forked from cbassa/sattools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvadd.c
453 lines (368 loc) · 8.92 KB
/
vadd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "cpgplot.h"
#include "sgdp4h.h"
#include "satutl.h"
#include <getopt.h>
#define LIM 128
#define XKE 0.07436680 // Guassian Gravitational Constant
#define XKMPER 6378.135
#define AE 1.0
#define XMNPDA 1440.0
#define R2D 180.0/M_PI
#define D2R M_PI/180.0
extern double SGDP4_jd0;
// Dot product
float dot(xyz_t a,xyz_t b)
{
return a.x*b.x+a.y*b.y+a.z*b.z;
}
// Return x modulo y [0,y)
double modulo(double x,double y)
{
x=fmod(x,y);
if (x<0.0) x+=y;
return x;
}
// Magnitude
double magnitude(xyz_t a)
{
return sqrt(dot(a,a));
}
// Cross product
xyz_t cross(xyz_t a,xyz_t b)
{
xyz_t c;
c.x=a.y*b.z-a.z*b.y;
c.y=a.z*b.x-a.x*b.z;
c.z=a.x*b.y-a.y*b.x;
return c;
}
// Compute Date from Julian Day
void mjd2date(double mjd,int *year,int *month,double *day)
{
double f,jd;
int z,alpha,a,b,c,d,e;
jd=mjd+2400000.5;
jd+=0.5;
z=floor(jd);
f=fmod(jd,1.);
if (z<2299161)
a=z;
else {
alpha=floor((z-1867216.25)/36524.25);
a=z+1+alpha-floor(alpha/4.);
}
b=a+1524;
c=floor((b-122.1)/365.25);
d=floor(365.25*c);
e=floor((b-d)/30.6001);
*day=b-d-floor(30.6001*e)+f;
if (e<14)
*month=e-1;
else
*month=e-13;
if (*month>2)
*year=c-4716;
else
*year=c-4715;
return;
}
// MJD to DOY
double mjd2doy(double mjd,int *yr)
{
int year,month,k=2;
double day,doy;
mjd2date(mjd,&year,&month,&day);
if (year%4==0 && year%400!=0)
k=1;
doy=floor(275.0*month/9.0)-k*floor((month+9.0)/12.0)+day-30;
*yr=year;
return doy;
}
// Clasical elements
orbit_t classel(int ep_year,double ep_day,xyz_t r,xyz_t v)
{
int i;
double rm,vm,vm2,rvm,mu=1.0;;
double chi,xp,yp,sx,cx,b,ee;
double a,ecc,incl,node,peri,mm,n;
xyz_t h,e,kk,nn;
orbit_t orb;
r.x/=XKMPER;
r.y/=XKMPER;
r.z/=XKMPER;
v.x/=(XKE*XKMPER/AE*XMNPDA/86400.0);
v.y/=(XKE*XKMPER/AE*XMNPDA/86400.0);
v.z/=(XKE*XKMPER/AE*XMNPDA/86400.0);
rm=magnitude(r);
vm2=dot(v,v);
rvm=dot(r,v);
h=cross(r,v);
chi=dot(h,h)/mu;
e.x=(vm2/mu-1.0/rm)*r.x-rvm/mu*v.x;
e.y=(vm2/mu-1.0/rm)*r.y-rvm/mu*v.y;
e.z=(vm2/mu-1.0/rm)*r.z-rvm/mu*v.z;
a=pow(2.0/rm-vm2/mu,-1);
ecc=magnitude(e);
incl=acos(h.z/magnitude(h))*R2D;
kk.x=0.0;
kk.y=0.0;
kk.z=1.0;
nn=cross(kk,h);
if (nn.x==0.0 && nn.y==0.0)
nn.x=1.0;
node=atan2(nn.y,nn.x)*R2D;
if (node<0.0)
node+=360.0;
peri=acos(dot(nn,e)/(magnitude(nn)*ecc))*R2D;
if (e.z<0.0)
peri=360.0-peri;
if (peri<0.0)
peri+=360.0;
// Elliptic motion
if (ecc<1.0) {
xp=(chi-rm)/ecc;
yp=rvm/ecc*sqrt(chi/mu);
b=a*sqrt(1.0-ecc*ecc);
cx=xp/a+ecc;
sx=yp/b;
ee=atan2(sx,cx);
n=XKE*sqrt(mu/(a*a*a));
mm=(ee-ecc*sx)*R2D;
}
if (mm<0.0)
mm+=360.0;
// Fill
orb.satno=0;
orb.eqinc=incl*D2R;
orb.ascn=node*D2R;
orb.argp=peri*D2R;
orb.mnan=mm*D2R;
orb.ecc=ecc;
orb.rev=XKE*pow(a,-3.0/2.0)*XMNPDA/(2.0*M_PI);
orb.bstar=0.0;
orb.ep_year=ep_year;
orb.ep_day=ep_day;
orb.norb=0;
return orb;
}
orbit_t rv2el(int satno,double mjd,xyz_t r0,xyz_t v0)
{
int i,imode;
orbit_t orb[5],orb1[5];
xyz_t r,v;
kep_t kep;
char line1[70],line2[70];
int ep_year;
double ep_day;
// Epoch
ep_day=mjd2doy(mjd,&ep_year);
// Initial guess
orb[0]=classel(ep_year,ep_day,r0,v0);
orb[0].satno=satno;
for (i=0;i<4;i++) {
// Propagate
imode=init_sgdp4(&orb[i]);
imode=satpos_xyz(mjd+2400000.5,&r,&v);
// Compute initial orbital elements
orb1[i]=classel(ep_year,ep_day,r,v);
// Adjust
orb[i+1].rev=orb[i].rev+orb[0].rev-orb1[i].rev;
orb[i+1].ascn=orb[i].ascn+orb[0].ascn-orb1[i].ascn;
orb[i+1].argp=orb[i].argp+orb[0].argp-orb1[i].argp;
orb[i+1].mnan=orb[i].mnan+orb[0].mnan-orb1[i].mnan;
orb[i+1].eqinc=orb[i].eqinc+orb[0].eqinc-orb1[i].eqinc;
orb[i+1].ecc=orb[i].ecc+orb[0].ecc-orb1[i].ecc;
orb[i+1].ep_year=orb[i].ep_year;
orb[i+1].ep_day=orb[i].ep_day;
orb[i+1].satno=orb[i].satno;
orb[i+1].norb=orb[i].norb;
orb[i+1].bstar=orb[i].bstar;
// Keep in range
if (orb[i+1].ecc<0.0)
orb[i+1].ecc=0.0;
if (orb[i+1].eqinc<0.0)
orb[i+1].eqinc=0.0;
}
orb[i].mnan=modulo(orb[i].mnan,2.0*M_PI);
orb[i].ascn=modulo(orb[i].ascn,2.0*M_PI);
orb[i].argp=modulo(orb[i].argp,2.0*M_PI);
return orb[i];
}
// Format TLE
void format_tle(orbit_t orb,char *line1,char *line2)
{
int i,csum;
char sbstar[]=" 00000-0",bstar[13];
// Format Bstar term
if (fabs(orb.bstar)>1e-9) {
sprintf(bstar,"%11.4e",10*orb.bstar);
sbstar[0] = bstar[0]; sbstar[1] = bstar[1]; sbstar[2] = bstar[3]; sbstar[3] = bstar[4];
sbstar[4] = bstar[5]; sbstar[5] = bstar[6]; sbstar[6] = bstar[8]; sbstar[7] = bstar[10]; sbstar[8] = '\0';
}
// Print lines
sprintf(line1,"1 %05dU %-8s %2d%012.8f .00000000 00000-0 %8s 0 0",orb.satno,orb.desig,orb.ep_year-2000,orb.ep_day,sbstar);
sprintf(line2,"2 %05d %8.4f %8.4f %07.0f %8.4f %8.4f %11.8f 0",orb.satno,DEG(orb.eqinc),DEG(orb.ascn),1E7*orb.ecc,DEG(orb.argp),DEG(orb.mnan),orb.rev);
// Compute checksums
for (i=0,csum=0;i<strlen(line1);i++) {
if (isdigit(line1[i]))
csum+=line1[i]-'0';
else if (line1[i]=='-')
csum++;
}
sprintf(line1,"%s%d",line1,csum%10);
for (i=0,csum=0;i<strlen(line2);i++) {
if (isdigit(line2[i]))
csum+=line2[i]-'0';
else if (line2[i]=='-')
csum++;
}
sprintf(line2,"%s%d",line2,csum%10);
return;
}
// Present nfd
void nfd_now(char *s)
{
time_t rawtime;
struct tm *ptm;
// Get UTC time
time(&rawtime);
ptm=gmtime(&rawtime);
sprintf(s,"%04d-%02d-%02dT%02d:%02d:%02d",ptm->tm_year+1900,ptm->tm_mon+1,ptm->tm_mday,ptm->tm_hour,ptm->tm_min,ptm->tm_sec);
return;
}
// Compute Julian Day from Date
double date2mjd(int year,int month,double day)
{
int a,b;
double jd;
if (month<3) {
year--;
month+=12;
}
a=floor(year/100.);
b=2.-a+floor(a/4.);
if (year<1582) b=0;
if (year==1582 && month<10) b=0;
if (year==1582 && month==10 && day<=4) b=0;
jd=floor(365.25*(year+4716))+floor(30.6001*(month+1))+day+b-1524.5;
return jd-2400000.5;
}
// nfd2mjd
double nfd2mjd(char *date)
{
int year,month,day,hour,min,sec;
double mjd,dday;
sscanf(date,"%04d-%02d-%02dT%02d:%02d:%02d",&year,&month,&day,&hour,&min,&sec);
dday=day+hour/24.0+min/1440.0+sec/86400.0;
mjd=date2mjd(year,month,dday);
return mjd;
}
void usage(void)
{
printf("propagate c:i:t:m:\n\nPropagates orbital elements to a new epoch using the SGP4/SDP4 model.\nDefault operation propagates classfd.tle to now,\n\n-c input catalog\n-i Satellite number\n-t New epoch (YYYY-MM-DDTHH:MM:SS)\n-m New epoch (MJD)\n");
return;
}
int main(int argc,char *argv[])
{
int imode,satno=0,arg,satnomin,flag=0,satnonew=-1;
FILE *file;
orbit_t orb;
xyz_t r,v,n,dv;
char tlefile[LIM],nfd[32];
char line1[80],line2[80],desig[20];
double mjd,ra,de,dr,drmin;
float vadd=0.0;
char direction[16]="radial";
char *env;
// Get environment variable
env=getenv("ST_TLEDIR");
sprintf(tlefile,"%s/classfd.tle",env);
// Set date
nfd_now(nfd);
mjd=nfd2mjd(nfd);
// Decode options
while ((arg=getopt(argc,argv,"c:i:t:m:hv:d:I:"))!=-1) {
switch (arg) {
case 't':
strcpy(nfd,optarg);
mjd=nfd2mjd(nfd);
break;
case 'm':
mjd=(double) atof(optarg);
break;
case 'c':
strcpy(tlefile,optarg);
break;
case 'i':
satno=atoi(optarg);
break;
case 'h':
usage();
return 0;
break;
case 'v':
vadd=atof(optarg);
break;
case 'd':
strcpy(direction,optarg);
break;
case 'I':
satnonew=atoi(optarg);
break;
default:
usage();
return 0;
}
}
// Reloop stderr
freopen("/tmp/stderr.txt","w",stderr);
// Open file
file=fopen(tlefile,"r");
while (read_twoline(file,satno,&orb)==0) {
format_tle(orb,line1,line2);
strcpy(desig,orb.desig);
// Propagate
imode=init_sgdp4(&orb);
imode=satpos_xyz(mjd+2400000.5,&r,&v);
// Compute normal
n=cross(r,v);
// Add velocity
if (strcmp(direction,"prograde")==0) {
dv.x=vadd*v.x/magnitude(v);
dv.y=vadd*v.y/magnitude(v);
dv.z=vadd*v.z/magnitude(v);
} else if (strcmp(direction,"radial")==0) {
dv.x=vadd*r.x/magnitude(r);
dv.y=vadd*r.y/magnitude(r);
dv.z=vadd*r.z/magnitude(r);
} else if (strcmp(direction,"normal")==0) {
dv.x=vadd*n.x/magnitude(n);
dv.y=vadd*n.y/magnitude(n);
dv.z=vadd*n.z/magnitude(n);
} else {
dv.x=0.0;
dv.y=0.0;
dv.z=0.0;
}
v.x+=dv.x/1000.0;
v.y+=dv.y/1000.0;
v.z+=dv.z/1000.0;
// Convert
orb=rv2el(orb.satno,mjd,r,v);
if (satnonew==-1) {
strcpy(orb.desig,desig);
} else {
strcpy(orb.desig,"15999A");
orb.satno=satnonew;
}
// Print tle
format_tle(orb,line1,line2);
printf("%s\n%s\n# %05d + %g m/s %s\n",line1,line2,satno,vadd,direction);
}
fclose(file);
return 0;
}