-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathcategorized_corpus2csv.py
executable file
·67 lines (51 loc) · 2.25 KB
/
categorized_corpus2csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/usr/bin/env python
import argparse, csv, os.path
import nltk_trainer.classification.corpus
from nltk_trainer import load_corpus_reader
########################################
## command options & argument parsing ##
########################################
parser = argparse.ArgumentParser(description='Dump a classified corpus to CSV')
parser.add_argument('corpus', help='corpus name/path relative to an nltk_data directory')
parser.add_argument('--filename', default='', help='''filename/path for where to
store the CSV. The default is the "basename_instances.csv" where basename is
the corpus name or the basename of the corpus path, and instances is one of
sents, paras, or file, as given by the --instances argument.''')
parser.add_argument('--trace', default=1, type=int,
help='How much trace output you want, defaults to 1. 0 is no trace output.')
corpus_group = parser.add_argument_group('Classified Corpus')
corpus_group.add_argument('--instances', default='paras',
choices=('sents', 'paras', 'files'),
help='''the group of words that represents a single training instance,
the default is to use entire files''')
corpus_group.add_argument('--fraction', default=1.0, type=float,
help='''The fraction of the corpus to use for training a binary or
multi-class classifier, the rest will be used for evaulation.
The default is to use the entire corpus, and to test the classifier
against the same training data. Any number < 1 will test against
the remaining fraction.''')
args = parser.parse_args()
###################
## corpus reader ##
###################
if args.trace:
print('loading corpus %s' % args.corpus)
corpus = load_corpus_reader(args.corpus)
methods = {
'sents': nltk_trainer.classification.corpus.category_sent_strings,
'paras': nltk_trainer.classification.corpus.category_para_strings,
'files': nltk_trainer.classification.corpus.category_file_strings
}
cat_instances = methods[args.instances](corpus)
################
## CSV output ##
################
filename = args.filename
if not filename:
filename = '%s_%s.csv' % (os.path.basename(args.corpus), args.instances)
if args.trace:
print('writing to %s' % filename)
with open(filename, 'w') as f:
w = csv.writer(f, quoting=csv.QUOTE_ALL)
for cat, text in cat_instances:
w.writerow([cat, text])