-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtest_depth.py
172 lines (137 loc) · 5.18 KB
/
test_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
# Master's Thesis - Depth Estimation by Convolutional Neural Networks
# Jan Ivanecky; [email protected]
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import sys
from PIL import Image
import cv2
import cv
import os.path
os.environ['GLOG_minloglevel'] = '2'
import caffe
import scipy.ndimage
import argparse
import operator
import shutil
from eval_depth import Test, PrintTop5, LogDepth
WIDTH = 298
HEIGHT = 218
OUT_WIDTH = 74
OUT_HEIGHT = 54
GT_WIDTH = 420
GT_HEIGHT = 320
def testNet(net, img):
net.blobs['X'].data[...] = img
net.forward()
output = net.blobs['depth-refine'].data
output = np.reshape(output, (1,1,OUT_HEIGHT, OUT_WIDTH))
return output
def loadImage(path, channels, width, height):
img = caffe.io.load_image(path)
img = caffe.io.resize(img, (height, width, channels))
img = np.transpose(img, (2,0,1))
img = np.reshape(img, (1,channels,height,width))
return img
def printImage(img, name, channels, width, height):
params = list()
params.append(cv.CV_IMWRITE_PNG_COMPRESSION)
params.append(8)
imgnp = np.reshape(img, (height,width, channels))
imgnp = np.array(imgnp * 255, dtype = np.uint8)
cv2.imwrite(name, imgnp, params)
def eval(out, gt, rawResults):
linearGT = gt * 10.0
linearOut = out * 10.0
rawResults = [x + y for x, y in zip(rawResults, Test(linearOut, linearGT))]
return rawResults
def ProcessToOutput(depth):
depth = np.clip(depth, 0.001, 1000)
return np.clip(2 * 0.179581 * np.log(depth) + 1, 0, 1)
caffe.set_mode_cpu()
parser = argparse.ArgumentParser()
parser.add_argument("input_dir", help="directory with input images")
parser.add_argument("gt_dir", help="directory with ground truths")
parser.add_argument("output", help="folder to output to")
parser.add_argument("snaps", help="folder with snapshots to use")
parser.add_argument('--log', action='store_true', default=False)
args = parser.parse_args()
try:
os.mkdir(args.output)
except OSError:
print ('Output directory already exists, not creating a new one')
try:
os.mkdir(args.output + "_abs")
except OSError:
print ('Output directory already exists, not creating a new one')
fileCount = len([name for name in os.listdir(args.input_dir)])
results = [dict() for x in range(10)]
for snapshot in os.listdir(args.snaps):
if not snapshot.endswith("caffemodel"):
continue
currentSnapDir = snapshot.replace(".caffemodel","")
if os.path.exists(args.output + "/" + currentSnapDir):
shutil.rmtree(args.output + "/" + currentSnapDir)
if os.path.exists(args.output + "_abs/" + currentSnapDir):
shutil.rmtree(args.output + "_abs/" + currentSnapDir)
os.mkdir(args.output + "/" + currentSnapDir)
os.mkdir(args.output + "_abs/" + currentSnapDir)
print(currentSnapDir)
sys.stdout.flush()
netFile = snapshot.replace(".caffemodel",".prototxt")
net = caffe.Net(args.snaps + '/' + netFile, args.snaps + '/' + snapshot, caffe.TEST)
rawResults = np.zeros((10))
for count, file in enumerate(os.listdir(args.input_dir)):
out_string = str(count) + '/' + str(fileCount) + ': ' + file
sys.stdout.write('%s\r' % out_string)
sys.stdout.flush()
inputFileName = file
inputFilePath = args.input_dir + '/' + inputFileName
gtFileName = file.replace('colors','depth')
gtFilePath = args.gt_dir + '/' + gtFileName
gt = loadImage(gtFilePath, 1, GT_WIDTH, GT_HEIGHT)
input = loadImage(inputFilePath, 3, WIDTH, HEIGHT)
input *= 255
input -= 127
output = testNet(net, input)
if args.log:
output = np.exp((output - 1) / 0.179581)
outWidth = OUT_WIDTH
outHeight = OUT_HEIGHT
scaleW = float(GT_WIDTH) / float(OUT_WIDTH)
scaleH = float(GT_HEIGHT) / float(OUT_HEIGHT)
output = scipy.ndimage.zoom(output, (1,1,scaleH,scaleW), order=3)
outWidth *= scaleW
outHeight *= scaleH
rawResults = eval(output, gt, rawResults)
input += 127
input = input / 255.0
input = np.transpose(input, (0,2,3,1))
input = input[:,:,:,(2,1,0)]
absOutput = output.copy()
output -= output.mean()
output /= output.std()
output *= gt.std()
output += gt.mean()
gt = ProcessToOutput(gt)
output = ProcessToOutput(output)
absOutput = ProcessToOutput(absOutput)
filename = os.path.splitext(os.path.basename(inputFileName))[0]
filePath = args.output + '/' + currentSnapDir + '/' + filename + '.png'
filePathAbs = args.output + '_abs/' + currentSnapDir + '/' + filename + '.png'
printImage(input, filePath, 3, WIDTH, HEIGHT)
printImage(input, filePathAbs, 3, WIDTH, HEIGHT)
printImage(output, filePath.replace('_colors','_depth'), 1, outWidth, outHeight)
printImage(absOutput, filePathAbs.replace('_colors','_depth'), 1, outWidth, outHeight)
printImage(gt, filePath.replace('_colors', '_gt'), 1, outWidth, outHeight)
printImage(gt, filePathAbs.replace('_colors', '_gt'), 1, outWidth, outHeight)
rawResults[:] = [x / fileCount for x in rawResults]
for i in xrange(10):
results[i][currentSnapDir] = rawResults[i]
titles = ["AbsRelDiff", "SqrRelDiff", "RMSE", "RMSELog", "SIMSE", "Log10", "MVN", "Threshold 1.25","Threshold 1.25^2", "Threshold 1.25^3"]
for i in xrange(10):
results[i] = sorted(results[i].items(), key=operator.itemgetter(1))
if i > 6:
results[i] = list(reversed(results[i]))
PrintTop5(titles[i], results[i])