l1B80H9rpInUryw3ZKvvHdK
NZPHtqiPcJzL2ivmR2QPBTkckYVjXalyViJYVRAhzKrEvVz9RH5FexOPezr3
RffVJs59gW3R3uf5jhf15+NMLl5frRZVcJ2RfGF6SU24eOc+yleh9sZyT8zB
ElStvwV86dzHfQ798TyXyrmPryd9NpaPrCbF8BPXlck9KQcL8u65cu6rhknq
W0UxTX2rcI8dT30r9S0tI/UtYV2Z3JNysCDvnit9K32vKPAL5TjBpyjeFTQf
1O8qeSLFK32vuOS/V1St6eK+9mea06dOZadyOo2Iv7ux0+G4ptOe7/RpkUeS
ebpQZsgn2nU6PhfoKNAV8+8Utv10hB/7fNqPnzx1Mjt10tApQ+j95MmC+ZOn
3HsMq1NIlyTjJJbFdJHYlYgBxec08RPPFecJx1LOFccLPhh/TnK8qlAs90ie
IB+KcqQo7yQfTkn+47E8X6J7rNp+qZbnPEdtvAIbUO5G8rhaLIv3W3FsxXgX
5U0BptZP0V70fpLtvZMn+Z6LkWxLEKMNYBWLNcg+VRW/EtiquJ6m8qUcj+FK
4n8aydxEPpzydhDfCvfJ6SC+El7S+mh8imJm1/C1sXwScQj9CuoNix3NAxnf
Ur2taIz3pxiv4NspFr+YnHiPFGqdwcHlF9Ir4k50xWvZqULchTxh/pWlWJ2K
5swpoa4K9jlbTsvronvPrY/kFsRAOJelc9/Tc+47xXOTvUfPIEH8ZftPCTIL
+74o59I992EMT1WLcTXbpTxM577n1LkP596pGL9Ip0Vb0rmvLG3m3Jf6Vupb
qW+JeZj6VupbqW9F8yh9ryjIJxGH9L0i7JHpe8WF/l4RraOnwz566hTGwdPE
9EyiRImegzR5CdiQKFGiRIkSJUqU6OmndO5LlChRokTPJEp9K1GiRIme/bTR
Wr9ld+2FoStqs99VVLd52uNpq0j1myQjF+l6fk2Tem7W1yL63QLagp5RukAx
w/HiesNYch9jcSzOgxAnYa7AjqL1sh0FvkR95evjORvGvFqel+ApyPXn7wVq
ILR1L+MjPGgPEPl1wr7YRK5ewHxNlChRouc6PW/77qeNLrZviRIlSpTo2UdP
Z99KlCjR5uli14ZEiRIlSpRIov8f98ZNLw==
"], {{0, 0}, {1714, 38}}, {0, 255},
ColorFunction->RGBColor],
ImageSize->{1714, 38},
PlotRange->{{0, 1714}, {0, 38}}],
Alignment->Left,
BaseStyle->{"Hyperlink", "DemonstrationHeader"},
ButtonData->{
URL["http://demonstrations.wolfram.com"], None},
ButtonNote->"http://demonstrations.wolfram.com"]], "DemonstrationHeader"],
Cell["Common Robot Arm Configurations", "DemoTitle"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`DHParameters$$ = {{
"r", "r", "r", "r", "r", "r"}, {0, 1, 1, 0, 0, 0}, {
Rational[1, 2] Pi, 0, Rational[1, 2] Pi, Rational[1, 2] Pi,
Rational[-1, 2] Pi, 0}, {1.5, 0, 0, 0.75, 0, 0.5}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "4"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "5"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "6"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}}, $CellContext`dof$$ = 6, $CellContext`g$$ =
1, $CellContext`params$$ = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0}, $CellContext`showRobot$$ =
True, $CellContext`unusedVariable$$ = 1, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`dof$$], 6}, 1, 20, 1}, {{
Hold[$CellContext`params$$], {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}}}, {{
Hold[$CellContext`g$$], 1, "grip"}, 0, 1, 0.01}, {{
Hold[$CellContext`showRobot$$], True, "show robot"}, {True, False}}, {{
Hold[$CellContext`DHParameters$$], {{"r", "r", "r", "r", "r", "r"}, {0,
1, 1, 0, 0, 0}, {
Rational[1, 2] Pi, 0, Rational[1, 2] Pi, Rational[1, 2] Pi,
Rational[-1, 2] Pi, 0}, {1.5, 0, 0, 0.75, 0, 0.5}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "4"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "5"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "6"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}}, ""}, {{{"r", "r"}, {1, 1.5}, {0, 0}, {0, 0}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}} ->
"planar elbow", {{"r", "r", "r"}, {0, 1, 1}, {
Rational[1, 2] Pi, 0, 0}, {1, 0, 0}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}} ->
"elbow robot", {{"r", "r", "r", "r", "r", "r"}, {0, 1, 1, 0, 0, 0}, {
Rational[1, 2] Pi, 0, Rational[1, 2] Pi, Rational[1, 2] Pi,
Rational[-1, 2] Pi, 0}, {1.5, 0, 0, 0.75, 0, 0.5}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "4"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "5"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "6"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}} ->
"anthropomorphic", {{"r", "r", "p", "r", "r", "r"}, {0, 0, 0, 0, 0,
0}, {Rational[-1, 2] Pi, Rational[1, 2] Pi, 0, Rational[-1, 2] Pi,
Rational[1, 2] Pi, 0}, {1, 1,
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"], 0, 0, 1}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"], 0,
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "4"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "5"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "6"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}} ->
"Stanford robot", {{"r", "p", "p"}, {0, 0, 0}, {
0, Rational[-1, 2] Pi, 0}, {1,
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"], 0, 0}} ->
"cylindrical robot", {{"r", "r", "p"}, {0.75, 1, 0}, {
Rational[-1, 2] Pi, Rational[1, 2] Pi, 0}, {1, 0,
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"], 0}} ->
"spherical robot", {{"r", "r", "p", "r"}, {0.5, 0.5, 0, 0}, {0, 0, 0,
0}, {0.75, 0,
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"], 0.5}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"], 0,
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "4"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}} ->
"SCARA robot", {{"p", "p", "p", "r"}, {0, 0, 0, 0}, {
Rational[1, 2] Pi, Rational[1, 2] Pi, 0, 0}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"], 0.5}, {0, Pi, 0,
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "4"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}} ->
"Cartesian robot", {{"p", "p", "p"}, {0, 0, 0}, {
Rational[-1, 2] Pi, Rational[1, 2] Pi, 0}, {
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "1"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "2"], TraditionalForm]], "InlineMath"]],
"InlineMath"],
TextCell[
RawBoxes[
Cell[
BoxData[
FormBox[
SubscriptBox["q", "3"], TraditionalForm]], "InlineMath"]],
"InlineMath"]}, {Rational[-1, 2] Pi, Rational[-1, 2] Pi, 0}} ->
"CNC robot"}}, {{
Hold[$CellContext`unusedVariable$$], 1, ""},
Dynamic[$CellContext`makeDHControl[#, $CellContext`DHParameters$$]& ]}, {
Hold[
Column[{
Dynamic[
Grid[
Table[
With[{$CellContext`i$ = $CellContext`i},
If[
MemberQ[{"Prismatic", "prismatic", "P", "p"},
ToString[
Part[$CellContext`DHParameters$$, 1, $CellContext`i$]]], {
Subsuperscript[
Style["d", Italic], $CellContext`i$, "*"],
Slider[
Part[$CellContext`params$$, $CellContext`i$] = 0.5; Dynamic[
Part[$CellContext`params$$, $CellContext`i$]], {
1/2, 3/2, 1/20}, ImageSize -> Small],
Dynamic[
Part[$CellContext`params$$, $CellContext`i$]]}, {
Subsuperscript["\[Theta]", $CellContext`i$, "*"],
Slider[
Part[$CellContext`params$$, $CellContext`i$] = 0; Dynamic[
Part[$CellContext`params$$, $CellContext`i$]], {-Pi, Pi, Pi/
32}, ImageSize -> Small],
Dynamic[
Part[$CellContext`params$$, $CellContext`i$]]}]], \
{$CellContext`i, $CellContext`dof$$}]]], "",
Manipulate`Place[1], "",
Manipulate`Place[2], "", "DH parameters for robot arm",