diff --git a/_images/2ccbe1c4a7d98ed745fcc7f7200daca047854f04cb1737136d0783ead59094b0.png b/_images/2ccbe1c4a7d98ed745fcc7f7200daca047854f04cb1737136d0783ead59094b0.png deleted file mode 100644 index 3eb2cc12f..000000000 Binary files a/_images/2ccbe1c4a7d98ed745fcc7f7200daca047854f04cb1737136d0783ead59094b0.png and /dev/null differ diff --git a/_images/4591dcf10cb139f8367afafe250d25785713675cc5c45038343818c91d8e1c7e.png b/_images/4591dcf10cb139f8367afafe250d25785713675cc5c45038343818c91d8e1c7e.png new file mode 100644 index 000000000..a8994e0a3 Binary files /dev/null and b/_images/4591dcf10cb139f8367afafe250d25785713675cc5c45038343818c91d8e1c7e.png differ diff --git a/_images/740324669767434e3255abbf72201f026346cb4364f2e6f09e376c501f4c34ea.png b/_images/740324669767434e3255abbf72201f026346cb4364f2e6f09e376c501f4c34ea.png deleted file mode 100644 index 7cdae5d7a..000000000 Binary files a/_images/740324669767434e3255abbf72201f026346cb4364f2e6f09e376c501f4c34ea.png and /dev/null differ diff --git a/_images/8b95fb5e10d8585878ac2263174f153a8896787b2e7c482e18dca9dd22d661ac.png b/_images/8b95fb5e10d8585878ac2263174f153a8896787b2e7c482e18dca9dd22d661ac.png deleted file mode 100644 index 3d69a1720..000000000 Binary files a/_images/8b95fb5e10d8585878ac2263174f153a8896787b2e7c482e18dca9dd22d661ac.png and /dev/null differ diff --git a/_images/8be921556f6acfaaec95b290e4988697111466d547af287c05c75c5e4b1f0218.png b/_images/8be921556f6acfaaec95b290e4988697111466d547af287c05c75c5e4b1f0218.png new file mode 100644 index 000000000..cb2b29605 Binary files /dev/null and b/_images/8be921556f6acfaaec95b290e4988697111466d547af287c05c75c5e4b1f0218.png differ diff --git a/_images/a95cc34aa288a713aa4e8ae662e6e2b4bf1df92956d2bd22f906bedc9ad0bab2.png b/_images/a95cc34aa288a713aa4e8ae662e6e2b4bf1df92956d2bd22f906bedc9ad0bab2.png deleted file mode 100644 index 22817a7b6..000000000 Binary files a/_images/a95cc34aa288a713aa4e8ae662e6e2b4bf1df92956d2bd22f906bedc9ad0bab2.png and /dev/null differ diff --git a/_images/b40d3b8736f7145a8fdedb807170b2db4c6419fca7875f53015de0dbcc6cdd50.png b/_images/b40d3b8736f7145a8fdedb807170b2db4c6419fca7875f53015de0dbcc6cdd50.png new file mode 100644 index 000000000..a02275e58 Binary files /dev/null and b/_images/b40d3b8736f7145a8fdedb807170b2db4c6419fca7875f53015de0dbcc6cdd50.png differ diff --git a/_images/c9c4bfe23fa7ad56740e5169aef51a8491920f9509173a32aed236d520ba90c2.png b/_images/c9c4bfe23fa7ad56740e5169aef51a8491920f9509173a32aed236d520ba90c2.png new file mode 100644 index 000000000..c6f108eed Binary files /dev/null and b/_images/c9c4bfe23fa7ad56740e5169aef51a8491920f9509173a32aed236d520ba90c2.png differ diff --git a/_sources/autoapi/dacapo/experiments/datasplits/datasets/index.rst.txt b/_sources/autoapi/dacapo/experiments/datasplits/datasets/index.rst.txt index a0f52b8bc..e751a25c9 100644 --- a/_sources/autoapi/dacapo/experiments/datasplits/datasets/index.rst.txt +++ b/_sources/autoapi/dacapo/experiments/datasplits/datasets/index.rst.txt @@ -18,6 +18,7 @@ Submodules /autoapi/dacapo/experiments/datasplits/datasets/graphstores/index /autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index /autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index + /autoapi/dacapo/experiments/datasplits/datasets/simple/index Classes @@ -31,6 +32,7 @@ Classes dacapo.experiments.datasplits.datasets.DummyDatasetConfig dacapo.experiments.datasplits.datasets.RawGTDataset dacapo.experiments.datasplits.datasets.RawGTDatasetConfig + dacapo.experiments.datasplits.datasets.SimpleDataset Package Contents @@ -409,3 +411,80 @@ Package Contents :type: Optional[List[funlib.geometry.Coordinate]] +.. py:class:: SimpleDataset + + + + A class used to define configuration for datasets. This provides the + framework to create a Dataset instance. + + .. attribute:: name + + str (eg: "sample_dataset"). + A unique identifier to name the dataset. + It aids in easy identification and reusability of this dataset. + Advised to keep it short and refrain from using special characters. + + .. attribute:: weight + + int (default=1). + A numeric value that indicates how frequently this dataset should be + sampled in comparison to others. Higher the weight, more frequently it + gets sampled. + + .. method:: verify + + + Checks and validates the dataset configuration. The specific rules for + validation need to be defined by the user. + + .. rubric:: Notes + + This class is used to create a configuration object for datasets. + + + .. py:attribute:: path + :type: pathlib.Path + + + .. py:attribute:: weight + :type: int + + + .. py:attribute:: raw_name + :type: str + + + .. py:attribute:: gt_name + :type: str + + + .. py:attribute:: mask_name + :type: str + + + .. py:method:: dataset_type(dataset_config) + :staticmethod: + + + + .. py:property:: raw + :type: funlib.persistence.Array + + + + .. py:property:: gt + :type: funlib.persistence.Array + + + + .. py:property:: mask + :type: funlib.persistence.Array | None + + + + .. py:property:: sample_points + :type: None + + + diff --git a/_sources/autoapi/dacapo/experiments/datasplits/datasets/simple/index.rst.txt b/_sources/autoapi/dacapo/experiments/datasplits/datasets/simple/index.rst.txt new file mode 100644 index 000000000..ad2cba56d --- /dev/null +++ b/_sources/autoapi/dacapo/experiments/datasplits/datasets/simple/index.rst.txt @@ -0,0 +1,94 @@ +dacapo.experiments.datasplits.datasets.simple +============================================= + +.. py:module:: dacapo.experiments.datasplits.datasets.simple + + +Classes +------- + +.. autoapisummary:: + + dacapo.experiments.datasplits.datasets.simple.SimpleDataset + + +Module Contents +--------------- + +.. py:class:: SimpleDataset + + + + A class used to define configuration for datasets. This provides the + framework to create a Dataset instance. + + .. attribute:: name + + str (eg: "sample_dataset"). + A unique identifier to name the dataset. + It aids in easy identification and reusability of this dataset. + Advised to keep it short and refrain from using special characters. + + .. attribute:: weight + + int (default=1). + A numeric value that indicates how frequently this dataset should be + sampled in comparison to others. Higher the weight, more frequently it + gets sampled. + + .. method:: verify + + + Checks and validates the dataset configuration. The specific rules for + validation need to be defined by the user. + + .. rubric:: Notes + + This class is used to create a configuration object for datasets. + + + .. py:attribute:: path + :type: pathlib.Path + + + .. py:attribute:: weight + :type: int + + + .. py:attribute:: raw_name + :type: str + + + .. py:attribute:: gt_name + :type: str + + + .. py:attribute:: mask_name + :type: str + + + .. py:method:: dataset_type(dataset_config) + :staticmethod: + + + + .. py:property:: raw + :type: funlib.persistence.Array + + + + .. py:property:: gt + :type: funlib.persistence.Array + + + + .. py:property:: mask + :type: funlib.persistence.Array | None + + + + .. py:property:: sample_points + :type: None + + + diff --git a/_sources/autoapi/dacapo/experiments/datasplits/index.rst.txt b/_sources/autoapi/dacapo/experiments/datasplits/index.rst.txt index 7c41959cd..a6f84767a 100644 --- a/_sources/autoapi/dacapo/experiments/datasplits/index.rst.txt +++ b/_sources/autoapi/dacapo/experiments/datasplits/index.rst.txt @@ -17,6 +17,7 @@ Submodules /autoapi/dacapo/experiments/datasplits/dummy_datasplit/index /autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index /autoapi/dacapo/experiments/datasplits/keys/index + /autoapi/dacapo/experiments/datasplits/simple_config/index /autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index /autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index @@ -34,6 +35,7 @@ Classes dacapo.experiments.datasplits.TrainValidateDataSplitConfig dacapo.experiments.datasplits.DataSplitGenerator dacapo.experiments.datasplits.DatasetSpec + dacapo.experiments.datasplits.SimpleDataSplitConfig Package Contents @@ -667,3 +669,57 @@ Package Contents .. py:attribute:: gt_dataset +.. py:class:: SimpleDataSplitConfig + + + + A convention over configuration datasplit that can handle many of the most + basic cases. + + + .. py:attribute:: path + :type: pathlib.Path + + + .. py:attribute:: name + :type: str + + + .. py:attribute:: train_group_name + :type: str + + + .. py:attribute:: validate_group_name + :type: str + + + .. py:attribute:: raw_name + :type: str + + + .. py:attribute:: gt_name + :type: str + + + .. py:attribute:: mask_name + :type: str + + + .. py:method:: datasplit_type(datasplit_config) + :staticmethod: + + + + .. py:method:: get_paths(group_name: str) -> list[pathlib.Path] + + + .. py:property:: train + :type: list[dacapo.experiments.datasplits.datasets.simple.SimpleDataset] + + + + .. py:property:: validate + :type: list[dacapo.experiments.datasplits.datasets.simple.SimpleDataset] + + + diff --git a/_sources/autoapi/dacapo/experiments/datasplits/simple_config/index.rst.txt b/_sources/autoapi/dacapo/experiments/datasplits/simple_config/index.rst.txt new file mode 100644 index 000000000..6c7e3bce3 --- /dev/null +++ b/_sources/autoapi/dacapo/experiments/datasplits/simple_config/index.rst.txt @@ -0,0 +1,71 @@ +dacapo.experiments.datasplits.simple_config +=========================================== + +.. py:module:: dacapo.experiments.datasplits.simple_config + + +Classes +------- + +.. autoapisummary:: + + dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig + + +Module Contents +--------------- + +.. py:class:: SimpleDataSplitConfig + + + + A convention over configuration datasplit that can handle many of the most + basic cases. + + + .. py:attribute:: path + :type: pathlib.Path + + + .. py:attribute:: name + :type: str + + + .. py:attribute:: train_group_name + :type: str + + + .. py:attribute:: validate_group_name + :type: str + + + .. py:attribute:: raw_name + :type: str + + + .. py:attribute:: gt_name + :type: str + + + .. py:attribute:: mask_name + :type: str + + + .. py:method:: datasplit_type(datasplit_config) + :staticmethod: + + + + .. py:method:: get_paths(group_name: str) -> list[pathlib.Path] + + + .. py:property:: train + :type: list[dacapo.experiments.datasplits.datasets.simple.SimpleDataset] + + + + .. py:property:: validate + :type: list[dacapo.experiments.datasplits.datasets.simple.SimpleDataset] + + + diff --git a/_sources/data.rst.txt b/_sources/data.rst.txt new file mode 100644 index 000000000..8d15567a3 --- /dev/null +++ b/_sources/data.rst.txt @@ -0,0 +1,111 @@ +.. _sec_data: + +Data Formatting +=============== + +Overview +-------- + +We support any data format that can be opened with the `zarr.open` convenience function from +`zarr `_. We also expect some specific metadata to come +with the data. + +Metadata +-------- + +- `voxel_size`: The size of each voxel in the dataset. This is expected to be a tuple of ints + with the same length as the number of spatial dimensions in the dataset. +- `offset`: The offset of the dataset. This is expected to be a tuple of ints with the same length + as the number of spatial dimensions in the dataset. +- `axis_names`: The name of each axis. This is expected to be a tuple of strings with the same length + as the total number of dimensions in the dataset. For example a 3D dataset with channels would have + `axis_names=('c^', 'z', 'y', 'x')`. Note we expect non-spatial dimensions to include a "^" character. + See [1]_ for expected future changes +- `units`: The units of each axis. This is expected to be a tuple of strings with the same length + as the number of spatial dimensions in the dataset. For example a 3D dataset with channels would have + `units=('nanometers', 'nanometers', 'nanometers')`. + +Orgnaization +------------ + +Ideally all of your data will be contained in a single zarr container. +The simplest possible dataset would look like this: +:: + + data.zarr + ├── raw + └── labels + +If this is what your data looks like, then your data configuration will look like this: + +.. code-block:: + :caption: A simple data configuration + + data_config = DataConfig( + path="/path/to/data.zarr" + ) + +Note that a lot of assumptions will be made. + +1. We assume your raw data is normalized based on the `dtype`. I.e. if your data is + stored as an unsigned int (we recommend uint8) we will assume a range and normalize + it to [0,1] by dividing by the appropriate value (255 for `uint8` or 65535 for `uint16`). + If your data is stored as any `float` we will assume it is already in the range [0, 1]. +2. We assume your labels are stored as unsigned integers. If you want to generate instance segmentations, you will need + to assign a unique id to every object of the class you are interested in. If you want semantic segmentations you + can simply assign a unique id to each class. 0 is reserved for the background class. +3. We assume that the labels are provided densely. The entire volume will be used for training. +4. We will be training and validating on the same data. This is not ideal, but it is an ok starting point for testing + and debugging. + +Next we can add a little bit of complexity by seperating train and test data. This can also be handled +by the same data configuration as above since it will detect the presence of the `train` and `test` groups. + +:: + + data.zarr + ├── train + │ ├── raw + │ └── labels + └── test + ├── raw + └── labels + +We can go further with our basic data configuration since this will often not be enough to describe your data. You may have multiple crops and often your data may be +sparsely annotated. The same data configuration from above will also work for the slightly more complicated +dataset below: + +:: + + data.zarr + ├── train + │ ├── crop_01 + │ │ ├── raw + │ │ ├── labels + │ │ └── mask + │ └── crop_02 + │ ├── raw + │ └── labels + └── test + └─ crop_03 + │ ├── raw + │ ├── labels + │ └── mask + └─ crop_04 + ├── raw + └── labels + +Note that `crop_01` and `crop_03` have masks associated with them. We assume a value of `0` in the mask indicates +unknown data. We will never use this data for supervised training, regardless of the corresponding label value. +If multiple test datasets are provided, this will increase the amount of information to review after training. +You will have e.g. `crop_03_voi` and `crop_04_voi` stored in the validation scores. Since we also take care to +save the "best" model checkpoint, you may now double the number of checkpoints saved since the checkpoint that +achieves optimal `voi` on `crop_03` may not be the same as the checkpoint that achieves optimal `voi` on `crop_04`. + +Footnotes +--------- + +.. [1] The specification of axis names is expected to change in the future since we expect to support a `type` field in the future which + can be one of ["time", "space", "{anything-else}"]. Which would allow you to specify dimensions as "channel" + or "batch" or whatever else you want. This will bring us more in line with OME-Zarr and allow us to more easily + handle a larger variety of common data specification formats. \ No newline at end of file diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt index 8861ad601..3d9b1d529 100644 --- a/_sources/index.rst.txt +++ b/_sources/index.rst.txt @@ -10,6 +10,7 @@ overview install notebooks/minimal_tutorial + data unet_architectures tutorial docker diff --git a/_sources/notebooks/minimal_tutorial.ipynb.txt b/_sources/notebooks/minimal_tutorial.ipynb.txt index bdea7df3a..f495947e6 100644 --- a/_sources/notebooks/minimal_tutorial.ipynb.txt +++ b/_sources/notebooks/minimal_tutorial.ipynb.txt @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c0918b40", + "id": "0e9fc2f1", "metadata": { "lines_to_next_cell": 2 }, @@ -14,7 +14,7 @@ }, { "cell_type": "markdown", - "id": "cb405f59", + "id": "169e661a", "metadata": {}, "source": [ "## Needed Libraries for this Tutorial\n", @@ -28,7 +28,7 @@ }, { "cell_type": "markdown", - "id": "2ec42306", + "id": "58b04814", "metadata": {}, "source": [ "## Introduction and overview\n", @@ -53,7 +53,7 @@ }, { "cell_type": "markdown", - "id": "1eb8ae2b", + "id": "ac805d0e", "metadata": {}, "source": [ "## Environment setup\n", @@ -79,7 +79,7 @@ }, { "cell_type": "markdown", - "id": "4d3895a7", + "id": "b9f8cfe7", "metadata": {}, "source": [ "## Config Store\n", @@ -108,13 +108,13 @@ { "cell_type": "code", "execution_count": 1, - "id": "1d4a00e6", + "id": "6dd56ef3", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:48:57.304153Z", - "iopub.status.busy": "2024-11-12T19:48:57.303956Z", - "iopub.status.idle": "2024-11-12T19:49:05.458805Z", - "shell.execute_reply": "2024-11-12T19:49:05.458157Z" + "iopub.execute_input": "2024-11-13T16:49:39.305775Z", + "iopub.status.busy": "2024-11-13T16:49:39.305582Z", + "iopub.status.idle": "2024-11-13T16:49:47.435475Z", + "shell.execute_reply": "2024-11-13T16:49:47.434762Z" } }, "outputs": [ @@ -148,7 +148,7 @@ }, { "cell_type": "markdown", - "id": "ffc3f4bd", + "id": "3c11c26c", "metadata": { "lines_to_next_cell": 0 }, @@ -160,13 +160,13 @@ { "cell_type": "code", "execution_count": 2, - "id": "8439abf0", + "id": "c0679cf1", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:05.461277Z", - "iopub.status.busy": "2024-11-12T19:49:05.460592Z", - "iopub.status.idle": "2024-11-12T19:49:06.225637Z", - "shell.execute_reply": "2024-11-12T19:49:06.224891Z" + "iopub.execute_input": "2024-11-13T16:49:47.438037Z", + "iopub.status.busy": "2024-11-13T16:49:47.437482Z", + "iopub.status.idle": "2024-11-13T16:49:48.179511Z", + "shell.execute_reply": "2024-11-13T16:49:48.178671Z" }, "lines_to_next_cell": 0, "title": "Create some data" @@ -259,7 +259,7 @@ }, { "cell_type": "markdown", - "id": "e7084a42", + "id": "f61cc1d8", "metadata": { "lines_to_next_cell": 0 }, @@ -270,13 +270,13 @@ { "cell_type": "code", "execution_count": 3, - "id": "950c2d6f", + "id": "7cf596f1", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.229078Z", - "iopub.status.busy": "2024-11-12T19:49:06.227904Z", - "iopub.status.idle": "2024-11-12T19:49:06.529061Z", - "shell.execute_reply": "2024-11-12T19:49:06.528122Z" + "iopub.execute_input": "2024-11-13T16:49:48.182754Z", + "iopub.status.busy": "2024-11-13T16:49:48.181698Z", + "iopub.status.idle": "2024-11-13T16:49:48.497333Z", + "shell.execute_reply": "2024-11-13T16:49:48.496452Z" }, "lines_to_next_cell": 2 }, @@ -311,7 +311,7 @@ }, { "cell_type": "markdown", - "id": "af23345a", + "id": "25e56de5", "metadata": {}, "source": [ "## Datasplit\n", @@ -327,69 +327,22 @@ { "cell_type": "code", "execution_count": 4, - "id": "c3d44253", + "id": "84040c4c", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.531840Z", - "iopub.status.busy": "2024-11-12T19:49:06.531321Z", - "iopub.status.idle": "2024-11-12T19:49:06.557184Z", - "shell.execute_reply": "2024-11-12T19:49:06.556453Z" + "iopub.execute_input": "2024-11-13T16:49:48.500741Z", + "iopub.status.busy": "2024-11-13T16:49:48.500011Z", + "iopub.status.idle": "2024-11-13T16:49:48.506077Z", + "shell.execute_reply": "2024-11-13T16:49:48.505399Z" }, "lines_to_next_cell": 2 }, "outputs": [], "source": [ - "from dacapo.experiments.datasplits import TrainValidateDataSplitConfig\n", - "from dacapo.experiments.datasplits.datasets import RawGTDatasetConfig\n", - "from dacapo.experiments.datasplits.datasets.arrays import (\n", - " ZarrArrayConfig,\n", - " IntensitiesArrayConfig,\n", - ")\n", + "from dacapo.experiments.datasplits.simple_config import SimpleDataSplitConfig\n", "from funlib.geometry import Coordinate\n", "\n", - "datasplit_config = TrainValidateDataSplitConfig(\n", - " name=\"example_datasplit\",\n", - " train_configs=[\n", - " RawGTDatasetConfig(\n", - " name=\"example_dataset\",\n", - " raw_config=IntensitiesArrayConfig(\n", - " name=\"example_raw_normalized\",\n", - " source_array_config=ZarrArrayConfig(\n", - " name=\"example_raw\",\n", - " file_name=\"cells3d.zarr\",\n", - " dataset=\"raw\",\n", - " ),\n", - " min=0,\n", - " max=255,\n", - " ),\n", - " gt_config=ZarrArrayConfig(\n", - " name=\"example_gt\",\n", - " file_name=\"cells3d.zarr\",\n", - " dataset=\"mask\",\n", - " ),\n", - " )\n", - " ],\n", - " validate_configs=[\n", - " RawGTDatasetConfig(\n", - " name=\"example_dataset\",\n", - " raw_config=IntensitiesArrayConfig(\n", - " name=\"example_raw_normalized\",\n", - " source_array_config=ZarrArrayConfig(\n", - " name=\"example_raw\",\n", - " file_name=\"cells3d.zarr\",\n", - " dataset=\"raw\",\n", - " ),\n", - " min=0,\n", - " max=255,\n", - " ),\n", - " gt_config=ZarrArrayConfig(\n", - " name=\"example_gt\",\n", - " file_name=\"cells3d.zarr\",\n", - " dataset=\"labels\",\n", - " ),\n", - " )\n", - " ],\n", - ")\n", + "datasplit_config = SimpleDataSplitConfig(name=\"cells3d\", path=\"cells3d.zarr\")\n", "datasplit = datasplit_config.datasplit_type(datasplit_config)\n", "config_store.store_datasplit_config(datasplit_config)" ] @@ -397,13 +350,13 @@ { "cell_type": "code", "execution_count": 5, - "id": "f3714c33", + "id": "21a7fb1c", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.559994Z", - "iopub.status.busy": "2024-11-12T19:49:06.559543Z", - "iopub.status.idle": "2024-11-12T19:49:06.569132Z", - "shell.execute_reply": "2024-11-12T19:49:06.568465Z" + "iopub.execute_input": "2024-11-13T16:49:48.508828Z", + "iopub.status.busy": "2024-11-13T16:49:48.508363Z", + "iopub.status.idle": "2024-11-13T16:49:48.511730Z", + "shell.execute_reply": "2024-11-13T16:49:48.511054Z" } }, "outputs": [], @@ -415,13 +368,13 @@ { "cell_type": "code", "execution_count": 6, - "id": "0bb36abc", + "id": "a50331d8", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.571435Z", - "iopub.status.busy": "2024-11-12T19:49:06.571025Z", - "iopub.status.idle": "2024-11-12T19:49:06.582079Z", - "shell.execute_reply": "2024-11-12T19:49:06.581519Z" + "iopub.execute_input": "2024-11-13T16:49:48.514032Z", + "iopub.status.busy": "2024-11-13T16:49:48.513809Z", + "iopub.status.idle": "2024-11-13T16:49:48.518615Z", + "shell.execute_reply": "2024-11-13T16:49:48.517930Z" } }, "outputs": [], @@ -431,7 +384,7 @@ }, { "cell_type": "markdown", - "id": "1d1015d4", + "id": "010ea4cc", "metadata": {}, "source": [ "## Task\n", @@ -449,13 +402,13 @@ { "cell_type": "code", "execution_count": 7, - "id": "4db35353", + "id": "85c8cff0", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.584153Z", - "iopub.status.busy": "2024-11-12T19:49:06.583698Z", - "iopub.status.idle": "2024-11-12T19:49:06.591467Z", - "shell.execute_reply": "2024-11-12T19:49:06.590822Z" + "iopub.execute_input": "2024-11-13T16:49:48.521318Z", + "iopub.status.busy": "2024-11-13T16:49:48.520756Z", + "iopub.status.idle": "2024-11-13T16:49:48.531157Z", + "shell.execute_reply": "2024-11-13T16:49:48.530409Z" } }, "outputs": [], @@ -487,7 +440,7 @@ }, { "cell_type": "markdown", - "id": "e9da37e4", + "id": "08b47ee4", "metadata": {}, "source": [ "## Architecture\n", @@ -501,13 +454,13 @@ { "cell_type": "code", "execution_count": 8, - "id": "6e5b6340", + "id": "a210f14d", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.593579Z", - "iopub.status.busy": "2024-11-12T19:49:06.593217Z", - "iopub.status.idle": "2024-11-12T19:49:06.599797Z", - "shell.execute_reply": "2024-11-12T19:49:06.599294Z" + "iopub.execute_input": "2024-11-13T16:49:48.533977Z", + "iopub.status.busy": "2024-11-13T16:49:48.533379Z", + "iopub.status.idle": "2024-11-13T16:49:48.542213Z", + "shell.execute_reply": "2024-11-13T16:49:48.541504Z" } }, "outputs": [], @@ -535,7 +488,7 @@ }, { "cell_type": "markdown", - "id": "cf2a2006", + "id": "e9745b9e", "metadata": {}, "source": [ "## Trainer\n", @@ -549,13 +502,13 @@ { "cell_type": "code", "execution_count": 9, - "id": "25e324e9", + "id": "e554db86", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.601709Z", - "iopub.status.busy": "2024-11-12T19:49:06.601331Z", - "iopub.status.idle": "2024-11-12T19:49:06.606066Z", - "shell.execute_reply": "2024-11-12T19:49:06.605546Z" + "iopub.execute_input": "2024-11-13T16:49:48.544834Z", + "iopub.status.busy": "2024-11-13T16:49:48.544393Z", + "iopub.status.idle": "2024-11-13T16:49:48.549496Z", + "shell.execute_reply": "2024-11-13T16:49:48.548954Z" } }, "outputs": [], @@ -576,7 +529,7 @@ }, { "cell_type": "markdown", - "id": "7c28c70b", + "id": "7e82c042", "metadata": {}, "source": [ "## Run\n", @@ -588,13 +541,13 @@ { "cell_type": "code", "execution_count": 10, - "id": "d853cddd", + "id": "936c9c2d", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.608081Z", - "iopub.status.busy": "2024-11-12T19:49:06.607714Z", - "iopub.status.idle": "2024-11-12T19:49:06.621075Z", - "shell.execute_reply": "2024-11-12T19:49:06.620575Z" + "iopub.execute_input": "2024-11-13T16:49:48.551507Z", + "iopub.status.busy": "2024-11-13T16:49:48.551132Z", + "iopub.status.idle": "2024-11-13T16:49:48.561162Z", + "shell.execute_reply": "2024-11-13T16:49:48.560558Z" } }, "outputs": [], @@ -619,7 +572,7 @@ }, { "cell_type": "markdown", - "id": "a4926141", + "id": "d5acdeb8", "metadata": {}, "source": [ "## Retrieve Configurations\n", @@ -653,7 +606,7 @@ }, { "cell_type": "markdown", - "id": "0b6c7ccf", + "id": "58f9cd86", "metadata": {}, "source": [ "## Train\n", @@ -667,13 +620,13 @@ { "cell_type": "code", "execution_count": 11, - "id": "2a6c49bf", + "id": "f7cda287", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T19:49:06.623180Z", - "iopub.status.busy": "2024-11-12T19:49:06.622717Z", - "iopub.status.idle": "2024-11-12T20:02:10.997344Z", - "shell.execute_reply": "2024-11-12T20:02:10.996718Z" + "iopub.execute_input": "2024-11-13T16:49:48.563266Z", + "iopub.status.busy": "2024-11-13T16:49:48.562953Z", + "iopub.status.idle": "2024-11-13T17:18:06.993038Z", + "shell.execute_reply": "2024-11-13T17:18:06.992381Z" } }, "outputs": [ @@ -708,7 +661,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "WARNING:dacapo.experiments.trainers.gunpowder_trainer:Saving Snapshot. Iteration: 0, Loss: 0.8857649564743042!\n" + "WARNING:dacapo.experiments.trainers.gunpowder_trainer:Saving Snapshot. Iteration: 0, Loss: 0.8100334405899048!\n" ] }, { @@ -716,7 +669,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 1/2000 [00:00<12:16, 2.72it/s]" + "training until 2000: 0%| | 1/2000 [00:00<28:37, 1.16it/s]" ] }, { @@ -724,7 +677,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 1/2000 [00:00<12:16, 2.72it/s, loss=0.886]" + "training until 2000: 0%| | 1/2000 [00:00<28:37, 1.16it/s, loss=0.81]" ] }, { @@ -732,7 +685,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 2/2000 [00:00<11:19, 2.94it/s, loss=0.886]" + "training until 2000: 0%| | 2/2000 [00:02<36:17, 1.09s/it, loss=0.81]" ] }, { @@ -740,7 +693,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 2/2000 [00:00<11:19, 2.94it/s, loss=0.908]" + "training until 2000: 0%| | 2/2000 [00:02<36:17, 1.09s/it, loss=0.781]" ] }, { @@ -748,7 +701,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 3/2000 [00:01<10:56, 3.04it/s, loss=0.908]" + "training until 2000: 0%| | 3/2000 [00:03<34:08, 1.03s/it, loss=0.781]" ] }, { @@ -756,7 +709,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 3/2000 [00:01<10:56, 3.04it/s, loss=0.847]" + "training until 2000: 0%| | 3/2000 [00:03<34:08, 1.03s/it, loss=0.834]" ] }, { @@ -764,7 +717,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 4/2000 [00:01<10:48, 3.08it/s, loss=0.847]" + "training until 2000: 0%| | 4/2000 [00:03<27:46, 1.20it/s, loss=0.834]" ] }, { @@ -772,7 +725,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 4/2000 [00:01<10:48, 3.08it/s, loss=0.865]" + "training until 2000: 0%| | 4/2000 [00:03<27:46, 1.20it/s, loss=0.813]" ] }, { @@ -780,7 +733,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 5/2000 [00:01<10:37, 3.13it/s, loss=0.865]" + "training until 2000: 0%| | 5/2000 [00:04<28:12, 1.18it/s, loss=0.813]" ] }, { @@ -788,7 +741,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 5/2000 [00:01<10:37, 3.13it/s, loss=0.92] " + "training until 2000: 0%| | 5/2000 [00:04<28:12, 1.18it/s, loss=0.791]" ] }, { @@ -796,7 +749,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 6/2000 [00:01<10:34, 3.14it/s, loss=0.92]" + "training until 2000: 0%| | 6/2000 [00:05<27:42, 1.20it/s, loss=0.791]" ] }, { @@ -804,7 +757,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 6/2000 [00:01<10:34, 3.14it/s, loss=0.943]" + "training until 2000: 0%| | 6/2000 [00:05<27:42, 1.20it/s, loss=0.817]" ] }, { @@ -812,7 +765,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 7/2000 [00:02<10:28, 3.17it/s, loss=0.943]" + "training until 2000: 0%| | 7/2000 [00:06<28:07, 1.18it/s, loss=0.817]" ] }, { @@ -820,7 +773,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 7/2000 [00:02<10:28, 3.17it/s, loss=0.893]" + "training until 2000: 0%| | 7/2000 [00:06<28:07, 1.18it/s, loss=0.807]" ] }, { @@ -828,7 +781,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 8/2000 [00:02<10:27, 3.17it/s, loss=0.893]" + "training until 2000: 0%| | 8/2000 [00:06<26:35, 1.25it/s, loss=0.807]" ] }, { @@ -836,7 +789,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 8/2000 [00:02<10:27, 3.17it/s, loss=0.885]" + "training until 2000: 0%| | 8/2000 [00:06<26:35, 1.25it/s, loss=0.803]" ] }, { @@ -844,7 +797,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 9/2000 [00:02<10:29, 3.16it/s, loss=0.885]" + "training until 2000: 0%| | 9/2000 [00:07<26:57, 1.23it/s, loss=0.803]" ] }, { @@ -852,7 +805,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 9/2000 [00:02<10:29, 3.16it/s, loss=0.856]" + "training until 2000: 0%| | 9/2000 [00:07<26:57, 1.23it/s, loss=0.82] " ] }, { @@ -860,7 +813,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 10/2000 [00:03<10:26, 3.18it/s, loss=0.856]" + "training until 2000: 0%| | 10/2000 [00:08<30:29, 1.09it/s, loss=0.82]" ] }, { @@ -868,7 +821,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 10/2000 [00:03<10:26, 3.18it/s, loss=0.895]" + "training until 2000: 0%| | 10/2000 [00:08<30:29, 1.09it/s, loss=0.813]" ] }, { @@ -876,7 +829,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 11/2000 [00:03<10:31, 3.15it/s, loss=0.895]" + "training until 2000: 1%| | 11/2000 [00:09<30:39, 1.08it/s, loss=0.813]" ] }, { @@ -884,7 +837,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 11/2000 [00:03<10:31, 3.15it/s, loss=0.861]" + "training until 2000: 1%| | 11/2000 [00:09<30:39, 1.08it/s, loss=0.79] " ] }, { @@ -892,7 +845,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 12/2000 [00:03<10:30, 3.15it/s, loss=0.861]" + "training until 2000: 1%| | 12/2000 [00:10<28:55, 1.15it/s, loss=0.79]" ] }, { @@ -900,7 +853,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 12/2000 [00:03<10:30, 3.15it/s, loss=0.933]" + "training until 2000: 1%| | 12/2000 [00:10<28:55, 1.15it/s, loss=0.816]" ] }, { @@ -908,7 +861,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 13/2000 [00:04<10:28, 3.16it/s, loss=0.933]" + "training until 2000: 1%| | 13/2000 [00:11<30:25, 1.09it/s, loss=0.816]" ] }, { @@ -916,7 +869,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 13/2000 [00:04<10:28, 3.16it/s, loss=0.874]" + "training until 2000: 1%| | 13/2000 [00:11<30:25, 1.09it/s, loss=0.825]" ] }, { @@ -924,7 +877,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 14/2000 [00:04<10:41, 3.09it/s, loss=0.874]" + "training until 2000: 1%| | 14/2000 [00:12<26:46, 1.24it/s, loss=0.825]" ] }, { @@ -932,7 +885,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 14/2000 [00:04<10:41, 3.09it/s, loss=0.883]" + "training until 2000: 1%| | 14/2000 [00:12<26:46, 1.24it/s, loss=0.782]" ] }, { @@ -940,7 +893,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 15/2000 [00:04<10:34, 3.13it/s, loss=0.883]" + "training until 2000: 1%| | 15/2000 [00:12<25:44, 1.28it/s, loss=0.782]" ] }, { @@ -948,7 +901,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 15/2000 [00:04<10:34, 3.13it/s, loss=0.937]" + "training until 2000: 1%| | 15/2000 [00:12<25:44, 1.28it/s, loss=0.804]" ] }, { @@ -956,7 +909,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 16/2000 [00:05<10:29, 3.15it/s, loss=0.937]" + "training until 2000: 1%| | 16/2000 [00:13<24:51, 1.33it/s, loss=0.804]" ] }, { @@ -964,7 +917,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 16/2000 [00:05<10:29, 3.15it/s, loss=0.874]" + "training until 2000: 1%| | 16/2000 [00:13<24:51, 1.33it/s, loss=0.808]" ] }, { @@ -972,7 +925,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 17/2000 [00:05<10:22, 3.18it/s, loss=0.874]" + "training until 2000: 1%| | 17/2000 [00:14<25:28, 1.30it/s, loss=0.808]" ] }, { @@ -980,7 +933,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 17/2000 [00:05<10:22, 3.18it/s, loss=0.852]" + "training until 2000: 1%| | 17/2000 [00:14<25:28, 1.30it/s, loss=0.82] " ] }, { @@ -988,7 +941,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 18/2000 [00:05<10:24, 3.18it/s, loss=0.852]" + "training until 2000: 1%| | 18/2000 [00:15<25:58, 1.27it/s, loss=0.82]" ] }, { @@ -996,7 +949,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 18/2000 [00:05<10:24, 3.18it/s, loss=0.914]" + "training until 2000: 1%| | 18/2000 [00:15<25:58, 1.27it/s, loss=0.858]" ] }, { @@ -1004,7 +957,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 19/2000 [00:06<10:24, 3.17it/s, loss=0.914]" + "training until 2000: 1%| | 19/2000 [00:16<29:46, 1.11it/s, loss=0.858]" ] }, { @@ -1012,7 +965,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 19/2000 [00:06<10:24, 3.17it/s, loss=0.872]" + "training until 2000: 1%| | 19/2000 [00:16<29:46, 1.11it/s, loss=0.794]" ] }, { @@ -1020,7 +973,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 20/2000 [00:06<10:19, 3.20it/s, loss=0.872]" + "training until 2000: 1%| | 20/2000 [00:17<28:34, 1.16it/s, loss=0.794]" ] }, { @@ -1028,7 +981,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 20/2000 [00:06<10:19, 3.20it/s, loss=0.907]" + "training until 2000: 1%| | 20/2000 [00:17<28:34, 1.16it/s, loss=0.833]" ] }, { @@ -1036,7 +989,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 21/2000 [00:06<12:24, 2.66it/s, loss=0.907]" + "training until 2000: 1%| | 21/2000 [00:17<27:57, 1.18it/s, loss=0.833]" ] }, { @@ -1044,7 +997,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 21/2000 [00:06<12:24, 2.66it/s, loss=0.841]" + "training until 2000: 1%| | 21/2000 [00:17<27:57, 1.18it/s, loss=0.815]" ] }, { @@ -1052,7 +1005,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 22/2000 [00:07<11:52, 2.78it/s, loss=0.841]" + "training until 2000: 1%| | 22/2000 [00:18<25:13, 1.31it/s, loss=0.815]" ] }, { @@ -1060,7 +1013,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 22/2000 [00:07<11:52, 2.78it/s, loss=0.873]" + "training until 2000: 1%| | 22/2000 [00:18<25:13, 1.31it/s, loss=0.801]" ] }, { @@ -1068,7 +1021,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 23/2000 [00:07<11:23, 2.89it/s, loss=0.873]" + "training until 2000: 1%| | 23/2000 [00:19<23:10, 1.42it/s, loss=0.801]" ] }, { @@ -1076,7 +1029,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 23/2000 [00:07<11:23, 2.89it/s, loss=0.934]" + "training until 2000: 1%| | 23/2000 [00:19<23:10, 1.42it/s, loss=0.735]" ] }, { @@ -1084,7 +1037,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 24/2000 [00:07<11:03, 2.98it/s, loss=0.934]" + "training until 2000: 1%| | 24/2000 [00:19<24:37, 1.34it/s, loss=0.735]" ] }, { @@ -1092,7 +1045,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 24/2000 [00:07<11:03, 2.98it/s, loss=0.907]" + "training until 2000: 1%| | 24/2000 [00:19<24:37, 1.34it/s, loss=0.804]" ] }, { @@ -1100,7 +1053,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 25/2000 [00:08<10:50, 3.04it/s, loss=0.907]" + "training until 2000: 1%|▏ | 25/2000 [00:21<28:15, 1.16it/s, loss=0.804]" ] }, { @@ -1108,7 +1061,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 25/2000 [00:08<10:50, 3.04it/s, loss=0.943]" + "training until 2000: 1%|▏ | 25/2000 [00:21<28:15, 1.16it/s, loss=0.769]" ] }, { @@ -1116,7 +1069,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 26/2000 [00:08<10:42, 3.07it/s, loss=0.943]" + "training until 2000: 1%|▏ | 26/2000 [00:21<26:57, 1.22it/s, loss=0.769]" ] }, { @@ -1124,7 +1077,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 26/2000 [00:08<10:42, 3.07it/s, loss=0.868]" + "training until 2000: 1%|▏ | 26/2000 [00:21<26:57, 1.22it/s, loss=0.815]" ] }, { @@ -1132,7 +1085,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 27/2000 [00:08<11:09, 2.95it/s, loss=0.868]" + "training until 2000: 1%|▏ | 27/2000 [00:22<28:27, 1.16it/s, loss=0.815]" ] }, { @@ -1140,7 +1093,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 27/2000 [00:08<11:09, 2.95it/s, loss=0.912]" + "training until 2000: 1%|▏ | 27/2000 [00:22<28:27, 1.16it/s, loss=0.825]" ] }, { @@ -1148,7 +1101,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 28/2000 [00:09<11:01, 2.98it/s, loss=0.912]" + "training until 2000: 1%|▏ | 28/2000 [00:23<28:11, 1.17it/s, loss=0.825]" ] }, { @@ -1156,7 +1109,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 28/2000 [00:09<11:01, 2.98it/s, loss=0.857]" + "training until 2000: 1%|▏ | 28/2000 [00:23<28:11, 1.17it/s, loss=0.777]" ] }, { @@ -1164,7 +1117,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 29/2000 [00:09<10:52, 3.02it/s, loss=0.857]" + "training until 2000: 1%|▏ | 29/2000 [00:24<25:23, 1.29it/s, loss=0.777]" ] }, { @@ -1172,7 +1125,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 29/2000 [00:09<10:52, 3.02it/s, loss=0.93] " + "training until 2000: 1%|▏ | 29/2000 [00:24<25:23, 1.29it/s, loss=0.829]" ] }, { @@ -1180,7 +1133,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 30/2000 [00:09<10:51, 3.02it/s, loss=0.93]" + "training until 2000: 2%|▏ | 30/2000 [00:24<24:26, 1.34it/s, loss=0.829]" ] }, { @@ -1188,7 +1141,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 30/2000 [00:09<10:51, 3.02it/s, loss=0.895]" + "training until 2000: 2%|▏ | 30/2000 [00:24<24:26, 1.34it/s, loss=0.81] " ] }, { @@ -1196,7 +1149,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 31/2000 [00:10<10:43, 3.06it/s, loss=0.895]" + "training until 2000: 2%|▏ | 31/2000 [00:25<24:40, 1.33it/s, loss=0.81]" ] }, { @@ -1204,7 +1157,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 31/2000 [00:10<10:43, 3.06it/s, loss=0.868]" + "training until 2000: 2%|▏ | 31/2000 [00:25<24:40, 1.33it/s, loss=0.837]" ] }, { @@ -1212,7 +1165,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 32/2000 [00:10<10:34, 3.10it/s, loss=0.868]" + "training until 2000: 2%|▏ | 32/2000 [00:26<24:04, 1.36it/s, loss=0.837]" ] }, { @@ -1220,7 +1173,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 32/2000 [00:10<10:34, 3.10it/s, loss=0.883]" + "training until 2000: 2%|▏ | 32/2000 [00:26<24:04, 1.36it/s, loss=0.783]" ] }, { @@ -1228,7 +1181,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 33/2000 [00:10<10:39, 3.08it/s, loss=0.883]" + "training until 2000: 2%|▏ | 33/2000 [00:26<23:22, 1.40it/s, loss=0.783]" ] }, { @@ -1236,7 +1189,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 33/2000 [00:10<10:39, 3.08it/s, loss=0.933]" + "training until 2000: 2%|▏ | 33/2000 [00:26<23:22, 1.40it/s, loss=0.809]" ] }, { @@ -1244,7 +1197,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 34/2000 [00:11<10:35, 3.09it/s, loss=0.933]" + "training until 2000: 2%|▏ | 34/2000 [00:27<24:09, 1.36it/s, loss=0.809]" ] }, { @@ -1252,7 +1205,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 34/2000 [00:11<10:35, 3.09it/s, loss=0.837]" + "training until 2000: 2%|▏ | 34/2000 [00:27<24:09, 1.36it/s, loss=0.789]" ] }, { @@ -1260,7 +1213,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 35/2000 [00:11<10:38, 3.08it/s, loss=0.837]" + "training until 2000: 2%|▏ | 35/2000 [00:28<25:02, 1.31it/s, loss=0.789]" ] }, { @@ -1268,7 +1221,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 35/2000 [00:11<10:38, 3.08it/s, loss=0.937]" + "training until 2000: 2%|▏ | 35/2000 [00:28<25:02, 1.31it/s, loss=0.799]" ] }, { @@ -1276,7 +1229,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 36/2000 [00:11<10:32, 3.11it/s, loss=0.937]" + "training until 2000: 2%|▏ | 36/2000 [00:29<27:51, 1.17it/s, loss=0.799]" ] }, { @@ -1284,7 +1237,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 36/2000 [00:11<10:32, 3.11it/s, loss=0.92] " + "training until 2000: 2%|▏ | 36/2000 [00:29<27:51, 1.17it/s, loss=0.792]" ] }, { @@ -1292,7 +1245,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 37/2000 [00:12<10:20, 3.16it/s, loss=0.92]" + "training until 2000: 2%|▏ | 37/2000 [00:30<31:16, 1.05it/s, loss=0.792]" ] }, { @@ -1300,7 +1253,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 37/2000 [00:12<10:20, 3.16it/s, loss=0.917]" + "training until 2000: 2%|▏ | 37/2000 [00:30<31:16, 1.05it/s, loss=0.773]" ] }, { @@ -1308,7 +1261,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 38/2000 [00:12<10:20, 3.16it/s, loss=0.917]" + "training until 2000: 2%|▏ | 38/2000 [00:31<28:38, 1.14it/s, loss=0.773]" ] }, { @@ -1316,7 +1269,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 38/2000 [00:12<10:20, 3.16it/s, loss=0.859]" + "training until 2000: 2%|▏ | 38/2000 [00:31<28:38, 1.14it/s, loss=0.81] " ] }, { @@ -1324,7 +1277,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 39/2000 [00:12<10:14, 3.19it/s, loss=0.859]" + "training until 2000: 2%|▏ | 39/2000 [00:32<26:31, 1.23it/s, loss=0.81]" ] }, { @@ -1332,7 +1285,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 39/2000 [00:12<10:14, 3.19it/s, loss=0.831]" + "training until 2000: 2%|▏ | 39/2000 [00:32<26:31, 1.23it/s, loss=0.8] " ] }, { @@ -1340,7 +1293,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 40/2000 [00:12<10:12, 3.20it/s, loss=0.831]" + "training until 2000: 2%|▏ | 40/2000 [00:32<25:28, 1.28it/s, loss=0.8]" ] }, { @@ -1348,7 +1301,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 40/2000 [00:12<10:12, 3.20it/s, loss=0.891]" + "training until 2000: 2%|▏ | 40/2000 [00:32<25:28, 1.28it/s, loss=0.809]" ] }, { @@ -1356,7 +1309,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 41/2000 [00:13<10:14, 3.19it/s, loss=0.891]" + "training until 2000: 2%|▏ | 41/2000 [00:34<29:41, 1.10it/s, loss=0.809]" ] }, { @@ -1364,7 +1317,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 41/2000 [00:13<10:14, 3.19it/s, loss=0.869]" + "training until 2000: 2%|▏ | 41/2000 [00:34<29:41, 1.10it/s, loss=0.838]" ] }, { @@ -1372,7 +1325,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 42/2000 [00:13<10:12, 3.19it/s, loss=0.869]" + "training until 2000: 2%|▏ | 42/2000 [00:34<29:19, 1.11it/s, loss=0.838]" ] }, { @@ -1380,7 +1333,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 42/2000 [00:13<10:12, 3.19it/s, loss=0.893]" + "training until 2000: 2%|▏ | 42/2000 [00:34<29:19, 1.11it/s, loss=0.82] " ] }, { @@ -1388,7 +1341,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 43/2000 [00:13<10:21, 3.15it/s, loss=0.893]" + "training until 2000: 2%|▏ | 43/2000 [00:35<26:54, 1.21it/s, loss=0.82]" ] }, { @@ -1396,7 +1349,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 43/2000 [00:13<10:21, 3.15it/s, loss=0.885]" + "training until 2000: 2%|▏ | 43/2000 [00:35<26:54, 1.21it/s, loss=0.776]" ] }, { @@ -1404,7 +1357,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 44/2000 [00:14<10:18, 3.16it/s, loss=0.885]" + "training until 2000: 2%|▏ | 44/2000 [00:36<28:57, 1.13it/s, loss=0.776]" ] }, { @@ -1412,7 +1365,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 44/2000 [00:14<10:18, 3.16it/s, loss=0.915]" + "training until 2000: 2%|▏ | 44/2000 [00:36<28:57, 1.13it/s, loss=0.839]" ] }, { @@ -1420,7 +1373,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 45/2000 [00:14<10:16, 3.17it/s, loss=0.915]" + "training until 2000: 2%|▏ | 45/2000 [00:37<30:31, 1.07it/s, loss=0.839]" ] }, { @@ -1428,7 +1381,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 45/2000 [00:14<10:16, 3.17it/s, loss=0.901]" + "training until 2000: 2%|▏ | 45/2000 [00:37<30:31, 1.07it/s, loss=0.779]" ] }, { @@ -1436,7 +1389,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 46/2000 [00:14<10:18, 3.16it/s, loss=0.901]" + "training until 2000: 2%|▏ | 46/2000 [00:38<28:40, 1.14it/s, loss=0.779]" ] }, { @@ -1444,7 +1397,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 46/2000 [00:14<10:18, 3.16it/s, loss=0.925]" + "training until 2000: 2%|▏ | 46/2000 [00:38<28:40, 1.14it/s, loss=0.805]" ] }, { @@ -1452,7 +1405,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 47/2000 [00:15<10:16, 3.17it/s, loss=0.925]" + "training until 2000: 2%|▏ | 47/2000 [00:39<27:29, 1.18it/s, loss=0.805]" ] }, { @@ -1460,7 +1413,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 47/2000 [00:15<10:16, 3.17it/s, loss=0.897]" + "training until 2000: 2%|▏ | 47/2000 [00:39<27:29, 1.18it/s, loss=0.82] " ] }, { @@ -1468,7 +1421,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 48/2000 [00:15<10:09, 3.20it/s, loss=0.897]" + "training until 2000: 2%|▏ | 48/2000 [00:40<30:40, 1.06it/s, loss=0.82]" ] }, { @@ -1476,7 +1429,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 48/2000 [00:15<10:09, 3.20it/s, loss=0.894]" + "training until 2000: 2%|▏ | 48/2000 [00:40<30:40, 1.06it/s, loss=0.8] " ] }, { @@ -1484,7 +1437,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 49/2000 [00:15<10:07, 3.21it/s, loss=0.894]" + "training until 2000: 2%|▏ | 49/2000 [00:41<29:08, 1.12it/s, loss=0.8]" ] }, { @@ -1492,7 +1445,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 49/2000 [00:15<10:07, 3.21it/s, loss=0.867]" + "training until 2000: 2%|▏ | 49/2000 [00:41<29:08, 1.12it/s, loss=0.838]" ] }, { @@ -1500,7 +1453,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▎ | 50/2000 [00:16<10:06, 3.22it/s, loss=0.867]" + "training until 2000: 2%|▎ | 50/2000 [00:42<29:37, 1.10it/s, loss=0.838]" ] }, { @@ -1508,7 +1461,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▎ | 50/2000 [00:16<10:06, 3.22it/s, loss=0.907]" + "training until 2000: 2%|▎ | 50/2000 [00:42<29:37, 1.10it/s, loss=0.831]" ] }, { @@ -1516,7 +1469,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 51/2000 [00:16<10:10, 3.19it/s, loss=0.907]" + "training until 2000: 3%|▎ | 51/2000 [00:43<35:07, 1.08s/it, loss=0.831]" ] }, { @@ -1524,7 +1477,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 51/2000 [00:16<10:10, 3.19it/s, loss=0.841]" + "training until 2000: 3%|▎ | 51/2000 [00:43<35:07, 1.08s/it, loss=0.768]" ] }, { @@ -1532,7 +1485,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 52/2000 [00:16<10:14, 3.17it/s, loss=0.841]" + "training until 2000: 3%|▎ | 52/2000 [00:44<31:04, 1.04it/s, loss=0.768]" ] }, { @@ -1540,7 +1493,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 52/2000 [00:16<10:14, 3.17it/s, loss=0.913]" + "training until 2000: 3%|▎ | 52/2000 [00:44<31:04, 1.04it/s, loss=0.804]" ] }, { @@ -1548,7 +1501,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 53/2000 [00:17<10:11, 3.18it/s, loss=0.913]" + "training until 2000: 3%|▎ | 53/2000 [00:44<27:19, 1.19it/s, loss=0.804]" ] }, { @@ -1556,7 +1509,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 53/2000 [00:17<10:11, 3.18it/s, loss=0.88] " + "training until 2000: 3%|▎ | 53/2000 [00:44<27:19, 1.19it/s, loss=0.826]" ] }, { @@ -1564,7 +1517,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 54/2000 [00:17<10:14, 3.17it/s, loss=0.88]" + "training until 2000: 3%|▎ | 54/2000 [00:45<30:09, 1.08it/s, loss=0.826]" ] }, { @@ -1572,7 +1525,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 54/2000 [00:17<10:14, 3.17it/s, loss=0.835]" + "training until 2000: 3%|▎ | 54/2000 [00:45<30:09, 1.08it/s, loss=0.79] " ] }, { @@ -1580,7 +1533,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 55/2000 [00:17<10:19, 3.14it/s, loss=0.835]" + "training until 2000: 3%|▎ | 55/2000 [00:47<31:46, 1.02it/s, loss=0.79]" ] }, { @@ -1588,7 +1541,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 55/2000 [00:17<10:19, 3.14it/s, loss=0.907]" + "training until 2000: 3%|▎ | 55/2000 [00:47<31:46, 1.02it/s, loss=0.793]" ] }, { @@ -1596,7 +1549,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 56/2000 [00:18<10:26, 3.10it/s, loss=0.907]" + "training until 2000: 3%|▎ | 56/2000 [00:47<28:54, 1.12it/s, loss=0.793]" ] }, { @@ -1604,7 +1557,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 56/2000 [00:18<10:26, 3.10it/s, loss=0.898]" + "training until 2000: 3%|▎ | 56/2000 [00:47<28:54, 1.12it/s, loss=0.831]" ] }, { @@ -1612,7 +1565,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 57/2000 [00:18<10:25, 3.11it/s, loss=0.898]" + "training until 2000: 3%|▎ | 57/2000 [00:48<26:45, 1.21it/s, loss=0.831]" ] }, { @@ -1620,7 +1573,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 57/2000 [00:18<10:25, 3.11it/s, loss=0.88] " + "training until 2000: 3%|▎ | 57/2000 [00:48<26:45, 1.21it/s, loss=0.836]" ] }, { @@ -1628,7 +1581,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 58/2000 [00:18<10:20, 3.13it/s, loss=0.88]" + "training until 2000: 3%|▎ | 58/2000 [00:49<25:44, 1.26it/s, loss=0.836]" ] }, { @@ -1636,7 +1589,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 58/2000 [00:18<10:20, 3.13it/s, loss=0.895]" + "training until 2000: 3%|▎ | 58/2000 [00:49<25:44, 1.26it/s, loss=0.838]" ] }, { @@ -1644,7 +1597,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 59/2000 [00:18<10:17, 3.14it/s, loss=0.895]" + "training until 2000: 3%|▎ | 59/2000 [00:49<24:08, 1.34it/s, loss=0.838]" ] }, { @@ -1652,7 +1605,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 59/2000 [00:18<10:17, 3.14it/s, loss=0.846]" + "training until 2000: 3%|▎ | 59/2000 [00:49<24:08, 1.34it/s, loss=0.799]" ] }, { @@ -1660,7 +1613,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 60/2000 [00:19<10:18, 3.14it/s, loss=0.846]" + "training until 2000: 3%|▎ | 60/2000 [00:50<25:52, 1.25it/s, loss=0.799]" ] }, { @@ -1668,7 +1621,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 60/2000 [00:19<10:18, 3.14it/s, loss=0.929]" + "training until 2000: 3%|▎ | 60/2000 [00:50<25:52, 1.25it/s, loss=0.832]" ] }, { @@ -1676,7 +1629,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 61/2000 [00:19<10:24, 3.11it/s, loss=0.929]" + "training until 2000: 3%|▎ | 61/2000 [00:51<25:46, 1.25it/s, loss=0.832]" ] }, { @@ -1684,7 +1637,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 61/2000 [00:19<10:24, 3.11it/s, loss=0.917]" + "training until 2000: 3%|▎ | 61/2000 [00:51<25:46, 1.25it/s, loss=0.802]" ] }, { @@ -1692,7 +1645,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 62/2000 [00:19<10:23, 3.11it/s, loss=0.917]" + "training until 2000: 3%|▎ | 62/2000 [00:52<29:22, 1.10it/s, loss=0.802]" ] }, { @@ -1700,7 +1653,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 62/2000 [00:19<10:23, 3.11it/s, loss=0.902]" + "training until 2000: 3%|▎ | 62/2000 [00:52<29:22, 1.10it/s, loss=0.804]" ] }, { @@ -1708,7 +1661,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 63/2000 [00:20<10:22, 3.11it/s, loss=0.902]" + "training until 2000: 3%|▎ | 63/2000 [00:53<29:19, 1.10it/s, loss=0.804]" ] }, { @@ -1716,7 +1669,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 63/2000 [00:20<10:22, 3.11it/s, loss=0.923]" + "training until 2000: 3%|▎ | 63/2000 [00:53<29:19, 1.10it/s, loss=0.819]" ] }, { @@ -1724,7 +1677,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 64/2000 [00:20<10:24, 3.10it/s, loss=0.923]" + "training until 2000: 3%|▎ | 64/2000 [00:54<27:44, 1.16it/s, loss=0.819]" ] }, { @@ -1732,7 +1685,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 64/2000 [00:20<10:24, 3.10it/s, loss=0.876]" + "training until 2000: 3%|▎ | 64/2000 [00:54<27:44, 1.16it/s, loss=0.774]" ] }, { @@ -1740,7 +1693,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 65/2000 [00:20<10:19, 3.12it/s, loss=0.876]" + "training until 2000: 3%|▎ | 65/2000 [00:54<25:56, 1.24it/s, loss=0.774]" ] }, { @@ -1748,7 +1701,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 65/2000 [00:20<10:19, 3.12it/s, loss=0.905]" + "training until 2000: 3%|▎ | 65/2000 [00:54<25:56, 1.24it/s, loss=0.83] " ] }, { @@ -1756,7 +1709,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 66/2000 [00:21<10:15, 3.14it/s, loss=0.905]" + "training until 2000: 3%|▎ | 66/2000 [00:55<27:16, 1.18it/s, loss=0.83]" ] }, { @@ -1764,7 +1717,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 66/2000 [00:21<10:15, 3.14it/s, loss=0.894]" + "training until 2000: 3%|▎ | 66/2000 [00:55<27:16, 1.18it/s, loss=0.783]" ] }, { @@ -1772,7 +1725,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 67/2000 [00:21<10:12, 3.16it/s, loss=0.894]" + "training until 2000: 3%|▎ | 67/2000 [00:56<28:52, 1.12it/s, loss=0.783]" ] }, { @@ -1780,7 +1733,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 67/2000 [00:21<10:12, 3.16it/s, loss=0.876]" + "training until 2000: 3%|▎ | 67/2000 [00:56<28:52, 1.12it/s, loss=0.821]" ] }, { @@ -1788,7 +1741,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 68/2000 [00:21<10:08, 3.17it/s, loss=0.876]" + "training until 2000: 3%|▎ | 68/2000 [00:57<27:50, 1.16it/s, loss=0.821]" ] }, { @@ -1796,7 +1749,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 68/2000 [00:21<10:08, 3.17it/s, loss=0.846]" + "training until 2000: 3%|▎ | 68/2000 [00:57<27:50, 1.16it/s, loss=0.844]" ] }, { @@ -1804,7 +1757,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 69/2000 [00:22<10:06, 3.18it/s, loss=0.846]" + "training until 2000: 3%|▎ | 69/2000 [00:58<25:21, 1.27it/s, loss=0.844]" ] }, { @@ -1812,7 +1765,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 69/2000 [00:22<10:06, 3.18it/s, loss=0.893]" + "training until 2000: 3%|▎ | 69/2000 [00:58<25:21, 1.27it/s, loss=0.821]" ] }, { @@ -1820,7 +1773,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 70/2000 [00:22<10:02, 3.20it/s, loss=0.893]" + "training until 2000: 4%|▎ | 70/2000 [00:59<25:37, 1.26it/s, loss=0.821]" ] }, { @@ -1828,7 +1781,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 70/2000 [00:22<10:02, 3.20it/s, loss=0.836]" + "training until 2000: 4%|▎ | 70/2000 [00:59<25:37, 1.26it/s, loss=0.846]" ] }, { @@ -1836,7 +1789,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 71/2000 [00:22<10:04, 3.19it/s, loss=0.836]" + "training until 2000: 4%|▎ | 71/2000 [00:59<24:35, 1.31it/s, loss=0.846]" ] }, { @@ -1844,7 +1797,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 71/2000 [00:22<10:04, 3.19it/s, loss=0.899]" + "training until 2000: 4%|▎ | 71/2000 [00:59<24:35, 1.31it/s, loss=0.764]" ] }, { @@ -1852,7 +1805,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 72/2000 [00:23<10:07, 3.18it/s, loss=0.899]" + "training until 2000: 4%|▎ | 72/2000 [01:00<22:58, 1.40it/s, loss=0.764]" ] }, { @@ -1860,7 +1813,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 72/2000 [00:23<10:07, 3.18it/s, loss=0.928]" + "training until 2000: 4%|▎ | 72/2000 [01:00<22:58, 1.40it/s, loss=0.772]" ] }, { @@ -1868,7 +1821,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 73/2000 [00:23<10:01, 3.20it/s, loss=0.928]" + "training until 2000: 4%|▎ | 73/2000 [01:01<21:35, 1.49it/s, loss=0.772]" ] }, { @@ -1876,7 +1829,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 73/2000 [00:23<10:01, 3.20it/s, loss=0.895]" + "training until 2000: 4%|▎ | 73/2000 [01:01<21:35, 1.49it/s, loss=0.807]" ] }, { @@ -1884,7 +1837,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 74/2000 [00:23<10:02, 3.20it/s, loss=0.895]" + "training until 2000: 4%|▎ | 74/2000 [01:01<22:57, 1.40it/s, loss=0.807]" ] }, { @@ -1892,7 +1845,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 74/2000 [00:23<10:02, 3.20it/s, loss=0.919]" + "training until 2000: 4%|▎ | 74/2000 [01:01<22:57, 1.40it/s, loss=0.839]" ] }, { @@ -1900,7 +1853,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 75/2000 [00:24<10:07, 3.17it/s, loss=0.919]" + "training until 2000: 4%|▍ | 75/2000 [01:02<22:08, 1.45it/s, loss=0.839]" ] }, { @@ -1908,7 +1861,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 75/2000 [00:24<10:07, 3.17it/s, loss=0.939]" + "training until 2000: 4%|▍ | 75/2000 [01:02<22:08, 1.45it/s, loss=0.811]" ] }, { @@ -1916,7 +1869,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 76/2000 [00:24<10:04, 3.18it/s, loss=0.939]" + "training until 2000: 4%|▍ | 76/2000 [01:03<24:51, 1.29it/s, loss=0.811]" ] }, { @@ -1924,7 +1877,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 76/2000 [00:24<10:04, 3.18it/s, loss=0.934]" + "training until 2000: 4%|▍ | 76/2000 [01:03<24:51, 1.29it/s, loss=0.813]" ] }, { @@ -1932,7 +1885,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 77/2000 [00:24<10:10, 3.15it/s, loss=0.934]" + "training until 2000: 4%|▍ | 77/2000 [01:04<25:40, 1.25it/s, loss=0.813]" ] }, { @@ -1940,7 +1893,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 77/2000 [00:24<10:10, 3.15it/s, loss=0.886]" + "training until 2000: 4%|▍ | 77/2000 [01:04<25:40, 1.25it/s, loss=0.786]" ] }, { @@ -1948,7 +1901,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 78/2000 [00:25<10:07, 3.16it/s, loss=0.886]" + "training until 2000: 4%|▍ | 78/2000 [01:05<25:49, 1.24it/s, loss=0.786]" ] }, { @@ -1956,7 +1909,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 78/2000 [00:25<10:07, 3.16it/s, loss=0.838]" + "training until 2000: 4%|▍ | 78/2000 [01:05<25:49, 1.24it/s, loss=0.818]" ] }, { @@ -1964,7 +1917,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 79/2000 [00:25<10:09, 3.15it/s, loss=0.838]" + "training until 2000: 4%|▍ | 79/2000 [01:06<27:50, 1.15it/s, loss=0.818]" ] }, { @@ -1972,7 +1925,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 79/2000 [00:25<10:09, 3.15it/s, loss=0.887]" + "training until 2000: 4%|▍ | 79/2000 [01:06<27:50, 1.15it/s, loss=0.805]" ] }, { @@ -1980,7 +1933,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 80/2000 [00:25<10:08, 3.15it/s, loss=0.887]" + "training until 2000: 4%|▍ | 80/2000 [01:07<28:11, 1.14it/s, loss=0.805]" ] }, { @@ -1988,7 +1941,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 80/2000 [00:25<10:08, 3.15it/s, loss=0.926]" + "training until 2000: 4%|▍ | 80/2000 [01:07<28:11, 1.14it/s, loss=0.836]" ] }, { @@ -1996,7 +1949,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 81/2000 [00:25<10:01, 3.19it/s, loss=0.926]" + "training until 2000: 4%|▍ | 81/2000 [01:07<27:41, 1.15it/s, loss=0.836]" ] }, { @@ -2004,7 +1957,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 81/2000 [00:25<10:01, 3.19it/s, loss=0.875]" + "training until 2000: 4%|▍ | 81/2000 [01:07<27:41, 1.15it/s, loss=0.804]" ] }, { @@ -2012,7 +1965,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 82/2000 [00:26<10:02, 3.18it/s, loss=0.875]" + "training until 2000: 4%|▍ | 82/2000 [01:08<26:58, 1.19it/s, loss=0.804]" ] }, { @@ -2020,7 +1973,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 82/2000 [00:26<10:02, 3.18it/s, loss=0.87] " + "training until 2000: 4%|▍ | 82/2000 [01:08<26:58, 1.19it/s, loss=0.822]" ] }, { @@ -2028,7 +1981,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 83/2000 [00:26<09:59, 3.20it/s, loss=0.87]" + "training until 2000: 4%|▍ | 83/2000 [01:09<28:11, 1.13it/s, loss=0.822]" ] }, { @@ -2036,7 +1989,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 83/2000 [00:26<09:59, 3.20it/s, loss=0.903]" + "training until 2000: 4%|▍ | 83/2000 [01:09<28:11, 1.13it/s, loss=0.829]" ] }, { @@ -2044,7 +1997,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 84/2000 [00:27<12:10, 2.62it/s, loss=0.903]" + "training until 2000: 4%|▍ | 84/2000 [01:10<25:27, 1.25it/s, loss=0.829]" ] }, { @@ -2052,7 +2005,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 84/2000 [00:27<12:10, 2.62it/s, loss=0.927]" + "training until 2000: 4%|▍ | 84/2000 [01:10<25:27, 1.25it/s, loss=0.829]" ] }, { @@ -2060,7 +2013,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 85/2000 [00:27<11:38, 2.74it/s, loss=0.927]" + "training until 2000: 4%|▍ | 85/2000 [01:10<24:53, 1.28it/s, loss=0.829]" ] }, { @@ -2068,7 +2021,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 85/2000 [00:27<11:38, 2.74it/s, loss=0.936]" + "training until 2000: 4%|▍ | 85/2000 [01:10<24:53, 1.28it/s, loss=0.789]" ] }, { @@ -2076,7 +2029,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 86/2000 [00:27<11:05, 2.87it/s, loss=0.936]" + "training until 2000: 4%|▍ | 86/2000 [01:11<24:59, 1.28it/s, loss=0.789]" ] }, { @@ -2084,7 +2037,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 86/2000 [00:27<11:05, 2.87it/s, loss=0.87] " + "training until 2000: 4%|▍ | 86/2000 [01:11<24:59, 1.28it/s, loss=0.786]" ] }, { @@ -2092,7 +2045,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 87/2000 [00:28<10:44, 2.97it/s, loss=0.87]" + "training until 2000: 4%|▍ | 87/2000 [01:12<24:59, 1.28it/s, loss=0.786]" ] }, { @@ -2100,7 +2053,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 87/2000 [00:28<10:44, 2.97it/s, loss=0.862]" + "training until 2000: 4%|▍ | 87/2000 [01:12<24:59, 1.28it/s, loss=0.793]" ] }, { @@ -2108,7 +2061,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 88/2000 [00:28<10:35, 3.01it/s, loss=0.862]" + "training until 2000: 4%|▍ | 88/2000 [01:13<22:41, 1.40it/s, loss=0.793]" ] }, { @@ -2116,7 +2069,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 88/2000 [00:28<10:35, 3.01it/s, loss=0.846]" + "training until 2000: 4%|▍ | 88/2000 [01:13<22:41, 1.40it/s, loss=0.817]" ] }, { @@ -2124,7 +2077,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 89/2000 [00:28<10:30, 3.03it/s, loss=0.846]" + "training until 2000: 4%|▍ | 89/2000 [01:13<22:05, 1.44it/s, loss=0.817]" ] }, { @@ -2132,7 +2085,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 89/2000 [00:28<10:30, 3.03it/s, loss=0.826]" + "training until 2000: 4%|▍ | 89/2000 [01:13<22:05, 1.44it/s, loss=0.831]" ] }, { @@ -2140,7 +2093,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 90/2000 [00:29<10:25, 3.05it/s, loss=0.826]" + "training until 2000: 4%|▍ | 90/2000 [01:14<24:43, 1.29it/s, loss=0.831]" ] }, { @@ -2148,7 +2101,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 90/2000 [00:29<10:25, 3.05it/s, loss=0.873]" + "training until 2000: 4%|▍ | 90/2000 [01:14<24:43, 1.29it/s, loss=0.782]" ] }, { @@ -2156,7 +2109,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 91/2000 [00:29<10:23, 3.06it/s, loss=0.873]" + "training until 2000: 5%|▍ | 91/2000 [01:15<24:48, 1.28it/s, loss=0.782]" ] }, { @@ -2164,7 +2117,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 91/2000 [00:29<10:23, 3.06it/s, loss=0.916]" + "training until 2000: 5%|▍ | 91/2000 [01:15<24:48, 1.28it/s, loss=0.832]" ] }, { @@ -2172,7 +2125,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 92/2000 [00:29<10:16, 3.09it/s, loss=0.916]" + "training until 2000: 5%|▍ | 92/2000 [01:16<24:54, 1.28it/s, loss=0.832]" ] }, { @@ -2180,7 +2133,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 92/2000 [00:29<10:16, 3.09it/s, loss=0.887]" + "training until 2000: 5%|▍ | 92/2000 [01:16<24:54, 1.28it/s, loss=0.796]" ] }, { @@ -2188,7 +2141,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 93/2000 [00:29<10:11, 3.12it/s, loss=0.887]" + "training until 2000: 5%|▍ | 93/2000 [01:17<24:37, 1.29it/s, loss=0.796]" ] }, { @@ -2196,7 +2149,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 93/2000 [00:29<10:11, 3.12it/s, loss=0.906]" + "training until 2000: 5%|▍ | 93/2000 [01:17<24:37, 1.29it/s, loss=0.812]" ] }, { @@ -2204,7 +2157,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 94/2000 [00:30<10:09, 3.13it/s, loss=0.906]" + "training until 2000: 5%|▍ | 94/2000 [01:17<23:36, 1.35it/s, loss=0.812]" ] }, { @@ -2212,7 +2165,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 94/2000 [00:30<10:09, 3.13it/s, loss=0.933]" + "training until 2000: 5%|▍ | 94/2000 [01:17<23:36, 1.35it/s, loss=0.812]" ] }, { @@ -2220,7 +2173,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 95/2000 [00:30<10:07, 3.13it/s, loss=0.933]" + "training until 2000: 5%|▍ | 95/2000 [01:18<24:14, 1.31it/s, loss=0.812]" ] }, { @@ -2228,7 +2181,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 95/2000 [00:30<10:07, 3.13it/s, loss=0.886]" + "training until 2000: 5%|▍ | 95/2000 [01:18<24:14, 1.31it/s, loss=0.853]" ] }, { @@ -2236,7 +2189,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 96/2000 [00:30<10:12, 3.11it/s, loss=0.886]" + "training until 2000: 5%|▍ | 96/2000 [01:19<24:21, 1.30it/s, loss=0.853]" ] }, { @@ -2244,7 +2197,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 96/2000 [00:30<10:12, 3.11it/s, loss=0.899]" + "training until 2000: 5%|▍ | 96/2000 [01:19<24:21, 1.30it/s, loss=0.794]" ] }, { @@ -2252,7 +2205,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 97/2000 [00:31<10:02, 3.16it/s, loss=0.899]" + "training until 2000: 5%|▍ | 97/2000 [01:19<23:16, 1.36it/s, loss=0.794]" ] }, { @@ -2260,7 +2213,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 97/2000 [00:31<10:02, 3.16it/s, loss=0.921]" + "training until 2000: 5%|▍ | 97/2000 [01:19<23:16, 1.36it/s, loss=0.825]" ] }, { @@ -2268,7 +2221,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 98/2000 [00:31<09:57, 3.18it/s, loss=0.921]" + "training until 2000: 5%|▍ | 98/2000 [01:20<21:19, 1.49it/s, loss=0.825]" ] }, { @@ -2276,7 +2229,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 98/2000 [00:31<09:57, 3.18it/s, loss=0.925]" + "training until 2000: 5%|▍ | 98/2000 [01:20<21:19, 1.49it/s, loss=0.792]" ] }, { @@ -2284,7 +2237,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 99/2000 [00:31<09:54, 3.20it/s, loss=0.925]" + "training until 2000: 5%|▍ | 99/2000 [01:21<20:49, 1.52it/s, loss=0.792]" ] }, { @@ -2292,7 +2245,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 99/2000 [00:31<09:54, 3.20it/s, loss=0.833]" + "training until 2000: 5%|▍ | 99/2000 [01:21<20:49, 1.52it/s, loss=0.795]" ] }, { @@ -2300,7 +2253,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 100/2000 [00:32<10:01, 3.16it/s, loss=0.833]" + "training until 2000: 5%|▌ | 100/2000 [01:22<23:23, 1.35it/s, loss=0.795]" ] }, { @@ -2308,7 +2261,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 100/2000 [00:32<10:01, 3.16it/s, loss=0.926]" + "training until 2000: 5%|▌ | 100/2000 [01:22<23:23, 1.35it/s, loss=0.825]" ] }, { @@ -2316,7 +2269,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 101/2000 [00:32<10:00, 3.16it/s, loss=0.926]" + "training until 2000: 5%|▌ | 101/2000 [01:22<24:16, 1.30it/s, loss=0.825]" ] }, { @@ -2324,7 +2277,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 101/2000 [00:32<10:00, 3.16it/s, loss=0.856]" + "training until 2000: 5%|▌ | 101/2000 [01:22<24:16, 1.30it/s, loss=0.793]" ] }, { @@ -2332,7 +2285,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 102/2000 [00:32<10:05, 3.14it/s, loss=0.856]" + "training until 2000: 5%|▌ | 102/2000 [01:23<25:29, 1.24it/s, loss=0.793]" ] }, { @@ -2340,7 +2293,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 102/2000 [00:32<10:05, 3.14it/s, loss=0.899]" + "training until 2000: 5%|▌ | 102/2000 [01:23<25:29, 1.24it/s, loss=0.767]" ] }, { @@ -2348,7 +2301,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 103/2000 [00:33<10:07, 3.12it/s, loss=0.899]" + "training until 2000: 5%|▌ | 103/2000 [01:24<24:28, 1.29it/s, loss=0.767]" ] }, { @@ -2356,7 +2309,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 103/2000 [00:33<10:07, 3.12it/s, loss=0.933]" + "training until 2000: 5%|▌ | 103/2000 [01:24<24:28, 1.29it/s, loss=0.827]" ] }, { @@ -2364,7 +2317,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 104/2000 [00:33<10:00, 3.16it/s, loss=0.933]" + "training until 2000: 5%|▌ | 104/2000 [01:25<25:00, 1.26it/s, loss=0.827]" ] }, { @@ -2372,7 +2325,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 104/2000 [00:33<10:00, 3.16it/s, loss=0.9] " + "training until 2000: 5%|▌ | 104/2000 [01:25<25:00, 1.26it/s, loss=0.797]" ] }, { @@ -2380,7 +2333,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 105/2000 [00:33<09:54, 3.19it/s, loss=0.9]" + "training until 2000: 5%|▌ | 105/2000 [01:26<24:23, 1.29it/s, loss=0.797]" ] }, { @@ -2388,7 +2341,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 105/2000 [00:33<09:54, 3.19it/s, loss=0.88]" + "training until 2000: 5%|▌ | 105/2000 [01:26<24:23, 1.29it/s, loss=0.79] " ] }, { @@ -2396,7 +2349,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 106/2000 [00:34<10:04, 3.13it/s, loss=0.88]" + "training until 2000: 5%|▌ | 106/2000 [01:26<22:33, 1.40it/s, loss=0.79]" ] }, { @@ -2404,7 +2357,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 106/2000 [00:34<10:04, 3.13it/s, loss=0.94]" + "training until 2000: 5%|▌ | 106/2000 [01:26<22:33, 1.40it/s, loss=0.816]" ] }, { @@ -2412,7 +2365,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 107/2000 [00:34<10:02, 3.14it/s, loss=0.94]" + "training until 2000: 5%|▌ | 107/2000 [01:27<21:33, 1.46it/s, loss=0.816]" ] }, { @@ -2420,7 +2373,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 107/2000 [00:34<10:02, 3.14it/s, loss=0.922]" + "training until 2000: 5%|▌ | 107/2000 [01:27<21:33, 1.46it/s, loss=0.785]" ] }, { @@ -2428,7 +2381,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 108/2000 [00:34<10:05, 3.12it/s, loss=0.922]" + "training until 2000: 5%|▌ | 108/2000 [01:27<22:10, 1.42it/s, loss=0.785]" ] }, { @@ -2436,7 +2389,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 108/2000 [00:34<10:05, 3.12it/s, loss=0.933]" + "training until 2000: 5%|▌ | 108/2000 [01:27<22:10, 1.42it/s, loss=0.822]" ] }, { @@ -2444,7 +2397,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 109/2000 [00:35<10:03, 3.13it/s, loss=0.933]" + "training until 2000: 5%|▌ | 109/2000 [01:28<21:02, 1.50it/s, loss=0.822]" ] }, { @@ -2452,7 +2405,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 109/2000 [00:35<10:03, 3.13it/s, loss=0.92] " + "training until 2000: 5%|▌ | 109/2000 [01:28<21:02, 1.50it/s, loss=0.825]" ] }, { @@ -2460,7 +2413,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 110/2000 [00:35<09:59, 3.15it/s, loss=0.92]" + "training until 2000: 6%|▌ | 110/2000 [01:29<23:16, 1.35it/s, loss=0.825]" ] }, { @@ -2468,7 +2421,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 110/2000 [00:35<09:59, 3.15it/s, loss=0.942]" + "training until 2000: 6%|▌ | 110/2000 [01:29<23:16, 1.35it/s, loss=0.83] " ] }, { @@ -2476,7 +2429,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 111/2000 [00:35<09:56, 3.17it/s, loss=0.942]" + "training until 2000: 6%|▌ | 111/2000 [01:30<22:56, 1.37it/s, loss=0.83]" ] }, { @@ -2484,7 +2437,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 111/2000 [00:35<09:56, 3.17it/s, loss=0.893]" + "training until 2000: 6%|▌ | 111/2000 [01:30<22:56, 1.37it/s, loss=0.815]" ] }, { @@ -2492,7 +2445,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 112/2000 [00:35<09:53, 3.18it/s, loss=0.893]" + "training until 2000: 6%|▌ | 112/2000 [01:30<21:01, 1.50it/s, loss=0.815]" ] }, { @@ -2500,7 +2453,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 112/2000 [00:36<09:53, 3.18it/s, loss=0.876]" + "training until 2000: 6%|▌ | 112/2000 [01:30<21:01, 1.50it/s, loss=0.822]" ] }, { @@ -2508,7 +2461,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 113/2000 [00:36<09:52, 3.18it/s, loss=0.876]" + "training until 2000: 6%|▌ | 113/2000 [01:31<22:20, 1.41it/s, loss=0.822]" ] }, { @@ -2516,7 +2469,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 113/2000 [00:36<09:52, 3.18it/s, loss=0.899]" + "training until 2000: 6%|▌ | 113/2000 [01:31<22:20, 1.41it/s, loss=0.835]" ] }, { @@ -2524,7 +2477,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 114/2000 [00:36<09:52, 3.18it/s, loss=0.899]" + "training until 2000: 6%|▌ | 114/2000 [01:32<21:30, 1.46it/s, loss=0.835]" ] }, { @@ -2532,7 +2485,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 114/2000 [00:36<09:52, 3.18it/s, loss=0.91] " + "training until 2000: 6%|▌ | 114/2000 [01:32<21:30, 1.46it/s, loss=0.781]" ] }, { @@ -2540,7 +2493,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 115/2000 [00:36<09:46, 3.21it/s, loss=0.91]" + "training until 2000: 6%|▌ | 115/2000 [01:32<22:16, 1.41it/s, loss=0.781]" ] }, { @@ -2548,7 +2501,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 115/2000 [00:36<09:46, 3.21it/s, loss=0.884]" + "training until 2000: 6%|▌ | 115/2000 [01:32<22:16, 1.41it/s, loss=0.831]" ] }, { @@ -2556,7 +2509,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 116/2000 [00:37<09:56, 3.16it/s, loss=0.884]" + "training until 2000: 6%|▌ | 116/2000 [01:33<21:22, 1.47it/s, loss=0.831]" ] }, { @@ -2564,7 +2517,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 116/2000 [00:37<09:56, 3.16it/s, loss=0.919]" + "training until 2000: 6%|▌ | 116/2000 [01:33<21:22, 1.47it/s, loss=0.818]" ] }, { @@ -2572,7 +2525,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 117/2000 [00:37<09:49, 3.20it/s, loss=0.919]" + "training until 2000: 6%|▌ | 117/2000 [01:34<24:17, 1.29it/s, loss=0.818]" ] }, { @@ -2580,7 +2533,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 117/2000 [00:37<09:49, 3.20it/s, loss=0.899]" + "training until 2000: 6%|▌ | 117/2000 [01:34<24:17, 1.29it/s, loss=0.839]" ] }, { @@ -2588,7 +2541,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 118/2000 [00:37<09:55, 3.16it/s, loss=0.899]" + "training until 2000: 6%|▌ | 118/2000 [01:35<22:56, 1.37it/s, loss=0.839]" ] }, { @@ -2596,7 +2549,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 118/2000 [00:37<09:55, 3.16it/s, loss=0.882]" + "training until 2000: 6%|▌ | 118/2000 [01:35<22:56, 1.37it/s, loss=0.795]" ] }, { @@ -2604,7 +2557,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 119/2000 [00:38<10:02, 3.12it/s, loss=0.882]" + "training until 2000: 6%|▌ | 119/2000 [01:36<26:21, 1.19it/s, loss=0.795]" ] }, { @@ -2612,7 +2565,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 119/2000 [00:38<10:02, 3.12it/s, loss=0.983]" + "training until 2000: 6%|▌ | 119/2000 [01:36<26:21, 1.19it/s, loss=0.793]" ] }, { @@ -2620,7 +2573,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 120/2000 [00:38<09:57, 3.14it/s, loss=0.983]" + "training until 2000: 6%|▌ | 120/2000 [01:37<26:07, 1.20it/s, loss=0.793]" ] }, { @@ -2628,7 +2581,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 120/2000 [00:38<09:57, 3.14it/s, loss=0.894]" + "training until 2000: 6%|▌ | 120/2000 [01:37<26:07, 1.20it/s, loss=0.8] " ] }, { @@ -2636,7 +2589,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 121/2000 [00:38<09:57, 3.15it/s, loss=0.894]" + "training until 2000: 6%|▌ | 121/2000 [01:37<23:46, 1.32it/s, loss=0.8]" ] }, { @@ -2644,7 +2597,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 121/2000 [00:38<09:57, 3.15it/s, loss=0.917]" + "training until 2000: 6%|▌ | 121/2000 [01:37<23:46, 1.32it/s, loss=0.791]" ] }, { @@ -2652,7 +2605,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 122/2000 [00:39<10:06, 3.10it/s, loss=0.917]" + "training until 2000: 6%|▌ | 122/2000 [01:38<23:02, 1.36it/s, loss=0.791]" ] }, { @@ -2660,7 +2613,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 122/2000 [00:39<10:06, 3.10it/s, loss=0.917]" + "training until 2000: 6%|▌ | 122/2000 [01:38<23:02, 1.36it/s, loss=0.789]" ] }, { @@ -2668,7 +2621,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 123/2000 [00:39<09:59, 3.13it/s, loss=0.917]" + "training until 2000: 6%|▌ | 123/2000 [01:38<20:04, 1.56it/s, loss=0.789]" ] }, { @@ -2676,7 +2629,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 123/2000 [00:39<09:59, 3.13it/s, loss=0.85] " + "training until 2000: 6%|▌ | 123/2000 [01:38<20:04, 1.56it/s, loss=0.807]" ] }, { @@ -2684,7 +2637,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 124/2000 [00:39<09:53, 3.16it/s, loss=0.85]" + "training until 2000: 6%|▌ | 124/2000 [01:39<20:13, 1.55it/s, loss=0.807]" ] }, { @@ -2692,7 +2645,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 124/2000 [00:39<09:53, 3.16it/s, loss=0.884]" + "training until 2000: 6%|▌ | 124/2000 [01:39<20:13, 1.55it/s, loss=0.817]" ] }, { @@ -2700,7 +2653,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 125/2000 [00:40<09:55, 3.15it/s, loss=0.884]" + "training until 2000: 6%|▋ | 125/2000 [01:39<18:41, 1.67it/s, loss=0.817]" ] }, { @@ -2708,7 +2661,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 125/2000 [00:40<09:55, 3.15it/s, loss=0.898]" + "training until 2000: 6%|▋ | 125/2000 [01:39<18:41, 1.67it/s, loss=0.819]" ] }, { @@ -2716,7 +2669,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 126/2000 [00:40<09:54, 3.15it/s, loss=0.898]" + "training until 2000: 6%|▋ | 126/2000 [01:40<19:48, 1.58it/s, loss=0.819]" ] }, { @@ -2724,7 +2677,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 126/2000 [00:40<09:54, 3.15it/s, loss=0.918]" + "training until 2000: 6%|▋ | 126/2000 [01:40<19:48, 1.58it/s, loss=0.828]" ] }, { @@ -2732,7 +2685,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 127/2000 [00:40<09:54, 3.15it/s, loss=0.918]" + "training until 2000: 6%|▋ | 127/2000 [01:41<22:17, 1.40it/s, loss=0.828]" ] }, { @@ -2740,7 +2693,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 127/2000 [00:40<09:54, 3.15it/s, loss=0.928]" + "training until 2000: 6%|▋ | 127/2000 [01:41<22:17, 1.40it/s, loss=0.811]" ] }, { @@ -2748,7 +2701,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 128/2000 [00:41<09:48, 3.18it/s, loss=0.928]" + "training until 2000: 6%|▋ | 128/2000 [01:42<23:07, 1.35it/s, loss=0.811]" ] }, { @@ -2756,7 +2709,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 128/2000 [00:41<09:48, 3.18it/s, loss=0.913]" + "training until 2000: 6%|▋ | 128/2000 [01:42<23:07, 1.35it/s, loss=0.811]" ] }, { @@ -2764,7 +2717,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 129/2000 [00:41<09:49, 3.18it/s, loss=0.913]" + "training until 2000: 6%|▋ | 129/2000 [01:43<23:18, 1.34it/s, loss=0.811]" ] }, { @@ -2772,7 +2725,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 129/2000 [00:41<09:49, 3.18it/s, loss=0.874]" + "training until 2000: 6%|▋ | 129/2000 [01:43<23:18, 1.34it/s, loss=0.782]" ] }, { @@ -2780,7 +2733,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 130/2000 [00:41<09:54, 3.14it/s, loss=0.874]" + "training until 2000: 6%|▋ | 130/2000 [01:43<22:06, 1.41it/s, loss=0.782]" ] }, { @@ -2788,7 +2741,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 130/2000 [00:41<09:54, 3.14it/s, loss=0.92] " + "training until 2000: 6%|▋ | 130/2000 [01:43<22:06, 1.41it/s, loss=0.79] " ] }, { @@ -2796,7 +2749,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 131/2000 [00:42<09:52, 3.15it/s, loss=0.92]" + "training until 2000: 7%|▋ | 131/2000 [01:44<23:06, 1.35it/s, loss=0.79]" ] }, { @@ -2804,7 +2757,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 131/2000 [00:42<09:52, 3.15it/s, loss=0.881]" + "training until 2000: 7%|▋ | 131/2000 [01:44<23:06, 1.35it/s, loss=0.794]" ] }, { @@ -2812,7 +2765,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 132/2000 [00:42<09:45, 3.19it/s, loss=0.881]" + "training until 2000: 7%|▋ | 132/2000 [01:45<22:17, 1.40it/s, loss=0.794]" ] }, { @@ -2820,7 +2773,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 132/2000 [00:42<09:45, 3.19it/s, loss=0.923]" + "training until 2000: 7%|▋ | 132/2000 [01:45<22:17, 1.40it/s, loss=0.815]" ] }, { @@ -2828,7 +2781,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 133/2000 [00:42<09:41, 3.21it/s, loss=0.923]" + "training until 2000: 7%|▋ | 133/2000 [01:45<21:28, 1.45it/s, loss=0.815]" ] }, { @@ -2836,7 +2789,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 133/2000 [00:42<09:41, 3.21it/s, loss=0.919]" + "training until 2000: 7%|▋ | 133/2000 [01:45<21:28, 1.45it/s, loss=0.849]" ] }, { @@ -2844,7 +2797,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 134/2000 [00:42<09:39, 3.22it/s, loss=0.919]" + "training until 2000: 7%|▋ | 134/2000 [01:46<20:03, 1.55it/s, loss=0.849]" ] }, { @@ -2852,7 +2805,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 134/2000 [00:42<09:39, 3.22it/s, loss=0.848]" + "training until 2000: 7%|▋ | 134/2000 [01:46<20:03, 1.55it/s, loss=0.803]" ] }, { @@ -2860,7 +2813,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 135/2000 [00:43<09:40, 3.21it/s, loss=0.848]" + "training until 2000: 7%|▋ | 135/2000 [01:46<19:31, 1.59it/s, loss=0.803]" ] }, { @@ -2868,7 +2821,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 135/2000 [00:43<09:40, 3.21it/s, loss=0.928]" + "training until 2000: 7%|▋ | 135/2000 [01:46<19:31, 1.59it/s, loss=0.828]" ] }, { @@ -2876,7 +2829,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 136/2000 [00:43<09:37, 3.23it/s, loss=0.928]" + "training until 2000: 7%|▋ | 136/2000 [01:47<23:16, 1.33it/s, loss=0.828]" ] }, { @@ -2884,7 +2837,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 136/2000 [00:43<09:37, 3.23it/s, loss=0.929]" + "training until 2000: 7%|▋ | 136/2000 [01:47<23:16, 1.33it/s, loss=0.829]" ] }, { @@ -2892,7 +2845,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 137/2000 [00:43<09:36, 3.23it/s, loss=0.929]" + "training until 2000: 7%|▋ | 137/2000 [01:48<23:51, 1.30it/s, loss=0.829]" ] }, { @@ -2900,7 +2853,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 137/2000 [00:43<09:36, 3.23it/s, loss=0.847]" + "training until 2000: 7%|▋ | 137/2000 [01:48<23:51, 1.30it/s, loss=0.826]" ] }, { @@ -2908,7 +2861,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 138/2000 [00:44<09:45, 3.18it/s, loss=0.847]" + "training until 2000: 7%|▋ | 138/2000 [01:49<23:36, 1.31it/s, loss=0.826]" ] }, { @@ -2916,7 +2869,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 138/2000 [00:44<09:45, 3.18it/s, loss=0.846]" + "training until 2000: 7%|▋ | 138/2000 [01:49<23:36, 1.31it/s, loss=0.811]" ] }, { @@ -2924,7 +2877,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 139/2000 [00:44<09:37, 3.22it/s, loss=0.846]" + "training until 2000: 7%|▋ | 139/2000 [01:50<24:41, 1.26it/s, loss=0.811]" ] }, { @@ -2932,7 +2885,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 139/2000 [00:44<09:37, 3.22it/s, loss=0.879]" + "training until 2000: 7%|▋ | 139/2000 [01:50<24:41, 1.26it/s, loss=0.8] " ] }, { @@ -2940,7 +2893,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 140/2000 [00:44<09:37, 3.22it/s, loss=0.879]" + "training until 2000: 7%|▋ | 140/2000 [01:51<23:39, 1.31it/s, loss=0.8]" ] }, { @@ -2948,7 +2901,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 140/2000 [00:44<09:37, 3.22it/s, loss=0.895]" + "training until 2000: 7%|▋ | 140/2000 [01:51<23:39, 1.31it/s, loss=0.779]" ] }, { @@ -2956,7 +2909,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 141/2000 [00:45<09:42, 3.19it/s, loss=0.895]" + "training until 2000: 7%|▋ | 141/2000 [01:51<21:45, 1.42it/s, loss=0.779]" ] }, { @@ -2964,7 +2917,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 141/2000 [00:45<09:42, 3.19it/s, loss=0.936]" + "training until 2000: 7%|▋ | 141/2000 [01:51<21:45, 1.42it/s, loss=0.771]" ] }, { @@ -2972,7 +2925,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 142/2000 [00:45<09:39, 3.21it/s, loss=0.936]" + "training until 2000: 7%|▋ | 142/2000 [01:52<24:07, 1.28it/s, loss=0.771]" ] }, { @@ -2980,7 +2933,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 142/2000 [00:45<09:39, 3.21it/s, loss=0.87] " + "training until 2000: 7%|▋ | 142/2000 [01:52<24:07, 1.28it/s, loss=0.805]" ] }, { @@ -2988,7 +2941,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 143/2000 [00:45<09:38, 3.21it/s, loss=0.87]" + "training until 2000: 7%|▋ | 143/2000 [01:53<24:50, 1.25it/s, loss=0.805]" ] }, { @@ -2996,7 +2949,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 143/2000 [00:45<09:38, 3.21it/s, loss=0.893]" + "training until 2000: 7%|▋ | 143/2000 [01:53<24:50, 1.25it/s, loss=0.825]" ] }, { @@ -3004,7 +2957,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 144/2000 [00:46<09:39, 3.20it/s, loss=0.893]" + "training until 2000: 7%|▋ | 144/2000 [01:54<26:34, 1.16it/s, loss=0.825]" ] }, { @@ -3012,7 +2965,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 144/2000 [00:46<09:39, 3.20it/s, loss=0.901]" + "training until 2000: 7%|▋ | 144/2000 [01:54<26:34, 1.16it/s, loss=0.803]" ] }, { @@ -3020,7 +2973,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 145/2000 [00:46<09:41, 3.19it/s, loss=0.901]" + "training until 2000: 7%|▋ | 145/2000 [01:55<28:05, 1.10it/s, loss=0.803]" ] }, { @@ -3028,7 +2981,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 145/2000 [00:46<09:41, 3.19it/s, loss=0.911]" + "training until 2000: 7%|▋ | 145/2000 [01:55<28:05, 1.10it/s, loss=0.805]" ] }, { @@ -3036,7 +2989,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 146/2000 [00:46<09:39, 3.20it/s, loss=0.911]" + "training until 2000: 7%|▋ | 146/2000 [01:56<30:29, 1.01it/s, loss=0.805]" ] }, { @@ -3044,7 +2997,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 146/2000 [00:46<09:39, 3.20it/s, loss=0.881]" + "training until 2000: 7%|▋ | 146/2000 [01:56<30:29, 1.01it/s, loss=0.832]" ] }, { @@ -3052,7 +3005,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 147/2000 [00:47<09:38, 3.20it/s, loss=0.881]" + "training until 2000: 7%|▋ | 147/2000 [01:57<29:21, 1.05it/s, loss=0.832]" ] }, { @@ -3060,7 +3013,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 147/2000 [00:47<09:38, 3.20it/s, loss=0.886]" + "training until 2000: 7%|▋ | 147/2000 [01:57<29:21, 1.05it/s, loss=0.843]" ] }, { @@ -3068,7 +3021,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 148/2000 [00:47<11:38, 2.65it/s, loss=0.886]" + "training until 2000: 7%|▋ | 148/2000 [01:58<31:51, 1.03s/it, loss=0.843]" ] }, { @@ -3076,7 +3029,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 148/2000 [00:47<11:38, 2.65it/s, loss=0.922]" + "training until 2000: 7%|▋ | 148/2000 [01:58<31:51, 1.03s/it, loss=0.829]" ] }, { @@ -3084,7 +3037,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 149/2000 [00:47<11:02, 2.80it/s, loss=0.922]" + "training until 2000: 7%|▋ | 149/2000 [01:59<28:04, 1.10it/s, loss=0.829]" ] }, { @@ -3092,7 +3045,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 149/2000 [00:47<11:02, 2.80it/s, loss=0.903]" + "training until 2000: 7%|▋ | 149/2000 [01:59<28:04, 1.10it/s, loss=0.802]" ] }, { @@ -3100,7 +3053,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 150/2000 [00:48<10:40, 2.89it/s, loss=0.903]" + "training until 2000: 8%|▊ | 150/2000 [02:00<26:41, 1.16it/s, loss=0.802]" ] }, { @@ -3108,7 +3061,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 150/2000 [00:48<10:40, 2.89it/s, loss=0.86] " + "training until 2000: 8%|▊ | 150/2000 [02:00<26:41, 1.16it/s, loss=0.783]" ] }, { @@ -3116,7 +3069,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 151/2000 [00:48<10:25, 2.96it/s, loss=0.86]" + "training until 2000: 8%|▊ | 151/2000 [02:01<28:54, 1.07it/s, loss=0.783]" ] }, { @@ -3124,7 +3077,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 151/2000 [00:48<10:25, 2.96it/s, loss=0.881]" + "training until 2000: 8%|▊ | 151/2000 [02:01<28:54, 1.07it/s, loss=0.818]" ] }, { @@ -3132,7 +3085,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 152/2000 [00:48<10:10, 3.03it/s, loss=0.881]" + "training until 2000: 8%|▊ | 152/2000 [02:01<26:04, 1.18it/s, loss=0.818]" ] }, { @@ -3140,7 +3093,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 152/2000 [00:48<10:10, 3.03it/s, loss=0.89] " + "training until 2000: 8%|▊ | 152/2000 [02:01<26:04, 1.18it/s, loss=0.816]" ] }, { @@ -3148,7 +3101,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 153/2000 [00:49<10:02, 3.07it/s, loss=0.89]" + "training until 2000: 8%|▊ | 153/2000 [02:02<27:50, 1.11it/s, loss=0.816]" ] }, { @@ -3156,7 +3109,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 153/2000 [00:49<10:02, 3.07it/s, loss=0.947]" + "training until 2000: 8%|▊ | 153/2000 [02:02<27:50, 1.11it/s, loss=0.783]" ] }, { @@ -3164,7 +3117,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 154/2000 [00:49<09:59, 3.08it/s, loss=0.947]" + "training until 2000: 8%|▊ | 154/2000 [02:03<28:24, 1.08it/s, loss=0.783]" ] }, { @@ -3172,7 +3125,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 154/2000 [00:49<09:59, 3.08it/s, loss=0.939]" + "training until 2000: 8%|▊ | 154/2000 [02:03<28:24, 1.08it/s, loss=0.818]" ] }, { @@ -3180,7 +3133,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 155/2000 [00:49<09:54, 3.10it/s, loss=0.939]" + "training until 2000: 8%|▊ | 155/2000 [02:04<24:07, 1.27it/s, loss=0.818]" ] }, { @@ -3188,7 +3141,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 155/2000 [00:49<09:54, 3.10it/s, loss=0.902]" + "training until 2000: 8%|▊ | 155/2000 [02:04<24:07, 1.27it/s, loss=0.789]" ] }, { @@ -3196,7 +3149,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 156/2000 [00:50<09:57, 3.09it/s, loss=0.902]" + "training until 2000: 8%|▊ | 156/2000 [02:04<22:14, 1.38it/s, loss=0.789]" ] }, { @@ -3204,7 +3157,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 156/2000 [00:50<09:57, 3.09it/s, loss=0.863]" + "training until 2000: 8%|▊ | 156/2000 [02:04<22:14, 1.38it/s, loss=0.792]" ] }, { @@ -3212,7 +3165,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 157/2000 [00:50<09:50, 3.12it/s, loss=0.863]" + "training until 2000: 8%|▊ | 157/2000 [02:06<25:54, 1.19it/s, loss=0.792]" ] }, { @@ -3220,7 +3173,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 157/2000 [00:50<09:50, 3.12it/s, loss=0.864]" + "training until 2000: 8%|▊ | 157/2000 [02:06<25:54, 1.19it/s, loss=0.803]" ] }, { @@ -3228,7 +3181,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 158/2000 [00:50<09:53, 3.10it/s, loss=0.864]" + "training until 2000: 8%|▊ | 158/2000 [02:07<27:29, 1.12it/s, loss=0.803]" ] }, { @@ -3236,7 +3189,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 158/2000 [00:50<09:53, 3.10it/s, loss=0.864]" + "training until 2000: 8%|▊ | 158/2000 [02:07<27:29, 1.12it/s, loss=0.811]" ] }, { @@ -3244,7 +3197,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 159/2000 [00:51<09:48, 3.13it/s, loss=0.864]" + "training until 2000: 8%|▊ | 159/2000 [02:07<25:03, 1.22it/s, loss=0.811]" ] }, { @@ -3252,7 +3205,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 159/2000 [00:51<09:48, 3.13it/s, loss=0.883]" + "training until 2000: 8%|▊ | 159/2000 [02:07<25:03, 1.22it/s, loss=0.804]" ] }, { @@ -3260,7 +3213,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 160/2000 [00:51<09:51, 3.11it/s, loss=0.883]" + "training until 2000: 8%|▊ | 160/2000 [02:08<26:25, 1.16it/s, loss=0.804]" ] }, { @@ -3268,7 +3221,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 160/2000 [00:51<09:51, 3.11it/s, loss=0.893]" + "training until 2000: 8%|▊ | 160/2000 [02:08<26:25, 1.16it/s, loss=0.814]" ] }, { @@ -3276,7 +3229,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 161/2000 [00:51<09:44, 3.14it/s, loss=0.893]" + "training until 2000: 8%|▊ | 161/2000 [02:09<26:09, 1.17it/s, loss=0.814]" ] }, { @@ -3284,7 +3237,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 161/2000 [00:51<09:44, 3.14it/s, loss=0.886]" + "training until 2000: 8%|▊ | 161/2000 [02:09<26:09, 1.17it/s, loss=0.792]" ] }, { @@ -3292,7 +3245,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 162/2000 [00:51<09:37, 3.18it/s, loss=0.886]" + "training until 2000: 8%|▊ | 162/2000 [02:10<24:28, 1.25it/s, loss=0.792]" ] }, { @@ -3300,7 +3253,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 162/2000 [00:51<09:37, 3.18it/s, loss=0.899]" + "training until 2000: 8%|▊ | 162/2000 [02:10<24:28, 1.25it/s, loss=0.786]" ] }, { @@ -3308,7 +3261,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 163/2000 [00:52<09:40, 3.16it/s, loss=0.899]" + "training until 2000: 8%|▊ | 163/2000 [02:11<28:28, 1.08it/s, loss=0.786]" ] }, { @@ -3316,7 +3269,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 163/2000 [00:52<09:40, 3.16it/s, loss=0.934]" + "training until 2000: 8%|▊ | 163/2000 [02:11<28:28, 1.08it/s, loss=0.795]" ] }, { @@ -3324,7 +3277,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 164/2000 [00:52<09:42, 3.15it/s, loss=0.934]" + "training until 2000: 8%|▊ | 164/2000 [02:12<27:11, 1.13it/s, loss=0.795]" ] }, { @@ -3332,7 +3285,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 164/2000 [00:52<09:42, 3.15it/s, loss=0.875]" + "training until 2000: 8%|▊ | 164/2000 [02:12<27:11, 1.13it/s, loss=0.821]" ] }, { @@ -3340,7 +3293,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 165/2000 [00:52<09:45, 3.13it/s, loss=0.875]" + "training until 2000: 8%|▊ | 165/2000 [02:12<26:01, 1.18it/s, loss=0.821]" ] }, { @@ -3348,7 +3301,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 165/2000 [00:52<09:45, 3.13it/s, loss=0.859]" + "training until 2000: 8%|▊ | 165/2000 [02:12<26:01, 1.18it/s, loss=0.821]" ] }, { @@ -3356,7 +3309,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 166/2000 [00:53<09:49, 3.11it/s, loss=0.859]" + "training until 2000: 8%|▊ | 166/2000 [02:13<23:04, 1.32it/s, loss=0.821]" ] }, { @@ -3364,7 +3317,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 166/2000 [00:53<09:49, 3.11it/s, loss=0.907]" + "training until 2000: 8%|▊ | 166/2000 [02:13<23:04, 1.32it/s, loss=0.845]" ] }, { @@ -3372,7 +3325,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 167/2000 [00:53<09:49, 3.11it/s, loss=0.907]" + "training until 2000: 8%|▊ | 167/2000 [02:14<23:28, 1.30it/s, loss=0.845]" ] }, { @@ -3380,7 +3333,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 167/2000 [00:53<09:49, 3.11it/s, loss=0.914]" + "training until 2000: 8%|▊ | 167/2000 [02:14<23:28, 1.30it/s, loss=0.848]" ] }, { @@ -3388,7 +3341,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 168/2000 [00:53<09:57, 3.06it/s, loss=0.914]" + "training until 2000: 8%|▊ | 168/2000 [02:15<23:57, 1.27it/s, loss=0.848]" ] }, { @@ -3396,7 +3349,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 168/2000 [00:53<09:57, 3.06it/s, loss=0.885]" + "training until 2000: 8%|▊ | 168/2000 [02:15<23:57, 1.27it/s, loss=0.754]" ] }, { @@ -3404,7 +3357,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 169/2000 [00:54<09:55, 3.07it/s, loss=0.885]" + "training until 2000: 8%|▊ | 169/2000 [02:15<24:22, 1.25it/s, loss=0.754]" ] }, { @@ -3412,7 +3365,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 169/2000 [00:54<09:55, 3.07it/s, loss=0.896]" + "training until 2000: 8%|▊ | 169/2000 [02:15<24:22, 1.25it/s, loss=0.801]" ] }, { @@ -3420,7 +3373,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 170/2000 [00:54<09:41, 3.15it/s, loss=0.896]" + "training until 2000: 8%|▊ | 170/2000 [02:16<21:05, 1.45it/s, loss=0.801]" ] }, { @@ -3428,7 +3381,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 170/2000 [00:54<09:41, 3.15it/s, loss=0.904]" + "training until 2000: 8%|▊ | 170/2000 [02:16<21:05, 1.45it/s, loss=0.804]" ] }, { @@ -3436,7 +3389,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 171/2000 [00:54<09:43, 3.13it/s, loss=0.904]" + "training until 2000: 9%|▊ | 171/2000 [02:16<18:56, 1.61it/s, loss=0.804]" ] }, { @@ -3444,7 +3397,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 171/2000 [00:54<09:43, 3.13it/s, loss=0.864]" + "training until 2000: 9%|▊ | 171/2000 [02:16<18:56, 1.61it/s, loss=0.815]" ] }, { @@ -3452,7 +3405,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 172/2000 [00:55<09:42, 3.14it/s, loss=0.864]" + "training until 2000: 9%|▊ | 172/2000 [02:17<20:14, 1.51it/s, loss=0.815]" ] }, { @@ -3460,7 +3413,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 172/2000 [00:55<09:42, 3.14it/s, loss=0.929]" + "training until 2000: 9%|▊ | 172/2000 [02:17<20:14, 1.51it/s, loss=0.807]" ] }, { @@ -3468,7 +3421,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 173/2000 [00:55<09:45, 3.12it/s, loss=0.929]" + "training until 2000: 9%|▊ | 173/2000 [02:18<21:16, 1.43it/s, loss=0.807]" ] }, { @@ -3476,7 +3429,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 173/2000 [00:55<09:45, 3.12it/s, loss=0.967]" + "training until 2000: 9%|▊ | 173/2000 [02:18<21:16, 1.43it/s, loss=0.788]" ] }, { @@ -3484,7 +3437,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 174/2000 [00:55<09:41, 3.14it/s, loss=0.967]" + "training until 2000: 9%|▊ | 174/2000 [02:19<23:22, 1.30it/s, loss=0.788]" ] }, { @@ -3492,7 +3445,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 174/2000 [00:55<09:41, 3.14it/s, loss=0.875]" + "training until 2000: 9%|▊ | 174/2000 [02:19<23:22, 1.30it/s, loss=0.799]" ] }, { @@ -3500,7 +3453,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 175/2000 [00:56<09:42, 3.13it/s, loss=0.875]" + "training until 2000: 9%|▉ | 175/2000 [02:20<28:12, 1.08it/s, loss=0.799]" ] }, { @@ -3508,7 +3461,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 175/2000 [00:56<09:42, 3.13it/s, loss=0.914]" + "training until 2000: 9%|▉ | 175/2000 [02:20<28:12, 1.08it/s, loss=0.821]" ] }, { @@ -3516,7 +3469,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 176/2000 [00:56<09:48, 3.10it/s, loss=0.914]" + "training until 2000: 9%|▉ | 176/2000 [02:21<26:36, 1.14it/s, loss=0.821]" ] }, { @@ -3524,7 +3477,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 176/2000 [00:56<09:48, 3.10it/s, loss=0.878]" + "training until 2000: 9%|▉ | 176/2000 [02:21<26:36, 1.14it/s, loss=0.759]" ] }, { @@ -3532,7 +3485,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 177/2000 [00:56<09:46, 3.11it/s, loss=0.878]" + "training until 2000: 9%|▉ | 177/2000 [02:22<24:35, 1.24it/s, loss=0.759]" ] }, { @@ -3540,7 +3493,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 177/2000 [00:56<09:46, 3.11it/s, loss=0.895]" + "training until 2000: 9%|▉ | 177/2000 [02:22<24:35, 1.24it/s, loss=0.819]" ] }, { @@ -3548,7 +3501,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 178/2000 [00:57<09:36, 3.16it/s, loss=0.895]" + "training until 2000: 9%|▉ | 178/2000 [02:22<22:05, 1.37it/s, loss=0.819]" ] }, { @@ -3556,7 +3509,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 178/2000 [00:57<09:36, 3.16it/s, loss=0.859]" + "training until 2000: 9%|▉ | 178/2000 [02:22<22:05, 1.37it/s, loss=0.81] " ] }, { @@ -3564,7 +3517,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 179/2000 [00:57<09:35, 3.16it/s, loss=0.859]" + "training until 2000: 9%|▉ | 179/2000 [02:23<22:16, 1.36it/s, loss=0.81]" ] }, { @@ -3572,7 +3525,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 179/2000 [00:57<09:35, 3.16it/s, loss=0.856]" + "training until 2000: 9%|▉ | 179/2000 [02:23<22:16, 1.36it/s, loss=0.771]" ] }, { @@ -3580,7 +3533,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 180/2000 [00:57<09:33, 3.17it/s, loss=0.856]" + "training until 2000: 9%|▉ | 180/2000 [02:24<22:35, 1.34it/s, loss=0.771]" ] }, { @@ -3588,7 +3541,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 180/2000 [00:57<09:33, 3.17it/s, loss=0.879]" + "training until 2000: 9%|▉ | 180/2000 [02:24<22:35, 1.34it/s, loss=0.825]" ] }, { @@ -3596,7 +3549,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 181/2000 [00:58<09:32, 3.18it/s, loss=0.879]" + "training until 2000: 9%|▉ | 181/2000 [02:24<20:33, 1.47it/s, loss=0.825]" ] }, { @@ -3604,7 +3557,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 181/2000 [00:58<09:32, 3.18it/s, loss=0.836]" + "training until 2000: 9%|▉ | 181/2000 [02:24<20:33, 1.47it/s, loss=0.8] " ] }, { @@ -3612,7 +3565,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 182/2000 [00:58<09:27, 3.20it/s, loss=0.836]" + "training until 2000: 9%|▉ | 182/2000 [02:25<20:54, 1.45it/s, loss=0.8]" ] }, { @@ -3620,7 +3573,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 182/2000 [00:58<09:27, 3.20it/s, loss=0.831]" + "training until 2000: 9%|▉ | 182/2000 [02:25<20:54, 1.45it/s, loss=0.803]" ] }, { @@ -3628,7 +3581,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 183/2000 [00:58<09:28, 3.19it/s, loss=0.831]" + "training until 2000: 9%|▉ | 183/2000 [02:26<21:12, 1.43it/s, loss=0.803]" ] }, { @@ -3636,7 +3589,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 183/2000 [00:58<09:28, 3.19it/s, loss=0.854]" + "training until 2000: 9%|▉ | 183/2000 [02:26<21:12, 1.43it/s, loss=0.818]" ] }, { @@ -3644,7 +3597,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 184/2000 [00:58<09:36, 3.15it/s, loss=0.854]" + "training until 2000: 9%|▉ | 184/2000 [02:26<22:26, 1.35it/s, loss=0.818]" ] }, { @@ -3652,7 +3605,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 184/2000 [00:58<09:36, 3.15it/s, loss=0.886]" + "training until 2000: 9%|▉ | 184/2000 [02:26<22:26, 1.35it/s, loss=0.825]" ] }, { @@ -3660,7 +3613,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 185/2000 [00:59<09:30, 3.18it/s, loss=0.886]" + "training until 2000: 9%|▉ | 185/2000 [02:27<23:14, 1.30it/s, loss=0.825]" ] }, { @@ -3668,7 +3621,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 185/2000 [00:59<09:30, 3.18it/s, loss=0.896]" + "training until 2000: 9%|▉ | 185/2000 [02:27<23:14, 1.30it/s, loss=0.798]" ] }, { @@ -3676,7 +3629,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 186/2000 [00:59<09:28, 3.19it/s, loss=0.896]" + "training until 2000: 9%|▉ | 186/2000 [02:28<23:50, 1.27it/s, loss=0.798]" ] }, { @@ -3684,7 +3637,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 186/2000 [00:59<09:28, 3.19it/s, loss=0.922]" + "training until 2000: 9%|▉ | 186/2000 [02:28<23:50, 1.27it/s, loss=0.815]" ] }, { @@ -3692,7 +3645,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 187/2000 [00:59<09:31, 3.17it/s, loss=0.922]" + "training until 2000: 9%|▉ | 187/2000 [02:29<23:00, 1.31it/s, loss=0.815]" ] }, { @@ -3700,7 +3653,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 187/2000 [00:59<09:31, 3.17it/s, loss=0.933]" + "training until 2000: 9%|▉ | 187/2000 [02:29<23:00, 1.31it/s, loss=0.772]" ] }, { @@ -3708,7 +3661,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 188/2000 [01:00<09:31, 3.17it/s, loss=0.933]" + "training until 2000: 9%|▉ | 188/2000 [02:29<22:18, 1.35it/s, loss=0.772]" ] }, { @@ -3716,7 +3669,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 188/2000 [01:00<09:31, 3.17it/s, loss=0.924]" + "training until 2000: 9%|▉ | 188/2000 [02:29<22:18, 1.35it/s, loss=0.794]" ] }, { @@ -3724,7 +3677,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 189/2000 [01:00<09:33, 3.16it/s, loss=0.924]" + "training until 2000: 9%|▉ | 189/2000 [02:30<24:15, 1.24it/s, loss=0.794]" ] }, { @@ -3732,7 +3685,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 189/2000 [01:00<09:33, 3.16it/s, loss=0.927]" + "training until 2000: 9%|▉ | 189/2000 [02:30<24:15, 1.24it/s, loss=0.834]" ] }, { @@ -3740,7 +3693,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 190/2000 [01:00<09:41, 3.11it/s, loss=0.927]" + "training until 2000: 10%|▉ | 190/2000 [02:31<21:42, 1.39it/s, loss=0.834]" ] }, { @@ -3748,7 +3701,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 190/2000 [01:00<09:41, 3.11it/s, loss=0.885]" + "training until 2000: 10%|▉ | 190/2000 [02:31<21:42, 1.39it/s, loss=0.795]" ] }, { @@ -3756,7 +3709,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 191/2000 [01:01<09:34, 3.15it/s, loss=0.885]" + "training until 2000: 10%|▉ | 191/2000 [02:32<22:11, 1.36it/s, loss=0.795]" ] }, { @@ -3764,7 +3717,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 191/2000 [01:01<09:34, 3.15it/s, loss=0.906]" + "training until 2000: 10%|▉ | 191/2000 [02:32<22:11, 1.36it/s, loss=0.793]" ] }, { @@ -3772,7 +3725,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 192/2000 [01:01<09:44, 3.09it/s, loss=0.906]" + "training until 2000: 10%|▉ | 192/2000 [02:32<21:07, 1.43it/s, loss=0.793]" ] }, { @@ -3780,7 +3733,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 192/2000 [01:01<09:44, 3.09it/s, loss=0.913]" + "training until 2000: 10%|▉ | 192/2000 [02:32<21:07, 1.43it/s, loss=0.798]" ] }, { @@ -3788,7 +3741,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 193/2000 [01:01<09:39, 3.12it/s, loss=0.913]" + "training until 2000: 10%|▉ | 193/2000 [02:33<21:24, 1.41it/s, loss=0.798]" ] }, { @@ -3796,7 +3749,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 193/2000 [01:01<09:39, 3.12it/s, loss=0.874]" + "training until 2000: 10%|▉ | 193/2000 [02:33<21:24, 1.41it/s, loss=0.824]" ] }, { @@ -3804,7 +3757,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 194/2000 [01:02<09:40, 3.11it/s, loss=0.874]" + "training until 2000: 10%|▉ | 194/2000 [02:34<26:18, 1.14it/s, loss=0.824]" ] }, { @@ -3812,7 +3765,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 194/2000 [01:02<09:40, 3.11it/s, loss=0.875]" + "training until 2000: 10%|▉ | 194/2000 [02:34<26:18, 1.14it/s, loss=0.798]" ] }, { @@ -3820,7 +3773,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 195/2000 [01:02<09:32, 3.15it/s, loss=0.875]" + "training until 2000: 10%|▉ | 195/2000 [02:35<25:52, 1.16it/s, loss=0.798]" ] }, { @@ -3828,7 +3781,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 195/2000 [01:02<09:32, 3.15it/s, loss=0.901]" + "training until 2000: 10%|▉ | 195/2000 [02:35<25:52, 1.16it/s, loss=0.741]" ] }, { @@ -3836,7 +3789,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 196/2000 [01:02<09:31, 3.16it/s, loss=0.901]" + "training until 2000: 10%|▉ | 196/2000 [02:36<26:30, 1.13it/s, loss=0.741]" ] }, { @@ -3844,7 +3797,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 196/2000 [01:02<09:31, 3.16it/s, loss=0.845]" + "training until 2000: 10%|▉ | 196/2000 [02:36<26:30, 1.13it/s, loss=0.77] " ] }, { @@ -3852,7 +3805,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 197/2000 [01:03<09:34, 3.14it/s, loss=0.845]" + "training until 2000: 10%|▉ | 197/2000 [02:37<27:32, 1.09it/s, loss=0.77]" ] }, { @@ -3860,7 +3813,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 197/2000 [01:03<09:34, 3.14it/s, loss=0.919]" + "training until 2000: 10%|▉ | 197/2000 [02:37<27:32, 1.09it/s, loss=0.813]" ] }, { @@ -3868,7 +3821,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 198/2000 [01:03<09:32, 3.15it/s, loss=0.919]" + "training until 2000: 10%|▉ | 198/2000 [02:38<27:41, 1.08it/s, loss=0.813]" ] }, { @@ -3876,7 +3829,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 198/2000 [01:03<09:32, 3.15it/s, loss=0.887]" + "training until 2000: 10%|▉ | 198/2000 [02:38<27:41, 1.08it/s, loss=0.794]" ] }, { @@ -3884,7 +3837,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 199/2000 [01:03<09:34, 3.13it/s, loss=0.887]" + "training until 2000: 10%|▉ | 199/2000 [02:39<26:10, 1.15it/s, loss=0.794]" ] }, { @@ -3892,7 +3845,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 199/2000 [01:03<09:34, 3.13it/s, loss=0.901]" + "training until 2000: 10%|▉ | 199/2000 [02:39<26:10, 1.15it/s, loss=0.778]" ] }, { @@ -3900,7 +3853,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 200/2000 [01:04<09:33, 3.14it/s, loss=0.901]" + "training until 2000: 10%|█ | 200/2000 [02:40<26:42, 1.12it/s, loss=0.778]" ] }, { @@ -3908,7 +3861,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 200/2000 [01:04<09:33, 3.14it/s, loss=0.906]" + "training until 2000: 10%|█ | 200/2000 [02:40<26:42, 1.12it/s, loss=0.775]" ] }, { @@ -3916,7 +3869,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 201/2000 [01:04<09:29, 3.16it/s, loss=0.906]" + "training until 2000: 10%|█ | 201/2000 [02:40<25:05, 1.19it/s, loss=0.775]" ] }, { @@ -3924,7 +3877,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 201/2000 [01:04<09:29, 3.16it/s, loss=0.92] " + "training until 2000: 10%|█ | 201/2000 [02:40<25:05, 1.19it/s, loss=0.782]" ] }, { @@ -3932,7 +3885,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 202/2000 [01:04<09:35, 3.13it/s, loss=0.92]" + "training until 2000: 10%|█ | 202/2000 [02:41<22:40, 1.32it/s, loss=0.782]" ] }, { @@ -3940,7 +3893,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 202/2000 [01:04<09:35, 3.13it/s, loss=0.866]" + "training until 2000: 10%|█ | 202/2000 [02:41<22:40, 1.32it/s, loss=0.797]" ] }, { @@ -3948,7 +3901,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 203/2000 [01:05<09:34, 3.13it/s, loss=0.866]" + "training until 2000: 10%|█ | 203/2000 [02:42<24:16, 1.23it/s, loss=0.797]" ] }, { @@ -3956,7 +3909,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 203/2000 [01:05<09:34, 3.13it/s, loss=0.905]" + "training until 2000: 10%|█ | 203/2000 [02:42<24:16, 1.23it/s, loss=0.793]" ] }, { @@ -3964,7 +3917,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 204/2000 [01:05<09:33, 3.13it/s, loss=0.905]" + "training until 2000: 10%|█ | 204/2000 [02:43<27:30, 1.09it/s, loss=0.793]" ] }, { @@ -3972,7 +3925,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 204/2000 [01:05<09:33, 3.13it/s, loss=0.863]" + "training until 2000: 10%|█ | 204/2000 [02:43<27:30, 1.09it/s, loss=0.795]" ] }, { @@ -3980,7 +3933,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 205/2000 [01:05<09:30, 3.15it/s, loss=0.863]" + "training until 2000: 10%|█ | 205/2000 [02:44<24:40, 1.21it/s, loss=0.795]" ] }, { @@ -3988,7 +3941,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 205/2000 [01:05<09:30, 3.15it/s, loss=0.892]" + "training until 2000: 10%|█ | 205/2000 [02:44<24:40, 1.21it/s, loss=0.815]" ] }, { @@ -3996,7 +3949,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 206/2000 [01:05<09:27, 3.16it/s, loss=0.892]" + "training until 2000: 10%|█ | 206/2000 [02:45<26:16, 1.14it/s, loss=0.815]" ] }, { @@ -4004,7 +3957,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 206/2000 [01:05<09:27, 3.16it/s, loss=0.883]" + "training until 2000: 10%|█ | 206/2000 [02:45<26:16, 1.14it/s, loss=0.808]" ] }, { @@ -4012,7 +3965,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 207/2000 [01:06<09:26, 3.16it/s, loss=0.883]" + "training until 2000: 10%|█ | 207/2000 [02:45<25:11, 1.19it/s, loss=0.808]" ] }, { @@ -4020,7 +3973,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 207/2000 [01:06<09:26, 3.16it/s, loss=0.862]" + "training until 2000: 10%|█ | 207/2000 [02:45<25:11, 1.19it/s, loss=0.782]" ] }, { @@ -4028,7 +3981,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 208/2000 [01:06<09:24, 3.17it/s, loss=0.862]" + "training until 2000: 10%|█ | 208/2000 [02:46<22:40, 1.32it/s, loss=0.782]" ] }, { @@ -4036,7 +3989,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 208/2000 [01:06<09:24, 3.17it/s, loss=0.902]" + "training until 2000: 10%|█ | 208/2000 [02:46<22:40, 1.32it/s, loss=0.79] " ] }, { @@ -4044,7 +3997,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 209/2000 [01:06<09:21, 3.19it/s, loss=0.902]" + "training until 2000: 10%|█ | 209/2000 [02:47<23:04, 1.29it/s, loss=0.79]" ] }, { @@ -4052,7 +4005,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 209/2000 [01:06<09:21, 3.19it/s, loss=0.884]" + "training until 2000: 10%|█ | 209/2000 [02:47<23:04, 1.29it/s, loss=0.797]" ] }, { @@ -4060,7 +4013,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 210/2000 [01:07<09:25, 3.17it/s, loss=0.884]" + "training until 2000: 10%|█ | 210/2000 [02:48<22:39, 1.32it/s, loss=0.797]" ] }, { @@ -4068,7 +4021,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 210/2000 [01:07<09:25, 3.17it/s, loss=0.863]" + "training until 2000: 10%|█ | 210/2000 [02:48<22:39, 1.32it/s, loss=0.817]" ] }, { @@ -4076,7 +4029,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 211/2000 [01:07<11:27, 2.60it/s, loss=0.863]" + "training until 2000: 11%|█ | 211/2000 [02:48<23:21, 1.28it/s, loss=0.817]" ] }, { @@ -4084,7 +4037,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 211/2000 [01:07<11:27, 2.60it/s, loss=0.9] " + "training until 2000: 11%|█ | 211/2000 [02:48<23:21, 1.28it/s, loss=0.796]" ] }, { @@ -4092,7 +4045,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 212/2000 [01:08<10:56, 2.72it/s, loss=0.9]" + "training until 2000: 11%|█ | 212/2000 [02:49<22:59, 1.30it/s, loss=0.796]" ] }, { @@ -4100,7 +4053,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 212/2000 [01:08<10:56, 2.72it/s, loss=0.909]" + "training until 2000: 11%|█ | 212/2000 [02:49<22:59, 1.30it/s, loss=0.842]" ] }, { @@ -4108,7 +4061,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 213/2000 [01:08<10:27, 2.85it/s, loss=0.909]" + "training until 2000: 11%|█ | 213/2000 [02:50<23:31, 1.27it/s, loss=0.842]" ] }, { @@ -4116,7 +4069,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 213/2000 [01:08<10:27, 2.85it/s, loss=0.83] " + "training until 2000: 11%|█ | 213/2000 [02:50<23:31, 1.27it/s, loss=0.768]" ] }, { @@ -4124,7 +4077,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 214/2000 [01:08<10:04, 2.96it/s, loss=0.83]" + "training until 2000: 11%|█ | 214/2000 [02:51<27:07, 1.10it/s, loss=0.768]" ] }, { @@ -4132,7 +4085,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 214/2000 [01:08<10:04, 2.96it/s, loss=0.894]" + "training until 2000: 11%|█ | 214/2000 [02:51<27:07, 1.10it/s, loss=0.773]" ] }, { @@ -4140,7 +4093,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 215/2000 [01:09<09:59, 2.98it/s, loss=0.894]" + "training until 2000: 11%|█ | 215/2000 [02:52<26:53, 1.11it/s, loss=0.773]" ] }, { @@ -4148,7 +4101,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 215/2000 [01:09<09:59, 2.98it/s, loss=0.917]" + "training until 2000: 11%|█ | 215/2000 [02:52<26:53, 1.11it/s, loss=0.803]" ] }, { @@ -4156,7 +4109,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 216/2000 [01:09<09:42, 3.06it/s, loss=0.917]" + "training until 2000: 11%|█ | 216/2000 [02:53<24:55, 1.19it/s, loss=0.803]" ] }, { @@ -4164,7 +4117,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 216/2000 [01:09<09:42, 3.06it/s, loss=0.856]" + "training until 2000: 11%|█ | 216/2000 [02:53<24:55, 1.19it/s, loss=0.813]" ] }, { @@ -4172,7 +4125,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 217/2000 [01:09<09:36, 3.09it/s, loss=0.856]" + "training until 2000: 11%|█ | 217/2000 [02:53<22:31, 1.32it/s, loss=0.813]" ] }, { @@ -4180,7 +4133,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 217/2000 [01:09<09:36, 3.09it/s, loss=0.903]" + "training until 2000: 11%|█ | 217/2000 [02:53<22:31, 1.32it/s, loss=0.761]" ] }, { @@ -4188,7 +4141,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 218/2000 [01:10<09:35, 3.10it/s, loss=0.903]" + "training until 2000: 11%|█ | 218/2000 [02:54<23:28, 1.27it/s, loss=0.761]" ] }, { @@ -4196,7 +4149,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 218/2000 [01:10<09:35, 3.10it/s, loss=0.886]" + "training until 2000: 11%|█ | 218/2000 [02:54<23:28, 1.27it/s, loss=0.789]" ] }, { @@ -4204,7 +4157,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 219/2000 [01:10<09:32, 3.11it/s, loss=0.886]" + "training until 2000: 11%|█ | 219/2000 [02:55<22:47, 1.30it/s, loss=0.789]" ] }, { @@ -4212,7 +4165,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 219/2000 [01:10<09:32, 3.11it/s, loss=0.873]" + "training until 2000: 11%|█ | 219/2000 [02:55<22:47, 1.30it/s, loss=0.782]" ] }, { @@ -4220,7 +4173,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 220/2000 [01:10<09:37, 3.08it/s, loss=0.873]" + "training until 2000: 11%|█ | 220/2000 [02:56<22:20, 1.33it/s, loss=0.782]" ] }, { @@ -4228,7 +4181,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 220/2000 [01:10<09:37, 3.08it/s, loss=0.895]" + "training until 2000: 11%|█ | 220/2000 [02:56<22:20, 1.33it/s, loss=0.786]" ] }, { @@ -4236,7 +4189,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 221/2000 [01:10<09:27, 3.13it/s, loss=0.895]" + "training until 2000: 11%|█ | 221/2000 [02:57<24:32, 1.21it/s, loss=0.786]" ] }, { @@ -4244,7 +4197,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 221/2000 [01:10<09:27, 3.13it/s, loss=0.871]" + "training until 2000: 11%|█ | 221/2000 [02:57<24:32, 1.21it/s, loss=0.8] " ] }, { @@ -4252,7 +4205,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 222/2000 [01:11<09:20, 3.17it/s, loss=0.871]" + "training until 2000: 11%|█ | 222/2000 [02:58<26:46, 1.11it/s, loss=0.8]" ] }, { @@ -4260,7 +4213,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 222/2000 [01:11<09:20, 3.17it/s, loss=0.886]" + "training until 2000: 11%|█ | 222/2000 [02:58<26:46, 1.11it/s, loss=0.831]" ] }, { @@ -4268,7 +4221,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 223/2000 [01:11<09:17, 3.19it/s, loss=0.886]" + "training until 2000: 11%|█ | 223/2000 [02:59<26:35, 1.11it/s, loss=0.831]" ] }, { @@ -4276,7 +4229,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 223/2000 [01:11<09:17, 3.19it/s, loss=0.826]" + "training until 2000: 11%|█ | 223/2000 [02:59<26:35, 1.11it/s, loss=0.776]" ] }, { @@ -4284,7 +4237,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 224/2000 [01:11<09:30, 3.12it/s, loss=0.826]" + "training until 2000: 11%|█ | 224/2000 [02:59<24:40, 1.20it/s, loss=0.776]" ] }, { @@ -4292,7 +4245,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 224/2000 [01:11<09:30, 3.12it/s, loss=0.915]" + "training until 2000: 11%|█ | 224/2000 [02:59<24:40, 1.20it/s, loss=0.803]" ] }, { @@ -4300,7 +4253,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 225/2000 [01:12<09:30, 3.11it/s, loss=0.915]" + "training until 2000: 11%|█▏ | 225/2000 [03:00<24:59, 1.18it/s, loss=0.803]" ] }, { @@ -4308,7 +4261,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 225/2000 [01:12<09:30, 3.11it/s, loss=0.927]" + "training until 2000: 11%|█▏ | 225/2000 [03:00<24:59, 1.18it/s, loss=0.83] " ] }, { @@ -4316,7 +4269,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 226/2000 [01:12<09:26, 3.13it/s, loss=0.927]" + "training until 2000: 11%|█▏ | 226/2000 [03:01<23:48, 1.24it/s, loss=0.83]" ] }, { @@ -4324,7 +4277,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 226/2000 [01:12<09:26, 3.13it/s, loss=0.91] " + "training until 2000: 11%|█▏ | 226/2000 [03:01<23:48, 1.24it/s, loss=0.782]" ] }, { @@ -4332,7 +4285,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 227/2000 [01:12<09:31, 3.10it/s, loss=0.91]" + "training until 2000: 11%|█▏ | 227/2000 [03:02<22:53, 1.29it/s, loss=0.782]" ] }, { @@ -4340,7 +4293,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 227/2000 [01:12<09:31, 3.10it/s, loss=0.907]" + "training until 2000: 11%|█▏ | 227/2000 [03:02<22:53, 1.29it/s, loss=0.783]" ] }, { @@ -4348,7 +4301,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 228/2000 [01:13<09:27, 3.12it/s, loss=0.907]" + "training until 2000: 11%|█▏ | 228/2000 [03:02<24:10, 1.22it/s, loss=0.783]" ] }, { @@ -4356,7 +4309,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 228/2000 [01:13<09:27, 3.12it/s, loss=0.908]" + "training until 2000: 11%|█▏ | 228/2000 [03:02<24:10, 1.22it/s, loss=0.749]" ] }, { @@ -4364,7 +4317,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 229/2000 [01:13<09:29, 3.11it/s, loss=0.908]" + "training until 2000: 11%|█▏ | 229/2000 [03:03<21:24, 1.38it/s, loss=0.749]" ] }, { @@ -4372,7 +4325,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 229/2000 [01:13<09:29, 3.11it/s, loss=0.909]" + "training until 2000: 11%|█▏ | 229/2000 [03:03<21:24, 1.38it/s, loss=0.802]" ] }, { @@ -4380,7 +4333,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 230/2000 [01:13<09:29, 3.11it/s, loss=0.909]" + "training until 2000: 12%|█▏ | 230/2000 [03:04<23:07, 1.28it/s, loss=0.802]" ] }, { @@ -4388,7 +4341,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 230/2000 [01:13<09:29, 3.11it/s, loss=0.893]" + "training until 2000: 12%|█▏ | 230/2000 [03:04<23:07, 1.28it/s, loss=0.777]" ] }, { @@ -4396,7 +4349,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 231/2000 [01:14<09:26, 3.12it/s, loss=0.893]" + "training until 2000: 12%|█▏ | 231/2000 [03:05<26:36, 1.11it/s, loss=0.777]" ] }, { @@ -4404,7 +4357,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 231/2000 [01:14<09:26, 3.12it/s, loss=0.891]" + "training until 2000: 12%|█▏ | 231/2000 [03:05<26:36, 1.11it/s, loss=0.783]" ] }, { @@ -4412,7 +4365,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 232/2000 [01:14<09:22, 3.14it/s, loss=0.891]" + "training until 2000: 12%|█▏ | 232/2000 [03:06<25:13, 1.17it/s, loss=0.783]" ] }, { @@ -4420,7 +4373,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 232/2000 [01:14<09:22, 3.14it/s, loss=0.905]" + "training until 2000: 12%|█▏ | 232/2000 [03:06<25:13, 1.17it/s, loss=0.767]" ] }, { @@ -4428,7 +4381,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 233/2000 [01:14<09:20, 3.15it/s, loss=0.905]" + "training until 2000: 12%|█▏ | 233/2000 [03:06<23:57, 1.23it/s, loss=0.767]" ] }, { @@ -4436,7 +4389,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 233/2000 [01:14<09:20, 3.15it/s, loss=0.882]" + "training until 2000: 12%|█▏ | 233/2000 [03:06<23:57, 1.23it/s, loss=0.766]" ] }, { @@ -4444,7 +4397,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 234/2000 [01:15<09:18, 3.16it/s, loss=0.882]" + "training until 2000: 12%|█▏ | 234/2000 [03:07<22:44, 1.29it/s, loss=0.766]" ] }, { @@ -4452,7 +4405,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 234/2000 [01:15<09:18, 3.16it/s, loss=0.857]" + "training until 2000: 12%|█▏ | 234/2000 [03:07<22:44, 1.29it/s, loss=0.846]" ] }, { @@ -4460,7 +4413,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 235/2000 [01:15<09:12, 3.20it/s, loss=0.857]" + "training until 2000: 12%|█▏ | 235/2000 [03:08<25:03, 1.17it/s, loss=0.846]" ] }, { @@ -4468,7 +4421,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 235/2000 [01:15<09:12, 3.20it/s, loss=0.861]" + "training until 2000: 12%|█▏ | 235/2000 [03:08<25:03, 1.17it/s, loss=0.784]" ] }, { @@ -4476,7 +4429,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 236/2000 [01:15<09:25, 3.12it/s, loss=0.861]" + "training until 2000: 12%|█▏ | 236/2000 [03:09<25:42, 1.14it/s, loss=0.784]" ] }, { @@ -4484,7 +4437,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 236/2000 [01:15<09:25, 3.12it/s, loss=0.912]" + "training until 2000: 12%|█▏ | 236/2000 [03:09<25:42, 1.14it/s, loss=0.796]" ] }, { @@ -4492,7 +4445,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 237/2000 [01:16<09:26, 3.11it/s, loss=0.912]" + "training until 2000: 12%|█▏ | 237/2000 [03:10<27:17, 1.08it/s, loss=0.796]" ] }, { @@ -4500,7 +4453,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 237/2000 [01:16<09:26, 3.11it/s, loss=0.885]" + "training until 2000: 12%|█▏ | 237/2000 [03:10<27:17, 1.08it/s, loss=0.811]" ] }, { @@ -4508,7 +4461,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 238/2000 [01:16<09:21, 3.14it/s, loss=0.885]" + "training until 2000: 12%|█▏ | 238/2000 [03:11<26:29, 1.11it/s, loss=0.811]" ] }, { @@ -4516,7 +4469,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 238/2000 [01:16<09:21, 3.14it/s, loss=0.892]" + "training until 2000: 12%|█▏ | 238/2000 [03:11<26:29, 1.11it/s, loss=0.769]" ] }, { @@ -4524,7 +4477,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 239/2000 [01:16<09:19, 3.15it/s, loss=0.892]" + "training until 2000: 12%|█▏ | 239/2000 [03:12<25:20, 1.16it/s, loss=0.769]" ] }, { @@ -4532,7 +4485,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 239/2000 [01:16<09:19, 3.15it/s, loss=0.905]" + "training until 2000: 12%|█▏ | 239/2000 [03:12<25:20, 1.16it/s, loss=0.816]" ] }, { @@ -4540,7 +4493,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 240/2000 [01:17<09:14, 3.17it/s, loss=0.905]" + "training until 2000: 12%|█▏ | 240/2000 [03:13<24:07, 1.22it/s, loss=0.816]" ] }, { @@ -4548,7 +4501,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 240/2000 [01:17<09:14, 3.17it/s, loss=0.871]" + "training until 2000: 12%|█▏ | 240/2000 [03:13<24:07, 1.22it/s, loss=0.796]" ] }, { @@ -4556,7 +4509,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 241/2000 [01:17<09:27, 3.10it/s, loss=0.871]" + "training until 2000: 12%|█▏ | 241/2000 [03:13<21:59, 1.33it/s, loss=0.796]" ] }, { @@ -4564,7 +4517,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 241/2000 [01:17<09:27, 3.10it/s, loss=0.919]" + "training until 2000: 12%|█▏ | 241/2000 [03:13<21:59, 1.33it/s, loss=0.851]" ] }, { @@ -4572,7 +4525,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 242/2000 [01:17<09:24, 3.12it/s, loss=0.919]" + "training until 2000: 12%|█▏ | 242/2000 [03:14<23:24, 1.25it/s, loss=0.851]" ] }, { @@ -4580,7 +4533,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 242/2000 [01:17<09:24, 3.12it/s, loss=0.89] " + "training until 2000: 12%|█▏ | 242/2000 [03:14<23:24, 1.25it/s, loss=0.78] " ] }, { @@ -4588,7 +4541,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 243/2000 [01:17<09:24, 3.11it/s, loss=0.89]" + "training until 2000: 12%|█▏ | 243/2000 [03:15<21:15, 1.38it/s, loss=0.78]" ] }, { @@ -4596,7 +4549,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 243/2000 [01:17<09:24, 3.11it/s, loss=0.891]" + "training until 2000: 12%|█▏ | 243/2000 [03:15<21:15, 1.38it/s, loss=0.783]" ] }, { @@ -4604,7 +4557,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 244/2000 [01:18<09:20, 3.13it/s, loss=0.891]" + "training until 2000: 12%|█▏ | 244/2000 [03:16<26:12, 1.12it/s, loss=0.783]" ] }, { @@ -4612,7 +4565,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 244/2000 [01:18<09:20, 3.13it/s, loss=0.881]" + "training until 2000: 12%|█▏ | 244/2000 [03:16<26:12, 1.12it/s, loss=0.804]" ] }, { @@ -4620,7 +4573,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 245/2000 [01:18<09:17, 3.15it/s, loss=0.881]" + "training until 2000: 12%|█▏ | 245/2000 [03:17<25:34, 1.14it/s, loss=0.804]" ] }, { @@ -4628,7 +4581,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 245/2000 [01:18<09:17, 3.15it/s, loss=0.834]" + "training until 2000: 12%|█▏ | 245/2000 [03:17<25:34, 1.14it/s, loss=0.8] " ] }, { @@ -4636,7 +4589,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 246/2000 [01:18<09:13, 3.17it/s, loss=0.834]" + "training until 2000: 12%|█▏ | 246/2000 [03:18<27:36, 1.06it/s, loss=0.8]" ] }, { @@ -4644,7 +4597,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 246/2000 [01:18<09:13, 3.17it/s, loss=0.87] " + "training until 2000: 12%|█▏ | 246/2000 [03:18<27:36, 1.06it/s, loss=0.833]" ] }, { @@ -4652,7 +4605,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 247/2000 [01:19<09:13, 3.17it/s, loss=0.87]" + "training until 2000: 12%|█▏ | 247/2000 [03:18<24:53, 1.17it/s, loss=0.833]" ] }, { @@ -4660,7 +4613,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 247/2000 [01:19<09:13, 3.17it/s, loss=0.883]" + "training until 2000: 12%|█▏ | 247/2000 [03:18<24:53, 1.17it/s, loss=0.798]" ] }, { @@ -4668,7 +4621,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 248/2000 [01:19<09:13, 3.17it/s, loss=0.883]" + "training until 2000: 12%|█▏ | 248/2000 [03:19<21:54, 1.33it/s, loss=0.798]" ] }, { @@ -4676,7 +4629,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 248/2000 [01:19<09:13, 3.17it/s, loss=0.878]" + "training until 2000: 12%|█▏ | 248/2000 [03:19<21:54, 1.33it/s, loss=0.82] " ] }, { @@ -4684,7 +4637,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 249/2000 [01:19<09:16, 3.15it/s, loss=0.878]" + "training until 2000: 12%|█▏ | 249/2000 [03:20<23:28, 1.24it/s, loss=0.82]" ] }, { @@ -4692,7 +4645,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 249/2000 [01:19<09:16, 3.15it/s, loss=0.838]" + "training until 2000: 12%|█▏ | 249/2000 [03:20<23:28, 1.24it/s, loss=0.783]" ] }, { @@ -4700,7 +4653,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▎ | 250/2000 [01:20<09:18, 3.13it/s, loss=0.838]" + "training until 2000: 12%|█▎ | 250/2000 [03:21<24:23, 1.20it/s, loss=0.783]" ] }, { @@ -4708,7 +4661,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▎ | 250/2000 [01:20<09:18, 3.13it/s, loss=0.93] " + "training until 2000: 12%|█▎ | 250/2000 [03:21<24:23, 1.20it/s, loss=0.784]" ] }, { @@ -4716,7 +4669,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 251/2000 [01:20<09:17, 3.14it/s, loss=0.93]" + "training until 2000: 13%|█▎ | 251/2000 [03:21<22:54, 1.27it/s, loss=0.784]" ] }, { @@ -4724,7 +4677,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 251/2000 [01:20<09:17, 3.14it/s, loss=0.875]" + "training until 2000: 13%|█▎ | 251/2000 [03:21<22:54, 1.27it/s, loss=0.778]" ] }, { @@ -4732,7 +4685,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 252/2000 [01:20<09:16, 3.14it/s, loss=0.875]" + "training until 2000: 13%|█▎ | 252/2000 [03:22<23:47, 1.22it/s, loss=0.778]" ] }, { @@ -4740,7 +4693,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 252/2000 [01:20<09:16, 3.14it/s, loss=0.838]" + "training until 2000: 13%|█▎ | 252/2000 [03:22<23:47, 1.22it/s, loss=0.775]" ] }, { @@ -4748,7 +4701,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 253/2000 [01:21<09:14, 3.15it/s, loss=0.838]" + "training until 2000: 13%|█▎ | 253/2000 [03:23<24:37, 1.18it/s, loss=0.775]" ] }, { @@ -4756,7 +4709,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 253/2000 [01:21<09:14, 3.15it/s, loss=0.897]" + "training until 2000: 13%|█▎ | 253/2000 [03:23<24:37, 1.18it/s, loss=0.825]" ] }, { @@ -4764,7 +4717,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 254/2000 [01:21<09:09, 3.18it/s, loss=0.897]" + "training until 2000: 13%|█▎ | 254/2000 [03:24<24:19, 1.20it/s, loss=0.825]" ] }, { @@ -4772,7 +4725,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 254/2000 [01:21<09:09, 3.18it/s, loss=0.898]" + "training until 2000: 13%|█▎ | 254/2000 [03:24<24:19, 1.20it/s, loss=0.759]" ] }, { @@ -4780,7 +4733,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 255/2000 [01:21<09:06, 3.19it/s, loss=0.898]" + "training until 2000: 13%|█▎ | 255/2000 [03:25<21:27, 1.35it/s, loss=0.759]" ] }, { @@ -4788,7 +4741,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 255/2000 [01:21<09:06, 3.19it/s, loss=0.863]" + "training until 2000: 13%|█▎ | 255/2000 [03:25<21:27, 1.35it/s, loss=0.793]" ] }, { @@ -4796,7 +4749,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 256/2000 [01:22<09:10, 3.17it/s, loss=0.863]" + "training until 2000: 13%|█▎ | 256/2000 [03:26<23:23, 1.24it/s, loss=0.793]" ] }, { @@ -4804,7 +4757,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 256/2000 [01:22<09:10, 3.17it/s, loss=0.859]" + "training until 2000: 13%|█▎ | 256/2000 [03:26<23:23, 1.24it/s, loss=0.777]" ] }, { @@ -4812,7 +4765,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 257/2000 [01:22<09:09, 3.17it/s, loss=0.859]" + "training until 2000: 13%|█▎ | 257/2000 [03:27<24:43, 1.17it/s, loss=0.777]" ] }, { @@ -4820,7 +4773,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 257/2000 [01:22<09:09, 3.17it/s, loss=0.914]" + "training until 2000: 13%|█▎ | 257/2000 [03:27<24:43, 1.17it/s, loss=0.828]" ] }, { @@ -4828,7 +4781,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 258/2000 [01:22<09:12, 3.15it/s, loss=0.914]" + "training until 2000: 13%|█▎ | 258/2000 [03:27<23:16, 1.25it/s, loss=0.828]" ] }, { @@ -4836,7 +4789,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 258/2000 [01:22<09:12, 3.15it/s, loss=0.878]" + "training until 2000: 13%|█▎ | 258/2000 [03:27<23:16, 1.25it/s, loss=0.826]" ] }, { @@ -4844,7 +4797,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 259/2000 [01:23<09:10, 3.16it/s, loss=0.878]" + "training until 2000: 13%|█▎ | 259/2000 [03:28<23:26, 1.24it/s, loss=0.826]" ] }, { @@ -4852,7 +4805,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 259/2000 [01:23<09:10, 3.16it/s, loss=0.858]" + "training until 2000: 13%|█▎ | 259/2000 [03:28<23:26, 1.24it/s, loss=0.786]" ] }, { @@ -4860,7 +4813,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 260/2000 [01:23<09:09, 3.16it/s, loss=0.858]" + "training until 2000: 13%|█▎ | 260/2000 [03:29<22:46, 1.27it/s, loss=0.786]" ] }, { @@ -4868,7 +4821,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 260/2000 [01:23<09:09, 3.16it/s, loss=0.865]" + "training until 2000: 13%|█▎ | 260/2000 [03:29<22:46, 1.27it/s, loss=0.774]" ] }, { @@ -4876,7 +4829,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 261/2000 [01:23<09:09, 3.16it/s, loss=0.865]" + "training until 2000: 13%|█▎ | 261/2000 [03:30<23:14, 1.25it/s, loss=0.774]" ] }, { @@ -4884,7 +4837,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 261/2000 [01:23<09:09, 3.16it/s, loss=0.884]" + "training until 2000: 13%|█▎ | 261/2000 [03:30<23:14, 1.25it/s, loss=0.808]" ] }, { @@ -4892,7 +4845,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 262/2000 [01:23<09:13, 3.14it/s, loss=0.884]" + "training until 2000: 13%|█▎ | 262/2000 [03:30<22:59, 1.26it/s, loss=0.808]" ] }, { @@ -4900,7 +4853,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 262/2000 [01:24<09:13, 3.14it/s, loss=0.872]" + "training until 2000: 13%|█▎ | 262/2000 [03:30<22:59, 1.26it/s, loss=0.78] " ] }, { @@ -4908,7 +4861,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 263/2000 [01:24<09:14, 3.13it/s, loss=0.872]" + "training until 2000: 13%|█▎ | 263/2000 [03:31<24:29, 1.18it/s, loss=0.78]" ] }, { @@ -4916,7 +4869,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 263/2000 [01:24<09:14, 3.13it/s, loss=0.876]" + "training until 2000: 13%|█▎ | 263/2000 [03:31<24:29, 1.18it/s, loss=0.781]" ] }, { @@ -4924,7 +4877,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 264/2000 [01:24<09:13, 3.14it/s, loss=0.876]" + "training until 2000: 13%|█▎ | 264/2000 [03:32<23:55, 1.21it/s, loss=0.781]" ] }, { @@ -4932,7 +4885,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 264/2000 [01:24<09:13, 3.14it/s, loss=0.842]" + "training until 2000: 13%|█▎ | 264/2000 [03:32<23:55, 1.21it/s, loss=0.786]" ] }, { @@ -4940,7 +4893,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 265/2000 [01:24<09:09, 3.16it/s, loss=0.842]" + "training until 2000: 13%|█▎ | 265/2000 [03:33<26:48, 1.08it/s, loss=0.786]" ] }, { @@ -4948,7 +4901,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 265/2000 [01:24<09:09, 3.16it/s, loss=0.842]" + "training until 2000: 13%|█▎ | 265/2000 [03:33<26:48, 1.08it/s, loss=0.789]" ] }, { @@ -4956,7 +4909,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 266/2000 [01:25<09:11, 3.15it/s, loss=0.842]" + "training until 2000: 13%|█▎ | 266/2000 [03:34<24:17, 1.19it/s, loss=0.789]" ] }, { @@ -4964,7 +4917,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 266/2000 [01:25<09:11, 3.15it/s, loss=0.881]" + "training until 2000: 13%|█▎ | 266/2000 [03:34<24:17, 1.19it/s, loss=0.784]" ] }, { @@ -4972,7 +4925,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 267/2000 [01:25<09:07, 3.17it/s, loss=0.881]" + "training until 2000: 13%|█▎ | 267/2000 [03:34<21:26, 1.35it/s, loss=0.784]" ] }, { @@ -4980,7 +4933,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 267/2000 [01:25<09:07, 3.17it/s, loss=0.936]" + "training until 2000: 13%|█▎ | 267/2000 [03:34<21:26, 1.35it/s, loss=0.81] " ] }, { @@ -4988,7 +4941,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 268/2000 [01:25<09:00, 3.20it/s, loss=0.936]" + "training until 2000: 13%|█▎ | 268/2000 [03:35<20:39, 1.40it/s, loss=0.81]" ] }, { @@ -4996,7 +4949,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 268/2000 [01:25<09:00, 3.20it/s, loss=0.92] " + "training until 2000: 13%|█▎ | 268/2000 [03:35<20:39, 1.40it/s, loss=0.79]" ] }, { @@ -5004,7 +4957,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 269/2000 [01:26<09:06, 3.17it/s, loss=0.92]" + "training until 2000: 13%|█▎ | 269/2000 [03:36<24:24, 1.18it/s, loss=0.79]" ] }, { @@ -5012,7 +4965,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 269/2000 [01:26<09:06, 3.17it/s, loss=0.865]" + "training until 2000: 13%|█▎ | 269/2000 [03:36<24:24, 1.18it/s, loss=0.825]" ] }, { @@ -5020,7 +4973,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 270/2000 [01:26<09:05, 3.17it/s, loss=0.865]" + "training until 2000: 14%|█▎ | 270/2000 [03:37<22:59, 1.25it/s, loss=0.825]" ] }, { @@ -5028,7 +4981,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 270/2000 [01:26<09:05, 3.17it/s, loss=0.843]" + "training until 2000: 14%|█▎ | 270/2000 [03:37<22:59, 1.25it/s, loss=0.802]" ] }, { @@ -5036,7 +4989,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 271/2000 [01:26<09:03, 3.18it/s, loss=0.843]" + "training until 2000: 14%|█▎ | 271/2000 [03:38<24:41, 1.17it/s, loss=0.802]" ] }, { @@ -5044,7 +4997,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 271/2000 [01:26<09:03, 3.18it/s, loss=0.861]" + "training until 2000: 14%|█▎ | 271/2000 [03:38<24:41, 1.17it/s, loss=0.802]" ] }, { @@ -5052,7 +5005,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 272/2000 [01:27<09:11, 3.13it/s, loss=0.861]" + "training until 2000: 14%|█▎ | 272/2000 [03:39<24:38, 1.17it/s, loss=0.802]" ] }, { @@ -5060,7 +5013,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 272/2000 [01:27<09:11, 3.13it/s, loss=0.862]" + "training until 2000: 14%|█▎ | 272/2000 [03:39<24:38, 1.17it/s, loss=0.745]" ] }, { @@ -5068,7 +5021,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 273/2000 [01:27<09:11, 3.13it/s, loss=0.862]" + "training until 2000: 14%|█▎ | 273/2000 [03:40<24:38, 1.17it/s, loss=0.745]" ] }, { @@ -5076,7 +5029,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 273/2000 [01:27<09:11, 3.13it/s, loss=0.917]" + "training until 2000: 14%|█▎ | 273/2000 [03:40<24:38, 1.17it/s, loss=0.775]" ] }, { @@ -5084,7 +5037,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 274/2000 [01:27<09:03, 3.17it/s, loss=0.917]" + "training until 2000: 14%|█▎ | 274/2000 [03:41<25:08, 1.14it/s, loss=0.775]" ] }, { @@ -5092,7 +5045,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 274/2000 [01:27<09:03, 3.17it/s, loss=0.875]" + "training until 2000: 14%|█▎ | 274/2000 [03:41<25:08, 1.14it/s, loss=0.762]" ] }, { @@ -5100,7 +5053,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 275/2000 [01:28<09:03, 3.18it/s, loss=0.875]" + "training until 2000: 14%|█▍ | 275/2000 [03:41<22:26, 1.28it/s, loss=0.762]" ] }, { @@ -5108,7 +5061,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 275/2000 [01:28<09:03, 3.18it/s, loss=0.865]" + "training until 2000: 14%|█▍ | 275/2000 [03:41<22:26, 1.28it/s, loss=0.792]" ] }, { @@ -5116,7 +5069,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 276/2000 [01:28<09:07, 3.15it/s, loss=0.865]" + "training until 2000: 14%|█▍ | 276/2000 [03:42<24:21, 1.18it/s, loss=0.792]" ] }, { @@ -5124,7 +5077,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 276/2000 [01:28<09:07, 3.15it/s, loss=0.867]" + "training until 2000: 14%|█▍ | 276/2000 [03:42<24:21, 1.18it/s, loss=0.822]" ] }, { @@ -5132,7 +5085,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 277/2000 [01:28<11:00, 2.61it/s, loss=0.867]" + "training until 2000: 14%|█▍ | 277/2000 [03:43<23:12, 1.24it/s, loss=0.822]" ] }, { @@ -5140,7 +5093,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 277/2000 [01:28<11:00, 2.61it/s, loss=0.893]" + "training until 2000: 14%|█▍ | 277/2000 [03:43<23:12, 1.24it/s, loss=0.825]" ] }, { @@ -5148,7 +5101,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 278/2000 [01:29<10:24, 2.76it/s, loss=0.893]" + "training until 2000: 14%|█▍ | 278/2000 [03:43<21:45, 1.32it/s, loss=0.825]" ] }, { @@ -5156,7 +5109,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 278/2000 [01:29<10:24, 2.76it/s, loss=0.823]" + "training until 2000: 14%|█▍ | 278/2000 [03:43<21:45, 1.32it/s, loss=0.8] " ] }, { @@ -5164,7 +5117,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 279/2000 [01:29<10:02, 2.86it/s, loss=0.823]" + "training until 2000: 14%|█▍ | 279/2000 [03:44<22:35, 1.27it/s, loss=0.8]" ] }, { @@ -5172,7 +5125,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 279/2000 [01:29<10:02, 2.86it/s, loss=0.854]" + "training until 2000: 14%|█▍ | 279/2000 [03:44<22:35, 1.27it/s, loss=0.79]" ] }, { @@ -5180,7 +5133,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 280/2000 [01:29<09:46, 2.93it/s, loss=0.854]" + "training until 2000: 14%|█▍ | 280/2000 [03:45<22:31, 1.27it/s, loss=0.79]" ] }, { @@ -5188,7 +5141,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 280/2000 [01:29<09:46, 2.93it/s, loss=0.833]" + "training until 2000: 14%|█▍ | 280/2000 [03:45<22:31, 1.27it/s, loss=0.809]" ] }, { @@ -5196,7 +5149,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 281/2000 [01:30<09:33, 3.00it/s, loss=0.833]" + "training until 2000: 14%|█▍ | 281/2000 [03:46<21:50, 1.31it/s, loss=0.809]" ] }, { @@ -5204,7 +5157,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 281/2000 [01:30<09:33, 3.00it/s, loss=0.915]" + "training until 2000: 14%|█▍ | 281/2000 [03:46<21:50, 1.31it/s, loss=0.788]" ] }, { @@ -5212,7 +5165,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 282/2000 [01:30<09:23, 3.05it/s, loss=0.915]" + "training until 2000: 14%|█▍ | 282/2000 [03:47<23:14, 1.23it/s, loss=0.788]" ] }, { @@ -5220,7 +5173,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 282/2000 [01:30<09:23, 3.05it/s, loss=0.896]" + "training until 2000: 14%|█▍ | 282/2000 [03:47<23:14, 1.23it/s, loss=0.816]" ] }, { @@ -5228,7 +5181,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 283/2000 [01:30<09:22, 3.05it/s, loss=0.896]" + "training until 2000: 14%|█▍ | 283/2000 [03:48<23:16, 1.23it/s, loss=0.816]" ] }, { @@ -5236,7 +5189,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 283/2000 [01:30<09:22, 3.05it/s, loss=0.823]" + "training until 2000: 14%|█▍ | 283/2000 [03:48<23:16, 1.23it/s, loss=0.798]" ] }, { @@ -5244,7 +5197,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 284/2000 [01:31<09:15, 3.09it/s, loss=0.823]" + "training until 2000: 14%|█▍ | 284/2000 [03:49<26:03, 1.10it/s, loss=0.798]" ] }, { @@ -5252,7 +5205,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 284/2000 [01:31<09:15, 3.09it/s, loss=0.853]" + "training until 2000: 14%|█▍ | 284/2000 [03:49<26:03, 1.10it/s, loss=0.787]" ] }, { @@ -5260,7 +5213,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 285/2000 [01:31<09:09, 3.12it/s, loss=0.853]" + "training until 2000: 14%|█▍ | 285/2000 [03:49<24:37, 1.16it/s, loss=0.787]" ] }, { @@ -5268,7 +5221,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 285/2000 [01:31<09:09, 3.12it/s, loss=0.85] " + "training until 2000: 14%|█▍ | 285/2000 [03:49<24:37, 1.16it/s, loss=0.807]" ] }, { @@ -5276,7 +5229,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 286/2000 [01:31<09:02, 3.16it/s, loss=0.85]" + "training until 2000: 14%|█▍ | 286/2000 [03:50<22:54, 1.25it/s, loss=0.807]" ] }, { @@ -5284,7 +5237,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 286/2000 [01:31<09:02, 3.16it/s, loss=0.891]" + "training until 2000: 14%|█▍ | 286/2000 [03:50<22:54, 1.25it/s, loss=0.765]" ] }, { @@ -5292,7 +5245,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 287/2000 [01:32<09:01, 3.17it/s, loss=0.891]" + "training until 2000: 14%|█▍ | 287/2000 [03:51<20:46, 1.37it/s, loss=0.765]" ] }, { @@ -5300,7 +5253,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 287/2000 [01:32<09:01, 3.17it/s, loss=0.908]" + "training until 2000: 14%|█▍ | 287/2000 [03:51<20:46, 1.37it/s, loss=0.789]" ] }, { @@ -5308,7 +5261,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 288/2000 [01:32<09:00, 3.17it/s, loss=0.908]" + "training until 2000: 14%|█▍ | 288/2000 [03:51<20:40, 1.38it/s, loss=0.789]" ] }, { @@ -5316,7 +5269,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 288/2000 [01:32<09:00, 3.17it/s, loss=0.93] " + "training until 2000: 14%|█▍ | 288/2000 [03:51<20:40, 1.38it/s, loss=0.802]" ] }, { @@ -5324,7 +5277,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 289/2000 [01:32<08:57, 3.18it/s, loss=0.93]" + "training until 2000: 14%|█▍ | 289/2000 [03:52<19:55, 1.43it/s, loss=0.802]" ] }, { @@ -5332,7 +5285,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 289/2000 [01:32<08:57, 3.18it/s, loss=0.901]" + "training until 2000: 14%|█▍ | 289/2000 [03:52<19:55, 1.43it/s, loss=0.821]" ] }, { @@ -5340,7 +5293,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 290/2000 [01:33<08:53, 3.20it/s, loss=0.901]" + "training until 2000: 14%|█▍ | 290/2000 [03:53<19:51, 1.44it/s, loss=0.821]" ] }, { @@ -5348,7 +5301,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 290/2000 [01:33<08:53, 3.20it/s, loss=0.879]" + "training until 2000: 14%|█▍ | 290/2000 [03:53<19:51, 1.44it/s, loss=0.792]" ] }, { @@ -5356,7 +5309,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 291/2000 [01:33<08:55, 3.19it/s, loss=0.879]" + "training until 2000: 15%|█▍ | 291/2000 [03:53<19:06, 1.49it/s, loss=0.792]" ] }, { @@ -5364,7 +5317,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 291/2000 [01:33<08:55, 3.19it/s, loss=0.874]" + "training until 2000: 15%|█▍ | 291/2000 [03:53<19:06, 1.49it/s, loss=0.784]" ] }, { @@ -5372,7 +5325,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 292/2000 [01:33<08:53, 3.20it/s, loss=0.874]" + "training until 2000: 15%|█▍ | 292/2000 [03:54<20:26, 1.39it/s, loss=0.784]" ] }, { @@ -5380,7 +5333,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 292/2000 [01:33<08:53, 3.20it/s, loss=0.825]" + "training until 2000: 15%|█▍ | 292/2000 [03:54<20:26, 1.39it/s, loss=0.796]" ] }, { @@ -5388,7 +5341,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 293/2000 [01:34<08:57, 3.18it/s, loss=0.825]" + "training until 2000: 15%|█▍ | 293/2000 [03:55<22:18, 1.28it/s, loss=0.796]" ] }, { @@ -5396,7 +5349,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 293/2000 [01:34<08:57, 3.18it/s, loss=0.851]" + "training until 2000: 15%|█▍ | 293/2000 [03:55<22:18, 1.28it/s, loss=0.782]" ] }, { @@ -5404,7 +5357,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 294/2000 [01:34<08:58, 3.17it/s, loss=0.851]" + "training until 2000: 15%|█▍ | 294/2000 [03:56<23:41, 1.20it/s, loss=0.782]" ] }, { @@ -5412,7 +5365,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 294/2000 [01:34<08:58, 3.17it/s, loss=0.867]" + "training until 2000: 15%|█▍ | 294/2000 [03:56<23:41, 1.20it/s, loss=0.805]" ] }, { @@ -5420,7 +5373,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 295/2000 [01:34<09:00, 3.15it/s, loss=0.867]" + "training until 2000: 15%|█▍ | 295/2000 [03:57<23:05, 1.23it/s, loss=0.805]" ] }, { @@ -5428,7 +5381,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 295/2000 [01:34<09:00, 3.15it/s, loss=0.901]" + "training until 2000: 15%|█▍ | 295/2000 [03:57<23:05, 1.23it/s, loss=0.762]" ] }, { @@ -5436,7 +5389,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 296/2000 [01:34<08:56, 3.18it/s, loss=0.901]" + "training until 2000: 15%|█▍ | 296/2000 [03:58<23:20, 1.22it/s, loss=0.762]" ] }, { @@ -5444,7 +5397,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 296/2000 [01:34<08:56, 3.18it/s, loss=0.893]" + "training until 2000: 15%|█▍ | 296/2000 [03:58<23:20, 1.22it/s, loss=0.758]" ] }, { @@ -5452,7 +5405,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 297/2000 [01:35<08:59, 3.16it/s, loss=0.893]" + "training until 2000: 15%|█▍ | 297/2000 [03:58<22:40, 1.25it/s, loss=0.758]" ] }, { @@ -5460,7 +5413,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 297/2000 [01:35<08:59, 3.16it/s, loss=0.874]" + "training until 2000: 15%|█▍ | 297/2000 [03:58<22:40, 1.25it/s, loss=0.773]" ] }, { @@ -5468,7 +5421,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 298/2000 [01:35<09:01, 3.14it/s, loss=0.874]" + "training until 2000: 15%|█▍ | 298/2000 [03:59<22:02, 1.29it/s, loss=0.773]" ] }, { @@ -5476,7 +5429,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 298/2000 [01:35<09:01, 3.14it/s, loss=0.891]" + "training until 2000: 15%|█▍ | 298/2000 [03:59<22:02, 1.29it/s, loss=0.818]" ] }, { @@ -5484,7 +5437,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 299/2000 [01:35<09:05, 3.12it/s, loss=0.891]" + "training until 2000: 15%|█▍ | 299/2000 [04:00<21:24, 1.32it/s, loss=0.818]" ] }, { @@ -5492,7 +5445,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 299/2000 [01:35<09:05, 3.12it/s, loss=0.888]" + "training until 2000: 15%|█▍ | 299/2000 [04:00<21:24, 1.32it/s, loss=0.794]" ] }, { @@ -5500,7 +5453,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 300/2000 [01:36<09:01, 3.14it/s, loss=0.888]" + "training until 2000: 15%|█▌ | 300/2000 [04:00<20:46, 1.36it/s, loss=0.794]" ] }, { @@ -5508,7 +5461,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 300/2000 [01:36<09:01, 3.14it/s, loss=0.881]" + "training until 2000: 15%|█▌ | 300/2000 [04:00<20:46, 1.36it/s, loss=0.82] " ] }, { @@ -5516,7 +5469,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 301/2000 [01:36<09:05, 3.11it/s, loss=0.881]" + "training until 2000: 15%|█▌ | 301/2000 [04:01<22:12, 1.28it/s, loss=0.82]" ] }, { @@ -5524,7 +5477,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 301/2000 [01:36<09:05, 3.11it/s, loss=0.842]" + "training until 2000: 15%|█▌ | 301/2000 [04:01<22:12, 1.28it/s, loss=0.798]" ] }, { @@ -5532,7 +5485,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 302/2000 [01:36<08:55, 3.17it/s, loss=0.842]" + "training until 2000: 15%|█▌ | 302/2000 [04:02<23:06, 1.22it/s, loss=0.798]" ] }, { @@ -5540,7 +5493,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 302/2000 [01:36<08:55, 3.17it/s, loss=0.878]" + "training until 2000: 15%|█▌ | 302/2000 [04:02<23:06, 1.22it/s, loss=0.778]" ] }, { @@ -5548,7 +5501,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 303/2000 [01:37<08:57, 3.16it/s, loss=0.878]" + "training until 2000: 15%|█▌ | 303/2000 [04:03<21:47, 1.30it/s, loss=0.778]" ] }, { @@ -5556,7 +5509,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 303/2000 [01:37<08:57, 3.16it/s, loss=0.875]" + "training until 2000: 15%|█▌ | 303/2000 [04:03<21:47, 1.30it/s, loss=0.801]" ] }, { @@ -5564,7 +5517,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 304/2000 [01:37<08:53, 3.18it/s, loss=0.875]" + "training until 2000: 15%|█▌ | 304/2000 [04:04<23:44, 1.19it/s, loss=0.801]" ] }, { @@ -5572,7 +5525,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 304/2000 [01:37<08:53, 3.18it/s, loss=0.905]" + "training until 2000: 15%|█▌ | 304/2000 [04:04<23:44, 1.19it/s, loss=0.788]" ] }, { @@ -5580,7 +5533,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 305/2000 [01:37<08:53, 3.18it/s, loss=0.905]" + "training until 2000: 15%|█▌ | 305/2000 [04:05<25:50, 1.09it/s, loss=0.788]" ] }, { @@ -5588,7 +5541,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 305/2000 [01:37<08:53, 3.18it/s, loss=0.889]" + "training until 2000: 15%|█▌ | 305/2000 [04:05<25:50, 1.09it/s, loss=0.835]" ] }, { @@ -5596,7 +5549,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 306/2000 [01:38<08:54, 3.17it/s, loss=0.889]" + "training until 2000: 15%|█▌ | 306/2000 [04:06<25:14, 1.12it/s, loss=0.835]" ] }, { @@ -5604,7 +5557,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 306/2000 [01:38<08:54, 3.17it/s, loss=0.906]" + "training until 2000: 15%|█▌ | 306/2000 [04:06<25:14, 1.12it/s, loss=0.781]" ] }, { @@ -5612,7 +5565,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 307/2000 [01:38<08:55, 3.16it/s, loss=0.906]" + "training until 2000: 15%|█▌ | 307/2000 [04:07<24:37, 1.15it/s, loss=0.781]" ] }, { @@ -5620,7 +5573,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 307/2000 [01:38<08:55, 3.16it/s, loss=0.863]" + "training until 2000: 15%|█▌ | 307/2000 [04:07<24:37, 1.15it/s, loss=0.779]" ] }, { @@ -5628,7 +5581,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 308/2000 [01:38<08:52, 3.18it/s, loss=0.863]" + "training until 2000: 15%|█▌ | 308/2000 [04:07<21:45, 1.30it/s, loss=0.779]" ] }, { @@ -5636,7 +5589,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 308/2000 [01:38<08:52, 3.18it/s, loss=0.837]" + "training until 2000: 15%|█▌ | 308/2000 [04:07<21:45, 1.30it/s, loss=0.782]" ] }, { @@ -5644,7 +5597,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 309/2000 [01:39<08:51, 3.18it/s, loss=0.837]" + "training until 2000: 15%|█▌ | 309/2000 [04:08<20:34, 1.37it/s, loss=0.782]" ] }, { @@ -5652,7 +5605,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 309/2000 [01:39<08:51, 3.18it/s, loss=0.873]" + "training until 2000: 15%|█▌ | 309/2000 [04:08<20:34, 1.37it/s, loss=0.819]" ] }, { @@ -5660,7 +5613,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 310/2000 [01:39<08:51, 3.18it/s, loss=0.873]" + "training until 2000: 16%|█▌ | 310/2000 [04:09<22:05, 1.27it/s, loss=0.819]" ] }, { @@ -5668,7 +5621,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 310/2000 [01:39<08:51, 3.18it/s, loss=0.872]" + "training until 2000: 16%|█▌ | 310/2000 [04:09<22:05, 1.27it/s, loss=0.792]" ] }, { @@ -5676,7 +5629,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 311/2000 [01:39<08:58, 3.14it/s, loss=0.872]" + "training until 2000: 16%|█▌ | 311/2000 [04:09<19:57, 1.41it/s, loss=0.792]" ] }, { @@ -5684,7 +5637,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 311/2000 [01:39<08:58, 3.14it/s, loss=0.898]" + "training until 2000: 16%|█▌ | 311/2000 [04:09<19:57, 1.41it/s, loss=0.789]" ] }, { @@ -5692,7 +5645,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 312/2000 [01:40<08:57, 3.14it/s, loss=0.898]" + "training until 2000: 16%|█▌ | 312/2000 [04:10<23:30, 1.20it/s, loss=0.789]" ] }, { @@ -5700,7 +5653,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 312/2000 [01:40<08:57, 3.14it/s, loss=0.908]" + "training until 2000: 16%|█▌ | 312/2000 [04:10<23:30, 1.20it/s, loss=0.801]" ] }, { @@ -5708,7 +5661,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 313/2000 [01:40<08:54, 3.16it/s, loss=0.908]" + "training until 2000: 16%|█▌ | 313/2000 [04:11<22:37, 1.24it/s, loss=0.801]" ] }, { @@ -5716,7 +5669,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 313/2000 [01:40<08:54, 3.16it/s, loss=0.858]" + "training until 2000: 16%|█▌ | 313/2000 [04:11<22:37, 1.24it/s, loss=0.761]" ] }, { @@ -5724,7 +5677,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 314/2000 [01:40<08:54, 3.15it/s, loss=0.858]" + "training until 2000: 16%|█▌ | 314/2000 [04:12<23:59, 1.17it/s, loss=0.761]" ] }, { @@ -5732,7 +5685,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 314/2000 [01:40<08:54, 3.15it/s, loss=0.94] " + "training until 2000: 16%|█▌ | 314/2000 [04:12<23:59, 1.17it/s, loss=0.792]" ] }, { @@ -5740,7 +5693,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 315/2000 [01:40<08:50, 3.17it/s, loss=0.94]" + "training until 2000: 16%|█▌ | 315/2000 [04:13<23:39, 1.19it/s, loss=0.792]" ] }, { @@ -5748,7 +5701,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 315/2000 [01:40<08:50, 3.17it/s, loss=0.871]" + "training until 2000: 16%|█▌ | 315/2000 [04:13<23:39, 1.19it/s, loss=0.77] " ] }, { @@ -5756,7 +5709,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 316/2000 [01:41<08:56, 3.14it/s, loss=0.871]" + "training until 2000: 16%|█▌ | 316/2000 [04:14<22:40, 1.24it/s, loss=0.77]" ] }, { @@ -5764,7 +5717,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 316/2000 [01:41<08:56, 3.14it/s, loss=0.858]" + "training until 2000: 16%|█▌ | 316/2000 [04:14<22:40, 1.24it/s, loss=0.812]" ] }, { @@ -5772,7 +5725,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 317/2000 [01:41<08:53, 3.15it/s, loss=0.858]" + "training until 2000: 16%|█▌ | 317/2000 [04:15<25:58, 1.08it/s, loss=0.812]" ] }, { @@ -5780,7 +5733,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 317/2000 [01:41<08:53, 3.15it/s, loss=0.892]" + "training until 2000: 16%|█▌ | 317/2000 [04:15<25:58, 1.08it/s, loss=0.781]" ] }, { @@ -5788,7 +5741,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 318/2000 [01:41<08:56, 3.14it/s, loss=0.892]" + "training until 2000: 16%|█▌ | 318/2000 [04:16<26:21, 1.06it/s, loss=0.781]" ] }, { @@ -5796,7 +5749,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 318/2000 [01:41<08:56, 3.14it/s, loss=0.853]" + "training until 2000: 16%|█▌ | 318/2000 [04:16<26:21, 1.06it/s, loss=0.822]" ] }, { @@ -5804,7 +5757,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 319/2000 [01:42<08:55, 3.14it/s, loss=0.853]" + "training until 2000: 16%|█▌ | 319/2000 [04:17<24:58, 1.12it/s, loss=0.822]" ] }, { @@ -5812,7 +5765,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 319/2000 [01:42<08:55, 3.14it/s, loss=0.879]" + "training until 2000: 16%|█▌ | 319/2000 [04:17<24:58, 1.12it/s, loss=0.756]" ] }, { @@ -5820,7 +5773,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 320/2000 [01:42<08:53, 3.15it/s, loss=0.879]" + "training until 2000: 16%|█▌ | 320/2000 [04:17<23:53, 1.17it/s, loss=0.756]" ] }, { @@ -5828,7 +5781,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 320/2000 [01:42<08:53, 3.15it/s, loss=0.906]" + "training until 2000: 16%|█▌ | 320/2000 [04:17<23:53, 1.17it/s, loss=0.8] " ] }, { @@ -5836,7 +5789,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 321/2000 [01:42<08:57, 3.13it/s, loss=0.906]" + "training until 2000: 16%|█▌ | 321/2000 [04:18<24:30, 1.14it/s, loss=0.8]" ] }, { @@ -5844,7 +5797,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 321/2000 [01:42<08:57, 3.13it/s, loss=0.888]" + "training until 2000: 16%|█▌ | 321/2000 [04:18<24:30, 1.14it/s, loss=0.814]" ] }, { @@ -5852,7 +5805,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 322/2000 [01:43<08:52, 3.15it/s, loss=0.888]" + "training until 2000: 16%|█▌ | 322/2000 [04:19<23:31, 1.19it/s, loss=0.814]" ] }, { @@ -5860,7 +5813,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 322/2000 [01:43<08:52, 3.15it/s, loss=0.866]" + "training until 2000: 16%|█▌ | 322/2000 [04:19<23:31, 1.19it/s, loss=0.77] " ] }, { @@ -5868,7 +5821,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 323/2000 [01:43<08:52, 3.15it/s, loss=0.866]" + "training until 2000: 16%|█▌ | 323/2000 [04:20<22:32, 1.24it/s, loss=0.77]" ] }, { @@ -5876,7 +5829,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 323/2000 [01:43<08:52, 3.15it/s, loss=0.902]" + "training until 2000: 16%|█▌ | 323/2000 [04:20<22:32, 1.24it/s, loss=0.821]" ] }, { @@ -5884,7 +5837,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 324/2000 [01:43<08:52, 3.15it/s, loss=0.902]" + "training until 2000: 16%|█▌ | 324/2000 [04:21<21:56, 1.27it/s, loss=0.821]" ] }, { @@ -5892,7 +5845,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 324/2000 [01:43<08:52, 3.15it/s, loss=0.856]" + "training until 2000: 16%|█▌ | 324/2000 [04:21<21:56, 1.27it/s, loss=0.813]" ] }, { @@ -5900,7 +5853,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 325/2000 [01:44<08:49, 3.16it/s, loss=0.856]" + "training until 2000: 16%|█▋ | 325/2000 [04:21<19:31, 1.43it/s, loss=0.813]" ] }, { @@ -5908,7 +5861,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 325/2000 [01:44<08:49, 3.16it/s, loss=0.896]" + "training until 2000: 16%|█▋ | 325/2000 [04:21<19:31, 1.43it/s, loss=0.757]" ] }, { @@ -5916,7 +5869,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 326/2000 [01:44<08:49, 3.16it/s, loss=0.896]" + "training until 2000: 16%|█▋ | 326/2000 [04:22<20:01, 1.39it/s, loss=0.757]" ] }, { @@ -5924,7 +5877,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 326/2000 [01:44<08:49, 3.16it/s, loss=0.831]" + "training until 2000: 16%|█▋ | 326/2000 [04:22<20:01, 1.39it/s, loss=0.749]" ] }, { @@ -5932,7 +5885,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 327/2000 [01:44<08:44, 3.19it/s, loss=0.831]" + "training until 2000: 16%|█▋ | 327/2000 [04:23<24:01, 1.16it/s, loss=0.749]" ] }, { @@ -5940,7 +5893,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 327/2000 [01:44<08:44, 3.19it/s, loss=0.898]" + "training until 2000: 16%|█▋ | 327/2000 [04:23<24:01, 1.16it/s, loss=0.788]" ] }, { @@ -5948,7 +5901,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 328/2000 [01:45<08:44, 3.19it/s, loss=0.898]" + "training until 2000: 16%|█▋ | 328/2000 [04:24<23:23, 1.19it/s, loss=0.788]" ] }, { @@ -5956,7 +5909,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 328/2000 [01:45<08:44, 3.19it/s, loss=0.865]" + "training until 2000: 16%|█▋ | 328/2000 [04:24<23:23, 1.19it/s, loss=0.778]" ] }, { @@ -5964,7 +5917,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 329/2000 [01:45<08:46, 3.17it/s, loss=0.865]" + "training until 2000: 16%|█▋ | 329/2000 [04:25<22:37, 1.23it/s, loss=0.778]" ] }, { @@ -5972,7 +5925,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 329/2000 [01:45<08:46, 3.17it/s, loss=0.868]" + "training until 2000: 16%|█▋ | 329/2000 [04:25<22:37, 1.23it/s, loss=0.763]" ] }, { @@ -5980,7 +5933,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 330/2000 [01:45<08:45, 3.18it/s, loss=0.868]" + "training until 2000: 16%|█▋ | 330/2000 [04:25<23:02, 1.21it/s, loss=0.763]" ] }, { @@ -5988,7 +5941,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 330/2000 [01:45<08:45, 3.18it/s, loss=0.877]" + "training until 2000: 16%|█▋ | 330/2000 [04:25<23:02, 1.21it/s, loss=0.781]" ] }, { @@ -5996,7 +5949,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 331/2000 [01:46<08:40, 3.21it/s, loss=0.877]" + "training until 2000: 17%|█▋ | 331/2000 [04:26<23:10, 1.20it/s, loss=0.781]" ] }, { @@ -6004,7 +5957,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 331/2000 [01:46<08:40, 3.21it/s, loss=0.854]" + "training until 2000: 17%|█▋ | 331/2000 [04:26<23:10, 1.20it/s, loss=0.796]" ] }, { @@ -6012,7 +5965,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 332/2000 [01:46<08:37, 3.22it/s, loss=0.854]" + "training until 2000: 17%|█▋ | 332/2000 [04:27<20:54, 1.33it/s, loss=0.796]" ] }, { @@ -6020,7 +5973,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 332/2000 [01:46<08:37, 3.22it/s, loss=0.871]" + "training until 2000: 17%|█▋ | 332/2000 [04:27<20:54, 1.33it/s, loss=0.731]" ] }, { @@ -6028,7 +5981,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 333/2000 [01:46<08:34, 3.24it/s, loss=0.871]" + "training until 2000: 17%|█▋ | 333/2000 [04:28<20:24, 1.36it/s, loss=0.731]" ] }, { @@ -6036,7 +5989,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 333/2000 [01:46<08:34, 3.24it/s, loss=0.841]" + "training until 2000: 17%|█▋ | 333/2000 [04:28<20:24, 1.36it/s, loss=0.766]" ] }, { @@ -6044,7 +5997,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 334/2000 [01:46<08:36, 3.23it/s, loss=0.841]" + "training until 2000: 17%|█▋ | 334/2000 [04:28<21:21, 1.30it/s, loss=0.766]" ] }, { @@ -6052,7 +6005,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 334/2000 [01:46<08:36, 3.23it/s, loss=0.826]" + "training until 2000: 17%|█▋ | 334/2000 [04:28<21:21, 1.30it/s, loss=0.786]" ] }, { @@ -6060,7 +6013,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 335/2000 [01:47<08:37, 3.22it/s, loss=0.826]" + "training until 2000: 17%|█▋ | 335/2000 [04:29<22:01, 1.26it/s, loss=0.786]" ] }, { @@ -6068,7 +6021,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 335/2000 [01:47<08:37, 3.22it/s, loss=0.877]" + "training until 2000: 17%|█▋ | 335/2000 [04:29<22:01, 1.26it/s, loss=0.788]" ] }, { @@ -6076,7 +6029,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 336/2000 [01:47<08:42, 3.18it/s, loss=0.877]" + "training until 2000: 17%|█▋ | 336/2000 [04:30<21:06, 1.31it/s, loss=0.788]" ] }, { @@ -6084,7 +6037,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 336/2000 [01:47<08:42, 3.18it/s, loss=0.828]" + "training until 2000: 17%|█▋ | 336/2000 [04:30<21:06, 1.31it/s, loss=0.825]" ] }, { @@ -6092,7 +6045,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 337/2000 [01:47<08:42, 3.18it/s, loss=0.828]" + "training until 2000: 17%|█▋ | 337/2000 [04:31<26:16, 1.05it/s, loss=0.825]" ] }, { @@ -6100,7 +6053,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 337/2000 [01:47<08:42, 3.18it/s, loss=0.862]" + "training until 2000: 17%|█▋ | 337/2000 [04:31<26:16, 1.05it/s, loss=0.825]" ] }, { @@ -6108,7 +6061,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 338/2000 [01:48<08:43, 3.17it/s, loss=0.862]" + "training until 2000: 17%|█▋ | 338/2000 [04:32<26:36, 1.04it/s, loss=0.825]" ] }, { @@ -6116,7 +6069,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 338/2000 [01:48<08:43, 3.17it/s, loss=0.832]" + "training until 2000: 17%|█▋ | 338/2000 [04:32<26:36, 1.04it/s, loss=0.798]" ] }, { @@ -6124,7 +6077,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 339/2000 [01:48<08:45, 3.16it/s, loss=0.832]" + "training until 2000: 17%|█▋ | 339/2000 [04:33<27:24, 1.01it/s, loss=0.798]" ] }, { @@ -6132,7 +6085,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 339/2000 [01:48<08:45, 3.16it/s, loss=0.844]" + "training until 2000: 17%|█▋ | 339/2000 [04:33<27:24, 1.01it/s, loss=0.767]" ] }, { @@ -6140,7 +6093,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 340/2000 [01:48<08:40, 3.19it/s, loss=0.844]" + "training until 2000: 17%|█▋ | 340/2000 [04:34<25:18, 1.09it/s, loss=0.767]" ] }, { @@ -6148,7 +6101,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 340/2000 [01:48<08:40, 3.19it/s, loss=0.879]" + "training until 2000: 17%|█▋ | 340/2000 [04:34<25:18, 1.09it/s, loss=0.791]" ] }, { @@ -6156,7 +6109,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 341/2000 [01:49<08:48, 3.14it/s, loss=0.879]" + "training until 2000: 17%|█▋ | 341/2000 [04:35<25:07, 1.10it/s, loss=0.791]" ] }, { @@ -6164,7 +6117,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 341/2000 [01:49<08:48, 3.14it/s, loss=0.883]" + "training until 2000: 17%|█▋ | 341/2000 [04:35<25:07, 1.10it/s, loss=0.778]" ] }, { @@ -6172,7 +6125,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 342/2000 [01:49<08:51, 3.12it/s, loss=0.883]" + "training until 2000: 17%|█▋ | 342/2000 [04:36<23:29, 1.18it/s, loss=0.778]" ] }, { @@ -6180,7 +6133,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 342/2000 [01:49<08:51, 3.12it/s, loss=0.891]" + "training until 2000: 17%|█▋ | 342/2000 [04:36<23:29, 1.18it/s, loss=0.77] " ] }, { @@ -6188,7 +6141,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 343/2000 [01:49<08:45, 3.15it/s, loss=0.891]" + "training until 2000: 17%|█▋ | 343/2000 [04:36<22:16, 1.24it/s, loss=0.77]" ] }, { @@ -6196,7 +6149,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 343/2000 [01:49<08:45, 3.15it/s, loss=0.852]" + "training until 2000: 17%|█▋ | 343/2000 [04:36<22:16, 1.24it/s, loss=0.769]" ] }, { @@ -6204,7 +6157,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 344/2000 [01:50<08:41, 3.18it/s, loss=0.852]" + "training until 2000: 17%|█▋ | 344/2000 [04:37<21:47, 1.27it/s, loss=0.769]" ] }, { @@ -6212,7 +6165,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 344/2000 [01:50<08:41, 3.18it/s, loss=0.897]" + "training until 2000: 17%|█▋ | 344/2000 [04:37<21:47, 1.27it/s, loss=0.799]" ] }, { @@ -6220,7 +6173,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 345/2000 [01:50<08:44, 3.16it/s, loss=0.897]" + "training until 2000: 17%|█▋ | 345/2000 [04:38<22:07, 1.25it/s, loss=0.799]" ] }, { @@ -6228,7 +6181,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 345/2000 [01:50<08:44, 3.16it/s, loss=0.873]" + "training until 2000: 17%|█▋ | 345/2000 [04:38<22:07, 1.25it/s, loss=0.788]" ] }, { @@ -6236,7 +6189,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 346/2000 [01:50<08:40, 3.18it/s, loss=0.873]" + "training until 2000: 17%|█▋ | 346/2000 [04:39<20:20, 1.36it/s, loss=0.788]" ] }, { @@ -6244,7 +6197,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 346/2000 [01:50<08:40, 3.18it/s, loss=0.849]" + "training until 2000: 17%|█▋ | 346/2000 [04:39<20:20, 1.36it/s, loss=0.753]" ] }, { @@ -6252,7 +6205,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 347/2000 [01:51<10:24, 2.65it/s, loss=0.849]" + "training until 2000: 17%|█▋ | 347/2000 [04:39<21:07, 1.30it/s, loss=0.753]" ] }, { @@ -6260,7 +6213,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 347/2000 [01:51<10:24, 2.65it/s, loss=0.879]" + "training until 2000: 17%|█▋ | 347/2000 [04:39<21:07, 1.30it/s, loss=0.782]" ] }, { @@ -6268,7 +6221,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 348/2000 [01:51<09:57, 2.77it/s, loss=0.879]" + "training until 2000: 17%|█▋ | 348/2000 [04:40<21:18, 1.29it/s, loss=0.782]" ] }, { @@ -6276,7 +6229,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 348/2000 [01:51<09:57, 2.77it/s, loss=0.823]" + "training until 2000: 17%|█▋ | 348/2000 [04:40<21:18, 1.29it/s, loss=0.761]" ] }, { @@ -6284,7 +6237,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 349/2000 [01:51<09:35, 2.87it/s, loss=0.823]" + "training until 2000: 17%|█▋ | 349/2000 [04:41<22:21, 1.23it/s, loss=0.761]" ] }, { @@ -6292,7 +6245,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 349/2000 [01:51<09:35, 2.87it/s, loss=0.854]" + "training until 2000: 17%|█▋ | 349/2000 [04:41<22:21, 1.23it/s, loss=0.794]" ] }, { @@ -6300,7 +6253,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 350/2000 [01:52<09:17, 2.96it/s, loss=0.854]" + "training until 2000: 18%|█▊ | 350/2000 [04:42<21:15, 1.29it/s, loss=0.794]" ] }, { @@ -6308,7 +6261,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 350/2000 [01:52<09:17, 2.96it/s, loss=0.86] " + "training until 2000: 18%|█▊ | 350/2000 [04:42<21:15, 1.29it/s, loss=0.814]" ] }, { @@ -6316,7 +6269,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 351/2000 [01:52<09:11, 2.99it/s, loss=0.86]" + "training until 2000: 18%|█▊ | 351/2000 [04:43<24:29, 1.12it/s, loss=0.814]" ] }, { @@ -6324,7 +6277,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 351/2000 [01:52<09:11, 2.99it/s, loss=0.854]" + "training until 2000: 18%|█▊ | 351/2000 [04:43<24:29, 1.12it/s, loss=0.797]" ] }, { @@ -6332,7 +6285,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 352/2000 [01:52<09:01, 3.04it/s, loss=0.854]" + "training until 2000: 18%|█▊ | 352/2000 [04:44<25:24, 1.08it/s, loss=0.797]" ] }, { @@ -6340,7 +6293,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 352/2000 [01:52<09:01, 3.04it/s, loss=0.856]" + "training until 2000: 18%|█▊ | 352/2000 [04:44<25:24, 1.08it/s, loss=0.735]" ] }, { @@ -6348,7 +6301,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 353/2000 [01:53<08:58, 3.06it/s, loss=0.856]" + "training until 2000: 18%|█▊ | 353/2000 [04:45<24:39, 1.11it/s, loss=0.735]" ] }, { @@ -6356,7 +6309,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 353/2000 [01:53<08:58, 3.06it/s, loss=0.819]" + "training until 2000: 18%|█▊ | 353/2000 [04:45<24:39, 1.11it/s, loss=0.781]" ] }, { @@ -6364,7 +6317,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 354/2000 [01:53<08:58, 3.06it/s, loss=0.819]" + "training until 2000: 18%|█▊ | 354/2000 [04:46<23:14, 1.18it/s, loss=0.781]" ] }, { @@ -6372,7 +6325,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 354/2000 [01:53<08:58, 3.06it/s, loss=0.854]" + "training until 2000: 18%|█▊ | 354/2000 [04:46<23:14, 1.18it/s, loss=0.782]" ] }, { @@ -6380,7 +6333,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 355/2000 [01:53<08:54, 3.08it/s, loss=0.854]" + "training until 2000: 18%|█▊ | 355/2000 [04:47<24:33, 1.12it/s, loss=0.782]" ] }, { @@ -6388,7 +6341,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 355/2000 [01:53<08:54, 3.08it/s, loss=0.866]" + "training until 2000: 18%|█▊ | 355/2000 [04:47<24:33, 1.12it/s, loss=0.77] " ] }, { @@ -6396,7 +6349,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 356/2000 [01:54<08:45, 3.13it/s, loss=0.866]" + "training until 2000: 18%|█▊ | 356/2000 [04:47<23:06, 1.19it/s, loss=0.77]" ] }, { @@ -6404,7 +6357,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 356/2000 [01:54<08:45, 3.13it/s, loss=0.883]" + "training until 2000: 18%|█▊ | 356/2000 [04:47<23:06, 1.19it/s, loss=0.822]" ] }, { @@ -6412,7 +6365,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 357/2000 [01:54<08:44, 3.13it/s, loss=0.883]" + "training until 2000: 18%|█▊ | 357/2000 [04:48<21:59, 1.25it/s, loss=0.822]" ] }, { @@ -6420,7 +6373,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 357/2000 [01:54<08:44, 3.13it/s, loss=0.867]" + "training until 2000: 18%|█▊ | 357/2000 [04:48<21:59, 1.25it/s, loss=0.745]" ] }, { @@ -6428,7 +6381,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 358/2000 [01:54<08:47, 3.11it/s, loss=0.867]" + "training until 2000: 18%|█▊ | 358/2000 [04:49<20:28, 1.34it/s, loss=0.745]" ] }, { @@ -6436,7 +6389,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 358/2000 [01:54<08:47, 3.11it/s, loss=0.887]" + "training until 2000: 18%|█▊ | 358/2000 [04:49<20:28, 1.34it/s, loss=0.775]" ] }, { @@ -6444,7 +6397,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 359/2000 [01:55<08:42, 3.14it/s, loss=0.887]" + "training until 2000: 18%|█▊ | 359/2000 [04:50<22:53, 1.19it/s, loss=0.775]" ] }, { @@ -6452,7 +6405,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 359/2000 [01:55<08:42, 3.14it/s, loss=0.861]" + "training until 2000: 18%|█▊ | 359/2000 [04:50<22:53, 1.19it/s, loss=0.794]" ] }, { @@ -6460,7 +6413,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 360/2000 [01:55<08:39, 3.16it/s, loss=0.861]" + "training until 2000: 18%|█▊ | 360/2000 [04:50<22:25, 1.22it/s, loss=0.794]" ] }, { @@ -6468,7 +6421,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 360/2000 [01:55<08:39, 3.16it/s, loss=0.824]" + "training until 2000: 18%|█▊ | 360/2000 [04:50<22:25, 1.22it/s, loss=0.772]" ] }, { @@ -6476,7 +6429,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 361/2000 [01:55<08:38, 3.16it/s, loss=0.824]" + "training until 2000: 18%|█▊ | 361/2000 [04:51<21:48, 1.25it/s, loss=0.772]" ] }, { @@ -6484,7 +6437,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 361/2000 [01:55<08:38, 3.16it/s, loss=0.911]" + "training until 2000: 18%|█▊ | 361/2000 [04:51<21:48, 1.25it/s, loss=0.772]" ] }, { @@ -6492,7 +6445,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 362/2000 [01:56<08:31, 3.20it/s, loss=0.911]" + "training until 2000: 18%|█▊ | 362/2000 [04:52<19:20, 1.41it/s, loss=0.772]" ] }, { @@ -6500,7 +6453,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 362/2000 [01:56<08:31, 3.20it/s, loss=0.865]" + "training until 2000: 18%|█▊ | 362/2000 [04:52<19:20, 1.41it/s, loss=0.797]" ] }, { @@ -6508,7 +6461,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 363/2000 [01:56<08:33, 3.19it/s, loss=0.865]" + "training until 2000: 18%|█▊ | 363/2000 [04:53<22:29, 1.21it/s, loss=0.797]" ] }, { @@ -6516,7 +6469,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 363/2000 [01:56<08:33, 3.19it/s, loss=0.843]" + "training until 2000: 18%|█▊ | 363/2000 [04:53<22:29, 1.21it/s, loss=0.778]" ] }, { @@ -6524,7 +6477,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 364/2000 [01:56<08:36, 3.17it/s, loss=0.843]" + "training until 2000: 18%|█▊ | 364/2000 [04:53<21:23, 1.28it/s, loss=0.778]" ] }, { @@ -6532,7 +6485,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 364/2000 [01:56<08:36, 3.17it/s, loss=0.843]" + "training until 2000: 18%|█▊ | 364/2000 [04:53<21:23, 1.28it/s, loss=0.785]" ] }, { @@ -6540,7 +6493,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 365/2000 [01:56<08:35, 3.17it/s, loss=0.843]" + "training until 2000: 18%|█▊ | 365/2000 [04:54<21:23, 1.27it/s, loss=0.785]" ] }, { @@ -6548,7 +6501,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 365/2000 [01:56<08:35, 3.17it/s, loss=0.877]" + "training until 2000: 18%|█▊ | 365/2000 [04:54<21:23, 1.27it/s, loss=0.793]" ] }, { @@ -6556,7 +6509,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 366/2000 [01:57<08:32, 3.19it/s, loss=0.877]" + "training until 2000: 18%|█▊ | 366/2000 [04:55<24:36, 1.11it/s, loss=0.793]" ] }, { @@ -6564,7 +6517,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 366/2000 [01:57<08:32, 3.19it/s, loss=0.893]" + "training until 2000: 18%|█▊ | 366/2000 [04:55<24:36, 1.11it/s, loss=0.769]" ] }, { @@ -6572,7 +6525,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 367/2000 [01:57<08:37, 3.16it/s, loss=0.893]" + "training until 2000: 18%|█▊ | 367/2000 [04:56<23:41, 1.15it/s, loss=0.769]" ] }, { @@ -6580,7 +6533,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 367/2000 [01:57<08:37, 3.16it/s, loss=0.906]" + "training until 2000: 18%|█▊ | 367/2000 [04:56<23:41, 1.15it/s, loss=0.798]" ] }, { @@ -6588,7 +6541,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 368/2000 [01:57<08:35, 3.17it/s, loss=0.906]" + "training until 2000: 18%|█▊ | 368/2000 [04:57<22:58, 1.18it/s, loss=0.798]" ] }, { @@ -6596,7 +6549,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 368/2000 [01:57<08:35, 3.17it/s, loss=0.826]" + "training until 2000: 18%|█▊ | 368/2000 [04:57<22:58, 1.18it/s, loss=0.776]" ] }, { @@ -6604,7 +6557,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 369/2000 [01:58<08:31, 3.19it/s, loss=0.826]" + "training until 2000: 18%|█▊ | 369/2000 [04:58<24:21, 1.12it/s, loss=0.776]" ] }, { @@ -6612,7 +6565,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 369/2000 [01:58<08:31, 3.19it/s, loss=0.829]" + "training until 2000: 18%|█▊ | 369/2000 [04:58<24:21, 1.12it/s, loss=0.786]" ] }, { @@ -6620,7 +6573,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 370/2000 [01:58<08:34, 3.17it/s, loss=0.829]" + "training until 2000: 18%|█▊ | 370/2000 [04:59<23:10, 1.17it/s, loss=0.786]" ] }, { @@ -6628,7 +6581,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 370/2000 [01:58<08:34, 3.17it/s, loss=0.907]" + "training until 2000: 18%|█▊ | 370/2000 [04:59<23:10, 1.17it/s, loss=0.759]" ] }, { @@ -6636,7 +6589,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 371/2000 [01:58<08:32, 3.18it/s, loss=0.907]" + "training until 2000: 19%|█▊ | 371/2000 [05:00<23:10, 1.17it/s, loss=0.759]" ] }, { @@ -6644,7 +6597,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 371/2000 [01:58<08:32, 3.18it/s, loss=0.848]" + "training until 2000: 19%|█▊ | 371/2000 [05:00<23:10, 1.17it/s, loss=0.756]" ] }, { @@ -6652,7 +6605,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 372/2000 [01:59<08:33, 3.17it/s, loss=0.848]" + "training until 2000: 19%|█▊ | 372/2000 [05:01<24:15, 1.12it/s, loss=0.756]" ] }, { @@ -6660,7 +6613,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 372/2000 [01:59<08:33, 3.17it/s, loss=0.875]" + "training until 2000: 19%|█▊ | 372/2000 [05:01<24:15, 1.12it/s, loss=0.764]" ] }, { @@ -6668,7 +6621,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 373/2000 [01:59<08:32, 3.17it/s, loss=0.875]" + "training until 2000: 19%|█▊ | 373/2000 [05:01<23:33, 1.15it/s, loss=0.764]" ] }, { @@ -6676,7 +6629,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 373/2000 [01:59<08:32, 3.17it/s, loss=0.86] " + "training until 2000: 19%|█▊ | 373/2000 [05:01<23:33, 1.15it/s, loss=0.801]" ] }, { @@ -6684,7 +6637,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 374/2000 [01:59<08:31, 3.18it/s, loss=0.86]" + "training until 2000: 19%|█▊ | 374/2000 [05:02<24:00, 1.13it/s, loss=0.801]" ] }, { @@ -6692,7 +6645,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 374/2000 [01:59<08:31, 3.18it/s, loss=0.911]" + "training until 2000: 19%|█▊ | 374/2000 [05:02<24:00, 1.13it/s, loss=0.773]" ] }, { @@ -6700,7 +6653,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 375/2000 [02:00<08:32, 3.17it/s, loss=0.911]" + "training until 2000: 19%|█▉ | 375/2000 [05:03<22:55, 1.18it/s, loss=0.773]" ] }, { @@ -6708,7 +6661,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 375/2000 [02:00<08:32, 3.17it/s, loss=0.851]" + "training until 2000: 19%|█▉ | 375/2000 [05:03<22:55, 1.18it/s, loss=0.763]" ] }, { @@ -6716,7 +6669,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 376/2000 [02:00<08:34, 3.16it/s, loss=0.851]" + "training until 2000: 19%|█▉ | 376/2000 [05:04<20:18, 1.33it/s, loss=0.763]" ] }, { @@ -6724,7 +6677,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 376/2000 [02:00<08:34, 3.16it/s, loss=0.836]" + "training until 2000: 19%|█▉ | 376/2000 [05:04<20:18, 1.33it/s, loss=0.797]" ] }, { @@ -6732,7 +6685,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 377/2000 [02:00<08:38, 3.13it/s, loss=0.836]" + "training until 2000: 19%|█▉ | 377/2000 [05:05<23:45, 1.14it/s, loss=0.797]" ] }, { @@ -6740,7 +6693,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 377/2000 [02:00<08:38, 3.13it/s, loss=0.859]" + "training until 2000: 19%|█▉ | 377/2000 [05:05<23:45, 1.14it/s, loss=0.769]" ] }, { @@ -6748,7 +6701,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 378/2000 [02:01<08:34, 3.15it/s, loss=0.859]" + "training until 2000: 19%|█▉ | 378/2000 [05:05<22:05, 1.22it/s, loss=0.769]" ] }, { @@ -6756,7 +6709,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 378/2000 [02:01<08:34, 3.15it/s, loss=0.861]" + "training until 2000: 19%|█▉ | 378/2000 [05:05<22:05, 1.22it/s, loss=0.76] " ] }, { @@ -6764,7 +6717,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 379/2000 [02:01<08:33, 3.15it/s, loss=0.861]" + "training until 2000: 19%|█▉ | 379/2000 [05:06<21:17, 1.27it/s, loss=0.76]" ] }, { @@ -6772,7 +6725,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 379/2000 [02:01<08:33, 3.15it/s, loss=0.865]" + "training until 2000: 19%|█▉ | 379/2000 [05:06<21:17, 1.27it/s, loss=0.75]" ] }, { @@ -6780,7 +6733,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 380/2000 [02:01<08:36, 3.14it/s, loss=0.865]" + "training until 2000: 19%|█▉ | 380/2000 [05:07<21:32, 1.25it/s, loss=0.75]" ] }, { @@ -6788,7 +6741,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 380/2000 [02:01<08:36, 3.14it/s, loss=0.83] " + "training until 2000: 19%|█▉ | 380/2000 [05:07<21:32, 1.25it/s, loss=0.748]" ] }, { @@ -6796,7 +6749,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 381/2000 [02:02<08:35, 3.14it/s, loss=0.83]" + "training until 2000: 19%|█▉ | 381/2000 [05:08<21:26, 1.26it/s, loss=0.748]" ] }, { @@ -6804,7 +6757,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 381/2000 [02:02<08:35, 3.14it/s, loss=0.842]" + "training until 2000: 19%|█▉ | 381/2000 [05:08<21:26, 1.26it/s, loss=0.779]" ] }, { @@ -6812,7 +6765,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 382/2000 [02:02<08:35, 3.14it/s, loss=0.842]" + "training until 2000: 19%|█▉ | 382/2000 [05:09<22:26, 1.20it/s, loss=0.779]" ] }, { @@ -6820,7 +6773,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 382/2000 [02:02<08:35, 3.14it/s, loss=0.883]" + "training until 2000: 19%|█▉ | 382/2000 [05:09<22:26, 1.20it/s, loss=0.793]" ] }, { @@ -6828,7 +6781,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 383/2000 [02:02<08:33, 3.15it/s, loss=0.883]" + "training until 2000: 19%|█▉ | 383/2000 [05:10<23:08, 1.16it/s, loss=0.793]" ] }, { @@ -6836,7 +6789,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 383/2000 [02:02<08:33, 3.15it/s, loss=0.834]" + "training until 2000: 19%|█▉ | 383/2000 [05:10<23:08, 1.16it/s, loss=0.789]" ] }, { @@ -6844,7 +6797,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 384/2000 [02:03<08:34, 3.14it/s, loss=0.834]" + "training until 2000: 19%|█▉ | 384/2000 [05:10<21:14, 1.27it/s, loss=0.789]" ] }, { @@ -6852,7 +6805,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 384/2000 [02:03<08:34, 3.14it/s, loss=0.844]" + "training until 2000: 19%|█▉ | 384/2000 [05:10<21:14, 1.27it/s, loss=0.804]" ] }, { @@ -6860,7 +6813,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 385/2000 [02:03<08:27, 3.18it/s, loss=0.844]" + "training until 2000: 19%|█▉ | 385/2000 [05:11<22:20, 1.20it/s, loss=0.804]" ] }, { @@ -6868,7 +6821,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 385/2000 [02:03<08:27, 3.18it/s, loss=0.861]" + "training until 2000: 19%|█▉ | 385/2000 [05:11<22:20, 1.20it/s, loss=0.76] " ] }, { @@ -6876,7 +6829,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 386/2000 [02:03<08:27, 3.18it/s, loss=0.861]" + "training until 2000: 19%|█▉ | 386/2000 [05:12<20:54, 1.29it/s, loss=0.76]" ] }, { @@ -6884,7 +6837,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 386/2000 [02:03<08:27, 3.18it/s, loss=0.861]" + "training until 2000: 19%|█▉ | 386/2000 [05:12<20:54, 1.29it/s, loss=0.768]" ] }, { @@ -6892,7 +6845,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 387/2000 [02:03<08:23, 3.20it/s, loss=0.861]" + "training until 2000: 19%|█▉ | 387/2000 [05:13<22:03, 1.22it/s, loss=0.768]" ] }, { @@ -6900,7 +6853,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 387/2000 [02:03<08:23, 3.20it/s, loss=0.865]" + "training until 2000: 19%|█▉ | 387/2000 [05:13<22:03, 1.22it/s, loss=0.814]" ] }, { @@ -6908,7 +6861,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 388/2000 [02:04<08:21, 3.22it/s, loss=0.865]" + "training until 2000: 19%|█▉ | 388/2000 [05:14<24:57, 1.08it/s, loss=0.814]" ] }, { @@ -6916,7 +6869,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 388/2000 [02:04<08:21, 3.22it/s, loss=0.831]" + "training until 2000: 19%|█▉ | 388/2000 [05:14<24:57, 1.08it/s, loss=0.766]" ] }, { @@ -6924,7 +6877,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 389/2000 [02:04<08:22, 3.21it/s, loss=0.831]" + "training until 2000: 19%|█▉ | 389/2000 [05:15<23:43, 1.13it/s, loss=0.766]" ] }, { @@ -6932,7 +6885,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 389/2000 [02:04<08:22, 3.21it/s, loss=0.868]" + "training until 2000: 19%|█▉ | 389/2000 [05:15<23:43, 1.13it/s, loss=0.737]" ] }, { @@ -6940,7 +6893,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 390/2000 [02:04<08:21, 3.21it/s, loss=0.868]" + "training until 2000: 20%|█▉ | 390/2000 [05:16<24:47, 1.08it/s, loss=0.737]" ] }, { @@ -6948,7 +6901,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 390/2000 [02:04<08:21, 3.21it/s, loss=0.85] " + "training until 2000: 20%|█▉ | 390/2000 [05:16<24:47, 1.08it/s, loss=0.778]" ] }, { @@ -6956,7 +6909,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 391/2000 [02:05<08:25, 3.18it/s, loss=0.85]" + "training until 2000: 20%|█▉ | 391/2000 [05:17<24:54, 1.08it/s, loss=0.778]" ] }, { @@ -6964,7 +6917,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 391/2000 [02:05<08:25, 3.18it/s, loss=0.831]" + "training until 2000: 20%|█▉ | 391/2000 [05:17<24:54, 1.08it/s, loss=0.732]" ] }, { @@ -6972,7 +6925,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 392/2000 [02:05<08:24, 3.19it/s, loss=0.831]" + "training until 2000: 20%|█▉ | 392/2000 [05:17<22:35, 1.19it/s, loss=0.732]" ] }, { @@ -6980,7 +6933,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 392/2000 [02:05<08:24, 3.19it/s, loss=0.851]" + "training until 2000: 20%|█▉ | 392/2000 [05:17<22:35, 1.19it/s, loss=0.751]" ] }, { @@ -6988,7 +6941,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 393/2000 [02:05<08:31, 3.14it/s, loss=0.851]" + "training until 2000: 20%|█▉ | 393/2000 [05:18<20:27, 1.31it/s, loss=0.751]" ] }, { @@ -6996,7 +6949,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 393/2000 [02:05<08:31, 3.14it/s, loss=0.842]" + "training until 2000: 20%|█▉ | 393/2000 [05:18<20:27, 1.31it/s, loss=0.754]" ] }, { @@ -7004,7 +6957,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 394/2000 [02:06<08:32, 3.14it/s, loss=0.842]" + "training until 2000: 20%|█▉ | 394/2000 [05:19<20:24, 1.31it/s, loss=0.754]" ] }, { @@ -7012,7 +6965,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 394/2000 [02:06<08:32, 3.14it/s, loss=0.867]" + "training until 2000: 20%|█▉ | 394/2000 [05:19<20:24, 1.31it/s, loss=0.741]" ] }, { @@ -7020,7 +6973,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 395/2000 [02:06<08:27, 3.16it/s, loss=0.867]" + "training until 2000: 20%|█▉ | 395/2000 [05:19<21:05, 1.27it/s, loss=0.741]" ] }, { @@ -7028,7 +6981,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 395/2000 [02:06<08:27, 3.16it/s, loss=0.848]" + "training until 2000: 20%|█▉ | 395/2000 [05:19<21:05, 1.27it/s, loss=0.753]" ] }, { @@ -7036,7 +6989,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 396/2000 [02:06<08:22, 3.19it/s, loss=0.848]" + "training until 2000: 20%|█▉ | 396/2000 [05:21<22:55, 1.17it/s, loss=0.753]" ] }, { @@ -7044,7 +6997,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 396/2000 [02:06<08:22, 3.19it/s, loss=0.848]" + "training until 2000: 20%|█▉ | 396/2000 [05:21<22:55, 1.17it/s, loss=0.748]" ] }, { @@ -7052,7 +7005,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 397/2000 [02:07<08:22, 3.19it/s, loss=0.848]" + "training until 2000: 20%|█▉ | 397/2000 [05:21<22:34, 1.18it/s, loss=0.748]" ] }, { @@ -7060,7 +7013,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 397/2000 [02:07<08:22, 3.19it/s, loss=0.865]" + "training until 2000: 20%|█▉ | 397/2000 [05:21<22:34, 1.18it/s, loss=0.766]" ] }, { @@ -7068,7 +7021,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 398/2000 [02:07<08:16, 3.23it/s, loss=0.865]" + "training until 2000: 20%|█▉ | 398/2000 [05:22<21:59, 1.21it/s, loss=0.766]" ] }, { @@ -7076,7 +7029,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 398/2000 [02:07<08:16, 3.23it/s, loss=0.892]" + "training until 2000: 20%|█▉ | 398/2000 [05:22<21:59, 1.21it/s, loss=0.769]" ] }, { @@ -7084,7 +7037,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 399/2000 [02:07<08:13, 3.24it/s, loss=0.892]" + "training until 2000: 20%|█▉ | 399/2000 [05:23<20:19, 1.31it/s, loss=0.769]" ] }, { @@ -7092,7 +7045,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 399/2000 [02:07<08:13, 3.24it/s, loss=0.873]" + "training until 2000: 20%|█▉ | 399/2000 [05:23<20:19, 1.31it/s, loss=0.751]" ] }, { @@ -7100,7 +7053,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 400/2000 [02:08<08:17, 3.21it/s, loss=0.873]" + "training until 2000: 20%|██ | 400/2000 [05:24<20:40, 1.29it/s, loss=0.751]" ] }, { @@ -7108,7 +7061,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 400/2000 [02:08<08:17, 3.21it/s, loss=0.876]" + "training until 2000: 20%|██ | 400/2000 [05:24<20:40, 1.29it/s, loss=0.822]" ] }, { @@ -7116,7 +7069,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 401/2000 [02:08<08:25, 3.16it/s, loss=0.876]" + "training until 2000: 20%|██ | 401/2000 [05:24<20:25, 1.30it/s, loss=0.822]" ] }, { @@ -7124,7 +7077,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 401/2000 [02:08<08:25, 3.16it/s, loss=0.82] " + "training until 2000: 20%|██ | 401/2000 [05:24<20:25, 1.30it/s, loss=0.786]" ] }, { @@ -7132,7 +7085,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 402/2000 [02:08<08:25, 3.16it/s, loss=0.82]" + "training until 2000: 20%|██ | 402/2000 [05:25<23:22, 1.14it/s, loss=0.786]" ] }, { @@ -7140,7 +7093,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 402/2000 [02:08<08:25, 3.16it/s, loss=0.878]" + "training until 2000: 20%|██ | 402/2000 [05:25<23:22, 1.14it/s, loss=0.781]" ] }, { @@ -7148,7 +7101,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 403/2000 [02:08<08:22, 3.18it/s, loss=0.878]" + "training until 2000: 20%|██ | 403/2000 [05:26<24:36, 1.08it/s, loss=0.781]" ] }, { @@ -7156,7 +7109,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 403/2000 [02:08<08:22, 3.18it/s, loss=0.827]" + "training until 2000: 20%|██ | 403/2000 [05:26<24:36, 1.08it/s, loss=0.757]" ] }, { @@ -7164,7 +7117,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 404/2000 [02:09<08:25, 3.16it/s, loss=0.827]" + "training until 2000: 20%|██ | 404/2000 [05:27<20:26, 1.30it/s, loss=0.757]" ] }, { @@ -7172,7 +7125,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 404/2000 [02:09<08:25, 3.16it/s, loss=0.846]" + "training until 2000: 20%|██ | 404/2000 [05:27<20:26, 1.30it/s, loss=0.747]" ] }, { @@ -7180,7 +7133,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 405/2000 [02:09<08:21, 3.18it/s, loss=0.846]" + "training until 2000: 20%|██ | 405/2000 [05:27<19:19, 1.38it/s, loss=0.747]" ] }, { @@ -7188,7 +7141,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 405/2000 [02:09<08:21, 3.18it/s, loss=0.833]" + "training until 2000: 20%|██ | 405/2000 [05:27<19:19, 1.38it/s, loss=0.743]" ] }, { @@ -7196,7 +7149,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 406/2000 [02:09<08:22, 3.17it/s, loss=0.833]" + "training until 2000: 20%|██ | 406/2000 [05:28<21:17, 1.25it/s, loss=0.743]" ] }, { @@ -7204,7 +7157,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 406/2000 [02:09<08:22, 3.17it/s, loss=0.878]" + "training until 2000: 20%|██ | 406/2000 [05:28<21:17, 1.25it/s, loss=0.771]" ] }, { @@ -7212,7 +7165,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 407/2000 [02:10<08:23, 3.16it/s, loss=0.878]" + "training until 2000: 20%|██ | 407/2000 [05:30<23:21, 1.14it/s, loss=0.771]" ] }, { @@ -7220,7 +7173,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 407/2000 [02:10<08:23, 3.16it/s, loss=0.852]" + "training until 2000: 20%|██ | 407/2000 [05:30<23:21, 1.14it/s, loss=0.771]" ] }, { @@ -7228,7 +7181,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 408/2000 [02:10<08:39, 3.07it/s, loss=0.852]" + "training until 2000: 20%|██ | 408/2000 [05:30<22:44, 1.17it/s, loss=0.771]" ] }, { @@ -7236,7 +7189,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 408/2000 [02:10<08:39, 3.07it/s, loss=0.866]" + "training until 2000: 20%|██ | 408/2000 [05:30<22:44, 1.17it/s, loss=0.735]" ] }, { @@ -7244,7 +7197,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 409/2000 [02:10<08:40, 3.06it/s, loss=0.866]" + "training until 2000: 20%|██ | 409/2000 [05:31<20:06, 1.32it/s, loss=0.735]" ] }, { @@ -7252,7 +7205,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 409/2000 [02:10<08:40, 3.06it/s, loss=0.843]" + "training until 2000: 20%|██ | 409/2000 [05:31<20:06, 1.32it/s, loss=0.752]" ] }, { @@ -7260,7 +7213,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 410/2000 [02:11<08:36, 3.08it/s, loss=0.843]" + "training until 2000: 20%|██ | 410/2000 [05:32<19:28, 1.36it/s, loss=0.752]" ] }, { @@ -7268,7 +7221,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 410/2000 [02:11<08:36, 3.08it/s, loss=0.84] " + "training until 2000: 20%|██ | 410/2000 [05:32<19:28, 1.36it/s, loss=0.781]" ] }, { @@ -7276,7 +7229,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 411/2000 [02:11<08:33, 3.10it/s, loss=0.84]" + "training until 2000: 21%|██ | 411/2000 [05:32<18:57, 1.40it/s, loss=0.781]" ] }, { @@ -7284,7 +7237,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 411/2000 [02:11<08:33, 3.10it/s, loss=0.845]" + "training until 2000: 21%|██ | 411/2000 [05:32<18:57, 1.40it/s, loss=0.79] " ] }, { @@ -7292,7 +7245,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 412/2000 [02:12<10:21, 2.55it/s, loss=0.845]" + "training until 2000: 21%|██ | 412/2000 [05:33<18:13, 1.45it/s, loss=0.79]" ] }, { @@ -7300,7 +7253,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 412/2000 [02:12<10:21, 2.55it/s, loss=0.861]" + "training until 2000: 21%|██ | 412/2000 [05:33<18:13, 1.45it/s, loss=0.724]" ] }, { @@ -7308,7 +7261,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 413/2000 [02:12<09:44, 2.71it/s, loss=0.861]" + "training until 2000: 21%|██ | 413/2000 [05:33<16:31, 1.60it/s, loss=0.724]" ] }, { @@ -7316,7 +7269,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 413/2000 [02:12<09:44, 2.71it/s, loss=0.822]" + "training until 2000: 21%|██ | 413/2000 [05:33<16:31, 1.60it/s, loss=0.79] " ] }, { @@ -7324,7 +7277,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 414/2000 [02:12<09:18, 2.84it/s, loss=0.822]" + "training until 2000: 21%|██ | 414/2000 [05:34<20:00, 1.32it/s, loss=0.79]" ] }, { @@ -7332,7 +7285,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 414/2000 [02:12<09:18, 2.84it/s, loss=0.832]" + "training until 2000: 21%|██ | 414/2000 [05:34<20:00, 1.32it/s, loss=0.762]" ] }, { @@ -7340,7 +7293,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 415/2000 [02:13<08:59, 2.94it/s, loss=0.832]" + "training until 2000: 21%|██ | 415/2000 [05:35<20:34, 1.28it/s, loss=0.762]" ] }, { @@ -7348,7 +7301,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 415/2000 [02:13<08:59, 2.94it/s, loss=0.85] " + "training until 2000: 21%|██ | 415/2000 [05:35<20:34, 1.28it/s, loss=0.768]" ] }, { @@ -7356,7 +7309,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 416/2000 [02:13<08:46, 3.01it/s, loss=0.85]" + "training until 2000: 21%|██ | 416/2000 [05:36<18:49, 1.40it/s, loss=0.768]" ] }, { @@ -7364,7 +7317,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 416/2000 [02:13<08:46, 3.01it/s, loss=0.816]" + "training until 2000: 21%|██ | 416/2000 [05:36<18:49, 1.40it/s, loss=0.802]" ] }, { @@ -7372,7 +7325,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 417/2000 [02:13<08:37, 3.06it/s, loss=0.816]" + "training until 2000: 21%|██ | 417/2000 [05:36<17:38, 1.50it/s, loss=0.802]" ] }, { @@ -7380,7 +7333,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 417/2000 [02:13<08:37, 3.06it/s, loss=0.838]" + "training until 2000: 21%|██ | 417/2000 [05:36<17:38, 1.50it/s, loss=0.777]" ] }, { @@ -7388,7 +7341,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 418/2000 [02:13<08:34, 3.07it/s, loss=0.838]" + "training until 2000: 21%|██ | 418/2000 [05:37<19:36, 1.34it/s, loss=0.777]" ] }, { @@ -7396,7 +7349,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 418/2000 [02:13<08:34, 3.07it/s, loss=0.838]" + "training until 2000: 21%|██ | 418/2000 [05:37<19:36, 1.34it/s, loss=0.754]" ] }, { @@ -7404,7 +7357,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 419/2000 [02:14<08:26, 3.12it/s, loss=0.838]" + "training until 2000: 21%|██ | 419/2000 [05:38<21:35, 1.22it/s, loss=0.754]" ] }, { @@ -7412,7 +7365,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 419/2000 [02:14<08:26, 3.12it/s, loss=0.852]" + "training until 2000: 21%|██ | 419/2000 [05:38<21:35, 1.22it/s, loss=0.778]" ] }, { @@ -7420,7 +7373,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 420/2000 [02:14<08:35, 3.07it/s, loss=0.852]" + "training until 2000: 21%|██ | 420/2000 [05:39<21:43, 1.21it/s, loss=0.778]" ] }, { @@ -7428,7 +7381,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 420/2000 [02:14<08:35, 3.07it/s, loss=0.872]" + "training until 2000: 21%|██ | 420/2000 [05:39<21:43, 1.21it/s, loss=0.772]" ] }, { @@ -7436,7 +7389,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 421/2000 [02:14<08:32, 3.08it/s, loss=0.872]" + "training until 2000: 21%|██ | 421/2000 [05:40<22:22, 1.18it/s, loss=0.772]" ] }, { @@ -7444,7 +7397,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 421/2000 [02:14<08:32, 3.08it/s, loss=0.835]" + "training until 2000: 21%|██ | 421/2000 [05:40<22:22, 1.18it/s, loss=0.8] " ] }, { @@ -7452,7 +7405,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 422/2000 [02:15<08:23, 3.13it/s, loss=0.835]" + "training until 2000: 21%|██ | 422/2000 [05:41<21:26, 1.23it/s, loss=0.8]" ] }, { @@ -7460,7 +7413,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 422/2000 [02:15<08:23, 3.13it/s, loss=0.866]" + "training until 2000: 21%|██ | 422/2000 [05:41<21:26, 1.23it/s, loss=0.742]" ] }, { @@ -7468,7 +7421,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 423/2000 [02:15<08:23, 3.14it/s, loss=0.866]" + "training until 2000: 21%|██ | 423/2000 [05:42<21:20, 1.23it/s, loss=0.742]" ] }, { @@ -7476,7 +7429,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 423/2000 [02:15<08:23, 3.14it/s, loss=0.821]" + "training until 2000: 21%|██ | 423/2000 [05:42<21:20, 1.23it/s, loss=0.774]" ] }, { @@ -7484,7 +7437,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 424/2000 [02:15<08:21, 3.14it/s, loss=0.821]" + "training until 2000: 21%|██ | 424/2000 [05:42<21:46, 1.21it/s, loss=0.774]" ] }, { @@ -7492,7 +7445,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 424/2000 [02:15<08:21, 3.14it/s, loss=0.848]" + "training until 2000: 21%|██ | 424/2000 [05:42<21:46, 1.21it/s, loss=0.736]" ] }, { @@ -7500,7 +7453,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 425/2000 [02:16<08:20, 3.14it/s, loss=0.848]" + "training until 2000: 21%|██▏ | 425/2000 [05:43<20:10, 1.30it/s, loss=0.736]" ] }, { @@ -7508,7 +7461,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 425/2000 [02:16<08:20, 3.14it/s, loss=0.849]" + "training until 2000: 21%|██▏ | 425/2000 [05:43<20:10, 1.30it/s, loss=0.762]" ] }, { @@ -7516,7 +7469,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 426/2000 [02:16<08:26, 3.11it/s, loss=0.849]" + "training until 2000: 21%|██▏ | 426/2000 [05:44<20:56, 1.25it/s, loss=0.762]" ] }, { @@ -7524,7 +7477,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 426/2000 [02:16<08:26, 3.11it/s, loss=0.844]" + "training until 2000: 21%|██▏ | 426/2000 [05:44<20:56, 1.25it/s, loss=0.759]" ] }, { @@ -7532,7 +7485,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 427/2000 [02:16<08:21, 3.13it/s, loss=0.844]" + "training until 2000: 21%|██▏ | 427/2000 [05:45<20:47, 1.26it/s, loss=0.759]" ] }, { @@ -7540,7 +7493,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 427/2000 [02:16<08:21, 3.13it/s, loss=0.832]" + "training until 2000: 21%|██▏ | 427/2000 [05:45<20:47, 1.26it/s, loss=0.745]" ] }, { @@ -7548,7 +7501,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 428/2000 [02:17<08:33, 3.06it/s, loss=0.832]" + "training until 2000: 21%|██▏ | 428/2000 [05:45<18:00, 1.46it/s, loss=0.745]" ] }, { @@ -7556,7 +7509,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 428/2000 [02:17<08:33, 3.06it/s, loss=0.832]" + "training until 2000: 21%|██▏ | 428/2000 [05:45<18:00, 1.46it/s, loss=0.738]" ] }, { @@ -7564,7 +7517,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 429/2000 [02:17<08:25, 3.11it/s, loss=0.832]" + "training until 2000: 21%|██▏ | 429/2000 [05:46<19:05, 1.37it/s, loss=0.738]" ] }, { @@ -7572,7 +7525,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 429/2000 [02:17<08:25, 3.11it/s, loss=0.87] " + "training until 2000: 21%|██▏ | 429/2000 [05:46<19:05, 1.37it/s, loss=0.76] " ] }, { @@ -7580,7 +7533,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 430/2000 [02:17<08:21, 3.13it/s, loss=0.87]" + "training until 2000: 22%|██▏ | 430/2000 [05:47<19:57, 1.31it/s, loss=0.76]" ] }, { @@ -7588,7 +7541,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 430/2000 [02:17<08:21, 3.13it/s, loss=0.836]" + "training until 2000: 22%|██▏ | 430/2000 [05:47<19:57, 1.31it/s, loss=0.746]" ] }, { @@ -7596,7 +7549,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 431/2000 [02:18<08:18, 3.14it/s, loss=0.836]" + "training until 2000: 22%|██▏ | 431/2000 [05:48<20:18, 1.29it/s, loss=0.746]" ] }, { @@ -7604,7 +7557,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 431/2000 [02:18<08:18, 3.14it/s, loss=0.876]" + "training until 2000: 22%|██▏ | 431/2000 [05:48<20:18, 1.29it/s, loss=0.781]" ] }, { @@ -7612,7 +7565,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 432/2000 [02:18<08:18, 3.15it/s, loss=0.876]" + "training until 2000: 22%|██▏ | 432/2000 [05:49<21:35, 1.21it/s, loss=0.781]" ] }, { @@ -7620,7 +7573,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 432/2000 [02:18<08:18, 3.15it/s, loss=0.833]" + "training until 2000: 22%|██▏ | 432/2000 [05:49<21:35, 1.21it/s, loss=0.795]" ] }, { @@ -7628,7 +7581,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 433/2000 [02:18<08:18, 3.14it/s, loss=0.833]" + "training until 2000: 22%|██▏ | 433/2000 [05:49<18:49, 1.39it/s, loss=0.795]" ] }, { @@ -7636,7 +7589,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 433/2000 [02:18<08:18, 3.14it/s, loss=0.838]" + "training until 2000: 22%|██▏ | 433/2000 [05:49<18:49, 1.39it/s, loss=0.771]" ] }, { @@ -7644,7 +7597,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 434/2000 [02:19<08:20, 3.13it/s, loss=0.838]" + "training until 2000: 22%|██▏ | 434/2000 [05:50<19:09, 1.36it/s, loss=0.771]" ] }, { @@ -7652,7 +7605,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 434/2000 [02:19<08:20, 3.13it/s, loss=0.853]" + "training until 2000: 22%|██▏ | 434/2000 [05:50<19:09, 1.36it/s, loss=0.747]" ] }, { @@ -7660,7 +7613,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 435/2000 [02:19<08:22, 3.12it/s, loss=0.853]" + "training until 2000: 22%|██▏ | 435/2000 [05:50<17:33, 1.49it/s, loss=0.747]" ] }, { @@ -7668,7 +7621,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 435/2000 [02:19<08:22, 3.12it/s, loss=0.835]" + "training until 2000: 22%|██▏ | 435/2000 [05:50<17:33, 1.49it/s, loss=0.746]" ] }, { @@ -7676,7 +7629,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 436/2000 [02:19<08:20, 3.12it/s, loss=0.835]" + "training until 2000: 22%|██▏ | 436/2000 [05:51<19:21, 1.35it/s, loss=0.746]" ] }, { @@ -7684,7 +7637,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 436/2000 [02:19<08:20, 3.12it/s, loss=0.862]" + "training until 2000: 22%|██▏ | 436/2000 [05:51<19:21, 1.35it/s, loss=0.759]" ] }, { @@ -7692,7 +7645,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 437/2000 [02:20<08:18, 3.13it/s, loss=0.862]" + "training until 2000: 22%|██▏ | 437/2000 [05:52<20:13, 1.29it/s, loss=0.759]" ] }, { @@ -7700,7 +7653,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 437/2000 [02:20<08:18, 3.13it/s, loss=0.842]" + "training until 2000: 22%|██▏ | 437/2000 [05:52<20:13, 1.29it/s, loss=0.778]" ] }, { @@ -7708,7 +7661,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 438/2000 [02:20<08:15, 3.15it/s, loss=0.842]" + "training until 2000: 22%|██▏ | 438/2000 [05:53<21:58, 1.18it/s, loss=0.778]" ] }, { @@ -7716,7 +7669,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 438/2000 [02:20<08:15, 3.15it/s, loss=0.844]" + "training until 2000: 22%|██▏ | 438/2000 [05:53<21:58, 1.18it/s, loss=0.753]" ] }, { @@ -7724,7 +7677,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 439/2000 [02:20<08:20, 3.12it/s, loss=0.844]" + "training until 2000: 22%|██▏ | 439/2000 [05:54<20:20, 1.28it/s, loss=0.753]" ] }, { @@ -7732,7 +7685,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 439/2000 [02:20<08:20, 3.12it/s, loss=0.841]" + "training until 2000: 22%|██▏ | 439/2000 [05:54<20:20, 1.28it/s, loss=0.779]" ] }, { @@ -7740,7 +7693,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 440/2000 [02:21<08:22, 3.10it/s, loss=0.841]" + "training until 2000: 22%|██▏ | 440/2000 [05:54<20:33, 1.26it/s, loss=0.779]" ] }, { @@ -7748,7 +7701,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 440/2000 [02:21<08:22, 3.10it/s, loss=0.854]" + "training until 2000: 22%|██▏ | 440/2000 [05:55<20:33, 1.26it/s, loss=0.765]" ] }, { @@ -7756,7 +7709,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 441/2000 [02:21<08:26, 3.08it/s, loss=0.854]" + "training until 2000: 22%|██▏ | 441/2000 [05:55<20:13, 1.29it/s, loss=0.765]" ] }, { @@ -7764,7 +7717,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 441/2000 [02:21<08:26, 3.08it/s, loss=0.845]" + "training until 2000: 22%|██▏ | 441/2000 [05:55<20:13, 1.29it/s, loss=0.756]" ] }, { @@ -7772,7 +7725,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 442/2000 [02:21<08:17, 3.13it/s, loss=0.845]" + "training until 2000: 22%|██▏ | 442/2000 [05:56<20:56, 1.24it/s, loss=0.756]" ] }, { @@ -7780,7 +7733,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 442/2000 [02:21<08:17, 3.13it/s, loss=0.824]" + "training until 2000: 22%|██▏ | 442/2000 [05:56<20:56, 1.24it/s, loss=0.761]" ] }, { @@ -7788,7 +7741,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 443/2000 [02:21<08:15, 3.14it/s, loss=0.824]" + "training until 2000: 22%|██▏ | 443/2000 [05:57<20:04, 1.29it/s, loss=0.761]" ] }, { @@ -7796,7 +7749,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 443/2000 [02:21<08:15, 3.14it/s, loss=0.84] " + "training until 2000: 22%|██▏ | 443/2000 [05:57<20:04, 1.29it/s, loss=0.746]" ] }, { @@ -7804,7 +7757,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 444/2000 [02:22<08:11, 3.16it/s, loss=0.84]" + "training until 2000: 22%|██▏ | 444/2000 [05:58<25:38, 1.01it/s, loss=0.746]" ] }, { @@ -7812,7 +7765,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 444/2000 [02:22<08:11, 3.16it/s, loss=0.855]" + "training until 2000: 22%|██▏ | 444/2000 [05:58<25:38, 1.01it/s, loss=0.733]" ] }, { @@ -7820,7 +7773,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 445/2000 [02:22<08:08, 3.18it/s, loss=0.855]" + "training until 2000: 22%|██▏ | 445/2000 [05:59<26:44, 1.03s/it, loss=0.733]" ] }, { @@ -7828,7 +7781,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 445/2000 [02:22<08:08, 3.18it/s, loss=0.845]" + "training until 2000: 22%|██▏ | 445/2000 [05:59<26:44, 1.03s/it, loss=0.752]" ] }, { @@ -7836,7 +7789,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 446/2000 [02:22<08:10, 3.17it/s, loss=0.845]" + "training until 2000: 22%|██▏ | 446/2000 [06:01<27:49, 1.07s/it, loss=0.752]" ] }, { @@ -7844,7 +7797,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 446/2000 [02:22<08:10, 3.17it/s, loss=0.831]" + "training until 2000: 22%|██▏ | 446/2000 [06:01<27:49, 1.07s/it, loss=0.711]" ] }, { @@ -7852,7 +7805,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 447/2000 [02:23<08:12, 3.16it/s, loss=0.831]" + "training until 2000: 22%|██▏ | 447/2000 [06:01<23:49, 1.09it/s, loss=0.711]" ] }, { @@ -7860,7 +7813,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 447/2000 [02:23<08:12, 3.16it/s, loss=0.841]" + "training until 2000: 22%|██▏ | 447/2000 [06:01<23:49, 1.09it/s, loss=0.745]" ] }, { @@ -7868,7 +7821,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 448/2000 [02:23<08:12, 3.15it/s, loss=0.841]" + "training until 2000: 22%|██▏ | 448/2000 [06:02<21:56, 1.18it/s, loss=0.745]" ] }, { @@ -7876,7 +7829,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 448/2000 [02:23<08:12, 3.15it/s, loss=0.837]" + "training until 2000: 22%|██▏ | 448/2000 [06:02<21:56, 1.18it/s, loss=0.735]" ] }, { @@ -7884,7 +7837,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 449/2000 [02:23<08:08, 3.17it/s, loss=0.837]" + "training until 2000: 22%|██▏ | 449/2000 [06:03<21:34, 1.20it/s, loss=0.735]" ] }, { @@ -7892,7 +7845,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 449/2000 [02:23<08:08, 3.17it/s, loss=0.822]" + "training until 2000: 22%|██▏ | 449/2000 [06:03<21:34, 1.20it/s, loss=0.755]" ] }, { @@ -7900,7 +7853,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▎ | 450/2000 [02:24<08:17, 3.11it/s, loss=0.822]" + "training until 2000: 22%|██▎ | 450/2000 [06:03<20:50, 1.24it/s, loss=0.755]" ] }, { @@ -7908,7 +7861,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▎ | 450/2000 [02:24<08:17, 3.11it/s, loss=0.842]" + "training until 2000: 22%|██▎ | 450/2000 [06:03<20:50, 1.24it/s, loss=0.796]" ] }, { @@ -7916,7 +7869,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 451/2000 [02:24<08:09, 3.16it/s, loss=0.842]" + "training until 2000: 23%|██▎ | 451/2000 [06:04<19:20, 1.33it/s, loss=0.796]" ] }, { @@ -7924,7 +7877,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 451/2000 [02:24<08:09, 3.16it/s, loss=0.83] " + "training until 2000: 23%|██▎ | 451/2000 [06:04<19:20, 1.33it/s, loss=0.76] " ] }, { @@ -7932,7 +7885,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 452/2000 [02:24<08:10, 3.16it/s, loss=0.83]" + "training until 2000: 23%|██▎ | 452/2000 [06:05<19:24, 1.33it/s, loss=0.76]" ] }, { @@ -7940,7 +7893,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 452/2000 [02:24<08:10, 3.16it/s, loss=0.815]" + "training until 2000: 23%|██▎ | 452/2000 [06:05<19:24, 1.33it/s, loss=0.756]" ] }, { @@ -7948,7 +7901,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 453/2000 [02:25<08:11, 3.15it/s, loss=0.815]" + "training until 2000: 23%|██▎ | 453/2000 [06:06<20:43, 1.24it/s, loss=0.756]" ] }, { @@ -7956,7 +7909,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 453/2000 [02:25<08:11, 3.15it/s, loss=0.869]" + "training until 2000: 23%|██▎ | 453/2000 [06:06<20:43, 1.24it/s, loss=0.737]" ] }, { @@ -7964,7 +7917,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 454/2000 [02:25<08:13, 3.14it/s, loss=0.869]" + "training until 2000: 23%|██▎ | 454/2000 [06:07<23:41, 1.09it/s, loss=0.737]" ] }, { @@ -7972,7 +7925,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 454/2000 [02:25<08:13, 3.14it/s, loss=0.857]" + "training until 2000: 23%|██▎ | 454/2000 [06:07<23:41, 1.09it/s, loss=0.744]" ] }, { @@ -7980,7 +7933,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 455/2000 [02:25<08:13, 3.13it/s, loss=0.857]" + "training until 2000: 23%|██▎ | 455/2000 [06:08<23:36, 1.09it/s, loss=0.744]" ] }, { @@ -7988,7 +7941,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 455/2000 [02:25<08:13, 3.13it/s, loss=0.855]" + "training until 2000: 23%|██▎ | 455/2000 [06:08<23:36, 1.09it/s, loss=0.767]" ] }, { @@ -7996,7 +7949,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 456/2000 [02:26<08:18, 3.10it/s, loss=0.855]" + "training until 2000: 23%|██▎ | 456/2000 [06:09<23:38, 1.09it/s, loss=0.767]" ] }, { @@ -8004,7 +7957,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 456/2000 [02:26<08:18, 3.10it/s, loss=0.828]" + "training until 2000: 23%|██▎ | 456/2000 [06:09<23:38, 1.09it/s, loss=0.758]" ] }, { @@ -8012,7 +7965,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 457/2000 [02:26<08:16, 3.11it/s, loss=0.828]" + "training until 2000: 23%|██▎ | 457/2000 [06:09<22:13, 1.16it/s, loss=0.758]" ] }, { @@ -8020,7 +7973,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 457/2000 [02:26<08:16, 3.11it/s, loss=0.857]" + "training until 2000: 23%|██▎ | 457/2000 [06:09<22:13, 1.16it/s, loss=0.764]" ] }, { @@ -8028,7 +7981,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 458/2000 [02:26<08:09, 3.15it/s, loss=0.857]" + "training until 2000: 23%|██▎ | 458/2000 [06:10<21:27, 1.20it/s, loss=0.764]" ] }, { @@ -8036,7 +7989,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 458/2000 [02:26<08:09, 3.15it/s, loss=0.846]" + "training until 2000: 23%|██▎ | 458/2000 [06:10<21:27, 1.20it/s, loss=0.774]" ] }, { @@ -8044,7 +7997,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 459/2000 [02:27<08:11, 3.13it/s, loss=0.846]" + "training until 2000: 23%|██▎ | 459/2000 [06:11<19:17, 1.33it/s, loss=0.774]" ] }, { @@ -8052,7 +8005,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 459/2000 [02:27<08:11, 3.13it/s, loss=0.832]" + "training until 2000: 23%|██▎ | 459/2000 [06:11<19:17, 1.33it/s, loss=0.719]" ] }, { @@ -8060,7 +8013,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 460/2000 [02:27<08:12, 3.13it/s, loss=0.832]" + "training until 2000: 23%|██▎ | 460/2000 [06:12<20:51, 1.23it/s, loss=0.719]" ] }, { @@ -8068,7 +8021,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 460/2000 [02:27<08:12, 3.13it/s, loss=0.863]" + "training until 2000: 23%|██▎ | 460/2000 [06:12<20:51, 1.23it/s, loss=0.733]" ] }, { @@ -8076,7 +8029,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 461/2000 [02:27<08:14, 3.11it/s, loss=0.863]" + "training until 2000: 23%|██▎ | 461/2000 [06:12<18:40, 1.37it/s, loss=0.733]" ] }, { @@ -8084,7 +8037,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 461/2000 [02:27<08:14, 3.11it/s, loss=0.815]" + "training until 2000: 23%|██▎ | 461/2000 [06:12<18:40, 1.37it/s, loss=0.751]" ] }, { @@ -8092,7 +8045,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 462/2000 [02:28<08:15, 3.10it/s, loss=0.815]" + "training until 2000: 23%|██▎ | 462/2000 [06:13<18:48, 1.36it/s, loss=0.751]" ] }, { @@ -8100,7 +8053,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 462/2000 [02:28<08:15, 3.10it/s, loss=0.821]" + "training until 2000: 23%|██▎ | 462/2000 [06:13<18:48, 1.36it/s, loss=0.725]" ] }, { @@ -8108,7 +8061,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 463/2000 [02:28<08:19, 3.08it/s, loss=0.821]" + "training until 2000: 23%|██▎ | 463/2000 [06:14<20:13, 1.27it/s, loss=0.725]" ] }, { @@ -8116,7 +8069,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 463/2000 [02:28<08:19, 3.08it/s, loss=0.865]" + "training until 2000: 23%|██▎ | 463/2000 [06:14<20:13, 1.27it/s, loss=0.761]" ] }, { @@ -8124,7 +8077,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 464/2000 [02:28<08:18, 3.08it/s, loss=0.865]" + "training until 2000: 23%|██▎ | 464/2000 [06:15<20:12, 1.27it/s, loss=0.761]" ] }, { @@ -8132,7 +8085,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 464/2000 [02:28<08:18, 3.08it/s, loss=0.836]" + "training until 2000: 23%|██▎ | 464/2000 [06:15<20:12, 1.27it/s, loss=0.754]" ] }, { @@ -8140,7 +8093,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 465/2000 [02:29<08:12, 3.12it/s, loss=0.836]" + "training until 2000: 23%|██▎ | 465/2000 [06:16<20:39, 1.24it/s, loss=0.754]" ] }, { @@ -8148,7 +8101,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 465/2000 [02:29<08:12, 3.12it/s, loss=0.839]" + "training until 2000: 23%|██▎ | 465/2000 [06:16<20:39, 1.24it/s, loss=0.721]" ] }, { @@ -8156,7 +8109,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 466/2000 [02:29<08:15, 3.09it/s, loss=0.839]" + "training until 2000: 23%|██▎ | 466/2000 [06:17<24:19, 1.05it/s, loss=0.721]" ] }, { @@ -8164,7 +8117,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 466/2000 [02:29<08:15, 3.09it/s, loss=0.846]" + "training until 2000: 23%|██▎ | 466/2000 [06:17<24:19, 1.05it/s, loss=0.773]" ] }, { @@ -8172,7 +8125,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 467/2000 [02:29<08:10, 3.12it/s, loss=0.846]" + "training until 2000: 23%|██▎ | 467/2000 [06:18<23:03, 1.11it/s, loss=0.773]" ] }, { @@ -8180,7 +8133,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 467/2000 [02:29<08:10, 3.12it/s, loss=0.838]" + "training until 2000: 23%|██▎ | 467/2000 [06:18<23:03, 1.11it/s, loss=0.715]" ] }, { @@ -8188,7 +8141,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 468/2000 [02:29<08:04, 3.16it/s, loss=0.838]" + "training until 2000: 23%|██▎ | 468/2000 [06:18<19:49, 1.29it/s, loss=0.715]" ] }, { @@ -8196,7 +8149,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 468/2000 [02:29<08:04, 3.16it/s, loss=0.841]" + "training until 2000: 23%|██▎ | 468/2000 [06:18<19:49, 1.29it/s, loss=0.781]" ] }, { @@ -8204,7 +8157,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 469/2000 [02:30<08:06, 3.15it/s, loss=0.841]" + "training until 2000: 23%|██▎ | 469/2000 [06:19<19:14, 1.33it/s, loss=0.781]" ] }, { @@ -8212,7 +8165,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 469/2000 [02:30<08:06, 3.15it/s, loss=0.852]" + "training until 2000: 23%|██▎ | 469/2000 [06:19<19:14, 1.33it/s, loss=0.781]" ] }, { @@ -8220,7 +8173,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 470/2000 [02:30<08:04, 3.16it/s, loss=0.852]" + "training until 2000: 24%|██▎ | 470/2000 [06:19<18:11, 1.40it/s, loss=0.781]" ] }, { @@ -8228,7 +8181,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 470/2000 [02:30<08:04, 3.16it/s, loss=0.823]" + "training until 2000: 24%|██▎ | 470/2000 [06:19<18:11, 1.40it/s, loss=0.786]" ] }, { @@ -8236,7 +8189,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 471/2000 [02:30<08:03, 3.16it/s, loss=0.823]" + "training until 2000: 24%|██▎ | 471/2000 [06:20<18:14, 1.40it/s, loss=0.786]" ] }, { @@ -8244,7 +8197,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 471/2000 [02:30<08:03, 3.16it/s, loss=0.828]" + "training until 2000: 24%|██▎ | 471/2000 [06:20<18:14, 1.40it/s, loss=0.744]" ] }, { @@ -8252,7 +8205,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 472/2000 [02:31<07:56, 3.21it/s, loss=0.828]" + "training until 2000: 24%|██▎ | 472/2000 [06:21<17:46, 1.43it/s, loss=0.744]" ] }, { @@ -8260,7 +8213,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 472/2000 [02:31<07:56, 3.21it/s, loss=0.812]" + "training until 2000: 24%|██▎ | 472/2000 [06:21<17:46, 1.43it/s, loss=0.734]" ] }, { @@ -8268,7 +8221,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 473/2000 [02:31<07:59, 3.18it/s, loss=0.812]" + "training until 2000: 24%|██▎ | 473/2000 [06:21<17:27, 1.46it/s, loss=0.734]" ] }, { @@ -8276,7 +8229,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 473/2000 [02:31<07:59, 3.18it/s, loss=0.826]" + "training until 2000: 24%|██▎ | 473/2000 [06:21<17:27, 1.46it/s, loss=0.778]" ] }, { @@ -8284,7 +8237,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 474/2000 [02:31<07:59, 3.18it/s, loss=0.826]" + "training until 2000: 24%|██▎ | 474/2000 [06:23<20:56, 1.21it/s, loss=0.778]" ] }, { @@ -8292,7 +8245,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 474/2000 [02:31<07:59, 3.18it/s, loss=0.81] " + "training until 2000: 24%|██▎ | 474/2000 [06:23<20:56, 1.21it/s, loss=0.741]" ] }, { @@ -8300,7 +8253,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 475/2000 [02:32<07:55, 3.21it/s, loss=0.81]" + "training until 2000: 24%|██▍ | 475/2000 [06:24<22:06, 1.15it/s, loss=0.741]" ] }, { @@ -8308,7 +8261,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 475/2000 [02:32<07:55, 3.21it/s, loss=0.816]" + "training until 2000: 24%|██▍ | 475/2000 [06:24<22:06, 1.15it/s, loss=0.768]" ] }, { @@ -8316,7 +8269,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 476/2000 [02:32<09:38, 2.63it/s, loss=0.816]" + "training until 2000: 24%|██▍ | 476/2000 [06:24<20:56, 1.21it/s, loss=0.768]" ] }, { @@ -8324,7 +8277,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 476/2000 [02:32<09:38, 2.63it/s, loss=0.826]" + "training until 2000: 24%|██▍ | 476/2000 [06:24<20:56, 1.21it/s, loss=0.784]" ] }, { @@ -8332,7 +8285,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 477/2000 [02:33<09:11, 2.76it/s, loss=0.826]" + "training until 2000: 24%|██▍ | 477/2000 [06:25<20:04, 1.26it/s, loss=0.784]" ] }, { @@ -8340,7 +8293,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 477/2000 [02:33<09:11, 2.76it/s, loss=0.817]" + "training until 2000: 24%|██▍ | 477/2000 [06:25<20:04, 1.26it/s, loss=0.758]" ] }, { @@ -8348,7 +8301,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 478/2000 [02:33<08:55, 2.84it/s, loss=0.817]" + "training until 2000: 24%|██▍ | 478/2000 [06:26<19:51, 1.28it/s, loss=0.758]" ] }, { @@ -8356,7 +8309,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 478/2000 [02:33<08:55, 2.84it/s, loss=0.821]" + "training until 2000: 24%|██▍ | 478/2000 [06:26<19:51, 1.28it/s, loss=0.736]" ] }, { @@ -8364,7 +8317,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 479/2000 [02:33<08:39, 2.93it/s, loss=0.821]" + "training until 2000: 24%|██▍ | 479/2000 [06:26<18:57, 1.34it/s, loss=0.736]" ] }, { @@ -8372,7 +8325,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 479/2000 [02:33<08:39, 2.93it/s, loss=0.824]" + "training until 2000: 24%|██▍ | 479/2000 [06:26<18:57, 1.34it/s, loss=0.752]" ] }, { @@ -8380,7 +8333,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 480/2000 [02:33<08:28, 2.99it/s, loss=0.824]" + "training until 2000: 24%|██▍ | 480/2000 [06:27<18:43, 1.35it/s, loss=0.752]" ] }, { @@ -8388,7 +8341,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 480/2000 [02:33<08:28, 2.99it/s, loss=0.851]" + "training until 2000: 24%|██▍ | 480/2000 [06:27<18:43, 1.35it/s, loss=0.722]" ] }, { @@ -8396,7 +8349,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 481/2000 [02:34<08:24, 3.01it/s, loss=0.851]" + "training until 2000: 24%|██▍ | 481/2000 [06:28<19:30, 1.30it/s, loss=0.722]" ] }, { @@ -8404,7 +8357,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 481/2000 [02:34<08:24, 3.01it/s, loss=0.816]" + "training until 2000: 24%|██▍ | 481/2000 [06:28<19:30, 1.30it/s, loss=0.73] " ] }, { @@ -8412,7 +8365,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 482/2000 [02:34<08:18, 3.05it/s, loss=0.816]" + "training until 2000: 24%|██▍ | 482/2000 [06:29<19:38, 1.29it/s, loss=0.73]" ] }, { @@ -8420,7 +8373,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 482/2000 [02:34<08:18, 3.05it/s, loss=0.821]" + "training until 2000: 24%|██▍ | 482/2000 [06:29<19:38, 1.29it/s, loss=0.702]" ] }, { @@ -8428,7 +8381,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 483/2000 [02:34<08:18, 3.04it/s, loss=0.821]" + "training until 2000: 24%|██▍ | 483/2000 [06:30<20:17, 1.25it/s, loss=0.702]" ] }, { @@ -8436,7 +8389,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 483/2000 [02:34<08:18, 3.04it/s, loss=0.823]" + "training until 2000: 24%|██▍ | 483/2000 [06:30<20:17, 1.25it/s, loss=0.744]" ] }, { @@ -8444,7 +8397,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 484/2000 [02:35<08:14, 3.07it/s, loss=0.823]" + "training until 2000: 24%|██▍ | 484/2000 [06:31<20:27, 1.23it/s, loss=0.744]" ] }, { @@ -8452,7 +8405,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 484/2000 [02:35<08:14, 3.07it/s, loss=0.822]" + "training until 2000: 24%|██▍ | 484/2000 [06:31<20:27, 1.23it/s, loss=0.757]" ] }, { @@ -8460,7 +8413,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 485/2000 [02:35<08:09, 3.09it/s, loss=0.822]" + "training until 2000: 24%|██▍ | 485/2000 [06:31<19:35, 1.29it/s, loss=0.757]" ] }, { @@ -8468,7 +8421,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 485/2000 [02:35<08:09, 3.09it/s, loss=0.828]" + "training until 2000: 24%|██▍ | 485/2000 [06:31<19:35, 1.29it/s, loss=0.741]" ] }, { @@ -8476,7 +8429,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 486/2000 [02:35<08:15, 3.05it/s, loss=0.828]" + "training until 2000: 24%|██▍ | 486/2000 [06:32<21:35, 1.17it/s, loss=0.741]" ] }, { @@ -8484,7 +8437,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 486/2000 [02:35<08:15, 3.05it/s, loss=0.826]" + "training until 2000: 24%|██▍ | 486/2000 [06:32<21:35, 1.17it/s, loss=0.773]" ] }, { @@ -8492,7 +8445,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 487/2000 [02:36<08:12, 3.07it/s, loss=0.826]" + "training until 2000: 24%|██▍ | 487/2000 [06:33<19:51, 1.27it/s, loss=0.773]" ] }, { @@ -8500,7 +8453,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 487/2000 [02:36<08:12, 3.07it/s, loss=0.828]" + "training until 2000: 24%|██▍ | 487/2000 [06:33<19:51, 1.27it/s, loss=0.747]" ] }, { @@ -8508,7 +8461,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 488/2000 [02:36<08:07, 3.10it/s, loss=0.828]" + "training until 2000: 24%|██▍ | 488/2000 [06:34<20:47, 1.21it/s, loss=0.747]" ] }, { @@ -8516,7 +8469,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 488/2000 [02:36<08:07, 3.10it/s, loss=0.825]" + "training until 2000: 24%|██▍ | 488/2000 [06:34<20:47, 1.21it/s, loss=0.736]" ] }, { @@ -8524,7 +8477,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 489/2000 [02:36<08:07, 3.10it/s, loss=0.825]" + "training until 2000: 24%|██▍ | 489/2000 [06:35<20:00, 1.26it/s, loss=0.736]" ] }, { @@ -8532,7 +8485,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 489/2000 [02:36<08:07, 3.10it/s, loss=0.846]" + "training until 2000: 24%|██▍ | 489/2000 [06:35<20:00, 1.26it/s, loss=0.739]" ] }, { @@ -8540,7 +8493,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 490/2000 [02:37<08:03, 3.12it/s, loss=0.846]" + "training until 2000: 24%|██▍ | 490/2000 [06:35<20:12, 1.25it/s, loss=0.739]" ] }, { @@ -8548,7 +8501,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 490/2000 [02:37<08:03, 3.12it/s, loss=0.817]" + "training until 2000: 24%|██▍ | 490/2000 [06:35<20:12, 1.25it/s, loss=0.737]" ] }, { @@ -8556,7 +8509,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 491/2000 [02:37<08:01, 3.13it/s, loss=0.817]" + "training until 2000: 25%|██▍ | 491/2000 [06:36<19:55, 1.26it/s, loss=0.737]" ] }, { @@ -8564,7 +8517,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 491/2000 [02:37<08:01, 3.13it/s, loss=0.833]" + "training until 2000: 25%|██▍ | 491/2000 [06:36<19:55, 1.26it/s, loss=0.752]" ] }, { @@ -8572,7 +8525,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 492/2000 [02:37<08:07, 3.09it/s, loss=0.833]" + "training until 2000: 25%|██▍ | 492/2000 [06:37<20:14, 1.24it/s, loss=0.752]" ] }, { @@ -8580,7 +8533,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 492/2000 [02:37<08:07, 3.09it/s, loss=0.837]" + "training until 2000: 25%|██▍ | 492/2000 [06:37<20:14, 1.24it/s, loss=0.72] " ] }, { @@ -8588,7 +8541,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 493/2000 [02:38<08:04, 3.11it/s, loss=0.837]" + "training until 2000: 25%|██▍ | 493/2000 [06:38<20:55, 1.20it/s, loss=0.72]" ] }, { @@ -8596,7 +8549,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 493/2000 [02:38<08:04, 3.11it/s, loss=0.83] " + "training until 2000: 25%|██▍ | 493/2000 [06:38<20:55, 1.20it/s, loss=0.757]" ] }, { @@ -8604,7 +8557,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 494/2000 [02:38<08:00, 3.13it/s, loss=0.83]" + "training until 2000: 25%|██▍ | 494/2000 [06:38<19:26, 1.29it/s, loss=0.757]" ] }, { @@ -8612,7 +8565,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 494/2000 [02:38<08:00, 3.13it/s, loss=0.81]" + "training until 2000: 25%|██▍ | 494/2000 [06:38<19:26, 1.29it/s, loss=0.734]" ] }, { @@ -8620,7 +8573,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 495/2000 [02:38<08:02, 3.12it/s, loss=0.81]" + "training until 2000: 25%|██▍ | 495/2000 [06:39<20:01, 1.25it/s, loss=0.734]" ] }, { @@ -8628,7 +8581,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 495/2000 [02:38<08:02, 3.12it/s, loss=0.809]" + "training until 2000: 25%|██▍ | 495/2000 [06:39<20:01, 1.25it/s, loss=0.75] " ] }, { @@ -8636,7 +8589,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 496/2000 [02:39<08:05, 3.10it/s, loss=0.809]" + "training until 2000: 25%|██▍ | 496/2000 [06:40<20:27, 1.23it/s, loss=0.75]" ] }, { @@ -8644,7 +8597,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 496/2000 [02:39<08:05, 3.10it/s, loss=0.845]" + "training until 2000: 25%|██▍ | 496/2000 [06:40<20:27, 1.23it/s, loss=0.733]" ] }, { @@ -8652,7 +8605,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 497/2000 [02:39<08:05, 3.09it/s, loss=0.845]" + "training until 2000: 25%|██▍ | 497/2000 [06:41<19:18, 1.30it/s, loss=0.733]" ] }, { @@ -8660,7 +8613,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 497/2000 [02:39<08:05, 3.09it/s, loss=0.829]" + "training until 2000: 25%|██▍ | 497/2000 [06:41<19:18, 1.30it/s, loss=0.719]" ] }, { @@ -8668,7 +8621,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 498/2000 [02:39<08:01, 3.12it/s, loss=0.829]" + "training until 2000: 25%|██▍ | 498/2000 [06:42<19:44, 1.27it/s, loss=0.719]" ] }, { @@ -8676,7 +8629,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 498/2000 [02:39<08:01, 3.12it/s, loss=0.836]" + "training until 2000: 25%|██▍ | 498/2000 [06:42<19:44, 1.27it/s, loss=0.734]" ] }, { @@ -8684,7 +8637,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 499/2000 [02:40<07:53, 3.17it/s, loss=0.836]" + "training until 2000: 25%|██▍ | 499/2000 [06:42<18:05, 1.38it/s, loss=0.734]" ] }, { @@ -8692,7 +8645,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 499/2000 [02:40<07:53, 3.17it/s, loss=0.813]" + "training until 2000: 25%|██▍ | 499/2000 [06:42<18:05, 1.38it/s, loss=0.795]" ] }, { @@ -8700,7 +8653,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 500/2000 [02:40<07:59, 3.13it/s, loss=0.813]" + "training until 2000: 25%|██▌ | 500/2000 [06:44<22:16, 1.12it/s, loss=0.795]" ] }, { @@ -8708,7 +8661,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 500/2000 [02:40<07:59, 3.13it/s, loss=0.817]" + "training until 2000: 25%|██▌ | 500/2000 [06:44<22:16, 1.12it/s, loss=0.754]" ] }, { @@ -8730,7 +8683,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 0%| | 0/216 [00:00\n", - "array([0.88576496, 0.90838391, 0.8469612 , ..., 0.40522465, 0.40965399,\n", - " 0.43413094])\n", + "array([0.81003344, 0.78063643, 0.8337096 , ..., 0.32482904, 0.35309637,\n", + " 0.28647012])\n", "Coordinates:\n", " * iterations (iterations) int64 0 1 2 3 4 5 ... 1994 1995 1996 1997 1998 1999\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2nUlEQVR4nO3dd3wT9f8H8FfSkbZ0AYW2QKFQ9ipQBCoylCpLZDgQB8JPURH8inWiAooD1K84QRRBEP0KDgQVZBWqjLL3nm0ZHZTSQXeT+/1RmybNZV9ySfp6Ph590Nx97u59Sdt785kKQRAEEBEREXkIpdwBEBEREUmJyQ0RERF5FCY3RERE5FGY3BAREZFHYXJDREREHoXJDREREXkUJjdERETkUZjcEBERkUdhckNEREQehckNETnchAkTEB0dbdOxb775JhQKhbQBEZFHY3JDVIcpFAqLvpKTk+UOVRYTJkxAYGCg3GEQkZUUXFuKqO76/vvv9V5/99132LRpE5YvX663/c4770R4eLjN16moqIBGo4FKpbL62MrKSlRWVsLPz8/m69tqwoQJ+OWXX3Dz5k2nX5uIbOctdwBEJJ9HHnlE7/WuXbuwadMmg+21FRcXIyAgwOLr+Pj42BQfAHh7e8Pbm3+qiMhybJYiIpMGDhyIzp07Y//+/ejfvz8CAgLw2muvAQDWrFmD4cOHo0mTJlCpVIiJicHbb78NtVqtd47afW5SU1OhUCjw3//+F19//TViYmKgUqlwyy23YO/evXrHivW5USgUmDp1KlavXo3OnTtDpVKhU6dOWL9+vUH8ycnJ6NmzJ/z8/BATE4OvvvpK8n48P//8M+Li4uDv74+wsDA88sgjuHLlil6ZzMxMTJw4Ec2aNYNKpUJkZCRGjhyJ1NRUbZl9+/Zh8ODBCAsLg7+/P1q2bIn/+7//kyxOorqC/x0iIrOuX7+OoUOH4sEHH8QjjzyibaJaunQpAgMDkZiYiMDAQGzZsgUzZ85EQUEBPvzwQ7Pn/d///ofCwkI89dRTUCgU+OCDDzBmzBhcuHDBbG3P9u3bsWrVKjzzzDMICgrCZ599hnvvvRfp6elo2LAhAODgwYMYMmQIIiMj8dZbb0GtVmP27Nlo1KiR/W/Kv5YuXYqJEyfilltuwZw5c5CVlYVPP/0UO3bswMGDBxEaGgoAuPfee3H8+HE8++yziI6ORnZ2NjZt2oT09HTt67vuuguNGjXCq6++itDQUKSmpmLVqlWSxUpUZwhERP+aMmWKUPvPwoABAwQAwsKFCw3KFxcXG2x76qmnhICAAKG0tFS77bHHHhNatGihfX3x4kUBgNCwYUMhNzdXu33NmjUCAOGPP/7Qbps1a5ZBTAAEX19f4dy5c9pthw8fFgAIn3/+uXbbiBEjhICAAOHKlSvabWfPnhW8vb0NzinmscceE+rVq2d0f3l5udC4cWOhc+fOQklJiXb7n3/+KQAQZs6cKQiCINy4cUMAIHz44YdGz/Xbb78JAIS9e/eajYuITGOzFBGZpVKpMHHiRIPt/v7+2u8LCwuRk5ODfv36obi4GKdOnTJ73rFjx6J+/fra1/369QMAXLhwweyxCQkJiImJ0b7u2rUrgoODtceq1Wps3rwZo0aNQpMmTbTlWrdujaFDh5o9vyX27duH7OxsPPPMM3odnocPH4727dtj7dq1AKreJ19fXyQnJ+PGjRui56qu4fnzzz9RUVEhSXxEdRWTGyIyq2nTpvD19TXYfvz4cYwePRohISEIDg5Go0aNtJ2R8/PzzZ63efPmeq+rEx1jCYCpY6uPrz42OzsbJSUlaN26tUE5sW22SEtLAwC0a9fOYF/79u21+1UqFd5//3389ddfCA8PR//+/fHBBx8gMzNTW37AgAG499578dZbbyEsLAwjR47Et99+i7KyMkliJapLmNwQkVm6NTTV8vLyMGDAABw+fBizZ8/GH3/8gU2bNuH9998HAGg0GrPn9fLyEt0uWDBDhT3HymHatGk4c+YM5syZAz8/P8yYMQMdOnTAwYMHAVR1kv7ll1+QkpKCqVOn4sqVK/i///s/xMXFcSg6kZWY3BCRTZKTk3H9+nUsXboUzz33HO6++24kJCToNTPJqXHjxvDz88O5c+cM9olts0WLFi0AAKdPnzbYd/r0ae3+ajExMXjhhRewceNGHDt2DOXl5fjoo4/0yvTp0wfvvvsu9u3bhx9++AHHjx/HihUrJImXqK5gckNENqmuOdGtKSkvL8eCBQvkCkmPl5cXEhISsHr1aly9elW7/dy5c/jrr78kuUbPnj3RuHFjLFy4UK/56K+//sLJkycxfPhwAFXzApWWluodGxMTg6CgIO1xN27cMKh16tatGwCwaYrIShwKTkQ2ufXWW1G/fn089thj+M9//gOFQoHly5e7VLPQm2++iY0bN6Jv376YPHky1Go1vvjiC3Tu3BmHDh2y6BwVFRV45513DLY3aNAAzzzzDN5//31MnDgRAwYMwLhx47RDwaOjo/H8888DAM6cOYNBgwbhgQceQMeOHeHt7Y3ffvsNWVlZePDBBwEAy5Ytw4IFCzB69GjExMSgsLAQixYtQnBwMIYNGybZe0JUFzC5ISKbNGzYEH/++SdeeOEFvPHGG6hfvz4eeeQRDBo0CIMHD5Y7PABAXFwc/vrrL7z44ouYMWMGoqKiMHv2bJw8edKi0VxAVW3UjBkzDLbHxMTgmWeewYQJExAQEIC5c+filVdeQb169TB69Gi8//772hFQUVFRGDduHJKSkrB8+XJ4e3ujffv2+Omnn3DvvfcCqOpQvGfPHqxYsQJZWVkICQlBr1698MMPP6Bly5aSvSdEdQHXliKiOmfUqFE4fvw4zp49K3coROQA7HNDRB6tpKRE7/XZs2exbt06DBw4UJ6AiMjhWHNDRB4tMjISEyZMQKtWrZCWloYvv/wSZWVlOHjwINq0aSN3eETkAOxzQ0QebciQIfjxxx+RmZkJlUqF+Ph4vPfee0xsiDwYa26IiIjIo7DPDREREXkUJjdERETkUepcnxuNRoOrV68iKCgICoVC7nCIiIjIAoIgoLCwEE2aNIFSabpups4lN1evXkVUVJTcYRAREZENLl26hGbNmpksU+eSm6CgIABVb05wcLDM0RAREZElCgoKEBUVpX2Om1Lnkpvqpqjg4GAmN0RERG7Gki4lsnYo/ueffzBixAg0adIECoUCq1evNntMcnIyevToAZVKhdatW2Pp0qUOj5OIiIjch6zJTVFREWJjYzF//nyLyl+8eBHDhw/H7bffjkOHDmHatGl44oknsGHDBgdHSkRERO5C1mapoUOHYujQoRaXX7hwIVq2bImPPvoIANChQwds374dH3/8scusQkxERETycqt5blJSUpCQkKC3bfDgwUhJSTF6TFlZGQoKCvS+iIiIyHO5VXKTmZmJ8PBwvW3h4eEoKCgwWPm32pw5cxASEqL94jBwIiIiz+ZWyY0tpk+fjvz8fO3XpUuX5A6JiIiIHMithoJHREQgKytLb1tWVhaCg4Ph7+8veoxKpYJKpXJGeEREROQC3KrmJj4+HklJSXrbNm3ahPj4eJkiIiIiIlcja3Jz8+ZNHDp0CIcOHQJQNdT70KFDSE9PB1DVpDR+/Hht+aeffhoXLlzAyy+/jFOnTmHBggX46aef8Pzzz8sRPhEREbkgWZObffv2oXv37ujevTsAIDExEd27d8fMmTMBABkZGdpEBwBatmyJtWvXYtOmTYiNjcVHH32Eb775hsPAiYiISEshCIIgdxDOVFBQgJCQEOTn53P5BSIiIjdhzfPbrfrcEBEREZnD5MZNlZSr5Q6BiIjIJTG5cUPfbLuADjPX46+jGXKHQkRE5HKY3Lihd9aeBAAk/nRY5kiIiIhcD5MbIiIi8ihMboiIiMijMLkhIiIij8LkhoiIiDwKkxs3JqBOzb9IRERkESY3RERE5FGY3NQB5ZUa/HH4Kq7fLJM7FCIiIodjclMHfJp0Bs/+eBD3frlT7lCIiIgcjslNHbDuaCYAIPV6scyREBEROR6TGzdm6XrudWzhdyIiquOY3NQBTG2IiKguYXJTB7DihoiI6hImN0RERORRmNzUAZzsj4iI6hImN3UAm6WIiKguYXLjxizNWZjcEBFRXcLkhoiIiDwKkxsPVFRWiezCUu1rznNDRER1CZMbD9TnvST0ejdJm+AwtSEiorqEyY0HKiyrBADsS70hcyRERETOx+RGQhqNgAe/TsHU/x3Qbvv6n/MY9uk25BWX233+sko1jlzOq9lgpkqmuFxdVYxVN0REVIcwuZHQqcxC7LqQiz+PZGi3vbfuFE5kFGDRtgt2nbukXI12b6zHPV/ssOKYqhocuee5OX/tJt5dewI5N8tkjYOIiOoGJjcSUmtqkojanXgr1OYTjLTrRXjllyM4f+2mwb5XVx2xOh5Xqbm5+7PtWLTtIhJ/OixvIEREVCcwuZGQRieL+PNIBjadyNK+vlZYhs+TzuqNYqrtmR8OYOW+S3hgYQqu5JWgrFKt3bfm0FWr4ymt0ACQv0NxSUXVfRxKZx8gIiJyPCY3EtJNbp798SAmfbdP+/q3g1fw0aYzmPTdfqPHn84sBABcLypH37lbMGbBTouv/cfhq+j/wVYcv5qv3VbdHOWImpuiskoM/2wbPlh/SvqTExER2YHJjYQ0FmQRhy/lGd0XGuCr9/r41QIs35Vm8phqz/54EOm5xZj6v4PabeuOZuDuz7fp9XWpUGvw7toTSD6dbfacpqw6eAXHrxZgQfJ5i4+RuwaJiIjqBm+5A/AkGjuf3j5eCoNtM1YfM1perKNwWUVNU9aZLMO+Oz/vu4xF2y5i0baLSJ073MZIq0aGERERuSLW3EhIbcMD/0ZROVJzimw+HgAy82v68SgUhgmSrss3im26hiAIeGr5Pkz5d5i7t0gidi77JsYv2YN9qbk2XYOIiEgKTG4kZEmzVG3d396Egf9NxoVrN5FdaN1Q6Qq1gOW70tBnTpLFx3gpTSc/QFWSdSWvRG/btcIybDiehbVHMlBQWgEfpeGPzpPL9+GfM9dw38IUi+MhIiKSGpMbCWk0th/75h8nbDqudrOVuXWkdFMbvQkBdfxnxUH0nbsFG45n1pxX9xoa8Zqby7klBtv0gzO9m4iISApMbiRkac3NU8v3IXHlIb1tN4rsn8EYMJ8/6DZb7Th3XbTM2n8nIfzq75rOwrqpjABBrwaouv+N3JMFEhERAUxuJGVpcrPheBZWHbyiN4/N0Sv5Jo6wXEa+8Xl0AP1Oy83q+5ssq9eEpfOtIADeOs1S5WqNdjsREZHcmNxIyNo+N3IkA2qdpjN/Hy8UlFagpFwtWla3lkehk90I0G+Wqk5ubOlzREREJDUOBZeQJUss6LJ1dJQ9KnU6Bj3x7ySDgSpvHHtrsEFZr3+Tm2U7U/VqmTSCAG+dWp3ySstmQmbqQ0REzsDkRkLWzv1SKUtyY3jNm2VVC2y++ftxnM0u1G73UiqQkV+CWb8f1ysvCPq1Tg8v2o01U/uyWYqIiFwCkxsJWZuryFJzozY+pGvpzlS910qlAjdLKw3KCYIAtU4mczqrEAu2npMsRiIiInswuZGQtaOFvv7ngoMiMa6gxDBZMUYB8UkBe72XhKGdI/S2fbaFyQ0REbkGdiiWkLUVMQv/tnxdJqkcuyo+KktsfpyySjXeWH1UtPxfxzJFt5tibg4eACitUGs7OGfkl+CalRMbEhERseZGQpY8vOVWaaTTs1hfnF0XnLuMgkYjoNvsjSit0ODgjDsRP2cLANi1BhYREdU9rLmR0Mw1x80XklmFkWmUf9l/2cmRGCpXa1BaURXfXp31qdwhaSQiItfB5EYigiAgv6RC7jDMMlZzM32VePOTfdfSYP2xDO3ronI1Nh63rDnryeX7td9zAXIiIrKG7MnN/PnzER0dDT8/P/Tu3Rt79uwxWraiogKzZ89GTEwM/Pz8EBsbi/Xr1zsxWuPkGNZtC2eO0Gr9+l94+vsDett0kxZLseaGiIisIWtys3LlSiQmJmLWrFk4cOAAYmNjMXjwYGRnZ4uWf+ONN/DVV1/h888/x4kTJ/D0009j9OjROHjwoJMjN2SsRsTVVJgYCu6q3CRvJCIiFyFrcjNv3jxMmjQJEydORMeOHbFw4UIEBARgyZIlouWXL1+O1157DcOGDUOrVq0wefJkDBs2DB999JGTIzdUac+S4E7krBqmMQt2GN236oB4/x5jFTRc1oGIiKwhW3JTXl6O/fv3IyEhoSYYpRIJCQlISUkRPaasrAx+fn562/z9/bF9+3aj1ykrK0NBQYHelyOw5kbfgfQ8o/sSfzosut1YEsPchoiIrCFbcpOTkwO1Wo3w8HC97eHh4cjMFO90OnjwYMybNw9nz56FRqPBpk2bsGrVKmRkZIiWB4A5c+YgJCRE+xUVFSXpfVQzNgrJ1cgxK7KYtUeqPrP9aTewbGcqBMH4FIjWTo5IRER1m+wdiq3x6aefok2bNmjfvj18fX0xdepUTJw4EUql8duYPn068vPztV+XLl1ySGyukjSYU2xkBXBnq57A8N4vd2LW78ex8USW0Y7DbvLWEhGRi5AtuQkLC4OXlxeysrL0tmdlZSEiIkL0mEaNGmH16tUoKipCWloaTp06hcDAQLRq1crodVQqFYKDg/W+HMFdmqVcRe0mqHPZN43Wz7DPDRERWUO25MbX1xdxcXFISkrSbtNoNEhKSkJ8fLzJY/38/NC0aVNUVlbi119/xciRIx0drlnuOApJTlUriws6rwWjfWsEnbc2+XQ2HvlmNy7fKHZwhERE5K5kbZZKTEzEokWLsGzZMpw8eRKTJ09GUVERJk6cCAAYP348pk+fri2/e/durFq1ChcuXMC2bdswZMgQaDQavPzyy3Ldgpa7NEu5Co0gIOlkts5rwFjVjW6fmwnf7sX2czl49VfpJx0kIiLPIOvaUmPHjsW1a9cwc+ZMZGZmolu3bli/fr22k3F6erpef5rS0lK88cYbuHDhAgIDAzFs2DAsX74coaGhMt1BjQo2S1lFEIC1R2s6gmsEwWjzk1jemFVQ6qjQiIjIzcm+cObUqVMxdepU0X3Jycl6rwcMGIATJ044ISrrsebGOhpB0K7+XfUa2H1RfKFOsaSH/XCIiMgYtxot5crcZSi4qxAAlFTUJDeCIODp78WXZhDLY5jbEBGRMUxuJBLg6yV3CG5FIwh6yY2pmq8Xfj6stwAnYLR7DhEREZMbqbSPcMwQc48lADdLK7Uv9xhpkgKAf85cM1iAk81SRERkDJMbkoVGEHDtZpn29b60G1YdX3soORERUTUmNySL1OvFuFZYZr6gEem5xeg8awMKSiskjIqIiDwBkxtyW0Xlavyyr2aFcbVGwJu/H8e6o8bXGiMiIs/H5Ibcmm7fmz+PXMXSnal45ocDJo4gIiJPJ/s8N2S5er5e+PWZW9Gwngq3vLtZ7nBcgiAA1wrLsD8tF1fzOLEfERExuXErSoVCslFZD94ShRV7HbNCujNpBAHDP9uG7MIy+PuID8dXawR4KRVOjoyIiOTCZik3opDw+azydr+P/o/DVw22CQCy/+2YrDtvTrVrhWW45d3NmLnmmKPDIyIiF+F+T7g6TClh7YO3l/t99M/+eNBgW2pOkcljvktJRW5ROb5LSXNUWERE5GLc7wlXh3lJWHXj44bJjRhzTWu69/ntjov4YstZR4dEREQy84wnnJvp0TzUpuMUEiY33h7eB6X03yYq3eTmrT9O4L8bz+BKXolcYRERkRMwuZGB0sYkRcp8xNM72PZ8p2o0mY+X4X2WlFcabCMiIs/B5EYGtiY31iYkkwfGaL+f/1APo+eKbhhgUzyu7GZZJQRBEO04zVUbiIg8G5MbOdhYaWJJUjQitgkAIPHOtmjeoCZpMbXQZPJLt6NbVKhtQbmwSo0g2reIuQ0RkWfjPDduxJIKn4/uj8Xjt7VE16YhqNQI2HEuB31bh6FhoK/+uWod54kP/MLSSvHkxhNvloiItJjcyMDW1axfGtzObBlfb6W2FsZXqcAX/zZHlZTrzwFjSaL02bjuWLD1HIZ2jsTHm89ot3srFajUuH6G0OPtTajnazixn+CRqRwREVVjs5QTdGkaovfa1rxgWJdIm2Pw9/VCaICPVccM7xKJ9dP6I6ZxPf1zGZkJ2BUVlRtO7Lc8Jc0g2SMiIs/BmhsHGNIpAqWVaiSfvgbAcJSTqf4vptg7vsnfxwt5qBDfKRKTwvguq024NRpHLufhQHqe/Sez0w+706FUKHD+2k10iwrFy0Payx0SERFJiDU3DuDlpcCCh2tGJ9Wen8bWmht757mxNqmqvlzto2wJf0RsE6x6pq8NRzrG8l1p2Hn+OhYkn5c7FCIikhiTGwfwUSoQ4FtTKVa75sbWPje6p1nxZB+M6dEUz97R2uLjdZMqSxKl6jK147U1fleVmV+KgtKqGq2f913C1/8w4SEicmdslpJQVAN/XMotwd1dm+htN6y5sTG50TlNn1YN0adVQxSWVuDzLecsOt5UUuJZ6Yp1+sxJAgDcF9cMv+y/DAAY0ikSzT1w/h8iorqANTcSWvefflgzpS8GdWist712zY1ao//6sfgWFp1frLYlyM8He14bhL6tG+K/98eaPF635qZ2J2eCNrEBxFcYJyIi98CaGwkF+fkgVmQyvNpJSe0alLdGdsYyO1atbhzshx+e6GO2nFonu+nXJgzzH+qBtuGBVl+vLtTyeIss20BERO6BNTdO0KN5fb3XcnVZ0W0OUygUGN41Em3Cg8weVzteQQDuaF9VOzWwXSOjx4XVmjjQnXj6wqJERJ6MyY0DbU7sj1eHtse0hDZ629WCIFrD42imkiqT+0Tqar4Z3xOHZt6JpRN7GT1u7+sJ1oTnUtxgjkIiIjKCzVIO1LpxEFo3NqwZ0QgC+rRqgMOX8pwaj60dmWt7akArKJUKhAaYrpnRbY7zFVkGQU71A3xwo9jInD/Qb8IjIiL34lpPHA/2fEJb7feCAPgo9d/6++OaAQDGx7fArBEd0SEyWPIYbF2NXDcn+nFSH/znjjbGC9fy1IBWGBHbBJ2bSn8/9jCXu3jacHciorqENTdO8lxCG+36TBpBwOO3tcQfR67inn9X8f7gvq5IvKstIkP8AQC/Hrhs9Fy2ClR542ZZpeg+U+st6S7bEB/T0KprTh/awaryzlJZe8haLWomN0REbovJjQw0goD69Xzx90u3a7cpFAptYgMAXjo1O20aB6JZfX/YK9DPGyiw/riBbRvjkT7N0bmJewwf79E81OwyDxVmqm4+TzqH+TqzTBMRkftgs5QTPdW/FQDgjeEdzZbVHYm8YVp/LJlwi93Xf7h3cwAQ7czcs0UDo8cplQq8M6oLHuzV3O4YfL2t+5HzqTUk+7bWYSbLvzG8g0XLPFSYqblZezQDX/3NmYqJiNwRa26caPqwDnjm9tYI8Te/Ore3Ts2NUqJhyePjo9G6cSC6Ngs12PfykHZoFKSCyluJd9aelOR6Yg7MuBNJJ7Pw3IpDAIA+rRpg14Vco+W3vDAQKeevY3SPpqhUC1AogPYz1hstP7hThEVxWNLqNOevUxjdoyneXXsSA9o2wpgezSw6NxERyYs1N05mSWIDAM0a2N8MVZuXUoF+bRqJxhDg640pt7dG+wjHdvwNVHnrdZY2N6tyVIMAPHBLFHy8lPD39YKXk+ef6fVuEtYcuorEnw479bpERGQ71ty4qDeGd0RphRoP9Ixy6nXjYxri1piGaBdhfnI/U4Z2Nl6D0jY8CM/e0RphgSo0qy++flPzBgF4/k7DUVm6I776tQnDtrM5+vsdmPyoNYLTkysiIrIekxsX1aCeLxY8HOf063opFfjfJPNLOegK8vNGYWnVKKyEDo1xR/tw3B0bafKYF+5qZ3TffXHNjNbo6KYWYvP2VOceLw1uhw83nDYduJW6vrkB3zx2C7o3D4Wfj5ek5yYiIukwuSG7JSUOQNKpbCgVwIjYJgjwte7H6u+XBmLAh8kAgCf7t8Jrw4wPH9edqieueX3sOHddb389VdW1p9zeGiO7NcFt72+1KhZTisrVGLdoF9qGB2Lj8wMkOy8REUmLfW7Ibo2D/TCuV3OMvaW51YkNALRoWE/7fT0zxysUCoQFquClVOCZ21vr7Vv8WE8E+9X0JzLW5GWvM1k3UV5perQVERHJhzU35BLeGN4B645m4P9uizZbNmX6HVBrBL2mIX8fLwzqEO7ACPUVl1fiYk4ZDqTfwL09mqFCrcHlGyV291UiIiL7Mbkhl/BEv1Z4ol8ri8r6eClRndfc0b4xtpzKxoS+0aJlm4b640peicnzmRuOLmbW78ex5tBVAMBfxzKRkVeCs9k3MXtkJzzUqzm8XWwtLSKiukQh1LFFdAoKChASEoL8/HwEB7vWekdkvZJyNQ6k30Cvlg3gI5JQnMkqxFt/HMct0Q3wyeazeG1Ye7y37pR2/7heUXh1SAfEzt4oWUzDu0RydmMiIolZ8/xmckN1RmmFGn4+Xoh+da12W+rc4Sgur0THmRskvVbq3OGSno+IqK6z5vnNunOqM4wN3xar8XGGBcnn8Mfhq7Jcm4jIkzG5oTrnp6fi0bpxIH54ojeAquSmd8sGesPM7bVybzp2nq+aYLCsUo3aFaRHLufhg/Wn8eyPB6W7KBERAXCB5Gb+/PmIjo6Gn58fevfujT179pgs/8knn6Bdu3bw9/dHVFQUnn/+eZSWljopWvIEvVo2wObEAeirswjnD0/0xt7XE7Dp+f6SXOOVX4/ioUW7kV1Yik4zN2DK/w7o7c+5WSbJdYiIyJCsyc3KlSuRmJiIWbNm4cCBA4iNjcXgwYORnZ0tWv5///sfXn31VcyaNQsnT57E4sWLsXLlSrz22mtOjpw8jbeXEmGBKrQJDxJdOuLZO1qLHGXenfP+QaVGwLqjmSiv1OCjjaex5tAVaHSmyak0s0I5ERFZR9bkZt68eZg0aRImTpyIjh07YuHChQgICMCSJUtEy+/cuRN9+/bFQw89hOjoaNx1110YN26c2doeImt8PLYbfnk6HnEt6mu3KW1ss8ovqdB+v2xnKj7fcg7PrTiEH3anabeXckJAIiJJyZbclJeXY//+/UhISKgJRqlEQkICUlJSRI+59dZbsX//fm0yc+HCBaxbtw7Dhg0zep2ysjIUFBTofRGZ4ufjhZ7RDfDu6M4I8vPG9KHtbU5udL3310nt91tPX9N+X1ahNnlcfkkFa3eIiKwgW3KTk5MDtVqN8HD9WWXDw8ORmZkpesxDDz2E2bNn47bbboOPjw9iYmIwcOBAk81Sc+bMQUhIiPYrKsq5q2yT+2ofEYzDM+/CUwNiIMWAKmOTLpiqubmaV4LYtzZi1IId9gdARFRHyN6h2BrJycl47733sGDBAhw4cACrVq3C2rVr8fbbbxs9Zvr06cjPz9d+Xbp0yYkRk7tT/rvMePW/jlBaocaVvBKcy75psG/9sapE/9gV1jgSEVlKtuUXwsLC4OXlhaysLL3tWVlZiIgw7NAJADNmzMCjjz6KJ554AgDQpUsXFBUV4cknn8Trr78OpdIwV1OpVFCpVNLfANUpXrWapdqFB+F0VqEk5x7x+XYUl1c1TR2aeSdCA3wlOS8RUV0lW82Nr68v4uLikJSUpN2m0WiQlJSE+Ph40WOKi4sNEhgvr6qJ2erYRMvkZF46NTe3tQ6TdHmF6sQGAC7fqFkHS6MRsO3sNbFDiIjIBFkXzkxMTMRjjz2Gnj17olevXvjkk09QVFSEiRMnAgDGjx+Ppk2bYs6cOQCAESNGYN68eejevTt69+6Nc+fOYcaMGRgxYoQ2ySFyhEZBNbV/3z/R22HJdH5JBcoq1VB5e+GPI1f1Oh7rullWif9uOI27u0aiZ3QDg/2nMguQkV+K29s1dkicRESuTNbkZuzYsbh27RpmzpyJzMxMdOvWDevXr9d2Mk5PT9erqXnjjTegUCjwxhtv4MqVK2jUqBFGjBiBd999V65boDri7q5NsD/thjaRUEg5nbGOh7/ZjYhgP/zx7G14bsUho+U+3nQGS3emYunOVO06VhqNgKLySgT5+WDIJ9sAAOv+0w8dm8i7hpogCNAI+rVfRESOxIUziWykuwDnXR3DcX/PKGQWlGLG6mN2n/u21mHYfi5Hb5vuYpyPLdmDv89c09s+9qsU7L6Yi20v345+H2wFAHz6YDeM7NbU7njs8eji3TibdRPJLw00ur4XEZE5XDiTyMm+Ht8Td3YMx/AukZKcb09qrsn9Yv8j2X2x6pg1h65YdI0vtpzFyr3pEAQBRy/no9TMfDu22nY2B5kFpdhr5p6IiKTC5IbIRuv+0w8AMK5XzdxJ/hLVTKg1pitUTVW46u46cjlf9Fznsgvx341n8MqvR/HjnksY8cV2TPjWsTN9K8BmKSJyDln73BC5s45NgnH23aHw0ZnhT+Utzf8XzCU3llq8/SIUAN64u6Pedt1lIb7fVbUUxK4L5mtWvkw+j0q1Bs8OaqO3vVKtgbcUMx0SEUmAf42I7OBT64HuyMn+dGlM1dzUev3N9osmz2Vp3+iiskq8v/4UPtp0BjeKygEAFWoNEn86hC5vbsS1Qq50TkSugckNkRuydxiA7vGWJje6fXLUgoD8kgr0mL0Jqw5cQUmFGiv3pps83kEDzIiIDDC5IXJDusnJku0X9RbWzLnpmBoU3aYyb6UC649loLCs0iHXIiKyB5MbIjfxz5maCf10m6Vm/3lC228GAL5LSYM5uhU/lnb0rdBJbmzpHFyu1uDE1QLOJk5EDsfkhshBerVsgF8niy8lYovV/w7xFgTBoFnqyOV8ya5jjFpdc1FBdDC6aRO/3Ythn23DL/svSxkWEZEBjpYikti2l2/HhZwiDGjbSNJOtgoo8M6fJ7DuaAYCVPq/umoztSFvrD6KQJUPXh3a3ubrV2hqmr7ELmfprM0/7E7H/T2jzBckIrIRa26IJBbVIAAD2jYCAOgOnnqu1vBpaykUVSOfruaX4lz2Tb195kaOf78rHQv/Po+Kf/vm2NIypNvnxp6GJXYsJiJHY3JD5EBKnSf5iFj7Zi82lRNorJwXx5Z+LxVq3Zob29Mb5jZE5GhMbogcSFmrmuL/+rZ0yHUsnfSvOiexJTWpVFtfcyOWBNV+T4iIpMbkhsiBFHq/YQrMHNHRWFGz8nRmFa7NXJ+batUdgUvKrV9HqtJMnxvR64mUY3JDRI7G5IbIgcQe5APbNbLpXJtOZBndZ2kzUXWxxJ8OWX398krrR0uJlmJuQ0QOxuSGyIHEVmO4JbqByf22sHYtqhvFNbVAliYqunPrLN2Rin2pN8weI5Z0MbchIkdjckPkQGI1N7qdf4+/NUSS6xSWWjZTsD3z5+kmNwuSz+NnC+arEcu52CxFRI7G5IbIgcSe47r9Y/x9vSS5zr4087UogHgtjT39Z2y5HnMbInI0TuJH5ECiNTe1nvdBKm+nrdH06eazOJFRYLJMRn4JTmUUYmC7RnoT85laiRwQT1rYoZiI5MDkhsiBdB/j1c/02v1QwoJUTktuvvrngtky8XO2VJV9NA6DO0Vot0u1JJSjc5v8kgoE+HrBx4sV00R1FX/7iRzIS6fHcKMgFQDDGhBzNSKOZuzyO8/l6L22JU57lmmwRWZ+KWLf2oihn25z2DWIyPWx5obIgRQKBba+OBDllRoE+/kAAHQm+gUgf3JjKXMDssRWChe7N0dW3CSdqhouX3t5CiKqW1hzQ+RgLcPqoV1EkPZ17WapCbc6ZtZiS+lGszc1V/t97RoWm2puRLZJNfydiMgYJjdETvbALVUrYvdt3RAAMPHWaBmj0Xf/whTR7Ucu52F5SprV5xOd54YdionIwdgsReRkMY0CcXjWXQhSVf36KZUKpEy/Q9uR1xXd88UOs2VER0uJlbM/HCIik1hzQySDEH8fKHXaZyJD/LHuP/1kicXc0g3WLu1gbtv1onJMX3UUx67kW3Rea7hJ9yUicjAmN0QuomOTYGxOHCB3GAbsGaYulhgdupSHH/ek4+7Pt9sTFoCq0VEaK5eeICLPx+SGyIXI0dn2Qk6Ryf2CxuRuLUsn8ZPK5hNZ6DMnCc+uOOi4ixCRW2JyQ+RC5Ji9t7zSdPZi6cKaYm46cHLCL/8+DwBYeyTDYdcgIvfE5IbIhViS3Ph4uU+X3LnrTzns3F5WJIKCIGDHuRzkFpU7LB4ich1MbohciCXP6w/u64rYqFCHx1LN0qYlsdAPpedJGYoeLyva8H47eAUPf7Mbd87722HxEJHrYHJD5EIsSW46NwnBmil90bNFfccHBPHh3JZyZCubNcnNguSqJqzrrLkhqhOY3BC5ELEJ7lLnDseWF2pGUVX+Ozqo0kmjhCwdCi7GFZKbY1fyuRwDUR3D5IbIhRh7Xkc1CNB+X90B+NClPCdEBGQXltl8rNh6U1KxNLlJPp3tsBiIyDUxuSFyIbU7FPt6V/2K+njV/Ko6q8am2tPf77eonFgtjSNrbuQYWUZE7oHLLxC5EN3H9bL/64UuTUO0r0fENkHa9SLENgsxPNCB0q4XW1TO2bMDizWXiYXgqrMWn8kqxIG0G3igZ5TebNVEZD8mN0QuqmvTENSv56t9/fm47jJGYxtHPbLXHslA0in3bm666+N/AADeXkrcF9dM5miIPAubpYhciG4lg9ytLtZe35nxTvnfAeddzMGOXs6TOwQij8PkhshFObIzriUOX8rDfV/utOscYqO/dAmCgL+OZiDtuuklIIiIrMHkhshVyVxzcyA9D/vSbth1DnO3sP5YJib/cAADPky26zquYMe5HExfddShS04QkWWY3BC5EFs7v84a0VHaQGxgS03T3lT7kidL2PKWlldqzK65VdvD3+zGj3vS8VnSWRuuSERSYnJD5KLM9WFZ8HAPtI8IwoZp/TGwXWPnBGVCbrHI7L9m7sGeRTnFvPn7cavKX8otRqVaP4mpVGvQ851NuHVuEjT/DrtXawSsOXQFl3LNjxy7fMOy0WVE5DhMbohcSJBfzQBGlbfpX89hXSKxflp/tIsIcnRYFvny3yUOdDm7ZU1txRxAG45not8HW/H4sn162zMLSlFQWomcm+UoKq9qYvpp3yU8t+IQ+n2wVdJ4icgxOBScyIXUU3nj18m3QqkAVN5eFh/nSrOk/HH4Kv48chX/vT/WbIdiczafyMKO8zl4fVgHeHtJ+3+xb3dcBAD8feaa3nbdmKtTpV0Xrkt6bSJyLCY3RC4mzoYFMSND/RwQiW2e/fEgAKBVo/N2J11PfFdVq9IuPAgP9mpu0zks6cf04550jPv3/Loxu+oEgERkGpuliDyAytsLMY3qyR2Gnus3za9JZWnykFlQamc0pq89fdVR5P3bZ0ivssnFkxt7FjUl8mQukdzMnz8f0dHR8PPzQ+/evbFnzx6jZQcOHAiFQmHwNXz4cCdGTOR6AlXyV8TqPmw1gnUT+73w02FM+eGAbA/s6v46uqO+qjs8u1KzX7UvtpzFbe9vRWa+9IkfkbuTPblZuXIlEhMTMWvWLBw4cACxsbEYPHgwsrPFp1ZftWoVMjIytF/Hjh2Dl5cX7r//fidHTuRaYhoHyh0CXvj5sPZ7a3OUXw9cxtqjGciQ6WHtraz6c6ibkFnTQdnZ/rvxDK7kleBTDj0nMiB7cjNv3jxMmjQJEydORMeOHbFw4UIEBARgyZIlouUbNGiAiIgI7demTZsQEBDA5IbqvJl3d8S4Xs3x3KA2ssWw6sAV7fe/HriMa4Xmm6Zq0wgCtp/Nwfyt56QMzSajF+zEznM5dneMdiS1xrr5eIjqApuSm0uXLuHy5cva13v27MG0adPw9ddfW3We8vJy7N+/HwkJCTUBKZVISEhASkqKRedYvHgxHnzwQdSrJ97foKysDAUFBXpfRJ4oNMAXc8Z0QQ8bOiQ7yo3iCpuOe2Txbny44bT2tTOWoqhugtKtcUrPLcZD3+x2+LXt4cKVS0SysSm5eeihh7B1a9V8D5mZmbjzzjuxZ88evP7665g9e7bF58nJyYFarUZ4eLje9vDwcGRmZpo9fs+ePTh27BieeOIJo2XmzJmDkJAQ7VdUVJTF8RG5I9etYzD0v93pBtucVUtiLCfQuFknXTcLl8gpbEpujh07hl69egEAfvrpJ3Tu3Bk7d+7EDz/8gKVLl0oZn0mLFy9Gly5dtLGImT59OvLz87Vfly5dclp8RK6ge/NQuUMwqlzt+CYVS2dBrk4S3C1X4IgpIkM2Da+oqKiASqUCAGzevBn33HMPAKB9+/bIyMiw+DxhYWHw8vJCVlaW3vasrCxERESYPLaoqAgrVqwwW1OkUqm0sRLVBfUDfPVe+yhl71pnlXf+PCG6XRAEVKgF+JqZudlSteuHqlMEjZu187hXtETOYdNfiU6dOmHhwoXYtm0bNm3ahCFDhgAArl69ioYNG1p8Hl9fX8TFxSEpKUm7TaPRICkpCfHx8SaP/fnnn1FWVoZHHnnEllsg8lhdmoWgS9MQ7Wt/X8tnOnYFfx0Tb5J+7Nu96PLmBuTb2I+nNmuSAnMNZRVOqIEyxt2a0Yicwabk5v3338dXX32FgQMHYty4cYiNjQUA/P777yabiMQkJiZi0aJFWLZsGU6ePInJkyejqKgIEydOBACMHz8e06dPNzhu8eLFGDVqlFXJFFFd8fhtLbXfB/rJP/+NFP45cw1llRpsOpllvrANqpt3rE0WZq45hnZv/OWIkCzC3IbIkE1/9QYOHIicnBwUFBSgfv2akRlPPvkkAgICrDrX2LFjce3aNcycOROZmZno1q0b1q9fr+1knJ6eDmWtavXTp09j+/bt2Lhxoy3hE3m8m2WV2u+9XHgYs6X0555xbC2Jta1S36WkOSYQC7HmhsiQTclNSUkJBEHQJjZpaWn47bff0KFDBwwePNjq802dOhVTp04V3ZecnGywrV27duxER2RCPVVNU5SX0v2TG13WtgBZ+qeiupi7/W1xr2iJnMOmZqmRI0fiu+++AwDk5eWhd+/e+OijjzBq1Ch8+eWXkgZIRNa7u2sT3B/XDB+PjbVqCQR3UFAqTZ8bY0Rrblz5PawVb2mF2qVnViZyBpuSmwMHDqBfv34AgF9++QXh4eFIS0vDd999h88++0zSAInIej5eSnx4fyxGd28GpYdlN3P/OiXNiWo9/2sqbNwrMdAd6l5YWoH2M9bjro//ljEiIvnZlNwUFxcjKCgIALBx40aMGTMGSqUSffr0QVqavO3PRKTPw1qlHM6RlR7703JxKbdY0nPqdkHal3YDAHD+WpGk1yByNzYlN61bt8bq1atx6dIlbNiwAXfddRcAIDs7G8HBwZIGSET2ccbSBa7MaK5S620RW35BSmezCnHvlyno98FWSc9r6SSFRHWJTcnNzJkz8eKLLyI6Ohq9evXSzkmzceNGdO/eXdIAicg+IQE+FpVz5RqeE1cdsCackZzAUaOPjjviHsC1pYjE2DRa6r777sNtt92GjIwM7Rw3ADBo0CCMHj1asuCIyH5Tbm+No5fzcexqPgpLK42Wq6fyNrlfTuuPm19rzm7Vyy+IJAv21n7tTc3Fu+tO2nUOYxwxuutA+g2Ulqtxa+swyc9N5Aw2z2MeERGB7t274+rVq9oVwnv16oX27dtLFhwR2S/E3wc/PtkHY3uaXjTW0zoe28oRNTf3L0zBtcIyyc8L1ErGJAp9zIKdeOib3bh+0zExEzmaTcmNRqPB7NmzERISghYtWqBFixYIDQ3F22+/DY2DJ9giIvstmdDTYJsn5janMwtxJrPQorKm8gJXfm/MJWML/z6P5bssH+ihWxN0vajc5rjsdflGMeZvPSfZchtUt9jULPX6669j8eLFmDt3Lvr27QsA2L59O958802Ulpbi3XfflTRIIrKf7gP6jvbhomV6tWyAPRdznRSRdC5cu4lWjQL1tpVWqDH4k38Myn6ZfB6TB8YYPZe7zfhrKtqreSXaofOP9G4OhQVZmu7ty5nTjVmwE9mFZThyOQ9fPWqYjBOZYlPNzbJly/DNN99g8uTJ6Nq1K7p27YpnnnkGixYtwtKlSyUOkYikYK7ZSQHg83Hd8WifFogI9nNOUBK546O/Df6Hb6z/0PvrT+FijuFQacFEnxtXZqpDcXF5zXtgy33J+VZk/9uMt/P8dRmjIHdlU3KTm5sr2remffv2yM11v//1EdUFk/q3QniwCk8PEK+1UCgUCA/2w9ujOqN140DRMq7shZ8P6702lcvdFEl8qodUu3rNTVmlWq/pSDBR1SJ3QlNWqYbGzuFcrtQiuP5YJgZ8uBVHL+fLHQqZYVNyExsbiy+++MJg+xdffIGuXbvaHRQRSS8sUIVd0wfh1aHinf51HyKu/oAXs9nK1cKNzQ/jynd+Na8E7d5Yj2krD4kXqD3rsvFdRukmS/YkFvklFeg0cwMeXLTLjrO4lqe/34+068WY9N0+uUMhM2zqc/PBBx9g+PDh2Lx5s3aOm5SUFFy6dAnr1q2TNEAiko5unwsvpUJvDSLdmg53TG4UCvv6i9Q0Sxneu6vUHnz/b8fgNYeuareZ+qjkrLnZeioblRrB7j5clvQTcrbSSrXcIZAZNtXcDBgwAGfOnMHo0aORl5eHvLw8jBkzBsePH8fy5culjpGIHKCer5fe68gQf+337jgxnFSPQFfO68Q+F0sTUUEQIAgClu9Kw+FLeSbK1XxvaV5x/WYZnvxuH7acsq72zBIumNuQG7Cp5gYAmjRpYjAq6vDhw1i8eDG+/vpruwMjIse6vX1jvRqALx7SmV3chR/wxihqV91YqfpIZyd2V/NLUVKuhn+tZFOMWCJj6S0LADYcz8SM1ccAAKlzhxspZ/0b8O66k9h4IgsbT2QZPa+tmNuQLWxObojIvb09qjNiGgViWJcItAwLhJfO+gtu2SxV67Wtd+CIGX9N2XQiC7e9vwX7Z9xptqxY51xjn9WpTMPlHs5k3dR+LwiCaJOPLbefVVBq/UEWcsVmKXJ9Ns9QTETuLdjPB/8Z1AatGwfpJTaAeyY3tZm7hdr7q5MasZobRz9fLZ0sTyw2Y7f56q9H9e6x9v32ei8Jx686btSPVO8ZUxuyBZMbIjLgln1uDIZB23YTzq65sYZ4s5TxUV+GCVzN99cKy5C4Un/4PJGnsKpZasyYMSb35+Xl2RMLEbkIV37AG1O1uKXO/C/myhuZE0bsOHsXzpSKVX1uau0Q60tj/nyOv++iskqovJXw9hL/vzZbpcgWViU3ISEhZvePHz/eroCISH7uWHNT+zlsqmltyY6LRpMCe5vkHJkIicVm+WgpyxIFWzoU23rP+SUViH1rI1qF1cOWFwcaPTuRtaxKbr799ltHxUFELsTT+9z8dvAKeraob/VxFl3XgUPNxIeCWx6LJfdmy1BwW+2+ULW0wgWR5TCcFQMAZOSX4PtdaXikTwu9KRHIfbHPDREZcMeaG2tHS1UYuUmxxG7lvku2BSUxa5sLrSle9u/EdHqzGrvAz4Ez6m0mLNmL+VvPY+K3eyU5X3F5Je5fuBNf/3NekvOR9ZjcEJEBYw9RY+tSuYLa/8PvO3eLyfK1J7IThKr7Lq1w3dlnT2YU2nysqUTlYPoNtHtjPT5Yf8q2czuwtsoZNTens6re11OZtr+/un7YlY69qTfw3jrb3k+yH5MbIjJgrFlqUIfGTo7EclL0dXli2T48/f0BCaJxjEMmZha2x7trTwIAFiSf119bit1dbFLiwglyXcHkhogMGGuWcuVnnb0PYgECkk5l2x8HFMgtKsfB9Bt2n0tKltauuEBLlB5XGalG7oXJDREZMFZzw//JW6bPnCSMXrATKeev232uTzafwbKdqUb3m0pGrFmaQewYV/i4+TNHtmByQ0SGjD4UXfdJY29kUnaeLa/UAAD+OXvNrvOk5hThk81nMev34xaVF2rN86P32tL7c7GqG9f9iSNXxuSGiAzUxZoba5/ploxcsjdhKi6v6bth78SKpmt4dJMi+bMb3U7dXFuKbMGFM4nIgDv2uXGm3KJyjPh8O+7p1sRkuWuFZdh+Nsfm65zJqhm9Y0luU7t/irljxPIGU8eoNQLKKtUI8HXso6PnO5sden57mfs94O+J/JjcEJEB4zU3nvtn29KakW+2XUB+SQWu5JXgy2TDeUx0az5+PXAZvx64bHNM01Ye0n6vNhafkVoXYwuDih1qaV3NiM+340RGAQ7MuBMN6vlaeJT1bpZVOuzcVDewWYqIDBh7jrpyalNU7pzht++sPQm1A2c5LClXY82hK8gr1l8p3NpZo4VaDUy2dLmpncyeyCgAAPxzxnxfIqkSYWfn038euerQz5ecg8kNERloHxEkdwhOJ9XjzN6hy7P/PI7nVhzCY7Vmy9VoxMsbizv9ejGyC0prldUvXZ046OZNrrZoqrOTm6n/O4j/7U5z7kVJckxuiMjA3Hu74uHezTG6e1O5Q6lzVh+8CsBwBuXrRWVWnaegtBJPLt+vfS2Ws4hus+oqjifHPDfb7OgnRa6ByQ0RGWgUpMK7o7ugc9MQve2u9uCTkqtUWBirqXjrjxN2nVetEbD5ZJbZcq5Wi2NJzc3+tBv4dPNZVKiNVG9RncMOxURklFetB4srPOw8nbFn+flrN0W3W/qRLNuZimNXCvSvVd0spXs+F0thLam3uffLnQCAYH9vTOzb0rEBOdCpzALUD/BFeLCf3KG4PSY3RGSUl7LW0GKZ4nAO1747e/PKDcczLTu5+LeysaZj8tls8QTQHVzKLcaQT7YBAFLnDpc5GvfHZikiMkqpdOXxUfIxOSGenSmBsYe5sdFSUtS0GDuDK1TUueNPoC2doI9dyZc+kDqMyQ0RGeVdu+bGBR52jmLNvR297LgHkbHnorVDwW3lzI/YoloZd8xuSHZMbojIqI6RIUb3/fx0vBMjcS3bzxkfTeOo0T3GhoJbSiw3OpN1E7PWHMMRnWRNv5ztqY4l74LUfbg8Ofkm67DPDREZ1aVZCKIa+ONSbsm/W2qeHl2aGk983JHLPBeNZAWO6sy9LEV/ThdbmrmkCO2voxmo1AgGHaetSxVd5lN0S0cu5+FSbgmGd42UOxS7MbkhIpPuaNfY4AEIePYimo5mS6JibNJcS09ladKiPxTcsnNLYfIPB0S3n79WhF/2X8Z9cc3MnoM1N/a554sdAICoBn3RtVmovMHYic1SRGQx3YeH0sOyG2c+GL/823BNqmrG3lWja0tJzJYlGxztxZ8PO/V6rnLfcrlwrUjuEOzG5IaITDL2sPOs1Ma587t8udUwuflp7yWUlKuNj5ayc70ji2t4nJjlSb0QK2tupOEJ/29hsxQR2cTTam7k9vKvR3DkSp7R/fbW3NhytLlLnssuxI97LuH6zXLTBY2eX55sZPvZHOy6cB3P39nWYC4n8gyy19zMnz8f0dHR8PPzQ+/evbFnzx6T5fPy8jBlyhRERkZCpVKhbdu2WLdunZOiJap7dP/06z6LPC23ceZz1tilNp3IMvq+qtVG5rmRuI9MiRWrqw/7dDsWb7+I01mFBvtM/XxoNAL2puaipMI5K7nX9sji3fhi6zn8euCyLNcXw0onaclac7Ny5UokJiZi4cKF6N27Nz755BMMHjwYp0+fRuPGjQ3Kl5eX484770Tjxo3xyy+/oGnTpkhLS0NoaKjzgyeqIzo2CRbdLnWTAlVxVJ8bS2tJ7vz4n5pjzDxyy21cy2npzlTM/tO+tbLEWNu0eDm3WPIYAPf/3XD3+AGZk5t58+Zh0qRJmDhxIgBg4cKFWLt2LZYsWYJXX33VoPySJUuQm5uLnTt3wsfHBwAQHR3tzJCJ6pz74qJQXK7GLdENUFRWKXc4DuPq/TWKLahRkfqZ5Kj3ZOXeS445sRvT/egu5RajWX1/j0gy5CJbs1R5eTn279+PhISEmmCUSiQkJCAlJUX0mN9//x3x8fGYMmUKwsPD0blzZ7z33ntQq43/0peVlaGgoEDvi4gs56VUYGLflgYrhOsa1iUCM+7u6MSo3JscfU1cPHeThLVvq7HicqcU/T7Yiq//uSDb9eW+fynIltzk5ORArVYjPDxcb3t4eDgyM8UXeLtw4QJ++eUXqNVqrFu3DjNmzMBHH32Ed955x+h15syZg5CQEO1XVFSUpPdBVJcYexj4eCnRNjzQqbFIzZmjpUxdydr/rVsctQ235+q1WbVJFa4ct137mnP+OiVDFJ5D9g7F1tBoNGjcuDG+/vprxMXFYezYsXj99dexcOFCo8dMnz4d+fn52q9Ll1gdSmQrYw87jQD0bNEAQSrDlu4P7+uKuBb18WifFg6Ozn2YShqs/V+zbi2QuyQjjkokrb1/T6ihIHGyJTdhYWHw8vJCVlaW3vasrCxERESIHhMZGYm2bdvCy8tLu61Dhw7IzMxEebn4UESVSoXg4GC9LyKyjbGHkkYQ4O/rhf0z7sSvk2/V29chMhi/Tr4V8TENnRGizZw7Wso9mqXsidNRa2xJyZVyQVd6tzyhq49syY2vry/i4uKQlJSk3abRaJCUlIT4ePEF+fr27Ytz585Bo7OC3JkzZxAZGQlfX1+Hx0xE4qprD3y9lVB5i/9Z4bw45gmC4x4szuznIwgCtp+7ZvTa7pD4uKPSCjWe/G4fftyTbtd5POHzkbVZKjExEYsWLcKyZctw8uRJTJ48GUVFRdrRU+PHj8f06dO15SdPnozc3Fw899xzOHPmDNauXYv33nsPU6ZMkesWiOqUtuFBeq+D/KqaoQa2q5m6ofYztPo150qr4TbNRzbG+dexTPy4p6YLgMHPhKOapaw8ryt9DlKEsmJPOjaeyML0VUclOJt7k3Uo+NixY3Ht2jXMnDkTmZmZ6NatG9avX6/tZJyeng6lsib/ioqKwoYNG/D888+ja9euaNq0KZ577jm88sorct0CUZ0SFqhC8osDEaCqahre8sJAHLmch9vbGc5LVa36gePqNTeu8KDLLixz2LlTrztmThcxyaeznXYtqlFQKs1UDS7+q2oR2ZdfmDp1KqZOnSq6Lzk52WBbfHw8du3a5eCoiMiY6LB62u8bBakwqIP+iMfa/3uuThpcfZr70krnzZbrAnmUUwmoapoqKlcjUOVtU7OHIAjmR5K50Rv71h/HsTc1F788fSv8fLw8oCHItbjVaCkicj/VzxtX/9/guK+d+J8mN3kIS1WblZ5bjKeW70fnWRtwVmSpBkuo7Vw4VIytzWNSTK737Y5UHLtSgL+OZdh9rmpS/Yq5+K+qRWSvuSEiz2LsgejqzVKVDnh4GiPHaCk53f7fZO333+9Ks+n+1YJg9oHlju9q9QoWUsQu5/3/uv8yyio1eKh3cxmjqMHkhogkVT9AfOSii+c2kll71Pz/xKXMoxzZV0g3Cdl5Lsfy4xwQkyU1N9aOCDNW/PiVfKvOYw9X/LWw9ne1vFKDF34+DAC4q1M4wgJVDojKOmyWIiJJNW8YgHdHd9a+DvWvWgdO7EESGeJn9Dwxjeph3gOxksdHlqv+zEor1Hjom93SnBO2DTW2p1nqzd+P466P/7Z4xfOr+aU4kH4DAHD8ar72e0eoTiRsSXJe/fUIJny7B5p/3xvpEiXrzqTR+eUuLpNnpffamNwQkeQe7t0CXz7cA++O7qztgFxSUfNHb8Kt0VAogC8e6i56vMpbiaQXBqJDpGdOuinlnDPOaOKyNCmwlC0xayxYgNzYWZfuTMWZrJv448hVi6+3/WwOBEHA8M+2Y8yCncgrFp8oVk4r9l5C8ulrOJHBNRNrY7MUETnE0C6Req8HtG2EuzqGo1+bMDwaH43XhnWAr5EJ/z4e280JEZI5tnYGd0S6VWlJdmOGtUmlbmVRzk3HDdMH7HvPpO5s7QlNyExuiMgp/Hy88PX4ntrXxhIboGbCP0/4IyvG3Tq+Sjljra1nUluQmDi0/5GDzu2pP+NyY7MUEbmc6geJJ0wDL8YVJgy0hFDzQcjOMUPBzey38YOyJWGR+y125vIczsDkhohcjrvMjeMKHDtaqvY38rFotJS5/VbehwvctkWk+D3RfXvtOZ2rTHPA5IaIXBZzG/Oc8ShxhQeWI2puzNFNhhyVaFfXTsr9DuvW3EgxSaHcmNwQkcvRtoZ4wB9ZdyYIVQ89V2ixcEizlIlTusI96yoorcCuC9e1w77FmpHs+XVxsdu1G5MbInJZLr4clUtxRJ+Jvam5aDl9HT7YcEryc1tLY1GHYtNlrB/1VXM+Kd/eCrXhyC9zoY36Ygce/HoXft5/yWg89sQo2NEs5WqJIMDkhohcUPVDxdUX23QVvx28jB5vb8K+NGknm5v7V1VS8+OeS5Ke1xaWLI9h7TPWXHObox7ay3amar+3NOG6kFMEAPj9cNVcPVKHJlXTo6skOhwKTkQup/oPpKuvR+UKBEHA8yurpr7/Mvm8zNE4jkXNUmaKWPPgdeSPXsr56wbbrE7MpG6WsqN/kSv0yaqNyQ0RuSwla27cklxrS0mpqr+R5eVLK9QY+cUO9GhRH1EN/B0Wl1gHZCmmTJDqM3OVNIfNUkTkcqr/QDK3Me/8tSK5Q7CaLQ9Sy4aCO+7Rau7MG45n4nRWIX7ck25TsiH3j7rue2d1zY2rZDQ6WHNDRC6LzVKuKSO/1Oi+f85cQ7lIh9lqW09fQ3pusdXXlGUouBXJkiUdnqVQHZPUl9PvUOz+v3esuSEil1Pdn8BcctMuPMgZ4VAt7683Pnpq/JI9+OOw8QUqbUlsAGmSG4MfJwn76NibbEjdGdrR15fqWEdhckNELstcsxQrduoOKdaWcpUZinV/bhUKBbadvYbfD1m+YjngiJob20/oiks3sFmKiFyCQlHzB7v6Xw4Fd107z+c49XpyNEtZw57n+6OL91hc1lSTkT2TXuqFb+FpKtQazNt0BrHNQmvO4yKJDmtuiMgliDVBif2x3pzYX/T42KhQqUMiEx5atNup17OoQ7HENTPOeFBbPWGeo/rcGO8mZdSPe9LxZfJ5PP39fmmDkQCTGyJyCbp/5E1N4hcZUjPMVjf5adEgwGGxkfwseZjL2Q9FzvoKKZpn9UZLWXhM+nXb+k85A5MbInIJun+gaybxMyynW8OjnxCRJ3NIzY2ZA1ykhUWU5Imc3iR+7t8czOSGiFyCbl8CUzMUG/u76ypt/eQYzhpq7Rw6CbqNeYQ1b8eG45lIOpll+nw2xCAWu6t8SuxQTEQuoUE9X2QW6M+fYm4ouO5uPx8vR4RFLqJ2ciMIAp5c7ri+Hh9vPoN745rqXM90ed3kWuqKj293XKw5t8gMxabkl1TgqX/fp1NvDzH6e6IXv4Xn/n5XuoUlnY81N0Qkqx+e6I3YZiFYMuEWg31ifW70mqV0dr80uB3ahgdC5W3+z9rhWXchZfodWPBwD9uCJqer3Sp1o7gCm05kYdOJmhqJjSey8MwP+zF91RGLzikIQEm52uj+D9aftilWC65sVem3/jihc2R1h2LLzlFUVqn93tTio9bWuLzw02GUVBh/7+TGmhsiklXf1mFYM/U2vW2mll/QmyNE5/+Y4cF+2Pj8AKTmFGHgf5MNjosM8dPOrBvi74MQfx9EdnHcGkAkrdp9bow93NcdzQQAvDuqi0Vrkz32rfFh2GeyCs0evz8tF/VU3tZ1PhbEv7eG1M0/ujVj5s6dkV+CXw9cljgCabHmhohcTvWDS6xjo+4Wser/pvX9EaTyRniwyuhx5H6s7XNjaek9F3ONn0PnJBqRZpvsglLc+2UKhnyyzebYbO1LZOlhFp9dL+EyfZRubZDBaVyk0w1rbojI5Yj9fezTqgEevKW52ZEcPl5K7JuRAKVCgTav/6Xd7gkjQOqy2kmAuc+z6gGtX8ae5+4DX6UYbLuSVyLNyZ3E1DvmBuFbhTU3RORyYhoFGmx7ekAMRnVvqtdUZeyPtcrbCz5e/PPmSTRWTjJn7GGtWyvxzfaLRkoZKiw1XlthyomrBSZjsLmmw4ELZ5qf3NDkXgmisR9/+4nIZfw+tS8+fbAb4lrUN9hX/SdTob8wj3MCI9nVXlvK3Ccv9gBWGNkuBWPzzgz7zLDJSpJmKcknLNTPbgRBgMbFl7wwhckNEbmMrs1CMbJbU/GdRh5WVDfU7gdiLq+dueaY+HmsuaaZ0taca29qLt78/ThullVa3KHYVN8X0eTNzHtiKt7a5xu/ZA8S5v2NCrUN6zK4ACY3ROQWxP6HO7BdIwCAj5f5+XCsqeTpGBlsVWzkeLUrEcxVeKzYe8lg26urjuJGcbmEUYnHI/ajdv/CFCzdmYpPNp3RSzJM3Ub8nC2Yv/Wc+PV0vv9l/2Vk5JeIvieWDhnXHy0lYNvZHFzIKcKRy/kAgN8OXsbOc85dLNUeTG6IyG31adUQq6f0xa7pg0yWUwB4akAMAGBIpwiz5w3251gLV2MwFNyCY37dbzhc+ZPNZyy+prm8wJblPy7kFOklHKaapTILSvHhBv25dqqL655j6c5UDPvU/Igta2uCqp3NKsTzKw/joW+qFks19R8FjpYiIrLAmO5NcexqPm5rE2awT6lQoJsFq4G3DKuHR3o3R6/oBmjVqJ7Z8uyM7HpqP5gtqZF44efDuDeumd62vOIKy69pxX5L+84YxC1RMnCjuMKuZim9crUKXs0vNbnflms4Gn+DicilzRvbDRum9YfK23DaeHN/zP+YehuGdIrAN4/dAoVCgXYRQRYlLm/e0wkN6vnaGjI5QO2aG1v7ulpTs3Au+6bFZW2Ox8p0oPpn3pbLme7fY7ycNeu2uUrNDZMbInJ5tec06d2yAZqG+qNrsxCTx3VpFoKFj8ahZZj52hpdMY0Csf2V27Wvv3ioO3pFN7DqHCSt6uRh9cEriH51LX7aZ9inRk6mm3z0Z/+VZIZim7IbU7uMDp634ULyY7MUEbmdFU/2gUYQX3tKKroPjx7N6+Purk0Q/epah12PTKtu9pm28hAAGPRFsZTUQ6irmRo2bdgSpdvnxrrraPvc2HAfpo4xNs9NpVrAgbQbklzDmZjcEJHbUSgUMDNAym4Bvl5I6NAY5WoBkSF+jr0YmWXrfDAG53HQyGZTScp/VhzUfi8ItRMJxy4uZenbpjdaSuf7jzadMViiwpoh5XJhckNEpOON4R0AVCVQ3zxmuFI5ycPW6VZqNxeVO2jeFt2r1O4L9ueRDO33GfklqB9Q05/LmQtnWtoRWPf72onNE8v2YlR3I3NRmbmGMzG5ISIC8Eif5ki8sx07ErsoW2tuDv87T0u1LaeypQjHgKVLKpzJ0u+kbO1d2TMpt6U1Lqb6D20+mY3NJ42/h67SLMUOxUREABRQMLFxYfvTbqC0Qm31caPm73BANFV08wxNrU7Dlvpiy1mrrlkzz41YPJYsJlojt6gcgz/+B1/9fR6wox+QK2JyQ0QEIMaC+W9IPltOZWPq/w6aL+hEujnAxZyimu1WJAdZBWU2XtvwItYuF/Fl8jmczirEnL9OSTKCy95jpcRmKSKq035+Oh7bzubg4T4t5A6FzNh8MkvuEABUJQmnMwtx4VpNQvPjnks6+x3/hLelo3BtJTo1YbZMSOjKmNwQUZ12S3QD3MI5bMgKuUXlGPzJP0b3OyM3ELuEWLOUqRoZjZF99iQ3rpIXuUSz1Pz58xEdHQ0/Pz/07t0be/bsMVp26dKlUCgUel9+fhymSUSOZ25dqkn9WmLj8/1xW2vDpSKIpGTprMH6o6CML2FxJqtQirDYobjaypUrkZiYiFmzZuHAgQOIjY3F4MGDkZ1tvDd2cHAwMjIytF9paWlOjJiI6qr/PhCLOzuGG93fvGE9tA0PcmJERKbpJUG1a250RsU/+2NNfyZPaJaSPbmZN28eJk2ahIkTJ6Jjx45YuHAhAgICsGTJEqPHKBQKREREaL/Cw43/sSEikkqgyhv39jA+x0e1xsEqJ0RDrsqatZhsv4bhNrFh4sbmrwGMJzGe0KFY1uSmvLwc+/fvR0JCgnabUqlEQkICUlJSjB538+ZNtGjRAlFRURg5ciSOHz9utGxZWRkKCgr0voiIHOn1YR1wZ8dwfPpgN0nO9/bITpKch5xDrge82HUt7XNjyXaLYrD9UEnJmtzk5ORArVYb1LyEh4cjMzNT9Jh27dphyZIlWLNmDb7//ntoNBrceuutuHz5smj5OXPmICQkRPsVFRUl+X0QUd00Z0wX0e0NA1VYNL4nRnZrijaNA+2+Tl87+vC0j2AzmbM54wFvLoGqqT2ybEFPXfZ1KHaN9Eb2ZilrxcfHY/z48ejWrRsGDBiAVatWoVGjRvjqq69Ey0+fPh35+fnar0uXXGslWSJyL7p/u8dY0ESlluCPvSdMqlaXOGe0lOFFdJulxCb7q32MsZ9NexIUV/lRlXUoeFhYGLy8vJCVpT93QVZWFiIiTI9KqObj44Pu3bvj3LlzovtVKhVUKrZ/E5E0bm/fGNENA9C1WSi8leb/fyi2WvTYnlFo3jDA4pWt7XnYKOyZr59sUlxR6fBrvP3nCZP7xeptnNEs5Spkrbnx9fVFXFwckpKStNs0Gg2SkpIQHx9v0TnUajWOHj2KyMhIR4VJRKTl5+OFLS8MxGfjusNLqcBn47qbLC/2oHj/vq6Ycntr+HpZ9ic4QGX7/0NfGtzW5mPJNl/9fcHh1zC1vhNQkxCbGCxlNGlmh2IJJCYmYtGiRVi2bBlOnjyJyZMno6ioCBMnTgQAjB8/HtOnT9eWnz17NjZu3IgLFy7gwIEDeOSRR5CWloYnnnhCrlsgojpGqaypDbkntonJsiO7Gd9v6VpWTUP9je4zNTQdAO5oz9GknsTa5EG3Kap2MmPsXPYNBXeN7Eb2GYrHjh2La9euYebMmcjMzES3bt2wfv16bSfj9PR0KHWqfm/cuIFJkyYhMzMT9evXR1xcHHbu3ImOHTvKdQtEREY9e0cbfL5FvNncEp2bBpvc/2ifFth0wjWWJSDXoW2WMpFrGB8K7v4zFMue3ADA1KlTMXXqVNF9ycnJeq8//vhjfPzxx06IiojIfr7esleQG/Xpg93g7+OFJ5fvlzsUksDWUzVNVaIdig363BhJbuyIwUVyG/mbpYiIqIq30vrOv/b0F76rYwSU7HDsVkx9XLsv5mq/r26OMrUcgtEOxR7Qo5jJDRGRgxlbk2rsLfrzbq39Tz+DMo6s5vdSKuxKjsj5LP15sKjmxkgSY9ckfi6SF7lEsxQRkSf77wOx6LOvAQ5fzseEW6O125+9ozVC/H0w+99hvfVUXgbHmntYiK0EXW3xYz1NHmtLTRHJ68jlPIvLpuYU4Z4vtmtf69biaDSCY5qlXCS7YXJDRORggSpvTOjb0mC7t5cS/drUzD5cz9f4n+SIYD9kFpQabDe1jlVMI9OzIytZc+N2isrVFpd98efDerUw1XnHpdxijJy/A7lF5aLHecIkfmyWIiKSke7DwN9XpObm339XPXMrnhkYo92+8sk+2PR8f9SzYg4csWHrpmp+yH0JApB6vVh030cbTxtNbKqPtdWxK/m2HywhJjdERDLSfZB4mWgmahLqj6f61yQ3LRrWQ5vwIIv+l73wkR7o1yYMM+42nDLDvjlNSA7rjmaYLSPAsNnJ/GpTVez5mXhn7Umbj5USm6WIiFyEl0gbkW7yottnorqoJc+hIZ0jMaSz+CzuASaawsg1PfPDAbNlBKGqD1duke42w1mLxXjAYCnW3BARySkssGaWYqVSgUMz78S2l2/XbuvYxPQkfqYeVJY8o3q3bICwQK6/54n8vPWbOat/HszVzJgaPu4umNwQEUkk2M/6WpCGgSqseLIP1kzpCwAIDfBFVIMArP3PbXj8tpaYqdOUJPZMsvdBpFQqMHdMF+3rGXd3xN1drVur78n+reyKgaS38O/zKKnQ73wsCEBBaQXKKjUmj/WElkrWRxIR2emdUZ2x52IuhnexbQHfPq0aGmzr1CQEnZqE6G3z8qpptqoexm2qn47YUO+wQBVybpahfUSQ6DGP39YSQEv8eWSt2bin3B6Dh3u3wMWcInz9j/nFIpuG+uNKXonZcmQ/sSU/bpZVIuHNv80ea+lq9a6MyQ0RkZ0e6dMCj/Rp4fDrBPv5YPLAGGg0Ahr+25TUrH4AxvaMwsp9l7TlJg+MQVFZJaIaBBic46en+mDJjot4ekCMwT5rNasfgCah/jh/7aZF5afe0RpqjYA3Vh+z+9pkPVcZyeQMTG6IiNzIK0PaG2x7/76uaFbfHx9tOmO0TLVWjQLxzqguRvdbQ2wWXFNGdWuKXw9cluTaZL1z2ZYloZ6AfW6IiDxAhdp0PwpTbO1iUd0x1dIOyUql60zyVhct3ZkqdwhOw+SGiMgDNBNpgnK06uUizI3oqsZFOslZ2CxFROQBxnRviis3ShAfY9g52Rxbptsf3Ckcd3etmfHYz0eJ0grTtUdKhQLlZkbqEEmByQ0RkQfw9lLi+TvbOuVagzuF46tH9RfltKRWRqkArhWWOSosIi02SxERkUXeGN4Bsc1C8Paozgb7LGlwUigUiGlUz+rrjunR1OpjqG5jckNEVMf1bR2GYD9v9GnVwGS5J/q1wpqpt6FxkJ/BPkv704zu3tTsdWqb90A3nHp7COoH+Fh1HNVdbJYiIqrj6qm8sX/GnaKT/lX7ZGw30yexsK+wt5cS43o1x64LuZYHCMDPxws7Xx0EhQJoP2O9VcdS3cPkhoiI4OMlXpHfv20jfPd/vcweb81IKFtXnfb39TJfiGQ1tHOE3CEAYLMUERGJ+H1qX9wf1wz/va+rReXfHa3fD2eGzppYtQ3pFAlfI8lUbcsfN59YketwlXWpmNwQEZGBrs1C8eH9sWgcbNi/RszdXZtgXK/m2tcTbo3Gj5P6iJb19/XC1pcGWnTefm0aWVSOXIPaRbIbJjdERCSJejrNRl5Khck5d8QasWo3f80ZY36ZiD+fvc3i+MjxbJkzyRGY3BARkSQqNZY/2MSWbIhpHKj3WrcmyJh2RlY3t0dci/qi23s0D5X8Wp5GbcXPgCMxuSEiIklY01HY11uJY28Nxp7XBmm36dbm9Gpp2XBxHy8l9r2RgLBAX4uvXS3RyKSHJgaNmXVgxp22H+wB1K6R2zC5ISIiaZiquRGbvC9Q5Y1g/5q5a/x9apq17u4aafF1wwJVaFDPdHLTuWkwmoTo9x/6z6A2omXbR1i2VpYY3XuoZqpztadhsxQREXkUjUhys3pKX9zZMRzfPHaL6DF+Pl74eGwsPri3K+rX80XLsKok6PZ2jY1ep124YVOUn05SkfziQIP9PVs0wKbEAeZuAYdn3YXU60VmyxkjNiLeqw6tF+oqzVKc54aIiCQhVnPTLSoUi8b3FCldY3T3Ztrv10/rh8LSStE+OdX+ePY2LN+Vhjva1yRA/70/FlN+OIBpCW0RHVYP0xLawEuhwEebzmjLWDIXT4i/Dw6k3RDdZ8ljWzS5saedy83YOoeR1JjcEBGRJMRqbqyl8vaCKtD0ZH2+3ko8fltLvW1tw4P0amamJVT1p6lObgRBEE08xDQO9sPFHMPaG0tuTyEyDkxZh5KbS7klWLEnHY2CVBjUIVy2ONgsRUREknCVOU7ECBCvVRFjNBex4P7Em6XqTnJzJa8Er646ii+2npM1DiY3REQkCWuGgjubIJhvlvro/lgAxmtomtb3N3sdsWvUpZqbaqbWKXMGJjdERCSJR/u0AAD0axMmcySG+rYOM5ncfDw2FvfGVfX9Ka/UiJZ5657Oott1iV1hYLu6N8uyt1Le9IJ9boiISBJ9WjXE7tcGmewM7Gy7pg/CycwCDGxrOsGoH1AzlLxSI57cNAoyfV+P9mkhWkvTOMgPH90fixd+PmxBxJ7BW+YhYkxuiIhIMuEWrkXlLBEhfogIMR7TFw91x4mrBRigk/zYOpx5VPemRvc1sGGSQXcm9wgxJjdERFRn3d21Ce7u2kRvW4WN0+ya6mdiahV0pcKykVhkOfa5ISIi0lGpNmyWeiy+hdnjTNVW+JhIbk6+PcSywNzIjeIKWa/PmhsiIiIdwf4+KCpXAwAm3BqNEbGR6Nos1KZzRTWoGmHl6208uVF5m57Xxy3JPC0Aa26IiIh06M6o/FDv5ohr0cBkzUu16uf5K0Pao1OTYDzQsxn+90QfAICPBB1sB7U3viRFtVYia3jJQe5WNtbcEBER6ejcNATn3xuGgpIK1DezIKeYyQNjMHlgjN42U31uLLV4wi2IfnWtyTLmrtO3dUPsOHfd7ljMkXs+R9bcEBFRndGiYYBF5byUCqsTG8FEfYUlNT8AoPJWYliXCABA+wjDBULNiWkcaHL/uF7NrT6nLUy9F87AmhsiIqozNkzrj1lrjmNQB/NNPFIKDfDRfj+8SyQu55Xg8KU8g3JKhQILHo6DIAgQBKDVa+usus79cc2w9kiG0f2WJln2krvmhskNERHVGX4+Xnj/vq4OObepB3pogC8+fbAbvJVKDO8aicXbL4omN9WTKCsUCovXwtJlrllKiuYxS8id3LBZioiIyA5twwMR4u+DdmaakUZ2a4rhXSMBAPf1aIawQF/c9++SD9Xs7XZsbh2r2jU3CUZW7n6kj33NVxqOliIiInIPs0d2QrP6/tp5b8b0aIq/nuuPva8nwM/H8iHdIQE+2P1aAv7772Kd5ky5PcZsmZTpd5hdsLL2kk9Tbo9B56bBGNcrCjtfvUO7vWE9FbpFhVoUmxi5Zyh2ieRm/vz5iI6Ohp+fH3r37o09e/ZYdNyKFSugUCgwatQoxwZIREQEYHx8NLa/cgfevKcTNicOwIf3xcJLqTA5j40xliQAv06Ox4KHe+Clwe0BVC3waUxkiD+6RYWiS9MQi2MIVHnjz2f7Yc6YrmgSWrPqeWFpJT6wo/lOt4+RHGRPblauXInExETMmjULBw4cQGxsLAYPHozs7GyTx6WmpuLFF19Ev379nBQpERFRFYVCgdaNAx1eQxHXogGGdYnUvh7dvRl+nXyr0fLeXkr8PrWvTvmm6BAZrH1du7XIWFIWGxWCtuFBeGag+RojMe3Cg80XciDZk5t58+Zh0qRJmDhxIjp27IiFCxciICAAS5YsMXqMWq3Gww8/jLfeegutWrVyYrRERESOo7CyF/GsER3NnsNXZwJBjSBg1TM1yVHtPjh/vzQQnz7YDSP+XW/L1jWvEu9qa9uBEpE1uSkvL8f+/fuRkJCg3aZUKpGQkICUlBSjx82ePRuNGzfG448/7owwiYiInMKS1EY3d2kYqDJbXrd2SSMAETort9euuWnRsB5Gdmuq7Zh8d9dIWOvJ/q0QqJJ3MLasyU1OTg7UajXCw/V7a4eHhyMzM1P0mO3bt2Px4sVYtGiRRdcoKytDQUGB3hcREZErqZ6wb3DnCEnPKwiCXk2ORiNArVMdY27em85NQ7BDp6OxJaYPbW9dkA4ge7OUNQoLC/Hoo49i0aJFCAsLs+iYOXPmICQkRPsVFRXl4CiJiIis8/0TvTF3TBe8dU8nyc+tWxuk1gio0Fn1XGVBR+imOh2NuzYz3Vn5zo7hVjetOYKs9UZhYWHw8vJCVlaW3vasrCxERBhmr+fPn0dqaipGjBih3abRVH1I3t7eOH36NGJi9Ds/TZ8+HYmJidrXBQUFTHCIiMilhAWq8KANSyMIZuaTEQAM7xqJfWk3AAARIX6otKLmpjZzw911Fx2Vk6zJja+vL+Li4pCUlKQdzq3RaJCUlISpU6calG/fvj2OHj2qt+2NN95AYWEhPv30U9GkRaVSQaUy3yZJRETkDqytFxkfH43LN0oQFqhC56YhKCit0O6zdrRX4yD3eJ7KvvxCYmIiHnvsMfTs2RO9evXCJ598gqKiIkycOBEAMH78eDRt2hRz5syBn58fOnfurHd8aGgoABhsJyIioqoEZsbdNaOqgv188PdLA6HytnzSwWp3dgzHnybWrnIVsic3Y8eOxbVr1zBz5kxkZmaiW7duWL9+vbaTcXp6OpS1p1QkIiKqo5rVt2xlc1NaNKxn03Eh/sYn53OlWh3ZkxsAmDp1qmgzFAAkJyebPHbp0qXSB0REROSiGgWpsHpKXwSqvNCsfgBahdVDXIv6emWC/bxRUFqJO9pLs/r5O6M64/jVAvRv08homeSXBkpyLSkoBHO9kTxMQUEBQkJCkJ+fj+BgeWdQJCIislft4d4AkHOzDKcyCtG3dUPJRy/N+eskvt2Riq8ejUPiykO4UVzVhyd17nBJr1ObNc9vl6i5ISIiItuIJS9hgSrc1sYxzUTTh3bAS3e1g7eXEp2ahGD7uRyHXMce7MxCREREVvH+dwi5ANds/GFyQ0RERDZx1Y4tTG6IiIjIJkxuiIiIyKOofFwzjXDNqIiIiMjlvXVPJ7QMq4f3RneROxQ9HC1FRERENmnRsB62vjhQ7jAMsOaGiIiIPAqTGyIiIvIoTG6IiIjIozC5ISIiIo/C5IaIiIg8CpMbIiIi8ihMboiIiMijMLkhIiIij8LkhoiIiDwKkxsiIiLyKExuiIiIyKMwuSEiIiKPwuSGiIiIPAqTGyIiIvIo3nIH4GyCIAAACgoKZI6EiIiILFX93K5+jptS55KbwsJCAEBUVJTMkRAREZG1CgsLERISYrKMQrAkBfIgGo0GV69eRVBQEBQKhaTnLigoQFRUFC5duoTg4GBJz+0KPP3+AM+/R96f+/P0e/T0+wM8/x4ddX+CIKCwsBBNmjSBUmm6V02dq7lRKpVo1qyZQ68RHBzskT+w1Tz9/gDPv0fen/vz9Hv09PsDPP8eHXF/5mpsqrFDMREREXkUJjdERETkUZjcSEilUmHWrFlQqVRyh+IQnn5/gOffI+/P/Xn6PXr6/QGef4+ucH91rkMxEREReTbW3BAREZFHYXJDREREHoXJDREREXkUJjdERETkUZjcSGT+/PmIjo6Gn58fevfujT179sgdkkXmzJmDW265BUFBQWjcuDFGjRqF06dP65UZOHAgFAqF3tfTTz+tVyY9PR3Dhw9HQEAAGjdujJdeegmVlZXOvBWj3nzzTYP427dvr91fWlqKKVOmoGHDhggMDMS9996LrKwsvXO48v1FR0cb3J9CocCUKVMAuN/n988//2DEiBFo0qQJFAoFVq9erbdfEATMnDkTkZGR8Pf3R0JCAs6ePatXJjc3Fw8//DCCg4MRGhqKxx9/HDdv3tQrc+TIEfTr1w9+fn6IiorCBx984Ohb0zJ1jxUVFXjllVfQpUsX1KtXD02aNMH48eNx9epVvXOIfe5z587VKyPXPZr7DCdMmGAQ+5AhQ/TKuPNnCED0d1KhUODDDz/UlnHVz9CS54JUfzeTk5PRo0cPqFQqtG7dGkuXLpXmJgSy24oVKwRfX19hyZIlwvHjx4VJkyYJoaGhQlZWltyhmTV48GDh22+/FY4dOyYcOnRIGDZsmNC8eXPh5s2b2jIDBgwQJk2aJGRkZGi/8vPztfsrKyuFzp07CwkJCcLBgweFdevWCWFhYcL06dPluCUDs2bNEjp16qQX/7Vr17T7n376aSEqKkpISkoS9u3bJ/Tp00e49dZbtftd/f6ys7P17m3Tpk0CAGHr1q2CILjf57du3Trh9ddfF1atWiUAEH777Te9/XPnzhVCQkKE1atXC4cPHxbuueceoWXLlkJJSYm2zJAhQ4TY2Fhh165dwrZt24TWrVsL48aN0+7Pz88XwsPDhYcfflg4duyY8OOPPwr+/v7CV199Jfs95uXlCQkJCcLKlSuFU6dOCSkpKUKvXr2EuLg4vXO0aNFCmD17tt7nqvt7K+c9mvsMH3vsMWHIkCF6sefm5uqVcefPUBAEvXvLyMgQlixZIigUCuH8+fPaMq76GVryXJDi7+aFCxeEgIAAITExUThx4oTw+eefC15eXsL69evtvgcmNxLo1auXMGXKFO1rtVotNGnSRJgzZ46MUdkmOztbACD8/fff2m0DBgwQnnvuOaPHrFu3TlAqlUJmZqZ225dffikEBwcLZWVljgzXIrNmzRJiY2NF9+Xl5Qk+Pj7Czz//rN128uRJAYCQkpIiCILr319tzz33nBATEyNoNBpBENz786v90NBoNEJERITw4Ycfarfl5eUJKpVK+PHHHwVBEIQTJ04IAIS9e/dqy/z111+CQqEQrly5IgiCICxYsECoX7++3v298sorQrt27Rx8R4bEHoy17dmzRwAgpKWlabe1aNFC+Pjjj40e4yr3aCy5GTlypNFjPPEzHDlypHDHHXfobXOXz7D2c0Gqv5svv/yy0KlTJ71rjR07Vhg8eLDdMbNZyk7l5eXYv38/EhIStNuUSiUSEhKQkpIiY2S2yc/PBwA0aNBAb/sPP/yAsLAwdO7cGdOnT0dxcbF2X0pKCrp06YLw8HDttsGDB6OgoADHjx93TuBmnD17Fk2aNEGrVq3w8MMPIz09HQCwf/9+VFRU6H1+7du3R/PmzbWfnzvcX7Xy8nJ8//33+L//+z+9hWHd/fOrdvHiRWRmZup9XiEhIejdu7fe5xUaGoqePXtqyyQkJECpVGL37t3aMv3794evr6+2zODBg3H69GncuHHDSXdjufz8fCgUCoSGhuptnzt3Lho2bIju3bvjww8/1Kvyd/V7TE5ORuPGjdGuXTtMnjwZ169f1+7ztM8wKysLa9euxeOPP26wzx0+w9rPBan+bqakpOido7qMFM/OOrdwptRycnKgVqv1PkAACA8Px6lTp2SKyjYajQbTpk1D37590blzZ+32hx56CC1atECTJk1w5MgRvPLKKzh9+jRWrVoFAMjMzBS9/+p9cuvduzeWLl2Kdu3aISMjA2+99Rb69euHY8eOITMzE76+vgYPjfDwcG3srn5/ulavXo28vDxMmDBBu83dPz9d1fGIxav7eTVu3Fhvv7e3Nxo0aKBXpmXLlgbnqN5Xv359h8Rvi9LSUrzyyisYN26c3iKE//nPf9CjRw80aNAAO3fuxPTp05GRkYF58+YBcO17HDJkCMaMGYOWLVvi/PnzeO211zB06FCkpKTAy8vL4z7DZcuWISgoCGPGjNHb7g6fodhzQaq/m8bKFBQUoKSkBP7+/jbHzeSGtKZMmYJjx45h+/btetuffPJJ7fddunRBZGQkBg0ahPPnzyMmJsbZYVpt6NCh2u+7du2K3r17o0WLFvjpp5/s+uVxRYsXL8bQoUPRpEkT7TZ3//zqsoqKCjzwwAMQBAFffvml3r7ExETt9127doWvry+eeuopzJkzx+Wn9X/wwQe133fp0gVdu3ZFTEwMkpOTMWjQIBkjc4wlS5bg4Ycfhp+fn952d/gMjT0XXB2bpewUFhYGLy8vg17iWVlZiIiIkCkq602dOhV//vkntm7dimbNmpks27t3bwDAuXPnAAARERGi91+9z9WEhoaibdu2OHfuHCIiIlBeXo68vDy9Mrqfn7vcX1paGjZv3ownnnjCZDl3/vyq4zH1+xYREYHs7Gy9/ZWVlcjNzXWrz7Q6sUlLS8OmTZv0am3E9O7dG5WVlUhNTQXgHvdYrVWrVggLC9P7mfSEzxAAtm3bhtOnT5v9vQRc7zM09lyQ6u+msTLBwcF2/8eTyY2dfH19ERcXh6SkJO02jUaDpKQkxMfHyxiZZQRBwNSpU/Hbb79hy5YtBlWgYg4dOgQAiIyMBADEx8fj6NGjen+Mqv8Yd+zY0SFx2+PmzZs4f/48IiMjERcXBx8fH73P7/Tp00hPT9d+fu5yf99++y0aN26M4cOHmyznzp9fy5YtERERofd5FRQUYPfu3XqfV15eHvbv368ts2XLFmg0Gm1iFx8fj3/++QcVFRXaMps2bUK7du1cojmjOrE5e/YsNm/ejIYNG5o95tChQ1AqldrmHFe/R12XL1/G9evX9X4m3f0zrLZ48WLExcUhNjbWbFlX+QzNPRek+rsZHx+vd47qMpI8O+3ukkzCihUrBJVKJSxdulQ4ceKE8OSTTwqhoaF6vcRd1eTJk4WQkBAhOTlZbzhicXGxIAiCcO7cOWH27NnCvn37hIsXLwpr1qwRWrVqJfTv3197juohf3fddZdw6NAhYf369UKjRo1cZqj0Cy+8ICQnJwsXL14UduzYISQkJAhhYWFCdna2IAhVQxqbN28ubNmyRdi3b58QHx8vxMfHa4939fsThKoRes2bNxdeeeUVve3u+PkVFhYKBw8eFA4ePCgAEObNmyccPHhQO1Jo7ty5QmhoqLBmzRrhyJEjwsiRI0WHgnfv3l3YvXu3sH37dqFNmzZ6w4jz8vKE8PBw4dFHHxWOHTsmrFixQggICHDaMGJT91heXi7cc889QrNmzYRDhw7p/V5WjzLZuXOn8PHHHwuHDh0Szp8/L3z//fdCo0aNhPHjx7vEPZq6v8LCQuHFF18UUlJShIsXLwqbN28WevToIbRp00YoLS3VnsOdP8Nq+fn5QkBAgPDll18aHO/Kn6G554IgSPN3s3oo+EsvvSScPHlSmD9/PoeCu5rPP/9caN68ueDr6yv06tVL2LVrl9whWQSA6Ne3334rCIIgpKenC/379xcaNGggqFQqoXXr1sJLL72kN0+KIAhCamqqMHToUMHf318ICwsTXnjhBaGiokKGOzI0duxYITIyUvD19RWaNm0qjB07Vjh37px2f0lJifDMM88I9evXFwICAoTRo0cLGRkZeudw5fsTBEHYsGGDAEA4ffq03nZ3/Py2bt0q+jP52GOPCYJQNRx8xowZQnh4uKBSqYRBgwYZ3Pf169eFcePGCYGBgUJwcLAwceJEobCwUK/M4cOHhdtuu01QqVRC06ZNhblz5zrrFk3e48WLF43+XlbPXbR//36hd+/eQkhIiODn5yd06NBBeO+99/SSAznv0dT9FRcXC3fddZfQqFEjwcfHR2jRooUwadIkg/8MuvNnWO2rr74S/P39hby8PIPjXfkzNPdcEATp/m5u3bpV6Natm+Dr6yu0atVK7xr2UPx7I0REREQegX1uiIiIyKMwuSEiIiKPwuSGiIiIPAqTGyIiIvIoTG6IiIjIozC5ISIiIo/C5IaIiIg8CpMbIqpzoqOj8cknn8gdBhE5CJMbInKoCRMmYNSoUQCAgQMHYtq0aU679tKlSxEaGmqwfe/evXqrpRORZ/GWOwAiImuVl5fD19fX5uMbNWokYTRE5GpYc0NETjFhwgT8/fff+PTTT6FQKKBQKJCamgoAOHbsGIYOHYrAwECEh4fj0UcfRU5OjvbYgQMHYurUqZg2bRrCwsIwePBgAMC8efPQpUsX1KtXD1FRUXjmmWdw8+ZNAEBycjImTpyI/Px87fXefPNNAIbNUunp6Rg5ciQCAwMRHByMBx54AFlZWdr9b775Jrp164bly5cjOjoaISEhePDBB1FYWOjYN42IbMLkhoic4tNPP0V8fDwmTZqEjIwMZGRkICoqCnl5ebjjjjvQvXt37Nu3D+vXr0dWVhYeeOABveOXLVsGX19f7NixAwsXLgQAKJVKfPbZZzh+/DiWLVuGLVu24OWXXwYA3Hrrrfjkk08QHBysvd6LL75oEJdGo8HIkSORm5uLv//+G5s2bcKFCxcwduxYvXLnz5/H6tWr8eeff+LPP//E33//jblz5zro3SIie7BZioicIiQkBL6+vggICEBERIR2+xdffIHu3bvjvffe025bsmQJoqKicObMGbRt2xYA0KZNG3zwwQd659TtvxMdHY133nkHTz/9NBYsWABfX1+EhIRAoVDoXa+2pKQkHD16FBcvXkRUVBQA4LvvvkOnTp2wd+9e3HLLLQCqkqClS5ciKCgIAPDoo48iKSkJ7777rn1vDBFJjjU3RCSrw4cPY+vWrQgMDNR+tW/fHkBVbUm1uLg4g2M3b96MQYMGoWnTpggKCsKjjz6K69evo7i42OLrnzx5ElFRUdrEBgA6duyI0NBQnDx5UrstOjpam9gAQGRkJLKzs626VyJyDtbcEJGsbt68iREjRuD999832BcZGan9vl69enr7UlNTcffdd2Py5Ml499130aBBA2zfvh2PP/44ysvLERAQIGmcPj4+eq8VCgU0Go2k1yAiaTC5ISKn8fX1hVqt1tvWo0cP/Prrr4iOjoa3t+V/kvbv3w+NRoOPPvoISmVVJfRPP/1k9nq1dejQAZcuXcKlS5e0tTcnTpxAXl4eOnbsaHE8ROQ62CxFRE4THR2N3bt3IzU1FTk5OdBoNJgyZQpyc3Mxbtw47N27F+fPn8eGDRswceJEk4lJ69atUVFRgc8//xwXLlzA8uXLtR2Nda938+ZNJCUlIScnR7S5KiEhAV26dMHDDz+MAwcOYM+ePRg/fjwGDBiAnj17Sv4eEJHjMbkhIqd58cUX4eXlhY4dO6JRo0ZIT09HkyZNsGPHDqjVatx1113o0qULpk2bhtDQUG2NjJjY2FjMmzcP77//Pjp37owffvgBc+bM0Stz66234umnn8bYsWPRqFEjgw7JQFXz0po1a1C/fn30798fCQkJaNWqFVauXCn5/RORcygEQRDkDoKIiIhIKqy5ISIiIo/C5IaIiIg8CpMbIiIi8ihMboiIiMijMLkhIiIij8LkhoiIiDwKkxsiIiLyKExuiIiIyKMwuSEiIiKPwuSGiIiIPAqTGyIiIvIoTG6IiIjIo/w/qnUm8cCSDnYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2D0lEQVR4nO3dd3wT9f8H8FeSNh3QAbS0BQqFslfZtSBDqQwRQfwqIgpUxQH8HDhxgOBXwYU4UBwsFRX1i7gYQqEqs2yZhQKlrLYU6IDSldzvj9qQSy6zl1ySvp6PRx8kd5+7+1xTeu++P0slCIIAIiIiIh+hVroCRERERHJicENEREQ+hcENERER+RQGN0RERORTGNwQERGRT2FwQ0RERD6FwQ0RERH5FAY3RERE5FMY3BAREZFPYXBDRC43YcIExMXFOXXsq6++CpVKJW+FiMinMbghqsVUKpVdX2lpaUpXVRETJkxA3bp1la4GETlIxbWliGqvr7/+WvT+yy+/xLp16/DVV1+Jtt9yyy2Iiopy+joVFRXQ6/UICAhw+NjKykpUVlYiMDDQ6es7a8KECfjxxx9x5coVt1+biJznp3QFiEg59913n+j9tm3bsG7dOrPtpkpKShAcHGz3dfz9/Z2qHwD4+fnBz4+/qojIfmyWIiKrBgwYgI4dO2LXrl3o168fgoOD8eKLLwIAfv75ZwwbNgyNGjVCQEAA4uPj8dprr0Gn04nOYdrnJisrCyqVCu+88w4+++wzxMfHIyAgAD179sSOHTtEx0r1uVGpVJgyZQpWrlyJjh07IiAgAB06dMCaNWvM6p+WloYePXogMDAQ8fHx+PTTT2Xvx/PDDz+ge/fuCAoKQkREBO677z6cPXtWVCYnJwcpKSlo0qQJAgICEBMTgxEjRiArK8tQZufOnRg8eDAiIiIQFBSE5s2b44EHHpCtnkS1Bf8cIiKbLl68iKFDh+Kee+7BfffdZ2iiWrJkCerWrYupU6eibt262LBhA6ZPn46ioiK8/fbbNs/7zTffoLi4GI888ghUKhXeeustjBo1CidOnLCZ7dm0aRNWrFiBSZMmISQkBB988AHuvPNOZGdno0GDBgCAPXv2YMiQIYiJicHMmTOh0+kwa9YsREZG1vyb8q8lS5YgJSUFPXv2xOzZs5Gbm4v3338fmzdvxp49exAeHg4AuPPOO3Hw4EH83//9H+Li4pCXl4d169YhOzvb8H7QoEGIjIzECy+8gPDwcGRlZWHFihWy1ZWo1hCIiP41efJkwfTXQv/+/QUAwoIFC8zKl5SUmG175JFHhODgYKG0tNSwbfz48UKzZs0M70+ePCkAEBo0aCBcunTJsP3nn38WAAi//vqrYduMGTPM6gRA0Gq1QmZmpmHbvn37BADChx9+aNg2fPhwITg4WDh79qxh27FjxwQ/Pz+zc0oZP368UKdOHYv7y8vLhYYNGwodO3YUrl27Ztj+22+/CQCE6dOnC4IgCJcvXxYACG+//bbFc/30008CAGHHjh0260VE1rFZiohsCggIQEpKitn2oKAgw+vi4mLk5+ejb9++KCkpwZEjR2yed/To0ahXr57hfd++fQEAJ06csHlscnIy4uPjDe87d+6M0NBQw7E6nQ7r16/HyJEj0ahRI0O5li1bYujQoTbPb4+dO3ciLy8PkyZNEnV4HjZsGNq2bYvff/8dQNX3SavVIi0tDZcvX5Y8V3WG57fffkNFRYUs9SOqrRjcEJFNjRs3hlarNdt+8OBB3HHHHQgLC0NoaCgiIyMNnZELCwttnrdp06ai99WBjqUAwNqx1cdXH5uXl4dr166hZcuWZuWktjnj1KlTAIA2bdqY7Wvbtq1hf0BAAN58802sXr0aUVFR6NevH9566y3k5OQYyvfv3x933nknZs6ciYiICIwYMQKLFy9GWVmZLHUlqk0Y3BCRTcYZmmoFBQXo378/9u3bh1mzZuHXX3/FunXr8OabbwIA9Hq9zfNqNBrJ7YIdM1TU5FglPPnkkzh69Chmz56NwMBAvPLKK2jXrh327NkDoKqT9I8//oitW7diypQpOHv2LB544AF0796dQ9GJHMTghoickpaWhosXL2LJkiV44okncNtttyE5OVnUzKSkhg0bIjAwEJmZmWb7pLY5o1mzZgCAjIwMs30ZGRmG/dXi4+Px9NNP448//sCBAwdQXl6Od999V1TmhhtuwOuvv46dO3di2bJlOHjwIL777jtZ6ktUWzC4ISKnVGdOjDMl5eXl+Pjjj5WqkohGo0FycjJWrlyJc+fOGbZnZmZi9erVslyjR48eaNiwIRYsWCBqPlq9ejUOHz6MYcOGAaiaF6i0tFR0bHx8PEJCQgzHXb582Szr1KVLFwBg0xSRgzgUnIic0rt3b9SrVw/jx4/H448/DpVKha+++sqjmoVeffVV/PHHH+jTpw8ee+wx6HQ6fPTRR+jYsSP27t1r1zkqKirw3//+12x7/fr1MWnSJLz55ptISUlB//79MWbMGMNQ8Li4ODz11FMAgKNHj2LgwIG4++670b59e/j5+eGnn35Cbm4u7rnnHgDA0qVL8fHHH+OOO+5AfHw8iouL8fnnnyM0NBS33nqrbN8TotqAwQ0ROaVBgwb47bff8PTTT+Pll19GvXr1cN9992HgwIEYPHiw0tUDAHTv3h2rV6/GM888g1deeQWxsbGYNWsWDh8+bNdoLqAqG/XKK6+YbY+Pj8ekSZMwYcIEBAcHY86cOXj++edRp04d3HHHHXjzzTcNI6BiY2MxZswYpKam4quvvoKfnx/atm2L77//HnfeeSeAqg7F6enp+O6775Cbm4uwsDD06tULy5YtQ/PmzWX7nhDVBlxbiohqnZEjR+LgwYM4duyY0lUhIhdgnxsi8mnXrl0TvT927BhWrVqFAQMGKFMhInI5Zm6IyKfFxMRgwoQJaNGiBU6dOoVPPvkEZWVl2LNnD1q1aqV09YjIBdjnhoh82pAhQ/Dtt98iJycHAQEBSEpKwhtvvMHAhsiHMXNDREREPoV9boiIiMinMLghIiIin1Lr+tzo9XqcO3cOISEhUKlUSleHiIiI7CAIAoqLi9GoUSOo1dZzM7UuuDl37hxiY2OVrgYRERE54fTp02jSpInVMrUuuAkJCQFQ9c0JDQ1VuDZERERkj6KiIsTGxhqe49bUuuCmuikqNDSUwQ0REZGXsadLCTsUExERkU9hcENEREQ+hcENERER+RQGN0RERORTGNwQERGRT2FwQ0RERD6FwQ0RERH5FAY3RERE5FMY3BAREZFPYXBDREREPoXBDREREfkUBjdERETkUxjcuNC1cp3SVSAiIqp1GNy4yM6sS2g3fQ3eWHVY6aoQERHVKgxuXKQ6qPnsrxMK14SIiKh2YXDjIoJM59HpBVTq9DKdjYiIyPcxuHERQYboRhAE3PLen+j71kYGOERERHZicOMicmRuSiv0OHHhKs4XluJ8YakMZ3TOtBX7MWf1EcWuT0RE5AgGN64iQ+pGsCNEulJWiYWbTuJswTXJ/flXyrDleD4EJ+uTlX8V36ZnY8Gfx50+BxERkTsxuHEROcIAe2KJmb8cxGu/HcKIjzZL7h/wdhru/Xw70jIuOFWH0srrw9kZ2xARkTdgcOMijgYC/9t1Bje8kYqD5woN2/RGJ1GppI/782hV0JJ/pUxy/5WySgDAtpMXHasQgG+2Z2PIvL8N7xnbEBGRN2Bw4yL2NCkZe/qHfcgpKsVTy/catumNTqGyEN0YX0UQBGw8kofzhdcM76tFhQQ6VB8AePGn/aL3eqZuiIjICzC4cRG9A4ObMvOKDa8rjSIa4+DEQuJGlCFadygXKUt2oM+cDQCqhpFXqxOgsVqHv45ewJ2fbBHVxdq1iIiIPBWDGwWUVoiXZbhSdv19WcX1qMg4ODGWW1SKvCLz0VN/H8sHcD3jYxwoqS21a/1r3KJ07Dp1GY9+vdtiGUezUURERErwU7oCvkoqDBAEAf3e3ojTl66hb6sIvHt3ArIvlqC88npAc7bgGvafKUSnJmGiZqnql6UVOiS+kQoAyHx9qOhKOpPUinFwo1FbD26qXb5abvmeGNsQEZEXYHDjIsZNStkXS/DqrwfROioEpy9V9Yf5+1g+er1eFaRE1NWKjp3120EsfzhJ1Mel+nyXjIKP0kq9KOAwHaqt0zke3FhL8DC4ISIib8BmKZmVVZqvBD7l293YcCQPC/48LnlM/hVxtmRH1mU888M+k+Cm6t+31lyfTE8F0w7F4vNWGnX8MW6WOnO5BBuO5FqYt8ZydONoh+Kf955FnzkbcOBsoe3CREREMmFwI6NXVh5Am5fXIDOvWBQInLksPcGeNSv2nBX1uak+38q958y2WXpvqc/OjW9uxANLdmLDkTyH6lTdp8deT3y3F2cLruHx7/Y4dBwREVFNMLiR0VfbTgEA5m88LsqiXLLSj8WaG9/caHitF2C2vpReEDdFmcYyFcYjryTOv+2E+dw3BSXleOzrXVh3KNds36Nf78LpSyV21t6oHlwXi4iI3Ih9blxAp5d/XJEgCHjmh31m2yxdRxAEUZ8be5dOqNQLWH0gB6sP5EjuP325BLH1g+06FxERkRKYuXEBnSDIvg7Tsu3ZoiYpAHjnjwwUlFQY3h/JKTK8rtQLoj43clXnfEEpnvtxHw6dK7JdmIiISAEMblxArxecboqyZOGmk2bbvt6WLXp/4Oz1gEOnF0R9buTKJf3390P4fucZ3PpB1bIM1UGco8GcIMj/PSIiIgIY3LjE6gM5uGyUUVFChU6PCp14tNXs1YcR98Lvhm1Lt5xy+LzG9/VB6jH0fD0Vt3+0CcM+2ORQ35r5GzPR/b/r8P2O0w7XgYiIyBoGNz7KLHMjAJ/+eUJUplynx65Tl5y+xtx1R5F/pQz/nCnEofNFOJZ7BVfKKiWzOKcvlWD5jmyUlFct5LngzxMQBOC5//1jKHPpajmulZsPpTeVfvISzhU4PgKNiIhqBwY3PqpSL2DrietDt1cfOC9Z7myB+TIOzsq/UoaOM9biwaU7RdtVUOGmd9Lw/P/2o/30tVh3KNewWnm1y1fL0e21dej+33VWr7H3dAHu/nQrev+7fhYREZEpjpbyUTmFpci6eH3Y9vrDjs1p44xvtlf1AdpwJA8zfz1o2J5tMnx84pfi4AeoCloAoMRG5mbXqcs1rCUREfk6Zm581G0fbhItwukOxn1uFm/OcuhYezs827eIBBER1WYMbnzY/3afsVlGEAQ8KdMMwqkOznhsTG8jDrtaVolKnR52LpFFRES1GJularnV+3Ow5qD0hH3u8tfRC3hIoqmqWuG1CiTM/APNI+pgQu8491WMiIi8EjM3tZzSgQ0AjF+cbnX/jpNVI7pO5l+1umo5ERERwOBGNicuXFG6Cl5L7UDEwtiGiIhsYXAjk4Jryk7a581s9aMxjn1UTN0QEZENDG5k4seerk5zJGBxJMtDRES1k+LBzfz58xEXF4fAwEAkJiYiPd16/4t58+ahTZs2CAoKQmxsLJ566imUlso3EZ2z+NB1nq3v3HGjJj9+m4mIyBZFg5vly5dj6tSpmDFjBnbv3o2EhAQMHjwYeXnSQ4q/+eYbvPDCC5gxYwYOHz6MhQsXYvny5XjxxRfdXHNzGmZunGYrMHxj1RGjsuJ9giDgQnGZK6pFREReStHgZu7cuZg4cSJSUlLQvn17LFiwAMHBwVi0aJFk+S1btqBPnz649957ERcXh0GDBmHMmDE2sz3uwGYp50l96yp0enyclon9ZwqtHvvW2gz0fH09F+AkIiIDxYKb8vJy7Nq1C8nJydcro1YjOTkZW7dulTymd+/e2LVrlyGYOXHiBFatWoVbb73V4nXKyspQVFQk+nIFNYMbp101WXJBEAR8ufUU3lqTgeEfbTLZJz72k7TjAKoW4NydzaUZiIhIweAmPz8fOp0OUVFRou1RUVHIyZGee+Xee+/FrFmzcOONN8Lf3x/x8fEYMGCA1Wap2bNnIywszPAVGxsr631UY+ZGPvPWH8Nrvx2S3Gcc2+j14khn1MdbXFgrIiLyFop3KHZEWloa3njjDXz88cfYvXs3VqxYgd9//x2vvfaaxWOmTZuGwsJCw9fp065pvmCHYvm8n3rM4j7jzI3eNI0DICv/Ko7mFhvez1t/FJO/2W0WCBERke9SbPmFiIgIaDQa5Obmirbn5uYiOjpa8phXXnkF999/Px566CEAQKdOnXD16lU8/PDDeOmll6BWm8dqAQEBCAgIkP8GTPhpGNy4g/ECmzqJ4GbAO2kAgH0zBiEsyB/z1lcFSmMTm6J3fITVc8/fmIntJy/hi3E9oPXzqrifiIiMKPYbXKvVonv37khNTTVs0+v1SE1NRVJSkuQxJSUlZgGMRqMBUNVPQ0kaZm7cQpS5sbLY5oVi8fQA9qyQ/vbaDPx19AJ+++ecs9UjIiIPoOjCmVOnTsX48ePRo0cP9OrVC/PmzcPVq1eRkpICABg3bhwaN26M2bNnAwCGDx+OuXPnomvXrkhMTERmZiZeeeUVDB8+3BDkKIUdit3DOIiVytxUq0kz4bUKne1CRETksRQNbkaPHo0LFy5g+vTpyMnJQZcuXbBmzRpDJ+Ps7GxRpubll1+GSqXCyy+/jLNnzyIyMhLDhw/H66+/rtQtGLBDsXsYhzMPLN5hsVxN5h1i9xwiIu+maHADAFOmTMGUKVMk96WlpYne+/n5YcaMGZgxY4YbauYYZzM34cH+KCixvi6V1k+N8krbzSq1gXGyJj3rksVypgGKAPsjFqWbOImIqGbYa1Imxpmbm9s2tPu4KTe1tFlGKm7q07IB7u7RxO7r+Ap7A49KnXQwePBcIXrPTsX/dp2xcg2nqkZERB6CwY1MjPt4VDrQriHVnOWvUSEmLFDy3NW0GrVHLfkwrFOMW65j7/e2Ui9IBkKPfb0b5wpL8fQP+yx2HGbmhojIuzG4kYlxkKKzNozHhEZj/hH8M2MwXr+jo+G9pc6xV8usd3z9/hHpUWeu4O+mofA6O4MbnV6Q7DtzruCa4fWUb/ZIno99boiIvBuDG5kYZ1GGdJCep0eKVOYmSKtBQpNwAFVBg1RsE6z1Q4dGoRbP27dVBHrG1bO7HjXlLxGkuYIjmRvjSf6qX5oeLxXcpJ+8hC/+PsEMDhGRl1K8Q7GvUKlUaBQWiMslFbi7ZyxuaNEAy7ZnY8mWLKvHWWpaalA3ADteSkawVoOk2dfnAnrrP52xdEsWXr6tHerX0UKjVqFf60gMeu8vAEDb6BCsebKfbPdlL383TXpnb8fqkfM3Y9lDiTbLVer10JrE+GsO5mDNwRzE1g/GYAcCVSIi8gzM3Mjoz+duwp7ptyDAT4NWUSEI1tqee8faEPLIkADUCfATjcS6u0csfn+8L2LCghDgp8FDfVugdVSIYb8j/X2MTegdZ3V/fGQds2294uobXvu7qf+PtaUZTI39YrvhtaUkjLXvV2beFbuvJQgCJn65Ey/+tN/uY4iIyDUY3MjIX6NGoL9jkwna0ynYkQnpnF1DyVYTTKfGYVb3+1lolnr/ni5O1Udu209eREZOsdl2nc7yfTsy/P7w+WKsO5SLb7ZnO1U/IiKSD4MbN0mIDTe8fmFoW8Nr+4Ib+6/jTObm/25uaVcn2pBAcStmaJC/4fW2ExfNyic2r48RXRo7XB9X+Pzvkxg87y+z7fvPFuLb9GzJ4M6RLJG9HZ2JiMj1GNy4ScOQ64t3Pto/3vDaX6NGG6NmJWn2RzfOPGSfHtTGZlAkQJyF6dc6Eg/e2Nzw3ngl7mresNzWuEXpmLZiP37757zk/sWbTzp8TnZEJiJSFoMbN4lrEIznh7TFm3d2Em3XqFRY/URfDLQy8Z89mZvq/i93OTmxX9E167MkA0CA3/Umt0Xje4gyOVLPc3eNoJLDwXNFkttn/nrIruONAznGNkREyuJoKTcJD9bisQHxZtvV6qqlG8qs9O+wp8/NopSe2H3qMpLiG9gsu/mFm3HXJ1twrvD6ytmXS8qtHqNRqURDqzVq8RB1vcQT3ZMmGXQnvSBA7UC2jYiI5OU9f1p7uQf6NJfc3qReMADganmlxWP9/Ww/KOsG+KFf60ib2ZIhHaLRODzIbOj2TW2sLxnx9OA2ooyESqUSBV1SyQpvWkzUkbWnbJ+LiIiUxODGTYJMhoV//0gSPhzT1TCMu8TKbMMfjemGiLpavHNXgmz1MU20TOgTZ7Hsr1NuROPwILPsjK2mGGczN48PbOXUcTViR0TyysoDmLRsl80+NVJZLCIich8GNwrp1bw+hic0Mry/o1vVqKKuTcPNyibEhmPHS8n4T3f5Fso0zVT4a9SSfXuGdYpBx8ah/x4jZtpcNntUJzxk1MnYT237x0uqM7XWTUs5GLMnHPlq2yms2p+DY3lXIAgC5qw+gh8lFuBkbENEpCz2ufEQD93YHB0bhSEhVno+GZXMQ4+kHsBSz+QXhrY1XNs0Y2EcDIUH+2NMr6YAgC82VY0wUtuRuQn0Nw+AjDsuu4utUWbG916pE5B+8hIW/HkcANAlNgx/HbtgVBbIvliCmPBAs2bCSp3e4pxAREQkD/6W9RB+GjVubBWBkEB/24VlIBXczBvdBQDwSL8Whm3GAYrpMcYB14djupqd75qVfkSGc0ps81Mgc2OrKck49hEgoNBodFny3L/w1poMw/sNR/LQ7+2NmLRst+gcZwuuodtr6/DMD/vkqTQREUlicFPLNGsQbHHfiC6NcXDmYEw0Cm6MhQeLAy/jZimp5qWCkqoAYPMLNztURyVGWS3enGV1v+kinNY6gC/9dz2xdYdyAQCnLl7F9J8P4KfdZ1BUWokfd53hpH9ERC7EZqla5L4bmho661rqFFsnwE+07IBxuW5N62HSgHi0iKwLQDy1oHFA8vjAVvh4Yyam3Vo1E3Pj8CD4qVWSEwVKVcOR5Sbcxbie01bsx/6zhRbLRoUFit6P+WybaNg9UBUsaThcnIjIJRjc1CL/HXl9AkFreQNLTVEqlQrPDbm+dITpvDfVpt7SGpMGxIvW2Zo0IB4fbMg0u5bUEGyNWoWwIH9R04/SjO/VWmADmC8iahrYAOx0TETkSmyW8nHJ7armrxncIUq03drD1d5mIeNTmB5juoDoE8mt8c1DiWbnaBFR12ybWgX88VQ/yX48SnEkGLGnKIeLExG5DoMbH/fe6C54/54uePfuLqLt1iatU9uYv+b6PunMjRSNWoUbWpjPnvzq7R3Qv3WkSVk1okIDMaxTjNVzutOVMtudo6sxcCEiUhaDGx8XEuiPEV0ao26AuAXS2vNXZWdfEONz2LW6uUSZ+nW0eOs/nUXbqkdK2zOU3B2KSyvQ8/X1sp6TARARkeswuKmlrD1a/Y2GYterY3lounH/YE0NOgGbHuppHYp3ZF1yqLw9cQtjGyIi12FwU0tZe7j6adT446l++P3xG63Ou2OpQ7E1+6YPMttmGswYv/9lSh9MuamlXed2lTdWHXGovD1ZGWZuiIhch6Olai3rD9fWEvPWmGpa//qcOfbOoBwWbB4smR7Zz6gPTucm4ejcJBwfbTQfaeUumXlXHCpv/J0trZBeM4yhDRGR6zC4cSEPa10RkSNxUCfAD7teTjZbYbwmtrxwM8KCajZL8+fjeuDXfefwy75zMtXKQUbf2wmL06WL6CU3ExGRDNgsVUv1iKsHAAgJrFl826BuAEJlXDIiwI5ASWo2ZGOVOj38FOyMbDwSbdsJ6f461WXKKnWYvzETh84VuaVuRES1AYObWmrOqM54/OaW+HXKjUpXxeEmms/H9UCHRqEW91foBUVHWq3an2OzTHVn7M//OoG312bg1g/+dnGtiIhqDwY3tVS9OlpMHdQGcRF1lK6K2SzItjRtEGx1baZ20SHwkFHkFlXPEfTPGeuzHRMRkeMY3LhQkMksvSTNeKSVpaAkOlS8XlODulrJcre0j0KrqBCPG05uqjo2c/X6mXq9gD3Zly12bCYi8kUMblxofO84dG0ajhdvbWu7cC1Wv44W/+neBHf3aILwYOmgZWxiU9H7OaPEE/8tHN8DYxOb4qN7q5ZssHf0llKq+9xYWsBULos2n8QdH2/Bg0t3uPQ6RESehKOlXCgk0B8/TeqjdDW8wjt3JVjd3yg8SPQ+1mgYOgAMbBeFge2ur581oksjfJueDQB4bEA8Pkk7LirfJioEGbnFNalyjQiGzI1rg5uvt50CAGzOvOjS6xAReRJmbsjtJg2IBwA8ldza7mNGdm2MyTfF48sHetlV3ngdK3+N+Y/5y7e1s/varlAd02zMuODS63h6BouIyBWYuSG3e3ZwG4zuGSuaBNAWjVqFZwc717wn9Xj3Uysb1+sFAYs3n3T5dRjaEFFtxMwNuZ1KpUKzBnUUzSoovfxBXnEZZv56SLQtM88FzWSMboioFmJwQz5PKoZSevTQyPmbzbbtyLos+3UY2xBRbcTghrzWI/1bAABG94h1+NjSCs9b/8AVgQj73BBRbcQ+N+S1nhvcFsM6xaB9jOXZigFAJRE23NCivquq5TRXxCEMbYioNmJwQ15Lo1ahc5Nwp45tUDdA3srIQCoIq/E5Gd0QUS3EZinyeSoV0PPfhUKl9GpeH4PaV82R8+CNzdHYZE4dtzEKRPKKS7E7+zL0NZzC2BUBExGRp2PmhmqF5Q8nYfvJSxjz+TazfeFB/vhsXA+UVeoQ4KfBwXOFOFtwze11/PTP4yir0KF1VAhGf1ZVz2cGtcaUm1tZPW7DkVx8uCET79yVgPjIuu6oKhGRR2PmhnyeCoBarUK7mBDJ/dW5kQC/qrXAlBolfvzCVbzy80G880eGYdu7647aPO6BJTuxJ7sAT36312wfm6WIqDZi5oZqjfBgLf569iYEasUxvWkwo/AUOKLrO1KXgmvl8leGiMgLMXNDPq9pg2DR64Yh4hXGTRevFKBsdGN69V2nLuPnvWfx8sr90FnpgyPVv8aRoeCCIGDWr4cM61EREXkrZm7IZy17KBE7sy5jeOdGVsuZhgtKZ25MZ0/+ee9ZfLm1KuDoGVcfI7o0ljxOLRHHONIqtSPrMhb9uyTEfTc0c+BIIiLPwuCGfFaflhHo0zLCZjnzzI2yrA2QunjFctOTVJbGkT43hdcq7C9MROTBPKJZav78+YiLi0NgYCASExORnp5useyAAQOgUqnMvoYNG+bGGpMvMY0llF53yizYMnpbUl5ptr+aVBzDDsVEVBspHtwsX74cU6dOxYwZM7B7924kJCRg8ODByMvLkyy/YsUKnD9/3vB14MABaDQa3HXXXW6uOfkKT+5QDACnL5cYXr/zx1E0n7YK3+88bX6gZLPU9Y0v/bQflTrxshN5RaUY8PZGfJJ2vEZ1JiLyJIoHN3PnzsXEiRORkpKC9u3bY8GCBQgODsaiRYsky9evXx/R0dGGr3Xr1iE4OJjBDTnNNFOjfLOUuAZpGRfMyjz34z9m22xlbpZtz8aK3WdF++elHkPWxRK8ueaIU3UlIvJEigY35eXl2LVrF5KTkw3b1Go1kpOTsXXrVrvOsXDhQtxzzz2oU6eO5P6ysjIUFRWJvogAYNKAeADA80PainconLqxNiLKGrVUnxuT9zlFpaL3FZWet4AoEVFNKRrc5OfnQ6fTISoqSrQ9KioKOTk5No9PT0/HgQMH8NBDD1ksM3v2bISFhRm+YmMdX0GafNNzQ9ri6H+HomPjMNF2a7GF1IgkuR3JKXbqOMn+NSYbK01uroarOxAReSTFm6VqYuHChejUqRN69eplscy0adNQWFho+Dp9WqKvAtVaWj/H/gsMaNMQo7pdH4q9fmo/xBnNo6MkyXluTN7r9OJMjfGcPpY6KhMReRtFh4JHRERAo9EgNzdXtD03NxfR0dFWj7169Sq+++47zJo1y2q5gIAABAR43grQ5LmMH/j162hx6er14dcVOj3iGlxvAm3ZMETxPjrV7BkZVakz7T3tmroQESlJ0cyNVqtF9+7dkZqaatim1+uRmpqKpKQkq8f+8MMPKCsrw3333efqalItY5zcMO3cW6kTzPrEeHLCwzTgMW2WEkRlOW6ciHyD4pP4TZ06FePHj0ePHj3Qq1cvzJs3D1evXkVKSgoAYNy4cWjcuDFmz54tOm7hwoUYOXIkGjRooES1yYcZP/D1JsFApV4vMbrKM6IbyUn8TN6bDgVnUxQR+SLFg5vRo0fjwoULmD59OnJyctClSxesWbPG0Mk4OzsbarU4wZSRkYFNmzbhjz/+UKLK5OOa1g/C4fNVo+pMn/0VNczcTBvaFrNXu2bYtXEgk1dUinmpx5Bh0jnZWuaGiMhXKB7cAMCUKVMwZcoUyX1paWlm29q0acO/OMllXhvZEVo/DcYmNsXPe8/h2/Rswz6d3vng5qnk1mgdFSJbPQtLKkQRjfHfAFO/34dNmflmx5j2ualN/41e/eUgNmfm45cpNyJIq1G6OkTkQh4R3BB5koYhgfhwTFcAQEKTcPSMq4ep3+8z7Hd2HpoecfVQVqmTpY4AkDBLnLk0Hi116Lz0fE7WMjeu/oNh5Z6ziAoNRFK8Mk3JS7ZkAQB+2XcWo3s2VaQOROQeXj0UnMjVgrQajOrWBLNHdUJE3QDMubMTdGZrP5kHBWN6mT881SqVSzMldo2WMh0K7qbUzdHcYjy5fC/GfL7NLdezRsd5C4l8HoMbIjuM6dUUO14aiA6NwhAdGijaJxUe9G9tvhq5n8bFwY2F18aU6nNztuCam65ERMRmKSK7VY9GGt87DlkXr2Jg26pO71KriGvU5n83aNQqlwYTxWWVeG/dUdzaKcZiFievqBRfbTuFkV0aISTQv1b2KPaU0W1E5DoMbogcFOivwexRnQ3vpbIxGomcqJ9a5dJmoBMXruL91GN4P/UYIupqJcvsyLqMHVmXse34Rcwf283iuQRB4Lw3ROS12CxFVENS4YrUIpauztyIWQ9M1h6sWrvNUhZD7hjMk8Kk2jRCjKi2YnBDVEMf3NMVfmoVZo3oYNimkVhh00+t9rgHq3F9RCOn3F4TIiL5MLghqqGk+AY48toQjEuKM2xrGx1qVi4k0A/uChvsbVGyFGzJ3XzmScGSJ9WFiFyDfW6IZOD3byebLS/cjJJyHSJDxIu1JjQJQ6PwIOw7XeCW+lwoLrO6vzr4keoMDTAAICLvxuCGSEaNwoMkty9J6QXAc4KGCp2AQ+eKLNbH05rPZOXTN0dEAIMbIpero9WgXp2q0Uue9Fy99YO/UcfCMgRyD5f2pA7FROT72OeGyMUC/K8HEJ42x8rVcunlIDwpCJObD98aEf2LwQ2Ri1VUXp/v35ODBk+uGxGRIxjcELlYudFiRqbxg/HwcU/iy4GOL98bEVVhcEPkYsbrOZkOsR6XFIcfHk3C8IRG7q6WVZ7WfEZE5AgGN0Qu8sLQtgCAt/9zfamGAa0bmpXrGVcfH47p6rZ62UP2GYo9aCkHd62ETkTKYXBD5CKP9o/HP68OwqhuTQzbwoL98c1DiQCAiLoBlg5VxJnLJYbXvvz49+V7I6IqHApO5EKhgf5m23q3jMCaJ/uazYnzzKDWSMu4gJ2nLrureiL//f2w4XV1duOPgzmoE+CHPi0jFKkTEZEzmLkhUkDb6FCzwGfKza3w42O9FaqRmAAgr7gUD3+1C2O/2C7vuU2ahQRBwOHzRSitkB6WLje2ShH5PgY3RGRGEIBLV8sN7/V6+SIC0+Di573nMPT9v3Hv59tkuwYR1W4MbojInACojOYV1v0bkeRfKcPSLVkoLKmQ7VLfpGcDAHZnF8h2TiKq3RjcEJEZAQLURgOcdP9mbiYsTseMXw7i6R/21uDc9skpLMWq/ecN1yYisheDGyIPs35qf9H7mbe7f6I/Qbi+cjhwPbg5cLYIALD+cF4Nzm1fsHLTO2mYtGw3vtl+yulrSV5f1rMRkSdicEPkYVo2rIu/n7vJ8H5Y5xi316EqADBvlpLv3LZd+7eD8eurDtsoKZ8zl0tw3xfbsTHD+eCNiJTH4IbIA/lrrv/XVAH4aVJv3O7GWYwFQRBlbvR6AbtkGqLuaJxUWqG3Xcih61uuwAv/249NmflIWbxD1msSkXtxnhsiD+SnEc/o27VpPXRtWg+/7DvnluubdnPR6QXc+ckWWc7tyUs7XCguU7oKRCQDZm6IPJCf2jVNQvb6Lj0b5Uarmde0DnrR+lo1OhURkU3M3BB5II1RcFOpc3808O66o/g7M9/wvqYjlqat2F/TKhER2Y3BDZEHqqP1Q4M6WpTr9IgMUWYNqvSTlwyvaxrc5BSVGl4rnblR+vpE5HoMbog8kFqtwtZpA6EXBFHnYqXoZezT68l9bojINzC4IfJQWj/lg5pqB84VynYupTMnDK6IfJ/n/PYkIo81adlu2c5V09Bi+4mLWLz5pN2TAZpdn7ENkc9j5obIi02+KR5N6gXXqg67oz+rWmAzrkEd3NS2oaznZlaHyDcwuCHyQoM7ROGTsd2hVquwcs9ZpavjEGczLqZOXbzq3PVluToReTI2SxF5oWGdG0H973BxlcpGYQVk5V9FrtEIKWNyBReuCFKMV0InIu/FzA2RF1kxqTf2ZhdguNF6U0r1ITlx4QoC/TVoFB4k2l5QUo4B76QBALLmDDM7zrS+7g4nrH2/2CxF5BsY3BB5kW5N66Fb03qibUo9kG9+908A5gHMqYsl1g8UrL4lIqoxNksReTmdvOtKOqzSpAK2msmUzo4ofX0icj0GN0ReTq/w2OaySsvRlVTnYQ7FJiJXY3BD5O0UDhYeWLJD9N64U65UIGO6yXiZB3dgcEXk+xjcEHm5QR2iEOivRt9WEYpcf7tJcGLcLCWVVZJrKDgRkSXsUEzk5cKDtdg7fRAC/NRoPm2V0tURkVpvU7ah4IyRiMgCBjdEPiDQX6N0FSTpBQHnCq6JtjEoISJXY7MUkQ96tH88/n7uJsQ1CAYA/PZ/NyLtmQGiMs3+3SeHotIKnC+8Zrb9XME19J6zQbSNo5WIyNWYuSHyQV2bhiO2fjD+eKo/rpRVon4dLQpLKkRl5MygdH71DwDAzpeTRX1udmRJdBZmbENELqZ45mb+/PmIi4tDYGAgEhMTkZ6ebrV8QUEBJk+ejJiYGAQEBKB169ZYtcqz+hkQKU3zb4Sh9VOjfh0tAMBPI56AxhUZlP1nCz1+CQN2aCbyfYoGN8uXL8fUqVMxY8YM7N69GwkJCRg8eDDy8vIky5eXl+OWW25BVlYWfvzxR2RkZODzzz9H48aN3VxzIs/m72f+X7tOgDhR2yYqRPbr2hPWMLQgIldTNLiZO3cuJk6ciJSUFLRv3x4LFixAcHAwFi1aJFl+0aJFuHTpElauXIk+ffogLi4O/fv3R0JCgptrTuSZxiY2RY9m9dAnvoHk/k3P34R2MaF4+z+dMXtUZ9mvP2HxDtszFCsc3Sh9fSJyPcWCm/LycuzatQvJycnXK6NWIzk5GVu3bpU85pdffkFSUhImT56MqKgodOzYEW+88QZ0Op27qk3k0V6/oxN+fKw3/DTS/7Wb1AvG6if64q4esYgMCcDxN26VvQ4L/jxudb9czWHOnoWxDZHvU6xDcX5+PnQ6HaKiokTbo6KicOTIEcljTpw4gQ0bNmDs2LFYtWoVMjMzMWnSJFRUVGDGjBmSx5SVlaGsrMzwvqioSL6bIPJyGrX8/WN+3nvO6n5mTojI1RTvUOwIvV6Phg0b4rPPPkP37t0xevRovPTSS1iwYIHFY2bPno2wsDDDV2xsrBtrTESmlI5tvCm4ennlfkxetpudoIkcpFhwExERAY1Gg9zcXNH23NxcREdHSx4TExOD1q1bQ6O5PmFZu3btkJOTg/Lycsljpk2bhsLCQsPX6dOn5bsJIrJqzmrzLCwf1Pb7els2ft9/HscvXFW6KkReRbHgRqvVonv37khNTTVs0+v1SE1NRVJSkuQxffr0QWZmJvT666sQHz16FDExMdBqtZLHBAQEIDQ0VPRFRO5x2WRuHUD5zIm3TCJoHAQqvfI7kbdRtFlq6tSp+Pzzz7F06VIcPnwYjz32GK5evYqUlBQAwLhx4zBt2jRD+cceewyXLl3CE088gaNHj+L333/HG2+8gcmTJyt1C0Reb0gH6UypEu77YjszO//it4HIeYrOUDx69GhcuHAB06dPR05ODrp06YI1a9YYOhlnZ2dDrb4ef8XGxmLt2rV46qmn0LlzZzRu3BhPPPEEnn/+eaVugcjrfTCmK1q/vNpt17P20N6UmY9zhaVoHB6kyPWJyDcovvzClClTMGXKFMl9aWlpZtuSkpKwbds2F9eKqPbQ+qnRtH4wsi+VSO5/+pbWWLHnLE7my9Pvw1azkL3jt3w9w+Pbd0fkWl41WoqIXGPRhB4W9/3fwFYIDfKX7VqCAFwpq8RfRy8g/aT52lO2JgGs8fVde3rZGAdvnr2gBZHnUTxzQ0TKa9nw+lIM0aGBuHi1DBU61zxcN2bkYeavhyzu9/S1qYjI8zFzQ0Qid/doYlhss5qc2RRrgQ0A5BWXyncxKV7SnOUdtSTyTE4FN6dPn8aZM2cM79PT0/Hkk0/is88+k61iRKQc0+yJnLkUf431s93+0Wazbb7ev0ZKLbxlItk4Fdzce++92LhxIwAgJycHt9xyC9LT0/HSSy9h1qxZslaQiNxL6pk6pOP14eJv3NEJ/VtHOn1+4+Yuu+sk44Pe2qk8KaDwlvl4iDyRU8HNgQMH0KtXLwDA999/j44dO2LLli1YtmwZlixZImf9iMhNgrVVM38PaGMeuDzQpzk+GdsNO15Kxr2JTfHhvV3dWjc+5onIEU4FNxUVFQgICAAArF+/HrfffjsAoG3btjh//rx8tSMit9nyws347f9uRPdm9c32+WnUGNopBpEhVf/vQwP90SKyjsvqotOLw5lB7/2J7IvSQ9Xl5OqRWo4wziLJWa8DZwux93SBfCck8kBOBTcdOnTAggUL8Pfff2PdunUYMmQIAODcuXNo0KCBrBUkIvcID9aiY+MwAMDH93VDaKAf5ozqpEhdKo2WWAGA4xeu4pWfD8hybmtNT57ULOUKFTo9bvtwE0bO34ziUvOlMYh8hVNDwd98803ccccdePvttzF+/HgkJCQAAH755RdDcxURea9uTeth7/RBUKuVSWWYZm4AoKS80unz1cYOyVIqdNeDxstXKxASKN/8RUSexKngZsCAAcjPz0dRURHq1atn2P7www8jODhYtsoRkXIcCWyCtRqUlOtku3alRHBjusnZeEUvCNidfRlto0MQrBX/CvTUZikicoxTzVLXrl1DWVmZIbA5deoU5s2bh4yMDDRs2FDWChKR55P7QVwpMaLK3uxLQUk5th6/KCpvfOiy7dkY9fEWjFuYLnENx+vqKhwtReQ8p4KbESNG4MsvvwQAFBQUIDExEe+++y5GjhyJTz75RNYKEpHniwkPlPV8pn1uAODQ+SKsO5Rr89hB7/2FMZ9vwy/7zknuL7xW1ddk56nLNauki7ki0OLsz1RbOBXc7N69G3379gUA/Pjjj4iKisKpU6fw5Zdf4oMPPpC1gkTk+T69r7us55Pqc1NaocfEL3ca3ltqQsorLgMArDmQY9hmb5zgSc1SROQ8p4KbkpIShIRUrUXzxx9/YNSoUVCr1bjhhhtw6tQpWStIRJ6pd3zVyMhgrQatokJslHbMok0nbZaxldlwJvPhWc1Sxhh1ETnCqeCmZcuWWLlyJU6fPo21a9di0KBBAIC8vDyEhobKWkEi8kzThrbDy8PaYc0T/WQ/9+d/2w5uzhZcQ1ml5U7Mxn1W7O2vcyzvil3l3IEjvIic51RwM336dDzzzDOIi4tDr169kJSUBKAqi9O1q3tnLiUiZdQJ8MNDfVugaQNlRkgu2ZKFkfO3WNzvaGxwMv9qDWskL1eHNuywTL7MqaHg//nPf3DjjTfi/PnzhjluAGDgwIG44447ZKscEZE1h88XWdwnWHhtSWmFfEPZPRUDGqotnApuACA6OhrR0dGG1cGbNGnCCfyISFKvuPpIz7rk1mvK0apTXqmHAAEBfpqan8xBrlp+gag2cKpZSq/XY9asWQgLC0OzZs3QrFkzhIeH47XXXoNeYggnEfm+pQ/0wt09mkjui29YF2/c4fqlHDYeyTN6VxUdlFbo8NPuszaPNQ2G9HoBN8xORY/X1qNSp8DvNRckWdiNh2oLpzI3L730EhYuXIg5c+agT58+AIBNmzbh1VdfRWlpKV5//XVZK0lEnq9/60h0axqO73eeMdunUgEap/6UckzKkh2G19UP8p/2nMW0FfttHmvaZHOlvBKXrpYDAPKvlCM6TN65fJTA2IZqC6eCm6VLl+KLL74wrAYOAJ07d0bjxo0xadIkBjdEtZTGwpINKgAqhdpWjOe7scbTshqu7h/jafdLJCen/pa6dOkS2rZta7a9bdu2uHTJve3qROQ51BYCGLVKBY2LgpurZZW4Wma+qGb1s9vZy/519ILzlZKBK4IPDi+n2sKp4CYhIQEfffSR2faPPvoInTt3rnGliMg7GQcS4cH+ou2Wsjo11enVtegwY61oxWugaoHMmpjyzZ4aHV9TDEOInOdUs9Rbb72FYcOGYf369YY5brZu3YrTp09j1apVslaQiLyHceZmYt8WeHttBoDqZinXXLN6pYYL/y67UK06tpHjsr4yhNo37oLINqcyN/3798fRo0dxxx13oKCgAAUFBRg1ahQOHjyIr776Su46EpGXMG568jPK1KhUKpdlbqqVVYozN44+yB1N9JRV6rB0SxZOXHDNrMbGTUgcCV47fJuejc2Z+UpXwyc4Pc9No0aNzDoO79u3DwsXLsRnn31W44oRkfdRq1UY3SMWhdcqEB9Z17BdpbLcH0cuX27Nctm5pQKfT/88gbnrjgIAsuYMk/+asp+RnYg92T9nCgyj+lzx81TbOB3cEBFJefM/Vf3u/jTqkKtWqVwe3CzenCV672jnWUebnna4cVJC2WISBjce6+zla0pXwae4YeYJIqqN/DVGzVIAXNwq5ZSS8krc89lWfPH3CY/LashVn6O5xciSWDfLw27XK+3OvozRn27FgbOFSleFTDC4ISKX0BrN2pdbXOb2eW7sCQ6WbcvGthOX8N/fD9eoj45U8FBT4lXN7TumpLwS76zNMDxsi0orMOi9vzDgnTQIguAzHaM9xaiPt2D7yUsY89k2patCJhxqlho1apTV/QUFBTWpCxH5EH+j4ObXfedwa8dot17fnqHgJeX2LZZp60zDP9yE/TMH23UuuzkRh8xbfwyf/XUCH23MRNacYcgrKr1+OpPzcc4b+RRLzLNEynIouAkLC7O5f9y4cTWqEBH5BuPgRuunxjU3r7ptz7O7Jk1lxlkQ1z/c7AtEDp2zvEo6wA7FVHs4FNwsXrzYVfUgIh+j9bseOQT4qVFa4XmL6hq3lHlaJkPu2pieT6nlMIjcgX1uiMgljDM3VcGNmzM3DoYHrp4Xx1HG55fjWlV9bsTviXwVgxsicgmV0dRz/hq1aPSUO9jz7DbOXlgrr3Qg4PzVje4Pyt8HWcZEmrwY3BCRS+iMHqT+GjX+0z0WfVo2EJXp1jTcZdevvvrGjJovgCkVE7g8c8ORTUROY3BDRC7RpF6Q4bW/RoUgrQbLHrrBsK1p/WAsfyTJdRWwK3Nj56nsjDM+2nAMI+dvll6lXBBw+Wq5fSeCc81S1u5HEDi3DdUeDG6IyCWM+9xIPZwjQwJEZeRmT+ZDJVq1yXJ5qXNJbXvnj6PYe7oA36ZnAwDOFVzD+kO5EAQBc1YfQdfX1uHnvWdtV95qbawcY61pzeSMDHS8j17PT81eDG6IyOWk5pyp1Ll29JQgADobDwPxaCnr53JE9SKevedswENf7sSq/Tn49K8TAIDXfjvk2MlgfxNVhZXvqSDI30mZ3OdCcRl6vL4eM389qHRVvAKDGyJyOZ3Ek7RC59qnqwDYHKFlX95Gep8jwcGW446v9Oxo59+31hzB9pPuW++K5Ga9jfSLTSdw6Wq52RpqJI3BDRG5nF4ioVAptVFGu05dRo7RDL014WigIcfIF0ezLB+nHbd9TvFgcMcrharVq+/7YjvXUyKPxuCGiFzOODgICayaO7R3fITLr/vU8r1W989efcSu89S0q4MnDPMVBIjiGeOASacXkHo4F5fs6PB85ydbsCkzn+spkUdzaIZiIiJnGDdLrX6iL9YdysXonrEuv+4/Z+zPLljPjgjQ6QW8uGI/ujQNx5heTc3yHv/bdcaZKspQN8tEfYqsdChevPkk/vv7YTQOD8LmF262es7q5kSup0SejJkbInI548xHk3rBSOnTHMFaz/rbylrTkyAA6w7lYPnO05i2Yr9kmad/2GfxeJWN/hSWrikna0PB1x7MAQCcLbgm70VJPuwA7hAGN0Tkct4+hFUAUFBSYb7RKfYFOsaZFldM6MfRUuTLGNwQkcvc1jkGAPBI/xYK18Q2q6OlFO5zo9MLmL8xE7uzLzt9jqrlF4zfM7oh3+VZeWEi8invje6CSQNaol1MiNJVsUlqLp5qgkQo4OrgwLg636afNkwMmDVnmJPnM+lzw9iGfJhHZG7mz5+PuLg4BAYGIjExEenp6RbLLlmyBCqVSvQVGBjoxtoSkb38NWq0bxQqWqDSY1l52Ov15sGAteDAmT421qqTmVfs1DlM5/GxFJDZG+jYmhSRyFMoHtwsX74cU6dOxYwZM7B7924kJCRg8ODByMvLs3hMaGgozp8/b/g6deqUG2tMRL7I2nM788IVs22OPOadCXWMMy1qJ4NDs2yThaHg9t4LgxvyFooHN3PnzsXEiRORkpKC9u3bY8GCBQgODsaiRYssHqNSqRAdHW34ioqKcmONichVpg1tK+qfct8NTbFvxiC3XNtas9Tj3+6R7TrOxCkatQyZINPMkxPNata+R1QznpLcLK3QOTxppSdSNLgpLy/Hrl27kJycbNimVquRnJyMrVu3WjzuypUraNasGWJjYzFixAgcPMi1Noh8wSP943F41hDDez+1GmFB/m65tq0Zk01nO3bkAWDcLGfvYT8YzZvjbHAjOspkKLijz6/i0gpUMnPj0/KKStH2lTV4cOlOpatSY4p2KM7Pz4dOpzPLvERFReHIEemZQ9u0aYNFixahc+fOKCwsxDvvvIPevXvj4MGDaNKkiVn5srIylJWVGd4XFRXJexNEJKtAf43htdbPfX9/PbDE+i/0D1KP2X0u07/Cj0s0a9nyidFyCrJkbmrQATor/yoGvJOGzk3CalwPJVXo9DiaW4z2MV7SD8zNftpTtWL9hiOWu4V4C8WbpRyVlJSEcePGoUuXLujfvz9WrFiByMhIfPrpp5LlZ8+ejbCwMMNXbKzrZ0UlIsc1qRdkts1Phoe6qzgSKvx9zPGFM405+30wzRg529zww67TAByb8dkT/d83ezDsg01YuOmk0lVxGHNmjlE0uImIiIBGo0Fubq5oe25uLqKjo+06h7+/P7p27YrMzEzJ/dOmTUNhYaHh6/Tp0zWuNxHJ57uHb0Bi8/pYNKGn2T5/jX2/oubf203uankUpzsU25h1ubZZ8+9MzJ/9dULhmngmX/qRUDS40Wq16N69O1JTUw3b9Ho9UlNTkZSUZNc5dDod9u/fj5iYGMn9AQEBCA0NFX0Rkee4oUUDLH8kCa2jzOfC8dfY91BvGBogd7Vssj4U3Mo+pToUw/Ikfr7QgdTXeW4O0zMp3iw1depUfP7551i6dCkOHz6Mxx57DFevXkVKSgoAYNy4cZg2bZqh/KxZs/DHH3/gxIkT2L17N+677z6cOnUKDz30kFK3QEQu4mdn5sbTmq/2nSmQNWBQG91faYXO7uPEzVKumcTvm+3ZuPmdNGRfLJHnhCSJ4adjFA9uRo8ejXfeeQfTp09Hly5dsHfvXqxZs8bQyTg7Oxvnz583lL98+TImTpyIdu3a4dZbb0VRURG2bNmC9u3bK3ULROQiSS0a2FXO3uYrOVl72Kzan4OVe8/adZ492Zcxd91RlFVaDlqMg7dxiyxPcmrKOKAxzdzI5cWf9uNE/lXM/JWjVslzeMTyC1OmTMGUKVMk96WlpYnev/fee3jvvffcUCsiUsr2FwfibME1JMSG21VeieDGlh+NhnJbc8fHWwAAgf5qTBrQUrKMcbNU+slLmL8xEze3bYh2MY41sz//v38Mrx2Jc7afuGSzTLnO+lB6InfyvN8IRFTrRYUGolvTenaX97Ozb46sbKRBHJ3NNzPP8nBx02a3t9dmYOj7f9s8p+m8NltPXDR6b3/9dp5yfsFOT8QmHt/H4IaIvJ7WAzM3loIbS2GYxkpPY1fMcyP3A97ZEV1Uhd89eXnebwQiIgcpkbnZZ2POlytl9nf8BawHB85OOCdKzrg4XcHYhjyJR/S5ISKqCU/sc3P4vPRs6JZiDL0gQBAElFXqsdFkhljnEzeCxKt/3zuxcKY13pS58fSR74IgKDKDsqd/XxzB4IaIvM4rt7XHa78dMrz3V3tecGONIAh4avleXDMa1v3DrjO4UlaJiLoB+GrbKZPyLqmFrGeryaNYrxeQsmQH4hoEY+aIjrLViWov7/qNQES13tv/6YwJveNE2/z9vCdrAAAFJRVYufcc1h4Uz86++kCO5CgrZ9erFGVnTFcFt7LPGTXJNOw8dRl/Hr2ApVtP2S4sC89OUfhSBkUpDG6IyKvc1SPWrIOtnxdlblQALpeUO3SMsxMCirvcuPaJea7gGiYv24092Y6PrKqQcRh5SXklPvvrOLLyr8p2TncQTbioYD18hff8RiAiskBqmYYgo9XF5Xb5qmPBiamCaxUW90kFIXoZ/pQ3y9zU+Ixih84X4ff95w3z9jhCzkzFW2sy8MaqI7j53TT5Tkpeh8ENEXmNmLBAye0qlcpswj9XZioeXLrD6WPzisuwycFVwi2tKv7Q0h146af9Fo+zFjR4UtOHnJ9V+smqCQetNeVJ3fvfxy5g/sZMj1hnS6oOnlAvb8Lghog83s+T+2BAm0h8+UAvi2Wa1g8WvXe2n4o9dmcX1Oj4ueuOWtxXWmHeRHO+sFSy7PrDeVi2Pduua5qPlvKch6UrPyt73b8wHW+vzcD6w3m2C/soVzdduhNHSxGRx0uIDceSFMuBjSTf+T3tNHtX/nbltyqvuBQqqBAZYnnldjkDLXv6NVsrc/ay8guA8ke35hjcEJFPMFv1mo8IqyOidDIEFKmHc63uL6vUodfrqQCAY68PtTgfkbs/KWu3rsT8MqY8KKnmtdgsRURebUyvWADmD0jjpg4/tQqTb4p3X6W8wHtWmsbs9eDSnVb3F12rNLwuLq20WO67dPua1tzBA2IbkgGDGyLyajFhQZLbjTM5KhVwR9cmAICQAN9LWFtq1rGWAdiR5frFMI2H7Ftaa+tauc5svp+asCc4sZYYyS0qxcJNJ1FUanlEm6u5I+so5/B7T8Tghoi8WvWzbEDrSNF242dpZN0AtGxYFxue7o9NL9zsvsq5iaUgRtznxnz/7FWHzba9vfYI/jlTIEu9jBcDNR3OrtMLWLz5JHaeuuTUuUsrdDh0rkj2jtHzNx7Ha78dwks/HZD1vJ5k5q8H0e6VNTjpZXMBOYLBDRH5hDu7NbG4b+GEngCAFpF1ERbk764quY09j3epbMCnf50w2zZ/43Hc/tFmGWolZpq5+d+uM5j56yHcvzDdqfON/mwbbv3gb/yy75wc1TNjur6XO7m6z83izVmo1Av4cMMxt17XnRjcEJFPUKtV+O3/bpTc1y4m1M21cS97mqWUeHAZB1Smwc0hCwuL2mvf6QIAwA87zZersFkvD3yKy93VJ6ewFH3mbMDHaZkyn9k7MLghIq/WKirE8LpJPen+N77O8x7VVYxjiLSMPFwts9yp+PoxnnE3nlKPao5WZ976ozhbcA1vrcmw+xhf6kzN4IaIvNLPk/vgtZEdMbhDlGGbn4Whxqbe+k9nV1VLEUu3ZNksY/XZaOHJeaG4DNkXnZ/3xfisr/x8EI9+vcv2MR4SUyhZDTm+B5VOzIzoKd97OfjesAEiqhUSYsPNllyQWmNKyt09YvHcj/+4oFbK+O/v5h2DAdNmKcefXD1fX+9UfQRBgF4wv6bxMhIWm9KcuqJjvPEZ7khWpUKnxwYF+wx5AmZuiMhn+Mu8Ori1TsrextoDXe6H/V0LtmLAOxtRoZN3VuQDZwvx8sr9yL9SZrGMSqbeK0pmMWo6FPzD1GO4ZMfirnJ9rzwRgxsi8hlqtf2/rGfe3sFmmXfvTqhJdRSn1CzNO09dxulL13A4x/FOw9YyTLd9uAlfb8vGtBXmi4VW6vQotLLaek0UXqtA6uFct80NU9PA6n+7z8pTES/G4IaIfMr4pGa4pX2Uzcn6okItr3UEAA/0aQ4AmDG8vWx1czd7R0tdsTJ7sKtYqs+W4xclsw6//XN9yHdGTrHZ/ls/+BsJM/9AbpH0IqMO188oMBz7xTY8uHQnPkw9ZuUI1/Kl/jDuwOCGiHzKzBEd8fm4HmaTxpmytobQf7o3wcvD2gEAUvo0tzjE3JPd98V2kyUPpL8fJ/Ov4oQHTeY2blE6bnonzfC+OpMz5Zs9Vo87mnsFAJBXbLnJylkHzlZloFburfmcOnlFpXj1l4PIzDMP0KrVNI7xpVFPzmKHYiLySbYGi1j7/R8fWVfUxKX2wqfFpsx8UYBnKdb7ZvspN9XIftXNS5evluO2DzdheEIjWc9vTxZEqowczXyPf7cH205cwrfp2cj471DDdi/8EfNozNwQkU+ylblpbTQ/jinTB423PniM+6BY+m4E+mvcUxkT9gQKizafxNmCa1jw53E31Mg9/jlTCAAoq7Tcf8fT5tjxRgxuiMgn2Xo+xEXUwcdju9l1Lm/M3AD2ZSgsBTezfj0kc20c58xcLfawJ3hQdJ6bGh7vpT+usmJwQ0Q+SWfHA+zWTjEY1inGbLvps8FbHxbG34HLFoYGB2ulg5tFm0+6oEaOsfQRuuXzkLi2HEOnvTVQ9jYMbojIJ70+siMA4PGBrayWq9SbNw/4yvPHOEMx+rNtkmVc+bCVOvPpSyW4f+F2rLBjuLJSQ9ktXVuO+tjz3a5pq5Qvz19jLwY3ROST7unVFDtfTsbUW1pbLXdX91gAQOcmYYZtjjwcWkTWca6CHsJW3yS5vbDiH/x9LB8l5TrbhV1UNQFAaYUOk5btwg87T0s2U3lztxd741VfCeKlMLghIp8VUdf6XDYAkNw+Cuue6ofvH0kybDP9pW/tQSf3rMhyOmnHEO+ZLuxbI/VtO18gzzw0NbVsezZW7c/Bsz/+45JA5kpZJaat2I8tmfniHXalbuSvT23juf8riYjcpFVUiKhjbbMG4myMteYIPzvXs1KCtRE53sCVz/hLV6/PhyN1HanOzI4EQfPWHcW36dm494vtou2WflqMA2rpJjH72fsTaXw/l6+WY+/pAgeu4tk4zw0R0b++fyQJ/5wpQHK7hnYfo/Xj34gOcSAWtHdI9BFHl3kQAOOVFCw1zRWVViA00N+xc//r1CXp1dStTR6ppL5vbcSVMvfPVO0q/F9JRPSvXs3r46G+LRx6ANW1scxDbSYVnDjyaLc3U/L+eseXRTAOaHaduixZZsfJS2b1mfHzAXybnu3w9arZ86NV4w7Fdv78GhfzpcAGYOaGiKhGNA4s1lnb1HSdSVc2S+mNmp1+tnNZhbMF17B0a9WMzmN6NXXquu74aeFPJDM3REQ2Gf8l/eGYrhjVtTHUKmDl5D7QeGgzgyeo6UgsS4efulhiV7lq+04X4PiFK6JtxvMg6S1MFuiKjsb2ZFXYn7jmmLkhIrLB+CE3qEMUbuscg1dHdEBooD8zN1ZINks5EAzKMa9MblEpRszfbLbdOKCxNOGjUkGGpy2/cKWsEu/+kYHhCY3QrWk9patjF2ZuiIgcoIIKKpXK0NHUOLgJ9OevVGM1XT3B3me8tSBIaji8AHFAY+k6NQkyLB3qlljY3nlu7DzdO2szsHhzFkZ9vMXpKrkb/ycSETnA9OHULibU8LpFRF0318azpZt0yHUVazFIhYWOP/aMlnImtCmt0GFLZr7kzNdVzEOKC8VlyDZqavOsvA2QmXfFdiEPw2YpIiIbjDMDps0qD/drgUqdHje3i8KLK/a7u2oebcmWLLNtjo2Wsv2Yt9XKNX5Rus1z6yykmE5csD0Joqn/+3YP1h3Ktbhfqr49X1/v8HWsYUMpMzdERA4xzdwE+mswdVAbdIkNd3g6+98fv1G+inkJR75H5XYOt7IWAknFLYIgiAIaS8e/ueaIXdc3Zi2wsZe7hoLL5bO/juOJ7/ZY7JitBAY3REQ2GD9s5HxwdGgUZrtQLbX3dAG+TT9tV1lnggHRaCkZOvDmFZXika922ixn3+oLnhMkALbr88aqI/h57zlsMl1qQkEMboiIZMJR4bbZuyjpSIkRTlI2Z+aj8Fq5Q3UQIB4tJUfG4cWfDmDtQdtZG1euwq60cg9a7oPBDRGRDS0b1oVaZd9CnFL+evYmmWvkvTJyi2U9n14AdmRJzzBs67jrry0HN5eu2hc4nSu4Zlc5e2KbBWknLPYDsusaJu91egEPf7kTc9cddfqc9vCkddYY3BAR2RDor8HBmUOw5YWbrZYzzko8M6i14XXTBsEuqxs5xzh0sNa1p9tr61xeF1OLNp/EDzvta5KTYhpA/X3sAv44lIsPUh1fpsIW447ZfmrPCSk8pyZERB4sSKtxaJHMxBYNRO8TmtS8f82Pjybh2cFtanweEiur1NX4HPa2Ntmb2ziSI85w1aRbUGlFze/PEuMMEzM3JubPn4+4uDgEBgYiMTER6enSQ/dMfffdd1CpVBg5cqRrK0hEZIcJveMAAH1bRaBnXH0sf/gGbJs2EIDjc5f8PLkPPru/u2ibSqVC/9aRMtS0drD2UDfOOJS5sa+IaYd0S8PdLc3PY9c1YHoNS3Vx7nzGKnTXT+7vQcGN4vPcLF++HFOnTsWCBQuQmJiIefPmYfDgwcjIyEDDhg0tHpeVlYVnnnkGffv2dWNtiYgsG9WtMTo1CUNcgzoAxNkb4wdMgzpatI0JsXouAUBMWJBomw/3RXWJW9//W3K76cNejuDG2c/GUuBRkz43pmo8U7SV0Nx4uD6bpYzMnTsXEydOREpKCtq3b48FCxYgODgYixYtsniMTqfD2LFjMXPmTLRo0cKNtSUiskylUqF1VIhk85XxA2LbiwPx9YOJVs9VqdOjnUkApFapGOA44ITE0gtS9p0ucG1FjJh+fpY6MxtnRGwRBAGbM/ORW1Tq0DVqOgJ+S2Y+Emb+YXjvSeusKRrclJeXY9euXUhOTjZsU6vVSE5OxtatWy0eN2vWLDRs2BAPPvigzWuUlZWhqKhI9EVE5G7GDxJ/jdrmfDnlOj38NGrUDbieYFfB/qHU5JlMP3ZL8YXO4vINVWavPowv/j4BAEg7egFjv9iOxDdSJcvKMY+PlPsWbnfJeeWgaLNUfn4+dDodoqKiRNujoqJw5Ij0zJCbNm3CwoULsXfvXruuMXv2bMycObOmVSUiqhF/jWN/S1b++5e78cNQpWLTlBxcMUmevUGncbmvt51Cx8bSHc0rTdqSjOu873QBPv2zKrBZdygXjeuJmy9N1bTPjSUeNCGxGcWbpRxRXFyM+++/H59//jkiIiLsOmbatGkoLCw0fJ0+7fzwOiIiZ731n85oHB6Et+7sbFd5Q58LowcIm6V8y8srD1icrLDSqFnq571nsXhzluH9I1/tMrzefvISVuw+KzrWrNOym2Y8dlGCyCmKZm4iIiKg0WiQmyue1TE3NxfR0dFm5Y8fP46srCwMHz7csE3/b+rOz88PGRkZiI+PFx0TEBCAgADnJt4iIpJL66gQbLYxT871snXRu2VVZ+TZd3bClG/2GPaxWcr7jPlsG5Y9lAi1WmW2NpklGzPycKWsEnUD/PDEd3tF+3L+7VtjLxstXLLxpGUjFM3caLVadO/eHamp19sJ9Xo9UlNTkZSUZFa+bdu22L9/P/bu3Wv4uv3223HTTTdh7969iI2NdWf1iYhcYu2T/RDgpwEAJDa/PuKKmRt5CILjQ/NrYuuJizh0vqq/p71rk5VV6nH/wu2GfjU14ao+N55M8aHgU6dOxfjx49GjRw/06tUL8+bNw9WrV5GSkgIAGDduHBo3bozZs2cjMDAQHTt2FB0fHh4OAGbbiYi8lfEDUK4BKLNGdMD0nw/KczIvJwjA7/+cd+s1yyr10OsFnLRzBBcA7MkuwJ7sAoevZfojYxzbGM/9Y28W0N7YyJNiKMWDm9GjR+PChQuYPn06cnJy0KVLF6xZs8bQyTg7OxtqDxo7T0TkSje1EU/SZzy8tirt71y0MzaxGYObf5XXYII8S2wlZCp1eizbfkr269pTF+PMzf92n3HZdT0otlE+uAGAKVOmYMqUKZL70tLSrB67ZMkS+StERKSAT+/vjj4txYMljLM4gmB9crdb2kdh3SHplak9aQ4SX2Tru1uhE/D22gy31MWU8U9MaYXeaLu84Yil2ZaVwJQIEZGHGNwhWjSvDWAelFgLbj4c0xWLJvRwSd1ITO/gOOhNmfkoKq10UW3ErGVuXBnifpd+Gn8czHHhFezH4IaISEGto+oCAOIj60juN45tbGVuAv016B1v3zQZthivak7mJizZ4VD5r7e5p0lKirvmo1m+8zQeNhqmriSPaJYiIqqtlqT0wtItWRj376KbptQqcZ8b08ndTMnR/NQzrh4a1OUUGtb8dfSC6L3ORpPMlTL3ZG0A847C6ScvXd+nMi/3lY3AyxtH6DFzQ0SkoEbhQZh2azs0DpeeZVZt0ufGuInhywd6mZW3NhPyW//pjIl9myMk0PrftYLg2uYLX3TgrOcs7WMajPy679z1fRLlX1l5wOr5PKgrjd0Y3BAReTDxaCnxzLX9WkdifFIzs2Mev7ml5Lnu7hGLl4a1lwyAujYNF12naf1gp+tMnsveeXa8HYMbIiIPJu5zI8BPY9LBWOLP6kk3tcSj/ePRPEK6H8+DNzY326YxeeglxTfAzNs74K7uTZyoNSnJWvhi3ETljIycYo8aFWUJgxsiIg9m/Je2XgC6N62HQe2j8Gj/qqVmbvx36LhxhifQX4MXhrZF92b1JM/5UF/z4EZtEtyoVCqM7x2HpPgGZmWHJzRy/EbII/y+//rkhc4kcQbP+wtfblWuc7S9GNwQEXkNAWq1Cp+N64EXhrYFUDV8fElKT2yRWLeqW1Pp4MY0SwMALYxGa9UL9je8Ni1av44Wr43o4EzlyV0ciFoy865Ibv9+x2mM+GgT8iTWsZrxy0GPz95wtBQRkZeQep6oVCoMaNNQsvzonrFQqYCecfXNjqn2wZiuiI+sg5AAf3y34zQAoHOT8OtljRo5Ds0ajGBtzR4bXz7QCx9tzKxx8whZZm9oIwjAC//7R3Lfc/9utzTxYPNpq5ypmtswuCEi8hKtGoY4VF6jVmFMr6Zm240ffs3qB6NDozAAwPv3dMG2ExfxSP8WkuczDmwiQwJwobjMofoAQNuYENzZrTGDGxdxdImHYhsTC5aU6xweLSUIguIdlxncEBF5uP2vDkJphR5hRs1FNSGa68To9YgujTGiS2OLZY1tfv5mtH55tUPXraPVoGFIoFcOLfYWL/10AF1iw+0qq1IBpZU62wUdJAjKz43D4IaIyMOFBPojJFC+84lXHbf+FLL0F7jWz/Eum6N7mmeRSH6OBBbGq4TLxRNiV3YoJiIii6w9J+ff2030/s07O+GZQa3xZHIryfIXr1Y1Yyn9Vz1dV1ZpY4V0Jz4rT+hszOCGiKgWiw5zPiU0rHOM6H1yuyhMubkV/u9m6eDGVpaoptpEOdYnyVc58l1m5oaIiHzGb/93I75/JAkRNtaQciYe0ahVeG90gtn2py0sxjmofZTjF5HAjFAVezvz2lqIFXBuGQ49MzdERKSEjo3D0Kt5fZvlTBdhtMbPaFkH4+HnQztG489nB6BJvWDJc86Uad4cV2eGvMWuU5ftKqcXBLs6dzv6bfWA2IYdiomIyDJbDza1qmrmZAAIC7o+mqtJvWD8+ewAhAX5IzxYa+Mc8gQlav657hCdINjVhOQJwYqj+KNAREROG90zFgDQp6X5Mg3NGtSRDmxMYhm5Ei7M3DhGEGx3/nVmvhpPCIaYuSEiIouqm5dCA6UfFzOGd0D/1g0lgxt7yRWUMLRxjN7OzI2jXHNWxzC4ISIiiyJDArDz5WTUsbDsQqC/BkM6RtfoGrIFN8zcOEQvuCbL0mXWOnwythsGtpOno7gz2CxFRERWRdQNQJBWI9v5TEMQtUwxicbBEzWPqINdLyfLc3EvZM+oJmc+mvJKPR5cutOJI+XD4IaIiBSlggoTesfV+Dy3doqxXcjIhqf7o4GNofC+zBMm23MVBjdERKQolRpoUi+oxue559/OzXZft5Y3Y609mGtXOU/oQ+MoBjdERORWpkGFVqPGyK6N4a9R4RYnJvTb/uJAbHr+JtQJYDdSR9iawM+bMbghIiK3amS05MMnY7sh0F+DiLoB2P/qYHx2f3ez8qO6NjbbZiwqNNAwQSARwNFSRETkZknxDTBtaFu0jgrBTW0bGrYH+kt3Wp47ugsahQfho42Zdl+jYUgALpeUo0Lnu9kJd/DWljtmboiIyK1UKhUe6R8vCmxsmXRTPG5sGeHwdSxZ82Rfh85VU92b1XPr9Wo7BjdEROTxgrV+WJzS0+7yAiwPY25SLwhto0NlqZc9/DUqzBvdxW3Xk5OXJm4Y3BARkWf5eXIfye3+GjU+H9cDfVvZl8GxlLh58MbmzlbNKRufGWCxyc3Trdx7Dt7Y75jBDREReZSE2HB0bRouue+W9lG4u4ftId+CYHlFc2vTu0y5qaU9VXRIRN0Arx6ZlH7yktJVcBiDGyIi8jgP920BAA4PDR/WuWoiv0f6tbCYubEWZrRvJG6uem5IG4euL0WjViEqNMBiwEbyY3BDREQeZ2inGPz93E1YcJ/50HBr5o3ugtVP9MVDfZtb7C/Sw0rn3g4mwc2ILteHob9zV4JDdammUamgUqmw4rHeZvvaxbiv709twqHgRETkkWLrS89dUy9Ya/EYf43aEDAkxTfA+sN5hn3/d3NL9G8diYTYcIvHN2tQB79OuREbjuQhOiwADepcv1aDupava4363zWvpEZv3dY5BofPFzl1XrKMwQ0REXmVPi0bICYsEOcLS62We/s/CVi8JQsfpB4DAMSEBaFHXH2b5+/UJAydmoQBACp0esN2vQv6zTi62Ke3UPq2GNwQEZFXUalU2PLCzfhx1xmrWZh6dbSYektrQ3ATGuT4I09jlG1xplPwTW0i7T6/L1E6aGNwQ0REXkelUuEuO0ZNAcDM2ztgd/ZlDO3o2KrhwPUmJQDQO7GK9qIJ1ufm8dHYRvFFSdmhmIiIfNr43nF4/56uNc4mGLVQWRUe7G94beshr1GrMGN4+5pUyyNpNcqGFwxuiIioVnt8YCsAwFPJra2W0wkCEptb7rPz5QO9sOWFmxEa6G+xjCm1SoVG4UF2l7ekVcO6NT6HnEIClW0YYrMUERHVak8lt8Jd3ZugST3rQYZeL+DbiTegUi+g7SurzWbuDQvyR6PwIFTam+JBVbOXHFkOtYe1b9UNUDa8YOaGiIhqNZVKhdj6wTabkHR6oSoY8VOjjtb84V3dHFVhpePxsocSMTyhkeG9RqVCkLbmSzN4WGyDugpnbhjcEBER2UFn1KH4+aFtAQD33dAU8+/thtdGdkSzBnUAwGrmpk/LCHw4pqvhvVoFyUDJUU8mt6rxOeTkr1Y2vGCzFBERkR2M57m574Zm6N86Eo3Dg0QjqgCgY+Mw/H0sH/4a2+kUtaoqE1RTfVpGYO/0W/DHwVw8979/any+mlI6k8TMDRERkR10JkPBY+sHmwU2APDuXQmY0DsOqx7va/OcCbHhCHAiuPnmoUQEGa00rlapEB6slayPlGcH13zNLGsY3BAREXmw6uAjqUUDu8o3DA3Eq7d3QKuoEItlNr9wM1ZM6o020SFoWj8YN7SwPXOysd4tI7D0gV6G99XD3AU75+KJj6zj0PW8DYMbIiIiK3a8nIy0ZwagRaR8w60bhwehW9OqBTzVahW+ezgJE3rH2XXsw/2qVkw3bvaqzpSUVkr393nrzs6i97ZioIdubG5XXSxRevQWgxsiIiIrQgP9ERfh+kyHad+b9+/pIlkuLKhqVJa/0RDy6mCipKxS8pgOjUPxn+5NDO9trSTRtoarlbNZCsD8+fMRFxeHwMBAJCYmIj093WLZFStWoEePHggPD0edOnXQpUsXfPXVV26sLRERkfzaxYibsSxlV1L6xAEQBzfVsUR0WKDkMSqoUGaU1RFgPbqxpzO0NSrU8szN8uXLMXXqVMyYMQO7d+9GQkICBg8ejLy8PMny9evXx0svvYStW7fin3/+QUpKClJSUrB27Vo315yIiEg+IxIa4+Vh7QzvW0rMOnxTm0gE/zt0vGXDuujQKBRJLRoY+twM7RiDyTfFS56/vFJneG0rc1PTSfhqfeZm7ty5mDhxIlJSUtC+fXssWLAAwcHBWLRokWT5AQMG4I477kC7du0QHx+PJ554Ap07d8amTZvcXHMiIiL5qNUqPNS3BX5//EZ8en93dGwcZlbGOCbRqFX47f9uxDcTEw0TEGr91Hh2cFuz4/SCgJFdGgMA2kSF2Ox4XD1nj7dSNLgpLy/Hrl27kJycbNimVquRnJyMrVu32jxeEASkpqYiIyMD/fr1kyxTVlaGoqIi0RcREZGn6tAoDIM7REvuM41JVCqV5MzKi1N6Ys6oTqLjhnSMxi9T+mDFpN5WOxR3aBRqM/Nyl1H/HU+kaHCTn58PnU6HqKgo0faoqCjk5ORYPK6wsBB169aFVqvFsGHD8OGHH+KWW26RLDt79myEhYUZvmJjY2W9ByIiInfR2znU+6Y2DTGya2PRcSqVCp2bhKNOgJ/N89ha+LJHXD2r++2spsso3izljJCQEOzduxc7duzA66+/jqlTpyItLU2y7LRp01BYWGj4On36tHsrS0REpACN0YR+psGMreCjYUggWtRgLhxbHZZdTdHlFyIiIqDRaJCbmyvanpubi+ho6ZQcUNV01bJlSwBAly5dcPjwYcyePRsDBgwwKxsQEICAgABZ601ERKQERzIiGpVxcCPeZ08G6I8n+6HlS6udqofe/oXRXULRzI1Wq0X37t2Rmppq2KbX65GamoqkpCS7z6PX61FWVuaKKhIRESnGtG/LMw4sm2C8FINpB+KIurb/6PfTqHHfDU0l99kKjWp15gYApk6divHjx6NHjx7o1asX5s2bh6tXryIlJQUAMG7cODRu3BizZ88GUNWHpkePHoiPj0dZWRlWrVqFr776Cp988omSt0FERCS710Z2xNBO0UhqEQGVCgg0Wk/KEaaZmwFtIvFwvxYoLq3At+ni7hrGcdCM4R2gVqnw5dZTFsvYcz13Uzy4GT16NC5cuIDp06cjJycHXbp0wZo1awydjLOzs6E2Wjr96tWrmDRpEs6cOYOgoCC0bdsWX3/9NUaPHq3ULRAREblEoL8GN7eNsl3QhmCtOChSqVR48dZ2EAQBAX4atI4KwYs/7Tc7zl+jxvTb2psHN7YyMwoHNyrB3lW2fERRURHCwsJQWFiI0NCaTS9NRETkyb7adgpnLpdg2tB2NsvGvfA7gKqh4L8brWguCAKaT1slKpv6dH8MfPdPi+fq0awefnyst5O1lubI81vxzA0RERG5xv03NHP4GKm5dKq9c1cCujUNR4vIunigT3Ms2nwSgztEYe1B8cAge4esu4pXDgUnIiIi96sboDGsjj59eHsceW0IOjYyn0m5enFPpTC4ISIiIrvoTIZ4B/prMKBNQ7Nyi1N6ualG0hjcEBERkV0ahpoPIe/UxDxzozT2uSEiIiK0iKyDExeu4raEGLN9C8f3QGbeFfRoZn3ZBU/B4IaIiIiw4rHe2Jl1GQPaRJrtG9guCgPb2TckPSE2XOaaOY7NUkRERITwYC2S20fBT+N4aPDQjc0Nrz1hhhkGN0RERFQjL956fR4dpYeBAwxuiIiIqIaM17EyHVGlBAY3REREJBs2SxEREZFPYbMUERER+RStn/KhhfI1ICIiIq83b3QXxDUIxrt3dVG6KpznhoiIiGpuZNfGGNm1sdLVAMDMDREREfkYBjdERETkUxjcEBERkU9hcENEREQ+hcENERER+RQGN0RERORTGNwQERGRT2FwQ0RERD6FwQ0RERH5FAY3RERE5FMY3BAREZFPYXBDREREPoXBDREREfkUBjdERETkU/yUroC7CYIAACgqKlK4JkRERGSv6ud29XPcmloX3BQXFwMAYmNjFa4JEREROaq4uBhhYWFWy6gEe0IgH6LX63Hu3DmEhIRApVLJeu6ioiLExsbi9OnTCA0NlfXcnsDX7w/w/Xvk/Xk/X79HX78/wPfv0VX3JwgCiouL0ahRI6jV1nvV1LrMjVqtRpMmTVx6jdDQUJ/8ga3m6/cH+P498v68n6/fo6/fH+D79+iK+7OVsanGDsVERETkUxjcEBERkU9hcCOjgIAAzJgxAwEBAUpXxSV8/f4A379H3p/38/V79PX7A3z/Hj3h/mpdh2IiIiLybczcEBERkU9hcENEREQ+hcENERER+RQGN0RERORTGNzIZP78+YiLi0NgYCASExORnp6udJXsMnv2bPTs2RMhISFo2LAhRo4ciYyMDFGZAQMGQKVSib4effRRUZns7GwMGzYMwcHBaNiwIZ599llUVla681YsevXVV83q37ZtW8P+0tJSTJ48GQ0aNEDdunVx5513Ijc3V3QOT76/uLg4s/tTqVSYPHkyAO/7/P766y8MHz4cjRo1gkqlwsqVK0X7BUHA9OnTERMTg6CgICQnJ+PYsWOiMpcuXcLYsWMRGhqK8PBwPPjgg7hy5YqozD///IO+ffsiMDAQsbGxeOutt1x9awbW7rGiogLPP/88OnXqhDp16qBRo0YYN24czp07JzqH1Oc+Z84cURml7tHWZzhhwgSzug8ZMkRUxps/QwCS/ydVKhXefvttQxlP/QzteS7I9XszLS0N3bp1Q0BAAFq2bIklS5bIcxMC1dh3330naLVaYdGiRcLBgweFiRMnCuHh4UJubq7SVbNp8ODBwuLFi4UDBw4Ie/fuFW699VahadOmwpUrVwxl+vfvL0ycOFE4f/684auwsNCwv7KyUujYsaOQnJws7NmzR1i1apUQEREhTJs2TYlbMjNjxgyhQ4cOovpfuHDBsP/RRx8VYmNjhdTUVGHnzp3CDTfcIPTu3duw39PvLy8vT3Rv69atEwAIGzduFATB+z6/VatWCS+99JKwYsUKAYDw008/ifbPmTNHCAsLE1auXCns27dPuP3224XmzZsL165dM5QZMmSIkJCQIGzbtk34+++/hZYtWwpjxowx7C8sLBSioqKEsWPHCgcOHBC+/fZbISgoSPj0008Vv8eCggIhOTlZWL58uXDkyBFh69atQq9evYTu3buLztGsWTNh1qxZos/V+P+tkvdo6zMcP368MGTIEFHdL126JCrjzZ+hIAiiezt//rywaNEiQaVSCcePHzeU8dTP0J7nghy/N0+cOCEEBwcLU6dOFQ4dOiR8+OGHgkajEdasWVPje2BwI4NevXoJkydPNrzX6XRCo0aNhNmzZytYK+fk5eUJAIQ///zTsK1///7CE088YfGYVatWCWq1WsjJyTFs++STT4TQ0FChrKzMldW1y4wZM4SEhATJfQUFBYK/v7/www8/GLYdPnxYACBs3bpVEATPvz9TTzzxhBAfHy/o9XpBELz78zN9aOj1eiE6Olp4++23DdsKCgqEgIAA4dtvvxUEQRAOHTokABB27NhhKLN69WpBpVIJZ8+eFQRBED7++GOhXr16ovt7/vnnhTZt2rj4jsxJPRhNpaenCwCEU6dOGbY1a9ZMeO+99ywe4yn3aCm4GTFihMVjfPEzHDFihHDzzTeLtnnLZ2j6XJDr9+Zzzz0ndOjQQXSt0aNHC4MHD65xndksVUPl5eXYtWsXkpOTDdvUajWSk5OxdetWBWvmnMLCQgBA/fr1RduXLVuGiIgIdOzYEdOmTUNJSYlh39atW9GpUydERUUZtg0ePBhFRUU4ePCgeypuw7Fjx9CoUSO0aNECY8eORXZ2NgBg165dqKioEH1+bdu2RdOmTQ2fnzfcX7Xy8nJ8/fXXeOCBB0QLw3r751ft5MmTyMnJEX1eYWFhSExMFH1e4eHh6NGjh6FMcnIy1Go1tm/fbijTr18/aLVaQ5nBgwcjIyMDly9fdtPd2K+wsBAqlQrh4eGi7XPmzEGDBg3QtWtXvP3226KUv6ffY1paGho2bIg2bdrgsccew8WLFw37fO0zzM3Nxe+//44HH3zQbJ83fIamzwW5fm9u3bpVdI7qMnI8O2vdwplyy8/Ph06nE32AABAVFYUjR44oVCvn6PV6PPnkk+jTpw86duxo2H7vvfeiWbNmaNSoEf755x88//zzyMjIwIoVKwAAOTk5kvdfvU9piYmJWLJkCdq0aYPz589j5syZ6Nu3Lw4cOICcnBxotVqzh0ZUVJSh7p5+f8ZWrlyJgoICTJgwwbDN2z8/Y9X1kaqv8efVsGFD0X4/Pz/Ur19fVKZ58+Zm56jeV69ePZfU3xmlpaV4/vnnMWbMGNEihI8//ji6deuG+vXrY8uWLZg2bRrOnz+PuXPnAvDsexwyZAhGjRqF5s2b4/jx43jxxRcxdOhQbN26FRqNxuc+w6VLlyIkJASjRo0SbfeGz1DquSDX701LZYqKinDt2jUEBQU5XW8GN2QwefJkHDhwAJs2bRJtf/jhhw2vO3XqhJiYGAwcOBDHjx9HfHy8u6vpsKFDhxped+7cGYmJiWjWrBm+//77Gv3n8UQLFy7E0KFD0ahRI8M2b//8arOKigrcfffdEAQBn3zyiWjf1KlTDa87d+4MrVaLRx55BLNnz/b4af3vuecew+tOnTqhc+fOiI+PR1paGgYOHKhgzVxj0aJFGDt2LAIDA0XbveEztPRc8HRslqqhiIgIaDQas17iubm5iI6OVqhWjpsyZQp+++03bNy4EU2aNLFaNjExEQCQmZkJAIiOjpa8/+p9niY8PBytW7dGZmYmoqOjUV5ejoKCAlEZ48/PW+7v1KlTWL9+PR566CGr5bz586uuj7X/b9HR0cjLyxPtr6ysxKVLl7zqM60ObE6dOoV169aJsjZSEhMTUVlZiaysLADecY/VWrRogYiICNHPpC98hgDw999/IyMjw+b/S8DzPkNLzwW5fm9aKhMaGlrjPzwZ3NSQVqtF9+7dkZqaatim1+uRmpqKpKQkBWtmH0EQMGXKFPz000/YsGGDWQpUyt69ewEAMTExAICkpCTs379f9Muo+pdx+/btXVLvmrhy5QqOHz+OmJgYdO/eHf7+/qLPLyMjA9nZ2YbPz1vub/HixWjYsCGGDRtmtZw3f37NmzdHdHS06PMqKirC9u3bRZ9XQUEBdu3aZSizYcMG6PV6Q2CXlJSEv/76CxUVFYYy69atQ5s2bTyiOaM6sDl27BjWr1+PBg0a2Dxm7969UKvVhuYcT79HY2fOnMHFixdFP5Pe/hlWW7hwIbp3746EhASbZT3lM7T1XJDr92ZSUpLoHNVlZHl21rhLMgnfffedEBAQICxZskQ4dOiQ8PDDDwvh4eGiXuKe6rHHHhPCwsKEtLQ00XDEkpISQRAEITMzU5g1a5awc+dO4eTJk8LPP/8stGjRQujXr5/hHNVD/gYNGiTs3btXWLNmjRAZGekxQ6WffvppIS0tTTh58qSwefNmITk5WYiIiBDy8vIEQaga0ti0aVNhw4YNws6dO4WkpCQhKSnJcLyn358gVI3Qa9q0qfD888+Ltnvj51dcXCzs2bNH2LNnjwBAmDt3rrBnzx7DSKE5c+YI4eHhws8//yz8888/wogRIySHgnft2lXYvn27sGnTJqFVq1aiYcQFBQVCVFSUcP/99wsHDhwQvvvuOyE4ONhtw4it3WN5eblw++23C02aNBH27t0r+n9ZPcpky5YtwnvvvSfs3btXOH78uPD1118LkZGRwrhx4zziHq3dX3FxsfDMM88IW7duFU6ePCmsX79e6Natm9CqVSuhtLTUcA5v/gyrFRYWCsHBwcInn3xidrwnf4a2nguCIM/vzeqh4M8++6xw+PBhYf78+RwK7mk+/PBDoWnTpoJWqxV69eolbNu2Tekq2QWA5NfixYsFQRCE7OxsoV+/fkL9+vWFgIAAoWXLlsKzzz4rmidFEAQhKytLGDp0qBAUFCREREQITz/9tFBRUaHAHZkbPXq0EBMTI2i1WqFx48bC6NGjhczMTMP+a9euCZMmTRLq1asnBAcHC3fccYdw/vx50Tk8+f4EQRDWrl0rABAyMjJE273x89u4caPkz+T48eMFQagaDv7KK68IUVFRQkBAgDBw4ECz+7548aIwZswYoW7dukJoaKiQkpIiFBcXi8rs27dPuPHGG4WAgAChcePGwpw5c9x1i1bv8eTJkxb/X1bPXbRr1y4hMTFRCAsLEwIDA4V27doJb7zxhig4UPIerd1fSUmJMGjQICEyMlLw9/cXmjVrJkycONHsj0Fv/gyrffrpp0JQUJBQUFBgdrwnf4a2nguCIN/vzY0bNwpdunQRtFqt0KJFC9E1akL1740QERER+QT2uSEiIiKfwuCGiIiIfAqDGyIiIvIpDG6IiIjIpzC4ISIiIp/C4IaIiIh8CoMbIiIi8ikMboio1omLi8O8efOUrgYRuQiDGyJyqQkTJmDkyJEAgAEDBuDJJ59027WXLFmC8PBws+07duwQrZZORL7FT+kKEBE5qry8HFqt1unjIyMjZawNEXkaZm6IyC0mTJiAP//8E++//z5UKhVUKhWysrIAAAcOHMDQoUNRt25dREVF4f7770d+fr7h2AEDBmDKlCl48sknERERgcGDBwMA5s6di06dOqFOnTqIjY3FpEmTcOXKFQBAWloaUlJSUFhYaLjeq6++CsC8WSo7OxsjRoxA3bp1ERoairvvvhu5ubmG/a+++iq6dOmCr776CnFxcQgLC8M999yD4uJi137TiMgpDG6IyC3ef/99JCUlYeLEiTh//jzOnz+P2NhYFBQU4Oabb0bXrl2xc+dOrFmzBrm5ubj77rtFxy9duhRarRabN2/GggULAABqtRoffPABDh48iKVLl2LDhg147rnnAAC9e/fGvHnzEBoaarjeM888Y1YvvV6PESNG4NKlS/jzzz+xbt06nDhxAqNHjxaVO378OFauXInffvsNv/32G/7880/MmTPHRd8tIqoJNksRkVuEhYVBq9UiODgY0dHRhu0fffQRunbtijfeeMOwbdGiRYiNjcXRo0fRunVrAECrVq3w1ltvic5p3H8nLi4O//3vf/Hoo4/i448/hlarRVhYGFQqleh6plJTU7F//36cPHkSsbGxAIAvv/wSHTp0wI4dO9CzZ08AVUHQkiVLEBISAgC4//77kZqaitdff71m3xgikh0zN0SkqH379mHjxo2oW7eu4att27YAqrIl1bp372527Pr16zFw4EA0btwYISEhuP/++3Hx4kWUlJTYff3Dhw8jNjbWENgAQPv27REeHo7Dhw8btsXFxRkCGwCIiYlBXl6eQ/dKRO7BzA0RKerKlSsYPnw43nzzTbN9MTExhtd16tQR7cvKysJtt92Gxx57DK+//jrq16+PTZs24cEHH0R5eTmCg4Nlrae/v7/ovUqlgl6vl/UaRCQPBjdE5DZarRY6nU60rVu3bvjf//6HuLg4+PnZ/ytp165d0Ov1ePfdd6FWVyWhv//+e5vXM9WuXTucPn0ap0+fNmRvDh06hIKCArRv397u+hCR52CzFBG5TVxcHLZv346srCzk5+dDr9dj8uTJuHTpEsaMGYMdO3bg+PHjWLt2LVJSUqwGJi1btkRFRQU+/PBDnDhxAl999ZWho7Hx9a5cuYLU1FTk5+dLNlclJyejU6dOGDt2LHbv3o309HSMGzcO/fv3R48ePWT/HhCR6zG4ISK3eeaZZ6DRaNC+fXtERkYiOzsbjRo1wubNm6HT6TBo0CB06tQJTz75JMLDww0ZGSkJCQmYO3cu3nzzTXTs2BHLli3D7NmzRWV69+6NRx99FKNHj0ZkZKRZh2Sgqnnp559/Rr169dCvXz8kJyejRYsWWL58uez3T0TuoRIEQVC6EkRERERyYeaGiIiIfAqDGyIiIvIpDG6IiIjIpzC4ISIiIp/C4IaIiIh8CoMbIiIi8ikMboiIiMinMLghIiIin8LghoiIiHwKgxsiIiLyKQxuiIiIyKcwuCEiIiKf8v+H7JscVnKRAQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -79957,13 +80020,13 @@ { "cell_type": "code", "execution_count": 13, - "id": "a1b6b062", + "id": "05755c5e", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T20:02:11.152038Z", - "iopub.status.busy": "2024-11-12T20:02:11.151554Z", - "iopub.status.idle": "2024-11-12T20:02:11.864388Z", - "shell.execute_reply": "2024-11-12T20:02:11.863666Z" + "iopub.execute_input": "2024-11-13T17:18:07.115023Z", + "iopub.status.busy": "2024-11-13T17:18:07.114596Z", + "iopub.status.idle": "2024-11-13T17:18:07.783633Z", + "shell.execute_reply": "2024-11-13T17:18:07.782985Z" }, "lines_to_next_cell": 0 }, @@ -79980,7 +80043,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPeCAYAAADj01PlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wU9f0G8Ge2X7+j9450EKWIiqJisNdEjR1L1IQkajSJ/qxYMLYYKxq7xi52BQFBikjvvXc47rhets7vj7vZ/c7szOzs3t7tlef9evnK7e7szOzeouSZzz5fSZZlGUREREREREREREREFMWW6hMgIiIiIiIiIiIiImqsGKITERERERERERERERlgiE5EREREREREREREZIAhOhERERERERERERGRAYboREREREREREREREQGGKITERERERERERERERlgiE5EREREREREREREZIAhOhERERERERERERGRAYboREREREREREREREQGGKITERERETVj119/PXr06JHQcx966CFIkpTcEyIiIiIiamIYohMRERERpYAkSZb+mTt3bqpPlYiIiIioRZNkWZZTfRJERERERC3N+++/r7r97rvvYubMmXjvvfdU95955plo3759wsfx+/0IhUJwu91xPzcQCCAQCMDj8SR8fCIiIiKipo4hOhERERFRIzBp0iS89NJLiPXX88rKSqSnpzfQWREREREREetciIiIiIgaqXHjxmHw4MFYvnw5TjnlFKSnp+Pee+8FAHz11Vc499xz0alTJ7jdbvTu3RuPPPIIgsGgah/aTvRdu3ZBkiQ8/fTTeO2119C7d2+43W6MHDkSS5cuVT1XrxNdkiRMmjQJX375JQYPHgy3241BgwZh+vTpUec/d+5cjBgxAh6PB71798arr77KnnUiIiIianIcqT4BIiIiIiIyVlhYiLPPPhtXXHEFrr766nC1y9tvv43MzEzceeedyMzMxE8//YQHHngApaWleOqpp2Lu94MPPkBZWRluueUWSJKEJ598Epdccgl27NgBp9Np+twFCxZg2rRp+OMf/4isrCw8//zzuPTSS7Fnzx60bt0aALBy5UqcddZZ6NixIx5++GEEg0FMnjwZbdu2rfubQkRERETUgBiiExERERE1YocOHcLUqVNxyy23qO7/4IMPkJaWFr5966234tZbb8XLL7+MRx99NGYH+p49e7B161bk5eUBAPr164cLL7wQM2bMwHnnnWf63I0bN2LDhg3o3bs3AOC0007DsGHD8OGHH2LSpEkAgAcffBB2ux0LFy5Ep06dAACXXXYZBgwYEN8bQERERESUYqxzISIiIiJqxNxuNyZOnBh1vxigl5WVoaCgAGPHjkVlZSU2bdoUc7+XX355OEAHgLFjxwIAduzYEfO548ePDwfoADB06FBkZ2eHnxsMBjFr1ixcdNFF4QAdAPr06YOzzz475v6JiIiIiBoTTqITERERETVinTt3hsvlirp//fr1uO+++/DTTz+htLRU9VhJSUnM/Xbr1k11WwnUi4qK4n6u8nzlufn5+aiqqkKfPn2ittO7j4iIiIioMWOITkRERETUiIkT54ri4mKceuqpyM7OxuTJk9G7d294PB6sWLEC//jHPxAKhWLu1263694vy3K9PpeIiIiIqKlhiE5ERERE1MTMnTsXhYWFmDZtGk455ZTw/Tt37kzhWUW0a9cOHo8H27Zti3pM7z4iIiIiosaMnehERERERE2MMgkuTn77fD68/PLLqTolFbvdjvHjx+PLL7/EgQMHwvdv27YNP/zwQwrPjIiIiIgofpxEJyIiIiJqYk488UTk5eXhuuuuw1/+8hdIkoT33nuvUdWpPPTQQ/jxxx9x0kkn4bbbbkMwGMSLL76IwYMHY9WqVak+PSIiIiIiyziJTkRERETUxLRu3RrffvstOnbsiPvuuw9PP/00zjzzTDz55JOpPrWw448/Hj/88APy8vJw//3344033sDkyZNxxhlnwOPxpPr0iIiIiIgsk+TGNK5CRERERETN2kUXXYT169dj69atqT4VIiIiIiJLOIlORERERET1oqqqSnV769at+P777zFu3LjUnBARERERUQI4iU5ERERERPWiY8eOuP7669GrVy/s3r0br7zyCrxeL1auXIm+ffum+vSIiIiIiCzhwqJERERERFQvzjrrLHz44Yc4dOgQ3G43xowZg8cff5wBOhERERE1KZxEJyIiIiIiIiIiIiIywE50IiIiIiIiIiIiIiIDDNGJiIiIiIiIiIiIiAy0uE70UCiEAwcOICsrC5Ikpfp0iIiIiIiIiIiIiCgFZFlGWVkZOnXqBJvNeN68xYXoBw4cQNeuXVN9GkRERERERERERETUCOzduxddunQxfLzFhehZWVkAat6Y7OzsFJ8NEREREREREREREaVCaWkpunbtGs6MjbS4EF2pcMnOzmaITkRERERERERERNTCxar95sKiREREREREREREREQGUhqiz5s3D+effz46deoESZLw5ZdfxnzO3Llzcdxxx8HtdqNPnz54++236/08iYiIiIiIiIiIiKhlSmmIXlFRgWHDhuGll16ytP3OnTtx7rnn4rTTTsOqVatw++2346abbsKMGTPq+UyJiIiIiIiIiIiIqCVKaSf62WefjbPPPtvy9lOnTkXPnj3xzDPPAAAGDBiABQsW4N///jcmTJhQX6dJREREREREREREjVAwGITf70/1aVAj5XQ6Ybfb67yfJrWw6KJFizB+/HjVfRMmTMDtt99u+Byv1wuv1xu+XVpaWl+nR0RERERERERERA1AlmUcOnQIxcXFqT4VauRyc3PRoUOHmIuHmmlSIfqhQ4fQvn171X3t27dHaWkpqqqqkJaWFvWcKVOm4OGHH26oUyQiIiIiIiIiIqJ6pgTo7dq1Q3p6ep0CUmqeZFlGZWUl8vPzAQAdO3ZMeF9NKkRPxD333IM777wzfLu0tBRdu3ZN4RkRERERERERERFRooLBYDhAb926dapPhxoxZeg6Pz8f7dq1S7japUmF6B06dMDhw4dV9x0+fBjZ2dm6U+gA4Ha74Xa7G+L0iIiIiIiIiIiIqJ4pHejp6ekpPhNqCpTPid/vTzhEtyXzhOrbmDFjMHv2bNV9M2fOxJgxY1J0RkRERERERERERJQKrHAhK5LxOUlpiF5eXo5Vq1Zh1apVAICdO3di1apV2LNnD4CaKpZrr702vP2tt96KHTt24O9//zs2bdqEl19+GZ988gnuuOOOVJw+ERERERERERERETVzKQ3Rly1bhuHDh2P48OEAgDvvvBPDhw/HAw88AAA4ePBgOFAHgJ49e+K7777DzJkzMWzYMDzzzDN4/fXXMWHChJScPxEREREREREREVFzN3fuXEiShOLi4lSfSkqktBN93LhxkGXZ8PG3335b9zkrV66sx7MiIiIiIiIiIiIiIqrRpDrRiYiIiIiIiIiIiKh58fl8qT4FUwzRiYiIiIiIiIiIiBpAKBTClClT0LNnT6SlpWHYsGH47LPPIMsyxo8fjwkTJoSbO44ePYouXbqEq6+DwSBuvPHG8HP79euH//znP6r9X3/99bjooovw+OOPo3379sjNzcXkyZMRCARw9913o1WrVujSpQveeuut8HN27doFSZLw0Ucf4cQTT4TH48HgwYPx888/m76WBQsWYOzYsUhLS0PXrl3xl7/8BRUVFZbehx49euCRRx7Btddei+zsbPzhD3/QrYxZtWoVJEnCrl27ANQ0l+Tm5mLGjBkYMGAAMjMzcdZZZ+HgwYOWjpsohuhERERERERERETUZMmyjEpfICX/mFVV65kyZQreffddTJ06FevXr8cdd9yBq6++GvPmzcM777yDpUuX4vnnnwcA3HrrrejcuXM4RA+FQujSpQs+/fRTbNiwAQ888ADuvfdefPLJJ6pj/PTTTzhw4ADmzZuHZ599Fg8++CDOO+885OXlYfHixbj11ltxyy23YN++farn3X333fjb3/6GlStXYsyYMTj//PNRWFio+zq2b9+Os846C5deeinWrFmDjz/+GAsWLMCkSZMsvxdPP/00hg0bhpUrV+L++++3/LzKyko8/fTTeO+99zBv3jzs2bMHd911l+XnJyKlnehEjZ0/GMKlr/yCfu2z8NTvhqX6dIiIiIiIiIiISKPKH8TAB2ak5NgbJk9AustaxOr1evH4449j1qxZGDNmDACgV69eWLBgAV599VV88MEHePXVV3Httdfi0KFD+P7777Fy5Uo4HDX7dzqdePjhh8P769mzJxYtWoRPPvkEl112Wfj+Vq1a4fnnn4fNZkO/fv3w5JNPorKyEvfeey8A4J577sETTzyBBQsW4Iorrgg/b9KkSbj00ksBAK+88gqmT5+ON954A3//+9+jXsuUKVNw1VVX4fbbbwcA9O3bF88//zxOPfVUvPLKK/B4PDHfj9NPPx1/+9vfwrf37t1r6X30+/2YOnUqevfuHT7vyZMnW3puohiiE5lYuK0Aa/aVYM2+EoboRERERERERESUsG3btqGyshJnnnmm6n6fz4fhw4cDAH73u9/hiy++wBNPPIFXXnkFffv2VW370ksv4c0338SePXtQVVUFn8+HY489VrXNoEGDYLNFCkjat2+PwYMHh2/b7Xa0bt0a+fn5qucpwT4AOBwOjBgxAhs3btR9LatXr8aaNWvwv//9L3yfLMsIhULYuXMnBgwYEPP9GDFiRMxt9KSnp4cDdADo2LFj1GtJNoboRCZCcX4lh4iIiIiIiIiIGlaa044Nkyek7NhWlZeXAwC+++47dO7cWfWY2+0GUFNVsnz5ctjtdmzdulW1zUcffYS77roLzzzzDMaMGYOsrCw89dRTWLx4sWo7p9Opui1Jku59oVDI8rnrvZZbbrkFf/nLX6Ie69atm6V9ZGRkqG4rwb9YkeP3+6Oep/da4q3ViRdDdCIiIiIiIiIiImqyJEmyXKmSSgMHDoTb7caePXtw6qmn6m7zt7/9DTabDT/88APOOeccnHvuuTj99NMBAAsXLsSJJ56IP/7xj+Htt2/fnrTz+/XXX3HKKacAAAKBAJYvX27YcX7cccdhw4YN6NOnT9KO37ZtWwDAwYMHkZeXB6BmYdHGoPF/uohSSIKU6lMgIiIiIiIiIqJmICsrC3fddRfuuOMOhEIhnHzyySgpKcHChQuRnZ2NNm3a4M0338SiRYtw3HHH4e6778Z1112HNWvWIC8vD3379sW7776LGTNmoGfPnnjvvfewdOlS9OzZMynn99JLL6Fv374YMGAA/v3vf6OoqAg33HCD7rb/+Mc/cMIJJ2DSpEm46aabkJGRgQ0bNmDmzJl48cUXEzp+nz590LVrVzz00EN47LHHsGXLFjzzzDN1eUlJY4u9CRERERERERERERHV1SOPPIL7778fU6ZMwYABA3DWWWfhu+++Q48ePXDjjTfioYcewnHHHQcAePjhh9G+fXvceuutAIBbbrkFl1xyCS6//HKMHj0ahYWFqqn0unriiSfwxBNPYNiwYViwYAG+/vprtGnTRnfboUOH4ueff8aWLVswduxYDB8+HA888AA6deqU8PGdTic+/PBDbNq0CUOHDsW//vUvPProownvL5kkub4LYxqZ0tJS5OTkoKSkBNnZ2ak+HWrk5mzKx8S3lwIAdk45B5LEyXQiIiIiIiIiolSqrq7Gzp070bNnT3g8nlSfTpO3a9cu9OzZEytXroxapLQ5MPu8WM2KOYlOZEbIzIOhFnW9iYiIiIiIiIiIiMAQnciyYMv60gYREREREREREVHc5s+fj8zMTMN/miIuLEpkUSiU6jMA1u0vQffW6cjyOFN9KkRERERERERE1Az06NEDyWz8HjFiBFatWpW0/TUGDNGJTIgN6KmeRJ+7OR/Xv7UUXfLSsOAfp6f0XIiIiIiIiIiIiPSkpaWhT58+qT6NpGKdC5FFwWBqQ/Rv1xwEAOwrqkrpeRAREREREREREbUkDNGJTEhSZBY91ZPoXNiUiIiIiIiIiCgimRUk1Hwl43PCEJ3IhPiHLNUhdoAhOhERERERERERnM6ateIqKytTfCbUFCifE+Vzkwh2ohOZEGPrUMon0RvByqZERERERERERClmt9uRm5uL/Px8AEB6erqqTYAIqBmOraysRH5+PnJzc2G32xPeF0N0IhOhUCOaRE9xJzsRERERERERUWPRoUMHAAgH6URGcnNzw5+XRDFEJzIRbEQheqqPT0RERERERETUWEiShI4dO6Jdu3bw+/2pPh1qpJxOZ50m0BUM0YlMiLl1qutc2IlORERERERERKRmt9uTEpISmeHCokQmQo1qYVF2ohMRERERERERETU0huhEJsTgPNWT6H52ohMRERERERERETU4huhEJtST6Ck8EaR+Ep6IiIiIiIiIiKglYohOZKJx1bkwRCciIiIiIiIiImpoDNGJTIjT58msc/EFQrjt/eV4c8HOOM6FnehEREREREREREQNjSE6kYn6mkSfszkfP6w7hMnfbrD8nAA70YmIiIiIiIiIiBocQ/QWbl9RJfYXV1nevtofxK6Cino8o8YlJATnwSROorvskT96Fd6Apeekuk6GiIiIiIiIiIioJWKI3oJV+4M4+V9zcNITP8FvcdXM815YgHFPz8WyXUfr+ewa3rwtR/DZ8n2q+8TcOpTEENvtjPzR21dk7SIGQ3QiIiIiIiIiIqKGxxC9BTtS5g3/7A1YC9G35ZcDAL5ZfaBezqmhFZR78fLcbcgvq8a1by7BXZ+uDr9GQD19nswQW9zXvqJKS8/hwqINp7jSh+vfWoJv1zSPzzkRERERERERESWOIXoL5hOmz4Nx9m3bban56Gw+VIab3lmG9QdKkrK/v360Ek9O34wb3l4avq+wPHJxob7qXMR+c06iNz7PztyCuZuPYNIHK1N9KkRERERERERElGIM0Vswrz8SoouBuizLmLZiHzYdKjV8rsMuqW77gyG8t2gXth8pN3hGctwzbQ1mbTyM815YEPVYtT8IbyAY1/4WbisEAKzbH3mtLkfkj4W4sGjI2rC+JWJ9zuHS6rifQ/WrsMKX6lMgIiIiIiIiIqJGgiF6C1bljyxoGRAS4p825ePOT1bjrOfmq7YXp7LtNnWI/v6vu3H/V+txxjM/19PZ1igorwk3tUPh1f4gRj42C+e/sAByHBPj2tehvS9Yh0n052ZtwV8/Wql7PmI1i9UqnZY4iT5/6xFc/fpi7D1qrfImWaI/FURERERERERE1FIxRG/BKn2RqW1/oCaglWVZNZWtCIZknPN8JFR3CEFzWbUfz8/eWo9nGnFM+6zwzwdLIjUoa/eXoKw6gC2Hy6HNmncXVqDaHz2hXuULIs1pj7pfDLjVk+jxhuhb8dWqA1ixp8j0GD5NiL5s11E8/v3GqHP2a74tYGTu5nzsL7ZWEdPYXfPGEizYVoDbP16V6lMhIiIiIiIiIqIWypHqE6DUqfAKIXoohEpfABOem4e9R6MD2J0F5dh0qCx8W5zWvuHtpSiq9NfvyerIL/WiY04aAHUlSiAUgt1WE46v2luMi15aiL7tMjHzzlPD28zccBg3v7tMd79+IdQWc/NEJ8F9AZ1JdCEQ14bov526CACQ4XLgr+P76h4/GJKjKnWAmsnt699aCo/Thk2PnJ3Q+TZGO+q5JkhLkjiLTkRERERERERENTiJ3oKJdS7+YAgz1h/SDdABwGlXf1QcNglHyrzwBoJYuit60rq+VPr0K2gOl0YWAxXD5i9X7gcAbM1Xh7B/+2SV4TECmrA6/HMcdS7i83QaY1QLi/oMus53FqjPOWDhXBZsLQAAVPsbb396YbkXny7biyqf9f76iji2BYBt+WXYV5R4BQwjdCIiIiIiIiIiUnASvQUTJ9HFUFePTTOZe7CkGiMfm4VurdKjtg2GZN2ucTPBkIz7vlyHkT3ycMlxXaIel2UZOwoqUFYdCdHFCW/1JLp+CG6VGGqLFS6x6lx2HCnHHZ+sxsjuefjbb/qF79d7L8zqXBQ2zfOCqnPRPwdxOr3KF0SaK7quJtWuen0xNh0qw8q9xXj84iGWnmP0Huk5WuHD+GfnAQB2PXFuQufIQXQiIiIiIiIiIlJwEr0FEyeB/cEQJJP524AmQJ639QgAYI/Ogo/lQtBt1ayNh/Hhkj2485PVuo+/88sunPHMz1i7v0Q4J3ESPRKiB4ULAtrztkK8oKCqcxGmv+/7ci1ufneZKli/7q0lWL23GK8v2KkK4vWqQcRzN1pY1K55nnh8o0l0cQL937O26G5TV5sPleH1+TtUHe3xUGqBvl97MJmnFSZWv7TExViJiIiIiIiIiCi5OIneglX4xDoX2XT6NqgZfXY7jCecS6v9yEl3qu6r9gfhdtgMu6bFSeNQSI6awn5qxuao5xwp8+KyVxfh0uM6o6A8UueinkSP7HdXQQXe/3U3Vu8rRqlJ0C+Gw6rguna/1f4g3v91D4Camph+HWoWOxWrcMTXo/eS/RbqXLQT7GJubhQOHymLvA+vzduBW07phdaZbt1tEzXhuXnh85t4Us+E9xPvQq1Wie+NNxBEuov/miMiIiIiIiIiosQxXWrBxEn0QIypYr+m7kU7JS0qqfKjq3D7cGk1xj45BxMGdcALvx+u+5y8dFf45+IqP1pluFSP68Wt/561BXuPVmHJzqM4tmtu+H4xRBUD9XFPzzU8Z5HfqM6lNsXOF/rXfYEQqv1B7CuqgiRFgm6jSpjweakWFtXv+9ZeSBAZBdBiiA4Alb4gWhvupW7W7CuJvZGJOCrm4yJe+Kj2h5DuMtnYANtciIiIiIiIiIhIwTqXFkycRDeahlZoJ5/NptZLq/yq2x8u2QNfIIRvVh8wfI5N+CQe98hMTPl+o+pxvcC1oMwX/llbTWN03lb4g9HBec2+av73kFAdU1Llxz8+X4Pxz/6sOke/MImu7K/CG8AbC3ZiX1GlpU508UKFNjQ3qnM5Uq4O0WP9XuvC7ajbvz5CFlL0RI7hFSptqv3xLUiqMPrGBBERERERERERtTwM0VuwSp96YVGz4DCebvESTYhu5anahTJfnbdDdVvWmUUXA+JKf+SCgNEkulVGdS5KkC32rxdV+vDVquiLAz6dIP9f0zfhkW834MIXF6p6163UuWhfh9EkeqE2RDcI6BPtChdD6bqH6LG3yXBHviwjWxxdFy8OJRyiJ/QsIiIiIiIiIiJqjhiit2CVXiFED4V0g0MlrI1V9yLaX1ylum0l/AxoU3QLxCBY/VqE6fFg/GFxIBiCLMu47f3lePXnSJivBOpiiP7nD1fq7kMMr5XXtmBrAQCgsMKner3ituJ7JYbo2tDbKIAWL4wA6gsCX67cjz99sAL7i6sw6rFZuGfaGv2dmCjQhPRmqv1BfLFyn+FzrEyiZ7gj3fvlXmsL1oqfBXGhVSIiIiIiIiIiokQwRG/BvEIXt89gYVElOI5novunTfmq21bC0ljbxNqFGB4nMok+skde+GdfUMaeo5X4Yd0h1Ta7CysRCsk4VFKtfXoUvUl0pz3yxy2gWvwypPuzWImuvcigV+cSCsnh52fVTnCLAf3tH6/Cd2sO4rSn5qKwwocPl+w1PH9ZlvHvmVswa8Nh1f0F5ZEKnTKTxVkB4LlZW3HHx6tx2dRFBscwfToAwCH0/HgDIazcU4QXf9qqujigpZpEN+ibj4mj6EREREREREREVIsLi7ZgYpAbCIbg0qnnCARlOO3Rk9BmdSCLdx6FPxiC026DNxDEgm2FqufZdRbMjDXoHitwrfKrp+qr/UFc/fpiLNtdZP7EWjeP7YXWGfsxff0hBIIhSDop6tSft2NXQQXSXHadPaiJvdzK+yy+v+qFRYWfhfttZpPoOu+/GBhnpzlR5g3oVsVY6UmfueEw/jN7KwBg1xPnhu8X62JKY4ToM9bXXITYUVCh+7iViytiWB4Iyrj45V8A1NS8TDypp+5zxAsqida5EBERERERERERKTiJ3oKJAaXRZO9/5+/AxoOlUY+bBbFBYSL68e82YvXe4vBjSqiprXiJ1dGt14ludvyvVx+wHKADNVPiuelOADXvhd+gXmb6+kMxJ7ABdaAdmUSPhOLi4qViiC6G7xIkzNxwGOsPlERN1L88d3vUMcXFVbM8kUl0q13ioj1HK3XvL1RNovt1t1HoXSwRiSH692sPYuG2gqhtxO548TO4+VBZ+OdfdxTimjcWY8eRcgA1C7gqvAnWuehdRCEiIiIiIiIiopaJIXoLpg4oZd0g+9mZW3D2f+ZHPba7UD9kjey7Jrx8Z9Fu1f3V/iC2HynHCVNm462FO8P317XORXXskGy4oKYRu02Cozbk9gfNn1/uNQ+PAaDaF93RrppEN+hEFyt2Vuwpws3vLsO5zy+Iev8/XLJH1c0ORKbx3Q4bPM6aafnr31qK301dFHeQ7jV4/V4hyDaaRFculNhNFqoFIr3u+4ur8Mf/rcBVry+O2kZ8n8QLCeLLueK1XzF/awFue38FgORPoidyEYKIiIiIiIiIiJoPhugtmF9T52I2DR5PJ7rZ9lX+ICZ/swGHS714+JsNlvcfz9GDIRmOGFPQWg6bFO4s9wdDpiF6hTd2MKuqlwmG8OuOQlUwLb7XXoNqlyU7j0b2ofP+VGkWEVVup7nscAn968t2F1lelFPvPERijYzeJPpLc7ah//3TsXBbQcxJdEVBWaQiRltTI07sixU4ehdddhRET6In2oku5v9xfvTrbPnuIvyyPXoqX7H3aCX+M2sriit9htsQEREREREREVHysBO9hZJlGcGQWOcimwbZ4tS6Fcr2HqcN1UKlRrU/pBuA6nV8a883nmPb4g3R7bZw8HyguAqXvaq/GKYkwVIgLYboHy3ZiyW7jqoeF4N4pXJFkiTDCfCgzvuvvUc5ZprTHtVv74/j91dW7VcF0arzEH5PJZV+vPPLLvRqm4GxfdsCAJ6asRkAcM+0teF6nFhsQmLtC4bgsUU65wNB9WdUofdqlMfFSfQqX6J1LhGBUAh2W+we/GSQZRmXvlLT+77i/jPRKsMVtc3FLy9EQbkPmw6V4pWrj2+Q8yIiIiIiIiIiaskYordAny7bi8e+34jiysgksT8UMg2yvXFO9Co1HB6nXROiB1VT4tvyy9C9dYbuFLwSLAPxT6LHqhLREutcvlx1wHA7l91mKUQXX7M2QAeAIs0UsT8ow+UwDtH13v+gprddnEQX+9cB48lyreJKH46dPNPwcfECSJk3gAe/Xo+2WW4s/b/xqu0CwZDlSXSbkPd7A6FwFQ2g/rZE0KDORavCJ0yiJ1DncqC4Cp8u36d73PomXsgqLPeqQvRQqObiUEFtL/2vOwqjnk9ERERERERERMnHEL0FuvuzNVH3+QPmk+h3frI6rmMok+hpTjuKEQnr/7d4D+ZsPhK+Pf7ZeTh/WCeM7dsmeh8hOSoMtnTskPUAV+G0R+pczEgSDKe0RVU+821KqtRVKL5gCC6HzTDs1gvuqzWLZoqT6NrXYjVEn7M53/RxvUD5SJlXdcEDqPndWa3UERfxrLlYEJlgV02iCxcNzL6ZEG+dS7U/iB1HKtCvQxbsNgmXvPyL6vFASMaB4io8PWMzJp7UE0O65MTcZ6LE9zdY+xr/t3g3Mt0O/OuHTTipT+TPiRTnhSIiIiIiIiIiIkpMyjvRX3rpJfTo0QMejwejR4/GkiVLDLf1+/2YPHkyevfuDY/Hg2HDhmH69OkNeLbNVyBk3oke//4iIbrowyV7orb9ZvUB3WPf8PbS8HR8PGs7BkMy5Lhm12sm0a2E6L5ASFUXYqQqxgS0dhJdCbmNJv63HC6LPpegOhivNqlz8QX19/vSnG2q24dLvVHbiIG1Eux2yUtT9YZf/9ZSfLA48rvNL/Ni6a4i3WNqGS2yGgrJqj5ysVLIbCHa0ipxEt384sFDX69H//un45zn5+Ohr9cDAA5pFmwNBmXc/dlqTFu5H+e/uMD8xdSR+LqCIRnrD5Tg/75Yh79+tAoHSqpVE/JERERERERERNQwUhqif/zxx7jzzjvx4IMPYsWKFRg2bBgmTJiA/Hz9adj77rsPr776Kl544QVs2LABt956Ky6++GKsXLmygc+8+fEH5SSH6JE6Fyv0jj1/awHWHSiJqw+95tgy/IH4nuO02yxNvVt9i2KFt8UVmkl0JUQ3eN4/Pl8bdZ92urzSYGFRAIY1MU/N2Ix1+0sQDMnYX1yFw5oAGQB+2hT586hc1Di5TxvsePyc8MT/z1uO4N4vos/RCrHrXHxN2m9GiFPp4iPabx2IC556Y1zMePuXXeGf3/t1t+42QVnGlsPlpvtJFvHPQSgE7CyoMNyWc+hERERERERERA0jpSH6s88+i5tvvhkTJ07EwIEDMXXqVKSnp+PNN9/U3f69997Dvffei3POOQe9evXCbbfdhnPOOQfPPPNMA5958+MPJnkSPc6FSI0mi4sr/YYBsJFgSFZVf1hht0lw2JL3xyHWJHqZpp5FCY+10+VmtO+LWZ3Lgq0FhvspqvRh0gcrcNITP+GTpXujHr/xnWXYeLAUAKCcns0mQZIkZHusNUL5TV6XGI57VSG6+jl+g070dM2FmtLq6E70XQUVeOy7Dcgvi75IEEtQU01z6Su/YPnu6J77ZBBfclCWUVZtXAvENhciIiIiIiIiooaRshDd5/Nh+fLlGD8+siChzWbD+PHjsWjRIt3neL1eeDwe1X1paWlYsMC4YsHr9aK0tFT1D0ULBEOmnehx7692X1Y6qQGoFjkVlXsDcS8O6Q+G4I8zeHfYJDgdyfvjUG2h8kWk1LjEs4CrdhJdXFhUW+cy5YdNpvv6Yd0hAECFwXmv218CIFLnoizcmp3m1N1ey+x3KH7uxNfkD1qbRE9zRUL0YEhW9ccr3wi46d1l+O/8nbjt/RWm5ylOsYvnJ067L99dhEtf0f93VF0FZXVlTWmV/p+LGkzRiYiIiIiIiIgaQspC9IKCAgSDQbRv3151f/v27XHo0CHd50yYMAHPPvsstm7dilAohJkzZ2LatGk4ePCg4XGmTJmCnJyc8D9du3ZN6utoLnxBGcE4p7fNKIGnUT2J1r6iSgDAbwaqPw+FFb6oapRYE7jBkBwVwMbisNvgjHMxUjOxJtG1vDHqXPRoQ/Rqk0l0M5KFMFbZt1LnooTK2R6rIbr+63r15+14c8HO8G3VJLpmet1v0ImeLoTo5ZrJ7cra896WX1PHsny3eU+7Xp1NMCjrvp8fLtmDJ37YFHfdkBnVwqIh80l0IiIiIiIiIiJqGClfWDQe//nPf9C3b1/0798fLpcLkyZNwsSJE2EzqeG45557UFJSEv5n797ougqqv0l0ZbJ6YMds0+33F1cBADLd6nqQgjJvVBWIdrFSvWPHU4sC1E6ixxE8t8pwmT4eb4iunG88oal2aj1c5+Kyw+lI7pSysm9lUtoWnkS3VudiNIk+5YdNmC10rpt1oouvVwyu01yRczhSrl4YtbJ2Kt3q9ZF8nYVVA6FQVO86ANwzbS2m/rwdK/YUx9zvnz5YgYteWhh1YUBLvDjgD4R0J+MVrHMhIiIiIiIiImoYKQvR27RpA7vdjsOHD6vuP3z4MDp06KD7nLZt2+LLL79ERUUFdu/ejU2bNiEzMxO9evUyPI7b7UZ2drbqn5bMaGp20Y5CPDdra9KOo3SiKxPInXLTTLdfuK0QQE3XtuhIuTcqTI0VotdMoscfojssLCyqaJflNn083goaJTw+Wumz/Jw7P1mN7UciC15WeIVJ9CT2uwPAt2sO4rPl+4RJ9Jr7s9x1r3MR+YKR7bS/Q3FKX/wYe5yR13qg9mKMQql2aZ+troHS43LYdOtstJ3oWsUWfmffrTmIVXuLsXpfiel2qmqbYMi8Ez3mUYmIiIiIiIiIKBlSFqK7XC4cf/zxmD17dvi+UCiE2bNnY8yYMabP9Xg86Ny5MwKBAD7//HNceOGF9X26zYbRhPa+oird+7XcFnvDA6EQiit94RDz6hO6WXqeNqzcdrgc905bq7rvouGdYxw7kRDdBlcck+gdcsxD2XhrOHyBEOZsyscrc7fH9bwnp0e6zpVFM9tmueNaWNXKe7VmXwnu+nQ1dhfW1O4oFzusTqJbncwXg3Lt4rTiPmS5ZrHUXQUVqkC9sEIziV4bircTQnSlO167kG6a045KX/TvrbTab3qBJdY3OMTjxHqvQ6ptZdUiqVqcRCciIiIiIiIiahjWErB6cuedd+K6667DiBEjMGrUKDz33HOoqKjAxIkTAQDXXnstOnfujClTpgAAFi9ejP379+PYY4/F/v378dBDDyEUCuHvf/97Kl9Gk1IV54KXWm6HTdVbbaSkyo8Jz80L3x7WJRe56U7DBUQV2kn0JbuOhn/OdDvw/V/GYvW+YtN9BIOhuDvR7XYJbqf1EL1jjBC9qML6RDlQE6Lf9O6yuJ4DRGpVAOBQSU2I3iHbg71HrV0UAYC/f77G8rZKXUp4YdE6dqJriRd5ApoLAWKIvmpvMaavr1k7YWiXnPD9RRXqz1dFbSjuES7+fLp8L645oXtUHU6a0647MR9rEVFtGK81a2Pk2zbaCwNm+/IHY9S5JDCLHgiGcOXri9GnXSYev3hI3M8nIiIiIiIiImqJUtqJfvnll+Ppp5/GAw88gGOPPRarVq3C9OnTw4uN7tmzR7VoaHV1Ne677z4MHDgQF198MTp37owFCxYgNzc3Ra+g6dGrq4iHO0aViuKvH63CYaFf2uO0w+OI/Vy7yXhtptuBbq3T4YxRuxIIyVGLbsbisEnINKkmee7yY1VT+G0zzetcimJcLNCKt8NdIZ6T8n63z/GoalFiOVIW3QNuJKhZWPTkvm0sPe/OT1ZZ2k41ia4Jp8WA+5CwAKgYTCvVKq1rO+srar8JIb6/D3y1Hv+euSUq2Pc4beHJ9XiYTaLP3ngYt7y3PHw71jcEgrI2RE/uwqLLdhdhyc6j+GDxnqTul4iIiIiIiIioOUvpJDoATJo0CZMmTdJ9bO7cuarbp556KjZs2NAAZ9V8KQstJspqnYve89JcFkJ0k+5p5bFYC4Am2oluVk0Skmt6sZW4OS9JC4tmexworQ7EHfor3LUXJkIhGYdLI5Po/kDyFokVKd9kUCbgx/Vrh4kn9cBbC3eZPu9AcRWCIdn09wsA3qC1OheRuBinUn/SJtONwgofKmt74r2awPz5n7bhilHqiiGn3Rb3grAAEDQJxr9bc1B1O9Ykuljn4guEUOZN7sKi4nvlDQTDnx8iIiIiIiIiIjKW0kl0anh1nUR3JRii22wSPBam2G0myaAyge6IEaIn0olut0nIMqkmqfQFVQFwqxghulU92mQAiNSOxEupoDla6UMgJEOSajvRE5xsj2Xz4TIA6osdD54/CEM65xg9BQAQkoGC8tgT7+LFBO1rqDb47IoVKErIn5dR87us8AUgy7LupH+RZkHQQEhOqO7ILBjP10z5m4X0K/YU4Yd1h8K3/UEZJSbfaEikEl38pkd5kqfciYiIiIiIiIiaK4boLYzeJHqbTOuBcF0mVz0WOsfNFnCMTKLrb6MsSloziR7fJLYkScjyGE+iV/oCqvA+L73uIbrLYQt3qx8ott5hLlK+GaBMobfOcMNpt5nWw/RonZ7QsUTaiXIr3zJQOtvNiD3l0XUu+q9JFaLXhtTK7yck1zxP238OABsOlKpu+wKhhEJ0s050ZbHX8PmZXCy55OVf8OzMLZFt/cEYC4vGH6OLn4vyOn4rhYiIiIiIiIiopWCI3sJoJ9EdNgmdctMsPz+ROhclb41Vw1KzrXEw6LDZTPeTXhvkBkKRyeN7z+mPL/54Is4d2hG3ntrb9NiZLrMQPfmT6J1yPOGLEvEsBCpSglSly1u5EHDukI6Gz5lxxykJHUuk/T2lm4ToysWNQ6XVumG26OfNR3DKk3Pw85YjUZPoRlPcYo+4sk1OWuRbBRW+QFSdCwCs14bowRAqE6hzMetE106iG3Wur9tfEnVfoYXJfYUsy9h4sBSBGN9AEC8SJLtvnYiIiIiIiIiouWKI3sKc0b8dHrlwUPi2w24+ga2VSIj+671nADBfNFRhlrPH6kTPcNe8jmAoBH9tLUiG24Hh3fLw0pXHoWsr84sFNpO+7kpfMBwGi8eqi065aeF6nH1FlQCAvu0y8dEfTlBtd86QDob7UOpPlJBY+f2cNbgDPr9tDC4b0SXqOcnowdb+CjI0FyDu+s0x4Z+7tqqZfJ/683YMfGCG6X4X7zyKPUcrcd2bSyx3oouT4Mrio26HLRzsV3qDupP52kl0fzBkWBljxqg6R5ZlFGvqWPRC9HX7S3DeCwui7o9VfyP+cXpjwU6c/Z/5+Nunq02fI76HnEQnIiIiIiIiIrKGIXoLY9N0fzttNnjiCFXdFnrNtdpl1VSWxFpUEjAP2sOd6Ab7ESfRlWBTDNythPiKrq3S8O4No8K3+7XPUp1/ogusijrmpIX3o0wsd8pNQ7bw+8lLd+Llq4433Icy2a38r/L7kSQJx3dvhdaZ7jqfpx7tJLq2zqVPu8zwz13yai5erNxTbFp9ohXQLNhZbbSwqE4nusthC1/oMJpEX3egZvo7q3Y7fyBkOCluxmhR2F2FlVH36dXF/LzliO7ztVPsWuKv4KU52wAAX606YPoc8X1gJzoRERERERERkTUM0VsgsXfcbpfgsdBnrahLeGw26R0+H5vx/pUQ22hxUyU0DQQjneguIUS3cnxFtseJU45pi+m3j8UjFw3GRcM7q4LjeBdYfeTCQTiuWy5uPLln+L5WGc7wfo5W1CxymeVxqDrfYy2i+vmK/bj1veUorH2+9vfjslChkwjtBRFtnUumO3IhoEO2J6FjaHvtjfrKxToVJQR32m3IqD2nCm9At0ZG2Ta7tvrFFwyZLvxpxGsQoi/YGh2OvzhnG56btUV1n9G1nSMxQnSR1UsT2kl05QJAabU/ruMREREREREREbUkDNFbIHGS2xHvJHqM8Nhs2NtkzdDINia7VzrRY02iB4VOdLNJ9CGdczB+QHtV9YhCmZju3yEb15zQHXabhJDQvS2+D73bZsQM1a8Y1Q3T/ngSuuZFKmXSXY7w88ROczGgjhWC+wIhTF9/CK/M3R51XkD8Yb9VsRYWTXdHbidafaOd8K426FMXq1qUaXWXw4bc2sVF9xdXwWwAXq79vfqDMipNFv40Mn/rkfA0+fR1h/DXj1aiwhvA9iMVuts/N2srSqv9uo+JYk6iI/I7kC2m6GKI/src7Tjmvh/w9eoDGPrQjxj52CyUVMU+LyIiIiIiIiKiloYhegskTns77RI8TusfA6MAW2EW+hrVuVx0bKfwz2bT4jE70Wt7uQOhkFDnIkzda/bttEt4/boRmHR636h96S0WKXZ0i73iOWlOxLo+oJyzUwi1M9x2uDWvJcvjVL0+h5UrDwAOlVRHnVfN7fr5Ix61sKgzEpQ7bJLquNqA3apvVqurSap1KlkAddheKdS5DOyUDQBYvrvI9DgHat87ILHFNpfuKsJ1by5BSaUft76/HF+tOoBX5+0wnFAH1BU0RgF4rIVFxV9ByGKKLk7zbz5cBgD4y4crw/dtyy+ztB+tz5bvw18/WmlYbUNERERERERE1JQxRG+BHKq6EAmeOHrOteGpltnks9FzxePbJQmf3DIGZ/RvhwEds1XbKedtFKKnhxcWFTrRHcZ1Lnqh/oW1gf4fx/WOekwM1sVwXob5BL5IPHdxEl2R6XaoQ3SLFTTK5Lxbc0HESg99IszqXBx2SfV4egI9+gDw44bDqttGdS5icKtMWrvsNgzpnAOgJuS2qi6T2GXeyHOPlFXrVsgoxM+SUXAfqz5e9RuwOIlu1Cuv0FboWHXXp6vx1aoD+GTZ3oSeT0RERERERETUmDFEb4HEYNZps8U1iR5r5Fo7Ca06rsFUtSpEt0kY1bMV3rh+JPoKi1MCkfN2GuxHCWsDQTk8Na7qRNc8TdJJvp/53TD89LdTcclxXaIeE6d9JUlCm8yaupDT+7XTPR894vlkuO26IXqWJzLVrbcQ500n98TkCwfpnpt28rx/B/WFiGTRVuOI0+ZOu011wSTRSXQtowBYDKSrhDqXgbUXYTYeLFVtL76/APDW9SPDPx8UptLjpQ35zaayxW81WKl20SN+NBLpRNdjtvBruTeA/DLz96e40mfxTIiIiIiIiIiImg6G6C2QOCXssEtRnei/Pb4LJp7UQ/e5TpOFPwHz+hCjSXRxelo8N224r9TQGC22qfRwW+1E1xvSdtht6NU2M/oBAIGgOhT97i9j8e/Lh+GWU6On1o2IoXmGyxFVf5PlcaimurWhZ166E/edNxDtstyq+5UQXfutgjG9W2PJvWdYPj+rtFP96ZoQXTWJ7kqsE13LyqKfSnDttNuQqQnLM1x2LL9vPN6eOCp8X7ssN07r3073sxCvyd9uUN02q3MJhCKPlSY4/R5UVcLEX+eixx80PueRj87CqMdmhxfBVWj/XBARERERERERNTcM0VsgdV2ILWpSeGiXHOSmuXSfG6uj26zOxahaRAzx1SG6+ryUSXSj3vWs2jqX6kBQtxPdSp2LGe2UbvtsDy4e3gUuh021yKMZp2oS3QGX5gJGlsehmpCv1ISe4doWzfOUU9O7iNEu22Pp3Mw8dvFg1W3tr0BV52KT0LN1Bkb2yMP4Ae1Uj9WFlRBd4bLboj4nbqcdrTPdqoszyudV/L10b52e0PnN31qgum19Ej3+HnZAHXgbRejacD3WexgwqHORZTn83HX7S8L3V/uDGPvknPBtvW93mFmzrxj/+GxNzAl3IiIiIiIiIqJUSs6IKDUp2kl0tyasDgRlZLgj92W47KioDXON+sgV2hB3TK/W4Z+tdKKL22j3pQT4YpDvdthw3tBOqPIHwgtJHiiuhj8gR51v9CR6nCG6xWlfxVmDOqBtlhtnDmwfvk8M9dNdenUuTtVtbYWJEpYbXawwq9Opi6tGd8cv2wvx3ZqDAKLfuzRh2txpt8Fmq+m2lyQJ365RLxCaqHjefpfDFnXBR/k8ieG6eJ8yOX5K37Z4r3B3nc/VvBM92ZPo0Y//6YMV2HyoDN/++WT4gyFsPFgWcxLdKGQXp+rFP1NLdx2tUwXOBS8uBAAcLK3GuzeMirE1EREREREREVFqcBK9BRIrWRw2CR5NIBsMyaoKDjHkHtO7tWrbzrlpqu5ybbg79Zrjwz8P6Jilez5phnUu+pPo2sU2n7lsGF6+6nh0zq2ZIN5fXBWe0hXPRzt5HneIHmulR42cNCceuWgwTjmmbfg+V9QkenSdi0i70KNS22IcotffH+l+7SO/P7OFRZULBcpUcqwLL7EkMsnutNuijqu8Z+J7p3wTQFyANt2dnAsRZpPo4u+1LMFOdPUkuvpz4guE8N2ag9iWX46F2wpwxWu/4rJXF2H2pnzTff75w5WqSXNFuTcyLf/7//6K1XuLASDqGxhx/pEKW7E7evFXbyBouaaGiIiIiIiIiKg+MURvgdST6LaosDoQUk+ii493yPZg1QNnhm/fPLYnnv/98PBtMSQeP6AdctIik9XXn9gTI7rnRZ2PdmFRvftrHqvZt1FlROe8NADAkTIvympDPzFIrWudS8AkRNc7JbfOgq2qsNZlj6oc0fZ4aylBvlGljd4x9c5vVI9WpsfRI052Ry0sKvyutJ31RudqVSKd6m6HLaq/P6N2P+oQPXo6PdPgePH2ppt2ogshenFl4pPoO46U4+z/zEe1P3KsgyVVGPHoTNV5rD9QqrcLXQ99vT7qvnJN5cydn6wCkHhoHrV/IaQPhmQUV/pw/COzcNM7y5JzACIiIiIiIiKiOmCI3gKJYajHaY8Kq4OhkCq4FKeb3U4bctMjfekyNBUsBlPlQE1gefeEflHno3qOSZ1LrBAzL90ZDnMjC0waB7/xhqLxDsXqTYWLx8x0O1Tb2CSgTaY76jlApKd7bN+aqXajsNyozkX7Uv977Yi4J7zFbwCYLSyq/aZArB59rdYZ6j7+bM2FhR6t0zGsS47pPpx2G5wO9XGVCzpiYO6qPTdx2wy3fog+skcrTL5wUIyzr/HR0r04UFxl+Li/ts4lGJJRVFmzUOffz4r+s2HGH5Lxu6mLsPGgOiB/7LuNqp51vYl4s7UL9IghNxD5s6D3my33BjBnU77pJL4RbyCI8c/+jGMnz0S5NxBzcp6IiIiIiIiIqCEwRG+BxJAzy+OICnu1k+hi4ObRWdBSHDQWA0rtRHLNfdGxmzjFLObc2nA/VoYtSVJ4Gl3vfDSDyXEvghgvvUBbrPFIdzkwsFM22ma5cWzXXLx7w2jV5L7ow5tPwN0T+uGp3w4FYDKJbhCOal9rTroTT1w61NLrUDhs+hc7AHXwrK1RibfOpUOOR3UBJk8Tqo/q2QpfTToZeen67xVQ24mu+YVnp0VPoivvi2oS3SBEd9glXDumh+o+mwRcdGwn3e2LTCbMlW8UFFf6wj33nXPTDLfX4wuEUFjhi7r/29reeoVeN7v2QoXI5bBh1obD+HVHYfi+Ms0kuvLr1345Q4KEP/5vBSa+vRT/nrUl1kuIsnjHUewsqIj7eURERERERERE9YkLi7ZAYriY7XFETYx3b50err4A1GG2dgJalmXVJLoYUGonkoFIJYtIXNhU7B3Xhuh6tMF6m0wXtgnDq+YLi8bcvWV6u9ILtMUea5fDhvbZHiy594yokNsmqQPKTrlp+NNpfVTP1WP0numd3/lDO8Jll9CvQzbmbz2CU/q2RbrLjjOe/TkqNAU0dS6aNy9NmETXTrjHG6K3y3JjZ0EFKmsXwdSG5TeN7VV7Dsb7dTlsqm8hAJFJdL3zEc/faBJdr0PfJkmmNT9GJn2wAucN7YQrRnYFAOSmOw3D+7rSmwjPS3cZLghaUO7FTe/W1KjseuJcAECFZhJd+f37gtqFb2XM23IEAPD+ot34x1n9Tc/NaZdUF5biXbyXiIiIiIiIiKghMERvgex2cRLdqZr+/ssZfXHBsM7YWVAevk8MI7WT6IA6UHU5xFoPnUl0neRa3KeYoWlDaCv5WrZHHbiKHeR17UQ3ozfVrle5MqBjtqXnHtM+C5sOlRkez6i2xXgSXe8+CWcN7ggA6NkmI/KAwftsN6tzEcL7/h3UC8hqw+xY2ma54XbYwiG6WB+U5XHgmNoFTs2yeaddgiRJcNgiIbfy2dCb4k93Rv5VaLSwqNHnJd4FZwHgcKkXbyzYiZG13fStMlyGv9O6qvJHT6K3MplEP1zqDf8cCsmw2aSoOhflgoI2oA/EGYhne5yqafqQznsZCIZ0v9VCRERERERERNRQGKK3QE6xzsXtUE3Y3jG+LyRJUnWiS8Icc/QkunpCVwxT9SfRdUJ0YZ8y4ptE19LWoYgBrnaSWG+yOJn0QtE2mW788s/TDaedFa9cfTwe+nq9avpcZFTHYV7nYi3sNdrKaVLnIoac2gsFsSbR3544Et+tOYgt+eVYvbcY147pgXlbCgDU1KGIk+hZwvumd5FGobwPTrsNgVBNiKx8NsQLAMpPHmES3eg91L5mhThJHa9b318OAGiT4Y67p9wqvW8V5JpU4QSEb0v4giF4bPbwQr0K5c+OdvFUcTLdysWFnLRIiH7hSwuxbn9J1DbVgRAyGaITERERERERUQoxRG+BxCA70+NAnjDpq0xFi3UuPiFUU4Lh0T1bYfHOozhvWEdV7Yg4xavXf64XrIshq3AoVbhuVbY2RBeDX82xz66dwq4vRmFsJwvd1z3bZOCdG0YZPm6zSfjTab3x0pzt6mPGUediRNZMEA/pXLOIp3oSPfp5p/dvh2355Th/mLojPFaIPq5fO4zr1w7eQBAF5T50zk1TXaxRT6JHfr9m3yRQjumwS0oWjxyT4Fi8+ON22PD5bWNQWhXAiB55GPLQj6rjDeyYjQ21i3nKAAKh+BfQ1GqV4TIM0bXVPvEqqVJ3s7sdNtNFZSt8kSDcFwzB47SjXBPEK79/7SS6qpolJIcn2A+VVOOeaWvw59P74pRj2kbORXjfV+8t1j2fan+w3qpuiIiIiIiIiIisYDLRAokTvBkuB/p1yMKdZx6Ddlnu8P1iGC72IStB4oc3n4DK2nDrkNCtLIbvVifRxbA9JBtPossWJqnFSXS7TVJNHYuTxA+dPxDnDOkQc39W6XaiJ3ARIB53/aYf9h6twterD0SOGUedixW3nNIL15/UA4CmE11nh29cN6Lmmwma37HVOhe3wx5eXFOsXBEv8sTq3NduJ+5HW/UDRN6XNNUkuh2Day8ciJTP7teTTkKf//shfH+P1hkAjhieixWtMl2Gi8VmuBxRk+DxOFLmVd3OTnNarkdRQvKoTnSlziWoDtFfm7cj/HMgJOOUJ+fAFwihZ5sMrN1fgmvfXBLuWQfUU+9GqmvraFjrQkRERERERESpwkSiBRLDUCU8/MsZfXHFqG7h+8XpYb0A1maTwtOh4lSyWFOiF3jF6kkXp6D1+tejaHJ1MUTXhrfiocf0bqPbRZ5M9dVxrZAkCSf2bq26z3hhUeuvVXxL7zlnADrm1ATbDpOpfuV8tAE6EP/CogA0k+iR36m4e7NJdJc4iV5LW/UDRN4X8X3TToSP7lnTW37V6O61+1Q/fseZx9R5UjrL7TCcRE8zmRq3YvuRctXtLI9DVelkpsoXhCzLUZ3oyp8dr988BD9a4UO5N4C1OjUtACwtylrtD2HHkXIMe/hHPDl9k+42C7cVYO/Rypj7IiIiIiIiIiJKBEP0FkgMH81qHf7vnAG45oTu6N8hejFM1f4k/f3pTQrrVbyI3eRippZYnUskzNSGt+LrboiBVqOp8GTSvsZMg0Ux47leYLQepPi70wvLjSQUogsXINKEgFv1zQKzOhehE10hfja00k060d+7cTTm3X0aTu7bRve5OWlO/OeKYw33/fltJ+ICTcWNltthM/y86P0ZNZvC19pyWBuiO2E36ZMXjX1yDm57fwWKK32q+5X3XjuJHi+/xUn0KT9sQoUviJfnbo96fNmuo7jq9cUY++ScOp0LEREREREREZERhugtkBgsppks3nnzKb3wyEWDYy4QKIbg4tSsbnWL7n2R8xHrXKImuS30QovTxtp6DDHsT2RR0d/XTurfdHLP6Ad1dlffk+hAJCxWpLn0g+K4OtEN3miHQTVOLFbrXERioCxOaIu/N7NvEmTWvg/iZ91sMdc0k0l0l8OGbq3TTc/X6BsANgk4rlsunv/98KjHxEVSXSYhut7vNMuT+OR7tseh+zvJM+iMn77+EIoq1b3qy3cXYcSjM7Gxths+HuK3TQIWFmX1BoIo1fS6i5bsOhr3ORARERERERERxYMhegsk5thWqiJiLZwoTgeLYaJenYtesG4XAj0xsLdrgj4rayuq61zUx7c6xWxk8oWD8MUfT8Q/z+4f9VjfdplR99V3JzoAuDTvUYbB7zOe6hqjSXR7gu9fYpPokeeIzxfDe6M+7bcmjgz/rsWwWO+CkbI78XiJXPww+taEy2ELv/d/OaOv6jFxEVy3w25Y56KdRO/aKk23msaqtplu3W+EtMpw6WxdQzuJDgAF5T58teqAztbmxIVOrdS5lFT5UVZt3Alv9Hn1BUL4ZvUBFJZ79TcAsKewEuc+Px9frdof8zyIiIiIiIiIqOViiN4CSZKEUT1boUfrdAzqFL2AolasxgUxUPXEWPgxVie6GOQlUociLh7pdGg60es4ie602zC8W57uxYEXrjwOFx3bCX8+vU/4PrOqnGTRBq/pRpPoSah/F8PseN6/uta5qCbRhV0ZBbBiWC5+3swuGIkXbIzCbDNGwbt4/51nHoMz+rcL3xanyd1Om+UQ/d0bRhtOvsdy27je+NPpfXT/HJoF89pJ9Lo4XBoJtWNdoAOAG95ehg0mE+8hg8/Biz9txZ8/XIkr/7s4fN8rc7fjtveXhy/A/HPaGqw/UIq/frTK4tkTERERERERUUtUt9XwqMn66OYTIMPaRHGsoMtuUOeit2vtdHnNdhL+c8Wx+HXHUVV3dJtMN64+oRve/3VPzHNUZIkhuiYoVNW5JDCJbqZzbhqeu6KmsqNLXhq2Hi7HgBhd8skgBtQOm2QYxF47pjtemrMdpxzTNuY+jWaDE59ET6DORZjsdhmE90afSzFgFuuBzKqLxP0mcvHGKNTW7itTCM6zNdVD2vohhRiiP/O7YejZJiOhCxMA8I+zar5FoXeByyxEzy+rTuh4eg6XVqNfhywA1upcYgkajKJ/tbpmSn7z4bLwff+qXZj0xw2Hcc6QjthXVFXn4xMRERERERFR88cQvYWKJ0SO1YkuDiWLQaXepLBel7bDJuHCYzvjwmM7Rz326EVDwiG6bNTbIMhw6weogHqKOZ5O73hdPrJbve1bSwxTzSbfbx9/DE7s3QbDu+XG3qnB2yyG4fFkuPFUySiMOtGP754X/tkogBWrVcSFK83qXMTPQzyLduodU6T9nYgT4OK3JtxOm+43HGr2EfnXtHLxIpFpedV56Bwrz6TOpdpftwVERf+avgmHSqvx8pxtKPca17RYJf5rRpbl8OfN7N9bRbX1NGXVyZuwJyIiIiIiIqLmi3UuFFOP1hmmj4tTyWJ9hV7IGasTva4yhMDRG1AHf+KxddosmiSrC2c67Tac1KeNYd2LyGhhUbtNfyK8PhzTvmZSOd1lR4ccD2bcfgruntAPfzotUpfjNwrRHfoXcsTg+G9nHoN0lx33nzcQgPqiUiKhv9GUu/jNiJp9R37OThPqXDR1MGlOO84b2hEf3nyCKtTX63rXMpoof/ziIeGf9Z4vQUKbTOMgPVnWHyjF3z9bg12FlQk9X3sxTaxz8QkXTYxqXoDIRQGzrnUiIiIiIiIiIgUn0Smmuyb0Q0iWcfHw6ElxQD3FK4aEfp0ydZfDhicuGYLlu4vw6fJ9Uc+vKzEM9WlCdDH4rc9J9IYkVoBYWSTWCqOBf0cdF2aNx40n98TYvm3RNsuNTLcD/TpkhStAFFbqXIym1f98Rl/cNq53OFiv63UcbViuyNRc2BCno8VJdG2Vywm9WuHFK48DAHy9OrLopSMcohtfBWqd4VIt3gkAPVqn48rRkW9I6E3bl1X78fwVw3HNm0tifvvEiofOH4iHvtlQ5/1oeQMhw8oebyAUviCh/SaMGKpX+4O62xARERERERER6Wkm87hUn3LSnHjs4iEY0aOV7uNG1TBGk8JXjOqGiSf1DN+2Gsjq7U2c5tXSTqKLR6nvELihiLUeGRamzOvCISTNiU6id85Ns7SdJEno1yFLtdCsllFALlbB6F3IUYiT6XX9PBjVq4gd6IA6tM3WLCxqtJ3egrhmve2tdabJte+UXSeEL63248Q+bbDi/jMxpldrw/1bdf1JPfHDX8fWeT9aSgCuEAN/8cKZGK4PeXAGPl+xL3z7g8V7UOVT74eIiIiIiIiIyAgn0SmpOuR4wj+bLUgq1qlY7aDu0zYz/PNb14/E499vxNO/G2a4vTdgHJJJaH4hetIm0Q3uF/u8Ew2dLx/ZFRKA4d3ysGhHAcYPaJ/QfgDjgNwTo5dfz6nHtAOwPul1JllRk+iRc3YL56mtcxGDYfG9Vv6stMl0Gx7T7MKDQu+3p1Sb5KQ5DTve46WdxE/UuH5tMXfzEQDR/ezixTLxZ/E9LPMGcPdna8K39xdX4d+ztiTl3IiIiIiIiIio+WOITknx/V/GosIXUIV7RpPoANA6I7JdrED289tOxOyNh3HzKb3C953Wvx1O69/O9Hlmx28uOgoXLUqrkrNIotECrsmoc7HbpHCv+cl92yS0D4VRQC5OaQdMJtFF3VqnY8E/TkNeenJDdO0kuhjsihUu2kl2ccrervO+/+03/bD5cBmuGNkV//h8req5rXUCdgtr8qJUWGRTb7J+8oWD8MBX61XnYlT7oiwAa9bTb9WLVw7HeUM7YfCDM1DuDaBKM4kuTpT7DEJ0Pd+sPhD+ua4LtRIRERERERFR88YQnZJiYKfsqPvMqjTaZrnxxnUjkOa0x1zI8fjueeFQri7EaV9HEhczTSVx6npXYUVS9mkUPaoWZk2wzuXE3nWvCVEYhaRivVA8nddd8tLjPgejCw4Ks050MbjV1rOI3+IQ+/uV19Y2y40v/ngSAKhC9AyXHX8c1xsfLN6jPk/D32rE8d0if8b0OtfPHdIRAMJBete8tPDioH8+vQ9e+GkbAGDJvWcgr3YaPr2O34544LyBOG9oJwA1n/VybyCqzkUM1cVvn8T61Yu/Ol8ghBV7inBct7r/e4aIiIiIiIiImh+G6FRvzHqbAeCMOlR5JCIn3YkHzx8ImyQlZUK2sdHWXCTKKBfWm4i2asm9Z2BvURWG11NIOaxrLlbvLY6636g3PVliXUw4pzZ4VojfjhD/fGgnoWPVueg55Zi2eP3aEbpT1e2yPDrPiMhw2fHg+YMMzweomSo/qU/k2wOjerbCrsJKpDntuPS4LujWKh2922WiXXbkWLH+HRCLWFGkVMyYhejxTKKHNB/0S17+BTseP8dwjQciIiIiIiIiarn4HXZKukcuGoxBnbLx1/F9U30qUSae1BPXndgj1aeRVEov/MMXDIqxpTXXnNAdAHC6pi5HDIztcU6it8v2JOXbBEaGdI7+JgQA+E16+evixSuHIzfdiXdvGBW+z6WZ3v7xjlMwuHOO6j7rk+j6IbpeaH9ct1wANb83ZZ+f33YixvZtg3vO7o8R3fNM1w4AgH+c3T88Pa53Psp9TqEX/+zBHTHzjlPw671noEebDPxuRNeoSW7xWyYn9GqFW0/tjTSn8XT6cd1y0addZO0DcSJe+dbF0Qqf6jnVqkn0EH7dUYhPl+2Nqn3RKtTsBwAWbCtAuTeAc5+fj6dnbDZ9PhERERERERG1HM1vHJdS7poTuoeDWKp/vz2+C87o304VgtbFfecNwGn922J0T3X1SoINLg3CaOLcShd4Is4b2gnnDumoCokz3Hb4KiOh/THts6KeJ9a0qEN044VFxenqLE/0v7Lfv2k0dhZUYGDHyIWE47vn4b0bRwMAbjm1d8zX49EcX+/agyRJcDoirzfNZUdfnddoxGm34Z9n90dIlvHavB2623RvnQFvIIht+eW1z4mewr/xnWXY9tjZKKsOYM/RSlUnenl1ABPfXmrpfPQm1a99cwkuG9EF6w+UYv2BUtw1oR+AmpoY8Xc0bcU+LNhagCmXDon63RERERERERFR88NJdGp22mVFL6zY3CUrQAdqAt3T+7ePqrwRQ3RtFUaqpWIRWW2Xf78OkUD5ofMH6j5HDG4lRJ4ftbCosN32I+XhnwfprD2Q7nJgUKecmGsLmDm+h3qCvKgyekob0J8Mt0oJwfUqaV6/dgRO798O954zAA5h2l2c7leCdQC4/q2lOP2ZubjwpYVYtrsofP+Ww2VxnZOeH9YdCv/89sKd2HCgFEMe+hFPTt8Uvv/OT1Zj2sr9+FDTPU9EREREREREzRMn0anZeffGUXjo6/W46zf9Un0qzUrbTDdO6NUKNklCbroz1aejYrSI7dAuOVizrwTdW8e/aGi8nr3sWDzw1XrceHJPjDFYQFUMx8XFPrX1KWLYfuupvbFsdxEmXzioTkG5kW//fDJ6t81U3Vdc6dfdVgzRzfrZ9dhrw3G9540f2B7jB7aPOob4s/jeLdhWoHuMF+dsi+uc9GS5HSirDgAAHvpmA7LcDvgCIbw8dzsy3A5Vz/2OguQs5ktEREREREREjRtDdGp2+nfIxkd/GJPq02h2JEnChzefEP451TrnpmF/cRV6t81Ax1z9hTOnXn083lq4E9eO6VHv59MpNw2vXzfCdJshnXOwck9x1P1KiH5G/3aYvSkfE0/qEX5sdK/WWPPgb+rtPdf2tgNAcZX+JLo4Ge6wWzufU49pi5+3HAm/Jofd/AtQYoWLU7i40CbTjYJyr+lzlfC7f4cs9GidgenrD5lur6egXP3ay7yB8M9PzdiMF37aGr5dWlVzsaHCG8ADX63HecM64rR+6rUEiIiIiIiIiKjpY4hORJY1hvBc8f5No/H6/B249dTeyE13orDch/OHdVJt0yk3Df93rn61SircPaEfsjwOnDe0k6qeRHlfX7n6eGzNL1P1m4uPJ0us3eWl69cDqQLuGGG44vXrRuBQSTW6tqr5NkCPNhmm26sn0SPHe+eGkTj3+QWWjnnKMW1x7zkD0OOf30U95rBJqql2LZ/BtxoU1f7I41+uOoCLj+uCX7YX4PMV+/D5in3Y9cS5AIDv1x7E/K1H8PAFg6PqeoiIiIiIiIioaeH/syeiJqlnmww8dvEQdG2VjiyPE0//bhhOPaZtqk/LVJbHibsn9MeAjtnQi3FdDlud+82t6JpnXm/zxKVDcXKfNlH3O+w2XD6iK84a1AG9YoThCqfdFg7QAeC8IR3x59P7GG4vTri3yYysbzCoUw5ONKjJER3fPQ83ntzT8PFcgwsEiXpu1hZsOFCqum9/cRX++L8V+HDJXszeeDipxyMiIiIiIiKihsdJdCKiFOjXPiv2RvVkbN82uO/cARjQMXqhUqDmAsX7N43WneT+12+H1unYNpuEv/2mH9bsK8HPW45EPS7WqfRorQ7qrSxo+/ltJ5o+npfuDNfCZHscKK0OmG4fS6bQoQ4Ah0ur8f2ag+HbB0uq67R/IiIiIiIiIko9huhERCnQr0MW3p44Eh1z0hr82JIk4aaxvRr8uKIsj/5/fnYJi3Vqa1BMWlj0j+F2oMwbwPHd87B8dxEAdVVNp9w0lB4qA1DTS+8NRFe5XHRsJxwsqcbinUd1j1FWHUCF0Js++vHZqsf3F1fpPm/jwVI4bBLe/3U3urZKN/x9bMsvw/ytBbhqdHfWwhARERERERGlCEN0IqIUGdfIF6F8/doR+POHK/FkHafP9YzonodvhYlthc1mXGUT0knRn7x0KL5avR8LtxXipD7qupeZd56KdftLcLTSFw7Rc9Od4cePaZ+FTbUheqfcNOwUAnzFc1cMx4NfrTMM0Y+UeU0n5PcVVYZ/PlBche/XHsTFwzvj7P/MV21nkyT065CFkzQ1OuOfnRf+eeJJPbGvqBL7i6owulfsahsiIiIiIiIiSg6G6EREpGv8wPZY9/AE2E2C7URdfUJ3VPiCUaHxYxcNxj3T1uLuCf2inqNdEPTRiwbjspFdcWq/tvhi5X5cMbKr6vEOOR50yPHgh7WRsD47LRKin9SnNb5efQAA0C7LjV2FFRDzcKVjX3yOwuO0odofwsGSKjhsxhPi+4oik+h//nAllu8uwoz1h6K2m/ztBgAIL0yqtWJPMSaeBJz8rzkAgK8nnYShXXINj0tEREREREREycPvhhMRkaH6CNCBmkVK/3RaHxzbNVd1/+DOOfjmzyfjFJ1FYs8b2lF1u0+7TABA+2wPbj21t+GioZlCdYzbYcNp/drimPaZuPDYzpH7nXa0zog8f1TPVnjmsmEAgGxPdIhe7a+pfgnJgC8YXQOjOCDUuSjT8Et3FRluP31dJGAPChcN0pzq/1wv3qE/GU9EREREREREyccQnYiImoTrTuyBO888Jny7b22IHkumOxKiO+02vHn9SMy4/RR4nPbw/Q6bhDaZ7vDtyRcOCt/OTov+0laa045WGfqhvai0OgBZlnG41NoCo7e+vxzLd9cE5PllkefYbTYEhLBeO5XfUArKvfhg8R5VDzwRERERERFRc8cQnYiImgSn3YbbxvXGMe0zcWLv1mgthN5mBnfOQYdsDwCgc24aJEmCJKkn7Hu1yUC1PyjcjgT04iT6wxcMQv8OWXjl6uNw9uAOMY8dDMmo9AXx8+Yjls4VAObWbrtfqIIprfKjpMofvu3XTL/Lsowth8vg01kcNZlufHsp7v1iLZ6cvqlej0NERERERETUmLATnYiImgyn3Ybpfz0FUhwtM067DXPuGoflu4swqmcr1WPv3zga36w+gL+O74sPl+wJ3+9yRK4xi53oJ/RqjetO7AGgJpzfml+O7fnlkAEcrfDpHr+02o/3F++2fL7LdhUhEAxh1d7i8H3b8stRVBnZv/gzAHy39iAmfbAS5w7tiJeuPE53vy/+tBWBkIzbxx+j+7gVq/eVAAC+WXMQD184OOH9EBERERERETUlKZ9Ef+mll9CjRw94PB6MHj0aS5YsMd3+ueeeQ79+/ZCWloauXbvijjvuQHW1ta/JExFR02ezRU+Sx5LmsuPkvm1U4TgAnNy3Df7126HI8jgxqFMOACAvXd2BLk6iZ7gjFTBtMt345JYxWH7/mTi9fzvDY+8qqMTa/TXh84m9W8c81/3FVXhqxmY8+t3G8H2bD5fhX9M3h29/sXI/Pl4aCf3fWLATAPDdmoPYVVCBWRsOq/ZZWu3H0z9uwXOztqK4Uj/sB6CaxjeTJlThEBERERERETV3KQ3RP/74Y9x555148MEHsWLFCgwbNgwTJkxAfn6+7vYffPAB/vnPf+LBBx/Exo0b8cYbb+Djjz/Gvffe28BnTkREzc2Tvx2KS47rjE9uGaO6P10IzsV+dVFOWvTio4rf//dXyDKQ5XFgSJecmOdRVu3Hq/N2RN0/UwjGiyv9+Mfna7FoeyEAoH2WJ/zYuKfn4qZ3l2HB1oLwfZXeSDgeNOhTn/rzdvS/fzpembsdk7/ZgLJqv+pxsUImzcUQnYiIiIiIiFqOlIbozz77LG6++WZMnDgRAwcOxNSpU5Geno4333xTd/tffvkFJ510Eq688kr06NEDv/nNb/D73/8+5vQ6ERFRLD3aZODZy45F3/ZZqvvFSfR0l36InqsTorfWLDzarVU62pr0uA/unA0Aqu7zWOZvrelPb50Zvcjp8t1F4Z8rfZGFQK96fTEKy71R2z/xQ03P+b+mb8KbC3fiX5re84PFkW992eL7IgARERERERFRk5ayEN3n82H58uUYP3585GRsNowfPx6LFi3Sfc6JJ56I5cuXh0PzHTt24Pvvv8c555xjeByv14vS0lLVP0RERFa1zXLjsYsH46nfDo2qg1HkpkeH6E67ettDJdW4YlQ3XHJcZ/z59D5R2x9TG95rB8WVRVH1LN55FDsLKvC/xXuiHpMR2VGFMIm+6VBZVECuR+xkB4B9xZXhn4363+vDsl1HcbCkKvaGRERERERERPUkZSF6QUEBgsEg2rdvr7q/ffv2OHTokO5zrrzySkyePBknn3wynE4nevfujXHjxpnWuUyZMgU5OTnhf7p27ZrU10FERM3fVaO743cjjP/7kZMePQkeCIVUt/98eh9kuh149rJjcdbgDlHb56W74NAZ8b7nnP6Gx917tBLnPj/f7NTx2fJ9eHKGOjTfcaQCB4ojwXQgGNI+DVU+dT96YXkkOD9a4TOshUmm1XuL8dupizBmyk/1fiwiIiIiIiIiIylfWDQec+fOxeOPP46XX34ZK1aswLRp0/Ddd9/hkUceMXzOPffcg5KSkvA/e/fubcAzJiKilkDbid6rbYZq+vvdG0bh6hO6h2+LFTGKNKcd2Tq1MIM6ZRse90i5F5U+/cVAZbmmx/yuT1djvtCPDgDLdhfhxCd+wrb8cgDANW9E16JV+YLYll+Oa95YjGW7jqqmz0Oy8TS6LxDC8t1HdYP5eC3ZebTO+yAiIiIiIiKqK/1y1wbQpk0b2O12HD58WHX/4cOH0aFD9IQeANx///245pprcNNNNwEAhgwZgoqKCvzhD3/A//3f/8Fmi74m4Ha74XYbd9ASERHVldiJ/vltY9C/QzbOe2EBdhZUAABOOaatanu9BUrTXHZkexzhcPrhCwbhpD5t0DEnUufyu+O74PKRXfHIdxuxem8x5BjD4LsLK00f/2b1Adxx5jFYtKMw6rEqfxA3vbMUuworo0J4oKZn/evVhfh46R7854rhaFPb937PtLX4fMU+3DauN/5xlvEUvRViJQ0RERERERFRqqRsEt3lcuH444/H7Nmzw/eFQiHMnj0bY8aM0X1OZWVlVFBut9sBAHKsJIGIiKieiJ3oHXPSkOF24IXfD8eonq3w+W3R/03L0AnR3Q6bahL9/GGd0KddJtJd9vB9DruEET1a4as/nYQerdNNz0mWZew4Um66jcMmGdayVPmD2GUSwnsDIfzlw5VYuK0Q//ohUhfz+Yp9AIBX5m43PbaZ4kofZFmOeZGAiIiIiIiIqCGkbBIdAO68805cd911GDFiBEaNGoXnnnsOFRUVmDhxIgDg2muvRefOnTFlyhQAwPnnn49nn30Ww4cPx+jRo7Ft2zbcf//9OP/888NhOhERUUMTJ8uVxUcHd87BJ7foXxTWW6C0ZhK9JkTvkpeGVhk1PeuSFOlJtwud6Z1y00xD7ud/2oYR3fNMz/uZmVtwztCOuo9V+83rWKr9kRqZT5fXBOePXDQ4fJ9ev7sVczfn4/q3luJPp/XWrb2JVyAYwqIdhTiuW57uxYtEeQNBOG022BJ8nURERERERNR0pDREv/zyy3HkyBE88MADOHToEI499lhMnz49vNjonj17VJPn9913HyRJwn333Yf9+/ejbdu2OP/88/HYY4+l6iUQERGhVYYLZw5sj0AwhNYZ0YuMWuF22JGdVvOf5aFdcnS3aZ8VqXbp1iodv2yPrmERLdtdFPO4d3+6Oo6zjPAG1CH7p8v3oV+HrPBtMVzeV1SJf36+FjeN7Ylx/dpF7SsUknG4rBodc9LCE+wvzdmOf55dtzoYAHhxzjY8N2srTuzdGh/cfEKd9wcAZdV+jHh0FgZ2ysYXfzwpKfskIiIiIiKixiulIToATJo0CZMmTdJ9bO7cuarbDocDDz74IB588MEGODMiIiJrJEnCf68dUad9+AIhdM5NAwCM7NFK9diTlw7F9+sOYuLJPcP3HdctDx8trfti2Sv2FCf0PK/OpPqj320M/yxOov/z87VYsK0AC7YVYNcT50Y9765PV2Payv2YevXxOKZ9FhbXLihaUuVP6NxE7/+6GwBiXnAQ7T1aiTcW7MSNJ/dE11bRtTm/bC+ENxDCygTfO0q+j5fuQafcNIzt2zb2xkRERERERHFKeYhORERENQt1/vmMvjiuWx5OH6Ce1r5sZFdcNrKr6r4RPcyrWhRZHgfKqgOGj7fJdKOg3Gv5PNNddlT6gqo6Fz1i9czh0mrTbaet3A8AeHnuNozt2yZ8/7r9JeGfZVlWVdtYZdT5bubaN5dgZ0EFft5yBHPuGhf385NFWe8lkdfdkqzbX4J/fL4WAHQv0hAREREREdVVyhYWJSIiasmevWwYTjkmMjXbKsOFbI8TZw/pCLcj9jofPdtkqG4P6pStu92ADvr3d8iuqYYprLAeoF83pjsGd6qpmqkOWA/RrfI47fAHI6G3GP4nEoYn+rydBRWq/9VqqEj7ureW4tznF+i+hlBIxktztmHxDusT9s3VgeKqVJ8CERERERE1cwzRiYiIUuCS47rg3RtG4bVrjsfEk3rggmGd4nq+JElw2SP/Gf9m0sm627XLduPz206Muv+q0d0AAHIcGfOZAzvA7aw5ZrnJdDuQ2MKiaU47fELXujjtHmjAED0W7WS4LMuYtmIfth8pT9oxZFnGvC1HsOFgKbbml0U9/vXqA3hqxmZc/tqvSTtmU5X83zAREREREZEaQ3QiIqIU+s2gDnjw/EFw2OP/T3KaKzKxbjMIrdtne3B89zyM6qnuWe+hmWTPdMdueEt328NT8kcrfabbJjKJnua0qxYsrRJCdH8wuoPdimA8VwkS9PXqA7jzk9U445mfk7ZPMfy36dS5GE3J17dlu47it6/8oqraiUeVz/wbDIlogF8xERERERG1cAzRiYiImqg0Z+zal7ZZbgCAXRPEautgWmW4Yu4r3WUPT6IXVZiH6A5bYhcFxLBcNYkebEST6MLPsizXywKj4uS93uUIvWC9Ifx26iIs212Em95ZZml7WUi47/tyLQY8MB2r9xYn+ayYohMRERERUf1iiE5ERNREpbtih+hGQXu31ulx7yvD5YDbUfNXh6MVftNtbTagsNyLiW8twdb8SM3Jp8v24k8frAgH5CEhLPZo6lwqvcIkeijBSfR6qXNR71+uh1Fo8bz18vIEBv2TqijGNxEA4Ns1BzDi0VlYuusoAOD9X/cAAJ6fvTWp51IPv2IiIiIiIiIVhuhERERNVJqF4FsJvUX3nN0fWZr6Fit1KWkuOzy1oXysENVhs+HZmVswZ/MR1f13f7YG3605iE+X7QUAVPgi3eraTvQyb+SxRCfR9QLWI2VebMtPTn95fdXFqPcbnZinaBA9zMpFl0kfrERhhQ8T31qquj/Z5x5inwsREREREdUzhuhERERNlDbI7JKXFrXNaf3bAQBkofLiprG9ohbH9FsIqdWT6LE70QvLjbcprQ5AlmVsPxLp9nbYJfgMwvwznvkZ3kBy+rRHPjYL45/9GfuLqyxt//3agzjvhfnhHvKoSfSknJVaMGg+ia79/TW0dFfsDn1FfXwbQMQMnYiIiIiI6htDdCIioiaqT7ss1e3XrxuBkT3y8M4No7DpkbOw7L7xaJ/tAaAOGpVFP397fJfwfeXC1LceSQI8Tlt4YdFYk+h2SYJLZwpe4bRLeGrGZlz00sLwfYGgbDgRX+UPYuG2AtNjxmuNxW7uP/5vBdbtL8XfP1sd9Vh9BcSxJtybwiS6IvoyQ3JP3mwS/atV+3H+Cwuw92hlUo9JREREREQtC0N0IiKiJuqfZ/XHBcM64e2JIwEA/Ttk49NbT8Spx7SFx2lHm0y36fOf/t2w8M+xQvR0px2SJEUm0U2mzIGaYNM8RLfh5bnbVfcFQyF4A8a1MpJB+FpS6ceHS/agpNK8p13L7Fh6SqsCUedR04lu/rw9hZUorY7v3MRwXq9z3ei9aCjpbuuT6Kn0149WYe3+Ejz49fpUnwoRERERETVhDNGJiIiaqJx0J57//XCM69cu5rZGOe/jFw+BTQJe+P1wZHmMg9G02voOpRNd6Ss/d2hH/Pn0PlHb+4Mh1aKhWg579F9BAiFZ1YmuZTNYTfPPH63EPdPW4t4v1ho+V4/ZsayKNYm+p7ASpzw1B8c/MjOu/QaE/eodItULi6YbLFirRxv4J3uKXrzGYLTIa0WMi0RERERERERmGKITERG1YFeO7oYNk8/ChEEd0C7LeHI9w10TmmoXKr3llF66Xey7CisxbeV+w/3t06nXCARjhOgG4eu8LTWLl3639qDhcxViyOq1sJiqSAl/xanyoCzr1JVE/LqzEIC1znmReAFCL6i3paDPRXzv4qlz0Ur2mYvvv9G3AuypvupARERERERNGkN0IiKiFk6ZLj+2a57hNmm127idkb86tMl0Y2iX3HBPejxenbcj6r5AyLgTHYhdYWIl2BUnvBOZRP9x/SH89aNV4dv11YmunkTXqXNJQSYs1t/EU+dSP0uvRoSEX6PRkRiiExERERFRXTBEJyIiIgDAA+cNxLlDOuKt60dGPaYE1B4hMO/WqmYCXTudnqhgKASfSYjuD5mH3rlpTgvHqFuIfvdna6L2F6sTPRFB4bXWx/4TIfbmpzkT/50nvc5F+NlokVEHQ3QiIiIiIqqDprEqFBEREdWNhSA2J92Jl646DkDN5K4YOCvT5uIkerdW6eFtk8EfoxNd77E3F+wM/5xtIUQXJ90TCdG1C7DGyPUTtnJPcfjnWHUuoZBs2BefTOXVyekVT/aiqGLNjFGIbrdxboSIiIiIiBLH/0dBREREUebeNQ5PXDIkfNtZO20+uFNO+D5PHItLWhEMmte56D02+dsN4Z+1dS56C5uKgbQ3EIz/HDX7DIRCSS8r+WVbgWriPVadS7CBRtXFCwhx1snXK/XCovrb6KxjS0REREREZBn/LwUREVELEG8vdddW6bj4uM7h2y57TWrbo00GrhjZFQBw3tBOtftOjkAopOrd1tKG6B8u2aO6Xe1XP663L3GBT7NjWaUNuOUkBNo/bjhsegxAPYleX73sWtX+yEUH8XXKsow1+4pVj5tJfp1L7IVFHZxEJyIiIiKiOuD/oyAiIiJdTiF4dAqjvI9dPATz/34aTu7bBkDyOrsDcdS57DhSjnumrVU9XulT141oJ80/WLxHFThX+qJD3x1Hyg2PL+mkv8GQ+vVrA+1k5MV6GbnY3hJooBBdfP/F6ff3F+/BBS8uxA1vL7W0n6SH6MLLN65zYSc6EREREREljiE6ERFRC5BI0C32bIshut0moWttHzoAtMpw1encFIGgbLqwqE+YIi+u8kc9XqEJxTccLFXdvveLtappdm3oDgCnP/Oz5fMFaqbnxVn8+gi09WppkIJJdPF3Ix7yvUW7AAC/bC9skPPQClkI0bmwKBERERER1QVDdCIiIorJaVIqPbJHHm49tXedj+ENBE3Dfr8wCe3Uqeeo0oToX67cH7WNGDhXeNXb7y+usnqqYSGdSfSvVu3HD2sPRm2rrXopqfSr7iurjr4wAOh3nouRcEOF6GIVjhjsN1AluyExODc6lYZYeJWIiIiIiJovhuhEREQtQF1zTpfDOISUJAn/PLt/HY+gX68iEieh9SbWK3wBVSi9NT+6mqVmcrxGlV89if7LtgLL56q3PwAoqvThrx+twm3/WxE16S5m3b9sK8CwyT+GK2m+WLkPQx76MarnHYgdUmvPQeuthTtxz7S1de5rV9W5hGIH10akpJTcRIjHlw3eCk6iExERERFRXTBEJyIiopjMJtGTRTtJriVOomv7zoGasFlcLLSkMnqy2xeIRK7lcU6i6y2cGZJlVcgtblNY7lNtKwbPz83aCgD4aOleAMAdH68GgKied+3zFGIgHiNDx8PfbMCHS/Zg0Y661a34VXUusu7PeqIeTnaebeFc2Ilu7FBJNeZszk/KorhERERERM0VQ3QiIqIW4OELBiHNacffz+qX0PMTDdEvGNbJ8LGnfjtUdbvcWzO5bbTwpBjieg0WIK3wRqa/9XrTq4SQe/XeYlz1+q/hahKjfSr2FVVG3RcMqYPban9kH0cr1CG6uF08i2vqBcNirh5rEl1RXh3dAR8Pn0GInmrie2F0VpxEN3bClNmY+NZSzFh/ONWnQkRERETUaDFEJyIiagEGd87B2od+gz+O65PQ8xMN0X83oovhY2kuO6ZefTwmDGoPADhS7gUAtM5wweOMPp5XDNH96uBY2V6phAmFZBRXqkNsIHqafOG2Quw+WolVe4vxytztUduL07liJ7giEAqpFhMVg/jCCq9qW3Gi3GaSomsf0g/RI/eZdaInc7pYrHNRHTLGIbSvJ9lxttFUvNjbzk702BYmUGdERERERNRSOFJ9AkRERNQwHHWoZHHZY4eQXfLSsK+oCjYpErJmuI3/quGw2XDW4A7ITnNgxvrD4VaOVhkuyDJQ7VeH4H6hikXbiZ7hcqDa78PW/DJc/9YSnDe0E/SyZb3edW8giIteWqh7jrEqUEIhqEN0IaQvKPepwvKghUn0bE/0+6U3aC4G58GQjHX7SxAIyTi2a274/rJqP855fr5wzLoFyeI3AcTjx13nkmRG5+IX3jh7HV87ERERERG1bJxEJyIiIkPDu+UCAC4c3jnmtjPvOBW//PN0/OGU3uH7PA674fbO2mDeYVP/dSQv3aXbYV3hDYQnyb2aifI+7TIBADe8vQzbj1TgP7NrOse1E+3axT4BYKrOBLriyv8uNnwMqAnGA0K4XB0QQ3T1JHrIYBK9XKigyfI4o46hF1KLd1X5gzjvhQW46KWFqn19sXI/9h4173k3U1Thw6LtheFpdvUkeh0WFk1yoK06F+FkxG8O2C1cBCIiIiIiIjLCSXQiIiIy9MktY1Ba5UfrTHfMbdNcdqS50nD7+L4oqfLhjP7to0LsHq3TsauwpltcmYx3aALO1pkubMsvj9r/x8v24uctRzD37nFR/eVj+7bB4p1Ho56Tm+bCIX91+Lbe4qVfrjoQ87UZCWrqXMRO9MJyH9plecK3xcl4MUfOL63WvT/yPPM6l29WHwz/XFrlR6bB9H+8MfK5z8/HgZJqvHPDKJx6TFvDhUXjnTRPdpwtfilBPBfx4gY70WPjsD4RERERkTFOohMREZEhp91mKUAXeZx2TLlkKMYPbI9OuWnh+9+6fiQuPDYy0e60KZPo6vSuVYZLFUyLDpVWY+3+ElWI/vjFQ3DW4A662+emqye79epc6iIYUoe1Yuf6kTKvYXe5OI0tvhZxklyh91aI9039OTJJLwahZr3rsRRX+nCgpCbcX767CADgC+q/FjnuWfTkMupEFyt/JJ3ofsvhMpToLD5LRERERESkxRCdiIiI6o3HaceSe8/AsvvG47T+7cIVLkBkEl1b3dIq3aUKaR86f6Dq8V0FFfDW1qZcMKwTrhzdDX3aZeGjP5wQdfycNHWIXuVPdohuvLDoxoOlqgoXMeAVX7I44V3hDURNdustHGrUQy5uq31f44m6F26LdMF3yau5EGK0sGjck+hJnng26kQPBI2D/jX7ivGbf8/DSU/8lNyTISIiIiKiZokhOhEREdWrdtketKmdZrcL/edKyOvULHjaKsOlCpadDvXjd3+2Bk9O3wwAyE6LVJeM7tkKZw1ST6T3bJOhuq3UufRqkwFXHRZaVdRMoot1LpGQftuRctWkc9CgE10Mp/1BOWrRVN06F4NJffFctItpBoI6K5QaKPdGn7eqzkWcRE95nYtRJ7p+6A8AczcfAaA/+d8Ubcsvx5TvN+JohS/2xkREREREFDeG6ERERNRgxOoWZSpdOzHdrXW6KhjVhuwit7BwqSRJmHrN8apO8Ikn9VRtr9S5tMt245ox3RN4BWpBWVadq9iJLsvA6n3FkW1D+pPo2tBcWzGiDak3HizFMzO36J5PIBTZl03zvvoNgnc94qYBvRBd1YneeOpcjBYW1Z6i3sK1TdmFLy7Aq/N24O5PVye8j+b1jhARERERJRdDdCIiImowYnjpqJ1KdwrT6ekuO8Yd0w5BIfV0O8xC9OjHxOnifh2yVI9V+QPhY2d71FUvVmR51It2BkMh+EP6nehATS+6Qgx7xU50MewFavrI1cdQP37Fa78anp8vINa5qB+LZxJd1eVe+zxxYj5Yh9xcSmKfy86CCrzw07bwbfG8xdBfG/Q3txC9ovbi0BKdxXWJiIiIiKjuGKITERFRg3HYdSbRhftuGtsLNpukmhwWJ9H/ckZfvPD74eHb4iS6omOOBwBwRv92AIAPb450pSt1Lg67FBWIW9EuS73IajCkDrnFTnQAqPAGhW2FEF3Yxqd5TnGlehJdW+dithimahI9qs6lbpPoPoNQOt48PZnx9d8+WaW6bdSJrn0PtVU3zUWyO/+t+nVHIeZtOZKSYxMRERERNQSG6ERERNRgVJPoteG4WPHSJtMFABjWNRcA0D7brao+Gd41VxVku53Rf5V547qRuOnknvhPbdg+pndrDO2SAyBS5+KwSchOi38SXel2V4RCsmqSfO/RStXjlb7IVLx6YVFxEt28zsVoEVE94r60Ibq2NsaMGJJHOtGj77NyfvVZ9qLtABeP5TPpRG9uk+iKQByVPUk7ZjCEK177Fde+uSTqWxRERERERM1F/CNYRERERAkSq1uU8FwM0Vtn1ITUL105HFN/3o4bTuoJt9MOj9OG0/q1w7h+bbGzoCK8vV6dy8BO2RjYaaDqPmURUWVS12Gz4eQ+bdCrbQZ2HKmI2oeR1rUhvyIQkhEUpr+/W3tQ9Xi5ahI9cr/wNkSF6BWaxS7jyUX9JtPXcdW5CAcNT6IHIq9FPCcrGX999aY7NJ01smoSXb/DveZ5zTNEr4tEanaKK33wOCPfBimp8iM33WXyDCIiIiKipokhOhERETUYu2phUWUSPRKE5qXXTId3yUvHoxcNCd+/6oHfwO2wQZIktMv2hO/X9oUbUY41f2tBzXnYJXTI8WDmHafi2Mk/oqw6YPb0MCXkV5RV+01rUsRJ9Lmb83HXp6tx5ehu+H7tofD92joXpd9akegkelSInuDConqT6ErI/sv2AuQLve/eQBBX/ncxRnTPC98nafaXzD4Xh2aiXDyO2cKi2il9it9/Zm3Fv2dtwSMXDU71qRARERER1TuG6ERERNRg1HUu0Z3oOen6FSvitGuGK/JzqUk/uMipmVh31p6H3SYhL91lPUTXTKJP+WET0pzRveyKSiEQn/LDJgDAPdPWqrbR1qxoQ/VQHOG3GOhrw33tAqZGqv1BrNlXHNlPOEQXFxatue/K/y5WPXf6ukNYvrsIy3cXqe5X98EnL8B2Rk2iR34WF3w1W1hUluWkLnbaUvx71hYAwP1frgvfl8zfLRERERFRY8IQnYiIiBqMmFUqU8ROIURvl+XRPkVnH5HtzRbZFLk09R12Yfo9nnrs1ppOdKDuizlW+cyfH1+di8kkusU6l5veWYYF2wrCt5W6GnHRVKPpeO3CqkBNT7m4fTLzam0tS0iW4Q+G4LTb4A9Y60QPhmTWuxARERERkSkuLEpEREQNRsxelT5rt8OOJy8diicuGYK2WdEhtZ7c2on1k/u2tbS9dmJZDJvjmUJuVQ99z5UxQvTtR8px3gvz8d2ag6bbAeppc219i7Z73YgYoIv7UQX0Rsm+0d31tN6l2LEPAJ8t34eBD0zHzA2HVa8/qhPdJi7s2vCLcSZbc10olYiIiIiosWCITkRERA1GFlJWMci8bGRXXDGqm+X9zLzjVLx/42iMH9DO0vbaEL202toEu1ZOmn7dTF3ECtHfXbQb6/aX4k8frIi5r0DIOOj2xzPSLggGdUJ0www9+gEJkfoX5XayaCfI31iwE/6gjJvfXQavsBCq9qzE0FmsfWlKthwuC19Y8egssEukWL67COOemoOfNh1O9akQERERNVn8GzcRERE1GHEgWBtsx6Ntlhsn921jeYpcDFQBdQ1MrD08cN7A8M/ZaclvwhMXH60rsU9dO4lutc5FS9mPuG+jBV31Js7rs87FaALb47SpLk6YdaKbLQzbmP3m3/Pwpw9WYOG2AqS5jHv5GxKr5Run699cgl2Flbjh7WWpPhUiIiKiJoud6ERERNRgxCyzISsoiirUk+cllcLtGKcxvFsuuuSlocIbQI82GUk/t1iT6PEQg3Nt0J1obUkwXOcSeb42lI5Frqdhb6MLMekuByq9kfdVO2wuLoCZ6MWFxmLDgVK4HXUP0RmAN18VSbxQR0RERNRScRKdiIiIGkyqZn4LK7yq22KdS6zsMM1lx+y/nYpf7z0Dbou1GelxTAbHWlg0Hgu2FeC8F+Zj1obDOiF6SBV+L9l5FCMfm4Vv1xww3adeJ3rQIEQ3+v2q61ySl9Y6DC7EpDntqosT2k508bZRzY0sy/h46R6s3FOUhDOtPzJkuJ38Kz0RERERUX3i37iJiIio2SuqVE+il1ZFJjMnntQTADCuX1s8fMGgqOd6HHa4a/9x2Kz91SnTbf3Lfsmsc/luzUGs21+KNxfujAq6/7d4Dy54cWE4DL/itUU4UubFpA9Wmu4zWDvGHVRNuetvazSgrg2xk8VoEj3DbUelP/K+ao+uCtED+i9mwbYC/OPztbj45V/qfJ71zSNMohtV7VDDW7brKP7x2RoUVfhSfSpEREREVEescyEiIqIGE28NSLLYNF0VL1w5PPzzVaO7YWiXHBzTPgufLtsb9VyPMxJQWm2gyfQ4kF/mjb0h4qtz8VusHnE5bOEFQUVr95dgxe4ijO7V2nBxUC1lEl2sijH6PRqF5eL9yQzUtQuLKtJcDtWEv9kxAwYLi27LL6/byTUgjzCJXu0PIiOOizjJlKI/3o3Wb6cuAgD4giH8+/JjU3syRERERFQnnEQnIiKiZu+lK4eja6s0vHn9CGx65CxMGNQh/JgkSRjaJRcep113oVKxwsXqQqZZcYSYVf6asNdpEAiLSqv8MbcBaipqjCpXDpZUq253yPaY7kuZbA6Jk+hxpqViTh2Sk3cxxeibAWlOGyq84sKimvMRJ9ENuuKbUiDsEj6jVi/K/Lj+EG58e2n4djJqdurrGwexvPPLLox/9mccLq2OvbGgoNwbtehwfdhRUFHvxzDThD7KRERERI0WQ3QiIiJqMG2z3Ck57uherTH/76fj9P7tVZPlWtqJdQCm2yucdgk9WqeHb2d6rIfoFd6a2hEr08Mr9xRb2qcvGDKs9ThYUq2ql+jaKs10X3qT6CGjHnGDfYjh6ucr9mH047ORH2fgqcfowkO6y4Eqoc4lqhNdCPUDCS642piIL89qkP2H95Zj9qb8pJ5HvCH6C7O3YsK/56kX+k3Ag1+vx7b8cjw5fbPl5+w9WokRj87C6U//XKdjExEREVHLwBCdiIiIGsypx7TFpNP64JWrjkv1qejSq2uxsphobroLpx7TNnw7y+20fEyldsRKj/pN7y6ztE+v3zhE31dUiWJhot0eo6NGqYUR92dYBWOx5iW/zIuX5243Pe6GA6XYe7TSdBujbwaku7QLixqfj9+gzqW+ovUKbyDuielYEgnR60O8R35m5hZsPlyGNxfuTMrxxQsnsczZXHMBYX9xVVKO3ZglbylfIiIiopaLIToRERE1GEmScNeEfjh7SMdUn4qurq3So+6zWShC9zhtcAsT6+2yrU/cV/r1Q/Th3XJjPveS4Z117zebRN9ztFLVF+4VFtas0qkCiUyiR7YzCmoNJ9F1cmqzZpwjZV6c8/x8jH1yjvFGMJ6Id9ltqFTVuai3E2819CT6cY/MxOjHZyc1SFd3zidtt3FLtKZH+WzJsmz4O7XC4HqILgbLRERERBQPhuhEREREtU7s3Rr3nTsAAzpmx/W8NKcdHmFivW2mG+davFCghL3aEL1zrnnNCgAM6ZKje78vYByil3sD4R52oGZqXXHiE7Ojtg/WJpPi/oz2rRuAyvqhu151jmJ3obUOaaMwPyjLqBSmkrWbyapOdINJ9Hqa6FYuWqzYXZS0fapC9ARDaIt1/6bq+pbd9M4ynPHszwn3lMfb1U9EREREZBVDdCIiIqJakiThprG9MK5f29gbCzxOu2oS3WG3qepdFHqVLb7aEFfbo55moYvdKIj2BUKqDnNRpTcIrxiiC4FlkU43tV4nujcQwi/bCgy31dIP0XU3BaCumDEK7AHj0DQYkjV1LppOdOGmUYhuRpZllHutV4foSUZorRBfXSpz5ESHyCVI8AdDmL0pHzsLKrDxYFlC+4nrwkcyfwGNXFO9tBAMyTErnYiIiIgaSqMI0V966SX06NEDHo8Ho0ePxpIlSwy3HTduHCRJivrn3HPPbcAzJiIioubMQoOLisdhV3WnO+0S3M7ov2aZ1bxoA/Y0l5UQXf9+byBkGA5X+jWT6AHzEDkYqqnY0OaTV76+OGpbv141imR9Er3cG8DSXUdVIbpZyG2UmYZkWVXnoj2+eDOROpc7P1mNwQ/OwLr9JXE/N9lkWR1ep7YTPfFj55d5wz/npFlfU0AUT4jfciL0pmvSBysw9sk5+Gb1gVSfChEREVHqQ/SPP/4Yd955Jx588EGsWLECw4YNw4QJE5Cfn6+7/bRp03Dw4MHwP+vWrYPdbsfvfve7Bj5zIiIiaq4GddKvSTHi1nSiO2yS7oKkWR7jcDAqRLcwiS5Jku50+/7iKvxv8R4AwDBN5UulNxhXiB4IyZZrMnQDb1k/3NRbFPSK1xbhd1MX4fPl+8z3WctoSj0QlFHpM65zEYPmgNHCoiYv+YuV+wEA/52/w3ijmJIX44oT2KmcOo6nk1wkScChkrp3xJt9a4Ganh/WHQIATP3ZfBFiIiIiooaQ8hD92Wefxc0334yJEydi4MCBmDp1KtLT0/Hmm2/qbt+qVSt06NAh/M/MmTORnp7OEJ2IiIiS5uzBHfDIRYPxzaSTLW3vcaon0R12G9yO6BA82xMdeCty0iMBuyQBLp0QXstuk/DDX8eabqOtian0BVEt9KAr1S5GVRhLdh7F7kJrlQo+g0Deap3Luv2lAIBptSE1UDPd/tWq/Xj02w1Rfd9G4X5IllUXCrTZqroTPfHg1SwG33SoFC/N2YZqf2L93vFQLyzaRCfRhYVWE30NyvOq/UFc88ZivLlgp+G2LajNpclP3fPiCBERETUGKQ3RfT4fli9fjvHjx4fvs9lsGD9+PBYtWmRpH2+88QauuOIKZGRk6D7u9XpRWlqq+oeIiIjIjCRJuOaE7oYLdwI10+aKNKc9aiFQvUn0Y7vmGu6vVbor/LPLbjNdeFNhk4CurdJx9uAOhtvkCvsFgCp/UDWlrUyimwVVF7+0MOa5AJF+dy29fdstdub4AiH89aNVeH3BTvy0Sf1NRaPgv8IbVIXj2u2sdKLXJRAGgLOem4+nZmzGK3Prf4pWnACvrwVRrUj00BKAQ0KInuh+5m8tQFGFDx8s3oP5Wwsw+dsNie2IGhWG6ERERNQYJBSi7927F/v2Rb5mu2TJEtx+++147bXX4tpPQUEBgsEg2rdvr7q/ffv2OHToUMznL1myBOvWrcNNN91kuM2UKVOQk5MT/qdr165xnSMRERGRHqc98tcoj9OGE3u3xuUjusLtsGF4t1zdTvQ/ndYH7Q160fMyImG322EtRFcqUcwqWfLSoytkiioiC4h6AyHIsnllS5nFRTSNJtH1dq1X5xJ5QuRHMeQurPCqNjMK14oqfarb0Z3oQp2LziT63qOVePz7TcbnV8v0NdRaa9CbnsxJaPUkemL7SMbpJBp+y1CH6HUppZn49lKUVcf+vFr589VcNPUImiE6ERERNQYJhehXXnkl5syZAwA4dOgQzjzzTCxZsgT/93//h8mTJyf1BM288cYbGDJkCEaNGmW4zT333IOSkpLwP3v37m2w8yMiIqLmy2GPhHAepx2SJOFfvx2KtQ9NwKBOOXDZo+tcPE47Hjx/kO7+2mQKk+gOu6XFTZUg8O9n9UNOmhN/Oq131Da5aa6o+45qwmh/UE64z1pkFObrhWBmL0/cWpxu14a0RnXp2hBde3TVJLrOC7/xnaUmZxdhJYYVtxHD+2RGuOL7kmgVSjIy5bpUyZRWRS7s1CUzXbW32NJ5tJwIvekLMEQnIiKiRiChEH3dunXh4PqTTz7B4MGD8csvv+B///sf3n77bcv7adOmDex2Ow4fPqy6//Dhw+jQwfhryQBQUVGBjz76CDfeeKPpdm63G9nZ2ap/iIiIiOrKpZpEjwTmSpe53iQ6oK6BEbXN9IR/djtssFlI0ZVN+nfIxsr7z8SfTusTtU2uziR6QYU6ZPYGgpYXDzUTXye68etTd5ZH9mnWbS46WqGdRDc+H71J9C2Hyw3PTUXzErbll2H57qPqTYRt6muiVjWJnoSLIYlK9NVJ0FbSpOY8qHHiJDoRERE1BgmF6H6/H253zVeRZ82ahQsuuAAA0L9/fxw8eNDyflwuF44//njMnj07fF8oFMLs2bMxZswY0+d++umn8Hq9uPrqqxN4BURERESJ+e3xXQAAfzilV/i+dFf01LleJzqgnmAXtVZNolvtRI9sY7NJqmDf7DyOlqtD5ge/Wp+UoMqoX1xv1zqnGiZu7g8I3eaaeNQo+NcuFmrWE250zlZMW7EfuwsrwrfHPzsPl76yCAdLqsL3iZUv4vtgVAVTWO7Ff+ftQEG5V/dxPY1lYdG6HFv8Xda1j95KCt+C2lyaPIboRERE1BgkFKIPGjQIU6dOxfz58zFz5kycddZZAIADBw6gdevWce3rzjvvxH//+1+888472LhxI2677TZUVFRg4sSJAIBrr70W99xzT9Tz3njjDVx00UVxH4+IiIioLp7+3TBsfvQs9G6bGb6vR+voBc7djuhgHQActui/frkcNmR5HKr7zEJmhXZa3WG3RdXA2HWOp53UnrZyP0IWgiqnwQUARTyT6GZ94uLmZnUuVrM17fFVk+h1DOgufvmX2nOL7Gd/kRCim5yHnr98tBKPfb8RN72zzNLxZTSeyeuEM3RJSuo0fUNnrtX+IGasP4Syan/sjSlurHMhIiKixsARe5No//rXv3DxxRfjqaeewnXXXYdhw4YBAL7++mvTfnI9l19+OY4cOYIHHngAhw4dwrHHHovp06eHFxvds2cPbJr/87d582YsWLAAP/74YyKnT0RERFQnboc9XNsCQBWoR7axXufiC4SQ7or8tSwQClmcRNc/typ/MHxbL4wv1ITogLWA12m3wR8MGj7uDUQ/5guGcM+0tVH3m72+kEGdi3ai3ErwX7Oddv+Rn/0mi7JaoVyQEMN+8bMhvk5xotbo1S/cVgigptvbqmR0oieD2cR/LOLvsq6T6NY60ZM3iv7wN+vx4ZK9GNu3Dd67cXTS9ks1UvmZJiIiIlIkFKKPGzcOBQUFKC0tRV5eXvj+P/zhD0hPT497f5MmTcKkSZN0H5s7d27Uff369avTX9KJiIiI6qrSFwmMe7XVmUQ36ES3G3Sdi/cHg7LppLZCL4h2OWyaEF1vEj26KsTKtKfTbgNgHKJra1QU2/KjO8bNKt9VC4sGjDvRY9U85KQ5UVLljwplxb9GWnndshz791Ht0w/RxafVVxiornOpl0NYUpdDix+dur5Nlt6DJNa5fLhkLwBg/taC5O2UwgJ1qFwiIiIiSpaE6lyqqqrg9XrDAfru3bvx3HPPYfPmzWjXrl1ST5CIiIioMRJ70DPc0XMJev3kQE3lSiyBkIwYzSkA9INol2YCXu9weiFjWXUg5vGcdsk0/Daqc9FjmkmLdS4Bk0n0GGmrsqiq2cKiVvqWrYSy4oUL8eKGKkS38PbEqszRk4xOdCsXbWKeR4IJvgT1ecfzEvSOGe+wTV2Hc9ivXr/Y5kJERESNQUIh+oUXXoh3330XAFBcXIzRo0fjmWeewUUXXYRXXnklqSdIRERE1Bid3KcN7jzzGLxzg36VnVFYrlfnohUMyVF953r0gk9teK83ia7HSp+zTZKipt/bZrmRXdvn7o1jYtRsU3Fy3CuG6JrtYoboaTUhujYklePsRLcSTIshuri9WBuiut/g12vUpQ8Alb4A3v91t2rhUkAdzqfy25p1OXKidS7a35/LYbNY5yIcmyFtoxaoQ0k+v71MREREyZJQiL5ixQqMHTsWAPDZZ5+hffv22L17N9599108//zzST1BIiIiosbIZpPwlzP64tRj2sb1PKM6F5E/aLUTPXobbRe7XZLwyS1jMH5AewzunK167IRercI/l3tjT6I7bFJUuO8U7ounX7zKH8S1by7Bqz9vj3pMzL2qVeG0ertYU+RKz3z0JLq4jxDe+3U3Xp+/w3A/lkJ0od4nENQPy4MW9uMxqAECgMe/34j7vlyHC19cqLpfbiR1LnWpq0m0kkb7GfA4bHHXwdS1ZoeD6PXLyrdF9MzeeBgjHp2FeVuOJPmMiIiIqCVKKESvrKxEVlYWAODHH3/EJZdcApvNhhNOOAG7d+9O6gkSERERNSdOC3UuwZBsKUTXo1fnMqpnK7x+3Qj0aK3ubv/z6X3RLssNwFqdi12nzsVul2CvPVdfHJPony7bi3lbjmDKD5sAqIMyMdSsFhYrja5zMT+G0ksfPYke+bnCF8T9X67Do99tRGF5dFe8dnsj4iT6xS9HQm7x2wKqaWuDfZpNov+0MR8AkF+mPk/xfUi0UiUZ6pJFBxOcptdOKbuddkshvOr30oSnlYMhudlPW1v5toieG99ZhsIKH659c0mSz4iIiIhaooRC9D59+uDLL7/E3r17MWPGDPzmN78BAOTn5yM7OzvGs4mIiIhanp5tagJscRL9kuM6AwDGD1CvKRMIybpd5lp64Z+2n13cRFsl43Haw93u5RZCdIfNFg7MFU6bLTyJ7g0YLzqqVaAJrP0GAXy1X+xEVz8WK/z01AbSZp3o4gS50UUAdV+3/jHFiXlxgVWj2hCjc9d+k8CKZCwsmoxp6kSzXEnSvMdxPDdqEt0Zf51LU82gK30BnPjEbNz2/opUn0q9aqq/HyIiImpeEgrRH3jgAdx1113o0aMHRo0ahTFjxgComUofPnx4Uk+QiIiIqDl4t7Y7XVw48k+n9cH/bhqN/1yh/vtTMCRbWuhRL1zqnJumuu0XQkZtT3ua0x6uPCm10Ilut0V3otfcV3usgPW0SwyaAXWALT4ihtParmwlLDWqyDGeRI/cFhcu3XSwDNvyy6P2o65/iR2ii4zqXCp9+tu7ncaT6HpkWf1+xdMnnmzJqnOJbxJdW+cS3/unPXYikrEoayJmbjiMw6VeTF9/KCXHJyIiImpJHLE3ifbb3/4WJ598Mg4ePIhhw4aF7z/jjDNw8cUXJ+3kiIiIiJqyNKcdVf4gvvjjiejaKh2AOvB12W04qU+bqOcFdOpcbjq5J15fsFN1n17Y2CVPHaIHhHBaDPCBmqnd8CR6gp3oDrstoToXLTHMFl+WOCmufbnK4ew2STfcNppENwrpJ769VPfcxJDVqFqiyiBEtxnUudz+8SpkeRw4Y0B71faJTKLLqgA67qcnTV0OHbRQdRPreUDNhRNLk+jCx7gpLSwqy9YusBERERFRciU0iQ4AHTp0wPDhw3HgwAHs27cPADBq1Cj0798/aSdHRERE1JQtuud0fPeXkzG8W174Poct8tcvs0VGtXUulx7fBaN7tlLdp5f9dY4K0SNbaY+X5rIjvbb+Ra8T/ZELB6FH6/TwbZskRS186bRHgnVfHAuLahnXuUTCae3CnEoora2pUYQn0Q0m2AHj8FskC6dmNIleZTBZrq5zUT/3n9PWRm2fWJ2L8TEaUqLHliAlXOeivahxuNSLdxfFXqNJHaI3jYVF3120C8c/OgubDpXG9TzWoTRdmw+VYeJbS7B2X0mqT4WIiKjFSyhED4VCmDx5MnJyctC9e3d0794dubm5eOSRRxAKJf5/noiIiIiak9x0FwZ1ylHd5xCmwbWh9u3j+wIAHr5gEOw29V/THDYJaS51VYVeOHb24I6qiXO/8Hczhy26ziXDpBPd5bCpOtYddgkeTd2IWPFSpxDdoApGXFg0GNQPw41CdOVctX89FXNXoxoWkRjCG02iG+5HrHOxMPIcb50LkJxO9OSUoif+VPF3FM/iqNrPxJEy/cVhtSThBctN5P++PPDVehyt8OFenYsv1Dxd9fpizNl8BJe8sjD2xkRERFSvEgrR/+///g8vvvginnjiCaxcuRIrV67E448/jhdeeAH3339/ss+RiIiIqNkwCnwB4K9n9MXie8/AdSf2QPsst+oxu00KV68o9PqvW2W4sPKB34Rvi5Po0XUu9nAwX+aN7kSXJAlpQqhrt0lR5++02cIXAxKtc5Fl2fC5Vb7I/f6QDFmWsf1IOU6cMhtba/vLtV3vCmWqWztpLKtC9Njn/NnyfeGfDSfRrdS5WBgJ9giT6EbT+Vpi6JzwVLXJ0/YUVuLz5ftiXgSI59hiBY0kqb9lEN8ket0T8FRO7zcEtr9Y88LsrfjrRyvjuohT35QFmLVrSFDDeGvhTrw+f0eqT4OIiBqJhDrR33nnHbz++uu44IILwvcNHToUnTt3xh//+Ec89thjSTtBIiIiouZE7BTXhneSJKF9tgcA0KVVuuoxh80WNQVulPVkCtPjXVtF6l200+1uhw0ZLuM6F5uknn532CQ4NYG1uLBooh75diM65Xp0HxMn0fcercTIx2ahoNwXdQ56lPdLm5GKAa6VSfRHv9uIE3q1xuDOOaqOeZEY9ovUdS7GjynESfQqf1D1fuv9uv81fZPq9tsLd2FfURWuOaG77vkYMYvoTnlqDoCa38VVo433K8s17+0zP25B99bp+N2IrobbRvXUy4ldCEi4QsZgwde67qshsBO9fjwzcwsA4IqR3TCmd+sUnw2lWoU3gIe/2QAAuPS4LsjLcKX4jIiIKNUSCtGPHj2q233ev39/HD16tM4nRURERNRcifGXWXbXPsutWjDTbteZRDfZwae3jsG6/SU4rV+78H3iJHqa0w5JiuxTP0RH1CS6NkR32CXTbncr3ly40/AxrxByf7Fyv+42TqNOdINJ9FCcIToA7CuqqgnR45xEl+KscxEn/at9QWR7nJbOT/HzliP4ecsRnDekIxbvLMSY3m2QkxZ7H2afJcWi7YWmIXpIlrFybzFenLMNAGKE6MIkOjTvTRyZttHvI7wrg4U4xZdb9050CXVbVjU+db1oRebqskAyNR9eoZ7M6reCiIioeUuozmXYsGF48cUXo+5/8cUXMXTo0DqfFBEREVFzlel2YHDnbPRtlxmeOtfjsNvQMSfyuMOmrlYBzEP4kT1aYeJJPVUBotiJriwQml47iV7utTKJbouqhLFJkqqyJNmsLPxptxuE6Mokeu3tUEhGabVfNQVtZf9AJAzXC8KPVviwbr/+wn9i93b0Nw+itxfDbKvnpueRbzfg1vdX4Ma3l1raPhmNJjKA4kpfzO0ARC0kGkwsQ1fVFekfx8Lxm1hThvJn2upEelN7fanGaxQEaCun+KlorALBEO78eBU+Wbo31adCRC1AQpPoTz75JM4991zMmjULY8aMAQAsWrQIe/fuxffff5/UEyQiIiJqTiRJwtd/OhkyjGtIFJ1z07CvqAqo3TbNpf6rm14nuhmHZhIdgDCJrteJHj2Jru0fd9jqOUT3xQ6StQumKrST6Ne/vRTzthzBhEHtw9tY6UQHIsGa3uTzcY/MNHxeQbkX87cewcl92kQtcKpH3HtdQvRptVP7y3YXWdreyicp1jayLEOWEwt2E61ziTXdHwzJun/OkjmJ3tCpa3OaRP9i5T58veoA/vP74XF/66K+MC+tH2v2FeOJHzbh3nMGYHDnnNhPSDHxXy3N6c9cc/PlqgOYtnI/pq3cj8tGGn/7iYgoGRKaRD/11FOxZcsWXHzxxSguLkZxcTEuueQSrF+/Hu+9916yz5GIiIioWbHZrFWg9GqbEf7ZabPFNYmuR6wK8dSG5+numv8tt9CJXlPnoplEt/haEmUl5DZarFXbiT5vyxEAwIz1hyP7D1idRK85RjDOhSxnb8rHNW8swayN+VHd25JO+ioGN76A+lj1OVFsKUiOsUk85yduq61ziWc/sepcjF5XSBXaWz9eY1CfF60a2h0fr8aczUfw2s+NZ/HG5vT+NiaXvvILftleiMteXZTqU7GEk+hNg9VvPxERJUNCk+gA0KlTp6gFRFevXo033ngDr732Wp1PjIiIiKil698hO/yzfid6fPsTp8g9jpp9KQuLVuhMfNskKWYnul2q+8KiZqyE3EYhvjiJLi4I6nHawuG81ffQbBLdinlbjuDi4zrH3E4Md610qCeLlfchVtAez+lG99QL52J9NzHfI6NTFu8O1fP7nOw/HvHmeZLU+Ctd9OqkGpL4GWBcam7HkXJ0bZUe9d+CWPy11UuVFr5d1Bg0tYtrRERU/xKaRCciIiKi+te/Q1b4Z7skoWebDNXjx3fPi2t/qoVFawP5NE0wL9LWuThsUlR1it0uwVaPKbrXyiS6USd6bYguy0BBeWRarS61EbE6uI1IUnRYqxuGmtSMpHoYMlYQG0+9kGphUc17E0+9SiDGNwMM9yWG9vXc5pLsLK45TkrrfZukISs0gnFOHf/1o5W49JVfGvRCV2Pw9eoDOP2Zn3HTO8tSfSr1Tvz3WZ0rn4iIqFlIeBKdiIiIiOrXsd1ykZvuRF66C26HDWP7tsE/z+6P9tluDO2Six6aUD0WcWJbCcczXMZ/HbRJiKpzidqnJMFuIXQaP6A9Zm08HHM7LUsLixp0oit1LiFZxuHS6vD9iUyTSxKw/Ug5Xp67Le7nKqwEbupJdPVjqa5ziRWSa1+eLMuGgaR2W1XVTRyvM9Z7aq3OpWkFZPFWS+i9vIXbClBS5cc5Qzom6azqRrvWAlCz1oFP+4cgQRXeADLcxv+uEz9HVt7er1YdAACs3V+CY7vm1vX0moy3Fu4EAPxcW43VnCVaMUVERM0XQ3QiIiKiRsrtsOPXe86ALCM87X3rqb0T3p9TCJs9zpqfzSfR1Z3oeouIOmyS4SS46MTerRMK0asthOhOC53oh4QQXds1boUkAWc883Pcz1P8uqMQp/VvF3M7MdCNNWWdTMkIiWSdihajj0b0tkJgFUeKHrsT3eD4BsdOREMPhidjQvuq1xcDABb+83R0zk2r+w7ryKXzQbHZACSp+eP0Z+Zi8b3jDR8XPwPxTPqLn+OSKj9y0hrH4qj1pSWFyeK/fuNdxJuIiJqnuEL0Sy65xPTx4uLiupwLEREREWl4nMYhd7zEsFvZb4bbeP/Rneg22DRhgs0mweWIfY7aBUmtsjaJrr9vZUI+JMvIr2uIXsem5C2Hy3Hnx6s0+4wmhr4NmKFbColi1rlop8tDsuHvRnydkiSp61zieN3BGPU62rA+cnwuLAoABWXeRhGi6/Vr11RHJecPweFSr+nj4tRxIhcpvl1zAJM+WIlJp/XBXRP6xb8DanTEi5gt6eIBEREZiytEz8nJifn4tddeW6cTIiIiIqL6oVfnku6MUeeiCtEBCdELi7osLDBnVLkSi5XwwmgSXskaQ7KMI2WREC2hiogk5JZFlf6Y24ivN1hPyY1esGxtYdFYjxtPl5ttK8tywguLxppEN6p7UbXHNLGETLdK36Q6x2xh0cbyyvXqXBqyE128cJPINYoHvloPAHhxzjaG6M2E+t9RKTwRIiJqNOIK0d966636Og8iIiIiqmfitKcyiZ4eYxLd49JMomsCJrtdgssRO3WyUvmSKO1ip0BNAKdM7MoycLTSF7VNPOrj7PVCTzHQ1S5EmqxKAb1c2do0dqypb+0+rYbo6rA7nnqV2J3o+vfLFraxqq7fUoj7eLqfm9QvPFsXet9UEYN1s4sEyRDPwqJyHNtS0xVknQsREWkkNhJERERERE2OQ5xEd8VeWFSSgHSnuhP9mPZZqm2sTqI76nGsVG/fdpsEJVsPyUBRRewpcDMNFZapO9HrJ7jRD6nrXuei3e//fbEOX67cH3NfITnxqc9YvfFGU+aqixXNoBPd7BVoX56s+RZAqogXifTqXMRvztTXn4XI/q1/O6Wp1f+0NG8v3IlxT83BvqLKOu2HC4sSEZEWQ3QiIiKiFkJvEt3jtKlCQDGQtmkWFu3XIQtXju6G3m0zwvfZbRJcDgshuoWgPVF6vds2SRIm0WUUVph3IjcWYkAXa8o68WMkVucSaxPt41+s3I/bNT3weseTIWvOqQEm0VUhftNKyJTPtfipj+c1NJaXK9Yq6XeiCyF6jO77ulItIhnjDdKvQ2okbyrhoW82YFdhJab8sKlO+wkl8UJbSxIMydiWX8Y/E0TULDFEJyIiImohxLDZ46z5a6AkSappczHMskkS3MKioRMGdYDTbsPfz+qv2qdeAKZVn5PoRgGccsSQLNd5Er2hqGtG6qsTPfo+K8dKJFw0ol3YU6xOiOfagTKhbPTxUk32CwdJZt9xrE92sj/5essLxPMaVK89CeeTKK+wwK9e3VOiFwkSEYzj88BJ9KYhkQWkRZxET8w909Zg/LPz8N/5O1J9KvWqrNqPL1buQ2l10/i7BRElB0N0IiIiohZCDKrEBUPT3Q7dbWwScEz7TPx+VDf846z+aJvlrr0/so12En1Qp2zdY+tNi+sZ3Fn/+Wb09m23SeEKFhl170Svj6k6vRoQ8TipmkQvrvThm9UHUO0PqreJsV+zt+jz5fvwuhCqaBcWlRMMtZVKEKNvOijHeXbmFgx8YAY2HSqNOkZTmzLV62CPaxI9mSdTB2LIqXeRTaxQqu/fUUjVyR9j2ySciyzLeO/X3Vi8o7DO+6L6UV8LOzd3nyzbBwD4z6ytKT6T+nXHx6twx8erccdHq1J9KkTUgBiiExEREbUQenUuANC9VbruNpJUE0RPuWQIbhvXO3y/mFdqQ/TT+rXDNSd01zm2tRBdnHy3Si+Ay3Q7wtPJwZCMooq6hej1FWhrhUxC9GRlOnovRbzrmjeW4M8frsTTMzbHFW7XdJvrP/a3T1fj0e82YndhRdS+ZFkzCWwS867bX4KZGw6HbyuT6Ea9/EpNx/Ozt8IXDGHK95tqjxHRUL/bZIm3g127fWO4aPDj+kO46vVfw7dTPf2d6MK2iVq0vRD3f7kOl7/2a+yNG5HUf3IaToiT6GRi1sZ8AMDsTfkpPhMiakgM0YmIiIhaCHFiW5xEF6fH1Z3o+vsRJ0S1C4tqO9Yj+7X2104ri5Rq6U2iD+yUHZ6YL6sO1HlhwkpfMPZGSSCGNamaRF+7vwQA8NXqA6rwMnYnurbbvPZ4wk7KqgNR5xCSZU2IaXyM815YgJvfXYZ1tecYDE+i639YteejfDbVC4saH8+Khlp0VmHTOZ5Z8Bu9sKjxYw3lD+8tx5bD5ZHziLF9ffcrx1fnUvdz2Vl7MYkar0ADX1ihxPBXQ0QNiSE6ERERUQvhtOlPog/qlBPZRuxEN0jRo+pchOe4HXbdkM9qJ7rbGf9fT/WqPAZ2yol7YtdMpS+QvJ2ZUE2i11cnuk5VsCzLmLs5HzuOlKvuV/cCy6r/1QrJ6sBcIYZRymdDG86rg93Yr3vNvhLVvo16+aNC9PAx4jtefQiFZHyybC+2a97zWPT+KMXzEhpj6KT3OxD//Nb3JHpI53NuJBnvX2P8HZCa6jORwvMgIqLGwxF7EyIiIiJqDsRpXY8QVvdsm6G7jVHubTfpRPcYhOBWO9E9SapzOW9oR90wP1H1MYmud3piWKgXSCeDXl3Kyr3FmLZyf9T9eovrGZ6WLOs+FghFUvvCCi9ueW8ZTu7TJnyfdhLdipIqf+351ezbafD50u5WCof4SZxET/B5n63Yh79/tgYAsOuJcy0/T/lcq0Nm6y9CvW3yP2PT1x3CtBX78NRvhyEn3WnpOQ0x/W1GXSdk/VwS/d2n6sINWaf+dgJ/X0RExBCdiIiIqMVwGNS5pLsiP2s70fWIeaXdJqme43ba9etcLNa0iIG8VWJAf9XobrhsRFcc0z4L+4oq496Xkfquc5FlGduPlKvC5EBIxvLdRejTNtNyGGmFXmi8syC6XkKW1QF45PnGk+h60/P+YOS+B75aj50FFZixPtJrLsvR9S6xFFfVdNyHJ9ENPjfa8Cs8ia4679Sk6Ct2FyV2OJ0/YPG8gvqOA299fzkAoMPMzZh84WBLz9G7sNOQi7/G04mejGtbjGQbvyAn0eukoWuuiIgaAkN0IiIiohZCDLLTXGKIHvkroboT3SBEt5lNouvXuVhfWDT+EF3cd7dW6RjWNbfmPJP4f+IrvMmvc5GE9PXNhbv+n73zjpOrqt//c6duy26yKZveSEhCOoGE0EsgFAWBrwJKixRBUDSggF8BUX+AooAFQfyCFHtBUUCQFmpCSagBAumU9LbJ9p25vz9m78w5555zy5QtyfN+vXgxc++595xbZjbznOc+H/zg4Xel9Y8vXY/v/vMdTB5Sg39/7eCi9RtGkJSFJNtze9u29XEuqZwQ/+n2Jv12ITKpAaDecaJ3CPSmuCC3E93dR0/LO9bGuWgiekyEPdf5sn5Hc+C2unGEKWpbKOJckW9furGG7K+H3XJ7JGk60QkhhCgwE50QQgghZA9BFBrLgjjRDfuJqIVFRRE9FtFuFzjOJR4szuXaz+yTfS1ODoj9FDcTvbRO9Bsffc+17PkPNwPIFfosFmFE43ZNnItp87St33e7j6MzbatOYP9xOXEuYTPRnbs6rJD85kfbceH9r7ky40tFa7usiosinm4iQOfkNlEqPbC1PY0PN+zMvg8XMeNeVtSnBXwQn6Dwd6IXPpaeNnGTpaeOOyDXPvQOjvvZ82huSyEVZmKFEELIHgFFdEIIIYSQPQQx71yMcxFd6aK4Y3SiK3EuYmHRMlOcSyTYPzuDONG/duQYzJ00MDcGSxTO/Z30+VCKwqLi8NoDKMfF0nGCCkKWJeeyt6d8nOiANtu8TVCjdI7OTJwLPNuo5DLRvUV0dTz6HHobS9Zuw7MfbDL2d9LtL+K/727ABfe/5lrnd5eZjsZ0ez757gbs/d3/4I+vrBXGmFuvu6/DFRYtTUzF+fe/hqNvfS77Psg9nRuHX5xLQUPzRZf9b6IYAnhnirK2beM7/3gbtz7xQed12kO5f+EavLeuHo+9s55xLoQQQlxQRCeEEEII2UMQXdpJoQBohSCoiw5Yk8jnFeeSjEW0Il/MI85l/MBe2nGZiFgWhvQuxy/OmI67z9lPFvWF18V0ojeUorBo0fdoRoxUydeJ3taReWESNNVYlux2Qia6blt1G9PoREHf7UTXn011OE6rtOJ8P+VXL+Gce17BhnrvCJK1WzM5+63taW2OfDH4Skem+NUPvp1dJgp6VoGFRUsl4D6nTEKEKRard6IL16jEKrr0ZIKPZGobXoehM0XZDzfuwh9eXoufPfVhJ/bas0ml5e+yHvvkACGEkKJCEZ0QQgghZA9B1AGS0ZxwLsahiK5hsxNdEdEVJ7pOHdZlVg/tU47F352DeQeNzI0r5h/n4kwGfHbqYBw1oU4S8SMBMt3zobEEmeidxSW/X4LZNz2N+uaM8BxGj0yFcaLb+n2LEzP6uBdzdIk0FmF5fVN7x/gy2waNc8lGoQjLnhfE3007W7T7UTnnnldwxE8W4PGl630L6IW9C3XJR+J1cNbLcS7ByTcT/cMNO3HMrc/i0bfXBWofRkTXDUQ6vk50omtq6UoUIyu7MzO2W9pCBOaTLLooK5If76+vxzG3PovH3lnf1UMhhJCCoIhOCCGEELKH0KcikX1dmdSL1aJr2JTAosa5xJXCopZGNtQJavFoBH2rklLUS5A4FzVfXRTeIyWKc2lp77lC1CNvr8OmnS1YvGYbgHCuXlFIcl6bilimbVt7nVvacy5+nRjVnpIXmgQrcd/O67CZ6M69KS7+vxdWZV97PTEhsnDlFgDA7xat0T7xUIhIqv38aGKW8s0Ml5zUIbab/5c38cGGXfjq75cEah8uzsWNuHkxncCL12zDjY++h+a23H2ZDhHdUYyYGYqy3Rsbyj3B61UQl/x+CT7YsAsXdTxlU0zC1IMghJBCiXX1AAghhBBCSOeQiEXw5rXHwIrI7nOR1rBOdEt1okd8nbTZbTsaisJlEBFdHZcYASOuK2ZcSk8W0R1qyuMAggtCtq060TPnIGVyokMvyqpFMlVUsdUY56LZtzM+k/it3nbO7WESZXVPTEjbK3eV6VwGO8f6vnQfOznOxekjPyu6HFMRfLuGkE9jmJzo59/3qntM2ralidM49Y6XAGRica46bjyAcIVF5dV5OtG7SPizbdv3yQmSQc5Ep1BbCLt68JNchBAiQic6IYQQQsgeRE1FHNVlceN6Oc5F38YV56I40XXie11NmWuZI1iKLuJkPEici/xeFN7FdcV1opcgE72TxSxHqAwjSKY0TvTTfr1Qv3+jE91bRFe3MY1Pt29nTKbCtaqor4tzEQl7z5jEtUIkN90YRJFZuz5Mh1JMSogNQ96uOid6eyqNJ9/b6DWk3LIiOL69WNTxNAGgFhbVd/bHV9bitdVbtXE4YTX+rnI270mO6kKO1bZtaWKlK87bzY+/j58zx94X3ZM7hBBSKiiiE0IIIYSQLHJhUf2P06hSWFQU28tiUa2TtrosjqcuPww/O31adpnjHhbdvwmDQ17E5UQX4lzEMVtF/JeumitckYiiPIDgHwQ/pzYAPPHuhsB53SZSeYjoYl65M8Hy4cZd2ra2DaQ0u/abgHA50Q3D02VVpzo6TMT096oqvOfiXPJUxQLqNYU4p7VPcmj2F6YYpryd/rX/uMKJVTp3uak72wbW7WhCY2u7tm0pMsTFz5NfTvxLKzbj6gffxv/cuVCJ0cmv7xLXSfXodw9S0QukK+NcNtY34/ZnVuCWJz6QYod6EpS2u4Zl63fi422NXT0MQnZbKKITQgghhJAswQqL5l5HI5YkCCXjEaP4vlf/KozoWylsm/mnqOhED5JJ7c5EF5zonZSJfv4ho/H5/YYa258ze4TvPp3R7Whq8217wf2v+bbxIyeiB2tvWfrCoiZs29aKnX6FDVNqYVFTO2HfzqV1lpmc6K5j1RTl9Gzvg23rxaJCRDfdfatz4efr1LbzjEkJ+2nSOdFN/a3d2ojZNz6Ng256OrtMvJdKITpv3NmcfS187Wn7WrW5Ibc+gGvdjy6Lc+ni7XsKNuTvm86+XuLfmzC1BboTnTVqRu3k2LSzBXNvew4H/+iZrh4KIbstFNEJIYQQQkgWqbCoQTWzlDgXURhLxiKeYpsocsc1meimApExxf0uImWiC5vHFUHeJ+7aE9UtHotYnk70GqGIqx+d5TR0RKEwwp+usKiJtK0Xe/3iXNyFRfX9iK54p4nTn+m+ccW5ZMeq78NPVFZvIdvWP7FRiOPXLxM9nb2O4jjydaIH3y7spJQ6OQKYJxee+2ATAGBbY25CqVSFRR3E77ow+dc9ubAonejB6UonuvhRK8VTGGT3RJzsI4SUBorohBBCCCFEi0k0E0XsiGVhYHUu79yyLMyZUGfep/Cvz2xh0UjEtUxFdJt7xblEJJFe/qduWQHxK2okSTRiee4vSIFUR5HtLKfh9sY2bKxvDiX8pSUR3VsMt229qFiKOBdHWGrPiuhBC4t2xLkYxuIroivdlMIFGdF8BlIaQc8vgsREvuJg2Ac7wjjRdctF8dBUpLRYhCm2Kl7zfK9/Vwmj1GMDYusnrjoL8e9YT71kjHMhhOyOUEQnhBBCCCFZhvQuz742iWaixheLWBhWW4G7z9kPf7/4QADA5KE1eHL+oYZt3a5zUQCNGUR0UbD2inMR9x+JWNK+C8kwV93UsYiF8oR5f2EEe51jtxR87Y+vY+YNT2HLruDZ6pIT3SfOJW3bWrHJ14ketLCoKKp2vHbOncmJru7LuRu8hPr2VBon/vIFfOUB/wgdcyxMAU50n/1lnegBxuFHqDiX0E50nYiub6tbXIzjk/bXsZPqsphrXXuIiBbxGPzG1S7kxDS0tOPXz67A2i2NnSpmS6J/T1VkOxkbtnxPdHL/4kdNV1uAEEJI10ARnRBCCCGE4N+XHowTpgzCL784PbvMJJpFlDgXADhqQh1mjOiTXT5mQC/0qYi7tlWLkgJALOrvRK9M5oSvqIcTXd1eFFcLc6LLQnA0YqHMw20eyIneQWdn3r67rj5wW1EIbUulPQUdG4Y4l7CZ6EaBW3QmZ/7vCPumLH2XiJ7NRDc7otdubcRbH+/A40s3uPLqLUXitpF/Jrp5ksq9Qifo2RphPQhhXNfyuIK3BUw57voOtYuLHOfiDEfn9A/jzg/6BMBHWxsx+Xv/xfX/XgoA+H+Pvocb//M+jvvZc11WWJT50TJeTzjk+6RHMRC/A0r9FEZPJ99YK0IIyQeK6IQQQgghBJOH1uD2L+4rFf40aWYRj3xykZjGHSyKA7FsnIt/JnqF4PpWRTApE10Zjri/ymT+IroqZPg50YOI6I0tKSxcscXX4d1V2LbsxkylbbR5uOZtgxO9NeUtorepmeiGdimNW9hZlvBwoovCStaJbugjbdtSvNDKTbvMA/egsEz0YCKvJB6F2L+dpzgdPhM9uBNdG+fisz4sun045zVMdEfQ83fHsyvQ1JbCb19cDQBYuGILAKChNdVlYvaerMde/eBbOOmXL2SLZ7++dhsmXvcY7nlhlautbcvFZp3vkB1Nba76GKUmRWE4MDxVOTih0Dn89L/LcMLPn0dDS3tXD4V0EhTRCSGEEEJIliBuU7GNl4ge16wThWxHDI+HdaIr/4IVBWtVgBT3XZFwxzjkSzQa8XS2B3G9r69vxhm/WaQVcUpJ0N/WbSlbdn/btqfgb9v66IEWn8Kpqthq+vGvi3NxRH6jEz0tC4fO/WFy1KdtOft9+UZZRHfpyLbeUV6IfKH7CIjH7pwfOe7E3eOOpjbc+sQHruVpzb6CUIxM9DBOdNlpH65vHbqCrNlYoBCuY3FcuqcCguynpxYW7cm63B9f+QhvfrwDLyzfDAC44q9vorktje8//K62fVq5ztsbWzH1+v/iiJ8sKPlYZXd1ybvr0UjRNzxZWXgqOodfPL0cSz+tx59e/airh0I6CYrohBBCCCEkixWgoJkYp+LlTtU50ftVJbOv6zuiMmIBMtElJ7pXnIuyLiHsu5cmC9nEuLpenuvjEcszYz0RIs7lwdc/Cdy2GAR1wbal0kpWNDxdmGnb1romw2aiB4tzkR3E6hMMzm2Utm1JFA/iRBeFmOWBnOjue9YuwKyq+0z5FRbViczX/2spfvbUh+6xia9DCC1hCwUW6kSXs8cLV4R0u3DGmA7hRBfH5d3Wa8Ipv4mMfBAjiCisAU+8uyHrRvdC/cy9unobAOCT7U0lG5uDeF/tDnEuagxWqej5Z6ow8o34IoXTWbVtSNdDEZ0QQgghhGQRNWyTuCMK7SYHsGmdKHZubWjNLBPiM3TCOwBUSU50c2FRV3/CusoATvQD9+oLAPjR/0zxbBctQpxLVxHciZ52/TD0imaxoRdJ/UR0Vya6QQrRuYXbDYVFnUiWtJ1xo2fJZqLrx5JOyxE2m3Z6F2E1jTXIRIUxLkmzQjwGnaNaJx+9umarfmwa8X17Yytue/IDrN3SaB5vUeJcTE8A6OJcSuNE1y2T7i2f/UjXNoTbXOdg17UrJYx4AP7w8lr8XDO5pKLGR5UJsWGlPo/i3ncHEb2z4O2dg6eicwkbd0Z6Lt33X/eEEEIIIaTTCSKUiSKfV/yLKI7rcET0YE50j8KigrjRrgiyUpyLkomu6+veeTPx0lVHYtqw3p5jj0W9neiiO767EVSTaUvZLgG82SOaJW3b+jiXdu84FzUixjQ+sZ3biS5fS+eesl1OdCs7Vh1pW8nHVgbjSnMxOqv1y4Og+wyKx2Ar/w/bny7T+6q/v43bnvwQJ97+gse4gvcBmAqL+o9Jt6yYhUVFdE50P4FUN6GhI2icS2eKXUFP4zPLNuKm/7zfwwVc89gfXOL99E9mQlCexBHrLvjVeSiUME9GlJqn3tuAnzy+zLOodFcif5a65xi7gq6+bwjZXelyEf3222/HyJEjUVZWhlmzZuGVV17xbL99+3ZccsklGDRoEJLJJPbee288+uijnTRaQgghhBAiOsG9RHcvlzoAbNGI6OZMdHNhUVnckH84iiJ6WTwqif46t3giFsHg3uWe486M0zsTXRT2uxthCuNd8dc3pfeernJb/8O9pa1IcS5emejKhI1zH6miuJ8QnLZtqb0aAR/UjV2IU1XXhZxj7u7DT4SW9+Xe76JVmaKX2xvbjOMK67RTJ7QyYzI5972Xla6waOb/cmHR4PvxFMq94lwkl33niV1B+5r321dx57Mr8M9OjpoKw5ZdLb4TdF6on2X13pSc6LCliK7m1s6LbujqiYzz7nsNv3xmOR5fur5LxxGEPV03luL49vBz0dnQib7n0KX/uv/zn/+M+fPn47rrrsOSJUswdepUzJ07Fxs3btS2b21txdFHH43Vq1fjb3/7G5YtW4bf/OY3GDJkSCePnBBCCCFk90R0Z5tEYvGHmtfPBlM0i4roWDf9EPFyoov9tCsOQTETPR6xJId4vIDIlVjEckWIiKhj7E60poILT22Kiuybia5Z7R/noojopjgXjVvY6ESP5BznkogujFWHS0T3yTm1YRK95TZh0GeiC/vTxLlo41C0wrqNp9/f6NnGPK7gbYFwmejajHDxHBZBEHJy6sW+coVF8+vLS5T20j7Tmv5s28b5972KL9/7alHjQsTPU9i9dkb+dz6s29GEGT98Ekf+5Nmi7VO9JinlQyxO8Db5FEsufCzdx4nusG5Hc7gNuu+fwD2C7nLf7Cl043/ykSITvLpSCbjllltwwQUXYN68eQCAO++8E4888gjuueceXHXVVa7299xzD7Zu3YqXXnoJ8XgcADBy5MjOHDIhhBBCyG5NWTyKG06ejNb2lFQEVCSomBY3NDx+8kA8+vZ6HLZ3fwCyE930w69SyB83udUBuArGiUJ3LBpBWTySFUAKcQ5FI5bnOLqzKymME13FK87FNjnR/eJc1Ez0IE70DoHLiXhxZaJHI9ltdC5jcya6LJ6pUTPuOBdbqxVJwmUAMcO27ezklO62kl2xwI8eex+Pvr1O2N63CwDAgmWb8KPH3s++DyO0hM1Eb0vZeOStdThhyiDf/sTFqbSNWNQqupCoy5LPr7BofqK0yVnv3CsNrSk8+V5mguOT7U0Y2qcixN7NBC+E6qa76nDPfbAJQGEiv/q59Haiy+ex1CK6PEFW0q4CE/pPWheMu7ver11Bd7lv9hS687/5SHHpMid6a2srFi9ejDlz5uQGE4lgzpw5WLhwoXabf/3rX5g9ezYuueQS1NXVYdKkSbjhhhuQCuGmIYQQQggh3nxx1nCce9Ao43pRPPb64WCKc/nx/0zFj0+dgttOmwbALYDqqBAKi6pxLiKqc1oS0SOW5K4v5EdPLGIZ89uB7u1KUs9RGLxc5WmjiO7jRE95i1nZdlIWdaadI3SpTz3ERSe6Row1ud3dTnTvc2VcG8DZLN4jYhu9Ez3XYNn6nbhjwQqsEYqABhVHF63cIr0PI7Tkc0tf8oclSn/m8+6Qyl4jcX0enRv60N0PoQqLStfWI7LFa0c+98fO5nafUQRHGmPI89hdM6YLFUt138+29Nr9vSF+BptaO8+J3tVxLj0Juq9zZKO6Vm7Bab9eiA827OziEe3edOd/85Hi0mUi+ubNm5FKpVBXVyctr6urw/r1+rytlStX4m9/+xtSqRQeffRRXHPNNfjpT3+KH/7wh8Z+WlpaUF9fL/1HCCGEEELyRxT5vH44mMTxqmQMX9h/GPpUJgDIETKm38BVQia6V1SKy4kuRLZEI5aUgx42nkLEz4nutS4MJ04dXJT9iPiJ2t7bejjRYWsFHz/nu5qJbtKMXLEvds7Frsa5RDvep9Oym9wRFkx9uDPRlYbKZbVt/ziXIMKO1I8krrtF3p0t5txyP9SRhBGd8pl0Uq+LsbCopo2tEbsLwbkmukkSXVSQeT9i247/a9qpArRJy7Y146pvyv8aq8j3Yrht1VPRXUV1P3TXVH2yQr3H5GKz8j5K7kQXXvdYEb0LRMUeeqZKghNfdfpdi/Dyqq244P7XunZAuznU0Pccum/FIw3pdBoDBgzAXXfdhRkzZuC0007D//7v/+LOO+80bnPjjTeipqYm+9+wYcM6ccSEEEIIIbsfkoju8dPBy6ktIgrO1eU5x3mfinj2tZiJHvH4F+x+I2ql92ImeibOpThO9Hg00ilxLlOH9cakIdVF2ZdDkDiXXmX61MdmjyKhmTgX93I/0T6fwqJARlh2NnXFuURycS46V6dXH+0eTnRXnIt+N0qci6GR0q+DeO84Tw1IcSOa0xlUZDZFWAS5W/O5pacM7a30p2+X1pxzWWguXB5z9qG7H1TB1As5ZsarQ/+xiPsTlxXTiS4OJKwI3l1FybD3YhAdWn7CwP10grgPr1irYlDsCaRi0BNEwmLWEujpqPfNhvqQmfYkFGHjzkjPpcsy0fv164doNIoNGzZIyzds2ICBAwdqtxk0aBDi8Tii0dyPnwkTJmD9+vVobW1FIpFwbXP11Vdj/vz52ff19fUU0gkhhBBCCkDUjvNxoqtYloVfnDEdO5raMLRPBf7yldl48r0NGNAriR8+8h4AoNLHif7yd47CJ9ubMHlojXEMsSI70b0mCYpkREd1WQxRr1mDPGjVVf909RvXCnleTvR7X1qNORMGaLbxEdGV8QQpLOq8zznR5XPkTHBk3OregqVIOg2krNw6NRPdDyfbPKwTXRTGxfu7PZ1GAhFfp7SuiyDtQsW55HFPD6wuU/rTdyjllGuyy33quwbCOVbd/aCLeBERJwulIq8eMrO6RmyrKzwrLqtv7h5O9O4aMh12WOo11ca5KNdEjo/q3DgXXW5/T6MrJMWeeaaKR3ecfNlToIa+59BlTvREIoEZM2bgqaeeyi5Lp9N46qmnMHv2bO02Bx10EJYvX4608K+oDz74AIMGDdIK6ACQTCZRXV0t/UcIIYQQQvInqMs6qIgOAJ+dOhhnHjACADBzVC2+c/wEVJflnOiVghNd5wCvqy7DvsP7eI4hGrGQFJ3oBSjdsYjlub3oSjpl+pC8+6kpjwd29Ael1afQp9OvjhYPJzqAbGFEaRuf/lSRKEyci5Onrubvx8RMdI2L28uJLma0q3EuLreZbUsCqy6KJAii4CF24TjRZZHXe/t8+/Ujn6cr3NfWIKKLbdK26/wVq7CobdsBCovqxidMrAi/Rb30Ta8x64qmiudqRxHjXIJmuGu3LdoouhaXiK6ReNUJkbQy09GZcS6FFIMtFWGdtp01avmJlU7qtJsifY/u4eeis2Fh0T2HLo1zmT9/Pn7zm9/gvvvuw3vvvYeLL74YDQ0NmDdvHgDg7LPPxtVXX51tf/HFF2Pr1q247LLL8MEHH+CRRx7BDTfcgEsuuaSrDoEQQgghZI9DFI+9fjcUmgsej+W2rwxYWFQlITjP49HiFRb1c6KLx/6ZqYPy7qe6PO6ZAZ8Pjy/d4NvGHOcSXjxauanBc73LGW9QQlxOdCF6JaHGuXSI6ilDxrlnYdEQRf1syJ+BnNNdaGPYhSjkmYQyx6XvmdMOUya3/7JSCy3qWL2y6LPbpO2CHPMmbJhFfSm6wy8TXXSie7T12o3u/hD3tb1RFtEL+QrQZbgHpVBR8qOtjfjXm5/KgnQXoDsO9ZRKQ1RinWzY0vqSO9ENTy0QH/bwc5X2+B7rKRMMf3xlLY659Vl8sr2pq4fii3iOKaHvOXRZnAsAnHbaadi0aROuvfZarF+/HtOmTcNjjz2WLTa6du1aRITHV4cNG4bHH38c3/zmNzFlyhQMGTIEl112Ga688squOgRCCCGEkD2SRDSC1lQao/tVGducPH0I/vXmpxjdrzKvPkSRuyKRn/gtO9EjRYtziUX8MtFzr8vj+f+Tu6Y83iW/zqpNTvQCipKaaFMiU0y/9VVBNpXOCeTqhEY0m4muLxppFnMhqQ1qXruKSeyVokhCxrmIzZ3+ZTe9RkTXuacDLAvjTM5n0kkdq6k/dZJAbVWMrON02tbcQ/L/M3157ydVgCitxXbvt5hO9EJE9EJd0If8+BkAQFsJvjf88PsM+t1j6nkT35fciS6crq6Mcylk8qNr4lx6iFJcItRIop7I1Q++DQD44cPv4o4zZ3TxaLwRP5t0ou85dKmIDgCXXnopLr30Uu26BQsWuJbNnj0bixYtKvGoCCGEEEKIF29edwza0mmUC+K2yuHj+uPhrx2MkXmK6CKiEz2MoCYVFo0U24lufqhT3LfXOfLDJGaXGjFKR8SrsGixMAl3qqCTTufcovGYfC3i2Ux0xYkeoLConMWtxECoaS5qBERWpBddrP5ITmzhdVuHuiuu12XaB/1MqOdWJ5K1tqfxrb+9iYPH9MPn98vVkspn0imoE13KKU/rBM3wfavYtjtbPRvnIl0vG+2pNDbsbMGQ3uWu/aSEnYTKRJfc56LT2D2xo4roBckzISd0PHeV5+Yvr9pSUL+ucYRsH+T+UXPqpYkrW76XSy2iS070LhTRxc9lT9AIe4rbulToYqIcetqpKXXx3mIg/X3rAZ8PUhy6NM6FEEIIIYT0TMoTUaPQ6mBZFiYNqUFVMj/fhvj7RHSih9EUpMKiUaWwaCGZ6FELOg39li9MxYIrDpcEB3Hs/XslQ/VjyiYvNVXJqFY08cs3LwYmIcQtyOYE8nhEX1hUFNoz2zh9GIR6xbke1omeXa6MU99GL5yLoplT2FQcU5tORPfZvwnd4f19ycd46I1P8a2/vSUtFyeGgor2rhz7AEVjdU70YmWitysqui6PPG0D5933Gg666Wm8vnabaz9isVnvyBbzSm1hUWFhfVGd6O6+gtLThDcTge4fpYka8SNlondmYdEuVIaL4YLfUN+M9fXNRRiNHvHPVHfJjy8Gr6zaikv/sAQbQ5y7gooIdzN6wvDFPyfU0PccKKITQgghhJBuiSilidnmYZzookM540QvVpyL3ol+yr5DMbJfpRT1Uh6P4p5z98OlR4zBZ6cMDtVPZQEu9kIoi0elCQcHJ85l4uDqkvX9qwUr8MXfLHI5MPWZ6JnxiPn5QG7yJG273XmptI23Ptmh7TudVp3rsuiqu2V0Io4k5piEdoNDuF0jmIvLWjXRGPm6VXWi07bGVm1bOfs9v/2rTnDtNmnbvV2RRHSTE1285h+s34lnP9gEAHh19VbtfnKvO15ohucpsEO+J9X9qk8bhC3q6NdXUIolSuoKeZq454VVuOD+17T3eb7Yyq4sS5eJLk+OiJ8pG/K9W2qXrCSid6kTvfBrcORPFhQ+EA9sw+uezhd+vRAPv7UuG28SBOm7qYer6D1hPkSc4GKcy54DRXRCCCGEENItEX9EiYJ1mN9WaiZ6WSwnSnvFsfgRi0QCi/AViSiOHF+HK+aOC91PIeJZISRiESn6xuHuF1Zl15eSl1ZscRUWUwW9c+95NRsvE48anOi2LTmHU2kbP3vyAyzfuEvbr+hud9qLqNfDtuVlJ9/+EkZe9Qhuf3q5cdy65aYMZCcvPq04pVW0TnStsGv7tjEhHmdQYU/V4ALlw9vuwqLFEFTUSA5AnzkvTrD0Lk+49iMVnPQYmOqnl4VR9/IPNuTuSbX2QCHfApITPeyJLJGQtbG+Gcf97Hk8sHC1a933H34XT7y7Af9681Pj9mHPh3rf6bZXD1WupdDJmejFzt3PE/Ec5HsPNnSia78nCK9h+WhbY/DGXudiNzw3XY30+egBGvqOprYeP7nSHaCITgghhBBCuj2iszvMjwAxEz0etXDc5EEYO6AKp+w7BHvXmYui6pgwKOe+jkYtT4G7RcgOr0jk4mzOOXBEqD5Vxg/spV1e7B9wyVgEUUt204skoqX/GaG6cdUUk3fX1Wdfq3EusWwmuhrVYePngsCtkrZlkdRPLFbXLtuwEwDw4OufSG3aUmlNprvYr94t7DhB/SIdghRO1C1zthPvZZNrWFwaVERXxx1E5NLtuxiOaDUfX9yvOM524UbLnh/oJxC841zM62SXs40Fyzbigvtfyy5rbU8XpZhqZhz5C7LFklvU76ef/HcZ3ltXj2seWmrcpqGlvWjjCnL/qOdbLUgsPSlQ4kKp4ki61okuu/G7I+Jk1e5YWDTMUxxemeik+Ijf493dib584y5Mvf6/OPueV7p6KD0eiuiEEEIIIaRbctSEOlQkojh4TD9peb6Z6NGIhRkj+uCJ+Yfhli9MQ1QQXudMGIB7zt3Pc19nHjA8+zrmY0MXC4KKsSgj+lbi5e8c5TvuI8cPwM/PmO5abvqhVmxROxmLYqcgYqnZ7KpTthTsbJZFNDVaRSQWlc+LM+mSsm0lb9y7z3Rabq9moqtnP4jQ2dyWwuwbn8ZJt78o9yUWEzXksOuc6Fry1Et0uzVpAeLyoDnNromDPJ3oxdAR1bx7APhoayPqm9sk4bxNfHJBM95UOpho53WoKUXY/tvij6X1Le1pafuw+szmXS045Vcv4i+vfqTEBoXbT7GEfHX86me71IQuLGrbLgFZXF/q7z9ToeFikErbWLxma6D6Fl5P5eTLI2+tw/X/Xlq0/UmnZzfUjcN89uVM9K4/Gas3N+QdfdT1o/dH/Gx2cw0df3ntIwDAC8s3d/FIej75VXkihBBCCCGkxNSUx7HkmqOzInQsYqE9bWOfQcHzuEWxozIh/9N3cO+y7Ov/O2d/330lFEHei9rKBO7/8kxUJKKuAqYVAXLOb/6fKehblSlCKm5tSqBJRCNFFXYSsYjktlQzxzfvasm+HtWvEqs2NxStb4edzXJxRU09zSyqiJ7LRLe1zmITadtGSmxflMJ6mXMlnrNMX7nXktApFRZ1Z6LrCDpMtzgd/PjECZxUKth2Lid6kG3SbnG6WJno6njm/+VNDKopw+zRfYX+RTdn5v9SEVifaB0HL4FdjetQW7a2pwo65lue+ABL1m7HkrXbpcnBsE7dUsTqAP73c7EJMhkgZ8frrlHufakLLJu+D4rBbU9+gF88vRzHTx6IX31phmfbME/lBOWSPywBAEwf3gcnTvWuEfLwW59i6af1+PbccYGizXqC8FpKtPUaOuhsl/6Stdtwyq9ewsi+FVjwrSM6te/OQnqiqJvffN1c4+9RUEQnhBBCCCHdFjGX+83rjkFzWwo1FXGPLWSG9C7Pvp69V19p3UWH7YWPtzXhhMmDtNueMGUQHnlrXfa95GrX/KC//Oi9pfeH7t1fu98gj/2aBIOoQUWPxyJAi3ZVXqhFRdXjFQXh3iGuRxh2qU50j1+pqhPfEdXTaRvn3ZeLyfBzdX64cVc29x3QONEL/CVq23b22poevU9pXvvHyrjXazPRXTnd7kamQ+wsJ3oqrctEL46IrhMk1+1olqKDxGKKTntTEVjnpW50QeNcdjS1uXbQmkpLIliYSAdA/uxIsUEh59lKpQuVKqLEdJ+o3em+X9VrLNZSsCFHAYlxXaXANnwfFIO7nlsJAHj07fW+bcXJsmJPfGze6f8H69I/vA4AmDmqFkeMG6Bt05OEzHwIUxdFjm7q2pPx8JuZfzut3hIi072HIT1R1N2ncKiiFw2K6IQQQgghpEdQmYyhMhnun6/HTx6EzbtacNykQa5CmZXJGG49bZpx259+firqm9rw/IeZx19F97kqhNdWJvC1o8YGGlMQEd1kdDfFyMSjxf2FlIznROlkLOJy0zcLIlJ7QFdyWNTIBy9HpnptnWuluvP9dCBRQAd0Yp/7PId93N65VEbhXHQ6p91tTfsN2r/fdkGOJ/9MdP/t0kr+dGZZoO48UfPxRdoNYqEzDnHcuvXa/jzGIn5k5t72HGaOqpXWt7an5X2H/HiL11BOuyjMiZ4/8gEUKsjKxSRzE1Om8QYRotUCleoTB+J6tV5DsRFH27WZ6LnjDDuOYhbF3rKr1bhOHFV3iDApNmHOohznIq/bDU9Nl6P7W012f5iJTgghhBBCdlvKE1F85bC9MLxvRehty+JRHCa4ySWhWvllGyoWI8C/wEUBQtyzSURPxIr7z/pENCdK96tKupzo4oRCW4kEpXpXnIv+HCdjEekpASDnTFfzWMNGI6QM7mUH2w4nTkguZ0UIzPYpRihkneje+9WL0zp3ur8z3OR6FkWCwCK6Mu4gm6XSbqm3VHEuDk3CfSK6b53xiuOWM9Ez6M6Yl5tevadeWbVVeq+K6GHlSLG9zjnvheRmLZG70qu+QVhMTwmIqOfbgnuySH0yRM6tlyd2Su1EL6W7Ooy2XUgmejGd0F77kiY/itZj9yHcJG33cUYX2n9XO+mDYCoO3h0J+zQTMUMRnRBCCCGEEAOimD2kdwUOGdsPR4zrj+oy2REfRpwNFueiX66KxQ5ehUXVoqBBEONcZo2qdWXA331OLmc5iIheFg//s8PlRDf8SK1Kxlw/D51JhSZFRA8rBKVSbuFVFRnD/Ng3/ehOGQRqR2z0+4EedAimgp3i+TPde1IueL5xLgHOf6oTC4s6iPn7bZo4F1MRWOfa6/fqbpcbi/cBtbSnCzpmaRJOcVj7YcrqLwT1nirm0yuycKgn0OSBtE+3W14uLFriTHThddc60fMX0f0o1t5sj8/Z7kDehUW72Bm9G14KF0G+e8juB0V0QgghhBBCDIjacTxm4YHzZuG382a6HlUP84NRl6fu7jfXRmxtKmiqEzjOPXAkJgyqxlcOGx18cB0kYhH846sH4swDhuO6EydK47n86L2x38hc/ESQaIbyuH8xVRVVRDeJOLGo5RIanEmFplY1ziXcT932tJyFbFlukTHMHnV52+q4dOK6n+gYNBNdPX5vEVjdNvc638KiQXQ4W3NSi5WJbhbRc/daSnNdjE50j2F5idd+gqTLiR42zkUah/7eMqGbJCg2xRRk5QgLgxM9SIyQct1T0lMj8hMpxSzirB1LCTPRw1CIE72YcS5elGLSpzsRxkHs9VnfDU9Nl6M+rdKd6aSP4x4BM9EJIYQQQggxIIrHMY8cljA/n4L8mDFlopuyz8cPrHYV8Pr6UWNRW5nAH19ZG2J0GZKxCKYP74Ppw/sAkMX7XmWy87stgKCUjEUBtHm2iSgC9a4WJc7F8CM1alkuwSZminMJ+UM3pc3nlt1nYfapE2jV5Tr3p5+Qplut28KdiR587PkUO1Sd50Ee8U+lgeWbdnnuJx8WrtiCvy/+WLtuV0tORG9LuY+z0Ex0r3tIR3vaDjxRoUP8PEgiY4BtOyOWoJhFKoPE1biOyec72LaVwqK2vI/WEovo4oUqxr2fL+2G76XOxrPnbi5eFkrecS4lmIgkMj2pqC019OJBJzohhBBCCCEGJCe6R/HOMMJTEIeeKfLFJOTPHFWLhy45CCdOHZxd5gjfQZzvKknFOR6RRPS4NL62AOKKmtk+om8Ffvr5qZ5tXE50g6ioFj0FctfKLaLrx2e6tinViQ6dm1u/T9P+dGNx9mErUSZOez8hTXVKP750PbY2uIvxueJVOt7KcS6Wtr3cRzAR0R2FE2CbtI1T73hJO85CuPnxZVi5uUG7Tr3XHHLXRR6ful6/rXzuxKZBXL3NQmRI2DxbubBoOCd6KTKm1dGXKqLENPYg3aWV66UKknKcS6md6LnXXetEl9343RFxVN10iAURqrCoR0b3bnhqupyU8p1B9gwoohNCCCGEEGJAFBRjHrnjnSUwRAWx96AxfbOv41ELU4f1lrLMnSKkpggYL9SMdVFj7lUWk0S6IJnoqkj9t4sOxIDqpGefLhHdcI51xVadyYbGVllEX75xl6ut2F4llbZd2bJyTEe48mmmqIxcAVF5b9nlvk703PoHFq7GVx5YrG0XxBEtnk2T63rRyq34v+dX+rob1eMJ8jlRJz6CblcIohNdJDuJYXhqwGtcasyIJMQHOJymVv/c7U+2N+Gxd9a7roNcWDT3Olgmuvn48r0Krkz0UjnRTen0IScP0rYtjdFW+il9JrpwDYqszoWZkBHd+MXMsS8m8sRJ9xxjQYSYBPf67BbCn19diwvuf0373bwnIxeZ7t73HuNcigfjXAghhBBCCDEgCtBxDzE6rM6hRpe41+v7EscwtHcFgC0d44y4xhEtQERPKoVAxX1UJeWfEEFiJ9SCqNGI5RJzkvEoIAjnYrFHwCwm6ZzosQ7RXi0saiIWtYxpM63CJEEmE10W18I8Jm9yrqUNYrlzzH7OXXH1k+9tDNQOgFYVFW891Z3r8N1/vgMAGFZbgbkTB5r78yjOaGJ7k9tBbzrFTa0pLP10B/Yd3ke6D4oVXeCXiR60P1MWvRfivasKNLZtY/5f3sQ/Xv8EAPCz06fhpGlDsuslJ3rI3N4g8SjOvvLNvQ76JIOxb5g+R/r26nLdqFXnujpZIonobZ3nRO9Kh2vQCaN8CPUZ9boPEex+7Unc/Pj72ddhPmF2ie6bK//+NgDggYVrcMGhwWqs7AnxMbLzv+vGQToXOtEJIYQQQggxIP4OVIVguWG4/eqEbdGtbdK9RTe8aJ52RGPxh2shTnS1EKgo6idiESXOJUgmultEV4eVrxNdF1fjHHtQ55zat4goom+ob8EpvxKiRuxwwo3o5tS50lWBtj2giH7HguWwbRuLVm7BFk2Mi0PYbG6/IpNrO3L4TYJJ2gau//dSHH3Ls2hoaQ8kxG1vdM9mmLY7775X8T93LsT/vbBSWl4s/caZBDA5PINnosvrAsW5tIlRGvK6T7Y3ZQV0AFi0cou0XpygChvPEjRDPYxopE6YmY4/H+EtyCSBep0syz2Jl1b2IzmvbXlCqCXA0zeFID2l0m0y0UucA58nQQrL9jRuf2ZF9nX+mejqxFvBw0J9s3ddkz2NHlVYlKnoRYMiOiGEEEIIIQbEH0mxImWiA3qneab4pnu92FQU2kUXqLNcHEchTnRVRBf3kYhFlDgX97Gff/AofG5aLp9dnYCIWHBZ7FT3+04lYsOkW+mOz5lsCOpE95ogUYsIvr9+Z/a1jXDzJ+bCou71QHAn+psf78D3/rUUp9+1CO+tqze2U29T3W6DxLk45O47fX8p28ZvX1yNDzfuwsNvfRpIaNCL6Pq2L63IiMe/WyQXzy2WmOb0ayos6izWObJtRWwXHbNBhNEW8d5VmrujNeT+jZnoAfoNWiyvENHIFOeSj14czInuv2M1zkWNiRH33dqeLqloJk/AdJ04J96nXSnme1GKDP/Mfm20l3iyJAihnOjC6256uQLTzTVpAMHrY3QHGOdSPCiiE0IIIYQQYkAUlLyE1rBChy7HW3Rry3EMudeiYCzuQRfn4gh7oiA/sm9FoPGVeYjo8ajsRNeJK6fsO1SaFKitTLj2p04kuJ3oSpyL4RzrJiSc8xskVxrwniDxy3wPc+1l55p7H6rZ02kfpI8/vvqRb5tAmeimwqKa0xCPOfedQRRVCpMGOVU7moI70R3UW6BYeoYuzkVXbNVPULWVcxcoG17I3Q57/FIkj9B3MCd6MHdlIefYlK+dj1BrB1BRdYehi8hxSNvuyRL1GpSyuGh3dKJ35Ti88qZLFecy795XccCNT6OxVV8vobMIE5lUqkz0rqC7Z4wDPet8U0MvHhTRCSGEEEIIMSCKCDrh2yHszyddjrcoXJt+OIsFMMUmw/qUA9D/kBNF4OtOnBhofGr8SsSSRXRxdOMH9nJtn4hZOGL8AFSXxfCd48ejf69cEdEbT5mMikTMJX6rfTa3paWxm0QcvRO9iHEuHmKZrRSM9MPkRHeEWTUyIWicCwD0SvqXu3Jnc2f+b8rQlkR/zV3uTCyp+3U+K+K5i1pWIHekTkQXx7SrpR0n/vIF3PbkB9llEcvCL576EP/3/ErtePJFN4khF5x09+OMVTdJknvv33dTa+7cqc29fejykrBCT9B4jDDnWP06kz4HBeZuBxlvICe60j6lTJZ0roiee+1XVDgsYRypYnZ9MYvBFhXb+KYgFizbhM27WvDCh5uLts8geBUJ9qM7Rdt007ulqPQkJzqt6MWDIjohhBBCCCEGRIHHKxYl7A8onXt61qha3+3EOJdENIoHzpuJH35uEqYP72MchxhpUl0WDzY+5VjFt0klzuWyo8biM1MGSe0T0SiOnTQQb153DC48dC/px/0ZM4cDcP+m051fMRfdFM1y8Nh+rmW5TPS0ti9Xew8nequHE91GuFgLUya68zLfwqIAUBlIRFff6wTf3GvdGEWcyQf1FDjiuhjJoxZlNaF3oude//nVj/DWxztw25MfZpdtrG/GT5/4AD985D20pdJFEzSc/diGc6Lrx1ntJV4HuZ7i/V6IE12MW3pv3U74IbugzevEIe1qaXcXkRXeq58uOWs7mIi+enMDPnf7i/jv0vVyhIc00aNHV1jUKxMdtnKdlTgXwHtyrVBMTz4UgzCfjUKc6IVqdkG/V4MWws2XfIvn5ovrXg3RvXjO6pvafZ+i6s50e1EahU8Akp4JRXRCCCGEEEIMiKJmMX9Mq4LxrFG1GFBdFmC73D/fE7EIDhnbH2ceMCK7TPdDTnRjezmuvftVnOjCuShPRHHlseOl9vFYZr3TTieIqJq5LuFBjHT5dHuTa/3edVW47KixruWOY98RwFWXu6m9jjYPsSwd0ol+/M+fx46OzG+d29QV51JkEf2JdzdI73X3i5zVLgpU7rYxTRY/IE/2OLSmguVIb290F0YV99/Q4o5XECc6MnnVvt0Ewjl+U7yG7nicsaoTEF7OdB3i51Zt7iqUqWaiC69FIe0HD7+Lx5eu9+xXnkTxF+E+3d6ESdc9jtPvWiQt93JQi/v1m6hxuPyvb+KNj7bjwgcWG7OfgzrRdV/l6vVRJ0vcTvRgT7nkgxot01V0ZSa6PFESsF0JxpFHSZGCUM9zmIKQoqh70e8W49jbnivauIBwwvaeoCkX+ymRUkIfevGgiE4IIYQQQoiBUgkHoij98NcOxgPnzTLGxZgKiyY0wrCfiO6I2+Ex92tZlmuZKtbrz6M8Fl0RN9GJ/vE2t4h+wSGjXfntgNtZrmsTFC8nejodXri5+wV35Eg6bePC+1/DATc+JbXNiugBfqznMz/iXBYpQ9sgGOuLkDqTJPJyXf2AxpZUIEFwu48TXXePi092tLSni+YKdARosf92n3PidK060cWmQb5X1Cgir5xs9atDdqLL9+81/3zHs1/p+nsM02n3rzc/BQC8snqrtN7rGGUnun9kEwBs2dWSfS074vVOZFMbE2lFuBbHZdu2yxFeyjgX09MgnY3pyZnOIOhnWGxVGid68ffpheu4Pfpvak15Tris2NRQxJH1jJzyzsQUz9YdYZpL8aCITgghhBBCiIFiP0rvEBV+0UwaUoNELGKMixk7IJc5Ljqmde5qnd47sKZcu30YxB+IOpexKpqrorruNLqc6JpGjohu2zY+3tYIAOgrFCk1FXtVj9PPge/1A9grtiGVtkP/eG7sKHYqbrduRzP+q7jEAdGh7t+HqVijFzpxUbyH/EQCU+FT3XVpaG0PVli00TsTXXcuxP2u2LQL8//yhn9HAbh/4Rr83/MrlYkFUVzt+L+wjd6JLo85yNeKKtJKQr5yrdWnZET3qjoJtHFnC7ww5ZWr6KJudOv9+vBz9mfHIk6kGCYyTIJikPPt6UTX7KOlrZRRGaUT58JloneliB6sXdgnPMISxgleDNxOdD1rtjRgwrWP4Wt/fD27rLsLubsb6sRbd6Gri+Hu7lBEJ4QQQgghxECpHtfVCeYmEf1bx47DuQeOxINfPVByWOtEdJ0I9ZnJg/D1o8bigfNm5h3nIv6wdznRkYl0EVFFVH1siPx+UE0uzsY5FU6cy5aGVjS3pWFZwNDaimw7U5a5ujwZz/9nj1eubNg4FyAjav7g4XexZO323DJDNIRz3oMU9csn/1aX1iFFbfiIBE5bdZ3uiYem1lQgkUfvRM9tt6vFfa7EcX75t6/i8aXuCYl8+eEj7ynO4NxrL2dmShL35HVBJkXCONFVxHG1tXu3ve3JD3D9v5cK/eTWefWTNkygZLf1iMIyZ6LL+1i9uQG/eOpD1De3GQUr8VglV7I4Vs1xqGKyGh/SlXEu3caJ3qUierD+SpGJLuX5d3acS4DoISAzwQcAD7+1LrusO2nohbrWu9OxmJD+FnST8V7zz3ewz7WP4/W126TlnT0ZtDtDEZ0QQgghhBADpXKi6wzhJhG9uiyO7504EfsO7yNFvgSNc4lELMw/em8cMra/ZwFNLyQnekSNc3EL+qpYrxuX6PD+xpyxOHhs/+z72sokAGBbRz72uu3NAID+VUmUCX3pnPWxiOWKxknGvONcvAQir9iGTExHuHvkT698hLtfWCUta1JcrePqeknjCiIoBRHaVR5+61OX+N5miHDwcq2r69R7BMg40YMch+5aiIt0meniNjs1memFYioSqjvlWXFZcXTrMvC98HSiK7MfqtAmXtLWlFns3dnchtue/BC/fXE1Nu5slsaf6cfDiW5c44zBLAamDeKs6t4/4efP46dPfIDv/Wup0XFsivrxyxVXL4H4OW5Pp10Od3UfbXk8+RGUsPdKqRAn1MJ+vxQq2eWTdV6suJF2SUTv5MKiATPRdUvpRO9cumOcywOLMpMrtwqFt0lxoYhOCCGEEEKIgXyEySCYxF/f7QRxWucq9xtuviK6GB8R0YxTFRrUNrpxieLt148cK8W7jOqXcZt/tDWTg+48nlxVFlOKnGqiZWIR6TwB/oVFvU6bf5yL567d+9M4xpuUx6/3H9Unu3/x/17kE+fS0JrCb55fKe/HWPRRJ6Lrnei6+6yxNZW3W0/sW+dULzXrdzRnX7fL6qqrrbO6XZqAUNoEuJ4tqhNduEv9ig+K4qeX2LtmS6Mwpo7/GyYMVHJxLvo2XseYMgj1qvDd0BF99MqqreaioYbzbMpHB/TCpNhE/Sylbffx5PPkR1DUegldRXsBImGhow6ciV4CJ7r4+eps/67X5JOI7u9wd4oU6SaacknpLsJ5EJiJXjwoohNCCCGEEGKgVD9KdXq5yYkuIgrtuogSvx91ece5eOw3yGPCOiFIFKcjEXkvo/tVAQDWbs2IfI4rNxmLSkUkddnbyVgEceVc6lz7IoN7lxvXeYmQqbRduFoEoEkRTJ1JlpyI7r8P1Z0clCeULHazE929bUojvAL6SaJMYdH8Tpa42TaNE73UfLBhZ/a1KY/bwRH10h4CZJDJOdWJLom8PkKbuF43CeSMcdXmXOFBXRFV8fqv2dKA99fnzoOzD9MldcVSSP0LY00Z4oOUYzSJ+y+v2oqz7n4ZKzbt0mbTa8ei+coS26sTXTbc19Brcq1Q5OMoWTe+iNc/n0m6QsinsGixkKOIStBBwL69+o9oVvQkUXd3IGj9iO4ANfTiQRGdEEIIIYQQA6X6URomE11EdPgmou6IEr/hqg7toBSah6s7j6pIKLrZR/evBACscYnoEcmBp3M864q0miYPzj1wJH74uUmYPqy3cezemejFiRBwio0CwEFj+mYFElPhTh35ilyZIre58yUeb8pHMM450eWVcc2kRWNbKm9B8PW12/Bhh5C9XVN4tNQ4BW4BebJCd+3n/+VNAGqevNwuyOdJFWm9ssrVT4Eo6OiefHBE9tWCiO4ssw3jnnPLs9rxmI7EFK1iGktmG/32gDyRJLa74q9v4vkPN+MrDyw2TlzoTrcrE10ck/JZ0sW56M5rsQiTfx+WMGKalIke8m9hoaKdzwMf2nVFc6KLT151epyL/N40Sa3754LX56ynkc/f1cVrtuIvr35UgtHokb7jOq3Xwtmd7pOugCI6IYQQQgghBvJ1bvuh+2EeJM5FzJoOmolu6uObc/bGhYeO9u0T8BZyxtZV+W5/5gEjAAAHjK7NLhsuFAgFZFFgdP/MPj/a2oh02s4WyUrGIhB1c70TPeqaLBBH/99vHpp9fcDovjjzgBGeQskuj4ztfOJcdIhO9F99cQac4TuiYKkKiwLuyZvfvrg6+zrlI4SmssKrvDyhi3Npac/7x/urq7fh6FufQ2Nre/bphM5ELPJpEnMdHGe/txPd/1q5M9EFV3AIJ3qbxjGdSttoaGnPTlJllmXaSVErgpioPpHhvDPHrIhj1zbJjiW3jV60tSyzuO/wkXJfmDLUTYj7132WSuFEf/Oj7Tjxly9g0cotyljM/XYmprz6YvHR1kbcsWAF6pvdE2NBvytkIbM4Y8z3qZ5S9B3OiV68cdz8+Pu45YkP8t6+K+7aU+9YiG///S28rHyeSkV3yUS3bRuLVm7B++vrjW3E24UaemHEunoAhBBCCCGEdFfOP2QUFnywESdNHVLU/eqd6P6CvbidLufb74dcMhbBUeMHoKG1HV8/agyAjGA0ul8lrnloqXE7nYCy8OojUd/UjrrqMt9xHzSmH1648ggMFNpOHlqDn58xPSemC7/ynGVbG1px25Mf4FcLVmTGH5fjXHQTD4lYxJWV3r8qmX09sCY3Bud8ec2V3Pz4MuO6tG1nxZ5rP7MPvv/wu+YdedDU4USfPrw3airi2XvBEUODPCqerzPWKyffNxPd1q/TxrkUkInu8MZH20si5vkhCtpi3rjX8chOdECUlYI8NdDSrmaiC/t2CW1qDQJvQfg3z63ETxWBzBHJxV17uY+dPoLEuaRtOzNGTWPxXMjudX1/pj7b07axTRBBVmyinrO0bZckE/3Mu1/GzuZ2nH7XIqy+6QSpP4f7F67BVceNR0UiJ900trbjBw+/i+MmDcKhe/dHqRCvjd9EXnsqHfpJpxN/+QK2Nbbhw407ccsXpknrgn7MxWZFc6KXIGc9KEH1e524XqyxbtnVgtufyfzNDTrR3p1YvaUBs0b3LXk/fk9qlZrlG3fho22NaG1P4ysPLA68Xdq2EWHAS95QRCeEEEIIIcRA74oEHv7aIUXfr15E999OinPRiuje21uWhbvP3V9adt1nJwJAaBF9UE05BtXk3kcs7/6H9qlwLTtx6uDc2ITlfSri2dc/f3p59rU6cWDKRFfPb21lAv+85CAkohHp6QLnuFQR8rhJA7Fs/U6sFOIudKTtnPdRl1EfFMeJ7hyfM8QwhUWb2/J1opvHHTzORV6ujXNpbS/Yrffyyq0FbZ8voqCtK4Spz4s3T0AEEWA9neiKCK9+m3g5yAG4BHRxm6BFLX3jXAK6NE1uZ7m4o+WbP5xK27JwDrG9sXthjLnXLte97b7HiyGiizFBan8i9760Gl89fEz2/R0LVuCPr3yEP77ykSS+FxtxssbrXvjOP97Gv9/8FE9dflio/W/riGZauMLtHA5b4NavnUoqbRsj1KT7sJNVdHcmun6MuuXFckNLMT6dnIXfk0jLM3Wd3r8TsTWurpdrnauYsnC/dPP49m4P41wIIYQQQgjpZHSPYgdxoouisU5ELyTr8uh96gAAJ00b7FoX5Me5zn0cBrGHRCyCXkm336csHu3I8M6gE9EzTnR5eSxqYdqw3thncLXkXneOS70en5kyWNqHye0pCndB4nhMOE70ZCyTc+/cC874SinkRC3zfeMnhDo6orq9Ls6ltT1d8I/3T7Y3FbaDPGkzuaWz/9eLutlt0qrTOYgTPXgmuqqii+vV/Zho6xBMxX427mzB8o07te2dYzbdO+rxmxDjK7wy0WWxVL8vUw663/eXLTxRArgFcluzj1IWFlX72rxTLqarRteUCinax+PD+4eX12JnczseWLgmr35035xBM/XFvxxBv14+2tqI6d//L25+/H3tetPTEZ2BX70DB/HPTW4yr/uoo4UOpZDtgxQ7LwZ+0V6dxbIN+u9oEyxAWxgU0QkhhBBCCOlkdA644ycPxIi+FTh136HG7UShVpfXXkjUxa2nTcPtX9wXN54y2bUuSCZ3kMKoXqSEX6TRiIVeZW4RPVNYNPdeF0Wic6KLgnhUK6LL+4hGLGnf+wyq1o5ZPC2FFKBzOdE79uWc91JGmEQjEeOPatl1nfn/wWP6ZZc5TtXFa7ZJ2yXj7qK3ral0wT/e/7b444K2LwbitbjruZXYWN/sEnw+3d5UdCe67SFoqqJRykMQNuGMVxzr2q2NmHPLc1rRNutEDyRo20ZZy3SeVOdzEGeyuNQ2COqA28WrOs21cS6qiF5Ch666Z/W7sJCeTc5mHdJERB7FcL0QT6duTOL61pSN3zy3Eu9+6s58Fidogn693PrkB6hvbs9Glrj2GfBpjFKg3memyyVOJmdjv0ow1GLlzHcqnZRUIsX+9KDzRA29MBjnQgghhBBCSCejE5wrEjEsuOJwT5FDFHbLNPEhhfyIrkrGcMKUQdp1QYSEQkV0sYt4NILq8jg+3dEstUnGImhuE5zoGvd7IhZ1LRcnH8Tz6zgO1bHHIpYkvOvOtYpXtrgfWSd63HGiZ5b/4eW1eH3t9pI6DGMRyyjSq7nWAHDZnLHY3tSKdz6pzzrxLvvTG9J2yWjEFe/T0p7uVk7JfFHP1Xf/+Y5LPjnwpqel97YtC59BJqVUQdLLia5+9MT1QUV0p51OoH7r4x2uZbk4F8NTDMJ+vJ6kaDeJ6Mom4nvT3kzCud99l4llyrVRBfKMyN55TnR1vBWJqLK+ZF1LyMVs/Y83TF0Gvwk1cf1vX1yFj7dlnkJR42vk+684J0a+J4uyy8AEdqILH/q2VBrxqHkyNCxin/LnKMxe5CcJwkzeyFt3X9JdeJ+ERTz9dKIXBp3ohBBCCCGE5MntX9wXEQv4+RnTQ20XDZFzKiJGpiSibrdvqUTKznCiiz/sohEL1WVxVxsn7sRBJ1wnohHXclNeuNOlet6jEUty+qv96ggSx2PCnYme29d76+rx/vpwj2uHIRa1zPEYGoEzGrEwfVgfABknum6CJaF5GqC1PV00YaTAW60gVJHr0x1NgUTasKiFRWVB0+xWtW1bir0JKqLrMtEddJNIuTgX/f5SikPY9NXmnM8HFq7G5+9cmFsu7NiygsV7yBHFHk50Zbu0LW/brjlnpchEN6EeXr71Doo5Duc6fbytEUf8ZAEeWLja1T7MxILfnxRxvSOg+42xWH/+TNn8Jhpb2/Htv72JZ5ZtLGrfQLAnB9rabdQ3t6G+ua3g/gG1iHHhJzWv61JAt53150E8Nz1Jl6aIXhgU0QkhhBBCCMmTE6YMwrIfHicVyAxCvoJzoYVF8yXID+lCMsEBWRiMmeJc4hEsFR7p71uV0LZRx7K1oUXbpyPU6eJcxPOrFjTVUcjxNxsKi3YG0Yhl/FH9/vqd+NFj72NHY1tWJIhYVvb+Tdm21n2aiEVc8TYt7emixdKUaeJiOgu3U9Q8CeGQj2jhcqJLY5DXiXEuN/7nfazclCuIGzR2pN1QJBbQTyI57Ux794qzEXHE6GseWioV2vTORDe534X20nLvc2DDVkR0tW/bJdyXNhNdft/YJhcgVY9GnXApFroCmzc8+h5WbW7QFqJ2Zcl7nHdfJ3rA74ri+9Dl6x9kYvrOBSvwl9c+xrzfvlpw3644lwDbNLS2Y8r3/ovfLVpbcP/qGIohuO6uom3Q3P5M5FfXngPxb0SQQsvEDEV0QgghhBBCCkBX3NKPSJ6Cq/hDSCfslurHahDxs5hOdMuyUF2uc6JHcPr+wwAA3z9polbcS0YjiCnXZEtDq6sdkDsufZyL94SFiu74Jw7WZ6n3rpCPzREPneMpJF89LO0p23h9b358Ge5YsALf+/dSQUTPHWsqrS9cqculB4onPJZ3oYiueyojTDRFUNTzGtSJftdzK6V1bUELizpOdM3x6Z74cEQhs6AdzM1rWieOw4LsTDdlWb+yequ2f//ConIsiDsT3T3OkjrRFTnYiXvSccOj72Hcdx/T5oXrCPPNIl3DjvvDayzi59uyLE93ri193+vWhx9jsf78ecUK6fhke7N/IwCvrd6KrzzwGj7eZi4M63aiG8YotFu3I7+Cy8aC0ponEID8Jyk6Wz4OGx2TL0EmCv/y2keYecNT+H+PvNcpY3JQh8M4l+JBEZ0QQgghhJBOJl/Xsiiu6ITdCw8dDQCYO7Euv4EZ8Mo0dijUia6Kd9XawqJRXHjoaCz+7hycPXukdj/JuFvA3WoQ0Z0fk+qP7oiSia4r4qqii+iprXQ75QGgtzJB4AimyY7YjELPZRiCFPx8cflmoQir4ERPp7XCeCIW0Z4PJ5ZiVL9K17ow92yhTvQzDxiOb80dh5+dPi30tjqRy+/jkYkLCSdctLQpYqVB2Mrs37zvoDnVucKi7nU6YT3bpaFrNepALX7qYIqKcmei+5+/a/75jnt8CHJ9bKk/9ZyJhUedez9M/rcJo0CqOtEV4Vq8l5xJk5/+d1no/ptaUzjnnlfwwKI12vWSO79jUF6nUjwntqYYq4h4jLrzEFjoC/CEgtc2OsR7MsjfvqBf1/9z50I8vnQDvqHUkBBxH4P/50Y3kelHc1sKR93yLC75wxL3GELG2ejQPTnyyfYmPPr2upIXa+20OJcAEzg/fPhdAMD/vbDKd387mtpw/8LV2LxL/+RcIcg59xTRC4EiOiGEEEIIIZ1Mvk5j8TFcnYh+0rQhePZbh+NXX5qR79AM/fr/6Lr4iDEAYCxO6ocqpvXSZKKXxSOwLAt9q5LG/SSiEclFDgDfmjtO29YRCFQRJKbEucRj/tcrqnHr9jWI6CYROBfn0nkielvKP2aluS0lTDjITnRtnEs0qhXGbn3yAwD64zt5+hBMGVoTaMzlicJE9NrKJC45YgxG9nWL+X7kIyrlIxqp59XZxSV/WIJrlSgNr92HLSyqE/t1QneusKi4TO/M9BJtjEVtleVhdZ+0RsRzUO9NdZLDFeeCnCBc1vEZLcZTFca/A8p4vdzfDq2pNH7y+DI8uOTjwP0/sGg1nv1gkzT5IKK7hl7XQT0nXvel3+coqNAn33+BNvFFjEsKMvkV9s/52q1eTvRg+04VKKIvWbsNKzc14JG33KK211Mv+eDs7qCbnsZXf78EfzPco+K5NhUs7k4Uu7Dot/76Jq59aCnOueeVgvelnj/xXXcvgtrdoYhOCCGEEEJIJ3P5MXsDAM4/eFSo7UTnk8mtPKJvZdFF2CCi5ZmzhuOxbxyC206bllcfLid6uduJHiQ6JxmPSgVYvzFnLA4fN0DbNieiexcWDdKv7nrUVrrF/m/O2dsYD5ONc+lkEd3vR3VLe65NxLKyLvNUOu12TENfWFREd64iloXKhPua6yg0zsXpP58oJtWZGkTsy0e0UIWxnc1tOOvul/HIW+vc+/foIGiciyMc65y37ZoQXUekEfs25ZZ7CaYmka7QDOFs3Ezaxo8ee9+zbdqWM9Hd2d65Y0t23HvFiHMxfULcTnTvTHQAeGH5ZvzymeWY/5c3A/df39TuuV4npnpdlRYlzsXrsyHFuWjORNDPTCmEV/HSmu5d8U+G6SmL/PpWJnxM7YTjDjqhc+RPF+DDDZki1WLh7m2N8pNa4hB0RXaD4FXDYOGKLb7bhO9PuJ866c+nVDzZcO+FiZb577sbAECq+1IsTEWXSXgoohNCCCGEENLJTBhUjWU/PBbf/cw+obZTc8M7izu+NAOj+1firrPMDnfLsjB+YHVewiTgFu+G17pdwl4//maP7gsA+MJ+QyWRdnDvcuM2zvlUo0dikYh0HKIob0IXX6IrfHrZnLHGQqWOYNGZcS4tbf4iSUt7OnvugxYW9RLRdesilhUoex7IPJFQCNGsiB7+POfjRG9Pp0PLe+qt/stnluP5Dzdr23qJlUFdql6FRXX3iK6wqCycy21NIpNaJDW7vGARPfP/R99Zhw31Ldp12fdpeXzuOJdc3YBiOtHNRnR5gGqci+5UlkIX02Vje30Hq/ea15i8PkbNbSmc+MsXAo3RNr7JH3HSKMjHvZh/iv2emnAQv4eC3osrNzXg8r9mJlnEieNNSnyIuO+2gIWJvVDPoTnGKP++usJdHSTOpRP/meZJ2Jx/YibYVD8hhBBCCCGkqOiKYvoxpn9VCUbiz+ShNXj68sNL2oeqxeqKcnoJmL87fxZ2Nrehd4UsXOuiU/Yf2Qevrt6GE6YMBuD+oRuJyHE5CU2cS/9eSWzamRMfdMKwKRPdJBavr88UqOvMwqJNGie5jpwTXYxzsY2Z6F7HoJskiCo59F4UmonuiOdqAdog5BMzctbdr6CywAiajfXmnFwvs2hwEb3Dua05IN09Yts2Pt3ehPqmtuwyY0FCxekt9WsQ6eTM7PCfB+c4Pt7mLrqYtm1pn2nblqKy1DHdt3ANdnQcZ86JHkyJevOj7ahIRJGMRTG8b4W0LuNgdu/HOfbKRBQNranAn9FACKfSz7ltS5Mi/sfrVQxXRZ4Qltf955117okD435yr4ulDUoFI01OdKG/Yk5oB52kE+/RMBM6DS2Zpw/E879pZwvGD8y1kaKNDJNcYVDvA92Ec6Zd/n3km91eCNJTEN3M3e09gdW9xtrToIhOCCGEEEJID2FYbQX+fvFsbUxIT0f9YTe0j9tB7qVbRSOWS0AH9NEff75wNhpa27O566rgqzrR49EIRvevxMpNDUIbC+PqemFZx+PxMY2r2SSiRw3Odkdc7sxM9KCPjjsueSuAiJ6MejvRdXE1kYhldOirFBrn4pz/fBz/qqgWVI9oCCgKmvAqZOklijQHFGAdUU4nBukEzSfe3YAb/yPHpJhy0FO2Wa41iV+FFh90ttadGtuWhVsbsgCrRrXsECYKnHs0yOTEopVbcPpdi7Lvl1xztPE7QRpfx/8rkjE0tKbchUWLJBf73bvitQmSja1GOwUuLKqsC+N+tgO4gcMiieglEBy99qg+gWHqXnyCI0yRW2d34jGqE3TitcnXiS7eo+oxmCZY0wVcS69JmVIh3yed06dDWNE+XeJ7ek+CcS6EEEIIIYT0IGaMqMWofuELInZ3XFmwluUqNJmP22tUvwrXskjEkgqXqj+6oxFLKiYaj0Zw9zn7Y0Cv3ORFc1tKihXRCQM15e7iqACwYUezdvlXO4qzdqaIHpT65oyD0RLjXNJ6F2QyHt6JHrGCx6sUy4keND5GRBUTO0uQ8HKben0ughYGdIRjnfFUV9hSFdABs4iets3nqc0kokuZ2eFxttf1m8lAl8catJhiWYhM9L+8+pH0ftXmXQAyGed/emWtUfx0xlaVzHgegxQWLQVScVaPJxUcwhQWNd2zDS3trvPmhS29Ls5nUfxbFDZWaNPOFjz57oa8ndHuIp/6duI9qqtLYaRjM/G4vOJc8s1El7pUzmGAdLTQdIUwnDJ834l4fXftaGrD//7jbby2emvovsMervQ5oYZeEBTRCSGEEEIIIV2OTnT44wUH4Mn5h2XfBylw6vCXr8zGr760L8YM6OXbdu3WRul9NGIhqTjRR/WrxMvfOSq7rLE1JUXy6HLTHRFMZc3WBteyK48dj7rqsmz/3RWxsOjfl3yMBR9scrVJ+DnRNQJ71LICF1Qt3IneEeci9Bf0lHdFbADgLaLft3CNFC2UD15xLvlEa6iRGCbhxuQ4L1i769itTqy14S58GFRYcibOgojoa5TvFSf248ePLcNVD75t3M4ZS0XH952rsGgn3YJBJxYc3Jno5m3E+0OMQ7n2oaV4bc22QNtlOhH78x1iINoLcBgfe9tzOP/+1/Bnj4kAr68a9/eL6fORW94cIs4lO7kkbK9+d4S97jrkz5e8LogTPSzS/VTEQq9eSEWVDW28on5+9Nj7+P3La/E/dy4M33fIc+VV6JWEgyI6IYQQQgghpMvR/bCrTMYwZkAVrvvsPjh8XH+cuu/QwPubOaoWx08eFKhtXyViIabkcyc6Xos/iFva00gKTnSdaGzK+G7WFGosF/fl8zx6viLy3nWFZ+qLmegAcNdzK11t/AqL6qJvIhErcBZ8mMkUbf+OiC5cn6CygupMbVAEzlLhJ9qedffLBUWgOI7ToJnoOsxO9GBiqkihGcNOn7rdpG3bFTcRtD/HiR4kh3rNFllEd/p48r0Nnts5Y+tblXnyZVtjG974aHug8Yn96DB9wtJpG+uVJ2TU3bSl0p5CdUt77j6x4C1Am+JwHn7rU/NGcH8Ogt5nYUgrE0A6TOLoloZWAMBTPtcYALY3tuLV1VtdT0VIYwngRA8a2QTo41zE6wbI113sJ8zpFZuqx2QW0YPv32vbzotzyb3O5/tq+cZdvm0u+cMS/M8dL7m+J/2ekFBXs7Bo8aCITgghhBBCCOlyvBy+8w4ahXvnzSw4xsPE5/cbhn5VuaiWTJyL4ETXFBYF5FgRnWhcV63Prp930EgAcvFUURj2c6JX5CkiTxpc49/Ih4gQ52IiU1jUvF6XCR+xrMBucHHyIh+cpwbE+JigGkhKyQj+aKu7cGUpWLnZ/fSCyPvrdwYuIqoj50R3r2sKOFFgC92npNfhRfSwMRqusXT8X7d721aiSjwy21WcTPQgTvTNSkzGqXcsxOI123yz/52x9atK4KRpmeLHDy75OLve79SoMSwvLt+MbR3iroi4m2///S0ccONTePTtdcJ+5I4O/tHTnk8ltAiTg7Zme5EHFq3JvhY/9n7XQY3AEbsoljYoO9FLpzgec+tz+PydC/H40vXZZeptZeo/LYnoITLRNXEuXgJtvnEuXs5n0/e8lIkesr9CayjkQyEZ7pmN/Js88tY6vLZmG95VapcUEudCJ3phUEQnhBBCCCGEdDld+cOuLB7FtZ/dJ/s+GrGy7nPA7CgXxTBRWP7KYaPxn8sO0RY6BYDvHD8BD371QFx13HhpDLp96cjXiR00LsULy/IfXyIa8dQHdNHn0YjZoahSaJyL44Q3XVcv8o036AyCOsZ1OIVFnc/hAaNrcfzkgQDCxLnohTlPEd22tQKYtCiP2zbrRNfciWoGetrWi1LDat3FjZ3PqTNhsaOpDVt2BY/S+d9/vC3FQOlwxhKxLEwYlJloa2jJXQM/yV88339f8jG+9H8v4zO/eMFzm78tzoj0P3vyw+wy9bJsqG/xdMSrkziBv9NDqOhtamSMlOcSrDs/gt67Xh0H+Srb2BGj8tg7gohuKCz6wYad+OMra7Oflfyd6B2fc49JLvG65V1Y1GN2w+TiL+SfAIVOuqm8vHIL5tzyLF5asdncZ4DJFq/bIEyGv/sJBR8nOtT7yNa+JuGhiE4IIYQQQgjpcob0dgtWnYlYBFR1oieMIrpe+B7ZtzIrfumIRyPYd3gfVCRymemiMOwndufrRNcV9BSZNMQ8ZoegTnSv3+k6ESViWYEfwy/0iQRdJnpQii3WFJNCRPS2tBPnknkfsXKRRo0Fxrl4TTyk0rZ2faEFDR2RUNe1moGeTttaUWrf4X1cy0Qnum3bmHr9fzHjh0+6cstNWJYlFSTWjr1jLBZyEz3tgurp70TPNXikw1n+yXb3ExO6/Tji2+trt+Hfb3pHq2T2kduJ6BK3AoxTbKv2b+Kk21+Us6glrbbwz2ZTawofCVn2nf1xdxcWzbw/5tbncPWDb+PB1z8B4B3H4r3/zP9lJ7rcxpY+u+LTBcFPhlx0U15n+vtRiLhbsCtc4bS7FmH5xl344m9eNrbxOsYg+I1TEr7VvkN26JVRT8JBEZ0QQgghhBDS5Zx/yGicdcAIPHDezC7pv1dZTtCORSwkBLu06FgWhV5RDBN1gaDarLi9KKj7ibvlCX3BUj9E8ULtIxqx8L/H76Nu4kIsLGoiEYugd0XcuF53eBkR3bzfSmHioGAnesSdcR+UriosGoSmgI5xHet3NGN7Y2tWuIlYVvY8Bd1vyiCi+2Wi685pkLiUIOjEeF0Gum6E+mLBmft6Z3O75NL9eFuwWB8L8HWiO2QmMjL3aJjzUcg96pyWk3/1Uqj2OvJ5ushv6B9va8Imwfkvts9HPFVF68N/8gx++sQH2femSTP/bw5zC69hqtdO7f7tj7cDkMXtMHEuDmkPF7U4hHbRiR7i/KpxSSLmOBehq5AXU3TWd9ZTbabJHBGvPzF+40xJ+zdfoyCIEyCMcymM/P71RQghhBBCCCFFpCwexQ8+N6nL+u+VzP00iiiFRcXs7Ip4FA0doqIoholRJKZYkgP36iu9Fx3V5QmhyKXPb9zqsvx+xonCeSxqSQ7gaMRCwierGQge51LXq8xrL64l0YjlKUyVJ2LZ8164iJ5/rE13FtHDxDqoPPTGp1i8Zhu+OWdvAJnr7JynoC5r8b4Vz1O7RyREKm1nXfAiheS7AzmhSFcAVJuJrvnQJTS1EIZ3RLxs3NmCHU1t2eVB7yjL8s/0d8Q5y8pN4IWJ1Uh5uHLFiSNT1E0YvNrn587130j+ftUf60dbG3H5X97EfiP74B+vf4JrPrMPWtpTeOeTetdTEgnh+2BDvRzN09mCoyvORY3lcNrlG+diu+NgXJnoafn8OIQ5F16TaObCovk7u70y3kuFl8jtx0dbG135/irSpIKyLvQkg/TkTahNiUK3ENFvv/123HzzzVi/fj2mTp2KX/ziF5g5U+9AuffeezFv3jxpWTKZRHNzs7Y9IYQQQgghhPhRLcS5qNEiYrSLKOZKTvSIXkR/5OsH46n3NmLCoGrM9hDRxdd+okivPEV0cYyqmzwZi/gWPASCieixaMRYVBXQOxEtyzsTPzM12QABAABJREFUXZxkKLSwaFQXyr4bEDS73MTH25qy0S0Ry8qep6aATleTcOYlaqVt21WsFZCd1/mIYk73OjE+bduwlHgDnSalc6L3rUqiVzKGnS3t+HDjztwYXVnWBgezBZT5ZaJn21rZiQzxfPidDckh69PW1XcB4qXXOLyQhX1/TNE24rbf/ttbeGX1VryyeisA4Ku/X5JdJ07C+QnDpmMQv6qKqbO74lwMH718M9Gdzbxy36VJBuG+C/MxtD0mckxxZYUUiQ3iCi820mSVsZX7WF9ZtRVf+PVC3/17RdQUFufSfSeCewJdHufy5z//GfPnz8d1112HJUuWYOrUqZg7dy42btxo3Ka6uhrr1q3L/rdmzRpjW0IIIYQQQgjxo666DKfvPwxnzByGqqQsUouZ6JXJnAAjO9Fz7UXtbeLgGnz9qLE4ep86137LBNFa3Fezjwu3V9IcleJw+Lj+rmWiA7tXmbyPZCwSqNBmkEz0WMRCXY3Zia4Ty6MRyzMGR9ymUCd6XCOO7g44Ytr4gb3ws9On5bWPxpaM6zxiAfGOC9IU0ImetjOu9cbWdilnedmGncZt2g2Z6KLz2svJbh5LZhtdXrQrE93WZ6LHNJMt0YiFYbUVAIAPN+zKLlcd76YceAuWvxPdyUS3kH06RDwHfhqYl8DmJW4CxRXd88pED7CNdC6E5eI13NJgLvYq1g7wKxScr6k5j6QoAO7xqPel81Z2oge3FmcLi3pMcoldtoUusppBjVcR7ztTHFghxS+DxkeFRZxY3tHYhqsffBuvdkzMeEXiePG3xR8FalfMpzz8PvckOF3+r4dbbrkFF1xwAebNm4d99tkHd955JyoqKnDPPfcYt7EsCwMHDsz+V1dX14kjJoQQQgghhOyO3HTqFNx4yhTXclF8FgVcUQyLBohzURHd56KAXAwn+vdPnOQS7UUHoGUBD3/t4Oz7ZCwaKM4liIgej0Ywrq5X9v1p+w1TxuHeJuqTiS4KZ+V5FlbN9qUZ/0Fj+mpa9iwc13VZPBroqQIdjps9GrEQ7bhQm3aaBUmRtvY0Tvzlizj6lueCC+8BMtHzyUd39qgTGNVMdFsR1R10k0oRCxjeIaJ/IEwOqI53k/BvWfC9Ns5YIlbODe8X/SDiOGT9hEjdeQ8rQJqEVcsKvq+wgrPkyjeIg0EPw08Y7gzXrmkiQF0nIonoIQqL6kR49WkCOYpJf679UCOFxNMcJBM9fKyQ/nWhiJ/VHz3+Pv74ylp8/s6MizwV4H7LdzIFUI8j2JMuuvFsqG/GA4tyxuPuXBy7J9ClInpraysWL16MOXPmZJdFIhHMmTMHCxeaH2/YtWsXRowYgWHDhuGkk07C0qVLO2O4hBBCCCGEkD0EMaFbFF0rBAFXdJJbBYrotZWJ7OsJA6s9t1Nd5CJjB1RhzoQ6DKstx64WWcgUJwNsWz6WZCwSUET3j3OpTEZx5PgB+Mqho/HTz0/FD0+ehHMPHJldr0s/tyzL87yJwlmZxol+/OSBvmN30DmMv3bkWNx62tTA++iOOK7roNdSh+PStSwre562NbZ5bZJl8ZptWL5xFz7Z3oT31pvd5yIZJ7pbIBad3fkUTHVEJr0T3S266US7uOY+sSwLAzuesvhke66YaIsi1uty3oGM69o7/T83dgu5wqJygVS/CBJg/l/ewHE/ex4tHhNyumMOq6+ZxE7bcE6LgZzTLfXqOy4VXxE9T0XW6wrbNnD+fa9J703jcRfAzbxvz9uJnkFybnvGuZjOtU8/ijNc/IybJkul4pch581SebrC/UgKf2tWbWqQ1uXrRA+KV0a8nxDurG1qTWHWDU9JUV+McymMLs1E37x5M1KplMtJXldXh/fff1+7zbhx43DPPfdgypQp2LFjB37yk5/gwAMPxNKlSzF06FBX+5aWFrS05GbO6+vri3sQhBBCCCGEkN0a8Uf/OQeOxJK1b2DmyFqjkzyo+ywasfD3i2ejpT2N3hU5EX3y0Bo8cN5MDO1TgSN+ssC1nRgpo3LTqVMwY0QfAJkYGtHBGlUs4KLTNhGLSLE1DuXxqBR/YFmW8XF8ALjttGlZkf/q4ydkl88aVYt7X1rdsQ/3dn5xLqJopCsMWlPuH3Gj2/7hrx2MlZsbcMDovtja0Bp4H90RR8hNxqNIRPNz6zcIcS5+kyUqTy/LRbIuF6JOvEgZnOjifbsroKtdxNmlLhPdtm13YVGljWXpYycilpV1p9YLhUVVsb7NFMlkWb4RIs7aiKGwqJ+YmbJtPLjkE0P38kSaShiBTT2P6n5KVd/RlA+fT6a2bpJFxHQMmYkQcy9e/W/e1YIn39ugXefOJ9fvI//Cou7t1ftRjnMRM9FDxLkok1SiGG/6XinMiZ5/FIwXYt0T9etALiyq317c5G+LP8bR+wRP0fCawAn62Xp/vVv/LOb52RPp8jiXsMyePRtnn302pk2bhsMOOwwPPvgg+vfvj1//+tfa9jfeeCNqamqy/w0bNkzbjhBCCCGEEEL8OHHqYDzy9YNx/3kz5TgXMSrFx2kqMmNELQ7cq59r+SFj+2NUv0rtNhUJsxdKdKz+dt7+OP/gUdn3khMdtuRWThpE9L5VCem9n7j6uelDtMvFCJZR/SpxwOha9KnICd9RpZiriiic6Qo+VocS0XPbTxpSgxOnDs4s7+EFRx3BuCAnemuusGg8pIi+YmNOOPfKQRdJ27YkEDuITvR8NJ+sE13j0lVF83TaLSzFIpZ2ticayUU87JBE9GCZ6ACQ8rHZ5jLRLUFED15oNah7WrefMOc6lbaNfdkILtaF+b4E1Hx44bU6gADMvvFpxeUvEyT6oqiFRQMWqBXvL6+nDdxktvNybstxLvk50VVRWxyvMc6lgOKgXq7tQhBrlbhEdOne8+/0ir++ia/98fXAfYvHoZ6PoJ9x3WREqSa39hS6VETv168fotEoNmyQZ+E2bNiAgQODPY4Xj8cxffp0LF++XLv+6quvxo4dO7L/ffRRsBB/QgghhBBCyJ6LSdC1LAsTB9d05E5HpeWdRYWSCf63i2Zr2x00ph+++5l9su+jSpyL6ESPR/XCq1rEM2JZgQQDFTHHPWJZ+NOFs/Gbs/fLLrMsoLYyadxeFBF1merVHhE3KqZJAJ3Dva7aPKbO4GenT5PckID53ixGnEujIKKrTy74IYrK4msv2tM2fvviKtfyfHLQRXJOdH2ci60IYKrWFI3opd10OhfxsKMp55B3OdEN47egF9jTaRurNzfgZ09+mD13lpWb2AkjogfNT9cJxGFzr73jXILtJ+xXpy7+BwCe/3Bzrv8Q+9vokflvPD6hB915zPevgXrp1HOYc5LnGvoVotbtz6uwqBznkl8muupEF/swxrkU4EQvWZyL8D2qxo1JcS4BL8FzH2wK3HfQa+SF7qsg34gikqFLRfREIoEZM2bgqaeeyi5Lp9N46qmnMHu2/h+CKqlUCm+//TYGDRqkXZ9MJlFdXS39RwghhBBCCCFezJlQhwG9kpg70fz49YBeOYE1pGm3IERR9bsnTMB+I2tx/sGjcNje/bHfyFpXe8fRPndizqhkQ3ZeRyxLK7z2qVCd6JbWOeyHmOPuiBGiJhGNWDj3wJE4xvC4+5gBVdnXOie6V7HVscK2gD7r2rTfgTXlrmVfOWy0sS+Hz3a42wGguiyGd78/F/2qwgvyiWjEdQ1G1FZon1JozTrRo9qnCoLQ0BGdIgq4QQkqnIus3dKI37+81rU8n3tMxLZt3PnsCixZu127TnV5qr3FIxFtRn+fyrg+zkVwvP936Xpc8893tOOyLL0I3p62cdLtL+LWJz/A7xZlzkcmE90d5+Inopsy5L/3r6XSNdKJaWHOejptdmrbHgJ7obS26wXTP76yFss7noYII/h6ifgtbWnt+RRPnd/1CENgJ7pwP4SLc3Gc6LllXhEy7SHF6QcWrcFFDyyW3PE2bE+3v9guTF8ioohdqsKiKkGc6Lp7K+iTF16Z677HmJ1soRO92HRpJjoAzJ8/H+eccw72228/zJw5E7fddhsaGhowb948AMDZZ5+NIUOG4MYbbwQAfP/738cBBxyAMWPGYPv27bj55puxZs0anH/++V15GIQQQgghhJDdiMpkDC9ddaRndMmMEX3w1cP3woi+FaHzowtBLHbm/LgWHecqj33jEGxvbENddZm0XBRaLSWmZfrw3pg0uAZ9KuJ4ZfVWqV0+LuGqZO6npyMsiI7EaMRCeSKKu87eD2ff84rLsTdhYDX+9/h9MKA6qX3UX9y/wx/On4VYNIJ7X1qFD4WoEdO10onrg6rL8KayLIiT7+enT8O/3/wUQCZvviIRcz1BoCMZi0jRINGI5RKzbeidrs3ZTPRwTvQjxvXHM8sy59txokcjltaZ70VjHgVAtzfpc+iNmeIBqW9ux03/0ddZU4tepjWCbzQqxwv1q0rgsjl7Y9/hfbD000zOsOj4Fq/ZhQ8sNo7r9bXbsf/IPq7lqbTtmoTIZKLnCos+9MYnWPppvdGJ7WC6Dk5NAgetIz6EeHnLE8vwm+fdTxEApS4sao76WblpF8YMqAo3GeDR+N6XVuOBRWuw9Pq5Ug0MUdz2y7gPg6uwqLLeeS+e26YwIrrTj+0l0OqPLchh6iaP0ml5P6aJAa/4Ej+KmYku/n3zetosFeDc6ATzoE9yeU3UBP1s6YsHU0UvhC4X0U877TRs2rQJ1157LdavX49p06bhscceyxYbXbt2LSKCI2Dbtm244IILsH79evTp0wczZszASy+9hH32Mf+jkRBCCCGEEELCEvNx81qWhW8fOx5AODdgPowf2Avvr8/kTJcJP+yDCDjJWBR11bKAq8a5qK7bc2aPxOemD8Htz8ixmV4i+o2nTDaOQXSKO9uLPYrdi9rtD06aiN8tWovLjxmHgTWZSYBVmxtc+1dF9AVXHI6RHW5tNS5E5zjPjMHC898+Au+v34kL7n8NALJ9igQ556Lg4pxnP036qPEDcMKUQZj/l5xsH49GtLneOm598gMAGSHey0GpcudZM3D+fa/h+Q83K3EupZ8Y0rm9AaClwDgXL9K2jYhtCe/dol1MiXOZOLgGZx0wAoDenepXoFLk1dXbXMt0wrglFBZtTdm47E9vaPdnWfL4GwMWYtW5g8PoayYBHXAy0YPtJ2wUlpyJXti+gNyEjWlyLJW2sWLTLkwcXJPrV1qvv3ZBkfcVTCyVRekQfTlxLh6FRcU+//XGp75j8SNt24EEZ3ViKwxekwJhESehElKci9xOFu4L6tLFV3+/GGP6556gUp/4KKTuAZ3ohdHlIjoAXHrppbj00ku16xYsWCC9v/XWW3Hrrbd2wqgIIYQQQgghJBilikR/+GsH454XV+HCQ0fj2NueByAX6cw/39SWRFJVV3aEFVUwjFgW2trdff7h/Fk4cIy7QKpDpVAMdVeLW+SLCidQFFbPmj0SZ80eKbXVOaSrlDgXr0KjUY+YkmG1FZKoNLi3W0QPes6nDK3BWx/vwKn7DgVgFowB4PBx/XH3uftj0cot0vLyRNRVtBIAzp49Atf/+13tvpKxaCgRPWpZWZfte+syLmvL0p/nYmOKwmgt0InuRUNrCkBOKEvbtsudGY1YiAjHL54L0Z3qEHSiw4TuPEQsK+dE93CfxyJyxJIpzkWlrYQCWynjXMRJPNXV61ylMF07+/MqIqquEt+3B4ge8vrOWLlpF9JpG5GI5XaFK5f9Dy+vxWenDM47QsbZv+Qw94hzWV/fnH2d7+W07WCxMLYkhIftI7dBofNv4udHLhguk5ImMop7rz/69nq5r5T5GulwPhe6e7pUn8s9hS7NRCeEEEIIIYSQ3YFoiVT0SUNqcMsXpmGQkM0tZqLnKxiov6NVgddxqZZpCosO7u3OCS/ziSoRBcmGDhFdHEJEEtE9dyXty2F0Pzn3XLwe6qXx27+4rS4TXSdMHDC6Fn+7aDbGDqjC78+fBQB44Muz8OuzZuDrR43VjkMeU2alKNpUJqLYd3gf7VMO58weiQsP1Wezhy0sGo1Y2gKyfk9iFINSP8ERhH++/gmueWiptEx9WiEqieju89IcwomuQ/t0g+BE94q3UZ8YCBrvodtnscRAGyEKi3b8X/eEiY4gESNhih87ExBBhWn1HOm2U2M8vAT6pZ/W47sPvaPdl26rM36zKJBwr0XjRA/qci7EiS4+9WA6zQ0t8sRWGMS/g4U70XOTvF4FUdMB+iwkE13EdY2CxrkUGNlE3FBEJ4QQQgghhJAC8XIZF2f/uddinIuXOFMIew/sBUAWDKuSMUQjFg4a0xfXfXYfDBHE9CB53w4NHU4/ceiyMO59LkVX8AWHjMJLVx2JGsV57uU297tW4urBmjgX3cRFNGJhv5G1eGL+YTiow5FfUxHH3IkDs4K2V7+OG1YURM85cCQSSkZ69hgiFvYd3lu7r7CZ6JZlSRMzmbF2jhO9uUAHdzG4f+Ea17JoxHIVvnVIxjVxLiVyojsTGTrXuEMsEsF/v3lo9n3QbHpdLFMmhqXw7xRdzrwJ5zwf8ZMFgdpL43bFuXQszseJHlhEl98HiXfy2/cfOorrqt/ntm1rhdB8nejOVikP57bpuuX7lELatn0z0dMdhXVzbcL1UUxXuDgJJZ4LlxNdKiyqR/cNGmaCJzsO5eQHvf66ZtTQC4MiOiGEEEIIIYQUSIk1dOlHs+gOzzfORd3KEXgf/8ah+PVZM7Dv8Ezxwz4ViWyb2srMa8uyMO+gUThy/IDsuop48KTQhmycS24UUrSMn1NcaDCkdzkG9y53uXG9ngwIc6l0mei6DOQgkyhebZz4EnHcXpE0gDn/ORmLShMtQYhH3bE94jntpSncWgzCZIl3JplMdLnwrUMiqolz8cnV9kMnxFrIFRb1ireJWMDedb0wom8FgBBxLho3s63kV+eLbRc34qJ/ryQO3bs/ACUT3SBIFjvORTwn/31XjtoIMlkQWPTsaNe/VzK7b9248i1m6lwTKaPcI85FXp7/3xo5E929n0bl6YmwfRUSBaMiftYkEV35ug2S814s1Ovtd3qc9fpMdKrohUARnRBCCCGEEEIKJJ+CdmGoFETMvlU5YXvSkJpQ+7n86L0BADecPEla7miE4wb2wtyJA7PLHTEHyInoDqJ7uSwR/KdlY4vGiW5w/eoQhWbHqau6puUsW3ldeQjXfK8yt5Ctc6IHEdG9mrRqnOjVmr6D9JmMRRCJuN3lXjQoOfXxaEQS1v0E/Wy7snBi+/bGtlDtO4tIxJLuyZifE71jMqA1z3wlNfMY6MhENxTBFXE+A87nohAnetrOX6AVCRXnEuCrM2pZiEfc+fDuwqIBByjgXDPdNXAQz9VFv1sirdNFq6jjCHpOnW6G9sk85WPbxRVCnV3JhUXTShvTxET+wr1fBI9a5DbsRE4xC4uKIrpnnItUWDR4n/nEubiy8oPGuWgz0UN3TwQoohNCCCGEEEJINycejeDNa4/Bm9cdg3g0gifnH4bbTpuGuRPrQu3na0eNxTvXz8WxkwZJy02CrJeILm5TkQgunjqFRdOSiK4vLKpDjGpxxE01J10Uo0W36q++tK9WGBcRhQdV0P/9+bO0woSf8A8EdKKLInq59zk1RZY7US5hrsmOJlnMrq1MSGPpXRFMRK+tTISKgSmGYBuEcw8cice+cUiobeQ4l9zJ1mWiO070fGNddIVDLQuIB4jliSqfgcY2d+FeHXoRvUgFQe1Cih67iUYsxDo+922SE13GgoU1WxpCZe1nM9E9jttrciSI4Bs8fiPTzpk8SRueDKhvym/ySVdwUt296bo9+vZ6bNrZErrPtA0lE929f/VJiyCn64GFq3HSL1/A5l0tRXWFi9da/Fh6FxbV76tYk+vqPRA0xo1O9OJDEZ0QQgghhBBCegA1FfFs9veYAVX43PQhef1Ir9JEc5j2068qJ6J7aaNqYUodjjN63xG9AcjuPVGwPWFKRuB33JgqokirKzLqNdbjJw/SrxAQNYaoZeHhrx2MH506GatuPB4HjelnzK/2w8tU3KIR0f3EfnOcS6Yj3TV5/BuH4s4zZ2DsALkQqyqi96uSxfBBNWW46LC9PMcDAFVlsVBO/87isqPGom9l0r9hB2nblhyjkhNdE5XjiOf5xtNoi1NaVqAJCaeN40QvJM4FRXOi2yEKiwZ7iiObD+8hyL6yeisOu3kBtjS0Bh5rW4AoHq84Hd0EiDs3PdjkinMfON8DtuF65B/nkvm/VFg0YJwLAFz0u8Wh+0yn1Ux0dxu17oOfszudtnHNQ0vx5sc7cP9Lq6V9hnGFf7ytEYf++Bnc88Kq7DLJiR4wziWfnPMwuONc8neiFzNmaU+EIjohhBBCCCGE7OGYNGCxQKWXcBPEif34Nw7Ft48dhyuPHQ9AdpGKIvRxkwbi7xcfiEe+rncOi21NIqMoMId9fF48F5aVicw5bf/h2X2KWfAOJle4tF+PcTjCoHhsTjSKKnhn+/TIRAf0sTXjBvbCsZMGZgVJh6F9KqT3fauSUpuqZAxXHTfeOH6HXsl4oLMdxKx+9zn7BdhTMOKxSKA+s9iKE114+kFXtHXJ2m2wbVtbBDYI5kz0PJzoBcW52J6xJkFpS9l48r0NgdoGinOJWEh0nAspE10Z6l9f+yjwGB0cgdvr+82ZcPj74o9d63QTIKpTOKgT3dnOcd3bKK6jP5uVbXuJ6Ob+Fq/ZFrrPtK26tjVO9FSwSBmHNz/enn3d2JryzVw3ceOj72Pt1kZ8/+F3c2MxxbkI32y28sRGwDmSvAmaW+/w2ppt+Nvij7X33V3PrSzm0PY4KKITQgghhBBCyB5OEIGx0IKDI/pW4quHj8k6rEURIiIJ1xZmjOiTdd2riMJ5EPE+LMP6VGDWqFrMmTBAKuLqcOLUwfjRqZOlZSdPH+q7X89M9A7hJibFuWSO/94vz8RlR411beOViQ4AFR6O8HhU3va7J0yQlvVVYlkqAxYWrSqLob7ZP07EJA6P7FuBc2aPwFOXH4ZDxvYP1GcQYhEr0NMCDjbkiRhxwkIX57JxZwuefn+jy4mue+pDh+nphqiSza4j60TvGFZwJ7pb+WtL6wtZ5sPdgrvXiyBXJSq48ldtacD5972Kl1ducfl/h/TWP73iRasT5+IpoqexYtMuXP7XN13rdOK7K34jZGFR5/ORVvLECyUb5yJc+nzzth2ce95039nwz0QPG+ey9NP67OuPtzXJgnaI4etif1oMhUXFJ4lSaTtv4T4f8pmUueKvb2rbLVm7HWu2NBRtbHsaFNEJIYQQQgghZA8niMA4fXif4nYq/L4PE0sTLbGIHolY+PNXZuP/ztnfuP6IcTk3+i+/OD1QNr1XJISzTrwOvTqc6EN6l+ObHQVhpXEYDt0RdLwidlQRe0B1GX5zds753bcqKZ3boCJ6r4DtEgYRfcG3jsD1J03CXv2rAl/bIMJpPBoJJaJn4lxyRCPeIjoA/OS/H+DjbU3SspmjanHqvv4TLE0aMc8Zrp8bParGuQTMA9fFubS2pwueLAtLkO4iESv7ZMQfXl6LJ9/biNPuWuSyoicDxEqpOHEufiL6J8q1ddA60dM2Xl+7LStWBj2nzjVxJrRMmej5YtvA9sZW3PnsiuwyVaQP43z/0WPvY/w1j+HllVuwz3WPGfsMn4nuPQZxAmj1lgZFRA8+ft2EURAnentajisy9ViseuNuJ3r+cS4A0NCSX+wUoYhOCCGEEEIIIXs8jmCr4z+XHYL5R++NiwNkYochX2nIChDnUmpEUXX68D6BJgG+NXccIlYmz17lp1+YCgBoFpzM1T6Z6KY8eEdg8nKi686bKLr3q0pgeG0u4iWoo7pKuI+8ipHqIlFUIlawgqZe965DNGIFszx3YCtxLlImuiLUTh5SAwB4b109zv3tq9K6oPfnll3uDO9ISBE9F+cSrLBou6FY5qwbngq0fbEIIghGLcv19ERmW/l9UBe+iPN58XLgt7SnjZNgOkf/ys27cPKvXsJhNy8AEDzD3ImWSXREMtl28CKSQbABXPvQUmlZ2KgQkTsWrIBtA6fdtchYXFN10+vaqXEufocsitsfbW2UnfUhDkA3QdGS0ovo4vdHWyrtG1EDFE9Ed2eiB9vOVA83pvkskWBQRCeEEEIIIYSQPZQfnToZU4fW4Iq544xtJgyqxtePGuvK2P7SrBEAgGMnDsyr72I8Ah/GXVxMJDd8wDEcNaEOz195JP520Wxp+fs/OBaHdzjb66rLsst1UTIipmN3BJeKhFlc1gmzYgZ6dVkcI/tV4tbTpuKA0bU4fnKwa9yrLIbaygQA4Av7DTO2CyLiWJaF0f0qs+9N7vWghUzDzLfYsKXzK2aiq070EX3lPHmReCwSqOjgjf95z7XMmZjRicci0Y6cCbWw6IRB1Z7btRYh+7wYpG3/YoeRiIWYpjLv25/skN4HnUAQcURwL/G1LZV2Cb0OOiH2o61Nvm10OHnvzr1u2yhKRr2Dbdt4/SM511wV6YsdTaJmouvORXgnem59Y1tKOoYwkwB+rnhxtfh90J6SM9HDnLJ8zm/e8UCGvtq7yWe/JxJsOpkQQgghhBBCSCDGDdQXguyOnLb/cJy2//C8th3etwJLr5/r6Xj2ohhajS7ywxS3USrCiLO66BFRLK8pj+OZKw5HWdx8DM55MxmUncKnXuKyTpidPqw3jps0EKP6VWZdzSdPHxoo792hKhnHX75yAJ54dyO+fPBIYxG7IAUzAeDgMf2wZO12AEBNRRybdra42lQqkwUnTx+Cf7z+iatdqEx0Dyd6LGLBsnLXYWTfSpgI6opds6XRtczpX5zcGF5bgbVb5bYxlxM9I6L37ZjMMKFzUHcFdoDc74jlP5kABC+qKuJMJngWFvVwovuNPZW2A4uWOSe6EOdSZCe6OhkRprBoPqhO9AcWrcH+o2px4tTB2WUmEb2hpR3f/PMbOGB0X3z54FHCmGWhu82QYy7S2NqO/y7dgCPGDUBNxxMufoJ+ShLKc6/b0mnpsy32uaulHZWJqPHppL9qitP6kW9uvamdaUKI+EMRnRBCCCGEEEKKwNOXH4aNO1swZkCvrh5KpxE0K1vH4DyKAKoMqnHvQ40AmTasNx55e13BfYmIAnUvn9iVsIzqZxZlRXQizVOXH5Z1oHsXFnWL2JGIhTvOnBFwlHqqymIYM6BX0T4DXz1iDNrSNo6bNBBfvvc1bRtxEmLxd+cgFokUR0QX3kcF4dGyLCRjETS3ZYQoLyf61oZWDEnkd587GcyiAz8Ri+Clq47EZ37xArY2tHaMTc5Ez4roVT1DRE/btme9ACBzjEGeXshHRM/GuXiI4a0eTnS/Phtb20M70eOiEz1dvOtk2+6Jx0LiXIL1abuig77+x9clEb3FUFj05seX4b/vbsB/390giejqxIVYB8CkL3/3n+/gwSWZ74Xfztsfh+/dH7pTK96LaYODvj0lT244r976eDtO/OWL+OKs4bjh5MlFmSgGNLn1AXdsuu/8Pm/EDEV0QgghhBBCCCkCo/tXYXT/nuNC72rGDKjCL86YjgG9kqG3vXfe/li3oxn7DHZHVtSUy6L2uQeNRCxq4aAx/fIeq0oyFsWjXz8ENuzAcSLFRicKi4KytxO9NG796gD55IA+TuCmUya7lpXFo7jy2PEd7/SCkKgJ9q1KGgWi0Mk/YpyLsnEiKoro5kmPrQ2tgQqfenUvisfxaASDe5dj77oqLFq5NbPeEdEjcmHRWh8neneJdEilbV9BP2Lp41xU8slEdwReL2GyLWUW+rc1uvPs1TEFdZO3peU4l0xh0UCbBka9l1WBttiFZW3b363vzkTPtH9wid61rd67zYKIbrqOjoAOAPN++yp+fOoUfWHRVG5f4nqXiC7msHesuu3JDwFkit/ecPLkUPnsXrgmOgLeE6Zr2V0m0HoiFNEJIYQQQgghhHQJnxXciGFwMsR1qCJ6PBrBvINGGVrnj07A70x0YpHoWq6Im3/ul6qwXNACpO2KCnTKvkNw+kzvWCGTHqWK46bYjzAietq2JXFePV+9yuKob87kb4/s5+1EzxddYdFExzhEQVktLOr02a/Ke3Kqu0Q62La/MzYasQIVIs7nmILEuby/fif+/ean2nV++nhDayqQm3zZ+p147oNNADJZ+kDmnlc/K4WiFiRWv0f88unDomai63DHuWT+73zGVNRr5SWir93SqP2+W7Fpl76waJu+sKgkoqfTSiZ65nVLuzyJE3TyxO+cq7d1wXEudKLnDQuLEkIIIYQQQgjZbVBF9N0NRwzWCS9JIUu9PGH+uV8qJ3pQEb1NcZImY/5ufpPQZEEWyExZxOHjXAQnekQV0XPHOaBXGe48c18pN91hS0NrIPFXh9O/mI/vXDdRCI1lhXW5/7rqMrx41ZEYVFOGYvG1I8dgeK150iAf0rbtK35HLQsNLeGLhgYhSGFRk4AehPteWo3Fa7b5tpt723PZ17nJMDuw6zgo6n3izkQvbn9pTZyLStjCouqkRLMgfIvj39HUhkNvfgYH3vS0u89UWvudIt6LaUk4l1+L583ZjTiOzDg9D0M7Zh35Fn819a/G55DgUEQnhBBCCCGEELLbsLtH6jj6iU5HEZ3o5QmzoJ1v8dW/XTQb8w4aaVwfNB9eFe6CFGc1yUZBtfFQIjpsY2FRAKhWjvPYSYPwxVluJ/0Bo2sD96ni9F8uRPQ4IrporHWOSz2+Ab2SGNK7HGPrilej4fJjxqGPT0xMWNIBnOiRCLDL4EoulLb2NFJpGxfcr8/cL5R7X1qNGx59P9Q2iQBO9HwLOrsy0W1g1eYGvLZ6a8f7Yse52Fm3v4lWxcFt+7jX1Um4ZikTPbduxaZdHn2m9XEuhsKi4nlpS+kLi4rjUMfiRdhJg6ATHSwsWnwoohNCCCGEEEII6fHc/sV9cezEgfj6UWO7eiidgk5kEkX0CQPN4unXjxqLuuokvn7kmFB97jeyFtd9dqK0TBR5K5PBhD01kzeIKJRP3rVIEKHeIW3LEw1eTnSHuuqc4/vI8QPw9SPH4GenTw8/0A4cR72Yc++Iq+J4cpno8vYDqjNxLokiP3Wgc9wXQtq2s6JoX4NAH41Y2FVCJ/oLyzdjW2NbSfafD04kUdq2jUKoeF+EQb2XAeCInyzA/9y5EKs3NxQtx9shbftncOuc0W2ptDSRZYpWAeTCoqLevNNj4qW1Pa11aksiurBezGF3FRa19ccRNM7FX0QP1z63nSETnU70vKGITgghhBBCCCGkx3PClEG486wZgSNFejo6fUSM+dh3eB/jtnXVZVh09VGYf8y4gsbwzTl7Y98RvbPvgwp7qqgWxLEpClQmsdULU8yLDtvOxLQ4qMKxTkQfKIjoB4/ph/nHjJOEdT/uOmsGDtu7f/a902WZzokujMeJwlHFUWf8YsRPITgFUosdq5JO54p2JgxPSEQsCzuL3O8JUwYByGSiFzpBU2yciQ/bNheAjUWsvL7r1MKiIh9u3FX0OBfb9hdtdU8itKbS0tMVYhs1E73JkIm+ZVeLuU/FTe7QIsa5iIVFhdft6bQkUJuc6EGLtPpF9qiiedD9mmJ06ETPH4rohBBCCCGEEEJID8NPeI5ELPzpwgOyGfEXHjpaWh9GVDaRsm0pVqYsQLY54J4ACBMhMWNEH0ms0h3G9SdOdC9UuO20aR5rbQysyRXmVIsxHjHeXdh2oJA9PnVY79yefI7tK4eNxl1nzcAxEwdizIBcFJHTY7nkRLdcyxxBXxQc41ELfSoy1z3oNTHxs9OnYc6EAbjvy/sDAJZvNEdk5EPazol6pqz+iGXhc9PyK0JsYnS/SgDOhE6RleMCSXRcs7RtG93M8WgEfSqLW/8hFrECfxaDRpW8smqLrxNdJ+q2tqelp0fENqo43GLIRN9Q7yGiB4hzkUR0YcdtKf0TAqoTPair3++cqxMpQb8uGw2TQywsmj8U0QkhhBBCCCGEkE5kZN9MccZxBeRVB9FnDhjdF29edwyWXHM0rj5ufN59mbBtWxJk8nU9BzmWrx85Bn0rE7j1C9PQLPSpFhYFgHMOHOm7Py+nftqW41lalIKBJ04djJ+dPg0Lrjg8u6xfVU50nzi42rd/h6uPm4BjJg4EIIvjjnCvy0QXs+erOkR00YnevyqZnSTRXZO9+le6lpnGPG1Yb/zfOftjzIDMvaq6gIHwkTGi4z5t+zvRoxELJ08fgr9ffCDeuX5uqL5MVHa4uNtTadf9d8r0IUXpI1+cOBd4ZINHIxb6VOSRT+8xdxaNWJ4RJKKoreaSm7hv4Rqs29Hs2UYn6qrCuxyzEsyJvnGnud+2VForXpv6aVfiZII40QvNLjetDzrR0dRGEb3Y7BnPuRFCCCGEEEIIId2EB86bhfteWo15B4/Kex8j+1UEbltb5GKQDqm0LTlE1YKllhXMNRlEFJp/zDh88+i9YVmWLKKFMNRXJWPZbG3Hoa/Dtm1JqN6sxEJYloWTpslC6951Vbj0iDEY0qdcimAZ1BGDEoRyoVikc1hlggieyIroOSmnV4cYLMZ0TBcmCHROdN2xe7nA/ejfK4npw3vj4bfW+bYFgMHCOREzs73GYFkWZowwT3yExZmcaEvJT1OM7leJE6YMwoOvf1K0vsKSKyxqayctACAWtdBbI6IfvU8dnnh3Q179xiKW5+dVfHolTCSIn4iuy0RvbU9Lxy450ZVz0mwU0c1O9JZ2fZyL5EQXhXLJiS5PvDiv1cm2wJnoPqdSnTQIGudiiilinEv+UEQnhBBCCCGEEEI6kWG1FfjuZ/YpaB9D+1TgbxfNRu+KOF5asQVjB+Tvas+XlOJEVyNi5h04Cve8uMp3P0HjCXQRNGFCaXqV5UT0Kk2ueXY8yntVRDeN7Yq57oz5S44Yg5dXbsGStdt991EhiuhOYVFhWbxDXK0udzvRxciZOfvk4mZ0TnSvCQQV9ZRPGFSN99bVS8va02lXPndNeRw7mvTFOkVHsx3AiV6E5CEXjmDfmkpLrue2dDrQxEEpcSZLGlpTSBkc3/FIBLUV7ut44ymT0SsZM04CeMWw3P3CKvTvlTSul5zoRXQz60Tdlva09L0gZ6LL7WURPbd8W0Oruc929xMImX5z+5Jz0AVBXzn25Rt34fZnlruOo1hxLs442lJpbGtoDexEZ5xL8WGcCyGEEEIIIYQQ0s2p7BBTZ42qzS7bb2QtxgzohbNnj8Tsvfp2+pjSihNd5arjxmPOhLrs+9+cvR/26l+JO8/cV95PiEz0QqgW3OVqIU4RR/xyXN4HjM7/3FYlY7jttOmB2orRLY6OK2Wi65zoHcckOtEnDq7JvtY50TfvcouLJt1YFZTvm7e/q017ys7Gozice+BI/O/xE7T7FHeZsu2siJ2I6gcR1HkbhvJE5lw2trZLImx7ytY+uXHcpIHwuGWKiujI//bf39K2iUb0TvRYxDI6+gFgZ7O5QOtT72/En179yLg+Xye6TrR97oNNADKRK394ea1rvSoAt0mZ6Gqciz7HvMGjYGxrKq29r8TjErV6URDXOedvfnyZa1lgJ7qfiJ6yccOj72Hs//4HM294Cj985L1A+200xbnQiZ43FNEJIYQQQgghhJBuzqOXHYJvzR2Haz5bmIO9GMw7aCT6VMRx/iGjPV2NiVgE3zk+k8UejVg4ep86PHX54VLhTSB4drDDny88AOMH9sJfL5odarvq8nAP4z91+WG466wZruiWsEQCKi+iKOqI12VSJnpmmTgZ4DjARWG6t+BQ1jnRRbetuq2KKqIPELLiHVpTaRw8tp+0LBmPaCd2Zo/uK+XYixMxJie6KdLExMNfO9g3wqh3eWb9jqY2KTu6LWVjZD93ZvwAD4c2AJwweZD0vizP+gCAfB62GtzU8ailPcZIxPI8X9saze5sP6RCnyHczI1tbuH+7HteAQA8/8Fm/Tat8jZemegtwvUTnfbNXiJ6e4BMdMmJnluuE9FVbKXoshd+t3fKtnHXcyuz770mQkSalHNYV525h+lEzx+K6IQQQgghhBBCSDdnRN9KXHLEGElA7Squ++xEvPbdo1FXXeYqAKgyun8Vnr78MCz57tHZZVFFmA3rRJ81ui8e+8ah2H9krTbixcSZB4wAAJeIr+KMZkB1GY6ZONDTtR6EWEAVXSzu2d5xXkUnuiOyi050J87FiakBcgIxAJQpwvTR+9ThhpMnY++6quyyiKUrz9qxTjN0VexuT9k4YtwA3HXWjOyyuLLh2bNH4IaTJ+OOM/eVRHvbzol6Jge1KRbjqPEDtMvLE1Hfa+ZE4uxoakNzmxwVoou72daoj6ZxOG3/YfjZ6dOy70+cOtizvRdeTnKHWDTiKmQJZD5bphgdANiieQpBx9ePGutaFsnTid7YYhazTah53qJw3eZVWFQYlk68z+7D5EQ3iPXi613N3vcCEG7ix7ewaJ5PYqhu/mTHUykU0fOHIjohhBBCCCGEEEJC4YiUbYbMZpHR/atQI7ijI6rAWUBaRxh5+8Spg/H3i2fjd+fN1K4/aEzGOX3FMe5s80JQhehENIJ/X3owXrjyCGn50D65gpsfbtwFQBbRnbxqseipEzkjCqeiyJ0Utn/4awfjrrNmYL+RtfjvNw/LjS+EEx3IRQs5OC7do/fJRffEo5Ykln/vsxPxxVnD0bsigVP2HZpdnrYFJ3o0gnMPHOnqT83A/vqRYzC4pgw3njpZO+ZENOLrAnbc+tsbZSe6GhXicOykgZ4TNtGIhf1H5qKWCnl6IRHzv6ujEQuHjO2vXV7vIaIHFXd194S4yG/yTMSUzf3up/Vobtev84pzSSn3Q5OhsKipsCYQzIkO5ARs0ZW+dmuTcb8OQdzqDr9btMZzfdgnMRzU43cKP4e5dkSGIjohhBBCCCGEEELyIp8Cg7FIYU50kYPH9PNv1IFlWZgxolYSoUXuOXd/LLjicJw9e0Te49GhOtGry+OYPLQGQ/tUuMbnMLJvJlJEjGNxRPSacrcTvd4Q8ZAUBPV4NKIVgiOWXpB11qlUJORYHGciRdx3XHGri7uZNqw3/nzhAQAyURYtHU7wZDyK7504EY98/WDJZa5opph/zDi8eNWRGNDLHS2T2Y+/1OW4zXc2t6NRcPE7AuMhHfE084/eG/d/eSaOmzTQc8ImYlnSXNDYAVWYd9BI33HoSETdOfYq8aiF2Xv1xZ8uPAAzBfE+4uNED4r6tAiQyRgf851HMf8vb2SvWRDUaBaH43/+PN75pF67ThWAW9vTuPPZFfh/j7ybvd+cGgGmwqIm8d7Zn+gud8Ry1WH/wvLNePfTeqnAa5BiybqnBEz84unlnuuDZquruJzoHZ8LOtHzJ1wgGCGEEEIIIYQQQkgHLXm4GlUn+qmCMzks/zNjKCqSUUzziWjxIxqxkIxFtXnYhaJGi3hlsz9zxeFYsGwjzpg5HIDiRK9yO9GdTPSdBuFUzFQ3RZxELAtfPWIvPPX+BpeoqdvkqAkDcP9Cb/esGkmiivdDazMTCGnbzjqJKzrGOnFwDe4+d3+MvOoRAG4num5/IklNMVUVMbJl486W7GvH9XvnmTPw1sc7MHNUbaA4n4gF9BGetuhXlcR1n52IcXW9cNWDb/tuL2LKhq9IRLPCqDMxc8DovlK8TzRSHBHd9bRIB+1pGw8u+QR79c/EAVWXxYwTOA5eYvbzH24ybOPORL/pP+8DyMUZlSeiaG1KS3E8Tia6LdxXOtTCoinbRgSWy0F+9j2vIBGNeNYN0BHGie5HvnEuau0D53ORz3c2yUAnOiGEEEIIIYQQQvKiUFfjvfP2xxwhBiQskYiFz0wZ7HJ1h+WV7xxV0PZeqHqkV679qH6VmHfQqKz4LQqqA6odET0nmlYmHCe6XjiVnejyQA7dO+M+P/OA4UjGojhn9kjX9jqx+qrjxuO7J0wwHgOQcQl7HadzTtK2nXUdlyf04rcuu9qLpEGEFolHI9kJiH+9+amrr8pkDLP36isJ6F5CajRioSIRw4tXHYlX/veorAhteurBe2zujuZMqMP1J07Mvhef5hDPTsRCUUR0P9H45seXAQDqNIVmVbziSEyRK42KAC7GvjiFNdVYISD3VEtzW9oz0qelPS251p3rrvs+a02lQ4viLSGc6H7kG+eiRm05nws60fOHIjohhBBCCCGEEEI6jTLBKTxrVN+S9HHTKZm8bC+xd7TgOu/b4fIuBaoQLTqW/RBdvH0rM2OsSMRww8mT8YOTJqJPZaaIqEk49XKi3/GlffHbefvjW3PHAwBiGvFWZ0iuSMRw/iGjPccdi1oYVluBq44bjxtPcWeXO3EhbSkbC1ducY1VJKyImIhGsHlXi287XQHRsP04ONd4SO9yKWZGnPBw8ut996uZBIhG5OXitbIFtdiyLE8HtsPp+w9D38qEcb0uxsc01se/cWigtjpMLvVfPbNCen/pH153tdFNuji3iilCxqEtJWeip9I2bNsumoNctx/TEwZ+5OtEV8Vy5/PFTPT8oYhOCCGEEEIIIYSQTiMRi2DBFYfjqcsPM7qPC+X0mcPx5nXHeIq9vzlnPxwxrj/+fvHskozBoSoZw8nTM4Um+1UlcN1nJ/pskaNWEDpFEfyLs4bjLME5/vn9hgEAjhgnZ5uLrmw1m70yGcMR4wZkxT11PRBcTFVx4lwuOmyvbDSNiDixsHjNNgCZuBIdYZzo8aiFSMTCsRMH+rYNK6JbSiq6eG5NkS+iiF4dsL9E1H0dYpGIdH1iQhv17Jw4dbBvH5+bPkQ7aeKgy0TXEY9GMG5gr0BtdTiC/1795RilXS3eIjhgEtFtab/JWATHT3bfC2om+t+XfIzTfr0o+MB90InoZXmK6Plmoqv57nSiFw4z0QkhhBBCCCGEENKplCJ7XMVPJN2rfxV+O29myccBALeeNg23njYNtm175nmrzBpViyuPHY/xg7yFymtO2AeHju2Hg8eqIrp/JrqDLkYkSB540H2J6HZbbnCihxHRneP94cmTcM6BI/HEuxuMhSALdaIn4xE4ceqm0yQK5zXlcXyyvcl3v2qePJCJLRLPqRTnopye/3fyJLy0YjM272r16MPyFMqD3qL5uqtVPr/fMBwxbgBufvx9PPnexkDbqAVugZyI/uGGXR1topgytDcefXu90k52ZF/70NJAfX5jzljc9uSHADLX3HRr6uJckvEo4JMfryNsnJEJiuiFQyc6IYQQQgghhBBCSCcQRkB32l98+F44YtwAz3bliSiOnTQom/PtEI/phVcdOid6nkZ0rRAsonO4l5mc6CGcuI6o268qidl79ZWOX6UyGfIpCGVX4gSFybEvO9GD+Vh1DvEhvculcypeK/Xs9CqL4wcnTfLuIxIxFg8FMscT5NrrXPP5UB6PYtzAXqgMGHkD6J9cSKcz8Sfz7n0VANCeso1jzEebHlxTLvRvHqsupiZIVr+O4onomfOlOtTf+Gg7/vTKWrzx0fai9LM7QxGdEEIIIYQQQgghZDdEjgDxVkWj2kz0/FR0UzSL134riuJEl2UuL5HXlMGeT1+m8yQWV9VNUujQTbR8Yb+h0vWLGzLRHY6dNBA/OnUyegv5+06kEJB5wmCUx9Mg0YgV6NoXy4leFjdHCplQJ4yAjBNdjFLZ2dIeeoyxiGV8skCMkPF6SsMR8UXyvd+K5RxPxvVO9MeXrsdVD76Nh974pCj97M5QRCeEEEIIIYQQQgjZDRHd575xLkXIRL/w0NGYO7EO04f18Wyn00pN+fjtqfxFdC9R1hQfE5REgEx0cTxBT6W6q0QsgtH9qyQnut+1tCwLp+0/HJOH1GSXic77eDSCX581w3MMQXLRTedwZN8K321F8il6Kbr8HWzbLRKHdYAnYhHj+RXPYWXIeg5Bx6Ge9p15RMDocM6x6kRv6nDN+018EYrohBBCCCGEEEIIyZO5E+sAAGce4C4eSboeMZPbT3jVOdW9NtGt+87xE/Drs/bzjArJbOten08m+p8uPEB6r7qOveJcwoqG6p5kJ7phG+E4pwyt0TdSUM9NvGPnooguvk57xN2I+xKjUqIRCxWJGBZccbhx3DoNfXhtBS47amz2vcld/f2TJuGo8d4RRCLOfpo1WeImepW5M+3Tto2WlLyPsE70RCxinDwqj+fOYdiiyEGd6OpkVpAiq0EwZaI3tmb27xVPQzLwDBFCCCGEEEIIISQvbj1tGl5etRUH7tW3q4dCNNRWJvCTz09FPGpJGd46dMVAvTLcE7EImtvyi5rQiuh5ZKIfMLovfnb6NFz2pzcAwHWMOne9g5jBfu6BI/H++np8a+54Y3t1yGJfXufpxauOxLaGVixbv9PYxotYh2A+vDbn7m4QhFWvyHhR3O8liOjOtR7ZrxIXHbYX7nx2hbTdzuZ27TX6zJRB0sSMaSJiSJ9yrVPchDOB0qSI6LGIhclDa/D62u2ubUxxLqJIPLimLHQdgkQ0gkboxXzxmMLktwPBneiRCCB2v7O5LVQ/fv23tqfRnkpn7ysnv73QJzP2BOhEJ4QQQgghhBBCSF5UJGI4YtwAX4GWdB3/M2MoTpo2xLddNEQeNQDcO28masrj+Nnp00KPSadr5uNEB2RB3uVE104MuPubPrw3/nThbMwYYY6hsRQvupMxDXi7/If0LsekITXaQqavX3O0a5nLid4hdvbvlcwue+vjHdnXXiK6OC5R9I1JRUrdY49GgEuPHAMAOGna4OzyRCwiicGmiY8hvculPvwwOdFH9K3Az0+frt1GFLSda5lW4lz+dOHsQLE0IolYRJtDHo1YqK1MuPoMSlARXY0g2lk0J3pmvBt3tmDidY/j1x0TJ4xzCQ6d6IQQQgghhBBCCCF7ODox1YsDRvfFG9ceHdrpCxgKi5qc6D4iujhuVya6Rsh1RFWxv3wmgYLEuYj0rki4lvWpdC9LxCK4+rjxuPE/7wOQJwIG9Epi484WTBjUK7vMRvg4F79rfeYBI1AWi+Lwcf0xrq4XHnrj0+zYxOM2RZSUxaNS5IwfJid6aypt3I/oRC9PRNHUloJt29nM776VCQzvW4F3Pt2h3d6EKf6luiwmHW/YQqFB26sTMl6TJGEQJ31a2tO48T/voyIZw9qtjQDCx9PsidCJTgghhBBCCCGEELKHE0b0dMhHQAf0zm2TyOiXaS3uS22b0ByTk9deLgmi4Y798HH9Iaak++XNA0AfjYhu4iuH7ZV9LWbV/+OSg/C1I8fgOydMyC4L7ERP6EV0VYQ/7+BRqEjEEIlYmDi4RpqISEQjSArnTefG/unnpwLQPwVgwrmNHFe0Q2t7WpvVD5id6G3tmeNx7oWQc0PGCZWa8rg0gRB20im4Ez2/z5SDqairrv9r/vkOPty4CwAz0YNAEZ0QQgghhBBCCCFkD8ckVpYCnU6oOmHvPHMGhvYpx11nzfDcV9TTiZ5bd/L0TKTN/x6fEaDDuorF+YLfnrs/XlqxOft+UE257/Z9KtyFMIMgTm4M6V2Oy48ZhwG9yrLLvIzKohNdnCiISYVJ5W28sr5VJ7ru6YFTZwzN9BEiHqhvVWaCYZ/BcvHV1va0MddeLCzqjCNt22jtKCyaE9HDx7noUEX0YBMnuTEGjbcJsl8vDt27v3a539MWjHPxhyI6IYQQQgghhBBCyB5OoQ7YMOgc7KqQfeykgXjhyiMxfbg5pxyQxcGEIhSKwuX1J03E898+AuccOBKA7LwNIqI7eem9kjFYloXPTBkEADhiXP9Awqca5zJC4xi+9jP7uJZ5FUcFANvDih6JiCJ67hi9rnWVJrvdobYyIe3HKxc8qBP912fNyE5CXH/iRJx38Kjsutb2NOIx/X7EOBdHAE6lbbR05Jk7TyGoIrqfpp40iN3V5XHpfgpyzeuqc5MdQZ/0KPRzaBqXnxOecS7+UEQnhBBCCCGEEEII2cPxiR4vOtd8Zh987cgxmDqsN2aOrEVlniKeWOxRFQoTgpCbiEYwrDYnXJcnxGxvf3nsp1+YivMPHoWHLj0IAHDlsePx41On4E4fp3y2f2Fsg2rK8ODFB7rafFkQkB38nhDwjHMRNpWiSIQV6vY6J/r3T5qIz00bjOMmDZIz0T2umSgaHzV+gLHdMfvUZV/XViZwjTCR0JayjY72KiHOxYmYsYXCos75Hjcwlx//4/+ZguMmDTSOxdnugNG1AIB9h/fOLq8pl58k8BPRh9WW4+Ax/bLvewd8EiFa4BMhJhE+6XOP04nuDwNvCCGEEEIIIYQQQvZwOtOJDiDrOJ5/9N4A8s9X79crJ6KrxyAKsKoTuDwuONEDFBYd0KsM3xUE3r5VSXxh/2GhxwsAB+7VD32rkoHa+sWAeM19iEKz7ETP7VPNRK/SiOhnzx6Js2ePBCCL8V5OdPFyfn6/oXjq/Y2Gdubrniks6p+J7hSLbUuncfcLqwDkrvew2gr885KD0KcijhF9K/Hqqq3G/gBgZ3Mb/vyV2ahvasODr3+CJWu3A8g40UWiEQs3nTIZVz34dnbZhEHVOGr8AFx0+F6oSsZw/8LV2XW1hkz88ngUU4fVYNHKzLjCxODoiBq299tvRZwSsR90ohNCCCGEEEIIIYTs4QyrrcDFh++FA/fq26n9WpaVt4AOyOJkg1KYMi4Ul1Sdw2J8RZA4l2JS39wWuG3C14lultG/MWdvTB5Sgx+cNBFj66rQpyKOMQOq5HOhbO5XYFKMz/FyL7elcjv2yln3w3Rv9C7PXXfnOq/c1IDnP8xk1YvO/2nDemNE38pAY1m1uQFl8SgGVJdJEwY6J/rpM4fjplMmZ5dNGVKDK+aOy05EiOdZfGJCpDwRxZ8unC3ttxDynQwrS1Ai9oPTDIQQQgghhBBCCCEEVx47Hqm0jfPvexX7DK7u6uEEQnRq1zfJ4nS8Q1DUublFh7OXo7oUiG7vP194AK556B18/6RJ2rZ+DmIvJ3q/qiT+/bWDs+8XfeeorGvbIa2I8H7RNmIsiNfkgxOr4tXu1tOmevblhSiSTxjUC4tXb5UmUUwZ4H6xJfXN7cI+cm1dInrHeRQLnKr57WKefW2VXkRXnfalykT3S2vymzwhFNEJIYQQQgghhBBCSAfRiIXfzpvZ1cPIi52Kw9txKCc0IrqFnNjolxddLH5z9n64f+FqXHns+OyyWaP74r/fPMy4TSGZ6CpJTWyNur3uXMn7CBbn0pbKiehqcU+Hk6cP9ezLhBjlkhlTFIePH4BH3lqXXWY6DpMTfeyAKny4cRf6Vekz9of1kQvBOtdFFPPVyCDJiW6Ic1G38bvefuQrwnf2RFJPhCI6IYQQQgghhBBCCOnxiC5iICco6oRJk1haSo7epw5HC4U0vSiLR9Dclsbh48xFOQHvOJcgqFsnfM6F6Cr3cq3LIrp7fSGO6+oypUinbWNon3Jpkek4TE70e788Ezc/9j7OO3h0dpkYuzNbiTkaMyBTsFS8d1Th/qgJAxCLWNh3eB9jnItLeC8g2ggwFyb1u08KjZHZE6CITgghhBBCCCGEEEJ6LMNqy/HR1iYctnd/abnjvNa5kgdUl+HOM/dFRSJWUCZ7qXjim4fhlVVbcdK0wZ7tCpPQ3U50k9jrIIrTXlEzrQYn+i+/OB33vbQa3zl+QsiR5qirlouy2nAL66o47WByog/pXY7bTp/uWubgnJc/X3gAnvtwE86ePQIAMKJvzqGu3ke9KxJ45/q5SEQjaG6X8/pz45S3KVUmeoFzLQQU0QkhhBBCCCGEEEJID+ZvFx2IJ97dgFP2HSItHzewF06cOhjTh/fWbnfspEGdMLr8GFZbgWG1Fb7tChVHLzx0NP6+5GMAwGVHjc0W4DRRJkTCqLEqImJhUVFE33d4H3xmivfEwPThvfH62u2SiO3Qv1cSN54yBQCwd10VPtiwC8dPHoTX1myT2plOS2WI7O+jJtThx/8zBTNG9MkumzW6L2aNzrnSxZiXT7Y3ufbhOPfFuJSHLjkIJ93+IgC3Y75ayV7XUVedxIb6Fu26qGFiw/aYblHz3omebiGi33777bj55puxfv16TJ06Fb/4xS8wc6Z//taf/vQnnHHGGTjppJPwz3/+s/QDJYQQQgghhBBCCCHdirrqMpx5wAjX8mjEws/PmK7ZYvfBSxwNwsCaMiz+7hxt8VUdiVgEvz5rBlrb0+jj4VoXHdGiQTuI0/rOM2fgN8+txFmz5Ws6uKYML151ZNbx/a9LD8aWhlYM6V2ODzbslNq2GpzfYQTjaMTCF/Yb5tkmIhzPio27jO0sy8KvvrQvPt3ehKnDemeXq455NZZGx0nThiAasTBzZC3m3fuqtE487z/43CRc8893AHhPtkwY1Mu3T9INRPQ///nPmD9/Pu68807MmjULt912G+bOnYtly5ZhwABz7tPq1atxxRVX4JBDDunE0RJCCCGEEEIIIYQQ0j0oRkxHUAHdYe7Egb5tLj9mbyxZuw3nHjhSEtFNRUZF6qrL8N3P7ONabkOOTCmLR7NuddXBLTrhRWaNrsWEQdV4b1297ziCcuLUwfjXm5/iyweP8mx3/GT3kw9xxTnev6rMt7+IZUnFaR36ViakSYqqZLBiobpxETedUznBg1tuuQUXXHAB5s2bh3322Qd33nknKioqcM899xi3SaVS+NKXvoTrr78eo0ePNrYjhBBCCCGEEEIIIWR3pbtmXQ/tU4Fnv3UE5h0kC8uFFBT1Qs1EFwubisSjEfz70oPwxDcPLVrfP/n8VPznskNwqhInFIR4TM1Ez38c//nGIdL5TURzIrruPqmrTuLKY8fjzFnupziImy4V0VtbW7F48WLMmTMnuywSiWDOnDlYuHChcbvvf//7GDBgAM4777zOGCYhhBBCCCGEEEIIId2ObqqhS4gCbqQAEd1rwqCmXA7baGnXi+hAxnk/ti4XYZKMFSaPJmIRTBhUHapA7SFj+wEA5h0oTzLo9vHdE/yLsI7uV4kBvcokJ7pYtDStOXm/OXs/XHz4XgVdkz2JLo1z2bx5M1KpFOrq6qTldXV1eP/997XbvPDCC7j77rvxxhtvBOqjpaUFLS25sP36+uI9rkEIIYQQQgghhBBCSFcxaXBxo0lKgajfBslEN+7HY8pAjXNp9RDRVSoSwWJPisk95+6PT7c3aQu5njFzGP74ykf42enTMHfiQCz9dIe03kurjwnCeVyYHBDP3OQhNfjdebNQU8GComHo8kz0MOzcuRNnnXUWfvOb36Bfv36Btrnxxhtx/fXXl3hkhBBCCCGEEEIIIYR0Lt/9zD6orUrgc9PCR4l0FqL43dVxLjoqEp0vj8ajEa2ADgD/73OT8dXDx2BYbUXo/UaFjPWkkA1j28BxkwbiP++sx0WH7UUBPQ+6VETv168fotEoNmzYIC3fsGEDBg50FylYsWIFVq9ejc9+9rPZZel05kMRi8WwbNky7LXXXtI2V199NebPn599X19fj2HDvCvrEkIIIYQQQgghhBDS3akpj+Pq4/zjPrqStBjnEiLyJAxlcdlNnggR0dIVTnQTlpWJvJEF9ODnTJykiEvnwMYvzpiOT7c3Y3jf8OI86eJM9EQigRkzZuCpp57KLkun03jqqacwe/ZsV/vx48fj7bffxhtvvJH978QTT8QRRxyBN954QyuOJ5NJVFdXS/8RQgghhBBCCCGEEEJKjy3kuRQU5+ITAP/dEyagpjyOUf0q8aNTpwTe7179q/IeU3dDzkSXneixaIQCegF0eZzL/Pnzcc4552C//fbDzJkzcdttt6GhoQHz5s0DAJx99tkYMmQIbrzxRpSVlWHSpEnS9r179wYA13JCCCGEEEIIIYQQQkjXImrfpaxhef4ho3H+IaMDt3/gvJn43aI1+MHnuo+maGlc52PrqpQ2ZmKGwqI9oQBtd6fLRfTTTjsNmzZtwrXXXov169dj2rRpeOyxx7LFRteuXYtIpEsN84QQQgghhBBCCCGEkDwQnehWieJc8uGQsf1xyNj+XT0MCd3pqS6LY8k1R2PfHzzhu73oRE8KcS6litHZk+hyER0ALr30Ulx66aXadQsWLPDc9t577y3+gAghhBBCCCGEEEIIIb7c/sV9cckfluCHBkd3MlaczPE9wU09rq6XdnltZSLQ9jHBiByPRnDugSPxxkfbceT4AUUZ355MtxDRCSGEEEIIIYQQQgghPY8TpgzCUROOdRX3dJg4uBpfnDUcQ3qX57X/s2ePwP0L1+Dbc8cVMsxuzb8vPRjvra/H4eP8nfExIev8jJnD8cdX1uLyYzLnRs1E/96JE4s/2D0Uy7b9Yvl3L+rr61FTU4MdO3awyCghhBBCCCGEEEIIId0Y27axvr4Zg2ryE+F3F2554gM8/OanePCrB6J3RcaZbts2Nu1qwYBeZQCAV1ZtxRd+vRAA8Np356BfVbLLxttTCKoV04lOCCGEEEIIIYQQQgjplliWtccL6AAw/+i9Mf/ovaVllmVlBXSVeJQ1JosJzyYhhBBCCCGEEEIIIYT0cFLpXOBIgiJ6UeHZJIQQQgghhBBCCCGEkB6OmNodj1oeLUlYKKITQgghhBBCCCGEEEJIDycliOgxOtGLCs8mIYQQQgghhBBCCCGE9HDEOBdSXCiiE0IIIYQQQgghhBBCSA9nSG8WYC0Vsa4eACGEEEIIIYQQQgghhJDCGFvXC7edNg111WVdPZTdDorohBBCCCGEEEIIIYQQshvwuelDunoIuyWMcyGEEEIIIYQQQgghhBBCDFBEJ4QQQgghhBBCCCGEEEIMUEQnhBBCCCGEEEIIIYQQQgxQRCeEEEIIIYQQQgghhBBCDFBEJ4QQQgghhBBCCCGEEEIMUEQnhBBCCCGEEEIIIYQQQgxQRCeEEEIIIYQQQgghhBBCDFBEJ4QQQgghhBBCCCGEEEIMUEQnhBBCCCGEEEIIIYQQQgxQRCeEEEIIIYQQQgghhBBCDFBEJ4QQQgghhBBCCCGEEEIMUEQnhBBCCCGEEEIIIYQQQgxQRCeEEEIIIYQQQgghhBBCDFBEJ4QQQgghhBBCCCGEEEIMUEQnhBBCCCGEEEIIIYQQQgzEunoAnY1t2wCA+vr6Lh4JIYQQQgghhBBCCCGEkK7C0YgdzdjEHiei79y5EwAwbNiwLh4JIYQQQgghhBBCCCGEkK5m586dqKmpMa63bD+ZfTcjnU7j008/Ra9evWBZVlcPp0uor6/HsGHD8NFHH6G6urqrh0P2QHgPkq6G9yDpDvA+JF0N70HS1fAeJN0B3oekq+E9SLqaPf0etG0bO3fuxODBgxGJmJPP9zgneiQSwdChQ7t6GN2C6urqPfLDQboPvAdJV8N7kHQHeB+Srob3IOlqeA+S7gDvQ9LV8B4kXc2efA96OdAdWFiUEEIIIYQQQgghhBBCCDFAEZ0QQgghhBBCCCGEEEIIMUARfQ8kmUziuuuuQzKZ7OqhkD0U3oOkq+E9SLoDvA9JV8N7kHQ1vAdJd4D3IelqeA+Srob3YDD2uMKihBBCCCGEEEIIIYQQQkhQ6EQnhBBCCCGEEEIIIYQQQgxQRCeEEEIIIYQQQgghhBBCDFBEJ4QQQgghhBBCCCGEEEIMUEQnhBBCCCGEEEIIIYQQQgxQRN/DuP322zFy5EiUlZVh1qxZeOWVV7p6SGQ34cYbb8T++++PXr16YcCAAfjc5z6HZcuWSW0OP/xwWJYl/XfRRRdJbdauXYsTTjgBFRUVGDBgAL71rW+hvb29Mw+F9FC+973vue6v8ePHZ9c3NzfjkksuQd++fVFVVYVTTz0VGzZskPbB+48UysiRI133oWVZuOSSSwDwe5AUn+eeew6f/exnMXjwYFiWhX/+85/Setu2ce2112LQoEEoLy/HnDlz8OGHH0pttm7dii996Uuorq5G7969cd5552HXrl1Sm7feeguHHHIIysrKMGzYMPz4xz8u9aGRHoLXPdjW1oYrr7wSkydPRmVlJQYPHoyzzz4bn376qbQP3XfnTTfdJLXhPUi88PsuPPfcc1332LHHHiu14XchKQS/e1D370PLsnDzzTdn2/C7kBRCEE2mWL+JFyxYgH333RfJZBJjxozBvffeW+rD6xZQRN+D+POf/4z58+fjuuuuw5IlSzB16lTMnTsXGzdu7Oqhkd2AZ599FpdccgkWLVqEJ554Am1tbTjmmGPQ0NAgtbvggguwbt267H/iH/1UKoUTTjgBra2teOmll3Dffffh3nvvxbXXXtvZh0N6KBMnTpTurxdeeCG77pvf/Cb+/e9/469//SueffZZfPrppzjllFOy63n/kWLw6quvSvfgE088AQD4/Oc/n23D70FSTBoaGjB16lTcfvvt2vU//vGP8fOf/xx33nknXn75ZVRWVmLu3Llobm7OtvnSl76EpUuX4oknnsDDDz+M5557DhdeeGF2fX19PY455hiMGDECixcvxs0334zvfe97uOuuu0p+fKT743UPNjY2YsmSJbjmmmuwZMkSPPjgg1i2bBlOPPFEV9vvf//70nfj1772tew63oPED7/vQgA49thjpXvsj3/8o7Se34WkEPzuQfHeW7duHe655x5YloVTTz1VasfvQpIvQTSZYvwmXrVqFU444QQcccQReOONN/CNb3wD559/Ph5//PFOPd4uwSZ7DDNnzrQvueSS7PtUKmUPHjzYvvHGG7twVGR3ZePGjTYA+9lnn80uO+yww+zLLrvMuM2jjz5qRyIRe/369dlld9xxh11dXW23tLSUcrhkN+C6666zp06dql23fft2Ox6P23/961+zy9577z0bgL1w4ULbtnn/kdJw2WWX2XvttZedTqdt2+b3ICktAOx//OMf2ffpdNoeOHCgffPNN2eXbd++3U4mk/Yf//hH27Zt+91337UB2K+++mq2zX/+8x/bsiz7k08+sW3btn/1q1/Zffr0ke7BK6+80h43blyJj4j0NNR7UMcrr7xiA7DXrFmTXTZixAj71ltvNW7De5CEQXcfnnPOOfZJJ51k3IbfhaSYBPkuPOmkk+wjjzxSWsbvQlJMVE2mWL+Jv/3tb9sTJ06U+jrttNPsuXPnlvqQuhw60fcQWltbsXjxYsyZMye7LBKJYM6cOVi4cGEXjozsruzYsQMAUFtbKy3//e9/j379+mHSpEm4+uqr0djYmF23cOFCTJ48GXV1ddllc+fORX19PZYuXdo5Ayc9mg8//BCDBw/G6NGj8aUvfQlr164FACxevBhtbW3Sd+D48eMxfPjw7Hcg7z9SbFpbW/G73/0OX/7yl2FZVnY5vwdJZ7Fq1SqsX79e+u6rqanBrFmzpO++3r17Y7/99su2mTNnDiKRCF5++eVsm0MPPRSJRCLbZu7cuVi2bBm2bdvWSUdDdhd27NgBy7LQu3dvaflNN92Evn37Yvr06bj55pulR8d5D5JisGDBAgwYMADjxo3DxRdfjC1btmTX8buQdCYbNmzAI488gvPOO8+1jt+FpFiomkyxfhMvXLhQ2ofTZk/QFmNdPQDSOWzevBmpVEr6IABAXV0d3n///S4aFdldSafT+MY3voGDDjoIkyZNyi7/4he/iBEjRmDw4MF46623cOWVV2LZsmV48MEHAQDr16/X3qPOOkK8mDVrFu69916MGzcO69atw/XXX49DDjkE77zzDtavX49EIuH6wV5XV5e9t3j/kWLzz3/+E9u3b8e5556bXcbvQdKZOPeM7p4Sv/sGDBggrY/FYqitrZXajBo1yrUPZ12fPn1KMn6y+9Hc3Iwrr7wSZ5xxBqqrq7PLv/71r2PfffdFbW0tXnrpJVx99dVYt24dbrnlFgC8B0nhHHvssTjllFMwatQorFixAt/5zndw3HHHYeHChYhGo/wuJJ3Kfffdh169ekkxGgC/C0nx0GkyxfpNbGpTX1+PpqYmlJeXl+KQugUU0QkhReeSSy7BO++8I+VRA5AyBSdPnoxBgwbhqKOOwooVK7DXXnt19jDJbsZxxx2XfT1lyhTMmjULI0aMwF/+8pfd+g856b7cfffdOO644zB48ODsMn4PEkL2VNra2vCFL3wBtm3jjjvukNbNnz8/+3rKlClIJBL4yle+ghtvvBHJZLKzh0p2Q04//fTs68mTJ2PKlCnYa6+9sGDBAhx11FFdODKyJ3LPPffgS1/6EsrKyqTl/C4kxcKkyZDCYJzLHkK/fv0QjUZdVXc3bNiAgQMHdtGoyO7IpZdeiocffhjPPPMMhg4d6tl21qxZAIDly5cDAAYOHKi9R511hIShd+/e2HvvvbF8+XIMHDgQra2t2L59u9RG/A7k/UeKyZo1a/Dkk0/i/PPP92zH70FSSpx7xuvffwMHDnQVmW9vb8fWrVv5/UiKhiOgr1mzBk888YTkQtcxa9YstLe3Y/Xq1QB4D5LiM3r0aPTr10/6+8vvQtIZPP/881i2bJnvvxEBfheS/DBpMsX6TWxqU11dvdub1yii7yEkEgnMmDEDTz31VHZZOp3GU089hdmzZ3fhyMjugm3buPTSS/GPf/wDTz/9tOsxMx1vvPEGAGDQoEEAgNmzZ+Ptt9+W/gHr/NDaZ599SjJusvuya9curFixAoMGDcKMGTMQj8el78Bly5Zh7dq12e9A3n+kmPz2t7/FgAEDcMIJJ3i24/cgKSWjRo3CwIEDpe+++vp6vPzyy9J33/bt27F48eJsm6effhrpdDo7yTN79mw899xzaGtry7Z54oknMG7cOD46TnxxBPQPP/wQTz75JPr27eu7zRtvvIFIJJKN1+A9SIrNxx9/jC1btkh/f/ldSDqDu+++GzNmzMDUqVN92/K7kITBT5Mp1m/i2bNnS/tw2uwR2mIXFzYlncif/vQnO5lM2vfee6/97rvv2hdeeKHdu3dvqeouIfly8cUX2zU1NfaCBQvsdevWZf9rbGy0bdu2ly9fbn//+9+3X3vtNXvVqlX2Qw89ZI8ePdo+9NBDs/tob2+3J02aZB9zzDH2G2+8YT/22GN2//797auvvrqrDov0IC6//HJ7wYIF9qpVq+wXX3zRnjNnjt2vXz9748aNtm3b9kUXXWQPHz7cfvrpp+3XXnvNnj17tj179uzs9rz/SLFIpVL28OHD7SuvvFJazu9BUgp27txpv/766/brr79uA7BvueUW+/XXX7fXrFlj27Zt33TTTXbv3r3thx56yH7rrbfsk046yR41apTd1NSU3cexxx5rT58+3X755ZftF154wR47dqx9xhlnZNdv377drqurs8866yz7nXfesf/0pz/ZFRUV9q9//etOP17S/fC6B1tbW+0TTzzRHjp0qP3GG29I/0ZsaWmxbdu2X3rpJfvWW2+133jjDXvFihX27373O7t///722Wefne2D9yDxw+s+3Llzp33FFVfYCxcutFetWmU/+eST9r777muPHTvWbm5uzu6D34WkEPz+Htu2be/YscOuqKiw77jjDtf2/C4kheKnydh2cX4Tr1y50q6oqLC/9a1v2e+99559++2329Fo1H7sscc69Xi7Aoroexi/+MUv7OHDh9uJRMKeOXOmvWjRoq4eEtlNAKD977e//a1t27a9du1a+9BDD7Vra2vtZDJpjxkzxv7Wt75l79ixQ9rP6tWr7eOOO84uLy+3+/XrZ19++eV2W1tbFxwR6Wmcdtpp9qBBg+xEImEPGTLEPu200+zly5dn1zc1Ndlf/epX7T59+tgVFRX2ySefbK9bt07aB+8/Ugwef/xxG4C9bNkyaTm/B0kpeOaZZ7R/f8855xzbtm07nU7b11xzjV1XV2cnk0n7qKOOct2bW7Zssc844wy7qqrKrq6utufNm2fv3LlTavPmm2/aBx98sJ1MJu0hQ4bYN910U2cdIunmeN2Dq1atMv4b8ZlnnrFt27YXL15sz5o1y66pqbHLysrsCRMm2DfccIMkbto270Hijdd92NjYaB9zzDF2//797Xg8bo8YMcK+4IILXGYyfheSQvD7e2zbtv3rX//aLi8vt7dv3+7ant+FpFD8NBnbLt5v4meeecaeNm2anUgk7NGjR0t97M5Ytm3bJTK5E0IIIYQQQgghhBBCCCE9GmaiE0IIIYQQQgghhBBCCCEGKKITQgghhBBCCCGEEEIIIQYoohNCCCGEEEIIIYQQQgghBiiiE0IIIYQQQgghhBBCCCEGKKITQgghhBBCCCGEEEIIIQYoohNCCCGEEEIIIYT8f/buPT7n+v/j+OPaebODMKfIho3JORQSRTkXleNyCqksIVFE4+tQ35w7qFQm6Tfliw5IUcjmMMupJmqMZMxp2Ox4Xdfvj4vLLrYZtl2bPe+32+dmn8/1+Xzer89lHfa83nu9RUREcqAQXUREREREREREREQkBwrRRURERETEys/Pj7lz59q7DBERERGRIkMhuoiIiIiInQwcOJBu3boB0KZNG0aOHFloY4eFhVG6dOnrjkdFRfHcc88VWh0iIiIiIkWdk70LEBERERGR/JOeno6Li8stX+/r65uP1YiIiIiIFH+aiS4iIiIiYmcDBw5k06ZNzJs3D4PBgMFgIC4uDoDff/+djh074unpSYUKFejXrx+nT5+2XtumTRtCQkIYOXIk5cqVo3379gDMnj2bevXqUapUKapWrcqLL75IUlISABs3bmTQoEGcP3/eOl5oaChwfTuXo0eP8sQTT+Dp6Ym3tzc9e/bk5MmT1tdDQ0Np2LAhS5Yswc/PDx8fH3r37s3Fixet5yxfvpx69erh7u5O2bJladeuHcnJyQX0boqIiIiI5C+F6CIiIiIidjZv3jyaN2/O0KFDiY+PJz4+nqpVq5KYmMgjjzxCo0aN2LlzJz/88AMnT56kZ8+eNtcvXrwYFxcXIiIi+PDDDwFwcHBg/vz5/PHHHyxevJiff/6ZsWPHAtCiRQvmzp2Lt7e3dbwxY8ZcV5fJZOKJJ57g7NmzbNq0iZ9++olDhw7Rq1cvm/NiY2NZtWoV33//Pd9//z2bNm3irbfeAiA+Pp4+ffrw7LPPsn//fjZu3MiTTz6J2WwuiLdSRERERCTfqZ2LiIiIiIid+fj44OLigoeHBxUrVrQef++992jUqBHTp0+3Hvvss8+oWrUqBw8eJDAwEICAgAD++9//2twza391Pz8/pk6dyvPPP88HH3yAi4sLPj4+GAwGm/GutWHDBvbt28fhw4epWrUqAJ9//jn33nsvUVFRNG3aFLCE7WFhYXh5eQHQr18/NmzYwLRp04iPjyczM5Mnn3ySatWqAVCvXr3beLdERERERAqXZqKLiIiIiBRRe/bs4ZdffsHT09O61a5dG7DM/r7ivvvuu+7a9evX07ZtW+6++268vLzo168fZ86c4dKlS3kef//+/VStWtUaoAPUqVOH0qVLs3//fusxPz8/a4AOUKlSJRISEgBo0KABbdu2pV69evTo0YOFCxdy7ty5vL8JIiIiIiJ2phBdRERERKSISkpKomvXruzevdtm++uvv3jooYes55UqVcrmuri4OLp06UL9+vX53//+R3R0NO+//z5gWXg0vzk7O9vsGwwGTCYTAI6Ojvz000+sXbuWOnXq8O6771KrVi0OHz6c73WIiIiIiBQEhegiIiIiIkWAi4sLRqPR5ljjxo35448/8PPzo2bNmjbbtcF5VtHR0ZhMJmbNmsUDDzxAYGAgx48fv+F41woKCuKff/7hn3/+sR6LiYkhMTGROnXq5PnZDAYDLVu2ZPLkyezatQsXFxdWrlyZ5+tFREREROxJIbqIiIiISBHg5+fH9u3biYuL4/Tp05hMJoYPH87Zs2fp06cPUVFRxMbGsm7dOgYNGpRrAF6zZk0yMjJ49913OXToEEuWLLEuOJp1vKSkJDZs2MDp06ezbfPSrl076tWrR3BwML/99hs7duygf//+tG7dmiZNmuTpubZv38706dPZuXMnR48eZcWKFZw6dYqgoKCbe4NEREREROxEIbqIiIiISBEwZswYHB0dqVOnDr6+vhw9epTKlSsTERGB0Wjkscceo169eowcOZLSpUvj4JDz/8o3aNCA2bNn8/bbb1O3bl2WLl3KjBkzbM5p0aIFzz//PL169cLX1/e6hUnBMoP8m2++4a677uKhhx6iXbt2VK9enWXLluX5uby9vdm8eTOdOnUiMDCQN954g1mzZtGxY8e8vzkiIiIiInZkMJvNZnsXISIiIiIiIiIiIiJSFGkmuoiIiIiIiIiIiIhIDhSii4iIiIiIiIiIiIjkQCG6iIiIiIiIiIiIiEgOFKKLiIiIiIiIiIiIiORAIbqIiIiIiIiIiIiISA4UoouIiIiIiIiIiIiI5EAhuoiIiIiIiIiIiIhIDhSii4iIiIiIiIiIiIjkQCG6iIiIiIiIiIiIiEgOFKKLiIiIiIiIiIiIiORAIbqIiIiIiIiIiIiISA4UoouIiIiIiIiIiIiI5EAhuoiIiIiIiIiIiIhIDhSii4iIiIiIiIiIiIjkQCG6iIiIiIiIiIiIiEgOFKKLiIiIiIiIiIiIiORAIbqIiIiIiIiIiIiISA4UoouIiIiIFANxcXEYDAbCwsKsx0JDQzEYDHm63mAwEBoamq81tWnThjZt2uTrPUVEREREihqF6CIiIiIiBeDxxx/Hw8ODixcv5nhOcHAwLi4unDlzphAruzkxMTGEhoYSFxdn71JEREREROxCIbqIiIiISAEIDg4mJSWFlStXZvv6pUuX+Oabb+jQoQNly5a9pTHeeOMNUlJSbqfMG4qJiWHy5MnZhug//vgjP/74Y4GOLyIiIiJibwrRRUREREQKwOOPP46Xlxdffvlltq9/8803JCcnExwcfMtjODk54ebmdsvX3y4XFxdcXFzsNr6IiIiISGFQiC4iIiIiUgDc3d158skn2bBhAwkJCde9/uWXX+Ll5cWDDz7ImDFjqFevHp6ennh7e9OxY0f27NlzwzGy64melpbGqFGj8PX1xcvLi8cff5xjx45dd+2RI0d48cUXqVWrFu7u7pQtW5YePXrYzDgPCwujR48eADz88MMYDAYMBgMbN24Esu+JnpCQwODBg6lQoQJubm40aNCAxYsX25xzpb/7zJkz+fjjj6lRowaurq40bdqUqKioGz63iIiIiEhhcrJ3ASIiIiIid6rg4GAWL17MV199RUhIiPX42bNnWbduHX369CE+Pp5Vq1bRo0cP/P39OXnyJB999BGtW7cmJiaGypUr39SYQ4YM4YsvvqBv3760aNGCn3/+mc6dO193XlRUFJGRkfTu3ZsqVaoQFxfHggULaNOmDTExMXh4ePDQQw8xYsQI5s+fz/jx4wkKCgKw/nmtlJQU2rRpw99//01ISAj+/v58/fXXDBw4kMTERF5++WWb87/88ksuXrzIsGHDMBgM/Pe//+XJJ5/k0KFDODs739Rzi4iIiIgUFIXoIiIiIiIF5JFHHqFSpUp8+eWXNiH6119/TUZGBsHBwdSrV4+DBw/i4HD1l0T79etH7dq1+fTTT5k4cWKex9uzZw9ffPEFL774Iu+//z4Aw4cPJzg4mL1799qc27lzZ55++mmbY127dqV58+b873//o1+/flSvXp1WrVoxf/58Hn300etmnV/r448/Zv/+/XzxxRfWNjXPP/88rVu35o033uDZZ5/Fy8vLev7Ro0f566+/uOuuuwCoVasWTzzxBOvWraNLly55fm4RERERkYKkdi4iIiIiIgXE0dGR3r17s3XrVps2KV9++SUVKlSgbdu2uLq6WgN0o9HImTNn8PT0pFatWvz22283Nd6aNWsAGDFihM3xkSNHXneuu7u79euMjAzOnDlDzZo1KV269E2Pm3X8ihUr0qdPH+sxZ2dnRowYQVJSEps2bbI5v1evXtYAHaBVq1YAHDp06JbGFxEREREpCArRRUREREQK0JUZ2VcWGD127Bi//vorvXv3xtHREZPJxJw5cwgICMDV1ZVy5crh6+vL3r17OX/+/E2NdeTIERwcHKhRo4bN8Vq1al13bkpKCpMmTaJq1ao24yYmJt70uFnHDwgIsJlVD1fbvxw5csTm+D333GOzfyVQP3fu3C2NLyIiIiJSEBSii4iIiIgUoPvuu4/atWvzf//3fwD83//9H2az2RquT58+ndGjR/PQQw/xxRdfsG7dOn766SfuvfdeTCZTgdX10ksvMW3aNHr27MlXX33Fjz/+yE8//UTZsmULdNysHB0dsz1uNpsLZXwRERERkbxQT3QRERERkQIWHBzMxIkT2bt3L19++SUBAQE0bdoUgOXLl/Pwww/z6aef2lyTmJhIuXLlbmqcatWqYTKZiI2NtZl9fuDAgevOXb58OQMGDGDWrFnWY6mpqSQmJtqcZzAYbmr8vXv3YjKZbGaj//nnn9bXRURERESKG81EFxEREREpYFdmnU+aNIndu3db98EyG/vamddff/01//77702P07FjRwDmz59vc3zu3LnXnZvduO+++y5Go9HmWKlSpQCuC9ez06lTJ06cOMGyZcusxzIzM3n33Xfx9PSkdevWeXkMEREREZEiRTPRRUREREQKmL+/Py1atOCbb74BsAnRu3TpwpQpUxg0aBAtWrRg3759LF26lOrVq9/0OA0bNqRPnz588MEHnD9/nhYtWrBhwwb+/vvv687t0qULS5YswcfHhzp16rB161bWr19P2bJlr7uno6Mjb7/9NufPn8fV1ZVHHnmE8uXLX3fP5557jo8++oiBAwcSHR2Nn58fy5cvJyIigrlz5+Ll5XXTzyQiIiIiYm8K0UVERERECkFwcDCRkZE0a9aMmjVrWo+PHz+e5ORkvvzyS5YtW0bjxo1ZvXo1r7322i2N89lnn+Hr68vSpUtZtWoVjzzyCKtXr6Zq1ao2582bNw9HR0eWLl1KamoqLVu2ZP369bRv397mvIoVK/Lhhx8yY8YMBg8ejNFo5Jdffsk2RHd3d2fjxo289tprLF68mAsXLlCrVi0WLVrEwIEDb+l5RERERETszWDWqj0iIiIiIiIiIiIiItlST3QRERERERERERERkRwoRBcRERERERERERERyYFCdBERERERERERERGRHChEFxERERERERERERHJgUJ0EREREREREREREZEcKEQXEREREREREREREcmBQnQRERERERERERERkRw42buAwmYymTh+/DheXl4YDAZ7lyMiIiIiIiIiIiIidmA2m7l48SKVK1fGwSHn+eYlLkQ/fvw4VatWtXcZIiIiIiIiIiIiIlIE/PPPP1SpUiXH10tciO7l5QVY3hhvb287VyMiIiIiIiIiIiIi9nDhwgWqVq1qzYxzUuJC9CstXLy9vRWii4iIiIiIiIiIiJRwN2r7rYVFRURERERERERERERyoBBdRERERERERERERCQHCtFFRERERERERERERHJQ4nqii4iIiIiIiIiIiC2TyUR6erq9yxDJV87Ozjg6Ot72fRSii4iIiIiIiIiIlGDp6ekcPnwYk8lk71JE8l3p0qWpWLHiDRcPzY1CdBERERERERERkRLKbDYTHx+Po6MjVatWxcFB3Z/lzmA2m7l06RIJCQkAVKpU6ZbvpRBdRERERERERESkhMrMzOTSpUtUrlwZDw8Pe5cjkq/c3d0BSEhIoHz58rfc2kUfLYmIiIiIiIiIiJRQRqMRABcXFztXIlIwrnw4lJGRccv3UIguIiIiIiIiIiJSwt1Ov2iRoiw/vrcVoouIiIiIiIiIiIgUE6GhoTRs2LDA7h8XF4fBYGD37t0FNkZxoxBdREREREREREREiqX3338fPz8/3NzcuP/++9mxY4e9SyqRBg4cSLdu3Qp9XD8/P+bOnVvg4yhEFxERERERERERkWJn2bJljB49mjfffJPffvuNBg0a0L59exISEuxdmtxhFKKLiIiIiIiIiIhIsTN79myGDh3KoEGDqFOnDh9++CEeHh589tlnN7w2MTGRIUOG4Ovri7e3N4888gh79uwB4NSpU1SsWJHp06dbz4+MjMTFxYUNGzYAEBsbyxNPPEGFChXw9PSkadOmrF+/3mYMPz8/pk6dSv/+/fH09KRatWp8++23nDp1iieeeAJPT0/q16/Pzp07rdeEhYVRunRpVq1aRUBAAG5ubrRv355//vkn1+f55JNPCAoKws3Njdq1a/PBBx/k+X3csWMHjRo1ws3NjSZNmrBr1y6b141GI4MHD8bf3x93d3dq1arFvHnzrK+HhoayePFivvnmGwwGAwaDgY0bNwIwbtw4AgMD8fDwoHr16kycONFmgc89e/bw8MMP4+Xlhbe3N/fdd5/N+7FlyxZatWqFu7s7VatWZcSIESQnJwPQpk0bjhw5wqhRo6zjFhSF6CIiIiIiIiIiIgKA2WzmUnqmXTaz2ZznOtPT04mOjqZdu3bWYw4ODrRr146tW7fe8PoePXqQkJDA2rVriY6OpnHjxrRt25azZ8/i6+vLZ599RmhoKDt37uTixYv069ePkJAQ2rZtC0BSUhKdOnViw4YN7Nq1iw4dOtC1a1eOHj1qM86cOXNo2bIlu3btonPnzvTr14/+/fvzzDPP8Ntvv1GjRg369+9v8+yXLl1i2rRpfP7550RERJCYmEjv3r1zfJalS5cyadIkpk2bxv79+5k+fToTJ05k8eLFN3wfkpKS6NKlC3Xq1CE6OprQ0FDGjBljc47JZKJKlSp8/fXXxMTEMGnSJMaPH89XX30FwJgxY+jZsycdOnQgPj6e+Ph4WrRoAYCXlxdhYWHExMQwb948Fi5cyJw5c6z3Dg4OpkqVKkRFRREdHc1rr72Gs7MzYPmgokOHDjz11FPs3buXZcuWsWXLFkJCQgBYsWIFVapUYcqUKdZxC4pTgd1ZiqZzcbD7S3D1AhdPy59Xtmv3nVztXa2IiIiIiIiIiBSilAwjdSats8vYMVPa4+GSt7jy9OnTGI1GKlSoYHO8QoUK/Pnnn7leu2XLFnbs2EFCQgKurpb8a+bMmaxatYrly5fz3HPP0alTJ4YOHUpwcDBNmjShVKlSzJgxw3qPBg0a0KBBA+v+f/7zH1auXMm3335rDXkBOnXqxLBhwwCYNGkSCxYsoGnTpvTo0QOwzNRu3rw5J0+epGLFigBkZGTw3nvvcf/99wOwePFigoKC2LFjB82aNbvued58801mzZrFk08+CYC/vz8xMTF89NFHDBgwINf34ssvv8RkMvHpp5/i5ubGvffey7Fjx3jhhRes5zg7OzN58mTrvr+/P1u3buWrr76iZ8+eeHp64u7uTlpamvUZrnjjjTesX/v5+TFmzBjCw8MZO3YsAEePHuXVV1+ldu3aAAQEBFjPnzFjBsHBwYwcOdL62vz582ndujULFiygTJkyODo64uXldd24+U0heklz5m/Y9HbeznV0ySVo9wRX72tev/ZYln0nl4J9LhERERERERERkTzYs2cPSUlJlC1b1uZ4SkoKsbGx1v2ZM2dSt25dvv76a6Kjo62BO1hmcIeGhrJ69Wri4+PJzMwkJSXlupno9evXt359JfCvV6/edccSEhKsQbCTkxNNmza1nlO7dm1Kly7N/v37rwvRk5OTiY2NZfDgwQwdOtR6PDMzEx8fnxu+F/v376d+/fq4ublZjzVv3vy6895//30+++wzjh49SkpKCunp6TRs2PCG91+2bBnz588nNjaWpKQkMjMz8fb2tr4+evRohgwZwpIlS2jXrh09evSgRo0agOXvae/evSxdutR6vtlsxmQycfjwYYKCgm44fn5RiF7SeFWCpkMg7SKkJUHaBUhPyrJ/ETIsfYUwpkPKWct2uxxdswTrXuDidc3+5cDdNUson+05XuDofPv1iIiIiIiIiIjIddydHYmZ0t5uY+dVuXLlcHR05OTJkzbHs87ozklSUhKVKlWy9u3OqnTp0tavY2NjOX78OCaTibi4OJvwe8yYMfz000/MnDmTmjVr4u7uztNPP016errN/a60JgGsPbuzO2YymXJ/4FyeBWDhwoXWmetXODrm/f3MTXh4OGPGjGHWrFk0b94cLy8v3nnnHbZv357rdVu3biU4OJjJkyfTvn17fHx8CA8PZ9asWdZzQkND6du3L6tXr2bt2rW8+eabhIeH0717d5KSkhg2bBgjRoy47t733HNPvjxbXilEL2kq3AudZ+V+jsl4fbCefjH3/bSLl6+5kOWcJMi4ZLmnMQ0upcGl07f/DE5u18yM974+aM+pRc21xxzy518mIiIiIiIiIiJ3AoPBkOeWKvbk4uLCfffdx4YNG+jWrRtgCaI3bNhg004lO40bN+bEiRM4OTnh5+eX7Tnp6ek888wz9OrVi1q1ajFkyBD27dtH+fLlAYiIiGDgwIF0794dsITZcXFx+fJsmZmZ7Ny50zrr/MCBAyQmJmY787pChQpUrlyZQ4cOERwcfNNjBQUFsWTJElJTU62z0bdt22ZzTkREBC1atODFF1+0Hss6Yx8sfx9Go9HmWGRkJNWqVWPChAnWY0eOHLmuhsDAQAIDAxk1ahR9+vRh0aJFdO/encaNGxMTE0PNmjVzrD+7cQtC0f8nQgqfgyO4+Vi222XMzBLI5xC0X3nN5pxs9jNTLffMTLVsyaduvz5njxsE7TnMnL+2bY2LpwJ5EREREREREZFCNHr0aAYMGECTJk1o1qwZc+fOJTk5mUGDBuV6Xbt27WjevDndunXjv//9L4GBgRw/fpzVq1fTvXt3mjRpwoQJEzh//jzz58/H09OTNWvW8Oyzz/L9998Dlv7cK1asoGvXrhgMBiZOnHjLs8mv5ezszEsvvcT8+fNxcnIiJCSEBx54INt+6ACTJ09mxIgR+Pj40KFDB9LS0ti5cyfnzp1j9OjRuY7Vt29fJkyYwNChQ3n99deJi4tj5syZNucEBATw+eefs27dOvz9/VmyZAlRUVH4+/tbz/Hz82PdunUcOHCAsmXL4uPjQ0BAAEePHiU8PJymTZuyevVqVq5cab0mJSWFV199laeffhp/f3+OHTtGVFQUTz31FGDpF//AAw8QEhLCkCFDKFWqFDExMfz000+899571nE3b95M7969cXV1pVy5crf0nt+IQnQpWI5O4F7ast0uY0Y2IXt2LWkuZHPONbPnjWmWe2ZcsmzJCbdfn3OpHFrU5NK2JrtznEuBg8Pt1yMiIiIiIiIicgfr1asXp06dYtKkSZw4cYKGDRvyww8/XLfY6LUMBgNr1qxhwoQJDBo0iFOnTlGxYkUeeughKlSowMaNG5k7dy6//PKLtX/3kiVLaNCgAQsWLOCFF15g9uzZPPvss7Ro0YJy5coxbtw4Lly4kC/P5eHhwbhx4+jbty///vsvrVq14tNPP83x/CFDhuDh4cE777zDq6++SqlSpahXr551Qc7ceHp68t133/H888/TqFEj6tSpw9tvv20NsgGGDRvGrl276NWrFwaDgT59+vDiiy+ydu1a6zlDhw5l48aNNGnShKSkJH755Rcef/xxRo0aRUhICGlpaXTu3JmJEycSGhoKWNrNnDlzhv79+3Py5EnKlSvHk08+aV3EtH79+mzatIkJEybQqlUrzGYzNWrUoFevXtZxp0yZwrBhw6hRowZpaWmYzeabfLfzxmAuqDsXURcuXMDHx4fz58/bNLGXEiYz/fpZ8dm2rcnunGuOmTLyvz6XbHrB59am5trFXK8ccykFl3triYiIiIiIiIhcKzU1lcOHD+Pv72+zuKTYR1hYGCNHjiQxMdHepdwxcvsez2tWrJnoUjI5uYBTGfAoc/v3ykzLe0uabPevhPIXwXy5h1P65UD/Yvzt1WZwuBqw59iiJrcFX7PsO3sokBcRERERERERkRJHIbrI7XJytWylbrPnktls6fWeY0uaa9vW5LTA6+U/zSbLlnbBst0ug0MOQfs1LWrysuCrk5sCeREREREREREpEEuXLmXYsGHZvlatWjX++OOPQq7IfqZPn8706dOzfa1Vq1Y2LVkkZ2rnInInMpshIyWXljQ3aFtz7cx58vlfEw5OuQTtntcs3JpL2xoXT8sHGArkRURERERERG7JndjO5eLFi5w8eTLb15ydnalWrVohV2Q/Z8+e5ezZs9m+5u7uzt13313IFRU+tXMRkewZDODiYdnIfTGNGzKbIT35xi1q8tK2Jv2i5Z6mTEhNtGy3y8E5yyx471za1mSdKZ9D2xonl9uvR0RERERERETsysvLCy8vL3uXUSSUKVOGMmXyoZ1xCacQXURyZzBcDps9wavi7d3LZIKM5Bu0pMlD25r0JMsGloVdU85Zttvl6HJNO5pcFnh1yRLcZ3eOo/Pt1yMiIiIiIiIiInanEF1ECo+Dw9WQ+XaZjJfD9txa0lzIpm1NNjPlMy5Z7mlMh0tnLNvtcnK7vv1Mrm1rcljw1cULHPWvahERERERERERe1EyIyLFk4MjuPlYtttlzLwaqOfYkiZLKH/tsaz7mSmWe2amWrZLp2+/Pif33IP2XBd8veaYg+Pt1yMiIiIiIiIiUoIoRBcRcXQC99KW7XYZM7IJ2m+xbY0xzXLPzBTLlpxw+/U5l8q5RU2ubWuu2XfxtPxmgYiIiIiIiIjIHU4huohIfnJ0Bo8ylu12Zabn0qbm2pnz2R3LspkyLPfMSLZsSdmvUn5TXK4N469tUZOXtjWelmBfgbyIiIiIiIiIFFEK0UVEiionF3DKr0A+LYeWNHltW5Nlprwp03LPrAu83hZDNmF81pY0ntfMhL92Mdcs+84elsVwRURERERERETyiUJ0EZGSwMnVspUqe3v3MZsvB/JZ28/k0pIm23OyzKY3GwHz5f0LcPE2n9PgkEN/+Oxa1GS34GuWc5zdFciLiIiIiIhIkRMWFsbIkSNJTEwssDEMBgMrV66kW7duBTZGcaIQXURE8s5gAGc3y4bv7d3LbIaMlOzbz+TYtiaX2fOYwWyCtPOW7baf1TGHoD2nxVxzWfDVyVWBvIiIiIiISD7bvHkz77zzDtHR0cTHxyv0taPQ0FBWrVrF7t27C3XcNm3a0LBhQ+bOnVug4yhEFxER+zAYwMXDsnmWv717mc2QcSmXljQ5BO82r2cJ7DFbZsmnnrdst8vBKZegPbsWNdkt+Hr5HCfX269HRERERETkDpCcnEyDBg149tlnefLJJ+1djtzBFKKLiEjxZzCASynL5nWb9zKZLIuv5tqSJpcWNVkD+ys9402ZkHLOst0uR5dcgvZc2tZk97qTy+3XIyIiIiIiYicdO3akY8eOt3RtWloaEyZM4P/+7/9ITEykbt26vP3227Rp04bU1FTuu+8+WrZsyccffwxAbGwsDRs2ZN68eTz77LOcOXOGkJAQNm/ezLlz56hRowbjx4+nT58+1jHatGlDvXr1cHR0ZPHixbi4uDB16lT69u1LSEgIy5cvp0KFCrz77rvW59i4cSMPP/ww33//Pa+//joHDx6kYcOGfPLJJ9StWzfH5/nmm2+YPHkyMTExVK5cmQEDBjBhwgScnG4c//71118MHjyYHTt2UL16debNm3fdOePGjWPlypUcO3aMihUrEhwczKRJk3B2diYsLIzJkycDljYwAIsWLWLgwIHMnj2bRYsWcejQIcqUKUPXrl3573//i6enJwBHjhwhJCSELVu2kJ6ejp+fH++88w6dOnUC4Pfff+fVV1/l119/pVSpUjz22GPMmTOHcuXKMXDgQDZt2sSmTZusNR8+fBg/P78bPvPNUoguIiKSlYPD1aCZSrd3L5Pp6mz3221bk3HJck9jOqSctWy3y9E17y1pctq/csxR/0shIiIiInInMJvNGE32GdvR4WoIW9BCQkKIiYkhPDycypUrs3LlSjp06MC+ffsICAhg6dKl3H///XTu3JkuXbrwzDPP8Oijj/Lss88CWIP2cePG4e3tzerVq+nXrx81atSgWbNm1nEWL17M2LFj2bFjB8uWLeOFF15g5cqVdO/enfHjxzNnzhz69evH0aNH8fDwsF736quvMm/ePCpWrMj48ePp2rUrBw8exNnZ+bpn+fXXX+nfvz/z58+nVatWxMbG8txzzwHw5ptv5vo+mEwmnnzySSpUqMD27ds5f/48I0eOvO48Ly8vwsLCqFy5Mvv27WPo0KF4eXkxduxYevXqxe+//84PP/zA+vXrAfDx8QHAwcGB+fPn4+/vz6FDh3jxxRcZO3YsH3zwAQDDhw8nPT2dzZs3U6pUKWJiYqwBe2JiIo888ghDhgxhzpw5pKSkMG7cOHr27MnPP//MvHnzOHjwIHXr1mXKlCkA+PreZuvZHBjMZrO5QO5cRF24cAEfHx/Onz+Pt7e3vcsRERHJG2Pm1dntubakuXDNOdnMnM9Myf/6nNzz0KIml7Y1WfcdHPO/PhERERERyVZqaiqHDx/G398fNzc3Mo1mvotKsEstXZuWx8nx1kL0m1kI8+jRo1SvXp2jR49SuXJl6/F27drRrFkzpk+fDsA777zDf//7X3r37s3//vc/9u3bR9myZXO8b5cuXahduzYzZ84ELDPRjUYjv/76KwBGoxEfHx+efPJJPv/8cwBOnDhBpUqV2Lp1Kw888IB1Jnp4eDi9evUC4OzZs1SpUoWwsDB69ux53cKi7dq1o23btrz++uvWWr744gvGjh3L8ePHc30vfvzxRzp37syRI0es78UPP/xAx44dc30/Z86cSXh4ODt37gTy3hN9+fLlPP/885w+fRqA+vXr89RTT2Ub9k+dOpVff/2VdevWWY8dO3aMqlWrcuDAAQIDA/PUE/3a7/Gs8poVa9qYiIhIceDoBO6lLdvtMmZm05Lmmv28tq0xplnumZli2ZJP3X59zh7XB+tOrpaZ804ulj8dna8es37tcvXPPH99+X5Ol+/jePk1B4fbfw4RERERESmS9u3bh9FoJDAw0OZ4WlqaTUj+yiuvsGrVKt577z3Wrl1r85rRaGT69Ol89dVX/Pvvv6Snp5OWlmYzmxwsIfEVjo6OlC1blnr16lmPVahQAYCEBNsPLpo3b279ukyZMtSqVYv9+/dn+zx79uwhIiKCadOm2dSXmprKpUuXrqspq/3791O1alWbDxOyjn3FsmXLmD9/PrGxsSQlJZGZmZmnCcrr169nxowZ/Pnnn1y4cIHMzEybukaMGMELL7zAjz/+SLt27Xjqqaes79mePXv45ZdfrDPTs4qNjb3u768gKUQXEREpaRydwP0uy3a7MtNtZ8PnuJjrDRZ4Tb0ApgzLPTMuXW5fc/L267tVDk7XhPYu2QT42YXzzllC+WuC+pxCe6fL593wQwJXhfsiIiIiUuAcHSwzwu01dmFISkrC0dGR6OhoHB1tfxM2a2CbkJDAwYMHcXR05K+//qJDhw7W19555x3mzZvH3LlzqVevHqVKlWLkyJGkp6fb3O/a9isGg8Hm2JX2NSbTrffQSUpKYvLkydkurnrtzOtbsXXrVoKDg5k8eTLt27fHx8eH8PBwZs2alet1cXFxdOnShRdeeIFp06ZRpkwZtmzZwuDBg0lPT8fDw4MhQ4bQvn17Vq9ezY8//siMGTOYNWsWL730EklJSXTt2pW33377untXqnSb7VdvkkJ0ERERuXVOLuBUBjzK3P69MtNyaElzwfKaMd2yZaZZZsAbM7I5fuXPDMs5Nl+nX74uPcvXl+9xJcC/wpRp2TKSb/+58pOD0y3OtL82qM9LaH8TM/vVgkdERETkjmEwGHC6w//3rlGjRhiNRhISEmjVqlWO5z377LPUq1ePwYMHM3ToUNq1a0dQUBAAERERPPHEEzzzzDOAJQQ/ePAgderUyZcat23bxj333APAuXPnOHjwoHXsazVu3JgDBw5Qs2bNmx4nKCiIf/75h/j4eGswvW3bNptzIiMjqVatGhMmTLAeO3LkiM05Li4uGI1Gm2PR0dGYTCZmzZqFw+UJQV999dV1NVStWpXnn3+e559/ntdff52FCxfy0ksv0bhxY/73v//h5+eX4wKp2Y1bEBSii4iISNHgdHmGdqmcewwWGJPpahifNZDPy9c3E9pnXhkj69e5fDBgTL+mzivh/qXCf49yY3DMZia+MzeezZ811L+NFjw5jacFb0VERETuaElJSfz999/W/cOHD7N7927KlCljDaCzExgYSHBwMP3792fWrFk0atSIU6dOsWHDBurXr0/nzp15//332bp1K3v37qVq1aqsXr2a4OBgtm3bhouLCwEBASxfvpzIyEjuuusuZs+ezcmTJ/MtRJ8yZQply5alQoUKTJgwgXLlyuXYn3zSpEl06dKFe+65h6effhoHBwf27NnD77//ztSpU3Mdp127dgQGBjJgwADeeecdLly4YBOWAwQEBHD06FHCw8Np2rQpq1evZuXKlTbn+Pn5Wd//KlWq4OXlRc2aNcnIyODdd9+la9euRERE8OGHH9pcN3LkSDp27EhgYCDnzp3jl19+sX5YMHz4cBYuXEifPn0YO3YsZcqU4e+//yY8PJxPPvkER0dH/Pz82L59O3FxcXh6elKmTBlrYJ+f9JOFiIiIiIMDOLiB8+3/qmO+MptvYXb9bYT2N/PBgE2dxstteOzzNuXI4JBNK538CO2zm81/Ex8SODiB4dYWzBIRERGRq3bu3MnDDz9s3R89ejQAAwYMICwsLNdrFy1axNSpU3nllVf4999/KVeuHA888ABdunThzz//5NVXX+XTTz+latWqAHzwwQfUr1+fiRMn8vbbb/PGG29w6NAh2rdvj4eHB8899xzdunXj/Pnz+fJsb731Fi+//DJ//fUXDRs25LvvvsPFxSXbc9u3b8/333/PlClTePvtt3F2dqZ27doMGTLkhuM4ODiwcuVKBg8eTLNmzfDz82P+/Pk2rWsef/xxRo0aRUhICGlpaXTu3JmJEycSGhpqPeepp55ixYoVPPzwwyQmJrJo0SIGDhzI7Nmzefvtt3n99dd56KGHmDFjBv3797deZzQaGT58OMeOHcPb25sOHTowZ84cACpXrkxERATjxo3jscceIy0tjWrVqtGhQwdrUD5mzBgGDBhAnTp1SElJ4fDhw/j5+d3CO547g9lsNuf7XQuQn5/fdb8uAPDiiy/y/vvv3/D6vK64KiIiIiI5MJuvCdZzCu2zBvXXhPY3M9v/Zj4YKBYM2bfPue2++beyuG6W6xTui4iIlEipqakcPnwYf3//fOmfLbdn48aNPPzww5w7d47SpUvbu5w7Qm7f43nNiovdTPSoqCibPje///47jz76KD169LBjVSIiIiIliMFwuR++C7jau5gszGZLu5scZ9cXQIuerB8SXBfqZ7kHWeetmCEz1bIVKYZsFsnNbmHcm53N75rNfW/U8ueamf0K90VERETEjopdiO7r62uz/9Zbb1GjRg1at25tp4pEREREpEgwGC4Hs872rsTWlXA/x9n11wb1187mz2ton9cWPVnGMJuyFnr5HkVwRv91C+O65DKb/1ZC++xa8ORhPIX7IiIiRdKvv/5Kx44dc3w9KSmpEKuxr6VLlzJs2LBsX6tWrRp//PFHIVdUPBW7ED2r9PR0vvjiC0aPHo1B/wMrIiIiIkVR1nDfpZS9q7FlzMxjUF8AffVza9FjNl5T5+Xj6dk/ht04XNtKpzAW173BeI4ulnUeRERESrAmTZqwe/due5dxS9q0aUN+dt9+/PHHuf/++7N9zdm5iE0+KcKKdYi+atUqEhMTGThwYI7npKWlkZZ2dTbNhQsXCqEyEREREZFiwNHJslHEwn2TMY9BfQ7tc66d7Z9fC+5eG+6bMiC9qK2oiyXcz6k9Tr4srpvN69mOcc3XCvdFRKSQuLu7U7NmTXuXUSR4eXnh5eVl7zKKvWIdon/66ad07NiRypUr53jOjBkzmDx5ciFWJSIiIiIit8XBEVw8AA97V2LLZMzjArj51aInlzGyfm3KvKbODMuWkWyf9yknDk43uTBuHvvm30wLnutm87tYvt9EREREclFsQ/QjR46wfv16VqxYket5r7/+OqNHj7buX7hwgapVqxZ0eSIiIiIicqdxcAQHd3B2t3cltkymbGbXp2Uf1GedaX9dUJ9PLXqu3MN0zSx9U6ZlK2qT9w2O+TDTPkto7+IBQY9Daf3cKSIicqcotiH6okWLKF++PJ07d871PFdXV1xdXQupKhERERERkULm4AAObuDsZu9KbFnD/RvNrs+n0D6vLXqM1zTXNxsh41L+hvs/T4WHx8P9L1xumSQiIiLFWbH8r7nJZGLRokUMGDAAJ6di+QgiIiIiIiJ3tqIa7pvNtxDU30Rf/ZMx8O9O+PEN2PsVdJ0Hdze291OLiIjIbSiWCfT69es5evQozz77rL1LERERERERkeLEYLC0XnEqoN9YNplg1xL4aSKc2AuftIVmw+CRCeCqhd1ERESKo2K5PPpjjz2G2WwmMDDQ3qWIiIiIiIiIXOXgAPcNgJCdUK8HmE2wfQG8fz/8udre1YmIyB0gNDSUhg0bFtj94+LiMBgM7N69u8DGKG6KZYguIiIiIiIiUqR5loenPoFn/gelq8GFfyG8L4QHw4Xj9q5ORKTYmzFjBk2bNsXLy4vy5cvTrVs3Dhw4YO+ySqyBAwfSrVu3Qh/Xz8+PuXPnFvg4CtFFRERERERECkrNdvDiNmg5EgyO8Of38F4z2P4xmIz2rk5EpNjatGkTw4cPZ9u2bfz0009kZGTw2GOPkZycbO/S5A6kEF1ERERERESkILl4wKOTYdhmuLsJpF+Eta/Cp4/CiX32rk5EpFj64YcfGDhwIPfeey8NGjQgLCyMo0ePEh0dnafrExMTGTJkCL6+vnh7e/PII4+wZ88eAE6dOkXFihWZPn269fzIyEhcXFzYsGEDALGxsTzxxBNUqFABT09PmjZtyvr1623G8PPzY+rUqfTv3x9PT0+qVavGt99+y6lTp3jiiSfw9PSkfv367Ny503pNWFgYpUuXZtWqVQQEBODm5kb79u35559/cn2eTz75hKCgINzc3KhduzYffPBBnt4HgB07dtCoUSPc3Nxo0qQJu3btsnndaDQyePBg/P39cXd3p1atWsybN8/6emhoKIsXL+abb77BYDBgMBjYuHEjAOPGjSMwMBAPDw+qV6/OxIkTycjIsF67Z88eHn74Yby8vPD29ua+++6zeT+2bNlCq1atcHd3p2rVqowYMcL6QUmbNm04cuQIo0aNso5bUBSii4iIiIiIiBSGinVh8I/QaSa4esO/0fBRa/hxIqRr5qSIFBFms+XfSfbYzOZbLvv8+fMAlClTJk/n9+jRg4SEBNauXUt0dDSNGzembdu2nD17Fl9fXz777DNCQ0PZuXMnFy9epF+/foSEhNC2bVsAkpKS6NSpExs2bGDXrl106NCBrl27cvToUZtx5syZQ8uWLdm1axedO3emX79+9O/fn2eeeYbffvuNGjVq0L9/f8xZnv3SpUtMmzaNzz//nIiICBITE+ndu3eOz7J06VImTZrEtGnT2L9/P9OnT2fixIksXrz4hu9DUlISXbp0oU6dOkRHRxMaGsqYMWNszjGZTFSpUoWvv/6amJgYJk2axPjx4/nqq68AGDNmDD179qRDhw7Ex8cTHx9PixYtAPDy8iIsLIyYmBjmzZvHwoULmTNnjvXewcHBVKlShaioKKKjo3nttddwdnYGLB9UdOjQgaeeeoq9e/eybNkytmzZQkhICAArVqygSpUqTJkyxTpuQTGYzbfx3VkMXbhwAR8fH86fP4+3t7e9yxEREREREZGS6EI8rB0L+7+17Je+BzrPgYB29q1LREqc1NRUDh8+jL+/P25ubpYwe3pl+xQz/ji4lLrpy0wmE48//jiJiYls2bLlhudv2bKFzp07k5CQgKurq/V4zZo1GTt2LM899xwAw4cPZ/369TRp0oR9+/YRFRVlc/616taty/PPP28Nef38/GjVqhVLliwB4MSJE1SqVImJEycyZcoUALZt20bz5s2Jj4+nYsWKhIWFMWjQILZt28b9998PwJ9//klQUBDbt2+nWbNmhIaGsmrVKuvCnzVr1uQ///kPffr0sdYydepU1qxZQ2RkZK7vxccff8z48eM5duyY5e8f+PDDD3nhhRfYtWtXjguYhoSEcOLECZYvXw5YeqInJiayatWqXMebOXMm4eHh1tnm3t7evPvuuwwYMOC6c4cMGYKjoyMfffSR9diWLVto3bo1ycnJuLm54efnx8iRIxk5cmSOY173PZ5FXrNip1yfSkRERERERETyn3cl6LUEDqyF1WMg8SgsfQrqPgXtZ4BXBXtXKCJSbAwfPpzff/89TwE6WFqIJCUlUbZsWZvjKSkpxMbGWvdnzpxJ3bp1+frrr4mOjrYJ0JOSkggNDWX16tXEx8eTmZlJSkrKdTPR69evb/26QgXLv9vr1at33bGEhAQqVqwIgJOTE02bNrWeU7t2bUqXLs3+/ftp1qyZzf2Tk5OJjY1l8ODBDB061Ho8MzMTHx+fG74X+/fvp379+jbhcvPmza877/333+ezzz7j6NGjpKSkkJ6enmPAntWyZcuYP38+sbGxJCUlkZmZaRNWjx49miFDhrBkyRLatWtHjx49qFGjBmD5e9q7dy9Lly61nm82mzGZTBw+fJigoKAbjp9fFKKLiIiIiIiI2EutjuDXCn6ZDtsXwO//g7/XQ7vJ0HgAOKgLq4gUMmcPy4xwe419k0JCQvj+++/ZvHkzVapUydM1SUlJVKpUydq3O6vSpUtbv46NjeX48eOYTCbi4uJswu8xY8bw008/MXPmTGrWrIm7uztPP/006enpto90uTUJYO3Znd0xk8mUp9qzexaAhQsXWmeuX+Ho6HhL97xWeHg4Y8aMYdasWTRv3hwvLy/eeecdtm/fnut1W7duJTg4mMmTJ9O+fXt8fHwIDw9n1qxZ1nNCQ0Pp27cvq1evZu3atbz55puEh4fTvXt3kpKSGDZsGCNGjLju3vfcc0++PFteKUQXERERERERsSdXT+gwHer3gO9ehvg98P1I2LsMusyF8rXtXaGIlCQGwy21VClsZrOZl156iZUrV7Jx40b8/f3zfG3jxo05ceIETk5O+Pn5ZXtOeno6zzzzDL169aJWrVoMGTKEffv2Ub58eQAiIiIYOHAg3bt3Byxhdlxc3O0+FmCZRb5z507rrPMDBw6QmJiY7czrChUqULlyZQ4dOkRwcPBNjxUUFMSSJUtITU21zkbftm2bzTkRERG0aNGCF1980Xos64x9ABcXF4xGo82xyMhIqlWrxoQJE6zHjhw5cl0NgYGBBAYGMmrUKPr06cOiRYvo3r07jRs3JiYmhpo1a+ZYf3bjFgR9pC0iIiIiIiJSFFRuBEN+hvbTwbkUHN0KHz4IP0+FjFR7VyciUqQMHz6cL774gi+//BIvLy9OnDjBiRMnSElJueG17dq1o3nz5nTr1o0ff/yRuLg4IiMjmTBhgrVX94QJEzh//jzz589n3LhxBAYG8uyzz1rvERAQwIoVK9i9ezd79uyhb9++tzyb/FrOzs689NJLbN++nejoaAYOHMgDDzxwXSuXKyZPnsyMGTOYP38+Bw8eZN++fSxatIjZs2ffcKy+fftiMBgYOnQoMTExrFmzhpkzZ9qcExAQwM6dO1m3bh0HDx5k4sSJREVF2Zzj5+fH3r17OXDgAKdPnyYjI4OAgACOHj1KeHg4sbGxzJ8/n5UrV1qvSUlJISQkhI0bN3LkyBEiIiKIioqyflgwbtw4IiMjCQkJYffu3fz1119888031p7zV8bdvHkz//77L6dPn87ze3yzFKKLiIiIiIiIFBWOTtB8OAzfDoEdwJQBm9+BBS3g0CZ7VyciUmQsWLCA8+fP06ZNGypVqmTdli1bdsNrDQYDa9as4aGHHmLQoEEEBgbSu3dvjhw5QoUKFdi4cSNz585lyZIleHt74+DgwJIlS/j1119ZsGABALNnz+auu+6iRYsWdO3alfbt29O4ceN8eTYPDw/GjRtH3759admyJZ6enrk+15AhQ/jkk09YtGgR9erVo3Xr1oSFheVpdr6npyffffcd+/bto1GjRkyYMIG3337b5pxhw4bx5JNP0qtXL+6//37OnDljMysdYOjQodSqVYsmTZrg6+tLREQEjz/+OKNGjSIkJISGDRsSGRnJxIkTrdc4Ojpy5swZ+vfvT2BgID179qRjx45MnjwZsPST37RpEwcPHqRVq1Y0atSISZMmUbny1YVvp0yZQlxcHDVq1MDX1zdP7++tMJjNZnOB3b0IyuuKqyIiIiIiIiJ2ZTbD/m9hzVhIOmE51qAPPDYNSpXN/VoRkTxKTU3l8OHD+Pv72ywuKfYRFhbGyJEjSUxMtHcpd4zcvsfzmhVrJrqIiIiIiIhIUWQwQJ0nIGQHNB0CGGDP/8F7TWD3l5aQXURERAqcQnQRERERERGRoszNBzrPgsE/Qvl7IeUsrHoBPn8czsTe+HoRkRJm6dKleHp6Zrvde++99i6vUE2fPj3H96Jjx472Lq/YUDsXERERERERkeLCmAFb34ONb0FmKji6wkOvQsuXwcnF3tWJSDF0J7ZzuXjxIidPnsz2NWdnZ6pVq1bIFdnP2bNnOXv2bLavubu7c/fddxdyRYUvP9q5OBV0kSIiIiIiIiKSTxyd4cFRUKcbrB4NsT/DL1Nh39fQdR5Ua27vCkVE7M7LywsvLy97l1EklClThjJlyti7jGJP7VxEREREREREipsy/vDMCnjyE/AoB6cPwKIO8O0ISDln7+pERETuKArRRURERERERIojgwHq94CQKGjc33Lst8XwXjPYt1wLj4qIiOQThegiIiIiIiIixZlHGXj8XRi4BsoFQnIC/G8wLH0azsXZuzoREZFiTyG6iIiIiIiIyJ3AryU8vwXajAdHF/h7Pbz/AGyZa1mQVERERG6JQnQRERERERGRO4WTK7QZBy9Egl8ryEyB9W/Cx23g2E57VyciIlIsKUQXERERERERudOUC4AB38ETH4D7XXDyd/ikHaweA6kX7F2diIjcotDQUBo2bFhg94+Li8NgMLB79+4CG6M4UoguIiIiIiIicicyGKBRMITshPq9ATNELYT3m0HMt1p4VESKtQULFlC/fn28vb3x9vamefPmrF271t5llUgDBw6kW7duhT6un58fc+fOLZSxFKKLiIiIiIiI3MlKlYMnP4J+q+Auf7gYD1/1g/C+cP6YvasTEbklVapU4a233iI6OpqdO3fyyCOP8MQTT/DHH3/YuzS5AylEFxERERERESkJajwML26FVq+AgxMcWAPv3w/bFoDJaO/qRERuSteuXenUqRMBAQEEBgYybdo0PD092bZt2w2vTUxMZMiQIfj6+uLt7c0jjzzCnj17ADh16hQVK1Zk+vTp1vMjIyNxcXFhw4YNAMTGxvLEE09QoUIFPD09adq0KevXr7cZw8/Pj6lTp9K/f388PT2pVq0a3377LadOneKJJ57A09OT+vXrs3Pn1fUqwsLCKF26NKtWrSIgIAA3Nzfat2/PP//8k+vzfPLJJwQFBeHm5kbt2rX54IMP8vw+7tixg0aNGuHm5kaTJk3YtWuXzetGo5HBgwfj7++Pu7s7tWrVYt68edbXQ0NDWbx4Md988w0GgwGDwcDGjRsBGDduHIGBgXh4eFC9enUmTpxIRsbVha737NnDww8/jJeXF97e3tx3330278eWLVto1aoV7u7uVK1alREjRpCcnAxAmzZtOHLkCKNGjbKOW5AUoouIiIiIiIiUFM7u0HYSPL8Fqt4P6Unww2uw8BE4vtve1YlIUWA2gzHdPtsttpkyGo2Eh4eTnJxM8+bNb3h+jx49SEhIYO3atURHR9O4cWPatm3L2bNn8fX15bPPPiM0NJSdO3dy8eJF+vXrR0hICG3btgUgKSmJTp06sWHDBnbt2kWHDh3o2rUrR48etRlnzpw5tGzZkl27dtG5c2f69etH//79eeaZZ/jtt9+oUaMG/fv3x5zluS9dusS0adP4/PPPiYiIIDExkd69e+f4LEuXLmXSpElMmzaN/fv3M336dCZOnMjixYtv+D4kJSXRpUsX6tSpQ3R0NKGhoYwZM8bmHJPJRJUqVfj666+JiYlh0qRJjB8/nq+++gqAMWPG0LNnTzp06EB8fDzx8fG0aNECAC8vL8LCwoiJiWHevHksXLiQOXPmWO8dHBxMlSpViIqKIjo6mtdeew1nZ2fA8kFFhw4deOqpp9i7dy/Lli1jy5YthISEALBixQqqVKnClClTrOMWJIPZXLKaoF24cAEfHx/Onz+Pt7e3vcsRERERERERsQ+TCX4Lg59CIe08GBzggRehzevg6mnv6kSkkKSmpnL48GH8/f1xc3OzhNm/vGmfYh6eDI4ueT593759NG/enNTUVDw9Pfnyyy/p1KlTrtds2bKFzp07k5CQgKurq/V4zZo1GTt2LM899xwAw4cPZ/369TRp0oR9+/YRFRVlc/616taty/PPP28Nef38/GjVqhVLliwB4MSJE1SqVImJEycyZcoUALZt20bz5s2Jj4+nYsWKhIWFMWjQILZt28b9998PwJ9//klQUBDbt2+nWbNmhIaGsmrVKuvCnzVr1uQ///kPffr0sdYydepU1qxZQ2RkZK7vxccff8z48eM5duyY5e8e+PDDD3nhhRfYtWtXjguYhoSEcOLECZYvXw5YeqInJiayatWqXMebOXMm4eHh1tnm3t7evPvuuwwYMOC6c4cMGYKjoyMfffSR9diWLVto3bo1ycnJuLm54efnx8iRIxk5cmSu4173PZ5FXrNip1xHEBEREREREZE7k4MDNHkWanWyzEb/YyVsfQ9ivoHOsyCwvb0rFBHJVa1atdi9ezfnz59n+fLlDBgwgE2bNlGnTp0cr9mzZw9JSUmULVvW5nhKSgqxsbHW/ZkzZ1K3bl2+/vproqOjbQL0pKQkQkNDWb16NfHx8WRmZpKSknLdTPT69etbv65QoQIA9erVu+5YQkICFStWBMDJyYmmTZtaz6lduzalS5dm//79NGvWzOb+ycnJxMbGMnjwYIYOHWo9npmZiY+PT47vwRX79++nfv36NsFydjP533//fT777DOOHj1KSkoK6enpOQbsWS1btoz58+cTGxtLUlISmZmZNkH16NGjGTJkCEuWLKFdu3b06NGDGjVqAJa/p71797J06VLr+WazGZPJxOHDhwkKCrrh+PlJIbqIiIiIiIhISeZVEXqEQYO+sPoVOH8UvuwJdZ6Ajv+1vC4iJYeDs2VGuL3GvgkuLi7UrFkTgPvuu4+oqCjmzZtnM3v5WklJSVSqVMnatzur0qVLW7+OjY3l+PHjmEwm4uLibMLvMWPG8NNPPzFz5kxq1qyJu7s7Tz/9NOnp6Tb3u9KaBLD27M7umMlkyvtDX/MsAAsXLrTOXL/C0dHxlu55rfDwcMaMGcOsWbNo3rw5Xl5evPPOO2zfvj3X67Zu3UpwcDCTJ0+mffv2+Pj4EB4ezqxZs6znhIaG0rdvX1avXs3atWt58803CQ8Pp3v37iQlJTFs2DBGjBhx3b3vueeefHm2m6EQXUREREREREQg8DHw2wYbZ8DWDywz0mN/gXZvwn3PWmaui8idz2C4qZYqRYnJZCItLS3Xcxo3bsyJEydwcnLCz88v23PS09N55pln6NWrF7Vq1WLIkCHs27eP8uXLAxAREcHAgQPp3r07YAmz4+Li8uUZMjMz2blzp3XW+YEDB0hMTMx25nWFChWoXLkyhw4dIjg4+KbHCgoKYsmSJaSmplpno1+7MGtERAQtWrTgxRdftB7LOmMfLB9mGI22C1RHRkZSrVo1JkyYYD125MiR62oIDAwkMDCQUaNG0adPHxYtWkT37t1p3LgxMTEx1g9JspPduAVF/wUUEREREREREQuXUvDYVHhuI1RuBGkXLLPTP2sPJ2PsXZ2IiNXrr7/O5s2biYuLY9++fbz++uts3LjxhmFyu3btaN68Od26dePHH38kLi6OyMhIJkyYYO3VPWHCBM6fP8/8+fMZN24cgYGBPPvss9Z7BAQEsGLFCnbv3s2ePXvo27fvLc8mv5azszMvvfQS27dvJzo6moEDB/LAAw9c18rlismTJzNjxgzmz5/PwYMH2bdvH4sWLWL27Nk3HKtv374YDAaGDh1KTEwMa9asYebMmTbnBAQEsHPnTtatW8fBgweZOHEiUVFRNuf4+fmxd+9eDhw4wOnTp8nIyCAgIICjR48SHh5ObGws8+fPZ+XKldZrUlJSCAkJYePGjRw5coSIiAiioqKsHxaMGzeOyMhIQkJC2L17N3/99RfffPONtef8lXE3b97Mv//+y+nTp/P8Ht8KhegiIiIiIiIiYqtSfRiyATq8DS6ecGwHfNQK1k+GjBR7VyciQkJCAv3796dWrVq0bduWqKgo1q1bx6OPPprrdQaDgTVr1vDQQw8xaNAgAgMD6d27N0eOHKFChQps3LiRuXPnsmTJEry9vXFwcGDJkiX8+uuvLFiwAIDZs2dz11130aJFC7p27Ur79u1p3LhxvjyXh4cH48aNo2/fvrRs2RJPT0+WLVuW4/lDhgzhk08+YdGiRdSrV4/WrVsTFhaGv7//Dcfy9PTku+++Y9++fTRq1IgJEybw9ttv25wzbNgwnnzySXr16sX999/PmTNnbGalAwwdOpRatWrRpEkTfH19iYiI4PHHH2fUqFGEhITQsGFDIiMjmThxovUaR0dHzpw5Q//+/QkMDKRnz5507NiRyZMtrYTq16/Ppk2bOHjwIK1ataJRo0ZMmjSJypUrW+8xZcoU4uLiqFGjBr6+vnl6f2+VwWw2mwt0hCImryuuioiIiIiIiAhw/l9YOxb+/N6yf5cfdJkDNR6xa1kikj9SU1M5fPgw/v7+NgtMSuELCwtj5MiRJCYm2ruUO0pu3+N5zYo1E11EREREREREcuZzN/ReCr2WgldlOBcHS7rD/4ZC0il7VyciIlLgFKKLiIiIiIiIyI0FdYHh26HZMMAA+76C95rAb0ugZP2Su4gUYUuXLsXT0zPb7d5777V3eYVq+vTpOb4XHTt2tHd5xYrauYiIiIiIiIjIzTkWDd+9DCf3WfartYQuc8E30K5licjNu9PauVy8eJGTJ09m+5qzszPVqlUr5Irs5+zZs5w9ezbb19zd3bn77rsLuSL7yI92Lk4FXaSIiIiIiIiI3GGq3AfPbYRtH8DGGXAkAj5sCQ+OhlajwcnV3hWKSAnl5eWFl5eXvcsoEsqUKUOZMmXsXcYdQe1cREREREREROTmOTpByxHw4jao+SgY02HTW7CgJcRtsXd1IiIi+UYhuoiIiIiIiIjcuruqQfDX8PRnUKo8nPkLwjrDquFwKfs2AiIiIsWJQnQRERERERERuT0GA9R9CkJ2wH2DLMd2fwHvNYU9y7TwqIiIFGsK0UVEREREREQkf7jfBV3nwrPrwLc2XDoNK5+DJd3h7CF7VyciInJLFKKLiIiIiIiISP665wEY9is88gY4usKhX+CD5vDrLMhMt3d1IiIiN0UhuoiIiIiIiIjkPycXeOhVeHEr+LeGzFTYMAU+bg1Ht9u7OhGRYis0NJSGDRsW2P3j4uIwGAzs3r27wMYobhSii4iIiIiIiEjBKVsD+n8D3T8Cj7KQEAOftYfvR0FKor2rE5E7xFtvvYXBYGDkyJH2LqVEGjhwIN26dSv0cf38/Jg7d26Bj6MQXUREREREREQKlsEADXrD8ChoGAyYYedn8H4z+GOlFh4VkdsSFRXFRx99RP369e1dityhimWI/u+///LMM89QtmxZ3N3dqVevHjt37rR3WSIiIiIiIiKSm1JlodsHMOA7KFMDkk7C1wPhy16QeNTe1YlIMZSUlERwcDALFy7krrvuyvN1iYmJDBkyBF9fX7y9vXnkkUfYs2cPAKdOnaJixYpMnz7den5kZCQuLi5s2LABgNjYWJ544gkqVKiAp6cnTZs2Zf369TZj+Pn5MXXqVPr374+npyfVqlXj22+/5dSpUzzxxBN4enpSv359m1wzLCyM0qVLs2rVKgICAnBzc6N9+/b8888/uT7PJ598QlBQEG5ubtSuXZsPPvggz+/Fjh07aNSoEW5ubjRp0oRdu3bZvG40Ghk8eDD+/v64u7tTq1Yt5s2bZ309NDSUxYsX880332AwGDAYDGzcuBGAcePGERgYiIeHB9WrV2fixIlkZGRYr92zZw8PP/wwXl5eeHt7c99999m8H1u2bKFVq1a4u7tTtWpVRowYQXJyMgBt2rThyJEjjBo1yjpuQSl2Ifq5c+do2bIlzs7OrF27lpiYGGbNmnVT/5CIiIiIiIiIiB35PwQvRELrceDgDH+tg/fvh8h3wZhp7+pESjSz2cyljEt22cy38Fspw4cPp3PnzrRr1+6mruvRowcJCQmsXbuW6OhoGjduTNu2bTl79iy+vr589tlnhIaGsnPnTi5evEi/fv0ICQmhbdu2gCW879SpExs2bGDXrl106NCBrl27cvSo7QeCc+bMoWXLluzatYvOnTvTr18/+vfvzzPPPMNvv/1GjRo16N+/v82zX7p0iWnTpvH5558TERFBYmIivXv3zvFZli5dyqRJk5g2bRr79+9n+vTpTJw4kcWLF9/wfUhKSqJLly7UqVOH6OhoQkNDGTNmjM05JpOJKlWq8PXXXxMTE8OkSZMYP348X331FQBjxoyhZ8+edOjQgfj4eOLj42nRogUAXl5ehIWFERMTw7x581i4cCFz5syx3js4OJgqVaoQFRVFdHQ0r732Gs7OzoDlg4oOHTrw1FNPsXfvXpYtW8aWLVsICQkBYMWKFVSpUoUpU6ZYxy0oBvOtfHfa0WuvvUZERAS//vrrLV1/4cIFfHx8OH/+PN7e3vlcnYiIiIiIiIjclFMH4LuRcDTSsl+xPnSdB3c3tmtZIiVFamoqhw8fxt/fHzc3Ny5lXOL+L++3Sy3b+27Hw9kjz+eHh4czbdo0oqKicHNzo02bNjRs2PCGPbK3bNlC586dSUhIwNXV1Xq8Zs2ajB07lueeew6wBPTr16+nSZMm7Nu3j6ioKJvzr1W3bl2ef/55a8jr5+dHq1atWLJkCQAnTpygUqVKTJw4kSlTpgCwbds2mjdvTnx8PBUrViQsLIxBgwaxbds27r/f8vfw559/EhQUxPbt22nWrBmhoaGsWrXKuvBnzZo1+c9//kOfPn2stUydOpU1a9YQGRmZ63vx8ccfM378eI4dO4abmxsAH374IS+88AK7du3KcQHTkJAQTpw4wfLlywFLT/TExERWrVqV63gzZ84kPDzcOtvc29ubd999lwEDBlx37pAhQ3B0dOSjjz6yHtuyZQutW7cmOTkZNzc3/Pz8GDlyZK698K/9Hs8qr1lxsZuJ/u2339KkSRN69OhB+fLladSoEQsXLszx/LS0NC5cuGCziYiIiIiIiEgR4VsLBq6GrvPBzQdO7IVP2sLa1yDtor2rE5Ei6p9//uHll19m6dKl1wWjN7Jnzx6SkpIoW7Ysnp6e1u3w4cPExsZaz5s5cyaZmZl8/fXXLF261CZAT0pKYsyYMQQFBVG6dGk8PT3Zv3//dTPRs/Zpr1ChAgD16tW77lhCQoL1mJOTE02bNrXu165dm9KlS7N///7rniU5OZnY2FgGDx5s8yxTp061eZac7N+/n/r169u8h82bN7/uvPfff5/77rsPX19fPD09+fjjj6971uwsW7aMli1bUrFiRTw9PXnjjTdsrhs9ejRDhgyhXbt2vPXWWzY179mzh7CwMJvnat++PSaTicOHD99w7PzkVKij5YNDhw6xYMECRo8ezfjx44mKimLEiBG4uLhk+4nFjBkzmDx5sh0qFREREREREZE8cXCA+wZArY6wbjzs+xq2L4D930Knd6B2Z3tXKFJiuDu5s73vdruNnVfR0dEkJCTQuPHV31oxGo1s3ryZ9957j7S0NBwdHbO9NikpiUqVKln7dmdVunRp69exsbEcP34ck8lEXFycTfg9ZswYfvrpJ2bOnEnNmjVxd3fn6aefJj093eZ+V1qTANae3dkdM5lMeX72a58FYOHChdaZ61fk9Pw3Kzw8nDFjxjBr1iyaN2+Ol5cX77zzDtu35/59snXrVoKDg5k8eTLt27fHx8eH8PBwZs2aZT0nNDSUvn37snr1atauXcubb75JeHg43bt3JykpiWHDhjFixIjr7n3PPffky7PlVbEL0U0mE02aNLE29m/UqBG///47H374YbYh+uuvv87o0aOt+xcuXKBq1aqFVq+IiIiIiIiI5JFneXjqE2jQG74fDYlHILwv1O5iCdO9K9u7QpE7nsFguKmWKvbStm1b9u3bZ3Ns0KBB1K5dm3HjxuUaIDdu3JgTJ07g5OSEn59ftuekp6fzzDPP0KtXL2rVqsWQIUPYt28f5cuXByAiIoKBAwfSvXt3wBJmx8XF5cuzZWZmsnPnTpo1awbAgQMHSExMJCgo6LpzK1SoQOXKlTl06BDBwcE3PVZQUBBLliwhNTXVOht927ZtNudERETQokULXnzxReuxa2e5u7i4YDQabY5FRkZSrVo1JkyYYD125MiR62oIDAwkMDCQUaNG0adPHxYtWkT37t1p3LgxMTEx1KxZM8f6sxu3IBS7di6VKlWiTp06NseCgoJy/PUBV1dXvL29bTYRERERERERKcJqtoMXt0HLkWBwhD+/h/eawfaPwVTwYYmIFH1eXl7UrVvXZitVqhRly5albt26uV7brl07mjdvTrdu3fjxxx+Ji4sjMjKSCRMmWHt1T5gwgfPnzzN//nzGjRtHYGAgzz77rPUeAQEBrFixgt27d7Nnzx769u17y7PJr+Xs7MxLL73E9u3biY6OZuDAgTzwwAPWUP1akydPZsaMGcyfP5+DBw+yb98+Fi1axOzZs284Vt++fTEYDAwdOpSYmBjWrFnDzJkzbc4JCAhg586drFu3joMHDzJx4kSioqJszvHz82Pv3r0cOHCA06dPk5GRQUBAAEePHiU8PJzY2Fjmz5/PypUrrdekpKQQEhLCxo0bOXLkCBEREURFRVk/LBg3bhyRkZGEhISwe/du/vrrL7755htrz/kr427evJl///2X06dP5/k9vlnFLkRv2bIlBw4csDl28OBBqlWrZqeKRERERERERCTfuXjAo5Nh2Ga4uwmkX4S1r8Knj8KJfTe+XkQkBwaDgTVr1vDQQw8xaNAgAgMD6d27N0eOHKFChQps3LiRuXPnsmTJEry9vXFwcGDJkiX8+uuvLFiwAIDZs2dz11130aJFC7p27Ur79u1tWsvcDg8PD8aNG0ffvn1p2bIlnp6eLFu2LMfzhwwZwieffMKiRYuoV68erVu3JiwsDH9//xuO5enpyXfffce+ffto1KgREyZM4O2337Y5Z9iwYTz55JP06tWL+++/nzNnztjMSgcYOnQotWrVokmTJvj6+hIREcHjjz/OqFGjCAkJoWHDhkRGRjJx4kTrNY6Ojpw5c4b+/fsTGBhIz5496dixo7U1d/369dm0aRMHDx6kVatWNGrUiEmTJlG58tXfSpoyZQpxcXHUqFEDX1/fPL2/t8JgNpvNBXb3AhAVFUWLFi2YPHkyPXv2ZMeOHQwdOpSPP/44T7+ykNcVV0VERERERESkiDAZYednsGEKpF2wzE5vPhzavAYupexdnUixlpqayuHDh/H397/pBTol/4WFhTFy5EgSExPtXcodI7fv8bxmxcVuJnrTpk1ZuXIl//d//0fdunX5z3/+w9y5c2+p54+IiIiIiIiIFAMOjtBsKAzfAUGPg9kIkfPhgwfgr/X2rk5ERO5wxS5EB+jSpQv79u0jNTWV/fv3M3ToUHuXJCIiIiIiIiIFzbsS9FoCfcLBuwokHoWlT8HyZ+HiSXtXJyJFxNKlS/H09Mx2u/fee+1dXqGaPn16ju9Fx44d7V1esVHs2rncLrVzEREREREREbkDpCXBL9Nh+wIwm8DNB9pNhsYDwKFYzhkUsYs7sZ3LxYsXOXky+w/WnJ2dS9TaimfPnuXs2bPZvubu7s7dd99dyBUVvvxo5+JU0EWKiIiIiIiIiOQ7V0/oMB3q94DvXob4PfD9SNi7DLrMhfK17V2hiNiJl5cXXl5e9i6jSChTpgxlypSxdxnFnj6aFREREREREZHiq3IjGPIztJ8OzqXg6Fb48EH4eSpkpNq7OhERuQMoRBcRERERERGR4s3RCZoPh+HbIbADmDJg8zuwoAUc2mTv6kSKhRLW8VlKEJPJdNv3UDsXEREREREREbkzlK5qWXR0/7ewZiycjYXPH4cGfeCxaVCqrL0rFClynJ2dMRgMnDp1Cl9fXwwGg71LEskXZrOZ9PR0Tp06hYODAy4uLrd8Ly0sKiIiIiIiIiJ3ntTzsGEKRH0KmMG9DLSfZgnUFRKK2EhKSuLYsWOajS53JA8PDypVqpRtiJ7XrFghuoiIiIiIiIjcuf7ZAd+NhIQ/LPv+D1kWHi1bw55ViRQ5RqORjIwMe5chkq8cHR1xcnLK8TcsFKLnQCG6iIiIiIiISAljzICt78HGtyAzFRxd4aFXoeXL4HTrv94vIiLFW16zYi0sKiIiIiIiIiJ3NkdneHAUvLgNajwCxjT4ZSp8+CAc2Wrv6kREpIhTiC4iIiIiIiIiJUMZf3hmBTz5CXiUg9MHYFEH+HYEpJyzd3UiIlJEKUQXERERERERkZLDYID6PSAkChr3txz7bTG81wz2LYeS1fVWRETyQCG6iIiIiIiIiJQ8HmXg8Xdh4BooFwjJCfC/wbD0aTgXZ+/qRESkCFGILiIiIiIiIiIll19LeH4LtBkPji7w93p4/wHYMteyIKmIiJR4CtFFREREREREpGRzcoU24+CFSPBrBZkpsP5N+LgNHNtp7+pERMTOFKKLiIiIiIiIiACUC4AB38ETH4D7XXDyd/ikHaweA6kX7F2diIjYiUL0ksZsguO/QUaKvSsRERERERERKXoMBmgUDCE7oX5vwAxRC+H9ZhDzrRYeFREpgRSilzSJRyDma9g8DfYuhYQYMGXauyoRERERERGRoqVUOXjyI+i3Cu7yh4vx8FU/CO8L54/ZuzoRESlECtFLGlMGeFYEsxESfoe9S+DXGfDnN3D+qD5RFxEREREREcmqxsPw4lZo9Qo4OMGBNfD+/bBtAZiM9q5OREQKgcFsLlmp6YULF/Dx8eH8+fN4e3vbuxz7uRgP8bvgxG5Iv3j1uEdZqNgIKjUC9zJ2K09ERERERESkyEnYD9+9DP9st+xXagiPz4dKDexaloiI3Jq8ZsUK0Us6swnO/m0J1BP+sMxUv6K0nyVQr1APnN3tVqKIiIiIiIhIkWEywW9h8FMopJ0HgwM88CK0eR1cPe1dnYiI3ASF6DlQiJ6LzDRLkH5iF5yNBS5/axgcwTfIEqiXC7T8+pqIiIiIiIhISXbxBPzwGvyx0rLvUxU6z4LA9vatS0RE8kwheg4UoudR6nk4sccSqCeduHrc2QMq1Le0e/Gualm1XERERERERKSkOvgjrH7Fss4YQJ1u0PFt8Kpo17JEROTGFKLnQCH6Lcixf3o5qNhQ/dNFRERERESkZEtPho0zYOsHYDaCqze0exPuexYcHOxdnYiI5EAheg4Uot8GkxHOxap/uoiIiIiIiEh24vfCdyPg+C7LfpVm0HUeVKhj37pERCRbCtFzoBA9n9yof3qlRlBW/dNFRERERESkhDEZYcdC+Pk/kJ5k+bm4xQhoPVaTzkREihiF6DlQiF4ArvRPj/8Nkk9ePa7+6SIiIiIiIlJSnf8X1o6FP7+37N/lB13mQI1H7FqWiIhcpRA9BwrRC5DZDElX+qfvUf90ERERERERkf3fw5pX4eJxy369ntB+Onj62rcuERFRiJ4TheiF5Eb90ys1gvLqny4iIiIiIiIlQOoF+Hkq7PgYMIP7XfDof6DRM/qtbRERO1KIngOF6HaQU/90BycoV1v900VERERERKRkOBYN370MJ/dZ9qs9CF3nQrkAu5YlIlJSKUTPgUJ0O0s9Dyd2W2aoq3+6iIiIiIiIlDTGTNj2AWycARmXwNEFHhwNrUaDk6u9qxMRKVEUoudAIXoRof7pIiIiIiIiUpKdOwKrX4G/f7Lslw2wzEr3e9CuZYmIlCQK0XOgEL0IUv90ERERERERKYnMZvhjBax9DZITLMcaPWPpl+6hSWUiIgVNIXoOFKIXcZlpkPD75f7ph1D/dBEREREREbnjpZyD9ZMhepFl36MctJ8O9Xuq3amISAFSiJ4DhejFSK790xtc7p9eRf9DISIiIiIiIneGo9ssC4+e+tOyX/1h6DIbylS3b10iIncoheg5UIheDN2wf3qjy/3T77JfjSIiIiIiIiL5ITMdIufBpnfAmAZObtB6LLQYAY7O9q5OROSOohA9BwrRizmTEc7+bWn3khCj/ukiIiIiIiJyZzoTC9+PhMObLfvl60DXeVC1mV3LEhG5kyhEz4FC9DvIDfunN77cP93RrmWKiIiIiIiI3BKzGfYug3Xj4dIZwABNBkHbN8G9tL2rExEp9hSi50Ah+h0qx/7ppaBCffVPFxERERERkeIr+Qz8NBF2L7Xse1aAjm9DnW76OVdE5DYoRM+BQvQ7nE3/9N2QnnT1NfVPFxERERERkeLs8Gb4biScjbXsB7SHzjOh9D12LUtEpLhSiJ4DhegliPqni4iIiIiIyJ0mIxV+nQVb5lh+znX2gIcnwP3Pg6OTvasTESlWilyInpmZycaNG4mNjaVv3754eXlx/PhxvL298fT0LIwSAIXoJVau/dODLIG6+qeLiIiIiIhIcXHqgGVW+tFIy37F+paFR+9ubNeyRESKkyIVoh85coQOHTpw9OhR0tLSOHjwINWrV+fll18mLS2NDz/8sKBLsFKILuqfLiIiIiIiIncEkwl2LbH0S089DwYHaDYMHpkArl72rk5EpMgrUiF6t27d8PLy4tNPP6Vs2bLs2bOH6tWrs3HjRoYOHcpff/1V0CVYKUQXK7MZLsbDid/gxJ5r+qf7WsL0ig3VP11ERERERESKtqQEWDce9n1t2fe+GzrNhNqd7FuXiEgRl9es2KEwivn111954403cHFxsTnu5+fHv//+e1P3Cg0NxWAw2Gy1a9fOz3KlpDAYwLsyBHaBB1+DhgOhYgNwcIZLpyD2R4j4L+z8GP6NgowUe1csIiIiIiIicj3P8vDUJ/DM/6B0NbjwL4T3gWXPwIXj9q5ORKTYK5QVJ0wmE0aj8brjx44dw8vr5n+96N5772X9+vXWfScnLZwht8nBEcrVsmxX+qfH74JzhyDxsGU78K36p4uIiIiIiEjRVbMdvLgNNr0Nke/C/u8gdiO0nQRNB+vnWBGRW1Qo6fNjjz3G3Llz+fjjjwEwGAwkJSXx5ptv0qnTzf9qkZOTExUrVszvMkUsnFyh8n2W7dr+6Qn7LJv6p4uIiIiIiEhR5OIBj06Gej3gu5fh352w9lXYuwy6zoWK9exdoYhIsVMoPdH/+ecfOnTogNls5q+//qJJkyb89ddflCtXjs2bN1O+fPk83ys0NJR33nkHHx8f3NzcaN68OTNmzOCee+7J0/XqiS63RP3TRUREREREpLgxGWHnZ7BhCqRdAIMjtAiB1q9ZwnYRkRKuSC0sCpCZmcmyZcvYs2cPSUlJNG7cmODgYNzd3W/qPmvXriUpKYlatWoRHx/P5MmT+ffff/n999+zbQ2TlpZGWlqadf/ChQtUrVpVIbrcOpMRzv4NJ3ZBQgyYMq6+VtrfEqhXqAdObvarUUREREREROSKC/Gwdizs/9ayX/oe6DwHAtrZty4RETsrMiF6RkYGtWvX5vvvvycoKCjf75+YmEi1atWYPXs2gwcPvu710NBQJk+efN1xheiSL67tn87lf5wcnNQ/XURERERERIqWA2th9Ri4cMyyX/cp6PCWZWFSEZESqMiE6AB3330369evL5AQHaBp06a0a9eOGTNmXPeaZqJLobm2f/oVzqWgYn2oqP7pIiIiIiIiYmdpSfDLNNj+IZhN4OYDj06BRv3BwcHe1YmIFKoiFaJPnz6dgwcP8sknn+DklL9rmSYlJXHPPfcQGhrKiBEjbni+eqJLgbvSPz3+Nzip/ukiIiIiIiJSBB3fZVl4NH6PZf+e5tBlLpSvbdeyREQKU5EK0bt3786GDRvw9PSkXr16lCpVyub1FStW5PleY8aMoWvXrlSrVo3jx4/z5ptvsnv3bmJiYvD19b3h9QrRpVBd6Z8evwtOqX+6iIiIiIiIFCHGTNjxEfw8DTKSwcEZHhwJrcaAs35OFZE7X16z4vydFp6D0qVL89RTT+XLvY4dO0afPn04c+YMvr6+PPjgg2zbti1PAbpIoXNwhHK1LFtmKiT8cbV/euJhy3bgW/ANsrR7Uf90ERERERERKSyOTtB8OAR1hTWvwsEfYPM78PsK6DIHqre2d4UiIkVCocxEL0o0E12KhNREOLFH/dNFRERERESkaDCbIeYbWDsOkk5YjjXoC49NhVJl7VubiEgBKVLtXK44deoUBw4cAKBWrVp2mT2uEF2KFPVPFxERERERkaIk9TxsmAJRnwJmcC8D7adBgz6a6CUid5wiFaInJyfz0ksv8fnnn2MymQBwdHSkf//+vPvuu3h4eBR0CVYK0aXIUv90ERERERERKSr+2WFZeDQhxrLv/5Bl4dGyNexalohIfipSIfqwYcNYv3497733Hi1btgRgy5YtjBgxgkcffZQFCxYUdAlWCtGlWLi2fzqX/zF1cFL/dBERERERESkcxgyIfBc2vW35OdXRFR56FVq+DE4u9q5OROS2FakQvVy5cixfvpw2bdrYHP/ll1/o2bMnp06dKugSrBSiS7GTmggndl/un55w9bj6p4uIiIiIiEhhOHsIvh8Nh36x7JerBV3nQbXm9q1LROQ2FakQ3cPDg+joaIKCgmyO//HHHzRr1ozk5OSCLsFKIboUW2YzXDxuCdPVP11EREREREQKk9kM+5bDD6/BpdOWY40HwKOT9XOoiBRbRSpEb9u2LWXLluXzzz/Hzc3SzzklJYUBAwZw9uxZ1q9fX9AlWClElzuCTf/0P8CUefU19U8XERERERGRgnLpLPw0CXYtseyXKg8dZkDdp/Qb0iJS7BSpEP3333+nffv2pKWl0aBBAwD27NmDm5sb69at49577y3oEqwUossdJzMVEn6/3D/9MOqfLiIiIiIiIgUuLgK+HwmnD1r2a7aDzrPgLj97ViUiclOKVIgOcOnSJZYuXcqff/4JQFBQEMHBwbi7uxfG8FYK0eWOlmv/9AaWGeped2t2gIiIiIiIiNy+zDTYMhd+nQnGdHByhzavQfPh4Ohs7+pERG6oyIXoRYVCdCkR1D9dRERERERECsvpv+D7URD3q2W/Ql3oOh+q3GffukREbqBIhegzZsygQoUKPPvsszbHP/vsM06dOsW4ceMKugQrhehS4lj7p/8Gp2LUP11ERERERETyn9kMu5fCj29AyjnAAM2GwiMTwU35i4gUTUUqRPfz8+PLL7+kRYsWNse3b99O7969OXz4cEGXYKUQXUq0G/VPr9QYygSof7qIiIiIiIjcmuTTsG4C7A237HtVgk7vQFBX+9YlIpKNIhWiu7m5sX//fvz9/W2OHzp0iDp16pCamlrQJVgpRBe5TP3TRUREREREpKDE/mJp8XLu8sTJWp2h03/Bp4p96xIRySKvWbFDYRRTtWpVIiIirjseERFB5cqVC6MEEbmWW2nwawMPjIRmIVC1Bbh4QkYy/BMJO96HrXPg8C+WwF1EREREREQkr2o8DC9uhVavWH77+cBqeP9+2LbA0nZURKQYcSqMQYYOHcrIkSPJyMjgkUceAWDDhg2MHTuWV155pTBKEJGcGAzgfbdlC+gEZ/+yzE4/FQOXTkHsj5btrupQsZFlgRj1TxcREREREZEbcXaHtpOg7tPw/Uj4Zzv88BrsXQZd50GlBvauUEQkTwqlnYvZbOa1115j/vz5pKenA5YWL+PGjWPSpEkFPbwNtXMRySOb/umHrh53cALfOpZ2L+qfLiIiIiIiInlhMsFvYfBTKKSdB4MDPPAitHkdXD3tXZ2IlFBFqif6FUlJSezfvx93d3cCAgJwdXUtrKGtFKKL3ILURIjfDSfUP11ERERERERuw8UTltnof6y07PtUhc6zILC9fesSkRKpSIboVxw5coTk5GRq166Ng0OhtGW3UoguchvMZrh4HOJ/g5N7IT3p6msevpYwvVIjS791ERERERERkZwc/BFWvwLnj1r263SDjm+DV0W7liUiJUuRCNE/++wzEhMTGT16tPXYc889x6effgpArVq1WLduHVWrVi2oEq6jEF0kn5iMtv3TTZlXX1P/dBEREREREbmR9GT4ZbplsVGzEVx9oN2bcN8gKORJlyJSMuU1Ky7QfyN9/PHH3HXXXdb9H374gUWLFvH5558TFRVF6dKlmTx5ckGWICIFxcERytWGen3goQlQ5ylLeA6WHur7/webp8G+/4PTf2r1dREREREREbHlUgraT4PnfoHKjSy90lePhs/aw8kYe1cnImJVoDPRy5Yty8aNG6lXrx4AL7zwAqdOnWL58uUAbNy4kUGDBnH48OGCKuE6mokuUsBu2D+9MXhVVv90ERERERERucpkhB0L4ef/WFqHOjhBixHQeiw4u9u7OhG5QxWJmegpKSk2g0dGRvLQQw9Z96tXr86JEycKsgQRKWxupcG/DTwwEpqFQNUW4OIJGcnwTyTseA+2zYXDGy2Bu4iIiIiIiIiDIzzwPAzfDrU6W1qGbpkNHzSH2F/sXZ2IlHAFGqJXq1aN6OhoAE6fPs0ff/xBy5Ytra+fOHECHx+fgixBROzFYADvu6FWV3jwNWg4ACrUt8wmSE6A2HWw5W2IXgj/7oTMVHtXLCIiIiIiIvbmUwX6fAm9vrD8FvO5w7CkG6x4DpJO2bs6ESmhnAry5gMGDGD48OH88ccf/Pzzz9SuXZv77rvP+npkZCR169YtyBJEpCi40j+9XG1LWH7yd0u7l3OHrm4HvgHfOlCpEZQJsFwjIiIiIiIiJVNQV/BvDT9PhR0fw95l8NeP8Oh/oNEzahEqIoWqQEP0sWPHcunSJVasWEHFihX5+uuvbV6PiIigT58+BVmCiBQ1Tm5wdxPLdm3/9JN7LZuLp2XWuvqni4iIiIiIlFxu3tDpv1C/F3z3MpzcB9+GwJ5w6DoXygXYu0IRKSEKdGHRokgLi4oUQWYzXDwO8b/BiT2W/ulXlCoPFRtBpYaWfusiIiIiIiJS8hgzYNsH8MsMyEwBRxdo9Qo8OAqcXO1dnYgUU3nNihWii0jRYjLC2b8gfhecirEsJgOAAe7ytwTqFepaZrSLiIiIiIhIyXLuCKx+Bf7+ybJfNsAyK93vQbuWJVIcGU1mklONODka8HAtmW11FaLnQCG6SDFybf/0Kxyc1D9dRERERESkpDKb4Y8VsPY1S2tQsPRJf/Q/4FHGvrWJFDEmk5lLaUaSUo0kpWZe/tNIUkomKekmAGrdXYo6VT3tXKl9KETPgUJ0kWLqSv/0+N/gUpYV2dU/XUREREREpGRKOQfrQyE6zLLvUQ46zIB6PfSzoZQoZrOZlHSTJSRPsQ3ML6UZyS39dXY04F/BnXvv8Sq8gosQheg5UIguUsyZzXDxX0u7F/VPFxERERERkSNb4fuRcOpPy371h6HLbChT3a5lieQns9lMeqaZiymZJGczq9yUS8Lr6ACl3JzwdHO8vDnh6W7508XJgKEEf+ikED0HCtFF7iA36p9eqRGUV/90ERERERGRO15mOkTOg03vgDHN8nNg67HQYgQ4Otu7OpE8y8g0XZ1Jfs2s8kxjzjGuwQClXC0heSk3J7wuh+Sl3Bxxd3Eo0UF5bopUiG40GgkLC2PDhg0kJCRgMplsXv/5558LugQrhegid6jMVDi5zxKoJx6+elz900VEREREREqOM7GWWemHN1v2y9eBrvOgajO7liWSldFkzjYkT041kpZhyvVaDxcHPN0t4bjnldnl7o54uDrioKD8phWpED0kJISwsDA6d+5MpUqVrvvkY86cOQVdgpVCdJESIOUcnNhtCdTVP11ERERERKRkMZthTzisGw8pZwEDNHkW2k4C99L2rk5KCJPJTHKa0bb1Sorl6ysLeubE1dkh29YrpdwccXRQlpGfilSIXq5cOT7//HM6depU0EPdkEJ0kRLkRv3TKzWCig3VP11EREREROROlHwGfpoIu5da9j0rQMe3oU43TaqSfJHrgp6pRnILXZ0dDZdnkTtZw/JSl4NzZyeHQnuGkq5IheiVK1dm48aNBAYGFvRQN6QQXaSEUv90ERERERGRkunwZvhuJJyNtewHtIfOM6H0PXYtS4oHs9lMWobp6iKeqZcX9rw8qzzvC3pebb2iBT2LjiIVos+aNYtDhw7x3nvv2f2bQyG6iOTcP90ZfIPUP11EREREROROk5EKv86CLXPAlAHOHvDwBLj/eXB0snd1UgSkZ5qutl65lQU93bME5Zf/dNOCnkVekQrRu3fvzi+//EKZMmW49957cXa2XRV5xYoVBV2ClUJ0EbGRa//0BpZAXf3TRURERERE7gwJf1oWHj261bJfsb5l4dG7G9u1LCkcmUYzyVf6k9v0Ks8kPTP3iNTD1cEmJC+lBT3vCEUqRB80aFCury9atKigS7BSiC4i2VL/dBERERERkZLBZIJdSyz90lPPg8EBmg2DRyaAq5e9q5PbdGVBT2vrlSyzyvO8oKe1T7kW9LzTFakQvShRiC4iN2QywpmDcGIXnNqv/ukiIiIiIiJ3oqQE+OF1+H25Zd/7bug0E2p3sm9dckPWBT1Trp9VnqcFPa8JyT3dHSnl5oizoxb0LGmKZIh+6tQpDhw4AECtWrXw9fUtrKGtFKKLyE3JtX96ncv902uqf7qIiIiIiEhx9dd6WD0aEo9Y9oO6Qsf/gndl+9ZVwmW3oOeVxTyTU403XNDzSuuVUpdD8iuBuRb0lKyKVIienJzMSy+9xOeff47JZPm1CUdHR/r378+7776Lh4dHQZdgpRBdRG6Z+qeLiIiIiIjcmdIvwaa3IfJdMBvBxQvaToKmgzVpqoClZ5qsfcmTs/Ypv9UFPd0dcXPWgp6SN0UqRB82bBjr16/nvffeo2XLlgBs2bKFESNG8Oijj7JgwYKCLsFKIbqI3DazGS4cs7R7ObFX/dNFRERERETuFCd+h+9ehn93WvbvbgJd50LFenYtq7jLdkHPy7PKb3ZBzyutV7Sgp+SHIhWilytXjuXLl9OmTRub47/88gs9e/bk1KlT2V9YABSii0i+Uv90ERERERGRO4vJCDs/g/WTIf0iGByhRQi0fg1cCq+bQnFz7YKeWVuv3GhBT7fLC3qW0oKeUsiKVIju4eFBdHQ0QUFBNsf/+OMPmjVrRnJycg5X5j+F6CJSYNQ/XURERERE5M5x4TisHQf7v7Xsl74HOs+BgHb2rcuOzGYzl9JMWWaVX/4zxcilNC3oKcVPkQrR27ZtS9myZfn8889xc7PMxkxJSWHAgAGcPXuW9evXF3QJVgrRRaRQqH+6iIiIiIjIneHAWlg9xtLWE6DuU9DhLfAsb9+6Cojtgp5XZpTf/IKeVwLzUpcDc1dnBeVS9BSpEP3333+nffv2pKWl0aBBAwD27NmDm5sb69at4957772l+7711lu8/vrrvPzyy8ydOzdP1yhEF5FCdcP+6Y0v90/3sVuJIiIiIiIicgNpSfDLNNj+IZhNlp/hHp0CjfqDQ/EMh7Mu6JmUarw6uzzFSGYuSfnVBT2vn1WuBT2luClSITrApUuXWLp0KX/++ScAQUFBBAcH4+7ufkv3i4qKomfPnnh7e/Pwww8rRBeRoi/X/unVs/RPd7VrmSIiIiIiIpKD47ssC4/G77Hs39McusyF8rXtWlZOrlvQM+VqG5YbL+jpeDUkzxKYu2tBT7mDFLkQPT8lJSXRuHFjPvjgA6ZOnUrDhg0VootI8ZKRAgm/q3+6iIiIiIhIcWPMhB0fwc/TLL9t7OAMD46EVmPA2a3Qy7FZ0DPFtld5ah4X9LRpveLuRClXLegpJYPdQ/Rvv/2Wjh074uzszLfffpvruY8//vhN3XvAgAGUKVOGOXPm0KZNm1xD9LS0NNLS0qz7Fy5coGrVqgrRRaTouGH/9MbgVUn900VERERERIqSxKOw5lU4+INlv0wN6DIHqrfO96GuLOh5JRxPztKrPDnNmOu1zk6Gq33Kr5lV7qQFPaWEs3uI7uDgwIkTJyhfvjwOufSGMhgMGI25/8OeVXh4ONOmTSMqKgo3N7cbhuihoaFMnjz5uuMK0UWkyMm1f3oFy+x09U8XEREREREpOsxmiPkG1o6DpBOWYw36wmNToVTZm7zV7Szoacg2JC+lBT1FcmX3EL0g/PPPPzRp0oSffvqJ+vXrA2gmuojcma70T4/fBafVP11ERERERKRISz0PG6ZA1KeAGdzLQPtp0KDPdb9VnJ5puhyQZ9oE5smpuS/o6WDA0m7Fzenyn454uVu+1oKeIremSIXon3/+Ob169cLV1TbsSU9PJzw8nP79++fpPqtWraJ79+44Ol7tEWw0GjEYDDg4OJCWlmbzWnbUE11Eih31TxcRERERESke/tlhWXg0IQaA1CoPcrzFDM66VCM5jwt6lnK90pvcMUsbFic8XBWUi+S3IhWiOzo6Eh8fT/ny5W2OnzlzhvLly+e5ncvFixc5cuSIzbFBgwZRu3Ztxo0bR926dW94D4XoIlKs5dY/vWIDqKj+6SIiIiIiIoXBeHlBz2TrYp6XW68kp1L1r0+o/fd7OJrSMDq4cKDGixz0H4LZwQW4vKCnTUhuacPioQU9RQpVXrNip8Ioxmw2Z/tJ2bFjx/DxyXtvXy8vr+uC8lKlSlG2bNk8BegiIsWe+13g/zD4tbH0T4/fBSf3QnoSHI2wbOqfLiIiIiIiki+uXdAza+uVnBf0dORg9WEk3N2RBn+EUiZhC3X+mkvA6TWkdpiNe82WWtBTpJgp0BC9UaNGGAwGDAYDbdu2xcnp6nBGo5HDhw/ToUOHgixBROTOZDCAT1XLFtjZtn968kn4+wf4e536p4uIiIiIiNyA2WwmNcNEcqqRi5dnlSfncUFPJwdDtq1XPN0dcXGqAA99D/uWww+v4XzuIM7/1wUaD4BHJ1smSYlIsVCg7VwmT55s/fOVV17B09PT+pqLiwt+fn489dRTuLi4FFQJ11E7FxG5o+XWP718Haio/ukiIiIiIlIyWRb0zNJ6JcvXxjwu6Ol5TWDumtcFPS+dhZ8mwa4llv1S5aHDDKj7lNpxithRkeqJvnjxYnr16oWbm1tBD3VDCtFFpMRIOWcJ00/sgkunrx5X/3QREREREblDZRpN2YbkSamZZORhQc8rIXmpglrQMy4Cvh8Jpw9a9mu2g86z4C6//Lm/iNyUIhWiFyUK0UWkxDGbbfunZyRffU3900VEREREpJi5sqBnUkrm5bYrVwPz1AxTrte6uThcbblyeTFPTzdHSrk64lBYC3pmpsGWufDrTDCmg5M7tHkNmg8HR+fCqUFEgCIWohuNRubMmcNXX33F0aNHSU9Pt3n97NmzBV2ClUJ0ESnRTEbb/ummzMsvGKBMdUu7F/VPFxERERERO7Ms6GnMdlb5pRwX9LRwcTJcF5J7ullmlzs5FqHfxD39F3w/CuJ+texXqAtd50OV++xbl0gJUqRC9EmTJvHJJ5/wyiuv8MYbbzBhwgTi4uJYtWoVkyZNYsSIEQVdgpVCdBGRy6z903+DxLirx9U/XURERERECsGVBT2TUiztVrIG5pfSbrCgp6PBJhzPGpi7ODkU3kPcLrMZdi+FH9+wtOTEAM2GwiMTwU25lUhBK1Iheo0aNZg/fz6dO3fGy8uL3bt3W49t27aNL7/8sqBLsFKILiKSjZSzEL87m/7pXlCxvvqni4iIiIjILUvLMJGUen3rlZtf0PPqrPI8L+hZXCSfhnUTYG+4Zd+rEnR6B4K62rcukTtckQrRS5Uqxf79+7nnnnuoVKkSq1evpnHjxhw6dIhGjRpx/vz5gi7BSiG6iEgu1D9dRERERERugXVBz2tnld9gQU8D4OFqWczTGpZfnl2erwt6Fhexv1havJw7bNmv1Rk6/Rd8qti3LpE7VF6zYqfCKKZKlSrEx8dzzz33UKNGDX788UcaN25MVFQUrq7quysiUmQYDOBT1bIFdr7cP/03OP0nJJ+Ev3+Av9epf7qIiIiISAlkNJkvzya/GpIn53FBT3cXBzzdnCwzy7ME5oW6oGdxUONheHErbH4HIubBgdVweBM88gY0e07tNkXspFBmor/22mt4e3szfvx4li1bxjPPPIOfnx9Hjx5l1KhRvPXWWwVdgpVmoouI3IKMFEjYZ5mhrv7pIiIiIiJ3LNPlBT2Tr5tVnsmltNyDcuuCntnMKi9SC3oWFydj4PuR8M92y37lRtB1HlRqYNeyRO4kRaqdy7W2bt3K1q1bCQgIoGvXwu3tpBBdROQ25do/vYGl5Yun+qeLiIiIiBRV2S/omUlSipHkNCO5JUVXF/S80qf86sKexWpBz+LCZILfwuCnUEg7DwYHeOBFaPM6uHrauzqRYq9Ih+j2pBBdRCSfmM1w4Z8s/dMvXX1N/dNFREREROzKbDaTnmm+GpKnGEnOEpgbc5lUbrOg5zWzyu+4BT2Li4sn4IfX4I+Vln2fqtB5Fv/f3p3HuVWX/f9/n5yss3Wjpdt0AcrSBSiCWEAQrJTKouJXlh+yCN6Kwq0VBURFwVtZbzZRQf3eUm7Er7d6g2wCFigtCLKUslfWQgvdhC6zZT3n8/vjJJlkZk4y085MMpnX877nMXOSk+RzxsM0eefKdWn3BZVdFzDEVTxEv/vuu3u973HHHTcQS+gRIToADAA3k+2fvtLrn+5msldY9E8HAAAABlDacbu3Xsn2KU87ZQZ6ZoPxwqryhmhQsTBBedV6/W/Sfd+Wtq3xtmd+Vlp4pdQ4vqLLAoaqiofogUDxR3gsy1LXh8r9QXYcZyCW0CNCdAAYYOX6p0/YTxq1K/3TAQAAgF7qNtAz3jnYM9nLgZ5dW68w0HMIS7VLSy+T/nGTZBwpMkKa/yPpI1+SArTUAfqi4iF6oYceekgXXnihLrvsMs2bN0+S1xf9Bz/4gS677DJ96lOfGugl5BGiA8Agon86AAAA0Cu5gZ5eRXlx65VeDfSMBYuryhnoWfvWvyDd801p3Upve/JHvcGjO8+s7LqAIaSqQvTZs2fr5ptv1iGHHFJ0+WOPPaavfOUrWrVq1UAvIY8QHQAqgP7pAAAAgDfQM+V2DvIsqCrfnoGeDdGg6hnoOby5jvT0b6RH/kNKtUmBoHTQN6TDLpBCsUqvDqh6VRWix2IxPfPMM5o9e3bR5S+++KIOPPBAxePxgV5CHiE6AFRYYf/0f63yPn4oyeufvmu2f/os+qcDAABgSCoa6JmtKs8F5u29GOiZG+ZZH2WgJ/pg23vSXy+QXrvP2x41XTrmOmnXwyu7LqDKVVWIfuihhyoajeq2227TzjvvLEnauHGjTjvtNCUSCS1btmygl5BHiA4AVaRk//RZXoU6/dMBAABQhdIZNxuMM9ATVWTVPV6Y3rrO2977ROnIn0oNYyu7LqBKVVWI/uabb+pzn/ucXn/9dTU3N0uS1q5dqxkzZugvf/mLdtttt4FeQh4hOgBUqfhmL0zfsFLq+LDzcvqnAwAAoEKKBnrGC8Lyvgz0jBUH5nUM9MRAS7RIj/xEevrXkowUGyV96j+kuV/k9RTQRVWF6JL3caYlS5bon//8pyRpr7320vz58wf9HVZCdACocmX7p+/nher0TwcAAEA/6DrQM996JZ5RR6p0UB4JBbIDPO2iwLw+wkBPVIH3VniDRze+5G1PPUQ69npppxkVXRZQTaouRK8WhOgAMITQPx0AAAD9wBijeMrNV5W3xr3+5H0e6NmlqjzEQE9UOyct/eOX0tLLpUxcssPSx78tHfItXkcBqoIQ/Wc/+5m+8pWvKBqN6mc/+1nJfb/xjW8MxBJ6RIgOAENUOu5VUGwo0T999G6SxQsZAACA4aj7QM/O1iu9GugZ6xzi2RANqj5qqzEWVDho0accQ9+Wd6X7vi29ucTbHjPDq0qfdkhFlwVUWsVD9OnTp+vZZ5/VmDFjNH36dP8FWJbefvvtgVhCjwjRAaAGlO2fvp/UOKFy6wMAAMCAyQ30zLdd6e1AT0uqjxS0XmGgJ4YbY6RX7pDu/67Uvsm7bO4XvX7pdaMruzagQioeolcrQnQAqCGl+qc3jPfavdA/HQAAYMjJDfRsTWTUvj0DPbtUlTPQEygQ3yI9dIm0YrG3XbeTdNTl0pwvMHgUww4hug9CdACoUW5G+uB1rzqd/ukAAABVz3WzAz0TxSF5WzyjeC8HeuZbr8RsNWZbsNgE5UDvvPukdO8i6V//9LZ3OVw65lpp9C4VXRYwmCoeop933nm93vfaa68diCX0iBAdAIYB+qcDAABUhdxAz84+5Z2BeUeZgZ6h3EDPWDDbgoWBnkC/y6SkJ26Qll0tOUkpGJUOu0A66BuSHar06oABV/EQ/fDDD+/VfpZl6ZFHHhmIJfSIEB0AhpmOzV6Yvn6lFO/aP31fL1CnfzoAAMB2yw30bI1nvP7kXarK3RKpgx2Q6qNdWq9k+5Qz0BMYRB++5VWlr17ubY+bKR17g9T80YouCxhoFQ/RqxUhOgAMU0X901/wqtVz6J8OAABQVtFAz4Kq8vZeDvTMVZUXVpRHGegJVA9jpBf+ID34PSm+WZIl7X+m9MkfSrGRlV4dMCAI0X0QogMA6J8OAADQM8c1PYbkvRnoWZcd6FlfEJI3xLIDPQnKgaGj/UNpycXS87d72w07SwuvlGZ+lsGjqDlVF6I/++yz+uMf/6g1a9YolUoVXXfHHXcMxhIkEaIDALqgfzoAABhmXNeoPekUt16Jez/3daBnrvUKAz2BGrR6uXTPImnzW972jAXS0f8pjZxS0WUB/amqQvQ//OEPOu2007RgwQL97W9/05FHHqnXX39dGzdu1Oc+9zndcsstA72EPEJ0AIAv+qcDAIAaUXKgZ8JRqSCgcKBnLizPDfZkoCcwzKQT0mPXSI9fJ7lpKVQnHf596cCzJTtY6dUBO6yqQvS9995bX/3qV3XOOeeosbFRL7zwgqZPn66vfvWrmjBhgi699NKBXkIeIToAoKze9E+fsK8U4d8RAABQOcYYJdNu5xDPXOuVbFV57wd6drZeYaAngB5t+qc3eHTNk972hH28waMT51Z0WcCOqqoQvb6+Xq+88oqmTZumMWPG6NFHH9WcOXO0atUqHXHEEVq/fv1ALyGPEB0A0Cfl+qdPmCuNpX86AAAYOKmM29l6pUtVeaY3Az1jBUE5Az0BbC/XlVbe5vVLT2zzWl5+9KvSEd+XIo2VXh2wXXqbFQ/K5y5GjRql1tZWSdKkSZP08ssva86cOdq6das6OjoGYwkAAGyfQFAaN9P7SseljS96Ferb3pU2v+l9Bf5C/3QAALBDMo5Re64/eVGv8oxSmdK1b3WRQFFIXs9ATwADIRCQPnK6tMdC6YGLpJf/LD11k7TqHunTV0t7frrSKwQGzKCE6IceeqiWLFmiOXPm6Atf+IK++c1v6pFHHtGSJUv0yU9+cjCWAADAjgvFpMkHel9d+6dveN77on86AADwkRvomW+9UlBV3uuBnvk+5Qz0BFAhDeOk//Nf0j4nS/edJ219V/rDydJex0oLr5KaJlZ6hUC/G9B2Li+//LJmz56tzZs3K5FIaOLEiXJdV1dddZWeeOIJzZgxQz/4wQ80atSogVpCN7RzAQD0q3L90yfM9UJ1+qcDADAs7PBAzy4heUPMVn3UVsjmk24AqlCqQ1p2pfTEjV7ry3CjNP9H0v5nSgG70qsDyqqKnuiBQEAHHHCAvvzlL+ukk05SY2Pl+yMRogMABoybkT54zQvUP/gn/dMBAKhhubC8pSOjlnjG+96RUWu8/EDPXOuV+mxIngvMGegJYMja8LJ0zzel95/1tift7w0eHT+7susCyqiKEP2xxx7TLbfcoj//+c9yXVef//zn9eUvf1kf//jHB+ohyyJEBwAMiq7903PssDR2Jv3TAQAYIowxSqbdoqC8Je6oNZ7xHerpO9AzZisaYqAngBrlOtKzv5UeulRKtUqWLR10rnTYd6VwXaVXB/SoKkL0nPb2dv3xj3/U4sWL9dhjj2m33XbTWWedpdNPP13jx48f6IcvQogOABh0Xfun54QbpQn7SuPpnw4AQDVIpl215sLygu9pn8GeliU1RoNqqrPVGAuqqS6oplhQdVEGegIYxlrWSfdfKK2629seOVU65lppt/mVXRfQg6oK0Qu9+eabuuWWW3Tbbbdpw4YNOuqoo3T33XcP2uMTogMAKob+6QAAVIW046o1H5Q7+cA8mfYf7tkQtdVUFywKyxuitgIM9QSAnr12v3Tfd6SW97zt2f9HOupybzApUCWqNkSXvMr022+/XRdddJG2bt0qx3HK36ifEKIDAKoC/dMBABhwjms6K8uzoXlrR0YdKf+wvC4cUGNdZ1CeC85twnIA6Ltkq7T0MumpmyXjStER0qd+LM09TQrQ2hKVV5Uh+vLly/Xb3/5W//u//6tAIKATTjhBZ511lj72sY8N1hII0QEA1SfdIW18yad/+qxs//Rd6Z8OAIAP1zVqSzjd2rC0J/wLtqKhQLfK8sY6WyGbf28BoN+tWynd/Q1pw4ve9pR50jHXS+P2rOiygKoJ0detW6fFixdr8eLFevPNN3XQQQfprLPO0gknnKD6+vqBfOgeEaIDAKpax4cF/dM3d14eaZLG70P/dADAsGaMUXvCKQrKWzoyaks48ntlGwpaGhELetXlucC8LqhwkLAcAAaVk5Ge/pX0yE+ldLsUCEmHLJI+/h0pFK306jBMVUWIvnDhQj300EPaaaeddNppp+nMM8/UHnvsMVAP1yuE6ACAIcEYadsaL1Df+CL90wEAw4oxRvGUWxSU59qyuD6vYIO2VVRV3lRnqykWVCQUkMWQTwCoHlvXSH89X3r9AW979K7SMddJuxxW2XVhWKqKEP24447TWWedpWOOOUa2bQ/Uw/QJIToAYMgp2z99P2ncLK/9CwAAQ4gxRsm0W1BZ7uQD84zT80vVgKVubVia6oKKhQnLAWDIMEZ69S7p/gultg3eZfv8f9KRP5Hqx1R2bRhWqiJEHwg33XSTbrrpJr3zzjuSpFmzZumHP/yhFi5c2KvbE6IDAIY0+qcDAIaoVMYtGvCZC8tTmZ5fklqW1Bj1+pQ3FQTm9VGbsBwAakVim/TQpdKzv5VkpNhoacFl0j4nef8QAAOsZkP0e+65R7Zta8aMGTLG6NZbb9XVV1+tlStXatasWWVvT4gOAKgZ9E8HAFShtOOqtcPp1oYlkXZ9b1MfLQ7Km+qCaojaCgQIUABgWFj7tHTPN6VNr3rb0w/1Bo+O2bWiy0Ltq9kQvSejR4/W1VdfrbPOOqvsvoToAICaU7Z/+n5eqE7/dABAP3Jckw/I84F5R0YdKf+wvC4c6DbgszEWlE1YDgBw0tITN0rLrpQyCcmOSIeeLx38TSlI60oMjGERojuOoz/96U86/fTTtXLlSs2cObPsbQjRAQA1rWT/9N28di/0TwcA9IHrGrUlOivLc6F5e8LxvU001CUsj3ltWUI27cYAAGVsflu69zzp7aXe9tg9var0qfMquizUppoO0V966SXNmzdPiURCDQ0N+v3vf69Pf/rTPe6bTCaVTCbz2y0tLWpubiZEBwDUPvqnAwD6wBij9qSTD8q9KnNHrYmM/F41hoJWtzYsjbGgIiH+bQEA7ABjpJf+JD1wkdTxgXfZR86Q5l8ixUZVcmWoMTUdoqdSKa1Zs0bbtm3Tn//8Z/3f//t/tWzZsh4r0S+55BJdeuml3S4nRAcADCsl+6fv6wXqDeMrtjwAwOAxxiiecrsN+GzpyMj1eXUYDFjZynI734alKRuWM+QTADBgOjZLS34orbzN264fJx11uTT78wweRb+o6RC9q/nz52vXXXfVr371q27XUYkOAECBXP/09dn+6ZnC/ukTvDCd/ukAUBOMMUqm3WxQXjzoM+P0/DIwYEmNBf3Kc9XlsTBhOQCggt75uzd49MM3vO3d5ktHXyONmlbRZWHoG1Yh+hFHHKEpU6Zo8eLFZfelJzoAAFn0TweAmpHKuEX9yluz31OZnl/uWZbUELWLgvKmWFD1UZuwHABQnTJJ6fHrpMeukZyUFIxJh18kfezrkh2q9OowRNVsiH7RRRdp4cKFmjJlilpbW/X73/9eV155pR588EF96lOfKnt7QnQAAHpQqn/6uFnS+P2k0bvQPx0AKiztuGrtUlXe0pFRIu363qY+anfrW94QtRUIEJYDAIagD96Q7lkkvfu4t73zHOnYG6TJH6nosjA01WyIftZZZ+nhhx/W+vXrNWLECO2999668MILexWgS4ToAACURf90AKg4xzX5gLwwMO9I+oflsXCguLK8LqiGaFBBm7AcAFBjjJGev1362w+k+BZJlvTRf5OOuFiKkveh92o2RN9RhOgAAPQS/dMBYMC5rlFbontleVvC8b1NJFQYlntV5o2xoEJBPi0EABhm2j+QHvye9OL/eNuNE6VPXyXtdWxl14UhgxDdByE6AADbgf7pALBDjDFqTzpFQXlLh6PWREZ+r8hCttVtwGdjLKhIiLAcAIAibz0i3XuetGW1t73H0V6YPmJyZdeFqkeI7oMQHQCAHUT/dADwZYxRPOV2a8PSGs/I8enEEgxYaqwLqilWPOgzEgow5BMAgN5Kx6XlV0t/v8ErAgo3SEf8QProV6SAXenVoUoRovsgRAcAoB91fCCtf97roU7/dADDiDFGybSbDcqdov7lGafnl1gBS2rsMuCzqS6oWJiwHACAfrPxVeneRdLap7ztiXO9waMT9qnoslCdCNF9EKIDADAA6J8OoIalMm6XNixeWJ7K9PxSyrKkhqhdFJQ3xoJqiNqE5QAADAbXlVbcIj10qZTcJlm29LGvSYd/TwrXV3p1qCKE6D4I0QEAGGD5/unPed8L+6eP2U0aT/90ANUp47hqiTv5oDwXmifSPn1YJNUXhuXZ7w1RW4EAYTkAABXXukF64LvSK3d62yOapaOvkXZfUNl1oWoQovsgRAcAYBCl2qVNuf7pazovp386gApyXJPvU15YWd6R9A/LY+FAtzYsDdGggjZhOQAAVe/1v0n3fbvzNcnMz0oLr5QaaT053BGi+yBEBwCgQuifDmCQua5RW9JRa0FQ3tKRUVvC8b1NJBQoCMptr4d5LKhQkDf7AAAY0lLt0tLLpH/c5H1aNjJCmv8j6SNfkgL8Oz9cEaL7IEQHAKDCetU/fV8p0lixJQIYWowxak86BS1YHLVkK839Xu2EbCtfUZ4LzRtjQUVCvIgGAKCmrX9Buueb0rqV3nbzgdIx10s7z6zoslAZhOg+CNEBAKgi9E8H0AfGGMVTXYZ8ZsNyx6cTSzBgqbEuqKaYXRSYR0IBhnwCADBcuY709G+kR/5DSrVJgaB00Dekwy6QQrFKrw6DiBDdByE6AABVqlT/9MaJUnSUFMt+RUd73yNNUsCu3JoBDJhk2i3qV577nnF6fvkSsOS1XulSWV4XISwHAAA+tr0n/fUC6bX7vO1R06VjrpN2Pbyy68KgIUT3QYgOAMAQ4Nc/vSsrIEVHdIbq+aA9ux1uYGgpUOVSme6V5S0dGaUyPb9MsSypIWp3BuXZ0Lw+aitAWA4AALbHqnu8ML11nbe994nSgsuk+p0quy4MOEJ0H4ToAAAMIcZIreu9UD2xWYpv8b4Sm6X41oL2Lz4CwS4V7AUBe3SUFKrzEjkAAy7juGqJZ4d8FgTmiZRPHxZJ9QVhee57Q9RWIMB/twAAoJ8lWrz2Lk//RpLxXjMc+RNp31N4zVDDCNF9EKIDAFAjjCslW6XEFq9aPR+wZ7cT2ySVeZpjh71QvadWMbFRUjA6KIcC1BLHNWqLFwflLR2OOpL+b3rFwoFubVgaY0EFbV6wAgCAQfbeCm/w6MaXvO2ph0jHXi/tNKOiy8LAIET3QYgOAMAw4TpekF4Ysucq2OObpVRr+fsIxYpD9a6V7HZowA8DqFaua9SWzFaWF1SXtyX8w/JIKFAQlHcO+gwFabsEAACqiJOW/vFLaenlUibuFd98/NvSId+SgpFKrw79iBDdByE6AACQ5D0xThRWr+cq2LM/pzvK30e40SdgH+31amfoKWqAMUbtubA87uQD87Z4Rq7PK4mQbRVVlueqyyMhwnIAADCEbHlHuu/b0psPeds77S4dc7007eBKrgr9iBDdByE6AADolUyyOFTPV7Nnt51kmTuwskNPc+H6yIKq9tFSpJGhp6gqxhglUm6XNizewE/Hp225HbDUlKsozwblTXVBRUMBWfQOBQAAtcAY6ZU7pPu/K7Vv8i6be6r0qR9LdaMruzbsMEJ0H4ToAABghxnjVarnA/YtXQafbpHcTOn7sGwpOrIzVC/syx4bLYXqGWCEAZNMu0VBeS4sTzs9vzQIWMoH5I0Fgz7rIoTlAABgmIhvkR66RFqx2Nuu20k66nJpzhd43j6EEaL7IEQHAAADzrhSqs2/VUxiq7dPKYFQz8NOcz+HYoNyKBjaUhlXrQVBeS40T2V6fglgSWqI2Z19y7NheX3UVoAXhwAAANK7T0r3LpL+9U9ve9cjpKOvkUbvUtFlYfsQovsgRAcAABXnOlKyxb9VTLJFUpmnaMFo90GnsYJtOzwoh4LqkHFMZ1he8D2R8n+zpj5S2IbF+7khGpQdICwHAAAoKZOSnrhBWna11+YxGJUOu1A66N8lO1Tp1aEPCNF9EKIDAICq52a8anW/VjGptvL3Ear3bxUTHSkFggN9FBgAjmvUFs906VvuqCPp+N4mFg50a8PSGAsqaBOWAwAA7JAP3/Kq0lcv97bHzZSOvUFq/mhFl4XeI0T3QYgOAACGPCdVULneJWCPb5YyiTJ3YHmDTbsG7LlWMZEmKWAPyqGgZ64xak843dqwtCcc388oREKBbBsWuygwDwUZYAsAADBgjJFe+IP04Pe85+KypP3PlOb/SIqOqPTqUAYhug9CdAAAUPPS8e4he2KzFN/qbbvp0re3At4T/qhPq5hwg7cPdpgxRh3JbFged/KBeVs8I9fnWXrItjoryrPfm+qCioT43wQAAKBi2j+U/vYD6YXfe9sN46WFV0ozP8Pg0SpGiO6DEB0AAAxrxkjp9my4vrWgVUxu8OlWyfi3BpHktYIpqmDv0ps9VMcLhS6MMUqk3C5tWDJqjWfk+LQttwOWmmK2F5QXhOXRUEAWv18AAIDqtHq5dM8iafNb3vaMBdLR/ymNnFLRZaFnhOg+CNEBAABKMK6UbC0I1bcUh+yJbSo79NSOdKlgL2gVExstBSODciiVkky73QZ8tnZklHZ6/r0FLOXbrxS2YamLEJYDAAAMSemE9Ng10uPXeZ8CDdVLh39POvBsyWY2UTUhRPdBiA4AALADXMcL0v1axaRay99HKFYcqkdHFley26GBPop+kcq4au1SWd7SkVEq0/PTa0tSQ8zu1oalPmorQFgOAABQezb90xs8uuZJb3vCPt7g0YlzK7osdCJE90GIDgAAMICcdGcFe6JLFXt8i5TuKH8f4UafVjGjvV7tgzz0NOOYbmF5azyjeMqnD4uk+ohdEJTbaqoLqiEalB0gLAcAABhWXFda+d/Skh96xShWwKtIP/x7UqSx0qsb9gjRfRCiAwAAVFAm0T1gL9x2kmXuwMoOPc2F6yOLq9ojjds99NRxjdrihW1YHLV2ZNSe9O8RHwsHOivLc8M+Y0EFbcJyAAAAFGjbJD1wkfTyn73tpsnSp6+W9vx0Zdc1zBGi+xjuIfqH8Q/119V/VXNjs6Y0TtGkxkmK2LXdlxQAAAwRxniV6oW92PODT7NBu5spfR+WnW0Pk2sVU9CXPTZaCtXLldSecLq1YWlPOL7d3iOhQL6qvLB/eTi4fYE9AAAAhqk3HpLuO0/a+q63vdex0sKrpKaJlV3XMEWI7mO4h+hPrHtCX13y1fy2JUs71++cD9WbG5u9n5u8n+tD9RVcLQAAQAHjSqk2/0r2xFZvnxIcBdUeaFKHNSL7vUkdgRFqt5rUEWiSgrFuAz6b6oKKhAjLAQAA0E9SHdKyK6Qnfi4Zx2tnOP9H0v5nDnrrwuGOEN3HcA/RX/zXi7r1lVu1tnWt1rSuUXu6veT+o6OjiwP2ps6fR0ZGymIIFgAAqDBjjBJpVy3tSXVs26JU24cyHVtkJbYo5raozt2mOtOimGlTuWcuJhiVVdSHvaCKPTZKssODckwAAAAYBja8JN3zTen9Fd72pP29waPjZ1d2XcMIIbqP4R6iFzLGaEtyixeot6zR2ta1+XD9vdb3tDmxueTtG0ONmtw4OV+1PqVxirfdOEVj68YqsJ39SAEAAPwk025xG5Z4Rq0dGaWdnp/SBix1VpVHpJHBdjWpRRFnm6yitjFbvCr3ckL1xaF6YcgeHSkFgv17wAAAAKhtriM9+1vpoUulVKvXnvCgc6XDviuF6yq9uppHiO6DEL332lJt+VA9H7Bnw/aNHRtL3jZqRzW5cXJne5iCSvYJ9RMU5AUmAAAoIZ1xi4Lylo6MWuOOkume27VYkhpidrc2LPVRW4HefnLOSRW0iunSiz2+2RuKWpLlDTbt2os9N/g00sTHcwEAANCzlnXS/RdIq+7xtkdOlY65VtptfmXXVeMI0X0QovePRCah99vez4fquer1Na1rtK5tnRzj+N42aAU1sWGimpua1dzQXFTJzqBTAACGl4xj1NqlqrwlnlE85d/bvD5iqzEflNtqigXVEAvKDgxwm7l0vHvIntgsxbd622669O2tgBQd0Rmqd20VE27w9gEAAMDw9c+/Sn/9jtTyvrc9+/9IR10uNYyr7LpqFCG6D0L0gZd209rQtiFfwZ6vZG9Zq/fa3lPSSfreNjfotHDIKYNOAQAY+hzXqC2eqyp38oF5e9L/jfdYOKCmWLAgMPcGfgbtKpzJYoyUbs+G61uz4Xo2bE9s8S4rUWQgyWsFU1TB3qVtTKhOYh4NAABA7Uu2Sksvk566WTKuV4jxqR9Lc0+TAhRd9CdCdB+E6JXlGlebOjZ1aw+zXYNOm4pbxTDoFACAynONUXvC6dKGJaO2uCO/J52RUECNMbuoDUtjLKhwsIZeIBjXezGUD9W3FIfsiW2S728oy450qWAvaBUTGy0F+TQfAABATXn/OW/w6IYXve0p87zBo2P3qOy6agghug9C9OqVG3RaGKzv6KDTXCU7g04BAOhfxhh1JN2ioDz33fV5dhmyraKq8tz3SIh/o+U6XpCeKOzFXvBzqrX8fYRixaF6dGRxJbsdGvDDAAAAQD9zMl5F+tKfSukOKRCSDvmW9PFvS6FopVc35BGi+yBEH7paU61F4foODzrNVrIz6BQAAH/GGCXSbnFleUdGLXFHjk9abgfUrQ1LU11Q0VCAT41tLyfdWcGeKKhiz22nO8rfR7ixhwr27M/REQw9BQAAqGZb10j3fUd640Fve/Su0rHXS9MPreiyhjpCdB+E6LUpkUnovdb3inuwZ78YdAoAQO8ku4bl2e9pp+eniwFLaogVB+VNMVt1EZuwfLBlEgUV7F0C9vhmyUmVuQMrO/Q014d9ZHFVe6SRoacAAACVZoz06l3S/RdKbRu8y/b5/6QjfyLVj6ns2oYoQnQfhOjDT+Gg08Ihp7mQPeX6v6hk0CkAoBalM13bsHiDPpNpt8f9LUn1UbsgKPe+10dtBQjLq58xXqV6YS/2orYxWyQ3U/o+LDvbHibXKqagL3tstBSqZ+gpAADAYElskx66VHr2t5KM93xswWXSPifxnKyPCNF9EKKjUE+DTnM92Hs76DQfsDPoFABQZTKO8ULyojYsGcVTPYflklQfsbNtWDoHfTbEgrID/JtWs4wrpdr8W8Uktnr7lBII+beKiY3y+rUDAACgf6192hs8uulVb3v6YdIx10ljdq3suoYQQnQfhOjorVKDTte2rNWW5JaSt28MNXYL1hl0CgAYCK5r1JrwgvKWDiffhqU96d/OLBYOqLHLgM/GmK2gzb9P6MJ1pGSLT6uYLd51KvOSIhgtaBUzqqCSPbtthwflUAAAAGqOk5aeuFFadqXX4s+OSIeeLx38TSnIc6xyCNF9EKKjv/gNOl3TukabOjaVvG3hoNOulewMOgUA+HGNUXvCKepX3hLPqC3hyO8ZXThodWvD0hgLKhwkLEc/cTNetXp8sxTfWtAqZrN3eaqt/H2E6otD9cKQPTpS4rkRAABAaZvflu49T3p7qbc9dk/pmOulqfMquqxqR4jugxAdg6G/B53mgnYGnQLA8GCMUUeya99y77vr88wtZFvZNizFgXkkRFiOCnNSBaF6QV/23HYmUeYOLG+wadde7LlWMdERDD0FAACQvFk4L/1JeuAiqeMD77KPnCHNv8R73oRuCNF9EKKj0tJuWuvb1hcH7Aw6BYBhyRijRNrNV5S3duSqyx05Pmm5HVC3NixNsaCi4QCzODA0peM9DDst+NlNl769FfCC9Hwv9mz1eq6qPdxAyA4AAIaXjs3Skoullb/ztuvHSQuvkGYdz+DRLmo2RL/88st1xx136J///KdisZgOOuggXXnlldpjjz16dXtCdFSzwkGnuV7s/THodErjFI2IjCBcAYAKSmbD8sI2LC0dGaWdnp+KBSypIVYYlHuDPusiNn/PMXwYI6Xbu/dhz29vlUp8wk+S1wqmqIK9S9uYUB0vJgEAQG1653HpnkXSh29427vNl46+Rho1rZKrqio1G6IfddRROumkk3TAAQcok8noe9/7nl5++WW9+uqrqq8vX4VLiI6hqqdBp4WV7Aw6BYDqkM50bcPiqCWeUTLt9ri/Jak+ahdXltcFVR+1FSDYA0ozrpRs7TlkT2yREttUduipHenSh31UcVV7kFZ6AABgCMskpcevkx67xmuzF4xJh18kfezrkh2q9OoqrmZD9K7+9a9/ady4cVq2bJkOPfTQsvsToqNWdR10WljJzqBTAOh/Gcd4IXmuDUs2OI+neg7LJakuYqupzi5qw9IQC8oOEJYDA8J1vCDdr1VMqrX8fYRi/q1ioqN48QkAAIaGD97wqtLffdzb3nmOdOwN0uSPVHRZlTZsQvQ333xTM2bM0EsvvaTZs2d3uz6ZTCqZTOa3W1pa1NzcTIiOYcVv0OmaljVa376+14NOcwE7g04BDCeua9SayKg1W1Heku1b3p70/9sZDQe6DfhsjNkK2nzqB6gqTrqzer1bq5gtUrqj/H2EG5uDhJIAACztSURBVHuoYM/+HB0hBeyBPw4AAIDeMEZ6/nbpbz/wnu/Ikj76b9IRF0vR4ZmTDosQ3XVdHXfccdq6dasef/zxHve55JJLdOmll3a7nBAd8HQddLqmpbMH+3ut7/V50GluyCmDTgEMNcYYtSWcLgM+M2pLOPJ7thQOWt3asDTGggoHCcuBmpBJFFSwdwnY45u9j0SXZGWHnnbpw56rao80MvQUAAAMvvYPpAe/J734P972rkdIp95Z2TVVyLAI0b/2ta/p/vvv1+OPP67Jkyf3uA+V6MD28xt0mqtk7+ug08JKdgadAqgUY4w6kl37lnvfXZ9nRUHbKgrKcz9HQoRfwLBljFepnq9g79IqJrFFcjOl78Oys+1hfEL2UD1DTwEAwMB56xHpvu9In71JmnJgpVdTETUfop977rm66667tHz5ck2fPr3Xt6MnOtA/jDHanNhc3Ie9HwadTmmaorGxsQTsAHaYMUaJtFvUr9wLyx1lfNJyOyA1dmnD0hQLKhoO8HcJQN8YV0q1FQw63VpQyb7Z69Vu/GcoSJICIf9WMbFRXr92AACAHeFkJHv4zsKr2RDdGKN///d/15133qlHH31UM2bM6NPtCdGBwZEbdJprC8OgUwADKZl28xXlLQWhedrp+WmOZWXD8nxQbquxLqj6iE1YDmBwuI6UbOm5gj2+WUq2SirzUi0Y9W8VExsl2eFBORQAAIChqmZD9K9//ev6/e9/r7vuukt77LFH/vIRI0YoFitfiUGIDlRebtBpYWuYvgw6ndQ4SZMbJzPoFBiG0pnCNixOPjBPpv2rORuidvGAz7qgGiK2AgHCcgBVzM10qV7fUlzVnmorfx+hev9WMdGREoUJAABgmKvZEN2vOuyWW27RGWecUfb2hOhAdcsNOs0F7H0ddDq+fny+NQyDToGhyRijeMpVWyKj9oSjtoSTrzKPp/zD8rqIraY6u6gNS0MsKJuwHEAtclIFoXpBX/bcdiZR5g4sb7BpbHRBuF7QKiY6gqGnAACg5tVsiL6jCNGBoavroNOuley9HXQ6pWlKt0p2Bp0Cg8t1jTqSXkDennSyYbkXmnckHd8Bn5IUDQeKgvLGbDuWoE3YAwB56XgPrWIKfnbTpW9vBbwgPd+LPVu9nqtqDzcy9BQAAAx5hOg+CNGB2uQ76LTF+5lBp8Dgc1xTFI53huWO4kmnZKdfy5LqI7bqo7YaorYaY8H8wM9wkLAcAHaIMVK6vedWMfEtXruYEu31JHmtYHqqYM+1jQnVEbIDAICqR4jugxAdGJ56GnSaq2Tv66DTwkr28fXjGXSKYS2dcYvC8fZcC5ako0SJ1iuSZAek+miwKCz3vgcVCwd48woAKsW43mDTHvuxb5ES21R26Kkd6dKHfVRxVXuQOTYAAKDyCNF9EKID6Cqeiev91vf7d9BpU7MmN0xW2A4P4pEA/c8Yo1TGeOF4rv1KQWCeypR+GhGyLdUXhOOFgXkkRFAOAEOS63hBul+rmFRr+fsIxfxbxURHSXZowA8DAACAEN0HITqAvmDQKYYDY4wSabcgHHfyoXl7wlHaKf1UIRIKdKsmr48EVR+1FQ5aBOUAMNw46S7V61sLqto3e/3aywk3+rSKGe31ag/YA34YAACg9hGi+yBEB9BfcoNO17Ss6ezBXlDF3pHpKHn7MdEx+WCdQacYaMYYdSRdtSczXcJyR+3JjJzSnVcUCwey4bit+miwICy3FaJHOQCgLzKJnivYE9nQ3fEvUvBY2aGno4qr13NV7ZFGbzAqAABAGYToPgjRAQyGroNO8wF7bwedhhu7DTll0CnKcV2Trx73+pJnCoJyR6X+xbck1WWryfPtV7KBeX3Ulh3gnAMADAJjpHRH9z7shUG7myl9H5adbQ/jE7KH6hl6CgAAJBGi+yJEB1ANWlItnf3XW4qD9t4OOs1XrjPodFjJOCZfTV5UUZ7MqCNZupw8YHlBuVdFHixqv1IXthUgKAcAVDvjSqk2/1YxiW3ePqUEQv6tYmKjvH7tAABgWCBE90GIDqDa9TToNNcyZl37OrklXhh2HXSar2Rn0OmQksq4RRXkbYnO0DyRLh0M2AGrqNVKfqBn1FYszCBPAECNcx0p2eLfKibZKqnMS+BgtLhVTL6SPbvN8ykAAGoGIboPQnQAQ1nhoNNcsJ772t5Bp7mgvS5UN4hHMrwZY5TKmKJw3AvLvYGeqUzpf5pDtlVUTZ6vKI/YioQIygEA8OVmulSvF7SNiW+R0u3l7yPckG0X00OrmOhIiU8FAgAwZBCi+yBEB1CrBmLQaS5gZ9Bp3xljlEi5XjCe9MLxtoLAPOOU/uc3EgoU9CUvrigPM8gTAICB4aSKQ/WuvdkziTJ3YHmDTe2w15s9YG//99zPfpd3vb5X9x1g6CoAAAUI0X0QogMYjkoNOl3TukZbk1tL3p5Bpz1zjVE86RSF47lq8vaEI7fMv7CxcKAoHK/P9iuvi9oK2bzABQCg6qTjPbSKKfjZTVd6heVZAZ+QPSBZwV6E8YX7BbzK+z5dbme3c+sIdl6e+zl3OcE/AGCAEaL7IEQHgO52ZNBpLBjTpIZJNTvo1HGNOrqE4+0JR21JRx1JR6X+FbUk1RWE4/WFLVgitmwGeQIAUDuM8drBJLZKTloyjtejvex312szYxzJdSWT6cXlTvf9cj933a9cD/ihIBes58L5roF81xC+2+U78ImA7f5O8A8AQwEhug9CdADom3gmrvda3yvqv97XQaf5yvUqHXSacYzXbiXpdPYoT3gDPeOp0oM8A5Y6w/GisNxWXdhWgKAcAABUijHZYN3NhvGZznC98GdT4nK3h9uWfGPA7/a9eUPBqZ3gX1b/hvLl2vf0qa0PwT8A5BCi+yBEB4D+k3bSWte+rihYL/xKl/hIc27Q6ZTGbOV605SioL2/B52mMm5ROF7YfiWZLh2UBwNW8QDPqK36SFANUVvRMIM8AQAA+lWvwvoS33M/l7t8Rx6D4H/HwvpSbYDybXx8Ls/fluAfwI4jRPdBiA4Ag6Nw0GnhkNPtGXTatZK9p0Gnxhgl0252iGdBn/JshXk6U/qfu3DQUn3EqygvrCZviAYVDloE5QAAAPC3o8H/Dr1h0EMbIL/2PrlPCpjsZUNeYfDfD335fS8v9cZAL25f2O/fCki8tgCqBiG6D0J0AKi8ngadrmlZo/da3+vVoNOGUKPGxyZpbHSSRoUmaoQ9UQ3WeI0ITlCjPcY38I6GAsUV5ZFgfjscpIoFAAAAw0iu1U8+XO8hhC/bl7+ndj+9uXw73zioleC/a7/+cu17+np5f3+CgOAfNYwQ3QchOgBUN9c12ti2VW9uflert67Ru9vW6L32tdrY8Z42Jd9Xa+bDkrcPWVGNjU7QhLpmTWqYrKlNU7TLyCmaMWaaJjVOGPKDTgEAAIBhqzD439G2PuXa+/RX25+aCP41+MN5y71hUHZOAME/eocQ3QchOgBUnuOafE/y9kSmoPWKo46kU7KjZNokFNcmtZv12uas14epdfpX8n1t6HhPGzrWlx50GghqUkP1DzoFAAAAUCP6EvwP9ByAXrcBcir9W+sfvQrsB7INUJfLy/X7t2yC/wrobVZMOR4AYECknc5Bnu0JR23ZwLw94SieKl2NEbCkhmiwS+sVr195LBJQwJrq85g9Dzpd0+q1ikm7ab3b8q7ebXm3220He9ApAAAAgGHACnSGpUOFMQXtfXpoy+N3eVEbn57aAO1oe6Aybyh0Ow5HcobYGwJWQWjfNZDv2gaobDV+H9r71I2VGidU+uirGpXoAIDtlsq42SryTPEwz6SjZLp0UB60rYJwvHigZzQU6PdBno7raFPHpnyoXjjkdG3r2l4NOi0cclpu0CkAAAAAYJAY01lF35fq/f5u39PX79Wi+WBpj2MqvYqKoJ2LD0J0AOg9Y4ySabcoHC9sv5J2Sv8TEg5aneF4pKCqPBpUOGhVTfBsjNGHiQ/zg01z4XpvB502hhuL28M0NucD97GxsVVznAAAAACAKtHX4H8g2/vsPEdqnlfp30hFEKL7IEQHgGLGGMVTrtqy1eT5ivKk97Pjlv5nIhoKFIXjhe1XQsHAIB3FwGpJtXiV6y1riyvZW9ZqU3xTydvGgjFNapikKY1TulWyj68fz6BTAAAAAAAqhBDdByE6gOHIdY06ksXheC4070g6KpOTqy5XRZ5vvWKrIRpUXcRW0B7eVdbxTDxfsf5e63v59jBrWtdofXvfB51OafJ6sjPoFAAAAACAgUWI7oMQHUCtclxTFI53huWO4klHpf7YW5a6tVvJ9yqP2AoEhndQvr1yg04Lh5x2HXTqh0GnAAAAAAAMLEJ0H4ToAIaydMYtCsfzAz2TjhKp0oM87YCKwvHcEM/6SFB1kf4f5InSug467VrJvr2DTqc0TdGIyIhBOgoAAAAAAIYuQnQfhOgAqpkxRqmM8cLxXPuVRGf7lVSm9J/skG0VtVspDMwjIYLyocJv0Gmukr03g04Lh5wy6BQAAAAAgO4I0X0QogOoNGOMEmm3oJrcyYfm7QlHaaf0n+VIKNBjNXl91FY4aBGQDgM7Ouh0cuNkNTc0d6tkn1A/QXbAHqSjAAAAAACgsgjRfRCiAxgMxhh1JF21JzNdwnJH7cmMnNKdVxQLB/L9yOujwYKw3FYoGBicg8CQ1F+DTnOV7Aw6BQAAAADUKkJ0H4ToAPqL65p89bjXlzxTEJQ7KvXX1ZJUlxvcmWu/kg3M66O2bAZ5YgD096DTwpYxDDoFAAAAAAw1hOg+CNEB9EXGMflq8nxFedJrv9KRLF1OHrC8oNyrIg8WtV+pC9sKEJSjiuQGneZ7sO/goNPCSnYGnQIAAAAAqhEhug9CdABdpTJuUQV5W6IzNE+kSwfldsAqarWSH+gZtRULM8gTtSE36DRfud6lkn17B51OaZyinWI78d8JAAAAAKAiCNF9EKIDw48xRqmMKQrHvbDcqyhPZUr/GQzZBUF5YUV5xFYkRFAObEtu03ut7xUNOV3T4lWyM+gUAAAAAFCtCNF9EKIDtckYo0TKLQrHC9uvZJzSf+oioUBBX/LiivIwgzyB7VY46HRty9qioL03g04nN0zWpMZJqgvWybZsBayAbMuWZVlF2wErkP+yLVuBQHY/WbID3ffrzc+F29vzGF1vX3bNVsC7H3Vezpt0AAAAADBwCNF9EKIDQ5drjOL5kNzpFpi7Zf6axcKBonC8PtuvvC5qK2QTlAODradBp7mAvdyg0+EiYAXyoXouqO/XNwKsgAIB7zGKgvzc4wa2442AfniTo7f3V/Ln7XgMAAAAAMNLb7Pi4CCuCQDKclyjjsKgPFdRnnTUkXRU6m0/S1JdQThe2H6lPmLLZpAnUFVCdkhTm6ZqatPUbtcVDjp9v+19JZ2kXOPKcR25xpUrt2jbMdnLs1+F2735uXDbMY5ct/tj9Lifz+XGmLL7larCz8kdq4yk8rtjB/X5DYLBeMMh+ziWrKI3B/r0Rklf33ThUxYAAABAEUJ0AIMu4xi1JzJqSzqdPcoT3kDPeKp0ShSw1BmOF4XlturCtgIE5UBNsAO2JjRM0ISGCZVeyoAxxsioIGwvfIPA7XsoX3a/gvvPvVGwo28EdNuvxJsc/XIMBY+T/90VHkeJ351R+Q9fOsaRYxylxacgBlo+aFfxpyz67Y0Aq+CNjTKf5hjMNzl6++ZKT29s5D8x0sfH4A0LAACAHUeIDmBApDJuUThe2H4lmS4dlAcDVj4Y7xzi6VWUx8JUrwGoDZZlyZKlgJVtJ8UM1QFVGM736lMFrs8bDv35JkdPn3gYTp+yyO3HpywGVO7vTNlAP9C9fdSOfKqiWj5lMRBvcvh+IoVPWQAAULMI0QFsF2OMkmlvkGd+gGe2/Upb0lE6U7riLxy0VB/xKsobosXDPMNBixcgAIB+ZVmWghZPfQfDoHzKooc3AxzjdHuMHXqDwOcxjMyQ+pRF7v74lMXgyLcsyv2f1fldUvFlsuT9f/FlO7xv9ruknvftcpnfvrnHDCjQ8349ra3Lbbv9HvwuH+hj7uW+vsfSh+P2O5bCywvfcPHdr9z/TttxHJX4/ffqd9qXdZdYS64wYUd/p+V+TwCGJ15JAPBljFE85XZWk3dpv5IpM8kzGgr0WE1eH7UVDjLIEwCAWsSnLAbXUPmURU9vQPTljY5uP7tO52PkHjN7HIWfsujtpzQG5FMWAGrSoLwx0U9vYvR0WZ/fxOCNs+06llJrqcY3ziY2TNT0EdP78z+VmkOIDgxzrmvUkSrsS+6oPZnJb5fJyVUXDnQO78yH5V6FedDmnXoAAICBZFl8ymKw9OVTFoX7G5n8z97/F19WdHmX20jdL+/1vrnHLLEWV27P+/X0eDuwjp6OI395T2vrYS192dd33X38nfb297k9v/sdOg6fNffHMff1f6t+O+Z+/P0MtMLfSfYCYMg7deapuuCACyq9jKrGsy1gGHBck+9J3p7IFLRecdSRdEr+m29ZUl3hAM9IZ/uVuogtm0GeAAAAGAb4lAUwdOzoGys78iaPa9w+vwEyGG+a7cgbE31dS6nfae73U21vmvXldzpgv/+e3qjyWXN/H/POdTvv6H92NY8QHagRacctarXSlg3M2xOO4qnSHykNWMr3I6/PVpJ7QXlQsUhAAXq/AQAAAACGiMIWFwDQHwjRgSEklXGzVeSZ4mGeSUfJdOmgPGhbBa1Wigd6RkOdg20AAAAAAAAAdBpyIfry5ct19dVXa8WKFVq/fr3uvPNOffazn630soB+YYxRMu0WheOF7VfSTulma+Gg1RmORwp6lEeDCgctgnIAAAAAAACgj4ZciN7e3q599tlHZ555po4//vhKLwfoM2OM4ik3W0meyYfluaDcKTPJMxoKFIXjhcM8Q8HAIB0FAAAAAAAAMDwMuRB94cKFWrhwYaWXAZTkukYduWA86RQF5h1JR2VyctXlqsjzrVe8fuV1EVtBm2pyAAAAAAAAYLAMuRAdqBaOa7pVk+f6lMeTjkrl5Jalbu1W8r3KI7YCAYJyAAAAAAAAoBrUfIieTCaVTCbz2y0tLRVcDYaadMYtCsfzAz2TjhKp0oM87YCKwvHcEM/6SFB1EQZ5AgAAAAAAAENBzYfol19+uS699NJKLwNVyhijVMZ44XhBX/JchXkqU7rvSsi2itqtFAbmkRBBOQAAAAAAADDU1XyIftFFF+m8887Lb7e0tKi5ubmCK8JgM8YokXYLwnEnH5q3JxylndJBeSQU6LGavD5qKxy0CMoBAAAAAACAGlbzIXokElEkEqn0MjDAjDHqSLpqT2YKgvLsVzIjp3TnFcXCgXw/8vposCAstxUKBgbnIAAAAAAAAABUnSEXore1tenNN9/Mb69evVrPP/+8Ro8erSlTplRwZRhormvy1eNeX/JMQVDuyJQoKLck1eUGd+bar2QD8/qoLZtBngAAAAAAAAB6MORC9GeffVaHH354fjvXquX000/X4sWLK7Qq9JeMY/LV5PmK8qTXfqUjWbqcPGB5QblXRR4sar9SF7YVICgHAAAAAAAA0EdDLkT/xCc+IVOq5BhVL51xO9utJL0BnrnQPJEuHZTbAaszHI8UDPSM2oqFGeQJAAAAAAAAoH8NuRAd1c8Yo1TGFIXjXljuVZSnMqXfBAnZVmdP8mxAXp+tMI+ECMoBAAAAAAAADB5CdGwXY4wSKbcoHC9sv5JxSgflkVCgoC95cUV5mEGeAAAAAAAAAKoEITp8ucYonuzam7yz/YpbpqtOLBzoDMfzrVds1UVthWyCcgAAAAAAAADVjxB9mHNco458NXlBRXnSUUfSUan285akuoJWK13br9gM8gQAAAAAAAAwxBGiDzNb29NavTGeryiPp0oP8gxY6gzHi8JyW3VhWwGCcgAAAAAAAAA1jBB9mEmmXb2zKV50WTBg5YPxXMuV+ohXUR4LM8gTAAAAAAAAwPBFiD7MjKgLas9J9UXDPMNBi6AcAAAAAAAAAHpAiD7MRMO29mpuqPQyAAAAAAAAAGBIIEQfZjKOq5RTug86AAAAAAAAgOHBDliKBO1KL6OqEaIPM39/60Od/tunK70MAAAAAAAAAFXgrEOm6+JjZlZ6GVUtUOkFAAAAAAAAAABQrahEH2YO2W0nrfrxUZVeBgAAvWZkKr0EAAAAAKhZdsCq9BKqHiH6MGMHLMXC9DgCAAAAAAAAgN6gnQsAAAAAAAAAAD4I0QEAAAAAAAAA8EGIDgAAAAAAAACAD0J0AAAAAAAAAAB8EKIDAAAAAAAAAOCDEB0AAAAAAAAAAB+E6AAAAAAAAAAA+CBEBwAAAAAAAADAByE6AAAAAAAAAAA+CNEBAAAAAAAAAPBBiA4AAAAAAAAAgA9CdAAAAAAAAAAAfBCiAwAAAAAAAADggxAdAAAAAAAAAAAfhOgAAAAAAAAAAPgIVnoBg80YI0lqaWmp8EoAAAAAAAAAAJWSy4hzmbGfYReit7a2SpKam5srvBIAAAAAAAAAQKW1trZqxIgRvtdbplzMXmNc19W6devU2Ngoy7IqvRzUkJaWFjU3N2vt2rVqamqq9HKAkjhfMZRwvmIo4XzFUML5iqGE8xVDCecrhpLhfr4aY9Ta2qqJEycqEPDvfD7sKtEDgYAmT55c6WWghjU1NQ3LPzoYmjhfMZRwvmIo4XzFUML5iqGE8xVDCecrhpLhfL6WqkDPYbAoAAAAAAAAAAA+CNEBAAAAAAAAAPBBiA70k0gkoh/96EeKRCKVXgpQFucrhhLOVwwlnK8YSjhfMZRwvmIo4XzFUML52jvDbrAoAAAAAAAAAAC9RSU6AAAAAAAAAAA+CNEBAAAAAAAAAPBBiA4AAAAAAAAAgA9CdKCM999/X1/84hc1ZswYxWIxzZkzR88++2z+emOMfvjDH2rChAmKxWKaP3++3njjjaL72Lx5s0455RQ1NTVp5MiROuuss9TW1jbYh4Ia5ziOLr74Yk2fPl2xWEy77rqr/uM//kOFoy84X1Epy5cv17HHHquJEyfKsiz95S9/Kbq+v87NF198UR//+McVjUbV3Nysq666aqAPDTWo1PmaTqd14YUXas6cOaqvr9fEiRN12mmnad26dUX3wfmKwVLu72uhs88+W5Zl6frrry+6nPMVg6U35+uqVat03HHHacSIEaqvr9cBBxygNWvW5K9PJBI655xzNGbMGDU0NOjzn/+8Nm7cWHQfa9as0dFHH626ujqNGzdO559/vjKZzEAfHmpIuXO1ra1N5557riZPnqxYLKaZM2fq5ptvLtqHcxWD5fLLL9cBBxygxsZGjRs3Tp/97Gf12muvFe3TX+fjo48+qv3220+RSES77babFi9ePNCHVzUI0YEStmzZooMPPlihUEj333+/Xn31VV1zzTUaNWpUfp+rrrpKP/vZz3TzzTfrqaeeUn19vRYsWKBEIpHf55RTTtErr7yiJUuW6N5779Xy5cv1la98pRKHhBp25ZVX6qabbtLPf/5zrVq1SldeeaWuuuoq3Xjjjfl9OF9RKe3t7dpnn330i1/8osfr++PcbGlp0ZFHHqmpU6dqxYoVuvrqq3XJJZfo17/+9YAfH2pLqfO1o6NDzz33nC6++GI999xzuuOOO/Taa6/puOOOK9qP8xWDpdzf15w777xT//jHPzRx4sRu13G+YrCUO1/feustHXLIIdpzzz316KOP6sUXX9TFF1+saDSa3+db3/qW7rnnHv3pT3/SsmXLtG7dOh1//PH56x3H0dFHH61UKqUnnnhCt956qxYvXqwf/vCHA358qB3lztXzzjtPDzzwgH73u99p1apVWrRokc4991zdfffd+X04VzFYli1bpnPOOUf/+Mc/tGTJEqXTaR155JFqb2/P79Mf5+Pq1at19NFH6/DDD9fzzz+vRYsW6ctf/rIefPDBQT3eijEAfF144YXmkEMO8b3edV0zfvx4c/XVV+cv27p1q4lEIub//b//Z4wx5tVXXzWSzDPPPJPf5/777zeWZZn3339/4BaPYefoo482Z555ZtFlxx9/vDnllFOMMZyvqB6SzJ133pnf7q9z85e//KUZNWqUSSaT+X0uvPBCs8ceewzwEaGWdT1fe/L0008bSebdd981xnC+onL8ztf33nvPTJo0ybz88stm6tSp5rrrrstfx/mKSunpfD3xxBPNF7/4Rd/bbN261YRCIfOnP/0pf9mqVauMJPPkk08aY4z561//agKBgNmwYUN+n5tuusk0NTUVncNAb/V0rs6aNcv8+Mc/Lrpsv/32M9///veNMZyrqKxNmzYZSWbZsmXGmP47Hy+44AIza9asosc68cQTzYIFCwb6kKoClehACXfffbf2339/feELX9C4ceM0d+5c/eY3v8lfv3r1am3YsEHz58/PXzZixAgdeOCBevLJJyVJTz75pEaOHKn9998/v8/8+fMVCAT01FNPDd7BoOYddNBBevjhh/X6669Lkl544QU9/vjjWrhwoSTOV1Sv/jo3n3zySR166KEKh8P5fRYsWKDXXntNW7ZsGaSjwXC0bds2WZalkSNHSuJ8RXVxXVennnqqzj//fM2aNavb9ZyvqBau6+q+++7T7rvvrgULFmjcuHE68MADi9porFixQul0uug5w5577qkpU6YUPWeYM2eOdt555/w+CxYsUEtLi1555ZVBOx7UtoMOOkh333233n//fRljtHTpUr3++us68sgjJXGuorK2bdsmSRo9erSk/jsfn3zyyaL7yO2Tu49aR4gOlPD222/rpptu0owZM/Tggw/qa1/7mr7xjW/o1ltvlSRt2LBBkor+yOS2c9dt2LBB48aNK7o+GAxq9OjR+X2A/vDd735XJ510kvbcc0+FQiHNnTtXixYt0imnnCKJ8xXVq7/OzQ0bNvR4H4WPAfS3RCKhCy+8UCeffLKampokcb6iulx55ZUKBoP6xje+0eP1nK+oFps2bVJbW5uuuOIKHXXUUfrb3/6mz33uczr++OO1bNkySd75Fg6H829a5nR9zsD5ioF24403aubMmZo8ebLC4bCOOuoo/eIXv9Chhx4qiXMVleO6rhYtWqSDDz5Ys2fPltR/56PfPi0tLYrH4wNxOFUlWOkFANXMdV3tv//+uuyyyyRJc+fO1csvv6ybb75Zp59+eoVXBxT74x//qNtvv12///3vNWvWrHyPsokTJ3K+AsAASKfTOuGEE2SM0U033VTp5QDdrFixQjfccIOee+45WZZV6eUAJbmuK0n6zGc+o29961uSpH333VdPPPGEbr75Zh122GGVXB5Q5MYbb9Q//vEP3X333Zo6daqWL1+uc845RxMnTuxWqQsMpnPOOUcvv/yyHn/88UovpeZQiQ6UMGHCBM2cObPosr322is/HX78+PGS1G2i8caNG/PXjR8/Xps2bSq6PpPJaPPmzfl9gP5w/vnn56vR58yZo1NPPVXf+ta3dPnll0vifEX16q9zc/z48T3eR+FjAP0lF6C/++67WrJkSb4KXeJ8RfV47LHHtGnTJk2ZMkXBYFDBYFDvvvuuvv3tb2vatGmSOF9RPXbaaScFg8Gyr79SqZS2bt1atE/X5wycrxhI8Xhc3/ve93Tttdfq2GOP1d57761zzz1XJ554ov7zP/9TEucqKuPcc8/Vvffeq6VLl2ry5Mn5y/vrfPTbp6mpSbFYrL8Pp+oQogMlHHzwwXrttdeKLnv99dc1depUSdL06dM1fvx4Pfzww/nrW1pa9NRTT2nevHmSpHnz5mnr1q1asWJFfp9HHnlEruvqwAMPHISjwHDR0dGhQKD4z7pt2/mqHs5XVKv+OjfnzZun5cuXK51O5/dZsmSJ9thjD40aNWqQjgbDQS5Af+ONN/TQQw9pzJgxRddzvqJanHrqqXrxxRf1/PPP578mTpyo888/Xw8++KAkzldUj3A4rAMOOKDk66+PfOQjCoVCRc8ZXnvtNa1Zs6boOcNLL71U9OZQ7s3OrgE9sD3S6bTS6XTJ116cqxhMxhide+65uvPOO/XII49o+vTpRdf31/k4b968ovvI7ZO7j5pX4cGmQFV7+umnTTAYND/96U/NG2+8YW6//XZTV1dnfve73+X3ueKKK8zIkSPNXXfdZV588UXzmc98xkyfPt3E4/H8PkcddZSZO3eueeqpp8zjjz9uZsyYYU4++eRKHBJq2Omnn24mTZpk7r33XrN69Wpzxx13mJ122slccMEF+X04X1Epra2tZuXKlWblypVGkrn22mvNypUrzbvvvmuM6Z9zc+vWrWbnnXc2p556qnn55ZfNH/7wB1NXV2d+9atfDfrxYmgrdb6mUilz3HHHmcmTJ5vnn3/erF+/Pv+VTCbz98H5isFS7u9rV1OnTjXXXXdd0WWcrxgs5c7XO+64w4RCIfPrX//avPHGG+bGG280tm2bxx57LH8fZ599tpkyZYp55JFHzLPPPmvmzZtn5s2bl78+k8mY2bNnmyOPPNI8//zz5oEHHjBjx441F1100aAfL4aucufqYYcdZmbNmmWWLl1q3n77bXPLLbeYaDRqfvnLX+bvg3MVg+VrX/uaGTFihHn00UeLnpt2dHTk9+mP8/Htt982dXV15vzzzzerVq0yv/jFL4xt2+aBBx4Y1OOtFEJ0oIx77rnHzJ4920QiEbPnnnuaX//610XXu65rLr74YrPzzjubSCRiPvnJT5rXXnutaJ8PP/zQnHzyyaahocE0NTWZL33pS6a1tXUwDwPDQEtLi/nmN79ppkyZYqLRqNlll13M97///aJQh/MVlbJ06VIjqdvX6aefbozpv3PzhRdeMIcccoiJRCJm0qRJ5oorrhisQ0QNKXW+rl69usfrJJmlS5fm74PzFYOl3N/XrnoK0TlfMVh6c77+13/9l9ltt91MNBo1++yzj/nLX/5SdB/xeNx8/etfN6NGjTJ1dXXmc5/7nFm/fn3RPu+8845ZuHChicViZqeddjLf/va3TTqdHoxDRI0od66uX7/enHHGGWbixIkmGo2aPfbYw1xzzTXGdd38fXCuYrD4PTe95ZZb8vv01/m4dOlSs++++5pwOGx22WWXoseodZYxxgxUlTsAAAAAAAAAAEMZPdEBAAAAAAAAAPBBiA4AAAAAAAAAgA9CdAAAAAAAAAAAfBCiAwAAAAAAAADggxAdAAAAAAAAAAAfhOgAAAAAAAAAAPggRAcAAAAAAAAAwAchOgAAAAAAAAAAPgjRAQAAAORNmzZN119/faWXAQAAAFQNQnQAAACgQs444wx99rOflSR94hOf0KJFiwbtsRcvXqyRI0d2u/yZZ57RV77ylUFbBwAAAFDtgpVeAAAAAID+k0qlFA6Ht/v2Y8eO7cfVAAAAAEMflegAAABAhZ1xxhlatmyZbrjhBlmWJcuy9M4770iSXn75ZS1cuFANDQ3aeeeddeqpp+qDDz7I3/YTn/iEzj33XC1atEg77bSTFixYIEm69tprNWfOHNXX16u5uVlf//rX1dbWJkl69NFH9aUvfUnbtm3LP94ll1wiqXs7lzVr1ugzn/mMGhoa1NTUpBNOOEEbN27MX3/JJZdo33331W233aZp06ZpxIgROumkk9Ta2prf589//rPmzJmjWCymMWPGaP78+Wpvbx+g3yYAAADQvwjRAQAAgAq74YYbNG/ePP3bv/2b1q9fr/Xr16u5uVlbt27VEUccoblz5+rZZ5/VAw88oI0bN+qEE04ouv2tt96qcDisv//977r55pslSYFAQD/72c/0yiuv6NZbb9UjjzyiCy64QJJ00EEH6frrr1dTU1P+8b7zne90W5fruvrMZz6jzZs3a9myZVqyZInefvttnXjiiUX7vfXWW/rLX/6ie++9V/fee6+WLVumK664QpK0fv16nXzyyTrzzDO1atUqPfroozr++ONljBmIXyUAAADQ72jnAgAAAFTYiBEjFA6HVVdXp/Hjx+cv//nPf665c+fqsssuy1/229/+Vs3NzXr99de1++67S5JmzJihq666qug+C/urT5s2TT/5yU909tln65e//KXC4bBGjBghy7KKHq+rhx9+WC+99JJWr16t5uZmSdJ///d/a9asWXrmmWd0wAEHSPLC9sWLF6uxsVGSdOqpp+rhhx/WT3/6U61fv16ZTEbHH3+8pk6dKkmaM2fODvy2AAAAgMFFJToAAABQpV544QUtXbpUDQ0N+a8999xTklf9nfORj3yk220feughffKTn9SkSZPU2NioU089VR9++KE6Ojp6/firVq1Sc3NzPkCXpJkzZ2rkyJFatWpV/rJp06blA3RJmjBhgjZt2iRJ2mefffTJT35Sc+bM0Re+8AX95je/0ZYtW3r/SwAAAAAqjBAdAAAAqFJtbW069thj9fzzzxd9vfHGGzr00EPz+9XX1xfd7p133tExxxyjvffeW//7v/+rFStW6Be/+IUkb/BofwuFQkXblmXJdV1Jkm3bWrJkie6//37NnDlTN954o/bYYw+tXr2639cBAAAADARCdAAAAKAKhMNhOY5TdNl+++2nV155RdOmTdNuu+1W9NU1OC+0YsUKua6ra665Rh/72Me0++67a926dWUfr6u99tpLa9eu1dq1a/OXvfrqq9q6datmzpzZ62OzLEsHH3ywLr30Uq1cuVLhcFh33nlnr28PAAAAVBIhOgAAAFAFpk2bpqeeekrvvPOOPvjgA7muq3POOUebN2/WySefrGeeeUZvvfWWHnzwQX3pS18qGYDvtttuSqfTuvHGG/X222/rtttuyw8cLXy8trY2Pfzww/rggw96bPMyf/58zZkzR6eccoqee+45Pf300zrttNN02GGHaf/99+/VcT311FO67LLL9Oyzz2rNmjW644479K9//Ut77bVX335BAAAAQIUQogMAAABV4Dvf+Y5s29bMmTM1duxYrVmzRhMnTtTf//53OY6jI488UnPmzNGiRYs0cuRIBQL+T+X32WcfXXvttbryyis1e/Zs3X777br88suL9jnooIN09tln68QTT9TYsWO7DSaVvAryu+66S6NGjdKhhx6q+fPna5dddtH//M//9Pq4mpqatHz5cn3605/W7rvvrh/84Ae65pprtHDhwt7/cgAAAIAKsowxptKLAAAAAAAAAACgGlGJDgAAAAAAAACAD0J0AAAAAAAAAAB8EKIDAAAAAAAAAOCDEB0AAAAAAAAAAB+E6AAAAAAAAAAA+CBEBwAAAAAAAADAByE6AAAAAAAAAAA+CNEBAAAAAAAAAPBBiA4AAAAAAAAAgA9CdAAAAAAAAAAAfBCiAwAAAAAAAADggxAdAAAAAAAAAAAf/z+dkWR0dVCSXwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPeCAYAAADj01PlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUdf4H8Pf2TU8IJPQiXbooiIoVFcXuWc96duX0xHLqz957Oz25U/QUFdvZzoKKioLSpPdeQgkhhPRk28zvj2R3v9N2Z0uyKe/X8/g82dnZ2dnNoviez76/FlmWZRARERERERERERERkYY11SdARERERERERERERNRSMUQnIiIiIiIiIiIiIjLAEJ2IiIiIiIiIiIiIyABDdCIiIiIiIiIiIiIiAwzRiYiIiIiIiIiIiIgMMEQnIiIiIiIiIiIiIjLAEJ2IiIiIiIiIiIiIyABDdCIiIiIiIiIiIiIiAwzRiYiIiIiIiIiIiIgMMEQnIiIiImrDrrjiCvTu3Tuuxz744IOwWCzJPSEiIiIiolaGIToRERERUQpYLBZT/8yePTvVp0pERERE1K5ZZFmWU30SRERERETtzbvvvqu4/c477+CHH37A9OnTFdtPPPFEFBYWxv08Pp8PkiTB5XLF/Fi/3w+/3w+32x338xMRERERtXYM0YmIiIiIWoDJkyfj1VdfRbS/ntfW1iI9Pb2ZzoqIiIiIiFjnQkRERETUQh177LEYOnQoFi9ejKOPPhrp6em45557AABffPEFJk2ahK5du8LlcqFv37545JFHEAgEFMdQd6Jv27YNFosFzz77LP7973+jb9++cLlcOOyww7Bo0SLFY/U60S0WCyZPnozPP/8cQ4cOhcvlwpAhQzBz5kzN+c+ePRuHHnoo3G43+vbti3/961/sWSciIiKiVsee6hMgIiIiIiJj+/fvxymnnIILL7wQl1xySaja5T//+Q8yMzMxZcoUZGZm4qeffsL999+PyspKPPPMM1GP+/7776OqqgrXXXcdLBYLnn76aZxzzjnYsmULHA5HxMfOnTsXn376KW688UZkZWXh5ZdfxrnnnosdO3YgPz8fALB06VJMnDgRXbp0wUMPPYRAIICHH34YnTp1SvxNISIiIiJqRgzRiYiIiIhasOLiYkydOhXXXXedYvv777+PtLS00O3rr78e119/Pf75z3/i0UcfjdqBvmPHDmzcuBF5eXkAgIEDB+LMM8/Ed999h9NOOy3iY9euXYs1a9agb9++AIDjjjsOI0aMwIwZMzB58mQAwAMPPACbzYbffvsNXbt2BQCcf/75GDx4cGxvABERERFRirHOhYiIiIioBXO5XLjyyis128UAvaqqCqWlpRg/fjxqa2uxbt26qMe94IILQgE6AIwfPx4AsGXLlqiPnTBhQihAB4Dhw4cjOzs79NhAIIBZs2bhrLPOCgXoANCvXz+ccsopUY9PRERERNSScBKdiIiIiKgF69atG5xOp2b76tWrce+99+Knn35CZWWl4r6Kioqox+3Zs6fidjBQP3DgQMyPDT4++NiSkhLU1dWhX79+mv30thERERERtWQM0YmIiIiIWjBx4jyovLwcxxxzDLKzs/Hwww+jb9++cLvdWLJkCf7+979DkqSox7XZbLrbZVlu0scSEREREbU2DNGJiIiIiFqZ2bNnY//+/fj0009x9NFHh7Zv3bo1hWcVVlBQALfbjU2bNmnu09tGRERERNSSsROdiIiIiKiVCU6Ci5PfXq8X//znP1N1Sgo2mw0TJkzA559/jt27d4e2b9q0Cd9++20Kz4yIiIiIKHacRCciIiIiamWOOOII5OXl4fLLL8fNN98Mi8WC6dOnt6g6lQcffBDff/89jjzySNxwww0IBAJ45ZVXMHToUCxbtizVp0dEREREZBon0YmIiIiIWpn8/Hx89dVX6NKlC+699148++yzOPHEE/H000+n+tRCRo8ejW+//RZ5eXm47777MG3aNDz88MM44YQT4Ha7U316RERERESmWeSWNK5CRERERERt2llnnYXVq1dj48aNqT4VIiIiIiJTOIlORERERERNoq6uTnF748aN+Oabb3Dsscem5oSIiIiIiOLASXQiIiIiImoSXbp0wRVXXIGDDjoI27dvx2uvvQaPx4OlS5eif//+qT49IiIiIiJTuLAoERERERE1iYkTJ2LGjBkoLi6Gy+XCuHHj8PjjjzNAJyIiIqJWhZPoREREREREREREREQG2IlORERERERERERERGSAIToRERERERERERERkYF214kuSRJ2796NrKwsWCyWVJ8OEREREREREREREaWALMuoqqpC165dYbUaz5u3uxB99+7d6NGjR6pPg4iIiIiIiIiIiIhagKKiInTv3t3w/nYXomdlZQFoeGOys7NTfDZERERERERERERElAqVlZXo0aNHKDM20u5C9GCFS3Z2NkN0IiIiIiIiIiIionYuWu03FxYlIiIiIiIiIiIiIjLAEJ2IiIiIiIiIiIiIyABDdCIiIiIiIiIiIiIiA+2uE52IiIiIiIiIiIjahkAgAJ/Pl+rToBbK4XDAZrMlfByG6ERERERERERERNSqyLKM4uJilJeXp/pUqIXLzc1F586doy4eGglDdCIiIiIiIiIiImpVggF6QUEB0tPTEwpIqW2SZRm1tbUoKSkBAHTp0iXuYzFEJyIiIiIiIiIiolYjEAiEAvT8/PxUnw61YGlpaQCAkpISFBQUxF3twoVFiYiIiIiIiIiIqNUIdqCnp6en+EyoNQh+ThLpzmeITkRERERERERERK0OK1zIjGR8ThiiExEREREREREREREZYIhORERERERERERERIZmz54Ni8WC8vLyVJ9KSjBEJyIiIiIiIiIiIiIywBCdiIiIiIiIiIiIiFLG6/Wm+hQiYohORERERERERERE1AwkScITTzyBPn36IC0tDSNGjMAnn3wCWZYxYcIEnHzyyZBlGQBQVlaG7t274/777wcABAIBXHXVVaHHDhw4EC+99JLi+FdccQXOOussPP744ygsLERubi4efvhh+P1+3HHHHejQoQO6d++Ot956K/SYbdu2wWKx4IMPPsARRxwBt9uNoUOH4pdffon4WubOnYvx48cjLS0NPXr0wM0334yamhpT70Pv3r3xyCOP4LLLLkN2djauvfZa3cqYZcuWwWKxYNu2bQCA//znP8jNzcV3332HwYMHIzMzExMnTsSePXtMPW+8GKITERERERERERFRqyXLMmq9/pT8Ewy8zXriiSfwzjvvYOrUqVi9ejVuvfVWXHLJJfj111/x9ttvY9GiRXj55ZcBANdffz26desWCtElSUL37t3x8ccfY82aNbj//vtxzz334KOPPlI8x08//YTdu3fj119/xfPPP48HHngAp512GvLy8rBgwQJcf/31uO6667Bz507F4+644w7cdtttWLp0KcaNG4fTTz8d+/fv130dmzdvxsSJE3HuuedixYoV+PDDDzF37lxMnjzZ9Hvx7LPPYsSIEVi6dCnuu+8+04+rra3Fs88+i+nTp+PXX3/Fjh07cPvtt5t+fDzsTXp0atX2VtbjvKnzcNGYnrjh2L6pPh0iIiIiIiIiIiKNOl8AB9//XUqee83DJyPdaS5i9Xg8ePzxxzFr1iyMGzcOAHDQQQdh7ty5+Ne//oX3338f//rXv3DZZZehuLgY33zzDZYuXQq7veH4DocDDz30UOh4ffr0wbx58/DRRx/h/PPPD23v0KEDXn75ZVitVgwcOBBPP/00amtrcc899wAA7r77bjz55JOYO3cuLrzwwtDjJk+ejHPPPRcA8Nprr2HmzJmYNm0a7rzzTs1reeKJJ/DnP/8Zf/vb3wAA/fv3x8svv4xjjjkGr732Gtxud9T34/jjj8dtt90Wul1UVGTqffT5fJg6dSr69u0bOu+HH37Y1GPjxRCdDL3wwwbsKKvFUzPXMUQnIiIiIiIiIiJKwKZNm1BbW4sTTzxRsd3r9WLUqFEAgPPOOw+fffYZnnzySbz22mvo37+/Yt9XX30Vb775Jnbs2IG6ujp4vV6MHDlSsc+QIUNgtYYLSAoLCzF06NDQbZvNhvz8fJSUlCgeFwz2AcBut+PQQw/F2rVrdV/L8uXLsWLFCrz33nuhbbIsQ5IkbN26FYMHD476fhx66KFR99GTnp4eCtABoEuXLprXkmwM0clQvS+Q6lMgIiIiIiIiIiKKKM1hw5qHT07Zc5tVXV0NAPj666/RrVs3xX0ulwtAQ1XJ4sWLYbPZsHHjRsU+H3zwAW6//XY899xzGDduHLKysvDMM89gwYIFiv0cDofitsVi0d0mSZLpc9d7Lddddx1uvvlmzX09e/Y0dYyMjAzF7WDwL1bk+Hw+zeP0XkustTqxYohOhgJN+9lrNlv2VeO/S3bi6qMOQl6GM9WnQ0RERERERERESWSxWExXqqTSwQcfDJfLhR07duCYY47R3ee2226D1WrFt99+i1NPPRWTJk3C8ccfDwD47bffcMQRR+DGG28M7b958+aknd/8+fNx9NFHAwD8fj8WL15s2HF+yCGHYM2aNejXr1/Snr9Tp04AgD179iAvLw9Aw8KiLUHL/3RRykhNfAWnuZz2j7mo9QawuaQGUy8dnerTaVd2l9ehS44bFosl1adCRERERERERJRSWVlZuP3223HrrbdCkiQcddRRqKiowG+//Ybs7Gx07NgRb775JubNm4dDDjkEd9xxBy6//HKsWLECeXl56N+/P9555x1899136NOnD6ZPn45FixahT58+STm/V199Ff3798fgwYPxwgsv4MCBA/jLX/6iu+/f//53HH744Zg8eTKuvvpqZGRkYM2aNfjhhx/wyiuvxPX8/fr1Q48ePfDggw/isccew4YNG/Dcc88l8pKSxhp9F2qvJKlthOi13oZamsU7DqT4TNqXL5btwhFP/oS7P12Z6lMhIiIiIiIiImoRHnnkEdx333144oknMHjwYEycOBFff/01evfujauuugoPPvggDjnkEADAQw89hMLCQlx//fUAgOuuuw7nnHMOLrjgAowdOxb79+9XTKUn6sknn8STTz6JESNGYO7cufjyyy/RsWNH3X2HDx+OX375BRs2bMD48eMxatQo3H///ejatWvcz+9wODBjxgysW7cOw4cPx1NPPYVHH3007uMlk0Vu6sKYFqayshI5OTmoqKhAdnZ2qk+nRbtu+h/4bvVeAMC2Jyel+Gzi1/uurwEAhdkuLLhnQtKPL8syHvlqLTrnuHDt0clbgFWWZUyfvx298jNwzIBOSTtucxn/9E8oKqsD0Lo/P0RERERERETUstTX12Pr1q3o06cP3G53qk+n1du2bRv69OmDpUuXahYpbQsifV7MZsWscyFDgfjXFkg6SZJhtSZWCWJrokqRdcVVePO3rQCQ1BD9u9V7cf8XqwG0jhBalmX4JRkOW3ARiBSfEBERERERERERURKwzoUMtZQvKbzwwwaMfvQH7Nhfm9BxmqqXu9rjD/2czPfss6U7k3as5nDR6/Mx7okfUddYn9NCPj5ERERERERERNSM5syZg8zMTMN/WiNOopOhQAtIQT/6owgv/bgRAPDSjxvx3Pkj4j5WU61tKXbH+wIynHb9J9pVXgeHzYKCLHNfM1q4tSwp59dc5m9pON9F28pwdCusnyEiIiIiIiIiao969+6d1MHQQw89FMuWLUva8VoChuhkKJDihUUr6ny485MVodsOW2IpuLWJUnTxbfJLEpw6X/Co9vhx5JM/AQC2PH6qqWqaA7W+pJ1jLP7x40b06JCOs0Z1i+vxwbejpXyTgYiIiIiIiIiImk9aWhr69euX6tNIKoboZEhKcQha6/UrbjvtibUPJVipbkgMi31+GXBq9xGraKo8fuSkOZrmZBK0vKgcz/2wAQDiD9Eb3w9G6ERERERERERE1BawE50MSQksLCrLMraV1mDLvmrc+clybN5XHfMx6n3KE3DYrLj385X4YOGOuM4p1kn0TSVVOPWlOfhudXHE/XzCKLrXYDXWyvrwVHlFiibMzSit9iR8jOC7keqLMERERERERETUtvFb8GRGMj4nDNHJkJlO9Mp6H3aV12m2v7dgB459djaOf+4XfPTHTlz8+nzsrazHsc/8jFd/3qTYd9WuClz8+nws3n5Asb3Go5xEn79lP96dvwN3fboyjlcTeyf6X2csw5o9lbhu+uKI+3n94eDcZxCii+F0eZ036nOn6j8C8Tb4iL3wwRSd/x0jIiIiIiIioqbgcDR8w7+2tjbKnkThz0nwcxMP1rmQIclEojrq4R8QkGQsuOcEFGaHF8x85rv1iv32Vnrw3oId2La/Fs98tx43Hdcv9Byn/WMuAMD6wwa8e/XY0GPqfAHFMdS3fQEJr8/ZgvH9OmFY95yo52p2Er2q3gdJAvZV1Zva3+MPn5c/oP+e7asSQnQTk+hGE+1NLd7pcfGCi4zWVeeyrrgSWW4HuuWmpfpUiIiIiIiIiMgEm82G3NxclJSUAADS09NhaaK18Kj1kmUZtbW1KCkpQW5uLmw2W9zHYojeTm0trUG9L4DBXbIN91EEo7Ks+y+j4OKjy4vKcdKQzqHteouAZrvDH7d6XwBuhw1r9lSGtrkdyi9GqCfR3fbwB12WZbw3fzuenrkeT2M9tj05yfB1BJn5d2lAkjHswe91z8eIR6idMQq/xUn0A7XRJ9HrvIGo+0TyzrxtKK32YsqJA2J6nGzid65HXIRWbkWT6MUV9Zj44hwAMPUZIiIiIiIiIqKWoXPnhhwqGKQTGcnNzQ19XuLFEL2dOu7Z2QCAxfdOQH6mS3cfcRD9rv+uxFN/Gq64XwxcHTZl4Gy3agPobGExze37azGwcxaWFpWHtm3eV4O9lfWhiXZ1kCyG2r6AjNW7KxFJrdevCN7NTKKXCwG3upPdiBicG9W5iJPoFXXRJ9HVU/eSJMMaw8qo93+xGgBw5siu6Nsp0/TjxNOXZEDnWogu/Ql2ZSD/yk+bMLR7Do4bWGD6fJrauuLInyEiIiIiIiIiapksFgu6dOmCgoIC+Hwtd/05Si2Hw5HQBHoQQ/R2SAy/t5fVGofoQor+4R9F+OsJ/dA9Lz20TQyP7aq0VX0bUHaHbyqpxsDOWVi2ozy0bWtpDcY+/iO2PTkJkiSjql45iW4TQmR1yCyqqPPh9V+34JWfN2FMnw6h7dGmqvdVebBqd0XEffR4hHMx7kQPh/Nm6lxqVRcQArIMK2KfCldP80cjhuEBSVa851+t2N3wvl58CPIznUh3hv/14Y8yif7z+hI898MGAC1r4rsVDMsTERERERERUQQ2my0pISlRJAzR2yGf0NstBttqAVUneo1HGex+uWx36Gf15LnTpp1EF5+rpLFvfFNJle5zX/DveVi0TbnQqHjeHl9AEYC+v2AH1u6pxB0TB+L2j5fjhzV7AQALt5aF9ok0yC3LMg57bJbxDhF4hNe1t9KDWq9fETADQLUQZsdT5xJLV3mk32k06hBdNPn9pQCA8U//DAD49pbxoTog8YJL8Bjio3ce0C4+2yKI66HGUF9DRERERERERETth7nSZ2pT/JLQ4R0hcFUHt/XCxPXi7QdwxycrQrdl1Uyv3iS6OKUdDGj1KlNkWdYE6IAyWFY/7p7PVmL6/O34eV1JKEBXE+tcPP4Avl9djMr6hqnwWELedcWVeOCLVaELAWKIfs07f+D8f83TLMoqvncVcUyiSzHk4oksSir+ygNRgvvXZm8O7ytOooeOZT74/2LZLvy8vvk7zMTPrfqiAREREREREREREcAQvV2KexLdG56mXqOqPfEHVCG6Tie6+FxbSmvw/oIdimMaPW9QrS+8b50voLtwZX2EmhdxEv3Z79bj2umLcfXbfwAAVu4yX+Ny2stz8fa87Xjwy4becY9f+ZyrdlXit82lhuelDsj11Krel2iBtkh8n2PNhRWT6IHID7YLb6h4fsELCGafuqzGi1s+WIYr31qEXeWpm1j3M0QnIiIiIiIiIiIdDNHbIb8wqayeWl6y4wDOfPU3LN5epgkVgx3lP6zZi/saF64MUgffDr1OdOG53l+wA/d8tlJ3AtxnEN4qJ9H1g+hIFwWW76zAF8t24amZ6/D6nK0AwnUvK3aaD9GD78uaxoVNPTrT9LPX7wMAzN1YisvfXIjN+2rCryNC0B/aR92JbhDw/rapFI98tQb1vgAe/HI1Pl+6SzHx7/VLKCqrNT1lLe7njzL+LvalKx/X8LN6Gj8oOKG+ZV81/vXLZpRWhxddfX/Bds3+FXU+3P3pCizYsl/xfC/O2mD4rQOzxGsTRn32sQhIMq76zyJcP30xdqfwggARERERERERESUPO9HbITEcV09Fn/PP3wEAV739BzJUvd7BEP2ad/7QHFMdQOp1S5vt6tabTgdMhuhRpqdv+WCZ7vY5G/eZOjdRprvh/fHovK5g7/kl0xZo7jMToqt/L0bVKH9+o+H4czeWYv3ehn752bcfG7r/i2W78N6CHTh9RFf846JRUZ9XDMOjTb+LlT164bv4aPFQ3oAEl92G45/7BYCyt353eb3meZ7/fj1mLCzCjIVFoUVJ31uwHS/O2gggeQuVqr9NITLbl759fw1+XNdQS9M5x40HzxiSlHMjIiIiIiIiIqLU4SR6OyQG3urakKDKOp8mHK6uN+7yVk+t6wXLetv01Hj0z6lWCJ+Nguh4FtUsrqjH6sap8mjEsDh4kUFd5wI0vH9GIlXOBM1YuMPweWVZ1oTqwQAdUP5+31vQcJz/Ld8NM/R6642Ik+ji0HqkMBrQfg7mCRPmer+/bftrNds+XbIr4nMcqPHiue/XY1tpTcT9xNfoM5i8f232Zox74icUldWirMaL13/dgn1VHt19xdcW6TOgPofHvl6D71cXm9o/Gd6YswUXvz5f840HIiIiIiIiIiLSYojeDokhZ3VjYP3j2r1YvD08Edwx06WZLg9OoutR7+vRCYr/8/s2U+dn9DxiblzvkzSLmeqdhxlbowStouBiogDgdtgA6Ae/FQmE6PurPfhju3Jh1eBUuCzLuOzNhTj7n7/jQI1X9/GJLCwqVulEC9HF3ntxaj30OOHhYtf6Cz9sUFwEEC/A6J27GNYHrd0T+aLH3Z+uxD9+2oQ/TZ2nuS8gyfh25R6UVNYrXq8/ICuqjoKemrkOxZX1eO779bjn05V47Ju1+Mt/Fuk+r/hZMPONAwD4cvkuvD5nK66dvtjU/snw6Ndr8fvm/XhfdbGGiIiIiIiIiIi0GKK3Q2LXda0ngOKKelz19h8497Vw4Jif6dKEvVUGE+KAdvrY7NS5Hr26GLU9FXW608hVEabljehNkhsRO9yDE/N6r7Wyzvi92lZai3s/X4nN+6qxu7xOM1VerhPAB39ltd4A5mwsxbKicox65Afd4yfy3ntjmERXLCwqfKZCnejC6xLD5bd+26a4SCB2p+tdkNAL0UV65xms5xH71sPPvxU3vLcEp/1jruLPwhfLdmPog9/hO4OJcBnALxsajmu0EK14EcdsiK5XYdNcqiNcGCMiIiIiIiIiogYM0dshcfr2lZ834bFv1mr2SXfaNGFsVb3PsJtbvQilmcoSI3sqlKFi1xy3Zp+H/rdG97ElBjUbkXy9Yk/E+8VFUj/5Y2fo58rGwF4vtI40ie4NSHh3/g6c8NwvOOLJn/BG4yKnQcGKjcJsF5y2hj+iwUDaTDAbbzC6cmcFnvx2Xeh21DoXRSc6hJ9lSJKMGqEqRP0e7a8OT9H7o4Todp0Q3Sr0k+tVEqnrhYL+/etmPPp1w+e9pMqjeL6nZq5DvU/CdQYT4VaLBZ11PosixSS6yaoUoz9TzSEQZfFYIiIiIiIiIiJiiN4uqafG9fqy1QtbAg01K9UG0+jq0DKREF0tWJtihhjOmvXx4p3Rd2r07apw4B6sndGbZI8UoqupL2IE3zu3w4ZgY0qNx49fN+xDeW304/6+eX/UfYL+2FaGv85YipLKetz60TLFfeoedjXlJLrQLR6QcMuHymOp3yPxwoRIr47HqhOii1U+db4A/jpjKf702u+hOhajEP3xb9Ypbvui9LeLLBagIMsVcR+PcP6R/gxIUrjXviky9Io6X9SLIED0xWOJiIiIiIiIiAiwp/oEqPmpp8b17Kmo02yrrPcbhtTqYL4+gUoRtVhC9FjCa7N8gYbAs94noVKY8g4uHFnv077WOl8g5kVO31uwHa/+tAnXHH0QACDNYQtNXN/z2Uos2nYAxw3sFPU4U3/ZbHifPyDBbgtfOwt2hpfXejWhrxiw6nWVi5skVSe6+sKMR/UeGVW06D2PGNYHg2dxsr3WEwg938pdFRjVM89UgAyY+7MQpK4PqqjzISfNodhmphPdF5Bw6ktz0DnHjelXjYXJUzVt54FaHPXUzxjdKw//veGIiPsaXWwgIiIiIiIiIqIwTqK3Q2aCM72J54o6n2HftjhB7AtIpkNMM9KczROij+ndAeP7d9S9zxeQFYuKAkCNNwB/QAp1o6up94/U7V1R68P/fbYKuyvqQ1U1bocNtsYQfdG2hg7xn9fvM/didDzwxSoc+tgs7K3UdnDP05le/3ndPhz37Gws2LJf90KB+DsXP1NltdoLLWZ72nU70YXqFo9fgjcgKaa3xQ75WPvgo13oeEKn6ihod7n2QpOZEH3tnkpsLKnGnI2l8AckxQWIZPiy8YLCYtXitHoCMUziExERERERERG1VwzR25k9FXX4aFFRXI+tqPXq1m0AyhB17Z7KuI5vJL2ZQvSOWU5Mv2osxh2Ur7nPL0nYW9nQty52tD/z/XrUqDq5s9wNX/BQLxiZl66cWhYd99xszbY0h023yiReb8/bjvJaH96Ys0Vzn1+SNbUiT81ch62lNbjhvSW6lTV+g0VI//WL9vjqQNkovNabRBcrUmo8fk2gX1YT7sE3+nwaiXRBqaLOh3/9qn0tQXp1LcpO9OjnUu3xI5UxNutciIiIiIiIiIiiY4jezqzbUxVTB7joQK3PMKR88tt1WLrjAL5duQdnvPJbTMeNNKENNF+dS3ART7tOX7fPH55E75aXFtq+eNsB1HqUYWpeuhMAUFRWq9ie7XbA6KWW1Wint9OctqjvTTz0psoj8QckTR0LAHiFKeZo09TqxT+NJsbV4fo/ftyoWPi11hvQBPp/+c8fivtjEam3PNq3KfQCeK+JTnTxtVfV+1O6sKjEOhciIiIiIiIioqgYorczLkf8v/LKeuM6FwCY/P5SvPnb1piPmxFl0jwthhA9EU57w3tjsWiDa29AQknjJHpBthvTLj8UQEMgql5stWNmQ4i+XRWiux22mF6L22ENdaInkxjudshwhn42WjS2Y6Yrpkl0PTUec5PoOw/U4bI3F2LlzgoAwHM/bFDcX+cL6Ab6QSVVHk1gH0mkiy7+KFPteheU1HUuegG5+D5X1vuaZGFRs9iJTkREREREREQUHUP0diaWqW41WdafmA6q8fpDU9ixSHdGXt+2uUN0Pb6AhL2Nk+gFWa5QT3uN16+5sNAx0wUA2FZao9ie5rTF9P67HTbDyfVEGC36ahSi52c6dafXxQA22kSzOtjWq20J+nXDPpw79XeD4wQiTo/f9/kqjH5kVsRzEel1/5s5R0D/woEYogckGT6dznGxQ7+63p/0TvRYpPK5iYiIiIiIiIhai5SH6K+++ip69+4Nt9uNsWPHYuHChRH3f/HFFzFw4ECkpaWhR48euPXWW1Ffr10okfS57YkF0r9vLjW8LyDJislms6JNx6sXFo0UdifCadO+N/bGFNsXkFDRGLh2SHeGwnC9iwodsxpC9O37lSG602aNKURPczRVnUs4hBYDXaNp8g4ZTt1vIHgNFhbVE1wYNfTYKAt6Gt1f69FetFBT969X1vsw4flf8NTMdZp9y3UWQQ3SC8BFfp371cG73uKiYv1PVb0fyRoGD0gybnxvMf758+aI+4nT8XqvgYiIiIiIiIiIlFIaon/44YeYMmUKHnjgASxZsgQjRozAySefjJKSEt3933//fdx111144IEHsHbtWkybNg0ffvgh7rnnnmY+89bLHUOdS6fGMFj07vwdhvvLMpAbxyR6sIvciDpEz00zXqAzEcEwXwwZg8/tC0ioqm8InLPc9tDFCL1J5uAketGBOsX2wV2yNa8lkjSHrUnrXPwBKWogDQAZTrthncsf28qwfX9NzAtURgvRjazZUxlxEl3P9HnbsamkGq/N1obL5RHqXKKdo16di/r91DtXceK/yuODLCwtmkg/+qy1e/HNymLDbxQEiaF9tN9bvS+AH9bsjakih4iIiIiIiIiorUlpiP7888/jmmuuwZVXXomDDz4YU6dORXp6Ot58803d/X///XcceeSRuPjii9G7d2+cdNJJuOiii6JOr1OY0SS0XWfiuTBbG6JHEpBkRSBoVrTJcvX0fI4Qoj961lCcNrwLHj97WMzPqzkPnTA/+H75AjIq6xsC1yy3Q3d6vltuGl69+BB0auxEF6fUJw7pjDsnDozpIkZTLSwaDHprTC7C6ZNk3R7y9cVV+NPUeTjmmdkxL1AZrSrFyKNfr9Wd7o4k0rT50h3lutt/Xl8SNTiOVucCAHU677E4/d+wsGj4vmhvo9cv4e5PV2Dmqj2a+0qrPabOUdwWrcv+wS9X45p3/sDtHy+PfGJERERERERERG1YykJ0r9eLxYsXY8KECeGTsVoxYcIEzJs3T/cxRxxxBBYvXhwKzbds2YJvvvkGp556quHzeDweVFZWKv5pz/RC9GMGdMJPtx2r2Z4Rpatcrc4XwLzN+2M+p2gheppTeX+2EKIf1a8jXrn4EHTPS4v5ec2cRzBYP+WlOZizsaHKJstt17yP3XLT8Ntdx2PS8C6aCf4TBhVg6qWj4XbYIr6nZ4/qprjdVJ3onsYQuibKxHJQw8S6Ngzetj+8cGq0MFZzDnFOogPmzzso2mS2nivfWoQXZ22MuI/PTIje+F5/v7oYHy0qajgfrzpEF+pVpMjvy4yFOzBjYRGuf3eJ5j69wF5vWj6WEP2DxnP+ZmUxKut9uOSNBfjoj6KIjyEiIiIiIiIiamtSFqKXlpYiEAigsLBQsb2wsBDFxcW6j7n44ovx8MMP46ijjoLD4UDfvn1x7LHHRqxzeeKJJ5CTkxP6p0ePHkl9Ha2N3iS0JMu6NSMZrughunp6e8XOitDP543ubuqcxGM8ctZQzf3qhUXFOpfgRHgyetJdOsdw2LQpdpbbAbdq33Th/euQoQzRxan1zAjvaa/8dMVtt8MGq5Ci9+yQrn5IyLmHmHuvAYQWCdWbXNbjC8ihKhsjsYbodQnUg1R7YptEj3buRn7ZsC/i/QGdwNsbUJ5bbWOwfe30xbjzvyuwZV+1ZhJdfOuChywqq4U/IEGWZdz7+Uq8MWcLAKCkKrz+w+rdFYpj1ei8L3ohuhjUx/J7++fPmzF3Uynu/GSF6ccQEREREREREbUFKV9YNBazZ8/G448/jn/+859YsmQJPv30U3z99dd45JFHDB9z9913o6KiIvRPUVH7nqLUW1hUkmVFCBykt01zPIN6kjsnDkQ31XT4qcM646ULR2r2ddqtuHfSYIzv31E3eHepzjnLbdfc54jSq26GXhBv1zmu3iR6uhCOZ7iU94nnn+k2DtF752cobqc5bLAJneh56cZd8M+dPwJH9M03vF9U7w/gvQXbccYrv5na3y9Jut3v6mPGItYgXBTrJPpXK7TVJ8kQXHjUH5Dw2dKd2F1ep5lE9/gDiqB6R1mtamFRn6LOxS9JmL2+BOOf/hnXv7sYy4rK8e78HXj067UAoPg8THp5Ls755++h27U+7fuit3ComP1HWxBWtD/KRZc6b8B0rc+mkmrc+/lK7C6vi74zEREREREREVGKpSxE79ixI2w2G/bu3avYvnfvXnTu3Fn3Mffddx8uvfRSXH311Rg2bBjOPvtsPP7443jiiScgGdQguFwuZGdnK/5pz6w6/SABSdZMewPm6lyMFsp02qyaYNtttyFd55guuxVXjz8I068aq1s3o+4FF58zOD2uN0UeOheTU+rBiXgx1NQL53PSHJrzzBSCc/W0uXhukab7e6om0dOcVsVrj7Zo6ysXHxLx/qB6XwD/99kqU/sCDUFseZ1xrzhgLhR/8PSDkd14EcFMEG60yGawniXagrRNLRhQv/nbVtz64XJMenmOToiurMKp9vgV9TJ13gAk4XWW1XjxxpytAIBZa0sUFS0BSYZFtdDs+r1VimOp+XT+vShOosfSZR8pcN9f7cGIh7/HVW8vMnWs86b+jnfn78AN72lraZrDd6uLMWOh8SLJRERERERERESilKVQTqcTo0ePxo8//hjaJkkSfvzxR4wbN073MbW1tbBaladsszWEl0aBG0UnyfrhuplFMNVT4uHtVk0VisNm1V3ANFrIrQ7RxecMBtSRJtE/uk7/86Smd4wsncnxLLcdNqtF8frECw7qoFx8fVkRQvROmcoamAynXRGa5kaYRAeADhlOnH9o9FqXWk8AHTP1F43V2+4LRJ9ErzZRmdIzPx3XHdO34RxM1LkY9aYHQ2j1RYfmFqxzmbmqoX7qQK1Ps2CqxyeF6nOAhvqWGuG1+yVZ8e+uY56ZjbmbSkO3r3r7j9DPtV4/rBb9knxfQMKHi7TfsvHpTKKLk/HRFngV/+jpVcMEfb1yD7x+CT+vj1yBE3Sg8fO0vKjc1P7Jdt30xbj705XYWlqTkucnIiIiIiIiotYlpaOcU6ZMweuvv463334ba9euxQ033ICamhpceeWVAIDLLrsMd999d2j/008/Ha+99ho++OADbN26FT/88APuu+8+nH766aEwnWJndAHCabdixjWHY+KQzhjTu0NMx3TarZrAz26zaAJxAMhJizxhrQ74xY7xYN2KURB/9ymDMLJHLi48zHwXvozw+3HKUO23IoKT5mKYP6hLtub+0PmamETPctk19TldctIg5vqR+tSDzNTaVHv96JbrDt3umBl+/8f26YCjB3RS7O+X5Oghukf/fvE1pTvtoffCzGKf9T796fbgFHuvCB3x0US6mGFWMKCuFSbA1ZPoxRV1ikn0shqvIlQPSHLECe864T2o8wYMF5p9Z9523YsOft1O9PDzRVvgVfzzqlcNEzqOL/6FYlPJ7LoARERERERERNS+JZ4kJeCCCy7Avn37cP/996O4uBgjR47EzJkzQ4uN7tixQzF5fu+998JiseDee+/Frl270KlTJ5x++ul47LHHUvUS2jSHzYpxffMxrm8+bv1wGbBNu49eSAfoh+hGk+hH9esY8TzEHmirRb/GQ28BUNGT5w6H22HDf37fZriPXkT457G9sGFvtaL6IRjcux1WBDO4Q3vlhe532RtqWIITv2LYbhSi9y3I1PSldxWCbgAw07whhui3nzQAXXLS8O2qYsxaG65NkmVgT0XDApUPnTEEa/dU4oPGKeYeHdKxQagIARp+x9HqXPQWtQQaFkcNhswZQoheq1M9olZnEKIHp94757h17zfj4sN74l+/bIn78UC4FkWcLFeH0g/+bw12Hgj3fu+r8ihCdb8kRQynRTXegO43RoCGehI90SbR9UL0raU1+HHtXlgtFsXjI02ii69JlrW1My2JWGETS50NEREREREREbVfKQ3RAWDy5MmYPHmy7n2zZ89W3Lbb7XjggQfwwAMPNMOZtQ+ZLjsePGOI7n1iIKs3QQ4APoMQymmzwWpRTic77Vbd44wfECVEFx7jstugdyZmes/vnDgQFxzWA6/P2YJPl+zS3C/pTOQ77VY8cc4weP0S/rtkp+I+cfp2VM/c0M8WiwUZThsqG8NecRJdr3seAM45pBtcdhsctnBw2SHDCTG3DBj0/qvPN6hnfgbOGNEVP60r0exXUtWQ/o/p00FRadGjQxo2lVQr9l2+syLq81YZ1Lm4hfNJd9lC52emE/357zcobrvsVnj8UmiKPc1hw+EHdcD8LWVRj6WWF6Vf3ozd5fXYVFKl6CJXT6IDwBtzt4Z+Lq32KD43AUnW7S3XE+k965OfgYVbte+DXvCtqHPROd/jnp2t+xxGf9bVx6n3SYZrJbQE4iQ+M3QiIiIiIiIiMiO1K/NRSvUvyMTyB07CkK45AIBZU47GSxeODN0vBrJ6E+SA8XSq027VTM06bBbYhYnxI/rm472rxyLbHbnrWwzRnXar7pSrmVA03WnH4C7ZikVBrzyyd3iHxkBNr93mkbOG4LzR3fHkOcNC26qEUDNL9RrEiXPxfdSbmL/iiN64aExPzXEsFotiUjbfoMdcpOxpb3id9ghT+jlpDkXg2bNDuuHvOhKjgNcuXIjJcNpD74WZSfSPF4cvWqx88KRQNUxw8tvtsOH9qw/HiB65uo8fUJhpeOyctMifOTP+8/s2THj+V5RWh6f0gxcnMgxC5P3VXsX0ty8gm55Er/UGFAG4qKJOv05H79h+RYge/fcQPpZx2F8vvCajbxAkSpZlVNZHrhUyQ3wPuZYGEREREREREZnBEL0dC0iyIqDuV5CFM0d2C90WA1mjSXQxpLv6qD6hn/XCbofNCptQz3Pa8K44MkqVS8Nzh3922fUrYRw2K47slw8AGCz0k+txC/Uq540215We7rTjmfNG4MLGsDsaMUQXJ9H1JuYfPGNIaOq/l2qxzIAQ8l1/dF8cN1DZV64mfnsgvXGxU7vV+I95TppDcX49O6Qb/q4jMeo4FwPLDJcNzsa1C8x0oouy3I5QIF/dWB3jarxQM/2qMXjjskPxkOobFT07ZOgey2GzGPbLO21WPH72MN37zNhaWoMslx3j+ubr3l/nCyiqTxo60c1Nop//r3koq9HW6siyjAO1+nU7elPu4jcu1AuLGoX0QORO9Coh3DazaGw8Hv9mLUY+9L3uxH0sxPebk+hEREREREREZAZD9HYs0oKGgDKQNTOJnpcRngZ32qya2hV1J7qZChYAim51l8OKSw7vhcJsF644ordiv39ePBrXjO+jmKbX43boT4b3iHOhSr3pckWILky+6/W5i548Zzi65abhicaJdzHwzEl34K0rx4QuFuifi7iIaeMkusHvzmGzIN1pU0yRd81NiytE31Vep7tdnLpOFybRjepfInE0nld1Y2Ab/EZBttuBCQcX4vIjeuP4QQWh/Ttl6X87wWGzht4boGEx1SCn3Wr6c2nkpCGd0S03Tfc+r19SvCd+SdLtLTfy0R9Fmm0ev2Q4ie7TXWw0/Hx7Kz2KKpZIC21GmjAXF56tM/Etg3i8PmcrJBn4z+8N9Th/bCvDKz9tjBj86xFfv16FExERERERERGRWso70Sl1ooVPyk50/WBRDKGy3MoKE+3CohZNNYsZ6k70vAwn5t99gmbSPSfdgf+bdHDU44l1LjarBR9eezg27K0KTQ/Hmqt11KlZyRRCWnHS223QiR40sHMWfrvr+NDtWBc+dOpNohvUueSkOWCxWBR1JA3fFog9RBd71UViQG+zWgw74SPp0Hhxxtb4OoKLmIoXQ4LECxoTh3bBjIXa0NlhsyLDGf6sitUuTrs16iK10WS57Yaf7TV7KhW3N5XURAyu1fQ+mx6fZDiJrnehTN2Jvq64EsO75wIwvhgCIGKVivj8TVHnIr5HB3VsqOn509R5AICCbDfOP9TcN0oA5XsSawBPRERERERERO0TJ9HbsWgB0uheeaGfjYLYvxzZBx0znbhmfB9FMOmyW6HOYjWT6FGmsgFg2uWHKoP3xsfo9aKLgiGmXl2MGL7arVaMPSgfl47rHfVcjIw7SDsZrnwvwsHxkf064uAu2ThrZFdcNq4XXrxgZMRjB2JM9MUAONghbjSJHuyRL8x2K7YbhejnHNJNd7tocJdsHCzU6agD1UN756kfEtHz54/AZzceAQBwWJWLkrp0Annxwk+vDulY+H8n6O4jflMgWwjRXXar4qJHPDJddtPHiCVAB/T/HNb7AzjQOAmufl51XQug/Uwt3VEe+nl3hBA90rcHxEl0M333sbps2sLQzxmqKp5tBhdwjCguIqjen5U7KyJeSCAiIiIiIiKi9omT6O3QhMGFmLV2L64QF9UUzP37cdhbWa/oFjcKVjtlubDwngmwWi34bnVxaLv+JLpVsdBktKCxa44bJwwuxIIt+8OP0Zk+1rPg7hNQrHoNQeI0uF4oee9pg3H2q7/jxuP6RnyOz286Ev9dvBO3nzxQc5/RwqJOuxXf3DLe1GsAAJN12boyQpPo+u9Z744NneE3HNsXlfU+nNXYh2/TuUCRn+HEnScPwqdLdkV8zuHdcrBtfzjU7JWfju37a3FT43vpdtjw+U1H4qxXf4t6/qeP6IpzDukeuh38DAYXdNX7/Cgn8W0oyHLj5YtG4eYZS4V9LIoLKSO65+CTxkVMh3fPUQTx8chw2RFI5BcXgV6QfaDWG6pkKch2oagsHALr9Zirz62orDZ8LJ3O9SCxj12SZMXCweLFkmCdS2m1Bwu2lOGkIYUJv6cb9laFflYvZhzrscVOdPFYRWW1OP2VuQCAbU9Oiuc0iYiIiIiIiKiNYojeDr1y8Sis2VOJkY0VDmrd89LRPU/ZD240zSzLCIVpWWJwbLNCncWO65sfUyd6cGBUWediLjDLy3AqOtpF4sKieq9rSNccrH745Kjh3MgeuRjZI1f3vhzVdHO8Yu1sFqsq0qJMovft1FCLkZPmUCymadO5sDBpeBfF7+vmE/rj5R83avazqp7r9csOxZLtBxR1G/0LMqO+jqmXjMZJBxcqtqkvBuhV44jvV/D1nzGiK178YQO2NE4sO+xWxe/2jJHdcN8XqwEApw7rknAneqbLhnpfYpUwsdhb2TDNbrNakJvmRBHCIfo17/yBR84covimhTpYFwPwep+58N8vyXAKv2uP8Lg6XwAP/W813vptGwDg9pMGYPLx/U2/HqPnC/rf8t34Y/uB0O1Yf1/i6xf74LcIE+3qRZdbgk0lVVheVIFzDukW9Zs4RERERERERJRcDNHbIbfDhkN6xlarYRQo9cwPh+3q6WtxEn3WlKPRt1Omoi4iWvgloyHssqo60RMlTrMbva5EJ2fFRUoTCdFj7WwW6ymC769RFc9BjZPoanqT6OrAOsul/68OmxWKiycDCrMwoDBLsY+6jiNoTJ8OWLi1DAAwcWhnzf3qrnK9EN0nvF/pQqWO+Pt02Kzo2SEdJx5ciCyXHTlpDrx/9Vis2FWB04d3xcJtZbrnZ1aGyw4ZsS+cGq/yxj7yNIdN98/UfV+sVoTo6s+UuBBovck+c/UxxM9djccfCtAB4LOluxIK0dXrAmwsqcbGkurQbaOLREbEQF6cRM9whj9PZTVedMrSrnWQShOe/xVAw5/r00d0TfHZEBEREREREbUv7EQnU9RB1ZCu2bjrlEGKaeEMYTFNp92KU4Z1Rve8NJw9qhv6FWRpjhOtEz04VCyGuolOCTecg1X352TqkZcW+lmvu9usWCfRfX7t/uKisGJ/e/9C/YlwvQsLbodN8fs1Chj1Ang9Y3p3UNz+y5F9cEaUYFB9XnoXJ/xCKCru77CHf7ZbLbBYLHj9skPxfGMn/RH9OuL6Y/rCarUk/BnLcNkV33aI1ysXjzK1X2VduA/dzKKo6k50scO83m8uRP/vkp2K2x4hfN+vqoTx+M1NtxeV1eLi1+dj9voSxfYyg0VTg8xOzwcpO9HDP4vhemm1B3KsKww3k2VF5ak+BSIiIiIiIqJ2hyE6mWJThc1j+nTA9cf0VdQKiFPiTrsV6U47fr3jOLwgLJ5pi6HOpV9j7Uc8dS6RiMczmtJOlDihn+xJ9EjZnrovGgAcwuvNSXPgo+vG4YlzhmGUwbcR9EL0hgU3bfj9ruPx+13HI9NwEt0KC6K/py9fNEoxsT66V55iIVs9Dmv0Ohe9DnBAOYke7XNnZsHbSDJd9qR8rox+P2rBRT3dDpupb1D4VZ+p2jjqXO79fBX2VYUXRRUn0UsqlYulmj3mX2csxe+b9+OKtxaFtm0trcGhj86K+Lhan3Lqf1+VB5dOW4BvV+7R3V/8MyLWuYg/vzNvG0Y89D3mbiw1de5ERERERERE1LYxRCdT1JPoekFufma4gzw4iavuyBYnv42qVL6cfCTOOaQbnjt/hGa/ZNS5iNO6TdV73EPolDc7iasn1joXPXZVgDymTwdcNKan4f5670nw9981Nw1dc9MMF3g1mz93znHjm5vDC6w67VYM7pKNd68ai1lTjjZ1Xm6dc1AHxEFiuJzhjNxilYxJ9GQMMWe7zbVtVQiT6GYuAATUneheP6bN3YozXpmLDxcVmT6/qvqG55UkGT7hmCVV9Yr9PCan29cVV2q2mTkfsY4GAJ6auQ5zNpbihveW6O4v/pl65Ks1uOSNBZBlWfHndMbCIlTW+3HJtAX48xvzsV1YLDfVWuiAPBEREREREVGbxk50MkUdYOpVHaQ77fj65qNgtRhXYthMBNjDu+fi+fNH6u5XmJ14T7EYKsfap2xWhsuO3vnp2F/txQCD2hQz9AIzdWNK52x36OcrjuyNT5fsxJmjuoW22WOcvN9TUa/Zpl7UUwxrM112VHsapoGtVgvMNuTYdb5hcFT/jsb7qzvRdS6o+CX9Cxbi+YqLvkbbFwDyM5yaipJIMl02TWVKLAZ1zsL1x/RFljvyeQaVB0N0k5PoMxbuUNyu9QbwyFdrYj7P4LdQvKpvP5RUKSfRPSYn0WOtZQmqVYXopdUegz0bqC+0zN1Uit0V9YpJdNFvm/ZjykfL8d8bjojr/IiIiIiIiIio9WOITqaoA8wCIbgVDemaE/E4Yme22f5scYHSnsKCnfES602aahIdAL6/9Rh4A5JigctY6YWx4qZHzhyCCUIvfcdMF36763hFzY74u9OrQFFbvbtCs019sUHsee+Q4QyF6DaLxXQfeKw1Pdpz0D7GZ1jnEn5sdlrk34dDOBe3w4qHzhyCye8vDZ2nzWrRBLeiTJdDsxhmLL6cfJTmIpTTbjUMeYMLi7rsVsW56/ltUyl+XKfsHK+qj28R1EDjBQv1Ny1KVSG6OmRXf7tCkmTM2aRfmxJcXDiSWq/y/K1R/r2i9+2OOq8f3oDx73TXgTrD+5qbmfeEiIiIiIiIiJKLdS5kihh4Zrvt+MuRfeI6jl0RZpqbtBWfOxkhujhVbTEZ5MfDabcadoebFa3O5dJxvdElJ02xTf2a9Ca+IzmxMZQf1TM3tE19sUGc1u6Q4VTsd99pB6N7XhoeOXNIxOcRq33MVKiop+H1wnqj98sR5yT6m1ccpnh/v7llPB49a2jEx2eoJtGfPnc4enRIM9z/sN55it+LGPi/cMEIHDOgE26dMMDw8bvKG7454HZEX1j021XhnvB0Z8P7dyCGKXuRt3ERW3Vdi3oSXU3d2//5sl24/M2FoduxdtKrL2hEuy7m11k3oKreH3Fi3qgmKBVY50JERERERETU/DiJTqaIQexLF45CmjO+bnKHzYrXLzsUXr+kCF8jEUMxccHOeA3vnoOOmU50y0v8WE1NSkJiJobPZibRbzmhPwZ1zsLxAwsx4uHvG44RYQp8UOcsLCsqD51v744ZmPv346M+j1j7YqbrXh0Q670Wo4sW4oR2LCG63WpVvHanzaoJ89XSnXaM79cJQMMFhvMP64HzD+uB3nd9rbt/psuO3HQH9jYuyCleBDl7VHecPao7/rt4p+HzbS6pBtDwHkbr31+1K9w7HnyWKk98k+jBCXP1hHy1zvEkSQ6tj6CeTP96hXIBUMW/F0x8/NUherQLY3qBeEWdT3NeIrN/DivqfHjhhw04e1Q3jOiRa+oxRERERERERNTyMUQnU2wmFgQ160ShfsQMMbRUT13Hw+2w4fe7TmiyPvRkSsYArPj7MlO1ku604+xR3RXb1MGxODndp2MGnjtvBN78bStOGdrF9HnFOomuDkf1puofPnMIbnp/Ca49uq9iuxiMR/sGhHguFovy/bPbLFE/NzarBT3z0zH378chLz36hSK7zWpYQxMU6aJVMPx1O6zYq9NnL9ILuOMVDM+NamZEZbVedMx06e6vfm15Ji+uBakXFo32p1rv2woVdb6Ik+hmF/h98tu1mLGwCP/5fRu2PTkp6nks3FqG4d1zkJHgN1aIiIiIiIiIqGnx/9zJFMXilM0cPnfLTcMjZw1Fp0xn0jrMzYS2LYHZ8C4Sh6ITPb7Xrf6di++f3WbFuaO749zR3dUPiyjWTvSAKmi26nwWeuVn4Ku/jtdsF9+DaJPo4r5Wi7Jj22Gzmv78dzf5TQenzaqpOFFLM/ENApfdprsoLNCwELDFYkF1nP3nes7/1zzMufO4qNPvAPDRH0W4/ui+sFotmteqfm0OmwWyLOO1XzZj9vp9UY8daye63nsddRLd5J/DdcVVpvYDgLd+24pHv16LQ3vl4ZMYFi3VW9SZiIiIiIiIiJpW60gSKeXEwFMvvGxqlx7eCxNjmHKmMHHi20ydix51jY5YvxJvqKee8I4mkV7qbHc4OI82iS5O3TttNkWVh8NmVZxr304ZmHJiuK88nj8adps2WFYTf29WC/D42cNw0Zieqn2sKK7UD9GD7108k+iThhv/ubv+3cWYsXBH1GM8PXM9fl7fsKCpz6/8Papfuy/QMKH99Mz1WL83eiitnkQXa4L0+s91J9FrffD4jBcWNfvZi+XX/9EfRQCAP7Yf0Nx396crcMkbC3TP1ehMXvlpI96YsyWGM9DaVV6Hf/+6GTv21yZ0HCIiIiIiIqK2hiE6mZLKSXRKjPj7inUS/b2rx+Kxs4fikJ55iu3i5Hi8ve1i+G7mGwYBKRyILrznhJie67A+HUI/i4G6kauO6oNJw7pgaLdsxXanzaq4KNGvIBOTj+sXui3eF8lH140L/WyzWuCPoc6lS04aLh7bEw+fOQTi0LXLbsMT5wwD0LD4r8gXkBCQZEWI7pPkqO/7vZMGY2jXHMP7V++uxDvztkc8RtAvGxqmyr0BZVitDv79AQk1XvNhf63PuBO9XmdK3qgT3RPhQkbA5Gc8loWKjSbmJUnGjIVFmLupFGt2V+ruo1ZV78Oz32/Ao1+vxbbSGtPnoPaPHzfi8W/W4ehnfkZ9hIsKRERERERERO0NQ3QyRQzbklWpQvE595CG2pSDu2RH2bNBrAuLio7s1xF/HttLs13sGI8yRG0oUwh6zQTbYvhZkO2O6bkOPyg//Lwm+qfvO+1gvPrnQ2CxWFST6BbFJLrTblN8M8NMhj6ocxYGd8kKP8ZiiTrpfFCnDM1zOGxW5Av94W6HFecf2gML7zkBt500UPF4n1/WBNNev4T0KJ+H7nnpkM2s7mlCp1AnuvJ487eUKW4HJNlUd3+QuLDo/C37FQuVBqfUn/x2HY5/djYq6ny6091vzN2KzSXG4bPZOpdI/2bcVlqDpTvCU+dG376oEip39PbRy/PrhT73mauLI56jJMm48N/zcPOMpZr7Kup8oZ8r632a+4mIiIiIiIjaK3aikylimGN22paaxjmHdMNBnTIwoDAr+s5QTqK7YggnIxGD43gn0V12G2bffiwsFnPhfrRp7Uhy0hy465RB2FZagwGFmTE9VsxPbVaL4j10qhZcNfNnw2qxKPYzc0lKvMhQLPSeF2S5UVrtBRD+3RZkuzXfOPBJErxe7dWOLLcdVREqXpL5rZPg8xhV13TIcKKsxgufJEWcClfz+hum7G1WCy7893zFfcFp6qm/bAYAvDt/OwqyXLrHmb9lv+FzmJ9EN77v2GdnAwB+ueNY9MrPMPysiEG22T9bfuFbGit3VkTcd11xVejCxcsXjVLcJy5wm4z1GIiIiIiIiIjaCqahZIpNCHw4iZ5aFosFo3rmIcPERDWgvAAS78KikZid0tXTu2MGeuVnRN8RiYd61x/TF0+eOzymyg2gYXI8221H/4JMWCwWdM0NT8GrMnRTnegWi/LPkNnTuXfSYAANfehBBdnhQFj83aovSrz68yYs2aHt3u5kECgH2Ux01Zt1oKYh7DdaiPT0xu51f0CG18RipSL14qJBdapKEo8vYPg5itQXn8y1PJfvrMCBGi+WFZXr3i+G6Hrvg943A8QLTNEWehWDefWfXfECRyIXrYiIiIiIiIjaGoboZIqddS4pcd7ohuqW0yIs7hiNTdGJnpxJdJHZKd1EidO2zcntsGHRvRMw829HA2iY/g46UKusvDDzZ2NQ52zFnyejbmy1q47qgzl3Hoc/NX4mAKBQOBdxQl79jYO3ftuGye9r6zs6ZUWuxbFbLTh5SGcAwEEdzV3sUHvs7KEAgI8X78QpL83B7vI63f2CC7764gjRT37hV80Co0BDnctTM9eFbvslOaEFaqOxGHyvQAyraz1+nPXP3xT3e/yB0DcMxBA9GIhHu1Alht/RFqkVqd8L8bGcRCciIiIiIiIKY50LmcJO9NR45KyhOHVYF0Wnd6wcCXSim9FcWVsqQz0xlBY//3tVi2LaItS5fHHTkfhk8U7cdtIARR2O2cl4i8WCHh3SFdsKDSfRo18fddgsikl2PTarBX07ZWLe3ccjL92JQffNNHWuAPDnsT1x0Zie2FFWG9q2dk8lXv15E4BwfUtQsLKmtNqDv+r0dUeyu6Ie/1uxW7N9/pb9eG325tDtH9bsVVyESDqDX6U4HV7t8WP7/lrF/ae+NAeb99Xgh1uP1g3RxbBb75qVeH8sIbr6z5RiEp0hOhEREREREVEIQ3QyRZycTWZPMkXmdthw3KCChI5ht7bcOpdY+FpgvYQ2RDfed0SPXIzokavZHmO7jELnnLTQz2LQH+1iycQhnXHjcX3x07qSiPsFe7u7CM9j1v9NGox0px2Vdcpp/eCClQVZLmWInpbgf450Ph5igA8AG0uq8cS367Q7muALSIoLUkGz1uzFkzPX4cULRhr224u1MjUe7cT85n0Ni5p+s7JYcWEjOJEfrRs9/kl0CUD4s+JlJzoRERERERGRLta5kCmcRG+9xAUM3UlaWFTULS/2gDUeLSnU69upodrkyL4dFdvjWXQ3kT9NEwaHL7B4hfA0Wog+9dLRGN49V1FNoyeRP+tpjeeQm+5UbA9eDOmco3xucfFUPdEuNnj82nC6XFW3k4hanboYALj6nT+wqaQaN763xPAc64UQ/UCtV38nNPSdKyfRGx6nmETXeZzYX+6N4WKTZhLdL06ip6Y+iYiIiIiIiKglYohOpojhoD2Jiw1S01MuLJq8EH36VWNw3TEHhXrbm5qvBYV6719zOO45dRDuP/1gxfY4MnTTneh6CrLdeOiMIRjSNRsTh3YObY/0jYNbJwwIPz7KwqKJfOskWFOTm64Mx4PT54WqAD/YiW7EEeXNrazXLgwqTron6uinf8YOVQ2LqNbrN+xEF0P00mqP4TFkWX9h0WgXkMTA2xelT14cao/Uid6C/rgRERERERERpRxDdDJFMYmeSP8EpZTLnrw/8uP7d8LdpwyGPVKHSRL17ZTZLM9jRmG2G9ce3VczZR3PJLrVAvRpXLTzqH4do+ytdfkRvfH1zePRMVPoRzf4xkG/gkzcfEK/0O2BnbMiHjuWSfQTBhXg3EMaLqgc2isvtF0dogdlue3IcIbPM9okerSLd+pqHQDYU6G/iGk8Kup8ePB/qw3vt1ktioD886W7Qj/X+8KJ9P7qSJPo+guLBqJ0ootVR9EmyMWFgNVVTMpOdKboREREREREREHsRCdTxGyQdS6tixjANcXCos3lsbOHIifNgUsO75XqUzEUzx8Ni8WCd68ei0/+2IlLDu+ZlPMw+j13yHAqFjJVL1SqZvZbJ0O6ZuPFC0ciw2nHiQcXYHCX7NB9aQbnku5S/ucnP9Opu1+Q22EzrFQB9EP0bREmx+MhTpRrn9+DvZXhEP1vHy7DWaO6NTxOqJqp8kSomJFl1AmvUW8SXdZJ0cU6F721A+p9Afzjp404flAhxEIY7SQ6O9GJiIiIiIiI9HASnUwRawrimbal1BGDsmROoje3giw3nj1vBEbqLM7ZUsRzgcliAbrlpuGWCf2Rnxm5XsUsozoXvdMb3994+t1sncs5h3RHltsBq9WCiUO7oFd+Rug+i8E3VzJdNtQIgXG0Ohe991bcVlGXvP5zI+JLKamsx6s/b4q4v79xslsM3/0ROstl1b7BTnQx0FYH34Cy6sirU+cybe5WvPrzZpz72u+K51cH5V7FJDpDdCIiIiIiIqKg1puoUcrY2IneqnQXFv608lsETcoW18Kiyf+dGE2inzCoULNt6iWjMf2qMbr7q1/PM38arrufWANiVoZqEj2e/nVxKrvao+1Eb0rXTl+MZ75bH3Gf4GS3GIxHmvCWZeW+oUl0OfKEuHISXfu72LyvWvfxkTrRY5lEL66ox5SPlmHFznLTjyEiIiIiIiJqTRiiU8wSWWyQml/HTBe++utRmH37sak+lTYvnnr4pvjjpPeNg6fPHY4rjuyt2Z7hsmN8/066x1H/WT/v0B44YVCBZr/9ERbLNJLhDIfoFkv0f6+oW0x+veM4iDlvVePCoof1zsM/LhoV8/mYIV7wWFZUHnV/b2gS3Vw4LUNW7BvsRJciBN83vLsY17zzR+i2XogurmMhPj6g6j0XFyWNZRJ9ykfL8OmSXTjjld9MP4aIiIiIiIioNWEnOsWMneitz9BuOak+hXYhnkn0pvh2gLpCxWmz4vzDesR8HL0/6+JUdEGWCyVVHsMQPshutWhCWbFvvX9Bpql/rzjt1tB0ds98ZZ97METPSXOif2HTLEIb65rKwXNV1LlECac9fu0kulHwHZBkfLuqWPF4vU508b2NPIluHLBHsmZPpel9iYiIiIiIiFojTqJTzGyxJklE7UQ8TUfWJvrzdPKQcHVLvF34etPh+Rnh3vZvbxmPj64bF7FXHdBfoLTWG8DUSw7BoM5ZeOXiQwy708Nk5KUre9NPH9E19HNVfUMnutNuQedsd5RjNQ9frJPosnLfOl8Av27Yh7Iab2hbsLrFF5BQXuvVHMOrN4ku/B4r68Pd8WINjCzLyk70CN3tarHs214EJJmLsxIREREREbUhDNHJlH4FmTi4SzaO6JvPXm0iA7F8S+P6Y/qiMNuFq8f3aZJzmXrJ6NDPLoOFRkVPnzsc3XLTFL3neq/nrlMGYXz/jph6ySHIz3RhTJ8OUQNwh86E/oDCLEwc2gUz/3Y0BhRmRT0/AJpw/PGzh6Jnh4aJ9OAUtcNmRW66Ey9cMAIvXjDS1HHNih70K3n9EvZU1KFOmESP1B8vA6gXJtHfmbcdl725EH+a+ntoWzCYPemFXzH60Vm6z3nzjKVYtasitE38Pd7ywTLNsQDtVLqk7s+JIJ5O/LYsIMmY8PwvOOWlXxW9/URERERERNR6MUQnU2xWC77661F47+qxqT4VohYrlhD9rlMGYf7dJ6Bjpiv6znEQA98styPCng3OP6wHfrvreEWgbdcJvztluTD9qrGYOLSL6XM5frCyR/2cUd0wskeu6ccDDVPaz543Al1z3Hjs7KEAGl7Xn8f2VOznaCymP3tUd5w1qltMzxHt1xfr5cN//boZ4574Ca//uiW0LdokusenDaTFHDYYdm8trTE8zpfLd+O0f8wN3Tb6toNYzaMOwmPpROfEtVJxZT22ltZgw97qZl/wloiIiIiIiJoGQ3QyzWq1xDyJSdSeDOkaW/d8U/95eu68Eeic7Y57oU1bPP00Oh4+cyjSHLbQ7UnDzQfwov6FWfj97hPw57G9QtvcwnGBcIiup2+njIjH75DhjHh/rL+uGQuLADSEqkGRprb9AUnRia4nnsDaaNFW8Vg+v2x4nxFJkrF4e1lMgXt7IL7dfGuIiIiIiIjaBoboREQJ+t/ko3DDsX0x5cQBqT4VhXNHd8f8e06Ie2FZo/A1VjlpDvxtQv/QbZfdFmFvfUZZpFtVVeOMEPznpYdD8rF9OiDNYcOdEweGtol973qS8W7U+41D9DfmbkVptbbnXOSPYcHPIKNvSIhd5p5AwPA+tYAko94XwEd/FOHc1+bFfD5tnUX4pEhM0YmIiIiIiNoEe6pPgIiotRvWPQfDuscXVLdksdTTRCNOiDvjXOhUjzqQj3TsXCFEv3PiQIzonoulReWhbd3y0rB+b5Xh44PfHEik59obIUQ3IyDJMT+/0ToWikn0gPlJ9FNe+hU7D9ShV752sv/71cU4aUjnmM6vrRG/scApfSIiIiIioraBk+hERKTLlsS6GYcQbrviCNGNgmP1JHqkOpe89HA3fE6aE3abFU5h/265aRHPIfhuiAuFNjevX8LDX60xtW9AkvHirA1YtLVM935xqt2nCvff/G0rZizcofu4DXurUesNYO2eSs19105fbOrc2jLxAgT74omIiIiIiNoGTqITEZEuownmeLiaaBJd3SuvDtEtlvDCnNlp4RA9tzFQF8+lW16UEL3xqarrU7dY5PKdFVi+s8LUvp8t3YUXZ200vD8gyThQ40VptUdz37riKtz96Uqce0h3xXvEUDg6KcKCrURERERERNQ6cRKdiIhC+hdmAgiHzMnisIfDbjOT6Dcf309x2yi6VQfA6oBejNjFjvecNG2I3j1KiB5U5UldiB6LHWW1Ee/3SzKOfXY2TnzhV6wt1q+xUYfmDIWjE2vredGBiIiIiIiobWCITkREIelOO1Y/dDIW3HNCUo8bSyf6sQM7YcpJAyPuE3Ti4ELV8ygn0xWT6hZxP6t6U9Q6l2qPH0VltSmdRI9FtC8SBCQZFXU+AMAv6/fp7qNeyNTLED2qgDCJzk50IiIiIiKitoEhOhERKWS47JoFOxMlhujRjp3pamgae+D0g6MetyDbjftPC++nrnMZ1DkLgHGg3DHLFf4506W/U6P5W8pwzDM/Y9bavVHPqyWwRum0DwbogHIxTJF6kjrRhVHbA/E9U1+EICIiIiIiotaJIToRETUrl0P/Pz39ChqqZP40ujsA4Moj+4TuM1hXFABQkB0Ov9Uh+tRLRuOMEV3x5eSjMGlYFwBA7/z00P3Zbgd+vO0Y/HbX8bDbonfASzLwj582Rd2vJYg2ib6nvC70c41BRY16ktpMnYvUzqevxUVw/YH2/V4QERERERG1FVxYlIiImpwYgjtt+iH6Zzcege37azG0W05Mx3YLk+3qqpgeHdLx8kWjQrd/uPVodM5xK/bp26khvC+prI/peVs69aKrai8LFwNKqrSLiwLxTaL7JRnOxgS/vNYLX0BGpyztlL/XL+Hez1diWPdcfLBwB3LTHXj+/JEozHZr9m1KeyvrMX/Lfpw6rIvmIkw8WOdCRERERETU9jBEJyKiZhAOE40WFs1yOwwD9OCUup40pxCiRwlB+xdmGd5njTa6rXJQpwycPrwrXvpxY0yPay7R6lxExRX6FxDimUQPBu+yLGPkwz8AAFY/dDIyXMq/cnywaAc++mMnPvpjZ2jbrLV78eexvUyfdzJMfPFXHKj1obiiHtcd0zfh44kXHgKscyEiIiIiImoTWOdCRERNTpxEjzYhLfrf5KNw9qhuimlyNbdQD5PIJLE9xhD9qH4dcdaobprtB3XKiPscjh9UgBuPTTzIBYx7zvXsEqpdRAFVHYnH1CR6wz4+4bF7KrTH36cz/Z6KzvUDtQ3d8D+vL0nK8cTc3Mc6FyIiIiIiojaBIToRETW5eFsthnXPwQsXjES33DTDfcSFSh0mes2NxDqJnu126Abvkfrbo3n9skNDnfCJivHl6PKpJqnNhMLBSWyPPyCci7mT2VhSjenzt5uaeE82WzLeMACSLE6iM0QnIiIiIiJqCxiiExFRkxsWY895LNwOIUQ3qIoxw6YT9OakOQz3z3LbNR3sgLnKE8NzsFqS0ssNxH/hQhRvJzqgnFo3G1C/v2AH7vt8Fd6cu1X3/l3ldTjx+V/w3oLtpo4XC5s1Oe+72ImeiosBAPDa7M048flfUFbjTcnzExERERERtTUM0YmIqMn1zE/Ht7eMx4J7Tkj6sWPpRI9EDHqddivuOHkgRvbINdw/O01/Ej1RyQrRfSYC72jhtl+YPJ+xcAfu+GR51GMGdEL0WBfYXLi1THf7Y1+vwcaSavzfZ6tiOp4ZCXyJQUGSUj+J/tTMddhYUo2pv2xOyfMTERERERG1NQzRiYioWQzuko3CbHfSj+sWpsETqeQQH3v2yG646bh+EffPdjs0k++PnjUUacJkvCjDqb896IULRgAA7ElKc81MQR83sFPECwFiCHz3pyuxfX9t1GOGJtF94TqXWMNkyaATp9Yb0N2eDLEsxBqJ+FpjvXiQbKnomCciIiIiImqLWkSI/uqrr6J3795wu90YO3YsFi5caLjvscceC4vFovln0qRJzXjGRETUUoh1LkbhqxlinUswyM5Lj1zn4lBVgFxyeC94DcLrDJfd8FiThnfB2aMautDjnUTv0UHZG28mcM5w2fHIWUMN7/dLsYewwcVIxUn0WGtNUpE9J68TPfyznwuLEhERERERtQkpD9E//PBDTJkyBQ888ACWLFmCESNG4OSTT0ZJSYnu/p9++in27NkT+mfVqlWw2Ww477zzmvnMiYioJVCE6AkM3ooLiwans+85dTAKsly6+2enOXSnxo1qVCKF4w7hueNdHLV3fobido2JED3daUemEO5nuZVBf3CqWooh1Q4uRlofZRI90vUO9cUQjz+Aijqf7r6v/LQRp/9jLqrqfdhf7cFHfxSh1us3fb5BTbGwaPAiREWdDx8s3GH4GmLx5fLduO2j5aamzJM0XE9ERERERNTupTxEf/7553HNNdfgyiuvxMEHH4ypU6ciPT0db775pu7+HTp0QOfOnUP//PDDD0hPT2eITkTUTonhZyCBSXTlMRv+81iQ7cZ/bzgitF3sXM9y23WrUCYcXAgAOKijMtQ2mlAHlAG7XTXdnhVhgl3UKz9dcbvORJCc4bQpgvNst3LyvtrTcIx6v/kaFb1OdF+ME9nqX+OE53/BiIe+x4FabQj97PcbsHJXBd7+fRsumbYQd36yAk9+uy6m5wOUF1ESoahzaXzdt320HHd9uhJ/nbE04ePfPGMp/rtkJz5ctCPhYxEREREREZE5KQ3RvV4vFi9ejAkTJoS2Wa1WTJgwAfPmzTN1jGnTpuHCCy9ERkaG7v0ejweVlZWKf4iIqG3qk6//34JYiRPmYsCdn+kM/ZztdsCiM+p71ymD8PjZw/DBtYcrtosd4f+94Qg8e96I0O1coTZGPYl+7ujups65ZwdliG5uEl0Zoqsn0a94axE2lVTF1EXu16lzSbQTvaisDgCwvKg8tE2WZVTWh0P18lof1u5p+G/8D2v2xvR8gLLOJxHihZzg6561tuF8ft2wLynPAUD3ggIRERERERE1DXPjbU2ktLQUgUAAhYWFiu2FhYVYty76FNnChQuxatUqTJs2zXCfJ554Ag899FDC50pERC3XD7cejdJqL3qqprHjZTeYbherY9SBc1C6046Lx/YE0BCI+wIyMl12Rag8ulceCrPDNTEXHNYj9LM6mL/rlEEY1TMXP64twZfLdxues3qKvM5MiO6yI9MVfpz6GADwyk+bcNtJA6MeKyigs7CoX5jCLyqrxeZ91RGPIYbossG3C277aDk+XbordLtOeL6cNOMueyNJq3MRLhj4EukXisLMArQWsM+FiIiIiIgoGVIaoidq2rRpGDZsGMaMGWO4z913340pU6aEbldWVqJHjx6G+xMRUevTvzAL/Quj72eWGKIXZrnQLTcNDptFUeciBupGXrn4EHz8x06cPaobbnp/ieK+7nnpmHLiAORnOtGvIMvwGG6HDWeO7IaJQzvjvEO749Jp+otvuxzKL5cFq1giyXDakClcDMjUuTBQ75Nim0RvDI4VdS5CsDz+6Z8BAIf2yjM8hji47jHo/hYDdEAZouelO9W7R2VN0iS6eO7BCwppDpvi/JIhWZPzREREREREFF1KQ/SOHTvCZrNh717l16737t2Lzp07R3xsTU0NPvjgAzz88MMR93O5XHC59BeFIyIi0mMTesntNit+vv1YWC3ASS/+qtnXalEGp6KTh3TGyUMa/nt20/va+28+ob/pc3LZbRjfv5Ph/eqFS6vqlXUfTptV08ue5rQrJupddm3Lm8cfiGmhTr1O9IDORPZSoZpFQwzRfeamucWFTMV6nEjEKfcI677GRKyuCXbBpzubIEQ3MTnPnJ2IiIiIiCg5UtqJ7nQ6MXr0aPz444+hbZIk4ccff8S4ceMiPvbjjz+Gx+PBJZdc0tSnSURE7Yy6KsNpt8Jus8KrMxWd4Wy669F6C5eqjTsoHz/ddoxmQdKqemXwrReQZzhtivP361wN+Hn9PuwoqzV7yqFjeITFSPUWFnXrnE9QsM6l2uPHUU//ZOp5D9SELxrkmpxEF88raXUuik70hs9Luiv6txZiZeazQURERERERMmR0hAdAKZMmYLXX38db7/9NtauXYsbbrgBNTU1uPLKKwEAl112Ge6++27N46ZNm4azzjoL+fn5zX3KRETUxhkFlL6ATojuaroQ3UywO+WkATioUyacduW+lapJdHXdCwBkuR2K5yiuqNd9jls+WGbibBsEJ7H3VXk022au2hPa5jQRon++dJfmYoCRXeV1oZ/dOq9Vj/j7TFaIrjuJ7kjOZ0QxOZ+s0XkiIiIiIiKKKuWd6BdccAH27duH+++/H8XFxRg5ciRmzpwZWmx0x44dsKqm69avX4+5c+fi+++/T8UpExFRG2cUqOpNojfFlHGQmWnjTpkNlWXqOpd6VQ2Ky649z5E9cwEAD585BJtKqjG6V15MgbkevyRjW2kNXpy1MbTNF5BQVFaL698N98LbrJFC9Nifd+eB8LS8ZPIAihA9aZ3o4iR6Yye6MzmfEXFy3sxng7PqREREREREyZHyEB0AJk+ejMmTJ+veN3v2bM22gQMHKqaxiIiIkinbrd+prVdLkpniSfSOWQ0h+qG9OqBjphOl1V7d/fTqXILnftm43gAaQl+nzYqXftyIdcVVcZ2zPyDhg0VFim0BSUZxpXLKXax7UQv+N17vnI0oFvQ0+XcEvYsisVixsxzriqtw3ujusDSG8GKIHqy2yRAutMiyHNo3Vk0xOU9ERERERETR8bvAREREje6dNBgnDCrAWaO66d4/ulceAKBjZrhzO9ZO9FiyT7uJyo6MxinnNKcNv991Ai49vJfufmJ9Sv+CTHz116M0+9isFpwyrAu65aaZP0kVvyQr3h8A8Adk1HiUtSx1XuMQPRiIR6p8iSRgchJdXGhVrw8+mjNe+Q13frICczaWCs8dvt/feCNNqHNRf0MgFmLon6zJeaJkmbuxFFM+XIaKWl/0nYmIiIiIWpkWMYlORETUElw9/iBcPf4gw/ufOW84ps3ZiovG9Axty4ixzkWvVsWI1URQKk41O+1Ww452lyP8vK/++RAMKMwyft4Eppzv+3wVbj6hv2KbX5JxoNar2WYkOM2trqgxyy98Y+Ch/61GbpoTG0uqMLhLNm46rl/oPvGbBVIC33DbsLcKRw/o1HAcSVvnIvbRV3l8cde7eHU6+SNp7zm7PyAhIMsx/Zmj+F0ybQEAwO204fGzh6X4bIiIiIiIkoshOhERkUkFWW7cfepgxbazRnXDrLUl6NHB3PS23gKfRqL1Xh/UKUOzLd0goBWrUbLcTfef/5IqDz5bukuxzS9JKKsxnjxXC+bQegu5mhGsc9myrxpv/bYttP2rFXtUIXr4+Gan13WfT9IP44MhvVhBV13vR4Hx9YuIxEn0REL/9uK452ajtMqLpfefCLeDQXpz2XmgLvpOREREREStDOtciIiIEjBpWBfMuOZwfHmTth5FjzOG6epovdf/m6x9TqMQXRStxz3WdUeePEc5dbplX7Xiti8g40CNfle7nrV7KvHBwh26HfRmBEPtaNUpK3ZWCI+J66kaHisuJqpYWFRSnA8AVKtqbWIhTqIzRI+uqKwOdb4ANpVUR9+ZkobrFhERERFRW8QQnYiIKAEWiwXj+uYjL8MZcb/TR3QFAEw+vl/E/USRQnSLBbrVLekGHe3iFHO0HnezU9kvXDACqx46GReO6YnjBnYKba+qVwbFAUlCWa35EB0A7vp0JfaqFiM1K9L5v/LTRszZuA+yLOP2j5eHticSSosVLuLPvsafxYBe/d7EQvwdGoX+YoAZ7wKmbQGD3NThW09EREREbRFDdCIiombw/Pkj8N3fjjZc+FNPtDoXPUaT6GJ1SbTOc7PNJjlpjtBUu/gQdd/549+sw+pdFYjVom1lMT8GiByiP/v9Blw6bSE8fmUKrX5MrdePS6ctwNu/b4v6fOJDxeMEGifpxYBeHaI/PXMd/v3r5qjPAahCdIOkMpFamraEb0PqyOCbT0RERERtD0N0IiKiZuCwWTGwc1ZM08GRJtGNpj2NFq30+s33lZidys5Jc5g+/vLG6pQxfTqYPo+KOp/pfUWRFi0NqvMqO9rV4fOHi4owZ2MpHvhyte7jAzoLiAKA2EDji1Lnsq20Bv+cvRmPf7PO1OS0os7F4DWK4Xr7nUNn3U0q8a0nIiIioraIIToREVELFc9iiGYm0aNpihA9qGuO2/R5VMYZogcD5kivo9YXOUSvjlK7YrTIpyxrw3VJsbBo+DXVeMPPYWZy2mdiYVEpgW73toQheurwrSciIiKitoghOhERUQvz+NnDUJDlwtN/Gh7zY41DdPPJltkgNtsdDtHV9SiA/iR919w00+dRGWd/+KJtZfj7JytQUmXcqV5Vrwzo1fUodmEBWPXUOmC8yKcYxvsDsmabOIkuPqXfxJvuCYid6NEn0dsz8W3gW9K8WOdCRERERG1R5JXFiIiIqNldPLYnLhrTQ7f65YRBBfhxXQkuGtNT97F9Ombqbu+Y5cKu8jpTz282iM2OMome6bJrKlm6xBCix1vnUlnvx4d/FGHOxn2G+5RWKRc6VdejiMH4/hoPujvTFfeLk/1+RZ2LrNlHDLyNFhY1c+HCaPpdpAjX23GfCyfRU4dvPRERERG1RZxEJyIiaoGMutNfvmgUXr/sUDxw+sG693fIcOLm4/tptt958kAcP6gAb11xWNTnNtPPDSjrZrw6dTHBRUdFsdS5iKHxeaO7m35c0O4K40n0fdXK+/ySjL/OWIpnvlsHQFkls786HLjLsgxZlhUhusen31Ue3Ed8O6s8+iG6mUl0xcKiBrsbdaW3N+LbwMno5sV3m4iIiIjaIk6iExERtSIZLjtOPLgw4j49OqRrtvUvyMSbJgJ0wLgqJBKPT1t5kuVW/jUj02VHllABY9b1x/RFpiv2fvhI1JPoy4rKQ5Pvd5w8SDEFv7/GA6AhxD77n7+hQ4YTj541NHR/vfDaxbcuWKETUHSi69e5mJlE9xlUyIgU3yJox2kmJ9FTiG89EREREbVBDNGJiIjamNx0Z+jnu04ZhOHdclCQbX4CPJ5hZr1JdHU/e16GA25H7F+Cc9oscS2yGsm+ao/itscfDsK9fgmVQmd6aeMk+oKt+7F6dyUAoFboSRdDdPEChFenzqXaxCT6qz9vwrriKrx0wUhYhV55RZ2LwS9J3N6eg2SZC6ymDCf/iYiIiKgtYp0LERFRG5OXHp72Ht49B0f06xjT4+MJX8VKkyC7VfnXjA7pTsVipGY5bFa4dEL0p/80HPecOijm4wFAaZUyRLcJ9Tl13oBiEr2spiFE31ZaE9om3l/v058QD06Oi9vEBU0VC5IKPz/z3Xr8b/lu/L55v+IcxQsVRr31AcUip7q7tAvt+QJCqvGtJyIiIqK2iCE6ERFRG5MrhOjqINuMaHUuf5vQH5/fdKRim0dnYVGPKsXNy3AiL8Op2S8ah90Kl137OrrmpOHao/vGNd2unkQXFwet9fkVIXlwAnxTSXVoW3mtEKL79SfRoy0sqliQtPFnsY/eG1BW5JiZRA9wEh2A8mJCO34bUoJvNxERERG1RaxzISIiamNy0sJBtcH6pBFFq3P524QBmm16dS5W1XN3z0tDttsOm9USU++6w2bVrXPJaOxJb7hQENvY9b7GSfQMpw013oDiIkCtN4DKOm3YvWZPZWhbeW24U73eF8DXK/ZgePccZSe6v7ETXdjoUSwOqg3RxfttqgsgZibRxW719hyii6+9/b4LqWF2YWIiIiIiotaEIToREVEbk5MWnkQXu7vN0ptyPrJfPg7qmImj+utXwxw9oBN+3bAPAwuzMPn4fthWWoOdB+qwdEd5aJ/RvfJgsViQl+4I9Yyb4bRZ4NaZRM90Nfw1xqZO600obZxEz3DZUaN6j2o9AdR6hRA9IEGSZKzdUxXaVi5Mqs/fUob5W8oAAJcc3jO0Xa/ORZwmF3vQgz/WCJ3pP67di3EH5cPZ+Nr9gehVLco6l/YbZoo5bnt+H1KB7zYRERERtUUM0YmIiNoYpxA4V9frL2QZid4Ec0GWG4+cNdTwMS+cPwIfLCrCn0Z3R2HjIqa3frhMsc+oHnkAGhY+jRSiX3f0QfjXr1tCt4060TMaQ3SHLZ4QveH5M912lKj60Wu9fkXYHZBkFB2oVSwKKta5iD5fujv0s97CokaT6MFAXbzo8c687ch2O3D7yQMb9hGSc6NpX2Wdi+4u7YJiEp2T0c2qPX/uiIiIiKjtYic6ERFRG3T4QR2Q6bIbTo5H8vg5wwAAdzSGt4CyZ11PfqYLNx3XLxSgA4BH6AqfNLwLeuWnA2hYYNRIpywXjhnQSbHNYbPqTqJnJDCJHpTl0s4T1PoCiuoUvyRjrVDlAgAVdfoXAcSgPTyJHr7fK7wnfp3+cvU3Bz5bukt3f6PpajE8NupNbw/El96O3wYiIiIiIkoSTqITERG1Qe9ffTi8AUm3Szyaw3p3wIZHT4HTbsVz36+HJAMTBhfGfBxxmvvViw8J/RwpkJdlZVgMAHabRfd1BOtc4lk8NXQMt06I7gloJtGLK+oV+2zYW61+mIYvIGPlzgpsLa0JbVP0mgfESfSGn2u8ym8OiFP2YnA+b8t+vL9gBy4e21OxPxcWbSCZuOBATaQdf+6IiIiIqO1iiE5ERNQGWa0WuK2xB+hBwUqYX+88Dlv21eDIfrFPtN85cRDmbirFX47so9jeIcN4Eh2QkeZUnrfRwqLBCfREJtEzdSbRqz0+xfSyX5JQUacMtxdvPxD12D6/hNNfmavY5vFLkGUZFotFd7K8TjWJbrdZQ/v7hNB99e5K3PPZSvQryMSYPh00xwGMFx9Vq/b44bZbYbe1nS8oii+ddS7Ni+82EREREbVFbef/loiIiCjpuuel42hVvYpZAwqzsPLBk3HnxEGK7Z2yXIrbYgbu9Us4tFcezhvdPbRNlgGXTp1LkD2BED1DJ0RX950HJBmV9fod6JF4dVb/FCftxYVFg+G3uLAoAGwqqcZhj83Chr1VCEja4+0oq1XcjrXOpbTag6EPfIczXvkt6r6tieJ9YKrbrNrzNyCIiIiIqO1iiE5ERERNxqEz3XxQpwzFbXECut4nwWKx4Mlzh4e2eQOBiLU09jgWFg3S60Qvr1MG5v6AjIq62EN0n06IDoRrbgI6k+jb99dq9i+t9uL+L1Zpam70xLqw6Oz1+wAAa1Sd762dGOSanciPZNG2Mlzzzh8oKtP+fkiJGToRERERtUWscyEiIqJm1bdTpuK2YhK9MXgWK1o8Pgluh/F1f1uSO9HVgXlAklHVOCGe5rChzhfQPEaPUYjt9UvIcDWE8+JzFFfU47Fv1uofS1Lub/ycsYXH8V9+aNmUC4smnuqeN3UegIbJ/c9uPDLh4xERERERUevCSXQiIiJqVtoQPXKU6w1IcNmVk+gZQm96InUumS7tIqcVqjoXnxSeRO+S6477uYKCFwrUk+jzt+w3fpBFu+CqHnH43UydS5S3XleNx4+r3/4D/128M/YHNxOxBz2ZnehFZXVJO1ZbxUl0IiIiImqLGKITERFRs1L3kI/ulae73/GDCuC0W3HqsC6aTvQsdzj8TmhhUZ1J9K9X7lHcDkgSKoMhek4SQvTGOhf1wqI56dpAP8gCZYe6EWWdS/Q0U7yAYTZsfmPOVsxauxe3fbzc1P6pIF4/MGjVaVYlVfV45rt17aIOhp3oRERERNQWMUQnIiKiZvfbXcfjhQtG4Oqj+uC580fo7jPt8kOx4oGT0DHTBavVgpcuHBm6LzstHH47EuhEz3QZd60HiZ3ohVmJh+ieUCe6sLCoLMMToSbGYjCJPnNVMeqFxynqXEyEx+IkuplJdwA4UOs1tV8qKRcWTV6oG8/kPgD89f2lePXnzbjw3/OTdi5ERERERNR8GKITERFRs+uWm4azR3XHvacdjIIsN/SGyS0Wi2JB0TNHdgv9PLx7bujnWCfR+3QML2yqV+eiFpDk0CR6pyxXTM+lR28S3S/JEbvWLbAgoNOJPmvtXjwu9KjHOokuMloIVS1a/U5LIDVRnUu8FmwtAwDsKq/Dz+tKUnw2Tas53u55m/fj0mkLsLW0pumfjIiIiIgIDNGJiIioBUh3mlvr/OPrx+GiMT1w36SDQ9vsMS4smpMWDs4zXdGf1+OXUONtCLg7ZoZD9LF9OsTVx67XiS5JMup9xiF2wyS6/v0fLCwK/RyIcQLbIgTiwXBfz4EaL/71y2aUVNbHPY3dnMS3qiXUuYiu/M+iVJ9Ck5LR9Cn6Ra/Px5yNpZj8/pImfy4iIiIiIgAw93+sRERERE0ozWlDtccfdb/DenfAYb07KLbpTaJ3y03DrnL9RSDThUVJzYToVcJ55Qq95U67FU67FX6v8QS5KM1hQ50vYDiJXh9HnQugCs5VPevRiFPakUL0Oz5ZjllrS/DFst0Y1zc/6nFTranqXCi65ny791bWN9+TEREREVG7xkl0IiIiSjkx2I6V3jR4t9w0w/2dwiKleguLqtUKIXqWW+xit8JhM/9XqbTG1+j160+iR61zMQrRDYJzSZYxc1UxNu6tMjyuT6iI8UYY2Z61tqGCZM2eSrSCQXSG6CnEd5uIiIiI2iJOohMREVHKpTniD9H1JtG75uovADppWBdFWOyyRw/BaxpDdKfdCpdwng6bRRHIRxN8jV+v3IOj+neEP6CcRC+v9Rk+1heQTE3dioHx0h3l+G3TYgDAticnafZdtasCt3+8PHQ70iS6xRKeMG7pdS5V9T7FAp7JDNHjPZT4/rV1LaGDnoiIiIgo2TiJTkRERCmXSEWIRyf87aozif7nsT3x7HkjFMG3mUVJgzUzbrsVLmHyPJYpdABwORr2n7FwB7bsq1Z0nH+9Yg/+/esWw8cu2FqGbftroz6HOExeK9TM6AXkf1F1c0eaRBen/Y1qclqK1+dsVXwmDKrkqYkwQiciIiKitoiT6ERERJRyd5w8EB3SnTh5aOeYH1uj06WeLywAGnTC4AKkOW1wCuG31cRYdXBRUZfDpgjgnTYrfDGsWukRFg49/rlfFPfNXF0c+rkgy4WSKo/p44oCBlPARQdq0bdTpmKb+jl8fuP402a1hKpfvllZbLhfS1BZp5zoN3pP4hHvFL4F7ShcbtYX2sK/FkFEREREbQZDdCIiIkq5dKcdfz2hf1yP1VuQNNOlrYfJTXcCaKhhCTIziR7sGXc7rIoQ3WGzKipZgguHGimr8UZ9LgC49PBemL91P37btN/U/iLJoDd9W2kNft+8HxW1Xpw6rAtufG+JZh9vwPjcbS29wyWCZNaLsKkkuuZ9i/gLISIiIqLmwToXIiIiatX0Q3SHZtvQrjkAgE5Z4Sl1MyF6kMtug8sudKLbLYoKlGiLo0YK2EXpLjsmHxffBQWjxUc376vGfZ+vwrPfb8Blby7EumLtYqNXvLUIMxbu0H280fvUGvqvDd6SZmVpxRchYtUaPhNERERERLFiiE5EREStml6dS6Zb+2W74BT5dcf0xbiD8vH42cOQESX4FulPokvC/eFjZek8v1lpDptiWj4WRtUlm0tqQj8bTcRX1ftx96crde8zCtFbQkAdjdGFhdZm5c4KPPvdetR5zV2MSZXmfbfbz8UJIiIiIkothuhERETUqomT6MGwd3i3HDxy1lDYrBZ0y03DW1ccFton2+3AjGsPx8Vje8JusyLTZS7wdtm1nehiPitOoh/Wu0O8LwduhzXmRUuDjOpcdleYXwy0otaHn9eVKC4Q2Kz65xNLJ3yqtITJ6GREvae/Mhev/LwJL/+0MQlHazot4O0mIiIiIko6dqITERFRq+YTesmX3Hsi6v0B5GU4cenhvXDp4b2iPj7bbdethFFzO6xwCSG6XTUtnqYK0X9aV6K4/8HTD8aD/1sT9Xmcdqvm2GYZTaIXV9SHfq6NMsl86ZsLsGJnBe46ZRCuP6YvAMAo0/e3wClvdWjeAk8xIWv3VKb6FCKS2VNORERERG0QJ9GJiIioVeuWmwYAyE13ICfdgcJsd0yPz07T9qfrUU+iq/Nqt9CXfuzATpoKlMuP6I2F95wQ9Xk8PgnOJE+i7xFC9GhW7KwAAHy6ZGf4nPz6E+eBQMsLTNVn1BLrXFrCdHxTacMvjYiIiIjaMYboRERE1Kq9deVhOHVYZ3x03bi4Hm+2v9ztsCrCbXVWKIbm3fPS8PNtx+KKI3qHtlksFhSYCPjr/QHY4wzRjQJjM5P2ahahhMSoh9snNW2dS70vgIkv/or7Pl9l+jHqEFdqAamuel3RlhjsJ0sLeLuJiIiIiJKOIToRERG1agMKs/DPP4/GgMKsuB4vht+/33U8OmY6AQA9OqQp9nPZbYo6F3VYKAalbocNPfPT0Tkntql4AOhfkJXAwqJxPSzyMSXZcBLdr3pCr1/CZW8uxIuzNiTlub9bXYx1xVWYPn973MdoiaGuUe2OGS3x9RARERERtXUM0YmIiKhdE4PgrrlpmDXlGDx29lC8ctEhiv0kWYZFSMrVlRxiiB5cGNSmHkGO4p5TB2FMnw5xLyxa54194txI8NTrfOEp9NtOHKDYR72w6A9r9uLXDfvw4qzkLH4ZT2Cs7uROJLBOFotqadEmHuBPqZYw+U9ERERElGwM0YmIiKhd86mqNXLTnfjz2F7okOFUbPf4lMmnOipUB6UAYLXGFqKfN7oHAMQcov+xrQwAUFxpvvvcrGCVi8UCdMxyKe5T15JUe3yhn/2BxJPiGK9BAGiZdS7qj0ZCk+gJngoREREREcWOIToRERG1az6DqhK7qlLFqwqFZVnGRWN6AgBuPLavbuCr18ry+mWHGp5LuqthcdJY61z+NHUeAKA4hgVEowlO3QdD9DSHTRPu+1Uj1T5hqr+sxouNe6sSWkTTEkeKrn62RDP0/dWexA4ATYbOTnQiIiIiolaGIToRERG1a0YLi9pUU+Qev3JxTUkGHj5zCD6/6UjcdtJAU8cAgBMPLsR5o7vr7h9cuDTeOpc9SQzRgYaFPasap8szXHZNuO9TdaJX1IUn0S9+YwFOfOFX/PvXLXE/f4yD/LoSDaxHPzor8ZNQkRI4p0QuSjQHdZ1OU4rnmwpERERERPFgiE5ERETt2qNnDUW/gky8dOFIxXa7VfnXJE2di9wQdo/skQub1QKrTqJnVOfidth0twcnr+MJ0T9ctCOpk+hr91RixEPfY/6WhqqYvHSH5j1RLyxaKkxtbyqpBgC8kMAio2JFTrxheEuoc1F/NFpCT3tTac4h+zb8NhIRERFRC6M/ekVERETUTvQvzMKsKcdotmsn0dWd6MYLi4aOYTAq63ZoQ/J3rxpr+Nxm/P2/K2N+TDQev4RHvloDAMhNc2oqbtR1LmU1Xs0xEgk6xbfBF5Bgs+pffIj0fC2xOSWRSfSWjsE2EREREbVFnEQnIiIi0qGuLjn3kG6K24f17qC4rRd7jz0oX/fYepPoR/XvqLj96sWHmDjL5pOb7tC8J/7GMLjW68eGvVXYX60ToifwnOI1CH+E4DlSxUlLCKzVi8625Un05sQ6FyIiIiJqLpxEJyIiItIhToNfNKYnLh3XGwDw6x3HYfXuCkwc2lmx/6ThXfHz+n3o0SEttK1PxwzMmnI0OmS4FPvW+5T96nomDe+CgzqNxykvzUngVYT16JCGorK6uB+fq1Pn4mtcbPXyNxdi0bYD+g9MIC8WFxb1B/QXgH3+hw345I8ifH7TkSjIdmuesCXUuai15YVFE7tsQkRERETUMnESnYiIiEiHGBgfM6BjKFTvmZ+OU4Z1UQS8AHDOqG6YftUYfHHTUYrt/Qqy0CHDqdhWqjOxrScnzRHzeeelO/CXI/totv/nyjE4flBB6Pak4V1iOm5uurbOJRgGGwbo0Nbe+AMS/vKfRXhq5rqozynm3+pFTINe/nEjdlfU45+zN2seAyQ29a0Nu+M7lnpiWtK/HmBKC7wmoNCmrw8QERERUbvFEJ2IiIhIh9jH7bRH/yuT1WrB+P6dNIG5nmqP39Q52OPoRnfarbjyyN6h21ce2Rs/3nYM+nbKxJg+4QqaYwZ0ium4OWn6C4vWeSNP1atD37mbSvHTuhK81hh6RyJOkav719WC56F+vkRC52jPGa+2XOcSqVqHiIiIiKi1SnmI/uqrr6J3795wu90YO3YsFi5cGHH/8vJy3HTTTejSpQtcLhcGDBiAb775ppnOloiIiNoLcdLcaYu+oGUsbp0wAFnu6K168Uz1uuw2xcR4lxw3+nbKBKAM5e1WC647+iDTx83TmUT3BSRs21+j2Vd8beqXUCuE7tECV3ES3G8wiR46F4PAO5FOdO1zxlfCrX5UW65zabuvjIiIiIjas5SG6B9++CGmTJmCBx54AEuWLMGIESNw8skno6SkRHd/r9eLE088Edu2bcMnn3yC9evX4/XXX0e3bt109yciIiJKhi657qQe7+Cu2Vh+/0m4eGxPAEBBlkt3v9z02OtcXHYrHLbwX/HE6XHFdpsVd586GO9fPVZzDL0B+Nx0BxzqSXRJxrZSnRDdJYToqqDcJ3Sb1/skbNhbZRimi2Gzz6ATPXx/w77q+phEpr61IXpyIuKW2NOeLG34pRERERFRO5bShUWff/55XHPNNbjyyisBAFOnTsXXX3+NN998E3fddZdm/zfffBNlZWX4/fff4XA0/E9l7969m/OUiYiIqB35z5WHYX+1NzTJnUxWqwX3nDoYAwoycdKQzrr7uB02zLv7eFgtFjzxzVr07JCOl3/aFPG4TrtVE3YHiZPkwan0NKd2yr5Dhgul1R7Ftiy3XTOJ7pdklFYp9wOATLcdqNA/PzGYvuezlfhs6S5MOXEAbj6hv2ZfxSR6lOntQOMkunq3FlnnksAkuvoiQUvDOhciIiIiaotSNonu9XqxePFiTJgwIXwyVismTJiAefPm6T7myy+/xLhx43DTTTehsLAQQ4cOxeOPP45AIHIXJxEREVE8jh1YgHNHd2+y42e67LjiyD7omptmuE+XnDQUZrvx4oWjMOWkgVGP6bJbNWF3kBiuB0P0dKd2pqJjprbXPd1ph0MdogckVNVr+90zXZHqXML7f7Z0FwDg+R82hLZ9tWI3Zq4qBqAMm71+baDtF6bTg5Po6oA6kanvaMG9WepFaBMK0Vt4Rt3CT4+IiIiIKC4pC9FLS0sRCARQWFio2F5YWIji4mLdx2zZsgWffPIJAoEAvvnmG9x333147rnn8Oijjxo+j8fjQWVlpeIfIiIiorZK3YkuUkyi24IhunYS/alzh2u2pTttuguLVnt8mn0z3eEammDoW+cNYFtpDSp1Qvdgxlzt8WPy+0tx/buLUe3xK6pY9ALtOl94kCJY96LeL5HAWvuc8XWiq7XlOhem6ERERETUFqV8YdFYSJKEgoIC/Pvf/8bo0aNxwQUX4P/+7/8wdepUw8c88cQTyMnJCf3To0ePZjxjIiIioualrnMRM029rnR1nUvfThkY0SMXX9x0pGJ7hlNb5/LJ4p26k+hpDu1fMe/+dAWOfXY2Zq3dq7kveF7ilPreynpFiO3X6UQXQ/TgpHpAVcGSyDC59jnjOxgXFm0aybmkQclQUevDNe/8gZmr9qT6VIiIiIiaRMpC9I4dO8Jms2HvXuX/SO3duxedO+v3gnbp0gUDBgyAzRb+n73BgwejuLgYXq9X9zF33303KioqQv8UFRUl70UQERERtTAuuxVWvZVBAUUdS7jORRmiv3H5YQCAjqrFTtOcNkUIDwALt5Vhi87Conab9q+Yny/bDQBYuqNcc5+zcX+PLxxa7ymvh6RYWLTh54o6H35eXwJ/QEK9N7x/MMxXB9SJdHT7NAuLxkn162jLk+jN2Ynedt/F1ue5H9bjhzV7cf27S1J9KkRERERNImUhutPpxOjRo/Hjjz+GtkmShB9//BHjxo3TfcyRRx6JTZs2QRImjDZs2IAuXbrA6dR2dwKAy+VCdna24h8iIiKi1qpDhv7feYJsBgE6AEUdSzDodtvDIforF49Cn44ZABoWEhU11Lloj71uj7Yqz6Har6JOW/miOK/GcN/jD0+W766oU06iN/79789vzMeVby3C63O2KibRq+obnkMdoicy9a19bHyzz9pJ9LgOA4Cd6NQy7dNZYJiIiIioLUlpncuUKVPw+uuv4+2338batWtxww03oKamBldeeSUA4LLLLsPdd98d2v+GG25AWVkZbrnlFmzYsAFff/01Hn/8cdx0002peglEREREzeqj6w6PaX9xMlisYwmG7eLUuhgaZ6oWHE1z2HQnzPU6ztUT6+uLqyKeYzDcr48wie5vnApftashtP9i2S5FiL6/xotbPliKWWtLFMdOpDnFZ1Dnsq64EtPmbtW535yEFhZtgTG1+BlrzpCfdS4tR0u/uENERESUKHv0XZrOBRdcgH379uH+++9HcXExRo4ciZkzZ4YWG92xYweswsRUjx498N133+HWW2/F8OHD0a1bN9xyyy34+9//nqqXQERERNSs+hVkYf2jE3HbR8tx7MAC3P7xcsX9kcIsMdx26Cw+KtaXqCthrFaL7iS6HnXYvrW0OuL+zsZzqRdC8T0VdeiVnyGcmzKwtlosqPOKk+h+fNFYGSNKpF7EKOye+OKcxnMArjyyT9TjWCzK962t1bmIL6clhvxERERERIlKaYgOAJMnT8bkyZN175s9e7Zm27hx4zB//vwmPisiIiKilstlt+GViw8BAG2IrgoxxQBXDNHF2pfTR3TFwq37cfKQwojPK06y985Px7b9tbr7qQP60mr9tWtC+9u1k+hlNV706JAeuu1XBdo2qwV1Pu0UvFoggcDaL0WeNF+zW1tlY0ZbW1hUStEkOhERERFRc0l5iE5ERERE8RvUOQvrhLoUdYhpVOciBuovXzgSAUnWrWsROYRvCBZkuw1DdLF7HQCKK+ojHjc44S5OovslOVThAmgn0W1WC+q80etUEqtzifzgYPgfjWoQPaFgvyWG1LLBz9R+8BsIRERE1NaltBOdiIiIiBIz45rDMfWS0aHbwShrcJeGxdQnDu0cuk8MwcVqFovFohugqxcpFSteeuenq3cPP49qEn36/O0RXkE40K8XFhb1BSQEhElwvyrQtlstik50I0bVKdtKa1DtaZhkr6r34ZGv1mB5Ublin2gT484oFx0Mz6mNTaLLTNGJiIiIqI1jiE5ERETUiuVlOBVBeTDQ/HLykVh2/4nonhcOu8VJdPW0uB693vSg4wcV4MZj+wLQhu3qhUWjsYc60cOhudcvKSa21dUqVrMhuk5gvb64Csc+OxsnPDcbAPDsd+sxbe5WnPnqb4r9oi0c6jI7ia66ndjCoi2POIXMieT2qSV+Q4KIiIgomVjnQkRERNQGOWxW5KY7VduEED1CQC4eQwy2RVaLBXdOHIRJw7vAarHg1JfnhII09aKk0diswU50VZ2LEDZ7dSbRPXFOov+6YR8AYG+lBwAUdTiiaGG3w2bFnoo6ZLsdyHCZ/2t1m15YtG29NCIiIiIiAAzRiYiIiNoY4xTTblDnYiRSXUnX3DQAwJCuOaHjResQNxKQJPy4di/eW7AjtM0XkBRT5H6dTnQzE916w+Q56Y7Qz5Ikw6ouLQ+dg/b44jntr/Fg3BM/ISfNgeUPnGR4DhbV8aMMuLc6YnDe1i4QEBEREREBcda5FBUVYefOnaHbCxcuxN/+9jf8+9//TtqJEREREVHsImWYYu1KtEVEAeCYgZ0AAB0zXaFt7141Fk+cMwxDu+Uo9j2qX0cAQGG2C7Hy+iVc/+5irN1Tqdgmhth6neh+EyF6cGHVtXsq8ehXa7B5XzVy0sIhekWdT7PwZ+g5JW3aLfa2L91RHjpGLBJZWLQltqWwwoX4CSAiIqK2Lq5J9IsvvhjXXnstLr30UhQXF+PEE0/EkCFD8N5776G4uBj3339/ss+TiIiIiEwY3j3X8D6xZkXdY67nwTOGoE9+Bs4Y2TW07aj+HXX3ffa8EXjzt604b3QPfLp0l+b+/gWZKK/zYV+VR3NfRZ1PM/W9rrhKUbPywaIdOPHgQsX5m1mgU5JlVNX7cMpLcwAAdb4Ajh1YELp/f43XcBJdb9K9zhsO0V0OW9Tn1z2nNrywaNt6ZUREREREDeKaRF+1ahXGjBkDAPjoo48wdOhQ/P7773jvvffwn//8J5nnR0REREQmzPzbeNw5cSCuO+YgU/ubCdGz3Q789YT+6JWfEXXf/EwX7jh5EHp31O778JlD8O0t43HxmJ66jz1QG32Se/O+Gtz0/pLQbZvJSfSADJTVeEO3K+v9CAgT5vurPYaT6Hp1LuJipmKtfKRFSI0WFi2uqMenS3bC62/d/S7iu8Q2l/aJv3ciIiJq6+KaRPf5fHC5Gr6qO2vWLJxxxhkAgEGDBmHPnj3JOzsiIiIiMmVQ52wM6pwdcZ8sd/ivfg4TC4smS7bbAbvNipuO64eDu2YjzWHDZW8uDN1vNkRevTtc92KzWkz1b8uyrDi+zy8pwveyGq+mszwooFfnYrCYaa03gJw0c/MpwTqXU1+eg7IaL3YdqMNfT+hv6rEtsTpFZoJK7cy+Kg+ueecPXDSmBy44TP/iIBEREbUtcU2iDxkyBFOnTsWcOXPwww8/YOLEiQCA3bt3Iz8/P6knSERERETJke12YPpVY/D+NWPhssdXRWKGOpLOcDWE9067FScP6YweHdITfg5ZhqlJdEmW4RWmxD3+gKKmpbTGC6OhfPUkemm1F9PnbQ/dFo8j1ryoqTP64OOCE/I/rS+J/CIELTGvTlU7jdE3CCgVWuAHswk99/16LCsqx9//uzLVp0JERETNJK5J9Keeegpnn302nnnmGVx++eUYMWIEAODLL78M1bwQERERUcszvn+nZn/OXvnK0Fxc2DNevoCs21muVu0JKMJwj19SPO5AjVcT+gf5dSpa3hZCdLHapdbrj3AWymdQn3er70hP0em3xAsK1D5UeSL9eSciIqK2KK4Q/dhjj0VpaSkqKyuRl5cX2n7ttdciPT3xySIiIiIiahueOncYBhRmKbaJtTJmdM9Lw84DdYptvoBkKkTfW1GvqHP5ffN+Rahf4/UbLiwabdJdGaKbn0RX19C0/gxd+QJkWVZU5JTVeDFn4z6cPKQz3HEuxkrUkvBLEERERO1PXHUudXV18Hg8oQB9+/btePHFF7F+/XoUFBQk9QSJiIiIqPXS6wt22GL7K+hVR/VBQZZLsc0v6YfoM/82XnG7uLIei7aVKbbNWFgU+rnWEzCsBYkaogvBeZ1BV7oe9XlHuxjQ1J3jHn8As9eXRJmmN6Y+PfXtS6ctwC0fLMOT366L8wz1sc6l5eC3AoiIiKitiytEP/PMM/HOO+8AAMrLyzF27Fg899xzOOuss/Daa68l9QSJiIiIqH2YOKQzZk05RrPdbrUgN11ZAWNU56K3uOoz3603fM4arz/CwqKRk0Fx+jziJHqU44qT6fW+AH5eX6JYwFQMKJsiq3z867W44q1FuOWDZXE9Xn1OAVWiGlwQ9qsVu+M6PlFLY/TvDCIiImq74grRlyxZgvHjG6Z8PvnkExQWFmL79u1455138PLLLyf1BImIiIiodTGTLz10xhCMO0i5IH2m246OmU7NvlarBbnpyu3+gGRqYdFoaj0BRcj9yFdrQj/7dDrRReL0eV0MU9zqOhfx5n2fr8KVby3Caf+Yi7/OWIod+2sV+zfFVHqw5/2HNXvjerz69eyr8uCFHzZgV3mdak8Gj20VB9GJiIiorYsrRK+trUVWVkO35ffff49zzjkHVqsVhx9+OLZv3x7l0URERETUlnVSVa/oufyI3njrysMU2zJddth1ql7sVgtyVYuR+iU5KQtyqjvRp83dGlpQ1B+IVrMS/lmcRJdlGfM270dVvU/3cepsXgyhP168EwCwqaQa/1u+Gze8t7jJA0prgtm2Otef/P4SvPTjRlz07/mK7RzebbuaunKopeFHmYiIqP2JK0Tv168fPv/8cxQVFeG7777DSSedBAAoKSlBdrb2K7RERERE1H6cN7oHLji0B/5x0aiI+6m70TNddjhs2njKarGgQ4ZyEt0XkJMzie7VdqLXNy5EGsvxxan0dxfswEWvz8dfZywFoJ3S1S4savw8m/dVR7w/GYwWVjVLvbDokh3lAIAdZbV4Y86W0PZEg8cajx/fry5O8ChERERERLGLK0S///77cfvtt6N3794YM2YMxo0bB6BhKn3UqMj/s0REREREbZvTbsVTfxqO00d0jbifTTUCneW2w2HVmUS3WdA5x63Y5g9ImnC5V3664naXHLfmOdQO1HqxYW+VYltwwVB/lDoXvccAwPPfN3Swz16/D4B2SlfdiR4pI7daLLr3+wMSpny4DDMW7jB9jobPkfAouvFdj369NvRzopPof/twGa6dvjixgxAlAb9VQURE1P7Y43nQn/70Jxx11FHYs2cPRowYEdp+wgkn4Oyzz07ayRERERFR+3HSkM66ga4sA93zlAG5XwpPot9wbF/YrRZccFgPzeMyXXZU1OnXqgDAln01mm3BRT09fvMhuljncqBW+XzqgfaAJGPh1jLhfuMU2mJw//9W7ManS3fh06W7cNGYnqbPU48t4Ul0cywJzqLH29lORERERJSouEJ0AOjcuTM6d+6MnTsbehu7d++OMWPGJO3EiIiIiKj9mDS8C/p0zNC9zxeQ0Cs/Q7MtIDWE3F1y3LhsXO/QfWkOG+p8ARzSKxeLth2I+VyC1Syb91WbfkwwRBd72oOLpOrVt5z/r3mh24EIIbrVYlGE8MEfy2qMLwzEKtq0fjRm62Y4vdt2ta9GdHaiExERtUdx1blIkoSHH34YOTk56NWrF3r16oXc3Fw88sgjkCTzEztERERE1L4NKMwEANx4bF/DfbwBGd3z0hTb/AE5VIui7vT+5pbx+Ovx/fDYWcPg1FmoNJp6XwCyLGPtnkrTj/E2Tq2L0+sFWQ0VNOoFUNUT7hH/+mxR1sEEf0zmQo6JhttmT6W5g8e9lfXYVGL+QgjFr52tK0pERETtUFyT6P/3f/+HadOm4cknn8SRRx4JAJg7dy4efPBB1NfX47HHHkvqSRIRERFR2zT9qrGoqvehX0GW4T4+v4TO2apOdEkKheh21SR1n44ZuO2kgQAa+tljVecNoKTKo6llicQvBUP0cK2LvXGRVHXAWO3xK25Hr3PRbk90sdGf15fg4z+K8NhZw2JeWFSSZLz521Z0z0vHyUMKzde5JHkUPVo9zNjHfwQALLjnBBSqPj9EiUj2Z5mIiIhavrhC9LfffhtvvPEGzjjjjNC24cOHo1u3brjxxhsZohMRERGRKYXZ7qgBp1+SYLdZccfJA/HLhn1YuLUMXn84RI+0MGY8k+h1voBuV3okvoAMSZLxwaIizX3qwLs2hhDdarXoTp3rBeuxuPKtRQCAbLcj5jqXlbsqQguGvnjBSBzaOy+xk4mTbDK+37C3iiE6ERERESUkrjqXsrIyDBo0SLN90KBBKCsr03kEEREREVF8fIGGsPSm4/rhmT8NB6BcWFQ9iS6KZxK93hdASVV9TI/xByT8d8lOPPntutC2YMivDryrPQHF7UiBuFEneqKT6EF7K+sRayV6jXARYNv+mhZf5dHSz68taG9vMefQiYiI2p+4QvQRI0bglVde0Wx/5ZVXMHz48IRPioiIiIgoyBcIl4bbGyfL/QE5FCRHmqR22GKPu+p8AZRUemJ6TECSMX9LmWYboDOJ7lVOokfqN7eoH9/4c7KCYYvFEnOdi19I9QOSbL4TPcnJY7DOpdbrx9o9lUntiSciIiIiEsVV5/L0009j0qRJmDVrFsaNGwcAmDdvHoqKivDNN98k9QSJiIiIqH370+juoZ8djYG5T5LgD0QP0SNNol95ZG98tnQXylXd5xv2VsccovskGU5VYB8Mm9XRbo2mzsX4uBaLMkQP7qterFQ0fd42vLdgB975yxgURKkxsUC7MGs0AVkVopucQ26qGumbZyzFrLUl+NPo7nj2vBGa+xmtN712dwGDo+hERETtTlyT6Mcccww2bNiAs88+G+Xl5SgvL8c555yD1atXY/r06ck+RyIiIiJqhyYN64I1D5+M7nnpoW2Oxkl0WQ5PqNsipLNOu83wvvwMJ6acOECz/bXZm/HfJTtjOld/QNKEycGgWx0wqhcWDUQIxC0WiyIFDgbqkYL3+75YjXXFVXj8m7VRz9tiQcx1LmKAH5BjmERvguSxqKwWs9aWAAA+WdzwO/P6Jfztg6WhfdpdwEtERERESRfXJDoAdO3aVbOA6PLlyzFt2jT8+9//TvjEiIiIiKh9s1otSHcq/7pqF6a9Pf7GED3OhUVtVitcUTrT3Q4r6n1SxH2Aht72NNU2v0Eneq1X3Yke3sFiUVa1WC3Kxwd/FgN7SZJ1F1fdVV4X9bwBS8SFWfUo6lwCZufQm2YSfd7m/Zrjf7y4CJ8v2538JyNq1BQXhIiIEiXLcsPFdyJqEnFNohMRERERNZUsV0NwfsKgAs19DiEUr/c1hNGR61zC9111VB/FfXarBW6H8aQ6AHSOUocS5Je0QbtRJ7p6El28W/1KLLAo61x0gnm/wVh6WY032mnDaon8/unRTqKbrHOJ6VnM8fjDFyRkueHcyqqVrzvZc+g3vrcYl05bwAl3QXt7K5hREVFL4w9IOO0fc3HTe0tSfSpEbRZDdCIiIiJqUX687Ri8ecWhOHNkV819Tps1FGAFw2izk+h9OmbgmAGdQrdtVkvUSfRBnbNNnXOwn13UsOimtu5E3YkekGQUldWitNqj6SfXdqJrK2KM6mCCIfqbc7firzOWwh/QBv3WOBYWVXeiR6qWaWrq5/ZL5ifj4+HxB/DNymLM2ViKojIzk/5ERERNb2lROVbvrsTXK/ek+lSI2qy461yIiIiIiJpCQbYbxxtMgFutFmQ67ajy+EMLgppdWNRptypuN4TokSfRs9PM/XXZL0makWe/pN8Xrg5+63wBjH/6Z92p8D0V9TjqqZ+Fx2qn2wMGY8AHan3wBSQ8/NUaAMAFh/bAUf07KvaxWGKfqhVD+4afzS4sGvmJ4vkauvoCgu4FhSSm6uIXDjiN3H7xV09ELU17+0YQUSrEFKKfc845Ee8vLy9P5FyIiIiIiKLKTnOgyuM31Yku1r84bXohevj2hMEFoUUqAWBsnw6mu4/9Ot3gkiwrwu5Jw7pEnBCTZMAOCyKlvsHDiVlxQGcKPmjdnqrQz3qhr8USeWFWPeoQ3ez/uKtrbURfr9iD+79YhVf/fAgOPyjf9Lmoj6lXq5NMRhcsqPXbsLcK+6u9GNfX/OePiFqXmauK8chXa/CPi0fhkJ55qT6dpOKFXaKmF1OdS05OTsR/evXqhcsuu6ypzpWIiIiICFlu5RxIpBBYDM0dNitcQqhut1rgEjrRzxzZDQMLs/DImUPw6FlD8frlh5o+J58ka7rO/QEJFXW+0O3xqilwPdH+JzigM4muDo7FawqPNE6hA0CdakFToKFzPdZOdE2IbvJxepU3QTe9vwT7a7y4/M2Fps9DhmxuEj2JxAsWNV4//vHjRmwtrWnS52wNmrZEJ3ayLONfv2zGnI37TD/mpBd+xUWvz8f2/dF/nwyriFqn699djF3ldfjLfxal+lSIqBWKaRL9rbfeaqrzICIiIiIyJdvtUNy228yF6DlpjoiT6IO7ZOO7W4+O65yWF5VrtgUkGae8NEf3XIxEiyKD4bkY5qqDY5fdhrrGRVcXbisLbX/8m7X4cvluvHThyNC2hjqXxEL0SBPmIq9OJ7uaz8Q+QbKsrcbxBbST8ckMeMULFg//bw1+37wfr87ehHWPnJK052iNWtqA/q8bS/HEt+sAANuenBTTY7eU1qBXfkZTnBYRtRAeX9N+a4mI2iZ2ohMRERFRq6LuKbdZjcNpcWHRbnlpiiDbbrPA7RAn1ZM7XlrjDaBGmP42FaJHSSODGa4YNqsrRoyC6C2lNdhSWoPLj+gV2maxWGCL6bupqoVFdRZONaK3sKlaLIPkkqytc2mYjG+6RFe8gDB/y34AQD3DmBZn54Ha+B9s4uNjtuaJiIiI2o4Y/8pMRERERJRamS7zdS41nnCI3SXHrQjVbVarYmFRvVqTZNY2OE2k1dFC5GDI7hN2FGtSJEmGP8pBvP7w/VYLYI3xRUpxdqJHqnOJhyxr61z0OtGTWZMuXkBo4uYYSgBDbiJqb8R/60W7IE9E8WGITkREREStijqLjdTpva/aE/rZ7bAhXQjgGzrRxY507V+Nkxqim5hEj9bpHbzb5xcm0YXHmKlMEd8vC5Qhupn/8dZ2oievziUWMrST6HsrPfjn7M2KbclcDDTZFwKodWInOhG1ZMzQiZoGQ3QiIiIialXqfcoFMiOG6FX1its5aeE+davFApfNpn5IkzETokcTDISN6lw8/uhBtfh2WS0Wxe1oU+zqfWKaRE/y6LYky4qpeAC4bvof8KreA/U+iWjqhUtbq7YU2LS0RVKJiMwQL+6ZXauEiGLDEJ2IiIiIWhV1UBwpRJ84pDMAYFDnLADKEN1utSiCbf1q9eSNnLqSEKLr1bmIwa6ZhTkVC4lalO+fmUlrj2oK3uz/qwckbeidCEmSNVPmpdVe7fMmcxKdIbqu9hY8cxKdiFqy9vVvZKLmw4VFiYiIiKhV6ZLtVtyOFKJfcngv9MxPxyE98wAoQ3SbzYI0pw23nNAf9b4ACrLcRodJCmcSpt716lzE4Fs9ha1HrGyxwKII1X2ShDQYn+f/lu/GM9+tD90OyLEt5OmTJLisyZn+b6hzib5fMqfH4z1WnTcAu80CR6yruFJcEgm5OcBJRK0dJ9GJmgb/FkdERERErcodEwcqbtsjhOh2mxXHDypEbroTgHYSHQBuPXEA7j51sO7jm7sTPRpJr85Fii1EFyfJLRZlvUu0SfS/zliquB3LJDoA+JLYKS7L5qpakhkm6C1cGk2dN4ChD36HY5+ZnbTzkCQZK3aWm/p9N4f2nNdwAT8iamn4ryWipsEQnYiIiIhalY6ZLjx61tDQbWuEEF0tOy38RcxIE+xB0fZQH+PJc4bhhmP76u5rtyWeyAcDc0UvufB/y2YW7/T4w53yVkvDNHpQrCFxw8Ki5vmTuLioJMumJsOTuZ5pPJPoa4srEZBk7CqvM7V/jcePj/8owoEabTVN0Gu/bMYZr/yGv3241HCfVGlvoXI7e7lE1GKJi4Qn/+jJrGMjaq0YohMRERFRq5PmCFeCRJpEV1PUuSRhzDzDqawmGdkzF3ecNFB3X4d+6XpMZBnYU1Gn6P4OCMG3mcnkel94H6vFopjUNtOJLvJLckyhqZmQ3yxZNtd3nuqFRcVTNPNe/d9nK3HHJytw1duLDPd5fc4WAMA3K4tjPp+m1hpDZfH3Yu78hbAq+adDRJSQZK9T8f3qYgx54DvMXLUnqcclam0YohMRERFRq+MWQnRrDGG4GKInI9DNdCmXGHLbbYaT8cmYRK/2+DHuiZ+wdk9laJs/EA6yY51Et1iUoWGsIbokyaZ6yYOSWeciyeaqZJK5sGh8nej6i8Aa+WL5bgDAkh3lxkdsYcmtbPBzsz2/LOPi1+fj2nf+ABD7csCJXGdh9zARtTTJHhq/dvpi1PkCuP7dJck9MFErwxCdiIiIiFodsV88lkl0cYK9xuOPun+0fN6mCsbTGifT9c4plhC9Z4d00/t+vHgnRj86C4u3HwhNome77Yb7i5PogDJk9ksS1u6pRGW9T/M4vSn3hlqZGBYWTWKHtyybC6WTubCoP8FJdDOPb+2ZbCpC5e37a/H75v34fs3euHrixXM2c/bivxdaW4guyzLenLsVi7aVpfpUiKiJtLdaLaLmwhCdiIiIiFodhxBIx9KJbhHSr1gm2I2U1yjDZrfdZnhOZutc0hw2/PeGI0yfwyeLd6Ksxou/vr8kFCBmuR2G+3t84Un0gCQrQsBF28pwyktzcMqLczSP21ft0WwzOw0edM07f2Dy+8mZZJMhm6tzSfEkuviIZAb6LYqisialTx/f4xM4QGvLqmatLcHDX63BeVPnpfpUiCiJlBf3UnceRG0ZQ3QiIiIianWctvgm0QHg/tMOxmnDu+D4QQVR97VEKYaoUk2zuxxWw3MyO4lut1lifk1Aw/80+xrrXLLTjEP0emFSNyAp/2f7qxUNfad6i2Bu3Ful2RbrwqIbS6rx1Yo9KK81XjTTLEk2N21nJrjeV+XBzgO1UfdLdBI9WdUyLW3KUPwUpGIyW3w/4nn+WB8j/umM5/lqvX6c8NxsPPDFqpgfm6jt+2ua/TmJqOmJ/15qaf+NIGorGKITERERUavjEOpcbDEGzn85qg9eufgQ2G3R/yqsHlY//9DueOnCkYb7uxrPS++cHCaeL7ifuibGDKslXLmS4bQZVtF4hDoXWVYuDBppOn+pTkd3QIptEj0onjBaTZLlpNW5HPbYLBz11M+oqNPW2CiPFb0qZOaqPTju2dlYtasCgDLMCCSxE57+n737jpOivt8A/my/3jg42sHRkd4EsaKgiEZN1IiKGrG3GINGgz9ji7EmmsTYYlSMJsYUS6KJDUVFEQQE6UoH6RzX6+7M74+92f3OzHfKluOO43m/Xrxytzs7O1vuzD3z2ecrp6rONUz2t09wXYAkXtK3lu/Ehr21eHHBlsRvnKJkTtARdTTpXnizvWGGTtQ6GKITERER0SFHDKQTDdFTcfaYnjhrVA9dJ7tIq4uRHZPb8Crk97qufhF5vZ7YwqJBvzcW6BuJC4tGVNWyD7rZsEjpsm0Vpn0Z62DcuvLPix0DayfRTnTn7ZyOTwxNt5XbT6O7ub9rXl6KTftqcfVLS6K30XXOpyfZ8KShiqi1tHWdi3Ha300onvAkeoqd6Ol6HyTD5/JkHhEdug61tRqIDhX8LygRERERHXLEgNh3EANFLRx/+fIJKMoOWk6ly6af3Yb9nXKCjtuOLC3A+LIi0/61SfSg34sMYRFVkbiwaERRdcHwJ9/sjX1dUacPuXdIKl6SnUT/amsFfj/3W9fbKxaho5ugwCn4TqSn3M0kuqauKVr1Examz9PVid6eP6rf1uGN8f7dHI74siR69Gr61so9KDiJTuRc1XYoUi2+JqL0YYhORERERIecQSW5GNe7ECcPKUloYdFEGfesfT++TxGW3DEFZ43qIb1dk9A7/o9rJmLeLZNcTw93yg45Bl0hn9cUtHs9HjRqIbrPq+uNF4mT6IqhzkVk7C2XTc9GVDXpj8Xvqmpwva1Vl7ibiV6nUFfch9NLlMwEcVgI3sMJhPCHEtUhhF75XSWu/+vSg9LHbQy13YT6iZ6UEAO4ZE4atGWVBEN0oo5J/FXU1icziToqf1sfABERERFRorxeD/557dEH/X7FINwYiovfNgoh+pGGiXEAKC3KxLZy82Q3EJ1EdzoxIKuT8XiAA7XR4LswK2jZb26cRLf6Y3t/bROKahrRKScEwFzvArRMWdv8rV6SF8J1k/rjra934MvNB/RXCrfzeuy7pa0muMMu+lWcpr91IbrDdGIyk+TNrTCJ3t7oJiAl76fznlmAuqYI1uyswoc3T2rVYzG+n9085am8LEmF6G30Nli+rQI/++fXwnGo7boaiIgSkcJHaojIlXYxif7EE0+grKwMGRkZmDBhAhYtWmS57Zw5c+DxeHT/MjIyDuLREhEREdHhwhgw2WXbfYqzXe/3hhP74/cXjEZBVsB0XXFLaG0n6DdPom/cW4vfvP9NdB+51pUwDbpJdOsA8fq/LMW4X32AhRv3A5CH6Iqq4uNv95ou15w4qAt+dHSZNPQXw0e7BU0B6/C52cVCnU7BtbjYp1MVfTiJhUHF+09XF3Z7zkdkD7GuKfqe27i3dSbRjROYCU+Ki9lTgk/uoXRe5Pw/fqH7vslNyT8RHRIUVf41EaVPm4for776KmbNmoW77roLS5cuxciRIzF16lTs2bPH8jZ5eXnYuXNn7N+WLQd/VXMiIiIiOvzYhb0T+nRyvP3oXgUAgJOHdMWZI7tjWPd80zadsoOO+wn6vLa1DJ2yQyjOlYfxjcIkuiJMog/plqfbbn9tE1QV+N/KXQDkAXJDcwTPfLzR8ji0ID8gqZYRw0qnyXur8NlNR/nv5n5ru4hps7CP1plE10/+d3htsbCo8GYyLyzqfPtEp8l1i/EmVefSNuqbI7rv3ZyEIqJDg75Wiz/bRK2hzUP0Rx99FFdeeSVmzpyJIUOG4Omnn0ZWVhaef/55y9t4PB507do19q+kpOQgHjERERERHa5kIfqo0gIAwGXHlDne/u9XT8Sqe6aiqCUov/8Hw2O312j1KXYhedDvtQ2ei3ND6J4v/7Sm2IkeUdXYop3ThnWVbq9N2Msm0e3CaSAeolv1s8e2S3IS3e1k993/XuVq34lUv7glnnxIZpL9UNMWXbwRXaitv87N8ei3cdGhrrut4+aSHbSP90FzmJPoRB2FeELvcDhfS9QW2jREb2pqwpIlSzBlypTYZV6vF1OmTMGCBQssb1dTU4PevXujtLQUZ511Flatsv4/xURERERE6dJZMt390uXj8emtJ2JASa7j7QM+L7JD8WWJenXKwhvXH4Oj+sZ707VJdFkFiibot59EL84JontBpvS6RlMnevTrQosJeC1glAXITn+oaycdZI9FnJSzqp4Rj1PGbSj96bf7LK8TH5dT4Gq1wKmMtqW4mGjaJtHbSUCyp6oBa3ZW6cIb2aE5nURJlfiBBHMnemKhuKv2F9X9e6Y9k50YI6JDk9PaFNR6Xlm0FXe9uZLP+2GgTRcW3bdvHyKRiGmSvKSkBGvXrpXeZtCgQXj++ecxYsQIVFZW4te//jWOPvporFq1Cj179jRt39jYiMbGxtj3VVVV6X0QRERERNRhiQPSz14yDl0l0925GQHkZpi7zQEgM+BzdT9+oYw7JyP6f9GjFSgR6fZBvxcNzdbBc+ecELq5mERX1XgIWGQRomvBbzKBWyxEd6hzEZ9nRVF1U/YvLdgMn0VZudtQuqZRPzEfUVT84s2VGNurEOPKCmOXO02aRxyeg4q6JtNluoVFU/wD22ny/2Abf/9cAPoKIlmIkB3yoamu9QJbxTiBKb6fEqxzcfMKGTvYE9XaMcvfF2/D3upGXH9if9vtGjmJTtRh6OpcmOUeVLNfWwEAOGVoVxzTv7iNj4ZaU5uG6MmYOHEiJk6cGPv+6KOPxhFHHIFnnnkGv/zlL03bP/DAA7jnnnsO5iESERERUQd08pDEKwSzgu5CdHESO8MfvY2sR1zj1IlelB3E90f3wMPvrMOEvkW6SewNwuKOEUWN/bFdmCUP0cOKClVVk+pP1h6CfGFRYNO+Wvzhw/WobgjHLm9WFIS80edgzc4q/OJN60+dalPefq/HNgBvEKbv1++pwZRHPwYA/HXhVsy9+YTYdanUuTz7yUb86r9rYt9rz2tY14mefGjZFFYw8p73ALg/OXOw7K+NnzyQPUXZIT8O1LXeCQBdiG44AFeTgQmG4u09rLr1n18DAKYOLUH/LtafkOEkOon+9OlGNEdUXDupX1sfCiVB94mgdvh76XBQ1c5OdFP6tWmdS3FxMXw+H3bv3q27fPfu3ejaVd7JaBQIBDB69GisX79eev3s2bNRWVkZ+7dt27aUj5uIiIiIDg9H9XVeLNROhsuwUxeiB6L/Fz1kU+cSsulEH9kzH0XZQRTnhPDVnSfjhUuPxA9G94hdX9MYD6wjanxh0ZyQfL6mKazgRy986epxGGnHKK+mUXHJ8wvxr6XbdZeKFS17qhuNN9Jv2xKY2lXfGF3158WW9+dY52IToosBum7/wm1S6UTfVxN/LowLRLYnsgXtrN5b6RKxqeRxN4me6PaHRp1LZX3Y9nouLEqauqYw7nt7DR56Zy3Ka82fqKH2T79WA3+2iVpDm4bowWAQY8eOxdy5c2OXKYqCuXPn6qbN7UQiEaxYsQLdunWTXh8KhZCXl6f7R0RERETkxilDSvDsJeMw/7YTk7p9UpPoAW0S3X5hUatJ9L9dNRGeln6U7JAffp8XD50zAhMlJwQURY0FkF6v/Hg/XLsHn3yz19XjMNIWDJVN1TeGFWwrrzddLk7HOi04qoXSiYTom/bX6r5PpLM8mYVFdXUuKXSiHypTw7LsRlwHIG298AJTCJ7gZLmuziXBDvVkHo5+kr3twq5D5T1FrU/83SZWftGhQ/d7pe0O47Dm8H9ZqANo0xAdAGbNmoVnn30WL774ItasWYNrr70WtbW1mDlzJgDgkksuwezZs2Pb33vvvXjvvfewceNGLF26FBdddBG2bNmCK664oq0eAhERERF1UB6PBycPKUHPwqykbu86RBf+8gq1TKLb1bkEfF5pT7jP64lNsouCfq+u+1sTnUSP3/aL2yfjpikDdNus2lHp6jHI+Gwm0RsspqnF0DnsUH+iBbKJLFzpNfyVq5tEd+pEt7jeLggVK1ySCeE1h0rg6RSi1zTYT0cnwzgZLk7DJ7qwaKKhe6oTn+k+p5BIKN/k4j3FhfIOD+JvxcPhJZd9YuZQl+jvPSJKXJt3ok+fPh179+7FnXfeiV27dmHUqFF45513YouNbt26FV7hD4QDBw7gyiuvxK5du1BYWIixY8fi888/x5AhQ9rqIRARERERSWW6DNHFBSe1SXS76WqrSfSckD82hW7kl4TuihoPybweD/IyAujXOUe3TSqVDx6bhUXFnnL9/cUvr2uyn4hsbgmo3UyihyMK6pojpiB8+4H4NLzTwp9WIbjVYwHMk+gVdU3YX9tkep6d2N1HeyILp8S36ub9tegWzkCXPPnCt8kQT36owomh6PeJ3d5VbX2Kk+SqIYT3IX3ji4kcTpPDwqLltU044/H5OGNkd/x82uAUj4zaM/G/G4xfD03t5RMuRB1Zm4foAHDDDTfghhtukF43b9483fePPfYYHnvssYNwVEREREREyTmiWx7W7KzCeeNKXW0vLj7pdmFRn0WIbsUvqYdRlHgnurY7t9PzbvhtJtGter0bhWCvttF+ajmRSfTN+2sxc4652/36vy417c+K1aT6sQ99aHkbcZr+ij8vjt3HB7NOQP8u7oP0dFcsbCuvw7x1e/DDcaWuu/vdkD1F4vN61hOfAQBW3zsVWcH0/DkqnvyIKKlNijttrwrrCES3T2j30X0IX0cUFelcJzaRx+v06Ybn5m/EdxX1ePrjDQzROzj9opQdP4D1pPHEVXuhr6VqwwM5rHW89xXptYsQnYiIiIioI/n71Udh3a5qjO1trlCRESectS50u2A46PdKFx61C9FloXtEiU/tapOImWlM9GJ1LpLHUm8xZV5R1wQgO7qNwwKaiXSif7Z+v7SDXZRsJ/p+m4X4whad6PO/3ZtQiF7flN5J9FMe+wT1zRHsqmrAz6amLyCVBXCyYHdXZQP6CtP4S7ceQLf8DHTLz0ziPvX3lcpCoXbhkzaZ/V1F/H2Uam1COsMuVVXxypfbXG/vFKJz4dHDR6Kf3qD2J9W1GojIWZt3ohMRERERdTS5GQGMKyuyrFYxEmsVtNsE/Na3VVRVHqJn2EyiS0J0RVVj09VaV7jbCho3tIefSCf6K4u2xp6P2kb7EH1vTaPl/o0+XLvHcRunED3iqutDzyqIbHCo0jByOqGQKG1/X2wsT+r2VtOqsoudntfVO6pw9pOfY+ID1hP9dsT9K6qqOwinnvvobcSvrbd/fv4mXYAe3X8CB9rCGPqny9srduIXb6x0vX1T2OGkEUP0wwdf6kOfbmFRvqBErYEhOhERERFRG5NNOBvrXM4Z0zP2dXVDGCHJxHhyk+jR+9YWN01XxQYAnDKkKwB5NY1V3/nfF2/HC59tAgDUN9nXuWhhu131jWb59grHbZwCzUQWBtVCZqvFURsT7DhPd4iuSWRRVpH1Iqvmy5yC5iVbDyR1DLH9GybJE52qVV3Ws8jeH6mG4E49/IlY+V1VQts7LSyazEkjOjRxIcpDn25hUf7otgmXcxN0CGOITkRERETUxsKSMEsMNxffMQW//uGI2Pc1jeGEJ9Fl4aBYfaH98ZeOOpfsoA8LZp8UqyuRTYrbdXzPXROdGq91WFhUkxFw/rOmoq7ZcRu7TFFVVSzdWuHqeID4UKD1JHpioXiDy+ciUW6m+GWswl/ZBKRjUJxigCcGgOKJIeN11reX78tIFpAkc+jiTdQ0hl2JTp82O3waIpGTRnRoY5/2oU8MzjmJTtQ6GKITEREREbUxWdAaEMLN4pyQrhqma16GNPzMtZlEb5IEZooaD0+83vTVuRTlBHXd1rJjtcvnuuZnALCeVu+SG9J93yk7JN0uUXZh78JN5Vi+rSLxfTpMojeGI3jx883YvK/Wdj+tNomeZIhuNenotLCoxri4ZirEYzF3orvZt7tFFWWLESYzwasmGPK737G7+9Q4daKn+rrQoUN3YocB7CFJ9xryJSRqFQzRiYiIiIjamCzMktVs/OWKCbji2D44f3xpwguLyia/I4oa+2Nba3tJR4iebaiEyUgwqI2H6PI6lyHd83RTwcZQPVl2/dmfrd+X1D6teqW1SfQ/fboJd/17FSb9ep7tfpIN0asbmi375wF9iL52VxX2VDVIt9tT3YBb/rEcX7VUr1hOorusPFF0PeaWh+dKxFDH4raeRbaN3faySfT2VOdiR3aizilE70iT6M0RBTWN9vVQhzPjpzk6uo54okDlpwnahPi8s82l42OITkRERETUxmRh1eXH9gEAnDykJHbZMf2Lccf3hiDk9yHkl3Si29S5NEom0SOKGgvxYguLpqHOxRjmi8H8iYM6O95eC92tJtFzMwIo65Qd+74kLyOZwzSxC49KC7OS2mezxT4bYgt77ne1n/ok6lz21zRi5D3vYfofv7DcJtRysmbL/lqc+ttPMf7+udLtbn9tJf65ZDt+8OTnAGw60SWXyU4kiO/5VPMefXik6gIku8lyjWK4vRVZQJJM3mhaCDVN7PYk6z9vclg4tCOFqZN/8zGG3fUuKuuda50OSy5PJFH7Jb5s7Lg/ePhUH14YohMRERERtTFZ1cqwHvn46hcn45mLxkpvk+gkurzOJd4frYXoPq8HE/t2cnXcVrKNIboQzHfKCSHgs5/X0oJnq0l0v9eDvsXxEL1LXprqXGzSo4A/uRkzWd89ED+p4Zcs+CpjN01u5T/Ld0BRYVtDo02iL3Ooqlm/p1r3vdXUvttJdPG5dhN02xGfYnMnuvPtVbcBomQUPZlj103Op7MT3XQs8e8bJe8f2e8EUUeaRN9aXgcAWLoltUVsOyr9Yrwd53W3IqtmOtTpTh623WEcdvhcH14YohMRERERtbGwRZJWmB2MdZUbhSSLaebaTqK7q3MBgL9eOQH3nDnU5ojtZYf00+wZQoge8HmkU/SicESBqqrYV90kvd7v9SBLCOq75KZpEt0mPLJaINSJ1e20TnSfyxA9mTqX1TurHLfRQvREp46t61wk20r2HU7jNLYxNE+0E93tQqTpmkRXEzy+ZPYb3Xf8a9knUZxCdKs+fwB4++udmPXqsqRO7rQltz9vh4KG5uh6Clv226+n4IauzuUwCNE7olZba4Fsic+1R9b5RR0KQ3QiIiIiojZm1ZttRxZEZwatQ/SRPQtMl+2pbox97RX++PN4PAhIOtmB6KKmAJAhCfE1xk50sc7F5/VIp+gB4JKJvQFEg+cvNpZj3e5q6XZ+n0fXs56OHncA+L/XV6CyTl73kPBr1LK51QkS7aSG1+Uf3cnUuViF6GIXtta97zR1LIYDFz+3EIs3l0u3k+1FFsqJAW2qA8/GOha3oXj8NvKvjdLVid5adS5G4qcF5HVODpPoNu/56/+6FK999R3+vGBz0sfXFjpSiP6HD9fjrn+vwokO6ym4oasCSeOnI+jg4cKibYMnLA4vDNGJiIiIiNqYVWBtJygJou0W8Dx7TE9cML7U8npjmGtVMzLvZ5Ow6P8mY1BJruW+jHUuWULI7fd6LUN0bWK9OaJg+fYKAECupKLG5/Xoptt9aZr+UlTgvrdXt/Rq6/8wtgrDnVgFkYlMolc1NGP7gXrL6+uawvho3R7Tpw0O1MZPCIiBqjjVnswk+qff7sM1Ly+VXqeoKuqbIrqgXlb9Ij4vdiHE5xv24Y43VqDWZlFIu/oWN/mG28lwWQVEyiF6OutcDN+Lz4Vs6txp4tjNe2JfjfzTIu2J+DjcnrQ6FGjrKaSjdUdJ84mdqoZmfPLN3g7Vq9/eJboWBKUHn+rDC0N0IiIiIqI29tRFY9CjIBNPzhjj+jayIDrDZlFQn9eDGRN6W17vMezOKtzNCPjQJTfDdhFT08KihuMKWRyn9pjCERU1DdHQtGeReUFPv9erm4T3eoGHzxmhW4RVtl83Vu+swrTffYrLX1ysuzz5Ohd5StrQEniLz7NV8DHi7vewwGYB0h//9SvMfOFLPPzOOsttxElzsYJDO1liFXat/K4SS7cecN0gXNcUwbC738XxD38Uu0w+iS5Oj1vv78JnF+LlL7bi8Q/XW24jPsWKqiYcCLrtUJflr8kEKIlOyrtl3JX4fpK9vhZvzfj1Lo7tUAilxZ/BjjSJ3lrS8Z48/5kvcMnzi/CnTzem4YjIDVU4jcZc9+ARf1z426XjY4hORERERNTGRvcqxGc/PwmnDe/m+jayOhe7ED16vfX//TdOc/sdFv80VrborjOE6OJxhRXFMtTWLm9WFFQ3RKeoSySLhkYrYeL79Ho8OO/IUjx7yTjpfhOpe1m1owprd1Xjw7V7dCGk1QKhTirr5fUw2mS1GOrJKjesFvAUzV27BwDw0hdbdJfrjl8Yedam4IF4aGysRAGiwev3Hp+Ps5/8HFUN1pPgonW7qhFRVOysbIjtRzZtHVbM92dna7l177Oxz1nfie58zLoqi4Q70VObRE9n/7RqiM4iDmG907G7mSJO4kM0B50+RG/DA2nHEl2M14lWJfX6V9+lvjNyRfd7j58AOGhY53J44X9CiIiIiIgOQbIg2m5h0ehtrMNk40Sp08TmmN6Fuu8n9u0U+9o4nCoea3NYtQnRtToXFdUtIXOJZNFQv9ejOyFgd6xjexciy+HkghUx6HXqDDfStraqu9Am28XnvU7Se96UQHgfaHkeKuua8fmGfboQNWxR56IIgblG+1rcTjup4UR8KbTHKJ+CTl9opxgC+UQnvWUnEGTkneguD1IQcXl/qRKPTbq4q8OnK9ysA5BMlVJ1QzNmvboMH67dnfBtkyE+jkNhct6tdD6U1lrstr0utGg84dQRqGk+EULu8Kk+vNj/v2wiIiIiImqXQkKIXJwTxMlDSjC4q3VPOSDvUdcYsw6rTnTNZcf0QXVDM04c1AVd8zPQLT8T/W7/LwCY+qvFIKU5olgeRzBW56KgsTn6p6lsEt3v03ei2wVjf7vqKEz97Se2j8VKY1iJ9dVb1bLYiSgqymsbLa8z7lfW+y1OjTvRTib84MnPsHGffnJbDBLFOpeIJEQPKyr8vmjXusbv9UD+SPTE3vCmltdaNm0dtqhcUVU14eBNP4FpXGDPOeLQB4jW28mO6+UvtuCEgZ1dHKVwH2k8gSAyPlTjhL7pOITLdlbW455/r8alx5ThqJYTYm7WAUgmJH364w147avv8NpX32Hzg6cnfPtEJfOze7jRnXhK45uS7TltoyOeJGivxJ+ddnrOiNKIk+hERERERIcgcap89rQj8MDZIxwDLbtucPMkuv2fCkG/Fz+bOhjjyorQszBLNw1uN8loNVnt8cRD9OaIiuqW+pAueeZJdJ/Ho+tVF4Oaf1wzUXeMAZ9Xt7BpIhqFsNnNVK5RRV2TZUiqBXsNQkhe2yQJ0cPm6XQr/pbA3xigA/pAtF6YeNdeKukkepM5bHcivo20xSxloVxEMVfKAMBH6/bgjMfnY+2uKlf3Zzw2xbAorKs6lxQ6yt9fvRuVde6m9DXij0BrLryoOgSj4n3f+s+v8c6qXTj/j1/ELnPz6YtkOsb3VR+cxUgXbtyP4x/+KFZ3BHSsCV3ZQrfJSrQCya322kGfzueuvdAvLNp2x3G4UXmO7rDCEJ2IiIiI6BAkTnM75N3S2xgZs45kuoN/NnUQ+hRn49Kj+1hu0xxRpIt0ej2e2PR7c0RBTctUdpdc8yS61+tBhl9e53JkWVHsa+3SrEByH8BtEDrKm11M5RpZVbkA8QBTDMmrJb3jDUlMosvoJtGFx6Udh6z6RayXcfvwxfBGC9GdJtHFsPeyOYux4rtKXPXnJe7uEOYQPNGpWrcBotU5qpqWkx/hiOJq8r31FhbV70vRLbhq3l58XbaV15mvt3gyxOc0mYw0ZLM2QzpN/+MX2Fpeh9mvrYhd1pr1OQddWnPg1nlPGk/sRhQVv3xrNf63Ymfa7oOidAuLdqC3eWtRVRV7qhpS3w+n/g8rDNGJiIiIiA5B4lS5257fDJtOdGMA6zSJLnP9if3x0S2T0FkSfGvCEVVaE+HzeGLVKWFhYdHC7KBpWw/c1blof9pmhZKbRK8SFgVNdBJdVVXsq7EuQNEm0cXFRGW944lMoge8Hvzp043S68RAVJwwj3WiC49P1onu9iSC+EmDWIju2Iluvn5Ptftww9ivnvDCom470S1Sy5qGMGobwxh//1xcNufLhI5XvLuKuibc/voKLN16wPmgJYxHLobkstfAqVbG6j0vvsbeJFJ0u0/EJOOdlTtNi+paaQ+T6BFFxZIt5bpapWSkM0NvrUUpjcf43xU78dz8Tbj2L0vTdh8UpT9p1g7e6O3cPf9ZjfH3z8W/lmxPaT/ijwvrXDo+huhERERERIcgsbPcbS+x1+vB8jtPwbxbJpmuM+5D3P/MY8pw9pgeeOvHxyZ3sIKmiILmsGQS3Quhf1yNTaLLFkv1eqAP0R2CvMIscxDvxrTffYrvKuoBRKeME2UXoodjk+hiiC6rc0nsfu97e43t/UX3KU6Ym7vZtZMcstoXJ+Lz1BSJ6O5Dv519gCv7tIIVfWiuGmoNEp1EtwnRrSbRG5vx0bo9KK9twkfr9jren1W4fd/ba/DXhVtx9pOfO+5DxnjoTjU1ujBfMk1pNYkuhujJLCyakeRCv1aueXkpfvHGSmzYW+O4bWvW57j19McbcM5TC3BdOwqS3a4LkCjjr+Y91W5WVmh9HXF6WLX4muTmfL4ZAPDgO2tT2g9PWBxeGKITERERER2CxNA7kWHQ/KwAyoqz8a9rj8bY3oWW24mT6WWdsvHoeaMwrEd+Uscqao4ollPNfl/0PsMRJRYo54QkIbrXgwyhEsIyyGv52zbZEB0Anv0kOtnd3JIsJdLxK06yG8VCdGEatdKwvaqqCU2i2/0pL4bbYjCvBWaNEXPFi1jn4pY+rLeuc9HuY/HmcqzfYw4/Ewk7jRPVCXeiw932Vi99leTkhx398ca/lj0PiTAGg+Jjcfw0gORH0mph0Wbh/ZPM5KU4iZ7OepWKOueu9fZQ5/LCZ5sBAB8KXe1tzWkR2mS11070jiiVtR0OFXurG3He0wvw+lepTY+nk+4EFPvROzyG6EREREREh7iiJELisb0LMa7MOkQXJ9HTWb8QjqjSmghFBQItIXpdUyQWwOZmBHD68G66bT2mSXT7+yzMCiR9vNpEvBZCJzJ5a9dnHpbUuWwyLAiqqM6d6M/N3xT72i43EcPtJrETveVG4mXa61MnWejUiazORRYsNCsKth+ow7lPL8D7q3c77tduIUDFUMeSaOe4fgo38fCpJsEQ3arKJt15o1MwGjE8b6brXUyiJzO1LC6KLO4rmU976Dk/ge1gEB3pmhNOZ3VEa/X0Gz/h1F4i9Q65sKjlNx3HQ++sxaLN5fjpq8vb+lBidHVgbXgcdHAwRCciIiIiOkQ9cu4IXHV8X0zs1ymp22cHrRfcFCcI7RYkdeuKY6OLjf5s6iBpWKaqaqzOZX9tdKLU44lOov/hwtFYftcp8WPzeBD0ue+EF3vVx/QqwC2nDHR93NUNzXht6Xas+K7KdN3D54zAiJ7W0/l2nceKGp1IFifR1+2qNmzjPIn+y7dW67a3smV/HR56Zy12VTboAnNVVaGqKr7ZHb/vWCd6MpPoEXNYbzWJbjxp4FZDc0QXXBjrUdzWs8i2sdvcKoCtbggntJCffkI8/rXbtQ2sGI9BP2nu1Etv3l/YKkSXLEybCPH3ifYeu/PNlRh5z3vY0VKf5Jb4uNw8fe1hQrcdHIJJohVIbhlfkvbSGd0R61yQ4O+9Q5Hx01rpkOpbUmmlnx1qnxiiExEREREdon44rhS3n3aE6050o6ygdTexXxjvDtksSOrWHd8bglX3TMWEvp3QZDGJrt3n3pbe3JLcDPi8Hng8+voWr8ejC+KcpsOLhBD9yRljccNJA1wf97urdmPW35djzU5ziH7O2J546bIJlrdtaAnArSoNwoqqm0RfawjRI4qKRodJdJHdn+/XvLwET83bgKtfXqKb/o0oKv6+eBs+W79fd1xAknUuuk5064VFwxE1oal+LfTaXdWAwb94B1f+eUn8OkOfs9tQXHp7m1DYKjCWLQhrRzy+855ZgF+9HT0R4vbpeOvrHfjh059jV6V+8VXj0YmPS7qwqG6C0qEzXdhWDNGbk5geF9cw0N5jf16wBbVNEfzp001WN5MSg343T186q0qSla4jSOc0tf69krbdmk4MtZMMvUNK9Pfeoag9Pi63dWDUMTBEJyIiIiI6TGVL+sY1YkVKuupc7O5PUdVYnYumV1FW/HiEMMbjiS9CCpgXFr3+xH4AgLvPHAoAyMuI17nIHssNJ/Z3c/gmPq8HmTYnIrQqFlmvOxANKcVp9fJafafz859twk/+tsz18biZglu+rUIXzCsqcP9/9QurxSbRbSbprTQr+rDVKpSOKKrjgrAy/1wS7cL9YE28AsZYj5JoPYu+ysJ6O6vnV6v8ccsYaD/bEhy7PRl2w1+/wpebD2D2a18bjk+/nVNFh9Mkuj5Ej1/e6DCJvq28Dq8s2qoL23XHJdzGeKIm0QlafR1O/Pmzet8drElRu2qa9jitqg8CW68TPdkTvunW0etcOtIk+uLN5Tj3qc+x8rtKtMfCFP2vmvZ3fJReDNGJiIiIiA5TdqG2OImejjoX0RMXjjZdpqr6YBwASvIzYl97dQupenRhuDGLveWUQfjy/6bgwgm9AABZoXjQHQqYH0sigYNxYjfo9+qqZeLbxetcrEL0ZkXRBZJGD7+zTjc17sTtFNyK7yrjt1FU0/OnLSiZTCd62NCJbjX5G1bUhBYd1EIvWThq7ERPfGFR+b6MrF6K6oZwQtGJ1XOS6DmFDXvt63CsamPil7nvRBefF3H6XFb5ctJv5mH2ayvwx082WBxX/DbGyqBEA2bdJLrw/FULPfXi++xgLPx3yz+WY+Q972FPdYP0+rRNoqe1Ez3+dVrrXDpeVt1u6Sp52u4w0u7cpxdg8ZYDuPDZL9rlJLpicbKROiaG6EREREREh6m+xdmW1/laaWFRAJjQtxPuOmOI6XK/YRJdnNIWA0avRx/sG3M8j8eDzrmh2PedhDoXWeCdasVDdsg8ja6oamwSPTdDHqLXNoZjIWBpUWZKxwC4D7/EKW5FNYfZ8U70xBPHZrETPaJYVqBEFOvr7MheKzHEiCj694O7hUXtw2SnfVU1NCcUPFpNSSc6HbuvptFwiX6/jguLOoQ/YYtJdadOdO09sGDjftN1xtsYT9Qk+pYQ9yU+f1VCxY7+pErrpFyqquLb3dVojij455LtqG2K4G+Ltlls636/TWEFH63dg1rJpx3SGVDr1hhI44kG08KiKRzz3xdvw18Xbk3xiDou8QRve/y0Q6qqElzA2a20/hylb1fUTlmPnhARERERUYc2rEc+HjpnOLrlmwNcf5oXFjXtXxJmGyfRjx9QHPtaDGO8Xg+65IYw5YguADzIswipNb07ZePGk/ojO+SX3m9E0tGeiKygHwfq9L3YihrvRLeaRNcWEi3MCmBsr0JsK09sUUWj5EJpc9AVr3NJPLQQp5Qbw4plaBlWVN0ipG7JJ9HjX++qasBLX2yJfe8mTDJ2qlvet1WdiyHcUSyqahrDEeyubLR8nbwJ/pgZq1BMdS5OC4s6nGywmkQXPx1h9xpaLZQq7quuObU6l4hhEl1VVdz++krsF04wKBav78a9NVi85QDOGdMzoU9FyPx98Tbc9q8VOHlISUr7MXronbV4bv4mnDCwM168bHxa9y1K9MSTW8anNdlnuaE5glv/Ga0vmjasq26x6GR0xIVF9Z8maLvjaE3t8WE51WZRx8IQnYiIiIjoMDb9yF7Sy/WT6KkvLGoUkIRWYojet3M2zh8vPzavJ7rY6J9+dKTr+5t1yiDL61KdRJct0KoIi4LmWIT8q1sWKx1QkosBJbkpHQMQ72BPhKKqpmDr38t3YHSvwiQXFhXC1rCCBRusp5ETXZSyOaJg0eZy876E1+/3c7/VXacFS/9evgNPzduAp2aMQZnhExhuA0Sr64yPQ1FVeCVx4TUvLcFH6/aiICtguk5VVcvQ2S1zJ3r8a+nCog6d6GGh+0TctziJHrbpR7EKpsX7Mta5pDKJDkQrbl5ZZD2tLL6GJ/3m49g+LrD4XePWM59sBAC8v3q3w5aJTQm/3HJC6ONv9pquS+/Coq3UiW58Tyf5Hhc/FVHfHEFhKgfVzqiqigf/txZDuufhrFE9UtlR7MuOusBle5ywPxxOXlAc61yIiIiIiMhErFZpjUl0WcAmTr9ffXxf02S6JtWw0ciqXsOtjIA5RI+oKhodJtHX7IxOog8syUFepjlYTVQi/ekaRVF1/dEA8MJnm7FkSzn2VhvrQpw1GzrRL39xsXS7cBIh+gP/XYsvNppDdDfB942vfIU1O6sw+7UVtre3eytYHa6xF9zqpMxH66JBaIXhUwuAvgbHiVW9knG6NpE6F9lzaHVyQR+iWx+3KUCV3K9pYdEEfxZ1j1FRHT+NIXucX24yv6eMGsMRnPH4fNz+uvn9A0A6Imv1WyqRR3iwMjnxftIZotstJJpsIJqOo2tPC4vO+2YvnvlkY0KLSMu01mvYnrTHR6WrA2vD46CDgyE6ERERERGZtGYnOgAM7pqn+76sU5YuNM/NsA6VU2xeMEl1Ej3gMx+QqsanbK060TfurQEA9CnOQcjihIFmZM98XHRUatOyMjWNYdQ3myfOv9ldg12V8oUR7Yihql2oH51ET+x5f/6zTdLL7V4+Y6Za3WgOsHUL8tnszOo6Y6VJMotX1jdHXJ8cEjv+xYVcjU+3brpYVueiG6E0349iEbKLr6tdFZKs0sZ4XA0p1rmEDcdoXFfBSJaxu/n5/2jtXqz4rtKykzuho05T0pbWhUV11T/p269pEF34Opn6KaB9TiOnorymKS376agLi7a2VE+otNaivNQ+sc6FiIiIiIhMxCnS1phEH94zH09fNAZV9WFs2l+LkwZ30YXRVsEzkP5J9FQX0rN6frQpW6tJdG0iuSAz4NjJ3BhWLCd7U7HPIsDxeTzYUZl4R7tY7yFOLJu2i6i2VSCA+0DCLoz755LtOHNkd2Gf9vdjF+Ja3U9YUQy96okHKY3NEd3JIVVV8cu31mBw11ycd2Spblvx/dYYVmI9/8b71dW5yCbRHR63/vr45alPootf62+f6DNnrKRx+gmRvafchLlOn5pIJDxrjzFba00xmzrRhe/Digq3TWEdOZxMdC0EK24XSD6UtceHpX/e2/BA6KBgiE5ERERERCbi34KpLrpn5dRh3XTfV9bHp4RlPeOadGfJiVRIRKfW9Ntb1c7UNUVrUnJC8qn6irpogJ0d8jsGV3kZAfjSlbYIDtRGj6FLbgjd8jOwfHslgOiEejId6/9dsSv2tV2IHlEU2+sBQ0Br85rbPXeffLMXy7ZV2N6PPkC0ux/99zOPKcMLn21Gc0TVVakk88mG+uaIrvpi0aby2OS9MUQXJ7ybwgqyQy33a6yVcVpY1KET3WpCX7ewqM2JEKu3q/j8GI85lUl0VVVtQ33Z/bm9T6dtEqpoaYdJWzoXRxQfn/G/HeLUbyL3k+6O7/a0sGi6TgofDt3c7fFhqbqv2+MRUjqxzoWIiIiIiEzEChe7QDudxEl0Wc+4Ju2T6AkkDme0TDX3KsqKXRa0CNFrGlsm0S2m6muFSXWrIB4Axvcpwv1nD4dD40tSDrQE+XmZAd3ZiT1J9KEb2dW5hBXnwNPtwqZOJ0G27K+NfS17qY0B4qJN5fj5v75GbWPYcjsg/rqbgmDJ8YQdJpkbmhXdeYKGsFjTYv34dNUqpkl0+5BcvN7Up26cEE9iEt3q59Ru8t/uR3FbeR0WGxaWFZ+biKKaqnWMpHUuLhJaxxBdcrXVr6lEYja733R2feOJ0n+SIrV9ie8Ju2NMpM6F077OWuvTBO1Juz8BlcYqJGqfOIlOREREREQmuRkBPHHhGHg9QFbw4PzZIAbJeTad6OmejDcGhkGfF3+5cgJuf20Fvt1To7vuwgm98IPRPTCsR7zT3WkSPdeizkWTHfJZBvmFWQH8/eqJANAqk+iNLYFofmYgthAqAOypTrwP3ch+Et15YVHt+QMAqNHXXT5J7P6YZJuKtw9HVJz3zAIAwICSXFx+bB9hO/knEJojxjoX833USXrnRcZJ9GzhxFV1QzMKsuI96OJzsH5PDe57ew2uPr6vqZ9cPCbZ82Y3id5sSIPEx75lf118HzahtdXPqTH4trof0cKN+zH9j18AAP517USM7V1kur2iOgez0toaF8GXUzh2qE+gJlJHdKC2CQVZAcuAXHwNjCdSxG8TCRzTPYnenhYWTddJYZ5oSE6qT7/4PubT3vExRCciIiIiIqnTR3Rz3iiNAj4vbjypP+qaIigVJr2N0l3nYgywO+eGcGRZEYqEBRw1Ib8XY3sX6i4LOHSiZzuE6Dkhv2V1ith/3RqT6Jq8DD92VsZD6+qGsM3W7jTadaK7WFjUOAluDNFVVYXH40nokwSySUbxss837I8foyFdNQa0WogeVlR9/7hhu+aIYnosRg3NEcv3dUWddYh+2Zwv0RhW8O7KXThhUGfd7ZwqOozPpdV10dtH/7cxHMG/lmyPXZ5MJ7pdV7tVCL56Z1Xs6z1V8U9JGB9DMj37bqZbk5lET8e2dtL5a1A/TWt9gIs2leO8Zxbg7NE98Oj0UdJtwroQXX+dbmHRhOpc0htPtqeTHq2w1EWHnURvj8T3UnuclKf0Yp0LERERERG1G7NOGYQ7vjfEdpv0Lyyq/8O3OCcaWMpqbPw+831b1blorOpcxOutFifVheitkba0yM8M6J4HsZ8+WalOotc2CtPbHsBvSOS043UKLn7yt2XSy+et24M1O6t0oea+mnhAazw+Y7YY8Htix6Ff4DL+9eodVRh217v41dtrbI+x3rCwqFjTYnwtxNdJO1HRFFFM4addsG+8zPgUGk9waM/x3upGVAsnBD5YsxuLNukrVjRei0l08fmxm563OlZdhY041a6qjpPosrecmzDXqh9edr3jvhIIcA9WJKevArHe7g8frQcAvPbVd5bbiCefjL+rxV07nfAQpbOzPd1u++fXOO/pBQnV04jE5yiVEFZfz9QxtbOXHoDxd0PbHQcdHAzRiYiIiIjokDKsR35a92cMZTrlRFdqzJJMkPsllSpBv324neNY5+LXddDr9u0TJ9Fb7883Y4he3rLgaCocO9GdQvQm8yS6cR9AYt3Kmp2V9bj0hS8x7XefWj7WX7/3DV5oWdwTkNf+ANGwPWIR8t3971VoDCt46+udtsfT2BzRhWniFH+FTYiuu9ymE10WFEdsQjfja6PdpewTE1r9DWBYVNJF3YfdMeuOR7iN2Huuf97N4b+R00S+m9slG5Zq3AZtiqI6Lr6bLm4fX6NDLRFg6EQ3XCfue1dlg+OJNI1TNVGi0lnn8uribVi0uRxLthxI8ljiUnloTid6OoL28AmCprCC/63YGVuU225tCep4GKITEREREdEhYf5tJ+LN649Bn+LstO736H7Fuu8Hd80FAGRJFjfNCJj/hLJbFBSIVqXYyQ7aTaLHj6FV61wyA7rw60AaQnS7wC2iKGhyCDzrxEl01Ryia+FFQp3oanSye1t5feyyvy7aarn9Pf9Zbbo/jfaahSP6CWjx66oGdxP9Dc2KrtahQVhU1W4S3e5y3XS8rEveYnpeuq+W6xscQlRdH7aLSXTz9LxFiC6Erc0Wk+iKi0l0LVz8x+JtjvcpijickEgktHS75TUvL7G9Pq0fTBEOyu75EE+MWb23dZ9wMN6NsO8z//AZzn16AdxwWiS3PUh2Ql58HROZzjcS772DZuitItEfo99+8A2u/ctSXPBsdI0GTqIfXhiiExERERHRIaFnYRZGlhakfb8XjO+FX541NPb96F7RznNZl3mPgkzTZXZ1Lj0LM5GXGV8ktU9xtmky3ef1WO5D34neen++RQyT4fslIXrI78UNJ/Z3vc96m8A1HElsEl1RVcs6l2XbKlwfU01jGCPveU83Pf3dgXqbWwj3Z7GwaFhRDMFwfJsql7U4xoVFxeeusi76Wny0bg/Ofepz6WsDWPeYR6+TbG+zEGGzRbgtLj4rI06CW/1YKLaT6PLbiCd4mi1OWLjpRFfU6KcsfvbPr6X7sLtd7GvJXSSUnbnc+L3Vu22vb61OdLsgUJyMH3H3e9LnLmzx+si+X+7yZ1fRBZXm+/zvip14oqVqpq0k/3rEb5lChu64uHFH0B5C6n8v3wEAWLurGsChcYKH0ochOhERERERHdZ8Xg/OO7I09v2YXgUAgC55Id12T180Vhd0aqwWFgWAI8uKdOHvJRN7I1PStW61j6DQwS4LJU8Y2Bnv//R46W1PG94VQ7rlWR6baF9Noyk4BfQ95CG/F7dMHeRYT6Opb7IJ0RPsRA8rqmkSPaKoeOmLLVi/p8bV8QDAdxXmwLzBIRjWGAMccWFRq4qRKpcLtO6vadSFcGJtijaJ/sv/rMZim8oIq+lx4zHFLrP5JIDxBId2c6sFcDXipLKrhUUVfShqNdEtPrbmsEUnuuIciEcU1bTIq5vg0i74B+Thnux3BZB85cP4X32Aj7/Z67j/ZNgt9ioy1svITpSJ7yvjdHayIaPT83/dX5bikXfXYelWd5Uq6ardSEdtijdtk+gdv1akPYToxmPQneDpoM87xTFEJyIiIiKiw17I78OcmUfipcvHxzrRZ4zvDSAasn9664k4dVhX6W3t6lyO6lsEv3C9qsprTtxMossWVPV7PdLudgB4csZYHNW3k+Wxic4f30saQBZmB4VjiYb/ssVVZepsQvTaxrDt9dHbC5Poimrqow8rKn7xxkpXx2LHdUe1TZ2L1cKHNY3uQvRfv/eNrjddDCe1yfMMSb2QyPj6qbrpeEmIbvPAwxaBvKzORXyPiidGrEJeY3+8VRWO1fH8bu63sZMhxjoX43EbKapqer3dLCwqvqayT1BYhWd7qhrw4uebUe2y1sfOnupG/Oj5RSntwyr0VS3ev0bGdQ5kr1ezEASbA8fUQ0a7nLm8JvUaqkSIjz/Zkxri73VOottrnyG1u09xUMfgboSAiIiIiIiog5s0qIvu+/ysAJbcMQV7qhtRWpRleTvZoqA5IT9OGNgZ3x/dwxT0yRbctOxEdyhC93g8ppoTUUASePcoyERW0IdvWya4pxzRBWN6FUrDwU7ZQeytbgQQf5yyxVVl7OpcFm4qx8JN5QCA0qJMXUe5Rgyg567dY7o+HYufJsIYGAZanvfmiKJ/jdOQYIlhtTZpX5gdsNo8enzGXnOnSXSbwC4cMYbo2nGZb5RhEaJbBeLi8xOOqKbFQeXHo5/MP/+PC/DprSfpbvvrd9c5frpBVc1BXKJ1LuPvn4tzxvTEA2cP1+1X5pynP8e28nps2V+HO88YYrttosSfbFVVHUPcprCCM/8wH2WdsvH0xWN11+nrUuz3IZI938bfd/r7Se7BW52kMnLbeJWuhUXF91+yHwxIWyc6y7nbhFPVkFt7qxuRFfRJa+So/eAkOhERERERkYVOOSEc4VCJYgyq+xRnY/ldp+CJGWMQ8vt0obOq6oOoB1uCOFkQD+jDda2DVeTzmhfcFMmCtWsn9cMd3xsS+76sU3ShVukkelZ8El07RlkwL2OscynOCUq3O//IXhhUkmu63GlSfeNe9zUu6WBV5xJRVMfAOlFiiK697o0OVSrmRTqtr4teb32cxnDUOIkunrjR6onKa5t0IbvV82AMRMXc0HJhUcPxayddIsKNv91Tg8376+QPSNh/MtPR4vPXFFbwimExWqs9aMe5aPN+x21T4ea8zcJN+7F2VzXeWbVLcq3zpwEAdyG6rtrI1InufJwybkN+2ad14rdLf92J+N5NNpYXH08qvzsOi0n0VnhcqdYiib8bkj28/TWNOPJXH2D0ve+ndCzU+hiiExERERERpUCsc/nolkn4743H6YJtMXRWVFUXcJw/vhcAuzqXeIXHuN6Fput9Xg8CNuOX2w+YQ8Wg36vr4dXqZmSd6EW6OpeWSXTXdS7xSfKHzhmON284Fhe0PF5RwOeBV3IiwNhdbbRhb62r40gXYyAYq3NRVF2Q8teFW10vmGhFPAGxt7oR+2oaHbvbjQHcU/M2YH9N9FMEsmDUKixVDRUr2mVAvD9enJbMDPiwblc1xvzyfVz0p4Wxy60m8sUgNaLoq3CsQjKrY000lFVU2WKmztFXs8OEsGwX4uMf0CVX2Db9SaCbx2B3Ukp3wiWBTvTmsP37yviypWMS3fT6CXdid0KxNQLYdJww0z22FNJv8ZbpqM1pj9rDozL+/Kq665Lb5/LtFQDMdUnU/jBEJyIiIiIiSsGUI0oARCfQ+xRnmxYOFSfdrDISWYgM6MP1c8b2RNe8DNO+fTah9g/HlSLg8+CeM4fq9iku+qgtXioLcAqy4hUi8Ul0d39GalPJfq8H04/shR4FmbhpygDTdn6vPtTXOE2iP/LuOlfHkS7GYEp8HsRw8c8LtuCsJz4zBY6JMAbmW/bXOi7qaaxgAYB7/rMagFWdi9WkuLlWwljnIi4umxHw4W9fRiezxYVb//blNkz+zTzsqW7Q7Us1BKLGjnQZq67zSIL1F8YO9ug+nG8ne271zNeLU/FrdlbhvGcWYFt5XdqCQHGA1il8XbLlABZuLLe8Xv/pAOv9NBre07LQT9+JLj8Zkyi7znbx/mwn0YWvE61zqaxrxv3/XYM1O6t0l+s70RPaZYz4fDu/z+L3+8zHG7BMOFnn5mTUIa8dPi63VUN2Ouzr1QExRCciIiIiIkpBaVEWFt8xBe/cdJzjtm7+yM7PjAfXYp1LwOc1TXJ7HTrRTxjYGavvPRU/OroMg7tGp2GPG1CsC/b9Qi2J3bGEWqbii7LktSxGWsAmToeK+9ME/F5p+OV2Uc7WpgV45oVF48dsDBcBcxCeiPom/f6q6sPSRT01AZ9H+t7atC86rS9dWNQymFYlnej6OpdQIP6+zAj4Yu8Now17a/H43PX6/RsWPFUU5xBK1tcfPVbpxZYU2WNzMf3rpmvdaHdV/OTB2l3VWLSpHLe/viKlwEz/sx7/2m6f1Q3NOOepz/H8Z5sst9FVgdjVuUSc61zsOtFlT+NNf/vKMVy3650WX0+7IDuV6ex73lqFP36yEdN+96l+n2noTXG7qKvon0u24YH/rcX3n/hM2I9wXExlDxpW0R9eGKITERERERGlqDgnZBkkityELmI/uDEwysvULzrm9dhXGADxien//PhYfH33KeiUEzLUzVj/WZgnCfS75IUcHoGeeF8ZAfNzFPDK61zEOpi29NG6Pfj93G9N09Di8yYN0R0m6e0YA/iqhmbpfWjCiiqd1tZCRekkestlxveYopr3pQ37NraE6OKrlRHwWnb6A+agVQxZw4p+MtxqsNxyEj3B1EpRJT3dDvuIKCq+2LjfdLkY7Mv2IFskcl9Naovhij9Lukl0m8dQ1WD+OTL35yc3TSv7tIWuE91Fncsby3Y4VjPpK0+s78++E932LmxZ1TOlp84l/rXV+9xItj7G4ZDfpqvLPrVjMHyvWl/nep+t9LAee/8bnPmH+Y7VaOQeQ3QiIiIiIqKDxM3fygO75sS+NoZ3eRn6SW6fwyS6KODzxm4v3sRqoVBjOKp93SU3Xilz+vBu+Pm0wbb36ybkl21S2+gcQk8dWoKRPfMdt0vFZXMW49H3v8G8dXt1l+tDdPOxOtWv2DEG8FX1zbaT6Kpqv/CoLJvTglRjcBdRVFPwvWxbBe54YwV2tUxXG6sxZCdHYtcbgk3j1LMYRMqCZ+2Y5JcnXudi7DfXnofdVQ1YtaPSdJs/fboRX24+YLpcPKkhm6SWHbPbxg+ryWyrn3W74Ft2C7vwN5HhaqdJdNkJGvl9Okyi2yw+G3Zd56JKvzZa+V0lrvrzYqzfE1+42Oo50X+KwnKXtnQnMFKZbE9DrUh71x4flr5Gp30d4O/mfouvt1fi9a++a+tD6TAYohMRERERER0kbsON00d0AwD86Ogy3eV5hjoUr9djCindECe/tWBOq3vR5IT8saoXQD6J3rMoE9ec0M/2vpxCdL/PIw2/3EyiZwf9eOWqozB1aInjtono2znbcRsx0JQF2PU2obcT420r65ttQ3JA/nxpRyitc2l5L8oms42X3f76Crz8xVb8ffF2AMDwHvETFxFFRUbAOlrQXlpVVfHql1t1QXVEVXUBqdUkrnUnuuXdSkk70Vuehwn3z8Xpv5+PjXtrdNe/+Plm6b7EkxrySXTzpcY1gFU1Wmdj7I1vtujG9lt8akS1eR5kYb7x91DSk+iSF0AMte3uR+R0HtDu+MI2ob3I7cM6+8nP8d7q3bj0hUWxyyxP4qRhUVDx8bidRJc9FtXh+o6gPTws43Obji76ZPv03XL6bzC5xxCdiIiIiIgOO1cf3xcApAtdtiZFBX79w5EI+rx4/tJxltv9bvoovHLlUZgxobfu8sIsQ4ie5N/G4sKigZZw/NlL9MeTHfLrguKgZBLdOBkv4zQpb1zoVONmEj075EdW0I8RPQsct03E9ZP6O27j8XhiU/yNkjAxlRDdOHV+oK5ZGliKZAuxLt9eienPLMCe6kbTdaoaDdeN08TRy+zToIElubj+xOjJk7CiWIa7QPw9+t7q3bjtXyt0C25GDJPo2v1+tG4P/rJwS3w7i+NJZhLd2IluDD+/3q6fRg9aVNXoJ9HN18umtI0LWkYUFS8v3ILxv5qLVxZtRX1TBI+8uxZLtpgn3wH9z5K4J7vJctn7xvi0ue1EN5K9T8Tn13g/Vm9hpxOBdr3T4vNs9zyIV9ktLKo9X9sPxBfJtVs/QJOORSWTDeKN96/tZsX2SuyvMf/sd2SN4QgefmctvtxsvZBuOulOXiQZ87fGSQ/xhFJW0LlqjtxhiE5ERERERIedn08bjLk3n4CfTD64Ibqqqjh3bE+suncqThosn55W1ejE6cR+nUwB3phehThxUOfY98YJM7cTbeLkd6BlPLa0KAs/mzoodnl20K/bv1bnIi4OevIQ5wlw45T5w+eM0H2fEfRJj7u81rk/OisUDQfSPclnFZyKvB7A3/LcyabEU+mhrTfsb5+LIMyqM33hpnJ8uHaP9LqIJFQur22yrFXRhPxejO1dGN2HoiJiE/BrJ0jWSXqcFVW/sKjWMz7zhS/xf6+vxMrvooG2dc2L7WFK7s+8L2No/Nz8TbjrzZWxEMpqzQDdJLokBWsOSybRDe/TiKri4XfWAQBmv7YCv5v7LZ74aAMuePYL6X36heolce92Aa6st9wYNotPgZvqEk2zrBPdZhLdalLcePGSLeU48w/zsWRLuWk/xqBZfP/ahZFu61xkrMJtXc1Mku1N4r7dhuiy51Hfza1i2bYKnPGH+TjmoQ+TO7B2yE1dynPzN+HJeRvww6cXuNpnov/tML53VMnJi1SkqxKmVjipmhPy22xJiWCITkREREREhx2Px4N+nXOSqkJJheIQzAFAt/wMy+u8Xg9emDk+9r12/LOnDcYF43vhqD6dXB2HWCsR8IuLjMa/zgn5dV3XWrA8qrQA2UEfxpcVYWCJvgJGxjiJft6Rpdj84Ol4asYYXHp0GSb27ST9uLmbSe6cYDQcSPckn93ro/F4PLFQU9aJXlXfnPT9awt4ZrdMEO6pap1p0oiimiaVT/rNx45hXkbAB1/Lm8hqUVON9h7NlPSmhyOqqc5CDJH+8/UOKBb7VxQ1uUl0h4VFV3xXiRcXbME3u6O1LlYnVMTOe9mjl02iGxM7RdH/vL+7apfd4cdO2gDup8dlx5FMnYuxS95q3+JCpsZ9uZnoBoAfPr0AX2+vxLktQajshMGuygb88q3V2LgvXr9j975NJeC0mnCPuHjenCRT5yJjrHP5fMM+AKmtzRDdV3soUYlycySyk3WtSfyxSPap0r+/UzqcmBrh59DNSWFyh6cjiIiIiIiIDpLOOSHL6/50yTi8u2oXLj+2r+v9aVO+V7f0ks/4k3yC1UicDheDOfHr7JAPRVnB2PchfzQE7ZwbwoLbJyMoBM0vXz4BL32xGe+u2m26L6sTFdOGd8O04d1Mx5OIrJYJu72SupJUBP3OxxOdRI9uJ5v2rUwhRNemnItygqgtr8duQ2d2uiiqKj12pzqXjIAv9tgjDvUv2kubIakUMHaUN0cUXS3NMx9vRGlhljQcbQwrCddfKIpqqoaJKPYhtHWdi3DiRFbn4iLgj6iq7hMXTusA+HWLALubgJWG6MYb6CbR3QXdgLwqprIu/r433sTqOE2VQi3baYci652++uUlWL6tAs/N3+R47NHbpVCVcpDqXNzuQ7aVvvJGRWYgPXFfO8rQXUnlREQy0lHnIlJUFT7XSxBbq26I/xweaq9he9YuTkc88cQTKCsrQ0ZGBiZMmIBFixY53wjA3/72N3g8Hnz/+99v3QMkIiIiIiJKwdMXjcX5R5biQkPHuWjKkBI88sORyEygv9Q4wT2kW17CtxOnrsVJ9KyQH0XZ8RBdDBPzMgK6KfVjBxTjmYvlHe9uwitjhh6ymZwTJ9tzWupcdlXKQ+aj+7mbzDcK+LyxKXArHnhiXeANkiC6qsEcogddTLgDwI6Wx1OUHT3psnFvrWmbEwd1RqfsYEpVNrJJdCBeq2IlI+CNvYfCkl51kXaCJEPymkYUwyR6RDXV4Dz76UZT5QwQDZytArNLJvbGP66ZaLpcVucSURTpc6A9r1avmeMkuqTOxfhS1TaGsV8I0Xc7fOJA/LkVH3pEVfHc/E14f7X5JFaT5DiMgbhdXYpGdqJEdtmBuvjjcbuwqNPJEFVyfMu3VZi2swuhU8lWxffZhc9+gQUb9uuOxem+7Rjf/27IFxbVn1QRfz/b/Xwmcnxtzc2hWK2f0FrHkI6FRUWp9OKLqoXfo3ZrBVBi2jxEf/XVVzFr1izcddddWLp0KUaOHImpU6dizx55Z5tm8+bNuOWWW3DccccdpCMlIiIiIiJKzqnDuuLBc0ak/WPVxgD1pikDcd2kfvjPDcfa3k7M3sXgXFwgMifoR6ecoLBdcsfu5g94MRz0eoC3b7Q+fjFgz2qpc9lZWW/a7tc/HIm/XnmU6yC9d6es2NdBnxdv3XgcZp080HJ7jwcItBx3o6R6RjaJbndyQKZMOCajF2aOx+I7pmBgF+dKHSsRRT6JblzY1Cgr6Iu9ZhFFtQ3dtVdW9i6IqPpe87CioMYQomcGfNIQsL45YhnwZQR8KMk11yLJ6lyawoq0T157XkKSGhoAaAg7dKJLjnmZIfjdVl5n2saOXxeix+9z8eZy/PKt1bjyz4tdHYfNILpl2CwL92T7rqi3m0SX79xpeljf2W4TlNtlxcLN7BYWlREf++cb9sc663UhepI5tdvHJpJNPBsXXxV/11Q3JL8+Q3uKX90ci9N6DkapNrqpuhA99WcrlV1s2V8b+5kUX/P2VMlzqGvzEP3RRx/FlVdeiZkzZ2LIkCF4+umnkZWVheeff97yNpFIBDNmzMA999yDvn3df9SRiIiIiIioI/EZEoDskB+3njoYw3vm295OV+fiE+tc4pdnh/woFOpcnIJVAHjp8vGYPq5Ud5mbIUjxeHxeD/rbBMPiiQhtwbTrTuwPADhnTM/YdVoFg9uQRHzsAb8XfYqzcePkAbjj9COk23s8gM9nXedSVZ98cKUZ0i0Px/Yvtrze4/GgODdoeb0TqxC9zuG1zgz4hUl0Bc02Iai3ZTurWhExiGwKK6ht1N/32l3VWLzlgOm2Dc0Ry/eWz+uRvu6qag6Da5si+Ga3uUdZC3atJtEbHSbRZdPtRonWEIV1k8/xy+3C+EQ70a0CN9mJkh0V9bjvrdXYsDfeS14hTqLbTLyLnKZvFYvHbdqPXZ1LaywsKk7It3UnuqGfXTzmVKqlWmMSfX9NI/706UZXCybruDgWpyqqdDOevEhVss/3e6t24YRH5uGyOV8C0HeiJ3uCh8zaNERvamrCkiVLMGXKlNhlXq8XU6ZMwYIF1ivp3nvvvejSpQsuv/xyx/tobGxEVVWV7h8REREREVFH4JUsyOnqdkLCqJ9E11eliIG1cUJY5rgBnfHQuSN0l7mZghMfhtPmWjc7EJ2IBoCpQ7vis5+fhEeE+9ZCLbd96+J2YnCqBfVGDc0RBFo65DfuM9etvPTFFtNliQZtfp8X5x1ZaruNXc++k4gqr2Kpa7QP0bNDQid6RD+JfuPkAbpt//jJRpz95GeoqDMHecY6l6aIeRLdSn2TYrmwqN/rkS5Wq6iqtDLj3ZXmBT2veWkJ9lQ3WJ6EadRNopuvd1PN0SBZkNaOuE/x50o2Sa+Rvb7mOhfr62L3Lbn88Q/X40/zN+Hcpz6PXVah60TX38bqvILT9LCiCyptgvJWqnOR/dxGDCeAkp321VfVuEs7pXUuhueoUXiyU1nk2O3DWrerGhf9aSGWbjWf8DK67i9Lcd/ba3DNS0uSPi4riU6ip0r/SYLk9mE8AZKMOZ9vBgB8+m10QVmxE709VfIc6to0RN+3bx8ikQhKSkp0l5eUlGDXLvmq1PPnz8dzzz2HZ5991tV9PPDAA8jPz4/9Ky21/z8gREREREREh4qAL7kQ3aoTXVxYtDhXH84au6rdchMciwG20zSmGOxnCwF3j4JM3UmFRLtlrZ6TbIsQPS8zYFjo0VmixxTwedAl1z4k7+xwvZ2lWypw6z+/Nl1en0CdS1hYWPT6E/tJe/mXbq3AXxduNV1uDNEbmt2H6DWNYdtJdFmIHlFUaci2fHuF6bJdVQ24681V0kn96LEKIbpkstlND3V9U2KBn3iyQnzeHv9wveVtmiRhvilU04V4Vvdt/d49IATnFTYLi1oFzQl1otv8PrF7ysV9JFrnIltYdEdFve5Ykq0d15/AiL6v7v73Kny+fp9pW1VV8dsPvsG8dXvN1xm+Ft+3svUZ3HKTv1bWN2Pqbz/B/PX7cPaT0RMqn63fhwuf/QKbJCcYF24qBwDpJ0xsj8XFNm575ZNl3LvuUxxpWVg05V0A0J/0PshrrXZobV7nkojq6mpcfPHFePbZZ1FcbP2RNtHs2bNRWVkZ+7dt27ZWPkoiIiIiIqLWdePkASjrlIUrjk2u3lKcrrVaWLQkT98pXZNkr66b4Fg2LW5VoxGyCNGNtNDM43IS3WMxnZ9p6MT++bTBePnyCeiSmwGf1/2f1F6Pu4nAu84YEvva5/WYXgejVEL0a15eIp2if27+JtvbZQb9sRMuYjDt93ql4TUgD+YjhtoJQL8wpZ3y2ibLyd2AzyudII8uLGp+DfbXyO9za3mdZYiuTX//a8l23SKjGjfVHE4nK4zE2hyrgVtjUN0sOX7jbd1Merud8BXrXIz7SmTK3er47Da1+/nSh8yJpYqy49t+oN5QM5N6nUtEUfDMxxsx5/PNuPBPC03bvrd6N377wbf4rsK8BsQeoRpIUfU1TYnWuWzZX4uz/jAf76zc6epxnfzox6bLZvxpIT7fsB8/fmVpQvdtxzhtL5PoicpET6gY6d5XaQir09VfLobo7ERPnzYN0YuLi+Hz+bB7t34F6d27d6Nr166m7Tds2IDNmzfjjDPOgN/vh9/vx5///Gf8+9//ht/vx4YNG0y3CYVCyMvL0/0jIiIiIiI6lM06eSDm/exEFGYn14ctBp1+3dfxPxG7toS3M48pAwD81GaRTaOxvQtjX8umOI1k06XZIfmCjrpJ9KB8GyAeptg13kzsG1901Grd1Nom/cmDET3zceyA6FCXm2ljjd/nxW2nDgYA9C3OttxO7KEPeL1pnUTvW5yNI8sKnTd0kG2YRNemPwM+j+XzKHsdjJPogHWgbbRyRyWWba+UXufzekzrBQDRMEkWsu216Wa2eo21SfSb/7HczeHa7sMtcRLdKgg2PjxZN7vx583NpLdT0P321zsB6ANbu9oY3fE4TA+76Ww3bmd3XTomc411Ltr+H3v/GzzvcBJKf1ziPqMBtpXvDpjDcwB4d9Uu/Gf5jtj3qmqYRG9Zn8FtwHzrP7/G8u2VuOblpa5C9D023f67qxLsPbeh67W3OCy79RlaQzoWFhVvlehJACvi659sXz+ZtWmIHgwGMXbsWMydOzd2maIomDt3LiZOnGjafvDgwVixYgWWLVsW+3fmmWfixBNPxLJly1jVQkRERERE5IKu/1sIpcXBam0C+q4zhmL1vVMxrEe+6/2/cuVRsa/d/AEvCxNzMuRT5mLGYDeJruVydp3o54+P/w0pbifex+hSfegsbrd+Tw3c8ns9uPzYPvjolkl48JwRltvlZwViX/u8HtvHCACdc+wn1UU3nTwQ/7jmaNfbW8kMCp3oihoLav0+r83zLe8oN2a8D72zFgBwdL9Opu1FT83bgE++MddaANHnWnYciqpKFx6stviUhcdjvUBoQ7OS0OsvU9+UXCf6Oyt34ouN5dJtdlTU636eEu1ET6bOBQCu/2t04rjJonJG9n1s346T6OK0dnIhuqnvJEVhRdH9blNUFdsP1OF3c7/FvW+ttvwEg+mwdAuLKraHZvWj9dj73+i+V1SgKRJ/D1Q1NGP1jiqMuPtdPDnPXP1TWdesO47yWuHTBA7H31Ys30suTmymMpltvKm+ziX1fabrHIDVIsSUmjavc5k1axaeffZZvPjii1izZg2uvfZa1NbWYubMmQCASy65BLNnzwYAZGRkYNiwYbp/BQUFyM3NxbBhwxAMJr8qORERERER0eFCDBjFSXRxirQ4J/73VVbQPsg1EoN5Ny0QshC9KFs+YS2GgsaqFZHiYhJdrLIR61xK8uL33atTFh44e3jse6u6Eic+rwcejwd9irMtp+wB/SS6Fki+ft3ReO5H4zCytMC0fYEQujseQ8tj/MX3hjhsabMPrwdBn1eYRFdiAavVgp6A/DU2TvOKuhdkpnSMskV3I4r7xRuBaNWDVRjaFFYwRVJjkYjE61yix3LNy9YVGcc9/BFO/e0nse9lx28MEcXvZOHktvI6fLXNXX+1frFN/XXWIbr9a+I2ZLTLT/UnCtLRXa3qfrdF+8zjF+yvdTeBrRiCeLuA1+1vHhX6OpemsIJfvLkStU0RPPzOOt22f1u0FSPvfQ8z53wZC6B1wbDhOU00gE6tLMV43/Gvkz3ZAwDfpnjyS6SvmEl2H6lPsxuJrz/rXNKnzUP06dOn49e//jXuvPNOjBo1CsuWLcM777wTW2x069at2LlzZxsfJRERERERUcch5otikCz+4e236uVIkJvAStYp/etz5dPa4qShLCg136+bbaLh6qe3noi5N5+A3Ax9MD1KCK/Fu/zd+aOQYzMp/szFY2Nfiycr7E5KiBU1dS2TyqN7FWLyESXSEwJiR7wT7SU9e3QP17cxygr44PF4Youqip3oAZ91J7pswVBZnYsmHFF0z3siopPo5stVVXXVVa7xeOQhNJB4AJ6OfbhdNHHz/rrY17LJe7s6F1n90nEPf4T/e32l4/2qqmobVludMHFcWBT6oNmKfSd66hPDoogC0yS6+MmCfdX2tURvLvsOlzy/COW18ROX4Yhqe5LA7foOxjqXiKKiMSx/r63aUQUAmLduLza3VMnYvYaJTjW7PGRXVJvj0rjp7j/lsfhJpsSPz/r5SHZhUbed/26pqqo72ZyOk0YUldg4QSu54YYbcMMNN0ivmzdvnu1t58yZk/4DIiIiIiIi6sDEoFMMor83ojv+9uU2nDSoS9ruy02diyxMHFCSi5X3TMWwu97VXd7osiZBC0fsQpJ9QpdvOKKitChLup0YlItT/GeN6oGh3fMw5dFPZDfD1KHxtb7EkxJZNl3u4uthnN6WLsCaQIiu3d6pIgaI9pvLAtislil67T3UHFGxbGsFAMDvk3eRW7GbRD93bCmO6luEa15egg/W7HG9z+ixycN8RVVdB9FA9PSL9n4L+b26915dglUsMgl3oiv2k8oy7upc3IXUToz7NYf18ts5vSZiLmrbiW6TQLpZlDIREUXVLyyqqLoTRftsevYB4Cd/WwYAukqiiJJ4DCt7LKqq6mp1IopqeTJIPKnUFFZj28f2Jb0/9z/jqS7cqbtvF9ukq1PcrXR07afr508z/O73dO/FBD58Qw7afBKdiIiIiIiIDi4x2BBDz+yQH69fdwx+PHlA2u7LTSZgFSbmhPz46hcn464zhjhuq7luUj/075KD88f3AiCvc7ni2D7okhvCaSO6xS6zm1AWQ2fjVm6rbvST6NYhuvh61BkWNZU9lkRCdC1YdnObX/1guPRy7fGKi9DuqGwAEF0INZG6m4gqn0RffucpOHZAMfw+L6YcURK7vDgniMFdc533qygWnejO/dtGWgidaXjN6pvkPeqJSDREB9wfvxYmykJ041NuV5PhtttbdmzG8M4qILQLPlXDe8RtZYv5uvR2RCuqcWFRoFYILmWL1YYjCv68YDM27pXXiUQc6lxkP1qyx6Ko+pONEdUmRDeE7dHbW4e67aVf2+q9JDvxl06mu01DnUs6QnTx9TV+6ocLi6YPQ3QiIiIiIqLDjPiHurcd/FUoq3PRFGYHdfUqdtsCwK2nDsYHs05AXsttZJOQd3xvCBbePhldcuOLctotSCd2mDcYJpDdTHUDiNWfAPbBu8/rweheBQCik+4iWZ1DMIHaHbv6G6POufJOeq2HXhaW+33yLnIrikWdS5bwfIvh9T+vORq/PX+U4353VDZIQ/SIqpo60W1Df48nNtFr7N+vTcMkeqILiwLuK120IE22MOrGfbW4/fUV2NJS3/HN7nioa5zmTuQYjScFjIGwVVhud2Lg5r8vd91nrqgqtu6vk1aXmE8cpBYsRhRVF05GVBW1TfaT6L+b+y3ufHMVfvTCIst92h6V7D2tqKbfC8Y6F0WRL6gL6J97rXNffA+Ynrc2XGpUdXEixE2dSzrpFxZNts7F+vl24/G532LxlgOW14vP28KN+zHr1WXY7/BJCZJrF3UuREREREREdPBkCIFgdoKLhrYGp4lcMSdusOj2tWJ1ksAYPNkFeSG/uadck20zVS4SJ7ftgluv14O/Xz0RB+qadCE/kPokeiCBMybiAqcibYreLzmYgM+bWJ2Lqkoni8WefvG96vN6dNdZCUcU6XOsSupccjP8qKhrNm0LREsrtDAyI2CcRE9HnUvigV+zy5DwkucX4fJj+6A5bH5f3/jKVwCARZvKcdcZQ/Cvpdtj1xl/DmoTmLg31jIZf6SsfsTsFnt97avvcPKQ+KcRGsMK3l21S7rtl5vLcccbK3HcgGK8dPkE22P9rqIePQvl9U26Y7Y46OjComL4qaK20b4T/ZlPNgIAtpXXS/cZUdSEC9tlJxUUw+R5tBPduc5FO8kRUfWPS5RoyJvOTnSR9VoKiR1goodn3LuuEz3J8wvi78Bk6mh+8/43tteLu5z+xy8AAM2KiscvGJ3wfR3u2sHMARERERERER1MmUEfXrxsPF68bLzrSerW5BSiZwghdqJBxdDu+a62cxu+GKtY3C7AKgudZXyeaFBsDNCB1DvRS/Lk0+UyVgumZrVcLgupAz5PYnUuEetOdI04Ae73eWwn7yf0KcK43oW48ri+8uoLxRwS52ZYv//FhUWNIbqxaicZdcnUubh8ny7fVoEbX/lKWueiWb+nBv9YvF13mXH7WsmCsFaMJxaMNRLWi0E6dKILVz/63jpc/dIS6XZvLtsBAPj0232Sfejv47iHPwLgPJEum+QHtAV19QG0+FxtLa/DK4u2ory2KXY/TtU40Ul06+OJuOi3lx13tM5F/l4TP4GjvfZ2C122ZTOIahFYq6qKDXtrEl442K2V31XiF2+sjL2W4v3qFqxN8slJdye63f41W1s+hUKJafv/t0REREREREQH3QkDO7f1IcSIwceJg8zHNfmIEozrXYiRpQV4bv6mhPZ9xXF9EFFUPOowredUA/CbH47E6p1VmNivk6v7/fFJ/XXfG8Pl+38wHJ9+uxf/W7nLdjuRLERPZLq8W0Gm622twuWckPUkut/rlR6jFatOdJFxEt1Yz3P18X1jE74XjO+F74/WV+CIjD3WQHTi3moyWBU61DMC+uc50YVFexZmYvsB/f0Yq4HcsKsdkrEL0QFz0G0K0RM4RuMkujFUTKYT3Xg7u+MpLcqMvZa7qxpQkhc/ESXrgX/io/V45N116JqXgUd+OALHDTD/7mm0+LRAWFHh8+rrRcQu6g/W7MYHa3bjvyt24qXLJ6CqIX5dv87Z2LDXHGJGF461fHjSShZZ37VxEl2xmUQX9xnrRNctLGqYRE9wVL6VBtF1763HPvgWv5/7La6d1M/5vZREyH7mH+ZDUYGdLWs/aCKKmpZJdDc1NamQ7rO1PiLQwXESnYiIiIiIiNqN5350pOmyoN+Lf157NH7xvSGSW9gL+X24cfIAx5MGThOM54ztiV98b4i0l9zojeuPwU1TBuouM9aQXDihFx46d4TptnYherd8yXS6sH1mwIeHzpEvCApYT5cnsm1+ZrTmxaoTPaFJdMU5QA0Jk/YBrxcBn37/4vPqNJWvqKrpZIlVbQ2g75U2njQwBsZOCrICpssS3QcAyzDUivYYbj9tMPp1zjZdbwwVjUFtXQKT6MZPlBhf2mQ60aP7cZcsiidwlm+rcNzHI++uAwDsqmrAxc/Je8obI/LXSFEMC4sqqvTTlGDsPQABAABJREFUCdpU/I6K+AkUq0qiiEOILpuKl4XCxk70iKrqTo6ItxGrdLRPOdgtwmr6/iCuNGp1XL+f+y0A4Kl5GxI+aeTm6LX7+nzDPl3gbVwINtmnQjzkVLv6ZVpjn4crhuhERERERETUbiSyMGUifvWDYTiyrBBPXzRGen2iXbp2RpUWmMJkaf2JZIrcrlN89mlH4JQhJXjuR+Ok13s9wPQje+G9nx7veIyTDBP/vTvp+6GNtTWa/MyWBVtlU/E+LxJY5xT7ahrx45Z+biti4OjzeRAwBOXi+8WpL11Rza9zUbZ1iC4G7sYJeLH/2o2sgPmkhFONkUxVg7y/3YoWvEZfG/NrZvwkREqT6E362xqDa6ssL5FJdDvi87nXsHBisj/dVhUsEcOnGhRVRY3Fe+K4hz/EG8u+i31vddLAqc5FFhDLdqWoqr7OxTAxLZ6IEY9F+9p4ckBkDGTddvSnQ0TVP98yYcOxGxfQNL7XEsmXjZ8+URRDrUwaFhZtjXMS0p8vButJYYhOREREREREberGluqTm6YMcH2b7pKpbDs9C7Pwj2uOxqnDukmvd6pzsfPPayY6bmOcoAaik9tGdu0sRdlB/PGScZh8RIn0ei0rEWssrDxx4Rj89cr44ov9O+dgZM94f7zVxL0Wosv4vZ6E6lzcEJ83v9fciS7mwu4m0d2H6HZT3/UJdqJnSE5KJFoJAwBV9eb7LeuUhV5F8kUym4UQ3c1rYwxqE+l+Ny0saniurcJyp+lhYzhvRXy9jIu2JpsZWoXoiqKvIoqoqmV//Lbyejzz8UbhOOWvu9Mkuux5iiiqqTJFMUyiGytpxPsX9xmWdKIbGa+TnXwUg3bt94iqqrj3P6vx7CcbTdu7Jd6XmxMyP/7bVxh73wdYsGG/9Hog8Q5ycWtjHVV66lzU2GUP/G8Nbv3ncsefDycH8cMCHR5DdCIiIiIiImpTPz15IObdMgk/mewcov/r2qNx3IBizLlsfFqPIZVJ9HFlRbbhMiCvDZH1ihsXsEyEFsCIFSj3nDkUHg9w26mDddtmh/w4ul9x7PuIat2bLJLVkmj8Pi/8CXS0uyFOl3tbFl0VicGw3aKjQDRMMoZodiH6gZaFBDMDPtPEbaKLgmYGzMemBdSyEyxWqiWT6EG/V3pCBogHy0HXIbr++Ulk4l5W53KgtgmPvLsWG/bWJN2J7jbIF+/feCzJVlrYLSyqr+FwvwhrncVzGp1EtyZ7LeTPqb4TvdHwGMQTDBHJJLrtQpcuQnTZc7ZqRxWe/2wTfvXfNZLjdUdcD8DN6/n21zsBAM98siF2manOxWE3W2wW4IxEjJ3o5p3VNIaxYW+N7X2Ir4H29Ufr9uCZjzfi74u340+fbrI/SAesc0kfLixKREREREREbcrj8aCs2NzXLDO2dyFeunyC84YuPXreSPzf6yvx9MVjU9qP1YKPvzt/FF74bDPuPnOo6TqrSpRkaVlJRsCHh8+J9q2fd2QpfjiuJ7KC9n/+R2wWHxTZnSwI+Dy2k/TJ6FWUhVGlBcgK+hDye03PmVhR4jSJrhq6oQH7EF1bDLIwK2AKCxPNpWTPv5adnTK0ayzwc7K1vM50WfQ9I3/tvmtZzLRrfoarvvq0TqKrKu54YyXeXrETz36yyTKQFj8dIAv86l1O7Osn0eO3UVXVtKirW1YLi0ZUfSAbUVTXnyyosQjbox3b8tu8u2oX5ny+2XwbyQkI48+ycZpefG7Ekybap3HsO9Gd61xkv0eqGxL75IZMs2J9XHbEQ44Yfo6dJtFPeGSe9b4MneiyPU35zcfYVdWAN68/BiNLC6T3IVuc9H8r4jVL89btwbWT+ulus7+mEXtrGh1P3kb3zxA9XRiiExERERER0WHr7DE9cdaoHgktiClj1XN81qgeOGtUD8vbzZ42GA/8by0A4McttTbJEsOS844sjX3tFKADQG6G37K6QmQX2kQUNeXn0cjr9eD1644GID/pIF4UcgjR1+6qNm1TaDNZr8nPCqZcqWD3CYOTjyhBv+Js/P7D9Y77WbOz2nRZ0O+1DF/Xt0zB9u6UBTcvzfYD9Tjric9w7tieuPio3paT6GN7F8Ln8WDR5vLYZeZJdDV2vVWADkTfN5v21aK0MFN6vdupf/E5EI/l2U834v7/rnW8vSyQtjpuRVF1dTXGHnI7Vieroifi5C/k1S8tkV4uO+bmiP5kkfG92yDUuYg1Vlqgrugm7O0X4pROokseXzqCXPFxJNs/bvw9bXdcshNI4gkQY/2ObFe7qhoAAO+t3mUTopsn/+ub5ZU7mrH3fWB53Ob9u96UHLDOhYiIiIiIiNLuL1dMQLf8DLww88i2PhRH6Qh+nSoprFx9Qj8su/NkPH3RWPx0ysCUjiGZoOq300dhZGkB/u/0IZZdzaK8DOvQua4pYrswqhvH9i82XebxeCw72sWKEqspfu313VvdKJlIdj7e/Ey/64DUSqZNiB70ezGxX7HpsqdmjMGpQ7viqL5FuGB8LwDAv5ZuN90+4LOuc1HV6OPvXpDpetHe5dsq8Is3VmLdrmrsr22UbuPzePCsYYFb08KLqv3EvnZCZt66PTjx1/Nwyz+WS09GuZ1EF4mVJW4CdACoqjdX5VidWAorqmkBTjc/P3bCDp3oMrLtm8KK7tjMk+hiD7q5SiSSyCS65OdCPEmg/Xha/fxU1DVh+jML8Pcvt0mvF4nHmtAkuvC128VuAWBPlfm9b1xM1rb6RmBcmFgk20eTxeKvyUj2v01kxkl0IiIiIiIiSrtj+hdjwezJbX0YB00qQUdBVhCnDuua8jEkcwjfH90D3x8dnZS3qq4QZYWsw+Ch3fOSfh6OG1CMs0b1wMkWi6ZaEUN7qzqX3Aw/KurMASkAHNO/E7rnZ2BHZYPlfRRkBvFdRXJ1IJosycKimqDPa+pF93s9mDa8G6YNjy6EO+cz617kkN9rWScEAD0KMhHweRM+wbF06wG8tvQ76XVlxVmmYzaG3dFJbev3g3bS45vd0Wn5N5btwO2nH2Hazm3XuEicRPd63P1sVCQQopsDVOtt3WqOKJbPltVjMHZ8A9GFQ8O2Ibo4iS7UucQWFrWu19FPXqvSnyvZ82DVA/+HD9dj4aZyLNxUrvv0jIwY2J//xwW4+4yhloss64/Z3PuusXtf7KmWn0DSGDvs7d5iduevxGPQvm6KmD8hkCx2oqcPJ9GJiIiIiIiICH06O/fSF0kWSH38gtFY+ouTUZAVlE52usluMwM+nDu2J/Jd1KtY7dsqRM+2qbPJzQhg/m0n4UabKp2CrACaw6kFUZk2IXrA74XfMEVv/HTEwK65lrcvyg7aLujaoyBak+JmYVHR7NdWmPq7+xZnY/q4Utx+2hGmyX8tnNUWeHX6ZISsfufz9ftNl5W3LPCaiAYhyM0JuZsffdHQOa7YrBMQMUyiu12Y105z2NCxLXxt9WkZ2ZRxY1jRVc0Yp8DF4xRPvmgBsy4oN+xbhYr3Vu3CD578DDP+tBBn/GG+5P7jgbn2lrM6EfKn+dYnh4zhrxiAbyuvx+UvLra8rRVjJ7pdwLy7yvrEGhB97vUnHGw2tvnZE19D7XjEEwZ2J8jc4CB6+jBEJyIiIiIiIiI8fsFonD68G/5zw7HS63/1g2EoFBbifPnyCbjt1MH43ohusQU6O+eGMH1cKYZ2z4tt5xcCwPu+PwyXHl1m2veK7yqTOmax5iVoUeeSm2Efonq9Htuqk/ysgK47Ohl2nehBn1f3HAEwfT+xbyd0zcsw3Tbg8+D/TjvCtpJIC/DFnP22Uwe7OWzTsUzs1wkPnTsCBVlB0zFqPc7ahLqiAvtqrANw2UmP/ZLAfO7aPa6PVSNOW+faVBCJjAt3hm0qWiKKaqg9UVOfRFf0k+hiuGp1AkR2oqIxrCQ5iW7el6z+5KqXluCrrRX4fIP5hIfx/rQaE6vFVO0YH1o6akmMk/t2J3qcJtEV1diJblfnYk01fKIBSG+di+wxMldPDkN0IiIiIiIiohQN6xENjbvnm4POQ0XvTtl4YsYYDO+ZL71+xoTeuu+PHVCMayf1M/WVP3TuCLx8+YTY92IdwUVH9cbNp5i733fa1KnYEQMoqxDdzSSyMRAW5WcGUg5InTrRjZ3mPsNkucfjwZXH9zXd9vXrjkGXvAzd7UuL9At0as+LGLSPKyvEC5e6W69Aq/sB9L3zxtddq3MJOCzwGt+X+TmvaUg8bJVpaI5Ea00iiuNJFCsRxToYV1T9wqKqar1gqFvNEX0oG0lyEt3UiW5cWFQM0YWfTVlYazx35KYZRPY8JFPJk47FSAH9MUcMD8i2zsXFJLrqdhLddj/6fQJAk/C6pLqoMSfR04chOhEREREREVGKnrl4HGYeU4ZXrjqqrQ+lXSjMDmLB7JOw/M5TTNeJgeBlx/QBAMye5n4yWiQGf1Z1LscN6Oy4H3ESfYqhZ7kgM5hyL3FGwDp+KcwKmOpYZKF+ruRkgDahLG7/k8kDdUG69rx4DVP7bsLlS48uQ/8uObHv7Sbe45Po7qIm2etV25SeEL28tgnHP/wRpv/xC9vFcO00K4rlgpjROhf99ylPoocVfc+6sDur5916Ej1+Y+Nx6aec7WtDjPt3E2yLIb32lqtJ4nVtjfDX+BDtHk+lpCPfeFvxGFWb+W67KiVZB734GqUaorMTPX24sCgRERERERFRinoUZOKuM4a29WG0K93yo0Fu/y45WL+nBn2Ko53rGX4f+nbORnVDGD+fNhg/mTwg4S50jRj8GUPZL2ZPxncV9VBVFY99YL7tz6YOin0thly/+N4R+GDN7tj3uRn+lIMsq4AfAEryMrCvRl8dIQtNs2UhestuxU71oN+LkN+n+x4whOiS6XeZXkVZuu/tbvPW1zuj+3Yboku229tSoZGX4UdVClPpq3ZUAQB2VzXihIHOJ1FkIhHrYPzJeRt03yuqdfWLW8b3mJtJdFnLUGNzRBfuGvfbJOlBN35tdZmbONa4wCyQ2CT6lv21WL69EqcMSWyRYStiuG2sZbLLl61OoGgiij4ANz594qcB7JYjkNW56DvRDScyEjy7kI4aHIpiiE5EREREREREtsb2Lkz6tk9fNBZPzluPH580AEB06vu/Nx4Hr8eDoN9rGzA7ESfEjUFj1/wMdM3PwNb9dabbffKzE9GrUzwgFsM04yKgWUFfyr3EVtPZuSE/skN+VBimXmWhaY5kclw2iR70eXWLdmrPr7jPgM9rO1WuyQ75dM+xXe1NbBsX4bx2DEavf/UdAKQUoBvVJTndHk5gujwcUVP+tEKzYqhzEd5zPosU1tjxDQB1hhDbdhI9Yh0wA+YA3k2A2yB5zr7ZXeN4O1VV4fF4cMIj8wAAj5w7wvE2blg9p4D9JLqsI14UUYyd6PrrxefO7ifC2K0P2E+iJ/q7iBl6+rDOhYiIiIiIiIhsvXJl8jU1/bvk4NHzRsUm0YHoQpuphOcaN1OWnXNDpssKsvWT7+K0anbQr5sczQz4cHS/Ti3XWXeb27EKn7vkRY8t4LCwKADkhMz3rW0mTqKH/IYQ3WeeRA/5vbY97ZrMoF83MW6snZFxW+cSsrn/fp2z0aMg0/L6ROy3WdzUTlhRXPecixUmVoI+r+1EcrPhvvSTzO470Y2VOMbHYBXQhhXVFJInU1Gjq3MB8Om3e7FoU7nj7YwnIZZuPZDwfcskG6I7ffrk2r8swUphQWRjnYs4yW73uouHpB2P8XURJbrIMetc0ochOhERERERERGZ3HXGEADAcz8al5bAuzU0uwiUjJPlAJBlCHDFnMnv8+gC5lDAh9+dPxo3TRmAV6+eaNrX+z893vEYrKa+u7YsRGu8XjbNnRMyV954ZJPohjqXUKzOBbptZM+LUZbhZIerSXQX2wDWtS89CzPxj2uOxpyZ7hY+dWKsygGAi4/qjYl9O9neLmxT52K0o7LecZuskA8Bm5MQCzbux/z1+2LfRxT7KXEgGroaA1pjnYqpzkV4TLr7iKimnyfj43eTx4ohugrg38t2ON8IwEtfbNF97/ZkjBMx3DaH6Na3cwrRt+yvw9y1e+L3Y9iX2/eOcYFa422NE/GJT6IzRE+X9vlfQSIiIiIiIiJy5YWZR6IkL4SXLh+f1v3OPKYP1t13KiYfkZ5u4tYQSbJCw28T0AW8XmQJAXNmwIfOuSHcNGWgrgIGAE4f3g0DSnId788qRC/JzZAej2whwmzJJLq2ld9Q1SIuZKqF4OIugz79Y7SSFTSE6C6CzQybCXNx0dagX/6cnDykBEXZQQwoyU26z1wkq4Y5ul8nHDew2PZ29c0R/OGj9a7u47P1+x23yQ76XVfdAPHwc8v+WlTUyRe5lE2iG0NW44R3U0RBQ3MEqqrqto0o5koaY897oguLRhQVNS770H/51mos21YR+95tt74T8ZBNHe82j6cpwd8txn2JIbxd1Y8iq3MRb6soqKxrju3fqWbGvH/ZsQrXs+/FNYboRERERERERIewEwd1wcLbp+C4AakHjkbiRHN7lGpXuUYMwLxejy4IFgNp4ySxsTrDamLfqtO6MDsY3a/PeRI9VzKJHutEF7bPCvr0C4u2hJFi4Brwe11N+mYGfbow03icFx3Vy3SbkN+Lv14xAcN65OkuP6JbHm6c3D/2fYbFeytHWEDVTeVMMoJ+r+PE/NMfb7C9XiZk84mNrKDPVQ+9Rnu9Tv/9fMttFFVNuPP68Q/XY8wv38emfbW6y5sjiml62lgF425hUf2ku3Y/XSS1Skb/WrI99nXAxadfHnpnrYsjijMGxnbPXTjBxYSNu2oOO3+SwHgM2msuvg6qCoy89z3c/e9VjvuSsau8qmsK44Rff4Sb/vZVQvs8XDFEJyIiIiIiIqJDkttAqaglrLZiHEjVTaILXxtD5LpG/aRuJ4v78VqEp9r9GLvGfZLaD9kkuhaii0FZj4JMhCST6OIJBy0Yv3HyAOlxxY/Pj3FlhRhYkoORPfMxdWhX3fX3fX84Ntx/Gu44/YjYZX6fB0f3L8a0Yd1020aD6/hxyRZKjT5OIUR3MS3vtj5GFF1Y1T4SW7BBP13u5m7sQvTcDL/rqWwg/pqKtzlxkP5EmaIkN0lc1xTB21/v1F0WXRzVvs7FzSR6vTCJ3hxRYiH6yNICx9uu2hHvGHdzkuepec4nOsQjNp50S6UT3cj4MjQIU/x20+Piz66iRk/oNUnu+8UFW0zbu2E3bf/Oyl3YVl6PN1xW7hzuGKITERERERER0SHJbbXBG9cdY3u9MZcSAzxxGto4SWycRLeq67CawtUm3k2T6JLEVlalog24766K934XZAWQFYwH0VqIrptEb7m/WScPlB6XJivoQ0FWEO/99AS8ecOxKC3KMm3j83rQKScofB+9vzxDSB7yeXWPU5w4F4mLt9pVw2iSmVYv65Rtes6NxMD1pikD8PXdU3HbqYNtbxO0+eRGl9wMV53imuMe/ghzPtuku+yGk/QnPSKqmvBksuY373+j+z6smDvgTZPoCXaiV9Q1x/YhLixspbw2vghsEudG5MRJb8MDUFXrkDmVOpdfv7sOpzz2Sex7uzoX8XaqqiKiqLbPs9PvvG75GRjSLf4pkFR630mPIToRERERERERHZLc1rn06pRlmuIVqYYyBrF9RQxyPYZaFuMijsa6lyuO7YOHzx2Bvp1zpPerBcAejwc3nhSvOrFa9PLfNxyD2dPiQa424b6rskF3jGIQHZtEF8I34+Ow4qY3HQA6ZcdPEmjZdF6mvn4m4PfoTk7kZpjraQD9JLpYpWPFzbS6aM7MI9GrU5Zjtcre6kbd1zkhP5yGo+0m0TsbTqS4Waz37v+s1n1fkKV/zhRFTXgy2UpYURwn0e2mmjVzPt8s7DO+vfGkisx+IUR3uzBnImRrKIj3KUqlzsXYpW93oiOi6ifRZVPo+n3ZvwZBvxf//clx+OmUgS37tJu2Zx96IhiiExEREREREdEhyWmaWKQtkCqrdjHmTB7E92sXjN5qmEwuztEHpVOGlOC8caWWtxdD6lmnDMK8Wybh7jOG4AYhUBeN6FmAEwd3iX2v5cA7K+v1+xWCaFknulviRLsdMfiOT6IbQnSfVzepn2sRqor36WbK/Aeje7g6xouO6oUPZp2ASYOiz18iNTC7q6InKWQLvopCNqG/8dMIGS5CdFFeht/0nEYUNW3rAtQ3RUz1KMl0osv4vR4UZTt3olcLi8Cma0paPEEme66Oe+gj6e0Svf+P1+3Ff5bLa1HsFxYVv1Z1XeoytQ6VQNo7VHt7cxI9fdz9NiQiIiIiIiIiamd+MnkgFm4qx4wJvR23vWB8L3TKDmJM70LTdXaxlXFqOzfkR3VjGO/cdBwGd9Uvntm9IAM5oXj3tdO0s3GKuqw4G5cW97G9jRj+aqHuyUO64l9Lt2N0rwIAQE5IMomeRO2Hm0lwwFh5o91W/9iCPq9hEl0eSSWysOiqe6biH4u3uTrGs0b1QP8u8U8EOHWiiy46Kvr+cgregzaj6iV5GbrvM4M+VDW470j/8JZJpudMUdWkOtFl3lu923RZMp3oMgGfV1f540a6JtFVQ0htVN8cwbJtFRhl6GxvaE7s/msaw/jxK19hrOT3i91Uu6qbRFfRGIl+usXjiX6yRZxMr6xrxvcet15oNnq76HtU+5SK3acH3NZhURRDdCIiIiIiIiI6ZDx49nD8/LUVePjcEeian4EPb57k6nY+rwfThneTX2kImuwGjj+ffRLqmiKmUBSIBlf9u+Rg2baK2H3aSabPW1ycU9v7XWcOwdjehTh1WHThT3GaOyTpRHfLbe2LeDJAOz5jXUnQrw/RLTvRQ+460TMDPmSH/I7Pcfy4nHvnZebefAL6tdTxON1XSDjesb0LsWTLgdj3kwbH64R8Xo+rvneR8VMOQDR0TdckukxTRF9XlGSGjoDPIz1++/tO/5S01XP1zspduhB91qvLsLW8Lqn72CPUAGnsJr71C4uqsan1gM8Lv9cDsTHqvdW7HO9fe4dqP7p2P/fNSfbpH64YohMRERERERHRIeP88b1w5qjurqtG3DDGTHZRaW5GwNTn3aMgE99V1OP04d3w7qpd8RDdIYROtM8b0C9eqoXceRkBXDihV+zybOkkursEtHenLOysbMAR3fKcN24hngzQJmC7F+hPMgQNdS5iiOz3emLHp+tEt3l+bj8tWqXjNugPGKbErRaBFT05Y0wsQAfij81KSLiPod3zcO9ZQ1GQFUSG34tOQoicGfAhw2YRUqNf/WBY7OszR3bHv1tqQyJKcidH3GpsTnxhUZmg34viBCfRjVUybmUGfKgXFjcVD1mb2h/TqwBLt1bELp+/fi+AeDXTa199l9R9A0B5rSREt3mNdHUuSnwCP+Tzmk7mufrkQstttN89srvWKm7ESXRFUR3f34c7huhEREREREREdEhJZ4AOSGoeXAazmv/ddBw27q3FyJ75qG2K4O+Lt7u6XTKT6D5dnYt8m+yg2IkevQ+3YesZI7rj+hP7u1r4UiM+Dq0+olt+Jp6cMQbX/WVp9Dj8Xt3Cq+KhB3xehJVo8Jntos7lyRljcFrLpwqM0+HGEFVjDM3dTKJnG6blnU6KVDU0Y+rQEry7ajcumdgb/bvkSrfLCPhcV+WMLC3Q1RX9/oLR2FPdgC82luPvi7e16iT6n+Zv0n2vqCq8HnMwe+upg1Be02TaXuP3ehOfRE8yRM8IePUhuvCzrT1XxhMqq3ZUoaE5kvCnA2S2H6g3XWZX56KYJtGj28p+/qrqmx3vP96JHv0qYjNtLk7IhxUVQYbothiiExEREREREdFhbWTPAt33iUZJeRmBWB3E1KElscs755qDQzGETGYS3WlxS0Af/mphnNMigjkhP64+vi+uOqEvQglMSQNARjAe+Inh52lCfU7Qr59Ejwjhppjd5bhYWHTq0K7S24b8XhRmBVBfKQnRDQGhsRO9Z2EmThveDa8s3Irqlk77LMPr4zSpO66sEL88axiqG8OmRUBFmUGvrvrFTkByn9p74ONv9rraR7o0NEekk815GQFU1VtPSQf8HtNz6STZED0z4MMBxMNmsfZbC5SNAbWqRhdWbWiO4OvtlUndr2abpAbGrntcPIGnqvHHHfB5dYuiAkClmxC95b2h/Zp4Y9kOnDmqO04c1MW0rbjgaWt+oqGjYIhORERERERERIe1k4eU4Hfnj8LQ7tEKkwQH0XVCfh/m3TIJu6sa0L0g03R9wOeNVVWkOoluFXuJgWXQZSf6wJIc/HjygISPB9AvqGkM6yf0KcLCTeU4b1ypLsgWD0esu8jSdaLLp7V9ksVVAaBbfoYuGBT5DaG5eCyvXHkUxvYuRNDvRX1TBC99sSV6LIbg124S/f2fHo+y4mx4PB7bAB1oqXNx+drLethrG90vSKrxeJKvY9HUWNxvfmYAu6saLG8X8Hnh8XiQHfShtsl8guPn0wbjwf+t1V3mdNLHivF5FafAtS9ln0Kob47gtn99jU+/3ZfU/Wq2lZsn0ZsiCp6atwFjehVgQt9Ouut0dS6qGvvdEPR7TT+zyUyiA8BlcxZj/a+mxb5f+V0VTvvdpxhQEq8qii48nPokfkfm/rM5REREREREREQdkMfjwVmjeljWbySqrDjbFJZpxMA5uUn0+NeKRTAuLtqp3V/EIUFNZRJV7CU3htgvXzEBi26fjGE98nXbiceeKxyvWLUhO8mwYPZJuu/FsLBrfobuBIgYlhrrXMRwuiArEDvZIAb3xtogu4VFB5TkmmpCrEQ70d1tK9unu4lk/fdZaagqqZME4EA0RBdPUjx90Rjd9VqNT0GWvBe9INN80iHZhUWNE/6rdlThhr8uRV1TODaJLntO65sjKQfoALDtgHkS/dNv9+Ghd9Zi+h+/MF0n/lwqavzkQcDnMU3MVyTwuhvfqsaf/9U7q/Dmsh3x6zmJ7oghOhERERERERGR4AejewAABpWkJ1S3khVIvCBADN6Nnd2x/UrqXCI2lRKAc8julrGGI+Dzoktehmk7scaif5cc/GzqIPzmhyN128gWFu2Wr5/uF4Pt7vmZuvC4ICsezpoWFhUDduFrcZI52ziJnmJn9KVHlwEAbj11sOsTKEXZ5uDZzQKTQcPjld3flCNKcMfpR7g6DgCxfnujvMyA7iSF8eRDwB+9rjBbPqGfJXkfJ1vnIusSf+vrnXjhs82WnehAtM4lHWSd6HZUXYiu6upcjBPzCzfud9yfp2UW3fhetalGB+B+4eHDGetciIiIiIiIiIgEMyb0RlmnbFNXejqIYZXYJe5WyO/Dm9cfg7CiWoboYvirhWnNDiHZ4K55CR+LjNsJ4k7CQpPZIT+uP7G/aRvjJPq/bzjGtI0YmnfNz4iFiEA03N1X0wTAHCr6hSDVbzFBbgyeUw3R7zpjCH46ZSDyswL4tzAFHLs/w6KoQ7vnYfZpg03buan1CPrjtUGAOVQHgPPG9cSJg7vg5S+2YPN+8wS1W/mZAQSEEN34vGmhdaHFJHrQ50HIcLzJhug+i5foQG0TQv7oyRzjpxKAaN97Orj5lIAoYlhYVDuOzKAPDc3650BWhWOk/Tx4DB9FMC2ebGD1qRaK4yQ6EREREREREZHA5/Xg+IGdkZ9l322djLBiH2y6MbK0AGN7F1peL04CaxUWVnUN/73xOFx5XB/84vQhSR2LkVP4+czFY3H7aYMxqrQAD587Av275OCuM+T3LU6F3zh5AEZITmqIwXY3Q52LWGsTMHSi+ywm0cXnyThR7WZRVzsejyf2npL1vZ8+opvu+7dvPM40eQ+4mxoOGSayZScKgn4vAj4vjrKoHrKjLaQLaCF6fP8hv1d3/9p1Yp3LL88aGj82r9d0vI3JhugWJzrEjnGx2147UVOfphDdjT99uhGPz/0WgKETXVFjx5EZ8OlOTCTK+F51+qQJJ9GdMUQnIiIiIiIiImplZ4zsDgC44ri+scuM06LpEvR7ceKgzhjRMx99iqOLB1qF6EO65+H/Th+SthMGTgtCTh3aFVcd3w8AcN64Unww6wT07pQt3VacRLcaAtcvLJqp+15cGNQ4fSwG52LwKoaNxkBW/H5AlxyMLyuSH5QLsoVFZdUtiegk3D7k1+9ftpimVn0iq0CxE/J78YcLR8e+z83w60L6kN+HYuGTBloYXCi8x04c3CV+bD6P6flIthPd6kRH0O+NvbY+rwe/v2A0fvn9YRjcLVrZVFGX2AR5shrDEdz39hr85v1vsLuqwVDnEp+Izwz4pK+ZE+13ivGmTpPm7ER3xjoXIiIiIiIiIqJW9vvzR+GXZw1FRsCHd1ftwvAe+a16fy/MHA9VVWOhWjjJUDJRyYafMmKIbhUC2i0sKk6S2y0sKoaVdgO74jD3hRN6oTmiYNHmcusb2DAugAlY15248ci5I7CjogGPffANAHMwLps01qa/3S6Iqgn4vOhZmIWrju8bm0IPCM9hyO9FcU4Q31XU6/YvTqKL9xnweREyTOYnXediN4nesi6A3+fBmS0ntf63YicA4MevfJXU/SWqRuizr2+KmOpctG72zKAP1Y3x58TjsX9vxrZr+V/TJLpDSM5JdGcM0YmIiIiIiIiIWpnH44mFiHNnndBqU+jG+9ScPqIb/r54O4b1SE/3uZXmJMNPGbEz3qreQwwHu+VnQHxWxUl0uzoXn0Wdi5EYTOZlBPC9kd1Q0xDGCYO6WN7GSl6GOZIb0TO5Eys+rwfnju2JFz7bHLvMWBUk68/XguxEJ9G1ExK3n3aEcJkwiR7w6jrv453o8oVevR4PMgyT825DdK8HmH5kKV5ZtA2Adfe31+NBY0u1kVdS53KwiJ3pYUXFN7trYt+rKlBnUecypFseVu2octx/vBNdf7lTRh5xWnmUWOdCRERERERERHQwHYwA3eiuM4bi4XNH4M+XTWjV+0nnJLoYBFuF6HurG2JfF2UHdc+t2InutanG8AsBu90CjGLYnpcZQMjvw6xTBtn201vpVZQV+/r6E/vh/h8MxzH9i13d9sbJA3Tf52X44fF4kB0SThr49Y+3OCeIJ2eMidUKAUKdS4KT6H6veXtxF9E6F3HqPHos4uMTPxng8cA0iX6grsn1sUw5oiT2/d7qRul2jc1K7LUVP3mQEWy7EP2vC7fGpvUBYO7a3bGgPDPo051oKC2Mv1/saG9/8b3q8TgvLMpJdGecRCciIiIiIiIi6uCyQ36cN6601e8n2QUhZcRAvDEsX/ixQgglPR6PLiDNtAlIxfMYYqB72TF98JeFW/GDUT1MtxGDyVzJJHkiyorjPfAT+nTC8QM7u77tT6cMQGNzBM98shFAdGFPQD9tbgzGFVXFacO7oTmi4D/Ld+i2MU6iDyrJxbiyQvxl4Vbp/csWvBQHmUN++ST6wJJcvHn9MeicG9J9MkBVzR3uzRF3oa7P68HkI0rw1IwxGFCSi+8/8Zl0u78s3II9LQG7eELFOAHf2qqEOpfnP9uku+6LjfFqoGgnuhCiF5kXmJXxQOtEjz9Gr8fjXOfi8vk+nHESnYiIiIiIiIiIUvLjk/oDAO49a2ir7L+xWR7OXzC+F4pzQrj6+OiCrY+cOxJ5GX7ce9ZQZAfdBd1iOF5alIUVd5+CB88Zbt7OUOeSCnESXZxO1thNh3s8HvQUbi8N0Q3BuBZyi/u1mkQvzg1i2rBulvdv7JcH9JPO0U50c4gOACNLC9C9IFMXxKtQY/3sidJOmkwb3g39u+SgpjEs3W6PMKEuBsoqWi88PqKbuTpJ9lrLZAR8uun80qLEJtHFk0QeOE+ic2FRZ5xEJyIiIiIiIiKilNx8yiDMPKYPirKTXxzTjtWEe0leBr78v8mxqfXhPfOx7M5T4PV68OS89a727TdUvRinojX6OpfUIrUMoYu7VhL8yqa9RblCYJ7XEqLn6EJ0/WPQQtSALESXBO7iZcZFLY398uL+gWg/ur7ORVb/on98E/p0wucb9pu2c+JzeJ5klmw5EPu6oVn+CYdUvXDpkTh+YGf86dONeOB/a2OXuw3RM4M+hITnTTtR4kS2sKjX44FT5TnrXJxxEp2IiIiIiIiIiFLWWgE6YF8TY+yY1+o67CbRxWDXGOhaEStG8lyGmnbuOP0IjO9ThO8JPeWx43OYzO6anxH7OjaJLjxe42S3lnGLj1WbQDeG3Iqq6kL8LMPim7JJdGMVvhj6yk4IGF+zK47rg0EluabtehTY15gYT4C4MaZXvMO+rimxEN3t/RVmB+HzenSL2wJAldsQ3TCJ7vY9qo2gew2j6BFOoqeMIToREREREREREbVrVp3odoZ2N9dpaPoWZ+O8cT1x9Ql9XS/0WtcUnxjPcVkVY+eK4/ri71dP1E2Qa5wW+xTrYHJbqmUKs+PBtfH2Wogq1pdYTaKrhsuM3fKyhUWNIa0+RLd/LKWFWcgO+fG/nxyHFy49Un+dQxe48Vh+NnWQ5bYBnwd3nH4Ebj5lYOyy+gRDdLuefVF2y3YZhhMQrifRAz7da+j3evDfG49zvJ32Thafcg+cQ/Kw06g6sc6FiIiIiIiIiIjat2QWLB1XVoTHpo9EWads03UejwcPnzsyof2JfdveJCagE2EMto1K8uKT6PUt4X5hVvyTAMaaEq1uRcy645Po+seiqqouwDWeZJD1ayuGkLYgy77OBQDe+vGxqKhrjvV9e70e05R7z8IsAOWSW7ccq6HT/PoT++MPH65Hfcvjv/ToMsz5fDMAYEi3PFxxXF/d9nY1JmeN6o43l+3QXZYZ8KG6Qd67HvJ7Y+/TrJYTI1mGky0LN1k/Ft39BH0ICQG8z+vFEJuTQpp4J7q+zkV1mERnhu6Mk+hERERERERERNSuJROiA8APRvfEaKG+IxWTBnZByO/FkWXp2Z+dTsLCnDJivYc23SxOPRsnnrUMVcxS/S3htrH6xQOPvhPdcN/Zksn5YwcUA4h3tYuT6FaD/sN65MduFzsmw2R5aaF5QU3xsYcj5nC4JC/+3A3rkS9cnmHa9q4zhsgPDvIKFbtJ9FxhsVltEt1Y57J8W4Xl7XX3I5lEd0PWie5xUefCSXRnDNGJiIiIiIiIiKhdy3CYzD4Y8rMCWHbnKXj1qomtdh9PzhiDId3y8Nh57qfkh3bPN11W1aAP0WXT4xrj1Pu93x+qmx43huA/OrrMtI9+nXMw75ZJ+Hz2SQCAvIx40J5IZYo4FR/0e1Gca+7Z7yR07zcby9ihD/nFEwRij7xmRM8CzDp5oOlyKxkWi85GxZ9jraLHWOfiVmbQpzt2LdB//tJxyM3w41GL94cn1okuXAbnOhd2ojtr+99AREREREREREREEk9cOAZHdMvDA2cPb+tDARANN1uzyuW04d3w358ch76dcxy3feem4/CTyQNw7aR+puuMk+haiN451zzhLgbmf7x4LAZ3zTNMoscf771nDcUZI7pJj6esODs2je0X9il2yTsRb9ctPwOy7D9XCOibJZPo4/sUxb4Wg2jZJDpgnha3E/Bbv/bXTeqPouwg5sw8MvY4nPZdmBXA5cf2MV2eEfDqXgNtEv2kwSX4+q5TMG2Y/DWQTaLXNkXwweo9tsdhV2tDUexEJyIiIiIiIiKidun0Ed1wukVoe7gb3DUPg7vKe7Ir65vx2nVH4+wnPwcQ77weWVqAn08bjN7CwqRibUjAr/Wkxy8Tq0AumViW8HHWJjCJLtaWlORloElS4zO0ez427K2NHpsk/P3Z1EHIDflx6rBu2FfTGLu8q0WI7tQ/r9vWZpHUy47tg5nHlOn6yJ1C9OyQX1ob0xhWdCcA/IaOetltotdF/9fYFf/YB9/YHgcn0Z1xEp2IiIiIiIiIiKgDaWhWMEboghfrXK45oR+mDY+fmBBD5EBLJ7kYFhdlmStVEpFInYu4sGi3/Aw0CXUtf796Is4Z0xP3nDk0dlmzpMs7K+jHrFMGYUj3PMc6F8DcCW9/fPbbGhdhdapzyQn5TXU5ZZ2yMLq0EEG/uLCofiOrjnTtUwOSlhtbnER31i5C9CeeeAJlZWXIyMjAhAkTsGjRIsttX3vtNYwbNw4FBQXIzs7GqFGj8NJLLx3EoyUiIiIiIiIiImp/hnaPTqYbFz+1W1dSnDrXQmwxWD97TA/8cGxP/P6C0UkdU22j+zqX7GC8NOOovp3Q2BxPg8f3KcJvzhuJQqET3WG9TISEENuqziVk0XPuMS2paj+JLuNmEl2sXpk+rhQf3TLJ1IluDM0tK4VaLo4kuFBootsfjto8RH/11Vcxa9Ys3HXXXVi6dClGjhyJqVOnYs8eeVdPUVER/u///g8LFizA119/jZkzZ2LmzJl49913D/KRExERERERERERtR8vXHokbpoyAH+4cAyAeL3HmN4FlrcRw1ptYU9x8tnn9eCRH47EmSO7J3Qs17V0tc8+7QjXt+lZmImbTx6I+38wHOcfWYqmiPspdpmwMJJtNYmeUJ1LggvcZgXtm7SjIXr8+4DfE5tmD0oWFnWibSXrircTTnD7w1Gbd6I/+uijuPLKKzFz5kwAwNNPP423334bzz//PH7+85+btp80aZLu+5/85Cd48cUXMX/+fEydOvVgHDIREREREREREVG70yUvAzdNGRj7/oNZJ+Ct5Ttx2bFllrfRL2BpDomT7cu+9dTBuHHyAMdKE5HH48GPJw+IfZ/XslBpssSp9ZyQPAa1qnMx1qwA8ZMMovzMAK46vm9C+44fk083iS5+KkDfie4yRI9Noif2mrET3VmbhuhNTU1YsmQJZs+eHbvM6/ViypQpWLBggePtVVXFhx9+iHXr1uGhhx5qzUMlIiIiIiIiIiI6pPTrnIOfTBlgu42szkUUcepMsZFIgC5zycQyLNtWgalDuyZ1+36dc/C780dZLioKWNe5uN32g1knoHNuSLq9Ze1Ki+ygvs5FrIsJ2tS5WNEqaBLtOGcnurM2DdH37duHSCSCkpIS3eUlJSVYu3at5e0qKyvRo0cPNDY2wufz4cknn8TJJ58s3baxsRGNjfGVeKuqqtJz8ERERERERERERIc4p0n0FDL0lGUGfXjqorEp7eOsUT1sr0+kouUHo3vg38t36C5zG3DL5GT4kR2KB/PisYR0C4uaj/Hdm47Hut3VuPGVr2KXaXm84jIUD/q9aAornER3oc070ZORm5uLZcuW4csvv8SvfvUrzJo1C/PmzZNu+8ADDyA/Pz/2r7S09OAeLBERERERERERUTsVcFgss6MHrJZ1LpLLRpUWYOU9UzF72uDYZT6HqpXjBhRbLkjq93qQLdTMBBKYRB/UNRcT+3bSH3PLZm4ny7WFTzv6a5wObRqiFxcXw+fzYffu3brLd+/eja5drT+m4fV60b9/f4waNQo333wzzj33XDzwwAPSbWfPno3KysrYv23btqX1MRARERERERERER2qxBBZhTlM7egBq1hhM7xHPgDg6H6dpNsWZgeRE/Lrwu6AZEpc9OfLxuPru0/BuWN7mq6rbgjrutqtOtGtFhY1Xq7VueRnuuuSzwowRHerTUP0YDCIsWPHYu7cubHLFEXB3LlzMXHiRNf7URRFV9kiCoVCyMvL0/0jIiIiIiIiIiIifXArq27RppU7quZI/EE/d+k43Pf9YXjiwjG2txGfJquAW+PxeJAR8OHXPxyJGyfr++mrG8LIDoohenxfIRed6MaLtUn0U4d1xZkju9seFxCtywHYie5Gm9e5zJo1C88++yxefPFFrFmzBtdeey1qa2sxc+ZMAMAll1yiW3j0gQcewPvvv4+NGzdizZo1+M1vfoOXXnoJF110UVs9BCIiIiIiIiIiokOSz+tBZstEclmn7Njld58xBEf364SLjurdVodmKYUacpNO2cHY111yM3DRUb1RKFwGAJMGdcYfL5Z3syfSiT7r5IFYdc/U2G3G9i7U1bmIFS76BV/lEa7VwqU+rwcPnTPC8XiyWgL8iKI4H/xhrk0XFgWA6dOnY+/evbjzzjuxa9cujBo1Cu+8805ssdGtW7fCK3wsora2Ftdddx22b9+OzMxMDB48GC+//DKmT5/eVg+BiIiIiIiIiIjokPXVnSejOaLEJpMB4NJj+uDSY/q04VFZ8/uiC2KmQ2lRFh6/YDSKDMF5r6Ks2NdzZo63vL1VkG0lO+THhzdPwvz1+3Du2J5Yt6s6dp3YnS5OuFvWuXj0l+cJNS5+h652ALGTJ5xEd9bmIToA3HDDDbjhhhuk1xkXDL3vvvtw3333HYSjIiIiIiIiIiIi6vgyAj5kBA6d2pa+xdlYK4TPqTpDUn1y5fF9sbemEScPKTFdl+ogfK9OWbiwUy8AQHYo/rwHLEJ0j8UdipcXZQdxx+lHxL53MyGfyYVFXWsXIToRERERERERERGRG09fNBb3vrUa103q12r3kRHw4d6zhrXa/jXiwqLi9HhBVnyqXOxHF3mEOP/1645Gt/zM+HVWybsgi53orjFEJyIiIiIiIiIiokNGWXE2nr/0yLY+jLQQO9HFifCsoB//vuEYeOBByC//lIDYoV6cE0r4vjmJ7h5DdCIiIiIiIiIiIiKXXAx5u5Yl9NA3R/Q97yN6Ftje1uf14NNbT0RYUXVhfKL3HY4wRHfCEJ2IiIiIiIiIiIioDYi1K8kslloqLICaqEuP7oMfjO6BLrkZSe/jcCEv1CEiIiIiIiIiIiKig6YxiRDdzj1nDrW9vm9xNsb2LkopiD9cMEQnIiIiIiIiIiIicimNbS4AgG750UnwSYO6pHW/Pzq6DA+fM8Lyeq833Y+k42KITkREREREREREROTS90Z2BwAcN6A4Lfube/MJ+PTWE9G/S05a9ifq0zlbevntpw1O+311ZOxEJyIiIiIiIiIiInKpOCeEtb88FSF/euaTs4J+ZBW1Tkxb1kkeol91fL9Wub+OipPoRERERERERERERAnICPh0i4K2V8U5QXTPz0Behh9BH6PgZPGZIyIiIiIiIiIiIuqAPB4PPrxlEub//CTkZLCUJFl85oiIiIiIiIiIiIg6qIyADxkBHwK+9j85315xEp2IiIiIiIiIiIiogwuwziVpfOaIiIiIiIiIiIiIOjh2oiePzxwRERERERERERFRB+dnnUvSGKITERERERERERERdXDHD+gMAMgO+tr4SA49XFiUiIiIiIiIiIiIqIO7+ZRB6F6QiSlHlLT1oRxyGKITERERERERERERdXCZQR8uO7ZPWx/GIYl1LkREREREREREREREFhiiExERERERERERERFZYIhORERERERERERERGSBIToRERERERERERERkQWG6EREREREREREREREFhiiExERERERERERERFZYIhORERERERERERERGSBIToRERERERERERERkQWG6EREREREREREREREFhiiExERERERERERERFZYIhORERERERERERERGSBIToRERERERERERERkQWG6EREREREREREREREFhiiExERERERERERERFZYIhORERERERERERERGTB39YHcLCpqgoAqKqqauMjISIiIiIiIiIiIqK2omXEWmZs5bAL0aurqwEApaWlbXwkRERERERERERERNTWqqurkZ+fb3m9R3WK2TsYRVGwY8cO5ObmwuPxtPXhtImqqiqUlpZi27ZtyMvLa+vDocMQ34PU1vgepPaA70Nqa3wPUlvje5DaA74Pqa3xPUht7XB/D6qqiurqanTv3h1er3Xz+WE3ie71etGzZ8+2Pox2IS8v77D84aD2g+9Bamt8D1J7wPchtTW+B6mt8T1I7QHfh9TW+B6ktnY4vwftJtA1XFiUiIiIiIiIiIiIiMgCQ3QiIiIiIiIiIiIiIgsM0Q9DoVAId911F0KhUFsfCh2m+B6ktsb3ILUHfB9SW+N7kNoa34PUHvB9SG2N70Fqa3wPunPYLSxKREREREREREREROQWJ9GJiIiIiIiIiIiIiCwwRCciIiIiIiIiIiIissAQnYiIiIiIiIiIiIjIAkN0IiIiIiIiIiIiIiILDNEPM0888QTKysqQkZGBCRMmYNGiRW19SNRBPPDAAzjyyCORm5uLLl264Pvf/z7WrVun22bSpEnweDy6f9dcc41um61bt+L0009HVlYWunTpgp/97GcIh8MH86HQIeruu+82vb8GDx4cu76hoQHXX389OnXqhJycHJxzzjnYvXu3bh98/1GqysrKTO9Dj8eD66+/HgB/D1L6ffLJJzjjjDPQvXt3eDwevPHGG7rrVVXFnXfeiW7duiEzMxNTpkzBt99+q9umvLwcM2bMQF5eHgoKCnD55ZejpqZGt83XX3+N4447DhkZGSgtLcXDDz/c2g+NDhF278Hm5mbcdtttGD58OLKzs9G9e3dccskl2LFjh24fst+dDz74oG4bvgfJjtPvwksvvdT0Hjv11FN12/B3IaXC6T0o+/+HHo8HjzzySGwb/i6kVLjJZNL1N/G8efMwZswYhEIh9O/fH3PmzGnth9cuMEQ/jLz66quYNWsW7rrrLixduhQjR47E1KlTsWfPnrY+NOoAPv74Y1x//fX44osv8P7776O5uRmnnHIKamtrddtdeeWV2LlzZ+yf+B/9SCSC008/HU1NTfj888/x4osvYs6cObjzzjsP9sOhQ9TQoUN176/58+fHrvvpT3+K//znP/jHP/6Bjz/+GDt27MDZZ58du57vP0qHL7/8UvcefP/99wEAP/zhD2Pb8PcgpVNtbS1GjhyJJ554Qnr9ww8/jN///vd4+umnsXDhQmRnZ2Pq1KloaGiIbTNjxgysWrUK77//Pt566y188sknuOqqq2LXV1VV4ZRTTkHv3r2xZMkSPPLII7j77rvxxz/+sdUfH7V/du/Buro6LF26FL/4xS+wdOlSvPbaa1i3bh3OPPNM07b33nuv7nfjj3/849h1fA+SE6ffhQBw6qmn6t5jr7zyiu56/i6kVDi9B8X33s6dO/H888/D4/HgnHPO0W3H34WULDeZTDr+Jt60aRNOP/10nHjiiVi2bBluuukmXHHFFXj33XcP6uNtEyodNsaPH69ef/31se8jkYjavXt39YEHHmjDo6KOas+ePSoA9eOPP45ddsIJJ6g/+clPLG/z3//+V/V6vequXbtilz311FNqXl6e2tjY2JqHSx3AXXfdpY4cOVJ6XUVFhRoIBNR//OMfscvWrFmjAlAXLFigqirff9Q6fvKTn6j9+vVTFUVRVZW/B6l1AVBff/312PeKoqhdu3ZVH3nkkdhlFRUVaigUUl955RVVVVV19erVKgD1yy+/jG3zv//9T/V4POp3332nqqqqPvnkk2phYaHuPXjbbbepgwYNauVHRIca43tQZtGiRSoAdcuWLbHLevfurT722GOWt+F7kBIhex/+6Ec/Us866yzL2/B3IaWTm9+FZ511lnrSSSfpLuPvQkonYyaTrr+Jb731VnXo0KG6+5o+fbo6derU1n5IbY6T6IeJpqYmLFmyBFOmTIld5vV6MWXKFCxYsKANj4w6qsrKSgBAUVGR7vK//OUvKC4uxrBhwzB79mzU1dXFrluwYAGGDx+OkpKS2GVTp05FVVUVVq1adXAOnA5p3377Lbp3746+fftixowZ2Lp1KwBgyZIlaG5u1v0OHDx4MHr16hX7Hcj3H6VbU1MTXn75ZVx22WXweDyxy/l7kA6WTZs2YdeuXbrfffn5+ZgwYYLud19BQQHGjRsX22bKlCnwer1YuHBhbJvjjz8ewWAwts3UqVOxbt06HDhw4CA9GuooKisr4fF4UFBQoLv8wQcfRKdOnTB69Gg88sgjuo+O8z1I6TBv3jx06dIFgwYNwrXXXov9+/fHruPvQjqYdu/ejbfffhuXX3656Tr+LqR0MWYy6fqbeMGCBbp9aNscDtmiv60PgA6Offv2IRKJ6H4QAKCkpARr165to6OijkpRFNx000045phjMGzYsNjlF154IXr37o3u3bvj66+/xm233YZ169bhtddeAwDs2rVL+h7VriOyM2HCBMyZMweDBg3Czp07cc899+C4447DypUrsWvXLgSDQdMf7CUlJbH3Ft9/lG5vvPEGKioqcOmll8Yu4+9BOpi094zsPSX+7uvSpYvuer/fj6KiIt02ffr0Me1Du66wsLBVjp86noaGBtx222244IILkJeXF7v8xhtvxJgxY1BUVITPP/8cs2fPxs6dO/Hoo48C4HuQUnfqqafi7LPPRp8+fbBhwwbcfvvtmDZtGhYsWACfz8ffhXRQvfjii8jNzdXVaAD8XUjpI8tk0vU3sdU2VVVVqK+vR2ZmZms8pHaBIToRpd3111+PlStX6vqoAeg6BYcPH45u3bph8uTJ2LBhA/r163ewD5M6mGnTpsW+HjFiBCZMmIDevXvj73//e4f+Dzm1X8899xymTZuG7t27xy7j70EiOlw1NzfjvPPOg6qqeOqpp3TXzZo1K/b1iBEjEAwGcfXVV+OBBx5AKBQ62IdKHdD5558f+3r48OEYMWIE+vXrh3nz5mHy5MlteGR0OHr++ecxY8YMZGRk6C7n70JKF6tMhlLDOpfDRHFxMXw+n2nV3d27d6Nr165tdFTUEd1www1466238NFHH6Fnz562206YMAEAsH79egBA165dpe9R7TqiRBQUFGDgwIFYv349unbtiqamJlRUVOi2EX8H8v1H6bRlyxZ88MEHuOKKK2y34+9Bak3ae8bu//917drVtMh8OBxGeXk5fz9S2mgB+pYtW/D+++/rptBlJkyYgHA4jM2bNwPge5DSr2/fviguLtb995e/C+lg+PTTT7Fu3TrH/48I8HchJccqk0nX38RW2+Tl5XX44TWG6IeJYDCIsWPHYu7cubHLFEXB3LlzMXHixDY8MuooVFXFDTfcgNdffx0ffvih6WNmMsuWLQMAdOvWDQAwceJErFixQvd/YLU/tIYMGdIqx00dV01NDTZs2IBu3bph7NixCAQCut+B69atw9atW2O/A/n+o3R64YUX0KVLF5x++um22/H3ILWmPn36oGvXrrrffVVVVVi4cKHud19FRQWWLFkS2+bDDz+EoiixkzwTJ07EJ598gubm5tg277//PgYNGsSPjpMjLUD/9ttv8cEHH6BTp06Ot1m2bBm8Xm+sXoPvQUq37du3Y//+/br//vJ3IR0Mzz33HMaOHYuRI0c6bsvfhZQIp0wmXX8TT5w4UbcPbZvDIlts44VN6SD629/+poZCIXXOnDnq6tWr1auuukotKCjQrbpLlKxrr71Wzc/PV+fNm6fu3Lkz9q+urk5VVVVdv369eu+996qLFy9WN23apL755ptq37591eOPPz62j3A4rA4bNkw95ZRT1GXLlqnvvPOO2rlzZ3X27Nlt9bDoEHLzzTer8+bNUzdt2qR+9tln6pQpU9Ti4mJ1z549qqqq6jXXXKP26tVL/fDDD9XFixerEydOVCdOnBi7Pd9/lC6RSETt1auXetttt+ku5+9Bag3V1dXqV199pX711VcqAPXRRx9Vv/rqK3XLli2qqqrqgw8+qBYUFKhvvvmm+vXXX6tnnXWW2qdPH7W+vj62j1NPPVUdPXq0unDhQnX+/PnqgAED1AsuuCB2fUVFhVpSUqJefPHF6sqVK9W//e1valZWlvrMM88c9MdL7Y/de7CpqUk988wz1Z49e6rLli3T/X/ExsZGVVVV9fPPP1cfe+wxddmyZeqGDRvUl19+We3cubN6ySWXxO6D70FyYvc+rK6uVm+55RZ1wYIF6qZNm9QPPvhAHTNmjDpgwAC1oaEhtg/+LqRUOP33WFVVtbKyUs3KylKfeuop0+35u5BS5ZTJqGp6/ibeuHGjmpWVpf7sZz9T16xZoz7xxBOqz+dT33nnnYP6eNsCQ/TDzOOPP6726tVLDQaD6vjx49UvvviirQ+JOggA0n8vvPCCqqqqunXrVvX4449Xi4qK1FAopPbv31/92c9+plZWVur2s3nzZnXatGlqZmamWlxcrN58881qc3NzGzwiOtRMnz5d7datmxoMBtUePXqo06dPV9evXx+7vr6+Xr3uuuvUwsJCNSsrS/3BD36g7ty5U7cPvv8oHd59910VgLpu3Trd5fw9SK3ho48+kv7390c/+pGqqqqqKIr6i1/8Qi0pKVFDoZA6efJk03tz//796gUXXKDm5OSoeXl56syZM9Xq6mrdNsuXL1ePPfZYNRQKqT169FAffPDBg/UQqZ2zew9u2rTJ8v8jfvTRR6qqquqSJUvUCRMmqPn5+WpGRoZ6xBFHqPfff78u3FRVvgfJnt37sK6uTj3llFPUzp07q4FAQO3du7d65ZVXmobJ+LuQUuH032NVVdVnnnlGzczMVCsqKky35+9CSpVTJqOq6fub+KOPPlJHjRqlBoNBtW/fvrr76Mg8qqqqrTTkTkRERERERERERER0SGMnOhERERERERERERGRBYboREREREREREREREQWGKITEREREREREREREVlgiE5EREREREREREREZIEhOhERERERERERERGRBYboREREREREREREREQWGKITEREREREREREREVlgiE5ERERERDFlZWX47W9/29aHQURERETUbjBEJyIiIiJqI5deeim+//3vAwAmTZqEm2666aDd95w5c1BQUGC6/Msvv8RVV1110I6DiIiIiKi987f1ARARERERUfo0NTUhGAwmffvOnTun8WiIiIiIiA59nEQnIiIiImpjl156KT7++GP87ne/g8fjgcfjwebNmwEAK1euxLRp05CTk4OSkhJcfPHF2LdvX+y2kyZNwg033ICbbroJxcXFmDp1KgDg0UcfxfDhw5GdnY3S0lJcd911qKmpAQDMmzcPM2fORGVlZez+7r77bgDmOpetW7firLPOQk5ODvLy8nDeeedh9+7dsevvvvtujBo1Ci+99BLKysqQn5+P888/H9XV1bFt/vnPf2L48OHIzMxEp06dMGXKFNTW1rbSs0lERERElF4M0YmIiIiI2tjvfvc7TJw4EVdeeSV27tyJnTt3orS0FBUVFTjppJMwevRoLF68GO+88w52796N8847T3f7F198EcFgEJ999hmefvppAIDX68Xvf/97rFq1Ci+++CI+/PBD3HrrrQCAo48+Gr/97W+Rl5cXu79bbrnFdFyKouCss85CeXk5Pv74Y7z//vvYuHEjpk+frttuw4YNeOONN/DWW2/hrbfewscff4wHH3wQALBz505ccMEFuOyyy7BmzRrMmzcPZ599NlRVbY2nkoiIiIgo7VjnQkRERETUxvLz8xEMBpGVlYWuXbvGLv/DH/6A0aNH4/77749d9vzzz6O0tBTffPMNBg4cCAAYMGAAHn74Yd0+xX71srIy3Hfffbjmmmvw5JNPIhgMIj8/Hx6PR3d/RnPnzsWKFSuwadMmlJaWAgD+/Oc/Y+jQofjyyy9x5JFHAoiG7XPmzEFubi4A4OKLL8bcuXPxq1/9Cjt37kQ4HMbZZ5+N3r17AwCGDx+ewrNFRERERHRwcRKdiIiIiKidWr58OT766CPk5OTE/g0ePBhAdPpbM3bsWNNtP/jgA0yePBk9evRAbm4uLr74Yuzfvx91dXWu73/NmjUoLS2NBegAMGTIEBQUFGDNmjWxy8rKymIBOgB069YNe/bsAQCMHDkSkydPxvDhw/HDH/4Qzz77LA4cOOD+SSAiIiIiamMM0YmIiIiI2qmamhqcccYZWLZsme7ft99+i+OPPz62XXZ2tu52mzdvxve+9z2MGDEC//rXv7BkyRI88cQTAKILj6ZbIBDQfe/xeKAoCgDA5/Ph/fffx//+9z8MGTIEjz/+OAYNGoRNmzal/TiIiIiIiFoDQ3QiIiIionYgGAwiEonoLhszZgxWrVqFsrIy9O/fX/fPGJyLlixZAkVR8Jvf/AZHHXUUBg4ciB07djjen9ERRxyBbdu2Ydu2bbHLVq9ejYqKCgwZMsT1Y/N4PDjmmGNwzz334KuvvkIwGMTrr7/u+vZERERERG2JIToRERERUTtQVlaGhQsXYvPmzdi3bx8URcH111+P8vJyXHDBBfjyyy+xYcMGvPvuu5g5c6ZtAN6/f380Nzfj8ccfx8aNG/HSSy/FFhwV76+mpgZz587Fvn37pDUvU6ZMwfDhwzFjxgwsXboUixYtwiWXXIITTjgB48aNc/W4Fi5ciPvvvx+LFy/G1q1b8dprr2Hv3r044ogjEnuCiIiIiIjaCEN0IiIiIqJ24JZbboHP58OQIUPQuXNnbN26Fd27d8dnn32GSCSCU045BcOHD8dNN92EgoICeL3W/1d+5MiRePTRR/HQQw9h2LBh+Mtf/oIHHnhAt83RRx+Na665BtOnT0fnzp1NC5MC0QnyN998E4WFhTj++OMxZcoU9O3bF6+++qrrx5WXl4dPPvkEp512GgYOHIg77rgDv/nNbzBt2jT3Tw4RERERURvyqKqqtvVBEBERERERERERERG1R5xEJyIiIiIiIiIiIiKywBCdiIiIiIiIiIiIiMgCQ3QiIiIiIiIiIiIiIgsM0YmIiIiIiIiIiIiILDBEJyIiIiIiIiIiIiKywBCdiIiIiIiIiIiIiMgCQ3QiIiIiIiIiIiIiIgsM0YmIiIiIiIiIiIiILDBEJyIiIiIiIiIiIiKywBCdiIiIiIiIiIiIiMgCQ3QiIiIiIiIiIiIiIgsM0YmIiIiIiIiIiIiILDBEJyIiIiIiIiIiIiKywBCdiIiIiIiIiIiIiMgCQ3QiIiIiIiIiIiIiIgsM0YmIiIiIiIiIiIiILDBEJyIiIiIiIiIiIiKywBCdiIiIiOgQsHnzZng8HsyZMyd22d133w2Px+Pq9h6PB3fffXdaj2nSpEmYNGlSWvdJRERERNTeMEQnIiIiImoFZ555JrKyslBdXW25zYwZMxAMBrF///6DeGSJWb16Ne6++25s3ry5rQ+FiIiIiKhNMEQnIiIiImoFM2bMQH19PV5//XXp9XV1dXjzzTdx6qmnolOnTkndxx133IH6+vpUDtPR6tWrcc8990hD9Pfeew/vvfdeq94/EREREVFbY4hORERERNQKzjzzTOTm5uKvf/2r9Po333wTtbW1mPH/7N15eFT1+f7x98xkmUlmspKVrISwr0GKuIALKlD3BURq1arQVopWW61tv9b2Z6XaupTa4lIBWwUVrRStioCACy6IhjUsQkISdsg2k2Qmycz5/TESiSwJS3IScr+uay45M2fOeRIkmbnnOc9n4sQTPkdISAh2u/2En3+ywsLCCAsLM+38IiIiIiJtQSG6iIiIiEgrcDgcXH311SxZsoS9e/ce9vicOXNwuVycc845/OIXv6B///44nU6ioqIYM2YMq1evbvYcR5qJ7vP5+PnPf05CQgIul4vLL7+c0tLSw567fft2fvrTn9KzZ08cDgfx8fFcd911TTrOZ8+ezXXXXQfA+eefj8ViwWKxsGzZMuDIM9H37t3LrbfeSlJSEna7nYEDB/LCCy802efgfPe//OUvPPvss+Tk5BAeHs7QoUNZuXJls1+3iIiIiEhbCjG7ABERERGR09XEiRN54YUXePXVV5kyZUrj/WVlZSxcuJAJEyawa9cu5s+fz3XXXUd2djZ79uzhmWeeYeTIkWzYsIHU1NTjOudtt93Giy++yA033MBZZ53F+++/z/e///3D9lu5ciUrVqzg+uuvJy0tjaKiImbMmMF5553Hhg0biIiIYMSIEUydOpXp06fz61//mt69ewM0/ve7amtrOe+88/j666+ZMmUK2dnZzJs3j5tvvpmKigruvPPOJvvPmTMHt9vN5MmTsVgsPProo1x99dVs27aN0NDQ4/q6RURERERai0J0EREREZFWcsEFF5CSksKcOXOahOjz5s2jvr6eiRMn0r9/fzZv3ozV+u1FojfeeCO9evXi+eef5//+7/9afL7Vq1fz4osv8tOf/pS///3vANxxxx1MnDiRNWvWNNn3+9//Ptdee22T+y677DKGDx/O66+/zo033ki3bt0499xzmT59OhdddNFhXeff9eyzz1JQUMCLL77YOKbmxz/+MSNHjuS3v/0tP/rRj3C5XI37FxcXs2XLFmJjYwHo2bMnV1xxBQsXLuTSSy9t8dctIiIiItKaNM5FRERERKSV2Gw2rr/+ej755JMmY1LmzJlDUlISF154IeHh4Y0But/v58CBAzidTnr27MmXX355XOd7++23AZg6dWqT+++6667D9nU4HI1/rq+v58CBA3Tv3p2YmJjjPu+h509OTmbChAmN94WGhjJ16lQ8Hg/Lly9vsv/48eMbA3SAc889F4Bt27ad0PlFRERERFqDQnQRERERkVZ0sCP74AKjpaWlfPjhh1x//fXYbDYCgQBPPPEEubm5hIeH06VLFxISElizZg2VlZXHda7t27djtVrJyclpcn/Pnj0P27e2tpYHHniA9PT0JuetqKg47vMeev7c3NwmXfXw7fiX7du3N7k/IyOjyfbBQL28vPyEzi8iIiIi0hoUoouIiIiItKIhQ4bQq1cv5s6dC8DcuXMxDKMxXH/44Ye5++67GTFiBC+++CILFy5k0aJF9O3bl0Ag0Gp1/exnP+OPf/wj48aN49VXX+W9995j0aJFxMfHt+p5D2Wz2Y54v2EYbXJ+EREREZGW0Ex0EREREZFWNnHiRP7v//6PNWvWMGfOHHJzcxk6dCgAr732Gueffz7PP/98k+dUVFTQpUuX4zpPZmYmgUCArVu3Nuk+37Rp02H7vvbaa9x000089thjjfd5vV4qKiqa7GexWI7r/GvWrCEQCDTpRt+4cWPj4yIiIiIiHY060UVEREREWtnBrvMHHniA/Pz8xm0IdmN/t/N63rx57Nix47jPM2bMGACmT5/e5P4nn3zysH2PdN6//e1v+P3+JvdFRkYCHBauH8nYsWPZvXs3r7zySuN9DQ0N/O1vf8PpdDJy5MiWfBkiIiIiIu2KOtFFRERERFpZdnY2Z511Fv/9738BmoTol156KX/4wx+45ZZbOOuss1i7di0vvfQS3bp1O+7zDBo0iAkTJvCPf/yDyspKzjrrLJYsWcLXX3992L6XXnop//73v4mOjqZPnz588sknLF68mPj4+MOOabPZeOSRR6isrCQ8PJwLLriAxMTEw445adIknnnmGW6++WZWrVpFVlYWr732Gh9//DFPPvkkLpfruL8mERERERGzKUQXEREREWkDEydOZMWKFXzve9+je/fujff/+te/prq6mjlz5vDKK6+Ql5fH//73P371q1+d0HlmzpxJQkICL730EvPnz+eCCy7gf//7H+np6U32++tf/4rNZuOll17C6/Vy9tlns3jxYi655JIm+yUnJ/P0008zbdo0br31Vvx+P0uXLj1iiO5wOFi2bBm/+tWveOGFF6iqqqJnz57MmjWLm2+++YS+HhERERERs1kMrdojIiIiIiIiIiIiInJEmokuIiIiIiIiIiIiInIUCtFFRERERERERERERI5CIbqIiIiIiIiIiIiIyFEoRBcREREREREREREROQqF6CIiIiIiIiIiIiIiR6EQXURERERERERERETkKBSii4iIiIiIiIiIiIgcRYjZBbS1QCDAzp07cblcWCwWs8sRERERERERERERERMYhoHb7SY1NRWr9ej95p0uRN+5cyfp6elmlyEiIiIiIiIiIiIi7UBJSQlpaWlHfbzThegulwsIfmOioqJMrkZEREREREREREREzFBVVUV6enpjZnw0nS5EPzjCJSoqSiG6iIiIiIiIiIiISCfX3NhvLSwqIiIiIiIiIiIiInIUCtFFRERERERERERERI5CIbqIiIiIiIiIiIiIyFF0upnoIiIiIiIiIiIiIi0VCASoq6szuww5AaGhodhstpM+jkJ0ERERERERERERkSOoq6ujsLCQQCBgdilygmJiYkhOTm528dBjUYguIiIiIiIiIiIi8h2GYbBr1y5sNhvp6elYrZqM3ZEYhkFNTQ179+4FICUl5YSPpRBdRERERERERERE5DsaGhqoqakhNTWViIgIs8uRE+BwOADYu3cviYmJJzzaRR+fiIiIiIiIiIiIiHyH3+8HICwszORK5GQc/ACkvr7+hI+hEF1ERERERERERETkKE5mlraY71T8/SlEFxEREREREREREZFTIisriyeffLJx22KxMH/+/FY737Jly7BYLFRUVLTaORSii4iIiIiIiIiIiJxm/v73v5OVlYXdbmfYsGF8/vnnZpfUrMmTJ5OTk4PD4SAhIYErrriCjRs3ml2WQnQRERERERERERGR08krr7zC3Xffze9+9zu+/PJLBg4cyCWXXMLevXvNLu2YhgwZwqxZsygoKGDhwoUYhsHFF1/cOJ/eLArRRURERERERERERE4jjz/+OLfffju33HILffr04emnnyYiIoKZM2c2+9yKigomT55MUlISdrudfv368dZbbzU+/tFHH3HuueficDhIT09n6tSpVFdXt6iuuro6pkyZQkpKCna7nczMTKZNm9b4+KRJkxgxYgRZWVnk5eXx0EMPUVJSQlFRUeM+b7/9Nj169MDhcHD++ec3eay1hLT6GUREREREREREREQ6OMMwqK03pyPaEWpr8QKZdXV1rFq1ivvvv7/xPqvVyqhRo/jkk0+O+dxAIMCYMWNwu928+OKL5OTksGHDBmw2GwBbt25l9OjRPPTQQ8ycOZN9+/YxZcoUpkyZwqxZs5qtbfr06SxYsIBXX32VjIwMSkpKKCkpOeK+1dXVzJo1i+zsbNLT0wEoKSnh6quv5o477mDSpEl88cUX3HPPPS36vpwMheidTcAPC34GQ26G9O+ZXY2IiIiIiIiIiEiHUFvvp88DC00594Y/XEJEWMui3P379+P3+0lKSmpyf1JSUrPzxRcvXsznn39OQUEBPXr0AKBbt26Nj0+bNo2JEydy1113AZCbm8v06dMZOXIkM2bMwG63H/P4xcXF5Obmcs4552CxWMjMzDxsn3/84x/ce++9VFdX07NnTxYtWkRYWBgAM2bMICcnh8ceewyAnj17snbtWh555JFjf1NOksa5dDafzoD8l2D29yF/jtnViIiIiIiIiIiISDuRn59PWlpaY4D+XatXr2b27Nk4nc7G2yWXXEIgEKCwsLDZ4998883k5+fTs2dPpk6dynvvvXfYPhMnTuSrr75i+fLl9OjRg3HjxuH1egEoKChg2LBhTfYfPnz4CXylx0ed6J3NkJuh+BPY+BbM/wnsWQ+jfg82/a8gIiIiIiIiIiJyNI5QGxv+cIlp526pLl26YLPZ2LNnT5P79+zZQ3Jy8rHP43Ac83GPx8PkyZOZOnXqYY9lZGQ0W1teXh6FhYW88847LF68mHHjxjFq1Chee+21xn2io6OJjo4mNzeXM888k9jYWN544w0mTJjQ7PFbi5LTzibcCeP+DcsfgeV/gk+egr0FcO1McMSYXZ2IiIiIiIiIiEi7ZLFYWjxSxUxhYWEMGTKEJUuWcOWVVwLBWedLlixhypQpx3zugAEDKC0tZfPmzUfsRs/Ly2PDhg107979hOuLiopi/PjxjB8/nmuvvZbRo0dTVlZGXFzcYfsahoFhGPh8PgB69+7NggULmuzz6aefnnAtLaVxLp2R1Qrn3w/XvQChEbB1CfzzQti/xezKRERERERERERE5CTdfffdPPfcc7zwwgsUFBTwk5/8hOrqam655ZZjPm/kyJGMGDGCa665hkWLFjV2jb/77rsA3HfffaxYsYIpU6aQn5/Pli1b+O9//9tsOH/Q448/zty5c9m4cSObN29m3rx5JCcnExMTw7Zt25g2bRqrVq2iuLiYFStWcN111+FwOBg7diwAP/7xj9myZQu//OUv2bRpE3PmzGH27Nkn9b1qCYXonVnfK+FHCyE6HQ58Dc9dCFsWmV2ViIiIiIiIiIiInITx48fzl7/8hQceeIBBgwaRn5/Pu+++e9hio0fy+uuvM3ToUCZMmECfPn2499578fv9QLBTffny5WzevJlzzz2XwYMH88ADD5CamtqiulwuF48++ihnnHEGQ4cOpaioiLfffhur1YrdbufDDz9k7NixdO/enfHjx+NyuVixYgWJiYlAcGTM66+/zvz58xk4cCBPP/00Dz/88Il/o1rIYhiG0epnaUeqqqqIjo6msrKSqKgos8tpHzz74JUfQMmnYLHCRX+A4VPAYjG7MhEREREREREREVN4vV4KCwvJzs7GbrebXY6coGP9PbY0K1YnuoAzAW56EwbfCEYA3vttcNHReq/ZlYmIiIiIiIiIiIiYSiG6BIWEweV/gzGPgsUGq+fC7O+De7fZlYmIiIiIiIiIiMgp8NJLL+F0Oo9469u3r9nltVvtfzlZaTsWCwybDAk94dWbYMcX8Ox5cP1L0HWI2dWJiIiIiIiIiIjISbj88ssZNmzYER8LDQ1t42o6DoXocrhu58GkpTB3AuzbCLPGwuVPwYDrzK5MRERERERERERETpDL5cLlcpldRoejcS5yZHHd4NZF0GM0NHjhP7fBot9BwG92ZSIiIiIiIiIiIiJtRiG6HJ09Cq6fA+fcHdz++Mlgd7q3ytSyRERERERERERERNqKQnQ5NqsNRv0OrnkeQuywZSH8cxQc2Gp2ZSIiIiIiIiIiIiKtTiG6tEz/a+GWd8CVCvs3wXMXwNalZlclIiIiIiIiIiIi0qoUokvLdc0LLjiaNhS8FfDiNfDp02AYZlcmIiIiIiIiIiIi0ioUosvxcSXDTW/BwBvA8MO798GCn0GDz+zKRERERERERERERE45hehy/ELtcOU/4OI/gsUKX/0bXrgcPHvNrkxERERERERERERMdN5553HXXXc1bmdlZfHkk0+22vmKioqwWCzk5+e32jkUosuJsVjgrClwwzwIj4aST+HZ82HXarMrExERERERERER6dQ++OADLrvsMlJTU7FYLMyfP9/sklrkwQcfpFevXkRGRhIbG8uoUaP47LPPzC5LIbqcpNxRcPsSiM+FqlJ4/hJY/4bZVYmIiIiIiIiIiHRa1dXVDBw4kL///e9ml3JcevTowVNPPcXatWv56KOPyMrK4uKLL2bfvn2m1qUQXU5el1y4bTF0HwUNtTDvZnj/jxAImF2ZiIiIiIiIiIhIpzNmzBgeeughrrrqquN+rs/n47777iM9PZ3w8HC6d+/O888/3/j4unXrGDNmDE6nk6SkJG688Ub279/fomMbhsGDDz5IRkYG4eHhpKamMnXq1MbHb7jhBkaNGkW3bt3o27cvjz/+OFVVVaxZs6Zxn88//5zBgwdjt9s544wz+Oqrr477azxeCtHl1HDEwA2vwlk/C25/8Ci8eiP4PKaWJSIiIiIiIiIicioYhkGD35ybYRht9nX+8Ic/ZO7cuUyfPp2CggKeeeYZnE4nABUVFVxwwQUMHjyYL774gnfffZc9e/Ywbty4Fh379ddf54knnuCZZ55hy5YtzJ8/n/79+x9x37q6Op599lmio6MZOHAgAB6Ph0svvZQ+ffqwatUqHnzwQX7xi1+cmi/8GEJa/QzSeVhtcPFDkNgX3pwKG9+C5y+GCXMgNsvs6kRERERERERERE6YPwBvrtxryrkvG5pIiK31z7N582ZeffVVFi1axKhRowDo1q1b4+NPPfUUgwcP5uGHH268b+bMmaSnp7N582Z69OhxzOMXFxeTnJzMqFGjCA0NJSMjg+9973tN9nnrrbe4/vrrqampISUlhUWLFtGlSxcA5syZQyAQ4Pnnn8dut9O3b19KS0v5yU9+cqq+BUekTnQ59QZNgJvfBmcS7F0fXHC08EOzqxIREREREREREZFjyM/Px2azMXLkyCM+vnr1apYuXYrT6Wy89erVC4CtW7c2e/zrrruO2tpaunXrxu23384bb7xBQ0NDk33OP/988vPzWbFiBaNHj2bcuHHs3Rv88KKgoIABAwZgt9sb9x8+fPiJfrktpk50aR3pQ2HSMnj5Btj5Ffz7ShjzCAy9zezKREREREREREREjpvNGuwIN+vcbcHhcBzzcY/Hw2WXXcYjjzxy2GMpKSnNHj89PZ1NmzaxePFiFi1axE9/+lP+/Oc/s3z5ckJDQwGIjIyke/fudO/enTPPPJPc3Fyef/557r///hP7ok4BdaJL64lKhVvegf7XQaAB/ncPvPVz8NebXZmIiIiIiIiIiMhxsVgshNjMuVksljb5Gvv3708gEGD58uVHfDwvL4/169eTlZXVGHQfvEVGRrboHA6Hg8suu4zp06ezbNkyPvnkE9auXXvU/QOBAD6fD4DevXuzZs0avF5v4+OffvrpcXyFJ0YhurSuUAdc/RyMehCwwBcz4V9XQvUBkwsTERERERERERE5PXk8HvLz88nPzwegsLCQ/Px8iouLj/m8rKwsbrrpJn70ox8xf/58CgsLWbZsGa+++ioAd9xxB2VlZUyYMIGVK1eydetWFi5cyC233ILf72+2rtmzZ/P888+zbt06tm3bxosvvojD4SAzM5Pq6mp+/etf8+mnn7J9+3ZWrVrFj370I3bs2MF1110HwA033IDFYuH2229nw4YNvP322/zlL385uW9WCyhEl9ZnscA5P4cJL0OYC7Z/BM+dB7vXmV2ZiIiIiIiIiIjIaeeLL75g8ODBDB48GIC7776bwYMH88ADDzT73BkzZnDttdfy05/+lF69enH77bdTXV0NQGpqKh9//DF+v5+LL76Y/v37c9dddxETE4PV2nzUHBMTw3PPPcfZZ5/NgAEDWLx4MW+++Sbx8fHYbDY2btzINddcQ48ePbjssss4cOAAH374IX379gXA6XTy5ptvsnbtWgYPHsxvfvObI46WOdUshmEYrX6WdqSqqoro6GgqKyuJiooyu5zOZ+9GmHs9lBdCaCRc/Qz0vszsqkRERERERERERJrwer0UFhaSnZ3dZCFL6ViO9ffY0qxYnejSthJ7we3vQ/ZIqK+GV34Ayx+FzvVZjoiIiIiIiIiIiHQQCtGl7UXEwQ/+A8N+HNxe+keYdzPUVZtaloiIiIiIiIiIyOnsww8/xOl0HvUmRxZidgHSSdlCYMwjkNQX3robNsyHsq1w/VyISTe7OhERERERERERkdPOGWec0bjYqLScQnQxV94PoUuP4FiX3Wvh2fNg/IuQOdzsykRERERERERERE4rDoeD7t27m11Gh9Mhx7ns2LGDH/zgB8THx+NwOOjfvz9ffPGF2WXJico4E25fCsn9oWY/vHAZrHrB7KpEREREREREREREOl6IXl5eztlnn01oaCjvvPMOGzZs4LHHHiM2Ntbs0uRkxKTDjxZCnyshUA9vToW37wV/g9mViYiIiIiIiIiISCfW4ca5PPLII6SnpzNr1qzG+7Kzs02sSE6ZsEi4bjZ88BdY+hB8/gzs2xi8LyLO7OpERERERERERESkE+pwnegLFizgjDPO4LrrriMxMZHBgwfz3HPPHXV/n89HVVVVk5u0YxYLjPxlcC56aCQULofnLoC9G82uTERERERERERERDqhDheib9u2jRkzZpCbm8vChQv5yU9+wtSpU3nhhSPP0J42bRrR0dGNt/T09DauWE5I78vgtkUQkwHlhfDPUbDpXbOrEhERERERERERkU6mw4XogUCAvLw8Hn74YQYPHsykSZO4/fbbefrpp4+4//33309lZWXjraSkpI0rlhOW1BduXwaZ50CdG+ZeDx89AYZhdmUiIiIiIiIiIiJyBFlZWTz55JON2xaLhfnz57fa+ZYtW4bFYqGioqLVztHhQvSUlBT69OnT5L7evXtTXFx8xP3Dw8OJiopqcpMOJDIefjgfzrgVMGDxg/Cf26G+1uTCRERERERERERE2p9p06YxdOhQXC4XiYmJXHnllWzatMnsslpk8uTJ5OTk4HA4SEhI4IorrmDjRvPHPHe4EP3ss88+7C998+bNZGZmmlSRtDpbKFz6OHz/MbCGwNp5MHM0VO4wuzIREREREREREZF2Zfny5dxxxx18+umnLFq0iPr6ei6++GKqq6vNLq1ZQ4YMYdasWRQUFLBw4UIMw+Diiy/G7/ebWleHC9F//vOf8+mnn/Lwww/z9ddfM2fOHJ599lnuuOMOs0uT1jb0NrhxPjjiYFc+PHc+lKw0uyoREREREREREZF249133+Xmm2+mb9++DBw4kNmzZ1NcXMyqVata9PyKigomT55MUlISdrudfv368dZbbzU+/tFHH3HuueficDhIT09n6tSpLQ7o6+rqmDJlCikpKdjtdjIzM5k2bVrj45MmTWLEiBFkZWWRl5fHQw89RElJCUVFRY37vP322/To0QOHw8H555/f5LHWEtLqZzjFhg4dyhtvvMH999/PH/7wB7Kzs3nyySeZOHGi2aVJW8g+FyYthbk3wN71MHssXPZXGHSD2ZWJiIiIiIiIiMjpzDCgvsacc4dGgMVyQk+trKwEIC4urtl9A4EAY8aMwe128+KLL5KTk8OGDRuw2WwAbN26ldGjR/PQQw8xc+ZM9u3bx5QpU5gyZQqzZs1q9vjTp09nwYIFvPrqq2RkZFBSUnLUNSyrq6uZNWsW2dnZpKenA1BSUsLVV1/NHXfcwaRJk/jiiy+45557WvqtOGEdLkQHuPTSS7n00kvNLkPMEpsFt74Hb0yGjW/B/J/AnvVw0R/AajO7OhEREREREREROR3V18DDqeac+9c7ISzyuJ8WCAS46667OPvss+nXr1+z+y9evJjPP/+cgoICevToAUC3bt0aH582bRoTJ07krrvuAiA3N5fp06czcuRIZsyYgd1uP+bxi4uLyc3N5ZxzzsFisRxxRPc//vEP7r33Xqqrq+nZsyeLFi0iLCwMgBkzZpCTk8Njjz0GQM+ePVm7di2PPPJIi74fJ6rDjXMRASDcCeP+DSPvC25/8hTMGQe1FaaWJSIiIiIiIiIi0l7ccccdrFu3jpdffrlF++fn55OWltYYoH/X6tWrmT17Nk6ns/F2ySWXEAgEKCwsbPb4N998M/n5+fTs2ZOpU6fy3nvvHbbPxIkT+eqrr1i+fDk9evRg3LhxeL1eAAoKChg2bFiT/YcPH96ir+1kdMhOdBEArFY4/9eQ2Bve+Al8vRj+eSFMeBm65JpdnYiIiIiIiIiInE5CI4Id4Wad+zhNmTKFt956iw8++IC0tLQWPcfhcBzzcY/Hw+TJk5k6dephj2VkZDR7/Ly8PAoLC3nnnXdYvHgx48aNY9SoUbz22muN+0RHRxMdHU1ubi5nnnkmsbGxvPHGG0yYMKFFX0NrUIguHV/fqyCuW3BO+oGv4bkL4dqZkDvK7MpEREREREREROR0YbGc0EiVtmYYBj/72c944403WLZsGdnZ2S1+7oABAygtLWXz5s1H7EbPy8tjw4YNdO/e/YTri4qKYvz48YwfP55rr72W0aNHU1ZWdsSZ7YZhYBgGPp8PgN69e7NgwYIm+3z66acnXEtLaZyLnB5SBgYXHE0/E3yVMOc6WPG34IIPIiIiIiIiIiIincQdd9zBiy++yJw5c3C5XOzevZvdu3dTW1vb7HNHjhzJiBEjuOaaa1i0aFFj1/i7774LwH333ceKFSuYMmUK+fn5bNmyhf/+979MmTKlRbU9/vjjzJ07l40bN7J582bmzZtHcnIyMTExbNu2jWnTprFq1SqKi4tZsWIF1113HQ6Hg7FjxwLw4x//mC1btvDLX/6STZs2MWfOHGbPnn3C36uWUogupw9nIty0AAbfCEYA3vstzP8p1HvNrkxERERERERERKRNzJgxg8rKSs477zxSUlIab6+88kqLnv/6668zdOhQJkyYQJ8+fbj33nvx+/1AsFN9+fLlbN68mXPPPZfBgwfzwAMPkJrasgVXXS4Xjz76KGeccQZDhw6lqKiIt99+G6vVit1u58MPP2Ts2LF0796d8ePH43K5WLFiBYmJiUBwZMzrr7/O/PnzGThwIE8//TQPP/zwiX2jjoPFMDpXq25VVRXR0dFUVlYSFRVldjnSGgwDPn8W3r0fDD+kDYXxL4Ir2ezKRERERERERESkg/B6vRQWFpKdnY3dbje7HDlBx/p7bGlWrE50Of1YLDBsMvzgdbDHQOlKePZ82LHK7MpERERERERERESkg1GILqevnPPh9vehS09w74RZY2HNPLOrEhERERERERERMcVLL72E0+k84q1v375ml9duhZhdgEiris+B2xbD67fBloXwn9tg73q44P/AajO7OhERERERERERkTZz+eWXM2zYsCM+Fhoa2sbVdBwK0eX0Z4+CCXPh/f8HHz0RvO0tgKufCz4mIiIiIiIiIiLSCbhcLlwul9lldDga5yKdg9UGox6Ea56HEDtsfhf+OQoObDW7MhEREREREREREWnHFKJL59L/WrjlHXClwv5N8NwFsHWp2VWJiIiIiIiIiIhIO6UQXTqfrnkwaSl0PQO8FfDiNfDp02AYZlcmIiIiIiIiIiIi7YxCdOmcXMlw8/9g4AQw/PDufbDgZ9DgM7syERERERERERERaUcUokvnFWqHK2fAxX8EixW++je8cDl49pldmYiIiIiIiIiIiLQTCtGlc7NY4KwpcMM8CI+Gkk/h2fNg1xqzKxMREeCAu44VG8vZvLOaQEBjt0RERERERNqzrKwsnnzyycZti8XC/PnzW+18y5Ytw2KxUFFR0WrnAIXoIkG5o+D2JRDfHapKYeYlsP4Ns6sSEem0/AGDdcVuPlhfzp6KOtYXe1iy5gD7KuvMLk1ERERERKRdmzFjBgMGDCAqKoqoqCiGDx/OO++8Y3ZZzZo8eTI5OTk4HA4SEhK44oor2Lhxo9llAQrRRb7VJRduWwI5F0J9Dcy7Gd7/IwQCZlcmItKplHvqWbr2AFt21gCQEhtOeKgVj9fPRwXlfPF1Jd46v8lVioiIiIiItE9paWn86U9/YtWqVXzxxRdccMEFXHHFFaxfv97s0o5pyJAhzJo1i4KCAhYuXIhhGFx88cX4/ea//1OILnIoRwxMnAfDpwS3P3gUXr0RfB5TyxIR6QwCAYOCEg/L15XhrvUTHmplWI9ozuwZw6iB8WQnOQAo2e9l0eoDbN1dg2FoxIuIiIiIiMihLrvsMsaOHUtubi49evTgj3/8I06nk08//bTZ51ZUVDB58mSSkpKw2+3069ePt956q/Hxjz76iHPPPReHw0F6ejpTp06lurq6RXXV1dUxZcoUUlJSsNvtZGZmMm3atMbHJ02axIgRI8jKyiIvL4+HHnqIkpISioqKGvd5++236dGjBw6Hg/PPP7/JY60ppE3OItKRWG1wyR8hqS+8eSdsfAuevxgmzIHYLLOrExE5LVXW1LPq6yoqaxoA6BoXzsDsKMJDg5/3h4VYGZQdRWaCg/zCKiqqG1hT5KZ4Xy0Ds6OIc4aaWb6IiIiIiHQGhgGBenPObQ0Nru13nPx+P/PmzaO6uprhw4cfc99AIMCYMWNwu928+OKL5OTksGHDBmw2GwBbt25l9OjRPPTQQ8ycOZN9+/YxZcoUpkyZwqxZs5qtZfr06SxYsIBXX32VjIwMSkpKKCkpOeK+1dXVzJo1i+zsbNLT0wEoKSnh6quv5o477mDSpEl88cUX3HPPPcf5HTkxCtFFjmbQDRCfC69MhL3r4dnzYdy/IPtcsysTETltBAyDLTtrKCj1YBgQGmJhUFYUaV3sR9w/1hnKef3iKNxTy4YSDxXVDSxfV0ZWooO+GU7CQnSRnYiIiIiItJJAPSz9nTnnPv/3YAtr8e5r165l+PDheL1enE4nb7zxBn369DnmcxYvXsznn39OQUEBPXr0AKBbt26Nj0+bNo2JEydy1113AZCbm8v06dMZOXIkM2bMwG4/8vu4g4qLi8nNzeWcc87BYrGQmZl52D7/+Mc/uPfee6murqZnz54sWrSIsLDg1z1jxgxycnJ47LHHAOjZsydr167lkUceafH35UTpnabIsaQPhduXQsogqC2Df18JK583uyoRkdOCu7aBD9aXs6EkGKAnx4YxakD8UQP0gywWC92SIxg1MJ70b/Yt2lvLovz9bN9bqxEvIiIiIiLS6fXs2ZP8/Hw+++wzfvKTn3DTTTexYcOGYz4nPz+ftLS0xgD9u1avXs3s2bNxOp2Nt0suuYRAIEBhYWGzNd18883k5+fTs2dPpk6dynvvvXfYPhMnTuSrr75i+fLl9OjRg3HjxuH1egEoKChg2LBhTfZvrrv+VFEnukhzorvCj96FBT+DtfPgf3fDnvUw5hGwaXyAiMjxMgyDrbtrWF/sIWBAqM1C/ywXGV3sWI7j8kR7mI0zukeTlRgc8eKu9fPltiq276tlYLaL6Aj9jBYRERERkVPIGhrsCDfr3MchLCyM7t27A8EFO1euXMlf//pXnnnmmaM+x+FwHPOYHo+HyZMnM3Xq1MMey8jIaLamvLw8CgsLeeedd1i8eDHjxo1j1KhRvPbaa437REdHEx0dTW5uLmeeeSaxsbG88cYbTJgwodnjtyaF6CItEeqAq58Lzklf/Hv44nnYtyk43iUy3uzqREQ6DI+3gS+3VnHAHZwjmBgdRl63KBzhthM+ZpeoMC7oH8/Xu2vYWOrhgLuepWvKyEmJoHdaJCE2XXgnIiIiIiKngMVyXCNV2pNAIIDP5zvmPgMGDKC0tJTNmzcfsRs9Ly+PDRs2NIbzJyIqKorx48czfvx4rr32WkaPHk1ZWRlxcXGH7WsYBoZhNNbdu3dvFixY0GSfliyWeiroXaVIS1kscM7PYcLLEOaC7R/Bc+fB7nVmVyYi0u4ZhsG23TW8v6aMA+56bFYLg7JdnNUr5qQC9IOsVgs9UiMZNbALqXHhGMDXu2pYtPoAOw54NeJFREREREQ6jfvvv58PPviAoqIi1q5dy/3338+yZcuYOHHiMZ83cuRIRowYwTXXXMOiRYsau8bfffddAO677z5WrFjBlClTyM/PZ8uWLfz3v/9lypQpLarr8ccfZ+7cuWzcuJHNmzczb948kpOTiYmJYdu2bUybNo1Vq1ZRXFzMihUruO6663A4HIwdOxaAH//4x2zZsoVf/vKXbNq0iTlz5jB79uyT+l61lEJ0kePVczTcthhis6GiGJ6/GAreMrsqEZF2q8bn5+ONFawucuMPGHRxhXLhgDiykyKOa3xLS0SE2xjWI4bhPWOIDLfhrQvw+ZZKPtlYgcfbcErPJSIiIiIi0h7t3buXH/7wh/Ts2ZMLL7yQlStXsnDhQi666KJmn/v6668zdOhQJkyYQJ8+fbj33nvx+/1AsFN9+fLlbN68mXPPPZfBgwfzwAMPkJqa2qK6XC4Xjz76KGeccQZDhw6lqKiIt99+G6vVit1u58MPP2Ts2LF0796d8ePH43K5WLFiBYmJiUBwZMzrr7/O/PnzGThwIE8//TQPP/zwiX+jjoPF6GStWVVVVURHR1NZWUlUVJTZ5UhHVlMG826GwuXB7fN/CyN+EexYFxERDMOgeJ+XNdvdNPgNrBbom+EiJ9lxysPzI/EHDDbvqGbzzmoCBlgt0KNrJD1SI7FZ9bNaRERERESOzev1UlhYSHZ2Nna73exy5AQd6++xpVmxOtFFTlREHPzgPzDsx8HtpQ8FQ/W6alPLEhFpD7x1fj7dVMGX26po8BvEOkO5YEA83VNOfff50disFnqnO7lwQDyJ0WEEDNhYWs2S1QfYU3HsWYAiIiIiIiIiBylEFzkZthAY8whcNj24SvKG+TDzEqgoMbsyERFTGIZByf5aFq8+wO6Kum+6z52M7BuLy2HOeuZORwhn9Yrhe7nR2EOtVPv8rNhYwWebK6j1+U2pSUREREREpK299NJLOJ3OI9769u1rdnntmjnvZkVON0Nugi494JUfwO618Ox5MP5FyBxudmUiIm3GVx8gv7CKnWXBLu+YyBCG5EQTFWH+yw2LxULXeDuJ0WEUlFazbXcNO8t87Kmoo3daJDnJEVg14kVERERERE5jl19+OcOGDTviY6GhoW1cTcdi/rtakdNF5nCYtAxenhAM0l+4DC59HPJ+aHZlIiKtbkeZl/xtVdQ1GFgs0Oub2ePtLZgODbEyIMtFZoKd/EI3ZZ561hV7KN7nZWC2iy5RYWaXKCIiIiIi0ipcLhcul8vsMjokjXMROZVi0uFHC6HPFRCohwU/g3fuA3+D2ZWJiLSKuoYAX3xdyeebK6lrMIhyhHBevzh6pTnbXYB+qOjIUEb0jWVwtyjCQixU1Tbw4YZyVm2txFcfMLs8ERERERERaUcUooucamGRcN0LcP5vgtufPQ0vXQM1ZebWJSJyiu0u97Fk9QFK9nsB6JEawXn944iJ7BiXAVosFrISHYwa2IWsRAcAxfu8LMrfT+GeGgzDMLlCERERERERaQ8Uoou0BosFRt4bnIseGgnblsFzF8DejWZXJiJy0uobAny5tZJPNlXgrQ/gtNsY2TeOvhkubO24+/xowkOtDO4Wxci+sURHhFDvN8gvdLN8XRkV1fVmlyciIiIiIiImU4gu0pp6Xwa3LYKYDCgvhH+Ogk3vml2ViMgJ21vpY8maA2zfF+w+z0mO4IIB8cS5Okb3+bHEucI4r38cAzJdhNgslFc3sHRtGasLq6hr0IgXERERERGRzkohukhrS+oLty+DzHOgzg1zr4ePngCNCRCRDqTBb7C6sIqPCyqorQsQEW7j3D6xDMjqmN3nR2O1WMhJieCigfGkxdsB2LanlsWrD1Cyv1YjXkRERERERDohhegibSEyHn44H874EWDA4gfhP7dDfa3JhYmING9/VR3vrznAtj3Bn1nZSQ4uHBBHl6gwkytrPfYwG0Nzozm7dwxOuw1ffYAvvq7io4Jyqmq1WLSIiIiIiMjRZGVl8eSTTzZuWywW5s+f32rnW7ZsGRaLhYqKilY7h0J0kbZiC4VLn4DvPwbWEFg7D2aNgaqdZlcmInJE/oDB2u1uPtxQTrXPjyPMytm9YhiUHUWIrXO8hEiMDueCAfH0SXditcD+qnreX3OA9cVuGvzqShcRERERkfbvT3/6ExaLhbvuusvsUpo1efJkcnJycDgcJCQkcMUVV7Bxo/lrDHaOd8Ai7cnQ2+DG+eCIg51fwbPnQekXZlclItJEmScYFn+9qwaAjAQ7Fw6IJzEm3OTK2p7NaqFn10hGDexCckwYhgGbd9awePV+dpZ5zS5PRERERETkqFauXMkzzzzDgAEDzC6lRYYMGcKsWbMoKChg4cKFGIbBxRdfjN/vN7UuhegiZsg+FyYthcQ+4NkDs8ZC/lyzqxIRwR8wWF/sYfm6MjxeP+GhVs7sGcOQnGhCQzr3y4ZIu43hvWI5s0c0jjArtXUBPttcySebyqn2mvuCTkRERERE5Ls8Hg8TJ07kueeeIzY2tsXPq6ioYPLkySQlJWG32+nXrx9vvfVW4+MfffQR5557Lg6Hg/T0dKZOnUp1dXWLjl1XV8eUKVNISUnBbreTmZnJtGnTGh+fNGkSI0aMICsri7y8PB566CFKSkooKipq3Oftt9+mR48eOBwOzj///CaPtZaQVj+DiBxZbBbc+h688WPY+BbM/zHsWQcX/QGsNrOrE5FOqKK6nlVbq6iqCc78Tou3MyDLRXho5w7Pvyslzk5CdDibdnjYsquG3eV17KvcT8+uTrqnRJxWC62KiIiIiMi3DMOgtsGc9e0cIQ4sluN7r3HHHXfw/e9/n1GjRvHQQw+16DmBQIAxY8bgdrt58cUXycnJYcOGDdhswaxq69atjB49moceeoiZM2eyb98+pkyZwpQpU5g1a1azx58+fToLFizg1VdfJSMjg5KSEkpKSo64b3V1NbNmzSI7O5v09HQASkpKuPrqq7njjjuYNGkSX3zxBffcc08LvyMnTiG6iJnCXTDu37BsGnzwKHzyFOzbCNc8D44Ys6sTkU4iEDDYvLOajTuqMQwIC7EwKDuKrvF2s0trt0JsFvpmuEhPcLC6sIr9VfVsKPFQvK+WgdkuEqM739gbEREREZHTXW1DLcPmDDPl3J/d8BkRoREt3v/ll1/myy+/ZOXKlcd1nsWLF/P5559TUFBAjx49AOjWrVvj49OmTWPixImN89Vzc3OZPn06I0eOZMaMGdjtx34fWVxcTG5uLueccw4Wi4XMzMzD9vnHP/7BvffeS3V1NT179mTRokWEhYUBMGPGDHJycnjssccA6NmzJ2vXruWRRx45rq/zeKm1TMRsVitc8Bu4dhaEOODrxfDPC2H/FrMrE5FOoKqmgeXryygoDQboKbHhjBrYRQF6C0U5QjindyxndI8iPNSKx+vn44IKVm6pxFunES8iIiIiItL2SkpKuPPOO3nppZeaDbW/Kz8/n7S0tMYA/btWr17N7NmzcTqdjbdLLrmEQCBAYWFhs8e/+eabyc/Pp2fPnkydOpX33nvvsH0mTpzIV199xfLly+nRowfjxo3D6w2uR1VQUMCwYU0/yBg+fPhxfY0nQp3oIu1Fv6shPgfm3gAHvobnLoTrZkL3UWZXJiKnIcMw2LKrhoISDwEDQm0WBma7SIu3H/clgp2dxWIhvYuDpJhwCko9bNtdS+kBL7srfPRJc5Kd7MCq76mIiIiISIfnCHHw2Q2fmXbullq1ahV79+4lLy+v8T6/388HH3zAU089hc/naxzPcth5HMc+j8fjYfLkyUydOvWwxzIyMpqtLS8vj8LCQt555x0WL17MuHHjGDVqFK+99lrjPtHR0URHR5Obm8uZZ55JbGwsb7zxBhMmTGj2+K1FIbpIe5IyMLjg6Cs3Qsmn8NJ1cNH/g+F3gAIYETlFPLUNrNpaRZmnHoCkmDAGd4vCEab1GE5GWIiVgVlRZCY4yN9WRXl1A2u2u9m+r5ZB2S7iXGFmlygiIiIiIifBYrEc10gVs1x44YWsXbu2yX233HILvXr14r777jtqgA4wYMAASktL2bx58xG70fPy8tiwYQPdu3c/4fqioqIYP34848eP59prr2X06NGUlZURFxd32L6GYWAYBj6fD4DevXuzYMGCJvt8+umnJ1xLSylEF2lvnIlw0wL43z3w1b/hvd/AnvVw6RMQqvEKInLiDMNg255a1he78QeCc737Z7rITFD3+akUExnKyH5xFO2tZX2xh8qaBpavLycr0UGfdKcWahURERERkVblcrno169fk/siIyOJj48/7P7vGjlyJCNGjOCaa67h8ccfp3v37mzcuBGLxcLo0aO57777OPPMM5kyZQq33XYbkZGRbNiwgUWLFvHUU081W9vjjz9OSkoKgwcPxmq1Mm/ePJKTk4mJiWHbtm288sorXHzxxSQkJFBaWsqf/vQnHA4HY8eOBeDHP/4xjz32GL/85S+57bbbWLVqFbNnzz7h71VL6V2cSHsUEg6X/w3GPAoWG6yeAy9cCu7dZlcmIh1UtdfPRwXlrCkKBugJUWFcOCCerMTjX+FdmmexWMhOiuCiQV3ISAh+AFq0t5bFq/dTtLcWwzBMrlBEREREROTIXn/9dYYOHcqECRPo06cP9957L35/cM2nAQMGsHz5cjZv3sy5557L4MGDeeCBB0hNTW3RsV0uF48++ihnnHEGQ4cOpaioiLfffhur1YrdbufDDz9k7NixdO/enfHjx+NyuVixYgWJiYlAcGTM66+/zvz58xk4cCBPP/00Dz/8cKt9Lw6yGJ3sXVxVVRXR0dFUVlYSFRVldjkizdu6FObdDN4KcKXC9S9B17zmniUiAgS7z4v21rJuu4eGgIHNCv0yXGQnKTxvS/ur6lhd6KaqtgGAOGcog7JdREeGmlyZiIiIiIgcjdfrpbCwkOzs7ONeoFPaj2P9PbY0K+5wnegPPvggFoulya1Xr15mlyXSenLOh9vfhy49wb0TZo2Bta81/zwR6fRqfX4+2VhBfqGbhoBBvCuUCwbE0y05QgF6G+sSFcb5/ePol+HEZrVQ5qln6doy1hS5qfcHzC5PREREREREjqHDhegAffv2ZdeuXY23jz76yOySRFpXfA7cthhyL4EGL7x+Kyz+PQQUvIjI4QzDoHhfLUvWHGBPZR1WC/TLdHJun1icdi2HYhar1UJuaiQXDYwnNS4cA9i6u4bF+QcoPeDViBcREREREWl1L730Ek6n84i3vn37ml1eu9Uh30mHhISQnJxsdhkibcseBRPmwvv/Dz56Aj56HPZugKufCz4mIgJ46/zkF7rZVR5cuTw2MoS87tFEOTrkr/zTkiPcxrAeMeyp8LG60E21z8/KLZVsjw5jYJYLp/6uRERERESklVx++eUMGzbsiI+Fhmrc5NF0yHdpW7ZsITU1FbvdzvDhw5k2bRoZGRlmlyXS+qw2GPUgJPaFBVNg87vwz1HBcD0+x+zqRMRkOw54yS+soq7BwGKB3mlOclMjsGp0S7uUFBPOhQPD2Lyzms07qtlbWceSNQfokRpJj66R2Kz6exMRERERkVPL5XLhcrnMLqPD6XDjXIYNG8bs2bN59913mTFjBoWFhZx77rm43e4j7u/z+aiqqmpyE+nwBlwHt7wNrhTYvwmeuwC2LTO7KhExia8+wOdbKvh8SyV1DQbRESGc3y+Onl0jFaC3czarhd5pTi4cGE9idBgBAzbuqGbJ6gPs/uZqAhERERERETGXxejgAzgrKirIzMzk8ccf59Zbbz3s8QcffJDf//73h93f3IqrIh2Ceze8PBF2fAEWG4yeBt+bBArNRDqNXWVevip046sPYAF6dI2kV9dIrOpi7nAMw2BnmY81291464JrXqTGhdM/00VEuM3k6kREREREOh+v10thYSFZWVk4HA6zy5ETVFNTw/bt28nOzsZutzd5rKqqiujo6Gaz4g4fogMMHTqUUaNGMW3atMMe8/l8+HzfdnJVVVWRnp6uEF1OH/VeePNOWPNycDvvhzD2MQgJM7cuEWlVdQ0B1hS5KdnvBcDlsDEkJ5pYp2bYdXT1/gAbS6vZuqsGg2C3eq+0SLonR+jDERERERGRNuT3+9myZQsREREkJCRgUdNih2IYBnV1dezbtw+/309ubi5Wa9PBLC0N0TvkTPRDeTwetm7dyo033njEx8PDwwkPD2/jqkTaUKgdrnoakvvBogfgy3/B/i0w7t/gTDC7OhFpBXsqfHy5raqxWzk3JYLe6U7N0D5NhNqs9M90kZFgZ3WhmwPuetYXeyjeV8ug7Ci6ROlDUhERERGRtmCz2UhLS6O0tJSioiKzy5ETFBERQUZGxmEB+vHocJ3ov/jFL7jsssvIzMxk586d/O53vyM/P58NGzaQkNB8YNjSTxdEOqQti+G1H4GvEqLT4fo5kDLA7KpE5BSp9wdYt91D0d5aACLtNobkRBHvUqh6ujIMg+L9XtZtd1PXEHzJlt7FTv9MF+GhHW5pGxERERGRDsnv91NfX292GXICbDYbISEhR72K4LTtRC8tLWXChAkcOHCAhIQEzjnnHD799NMWBegip73cUXD7Eph7PRz4GmZeAlf+A/peZXZlInKS9lXW8eW2Smp8we7zbskO+qa7CLGp+/x0ZrFYyExwkBIbzoZiD4V7aynZ72V3uY8+6U6ykxy6pFREREREpJXZbDZsNq1T1Jl1uE70k6VOdOkUasvhtVth65Lg9sj7YOSv4CQuWxERczT4DTaUuNm6O9h9HhFmJS8nmoRodZ93RmWeelYXVlFR3QBATGQIg7KjNAtfRERERETkBHSqhUWPh0J06TT8DbD4d/DJU8HtXpfCVc9AuNPcukSkxQ6461i1tYpqrx+ArEQH/TKdhNr0gVhnZhgGhXtqWV/iocEffBmXneSgT7qTsBD9vyEiIiIiItJSCtGPQiG6dDr5c+DNO8FfB4l9YcJciM00uyoROQZ/wKCgxMOWXTUA2MOs5HWLIilGC2XLt7x1ftYVeyjZ7wUgPNRKvwwn6V3sGvEiIiIiIiLSAgrRj0IhunRKJSvhlYng2QMR8TDuX5B1jtlVicgRlHvqWbW1EndtsPs8vYudAVkudRjLUe2rrCO/sArPN1csdHGFMjA7iqiIDrf0jYiIiIiISJtSiH4UCtGl06rcAS/fALvywRoCYx6FobeaXZWIfCMQMNi0o5pNO6oxCHYVD8p2kRpnN7s06QACAYMtu2rYtMODPwAWC3RPiaBXV6cWnxURERERETkKhehHoRBdOrX6WvjvFFj3WnD7jFthzCNg04J0ImaqrKln1ddVVNYEF4vsGhfOwOwowkPVfS7Hp9rrZ+12N7vKfQA4wqwMyHKREhuuES8iIiIiIiLfoRD9KBSiS6dnGPDRE7DkD4ABWefCdS9AZLzZlYl0OgHDYMvOGgpKPRgGhIZYGJQVRVoXdZ/LydlV7mNNURU1vgAASTFhDMxyEWnXiBcREREREZGDFKIfhUJ0kW9segdevw3qPBCTARNehqS+Zlcl0mm4axtY9XUl5dXB7vPk2HAGZ7uwh9lMrkxOFw1+g807q9m8sxrDAKsFenaNJDc1EptVXekiIiIiIiIK0Y9CIbrIIfYWwNwJUF4IoZFw9bPQ+1KzqxI5rRmGwdbdNawv9hAwINRmoX+Wi4wudo3bkFbhrm1gdaGbfVV1AETabQzKcpEYE25yZSIiIiIiIuZSiH4UCtFFvqOmDObdDIXLg9vn/xZG/CK4Kp2InFIebwNfbq3igLsegMToMPK6ReEIV/e5tC7DMCg94GXtdg+++uCIl67x4fTPdOHQ1Q8iIiIiItJJKUQ/CoXoIkfgr4eFv4HPnwlu97kSrvwHhEWaWpbI6cIwDAr31LKu2IM/YGCzWuif6SQr0aHuc2lT9Q0BCko9bN1dC0CIzULvtEi6JUdg1f+LIiIiIiLSyShEPwqF6CLHsGo2/O8XEKiH5AFw/RyISTe7KpEOrcbn58ttVeyrDI7S6OIKJS8nmki7un/FPBXV9eQXuin3BK+KiIoIYVC2i3hXmMmViYiIiIiItB2F6EehEF2kGdtXwCs3Qs1+iEyA8S9CxplmVyXS4RiGwfZ9XtZud9PgN7BZoW+6i27J6j6X9sEwDIr21rK+2EO9P/hyMDPBTt8MF+GhVpOrExERERERaX0K0Y9CIbpIC1QUw9wbYM9asIbCpU9A3o1mVyXSYXjrgt3neyqC3eexzlCG5EThcoSYXJnI4Xz1AdYXu9m+zwtAaIiFfhlOMhP0gY+IiIiIiJzeFKIfhUJ0kRaqq4b5P4EN/w1uD/sxXPxHsCkEFDmag4s3ri50U+83sFqgd7qT3JQIhZHS7h1w15Ff6KaqpgEIfvgzKNtFTGSoyZWJiIiIiIi0DoXoR6EQXeQ4GAZ88GdY+sfgdrfz4NpZEBFnalki7ZGvPkB+YRU7y3wAxESGMCQnmqgIffAkHUfAMNi2u4aCkmoaAsGXiDnJEfROiyQ0RCNeRERERETk9KIQ/SgUooucgII34T+Tob4aYrNhwsuQ2MvsqkTajR1lXvK3VVHXYGCxQK+ukfRIjcRqVfe5dEy1dX7WFrnZ8c2HQvZQK/0zXXSND9dVFSIiIiIictpQiH4UCtFFTtDudTB3AlQWQ5gLrvkn9BxtdlUipqprCLC60E3pgeAs6ShHCEO6R2n8hZw29lT4WF3kptrrByAhKoyB2S7N9xcRERERkdOCQvSjUIguchKq98OrP4TtHwMWGPU7OPsuUFeidEK7y318ta0Kb30AgB6pEfRKc2JT97mcZvwBgy07q9m0o5qAEfyR3yM1eLVFiE3/v4uIiIiISMelEP0oFKKLnKSGOnj3PvhiZnC7/3Vw+d8g1GFuXSJtpL4hwNrtbrbvC3afO+02huREE+dS97mc3jzeBtYUudlTUQdARLiVAVlRpMSGm1yZiIiIiIjIiVGIfhQK0UVOkZX/hHfug0ADpA6G6+dAVKrZVYm0qr2VPr7cWkVtXbD7PCc5gr4Z6j6XzsMwDHaV+1hT5G78d5ASG86ALBcR4TaTqxMRERERETk+CtGPQiG6yClU+AG8ehPUloEzKRikp51hdlUip1yDP8C6Yg+Fe2oBiAy3kZcTRZeoMJMrEzFHgz/AxtJqvt5dg2GAzQq9ujrpnhKhBXVFRERERKTDUIh+FArRRU6xskJ4+QbYuwFs4XDZX2HQBLOrEjll9lfV8eXWKqp9wYUVs5Mc9MtwEmKzmlyZiPmqahrIL6zigLseAJfDxsCsKBKi9QGTiIiIiIi0fwrRj0Ihukgr8LnhP5Nh0/+C22f9DEb9Hqy6tF86Ln/AYEOJh6931QDgCLOSlxNFYrTmP4scyjAMSvZ7WbvdTV1D8GVlehc7/TKc2MP0e0BERERERNovhehHoRBdpJUEArDsYfjgz8Ht7qPgmufBEWNqWSInosxTz6qvK/F4g93nGQl2BmS6CA1R97nI0dQ1BNhQ8u3Yo1CbhT7pTrKTHFgsGvEiIiIiIiLtj0L0o1CILtLK1v0H5v8UGmohPhcmvAxduptdlUiL+AMGG0ur2byzGoDwUCuDu0WREqvuc5GWKvfUk19YRUV1AwAxkSEMzI4izhlqcmUiIiIiIiJNKUQ/CoXoIm1g12qYewNUlUJ4NFw3M9iZLtKOVVTXs2prFVU1weAvLd7OwGwXYeo+FzluhmFQuKeWDSUe6v3Bl5rZiQ76ZDj1b0pERERERNoNhehHoRBdpI149sIrP4CSz8BihYv+Hwy/A3RJv7QzgYDB5p3VbNxRjWFAWIiFQdlRdI23m12aSIfnrfOzrthDyX4vEPz31S/TRUYXu0a8iIiIiIiI6RSiH4VCdJE21OCD/90NX70Y3B54A1z6BIQqnJT2oaqmgVVbKxvHTqTGhTMoO4rwUHXKipxK+6vqyC+swl0bXGcg3hXKoOwooiJCTK5MREREREQ6M4XoR6EQXaSNGQZ89gwsvB+MAKQNhfEvgivZ7MqkEzMMgy27aigo8RAwggsgDsx2kRav7liR1hIIGHy9u4aNpR78AbAAOSkR9E6LJMSmD65ERERERKTtKUQ/CoXoIibZ+j7Muxm8leBKhetfgq55ZlclnZCntoFVW6so89QDkBQTxuBuUTjCbCZXJtI51Pj8rClys6vcB4AjzEr/TBepceH6EEtERERERNqUQvSjUIguYqIDW2HuBNi/CULscMXfof+1ZlclnYRhGGzbXcv6Ejf+AITYLPTPdJGZoO5zETPsLvexushNjS844iUpOowB2S6cdo14ERERERGRttHSrLjNrp1taGhg8eLFPPPMM7jdbgB27tyJx+NpqxJExGzxOXDbIsi9BBq88PqtsPj3EAiYXZmc5qq9fj4qKGfN9mCAnhAVxoUD4slKdChAFzFJcmw4owbG07NrJFYL7KmsY8nqAxSUevAHOlWPh4iIiIiItHNt0om+fft2Ro8eTXFxMT6fj82bN9OtWzfuvPNOfD4fTz/9dGuX0Eid6CLtQMAPS/4AHz8Z3O4xBq5+Fuz6NymnlmEYFO2tZd12Dw0BA5sV+mW4yE5SeC7SnrhrG1hd5GZfZR0AkeE2Bma7SIoJN7kyERERERE5nbWrTvQ777yTM844g/LychwOR+P9V111FUuWLGmLEkSkPbHa4KLfw9XPgS0cNr8Dz18EZdvMrkxOI7U+Pys2VpBf6KYhYBDvCuWCAfF0S45QgC7SzrgcIZzdK4ahudHYQ61Uf/Pv97PNFdR+M+5FRERERETELG0ydPLDDz9kxYoVhIWFNbk/KyuLHTt2tEUJItIeDRgXHPHy8kTYtxGePR/GvQDdzjO7MunADMOgZL+XNUVu6v0GVgv0yXDSXeG5SLtmsVhIi7eTFB1GQWk123bXsLPMx96KOnqlR5KTFIHVqn/DIiIiIiLS9tqkEz0QCOD3H95FVFpaisvlaosSRKS96joEbl8a/K+3Av59NXz2DHSuNY/lFPHW+flscyWrtlZR7zeIjQzhggHx5KZEKkAX6SBCQ6wMyHJxfv844pyhNAQM1m33sHRdGfur6swuT0REREREOqE2CdEvvvhinnzyycZti8WCx+Phd7/7HWPHjm2LEkSkPYtKgZvfhgHXg+GHd+6FN6dCg8ISabnSA16WrDnArnIfFgv0SXcyol8cLkebXHQlIqdYdGQoI/rGMrhbFGEhFqpqGvhwQzmrtlbiq9eC1CIiIiIi0nbaZGHRkpISRo8ejWEYbNmyhTPOOIMtW7bQpUsXPvjgAxITE1u7hEZaWFSkHTMM+OQpWPQAGAHIGA7j/g3OBLMrk3bMVx9gdWEVO8p8AERHhDAkJ4royFCTKxORU8VXH2BDiYeivbUAhNos9M1wkpWoRYJFREREROTEtTQrbpMQHaChoYFXXnmF1atX4/F4yMvLY+LEiU0WGm0LCtFFOoAti+C1H4GvCqLT4fo5kDLA7KqkHdpV5uWrQje++gAWoEfXSHp1jdTcZJHT1AF3HasL3VTWNAAQGxnCoG5RxOhDMxEREREROQHtJkSvr6+nV69evPXWW/Tu3bs1T9UiCtFFOoh9m2Hu9VC2FUIj4MoZ0PdKs6uSdqKuIcCaIjcl+70AuBw2huREE+tUkCZyugsYBoW7a9lQ6qHBH3wZ2y3ZQZ80J6EhbTKpUEREREREThMtzYpb/Z1GaGgoXq+3tU8jIqebhB5w+xLIuQDqa2DeTbD0YQhoDm5nt6fCx5I1BxoD9NyUCM7vH68AXaSTsFos5KREMGpgPGnx4QBs213LotUHKNlfSxtdZCkiIiIiIp1Im7Tr3HHHHTzyyCM0NDS0xelE5HThiIUb5sHwKcHt5Y/AqzeCz2NuXWKKen+Ar7ZVsWJjBd66AJF2GyP6xtIv04VN41tEOh1HmI2huTGc3TsGp92Grz7AF19X8VFBOVW1es0pIiIiIiKnTpvMRL/qqqtYsmQJTqeT/v37ExkZ2eTx//znP61dQiONcxHpoL56Cd66C/x1kNgXJsyF2Eyzq5I2sq+yji+3VVLjC16JkJPsoE+6ixCbwnMRAX/A4Otd1WwsrSZggMUSvEqlZ1enfk6IiIiIiMhRtTQrDmmLYmJiYrjmmmva4lQicroaPBG65MLLE2HvenjufBj3L8g6x+zKpBU1+A02lLjZursWgIgwK3k50SREh5lcmYi0JzarhZ5dnaTFO1hdVMWeijo276yhdL+XAVkuUuLsZpcoIiIiIiIdWJt0orcn6kQX6eAqd8DLN8CufLCGwNg/wxk/MrsqaQUH3HWs2lpFtdcPQFaig36ZTkJtWjhQRI7OMAx2lftYU+Smti549UpybBgDMqOItNtMrk5ERERERNqTlmbFbRqi79u3j02bNgHQs2dPEhIS2urUjRSii5wG6mpgwRRY93pwe+htMPpPYNPCkqcDf8CgoMTDll01ANjDrOR1iyIpJtzkykSkI2nwG2zaEfxZYhhgs0LPrk66p0RoHQUREREREQFanhW3STtfdXU1P/rRj0hJSWHEiBGMGDGC1NRUbr31VmpqatqiBBE5nYRFwDXPw4UPABZY+U/491VQfcDsyuQklXvqWbr2QGOAnt7FzoUD4hWgi8hxC7FZ6Jvh4oL+8XSJCsUfgA0lHt5fc4C9lT6zyxMRERERkQ6kTUL0u+++m+XLl/Pmm29SUVFBRUUF//3vf1m+fDn33HNPW5QgIqcbiwXOvSe4wGiYE4o+hOfOgz3rza5MTkDgm+7z5evKcNf6CQ+1MqxHNGd0jyYsRONbROTERUWEcE7vWM7oHkV4qBWP18/HBRWs3FKJt85vdnkiIiIiItIBtMk4ly5duvDaa69x3nnnNbl/6dKljBs3jn379rV2CY00zkXkNLS3AOZeD+VFEBoJVz8LvS81uyppocqaelZ9XUVlTQMAXePCGZgdDLtERE6luoYABSUetu0JLlYcYrPQJ81JdrIDq0UjXkREREREOpt2Nc6lpqaGpKSkw+5PTEw8qXEuf/rTn7BYLNx1110nUZ2IdHiJveH2pZA9Auqr4ZWJsPzP0LnWTe5wAobBph3VLF1bRmVNA2EhFobmRvO9HjEK0EWkVYSFWBmYHcV5/eKIjQyhwW+wZrubZWvLKHPXmV2eiIiIiIi0U22SUgwfPpzf/e53eL3exvtqa2v5/e9/z/Dhw0/omCtXruSZZ55hwIABp6pMEenIIuLgB/+B700Obi99CF67JbgIqbQ77toGPlhXxoYSD4YBybHhXDggnrR4u9mliUgnEOsMZWS/OAZluwi1WaisaWD5+nK+2laFrz5gdnkiIiIiItLOhLTFSf76179yySWXkJaWxsCBAwFYvXo1drudhQsXHvfxPB4PEydO5LnnnuOhhx461eWKSEdlC4Wxj0JSH/jfL2D9G3Bga3BuenSa2dUJYBgGX++uYUOxh4ABoTYLA7JcpHexY9EoBRFpQxaLheykCFLj7KwrdlO8z0vR3lp2lnnpl+EiI0E/l0REREREJKhNZqJDcKTLSy+9xMaNGwHo3bs3EydOxOFwHPexbrrpJuLi4njiiSc477zzGDRoEE8++WSLnquZ6CKdxPYV8MqNULMfIhNg/IuQcabZVXVqHm8DX26t4oC7HoDE6DDyukXhCLeZXJmICOyvqmN1oZuq2uD6DHGuUAZluYiODDW5MhERERERaS0tzYrbpBMdICIigttvv/2kj/Pyyy/z5ZdfsnLlyhbt7/P58Pl8jdtVVVUnXYOIdACZZ8GkpTD3BtizFmZfCpc+AXk3ml1Zp2MYBoV7allX7MYfgBCrhX6ZTrISHeryFJF2o0tUGOf3j2Pr7hoKSqspc9ezdG0ZOSkR9EqLJNSmtRpERERERDqrNnk3MG3aNGbOnHnY/TNnzuSRRx5p8XFKSkq48847eemll7DbWzY3d9q0aURHRzfe0tPTW3w+EengYjLg1oXQ+3II1MOCKfDOr8DfYHZlnUaNz8/HGytYXRQM0LtEhXLBgHiykyIUoItIu2O1WshNjeSigfGkxoVjAF/vqmFx/gF2HPDSRhdwioiIiIhIO9Mm41yysrKYM2cOZ511VpP7P/vsM66//noKCwtbdJz58+dz1VVXYbN9e+m/3+/HYrFgtVrx+XxNHoMjd6Knp6drnItIZxIIwAd/hmUPB7e7nQfXzgouRiqtwjAMtu/zsna7mwa/gc0KfdNddEtW97mIdBx7KnysLnRT7fMDwTFUA7NcOB1tdjGniIiIiIi0opaOc2mTEN1ut1NQUEB2dnaT+7dt20afPn3wer0tOo7b7Wb79u1N7rvlllvo1asX9913H/369Wv2GJqJLtKJbVgAb0yG+hqI6wYTXoaEnmZXddqprfPz1bYq9lTUARDnDCUvJwqXQicR6YD8AYPNO6rZvLOagAFWC/RIjaRH10hsVn0oKCIiIiLSkbWrmejp6el8/PHHh4XoH3/8MampqS0+jsvlOiwoj4yMJD4+vkUBuoh0cn0uh7js4Jz0sm3w3IVw7fPQ4xKzKzstGIZB6QEvqwvd1PsNrBbone4kN0WjW0Sk47JZLfROd5Lexc7qIjd7K+vYuKOakv1eBmS5SI4NN7tEERERERFpZW0Sot9+++3cdddd1NfXc8EFFwCwZMkS7r33Xu655562KEFEJCi5f3DB0Vd/CNs/hjnjYdTv4Oy7QEHvCfPVB8gvrGJnWXB8VkxkCENyoomKUPe5iJwenI4QzuoVw84yH2u2B0e8fLKpgtS4cPpnuogItzV/EBERERER6ZDaZJyLYRj86le/Yvr06dTVBS/vt9vt3HfffTzwwAOtffomNM5FRABoqIN37oVVs4Lb/a+Dy/8GoQ5z6+qAdpR5yd9WRV2DgcUCvbpG0iM1EqvGHIjIaareH2BjaTVbd9VgEOxW75UWSffkCP3sExERERHpQNrVTPSDPB4PBQUFOBwOcnNzCQ9v+8tfFaKLSBMr/wlv3wuGH1IHw/VzIKrlY6Y6s7qGAKsL3ZQeCK5rERURwpCcKGIiQ02uTESkbVTW1JNf6KbMXQ+Ay2FjUHYUXaLCTK5MRERERERaol2G6Adt376d6upqevXqhdVqbdNzK0QXkcMUfhAc71JbDs5kuP4lSDvD7Kratd3lPr7aVoW3PgAEF9nrlaZF9kSk8zEMg+J9XtYVu6lrCL6sTu9ip3+mi/DQtn2dKyIiIiIix6elWXGrvrKfOXMmjz/+eJP7Jk2aRLdu3ejfvz/9+vWjpKSkNUsQEWle9gi4fSkk9gHPbpg1Fla/bHZV7VJ9Q4Avt1byyaYKvPUBnHYbI/vG0TfDqQBdRDoli8VCZqKDiwZ1ISsxOBKsZL+XRfn72ba7BhP6VURERERE5BRr1RD92WefJTY2tnH73XffZdasWfzrX/9i5cqVxMTE8Pvf/741SxARaZm4bLj1Peg5Fvw+eGMyvPdbCPjNrqzd2FvpY8maA2zfFxzf0j0lggsGxBPn0vgWEZGwECuDu0Uxsm8c0REh1PsNVhe5WbaujHJPvdnliYiIiIjISWjVcS7x8fEsW7aM/v37A/CTn/yEffv28dprrwGwbNkybrnlFgoLC1urhMNonIuIHFMgAMsehg/+HNzuPgqueR4cMaaWZaYGf4B1xR4K99QCEBluIy9HM39FRI7GMAy27allQ4mHBn/wpXZ2koM+6U7CQjTiRURERETMVe8PsKvCS2lFDTvKa8lNcjEoPcbsskzR0qw4pDWLqK2tbXLyFStWcOuttzZud+vWjd27d7dmCSIix8dqhQt+C4m9Yf4d8PVi+OcomPAydOludnVtbn9VHV9uraLaF+zIz05y0C/DSYhNIZCIyNFYLBZykiPoGhfOumIPJfu9FO6pZWeZj34ZTtK72LFYNAJLRERERFqHt95PaXktOypq2VFey46KmuD2N/ftqfISOKStevKIbp02RG+pVg3RMzMzWbVqFZmZmezfv5/169dz9tlnNz6+e/duoqOjW7MEEZET0+8aiMuBl2+AA1vguQvgupnBzvROwB8wWF/sYevuGgAcYVbycqJIjA43uTIRkY7DHmbjjO7RZCY4yC+swuP1s2prFdv31jIwO4qoiFZ9KS4iIiIip6kqb30wED8YlFfUUlpe07i931PX7DHCQ6x0jXHQNdZBZnxkG1TdsbXqK/ebbrqJO+64g/Xr1/P+++/Tq1cvhgwZ0vj4ihUr6NevX2uWICJy4lIHwaRl8MoPoOQzeOk6uPghOPOncBp3EJa561m1tRKPN9h9nplgp3+mi1CNIBAROSEJ0WFcOCCeLbtq2LTDw353Pe+vPUD3lAh6dXUSYjt9f6eIiIiIyPExDIPymvomoXhpee0hneU1VHkbmj2OMzyErjEO0mKDQfnBwDwtNoKuMQ66OMN0deRxaNUQ/d5776Wmpob//Oc/JCcnM2/evCaPf/zxx0yYMKE1SxAROTnORLjpTXjrbsh/ERb+Gvash0ufgJDTqyvbHzDYWOph885g93l4qJW8blEkx55eX6eIiBmsVgs9u0aSFm9n7XY3u8p9bNlZQ+l+LwOyXKTEhutNjIiIiEgnEAgY7PP4KC2vaTJy5dA/19b7mz1ObERoMBSPifhOSB68L8oRoteXp1CrLizaHmlhURE5IYYBnz0dDNGNAKR9D8a/CK4ksys7JSqq61m1tYqqmuCn2WnxdgZmu7QAnohIK9lV7mNNURU1vgAASTFhDMxyEWnXiBcRERGRjqzeH2B3pffIM8kratlV4aXOH2j2OImu8Cad48HAPBiSp8Y4iAzX68ZToaVZsUJ0EZHjsfV9mHczeCvBlQrXvwRd88yu6oQFAgabd1azcUc1hgFhIRYGdYuia5zd7NJERE57Df7gz+DNO4M/g60W6Nk1ktzUSGxWdQ2JiIiItEfeej87K2q/E5J/O5N893cW7TwSm9VCcpS9STAe7CaPIC3WQUqMnfAQW9t8QZ2cQvSjUIguIiftwFaYez3s3wwhdrji79D/WrOrOm5VNQ2s2lpJRXWw+zw1LpxB2VGEh6r7XESkLblrG1hd6GZfVXABqEi7jUFZLhJjNE5LREREpK15fA3fjFep+XbUysHQvLyW/R5fs8cIO7ho58GAPKbpXPLkKDshNr33bg8Uoh+FQnQROSW8lfD6bbDlveD2uffA+b8Fa/v/JWgYBlt21VBQ4iFgQKjNwsBsF2nxds1LExExiWEYlB7wsna7B1998PLervHh9M904QhTF5KIiIjIqWAYBhU19Y2d40eaSV5ZW9/scSLDbI2heFrs4TPJu0SGY9WVhR2CQvSjUIguIqdMwA9Lfg8f/zW43WMMXP0s2NvvzxZ3bQNfbq2izBN8UZAUE8bgblEKaERE2on6hgAFpR627q4FIMRmoXdaJN2SI7Dqg04RERGRYwoEDPZ7fE06x3dU1DQJyWvqml+0MyYi9JBO8ohDAvPgLdoRqia004RC9KNQiC4ip9zqV2DBz8Dvg4ReMGEuxHUzu6omDMNg2+5a1pe48QeCoUz/TBeZCeo+FxFpjyqq68kvdFP+zYee0REhDMx2Ee8KM7kyEREREfM0+APsrvI2CcUPnUm+s4WLdia4wpt0jqfFfDuTvGusA6cW7ew02lWI7vf7mT17NkuWLGHv3r0EAk3/Z37//fdbu4RGCtFFpFWUroJXJoJ7F9hjYNwL0O08s6sCoNrr58ttleyvCgYxCdFh5HWLIiJc3eciIu2ZYRgU7a1lfbGHen/wJXtmooO+6U6tXyEiIiKnJV+Dn50V3iPOJD+4aKe/mVU7rRZIiW46XuXQmeSpMQ7soXo/LEEtzYrb5GOVO++8k9mzZ/P973+ffv36qetRRE4/aUPg9qXBIH3HKvj31TD6T/C928Gkn3kHw5d12z00BAxsVuiX4SI7yaGfwyIiHYDFYiE7KYLUODvri91s3+dl+95adpV56Zuhq4lERESk46n2NRwyg7ymMRzf8c34lX3uFizaabOSGmNvOpP8kJA8OdpOqBbtlFOsTTrRu3Tpwr/+9S/Gjh3b2qdqljrRRaRV1XvhzTthzcvB7bybYOxfIKRtL7+v9fn5clsVeyvrAIh3hZKXE4XTrkvSREQ6qgPuOvIL3VTVNAAQ5wxlULaL6MhQkysTERERCTZyVdbWN45ZaTKT/JvtiprmF+10hNqC3eNNFuuMaJxJnuDUop1y6rSrTvSwsDC6d+/eFqcSETFXqB2uehqS+sKiB+DLF2D/Zhj3b3AmtPrpDcOgZL+XNUVu6v0GVgv0yXDSPTlC3YoiIh1cvCuM8/vHsW13DQUl1ZR56nl/bRk5yRH0ToskNEQdVyIiItJ6DMNgn8fXpHN8xyFzyUvLa6huwaKdUfaQIy7WeXAeeWyEFu2U9qdNOtEfe+wxtm3bxlNPPWX6PwJ1ootIm9n8Hrx+K/iqIDodrp8DKQNa7XTeOj9fFbrZXR68/C02MoQh3aNxOdR9LiJyuqmt87O2yM2OsuDPfHuolf6ZLrrGh5v+eltEREQ6pgZ/gD1uX2P3eGnZNwH5IXPJ6xqaX7SzizOMrrERhyzW6WjSWe6y6yo6aT/a1cKiV111FUuXLiUuLo6+ffsSGtr0H8t//vOf1i6hkUJ0EWlT+zbD3OuhbCuERsCVM6Dvlaf8NKX7vawuqqKuwcBigd5pTnJTI7AqSBEROa3tqfCxushNtTfY9ZUQHcbALJc+QBUREZHD+Br87KrwHnUm+a7Kli3amRRl/85inRFNQnIt2ikdSbsK0W+55ZZjPj5r1qzWLqGRQnQRaXO15fDaj2Dr+8HtkffByF+B9eQvu/fVB1hdWNXYiRgdEcKQnCjNxxUR6UT8AYMtO6vZtKOagBF8c5ubGknPrpHYNC9URESk06ipa2jsGA+G5Ae7yIMzyfe6fTSXAobaLKTGfBOQN+kkDwblWrRTTjftKkRvTxSii4gp/A2w+HfwyVPB7d6XwZVPQ7jzhA+5s8xLfqEbX30AC9CzazAw0QIrIiKdk8fbwJoiN3sqgotKR4TbGJjlIjk23OTKRERE5GQZhkFVbQOlFTXfCcgPzievobwFi3baQ62Ni3QeaSZ5gitcH8JLp9IuQ/R9+/axadMmAHr27ElCQusvsvddCtFFxFRfvQhv/Rz8dZDULzgnPTbzuA5R1xBgTZGbkv1eAFwOG0Nyool1qvtcRKSzMwyDXeU+1hS5qa0LzixNiQ1nQJaLiHBdWi0iItJeGYbBfk/dIcF4zWELd7p9Dc0ex2UPadI5/t155HGRYVo/ReQQ7SpEr66u5mc/+xn/+te/CASCL+ZtNhs//OEP+dvf/kZERERrl9BIIbqImK74M3jlB1C9FyLiYdy/IevsFj11T4WPL7dV4f0mGMlNiaB3ulOdAiIi0kSDP8DG0mq+3l2DYYDNCr26OumeEqErlkREREzgDxjsqfIe1j1+sKN8Z0Ut3vrmF+2Mjwyja2Pn+MGRK9/OJI/Sop0ix6VdheiTJ09m8eLFPPXUU5x9djAo+uijj5g6dSoXXXQRM2bMaO0SGilEF5F2obIUXr4Bdq0GawiM/TOc8aOj7l7vD7Buu4eivbUARNptDMmJIt4V1lYVi4hIB1RV00B+YRUH3MHLu10OGwOzokiI1u8PERGRU6muIcCuytojzCQPziPfVeGloZlFOy0WSHLZm4bkh8wk7xrjwBGmK8tETqV2FaJ36dKF1157jfPOO6/J/UuXLmXcuHHs27evtUtopBBdRNqNuhr47x2w/j/B7aG3weg/ga1p58C+yjq+3FZJjS/YlZCT7KBPuosQmzoJRUSkeYZhULLfy9rtbuoagi/907vY6ZfhxK434iIiIi1SW+f/dsTKYQt31rLH7W120c4Qq4WUGHuTULxrrIO0b7aTo+2EhWjRTpG21NKsOKQtiqmpqSEpKemw+xMTE6mpqWmLEkRE2p+wCLh2JiT1hfcfgpX/hH2b4LoXIDKeBr/B+hI323YHu88jwq3kdYtW96CIiBwXi8VCRoKD5NhwNpR4KNxTS8l+L7vLffRJd5Kd5NBsVBER6fQqa+sPmT9+SFj+TUh+oLqu2WOEh1ibdI4f2k2eFusg0WXXKE6RDqpNOtEvvPBC4uPj+de//oXdbgegtraWm266ibKyMhYvXtzaJTRSJ7qItEsb34b/3A51HojJpOKKf/N5ZVeqvX4AshId9Mt0EmpTV4KIiJycck89+YVVVFQHFyeLiQxhUHaUFqgWEZHTlmEYHKiua7JIZ2l5zTdzyYP3ub0tWLQzPOSQkPzgqJWIxpA8Xot2inQ47Wqcy7p167jkkkvw+XwMHDgQgNWrV2O321m4cCF9+/Zt7RIaKUQXkXZrbwHG3OuxlBdRb4tk1YA/U55+MXndokiKCTe7OhEROY0YhkHhnlo2lHio9wffDmQnOeiT7tRl5CIi0uEEAgZ73b7DgvHS8mBX+Y4WLtoZFxnWuFjntyH5wU7yCKId+sBZ5HTTrkJ0CI50eemll9i4cSMAvXv3ZuLEiTgcjrY4fSOF6CLSXpV76lmzoYg+n04hoexTABrO+w0hI38ZXGFGRETkFPPW+VlX7KFkvxeAsBAL/TNdpHexq5NORETajXp/gN2VXkrKa77TTR78867K2sYPhY/GYoFEV/g3ofh3Rq1889+IsDaZeiwi7Ui7C9HbC4XoItLeBAIGG3dUs3lHNQZgt/kZUfJnItfMDO7Q92q44u/BGeoiIiKtYH9VHfmFVbhrg2PE4l2hDMqOIipCYYKIiLQ+b72/ySKdjQt4fnPfniovgWbSK5vVQkq0vUnn+MFwvGuMg5QYO+EhWlBbRJoyPURfsGABY8aMITQ0lAULFhxz38svv7w1Sjgihegi0p5UVtezamsVlTXB+Xtd48MZmBVFeKgVvpgFb/8CAg2QPAAmzIXoNJMrFhGR01UgYPD17ho2lnrwB4Ide92TI+iVFkmI1uQQEZGT4PbWNwnFg6NWvu0q3+9pftHOsBBrk1D8uzPJk1zh+n0lIsfN9BDdarWye/duEhMTsVqP/kPMYrHg9/tbo4QjUoguIu1BwDDYsrOGglIPhhG8fH5gdhRp8famO25fAa/8AGoOQGQCjH8JMoaZU7SIiHQKNT4/a4rc7Cr3AeAIs9I/y0VqbLhGvIiIyGEMw6C8pr5JKF56yKiVHeU1VLVg0U5neEhjF/mRZpJ3iQzHatXvIRE5tUwP0dsrhegiYjZ3bQOrvq6kvDr4QjIlNpxB2S7sYUe5tLCiGOZOgD3rwBoKlz4BeTe2YcUiItIZ7S73sbrITY0v2PCSFBPGgCwXTrtGvIiIdCaBgME+T3DRztIjzCPfUV5LbX3zzZGxEaHfhuIxEU1C8rRYB9GOUH1YKyJtrl2F6P/6178YP3484eHhTe6vq6vj5Zdf5oc//GFrl9BIIbqImMUwgpfJbyj2EDAg1GZhQFYLF2/zeWD+T6Dgm/FYZ/4ULvp/YFOQISIirccfMNi0o5otO6sJGGC1QM+ukeSmRmJTN6CIyGnh4KKdR5xJXlHLrgovdf5As8dJdIU36Rz/7kzyyHC9dxGR9qddheg2m41du3aRmJjY5P4DBw6QmJiocS4ictrzeBv4cmsVB9z1ACRGh5HXLQpH+HEsbBMIwAePwrJpwe1u58O1MyEirhUqFhER+Za7toHVRW72VQZn1kbabQzMcpEUE97MM0VExGzeej87K2q/E5J/O5N8dwsX7UyOsgfD8caQ/Nt55CnRduyhWrRTRDqelmbFbfIxoGEYR+yyLC0tJTo6ui1KEBExhWEYFO6pZV2xG38AQqwW+mU6yUp0HP+lilYrnPcrSOwNb/wYti2Ff14IE16GhJ6t8wWIiIgALkcIZ/eKYUeZj7VFbqq9flZsrKBrXDj9s1w4jjaSTEREWp3H1/DNeJWab0etHAzNy2vZ7/E1e4wwm/WQUSuHhuTBPydH2bVop4h0aq0aog8ePBiLxYLFYuHCCy8kJOTb0/n9fgoLCxk9enRrliAiYpoan58vt1axryrYtdclKpS8btFE2k8yaOhzBcR1g7k3QNk2eO5CuPZ56HHJKahaRETkyCwWC2nxdpKiwygorWbb7hp2lPnYU1FHr/RIcpIitOCbiMgpZhgGFTX1jZ3jR5pJXllb3+xxIsJsTULxQ2eSp8U46OLUop0iIsfSqiH6lVdeCUB+fj6XXHIJTqez8bGwsDCysrK45pprWrMEEZE2ZxgG2/d5WbvdTYPfwGaFvhkuuiWdQPf50ST3h0lL4dUfwvaPYc54GPUgnH0naDEeERFpRaEhVgZkuchMsJNf6KbMU8+67R6K93kZlO0i3hVmdokiIh1GIGCw3+Nr0jm+o6KmSUheU9f8CNxoR+h3QvJvZpJ/8+eYCC3aKSJyMtpkJvoLL7zA+PHjsdvtrX2qZmkmuoi0pto6P19tq2JPRbD7PM4ZypCcKJyOVvrMsqEO3vklrJod3O4/Di6fDqGO1jmfiIjIIQ5+cLy+2E1dQ/BtRUaCnX4ZLsJDddm/iEiDP8DuKm+TUPzQmeQ7W7hoZxdneJPO8e/OJHdq0U4RkRPSrhYWbU8UootIazAMg9IDXlYXuqn3G1gt0DvdSW5KROt3fBgGrPwnvHMfGH5IzYPrX4Ko1NY9r4iIyDd89QE2lHgo2lsLQKjNQt+ME1wDRESkA/E1+NlZ4T3iTPKDi3b6m1m102qB5Cg7abER384lP2QmeWqMQ4t2ioi0knYVovv9fp544gleffVViouLqaura/J4WVlZa5fQSCG6iJxqvvoAX22rYld5cMGemMgQhuREExXRxt0g25bDvJugthycycEgPe2Mtq1BREQ6tQPuOlYXuqmsaQAg1hnKoGwXMZGhJlcmInJiqn0Nh8wgr2kMx3d8M35ln7v5RTtDbRZSYw5ZqPOb7vGD28nRdkK1aKeIiCnaVYj+wAMP8M9//pN77rmH3/72t/zmN7+hqKiI+fPn88ADDzB16tTWLqGRQnQROZV2HPCSX1hFXYOBxQK9ukbSIzXSvEV5ygph7gTYVwC28OBol4HXm1OLiIh0SgHDoHB3LRtKPTT4g281uiU76JPmJDREIZGItB+GYVBZW984ZqXJTPJvtitqml+00xFqaxKKf3cmeYIW7RQRabfaVYiek5PD9OnT+f73v4/L5SI/P7/xvk8//ZQ5c+a0dgmNFKKLyKlQ1xBgdaGb0gNeAKIiQhiSE9U+Ou18bvjPJNj0dnD7rKnBRUetugRURETaTm2dn3Xb3ZQeCHZphoda6Z/pJC3erhEvItImDMNgn8fXpHN8xyFzyUvLa6huwaKdUfYQuh6ySGfaISF511gHsVq0U0Skw2pXIXpkZCQFBQVkZGSQkpLC//73P/Ly8ti2bRuDBw+msrKytUtopBBdRE7W7nIfX22rwlsfXACoR2okvdIisbWn7pJAAJb+ET78S3C7+0Vw7fNgjza3LhER6XT2VvpYXejG4w0GVQlRYQzMduFqrUW3RaTT8AeMxkU7d1TUUFr2TUB+yFzyuoaWLNoZ1iQUD45ccZAWF/yvy94OGmVERKRVtDQrbpNXrmlpaezatYuMjAxycnJ47733yMvLY+XKlYSHh7dFCSIiJ62+IcCa7W6K9wW7z512G0O6RxPnbIcvqq1WuPD/IKkPzL8Dvl4Ez10IE16GLt3Nrk5ERDqRxOhwLhgQxte7qtlYWs2+qjqWrDlAbkokPbtGEmJrRx9Ci0i74mvws6vCe9SZ5Lsqm1+00/LNop2NHeSxh88k16KdIiLSnDYJ0a+66iqWLFnCsGHD+NnPfsYPfvADnn/+eYqLi/n5z3/eFiWIiJyUvZU+vtxaRW1dsJOle0oEfdKd7av7/Ej6XQNx3eDliXBgC/zzArh2FnS/0OzKRESkE7FZLfTs6iQt3sHqoir2VNSxeWc1pftrGZAdRUqsGmtEOqOauobGjvFgSH6wizw4k3yv20dz186H2iykRDu+E5IH/5seG6FFO0VE5JRok3Eu3/XJJ5/wySefkJuby2WXXdam59Y4FxE5Hg3+AOuKPRTuqQUgMtxGXk4UXaLCTK7sOLn3wCs/gNLPwWKFix+CM38abM0RERFpQ4ZhsKvcx5oid+OH08mx4QzIdBFpVzeoyOnCMAyqahsorag58kzyilrKquuaPY491PpNKH7kmeQJrvD239giIiLtVruaiX4qzZgxgxkzZlBUVARA3759eeCBBxgzZkyLnq8QXURaan9VHV9uraLaF5zhmp3koF+Gk5CO2snS4IO37ob8F4PbgybCpU9AiLr/RESk7TX4DTbt8LBlVw2GATYr9OzqJDclAqsCMZF2zzAM9nvqGket7KioOWzhTrevodnjuOwhjcF4WmxEYxf5wfviIsO0aKeIiLQa00P0BQsWtHjfyy+/vMX7vvnmm9hsNnJzczEMgxdeeIE///nPfPXVV/Tt27fZ5ytEF5Hm+AMG64s9bN1dA4AjzEpeThSJ0adB2GwY8NnTsPDXYAQg7Xsw/kVwJZldmYiIdFJVNQ2sLqpif1U9EFxzZFB2FAnRHeyqL5HTjD9gsKfKe0hI/s1M8m/+vLOiFm9984t2xkeGNQnFD3aVHwzLox3tcH0hERHpNEwP0a3Wpp2aFouF757q4KfJfr//pM4VFxfHn//8Z2699dZm91WILiLHUuauZ9XWSjze4M+lzAQ7/TNdhIZ00O7zo/l6Cbx2C3grIaorXP8SpA42uyoREemkDMOg9ICXtds9+L4J5dLi7fTPdGIP04gXkdZQ1xBgV2XtEWaSB+eR76rw0tCCRTuTXPamIfkhf06NcRAR1iZLsYmIiJyQlmbFrfbbLBD49hPpxYsXc9999/Hwww8zfPhwIDgX/be//S0PP/zwCZ/D7/czb948qqurG4/7XT6fD5/P17hdVVV1wucTkdOXP2CwsdTD5p3B7nN7qJXB3aJIPl0XOut+Idy+FOZeD/s3w8zRcMXfof+1ZlcmIiKdkMViIb2Lg6SYcApKPGzbU0vpAS+7K3z0SXeSneTAqnEOIselts7/7YiVwxburGWP29vsop0hVgspMfZg13hMRGNInvZNF3lKtIOw063ZRERE5AjaZCZ6v379ePrppznnnHOa3P/hhx8yadIkCgoKjut4a9euZfjw4Xi9XpxOJ3PmzGHs2LFH3PfBBx/k97///WH3qxNdRA6qqK5n1dYqqmqCMxvTu9gZkOXqHG8IvJXw+m2w5b3g9rn3wPm/BWsn+NpFRKTdKvfUs7qwivLq4O/m6IgQBmVHEefS2AeRg6q89ZSWHQzFa75duPObkPxACxbtDA+xNukc/+5M8qQouxbtFBGR05rp41wO5XA4WLlyJf369Wty/5o1axg2bBi1tbXHdby6ujqKi4uprKzktdde45///CfLly+nT58+h+17pE709PR0hegiQiBgsHlnNRt3VGMYEBZiYVC3KLrG2c0urW0F/LDk9/DxX4PbPcbA1c+CXT8jRUTEPIZhULS3lvXFHur9wbcsWYkO+mY4O8cH3dKpGYZBWXVdk1D8uzPJ3d7mF+10hoccMof84EzyiMaQvItTi3aKiEjn1q5C9BEjRmC32/n3v/9NUlJw8bo9e/bwwx/+EK/Xy/Lly0/q+KNGjSInJ4dnnnmm2X01E11EILiI2aqtlVR80+GWGhfOoOwowkM78Zvy1a/Agp+B3wcJvWHCHIjrZnZVIiLSyfnqA6wrdlO8zwsEP/Tul+EiI8Gu8E86rEDAYK/bR+l3OshLy7/tKm/Jop1xkWHfjFo5NCQ/OHIlgihHiP6diIiIHIPpM9EPNXPmTK666ioyMjJIT08HoKSkhNzcXObPn3/Sxw8EAk26zUVEjsYwDLbsrKGg1EPAgFCbhYHZLtLi9UacgeMhvju8fAPsK4DnLoDrXoBuI82uTEREOrHwUCtDcqLJTHCwutBNVW0DX26romhfLYOyXERHasSLtD/1/gC7K72UlNc0dpEfOpN8V2Vt4xUWx5LoCv9mDnlEk4U702KCi3ZGhmvRThERkbbQJp3oEAyuFi1axMaNGwHo3bs3o0aNOu7Q6v7772fMmDFkZGTgdruZM2cOjzzyCAsXLuSiiy5q9vnqRBfpvNy1DXy5tYoyTz0ASTFhDO4WhSPMZnJl7UzVrmCQvvNLsNhgzCMw9Dbo7B8yiIiI6QIBg627aygorcYfMLAAOSkR9EqLJNTWia8mE1NV+xpYU1pJfkkF+SXlrNtRxa7KWgLNvNO2WS0kR9kPW6zz4FzylBg74SF6nSoiItKa2tU4l1Pp1ltvZcmSJezatYvo6GgGDBjAfffd16IAHRSii3RGhmGwdXctG0rc+AMQYrMwIFOXgR9TfS28eSeseSW4PeRmGPNnCAkztSwRERGAWp+fNdvd7CwLXo1qD7UyIMtFaly4frdLq/IHDDbvcQcD8+IK8ksq2LLXfcTAPCzE+m33eJORK8GZ5EmucEL04Y+IiIipTA/Rp0+fzqRJk7Db7UyfPv2Y+06dOrU1SjgiheginUu118+X2yrZXxXsPk+IDiOvWxQR4erqaZZhwIrpsOh3gAEZZ8G4f4EzwezKREREANhT4WN1oZtqnx+AxOgwBma5cDo04kJOjV2VtY1heX5JBWt3VFJT5z9sv9RoO4MyYhiUHsOAtBi6JUTSJTIcq1Uf6oiIiLRnpofo2dnZfPHFF8THx5OdnX30AiwWtm3b1holHJFCdJHOwTAMivbWsm67h4aAgc1qoV+Gk+wkhzrUjtfm9+D1W8FXBdHpcP0cSBlgdlUiIiLAN53BO6rZvLOagAFWC/RIjaRH10hsCjDlOHh8DawpDYblq78JzfdUHb72ljM8hAFp0QxKj2FgegyD02NIjLKbULGIiIicLNND9PZKIbrI6a/G5+erbVXsrawDIN4VSl5OFE67utJO2L5NMPd6KNsGoRFw1dPQ5wqzqxIREWnkqW1gdZG78fd/ZLiNAVkukmPDTa5M2qMGf4DNezysLj32WBab1ULPJFdjWD4oI4acBKc+oBERETlNKEQ/CoXoIqcvwzAo3u9lbZGber+B1QJ9M5zkJEeo+/xUqC2HebfAtqXB7ZG/gpH3gVWzPEVEpH0wDIOdZT7WbHfjrQsAkBoXTv9Ml0a5dWKGYbCr0tvYXf5VSQVrSyuprT/2WJZB6bH06xpFRJgaMURERE5Xpofod999d4v3ffzxx1ujhCNSiC5yevLW+fmqsIrd5cHus9jIEIZ0j8almainlr8BFj0An/49uN37MrjyaQh3mluXiIjIIer9ATaWVrN11/9v787jI6nr/I+/+87VnWQmcyeZyRzMmZkMI6ug4sVyLAqKKzAiouKBwrr4U3RddVd3XRFUVmVRVncFVAQRuWQVBbkVUIbJ3AxzZCaZ+0rS3Tn6qu/vj+r05OhOOplOupO8nj7aTldXV32rU2S6P/Wpd3XKyO4mXlpdqgUzS8iongR6x7L0dJkfCQ0ey9JzI5YFAIDJJdta8ahVl9avX5/VfHSHAjhV+451q3FPULG4kcMhLa0u06LZJXLy9yX3XG7p/G9IM5ZJj35G2vYb6USTnZNeOTffowMAQJLkcTlVP9ev2mlFamwK6UQops3NYe092qWGuoCqAt58DxE50hPLYl/4szUZyxJW/1axnliWni7z1TV2LAsHVQAAQDaIcwEwbkViljY0BbX/hN1ZVF7i1pqFAZWXePI8skmi+SXplx+QOo5IJVOlS38mzXtjvkcFAEAfxhg1H+3W5uaQonH7q09tVZFWzPXL5yGSbDzpiWVpbDnZZb5pf/pYljkVxSc7zGsrtGJ2uYq9RPoAAIC+8h7nUqgoogMTw4ET3WpsCikSs+SQtHhOqRbPKaWbaKy175Pufb90cIPkdEt/923pdR/O96gAABggGre0pTmsPUe6JEkel0PLa8s0b3oxZ8cWqFB3TJv2tWt9smi+IUMsi9/n1soaO5ZlVbVdNJ/uJ5YFAAAMreCK6C+//LLuu+8+NTc3KxqN9nnugQceGIshSKKIDox30biljXtCajnWLUnyF7u0ZkG5KsvoPs+baKf08LXSluTf8jM+Jp1/o+TidwIAKDwnQjE1NgXV3hmXZF9HZVVdgM8SeRZPWNp+OJTqMN+wL3Msy5KZfrtgTiwLAAA4RXnPRO/t3nvv1Qc/+EGdd955+sMf/qBzzz1Xr732mg4fPqz3vOc9YzEEABPA4baIXtkVVHfMkiQtmlWipTVlcvGlKb+8JdLf/0SasVx68t+lv/5YOvqqdOlPpZIp+R4dAAB9TPF79Lb6Kdp9uEtbW8Jq7Yjr6c0nNH9GsZbWlMnrJuJltBljdKC9O1UsHzKWpbZCDdXEsgAAgPwZk070lStX6hOf+ISuvfZa+f1+bdiwQXV1dfrEJz6hWbNm6Wtf+9poDyGFTnRg/IklLG3ee/L069Iil9YsCGiqn4uCFZxX/0964ONSNCxVzJXW3mtfhBQAgALUHU1oc3M4dYabz+PUitoy1VQVEfGSQ/1jWRpb2nR0iFiWhppKraopJ5YFAACMqoKKcyktLdWWLVs0b948TZ06VU8//bTq6+u1bds2vf3tb9fBgwdHewgpFNGB8eVoe1Sv7GpXZ9TuPl8ws1jLavxyu/hiW7AOb5XuuVxq2yt5y6RLfiQtuTDfowIAIKOj7VE1NgUV7rY7oav8Hq2qCyhQMiYn7k4o/WNZGlvatPPo4LEsDTUVWl1boflVxLIAAICxVVBxLpWVlQqFQpKkOXPmaPPmzaqvr1dbW5s6OzvHYggAxpl4wmhLS0i7D9nd5yU+p06fX65p5XSfF7wZy6SPPy3d90Fpz3P2hUff/mXpzZ+T6OoDABSgaeVevWPlVO042Knt+8M6ForpyU3HtXBWiZbMKePgfQa9Y1kaW1rV2GLHsvRE7/XWE8uyOlk0X04sCwAAGEfGpIh+9tln6/HHH1d9fb3e97736R//8R/15JNP6vHHH9c73vGOsRgCgHHkeCiqdbuC6kh2g82bXqwVc8vkcZFROm6UTJGufFB67It2RvqTX7c71C++zc5QBwCgwDidDi2eU6rqqUXatDekg60R7TjQqX3HurVynl+zKn2TPuIl1B3Txn3tamxp0/pknnmmWJZVyWJ5zwVAp/l9eRgxAABAboxqnMvmzZu1YsUKnThxQt3d3Zo9e7Ysy9LNN9+sP//5z1q0aJG+/OUvq7KycrSGMABxLkDhSlhG21rC2nHQPkOlyOvU6fMDmlHBl65x7eU7pN9+TrLi0qxV0uW/kMqr8z0qAAAGdbA1oo17guqM2F3VMyq8WjXPr9KiyRHxEk9YevVQKJVhviFDLIvb6dCSWf5UjnlDTTmxLAAAYNwoiEx0p9OpM844Qx/96Ed1+eWXy+/3j9aqskYRHShMreGY1u1qV6jL7j6vrSpS/Ty/vG66zyeEPX+S7rtS6jwulU6XLvu5VPv6fI8KAIBBxRNGrx3o0GsHOmSM5HRIi+eUatHsUrkmUJHYGKP9bV2pHPMN+zLHslRXFqc6zBtqKrRiTrmKPMSyAACA8akgiujPPfec7rjjDt1///2yLEvvfe979dGPflRvfvObR2uVQ6KIDhQWyzJ6dX+HXtvfISPJ53FqdZ1fs6YU5XtoyLXWvXY++uHNkssrXXiLdPqV+R4VAABDCnXFtaEppKPBqCSprMilVXV+TS8fn2fLBbtj2tjSrg377FiWxpY2HQuniWUpcmtVNbEsAABg4iqIInqPjo4O3Xfffbrzzjv13HPPaeHChbr66qt11VVXaebMmaO9+j4oogOFo70jpnW7gmrvjEuS5kz1adW8gHweus8nrEhYeugaadtv7Mdv+JT0t/8uuSbHqfEAgPHLGKN9x7u1aW9YkWSH9pypPtXP9Rf0BTJjCUvbe8WyNLa0aVdWsSwVml9VSiwLAACY0AqqiN7bzp07dccdd+hnP/uZDh06pPPPP1+PPPLImK2fIjqQf5Yx2nGgQ9v22adGe90OraoLqHoq3eeTgmVJz9wkPfNN+/H8t0nvu0MqHrvrYwAAMFKxuKVt+8LadahLkuR2ObS0ukzzZxbLmecLjxpjtK+1Sxv22bEsjS1t2nxg6FiW1bUVWj6bWBYAADD5FGwRXbI70++++2598YtfVFtbmxKJxJitmyI6kF/Brrhe2dmu1g67+3xWpU8NdX4VFXAHF0bJ1oelB6+RYp3SlPnS2nulaYvzPSoAALLS1hFTY1NIreGYJKm8xK1VdX5N9XvHbAw9sSyNLa3JLvP2jLEsvXPMV9VUqKqMWBYAAICCLKI/++yz+slPfqJf//rXcjqduvTSS3X11VfrDW94w1gNgSI6kCfGGO082KmtLWFZRvK4HFo5z6+aqiI58ty1hTw6tEm6Z63U3iL5AtJ7/1c67dx8jwoAgKwYY7TnSJe2NIcVS9hfq+ZOL9bymrKcx9P1xLKsb+npMm/VrqMdA+ZzOx1aOitwsmheW6G6qcSyAAAApFMwRfQDBw7ozjvv1J133qmdO3fqrLPO0tVXX61LL71UpaWlo7nqtCiiA2Mv3B3XK7uCOh6yO7Wml3t1+vyAin10n0NS+Kh03wel5j9Lckh/+zXprE9LHFwBAIwTkZilLc0h7T3aLcmOqlte69fcaSNrFuiJZemdY755f7si8YGxLDVTilMZ5g015cSyAAAADENBFNEvuOACPfHEE6qqqtIHP/hBfeQjH9Hixfk9VZ8iOjB2jDFqOtylzc0hJSy7M2rF3DLNm15M9zn6ikel335OeuUu+/HKy6R3fU/yFOd3XAAADMPxUFSNTSEFkxdNn1LmUUOdX+WlnkFf194V08ZeOeYb9rXpWDg6YL5AkVuraiq0OhnJQiwLAADAqcm2VuwezUF4PB7df//9euc73ymXi24IYDLpjCT0yq6gjgbtL4BVAY9On1+u0iL+FiANt9cums+sl373BWnjL6VjO6TL75YCs/M9OgAAsjLV79Xb6qdo96FObWvp0IlwTE9uOqEFM0u0tLpUHrdTsYSlVw+Gkjnm7YPGsiybHdCqamJZAAAA8i0vFxbNJzrRgdFljNHeo93atDekeMLI5ZSW1/o1fwbd58jS7mekX10ldbVKZTOly38hVa/J96gAABiWrmhCm/aEtP+EfaHPWMLSi81H9H9bDqSNZamdUqJVvS7+uXx2gFgWAACAUVYQcS6FiCI6MHq6ogmt3x3U4Ta7+3xKmUdrFgRUVjyqJ71gIjrRZF9w9Og2yeWTLrpVWnVZvkcFAMCg0sWyTC0u0ntX1WpaWZEkafuRoH7/6n5VTy3W6mSH+arqCk0llgUAAGDMUUTPgCI6kHvGGO073q0NTSHFEkZOh7S0pkyLZpXQfY6Ri4SkBz4ubf+t/fisT0vnfFVy0pUHAMi/3rEs65MX/9ydJpbF43JoxexynbN4lmaVlcghh5wOadHsUi2eUyoX8SwAAAB5QxE9A4roQG5FYpbW7w7qYKt9qnJFqVtrFpQrUEL3OXLAsqSn/kN67tv240XnSu/9H6moPL/jAgBMKsYY7WvtsovlzW1qbGnVlgPBjLEsPZEsDbUVWjbrZCxLuDuujXtCqbP2SnwurZrn18xKutABAADygSJ6BhTRgdzZf7xbjU1BReNGDoe0ZE6pTpvNBa8wCjbdLz18rRTvlqYuktbeK1UtzPeoAAATVHtXTBuS3eWNLW3a0NKm4x3RAfOVF3tSOearayq0srp8yFgWY4wOtka0cU9IXVG7CD+r0qeV8/wq8XG2FQAAwFiiiJ4BRXTg1EXjljY0hbTveLckKVDi1poFAVWUevI8MkxoB9ZL97xfCh2wO9H//g5p4TvyPSoAwDgXjVt69VAwVTAfLJZl2ayAGmoqUoXzuqrSEUfXxROWXt3XoZ2HOmWM5HJKS+aUaeGsEhoSAAAAxghF9AwoogOn5mBrROt3BxWJ2Z1Tp80u1ZJq8jwxRkKHpV9+QNr3F8nhlM79D+kNn5TI3gcAZMEYo5YTXVrf0qoNLe1qbGnV5gNBRdPEssydWqJV1eljWXIp2BlXY1NQx0MxSZK/2KVV8wKaVu7N+boAAADQF0X0DCiiAyMTi1vauDek5qN293lZkUtrFpZrShnd5xhj8Yj06Gekxrvtxw0fkN55i+QmTxYA0Fd7Z0yN+9pS0SzZxrKsqqnQlNKxK2IbY9RyrFub9oYUjdtfz2qqirSitkxFXiJeAAAARgtF9AwoogPDd6Qtold2B1O5nQtnlWhZTRnd58gfY6QXfyj94UuSsaTqv5Eu+7nkn5HvkQEA8qRPLEtzMpbl2OCxLA21FWqoqdS8qSUjjmXJpWjc0taWsJoOd0lKjrWmTHUzigtifAAAABMNRfQMKKID2YsnLG1uPvlFrtTn0ukLAqoKcHoxCsTOP0r3f1jqbpcCc6TL75Zmr873qAAAo6x3LEtPjvmWQWJZGpJd5g01FVo6SrEsudQajqmxKai2jrgkqaLUrYa6gCo5AxAAACCnKKJnQBEdyM6xYFSv7AqqI5KQJM2fUazltX65XXRBocAc2yndc7l0fIfkLpIuvk2q//t8jwoAkEM9sSx2h3mrNuxr14k0sSwVJZ4+Oearqsc2liWXjDFqOtylrS1hxRL2V7a6GcVaVlMmr9uZ59EBAABMDBTRM6CIDgwuYRltaQ5r16FOSVKx16nTFwQ0vZy8aRSw7nbp/qulnY/bj9/8WeltX5acFBkAYLyJxi1tOxhMdZg3trSpKU0si9fl1NLZgWSGeXlBxbLkUnc0oc3NYbUcs69L43U7VD/Xr5qqogm3rQAAAGONInoGFNGBzE6EYlq3q13hbrv7fO60ItXP9ctDtxPGAyshPfFV6c/ftx8v/jvpkh9JPn9ehwUAyMwYo+YTnWpsadP65jZt2Jc5lmVeMpal5wKgy2YH5HMXdixLLh0LRtXYFFSoy/6cNtXvUUNdQIESd55HBgAAMH5RRM+AIjowUMIyenVfWK8dsLvPizxOrZ4f0MxKus8xDm34pfTIP0iJiDRtqbT2HmlKXb5HBQCQ1NYZVWNLmza0tA8Zy9JQY8exNNRWqKG6QpXjNJYllyzLaOehTr26L6yEJTkc0sKZJVpSXSq3i6YHAACA4aKIngFFdKCvto6Y1u0MKthlX7iqpqpIK+f5ydrE+LZvnXTv+6XwIam4UnrfXdL8t+R7VAAwqUTjlrYeDGpDFrEsy2YH+lz8c+4EjGXJpc5IQhv3hHSwNSLJjt+rn+fX7Eof7xsAAMAwUETPgCI6YLMso+0HOrR9f4eMsfM1V88PaPaUonwPDciN4AHp3iukA69IDpd0wU3SGR+12/YAADlljNHe453asM+OZWlsadPWA0FFE5ljWeyLf1Zq6Sz/pIplyaVDrRFt2BNSZ/JC8DMqvFo5z6+yIiJeAAAAskERPQOK6IAU7Ixr3a52tXXY3eezp/jUUBeQz0P3OSaYWJf0yKelTffZj9d8SLrgW5KbSAAAOBU9sSw9tw0tbWrtjA2Yr7LEk8ow74lnIZYltxKW0fb9HdpxoEOWkZwOafGcUi2aXSqXkwPHAAAAg6GIngFFdExmxhjtONCpbfvCsozkcTm0qs6v6qlFnPqLicsY6U/fsy86KiPVniVd9jOptCrfIwOAcSEST2jbwZAam1tTRfM9xzsHzNc7lmV1rV00r51CLMtYCXXFtWFPSEfb7Yz50iKXVs3za0YF17gBAADIhCJ6BhTRMVmFuuJatyuo1rDdJTazwqvV8wMq8nL6NCaJ1/4g/fpqKRKUymultb+QZtbne1QAUFB6Yll6iuXrW9q0LUMsS11V6ckO85oKYlkKgDFG+49HtGlvSN0x+3c2Z4pP9fP8KuYzHwAAwAAU0TOgiI7JxhijXYe6tKU5JMtIbpdDK+f6VTuN7nNMQke3S/dcLp3YLXlKpPfcLi27ON+jAoC8ae2IqnFfmxqb27Rh3+CxLD3F8p7CeUUJsSyFKha3tG1fh3Ydss8YcDsdWlpTqvkzS+Tk8x8AAEAKRfQMKKJjMunoTuiVXe06FrK/DE8r9+r0+QGV+OhEwiTW1Sr96sPS7qfsx2/5J+ktX5CcXBMAwMQWiSe09UAwlWE+WCzL8jkBraomlmW8a+uIaUNTSCeSZyIGStxqqPNrqp8DIAAAABJF9IwoomMyMMZoz5EubdobVsIycjkdWlFbproZxXwBBiQpEZce/4r04g/sx0vfJb37dslXlt9xAUCOGGO053hnqliebSxLQ02Fls4KyOvmwOJEYYzR3qPd2twcUixuf/WbO61Iy2v9XFQeAABMehTRM6CIjomuM5LQ+t1BHUleVGqq36M1CwIqLXLneWRAAXrlZ9Kjn5GsmDRjhXT5L6TKufkeFQAMW+9YlsYWO5qlbZBYloaaSjXUVmhVdTmxLJNEJGZpS0tYe490SZI8boeW15Rp3nSaLAAAwORFET0DiuiYqIwxaj7arY17Q4onjJwOaXltmRbM5PRrYFDNL0q//IDUcVQqmSpd9nNp7ln5HhUAZNQ7lqXntjddLIvbqeWzA6kO89U1laqZQsF0sjseimpDU0jtnXFJUmWZRw11flWUevI8MgAAgLFHET0DiuiYiLqjCa1vCupQq919Xllmd5/7i+k+B7LSvk+69/3SwQ2S0y1d+B1pzYfyPSoASMWyNLa0prrMtx4MKpYY+BF+fk8sSzLHfMlMYlmQnmWMdh/q0rZ9YcWT+9KCmcVaWl0mD/sMAACYRCiiZ0ARHRPNvmPdatwTVCxu5HBIS6vLtGh2iZx0mQHDE+2UHv6UtOVB+/EZH5POv1Fy0ZkHYOyc6IhqQzLDvOcCoO1dA2NZppR6Ux3mq2oq1FBdofIS/l5heLqiCW3eG9K+4xFJks/jVP3cMlVPLeKMBQAAMClM2CL6jTfeqAceeECvvvqqiouLddZZZ+mmm27S4sWLs3o9RXRMFJGYpQ1NQe0/YX/pKS9xa83CAF+ggVNhjPTct6Unv24/nvdm6dKfSiVT8jsuABNSdyyhrQeDamy2M8wHi2VZMTughppKraopJ5YFOXekPaINTSGFuxOSpGkBr1bV+TmrEQAATHgTtoh+/vnn6/LLL9cZZ5yheDyuf/7nf9bmzZu1detWlZaWDvl6iuiYCA6c6FZjU0iRmCWHQ1o8u1SL55TK6eTLNJATr/6f9MDHpWhYqpgrrb1XmrEs36MCMI4ZY9R0rCPVXT5oLMu0UjVUE8uCsZWwjHYe7NCr+zpkGcnhkBbNsj9jul18xgQAABPThC2i93f06FFNnz5dzzzzjM4+++wh56eIjvEsGre0cU9ILce6JUn+YpfWLChXZRnd50DOHd4i3bNWatsrecukS34sLfm7fI8KwDhxoiNq55i3tGcdy9JQU6FVxLIgzzq6E9qwJ6jDbfa1dkq8Tq2sC2hWpS/PIwMAAMi9bGvF4/78vPb2dknSlCnpT7WPRCKKRCKpx8FgcEzGBeTa4baIXtkVVHfMkiQtml2ipdVlctF9DoyOGculjz0l/eoqac9z9oVH3/5l6c2ftdvzACCpdyxLY7LLvPnE4LEsDbUVWl1ToepKYllQWEqLXDpzcYUOtka0cU9InVFLL25v08xKn1bO9au0yJXvIQIAAIy5cd2JblmWLrroIrW1ten5559PO89Xv/pVfe1rXxswnU50jBexuKVNzWHtPdIlyf5is2ZBQFP93jyPDJgkEjHpsS9Kf/2x/Xj5JdLFt0nekvyOC0BeWJbRnuMdqWJ5Y0ubtg0Wy1JjF8sbaiq1eKafWBaMK/GE0fb9Ye042CljJJdTWjynTItmlRAjCAAAJoRJEefyyU9+Ur/73e/0/PPPq7q6Ou086TrRa2pqKKJjXDjaHtUru9rVGbW7zxfMLNGymjJyKYF8ePkn0m9vkKy4NGuVdPkvpPL0//YAmDiOhyP2RT+b27Q+GcsS7I4PmG9q71iW2gqtnEMsCyaOYGdcG/YEdSxoRxKVFbnUUBfQtHKaOgAAwPg24Yvo1113nR5++GE9++yzqqury/p1ZKJjPIgnjLY0h7T7sN19XuKzu8+rAnxRAfJqz5+k+66UOo9LpdOly34u1b4+36MCkCPdsYS2HAj26jJvVcuJrgHz+dxOrZhT3ifLnFgWTHTGGLUc69bm5rAiyXjBmqoiragtU5GXiBcAADA+TdgiujFG//AP/6AHH3xQTz/9tBYtWjSs11NER6E7Hopq3a6gOroTkqR504u1Ym6ZPC5O/wYKQuteOx/98GbJ5ZXe+Z/S6g/ke1QAhsmyjJqOd6RyzDfsyxzLsmBaqZ1jXlOuhppKLZnl599lTFrRuKVtLeFUs4fb5dCymjLNn8GBJAAAMP5M2CL6pz71Kf3iF7/Qww8/rMWLF6eml5eXq7i4eMjXU0RHoUpYRltbwtp50L4QWbHXqdXzA5pR4cvzyAAMEAlLD10jbfuN/fgN10p/+2+Sa9xfrxuYsI6HI31yzDPFslSV2bEsq6qTsSzVFSovJpYF6K81HNOGpqBaO+z/jspL3GqoC2iKn/9eAADA+DFhi+iZuhvuuOMOfehDHxry9RTRUYhawzGt29WuUJfdfV5bVaT6eVx8DCholiU9c5P0zDftxwveLv39T6TiyvyOC0AylqVdjS3txLIAo8gYoz1HurSlOZw6i2Pe9GItry3jcywAABgXJmwR/VRRREchsSyjV/d36LX9HTKSfB6nVtf5NWtKUb6HBiBbWx6SHvqkFOuUpiyQ1t4rTTst36MCJo3+sSyNLXYsS9waJJaltkKrayq0eCaxLEAuRGKWNu8NqflYtyTJ63ZoRa1ftdOKOCgFAAAKGkX0DCiio1C0d8S0bldQ7Z32KbDVU31aOS8gn4cv88C4c3CjnZPe3iL5AtJ7/1c67dx8jwqYkIYby2LfKrWyplyBImImgNF0LBhVY1MwdXblVL9Hq+r8Ki/hvz0AAFCYKKJnQBEd+WYZox0HOrRtX4eMsTt1GuoCmjOV7nNgXAsfle67Ump+QZJD+tuvSWd9WqIDDxixnliW9b26zPe1po9lqe+JZam188yJZQHyw7KMdh3q1LZ9HUpYRg5JC2aVaEl1KWd+AACAgkMRPQOK6MinYFdcr+xsT12AaValTw11fhV5XXkeGYCciEel335WeuWn9uOVl0nv+r7k4SAZMBTLMtp9rCOVYd7Y0qZXD4bSxrIsnF7WJ8ecWBag8HRGEtq0N6QDJyKSpCKvUyvn+jV7io8DXAAAoGBQRM+AIjrywRijnQc7tbUlLMtIHpdDK+f5VVNFTiQw4Rgj/eXH0mP/JJmENGeNdNndUmBWvkcGFJRj4Ugqx3zDPvs+lDaWxZcslpcTywKMQ4daI9q4J6SOiB3xMr3cq1V1fpUVufM8MgAAAIroGVFEx1gLd8e1bldQJ0IxSdKMcq9WLwiomO5zYGLb/Yz0q6ukrlapbKZ0+S+k6jX5HhWQF92xhDbvb++TZZ4ulqXIY8eyrKq2Y1kaaio0p4JYFmC8S1hGr+3v0GsHOmQZyemQTptdqtPmlMrl5L9vAACQPxTRM6CIjrFijNHuw13a0hxSwpLcTodWzC3TvOkUA4BJ48Ru6Z610tFXJZdPuuhWadVl+R4VMKrsWJaw1jef7DBPF8vicEgLphHLAkwm4a64NuwJ6Uh7VJJU6nNpVZ1fMyp8eR4ZAACYrCiiZ0ARHWOhM5LQK7uCOhq0vyBUBTw6fX65SovoPgcmne6g9MDHpdd+Zz8+69PSOV+VnPw9wMRwNBTRhl4d5hv2DR7LsjrZYV5fTSwLMBkZY3TgREQb94bUHbUkSbOn+FQ/168SH/82AgCAsUURPQOK6BhNxhjtPdqlTXvDiieMXE5pea1f82fQfQ5MapYlPfV16bnv2I8XnSu993+kovL8jgsYpq5oQlsO2LEs61va1Njcpv1tmWNZ7A7zSjXUVmh2OdcBAXBSLGHp1X0d2nWwU0aSy+nQ0upSLZhZIicRLwAAYIxQRM+AIjpGS1c0ofW7gzrcZnefTynzaM2CgMqKuWgSgKRN90sPXyvFu6Wq06S190pTF+R7VEBavWNZerrMXz0UUiJNLMvCnliWZJf5aTOIZQGQnfbOmBqbQqnrB/mLXWqoC6gq4M3zyAAAwGRAET0DiujINWOMWo51a+OekGIJI6dDWlZTpoWzSui4AzDQ/leke6+QQgfsTvT33SkteHu+RwXoaCiSLJa3qrGlTRtb2hWKDIxlmeb39ckxX1ldLj+xLABOgTFGzUe7tbk5pGjc/npaW1WkFXP98nk4IAcAAEYPRfQMKKIjl7qjCTU2hXSwNSJJqih1a82CcgVK6D4HMIjQYemXV0j7/io5nNJ535Bef43d0guMga5oQpsPtKuxV5d5pliWlXPsDvNV1RXEsgAYVdG4pS3NYe05Yv898rgcWl5bpnnTiUYEAACjgyJ6BhTRkSv7j3ersSmoaNzI4ZCWzCnVaXNK5eQDPoBsxCPSo5+RGu+2Hzd8QHrnLZLbl99xYcKxLKNdR8N2hnlLmzYMEsuyaHpZqljeUFOhxTP8chPLAmCMnQhF1dgUUnunfTZMZalbq+oCqizjrBcAAJBbFNEzoIiOUxWJWdq4J6h9x+3u80CJW2sWBFRRyod6AMNkjPTiD6Q/fFkyllT9N9JlP5f8M/I9MoxjR0Ldamxu04Z9bVnHsqyuqVA9sSwACohljJoOd2lrS1jxhP2Vdf6MYi2tKZPXzcE9AACQGxTRM6CIjlNxsDWi9buDisQsOSSdNqdUS+aUyumk+xzAKdj5hPSrj0iRdikwR7r8F9LshnyPCuNAtrEsxR6X6ueUpzrMG2oqNItYFgDjQHc0oU17w9p3vFuS5PM4VT+3TNVT+RsGAABOHUX0DCiiYyRicUsb94bUfNT+8F5W5NKaheWawimlAHLl2E7pnsul4zskd7H07tukFe/N96hQQPrHsjQ2t2n74cyxLHaxvFINNRU6bUYZsSwAxrWj7VE1NgUV7k5IkqoCHq2qCyhQzLWIAADAyFFEz4AiOobrcJvdfd4VtSRJC2eVaFlNmVx0nwPIte526f6rpZ2P24/f/DnpbV+SnBQ/J6OeWJaeDvON+9oVThPLMr0nliXZZV4/h1gWABOTZRntONip7fvDSljJg4azSrR4TpncLj6bAwCA4aOIngFFdGQrnrC0eW9YTUfs0+JLfS6dviCgqoA3zyMDMKFZCemJr0p//r79ePGF0iX/Lfn8eR0WRldXNKFN+9vV2NKavPhne+ZYlupyrU5GsqwilgXAJNTRndDGvSEdarWvUVTsdWrlPL9mVfr4ewgAAIaFInoGFNGRjWPBqNbtCqozYp8uOn9GsZbX+ulwATB2NtwrPfJpKRGRpi2V1t4jTanL96iQA5ZltPNoWI3NbVrf0qYNLZljWU6b7k8Vy4llAYC+Dp7o1sY9IXUmzxidWeHVynkBlRa58jwyAAAwXlBEz4AiOgaTsIy2NIe161CnJLur5fQFAU0v9+V5ZAAmpX0vS/deIYUPScWV0qU/lerOzveoMExHgt2pYvlwYllWVleozEfWLwAMJp4w2r6/QzsOdsgYyemQllSXauGsUuIXAQDAkCiiZ0ARHZmcCNnd5z0XK5o7rUj1c/3yuOn4A5BHwQPSve+XDqyXHC7pgpukMz5qtymj4HRG49q0r10b9p28+OeB9u4B8/WPZWmordCs8uI8jBgAJoZQV1wbmkI6GoxKksqKXFpV56cZBgAADIoiegYU0dFfwjJ6dV9Yrx2wu8+LPE6tnh/QzEo+cAMoELEuO9pl03324zUfli64WXJzjYZ8SlhGO4+EtaHFjmVpbGnTa0PEsvR0mS+aTiwLAOSaMUb7jndr096wIjE74qV6qk8r5vpV7CXiBQAADEQRPQOK6OitrSOmdTuDCnbZp9XXVBVp5Ty/vHSfAyg0xkh/+p590VEZae4b7XiX0qp8j2zSOBzstrvLkx3mm/anj2WZEUjGstRUqqGmQvXV5cSyAMAYisUtbdsX1q5D9gWa3S6HllaXaf7MYjk5kwsAAPRCET0DiuiQ7Iu6bT/Qoe377exEr9uh1fMDmj2lKN9DA4DBvfZ76f6rpWhIKq+V1v5Cmlmf71FNOD2xLKmieUubDqaJZSnxulQ/p1wNtRVanbwAKLEsAFAY2jpiamwKqTUckySVl7i1qs6vqX7O5AIAADaK6BlQREewM651u9rV1mF3D86e4lNDXUA+D93nAMaJo9uley6XTuyWPCXSe26Xll2c71GNWz2xLI0trWpsadP6ZjuWpV8qi5wO6bQZyViWZMH8tBl+LlwHAAXMGKM9R7q0pTmsWML+wz53erGW15Tx+R8AAFBEz4Qi+uRljNGOA53ati8sy0gel0Or6vyqnlokB6d1AhhvOk9I939Y2v20/fitX5TO/rzkpCAwlMPBbq1v7ukwb9Wmfe3qiCYGzDczUJTKMV9VXaGV1eUqJZYFAMalSMzSluaQ9h61zyryuh1aXuvX3Gl8FwAAYDKjiJ4BRfTJKdQV17pdwdSpnDMrvFo9P6AiLjAEYDxLxKU/fFl66Yf246UX2V3p3tL8jquAdETi2rTfjmXZMEQsy8rqcq2qsWNZGmoqNbOciC8AmGiOh6JqbAop2GmflTqlzKOGOr/KSz15HhkAAMgHiugZUESfXIwx2nWoU1ua7e5zt8uhlXP9qqXjBMBE8srPpEc/I1kxaUa9nZNeUZvvUY25hGW040hIjc1t2rAv+1iWhtoKLZpOLAsATBaWZbTrcKdebelQ3DJySJo/s0RLq0vlcXNGFwAAkwlF9Awook8eHd129/nxkN19Pr3c7j4v8dF9DmACan5R+uUHpI6jUkmVdNnPpLln5XtUo+pQe3evC39mF8vSUFOh+jnEsgAApK5IQpv2hrT/RESSVORxqn6eX3Om+Gi4AQBgkqCIngFF9Imv5+JBm/aGlbCMXE6H6ueWad70Yj4MA5jY2lqke98vHdooOd3Shd+R1nwo36PKid6xLI3JPPNDwYGxLKVel+qry9VQU5nqNCeWBQAwmMNtEW3YE1JHt30gdnq5Vyvn+eUv5oArAAATHUX0DCiiT2ydkYTW7w7qSHtUkjTV79GaBQGVFvEBGMAkEe2UHv6UtOVB+/HffFw67xuSqzCzXo0xau+K6WgoYt/CkZM/Jx8fbO/W7qPhjLEsq5Md5g01lVo4vYxYFgDAsCUsox0HOrR9f4csY/8bs2h2qRbPKeXfFQAAJjCK6BlQRJ+YjDFqPtqtjXtDiieMnA5peW2ZFswsofscwORjjPTct6Unv24/rjtbet9dUsmUMRtCZzQ+oBh+LEORPJbI7qPIrPKiVHf5KmJZAACjINwd18amkA4nm3JKfC6tmufXzEpfnkcGAABGA0X0DCiiTzzdUbv7/FCb/UG3sszuPuf0SwCT3rZHpQc/IUXDUuU8ae290vSlI15cLGHpeDiaLH53DyiG936cLpt8MOXFHk3z+zStzGff99ySjxfP9GtGgFgWAMDoM8boQGtEm/aE1BW1JEmzKn1aOc/P9ZUAAJhgKKJnQBF94jDGaP/xiBr3BBWL293nS6rLtGh2iZx0nwOA7fAW6Z61UtteyVsmvfd/pMUXpJ42xqitM5a2Q7z/4xMd0WGtusjjHFgYLyvqWyT3+1RV5pXPTVECAFBY4glLr+7r0M5DnTJGcjnt7xsLZ5bIScQLAAATAkX0DCiiTwyRmKXGpqAOnIhIkspL3HrdwnIFSug+BwDJvhBnT/G77dghrfjTP2hW68uy5NCDFR/WXa5LdDQc1bFhxKlIksvpUFWZN01x3Kdp/r4F8lKvi0gtAMC4F+yMq7EpqOOhmCTJX+xSQ11AVQFvnkcGAABOFUX0DCiij38HTnSrsSmkSMySwyEtTl7wh24QABNdNG7peEe/DvH+XePJnzv7xam4Fde/uH+mD7oflyT9JvEG3RD7hLplZ7xWlHjSFMUHRqtUlnj5ewsAmHSMMWo51q1Ne0OKxu2v0DVVRVpRW6YiL2dTAQAwXlFEz4Ai+vgVjVvauCeklmPdkuwOkNctLFdFqSfPIwOAkbMso7auWK8ieOas8dbO2LCWXexxaXrgZEG8qsynt4V/o7fu+racJq7OqSsUfPddqpxVR5wKAABZiMYtbW0Jq+lwlyTJ43JoWU2Z6mYUc/YVAADjEEX0DCiij0+HWiNavzuo7ph9YZ/TZpdoSXWZXHRDAihAxhh1RBP9Osa7+xTEjyUv0HksHFHcyv6fYrfToaosOsan+X0q9WWIuNrzvPTLK6WuE1LpdOnyu6Wav8nR1gMAMPG1hmNqbAqqrSMuSaoodauhLqDKMhp8AAAYTyiiZ0ARfXyJxS1tag5r7xG706OsyKU1CwKa4id/EMDYi8YtHUsTnZLucVcsMfQCe6ks8WQujPe6GGdFsSc3cSqte6R73i8d2SK5vNI7vyutvuLUlwsAwCRhjFHT4S5tbQmnri9SN6NYy2rK5HU78zw6AACQDYroGVBEHz+Otke1ble7uqJ29/mCmSVaVlMmt4vucwC5Y1lGrZ3RgQXxNFnjbcOMUyn1utJ2iPdEq/T8PLXUl58v25Gw9OAnpFcftR+/4Vrpb/9NcnGRZgAAstUdTWhzczgVO+l1O1QV8MrndsrrccrrdsrncSTvnal7zqoFACD/KKJnQBG98MUTRluaQ9qdzBks8dnd51UBus8BZMcYo3AknlXH+PGOqBLDjFPJ3DHet0ieMU6lkFiW9MxN0jPftB8veLv09z+RiivzOy4AAMaZo+1RbdgTVKgru7PRXE5H2uJ6pqK7x+Ugdx0AgByjiJ4BRfTCdjwU1bpdQXV02x8866YXa8XcMrldnA4JQIrEE6ks8b5F8e4BBfKeayhka0qpd9CieM/j8lzFqRSaLQ9JD31SinVKUxZIa++Vpp2W71EBADCuWJbRobaIuqOWInFL0VjPvenzeCTfwh1SsrPdkepy73tPtzsAAMNFET0DiuiFKWEZbW0Ja+fBTklSsdep1fMDmlHhy/PIAIy2hGV0oiOaVdZ4e9fw4lTKfO4hO8an+X2aUuqVh4N10sGN0r3vl9pbJF/A7khf9Lf5HhUAABOKMUbxRO+iuulVbLcGTI/GrVTm+nDR7Q4AwOAoomdAEb3wtIZjWrerPXXaY+20ItXP9XMxHmAcM8Yo1DtOZZDi+PFwRMNIU5HH5ciiY7xIVX6vSrzjIE6l0ISPSr/8gNTyoiSHnZF+1j9IfKEGACBvLMsoGrcUiVmKxk3y3jp5T7c7AAAjQhE9A4rohcOyjF7d36HX9nfISPJ57O7zWZV0nwOFqjuWyKpj/Ggookg8+zgVh0OaWuo9ebHNQYrk5cUeOqRGWzwq/faz0is/tR+vvFx61/ckT1F+xwUAALJCtzsAANnJtlZMix7yor0jpnW7gmrvjEuSqqf6tHJeQD4P3efAWEtYRsc7+hbDU7nj4YiOhk7mjQe748Natj8Zp1I1SMb49GScCtc+KCBur/Su70sz6qXH/knaeK90fId02d1SYFa+RwcAAIbgcDjkcTvkcTulLI+BD9nt3jO9X7d7wjLqjBh1RrJroKDbHQAwHtGJjjFlGaPX9nfo1f0dMkbyuh1qqAtozlS6G4FcMsYo2B3PqmP8RMfw4lS8LufJwniGjvHpfp+qynwq9rpGbyMxNnY/Ld13ldTdJpXNlC7/hVS9Jt+jAgAAeUa3OwBgIiDOJQOK6PkT7Ixr3a52tXXYnayzKn1qqPOriCIbkLXuWGLIonjP4+iw41T6FsOr/N4+RfLpyazxQLGbLyWTzYnd0j1rpaOvSi6fdNGt0qrL8j0qAAAwzoy023246HYHAGSLInoGFNHHnjFGOw92amtLWJaxLwq4cp5fNVVFFOIASfGEpRMdUR1JUwxP5Y8n70PDjVMpcg+ZMT7N79OUEuJUMITuoPTAx6TXHrMfv/EfpXf8q+TkQCgAABgddLsDAEbbhC2iP/vss/rWt76ldevW6eDBg3rwwQf17ne/O+vXU0QfW+HuuNbtCupEKCZJmlHu1eoFASIeMOEZYxTsiutouNsujmfoGD8Wjuh4R3RYHTZet3PIonjP4yIP/60hh6yE9OTXpedvsR8vOld67/9IReX5HRcAAEAS3e4AgOGYsBcW7ejo0KpVq/SRj3xEl1xySb6HM/60Nklb708+cNj/8vf83Odedr6D+j+f3XQjhyIxS7GopZXJaSU+l7whpxyN/dfb74PEcNbr6DdPxunJx5nWO6CDYJD1DnjPsh3PUOtNN28u1usYwbynut5c/66GmO5wZD/vsH5X/ZcvReN21niwO6Zgl33f3h23f+7q+dl+LmZZMsnl9HwuN8b+2Stpthya5ZPks1fhL/KovNijQLFX5cUelZd4FCjyqqLEk3zsVaDYo1KvSw5H/65xh+RISOqU1GVPCiv970LZTM/iPRvOfzeDTh/q95rL9ebmb9yQf7cmaleS0yWd86/SjOXSw9dKO/4g/c850tp7pakL8j06AAAAOZ0OFXldWceGjrTb3UiKxCxFYlJIiazWRbc7AIxf466IfsEFF+iCCy7I9zDGLysmdZ0Y9dU4ZF8Evs/lQruUqu0B45VXUlXyluKQVJK85VpMUnvyhnHqFA4UZj09+VwuDhQONr33gZQ3/4MUPixZcemFW+yLjnpLslv2SNbrcEsut+R0S05P3/sB05M/u/pPG2y6e+Ie/AAAABk5HA553A553M5+X2AzG2m3e8Iy6owYdUayu3aRQ0N3u/efTrc7AIyOcVdExykK1Eivu0Yn+2KlvueumV53mab3/NB3GUbSkbaI9hzuUsIYOR3S3OnFmlnh7VUeMf2WMZz1mr7Tsh77EOsddDzDmXew6Vmu16TZxpy8Z5mWNRrvWZplDfg95XC96fYB9XSUJDtH4glF45aiieR93FIs+VwsnlDcsiTTt352sm/ZpKb3lCWdDjtSxeNyyOuy7z1up7wuhzxOhzw901wOOR2OQbZ3OO/ZSKYP83c14DzWHK93uNs00tcUnMG2KfNs44Kv7OTP8U77Np450xTjXWmK8Gmn957mGXp6/9cPOLsEAAAUKrrdAWDymfBF9EgkokgkknocDAbzOJoC4CmWKubmfLFd0YTW7w7qcFtUcklT/B6tWRBQWdGE38UwxjqjcR0LRXU03N0nW7x/1vjRcGRYFxVyOqSqsqEzxqf5fSrzufmgWajSHYga7eJ9Tg549J+efC7dQa9M845kvRkP7AxjGfGo9OfvSzufsB8vOlc681q7YNz/9SM5MNoz3SSkRMzufO99S02LZZje+7mYlIj3nd5bz3R1a8w5XJmL82m75zN14fefnqnw3/tnrp0AAMBootsdAMa/CV/hvPHGG/W1r30t38OYsIwxajnWrY17Qool7O7zZTVlWjirhCIjshZLWDoejiaL35mL48fCUYUj8WEtu7zYM2RRfJrfp8oSLx8GJ4K02ed5Gcnk8q5bpRdukx7/irTuLunIq9JlP5fKpud7ZIPrKc4PKLr3LrinKcYn0hTn+0zPVLjvtaxETH0PFCSkREJKRDIOd9Q4nBm68NMU54cs3GcZn9NT0He4iNEBACANut0BoLA4jBnJdagLg8Ph0IMPPqh3v/vdGedJ14leU1Mz5BVXMbTuaEKNTSEdbLXf34pSt9YsKFegZMIfm0EWjDFq64yl7RDv//hER3RYyy7yODXdX5Qqhlf5vZpWVtS3SO73qarMK5+bDktgzOx8QvrVR6RIuxSYI13+C2l2Q75HVbisxBBd9L2L7oMV9LM5ANBv2Sa7L8mjz5Eh+uYUi/ODxuf0+pkv9ACASWyk3e7DRbc7gEIWDAZVXl4+ZK14wlc7fT6ffD5fvocx4ew/3q3GpqCicTsvesmcUp02pzSZ/4yJrCMST3aFZy6K9zw/nDgVl9OhqjLvwC7xMp+m+fsWyEu9LjoZgEK08BzpY09K91wuHd8h/eR86d23SSvem++RFSanKxmlkofPKcbKEH0zWBE+w/S00TkZlpuKzEkNJDk9lnGooypddE7awn228Tm9pqeL1OnThU8OPgAgv0a72z0StxSn2x3ABDHuiujhcFg7d+5MPW5qalJjY6OmTJmi2traPI5scojELG3cE9S+43b3eaDErdctCKi81DPEK1HIonFLxzv6FcP7F8iTP3dGh9e9WFHiSVMUHxitUlnilZNuA2D8q1ooffQJ6ddX253p939EOrxVetuXJCdFw4LhcEour30b63/CjdWrC3+wrvpspg8Wq9PvNT3Te8foDCjqj6GeHPys4nOy6dAfpHO//8VtHU668AEAwzbSbPee4jrZ7gDGs3EX5/L000/rbW9724DpV111le68884hX59tiz4GOtga0frdQUVilhySTptTqiVzSil8FijLMmrrivUqgmfOGm/tHF4HYLHHpemBgR3jVf2K5FOJUwEmLyshPfGv0p9vtR8vvlC65L8lnz+/48Lk1jsHPyfxOYPE6qTr0DfZFQJGn2OQ+JxsL247zPgccvABAFkYabf7SNDtDkDKvlY87orop8BF6ZkAACdASURBVIoi+vDF4pY27g2p+Wi3JMlf7NKaBeWqLKP7fKwZY9QRTfQphh9L0y3eMz1uZf+ft9vpUFUWHePT/D6V+sbdSSwA8qXxHuk3n5YSUWnaUmntPdKUunyPCsgPq18BP1WET5NfP6z4nFi/C9umWXbB5OBr6OJ82q76IS5umzY+x9NvXhcxOgAwAfXudrfve3e/k+0OYHAU0TOgiD48h9vs7vOuqN05tXBWiZbVlPEPQY5F41bGYnj/x12x4X0JrizxZC6M97oYZ0Wxh7MKAIyOlr9Kv7xCCh+WiiulS38q1Z2d71EBk0sqRmc4XfX9I3IGK9yni89Jl4OfZz0xOv0jboaM1clU6E/TuZ9p2U7OzgOAQkC3O4DeKKJnQBE9O/GEpc17w2o60iVJKvW5dPqCgKoC3jyPbPywLKPWzujAgniarPG2YcaplHpdaTvEexfHq/xeTS31yeum4wpAAQgekO59v3RgvV3EuuAm6W8+lu9RARgLvWN0hozPyeLitOk699MuNzYwBz+fHM5hFOezyLYfrAu//3KJ0QGAUzJYt3uf+16Fd7rdgfGBInoGFNGHdiwY1bpdQXVG7I7n+TOKtbzWL7eLP8zGGIUj8YzxKb2nHQtHlRhmnErmovjJn6vKiFMBME7FuqRH/kHa9Cv78ZoPSxfcLLk5QAtglBiT7MIfrAgfy3BB2gzF+Yxd+GlidQomRseRuTg/IPamfzE/y8J92uX0FPH5HgFgcqHbHRg/sq0VU4lDSjxhtLUlrF2HOiVJxV6n1iwo17TyiV/ciMQTOhaOpukY7x5QMO+ODe+iYFNLvani92BF8nLiVABMdJ5i6ZIfSzOWS098TVp3h3TsNTvepbQq36MDMBE5HMkIF5ck39iv30rYhfS0WfZDxecMNX2IAwB9YnRM8vmYpK6xfx/SXYA2J/E5WVz0lhx8AHngcDjkcTvkcTulouxeM5xu90gy790YKWEZdUaMOiPZ1SrodgdGhk50SJJOhOzu83C33S0zd3qx6mvL7D/441SiJ04lU4xKr8ftXcOLUynzuYfsGJ/m92lKqVce1/h9DwFg1Gx/TPr1R6VoSCqvtS84OnNFvkcFABNHKgd/sJicIeJz0l3cNlPhvv/rCyZGxzV4cT5td/4pxuc4PXbx3uFMHsjh+wCA3DPGKJYwitLtDpwS4lwyoIjeV8Iy2rYvrB0H7O7zIo9Tq+cHNLMyD506WTDGKNQ7TiVDcfxYOKLjHcOLU/G4HEMWxXuyxku8nMQBAKfsyKvSPZdLrU2Sp1R6z+3SsovyPSoAwKlKm4M/wuJ81vE5veJ6CqWA31uqqO6U5Oj7uHexfVjzJc+0kENyOiX1mjZgvt7LzbC+0Z4v4zb1PtjgIP4HGEUj7XYfLrrdMZ5QRM+AIvpJbR0xrdsZVLDLPtWzpqpIK+f583Ihyu5Y4mSm+CAd40dDEUXi2cepOBx2nEpVpuJ4r+nlxR6OlALAWOs8If3qQ1LTM/bjt/6zdPYNyWIAAAAjkOrAz9Qt3z9SZ7jxOYNc3LZgcvDHsZEcROg/Ld1BBA1R4B/JfH0OXozxQQkOOGAM9O52t4vqJ4vrdLtjoqCInsFkL6IfDB/U0y1P63BbVEfao5IccrscqplarIoyjyTJkfyfJDkcJ3/u/zjdc71fbxmjjkhCoe64gt1x+74rrmB3zH7cFVN7lz2tK5aQzMllGfX+Q+g4eZ/cW0s8LpUXexUo8ai82KuK4uR9iUcVJV6VF3lUWeJVoNgjl9Npj6jXH9fej/v/nHZb+8/j6LWcbN6rYb5+wDz93tv+25Lud5NxW9PNk2asGX+3aZZlDzfDPPyjBmAoibj0hy9JL91uP156kd2V7i3N77gAABiungvZGutkR37PBW57T1OaaZnmsyxJQ8zXMy01n9Xv1m/amMyX5nU9240h9ZRqjE6eW2Fk+pxnYSTJ4ZRxOGWSxXfjcMj0Krwbh0OSU0YnpxuHkj8nn3M4kvPa88nRM78jVby31+U6+Vo5UvOm1qvey1FqOfZ6epbXd9mpn+VMfuVPztN7eb3HIkefZdtlhOQ2pN6PXssxyVKDw6He5S8j0+s97vtz799Bz+MB85jevxMzYP6+v8N+6zr54ozLTztPhvH0HnefeQbb3nTzDLa9Q2xT7+ctYyluGcUTlmIJSwlLiics+2YZJRKWYpZRIjlP3DK9tjPNMntP71PCNHI67eK7K3lMy+V02PcOyeVyyOnoO10DljvwPcu4vdm8rwW2H6VdT4Zl/O3cv9VlSy7TZMSFRZHW5iM79I2/fGPgEwfGfizyJG8BqXgEL29P3loSksLJGwpa/4L/cIvwo3LAYYjX98zfexn9xzfYwaQBrx/s4Eo28wzyXqV9/WDbmmaenuWP9PXZHMBJrWME73W279Wpvj6r9+oU3+vhHOw61dcPua391pXr92qofdfhcEj1F0rFxXL85cfSnj/Iccfb5XjbP0ml0/uMo0ffr5CDTOvXK5BunnTS9Rj0f20282RcZ9pJQ491xOvMYn3ZLj/b16Uz0t/RSJd/Kr+jbNaZy+Xnct8c7eWfyr6ZzTrzsu+P9L+H0d73R/j341SWn9W+fyq/oxHuKyPdB3L5O8p2+dkUYLItfvSfv38xpk9hJJt5hlvIG6pIl8XyMxecrJM/G2MPJPn8gHUZpZ6TMmxrahkDxziwaGV61pbmd3Ly3U9th+m91p6xpFlO8vU9P/eefnJdqTl1csT9lw8AY+u0KaflewgFjyL6JONTuZaXnS2H06i8xK0ir326fMKyT7uJxBPJm6VILKFoIpHMw7IUjScUSST6/KNv6/ezo/d0I4/LKa/Lviq1x+XodXPK7bI74T1Oh1xOR+YPc8M94tp/nhEcsR3Jh99TfX3/8aX78DySI4+FIt0H6eQTAGCbMSX5Q6f0wr/kdSgAAADo3QjRuwGjZ0q/6eppzjB9GzJ6PXJI/Z5RapmONPNLSvva/s+ne62j3//3XU7vbck0zt4j7TXdMXCZGvDaDNuS5rX915N2Wwa85xmWn+G1GbdlwDJ7NcD0a4BzJM8GSE1PPk410KTW4+zXPNV7npP3qTac5AWYHQ7nyUYgh7PvGJJnLPQsz5JkrOSZCkay5JAxDllGsiz7jIWEcciyJGOSZzYoeUZGaoudvbbcmTqz4eQ0h1wuV7Lb3XnyZ5dLbqdTbrdTbqdTLpdDHqdTbpfTfq+HaPbqeS9Hq0Eq3fL7P9d/+XXldcLgKKJPMtNL6vTm8v+nXcdD2n+kK5U1HuqOD2s5/iJ3hgtv9n08pcQrt4tc20IwnA6W4Xaf9D9g0XtZ/ecfbCxZvX6wTpn+BzWGe+rVCA7gjMWpW9n+3oacJ8v3Yzjv1UhO/xvRezWC92MsuqiGux9nfD8He6/SrWMYB96G/V6lW8dw973B3qts3ut4VGrdLcW67VN5A7PlKJmq/tJ1qKeTLlaq/2vTLSub1yUnju7y08hqm7Jc/ki36VTWOdLlp1vHaG9T1uvMMr5spPvCKW3TCPeF0d6mdPPl8r+B4YxtpK/L5X/budym0f5vIOM6Rvi6EW/7GGzTqe4vGQsg/YskWZw92b+Akm75GYsko3SW2aDzDOMMxSG3N8PyhyoKpTvjcszekwLeB7J5T7L9N6Cg9I4RUvI+m4ihVGTSIPOlljuM+fpEMY1kvl6PU/MNsV1Zz2fSvoXjzimVm4ykYV7HouclvV5m9cQlpe57RyolC/JOp32gwGHfO5w99y45nA450l7Lof81H6Qhr/lwKtde8Facyps5KVBEn2QOtXfrW0+8mvY5r9s5ZFG853GRxzXGI8ep6v8BEgAKWrRDeuhT0taHpP0HpdLpkrdE8pQm70vszHRPca+fS/rN03/e/s+XSE7+PQMAAJgQegqN4vPdkNIebDDKyXUcspmvz0GJLA545OE6DiY5ze55z8yZer5XZd2o73GK8XDN6do3Sv535nsUBY0i+iSzcHqZPvnWBQOL436f/D73+DzaDACYeLyl0vvulJ79tvT0N6SOI1LHKKzHXTR4kb1nuqd4+IV6t3cUBgwAAACcolSnMzJJVcd6rrcwxBkNxkooFk/eYnHF4pZisYTiiXjyPpG8t5SI248tK9HTuy6HsZL97FZymmXfTM/PJjXd5TByO43cTtn3Dvtnl8PI5TT2ffLmdJxc5smzFNIc3CgeeOYv+nKYbK+0MkFke8VVAABQIMJHpfBhKdZpd6jHOqVopxTr6Hef6fn+0zs1JqewOt39iuyZiu79iu+e4qEL9Z5iiQPfAAAAwLiVsIx9DcKYfZ3CaMwk762+93GjSMy+XuFIqrgOSV6PU163Qz63U16Ps9+9Q4Fit8pLPTnfxvEg21oxnegAAKCwlU2zb7lijBTrSl90j3VlUYjP9HzysZW8zogVlyLt9i3nHL0K71l00mcqyqddRikxNwAAAMAoczkdKva6VOzN7rO3MUaxhF14t4vqJ4vrfe9NqgAfT9hXnorELEViUihDtsz8mcVaNUmL6NmiiA4AACYXh8MuHHtLpNKq3C8/Hs2uO37Ijvk00+PdyZWYZNF/NDJuJLl82efKZxtz0xOJ4/LSRQ8AAAAMk8PhkNftkNftVFlRdq/Jtts9UEyJeCi8QwAAALnk9tq34srcL9tKDKP43nPflX2hvifmJhGRuiJSV2vut8HhGmZBfpiFegr0AAAAgKThd7sjM4roAAAA44XTJfn89i3XjLE73UecN9+ROSYn2ilZseR6ElIkaN9yztGr632EhfjBsuuJuQEAAAAmJYroAAAAsDu4PcX2TVNzv/xELEcXhu3Jru81T7wruZJeMTedud+EtDE3w8qmH+R5Ym4AAACAgkURHQAAAKPP5ZGKK+xbrllWr5z5kV4YNt30ZBSOsez15DXmpnjkhXp3seR05n7MAAAAwCRBER0AAADjm9Mp+crsW64ZI8UjwyzED6NQPyYxN+rXNZ9FjM1wCvUuvlIAAABgYuMTLwAAAJCJwyF5iuxbyZTcLz8R61VYH2nHfIbpqZgbnezUH5WYG+8ILgzbu8N+kEK920fMDQAAAPKOIjoAAACQLy6P5CqXispzv+x0MTexrtwV6lMxN1H71t2W+21wOId5AdjBuuf7ReJ4Soi5AQAAQFYoogMAAAATUb5jbvoU7IdZqE9Ek+uxpGjIvo0Gd/EICvLZxNyU2AdIAAAAMCFQRAcAAAAwPKMecxMfRt58V6+fsyjUx3pl2sS7krE3x3O/DU7PKRbiibkBAAAoFBTRAQAAABQWl3t0Y27iXSO8MGzX0POYRHI9Mam73b7lWk/MjWcknfRDPE/MDQAAwAAU0QEAAABMHk6nXTD2lkqalttlG2NH0QwZYzPE85micBKR5Hp6xdx05HYTJKWPuekdVTOsyJt+zxNzAwAAxiGK6AAAAACQCw6HHbXi9kkarZibYV4AdtDnO/vO2yOvMTenUKh3FxFzAwAARgVFdAAAAAAYD1xuyRWQigK5X7YxQ8TVDOPCsHmNuSkZRvG9OHPHfLplOF25HzMAABgXKKIDAAAAwGTncNjFYm+JVFqV++XHo6fQMT/E9D4xN2H7NioxN0VZ5soXS063XdR3OO3iu8Npv8c90zLeeuZxDfF8mpvTNcx1ZFrPEMsYznoAAJggKKIDAAAAAEaX22vfiitzv2wr0StPvjPHhfpOScZeT7zbvnWdyP02TFSnVKzP9kCAM816hiry93reOYKxZXXrt4wB6xmFdQxYT7YHVTIdtBlkGf3XAwATHEV0AAAAAMD45XTZETdjGnMzRCHeWHZx31hpbibDdMuOvRn0+TSvH7CebF6faWyDvN5KKHVAIev3L/laxXP/u0FhyarYP5IzLEZyMGEEBxLSHkwZahm5Omgz1DJGcJbJqB4c4qAJJieK6AAAAAAApDPaMTfjjTFZFOl7F+JHcCDByuZAQv9lpFvPEMvIaj39nx/uAQtLsoazHf3XM4z3Ie1Bm2xeP8htWPvGCF6DcWqwsyyyPaAwWpFVgx1QyXJ8o3pApdc8Iz6gMkoHbpwe+4wxZEQRHQAAAAAADC3VherM90gwFtIV4Yd95kM2t0HOfhjuwYSCPnBzKgdUsnkfTuGAyrDOMuk5myV5wejEaOx8GHNv+JR0/o35HkVBo4gOAAAAAACAvnry0uXK90gw2oZ9EGGExfqRHFQZqwM31ggOWIzaQZtTPQvGZI4Uy3TAxMHB0aFQRAcAAAAAAAAmKw6YTB6ZYrmc/O6HQhEdAAAAAAAAACY6YrlGjHcMAAAAAAAAAIAMKKIDAAAAAAAAAJABRXQAAAAAAAAAADKgiA4AAAAAAAAAQAYU0QEAAAAAAAAAyIAiOgAAAAAAAAAAGVBEBwAAAAAAAAAgA4roAAAAAAAAAABkQBEdAAAAAAAAAIAMKKIDAAAAAAAAAJABRXQAAAAAAAAAADKgiA4AAAAAAAAAQAYU0QEAAAAAAAAAyIAiOgAAAAAAAAAAGVBEBwAAAAAAAAAgA3e+BzDWjDGSpGAwmOeRAAAAAAAAAADypadG3FMzzmTSFdFDoZAkqaamJs8jAQAAAAAAAADkWygUUnl5ecbnHWaoMvsEY1mWDhw4IL/fL4fDke/hYAIJBoOqqalRS0uLAoFAvocDDIr9FeMJ+yvGE/ZXjCfsrxhP2F8xnrC/YjyZ7PurMUahUEizZ8+W05k5+XzSdaI7nU5VV1fnexiYwAKBwKT8o4Pxif0V4wn7K8YT9leMJ+yvGE/YXzGesL9iPJnM++tgHeg9uLAoAAAAAAAAAAAZUEQHAAAAAAAAACADiuhAjvh8Pv3rv/6rfD5fvocCDIn9FeMJ+yvGE/ZXjCfsrxhP2F8xnrC/Yjxhf83OpLuwKAAAAAAAAAAA2aITHQAAAAAAAACADCiiAwAAAAAAAACQAUV0AAAAAAAAAAAyoIgODGH//v36wAc+oKlTp6q4uFj19fV6+eWXU88bY/Qv//IvmjVrloqLi3XOOedox44dfZZx4sQJXXHFFQoEAqqoqNDVV1+tcDg81puCCS6RSOgrX/mK6urqVFxcrAULFujf//3f1fvSF+yvyJdnn31W73rXuzR79mw5HA499NBDfZ7P1b65ceNGvfnNb1ZRUZFqamp08803j/amYQIabH+NxWL6whe+oPr6epWWlmr27Nn64Ac/qAMHDvRZBvsrxspQf197u+aaa+RwOPTd7363z3T2V4yVbPbXbdu26aKLLlJ5eblKS0t1xhlnqLm5OfV8d3e3rr32Wk2dOlVlZWV673vfq8OHD/dZRnNzsy688EKVlJRo+vTpuuGGGxSPx0d78zCBDLWvhsNhXXfddaqurlZxcbGWLVum22+/vc887KsYKzfeeKPOOOMM+f1+TZ8+Xe9+97u1ffv2PvPkan98+umndfrpp8vn82nhwoW68847R3vzCgZFdGAQra2teuMb3yiPx6Pf/e532rp1q77zne+osrIyNc/NN9+s73//+7r99tv10ksvqbS0VOedd566u7tT81xxxRXasmWLHn/8cT366KN69tln9fGPfzwfm4QJ7KabbtIPf/hD/dd//Ze2bdumm266STfffLNuvfXW1Dzsr8iXjo4OrVq1Srfddlva53OxbwaDQZ177rmaO3eu1q1bp29961v66le/qh/96Eejvn2YWAbbXzs7O/XKK6/oK1/5il555RU98MAD2r59uy666KI+87G/YqwM9fe1x4MPPqgXX3xRs2fPHvAc+yvGylD7665du/SmN71JS5Ys0dNPP62NGzfqK1/5ioqKilLzfOYzn9FvfvMb/epXv9IzzzyjAwcO6JJLLkk9n0gkdOGFFyoajerPf/6z7rrrLt155536l3/5l1HfPkwcQ+2r/+///T899thj+vnPf65t27bp+uuv13XXXadHHnkkNQ/7KsbKM888o2uvvVYvvviiHn/8ccViMZ177rnq6OhIzZOL/bGpqUkXXnih3va2t6mxsVHXX3+9PvrRj+r3v//9mG5v3hgAGX3hC18wb3rTmzI+b1mWmTlzpvnWt76VmtbW1mZ8Pp+55557jDHGbN261Ugyf/3rX1Pz/O53vzMOh8Ps379/9AaPSefCCy80H/nIR/pMu+SSS8wVV1xhjGF/ReGQZB588MHU41ztmz/4wQ9MZWWliUQiqXm+8IUvmMWLF4/yFmEi67+/pvOXv/zFSDJ79+41xrC/In8y7a/79u0zc+bMMZs3bzZz5841//mf/5l6jv0V+ZJuf73sssvMBz7wgYyvaWtrMx6Px/zqV79KTdu2bZuRZF544QVjjDG//e1vjdPpNIcOHUrN88Mf/tAEAoE++zCQrXT76vLly82//du/9Zl2+umnmy996UvGGPZV5NeRI0eMJPPMM88YY3K3P37+8583y5cv77Ouyy67zJx33nmjvUkFgU50YBCPPPKIXve61+l973ufpk+frtWrV+vHP/5x6vmmpiYdOnRI55xzTmpaeXm5Xv/61+uFF16QJL3wwguqqKjQ6173utQ855xzjpxOp1566aWx2xhMeGeddZb++Mc/6rXXXpMkbdiwQc8//7wuuOACSeyvKFy52jdfeOEFnX322fJ6val5zjvvPG3fvl2tra1jtDWYjNrb2+VwOFRRUSGJ/RWFxbIsXXnllbrhhhu0fPnyAc+zv6JQWJal//u//9Npp52m8847T9OnT9frX//6PjEa69atUywW6/OZYcmSJaqtre3zmaG+vl4zZsxIzXPeeecpGAxqy5YtY7Y9mNjOOussPfLII9q/f7+MMXrqqaf02muv6dxzz5XEvor8am9vlyRNmTJFUu72xxdeeKHPMnrm6VnGREcRHRjE7t279cMf/lCLFi3S73//e33yk5/Upz/9ad11112SpEOHDklSnz8yPY97njt06JCmT5/e53m3260pU6ak5gFy4Z/+6Z90+eWXa8mSJfJ4PFq9erWuv/56XXHFFZLYX1G4crVvHjp0KO0yeq8DyLXu7m594Qtf0Nq1axUIBCSxv6Kw3HTTTXK73fr0pz+d9nn2VxSKI0eOKBwO65vf/KbOP/98/eEPf9B73vMeXXLJJXrmmWck2fub1+tNHbTs0f8zA/srRtutt96qZcuWqbq6Wl6vV+eff75uu+02nX322ZLYV5E/lmXp+uuv1xvf+EatWLFCUu72x0zzBINBdXV1jcbmFBR3vgcAFDLLsvS6171O3/jGNyRJq1ev1ubNm3X77bfrqquuyvPogL7uu+8+3X333frFL36h5cuXpzLKZs+ezf4KAKMgFovp0ksvlTFGP/zhD/M9HGCAdevW6Xvf+55eeeUVORyOfA8HGJRlWZKkiy++WJ/5zGckSQ0NDfrzn/+s22+/XW95y1vyOTygj1tvvVUvvviiHnnkEc2dO1fPPvusrr32Ws2ePXtApy4wlq699lpt3rxZzz//fL6HMuHQiQ4MYtasWVq2bFmfaUuXLk1dHX7mzJmSNOCKxocPH049N3PmTB05cqTP8/F4XCdOnEjNA+TCDTfckOpGr6+v15VXXqnPfOYzuvHGGyWxv6Jw5WrfnDlzZtpl9F4HkCs9BfS9e/fq8ccfT3WhS+yvKBzPPfecjhw5otraWrndbrndbu3du1ef/exnNW/ePEnsrygcVVVVcrvdQ37/ikajamtr6zNP/88M7K8YTV1dXfrnf/5n3XLLLXrXu96llStX6rrrrtNll12mb3/725LYV5Ef1113nR599FE99dRTqq6uTk3P1f6YaZ5AIKDi4uJcb07BoYgODOKNb3yjtm/f3mfaa6+9prlz50qS6urqNHPmTP3xj39MPR8MBvXSSy/pzDPPlCSdeeaZamtr07p161LzPPnkk7IsS69//evHYCswWXR2dsrp7Ptn3eVypbp62F9RqHK1b5555pl69tlnFYvFUvM8/vjjWrx4sSorK8doazAZ9BTQd+zYoSeeeEJTp07t8zz7KwrFlVdeqY0bN6qxsTF1mz17tm644Qb9/ve/l8T+isLh9Xp1xhlnDPr9a82aNfJ4PH0+M2zfvl3Nzc19PjNs2rSpz8GhnoOd/Qv0wEjEYjHFYrFBv3uxr2IsGWN03XXX6cEHH9STTz6purq6Ps/nan8888wz+yyjZ56eZUx4eb6wKVDQ/vKXvxi3223+4z/+w+zYscPcfffdpqSkxPz85z9PzfPNb37TVFRUmIcffths3LjRXHzxxaaurs50dXWl5jn//PPN6tWrzUsvvWSef/55s2jRIrN27dp8bBImsKuuusrMmTPHPProo6apqck88MADpqqqynz+859PzcP+inwJhUJm/fr1Zv369UaSueWWW8z69evN3r17jTG52Tfb2trMjBkzzJVXXmk2b95s7r33XlNSUmL++7//e8y3F+PbYPtrNBo1F110kamurjaNjY3m4MGDqVskEkktg/0VY2Wov6/9zZ071/znf/5nn2nsrxgrQ+2vDzzwgPF4POZHP/qR2bFjh7n11luNy+Uyzz33XGoZ11xzjamtrTVPPvmkefnll82ZZ55pzjzzzNTz8XjcrFixwpx77rmmsbHRPPbYY2batGnmi1/84phvL8avofbVt7zlLWb58uXmqaeeMrt37zZ33HGHKSoqMj/4wQ9Sy2BfxVj55Cc/acrLy83TTz/d57NpZ2dnap5c7I+7d+82JSUl5oYbbjDbtm0zt912m3G5XOaxxx4b0+3NF4rowBB+85vfmBUrVhifz2eWLFlifvSjH/V53rIs85WvfMXMmDHD+Hw+8453vMNs3769zzzHjx83a9euNWVlZSYQCJgPf/jDJhQKjeVmYBIIBoPmH//xH01tba0pKioy8+fPN1/60pf6FHXYX5EvTz31lJE04HbVVVcZY3K3b27YsMG86U1vMj6fz8yZM8d885vfHKtNxAQy2P7a1NSU9jlJ5qmnnkotg/0VY2Wov6/9pSuis79irGSzv/7v//6vWbhwoSkqKjKrVq0yDz30UJ9ldHV1mU996lOmsrLSlJSUmPe85z3m4MGDfebZs2ePueCCC0xxcbGpqqoyn/3sZ00sFhuLTcQEMdS+evDgQfOhD33IzJ492xQVFZnFixeb73znO8ayrNQy2FcxVjJ9Nr3jjjtS8+Rqf3zqqadMQ0OD8Xq9Zv78+X3WMdE5jDFmtLrcAQAAAAAAAAAYz8hEBwAAAAAAAAAgA4roAAAAAAAAAABkQBEdAAAAAAAAAIAMKKIDAAAAAAAAAJABRXQAAAAAAAAAADKgiA4AAAAAAAAAQAYU0QEAAAAAAAAAyIAiOgAAAAAAAAAAGVBEBwAAAJAyb948ffe73833MAAAAICCQREdAAAAyJMPfehDeve73y1Jeutb36rrr79+zNZ95513qqKiYsD0v/71r/r4xz8+ZuMAAAAACp073wMAAAAAkDvRaFRer3fEr582bVoORwMAAACMf3SiAwAAAHn2oQ99SM8884y+973vyeFwyOFwaM+ePZKkzZs364ILLlBZWZlmzJihK6+8UseOHUu99q1vfauuu+46XX/99aqqqtJ5550nSbrllltUX1+v0tJS1dTU6FOf+pTC4bAk6emnn9aHP/xhtbe3p9b31a9+VdLAOJfm5mZdfPHFKisrUyAQ0KWXXqrDhw+nnv/qV7+qhoYG/exnP9O8efNUXl6uyy+/XKFQKDXP/fffr/r6ehUXF2vq1Kk655xz1NHRMUrvJgAAAJBbFNEBAACAPPve976nM888Ux/72Md08OBBHTx4UDU1NWpra9Pb3/52rV69Wi+//LIee+wxHT58WJdeemmf1991113yer3605/+pNtvv12S5HQ69f3vf19btmzRXXfdpSeffFKf//znJUlnnXWWvvvd7yoQCKTW97nPfW7AuCzL0sUXX6wTJ07omWee0eOPP67du3frsssu6zPfrl279NBDD+nRRx/Vo48+qmeeeUbf/OY3JUkHDx7U2rVr9ZGPfETbtm3T008/rUsuuUTGmNF4KwEAAICcI84FAAAAyLPy8nJ5vV6VlJRo5syZqen/9V//pdWrV+sb3/hGatpPfvIT1dTU6LXXXtNpp50mSVq0aJFuvvnmPsvsna8+b948ff3rX9c111yjH/zgB/J6vSovL5fD4eizvv7++Mc/atOmTWpqalJNTY0k6ac//amWL1+uv/71rzrjjDMk2cX2O++8U36/X5J05ZVX6o9//KP+4z/+QwcPHlQ8Htcll1yiuXPnSpLq6+tP4d0CAAAAxhad6AAAAECB2rBhg5566imVlZWlbkuWLJFkd3/3WLNmzYDXPvHEE3rHO96hOXPmyO/368orr9Tx48fV2dmZ9fq3bdummpqaVAFdkpYtW6aKigpt27YtNW3evHmpArokzZo1S0eOHJEkrVq1Su94xztUX1+v973vffrxj3+s1tbW7N8EAAAAIM8oogMAAAAFKhwO613vepcaGxv73Hbs2KGzzz47NV9paWmf1+3Zs0fvfOc7tXLlSv3617/WunXrdNttt0myLzyaax6Pp89jh8Mhy7IkSS6XS48//rh+97vfadmyZbr11lu1ePFiNTU15XwcAAAAwGigiA4AAAAUAK/Xq0Qi0Wfa6aefri1btmjevHlauHBhn1v/wnlv69atk2VZ+s53vqM3vOENOu2003TgwIEh19ff0qVL1dLSopaWltS0rVu3qq2tTcuWLct62xwOh974xjfqa1/7mtavXy+v16sHH3ww69cDAAAA+UQRHQAAACgA8+bN00svvaQ9e/bo2LFjsixL1157rU6cOKG1a9fqr3/9q3bt2qXf//73+vCHPzxoAXzhwoWKxWK69dZbtXv3bv3sZz9LXXC09/rC4bD++Mc/6tixY2ljXs455xzV19friiuu0CuvvKK//OUv+uAHP6i3vOUtet3rXpfVdr300kv6xje+oZdfflnNzc164IEHdPToUS1dunR4bxAAAACQJxTRAQAAgALwuc99Ti6XS8uWLdO0adPU3Nys2bNn609/+pMSiYTOPfdc1dfX6/rrr1dFRYWczswf5VetWqVbbrlFN910k1asWKG7775bN954Y595zjrrLF1zzTW67LLLNG3atAEXJpXsDvKHH35YlZWVOvvss3XOOedo/vz5+uUvf5n1dgUCAT377LP6u7/7O5122mn68pe/rO985zu64IILsn9zAAAAgDxyGGNMvgcBAAAAAAAAAEAhohMdAAAAAAAAAIAMKKIDAAAAAAAAAJABRXQAAAAAAAAAADKgiA4AAAAAAAAAQAYU0QEAAAAAAAAAyIAiOgAAAAAAAAAAGVBEBwAAAAAAAAAgA4roAAAAAAAAAABkQBEdAAAAAAAAAIAMKKIDAAAAAAAAAJABRXQAAAAAAAAAADKgiA4AAAAAAAAAQAb/Hw9RAXXUCRJ7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -80012,19 +80075,19 @@ { "cell_type": "code", "execution_count": 14, - "id": "6f85a65d", + "id": "0d7c0380", "metadata": { "execution": { - "iopub.execute_input": "2024-11-12T20:02:11.866371Z", - "iopub.status.busy": "2024-11-12T20:02:11.866149Z", - "iopub.status.idle": "2024-11-12T20:02:13.474323Z", - "shell.execute_reply": "2024-11-12T20:02:13.473627Z" + "iopub.execute_input": "2024-11-13T17:18:07.785764Z", + "iopub.status.busy": "2024-11-13T17:18:07.785367Z", + "iopub.status.idle": "2024-11-13T17:18:09.093220Z", + "shell.execute_reply": "2024-11-13T17:18:09.092477Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAF2CAYAAADnZcccAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWUElEQVR4nO3deXxU1f3/8ffMJDPZwxYSwhJCWEQURDQUBDciMaiItFXQVtR+lVoBFetCvxUE6Y9Wa0UqX61tFf22itYFccMFF1ABq4DWBWSJEJaENfs+c39/8M1IhNwzQybLJK/n4zGPB3PPZ849czN85jN37pzjsCzLEgAAAICw4WzpAQAAAAAIDkU8AAAAEGYo4gEAAIAwQxEPAAAAhBmKeAAAACDMUMQDAAAAYYYiHgAAAAgzFPEAAABAmKGIBwAAAMIMRTwAAACaRO/evXXNNdf477///vtyOBx6//33Q7YPh8Ohe+65J2T9hQuK+DC2ZMkSORwO/y0iIkLdu3fXNddco927d7f08AC0oKNzg90tlG+kofDxxx/rnnvuUWFhYUsPBWgTflgrREVFqX///po2bZoKCgpaengBe/3119tloW4noqUHgMabN2+e0tPTVVlZqbVr12rJkiX68MMP9eWXXyoqKqqlhwegBfzv//5vvftPPfWU3n777WO2Dxw4sDmHZfTxxx9r7ty5uuaaa9ShQ4eWHg7QZhxdK3z44Yd65JFH9Prrr+vLL79UTExMs43j7LPPVkVFhdxud1CPe/3117V48eLjFvIVFRWKiGh/JW37e8ZtUE5Ojs444wxJ0n/913+pS5cu+sMf/qDly5fr8ssvb+HRAWgJP/vZz+rdX7t2rd5+++1jtp8Iy7JUWVmp6OjoRvcFoHn8sFbo3Lmz/vSnP+nll1/W5MmTj4kvKytTbGxsyMfhdDpDfoKxvZ6w5HKaNmj06NGSpG3btkmSqqurNXv2bA0bNkyJiYmKjY3V6NGj9d5779V73Omnn66JEyfW23bqqafK4XDoiy++8G979tln5XA49M033zTxMwHQlJ544gmdf/756tq1qzwej04++WQ98sgjx8T17t1bF198sd58802dccYZio6O1l/+8hdJ0o4dOzR+/HjFxsaqa9euuvXWW/Xmm28e91KddevW6cILL1RiYqJiYmJ0zjnn6KOPPvK333PPPbr99tslSenp6f6v/7/77rsmOwZAe3X++edLknJzc3XNNdcoLi5O27Zt07hx4xQfH6+rrrpKkuTz+bRw4UINGjRIUVFRSk5O1tSpU3X48OF6/VmWpfnz56tHjx6KiYnReeedp6+++uqY/TZ0Tfy6des0btw4dezYUbGxsRo8eLAeeughSdI111yjxYsXS6p/qWCd410Tv2HDBuXk5CghIUFxcXEaM2aM1q5dWy+m7lKjjz76SDNnzlRSUpJiY2N12WWXaf/+/cEf1GbGmfg2qO4Nr2PHjpKk4uJi/e1vf9PkyZN1/fXXq6SkRH//+9+VnZ2tTz75RKeddpqkI8X/M8884+/n0KFD+uqrr+R0OrV69WoNHjxYkrR69WolJSW1uq/hAQTnkUce0aBBgzR+/HhFRETolVde0a9+9Sv5fD7ddNNN9WI3b96syZMna+rUqbr++us1YMAAlZWV6fzzz9fevXt18803KyUlRU8//fQxJwgk6d1331VOTo6GDRumOXPmyOl0+j9ErF69WpmZmZo4caK+/fZbPfPMM3rwwQfVpUsXSVJSUlKzHA+gPak70de5c2dJUm1trbKzszVq1Cj98Y9/9F9iM3XqVC1ZskTXXnutZsyYodzcXD388MPasGGDPvroI0VGRkqSZs+erfnz52vcuHEaN26c1q9fr7Fjx6q6uto4lrffflsXX3yxunXr5s8l33zzjV599VXdfPPNmjp1qvbs2XPcSwKP56uvvtLo0aOVkJCgO+64Q5GRkfrLX/6ic889Vx988IGGDx9eL3769Onq2LGj5syZo++++04LFy7UtGnT9OyzzwZ1TJudhbD1xBNPWJKsd955x9q/f7+Vl5dnPf/881ZSUpLl8XisvLw8y7Isq7a21qqqqqr32MOHD1vJycnWdddd59/2r3/9y5Jkff3115ZlWdby5cstj8djjR8/3rriiiv8cYMHD7Yuu+yyZniGAELlpptusn6Y8svLy4+Jy87Otvr06VNvW1pamiXJWrFiRb3tDzzwgCXJWrZsmX9bRUWFddJJJ1mSrPfee8+yLMvy+XxWv379rOzsbMvn89Xbf3p6unXBBRf4t91///2WJCs3N/dEnyqAoxyvVli6dKnVuXNnKzo62tq1a5c1ZcoUS5J111131Xvs6tWrLUnWP//5z3rbV6xYUW/7vn37LLfbbV100UX1/o//5je/sSRZU6ZM8W9777336uWH2tpaKz093UpLS7MOHz5cbz9H93W8HFZHkjVnzhz//QkTJlhut9vatm2bf9uePXus+Ph46+yzzz7m2GRlZdXb16233mq5XC6rsLDwuPtrLbicpg3IyspSUlKSevbsqZ/85CeKjY3V8uXL1aNHD0mSy+Xy/4DE5/Pp0KFDqq2t1RlnnKH169f7+6m7DGfVqlWSjpxxP/PMM3XBBRdo9erVkqTCwkJ9+eWX/lgA4evoa9qLiop04MABnXPOOdq+fbuKiorqxaanpys7O7vethUrVqh79+4aP368f1tUVJSuv/76enEbN27Uli1bdOWVV+rgwYM6cOCADhw4oLKyMo0ZM0arVq2Sz+drgmcIoM7RtcKkSZMUFxenl156Sd27d/fH3HjjjfUe869//UuJiYm64IIL/P9vDxw4oGHDhikuLs7/rds777yj6upqTZ8+vd5lLrfccotxXBs2bFBubq5uueWWY37MfnRfgfJ6vXrrrbc0YcIE9enTx7+9W7duuvLKK/Xhhx+quLi43mNuuOGGevsaPXq0vF6vduzYEfT+mxOX07QBixcvVv/+/VVUVKTHH39cq1atksfjqRfz5JNP6oEHHtCmTZtUU1Pj356enu7/d3Jysvr166fVq1dr6tSpWr16tc477zydffbZmj59urZv365vvvlGPp+PIh5oAz766CPNmTNHa9asUXl5eb22oqIiJSYm+u8fnSvq7NixQxkZGce80fbt27fe/S1btkiSpkyZ0uBYioqK/JcAAgi9ulohIiJCycnJGjBggJzO78/lRkRE+E/+1dmyZYuKiorUtWvX4/a5b98+SfIXu/369avXnpSUZPx/XXdZzymnnBLcE2rA/v37VV5ergEDBhzTNnDgQPl8PuXl5WnQoEH+7b169aoXVzfmH17339pQxLcBmZmZ/l+cT5gwQaNGjdKVV16pzZs3Ky4uTv/4xz90zTXXaMKECbr99tvVtWtXuVwuLViwwP+fp86oUaO0cuVKVVRU6LPPPtPs2bN1yimnqEOHDlq9erW++eYbxcXFaejQoS3xVAGEyLZt2zRmzBiddNJJ+tOf/qSePXvK7Xbr9ddf14MPPnjMmfHGzERT19f999/v/w3OD8XFxZ1w/wDMjq4Vjsfj8dQr6qUj/3e7du2qf/7zn8d9TFv5vYrL5TrudsuymnkkwaGIb2PqivPzzjtPDz/8sO666y49//zz6tOnj1588cV6Z8zmzJlzzONHjx6tJ554QkuXLpXX69XIkSPldDo1atQofxE/cuTIBl/wAMLDK6+8oqqqKi1fvrzeWajj/Si1IWlpafr6669lWVa93LJ169Z6cRkZGZKkhIQEZWVl2fZ5Il+fA2gaGRkZeuedd3TWWWfZfpBPS0uTdOTM/dGXsOzfv994NrsuP3z55Ze2+SHQ3JCUlKSYmBht3rz5mLZNmzbJ6XSqZ8+eAfXV2nFNfBt07rnnKjMzUwsXLlRlZaW/4D76E+W6deu0Zs2aYx5bd5nMH/7wBw0ePNj/dfro0aO1cuVKffrpp1xKA7QBx8sLRUVFeuKJJwLuIzs7W7t379by5cv92yorK/XXv/61XtywYcOUkZGhP/7xjyotLT2mn6Oncqubl5oVW4GWd/nll8vr9eree+89pq22ttb//zQrK0uRkZH685//XC+nLFy40LiP008/Xenp6Vq4cOEx/++P7ivQ3OByuTR27Fi9/PLL9aanLSgo0NNPP61Ro0YpISHBOK5wwJn4Nur222/XT3/6Uy1ZskQXX3yxXnzxRV122WW66KKLlJubq0cffVQnn3zyMW+offv2VUpKijZv3qzp06f7t5999tm68847JYkiHmgDxo4dK7fbrUsuuURTp05VaWmp/vrXv6pr167au3dvQH1MnTpVDz/8sCZPnqybb75Z3bp10z//+U//wit1Z86cTqf+9re/KScnR4MGDdK1116r7t27a/fu3XrvvfeUkJCgV155RdKRgl+S/vu//1uTJk1SZGSkLrnkkiZZdAaAvXPOOUdTp07VggULtHHjRo0dO1aRkZHasmWL/vWvf+mhhx7ST37yEyUlJenXv/61FixYoIsvvljjxo3Thg0b9MYbb/inim2I0+nUI488oksuuUSnnXaarr32WnXr1k2bNm3SV199pTfffFPS97lhxowZys7Olsvl0qRJk47b5/z58/X2229r1KhR+tWvfqWIiAj95S9/UVVVle67777QHqSW1JJT46Bx6qZG+ve//31Mm9frtTIyMqyMjAyrtrbW+n//7/9ZaWlplsfjsYYOHWq9+uqr1pQpU6y0tLRjHvvTn/7UkmQ9++yz/m3V1dVWTEyM5Xa7rYqKiqZ8WgCawPGmZ1u+fLk1ePBgKyoqyurdu7f1hz/8wXr88cePmeIxLS3Nuuiii47b7/bt262LLrrIio6OtpKSkqzbbrvNeuGFFyxJ1tq1a+vFbtiwwZo4caLVuXNny+PxWGlpadbll19urVy5sl7cvffea3Xv3t1yOp1MNwk0kl2tUGfKlClWbGxsg+2PPfaYNWzYMCs6OtqKj4+3Tj31VOuOO+6w9uzZ44/xer3W3LlzrW7dulnR0dHWueeea3355ZdWWlqa7RSTdT788EPrggsusOLj463Y2Fhr8ODB1p///Gd/e21trTV9+nQrKSnJcjgc9fKZfjDFpGVZ1vr1663s7GwrLi7OiomJsc477zzr448/DujYNDTG1sZhWa38qn0AQFhZuHChbr31Vu3atave9HUAgNChiAcAnLCKiop6P3irrKzU0KFD5fV69e2337bgyACgbeOaeADACZs4caJ69eql0047TUVFRfrHP/6hTZs2NTglHQAgNCjiAQAnLDs7W3/729/0z3/+U16vVyeffLKWLl2qK664oqWHBgBtGpfTAAAAAGGGeeIBAACAMEMRDwAAAISZNn9NvM/n0549exQfH89y3jCyLEslJSVKTU2V08lnXJBDEBxyCI6HPIJgBJxHWmyG+iA8/PDD/oWKMjMzrXXr1gX82Ly8PEsSN25B3fLy8prwFY2WcKJ5hBzC7URu5JC2h1qEW3PfTHmk1Z+Jf/bZZzVz5kw9+uijGj58uBYuXKjs7Gxt3rxZXbt2NT4+Pj5ektT9wbvkjPY0GBf7ZcNtklSW7jXuy7PPZYypjbGMMVH77T+lVyaZ+wiEN85njDE9J2tQibGPs3puN8Z8eTDVGOP+W0fb9qt/t9zYx4L3L7Vt91VWavd//87/ukHb0Jg8UvdaGKVxilBkcwwXYaxWNfpQr5ND2phQ1SK9f323nJ6oBuPOOP8b234+3tTXuK/klEJjzOHPk4wxORf827b97Z0nGfs4srCqvfK9ccaY2FT7WqO0wNxHl0/MNdqfZj1ijPnFv6fYttcebvjvW2fssP/YtleX1eh/L3rJmEdafRH/pz/9Sddff72uvfZaSdKjjz6q1157TY8//rjuuusu4+PrvrZyRnvkjG74wLo89kW8M9pcxLs85heIL8r8gnZ57It4ZwB9BMKKNhfxpudkxdQY+3DHuc37qbQ//pIUEWn/HyM6zvxytnsNHI2vO9uWxuSRutdChCIV4aCIh8H/pWdySNsSslrEEyVXVMPvQ5Gx9u+XgbyHuWLN76dOmzHU8cTZ5ztXjHk/gRTxAT2nmOrG9+E212hx8eZL4Jwx9vtyVprH4jYc2zqmPNKqL9irrq7WZ599pqysLP82p9OprKwsrVmzpgVHBiBckEcANAY5BK1Vqz4Tf+DAAXm9XiUnJ9fbnpycrE2bNh33MVVVVaqqqvLfLy4ubtIxAmjdgs0j5BAAR6MWQWvVqs/En4gFCxYoMTHRf+vZs2dLDwlAGCGHAGgs8giaQ6su4rt06SKXy6WCgoJ62wsKCpSSknLcx8yaNUtFRUX+W15eXnMMFUArFWweIYcAOBq1CFqrVl3Eu91uDRs2TCtXrvRv8/l8WrlypUaMGHHcx3g8HiUkJNS7AWi/gs0j5BAAR6MWQWvVqq+Jl6SZM2dqypQpOuOMM5SZmamFCxeqrKzM/wtxADAhjwBoDHIIWqNWX8RfccUV2r9/v2bPnq38/HyddtppWrFixTE/MDHpsM4tl7vhqZvi9tTaPj6y1Dw1UXEf81RKCeYp0+Wfo6zBsZh76Hbld8aY7SvTjTERZfbtkW+b52ZddYF5XtvabQHM8Zpgf1x2Vncx9tE1/aBtu7esSnzp2faEKo8AaJ9ClUP6PLFTEc6Gp2Zc3dV+7vXoLuXGfTgDmNaxJs4ckxhRYdtesdO8FkLfU3cZY1wdCo0xW/baz8Xv8JqndE25LtcYc/myGcaYxIzDtu2p3fYZ+3jz3dNt232VlZKeM/bT6ot4SZo2bZqmTZvW0sMAEMbIIwAagxyC1qZVXxMPAAAA4FgU8QAAAECYoYgHAAAAwgxFPAAAABBmKOIBAACAMEMRDwAAAISZsJhiMhRi93oVEeltsH3/UPtDURNrnlO19xuVxpjdZ0cbYxK3+WzbCy8zTN4uaedy8xzwae8WGmP2ZSbatpdfYJ60PnKNeS7ZSGOEVHCW/XF5ddcpxj727bN/Pr4K898QAIATYUV5ZLkanie+87/t16SJORhj3Meu88zrrvT/X/N799P7zrdt7/u7j4197L5rpDGmvJv9e7skdf7cMA+8uUTTjq19jDHWaeYaoKTUvo6LSCw09uGNs3/OPpf5mEiciQcAAADCDkU8AAAAEGYo4gEAAIAwQxEPAAAAhBmKeAAAACDMUMQDAAAAYYYiHgAAAAgzFPEAAABAmGk3iz2ZVKY0vBCUJLlKzJ93dk2rNcZUlVUZY/qM2WPbXvBVL/N+Bpv3sznDvAhTzzfsj8tlA/5t7OPtJ882xuwZZb/AhSRdcOYXtu2fH+hu7ENlhpd8Bf8lAABNo3hwkiIioxps97ntH++NNCx6JCluh7lesT790hgTffoI23bH0EHGPlLWmRdP2nFhw4tf1XGX2q/mVDDBvJ8BvzlkjNk2wn5BSEk6q1eubft7n5qPS3Q3+8W2vOXmGk7iTDwAAAAQdijiAQAAgDBDEQ8AAACEGYp4AAAAIMxQxAMAAABh5oSL+KqqKlVVBfbrWQAAAAChE1QR//bbb2vcuHHq2LGjYmJiFBMTo44dO2rcuHF65513mmqMAAAAAI4ScBH/5JNPaty4cUpMTNSDDz6oV199Va+++qoefPBBdejQQePGjdP//u//NuVYAQAAACiIxZ5+97vfaeHChbrpppuOabvmmms0atQozZs3Tz//+c9DOsBQ2X2BQ87ohhdJSP7IfgGFgrN8xn1EfmFePCljVYUxZvvZ6bbtrlj7RQ8kqd9vtxtjttx5kjHmpNkbbds/uvp0Yx/xC/OMMdHL7Z+zJK1ZOtS2vaKr+bh4MkwLLJgXjAAA4EQcmlguV0zD9URVeaTt48uizItKevNijDGugf2MMdU5Rbbtzg/NYyk4w7x4Uky+MUQRFfYLT3pL7Y+bJG26OdUYE/+h+dz2+2faHzvTQk6SVJlnXy/6Ks3PRwriTPzOnTuVlZXVYPuYMWO0a9euQLsDAAAAcIICLuIHDRqkv//97w22P/744zr55JNDMigAAAAADQv4cpoHHnhAF198sVasWKGsrCwlJydLkgoKCrRy5Upt375dr732WpMNFAAAAMARARfx5557rr788ks98sgjWrt2rfLzj1zElJKSopycHP3yl79U7969m2qcAAAAAP5PwEW8JPXu3Vt/+MMfmmosAAAAAALAiq0AAABAmKGIBwAAAMIMRTwAAAAQZoK6Jr653XPPPZo7d269bQMGDNCmTZuC7qv725YiIhteDKg6wX6xp46fmz/vxO0xL3zgmWte1aDyq1627QP+WmLsY9ODfYwxrgAWWNhd3sG23bFjr7GPA+WdjTGx+ebFtOJ2V9m2FwyLNvbx8OX2qwqXlfh0sbEXhJNQ5hEA7VOo8kj3jkWKiG14UcHcGvv3S8u8pqG8CfYLI0lSRS/zIkz62G3bvH2SeTAJ28wxB86rNsZUJNuPRT7zcx5w2k5jzO6dvY0xlte+HqypcZn7cNofF8sRwB9aJ3Amft68eSovLz9me0VFhebNmxdsd0aDBg3S3r17/bcPP/ww5PsA0LaRRwA0FnkErU3QRfzcuXNVWnrskrLl5eXHfEoNhYiICKWkpPhvXbp0Cfk+ALRt5BEAjUUeQWsTdBFvWZYcjmMvPfn888/VqVOnkAzqaFu2bFFqaqr69Omjq666Sjt32n8dUlVVpeLi4no3AO1bMHmEHALgeMgjaG0CLuI7duyoTp06yeFwqH///urUqZP/lpiYqAsuuECXX355SAc3fPhwLVmyRCtWrNAjjzyi3NxcjR49WiUlDV8TvmDBAiUmJvpvPXv2DOmYAISXYPMIOQTAD5FH0BoF/MPWhQsXyrIsXXfddZo7d64SE7//UYTb7Vbv3r01YsSIkA4uJyfH/+/Bgwdr+PDhSktL03PPPadf/OIXx33MrFmzNHPmTP/94uJi/vMA7ViweYQcAuCHyCNojQIu4qdMmSJJSk9P18iRIxUZGdlkg2pIhw4d1L9/f23durXBGI/HI4/H04yjAhBOTHmEHALAhDyC1iDoa+LPOeccOZ1OvfDCC5o/f77mz5+vl156SV6veXqfxiotLdW2bdvUrVu3Jt8XgLaJPAKgscgjaA2Cnid+69atGjdunHbv3q0BAwZIOnLtV8+ePfXaa68pIyMjZIP79a9/rUsuuURpaWnas2eP5syZI5fLpcmTJwfdl7u0RhERDc/dmfcT+88zcV+YP1G7S2qMMT/qlGuM2VzS27Z99/kdjH2ozPyhasvVjxhjBn70c9v22jvjjH0kLDOGqCbFfp5+SSo4y36e2Lht5v1c88ZU23ZfRaWku80dIWyEMo8AaJ9ClUcGJhbIHdfwlQyFFfbrnRwujjHuI6XnIWNM3pR4Y0zyS/bzne8ZY57LvPikCmOM9sYaQ2rj7deScZabz0nvONTRGFPdzfycej1nv6+9I8zPJzHfvubxVpvnmpdOoIifMWOGMjIytHbtWv9sNAcPHtTPfvYzzZgxQ6+99lqwXTZo165dmjx5sg4ePKikpCSNGjVKa9euVVJSUsj2AaBtI48AaCzyCFqjoIv4Dz74oF4BL0mdO3fW73//e5111lkhHdzSpUtD2h+A9oc8AqCxyCNojYK+Jt7j8Rx3SqXS0lK53YZlcQEAAAA0WtBF/MUXX6wbbrhB69atk2VZsixLa9eu1S9/+UuNHz++KcYIAAAA4ChBF/GLFi1SRkaGRowYoaioKEVFRemss85S37599dBDDzXFGAEAAAAcJehr4jt06KCXX35ZW7Zs0aZNmyRJAwcOVN++fUM+OAAAAADHCrqIr9OvXz/169cvlGMBAAAAEICgi3iv16slS5Zo5cqV2rdvn3y++nN3vvvuuyEbHAAAAIBjBV3E33zzzVqyZIkuuuginXLKKXI4zIv0tAb7TouWyxPVYHvGE/YLEpR2t19oQJK+y2m4f7/pI4whqfGNX/22258+Mcb0K7nRGBNZZv/3bXjJiu/VmNeDUq15bYSQ9JH8kWGBhRqH8ho/FAAAjvHW1pPkjAmgVmiAt9xctnXvWWTux2f+SeSBwfYLT/V4y1wXFWSaC4DOm40hiiqyX4RpbwAznPu+SDTGdMgLYAGrXvZ/A1eluS6O2W9/7GprzMdWOoEifunSpXruuec0bty4YB8KAAAAIASCnp3G7XbzI1YAAACgBQVdxN9222166KGHZFnmrxwAAAAAhF5Al9NMnDix3v13331Xb7zxhgYNGqTIyPpXRb/44ouhGx0AAACAYwRUxCcm1v8xwGWXXdYkgwEAAABgFlAR/8QTTzT1OAAAAAAEKOhr4isqKlReXu6/v2PHDi1cuFBvvfVWSAcGAAAA4PiCLuIvvfRSPfXUU5KkwsJCZWZm6oEHHtCll16qRx55JOQDBAAAAFBf0PPEr1+/Xg8++KAk6fnnn1dKSoo2bNigF154QbNnz9aNN5oXEGoJlUmWnFENz6hzaID94guHR1Yb9+GJNcd8lxPAykcG3njzIgBx/UcG0E8gi0rZf87ru9S8qER5D/Nz3jPKZYyJ22YfM2LSBmMfq18ZatvurQr6cy0AAAGpqYiU02aZxI7/tl9CsSbb/J5b6TUvw7g/r6Mx5qwx39i2f5TU39hH/8dLjTFbbjKPt8t7HkOEecbEyl7mGq2qk7ksTu6/376PVcnGPg73t681Aq1Fgq5YysvLFR8fL0l66623NHHiRDmdTv3oRz/Sjh07gu0OAAAAQJCCLuL79u2rZcuWKS8vT2+++abGjh0rSdq3b58SEhJCPkAAAAAA9QVdxM+ePVu//vWv1bt3b2VmZmrEiBGSjpyVHzrU/lIFAAAAAI0X9DXxP/nJTzRq1Cjt3btXQ4YM8W8fM2YM88cDAAAAzSDoIl6SUlJSlJKSory8PElSz549lZmZGdKBAQAAADi+oC+nqa2t1d13363ExET17t1bvXv3VmJion7729+qpqamKcYIAAAA4ChBn4mfPn26XnzxRd13333+6+HXrFmje+65RwcPHmSueAAAAKCJBV3EP/3001q6dKlycnL82wYPHqyePXtq8uTJFPEAAABAEwu6iPd4POrdu/cx29PT0+V2u0MxpibhTa6WFd3w1UOH4+0PRdQ200IDUnSB+flXJDuMMQkj9tm2O/7RxdhHWYoxRJ6u5caYDh/F2rZvvj7evKMAuErMMRVd7Rdz6Bl12NhHZYr9Ale+ikAWwAIAIHjugkg5oxpe3KjwFMNijnvM77m7V3Ywxpz/sy+MMR9s72vb7ogyv1/u/U2tMcb1rXlByJrL7N/fre0djH384swPjTH/fP58Y0zBt0m27eljdhn7yN1l34evosrYh3QC18RPmzZN9957r6qqvt9BVVWVfve732natGnBdgcAAAAgSEGfid+wYYNWrlypHj16+KeY/Pzzz1VdXa0xY8Zo4sSJ/tgXX3wxdCMFAAAAIOkEivgOHTroxz/+cb1tPXv2DNmAAAAAANgLuoh/4oknmmIcAAAAAAIU9DXxAAAAAFrWCa3Y+vzzz+u5557Tzp07VV1dXa9t/fr1IRkYAAAAgOML+kz8okWLdO211yo5OVkbNmxQZmamOnfurO3bt9ebOx4AAABA0wj6TPz//M//6LHHHtPkyZO1ZMkS3XHHHerTp49mz56tQ4cONcUYQ6LDOrdcNvPY18TZz98em2+Yu1VSwdgaY0zyWw3PD1unSF1t27vvrjD2UR0XZYzRGvN8swcG28/NHrfN/DkwkGNn/Wy/MaaoLNq2/fH1Zxn7iNvmsm33Vtm3AwBwomL2SC6bJWXi1xjec7+2X0dGkr6d2s0Y43GZ52/3FtuvfRPZodLYR8WmDuax9C82xvw0fYNt+98OjzL2sTzvVGNMzJkHjDHXp39qP5ZNI419pKbYz3tfW1alPGMvJ3AmfufOnRo58sgAo6OjVVJyZJWen//853rmmWeC6mvVqlW65JJLlJqaKofDoWXLltVrtyxLs2fPVrdu3RQdHa2srCxt2bIl2CEDaMPIIwAagxyCcBV0EZ+SkuI/496rVy+tXbtWkpSbmyvLsv8E+UNlZWUaMmSIFi9efNz2++67T4sWLdKjjz6qdevWKTY2VtnZ2aqsNH/6A9A+kEcANAY5BOEq6Mtpzj//fC1fvlxDhw7Vtddeq1tvvVXPP/+8Pv3003oLPQUiJyenwevoLcvSwoUL9dvf/laXXnqpJOmpp55ScnKyli1bpkmTJgU7dABtEHkEQGOQQxCugi7iH3vsMfl8R65xvummm9S5c2d9/PHHGj9+vKZOnRqygeXm5io/P19ZWVn+bYmJiRo+fLjWrFnT4H+cqqoqVVVV+e8XF5uvtQLQNp1IHiGHAKhDLYLWLOjLaZxOpyIivq/9J02apEWLFmn69Oly2/xwNFj5+fmSpOTk5Hrbk5OT/W3Hs2DBAiUmJvpvrCYLtF8nkkfIIQDqUIugNTuheeILCwv1ySefaN++ff6z8nWuvvrqkAzsRM2aNUszZ8703y8uLuY/D4CAkUMANBZ5BM0h6CL+lVde0VVXXaXS0lIlJCTI4fh+akaHwxGyIj4lJUWSVFBQoG7dvp8uqaCgQKeddlqDj/N4PPJ4PCEZA4DwdiJ5hBwCoA61CFqzoC+nue2223TdddeptLRUhYWFOnz4sP8Wynni09PTlZKSopUrV/q3FRcXa926dRoxYkTI9gOg7SKPAGgMcghas6DPxO/evVszZsxQTExMo3deWlqqrVu3+u/n5uZq48aN6tSpk3r16qVbbrlF8+fPV79+/ZSenq67775bqampmjBhQtD76rilUhE2z3bb5fbX83f8NoDpM8vMh7Mow/y5KbrAfl+HBgSwkFMASjO8xpjkj+wXwaqOM+8nkOdcuS/RGBO1zf6sxoBXCo19bL7Fvt1XUWUfgFanOfMIgLanOXNIZUeHXJ6G31dTltrPP//17/sa99H53+ZxfD4k1RgTkVBt2375SfYLMEnS16kpxpj7014yxmRE2hcbX/YzP5+7u79mjLl390XGmK9K7fd1UtcCYx8nJzT8ewpJqiqtUQB/xuCL+OzsbH366afq06dPsA89xqeffqrzzjvPf7/u+rEpU6b4V4MtKyvTDTfcoMLCQo0aNUorVqxQVFRoilgA4Y88AqAxyCEIV0EX8RdddJFuv/12ff311zr11FMVGRlZr338+PEB93XuuefaLhDlcDg0b948zZs3L9hhAmgnyCMAGoMcgnAVdBF//fXXS9JxX8wOh0Ner/kSDQAAAAAnLugi/odTSgIAAABoXkHPTgMAAACgZQVcxK9Zs0avvvpqvW1PPfWU0tPT1bVrV91www31lhgGAAAA0DQCLuLnzZunr776yn//P//5j37xi18oKytLd911l1555RUtWLCgSQYJAAAA4HsBF/EbN27UmDFj/PeXLl2q4cOH669//atmzpypRYsW6bnnnmuSQQIAAAD4XsA/bD18+LCSk5P99z/44APl5OT475955pnKy8sL7ehCKPcyt5zRDS/odMGZX9g+flVX8wILA35nnpln8y3RxhhrsP0CC1X7AlhoK7bWGNK1a5ExprCr/XgDGYuna7kxJuqLeGOMaRGsw//P/rhJUtSaDrbt3qoAFvUCAOAEWKeWyIqpabDd+ZL93PPR70TatktSSW/z+9ihLUnGGM9Bl237P6syjX04I82ToVyQO6PR/XiL7RfslKQr9v/CGFOSb65FZHhKjhhzLViQYr+f2rLALk8P+Ex8cnKycnNzJUnV1dVav369fvSjH/nbS0pKjpkzHgAAAEDoBVzEjxs3TnfddZdWr16tWbNmKSYmRqNHj/a3f/HFF8rIyGiSQQIAAAD4XsCX09x7772aOHGizjnnHMXFxenJJ5+U2/391xePP/64xo4d2ySDBAAAAPC9gIv4Ll26aNWqVSoqKlJcXJxcrvrXSv3rX/9SXFxcyAcIAAAAoL6gV2xNTEw87vZOnTo1ejAAAAAAzFixFQAAAAgzFPEAAABAmKGIBwAAAMJM0NfEh6v+87cqwtHwYgBvzx9s+/iBf8w37uPQiG7GmOS3jCEqyvDYtp88JtfYx87l6caYfRmdjTFR+faLPdgvS3FEZax5EQZXbACLLCU7bJuLvzAvXpG6wX4RrNqaWm01jwQAgKBdmvEfeeIaXlPnuRWjbB/f89xdxn1sz002xvTvs9cYs/XzHrbtnp32tYokVfUwL8KY+Lm5RigeVmnb7ogxL3BZsamDMSYyzbw4ZVLHEtv2PXvMvxGt8drXVl6ffXsdzsQDAAAAYYYiHgAAAAgzFPEAAABAmKGIBwAAAMIMRTwAAAAQZijiAQAAgDBDEQ8AAACEmXYzT/zuqwbI5Wl4VnNXif085bk/627cR00Ac51H77Of6zwQJX/saYyJTfAZY7q/az/XqSRtvj7ett3T1Tynatwa+z4kqTbWGKKIMvv2yhTzcwYAoKW89O1gOWMarkVqU+znVT87ybySSXGleQWXb3ea55I/d+RXtu0fbOpv7MMVaX5f9jU8bb7fgAft54k/NDjR2Ed1grn+Kupmnp+9sCzatt0RYX7ORRu72Lb7Ku2fbx3OxAMAAABhhiIeAAAACDMU8QAAAECYoYgHAAAAwgxFPAAAABBmKOIBAACAMEMRDwAAAIQZingAAAAgzLToYk+rVq3S/fffr88++0x79+7VSy+9pAkTJvjbr7nmGj355JP1HpOdna0VK1Y080il9H/sNsbkXWZeECqy1LwgVPJngU3yb6c6wWOMOeup9caYwt+fa99+mXkspYOrjDFR28zjNS0IFbfNvEjDSbM32LZXl1ZrbfO/vNAI4ZRHALQ+zZlDxvX9Wp64hlc3WrFjYNB9/lBZpdsYE+HxGmPe/+Ik2/aYzubFHquqzCs5dfqmxhhz6FT7xZxc1ebayhVAaRWxx1yLVKTat1vV5lrEc8h+4SlvVWALg7bomfiysjINGTJEixcvbjDmwgsv1N69e/23Z555phlHCKC1I48AaAxyCMJVi56Jz8nJUU5Ojm2Mx+NRSkpKM40IQLghjwBoDHIIwlWrvyb+/fffV9euXTVgwADdeOONOnjwYEsPCUCYIY8AaAxyCFqjFj0Tb3LhhRdq4sSJSk9P17Zt2/Sb3/xGOTk5WrNmjVyu419zVFVVpaqq76/BLi4ubq7hAmiFgs0j5BAAR6MWQWvVqov4SZMm+f996qmnavDgwcrIyND777+vMWPGHPcxCxYs0Ny5c5triABauWDzCDkEwNGoRdBatfrLaY7Wp08fdenSRVu3bm0wZtasWSoqKvLf8vLymnGEAFo7Ux4hhwCwQy2C1qJVn4n/oV27dungwYPq1q1bgzEej0cej3mKIADtkymPkEMA2KEWQWvRokV8aWlpvU+yubm52rhxozp16qROnTpp7ty5+vGPf6yUlBRt27ZNd9xxh/r27avs7OyA92FZR+YO9VbbTxDqq7SfY7TWZ57r3FtlnoTUGcBcprW1jZ8n3ltj3k9lqXluVm+N/Vi85eax+ip85v1Umcdr4jD/iVRdWm3fXnbkmNS9btD6NXUeqXst1KpG4mUBg1qRQ8JNc9Yide8xDfGW27+RVQXyvh3I+3K1ufzzVdjPJW8aqyT5qszz0dfWmGO8hvFateb/b95q89zrvgDKL1+F/fMOZJ54r+G41NWsxjxitaD33nvP0pG3xXq3KVOmWOXl5dbYsWOtpKQkKzIy0kpLS7Ouv/56Kz8/P6h95OXlHXcf3LjZ3fLy8proVY9Qa+o8Qg7hdiI3ckj4oBbh1lpvpjzisKy2fbrA5/Npz549io+Pl8PhUHFxsXr27Km8vDwlJCS09PDanHA/vpZlqaSkRKmpqXI6w+onI2giP8whUvi/zluzcD+25BAcD7VI8wr34xtoHgmra+JPhNPpVI8ePY7ZnpCQEJZ/2HARzsc3MTGxpYeAVqShHCKF9+u8tQvnY0sOwQ9Ri7SMcD6+geQRThMAAAAAYYYiHgAAAAgz7a6I93g8mjNnDlM/NRGOL9oDXudNh2OL9oDXedNqL8e3zf+wFQAAAGhr2t2ZeAAAACDcUcQDAAAAYYYiHgAAAAgzFPEAAABAmGl3RfzixYvVu3dvRUVFafjw4frkk09aekhhadWqVbrkkkuUmpoqh8OhZcuW1Wu3LEuzZ89Wt27dFB0draysLG3ZsqVlBguEEDkkNMghaM/II6HR3vNIuyrin332Wc2cOVNz5szR+vXrNWTIEGVnZ2vfvn0tPbSwU1ZWpiFDhmjx4sXHbb/vvvu0aNEiPfroo1q3bp1iY2OVnZ2tysrKZh4pEDrkkNAhh6C9Io+ETrvPI1Y7kpmZad10003++16v10pNTbUWLFjQgqMKf5Ksl156yX/f5/NZKSkp1v333+/fVlhYaHk8HuuZZ55pgRECoUEOaRrkELQn5JGm0R7zSLs5E19dXa3PPvtMWVlZ/m1Op1NZWVlas2ZNC46s7cnNzVV+fn69Y52YmKjhw4dzrBG2yCHNhxyCtoo80nzaQx5pN0X8gQMH5PV6lZycXG97cnKy8vPzW2hUbVPd8eRYoy0hhzQfcgjaKvJI82kPeaTdFPEAAABAW9FuivguXbrI5XKpoKCg3vaCggKlpKS00KjaprrjybFGW0IOaT7kELRV5JHm0x7ySLsp4t1ut4YNG6aVK1f6t/l8Pq1cuVIjRoxowZG1Penp6UpJSal3rIuLi7Vu3TqONcIWOaT5kEPQVpFHmk97yCMRLT2A5jRz5kxNmTJFZ5xxhjIzM7Vw4UKVlZXp2muvbemhhZ3S0lJt3brVfz83N1cbN25Up06d1KtXL91yyy2aP3+++vXrp/T0dN19991KTU3VhAkTWm7QQCORQ0KHHIL2ijwSOu0+j7T09DjN7c9//rPVq1cvy+12W5mZmdbatWtbekhh6b333rMkHXObMmWKZVlHpna6++67reTkZMvj8VhjxoyxNm/e3LKDBkKAHBIa5BC0Z+SR0GjvecRhWZbVAp8dAAAAAJygdnNNPAAAANBWUMQDAAAAYYYiHgAAAAgzFPEAAABAmKGIBwAAAMJMm58n3ufzac+ePYqPj5fD4Wjp4aCVsyxLJSUlSk1NldPJZ1yQQxAccgiOhzyCYAScR1p0gssAPfzww1ZaWprl8XiszMxMa926dQE/Ni8v77hziHLjZnfLy8trwlc0WsKJ5hFyCLcTuZFD2h5qEW7NfTPlkVZ/Jv7ZZ5/VzJkz9eijj2r48OFauHChsrOztXnzZnXt2tX4+Pj4eElS6u9/I2dU1AmPo09GvjHmnt7LjTEnu82fwMdsmGQf8G5HYx8JuTXGmIgqrzGm1uOyba/sYn4JRR2oNcbEfJ5njPF162LbvuPieGMfyWfa/x1ry6v17yv/4n/doG1oTB6pey2M0jhFKLI5hoswVqsafajXySFtTKhqke7z/9u2FnFW29cI3hifcV+Rhfbv25LU+XNzP1ak/Visyw8a+zi4yf59W5J8nkCek/23WrUJlrEPy2mOOfXU74wxpTUe2/a8/eYazVsQbdvuq6zUrrnzjXmk1Rfxf/rTn3T99df7lyN+9NFH9dprr+nxxx/XXXfdZXx83ddWzqgoOaNPvIiPiLX/o0lSXLz5q9OEAIp4V4xhX27z84iINP8njvCai3gZ+nG5zS+hiEhzER/hdBtjfC774+IK4ENaIH9HSXzd2cY0Jo/UvRYiFKkIB0U8DP6vTiCHtC3NVYs4nYbCOdpc8DorA3j/jzT34zMV8QG8nwZ08jTKPBZXpX195YsKoIh3mWMiY821SIShiHeWmZ+zFeBJZVMeadUX7FVXV+uzzz5TVlaWf5vT6VRWVpbWrFnTgiMDEC7IIwAagxyC1qpVn4k/cOCAvF6vkpOT621PTk7Wpk2bjvuYqqoqVVVV+e8XFxc36RgBtG7B5hFyCICjUYugtWrVZ+JPxIIFC5SYmOi/9ezZs6WHBCCMkEMANBZ5BM2hVRfxXbp0kcvlUkFBQb3tBQUFSklJOe5jZs2apaKiIv8tL8/8g0kAbVeweYQcAuBo1CJorVp1Ee92uzVs2DCtXLnSv83n82nlypUaMWLEcR/j8XiUkJBQ7wag/Qo2j5BDAByNWgStVau+Jl6SZs6cqSlTpuiMM85QZmamFi5cqLKyMv8vxAHAhDwCoDHIIWiNWn0Rf8UVV2j//v2aPXu28vPzddppp2nFihXH/MDEpNNGl1zuhqddchhmQdy113w927TqycaYp09+0hhTVm4/fVHtgADmd481T4UXv8M8DVVkmf3UT9Xx5mnUOj33H2OMenQzhpRmxNm2uwvNYymrtp8+yltjnoIK4SdUeQRA+xSqHGK5fbLcDb+v+ryGaZ3LzBdQRPY3/4i2YpB56ueqNZ1t29Oiy419xA7dbYzJ3WR+/3dW2b+/R+81v//7Aqh4v+jc3dxPjf3fwKo211YOt32tYXkDq0VafREvSdOmTdO0adNaehgAwhh5BEBjkEPQ2rTqa+IBAAAAHIsiHgAAAAgzFPEAAABAmKGIBwAAAMIMRTwAAAAQZijiAQAAgDATFlNMhkJMvlcRkQ3Pr+6LNM0xav68UyjzfLFjtt9mjHF2qLZtT9xsnoPUXWKeY7Soj/k5eQ7bH5fSnub91J450BgTubfQGOOqtN9XVWfzWKo+t5/31ldZaewDAIAT4ahyyuFs+L3X0bnK9vE9njaXbQdPTjTGFKab15txnFxh2/7t+l7GPryx9mvNSJKizGOpGWR/XCK+jTH2UdnVPDe+wzAHvCTFfRFl214yyL6Gk8zz/TsqAzvHzpl4AAAAIMxQxAMAAABhJujLafLz87Vu3Trl5+dLklJSUjR8+HClpKSEfHAAAAAAjhVwEV9WVqapU6dq6dKlcjgc6tSpkyTp0KFDsixLkydP1l/+8hfFxJivSwIAAABw4gK+nObmm2/WJ598otdee02VlZUqKChQQUGBKisr9frrr+uTTz7RzTff3JRjBQAAAKAgivgXXnhBS5YsUXZ2tlyu72dHcblcGjt2rB5//HE9//zzTTJIAAAAAN8LuIj3+Xxyu90Ntrvdbvl8AUwlBAAAAKBRAi7iL774Yt1www3asGHDMW0bNmzQjTfeqEsuuSSkgwMAAABwrIB/2Prwww/ryiuv1LBhw9SxY0d17dpVkrRv3z4VFhYqOztbDz/8cJMNtLEcXksOZ8OLAVUm2S+g5PWY9+Fzmxcb6vmGOaayk/1CAtH7a8yDCUCXd/cYY/ZebL+YQ1yeaZEsqaSX+eBFdulqjInOt1+IKWWNeT+HTrZ/yXurzM8HAIATEdO9VK6Yht/DfT7796D9Q6KN+/AUmuuMiGLzOVxfhf17atJ6YxdyVZvfU3ePM/fj3W9fF9Wm2S8GJUnxX5prhNoYc1lcalooq8b8nK0I+7+Rqb1OwEV8x44d9cYbb+ibb77R2rVr600xOWLECJ100kmBdgUAAACgEYKeJ37gwIEaOHBgU4wFAAAAQACCKuKrq6u1bNkyrVmzpt6Z+JEjR+rSSy+1/eErAAAAgNAI+IetW7du1cCBAzVlyhRt2LBBPp9PPp9PGzZs0NVXX61BgwZp69atTTlWAAAAAAriTPyNN96oU089VRs2bFBCQkK9tuLiYl199dW66aab9Oabb4Z8kAAAAAC+F3AR/9FHH+mTTz45poCXpISEBN17770aPnx4SAcHAAAA4FgBX07ToUMHfffddw22f/fdd+rQoUMIhgQAAADATsBn4v/rv/5LV199te6++26NGTNGycnJkqSCggKtXLlS8+fP1/Tp05tsoAAAAACOCLiInzdvnmJjY3X//ffrtttuk8NxZDJ7y7KUkpKiO++8U3fccUeTDbSp1cbYT85f1cHcR9Q+c0xNrPnLj8Qt5bbtEYX27ZLki7NfGEGSanftNsbEHOhh254/3Px8qgrNMREVxhBJ9s+poot5P9WJ9gso+CoDW2ABAIBgndtjq9xxkQ22v/zv020f7xhov+ihJEWvMi9q5Is0v9c5DYsWFfUxL2rk8BlDFL3dfrFNSarqYt9R4mfm51w4tNoYE7m/4b+Nf1/f2I+38FTzsfUm2C8Y5Ys0LCj1f4KaYvLOO+/UnXfeqe3bt6ugoEDSkSkm09PTg+kGAAAAQCMEvdiTJPXp00d9+vQJ9VgAAAAABCDgH7ZK0tdff61f/epXGjp0qLp166Zu3bpp6NCh+tWvfqWvv/66qcYIAAAA4CgBn4l/4403NGHCBJ1++um69NJL6/2w9e2339bpp5+ul19+WdnZ2U02WAAAAABBFPF33XWX7rzzTs2bN++YtnvuuUf33HOPbr/9dop4AAAAoIkFfDnNt99+q6uuuqrB9smTJ2vLli0hGRQAAACAhgVcxPfu3VuvvfZag+2vvfaa0tLSQjIoAAAAAA0Lap74K6+8Uu+//76ysrKOWexpxYoVevrpp5tsoAAAAACOCLiI/+lPf6ru3btr0aJFeuCBB5Sfny/pyDzxI0aM0Pvvv68RI0aEdHD33HOP5s6dW2/bgAEDtGnTpqD78kY55Yhs+IsHT6H9QgKlPc2LGkRUmGMCURtr/2c5dEoXYx9dPzxgjKkZPdQYs3+o/Zc1Po95JQdPoXkhh7g95oUNLEM3ripjF3JW2/+NLEM7wk8o8wiA9ilUeWRrSRdF+BpemCjS8H7prTBfQBF90Py+XF5kfl+uTrBftCgm37yoUdRh81j2n2Z+TgOG7LRt39w52TyWqFpjTO1B82JPUYcMz8ltfs6R++z346sMrDwPap74kSNHauTIkcE8pNEGDRqkd955x38/IuKEprYH0I6RRwA0FnkErU2rfwVGREQoJSWlpYcBIIyRRwA0FnkErU1Qiz3Z+eabb5pkFdctW7YoNTVVffr00VVXXaWdO+2/UqmqqlJxcXG9G4D2LZg8Qg4BcDzkEbQ2ISviq6urtWPHjlB1J0kaPny4lixZohUrVuiRRx5Rbm6uRo8erZKSkgYfs2DBAiUmJvpvPXv2DOmYAISXYPMIOQTAD5FH0BoFfDnNzJkzbdv379/f6MH8UE5Ojv/fgwcP1vDhw5WWlqbnnntOv/jFL477mFmzZtUba3FxMf95gHYs2DxCDgHwQ+QRtEYBF/EPPfSQTjvtNCUkJBy3vbS0NGSDakiHDh3Uv39/bd26tcEYj8cjj6fhX34DaN9MeYQcAsCEPILWIOAivm/fvrr11lv1s5/97LjtGzdu1LBhw0I2sOMpLS3Vtm3b9POf/7xJ9wOg7SKPAGgs8ghag4CL+DPOOEOfffZZg0W8w+GQZZnnDA3Gr3/9a11yySVKS0vTnj17NGfOHLlcLk2ePDnovpw1lpxqeHyeIvuxp6wzzx+++7IaY0zsBUXGmJ1fdrVtj+xt/tbjmxGJxpjOa8zzoToM07cnfWr+WYWryjxnamUHcz+eEvt+HF7z6884T7z5T4gwE8o8AqB9ClUeKa9xK6LG3WB7+pl5to//7mPzJTkJn9hPACJJFV3SjDFVnezfU0t6m+ui2mjzfPRWpPm9u5On3Lb96sHrjH08/eo5xpi43ebnVNrDPibCMAe8JDkMU9ab2v37CixMeuCBB1RV1fBqOkOGDJHPZy7WgrFr1y5NnjxZBw8eVFJSkkaNGqW1a9cqKSkppPsB0HaRRwA0FnkErVHARXxLzI26dOnSZt8ngLaFPAKgscgjaI1CNsUkAAAAgOZBEQ8AAACEGYp4AAAAIMxQxAMAAABhJugift68eSovP3aqn4qKCs2bNy8kgwIAAADQsKCL+Llz5x53ddby8nLNnTs3JIMCAAAA0LCAp5isY1mWHI5jJ7r//PPP1alTp5AMqimU9IqQy93w040+YD/HfcWVhcZ9zOi71hhzadyXxpjbYi+zbf9yd6qxj0AWG3A1PO2/n8Nrv6hBRRdzH64q8+IJRQMMq0pJchfaf+as7mBep8CKtl/NyVfBak8AgKbRPa5IkbENL/a0/o2TbR9vWPNIklQxsJsxJnFbtTHm4AjD4ogp5vdL62CsMaY2xTyW/RVxtu0fbepr7EMBjFd9zWNx/9t+LPE7zLuxXPbH1mtYmLJOwEV8x44d5XA45HA41L9//3qFvNfrVWlpqX75y18G2h0AAACAExRwEb9w4UJZlqXrrrtOc+fOVWJior/N7Xard+/eGjFiRJMMEgAAAMD3Ai7ip0yZIklKT0/XyJEjFRlpvlwDAAAAQOgFfU38OeecI6/XqxdeeEHffPONJGnQoEEaP368XC5XyAcIAAAAoL6gi/itW7dq3Lhx2r17twYMGCBJWrBggXr27KnXXntNGRkZIR8kAAAAgO8FPcXkjBkzlJGRoby8PK1fv17r16/Xzp07lZ6erhkzZjTFGAEAAAAcJegz8R988IHWrl1bbzrJzp076/e//73OOuuskA4OAAAAwLGCPhPv8XhUUlJyzPbS0lK53Q3PfQoAAAAgNII+E3/xxRfrhhtu0N///ndlZmZKktatW6df/vKXGj9+fMgHGCrV8ZLL03B7RbL9xPod3eZFAs6M3m6M+U91V2NMpdd+5p/a/VHGPmL6FxtjSosSjTGVPeyfd3WJ+cfM7iLzZ0VnlTnGtJiTFW1e7Mmz1/4l760M+r8EAAABWf/+ADmjGn4P9w60X82p8qBNIfN/nNXmGF8A51wdpfaLMLp2mjupHVVkjPlRyh5jzNr1/W3bBwzaZezjUEWMMWZ/gbkuiiu2bNsjKo1dqMO3pbbttbUBdKITOBO/aNEiZWRkaMSIEYqKilJUVJTOOuss9e3bVw899FCw3QEAAAAIUtCnHTt06KCXX35ZW7Zs0aZNmyRJAwcOVN++ASx5CwAAAKDRTvjagX79+qlfv36hHAsAAACAAARdxHu9Xi1ZskQrV67Uvn375PPVvw753XffDdngAAAAABwr6CL+5ptv1pIlS3TRRRfplFNOkcNh/4NQAAAAAKEVdBG/dOlSPffccxo3blxTjAcAAACAQdCz07jdbn7ECgAAALSgoIv42267TQ899JAsy36eTAAAAABNI6DLaSZOnFjv/rvvvqs33nhDgwYNUmRk/YWJXnzxxdCNLoQiyiWXzboF5Wn2ixp47B78f5YXnW6MWZWfYYwx7su8vpIcawNYsGC3eXGktLG7bdsP/a2XsY+YgipjjNNr/lD43X81/oNjdWf7z62+CvMxAQDgRFSn1sgZ3fCbuLPAfjFHK9Zciwz/+RfGmM1zTjHG1MTbLzxZ1dv83j7w9jJjTO7wAcaYSXd8bNv+wrenGfuoLjUvTuUsMpfFA6/5xrZ9/WsnG/vosqrQPsBnPrZSgEV8YmL9gvCyyy4LqHMAAAAAoRdQEf/EE0809TgAAAAABCjoa+IrKipUXl7uv79jxw4tXLhQb731VkgHBgAAAOD4gi7iL730Uj311FOSpMLCQmVmZuqBBx7QpZdeqkceeSTkAwQAAABQX9BF/Pr16zV69GhJ0vPPP6+UlBTt2LFDTz31lBYtWhTyAQIAAACoL+givry8XPHx8ZKkt956SxMnTpTT6dSPfvQj7dixI+QDBAAAAFBf0EV83759tWzZMuXl5enNN9/U2LFjJUn79u1TQkJCyAcIAAAAoL6AZqc52uzZs3XllVfq1ltv1fnnn68RI0ZIOnJWfujQoSEfYKj4PJLD03C7I6bW9vFl1eb5RQtroo0xaQmHjTH/Xtfftj1+h/mzV/FA++cjSd5I85+/5K3etu2dys1z1kbtLjbG+KLMx9f9tf3c9xU9zc9Zbvt54C0v88QDAJpGxy4lcsVUN9ge36PhNkkanvSdcR9v55nnXY+PcBhj3IX27WcO2GLs48NbBhpjHJ3Mc6K/9tQo23Yr0zwffeJGc51hjTHXaJFO+7qnsqu5jigZkmLbXltTKQVwcUvQZ+J/8pOfaOfOnfr000/15ptv+rePGTNGDz74YFB9rVq1SpdccolSU1PlcDi0bNmyeu2WZWn27Nnq1q2boqOjlZWVpS1bzC8aAO0HeQRAY5BDEK6CLuIlKSUlRUOHDtXu3buVl5cnScrMzNRJJ50UVD9lZWUaMmSIFi9efNz2++67T4sWLdKjjz6qdevWKTY2VtnZ2aqsrDyRYQNog8gjABqDHIJwFfTlNLW1tZo7d64WLVqk0tJSSVJcXJymT5+uOXPmKDLSfpneo+Xk5CgnJ+e4bZZlaeHChfrtb3+rSy+9VJL01FNPKTk5WcuWLdOkSZOCHTqANog8AqAxyCEIV0GfiZ8+fboee+wx3XfffdqwYYM2bNig++67T3//+981Y8aMkA0sNzdX+fn5ysrK8m9LTEzU8OHDtWbNmgYfV1VVpeLi4no3AO3TieQRcgiAOtQiaM2CLuKffvppLVmyRFOnTtXgwYM1ePBgTZ06VX//+9/19NNPh2xg+fn5kqTk5OR625OTk/1tx7NgwQIlJib6bz179gzZmACElxPJI+QQAHWoRdCaBV3Eezwe9e7d+5jt6enpcrvNv/xtarNmzVJRUZH/VnfNPgAEghwCoLHII2gOQRfx06ZN07333quqqu+nBKqqqtLvfvc7TZs2LWQDS0k5Mv1OQUFBve0FBQX+tuPxeDxKSEiodwPQPp1IHiGHAKhDLYLWLOgifsOGDXr11VfVo0cPZWVlKSsrSz169NArr7yizz//XBMnTvTfGiM9PV0pKSlauXKlf1txcbHWrVvnn5seAOyQRwA0BjkErVnQs9N06NBBP/7xj+ttO9FrvUpLS7V161b//dzcXG3cuFGdOnVSr169dMstt2j+/Pnq16+f0tPTdffddys1NVUTJkwIel9lvWvljG54MSBHif2sOocOdDLuI6XnV8aYv/Ro+Icwdc483MU+4D+djX04qs0LOaSsMy+wYFqoqXCweSz7f2R4PpKiCs2LI0RU2LdH55lfzp5C+3ZvtVe7jL2gNWnOPAKg7WnOHFL4XQc5o6MabP/VBS/bPv7JneYPDglR5vf2nWPNNUK/6R/btm+IGGnsI6KLZYxJH7TfGLO1Zw/b9oQPY419lHU3j8X7nf2ikpL0/t5423ZnZ/Px9xyyb3fV1hj7kE6giH/iiSeCfUiDPv30U5133nn++zNnzpQkTZkyRUuWLNEdd9yhsrIy3XDDDSosLNSoUaO0YsUKRUU1/B8AQPtCHgHQGOQQhKugi/hQOvfcc2VZDX8ycjgcmjdvnubNm9eMowIQTsgjABqDHIJwdUJF/PPPP6/nnntOO3fuVHV1db229evXh2RgAAAAAI4v6B+2Llq0SNdee62Sk5O1YcMGZWZmqnPnztq+fXuDK54BAAAACJ2gi/j/+Z//0WOPPaY///nPcrvduuOOO/T2229rxowZKioqaooxAgAAADhK0EX8zp07NXLkkV8kR0dHq6SkRJL085//XM8880xoRwcAAADgGEEX8SkpKTp06MjcOL169dLatWslHZmSye6HIQAAAABCI+gi/vzzz9fy5cslSddee61uvfVWXXDBBbriiit02WWXhXyAAAAAAOoLenaaxx57TD7fkYV5brrpJnXu3Fkff/yxxo8fr6lTp4Z8gKEStTtCLk/DTzfqoP23CDEHzIsRPVt6tjFmqcscU9PBfl9dq83feJz022+MMb4M8yJdxYPsF7lK/KrQ2EfRoA7GmL0/qTbGRH4bbdvuPanM2EfNjhjbdl8l3yYBAJpGp/RCuWI8Dbb//hX7k6FO81ulIk+2X6RRkpRoXkzowA32C0tVnVFq7MO5Oc4Ys229uRbp/qHXtr2ot/mcdPR+8wJXY3++1hjTL7rAtv3+Vy419rFvmP1YvFUOyX6tLUknUMQ7nU45nd8frEmTJmnSpEnBdgMAAADgBJ3QPPGFhYX65JNPtG/fPv9Z+TpXX311SAYGAAAA4PiCLuJfeeUVXXXVVSotLVVCQoIcju+/EnA4HBTxAAAAQBML+oett912m6677jqVlpaqsLBQhw8f9t/qZq0BAAAA0HSCLuJ3796tGTNmKCbG/geCAAAAAJpG0EV8dna2Pv3006YYCwAAAIAABH1N/EUXXaTbb79dX3/9tU499VRFRkbWax8/fnzIBgcAAADgWEEX8ddff70kad68ece0ORwOeb32c3kCAAAAaJygi/gfTikZLhJ2+ORyNzx2y2U/8X5Zssu4D8P8//83jlpjTHmS/b6iDpn7qMzsZ4zxRpmfk+l5l3S3XwxKkqo7GEPU4x/ml2JRH/v22g2xxj7KU+xfvz4fiz0BAJrGwfwEOaOjGmyPKrOvRSIqzPuIfzbeGBMda174qDzZPqb2oP0CjJJkJZnrFUeN+cruvSPta5GO35jfu/efZR7LF4e7G2PuT9lg2/7CsDxjH9/Gp9q2+yrMY5VO4Jp4AAAAAC0r4CJ+zZo1evXVV+tte+qpp5Senq6uXbvqhhtuUFVVVcgHCAAAAKC+gIv4efPm6auvvvLf/89//qNf/OIXysrK0l133aVXXnlFCxYsaJJBAgAAAPhewEX8xo0bNWbMGP/9pUuXavjw4frrX/+qmTNnatGiRXruueeaZJAAAAAAvhdwEX/48GElJyf773/wwQfKycnx3z/zzDOVl2e+mB8AAABA4wRcxCcnJys3N1eSVF1drfXr1+tHP/qRv72kpOSYOeMBAAAAhF7ARfy4ceN01113afXq1Zo1a5ZiYmI0evRof/sXX3yhjIyMJhkkAAAAgO8FPE/8vffeq4kTJ+qcc85RXFycnnzySbndbn/7448/rrFjxzbJIEOh4+eHFOHyNNi+b1QX28cnbq8x7qM4zXw480eY52aP2WM/N2tRH/M3Hg6vec5Ud4k5pqqDfXtlqnlxL/dB82fFyk7m49L560rb9ppY8/GP2m+/H2+1QzuNvQAAEDx3foRcUQ2/V0UdsH98eYr5fbuwr/k9t7qjec0fUy3iSKg29uHMb3hO/Dq+JHM/F4363LZ91UDzSeT0h83z5393dk9jTN+Nv7Rtd9aY5+D3VNnHeCsDK88DLuK7dOmiVatWqaioSHFxcXK56hdD//rXvxQXFxdodwAAAABOUNArtiYmJh53e6dO5pU7AQAAADQeK7YCAAAAYYYiHgAAAAgzFPEAAABAmKGIBwAAAMIMRTwAAAAQZijiAQAAgDAT9BSTobRq1Srdf//9+uyzz7R371699NJLmjBhgr/9mmuu0ZNPPlnvMdnZ2VqxYkXQ+zo8pJNc7oYXHXAX2y+gUJFkPlRVHc0T/EeUGkNUnWDfHn3AvNhDqXm9AiU/V2iM8bo72rZXZJgXe4o4xfykq/cYnrSkvKyGF+uSpI5fm49LeYphgQXDAgxofZozjwBoe5ozh0QfcMjlbvh9JuqQ/SJMpT3N71HVSbXGmL799hpjRl6w3bb94wN9jH3siTG/t3dNMNcIq3bbL+Y0rtfXxj6e/tmZxhirzFzTKNL+bxS5023bLkneGPt6xbLM9YzUwmfiy8rKNGTIEC1evLjBmAsvvFB79+7135555plmHCGA1o48AqAxyCEIVy16Jj4nJ0c5OTm2MR6PRykpKc00IgDhhjwCoDHIIQhXrf6a+Pfff19du3bVgAEDdOONN+rgwYMtPSQAYYY8AqAxyCFojVr0TLzJhRdeqIkTJyo9PV3btm3Tb37zG+Xk5GjNmjVyuVzHfUxVVZWqqqr894uLi5truABaoWDzCDkEwNGoRdBateoiftKkSf5/n3rqqRo8eLAyMjL0/vvva8yYMcd9zIIFCzR37tzmGiKAVi7YPEIOAXA0ahG0Vq3+cpqj9enTR126dNHWrVsbjJk1a5aKior8t7y8vGYcIYDWzpRHyCEA7FCLoLVo1Wfif2jXrl06ePCgunXr1mCMx+ORx2M/FSGA9suUR8ghAOxQi6C1aNEivrS0tN4n2dzcXG3cuFGdOnVSp06dNHfuXP34xz9WSkqKtm3bpjvuuEN9+/ZVdnZ2wPuom2vTW1NpG+czTA3qc5jnZm2uOca91eb5Q732T1eSVOutMsZ4qw3HraLG3Ie78fuRJJ8hJKDjUmX/5ZO36shOAp2jFS2vqfNI3WuhVjUSLwsY1OpITiSHhI9mrUUM73XeGvs5yH2V5jrDV2Ge67y2zPy+XBVl//4eSB/ecnNMrSuAfgzPu6rUXIv4Ksx1hlURQFlca/838lbZt0uSz2mfH3yVAdYiVgt67733LB15W6x3mzJlilVeXm6NHTvWSkpKsiIjI620tDTr+uuvt/Lz84PaR15e3nH3wY2b3S0vL6+JXvUItabOI+QQbidyI4eED2oRbq31ZsojDstq26cLfD6f9uzZo/j4eDkcDhUXF6tnz57Ky8tTQoJ5JTEEJ9yPr2VZKikpUWpqqpzOsPrJCJrID3OIFP6v89Ys3I8tOQTHQy3SvML9+AaaR8LqmvgT4XQ61aNHj2O2JyQkhOUfNlyE8/FNTExs6SGgFWkoh0jh/Tpv7cL52JJD8EPUIi0jnI9vIHmE0wQAAABAmKGIBwAAAMJMuyviPR6P5syZw9RPTYTji/aA13nT4diiPeB13rTay/Ft8z9sBQAAANqadncmHgAAAAh3FPEAAABAmKGIBwAAAMIMRTwAAAAQZtpdEb948WL17t1bUVFRGj58uD755JOWHlJYWrVqlS655BKlpqbK4XBo2bJl9doty9Ls2bPVrVs3RUdHKysrS1u2bGmZwQIhRA4JDXII2jPySGi09zzSror4Z599VjNnztScOXO0fv16DRkyRNnZ2dq3b19LDy3slJWVaciQIVq8ePFx2++77z4tWrRIjz76qNatW6fY2FhlZ2ersrKymUcKhA45JHTIIWivyCOh0+7ziNWOZGZmWjfddJP/vtfrtVJTU60FCxa04KjCnyTrpZde8t/3+XxWSkqKdf/99/u3FRYWWh6Px3rmmWdaYIRAaJBDmgY5BO0JeaRptMc80m7OxFdXV+uzzz5TVlaWf5vT6VRWVpbWrFnTgiNre3Jzc5Wfn1/vWCcmJmr48OEca4QtckjzIYegrSKPNJ/2kEfaTRF/4MABeb1eJScn19uenJys/Pz8FhpV21R3PDnWaEvIIc2HHIK2ijzSfNpDHmk3RTwAAADQVrSbIr5Lly5yuVwqKCiot72goEApKSktNKq2qe54cqzRlpBDmg85BG0VeaT5tIc80m6KeLfbrWHDhmnlypX+bT6fTytXrtSIESNacGRtT3p6ulJSUuod6+LiYq1bt45jjbBFDmk+5BC0VeSR5tMe8khESw+gOc2cOVNTpkzRGWecoczMTC1cuFBlZWW69tprW3poYae0tFRbt27138/NzdXGjRvVqVMn9erVS7fccovmz5+vfv36KT09XXfffbdSU1M1YcKElhs00EjkkNAhh6C9Io+ETrvPIy09PU5z+/Of/2z16tXLcrvdVmZmprV27dqWHlJYeu+99yxJx9ymTJliWdaRqZ3uvvtuKzk52fJ4PNaYMWOszZs3t+yggRAgh4QGOQTtGXkkNNp7HnFYlmW1wGcHAAAAACeo3VwTDwAAALQVFPEAAABAmKGIBwAAAMIMRTwAAAAQZijiAQAAgDBDEQ8AAACEGYp4AAAAIMxQxAMAAABhhiIeAAAACDMU8QAAAECYoYgHAAAAwgxFPAAAABBm/j9MqUbc+Aq1sQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAF2CAYAAADnZcccAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWvElEQVR4nO3deXxU9b3/8ffMJJnsgUBWlhAWEVEWsaEg1IVIBAWRLoK2IvYqtQIq1q23giD90epVEaVSWxW9t4o77rjgAirLVUDrArJECFtYs+8z5/cHl5GY5HxnyGSZ5PV8PObxYM73e77nOyfDZz45OfP9OCzLsgQAAAAgZDhbegIAAAAAAkMSDwAAAIQYkngAAAAgxJDEAwAAACGGJB4AAAAIMSTxAAAAQIghiQcAAABCDEk8AAAAEGJI4gEAAIAQQxIPAACAJtGjRw9dddVVvucffvihHA6HPvzww6Adw+Fw6K677graeKGCJD6ELV26VA6Hw/cICwtTly5ddNVVV2nPnj0tPT0ALejE2GD3COYHaTB8+umnuuuuu1RQUNDSUwHahB/nCpGRkTrllFM0ffp05efnt/T0/Pbmm2+2y0TdTlhLTwCNN2/ePGVmZqqiokJr167V0qVL9fHHH+urr75SZGRkS08PQAv47//+71rPn3rqKb377rt1tvfr1685p2X06aefau7cubrqqqvUoUOHlp4O0GacmCt8/PHHeuSRR/Tmm2/qq6++UnR0dLPN42c/+5nKy8sVERER0H5vvvmmFi9eXG8iX15errCw9pfStr9X3AaNGTNGZ511liTpP/7jP9S5c2f99a9/1auvvqpf/epXLTw7AC3h17/+da3na9eu1bvvvltn+8mwLEsVFRWKiopq9FgAmsePc4VOnTrp/vvv1yuvvKLJkyfX6V9aWqqYmJigz8PpdAb9AmN7vWDJ7TRt0MiRIyVJ27dvlyRVVVVp9uzZGjJkiBISEhQTE6ORI0fqgw8+qLXfmWeeqYkTJ9badsYZZ8jhcOjLL7/0bXv22WflcDj07bffNvErAdCUnnjiCZ1//vlKTk6W2+3WaaedpkceeaROvx49eujiiy/W22+/rbPOOktRUVH6+9//LknauXOnxo8fr5iYGCUnJ+umm27S22+/Xe+tOuvWrdOFF16ohIQERUdH65xzztEnn3zia7/rrrt0yy23SJIyMzN9f/7//vvvm+wcAO3V+eefL0nKzc3VVVddpdjYWG3fvl1jx45VXFycrrjiCkmS1+vVwoUL1b9/f0VGRiolJUXTpk3T0aNHa41nWZbmz5+vrl27Kjo6Wuedd56+/vrrOsdt6J74devWaezYserYsaNiYmI0YMAAPfjgg5Kkq666SosXL5ZU+1bB4+q7J37jxo0aM2aM4uPjFRsbq1GjRmnt2rW1+hy/1eiTTz7RrFmzlJSUpJiYGF166aU6ePBg4Ce1mXElvg06/oHXsWNHSVJRUZH++c9/avLkybrmmmtUXFysxx57TDk5OVq/fr0GDRok6Vjy/8wzz/jGOXLkiL7++ms5nU6tXr1aAwYMkCStXr1aSUlJre7P8AAC88gjj6h///4aP368wsLC9Nprr+n3v/+9vF6vrr/++lp9t2zZosmTJ2vatGm65ppr1LdvX5WWlur888/Xvn37dMMNNyg1NVVPP/10nQsEkvT+++9rzJgxGjJkiObMmSOn0+n7JWL16tXKysrSxIkT9d133+mZZ57RAw88oM6dO0uSkpKSmuV8AO3J8Qt9nTp1kiTV1NQoJydHI0aM0H/913/5brGZNm2ali5dqqlTp2rmzJnKzc3Vww8/rI0bN+qTTz5ReHi4JGn27NmaP3++xo4dq7Fjx2rDhg0aPXq0qqqqjHN59913dfHFFystLc0XS7799lu9/vrruuGGGzRt2jTt3bu33lsC6/P1119r5MiRio+P16233qrw8HD9/e9/17nnnquPPvpIQ4cOrdV/xowZ6tixo+bMmaPvv/9eCxcu1PTp0/Xss88GdE6bnYWQ9cQTT1iSrPfee886ePCglZeXZ73wwgtWUlKS5Xa7rby8PMuyLKumpsaqrKyste/Ro0etlJQU6+qrr/Zte/755y1J1jfffGNZlmW9+uqrltvttsaPH29ddtllvn4DBgywLr300mZ4hQCC5frrr7d+HPLLysrq9MvJybF69uxZa1tGRoYlyVqxYkWt7ffdd58lyVq+fLlvW3l5uXXqqadakqwPPvjAsizL8nq9Vp8+faycnBzL6/XWOn5mZqZ1wQUX+Lbde++9liQrNzf3ZF8qgBPUlyssW7bM6tSpkxUVFWXt3r3bmjJliiXJuv3222vtu3r1akuS9a9//avW9hUrVtTafuDAASsiIsK66KKLav0f/+Mf/2hJsqZMmeLb9sEHH9SKDzU1NVZmZqaVkZFhHT16tNZxThyrvhh2nCRrzpw5vucTJkywIiIirO3bt/u27d2714qLi7N+9rOf1Tk32dnZtY510003WS6XyyooKKj3eK0Ft9O0AdnZ2UpKSlK3bt30i1/8QjExMXr11VfVtWtXSZLL5fJ9gcTr9erIkSOqqanRWWedpQ0bNvjGOX4bzqpVqyQdu+L+k5/8RBdccIFWr14tSSooKNBXX33l6wsgdJ14T3thYaEOHTqkc845Rzt27FBhYWGtvpmZmcrJyam1bcWKFerSpYvGjx/v2xYZGalrrrmmVr9NmzZp69atuvzyy3X48GEdOnRIhw4dUmlpqUaNGqVVq1bJ6/U2wSsEcNyJucKkSZMUGxurl19+WV26dPH1ue6662rt8/zzzyshIUEXXHCB7//toUOHNGTIEMXGxvr+6vbee++pqqpKM2bMqHWby4033mic18aNG5Wbm6sbb7yxzpfZTxzLXx6PR++8844mTJignj17+ranpaXp8ssv18cff6yioqJa+1x77bW1jjVy5Eh5PB7t3Lkz4OM3J26naQMWL16sU045RYWFhXr88ce1atUqud3uWn2efPJJ3Xfffdq8ebOqq6t92zMzM33/TklJUZ8+fbR69WpNmzZNq1ev1nnnnaef/exnmjFjhnbs2KFvv/1WXq+XJB5oAz755BPNmTNHa9asUVlZWa22wsJCJSQk+J6fGCuO27lzp3r16lXng7Z37961nm/dulWSNGXKlAbnUlhY6LsFEEDwHc8VwsLClJKSor59+8rp/OFablhYmO/i33Fbt25VYWGhkpOT6x3zwIEDkuRLdvv06VOrPSkpyfj/+vhtPaeffnpgL6gBBw8eVFlZmfr27VunrV+/fvJ6vcrLy1P//v1927t3716r3/E5//i+/9aGJL4NyMrK8n3jfMKECRoxYoQuv/xybdmyRbGxsfqf//kfXXXVVZowYYJuueUWJScny+VyacGCBb7/PMeNGDFCK1euVHl5uT7//HPNnj1bp59+ujp06KDVq1fr22+/VWxsrAYPHtwSLxVAkGzfvl2jRo3Sqaeeqvvvv1/dunVTRESE3nzzTT3wwAN1row3ZiWa42Pde++9vu/g/FhsbOxJjw/A7MRcoT5ut7tWUi8d+7+bnJysf/3rX/Xu01a+r+JyuerdbllWM88kMCTxbczx5Py8887Tww8/rNtvv10vvPCCevbsqZdeeqnWFbM5c+bU2X/kyJF64okntGzZMnk8Hg0fPlxOp1MjRozwJfHDhw9v8A0PIDS89tprqqys1KuvvlrrKlR9X0ptSEZGhr755htZllUrtmzbtq1Wv169ekmS4uPjlZ2dbTvmyfz5HEDT6NWrl9577z2dffbZtr/IZ2RkSDp25f7EW1gOHjxovJp9PD589dVXtvHB39iQlJSk6OhobdmypU7b5s2b5XQ61a1bN7/Gau24J74NOvfcc5WVlaWFCxeqoqLCl3Cf+BvlunXrtGbNmjr7Hr9N5q9//asGDBjg+3P6yJEjtXLlSn322WfcSgO0AfXFhcLCQj3xxBN+j5GTk6M9e/bo1Vdf9W2rqKjQP/7xj1r9hgwZol69eum//uu/VFJSUmecE5dyO74uNRVbgZb3q1/9Sh6PR3fffXedtpqaGt//0+zsbIWHh+uhhx6qFVMWLlxoPMaZZ56pzMxMLVy4sM7/+xPH8jc2uFwujR49Wq+88kqt5Wnz8/P19NNPa8SIEYqPjzfOKxRwJb6NuuWWW/TLX/5SS5cu1cUXX6yXXnpJl156qS666CLl5uZqyZIlOu200+p8oPbu3VupqanasmWLZsyY4dv+s5/9TLfddpskkcQDbcDo0aMVERGhcePGadq0aSopKdE//vEPJScna9++fX6NMW3aND388MOaPHmybrjhBqWlpelf//qXr/DK8StnTqdT//znPzVmzBj1799fU6dOVZcuXbRnzx598MEHio+P12uvvSbpWMIvSf/5n/+pSZMmKTw8XOPGjWuSojMA7J1zzjmaNm2aFixYoE2bNmn06NEKDw/X1q1b9fzzz+vBBx/UL37xCyUlJekPf/iDFixYoIsvvlhjx47Vxo0b9dZbb/mWim2I0+nUI488onHjxmnQoEGaOnWq0tLStHnzZn399dd6++23Jf0QG2bOnKmcnBy5XC5NmjSp3jHnz5+vd999VyNGjNDvf/97hYWF6e9//7sqKyt1zz33BPcktaSWXBoHjXN8aaT//d//rdPm8XisXr16Wb169bJqamqs//f//p+VkZFhud1ua/Dgwdbrr79uTZkyxcrIyKiz7y9/+UtLkvXss8/6tlVVVVnR0dFWRESEVV5e3pQvC0ATqG95tldffdUaMGCAFRkZafXo0cP661//aj3++ON1lnjMyMiwLrroonrH3bFjh3XRRRdZUVFRVlJSknXzzTdbL774oiXJWrt2ba2+GzdutCZOnGh16tTJcrvdVkZGhvWrX/3KWrlyZa1+d999t9WlSxfL6XSy3CTQSHa5wnFTpkyxYmJiGmx/9NFHrSFDhlhRUVFWXFycdcYZZ1i33nqrtXfvXl8fj8djzZ0710pLS7OioqKsc8891/rqq6+sjIwM2yUmj/v444+tCy64wIqLi7NiYmKsAQMGWA899JCvvaamxpoxY4aVlJRkORyOWvFMP1pi0rIsa8OGDVZOTo4VGxtrRUdHW+edd5716aef+nVuGppja+OwrFZ+1z4AIKQsXLhQN910k3bv3l1r+ToAQPCQxAMATlp5eXmtL7xVVFRo8ODB8ng8+u6771pwZgDQtnFPPADgpE2cOFHdu3fXoEGDVFhYqP/5n//R5s2bG1ySDgAQHCTxAICTlpOTo3/+85/617/+JY/Ho9NOO03Lli3TZZdd1tJTA4A2jdtpAAAAgBDDOvEAAABAiCGJBwAAAEJMm78n3uv1au/evYqLi6OcN4wsy1JxcbHS09PldPI7LoghCAwxBPUhjiAQfseRFluhPgAPP/ywr1BRVlaWtW7dOr/3zcvLsyTx4BHQIy8vrwnf0WgJJxtHiCE8TuZBDGl7yEV4NPfDFEda/ZX4Z599VrNmzdKSJUs0dOhQLVy4UDk5OdqyZYuSk5ON+8fFxUmSdm7oofjYhn+buedwH9tx3t5zmvFYkeHVxj6DE3cb+3xdkGbbXlodYRwjI/6osU9cWIWxz77yBNv2r75PN46hCpexS0yu+a0YXmbZthecUWMco3uPg7btNWVVWj/5Ud/7Bm1DY+KIvzEEkKSiEq8yzvyeGNLGBCsXSf/LH+WMjGywX3h8pe04NYcb3vc4V4U5TllO+89TSfJEe23bk7uZ8wx/HPw+0dwp1v7z3ZVvzotMr0eSMvruN/Zxu+znsmWHOS+KOGCf83grK/T9PXcb40irT+Lvv/9+XXPNNZo6daokacmSJXrjjTf0+OOP6/bbbzfuf/zPVvGxTsXHNfzGjqwMtx3HFeM2Hiss3Pwfxx1rfxxJCqu2P1aYH0l8eIy5T0S4+Q0d7rQfxxllDihymJN4l9v8VnTV2AcdZ5Q5iQ/z4+coiT93tjGNiSP+xhDgRMSQtiVYuYgzMtL2c9MZbf++cZaZP3Odfnzd0Z8k3oqyzxH8yYv84VceYfh8d0aacx7T65H8yxHCXPY5jT+vxxnpX/ptiiOt+hOpqqpKn3/+ubKzs33bnE6nsrOztWbNmhacGYBQQRwB0BjEELRWrfpK/KFDh+TxeJSSklJre0pKijZv3lzvPpWVlaqs/OHPUUVFRU06RwCtW6BxhBgC4ETkImitWvWV+JOxYMECJSQk+B7dunVr6SkBCCHEEACNRRxBc2jVSXznzp3lcrmUn59fa3t+fr5SU1Pr3eeOO+5QYWGh75GXl9ccUwXQSgUaR4ghAE5ELoLWqlUn8RERERoyZIhWrlzp2+b1erVy5UoNGzas3n3cbrfi4+NrPQC0X4HGEWIIgBORi6C1atX3xEvSrFmzNGXKFJ111lnKysrSwoULVVpa6vuGOACYEEcANAYxBK1Rq0/iL7vsMh08eFCzZ8/W/v37NWjQIK1YsaLOF0xMvqysVGxEw394qPDaL/148Ih5zV/LY15S7LbMFcY+Xx7tYtu+J7ezcYy9niRjnz799hj7/Dx9g/0YcQeMY7z00VBjH48fK0yVnmG/fm5svHnd+1359uvResvMYyD0BCuOAGifghVDkrsetV2aMSt5p+3+X3ayzw8kadc+87rrjiPmJRnPH/yN/XFKOxrH2Lm+q3kuXc2fu648+yQh9vQjxjEiwjzGPnn/az6/DsNKlS63efnOOPsfszxVxiEkhUASL0nTp0/X9OnTW3oaAEIYcQRAYxBD0Nq06nviAQAAANRFEg8AAACEGJJ4AAAAIMSQxAMAAAAhhiQeAAAACDEk8QAAAECICYklJoPhpi2/sl2btbTSfs3U6Bj7NcolqXNsqbHPkj3nGvtM7fqJbfsfd19qHMMf3x8yryX7qmugbXv3mKPGMbxxNebJdDOvE3t57y9s21/JPcM4hnW44feAJFnl5vVdAQA4GQfyE+SManjN8+w+b9ruv+FQN+Mx4j8zF14ZfMW/jX3iwu0/l9OiC41j5PXqYOxTkx9t7BNebF+HJ9ZtXlg93GVeJ/6wudyPkofk27Z7nko2jnHgJ/a5hrfCv1yEK/EAAABAiCGJBwAAAEIMSTwAAAAQYkjiAQAAgBBDEg8AAACEGJJ4AAAAIMSQxAMAAAAhhiQeAAAACDHtpthTYnSZwqMbLjrUOdq+UNOhshjjMXrGHTb2+XBbH2OfG7vaF1C4bshHxjH+tvY8Yx/PQXOBhUNx9q97y94U4xiOcK95Lh7z75OvfX+6bXuMH8UeSjsY+vgxBgAAJ+PfFzyl+LiGP+8OeOxzkfwvzJ+5cTXmQkGfP2cujliZaD9O35G5xjFOT9tn7LPjA3NeVNzDfi5533c2juFwm3ORuH3mak+HKlPtj2N+OfLGVNu3O82FqSSuxAMAAAAhhyQeAAAACDEk8QAAAECIIYkHAAAAQgxJPAAAABBiTjqJr6ysVGVlZTDnAgAAAMAPASXx7777rsaOHauOHTsqOjpa0dHR6tixo8aOHav33nuvqeYIAAAA4AR+J/FPPvmkxo4dq4SEBD3wwAN6/fXX9frrr+uBBx5Qhw4dNHbsWP33f/93U84VAAAAgAIo9vTnP/9ZCxcu1PXXX1+n7aqrrtKIESM0b948/eY3vwnqBINlx8cZckVGNtieMWKX7f7lVeHGY3y2v5uxT7+u+4195u4YZz9Gh3zjGGMGfmXsc6jSXMCqs9u+8MTbR/oZxwjb6zb2qU43dlFVcYRte1G1+XfSsCKXbbujwlwkAwCAkzFo9eVyRjecizh2R9nuH7vTXIyoOMP8OVaTZC5sOOzU7bbt3x4yF546O91cEKrwF7uNfZId9oWatu1LNo7hKTTncaXdzQWhHDX2P4OIAvPPKPEz+/TbUxUm81kJ4Er8rl27lJ2d3WD7qFGjtHu3P4cEAAAA0Bh+J/H9+/fXY4891mD7448/rtNOOy0okwIAAADQML9vp7nvvvt08cUXa8WKFcrOzlZKyrE/o+Tn52vlypXasWOH3njjjSabKAAAAIBj/E7izz33XH311Vd65JFHtHbtWu3ff+ze7tTUVI0ZM0a/+93v1KNHj6aaJwAAAID/43cSL0k9evTQX//616aaCwAAAAA/ULEVAAAACDEk8QAAAECIIYkHAAAAQkxA98Q3t7vuuktz586tta1v377avHlzwGN5YryyIhtexD/c5bHdPyqi2niM7vFHjX2+2p9m7FO9Pc62/dAp5iJNToe52ENZmbkIk7W34aIUkpR2+gHjGPl77MfwV+J6+0INlR3NBRZchvoWnkrzGAgtwYwjANqnoMWRfVGSTeFJ9xH7zyBXlfmz3bKvaShJiutkX8hRkrYcSbJtL9gTbxxjxXdnGvt4OpsLT8Vsts9XPL3MOdopv19v7LP1oaHGPvHf21//Lju7xDhGepJ9vlhTWik9YRwm8Cvx8+bNU1lZWZ3t5eXlmjdvXqDDGfXv31/79u3zPT7++OOgHwNA20YcAdBYxBG0NgEn8XPnzlVJSd3fMsrKyur8lhoMYWFhSk1N9T06d+4c9GMAaNuIIwAaiziC1ibgJN6yLDkcdf/c88UXXygxMTEokzrR1q1blZ6erp49e+qKK67Qrl27bPtXVlaqqKio1gNA+xZIHCGGAKgPcQStjd9JfMeOHZWYmCiHw6FTTjlFiYmJvkdCQoIuuOAC/epXvwrq5IYOHaqlS5dqxYoVeuSRR5Sbm6uRI0equLi4wX0WLFighIQE36Nbt25BnROA0BJoHCGGAPgx4ghaI7+/2Lpw4UJZlqWrr75ac+fOVUJCgq8tIiJCPXr00LBhw4I6uTFjxvj+PWDAAA0dOlQZGRl67rnn9Nvf/rbefe644w7NmjXL97yoqIj/PEA7FmgcIYYA+DHiCFojv5P4KVOmSJIyMzM1fPhwhYfbrxTSFDp06KBTTjlF27Zta7CP2+2W221edQVA+2SKI8QQACbEEbQGAd8Tf84558jpdOrFF1/U/PnzNX/+fL388svyeOyXaAyGkpISbd++XWlp5mUaAaA+xBEAjUUcQWsQ8Drx27Zt09ixY7Vnzx717dtX0rF7v7p166Y33nhDvXr1Ctrk/vCHP2jcuHHKyMjQ3r17NWfOHLlcLk2ePDngsaZmf6DI2IZf7pJ3L7Ddv/eA3cZj7CrqaOyTGFt3ec4fCz+z4Xv+/XXo7S7GPl1z9hj77NmZbtte9kqKcYzIGPPa69YR81ryDo/9+rgxe83r58bk268lW1NjXq8WoSWYcQRA+xSsOOL0HHs0JG5nw/VsJKm4u/naq9tcskZl2xOMfTwda2zbnRXmuYSVm+diHTXf2VETbd/u3mceI3/GcGOfjv825xGlXe37pD5jzmcKErvatnuqKoxjSCeRxM+cOVO9evXS2rVrfavRHD58WL/+9a81c+ZMvfHGG4EO2aDdu3dr8uTJOnz4sJKSkjRixAitXbtWSUn2BQgA4DjiCIDGIo6gNQo4if/oo49qJfCS1KlTJ/3lL3/R2WefHdTJLVu2LKjjAWh/iCMAGos4gtYo4Hvi3W53vUsqlZSUKCIiIiiTAgAAANCwgJP4iy++WNdee63WrVsny7JkWZbWrl2r3/3udxo/fnxTzBEAAADACQJO4hctWqRevXpp2LBhioyMVGRkpM4++2z17t1bDz74YFPMEQAAAMAJAr4nvkOHDnrllVe0detWbd68WZLUr18/9e7dO+iTAwAAAFBXwEn8cX369FGfPn2CORcAAAAAfgg4ifd4PFq6dKlWrlypAwcOyOutvabp+++/H7TJAQAAAKgr4CT+hhtu0NKlS3XRRRfp9NNPl8NhLuTTGryzv5/CYhougRyWbl+E6ftDibbtkvSTbruMfTbstV/gXzIXhNqz2zwXZxf7ghGStHNLqrFPVJH9zzd2r30xCEnyRPhR7Mll7hO/rcS23VFjfs2lGbG27TXVAX9NBEA7kpM+yLa9xqqWtKNZ5oLQ4z7kkMvd8OddSRf7z8KKAebqSe6voox9wkrMn3UxefYrDiZuti+eKEl7R5rTzMiD5rkkfWl/rN2Xm3ORos7mFRQjDrmMfTp8Z59rOGvMBaPcxfZj1FSb8xnpJJL4ZcuW6bnnntPYsWMD3RUAAABAEAR82TEiIoIvsQIAAAAtKOAk/uabb9aDDz4oyzL/uQAAAABA8Pl1O83EiRNrPX///ff11ltvqX///goPD6/V9tJLLwVvdgAAAADq8CuJT0hIqPX80ksvbZLJAAAAADDzK4l/4oknmnoeAAAAAPwU8D3x5eXlKiv7YQnEnTt3auHChXrnnXeCOjEAAAAA9Qs4ib/kkkv01FNPSZIKCgqUlZWl++67T5dccokeeeSRoE8QAAAAQG0BrxO/YcMGPfDAA5KkF154Qampqdq4caNefPFFzZ49W9ddd13QJxkM+zamyRkZ2WB7dQeP7f4Rh80FADZuOs3Yx9vwFHwqdsXZtncyDyHLPF1F2NdOkiTF77DvdPTUGOMY7iJz0YKYXPNkTMWcHLvzzXNJaLjglyS5aszFKwC0PqYiTEBrkLCjRmHhDRcm2j3avthTxHZzElGRYv7MDTcUcpSksjT79uqYcPsOkhK2mlcyjD5g/tw92tf+WOHfmefirDJ2UXW8eb5lvyi0bT9YbP4Zhbvti1N5yiqk5cZhAr8SX1ZWpri4Y0nmO++8o4kTJ8rpdOqnP/2pdu7cGehwAAAAAAIUcBLfu3dvLV++XHl5eXr77bc1evRoSdKBAwcUHx8f9AkCAAAAqC3gJH727Nn6wx/+oB49eigrK0vDhg2TdOyq/ODBg4M+QQAAAAC1BXxP/C9+8QuNGDFC+/bt08CBA33bR40axfrxAAAAQDMIOImXpNTUVKWmpiovL0+S1K1bN2VlZQV1YgAAAADqF/DtNDU1NbrzzjuVkJCgHj16qEePHkpISNCf/vQnVVezsgcAAADQ1AK+Ej9jxgy99NJLuueee3z3w69Zs0Z33XWXDh8+zFrxAAAAQBMLOIl/+umntWzZMo0ZM8a3bcCAAerWrZsmT55MEg8AAAA0sYCTeLfbrR49etTZnpmZqYiIiGDMqUlE7XfI5W64uEHs4EO2+x/el2o8Ruxuc5GAiFI/Ch/tKrVtNxU9kiR5zX1KM81Lgpan2BctiDxqXyRLklyV5vPiqLIvfCBJVoT927Wmf3fjGGFHy+07eCqNY6B9uvSUMxTmMBcUacjbezcFbzJtCEWa0J7E5BYrzGVTdchKsN3f60fWZiWaqxpVdTSP032ZfdXII/3M8fDQWeZcJOKweRyP2z6PiO131DhGwR5zzpO8xlwps2qP/clL8JhznuIM+3ZvhX/pecD3xE+fPl133323Kit/SHYqKyv15z//WdOnTw90OAAAAAABCvhK/MaNG7Vy5Up17drVt8TkF198oaqqKo0aNUoTJ0709X3ppZeCN1MAAAAAkk4iie/QoYN+/vOf19rWrVu3oE0IAAAAgL2Ak/gnnniiKeYBAAAAwE8B3xMPAAAAoGWdVMXWF154Qc8995x27dqlqqra34LesGFDUCYGAAAAoH4BX4lftGiRpk6dqpSUFG3cuFFZWVnq1KmTduzYUWvteAAAAABNI+Ar8X/729/06KOPavLkyVq6dKluvfVW9ezZU7Nnz9aRI0eaYo5BEXXIq7DwhtcrLXnTfh34zrvN66HH7ig29vFnPfTqpBjb9vCD9uvIS5LjSKGxT1S0eV1/05r0/rweR0W1uU+leV1buUzrt8aax9ieZ99u+TEP4CSwHjqA7yd2kDOy4forPV61/7yM/Hyr8Rj5P+9r7FNiLquiA7+1z2kSYw8bx+jqrjD2uarLJ8Y+z+X/xLa9k9ucF33qzTT2KenawdinqoP9OvDeCPM68eHFDdctOnYQ4xCSTuJK/K5duzR8+HBJUlRUlIqLj/2Qf/Ob3+iZZ54JaKxVq1Zp3LhxSk9Pl8Ph0PLly2u1W5al2bNnKy0tTVFRUcrOztbWreY3MID2gzgCoDGIIQhVASfxqampvivu3bt319q1ayVJubm5sizzbx8nKi0t1cCBA7V48eJ62++55x4tWrRIS5Ys0bp16xQTE6OcnBxVVJh/swPQPhBHADQGMQShKuDbac4//3y9+uqrGjx4sKZOnaqbbrpJL7zwgj777LNahZ78MWbMmAbvo7csSwsXLtSf/vQnXXLJJZKkp556SikpKVq+fLkmTZoU6NQBtEHEEQCNQQxBqAo4iX/00Ufl9R67T/r6669Xp06d9Omnn2r8+PGaNm1a0CaWm5ur/fv3Kzs727ctISFBQ4cO1Zo1axr8j1NZWanKykrf86KioqDNCUBoOZk4QgwBcBy5CFqzgG+ncTqdCgv7IfefNGmSFi1apBkzZigiwvxFSX/t379fkpSSklJre0pKiq+tPgsWLFBCQoLvQTVZoP06mThCDAFwHLkIWrOTWie+oKBA69ev14EDB3xX5Y+78sorgzKxk3XHHXdo1qxZvudFRUX85wHgN2IIgMYijqA5BJzEv/baa7riiitUUlKi+Ph4ORw/LJPjcDiClsSnph5b8jE/P19paWm+7fn5+Ro0aFCD+7ndbrnd7qDMAUBoO5k4QgwBcBy5CFqzgG+nufnmm3X11VerpKREBQUFOnr0qO8RzHXiMzMzlZqaqpUrV/q2FRUVad26dRo2bFjQjgOg7SKOAGgMYghas4CvxO/Zs0czZ85UdHR0ow9eUlKibdu2+Z7n5uZq06ZNSkxMVPfu3XXjjTdq/vz56tOnjzIzM3XnnXcqPT1dEyZMCPhYHdfvVZiz4d+KExLsCyxZEeZT5V/hI/MK/q5S++8W+FPIyZvc0dgn7IAfX7Tx2Be58hrOmyQ5ikrMxzEWcjIfy+s2/4xcvQx/zvRUSl8Zh0Er0pxxBEDb05wx5KzzvlV4TMOf8fuGJ9juX1jdwXiM4o3meXjDzUuChzns+zgN7ZL0/eFEY5918b2Mfc5MsC/UuLPCfByPx3zduqqzfYFLSfJEG/q4zOel2rLPebxh/i3ZHnASn5OTo88++0w9e/YMdNc6PvvsM5133nm+58fvH5syZYqvGmxpaamuvfZaFRQUaMSIEVqxYoUibaqdAWhfiCMAGoMYglAVcBJ/0UUX6ZZbbtE333yjM844Q+Hh4bXax48f7/dY5557rm2BKIfDoXnz5mnevHmBThNAO0EcAdAYxBCEqoCT+GuuuUaS6n0zOxwOeQy3XwAAAABonICT+B8vKQkAAACgeQW8Og0AAACAluV3Er9mzRq9/vrrtbY99dRTyszMVHJysq699tpaJYYBAAAANA2/k/h58+bp66+/9j3/97//rd/+9rfKzs7W7bffrtdee00LFixokkkCAAAA+IHfSfymTZs0atQo3/Nly5Zp6NCh+sc//qFZs2Zp0aJFeu6555pkkgAAAAB+4PcXW48ePaqUlBTf848++khjxozxPf/JT36ivDz7xfhbklVULMvR8O0+zhrDqjr+rLrjti/SJEmWH31c++wr33pTOxnHcB4sMPbx5zVZifaFJ5yFpebj+PGaVWkuguWoqLZtD6sxf+m6pqN9kTKPuV4XAAAn5euDaXKVNlx4snCn/Wfu6QN3Go8RPmSfsc/hd9ONfSpq4m3b93vt2yXJUNNIkvRS4ZnGPpPPXG/bnhFpnzdJ0scOc30jR1qFsY97qyGPcJsLNTkM6YqjwmEcQwrgSnxKSopyc3MlSVVVVdqwYYN++tOf+tqLi4vrrBkPAAAAIPj8TuLHjh2r22+/XatXr9Ydd9yh6OhojRw50tf+5Zdfqlcvc+lcAAAAAI3j9+00d999tyZOnKhzzjlHsbGxevLJJxUR8cNtEo8//rhGjx7dJJMEAAAA8AO/k/jOnTtr1apVKiwsVGxsrFyu2jc6Pf/884qNjQ36BAEAAADUFnDF1oSE+r90kZiY2OjJAAAAADCjYisAAAAQYkjiAQAAgBBDEg8AAACEmIDviW+rrFL7okWOmBjjGN5D5mID6tXN2MVRVGLb7jxabD6OP8WpXOYqDI4jhbbtpmJQkmRFmN9mjt355nGiGy6QIUlWmPl3UtemrfZjWOaiUwAAnIzoiCqFuRsu5JM5aIft/pkxh43HeGnHYGMfdxDWIamJMxdYdFb5UbTIY+7z7p5TbduHppiLYFVXmXORsHBz7lSZaN/HVW7ORbxh9gWhvF5zwSiJK/EAAABAyCGJBwAAAEIMSTwAAAAQYkjiAQAAgBBDEg8AAACEGJJ4AAAAIMSQxAMAAAAhhnXi/49VXWPb7tmz1ziGq3MnYx9Hof169McGsl+/3bP/gHEIZ68M83Fq/FhLPgi8kX6sE98jzdjHtA68s8L+ZyhJVr9M+3ZPhbTBOAwAAEHXJ+6gbfue8g7GMeI6lhn7lB+MMPYJK7Vfvz2swlxrpqqDeS15R4S5T5jLPl8ZEJtnHGNHqjlH2/yNH7V8auzPS028ObdyRNvnK95y/2rWcCUeAAAACDEk8QAAAECIIYkHAAAAQgxJPAAAABBiSOIBAACAEEMSDwAAAIQYkngAAAAgxJDEAwAAACGmRYs9rVq1Svfee68+//xz7du3Ty+//LImTJjga7/qqqv05JNP1tonJydHK1asCPhYVtdUWS53g+2OvfYFFsI6JJiPUVlpnoihkJMkWTFRtu3OhFjzGBHmH62zsMTYx6S6R7KxT/i+AmMfb3y0sY8nJty2vapDwz/f4xxey7a9xlwvCq1Mc8YRhLa3925q8mMUFXvV8ZQmPwyCqDljyKGCWDmrIhtsf6/a/s0zNHVXwMesT03namMfT5R9vuLw2Bc9kqToveZrxSXm9Eoer/04Hxf0No6x/UBnYx/LYZ8jSJLVwT5RcPlRvMppKF7l9TMZadEr8aWlpRo4cKAWL17cYJ8LL7xQ+/bt8z2eeeaZZpwhgNaOOAKgMYghCFUteiV+zJgxGjNmjG0ft9ut1NTUZpoRgFBDHAHQGMQQhKpWf0/8hx9+qOTkZPXt21fXXXedDh8+3NJTAhBiiCMAGoMYgtaoRa/Em1x44YWaOHGiMjMztX37dv3xj3/UmDFjtGbNGrkauLe8srJSlSfcm15UVNRc0wXQCgUaR4ghAE5ELoLWqlUn8ZMmTfL9+4wzztCAAQPUq1cvffjhhxo1alS9+yxYsEBz585trikCaOUCjSPEEAAnIhdBa9Xqb6c5Uc+ePdW5c2dt27atwT533HGHCgsLfY+8vLxmnCGA1s4UR4ghAOyQi6C1aNVX4n9s9+7dOnz4sNLS0hrs43a75XablxoE0D6Z4ggxBIAdchG0Fi2axJeUlNT6TTY3N1ebNm1SYmKiEhMTNXfuXP385z9Xamqqtm/frltvvVW9e/dWTk6O38ewrGNrftZ47Ndwd3irDO1+HMswxrFxzGvJWx7zOqXmMezXIJUkpx9zMampqTD28ec1ez3m9fNragxrvFeb384Oy7RO/LHXYxn6ofVo6jjiiyGqlnhbhLSiYj8CeWOPUXLsGMSQ0NGcuYi33P7z0OO0b68qMecZnjI/PnPLzZ+5DkMfh9e8Tryn0nzDh+mcSObXVO02nxdvmTlf8ZYbu0iyz68cNX7EGdM68f93ToxxxGpBH3zwgaVjH4u1HlOmTLHKysqs0aNHW0lJSVZ4eLiVkZFhXXPNNdb+/fsDOkZeXl69x+DBw+6Rl5fXRO96BFtTxxFiCI+TeRBDQge5CI/W+jDFEYdlte3LBV6vV3v37lVcXJwcDoeKiorUrVs35eXlKT4+vqWn1+aE+vm1LEvFxcVKT0+X0xlSXxlBE/lxDJFC/33emoX6uSWGoD7kIs0r1M+vv3EkpO6JPxlOp1Ndu3atsz0+Pj4kf7ChIpTPb0JCQktPAa1IQzFECu33eWsXyueWGIIfIxdpGaF8fv2JI1wmAAAAAEIMSTwAAAAQYtpdEu92uzVnzhyWfmoinF+0B7zPmw7nFu0B7/Om1V7Ob5v/YisAAADQ1rS7K/EAAABAqCOJBwAAAEIMSTwAAAAQYkjiAQAAgBDT7pL4xYsXq0ePHoqMjNTQoUO1fv36lp5SSFq1apXGjRun9PR0ORwOLV++vFa7ZVmaPXu20tLSFBUVpezsbG3durVlJgsEETEkOIghaM+II8HR3uNIu0rin332Wc2aNUtz5szRhg0bNHDgQOXk5OjAgQMtPbWQU1paqoEDB2rx4sX1tt9zzz1atGiRlixZonXr1ikmJkY5OTmqqKho5pkCwUMMCR5iCNor4kjwtPs4YrUjWVlZ1vXXX+977vF4rPT0dGvBggUtOKvQJ8l6+eWXfc+9Xq+Vmppq3Xvvvb5tBQUFltvttp555pkWmCEQHMSQpkEMQXtCHGka7TGOtJsr8VVVVfr888+VnZ3t2+Z0OpWdna01a9a04MzantzcXO3fv7/WuU5ISNDQoUM51whZxJDmQwxBW0UcaT7tIY60myT+0KFD8ng8SklJqbU9JSVF+/fvb6FZtU3HzyfnGm0JMaT5EEPQVhFHmk97iCPtJokHAAAA2op2k8R37txZLpdL+fn5tbbn5+crNTW1hWbVNh0/n5xrtCXEkOZDDEFbRRxpPu0hjrSbJD4iIkJDhgzRypUrfdu8Xq9WrlypYcOGteDM2p7MzEylpqbWOtdFRUVat24d5xohixjSfIghaKuII82nPcSRsJaeQHOaNWuWpkyZorPOOktZWVlauHChSktLNXXq1JaeWsgpKSnRtm3bfM9zc3O1adMmJSYmqnv37rrxxhs1f/589enTR5mZmbrzzjuVnp6uCRMmtNykgUYihgQPMQTtFXEkeNp9HGnp5XGa20MPPWR1797dioiIsLKysqy1a9e29JRC0gcffGBJqvOYMmWKZVnHlna68847rZSUFMvtdlujRo2ytmzZ0rKTBoKAGBIcxBC0Z8SR4GjvccRhWZbVAr87AAAAADhJ7eaeeAAAAKCtIIkHAAAAQgxJPAAAABBiSOIBAACAEEMSDwAAAISYNr9OvNfr1d69exUXFyeHw9HS00ErZ1mWiouLlZ6eLqeT33FBDEFgiCGoD3EEgfA7jrToApd+evjhh62MjAzL7XZbWVlZ1rp16/zeNy8vr941RHnwsHvk5eU14TsaLeFk4wgxhMfJPIghbQ+5CI/mfpjiSKu/Ev/ss89q1qxZWrJkiYYOHaqFCxcqJydHW7ZsUXJysnH/uLg4SVLXuX+SMzKywX4R6SX2A/073nismjjL2Cd6j/k38LjdNbbtMTuKjWM4PB5zn0LDa5bkLS2171BdbT5ORldjHx0uNI8T5rLvEBlhHMNy2Y9R463UR7lLfO8btA2NiSPH3ws7N/RQfGzTXlm99JQzmnR8NL0aVetjvUkMaWOClYt0m22fi3hi7D+7nVH2+YEkOQ65jX1c6WXGPtbOGNt2T4Q554nZZY6Znb6tNPZx7ymybbf27jeOUT78VGOf6C/yjH0chr+wedITjWPIkKLVeCq1+qsHjHGk1Sfx999/v6655hpfOeIlS5bojTfe0OOPP67bb7/duP/xP1s5IyNt/+O4og3/MdwN73ucN9L8hna5zUl8WLj9XMJcVcYxHKZ3iCSH0zyO12FI0v34s6DDZQ4ocpoTcIfTkMQ7zccxJfG+Y/HnzjalMXHk+HshPtap+LimTeLDHOFNOj6awf99DBBD2pbmykWsKEMSb8pVJDkizZ+FzmivsY9lM09JsvxI4l1uc8wMC/MjL3LZJ/qWw5xDhIWb87gwv3IR+9fkcJmP4wsUpmMZ4kirvmGvqqpKn3/+ubKzs33bnE6nsrOztWbNmhacGYBQQRwB0BjEELRWrfpK/KFDh+TxeJSSklJre0pKijZv3lzvPpWVlaqs/OE3tqIi+z/BAGjbAo0jxBAAJyIXQWvVqq/En4wFCxYoISHB9+jWrVtLTwlACCGGAGgs4giaQ6tO4jt37iyXy6X8/Pxa2/Pz85WamlrvPnfccYcKCwt9j7w885cUALRdgcYRYgiAE5GLoLVq1Ul8RESEhgwZopUrV/q2eb1erVy5UsOGDat3H7fbrfj4+FoPAO1XoHGEGALgROQiaK1a9T3xkjRr1ixNmTJFZ511lrKysrRw4UKVlpb6viEOACbEEQCNQQxBa9Tqk/jLLrtMBw8e1OzZs7V//34NGjRIK1asqPMFExP3AaftUkfO3fa/Jad/bF5TPSzfvNZ5Te5OYx9Xvz627dZu83qojlj79V0lSX4sQ+WIjTaPYxqjwLyuvbeiwjyQYbkrFZi/OGQ6Lw6vedlNhJ5gxRE7OemDgjYWgNYlWDGk3+CdCo9peBnDgR122+6/cl9f4zH2HTSvW+/6MtbYJ8Lw0e3y42M7Jt+8JGZ4gXkgb7R9vuKw/Fiz/qt9xj41+QeMfVwp9ufXdcScL1pu++WEnR7/cpFWn8RL0vTp0zV9+vSWngaAEEYcAdAYxBC0Nq36nngAAAAAdZHEAwAAACGGJB4AAAAIMSTxAAAAQIghiQcAAABCDEk8AAAAEGJCYonJYEjcUqOw8IbXK43dctR2f0dJufkgYS5jF1fHjsY+Vq59eWZnUmfzXGrMa7NakQ2vVXuccY33MPNbyOoQZz6OH+vR1yTbr+UfdqTUOIYnxn6tWY+nQrJfphft1KWnnKEwh/3avgBg52hFlMJcDX8O/c/Kkbb7x+wxX3vtWGheM11+rKvuLrbv46wxjxF5sNLYx1lYZuwjh8O+vVu6cYiKLgnGPuHJ5j7lnaNs260ww1wlHTrD/rPEU1khbTEOw5V4AAAAINSQxAMAAAAhJuDbafbv369169Zp//79kqTU1FQNHTpUqampQZ8cAAAAgLr8TuJLS0s1bdo0LVu2TA6HQ4mJiZKkI0eOyLIsTZ48WX//+98VHW2+txkAAADAyfP7dpobbrhB69ev1xtvvKGKigrl5+crPz9fFRUVevPNN7V+/XrdcMMNTTlXAAAAAAogiX/xxRe1dOlS5eTkyOX6YRUWl8ul0aNH6/HHH9cLL7zQJJMEAAAA8AO/k3iv16uIiIaXJIyIiJDX6w3KpAAAAAA0zO8k/uKLL9a1116rjRs31mnbuHGjrrvuOo0bNy6okwMAAABQl99fbH344Yd1+eWXa8iQIerYsaOSk5MlSQcOHFBBQYFycnL08MMPN9lEGytmV6nCXA0XQLJ277fd39E50XgMq6DIPBE/iiOpdw/b5uqESOMQzkpzsSdPjLlwTcmgTrbt8bnmIg3lqeb5ViSYC2V5DbWpqv0oGBW7x/6vRTXVYdIG4zAAmtHbeze19BR8ctIHtfQUEMLyv0yRM7Lhz8TUz+0/o+K/sy9MKUkVqTHmiZiKJ0lyVXrM4xj4k4tU9PAjv3LZz7c0zZzPFJxi7KIO35mLYFbH2s+lxo/1XSo62/+cvRX+3dnidxLfsWNHvfXWW/r222+1du3aWktMDhs2TKeeeqq/QwEAAABohIDXie/Xr5/69evXFHMBAAAA4IeAkviqqiotX75ca9asqXUlfvjw4brkkktsv/gKAAAAIDj8/mLrtm3b1K9fP02ZMkUbN26U1+uV1+vVxo0bdeWVV6p///7atm1bU84VAAAAgAK4En/dddfpjDPO0MaNGxUfH1+rraioSFdeeaWuv/56vf3220GfJAAAAIAf+J3Ef/LJJ1q/fn2dBF6S4uPjdffdd2vo0KFBnRwAAACAuvy+naZDhw76/vvvG2z//vvv1aFDhyBMCQAAAIAdv6/E/8d//IeuvPJK3XnnnRo1apRSUlIkSfn5+Vq5cqXmz5+vGTNmNNlEAQAAABzjdxI/b948xcTE6N5779XNN98sx/8VCrAsS6mpqbrtttt06623NtlEG6syKUqesIYLLEQdTrDd33voiPEYjtQkc58ac/EEK8z+DySuwgrjGDWdoox9DvczF2Eq7WbffmiwuaiE5bKC0sdZZV9gwRthLo5QlmYYo8IhvWQcBghpral4UqgxnbuiYq86+lFUBu1TxlvlCgtr+POuLNVtu7/XbU7bnNXmz1OvuTaSvOH2ucjh08wrEnrD/ShOWWWeS0kPw+e7ZX7NDo+5wNXhQX6cu0j7PM4VV20cIyG+1LbdU1ZpHEMKcInJ2267Tbfddpt27Nih/Px8SceWmMzMzAxkGAAAAACNEHCxJ0nq2bOnevbsGey5AAAAAPCD319slaRvvvlGv//97zV48GClpaUpLS1NgwcP1u9//3t98803TTVHAAAAACfw+0r8W2+9pQkTJujMM8/UJZdcUuuLre+++67OPPNMvfLKK8rJyWmyyQIAAAAIIIm//fbbddttt2nevHl12u666y7ddddduuWWW0jiAQAAgCbm9+003333na644ooG2ydPnqytW7cGZVIAAAAAGuZ3Et+jRw+98cYbDba/8cYbysjICMqkAAAAADQsoHXiL7/8cn344YfKzs6uU+xpxYoVevrpp5tsogAAAACO8TuJ/+Uvf6kuXbpo0aJFuu+++7R//35Jx9aJHzZsmD788EMNGzYsqJO76667NHfu3Frb+vbtq82bNwc8VtTXexXmbLgwgVVhv7C+M9aPokZ+zKMmxb6olCQ5K2ps2yvTY41j5GWbKzmEF5kLHzg89q8q8qh5jJoYcx9vhD8Foezbo/aZ/7BUHW84jrlGA0JMMONIqKCYExBcwYoj4fmFCnM2XLAx/ojhs3vfAeMxXMmdjX0c5eZiQqUD0mzbIwrNn9uRheYijHtHmHMEZ4p9kcuaAnPhqfACQxIhyeNHESxXvH11KrfbnEjEue3HqKnxowKWAlwnfvjw4Ro+fHgguzRa//799d577/meh4Wd1NL2ANox4giAxiKOoLVp9e/AsLAwpaamtvQ0AIQw4giAxiKOoLUJqNiTnW+//bZJqrhu3bpV6enp6tmzp6644grt2rXLtn9lZaWKiopqPQC0b4HEEWIIgPoQR9DaBC2Jr6qq0s6dO4M1nCRp6NChWrp0qVasWKFHHnlEubm5GjlypIqLixvcZ8GCBUpISPA9unXrFtQ5AQgtgcYRYgiAHyOOoDVyWJblz/cxNWvWLNv2gwcP6umnn5bH4wnKxOpTUFCgjIwM3X///frtb39bb5/KykpVVv7whY2ioiJ169ZN2anXNuqLrY5It3F+Vmy0sY+nk/lLqcYvtiabjxOsL7aavnDqzxg15u8EB+WLrRF+fMnW9MVWb0WFdsz7TxUWFio+Pt44HkKPKY40FEPO1SUKc/jxradWgC+2tpyiYq86nrKDGNLGnWwcyc6coTBnw/mE5W78F1vVTF9sLU0235EdtC+2pjbTF1ujzbmII9l+Lv58sTUprtS2vaa0UmsmPGSMI37fE//ggw9q0KBBDQ5WUlLi71AnrUOHDjrllFO0bdu2Bvu43W653eaEG0D7ZIojxBAAJsQRtAZ+J/G9e/fWTTfdpF//+tf1tm/atElDhgwJ2sTqU1JSou3bt+s3v/lNkx4HQNtFHAHQWMQRtAZ+J/FnnXWWPv/88waTeIfDIT/vzPHbH/7wB40bN04ZGRnau3ev5syZI5fLpcmTJwc8llXjkeVs+FYfb68ujZmqJKk81XybS1iZ+Xajo4Ps7z+pjjX/6Sm8p/lLNDFvxhn7mG5hCS8x/6ksotjc58ipfvxZ7oj9+8vjxy051fx1u90JZhxpatwGA7ROQYsj1TWSs+EPVis20n7/jHTjISqTzLlIeJF5HfJDp9vf2uPyYynzo/3N+Upsz0Jjn2jDuuquRPPn/97tScY+ltM8Tny0/a1IpVs7GMfY5ba/tdpbbn/LznF+J/H33Xdfrfu7fmzgwIHyes3JWiB2796tyZMn6/Dhw0pKStKIESO0du1aJSWZfxAAIBFHADQecQStkd9JfEusjbps2bJmPyaAtoU4AqCxiCNojYK2xCQAAACA5kESDwAAAIQYkngAAAAgxJDEAwAAACEm4CR+3rx5Kisrq7O9vLxc8+bNC8qkAAAAADQs4CR+7ty59VZnLSsr09y5c4MyKQAAAAAN83uJyeMsy5LDUXfx/i+++EKJiYlBmVRTcERGyOFsuASyo6Km0cew/Dibe0eayzA7DPWgamLNxQiiV5mrGrkLzYWngqEqzvy7osdQ30KSqhLsi0Y4/Sg8UZVcbdvuLW/8+wCoD4WcAFgR4bJcDRdR8kZH2O7vKjIXASpPti/SJEnlSeY+Zd2DkCPE2X/mSlLRQfvCR5JkJdW9eHyiMRnfGsd4bq85R+3W5bCxz4DEvbbtH1m9jGMMTt1t215dWqU84ygBJPEdO3aUw+GQw+HQKaecUiuR93g8Kikp0e9+9zt/hwMAAABwkvxO4hcuXCjLsnT11Vdr7ty5SkhI8LVFRESoR48eGjZsWJNMEgAAAMAP/E7ip0yZIknKzMzU8OHDFR5u/lMMAAAAgOAL+J74c845Rx6PRy+++KK+/fbYPUj9+/fX+PHj5XK5gj5BAAAAALUFnMRv27ZNY8eO1Z49e9S3b19J0oIFC9StWze98cYb6tXLfEM/AAAAgJMX8BKTM2fOVK9evZSXl6cNGzZow4YN2rVrlzIzMzVz5symmCMAAACAEwR8Jf6jjz7S2rVray0n2alTJ/3lL3/R2WefHdTJAQAAAKgr4CvxbrdbxcXFdbaXlJQoIsJ+fVMAAAAAjRfwlfiLL75Y1157rR577DFlZWVJktatW6ff/e53Gj9+fNAnGCwlp6cpLLzhikLuo/aVgkq7mKsRHT7dvhiR5F9BomAIKzcXhHJ6zH0KM+3fIh22mosjVSaYf1es6ug19invaX8sZ4S5MEXk1ijbdk9F8xTAQttDMScARiVlkrPhz7Kw8krb3StOTTMeori7+TO3NKPxhQ0TuxYY+5RVmAtcVjnMucilmV/atveLtC/AJElbeycZ+2TGmIs9DY3bbtt+eox9ISdJGhu7xba9uNir54yjnMSV+EWLFqlXr14aNmyYIiMjFRkZqbPPPlu9e/fWgw8+GOhwAAAAAAIU8JX4Dh066JVXXtHWrVu1efNmSVK/fv3Uu3fvoE8OAAAAQF0BJ/HH9enTR3369AnmXAAAAAD4IeAk3uPxaOnSpVq5cqUOHDggr7f2vczvv/9+0CYHAAAAoK6Ak/gbbrhBS5cu1UUXXaTTTz9dDof5y5wAAAAAgifgJH7ZsmV67rnnNHbs2KaYDwAAAACDgFeniYiI4EusAAAAQAsKOIm/+eab9eCDD8qyzOt6AgAAAAg+v26nmThxYq3n77//vt566y31799f4eHhtdpeeuml4M0uiCJKqhUW5mqw/chp9kWADmeZCyPEbgk39nH6UUvIVEAp8lCF+TgV5vl6YswVdsOL7Cdcmm5+zR4/Cvm6upYZ+1jVDf/8JMkdWW0cw1lh/3OWfZ0NtGMvf/dvxccFfN0DAH4QGy25Gi6A5M0/ZLt7VUI34yHKU83FE10l9p+nkuSJtf/8P7K7g3GMiMPm4ziizBeF38zrb9v+luM04xgH9yUY+3ybkGrso572zV8WdDEO8WFkX9v26tIqSUuN4/iVxCck1H7hl156qT+7AQAAAGgCfiXxTzzxRFPPAwAAAICfAv7bcHl5ucrKfrj1YefOnVq4cKHeeeedoE4MAAAAQP0CTuIvueQSPfXUU5KkgoICZWVl6b777tMll1yiRx55JOgTBAAAAFBbwEn8hg0bNHLkSEnSCy+8oNTUVO3cuVNPPfWUFi1aFPQJAgAAAKgt4CS+rKxMcXFxkqR33nlHEydOlNPp1E9/+lPt3Lkz6BMEAAAAUFvASXzv3r21fPly5eXl6e2339bo0aMlSQcOHFB8fHzQJwgAAACgNr9WpznR7Nmzdfnll+umm27S+eefr2HDhkk6dlV+8ODBQZ9gsFR2CJcnvOE1zU3rwIcdNZ+qqIPmtU7LkxzGPmXJ9uuqetyGtc4lRe8PzoLnFZ3N68AHQ/UB82tyeOzPnbco0jiGZejixzL+AACcnCNHJUfDxVP2XHOG7e4x+8xrwEcc8eP6rDkVkTfavpMVYZ6LPyw/5nL4cKx9hxJzrhJWaj4vzo7lxj5RLvuaNDVe83G+PmC/Hr2nzL8cLuAr8b/4xS+0a9cuffbZZ3r77bd920eNGqUHHnggoLFWrVqlcePGKT09XQ6HQ8uXL6/VblmWZs+erbS0NEVFRSk7O1tbt24NdMoA2jDiCIDGIIYgVJ1U+cHU1FQNHjxYe/bsUV5eniQpKytLp556akDjlJaWauDAgVq8eHG97ffcc48WLVqkJUuWaN26dYqJiVFOTo4qKswVSwG0D8QRAI1BDEGoCvh2mpqaGs2dO1eLFi1SSUmJJCk2NlYzZszQnDlzFG5zy8qPjRkzRmPGjKm3zbIsLVy4UH/60590ySWXSJKeeuoppaSkaPny5Zo0aVKgUwfQBhFHADQGMQShKuAr8TNmzNCjjz6qe+65Rxs3btTGjRt1zz336LHHHtPMmTODNrHc3Fzt379f2dnZvm0JCQkaOnSo1qxZ0+B+lZWVKioqqvUA0D6dTBwhhgA4jlwErVnASfzTTz+tpUuXatq0aRowYIAGDBigadOm6bHHHtPTTz8dtInt379fkpSSklJre0pKiq+tPgsWLFBCQoLv0a1bt6DNCUBoOZk4QgwBcBy5CFqzgJN4t9utHj161NmemZmpiIiGv3HdXO644w4VFhb6Hsfv2QcAfxBDADQWcQTNIeAkfvr06br77rtVWfnD8jeVlZX685//rOnTpwdtYqmpx5bfyc/Pr7U9Pz/f11Yft9ut+Pj4Wg8A7dPJxBFiCIDjyEXQmgWcxG/cuFGvv/66unbtquzsbGVnZ6tr16567bXX9MUXX2jixIm+R2NkZmYqNTVVK1eu9G0rKirSunXrfGvTA4Ad4giAxiCGoDULeHWaDh066Oc//3mtbSd7r1dJSYm2bdvme56bm6tNmzYpMTFR3bt314033qj58+erT58+yszM1J133qn09HRNmDAh4GMd+IlLzsiGiyhFxJfa7h/5jXnVnYgSc6kgy2X+vanDdvtlqyo7mudSFW/u43WbKywUdbefrz8FrsrSjV3UKfOosU9UuH2BhYOfppkPhDanOeMIgLanOWNIxZBeCgtruOqg1/DR7Ykwf253/rc5FylNNecilUn27a5C+8KUklQTY84RvLHm+brC7Mdx+VHgyvIj4x2YutfYZ3D0Ttv2yk7mA13Y80vb9tJijy41jnISSfwTTzwR6C4N+uyzz3Teeef5ns+aNUuSNGXKFC1dulS33nqrSktLde2116qgoEAjRozQihUrFBlprswJoH0gjgBoDGIIQlXASXwwnXvuubKshn+7cjgcmjdvnubNm9eMswIQSogjABqDGIJQdVJJ/AsvvKDnnntOu3btUlVVVa22DRs2BGViAAAAAOoX8BdbFy1apKlTpyolJUUbN25UVlaWOnXqpB07djRY8QwAAABA8AScxP/tb3/To48+qoceekgRERG69dZb9e6772rmzJkqLCxsijkCAAAAOEHASfyuXbs0fPhwSVJUVJSKi4slSb/5zW/0zDPPBHd2AAAAAOoIOIlPTU3VkSNHJEndu3fX2rVrJR1bksnuiyEAAAAAgiPgJP7888/Xq6++KkmaOnWqbrrpJl1wwQW67LLLdOml/qxqCQAAAKAxAl6d5tFHH5XX65UkXX/99erUqZM+/fRTjR8/XtOmTQv6BIPFG25J4Q3/pSBmbazt/g5zLQK5j9YY+3gizEWYyjtH2LZHHaqybZekqjjzccKLzC8qeYN9nyP93MYxugzfbexTVm2eb3GF/bEqUsznv9NG++IUnir+mgQAaBp5F4TJGdlw6hXdo8B2/8oPOxiPEbfb/Fm4e4z5Gq6zxP7zMrzEj+vAfnykmjMaySq2n0t0vrkIlqvcPJm00ebvdn5Q2M+2fc3+DOMYb31/mm27p6xS0l+M4wScxDudTjmdP/zgJk2apEmTJgU6DAAAAICTdFLrxBcUFGj9+vU6cOCA76r8cVdeeWVQJgYAAACgfgEn8a+99pquuOIKlZSUKD4+Xg7HD3/CcDgcJPEAAABAEwv4i60333yzrr76apWUlKigoEBHjx71PY6vWgMAAACg6QScxO/Zs0czZ85UdHR0U8wHAAAAgEHASXxOTo4+++yzppgLAAAAAD8EfE/8RRddpFtuuUXffPONzjjjDIWH114acPz48UGbHAAAAIC6Ak7ir7nmGknSvHnz6rQ5HA55PH4sqA4AAADgpAWcxP94SclQ4YnzyIpq+BeMiEL7QgHRB8y/nFR2NJ/OqMPmIgzuA2X2x0kOzvcRrDBzcYSjfewLT9VEmY+z59Muxj5VHc3vq1P62xeNKj/U0TiGJ8L+NXtkPicAAJwMV7lDTqvhz5mynfG2+7vjzMc4cqq5CGPYEXPhI2+XCvsOheYEwFlt7CJHjflz15tkXxKqZp/5NVckmo+ztSTZ2Gfbwc72x9kXYxzDfdhQeLLCcO7/T8D3xAMAAABoWX4n8WvWrNHrr79ea9tTTz2lzMxMJScn69prr1VlZWXQJwgAAACgNr+T+Hnz5unrr7/2Pf/3v/+t3/72t8rOztbtt9+u1157TQsWLGiSSQIAAAD4gd9J/KZNmzRq1Cjf82XLlmno0KH6xz/+oVmzZmnRokV67rnnmmSSAAAAAH7gdxJ/9OhRpaSk+J5/9NFHGjNmjO/5T37yE+Xl5QV3dgAAAADq8DuJT0lJUW5uriSpqqpKGzZs0E9/+lNfe3FxcZ014wEAAAAEn99J/NixY3X77bdr9erVuuOOOxQdHa2RI0f62r/88kv16tWrSSYJAAAA4Ad+rxN/9913a+LEiTrnnHMUGxurJ598UhERP6wh/vjjj2v06NFNMslgCIuuljO64XU5qxLs/4pQHWs+VfG7zGvAuyrN6817YuzXZjetIy9JRafYrzUrSTXR5t/hqmPt20t7mxeBHT3wK2Of97471dhn61779Vu9yeZzG1Zq/3P0sMASAKCJeLtVSDalXmI+t197vSzdXFMlOt+8Hnr0PnOfog72eZE3zLzWfHixH2vAR5lfk/OgfV5U0sucf5094Dtjn1Nj9xv7dI8+atv+ZsnpxjFkWCfeX34n8Z07d9aqVatUWFio2NhYuVy1J/D8888rNtaQ8QEAAABotIArtiYkJNS7PTExsdGTAQAAAGBGxVYAAAAgxJDEAwAAACGGJB4AAAAIMSTxAAAAQIghiQcAAABCDEk8AAAAEGICXmIymFatWqV7771Xn3/+ufbt26eXX35ZEyZM8LVfddVVevLJJ2vtk5OToxUrVgR8rOj/jZbLHdlge9IX5bb7l6W4jccILzIXGyrvbF+wQJKiDlXZth8eWP8ynydyesxFGA4MNffplHnItn32KW8bx/hVbKGxz6sdvzD2uXvLxbbtRxRjHKP6zArbdm+ZfTtan+aMIwDanuaMIZ07FssV0/BnfEWlfbGnsFLztdfiHubPdqd9muEXV4W5kFPJIPNnqlVmTkUHDN1m236o3Fyn6D9SVhn7nOtH4amnijrbtq+I6GccQ6bDmH+Eklr4SnxpaakGDhyoxYsXN9jnwgsv1L59+3yPZ555phlnCKC1I44AaAxiCEJVi16JHzNmjMaMGWPbx+12KzU1tZlmBCDUEEcANAYxBKGq1d8T/+GHHyo5OVl9+/bVddddp8OHD7f0lACEGOIIgMYghqA1atEr8SYXXnihJk6cqMzMTG3fvl1//OMfNWbMGK1Zs0Yul6vefSorK1VZWel7XlRU1FzTBdAKBRpHiCEATkQugtaqVSfxkyZN8v37jDPO0IABA9SrVy99+OGHGjVqVL37LFiwQHPnzm2uKQJo5QKNI8QQACciF0Fr1epvpzlRz5491blzZ23b1vC3lO+44w4VFhb6Hnl5ec04QwCtnSmOEEMA2CEXQWvRqq/E/9ju3bt1+PBhpaWlNdjH7XbL7TYvBwmgfTLFEWIIADvkImgtWjSJLykpqfWbbG5urjZt2qTExEQlJiZq7ty5+vnPf67U1FRt375dt956q3r37q2cnBy/j2FZxxbb9FTZr1VaU2NorzYv2llTU23uU20+5TU19gu4evxY39XyY514b7m5j6es0ra9rNi8Nn6RZV53tazUPI5pLt6y+u9NrNUn3P443vJjxzj+vkHr19Rx5Ph7oajE/D4Gjr9PiCGho1lzEcPnmClX8fhTyiTM/N6zqsxrvHvLa+znUmnOZ7zlfqwTX24ep7rUPvGpKbc/r5JU6k++UmM+d+Ul9ufFn3oznkr7G2G8lcfGMMYRqwV98MEHlo4taV/rMWXKFKusrMwaPXq0lZSUZIWHh1sZGRnWNddcY+3fvz+gY+Tl5dV7DB487B55eXlN9K5HsDV1HCGG8DiZBzEkdJCL8GitD1MccVhW275c4PV6tXfvXsXFxcnhcKioqEjdunVTXl6e4uPjW3p6bU6on1/LslRcXKz09HQ5nSH1lRE0kR/HECn03+etWaifW2II6kMu0rxC/fz6G0dC6p74k+F0OtW1a9c62+Pj40PyBxsqQvn8JiQktPQU0Io0FEOk0H6ft3ahfG6JIfgxcpGWEcrn1584wmUCAAAAIMSQxAMAAAAhpt0l8W63W3PmzGHppybC+UV7wPu86XBu0R7wPm9a7eX8tvkvtgIAAABtTbu7Eg8AAACEOpJ4AAAAIMSQxAMAAAAhhiQeAAAACDHtLolfvHixevToocjISA0dOlTr169v6SmFpFWrVmncuHFKT0+Xw+HQ8uXLa7VblqXZs2crLS1NUVFRys7O1tatW1tmskAQEUOCgxiC9ow4EhztPY60qyT+2Wef1axZszRnzhxt2LBBAwcOVE5Ojg4cONDSUws5paWlGjhwoBYvXlxv+z333KNFixZpyZIlWrdunWJiYpSTk6OKiopmnikQPMSQ4CGGoL0ijgRPu48jVjuSlZVlXX/99b7nHo/HSk9PtxYsWNCCswp9kqyXX37Z99zr9VqpqanWvffe69tWUFBgud1u65lnnmmBGQLBQQxpGsQQtCfEkabRHuNIu7kSX1VVpc8//1zZ2dm+bU6nU9nZ2VqzZk0Lzqztyc3N1f79+2ud64SEBA0dOpRzjZBFDGk+xBC0VcSR5tMe4ki7SeIPHTokj8ejlJSUWttTUlK0f//+FppV23T8fHKu0ZYQQ5oPMQRtFXGk+bSHONJukngAAACgrWg3SXznzp3lcrmUn59fa3t+fr5SU1NbaFZt0/HzyblGW0IMaT7EELRVxJHm0x7iSLtJ4iMiIjRkyBCtXLnSt83r9WrlypUaNmxYC86s7cnMzFRqamqtc11UVKR169ZxrhGyiCHNhxiCtoo40nzaQxwJa+kJNKdZs2ZpypQpOuuss5SVlaWFCxeqtLRUU6dObemphZySkhJt27bN9zw3N1ebNm1SYmKiunfvrhtvvFHz589Xnz59lJmZqTvvvFPp6emaMGFCy00aaCRiSPAQQ9BeEUeCp93HkZZeHqe5PfTQQ1b37t2tiIgIKysry1q7dm1LTykkffDBB5akOo8pU6ZYlnVsaac777zTSklJsdxutzVq1Chry5YtLTtpIAiIIcFBDEF7RhwJjvYeRxyWZVkt8LsDAAAAgJPUbu6JBwAAANoKkngAAAAgxJDEAwAAACGGJB4AAAAIMSTxAAAAQIghiQcAAABCDEk8AAAAEGJI4gEAAIAQQxIPAAAAhBiSeAAAACDEkMQDAAAAIYYkHgAAAAgx/x/sXbHDqDKePQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -80034,7 +80097,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAKqCAYAAADlgruKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hlR3ntj3+qaqcTO6fJo9GMwiiBkhESSCAhC2yuhEEkf61AMgZhhEnGv0uwMTJcbGSRjQ2yL3CNRTC6vmCBZDAiSqCEcprR5M7dJ+9U9fujzjndrZmRekaTddbz9NN99tmh9u5de9eq913rFcYYQwcddNBBBx100EEHHXTQwWEAebAb0EEHHXTQQQcddNBBBx10sFh0CEwHHXTQQQcddNBBBx10cNigQ2A66KCDDjrooIMOOuigg8MGHQLTQQcddNBBBx100EEHHRw26BCYDjrooIMOOuiggw466OCwQYfAdNBBBx100EEHHXTQQQeHDToEpoMOOuiggw466KCDDjo4bNAhMB100EEHHXTQQQcddNDBYYMOgemggw466KCDDjrooIMODht0CEwHHXTQwT6AEIIPf/jDB7sZT4nLL7+cfD5/sJvRwRGEVatWcfnll7c///jHP0YIwY9//ON9dozDoW910MGRgMOpr3UIzBGI66+/HiFE+8dxHJYuXcrll1/O1q1bD3bzOngWY8OGDbz97W9n3bp1ZLNZstksxx9/PG9729u45557Dnbz9ivOPffcBf1ydz/P9OVRq9X48Ic/vE8HkB0cunjy8z4IAtatW8fb3/52RkdHD3bzFo3vfe97h83AqYMDj9/+9re88pWvZOXKlQRBwNKlS7ngggv49Kc/fbCbdkCxbds2PvzhD3PXXXft9T6OlL7mHOwGdLD/8Jd/+ZesXr2aRqPBL3/5S66//np++tOfcu+99xIEwcFuXgfPMvzHf/wHr371q3Ech9e//vWcfPLJSCl58MEH+fa3v83nP/95NmzYwMqVKw92U/cL/uIv/oI3vvGN7c+333471113HR/4wAc47rjj2stPOumkZ3ScWq3GRz7yEcCSpg6eHZj/vP/pT3/K5z//eb73ve9x7733ks1mD1g7XvCCF1Cv1/E8b4+2+973vsdnP/vZXQ6s6vU6jtMZrjxb8fOf/5zzzjuPFStW8KY3vYnh4WE2b97ML3/5S/7+7/+eq6666mA38YBh27ZtfOQjH2HVqlWccsope7WPI6WvHR6t7GCvcNFFF3HaaacB8MY3vpH+/n4+/vGPc+ONN3LppZce5NZ18GzCY489xmte8xpWrlzJLbfcwsjIyILvP/7xj/O5z30OKZ86KFytVsnlcvuzqfsNF1xwwYLPQRBw3XXXccEFFzwl0Ticz7mDA4cnP+/7+vr4u7/7O7773e/y2te+dqf199d9JaXc5xNknQm3Zzf++q//mq6uLm6//Xa6u7sXfDc2NnZwGnWE4nDqa50UsmcRzjnnHMAOJgGiKOKDH/wgp556Kl1dXeRyOc455xx+9KMfLdjuuc99Lq94xSsWLDvxxBMRQixI+/nGN76BEIIHHnhgP59JB4cbPvGJT1CtVvnKV76yE3kBcByHd7zjHSxfvry9rKXXeOyxx3jpS19KoVDg9a9/PWAHX3/2Z3/G8uXL8X2fY445hk9+8pMYY9rbb9y4ESEE119//U7He3Kq1oc//GGEEDz66KNcfvnldHd309XVxRVXXEGtVluwbRiGXH311QwMDFAoFHj5y1/Oli1bnuEVWtiO+++/n9e97nX09PRw9tlnAzaasiuic/nll7Nq1ar2OQ8MDADwkY98ZLdpaVu3buXiiy8mn88zMDDAu9/9btI03Sfn0MGhgRe96EWATdt8qr6ktebaa69l/fr1BEHA0NAQb3nLW5ienl6wP2MMH/3oR1m2bBnZbJbzzjuP++67b6fj7k4D86tf/YqXvvSl9PT0kMvlOOmkk/j7v/97wN7Dn/3sZwEWpMO1sKt7+M477+Siiy6iWCySz+d58YtfzC9/+csF67TS6372s5/xrne9i4GBAXK5HJdccgnj4+N7flE7OCh47LHHWL9+/U7kBWBwcHDB569+9auceuqpZDIZent7ec1rXsPmzZt32u6zn/0sRx11FJlMhjPOOINbb711p2ds617+t3/7Nz7ykY+wdOlSCoUCr3zlK5mdnSUMQ975zncyODhIPp/niiuuIAzDnY61mDade+65nHDCCdx///2cd955ZLNZli5dyic+8YkF7Tn99NMBuOKKK9r9pPWOu/XWW3nVq17FihUr8H2f5cuXc/XVV1Ov19v7OJL6WicC8yzCxo0bAejp6QGgVCrxj//4j7z2ta/lTW96E+VymX/6p3/iwgsv5LbbbmuHJ8855xz+z//5P+39TE1Ncd999yGl5NZbb22nvNx6660MDAwsSIfpoAOw6WNHH300Z5555h5tlyQJF154IWeffTaf/OQnyWazGGN4+ctfzo9+9CPe8IY3cMopp3DTTTfxnve8h61bt/KpT31qr9t56aWXsnr1aq655hruuOMO/vEf/5HBwUE+/vGPt9d54xvfyFe/+lVe97rXcdZZZ/Ff//VfvOxlL9vrY+4Kr3rVq1i7di0f+9jHFpCyp8PAwACf//zneetb38oll1zSnniYn5aWpikXXnghZ555Jp/85Ce5+eab+du//VvWrFnDW9/61n16Hh0cPLQmqvr6+oBd9yWAt7zlLVx//fVcccUVvOMd72DDhg185jOf4c477+RnP/sZrusC8MEPfpCPfvSjvPSlL+WlL30pd9xxBy95yUuIouhp2/LDH/6Q3/u932NkZIQ//dM/ZXh4mAceeID/+I//4E//9E95y1vewrZt2/jhD3/I//7f//tp93ffffdxzjnnUCwWee9734vrunzxi1/k3HPP5b//+793es5cddVV9PT08KEPfYiNGzdy7bXX8va3v51vfOMbe3RNOzg4WLlyJb/4xS+49957OeGEE3a73l//9V/zP//n/+TSSy/ljW98I+Pj43z605/mBS94AXfeeWebAH3+85/n7W9/O+eccw5XX301Gzdu5OKLL6anp4dly5bttN9rrrmGTCbD+9//fh599FE+/elP47ouUkqmp6f58Ic/3E7TX716NR/84Af3uE0A09PT/O7v/i6veMUruPTSS/nmN7/J+973Pk488UQuuugijjvuOP7yL/+SD37wg7z5zW9uT0qfddZZANxwww3UajXe+ta30tfXx2233canP/1ptmzZwg033ABwZPU108ERh6985SsGMDfffLMZHx83mzdvNt/85jfNwMCA8X3fbN682RhjTJIkJgzDBdtOT0+boaEhc+WVV7aX3XDDDQYw999/vzHGmBtvvNH4vm9e/vKXm1e/+tXt9U466SRzySWXHIAz7OBwwuzsrAHMxRdfvNN309PTZnx8vP1Tq9Xa31122WUGMO9///sXbPPv//7vBjAf/ehHFyx/5StfaYQQ5tFHHzXGGLNhwwYDmK985Ss7HRcwH/rQh9qfP/ShDxlgwX1vjDGXXHKJ6evra3++6667DGD+5E/+ZMF6r3vd63ba59Oh1a9+9KMf7dSO1772tTut/8IXvtC88IUv3Gn5ZZddZlauXNn+PD4+vtu2tK7pX/7lXy5Y/pznPMeceuqpi257B4cOdvW8/9d//VfT19dnMpmM2bJly2770q233moA87WvfW3B8v/8z/9csHxsbMx4nmde9rKXGa11e70PfOADBjCXXXZZe9mPfvSjBfd1kiRm9erVZuXKlWZ6enrBcebv621ve5vZ3ZDkyffzxRdfbDzPM4899lh72bZt20yhUDAveMELdro2559//oJjXX311UYpZWZmZnZ5vA4OLfzgBz8wSimjlDLPe97zzHvf+15z0003mSiK2uts3LjRKKXMX//1Xy/Y9re//a1xHKe9PAxD09fXZ04//XQTx3F7veuvv94AC56xrXv5hBNOWHCs1772tUYIYS666KIFx3re85634Fm82DYZY5/vgPmXf/mX9rIwDM3w8LD5gz/4g/ay22+/fbfvtfnvzxauueYaI4QwTzzxRHvZkdLXOilkRzDOP/98BgYGWL58Oa985SvJ5XLceOON7RkGpVRbaKm1ZmpqiiRJOO2007jjjjva+2mx/J/85CeAjbScfvrpXHDBBdx6660AzMzMcO+997bX7aCDFkqlEsAu7XvPPfdcBgYG2j+t0PZ8PDkq8L3vfQ+lFO94xzsWLP+zP/szjDF8//vf3+u2/vEf//GCz+eccw6Tk5Ptc/je974HsNOx3/nOd+71MRfTjn2NXZ3n448/vl+P2cH+xfzn/Wte8xry+Tzf+c53WLp0aXudJ/elG264ga6uLi644AImJibaP6eeeir5fL6dTnzzzTcTRRFXXXXVgnSTxdz3d955Jxs2bOCd73znTilA8/e1WKRpyg9+8AMuvvhijjrqqPbykZERXve61/HTn/603V9bePOb37zgWOeccw5pmvLEE0/s8fE7OPC44IIL+MUvfsHLX/5y7r77bj7xiU9w4YUXsnTpUm688UYAvv3tb6O15tJLL11wLw8PD7N27dr2vfzrX/+ayclJ3vSmNy0Qq7/+9a9vZ6c8GX/0R3/UjkQCnHnmmRhjuPLKKxesd+aZZ7J582aSJNmjNrWQz+f5wz/8w/Znz/M444wzFv1szmQy7b+r1SoTExOcddZZGGO48847F7WP+TjU+1onhewIxmc/+1nWrVvH7OwsX/7yl/nJT36C7/sL1vnnf/5n/vZv/5YHH3yQOI7by1evXt3+e2hoiLVr13Lrrbfylre8hVtvvZXzzjuPF7zgBVx11VU8/vjjPPDAA2itOwSmg51QKBQAqFQqO333xS9+kXK5zOjo6IIHdwuO4+wU0n/iiSdYsmRJe78ttFIXn8mDcsWKFQs+t15o09PTFItFnnjiCaSUrFmzZsF6xxxzzF4fc1eY3//2NYIgaOtkWujp6dlJ89DB4YXW895xHIaGhjjmmGMWmGLsqi898sgjzM7O7qQjaKElkG71qbVr1y74fmBgYLeDvhZaqWxPlfqzJxgfH6dWq+2yzx133HFordm8eTPr169vL3+qft3B4YHTTz+db3/720RRxN133813vvMdPvWpT/HKV76Su+66i0ceeQRjzE73aAstAtK6l48++ugF3zuO09YSPhlPvn+6uroAFmg2W8u11szOztLX17foNrWwbNmynUh9T0/PoksMbNq0iQ9+8IPceOONO93bs7Ozi9rHfBzqfa1DYI5gnHHGGW1Xmosvvpizzz6b173udTz00EPk83m++tWvcvnll3PxxRfznve8h8HBQZRSXHPNNe2XTgtnn302t9xyC/V6nd/85jd88IMf5IQTTqC7u5tbb72VBx54gHw+z3Oe85yDcaodHMLo6upiZGSEe++9d6fvWvmzLX3Wk+H7/tM6k+0Ou5vdfSqxulJql8vNHuhQ9gXmz6S1IITYZTv2VHy/u3Ps4PDG/Of9rrCrvqS1ZnBwkK997Wu73ObJRPdwxaHSrzt45vA8j9NPP53TTz+ddevWccUVV3DDDTegtUYIwfe///1d/r+fSQHf3d0/T3df7Wmbnsl9mqYpF1xwAVNTU7zvfe/j2GOPJZfLsXXrVi6//HK01k+7j32BA9nXOgTmWYIWMTnvvPP4zGc+w/vf/36++c1vctRRR/Htb397wWDvQx/60E7bn3POOXzlK1/hX//1X0nTlLPOOgspJWeffXabwJx11lmdwVEHu8TLXvYy/vEf/5HbbruNM8444xnta+XKldx8882Uy+UFUZgHH3yw/T3MzfzMzMws2P6ZRGhWrlyJ1prHHntswazUQw89tNf7XCx6enp2mUrw5PPZm7ScDp6dWLNmDTfffDPPf/7zd0maW2j1qUceeWRBKsn4+PjTzqy2opX33nsv559//m7XW+x9OzAwQDab3WWfe/DBB5FS7jQz3sGRiRZh3759O2vWrMEYw+rVq1m3bt1ut2ndy48++ijnnXdee3mSJGzcuPEZ1+Gaj8W2aU+wu37y29/+locffph//ud/5o/+6I/ay3/4wx8ueh9PxqHe1zoamGcRzj33XM444wyuvfZaGo1Gm2zMZ8a/+tWv+MUvfrHTtq3UsI9//OOcdNJJ7RDqOeecwy233MKvf/3rTvpYB7vFe9/7XrLZLFdeeeUuq4PvyezMS1/6UtI05TOf+cyC5Z/61KcQQnDRRRcBUCwW6e/vb2u3Wvjc5z63F2dg0dr3ddddt2D5tddeu9f7XCzWrFnDgw8+uMCS8u677+ZnP/vZgvVa7lJPJm4ddPBkXHrppaRpyl/91V/t9F2SJO176Pzzz8d1XT796U8v6KuLue+f+9znsnr1aq699tqd7sn5+2rVpHm6+1YpxUte8hK++93vLojcjo6O8vWvf52zzz6bYrH4tO3q4PDBj370o12+I1qaxGOOOYZXvOIVKKX4yEc+stO6xhgmJycBS3r6+vr40pe+1NaqAHzta1/b52lOi23TnmB3/WRX4zljTNuqfDH7eDIO9b7WicA8y/Ce97yHV73qVVx//fX83u/9Ht/+9re55JJLeNnLXsaGDRv4whe+wPHHH7+TXuHoo49meHiYhx56aEHV2xe84AW8733vA+gQmA52i7Vr1/L1r3+d1772tRxzzDG8/vWv5+STT8YYw4YNG/j617+OlHKXFpZPxu///u9z3nnn8Rd/8Rds3LiRk08+mR/84Ad897vf5Z3vfOcCfcob3/hG/uZv/oY3vvGNnHbaafzkJz/h4Ycf3uvzOOWUU3jta1/L5z73OWZnZznrrLO45ZZbePTRR/d6n4vFlVdeyd/93d9x4YUX8oY3vIGxsTG+8IUvsH79+gVCykwmw/HHH883vvEN1q1bR29vLyeccMI+0yB0cOTghS98IW95y1u45ppruOuuu3jJS16C67o88sgj3HDDDfz93/89r3zlK9u1gq655hp+7/d+j5e+9KXceeedfP/736e/v/8pjyGl5POf/zy///u/zymnnMIVV1zByMgIDz74IPfddx833XQTAKeeeipgDTIuvPBClFK85jWv2eU+P/rRj/LDH/6Qs88+mz/5kz/BcRy++MUvEobhgroZHRwZuOqqq6jValxyySUce+yxRFHEz3/+c77xjW+watUqrrjiCrq7u/noRz/Kn//5n7dtkQuFAhs2bOA73/kOb37zm3n3u9+N53l8+MMf5qqrruJFL3oRl156KRs3buT6669nzZo1+zSCvWbNmkW1aU/32d3dzRe+8AUKhQK5XI4zzzyTY489ljVr1vDud7+brVu3UiwW+da3vrVLUnbE9LV97mvWwUFHy87u9ttv3+m7NE3NmjVrzJo1a0ySJOZjH/uYWblypfF93zznOc8x//Ef/7GTLWsLr3rVqwxgvvGNb7SXRVFkstms8TzP1Ov1/XlaHRwBePTRR81b3/pWc/TRR5sgCEwmkzHHHnus+eM//mNz1113LVj3sssuM7lcbpf7KZfL5uqrrzZLliwxruuatWvXmv/1v/7XAvtGY6yt5Bve8AbT1dVlCoWCufTSS83Y2NhubZTHx8cXbN/qSxs2bGgvq9fr5h3veIfp6+szuVzO/P7v/77ZvHnzPrVRfnI7WvjqV79qjjrqKON5njnllFPMTTfdtMv++vOf/9yceuqpxvO8Be3a3TVtHbeDww9P9bxv4an6kjHG/MM//IM59dRTTSaTMYVCwZx44onmve99r9m2bVt7nTRNzUc+8hEzMjJiMpmMOffcc829995rVq5c+ZQ2yi389Kc/NRdccIEpFAoml8uZk046yXz6059uf58kibnqqqvMwMCAEUIsuB931bfuuOMOc+GFF5p8Pm+y2aw577zzzM9//vNFXZvdtbGDQxPf//73zZVXXmmOPfZYk8/njed55uijjzZXXXWVGR0dXbDut771LXP22WebXC5ncrmcOfbYY83b3vY289BDDy1Y77rrrmuPfc444wzzs5/9zJx66qnmd3/3d9vrtO6TG264YcG2u7uvdvf8XkybXvjCF5r169fvdO67er5/97vfNccff7xxHGeBpfL9999vzj//fJPP501/f79505veZO6+++6dbJePlL4mmg3uoIMOOuiggw466KCDZx201gwMDPCKV7yCL33pSwe7OR0sAh0NTAcddNBBBx100EEHzwo0Go2dNCn/8i//wtTUFOeee+7BaVQHe4xOBKaDDjrooIMOOuigg2cFfvzjH3P11Vfzqle9ir6+Pu644w7+6Z/+ieOOO47f/OY37QLfHRza6Ij4O+iggw466KCDDjp4VmDVqlUsX76c6667jqmpKXp7e/mjP/oj/uZv/qZDXg4jHDEpZJ/97GdZtWoVQRBw5plncttttx3sJnXQwSGHTj/poIOnR6efdNDB4nA49pVVq1Zx4403smPHDqIoYseOHXz5y19mcHDwYDetgz3AEUFgvvGNb/Cud72LD33oQ9xxxx2cfPLJXHjhhYyNjR3spnXQwSGDTj/poIOnR6efdNDB4tDpKx0cTBwRGpgzzzyT008/vV3YTmvN8uXLueqqq3j/+99/kFvXQQeHBjr9pIMOnh6dftJBB4tDp690cDBx2GtgoijiN7/5DX/+53/eXial5Pzzz99lRfldQWvNtm3bKBQK+7SIUQeHN4wxlMtllixZgpSHd7Cy00862F/o9JOF6PSTDnaFI6mfwDPvK51+0sGusCf95LAnMBMTE6RpytDQ0ILlQ0NDPPjgg7vcJgxDwjBsf966dSvHH3/8fm1nB4cvNm/evKgK8YcyOv2kg/2NTj+x6PSTDp4KR0I/gT3vK51+0sGeYDH95LAnMHuDa665ho985CM7LT93+AocP0tjVT+pJ1GRJvUl1WEHoUEmEEwlOI0UIwQIcKox2lWkGYVTTQAwAuK8i1F2ndyj0zA1A2kC2oAUICRICcYgXBcCD53LYjIOWkmMI0myCpkYVN3uV3sKIwXCGIwUGCVwyjHCGLSrEKlGaIOINKpUhTDCJOncMePYnqjR9vhG28/KAWNAKoSSIARkfKLhLpKcg4wNjT4XGRsyYw0AZCNFpCkiNeiMg/YctCsxUpBkFMIYnHpK6kmEgdSV5B6bRlRrmCRFSInR2rat1Q6Yux6uY9ucakwxj866aFe1zxsAYduBAONKRGz3Y6T9XmiDUwoRtTqmHkKaglL2OrRmfJq/hetichnwXDCGuD9LNZfym5s+RqFQ2Fe33mGF3fWT+fjRO1/xjI9z3rXf3qP1L7vou8/4mC388/f/xzPex9+89Q/3QUvg/Z//6j7ZD8AD/3X/065z3Iv27eCh008WYtmH/n/0bsjQ+79vByERUqCWDDFz6gjaExQ21EEK3A2joCQmmwFjGH/+IFGXIPUht82QBhDnBD0Px5RWucyeEjL4Ixd/JmX8FJe4S+OUJdlRQ/9dZerDWQD8qRB3+zSmFiICD5LUPnObz0G9rJ9GXwbjCIKJBs7mCfAcEMI+L3u7CIfyuOUQNVXBlKuIwMeEMSSRfXZ7PrVTVxB2Kbrvn0VW6qR9BcIeH6eREmcdvJkI7Su2PT8gO2YIuwU9DyfI0ODWE+Kcw8zRLkZA6tsflKHnfkP3/TOU13bh1FIyG6bBc5k4tYfe+8rIUh2kJOnN4u6YQReyGKXQgaLR7zO53kFFMHBnSHm5R21YEEwaZo7XoAX+pKT/twkYMA6IFOKspDYkyW9NcRqa0koXf1YTTKaEPYrpYwT+pGDptzfY6xSG9h3iOKANemYGkyQIx0E4CpRCKIWu1Uk9wU9q3+z0kyfh+z98nFzu2XlNOtgZ1WqZiy44alH95LAnMP39/SilGB0dXbB8dHSU4eHhXW7z53/+57zrXe9qfy6VSixfvhzHCVC5IsoLkEpgcgLpC1SgCKY0QoMrFG4Yoj2F9hW6L4M3G6FThcl6OOWINOOS5iyBcSspDPbilEMQiX15gB1IAwggBeoaFVYR2QwmG6CzDrgBQhmcOCbJOigN2hUYR6BCjTAgfQdVjxHVFFlpDtKj2BIXJCTaHsRxAYNJNUIo+9CVskmmWoN5ifA8cBTpQBemJyCoJZYwxA5uJUFkshgpkK5GNmLQIB1J6iqEr+xLqODg1DSuTFBGWoKRdZA9BtXQGB03iYtonn9iXwDG2M9GIVIJwgFhoKEtMfJ90qyD0JbACW0QfpP8CAGeQYXpHC8rNxCzDfuCMqpJ2gRgyRpg2wGQCihHCJWAUri1Mm5GNnd9+Ie392U/aeH29716n7Tt9ve9mtM//o1Fr98iHW96+c17dbwv3Xj+Xm23K1z7ziv36b7eee2X98m+CvkDPyDo9BOLVj/JT2ahK8DBAQNogYogE3n42xrMruuh0Sfpz2Txts4QLevGG61gejLUjk0Q2RTd75PkNSaT4qgCUoOUDrWjHQa+/CjFTUW2/u4gpeMS8o8JvC3TeJunMMuHSXMZxJCLcRUi0YjfPoLs66V05nKMgO3nCIJRSWGTRhsP2ZDgSMpHF4jykv7bp3A3VyBO7Duq0I3uzhMO5fB3VJCVBrqYxXRlyTYMKpNDJorayl6mjlU4dchvTdFuQO7OzawpdZN0ZZBxQmV5Br+e4M9EkPdxlIdMDLESmLwBDeWTBKY7Q+rDzJDAO6FIdkwj8oKp5wXIBHoeqKOUQOUNTrWBHh8DKcl0FXG8pcwc5VA6IUD7EB4bE1cU0jPIhiATSihq6n32vnWrEBcFIoB42KBDyNYN3Y+VAShsD+l7RCGiBHr6qK/uIexWdN07Q1rwGf2dHN2PJGR/dB+6Wm2+42IQCY5yIbITiEdCP4E97yu76yfe5H/j1bP7rZ3eqov3274PNL5f/CJ/seodAPzyxsW/M58Kv/PyV++0v1tOGuWi0lv2yf73FovpJ4c9gfE8j1NPPZVbbrmFiy++GLC5lbfccgtvf/vbd7mN7/v4vr/zF8ZgfLc9w69CDUiCaU3qCdy6RkYa4ypkokEIUs+hPhTYSElDk+Q9ZKyRUXMwLSHNOLiui0maEZo4ofWvMam2UY9WlKTeQCQpaqZMZibAZH2M52CUQKYaGYNJbXRDNmJkJUTUGphGiIF5URUFzeNhNIShJSgKeyylLNlJsQN7QAQuJo4hGxD2BYjm2N4IgTcbI+MU7UgEoF2JiCVCQpJ3SX2FU4kxjkQ1TPOFDU49QvsOqqFJAwelJMQ0oys0SUszz7FFJpzm1Wm1P00RqcZJNTLy0YFLGihkmNrIS2JAN89ba2SYIsvNCFQr6gSYRohwnYXHal2vFPAUJtX2uEpBbS7cfbhjn/aT/YA9JTGwkIgshszsS+JyqGPZGcvZctvmp/y+g52xL/vJsm9uRIUp6fyFzeeOengTXazAyDyzR/n0xMVmJECy9MYtGLmM2ojCLQtyWxS5URh/jkG7kNvgYCTUTltJ7o7NLP3aNP0nrSINJI1TVpF5dBwqdUzeY/r4An2/mUJU65hMBtNdIMpJ+n+0ia47HNCayokjlFa5JLkugrGQ1BOEPYLZ9T0UNlRRm8fAdTHZAIDUl9SXFTCqiFNNCbsl00MCf2UR7RYZuLPByC9jqsMeXfdNI0pV9GwJMzGFt2SI6gnDGCXwpuoQRnizEUZ51HsFQkOSMxjH4JQlpdXg1AQyhOpyTW2JwK0I6ksS/DEHtxqAgWRNQDCjcSuDZB6dwExNUxlWpAGEfYbV3y4h4y5qI4ZYwsCvwa0nyMjglSDsVjS6BTPPiSARFB90qS0BtKDR00XXxgS3nOBUIowjMa7CnY2YXJ8jKvQw8Ktp4nyOiRMdVt3Xj95YQyiFcBw7UQiYWmNf3aaHBPa0r+yun/x4/RhBIbNf2niwB+H7GheV3sKLbxxaNCmLNv478NQk7o57dh7nXFSCL719PW/6zH170coDh8OewAC8613v4rLLLuO0007jjDPO4Nprr6VarXLFFVfs2Y6ETU+SsSUfMkyg6GMcgVPXyNggEk1UdElyEhkbgvGQuOghEo1RgtSXGOlgFMhU2HQmbcBR7ZeXUAoTxXNRkHkwYdQeQItyFdF86GXHnQXtpBHabbW2g3RjLCFpRTKiGNIUY4xlsq4NcZvUDthFms6lkTVTykwcI4KAtCuLUeDO2sF/mpM28iNtG7zZCFVPbCqbI0k9SRoIVEMiY41qpGhPWpKjFUbZiFGSc3B9z7Zdt4iLXmjm7Tjt82i1FSkgihDGoMIImQ2QGRejpI3ChClCazvLWKnZCFQU2W1b5wlPIi/NdLL5ZC4ClIRU2zS2Iwz7rJ8cgng2kZMO9i/2WT+RgnS2NPdZSJuW1a3Iuh7q4U3kC0czdZxPnHfwpkPCwRy+hqU/mKB0fA/aEajQUFqlCMahskoTF2zKU3XQITxvFV0PlQke2o6enqH0shOZfukylvy/zXiPbic6ZY19L23aigx8pp7bS2YiASHQOTtoDLsk+W0pjR6FU3UIiwI01AYkkKMY94HWRAM5Uk9SHVLUhgWZMcPAnXXqAz71ZQlpRlF8DBDgPzqGt8VDpBoTRnYgLwTRqn7irCTsEhghMJu3IbcpljRWUVpXJM4KChsFMoHasEC74E8aBn8xydjz+yivgKhoELGg+Lih3i+pDRuGfq1JAsHk8R69hSGK/10mzgtqKxJkPkbWY0a+9gD1M9aw7QUulaWCnkc0jR6FTECFhuy4YXbWQYWCsNsG//ObDU7DMHO0Q1R08KcCeh+K8EeryNkqxScCorxEbB1j1bc0W363n+qxg+QaIbpSxTRCVH8f6UA34rf328m7Iwj7oq9cUL6SvCnu03Z96e3r7R+fObIIDNjoyF+sskTwjntCvl/84m6J2mKJzq7IyqFOXuAIITCvfvWrGR8f54Mf/CA7duzglFNO4T//8z93Epc9LZr6D5lqRJySZlyEMbjlBNVIiLo8tKcQ2pDdHrYJiYx0e0Cf5Fy0K3GnY4wUpBmFdoUlFdAcNCcIz50boGuDMXaZJRPOAvJhGqFtWzPtTAhhvzMGHMdGc4xp6nIkmNTuR9oZLWMMIk7a27YH7FIvIDHC8UBJkryLDLWdbXIVkfJIshKvZOcSWxoT7Sm0p3BqKWlGkvoS7UlULcE49m+EzdrSriQNLOESjp35s/nYtK+LcBwbpUo1BvsbJUE3GU6aQpIgGiHKcSzhauqIWudkkqQZ1RHtkD2exNQtERSBj4lDRNCcCWodX4q5a6+wKXjztTlHAPZZP+kA2LfpY/P3ua/SyDpRlr3Dvuon0coBvB1T7c9CCtKerNVYHLsM94FN+Dsq6BN9po/xKGxRODXN9hf1suT7O/BmEuqDLtPrFN2PpXTdMUrp5CEqIxK/pEldQb1f4jTyFMdmkV1Fun8zinP8INXjh8n89EHy21K2XNjL8o05GB5g7EURfT/18Er9OFNVRKlKbnsOf8sMySkDTB/jUTomxR9TeDMQZwRpzsOZruFUY1Rd0DfZYOC2mKQnQ5p1WPH/ppk5vgsVaYoPTFM6vgeRDOCUQ9LAsYMMJRGuy/S6AK2guCkBZSf3dFhDbRnFG86RGUvxts6gu3MYlaPRI8lvSxCNiIHbZ5FxF7NrIDOuMNLgzxhqIzZbQjsKfxr8Gfuu6783prpSYhJJY1mRTKlK5q5NrJ4YYPLkIhMnOgzclSATQ1RUeKUUt+yifYP2DMG4QMUG7QqcmiHqEhQ3JQSPTyJSDVJSvG+KyjE9MNQPY5Ms/S87gRgeswR/wzjptlHwXHTGQbjqiCMwh+o75XAYfO8tLiq9hYvuecuCz7vD94tf3GnbFlrRGYDL3v3XCz4fTMS12qLXPSIIDMDb3/723Yb4F41mRMFIgYg1UqYQGmRkRftuOcYoiXEUMkxIcy5R0W0SGEAbVCPFCGz0Bmzala8wgQ+1hh0Uu3Y2SqgmqYmTuTQypebSq5oRGuF7dj3HsZGcJEUoaffZFPxjs90QqbFRiDCy0RxptTtt0tLav3RsbrPCkpgWQVKKJFDI1KADx16L1JKjJCvxJyJUaAX8cW9A6knccow3k6A9SVRUuFLg1BOigk0tE6mdMUwCgcn6iGq9TeiE20xbSxJLwFLdJBPzyhM1o1gLRP9N8md0inCUJS6t69ciMUo1yZmx0RchbTpa4M+lkIG9Lu78CNfhb3G5O+yTftLBfiEv8/e9r0hMB3uHfdFP3Jm5lCEbgZCo2TqN3pw1XAkCqDUYvLNO2OOSehIZaTLjGlFr4E/U2XGmT5o1pJ6gfOIg/kyMCm2036ml1Adc6n2SQjZARDHR0h5qg4rJ52pWcCzeTEL/bzXxSUehfnU/676YY/oYD3f7DGZqGuP7BI+MYvIZSqsklaMScoNVGj0u4bRPrSqpDWcpbgwor5SkPmS3GwZvHce99wlEIY+pVOmdLFE9eQlxb5ZGtyTOBhQ3QHmlT3ecki7pxts2w+C/P4oo5DBT0+h6A5OmIBWmVif74Cgml0GkmvLqHEkgiLpg/DkutaER/JImtz0mKnikPjgNQ+oLnKpg2zkO/pRANaA67OJN2gH0qu9aguJOVK1Jy/Yy8okdcFKRNDCUVlhNZRoIcgKcGlSHE4KtLrkdmigvqA8KMuOGwd8kZLZUbVTJUYgkhVSj6pqkO4OSA4g4RcyUMX1ZolX9eFISrui12Qpxurtb5bDGs/md8q4L/wKAv7vprw9yS3aNFmFpEZn/++X1B7M5i0IjXPzE8RFDYPYJUo0qh2hHNl2t7ANHxCm4Ctl0A0tyWZK8h1ECI0EmpjkjYwfabimy6Uxxis56pK7E8R1Ea+Bt9FzEIG1GJMBGU5S0y3wfXAeT8dspaNpzML7CKBt1iLo8nEbzoWhAezaFywznUY0UZ6wEpQrUFxKndhtaUYeWoYDWmOZA3khhU+NSg9CQmYiRkUbWYlCCtBAgE41MdHOdFFWLEam9LnHO7kcmlijoZqqcznrIFjlpRUzmO5G1xf3zSFVLCyOdufXaxMRdGC1pvSNamqJW9EbIuc+iKeRP0/b/zO5fzd0LUiDkkZdGtq+wrwT8HXRwpMJs2DSndWylrWqDagjrKFnIYnwXVY3JzTQoH10k6nLIjMeYJEHOVpFJN7EL1RGJCiU9D2sy26rUluUB8GZT6r0u0UiRJKdQdc3gf20lt30Ip57iTtWYPqmbvgdHSeIIZ+sU+aJHPNJNcnQ/0+s8vFmDX0rpvzsiGHeZOa6IikEZiAvWMCXOCYwA1QAMjJ0zwNBNDYgTkrXLcDeOYoSgujSg63GbvuuUQwqbQT6+DZXNgO9hGg1MuQxPTtFVCuModOCguy2ZkhGE/RqdTYkLDvknJJkpGw2RCTT6JMO3ThN29+BWBF7Jvqu8qkaOThEkmrQrwN0yiZkt2QlAKdCzZQb/ezvdj/cwdkoG7Qv67osJRut03xPSWFokLtqJSJETVmOTFew4U+Gv7aL7sRxCQ3VIkZnSONUUZ7qGaEQkA0Vmn7OC0kqJUTBwzxD5e8cxuYAoPTIJzKGG557k71LXsafrLAYt4vKuC/9iJxKzr46xGLSI1JPxpjO+DsBFf7XBtunadxywNu0tKpUS13x+YFHrdgjMfDgKjGk7XclGjEiaM/1qTq8iEqu3UA2NW2pqLbRGKwcZp8haNJfGpHUzlUrYFKk0sg9SIS1hSZoOXDTTu3wPXIe0kCUczKA9K1JPA4kwhtQVeKUUp5EiDGglcKo2ZUtGtl24kiSj0Eu78TwXJqbnSAA0ncfm/euVsqlY0pIGGduojZFYQXykEalGVazuJvVdom4XkRjrhibm7ZdmipkBp5ZiHEHYpUgCaclMK0oihD1fKa0VZYolLC0YY3/0LhzDhGxGXdK5NLyWnkWnTUeyppamZbms5kV15pNIKaxpgJkjUcJ17f9EzSM0HSzA6R//xmFBYhb7sH7uSQfGrKCDZw9kdzeMTi1cqDW57YbqiIf2uigvdUGAWzUIA3FWIIwiOXoJzkQFFQIGq3tRUO9zSP08/mRonSkjTWZKU1nmMbtG0hhKWPl/hwgmGjYTYLJE34/LYAwyCKicvIT8/WM8cekSasc3yDwIUVHgPiQoH+2RmdCoukQ1LHlxagJv1pYQ8Eo2ElQbEcR5gz+7FLeqmTrOZUkyQHmZoj4ocEJF4a4dVI8fss6daUo6NgFGY7RBeq5Ni4b2RJQulxH1OrKvFyUlzilHMXRbmfK2HOPPdZCRwJ/VuFVrzZxKQfGJhOrqArkdmsx4jHYESc6+a0whh9iyHXciIF3aj8wGsHUU0dOFFNIaCtQbqONX45Uhd/c2UJJ0oItga4nqSD+pB40+gUwhCez/oTZiqJyS0NdbYWoqz5LvulRHXIJRl7QQsOXFBWorE7xJgYwFjS5F+SUjZCY1uWQN3HuAb8JnKZ6KPLzrwr/g3JF379PjtcjLA/9zdXvZ1/7HkgWfn4zjmqRiXx5/Pp57ks/f/dXCa3AgyEvr2s8nVfsrQtUhMPMRxpAziNSQ5F2MK3FmGlYX07B2wsZVTXcy0K5CJXHT0herSTEGIyUiTTFNUqBC+5A2xrRF4jiyKTC3EQDhKEwhhy5mSApeW2fi1OysjdNIrX2xZ80DRKxRwn6X5KxLmVuKQYAIU5xYk+RdaquKZFyF2D5hB/jtaAaWGGirK8F1LYERAqdu96s9iYwsUUoDG73RnsI4lqAIY1PWZKyttiXROGDT7IStw5LkXbQr0A5kJlLUbL1tPoAxbWc2ZIvgNV3AnHnRFrDtBHu9jMa0+Firpk1zH7TS5bRpp5m1iFU78gJzEZkWWiRp3jLjdLrHoYj98RBu7bNDZPYcN04/j5f3LK5K/bMJ9eNGyIzPIgMfkcvZhUKQmUqRsWHmKJfSWvs8GrwdnJqm3qeoLnEIBhTZMY/MuH2+RQUIJgxOaJCRfa4F2yuIWoPgcYiHuwkmPUqrHGbWCoJeRdgjSb0CXRtTVKjJ3QXZLTYiP3BnxLgJiIu23kqjWxL2Qm6HITMKjQEQGlRD4NQNqQv1AUGaMSRZgzcjqSxVeLM2UjKzLkf/3TWm1mfBQLS8D5EaaoMumaF+5PgkulKdmyRScu7Z35oBa06k6ekZRv5rHFGpw6osme2S+oglT24lIV7tokLDzFEOwoA/Y5g9ymPgthnSvM/o6Vmc4/ooJCmmVEbtmMZ0FxDFgp04K+bR3XmMMfiz1gggWjPI9NqA8irIb7YW5HFOUFuW4lQk3oyg/7ct50qXsKsPf4kg9TWFzRGltQWSwGo+s5vseyPJGCZPti/Kmeek9KruDoE5AHi698P+TPd6/Xe3tY//nXdbwdNf/SB/UKIe84/5wP9cvU8J02KOuzfX+TvvjgmTxQvFOiO0+ZACEcbIMCXNOm0SATYCI1ID0qA967zl1FO01xTWx7pNZIyvEA2DaArVW9u2RepeM3yeNmf7lcJkA5K+PHHRmgDIZlHG1JNob65woz8d24KNQth0MUdglCVJMkpselkz/SsqOghjqK7Mk6/UYbaC8D1LElqpU/OLV2pthe8maBfN1BkHVY1R9ZioP2sdxWqJLWCpBGRsAU1Z13MRE4WNYiWG1JdWgwO45dgeY/6Lq6lVWeD57bl2HanaxAatrFZmnpEBgDFioR20NnMpaS0S1IqGCVvnoB2lma+zAbuulpbcuQ5psZNCdqhhf78I7rgnPOgk5nDSv9ySnkO1lDz9is9CeDMhMvDRJ6xh27kF+u6zUQKRQLCjRurnCXsUUY+hskQgE/usVBHI5jvcn9WUjpLI2EYD3JrAqQmMK2ksLRBs1jA+hRsnuDsc3EovM0cHFDaFGBlQWiMYPU3S/ZAkJwSi2gBjyPziYVbeX6RyyhKENkwd45LfbBg9Q5J0JRQfckgCgfZh5hhQoUCkkBQ1PfdIZo7VqFCS225IsoKp9YKe+2K6Hw2ZXB8QdimKGxq4NUUyWERlPFS5jpmcxqQpJoptWl3LIVIKhFKkw32Y5QM2VTnj408nhF2SqCFo9EPPAwm57Snl5Qp/xpD6NlMgzgnSvI/7xDhdA0up9yly+YBkSTfudB3jKvRIL2qihMn4pFkPHSgKG+tEhSyPXi6RboPs3RnciiY7njBzlIusS4qPQb0fvFJKkpFkt9bIZhzifIbaoEQmLtVhiUjBm21GyoYMUV9Kpr9GHDmQCqL8kVH/pYM5cnLJJxeOEe64J9zpu0s4MOTlO++Od2pPC3tLXg5kGhzAy97+/6jWanzivxa3fofAzIc2ECc4pQbGzWKEdWCRYQJCYVxIij5pYKMg2hGAHejLWKN9WzBMRuncoBkr6TCORGg9lzolhH2AOw4mnyHpyWJc+zBXkUbVrNWldfaaS2VKXYlXSxBh0+I476Oax9G+Q5px0K7ESBsREiloR5D2F1CzFUtejIbEzFkW00wfa9ZbUbWYNHAwApJAkfrWSS3OKbzZhLSZumCjMDYCI+IUpG2Ddm06W5JRxDlJ6tlZR6ccIhrNlLvW8aS0JK9FflqYnzbWdGRrW0Ubg2l9P48QCiHAy9h9x7HdBtXeBjMvB7nlcAZNIjPPkU156EKGNNt54RxKOJRyd9957Zf3i5D/cCIvHTw1Jk8sMFIbQfsOTg1mV7p4ZeseWR0uEnUJctsNblUQFW3Eo/fBlGAyojriM/ZcB68Ecc6gQoEqQW1QEmcFgz8ep3rcADofINwBOyB3Fdq1UQAkIKDv3pQoL/Eq2j4Hp2dJJibtxFW9Qe6xLI+9rg+nClFB0HufIfUUqQ+Zik1ZjgsC7dk6zO6UJCoIvBlBfUiT2yYYuXmMmVP6SXNWM9l3XwOnEiHLDRoDfUwdl8GtBqioCxim65eb0aUyRJGtiaZU2xVSzVZJe/OMndWDW7XkyFouN6/pSXnyWxPSwD7//VmDP53Qe28DNVmGJCEYj5hZkyXuy1Ib9DArAtyaxqlpgo01KJWhO2vt/z3J0K2T+DO9lFdKik9optdKqks8cts1Rtk0bYDycof8lgRVjayJT5ChPqxRDVt6QaSQ5KwFMxpEKOGuIulQyrJ1Y9RK3Qf4Duxgf2F3RGH+dy0icyCxJ8e85JPuLrU783Gg37n/7zMvI0xKT79iEx0CMw8mDEF6yNkqjlLorIv2FGngWFKCHdDL2OBUbB0XVQlJc1a43spOMo4EozCeQ1y0FYaNq6yLVittSkgbRvdd0q4MUY+HU7OpBaJJfmSYoD0PBLbg1nSEqllrY+M5aFe1a9cYAQhF6tkIgmpovOkEpCDqcom6PLKei2k0LDkwzdQxIaxpQMteWWtEtYErBI1hG3ER2pI1t5yiIo0RdhmpsQ4uWQfhSjBQXeJjJKjIYCQ4DU1mPMXfUbHuaLJ5nJZLmJS2xosQ4EgryG9FX5rREyOblsitlK4oBJe2UF8EPiafJS4GGK/pIqcNqhojy42265mJ4ua+xUKns1Z0BuzvpotZnOtEYJ4Kh4sOZn9hX5OYDnk5shD2CnRXFpFqkgw0+gy990Nua0zY4+CVBU6oEVoRTBlmj5ZURhT5h+skqwOSvMatSvrvNjR6BUkGKis1/oQk7SsQFRRuxSHpC5g52j6ruh+J0C48dqWAkqbrQYVMDJWioljMox/fBFKhBvpIx8YR0yVWf8slHMqy9QUOXRtSvHLMtrMyFDca8qWE6qBjRetLBG7V1mbpfUAzcaKg0SdIenMEk7EtZlyLSR0H7TuIxCPKSVRkoxLFu8dIe/Pt6yMzAVrXkbkM+D6mUsVMTSPLVby1eUqrJP6MITtmiBqCvnsbjD8nIMlJCps0Tt2Qf2zWlhKr2ugOmQBndJbC5oDqiIfQkB2N7YQgQH83ZssO3M0TxOtHmDzBI9fbizCQZCFskrWkYChshr67BdnxhHhS2sLOEkrHdlP86QaKG7qIC4LUF6QZyIwa8ls1MpZgBI1EkPoG2Rey5eFBek10EO7CDhaD/RFpaBGZ3QnsDzZuvdD+fibtW2ya2FO5tT35+H/5rffxibMWd/wOgZmPlg4kjFCzVYTJorsDjLQ1TxAgm5oPIwWqHiPiFFUKoZViBpAaG4nIOMhEg25GYKS0kYOWtkMITD5D2GNnn0wrjcpgbTZjjTdRA7IAqGrYjuqkQfNf1yROAltrRbVq0rRSqVLwJ1KSgmcjFY2mI1lr0C5F0w0Ma+sshJ3Aq4WoMAABTjUmzTgYIdBK2Bovxs462fOApOhat5ZA2GuUGJxqatMoZmtzec5g2xEn1mVNCpvCBraApOPY6ElbG6PmOYpZy01LfBTCU5jeLqqriu3rBpa8JVlFnHeQ3T4yKeJO15EzFSsejeKFuhjTvIAtPU0zQpZkj1w75X2FA0ViDuRM0MFII+uQlyMPjQHNw3+YY8mthtSD/CZBzwNlkrxLflMNOVMFR6FWdCFjw/RxHlFRsPllvQjdTCPT0OiVNPogzRqciiQuGGaPzuGXUsIeF38yBu1SHzaEXR5eCZxtPsG4IM5DXISRn9pix7K7C4wmXrsENwwxhRzGtYWI06xh67mS3NYMacZQXSIprZIkeYNbEggDwbihfBTU+iXdD9saLNvPyWHsmB0V+iAg9SA7miHOCWRiSQiTM6jJGWtUA4ggQLSKGqdpUxtp0397f7WDYHqA6rCDVqAahtqQjYrkN1ZtfZmZBmL7GOUXrqW0spfs6Aj5rSFoCCZiakOufXc7An+2DlHM6IuH0c4A2XFNbcDqdyZPFDh1QTAOwYxGxZLxMzVTxylkBEnGoeeRCJEapo7zwUBw3DK6Hiqx4/kFtJKoUNAYEDihwZ/RaCWaBgCCZEeAWxMEk51Uy32N+z7xD6x/75uf8X725/vlULVYPpBouaG968KnX/cDl/zlovfbITDz0bL1BUQYIUvghTFJd7Y9sw8gG3OCcuMqRJRgUDZVzFVIIMl7aE/iVBNbnyVOMVrbApZJYslMIUfcE2Ac0RZmyljP1ZCJbG2UNJDEOYVT9Zo1WaxA3lo9W0MAo+w+ZGjblgZW/yLrVhcjo6ZFcjs1KwU0RM1UKqOtniSOLaFIU7yJKsZzIDWYnCUoLetokQICoi4Ht2KdymRsyKYGp24tlVU1gii2fvnQPL7EBC5pzsd4ktS1bRcGvOkQWYsQlZrlE60ISctqGWyeheMgAp94WV8zbc9YxzMlbPRKWwOCpGl4oD1BOJTDyXq426dtG5IU4mih01gzKmZT1cwcIe3gKfFsjsQ80yjMnhCX+cfpEJ5DHyIRDP0cinePE0x2E3a7hH0BUUGiig6BI1HlEKeRopXEn7TRjSRnkKFAxNDoNxQ2AghUQ2CkdQabPg66H1Y4DYM7WmJkosLUqX2UVrWiAc3ntIEV/9nAnaggwsjWDYtT3B2z9nlXrqKHiogURCzIjIsmARDIyACCekGT3aZwqwatQMaCsAdyYxq0ndhr9FmxeprXiETYAsZKoSIQVUF1SFH0XNKxcZwVy5CZAFOugFLoMEQkCSZNEZkA4TikXTmC7RWSTJEkEDR6JWpSU7h/0hZl7skR92fxoh68mYSCBBkbwm7XiunBRkY8qCz16Cr0UPjebxn+gebxP1qK9iQ9D8a2nk5DkXrQ+0CIU4ls1oWfod4PbtUSycn1PsGkxq1A2C2oLvHo2TZL18Pd1F9Qxjycxy1BZiJBRpqo20E+Lmn0Spt+3a07E2L7AfPJy+4iCT/e/sn9PgH25AjO0zlwtSbIfnnjN/BWXbxf23aw8NyT/Hlub69rL386QleplHjBWZ9e1DE6BGY+2iLwpsi7VkeEEY42mIxnPeqdOcerNHAQvoNs2Fn7JO+R+hKnYfOQWxbMUcElU0sQQtg0Jims9iVjhfYIWy9FxhrVSNr5vsaxRSpTXxJMNjUvWcdaG9cTTCJJs25Ti9N0BEs0zLN+Fqkm7vbRSuBtSTAt++AwgUzQtBSeG6i3ijyKuo32iERjPAcZWTtoFWnCHpdgzHbW7BYbFpehtXL2UoOImoUk48TWx2lCd2UJB7IkGYl27MyYTAxuTRPmFXFe4VR93FKAM16aS/2SyuZ0txxschnqR1ufcG+6gVO1rmdIQZx3rW019oXWIj7al4R9Psbrw9s0hWiEGK3m6uJg/+fGWNMAoTWyQ2AWjf1JYg4l7cuu8HQkZj7ZaK23WAKyPwtmdrB/UdwAPb/cStpfxJ1uUFrhoxoap2Gru8+sy9J/ex0jBN5UHYRPdtQQFQRJDmLPEpDSWoM3JVB1yIxDeaW1OE58QXmFxKn1Uht00A7406BdrLhdgfagtCqgpx6je7KoSkjSk0GGKU5zYsm9dyO189dhlMGpCupDhjhvCMYlUbdBxs1aKIE9r2DMvq/irP3erQi6HgF/FkZ/L8ZM+bhla2hT2KSRiaH420moN5C+T9pbZPSsLpZ8bysmtOnDJk0Rnkdy3CqEMUycnEO7ligN3hGTmUxwSxE676O9nCVIUpD056kNuaSeJWz2XQqFTSHl5T7TJ2h675FUBxXZU9Yit8/Q/9uU2oBE+4LqoGLwl9OU13Uxc7SHMJ6N5BvIjBuioiDJCuIcBFP2msZ5EEYSLutmybcep7xlBXHWTiyWl7l0bbDPK5Ha1O+4oDHK4FY7dWD2J3Y/MN7/EZD5LpZ33BM+7SC9tb4lOrfv7+YtCrsjWnv7/j0Q7+0OgXkymna9tsCkmksx0hpZi9BdGXRgxX8tJ7DUV0TdDuVliqgAvQ9K/JkEmRrSjMKpp8hKo20BDFYDYhzZtIbUqEaKbhbPNIFDknNRyhKhzI4GItG2eKYjbEQksOlX2pNW71FPkXFqxfRao8ppU8PjgDakeatvaUccmoU0205dLSewxG6PlIgohsTaQduokK1zkyuFbWLTIkukBlWu2pSwZJ7LV1PrkvQXaAxmaPQo/HKKW7V2oEKDdkXbkhmgPhwQKIE7rhClypzFchQjHEW0vA/tS7ypCBGmmMBGwuKiTU1o7ZdmpCr1JEbYytVx1kGv7sffMoMombkoz5MRJ3Mpch0sCp1IzNOTjX1FXPaUCAGc9A8P73L5PW9et+h9dLB45LfEpFu3I2sNkIKBiVmi1YM24h6mGBFQW9mFW0uIejN0P5qQeoLc9pSoqEh961zllSHJGlRoq89rD3JbZDNVF6KCQoU2WjJ5WoI7o8htElSXGTKjgtIaQW67jwo1RjVNWRyJGenBeWQLpl4nmExwyz5REaJVISYVeI/5uJWmiN+3Veq9ssEIg0yhvFwSDcWkGYVbkXTf8jDdvylSX9NHbdBFJpru792PrjfQAEYjj1pJmnXxZzXJUJe13c/4yHpIuLKPDf/Ds9bNNWHPtwpJIHG0TdtGSYwnQUN5hUfY7RPnmlGrWODPQG6bJg0UwXSKSKyDW5yDTRfm6HosS9cjNUorcsyscaxj2PIC5aWKxqBBRoL8JkPULfCn7LX2Zg1xQZBkrKGAV7bvKu0KkuUD5H+xkZlzj6KyUlIb1ngVj647Rkl784z+TgGMQESCqNCpK3Yw8NyTfNbPjCxYNnDc63nTGV/n9d/dttN3zwTrZ0Z4bveujwcw/sDXFm7wwN4dp7W/Fnba79Nss6v1/z92XrZ+ZoT/j1V73kDgvu7trJ8Z4RWXPrLL77/9b2sXfG6t17FRfiZoidmhPQAXYQSOwrh2eZy3FsHQSqlqRUDAaUCclbgVgUywxR7rCaJUtSL+tljcFnF0Kxq30kwZi7UV6AtBklEkGYUwNj1KGnBqMUnWbR83LiibjzsRoz2JSUW7HgtCWGtnx77o/OkYwmjOkastYtdt4bppOqSZJLV1LkNLcORsBVmRGM/FZH17TaLEHidOMJ6LSC3xEZqd7Il1PqAxmCHJSty6RiRYC2plUw20K3Hq2tbL0bY4ZlxwgTxumlrnsjS1Yv1ClqjL1paJuj285jFMy3ragIxSVCMhLvqknhVfOrUUpxajQkmj30P153G0RoQxJmqKK6MYhLRESWuymzQdPPuwt/qXFpnYG3IxH3sSdbn2nVcu6ji7Iy/zv7vnzesW/L0YvFjdyo3Tz1vUus82lFa5FH6TI52YQGaz4Hm4UzWigRyqEqKdDGOnumR3OPQ81MCtQDzkMnWsh0yhsCVBhQK3ppntdonz4E9B8VFQsSbskqg6JBmrR/QqmsJwmWRrD2EPGAe6nkiQjxjCHgftCvxpB7ccUx/y2foHihXfX4NIDLOrXeKiJjMqqU97uIN1qss9uh+EsE8QS5ChICxCfkdKvce+C53JVs0TKL/gaAo/20Dw8wmi3z2eyRMUXY+sQG2dAMdBd+WZWd9NMBmjlSDJuqhsAEmKLmapLPXIb5KE3eDNwOAdNdAGZ7JC5fg+ZtdkyW+NUPWEJOdQWS7IbzYM3B1azSc2KlMd9phd7aBCKGwUTB9n8Eo2OmWkrZvWtSFBRobJ9S7bn+cQTNiUv8ZQQna7TQcvrxI4VXsd47xBJgKnAiq20ZbsIxMk/QXqp6yw7zEH/ElJlDdU1g/gllOcqgHH4I8qJp4j4TsH6WY8hPHQR08k6+59et3H/vmpJxp3Rya+dNvrWD/z9AP/p8LAca/fJRloDd6fap0nt+fJeKptFkNYdrfNfd3boXvn67IneLpzmo+/+kF+wbE+cJnY5f+sRWjSkoYVi2uHMLudgn72oFQq0dXVxYv734AjnLa4vWV3jOda/YZSxAO2VotRAqeaWsetpqg/ySpS39ZkaTlhiRQyT8wgpkvt2X4hJfge0fI+4oKDU09JPYlbjtvi/Fb+sv1goxROI21bGkd56y4jE9Mc/KegQdUiGx1xJGnWprTFRYf8o7PIsek5jU+raOT8QpA0C4wZY9sIc0UnpQSn6RrWapYzR/REaskMQtj1mudqPJfGqh4aPQ5urUkwYm0LcwpBGiiMwrY9sjVztCss8dCGzPY6aqpiiUbgkQwWafTbQp+pJ/Bn7PkYJdr21m45scYDvrKWz2GKdiTuTAOkJOz1STMSbybB2zZr0+WazmPta6IUqdLcvPULzM7OUiwW99Pdd/ig1U+eDnsbhTn949/Y5fIDnUJ2sOrA7C8tzVORl6fCnkZmOv3EotVP1r77Yxz1/Qrpg49Zq2AlEYUC9HeDlMyc0ENplaTRb8htEbgVO+NfWWE1LGkA/rQhyVgHsjSAYBL672mQ+pLZ1S5DP5+mvqzA2KkuK743S5r3qCzx6X6gRJp1cWbq1hwliglX9eFUYpKcy+TxAdUVBm9G0PW4JjMW8fgfuOQ3KoSG8iqNNysobLQEySuZdkRbxlZf0uixaWKVFQYVQW4z9D3QwPnVA8iRIR7//5YiExi4K2b2KJeoYFPfeu+3+3AamsqIorgpIftECaME4XCe8ZM83KohO65pdEkyU5qwaNOOVQQ995ZACeRMlXhpN6qWoLZNko70MnpGkSRn078qy6ymyK3a/0t+s51gKz5WQW2dYOPlRyEMhL2GzA5B1AWZUeugOXOs1RoF43Yf1WUab0YSTNh9ZSY1xcftjo0AVW5QWdeDPxVTG/aIs7amT3Y8YWaNJZ/lkTJb/vRDnX7SRKufHLtpCFU8cvRB93VvB54ZQTgQ+MBlc8ZKT0cC9wSt84e9uwZpSfPgitFF9ZM9jsDcdttt/OIXv2DHjh0ADA8P87znPY8zzjhjjxt6yEGnoJxmGpnC0LTpTWx9FJPxLSnRNhc2zdhOZxyJU4nxptK2u1XYY3Np/ckGolK35KVVYb4FCWlg7YeFNiRZx0ZMYps3LMO0LXSPC4qw224rU9MmOE7dRi2SjENUVHizCn+yAVgNji44+FMxcrpij9kiFnEzTCfEnOZHKTuAT6zwv1V4U7TrxWBF9E3XMBHNi1BEzf21olfCFtjUxQz1Podg2pK9OG/TFzJjBrcSI6OUuOjh1JO24UBjyFoxp54kHAjINGJb90YI4rzTdhlrQRgb6Yqbnv0yVqhGYvVATWKX+hJR8ElaKX2xIckpZF8ed1tTzD+P3AFNbUwHzyYcjuRlf2FPozEdLETUq9FZD6GULd6YpshaDdw+dODilVJUQ+JPC2QMubGU8ZNt5KDRZ9AuRF3gVMCtQN/9CQgoL/fpu2OK0qpeZo/vJvXs9pMnFSluisiMx8gdk1Y22NsFaUrpOcPU+iXBtMvMWkWSMRQet/uvDUi67q3Qe1cf1aV28D94G9SGBNUR8Geg6/E6s0dlqA1Jwl6DUxFkxky78KY3a+2Ht7www1DuRLK3b+So/72VibOXUO93cGrWDr8xaGvLJAFEeUWSFcyscakO96IdS5bcqiGYtvVdqoM+qScobgpJMop6n0N9WQ5VT/HjlOqIj9NwyT9ap7Y0S3mNJrPdTmT135tSGVHI2J5LbVDS/XjC5pcUWX6TIZg01IbttasPGvSyBk49g6kKwJI7GRsyE4awVzD065jagINbN9T7BNUlBbI7ND2/Hmu7bE6vs0IhYWB2LYQ9LvUBQzSQIipHziC9g91j/cyIjTJwaMcGnkxadpvm1sQjXxp8yv2tfdMY8MwjO69/zld50yLXXzSBGRsb4w/+4A/42c9+xooVKxgaGgJgdHSUq6++muc///l861vfYnDwqU/ykIacG3y3IjCmVTzR9xBxgiqFVryv54pridTqWVDWASvJKlSkcWdC1NgMxHG76j3QJhGynmCkrfNiHKsD0a5AaIGqJ8goIXW8dppakhF4ZUtuUtcKK1UtASVIpSDxBW7L5ti3BTbdaoK3acraB0vRrm7fJiSt89bpnNOX51pHtlS3HckWYL7GxbE2x0bruYG/MRjfQxczVJdlUZHBqSfNKJX120xyCqME3nSIEbZAp0hsm40QaMeKMuOsRPXn8GuhPVbTWECFGresUXHTploJjHQwEsIuhUhcVCO1aXRK4lYTwm6XRo8imBb4MzE0rCmC6s4jZyqQ2v+7STXC9yDq+PbvDfZGC7O76MuBxMEgL/uKuCw2lWxvcNI/PNwhMXuBNKMhtbbAQimE5yI8D/PYZlTgk53uJvdg0zwk41Nd3UUwYSgdbWf/tW8IxmzNk8xkSqNXkXrCCsu7MzR6BTKCvrtKdD3mgja4G3aQLu23hSIB0YwsZ0a7cEuK2rCLjCGoC4a/v4l4WR8ICIcLyNRaNYfdoh21SPIGFdsXXe+d0zxxcS8yEqQZQ31QkBm3jmnBhKFrQ8joaQFTx7qocAXBg9vpu22crb87SG5UE+cFOtBMniaQNYlTt5Xr60OGurApamlgSIqaYLsiO2rov6fGzNoMqp4Q9rgIbcg9MG4ntByFWy2Qe2AcU6/bTISGYvCOkODxcWZPG0EmkJ1IkYli+libPpZkDROnFBn+/mZmfmcpO54nMK7BxJLaEksqvVlJkgGvDJnJhN77HGRi6H60TmlVgFE2YhbnRNtlUzeLfg7c3SDJKmbXOcQ5yIwLvJKDMxqz+aDciR0caOwpOTgUML9tu0prG9jNdj9/1w/3aRv+tmQWnUK2aALzJ3/yJ6RpygMPPMAxxxyz4LuHHnqIK6+8kre97W3ccMMNe9TgQwp9XYhS2K4Kb3SzoKLn2EG7oxCNEG+q6f7l2UG4O2tF7dpT6IyDNxshKxFyYtpGNJq1TtrRDcexFe+rESrMEHZbYiNj68ilwrRdONM4drDvVlNUaK0thTao0BbTlIlGC4WMNH45tcLCrAsCVCPF3TSBqdfnHNZg7nfzPFEsrNMyj7C02m/9+Y0lKc2CnNbBq6n/cRxo2SQrSdqVobw6R5KxhcBkmJJmHGRsZ+KMtAU4dcYBaW2PdWJIsspGl7SxglVHUFrl0VsrICuRdVxrpq4JA1pJJBoZpQTTCUlWIkNDGiicWtKu15PmXGsVqu11FolBCIP2JFFfFldK1FQJEUbWzSZNdy/wf5bjqrf8IZ/+4lefcp3FkpjFEJf9UWRsV8c40NjXUZcOiTm00HOPYvqEHH0bctDfi+7OIcdnYXoW0hTdlaU+nG3qJwSTJyhUw7poxXmDCq1GsNEr8Wc1+a0hM0cFdD2eUB/yqR0Vg3ApPhFQH3DJb65jwgi5ZZzklLW426YJV/XT6HMpL1doF7o2pIz8tMrUCVlmz1xK8b4pxp7fT5wTVFZqRCqsFicHYY9h6DZNaaVi+/Oy5HYE+DM2ZSrN2Od+diKlstwhzgvGnhugGtZooDrs4k10EfdkMOdNM/ZYF2k2Ib/BIeoyBBMCp2aoLgG3LNAOdD2u7fsrY63sp47xcepQXSpIcnlKR2t6fiuoH92PdgWzqxxUZMg97mGSBFVPUTWPrS/0WVnrRqQQ9gjCLoeh3zSQsUdplSC/2ep6tv/ecnoeiui7x2N2jSCNXLRra96EfVYP5JUN5aUuMoXtv+PR+4Ci+6EKCEFjIKA67FA+aQi3nDJ1jMJpQJJRqIaN3qcZK/Z36rYtHTw7MV9/Mj9CcV/39nlWw4cOwZnfjvmpZrvCm35qf39ssWGTfYhFE5ibbrqJn/zkJzuRF4BjjjmG6667jnPPPXdftu2AQwceRitbMV4JjE5Bp5iwad+bOogoRsQJomJJCFq3CYFsDfSTBKO11Ztog/C9OW1Fq2hXHCPqISrUJAM27zjxbYTFCEFctOlqRjT9+DX4kxHCNKM1idWdaFcRdbk2LSpsCRnBn6gjJ0tWoC5kW9exoKaKbLqipTSdviQmjOzyVmqZVHPCf5p/K+toZpIUknSuEKUQmIJP2pVhZm0O7VoPfbdkDQKMEDh1qw9KfRtpigp2Vk1GNi1MewIVGVLfhu9lYnPAw16f7GwdmTTT51KbYoeyrmwySvGmUrTK2FNLjCVMTUMDVUsI6gn+tELEafOYAh1bV56414b+1XQZ6g2bYqc7tpfPBPNJzKEQYdkdDlbaWAdHNhp9guH/LmPiBJlqtp9dpPhEjsK9LkzNoMZnYTjL6GlOW+8YdRuSgsablLaeClBbaihsFSQZxxZKnApxJqusiHvxp2qkvqLrwVnk6BS6XockobwyQ15Jpo7zqayEYBwaA4ZgUpJ/QjP4ox3ge4QjReK8ICoCAyGZezLEBcAIRn4Z41YSagMBlRUQ9gtGfpYgUkOck9T7rI4wM+7YaEXJ4JUMfinFqabojLW092/shm5BYbMh/0SZbecWSD2IszbrIA0sYUsygp4Ha6hajKjUqR47QFSUZHdAdjxl4M6I6lL7nK73KmpLDe6sYPb4boobPNyHt1JYvYbZNYIk5xKMh5h1WYJZgzteo2eqDqILt2rwSoKJkwX57Yr+X4xTGx7EOJDZIfFnDMGkTSPTDngVTXmFwq3A9DpF8RGNqNRxfYXqUfhTsX13+YbUCGaPclnyfzdz9I4scX+WiRMz9D4QkoYNHjoYN2IHhwyenF61fmaE8V24fx1KWKw+ZndmBE+FZ0rYFk1gfN+nVCrt9vtyuYzvH+YDAQm6kEU1ojmNSHvAbjCiqYmIIpDKZji2BvnQrlPSjmzIZkpSs4BYW1MhbDRGhBH+tgraKRDnJLJZqNcoQZy3pMabjvBi6ywmm5bFWkuEMRglSXLWChLAaaQ45Qg1VZlzHGu1yxibEicV0EwXazmupSmkYFpRmLjZEM+dOz9j9T3GmDm9S9MAoJVmJ5RN8Qr7fLyqJspJ/FJKkrUzU0IbtLCpcIkv8Kc1cV7Z8xay6RhmZ6xahTJFYt110kCiAw/VSEkyqinaV1Z/VE3QnmpGbVLrECfnzscIG62RtRhU0jY5MFJiAuvOY5RAdPnIRmSjME1XtQ52jXe/40o+ed3Tz/Z3iMuusb80L50ozKGD4iaNfGIUnSSY6RlGflZk9PQCwUQXXpygJ6fJPRYgThsgHLDPYLpi3E0+MhJ0P6IRBkbPhK0vAlVzUKsqjO7I0v+bLL33VxD3P45Yf5Q9oOu263hlJhMmTs5QXq3xpiX9d4d4MyGNoQyyGhKu7MUpR4S99v2R5AyOl2IUBBNWGzK91iW/Tdko+g47MTa91qHv/pjc1gbZ7QJv6zQDYTeza7MYCYWNdeucOToLQpAGvQzcOsqD7xigMSgpPpzQ83DCtrMlMhLIWJAdtbVkjDREPR4q4xCuKVB4aBa/4LP5ghzBjCAuuCSBICw4yBS0a/CnISxKkueuw9s6TdcjNVI/y8SJPplxTWGTprxCsuOFvfQ8EoGByhJbfDMtpOw4Q9HdNUCjX2McSANhU90ckBFUlwj6744IJqXVy6QweUoX/T8PqQ/Z58eW8zLktxhEYk0N/BnN6PnLyG9LyGyrMHhbwvZzCmQeSw7ezdjBAcPuXLaeDq3ozO60JtF77m4ToPu6t/O1/7Fkp3X25Lh7QzgWgzed8fV9agrwVFg0gXn1q1/NZZddxqc+9Sle/OIXt90BSqUSt9xyC+9617t47Wtfu98aeiAgKyEUfDtwbzTmyEtr0J8klohINZcSps1ckcUWcXEcu/58tFKx0nRu4J8kyHIVf8Il9bOoyO5Du3MV5FECEVnyol0r+E8K1kpZhTYyEoxHOK1Ky81UL6S0tVy0BtdttiFFOAoTa5sWlza1LI4zr2bLPKFhK2LTImZp2kxFa5KaJrFrXychSLoylhBICGZSZKRxqgmqkaBdhfYkXlnj1EWzMKYhLNp6N27VRpxU3bqRJYHEn04QRhPnFHFPgDvbAOGTBIqw17WzgXkPp67xZmIw4JQaaN9pF/B0sfaa0pHIRgKONV5ACFvfJmcLdQIY37WFLI0B3RFdHirYV2lknWjLM0OHxCweXQ+WEbkMlErQ34ushvQ87NnJFd+jfvaxpBlJY1mELDm2jsnWABVC6RibajxwV0Lvb5V9jtUN5akCQc06X1aXZylsCHC2Tc0984UEUjL3bCYqrCL1lC1GmRhEonFLCUlPlkafi+l3caua2ojGqQnSjTlS3w7iw/6UxrBpF1r2pyHshuyooTrkUIi0ta0HnAc20r8xg2mEmDDErF+D3j4KUuIbgymV8ceHiYua0roiXXeNc/TmDPUlOXacqYgLArdk69xkN5YQtQZBM7Mh7QqQMUycqMhvkUQFQWVVijetMMLgVqE2LJg6PkO3ZzU+vffXifMO2pMkgSDNWNOdqWM9oiK4ZRvVErEgKWhm10nSvEYEKWGfRm8IbP2XaUFuuyEuKCrLbBqYdiHOCyrH9VF4aJZoMEejz6c2ZPU74YAm7LEOZLPHOAzeXqT7N6Ms+QnUCp2U5F2h//RLceSeP5dbs/ePfGmwLSA/FLC3g/cWOdntubxpYfTm6Y4zP/XrS7e9bq/adKhj0QTm7/7u79Ba85rXvIYkSfA8W4EjiiIcx+ENb3gDn/zkJ/dbQw8ERJIg4hRdyCBr9bYWhji0+o5WupVJMElT3N5Kw3qyXqIlgm8aAQghmn6Lao4EoCCKcbZPk4s14WDGphKkGnvrSVLfkiWtDakvkYltk/YkTtWQ2WRtgE3dWgTjuRjPw2R9jKtIAwdVj0FKZC2CMEKEVsditIE4mnNG08ZGWpo20u1IC2YuBY1Wylyz/fOLYDqq6Zpmi3OCTeVq6XkAnEqMSB20Y+vYGCnwZ7VNl5PCRmA8mzbXikjJWOPUmtbSiUaGKbrLwZ9JcKoJjQEPIwRRl4vQIAr2YShSg1eOQUBS9NBK4EiBmm0g0hTjK0Rs8GZCm9YWOCR5D7fqQSPsRGB2g09/8au8+x1XLjoKs6/QIh97Q2SeTcTlyVGY+fVd9gU6JGZx0L7ChNjnpW+fUW4lts9hYPpYlyQDmY2Krsc1jV5BVIDSSRFuJsa/3yF1rVmMUeA3nRyD6RRvKiLNOohMhnDNoH2O7ijb4sv1BunSfgqPlSkv70YktuCycay2RFUjCo8nqIkSJuOTOX6A/BbN1PGCxpKYxhIoPGzds1QEwaRBRpB6AtWwOsK4qABF2DuECgfte2hqFob7qQ8E5Ab60ZNTJE9sQUhblDL3gMBpaNIeWwcHoPg4pL6hPiyQWw3hUB5/u0aUa+j+Ltwtk/Td7zF6hsKftaJ5tywJJkE1JOWV2Bovs4b6oEujWxIWMwTTNtVYppDbbMhMNzUpnrCpa1sETg2cOiAM46dJtDDIkocR4E/aSbjasKDvXg3C1oaJC4YkC2G3Q2lFL/VBg1PD6pg8g2zYybgkr/EnFZMnKMrLlzD0mzpRofM+2RUmbv+3vbJRbkUqovfczX3vOfC2xbuKYPx4+ycPSDsWc4yFBGfxqVofuEy0C3zuyhJ5d5GbN53x9UUfY19hj1LIPv/5z/Pxj3+cX//614yOjgLWRvnUU089InzNjRCIKCbpyyN9D8KoqWNpEQowJrGDddI5cXsrNcxzIQztD3N2vALm6q20Bv+t9KbE6mHUuCETxjSWFEjyCqeS2vovjkBq006R0q6tF6N2VOdMAhxlLY8zPiYXkBR8UMJWW26mWgkNIu8ikiwA7lQNUWtgasJGWYSwkSQUphEiPG+BW5l1JFNzRTC1AW0jUqKVepakzfo3NmVLNVJkaC2o06yHjG16l/ata1uUk6QBOIGydtBCoJUlPW4lxZtNmgUt7f6110z7UrItxJdhQjBmLPnIKhCGJO/al75j3dwQwrYl1shGDI5ExKl1CAJINDgS7VpXH5PxkBUFiy8I28EBxJ4Qmd0Rl3v+feuij3fSxUsXve6zBR2L5adHeXUW/+4yJolhdAKZzyEaoa1pVa8z8hOfxlCWbWc7lFZJ/GnDyC9Dao971Ps9ZGyoLFMEE4awR7D9+Q5CQ26LA0sdkpyg1xnGLcc0Bn2qI710PVbD2ZqipqukPTkG7m7gzISkOZekYCcdRbWBTFKbKjw1w+Cvi2x+iYdzdBlR9cg8GOBUDcUy+LOaep/ECNOsDyPIbTVUcor+e2rUlgT4kxH1FV1kmu/BRq8iF8eIJUPIXIB58HFWfn0T5ecuodavSDI5Ej+PE9qCkP6MoboM6gMCf8YBipTP7Kc6IvDK3ajQkPqGqWMlPQ9pjJRo1wrkw5GEdNQhv82QGY2o92eoDQnKq6GwAQZvL1GQEhHGxL1ZZKypLA+se5iG3I6Y4LFxZLyEKO80DQNMM9Ji8GcEUVGRZA1xDrKjgka/IcmappumfYeoyBIr1YDashRVk8gQtA9JDsZOyWBqjYN1Kx6RaEcq3nRgiUsLu9RvdB/wZiwK5w++BICbx37wtOt+7J8N67HXtEVi5hOm3elWPrYP2rmn2OM6MMVikRe96EX7oy0HH1K2izIav/mw91xMKxIhBcSpjcaAjVzMF+cnzYG968xZE8fJXNSltY8WWqRGKau5mZwhiGJ0IUuac5sDdptqZS2HY1QjseLPMJpzCPNcTOCT9OVIAwenElmBf1dg9R/YdDMjbFRC+4poIIeRebyJKnKqbJ3KmhCeZ1PJ2i5lCuE0299KGZPCtr15XiaMbOpVrFGRmYtICdCeg3YlaUbhVK0zGNpGVNyqLWqWZGSTvFgCY2cdJcJAkrVRHRUZhNaoekySs2leopHgVENk1kMYn7DbJfUEXiVFhZqoy0OmxhY7K9sXiPEcSwgNkGhkNcT4LnogIMFBpD5yUi4o2tnBQnzyui/z7ncc3NolT5dWtivysifE5cnbdIhMB3uMyWlbB6ZSRfg+whji5X1oX1m7/bomM24LVeZGrYGLV07JTMSUVnoEE4Y0sM9FryQIuw3CQFRo2e5LVC0mGAUn5xDnbXV70QhRozNMH7+C3ukG3pappjGLRk9MYQA5NMDUeccTFQQDdxi2Z/IA1Ic1IJExRF0CmUB9GLwZUA2oLBdkxmH26CxeWVNZEeDWNJXjeiktdyhsTYmOWYL32BjxSDfuUSuorezGn4wAj5mjHQqbUryyJpjQqHpCnMvS6LPRHe0KZtZBGmiEsaJ6GVtbaZnYuiz5rRH+5hkqx/cR5QzlZQoVuva94hjcsiDqholTiuS3JcjUJ84ropxNW85MauKsYGaNR1+jl8KGKhOn5AkHUpyKpDFg0+q0gnqvJLcFUh/yW1Kyo4LycmmjYlMSt4yd/NMQF0EkguwOWwAzDmw9GQRotbubpIM9wZMH1Ltbtr/QIgOwOEKwGLz+2kv2yX4AvvbO7+y07Jm0c0+v62L+F/Ov4XzsaTv3iMBMTEzw5S9/eadClmeddRaXX345AwO7c4o+TOA6kNIOb1ttSLMWijYgZFOo3nT1apIXEycI12kP9gEb1ZBi7rPRc1qTVmRmnnVxO82sWkfFCWoKXM+1OpbIFnFsCfNbqW1CWR2HyQbEg3mbolAKEVGCaepNkqwkGLcpCzKyxEPVLCFLcy6NJQW8rIezfdrWioF5NstNstaq+dLS97QiMNI6lRk5p6NRjQSRWs1NklNIz4rzZWJQjdQ6qKW2qnNm2haUBKj7toaLdiAJJLLooOsa7VlBvwmsEl8kGlFtoPKWYCbdgU2RA0SsbU0dBWHRXncnNLiTkRXtuwqkJMm7VvMSp6ioGX1KNJntNaJu36ZauA7McboO5mExNsoHCnuSGrY35OXJ2x8uJGZ/p5F18PTovnOy/UwVnkc62EPS7TN1jE9lBWTGBLkdmuITKZntDdKMg1OLMdIl7G6K6x2oLIfsKGRGDcEE5EYT3JI1I3Fm64haAzltcIWgfMowpRP7KDxSQk6V8aqaied00XePQE1VMLMl+07xXMzEFFHe1krp/vUOnNogY6c6eCWoLjGk/RHZh/2mJb+tVA/Qd5+m3isIuwRuDVJXkJ9uvlOOdsDAtrMyLEkH8DZNYAKfzONTJH15ptc5xHnouncK88RWZFcRk8/S86CgPuwT5ySNHkkaGERqI+JeRdPzgKK6RFDvk/Q+0MB7fBRTq1O4vU759GXI1BoMCA3+lE3/SgNrl2y1kpYciRS0J+h5OCEsKtKMYNs5WUZ+Viczpen5lj2P0iof7UKSgb77G4S9LvlHZ0l6MoyfnCHss5Ns2R22gKdTh0a/NRaQoS3UWVsd407Y95pMwJvqpJDtC+xqcLx+ZoTzB1/CzWM/2O9k5ukG2a127Al2RToOV8y/9v9+zFwtvYsf8tp/t67PH/z0mvayb53953t8rEUTmNtvv50LL7yQbDbL+eefz7p1NnVgdHSU6667jr/5m7/hpptu4rTTTtvjRhwq0J4DsYA4wWR9xDTt6uwoNc9lTM9FVACRCeYIS5uUzMs/lALhBjbK0nQsE6K5rudazYsxVnMhpa05o61LGY7TTvEy8zUZLXLkucR9OURiULUIGcbtwXqStalWMk4RTcth7UiEbtaSqdtzi/MuDHVbEtMq3tiyENbNYpVoO8vUOs8muZt/HdAaOVNFdfnEBQUGUk9S77ezeV5ZokKDW0kQ2l4iIyyhSV1QsY2+hF0CmQgwNq1LRbqppbHXSNRDvNEySU+WNGOjKSpM0Z6yhMgXqNiglcCbTUCDwLquGSVwKjFJ3kU0XeJkLWoKYO3nNKPmSFsHu0UrCnMgdTAHG/uKxLzz2i/vNyeyDg4RzJbR9bm0IR1Ys5D89hQVKSZPTYnzCm8WtAoIJhOSrMvsGo/SashtFYS9kK6pUVotKPwqQ2ZCgwHvkW0YY9BTM5g0RUiBcBzyP61SPudoov4s8eoC1UFby0QkGlOp2Ykvx0EU8hhHkeRsJfp4uIup4x1UA9yyAWHwsjG1FQpcjaw4iNhOItV7BWGPwGlAvU9S2JIgIo1TapDb4eNWUwqbBHGXi/tAFSEEescYbjhA1+MBY6dKGsu7yFTqYAzxki7CbhetBFFeUFqn0b7GH1cYB4KxkPwDVaqXDKJCq4NEa0RPF0l/AW82ISz4+DOG1IPKSjuJFYwJgklbTyz1BdURgYrsd0lGkhvVzBytyG43uJNVJk7KWM2RhEavLVSpHYgLDkIbkp4MScYhDUDVm9ct19QEFQypD5lRS/SSrEGEktxWQXYsRSYgpjs5ybvCuWtehC+8p19xETh/8CWc78HN7JvISAuvv/aSnUjGrqII53sw9IHcPj32oYC9JYXzScuusDekZT4WTWCuuuoqXvWqV/GFL3xhQeQAbPTgj//4j7nqqqv4xS9+8YwadDAhGxEYe0mMlMjAx7QiLUq2devtNDAhsJYyZk7fIplnoaysTkQqG2Fx3bniiEpZ0bvv2Uq+UTwXrQFLVrRBiGbEJdVzzmdgxZpSkvYXSQOFN92wug5jMEqRZG0qlaprtK+QQBrYc5NYS2HtKrQr0UoQ9geItAu1Y9qmzEllzyFJLJmZ/z+PE1BNxzI9T8yPQsQJ7lQD7VhDgtSXZCZ02+pZGEOcd6weJQanbiM4KgK3rtFKgLHiS5nMWSp7tRRvOkTUGvblVa7hpJpkRTc6kNZm2RVox6aaydSgGobUk1Y3NGujMKrUQGc9Ul+hTIpomGbxTUtuVJjaSE4yzx67gwU4VKIve4JnGn053LArK+VOFObAQmR8hFu3Kbe+T9TtoT1BbVARTGm6f2sndJKsoDagCLst2Zhda/CmJZlJTfdjKZNVq1uM8/Z5GucETn0p/oYJG0mpxYCyFspKUbx9C8mSXmRin/duKUVOltCNBjKXhWwG47uMPb8fI8GpGxuVN1avobZB392CSZODXIo75pIZE8R524awV7Sj5bUhQRK4ZMcVbtWn3i/B2MKW5RUuKzYPwugUSIkeHafwUI7y8l5KK128yS7kEzswUjB1rEOj3+BP2VoscU4QddmiktvPytH9eIDQVidjVJYeOYyqRsTdPkY0jQ1mIsZOy5L6GuMYZGqLd3rjGjFrqCy1xgROTdDoFvQ8HCEjRdgtELMVuh/rYvwUl4E7I/xZSW3QEqjKiCIzpdl0QUB2h8CpQNJM60sy0BhJcMqK7DabCihSG7GKeyE7rsmMx7jTdZKoo4HZFX782H/tVsR/IFPDngr7Oi1rb7ErInUg8Ez+B/d1b+dPvcsWLNtX127RBObuu+/m+uuv34m8gI0mXH311TznOc/ZJ406mBCpLbTYIgPtWfjmb5Mkcyll0LRZbl6TVq2Xds2XdOEg35FtMwA72z+v04p5+0hShOs2LYxN+1jWtnnewNp1SHK2iKVIW+RJkBY9qktc67aibSQmCQROw+DUNEE5xDi25opIjSU0cVNon8/C1OzcObUiQKm2L2LXAenMtbf5WzgOJkkRUqJmKvhA3BMglMGtpzYqpMCppsR5hzSQuGVrVJD6EreucaoamRrcqr0ubjXBm7a1EEScIqcrEMX2OMbYSMx0g8ZwFtXQOHVDo9c6kal6s2aOK3Fn42YOskT3ZlH1uK0HElECqUGYpi4n46DCBOJ4LuLWQQfzcLCiMItd/6nqwHRIzIHD7HOG6f1JhK5UMUN9lFY5GClIcuDUBD2PRMgwJS64eKUYGaVEXR4993mUV0EwleKWIpZ/bxaMIenN2QknT9oivlIiC3lrXZym6HrDah8bM6hGA7lkgCRQlFZ6pP4Ssr+skS4bYObYPHFO4JUNQ/+5yU56RTFL/ltRPipH9x3jmIxHeWUPpuIQTEDvAyGNfpfpYyQygt6HEiZOcKyLF1BZKnFqErdqox2zaw3BuLXVd3QvzJbQYYh8dCO59d2EXYLR3+nCP7ZAbkdMdU3M0LJpZn49gKoLoiUx0k+pxz7+pGTmKEVUNBQfswYxUZdLfU0Gp2GI8oLeeyuIVNP9aELU7ZAEhqgLasMQ5x36743oeUSjHRtd0Z6gPuDiVgxhryAd7sEtRcQ5B6MEUVHS6BXUBzX5zaBCQ88DhupSgVs25LYBBjJTmtIqhzhLO00t6tF4sxKjDKWVCiM8CrWYyooi3H8w78jDD4cCeYEDQ6QWc4zRj1U5/2O71o/AwSFVT4f1MyP7PCLWwqIJzPDwMLfddhvHHnvsLr+/7bbbGBoa2mcNOygQAtOsgyJaxKVVDFLLuQGtnpdalKZ2QN9aT4q5wb6c07yIZgqYaBWPbOtK9JwoHuy2re+Usi5oYKMvjYaN9Dj2e+O7JFmFW9JW9yIlOmc1AV5Fox1FvVdgpCUrwUyKW0lsDnQYI2KBkgLtKVJfggcMF/CiGFOrz9V9aVlCK2mjL/JJ54DGpFg9TGKjNkprZLVh7ZwdSRrYatNG2KiLDFNkohFxijAebrWpYQG82Na8kWHStn8WlVozKiIRytj2EKNGZ/B8h7jogbEiT6ea4tQSmybWrIsj6wk4kqjLw7jS1tiRWNOGOEG7frv4pSw3LFnspJDtEoeSBuZwR4ts7Kt0sv1VxHJX6DiQPTUqI4re4X7EhjqNZQUriI/BnzSUV0hm1vnkthqKT8So2QY665LkFD0P1phdm6U26JAudzAyS/GJhKggm+6Ohsq6LP5QQOG3Y4hyxTpfpikmihCBbx0wt47h9GTofjQl7HUxK4aRpTpT6wt4s4Khbz6E0Yb0mOXI+zYgDJRXSDLj3bilyArqPfvQHjvNp+++mIE7NY1eRZyTDN0eMn2sT+pD5agEZ1ZR3ABe2aAa1mTAma0z9vweevsyiFgzflyWzJStA1YatkYtPffV6f1NF6OiB1m0DmCZxz3SjNXBAHglQzAF+W0xaSBx6inZMWtOI1KXqRPyOHVDnLfrp3mNimx9lzCRlFa4Nqtb2iiS0DBztEKFVpw/cUqRof98gr57VzB+ssvwr0IwLv6sIM5iI2b3V5FpgdqApD4EuS2WoPQ8GLPtHAeZWD2M6Y3QFR+R2ojM5EmCyZPypFEDbjyIN+QRiAMVkThQ1shPR2JuHvvBfjEReCrsjaZnsfttYX7a3b9c+a1F72PRBObd7343b37zm/nNb37Di1/84jZZGR0d5ZZbbuFLX/rSYV8HhidHlxwb6bCD911v0qpMb+u8aEt0pMDmms3tsyW8NxhrBCBtBEakuu1+hmk6mDW1LmZe/rRJEnA9hO9ZxzDPQ2c9nFpq3Wh8d450aXAqKdnIEBUVqQdRXhDlFU4tJcm5iKxjB/XG5hQLTyIjTZx3UP1F1LbY1olJEmteIJppcoqmgUE6p39xmgUvW4UxjcFUU2iEyFoDE3jWoblZK8ZaMGtwHYwjcWYaNkdb2ciXcRUqEoh6ZA0MkhQTRjubBxhrb+1uGEUu7SfsCwBwK7Gti7Ctgsm49ny1Jgk8tCdJla0zIxID2rbfuBLtO9aEoFzFxBGkncrJRwL2R/rYvhb0L5Z4zF+vRXr2lLR0ojAHBtUVmh0v7Gc41cR5SdRliHtSZE1iHJvm1PWowmmkyHKV2qoREDC7NsvymyP8rbM0Vnaz40yP2ohL8TFD753TJD0ZgrE6Sd4j7S8gRyfsAZVCZrMI3wOlSFcNUR/wCJvEJ8p30fvrCY76dsVO+PR0wdgkzo4ZkmoNed9j9A6fgFF2UivJWgIhtKGwyTB+kotXhsJmK4D3J+oY4aNCCLY7uBWsBmWpwKkCGiZO6yHqEow9N4NqGKZPSVj6Azuh5k8LZGJI8rZGl/BTvM0u2jN4ZahnrOuZkVBbYgX9YY+t01J8QlB8YJbG0jxTxymMAhmLZr0wg2wIol6NEQatoLx6LrXLrUBprXUbi6RdbhwwGZ+eX24lOzrAxt/3WP7DlNR3ECmUVrlkswqvlBJnBOWjDN6MRKTg1hKW/Mz+C0orHDD2PWTK9v3oTdt0OFXbOXulg2eGI0n8DosnSm2zAvYfsZpPMHZlkPBMyePQB3K73r60+H0smsC87W1vo7+/n0996lN87nOfI21GHJRSnHrqqVx//fVceumliz/yoYgoBj9rIzFCWG0KLEgZa//dFPWLVlJYKyLRghJz2hiaon3ftes03cPs902CE1ixk3EVxnOQpbolN0liY+ZITJJYu+JMxla9L/g2nSBK0RnHkgBXYVSrborAm02pDTkE0xqvYvUmRoDQAqUNxqEdqZBhipKC+lCGbL2InJyxGqBWYUsh5opwimakqVXIU4q5iFMrytS0XBbV+pxI3lFzkY10rr4OaWqJXcvRLW3qgqRsEzohJUanTUe4JlEKI/Bc1NYJgqibcDBH2OfjzcSYjGsjP4mtHRAXHYwQqFZKm4C00LQ2zbsYR5J5fMrW5lG2UFsHhyZe998FAL7+wvJBbsnBw4GMtnSw55CJoD4omHjeINqzdUvcaUXXw5DkJPltKZntNbSvqB8zRJyTZCZi6j2K4JFRTCMkU62zvNTHxEk5/HKKGJ3Eq+UwGR/1+DZEJoPxXHS1hhAGXalCrYZwHGRfkTiTIzeasO1sBxlLgpkesr96HHXMcrb/7ggjNwnSYgan0U860o8/ETJ9XJbsmCQYF9RHrGNkdjQiOwqbXuIjEkXYI2j0d+NUDeXVoEJBGkDUBUZZG2OjrGal96GEsKCQqaH4gMvoGVbbomJIhCDq8Ugz4Gz10a5Be3PieKcBlRUaf3mFRsOl62cBMgKEIB7I4k/U6XnYQTdHMpUlkvwm8CoQ5STag7CnmeactmyaweRSRMmay4hEWOJ1wgC5R0tUlnqM/NSQZCROw5D4Aq0ElREFUpEd0+Q3SqIeyG+yE2HZR6aoH9VrrbClIsnZMmKNJc33t2vw9mBg9mzC7kT8h2I61KGC/WVWsCfH/MCHP8f6d+49gXoyeWk5kv3bSe9b9D72yEb51a9+Na9+9auJ45iJCTvr09/fj+u6e7KbQxZCa0QjsoPjjG9dw6BJQtK5v+U8bURrcK8NVn2+cJZFKGmjL0JgAg8RN2f1hcBkfDsIdxVGShve7g7Y+kKPzI4iwz+dQk6V51LNoEkYLAGQUUqSUc3ohY0gyDBBAqqWIrSHCm09FJlqq/FoCdVTbavaG4OMrTuOM1tHJj5JLkN1TZFCpWYr0tM8dprMubE1z9tEsU1XaNWNEdYNp2U2AM1inc1rJlqubq0aOq1CmVrb/bTS6aK4fd5GWyJn7IrtqFDbmrr5ndg+SabSIOkvoDMOWjcjXAaivsA6tSXa1sLB/pZxSho4tnjmWBlmyzubFnSwAAc6faxFVp7qu4NBZA4nW+Un45lGYTrpY0+Pnvuhus6K3kUCpjdEPRZQfCKk0eeQf7yMHJ8hOmqIYGuZzMN1zGyZwfs89MwsulkQmW07GLzHByGsjkSniJqLrlTR5Yp9ZjYj0kB70kzWQvxSij/RYPktHlPH+PZZeMJKVCMhvzWltq6PLa+PWfmPyxg7zScz2qxgH2tyozZypJ2mm+SAgwoFM+tTMtsV9SGDPyHwZiHqNsR5gxkK8R/KIBOojWhUKNhxhmL5LRHbzvGRIQQTwtaaGWmQuSOLSA1xATI7BEkW6r0pTCsyY3ayzfTExI8X0MUUtwo995eJegOmjvUZ+c9JuqcqxMPdhH0+/3/2/jRMsuwu70V/a609xphzZmVlVdfQ1XO3WrOEJCMhYQlhc2XzPAyHAxzMle4DFyGMwD4eQAhP91i2uQI/yAZzLMPBF+tgYwvbCGMhQI0GNHVLPU81V86ZMcee1lr3w9oRmVVd3V1VXdVV3cr/l8yI2LFjxY7Ysde73v/7vnLOsSJFJPBSS7BpaB63rL3Sx+9B/UxB+5CHGDjRfTLr2uR0LFi/x6NyUjH5jRZyq8vqdxykc9Tltxz8w5TeUkARQ7SRUzmnWXtNhSJ2OW0YQ7g6wC5UqKzB1u0KvycwSzlm4CH6iqKur9M38caui4n4rzW78Hz1YpkHPDSxzM//149f8vb/8c1/Zwzs3jH3ly/qhHa1gN/u/Xznu/5g1/9/0/19A/CuZz7vv33qO1j7j3902a/3sfKv+eR/Ad5wSc+57CBLAN/32bfvxhBXXc2yQmBHuSdZvisPxeyEV8IYy4zBC+xM4D3vPI3MON9l5DamlMtNkRLrOdBhfcWg9MDXAaRzGh0q0idrREnu7JSzcoJPaSTg+1glXa6KBZEVZPWYZCZAZQaVKFTigIrfzt2kPXCMgkwLl3VirfuxjxVKCUQzRlc8RGHRFYmebaLSzFkrex7oUbil3Hm/7DoWSowBifAUttAOmIzyavJ8nIHjjqMeHaQSuEgIgx3wstvKeMT07ArPdCDG7hgNGI3tD/AGQ2y9ip522TjWc5+T3yswvkRoi7Iu0HPEVgVrPcRWG6t3mSSoKzo9vqnqm8lC+eVWIxByuUBmD7xcWmV1QWXFkk4KJk5p0qcde9A9GNB8coiuBuh4Fh1KVOyTHGrg9WcIljtuoSfLy8UUtz+bpuPfPjsYOka+2NXmWv5WisBDHjrA4MgkraMesoioPL7J4pM5em6CouY7Z8rCsnGXz01zqwznFqmdMRShwBtasqaH9gXN44buQclgzieZEgQtkJkimTN4fQc4dGTJZ3LEQMFWSNiC9i0aMZlRbISOnQkl+z6XcfLdHuG6pPGEIN2sYD1n4qJDS+OUoXNQ0XjU2eEHXctwRrL/kx4y06y/0sMKSzoTM5xWGF+w/M5FrCfIGpTZL5Z0CoK2oIgFE08C1tA4YdCBwO9qKusSYRRB17qOBM85XyqJiyE4cQYjBJOPz7H5RkXt0YDOTQEzD3QxgcI/t01ydBaE09OsvSrCu3UBfwDxesHGPZKiarC+pf6VGKFhsM9SqD1N5aXW9RbvX+z1d2eWXK16R/AZ2n/9M+PblwM+XkyGavMtH2T6s//8krZ1YKfgv33qOy77db7zXX9AWhR89BK3v+QZ2traGnNzc+Pb999/P7/0S7/Ek08+yb59+/iJn/gJ3vrWt17mcG+w8j2ny1ACud1zQGM8Wd41mfYDN2EOfDfxVjvZLtbaHdYF587lhPrGMTClSN8GProSMFyIGMw6C+B0EoaHMw4dXKf7iUXUoHAtV7ncCcHUetx2pQYZou5S7kUBXr9Ah5LhtEfY0cjMOK2HtqVNsETm2rE9o0ibMi8GAVYG6FDgDZ0epXO0yuRGB7IM0tS1KxQlD28tSIUIGOenCCHA93eCOksjglEbmPC8EgjpHfCilHtPUbTjdkYJ/MrHgNKSWoPVOy5vu3N3LgwF7fbxshzre9hKCNKBO2EYh2c6dkoj2wNEp7fzPRibNeytmD1b/cxPOv3FtQYwz8W+XLjdHgtzZbUbkDwXmNkDLpdXxoNkwjEURSQQuWtf0oFjz2WmKWoBKtEMlir05xXJtM/iZy2+tcg0c7+bUYjdN4dphKy+rkq8bgjbhtrDa+hTZ5CVCrqz059k8wLz9CmiE6dZ+nwESiEadczGFrLTI6xV0XNNlC9pPi3o/tZ+4p52E/6zKXJYoFoD8BSd2yeJV63LPsmcw1hl2Tqzm1EncMUJ/f2uxCg3WccK7HbguqfagrymmPjzU0wevMktIOWuNa37liHD9ZiFL2qqJ3oMp5ulhbKztR/st8hcMf1Igig82jeD8Tx0KAjalq27XeeD35V4Q/D7LkQyXrP0lgRBVyM0IAzxpkElBUFXkdUEybQgmXGLeN7AaWOyuRrhYAa9vIr/6Fn2//fDYDXtI4qiFhCcbUGSEp5uMRlNsXWbz9QjOWlT4aUWHUvCbYFKBcJAMmOJNgTRuqA3ucfqX6xe+89uIwhv/MXCs/zWC3p+7aNLAPQ+cGbnzg+cv80b/tEdV7z/o9Vbear/2DPuu7Au3OZSa/MtH7ys7a/kvWy+5YNkaQFfvrTtL/lbs2/fPpaXl5mbm+Nzn/scb33rW/mWb/kW3vSmN3H//ffz7d/+7Xz605/mL/2lv3TZg75hqswDEboUr2dlC5k1zj5rVEa7+7K8tEm2iBLMjAIqz5t8j8raEhQJbKjIpgLWXynJpgyq51rIfug1n+eR7gJmReN1kvPbx7Q+j3GQ7QFmqepsn6VAaEPQyRGFxR8UeNtD57BVj0C7oEuEGO/PRD4m9sYTeiudzbHUzm45q0uK2QZekmKNceClbK8SQeCAiZYQhWOAZpqVEtyUDE9SIPICkaQ7An5GbWXlWIpih7my5TE31rmujcrzHOgateqV24zDNcGBnPJ/KxX0BwCIriLYDvCjoGzl8xFjZit3721kSjCyrVZyLwfmWer9/6//9UV5nUsFL89X97xn/zXNgblcEPN973l2x7Hf+c/Xl9G6GCuzB1yurNIZS7GUox7zKVKn+TBlGnzeCDChpLfgkTUF6aT7LTOe5czbYua/4hFOVJCPnMAOE8T6Fn7LZ853i0/+agcbh1hjx2GZIgyR9Rpog97eBkCXbWhKKvS9xxjOh1TODMb5Kc2HW5jYB205/R1NhAmontUkBydIJz2CrqFzSKHDkmlpGMJNpx80oUXHFhNrxFA65zHfuYgJA95AoiNLMmvo5BLjHSRsu/2pxOV7FZ2AvCZIc0V2Z4O8Koi2LHkVdCRQQ0H3qCGdjMib1oVH1l1YZO+QE+7r0KJDizcUGB/naGksUgs6Bz2qq65duKhIhjMurLKoOnexvGEIthRCQ9aA7VtCprNJvMCnmK7RW1QsfL5L4+t99HSNfKEJC03ymkdekQQdSzqh8BJLf146RkeCykCmAM55zgp3315989Z5wOUa1MWAyei+iwGZl0NdMoCxu9qFfuEXfoEf/MEf5Dd+4zfG9/3UT/0UH/7wh/n0pz99dUf4IpcoDKI/3NG/WLMj0B9pNsLwme1NI5AxqlHGS+DvtEMFPjZwyfFFLSCZUGQHMw4ubpIbyeHGFo/15nnov9/KgZWusxhOd7WySWdpPJqkC23whgYdKcTAOv2LsUT9HNlPx3oeKwV4EsqWagFYpbBKktc8rCx/8LOd9yCMxR8a0tkIby1wk30JNjcuowace1etgqmEJPsq5FXXKqZSR9cbz2XPWIXLn1lPUJtO0yNgfPxG36wxczV6v7uNAopibAowDvzc7fpmrLtqjmq3jsVY7GAAWVayQAoxTCHPz2/B2K3PsWaPgXmeulbsy5UAlxfCvlxrgDOq5wIuF9vmeoKZPdDywksHoHpOKzL9UE7YUQgDza+toptVNl/ZQGWOlTEhyAzmvmyoLKd4rQSUQEQRenMLkhQhBX6ekx9bdItInT7q2GHsuVXU3Ax6dQ3b65//mzb6DSwK/FMb6GjedQEYS9Hw6B9pUv38UySvOkzesGQ1SX2Q0bmzymBBsO8LBXnNJcsb37k25jXr7Idji54s8Fd9KsuCwYJjM/JJTXzWc4J83+INSge2lqB5PGfjXklRtUSrktrTHrJwQZRZXVJUIE+dVrN3yBBsO2DkWs0sRVNTOetTO2XpHXCsyXAOwi3B9MM5srC0jvoYX6CGYDxBXnGZN0XkgkOtAIxApeC3JEEHvIEbu5W46+X6Fn5/iLy34iIKTp9DySVELWTr7gYTjw2Il3M6x+oEHU20OiBe8ekdiBnMS9JJSA9oFv8EKssJJlA0bcbT1+OLuFcvah2t3krrU++7bMbiSl8Lnp9VuVLWZXf9xkc+zY/+7NvHf69V/dYv/+klb3tFvN2DDz7IL/7iL55333vf+96XfAuZFQIxTLFJOdMfTWTHbmK7XLdGoETIcbintRYh5Q54GYEcKZ1exVfo2Gf19VWK2CX5Hjuwyr1TZ2jlMcZKPnvyCLU1OwYuVgqnIdHGaV88b6wnEYULOksnS0AlnB5GDjLIC6fn8T2EsQ4kqBLMgAvVtHbcSoYBlbr8laKiKOKdFgFTq7h2BqXc+wPwPfRMg/7BKjJ3rQV+z6Ayg0w1JlQudM0XaCnIqxITxKipkOhsD9nuOcAgXbin1QY70vGNxmgkIvR2AjzBgceRE9loW6nYMVnYMREQnnIGAKNttcYai2j3ngE4hedhhRm3jwnPQwR7lP+z1Y2kfbkU8PJsIOVqtX89FwtzKcDl2Z53vRmZvbryCrcEWQ2CjkBlhnjdkNc9uvfMkdUkncMQbbpJeLTp8lMqKxnBuRbkBaZZQ9SryH4fU16ThJT4WwNodbATDUSnh0lSdJI+UxMDbrHI89ziWZISPbaCmWliAkn962ugFNndN9Fd8jn8n3q0bq0xPFDHKgg6MJj3qZ22NI+nbN0akjVd1onfc6yCbgjyqYKe5yG1AxnBusLvQdCGwbxCRxBuQ38JsM5tykSG+ikHFmRh6c8p50pWc9e8bNIgckHQgSIWDjQNBUYrukcMlWWJ3weEM/nKJi2tm13WSzLjwKCOLMK4HLSwbQi3C/Kawh9a7LbFHzjNjw5h8pEBJlJsHwvZuLfCQmseVtaJNy29ow3i2m34yy0QEWHH4HUSstkqeUXSOayYfEzi9TWNp/tEmwFbd4Sks9A6phhOV5j9ahcd7gUjX6yqH1s8z4XsWjMVL6QuZfL+VP8xjr7r19jsX5sxjFrRwlf9TVrlfdOX+NwXCqquNXgB+MGf/NZLBjGXBWC63S5RFBFFEWEYnvdYFEUMBoPL2d0NVyIvsIO0tO8VwC7Hq9Hq/lhEvssVbJRGPwqr3A1gcGFdO6AGukc03/KaxzjbbzIZDSiM5OnuDEvVFvfuP8s3Zm/b0Y3khQtwFMLttwyVRArIc7zVNtnEnGNhSv2ICX1kaQWNEi5tXil01Xdhkl5JdXsSYSzGFyCcmFLlBtkzWOkjCov1BKYWILd3ifY9hZ6u0z5WQ2qgDKgcCeJRwlkyJ3qc22KlyxPI6z6DQw2CVoS/0nbvz5TAYUR4qJ3WrfMuyJ63A16UxFFCtmRLrDMRELIMoTTYgh32JihZI+NSp8eGAKXds7UWEQaY6Qa6FpLXPJIgh2u/MP+Sq5dTiOW1Zl6uFLxc+Pw9IPPSq+GCpn5OsvD5AcHJDQZ37qOIJXnF6S+yfRkqdRO3bMLidySD+Rh1e4Q3BFlYJr7RQjYbQAczHGI6XfShefyttmt/zTLk4QPox5961nFYrRFRCGnm2nKfaBE9UjgWXmuC1YhK9VZkWlA/nbL62oi8bsmmNflZRe2Mxd8a4g9CdOQYGE8I4jWBzH2yKUO06YTwOhbUTlmstAQ9i5fYMhzTOWX2lwT5hEbEBUHPo3vAWdtX1gzphMDvOo3NMJUYH3oHDOG2xO8JitiiaxZ/U7l8GAXtO3Pqj/l4Q0t/0VJZFdRPWvy+pXWLLAGNpW08GqcK/L4hPtVGdAeY6QbpTExRU3hbfUSnxySLbNwV0TvWpNEfYgV0DiqSiRh7R0x1RbN1m8LKCbpLiu4xTbiqqH99FZIU0+4QNxvU6zchtDNKEMYBtdXXxHDfi/TlewnV3AerRFFwUZbgYrqO61kXm7yPAMXuWqVPjWfefyV1IaAb3f7oR+69YjBxJUBkxL481z5eDICzuy4LwNxyi2srsNby5S9/mVe+8pXjxx566CEWFxev7uhe7NpqgfDdpPdC/YreWZ0fl3VaGTvKPYGdNqdRq9Mo96RkFawvqZxTSGH4mcN/iMLy6c4dnNmaYK1bo7NRZe5MGWo5blFzE3VrzE5gpsZN6JOUYCshm4owvgIJqsyDAQcqRGEcqMg0wliyibAMK5MYT6ADwXDGw+8bgq4mXOmhOhm6ETCcCTDhjhAfT2Emagz3VZ3ri8JduALnXiNT7ZgeXyISjeqmiJFVtBL4xjJciGjfHNNUguDEhmNJRvkysAMg82KnBQ/GYZlO4B/sgMsRcLLWifxHehZd7mekRxq1pwW+Y3eUAzsi8NELkwyWqnSXPMK2ce0Eg/yqfr326vnrauleLlYjhuTFaBeDFw5e9uqlXbUTijArF1akwG9nZPUIo5xWQ/Q9iqrF6wlkIcgmDEVNIFNoHAcQ6EaIbI1aZi2m30d97TH03ccYzsf4/WmW3xCx/8/qyC8+iAgCzHAI1iKjCHFgEVqOodT7ZkAJ1HobhCA5MkuwOYCza86hMfYJVrv0jnhMft0x6EXVktUF6WwFL7F4Q1CZcx+L1y0TT1raRyTDOcPC510LWl4XeH3rrjU1p5dZfzXEq1A7bQFFWi1Yfa0i3Hb76S9Klv7LOWzoY6KAwU1VkglF0JFkDff2g65AFg68xBuG7gGJ6rnMFRMIrGfpL1lm7rfuetR3eiMdQjJrSSdd2GZwYJrmU3XClS7xg2fc9aEMiA5PbtGsztFbVISHpom2C1Sm0IFg4htbIATD6Sm8vmH+LxL2/WnBcH8VPVVDV6ZQg2nX9VxYKmua2skBJvZQ3YTa6T1N5cXq+OAJAn3xqWjrU++7ZHbhxax/+oV7+UDww/Q+cOZZGaPdupMrBWEXA0ejeiFA4Uqf+3yA5cUEL3AZAOYzn/nMebcvtFE+fvw473vf+67OqK5njdq+dgOSkQ5mBBpg5/HdifSw0/5UtnRh7biFy0pJMhWQ1y2f+/M72HpNle9Z+BLvnb6PjazGn37pDhpPKVRuyjDLklkY2QyPwNLISrNkJ7z1Dsm8c9nyhgbjSadnsRZZ5p6AY4JECcKML7ES8ooL8Qp67mITtsq2Lq1dx9worb4sGwYMDtQxgSBsG2RusJ7AG7o2CV3xXFtA7lgi6yvINSZQ6IpjQfy+RgeC3v6QZq+BWm25QMqR5mXkMuZ751s1l8dXCDV2KzuPucnLnJqRZmnUXmb0DgAVsmxdU+6zrIekSxOkkz5Z1fVIe4lFFhbb26P89+rK6mqDl712spdeLXyxy+q3RRhPYiZqeK0BjW7Kxusm0RFUlsvMkio0noB00v2um8CJ+SeeSJzlfbOG6HTHv2UmSZDfeILKo8445tDxGc79lSX2PVx3jmVZhi0Xeji3iohCzPomYn3TtZM1G4AlenyF9OZ58gNHKWKBLHzq3ZT5+yTtmwW1k5btV2jm/wKic13ipzO2Xr9A+5hl8iFB/XRGuD6gfXiSuS9DvJGjwwC1ZRnMSSoblsq6ob8kqRzuMDQNkhnBwT9MWc1C4jVL0He/sX4Pt0h36hzDt93Jxt0eMoegZZn7ak64mZBOR/T2+6jM4iUGmUv8jiSZMVTOSSYfdmAlqwqmv9Fj+gt90oOTnH5HgPYtaghFRSCsYDjro+MmFYC1TRgMIQwZ3DJLXpXIAjoHQxqnUvKKR9A3mCdOYIucmfwI/VumQQjkmTXE4iFkZ4habdF57RL1hzZoH2pSP6vpHarSeLxD++5paidb1+mb+NKtF0NHciX1o295Oz2eu9XtajBHV6ud7mqAqQtrBFZebNZld10ygPnWb/3W53z8Ax/4wHM+/pIoY5yr1Qi0CLkTrFi2bonRETOlU5kUCN+xLGMNDLg8E8B6qrRmduzI6uskf/s9v8e/ePjtHN+cwixI7k8X+X9Mf43Vu+o81bqJiaeM08DsNgrYlXAvRpkq4C5qWU7lZIfBTQ28fuFW6gKFSgpEqjGR50IbC+NavUr9i9c1yNwy8DzC7YJIW1Si0RUfKwXJbEARCcItHBgJQ4rpGtYDlRj8boFMC/JGgI7VmMXxu7psSSvbs2pl33MgnTV0IPFLl7Phviq1zS6ikNjC7OTLjIT5qjyeI8AyCrAEB0CyfCdYdLdhApQBb7s+y5EVtRCIwMdM1BkcbpBX5PiiqDKBSi3BdkbOBSzcXu3VdawbDcQEH3kFADbR5D/34HUezY1X6WRI7awhPLXtWmWFoPOqBbyhxes77YWXO7eqdEqQzNqx7nDycYO/2gHfY/lt00Sbk0z9yQlsnmMO7WOwUHG6mofOUZw8zcL/uYHJC2zpPga43BhTajC1Ru2bR0/W2b6rQbxRUPnS04RPrZG/YhEvsajUMDjUoLJeEPQk7SMeldMe3SVATGCFwB8Y/I5H52bLcC6k+bRH2ILNuwTaD0knBGHbvYmNuz38LngDMH8xAVOWxT/XZE0Pvw86FAwjURrIwOab9jH1Fx5BOydolZlnnmDr9gBv4GMVDBYEfk/QWyoDNkOLzAQ6gv5+gTeAdApUXqN2JkBHzgQgn80JtwK8ASAgbBWozLD5mmmmHlDIdt99Pjd5JFOComLxe4LGSdfFYKVATU+6665xWk/3QTXwewWDm6eJ1gbUjnfJ5+rEm4b+vNOABu0KgznJMIjhCy/a12+vbpB6LhblSutygc1u0HIp49m9/2cDKKP7rxd4gSsU8b9sa2SNzCiHpLxbuwwT4cmdtqVdgYw7lsDWuX1BueJvnXtXHIHvbDKnv2H5yNFvJ+2ERGcCfrH7V5HrAbXTgnjDcNPJId5Gz9kOFzt5Kdba8T6tsec5ZdlEI1YLKgaGB+uopBSiG4sNFSZUeO3U5dsUJQPjCaTnLKP9ocuKEaVNscwKsukYr6+xUjk7Z22g4jHcF6FSl24vUwfgVGooqsq1RniljWRS6na0QccexhfI3CIsGCUoYrfKldckerKOPN0vbanVjqYl8Hec30bHoBTfC6XGAHKsYTF5GURZGiuMDBeMdSDH7mo1C3yGB+sYXxCv56hUO72PVwZd9nPIhtfy27ZXF6l//63dy2ojuxL3sRfLdezlViPAsleXVhv3BDQ2BKI3wHS6CN9j67b9zDxUsP+Puzz93Q3SKYupuN9Tr6OINgSNk4bGA+uw3cYuzDqTlJGhSJYjTyxTPa3YeNdRrFgk7vfR7U6pz3TbqXrdsTCpM6WRcQRphuwnNE4FbiHJWmy7gzecJ530iNYz8kaA30qJv75G5dwcZ7+17vQl84p4wzCcUc4W2IOsaWndrFApFFWLLMAbQucITDxmSKYkwwWL3xUkswZvIOguekw9mhK0C4ZzPnlVUDtXsPwGD+sLgu404WbG1CMpm3eGYKG/ZBBaEG0K8oYhm7Y0H1Z0DztbZVGuM+nIMTDVM5bBnGDyGwnpVI1s0qC2fWQB6aQDVEJb/PUBzUQzXKoRhh5FLSBsWfKaQMelO5wnmPxGB5G7F0leeZjtW0KmHk3xtvpgDMHpbdg/yfJfamJ8CNqWoiIYzlriNdi8MyDesLTn90xhXsq1W/9xOZP2ywEbF8uKuWh+zCXu54WOB579vX4g+GH46LPv77mYmecaX2ov3W98D8DsKqsNeG5CLIQo3a/MTqaL77l2JSlcW9LYAWvXPrK8TKEv3CR6HGSpQfjUTiWEH4/Agt91pgcq6TrnsEIjRin0ZodJsEWxM7HXuP9Hk/eR1kZr5GaLWAn6h+qOBcE5q2EYszAIizcskJkka3pj56+s6eH3NF7POABQWHTF2X6KQQpCoJsxamgI2hmqn7lATCWQxiIzj6Dn7JN1rLCexOsXmNBDaoPMHeCxSjq3s1CQV9yLJwsVqiu+O97gLsTS7DivjUwSlHQ6IKUcI5QX4/8F5edVMmAO0FzwAWsNnofwfYr5JlndiSzBsUOicFbSwlhkmlOEez3LN2q90NDKPRBzabUHWq68VAKTj/bQW9vYLANrOfzxE2SH59C1AB27MEfVl5jQOrtgCZ2DEr83TeVxi66HqASmH2hjen1EJWbznUeJNwuitkYWls3vuoPJR3rIU65dzEYh9swy3HwQ8eQpNxgp0BtbyDzH7m+S1wOiSgXb6zOc8ekekPjdABNIol7qFu2ygmzCktfd72/nsAtpLGqW6W9YNu92jmRBBxpPSiYe75LMRHQPe6QTkt5NBqtKcJMIph90wCKd9Gg82sIEDYRWVL9yin0cZPNOn427PKYec85kSEhL/QsC/I5l/hS0DyvSSbCexd+WeAMHXsIty2DRmQk0j2uQ0F1SqMQxPFndIgvBcN6w8YqQGcDv5QynPKyIyauSZKrUJ2lRAh6PbKJGvJLC5CJIwcLnWshWDxsGiCRD75tCFAa/ZxnMC2QGtS1N1lB0b9ZEy4q0KbB7l5MXXC8kz+SFtk796M++/ZJtiy9WIwD0XFbEFwMDF973Kx9wbPffOfKuZ32t3gfOPG9rV+2jSy+oRe35nnu573NUWVrAL1/aGPYAzK4SSu5MnsFpLeA8++LxKteolalMoHeMTZljIqXbvlzpt75Htthg8/aIzjFD9bRk4fN9J3A3xjEtgCj0jgbE7iTSI+QOO6HLfBM10ouocauZHQ4RZ3NqhWsFsNLH+JJw0/nQCwVCCURm8KxGhy48UyUGNSwoKp4DHGmBzA0m8KicGThr6UpEUfXxe65tzEqJ9SW64iOsY1byiiCZkggjiTedLbIsLGpQOOYl9hCZS0MGxgYCybSiMtmA9e0dYJZbUJTHcQfYiCh0WpeyNcK5wLlWPzFqNyu3HdfIKU6U2wc+6VSILCx+3yC10w2lMz5+tyBveASRosh3BWnu1YtSz8W+vFDQcmFdTRCz20L5Wor3b7Q2sr169kqnLBQjW3YfW+SY7RYcmcfbHnLwDz28Xs7GPRWKqmMvdOAE5+v3+ni37KN2zpA1BJuvaDJdGMTGNp0jgrVvtSz9N4l/34NMH1gk3zeBzHK3gJZmFPce4/h3xRz7eEExUcFfaSG0QUQR/YUAHQqEmSP4xgmEhWTOsn5vQP20oZoXMNkAa4nXBL2DjgHxe4Jkzl2/Go91kHkNqwSDOcncV/qoM+tExTQmqNM9bJn5GjROJHQPRiTTAr+v8bvlb/6+GumEorcomUgzql89TVY/xPorBe0jiqzpQIdKwe9JamcNzUc7yNUtgs4BVt7gEbQl2YQFBNFGuWBlS3aoJukeqbkFOO1ybNTQgRuvLygiOPeWEL8fInMoKorhrCCdNgTbAlFAvOauD5t3+HSXKsgCFu5rQWGwlYjB4SZpYwYrIewY5v/nOUyzilxv0XvVEjIDr+euQzK3zD6a8+T1+jK+ROvCCfALBSGjyf+V1v/331w5gLpaYvf3f/Qu988L1MdcKXi5nGP4Kx+Y5/0fvbz9X/McmKtVf/Znf8ZHPvIRvvKVr7C8vMzv/d7v8Z73vGf8uLWWD33oQ/z6r/86rVaLN73pTXzsYx/j2LFj4222trZ4//vfz+///u8jpeS7v/u7+ehHP0qtVrv8AY2S3ccDMG4l6kIdBoztfEUYjsX0o+wRwIEQIbCeIt3fZOMVIcmMJVjqk3Xqrq82VFAIF+qYl5R+HLqQxaJwoMjzSgZmJGwPIC8ptjEzFJQWwqVmZmObSl6QzzewnsSEnnMiEy6ok5GFsgWvV6AGBbriYQKJLJx+xipB0C7w1jvOeawauWDKblHuS0DuRPxFrFCpJugJ8ppbrRs5m1VX8vGxVQPtfvxDhcydVkZUFMmkJJ+q4G+2yuMmwd/1mQi5o40ZtYaVLBlK7bBgu1ziRp+JY29KqzRPjnN6jO8upH7PIgqL30nQYQUdKYJWgY4lae3GwPc33Hlyjer5Wsf+lz+tXxMQM6o9RualXTfaeRKvC+TpFczI0VK4hS01yNC1EB0JrPCprGuyoaSyockrkqIiyWuW4X7D0idXqRyYZPmNMfIVEzRORDSfNEw9pKg93YUgID04RVFV+NMTrLxjgdqKZv0VHsV0xvobZwi6hmYngiNLnHnbJIMFizcQtG4LOfZkjMoMXt+jf2tG0PYxzQpymNM72qS/ZPG7ksnHDHkMxncMxeobm1RXNX5fM/flAVkzwA981FaH2S/XKWKByi3dgxHRVkER+/QXFJOPJ8hUI7R115vcut/qXJYLXg7E6chpW4K2JWxb+gsSbIPKZOSY81wQtGHm6679bjgj6S8K0ilDOmNpPqLoHlIEHYhXBcN5kLmLC4g2S1BmwYSCcEOQTAnyhgM5XuJ0ScmMIGpJGic1RSyJtt3nmM05B87NO328HlQ2nJZUT9XoHa4RzFXwewVWeoRbgv5+g64IvI0bh4K50c6VZ6urHZw4nvxfcd04ls7PV8/mGPbmP9+H+D9mr3i/uwHJr3zgwatwTM+va5YDc7Wr3+/zile8gr/xN/4Gf/2v//VnPP5P/+k/5Zd/+Zf5d//u33H48GF+7ud+jne+8508/PDDRFEEwA/8wA+wvLzMH/3RH5HnOT/yIz/C+973Pv79v//3lz+g3foLudO2NGY5Rk5WVoxZkN05JULJHd2GlJhKRDER0bkpIJmx1J+GtF1HJTCcD9m+pUL9tGHywY7LoFHSiT1LQwBnHLAreX6k6TiPiVE7zmcjtzKpoN0lGCR40w2ymQq64eH1deka5gCZNyywUpDXAzehj5x7mYl9/EFBcHIbCo2NAteCZikzXUqXsl1WzdaA19eELZct4w2tuzB2nZWxTApErrG+0+QUsVeOwRD4AhMqhO87fY8U7hjvBoyj4zzKbhkJ7C8U6pd/hSd3jhWAVO7zkdK9H08gjGudExZs3S/Fmk44WkSStLIbzV6/uuHOk6tc19I6ea++eepGO0+G01AcW0J9rY+cmWZ42wLbSwFYmHhiwMadHtVzlrk/eBoqMfl8kxAIegHhesLa6+pgDP4DT7NPH2bjFRU6hyKymmDu0R7JfAV96HbCjYy4myF6A/wBDCcV+/8sQWaGc28J6ByWDGemaB4vSGYtZikh6XuEqx42zQg3MoT2CM76ZBOCtdfWmf7GkHglIdqoYpTTjIQdiz0tiTeci2QyKQk7gqAl6dzkk9cXaX5lBWFc+KTTwoCOJPVTGeFaH7G8iZ2fpnPHBL39EjW0TDTq2H7f/fYqx0SBRBjH0g/mBL2bjAN21ZDhnEAlkExDdRmG05L5z7eo7a+xfcxn8okcHYHKJIN9grxu0bFBZoJwQxJtWoSRZE3AQP2MYfsWZ/dcTGmKhiDYVHgDyKqSxqkEHSrymsIKQXRiE+t7LOR1ikix+rqAoCWRhxoIC0VYBkZL8PpQPyGRKUx8beMFfb+vZt1o58pz1dUCL9fTLetGqNF7v+9Ny/DJ5Svax6gNbnBm/rKec63yYoS1F/rUPndprfn4xz/Opz/9adbW1jAXJJr/8R//8ZUNRIjzVgGstSwuLvLBD36Qn/mZnwGg3W4zPz/Pxz/+cb7v+76PRx55hDvuuIMvfelLvOY1rwHgU5/6FO9+97s5c+bMJefSdDodms0mb5/4QTwR7ACE0WR6NAkWYqeVa8SIeB4UBaJ0HRuDncAnn2+ydUeFrbdkvObmE3z5gZuRkymvu+kkX3z6EAuzbQKl4Z/NEh/fLlvIdrJQbJbtaFzkSANjdrQvu13SRu1ReeG0OiM2RghEFKEXJtGRu7+oek7rYS3Gd2xEVldju+Xa6SHe2S1sljkGI45IjsxQVBRBJ0emGjnIyGaqFFXl2hE0CGvRgXOHqZ1NkUPnUKYSjb89xCqBroVYKegcjmkfg9mvuVazeC0jeOKcC1rbXbvtqmHnMzG7vrYjAGd22V+PwIvcpRcqjwVKMrhtnqLq3rPMXfqzjtz7kIWzlO7XMx7613+XdrtNo9HgRqgb4Ty52nWtRfsvtJ6LmdnN4MCLk/3yYraQXYoGZuRCtneeuBqdJzf9o3/IwoMRk39+BjNVZ+PVE2zdYznyuwnB2W3yfRP4J9fRG5vIWhXmpjG1iN5NFRp/8iSiWnEGJYMBLMxy6q9MoyM3KT74f5+m2DdJf39M8wunKc6VExIhUUcOUsw3Ud2EtTdM4g8sKnPMRl4R+APL1h2CfLbgyP/PkEx7bN+yww5UVi1WOmYhaUpM4Bj1sGXZeLVl332W5peXsXFIMVFhuM9NaNuHFEHXLV51DrnFHx1ajA8zX7dMPrCN6A2wUcjGG2Zp3QpIiFcEM19PWb83RGgIuhYdQvuYJdyShNsQdOxYY7n+aoGODCqRzH3Z0j4sWfhigr895Ph3TzD9oCVoOxZ99dWKfMpgpcXrugyZvGYJNyV53R0XNRRUl904hzOCwZEccoHqK+rHBfGWe10robJeIFNDdLrNyttmad1lmDjYIv38NNGWRYeC6QdTNl4RktdA5hCvWuJtTfzFp/if5/71DXWewPU7V0bnyQ/+5LcShDdGt8PF6kpYhmvBTLyYdbmtds/1Xp/vWLz5z/c5UFVWlhb81i//6SWdJ5f9rfnABz7Axz/+cb7zO7+Tu+66ayywvtp1/PhxVlZWeMc73jG+r9ls8vrXv57Pf/7zfN/3fR+f//znmZiYGJ9AAO94xzuQUvLFL36Rv/bX/toVvbbNcve+fO/8ibMdCffFDpCwZseRTOwwIVZJBosRW/cabrtpmUjlHLvtLLGXc6iyyRfat7D96ALDAwWHrXFuZVLuyjexO1klRbHDMMhy4l62VdmiAF06pplRq5vemeAHPjbNkE+dRUUhtl5FNSvoUKEjZ3MstHPi8rcSVLsPaTZ2+3Lv3TjwEQrniZ8bikbk+oanFCqzSAl+1zCccn3GecWDmocaGmTmrJytr8gbAVY6hzS/Jykix4TIvMwt8EsgmGfuve9yIXOAxOwAlQuCRa3WiPPAjd5pORt9LmmGiELCzYS8XsUogcwswlpU6qw981A6weVlQfvrU9fzPLka9VJgXy7WZnYhcNmrG7uux3lSf1pQXU7B95CtHtXlGnnVx3/iHFQreJt9bL+PjCNEs4GuOSBQhIL89oMgccYiqWPla2cMaVOy+MmTmHYHTp2hXqmgC/e48DwXZHniNL1Xz7PylhCvA7VTAqmhdZtzBJv/YkHQ9qnd1eHkuycJN911o6hbiopBZYqiAr0DDrz4XSdA3//flmmcmGQ4HzC8eZboL57Azh2lc1A5M4IMtm+3NJ6WZHcMkCdj8kmNHEq27hD0901TXZ5k4sEW9TMZUVuRTCjWX19QP+NhFYStEjytG9rHBJVly/RDTi9qhWDtTZMU0zmy4zFzvyVtCOqnjHO/9BVqKGgfEUw+rkiaEpkL5ECCcI5l2U0p3rnQtVNbp42xArZvh2hd4Peh8bBPXi1dyMLSvNJC0DPO4dNCMVOjfkYTdiTbW1MoAfGmIa27BcHKikGHgrQp8IeW3oIiWJiEcy/8u3yt66V+Tbnc2j1Zv9hE+0qAyKU+Z/qz/xy48rybF6rpudz6D9/z7eP/d4OO56rK0io/+rPPfjwudT8Xq8sGML/zO7/DJz7xCd797ndf8YteSq2srAAwP38+VTU/Pz9+bGVlhbm5ufMe9zyPqamp8TYXqzRNSdN0fLvT6ew8aOxYzG+z3P2fFzuT4FGNWBA/cHoYr0yrLwMsi7kG574Vbrpthe0k5smVWeq1IVLAydYkEw9KGidzxFcg2BxiA985kO3KfhFKgu+7eXRRgN41jhGIYpfQvTQVgNKFKwx2GCMpHKOzmaE6PaS1BL4/bjuz2jgHm+HQgSPjHLustU78qV1GgTCOrTChQhgXROYNHMARxhK1zBigYF2gpTAWE3pYX1LEEpUZwrYh2tZkdUVeEYh0VyvYyLigPA4jg4QxiFOc3zJWsjJCqZ3HRwzVyPbafTmcRslaZKtPvO4znA3QscTvOKMBrw/JtAeeQCU3PoK5bufJN2l9swGX7GcfeFk4kV2P80SlkDV81FSNzbvr1M/mTDyVs/32IzQf77msrtPnsHmBmmiizqxjh0Mms0Vs4DFYjBnMOptiLzFM3b+NqQSYrW1sXrbUao1+7e14X30cEYYwO4UQgiIS+NuCmW84hnn9XoUJDCqBrdt90klL/1yTha/AcBZ6B8prjnF5NFYA0qIGbkGqftLSvXuOeHlIuC1pHw4I1xYZzgQMFyxFbKksSyYfEhRVUE/FWAW1pzznuNm36AiSSUnn1iZSu5bjSmapPe2Txw6g5VUXkNzbp6ifgKICrWNVJp4AOcxRKUx8JUDHEG3lxBuW7pJP6+aAxmnJ0md6FFWf9pEA44GXuH3oGBpPQScMiFecjievg64YdMUdyqEa6XAEOrTEK671K+gZhtPKRQ9khv5iSHXFUP3SCarNOtu3zTFc1BhPMf2wpqgqsrpj9E0I1TMJ1WXBYL5ypV/fF7Wu1blyo15PridT8kKDOi937M/VunUhkLsYOPreT/zR+P/7LvG1r2Xb3mUDmCAIuPnmm6/FWF60+if/5J/w4Q9/+OIPjlfrzXn3jcX8Qu6s8CvlmAKlXMBVGTJJJWawL+TwHcvcO3mGT524HU5W6GcVsILKiqW6ZvASjddKkWmO0M6NzBaFc9oqyol7UZTgRZ8XxHiexfDIbGDEBNlyrCNzgaJABP5OngqAVGPDAFtqe+xgUAKoke2zcPtU0rWB9QTWE+iKhyicBajfdVaeeU0xnPWINzTGL0GUAGwJXqTACuFEoJ4LskQ4oKMykKWl9Bi0jJzfKIHcLlZl1PUohHUs2UgPMwKVsmTPAIQ33idFgfOsAaEN3vaQ0JMUscKEEr+dIyxEW5A1PPLosr5WL7t6zvNkr65L7TmQ3Xj1bOdJVheodYOVgqwh8B7L6R2Middy1Mo2YruFqNcQ9Sr5fBP/5Do2SRFnVpHNBvpwKRZ/hcXrKya+NIQnT7jrTODDXcewgI4U/oFF19ZcaPLZGo2TKfGWYzW6+z2iTZh+SFCElmRKIHPwWor+PkFeB6ss1bMSKwXDOYvfF4jCtdSG25buQcH27QrjV2k8Jenvt7SPTeJ3BSK3xB1J0LZUNjWmLRjsk8hMMPu1lO1bQoazThwP0FtUeIklvUURtF1+TPcmQfMpS225QA0N7aMK40Fedwtm/aWYxjcG1M5k9BcDwnMaYSzhuR7Gr7Nxt8+w75FXFb19zgUzmZSIAkxgUalgsCCwnqWoAAK8oTN4sZ4DbCa0WN8i+pJ4VRJuW6KWy0jzEov2Bd2bQownSKYD/CxHDFOidUHQUtTPODF/2lDMfq3H8e+qYRWsvbrC7NcTgnb+In4rb7zau548sy4GEq4loLoQTDwbg7P7fseg3JjaocsGMB/84Af56Ec/yr/8l//ymrWPASwsLACwurrKvn37xvevrq5y7733jrdZW1s773lFUbC1tTV+/sXq7/ydv8NP//RPj293Oh0OHDjg+o3ZcR0bMRt2xGLAzor/SF8x0qaMgE3gQZoRtAq2BzHr1Rr2q03mHtWo1DoRvRSYQCByg+wNHXjJXMKvEGULVBhA4kLIxqAqy5/JBJV6HaHkWPQvgsD9P2IutHUs0qiEBWFcP3KS7uh5LhDCj5mLQqPaCdlEHcqwSxNIikgitYWhQWion0gQFgYLIaoMxzShYoQa8pqiCAXxhsZLNOmEjzBQXc4R/aEDVmYETsT545A7gFKY0l56BFh26WKs1mClc3YTEpe4WR5TJcdCfoxBdod4kU8Rx+hAYicDgu0Mv5Ugi4C8eWGQzI1X1+U8uU51PfQve/XyYGGux3mSTlmiz7Rgcxv52lsRhSHayIlObGH7A0QQUNy8yMbdMVHLMrEaIKIQUa+R7Z+kiASzX+lQVJoEbYttd8dtYrYosL5ksL/CcEbid2LkIIflZYJOD7MwzdqrJ9zzJESbhqCj6d3qk8xaipqldtJN0lUikFlp7DKA2mnHPptAOL8a67JciqYG6bJWVCZIpzUqUeiKxYQui8X4HtMPpcRrIY2TGq9foPIAHTmzF2FBFNA4bUgnFWHbkkhBoKF7UBI9oAnPtJiuTLPyRoXXd2J44wlEf4gwTQbzgnjTkkx6ZPUmwoDfgWRKUF21hK0d5twbWiYfFrRud5bQ4bYDX7qqCTeUY907EuM7/QqZxXguEHOwT+ANIQB6i9IttGVQVJ2RTT3wsXGIjqF+ypBVBckhj+mHclq3VJl81GXlDPdZVqKI/b916gV+i1+culbnyrW8nkx/9p+/YDbjetT11slcyus/V/sXwNEnzgc3Tx379LNsefXrsgHMfffdx2c+8xn+4A/+gDvvvBPf9897/D/9p/90VQZ2+PBhFhYW+PSnPz0+aTqdDl/84hf5sR/7MQDe+MY30mq1+MpXvsKrX/1qwJkIGGN4/etf/6z7DsOQMAyfcb/LXCn/1wYh3IR4xAS4+3ZpKkb2xuMdmLHoPthOyO+b5rO31pk5Z/F7Gr+TYyLFcMYHIVDDckUm21mZsdqATncYIGsci7BbvL7LRtgWhcufKQGKUMqJ75VyOpbR+EoWCUBox/RQFOeJ4UUUYQfDHW1PUWDxIM+RfR+ok0wrVCrJKyWLot2FaTitUJlXtoy5VUFRMh86lGQ15/KiMndhFD077kMOV3s7x1Nrp9sZaXvEThsZxiB8D3zPuaCNTAxGx63U7ZyXB7P7mFlbsk22/Jg1Mi3QoSjb3iCbDIhTjSgsXnLjA5jrcZ5cj3qpgJff+c//54si5N+ry6vrcZ4UdUv/lilq38iorBtat9WonstIb5rCr1dIFitEKwOsVyHoFm7RanaadGkCr5sx/bkWthox/WCK8SWdb7uFxh8/7hj2Sow6uUrVzDGcqtM/UKH+pGvJKVZW8YQgmW6S19wkPJ2U9PdJ+ncnSM9iBh7DOYHQgto5jfUU/UWLCSz145LBgiBeswz3CUDgd6Foghy4hTzjW1RfouMSAOWComJJpmHr9hAsJBOS4VQFv+fay+INQ3+fZOqxHJk7gX4RCfpLloP/I2XtlZEDEetb1PKC+Mh+0inwBk6oH23tY+vWAG8I/XmP/j5BNmGZesjlsGzdJYg3oXkiQQ0KWrdW0b6z9tdV10GwdY9F5AJhXRuZBfKG+51XidgJfg6sY288wDpAE7YsjRMZweaAfCpG+D4MEsJtSzIp8AZQWbZs3+LTfLqgt6jY/9mC7n6P3k0W06zDS8Cp/VqdK9fyenIp4GX6s/+cX/jdd16V17vYxP9CMfqFt5+vLnf7q11v/vMdsHo543gxAcuFddkAZmJi4qoJtHq9Hk8+uRPtdPz4ce6//36mpqY4ePAgP/VTP8U//If/kGPHjo2t/BYXF8duGbfffjvvete7eO9738u/+lf/ijzP+Ymf+Am+7/u+75IdYy5Wo4m+1Xqc7I5SbtI8YmJ2T5LLGrdwAWqrx8IXA855Mdt3GrqHAqKNAG9o6R0QNI7b0lq4GLeFWWPOZx2KohSr79g6j//6XinAdxP53en04zFLuZOXMvpb7kOwi8kZ6WbyXWGZAL5wY/A8yAuCVk5vnzcW3vs9g8oMybSPyix5VeH3wRu49rPhjBpbYRYR+AOLl1qMJ+gvhq5H+myKaHWxhd5xDhvpd0afQwnSGLWSmbI1zhY778kYdwxghznS2nWX+d4FWTHK7VM6dircLkhmfJddkFqKqrNUFqPjcJ3rRj1P9urFrb32seeuG+08mbl5k+2NA3j9WSrnEvKmT7CZMNxfJT1aYzAric8YujdZBgse/t3TTD9UsPpahTeIWPysR+dwhMzdwk8yJYnuPUzwFedQtvktC1RWcuY+t8GZ75iliJoEh+pUn+pAb0BlxTEp/sDSOiapn7AMtgNEIggK0LGliAXJhCSdAutbF1Y5A34P2rdYTEXjdRR+V9B4zBuz6VkTiti4PJZt15KWNd1iU38J8oYmXnbXw8Zxi9+z+EPD5BOGcD1hsL9C/XRBXpPIXNI66ia2w2lFfaKB7faY+3Kf1i0Vp2UZQNZQTDyV0zno0Tni7pt6CIazgsYJg9+WFKEzPlAr25g7a2y+2uB1JeGawkst+z9j2LrdIzWSfLZAZBJ/W5JNa2Sm0JELxBRGILUgb4D3tCba8shrguGsjxoGpBM+2av3Uz3RJei6wMsilqy+1uXT6MBph7K6IuxYxAlB72gDHn5h3/GrVTfauXK59Rsf+TT/9lv+1/M0Gc9bH3h+8HKxdqlLtQG+703L4/t/4yOfhstou/qNj3ya3wB+9E3Xr1XrxQJPV9PO+rIBzL/9t//2qrwwwJe//GXe9ra3jW+P6MUf/uEf5uMf/zh/62/9Lfr9Pu973/totVq8+c1v5lOf+tTYhxzgt3/7t/mJn/gJ3v72t4/DlH75l3/5qoxv1IoF7GgrYLya7zYaOZK5Xt0xK2IMwelt9n1OsPaqiO6xgrwhUUNB0dRUP28Q/WGZKl+u9Bvr9mv1eczIWGQ/mqwrtSN4H42HspVNyrGDmgDIC8ci7c6LuZiL19gy+iLZJ6UFsbfaplH1yOrOeUxlBplqjHKtYH53x2TAMTFO+FjEEG05ob/xBN7QkExI4i2Df67tzBJC1xax0+4lxq1tQojz2ZaxBmY3IFPjx8TYQrlkrowd9Z2db7UcBoi8QGYalSqKyDnIpFM+RSTQ2Y0BYG708+SF1L//1u7zOpG9VNiXl3O9FNrIbrTzZG29weFHcvztBF0LKCIJSqASTfdA4CblMxWq5xwbEG5bznybc8xSQ4HxJWlD0l+yRBuuhal9OGS6exDxyHG0vw8TuJbYiacK1u/1yCZhanoSfzAB1onYN+8RFDMZ+RGNdzKifhL6+wVZMyfVPoM7U/ywQB6vIgqnE7FK4PUFWQWKuibLFCp1+SvCgA4spmLwNpVrHQvAhO433u9KvI5rHR4uFmQNRbQh0KGiqAjEkTp5A5b+OEXHIUFbsHWPJlrskz5aJ5nZz/yXErxeTuOE09AgoYgE9ce7VB/q079jgc27fYwHWcPSX1AUNcv2rEXqmKmkSe1cTvJ0QDrtgJkOoH/MgbCiaqnP9uiu1J0LZiLRSwl2O8AbSLdNbAlartW7iARZE4SRVFbd9UMWlu27mkz/ySmQkv49+4jXfKrLBlk4E4fWUYnUELQsw9kbI1cMbrxz5XLrR3/27XzvBy4OXl5IW9aoXWrERtz3puXnnWyfryPZ2fY3P/p7z9g2zxp8/LN/8xn3v+W77gHgvW93GqEf+sBfG4/jfV/+1fO2bT/twkSbR554znG90Pr1T39o/P973/7h827bv70+Htc7fuW/8j/f/1fG/z9ffce//lF+s9z+YmVtB1i6pDFedg7MqNbX13nsMZdKeuuttzI7e+XJnte7zsuB8eIdvcju9qPd2TCjCfBom9EEewRgSktLhABPYcOAfLZGUfVoH3GT/fk/20AMklLXUupXimLHnnm3tmZkowznA5mRuYAQDqREoQMsu1zM7MiGeGQwULI0IgieKf4fvZ8L36eSpZhfYZs1ksU61pN4PeeaNpwP8IYGv51TVD105PQxw2lnw1k7Z5CFE0rqwFl6Cm1pPLiJ6PQc87QrrXoMrEZuaKV+5bzbu4/HiJkZfV67c3DgfBtm2GVOoCAMMPWYdL5K2lQEHU3W9EgbAjtIuP+3/94N59t/vepa5cCM6tmAzEsRwFztNrIbgX15NgBzI+bAXM8anSe3/7//MbNPK5fxlbvQYDNRpX1Ljc5NkrxpaT4GCBfg2DiZk0x55LFg69sSgidimk8ZOoclQQeK2OlMvAFMPVIgC8vG3W7CPPXVLZ78wWkaT8Hcn6yQ759g+1jk3LZqgsF+g1WWm/6rRseStVcp0jmNamTctX+Zs90m7Qenx+1T4ZaksmJLVzDLYEEwuHuISRVq28dUDCIVROvOcl5oZ0msEme5DG4/+YRh8qZttk9MIrRg+n5B/VTGxj0hE08WFLFg+zbFcLEAAfP3SboHJI0ThvqJITr26C+6a6ZKLY2HtzCVgKIR0jrqzAHSGYOuGoJNRTatWfxjSePxDsl8hWTKY/1VAm8gyJsGkQunZbmlR9IOkR0PlQjHvFjQscHvKPIJjRxIGk9KJp7KWHtVgN93C3F+36ISgzfUbNwdMfu1Ad6XH0XctEQ+Vx93VOQ1j96Sx+arNOG6Yt8ftviz+/7B3nlS1ug88fwzCPHcxyPPGvjB87uW5VnjskIWr7T+w/d8+3gCPwIUz1cXAxzP9tzR/n/tNT/+DABzObX7uO1+rSOveprN1sUXaJ9rTLvr+cZ1qZ/ZhWVthyJfujY5MP1+n/e///385m/+5jjEUinFD/3QD/Erv/IrVCovDavAi5byELUqZqs1nvyPRfXjtiW701pUMh/C910LVJa7BF4ohf8S4fsIbQhOpwTaEB+P3AR6kEDutC82TXfcxXa7oJXMDkpi0x3bzLG9scG50Rhbtkvp88DLmMURwmW5lC1TbnzZDlszet5IY2Ks2//ouFjrAiaVQgBB6NM7UsP4AWqowYIVgrzhk1claVOiI4E3sDB0bmTGE2jfraLF24b6I1vQ6jjh/khntBsYGuOOaQkCx8dkt6W1cWMe5++MQMyo1W8EdEZgbHRbqZ3PNi8QWYHfyTAqRMcSYayz0rzxXZRfVrUbqIzAzEsRvMDV1cLcCOAFXhoszI1UjRMFec1H7m8SntoiPTiFN8jp7ZdMPKnZvlUR9DQqt0RrKf7TK8RK0X3NEibxkDls3S2w0jLcr1EDSfMxByiML6g9vIY6tshwVjK4qcnEYxB0DXqmjurnhO0AhKCybkhmJNG6pLskad0Gs1+z9HoevaOWBx4/iLftUTvtwEdeFRQ1t+BUXdEM5hU6gODJmGR/jgkNIhMgXFZKslDg9UZmLdZlr+SAcIn2rWKKeE2SThtq58prnoSzb5NUzkqGiwVzn1dYCXkF4jVL1hCsvbaK37NMPdijf7CClZAcaLJ9LKBz1OANINoAuSyprAn6+wRB28MbFKx8ywRSW1TimJCgDd5QMpwz2KMDPE+DKQ0CQsfQ5DWLzJyVssgdAyWMpbfo4w1gOO/czGQORawoqpLG6YL+/og4uJPw9DZee0jRiFh5fUxRg5mva1Rfkk0ZVP+b24XshdTzTYR/7TU/XraTnQ9eroSluBRA8r2f+CP4nh1w8Xyvk2cNqpu/+Iz7/8Nf/fbnBAIvBLzA+cft/DE+e3dJ88gTFz0GF7brfS/nb9M88gTBsnuP2b6fvyLwcrl12QDmp3/6p/nTP/1Tfv/3f583velNgBP2/+RP/iQf/OAH+djHPnbVB/miVZ5jNrbc/7sn/YzuEjtWyrDDAoy0K6M8lhFbM9KvFAU2zx2Y6fTGj9syg2Xc2iTZAR2y3H9ux8wOSo1BjqBkX0ZsUbmPEQO0A77OD6REyh3gAuMxCM/DgmNnlHK3RzbNyi8ZJoVNEtTaNpXYY7AYkVd8pLboSCALJ8q3EtTQEnQNUpfgJXCpxBNPpQRnW4hu370X5cI6bRxiazG64ruMmTLATeQGtd3F9ofuPYzskcuWPlG2iY31StqOHdlQCpuVwv4RqzNim6TTHAljEIMEZSyhsWRTEdmMdC1xgxtfxP9yrZcqcNldVwPEXAy8/Hj28Ytu+6vB//aCXutSag/EXHoNZxTNDUPnUEAwPUdWk8Rbiv7dCZWVkLmv5nhDTfjEKrZRLdlkhQ4l/roDEdMPWPqLkoFQxGsCHUH0dEbQzkBrgo5lOC9IJxWycJoW40n89pDaScH27TXatwjEwQHFoMrUY5rW2zM2dYxKAGWJTwaoxGW1zPzFJum+OufeHNK+1RJsK4aLmvicImyB3/PJmpa84UTu2cQOY+FvuzYulTiL4qAFKnf6j/4ixKuS+OFlbBwyUZ9hOKcYzluaj3j09sPc13K2j/nOJazmbPanviZJZyKEdlk4y290Qche32lUBguWoOMWx7JJS7ghaB31SKdAWEH1jGX6QYsOIJkUTD4iGG7UKHyItWslM76liGHiUUHYsay8sbRTtmCCMtcmBa8n6H1bj96TVaI1Qf2Mpggd4Fl5fciB7Rh5bp2gHRIfjelWBb0FRbjlFvHS6fg6fyNvzPqV3//HxNWLi/tHLVXPV+/78q/yviNXPoYLJ+y7J/GVpVVWvu2/AHDgvrc947nPBV529jtPc9/PP+Px913heHfv+1q0kl3qPk+/+TMAHP2/PzsGL8D4/3/5V1deMAh7rrrsFrKZmRl+93d/l7e+9a3n3f+Zz3yG7/me72F9ff1qju9FqRGV+W3V78dT0fmT/l2aEmBnlf88UTiOLQlKR7bdYv9dzxGe55gZHHNis3wnuHF3m9So8uz827vapkZsydhZbJel9UjzMgZIZfvYeewM7Aj+S2BznntXOeZxi9koV0ZICHyElNipJt1bJsjqEm9oULklr8ixgNF4TrjvslUKwnM9ZLvnmCchwPMwU3WKiajsj5ZYIVCpIa+60Mu86lKZ45UUf7PvmKtCO7e03cd/d+vZKC/HWNeWZ4xrmRvV6Dhbs8P8+B42DDCNmGQ2cnk1gyGf/x8f2qP8y7rWLWQv17oSEHM5wOVida3BzG4Qs9dCdn6NzpMjP/ePWPqyR9ZQVM8MGS5EbB9T9G/NCM76zN5vGMxJmk875l5qiw4lG3d5JPMGmQgmHnMC/uGcxO9a4k33HICgY2kflYQtx/akE5LtWwWVFeGCIwPo3eTa04qKofGEon5W0z6kmHo0p3vAo6g4pryyZshqkokn+hhfcfI7ImQB+z5X0D7sBOzCQO2MIW0K2scgaDkXMP9Qj3Tgo1bCsoXMUjvlkullYfGGhtYRn/pZTe2rZ7BxSLY0Sdb0WH2tci5gCvyWBOOCJPOGwe9K9t2XEp3tkM/V2L4lor/PZdMMj2bM3OdjFRjFeZbPeRXypmtnC9rOttkbWOJtw/Ytiuo5y2BekE5ZrHJtY+GGorJs8RLYeJXFxJrGIz5Cu/Y4v2+J2pqV1zuhv9cTxOuCZMYiM9eWtvDFIf5yB3t2BX3PzWzdWcH40LrdEK0rJr7a44v/9ef3zpOynq+F7HIm6L/2mh9/1sde6AT6wlaoC2+3nz42HuPuxz787n950f3tW9txcriWk/vdgGJU2UVA1PPV7mN7Lcc7qmvaQjYYDJ6R0AowNzfHYDC43N3dWFVO5oVS4xV9cWF7ErhE93ICbvPcaU9Ke160xpbgRUjpVvmVHLc5jUFCeb8tdk26R+1PwDiNHnYMBEqmQSj1jMyU8xzTpByDlYsxSWPGYrTvC8DWqJ0Mu9NitpN4X9orG4vo9Kk/mGMaMUU9xCqBGhqEtqhEIwuD2h44lmiYYI0ptToRKEmxb5L+Uoz2nS5GpQZ/oFGDgqBlyes+RdW1JiRzIdlkgN8r8Dopast3+ywKbJpBmd9jtUGYMi9HyB33sgv0TEJKkP4OK5UXCEB2ILKWdDoiqe86Lnu1V1dYIzDyfEDmuVrFLge87N7+WgGZPSbm+Su8o83mYAFvaEmbFbqHHAsdLPvIQtC6WTFY0qQTAUHHTfhrJ4fMfdWwcU9AUYWgb6ieTcgaMcaHziFFOgHe0O3L77k2r96iIt40BF3J9MMJwWqP4cEm8aaku6RIZiU6Au0LaucM1YdW0NEiQbtw9vapIatF5DWf6P4THCqWkFmBfOI02FvoLvkgQYeCqGWJv2jZvFOhZzKCB+p4FUtRdZkzfk+QTIPfd+1uRUUic9i422Pr1kOE25b5T5/Fr1Wwb5hEJS5w0usJ8oZFDiBoSZIFzfKbQua+Mkn7iEfnFo3IBZVzkvjpgOpqTrie0D9YoYgE6YQkbcLMQwVJU9E7AH7HhWP6/YJkKiDadKGcOrL4HUFRteiqy3fZek2BHChmvwxbd3gUFWg+ZShiwcQTbm4Tr1Xp3F5QzBYkxn0mxrd4A0ERe7CvQZDlJM0A4+OMFAaScBPS5t715GJ15uuvpFGXzwAqzSNPlIDg+fdxLSfWF7ZCXXj72QDWh/77T5x3e6e9yo31117z45escRmBiMt5n1cCVi5WF75msPyLV23fL7QuG8C88Y1v5EMf+hC/+Zu/OXakGA6HfPjDH+aNb3zjVR/gi1rGIDy142p13qRXuomv72Om6gwX6xhfuER6CX6vQKYa2csQeWmPbIybKINzKCu0Y3JGjEtRIOJ4xy5Z6x09B7iJ+chhDEAahHJn89gyuNiV/zLaz+4aGQqMb5agZzd7MxL7lyWEcO3Muxghm6ZObzMqKbC9PgwGyE6PUIidlrBRW9xuIT24VrUyNyg7ME1e95G50/JEa6kzBui7QE+rJF7fCV+tEuhQoAOBbXpkTQ+/GeFvu3a28WsYi/DkDkNmNJid28KX4PtOUxSHWKXGNtYiy8cAVLYHhNaS2xvHNWavXvp1pVqWywUvF3vulQKZC0FK9rMPnPf/Hoh59soLiRdCEQsaJw31E4LBPGTzmmjZQ6XQfERhQkgnwEqJ0BGNxztMK8HyGz1aRyXJZEwy7XJGhguWxlNQP1MQbGWofkqyr0ZWk3gDw+RjlvahEHMsHGdbWc+xGl4fsoZAZmDDgNpTHXQtRIcK40sG84JkJmRxfQ7vkRPYpX2gFCaQBD2L1JbK2YT+gZjtY4pkfw7WgQBRQLQuSeY1mS+QqaDtS6YftgjttDLRhms1TqcE+f4p8rqPjixmIkf0PYqqKIX0lsoZSfNhRVGFldcriqozIag/pfAGlqDj7PhN6NFfUPg9S1GB6Uc0SdPZ93sD0LHg3Js9hPbwewK/58wFZO70PmookIVCFhCf9LE+YA1Bx12HvdSQVxXDhYi84vQv/paH3fYwoSXcdNslc5bVqk/Q9tGvXSJvWJcdsyWI1qB5Mie/QWz5b7Rauudrzyriv1o6ijxrXPX9XWxfFzIz51XZNMLTv3Xe3RdqSZ6rdm97NVrHrkRovz78rWe8h2vtiPZsddkA5qMf/SjvfOc7WVpa4hWvcBevBx54gCiK+MM//MOrPsAXs4TvOSZkxDSAm5AHPjTr5PMNhvMBWdX1varMTb6tcqsrRgm8tELQdqDC7xVlYr1yACfXiMKAtljfTayLio+wFh1IZG5RwwKvNUD0hghcBgqBt5NpMqrdzMnuVi/f2xG6G+vYoN0hloE/dlkTnjdmfMRIvzNiLuQu62LfQ8TRTpvbRVre7Mg9bRQmKYQL1PT9ndf23PHVc03SmQCZWYpYluGWCusJ6DuHMpE6FiXcTtGRh9/HBYpFCh0K0kmPvFGlmmvkpnGmBIFfgsCynUw4kaaIY2wcks/UyRuO1bHSgUornR2m39WEWymyMwRjkIOMaE/Ev1fXuV4IeLlwP5cCYp4PkIweHwGZ7GcfwP8H1zdN+katyh/VmX+kw2CpgkwtwxmP2fsLxFctwuQEWwnJXEznkEe8bpn9UgfV7mN9j+pDK+yzC7SP+uRVQf2UBQtTjxZUv3oKMz+FbPex/SGdN0xSP1MQbiaorR69dyzQvs0xDJVl8PoWoQVBzzKcFfg9S7a/CRa6B0O8oWHisyeY9Q4wnPboHWkQTsW0bg6Z+ZpHuJVR+8YWtt1F33qA7VsledXib3qE24Jk2hJ2XfCl31XkDde2JTXksQs8rp/VxGf62FChNrqIJMNXkiV/H2fe7mMCA5HGFpJgXeH3LXlN4Hcs2hfMfMO6drMK9PdbonXJ7AMarz1k8T8uOx3q9IRbjLp1ksGMYu5rCb39AVldktcdQ5ROAwb8PuQ1i8pg+huGtOHMDeI1t1g2+bhGaGeuMJiuIDNLmFuG05JwS9A7UjDxoEfjRMH6K9w0SqXOpWz9VY5BCvsOuKWTlnbi463vifivVz3bJH13+xdc+oT+Ura5XpP6y6lLBS8X0wjdCHXZAOauu+7iiSee4Ld/+7d59NFHAfj+7/9+fuAHfoA4fomL1KRyk3vfA+HtaEemmrTvmiKvCLzE4g8tQlu8gSktgwXGd2GNyZQkqPkO4KQ+wliKikAlnhM0Gifoo7QUFtrlx6STLi/FyhC/V2X64ZTw5BZimO4wK7vZDSt23Lts2aY2EvmDm8QrSiAiEMKUehB7HvBB+Ts2zbvNCYx1xE/g71g5j0qIHVAldxgjjN1hc7yRziZ3LXe+D9ZiJmsM91WxUuANClTqWs68XoaOPHTkQajwOgmyl2FqgWNlgKLmYzyBzJyNpfElg8MNqmmG6DrjgjF4sda9bhSiZxr0DtUwnlt184YWv2ec3ad1ACad8BjOePjDCvFKgrfRQ230runX7eVWf/l7zl3W9v/jE1cWeHax17nSfd3IdbXAy6XW5bApwUdeMQYx+c89+Dxbf5OWgM7NLrAy2jIM5wRFrAi6lupKRlELsB4UFahtWbbvbjCYa+L3LDKH2kpBvOE0J1lDuMnxK3y6B44QdCxBr04RSxonc9pHfLK76wjt3PuClkCHlnjTXaf6C4r2UUHtTBkquTlA1yPSpkD7kvabDhG0CyYf2GLtTdPoIAALZ9/aoHbW0EwbmP1TtI/EJHMa61tUVzljlsegd9Cl1Qvj8lMax11LXOXcEFsuesnugO7hOaraotZa2MAn3EiZ+nqF/n7PuYwtFE4DU3P5Ln7XCe07N0lUajGhRU8U6E5A62af2W6EDWcRaY4NPEzgWo7zuuDcmyMmH9Xo2DEu2aQm3FCoFMKWpbjJmRC0bnYLWvGqY22SaUHWdEyPVRHZhCCZ9aisWKctKgTz97nrTBELdMUicigi6BySyMKOzWymHtEUkWDjlZbZU3srYteyrsRy+MKJ+OWyEZdqofxcr/lSqBt1zJcNYAAqlQrvfe97r/ZYbowa2e2qUnTfqDI43ET7jnGJtgqMEuR1Ne4J1qFAFs56F5wNZWXdIHP3gxX0jdNxTCpk7iwwjedWbFRehoL5YswyZE3YuDtk1kwSHt9wbWiFa3WyULZHlSyRFDttUqOWrdLZa5yZwi7x/mg7KJPud2ltRhqckQh+tD+9KxenzLtxjNAFLl3WjsMobW7G7WK23JdtVBnudxfYaDNDZAbrOdti60lUP6eYCAGBroWoQe4AXinOFIXFG2hk7l63qAqSSUWw2CR4KkVQWl3n2rXm+R7FbIPOzVWEhqCrQYBM3fO9vsF6LjDOGxjCzJBMerRuqTAhBCwnV/Ob9bKuywUvV/qcb5a6FuDluViYK2kF2w1i9uqZNZwVBOuC2jlN7USPynpMf96ndUySV12LVzJT6jBWBUHPoGNFOgUqEQznfCqrltmvdGkfqzFYkCRzBpVKkilB87izpccq4k2L34PauYxwpQdphmlWEKlm43WT+APL3Nc07cMuyLF15wRSQ+2cpntQkcwohFYERwPyqhizHyp1Czxrr3Et07VlTfMRxWC/pXoawo5xrVUpdA5D7Qz4XYEVjr1Q7SGiOxjnoW3crdi8vU7QrSMzy/RDCTp0YEWlUHvKc6GYPngDgY6hdtqyfXcBEpb+UDA87RNvaAZzktXXVMhrUF22TD4yQA1y4lWL3/XZuDtEasYWyWrg3CVVBsmUINqA7pRFxxZhBGSQzEG46a7BOhT4PUG4bakuF/i9gqLqoVKNKCxZ02fljaXe1Yz0NAavI0luTrC5xBsGBB3L3Jcs1ZN7C2KXWlfS2nS1dTCX0nb2Qif2v/aaH0d/+X95QfvYXf/6Z1MA7v/I+eGb9/7spy96//Wq0XguVjod8NV/dmn7uSQA88lPfpLv+I7vwPd9PvnJTz7ntt/1Xd91aa98I5bR4AUOIEiXP1JMVfEGmshCEcuxW4zf1+PMF5m75GJ/4Pp9s+aIBYEidELGcDsDEThqPTcMZz33fOvo/XjN4qWWZEIQbTqCpbsU4m9WkNs9x2RcYN88BhqwA1RGjEienf/elGKspbHWvUed77irjfYh5A4wUbvYlXH2ii4pJHYAzYjxKFu2xgCpZISE72EaFYZLNZJJhZdYdKawsUcRS/y+Hr++sKASpwUygUJopyOyAmSuUUnBcCGmiCX9eUnQsQzmAvz1KqI/xCbpmO0p5pv0DlYI29q5yRjX+ia1pYgVfi9HJJa8HuBnBaIweLEkmVRs3BNTjabgqSv5Iu3Vi11/+XvOvWxYmGvJvFwMxLwQHcseiHn2qr9hnfbDByhqgsqhJrP3p3ipZeZBg0oNw2mP6lnL1l3QOyhoPiloPG3wEsfUdw4p8qogmY8R1uWQRGuSdMqihoLt2yThFkQty2BGUl11v6P5ZIy/kqG2euipGrWzOZt3BSz9902GUzMI7UCJl9jxgpnMQMcw3GdRA5h8zJJMSoR240BA0LZs36KINiyzXzWErQKZGYqKonPURxaQ1aF21qJ9aN0S03xaopox6XRIfKbH5KOG/qIzFAhb7jfZG+CCMY1ExxC0cAtNuXts5vNrJNPzmHu6tG6uE7Qt7SMum8YqB3Y6R0CYCiqzrrVbw9SjGVlDEW5bQGAm7XiMMgcTANJpVYS1zHzdsHGXwnq4dT0NybRk4smc+FwPudXFm6yRzVTxhhnDIxGiEJjQUll2oMh6LjSz8pWIZMYyWLRkTcHMNwz5xMWtgr/Z65f4AjEuP/DHeDPgQMOVBiFerRqNAa48lPH56kc+93/hB1cOvD7Gffw/s3fvjO0jF9/uSoHLlQaDPh+w2z2eC8GVtZd+nC8JwLznPe9hZWWFubk53vOe9zzrdkII9EtdqCaEE9dHITbwyZo+frfA7xYI45XCfccG2MAxL0YJ/IFjXPw+yEKSVwTClPknhURlHl5Pkzccze33LcIadCAJesbt11j8vlslEgbyisCG/phVcVbIAsb2y6VYXeyych6BiF3idYwegzIhHZ1vR7bPSjl2RyrI0/PtoneDEql2wjUp9S/Gcp4wR+/KwxHS5ch4HtZTZNMVhtMeKnWAq7vko1Jbuo+54wggC4PMNMaX489DR54Ll0xyMKVjTl2CAC+15FXJ4FCT6sPJTtBnJWI4Hzl758RdZK0UDmyaUmeTa9cP3c3QFQ8TOoYsalmSSUFv6YoIyr3aqyuuF7tt7GqU/w/u2msju0itb9WJhKVyTjL/xQFeLyM810G0uujFabpLDeqnC1q5R9Y0xJvOESxoZ2zfViWZcbqN4YLH1ENlm1LFOX2Z0GI8ML7LGukvgfEU04/kDBdCrD+JvzlgsFQFIJmxbL52hsnHhgwW3ETaG2g6NwXkNUPQlvhdmHoYOofKDoHMsnWvJthQTD1ikbklbLk2XGFcvpfXLYi2hxz5hCJZrLB1q49RkE4JgrZrjx7si+kuKfpzE86OuYD+zRpRKBonXSAmhaCYKlCJj/Ghd5Nh8c8s9cfa0O5y6BOwsjnHcN69rixg7qsZa68KsKHl4B8lyGFBPhESnWxh6hH9A1XijZzGYwM6tzZpeYqgZQm6lvXXOJYrXPHQoWt76y0ovMRpVua+qll7pYfx3HESSe6uKUt14nN9dOxTP5PROGlJJ32GU5JoS5A3IGu6bgwTQLQmaB7XRJsZbO8x+herv8kbEDxTxH+pgGH3av7DP/3nL2gsd/wLl23445/5jwD8yOcu7XlXynC8UKD2Y7yZ6ubP0J++NgDLDzo0X0C+zrPVe3v/6Rn33f8s4Ou56pJmaGZXLsru/1+WVWonUApTi9GhLG1ccEL7wjrPeSkJt3PCTcfECOue6/p9fdKmxB+69icrobfPBT6Co/3DjltlU6kDL1hIJhw74SXG/UhrMSY7nFWy2RHaG7kTfjkS1VsDhQE/2AnClAIRRKWupxTZG4uISoCQF669Ky1F8KN9aQ1yl2Mao3a0sorChV763o42Z/cxxCCkj61EmIkq6aTrcS4i4fQviVsBHL1/b6CxSoC2TgdjLbJ8uWzCgUgrfHTF5SqAE0xiQQfQXfKoPBXAMAHfR09WsUoQbaTOJlSACaRbcaxLwu2y3awESrr861YmDWFLkr/Mv+pXq/Zawa5OXQ/wsucidu1qdqqL/PMmk490ka0+ott3v+HVGKucdrKIJdUzgqIiCNaHqJVNbDVm4glJ53AFrwcyEwzmHDOfTkLQgeo5w/btDkxMP5JggpjhHKwHTodqPEFzc4AsLJu3+1jhcmGsgPYRVdr7KnTkwEjttCVq7QQzeoklnZTEZz3yuqV9WBJvWPqL7lrndwGrmHxC4nd999sKJLOONVGJc18T1oKAvOZasvI6VJYt0bJyDMeUc9WcelCQ13z8jstrCbqSwazAeBMEvTrV+8863U/Hsv1dA/LUo3Y2wBvA7NcLikhRObWFCSaxcYCOfVRq6B4ICSZ8/L4h2pCYQNC9SQAGE1hMADIVxKsSE4LXh6AN8bkh8f46ft8SntzEltfG+FSX9TdOUsSC+mldtpkZsglBddnQX3SaGCsEauiyc8LtguDkJrnau6BcrILH/w9E48rZqYfZZRn8Aluk7i//vg+3nxE7ciE4uBB0jIDLc7VGXay+9I/+2kX3fbHXvLB+7PhP87HD/6JMvb+6tsZ51uC1f+/3xrcvBGYvNGPm12t//coHt6sue4n5N3/zN/ne7/1ewvD8L1yWZfzO7/wOP/RDP3RVBnZdavcEXUlMxQVlSW0x0l0stBIkE9KFNHYFKnGJ8Sb0kGmB9RV+TyC0c9UShfPBF9aJx2VhEdrpPopIYCvuf1nKTIwHad1R9sJYRG52MmQ8hTU7bV3jcEpDafPsl8L+UvCvJGaiRjpTIWt4rl+6bGuThaPfZWGJtjWVxzacYUCWuyvaSEMjBNjSjni3A5mQF4RDqp1jKBUiDNzrNysM9sekDYmXWorQtdrpQACWIpJkNYnxy2PpCfxegY5UKYR0t0VhnFZGCnQJ+GTu2gfiLeciY0MPKZzldTIXO/DoCVTfaWlMocgmPNKmJOhKdCVApu7AS23HlthZ3dlwjgDnXr386x//wrMHof3dX7j24V0vReZlr567up+f5abH+6jlLWwlcqYiocQ0KqTTESq1xBsZ9SeGdG9p0j9Uo35mDXP6HH6hqazE9BedZiOdssjU5ZcI4ybGQVsQr1tUJyPaCukehubTMJyRDKcl4rYJ/L52FsZbgnhLU1Q9amcNYVuT1ZQzNRkIJh/uYWKP/m0Rk49pvIHGeB6NE5ZzbxGkMxYvcS1rKrMkU+46tHGXR7SpSKcEB393mZsfF4gkIzk2T+vmgCJWVI/3SBsNKqsFOnbALdq29BclnUPOArl2rqBz0GOwKABZCuktvUOCiUc8KrUK8aYmmVRUPlujdU/OylsMBz5lsEIQn+1ilUQN8xI85OR1j8ZJx3p4m0OEqbN5p+/0NkOB9UBHhnDDga/KqqF2KmH9lRXOvbWOGsL2bTDx2ATe08vkt+1HZIYick5u7SPOECBey7HCwx8YJh5XFLFgsM+S1yxWStJJj7AaI/rXrx3qRq7slr/9rDbKN2o9G7i4/yNvvywQ40DChdv/3iUxOR87/C8uCiQuVleS2/JcY3jJ5sD8yI/8CO9617uYm5s77/5ut8uP/MiPvLQBjOe5VikYgxkrdia03tA4sNCUWCUoagqVGmS5rQk8hHYtUEGmKWo+VkC0mRNt4X5Yk4K4MJjQw/iSbMJ9BMZzCcNFJPCGboJfWy1Q7b5jTYRwVpEj+2RjsVaf5zwmhHC2yZ6HrVdIlhr0533yqrsIjiqZEXg9ULnrDe4teAxmF2icTAmfWC2DIXfVSLg/0tvsNgwYHasRuJFivK0NfKwUGOUuuHnVjTPadkYIKnNMk5XgDQwyM5hQYgJJ1vBQgcTvOYCRTQYl6HH2nH7fXYAZ5XVq3Hv3fbdaJtwKoPYlRO4Y53VvbIFtfEFe8/BxIMdKgYkdqxVuF6RTHjLbAzAvlbpS/ctzAZfd27wYIGavXl4VdGE4H5EfOUC8lhM9cApRjTGRT7zcx3o15LAAKak/0aF/qE73zUeoHe/CRpvJxzK8QYCVFn9gscqycY9zF8trTjdpJWze23DC99D9JmZNyOuGIpYgJSp1SfIAw1mPdELiJZbG4126x+qkU4LeTRWSSUnjZIGV0DoaUFvW1B/dIr5llv6hAjV0HQjplGDiKYP2HcPiDS15TXHu3fuINg2Np4fITDPz9T7tmyv4/QCjoH3Yxx843Y2JIV43FKFgOCfoHvSwHpibBmSNGLswJKpkDLYqWOWRHGhSVCTDGUm8YTj4SUFvUdE+JKgtG9p3TRC2NN6wAANeN6W/4LmFqlBQ3Bw599DCifrBaXDymiKvO0OC4Ywk6LhFuf5+Q+NJSTGbs3lPhfn2BIO5gLQpSWZda3W4bRksCNpHAqItS3fJXTN0JChiC7MpaezTPurh9xvIDQvHr9e38eVdI9YCLq317MeO//T4/48d/hdXdSzXQij/Y8d/ms//6nc+84Gy5e156zKZIdgBVhdjiW6UumwAY63dSaffVWfOnKHZbF6VQV23EsLZAFs3IZdZmZFSZr3I3KIGBbUVGE55GCVIZgPCLRe2qBKNjnyscEyH8QUY0KHLeBHWUlQ8VGrQoQNBI6cyoyBryFK86LQd4cZwHK7orJDF+PjbkXuYcUGVdmQbXDpvbd9Rw3gQ9CzepjMZMMrt1xsKpGascRnZOvf2B2SN/dQe34atNozCPEc6mQs/95G+Rsmd27YM7/Q9bCUknXErjTK2eF2INnK8gQMlo2MRbjvgYwKJDiTDKQ8vMQ4TKYEOJHm1XLlraaKVFB0qbFM5IBlRCl8NeAp8Dx0Kgq5zOUtmPYpYkMfOMc7vu/wZv6vJ6x7JZMl4aaidSxG5cU467AGYl3NdCnjZve21AjF77MvLs/x+GbboCXpLASrZj//oafThGZI5Z0RiQg9dcQsuxhP0FxS9/RPs+6OMYHMABwMnTM8tleMDhKnS2y/J6s622EtgMG8dG3PWo3fIIjOLzJyDV/WsAwxF7OznfWA4C8NJiUoqyNzSOG5QuaX5dIZKNMtvrjgb56fa2FPnWPhinc1eRNaEiScN0TZM/MU57CBBeIr0tkX684rWazLElwP6SxEIgd/XTDzWp31zlf6SwPiWeNWNK52yeH2J34Hhfo1MBcGWJFuOCLcEcjXG+DF+3YEEHQTMfrVH/U/PIpoN9OlzVA8f4KkfnqNx2tI6qhjOSLK6z8STmqDiWtTSpmTuc5skSw16+3xmv57QPhSSTgnCbQNWYoVg4umMvKro7VfUz2pkIYm2Db2WhzeEU981Q9a0TD1k8Xvuet45DPWTls5RqJ3Etbfd4drQKiuCoY1c17aCjbt8qo+/xGMmbuC63An21QYtV1qXytZ8/le/kzf++H877/aLVSOW6Fo6mJ1+82fG/3eLAcf+7NKed8kA5pWvfCWinES//e1vx9uV7q615vjx47zrXe+69BHfiGWMYx+kgEIjewlQIatLhLYExiIzTbSmCVqKdDKgu6QoooBoS7u2Jm0QWHSodnYbSGShKSJFXlP4fU1ecY5mReyYl6BviLacHiTsaCpnh6iNzo4wvxTeiyhybV6Utsi72ZdKRHJwgvaRgLzmVoiyuiiNBSDsG7y+Hre2WU+QTLrJfthx/c/9BcVgboaZr4WosxsuIHK3q9goSwZA7rJaHuXGaAM+TnxfDRwwsJaw7V5bpdrpTrQDLaLQSCEpfAfeVGpQgQNYQjvwl04468+w7XqIjS8R1jnNFHXXI461LiQUsJ5rS1OZJW2IcT6BsK7lDByQMr5zjSliZxtaWXXtCCjpjlG+B2BeCnW57MvlAJcLn7fHxOzVpdbMZ065kN6D++gfrpFNBASeh9dxiyS1h1tgLXqm4RaztDM58Qcl++8r8opw+opzlvyWKtGWxpsoW4ErgsGCsx+2CnRoaT7uFq027hYks5rpB6G3X9E5arDKc7qTGUu87qz7dSBIJwTxusaEkt7+gHTKsT2Dgw1q7Sl06CbzC3/eYbBUo3K6S75/Cq81JJ+sYHxJUYPolANbRSRJJwUyE7QP1Zl5YMDm3THF/pSDf2jp7w9JJwXDfQXgMXW/xB9Y8tiBA2Eg2jZ0DklU4lrJwi3oHqnSeKAPnR62yLHLa+z/00lUqml4IUG7cOYspTFLd8kn3nLGM9HZLp2bphjMBVRXCvpLPsNZSXXZMVWDOcdM6RDWFxWTjzpTnuZjks5hQV43qFRQhILKiruuzn1Vc/ZtUD2t0KFrx1YDx74MDxTUH3Mt6ELD9EM5xZ6ocq8uqMsBBTeKBfK1qAP3vW38/1V3IQPG7mP3338/73znO6nVauPHgiDg0KFDfPd3f/clv/ANWeXkdZxAX2iizYL+ok9eE6SZN9ZK6FCS1SU6FvSrgrThgIIwlqBv3CpY7hzKrHJUNQK0D3pCofKyhatcobECwrbG7xd4rQTZGUCa7WhLlAJdhlGCy1qxFqEUSImtRKRLTdpHAmQOfs+tDFVWXL9utJGjksKlz1tJEe8ALC9xYyWEyrohaUrat9SY7CaOiTH6fJH+KAfGSMd4UDqTwdgAwcYhw/kIHQhUZvG7BSopyrDKMuxLW3Sk3AWwKvGGhrwqS0OE0UVZkUwKVOb0Qf7QrVSaQDptkufApbCuhU8NQBQGWZQGCgoq65oikvSWJF7f2SibQCIzQ9IYCVqdjbUJHKtVxBIt5YvxrXvJ1//4xOJ1E/K/WOBl9/OvJoi5nuzLnoD/GlepB1RbHYKpyLXLWotMCkzgYdY3sbccxHgS/8wmzC8ynBM0v5jB6jpyK6A5F7Nxt09/nwtLjjY10w8lbN4VYXxnfzzzgGH19RI9n2JPhkSbOZXlkF4o2bjHZaBYZYm2DPVTKYONEB2A33MLaToQJDM+RSgwPoSbLv9ERxY92yQ+1SadnEaut8hvbZDsq7Fxl4+wVfKqY4GyhkUlgt4BQVE1VM8I+ksQbYD/2Flu3ppk+a0zqEGbyfvWqJ2eLX+DM0SukYkLouwfqDr9joHKinVamClL95AgfIBxWLI8chTTiAm2nMZl4i82Ic2wwyGiWsVWY4pqnSyTbL5+Fh1Cf79gOCPImgK/6xgTf+ACkdOmRBQWhSCdK+gkHvGGY9DA6YSwgv4B157ntwULf9omeOUkWMe2WQnRJkRbltYtPrUzBuPD9q2CZEpReTy9jl/GvbpYXciAXGuQcO/PXlsm48Ws3cfuer2nSwYwH/rQhwA4dOgQ3/u930sURddsUNezxu1YgMhy/G6GSh0DkDYlXuLh9wqktoRtTTIp6S9ZZEM4gWMKOlDIwjEP/sClxudVSRFLsrpbPYs3TClod5NtmVv8ToYcZA68aAO+7xiPEsSIUatW4DldDIwDwvLZGquvCfGGbsJufMFgQY5DIGVusL5EZAZhDdJ37VpeajBKMJjxCPqur1mWWGVwZJJqpwfSd6zPWNRfOrVBOT6502pWlqk4zYoOBCq35SqdjygsMnNjl4XBKImXaHQsyasuEVnmzuxAB9IZDuSuXcIKgT8sW+58p6vxe3Y8blGCLBN4Ti9jISjbOIrI2XcC6ECQ1SUqE4RtTbRVoCOJ8YRje3Cg0uhntkru1Y1RL5fMl716+ZY1pdW9sYQnt7BRCI0a+WSMMBZz52HyRkBvn8/0IHN28AcLgv/ax2Y5Agg3Eqz0UZnT/mUNhT8okJlzIxsJ+r2+QIQFw9kIbOCE+xvuN894EG0qVOZytKpnDIPFiHTCo7KW4yUe1RM9TOShY4/GCdc1UPnSCWy/jxWCejNm7S/fxOwXNth43YwbSxNkCmoInhLo2InjZ++31B9aZfkvz1NUIHnlTUQPnGLf/7VC8rpjML2P6GSLbLGBDhVerimaMUVFkUxKdCQYzgr8HtRPGVTmrntp010DTZoizyyj6jWyY4v4Gz2QEgIffWAWEyhMoAjaDgA1TxTowIV/ekMAgTdwC3cjgJLMQvNJy2BeEK4rgi7O7vmIRUeW5uOCdNI5qA3nJDKH1j0TLHyxYO1VPt6KM5jxtt1iWf2kdQtmA2c97SWG/uJeC9n1rIvpXkYT75Gj17Wulwt4gZ33cj3zei5bA/PDP/zD12IcN0YZvcuq2AU6yu0ecc2nczAk6FqymkQHPrJwq/SjCwXCuYzp0mULGIvOs6qH8d2FRBYWlQAWopZGJRo1yJGZRvQTRF44a2NTjgFAa3cxNNY5jI3KWreN79Ffilzf8llNtJGBtc4dZtJD+4LBQtlLnbpxF7Fjjbyh+yEvKiCME7ir3G03nPWIFqaR59bL41PaNo/+7q5SpzMyFdBV16sltQNn1hOkddc+5w00Xi/HBAqUawkrQncM/YEDN67FDrK6c0zz+xD0jHMTCxxbY3xBiAMbwoBIR+yU+yyKyOlegr4l3tLEm5BXZQkgc2RmnIBfOK2S8VyLQNjV2EiO9Ul79fz1YrEwLwS4vFD2Zfd+9lrJ9ur5yvb7WFzWVud1+1l5g2T6GxBvFFSe3OLsu+dJJ53lcONkTP3EEFnEDG5qUM33Y6ohrVtrpZ7STeaHs5LKqsBLLe158NtOa4JQ6FxhJ50xy+BgAQKqJzzX+hRD2pBkd9dc1kzPkjYF4LlMl4qP6md0jsYuf0yB0DcRbqWo9TZWOxZE2BkG84JkxqIyqJ+AylrB1m0+RRVmH8ipPnAWjMHrWzpHLK2jPtPD/ai/eJiglbL6+gbh3Iz7bc+gcZIxCw+QTrjkgkw6XagwLhyzfTOIpX3w9CnMYIDNcoIwwEzUYKuNiEJkpukdqrJ9iyRrWurHnSWyt9GlsjxJ3nCLkYNZjzx2jqJWQrQO0bbGSyzrr3CtZJVVQ/WswihBUXFW0/XTKSoP2L5NUFQlzacgaxo273ELZpVzisGia2/Op3P2/5F7T/FyQry5fb2+it809Wzi/B87/tOku+Ld/8Z/NISv+pnL2vel6lVeTJByvcM+4fL0R1cbKF42gNFa80u/9Et84hOf4NSpU2TZ+Y5VW1tbV21wL3oJ6RLshcSSgzGIoiA8aWkWkwznA5KaczUZuZJJDeGmGTM0wkDWEIQtgyxEaZ1sKCL3Qym1e164mSLTApk4sCKSDApdhkpKbKERyjo2aBQ0aTQ2086+OPAdYBACE3nkFUFlzRBt5phgZBBg8HsGUXE/onlVIowhq0kG+wReH0xgEUOIN13LVRGL8aqUDmC4VKW2soktSm3QSP8yaikbsS7+bktlSV514ZPOXa0Ee8pl6QRbGSLNEUoAygWipW7bZELh9w1SW6wVxJvGGSRkri1vOO3CxaKWAzraFwQdjUoNIsvHjm2ysIRd9568vsFLtLOkJsCWQ9aRQg0KhBToSZ+0IZHaMUBETo+zV5de1xLE3GiMywgM7QGZvXq2slmBVRKzvkllZZHKcoXeflCZgqNTTDxVMJxWZA0n8q+fTqmdGlBUfNp3T1M5l1A7mxF21dgYRgew9uqI6Qcz1DDAH7iMsSK2iNWQyllB2LZY6fJb1NBdOoqKS57PmjvZYoMFgfEUC3++TTpfRQ5yKis50bku594xw/YtAQtfSNGzTXTksfDFnCKWDGcVQUsQdMD4ji2ffjhn4x4fv5Nj4xDRH1I/m+MEkbB1e8SUvR3/sbOoV9QR2i06Vdec9qZz0MMKQTYBRdWZEJjYEnQcWMq6guaTTnOppqfG3QDF/ATZZIhfLS3xhSBsFUw84TGclVgP8kaAiSexQjCc8lxL89AtrK29SjLzDeuCpwtLtJnjDSK6t+R4A4+wZQjbhtbNHsm0YOrrQyb6OWtvrEDLBVZH64LBfk20phjsswStcmGw72OUwR8Y0pmQcHuvJfla17NNji9+/+VNpF9Imr0fdPiVJ//xFT3/uet/B67Ffs+v99/8dwFe+HvQM8+6j/ff/Hf5lSf/McNuyt+889J2d9kA5sMf/jD/5t/8Gz74wQ/y9//+3+fv/b2/x4kTJ/jP//k/8/M/f2N4Q19xaQ1hVCbKl0JKbRDDhOD0Jl63RjBXYTDnHMiEhXDbjDUbYcdQxO7qYIUTxgsNMjPjpPlgK0NmBbKbOOAySrwvNOS5cwUrCrAGqx1lbnePTyls7toLiEKs7zFcrJbJya5tTRQWChC523/WCLElu+ENNLLmXGxkLog3nRYlr0qnwRlAEbtsmqBbhmxGIWRZybyUFsqFceAlL1mPMndGSB90+TzcqlZRcQyLl1gH+nIHfnTkITONN8hJZiOEtnhDF/zp9zRFrMhrEr8/Eu87YFKUK4QwCkdTBO0SAJbGBiPRvnNX86iuCMLNFJUZsoYir3qozJQha87IQGVOBzNq9Qs6ey1kN0LdaOBld73U2JhfDf636z2Eb5oSUYAoBBbwNnr4vRiVCfr7JJWVjK3bQua+3GXznjppQ6LmQ+rH+6hhgfZ9WsdiZr+4SbhsYaMFU02y6iwbr7Lk1YBo0wGajdcZRDPDdHx0LGl+ZUhl1Wcw75HVXW6L33OLU85oBqqrGhM4F0eRa7KGInpgnfCxHmJhDlE4Frt7qEL3oBOpV89ZJh/ts32L078KDemkYDsIWPjsFtOiTvemCH1LzNyfLBM/skJ4rsaZ75hCFrB5d8yMWaRxOicZuXhOKvr7BNmkJdiGvLbDemdTmmzBgBEMEw8QpAcnsYen6M/7DOYFRRXqJyzNgSafiFh5Xcjc13LqJwdk9SrJjGD71tC1aWcQdg157DSYWVVSPQedgxITQH+fW4RrPm2wymew4MxvVCapnTWozCDObSA9RbTs4snzqgNijScU7TvdtTDcdtMqlUH7iGTiKQg6mmy2Ao+8aF+/l0x95P5/Tly/8iDLK62H1QYAd+iZ8f+jukPPXMVXujYg42sP/O/Pu80rX/H/uSqv9UKAywj8XIu6bADz27/92/z6r/863/md38kv/MIv8P3f//0cPXqUe+65hy984Qv85E/+5LUY54tTUpR2wWXKfWkdbI1AJClyNSNu9QjPVcjmynR5JTAS8prA6///2fvzAMuuu74X/axhj2esuaqHarXUrVmyLFuWjbEZY8OF5BkcSHIhZjBheAaCCTwm8xIeYJO8vPDil/AICdgJAXwZHODGIbGxMZ6x5UnWrFZ3q6ea61SdcY9r3T/WOVXVrW6pW+pJon7/VNU5u/Z0zt57fdfvOzifeTu0K1aJRfcK1CBH9oedqtJluYjSbHULsNvb2spWGSYYj7osO/dLhP72MloxmFCUoXMzM9rN8nhtRyNLax667wbqVuLc1DqGcFUjrKNogesYeZ3S0bMw5LFE6KHBQOhDVwHlsANjt40OfAdYRsdmlUFIty8qc043RgmyutOhZFWJ0TFeryCZ8IiWHDBSqWEw6WbHZO5sn8FR7orQ/T4CRTJzeTku1HJoO72ZbAPBwgEoOaTCjWyw08mAYD3DaMFgUjvXMeVMA1Rq0cadcysEYcvALoXskmsENl5oJ+Zyg5bLRR/brd266Nq/h3TvON5HvkS2p07nIERLkMeui9KfMzSPBERrjvbrnVjF9vt0v/YwEx89QffefbRvG6PxyePYPMOeWmBieY0iupXuAUteEQQblvEvSQaT0bbLohJUHjwNL9vL6n2SYFlRBo66LIwblCOgfqKgP6kpqwEbhxSNT7rJMht41E4X9KecJsUqyBqWvAZhK8TfdB2doG3w+oI8FqzfM8bEnz5MZWKM9stnad8zQ+UDX0KsrTP+aJ3VuzX+BqzfEeP1LK1bJCoBEwiMD6VvSSfAaLul6YlOa9JJgx3PKH1Nb4+lekaTVSV5DHrgQEK46SbE/LUBs5+F8Ogq5USN+vGMyqIir0iSMUF/TuD3BM3Huwz2RKRNReNYQRkK2vOarOE0rFldEC9YugdgMCWIVg1BK8drDZx5Tr1KvOS6+9G6YTAuKSrCgdWwJJm0zP6NoT8pGUwL2jdIJh4q8U9tXLvv4ouofvs/3M9bf+hvLtv6doKTncDkQr9fqfrh+V/jN088N+i42DofOPnt/3D/WX9/4TP3P2OZq10Xot5d6DN++x2/ftHrvmQAs7i4yF133QVAtVplc3MTgG/91m/lF3/xFy91dddXjYDLSGZyntBIkWbIvCDc7BJEgRPRe4rOoTpez+BtZlgtUUmB7KXDHBeDKEr3+zB7ZUuEP+r2KDXsAPmILMdKl8Fii+E+jICN1tvrkBITeRSR09cIA3lNucwZ4yEzg0oNRUU5MXxh6c/6iNLSPFpgFbRu1mR1iyglwaZwwEcIvI6kiJWjQIQ+Uoqh2ZjZIdYfOaTJLbMBIZwFdbg8oDcfI0rweoZg09kc92c8knGFKB24SKZ8ZO7E/YCbHfMckJCZS50ehVLKwgGaPHJaFXBc6cpChljf3D6P0m0zrUvyWOJ3LV7H2UdbLVCJceDKl5CUqH6BzA1FrJCpy44pIjmknO3W86lnAyAXAjfXc6fl2erF0oXZ7b5c3RJnFglLCWMN5FqfyskQWVrC9eF9rCpp3+AjDKjUY/2N+yliN/HS8DSVIy0e/WcNlu+7kT0fL0jGFOOfWWLyS13yWo0idLq96c9uYpWkdVuV3h7B098cUjl1gzOGNCUI50ZZBm6ALkp3368sGBpHE5CCYN1CFEK7Q/eWMdZv0ajE3V/zqnWuZL4lGVP4XUvtTElvxmWt1E8UBOspYryJbW0Qn2mgl9sYIRBaU8SSdGy0Dtx+CYss3ESX6/YMJ6dyQd4wSJcUgJVgE4XVljKwnPpGi8gdyJn5jCVezrby2CJjCU60sL5HGWryuiZYz4mP9wn2VsnWFMYT9OZd/o3ftkTHWrC8hrr/EOu3evhty+orS0Quic9I8ppl/TZFsC7xOz7ytgZZTVA97cT78QpUF0pOf60kXFKkE4JyMmPpPp/qSUE6VVL/rCSrKbzw6ncZXoz1bODlQmDk2epqgJOLqcsBXs7tFMHZx3c5gd+1ql9/+O0XDWIuGcDs27ePhYUF5ufnuemmm/jgBz/Ivffey+c+9zmC4EV+gQ4pZDbNnOPXCFTseN+O/hYSkhShFcJaGu3+8HWxLWiHbeABTnAv5TbtassSWW4BEtJsaI8sHZVs1N2wZnv9IxADGF8NQYKlDCCrSPyeIR1znRc9KNB9QxEqykAMNSkCYYzTmuTuoeF3DWrgji2vOd5yEUnSmqQ2OobRMe3UvwytnUXgQ5a78+P5yKwcdj/c/8rMoPs51dJSxI7yVUaadEyTNqSjv5Wgh45sKrGoxNlKA6RjHnLY0fG7zv6yCB2o8U+1sGYYoCkEIi23aGDxisHrDgNJC+vyZzT4nRJvM0f1ckykMcIBG93Lna1p25KLXQBzJerFClSerV4sIGa3rl6tf/OtzHxyBbN3mu6hBpWlkuqJPkv31yhC51qZ1wR5DHnFw3hOOD6YlKy+fi+THzrG3r8YZ/VlsHqXx9jjJZ27pwHI6pDuzUg7mnil5nR7AvK6JW+UbEYSf0PibUqMdtTcYAMGk4Ky6iyKg80S/9Q6ZbNK1hR075jG3z/G6a+RNB63hBuWwYTEEwKr3XNCmBEN2NKfEyTTBdUPWLyFDewgwc7PIdISs7KGqMQwO8Xyve4+LUooKkMqcA7xkstTscMYAWGc/kV1HaVLJRAtSvoHS9dZkoCyqK5AppCMQ3dfSBFB4ylDESnM3ia6m6HSkpWXKeIFyfTfpETHWkRakU1X2bgpwO9Zxr+4TjZXR8cBelCAcHEJ059R6MSCLVm5V5I1na4lGXeTgPGKoTunmf58TnSyAxLC5XHKCExoUOseeiDo7bWIQtC5QRCfAX9y14XsUuvcrsXlBiOXo9tzbtfjQvV8tnMx1LZH1Op1A9JGdaFzcrkB1iUDmG/7tm/jwx/+MPfffz8/9mM/xnd/93fz27/925w4cYK3v/3tl3XnrkkVBULr4SB9RJkaDtg9381oAdhy2JkZdiS6fRfMOKJ8jUDGqIujJFY5xzC87dMushySdOh6VjrRvrFnp8BL4XZBuIwaO+p2jN4uIK+4hHlhYfOgBgPVhWEGTSwpPYHRkE4ImkdKunMKqxR5lSG1wHWHrDdy/1IYPZwBUwIpHJcbIR2Y0hqy3O2HkttAa2ivLNsuNVoUjh4mCkfXUoMCkRsX4hkrrBxmvCgI1wt0v8R4kjJwtsbCCMpAum5MacFztsxWOV5x9NQaotvHGos1JcJaZG9A6TcpI0EZCML1obNZRTNyotb9EtXLkVmBDRQyKylDRRlqt6+epNCXfHns1mWqPxl701l/v7n1p9dkP650/Yb/vVclC+Z83Zfsp7+8mwVzBWvl9RlTj1ThqZPYww1KX9A9ENPbawlXtkX58bKldtJ1gctAko5JBlOC1utvoPHYJkY36E87Cm77oMTrOjBAJrHasvB1hmDRwyqL8S16Uw3BjEHmDiz0Z4dOi4Elr1tkLmk+NZxA0+6ev36LJthUHPyzlM2DAa2bhw5gJy3Gh/6McMHIfUgbirlPpOh+wbG/FzM+voeJv3gC6ykGcxWirwwQWrN27zjhuqD5ZIkeGE7v1VRPQHe/68ak464D43VcYKUoGQYaMzQhEKAtKEu4oNB9RedwAXWonFEUMei+60S1D/pEq870pYgUZWjJmoL+fIXKUyWy28dfhnDCw2hB76YmeSzJDgeoFAbTluoJqJ7OGEx6JBOS6gmn8zEe7PmrdVZfOUb7gEL3LNHJDtZTtO6sM3oY+6sKUQrGH3G61/a8onNjSbi6K+B/PnWhrsXlomNdjgH1lex6XG/A5GLranWCLnmE9mu/ts27+wf/4B8wPz/Ppz/9aQ4fPszf/bt/97Lu3FUvpdwAffT7TrqUFNtdkK3l5dbyWx2T0aA3zyHwHSioVyjrIelEQB5LvK4B6WairBR43RJ/PUGtdZyNMmDz3AVFbrG11Pa6Uc6JDJfvgnWUBDl8HonSPRiTpqA97+wtK6ess86cEFt0skILB15K6E0rZO4704EhnauI3UNPlNYdm5AgrQNT1jogJobgSu24QZsSBgnhYp/efNXl0AgolUD3HcgqQ0cj032DsBbddy5hsnDWxkVFIkqJSg151YEpPbAU0dAMoFsSPt2CTg87NBcQQjjThSSldjLFitBpaka5M76j1AljnW21tVghEIUB7bJsikjit80zPurduvJ1Lmi50HsvVTBzpWqXOnZt6vBvpoilNtZaKqcHbB6KqT3SJlyLyBqa1mFNsGGdzf20xg5voeGawe8a+pOKdCrG6xviFXc/L2JHqw3XwHgKvy0INiRWOhfH9iFLsOm0Mf05wSgIzHgWo53rpEoEKoUi0vhJijq5zL7/ZVCbPTZfPgMCwk1D63aXd7J5CCYestRO5ISLPcSpJcwNc5RVH2EsU190E0qiWkE+vYgf7UdWK4hqhbBVErRh+V7Nvo/m1J/Szg1tzOBvOh1MEYHVzpZZbbruy2DaoPuCMsRRl0tBMmUI1iQiF4QrimDTDHNdIFp3WS/GE/RnPPpTEqsMgzsSNtOI/vQYtZM10qaiPyUJ1w2isAQbBVnNY/VeS+MxwexfLsLyGsXX3MrmTZqpL+YkbUUyIcFA5wYXzhmtW0zVJ2v4tG9y9LpoRZBXBUXFUZYrjy5ROVajeaRCGRiSce8afRNfenU5tSQvthp1ZT79G9+y9drtFwAMOzshLwV62bn1gqeYX/Oa1/Ca17zmcuzLtS8h3EB8lAUz6qIMLYy36GByB6gpSygseJ7r3IxoVoGP9TT5/gnSCX9LgD4KlTTeqMMAaVOTNqv4kxHRyTai20cUApTAFmZ7m2XptgFb+yIGOfFKSW9OUYTg9XEPxcA9u6JVS5a5cEpZWuIFS2+PxOtaaqfKrf0qQrcvMneamTJwM366b5GtjqMtK4k15TbIgx0UtxHNTAIGawxqaYOKEPT2VygDjRUQbDoHmJHmxf1uXFdGS7KqR151HaOyIvB7bt1+2y1faeV4631kq4vt94cmB9KBlyH1Dq3xVvvomQCVuhBNlRQEywNsoDCe2gpQAxB5CRXPObV1C2Q/p2gEW3bSu3Vl69mAy7Mt/1IBMleqC7MLXK5tJTMR/ul1hNbkdZ+0KekdrJE0FOFmSVEBmQnKyHUc6k9nnP4aH92X7PlEivEEq3e7/LG0KaieNoiTgs3DhupJUImg+VSClc6JUfdKwnWP9dstRQWiZYFKLa27DeGiwusAQpCOWWf329bowRz+yZaj0UYNgpYDAvGZAcJW0D1HH0sbIIyiM9+kuqdKdLoDuHvn2GdO03n5HCtfu5fGsYTSk+gDeygDTbCeUlQ9Gkcsi68K2fOxHsv3VVADSCatC9v0HfUNK7DCIncECOs+FBsaE1nkQJDszak/5hEvGlRuCdcKsoamN61Zu9cgckdFM2GJyAVBlJOMh/T2WepPu2dI1nSZZ+MPrNI7PM7aK0vCBU0ZQufuaeqfzah+ZRG/NU464bvnYM+ST8Y0jsDGYRey3J+qUgYuzNOoYR5ZAeGyIDrTxSwuI7s9qishthLR3r9LIbue683/79de6104q/7kpz953tdHXZlzQUsr+68AvP89/7/z/t+z0bpG773YQM5FAZg///M/v+gV/r2/9/ee985c6xKe5zQS0uWTOMoW27QxcBqLUbfFyLPslpFiC8TYOCTZW6c/4xG0natX0C7R3RJZWsrIdV+c7qLESmcpmdXHqD2lUcub2CxDBMEOatkOrQw4B60sJ1oakNUqW5qQPHLgJWyZIShxVKrOPoUcmqGNZq6CYZhmOuYhc0tRUeSx42XrviVqmaE9sXL75EPlAgABAABJREFUIIduZHLYoZJsu6eNujBCOj1KWaJWNqkNcgb76/SnNcm4wu9stzfyigQUpefyWezwQSALiFecO4/qpi7ksyi3Qj6tGQLMstwO99zh4CbaParHfQZzEXnVucV5+Y7PEbCeo+FZLV0nxroE6nIidAYKuwyy67r+ZOxNFw1ifv5f/MZ17UT2QkDMCwEquzSyK1dZTcFYA1sJ6ez16M9asJqxx1OyxjBQcc5SxoYyVOT1AONZyhAG0z6dfY7iG7ScZqX50AZyuUXtFfPkFUVWg9YtAWHLMhgXzHyiTfRYh7C1h4Wv0qjU6TW8TwnW7rI0n3BdmO6tBf4ZD69vSSZ82gfmyKpOWyhzS+s2QXzGI1oUTDyc0Zn36M8KvL6jIQvr7p16IyEfixB5hepDKwR7mxShM5HZvK1B7Xif1btjKkuGdMxR2dbujhl/JGXqy4bleyJMMMyDOSXJq+7+L3MoqwZRKsBSP+KoxJs3W/wVTVaH6QdSAEThuuqBFqzer/A2JCoVNJ5yTpQb3Rqzn3WU6ZW7fcoIBvM5yZQkr067zv6GZeKhknA9pzfnc+RH5tn3YaejMZ4gmRREK5b12wK8njMcaB4tKT1Bd5+kdtLpMfXA0Hiqj9ESkeRQrWxN9pWNiOh09xp+G6/fekyt8XKeny7ycjqWXQgwvBjqEbXK7f53A/Ca//sHtl7fGd55bo1czC6nO9rldlp7rrqoIdqb3vSms/4ezXaf+xq4oMsXbSnXJgaGdKlhcKPZMTi3QzoVw46EHbqIyR2ifU/Tv6FJEUuCtnEWvg2BHgiC3Ans88iBozJ0N2eVGIK2s/DtHqxSNaDW21ui/u19VFvaGpFk2ChA9jMqix7JkNsbbriwyu4e5Swp+xaVO1DgslgcLSwZd/sgCmcT2Z9xtLQicB2bvCaY/HLPdZnMjn0Y2Tpb43RBdmgHXRpHMZPKuadJgShKRLdP9FROdEJTNCJMqLYAkx6M9CwjapfjDnsbCXKj6wDLCMANKWLuPJuhHse6bQ3/tqZwAEZr9PImfsWjN+c7159GiMy2O2nGk8jhzyJWW8GVwrhzUlnoXYlv2W5dxroUEHMl63II+HcCkYsBM5erw7ILYq5MtW+QNNaalJ5k8xaIT7tg3qyhiVYzwtWIrC5IPUHWMMhUUjsO0VpJfCYhGYvRCVTP5BhPsv6yMerHI8LlBF3xUKlm49AwwyqxrN43xvijPmUg8NqCZBw6ByS1px0FrHWLpHHUEB31yWsO9FSWndGKM0cxLhB5wcUCjB0piB88RfuGgwz2FgTrGr9t6c1qghV3jLqXYwMP2e4jBwWtl0VUFko6+yRpvcL059r091cIWhZZWjZvlCQTAV4Hgk3XWUpnXWCX34Z0zE2uiUxQxgZhJcmE0wupBGTh6HPd/QGNRzvINMf6GuspopM1rHJgL5mQ+G3L+COW1mFN92UJXliQrYWEpzz8trPj37y9xNtwbpW1x/s0OhlLr63QPuBTWSqoP7iKlVO0b5BbxgGVBcvGTe7ZOphyx+D1BGNPOG2nzErQio1vOEzt6T6qndA9EFMUCh65lt/I67NuLSee9/9eLvBytQfeL6TOJ9q/oCX0OVbL5zvO53vcP/7qP3nGa/6ew/z4q/+Ed3/mzc9rnZdaFwVgjNmeMf/Lv/xLfuZnfoZ3vvOdW9SxT3/607zjHe/gne+88omgV7S0giQfUsOKs9/Lhq8L6d7zve3BNNsADiCfa5JMKMJWyVD5TrRmiFZyRObARdqQ1E8UeN0CUbjcE5U4Dcgg9OnPV6h2+ogsd+u21nGkRwBxmB0jCpdg7K0PEIWlcyAABF7fkEwqBtOWaElQWAdeRAnhRonMLe26xmhB1nD8a2Gh9FyGjcyd5kQtbbjjtDuoYqNASyO3gcxI3C+GX6lhpo4d5tuI1L2u1zYACHzfne8RONvRWdk2UdhRxmKLfFuXpLXbtrFgRp/VcB+LAmssoiwJjiwjs0myukcRK7QAlbiQTFlYZyZQ9VxWjACVG1Q3Q/YzyqFF+G6dXU++/g84/LF/dFnWdan0sQut42JAzPXehdlZV5v+9XxBTPbTX74Ce/PSqMqixVvt43f73NAbR28OsL7m1N9pAr6zis/BX3eJ8f0bcqJVTe1Yj2QqIl4p8bolVgmymiRtCvqzPirzaN2smXgodxSmHCa/1CWdCOnOxwwmHB14MGtQiaC7D+pHBeEqlL5g4uGSlXsUWQOmH+ghN3r0bp1i9S7NgT9fo3+gTndOuzyuJGXioQHr9zuK1dhnu4i8RPRTUBITaPJmQJBXUU+dpnLgMN19imDTMvmFNmp5k+ogJ7t3nDwWzDyQU8SS/qTE61uMB3nXGbmUPqQTJWUkCVYV4brL58JYOjdCNpdDIjFa0f2qhNW76+iBoHLK6T+jV6+yvtjA63p0bsuJnvaY/nxB7fiA9U5Mb0+IjiyNI07o7/Vc58t4DpgsfP04jWMFY1+W1E9kWCVI9zfZPCgpQwj7LuRSWAfw+nssAuecZoeZad6ZFrbTxe6dpvZ0n3QsoJyLKCKJWt0VVl5q/fC8G4A/2yD7coCPFwt4gecW9j97wOWvbb1f+9BPXnCpYO6nzvt65y3/Zmv7VwukPFtdMknmJ37iJ/jN3/xNvvqrv3rrtTe+8Y3EccwP/uAP8uijL96o2XKyjs47bra/LM+2MN45aIbtoMnh4N6OtCn1Cv09IbKApKlQQz/7cK3AW++DlFQWNPGyQHdzVC9DZAWmGmI8ifUkKnGzYvlsA/9Yih2BJ2OxZT4MsNQuXybLEcaAkqhBjh74DCYlVjrnlHDF8aBFwdaNVycSrzQ0n3IPkyKQeH2DVa47059UlD5MfrbljncEVsC5r4EDDiPgopQDIFJsAz2td3RtLFaYHUGhApukYB1YOaurYi1I6V4bbXtnwOdIfzPazk6jhbLczvIRBluCIMc7vowaq1M0Q7Ix34HFtKSINFa6mTRhLF43R7UTRKfvTBjMi7ibuFvnrSsBYl4q9skjMHIxQGYXuDx3BRslnVua1B6HbNxn4+YYv2cI1i3tG9zkUrwoCBYt6ZhAdZ1ZSTIdkdUVKrOoQcHq3TFhyzL2ZE54qoONPPJKhXRMIQvn5NXfG1P/4gK9O2ZYv83D3wCU05WoTNCddzqb3jz024qi4robx/9ejXClTnWhRA/g1BsnUAnkNbBao+69EdUvCJ/2GUxZTn9NjXjZklUF9RMFacOxDFp31Em/qklRhaxmnYayHiAHMSyvMfYVxcqrmnT2asYfGxAtWlbvjsmrzk46mYRwDVTfsSDyumHqQYPMLHlFki8rSt+jrDhL5XIt4O7XHOXx5WnWxyvogaDcqBAf9SgDmP9zgShzTCDYuDlm7ImEYMNn9W7J+l2CyglBVlOIAvoHSmy1RGhDvOQz/njCYMpn80bF/B+cIN6/n868oAghjwVIyKuQN9wEZbjsXD/Xb1PEixP4pwQsraPjCOONs3JPRBFbmp1dJ7JLrfMBiyc++HJufsMXn3WZv0118vfectbfk1w4RPrHT/8Atf/i3t//U9PPstb/cv6XrzNXtEsGME899RTNZvMZrzcaDY4fP34ZdunaVRloCAPoDQUiIwrZqLswGlAr7+xgyVHVqwzmG9ghnSwdkwQtQ7RaoHsFVilQApWUW61mkQ1fH63PgMoMGEtR9fAqkQMoow6MkaCGds16qIkpSsQgRZaGaElTBqFreY/CwIRjdrmwS/fw0SmIgXPAyWqOxgZgIqf9GHsiQbbajo4lJTZLt0HJyOhgGPJ51rkaubeBW24rdFO49QwDOh0NcYfwXghsbhz9zBgHHoYub0JJbJqd3XUZARshsVmO8L1t2t+OssNOlVxt4W9ovKUAGwdYKZFpiSgMcpAjBul2F6gohvbXuyL+3Xr2eqmAl531XN2YXfBycXXm6wUH/9LN9q/d4ZFMWOIzivqJknRCYQJHnercCLWjzto4GYfpz/QJVyRlrEmmXbZaHgvyiiZ6KkOUJc1HSopaADagPyuxCrCWrKbQfYhWDf09Q5qyb8kbhtpTikpbkNedPX46ZrCVguoJj6wi8XqWvOJMBQYzzvb+9J6A+lGfaMnSPmRRmSBslWR1TRkKmo916O+voFNLmViCtqUCdPcKknEP/ytriDDElhaZDTsXcwHrtyiM7xwwq2cMfleQTAjCdYHuQX8OFl6tEBa8tmDvx/okT/u0DmusgukPl6x/+AD+DRpfQPVUSf9UNLTth2A1Zf3OeMucRm+m1Ho5iCprd0h6+yzVkxBsQtpSpJUS/3jgjHBOb7By9xxFDOVkg7HHeuRxlaIKrTstWGeQEJ3SFFVLEVm8tqNdr98WMtWvIpXTVcJ2h2a3zl+n//Afceit77/o5XeCl8tdv7x841l/f++Htifq93/XBQb117gutF/n7UyVk5x8gds7+XtvedZzcTXpeJd8Wd1333385E/+JL/7u7/LzMwMAEtLS/z0T/80r3rVqy77Dl7Nsp7E+h4izbYG01C6AfIIqOwMsqTc6g6IICLd1ySvKRecaN0MnDAWNShRaUk6HVGGzn3M67rBswg8TKhdRgxQxGo4MHdBkqYSotrd7VBLJSEtsEHgtlsUTtRflAhAd1LiRYXMNXksMZ4TRloJZeDWazxIc0UeSYpQUPqC/ozCCohXDBNf6aFPrm5pfbZoYqOOxDD/ZdSFsZlxIGR0fjy9DfryYsue2jKkohkJ/jBHxhrncLYTCI62O9TUWFNud292VmmcFkiI7e2MANVI2D/s1FipoMwgSZDdoZ2llLCDHmmLET3PDGlouy3/K1mXgz62c11XW9D/UgQvo9oFKS+8gmXF6p0e+sZxgnVL6QuSKcv444bGUzCYEbRvLmg+rF1+S2Lp7besvqLO9KfWsEogSo+wZaksprRuDundOklv1rlEzn68xdiXuoi7J8gj6RgEiSFaFoTrJVYroiU5zFdxlsSyHGZ7BRaRCWpf8dEDQ3e/JF60VBadDqa3b0ipTSAdFxgF0aJA5pbetKJ5JCc6uo7IcmIpSSZD1m53GSj7/qrH+N90QCv6r7qR3qxG5jDx+RZyo0PnFXsRBrwOdG8sSFcUWBfOWQYWfxPKgwmeX5CdriAzwfK9Mc2ncurHS9oHFf1pZ1IQtCxFDF7P4LclG4cdYDBezPo9JaJaEDwVcvxNTWd1vCyw0lKGlvaNAj2AdH9KXE9IWxpZwsYrZ/B6Dght3lZDlM5sYeZVi/SXm9hSkliPMhqa2GhDGStkJsBK8kZIMBhqc5Rg7FFLtFbCZnqtv5LXZe39zj8Aro8Q9F+cPnrW31+88zuBbcH79VIX45j25h/7P7lneeEZxzQCH+d2bi4WoO3/rv/yrCDlN0/87FnrvpLA75IBzO/8zu/wbd/2bczPz7N//34ATp48yeHDh/nTP/3Ty71/V7WEsZhGjBqkznlr9PrOwfVOC+HRS2FIOTtG2vTwN4ohRWk4+BUuCDKdCCkiSREJrIRoucRqSdEInAZGDAGUFsh0e+CcTUVEy8pRmrTeocMph6L1ckt2Qm6R7T5BVqD7Eel4QDKmKH1BObw/qNRtK6848XpecVaVtdMl8ekEb2lzC6RtmTWUriOEdu1zlwNzjv5nqysyPD9F4cBWEGyDD7v9vs2GFK1h0OcoZ0ZohTUj84QhYDEWfM8tO9LgiOG+MOz4jIDLkNbm1rMDMJXDDo6Qjr6mNRSOx70FfEb7udOwYLeuSF1O8PJ86oWAmJcycNmty1cmsJRA/YQhXkoRZUj3gCCvSvx2SfNRj/WXCQZTUHsaovWSzg2KwZSgc+sY4UpGtDhA130GUy6ja+VuTRlbKqcsZcXHW2vjd5v0ZjSyk1D7Yptw7zh6pcPU2DRGW5pHDO15R09rHM1p3ezReFhhNcjM0b1U6izt60/16O+NEKUkmSlRiWQQWCqnXdhl2hTES5boxCamFqJWM4yW+O2cuc9Yl2d2ehU73sDEPlYKBtOCrG5JJsepnmpQBs7VSxjIa5p4uaQIBb29kM/ktJVHmUnUsSpRVzD9hQzdzRnMhgStgih2FOnOfokeWLKGID62Qbgc0J+pk48Zilgy99eSwURIOuHoczIVjD2ZU5ySLL9C4rUFXg+qJ3z6swFmpmT9Dkm0LKgfL+nNSIwSNJ4esHpPxMYgxK4H6IELda6saPxNS39OoQaCZMaQ1y2bN/pMrSlEL8FMRqQN99yXletjkH691mjQu/+7/gsnf+8t/OrP3f6cM/lH/vUyh4ZUqJ2/X6663oALuA7HLz/wW1vdof3f9V/45eUbt4DKWeBi+cYLgo0RsBh1nX7xMu7j1epWXTKAOXToEA8++CAf+tCHeOyxxwC47bbb+MZv/MazhOwvyjKQ131ky4MkHdKicIPcotjWwezowgglMRN1BnMxQStHZiXGV8M8FT1MkTeoxHVjhHEp80VFI3PnvGWHgZajIDNhQQ0KZ2884ZzBtmyLUWcN/IXnbTmjCemoWKKfoEpD1M9QSYVkQpMJJ5q0ow7MuECU0DxSUjvSRXb6LkRzqD05S7g/Ak6jGmlOwG3XH3Y0Skf7Gu0TWmNrMSb0Kes+pecoXrpXIEqD7GaIJEX0BltOYnbUZJFie5ujvJ3RNsS2ffWWBkbY7f2VYrubsrOsdR+yFNsUtdJs09zKHesf5tns1vlr8ev/jNmP/N8u+f+uNXDZWc8HxFxJ8PIdP/hNF3zvj37rf16x7e7WlSmZCPZ8LiF47DS2NDTLvcgiQvcMgwnXlRh/UNJ6/YDVfYraRI/iZJ1oWRGf6gMg0py8FpE0JMmks8nf+xcDrCfdhNtEndKXZHXBxr1T5LEgWi+xsyHtAxJZQFZVJJPOQnnjJo9w3ZKMC6qnS1ZeLvHbApk5B8ze/pjVu53BSe2YpHOjwfqGIpRbDl9FKOjd2CRa6NG7c5ZwaYAc5HhnEgY3TWJm9pNVFZXTCdFin5l+gCwNWc2jP60YTAt68wVjDyomHjZ09yjk31lj3CtYPDbBwT8fUIaK7l62AjqTqYDWzS7DSxQQrlvGH8/RvZLenE/7jnHC1ZzqaUP9OEQrCVYJ6k8kdG+qsnSfdIYGezSlLzC+wQSC7qRB9R2AC1YU2ZghXHW5aJu3WBqPCxbvjynmUpLHmlTW3HNalOD1nHubKKCMLKaRUxiPeMVQVnyyPVWsEoQtw+aNknz6RT4+ukJ1+g//EUFY3fp7BGR+4V2PcPL3tpdLF55pCbwTsFxu8HI91cjM4Bfe9Qi/8K63wIe2QcIPz/8aex/4LcCBkb0P/Ba/vHz2/2+BlB3dmIsxSLhQjf7nuehkV7qeFzNTCMEb3vAG3vCGN1zu/bm2NRoUjwbkIwtlyfagfTg7v9WVCQMG+2rI3AUyAqh+jtWOKuZucC7tXQxzX4wWFLHEKInKLMF6vtW1UalBpgVlxaP0JcIM96cogG3ggNbb4MVaBx5HlCipEHmByAt8A15bU1R9ylC5nBUtqJ6x+K3MdVzyYscgfmhZPAIDW+5iYntQr4a/F4U7D1I5nYrWCN8nn5+kMx8668vUUkQCo1zOSumDSj2KCBAVVAJBx+BvFAQn1hHd/vCjcABouwu0A1hovS3439kRU2o7SHREdxu9NsIz5TbI2cquUeocaiDP/H23nlGXCmKuJ/AyqhEgeS4gcyWAy7MBlmdbdhfMvDhqz6cGqFxTrrWQjRrGVxQRhKsJ0ZmCjdsbNI6nBBvOeKX1shoyd2BCbTodZu/mcRZfpfDbYhi069atN1LSmRgaPsJasjrITDoRfUNjFM4ZCwg2DbJ0wcTAUPMIVgqCddedr6xYVGY58zoX2qg7AlFadFeiBu7ePf25grwiSRvQPqDxOy6gOZmJ6M7WiFdLhHFdorxm6c3FRCuGykLO5sGQzgGXUh+sQ3RG0zySonsFGzdVGJxsEqwoZNPQujli6hNLZI0pwrUM74tPYW/ch0orlKFA9w2qX7B2Z4TMNet3W6YekNQfeprgSAhA9+V76U8pgqamdVhhfIPXdjk20ZohmZBDdgTk8yl51yM65Whg/VkXeSBzSzLpJvqQlviMIGtAXrPorqB3g0H1JKKEfLxE+QY1EJSBxPgKqwSrd2lnC20hWN8FMOervd/5B0S1C3entjsIZwOUX16+EZbP/z/PVudSql4s5ahZ7vdzQcPomM57bCd+Fnjm6yMQcqEOzbkUs3PLdcguYscvsd5+x69f9LIXBWDe/e5384M/+IOEYci73/3uZ132x3/8xy9649dbuQ6JxfoaMRogW+MGvyOakXFCflsahFaYauxEgt0cWTgqk/WUAwtSoHuls+vVEmHdQ8ImQyDjjQIpBWpQILOhuL+fI3IDzQBh2dZpFIXrxAwzVyz5FvCwSiHK0u3XsDsDIHNH5VKrAhv4TjMy6joU5VamjB1Rs0a1ZRFttjtQWzqgUd6L2AIvaI2ZG6e3P6Y3I+nPCupHHa+7ciYna2p3fkuGD1JHSQg3SrKaJGn6yL2zqMzSeGwTudZ2naA83/EB7fiwRh2xstympo1AyMhsYKdD2ehzhCEdLnAgZwSOdh7/yF0t2+UsX666HsHLztoJUEZg5kp1Wy4FuDzX/++Cmeu3RGZoH6rQfNCZkKTjmnRcMJh1YvPOvCSZiMA6y3q96e5VjaM5ottn47XzlL4LTvQ3LYNpQedGg04iqqc8ylASLwzIS4+gpZ1zmHRmLUXF4nUEwbolrwrSpusyeL0hXVmDTg1jRwyDMYUsraO1Pabp7oe8bgk2BdESdG60lAHkVUnaEHQOQFEtKWK377JwVs6dfc6OXydQPeXMaMJWSVFR9GeGOXGhoXeDpfqUJq9rkkmPA3+0AGsbMNEkuWGc1i0BojTUP3XcnchaFeMp4kcXGRyeRiUlMispA2c4MAIa3dfehMws8ZOrLqpgzD1n6scNRVWQzJV4fZf3NfO5nNatHronyXoB2URJOm4J1gUqgSKEsYehDC39OYEtJOk4lLf0CIKCfjtEtDz3fB7Nma37CM8939Jxj7XbFcUdPZKFCGGgrO929J9PXahDcDmByLN1I65FRsy5nY3R9n/15253f3/Xz27t1+WwkP7l5Rv5B19qANsmCe/9O5/Yeg3g/7jHxUpsnfefO//6vvjln+VXPvjxrb8vJiB0pOn5/+65iZ/659/Ov/6li9PTC3tuIuV56uDBgzzwwANMTExw8ODBC69MCI4effGh23a7TaPR4Gte/Q5kHKM3UtTi2jYNyZRn2wYPHbBEGFLsGaeseM7RyljnPCIFWcPDKieQ14lBDYyb8RGg+wVyUGADhVWSMlCoxHGnZFYiB66Dk49FiMLgH19xLlyjAfm5YnYhHJ1Ma2w6TCjW+iz7YVuabarXqNMyBEZCymcK1kdOXKMagRcht7sbw+1SqzC4aYLOPo+o5VKJ+9MSmUFlqaR6oo/xJOlEQNJUZDVnJlA7VaAHhryqHL+6JsmHs4Pjj6aER5axSeq6MCNK206bZtjuHO38qTWk6VkdFFsUDmjtoL9tOartvARGx2wshSz5cOs/s7m5Sb1ev8hv00u3RtfJk6//A2o6BrjoDszVADDXQ6Dlc9ULBS/n1vUEYHavE1ej6+Tef/ArhEVA9X98GZPlqBvn6R+eHHYvnPbESkgmhHMOWzOE6+XQ5KVg43DAxs3gdV14Y+OpHKSjgVkFlTOG+hMdZD+lfdcEvWlFXgcseL0hkIkcuKieMVgJvVlJ9YwhXHPOmEXVI1zsIboDerdOIYyLB1i90yPYcBNOWd11HsCFPw5uzFBRQdnz8Jc1aiDwN2HikZSsrtH9Eq+TuyiAuuvSrLzMo37cMJiU9PZa9ny8xOsVeK0E+/ARbJEj4xjh+7S+6RbGvrQGC8Ppdc+n/6obkKlh8yanBbISonVD9ek+/T0RVgp6M5KxJzKnQXlgk7wZko57VI92MKGmdUuFIobuPISrgqzuQotVAsZ3P7OG67TUThd09mk2Xp4RP+Vo3P35AtWXlOM5fpyTL8ZuX3yLyAW6L6icgvqJAt0vWXhNSF53gLGMDdWv5Dz8H35+9zoZ1ug6+fWH3/6sHZjnqp36j6tZz9WhOLdW79xzydu4WhqcH57/NX7yP/0f533vYlzffnj+1/iFd11cSutzUc4GnZS33/HrF3WdXFQH5tixY+f9/aVWTociMKFGKQVZNqROCZd/YizIoSicYefCU5SBwgqBzB0IyOuatK6cYF9BvGKRuaOTYUG0DcJaKC0mGNopG0dBE7kbQFtfu7+N3e4EDS2ByV2Q5tagXUhIU+yOkEu7kypVFAjP286TgbO6LdaUkGdnU7BGlK0d3ZwtDQmcBV42Xz5NXpFUF10oZ1b18DqOemclZGMBorRkVUnWcKnRI3oZxqJ7JVa7Vn28aikiSX/Go4jnqD60hO10h90Wtm2ahx2TLQ2OsdufEZzlkoYadomEdOdudF5GAGd0rFJsZdrYssSac4Dibu3WC6jLDV526/qutCEZeyTFWosab2LPLBEHPmt3TLB5s6V2bNtmV1hB+4DL40priqwuKQNB5YwLSEzGofmkJasq8orroLRvkPTmGg5kNN3kmFWQ1wxFV+B1XRZYNmbRiSSvQta0DK2zKPZ6LkiyWqP+aElvVpFXBBMPp+z5RJ9k0ievOCfL7kGDDQyVpzzCkz7JrETVM8pQES4LZj/TgcJQxBU2DvmELT00ixFs3G5RA0vrFkn1pGXiQUu00EP2M3eiPD0MKbaYbo/xzyyQzzXRTLt7+EYbUVi6e30HwvYI/DYYT9H4Qgev7rN4f8DY4yUrLw8QBRhfETy5SHbfPpbvd8YB1TMl6ZjC6zgqc3YgxSYK3Vb4LfdszmuWdEJQhhoEHJhf5eliGrRBxQV6JUIUPnlFoxJBMe4C1rxNNznY2wcy04w/lmMVhMuCwazFVkpHm96ty16nX/mD/DBXPw/mUrUf+5/lvZ0A4FpoSty5Oz9QuRig9gvvOv8yl3osR/71Mnt/qPHcCw5r1518R8m0QEmXfLwFXEYz/0o5+pixTooynM0XpUFmhjKUlJGkP6UxGsIN4/QvmRMh5lWF1y62HMm8boHMS1Q3wyqJTAtM5DkAY4ezNqHCbyXbFso7s1ZGf+80F4Dt/d1JB9N6m4pld4RCblkO6+3B/QjgjMIpYRjqWW4P8EfW0XFE544p+tOKsSfdw6h9wCOrCaqnXWJxETktELiHqygceAnXDWUgkEP7ZVGCSgxeJydYd2Cyuz9g7bVzjH1pA7G4MtwvuU0Fg20L5eF+W2shSRFKOW2Q1g6QWIsQdnuZvETszKzZSTGTAoFC7ObAPGs9HxH/38a6ksDl3HVfTx2Zv+01/bk2+vQmVinaX3OIxiePk03GBJuW7q0FxvPxepai4u5LaiCwQjD58dPY3oDi5r3OFMaTrLy8QvuAR3+P08IUFYPXluQ1i7/p6GEY10FQidO1WGmRmaColWweltSOS7DQ32uQpXTLCJC5xISaymJJd6/CeBK12EOM+WDB71hsXBKe8BEGokWLTDVeTzOYsgzmLBs3VxhMu+yx/qybhPI7zoq4clJSxDCYz/F6HsFxiwmcQEf2EuTUBPbMEhyax8Y+tpOydldMvBJSPbKJ9DyiE5us3TlFOcyOCdcsftewfr+jHRexJRmT6J6lDAUm0JixOka7EE/dc9rP2c906RyISZuCZN1DGtBDoFeG4G9Imk+4bpUwcPKRWceWThXFmKCcLNHNjODxmLxukGGB3fBdxpqFvFnSH2j8XogV0Js3WGkRHY2/a6N8RerZgMuldklG9Uv/+b+f9/X/9MH1y7atZ1LE3N/v/6krL8P44B/u4R++6fuf8frXvnt6q6P10R9fHr62vZ8f/fFlvvbdTot0LrXuB94wDmyfox94wzj/nPNbNV9I/B/M/RTwHy/6OC6KQvaTP/mTF73Cf/Nv/s1FL3u91KiV+dpv+BcEmaNe+adb2HZnWxtxbuK71o5Ctm8CEyiMlqRjmv6ks0KunnbaDp1YVGYwSiALi8wtZSgJl93NTBbGdVoSRykzgdt+XtVYKYiPtmCtNdzujsF2EDyTSjaqURdlJ91rJ1gZdVtGr4+A0egYd3Yphp0Mm2VuwO85oCTCkOSWOVbuCQjXLZWFnLSpSZuCIhbES86sII+hjARBy20/HXMdmGjNdZaMJ1CZOy/Beo4o3fkwgSavabpzGuPB7F+vwurG2cc8Ah87LJy3qGIjoDeqEQA71yJ5BHxKM6SqDYGNFBQUuxSyHXU9U8iuZ/rY1e68XCsQs3uduBpdJ/e96ZcZ/+QpRK3Koz8xx/hDgo2boXZMELQNgymJKKB9yBC0nBi8dtzSfLKH0RLv8dMAiFqFcrzK2l01sqagiKCIXIc7rxnGvyyRpbu39vZYqidc3owoBOOPlrQPKPr7DN6mmyzKG4bGYwKVuQ6JlRBsWrK6IK9AtGwJNww6McjU4G+knPjmOnnVOofMRKAGjpqWTFnKwGJCl4kiE4mpFoQnffKqy12JlywqtWze5Dow1dMZXidDZAXi2GlMv481FjU1gZ0aR250WH/dfnRq6U9KZv56hWK8wsq9FbBQXSyJllJkPyebimgd9knH3H5XlpzmVPdLiljRndOs32PQXXfsuitoPmlIG4L+Hkfdy+oWvz3Mulm2+D1LtJwTPHwSOzPOyv1jDKbceSpiS7QkGH8so6goF8gZQLI3J1jQxAs4O+iGOx+VPR26qxWCBY1opTzxb3YpZKMaXSc/9c8/y6kv/+Y12YePv+PVgOvi7H3gt3jdr3zmGcuMBuyjAf1uwU33/9QlLf/U3/xr3venv/OsNLPPfbHJePYO8jzjTz7wXy8fheyLX3xuDhzwordRNlI4sX1pMXGIaG2evcBopl+prS6GKAw2dKcxq0hUBrrtBtbBZonMLLK0jlrV0MjCoFs5CIHxJFYPOxChRiUFwljKSGG1QPdLZzE86raMbH9HOhg5+unE9Jjy7C4KuAG7t8MGOc+Gg/htipgt7PZnp9h2NTMWxBC8eCMNjHB0tEaVjcM+8ZLrtPSnPYSxBBsWv+0edMm4e9j6HZyFswTTwT04I0HQsRhvaEnZLVGDHEqLKEuEdTk14YYhGZO07plg/NMptjfYppCVbIEXB0C2O0t2JMxn2zFui1bH8Lu6g043Ov4ReHFdrl0K2W69sLoWtLHv+MFv2u3EXAfV3auYqNewm232f2iG7h5FtCRoPJ0P7XxBeBAtus4F0mlWrBR0DoSMtScQJ5dch76fUVQEyaRF9Z0rWBG6gMrWnc7udzDlROjpOIw9ZrHCUn+iTbwQsHxfjPGgt79EdyWdgy4bZeIrJVlV0t0nKGJLUXNW/f1ZRWVB4vUsS68KyG4dYHKJTRTlQKJ8MQyjFJSBJT6pMT6kEyWUAqss0Ypg7lN98ppHVpOEq+4ZkI5rwmOrJAcnUfFB1JefdHRtQGQ55dIKYx9KYLzJ0vdOk0xMUz1taRzPCdZSMBbV6jG4aQKVlKjMdaGMJyhCF85slZv4GkwJ/HVJETsad1GxDCYlc/9rgeWvmUXlEK4Awm5RvpOmIKv4VKMDRCc7RKuGzgFJUbH4m5LuAUMZ+kw8UlA7YUibkqzugqAdk8BN4pnQkD7eYPwo+F1Lvpsvdt76+d//n9TVrVt/f/etj121bW8Bljd9P+975Q/CeboSI+AyGoA/9TfPtHP+21YXOgc33f9TF3zvH77p+5/x3ghAArzub54JHp+rLgrA/NVf/dUlr/jFWCo3rgNQOicx4XtONA5nz+iPdCFFgeyl5LMxCPB7Bt13lDJhoQwkKjPuxmYseuC6EkYpjC/wuiXJhOdCrnKIlzMnrQkUorD4yz23Ld9zGS/WQsUfumgprDcU6hvjMlyS1JkIjDovIzAzEreboe2w3GFGgHKOa7AFaITvbXdhrHGD+pGdsrVYY0jnaogCvIHTtpQeBG2L1zdbmTbRCvT2SIKWweu6TpDXFUSLfcrIAwlZzQMBWd19Fb2NBKs0ZewydADClqE/JUlvmCR4chGM2TYdGIIWodz+jxzYtuhhI6cyKRA7bcxG+hcpHCVw5zmSDqSJXYLlc9bFWim/ufWnV92J7N/O33be1//piUev6n7s1t/Oaj6RU0zWkEsrVJ5Yo/pQTr53HNVNWX75GOm4oXpSUjnjOvTdeUFeE3iLm8SxJp+ICVoVLJCPx6iBs++VJQQtgQkcVTdpCowvqJx2RgC1oz30Stvd09IM71TCWO0mvH5B92RA+wZBOmkQfUlnXjknsRwaR8DrCVS2DWpMIMiaBrEYgG+RpaB6XNK+rUB1FEXVOCG7gjKw6J6kaORY5TQw3tFFdJbBK2/E77ju+ok3+gzG9xCvGAJjkSPN4WYb+gNsWWI2O0hraT4+TW+vmwwrA010qouJPNL5MfSgwCgJBoqKo5XZ4SO6u1+QjRnA4rWHUQbG0fSSCVh/9QwTD/dYfHWV2smS/vQwqHPcsQWypqArNd25MTZus1hpsdoSL7hjHExbTn6jC8MsQ8v4VwThhnsm1U4bFu/XFDM5ckWjMku0WhC2B9fsu3g91z+5+Qk8z7/Wu3FeStW57z/bwP2lUC8EnL3rj39m+NvPnPX6/jv/7IL/892/8plnBT3PVdd0iPaud72L97///Tz22GNEUcRXfdVX8S//5b/klltu2VomSRL+2T/7Z7zvfe8jTVPe+MY38hu/8RvMzMxsLXPixAl+5Ed+hL/6q7+iWq3yPd/zPbzrXe9C60s7PJWUCKkxofNwV8Il7o4G+mdpUIb5JGKQojJDVlP4G8WWwxhKoHzlftcS40lE4cItzTDfpYgUaV2SV53nvNdzwsHSF8SLKWKzC1IiohCspWxWycdCitgZBGRVR1EThi0bzGCph9zourT5nR0xqYBye/+NdSBlBMqGgMZmBiHklljelsZRsqQA4bQywvfp7PMpYkGWS9dpKpwYX+ZmaNMp8boCb6AJWjm6k2ECTTruIwqDGuQUVZ/BhMumkTnIQiFMgBUC40u8foHKJKUvCdqCjcMB0wsxYrOzndEDDqh4/lY3aqtjtNOEYATs8mwbvOy0yIZtHRFDnYx/fSCY6+06ud7qXPrYhYDLzvd3QcxLr6636yQbUyQHI2bONKHTY+OrD9B4cA0b+UPQ4IKSW7c4B6sitgQtQe+WKeLjG/RvbDJ49V7ShtxyAgvXoLJQonJL0lTksUAPQHYMwWaJ38qQSe7cLcerlLGHt94nr0riE33CSLPyCigrBpm5yS2ZOWqUlQKdCLy2c0gL1y3pmMB6Ft2RQ8tkQdZ0xydKtx5RCgb7CoIlTRlYbE9TPQHVMwWm28MmKVlDI0pL4/NLzDbn6E9K+tOS+hdWKEYC/jR1UQPVCkxPwNqG002Wzv0sbQoWXj9G9YxzastqgrHHBlTPFJShR7TqdJVGu+VtM4eOxmhHlzMaiqrF3xBkVYFMCoSB1s3u/m+Vs4ROxgXhmsXrWZJxiZlMiR8NyasWmcPUF1OW7gsY7DXkDdfZad8ksMckzaMp3kqf8MZx2vPSAR8JeUXhr18fNsrX23XyUqjzDcBvuv+nzhu+CXDqxLN3K67Xet+f/s4Fgd7P/f1/ef5/uvX8L++sm+7/KX71525/ThB5bj2vb9oDDzzAH/7hH3LixAmyYet3VO9///svej1//dd/zdve9jbuu+8+iqLg53/+53nDG97AI488QqVSAeDtb387H/jAB/ijP/ojGo0GP/qjP8q3f/u388lPOm/psiz5lm/5FmZnZ/nUpz7FwsICb3nLW/A8j3e+852XdFxFRaNyORSajzoXQ9cxNZqxZ9uBC8BagqUeaaNOUXEe8wzF36NgSzHInchSOMexMvYceBlTWA2ysHh9XAs8ElRPpuiVjtuO71FO1EgnQrK6wignLgSQJVvgpQgExbRmMNnAb9eIT3WRS+vYonQhkztdyYQA7Lb4f4erlxgdJ2wHVxoLQyE+1mCjgCICnbiOS+kL/LbLsVF99zAqmiFpw8NKXEeqMNgQ/HaOFc7tLWtox8FWzq0MochjNxPmDQzGc//vbxZDSppHPl3Db3eHtLkRQBt2W6QA4wDW1udVsu0yxo4HiBQgfdep0tp1uJQCJbFxSDEW0xkHrkBQ06XW9Xad7KzrScj/XMDlQsteKTBzLV3HrgaNbLHxMAAd2+Vw+/4ruq2LqevtOskqAj8DPE1+YIr12xVZdYqoVeL1IVx37mLljQnmdIjdN6CrIorIo4jHScYkvaFOQw/A34Tq6ZJwLWf53hCrHOVs9F68bNBHF9y9DDBzTXePrdXJqpJkb41wsce+D1dYu9OjiKF60k2A9ebOHrSn41A5DWrgEupHhgCycJ0WUTjQVe4pqNYH9I41iBcsKoPKksWKkmhpgAjczHrrZhcc2fiCoPbEJtFKhNHnBAVbi01TyrxAxxEEvsufqTutZP24s+hfv11RO24Zf3SA8SWytITrztlTGEF1oUBYjbABWd1R2YyGdMJR5II1Re1UycorG4w/krJ6d4AeWDbuNOiO0yUNlGDi4QGbN8VMfiRg8nOrLL1ugtZtUMQBXg+iL0miNUMRQfuA03Im4x5lUKOIITga4HVhMAXdecX+j5x8YV/wy1TX23XyqZ++D1mNzqs/eTHXCJxcCKi82MALPHuX6qnatkPxG27/9xd9fKNsm0sFL3CRIv6d9b73vY+3vOUtvPGNb+SDH/wgb3jDG3jiiSdYWlri277t23jPe95zyTsxqpWVFaanp/nrv/5rXv/617O5ucnU1BS///u/z9//+38fgMcee4zbbruNT3/607z61a/mL/7iL/jWb/1Wzpw5szU78Ju/+Zv8zM/8DCsrK/j+c7cmR2Ky173+/4lfepShRpYG/4kFR1UaDYDt2TMoQmsHADxNesME/WmfymKKTMstS2ZRWmRWIJMCqyVWSsq6z2DKJ2m6DorXc/SytKFQuaV6ZBPRTyHw6dzSHOYCOHc0UToTAKPA6zqhoBXChXoFApW6GR8rBdVTCd7TK9g8PztLZXQsSrnXL2QGANvGAUOrYqEVZnqMpa9q4retCzErLF63xGsPwzytc5np7gtJxgSNY7lbZiPZoucZX5GO+/Sn1NCdzIExnbhOkqOXKfy2ywtIxzyShsLvGRp/cxqbZWd/Ljttk3fu+yjnZdSJkdvUstGDnsDHBj5lI2KwJ2L9Fo0wkKqEp951/Ykur/V18nxE/KO63DSyUfflUsDL+epKgJhrbZt8pQDMCLiMagRgdq8TV6Pr5P5v+X+R7qsw++dH2Xj9Qaon+px4YxWjnbhdZS6cMpkpEbnARAY5kFRPuEmcsccL1m/Vjt51vKDyVJvB/hpWCTZu0hSxs1MuKha/Jdj/P1uIxTVst4eoVujddwPJuEJlLjSzeaSk9uAymy+fpj+tEMbdv9PG0MUMqCyWIAQbN0nCdQduWrdbglVJ7aSlNzekWNUFvQMlVlv8VYW/KSiq4LUhaFmMD/XjOeFSH3H0FMvfcQfrr0+55f/TR/RTVl43S2+foHrCMvXRUxRP7xjcS4WMQgCKe29m6VURnTsy/AWPfR/JSCY8qif6qLUu2d4mnfmA1u0u6V6mUFkyeF1DMqbo7nedrXBFoBPLxq2W+LQkWrUkE4K9H1pn/Z4xSh82brV4HZdf5ndg8kt92gcjwlaJHpR46wkbd9To7ZFEy5aJB1qILIdWm+LQHpCCwUzA2h2K5hOG9g2SeMlSfzqliBTeX32Rj/Tft3udDGt0nbz5W777OSlk//Wxs6fxr6ZO5vnWc9HK3vt3PnHB965nMLdv3nWQrlRddhH/znrnO9/Jr//6r/O2t72NWq3Gv/23/5aDBw/yQz/0Q8zNzT3vnQbnYgMwPu7s2D7/+c+T5znf+I3fuLXMrbfeyvz8/NaF9OlPf5q77rrrrNbmG9/4Rn7kR36Ehx9+mJe//OXP2E6apqTptqVhu90GwF/qor0I41fQmynWDJ2pRqL5nZQlpRy9yhOQ5fgnW1g5Ttr08NsCUViX7WJdvouJHDBCiWFuzFDwl1pU4mwbw7Wc8HQbkWQUU3Vat1UBqJ7OsErgb2TIrCRrBsPOi3HbKQ1lqClihUoMRUUxGJcMZgJkNo46teIG8cMOxdYgP3NUg7MoVefi2bJ0VDlw3Qnjuh5ezwnzEa57IkqLCdQ2gPElOjH4XUleVQ7AbLrOj/GdScFgXDnwlhhkYSkDicwtxbALYwUgIK9oSs+FX5qRtfFW4OTQ4nmnzfTIac3z3Ws7wikx51hF+x75TIPNw7Fz4alCMmWIT0t0chFf2mtQ1/o6uV7qcoGX0Tp2aWXPXucCl+u9rvV1UlTcDH12yx6anzyBLQoqp2+iP+MS5AczELSgckLRnzV4G4poQeD13D147U5N80jJ2u3KZWZpSToMAo6X3T1z+ZWSYF3gty3ZREy41naTM5WYzRvd4z1cs1ROG6pPuPNROZ0gi5C04TJehIUihnTc0tsnGX/ICfyLUDD2ZO466doJ4qunDOt3CeIzIHJHLxPGmQuUsSFrCAbTjoqWV3z8eY/pvGT6U6tsHp5k4w6fxpEevT2C4JXrrNxYIa/sZ/Z3nE2+SVPX5U9TrLH4x1eY8maoLHh09gvWbwmY/kKXvO5TxGMgoPlYl6AdUfqStCbozUqEcc8QrAutrJ8oCVo5Xs/HaGceUztpSOaq6IGht0dROSXwh25sGOjOh2QNQWdeE64rZj7ZI9gwBBuG6HQPU/WxKkRrRVHR+K2E+ufXiM+MoRc30MkswYYbG4i9Y4gogv7l+nZfvrrW18nF1IsBsFxqfe+Hvhq4kGXzRfCuzlPffetjfPwdr76iAOhKgpdLrUsGME899RTf8i3fAoDv+/R6PYQQvP3tb+frv/7r+aVf+qXntSPGGH7iJ36C1772tdx5550ALC4u4vs+zWbzrGVnZmZYXFzcWmbnRTR6f/Te+epd73rXefdTZDno0LmB9RI3eIftwfGIflUMuzLGAoET0fcGBE+vw7wDMTK3+Js5GOdsZrUkb7jX84qjn0WtktKXmEAQnRmgNvqIQYoZq9K6rYpOLMFGgQkkXrtApgWiMPibmWu3S7FtO+wpl0cTuBu333MgZfNQhYa1qNOr7jhGrmU79TFFse1wBtsAZ0iTE0JsWUe781Tg9dwD1C3vDBDkoMD4CnDhnv1JRWWpRGVufSbQqCRBJjnpZES8WgwBmEUPSrKmRzKm0IklXC8wWmBH9tMlqMxS+jv2exTkOaoRUBnpXEyJUJ4DoKPPUOthJ0mDknTvmGb9Fk06YYkX3OyhSiTBhiXj+nONuR6uk8Mf+0csfv2FhXnPVpdDzL9T83I5wMvOde2CmPPXiw28XA/XydLX5QQbEXoQMafm8D/3BDMfOEbn/nmWX67dpNWqdTSwmiBcd2YuvX1Ol5KOWTZQTH7FJduXFZ/OvCRcc/dHfzPDqpjejGDyS328BWf9LyoxVivCNYM3sNQ/fwZTq5BNVwhO5XjHlkim5snqgjKE8UddcvzT3+TjbzpXMVFC82hBdKqDv3+M3h6B8CEdk3ibkNWd25YsFCZwrpMyF5SRQaaKrG5IJyz+uoLXjDP5+TZTX7IErQLZTbCqhhCW8FhAtGaQkxOYyQbysaNbdGcxZGn7n3qYoFGneuteFl8VsfLyCvGyoXq0i+wliEFK9egZ7N5pRF6y9soJisjpYFQCZSBo3eLCQcF1+vOGIVhVqMTR1JK9OXpDU0RO7B+tGvyOs1sO1yGZECy+fpxwzaBTi0xzrDF0b6yz9rXOxKd2wmf8v50gu20WmVQJVzMWXhszIwVeKyHfNwNrz+/7fKXqerhODr7yxwnCKr/0n//7SwqoXCyF6rufH1a5YL3uVz5z0SDm3M7W9j4983MYdZSuBPXt2bQ1z1aXDGDGxsbodDoA7N27l4ceeoi77rqLjY0N+v3nP73wtre9jYceeohPfOLCbbXLVT/3cz93VrZNu91m//79WCmdTXBeIgbpFnh5Rtr7yNkKsIPBFn1J9AYEpzaQeZ1k0neCfU/gb0isciFlduia5YSFjnoVLvVR610oSmw1on+gjjewxGcc5UrmpbMXNsYFXZaWsha47ofnuhl5RVOGEt0rUYnFKoUo3exYf19MbT2Edmc4gN+2GKYo3GsjutW5dLLRsaqhTbN14Z6DCWcZHS8XeL3C7VPFQxQWqwRFJMmaAr8nSXzXcaosghUhec3DBMKZHnRS5/hWuAef3xHIzKJ7uQNmvqKINbpXYpQij8S2vmW0/zvpfaNMGOvsQLe0P6PATCkd7a4a071tnKX7nCW27grSpnPh8duWPBbkO+2or5O6Hq6TF1ojAPJ8gMyVznvZBTHPrBcbeIHr5zop9yeoIxGbN/pMre2D9Q7RYkK0XKV9yLJ+F4QrkqDljExUasEKkimDv+moSnlF4IeK4EybeClCGAiX+iSzFaKVnKAlkHmJ7Q2wB/dipCTZE1NEgtqJFFOrIE4t4D9tyF5xGG/VI20okgkn3i+POp1N5bTrcmcNZ3/f3q+JziiaRzI2D3t4XUl/xjL3qYLF1+itpPm8Bn7bdWyycYiXBDIVbNxZkM4UWKmoLFaoPj1A5iVlwx1D+4kx9n0uJ68pyrlx1Jk1slfeivfYkE4mJLYaIToBZmMT1Z3CqojqgqNoq40uttvH9PvIeg36Ken+MYxywMVopw+a+cQ6wlpOfOsEvRtz9KYzy8lrBj2Q+B1IAD1wOqCJh/p4J9cgz4kWppyFdSOidWvMyremTH0ggKIELVm7QxEtW5pPZQQPnqDs9Qk//ghIicpzZvzb0e0UubSOIr/i38VLrevlOgF4zX1/wed+96+ecyB7pTsMV7tGwOCz3d9i4uHLw3K42PNzMYBxy+r4V66cZuf5gBd4HgDm9a9/PR/60Ie46667+I7v+A7+6T/9p3zkIx/hQx/6EN/wDd/wvHbiR3/0R/nv//2/87GPfYx9+/ZtvT47O0uWZWxsbJw1G7C0tMTs7OzWMp/97GfPWt/S0tLWe+erIAgIguCZb0iXSCy7KTZJtoTfQg3zUvLCJbxniQM01uDM+10mizUG0e7iD1K8tZjBfIMikmBdRkoZCKySLi+lbfDaBd5aD9Fqg5TgaZK9dbDDNn+SO7vhzGJCTRlp1KBAZgUmUPRnffxOiRWCtCkpAkF1YNBJSV5VBO0ChKY/pYjHKshef6gbGVGohBO576SN7bSKHnWZRjQsqcFaRKdHZbkkrSmsFOSxxvjDbknuQsSscq4ueSRIJgV5zVLEHvUTwuW+dEoHUnK3P2XkUYZq+F6O7GfD90JUbsgD5yYTtA2k2Xb35Vxt0o5sFxcmUzj9TmYQYeCof40qq68cZ/1OiJadi89IO5TVBKUnSMcg9a6vDsz1cp08+fo/cP/3AgX8l9qNuVS3sWtdf/Rb//Oa62BeSL0YgQtcP9dJ/ESAqIQEmy5k8szXjjH9pRAMjD+aktcCeoczEqHx2pIkcjku4OjFWd3Q3ScJVwVhS1I2IiYeaLHy6jFWXtlw1v0dS+VUwtpdNYIDFSqnB+RVjzNfrdnz8QJvYYONV84w1k+wK2tYJegebmAUzDxQ0J1TdPYpNm5SzihlwrqgyhSEtZz+hgZWQPNRy2AasmlLd69m7FHLyitApQK/Y10XPnE20EUEtgr+uiKbcJlegwmF8UP6U5KJhwZUT1o2I8HKyz10H6yo0Hj4KbyigNIg4sidxE6f4tYDZA2f6AtPM/XFCGEhfHoD63uIaoxQEjPVZOOOJut3OsG+vyEYe6Kk8YVFrFbYk2eY/mKNk2Me0cqQFm5dlytaEVSOeRgFRUUwmA1JpvZQebqLlYLBfMPFArRK1pcC1m8XxItN/NUe1VOW2omM4IEnEY06es8spllDpBlrr56h+XgXtdrGJilFa+V5f6evRF0v18mxB96N5/ncxEFuetPBs97bmRNy7uu//i/u4v364lPbr9cadTQmrvF+XKiuZ7B40QDmoYce4s477+Tf/bt/R5I4ccAv/MIv4Hken/rUp3jzm9/MO97xjkvauLWWH/uxH+O//bf/xkc/+lEOHjz7y/uKV7wCz/P48Ic/zJvf/GYAHn/8cU6cOMFrXvMaAF7zmtfwq7/6qywvLzM97RJTP/ShD1Gv17n99tsvaX9MPUQaYKM9pByNEt61y4MZir7FzotwJBAXAgqL1RqR57C2QZTlBLUYE2mM7/QpKi2R/RzZTxH9ZBs8aEW2f4J0TOO3S4wvMV5AOu4RrglUNyMb88nrAWrgkUxo/I5LSi4qaujqJcg7ylkqd0p0NyevuI94MFehurSBNdZ1UkbBl6MB/yipfkQV2+rKDI/T26adWWOIFhO6cxXnHFZxmhgrh5qe1LjMG6XI6gKVgO4JKksl/kbugIqxiKzAhB7WU5TR8DWD09EYsL5GDHKEdhaeeSxoHB/OYmnt9nVn1stIyC+Fc00bdWfSdMtxrZwd4/TX1ujvNcRnJLUTBpW7jovXtwQbzhWtiCVce2t64Pq7Ti5nPVc35nwdl+sduLwU6sUIXq6362TuUz16twR4A8PKyyV50+B3nHtY7WTB9AMpnSWfIhL05i35VI7u+hSxxfjO6SsbMxhfkEx66IFHvOjAQtYUDKYtwbqkesKicsvyKyQ3PZ6hhSCfkKjUYE6eYSzJaN+3j3ClCUDtK8vUVtcRtRrB6gRLr6rQfKrk9DdY6o9pZInTjrQsfsfS2S8J2obqGcPqyzw6N1hqx1zXBuE6RwBZA4xv6e8rEVYgMgG+Qfc1gxloPJVSe3CTcrxKZTGnfZNHXrPIQjhqsDGIKHROZNNj8MgRZBCg2hW6t1eIn6wQfvwRslffxulvnmbmsz28Y0uY2Qlad9RZv8vlj4UrDoDVH1l3WWmeRs5MER5bJ1ybpbfXWT9XTrvnWVYHoy3Zvox8xSdedLbLvRuqpDWFTgxnvsEy/SlFvCDozZcEpzdhdZ3JEwuYbo+yKBD9vnPAXF3DHrqBaK1whjUra5gkHU62Pb/v9uWs6+06ebZ6tsHz+/X1O7AG+Pbin5z194sZbH178U8uev8vZdkXWhcNYO6++27uu+8+fuAHfoB/+A//IQBSSn72Z3/2eW/8bW97G7//+7/Pn/3Zn1Gr1ba4k41GgyiKaDQavPWtb+Unf/InGR8fp16v82M/9mO85jWv4dWvdsj8DW94A7fffjv/+B//Y/7Vv/pXLC4u8o53vIO3ve1t5++yPEsZJVHLbZfiPkq3LwqcAb4LQrSl2Q5+BCeKh+3B8lD0jlTQ2kRudpFSOB2JUmCGYZDWOkAkpbNKnqzT2xOgMneHSyY8kqakDAUq1YjCOo1L6Pz0/Y5B90uEcTQ0YSBogxoYZG7Iq5qi6iFzQ7Dpuj5nUa/gGeGNWxkxWQ6ePptSJvRW10MIgV5ug61QhI4v7HUNWUMRbJTIzGClwusyBAMQbFjUwFHgFM6yuqy4PATjS0RpwRMUsUQlGpGXzmAAB2hUavC7lmCxiy2GwGVkrCCGAZ154eh+Wu84HpxNchhiqxGr91Tp7S9pPKaoLJfonutYeV2JlQKvMJhAIkrQ1wmAud6uE7j89skXSw3bBS9Xvl6M4AWuv+vkzFdX8KRg/HFHUVV9R9sCKH0PWTgnLN1zHRcKQVG16MHIGQWsthRVi/UMKU6DEq2IrU5JZWFoFlOCvyk49p1jjD9imficIG0awskJ8vlJunsUg8kILDTNGL5SdG4dp7NPYzW0DiuqR8H40NnvqMKdTNB8wtHDmg8sYuoxE6pGVpP0ZyVqAP6mpbtPoEbsKAHCCryWRPcFCZrGUyV5RdI+GOFPBVSPdShixdwnc5bv9QnWLfFKgZybwXb7ZPfcRPuGgHjP3cRHWhSNiOrpnHymgZyokdcVzSMFm4diirsOkowLomVLsOYATBlC1rAsf/UkU5/dQCQ5nXvmyGpOHyoLJ9LXwwmr7o0FIhOETwfoLjS/0qL1siZ5RVIGArkqGPuSJF7KqSxC45gi3dtAj8VgLPrEMsXiErYskVpDFJJPRFS+fBp8z3WKyhJ1YC88fnm+6y+krrfr5FJqp2bjhepl/s9b/x8vdHcuWL1fuxXedMVWf1Xqfzx4mP/t7ieBSwNfVxOoXbSN8sc//nHe85738Md//McYY3jzm9/MD/zAD/C6173u+W98pwB7R73nPe/he7/3e4HtQKU/+IM/OCtQaWeb8umnn+ZHfuRH+OhHP0qlUuF7vud7+LVf+7WLDlQa2fl94+wPogq27Xh3prUPXxvRyDhXHzFKthfOlYzRMnJHACZsO31J5WhogBmr073ZtamDVoEaFKzfHlP6Aj2wBB2DSp2AvQidHaTuG7x+4XQ1SpDVNXrgOjwiNwxmA3TfIAwkY4porSA6sort9bf2RSjJ1sc/EsCPHNdG4GbU6RiK4ke/izAgv3GWtTsjwpYlXkgpYoXfSiljD6MFRUUhc0t7XmOls1MO1hJMoLFabM1GidKS1zRp02lcqosFXrfAaAe8VC8nr/sYT1L5yhlH7ztHqzMK3LSlc47D0y6oMwgcBTAK6d4xw8JrFTITTDxs8HolWVXhd0pUahzIwzmdJZMea/MZR/7ltbdRvt6uk2tVVwu8XG4NzLWgkT1fC+XnA16uFxvl6+06OfTT72TvlwSytCy9IqS/x6D7gsopqCwb8khQPzpAFgbjSVq3xnTnBVnTIArACoR1uSvRosRq5w6WjLtAxcYRqJ9IScc86l9cZOnr97B+r+Hwf+6jVztYrcj2NujN+nh9w6lvEMx8xuWMFRVNZ787nmjN0J1TFBEuB2ZS4LUdmFEplAHs/ctNhDH0bqgNu+uC1i0exoOsbpGlMx4Y7Cnx17Ynr8oApr5csHSfIm8abvizkvB0B9Ht07t9lu5eTRELevuc1fH8fz2KrVfp3ez0ifN/0cc7uUp6aIbuXp/KQk746DYwWPq6GRBQRIJoxdB8oofxJL29IZUzKSIv6e+NqRzvIk8tw2ST0980xcRXUmRpWb43pHO4gKDEW/SxCg793gaDPVXaBzTpmKB2wtB4qo9eaIEQmJU1F5QcBK67rzVms+MmObVG7JlBlAYbeG5SLQzg6AnKmSYfPvru3etkWBeyUT63c/EDj3z00g5wWKPB91O1Y9zUOfgcSz//er4C9N06f12KjfIl58D0ej3+8A//kPe+9718/OMf59ChQ7z1rW/le77ney7Ifbzea3QhfcPE96GFtyP4kLM1FdZsdylGv3s7BvgjALNFK5MOAKSpe2+kL4Gt8EQz0WTzjiYqd6DECjC+oLNPM/ZkhpWC9rzLAgg3DWpoOey1M0ygyGpuJm8woUjGJX7HEmy6UC+sy4MxGuKFFP/kmtOP6O1uyllAQGv3Wr4tNrRFsb3fw5s14EBM4NO+bx9ZTRIvO4c0lZQYX2F8SV6Rjv88LgnalnA1x18fUFZ813UxlqzukVckvRlJ+54UveQz+1lDsO5E/MJYrJJkDY/K0Q1YXts2HMiG++nprS6SzXIHDEfdMykQYUg+P8XJN1YoQpd90HzCZc6UvntoW+kCQa105gJrdwS0bupw6p/+82v+wLle6loCmKvZeXkpZML8bQQw10uNrpPbf+idhEWAzGH15RZROkAy98mS+HSf7oEK0WqGUZIylKzd7lFGDrAAZHM5at1DpQ5MYJ2DlpVQNEr8FcX4o5a0IRh/LEVmhsX7Y/p7DZVTktqJkvqjLdbvHUdlUDvWQ2TOcGUwX2Pxfg+ZQ/WU6+i3b1Ck45YycBS2+f9lMJ4gj52+cvqjZ8jnmqzfETP9qXXKik/3hgq9GUlRgaxpKUOLv74d+iwzJ6Tv7TWU9ZLwjAcG4iVL88mMxftd2GP7kKH6tCReMkx85DjL33yQ9ht7qAerjD9WolKLv5Hhn9nArrcQY02skpTjVfp7Y2Rut4Kgvb5B5pbodA/RT7G+R7K3irDQOuRTXSxZu0Phb8Lm7QXhghP1p+MltWOK6c85M6LVu2OKCkx/IaW7x2fi04vQ2qRcW0cEAWp6CjxNcexpEBI1NQG1CmwOg5YHCfgeyT03EH75BOnqEh8179+9ToZ1PgDzPx48/LzXF3/z15z196kPO2OCK+FsthNkXWrH4anaMR7/5Bu2/v5Pt3/tZdmny9n5OBdEXsltnVtXNAemUqnwfd/3fXzf930fR44c4T3veQ///t//e37xF3+Rb/qmb+LP//zPn/eOX1e1swMz6p4IiVO9u9+tLRB54XJS9DlUMrHjb2806BdnW/+GAf2Ddby+QZSWZEwhS/C6JY1jObqTg4B4dUilypxGRA2G4vrSOttH60T8xsNRsrTbPxeOKfG7xulKhHD7OuqwBD42DrGRT1kNhqBDo/slwWIH0RsMgy7LHQGYI7xrsHlO7bF1WvdM0JvVDsRYyGuKrCq3ukXRusHrOl1PGXnO5U0K8rqzEtWJIa9LKAVlZClCQSCgqHrOiSyQji632cWeazgwApJlCcpz3RYzfNIrifA8EIL+nhArRxobQRG61Givb8lqLhg0Xi2dyVro8htEW3PqCny1duvFWX984j+c9/W/P/9DV3lPnr2uVIDlbl1a5VWI1qA/54xLZA5BSxCfGYAQdPYrNg5HFBGu62Jch8YqN/CPn/KxAvKaxWiL7gm8nluX2dAUsWX1bkExndOfC5j7ZM7kgynH7hCUy77LQckLRInrZK+26d4xQ1aTBJsl8YIlawisgO5exWDaUj0hmHwocRSrzQFiYc3dUwGbZhQ3TdK+EeLlBsmYIq8K6icK+lMKlQiqpw3GM9SOD9g8FFN/OiFtejSPQH9K07nB4vWd5iVYaHPD7/YxzRrxcpPNm6C7X1K5bS9Tf7POxq3j5IdTztxiOfhegffw01hrQGtsHIIxqI0+ajJkMKHxewZRQu1Li1hPI4qSsllFLa5hD9SwdphdhusOtQ+VYJz+pQwBK0jHLMl0QLiWgXRZMd5GQn7Yp/2yaRqfGrj/zwvKhcXhM2joTtqsk+xvECwH2EePYosc1WzS3edThgcJP1fC+R2Gd2tYo67Jxdb/ePDwNgB4+uz33n/IsYO+vXj+LKEL1QsZwN/UOchNO47z/VzaMV+N+vYjH3/2959nTs3FVLtM+JOLXPaSAczOOnToED//8z/PgQMH+Lmf+zk+8IEPvJDVXfsqC9DelrOVLQp389Z6u1OhlHtduHYx1tG0gGFQ4lB3sTPxXgwF8RI30A4CRBiQHJyk9AXhWk7W1KjcohKndQGwSjjx/8Bs5aFYBVnDcw8yY9EDS16RWzNQ3sCiMovuFcjSUkQSo4eASQg3oPc0ph7TO1ijP6mQORgPZAGl7/Qp6mYfv2Nd6/z0OjbLEFq7jswOYCdabZqPaFZe2aQ/paks5hgt6M1JdM+55Kh0eDwCrJbIwjhraOtob7qTM1XAeuqj+6AHJe35gHCzpAicg1v8xBp2FIKldnTHhngSf/i5Gael2erSSImNQwYTkuLQgCDIkZ9uIAwUgcDrGYJ26YIyd4A/v23Qg+vP9vJvY11L3cuFQMv5lnk2IPNicCR7sWpfrueyCgbThnjBTTB5XYvxJEWsyRrgdaAct8RnJNmYJW8a9Oa2VlEYnBZGgQnAP23xu5ZkXJI1oPY0ND/iaGXtAx7VhZJD783RrXWs5zrn8XLOyj0B1WNVunsVonAaSytcd8T4oAcWr+00JFndI1jPEGlB/74bGExqVGqJlzKMJ/HagmRMsXqfITql6M0qqqdLishNWJkCuvMRYw+36c1X8ToFvTmfykKBLDSbhyxZDU598xR+x1I97Z5VZQAIy/K9AXs+kXP4Py6x+toZjIbOPAhzEJmWw1w1QelLR1veLGgcHdCZD9256vbcsyrNEMurUK8RH2lh4oBwCZbvq+O3QKaKIraozAUslxWDTDVF6J6XjaO5izHopow9mVHECluJHE0sijC9PpQZMgwRjTosLBMEmtVXjDEe34r4/GOIOKIIIRlXBJXo6n8BX+L1v9395CUBgPf96e8Az9+2929LXcs8njzPuNiP9HkDmI997GP8zu/8Dn/yJ3+ClJLv/M7v5K1vfevzXd31VcOB8RZXtHSz/NZaxDDH5RkaGDjbzndrIM12QOTIKQswtQrGl0RLKWXoLB11zyBL1yVIxzVeR6AyQxlJ8kig06FdZWrJ6ppwOUWUFq9v0AkUocTfdKFkZSDJGu7jlblF9jMwBhsF5HsarN0eYrSgfrLASkFakwgDlaWS0hcYLchqgqX7qtRnQ+Kne6j1NgKnNxnpemxpkKubTH5Jsnxfnd6cR151LjB+x6ITQ9pQqMyiUrulMyliD+M5/Y4aSLxuwdQXSqwSlJF04v9QkseCqb9pQbu7bThQjsI4d3S6SgOYbSe1EadWOFqfLKBs+9jJAp1A0LZgXffF5fEYiliSx3IYymYR9hzTg9266nW9g5fzLX8hIHM1QMxu9+X6qaJm6dYFJjTkVUcNSyZAlDFWOX3JqGsuLC6/pOsMRLDOel7m7j2Eo7l25wXxoiSZcBNOxhNEXzmFOjRHEYbOxr6TYkONWmxhkwS/EjL+mESdWWPmD8/A3BSn3zCJzGHqS31W7okJNg2VBcirgs5exebBmMpCQHePAgG6DxuHQmonLSqFcKPklt/q0LqzgbBu0qk36wNmaK0vWPyqBhMPp5x5XUC4Bp15j/HHSqIl97wbzFpAoAcl8ROr1B+UpPua6G6G7OcUkzUmvtCic3OD5VdKmo87c532DSGVpZzNgx6dG6D5hM/UB56CAzfS3Stp7pmic1OD7pxi5m82MWlJOlsh/MpJRCXG79Yocnes4aogazo76MoJTeWMJa0LZO7T/PhxB4IqMcGiorix4SYBfR+xb5b2PRM0nuhgH3wSkaZYaymrAZ2DUD3jEzVq2P6A2Y8sY0OPYnn1Gn4bdwuuHnDZKYDfrStXlwRgzpw5w3vf+17e+973cuTIEb7qq76Kd7/73Xznd34nlUrlSu3j1StjnfAbhkBjmP3i+w687BSJj2pIK9vq1oxoTecDOEI68X4U0ruhThFL9KCgDBXGcwnAIjV05n3ShiBeFgSbJYOJoStW4gAB1tGcBnMhRjnhv9UShMFqQREr0qZGJwa/7ZzKMGDDgMHBMfrTGr9jkYVFFCCw+D3jHLkGjurVn3LZLsJCf1KRVWuE6zHxE6vQ6Q27TUM7ZkAtbTDzGcvC65qOinAKgrZznxkBIlEasrqH1T79KUXQdnbLRazcg6FwYK0/6dZZWUjxzmzC+gbC87AjQwEYgkG2QeMQyIzE/BSF68CULrTTSqgc05Rn6sOATwcGRQmysKRjClmAyhyn3OsLB0B3629lXSp4Ofd/rwWI2QUv11fJVFBZtTSOCAaT0L6tQLc0668sCMcS0qUYqy0EJX3Pc5kqG2Kox4NMu86L7grCFUfxKiNH+/I62xksZqKJf2KVqRM4x6tuH1uJsGmGOTCLWtog8BVmognHTiKWVqksjrP41RY9iPDbjopcPV2wfqtHOiaoH7VkVXdPjZeMy0FZd8+IoC2IT/URJxZpakk6GeGvDWgai+7mrL6sSuNYRjKu6c947PlESrDQoawGWE8RL1hW744Ze8ySNnCTaS+bo3mkIGhl9PfFeO2CjUM+tVMBpSdQA0E27uNt5ujUotKSYFNjT0nilYL0zv2MfWmd2rEIudljMDmGLC3ZWEj42ScJkwnKg7Os3FOhulgymNKoDMaO5Ky8zEMPXHesu9dNvq3PKKKVvVjpmA55Vbvn7kQVxSxiowNigtV76syszYKUCGPIQk3lNPitFHNgFtkeYOOAvBkC++HL1/Qred3Xc2kv4NLpWyNdzdUEFLvg5erURQOYb/7mb+Yv//IvmZyc5C1veQvf//3fzy233HIl9+2qly0KrPa2OL8o5dxG2O7GbDlcjWyJrUtOFpwTqjjKJhkJ5qUDNkJJTDWmN6Mc1zn3nVBdOn1MMumxeRjyqkEP3EA6WjUgcL7+WlCEcvi3Jdh0FsoWFw5plcAoR40SxmK0GNosG7I9ddZv85zlZtt1GawCf7PA33SdEZkWCKuJ1hygKoc0K69vnEvYvTPUH99ErrWhKLaS7m2eI1c2mP20ZPm+GsYTrsMiHPAaiU/TpqI/47o98Yo77nRcUYSuSyKsJWwZKif76DPr2Dx32p3SuHNb7ji/UmzbWCt5zns7DBOU3HLEUanLN8iqEr9jCDYdwCkC6QDdcL9035Bfmr/Fbl3muhbdl8sl4H+2bszlBjG7wOX6LD1wupfmwx3sXXUGa5rKGYF6UrN5S5V4zeldsrrrcnhtp8GQJWAYGoy4ZfLh/GB8WlI7ZRiMO1cyLLRvb+L13D03WkxQWmFPnAHcxJINfeTDRxFRuHVv1AMDVrB2j6FyUtE46sKPaydLBpOSjVvd/nhdqCxmbNwYUD+eoFc6dG+bcN0dQK13CZ844eIBXnULFO4evHZ7QLxs2Dwk0YlGDSKsJ/GPr5LcNE3YsuQVp4VJJi35mGHiEYNu9YmAdMxn4tEEKwUqEQwmA2RqyGse4VqOUZLeHknpQ39KsfoquP1fZejlNWxRMPmlLkXVwz+1AUGAXVpF9wbUJufpTykGM87aOm0o9n+wTTIVYZUAFNGaIVzJ3ETetIc3MPRmFPWnnVEN1tK/ex/NhzZYf9kYNgpgZR2adWRuiFcMrduqeH1D48sJVjuqW/B46+p/CV9kdSXE4S8VMPFCujovxHTgeq6LBjCe5/HHf/zHfOu3fitqp5vWS6hEECAYdllGh1iyPVjGhUCJfEhhsmK7IzACL1uC/+HPUaaKGS0nKOsBeVXg9dxNXBYuwV4Yy+ZBSeWkJWhDsFlgPPeeG1xbVDLqOIC/Mbyh4joyRgunN9ECkYLVAuOB6udYT9Gb89E9u9VpyGOBLB2Nq4gUXt91n1TfWRhHK4a8rvE3CqwWqNTSm1UkzSZTX1CoxRbYHJvlTjMEqNOrzK13Gdw4QfuATxELwnWDPzDksSSvuH3yOpbetELlUESgEqidTPFPtRBpDnm+BV4oDWh5tmPaMHNnK8Mmc/S8LaCppNPrDJM4ozVD6Sv8trOjNs7B2oVvJhadOutSlZSo3J3Twt8FMLv1wupC3ZjLAWJ2gcv1XdXThsGNArRk/MsbQJPenBPo+xsuCNJqyGtOSC6sAAl55HJdVCLQXSgjJ+QXBhha7fttQbiSUFQ9dDtFrbahKEEryqkG4uB+OHaS4swi6pYbkfUa5XoLeegGkr01Wjdr4tPgb9itAOL2vGLqy338tqbzugL1uZixx1OCI8tML0aUtRBTCTGeAK2wgwGm33faRKkInlwC38Pv1ojWDINJSeMpQ+2hFUSWY5pVbDUmfGKRYCGmf0MTPVDMPJCwfltEd04SHi/RXzmKV4kh8OndNkN3n0YPLMmEh8osfjtHt/okEz5Fw5BOCGTf5YAJz6PsdJFPnqB89c3kM3X80sBkEysE4fKA3mwVNXABy1lVYLXE38hYvq9CsDGkOFc0ojDEyzm6kwERRSTxAk3/zinSmiJ+cAPjjWEqAeLpAWZ9A7/bR3cmCBsBg0kfrKVzsELzgUUK/dIcN13teraB/NWmbl3N0MYXclzPZx+fjyPczn28GvbSFw1gXjLuYs9SthjlhqizBsd2aNf7DP/0Id1sKzwRtlyyxLmdmFFXQEpkVhKuW7yBo3gl45qsJsmqEllAZckQbOSIwjrhoBrSq8IhXSt1nRUEyKzERBqVGvKao2LJ3NlfWi3wugWqk5DN1ujNSmonS1RuXX6MgLQmkYVCZhajJabmO5F9Wg6PwwVN6kGBJ8DrSbKaYOG1deY+JVBn1rbOD2XpHmZ5TvTQgPBkjWR/g7yuncVl6ICD7oPfdQYE8WKKbvURvQE2SSHLXTdqVKNMnRF4GdlYK+lm+0ZaGGnc9ssSMTRaQEisMVCU6IEhr6qhUYFAZaMHt8H4kt6MonqmxASuo6Nyg9fZFfH/bapR9+WF0MfOV88GYuDSLJZ3QcuLp+KlDDMWgbXIzgBoggCjXbd5MG2dsYtwCfaDGeMoZQyBTWQAhcoERbVEJpIiErRu9qmdLilj98xZur+B168z9ZcnMLUK8vgCohLDWBPhdTFPHkPWaqjxMVp3jpGMu8G7yixTD7RZv7PuujfrBtXLaN0cMTnWYlDGRI8vUS4uoybG6N86zupdCj0A3Z8h7nSx7e7QHEZjkwS72ab5BQWepvYEFPUQpKScapCNh2R1RXzaie3D5T6VRzuUYzUmv5hjAg1aISoxtl4l21OndatH80jB8r2aJBXIHPJKyFgnQfcEtacl448lHPkeRb5vAr3SRmy2QSn89YSy4tG7bYrBuHO89HsGlUL1pKVzA1QWLelYgPEd06HxeIeFr25gfMXsZwb4p1uu4/KyKo2jGaqTYGcCSh9srUL9eMb6HTWmTtex2Sqm08XOTVJEmuqJPjbwqR3vY5WkGGvAiWv0ZXwR1oXoZN9+O1B87TNef7/+j5cVvNTM/05H/v6zLvMh2aNm/vfLts0rWc91LOfW8zmX7/vT3+FHXn8IgPqN72Js/bcveR1ZYZ57oWG9IBeyl1oJIRwoGVLErHWzXmJoPwy4QbJSUNqtIEpHEXOi9p0gx46E5YDw/G1qmnCCfFlYspqi9AR5VWCUc8EadWNgCCCkoAwVwjrgUQZiy/nM+MMsmHz7QzdDHYweGPTaAPKCvKqpLDjAZLUgbUh06pzL0roiXC8pIoXMjROH+k6XU0YSmbrtytwSLxf4XUn7gGLl3ioTnsR7emXbIWxImbN5DmstwvVNosAfntMdX8whMLFp5s4VbOW2AC7PZZQ5M3J0GwGVEXVv1O2SZsvWevQZuWUMGInIcvz1jGhVs3GzC86snHEUN1Fa0Jba0MygDHY4APV3OzC7dXnquXQx10PNbt6x60R2GSttDDNcPIWoRfTmBEHLklcdbQrjtC7Gs1jfYoMCjED0FCIXiMmMPDCUmxpRuu6M34axJzJ0vySv6aF20jKYFpjJBnJlwwUrrqxtP5/AdcirMcFmicol4XJK1nRGJ2UI3Ypi6os9xKklohuq9P9kmnQftF+5l9pjEdmkczBrPmnIaoKsrvDuPIB/fJVycRmhFCIIwFpEb0B+wzTGl6RNj+JghNFO2xO2SrKmj9/OyRsh2UREZ69H82iC/sIRbFlCHMFGGx0HJOMBrcOavG7IjUCWIAqJd6hBOmEY7Df47YC5D4IJDbQ2EbUq+a17AejN+hSRoLJUEB9v0z3coD8nCNYs6UzBBhqZuzyc+T9bgeU19nZT0r0NjCcZHJokevAkWU2gkhJx/AzFHU3aN0FenWHuk20axw3lnglUGEBe0N1XoT+p0F2FTnNkNwFPU1a883xLdqvZ+hS+lme99nun3srYvn98SesZu5w7BcDHnnOd//+PbQ/Yr/e6/OfnmbXzXHzXvksHL5dauwBmZyk1whuOjrQjC0YMqWIiCt3gWu0Y6PredpdlaJNMUTga2ohaZof9f09jhRtE626JsBAtlaAEeeyE8163wAqx9elYBXrgsmLKQGI8iUqGlDQlWL9VU8Qw8XCJGAIgr1c6sXqWg5QkTYUwFlFaiorrRDjrZQg2DDJ3Vs15VVFGktITZFVJGUK8YvD6BWJo75xXFdLhDtbuipkQ03hHFx1ogW39iTVOJwMuHHMoqN/Kw9FDap3YoR8ycivR2IEZtUNXJN05HG3DF9u5O1ojRtvc+XkWBaQZup3QfFJRRCH9WUtegawmkYWPygxJQyGs+1xU4jowhdoV8e/W5atnAzG79dKr9dsVYSoYywrK2Ecl4Lctg0mB8dzkmBlOeOlN5eyBFaiBG+yXpYBUukBi5YIwixDSpiZc7FHEFcqKpIwEedXSurOO36kSrOd4S21Eb4CZqCNPLCDCEAuEpzok+2qg3CSWyiJHCQPKSKOLAn+zoPrEBk98/zhrdyj0oIm3mWE0BBsleazZPCjxNzXmpmlCpaA/oJweQ+QlFtCrXfo3jRGf7mM9RREpgtUB4vQKIvDJ908SLHXp3egARf2EdNbHgKhVAVArGwQbDYoYZCYo9qR4T4XkNZeVtv9Dgs2DHnnFMvORBfKZBiKOSW6eYfH+AJVA51DB5OcUSVMRVHy8dkle0chUMPZFTTommP5izso9Hkuvm2Tmo0P6cKxYvUtjFczIeSYfyujtCYjlTcTLOeulT+fmkunPa8pA4a0WWE9jJmr47ZwikqzeHVNZDkjrkmitxH96/Rp8C6//el3tt4i9s02gvu52gK99Xuv7q/alAZ8XUj/y+kMUzd+8atu71NIbP3xRy31d/XevyHn7uvrvXvL/9PMev803XtSyuwDm3NpJ+RoJxIeDYmstArbyX4BtDQa4n3L43ojiBEO9hsEKgyhKZD9HD1xAo9ctkFmJVRKPAtkqKSPtBPhSovoFaiCGrlkW4/1f7L13lGTXfd/5ueGFip1neiIAAgQIEkwiCYigooUjyrbiandlSjIlKlOUKFlhba7S2qZN+9hraynKlKxoWbJJ+1iifSyJOjKoQIkBDCApgiAIEGkwoXs6VX7hhv3jvqruGQwwPYOeiPqeM2e6ql6491Xd9+73/r6/7y8m7oR9XBzkZUnHMzzsyWYl0oLKQ0J640QerJOboViaHglMQ9E7HHJBTKLwcjti4zRk85J8NhRLK2Y80gqiviQVIuTWeE/zySH1lRCFyvYl9I6mzHZmkWshSXFSK2Zit2yrIjA7CoKqKn9oUtyTHZbIY6ex6vuQYaVQaBVIz/haj/c1NvRz/F3tMFMQUVj1EoMRUaRoPRVhaorBCwtuOLrGenGQ5nEoG4L6aYvTAptKhFV4O7VRfr5gr5L3z4fLSWKGT+0HoH54Zdf7TKMwe4eZxxzlfrD1uKrd5eneGGza01XJ8KhBFBJfs2AEuq+QOdjU4+oOBhq0x9UcaI8YwvxDFll68qU6Lg4W8CYNCfeDA4JsTuJv1Cx+VpJ8todc3YRGI8i8sgKfxOh+Se/GUBurc0tMvmRRfQk+4eDDLaKNEWuvWeDwvYay6TF1yWixRrbg6R/U1NeC+6TOLNH6EK/DQpFa6+CLAqpofF0rRKeP63TRQlTRlTrYIH8TPsGkwbjg1J0JNzy1gG/XcFXUws22aJxwDJclshQ0n0zQI8/WbXDqzpilTxmSjqPzQkm5fwaAzp2H2LolLLDpoeeW95asvUSzeYfHpIEYlTMO4SROh+jXaFEx+7ClcXyEyAtwnsajW6y9dDEQw1sj4o6nd5Ng5Vs8bkOTrArmPlN9l59+EkYhykIrJVrt4w4loWyADc+WxopHbQ2u2G/xasYHez/wtAjMGB+/4ciujvGKzs8Au5+wXyjGE/E/lYOnneNSnfNyYq/Iy7kIy4Ueeyohu1jszHGx9kxXMbkt25q4X+10GYPtyMy48KWQ20UXxzIzIUJUpFrtB3A1HSRppaNsx+A80aBEebCJQthgMyaNI97K8SpEYbwWk3yRdEUifJClOR3sl/XmEFEabKqDy83QYeOqkrOG4RFB1IXGKRtutHU5+QxNKPDlQq0CF0t0v2q3cRApUEGCJbxgcHObVm8Q8ljEWTejqujnWC6GrsjLmODYyo55R8FQb10gilojail2sU0xn4biZbVg7xx3Q56SyixqUCJ7w2Ahat2k3s7kOy0Nsjuk8YRAuAaImGPdZVINo8UQabLdUIDTNCBdU8RPTXNgriR+7MkHr2gdmEuFS0VixoRlN+8/G6mZkpi9gYlDxKR3Q4KXgv5RyPcZ6k+Ex67uKrz2WCeQhcRLj0CgcoHKVAg2OygXDJSCuCNDXkxd4OYV+bzAVuWuhocds58TdG7zyEJwYjZhsX0Trb98GKxj9KobGS0qyrrANATDAx4vXbWwBGaxJBvFrN5zhJnHcvJZQdKV6Mxz+hWafMEhSth8iUd9StE6ZsgWIuIVR3FwhjjSeGNhNELUaviyDHmNaYwoa7itDrLdRmiFd454ZYBPdbj3zhrkSsSpr16i9ZTl5Jc1OfonOce/IiXZCE5u8Vaweh4cgLgDeFh/iUZYSDbg5Jc3UCOorzpUBrNfNNRWRqhjqzTnb6R7q8DF1ULVCUH9pKfzQkjXBXrkaP/NGqI0uFaD7HCL4T6Ni4NVtTDBaGb5IyVP1WrQdMgS2o+XyGGJO7IPrMfMJMSffQKUov1oDZFbure12P/RHie+ssWBh6bTrXPBzPxb5FkRmDFe0Xn6e+cmDOcnEb/31MXXKfw9/nzy93ccvujDPCc88uVfzy0f/J+X9Zzv/stH+C9f/+Fdk5DLGf2CKYE5E86CrHSqzofcinHSuHfb0RnnJ8nikyRz2K4Ds9MtayyZgpA/UxSISBN3CspWhCgdo/0pKnPE3RJZOtSgRPVzXC1COBnyW6r8EYFE2JCvks8oVBlquehhuNHjQ10XaTxiFFbCbKqrOjKOvB2KiMU9j6mL4EpWevTIUrRikq4n6Xp6h8NEXhWB0DgtQr7NjMakkt4NkoXPlqHysYTRgqK+bxZ1bJVJ/UdV5a04G8jLOHfF2u1rZJlsA0xkY0JrRJpiDi+QLaYUbYkehZwdp0MCqlOhVkswGlCI2QSZtVHDAjHMEf1h+AqcQ0gJeYFaszSMw4s2wiqyhVBMTVrI5kKf80VLsqEY7p+6xjwfsDP6stcJ/JcLz0Rezrf9hURnprgw9A8LYmCwLEnXw2JVfFqFWi6zLqhjEwtGorIgKzMthywEMheUsxakB+Uh8mSLLixeKU/jOBO5c9yFfBHmHs6pr0V0j0psAiatDGhcjjAOpzWyBJkHSZqtOZY+qth6kcR4ApFphEWpQ+9fpX/7PPmMJOpB/aRgeEAwOmQp2pp8JmJ4wJPNLGATgR4l1Ncszc/kmP2zlLMJwvqgEDiRIA4sUs4k6K0MMSpCtF4ppGmB9Cx8rmTlzoiFzxbMfzZluC9m7qFQJ0zlHj0wrN+RMjromHlQkc8FabXXHnohihNLgTSemScM3Rs1q69u0XqsSf+oQI0CAaqveNJNix5Z+ocTFj9TIEsPq2t4IfGzTQb7NY0Vw3A5YnggFOa86fe7+Egy97km+ayivuqIN3PURjAMGNy2RO14LzznyhI5WgDvmf3kaXp3LKJyYH1qo3wu6M4/QJ8jAvN7T30v3UffRvsF73jGfIrdyLf01g/xe0997wXnZLz7Lx+Z5HSMyc/Zx9i5zble77aNu8GNfwNwYQRmZ0TkYsjFm7/ilgva72IkY2djKiG7SHjrQjHIncUqpdi2R1ZMClwKWV06558mWwK2owky3n5/PHnPC9SwZHC4FjYdhZottpJ0RUWQVrlEV9ntVbTGOWxTo4ZlqKuiBHIYku7TDR+S8hVEI0dyog9ZDkqhMoNNUgb7gx2lzoKF8vCAp34ySKYQ4YEwWJToocfFUFvxpFue4aIMyf5zUdVOweAGi7AR7SdC9EYVnmxfSr3TROQFPstD1MVuR7C2r1eIbk2Kf44xluNpDbNthjfOIqwn6hv0SKAHJbamKZtBmyyth9KjKvtnryUuUdhaHRbq6H4D1ctC0bGxgYAB2R3SfNiTbNbpHU3IZ0Odhch44k1BbUUSDTxb+/b05zXFFHuOCyUuz7T/2URmufMSgGkk5jmgvuJZOJZPDFlclNC7EfCgRhIzZxC5wleW+6IU4ww/9FAgS42XnmgQFm2yJYfMoZyH/o1gk8pCvyMRJtyfa6cy8Clxx6D7BWJ5CZEV6JFl9qEh2b6E06/QqJEg3tKYmsc0AmlKNqG+EvIUB7fO0/zsabIb5ylaMfW1YF5jE0XvJkfzccn8A0H6m3RDO5qfOoEfDnFHFsjmNcmWpXb/E/hOl+yrXsrGbREH/yLHtWuUR2ZJH1sn3XAsfCTCRZbDfzZCjUoaJxQnviJh5mFH47EuoyMtNm5PgxFAFPI2oz7kCx6bAHhs6hkslTSPaaQRNE5auncVbLQSFj4VnhUzD3YxMwmmrhjui9j/sRxpPPHxLVicB6B/cxObwmC/pn7KI4xktM/Tf0GT9mfXmf+M49SXzZDPCno3NbC3NYPxjoX0tEbWa7itArXRozy8QO8ls/QPB2VD5ytvhj+4TD++6wDfcfg34PAtfHX7q3jGfBgH3/e5Pz9zn2c61gXizV9xC3/w0t8BoP7S8N4f8JVnbLP80jO/0vHrdz6xQ83jLn9kYozznffQL9wNwPF//KHLcr7dYCohu0iMXa/GrmNCR0HmZG14bW3IcZm4X4ntiXll4TsupihcWbmY5WcWvqy2Ff0RcbdB2VLEXYsaGmyqKFsa4WuokUGOTHAeixS2FqGGBWoQZFjCe5JNgyocqQyrZi4SKAH1JwbI3iBEHgA5LBDWky0IGidCBXqbQnpa0DpmQwRlPhgBjMnLaJ/DRZK450m3wkqYLMJqFAIaT2iifkhEld5jUkk2p0gbKaooKxc3u+0WNjY6gMpNrErUt7ayQGaSjM/8DINb5nCRoH5iVDmghWOJSBH1TJCuGYcY21YbhxiVeCWwtWgSlXH7mkRCIDa7wVJ5fE2AOC+Y30xwtYjBoRplIxCX2pph89aIYmH3A2mKS4NLLSO7XLkvZ2MvZGTPlbyc61jnIjJTEnNxiAee/qFQqHj2wR7RMA4LUwrMjKX+eIQegHCQbHm2XgTxWpCzerWduB/1wSko24LhDQbVU9hDGW6oEYXEpB6vPd0jisYThtqpDJcqXKIRsw3kMEIW4f4pjSdbNtSe0tROe+qnHaNlhdMhEt96bIBtRDQe2UQMRiSnBiz1S4qZmPqqwEWK/hGYfzAnve9hxNwMbqYRIjwzTUR/QLQxpFVYhofqZC89Qvqpx0n+7DMcfmgZH+lQzT6z2JkG9ZMZM/et45Mo1FdznnyxhlOe7k2Shb8a4I+2GRwO+Sr4UBfHxhB3qsjLlqD1OOAjTr/Gow8MkQ80ue3tPdh4Ct/rIVotRLOOWusQLbSBBqapEAayly+BDxLq4X6BTcE0PPvvc8x/qoPISsp9LVwrBesZHPF46RkcDNu2vxgeX/0bGqjlG4n6hs7BmMbJgqIlmPuCof7UAOPyK/uDvEZxvknxM0m69iLy8Q3Hhhe135/Kqys3ZhxB6j76tjMiRHtFXK4UpgRmB7wxeCHDJFcp/CgDKUOUoHJXmUzCAYzftvqVQUslhAj2wMZsE6HShMjN2DrYl4isIFkZ4qIGahQiLqOlIF8L1ZclPlGIYYHIHXrgJoXKXD0OFYrzQCjGrmVeqmAK0BtCXgRS5TyyM6CxOkOnEZy24r4jV5L5J0rS1RHFbELRipEFlK3ggBP1wdQ8XkHjRBlkYRVXy1vjJElC/Zgo1FUxNYGZTZD9UVVIcgcBqBI7x9EtbyoS6Nx2NEsKaDUY3jSLHlr0oESOSrAe16z6nJmq/gt4FZIoRWGgyieSpUfkFuEcXkvK+TpmpoasRai1Ln6YBZOBKl9J9IfIOGLm5CZutkk5V6NsauKOpzWcJvFfzzibvFxL8rG9JC9nH/eZojEwjchcCIaLEpUGu/baWh1ZQromQv0XwMXg85BO6SUIC/VVz3CfYHjIVUV2oX80kBxZgjACO1ciOjGiVUJqsS5GDwSDI47RgQbZnGLjJTD3+dCOaBgMYKSF0YKkfizkcxazwQ4ZwvlNQ/DE32nTesJTvKyGzhZpHjd0XhChhz7UPhEw8wjYmsK85KbquedRwzIsVu1bwLZTVl/VpH/Es+8TmugFBxkertP+2HFQks3b68w+nLF5R5tiRhC9sE66ZYn6lnxWs3mrChK3xGMX2/QPKVwENvHIXDJ4QYne1Jgm4GB40CHL4OCG89in6riG5/Trlkg6C7Qe7uAB00iQxrF5e5POLSHKNVp2xJty8jyzKRSzDjUSrL5asv7ieZKt4NRZtAVFWyBzj7SS2kr4Hkf7BXMPObZuUSx+puTEl4U6NzZKSLqeqGeRo5LBzQ345GX/GT6vcIaEqZp+/Kk8v3nCez/7sWf87EKjN4d/56089cZ3XtA+lwqHf+etAHzHuD2HA3nZeZ0eftcz9x14Wl8O/85beeGPvOai2vPwuz62p9dmSmB2QCiJEHKs2grkRYgggxr/7YOUCymr/wW+NNuTcADvJtIoMZ71exciMdYCCl+WqI0uST3CNDROhZtj3PUI45G5QfjtdkBwNnO1CC8FLpKUcxI9dNgkJPDHHRPC4Z1+6MM4kd1Y0tMFXsREfYutSZrHDXGnwCUar4PNo0mDS5lwUDsVkh6LJoj9gVilm2MbZJAG8lmBzkNei85CYcjRUozeqqF6g8qJzGw7sikVroYIeTyTnKLx9U9TikOzyMKhRgbVzYIsrBljU41XIjzltQzGBoQH6jg646v++kThCX/rfohYhdXIJrIog93zuNhldX3wDlmUJN0hCdCII8rIMZ2uXXlcrmT+//3oD15WEnO12iqfi8SMcTaZ2fl6ijORdDweT7oO6akBUSciGiTMfhF6hzWqumc6LWieLHE6QuWeZAukkQwPhIiDizz1E5KyBaovEV2JKgRZ5MAJooEgXRdkizBcUix+bJPeDfMMDsKhvxgic4OtRaEuSztGliEp3dY8aiRCPg4QfxHyWaivGVSpyOYl6y+OQv2ZDqzdadEdReO4YON2TT6rmH0IsgXB/k+MiB86AfUaLlJEfc/hPyvpHYlo54bmoz3s/lnURp/WU2WISj08wEUK3csxMwkyt6y8OgGCY2bR9qy+pg2EiFT7EUnvBY7akxG2FuS+2aLHxZ7hoSAjizclwsDoaImpRSz91Ro+jhBPnkDvX6T7siW8gGRDBMXBIBTHzOeDVG//xwq2bonp3uyIehLTCLJmWQr0MEi5k00mskBf1ebpHZZ4CZu3RUQ9KJvB/Ka3T+JlxHB5nu58cSV+hs8b/N5T38vhD5w5Gf+ZG9+6qzot50vMP1duyzN9Pp6gn20acDnqopyNZyILY9ndt93xGvRZ25yvr0+98Z08Vf19wa5jb3zW5l4wpgRmJ4QMcic3JhuVPEmISaFKYJvMwPZ7nGWvrNR2fswY48m6q2RVxqJXOrgjc5i6pnXMBM9/GZzJ5MjgGgkyM8H1y3tcrDENTdEOtsd4SdS3RN0SfboLvWq1wQWiFP52qMxQtFJ05lCjUPMl1IVxxBsWW48o6zFRL0jNWk+FvByTCkZLQcM7dv5KupbhPk3ZgnSD4DLmParw5LMSeWOT9ukt8GXl0ubC/+N8mLEkD7bldVpjl+fo3Jiic0/zmMXHweHNNIL1sU0E0ipk4Ym6JSq3iFE5kfkFchSc09ASL5h8b7Kw2GYCdha51Qv1acYESgooHF5YGI7C993tIeRUQnY94krJxvYKlyr6cqGYkpdnR+NUSfqEp3NzDRersNiloPFol9qpGGFckEtFguREn8V1xdbtrbB6nwYJmcoE9VPBBGBrFlziQ4L/C0cwUugtHaIpM57aisDFntXXzZFshcWd4XLC4ECdZMsxWpC4BPI5j9MhqlO2PMl6mKh3b4bDf16y8qoYlYNNYHhzQfOhmHxOEG0paqdCQePmcUf9ZMbWrXWGhxyb3ZSl9TmGN7XpH1Ds+9Am4tRp4s2DjA41iXqGfD4ijRXpU11sO0Vmhnw+QZYWOTKoQcH8Q8FpMp8RCBOeK/gQfZr7Qk5tIyKb89hUoIce0xBEfUXZ8rjUYRqCeEuguprhssc1UvjcIxDHCClZe3no69IngmRuuKRQRZDqeQFR39B6ShJ3g1HAaD9EXVA55HOCuYdKbCrRI0f3Bo2NQ3FSF8HgkMAA9VOhWKmLIOp5vICiJdj/0QGfv8K/yesdZ0/YP/I/3jv5+z/865+56OO++Stu4bt+6p894+ff9VPneHPH+czsr8DW3hOYd//lI/yH376Hj/zm47va/mxSdS6Z24UU5tzL3J7zEadzYUpgdsJavN2uVSKEDxNtJSdEZZzcP3EhkwKh4u1juLAPpUFEOhCZsYRsjKqwpc9zhHPEqzHC1Mnnx5V6q+iNUdhUIQsT7DTn65iGIm+Hm27zZIHqF6itfogilCV+TKgqtzS0BimRm33wTQb7NGknkBOvKvevKo/Hq2C1LI1AD8M2KheT6FD/kCRuhBwYrwOhkYYqXC6I+45hLOgdUTQfbSNOrQcpmRfbRKHccR2raBRxhIgiioUa0gbSNDiYUF8NxT2LmXDtbBzOgfchOjWuK6NViPJYhyhLpBDYKEbmZlIrxmuJHJbYdoLwHrHR2ba6HpsHeBeIzDhXaaeb3BRXFHsRhdkNcRlHRC5XJOZKRGHG0ZVnI0JTl7LnjmR1CK0WtfWxyYjAJpLRoRZR32Cb4X7fP6Do3jBP83hY4NIjT9wBLyUqg6gfIjX1U4LRkqBYtMz8dY36mkMPLesvCTb5+EBaRvsErSc8s18Y0j9ao3O7pfWwQmWeYkagMkFtC5onLPmMZOaxnLKpQjuORmQvHuEyTTKTIbIIF0Hc8ZSzlsX7JbP3n8anEcVSg3TTInNF61iJq0fooWXffX1ElkNRIj/zMI2lxaAeiJaQuQn9+vwT+NKQPlAi52fxwxFidobGI4LHv3Ue4UCNoLFisbGkd6Mg7hQkpwbEN7RYf0nEcL8g228gcYi+pv6Epv2EY+bBLtlynfoj67Cyhi3D9RdS0H4UNl4i6N4guPE/PsGsVvitDqLRYPPLjiKHJfWnSuoOioUUPgfpsQ6umdC5rYUeWVQeVA+ygMZKOHbRkMw/4CgbkrIhGB0yFC8uiR+sMVoW1FY8MrdP+41MsXc4V4TjuZCWsyfUz+VYlyof5s1fccuuyQtcmSjQpcSUwOyAtxaQk0iKH0dMxvbI44KWpQEpA4lBnWm3LEWQjWk9mVRPpGOiqh0T6UmtFG8sYn2LeDBC9VvBJaWhcLGk1BKbCFxURw8Mxawm3jLUjg+CTfA42uJ9kLkZsx0pGtdi8Q6fZQghaB4v2Lw1gS0oaxLV1OhMIPNgy+y0wMZiUqMm6hu8FuiBZbgc0T8sKWYEcceTnvZEQ0/ct3ghMHWJMJ64GyI45XyNpJOGPKKziMCEFE4kbgbfamBjSbLlcHEwJRgbBqjcU1b2nnlb0uxbZGERxuFTjZMCmZXbEj9jUZ0RPql+3tYjcGA9UkI5VyPKC9gstiVu46KYEL4zvR2Bm+LqwJiAXAiRudhoy+WWk11OjCVi9cMr543mPJucbIpnh9cSlRnSVRcq1CtJulbSvTFm8ZMD1FBQzqaYmqBsg0kVM49bnBI0Vhw2Udgk5CU2n7LoTFC0JLOflcQ9R94W9A9oTCPYMstSoEYClYf8muNf1cDWPDfcepJjc3PYQYTsKfRAUMwJyk5wn1x9ZULU99TWQx6HUJ6olWMfb6IcDI8aop5GNkrWXp5iavtY+OQm0jian+9wKJul9ugGbHbQWuP2zzO8dRFuWyTeKJCntrBPnSQ+tRpkxPX6ZGHPWxvIS5oG58okIl0HYTw6CwtjeM/ip2FwpI4eWMp6sIm2qQcJsqNxdYetCTZfJCiabdpPlGx9yT5qp+dIP/cUdnML9/BjLG12aZw6Suem8GzwG1tQS0Erko7l+NfM4OIgC0vXQxHNmcY8w30KWUIxqxEG1l4ayFI2q9CjsKCWz8oqsd/T+qKmd3OoUbP16oJsWRKdbMCnr+xvcoptjCMqz0RMdhMNON8xrhacHT26Gtr7XT/1z85ox4VGX2BKYM5Eld/hrWW7mMk2YQF2VIkfk5ttYjN5bxzRyItAhqQCqSZFLn1Zbm9vHd5L6JXI/oBkNSGJo1DdOI6221Ua4uMORllw06pkWBOMZW7jyMu4XZYq2lOQPrlFdCh4A8d9R9lUuEiiEhVqzQDSeLwQ2Jok2bSQh+hFuiGRJri/RAOPyh16ZHGRBDyydEjjiYaOsikZLcUkj4szyUsVnZpYVO+8hlKiRxbhPCU6uIyVDhlJykZIokw2C7wUIYG0ERGtlQhXWV47cLFGjfJw7QCRG9AKLwTCOMxMio8q4tisITp9cObMNo5J5hRXLc5FSsak5lqXh50PV4t8bIrzY3ioTm0UofsF2cFQqM+mElMXiMLgaxFqaGiejOgmEhcFJyyVe2Thqa86Nm+T5AsenCLuemQJLgr1TtJNB14yPACyFNiGw8469HpE9MVgqa9PwJPtA7CYB0t+CeWsI+pIui+Auc97ipZg68WOfl8S9cF2YuITwWI52RKYoSbuetxQ41suJNWrOWYeK0Aral9cx8430f0hfjRCrnVQC/UQFRJQHphFpzFis4vr9XFbHUSaINIElSah+DGE51enz76P91l5TZPacUP3iKa27kINs5lQiLP9xREmrdO5RaC3FC4OMrPiaAFdTW1VsX5HzNKnwnFdt4cviiBHXlml/kCEVwdwizOMXnaQ+uMd2OgQdQrSDU3ZEORzAJLa6tiBUzE4GFw7nQ6ysbImsImge5Ng+SMlzeMGk9YYLUO2GAo8j/aDkB6f2GldsasMezGJvxqIwG5wNbZz3KYv/Z4bz3j/plv/M79x99KujjElMDsgtEYIvU0Mxon6sJ24P6kPIycyqGC5rLfrxQgJSiJkhGg2sPtmMc0IYfxEziS8RxQO3c0QnX4gNc7jswyyrDrHjhueFNsRIRsS+if5N+M6NDsIwRk1VqI4/N3tM/+ZNHjdK4GXguGSJB5Iki2Dyj2jRYmwYTXOJQqnQltVZkmMQziq3JlgY+yFQI0Mth6S7L0EmwqyWfBxFK6X2ZbQTeR4Y5IFoDWukVK0NVHPEPdKnA4OY3pgJuQK79HdHOESXBRc2uSwCPI5KUPeSxKF3BkbVueQssodioJrWemC5Weq0c06fqu7bSagFL4ot+VtaoeX+xSXHK8rn9lm9K+j5Fn3vZaJy5WQkU2J0KWHjQRi6DnxlSGvpXnMMVoMUY/BC2aJOyW6M6J+QtC9sY7OoHckLETVVkKBXoTHq5BTkc8H9zAXweprIOop8nlLelqRrAt0Jhjt08RbHpV76mue06+U+MjDVnAtU+saPZCka57mSUvnRk3ZBN8ylKnENBSyVZJsavRAkC94Zj8PrWM5a18S42NHdtAyusUw2pfQOBnTerJguBzBLQ1mvtBn60VN+ocli58pefRbExpPavLZOsnmEum6p37a0vhil2y5wXB/hItC/omLYbgsQhJ8G1YWNbKA4UFB47iimBGULTBJnd6NkGxCPh/kzNGWwhhB1JHks5AvOpxOaJzwzLzihahBgVzrYA4t0DsY6q9l++ts3B6x+spFGicXcDpEu6JeyGnZepkhWtN0R/HEwnn1VQmmslnWI4GwYBqOJ77Vo9dT5u44TXethR9qRN2Qx47awwlRH0az2ZX8OT4v8aY3HQHgt37r2K62f/dfPsJ9v/XVZ2z/7r98hO//xv91zu2fTRr2Za/77snff/XXv33Obc6OQgB8/7se4N0/+0He/PYvf3r7fvaDfO/3rZ/xXnzjN/NHp79/8vqJ/287U3687W/8+gIAN/zY75yzHbuxUzazv8Kb3/7lvPtnP3jebXee+0Lx7n+6e2tn4c9Yxn9+otPpMDs7y1fU/3eipIHPQwHIiQ3yWJpEVSPGWkQcbxOWChMiIyt5VKtBub9d2fJWNVykxDSi7eJmcZBuSeOJNkeI1c1KCqaCvMm7SQRnDKFVWFEay5683/57ZxRIhSR4tEZIiS9LRBJjDi0wOFjDxSG/JV0PjmRlO8bUJKYmSDoWU5M4JaithYR5L4K0TFSJ9bIiMHpQgA0a72ypRtmS2Fgw88iQ6PgGPiu2SZYptnNOAJRGRBHmyCKDQzWifuWIs5nhoxAhkkWQX5RNjU0lUc+gcofMDaqfhyhWPQm5McbhahrTjLGxJOqWeC3xKrRTlA4XK3ykUIMCcXw1XDtbXfOJjMxiRMlfdN7L1tYWMzMzl/hXePVjPE72Gnetnz7vNh9d2N2KzF7jdx74xctynje+5Md3td2pB6/MdVi+/fzf0XScBIzHyZ1f9TbsvgYrdzvmPq1IOmGByEuorTnijqX+2CZmocHpVzYqR62QsC4zgW16TOpBe+b+RlLWAoGprTnKlmC4JECGXBEk1E57mk8FmXBtzWITSefWSmrlwTYcuqeQOSTroYZJ7bQn6TqyOVnJdCGfg9YxTz4TTAechtlHQu6HqUvytqR/I4hCUF8NNvr7Ptalf6RBPiOxNYFJobbm2bo1nEvnMFr0eB2MCJY+Dul6yePfohC5JNmQwXEt8aihwDY8c5/3xJsW05AUrSCbW3ulpH5ckG46iqagvmrpH9LEvdDHfEZgE9AZxF3P5ktg5guB9OUzwXGsmPPMPehpnMjpvCClf0RQzjqaj0nSjWBw0zsiKGeCxXLrmGOwX9JYcQyWJU5D65hDWLBJIJrdGwTlnEMtjeBYnebjsHWHo/15xfIH1zHtlN4SfPIP/9l0nFQYj5O/f+eNxPrqKFlgZv7tJTmu7vwDvv2tP8d/euc/vSTH32u85u8fnfz94pf/18nf/+Gn7nrGfb7rX3/0WT/fLQrj+I/3Pb6rcTIlMMCjjz7KzTfffKWbMcVVimPHjnH48Hl8Fp8HmI6TKZ4N03ESMB0nUzwbpuMkYDpOpng27GacTCVkwPz8PABPPvnkdbEy0u12OXLkCMeOHaPdbl/p5uwJrkSfvPf0ej0OHjx4Wc53tWM6Tq5+TMfJlcf1Nk7g+hsr03Fy5TEdJ1c/rvZxMiUwgKwS9GdmZq6LH90Y7Xb7uuoPXP4+XS831r3AdJxcO5iOkyuH63WcwPU3Vqbj5MphOk6uHVyt4+TqEB5OMcUUU0wxxRRTTDHFFFPsAlMCM8UUU0wxxRRTTDHFFFNcM5gSGCBJEn7hF36BJHl2q9ZrBddbf+D67NO1huvtO7je+gPXZ5+uNVyP38H11qfrrT/XIq7H7+B669PV3p+pC9kUU0wxxRRTTDHFFFNMcc1gGoGZYooppphiiimmmGKKKa4ZTAnMFFNMMcUUU0wxxRRTTHHNYEpgpphiiimmmGKKKaaYYoprBlMCM8UUU0wxxRRTTDHFFFNcM3jeE5hf/uVf5sYbbyRNU+666y7uu+++K92kZ8Rf/uVf8g3f8A0cPHgQIQTve9/7zvjce8/P//zPc+DAAWq1Gvfccw8PP/zwGdtsbGzwHd/xHbTbbWZnZ/ne7/1e+v3+ZexFwDve8Q5e85rX0Gq12LdvH9/8zd/MQw89dMY2WZbxlre8hYWFBZrNJt/6rd/KysrKGds8+eST/N2/+3ep1+vs27ePn/7pn8YYczm78rzBtTJWrqdxAtOxcq1hOk6m42SK82M6Tqbj5DnDP4/xnve8x8dx7H/zN3/TP/DAA/77v//7/ezsrF9ZWbnSTTsn/uiP/sj/zM/8jP/93/99D/g/+IM/OOPzf/Ev/oWfmZnx73vf+/ynP/1p/43f+I3+pptu8qPRaLLN133d1/mXv/zl/iMf+Yj/4Ac/6G+55Rb/hje84TL3xPvXv/71/rd+67f8Zz/7Wf+pT33K/52/83f80aNHfb/fn2zzQz/0Q/7IkSP+3nvv9R//+Mf9l37pl/q777578rkxxt9xxx3+nnvu8ffff7//oz/6I7+4uOjf9ra3Xfb+XO+4lsbK9TROvJ+OlWsJ03EyHSdTnB/TcTIdJ3uB5zWBufPOO/1b3vKWyWtrrT948KB/xzvecQVbtTucPZCcc355edn/q3/1rybvbW1t+SRJ/H/+z//Ze+/95z73OQ/4j33sY5Nt/viP/9gLIfzx48cvW9vPhdXVVQ/4v/iLv/Deh7ZHUeT/63/9r5NtHnzwQQ/4D3/4w977cGORUvpTp05Ntnn3u9/t2+22z/P88nbgOse1Olaut3Hi/XSsXM2YjpPpOJni/JiOk+k42Qs8byVkRVHwiU98gnvuuWfynpSSe+65hw9/+MNXsGUXh8cee4xTp06d0Z+ZmRnuuuuuSX8+/OEPMzs7y6tf/erJNvfccw9SSj760Y9e9jbvRKfTAWB+fh6AT3ziE5RleUZ/XvSiF3H06NEz+vPSl76U/fv3T7Z5/etfT7fb5YEHHriMrb++cT2NlWt9nMB0rFytmI6T6TiZ4vyYjpPpONkrPG8JzNraGtbaM74AgP3793Pq1Kkr1KqLx7jNz9afU6dOsW/fvjM+11ozPz9/RfvsnOPHf/zHed3rXscdd9wBhLbGcczs7OwZ257dn3P1d/zZFHuD62msXMvjBKZj5WrGdJxMx8kU58d0nEzHyV5BX7YzTTHFM+Atb3kLn/3sZ/mrv/qrK92UKaa4qjEdK1NMcX5Mx8kUU5wf1/o4ed5GYBYXF1FKPc1ZYWVlheXl5SvUqovHuM3P1p/l5WVWV1fP+NwYw8bGxhXr84/8yI/wP//n/+TP/uzPOHz48OT95eVliqJga2vrjO3P7s+5+jv+bIq9wfU0Vq7VcQLTsXK1YzpOpuNkivNjOk6m42Sv8LwlMHEc86pXvYp777138p5zjnvvvZfXvva1V7BlF4ebbrqJ5eXlM/rT7Xb56Ec/OunPa1/7Wra2tvjEJz4x2eYDH/gAzjnuuuuuy9pe7z0/8iM/wh/8wR/wgQ98gJtuuumMz1/1qlcRRdEZ/XnooYd48sknz+jP3/zN35xxc/jTP/1T2u02L37xiy9PR54HuJ7GyrU2TmA6Vq4VTMfJdJxMcX5Mx8l0nOwZLptdwFWI97znPT5JEv/bv/3b/nOf+5z/gR/4AT87O3uGs8LVhF6v5++//35///33e8D/m3/zb/z999/vn3jiCe99sPObnZ31//2//3f/mc98xn/TN33TOe38XvnKV/qPfvSj/q/+6q/8C1/4witi5/fmN7/Zz8zM+D//8z/3J0+enPwbDoeTbX7oh37IHz161H/gAx/wH//4x/1rX/ta/9rXvnby+djK72u/9mv9pz71Kf/+97/fLy0tTS0vLwGupbFyPY0T76dj5VrCdJxMx8kU58d0nEzHyV7geU1gvPf+l37pl/zRo0d9HMf+zjvv9B/5yEeudJOeEX/2Z3/mgaf9+67v+i7vfbD0+7mf+zm/f/9+nySJ/5qv+Rr/0EMPnXGM9fV1/4Y3vME3m03fbrf9m970Jt/r9S57X87VD8D/1m/91mSb0Wjkf/iHf9jPzc35er3uv+VbvsWfPHnyjOM8/vjj/m//7b/ta7WaX1xc9D/5kz/py7K8zL15fuBaGSvX0zjxfjpWrjVMx8l0nExxfkzHyXScPFeIqkNTTDHFFFNMMcUUU0wxxRRXPZ63OTBTTDHFFFNMMcUUU0wxxbWH64bA/PIv/zI33ngjaZpy1113cd99913pJk0xxVWH6TiZYorzYzpOpphid5iOlSmuFK4LAvPe976Xn/iJn+AXfuEX+OQnP8nLX/5yXv/61z/Num6KKZ7PmI6TKaY4P6bjZIopdofpWJniSuK6yIG56667eM1rXsO73vUuIFjyHTlyhB/90R/lH/2jf3SFWzfFFFcHpuNkiinOj+k4mWKK3WE6Vqa4ktBXugHPFUVR8IlPfIK3ve1tk/eklNxzzz18+MMfPuc+eZ6T5/nktXOOjY0NFhYWEEJc8jZPcW3Ae0+v1+PgwYNIeW0HK6fjZIpLhek4mY6TKc6P62mcwIWPlek4mWI3uJBxcs0TmLW1Nay17N+//4z39+/fz+c///lz7vOOd7yDf/yP//HlaN4U1wGOHTt2RqXaaxHTcTLFpcZ0nEwxxflxPYwTuPCxMh0nU1wIdjNOrnkCczF429vexk/8xE9MXnc6HY4ePcpXLb8JndTJblzExhJVOGwiGSxrhANpIN0w6MzihQABelDiIoWtKfTAAOAFlM0Ir8I2jUc2YWMLrAHnQQoQEqQE7xFRBGmMa9TxNY1TEq8lpq6QxqNG4bguVngpEN7jpcArge6VCO9xkUJYh3AeUThUdwB5gTd2+5xlGTrsXTi/d+G10uA9SIVQEoSAWkKxPINpaGTpyRYiZOmprWYAyMwirEVYj6tpXKxxkcRLgakphPfokcXGEuHBRpLGFzcRgyHeWISUeOdC28btgO3rEenQZuvw7SauHuEiNek3ACK0AwE+kogyHMfL8LlwHt3NEcMRfpSDtaBUuA7jFZ/qfxFF+EYN4gi8p1ysM2hYPvEn/5xWq7XXP8FrAs80Tnbiz378f3vO5/nqX/z9C9r+u/72f3/O5xzjP/zxNz3nY/yLN3/nHrQE/tG7f3dPjgPw4Ac+d95tbv9be1sxeTpOAsbj5EVv+nnM3yo4ONtlUMSsHJsH6RGxw3uglCQnonB/TD029biaA+FRA4VbKBDCI5XHjDR6I8IlHlez1J6IsAkUhwqQHowE6VEdjUs8en6EEFDmmsZnU2YeM8jcY+qSsikRFmwK/aNQNjy+ZkPjI0dcKym2UlSrmPTJbSbUn1KUDU8559A9STln0T3Fwqc8cx8/iV1osfrqNv2jnmRDUM54zP4CbwVJKyffSml9PsLL8Cw1dRgdstAwRLUiPDiFx+QaN4xCdQrtEYUEEz5DQuMJxb6PD9GdHNeI6B2tU1svKVoaUxfEHYewHmkc6VNdxCiDSGPnGuTzKRu3xxRtj3CCxgkfziPARdC92eMaFhE7VGQxhYJMQeKYXegjhCcvI4an60QzGXFiGZ5o0nxMYWMoZj26L2ic8ngBM4/nqEHJ1ouaDBo5D//7fzIdJxV2Pk9+54FfvDTnfPdfPqf9f+O+X9qjlly9+Lr7DvH+O4/v+XGzEz91zvd/6Z+8cvL3T//Kdzzt84Ht8a2feNGuxsk1T2AWFxdRSrGysnLG+ysrKywvL59znyRJSJLkae9rnaIabVScIpXANwQyEahUkW44hINIKKI8x8UKlyjcQo24U+CswtdjdK/A1iJsIxCYqG9h3zy6l4MwYRINYSINIAALjBwqHyDqNXw9xdU1RClCeXRZYuoa5cBFAq8FKnfhfp5o1KhEDCyyX03SizIQFyQYF06iI8DjrUMIFSbuUlZkajyZl4g4Bq2wSzP4uZR0aAJhKDVR3yBqdbwUyMghsxIcSC2xkUIkCi/AtjR66IikQXkZCEZdI+c8KnN4V1bERVT9N6ArEiUArxBWgtDhoZW5QIySBFvXCBcInHAekVTkRwiIPSq327yslyE6GXjwXlWkTQCBrAGhHQBWQK9AKANKEQ17RDVZHfraD2/v5TgZ42P/8Nv2pG0f+4ffxmv+5Xt3vf2YdHz/N/6vizrfr/2Pey5qv3PhF3/8e/b0WD/+i7+5J8dqNS//JGk6Ts7E4Q+s84UvO8KJUZ1mPUPW0kA2lEcYARrcvnAfsjUHgYOA9qAlItKoWli8kj7CLQnidUW8JtAZNB+z2EdjirZgcEjgIk/cEQxusFihwQt021AeSmAtpv3waVy7xomvbGBSKOYdtu7Co6AeziOEZ3auZNi2FHmK3UyINiQqF0QCki4Mmp76pqD+BUfcteihRcV1ZKmZf0qRGE008gyQZFEaFvSSGu2jAwaqjhpKvPI4DaJdohKBkAq8wDmJij3ICDFU+NhBEp4Vwgp8YhnVFCcOzLHwGc/sJ1ZIBgNEVkBp8GmMb6SMDjcxMxJvY2S/wEcSbR3JY30SO8/WC1MA8mVBuuYpG4LRQY84mJPEHqVBa082irCFot7O6B1bJuoLhIVmJhjJOiNr0VJh9kvaj3p8B1wMtZFjuE+yfleNfffn1HJNWa8Wy66DcQIXPlaeaZy8/87j9Fv/E4D9f+/b97SN7+F7L2j7lff8pzNe/9sP7X5x7Wff+d3nfP/LP7R9L/7g3b0zzrXX/b0Y7GzT2fjyD7XO+Pztb/3tCzjy3U9752ff+d38P7++47jnYCBfd98hYHfj5JonMHEc86pXvYp7772Xb/7mbwaCtvLee+/lR37kRy7sYN7jk2iywq9yB0jSTYeNBdHIIQuHjxTSOBACG2tG+9MQKckcphkjS4csqsm0BFvTRFGEN1WEpjSMvxpvXYh6jKMkowxhLGqrR20rxdcTfKzxSiCtQ5bgbYhuyKxE9nPEMMNnOR52RFUUVOfDO8jzQFAU4VxKBbJjCRN7QKQRviyhnpIvpIhqbu+FIO6UyNLitEQALpKIUiIkmGaETRS6X+K1RGXVqpYDPSpwiUZlDptqlJJQUkVXqEhLpXMckwldXZ1x+61FWIe2DlkkuDTCpgqZ2xB5MR5c1W/nkLlF9qoI1DjqBPgsR0T6zHONr5cFYoW3LpxXKRhu63WvdezpOLkEuFASA2cSkd2Qmb0kLlc7Dt95hKfuO/asn0/xdOzlOPH1GsmJiGJOsfSSdTaSViALscUVCp8F8iILgVcSmQtkCXgo2x4xUFgPcavACg81h00V6jQkXUe6URB/4SRISXnjPjZur2FTaD2sULnEaUHZipEFqMLh04jRcp3eCw3RlqL1qCSfk+SLDodGGIHsS9Y3Eny7RAw1qieRRlA2PcWsR1iBmTeoJzSNkzmqH6I0xZE5ZG5RuaO+Zom7JcIlDPcLXOzRjZJBN8XHDlOziKECJxBDjc0VPpO4OJA4UQoEICzIvsS2LEiPTyxxvcQkiiLRdF4Q0Tgxi8oMbr6B6mSILEdu9amPCnp3LNI/nGCTFKcg7ntmHrDEq33m8/BMGR2okc0qko6n+0KHjBxKO5wT5LlGSEetVZJlEfGWpH7SY2uCxklHsiHo36AxBwoKHTFakrSecsx8Ygsfa2zcxL5+i2MLsyTrgvn7+nv4S73y2Kuxsvpb/5U6NeDpBOK54tkIwtmT87O3H0/Wn4mY7BbPRhDG/f21DxXPuM1e4EL6sPO6nN3253It3v7W3+btb/3t8x7j/Xcen5CY8+GaJzAAP/ETP8F3fdd38epXv5o777yTX/zFX2QwGPCmN73pwg4kgjxJloF8yNxAO8FrgR45ZOkRxlG0I0xDIktPejqnbMcI4/BKYBOJlxqvQFoR5EzOg1aTSbNQCl+U21GQHfB5MZlAi94AMQySrfppfUY7yfKwr3Nhku59ICTjSEZRgrV47wOTjTS4EIEBENZuy8gqSZkvS0SaYmfqeAVRJ0z+bUOGyI8MbYg7BWpkgpRNS2wssalAZRJZOlRmcbEMJMcpvAoRI9PQREkc2u7GxMWdaeat9aQf47YiBRQFwntUXiDrKbIW4ZUMUZjcIpxDGIfoD0MEqqhuCON+wlnkpZKT7SRzBaAkWBdkbNcZ9mycXIV4PpGTKS4t9mqclLMptRVBMQ+L6YCHIxeiwVYECZkDF4VngmtYvFBAmPD7yIVotJEUwwicAOVx+3KyUULcFeSzEXGaQGmIjm+w/0nH5t2H0blDZZ76Q6t4Jem9bB/CeeTpLRqlZenDi3RuBS8J0qnYUTuu0cPQblMTRI8nOAWqgKIFUV9gE0BCtBYk1apboDZ7IASitPRvnkGPHF6C3sqQ8zFRT5Lt89jTKb5uEYnF5wok+JoJ0jfl8TKQI4/HK48aSlzsQ7+r54NQHqUchkD8Wscc/SMJXiTo3BM1NVEvITq+ARtbtB7SmNka2WJM44k+Ii8Rm118XhBtJlBLUXMJ+Zwm6nvSFUW5CPkoQiqPKyX0NcYKfORIh0GeHHU9qgjPvnLOILUjXpek655ky1Iu1BGlY+s2iX1wFjxEfU/yN0/swa/z6sJejJV9b/o/aOj2JWzlufHBu3uT6MgH7+5NIiLjCfx4on0uovNsOHv7nRGY8bngTLL0sxfbiQvAuF07+3z252f/fSH9fjaMyeDXbvwq8N1ntOe+73ztZLuf/OHPXpCc7bogMN/2bd/G6dOn+fmf/3lOnTrFK17xCt7//vc/LbnsvKjyP6R1iNJiaxHCe6KeQWWGYibGxQrhPPWT+YSQyMJNJvSmEeEiSbRZ4qXA1hQuEoFUQDVpNog42p6gO4/34b1AJvQZ5MNneWhbJTsTQoTPvAetQzTH+yovR4K34ThSIFxwdRClmew7mbBLdwaJEToGJTHNCJk7dL/AR4pCxZi6JO4G+ds4x8TFChcr9NBiaxKbSFwsUUOD1+FvRFBtuUhi00C4hNaBeDkXIh/VdRFahyiVdXjC/ygJrnqCWQvGILIcpXUgXFUe0bhP3pgqqiMCiQOIJX4UiKBIE3yZI9IqlD0+vxTb114RJHg7c3OuA+zZOJkC2Fv52M5j7pWMbBpluTjs1TgpZmIAoo7EeYErJc3ZEUJ4RsMEEouocj50bLGxxZQSETkYaYgdOBAy5FOIboRPHMWCI19XlHVN44s1XDNGdUZQGpyGYVPRPGnwwxEAyUbJ+otT5CuOUH9kndqGxT2miIaOmccco2OK+umS4aKmbAlMDdpPWGorOaK0ZPtq+EpxWzQlNhY0TxpkXoZ7dKQRw5xoYCkbiqhnMLMpXsLolhypHX4jQaYGV6gQnfcgRlUUxoLXHlEGsuJTi88lPvZ46cJ+ZdjWGIlQHpFYujdG1FY9nVs9rccU7dzjlcSnCSIv8EWJXilImUH0R9Ab4J3H5zm+KJC1lGJG0zjlcBoWP2tZk3XsfouNHThBeloRb1WKAw+qCDJnk4iQZ5NJRD9h5lFHumlRmSU+2cU1E/Z/tESWjtFSRNES27Ll6wjX0jPlXERk5+sxoTjXpP1CSMyzneNijrdX2BlVGROUs6Mte01c4EzZ2Z2/++EzzvHlH2rxQbbP9cG7YWC6uz72dVEH5rmi2+0yMzPDPUd/GA4tY2savZXjk7BCL4uQtO9qGq8ktqaINzJsI6JoR8jCEXVLhA3yMlNTxFtBfuS1xCWK6FQPNjoVWagm2ONLX5odif1iOwoBiCTZzpvROkRyjIXqRk2V8E9QuyGsD1GIvAjRHO/OjDIoFc4xPu84F0fJcK4kZnDbEtJ6om6Bl4JiNqZsSFTpSdYKVG4ReUmx1MDGkqhXTghL0VZEfYceGYpWhFdUDygoa5LZB7aQp7cC4fI+JPOPI0giJO1P2uf8NnEbS+zGSf9iO2wjtNo2BJBiW3o23nbc9zFZGx8Ptq/tODqz4yFjbMa9679Fp9Oh3b78K0RXG8bjZIy9yoEZ40IlZFcSl4K87MRekZjLiek4CRiPk7/14p/mxDcfYHjUcNttx3l0dYEospSFpsw0zdlAMIaDhCg25P0ECkk0m1FupJC6yX2dQiJSi1qJ0UOBMNA44Vn64CmII8RGB5KY/KYlNm9NaKxYWp8+he8PwoJRLcUPR4h6jdWvOoiXUDYFpg6yhH2fzBkcCBPtbEmQbELjlEXlnqhvKJsaPbTE6yPEIMMnMXYmJXpqvZLbjvBlibvpILYRgfXkCzEnX6eIb+5ircQYhR1qKGXIAarSEUUp8CoQF1TIESKv7sOJRSiPzxWyZhDSj3dDPFkjXRMMDzr0UKAHgsXPGmqnRqgT60FRMdNkdKRN7bFNWDkNlfrBj0YIrZGzM/h2k/JAm81bU7o3gR4JbOyRpcAlHmGhcRycDqSlseqonxihejmmndI/WqP9xT6DIw3KumD+/g1cLaJzW4v6qTJEeAaO+P4v8r9O/fvpOKkwHifvv/P4JY3AnB15GGOviMXFRGjO147LhXPl55wvQnMx1+dsnB2h2vl6YLp83X2HdjVOrosIzJ7BOlQvx2lZuVpVJKK0EClk5QZmGnVMM8YrUTmqeMR44u3CxF+YEMVx9RgbSXSiEd6FCfqOSbW3VUQCQjRFyfBekkCk8bVkIkFzscYnCq9C1KGYidFZNQH34OIg4fLLTVRm0atd6PZhlIVzRnqbJFQRmklbIERFqom8lyJI46xHOKitlcjCIYclKIFtpUjjkMZV21jUsETYcF3KRjiONJVEopLKuXqM9NvkwRtzphPZJLlfbpOXMSGRenu7igiKKDozWjKOqEwIz1h/ILdfi+oRaO02KYIzV8ikQMjrT0a2V9hr8jLFFNcbXE3TftxRthQvaK1jveTY+iwIT62Vs9zu0S9iylJhTBWZSCzlRoowAm8FlEE6hvSIjYj6CUHc9ax/iaO+IkNkvbp/+XpKfKLD/hVJ5455+ncs07z/qSBX7vZAKly7jmkItu4w6HZBrZ7TW29QW4uZ+/wAkVtOftUMZQM2blfoASSb4b6oM4mwnuT0VpA3l62gDhhHuq1FrWwh6yk+jRDW03yyQXaTpJ4W9Pq1QFpiBzWPTkvKXoKPBKpVUqvn9FeaiKHAR6HPUa3EO4lKS+LYMBwmeEBKh2k59DFFvCWRBuornrhbVsY14Pt9RKRJ1mNcM0Ge9EH9kKaIowcR/SG+PwCYOFhGPcHMow5pPTYS9G6QwfcFT7rhQrL/giTqx+jjG+iixN9Um6gSTF3Qv3WWqGuJew5pHa2HOrh6tC1rnuKy4pnyOfby+Dsn4ecjNFeSsMAz57icTTTO7sfFtvt8+z2X6zElMDuhFXg/cbqSWYkY3wzVdr6KMCHfQmWOqFvdlJzDKY0sLXJYbEcUnKukVCJIpGwRIilCBsJiKgcuKnlXEgfLx1adfF8NF4ckdZtKhA831bhr0ZlFeHBKoAdBsiWL0C4iiakp3KFZ4jiCtc1tEgBVtGfHV69UkGLJQBpkGRzXvCQkxBcOYR2qH/JubBJRzEYI44MbmthxXCqJmQc9tHgtyGcUJpWBzIyjQUKE/kqJz/NAPNSOZBjvwz93DscwIUPUxdhtGd44quJs5UhWRbHGlstqR8RrJ4mUIpgG+G0SJaIofCdqB6GZ4gy85l++95ogMZ/8zO6MGL7kZc/stjbFFBeDsh0jHJSLhq2ixkqvSZlrlHZobSmtwroQmXBGQh4iEyqTmOY46u5RzUAQ1GmNNGATaD+sELa6PzoDtRQzVw+S3l5O1Hd4HXIfBYALUWofa2wCIrUszPYpreS2m07ykDlI2WziBXRfaBBO4LVHd4MEWjhQmaBoJTRmDtN4oo+LFTLRiJPrVVt1IDS1JCz6yZA3kw8jiqca6KEgLQU29Zi6g6R6JlX5JnkWFoyECxJpBDgnSdOS+caQziglTUNCPV5M7I/bj3myRUHc9+jNESIrw8JfLYHBCPnYCUSS4JXCDYdIpRgebXPqtfMc+ouCeG2I6uaovI4soWyE3NW5hzKSjsYmEpMKoqGjdjrkd6rReHHTEA1D+QJZesqmYOgV9rBGjXzI0TQpwwMJabEMG5fv9zfFhWMvJunnIjSvf8+Vt2Me5/TsVip2dj/G2E3E6Zmc13aD3Sbww5TAnIm8hIZHWI9pRsF6cSsLeTFZsBP2karcycBFCmXKytKXkJPiPV5KhLX4ihSo3E0kU+MkcbSsZE0hAiC0wrcauHYN04onKzp6GG6UOrPBvjgO5gGidCgRPjON4FIWdUsQIHKLLh2mGTG8sU0tUoiTa+FhN4lmEIiBC3klRFEgMEKgq5uziyWysFWdghC9cbEKD0YfHI6F9cjShdwW49AQdMgi1GExzQgXCZyG2poNWu3KfADvJ85syDHBq1zA9I5oC4R2QiW9c/gxH9spJ5MiSC7GZGanCcB4X7ZJ0OR92CZJO97zejo8rkbslpRczDGnRObC8T82X8s3zp27Sv3zGV6FxaZoQ7MyajFby6jHJaMiYpRFrDlJUSi8qybjyuMTh0lDsj+2yjWstql1BFE/RMSN8zRWTbiPaoWPI9SgwCU18sUaLhZs3qbZuuUwS5/KyOciRgsSYaD/AsvhAxv0soSX7jtBZiMWD3VYi1uIfsi98cpXUq/giFY/KcjmQZaCoq0p621mvtBDlDa4aBJyLbE2tMlW9cAcRMcSylmHFwJRQm1TMFqWlEmMrJuJsteUCoTHxQ5ZSLzxWK0ZFgprJWWpkNKhlKMYRui+pL5iaZzIaT8p0J0cudELtbyKMigO0gTKMkShlERUyof6Ex2aBxfoHo1RByLqp0qcDnI6F4X/hXHUnurhI4VtxkSr/fAMKU2I3oxGiEaDdCXHJZrBAYXMIel6+i2BLKBoKWws0SN35vNmisuGZ5uEP5vr2cU4g+0kCWN88O4evPOCD3VJcS5S8UzvXUwk5lySvd3ieedCtmeQApGXyNxi63pCIiA8jIQNYW0Xy+qmZHFxlVhfugmR8YlCZB5RJaqP950kqceVNMlWq/1K4espZqFJ2Q4mALIKadtY4uLxBBySzTKEu4UIcjEdLDhV7pCFCfKySv5VtDXCewY3NGn2R9DpI5I4kISxdGpn8Urnwo3fp5Oima6mUYMSNSopFuvBUWxoQgFLJaAWCmjKkduOmChCFMt4bCIRFY+IemU4x5i0jPOAlDrT8zuOwjZSTYgNToVcmR1GBgDeizPtoJ3flqSNSdA4GiZkII7jKM3Z6V/eBYmZJETB2lMJ2dWGS0Fezj7+lSYx11L+y732yxl0zfk3fF5CUH9kndaR/bhXCdpJxmZWY1RFEKyVWKNI0hKtLb2iGXaTHpEHSZnXPtymhCdb9MhC0DjlsGlIfjdHFpHDgmKpgR6URKeHZLfNBAvlBkQv2+LJOyPKTKBXYhY/47n5PQWbL1qmXBB85BUxS7OhQGOUGozyUMjgDiagnLOodsnWfITMQj2YxpMi5M+0EuJhEfJrlEQYC8biAbPYnERgbALR0gg3L8lXUsa2YqKUpPWC0SAJfc3VxHXMq+BGhgOPwFqBUg4pPWWpED1N3BG0Hu2jTm3ilmZDon5l4uLbjck9vjx8NDiJ9grkYyfwgyHiqVPsvzcju3mJ9RcnqCIi3XJII6mvlMF2OpaMZlukp4bExzbDwlwjRQ4zXLeHG2WIwQi11UHU66TLL6B7YyhoaeOQoxT3LFG3ZLScYOfSK/VDfF7ir//VT4Y/Xvf0z8aT8L22L96ZsP79d8d7euwrhqPPTALPxrkiUc+G52pmMCUwO+E8lAbdzfBRHS8EthEHO2Wh8BGYdoJNQxTEaQGEib4sHS5RCOOQhd2eNFNFu7VEOLctnRIC74KLmG/WMHN1fBRu7KpwqKEJdWYSOSFJECrax0ODyCuL42aCqs7jEo2taVwk8TJEhIQNyYd2sYXq9AN58Q6M32EWUMnHqnoralhiU40XYFKFTYKMoGwo4o7B1jWqcFUUJkRggmQgtMFFQc5maoqyEVxrahsW3ctDwTHYPp+UgeSNyc8YO2VjlSPbxCrae/z48x2EUAgBcS0cuyzDPqjJPni7ffyxwxkw8TSdJPnHuFYNW5+umF1NuNTk5ULw47/4m5ckkf9aIi9TPDukcZjFFumWZ31QR7cc9ahESk8clxSFpt7I0dKRlzpEXYwAJ/DShyr0iUVphy0UZqGk7MaYVKCHHi8hW0rRw4iyqRgtRpi0QedWMDWPVw7xqVkaX7LBVidBGti6VdI/XGO05HH7MvbPDLhj/iQfOXEjZaaDWYAJhSZRHmIXEu8jh+wo2o+EvEZpPMWMJtqKwrNIymB6UwsLYzZVjBY0Zctj24b9M32sk6wMIrIq0iSMJBvGCOFxVoaI085brvLBkc2LyXqTcwK3kaAHkoUHDWplC5/nwSLZ2OC8VkvJD7bRvQJhHS6SjPZF1IG4iqr7ooBeH2kWaJ60tB/YwMw3qK0QzHikwNQ1ehRqjfkkwsc65NcYG54x3uFN9Ty1QakgS6q6aZ58RqBKSXra0jukqGfyXD+T5z0+8vafIW1cmsn+6376/wX+/TN+/rPv/O4zSMdzrflyBi4w6nJhRSJ3j+fepx98WoL/XuG55gNNCcwO+DwHGSM7A7RSuHqEixU21YGUECb0svTofqjjovo5thES18fqJK8leIWPNWU7RhqPjyqnrLFsSsiQsJ9E2JkaxVyMHtogD6vIj8wNLo5BgCw88WaBGgZrYx9rXKQmtWu8AEQIVyNBZY54M7ibFTMRxUxMPY7wWRbIga+kY0IE04CxvbJziEFGJATZcoi4CBfIWtSzYWVKhPewQeNr6xoRSfAwOJjgZbCb9BJ0FnTDyal+cEeT1XnG1sdShhovQoCWISF/HH2poideVpbIY0lXkUPEJFFfpAm+Wadsp/hYVpEwjxqUyF5YJcP7ICMwleOb3BGBGUdnIPxfreKVjWkE5tlwreTBXCrsNYmZkpfrCzaRDPalDPeFPJdEGWJpqKcFM7WMvk4ojEIrR7cXIUoZ6r8kVUJ5vcCWCiEdSImQHpt6BgcE6QbEA0HRlJR1SdEWDA4FiZa9cYTWFnO8TtlylP0areUe6RHD6admwQv2H93AOokSnmODObqnm0F+KwgkSjsoBcIHh0uvPWbGMlzWJBvQOmFJtkrEqMBrhZupYxoRupcjM0Nyqk8xM4sahueRdRIhPLJm0G2L92CyCO8FUlX3Ye0DiakiTyiPjBwCqKcFna063gmiviTZFNSfGkIc4RfaIffT+5Dz06iH0ga9LDxfZiDqO8qmJqml2wtaWqPXR7RXQ4HJtZfWaKw6Gk/0QUmSUwNsKwlqhPkGalAgrAn2/XGE0FF4/lS5nI0nB0TdJOSmRpLBsqasCbKlFK9CfZ0pno7/52t/+5Imtp/v2HtKWp4Dfvad383rVw7s+XFfz9ue0/71m5u8fuUAwy/2L/h7utSGBVMCsxPjPJC8QHUGCF/HVX72LlaBSFQ5H14K1KhElBbVzWEsMQOwPkQiahppXPUAkCHaMJ6YQyAPzRr5XJCs+LGMyodVIFE64rUhUAdADfJJVMem1VdXESdBuGmqcU2asZTKQrJmMa04RCqyypFsPGmXonIDC4XCEKEKshzmqDwFAXpQYms6WEkrESyTfSj4GfoBph2BB5OKcI2MRw8s8VaO7Awn7QZCO0oTXNakmGioGTuyleWO3JidFso2vFYqSN9ihZ+fYXBje3LdIJA3U1eUTY2cTZCmTbQ5Qm71t11zdubFVAmjk3yaKkJm6tMVs/PhcpGYyxl9uRIysil5uf6wdXPE4hOObF5RHGvyiBMstgcsNIYkytAZpeSFZjhMcAMdIh5RqAYf0vXCPUpKj44N3kmK5ZLCCoSLWPhMTt6u03mBYHTIggO1mNNujuj26ri2IW4V1NMCITwzaUa+v093pcnp9RYIiBNDYRW1uRFJZCiMYnSiGaIedYsvw8IUkUPFjpGHYlZimpp9H7eUS018ZRrjlSCfj2g8OUAUBll4TMOjNzUrzJHMZDSbGR7obdaDXCyXIdXHVfmLEOyjraiEAQ6TRXRMHbERIy00nhTMP5QjjMPONDCzCdHpIaQJ2W37GS1o4r6jbM+GOsml25Zb19MQ5DEWn8ZBFVEafLOGLKF3SDHY3w5S6ZEHCfVVix45hssJtZWceKuH1xrZbOCLApEmiDQlb8WUbU39xAhb06iq5s1wn54s6k3xdPzOA7/I29Pvu2TH/9m//+u8/T9euuNfDH727//6OfNvvrz8u3t6jj3F1Vfa58IJzKlTp/joRz/KqVOnAFheXuauu+5ieXl5zxt32TG29QVEXiC7EOclZrY+WdkHkNl2QrmPFKIweFSQikUKCZhmjIslemBCfZbS4p0LBSyNCWSm1aCcS/FaIItw95alC5I1CDktQmBTSdlQ6EGwNR4nyAer52AI4FU4hsxD22wa8l/kKOTFyKKySJ5IsyzgoKikVN6FfJKyDITCWuK1QQibW49vBIIyto4WFhAEGUE/OJXJ0lO3Hj0KlspqUEARQvtAdX6JTyNsI8HHEhuFtgsP8WaOHBaI/jDwiXGEZGy1DCBCbotIE8rDC5VszwfHMyVC9MoFAwJTGR64WJDvb6DrMdHJzdAGY6EsznQaq6JiQarmtwnpFM+K53Mk5rlGYS6EuOw8z5TwXP0wd3fJuou0nvBs1QVFFlE01CQXxjiJUi7Ip7RHxgbvBd5IXCFxqUUqT5FFKO1wVgRiUbMUsxpXqQFcJPCNUNVeKkesLVJZkrmCw7Md+mXMqIjYGNbobjTAC1yhSNs59TTncGuLrB7RzVN6g3YoKOmBFNAOoQKBEgKiJUO2XmMooXckpv1ktbAgwCaCsi6J2wnJSknj4Q3mZxbp3CyxNUkuEnIVB4KmPFG9xFmJ6caQWPAClVicEYjI44zEWYUfKoQX1I9LZh6vFsUKhxgVCOeISottJ7ikTuemCBsLOi+QuMTTfALiQVhQi7dMUC7U29hUY5oRnZs0rWOWdC1DeOi8soBcEnUUuicq9YMiigXZvASRgDoQ8kJPbiCaDZCC7OZ9COdpPDlAjkpMPSLZtJiGxEWCfNGjV6cLYufCvjf9H/ys/t7J670mG1/+oRaHNp9ZRnYl8Pfe+Z9h9VwRua/Z23NcBN7z1jfsWRsuNXZNYAaDAT/4gz/Ie97zHoQQzM/PA7CxsYH3nje84Q386q/+KvV6/ZI19pJjkgReJXkPR4i8QDuPr8W4VOP0tuOVTTUi0cgsrNqbZoxNJDoLCZBjC+aiFVEbGoQQQcZUFav0tZBoj6h0xaVDZWa88IbXoUilTSTpepXzUtfB2nhk8EZi61GVi1M5ghm37YOvBMI6ytkEpwTxUwY/tg/Og/VmsBTenqiLNNSdEaMQ7REmWG/KIthBq8KRz0Wkq+HBVX8q5LTIPFg5x9YjiiDBojShPk4FN1MnX6pjahKnQ26ONJ5o6MibirKp0IOEqJuiT3e3pV9ShbzPsc1xo8boliUA4s0MPai8+qWgbEbBthpChKgiPi6R5AsJPl4gfnIDkeV4p7br4hC+c++DaYBwoRbAFLvDpSQxV1Puy7lwPhKzk2yMt9stAbnUBTOnuHQY9RLcSwQzD4fXvq/ppim3zK4BMFMRmU1bR0QObyXeiJBAD0jtQuV64bHV/yKxoT5MtXhUNgSm7kmbBdYKkqTEeUGSBDJ0etAAoNevkaRlKATZKHGlwpSKQmvWRk36eUy3X8PmCuoONZC4fsh98bHDGoWQHiktul1g85SNl3qGyyntJxxRPyxgdV8gkGVE8mQRZLyFp3bao3KFaUiKOUf9cI99rT6lVax2moiZHB1ZikKH9le1u4TwIeelLql/PmHhgZJkPQMZjGtQErPY5NSX1hkcDs5pPjVgBPG6QuWC4TLoxz1FU5K3YoQHlVlMM2KwX7P5qpJ0U7Pymib6pR3Uoy2SDYlpePIFh2tZRjd51KamcUwwmpf0D9RY+JxEbiUI67CLbaJegYsVLlKI0qL7BRBTzKiqfIDAJlMJ2bPhaouSXGocf/UP8P3f+L/2/LhvXLvrOe1/vsT6syNH+//etz+n8z0X7JrA/NiP/Rj33Xcff/iHf8g999yDqlaurbXce++9/OiP/ig/9mM/xq/92q9dssZeFlR2vaHApGJH9iByWOBmarg0uJCNncBsoihmNb3DiqIF85+XJFsmFMOqKfTIIvvZxAIYQg6I1yHBPeo7VGZxVfFMn2pMI0KpQIRqpzKEcaF4phYhIpIG+ZWLZXhQjCyytCGZ3jlUz1Y5PDokVTZDfssk4jCuTj926ho7gZnKBlNKRFGGULuUVVQo1LlpdPMJsRmTJaxH9QZBEmZ2uHxVuS5msUW2r0Y2p0h6lmjgwyqaI9QZqCyZAUbLKakSRKcVotvftlguSoRWFEcWcIkk3igQucWnIRJWtkMi4Pi4VJEqG0u8EOihpaxr3E2LJE9tIbp+O8pzNkqzLZGbYleYRmLOTzb2irhcKBECeNm//8I53//MD9y662NMsXvUHknIX2ToWk25rwzuXsDQxDgvsF6SFRHFKKI5M2I0TCAGsxUjGgZXSuiFBS4xGxaKvJGQh2T6uGOwkQAk2WYK2nPL/jU2RnWcC4nvpQ0WxEI6hv0EnykoNUSedK4g1gbrBcMsxg41QvugpDUC4nEEvErqB6wVCOnQA4GLoGx5RvOSuGtJNktqK4psQYaFq6Kk/VCHmQcctpmweXuTzq2SWlySKMOgiEMEplA4J0MtGC8CiRIh/8XlCr0WkZ4ORSpVPyysjY602bxtgfVXOtTCEF/KsH2h8DYY7lg8eihC/ubQs3WLRLiY1rGCoq0Y7ReI2LH+LUNuWlrnZLeNsAI9hKJd5eGUAmFDNMc0wMVBgXD6FQlHHgnKAFEYsgPNkDfZVNRWKnm5D3mgZV2gCkG2cCV+hVc/vu6+Q3zw7t5E8nQp8kD+/O8+tzyQ54pTNz/+9DfvfgOsPfM+F3sdfu+i9trGOOcFOGfey8USlufqOHYu7JrA/Lf/9t/4wz/8Q+6+++4z3ldK8bVf+7X85m/+Jl//9V9/7ROYcTI7TCbgIi+C134U3i+bwSIYxpKqcQQEdAZlXRL1BdIQij2ODKI7CEn8k2TxkPgX9R1Rv5KMlS4k6IvgoW9qCuGDPEp60MMQmh6ft2wFjW26VuJiGVbmqnosCBGsnbVEWk+yWUJebCcwTpLY3SRx3VcOad7YUOcyDwRHdvrIvsTHEb6ehGtSmHCe0uDjCFH5/wvH0+yJXTMl21fD1CXRyCEMwYJahZVEFwWffJU7cKE4ZtmKgCaRtcG5zNqQrN+qU8yE2jLFbMzYu8SPrac9yMKiMkPZTrCxRPhQT0cPS1QuyRZj1GIT7RwiL7crJBclCBmIknPUn3RM8fzDxea/jMnExZCLnbiQqMsv/vj37Oo8z0Redn72mR+49Yy/d4OvUR/kf2y+dlfbPt9QznhEISmP5sSpofAxeT/hRKNNIw73nEhbbj58mtxo6nHJRreObIdIiTMSYYMjmTcSnZa4UwlRT9I8URJtjCgbwU7YzAb3r9yGR7pSQRI8rCyKpfL4XCGMCGQkCve2jdNtyKs8FwnkAoTHzBlE7JDKhXZIj1IOrR1FHqENqFzQPOapbRhUHpLm938o1ETx/SGu24XVNVASfWA/9pVNikWDFJ6RiSitxFqJ1B6lLW4jhkIEgy/lqZ1QCAOIkD8S3MEkdibl9Msjilf2iQRVHR2BKyVCOUTLUcYOSkmhHaODinhTUluFsiUYHIhQJUQ9j+9rnHY8uTGHEB5xw4DuviiQzTg4oHkA4RnebBHDkAvbeljhGzUoSsr5Gv0DmnxOMPO4JVtKgGBmI0uPqcnq9zB9njwTLgVpAfiT/SdhP5za8d6z1X65dLiwc77xq3/yvNv8yf6TF9uY3WMP814uRUL/rgmMc444fmaruziOce46GaDjpHEI0QhUyOWwDlpJyEPRAj2wwWkrt6hcoHKHTUJNFhdLvA42xsnJYWVXTIgmVBXvQ3FI8FpgYkXUKylb4RqrLNgyQkjuL9tRKGapBWUtomiqiZ2laWhUboNP/diZTEtsPUjayram+Uhnu39iR9HIsaGA3EHazk5wtxacDLbM5XbNB6+rmixZHq7NOPKi1YTE+CQmX25SNiTRsCIYZVW52INNA0nDhgiMr0hNsI+OkUUTtdEPRCONg9101dSirRBum9CN7a0jV7m4FRavw7VxOkS3hPWozJHtS4jjOeITnSqp08C4Ro53eCdC9GeKC8LzOQozxuUgLmfv92znfDby8kzbvezff2HXJGZaxPLcSDYEJpGYFhyc73BStMm7CRudBqdHMzTnhzSSAuMkUvhgpQyTwpZShRowPnGoyGFLhc4F7Uc9yVqGjzXCeuIODJVH1SzHN2ZYbA/I8whrFK5QRLUSk2uwApkJbNuhaobRKIZMEnUVXoJtBBlWujCiVc/ISo1zkmEvQUqPkFUUppBELtQ806NQD8zUFOZom9rJAXplKxSNjONgmiIlfjhi6ZN9hGnSPbaP1QMWrzwil3jhsbFHjyQqA6ch2ZBEfc9ouVoc9B4XKbovmyVvC4ZHLBQapR1mECGyECXysUPo8YMTKCW+achTiR5GxFueaBTyYU7dHREvZKRJiVaW3iCllpYo5aklxSR6ZYys3ODAelA1S9musfHKeeJKOiccqBz6ywqvQqpmbd2RbhhsIhBO4mrTHJhnwu/82f/LQ25bKnyb3BsTlRX+E+9LPn3Ge1+59Oo9OfZu8RenP37B+/xvH3rjebf5Vf4hv7v/3/GdKz98Mc26alH0Crhld9vumsB8/dd/PT/wAz/Ab/zGb/DKV77yjM/uv/9+3vzmN/MN3/ANF9TQqw7OgtKVjEzhqWx6TaiP4msJwoWblVdgqxuS1xLdL4k37GTyn8/F4CFZzxD9UZAqjSvMjyHBpmH1SziPqesQMSldICe5nSS6ly1FPhv2ldZXdV4IFX6dx9Q0RVsRd1TQCRNycFxLk2yUyM1qMj4mFmXIqQkFLO0k8uRtKDTplZwU3hSTejGEO3PlGiaKHYS1qI43jl6JoFN27RqjBU26Gche2VQ4LamteqJ+iSwsZTtGj8zEcCDbH1avbCzJl1JqWRlqDQhB2dQTl7ExhA+RrlKBUwJZKlRmQj5QHtx5bCIRrQQzlvSVHtNQyIUm0YkqmX9s4DD+jux1Qsin2DWuVBHLqzHX5UKjMVOcibLpcYlHbMQ8bpcQAwWRD1KtyCGER0vHgXqXzGqUdEjp2OjNIFKDjgzFgghOYf0Y2dPEmwIX+ZDLsdalsd7DpvvZeiUsL3Q4tT5DL0uqCAxELUNZqlAc01QGLLlENMEaiWgajBMII5AjgZ1x5MMIUyqUthPiImS4F456CWKoUSNI1z311ZKypegdVtTWHcVCjcS44EJWS3EnV8K9tSiR3RFJt876qzzxQoZ8sDlxHquveNINh6lJsgVB1PXo3MMKmHpIoM9nagwOe+zhDD/SkCuMFUStHNGGohdKDvhcItJQUBMPOrH42DF4AZSrmmxJUT8VzFrajQzrBMYq8IJ+P0VKz4gYawXeSWwZpNy+FCFXycPoSEl2c1jomv14TG3doYpwPbpHY1wEeVvQPGaI+5Kk46iXhkeu2K/x6sUnl+Zoveb/5r3f9JrJe5+q/v/n//1jF33cf/yZMxfSfuFl763+eu/TN76E+IvPnHtBb6/Ix9nH+eb85fyD/+8Dz/m4AF/5f13dusddE5h3vetdfPu3fzuvetWrmJubY9++fQCsrq6ytbXF61//et71rnddsoZeFsjtyffY392PIxBJjCgNqpuH5H0nJsn2ISIjgw2mA1NXqMIRbeWo1S0oy0nVe2BCIuTI4GU8icIE/3iBcAI1MsjCYHU8kamZmiDuBXJjo7BKp4YGlMBKgUkE0djmOAkFNqOBIX5yo1oJE5Pq9hNCMu63s9tOX3EUHNmsmziSnYGdOS462Bx757Yn/t7jkxjXrjE4XEcVHj0yVXEwCV5gGsF2M97M8SIU6BQmtNmLoFsO+mGJWmyQDPNwrspYQOWOqOdQZWVTrQReBrvKfEYhTBSiWKXDK0k0MOSzEdmcIt0UJFslZMEUQc02kVv9yrqzqouTxDCWlk1xQbiYKMxr/uXlfaicC1eCvOwVcdmtlOxicCHRmCm2URwoaT9RQ+WQLcSYpiM5oXAJpK/coDdIsVaGQpZW0R2mDLsp49C7s2FxqxxF4ASuUUXZBZUyALySxF1DdDrm4O0duln4DTfSgt4wIY5MqAljFJkVqHmLNZI4KRlmNbACNZK42ONmbHiG9SKM9pjYoZLq3u8FRScORTbjsIBUlKEGWbJZ4qUg3jLEqwPkVm9Sd8t7H+p81WsUB9r0Dytq+7qMNmq0tyDuemQJ9dWSeDMnX0oZHIywS4LWE572E4bRoqb7AkF56zBIurZi1DC0uXZ4yFJrQC+P2ejFIco0VDgJqh4WpJwTuIFGpJZyTlIagU0F9ROSznINIX3IwykVMrKI6vrbUuGGGrRHpZakkTPqpUFCXcoQKVM+kKpU0jzu0L2CxY8NOP2lc+RzgtG+JOSwWoctR5f193et4F98+FuJWzE7777fnL+cl7/m/97T83zVH75jT4+3axyDrz7yKSCQDWBCOJ4rifnOlR/md/f/uzOO877k01c98dgr7JrAzM3N8cd//Mc8+OCDfOQjHznDRvm1r30tL3rRiy5ZIy8bFmYQ3XxSFd67qqBirMOkXStElhNvVO5fcZiER52Q1O5ihatp4k6B7BfItc0Q0ahqnUyiG1qHiveDApXXyGcDsZFlcORSuZ0UzvQ6TPajQZCpySIUj1R5KKYpjcMJhSwcSc/iIhHyZESQoUVPruFHo22HNdj+v+onijPrtOwgLOP246p8IK3Dw7MqthlM/KuoxdgmWUnsTI3eTQ1MTVA/bZC5xdY0sgyFKb0MDz9X0yCD7bEzHlMPcgbhPDoLBTS7N8bMD1vIfhEc18bSNQ9OSSQOWVjSTYOpS2QeKkHroZnU67GNCGFDAEmWHmF8cLmJJcVCnUhK1EYXkRd4Ga7BMyb4P8/xoz/4nfzSr/7us26zWxKzG+LyJS9LLrkT2bVMXnYeb0piriJYQf/FOY3PJ+gheCmQFpqPetZuCRPn4UadDbUd6Y1SQ6s5QknPMI+xVlJvZPS3ajQ/l5CueRqnTDBrEQKfxJW9PWjhKEuNNZJDy6cZZDFJZKhHJavdJvOLPYxVjLKIIg+2+BiBbYT7vYhtWEyrQ9woUCrku3gnAomKPJQgRhI9DJKpoqWIq7xFFwfjF9/v40sTHDe9w1uLEIKypXEK9IfaLJ901FfyILkuHFEnR45KdCNi/kFBPqMoG4JsPiJbguxowfJcj5XVGbDgUoePPM5JNoc1RqMYVbPYXoSfKxEiyO/cSCNiiyglom4QswVuK6bYZymWQFqJz2VQTsc22Fr74AQnVKgDo2omLLoZVYX7wWsXCm2mFnvUMDgC/RtjhvtbzH8uZ+7hjLWX1li/Q3H4FKjOiLKtnuGHMsXZeF/yafjYP3+a/Ou5YEwibh9d3rnqg7XPA08nL3sl/RqTGIDfv/t39uSYlwO7kcmdDxdcB+b222/n9ttvf84nvhrh0hjvVKgYrwTeWXAWn1f2vVYjihJRGkQ/kBCcmxACOZ7oG4N3LtSUcR6xI7ciFJe0od7KKEflDrOkEA5MEiIsIeclyNW8CKQFB8l6gfBVtMaEpEYXKYqZKMii8koeJiFZGyHXuyFBXciJ09gZNVVk5YpmqZy+JD4vwvtjaZlU24n/VH+r4GjmjQVjtwtRCoFvJdiZGlsvbOAikCVE3WAQ4IVAj0IR0KALFhStKOTDFGFVz8UCVXhsEgplSuMxNUE+n1DvjJCmks/ZILFDBVc2WVjiDYtTtdA14wNhqgwN1NCQjgzJZrC5DOcUuFJhE0U5nwKgNnswyoLEzp0VeZrigrCTxFwNEZZnwpWSjU1xfWN2fw8bN7BpQvNY5WKlwNTAb8V4AWoo6blx4UiDVJ7+MMWUCm8FvlD0c0X6ZMzSp4uwuJUHV0vf7SE2OyTZLEuf3M+nbj5ELSnYXJuBZdDaEilLogxH5zfxXvDY6XnKTrJd9V4Q/mmHkB7vBTKywR2sVKGdsUM3S5K0JP9Cm2RLMPtFGyL+g7DAFXWCHBjnIIohy/HWhueL93hTuTqKID2Lho6om6Pi7Um9V4J4dUDyhR6tJOb0lx9gtAT5okVIz6njc+i1KBCXxYKlxZAUPMxjoqpOjY1DxGnQS/GbMTQNc/N9Ro2Ydj2jMIqtzTiQsKUsuJ8VEpHYSf9dKRGRY7ueQTA28B7SRoG1kkIpVM0GxzblSZIS0SjoiibpRsTcp7ZY/BswNY2ta4SvI7Ph5f8RXoM43V8H4Nf4AJQXvv9S89zRh/Ek/589/s6LbttuMSYtO7FXUZdzYXy8vSAF1xIuiMAURcH73vc+PvzhD58Rgbn77rv5pm/6pmdN8r8mIMG16qis2M4RmUzYPV5UK2VFAVIFje14kg/bCfHjyIasJEl5EfJGxjkVIkRjRF6QnOjjdIuyIZFVfrxXgrIZSE28WRCXwVlMVpbFrkqo90piGnqS1K4zi+4VqI3+tuPYuF3eB0mcVIQlLL/tuGYt2GAWAMA4UT+OtvvnQ35PkASU28cVciKzEypIvPKFhHjgKBqSpGsxdYXOQlTFiSCFM4kg2XSUTRX6LWTlGBYKs40LZQrjifsOm0pcGgcP/6rqs01VyD8aGFysqqiNDQ5xcrs/1fMHOSxBBfc0ryVeSnyqQyE4JRAzCTIrQhSmclWb4tz4qbd+D//6nedf7Z8Sl3PjUuW8TKMwVw+2VlukvSbpFrSeLEg6Gj10wT2yXSJPx3jliTY0aiRwscLWPNYJVFj0p34qSIXbT1rSp7qhtlZRBkkwhErwaxvM3i9Zf9k+8hd1mT3YJZaWFy+tkJmIw/UttLR87PRRbKmCzKpuSOsFsbYMRjHWKHRksVZihxrnBLJmoGnACsxIc+P+dR47EmNHNZJNg5jRmJok2SonhjOuVUfGEb7b3X4eAhiDiwROQ/9IuHcnG2HxCucpZhNsWiddHaGHEeQF7SdzssWUm28/QSdLOX1yBpd6XOpozYxYrA84PWgy7CWh2GZkg+eMiYKLm/ZQSkZ5mJdsdBrEicEnDqzAWlnV2dkmJqZQ+FxhnCCqlbhE4B1EicWUGic91kqwAmcFUjvi2CArg4No34iVL0vZunWO5Y8Y0tURXgq6tzRofH4qIdsN/uTm7WfGTrJxLlKwE2OCcjZ2RjyeaZu9xu2jF50RedlJWPYq72V8rOsxkX+32DWBeeSRR3j961/PiRMnuOuuu9i/P/ir3X///fzKr/wKhw8f5o//+I+55ZZd2gdchZD9HFpJmLhn2TZ5GU/6jQlERKptSZjz20UWx8RF67D9ToylWONVKSHDqlRvQLIWYZM6qgjHcNF2BXmUQBSBvLgoaKJNKzhvqTxERtLTBXqtH+yeK6kXUoZaLs5BFFVtsAit8KULsjg7dg3TO2q27HBKGUdsxg8iayspWkVqKmI3uU5CYGZqgRBISLcssnDogUFlBhcpXCyJew49ElVhTE/eDkmS0SBEnNTI4ZXApDI8KL2jbCjKuZSok4FIMKkin48Q1lM2Y/TIEW+VIWmzm+ESPSngGVHJN7REZgZ0MF5AiFDfphEKdQL4JAqFLL0HN3WNuVqwVzKyabTluWFKYnYPmRjoBKcuPTQIH0xM8J7oWII5miGVpxxp9OMx9RMhHFK2IBqAHnrmPj/A1jTxyiDk/2VFIC9lMB4RzQZ+aZ7sUJN4SzB8osVwxtDp1PFDTTSbsTFXZ3NYo7/aQG9pfD1YI5fF9uPfG0lpJPQ1shS4GYMrFeQS4QSiEDzy2H4wkvaqJ14bogcRclQihjnEET5SyNNblEeXkBPTFxkWv4QkXRlx+LSYSIgR4X+XKsq2rqLqlS2/D3Li4auGfO3+z/FHJ++gP5tR1DWteo5zktODJuvrTfxQgxMU9RCFiWolCoeLHEgo8ohWc8RMY4R1EjMjybvBXhqAyhraGYGsHMxqrXwSBVOJQ0pPkhYkkWEwSnBZ+CxaGiGlJxvFeC9IawXMZbhZOOWb7P+4IN4qqZ8qwwLaFOfFzkjFP/uap+fB7Iwy7Jy872YS/50rP8yDPDsR2mtcLLl4NmJyNiEaR62uVTxT1Ox82DWBefOb38xLX/pS7r//ftrt9hmfdbtd3vjGN/KWt7yFP/mTP7mohlwNECZoi12rhhyOJrkwlHnI7xjLrbwJBcWs3ZZhnZ0vMU6Cr4wAhAhe9WGiLydOZxQl+uQmjdKR76uFlSzrgrUvEpsEsuScxyayquobcjf0wFN7soMY5fhRFkhLHOHjGF9P8JHCpho1KkFK5LCAvEDkIY/FOx8ehOPke+cnDxuk2I604LclaIwlc1X7dxbB1KpyTQvFOSFIucb5PAC6XyKsxulQx8ZLQdIJtspeihCBiYNsbhyRkqWrNOTBWU3mFjejSbYMemDIlmK8EBQzEcKBaIVJqrCeuFeCANOOcUqgpUB1MoS1+EQhSk+8lQdZW6oxzZhoECQQ0wjMufFLv/q7/NRbv2fXUZi9wph8XAyReT4Rl7OjMDvru+wFpiRmdxDKUywbepHGNBq0Hw/S1XTDsHS/ZlWl2NSTdCSNp4LrVtx1ZPMhD7BxyoSaVsMgW0bJsMCiQjFLX5YIIbD1iKhb0nxKMzwErYUBzklke8StC6dZSAYcT2ZZjUv6CwnNKBSvdE5WEQsFA42vWahZfCSQXY2r2+Bc1rDQcohOWAjrHwH3FXPooUfaUKOlrAvSTcdMZ4D+wjF8vMMERWp8UaA+/0R4Vsy0KG5YYHAgoawJWsdLbCRQhIWl3h0LIKB7g0LrjEeG+9gY1MlHEd5KykhTFpqyVPhSonsKrzy2Djot0dqSZ3EwJLChMGbH1BnVSvJegqoZZGLDYy6uck09qMjhrCCdy6glBbmMwjUCiorsGaMo+vEkP8aUCmuCU5moojNCeISA/EjBsVlN+4s15j9fIAZTCdmFYvjFPvWbm5PXf/T6d/LrnGlLvDOqshuyMN7+HY8c3qNWwgOtb9yzY43xbH05m9x88Gv/cM/Pf7lxMfK3XROYv/7rv+a+++57GnkBaLfb/NN/+k+56667LrgBVxO8EIiixCw0kUkMeVHlsYwJBXhvwmQdu53cPpaGxRHkefjHth2vgEnUZTL5H8ubTMiHUac9tbwkO9jCNBW6b8GD0wLp/EQi5SJJ1CtRpwbbJgFaBcvjWoJvpJhWAkrgtJxIrYQD0YwQpg5AtDFEDDP8UIQoixAhkoTCZzkijs9wKwuOZGq7Tozz4MJDVYylZ8YGEuKCZEtlQa8trMPWY2QZ5F0uCa5tRUNiU9CpCnbQQuBUID1R3xJ3TFXQMhzfxZXsS8lJIr7MDemqD+SjHpIsTTPCV85uahT6pjIb7KmzEqqaMNiKdBoHWuIigSzA12JkX12U/naKS48LITLPRFw+877juz7fy7750K63fb5garF8fijlkPUct6EZLntkrkg6jsGyor7qWPiMp7YabjLpyX64f6YRwjWre5HDtGLUoEREteqeVgtRYyFQJzfAWvSx0xBHpDPLpCsRg8UUV0r0asynDqfcenCFY1uz5Hmo6wIw2qwhYhuiF56QA6OqvI+hovWopGxIypYnPdJlvj7iRDRDnBhGT7To3uaIOhKnIepLillH/YSicXwGneUTGbK3FqzFDYeoVgviiOKGBXqHE5Kuw6QKFwl05iiaktGBBie+QiDmc9wg4lB7wGZRZzBMcP0I1VdkpQzW+L5SFviwuEUpqc2VGCuJYoN3GmcVFBKRaYpuBHGIPvlRsLRGBJtonysYKNTyCCE8WRGhlcOVVamETKF6ijL2ULfIuUDOhAz1eRCgtJusY3ovaMyOGMUxw2HK3EPgx0qIKXaFsTxq58T2bPKyM1pzoXjtv/knZ7z+8E/8/AUfY6+Iy9kJ/uf6fOdnD+9fgJdtS+1+getgga7qT885/ssud9k1gZmdneXxxx/njjvuOOfnjz/+OLOzs7s93NUJGbzhhXXB3QUQcRTcVCBM3EsbojEQIhc7k/NNNbGP9LY1cWm2oy7jY4wxJjUqrKaxvkValLhWHduIqgl7kFoFy+ESlRnU6U4gV2NZWhzh0wSz0MCmGt0vQoL/TBryPwhyMy9CVMIlimKpgZdN4rUBcqMXnMoqiDgOUrKJS5lC6Kr9Y8mYFKHtVb98XgTpVRn88Cd3cgEu1rhIYmsKPQjOYLjw0IkGwUbT1GRFXgKB8SJYhAoPph6iOqrwCOdQoxLTCDIvkRn0IEfWY4RPyGcjbCyI+xaVO4qZGGk9amhQvVAfx8c6EEIPGIcc5Pgkwi2lGDTCJsj1IMGb4tz41+/8TX7qrVe2dsn5ZGXnIi8XQlzO3mdKZKa4EBS9hDiRmBlLvKawNRg0JMWMR1iJqn66emTxSiC7Gb4Wo4cWpwW6khyZZlwtxljUqERmhnKuhqynQSbcH0JREvVKFh4UDFdTejdBsd+wPN/F+ZDvobUjjXN6/WB0EtdKZKMgO9WAqkaMapQ4NP0jHtuyxHMZs7WMckx8hjGubRCZwsbgEodZtMjY0mtEeNVk4YGE+qNbiI0OfqsTFgEB7z3uhv2ceF2wlo5G4RlRNBU2FngF3Rs16SoUSx7ZLGnGOY9tLQR3sDK4uLmRRMwVuJFG1gxuKIO7ZM0wGKRI6SiHUXgeK4/qS7wEH3tEUikDGgYdWcpM40uJyCWu5phpZCw1BmyM6nT6aYjMxA6bhVo6ENzanBEI5SlHETIKVv6mUEgtsZkiqpdYK1HaUi4aNl4Us3i6ftl+e9cLzs5bOTsR/kKjLzvxVf/ue/jOlR+eOHeZm24+7z7/5xtfx3/5nb+evH7gX+9Njucv7K8kVC879/F+4SzCcqXx8ualcwX9+j/5e3DLr+9q210TmO/7vu/jjW98Iz/3cz/H13zN10xyYFZWVrj33nt5+9vfzo/+6I9eXIuvFkQaLKj++MkSZGNCVZETIatE9crVa1y1vTSISE8m+/8/e38eLVl213einz2dIaY7Z2ZlZo2qktAAkoWwkMDIXtYDC9ogBvOEwObZz/BsNRgsBtl6YBBm4bYBNwIMfo0bY9qoaR4zTSODwUgGhB4SkkCzalCpcr5zTGfaw/tjn4i4mZWZlZmVmZUl3d9auTJuxIkzRcQ5+7u/v+/3C0RWQ4rF38EvtCYzZuaAdfG8zWxSoBqL2gGTmHiDqmOI40yYP2ttEyrqOEInoznSIwiBGVaI2hJavYntSLLNOFsk6wg8VHtjdF1DebxP0knQZ3fnwtCFzXIL1maZLzN9z4yBkdGpLMiFjkaVFuHiTJPtKmQSxfnSBlTpooOai240+W4MlAQo0pjh4jXYTCIHGl94fBIF/SGLSnxhPWJSonoRYNrlLLbIAaLx0eJSQdVaVuoqYLbrKNo3CqTE9kzUvDQOVbfsk/XkZ6fUy2nUxxgNh5rLy9a12Cjfrrqe1rAbAS+Xvv/ZAmJudRvZYT11iUoy6E/ZtZL6uKc5GdBnEpBQrQpUAUEm9M42yNrgV2KrjNkrcd0kTkZN4qTVjHXxRiEnFXpc4wc5cn8aW3fTHDltUIUm2xOEJyTVyLC9eYTzJyrYN4SuozQJ7BmkE4RzPbwXDLbA5TA9JhDdhmAC+uiYftowmaaUVtPYmEoffBy4BxEDnYUXmF4dJZSZZHpcMjmhWPvAOht/5GFvvz0ZMVfNJwrZEJluEfVBZuJJ9zzDew3VCnRPBcy4w/REoDxi0MpFPYoO2Dwg12qStMElrVtax6OHKgaE1hIvQE8ldtlGY540EFQAE6KmpQ2jDF60reAC0TqyNU5xdtRvW8Eg69XUVcyQcdoj02g1naQWIQJWS7KsYbTThUbg07hMltfRdjlI8pWCyd2KNX04IXa52h7voMXV2alLgcvldC/XKma/FPhc2rp0OSvig8vof//I/PGLe09a9LrqZriGPRP6l792C9e9Pdq55mWvGcD8wA/8AN1ulx/+4R/mO77jO+aD7xACx44d401vehPf/d3fff17eweVTzQ0AhpL6KSIXebp7Ch1wGXMLxgVQOTZArDMQckBTYwUCJNFlqV1LBOiXTYxUfMSQtRcSBkzZ3x0KUPreYtXOKjJmIGjxNCsdRE2oKY1smrmg3Xbia1WsnGI1nLYa4nwbZZMEY+t6Rk4uhxBzKxveWYh7NuwSqIgcn6cLbg7eB7wHrk3QS2l0WkngEskxbpENpCMJKoKmLFF+HiKgoiAxhlQTWRfqiWBtAJCbOtStW+1NPEciaIiOT/CrnRweWRTVOXam2OAVKCagFeCZN+CB0F0XQtKoMcNtmcQrUucnNbxvLcBpi5XC9B2WFesGQtzO3Uwz3TdLBDz7T/2s7fMieyw7owSVjApWoAtAqGSqFqQ7DF3WexcsJi9CjmNkyw+UWx/To9sNzLZXgtU4/EiMvLCBnw3xaeaetnQ3R6BddjjPUIiqZbjLT3bDZhJoBpLJqS4PID26DMpx99p6X7gNO7ICuf+2hLCw/SYJ6w2KO3wvTghpNtMlL1hhzSLBimhUvEeqQIu94RsBgYkQnl86lFjRb7johhfa0JVQQi40QjzsdPc5Y4zuTvHZjEjzAzrODF1jyHdBpdC0ECAT330KHKtxleKZK3E1or7j22xM80pa0MTiOzHikWU0eQmpB7btXSXSib7WbxvJZ6kX2MbhdIOZxXN1GA2DYNHot3/8H5Jcm+8Jy7nJeMqIdEO3xEUtaGqNM04Bk/LvKZpFFp7immKKOJ9PehA0rHR0cxKtHHUlcHcO2F8bw7vvq1fwWdFrfVWSXpPdrB91cbLeMfme57UJnaldqvrYWAuFwB5ELhcahQw+/8bzr/hjrMqvlEB/J1adbj2APHrslF+05vexJve9CYeffRRzp8/D0Qb5fvvv//69vAOLVnW7ZUTgpTILCXMmBYl57r1eRuYEES/3rDQt0gOWCirqBORKjIsxizCEZVqZ84ShHVRMD9jayCCFR8QomVcnF84nwFCRzbBrQ9wmSLZLaOuIwSCUthObKVShcenCgm4LB6bJFoKe6PwRuKVoFrPEG4JdW43tsxJFY/B2ghmDgZdNjYKJNUBM4LgAYVoLGanxOtoSOBSSb7l51bPIgSano56lKZtn5ACVYMpPF5F21DpIpiZWSonU0eyWyGmZQQxoynaeew9y/hMRptlI+INvw6xbawMuERG3dB+HCCoYYnvJLhUoYJDlKEN34zgRlUuMjn2gD32YV1Udwr7cj31dNmXZ1tdzkr5kIW5vRWWG6r9TpxAyVyc8RcxTDcZBVwKqvKo/SLeC7TE55pyXZDvgEsE2fk6Msc+UC9pilWFLlKajqAZCFS5QfbYNiGRND1NsSZJRgHVBNK9eK8wE4GqYOcFEcjYvHVgrC2qjEyKqgV2pKlFQBpPtZfhvZinzU8nKb5ohwuSls0IiMzhvcRVCqk9ZqWkERnZZo2cloQshel07nIZyhI1qoDoVplsFsja4roJ9UDQO9VOVp0LCK9peoqiqxATRaM1wQsev7Aa2SAX2SAyD1Ygq2iU43QUxUzOdVtGPiDTyOIotdCpqNyiioSlRypU5Wg6HUaTjDS1c63Q3jhn0C3xPt7/dMeSpE2c65KBYi8DLyCJ1sz5UhmdyqYp3ktqp/BO4Kxk63ME19zc/xlU/+wVv0L/su3a/wfv+ItFGPKlbMvTrUsBz5WAyc0OnrzeutNsku+k/bnuIEuABx54gAceeOBm78sdUcLFoMUZGDigyov/WbtoKYPWZrkd3M+yXuaZL+7iQb6WczOA9gp4YMMH1mEdwpjWwjjMtxVtmw8MrI3GdmOIpXAz8CRwg4TJcUPTEQgfmRibCXQZ0FNPNqoIOmauCBcioGlaoX2vAzv7i2OaMUDOR+2L0SD1Yn/b/4XWBOsQUqL2xqRAs5IhVMAULrJCCvTE0fQ0LpOYUTQqcKnEFB498UgXMJN4XszEkuz6GH7cOOTuGOombieEyMTslpTHOqjSo4tAuRqdyFTRZuYYidmPTmReSfxqB1U0cz2QqC24gAitLifXqMpC01ycY3BYh9XWM8XCXOvyV8uBOQQxt6+UcXHup5YEHVATiU8D1Wo0C0FAen4M3uM7+Tw3MdsKFGtRIF8NegQJyTggAqRDTzWQuExQbAQ2X5Kykh8h3a1xqZxPFDW5QNWCfNOS7NeIxqGaHjvPU6R7Fe7YCnJac/T/+1H8fccRbsDOiwUqcdhagfFRAA84K/GVQlSSkHhkr8GPDIPjI4a7HVxhQAXypRrvBY3xnP+8DhsfkCQfnCA7Hfw0OnCFokCNp/QfM5x/eZ/yeIfsQkm9klItB7KtmBOmS/CzrqIALDXcc9cOpdVMa0PT6Og2VkVQE5zC9TyogEgcs5MplI+vB0GaNTgncI1CnskIEvQUqlVNth2DRvvdknuXdrkw7TNIS+7Kh5wv+5xxg5iZM01RymOUo5h0o0FAxxGciMwUIGUMBTW6DdXcz2nGCf4W6gaezXX2K36QYZJf9Nx/+L73XGHpWDd7AH2ppubS9T+Tg/Zr3e5vvuLuW7wn8OXveoJvOP8G/ucffM0t28aonvJL3GQNDMCHP/xhfvInf/JJQZaveMUr+JZv+RZe8IIXXP/e3kklBKHNQREz4DLzs/dyMaD1B1qLnIsD+tlyUiwG+3KheRFtC5iYhUfOdSV+IYqH+N7Za0rNBZBCSUJZRqZHx9dDarAdhRn6qHuREt+NLQvJ2OO1olgVBBnBSrbnMGMbdTVVg2gESrYBaqmEBDjWJ6kbwrRY5L7MLKGVjOyLvOQY8ARH1MPYyNoo75GTMto5a4nLNCLM+p7bNGnrEY1DhAQzaTUsQNLEzBtZ2bn9sxhPW1ZExh5s5xE0qPN7JKmmGSQQAtIG9MShpza2ibW5OLKwoCX1UkIwMmbsSKJpQ2PxJp2HX8pRGcHiYQvZZetO0sA822sGNm5WO9mtCrG8XB06kF29XKNIVyuarRy5r0m3471FTyHdD/TOVHFCJk8QdXS3DEax8omSvQcyslGgyQUuE4zWBNO7PEFDSCy63+BqxeQez/iBhPxUB1VBtRbt6HUR88GCajNXlCTZs6R7Cmk96vweEF3CRONYfrSkWskpjwJBoFKHAHyjSDo13jisNkjt0cYh1ixFaVA7Bm8CIfexXavVkozv8ZQbKSfMvaipRf/5x2PoZp5DCNiuoTgSsB3DXTs11bLGG2i6Am+iJscr6JwNQEJxX02mG4ZlynSatlbJJjIxpYosiIxtckIGdGKpxwk69TgrUTr+n+U1o8KQ7wjMKALD6bpEOEO2FZj86Tp/8cIOrlIU6yN2ig6TKqEsElwdbZubiUF1LL5SyH4T83JqOTPLJASBUp7UWEbjnNBIsILkwg3NF3/a1/d84K38i3cvNDC/svmqp3zPpeL92d+/5l942eWfap1PxbJc+vzldDLPeLXfv5950ZOdgp9O/c7/8tr54xmQ2/iJv33LAF09quH/c23LXvMv6nd+53d47Wtfy0tf+lK+4iu+4iIR/+/93u/x0pe+lN/4jd/gS77kS25op++IOtgmBa32Y2YhfPm3zJLpY86Lj0BHCmKv2WKdM+F9IEQjABkZGOH83P2M0DqYtVqXUJSL7VgLJkGkSXQMSxJ8JzrWiAA+NQvQ5UGPHZ06UA+iW0zdE9Q9hZ46bNcgOjoO6kPMVhGJRNaepqdR6wPUmSbmxFgbzQtE2yanaA0M3EL/otvAy1kwZgiEiYOyatsIkujQ3GbFRAtmD0YTtETvlQgbwytF4whGoWqBKOpoYGAdoaqfbB4Qor21eew88sQ61VoGgBk3MV/mzJiQm3i83mOzBJ9InIo5M8IG8HH/g5H4VEcTgtGE0NTg7NP6Oh3WnVG3on3sZgv6rxV4HFxuBnquF7QcsjC3qUSgm1cMlxXq0QzhI7vSO2dJt6vWGEYgymjSMvzsNZI9S9PXpMPIPOcXGkQIDO9JmZwAM5TUxy3+Qoa0UWcjQmQrdAl6Ipjc4+k9Ltl/Tkb/UzVN39D0FdON2F4mbMAv9XCDFN3JcIOUpqMjS32qQ+g6gvYgA8EKbKPRxoII+FrR7CTRBWxiUIG2JzlAoRBeEJLYMtwse4Z3GzpbkuTYEfyZc8jVZUKvw95DKS6DpU8EVNGQDBPMyJDtemwuMJPA6G5J0xUIC3hBz1ScD33SNGp08rRhNM4RiUe2wnyTWKQMaO1wTpLnNUWR4JzElwp3NsfUAq+jgYBwAV0IhA+YIrD0WMCezdn5GyW7232yXkVda7KsQeQ1da0RIqCUh7ShKhOSbk1tU9CBLGlY6RSUScPuuBONBaaK3qckauvQl/9y9dD//kVs8coDz1ydfYHL61/+89Gf4ivlh24LU3Kn6WAAvm/mUvanN5fp+/pL2KnZ//f/3X9zU7czq8oO4WYzMP/sn/0z3vSmN/EDP/ADT3rt+7//+/n+7/9+vuu7vuvZDWDqBtJOZGKEiNoUuKhlbP64FfWLGeydMRKzUmKhjaEV7acmLtO6h8XXW4CTRRFbMIqQaOSwiODGxhsHSIK10a44z0EIbD/FJxJZO3yuIwgwiqBmuSmCZN8xParJdj3JOOpNYh+2QPlA0MyZClk5lBQUR3M6xQC5vRc1QLNgSyEWIZyiZZpmQZ5SLBinGcvUWi6LSbEQyWu1YDbcIl8H5yKwmzm6uVYXJOUc0AkpCd7Nb/yEEIFNYlCnt8jqZaojXaq1lGSvIeQmMj/WE6SkGWiCiHakQUuCANdPW12OIWhJ/uhOzOZRijkIPaw7rl7/jj4Ab3vV6Bnek2eubifbclg3UCND1QhcqcgmgmQ/sPxIRfrYJihFc3QpBgr3ckTV4FsdnjfR0nhyTLJSeLILU7rnFTuNItkVuNQgXNS11CseuVbRTAxVKRFOEFSgXoLJCZgcT0n2Yf8Fjv4nBN3z0QmyPtqNToze0/QN+w8YJic9yb7ErcXkee8FvbUpWnq08uzUOuYcr9ZkeY3PLHVXc3R9iPOSnb1ea7bpaXScUd99kcA9rBmdOM5dv69xvZTieLcFJoF6KbJO0gVWPuHJL9TYTryHyUbGtuB1oBE8srPO3mYPmTmkjCBCSo9H4huJNJ6m0oRhQjDxnjEcGUQlSbcUuoR0JwYkexM1SN4I+qdsq8U0TDck+Y4n/2BO89JxdD9zgukww+QN3kmclSRZQzevmG52kUsekXiEjtscVSlVo7GNAhVY+rjETAJFJq70TfmMr3dsPjVoeaq61F3sM63e0uqFXjj6zRtex2VzbVqzg0vrX/5uj8ED/+qGt3Vpffm7ngBaBubBa3vPNQOYj3/843z913/9FV//uq/7Ov71v/7X17q6O7KE94iyjoPjPI2uYdCCELd4LA9oI2aDex+I6vOLL1JCyci+CEHIkpioDPHvPI2DcKMIUoKEZjnj9KsS8nMDjv3RDnJntGg1gxYwRAAga4fNVcteRAZBVhYJqKlD+ARVxTwU6aJX/Vyo7nxMtQ8B2Whk7dH7BdKm2G7O5DkD+uNpTKSn3bazCze29rhD3cTAzllujBBRD+MW5yhYNz9nYubqNsvQmQVleh/XM2unq5v5cQcfgVyIC85Zobk1dfuaOLtNPi6x6318HkPbhPMQoF7LolOb9TELh/i/bBwu0zE888II9kdPNi04rIvqdrePzcDK1V57JoDMs8lW+dJ6uizMYfvYU5dwgkQ7po0kvxBIRh49qghlhb/nKNJ6QpYyfqBP91MTpIvtX7IJBAXrf1GRXJggx1NMoskvdPEJ6KmgOuIQe4rsvKKZ5LDk6J4cMT7fQ04lZgQEQdMLpDtg9qITZLrbxJauqqHe6CLqhnS7ZBlwaXTYqmQgAFleY5RDiEBRG5TyiDSyHMU4RepAt1+iRKByEm1sZEUmWTvpBn5g2X+uZv19gs0v2GD5kZIgowtbuidY/kSNKBoSiNpTG81gvBak+xFkBAX5Wc2+X8KMJc0GpEslqXaMm7ZLolS4SiIaidmVJEOFS0EXoKcxV6wZgKpprfvjRF61Isj2FNmFgnLNUK0IqhXFkffVPPZQwvOfc4ZT+0vY967gkgRTClafCGx/dkr3c8bsGI9Ufp4Ro5WnqE00PRgbkNFMIZl4psdv/3fw2VBfsf5HdAbXNln4VAzL7dKp/OejP8UfvuFnn1Krc7vrV1/58/zq03j///UlL3vSMV3unM5ayb564+KxwKWtel+98Y5r3va1tA5eWtcMYO677z5++7d/m+c973mXff23f/u3uffee697B+6kCkIQZrkndXMgD8UvwithjmXm4AUWA3itL9LIzPNdZm5jSsWeZCmj60yqCUYxPZbSdCUugeqIw6WK6uEeWdlEO+W6HeDTGgkYQ1Ay5qoEELWl7ueU6wmq9qhSocoIVMx+EwftSbxIyMrGrJMQEA5srlBKIJZyXEcjbMB1JG5jCVXV0VpZa3CzcEu5OF4OnAsl5oBEaEWwLgKTWV5N08wzcOJ5dLOT1AIXCWmyAC8HrYxnTM+B8MwIYsLCaMA7wmSKnhaEfhe3FrNxgo6fkxlbvJEIF1AhBnrO2KrkwjgGr7kDJgnqsGf5qeozyUL5061mIOR6gcwheLm2krVoW2/DPO9EVA77nLuwHR3NRlrr92aQQoBk2OCLqKeQlcOu5LCcYbsaPYW9l9RQS9REokeCtQ87vBFUA8X2X+0yOBaF9eU0IdmP+SbjewNmKKiWoVw19IYVcnuI6qWEXge1PaKzuY83dzE6qWIwI7DRnzBtDPvjHK3bLJZS4UYmmq8Yz2jUZ+wGhNSBCtTTJLZyZdHJy5WK0LOMTySsfMKz/YKM3lmHngb0FMzYIqclLjeYYY3eL5G1o17N8EZQbEQwlm8FvJHUKzHrq651BFQigA6EoOg9YkiGgXzLk23HycdZGHTdl4yNoloWJMNohiCbQLYbzW1i+3Ag3wx4A+O7DIMPCR5bWqPcTxHHHJ1PKQaf9Jipx+eC5azAndihbDTOKuxUs3lmGdOvSFJL5QXm8RRd+uiGeUjoX7Z+Y+sLSaon2yhfrr7h/PUPcm9F/eEbfpZP/CS8ipfdlu1dK0P1dFvb/sM1tO8drF/ZfBX/S/Mr879XfujS8/HU5+evvvmf883mq4Hrd5e7rhyY17/+9fzhH/4hr371q58UZPn2t7+dt73tbde18TuujI66DCWQu+MINOaD5QODaZPEAXNi4sBbLbJdQggL1oXozhWF+j4yMK1IPyQG10kojmVMN6IFcLUCxf01992zyeiXjqOmNrZcNXIRguncvO1KTWtEP6bcCwt6YnGppFjTpEOHrH3UerjQ2gRLZOMi2zOLtGnzYhAxVM2lAl1EPcrwOV1WtoZQ11BViDyPbIpoBe5SIRLm+SlCCDBmEdTZGhHM2sCE1i0QcgvwolQ8pixbuJ3RAr/2NaC1pHYQ3MLl7WDuzqWhoKMJum4IRhM6KcgI7oRnHp4Z2SmH3J8ihuPF92Bu1uA4rMvXd/6TqL+41QDmauzLpcsdsjA3VgcBydXAzCFwub5yHU8nadiV0RbejCL7XK2lCBuvyS6N2S7lusGmgnpg0GWcwCpXDXVPUq1EK/mmD6bbkK41uD9fZukxj80ELhWk+x41VAxVF1EqgophkdlWwDwamNwlKI4EymXJYH9KsBa9PUGUFX5nDyEE+dkBwncoPpYjPmfIpE6wTrLUK7AuWtU3IuBHBjloCE4QGhlDIr1AVIogAtlGgVKeYprEe1fiqdY9zSmBbKBcVuy+MNA9LRmfzFg5E0X9AK6bRPv9TNB0BLqAch2mR0UMrFwvMYmlkzaxQzmX2EbhM4fXmmw3tJlhjqAkyW4F3pOd9Zhxj93nGqolQb4dkLUnLaI9tc0VwgfSYXTDrAeK7ocbJrs9uqp1f1uK61aVp/+JhA/2TrC+MaRxEbzkjye4LNAYj+kv9KuTuxS2A405NIV5unWnWPj+h+97D2zenm1dyRntmayD2Tz/+cDfXAMj9Q/fElmeGTvzX1jnq4mPv9q/kOnQ8fXLH72m/bhmAPN3/s7f4cSJE/z4j/84P/qjP/okF7I//MM/5BWveMW1ru7OrDYPRLhWvF63LWTBz20ZgXYg7dvslqiJES2YmQVUXjT4nlUILSgShFRRryZs/hVJvepR49hC9vde9i4+MjqGP+fQw/Li9jHnLmIc5P4Uf7IbqXcpEM6TDBuEDZipRe8W0WGrn4GLQZcIMV+fzww+1/MBfZDR5li6aLdc9yV2Y4AuK4L3Eby07VUiSSIwcRKydA7Q/FKnBTctw1NaRGMRZbUQ8DNrK2v3xdoFcxXac+5jZsC8tI6ga9aq1y4zD9eECHLax0EqmETrTjFSJLsJJkvaVj6DmDNbTTy2mSnBzLZaycMcmCvUt/6/vuG2bOdawctT1ee89sQtzYG5XhDzutde2XHsF3/9mWW0LsfKHAKXGyu5HMW0aqjIthvMuX2aowPM2GLz1lClo9CFo0ziIFc2ntHdKbqM7ljpvsdMwEwCqhIUOxl+RTDYDLhE0PQEky8c00wTNo7us73TQ+QWsZMzPR7ItwPd0yXnX5GR3T1ibAccrRpCVSHqhlBWCCHwRYk6vYXYuIdq3bGex31vnKKoDLGJwKK1p1SBfrdkUiRYQOqAq2W8KguoK41JbLQWhij+7zq2PleS7CpkHYMj9TRgpp7hXzmGTQWjeySqzEhGAa+hHgjK9UD63CFNo8BJ0qwh0ZZuUmO9xDoV2ZjEU2543BPgtUQXZh4QCrF1ulxTuAzyC3FSz3YVwgXSXUvQAj116KnD7EzJzwjkcEo9OMbucxXLjzZ0zkUWSE8bvImMwebZJXTHIkeaphfwaeD4sV2kCJxrFM2qwQ4V6U7AH2pgbnpdT4vS06mVb/mO27Kdy9U/fMPP8td/6s4JPb4ciDyou/msB5au+v7dn3wHX32F135l81VRA8NNBjAAr3zlK3nlK1/51As+i0tYj5gUC/1L8AuB/kyzkaZPbm+agYxZzTJeErNoh0oMIYnJ8baXUC4r6ntq7jm+TeMl9w92+Nj4KB/6v57H3edG0WK4OtDKJqOl8WyQLpxHFx6XKcQ0RP2LD2STBjmp5nqeIAVoCa05hQCCUgQVw8+CJIr468UxRFcWT7WRoS8kcbAvITQ+ZtRAdO/qdfCdlPKuDk03toqpyuOSGCqpy9jPraeebLNEbUdNj4BFts5smzPmana8B40CrJ2bAswDPw+6vvkQmaFZHdSx+ECYTqGuWxZIIYoKmmZuUw0sgJDW7boPGZir1a1iX24EuDwd9uVWA5xZXQ24XG6ZZxLMHIKWp19Jarmw14vW8aMat9ajOJrSe3yCzfKYP7LV4FJJ3Yt2ydIG8i0b2YE9weRodObqfXLC8Dk9gvF0OxXTuzrUy578vEB9uMfGK8/xnKUt/ni3h5sYjnwoUC1FFkNVDlUIplsdZC8QsoSw5+OkUt1E9rwNSVaVIySCv3bsET60fxcrWcFO0SHVluWsYLvoIEQgNZbxJCNUCj/rqZYB3bH0ewVlbaJ9sAzR+6VjIYfGpogAndOSfMuRnS/YeVEPb6IFtF22yLEi25I0/YDrxjYxZxVpVrPem7CUlCTKMm5StoZdXKGhliRTgc2gd9qiKoftRzYH75FFg7TRwrp73iJtIDRtDprziCogpw2yrBGjKaFp8KMxy/+9ZOmDA6rjA6p1Q/9DW4iq5tifKcZnUoQDXUry81NcrpnclXC+Poq/q+TYxj6bj3bpnAt0Ni29SXmNw7LPrPrEnz4f1Yk5MJ/1BR+86rLfcP4N/MO3HGxLuvYWrqelV7nMez/6xy+68fVdZ73s1T/FR//4tm3uip/DlVq8Dor/P7R5bUzZ5cDnV2+8g688+qFr3s/DJv8DFYRAFFFkCSwGsnM3sQOuWzNQImRkXWhbl6RcgJcZyJEy6lWMwuWG8y/vYnOQFh66+zwvWT3FXpPjg+S/P/4AvQthDlxCe3PB+ah90XquJxHWYYY11UoLqETUw8hpDY2Neh6jET6KMpllAkAM1Qxh3kqGj6nQ3khsR8W05hnR0esgqxqUiscHYDRufcDkni6yCbhUYMYeVXtk5fCpwpvYGuekoOlKfJKjVlOy02Pk/jgCBhnDPYPzhFmu52wfvUSkehHgCRE8zpzIZstKxcJkYWEiILSKBgCzZZ0j+IDYHz8JcAqtCcLP28eE1ojkcMbsSnUnaV+uBbxcCaTcrPavq7Ew1wJcrvS+Z5qROawbr+axPv6IYfCERE4bxs9dwmvB5O6YEN/kEtWL12czaduUVgzDe2MLWOecpzgiGCcKaTsECb2NCUp6sm3INyXTY4F6zXH2kQ3KezTpR3KQUKzB8EHP3b8XTUrMUKAnhnLDs/9XjrD87oYwLaO+EaI2czKJbcel5LHJGg/2t5i4BCEC4zrlkc11lPIsdwpcELg6umwFJ5GJwztF3qliS5WNF3PVtRGANLFNWWxUeC+YktA9G9uUZQPjkwKXO0y/Jt1oWHvRlNJqdoYdimmKSeLkUuMUpdPYINkpOjS1jtkzmaM+7tk+Iqg/alj7UIiW+UkGErIzU7Idi2wUqow6GpcIsm0bbfwbFwOkq7ZLwbkYMDocwWRKohTn/uoqiHX6f3GB5ONn6ddHKe7KKFcU040uySiCz7v/K+zfl7H5Nzx2yTM+qch2BbZzONy6XD30+R8h6S80MAdDJS83CL4ThPP/8C0v4ztfHTtEfuS/Zrd0W7Pt3Ip6KsAIVwcj1/v8wbqSaP9rH34Fv/TgLQiyvFp95CMf4cu+7Mt49NFHb9Yqb3uJxhKmi1kpOOB4NZvdn4vID7iCzdLoZ2GVBwEMxHDM+XMwesDxypd9jNOTJVayKdZLHh2tc7K7x0tOnOYvNz5roRtpbAxwFCKutw2VRApoGvT5ferlI5GFafUjPjXI1goaJWLavFK4rolhkjoKG4OWCB/wJoaPuVSiGo8ce4I0sU9bC3wvQe4eEO1rhVvrs/9QD+mANqByJohHiWjJXLp5bkuQ0Wu/6Rum9w1I9jLMuf14fL4FDjPCQy1aty5iSLRegBcliZRQaNmSEE0EhGxDKD3BsmBvkpY18oFQNwtDgNbuOYSASBP82gDXS2l6mjJp4NZPzD/r6tMpxPJWMy83Cl4uff8hkHn2lT9WIsqEZG9mBgPpno0W+LlEV4F6IKmW4rVaF6CqQNOFejnQOQcrH7dx8kcLzNTj3rOMfcmIThlY/UjJls9p+pJ7ftdx6vVd8gqWHnNMj0h6n5JRk9FNKE441FQiAlQDQXNiFXNmF6oq2vO3ukRzZpej77qL9/XvpX7OaS5MepSNpq41IQicUwxlGv+2IgY61ioCjMSiRGA8TbGlxnSbuWNZqBQidfhagZUEGQGE7UDTF/DZI3rG0jSa8V6OEAEtPauDKT4IjHIUtcH6CFwmZUJVJvhaoUYK14PB0THjcQYYXB51oT4RlCuKILuUywpdeoQPuFRSrkh6n2oieKmb9l7U5rE5j1xZjpOPkwliWnL0vTVBQPnAGtmpIXpviukbggRpoyFOen7SOqn1GT/SIRxrqFYlk7sUlTgEMNdSB0MlLx08X20wfTEzc+trBlxe98v/91u6nVd/33fd0vXP6uC5Pfj44Pm+k3Q4cBMBTF3XPP744zdrdc9M7eyBMHHQe6l+xS1m5+cVolYmzHJPYNHmNGt1muWetKxCMJLOGYUUnu+8/7+gCPz+8AWc2lnmwqjHcKvLkVNhEWwJcz1J8H4RmOmIA/qyItkpW9cWBRJUmwcDEVQI6yOoqB3CB+rlNOYNJPHG6BJBsa4xE08ycqTnxqhhjRskFOsJPl0I8dEKv9yjuKsbb0KK6EiTxPRnWbnI9BiJKB1qVCFmVtFKYHygOJax/2DOkhIkn9yKLMksXwYWALKxixY8mIdlRoF/sgCXM+AUQhT5z/Qsrl3PTI80a09LTGR32rYJkRjcsRWmJ7uMTmrSfY9wEKaHwWO3u26W7uVyNWNIbke7GDx98HJYz+5SpzPcvQ6QCOdIdxv0KLL79QM9yuWoYYFW49IEsu2G1Y9C3ZP0T1WoSUPH+niPkXC06nDB91FVYHRvik+iJfHZz9ekHzRM7nXIRtH0oXnBFOggawhJg+1aaCR7z9MUG11OvFOg9/Zbk5l47fVbO3TPrNJ5OOf0+hLPW7/Ax7aOsNKfYp1iZ6/LeM8QnECmDt9IQqGopnlrwZwhcoeQgWaY4LqSUGhQAaECjBWdJ2K4crEBQcP0pOOh1V22ph2m0zTqWYoEbRxFlZCnNUVtECJga0lmLCaABDAAAQAASURBVFVl8E4gtMdn0YlsNMxJ84bpXQGfRNe2fNPjUhjeq0mGAZtLxicS+qcqzEQjigYxnBC6OUFKQmIoT/Yx+3XrBGeRnxjjN7dJz5xDZCkc3WD4ojVUHdujg4Duw0OGz1/i8S9fId2FegD1uoVa4noOUNjuM/M9vNNr1kJ2LWzA1QbQt5OZedXGAiz9y5/8P27ptt6x+eRt3rx1L87ZnQxUrlTXDGDe+MY3XvX1zc3bZMlwq2vW9nUQkMx0MDPQAIvXDybSw6L9qW3pIoR5C1eQknI1oekH/uSPX8DOy7p87bE/45vW/oitusc7/uwFDB5RqMa3YZb+wIyQW4CldnszdkJvDimPRpctXXi8llHPEgKyzT2ByASJFoR5E2fBmo7AJZCMA3VPxhlCGW+4+DizxAHcFtKE6d19fBKdb2TjowCyEKja4zq6zTKILFEwChqHTxSuE1kQM3G4RDA+kbI0HqDO78VAypnmZeYyZvTFVs3t+RVCzd3KLmJumjanZqZZmrWXebcAoEK2rWsqfpb9lOrkMtWKoe5KVBXQZXSbCeNLAOthHdY11s0GL4ftZM++Wv3LwPaSpncmToSoaUO9lqMKh0sFPhEMPuWo+hLbFeSbEeDorkIXHptrmo6m86khwjrcUk61pBg87kmG8dqkarC5RL18l/HjSwQTqL9whH2kRzidI2soN2D56IgsaZhUCfqYZ3+/Q/ijVjso5YH7nSf55CbJZ99D9WeryNec58TSPj4IPrW7QrCSUCrQHj/ViDzaJ4uqDWy2EjFShGNVFPEHMEsVvW6J9ZJSecRjXdxywCdQrzn0Us25UZ+yMkjpcY3C7maEscQuO6rcEGqFMB6TN1irCF6gTQuUvAAnCGON7Fboe8ekD/fIdqNjmNcKETw2FzgjMNMo9F/66Ag5noK1iPEUd9cq9WrG5KimfIFh6ZMxQ627vYyoavz+ED8pkGcv0Fnt0gwM0yMGXQVCGrNrvAlMjsO9Lz/FY+fXCOcz1j4Q77G9U4f3k8vVrIXsRhzGPvW//u4t2qtF3fP//OInPXdw4H879gHgf+P2bOfSeuebH+aLfujKyZJP9frV6gdOvRmAf3Hyh+bP2fLafyfXDGDe+ta38pKXvITBYHDZ18fj8WWff1aV99HVagZahFwEK7atW3MW2LdOZVIgTGRZ5hoYiHkmQNCqtWaO7Mj5vyp502t/jX/74b/JY9ur+GOS91fH+Yq193H+RX0e2buX5Ud81MAcNAo4kHAvZpkqEAfidUPn8SHTewfoiYUQM19UaRGVw2c6ihWtj61erf5Fj6IX/lRr0l1L5gKqdLiOIUhBuZFgM0G6QwQjaYpd6xE0qNJjRhZZWZpBgsvVnMUxI9e2pLXtWb14LnwiozV0IjGty1lxV5fe9ghhJcH6Rb7MTJiv2vM5AyyzAEuIAKRuFsGiBw0ToO1jPvBZzqyohUAkBr/cZ3r/gKYjUXVAlx5VC1QVSHZrGi5h4Q7rsJ7ButNATPLDLwYglI7me5969vQzrZq+YPljguzcBFHWKGDveT2arqFciy1jQUbdojdQDxTZOY8qPNWKJtm3yADF3QOys2OCluw9KCnuaxCFJNtUqBIGn/T408vc8w8+yWPbqxRneoT1BpF4eO4U5RT3Lu/S0TWP7q+hpWe3bnWDiYkaxLrVOBpNqGvqJQgvHrFZ9lDCE4LAexEDGxNP2quopwlJ1lDVEpYawlQTTEA4AVaCj9fhIysjprVBS0+zn2LvdQQd15MvlVgrY+tXANlqaoIOuL4H4xEqELRHKE9TaepKxdY1P7tXBHAC2W+Y7uesbgzZ+fwEuWdY/csYaCm8QPhoRY0UNH1Fct4REjPXsIrGxRiCDYHtQbkk0ZXAv/gY3UeGiKIgNLHdThUN43tyvAGz7WKOzTQa6nCy4JEnjrC0MmGvYwhCY3NB8PJKX5XP6PqlB/8DX/RDD/JFP/Tgk8DA5Z77+I994MBfP3zL9+/jP3bl15777S9m+llXn9x/NlTno//2ut8zAy43Cl6mn/VGvvOzZvqexTl00wK4Nte3awYwDz74IP/0n/5TvuEbLm+h+v73v5/P/dzPvdbV3Zk1s0ZmlkPSPu1ihonQctG2dCCQcWEJHKLbF7Qz/iGKAvMMTLT8XfvLwA8/5/9GNUzJTiX8wOhvIzcTek8I8i3PvY8X6K1xdIixi7yU0PblxlaycJFTVigd4ryl46G4px9FikQnsZAqfKrQ+1XMt7EtA6MFUkfLaFNENxbR2hTL2lKv5eiJI0gV7Zydh46muCtDVTHdXlYRwKnKY7sKr6LzWJBE/YuI1s4u13gTE6ZFAK9iD7i00PQkbqWPfGLS2lKrhaYlMQvnt9k5aMX3Qqk5gJxrWHzTBlG2xgozwwUfIsiZWWGHuO7inj7exJlPVbmo99Ft0OWkgbq4ld+2w7pMve1Vo+tqI7sR97Hb5Tr26VYzwHJY11bj44IjD8drtu9GcX225/BGITz4BJpcUK0IVBmQFggBVTl0IUn2KnyikFZiBxmT4ynFScsrXvAw7z11N+WSJtSKIA0n3jHmk2+/n+YlY5Jdid8oMMZRW0WiHZluqL1iOSsY1ylyXxNFgkSmW6l4TW0Z6o33N5zp93j0nmiJfO/aLnlakxqLVp5pZRA6AgqhA1IFnAhRqD+VhF4gGVQo5dmd5GRJQ201ohaYfUl9smZ5dUJtFd5FRiUUCjWooyGACEjjEUCSNjEI0kmaUYIoJa4xiK5FKMi7FUKAtRKnAmVtSDoNds+g6hCZES3QTUCVoCcxJkCEECcXQ8APcmw/hokKD2YI6ciTn6sY3x2NAESeI+oGnEPujVl+X0VIDM1Gh2ot4Ymv8Gwc3WXz9DKmX2O0I1muGN8Tgz/nAW6H9ZR1pVn9+PziOnQxmLk19dxvv/p170YG/8+muvLncGPAZVZXOm+3hIF52ctexnvf+94rAphZiOOzuYLzoOOAWAjRul/5RaaL0bFdSYrYljR3wDqwjrppU+htHETPgywdCEPvUyXpz8XZJjOKOSWqHEXnMOviBXKm1ZiZAFi7GNg74uPZ4H2mtXEOub1HrgST+/qRBSE6q+GZszAxFdoia0m9pOfOX/WSxowdeuwjALAB14k3WjGtQAjcUo4qPMl+jZrUMRBTCaQPyFqTjKN9sssVQUv0xOJTjXQe2UTAE5SMtH4qaDpx4+WxDt1zJp5viDdR6RfOa7MZMiWjDkipyAg1dv5Y0H5eLQMWAc0lH7BzoDXCGOzRJeq+ii1yRHZI2GglLXxAVg02PcyBuVPr6YZWHoKYa6tD0HLj1Sw7xicyzLiPmVrU1GJGljQRyEa2rIvAm6ghFF4CS3Fg3ZZ5Yht3bIXiaE61JDD7ig9uHqPeS0nPGcwE6qXA1ou7lBueu9f2uVD0eOndT/D+sycohhnZxhAfBFIEOrpmc9LFZ556OcG0rWOy00GkyTzTC8AngTRr6LWZMCEIrJekxtI0EXTgBaFU+LGODQMtiAmNhAyck6wOJuyNOzgrkY2g3nAIFXBB0DQK78ScrWlKTdqt0VlDXSu8l0gZAE9dmug4Bsha4oVGr5SxMUF6JqOctF8x3cvJl0rqgWV8Mpnnzrg0ao06W9G9k3biMeQJwkVhv0/i52EmUPUlqkoo1yTj5yzR8yCaBr+3jzt1BpRCdjpUz30up77M8bV/5T382kdfjBop9KqjajRp2jC6yyKsIJncvu/es6n+yn/+UaatjfKsXvar8M6vesOTBsmX/v1U4OKwbk9dC6B5zddem5taOfL8yQ9c23avGcD86I/+KFVVXfH1F7/4xfhLs1CeZSWUXAyeIWot4CL74uhCJhatTG0CfWRs2hwTKePy7Ux/MJr6+IDt52cMH/J0n5Ace9ckCty9jxdSQFi30IC0bVJhZuE8Yydcm2+iZnoRNW81C0WBON3Qs57pfQOCNHgjSbdLfKIQCoQSiNqjQ6TLkbEdTBUW29ERcFQW2Xh8oumcmkZr6U6G7RrMOLaNBSkJRuI6BhEis9J0BOWqRHhJvu3n7ixqaiPzkmtE7VFlnPmbGQiUa4rOygA2dxfArAmgaM/jAtiILI1al1nvthTzVj+hDlD0l+qSZp+ZjHk81WqKtAEz8UgXdUPVusGMLM1Ak2QK29w6+8LDunxdjX15uqDl0rqZIOaghfKtFO/faW1kh3XlkmsV4ySnc14RtKA6mWIzgaqh/0QVwxQ7iu0XJZRHA5OHGuqPJXOtxPREh8woyqMpxaqiXBfYjmM6TdH9BnNkQlEkuEqxc0ygMsfeNKc84vEIenlkQKrG8OELx1juFGwNuzSVxuwpmm5A5Fm8juaekBjcahe1O6XpK4KE8nQPO+mze1+B20nR6wVVaWgKA1aADmA8AYloBCIIfMdBI2k2cxg0bO/18EHEvJauBxUwqcVaha01QgS8i/eivB/3OTPxHlFMFIO85NzmEowMshKYscB2I1DyXlLX4JoEMdbU2oMVSBnIBhUuTQgituj5RGBGIJ/wqFEF3hPSGG6M9bhc4oxA2rh8Molhob41sAyZRmq9uPe3hj2dMwV3/V6HX/Kfx7GTO2wFwYuOnWWz6LE17qL6DX4vwdzcy9enTeUf/3fo7PLtde9888PAArjMNBNXqoNaiptV+9/zkWta7nUfv/+mb/t21u/80o3bQc8+n3/6z9KrLHW11xY1HTrgzDUte80A5tixY9e66DXXO9/5Tn74h3+Y9773vZw9e5Zf+7Vf47Wvfe389RAC3/d938fP/MzPsLe3xxd8wRfw0z/90zz00EPzZXZ2dvjWb/1Wfuu3fgspJV/91V/NW9/6Vnq93vXv0CzZfb4DPraPXarDgLmdr0jTuZh+lj0CRBAiBEErqhNLbL04pVwPJCcn1MM+QQlCqsCKyCw3UbsS8jSGLFobQZHWLQMzE7Yn0Cy8+yMzlLQWwq1mZmuXTmNpjg4IWuJTHZ3IRAzqZGahHECP48yg62h8IpE26meCEiT7Fr05jM5j3SzS8CPbrktAE0X8NleoypGMF646M2ez7rlmfm7V1IH1hFQhm6iVER1FuSJpVjuY7b32vEkwBz4TIRfamFlrWMuSodSCBTvgEjf7TCJ701qlaTnP6fEmgiczDggbMMMSl3ZwmSLZs7hcUvXuDNvLO+53covqqVrHXv+O/i0BMbM6ZGSe3XWn/U7c2CCXLKBj+6yH4XMg3RMsPeKQhaXpdeie8UyPCcyWQVqYHJeoEvafIznx3xt2PkszeagGL9DbmuQvO0wfrFlb3+NVD3yARyYbfHK4ypkLy3TSmubeEblqGE3jgKSTxWwWFwTGOLyT2L7HJZJgdGQgKktx3zKq8iit6Jwp6Z7qUK0G+o/DdNrBr0Vb49oqpspjrSJNm2hnrD1BKtABlVmCE4QgSLIGpTzOSbyWUCqoJHVIUb2GUCpUr4lRXe17ellFaNt9lfac21rCT2IEgM+iyN8nAdVvCF4gFCSZpUxN1N5ImI5SeksFZRZIhoJkP8yBjMsl03sHyNqjp+29W7ZtfI0j2RM0g2j73zlT4pLIDojGQZ4hB72Ys9ZOtqmdCd1UQWMYFRlZXnN6vETZaBJtCblg6gTFsTunQ+VO+61cri43o381gBK1KDdfj2J++WeuabmDAOBtv7xy0/fjVtffPfD49V+ze03ifbj4c/qf/6crkxyzeqpzM7rUAfgq9YyO0CaTCS9+8Yv5B//gH/BVX/VVT3r93/ybf8OP//iP85/+03/i/vvv53u/93v5ki/5Ej784Q+TZfHL8vVf//WcPXuW3/u936NpGv7+3//7fPM3fzNve9vbrn+HDuov5KJtac5yzJysgpizIAdzSoSSC92GlPhOhl3OGN6bUK4H+o9Ctd9HlVAcTdl9bof+E56VDw5jBo2S0Yu+NQSIxgEHkudnmo6LmBi1cD6buZVJBfsjkmmJXhtQr3dwA42euNY1LAIyXViCFDT9JA7os+he5nODmVqSx3fBOkKWxBa0QJvp0rqUHbBqDh70xJHuxWwZXQRU7dGjaGUsS4toHMFETY7NdbsPnsQIfKoQxkR9jxTxHB8EjLPzPMtumQnsLxXqt/8LLRfnCkCq+PlIGY9HR1FnvRSPK/RNPA4JQQtsJqk6d4bo8o77ndzkupXWyYf1mVN32u9EThXZiYrx3QnJyNN04vXFZjC6N6fuC2xHsPbBivx8nOAy4xgK3PShPOYoVxMGj3mmd2nEWoU75im6mhc+5zRnhgP+t/e/HEaG/skhBDj7yAYAf3jh+RDg2H3bHO2MeXxvhfObS7FVSwaCCtgO+OUu9VKCdJFFt12FbPI4weWgPmKpdw1Lj3rKXcn5wTIycSQtSCmLBD/R0X3MQUgCzhnwIDJHNU5ZWR9RC02jAlQC33MMjsTMFpF47DAhJjAH8rSmrA1Vo9HaYSsNE41ZK7C1RmmP7wvyTo21iqYwdPoFk2kaXTMTh58YQqERS+DyQLUCZgydTYesAtIFqiUFXYnLFcIGbFdixp5ypdUnGVBlQBUNS59wlEdyQqIJRiOSJGY81zUIie9mDO/NMKsTUtMwLVOUCEgBRW0oS4NOLP6SdvNnsu6038pMCP9UepLZoPqdb36YP3zDz14EaG63FuVqA/wve/+f3NZ9uRm19IPPv+jvq4GX2WszEHM99fqv2b3q67b0cI3SpmcUwLzmNa/hNa95zWVfCyHwYz/2Y3zP93wPX/EVXwHAz//8z3P06FF+/dd/nde97nV85CMf4e1vfzt/9md/xsteFj2yf+InfoIv/dIv5Ud+5Ec4fvz49e1QiCxF1Lq4i4BMtFaWULt4sZ21cLWiR9G6js1CJwFcP2X3eTk7f63mZQ9+kvcsP4hcqfir9z7Oux+9j2Mb+yTKUf7IBvljVQyi9LGFTDgZwdEsv0QqwLfgaOay5ReZM7P2KB8iOxQiuBKnS7LtDHdsBZdpXKaxXR21HiHgTWQj6r5CuEC1ouk9UaBP70RnGiEQWuE6OgZdpgoJiKmjWcqwXYVLBcIxbyXzRpBcqOMM4yBBlQ5Z25g9k2twgemGZv8h2HhftHmWtY8gZcYuzWpuV93+7eKxxSm7tmYuZAfB3gy8yFYvhCOE1oxhWmLGDtuNxxyNB8T8OFwqWy3PnaG6vON+J5+mdZCNOVhXY2Yufc9h9sszV3fa70QXgvDhPkfeW5Gcn5DuZqSjjJ0XCMo1CQFWP1KTf+w8d5/pML13CSRsfbah/7jHG8Xeg5DsR2V52EmQazUnn3ee/+HIX/DTe18UWYYzKZNPLPOCz/skj/+f9+NyKE42mKUaJQLnpz2ECKR5Q1XEPBW6luKIphkkceKmvW4LG9B7BXYpI2gwO5p8M5DtOAYPT3BZn2IjwHPGkSXxoHoWpR0hQJ41OC/p5yU7wy5KeYQITHZy5FCT7EsaD8lxR5bXFJMUYQVBg0gd+8MOAEIGlroFo7qHKgTeKfCRQdK5w1qFcxJpPONJhq0UyY6i6VqQAdFIJpMMNRWYkaB71qLKGK5cL8djrrsCm0G+Y0l3LLajSPd9vB8oie3IeG50/L88kpEK0I2NOqWlAfS77Lx4wPZLAtJLrFMs96YY5dgadXFO4qYaB6TDO6fF/k77rVwP+JgNmh/805/mbTwzTMfrv2b3qgP8S8HAYS3q6m1msYXspmtgbnc99thjnDt3jle/+tXz55aWlnj5y1/Ou971Ll73utfxrne9i+Xl5fkPCODVr341Ukre/e5385Vf+ZU3tO1QN7H1aAZkoJ3lnwn3xQJIBL9wJBMLsBOUZHo8Y+clns+69yyZanjos06T64b7Otv86f5z2f3oMYq7LfcHH93KpDyQbxIWWSXWLhgG2Q7c27aqCHJax7SZTeMMfEHU4FQ18pHTqCwl9LuopQ4uVdHy0Ufby3yzweyUqP0JVPXc7SseuyeoOMBvOpqk8dhBhu0oilWFqgNSghl5itXo/d90NPQ0qvDIOlo5B6PiDVNGhzQzltgsMiGyiQGVmBYINnU89gMuZBGQtAzZjC07+Lk5h5AHwY1btJzNPpeqRmQp6XZJ0+/ilUDWARECqiIeYyoJbdfZnV7P5O/kZtSzgX25XJvZlcDOYd2Z9Uz8TpqexyceWXvcIGVyIiNI6JwJFEdEZFaOGLLTPeSkoPuxTXwvo7u6wvikpLinob8xZn+SESYa2bG87L7HGdYZH54ex3nJZD9jcF7gE/jQR++G59es/7HBfO6Yu5f3ODMcoJVnKS9pnKIWGpNatPZM7pNcKFPyzUDvVI2wbYtuY9GbI5YeywhKYSaOalmRnWk4+X9eYOdl62xm3eiaJiAoqLsOYTy04vtSGWytaLym2MkRiSfoQLIfrYyFCNSViZkyHYc0jk4vtp8IERhkFUWjEYnHDaCb1zRakadxgqssEtwwAe1j25gKNCseqQM++GgwAJiRQLZdzGbc4DIdtY9jT7GqaXpgc83gUzYK+TMZAywbsKnA5QZVWmQdIweQIk5SqhhfIBqLLgNhOW5kMslY703YmXQoJ0mcEPUCmVvqtWfBDYXb/1spnvs/oi4R8V+pXvar8f/3fNUbOPnnf8apl37eNW/nSvXa7/n71/2e91zGYOAzrW6EfYGnbjO7JS5kt7vOnTsHwNGjRy96/ujRo/PXzp07x5EjRy56XWvN6urqfJnLVVVVFxkSDIfDxYs+zMX8oW7i48YuBsGzmjmAmSQyHrpNq28DLO2RAWdeBfd+1jl2y5yHz23Q7xVIAY/vrbD8Qcng8QbxXki2i+hHX1+c/SKUBGPiONpacAf2YwaiOCB0Dwt2JoQQWaGZ+F+KyKhs16jhGBkCiTHztrPgPCJLCUURwZGPjl0hBIRrwzBDa80s25YvH0gmHj2NAEf4QLbn5wCFEAMthQ/4VBOMjKFrtSfd92S7jrqvaDoCUR1oBZsZF7TnYWaQMAdxiotbxlqmbG4DqliwUjPb6/jliBqlEJB7E/JNQ7GR4HKJGUajAT2Bck2Djj3Rd3o9Y7+Tz9D6TAMu9Xd94NPCiewZ+Z0MLF47iqOxZdVMPDZvDU6UZOmRKaP7Ooyfu0S2mZM8eh7pPd3zPaqVOJFjlKPTLRmVXXyh2S07GOX42P5RpPTozQTbgWQIyaaiWRZMTggMsFvmTIqUJLE4L5hOUsS5jDr3VMYjSkW1GrBdQdNN0UVANpDsdBBNzAxLdwJNR2JzcP0MkTl0GeicVtSDQLPsSXYlTVDISjPeM4gjJXsX+tCImL8SwGxqZC2wHXBLjnGREgDda6JWJm0Y5CXDImMyyhgPc4KVUSPaSJyT7XFIiiLBFjpa+Q81IQmIUiIshCVigCbgnSC/EDDT2M5crmck+w02l3NxvghQrQrGVpPvOOq+jG77AnQVOwpE4/BG0vTi/SyUFVQVvqqQTY1wx8l6FS89for/36fuoW8qduggZMBXClFL1MBhLxLY3rl1q34rV/qdfOf/8DN0Bk9ur/tK+aErgoRZGxncGAB5uvWyX/0pppc8dzNb2N755oc5duT22tZdr6Pb9QC42Wf1a/6FT7nspwUDcyvrX/2rf8Vb3vKWy784n633Fz03F/MLuZjhVyoyBUrFYMk2ZJJOzvSulPtfcJaXrJzi7Z98PjzeYVJ3IAg65wLdCx5dOvRehaya2D5mXWz7ylKw7cDd2ha8uIuCGC+yGJ6ZDcyYoNDu68xcwFpEYhZ5KgBSzQ0DQqvtCdNpC6Bmts8irlNJVOkwY0HQAtfR7WwdmJFD2kDTUxQbmnzL4U0LogQxAyHVBCkIQuBNzFox09ZUwAdUDbK1lJ6DlpnzGy2QO8CqzOy6hYg+/vP+shmolC17BiD0fJ1YO7fjF86jdwtSLbG5wqcSs98gAmQ7UA80zY2bcnxa1FV/J4f1jNShA9mdV1f6ndx7fItPbd2Nb7V1dS8OYG1XsvbBkiAETS6oewKbpaxc6CDG02hhnwJOMCnSGCApABF45P0nGTy0y3DUYdCfQoDp/Q3urEaVgjCWlOueYqvLtJPynGObZMqyVXQZyoBoIL+gqJckzbLHDgJN6nCpwQwFax+JLpPV0S5NN+5v06XVSCqUD0gbSPYD1Sp0TimS/UDTlwgP1Qr4KmfptGD/sxvERKKmAlUK9ARsF/DQ1PH6nHfigDYzlkxbLhQJvlaxDUx7dO5ohglSRiOA8SiNRgBJzCITAWgEQQeChjDV0R0t9YRakkwC2Y5tc84CxZFknlWW7QZUFShXZ10AUehfLwmSYcCMHUHGCUXhA9VA4ZKU1YcVfhon3HxR0n90TPm7A/748x9EKM/p0RKTIiE4GVu5s7al+87oSH7G6kq/k1/dm2Da7pFfXH18PjB+qgHyF/3Qg7yeXX79B//jzd/Zp6gr6ThuRj7KbLB/J1hEHzyeyx3btR7vbJlrEfnfUgbGOcfP/dzP8fu///tcuHDhSdbJf/AHf3C9q7xszVzPzp8/z1133TV//vz587zkJS+ZL3PhwoWL3metZWdn56quaf/8n/9z3vjGhVvFcDjk7rvvjoGILFzHZsxGmLEYsJjxn+krpFqwAT5AoqGqSfYsu9OczW6P8OdLHPmoQ1UhzuBIgU8EovHIcRHBS93EzBnRtkClCZRVnO2Zgaq6eTIT1Ar6hZJz0b9Ikvh4xly4EFmkWYnYUy3G07j+mcPZJUL4OXNhHWq/pF7uQxt26ROJzSTSBSg8wkH/kyUiwPRYimrDMX2q5iFeTU9hU0G+5dClo1o2CA/dsw1iUkRg5WfgRFy8H3LxPRO+tZeeAZaZVsmHaHoQZHR2E5I4TdeeUyXnQn68R44KdGaweR4deVYSkt0as1cibUKzdOf0LF+pnpHfyTNUN9uB7LCurT4dWJhn4neyPemSfzJh+f0XYruvlNjlDGk9+vELkCZMXt2lef4U+WhOtrNCdipqDSd3O2QvOnit9EvOjVJMr6Zxgo3uBOcl42mKyz2qY6mXFNkFQbIvCApsJrAjQ3LCYduwL20c3oHLwHYCsowMiTUe2/Ok24pk34IQqMohvEZagdfE63dfkZ4dobua7gUwUxlNT1pwFZRg/S8CuvCMTir0jibZiyxItRq3S4DOJw3FXRKxUjPe67C8OkZJH53SaoXp1jTDFIRHG4dYrkiNZTTOI6tfyuhyljmcCYhCEhK/CIoUIKatwYyIDmNNT+FMbIMuV6LmZraAbMCrmAODAK+h6cb3qNITUoMqPd3zFpdKwnIfUddxXOAc8lMXWDeK0X1duH/K1qll0tUCnVpEHhAiRJZp584R8V+tbtVv5Uq/k0f/6Nvpf+qnLxLoz+paBsdPJQp/qvq3xU896bk35m+46O+ZycDBul7dzsFjuRoYOPj8U+lFbkZdDlRcrj3scvt7tb+v9tldLYDU+yFw1xVfP1jXDWC+7du+jZ/7uZ/jy77sy3jRi140Dxm82XX//fdz7Ngxfv/3f3/+oxkOh7z73e/mH//jfwzAK17xCvb29njve9/L537u5wIRQHnvefnLX37FdadpSpo++YsRM1faxy6KD4NzcyYgPndAUzGzN56vwM+F5MluSfNHa/z35/VZPxNnc8ywwWeKYt3Em0TRNufWzWIVzoOrFgxQ8JFFODBIP2gjHKyN+TMtQBFKEeo6tlO1hgDAnEUCEC4yPVh7kRheZBlhWiy0PdYS0NA0yIkB+pRrClVJmk7LorjoQlasKVSt25YxcJmaB7K5VFL3IjWv6hDB2zieaxEgPT9enE/nom5npu0RizYyvEcYDUZHF7Q2/2V+3lowfVEezMFzFkLLNoX2Y3bIyuJS0ba9Qb2SkFcuilmvYybgmapn4nfyTNSzBbz84q//7KGQ/w6sZ+J3Mn1swMbjIV5vigoBKKMIpnVSbCyDxzzlfoeVjzeYYY0I0SVLOBFdvh7v405G7aPdyUh2JE+cuof6+dM4q5/H+5RwRAYiQLYpmOTRTvhD77sP33XIzMbL5VELOsQBfiOQNZgtjU8CS590JKf3QQhkouhcUOw8L6EegKqgXFZ0Ogl6YnGZQpcBm4HtRje1zvnYPmzzeP3tnBPICnpnLd5oZAPT44LlRzzNkiQ5WSOl50hvzPlRn7tWtuncU/PxU0chQLCCptZI5UmNxXYqCiBsG4QDLxShY+fhxTK3hGGCWKphM0U2AjN1jO+Kgc26DNg8OowhiM76ZdTwVKsChKRabsGNaDUwmUSVkqAF0gaCDDTrPZK9EcLoOGEmYwv02l8Gtumg7iswxhG0R0lPVWuCF/jOnd+SDLfut3Kl38n7vuE7AK7KvFzLgPpG6435G54EYp4Eat53uXc+Gfi8jC9+0nOXAytX2vdLrYk/72WdK+z1zau3sdjGyT//s8vu0+XA19WO6an0MVdjl2zpuXCrWsh+8Rd/kV/6pV/iS7/0S6/3rU+q8XjMww8vDvSxxx7j/e9/P6urq9xzzz18+7d/Oz/4gz/IQw89NLfyO378+Nyv/PnPfz5/62/9Lb7pm76Jf//v/z1N0/At3/ItvO51r3tazkqzgX68OLWDYaXioHnGxBwcJLc1b+EC1M6YY+9OOKNzdl/oGd2XkG0l6CIwvlsweCy01sJ23hYW/AEWZKbfUKoV9B/QvkBskfJhPpA/mE4/32cpF3kps//bdQgOAM+ZbqY5EJYJYETcB62hsSR7DeO79Fx4b8Y+9havGVQdaLoKMwE9je1nxXprSamj24uZBnQVXb8mx1OCgt7pCrE3Ili3cA6b6Xdmn0ML0pi1kvm2NS7YxTF5H88BLJgj52J3mdGXZMWouE4Z2al011KuG2wuUFXAdqOlsrgOP/JbWXfq7+Swbm8dto9dve6038n6+2D147uISbFoyXU5aIlfX0JMK9b+8InIzpRVtJFvGrLG0jl9lMIn5OclkzUTE++1xz+nwjpB2EnpnxxSKEOzl6FrQb3sCUlA70v0SOIN9B8T2J6k2NAIB6w3UEnMvkRYQdP3pLsSMYrXO7/UQW0N0WcKgl7HdhLqVY+sBboQ0cmyo6PQ3QbqfsysEQ4mxyTpXiCoyHqoIpBve8ywYe1DFjWumW5H45R0S1Ldq3ng6BYdXXOkN0ZLT+U0YarJ1gqqqSHvVKx1pzROsdop+NR+jqmgXveQtq1ZKiCsxBc6mtxYSf+TEulgcjRe96WF6VFJMoz751LwJup/ZBNBje0KggyoMrJOXoPtSFSlEa4NZO5okMxZGOEDLPWRVUP3bM3keMbknphnU9cKIRRZ2tBYRdG5c3rI7rTfClx/+9U73/ww7/ne353/fSlrcj31dN57sC63/wdZpSuxMJcO+G9Xjsyl7NUXfc2V28Xmy1xjG9nNaKd7qrpuAJMkCQ8+eHN26j3veQ9/42/8jfnfM3rxG7/xG/m5n/s5vvu7v5vJZMI3f/M3s7e3xxd+4Rfy9re/fe5DDvALv/ALfMu3fAt/82/+zXmY0o//+I/flP2btWIBC20FzGfz40IzR7Iobp+zIt6TPLHLXX8iuPDSjNFDlmYgUYXALjm67/LxxtbYheOXj7N1BHcRMzIX2c8G60otBO+z/aFtZZNy7qAmIAZuOTcHOPPtXOriNWMpLgPMZkn2+vw+g66m7kfnMVV7ZOXwKraCmdHCZCAyMSqClxyynSj091qgC0+5LMl3PObMfjRLSJN5MFjcPzFvbRNCXMy2zDUwBwGZmr8m5hbKLXPlw6zvbHHsAGmCaCyydqhKYbNoKV2tGmwmcPWdAWDu9N/J06m3vWr0lE5kzxb25dO5ng1tZHfa7yTZd8hREbOnyjLeKzzgPfVajk4UuqgIw3GcfLI2ZoyEwNpHGjaNoVwNSB3QeUk1STCJpZvVFN2ae1d2+di5I5hdRbNmyVZKvBeENbDb0dWpXopCfY6XOCeQW9EcwHYCqoCQBlwaMHXUJxZHczqNQ+5P8InCdgPdT0lsB+olcB3N5JghiMho6CKCl3zLU2xImr7ApXH96a6Ym7uocYncn9BRAttPqJYk9iNdPlZqOoOSu1f26OuKDw2PsX5yj63NPhSKscgpS0MzSiPDUmiafmjPo4BaIrqWUChMv0bIQD01yAbSfU/TFRRHIquiJ1BsCHQRWZeg422B1rzFJ0CIpgPQtryNFsY1th/TldXQ4nsZapgROlnUkfY7BBWDkcNOAp2afrdktVNQWc2ps6vI6s5h9O+03wpcW+7IpfVGFsDjhPuNG9721ep//94XPqm17Wr7dKWareNSpulqQOaZqtvhsHYlkDZyjms1oRZhNhq8xvrRH/1RHn30UX7yJ3/ylrWP3e4aDocsLS3xN5f/LlrnC73IwfajGTNxcAA8W2Y2wJ4BmBAiGyMEaEVIE5qNHrar2X8gDvaPvnMLMS1bXUurX7F2Yc98UFszs1GGi4HMzFxAiAhSsjQClgMuZmFmQzwzGGhZGpEkTxb/z47n0uNUshXzK8JSj/J4n6Alehxd04qjCbrwmP0G29W4LOpjijWJT6B3xkf6XYBLBNKBcIHBB7cRw3FknmZAcabBmT32s32RF/998HzMmJnZ52X0RW5uF9kwwwFzAgVpgu/nVEe7VEuKZOiolzTVQBCmJe//hf83+/v7DAaDm/Z9e7bW7Hdyq+pKQObZCGBudhvZncC+XAnAhNLRfO8HD38nbc1+J6/44reQlxphPfrRs1BViG4XvzJg6/NWMEVg+c8340RWEtuKQ57ic8P0ZIfhPZrpscDqSzYBmNYmDoidYnuvh60VUgc4m+LzgBjUBCcJXiATh5QBfz7DDCXVEUuyreieguFDgWS3ZU4CyBqWH20wY4vej/3wQQnKox2ariTfbNj6nIxyPXDs3RabxUkuM46sku1IbCoYn5CoGoKE4kgg3YlgQZWBjffuIyZldOvc2kP0Okyfu8HWZyc8/7UfY2oTBqbkU6MVJlXC/hNL4CHkUayv9jWuF6/jwgtC7hDKR6eyAKiAySyIQDNOGHwoQU8DwsPwOWC7HjWV+DTQOSNJd6KVdTMI2J7H7LWTi/2AngiEZe5glm82MTPMx/tXfj6eI3N+SHN8KeadLadMjhlsBnvPD3TuG5IZi1aOXlLz2PtOkD1c85GffvPh76St2e/klf/iAXT29B3abhZrcSkr8bZfXrlsa9X1MBGXvm/GHj0V83OQubmcDufp1q0M/3znmx/mxbJ56gUvKReGfDCsXdPv5LoZmD/6oz/iv/23/8bv/M7v8MIXvhBjzEWv/+qv/ur1rvLOKaURvS5+Z28++J+L6udtS2HRWtQyH8KY2AJVN9G1BFrhv0QYg3Ce5ImKxHnyx7I4gJ6W0MQPN1TVwl3soAtay+ygJKFqQZU7YG/sie5iPswDLQ+ClzmLI0TMcmlbpuL+1Qu2Zva+mcbEh7j+2XkJIc4gKoUAktQwfqCHNwmqcLFfWQiagaHpSqolicsEehqgiEJKrwXORHFpvuvpf2QH9oZRuD/TGR0Eht7Hc9qCwPk5OWhp7eM+z/N3ZiBm1uo3AzozMDb7W6nFZ9tYRG0xwxqvUlwuET4grZidqsO6TXUQqMzAzLMRvMDN1cLcCeAFnh0szJ1UxbpmvJ6z/HCDkZIw01LmJuoxUoFb7qCtg8bS3L2G7RmmG7q1dA/4NLA3zlnpTznaH7Mzzdnd6SF2E/ILkvTzt9ktFXrTwDjDHa3pLhdM9jN6K1PG64L08ZwgFSsfCwweLeiez/DG4xJIRp6mI8nOTBHeI8oGUdWEbk52oaAzqaKIvUrJzwvqnsIlgs6F6Nho8+ik1nQF0kZmw+uYv5IMo8Pk9GjLxBiNGE3xo1Gc7HNhznacHfVJlizWS0aTjNBxqF1NcAphBemOoA4q3kuSAE4QrAIBndUpUgack9hGQSOpVgI2E+gSbO6htXP2iWfygob6dIIeR+wTMofLRNTMDFsL5iQeiwgRzNk8gjSAZBRdNZv+Gk1fIXyCzaKbXDIK6LHAKEduGqQIjOsE14/204d16+paxPzXAgIuzXh5/dfs8kVf82QG5tK61parWb3sX37xk147/o8uHvC/7h/d2z5qgH999R2/gTrz0Th+vx5wNAM9l2uLO1jx+esP9LSlh1ulgVleXn5Gg+9uaTUNfmsnPj446Gf2lFhYKcOCBZhpV2Z5LDO2ZqZfsZbQNBHMDMfz10ObwTJvbZIsQIds19+GZwnRskAtyBG07MuMLWrXMWOAFuDr4kBKpFwAF5jvg9A6Xswbi1Aq/j2zaVamZZgUoSxRF3bp5Jrp8YymY5AuxBuAbS/4ElQRSEYe6VrwksRwsOVHKpLTe4jRJB6LimGdIU8JvRzXMTFjxgZkZRGNR+2OCJMiHsPMHnkmnmzbxOZ6JRfmjmwoRahbYf+M1ZmxTTJqjoT3iGmJ8oHUB+rVjHo9WoKa6Z1D+X+m1bMVuBysmwFiLgde3lD/3GWX/ank//G0tnUtdQhirr22X1Vhhhl3vXMcM6iUwq/2qVeikDkdenyu8Z0MOZqgpg31SsL0qKRz3lMcEZh9QeN77N4LF+oBvV6JThx2uaGQGu0lKnO4ThzoM9LUZwYkHkZTHS18BWRbgmogqNZSpA3k50uaQYKwnuxChdoZzt0Zw/4Q9keopT5hNEb2uiw/nEcXySyat4xPGAhQHBVUKwGXBbqnBcl+wObRMjkZR9Y93QPXS5Dj1lVTKeh3KdcMS486/vxPH6L74D4+yGjaEgRCeVw3si+ykDQDCCrgs0CYoR4rED0bLZlFwHuJrxWia/ErJdVuhh4pVCXwSaBZdggrCFVkbWQD2bZgPJBIG7UwsokALEho+oL+aUu1HE0AXAZNT6AaTZMLVBOXA0GxHsFSOnJ0zyjGD2YMsopeUrEsPJv9Prbz7MiBebbWN3342556oQ87fuYFb33S0wdF+298mhqPp3JROzjwf5Lz2puv3r51Tcd4I/Xh62mXj/vwTd8Q//oZnnw+b1ddN4D5j//xP96K/bgjKjgXB+vex8dtzTQlwGKW/6Ao3LnIliQKOABemAGEmSZDttaLPjIn9SX02kG2AS5azzy8ceYm1rIlc2exg21graA9hFZT07aPXcTOwELwP2t7M/qibc9ZKNe6mTU1CEmwFvPYeQb7S4yeu0zdl+gi7odLBKoGAlQDiZnGWbbOBUt6ZozcH0fmSQjQGr/axy5nuFRhO5IgBKryNF2JzTOaLnQ2e+TnKsz2JDJX1kW3tNn5lwKhkkXr2SwvZwYGvV8Al9mxzNiYFsiJqkbtQxogyCzm1RwCmMN6mnWjIOZ6gMvlXr+VYOYQxFxbpZ2apgpM7u+TdRNkZRnf32N0MjIH6W5AVZp6MKDuLzM+KeduiOWaxGVRaG7GAvdIj3QsmL4wkKQN/lQHnwTGowzfKOg6UAF1IWH5YzC6X0Q3LhcNVHwCqoT9+6KYf3XiyM6M8J0EOa0J40nUIs7ajKuKcKGKTP3+kHRaYu47xui+TpywSuJkldegylnXALg0ah7TKjDdiKL5/hMWvV1Ec5YsBe8InRRdetKdBlVkKOmZ2IS9cYdut6SxilqHeBlXmpC296zckXRrtHZUZRLNMisd28mGCcF4VK8hyxrCksR1JaGJLm5Se9K8odjPsL1Ave5Ae1AB6wXCSvLzgnwUmBwX6El0d5Mu4ImMEgH2HpQxicDFf9VqQDYBPxVsvVDTPRMQD3fYyWsghpEGL6ivLvX7jK3iuf8jqpPzbb96ezSnB0HAW78qjq/+EQfZlTfOWZgZsLicE9eV6npyUa7nvcXkh/nxe6/48m2tvPtdN21dl7I/bloA33FN773hIMvNzU0+9rGPAfC85z2PjY2NG13VnVPtDJRQaj6jLy5tT4I4m9YOwEPTxItya8+Lc4QWdAgp4yy/kouB8kwk3z4f7IFB96z9CZin0cPCQKBlGoRST8pMucgxTco5WLkckzRnLGbrvqh1K8zbyQiLFrNF4n1rr+wDYjih/8EGP8ix/ZSgBKrw0bGldEjrUbvTyBIVJaEFhiLLQEnsXStMTuY4E3UxqvKYqUNNLcleoOkbbDfmyJRHUuqVJPZpDyvUjonrtJZQ1dDm9wTnEb7NyxFy4V52iZ5JSAnSLFipxiIAOYQsBKq1jLL/7PDtP6w7u2Zg5KmAzNVaxZ4KvFxp+VsFZA5BzFNXXRh0KSiXFUFmJHs25rPkcfBfLQuKDRPdrrqBZuBIdhWdc4FqOd4vlj8eReTTYwJVQFFqbKGRJhB6llAp9JZBAM2qxa412NzQezywdcS0AZhxoC0tZLserwXlmsblfbIzU+xKTrLbIZS7BECursF40trOO0Jj8cMh6mxC3jOoSUN2XlKvJggXAZE3UC/H0EtpoVyP+S/SgS4coqrBaEJqED5DjAq6j0FIDb0nYKRX2esvE1SgzBwqdXgrkMYjMkcwHioFpaQWhmaco9dLmlEaT6bVhMQjJ4owVYxyg2jZJ2RAp45Op8K6CGZ8x6F6DQKwxSz0OAI94WfnKpBuFYxO9jGTQL5tqQeGasMhS4kZCcr7G3rrE5yTVJXB7yQgFZ2zsD9YwjzgUDKgtKM6fthCdrU6yIw8VXvSzarORy///EGh/fXYIF9al7Ixl67rWkM74eaChjupLtXh3NIgy8lkwrd+67fy8z//8/MQS6UUf+/v/T1+4id+gk7n1vtW37LyHqHVwtXqokFv9O4XxuBX+xTH+3gjYiK9BDO2yMohxzWiae2RvY8DZaKtpLAuMjkzdsBaRJ4v7JJbq81ZhapeOIwBSB+ZBlhYBtsD+S+z9RysmaHA/M8W9Bxkb2Zi/7aEEDF78kC7XKiqyBrNSgrCeALTKXI4JhVi0RI2a4s7KKSHyOq0mqn67jWavkE2UcuTXaiiMcAkBnoGJdETS5Cxf9qlApcIwpKmXtKYpQyzG9vZ5tvwAaHlgiHzDvzib2EkGBM1RXlKUGpuYy3qZg5A5f6UNASacEj5H9bNqxvVslwveLnce28UyFwKUurv+sBFjw9BzJXLTwydc9F1cXxMkXRlZCwq6J6L7VEiQLEaW6T0JArr6yWBT6C6q2FrVcJSQygVIvFQSfSuxi45VG4Rp3I652Oeiz9rKNcDuy+vUdsG0bNo4yhyhz6XcOR9lmJVx3BHJShXFGaY4HU7ydNeR/32bpxkWu6hjMFt7xIaizu/STIcIQZ93LEV0s2ScqXL5FgU7+spUVezHwgauuccTUfiUoVfiuMC2XYkBKOR45JQNti8j6ogv6AojgYaAa5QiEYS1iqyTk1xoYMIAlEJ9FpJXSrEox1Yc4jUo/oNR1aHnL2wTCgjwxWcRBqHTD1SeabTFCE9QgVkGrsfhAik/QqXK2pjqDegWtUk+1APBD5RNN3YVVAta4p1QUg9XkDZD4jUMR2n5N2a9ZUR3aM15UOac5tLhEaxu92HfRNB1H79jH0X7+TKP/7vniTiv9XA5eUrb7/ia+/e/Vs3bTvXk40Ct9Y++ekGfl5v3Wi7W1EX/AnffU3LXjeAeeMb38g73vEOfuu3fosv+IIvAKKw/5/8k3/Cd3zHd/DTP/3T17vKO6aE0ZEJmTENEAfkiYGlPs3RAcXRhLobqX5Vx8F3UFAtKbwS6KoT04yJoCYm1qsIcBqHsB5ciGFmUmA7BhECLpHIJqAKi96bIsZFzNqyFhK9yDSZ1UHmZOZGpmPI41zo7kNkgw6GWCZm7rImtJ4zPmKm35kxF/KAdbHRiDxbuIHN7YgPAJyZe9osTFKIGKhpzMVtblrjjixRrSfIOmBz2YZbKoIWMIkOZaKKLEq6W+EyjZkQWxQyhUsF1YqmGXTpNg657WOrQ2JaECgX7WESRJ4T8pRmvU8ziKxOkBFUBhnzDMzIke5UyGEB3iOnNdnhhNlhPcP1dMDLpeu5FhDzVIBk9voMyNTf9QHMv3zR096/T8cSTWxDyrYbhNdRyB5g5eOOehBT350RlBvQrDjMroohj52oqcALuidHOCcpQ9KGL8Z1mH1F2M/RU8Hgk478QoWsHfsPdjm3FvUw8kKCXW/QqcUeD+zfn5FvepJxoOkI8i2HbBy2owhGLyafnIsTY3vDOMmTpYj2uh5CgKpGDgvccofR3bHVLX0ikA4DwgfKFUm+5QlSkO1YzChODgWjwDrqEyuookEWDb6b4g3ICtKdQOd8oFzReEPM5OrkFEcylj/VnqeeJ0kstpCYocBrhVwp+dyTT7BZ9uj0KqYhJe001KUmBIFWDqU89dQgpCTr1ngvqHZyXADZaxAqgAlQSbwCPY7W//VSggiQb1pcLsl2AvWyxvVbS/9GsrwxIk8aVrKCvTKncQqdOJog0KdSumeiBrQ0nx6urbe6bgf7cq0g5WbaGs8YmEuP7yArczNAxou+83vmj9/8+f9u/vh2Zcss6udv6F2j68jfu24A8yu/8iv88i//Mn/9r//1+XNf+qVfSp7nfO3Xfu2zGsAgYzpytOHVC+3I6hL7L1ql6Qh0GTBFQLiAnvrWMjh66NsMylVJ0jMR4FQG4QO2I1ClRrVsQ2hpfZdEJ5YgBdVKbC0IMsWMu6x9uCJ9fCd6zM+YlYPsRhAL967QtqnNRP4QB/GKFogIhPBxPQftkWUr0J/ZNB80J/AhEj+JWVg5z0qIBaiSBy7KPizYHD3T2TSx5c4YCAG/0qO4q0uQAj21qCq2nOlxHUPSMg2pQg9L5LjG95LIygC2Z/BaIOuAKj3eSKb3D+hWNWIUjQvm4CWEuN0sxa0PGN/Xw2tBUKCLgBl7giKKOW1oZ9c0puiQnyvRW2PU1viWft0+3eqLv/bMdS3/u790Y4Fnl9vOja7rTq6bBV6uta6HTUl++MVzENN87wdv1S49q0sVkZkA6J4uKY5mCC/wiWDvQUl5d4PuNoQgoFC4kw1nVgyiEaipBA/TSUpwguAk1BISj8slaiqQHqqjjgtGku1EhqNcDfHe0vex7aqR2ElGEIHRK6eMn8jJtiSDTzpsLsnONuj2Wi27nagtzLNFV0BRLjSgJon3mTbYWDhP71Sg6RHZJBcol2VkylUMhdSlQ18Y4tb7uFxTP2eNYk2x8pclbhAzRcwk4FIxnxBM9yJYyrcdQcC2MKgq0P8k1APJfrfHyscFthMtoO/f2OZ80Wdz3MVaSd6rWvJ/ZlQDVRHDQFEB2yiaou0mkCEyMiLgtScA/mTDfj/B9hTdM4LpXQGbG5pBoFn26NWSTl4znWQo7VjrThnXCdtFh7I2DEc5WV6TJJbJwODPR0boxDumPHK7vnzPwnoq8fszVTdzX64UdHkz64M/8oPzx6//msXzt5rduRkGAz/zgrfGFrIPPPWycAMAZjqdcvTo0Sc9f+TIEabT6fWu7s6rmd2uilkhYdBlev8SzkTGJduxeCVo+gpkFC26VCBttN4FaLqCzqZHNnEKP5nEdoFyRUWxnxHzVgLVgEviczOWoV6Crc9O2fArpI9txTY0G1udArTtUS1LJMWiTWrWstU6e80zUzgg3p8tB23S/QGtzUyDMxPBz9bnDuTitHk3c+OCgxXCPIwyNH7eLhbadYVBl+JEVDJm2zWi9gQdbYuDlqhJg11OAYHrpahpEwGeiK0Wwgb01CGbuF3bjW0QyfElkkcqBK3VdeNia57R2I0Bwwe7CAfJKPZEzwLF9MQTtMAbiZ560tpTrmj2ntthWQg4W97Mb9andV0veLnR93ym1K0AL1djYW6kFewgiDmsJ5cqBNmew4wbROPonpoyPZ7zxJcFnvfgKS6Me4QgsF4iugElAnplwqRMaGqNdAI2U1QlcMdq9I5qbd6hWbfgBb2jY9xRybgdkMvTESQFFYGMnCh84undNcY5SX13QVPGfJdsLwZtmtoiRpOo51xdJqRJbH+uG0JRRr2kDQghIevi1waMH+jTzJLlAyChXJZ4A+U66EKQ73jUsEa42BIsK8fwnpR8x9GsdiIDrgXCxS6G6VFJurvoaihX40Rb50Jg/0E48l7H4HFL50JC91TB7mflVC+fAHBh1EOKQJpYJtMUt5egJgqfeqwyiEogkgCFoklneWABkTm8lbixRnQcQgb8RKNWKqYDgUtyzDDuT7Psod9w98YuzktWOwX3D7aZ2AQjHc5LrFP0eiX3ruzyyd0VQsdRLylO/sEUsTW53V/BZ0X9yQ88Oh/Ef9dP3xlBjrN6J7cWSF1vWv21goSfecFbn7TuW91Cdjl3t1td1w1gXvGKV/B93/d9/PzP//w8lbUoCt7ylrfwile84qbv4G0t70BHER4yOoLZ1S566sgC2FwSpEC6gJm4eeaLbEJM4Z1G15J6acaCgE0F6X4g3a1BJAgbU+qLjeglTwgIFwWPugqUy4JsOxIso5MpZruD3B1HJuMS++Y50IAFUJkxIs0l/baqdUiD+B6pwDULd7XZOoRcABN1gF2ZZ6+4lkJiAWhmjEfbsjUHSC0jJIzGDzoUJ3uUKwpdBlytCLnG5hIzcfPtiwCqjFognyiEizqiIEA2DlVaimM5NpdMjkaXm+mRBLPZRUwKQlnN2R57dInxPR3SfRcdY3xsfZMuYHMVBxZloOkn8SZuPTqXlCuKrc/J6WarHE6ZPTvqi7/2zKcNC3MrmZfLgZino2M5BDFXLl1Ak0vUcorN47V797mK/pFdPrWzgrUSrT1SBkIQGNOgVQygdI2MrMvAxku7F9iTFWI7wa/XKB0QItA0Cu/k/DJsVy0ii+sI+wlBgNlTVKuaZi/DLFXUK45yqMi3mFs4h6oGJSkf2KDpx4m2/PQYMS2RShLKEpEm1PdtUC8ZhncryvXA+l94zBR2n6dIdwIuFyR70Y64WFE0nT7LH/IEAaq09E/VVCsam8VA5yCjsYC0sS07KEjGnmJN0vQkehJIJgGvBcWqQk9i7tiFz+vgUjDGsTnpUhQJK4MpzovYZte1OAEkHmqJDAKvA2qk4tzfWoVvJARBaNr71VgjVyv8viF0LEJC8UAd3986m/XyCucl+0VGljRsV10yFTsE9quMaWUIQXB6OGAyzqIZwQvHnHY91v7UwSeeka/iHV2v/BcPAJGJONjadftbnp5c3/bSz+P13F7tyNXqUpBwpXa7K7mnfbrVdQOYt771rXzJl3wJJ0+e5MUvjje+D3zgA2RZxn/5L//lpu/gbS8horg+SwmJoV4ymJHFjCzC61a4H9mAkETmxSuBmUbGxUxAWknTEQjf5p9Yiao1euxoBhqfKMwkIILHJZJk7ON6fcBM4gyb8NB0BCE1l1ghi2i/HNpeNKniwhCBxwxEHBCv490clAkpW3cZH9vDlIrsjlTQVBfbRR8EJVIxD9ckLKyIDwpz3IE8nNZuWWhN0Ip6rUOxplFVBFyjk7EtILqPxfMIIK1H1g5v5PzzcJmO4ZJlAz66ldX92EOuq0DTlUzvW6L74XIR9NnJKI5m6MKjSh/7vKWIYNO3OpvGgQczqnEdjU/jjTvbC5QrgvHJGzbpO6zDuqG63W1jN6PMv3zRYRvZZap3ytOsCVQj8UowPSKZnnSYytCczwlJoNEenECkHt8TjKeS5kKOrASu61FLNVJ6ksRhlGNiHFJ56tLES/aZLrIWuH7MONFrFf1ewXCcx7ktEQBB8BLhBM1+iplKZB27B0KqCKWGJOpD0tP7hHuXsbnEdRP0xgoUFSLP8Etdyo2Eqh/t8ZPHwIw9ZmrxOmV8QuKTeNyqBtrgxnqtQ72skXV0keycrRjen0XNaBmoewLbFRAgGQYmRxW2B+l2oH86hkOf/AOP7Sr2n5NQbAjW/9pZGh/vEfuTHIKgm9Sc7O1xvtunaAwXdvs4J/G1xJvWoKDjkcs1R1eHnD23EgX/gCwlQYHbSyD1hInBLJeQgsgsQnq0dtwz2OWjm0eZnu4xWquQIjCtEvZ3u4hdQzABPFSrhuWlCYOsomgM5+9JGZ47vJ9ca90J4OX1X7MbAcDX3DgAeCoAcSPg4iBoudQk4KCr2T/+xt/AvukP4MPXvYlntG6piP9FL3oRn/jEJ/iFX/gFPvrR6EH3dV/3dXz91389eZ5f7+ruvGq1EyiF7+W4VELQsV0skRGwJIIgJeluQ7odmRgR4nuDkhAM1ZLEFLH9KUgY3xUDHyGm0UfBYxyMexMv3uVyZCd0Ga0upRNzsiNaJfuF0N7LRfjlTFQfPFgPJlkEYUqBSLJW19OK7H1AzFw/Ghvbu6pWBD9bl3MgD+apzNrR2rI2hl4eFH8ePId4hDSEToZf7lKtxDAwm4mofykDugzz49dTR1ACXIg6mBCQ7ebq5QgigzC4jqYexJtOthNb81wCo5OaziMJFCUYg1vpEpQg26ri7J8An8QAs7ovSXfbdrMWKLn2f2nj+U/3JM1hDMw11WEr2M2pZwK8HLqI3dqSNXglKNYl6V5AjyV2WRG6LmpagkBUEqyk0h5fKoQXc/vj4AVJ5mgaxXScEiY6tmzpAF2Lzx2y0shKIhqBnRim2uFrhaxaDYgEOzbocWQ50m1B/1Rr3mLjpJfI0mgn3zL6dU9is5y0bzBjS3E0jQL9ZcnwgTjpZMaQ7kuq5TQ6dZUx7FE2cW5NVzEfZXbdT+pA09ckwybe+1zATD26AraJ82JlDMmcTeJlp0cELRk9OKBcjdfo1S88x/OWL/Anp+7De0lTa7SxbE86DMuUokoiOzUxYKNtcpzMC4TE0+8V1LYd+kR8h+94hIvaI7fkUENFkyTRxcx4bK1Rec3p8RJNowgq4KaaTdGnGSegfZzrqwSivW/nxlI7xaRK5u3mh3Vtdbsds65UM+F9euQ/3dD70yPw7h+7ufuUHoHqwjdetF/VhW8E4N0/9r3z5d79Y+8BBjd347ehgjdPvVBbNzQl0Ol0+KZv+qYbeeudXQcH6EriO4ag2iArGQXgTonY66vBjASqjInxPtXIyhKMwowFwkVXLWEDthODr3QRkDYgXNR92EwQOvGxbGUmXkPVj6I/4QOiORC2qBXBLy6C83BKT2vzbFphfyv4VxK/3KNa71APNDYT87Y2aSNdL20g23V0PrYVDQPqJt45ZhoaISC0dsQHHciERCTJgfOlFudQKkSaxO0vdZieyKkGEl0FbBpb7VwigIDNJHVP4k17LrXAjC0uU4gQncLMOLZ3CR8ND1wL+GQT8wfyHU81kIRUI0W0vC6P5BE8aoGaRC2Nt4p6WVMtSZKRxHViuBzEz3hmiV33VcwCcIc2ZJ8p9UPf/4Yrvvbm7/+pK752s+rZyLwc1tVLNYHupyqCFOy8IKXzt8+z6iVKerb2e9TjBJU5HBqROtZWxkzKhCqPKZHSC3ypmJRxYlCONbIRcwcsv5OQDNuJlyY6KoaxolIp1JFREI1oWYGYNN+seFSpyLZqJidSANxaDzWqEJMChEA2Ht2yJ+lOhe0ZNl8iqTYcovGEnkPtaDpnRQQidXQ1O/LnY5pBAj4wvDeh7iu8hs5mOxMkwGvB+ESKV4LOpsVrgRnF4ynXDE1HUvfb+1QXirsHZGdG0cktGCZHJFp6Prx7FK08o3HKyuqYxikGWUVuGqZJQ6Icw7RmWqYIEagrg9KO1UHUoUyrBJk4vAhIE9mVujSEKkFU7bmTgV6/ZDpN0YnlrsGQymnGiUWsFzS1Js0aTGLxXuLOxxZx4QROhMgAWYlUAdVtaHqHtvyXq//1N5bpXxr/cAfUc059S/voG2/ZNmbAAyA98p/mfz8VYLr09cst/67/+rqbsIe3v8bjIV/0yn90TcteE4D5zd/8TV7zmtdgjOE3f/M3r7rsl3/5l1/Thu/I0jq2SsEczASxGNDqwkewsCQJSmB7ClV5ZLusTzTCxRaopHbYniEIyLYbsh1iynxpya3HpxpvJPVy/Ah8K2a0mUAXcYDfO29R+5PImghB8H5hn+wDIbiLnMeEENE2WWtCv0N5csDkqKHpMnfDgRgypsfxBguC8THNdOMYg8cr0k+cb4MhD9RMuD/T2xw0DJidqxm4kWK+bEgMQQq8ije6phv3M9uNRgiqjkxTkKCnHll7fCrxiaQeaFQiMeMIMOqVpAU9IB2YiaPuqZk/QSsEVWAMIYkBbjYXkVnJ4jlu+npuge2NoOlpDBHkBCnweWS10l1LtaqR9SGAebbUjepfrgZcDi5zO0DMYX16lRlZzG6Nzw3CpXRMw6mdZZTy2DpOUnknML0aW2kaqxAClgYTRuOcptaoXdOy+xBUwKceWUh85jH7sS3MZQHZxDBMWQtEERmCoNp7mAnIabzu0WtwucIbSbZjEY3DreSRickjA1+sxw4Cmwsmx/roaaAZBLpHJ0jpCUFQdzU7eY6cSsxY4NLA9K4e6Q6kQ086CkyOSupBbKFOhwEzbnO9pKY8KpE2noOmK9Fl1FEmo0Ay8hRrCm/AdiRIidktsLlickKyoSy70z6jvQ4hwGics7EyItUWIx39xLNfZQxHHewkZrBkg4osiY5vw2lGXRl8I0m7Nc4Jqr0supQl7YRggFBLrJN4J4jxcIHzwz6TrQ6o6F7WNIo8bdjbylGmBZ06zIgddOLQ2lFOE1zn8H5yufrvz3sdeXIHdu+civ/dKPtyLXVw3dcKXg7W1d7zilf/4tPcu2emgi+uedlrAjCvfe1rOXfuHEeOHOG1r33tFZcTQuCuw8P5jishog1wiANyWbc0e+uKIpuAmlp656BY1XglKDcS0p1oG6lKh8sMQcQZJG8EeHBpzHgRIWA7GlV5XBpB0MypzCvm2QCyifR7ulXMwxWjFXJkXGLQZCu49zGoMsxsg1vnrd0X9PAaknFAb0eTAa/ienUhkI65xmVm6zw+kVAPTtD7+C7s7PP/Z+/Poyw77/pu9PMMezpjDT1KrbYkyxMeYgYBjsEvF4jNDZAb4hCHhNgMvhAvY4Lh5TqAgZDc2CHvWnGAXIaEIYSEELgQSEjItcNgglHAIWDwbNmSWupWDzWdaU/PdP949qmqllpSt9RDydRvrV596pxdez/nnNp7P9/n9x1YhnkudTL7QjaBPX2Nkns/hy68M9GEXkZzJI9alyKgZ5BvGHQZQcnys8i2I/DxqcSlkmpNo2sfMZESuFRi+tGuOt9x5OcbXKYIYxWBZA66DjGrQCtINC4TpLPoclYf1dhCYIroGJcsYv5MMnOYoaZe7TpeDgbnGoTxJLPuMz6sT9u6GvCyf9sbBWIOuy+fvtUe6SGtJ+jAOK2ohgl3jzeoXcKDkzWcFyyqjLTXYpxCiEDVpJgqQcwVsvNM8UmI+o06ghc5MBgrEFbgC4+aS3QVF4OSLUl71EXg0lGaAOzYkxYGl+W4QmILSZbEBTs7SGN3O5O0Q4npC47/r5L6SEq9qvC55+UnzrJR97k4HzCf9pFG4Hueet1BLbG3WyonkRPN+OPRiVOXkV7tFQjjUdajZy26zmlGqosSAFsoik1HOouCeF059MJEK/1eQrua0axE589z0xHOSYYrJcYq+nlLIj07Vc5KUXNp3qeuUtLMMBxUZInlueNNHpmvcHE6oNrJUYVDZ5amSgiVQu9o3MmG0ChE4pHnU0IqkTKgtCdJHD4IFps9ZGFJMsuJlRmbix5CBPqrFYtQ4CuFWkjcPCFbL1npV1RtgkkUJjvswFypvuW3RggZAcy3/sArb/Fo9tW737f78H3ffPKGHeaVP/EosNeBaS6+4apAzHK7K/3ON7zwH92w8d7oaq3npzaubturAjDe+ys+/rQr72P3QQqwDjmvgR7tUCJcIPUB2Tryi450R9GspsxOKWyekm9FdxTpPIKAy/Zaoj6VSOuwucIMFMkiJhQHKbBFvICnC0++FfUg2dTRO1uhNqZ7wvxOeC/yPNK86GyR93dfejn16RUmd6eYgSDbDrRD0RkLQLbw6IXbpbYFLahX42Q/mzpsJlmcUJTHjnDkjzPU2Y0YELnfVWyZJQORW7zsxCxzY5yHhCi+78fwNREC2SQeWzUu6k5cBC3COqSQ2CSCN9V4VBoBlnAR/DUrkfedTeLfnk8kIkTHNzsE2XZubrYLW9ORlqbaQDMSuCyCUBEi5QwikPJJtPG0hcAMBL0LPoJPJeNnZA4BzLOhrrX7ci3A5bG/d9iJOayrraAkqrRUJ3JWPucSd/U3OdXbYWIKhrpBSY/zCmcV3gu0bmnqBGdjBgySzpkr4IvY/Q8qkKzW9IuWhfZ4L2EWqc5eBAjxmigKS3ASN4y0WJE6mCeYc31Gm3ExLqstomwQKznCBpq1FJvH62W7CjvPK9h5PrgiXgd///0v5Mg9m8zLDHS0Ro5vlN2OBMLjc0/T3VeChJVPRqqYzxTJVonYmqDPQG80ACFoTo2pjibo0iFaH90mAdFa7GqBKxTtSGELQbot8H+4QvXclrZwSOVQ0tNLWnJtqO3Sul/Qz1uGWcPt/R0eLcc8srGCKzWoaORiqgS1o/FZwGeBot9QhYzesMGeSQmlxDlJksYFt0uLATK35L2WUa/mobPrfPY9D7FZ9zm/M4qOZjrg04DsWYSA7XmPPDVo7fHVwaNJHdbV1RJk3KzaTy3bX/tByhK8XAns/PRHv/dxzz1bKnZgriOFbH/9m3/zb3jd615HlmWXPd+2Lb/wC7/A61//+mvd5cGpbvK6m0BvHfmmZXFbghkImlbvaiWWK1WuECz6gmYUgYLwgXThkW0UMHoVtTNmoLrkZXArCmU6CpeIq1NBQDZxJAuL3qmR0xKadk9bohS4LowSYtZKCAilQEpCL6c5NWZyd4o0kMwD0+dC77wgmQfyDYOquxZ+kNhi72Kq6zhWsshXrseSyfMHrM7q2Inx7nKR/jIHxsvY8Vj23GHXACEUGdXxHJfGgLJkZlG17cIqZacFCrg80hlsX6Irj+nLfZQJcJmiXhWoNuqDkirS7XwqozZJR3ApQqTwqTIKU6XtDBQU9C45bC6Zn4q2nNKF+Putpx5FGpouo421T2NXyxYSJw9XzK6m3v2Lt90yIf/NAi/7f/96gphb2X05FPDf6Aq4QpPMLJu/f4xfe0mPIjcM84a1ouTS9pAsMwjp6RWWRDmslYQgyFcr6jLFFrEjQAdqgoRhv8Y6BSLgZglqEV22ZNuFB6tAMBK8QBhJ0FHnIaeStQ8Fhg9XiNZHjlOaoEqL7ScIF9h+vkZ9zg5HexUXXjRkfbTg/AProELU5YjAS257lNKmfOrCEZyTiC6rxqhAOmwxs4TyToMsFbIWZNuK4cMt6UYJrYlsgdbA9hSkQB4bku04kq0atTUlJJowKDBrPRa3pTTjGEWw+RcC6miFv5CTjRqkjFbSR3oLerrFB8FW1SPTjgpY1Ck7s4JHNldwLhomEAQ6s9hSoyYaVQl8EfCFpZzmyMRjjMIOAiELvPDYBR6eriJEYJg1HD0159JiQNmk9EY15xcjyjYhTw2mH++pvruHLS71yNdqxkVNa/WuqcJhPXF94Ld7t3oIALz3d97zpK9/4yM3ZnHzp049ceelufiGK+hanp06lyer666B2V9f//Vfz5d92Zdx7Nixy56fzWZ8/dd//bMbwMAeHQsQrSGZtagmdgCasUTXmmRukS6QTRz1qmRxKiBHgmwrhlO6VCFt7DwkZUyNN/3Ysl8KFIsN3wna42RbmkAybZFlG8GL85Ake4nIdB0XgFRHXQyAVoQsxRwdcOFzMnQVJ+w+EZQn5G4IpDSekEhE6xHBI5NI19KNjxafRzTpwuOSjl4GlHev0p/OQSax67Mr6u+c2qAbn9yjmnXle1Gz4lKBMiGClEGCsAHZxrFL6/FKomuHKySmrwgyrg5KG3CpjIYDBlwWNURJ1VHukqirSeZhd9yiA1k+1VEvE9jNELB5tL8GcKmgHUpUK8gmjnzL4nKJ1yJ2e4ig0rvDG85BrU+XzJfD+vStZqzJtmM33idgL/Rob1tgU8OD26scX5sCEUdIEVi0Cd4LhAjUVcpgWGOsYnVQ8ujFFdLc0MtblAxUTXet1R6/7gi1wuZ2N21eZo7gBSHxUCnUAwWj+4m0WiGQLtJr7UpBcnaLoFZoxxqXB4JVKOkZDypmVR5dtVLPS/7CQzywtcZ20mNrESeawQtUK1C1wASBd5KQOcRC4wvH8FPRfdOMNNIV+KM98nMJYjKPNvui64L3JJmK95CQZyyeM8BlknpFoproZHbXi8+RSMf9HMV7QZI4jgwWSBGwXrJV90mUY9YJ952TjAc1jVUsZjGzTmQO7wV0TmE+gZB6ROoJTqATh6k1AlCrDalyaOWwTuG85FNb65hGI1Vgdbxga97jzvUt5m3GMG84vzXCVQqMRNUCNxZkyuJcp0E6rANd+4HLYwX2l9HbfupGjeB9T/rqZ70s4/t+/V/fqIMfiGrK66yB2V9LDcZj65FHHmE8Hl/r7g5WebfPqjgGOsrtOcUgYXo6I50F2oHEpQnSxlV6n0C+EUGJrkLUWJRxkr0Unbd9jU9iB0HagKqBAPmOQ9UOVRpk6xCLGmFstDb23RgAnIsCfh+iw9iyQojbJJrFqRxpYHDWkW+0EAL5poqt/ERQnkhRbUA1cdy2iF0jXcUOjO2B8PEiq0zcrjqqyU+sI89d6j6fzrZ5+f/+6nQ6S1MB1++SoV1npakFzTDS53Tp0HODTxWoSAmzWfwMkzKCm0ixg3YYHdOSRQw4E133RFcd3Y6OX+1BNMvuVPwubB51L+kiUGw5is0oGI0A0iBbHwX8ImqVvBYxeHTmCLnc1Scd1lPXzerCPBPg8ky7L/v3c0glO6ynKukCtqdoRgoz8oShxRjFxYtjQiuZpz2KYU216NgMXsCko0Blnmmp6a2XPHphJSbEO8m8zFAqkCaWImtJRiVVm2BdtBM2VRIT5lXs7gcjSTcV+aZg9aMLbF/jtUDJmK9VH0kYX9QEJXGZRH/GlM++7WEAPrJ5grbRrN+1HSfxXjLIGzJlec7qNtNezuaiRykCdaMYHVmw+MQKDLrg4EpRHQ34RJDOuyDhRBIShUgiSADQcxONA9ZzxEq2a61frwrsIF7bpyclf+e2P+YPJndxadgnTyypcuyUBcO0YdIWbMz7tI2OnSLl6RcNZZPQNPEzTTKLUp66SpF9iw8CkIhKovqGoKGdp/F70AFnJXMTv5tB1qClJ00tWnt6WYuximOjOStpReM0l+Z9zCRD70StjnCRpvbIzgrGqGgXfViPq7v/9/ejRnFCcZa/f8vGcf/z/8llPz/WovhW13I8P/gN8efHjqu/+X/e7CHdkArTqz9RrhrAfOZnfiaiE5J/yZd8CVrv/apzjgceeIAv+7Ive5I9PAtKyJhgLyQBA94jrCV7KDC2q1THU+qBxGVi15VMOsg2/W6HRnhoR4JsxyOt6KyTPTaPE3Lp4u9lmw2yscg6ghVRt2BdFyopCdYhVIjdoGXQpHeE1kX74jSJgEEIfK4xPUHvoiffNPh0aRDgSeYe0YsXB9OXCO9pB5LypEAvwKcBUUGxGSlXthB4HW8tLoXqVJ/B+U2C7bRBS/3LklK27Lok+y2VJaYfwyeju1oH9lTM0km3WkRjEEoACq9FpG9pQb2iSBYe6WI6dbHpo0FCG2l51brGa8h3ItBxiSCdOlTjEa3ZdWyTNpDN4nvSC4+uowUopIRuyC5XqNIipMCtJjQjiXSxA0Qe9TiHdfV1I0HMQeu4LMHQIZA5rCcq4egMSGIbfLBaYoyimaaIwnLs6JRcW2apwXtJoh3VOGG+0UdkDrXUuASBr6JOhtRDYVgdVyzalCIxtFbRtLqbkMfyViK2UpJSkG8IgiZqUKbxOi6Mw2VZXDhKE6Z35rhMYFrNH527gxPjGVs7fZTy9NOWRDl6uo1de+lpXbyIptoih4Gp6dMaja4gnWjMIOxqDttxYH6bQlWabLuJes5EI+qGEGJ3Psh4n6iPJKSzqCf1Ki4sBS1o1jxnmnU+NTnC1qUR/ZWKIjUsyoyHWWEy6RGMpBjXCBFQKn52zklcpSnGNSEI6irFt6oTRBK1RTqQ5YZylnXWYXHxsD+s0V1I9E5ZsNYv0dIzr1LuWd9gpylYyxdsNT12qpyqzEDGSASXgc8D1Iq2o2tfQ7zFYd3kWoKXJ3P1+uHvf/LuyI2u/aL97NjPPs7B7PVf9au3bnDXsVrrr7rBddUAZuk+9id/8ie85jWvYTAY7L6Wpil33nknr33ta69lnAevnIMs7xLlOwtK5xFVTfrwJno2ID3WozwWHchEgGzb72o2sqnHFl14mIjCeOFAtn43aT7dapGtRc7qCFyWiffWgTHRFcxaCJ7gIm0s7B+fUgRj4upVnhESTXVbH6+jVbIIXZ6Jja4vwgfaUUbouhu6dMiBpB3G7IBiM2pRTF9GDU4JtojZNOmsC9nMM2jbrvPSWShbH8GL6boeXe6MkAm47veAfNthe7HDousQQZ+J4MflGtk6dGmoj+YIF9BV5Hknc4ctFGYgSRZL8X4EJrYn9kBIJjBDRTrpAGBnbLAU7Ud3NU3/vCDbbFCtpx0pTF+jOh64GUTBqWqjDmZJ9UunhxSyg1AHDbzsr2dbN+ZH06+71UP4c1MuE2S1Z/iwQ9qES+OCtGcgc4RG0VpF2SaEICKwMZqmThCpI5Qa68E3nSZQATIgKo1pJRf0kDSx1EpjnOLIaIELgktbI8TZnPxSNIepjwZsH9JJXLCRTQwMVo2jHSnEMrhyJPCJwFnJsdUKLTy+1ITM8fCFVYp+y7kwoppn6NQRQqRbFVlLWWaIUkVns9V4rS5um0ewME9wrUA2iuqIpvfgDj5PI3XMWkSSxHuggHaskTaQbrX4YxntOFpDWyPo3z2hcglFYpBp1ArNXYbtPjepPUeOTPFBsDMraDqbZKlDzNpxEtsq/CKJAEVEMKh7Fqk8i50iBosmHhpF6FKUK5tQtwnPWdlmkDSc3RrjrORCOWBn3mPRpkzmOWaeMjqyYFppbC/gVyxCe6QM9IuW+SIn6MOO/pXqU5/1A7suZAA/8ct/clOP/82vffnu4ydy//rJV09v0mierH6Ev/Nvryza/7mv/ZFbMJ4bU1Vb8VP8v65q26sGMN///d8PwJ133snrXvc68jx/eqM7yCVFZxfcpdx31sHBC0TdIC+0FDtzsnM92mNdurwSeAlmINCLgOgCInUTUHVALyyqMsiyy1ZxMctFOL/bLSDsHWs3WyWELo15CRj2xiXydG8brajWFS6PNyyvY7clmUYaWTNM0GWcqAdJdFObefINjQiRogWxY5TMXKRn4TE9idCdwUCewlwBruvAhD2jgzQCluV7C8ojZByLaiN9wCtBO4o6lHYg8bpHsrDU6wnFhQiMVOOpjmhUZ34QVJf5YiMVDNgFRbKNeTkx1LKznZ7Ue0DQRgAlOyrc0ga7OZKRbbV4LeLN9EJ00hEBVBPQ3Y00CEG+7eGQQnbNtQQbz7QTc71By/Wijx3WYV11hdiFKc5MaMfrkZoE0ChEzzKZ9PCNIhs19IuGEETnRuZZNCpmkowMvlaonsW3Ch9AZ45eHreXIpB3ie+1ifQpO3L4bU27HsieP8V8aEQ6jTb/CGiOpLCeRpcwETWD9bqINGejaKxmkDYx0DGAKBXlNCWIAKnHVBpZS8yxGqU0dpoiBJhpinQCP4wOXL5VkDlw0elr6yXgkyOsfLJGlk0U8vejlsYraAeS3obD9mMG1+CRgEth6+WOrzj9UR5YrGOcQmlHL2/JEgsDmNcZLzt1llxZPjVZJ00dITgqm5F124UgWPgMOWrJcoO1kiRxNI3GXCqizqcfQQe1Qoxa8sSipGelFzn5H9k8hmk0SWapO73Sok4jpW+tYpA3zLOcsBYoBg2m1SSppbUK1yry+eH95GpqP6D4yVdPeeO7b32a/HIMt9rm+TtfeT8Qu0H7Hcje+O7RAQFZN7euWQPzhjccDD7gDaklcFnKTK4QGimaFmks+WROVmRRRJ8oZveMSBaeZNIStETVFrlouhwXj7AuPu6yV3ZF+Mtuj1JdByhFtIYgYwZLsN0YlsBG6719SIkvEmwR9TXCgxmqmDnjE2TrUY3H9lUUw9tAeSJFuMDKpyxBwfbzNe0oIJwkm4gIfIQgmUlsTxGUxOcpUorObMzvE+svHdLkrtmAENGCOr9YsTjdQzhIFp5sEm2Oy+MJ9ZpCuAgu6qMp0kRxP4ApJDKJQEK2AeHFbiiltBHQmCJqVQCChv6jLWJrsvc5ynjMZiQxPUk6DySzaB8dtEDVPoKrVELtUKVFGo/tKWTTiVsL2VHODuvp1JMBkCcCNwe50/Jk9Wzpwhx2X25uRaORgB/k0ZhkqmmNRE8U6UNR4N+uCMo7FH5dIAQkiWMxyaOpYytRhSEdW7R2yF5MpnJO0pik+18jZcB7gfcSKQKMWsp7OortPCP1nW2+FAgbw4PntymSWbzmLu4c0Kx7iguSxkM/bcmVhbGJ+ScDiRCBXq/BdVobxnD38Q1mbUZZZIRKI2pFui0xxyxCBLJBgxBQA42WyJ5lY0WTb6eoskDu5KAUzVpGvSbRdaAeK9Iu+DibOZqRQq617JgepU0xXpJlEfzp1LE6jLSumcl5eFpgXaSN1ZMM1bM0TUI1yxEqLuIJGVhs9qKDW8/ijESM26i/TBxtmSDHLUp5WqvYKPv0EsMD22v0spb+sKaftVzcGJH3WoSAxUZBsVZFV7ncUG0XWKMiwJQBKX3sGhWHKv6rqf0TcffNn4J3v/ymTc6fCiwtaWQ3C8g8GW3tRgZsPlvqmgGMc453vetd/OIv/iJnzpyhbS9Pbd/a2rpug7vp1VHIQtNGx68lqNj3elj+LCTUDULHNvx4WnbPiz1BO+wBD4iCeyn3aFe7lshyF5DQtJ09soxUsmV3I/i9/S9BDOBT1YGEEP37+5J04WlWY+dFVxZdemyucJnoNCkC4X3UmphIJUvnHlXF92aGkaxrC0kzlAyX72H5nvbrXzprZ5Gl0SLTOUhSZOu67kf8Xdl6dGkYdMLWdNLiCk2zqmnGMtLfHOjOkU3VAVVHW2mAZjVBtktBaCApPTaPoCZ9ZJvguwBNIRCN26WB9S55knkXSGpDzJ/RkM4cycSgFgZfaLyIwEYvDF5LkmnAiEMAcyPq2QpUnqyeLSDmsG5emQFsHU/JNzXZxLP6Ycn0udG2Pd8MjB80eC2YTjQuHWAGYIoAxyzpJU2QYGSKWyjqFYNQ0TbYW4nUHt8ohA6srs8IQeC8ZN7kCBnIhg3NIiVU0UCgbiX1ukYNVexoB7C92Hk3PQFHG0qZ8ZnPf4jT/W0WNmN9bc4gazi3NWbUr9HKsTXtYxYJxUrNZtlna7uPTh3GSIKH5miAjYzqSCQQ5EXLytqCyU4EHO0soV6VFBcVSgj8MFKHQpd5Ux8RCC/RdQx7zrccwcNIV9CD87MhIQiywiBEYGsaOziN0bRtnM5o7aLtM+DmSec41nWDGoUwgpB57DyJmpXC4VqJ8QKMhJ0E04s0udUjFUp61vollUm4e3WLVMWuSmMS6jpBzRR1nhJaicsliKjfTFKLlB4tPUp5zPCW/Bk+62o/iGj+7bvIjv3s7nM3Gshcef8/whvfHR8F/f8G4IduVk7kk8zQ23Of+HMPYq4ZwPzAD/wAP/mTP8l3fMd38Pa3v53v+Z7v4cEHH+RXf/VX+b7v+74bMcabW9YitO4m6UvKVDdhT9JoJQwQXNeZ6ToS8zKKI5eUryXIWHZxlIzBX4mO/7oSrYG66VzPXBTt+3B5CrwUcQgiZtSEZbdj+bIF048J8yLA5C4NHgaPdhk0PYlLBF5Dsy5Yud8xP6kISmEGoGp2tTghWbp/KbxeBqkJpBBxREJGMKV1pAAoFcHeEmh15g5yWiJ8H2EjPUzYSNdSlUUYH0M8e4ogu4wXBfmWRZcOn0RHHK8Fwsd0aNlGrQ5JtGUOCtKpo/jkJmJeEnwgeIcIAbmocOkKrhC4TJBvdc5mfc3SiVqXDrUwyNYSMoVsHS5XuFzHsSYSq6/59Dis61S/vPpXL/v5tdu/ekvGcaPrR9OvuylZMFfqvrTf+YHDLJgbWOVxGEzj9TkoKI8LzNEWfSkGT+Kj4Dvfihkr4RI0I4GqE7KduODiH03QdcCrlHpdUJ9wUWc+jaYo6fOmPGe8zQfPnSRJHEo7vFM00yhIl32LTwJVJkkWGuFjZ3vlfkM6NfhEsv2CjNGw4tjJ6Db5qfkRrJf00xbnJavDEiU9g6TlYjsCK7FGUSuNfjDHPKehWKmpZhlyK8GnAb+R0b9jxguOXOTsfMxOqzBAsqMYPdQyvTNn7dIAXyQ0Y0UyD7RjwconLdm2oVlJyLYtdqDIey0f3LmNxmmqJmXYq2O6vVFkmaVpNG2TkOUt1sbOh5hrXK0QViDraK7jeqIL3QS8QFYxI8dJoJFQRODjC48sFWLcsFUWCCBLLBuXRpy+Z5sT+ZSPuRgj4UqN8oL0wagzNSMNmY+dHemRUpInsSPlD3Msr6pe+0vfsvv4l7/68gn6Esg8mdj+SvV/fNFfuuZxvPsXb+M7fyxStr51t+HyG9e8n+tVP/z973vS9/Fz7RO+dENr/Fvmuu7P+Blcbw3Msv7dv/t3/Kt/9a/48i//cv7BP/gHfM3XfA3Pfe5zednLXsb//J//k2/91m+91l0enFIqTtCXj/fTpaTY64Lsbi93t9/tmCwnvcZAlkZQMOrjRjnNeobpSZK5BxkpBkEKkrkj3apRm7NoowwEY2JQ5C5bS+3tGxWdyIj5LoRIrZJdQye630C9IpieTrB96D8SSOeBZl3s0smsFhG8OFgcU0iTRtOBjs5le5E2JlyI701IkCGCqRAiEBMduFoiA4ggr6rJz5csTg9iDo0ApwS6jCDL5ZFGpkuPCCGmMBuPtNHa2PYlwklU4zGDCKZ0FbBFZwYwd+QPbcNsQejMBYQQ0XShbhg+3BBEHjU1y9yZNFLqhA/RtjoEgoi0CnTMsrGFJJ36x33Vh3Xj67Gg5Yle+3QFMzeqDqljt6aybYEZQTIXKCOoTlloJMk8ah1tP1ost0NBNvG4TOByQb4RSLqGPiEai8SwXokZSew4msOELJAllu2mh/cSY8C2mlBq1EwRdCCse2glspE0qzHkUlpB/4JEXrKYQY5wMJsXCBFock2mLFtVj/XeghAEo6xmpy7YqnqoxHH38zYAME4hPn/BpMoZFzUPlSlu4Ljjzg0ePrfGIG9YTSv+bHobqEAoNdJCvaZJ5x630sPrzp3Tdv/agCotYS2lOppQnoiUsEuLfkeXi65oUgR04XFBdCYIYExMhDa1jo7+ZQz4BHBFpwPN4/1SGElIAiGNbi+iiFk6ohUgYfgpibh/QHlboD0RJ2i9lYpJU3Ain6KkZ1FmiEqBDPgud0y4OE0IjcInHiEcsuvI6PrQFOZK1W783cuAyO0f/mPgyvSpKzlwXU09VTDl/lqGVN7zb/81C37vmo5zvetz/+ADu49/4pcB/uRWDeUJ65t/5+V8wwuvX0uqtR5+/+q2vWYAc/78eV760pcCMBgMmEwmAHzFV3wF3/u933utuztYJUSciC+zYJZdlM7CeJcOJveBGufABkiS2LlZ0qyylJBozB3rNOvprgB9GSrpk2WHAZoVTbMyID1SUDw8RcxLhBWgBMH6vWM6F48Bu2MRlaF3ybE4qbA5JCVkO6ELfoRiI9C2MZxSukDv0cDiNkkyDwwfcbvjsnkcizRRM+OyKLrXZUBuzwh0IM27PZAH+yhuS5qZBDzBe9SFHfpCsLijj8s0QUA2kUgbdjUv8bGPXRktaQcJZhA7Rq4vSBdx3+k0bt/fNiRbJXJ7TijLzuRARvDSUe/QmmSjRB/PUE206VS1JbtYETKFTxQuU+jODU0YB/0kOrXNLbI02HG2ayd9WDe2ngy4PNn2ny5A5kZ1YQ6By62tpAwU2556RdB/1LHypynz04HBwxGUtMN4HZU2UmN7lxzNqsb2BKOHDD4VVGuKJhfU65LypEceaTgyXrDV77O2uiDVlvM7I5TyCBFiZ2Fg8LkjOAFWQupJz2vyjU5LaMD0BGacgRCMHmxx9xXsvCClvX1OkRrKJuH4wNPTLecXo6itAVaGFZVJCMCkLCgfGRCSwHTUi8dLAluLHvmgxTrFB7dO4JxEyIAcGdJPaKZ3KdY/aKiPF+jSkU08s1MKl8H8pEY1aaTPdQto8k+HTFc94VjDysqCeZPRT1sap9ia9ncloVkWc3aS3OISj2s6cDECoTx+liALi68VcrXBLRJE4jl+fIfzD6xTnNMc/YDFpQJdG2TjIWS0twWSwnDH6g6TJseG2OUhCBhaXCvxdcwXCypA7lFZBC7GKCauiEZAt2iF/NlUzcU38MPf/9TgZL+AfX+9/19+6TMew72n/vsz3sf1qp/i5Vd8/ut+6v9xcwfypPVr/PRHv5e3/I/vYvbxDz/jvflyCr9/+qq2vWYAc+rUKR599FFOnz7Nc5/7XN797nfzWZ/1Wbz//e8ny7JrHuxBKpEkUSMhYz5JpGyxRxuDqLFYdlu8vMxuGSl2QUzo5dS3jyiPJ2TT6OqVTR167pAu4IrYfYm6C0eQgnpV0Y5WGX5Soy5OCG2LyLJ91LJ9WhmIDlqtobhQ0Q77u5oQU8Rra77tO1ASqVSzUwrZXUR1F3aadWGazWqCNHFV0PQEpge6uwHTGQmEJZjDxf9D7CTtuqctuzBCRj2Kc6hLE4aVobpjRHlMU68p0tlee8P0JaBwScxnCSrSyaSF3qUYyqnmTQz5tG435DP4DmA6txfuuc/BTUwXDB5MqU4WmEF0i0vMvu8RYqAaELSMnZgAPpW49TwaKBwyyA50/fLqX71qEPPd/+BHD7QT2TMBMc8EqBzSyG5crX1oQWpq9F1DqqMxF2v4ECRVwPQELgUzXHbBY0hy3uVx5RdLfKaZn+zhckF13BMSTwhQNglSBXyIDlzGKPLc7HrEYGV005KCUGqEEdS3G3rnNNoLfBa7/82K7tLhJboMDB5UzNIe4tgCaxWPzob0U8MgbZg2OYs6dv2tlQgB7VYOmUdNNWFgGK6WVGXGYpLTH9e0NlpFJ4mjaRWuVthetPt3mYxjGEsI8bmqAFYF/qxEupjjZQaCtY84ZqcUM52x1SjSYctkViCVx1mFd4JgJKEP3sWMF6UdOnHRmLLVhO0UsWIiWyFzuDo6toVWcv7hNYafjK6UrmMnZJsNalIxGK4R/jiDkPGxl2SsnpzyielRrJd4G/N9SDzBCkSI3RtaiXMCpwIqt4DHOYlyhwtiV6r0yI/vPn6qzspjs08e+9y933RzwMdPf+PDN+U4++sbfuqO3cf/+ht/7XGvv+V/fBcAL/76L77ux/679/+lxxkXPLZD9iNf+E7g13jL//guFv/P3tM+lrRXT3+55inaV33VV/Gbv/mbfN7nfR5vectb+Nqv/Vp+6qd+ijNnzvDWt771Wnd3sErJ6LQFHV1KRA2M3zc5Dx2diq4jEToXMblPtJ9oyjtXsD1JNvXRwncs0JUgM1Fgb4oIjlwedR6q9mTTaOE7v2vAwIPamu6K+vfGqHa1NaJuCUWGLFv65xPq9QSvBflODKuc36Zi4GYZUCaCgpjFEm+Y9Vocg7CebNtQHu9uUFns2Jih4MgHFrHL5PeNYWnrHHzUBYXODtr5SDGTKrqnSYGwDjEvKT5pKM5o7LjA52oXMOlqqWdZUrtiZk6yUyN35hGwLAFcRxGLn7Pv9DghHqv7OXgbAYzW6IsT0n7C4mQa3cvGObLd66T5RCK7/21P7QZXCh8/k/6jixvxV3ZY17GuBcTcyLoeAv79QORqwMz16rAcgpgbU67QmEGOzSSTuyXJAoZnHKa37LxEqq+wEPoC24umI8MHS+SsxhVDbC9qG2Uj6N05Z77Rp1xoRsfnKBnopzVVFa/b/bylWmT0hzXex9DGkLmovQS2XxwYnIkUtXQRzU2CEsxPalyxvH8JRkXNTGQYp7g0zbjgh7SLFGqJXmmRymMa3S3uxY6Our9gdjzh6HO2MVax1i9ZtCkXzq+gMgcioDdT6uMOVUrqS5LxAw3zU9HO2SeQb8Wwx60XJKg25n0JGw1Xig2ByyXlaUWyFnNg+kWDzwz9LFLKpAjUViNEwHnJZF5E8OIEyULCPItW0ZlHKFCrDbbU9O9PGTzio/ZzIBEO+g8Y8IHBJyfoasjGSxJWT065Z22D1TQK+rX05Klh0aS0/Uhba2tNcJKkMOSZQYoQbZSdxA6u9FdyWE9UT9RlgT3Q8tg0+ptV7/uBUzftWD916srA97GfTwQQe/V/vvXeZ3zsdiVeW5bCkP/rTffsvvZE380zAS/XWtcMYP7JP/knu49f97rXcfr0ae677z6e97zn8ZVf+ZXXdXA3vbSC2nTUMHv5a233vJDxtTTZm0xDFO93ZU6uUK8r8u2YKAwxUb64ZBBtBBfNWDI6Y0nmNlpcqghipPVUeUp5us9gViJaE/cdQlwtWzqAddkxwmqCECRbFcIGZs/JAEFSeuojiupYoLggsCGCF+Eg33FIE5iONF4L2nFciRMBXBIzbKSJmhN1YSe+z7CPKrYMtPRyD8gsxf2i+5PqMnVCl28jms4hZnMHgCxN4+e9BGf7Oit7Jgr7ygeCNXu6JK3jsX0Av/yuujFaS/AB4RzZ/ReR7RHaUYLtKbQAVceQTNlZi9pBErNiBCjjUfMWWba4jh55WJfXJ17173ne737NddnXtdLHnmgfVwNiDnoXZn/dbPrX0wUx7Xd+4Kk3+nNaNlcoJ6hXBS4P5BtxYcj2iJ0AEym+ugroOrA4EXWBsjLYIwPqYxnJPDC/A1ZessnOtAcu0qrKMqMkw1kZJ+ippWoThAxYq2jK+BgnukWlAGOPSzOKrXht1QuLHSSR5hYkk+cFZCnZmvXxXWaNaTRiM40S0CQm1tdVik4cJmj0VHWd8wBJYDIvMLXmOSvbbJcFSa/FO0UoNUEF9JEa/eE+QQZECOSbDjNUBAnVmqBeC+hKkJRx4U220I4U9XrUyqSbktIOCSODaTQ6ddRtwtpwwcasjzUKZyXeKGiiZbVqBP2zUQNKiN2fxUmB/kScaPUuRPCSzj3qkmP7BRmibCBNELVBWE/vQuDixSHvPzumd2xB0ySkqaUxmjw1hMTRthohQSWGI+M5AmisZlGljIclG6vpLfpLfHbWlbotj33tVrlw9R74bsq73nFDj/FEwGVZT/XeX/ei8dM+9hN1srJjP7sLnJ4IYP70R7/3MiOGay2zCPCXr27bZ0ySecUrXsErXvGKZ7qbA1HuyAhtZnG137nLLYz3T5phL2iym9yHpTZl1Ke8LY9ixRWF6gwa8k1LslWClPQf1fQuCvTcoBYtorX4QY5PJCGRqDraD5sTY9IHGsISPPlAcKYLsNQxX6Y1CO9BSVRl0FVKdUQSZLeqdUlEO2MbAYoZCHQtSZxn5ZMG25PYTJKUPt5gKiiPKFwKR/5wO77fJViB6L4GETgsgYtSEYBIsQf0tN7XtQkE4fcFhQpC3UCIYOWyrkoIIGV8bnns/QGfS/3N8jj7jRac28vyEZ7gQGBIHryIWh1hV3La1XQ3idoWmiBjl0r4QDI3qGmNmJXRhME/BkQd1rO+bgSI+XSxT16CkasBMofA5alLukCzGgODk7kgncUJdP+8Z3FCgow03+J8A0pQj7v7xok+LpdUq5LqmCDcs2BzawCTBDGMYYt2koIK6IHBBUl5qb9rD2xkIDSKIIgXfS+QWVxMqz+j4tw4Z/xJgEjb7Z9ZUJxXQI/FSUE1zkj6LbbVpLmhXQOdWZxRLC72EYVFFz6K5G+r8YsEZwSilpiqYPycCevZgk+YIzirCJMUPZP42+to95wHZndBNsuiOYEPlEcUPgHVCPLNEKlcXRemlpJ80yOsJH8oYDNBUCnbnxHoPXeHXtZinKIuU4ITSO1RW5qg4/6GDwWSMt4/Zqdkx0SI3R5dxXuiGQhqIzn6xy3FpsePCoRxiDagS4t0ya4ZQtskPPf4Bqt5SSotrdc8MluJXSvlSbTDeYmWHh/gOUe3aaxmsy6e5K/lsJ6s9ndcsmM/uyu0v9G1BBFX6nb8+D1XbwzwdOreey7/+e/e/5eetCv12Nf2g5Af/Fvvvcaj/x9P+MpjwcuVv4sfucbj7VU7rYA3XdW2VwVg/tN/+k9XffC/8lf+ylVve9DKZRryDBadQGRJIVt2F5YTapVcHiy5rNGA6vSY0NHJmlVJtu0pNix6YQlKgYqJyEGK6ITVds8v9+dBtR58wA4Skn4RAcqyA+MlqM6uWXeaGOsQVYN0nuKCxmU50zslsgNPoVuEi2GXgXYg0A2IKuASQTuMNDYAX0Ttx+rHa+T2NNKxpCS0zR4oWRoddCGfl31WS/c2iNvthm6KuJ8uoDOK7vcJ74UgGB/pZ95H8NC5vAklCU17eddlCWyEJLQGkSZ7tL99FbpOldzYJt3RJBcyQi8jSIlsHMJ6ZGUQVbPXBbK2s78+5Cwf1pPXpwt42V9P1Y05BC9XV4vjCSmC/gWH6ccud7ZtsIVC+EhXzrYt9bEMXXqkhflJRbEpmJ2W2B6091SEVhGMRK21DAcVxikWpSYZtiSppSHBYwmJRCwUzqUdvYt4rXUCCvBGkQ0a2iKwuF0irCLf8bhco3dqVj4usEWPdkdDv2V9bU7ZJAQnsW1MoHcqQBBo7WnWDLrT4sTFvGgEs6hS/uDcc6gWGaHUJFOJ7XuClXFRSYA5ZpndkaC6W61PoulB72J0moSAywXz53jSHcnRP3H0LpioUTymGTxsWP2E4/znrbEx7u5Bg0BSxQ5VOokLeP2zgcE5gzSBdkWTzgLNSqS95RsB6SLrwCcwfNhFo5ltS3Vbn8GfxMBdvVPRu6ARPr6XZqh54NIa03HU/K7mVey0LHIAqknOLPH0hzWDvMEHwaJNEObwfvJMazlpfqruxPWun/mLXwvcWMCyvyafG7t1b/v5y4HEEjzs//lKjx9bj93P9az938V+YPNX/Bc9rf1FG+Wrq6sCMH/1r/7Vy35eOj499jmIQZfP1gqJJKQJoml3J9Pg4gR5CVT2B1nidrsDIitoTq1ghioGJ4YokBc+oCqHahzNsQKXR/exZB4nzyJL8Lne5Snbnuom5jFI0vdz1HS+F2qpJDSWkGXxuNZGUb/t8gFmDb3zCmk0pifxSRTGBwkui/v1CTRGYQqJzQUuFZTH44pd75Jn/c8W6Ic3drU+uzSxZUeiy39ZdmFC6yMIWX4+id4Dfcbu2lMHOiqal5B2OTLBR4ez/UBwedxOUxO82+ve7C/noxZIiL3jLAHVUtjfdWqCVOBaqGvkPAZ1IiX4PRpgsEt6nu9oaIdeyjeyrgd9bP++brag/9MRvCzrEKQ886qOCbZe4Ok9ohl/yqMrjy0USWmRRpPOA2agUJWnHSkQML3HM3kBCOfhaEPeaykv9SFzuEqxUw5Jhg1YgQ+ic98yqJ5ntr2Pe647gxUjCGmkkolOuyJ8zP7qbTjS7TZmYI1zFqdyVB0XytbHC5QIlE1CUhh04qgXKeOVkuesbLNV9yhSg3WSnXkCNq6S+YFDeMliM0NkLo7jrhouFhSfzOidD6gGdpxGWHB5DGG2A0GooyNbseWpVhW2gBP3BUwvOrYNtluaVU11TNCOUmQbaFYDduRhYAiNwuSgd3R0WhsGggbbV7R9SXVUUGwEqiNgRoFmHYYPxnyewSOBfNOAEpihYvDgIt43Eg3GYgtFyDzZTowbqE8qLhqFkDDJCpTyKO0Y9GrqPEHKQKot60XJx88fxUwykp1n79zoVtQTdRuai2/g//zYzQ1D/tATPP+53/HLN+R4/Rg/w8997pVevY+/8euR9fRkHZkbXVd2Qtt5xvv9ia98zlVve1UAxu+byP33//7fedvb3sY73vGOXerYfffdx9vf/nbe8Y4bywm80SV8wI97qKqJzlvL5/dPrvdbCC+fynPciVWalYR0x3YUpe4zEzEIslnPsYXEFoIgobjoCFpix1nUwIgOQGkR7Ru7ao8WFBdVpDRpvU+H4zrRutuVnWACclqStRZdFjRrGfWqwqUC1xnEqSYey/SjeN30QZcwPOvona1JLkx2QdouUHWxI4TuXFYcl2XiCCH2dUW6z8faCLaybA98hL3XQ9tRtLqgz2XOjNCK4JfmCR1g8QHSJG671OCIbix0HZ8lcOlobXE/+wCT6zo4Qkb6mtZgmzjGJfBZjtNfDs4P6/rX9QQvT6eeCYj5dAYuh3X9avH8FtUT1MckxUVBsoB0GsXhQUa3xWIar3GT5yaYPsgTFVJ5jq/MOL89JEss+sSMYd4wrTOaJkEpj19pyXPDsKhZNClNk4CVEawkHpkuw5dBaY9t44JOmKZIK1j5hCO/VFMdz8kvNvhE0owF+XYg25Ccf2gdMocoNaIVcZ0nD0xCnz+bFfh5QnGkxLQ66jwDhDSgdjTOCmTfdtdxgW00jA11EKhasv4hQzYV2FxietE+2m0KmpFkdjqO06Vx0a3tS1Y/MmdxRw+UYPSJGS4bUa92VLCFwA6BWYK0AlUJeucE2SSw/iFDMjXYvibdgWJTdsHJko2XC2zfUx5T9C6EzspaYnsSXXnkpCT08t3vsl5VqEkg2wrIVqBqhcsKhIf6eEbQ8Z6xPdQwSZCNZHGsoW4TzFaOcJG2fFjPzjr1Y192xefP3fOvbsrxr9SJuZn1WMe37NjP8hNfufKE47h2ytpe/ZM3fS1//8f+7VVte80amG/7tm/jx3/8x/mCL/iC3ede85rX0Ov1+KZv+iY+8pGPXOsuD055MKMUuZ1A3XS0KOIk19o9Hcy+LoxQEr8+ojrZI9s2yNbhU9XlqeguRd6j6tiNET6mzNu+RprovBW6QMuwdCEOoCob7Y3XO+Hf0rYYddnEXyTJrjOakJGKJcoa5TxF2aLqPvW6phWSpIzgxSfQrAmEg5X7HcP758hZGUM0O+3JZcL9JXBa1lJzAvG4adfRcJH2tRwTWhOGPXye4kYpLokUL72wCOeR8xZRN4hFteskFpZNFin2jrnM21keQ+zZV+9qYETYG68Ue92U/RVC/JKl2KOoOb9Hc3P79t/l2RzWlev8F/8aJ37r2r3obzVw2V9PB8TcSPDy1d905ZskwC/9y/92w457WDemVOpQqUNUKcLHjrpYSXazT1QbWJxIqY5KJi9vOXp8gjSauk4otEHKgHGK561fwgdJADLtmJUZ/V6DdZLJoqDaLhBpTJFXPUuWtzE4UTucizcVUyXIxOGTeP2b3KUYnAnRwj+VmIEmmQdcAtk2SKcpbxeEQaQ4r5yc0staaqPxXtI/MqF1Cpe1bJUjGBvEPMEfaRmNK1qjqTcLZCkRfYuba4QOVMcDO01CNgkRKFhBfrHC9RMWJ3IIkMwD9qjAFYHqmKB3McelgrOvKnBZjtdgj7YIFQh1vPYLK/Fjg88UlVfUR2H7hQmqTsm3oBlHq+Z0EjN3vPZkG4qQxLyZIMGl0U4/mbT4QYFdyVCVxQwS2pEgyEg/Cxp6FwLtSHTjlUgTqNcFdipRtcCMoytMudEDFSge1mSXDoNgrqX2T47f8j++i9d/5P3dT2fhJk0zryRmf7Kuh/6Gz7uux7c//Qfd8W4cBezJamnNDLc9zuXsyYT8z4SyFnwF3CAA88lPfpKVlZXHPT8ej3nwwQevdXcHq5aT4uWEfGmhLNmbtHer87tdmTyjOjVEmhjICKBKQ9CRKuYTgbAx7V10uS9eC2xP4pVEtYFsy+x2bVTjkY3F9RNcKhG+G4+1wB5wQOs98BJC7IIsKVFSIYxFGEvqIZlq7CDF5dExxmvB4Fwg3W5jx8XYfZP4zrJ4CQZ23cXE3qRedY+tjZ+DVFGnojUiTTGnjzA7nYOIHR9bCLyKOSsuBdUk2AIQfVQN2cyT7liyM1uIedl9FREA7XWB9gELrfcE//s7YkrtBYku6W7L55Z4xu2BnN3sGqUeQw3k8Y8P63F1rSDmIIGXZS0ByVMBmRsBXJ4MsDzZtodg5tlR6oGcwedVLEIR7etLj8skeuFQJmBziW4CxYanPJ+wmQwQFzP0HQvOTsY4q1gdlkzaItoDA9ZJstQyyBtaq3FeoI54ijQKHm0HWKyXeC+RMtDUSXQjS0GkHq9Vl3mlsH2FbzuQ0xc0q7FTlMxh9AnF7G6BrAWTdsxO0dnkt5Kd3CF1dy31guCijeVyjNbEe5VqBP7RDClBnKjxQ8ksSWm2JLe9z8YMmEWLmlQMx5rZKU1QMHw4MHnuHnNg68WC577yQT7ykVMdC0DQW60oRRa1NSGQPZxi+7FDUp+wFEdL6jKlAUIrwQvycwl6AemORJfREa68PSB8BCL5lqM+liF8SrbR4rWMC4ptIJ1K2hXQC8hmjnwHTE/uLjz2L/o9OiCgTHT5jPcpj2sOF8SutvZPjJuLb+BHvvBn+REuBxN7k+sbWe983DNP1v34x/U/vb6H/1vwtp//2cd9Hk81jutVjwUtb/kf33XZc9drDPudza6lrhnA3HvvvXz7t387P/dzP8fx48cBuHDhAt/5nd/J537uFQl7z5qKHZJASDViOUEOPk5+lzQjH4X8wXmEVvhBL2atzE0M4PGBkKgIFqRAL1y069USEQKqDYS6AzLJMpBSoCqLbDtxf2kQxsNKhgjs6TSsjZ2YLnMlYHaBR1AK4VwcV9edAZAmUrnUhiBkadSMLLsO1u1myoQlNWtZuxbRfq8DtasDWua9iF3wgtb4k2ss7uixOC4pTwhGn4r2oP1zhnYlBrkJBzYXQLzw5zuOdiipV1Lk7SdQbWD80Qlycxo7Qcbs+4L2fVnLjphze9S0JQhZmg3sdyhbfo/Q0eGyCHKW4Gj/+1+6q7XNM/+jOizgYIKX/bUfoCzBzI3qtlwLcHmq3z8EMwe3QgrGKaQRFBdbXK5wiYhhwR2d2NkYnDg4Azv9jHCkjTbIkxzdN2xO+mwGgVQepTxSBkIQ1EaTKL9rhrIzKwheYqcpZI60Z2g3c0TPdS39ECldMhByRzsWtCsJLpNMnyPRixDd0hZQbMQsLpcIhJc0q6AaBdsKlwXsqiUftAgRUMrTpg5TJTCIgKTc6FE8nJC6qDVxa5b8oRTXFPihJ92W2H5gdipl9WMLxM6MsFhQjAua4YDyhEC4QJCB6k7D2WFCuKPi0mIAuUfIQFIY6jpBpw7TKIQRtKvxnmWGHuFFpLd5EW2mBy3OKPAJuoLe+YAZRBeyttPRVEc0ysTMtsFZS3JxRsgT7GoROy3T7nvVMLlLM3jE4XVcENRNwBSCZqRZ/fAcWcb7VkhUNNuxHleXt+pP8UDX7/zwFzHoDYHY8dg/WY9UpG8ArkBJegJa162sZefhajsx9qf/4HHPXamrcbVi/etZv/f1/5Uv+JnL/YwfC2iuRz0THc81A5if/umf5qu+6qs4ffo0d9wRk0Effvhhnve85/Grv/qrT2sQB6a61fsgBDJJujDGjrK13zYYuslxiu8lqCbSw4BdMb7LYkikGSh0HVdmEHGunW63yMoSMkVQEpfFSbZPVXQmCyGClgCqtHsalM7NCxv2Ogj7S6kue8XHuf7SftgSgY2xe+/TuV2RupAdJWs/TWw/bcv6PfAiZAQvy/1IQRj0qJ67zuxUzBTIJtEG0/QF6RySWYuqLc16Rr2iaIfRTGD4iEVXnqAEug40Q0mzKqmOrrL2kR75/RejUcEywDL4DmzsG0+i996n0F1XRXV2zZ2lMiG+/2W3RbH3nS6d0h77nveBwMP681W3iiZ2WJ9eZdYN48RQDzx6YanXExYnJfLh6H7VuxgXt2wRV/7Lkwny9pa21aSjBmcVtkyRqcM2mqQwUf/iBa5rTTgnMGWKKBXCCpQF7wRtK2NAcuoQ0mPrhGDlbjZMMhO4VFKvCIICZFxYKjYjtS1IyKYOlwqy7S4vq0e8tqeanecNMKNASD2k3YLWXCOCQNWCdArZTmCaCigMiJTjfxgz0EYPVqjKcOHzRqitBaGsQCnsIGV+SuA/a0ZtFGlmWC0atoc97jq6yWbZ547bN6mtZmfaw01TQt8gUo+caEYv2KIxmmqRITZTxIMFWkQTG/VwSugFXC8wH8D4Y6AayCYeXUrMMN5PyiOSfKcDcGt9gog08mzicbnC5mDzOHFqViSqs2NWs4DrS3Qd8KlCGI9c1IRcY4Ypet5Cfev+Fg9yNX/43SRZZL383tcDvA74r7dySLv1e19/5XHc+4P/4bKf3/+21+0+9/63vQ7CVY7/66+07zipf//bXndNY70R9UTvH7j8/T7m+Wsb+/7v+3XMG8P/7Z//ylX95jUDmHvuuYc//dM/5T3veQ8f/ehHAXjRi17El37pl14W5vhsrKhDEfhco5SCtu2oUyLmn/gAshOF03UuEoXLVAQ9plsBGmmakYqCfQW9SwFpIp2MAGLqI0hxAZ91dso+UtCEiRPokOr4sw97naDOEhgTgzR3aV9CQtMQ9oVchv1UKWsRSbKXJwOXdVuCd2DayylYS8rW/on8UkMCcTulYNhn8pnHMH3J4HwM5WwHCcksUu+ChHY1+v23A0k7Fqg67NLL8B0PW0dNTm8j3tDL4wm2d5LBBy8QZvOu28KeTXPXMdnV4Piw9x3BZS5pqK5LJGT87JafyxKMLt+rFLuZNsE5wm5A5mEd1jOvQ/Dy56vScync2eIGjo2/0GP8oKUdCtqhpFkRDB8JtKnEJYJ6ReLygJYxUb5fNMwXOc5p/CxBjVvaRUpSGJyT+DZaIpuqo4cRF8fQEJYLTANLXrQ0jY70LhUigAkar6Fak6g2BhZnU4fpSeZ3SPQc0lln9jIU0epYgu1FS+j+o4Z0ltKMJD5RVEf17uKcrkC4+A+6nJVHeoweCRFItAHb15QnM2wB5XPXyPs56vwmzaommcNkljFcW7CY51TzjOG4wnU8rXObY/LcRIqa9oSdlFA43MgiRIi3rwC+8Kha4TXoUiAbUELQnDCQetoLWQQfWuJTQXHJI11gdrticpekPJpy/H9Z2nHULMmu0Z9NAtIJTK+LJdDsBmT6ZBkW3d370gRhPeWJBFOk5GeAD9/sv8JnR/30fX90q4dwTfWmV+2FtPzY70bLsKcLOPaDoWcOBm5ePdG4HgfmbmA9rSBLIQSvfvWrefWrX329x3NLSzYWJR1BiT3gslz5VyrSx3yIK/jdar5wHtl6XC5xhaQ8Gm8O+Y6P+pc24LXADBTJ1O46kiVzizQONW8JSiIbiy+SCGBCvHm4XJFu13sWyvuzVpY/7zcXgL3x7qeDab1HxQr7Oje7lsN6b3K/BDjLcEroQj3d3gR/aR3dK5i9+CjlMcXqJ6JAcfqchHYoGJz1iNBZQevuBqtA2Ahe8i0fw8q6jpVwoGpPMjNkWxFMzu/I2HzlSVb/ZAdx/lI3LrlHBYM9C+Vu3CEEqBuEUlEbpKMNZtQJhb1tjEPsz6zZTzGTAoFCHObAPGk9HRH/n8e6kcDlsfs+pJQdnFq933Pp9ArIwPZfcIweAmmhOipo1gI+UWRbAZ9Gi3ufxe7KXcc2GaY1f3TpTkSpCKlnPCyZq5xT6zuUJiHXlq1Fb1fjooYOs5MTMhcvzz7aJpfzDG8lUntCWF6HA+kMim1PfqnFjDT5uRJZt7TDI4gAzaqAHUnvQrwozm9TBAnSBJJzE/RORr6SY3OFy1LaUaSLFZdg+LDFp9FlLL8E2SYMzlnmt2lsX9COBIvbBXoBs9Oac184orgwZn5vxenjWxyVnkcno2hLPGo4MZyxVfXY2u6T5pZhEVsZi/N9VCWhktgVy7zMyTJDf1Qz9wXCK1QT32+zBj7zDO5PaMeBZiUweDgCtOpYIAjJ+EELMr6PZCFIHtnEFsdoVzSmFzNuTF+gy4BwAtsT6CogTXQxy3c8wgVkbfG5pjo9iBEGIgKbIA/vJ09U3/CKz37S1w8ywHnTq+55RhP2/RP+xwKW/a+dePPvX4fRPvP6z4MfesptbhbouioA88M//MN80zd9E3me88M//MNPuu23fuu3XpeB3YoyKxmyJU7QEw0Veyn0y3wT6GhGewJv6Tw00KxqbM5uNwGi84m0Aa8i91magMslySzgtURCFP+7gDAO109BCMxARz3MvNl199rVpQQf7YmX4AUup0GJfXQv7/boUhDzUWzXbVkCoqXgfV8HYqn1WXYyQtsi6OhXISDynPquI+w8V5NvRcDVrMSwNhEiWHE6rlS5QpJtx+O7QkAdCErgJJh+NDKQJpoZLDtRIdNkO475Sc2FL1jlxHsdbOzsZcEsuyvL97B8v3hEEjUwu0YLnT5oua1Ydo/2VXAdn9x1wOZKFL3DuqyerhPZjairzYD5dK+v/qYvOwQxB6SajiqbbmiKCwJXOHwC1bGAauM1cjkJFj6gF4Iside3jWqAnGp834EOpNpxdDyn0HEhapg0VCYhSyx5aphMYwaMzhyuVQgZ8EYhlEdljqJoKRedIl4E2mG0cbZ9zex2TTscUlyK+3ZJpI0lpSedOVTlqNdyyhOCzRclNKNjKBOo1jshfD9mriCgHQuqWlNcsgwuVogQ8JkieXRKfqnAjDJmd6TIBpJZoHfJ044V9dHAsfUp94w2+L0zd2NaTZJaxkXNg5trjHo1vlUYFZhVOdZKULHz4foeYSQhQFVmSOWhjTob4cCnXUekZ1mcBj2TuCKw/ZLIjABoR4Lt58eMnKADqx+L30N2qQTZJ0hBeSzqXywxCFMGaIcCaQXtQJJUIbKrtaRdTZneqajXAsk8GiPY/tNaLz4sHg9w3tf0b9FI9uqV2WL38VMBsMfWfsDzWDra/m3e/7bX7QMDTw0cDkLdrO4LXCWAede73sXf/tt/mzzPede73vWE2wkhntUAxksRxfYu4Hs5Ynty+QZm36S+m9wK6wl5/BjbfteSn0agkU0csg1IFyK1aqyR1qO3DQiBTyRBdx2IXKNqi/ABVyiCFujSRYvhZbdlCWKWGg+5/F/saXX2d1EgTu6TfTbIpu0m/HsUsWDDHv1Psedq5gOIDrwswZsQkY42HrDzvJTehdhpKY8lCB/IdgLpNApC6zWBLSCdxZTlIMHPIqgzhSCbBXwSuy/J3KEqE4Gcc9ElJ4l85HpVsv3yddbuawiLao9C5tjNb4kAZK+zFJbCfPYc43ZpdXSdm310uuX73wUvSoE7pJAd1jOrW0EbOwQxB6PK26F/bEEzHZFvenTpWb3Y0LuYUq8o5lFCSr7jMT0JHrTyXFr0ESIQVg0q8bhGMatyssTgQo9pmXPWjUlTSwgC5yRhkqJXG7wT8ZpddrSuBJwXGK3wswQEiEZS3tMCKeMHBPW6wKeCnedmNOue0adEvA+lgmas2L43JVmANICE2WlJcTEgbOzU6HkEPXYQkAbmtwtUo8gvOWTZoqcLgjHIyYz0xDpDAUmV0PYFs9sVLotg7rOPPMIfXjxNvZOzcixm32jpGfVqUuVIBy3OKrLEoKSC1ZpGZeAEsmfJMkuiHKl2TGTAGoUQATdNwYuYaWMF/jk1+lM57u4GbwX6bIbPAvUg5soc/5+B/HxJ+aITpFs16VZNM+7Tu+iZn5Is7vDouYzdHRF1r8k8oLc89apCr+e4XEatTClIZpGS179gnuzP5bA4WJSp/QDlRtQ//7ZvABaXvd/H0snu/cH/cGA6L8t6qg7Mk31/1/v7vSoA88ADD1zx8TOtd77znfzKr/wKH/3oRymKgr/4F/8iP/iDP8gLXvCC3W3quuY7vuM7+IVf+AWapuE1r3kNP/qjP7rrgAZw5swZ3vSmN/Hbv/3bDAYD3vCGN/DOd74Tra9txUMZj3CxDRwSFbUVbXfRWVK3YE8XYi1y0WBO9OJK2yLepGQbJ/Uuk6jWR5MsH33vvRZ4pfCpIJk76vUEW8QVnd7FNq4oZQphA+nFRTxWmuwJ7ftp56KlYkqwEOA7gX7dRNHhsvOyBDNLkbvvbIel39N8oKLjGuwCGpEme/Sx4OOkfmmnHALBe5qTQ4SFpIraFpdANo2rdstMm+ISLG6TZNueZB67PMlcUJwvcUUCEtphvKm2o/hdJTs1QWlcL2boAOTbnvKopLnzCNknzoP3uwYEdKBFqDj+pQPbLj1s6VQmBWK/jdlS/yJF7Crt/4xkBGnigCyYHbTzZH9dbRfmtdu/etOdyH7o9Iuu+PzfO/Mszqo6rCesg3ae6JlgkDcsBo52pBh9qiV54DyqPopsCxa3Jeg6un0FEVf3t6c93Dxh5fiMtBcdyXrjiiwxWKdorY6gxSpILVp6mjpBjFqckdFprFEI39HFpEAVFmvi2GUtEUYgCkt1ShG0QtgYbNyuRaOZ8mTA9CXpNGAGknbNk8wlehFth4OG6d2Qb8ZjZPNAfSxSrNoVaFY9upZkk4JsUyAvbUeNprVQVmTlUdILKRe+YJX5czz9s5JsU/CJ6VE2Lo0AaK0i05a+bhkmNR/fOAaAt4LGJEjpKTJDIzJE5lE60u+KwrBelBSJ4fzOCGMUcqFiB0ZEGpkSgfakQT2asfL8bbadRG0mZFuis1P22JUs5rfNasyxAaYnMQOBbEGVMaPG9pbftGD8oKMdRNCSzAzT0wU+hWwrGgCkC4+aHgwAc9DOE4B3/eUo4v5bf3l4Vfr9Gw0ubnTFSfzj38Njwcz73/Y63tf85E0c2VPXsvv1xV/0j65q++a+b999fL3B6S2dor33ve/lzW9+M/feey/WWr77u7+bV7/61Xz4wx+m348f0lvf+lb+y3/5L/zSL/0S4/GYb/mWb+Gv/bW/xvve9z4AnHN8+Zd/OSdOnOD3f//3efTRR3n9619PkiS84x3vuKbxqNohpMbnKlobC0GA3Yn+ZRqULp9EVA2q9bRDRbpj0aVFVhaUQKUqPtYSn0iEjeGWvst3sYWiGXUXRhNIFnHVzKWC3vkGMZmDlIgihxBwKwPMao7tRYOAdhBdT4QH6QLp1JFdWCB35jFtfr+pglSA2xu/DxGkLEFZB2hC6xFC7orld927ltQ0IRFpyuxUiu0JWiNjp8lGMb40vrsZy9g6rzTZtkHPWnymadZShPWoymAHKdV6zKaRBqRVCJ8RhMCnkqS0qFbiUkk2Few8L+PYoz3EZLaX0QMRqCTpbjdqt2O034RgCexMe7mT3NIYAPZ0RHQ6mfRgIJiDdp4ctHosfeyJgMv+1w9BzKdfHbTzJJsEGqMRTtC/EK/9SZZSHy3wqWDlkx7VesqjCuFAtgIzSSHx7Gz1wUbHx9oLjIliCjNPwQhkLZn10ugAFgAvophfhV1XsBAgH7SsDEoubo5iHpmJ9Ga3lRH6FvOiJj7OPCJz4AVtoTADSXk6oFYbghPMkhTh4u9KK7ADjxkJBmdkFLdvRn1P75IjmbmYaVZbRGsRvZzQdJb0ziFmC4R1+HSNZBYF9rYHcxNNCto6p5rlfLIT8LdGEwKYRhMaxaLpofqWNDPowjIalngvaa2ibGLw88WtEVJ53DyBvus+J0Hab8kzw6xVyFYwmfTojStKKzBOU5wXHeW5iY6iziNsIJt5TF+RTgIiCOojAVUK2pVAvhl1rrYQ5NvLhTWoT1qKC4p07imPKdI2vS5/58+0Dtp58gdNj8/9j1+998RVgJPv/Dd3XNMxDkL9X69/+Jq2X072DypY2w9Mrkc9ne6MCOGpif7f/u1XP9B/9s/+2TUNYH9dunSJY8eO8d73vpdXvepVTCYTjh49ys///M/z1//6Xwfgox/9KC960Yu47777+PzP/3x+4zd+g6/4iq/g3Llzu6sDP/7jP87b3vY2Ll26RJo+9UVjOp0yHo955Zf8AzKT7D6f3v8ooarihFctJ71hz4ELEHmGXxkwff5oN5RSVZ0HvBQI0zmLSSJtLNO4XhLBy6rC9AVeR//9dOaxhWDwcENyYYqoGkg0bn1Is57TjhReEcMticJP1USKms0i31p4SKee3iNz5IUtgnUxZNL5Pa3L0pwALg+FfKxVNESXLyH2wj0B1lY4/8XHkC52R4KAYsMgG4cqYzaNXcmp11OChN6jDWrRYgdpBHbTlpBIqpMFs9tjcFmQkG8HVBOpZknlES4+n04sLlfs3JNw5ANV/F6839PDLN/T/iyX5fe1NDXYD1qW3acl7U7r2OFSCpQk9HLsao/ZGvzhf/5eJpMJo9HoKf+Oblbd6vPkE6/69wx1XH48CEGWSwDzVMDliepGgZlb7Tp2o2lk58cfAmAW5jxv+nmH50lXy/PkZV/3j5l8VkY6EaQTwbH/XZOenYCSuHHB9K5ezMQS0VJ5frti616D7lmS1NI2Cb1+TV0nCAFtmUCt4nW+026ENHZNluBFFpFWFhYaUs9wfUEvNVy8OCZUChIPViLarvPsQDiBHzhkbvHzeJ0XXhASH/c3SQk60olxAtlKggzIRjI4I+hd8vE6PfX0P7UDIeAHOXInAhWEgKomLMoub8wjej3Ofc3zCBLqowHuWXBydcpD9x9DOAFDS2gkonCERiESH2+9M00oPIiA7lmKXkPTJOSZoWk1RWYwTtG2CjNPETrQH1c4JzGtRmmH9wJ7sQBANpL+83aYXhhAEPQf1PTPBXoXLfm5GXjwvYT6eEG1Hu/5ZiAw/QjYbA69iyHS/5qwK/Sf3APueIvcTFC1QL9wyvinFX/w6993eJ50tTxPfvvb/hqDLHnK7fdXdtefXPP7vNXVPPDyWz2EZ0UtbZSv5jy5qiXmP/7jP76qAz9TG+XJJGpO1tbWAPijP/ojjDF86Zd+6e42L3zhCzl9+vTuiXTffffx0pe+9LLW5mte8xre9KY38aEPfYjP/MzPvOrjy45C5nIdhfkQxfJLm91lIj3ElSStwXnktKTYKCiPpWQydh+WlsxCSaQEWdso7jfRQtn2JaYTcCaLSC9rxiomNk+qSJMa9Zm9YAWvI91MV5He5nKJV1Bccl1rXHTUswhobCGYvGDEoJ+SPHSJYEwEMbA3gVdEqpUQBNu9LyXYb04AIJZ/Il3XRmiFL1IQoMtoTiBtwKUSWUdbaULU/LhEUK8KkpnG5Ypkp96l54VExQDQOnTuZJ0NKJDtuI5epkinMRfH5YJkFqiOp6QP6n0W13KfS1zYQ3fQ6YU67sCyEyPTPWtlKQEFWUrIUty4oLqtYOsFUczZqBr+81X/+dy0utXnydOtG0Eje6bgZfm7hx2Zq68lcDnodavPk3YoCD2HvJQwP+1Z/2BcCBPTBf7IgGZFoKs48U8WFuEVWIndSclOGBCBxTzHt1GML2SAwhGcQNSaIAMi84RagQ6IxCNVwJYx2BGvaJoELT1JYdDDmqZOyYuKuk4IXuBbhcwca6MF8zInrEa/YGsUSRoXiIwOiMISrET2LL7WJBsaYaO2I9+K7pzpZo2YLgjDHkEJhLG4o2Pk9hxGg3jNrptIQy5LdBXYeqmnuH1OLzM8srECeewe5YOGNknwRoITBCVYWZ+zKOLE2DZR5F+VGXaa0uoU0SjsakOWxQXE/lpFkRpmZYa1ijw3ZIlhZ6cPI4tQHv1AjnUS0UqSHUnvfHQUU41DWI9Z7+MTSTNaBi97hIv5L9lkmWHmaUaKZBHNaLZe1Dm2JZ5sQxI09POWrRcM4def0Z/0DalbfZ5cqf798/7aU2zxVK8frPqaT1xdrsmVKnvF028K3Ii62s7LzdAzXRWA+e3f/u0bOggA7z3f9m3fxitf+Upe8pKXAHD+/HnSNGVlZeWybY8fP8758+d3t9l/Ei1fX752pWqahmbZ0iauBACkF+bopMCnffSkIfjOmWopmt9PWVIq0qsSAa0hfXibINdoVhLSqUDY6CwjQnTV8kWCyzUo0eXGdNbBTUDVcQUr3zTkZ6eIusUeHbH9ogEAg7MtQQnSnRbZOtqVrKONxfb2EnTZnkLVHttXVGuS6niGbNdQj1zaC6r0cs86uDWxTb6/O/HYhpxzkSoHsTvRcauTRRTmI2KXRLjoNiNt3IdPJbr2pHOJGSikDSQTAcSgr6AF1Vq86Ou6Cw7LJNIEbC/eLIIABJi+xiVxpdKrPQAZ/3A6i+f9NtNaR6pYkl4eTunDnrsaRECTJpjjYybP69GOBGYA9VFP76xEH8DgsYNwnhyUuh7gZVmHIOap69kCXOBgnCfzuy391ZbwcMId/92TTA1YRxjFSXE6jW6M0W4+duOziwqfwCItYkdFR+AiVKDotTR1gp0n+NwjnEAmHtdERy6hPLbUECJwwgnSNOajeCcxAXRiWUxy0p7BIUl6LXcc2WHR0Zvy3FCVGXiB9xK3SCJFbZogiBoUJLgi3ieqI5Jsqsi2Db7Q+DuO4HOF8AF7YgVZW+zREapskaPhnrYy0cgW0hMld6zu8LH7b0MPDNmgwRpN22qk9DgfwZgcOso6jaGdKnadvBfRca0VhCBhaBBANcsphvHiXTYJptH4RlF5QS1Sin6LlJ75tMClUGhHNTaIrRybhxh/4EOX8Rbp39JBm8awz2zq8IlAlzEqASCdx1gAVXv6Z6MT6aSXUt5hSbcUly6MSfW+xbUDUgfhPPnzUE8NyC6vrzvyBTdoJM+8loDqqYDM0oTgRoKYg0HyB9785jfzwQ9+kN/7vd+74cd65zvfyQ/8wA887nnRGtB55O4u6jh5h73J8VIQb7tEeB+ALLbEFxXZQ1twOoIYaQLpxICPzmZBS8w4Pm/6sRVdbDtcKvGZoDhXoXZKRNXgVwdsv2iArgPZjsVnkmRqkY1FWE86aeMqlhTRdMB6fKJiHk0WJ//pIl4sJ/f0GYeAOrsR34fdJ+xflrWPt2mGPZqc6EBApxERrSVZRNARt48GCLKy+FQBMdyzPKLoX3CoNu7PZxpV18ja0Bwp6G3YDoAFdOVoV5Lo4lLHVT2v48qbtDG5WrXRGWe3lnS+ZS2BylLn4h1CJRGALr9Dvc9iWUnmLz7G1gs0zXqg9yhk2wFVS7KdQMvBs1E+COfJ8373azj/xb/2tPZ5Pbow+zUv1wO87N/XIYi5cj2bwAscjPOE3DEoWjaOOfILFfrsJu62dQCSaYNe1UzuklRHFKMzUFzyrH7cUa8q5nekLJ5r6K+WtK3m5OqUeZNRziK4QAVCEq+rIncIGWLOSyuRQ0OSRaCQaosUkOWGRDl2NgbIzGHbSEXr91sWbcr2rIepEkyVRKpZAD/TERh1QZkIEK0k9BxhLeZ+uY2cekUivMarBOFjwKOuA+0wY+VPd2hXUlIBCIE0lrAoEUWBtIFmJ+dS0Uf1LS+47QJnJ2NcahHAfJZHELYtaYcSN03I1ivaCz0YG06uTrmoBpQhJ+u3mEbDwwVh3UQaXQClPEW/pSKlP6hxTpIoR54aKp2BBCECaW5o7wTbT0lmkmIzpbCREoaIwKUdC/KdgOlJsqmjPKqjducOSKeC+oin92jC7B4LArILmqACZsWDE5jxwQMwB+I8uUJda8fiWgHCrap/9sa9yfw3/+edJ9zu/3MTxvJM641Xsc2B6MA8tv7X//pf/OIv/iJnzpyhbdvLXvuVX7n2Vtm3fMu38Ou//uv87u/+LqdOndp9/sSJE7Rty87OzmWrARcuXODEiRO72/zhH/7hZfu7cOHC7mtXqu/6ru+6TNcznU654447CFJGm2DjEFWzC14el/a+dLaCqJFZ0qsWFdkjO0gzoj6SRsF+Ikh3JEEJghCEzjXLa4FqA8nckV8oUVvzuDo3KCifMyKpAr1zkXIljYv2wr7T07iAG2adTWbsZpi+xuUSvXCoOhCUQriA8ILyVI/hVg7TWTeB37MYxtr43JJutV9XAnvvVXV6kRD1M9V6tIzuXbQkCxvH1E8QNq4q2kLSrgjShaROY8epfx6CyDHDBJ+JaHowayKdzHpko0hnAtkG9MJEYJYqbE+jFw6vFKYQe/qW5fjFvq5S5yIWf1Z71snLwEwpI+1u0GP+ojUu3Bspb3ouaFYgWYjovtMTmAMWPHZQzpNnWksA8nSAzI3OezkEMY+vZxt4OTDnSa1QMorszShFX1CIyiB8pOxKF7B90CXUKzJqWbYh34phyu1YMxN9kr5hWmdsbw8ITqKGBm8FwUpcqdF9E+lUswwRBEKFLoc5UDUpWWIp5xnBSIQKBCthrsHDTAbazNDOUmglwkgEe0zckHrkQkX5S+Ejw7iR5OOaapKz9tFIbQZQdaAZK6SLk/x2KDBHezQrCkjJG0sY9qBpIdHoOlCcSficlz/MYj1jo+5zbDBno+yxs9PHlxph44IcQP/4gpVexXmjGY8WZMoyLBpMq+M61mZGUAGZOeoyJckso16Nlp6T4ynr+QItPLXTbFQDBv2anVGK8zJqZxqNT8DlAa+gPJHFUGtg5/nRUaxeFTQrAtVKpInsA111oG0Rn+s/pKmOe7ItqE7Cc190joc3V6h3Lqdn3+o6KOfJHzQ9cmIH8JXZ4mnliDwTitbNrK/Z7zL2lSvA1b/PD7zrDTdiSE+7PsATj+eN7V8+ODkw++sXfuEXeP3rX89rXvMa3v3ud/PqV7+aj3/841y4cIGv+qqvuqZ9hRB4y1vewn/8j/+R3/md3+Guu+667PXP/uzPJkkSfvM3f5PXvva1AHzsYx/jzJkzvOIVrwDgFa94Bf/4H/9jLl68yLFj0WrxPe95D6PRiM/4jM+44nGzLCPLsse/ICU+18h5Q6jrvWBE1eWlGBsT3ts6AprgAbmbyRK8R0znpFVDstmjOj3GFhJCzEhxmSAoGfNSpp5kakk2F4jtKUgJiaa+fQQB+mdjp8IVCbQBn2tcoVGVRbYWnynKEynpzBGEoFmR2EwwqDy6dpiBIptaEJryqKK32kcuyk7Ps6RQiejCtZ82tt8qetllWtKwpI76ltmC/kVHM1QEKTA9jU+7bokJ6NJFYb6KeS/1EYEZBmwvYXQmOtkkMxdBionjcUWCy1X3mkGWbfdajjIek2m8FmRTH2+Ay+7LfvACl2W7xDAZGw0IWo/Is0j9Gw/Y+Jw1tl4CxcXIQ1+aB7RDgUsEzSo0ycHowBy08+QTr/r3wLUJ+K9U19qNuVa3sVtdv/Qv/9stF/I/k3q2AZeDdp4kU8X58yuoRlAdTUimK+iNGX5YIMoGl0Rb3nQSAxfbkcAn8RpabFrqiwlBJNhGsd1ohislWWKpjaZpEqQMNIsU7wVNnbC6PkcdDczKjJVBybzOaFtNKxRMEsTQElqJLCxexcUtV2pa6ETyAnqGUKuorzERLDkdoJWwFPK3kqZOULmjHiesXmgjRaxsCXeuYAaS+e2S3gWP7SnakUBaSfFoIKQa2ctjBACRrns0nbOeLKid5ux8zGyRR1tkHSCz+NWY7VKeHVCvpSSppUgstU3ItUUqTz3NEEnA5wGtAt5DO0+5sJ2Tr1d4L9jI+xinkNLvBV4CWjmMix0pYBcwCQ+mJ5jdKbB9z9E/9iQLz5kXKpKZIJ0KFs9x4DsjhJEFkdAccaTbisXnVijtSKSj2clJN9wz+vu+XnXQzpPPy0oG2Z7F9NVMfH/cb1zdm32S+rvyyDPexzOtn0z/Kx944mjFA11/4a0/e9nP++li7+fmZPlcM4B5xzvewbve9S7e/OY3MxwO+aEf+iHuuusuvvmbv5mTJ09e077e/OY38/M///P82q/9GsPhcJc7OR6PKYqC8XjMN37jN/Lt3/7trK2tMRqNeMtb3sIrXvEKPv/zPx+AV7/61XzGZ3wGf+fv/B3+6T/9p5w/f563v/3tvPnNb74ySHmS8qMc6YGdaUc5Cnv2wa2JIAMQ+/cbwh4osIGgNcIY2NyhaA3ZsBe5wWnUp6jGIUuDLBtEWe+BB61o71inWdWkU4dPJT7JaNYS8k2Bmre0qylmlKGqhHpdk848somalyBji9vM4gpYOnPoucF06b/VyT6DCzsEH2InZenAtZzwL5Pql1Sx3a5M9z6TPdpZ8J7ifM38ZB+EwvSjJibITtPT+Jh5o+LNS9UxIKx/wZHumAhUfEC0Fp8nkWtcdM95oo7GQ0h1XLHUMq5i9gTjB7sLndZxrPuzXpZCfilAi73uTNPE17TGnVjl7BcNKW/39M5Jhmc8ysSOS1IGsh3RJWRLOBiulwfuPLme9VTdmCt1XA46cPl0qGcbeIGDd54U5wSLO2MS/Oy0QrU9ho2lOjUgPydJ5p7xAzEDph1Ga97eJUk6i12bZB7oO0F1TNL2YD7P8f2GqkoREK/lM03vjGJxp+PE7Re4/8IRnFW0tnPMavRuwK+8lIIMOC/QE4UrAnKuEYOW4DTpqKGdp6SrNVlmWMxy0tRiRcC4FDlX+IGDzOPnCXrU4pOo9wiJ2r0/TJ+jKG+LYnfbE9RrUfeZzPskpaW9Y0i23dJ7tAaZ8/H5MT62cYyyzFDaIWVgdbjg/GyN/lrJbaMpZ7ZWkY3ANRGAlG3CnStbbFQDmmkGRkZ2Q+IR0iOCQnRmBjUFeGhlDtojUt/R5PY67G2rIUAoHHKmKY93NLqky7U5XpKUGcW5BdnmCgho1gL9BxTlKY88VuMbRXPKcPttW1gv8UFw98omD01XARieORgLYgftPHk6dRDAxzOtONn/2Su+dtC6LVeqx47xJ9M37IKxA9uB+eQnP8mXf/mXA5CmKYvFAiEEb33rW/niL/7iq+Y4AvzYj/0YAF/0RV902fM/8zM/w9d93dcB8K53vQspJa997WsvC1RallKKX//1X+dNb3oTr3jFK+j3+7zhDW/gH/7Df3itbw2vJOriNKa4L212rQXCbhBicH4v+BGiKB72Jsud6B2pYHuCnMyRUkQdiVLguzDIECIgkhLSBHdkxOK2DNXGi1y9nlCvSFwuUI1G2BA1LrlGuEA68+jSIXykoQkP2RRU5ZHGYwYaO0iQxpNNYtfnMuoVPC68cTcjpjWQ6MspZULvdj2EEOiLUwh9bA7FhieZe9qxIttxyNYTpCKZ04EByHYCqooUOAXYvsb103iTSCXCBUgEtidRtUYYFw0GiIBGNZ50HsjOzwm2Ay5LYwXRBXQaG+l+Wu97P0Sb5DwnDAo2Xj5gcYdj/FFF/6JDL2LHKplH57jEenwmEQ70AQEwB+08gWfefXlsXS017BC83Ph6NoIXOHjnyewzG4bjQHN+HKlGtac+EXM2muM9kHRU3EC9LmIa/IpEV9HYBeKikDQCsdD4zFMG8I2it1phWk1xTpFtBRan4Y7+No/kY2YXMxjDidGMB6uUJHEYI3ArlmTY4KYZ9qhBZh0N2kvyYYOzkqRnUMpTlhm+1FSzGDgsGolsBd4JEAHRSOw8QbWw8ZKclU8ZVD9a4aoGiosSn0KTCdpxwIzA9hL0IqE+Av1zimP3baPKHh+5dJyqzLjn5EUe3l5h1KvZnPSRhcU5iUeQJBZ3qkR1dtKlSnl0MYrb5Q5yF7WYiSN4iWslwgv80HX3B8BEswOlPTaRiEqCFRinMK1GqoCXAWkF7bBr4GsIR1qEAGkChMDwTGBxUqBqQX0sML57m+msR3IhRd4959Rwh9vzHT4yPUFtE3bmPdRUMTt9MDowB+08eSyF7GrrgQ9921Vve9eL//k1/871ruUY/jzUzQAvcJU5MPvr1KlT/MZv/AYvfelLednLXsZ3fdd38TVf8zXcd999fNmXfdmuJd+zqZZ+5F964ptQlsfnoSwnw8Hv0sh4rD5imS0ioisZy23kvgBM2HP6kirS0AC/OmL+/HiTy7YtqrJsfUYPl0ab5WzmUU0UsNtcRKvl0pOUNupqlKAdaXQVOzzCeKoTGbr0CA/1qqLYtBT3bxAW5e5YhJLsfv1LAfzScW0Jbpadjk4Uv3ws8gxz9wk2X1KQbwd6jzbYniLdbnC9JAZ79RXSBKanNUEKxg8Yss0an2mCjtbPEB3MzFDTrESNy+C8JZlbvI7ASy0MZpTiE0n/z85Fet9jtDrLwM3gonMciY6ON1kWKYBFzvzFx3n0lTHAbP1DnmThaAeKtAteE93n4pWgPpKwebrl/h/87gPn23+ranme3Kq6WeDlemtgbgWN7OlmwDwd8HJQc2BuVS3Pkzv+6T8ir/v0zgfqNUFxKTA4F8N+VevxiWT7nhTbiyv9ZhzQM8HowZjcXq3GkF+Xxwk1IjYNzCggAiQTwdE/NcjGMzudkv6NC1zaGWB2cu646xIn+lMe2FnHOsl0VvClz/8oAL/9yedz9/ENpAg0TjNrMlLlmNYZAhjkDZe2h9iLBdKAagS2H5CNwKeBoAN6JjFHLKMPR5eybCcwOtMgjEdaz/SuHvWqZPSwpVpX7LwAzKrj1P9PUB6TDM45emdmnP/CVRZfMCdJHFp5ZmdGMTN6tWF1VJJpy4vXHuVjO8d55NIqrlKISpEcq0iSmOky7les5hUAZydjmk4TU2/nkfbWSJKJIgB27NDjFltqxEJHlDI2ME8Q4xalHeFMn95Zge1DOwr4LCCN4NRvWXwiePg1gtvuuURlNMcHc5yXPPCHd2AHnuK2OXetb7FTF0w7Cp8QwIeGtFQ8+P3fc3iedPVMcmCupZbUps23vOCGHeNm1CN3f/6tHsJujV69uvv4b/z6K64rYLnuOTD761WvehXvec97eOlLX8pXf/VX8/f+3t/jt37rt3jPe97Dl3zJlzztQR+ECsaASB4PXvaVUGo3pR4f4kTZPWZlZfmcj4JxqjruZ6kvWe7Xe/z6CpMXr6BMIJl7XCoxgwyXCVY/0RKkYHpaIw3kE0++HVPvk2mLzxRmoJE2UqBmpxLSmSabRIcwn8QsGmkDqrQxu0YIyJK9bsoSCCxpY+Jyh7Jg7d64zZ4TWbCO5KFL9I6doh1KbF/viu6DjM5rey5ikE1jF0W2MSsmIBAh0I4STF+yOC6ZvrxBX0gptiV6IZBN7DD5LObI9D+1E8GL83Ecrdn9vMUSQDofP3+pYiq1d9Eq+cQKFz9HE0QgqBAD5IiWpS6T2EIiXXR2S3cs5VFJfdseL/ewbm09mzsvz3YtzGE9vVr7M4k9BkFF8NKsCYJUpHPJ+P6SZLOlNx4jApiexG5C/8Lewkw+8cg24FNBeVRGm+XtgHhkr7Ntc4ldjQChqDNMlfD8551jnFWcX4zYnvQ5dXSblx8/S+s1f3rpJO58wQNyneMrM3aqHAFM5gWm1uT9ls1pHzPJ0JXADXxnlR87EwSBzXykn/Uss7sl6U40bNn8zJR0W5LMoR2BywLNWszUskOHrCWbL5b0zwbqFUU7GNOsgJllZEcWpNoxOD2lbTV3HtniheMLnK9HWK/YLgtGw5IqTbFbA+SHB3gP9TGHPSrZnPTxTuGdIDQKPOAEaqpwPY8wEFKg0/qIxBPymDcmpgn9MwqXFlSnLKxa5JkEXUEyFwgnWNweMP1oxpOfl1zaPo67u+bkcMZHzx4jrMXvrZcZzuys4JzcvZUq5WnzwMoHbsVf4adX3fuD/4H/9sj3XdPv/Le3fB+bN2g811LrP/KxZ/T701f/36/TSJ5+XQmsvP/FN6fbcqW6agDzwQ9+kJe85CX8i3/xL6jr6LH+Pd/zPSRJwu///u/z2te+lre//e03bKA3vfaDmGX3REii6j0+DsEijI05KfoxVDKx7+dOsLjb1VgChDyjvGtEUsaAynpVIR0kc8f4AYOemZjSvNFRqdqoEVFVJ653MbRShCji9wmRkqXj+GI4piSdx1UxhIhjXXZYspTQywlFihtk+FRi+hpdOrLzM8Si6oIu3d7nsduw8wRjGH50i+2Xr7M4oeldtPFmPFS0A7nbLSq2PMk86npckUSXNykwI71LrTCjGFjmigguMgF2kERQlMlIl5vMCY81HFgCSedAJbHbsgy0VBKRJCAE5W15FKZ6kFZg84BqY5ZNO4zBoL0NF03Wckmx6RFTzSM34E/rsJ6d9f898xNXfP6vn/7mmzySJ6+n2305rOtb+bajXAUC5DsB2xOYoSCdx8wsNY00sWYUr93JPJBOLLZQ+CxqY2SXJ5btCLKdgG464Xnp8VpQrypmd0jsmmG23UOowMtWz/JnO7dxoj+l0IZT/R0mJsd6FcMq00A7S5GrgfV+ydaihxCBYhAzOpqdAtF0bmRGIKxAAi7t3MkyT3ACvEAeabAmhxA7NOkEdBWQraA8CcXFeI8qziqSBbRjqI4J+ucCygTyzYAuE2bPH9CMG2yrSHLLJ84d48GNNUb9mtW8oiwz1lfm9NIFF8IA2YJ0oGcSZ3oRZKlIFVOtwB9twQvGd+wAYG9TDPKGWZ1hjKa91EceqwlO4L1GV4qVTzoeuTMgUsf0HhVDKFV0Gcu2BedeJRBrDb7SqIHh5Xc8wtn5mKLfUMsU1ZkCrPUqjJcYp1grSmqb8HA6ZHHbwXK1POh1pQyR97/tdfA0gcD7mv71GNYzqHj8a6HJHbT6xa+4jweeokn/wq/4umd0DFNdPdXyqgHMy172Mu69917e+MY38jf/5t8EQErJ3//7f//aR3hQy1nQya6zVbA2Toi13qMsKRWfFyJqLYLfC3/3YU93sTvh91E/4joLSucirSnPqO86gksF+aahXdEoE1B11LpAXLnzqUJVfjcPJShoxwnJIoZt6SquDEkTOy5JFVBtQC9stOksYicEiB2XJIFE40c9FncNKY8opIkUBmnjTcr2Ner5KeksMP5kiT67RWhbhNaxI7MP2IntKSsf1lz6nBXKo5r+eYPXgsVJiV7EpGbV3XSDgKAl0vpoDR0i7U3PDEctbDUpugRdOaanM/KJw2bRwa338U3CMgRL7euOLf/W0+5781FLs2sLLSWhl1OtS+w9FVlmkPeN46pgJkgWnmzqYlDmPvCXTj26OuzAHIS6ld2XJwItV9rmyYDMs6EL82zVvhzU8lowfMRRHpM0Q4HtQe98QNdh16QEEc1XVBWzrkLX8ZdtIOSCxQkdA4/baMyi6kh1NQONLeL1vln3oAJZv+XYeM7vnHse/bQlVQ6P4NFqRK4MkzZHyoCaS6wKlCbSdo4MFlya97FWUS/SCAYyj9rSCAOuF+87woMdOYT2hExAqfFGEEYOkcYL8XRVIUuFbGNQ8/bLfBTfrxnENEHVArtiWdwlEK1AVZBMQU8Vts3Rxyq8kySpxTQaVwguzgcMBxUrecVDm2v4JNpPI2Kgps895C52O86n0d54K0UYwWRjDXl7RV601EYTgkBrR7PWkmcG+9ER+UVB/7yLRi4bGlUlZNtQngxkW4LVT8R7v7m3olmkpBc0ppb4U4ILnzhCcryi129YzHI2LowoVyqyxNJaTS8xNE7hh26/Z8BhPUndqPDDZzNwgKihOegannt/8D/wz+/5hmd0nLppgfuvaturBjDvfe97+Zmf+Rm+4zu+g7e+9a289rWv5Y1vfCNf+IVf+HTHeXCrmxiLZafExVX+EMKuo8vjNDBwuZ3v7kSavYDIpVMW4Id9fCopLjS4PDqe6IVHutglaNY0yUygWo8rJKYQ6CZEoWITaEea/GKDcIGk9Og60gnSiUWXDpdJ2nH8eqUJyLIF7wlFhrltzOZn5HgtGD1sCVLQDCXCQ/+Cw6UCrwXtUHDh3gGjEzm9hxaorWl0v9mXeh+cR25MOPInkov3jlicTDADgWoieNG1pxkrVBtQTdjVmdheEiluSqAqSTK3HP3fMf/AFXHly+YS0xMc/YNtmM73DAfcMoxzX6fLecDvOaklnQK/6+NLC26aEo5YdA3ZNAoy26Hs8ng8ticxPYkI8TMTSz/Nw7plddDBy5W2fyIgczNAzGH35eBUeVyROsn8FLvuhu1IoBqBGWpU2ZLMHdlWvJe4RICICziydWy/oEe7IkhmUfPSDhU6FfQfnKPnkvJUj/KIitfaUc3tqxOU8LROkWvDSlpyPHd8YOM2QhD4AE2VEMaO4YkZJwYzWqe4vTdhmDR8/NJRZOKRqcNMMuwLStLM0NOO+SJnOKhoraZtNMZJaGN3hszx/2fvz4Mtye76XvSzpszc0xlr6u7qSRMSILDQ0Eig6/seHQgMGGwTYJkbJgRhMQg9ZHnAmIvB4WdjX/thXUDmgZ+F7LjvITCDwGayaYEBWxJICKMJoannruGMe8phTe+PlXufU63qrqruU2PnN6Kiztk7d+Zauc/Ktb7r9/t+f0W/4dhoRt80TJqcEAXPX91mp+4zNDXnyyFn9lbwnxpitjVuGGDFETYCtcnRM8HosxL76JD57QE3SKRob29AqDTPu/cs56bD1P6hJzQaJIQ8ObZRq1T0cpzuMzNS2xDU0wy7l5Of0zTHPP3bpmjjqasM0wjMNGlKXaHI9gT9s5FizwOaqJPlv5k0iI+O6Hlwg4g6VnPf+oPsf36PJ/ZWloYJaxtTtPLsjAd83qlz3DPY5r1n7kX1Hdm4YzCXg6cjL1e7svuNjhvdCCB9N8+OKE65/I3jyyYwr33ta3nta1/Lj//4j/PzP//zvPOd7+Qv/sW/yAte8AK+/du/nW/91m99ygJGNw1CTMJvaIlGW/slyxJ5OSwSX6BNK1tGaxZpTRcjOEIm8X6vYHbPCq4v0aXDF4pgBCKAaAWZ9aqgf06Q73vKzdYVq0qEgJjSnMrbCoJKwv+oJYhA1ALXV9RrGl0FsnHSkRAgFjnlvevMT2iySUzpCQ4EkWwWkiNXmVK95sdTbRcRYX5M0QxHFDt9+n++BZNZG21q7ZgBdXaPk++LPPHaNcoTkeGjkI89diCXhEj4QLNiiDpjflyRj5PdsuurVo+TyNr8WDrn4Ika8/g+7OwhjCHqQ3oj7w8iXcvv4UDMj3MpAuNT0c4oYfBZjX98pS3wmcig8ClNo15XSJd2OutVgZmLREA7PCdxpeTlyZ+9HiSmIy83GAJEDSFLEe4oaYsMC6oNRVQD5scUPofeTqR/tkbNbNItNp5sGqg3FGYWGZxJesigBZMXjPBGsPd5kmY1EPKAajQ78x5KRsrGcGIwZSOb89+feB5bD6+BifQ35gColYa6bqMvxYwnyhWmTY5t9FIYb9Yq1kYlRnlCFAzyhp1pPxGI2DqROYE4WdHvNUgReeShY6ycmHLH6j4+SJqg0DJQecP2rE+1V8B60sLEXkDsG0IWUKcq7G5OfEIxeCzpQP1MkH/BlNOr+7x07XEmrmC0WfHI5jp7TY/H9lepaoOoNNHKtsCyoN4MhCK26cKCaAJqXyGtwBetw2dl4IkCWQuKLajXBXZkKLYjKw8GVj4zI2hJvpsWUuaxPZCS07+r2fm8gi974wfoKct/33k+n/nUKbL1ir2yx2hYct/Jh/j9x57HxsqMFVOxZ3to5fG1olkNF/sr6fAUuBhReabk5WawJb5cHBbQX208HWFaFBw9jP/Xv/nCZ33N6mqkkC0wGAx4wxvewBve8AY+9alP8TM/8zO8/e1v5wd/8Af5qq/6Kn71V3/1Sk95wyA6R9StjgJAKUSrX1mQlqXD1cKWOEaIyWL5gqKKi9okWi9dx4hpcR2GfWYnk8OMtBkiJPE4MVIdM+y/EOwwoMu0kO5tJSGlqlPesytk+3sk308WypG0UxSVIKiUGiVCJGjR2iwHmttX2HmJQXjIxinKEBVk+45sv60VUDtE1PS2E6HybZqVmYfkEvYlJ1n5xD5yewzOLSvdR2uR5/c49V7JuVeOCCYVZYsiES8R0gRerynmJ1O0p38+9bveULgiRUlEjBS7gcEjc/TjO62xQrKvJoaDaNbC5W1hY63kk947ZJigUkTH58nis9iNNMNUbyHfTwTH5bLNN0/t0vOAvTKDvg5HjOsRfTkqB7Kni8YcNYnpiMuNiaBBuCQEd7307BGRVCPLCGYnFdO7WqF4gNFnHcIF7GaP/NF9+k/U+LwgSsjOTolGEXqG2alBsiheDwzv3kcAdaPZ6JecGY+4fWXMpMl5dL7G1hOrHL97l63PbvDy2x/hwfEm29M+AHtVD0lk2uTMGoM2HmcVeWFZ65fszXuEIHBWEaIgNIrYSDABqQNRwOljezz08DHELNWbGe/2mU4LhIDVlRm1NVSVwe9nqLlEWIE7YTE9SxwIpAoIEbErDc1qr93UAzeEyRMjPlVmfHZrE9tofCMZrc+ZzwqU9kkoLyOi8On/nR5+EIimrfVSpaiM8AJ7zCFMQOhAnlvmg4x8WzM4m6z0p7drVh6uEE1AbU+QRhOLpMFkMkNkGXq3ZPi44T99+IvQucdv5dzzkjNM65xpmXPvsW3+ZPsOJnt9smOeymuaoJFt8U83vDFslG8GLBbHTyYsD/90/YzOtz746WfdphsG//3aXerh9lp3vfGgts/FiMsC/8tDX7D8+eM/98wcS8vQAJc3D18xgTmMF7zgBfzDf/gPufvuu/n+7/9+fu3Xfu3ZnO66Q+Q5gjbKslj/eg4Wy6QqtsK2KUxRHEQEFuRlKfhv/1/UVAmL4wR+JccOBWYWsQOBdKn6sgiR/Xslg0ci+RjyfbeszLwQcy7qAyAg20sTHqSITNAi6U20QNSpwFgwoOaWaBSz2zL0LC4jDbYvkD6lcbmewsxT9EnNk4Vx73zArmiyPUfUAlVHZqcU1doax/9Yoc7sQrTExibNEKAe2+K2nSnl8zYZ353h+oJiJ5CVAdtPTjrBgJlEZicUypIm9wpGj9Rkj+4iagvWLslLch2TF1ontzV3ljVsmpSetySaSia9TluJs7cd8JkiGyc76tC6Ni52RXUdEA5U5VE23VOXdQSmw7PDU0VjjoLEdMTlxke9noTtUdJq7NLz1puU6qTKtMlT7AbsKFtuOrljQ+rNjCgEpgyE3ICWlCcL6jVByAEdsFazOihTpXprECKyUyaCEqOgt16yN+nB0PHezz6PLLdIGTk2nBGjYK/usZJXTKqcGMFVGqU9PWM5V4+SFqXSUKVK9cILio2ScqsPhWe/LNBbJukoc4FHw3pDcJJ5leOsws81CAgmoqzAnDW4gUI4QTxZ46ca0UjmL2hSVLxSxIFDZYET6xNODcbMXUoJ7uuG7cGAcZUzyhtckOyXBVJE5vTQU4nrA4Vn4449GqeZDYpUC2c/R04yyn6G8EnTY6ZpU/D4B/cRtU1zT1urTbiAH2RIcwymJXJ7THzeCrfftsvx3oyHh2sMTMOdw12MCHx05xTzxrQ+PTFFpfbW8FGACYS8m08uhUWK2B993zfzyn/xc59DZA4vpA/jVoqw3Aj44r998QKbC/x/sl+/6OuLQpbPBk2cA++8rGOfMYH5vd/7Pd7xjnfwi7/4i0gp+aZv+ia+/du//Zme7oZAdIu6IeqCxXFs7XovSB2DZbrZsngiLF2yxJMjMYuogJTIxlPsREyZUryqDU0zkjRDiXQwOBvI9yzCRVxfEVWbXlW06Vp1muQQIBtP6GlUHbCjlIolbdrhi1pgpg41qWhOjZidkowe8SgbU/0YAfVIIp1Kdp1aEkZZEtnXvu1HKjSpS4cRYGaSZiR44stWuO1/CNTj28v7g/dJaG8tvY+UFI+MqO5cxa5ogkk1bIIBPYdsmgwI+mdq9O4cMSuJVQ2NXQpZgYOaOgvysii2qSS4cKCFkSFd33tEa7SAkMQQwHl0GbBD1RoVCFST0spUHQiZZHZSMXzcE/IU0VE2YCadiP+5hEX05dmkj10MT0di4MrqxHSk5eaBL8AdS0LwbBzJJhFvEnlxPfC99JzLd1Mken7SID00A0E208xPSJoVGDwmaY73ICRTlup4ctsSKw3DXk3ZGHLjmFQ5s0nBNAqkiswLQ10aQqlZOTGlbjRSRnpZeq49sbvCxsoMV/WQMmCMZ3B8TNUY9soeMQqa2kAQqJnErztWb5uyMZjz2XlGnGlm8xwkaSPMRfJtRTVKz9Bqt0ANHDL3iJ7H7xuijgTZ6lMk+EohnEwOYqGtDRbB9CyjQcXWeMC5vSGn1idM64zNwZxMekKQzG1KZ5vu9tGFI8pk9xx7Aaxk59wKolIcu2cHozznoiB7uM/x3w3Mj7cGMjPH7osKfDGid75J6WJ5jqgaaCwKCD0DRQ77U4rzDZ/dWcGvSWZlzkfP3cFLnv84NijOPraeZJhzxZYacf7MKjL3mMxBI5O1c4dL4rDOZUFkLoWnW3C/7FdefmRte87gV17Oh77+gxd9K303T09wng2mtYW3Xd6xV0RgHn/8cd75znfyzne+k0996lO85jWv4cd+7Mf4pm/6JgaD621R9+whhEikpE0RizGlFInWfhhIi2SlwMdlIcqUIpZE7YdJTlwIywFhsoPUNJEE+dJFmpHCG4EdCoJKaQeLaAy0BEIKfKEQMREPn4ul81nIFM3IIO3B0zG0OhhdBvR2CdZhh5rBE4kwRS2oVyW6Ts5l9Yqi2PG4nkLagHTpvMEkQb2s03WljfTPObKpZHy34vyXDNk0EvPQ+QOHsDZlLloL27sUO/v08qy9p4ee4C0xiXWT7hUkkrKIdDV2SQqXjm4LorJI3VtEu2RY2lovvqN0TIAgEY0l22nobWn2XpQKZw4eTyluwkfQkVFrZuDzA+G+mHc7Zh2OBpfSxdwIOLX/BZ0T2REiGPDDgDqjKHYjUUBeBepRSgEOCkKenvHNUFDsp4LF8xOabBpwRar3khbmAjdUqbjxXNCsxUQwXLIH3h4PcFYTnCQfNHinWBuUTFWAETx/Y4u5yyiU43w5YL8sCF7ivOKFm2cIUTK2BTObcaYx7I37KO2pd3opcmSgt1ohROThcxvEOkVQ7H5OZlPKs2oLXabFetpg83ONqCRBRZCtJqjnkTOVXLm8SHoVK5CrFh4v8KOWoFR5qjwQJKU11Fazns95ZLIGQN9YzuyNkibUSnrPG+OcIjaK0KgUySk8p4YTXJCcjas0a5H9ew1mkjawdj6/YHIvNOcU2Z5EHF9B+IA0ClE2yf1zVuM2Bpi9jNntOSc2ziOA19z9Wf7k7B08ur/KRr8EJ8g2KsJIEqMgSs+JzTG58pwVUO2pp/tz6QCfE3k5/Novrn8DX3/yNdexdTcPPvaWf/fsT/LZv3DFH/Ff9lef9WXDfA780mUde9kE5qu/+qv57d/+bY4dO8bf/Jt/k2/7tm/j8z7v5q5s+jlQ6mCXRKkURWnF4aJNFRO9Ii2u1aGFbmYOoiytTTLOpTS0RWpZDIAEo4kiLaL11CMi9M56UALbT8J5M3VEIZbfTvKiT7VifC4JRqKqNiVNCXZerHF92PyoR7QEyMx8Eqs3FqSkWlOIEBE+4gYpEpGslyHfC0ibrJrtUOF7Em8EzVDiC+ifD5i5Q7T2znaYbDIBtl/aZ1OcwHzmTCItcKA/iSHpZACsXQrql/VwdJtaJw7ph0IqSCm0bsmMOqQrkukeLq6RiYO6O1ojFtc8/H06B3WDHlesfVLhegXzUxE7gGYkkS5DNYFqVSFi+l5UlSIwTnUi/g5Hh6cjMR1uPYQ8EguPzxRmGmhG6bkaskRIdAUIsENB/2zSlNi+RDZJo6erRG7MPFnrSy3IJgHZJOt7PzEMT+zRN5Zp5tA60F9rmFVZqkRvNePdPtSKj1tNCALvFL5WSOMJM8NuFExXcnaqAY/vrGD3CvJzKj3CXzgFFVEDy6Bfc2I0ZXvWR8iA7DlimUHucT2JOFnTzDXZSk1fe5RKBSO9l5STnNH6nLo2NLsFmEgYeFCR3loiRc6lOaNZcSz8hqvdgt5GCcB4VhAj/NEn70HuG1QpmDvIJoL1RwODxxvOfckq8y9o6K1WVHsZZizxmeQjH7kbhpY414iTNbM7Pf5Mj+KcpN6IxFMVtS3Ye2FGNjZLV8p8t07zsIBgJOHYaioRUOW8aPM8tdcM8oZxlXNmb4QeK1burNjdHxBsIpIrWU1AYIyj9h2BuRT+95d9Oa9715fzW3/9zbzuXT/OorLg69715fw0cKVKll/74fKIW3hz4PPflrKhvuaHe8/8JC9L//3WX38z//gtL7i8z7zn4lGbK0FVX36o8rIJjDGGX/iFX+Brv/ZrUeoWHoiHU74WAvF2URxjTMW92vovwIEGA9L/sn1vkeIErV4jEEVAOI+c2yTkzJN9sGw8UUkMDrnr8T2dcqGlRM0dqhSta1YkmIxsP30mZCm9LN+PzE9HqjWJ9KDqJEgfPF4n6+RhD9cDXQrcQDE5nbQgLldEeRCxCRqqDUm9JhAemtWI9AIzlRRCJG1NjAwfntM/m6JQ1YmcyV0Fa/tryK3ddJ8WpGJpt+zbIjCHCoKqVj+0LO7JIUvkhdNY+33IlP8stEqkZ3GvF591PvVz8V0dMlMQJkXJxKzEGMXoUYPrKWYvbLj7ri22m9sZPgZ2IOif9wQt8IVEeEX0nY3ycwVHJd6/FK4liZk/ehKA/umzl/2ZLgpzdDD7gv7mjCZP2hZdJf2dbFJEo14FXZHqlggoN1Old2JyRjSTdLzPUjpwyJLGUTqFmgvsaUuhHZJIVRuUCvggkDIy6pXMG4OYa6Jpn4UilQGQmSd6geg5vujOVKr38Z0VbGlARZrVSDQB4yXHbtundoqXHD+LJFI7zXjaQ2mPHTmEikSTHB1RkUGvRquAdQoXkwFA1rdoGZg1KrmXzRRRR+TAYbRnNs/xtQKX3MREI/BTAybgnMTNDMj0OV1JzL5g8ESkWRUQIBsHRIys/7lD2ozxi1NZgmxfsPoZz/69itkXOETPI9t7Edct9YlA2M7IPlvQrEbqUi7Tl/NMEHWRDHbarIfJXTnbXxx5xfGzaBF4Yr7Cud0RIUik8rh1h1Y+TXMiYozj/GyAD5LpuIfZuw5/hDcB/p9f9KX8peo/tL99OQCve9ePX/TYBbG53Pe+5od7vPhvfuDI2noz4M/+wyuWPy/Ix//40u99xud73bt+nP9xBcf/3b//7O73LDTAZy7r2MsmMDezu9hl47DGxfsLXcXkQdrW0v3qsMsYHERmFoUvhTwourhIMxMiRUXa3X6A0NMpJc0G7EoGIWJmFhXB5wrhQzupBbK9mqhSFCZqsXzgFmclIqa0tKCT/bLenSOswxdJRGnmAZ8lchI0zO8UmDEMzniET7t/i/fQqaIxIU22IZPoadtuF8AoUCkFS0TB7PkrjCazpGMRT1r4t0U/F+li6Ja8LAiOb+2YDxUMjT4koqg1olfgj63QbBT4TOJ6yd45Gyedkqo8amaRkzliOk+pewuSvfhOrUOO5wweEogwAJHxyPgUhYbyWIo0+XEqwOkGUGwpskc7Dcz1xPc+/PHrWgfmauFqkZgFYbmc15+O1HQk5mgQMmisRtUQjMAO0rMom8VUD6YBVSZDFdcTiciEiPBJ1F9uSkKWKtc3Kxn9c56sCmT7EekE4aGcR/I1Br0GISLVNKdpNL7UxHVBCAKx0iDbjNtmnoGIRC8RKiB15BPnT5DplLKVDxq0Dsz8AGRKUdveGnHbqV22qwEuSJQMKBVSscmexdUasdYQpgazo9iTQ3RhcZUhBoHpWTZWZmzvDdlYn7EjBmQbjsykyHxuHGoY2J2tsHZiwt7jK8QsIqqki7HzDJwgP5eMAkYPJ0vp+QlNtp/q6mQTizeSqOHk+yesPthr63klgb4IIDNP2MoJUiOmkrjpIPPEgacREHUkfsmUvZ0eovAQoRg0eC9ptpPl8sqnBeF4zfs/8TzuPr3FrMkS6askwWeQBc48tMngxIxyljHZ7WMKh93PWb99n4m5+dPsrxb+y0Z6Hi5IyG/99Tcv33sqwnIYi+MvRmL+7D+84jlDYg6TF7h88vHG73qA35s9M9ewJ+M/P8vP11eQuf+sXMhuOQQPstW1hJi0FQvReAwH0ZkQl2LxpcgcDurAHHbLWqRMQdLPNA3CaLL9BjsyCBsoTxaoKpCNLdIG1MyipjWhZxBBJn1Lqx8RSIRPepV6VaFsquWi52knj5jqukgXEWXSpfhCt3VkAvVKuzs1ibi+SK5kNqJLTzPKyMeRfByZnE4LedUkQhO0SHqbVY0rJJO7JZsfsalqs4RyU9E/sYZ65BzL+o+q1a0En8jLQrvi/cE98iyPAZZpY0JrRFHgTm9SHStoViS6TJqdoNOkH1Sq1ZKMBhRiLUdWK6h5g5jXiGmqexBDQEgJdYPa8gxcIIoVhFdUmzHdVQ/VeupzfcyT7yjmJ2/hSGOHJQ5HX45awH+t8FTk5VLHX0l0psOVIRuD/9CI/pm4tLcP+mDjKtuP+Fwkm+RpTPbyDhBQRYkdpWiMz0DPY1tTK81PqkyaGjvLEP0apZJFsNaefM3iXNJhKOPJMk9VGWIjkT0HIqB0SvGq5hl6VKFU4NjKjMYrykFGmBjcfoZebegby6TOGWQNW9MBeW65a22Px8crTAF/po+ukjYnbBvsQEHuwQlCFMQocI1iXhtWRuVStzOtcpQMzOsMc15jN5PTmZom2/tYS8gDaqpwg4CeSYSPZLs10gamd2QELSiPpf+boUCVOdJGeuct5QlDaO3zw1YOURB1wK149MCm+7OniSdr1KMFlR1AFhEyonSqh6NUINussOd61KvQ/1iBHUUeisfYODEmH9Y0MjuIaqmIlKnsQW9UU80y1m/f5/TqPh/L+9fvj/EmwGHSAiyJzFORmSeTlacjOk9e2N/qeLpI1cWO+emf/Ipr0azLgpuX8G0/e1nHdgTmEKIPqRjk4WKVUhzYIyuWBS6FbG9diJ+TtgQcRBNkdvD6YvFeN6i5ZXY65SfqMtVs8W1Kl2lSalXIdatubye9EPBDjZrbVFdFCeQ8ie6LnZhE+QpMGcgfn0JVg1KoyuHzgtlJjS5TKoPtC+a3RfpPpJQpRNLazI5J9DwSMuidjRR7kfkxmcT+66Ztp2B2t0d4w8pDKXqjmkh1oqC/P0TUDbGqU9TFH0SwDu5Xim4ti38usEjH0xrWVpjfs4bwETN16FKgZxbf09ihTjV0fAQbUa39c9SSkCt8rw+bffR0gJpUiL3JgYGAAzmeM/xkJN/tM7krp14DOwDjItmuoHdWYmaRvRNH+ufVocOR40qJy1N9/slE5tR+8vPvIjHPHLqMZOciwycsrifpn3fMTullzSufJzfEYJKQXdZJ1G+HEIVAlRFZJ7eu1c9Ydl+U4XsC14femYiZCdxEs2cG9AY1oo2anFiZ8uCnTyanr5HFW0VwSVgfo0DqgHcSqQODUU2mPVJEjPJsjQewlSOBfFvidxSfKk9CIymOlVSTnHxY82ePnUqC+zWHsgK36vF9ASuOvN/QzDPMak2WOcbzgjjTlFPDXEQoApn2KBlwXlFVhnBHjT07SNfQOTiJ2VPYEwE/8KAjvXOS8pikt5UjXVzqiexApvS8QjC5KxE8M01z3OqDDa6XMX++Z7Q54/hwxuO7qxSZZW9rCIOAfrxI0kpBir4Aa6OS/WmPutQMRxX6ds98WECtED2HyTxVY/BOEa0kiAh7GXiYmpyYByonOXZ8zPPWtnlovI5d7erAPB0OE5bFwvrJ0Zgnv3e5OP3Bdx9pW29kPPryb7jkMU8miwu85n3/5xG35spR1YEHLvPYjsAcwsL1auE6JrRJaU7ep9+9TxqXpfuVOFiYtxa+i2KKItjWxay+sPBle6yYlmTjAXakyMYeNXf4QmFHGhF7qNIhS5ecx4zC9wxq3qBmKQ1LxEi+61BNoJAplSsYgRLQf2iGnMxS5AGQ8wbhI9WmYPB4ylf2BRTnBaNHfIqgbCQjgAV5KU8EgpFkk0ixF9BlQDYhpawJGDykMdPk0iZjxBWSal1RDApUY1sXN3/gFrYwOoDWTawV6nvfWiCzFOOzscrsBesEI+g/XrYOaOlcwijMxKXUNZdynyGltYnSphoLPbOMyoQTQ4wQiN1xslRe3BMgqxs2dvNUHO6OHnaQiEtvy7H7IkOz2fleXm9c7TSya6V9eTKOIo3s2ZKXi53rYkSmIzHPDPl+oB5BtZGMW1Iab4qclCcWkeSkifGZwLf1sIipRkmyfE+/NysqbTwNU1SmXk8pZ3oqaHJNowMbqzP2xn20DJAFsCmiYXJH7TJQ6VmptccGQdskcu0Y5j5FSqwmqpiKPw4jUcdUDNIJ6lkGXqB1ABxyLCg3I37NISqJ2GhS2pjxuMwjZWQ+y4mtI5maStxGSsudlRnDfo3zEl9p+qslvmfTNVRElAJhSS4GKiYNjAPfg8mdho2Pzll5GExpMNO0AahGgvJEqrvjjqf6Y9WGRjUgSkU/s5yfDogRprMC0RbjdGsRYSUxS3NDf1DjQzIgAKhqQ5Gn4ptmpWLUq5nVGdYqvJWIRhK9gDws9htTIc0ItdU8Pl1le39AfqZbbl0KT46wLF57qgX3YRw+/sm4yz50RC28NB42d1+za10Mpz/47s+5BxeLbl0Mz0Yrc1Rw8xJ+8u9f1rHdiDqE6BxRyLTIVYpYViBlihJYnx5O/tAuiosHVr8y5VIJIZI9sHMHRMi6FLlZWAdHi6ga8rNzghmgyhRxKY+3u0czQVSSmCvEvEHUAT1L9UzQitDPiDIJOqM8cC2LUiVTgMkc6iaRqhCR+zMG51bZHySnrWwaqJVk4yFLca6kWctpRhmyATtKKQ1mCq4XiQoGj9uUFtZytXqUXMj0nFQ/xohlHrdby5HTsi0keYgAtDbLi+hWdO2jPoSDaJYUMBowv3cNPffomUWWFnwkDNs+V66t/wJRyeQc1jho0zKkjYjaI0Igaond6ONWe8ieQW2NifMqmQy0eiUxnSMzw+oTu4S1IXa9hx1qsv3IaN6J+G9lPJm83EzpY0dJXp583qeKxkAXkbkSZGOH3I7YnkBXMZmkHJMHdvk+pf2KAL1tTzYRmGloo+GCyWm11DROb1fkexFp0+eEg3ozuUiKIHC1YjIvGA1Ldua9VBelSJFprUPSebQ1VkJbb8VVmhlJpxMjNKUhVgoZEmHxg4CwApF79ErNoJcKRzaN5tjqlLMvUZxcm1I2hrLMUsHLIKjKjOPrE5xXZKMZu9M+LnOEVckiKTfPHcO8Yb8syAYNVZkR97NUD6Y1BvC9CFaSr1d4p6iOGwaPpehVKBSqdOR7ktlJnaLxAvK9iKphdptgcg/EY5b19Sly0md30md9NEfLgFaB2qZ5Z7zbT6RNB3Se7lnjNEoFdJ70QWWZpeiVdNRW45zCNu28NbQI4NixCbMqGc7EKHBOEqLgkYeOIUqFprlmf3u3Ai43Pezw+2/8rgcu6lT2P770e/nbX37+KJv3lLjvmlzl6fGv/+DC368kWnUzoSMwhyCURAi53EVBJkISfTj4OaZULqRs/xdE6w4W4QAxLFOjxGLVH0OKxHgPKKK1qJ0xed/gBpqgRBIkjiPCRWTtEPGgHZCczULPEKUgGIldl+h5wOdJwJ/tO7LH9mB/mvqwELI7T3G+IYoMM/X4nmT4mCPbbwi5JmpJb9vjiuRSJgL0zqTwfDMEcTIRq2J3YYOcdgfrNYGuk65FV8lXvzyeofd6qMmsdSJzB45sSqW7IZKOZ6kpWtz/oqC5Yw3ZBFTpUOMqpYUNM3yhk0OP8KBlMjYgufcsojOx7W/MFbGdKvU0TRoh14i1IbKxye55UeyyvT/EgGws+XhODgwygzWBbrl2/XGtxPzfeNd3XFMSc6PaKl+MxCzwZDJz+PcOF6L4zHnUmZrZCzfIJpbZqZzpnamwpQhgxkn7YuaBwWfH+GGe3Ce1xPcPpco2sPqgP4jEzFPk2+cpsiG2FW4gcS/wyB7sjvsY4zm+Mk3FLcsMoQPFMGllnFPYMs1PwUosEL0gljqRB50IRJQRWqcxVxlG6xMePbu+7J/fy9gRAwb9GqUDvfU5/bxBipjc0bKGk70JPkgK7TizN1raK6/2KkIUSJGcy3bnw+RQ1neoMzm+CPh+AB0TUWgDMUHB6qcrfE8RjGRyh2Z6l8BMBXoOo8dc0sOsKKrbIieP71NoR+M0m4M5z1/Z4rH5Kid6E56Yr/LI9lqqWyNBqEiWeYzyrPYqtAxIIlvzPpNpDyFT20MUaO1pKo0pHDFCr7CcHu3xuFhld9InBoGrNd4p5FSR7Uv6j3R1xa42Dms5nqyd+dd/cPyakRiA9/+r/981u9aTcalqOYtIy42QMrbAM4n+dATmMIRM6U5hQTba9CQhloUqgQMyAwev8SR7ZaUO9DELLBbroU2rch59dp9w5zqurxk94iAmUXzoaWTpCIMcWbnk+hUjIdO4gaZZSbbHRImZeszYos+PYTJrr5GIUvo5oCpHMyrQVUCVqeZLqgsTyHY8vm+w/QwzSalmo0dTWN4VgvJ4cidbOH/lY8/8hMaOoNghuYzFiGoi9ZpE3jNk5fweRNu6tIX0/0IPs0jJg4P0Oq3xp9bZv6dA15HhI56YJYc3N0jWxz4XSK+QTcSMLar2iNIu0/wSOUrOaWiZ0jba7002Hj/Mwa8h9yapPs2CQEkBTSAKD/Myfd/jCUJ2KWS3Iq5X2thR4WpFX64UHXl5esSqQWiLmTmClgQN/ccFqk6RlP6WR9pU4wXRPo9t2qAJSpDvJRvl1QctxdmS+R19ip2A6wl8DmYGehaxI4EbQF5Yts6PMD3LsFezPe1T14aisBzf3CdXydbXWoXKk+5FmyRWb5oskYSxwm9YhIrcfmIPJSKPnllHbhse3T+JiBA3GiZVDj2PkJETwylKBqSIlC5tdkkRmTYZD52/CzvJEblPxS8rSSwC88xS1llyI4sCfT4j3xbM7oVgIjEPZGspat/sFFB4RN6auGSSyWkDEUwZ0XNBeSJy/I8jep70qkMpmN0hMTLwyLkN8qJZtqtQjk/vH2N32qce5y0zEoSpYTY2NBsV1itEu4NY1wbvJMp4pAz084bt/cHSbDMESVUbHp2sMZ4VOKsoeg22NMSpodiXFNuw+d7OMONa4mJRh3/9B8dvqEX71cLlkoH/8aXfe8Pcj9e87/+8YhLTEZjD8J7oD2qVCBHTQlvJJVFZiPuXLmRSIFR2cI6QPoN1CKMTkVmkkC3QFraMdY0IgexchnB96o3WAa0t1iicwhcK2TgIpHSogaJeUagmMnyiQU0b1N40RRGsJS4IVeuWhtYgJXJ3CnHI7ISm2E/kJKrW/avV8USVrJalE+h5m1dci2V0aHqHJBukXb+oE6GRrWuON4JsGphngsmdiuFnVhBntlMqWRQHRMEeuo9tNIrMIIyh2ewhfSJNs9tz+udScc9mNd07n6VrEGOKTi3qymiVojw+IKxFCoE3GbJ2y1oxUUvk3OJXckSMiJ39A6vrhXlADInILLRKh93kOlxXHEUU5nKIyyIicq0iMdcjCrOIrjwdEepcyo4A3kNZoUpHMApdR459uMbnkmZFke9Y1LTBDzNCz6D2y7QZE8D3U9RBl5F6RWH2Nf3HS8xKxv7zMswcxCSgLO10IZg8MUwEI/fsTwu8UyiVFtwAkyZnVubYRi8F/9UsSxoVL0BG/LpD6sDG+oz1ouSx/VWik0grkpjeCsRWxvx8hti02FqjZODB7Y1UfT6SNDBOUc8NTAyqlPhBMiNQpcRLmJU566M5a0XJ+dmAMoBdSVqX/j1jmkYz7FfMqxyzr7CFJ9uVDM4EXE/RjJL7ZLGXbKVFEJi5Jz87I+Sa6phBzwUreUWzPsF6SaEtE5fz+HSFaZknm+ky1aRBp2uDwLWpYTGkNYD3kuglQUW0DFSNIbQEx9bpXgYkO3tDgm+LcJYtIZxKRABVR8S8ui5/hrc6Lsdx61rhRtCQXAm+cuen4EXF9W4GAH/nuz/C6951ZZ/pCMwhRO8BuYykxEXEZGGPvChoaR1ImUgM6kK7ZSlS2pjWy0X1MnVMtLVjjF7WSonOI7b3yGYlajrCrea4gSJkEqslPhcE00fPHM2aJttz9B6bJZvgRbQlxpTm5txBpGixPRQDsaoQQjB8rGH3RTnsge1J1FCjK4Gsky1z0Klo2qJGjZk6ohbomWd+yjA9LWlWBdl+pDgfMfNINvVEIXB9iXCRbJwiOHajR75fJB3Rk4jAkhQuU9wccTTAZ5J8LxCyZEqwMAxQdcQO0mv1imQ49cjGI1wgFpogBbKyByl+zqP2S2Le/nn7iCCAj0gJdr2HqRvYbQ5S3BZFMSF9Z/ogAtfhxsCCgFwJkXmm0ZZrnU52LbFIEeufPnvJaM7TpZN1eHrEpiFYUJMaaRTDyiGsp7x90NbjCvhhRrNmKM57okk1vxbGJNJBNglkE4/ZmacNrJ5i9IjD9SSTOxVRwOhRn/SXtSD0A9p4mlpz18kdBqZhaGoar5i7jKqn2XcKosBbmTQvA0s2dPSLmo1+SYiCvbJgt+oxHvcQKqKnAnfKg9VkexI9BzfJ8S+e4oOklzfMWlJQllkqRBmSsN23uhaRBZwOEARCRMbzglmdNv/8ICD3JLQkQRcNIUhsown9NO+Wd1uEN5hZmmeiAj1Pc7Yuk9X/1svXCAbKY4L8i3e5a7DL2emIlaKmrxsy6ZbFPpvaEPOkOaJtFyERECEgRIHJXEoZ6yWyNp0VibD4thaciCn9Tkb8xECA4owm34XyZEQ2AuFS5jNZt9y6GrhS8rIgGb/2w+WRt+VrvvTgvL/929MjP/+V4l//wfGnfO8rd67v/Lao/bPA694Ff/vLz/Mv/8vwss/RjajDaPUd0acJYflyS1iAQ1XiF+TmgNgsX1tENOomkSGpQKplkcto7cHxPhCjhIlFTmfk53LyzBB1ikws22Ud2WMByiq5abVpWEss0twWkZdFuzxttKeheHgPc0fyBs6mATtMecQqV6nWDKkCdBQC35Pkux7qFL0oduTSFcfMIqoO6NITjAQi0oZUPXoesENJeTwjf1BcSF7a6JQ4VBdneQ+lRJceESIWnVzGbEAaiR1AvhfIdxuiFPiewg0MZssiQmt5HSBkGlXW6d4BonagFVEIhAu41YJoWuI47CH2pxDchW1ckMwONywuRkoWpOZmTw+7FG6U9LEOlwnvETv7iMyAlITVwTJ91xeaqAWq9MjKIfcX6b+BPEZk00PNLWpniihrjA+YbUHMDXa9YHq7olmH2W0KVUbMRCJ3Jc1sQDaWPDg/wfqpMblx+CCZ11kSy5/NiVlETSW6ElSnoCo1Veixk4+gVvQf0pQadJZStPK9iJnmmFlyArB9Qf+JyN7zFX/+6dvI1yqaeUacK2QjkwuaimBT5AUV0/6QisjCY+tFlEMQG4WeS9wwOZ7VVifi4gXBScSqBSdZPzlmsrtB/7E5+a5ZbvTpEppVaIZt/RgJ+at2GBU156oh89oQIvR0mnfLOqOaZ8S5RnhB7HmIAtVzeJsiJ84qhIyUkzy10yRyY0uDND7V1ClSCl1s24mKZNuatU8F8j2PtBqfgxu0BEbKz/nz6ADf/eptBqP8ml/3t38bfl08flnHfuL3v5jPe+3/XP5+96+8b/nzl53+QX5ofm75+9f8cC9Fhf4gEavf+utv5ra3HSqSfg3wRad+7JLHPJlA3AhIhOvyiWVHYA5BaI0Q+oAYLIT6cCDcX9aHkcs0qGS5rA/qxQgJSiKkQQwH+BNruKFBuLhMZxIxIpqAHleI/WkiNSESqwqqNtQsD6WdSXEQEfJJ0L/U3yzq0BwiBBfUWDFZ+nk8ZeNPC6bPH+KVIErB/Lgkm0nyPYeqI+WxVCystx0IuSKo1FZVeXIXEIFWO5NsjFO9AofvJ5F9lOALQbUGMTPpfrmDFLplOt6CZAFoTRgUNCsaM3FkE0vQyWFMz9ySXBEjelwjQk4wyaVNzpuUPidl0r3kJmlnfEwTZ1uGOmQmuZbZgHCBUGj0sE/cGx+YCShFbOxBepu6tg+d5zq+zNZP+d5/N08/wd3MxOV6pJF1ROgawPu0t7UoZmwdomzIdhv6D9cpil41xDJN2FEkx0vhPGI6J9/PiYNe+myeEfo5MVe4vmHvBRnz2yM+g/6ZVHB4+EgqTqzq9NzPzmv2siEq87i5RpiA2M7oPyGp1yOjB0nuW1ZjR4moqEYTDIweDkxPS6IQ9M619svzyOCMZXyPYfKymsHHcoSKFOsVWnvEoKGe9WGzZm2lpGrMsutCJDF+0WsojGPr7ArYtOgXJiDumoOXiP2McutQwccsgIionmP3/AhRBNwoQ7pAcbYEIeidgWAkenfO/HlrlJsamVmkiDw2XU3FKLVnXBc8Ua9QbvUxOwo3CsQiJEISkqGA14FoJdGDzDw4yfDYDO+T+5rWHq0DchToZ5ZZnS0dycSOpjgvGD5WYfua1QdbQ4GRxBWCMOoKWd5ISKL+p38fDlLUPvH7X7x87xMbBz//l0PkZYHXvevHlxGOb7nnjZz4xlNH1OrLxbUzK3gmeKrI0G/99TfzFe/4Py77PB2BgSVhsa6CXBHrVABSCEEU8SA1KYJoiYRQ2QFhAXD2gMiICELBygB7cogdQrY/SzVcpMQPUkFIgGZdEY6vpejFbok4t9umgimwdbpGG8FZQGSK2NSH0p5S7i4ytlXuaWvU6FQ0koiIkmgt4swZcrXJ7PYeIRPEuUDsONhvUD6jmMlkh+w81VrK++1tJcF8FCRiECN2YJAypAV/1SBmgBYgeuSPSHwmqFYVZirbJtpEJlyT2iwFKb9CIxA4ZbGhghiwGrLdCmdShEjOPFFJqqHGb2aYiU0W0tGhfA0hEIscXIWIgSAjbiXDZxIztkQticqjpyXYgM8U0SjCQCH2bLIyiy5Z3KgDDZHz9oK/j+c6rtZ9uG87PWzdeHxVzv9M8Y13fQf/4aNvu97NuADjybU3ljjz8eOcesmlJ8RunCQs7oM3EaEz3G0jhIuImQcscTbFlw2iqohVk5zEjCb2C4RNzytMRhQCu64oj/eQNqVMBSUIJlDLmkYF5EywfwJkI4ga9AxcW+ClMZ44DngrMONUcFjYBrkT6Z8HNY2oKpI/mqIW2cQjfMRnEteXsK/IbERtB/pnG1TtsKOMSgdiXTI+aTFVRTnW6DM5vogQakIZGdfgJgLRCKKOqFIRioizGfM6RzfJ+bE54UAH/I5ENBFVNwjA91o7adOmds0UaEcwlvPPU5gprDzoUaVFVo7QNzRFZPu0R0QPe4HzZUpPc41gbjR2loEVqKoh1IKgAzEE4q5MURcnUNYnvem6J5iA2oXwPwvsCISMVKsSue6QMjAXEjtVyJkiFB4h5pSFYvs06NLi+oLelsc84alPZ8xX5QV/H891LO7Dj71ngO5dDx1GedF0pR+o/hMA39f+/n3/5rWw8/PP4PytY9/f/zj86rXfYPunxdc97fsv/I4PHen1XvMnl2cg/e/f3/BUUZaveMf/gSvTBv7ljBMRu9HEZz7zGZ7//Odf72Z0uEHxyCOPcPr06evdjOuObpx0eDp04yShGycdng7dOEnoxkmHp8PljJMuAgNsbGwA8PDDD7O6unqdW/PsMR6PufPOO3nkkUdYWVm53s05ElyPPsUYmUwm3H777dfkejc6unFy46MbJ9cft9o4gVtvrHTj5PqjGyc3Pm70cdIRGEC24rrV1dVb4o9ugZWVlVuqP3Dt+3SrPFiPAt04uXnQjZPrh1t1nMCtN1a6cXL90I2Tmwc36jjpbDE6dOjQoUOHDh06dOhw06AjMB06dOjQoUOHDh06dLhp0BEYIM9zfuiHfog8v/Ze5FcDt1p/4Nbs082GW+07uNX6A7dmn2423Irfwa3Wp1utPzcjbsXv4Fbr043en86FrEOHDh06dOjQoUOHDjcNughMhw4dOnTo0KFDhw4dbhp0BKZDhw4dOnTo0KFDhw43DToC06FDhw4dOnTo0KFDh5sGHYHp0KFDhw4dOnTo0KHDTYPnPIF5+9vfzj333ENRFNx333384R/+4fVu0lPi937v9/i6r/s6br/9doQQvPvd777g/Rgj/+gf/SNuu+02er0e999/P5/85CcvOGZnZ4dv+ZZvYWVlhbW1Nb7927+d6XR6DXuR8CM/8iO88pWvZDQaceLECb7hG76BT3ziExccU1UVb3rTm9jc3GQ4HPLX/tpf4+zZsxcc8/DDD/M1X/M19Pt9Tpw4wd/7e38P59y17MpzBjfLWLmVxgl0Y+VmQzdOunHS4dLoxkk3Tp414nMY73rXu2KWZfEd73hH/OhHPxr/1t/6W3FtbS2ePXv2ejftovj1X//1+AM/8APxl37plyIQf/mXf/mC9//5P//ncXV1Nb773e+O//N//s/4l//yX4733ntvLMtyecxXfdVXxS/+4i+O73vf++Lv//7vxxe84AXx9a9//TXuSYyve93r4s/8zM/Ej3zkI/FP/uRP4l/6S38p3nXXXXE6nS6P+c7v/M545513xgceeCB+4AMfiF/6pV8aX/Oa1yzfd87FL/zCL4z3339//NCHPhR//dd/PR47dix+//d//zXvz62Om2ms3ErjJMZurNxM6MZJN046XBrdOOnGyVHgOU1gXvWqV8U3velNy9+99/H222+PP/IjP3IdW3V5ePJACiHEU6dOxX/5L//l8rW9vb2Y53n82Z/92RhjjB/72MciEP/oj/5oecxv/MZvRCFEfOyxx65Z2y+Gc+fORSD+t//232KMqe3GmPgf/+N/XB7z8Y9/PALxve99b4wxPViklPHMmTPLY37yJ38yrqysxLqur20HbnHcrGPlVhsnMXZj5UZGN066cdLh0ujGSTdOjgLP2RSypmn44Ac/yP333798TUrJ/fffz3vf+97r2LJnhs9+9rOcOXPmgv6srq5y3333Lfvz3ve+l7W1NV7xilcsj7n//vuRUvL+97//mrf5MPb39wHY2NgA4IMf/CDW2gv68+IXv5i77rrrgv689KUv5eTJk8tjXve61zEej/noRz96DVt/a+NWGis3+ziBbqzcqOjGSTdOOlwa3TjpxslR4TlLYLa2tvDeX/AFAJw8eZIzZ85cp1Y9cyza/HT9OXPmDCdOnLjgfa01Gxsb17XPIQTe8pa38GVf9mV84Rd+IZDammUZa2trFxz75P5crL+L9zocDW6lsXIzjxPoxsqNjG6cdOOkw6XRjZNunBwV9DW7UocOT4E3velNfOQjH+EP/uAPrndTOnS4odGNlQ4dLo1unHTocGnc7OPkORuBOXbsGEqpz3FWOHv2LKdOnbpOrXrmWLT56fpz6tQpzp07d8H7zjl2dnauW5+/53u+h//8n/8zv/M7v8Pp06eXr586dYqmadjb27vg+Cf352L9XbzX4WhwK42Vm3WcQDdWbnR046QbJx0ujW6cdOPkqPCcJTBZlvHyl7+cBx54YPlaCIEHHniAV7/61dexZc8M9957L6dOnbqgP+PxmPe///3L/rz61a9mb2+PD37wg8tj3vOe9xBC4L777rum7Y0x8j3f8z388i//Mu95z3u49957L3j/5S9/OcaYC/rziU98gocffviC/nz4wx++4OHwX//rf2VlZYXP//zPvzYdeQ7gVhorN9s4gW6s3Czoxkk3TjpcGt046cbJkeGa2QXcgHjXu94V8zyP73znO+PHPvax+MY3vjGura1d4KxwI2EymcQPfehD8UMf+lAE4o/+6I/GD33oQ/Ghhx6KMSY7v7W1tfgrv/Ir8U//9E/j13/911/Uzu9lL3tZfP/73x//4A/+IL7whS+8LnZ+3/Vd3xVXV1fj7/7u78Ynnnhi+W8+ny+P+c7v/M541113xfe85z3xAx/4QHz1q18dX/3qVy/fX1j5feVXfmX8kz/5k/ibv/mb8fjx453l5VXAzTRWbqVxEmM3Vm4mdOOkGycdLo1unHTj5CjwnCYwMcb44z/+4/Guu+6KWZbFV73qVfF973vf9W7SU+J3fud3IvA5/771W781xpgs/X7wB38wnjx5MuZ5Hr/iK74ifuITn7jgHNvb2/H1r399HA6HcWVlJb7hDW+Ik8nkmvflYv0A4s/8zM8sjynLMn73d393XF9fj/1+P/6Vv/JX4hNPPHHBeR588MH41V/91bHX68Vjx47Fv/N3/k601l7j3jw3cLOMlVtpnMTYjZWbDd046cZJh0ujGyfdOHm2EG2HOnTo0KFDhw4dOnTo0OGGxy2jgXn729/OPffcQ1EU3HffffzhH/7h9W5Shw43HLpx0qHDpdGNkw4dLg/dWOlwvXBLEJif+7mf461vfSs/9EM/xB//8R/zxV/8xbzuda/7HOeHDh2ey+jGSYcOl0Y3Tjp0uDx0Y6XD9cQtkUJ233338cpXvpKf+ImfAJKjxZ133smb3/xm/sE/+AfXuXUdOtwY6MZJhw6XRjdOOnS4PHRjpcP1xE0fgWmahg9+8IPcf//9y9eklNx///28973vvY4t69DhxkE3Tjp0uDS6cdKhw+WhGysdrjf09W7As8XW1hbee06ePHnB6ydPnuTP/uzPLvqZuq6p63r5ewiBnZ0dNjc3EUJc1fZ2uHkQY2QymXD77bcj5c3N9btx0uFqoRsn3TjpcGncSuMErnysdOOkw+XgSsbJTU9gngl+5Ed+hH/8j//x9W5Gh5sEjzzyyAWVap8r6MZJhytBN046dLg0unHSocOlcTnj5KYnMMeOHUMpxdmzZy94/ezZs5w6deqin/n+7/9+3vrWty5/39/f56677uJ/PfUGdN6nuucYPpOoJuBzyeyURgSQDoodh648UQgQoGeWYBS+p9AzB0AUYIeGqNIxg0/tws4eeAchghQgJEgJMSKMgSIjDPrEniYoSdQS11dIF1FlOm/IFFEKRIxEKYhKoCcWESPBKIQPiBARTUCNZ1A3ROcPrmlt6nAM6foxpN+VhhhBKoSSIAT0cppTq7iBRtpItWmQNtI7VwEgK4/wHuEjoacJmSYYSZQC11OIGNGlx2cSEcEbyeDTu4jZnOg8QkpiCKlti3bAwf0wOrXZB+LKkNA3BKOW/QZApHYgIBqJsOk8Uab3RYjocY2Yl8SyBu9BqXQfFjs+7f/CGOKgB5mBGLHH+swGng/+1j9jNBpd+R/mDYajHCeH8Ttv+avPum3/t7f90hUd/61f/SvP+poL/Pvf+PpnfY5//l3/2xG0BP7BT/5fR3IegI+/52OXPOYl//ejrZjcjZOExTi56/t/kMEX1QzytOs8q3N6xhIQ5Moxt4bGaQZZg4+SeW3wTiJkpCkNSgeEiOn3SY7Z1hTnBMPHPXoWyPYb6s0cnwl0GTATixsY5ic1uy8BZCRK0FNBti9QFYQMiOALUBW4HgQDzaaHFYtUkRAE7BlULQkmSWTNnqTYJs1HNZhZQLTqWTPzFI9PiUIQBgbRBNCC8b0DprdLQgbl7Y61O8ZUjSZ4SfAS1yiUCYQgECKiVCDE9DyO/uAZH70kRsCLlPTeSIaf1vS2UgOkTf2cn5CIANk4osv0nggR6aHYanB9BQiigPK4xg4F0kXKTYEbRpDge4GYBZBt56xEWEEsAggQc4WqBKoS2LVA6HmyLY3ZE6w+6LF9ic/A9QRRpnsbDLhRpPhMxcf/wz+5JcYJXPlYeapx8vV/9wF+7+zgqrcX4CvuunSk54GHD2Thl3P85eIX/ul9AHzjD7yfX/in9/GNP/D+Izv31cRRtvVyzmXrKb/yr77issbJTU9gsizj5S9/OQ888ADf8A3fAKTQ5AMPPMD3fM/3XPQzeZ6T5/nnvK51gRqsoLICqQRxIJC5QBWKYicgAhihMHVNyBQhV4TNHtl+Q/CK2M/QkwbfM/hBIjBm6uHEBnpSg3BpEQ1pIQ0gAA+UAVXPEP0esV8Q+hpMgVARbS2ur1EBghFELVB1mkBkrlGlRcw8ctou0hubiAsSXEgX0QaIRB8QQqWFu5QtmVpMFhKRZaAV/vgqcb2gmLtEGKzGTB2i1ydKgTQBWVkIILUY6eWiAAEAAElEQVTEG4XIFVGAH2n0PGCkQ0WZJqG+Rq5HVBWIwbbERbT9d6BbEiWAqBBegtAgIlQhEaM8x/c1IiQCJ0JE5C35EQKyiKr9AS+bVIj9CiLEqFrSJoBE1tIfS/uw8gImDUI5UAozn2B6sj31zR/ePspxssAffd83H0nb/uj7vplX/oufu+zjF6Tjb/3l335G1/u3v3r/pQ+6TLztLd92pOd6y9vecSTnGg2v/SKpGycXQmUFL7hjh0w5MumZWoeWnhAFTdCMvKd0kpU8bVDtVYpZrcmNY95E6jpDykhmHOQKlxnUvmYwqdFzi9qzFHuW5vQaPjOonsHMPcVjwKigPCbSHGGhN4lks0C1LimPCZoTAXGyQsqA3S2Q1kBTILxA9AKsQv6YZuXPA9KBaiKifVaqKiKb9JANRuBXcqgUAhC5QtYeNa1Z3RLUpwtmtwXWnl/ypbef5VPj48v7szvvkRtH4xQhSHLjaZxCiEiMghgFWgUalyrtVZXBGE8IkflA0Xu/ZuPjc0SIBC0ZzBTVhkI6yGcuzZEutdPse9hzYNPzPQ+r1FYzvlshRqBMxG46stUaokTpgHcSW2mIAl045IM9+mcEqo70ttOcNL5HEhQUdYRRpFdG1DhghxIzDYRcIOvI+G6NnrWk6hYYJ3DlY+Wpxsmv/Kuv4PX/5KNXu7lPiZ/9wS8AWLbhq150dc6/gCmGQFrMX49+/+wPfsEVXff1/+SjV/yZp8OCyD35fE++T5czTm56AgPw1re+lW/91m/lFa94Ba961at429vexmw24w1veMOVnShGYm6WO/yqDoCk2A34TGDKgGwC0SikCyAEPtOUJ4u0M1UF3DBD2oBs2sW0BN/TGGOIro3QWMfiq4k+pKjHIkpSVgjnUXsTensFsZ8TM01UAukD0kL0KbohK4uc1oh5RaxqIhyKqihor0cMUNeJoCjStZRKZMeTFvaAKAzRWugX1JvFcoctCkG2b5HWE7REAMFIhJUICW5o8LlCTy1RS1QV04wTQJcNIdeoKuALjVISLG10hZa0tHmOCzKh27uzaL/3CB/QPiCbnFAYfJEmymgkwkUIbb9DQNYeOWkjUIuoExCrGmH0hdda3C8PZIroQ7quUjA/yNe9FXBk4+Qq4EpJDFxIRC6HzBwlcbnRcfpVd/LoHz7ytO93uDiOapy4O2qOF1NWdImNip6y5NJho2Tf9hjHghAF47pAikjjFS5ImjJHyoiziugFchjwjUIUnmZFY0cKPW3Sps3OHvm8wt++Sb1ZENq5S5dgpiACCJ8IiJn4NjtAIWuBeLCHGwXQaePIjCW9swI9FwgP/S2HnnlkG9m2Q41qQtr/8SFtXvl0vup4jrQR15PoSpEBhLT/FE/WvPaOzxAQaBHoactO1UergBQRowIzpwmNwXlJjAKjPc7LJbmJEbxT6b64tPlkR4JoJHLu8Cvpua7buUe6iN6vkVWTNuoaiyhrYqvByKVAhBFRCsoNgRsI7IYgzx1aBmqrMZlD6UA1zolnCvJdQbYfcb10X/Xck+8K6tW0EScWU0lPEowg362xKxlBCXSVola3Go5irNz3C78LH796bbwUrgeJePI117/vj67q9Xb/xSuf8tqXg6O6RwsydKXvPRVuCQLzzd/8zZw/f55/9I/+EWfOnOEv/IW/wG/+5m9+jrjskhApPUnaRD5k7WAlJ+oUopc2IlygWTG4gUTaSHE+PaSEC0Ql8LkkSk1UIL1I6UwhglbLRbNQitjYgyjIIcS6WS6gxWSGmKeUrf55fUE7qer02RDSIj3GREgWkYzGgvfEGBOTNRpCisAACO8P0sjalLJoLaIo8Kt9ogKznxb/fpAeyFGmNmT7Dap0KZVNS3wm8YVAVRJpA6ryhEwmkhMUUaWIkRtoTJ6ltocFcQkXeuFpvezHoq1IAU2DiBFVN8h+gewZopIpClN7REi7bWI6TxGopkmfXfQTnkRe2nSyw2SuAZQEH1Ia2y2GIxsnNyCeS+Skw9XFkY2TiUGKtEjvSUsdNLm0yKgY6RpJZCWryKRjqBv2mh57TY9MeiY2Z5JZJvMCpQK6sIQgsSuBZiQpzktiL0MWBbFuUE/s0N82zF58nGDSfLUySeldi3To/OyM3qMBXa4SlCZk4FZB1pLeExI9h8EZj5kGdJnSgxdpyQDZXgApaFYNNlMIlxbxukzP6Wo9EQsRJc1qxuw2TXUscs9t2/RUwxPV6vLWnBqMKZSlCRoXJJO8oAkKKSK5cozrglynDSwfJDvzHsFLssxhG40oPCIY6nWD7Gt8IRExkTQAuZgTdsdpHomB6ByxsUTvkY0ln8yR9jjNoEd1HGQl8V5SlRlKe5oyg72M0UMSPY+YWYpC9XZY9jeKFOGKEogQNJSbKZU6vGiQUthsCvxLd9NXrPgcHMVYufNDPSiuYiOfAk+OvBzleS8VtVi8961vaDftrnLZnH/PK5fX/O7fuOvSH7hC/Juvfhi4+D29UlKySLG7HNwSdWCeLcbjMaurq9x/95sQJ47jBwZZOkKuiVpABFU5mtUMaSPBCMzULQmJ7+nlgt4NDMFIzMQSpcD3FMEIBh85QxxPWy2KAykOyIQQiWhkJi2kTdYSi4jIMmJVp4V1m3a2PF6IgwV/jCnCIyQEf5CqFuLBsQssFuwLLU4bhRBFAXlG/bzjBCXIt0qiUZSnevhckI3TOdXcoWaWaCQhS+lo9aZBlSmtTc0dbpgIgLSBKFLExheS0YfPIco6Ea8Qlm1H69Qv58CHJZFAyQMColU6FhLBsRbR6ogWfYrOtVEdkUgcQGaIZdX2MU+RmKINZbcpBctIzOLeC4nzFQ9s/wz7+/usrKwc7R/dTYjFOFngqFLIFrjSCMz1xlGmjx3GUaWRXWt04yRhMU5O/+QP8dq/8Bgb2YwT2YQtOySXaVHuglz+vMDU50xcQU9ZPj0+Ru01u/MeAPN5el65vYyVP9ec+GCJntTI3QmxyCGkzRt/+jg7nz9E15Fix2H2UsQhKomsHPLx88RTm0xesEIzkkxPC4KB0UMREaDY9RRbDXp33m6KhbT55TwoSZQSP8qpTubLaI90EeGh2lAEBb2dNE9U64qtVwS+6KUPcnt/n9prtusB6/mcVVPSBE3tNXXQuChxQaJloKcsu3WfTDlCFOw3Pfargr1xnyx3lPMMbTx8csDmhyM+E6gmoppIsdUgrUdN0hzDuW3ibE6Mcam3jO2mljAadWyT+Rfezvhug5lHyuNJw9KsRqQDPResPBjIJp75MU3QUOwFpEvrAJ8t9JYpyhUURJV0NtKD7aX7a4eC7PE5f/xz/3s3Tlosxsk3/sD7l2lVVxtHmQr1bNsBB1GHr/ymx6/q9TZfuntVzvvk+3n490sRl6f6Hmw15Rf+6X2XNU5uiQjMkaGNKEQpEDYgpYc6Ipsk2jcTS1SSqBWydviBoVkxyCagSiBEVJXC9LJOk5O0npCrNMnMq7Q4NhqEQKiFUNAdpJEpdZBe1UZoRJ6l47ROkRznEUqmc7aCf1K2W9o1m85T+lTdgEzanSVpWZxf6nbxTiIIC4KkFK5QSB8JhU73wkeiELi+JN9qUHUS8NuNAp8lspbtOUImaVYURgp06WhGKbVMeIgaXCGI/RwxK5dERJg2bc25ZIzg0y4fh3l1G8W6QPTfkr8YPEKrRFwW929BYhbEJMYUfREypaMV+UEKGbSk8XCE6+a3uOxwdXG1yMvi3DcrielwCE0iKS4qqmBQBOqQnjO5dPRVg40KGxRGelZEhREeKSJKpshHiIK61ngnMbkDEwkamjWDtB6RZzS3rSAbj1zppXTeAnTN0lQmzV8BOasQUiJ2Jgwe0cjbe7hCUa8LmpFAWlh5yCF8IPTSBpRwKbId+jkiRkRt0eOKeFtBM5Lk4zYzwUf65yLNimJ+TKEacAXEgWMznzFQKeK0SKnLpSOXDkne6oIka2YOgI2KTDpClEgRcEHhMsnU5HgvU4qYjDgNdtCmzFURM/PocYWclMTZPM0pVU2MkWgPpVPHCNETm0DY3qH/MUm+s051vIAIuo7MTqmUmswi1RiUjYRM4HOxTCmPAlwhUSFSr0hcAdk0mQgEI6g2Bc0qmFma/zpcfxxl5OXZEqKDz18dgnG18VRpX1cruvVkdATmMHxATWqClq2rVdpJEtaDUcjWDcwN+rhhlnZa5GIHKiwX2mbcpAe/9YR+hjcSnWvEYuEdw0HEwAeEbr8GrRMx8QGR52A0sZcvU9BCpom5IqoUdWhWM3TVRloihCylcMVTQ1Tl0efGMJ5CeSFxWrZBioO2QIqKtAv5KEVKjfNpZ663ZZFNQM4tKIEfFUgXkC60x3jU3CJ8ui92kM6zCJuHNlUu9DPkgpwsIiaHnciW4v5DpGqhhZH64LglMTHJsOCwlmVxHikgtGREyIPfRSvkX0ShFmRmIewHkAIhb700sqPCUUdfOnS45SDg4dk6zxttUQdNHdLzJJcWRUikRgT6KqW7GuEppOVcMyKTHt8+M7PME7yimRuys5re+YjtS9RKhiwt5XGD9IZmkI7P9yMuF0zuKih2Pfn5OVFJwqhACgFa4UZZcszqpUX1/I6U6rT2aUkwGcEIVBnQc4vwEV8kl0lVZ6j9aun85TOBKlOEfQGfC+wQfA9UFhjoGikiddAMdE1PLdLpkh5IicjxbMyqnrNlR8xs3t6ngwjVKKtphoppleOdJDOOatUThULXrRtZExBlk+a7siI2zUEaMhyQl+XvkVDXcH4LZS2ZPkV5rE89SlGTYgxBkTQuqEScmqQpCmbhfpaczERIr9mVlDYubcAbgS4jwqf7obp9seuOp4oWHMX5DuNS5z783jKN7Crj3//M1ZmzD5OYRb+eyX19Jt9HR2AOo01RWjhdycouXUyiOtCrLHalVBUw41ZrEQJBaaT1yHlzkMYUAiFLi2ahNdE3KZIiZCIsrnXgonVdyDMwGj/qU5/oEbIkUl/k+HqTUrl05RGRJBCcOaKW6QHuAhiJ6ynCHWtkmYGt3QMSAG3q2KGvXqmUiiUTaZA2RW2iTLnEsgkIH1DTpLvxuaFZMwgXk9OLOHReWhvjmPKjoxbUqwpXyERmFlESIVJ/pUzCSs+FT/gY079wEccwIduoiz+YoBZ6luBbR7I2tW5huawORXUOk0gpkmlAPCBRwpj0nahDhKbDBXjlv/i5m4LE/PGfXp4Rw5d80VO7rXXo8EwgssDDW+scL6YYEZj5jEw6xs2QoW7oySZFIWREiYCPkrErKH2Glh4Xc0IQrSMXUKfnkS+gv5Xs8aOUSAf1qsT2Bb4H2T74QmBjWlybsU4RmsoRc40f5EzvyJjdLihPBkLfJzfHzPPwIEUhoolk24ZsnKPnKQJvZjGZ1TR50ouKRGBcS5yILPUySGjWIjHC4+UqI5PGYYiiJXM66V2ko6cshbTL9430SCI2SlxQVD6lmu3NeigViFFgnQITaFY17Kd25Luto2abSYAxEJsLo+3LL+fAeTPGmHRE84ZiN6cZSmoh8Fk6b1RQbib3sWwaMfOAzwWyTtEnaSXCR+oVjeuB66fNRNUSKzOLSCuwXQTmhsLVjA5cybl/9K3fedXacRhXK40MuCBt7Jne18XnLlf/Ah2BuRC1hUEKh7uhIRqJ3qtAiPTwV4JoVOtOBsEolLOtpS+IdtEdpUR4T2xJgarTzk+M8UDboWUrME8RAKEVcTQgrPRwo2xZy0TPU0hBVz7t7GTJPEDYgBLpPTdILmVmbJMbSu3RNuCGhvk9K/SMQjyxlR7ky2gGiRgEn14zJhEYIdBlOm/IJLJJRMkXKXoTMrXUBYmYUtakDSkH2wU0Kd86ijSZuaEhGEHQ0NvyqP1yaT6w1O1AingshPsLUne4PkxoQytCtILM9vVFTZv2HCzS5UJcppktiNUy8gIHEZkFFiTp0GtRd8PjRsTlkpJncs6OyFw5fnX31fzl9fde72bccMgezLHe8KnhMe5Z3SFEwWZ+sJFUhgzfOphIEbFRtRqQhu3YJ0SBbQ49gyJIJ1BV0pxk+w2ycYm8DAR6HlE26S1cL6Xt1huKaqPP6mctUOD6kqAF0zsE1cnA6vN2WSlqQhRUTjPLbQrSe4ndUNSlRpSK4ozCDQWqTAv6YJLTmR2lFCozj6g6LmufEdK/UCse2t/gttGY23r7zFxOUCk1LETBiWxC3pKXuc8xwtOTDVOfU3qz1MmU1uCcosgsol9TNxo51su2BCNo1jTFwnhP6+T0GUKrq+TANAZaR07Vpha3OpZ5Tb6VEXRBlOD6Atdv9S1VqgMnAq3JT8BMU3QqZAqfK3wmEA7cIFKeBFUKdNl+bxbU9DkvN+5wEWy+dJftD69f9WtcTSyIy1GQwisR8XdBzcOQAlFbZJ0Wy/HwYlaJ1pUlEjKJHSW75bSglwfHB4i5StqVkBb2y88uHMIys1woC2MQeUYcDXCbQ+rNAjvQhNZK2GcSO1RL+0wzd6jKJVJlQ3ICa12+ZONSdChE7EpGvZbIw+zuIYxSoSiRZ62Wpp0YpUoRhzZaRJMczRZFKUMvtVmVluZYH7uWw+I+qIVJQavBWURMAN/X+ELjc7m0lzQTm67hXPp/sQum1IWuX5lpIymJZIjMpPo0h3bXhJJJN7TQufi2YOfiXwxtFGWRQiaWUS+kuHg8P4aD3Tqj8SvXwRqlw9PiapCXa3n+y8HNpH95wL/2ejfhhsXqZwOylDifBOqVN2kBH1vSQsS1+pdCWlw4eCbJ1sM+L2xb0BLk0BJMigAIFwhG4lYLXAHVcWhW08aSz1P0vHpBxW1/8VFmXzHlzKsydl6cMT+msP12vtKRTHtW8oqNYs56UTLq1Yx6FUJEisKSDRsYOsq7LeXJQL2RimEGna5hpqmwpXRJIxJbHabrk4iMTf0vlKWnUhHP0hv2bA8bFX3ZMPc5dTDMQ8bU50vyMncZe3UP61NtGCkj1ivqRlPv9Mj2Jdl+pLcTycZpPgrDPKUWawXtvCGyDJkZhFIX1Tem2mca4QOycpiJo9hJhCzbi+jpQfkwYnIiM+MGfW6MOreHeWyH7NwMM4sgaQtYRuxqIJhEJO0Qqs0uAnMxXMmO+zPBlbpgdXhmOKr73EVgnilCBOuSSNH0iULgB1kS5AtFNOBWcnyRoiCJZKhlzmvIFcIFZOMPUshID7+oW0KzSJ0SghiS+1Yc9nDrfWKbR6yagJonkuLz1umrhTeSbO4QdWtxPMxR7XVCrvE93ZKPFBESHoIW+GMj1P50aSmJiwcOZrTpY229FTW3+EK3AsW0uxSMwA4U2b7D9w/qAYiYIjDCepCpDcGkdDbXU9iBxGeC3o5HT2pE1abcLa4nJTGEA5eYBQ6njbV20Eur6BiJi/edS4SHNgUv66VzW5s+gzpwOov+4PwLhzNoU8vCgSObygijHr7fTTg3Em4EcrHAW972jqsi5L+ZyEuHp8fw4Qp3vM/e8SFbeYOSgUJZpIhIIgGxFLdXwSBFXFaiL5Rjs5hRWsMk5EnCmDu8Thtlqk4RdjtQKfrvYH5bxEwF9UYgOz3jRZs77FU9blsfs/dKi1aBrbMrUEtGt0+4rai5Y7jPqWLMw7ONdF3t2C8LZFuJXsqI0AGVebwJsJ9DgGI/oqrkvCVdxOeCoMVy4026FHUQTiBEJJOtvTFxaSutCDzRrJJLRx00pTeUPksEp+kxrgt8FFiv8CGdB6DeLRh+WnPswxZVe4ISuNuT0U2z2aOo2oKVISBqmzb56gaqCprmwKETWqMckbSn7XwgfRLhV31J0KDq2JZEaFPJQ0wZGZMZ2AaERDpPsb/CzGmkBzmX5LswfMIjAozvVnTxl4vjalekvxFcx64nrnb0Ba7fPe4IzCHEugaZIfdnaKUIfZPCw0XKIYa0oJc2oqepjoua1vhBEq4vDUu0hKiImcauZEgXiUYlF61DdsdCSWJu8Ks9mvUMPfcpPawlP7J2hCwDAbKJZLspTzeadO5g1LJ2TRSAUPhMggRVBbJdt/Ttb1Yz+pkhVlUiB7FNHRPJzlksohshIGYVRgiqU/0UPQqJrJmJRzWBKNJr+LQb5fsaYZI7zOz2nCjTxBYl6CrQO+/Jz0yTO5psr7NwCZMy1XgRArRMgnzn2ja290u2lsiLqFFTg2Ep1BdFThz2sSsFMWtd5EJEzSxyUi1dz2Jj23OLC53OFtEZSP+3LmZ20In4nw43iw7mauGoSUxHXm4tiBApdgL1J3PO5Ctsrk2pvMEFyXo2Xzpx1UEzdr220KPHRbWsH9M4hVIBoVIEol71lJsaMzeIhfPVQODzSMgizVrk+Odt8SXHH+XT42NL8nByNOGla4/z2dVNXFCc7I2XkSAXFU1Q9LRFiEhlNLlx1FYjRGx1OGB6gep2hd5T6FKQV8leOMrkyuVNqqEmncBMI81KIjDzKqPyC4JiUiQmKs77ZJ27ZkrqoNm3PRqvCFGyW6XIS6Y81imkDIQgsFYjrKR/Ni5LFcQs1QOLKmlC3Vovzdeh3VgLIKoamRnibJbKEkDKklAqzTVKJZMbJXC9lA5GTHoWoiDkJKfR1izHjXKyfkGc+uVGpRl7VK1TTbQ6ER89CyAg25P4Ljv1uuH7j//V692Ep8Xf5Xeuynn/y8/fDj9/Y5O4J+tmriSFrCMwh7HQgdQNan+GiH3CWsqHTfVO0u6MtCHtgpUWYT1qXEObJgaAjykS0dNIlyoWRy1TtGGxMIdEHoY96vX0ZIuLlKpIKiBmA9nWHOgDoGb18mHpi/ara4mTIDnBqCakmjSLVCoP+ZbHjbIUqahaR7LFol2K1g2MZOssBAKQ8xpVFyBAzyy+p4lCEJQgakmIabJK/QC3YtIDvxDpHrmInnmyvRq5Pz9IF4PUDuuSy1q7+5U61TqyWXtIG6MOOYr5g8lGKkSmiBurzO5ZWd43SOTN9RV2qJFrOdKtYHZL5N40TV6NvVAXE9sbuNDTtBEy1+8yLC+Fa0VirmX05Y//tL7mWpiOvNx68D3N8JGKKAu2V/pU/ZqZzvBtqpgRntIbPJLSG3KVLJd9FIQo2W/TpwCyzKFUgNzTrGrqsSTfD0QJzQo0xz2i8Gwcm3D/7Z/gfDMk14478xIpIuOm4LOzTeYuY24ToSiUYyVLlsb3DHfQwlP6jL5uEnkKmr2qx74osK5N49ossSNNPevRP8/Bxp0A10tWzIvnsLQC2UD85JBP58eoVg0zm9HTltrrlDqnHE3QNF6x3/SSW5nTjMsCISI+CKazApM5vFOEswXrHxf0thy+UMxPGIJOLl9EiEJhh8nYICrQ85QpoMs+emZR2xm0FstIlVLNipxoNM3JIdWmYefFCrsS8X0PAvLziigj2V7qZ7mpcX2JCJvosxpRW2KRtYWWk0tZXAT3dYqW5ZOAPu/p8Ln4hX9631VbYN8odV8O40fO/9LnvLbR/O9Hfh3x8r9zAXm5Ee/Fs8UVE5gzZ87w/ve/nzNnzgBw6tQp7rvvPk6dOnXkjbvmWNj6AqJukGPIaotb6y939gFkdSAoj0YhGkckVeWNRiEBN8wImUxe/DJZMccQEJkhOpfIzGiAXS+IWiCbRGqkDQc1ZJpUG8UXEjtQ6FnW1mRJu3vJ6jkZAkSVzrHQ7/hCp/Su0qUiZk1rkbxMzfJAgKZNpYrJ3QVrE6HwnmxrRsw0+EgcJIKysI4WHhDQrGrMNDmVSRvp+4guk6WymjXQWIRrNUVGJ9exwuAHOTGTeJPaLiJkuzVy3iCm88QnFhGShdUyJBWl1ogix57ebNP2YnI8UyJFr0K7S9YaHoRMUJ8coPsZ5ond1AbnU/j/sNNYGxVLqWrxgJB2eFo8lyMxzzYKcyXE5fB1OsJz40P4tCFk5hE9SzoYHyR901B6gxIRGxS5dGjp0SLVQ7ExOW8pGTDKM6/aOmCtZFXVrc19X6YF9i7YFYnZLHn++hYjVbEjBqxlc4wITFy+LAi5PeujVUCIyFpe0lOWga4pvVkWlASY2jyRGK/wQSJExFqF1gFtHNWxQLkl6J9LG1bCt4/mKiCiwOxG9FxSbwjKk5HZPOcJOWKQpdTnnrbLdLnFtQCM9ExDRmFc0g55hW8UMQr8vmHjzwT98wE7VPhcMj8hGT7uU+kDCeVxibSJQDSrsPJZga6Ti6frK3IBSiuEdUStiJkhaonvZ0zuzJmfEJS3O8x6jQySeDYnyogIgmozpcUl44BkKR3lWko518n5U5fJcSwq0qYYScfaDCWELiX5YriaKWRLi9924f5S//ardq2nwofVmy55zLve/Q5e/08+yvCPnjiSa05feRtwYeTlViMvcAUEZjab8R3f8R28613vQgjBxkbKmd3Z2SHGyOtf/3p+6qd+in6/f9Uae9Uh5IVWvPMSUTfoEIm9jFBogj5wvPKFRuQaWaVdezfM8LlEV2liWVgwNyNDb+5SpfnF7r/WxF5Gs6JTZMelyI6qHHERiNGpSKXPJcV2q3np62RtXDqik/i+WeYdCx9TxOeQ9bPwAbuWqiZnjzriwj64dtArWkvhg4X6osijKFO0R7hAzDSySXbQqgnU64biXNoR7z+aNC2yTlbOmY+Ipi0kaVNRtAXCap/6eB/XS7nFQbc2n/NAPVTYoULPcsy4QJ8fH6R+SZXm7oXN8aBH+YLjAGS7FXqWXM+QAjs0ybaa5BazID4hl9SbOTHbJHt4B1HVxJBS8JJbWfrOY0xuaCIEZEdgLhtXk8TcSNqXi+FSJOYw2Vgcd7kE5GoWzOxwdaHmlvrOlCbVOxfZPTukd6dFyZCiG41CS4+RHtM6nSxE7i4opIhoFegXDVVjkh5FRnyRdJXVhsAXrd3vIHDn2pi7+zvYqFjTczLp2Lc9QhRoGciE5/hgxvHelLkzjNqaLAvzgBAlI10BMHcZ0yZHiEg/b7BOYW1KZ9M6UpvA9E4FUTJ61KNsRFcR2xdkk4CeeYI22DqlN7vSsB8FGye3yaRn5jJKayitRsmkiykbQ6Y989ocaHBEJNYS/XDGYEcgXEqxtj0JfcHsdGT8BQFEQJiA0IEwNQgviD2P7xk2/xTmt0mEV4yMIM9TmQTXU4RcEoVg5yWa8mQg6sjwtikxCpyTuFORxkqkCfi5xo4M0oGZCIRXuJ5EHstQVSJVUYD0YIu2cGUkbaCtCgQdgXkq/OwPfgH/7Ie/+8jPe5g8XA/ysrjupUjMglxMX3nbsyYxC/KywI0eeXk2bbtsAvO93/u9/OEf/iG/9mu/xv33349qd6699zzwwAO8+c1v5nu/93v5t//23z7jxtwQaO16U4FJdZBiFAJy3hBWe4RCJq1J6wTmc0WzppmcVjQj2PgzSb7nkD7iewpdeuS0WloAp6JYMZGTTGCmAVV5Qls8MxYaNzAolYhQ70yFcCEVz9QiRUSKlH4V2vxfVfpUmdmm3F818a2GR0OI+GHStywjDm0hzaVdsVJJh+LS55ES0VhwyQ46RYVSnZvBuF4SmwVZwkfUZJZSwpw/uG+t1sUdG1Gd6FGtK/KJT974TWgLgImlJTNAeaqgUAJzXiHG0wOL5cYitKK5c5OQS7KdBlF7YpEiYXYl7VQuzksbqfJZmqT03GP7mnDvMfJH9xDjeBDleTKsO0iR63BZ6CIxlyYbR0VcrpQIAXzRT//5RV//0ze+6LLP0eHyIUJsLeQF0oPZVZQnDX1jmbsMSaSvG8a24Fg+BUDGyNwZAoKZzXA+RW209jinEDJihxE7TLv8C8cxObBoGTDC46PESE9pDdt1cp9ckJRcO86XiVSd6k0IURBQlD7DRbk0GMiUZ26hcQrnFVp5jElzo1Ee4QW+SI6codW+CJ9snhGg6kDvfIOqNapW1NsZ89s0D7LJ6eO7VC7VgQlBUtY6RVi8oJaLnyXRt+caawaPQf+8J99tLZc3FdO7BMe+4BwvWNtir+lROsPcGsa9gqY2RKA5Idh6mUbNodhOkSs30NihpFqT+EJQHoeVV5zn+cMxWnoem64yKQuyzBGjIDQqMUYBbhSQLSkrtqEeCaIWbemElEYXVDIxCIbU/ipgZpI67wjMU+H1/+SjfLj9+WoRjQ+rN103LcyHz7/pc4jEdzzxFJGn08/uWj9FIjCfbDW8r/jRP+eTz+6U1xReXb72+LIJzC/+4i/ya7/2a7zmNa+54HWlFF/5lV/JO97xDr72a7/25icwCzE7LBfgom5AK6JJr9uhRrQV5lNK1SICAroC25eYqUi+8S4mTcp4lkT8S7G4ACkx04CZtiljNiSBvkhCQtdTiJjSo2QEPbe4vlle145SdeBiyxKy9oHf1mNBCIQNqcClj+nBXzcHjlxLEXtYCtdj65AWnU91LutEcOT+FDmVKdzeb20qW8tmrCNmBuFb0eTCTvkQwrCgOtHD9SWmDAgHukzuMYgUjtdlSPVyQvLYtyMDDDHeJ+cy75NYf9SnWTWt73/GIrkimlSAM1VL9qjKYVdyfCYRbVFNPbeoWlIdy1DHhujWpSY2rTNaY0HIRJRCoP9woMNzD89U/7IgE8+EXBzGlURd3vaWb7us6zwVeTn83p++8UUX/Hw5+Ar1+/zq7qsv69jnHAJkew67onE9SZSRcp4zzyyFtsQo0NJzopgmTaGIzHyGFJG+Ss+k7Vkf7yVSJhF/mBmySuAL0PNU5b1ZjSjjqZ3GRoURqRDkppkBoFpSUnqDjRIyMCIwUDVbzZCZy8jaSNC+7WGDoq8bSm1ofErfCkGiVCAEudTlIJNQXVVJqC58xMxpyw0EzNYcc15hpgMmLqPaFIlUtGlprnUYi1Ggtcd7jXcKN9fobUM2SeYEqhLIJmkqRYjs31uw8xdrTp/cpW8aKq/JpAMNq1nJbYMxE1uwM+8RBpJy1VDNMnwvo15TmFnSs1abkaAj+YvGvOrEwwx0zRPVCqt5xWpeIUVkaz5gphNxU4NAM9LJTGC7xySmed6bZC0dVURaCFkysCGktO6oBMVuQKhuPrkYPj0wqOJg0frS8dGd+6X+7bz0h7+bX7rOhjyfHJjPIRJ/9wVffuTX+cBb03P7FT/61M/7Z4IXf8vbnvFn/+z/+5Yja8eTcdkEJoRAlmVP+X6WZYRwiwzQhWgcUjQClbQcPsAoTzoULdAzn5y2ao+qk1jP56lwZcgkUaddqfyJ+YF1oxSp6r2SbXHIJPRzmcJMLHaU7rGqUgFJSOJ+u2JSMUstsD1DM1Qp7cxF3ECjap8KSC6cydq8Xp9L7Ipm+Kn9g/6JQ0UjF4YC8hBpe7LA3XsIMtky24NCbFGnz4iqTvdmEXnRakliYp5RnxpiBxLTCiqlTbVqZARfJJKGTxPfohBaso/OkM0QtTNdCiXdej/lFwPNikKEA0K3sLc2oXVxazxRp3sTdIpuCZ8m3OpETpatkz2+nwL7zkGeLe9JDCJFfzpcEZ7LUZgFrgVxefLnnu6aT0denuq4L/rpP79sEtMVsXwKKNAzh4gQ7lXomaDezdgOQ2b9jEHREBBU3lCoFEEBqLwBn6rSx/af9yKlkDUCPW+F4kpgJpHyZKTI/FJbc1u2x64bIEVkRVfk0jF2BblylK1QXkrPzOdtLRpJJj1aBLbrPiFKtEwkSMtAQzIW8D6RmPk8R9aHC/62TpVGHmzsSYGoGkSMmEJTDBXFtmZWFDw+zsAEZO6JTiYPFRWJ87Qc0XuK3jlBNkmEIIpIsR8QPjI5nbP3Yvj8u56gdGZpAjCuC2yQ9I1FEplbQ+M0ZZmlZ7mM2DWPz1PURVqBPd1QDGvuu/0heqrhsXKNqc2pvWZgGmqfokTeS5xTaO1pSoMygdh3+HVPPTOoPU1UsU0bZ/mzGYulDkrPU3mCDpfGL628BYC/On7bdW3HUeHb5v/pmlznxd/yNl78LYs0vLddk2teDp5Mfo6S0Fw2gfnar/1a3vjGN/Lv/t2/42Uve9kF733oQx/iu77ru/i6r/u6I2vYdUHwoHSbRqaItDa9LtVHib0cESIiJCGf7y0Kgkn01JLt+OXiv17PIEK+XSGmZUpVWlSYX0CCL5L9sAgR19cpYmJDIie1Xwrd7UhRr6XPSt8WDIugyxS1cD1Ns6LI9hX5dspjFi4QRpp8xyJ328X4gljY9mEqxIHmR6m0gHdJ+C+0ToYDy3oxJKVm6xommkOEtWnPt4heCUFUkrDSo9zUFLuJ7NmhImhJ71zETC2y8diVDF26peFAdTJZMftMUh8v6FU21b0RAjvUS5exBURMkS7b2mhKq1CVS3qgOtlo+lwiRnkrtEx21W6gkJtDzOOtmH9h4LD4jvwtQsg7XDautfvYAjei1uVKozEdLoQd5RRNMgMptiJmCnquqI4XlCclRZb0JwMd0DLggmTSFDwxGaWoiQw410b9G42vVapHogAH2TjiD+0prmQVLiqmvsC3YvxVXWJjMgoIXrKRzbFRkktH6TNGJs0VM5/x8DRVA2+CQstA7dJzcOGaJgRYm9pRTCWqgnwvtO6Ti0h3WxMmV2m+HM+Qk4p8z2AmClUKXA5YidjVmLlABEG+Db3tgDdpA0uXYVljZnZSsfN5CrsisSctL7j7bLpvpuF0f4+BrqmDZqfpoxa1Yrxm3kuFMGuvqBrDLMuxmaEZCIgClXnuXN+jDpqZzxnbAhckJ/sTtAiMbUFpDb3cIns1UkBlPFJEXC7JjSNfn3BudpzhZyX5fqS35ZkfVzRrAjOOiAi2J1FVcgftcHG8o3+RteMRyamvFYG4HvjAW1+0jLYsiMHLfvfhI73Gh/7Xu470fEeJyyYwP/ETP8Hf+Bt/g5e//OWsr69z4sQJAM6dO8fe3h6ve93r+Imf+Imr1tBrAnmw+Ea26VSLCESeIaxDjesk3g9iKbZPERkJKjlgub5CNQGzV6PO7YG1bVTnUJQD0oJdZssojIitHiQIVOmQjcPrbJmm5npJICldTA/6SCp4qQReClwuMAub4zwV2DQzR/bwTrIPliK1obVOvqDfwR84fWUmObL5sHQkuwCHNS462RzHEA4W/jES84yw0mN2uo9qIrp0qQ99CVHgBoqoBNluTRSpQKdwqc1RpLzxKFM6njo2IJ/X6VqtsYCqA2YSULa1qVaCKDVRQr2qEM6kKJYNRCUxM0e9ZqjWFcWuIN+zUCVTBLU2RO5NwafvPfqAyLNU9KzDFeOZRGFe+S9+7iq15vJxPcjLURGXy00leya4kmhMhwM0q5psVyBrz/CxhuqYWRZDnJ0A5xXWK2YuY9I6cU2bDC2TS5iSkcw4ImCtQhqPcAYRwfVIWgsLshHMtvpM1/M2mpLqyyxcvmxUy597qkFHxVDVy9orM5e1WhiBJOLbiEyuHaU1bcQmUAeJtUkPImxyQ9N1QM899arBlCnlWjYsCzEDiPEUbTTFTo4dSUoj0TNBsZUiSMWeJ9+z6ElDyDVNm20gXGyLMivm91o2btunMI5JnVM2hhOjtCnXlw2KwL7o4aNY2jJLke5jjKkWTYit5bOOCO2JQXB+ljRCD0/WmdYZw7xBy5AKbhIxyqNVoHGKft7gypwYoakMZSjSFy2S3sXMAsVWRe9sZHZnH9sTuL4iKpbZFB0ujgXJ+F9WPnTk516c8/fGL+Pb5v/p4mTpJsWCvBw1aTmMq3nuw3gmROmyCcz6+jq/8Ru/wcc//nHe9773XWCj/OpXv5oXv/jFV3zxGw6bq4hxvawKH0NbUDHTadGuFaKqyXZa968sLcLNfhK1h0wReppsv0FOG+TWbopoLCr9LqIbWqeK97MGVfeo1xKxkTY5cqnaLwtnRp0W+2aW0tRkk4pHqjoV05QuEIRCNoF84glGJJ2MSGlo5uEtYlkeOKzBwf9tP1FcWKflEGFZtJ/Q6oG0Tml1bbFNfDtJaZ0KgclU0div9pjcO8D1BP3zDll7fE8jbSpMGWUqwBl6GmSyPQ4upge+TBEpXaUCmuN7MjbmI+S0SY5ri9S1CEFJJAHZeIpdh+tLZB3xhULP3bJejx+YpdWntDG52YgkQm02+xgpUTtjRN2k/GXvn1rg/xzHm7/jf+PHf+r/etpjLpfEXA5x+ZIvyq+6E9nNTF4On68jMTcOooT6WIaZpHTgfM8TRdItVtuGcTOEk8lpa6GBMTIQtSdEQWU1TaPTY3Y/ozirybehfz5Qr4hkW1xHii2JGyhqrymd4XR/jxAFNioI6fx1SMYANipcUEzJ2W36zF2G9YpxkzOvM5RMdvo2SxbGsyo7pFGR+GlK2VU2RVsgZSJEJahHbSFLG1ONtLJOz9GqRs5KdL0CSPItuUyDa1YFw8fTRhMxImtHtpfcNPdfOMD2BJN7YHh8xhccO5Pq2LiMbOA5XkwZ6PRcMNJzV29naUs9dgU2KjbzOS5KHs3X2K8K6r5mNitARPr9mvV+iYuSXDsarzDKUyjLSNfJ2lp6NosZU5uzklUMs4YQBeOqSAYLUWAHmuaU4NzxAT7vs/Lpkt6ZCrWWilirOm1M+mFXGPlS+L3xyy590DPEQh/C//vzrto1DuOpIj+HoyaXg0vpWj7w1hdB+97H3v4lV9jK64fPf9Mff85rH3jri3jZP/vc158KV1wH5iUveQkveclLrvRjNwVCkRGDShXjlSAGD8ET69a+12tEYxHWIaaJhBDCkhDIxULfOWIIqaZMiIhD2opUXNKneitljaoD7rhCBHB5irAkzUtKV4sikRYC5NsNIrbRGpeEksEomlWT0qLqRf4x5FslcnucBOpCLp3GLqipIltXNE/r9CWJdZNeX6SWSXUg/Kf9WSVHs+g8OH9QiFII4ijHr/bYe+GAYNIOoRkng4AoBLpMRUB9niJNzShVlJZNSgsLmUA1KQ0hVXWOuJ6g3sjp75dI16bP+ZRih0qubLLxZDueoHqpay4mwtQaGqi5oygd+a5KWpgQkY0gWIXPFXYj7aap3QmUVUqxC13hsWeDwyTmRoiwPBWuV9pYh+cGmpVUk0s4yCbJNMWMUyR6nPUpy4zQpmkd3jOJQRCtBCvJz2mGD0X6W558p6GXK5pVnRzAHKhS8NjOKs87vs3j5Sp93TB3GetZiRSBsHAm84bSG5qgmdpUH6b2msYpMu3RyqNE0sUoGVrzgPRaEzRyrpC1QE/bZ/vEtzVRIj4TNKNW6xgCNMkgJTYNTOdk+w5Za7Q7ID/1xoEJjiyT66UUgtjLcLlg7/Mj8WTNidGUECUPj9cxynPHcJ+T+ThFX0RAioANmlVTLu/f2BU4mVKIF5Ek1eqM/FwTipT2XDuNUZ6esQxMQyY9A10ToqQJmqGu0TIQomA1K5k0BVp5nJc0jcZZjckc9raabXLMrGDwyIxst0G6gO9rouxqht8ISCTg2kRgFpGeq53C1n/+8KYiLkeJKxpVTdPw7ne/m/e+970XRGBe85rX8PVf//VPK/K/KSAhjPqoqjnQiCwX7JHYevXTNCBVKji8WOTDgSB+EdmQbUpS3STdyEJTIVI0RtQN+eNTgh5hB6l6MLQOY8NEarLdhswmZzHZWhaHVlAflcQN9FLUriuPnjSonemB49iiXTGmlDipaBWiB45r3oNPZgEALIT6mTnoX0z6nhjjgd6lrVy/SLMTKqV41Zs52SzQDCT52OP6Cl21tqIipcK5XJDvJu986dI9SY5hyXp0UShTuEg2DfhCEooMVXlcT7WifZX0RzNHyFQbtUmpB8iD/kSRojVybkEl97SoJVFKYpEWAVEJxGqOrJoUhWld1TpcHH/3//Ft/Ksfu/Ruf0dcLo6rpXnpojA3DuYnFFWhKXYC2bTdlPGR/lmLNxnNqmAqDdFlFLsCM0luVsKBLyBoyPYh3w/o2pPtuf8/e/8dbVl6lveivy/NOVfaoXJXB6mlVkAISRxka8gJ+8IxFlzb4IDhyhcu0ccmycIGgy0wYeAzDNgCjMHX4xrMsDg+GHMYMHwA+wpfOBgZk4QQCii0Wq3urrjTCjN94f7xzrnWquqq6l3VlVrsd4watfdec82095rf93zP+zwPtgwkBW63QqUc3USa8YB8T1F5w241oLSOXTUkRE1MirGrmbU5TZTh/tJC2qbaoMls4GBRLEXqxhja1mJMZJg3ZNbTBkMEsszTFBGijFXFbkQ3ETtv8cMBIZfnugykorNMTdtln1XYaUM2zVmcVtTHFKYSG+h2YpZ6UntQUT0wpt62LM4o0umKP/PYhxmZhgOf89Bkj+2sZOIqnAoYFRnqhkXMlgyTU4GJqTAqkgfPLMj7Fj6j9pI7sxNHxKiY1vIM6FkwHzU+aWKnITqez2mj4Vg+J9cBraK0+rUZRdZiTaRqAzEqXO4JD0eeGuYMP7HBqd+uyfYbVBOx0ROP+sgOXc/HTatnOK7ex/Jnd4mBuV21fg/W2Zv+62sxGS/Uev0/+0NCdXjzpEMDmA9/+MN8zud8Dk8//TRveMMbOH36NCAC/h/90R/loYce4hd+4Rd47LHHbv6s75PSsxomuUzcq2oFXvpJv/cCRLRZtYTFtApZ7IGLtbL9evWtWCGsJv7eo6dz8kuOkA8xjewjulWCPEahGgEv0Yng3086Gr8WZqS42GAvzcTuuWv1QmvJcokRXEddh4CyhtRGaYsLvWuYXcts0atz7hmbHpiF0LWidaCmA3bL+6QUfnMggEBDsRe6Ac5jKk90hphpCTorVReMmag3JO/GzYVxMqVYT/pCk+96VIq0I0O7XeD2K1A5vjDUxxwqJNpxhi0j2V4LSQbBmNtlgKdDXHG01ehK7DaT7XJ8ag8jCeoESLmTIMuUIK7di6O6p3W72siO2JbnV0cg5vBVHYNwOtKONZuPd5qVoHAHgc2PViweyIlOEzIoLibGT4tjWb/gYmctdtbp8LrFlPX8reyC2CRvPGGINmNxKeeySgwGDUbHJYCpgqMOFqsidbAU1tNGvdSH5M6TO1m0qltL2xp8a6gqR6gN9oIY0oRRpLhsMBVMPtGS7bfoSsxVissNunHoNjI/40jOoLXuwoEjqaoxlw7Y/GiGm2eUxzXtRLoFymOqa4/O0E1g/1HH4izUJz3HNudsupJz1QaZ9pwsZhx3c9pk2LQLumVEpqFgYiqGumGor3xOBDQD03LQFMxbWWRVJmFMpO20LQPb0kTDVlZKgKgONNEy97K9VQqnIrmOWBXJTGDeZGTWU3tDjAbfGFzuaTZb5i6xv5dx8ncadOOhATU8AjCHqedrBbwOWK712pcvnp8t8M3WK5/lCPb8LI574NJf39f89Hc+r/3dD/XDf+3bbul9hwYwf/tv/20+7dM+jd/93d9lY2PjitcODg74ki/5Er7ma76GX/qlX7qlE7kfSnmPagNxMkAvyqUWhrYWfUffbpU8yXfi9r4N62q9RC+C74wAlBLnE5no66XTGU2LfWaXURupTw1E7Bdil9mrCbmApRgTIddoL+cUM42dJwYf30eVNamsBLRkjpRlpGFOcoZQWEzZgtboRQN1g6pFx5JigrZZOaPFJEyL0nJdPdNCWrWg0bfMdee/HoJpTeeaJuGcIK1cvZ4HZFBWwRKt5Ngkrcj3xVY5aSUMTCZtcz0jpduIXchgp3xE14G4acn3PHbuqU5mJKVoNh0qgprIJFWFRDZtJYBsIyMahdUKs1+hQiDlBtUmsr1a2toKix/LAEtVHzEw16kf+lf/jr/39V9+aBbmdlUPPm4FyPxRAi5XszDr+S63o45AzOHKNODzRHUyoqJmeC514ZMau2gZPl1hFxkhl7ZZec55dCOBxMkZ8LF7JlppazaJWFh05cWZMSXMwrP5MYUtHbOHRkxfaRhvlhwbltIGpkSYj4aDSj4HqWMbtEr4oIlRkzlPUzvixQI3VbSbEYqIP9Y9iCNUZyOq0VzUDrtwuHkim4qpTDaLuFlk4+M1yWnSZCTa0Vq0MPHyLnlK2Nkmbj6kHWlmD2maLWFjbKUJxZCYKdqNSHGiZGtQ4aPBqsjAtBiVcF1bWJsMRnmmoaDQLVpFct3SJsN+GBKSJiRNoVsmtmLuMs7PxmgFzkkwqMeQO4/q7tFBWzB2NZfq8TLYs9cnAdRRrJVPD6fsmQGZCQxdS9k6pk6MGJSCkHl2XlsQzYQT71ngLs5wi6OW5MPUOntyGL3IOuNyGNAj+/5DPvGRS8/7XB966YnnvY9brW/8G9387G98yz07h9tV30jL9//vN68ROzSA+W//7b/xP/7H/3gWeAHY2Njgu77ru3jDG95w0ydwP1VSCtW0+ONjdJ5B3XQ6lh5QQEpeJuuElbi9bw3LnDysa5lg9a5cCpasy3Ly37c3edHDmIuJQd1SnZ3gxwY7C5CQFOeYli1S0WnctMWcm69MAqwRy+NBThoV+EkORhGtXrZaqQhq7FBevAndzgK1qEgLJSyLUsIkYUhVjcqyK9zKxJHMrHJiYoIojJTqW898EBASZQXRVAFdiwV1GGbotnOWycW1rRlpCWQrjNhBqz7FOOFmgWzfd4GWsv+YdW1fRi+F+Lr2FBeSgI+h2L34sSN1zm6mlGszVRB76qqFLhOG0IFOH8F2idINpEGGnhk4su2/L+tmgMz1gMt7fvapQx/vNZ//4KG3/aNSRxbLz10qIM/wgbDn9bbClpIhlpRkhAzOLQDQ81qyrgY5YZITncHMa1IuHEMfolw9UFBvavK9iJv7pRlKMzEUe4FiFw4OCqaPZsxPFwzHNaO8YdE4FFDVDmtXE+k2GGLQhKCpDnL0vmXrDxXFXmL/UcPiRQm3WYvGo5HxrC0d5cs9aWGwB4ZsX2MaqLcMuk3YUjSGaZij2yGqqojzBZQlcQd0kWO25HNp54rylDh6RquojkuiPYDWkZETBmrhHU4HBqaljb2LmsPohFGRQoVO66OYxgKtIk4FCloWMWPqC6rgmOTN0iChB3Z1a3mq3qSuHPp4ojAtWicmtma/Lch0oImGS9WIzARO5jMGKrHwGaV3LFq3dHmrGkcICqVADQOzFxuGlwo29ipUdWeNSD6Z6kYsyvPZtgdGL3Tw8ltvfTnfzycPAwPwNdw8E3NoALO1tcXHPvYxXv3qV1/z9Y997GNsbW3d1MHvu9JatCIhkvKOas6c9PCCTNzbIGwMCHOxLs733cTe2ZU1cetXrEu/j756UGOMaG4u71E0LXEyJIxcN2GXViuxHG4xlcdc3Bdw1belZY5U5PjjI0JhsbNGBP6bhbQjIO1mqUtLjrmhOTki6THZpTl6ZypOZV2pLJNWsqVLmUHZ7vz7ljGt5Ny760p1I61Xrfj3LxkpBTGz0ioxMNhu0CUKo+LmElbmB7oDLwJgkkKyaBL4obA6pkmoGDFlix91wtjKY+c1epihUk695QiZIpsFTB1pNjN0kFVKM5XMg5RZAYQJ8BE9r0m5I54s8FhUyNGXpQXvqK5d3/eD/4a/9/X3NrvkudrKrgVebga4XP2eIyBzVDdT9YlEGshClO6E64OdrlU163QiIWJmtTh2+UDaGEJM6M7lMQzc0oK32ZRnm6kToVCgulywVvQ1KMh3PSfe03Ls/ZqDFxfsvirHvmyPlBRF1qJVosha6tZS1hltbUm7GdmuwQ8TcRCpTmpp4XqgZePkjMyKpTIjJB8mGOrWUk8s/rihDpropb05DAq2/xBUzNB1QJ+rVotgMaG6r6PTko+zm2g3ZOGqHYEfwuQJCYSeFiM+4TxD2zC0LWVwZB0tX+iWKjoBKggbs6lr9sMQ14GZQrW0ybLbDrlcj/Bd21zZZDSN6HyaxlJGCbs0NpIb2X///4l8zsjUHPhiyQLlxlMHy9A2WBUY2YbSi0lAYwOL2mGMhCGnhwK7B0OKSyM4OGL0b3ddi3W5UQva1fqR9TqshfOddEp7IVTxH+4g43OTktlDA5iv/Mqv5Eu+5Et429vexmd91mctNTDnz5/nne98J9/93d/N133d193c0e+3chYCmFk3KbLSNqZMx5wo3QnVO1evPrW99Shnl5N9QFgNrVbfp7jSmvTMzJp18bLNbF5iWo/ZAZc50bE00mfcC/P71jZluh7jYUF7akxSCndQoxpP6vQmfqgpLsoqlm4EePSJwGHkqM5OyIYZ9pldyYqBNZvlDqz1mS+9vqdnYLQ4lSW90tGYyqOCUIF+ZNCZiPO1T5gqiINakKTiwa4ESgKUuWS4RCuhaHrDEstIzETQnwppDFc+ouYVZiwA028V0iIHYsWpJGS03pD7buuEu9yIaN8Z0Bo/dqJ5aQOm6dgnHxk8s6DZykUf4yysMN1RrdVhbJTvVt1Ma9itgJer3/9CATF3uo3sqJ67/CRgc0hBSU7IIpHtybjQDi2miago2sGUOdLWWNrCMmkd8xvijBhd5zoZxQY+3/OErA9RVug2kh0oaS8GdO1xOw0nn4lsf3DExdcdY/4pgfp4hW8MByYRG4OaG4pzhq2PxKXO8dKna8oXNbhRy8agoe2CNDPryUxgYFvqMCBETVPLc965QJsUMSjq7cT0IYvbEkbIPa5W+p1+8c4a0flbMTXQDYQJ1NuKbCrZMsc+GGg2HdUJRxMMsXvvtC0Ym5rz7QaGKBk3KGY+55IaMw85A90QkLBOHzV77RBNwna6oIFrWVgnRpuNIbUaPTWEPHGwnUv2ixawsqFFE7PlSjZsH/oprWID0zIwLVZFnik3oIUQFTFKSx4qYW2k2Y6UpxwuHNko30wdpiXsegL352opu9bPnwuY3Kz98Z2o9fa6e1Hf93++E3jnnTvAl0M4iPCth9v80ADmO7/zOxmNRnzv934v3/iN37icfKeUOHPmDN/8zd/MN33TN93SOd8vFTMLrYLWk4Y5apdlOjvGrLmMxRWjAqhBsQIsS1CyponRCuUKYVk6xzKlum0zJ5qXlORBr7X0DUdxKcPaZYtXWtdk9OAoc7THRyifMIsGXbfLybof6s6XP6A6y+FoNSp2WTJdMnA7dnB6S0BMH97YWwjHLqySKC1m/XV24G79PhAjem+O2cxpJ5J3EDJNeUKjW8imYrfpZh4V5Rb1rRTBSbaA9ol6U6G9giRtXaaJnZZG7pEqa7LzU/z2kDAQNsXUgZhJCwO5wrSJaBTZvocIClnRTEZhZy1+7GRA1Uq0QZ3gFK0IA7MCbUd13epZmLupg7nXdbtAzFve/m/umBPZUd0/lbxG2Ug7kecRgG7iajKfkoTwDofihOiMLD7llmRUt+ikxaq4a4NVMZEdtNTHMtysayOz0BaSr5JMTsx7m//E6f8xZXB5xMGLRuhRQkWFnQNJAJFpEosTmmgVfhDZPjVlnDfM6gyvVjqQ7XyBVok2MxTWM8wbmg7g1CbivaY5C/sbjgd+RUnY8qCAfVn4SyFIM3Arz+R6w9BsKPxQ2u2iA1OlLsgYTAWLvYJLkzED25JbvwQiU18wsRVtMhz4Ypn9st8OGBhHSIqxbbhUj5Z20VZHplWO1pEYNXXpsE9nbHxUOgHmDxj0SxOZ9hzLFlgVOt1NpIoCPnaaEbnxjKzoZAZGmCGtEpkJqAyUSjTeEjvXNwlkVljFUd1EHbYl7OoWssO2lF0LCDwXQHi+BgO3q9aP/8N/7dvuiinBB97xFgb/Rlq8/rcPf94dO84XPvS/A4ezhb4pG+Vv/uZv5pu/+Zt5/PHHr7BRfvTRR2/6JO/H0lUDqX/oaHSRk3qmxeilbn3ZBqY6y8iUVvoWzZqFshGdiDbCsDi3Ckc0RkTveYbyQQTzPVsDAlZiQqmOcQlx5XwGKCtsQjixQSgM2W4luo6USMbgh127QRmJuUEDoehaDhBL4egM0WmiUdQnClTYxJzb7WwvjVyD9wJm1oMuWw+mcyzrzQhSBAyq9bidimjFkCDkmsGluLR6VinRjq3oUVrEFlQrTAOujDLIJ9BBwExvqZwtAtlujVpUAmKmC2yI+Ee2iIUWm2WniLYTxIaEqRIhk8Hf7QsLYw4q4jAj5AaTAqpKXfimgBtTd6Fqfs0e+6iuqPuFfbmZer7sywutrmWlfMTC3OVKoF1Em4AfRJoNA0+JKUlSkJxGl37JCptS7OCTVag2EnKLbhUhN9hpS8o0UXXPKB9xM1mAMqWX5/hI4Qfi6KjGEgjcjDSbH6sYf7wEBlTbinYEtgRbCqvjC4UfKZpNSEVgkLVU3hKillDLYMiTZ97mDGyL04GJq1iYjNpaytYxLzXWRtSwpVYQbcbwnCduDFG7eRd+LPkwygsQSwaaDfCjhCllfLGlZH+pkDANqNKwVxbsxCHjomaUNXxkJtqDS2pEpmWhTavIQTNg2uY4LQzKU/MtMSmImrJ1hKhpg0FFLXqePcfkCdj4eIupA+2o4PzOBkalzoksstOM2HIlbWerPHHV8te74Sp2miExKYZWtDU2i+zpAQstDm/OBBoFppZ7fVS3t56PzfLV7M36a9d6z/rxlgL6e1F/4w+4WqD7n+7wIT/wjrfc4SPcWt1SutKjjz76SQNari4VJGixBwPLVfju/+T9qqUMOpvlbnLfZ70sM1/ClZN8q5dmALLav8ZeqLV9+IByrrMwTstjiW3z2sTaWfxIQixV6MGTImxkzM862qFCRWFifKGwVcIuIsW0JlnJXFEhCaBpO6H9eAg7+6tr6hmgEKWX2VnQdnW+3f/KWpIPKK0xezNyoN0uUCbhyiCskAE7D7RjSyg0bir94SHXuDJi5xEdEm4u98XNPdluRCVQbUDvziQczQc597Im262ozgwxVcSWieqYOJGZssvMcRq3L05k0WjisSGmbJd6INV4CAmVOl3OwGJqD227YtyO6qjW6l6xMIfd/kY5MEcg5i5WgugVYHAHmuygm8SmJM+0Jorr5dDJoklMYCT7CsQEJTqNWXhhZ7xMrP3QdoG+iug01XGHzxXzB4SBMXUim6fu2QqzsznFbqfFaSBvEyqILiebRfxAGI92lHjJS88DsJlXHNQFPmoyEzgxmEkLmWnJtKeJlkdHl3licYxdNaQpDIOsZVFnBK/Ze5nGVpb8fECNR924aYSJcZZkRfOokthLqyzhZhLKmYyEZJoSBk8bmtOWYdFwdrzPwmfsNwN8Z3GvO1eykDqQkhRDJy5riy68clFn1K3F2UAImqa2qHM5k6c0w4sydqo2Um8pwsJSbkjQZ9bZMZfBcbEes5UtKIMjJs2WKwlrTm5NMOxVAzZyATjOhI6JMZhSOgJUPGL074e6UVvZb7315ddkWa5+z604Zt2Oup5g/7Pu4DG/7Nf/HfAvAfjQ33nZHTwSvOxffohP/57Db3/L8bBPP/00/+pf/Ss+/OEP88ADD/CVX/mVvPKVr7zV3d0fpRSpy0FRPXDpwyCjXk1o1x9EIciEvt9Oq9VkX680L6prAVN9eORSVxJXoniQ9/avGSMuaCDsS1UJ02Pl9ZQ7/NDgDqLoXrQmjkQTkM0i0RrKY4qkBawUe0FW7bRG1S2qVRitiJkh5Boy4MyErGlJi3KV+9JbQhst7Iu+6hqIpIDoYbywNiZG9LwSO2erCYVdZhzYUtzJtJcBXKUMN+80LEDWimuPrv3S/lnNFh0rolEmyfnQYs7vkeWWdiODJKt3dh6wCy9tYl0uji49WE2zmZGclowdjUwmWk90+TL8Uk8rAYtHLWTXrPtJA/NCrx5s3K52sjsVYnmtOnIgO1yF0pBVCltHdPd8V624MyZnxKykG1NUkNDimFtpiw2JWBhCppftYmiFH2lmZy2mhtlDCj9K+GFEecXggsItEvlBQEVNM9FMxxZbyjFCrhhckoWh6BTtQBFyiLlknIxczWZWLdPnHxntsmUXS6BQ6BanAm0yPMExyUWxgcZbqsaBSlQPtpwbWqqtY4zObTB6v5HW7CIjbA/xA40fKYLIfDClIttP2DpiyogKidGFwPgZuDAaM31JyXyUU3rRxISoqb3B6khKisYbYtRoHZmqAmcCZe1wTkBLSgoftAy5C8vkac3mRz3FxVrakHPD1kcDyWRc0htsDUQA2QRDGw21t9Teojp2BsAnTaYDEUUTbWdwYKmDIXUta7OyIN9XaB+viBM4qvurrm47ey6dyZ1iYJ4LGH3Zr/+7G7JOt9uR7If/2rfx+jVnsJddZVldfvln3tbjfer3PEB58Kbbr4EZDoc88cQTnDx5kve97338iT/xJzh58iSf/umfzn/6T/+JH/mRH+Fd73oXr3nNa2713O99rbdJQaf96C2Er/2WPplecl4kpVjASN8ztdIKEROJJEYAWhgYFeLS/YzUOZh1WpdUrujq5D24DJVn4hiWZcRhhl0EGYhytwJdEewsMGwSzYYhZNCMFc3YYBcBP3KooZVJfZJsFZVpdBNpxxZzYgPzdCs5Md6LeYHq2uQMnYFBWOlfbBd42QdjpkSaB6hq9KIiFZk4NHdZMWLBHKFbibN7lQS0GbXMPzCNQpWNGBj4QKqbZ5sHJLG3do+fRz94gvq4jIZu1kq+zNMz0sDJ9caILzJipglGcmaUTxDl/JPTMmmoPGo6J7UNBP+8/pyO6v6oO9E+drsF/YcFHuvb9aDnZkHLEQtzl0pLC1loNaYWxpcoInvVBgmk1HRjgFpaJSejxVbYaZLT+KERfcowF3tiI0HBfqCojkG7kURxqYRViQ7Kk7pjZMS22Q9lezvv9I9tQrcJX4je0NSQXGcCoEQHspUtiEmTaS/ZK8DEVMu0+0XMmLiawkiOyqLNRBPjILQGn2BxxjG8qKSVbFETN4fU2znVlsYPIeTiQqlbEfWrIKxMMmLHbxeB0VOavUnBhdGYNkjwZEwwKWqq1tJ2gMGYiNaREDqDg87a2LeGEDSxtJgDw/CSZvx0FH0krOIJDjwbH1NUpyzu0cBOOVy6rg1di09iuTxwLTu1xBHUwTKwLbvVQHQvCRpvyaxnXmb4qWO0kM4D3R4BmLtZz2sy/yf+Jtzg/dVP3/qub1Rfc4PXfvivfdtztsz98F/7ttsCYq5nZ3z18X/2W8fP+1h9ffFj0ggXqhm3XQNTVdVSv/Gt3/qt/Jk/82f4mZ/5Gay1xBh585vfzD/8h/+Qn//5n7/5M79fqmkhHwoTo5RoU+CKlrHl152oX/VNYT0j0ZdRK20MnWg/d7JN5x5GZ5UJkApx1UrOkDKLPihlYPNenuhokvdiVzwYSOr9JCdmGt0E4sAKCHCGZPrcFEW2H1icthS7kWwmepOkQEWFiYlkWTIVug4YrShPDxiWG+jLe6IB6oMtlVqFcKqOaeqDPLVaMU49y9RZLqt5uRLJW7NiNsIqX4cQBNj1jm6h0wVpveZio0kxdI5wHVCqG8gc5qlLFM0W9akR9fGcbK8lDZwwPz6StKbdsCSlMH1Lm4IwyTtdjiNZzeCjO5LNYwxLEHpU9139P35lAsBPfub0Hp/Jvau7ybYc1c2XahUpKogKOwM3i2K0UradS6RBVy1Ka2hlYcmUnlBYdBPwY4cfiJV+D1h0K45mugU3S8welpwZZIjAm0S7ncBFlIvoCxnuQBGGCbcvOVd2QTcGJNxc2tmqaFBRcdDknBzMOgcvw7F8ytA0DHWD7kQc26aijo5ceR7I9xmahnNuk6fLDRH5Ry1ZKyZRvjzy1HbG8Jltjr9PWncXpyz1dse+KBhcFN1j0sIICRUu9zBmmmI3cez3FTt2k6QT1UaG1pHSBZrGEhYWvIas65BoNAsjYLEhR7Wa/JKhuATjpwLZQS3sv08kJ8eKRpFyzfBCw+TxgvcPH2J0es7WsMQHw6U6I0TJy9E6UmQtW4OK3cWAOrM03goLlJSAJa0JrcEcWCZPSudDvHqB9KjuaN1quvuN6k5nrtyOc74T193X1fqhL37sP91RQf9z1S21kP3O7/wO73jHO7CdHbDWmm/6pm/i8z7v3l3I7SgVI6pqZHI8yMU1DDoQElZf6zVtRD+5jwlpMr7yIaWMFuCnFKnIUG23qq8UaZDLJNwZkpak5Har4KnPzBic2+DMr+2gd6arVjPoAEO3UtYE/MB07IUwCLr2aMAsAipmmFryUHSIovHohepdq4JOCd1adBOx+yXa5/jRgPlLN5jMFpJIT3fs4FdubN11p6aVwM4+N0Yp0cOE1T1KPizvmepd3foMnWVGQJT99O10Tbu87hQFyCXZcMkKLa2pu9fUM5cZzCr8iQlxYImxY7gSNMcLcWrz0p4Qkf91G2TC4BPuwhT2p882LTiqK+put4/1YOVGr90LIPNCslW+up4vC3PUPvbcZRaa2GpUpcmmiWyvQVfy/AvjfLkoFoqO+Q0J3UZInlh0bpVRgEY7Eh1je1LAjF0k2okiuUgyAliAjvUJxNYwGNWUJyFWOX4YcftGWtAQFqcZG4pdjy0j2Z7GTIVh6NmW3HgJe0yaNhlyFYlJs++H7PohY1MzNA2aRETS6gvbooLMC4wNJCCcaGjnOdMHLcNLQcwFNuXaBs90GsrOhSw4ATNuHlBJSWtzgvFTnpA56mNQKhmNWxdRM4utFcUlYW90Q6fvSZ2DZerMCiK2SgzOV8JiKcnNSVqLoUsT8UbCoidPenRj2P1TOTEqtE6Ui4zYakgKN2jZGFbkxjPIWsZZzcg1zNpM2ugQMJP2M4odcdEUvdLRgtgLqe5FQGR/zOuBkKtb226Ua3Mn6lr21J//PbPnvd/Bv/mVW3rfoQGMUmppnay1ZnNz84rXt7a22N3dvaWTuF8qKUXqc0+adi0PJa7CK2GJZZbgBVYTeGuv0Mgs8116tzHTDSJai5AxtyRnWJzJaUeakEF9KhByQ/3hMUXVip1y003w6YwEnJNWA6s6QainmQyoTmSYJmIqg6kEqLj9VibtmTxAde0l6ySJmNMPDMYo1OaAMLQonwhDTTi5iakbsVa2FkIfbqlX18vavTBqCUiUNSQfBJj0eTVtu8zAkfsY+pvUARcNebYCL+tWxj3TsxaeKSAmrYwGYiDNF9hFSZqMCMclGydZ+T25mV8GqJkkgZ49W5VdmKF29klhzSTB3LJE7I9M/VGyUP5kqx6E3CyQOQIvh6viomJxxmAXmnzatRDFiN8aEjONKf3yGZ6ULEipukVHaTGOThMyASzBSWJ9dSJiS8XigUQYBQEuXjPcLjm1MWNgJazy/GzCwLWEUUk8pTj3zDZ+rHFzGS+ShnagsJXGzQLFXmS+MOxemrC/VXDMzdmw1VLroknMOsHKImRLHUgVJYU+057trMRHg1aJUd4wjTnBG7JhS33SYmeGMLBsPt6SzQ3RwuBCS3Sa2YOWbApuEdFtEv2PtcxPi71zNgvkBxFbKdzMEh34kVgtuxlsPOFxU4/drzszG/kdqL4duwsvTlpJjECIS+2R3PuI6wKP2XbYCo79as7eK3JiHklZ14HRKMK+ZTFoeNnWRbYy0coctAXVQjRASkG1yBg9YTj+By12Ebq2v6NFsZup+zlh/k6yHC+06sHHvcjJOfQMLaXEy1/+cpRSzGYz3vOe91yhd/nwhz/MmTNn7shJ3rVyVnQZRqF3Z/LAWU6W1ybTLpMJc+Zk4m1W2S4ppRXrgrhziVA/CgPTiThT5gjDjPJMweKkWADX21A+2vDiRy4y/amz8jC1Blq9CsHsvfQBs2hQE0m5Vx7s3BNyTXnckh8EdBNF6xG6vmmj0W0QtqePtOnyYmQ1KiPkCluKHuXgpSO2Lx1A00BdowYDYVNUJ3DXBpWxzE9RSoFzq6DOzoigbwNT1nZAKKzAizFyTUWxcjujA37da0BnSR0ghZXL23ruztWhoNM5tmnF8WaYgxZwpyLL8ExhpwJ6f4E6WFtFWJo1HPUsX6/+3teL/uJOA5gbsS9Xb3fEwtxarQOSG4GZI+Byc5W0THh1g7REBWHbw0AYl+iMjAeAn2TYaSPP6kwATbRKLI47lzA/SsRJILYW5RW60qSRJ5mENZGRaxjahjPFAVolam9xJvCRiyeEhT7p0bWTSf9CbIrpJu/5nmdwURMGjidObnN2cMDAtAxNjSFRRYdTIuKPSTE2NRFF2YUzmm5AsTowtA37dYExkRgUKRmYtPix6cYZhc8VIQM3MmIxHCSPxhcKFxO+MJTHLfWWwlZQbRuaiYA45TtmykM7SehGLbWcuukc24KwLD2AISVM40mZJSm6lmcFIWHLIICy6hYONwwqJMZPBdzCcPAiQzYFP5T2OyKUB9v81qcaHt7eW+p/2mBoW0NbOvSuY/yJSLbbEIa2a1k7crW8mboWSLhfQM3X/PR33lUQc73Mmmt9fbfqekYHdxPIHBrA/NiP/dgV3z/22GNXfP/f//t/5wu+4Atuz1ndq+ryQFToxOtN10KWojQN9xWD/KxpO5vkhOrATB9QecXku6+UOlCkSLmhOZZx8dM1zbGImUkL2Ze8/l28f3qGeC5gD6or28dCuIJx0PsL4kMjWVXSChUi2UGL8gm38NjdUhy2JgUECbqU+OHOYrhwxIFdTuiT7sSGQeyWm4nGn9zAVjUpRgEvXXuVyjIBJkFDkS8BWtwcduCmY3gqj2o9qqpXAn76trLuXLxfMVepu+cxietaX9YK6Opb9bptluGaICCn+zppA/MFAGpqyHYzXJF1rXwOtWS2Wrm23pSgt602+igH5jr1dX/rb96V4xwWvDxXvebzH7yjOTA3C2K+6POv7zj273/23jJa12JljoDLrVU7BuUVplS4aUC1gbCRo5uwZAKS6TQuRtwgdWMII9fZ+hr8QACMaRLZnqI5Lq1SbqaoTiVGk4oT4zknBzNeNNzhkXyH1w6e4H3DB2mTZWJKvufcX+DFj1wkRM2TnGBwQVpmjULCgVPCHTTke47ZI4q6dcvck1koloxLoeXZPDAthW6ZhmIp6AcY2ZoNWy6v/7yd0DTdYlYGzUsT/pmC+a7BzRPRCisxfdhQbyrmD3UdHo3BLuT+1Sci4eE509KhdMLlHu+N4MGFhUajW0soFMl1XQ0Dh6rFaj/RLZ51HQhinx8hdi1d3fpkMopmQ8BYNKBRhELTjhRuBsXlSOoaTKJTtKVi8dSYD5cOmwVSVLQHGQSFCorioiaberHvt/Iztd6xcFS3VM8FGv7uxZ+6bcf6wG+/5Yavv+kXb9uhbljf9Z9XQvl7GaB5rfycvu4VmDo0gPnSL/3SG77+tre97XmfzP1QykfUvFzpX1JcCfR7zUaeP7u9KV61utJnvGRu1Q6VuSWV7ccZ1ZaheaThkbOXaaPm0Y0dPjg7zR/8n6/g4XNTsdqs11rZtFga95N0FSK2jITCoBZJ9C8xUcxb9Lxe6nmSVmA11N01AsmIfWc7trJSGBO6WV2DiglXRuqTBfZCJpN9DamNklED4t41HhKHOdUDQ9qRtIqZOhIyCZW0VZL8l0WkuFhhLoumR8EqW6c/Zs9c9de7bhTg/dIUYBn4ue76FhNXJIWt61hiIi0W0DQdC2RQZQ1tu7SpBlZAyNpu30cMzI3qTrEvtwJcng/7cqcBTl83Ai7X2uZegpkj0HIbSifsXDG4kLCzhlSIXa+ZtzLRzmSl31TCAMTMEAaOaDW2DmTTSHncSpDvVNgJdCIM5JmabPf8TIqzg31eWlzgrNvluC45ZoVR/nB1hviJIZdyT9NY9MBjGotuOh0IKxMXV0Z0Y2lbw9znjE1NQLPfDpjYipgUsVvIcyosM1GCShgiTgVy7TEqLlvMnAvUtSUGgzaJZBLtRKNbGF3w2EVg55UFoUBe244kF1GtRm00DEYNk0HFPMvw3qBUQikYFjV14ZjvF7QTTbWlyQ46wxwfO0v8zjjGKyDIGKgVqpH7p0KEzvUsWkW7KeO8aRKmSbip6G5G54II/o0i22+JmSY/sBSXNNEWtBNh2TZmiTBQ+AFkB4l6U2Mqi11I9llbFHf5D/CPXv3zk18I3B4g88rPePsNX3+F/ePP+xjPVf/L9ot5/V+4Pxwj7wYweS776qvrqMl/rZJSqLImVd1Mv5/ILt3E1ly3elCi9FIblFISR5kevPQgR2tZaXMyQJ1/wwg/EMvLlz18ntcd+wR77YCYNP/XEy9hfCEtgUvSSjQkIYr2xdqlnkT5gDtoqLc7QKWkv1kvGvHc71riVOxsNtf7cLsgy76VjAimlvwVPzSS6NwTHeMhum7AGLk+AGcJJzaYPzJCt4mQK3HZaSK6DsTcSDq0UwStaEeamA0wx3KKp2bo/ZkABi3hnilEUp/r2Z9j1KjcrgI8QcBj70TWb6sNK5OFlYmAskYMAPptQyDFhNqfPQtwKmtJKi7bx5S1qOyoZ/l6dT9pXw4DXq4HUm5X+9eNWJjDAJfrve9eMzJH9TxKQ76n2PpIhZlW+O0hqhXtBZ2IHE3nDCmMDB0zQ5QJtJsZ2rG0kqFADz3RRWJUKBdxJhCTIteeh7PLOALTmPGg3cWQ+He7byQWCaUSvjGkqGg2FfmBJhqFiqo7foYpI9pD3RqaaJZMy343Nu00o45lqYgoAhqtJCsmN/K/U4FZkCyy48UcpwMXZmNmc5m8+2Mt4WJOva0Ynac7B7FT9sc9n/LYU2xkFQ8WewQ0T5eb+KgZbrYctAVNEI1NYVr2mwF7rmU2LNg9ZZh9dMDJ3zMUF2pMJTpPFZIAlxjBy2Jkcka+Vwq9aLuxsFv/Ugm6Jm2VYHCpJRmFH2i0l0VCu9uSXdbYxYjFSUsooDolpgq6BVOLS9zijGb2UE6+mwiFokkBfuHe/Cl+MtR6a9LtZFpuVD0gul696RfP3tHj/9Z/Hj8LONyOa3+u6zpM3U5As87u3AyIuW0A5v3vfz+f93mfx0c/+tHbtcu7Xqr1pEXd2fcqYM3xql/dX4rI11zB+jT6PqxyHcAgvv4rUAPTlwT+xOs/yFPzTbaLBT5qPjo9wUOjPV734FP8/slXrnQjrZcAR6Vkv12oJFpB22LP79NsnRIWpuunjrlDd1bQGCVp86ZrTUiIhbAWcbt44MvgGHKNaSN6FknayaqTVcRxht5dE+1bQzg+Yf9lY3RALDAVS0E8RoklcxWWuS19y0Q7cSxevEG2V+DO7cv1xQ449ISHWbVuXcGQWLsCL0Yjo3/q2JIkJgJKdyGUkeRZsTdZxxrFRGralSFAZ/ecUkLlGfH4BmGc044tVdbCnV+Yf8HVJ1OI5Z1mXm4VvFz9/iMg88KrZMBNE6YS9ngpGs80dOnvS5bYCJCRZ7iMFboJuFImxiHr9rmXoTcb8kGLs4HNQcWDo32eWBzDTQKLlPN7i0c4bfd5xO3w6o2nefLhLV5x4gK/Wz9ECJp2CL6Q8UGHzsLYSBtbvguV15ybbzCxNceyOSEpDnzOhq2JSbPXDjvgohnZmjpaDJGIwXSApokGqyRk0pqINlEYFJ0IOZCgOmYoLidMDeFszRtf+jg+aZ6cbgHSquajxieDT4HaW3zShKjZrwsWdUbdWtGcuEj9UEP9uCPf6QBiJ9BXMYnuc20BTyWF2a9kzC8ckFFcbgmFwc7BLTzVsYxs34vtvlboJnasWUTPavJLGj8Y0Y40ZqEwLdgZmFoYHFMrfAHNpmiYWnPUQvZ8an3CfJgJ+O2Y6D/nPj7jeR/ihnUt9uV2gI/7rdZ/t5/+Pb/D737rbc6Bea5qmoYnnnjidu3u3tTOHijXifuuah8Kq9X5ZSXRyqQ+9wRWbU59q1Ofe9I9OJPTDJ82aBX5e4/+EobEOw9exSd2trgwHXNwacSpTySWwZaw1JOkGFeBmQGZ0Fc12U5Fc6xY9vSaLg8GZGBSPgqoaAIqJpqtvOu5FoeXkCnKExY3j2TTQH5uhjloCBsZ5YmMmK+E+FhD3BpTPjASdxwDJAiZwpaSJYORfmRVBcy0ll7kLp/GxUR5pmD/sQGbRpF97JKwJH2+DKwAZOtXLXiwDMsUgX+2Apc9cEpJRP69niV0++n1SH17WuaE3TECdlTmCGe2WTw0YvqQJd+PqABpcWfSdo/q+nW7dC/Xqp4huRvtYvD8wctRvbDrxO9EnO0WlSYFIdfYhYeA6F1CJFq9zEAxdZS24bxvkYV816OCwReamIE90LSFIRWeV5y4QEyKFw8vA3AxbDDSNW20nPebZCrwiWqL6WzA5fGIIm+JSTE/nWNLw/B8JBqFaSUPLFoJ+NVZYFrlsAlD02BUQpOwOjD3OXU05Dp0WTECttok57wImbBBg13KmNFEQ0RhdGReZ8z2hmT7kmGzOKkpj2ccvNzzJx/7KBuuYq8Z8Krt8wxMQ0waMlY2zcWchRckV3rHJJNOiQvZWM5jBBf/5Jhoc46/R579yWix2O9cx0gdkAwJVdXS6ZAS2hcyjidZCEtK0Y4UKhmGTzWYUraLhZjvhLGch2kifmhIDsrtSHhJRJdaugm2K6wLVBcLJh816MURo3+zdS+cre6n6gHUPz/5hZx/6vbKNE4/+F03/Z7138epl98Z9qldHBx620MDmLe+9a03fP3ixYuHPuh9XcuH2Bog6XUwPWiA1evrifSwan/qWrpIadnClbSmOpbRThK//t9exc7rR3zhmd/kq47/GpeaMb/ym69i4yMG08YuzLJjFnqb4R4sdcfr2Ql78YDqtLhs2VIGRd3E7sEsAkYQJkh1ICw6eci2Q1ndy2aJZqzJ97q2rhCkY65Pq+8q5RmLhyfETJHvR3QbSVZhS/G7D0Mrq1XtWrp0G6S/eygsiJsHQqaYPZizOdvAnN+TQMpe89K7jDl7pVVzd3+VMku3siuYm7bLqek1S317WQwrAKp017pm5Hc5yakf2qLedjQjjakTtkpon0izI9eYo7q1ut3g5aid7IVX44/NsXmEGAkDh6mCLOw0ETtriLnFzltZeEoJM2+XFsBidazQPpEdBGyVaEeGmCdQ0DaWp2ebzOuMs4N9XjV8mvPtJptmwdlsl/PtJj994TP4yM4JlEqUrTx7vTekTABLO1a4edemHPtxC8xHB4RX13zk4AQAZXAcyxZLx7GYNFq1zENGrlsMonnpncjqaNmwFW3bWSrbhrJ1FM4zU0nGnYmiPJnwD9Z89is/yKODS7x3epYmGiYqMvc584520iR80szaXNy+uqDMwnpGrmGcN+yVBbO9IQCL04rtXAKMVYhdEGgX4JyQMbVrJ8Ml0iCTboOsM1OwisWZjHakyPclp8dOa1QrY2IsLO2mOHb2C3ftWBGLbqw6WfOZj32YT8y3ePLyFpsfMAwuR/TO0YLYzdS1wMvdah2DwzEdp9767jt/IsAp3s0p/upt3uu7ufDPXnfL777wh08/r6NfCwBd+MOnCdXhc2UODWB+4Ad+gNe97nVsbGxc8/XZ7PmH2dzzirEbQNJqstsHK3atW6q/Y7FzKtMK1Q1ASw0MSJ4JkKzprJmFHTn/xzXf/Pn/B//sfZ/F45ePEc9o3l2f5S8f/13Ov3rCR/ZexNZHoqwMrRsFrCXcqz5TBWQi3rQMnzhg8aIN7NzLSlFmJBytDsTCSkiaj9Lq1elf7FQ89xfWku96ik5QGoaOpBXVyQxfKPIdBIzkOf74mGTBVBE39eja025khIFZsjhuGrqWtK49q1utipkWa+hM4zqXs/KBEePLU5TXJB9X+TK9MN9097MHLH2AJQgAadpVsOi6YQLI7279d9lbUSuFyhxxa8Li0Q3aoZbAsypiGoWpE9luQ8tVLNxRHdU9rPsNxGTf+1oAUhVo3/bee3w291+pNqBiS3JmOXFOSqG9LDKpmMQtS3WtYxpZbEoJP3KgYP6AozyphRHWEEaBT33pUxSmZdNVbLkFs5DzTLvFnxl/gIt+g6GumegKvR15dHSZ37z0IsZZzYXdCeH8gHxfFq+yA2l1kowSOedoFdkBzD+2SXhYM3QNpwdTrAoctCN80lgVcSoyj4Y2GWLSjO2Mmc8ZGBmXDnxBGTL26wGTrMLqSEgKZRKLBxKoRNjyPHxml5Gtec/0QS6WY9HNqMhGVrGVFgR0Zx6g2c4W+Ggog2PiKppoaaMh056BbXkGmO0PKB9WXP7UgtH5yOBCjW5kAY3OVnlprxwjcVgQcyuGOLNAyDTWJ9qhpjqmAEM20YyfAnu5RNdtZxCQUR4TlzjtE8NziWQ19cMNx7dnPH5wnDZqjInUxyCbKfzmkavlzdS1mJfDtk/dlfax098Ob4d3vOV/e97HulG9+VvuIAOlv/jmtn+7AT4FgDe/JfCOt8vf9Dse278tp3Pq5WfvDAPz2GOP8Xf/7t/lb/7Na1uovvvd7+YzPuMONwTe6eqtkelzSLofB8kwUVav2pbWAhlXlsCdYBC6Ff8k7l2DApxY/h7//cT3vvR/pj7IKT6R8Z3Tv4i+mDF+UjG4FHnREyX20kxsh/0qLyWltNxniukKp6xUBdR5zzBC+cgEU3VC9JhIuSHmBrtfS75N50UfrUJbsYx2pWTFqM6mWDee5vgAOw8kbcTOOUQYWsoHCkwdIUkgJlpcx/zIELvVq6QR/Us3MIeBJTqFbpM4vixFkdCONWF7gn5y3tlSm5WmJXMr57f+HnTie2XMEkAuNSyx7YIoO2OF3nAhJgE5aa3VLHOUj0yITjG42GLqIHqfTvhp5i00K0vQo7o79ZOfOb2pNrJbcR+7W65jn2zVA5ajOlzFkSMpB15Yal1Ly1bPjIfcEIsud6yKXeuSPLdj1xbrc0V1PHX5KbBxZsof236C98/O8NBgl88YPs57ykf4/557Jdt2zlP1Nr+/d5ZFm7FfFlgTaIPBd6yFahWDCxAz2Z+bR8oTBlsmQiZ6GDuH7T9Q7FcbPPMpgUWbcWZ0wMJnjG1Nrj0HPqeJhjJkOB2Y+ZxZyAlopm2B1QGtIiNX46NhKy+5WI6IrcYAYTOQb9QYHfnY7DjnF2NC1LxkcpkttyAmhdZpadNsVKSNhlnIiSiaaNEknA4URjFvc4zqW64T9TFFsauENUkJ3QT5PeRGFvKsRjlLHEogtG48MRPHsOg0g8uekDvakWJ+RmHLjNGsQS1CN1Z242afcFDA5H+6zP/t9Mf54P4pnA5U1QDvDQwSzYbCLe7N3+H9Xn9Hv57hYUM+z3/HnT2Z9Tr97Td+vTuXOwow7nSd/47nvs7rVA9eAL7zN379dp0Rs3rOfznktocGMK9//ev57d/+7esCmD7E8YVcKUSwMiFWSnXuV3GV6eKstCtpJW1JSwestX00bZdC72USvQyyDKAc449X5D9eQAI3lSeaqabiHOYDqk+hjysmIXm/mtgH5Ot+8t5rbUJAX95jYBTzF0+EBUGc1XraWwVZ+bKlRzeaZtMuV96aTYubBewsCgDwiTA0Ehi2qEEpwuYAU0ay/QYzb5bCSB0TurFkM7FPDgNDsho798TcokNEtwJ4ktHidpYr2qEcvDozZHTOyf0GAYg6rpzXepMEo0UHZCSpOrV++bWi+311DJgAmqt+wSGAtSjn8Kc3aSZGWuQQdkh5sZJWMaHrFp8frZjdr/V8QyuPQMzh6gi03HrF3OCdw84lm6sdO2IuuSUqxCUTEzN5zuhGskuUl9eSFhv66BTJivWv0ZFZyNEkPjI/yW47ZOoL6mD4/elDXK5HPLm7xcaw4uDyCDdsGQwaFo0j7uRkJRS7calbTJ2GsR1qsvlq4Ss4xfA87G1PGL2ooQmGnXKIHQasDpxfbNBEw8Jn+KhJSeGT5vRAPpcxZGgS07Zg4ioulWMOSnEiC6OAHbVsjUu0SuxUQ7RKHB/N0N1De2gaqugwxGX+TIs4o4mRwIAmGk7kcwAmWcW5NKEYNZQxZ/GQByxuPiDfERYGOqMEH8WfZ3MgttaLVpxCM41qIyYmUqsYnldUxwzTF4lNc7EjnQTKR7LdGtNE2rFlftqw/xj85Qc+zPl6gzYYjhdzMhMorOeJBzLaiWFypIG5bq2v5l/r+2Xd4mT7TtSb/8k/Wp3j3QRWd7mu+7tYq7cO/s5tO55/1sTt+nVoAPP93//91HV93ddf+9rXEq/OQnmBlTJ6NXkG0VrAFfbF9N7yfStTl0AvjE2XY6K1bN+t9Cdnac5ucPlTCg5eFhk9qTnzrrkI3GMUpgVQPqw0IF2bVOotnHt2InT5JqbXi5hlq1kqS9RTLWMfWbx4g6Qd0Wnyy5W4pxhQRkkPdgqEXMIzTRUxpccPrQCO2qPbSMwsw08sxFp6WOBHDjeTtrGkNclpwtDJoJtET1Md06ioGVwWW2TtE2bhhXkZWFQTxZUHlgYC1XHDcHsDLu6ugFmbwNDdxxWwUUUuWpfYhWVqtWz1U327WbftsnqnONVtnznqYznaJ9w8LsW09QmHm3raDUtWGHy7FqR5VHelbsS+PF/QcnXdThCzbqF8J8X791sb2VFdv5RP0LuHdXqWUCjaicPOvdglK0V0ClNJ26+dBWkl8wkVxdbYbwTQCbLIOG/ItedYtuAlg4ucdvu86+AxPv3EU9TBcjyfE08otrIFTkfK1jGvMuZ1ga4U2Z7CzQO+0OiQliGafgB+oGk3wM4FOLkFbLzP8RTHWTzgqBrXAY4RMSnaqMl0IKJogyE3np1adCipcyILUQMFRkeUSrjCE7NIXoihwIXpGGcCRiesigxMS5sMBWLhXEXH2FQsQo7TokEpg8PpwMC0ZNpz0BbLfJrUs+wuUZ2KVNsG0zhMqWXc6Vw4sQIwVZDWr5QQZ7iYUF5cx/LagyooT2lsnWgmjiwkTNlK9wF0LYGGmEfKmHEsm5Nveh4Z7PD7B2eJSWELjw8SSHpUt6nuNGB4DqD0rEn96W9/4YKY52Bhngu8APyt4eOHPtzw6195w9cXB4Ff/87D7Us/9yZSZ86c4UUvetFhNz9U/eqv/ip/8S/+Rc6ePYtSip/92Z+94vWUEt/2bd/GAw88wGAw4LM/+7P50Ic+dMU2Ozs7vPnNb2ZjY4OtrS2+4iu+4tb1OPEqBil1DMDVOgxYCsOVtUvmKYU1C2WjRftiDfWDm1x8XcHiwUT20Jxms7OtzDtP+t6pLCXSQFLt8V6yXqztnLS0nJ/r3LfWGZi+pa0HTZd2GX5oR1xtEl2Pr+x/XdioEriZxx00JKeJmV4mQktol8dePBDnsVEhbWe1l30ksQHVbSQ4jakD2SxiGhHA985m6/fWLDy6koFbt6KV6VsX2mPD1XVq0Q2tDBG66+uBSG+F2bu/WXuF9TII6Eyda5k4w3WgtMvpiU51LRMJ5RNup5IAzsKQ7XlCoam374+YpPvuc3KH6rlax+6EQ9lrPv/B5b+jemHX/fY5UW1YmqmEXIsusBDWY/pIzu7LB8zP5lTHLbOHB7QbDtUZnkSn8ROHDgnVKs48ssMrXnSOs+N9ZiHneDZj0yxwyi/F9XW0jGxNpj2uszOuvaE6P8I8XjD+uGb8dBQ3yEUk34vCtGdgF5IUUFxKbH24ZfKkZ3ApMLgc2XyvY++JLXxrcCbgo8YZWXSLKHYWA3zUzNuMi/MRe9WAWZsRomZWZ9TeUraOtrUondC6X5xTOCNW0FuDEq0iPkrLWEgaTWKoG2ahwKhIrvwVwGVgGqZtgdOBzAQyGzAmYrLYWUMnVEpig2wU0XXsvFb4oZNWsK7FOQwkZDQZ3Y1vwkRlew2TjweygyhZZrnBb+T4jYIwcjSbViyuk+JCNV5aS+/6ITGJ+1petLhJTXvnDBZvuu63z8rV1U+a3/yWsPzXfw/IhHv93+2sQ+zvHd/y3TLxX//3SVjL+/0cPzts6b/+HqpnfurG/87920Pv757O0ObzOa997Wv58i//cv7KX/krz3r9n/7Tf8oP/uAP8m//7b/l0Ucf5W1vexuf8zmfw/ve9z6KLtX2zW9+M8888wz/5b/8F9q25cu+7Mv46q/+an7yJ3/y5k9oXX/RT5KNXrEcvZNVUksWZD2nRBm90m1oTRwW+K2CgxdlVCcSk49CvT/BVFCeztl9+ZDJk5Ht9x6IH73RkovSGQKIccBa8nyv6biCiTGriX7vVqYN7E/JFhX2+AbNiSFhw2LnoXMNkwe5LT1JK9pJJhP6QtzL4sDhFp7siV3wgVRk0oKW6DJdOpeyNavmFMHOA/meiFNtmTBNxE7FzlJXHtUGkhNNjh/Y7hwimVOyGuac6Hu0knu8Dhj7+9xnt/QC+6uF+t3/yurVvQLQRn4/Wsv1WAlQazblutLELcWsySp8oamHh8b3d7Tuu8/Jba47aZ18VH906n78nKS13v7quKMdauoNTb2l8EMJurSLhG7BDzVxmBEzjS8MzaYhKXD7ipQUbTRLpuEBt8dOGPFr+y/jQ3snOTGYi2VxUix8xoXFhGcubhIry+CcYePxSLHjxV1RsVzAMnWg2NXUmxoVYXTeM3hqSvmwfCZtldj6aEu+b6mOjfjoaxyTY3Nya6m9ofGGxlvKOsN7jVLgXMBocSZrvCGzgRA1vjX40qLzwGRQda9b2i6cct7mtIVeBmGecDNC0ixixsRUXGrHOCWMj1EJ31k3D0zL5XqENYHJIFBXDoIiuUS0mmQVyidibtBV6FzJQLdh6di5BDdWGCl8RMWI8ZHRU2KqUG9pypMOuqzLaKDZUMwfgs0X7/HQcG9pLX3gBwA0wVBXjvGoYn98f4wncH9+Vq7VqnR1W9mNtr0tdVgwtLbdNc/lBQ5o+mt6vvf4N/76l131k3/+nO+paQ69/3sKYN70pjfxpje96ZqvpZR4+9vfzj/6R/+Iv/yX/zIAP/ETP8Hp06f52Z/9Wb7oi76I97///fziL/4iv/mbv8nrX/96AH7oh36Iz/3cz+X7vu/7OHv2Jn2qU5QQXmdXE+N1cGA0NEG8GPsWrs6WV3WuY33oJECY5Oy+YsDOn254/WMf47e2HkNv1/zxFz3Bb3z0xZw5uU9mAtX3nWTweC1ONFFayFTQKwYhpU5rEztw1LtsxVXmTN8eFZOwQ0nAlXqqorhcEM5sEwpLKCx+ZEXrkRLRCRvRTIROr7ct4ydL7FM7pKbpku0NYWgl6DI3aEAtAu1mgR8ZQq5QgWUrWXSK7EKDLsWhzFQB3XhZBRtYCInFScv+y+Dk74rNs2660ND2qj/epV11932Qa7uCLetdyNbBXg9edKcXIpBSZ8awqHCzgB/JNYvxgFpeR8h1p+W5Pyj/++5z8kla12NhbtRmdvV7jrJf7l3db58TP8lwqhOSd8/swWVPedxiGrCLRDYVgb6pU/cMMoTcUG8ZDl6sqY9Hwli0FDEpzhQHvG70cU7aAz5YneVENuPyYMTQNvzP2x/mh9/3mTy4vS/OXXOH2zPyTOue8baOZPvdYlAS3Y32VpjzFvLLYhds50FcIxvIdmvyy92CXhxz8JhhfqwhBYUrPFonjIlL8KJ1xOhI1QgztGiEfQm7OWahCScSsypnXNRk1qOVtI9NMmnZNUQCwsAEwEdNpToLfhXItMdHec5bHbhUj5g2OXVreWRzj6px7B1k6IUWjWPHpui5F0e4mDC1dCH0RjMaWYiLRqNyK7oYpUQD240RtpJ9gSy8zR60zB4G/1DNy45fFMYrWpySjJxpW5CZgFJJHNj8/TGewP33WXmuifLV4GVZtwsonP722wuKOoCj//p7bnkX8V/8H7fnXA5TV93Hd3wLwLXB3M3cozf8hx+76VNZVIl/dcht748emWvU448/zrlz5/jsz/7s5c82Nzd5wxvewLve9S6+6Iu+iHe9611sbW0tP0AAn/3Zn43Wmt/4jd/gC77gC66577qur9DzHBxcaduWmlbak3ogA90qfy/cVysgkeLKkUytwE4ymsXZgp3XRV75omcoTMvLXvkUA9vy4uFl/vv+y9n9wBnKhz2PpihuZVqv5ZukVVaJ9yuGQXdPUKXB9CCnc0yLfatbWE3wM0eqG/RHnsIUOWkywmwOZaAsxOZYBXHicjsVZn8OdbN0+5Jrl7aDkCvaoSVrI36jwA8N5TEjg58GN42Ux1QnCrUwtpgyio1lYUnO0G5kJC0DiptpfCFMiG4loBLXAcG2kWtfcyETQNIxZD1btv57CwGl18FNuKLljJRIdYMqcvLLFe1kRDQS3qZSlwidK9pcL8Wt93vdy8/J7agXAvuyDlJ6MHPUcvbCqnvxOamOOVRtsFONKQODOkBIZHst+y8dMP5Ew/6jGTED4xS6C7hUPrI45Vi8yDM6NadthVl56cZl/u9b78aoyDzmbJoFw6Lm/Qdn+MRsiw/mZ1Aq8fj547zqwXNc2KqI0xEqiuNYdKBnaQlcQATpukkMLoUusV6RjMHOW0Ky4pRmpf3N7i544Fc946cnXH71ABLELNEMEnHLo4zoXFIyVAl8Y0leow8sceJxU83wacX+RCZARiWsjmzkFZn2PDq6vMyTGZqGQrds6gVOBQrdMtQNbRLrZqNFcxI7W+cHR/vMm4xz8+55YhIpT4RMWqN127VTK1Cold1+kms2ZUsoLDhNMmKskKxGlx5ixDQRtScLmtW2xQ8lgDTfU7THLAdNQaYDI1uTO888ZCxaJ85oKuFMIIxeGBrhO/VZudF4ci3wcIVN7zVeA1ZMyPMFMue/g3e8/fm7cV1d8T+85lbPCE5zb5mc23HsqxitZzMyz6562sA/+IlD7f6+BTDnzp0D4PTp01f8/PTp08vXzp07x6lTp6543VrLsWPHlttcq/7JP/knfMd3XOeXE9NSzJ+aVr5u/WoS3FevP3GZMB62S6vvAiz9qQ2e/kx40SvPsVsN+PC5k0zGJVrBE3vbbL1Xs/FEi/ptyC6XpMyJA9la9osyGpyTebT3ENbOowdRrAnd04qdSSkJK9SL/7USRuVygzmYoVMic27ZdpZCRBU5qSwFHEVx7EpJ+oRFQ8NykIu5rGRl84hdCMBRMVHsxSVAIUmgpYqJmFuS0/iBxjSRfD9S7AaaiaEdKlS91grWGxf02qLOIGEJ4gxXtox1TJkyZvV6z0r1ttfyx4Hq9EZ6b87goqM8mREGGncgRgN2DtVxC1aEtfd73bPPyR/R+qMGXJq//3ufFE5k9+Jz0o4UmdJUp4bETJEdiFGK2Nkn2g3DYCdSbWvaiTxvZg9lRCNgw8x1l6ksGSpzn2FU5Kl2m0XMKXTLJ5pjHNQFTz5xgt3FgMXuABQ8M91gPKzZKwb4oabdUDAVdlnXEd2qrrUqYssgi1kIgDJG7ORlYi+ZXjEzpNyRnCE7CJx4j7RQgSz6NGNHzBTNRoEfJopL0hrXbCqy/YT2DluJSH660HhvaILB6kimPcfzOUPTsAgZdRJr5jYZdIq0yTBUtVgpd7bKdbLLgMvceC7XI2ZljrOB+SJHTw26kZBJubBE6EX7mRZnTqvQdZDOh85qOXbj2LK6bB7dRJRV+MLgFpKf5nOFfSoRreWp05ucKObMvdg5y+9qtZ+6lVyfF0Ldqc/KjcaTd7zd3DQDstz+dk3ye1vkdXexGx33Nteb3xJEW3O36w47u63frzf8hx87FIg5bN23AOZO1rd8y7fw1re+dfn9wcEBDz/8sHyzXK1fWy3RYtG7dCnrH3DGCFNgjARLdiGTDAcsHsh59FXP8LrtT/CLH/sUeGLIvBlCUgzPJUYXIrYK2L0aXbfyEPVB2r6KHHw3ce8F+50F8HLlaN1iOMVlVk1/7sropW4keY/K3CpPBUAb0iAXh7FO25MWiw5A9bbPSvZpNKYKuJkMemFoxWFHgZsGGYzHhvKkZXApEF0HohSQOvCiFalz3IlWgixRAnRMA7qzlF6Clt75jQ7IrbEqvWmCUklYsr6/rAeVumPPAJRd7hPv+/ZlCS7bLcmtxg8MMde4/RaVoNiBZsPSFrf29/XJUjf8nBzVPakjB7L7r673ObF1ws1EczF92FJclnyRqAXc1F2wofbgh3Qsd7cTBSoorJFxaLsoefn4Ar9TvpjddgSI1fDvH5xlI69wk4b5QYGyCZ0FqtYSoyJlkXZDXMaKywpTa0ytaTrNh1Wqs5AXhkK3EeUjKRNtiGrl2aoTYjiDbGPFvRg386gQxY543hIGrguDhug0OkjejZ17zLSiPjPGLhzBa3zQjEc1mQ4YlciV53IYo1XEqYBTAmJMZ6uq1+xVtUpEFJpEGRyaxInJnCYYZrOCWERsacgPgmR8rWWgpShaFxUlxFOJKKizsZbfQ3+dIE5jkiejSUNLfqkWxiYfk4zi2PsDl9UW7/4MxQObB2gVaYKljZrcBIqixZnAVN/+Se8LqQ47nhxGJH4n9S/XA1P9ed0K2DpMyf6uAhN3g4F5Hlkwh6mr79e7/+3/74bb++oO2Cj3FULgx3/8x3nnO9/JhQsXnmWd/Mu//Ms3u8tr1pkzZwA4f/48DzzwwPLn58+f53Wve91ymwsXLlzxPu89Ozs7y/dfq/I8J8/zZ78QE4m4dB3rmY3UsxiwWvHv9RXarNiAmCCzUDdke57dxYCLozHpdzY59YGAqcV9K2lFzJS4eM1KAS9NK/22qmuByjOoalJVr0BV0z6bCeoE/cropehfZZl83TMXIQmL1JdYrKBmC9m/0SuDgjUh/JK58AGzX9FsTaALuxShqVhxUkZUgMnHKlSCxZkc04VjxtwsRY/t2OBzxeBSwFaBesuJcPSZFjUvBVjFHpyoK89Dr/7OVOzspXvA0muVYhLTg6RlsUtppF+iu6dGL4X8xIieltjC4QcDQqZJ2xnZboPbq9A+o928/yn/e/I5uUd1u22Uj+pw9cnAwtyLz0lx2ctCDZDtW1wZCZnGDxRultABpg9pQiHBktmetLEmDdUJRRhErAk4Eym9IybFOy+8ksJ4fBfg9cTuNsdHC7LcE4JG6YgxEasj07LA7ltUAD+JJG1oNhUqGfL9iC/UcpKuomgYSQm/UdBsOKJVFJeajk2X57JeNDByxExL0LFCWpm1IhQWu19ChPbEUN7XMR39c91OW46/13Juo4BRRRsMNl85moGI8kPSTEPB0NQMdYNTQayUVeAgFsxCTq49QSt2FpuEpKm8FeDWGFTbjeFBLKljpsUgRqllt4DqMsBE1K+WHeBE0XLir3z+69rjpgozr1GLmuKio9nMUAlO/EHiEw+MuWQCE1dRBYtRqWupUxid0M39I+K/Ud2pz8pzjSc3EvDf7VqfdF8PrKwDrX67/uv1ba61j2tte8/qLmTrrN+DvzV8/IYsTD1t+PXv/Oih9nvTn6hv+IZv4Bu+4RsIIfDqV7+a1772tVf8u1316KOPcubMGd75zncuf3ZwcMBv/MZv8MY3vhGAN77xjezt7fHbv/3by21++Zd/mRgjb3jDG276mOtBnKnTXqRWmIBVsOWasL/XpizftNJrZLsV7a8d5/9638sZPS0rcfnlPvxKiyC+lIAumvaK46aqJs0XnWA9dmLCtYk4rMI2Ozvl1HoBL8ZIqxhcqWPRklWzdDerG2kXC2HVilYUK71J6qycQyRVFXouqfTVcUO9bZmfXoVgJqMoj4vQP2biZhMKYTVCoWm2LLMHM6otCY6MmVoyOCpBfn62up8hyICY0vJ30Le4pR6EOfssNiyFKOAFrsyD0Wv3rttn8l7MFhrx8w+5IlqZODTb2TLI097ESsC9qnvxObkX9UIBL0cMyf1Z9+RzEpPoKoBiL6DbxPy0Yf6AwRdKHMbmCd3A8Blh5SdPtRT7kegSySXmZU5MinmT8RuXX8xHz5/gA+dPcVAXXC6HKJUYZzWDrBXgYgO+NdStJexn2JnCVAoz02gPizOJ8qSYlAhoYQUuDmrMoiXmhnpTwhvbsaXZdLLo5rSI4INYE+sQwSj8wNCOuhbhjUKYGgWm8jRbrgtQhpTJvdj48Ixjv6fZ2x1x0OQcyxZk2hOS5ky+D0CbDIuYsQg5bTLU0UneTPe1UYmpL9hthizajLIVkX+5yNFZwM4Vw6cVtvTL9rj+GpatXCmJ1XUXDQBIJkyngcFqVBQ3MrRChYQ9qFC1h8wt89JS14ng9jT7e0MWPmO/LvBRE6JGq0SIirTWUnY/193+rHzVP4jPAgPXm9hfk525jRPwa4GS6+pvDlHXAy/Xusblfu+mNfMN7t26ffX9WjfNwPz7f//v+amf+ik+93M/93kffDab8eEPf3j5/eOPP8673/1ujh07xiOPPMJb3vIWvvu7v5uXvexlSyu/s2fP8vmf//kAfMqnfAp/4S/8Bb7qq76KH/3RH6VtW772a7+WL/qiL3pezkp9InwKYZnsjjFiHdwzMebZ2G/ZwgWYnRlnfiPjaTtg91Mj0xdnFJcybJmYPazYeDx11sJ+2RaWYrySdfC+E6uvgab+f2c7Ab5oPdbT6ZfnrPUS6Cz/7/ah1htye91MuxaWCeCUnIO10HqyvZbZA3YpvHczETdWxx2mSbQjg5uDXUj7WXnCoLoVOF+AWyRsLY4u87M5ycD4qRq1NyX5sHIO6/U7/e+hz+LpW8li1xqX/OqaYpR7ACvmKATpLnO2c3GjA5xG9qmFncp3PdUJhx8oTC2Wmckoubf3Qd2vn5Ojurt1BI5uXPfb5yQZTTOxmFJ3ukBoJ2KfrEIHIALk+wnlwecKU4sJSr6rJEPM5dSZZ1LULFrH5qQkt56tosSqwI6RUMmqtRSDhra1xNpQthpda8KwW+BxiWjU0v63HfaZKBbtwTQR3TgBNAp0C80YZg9Zit2ICpboNIWP6FZ0I8n144zstx1ZacuyInD3QyfuXz5doZ3UlafYj6Sqs0/2OT5pYlJolfDR8KLBJeroCEnTJkPVAZgqOuYh45ib8/Rik9I7ytYRoqLxFl9Z8IrNj8PkKY8fWGzp0aXHj7OlviU4jUG0PXbetXArsU9Oay3LfWRAUopkNaqJHePUgbkobdAh12R7iviSSN2xL0kltEpkNuCDJuX3z4LY/fZZuZm67e1b3SR+PWtm3TzglrU516n1jJv17ZZfXw0q7iSQWd/3Vce9My1yUjdyJ7ujLmRZlvHYY4/d7NuuWb/1W7/Fn/tzf275fd8f+aVf+qX8+I//ON/0Td/EfD7nq7/6q9nb2+NP/ak/xS/+4i8ufcgB3vGOd/C1X/u1fNZnfRZaa/7qX/2r/OAP/uBtOb++FQtYaStguZovG/WOZKmjoTv74hjJntzlgV9XXPifCqYv87QbGlMq/GZg9K6Impddqnz3YOup+rTmItYdO4W4mqwbsxK89+dD18qm9dJBTQGsMTPL87+Wi1fPUlwDmPUBkvb8PhsjSzMR5zHTRHQdiEZawdx0ZTIg4n0j4GUAxY4I/aNV2DJSbWkGOxH39L6YJeTZkk2S81PL1jallICSXsOz1MCsAzKzfE0tLZRtB3hS33e2unaAPEO1Ht0ETG3whVhK18ccvlCE5v4AMPf75+T51E9+5vQ5ncheKOzLJ3O9ENrI7rfPSVKSbl9vGKLtHkEGdAPNhjACuhV2IhYKW8siUDRgSxicU9S140APMccjPmo2CnFxOpnPqKNlX0ee3NuiKjMGwxqtI2puSJkwOKlRJJ2IRaJ8IGBnmjCAxWlFNk00mwbdJnSrybvnXztURAd+KHkpdqEIzlId15gmxyw8pg5EJSwSyKJVtAo/Mpi606w0YugSMo2pNHGgBURp5H8rz/GPz7ZpomE7XzC0LY8MdrjUToTBQJNrz9znDExDGTLK4Hi8Oc5ePaDtnDcXVUbwBrzC7lqGlySksx+nY2bQbSRmmmgVYaBJlbiTESNEunFD2suikwweZfWy0wCliIXDTCthZ9qAitKi12wYTAPxQsGFfMyoaJjkNSPXUHlL2ThUff+0kN1vnxU4HDC55uu3wYFM6h9dAS7Wj3c1E3Gt81hvI7vRtjdiNZ6rbe22V2cfDTdmi+5EXa+N7GZcyFRa75s6RH3/938/H/3oR/kX/+JfrCaQL/A6ODhgc3OTz9r6f2LtYKUXWW8/6pmJ9Qlwv00/we4BTErCxigF1pDyjPbkGD+y7L9EJvunf/USalF1upZOv+L9yp55XVuz1qp2BZDpzQWUEpBS5AJY1lzMlm1YvcFAx9KoLHu2+L+/nquv0+hOzG9Im2OqsxOS1diZuKaVpzNsGXH7LX5kCYXoY8rjmpjB+Om4DFALmdiFqpDYeO9l1MFMmKceKPYanP7r2J+LvvL79fvRr5j1vy9nr3Bzu8KGGdbMCQzkGXEyoD49ot4Uh51m01JvKNKi4t3v+Ifs7++zsbFx2/7eXqjVf07uVF0PyLwQAcztzoO5H9iX6wGYVAXat7336HPSVf85+dN/+tvQwyH1pqHa1pha3MVIEAYCDvK9RMiFFdn8mKfZEHfHdiDaGIDpi6A57XHjhlPbU5wJtMEwcg2zNuP85U1iUOSDlraxxL0MAmS7hmxfWJ76eMIuFPluEne0aSLfk2dotAq3iNh5QEXwI0M70jQTRTRgagFfizOK7T8MFDsNZt4KKGgCYSBMS1IQhhZThk4cn4hGd+1kAT8QxsJUHj92PPWnHeGlJQ+f3KUJhpODOUPbkBvP3IudvlURn6QN60xxwIVqwuVqRB0svgMvtbfMypxqP0fNLcVFzYn3egFmdRdSqeU+9Pb4SYsTnKmDjGMdiElOC7tkNKrtWCYtxjO9CYCqQ9f5oIi5pT5Z4AeapGD/pYb0x/bZGFYMnbSGh6jZXQyY/27B4//4aDzpq/+c/Ov/VTMsbtNc8mbBzHO0n10PbBxGE3MzdUODgDvJwNxB/ctzWWNfrxZV4qv+QTzU5+SmGZhf+7Vf47/+1//KL/zCL/Cpn/qpOOeueP1nfuZnbnaX908ZixqPiDt7y8n/UlS/bFtKq9aijvlQzkkLVNMuk5dF+K9RzqFCJHuyJguRweOFTKAXFbTygEt1vXIXW3dB65gdjCbVHagKa/bGEXEXi2mlFVm3YO5ZnC6QK3UtU3J+zYqt6d8XI6prTUsprZrMUiJVlYAgIMsds5eMiS4Tm80kTi3thqMdSapzKMRGk1JWIqNVBAe+UAx2I5P378DegQj3Q1gBir5ilHvagcDlPVm3tI5yzkv1ZQ9i+la/Huj0YKz/3pjV77b1qMbjDhqiyQkD3bU9qP5WHdVdqnWg0oOZFyJ4AQEctwvE3A/gBV4YLMz9VCrIBLnYSZhWAiWbiaYZK4qdiC0T2b7HLlqUj4SRww80sRuV3VweQFsfVFSXHAcvV5xPiuGwJrNBUt5bCyqRvKG6NMBODVklrIk7gGyaKHYD5Z5h82MlSSvKk5LFZUtp7wqFEjfJNmIqj10o7MKhomNxUlOdBOXpwjcD0WjSJMPMV7b/ftA5jS08dEw7KEwbSUqha4/tXL96XdDJd0cu+yFPqYTLPJOsZu4zciOhnYs2I3YUz8C27NUDLs5HS1F81VqUShTOE6MCkzClYvxkZzhQR5pNix8osTyuujY2B7ZK2DKRDCtBfxSLZbtXyaKiFrfKaOR8+7FdGYWqZTzVi5ZsR2N7G2qrOPfiEfZMpLByTaV3+KCx00+OBd87VbelVes2T8hv5nxu9dzXWZdr7uf0t98ZEHO7wzuvquuxVLezbhrAbG1tXTfQ6wVfbUu8tCNfr0/66X+kVuJxWLEAvXalz2Pp2Zpev+I9qW0FzBzMlq/3gvpla5NmBTp0t/82LZkdjFmCHEXHvvRsUbePngFaga/1NrHYPZj1ksXpz0FZSwJhZ4yR73ubZuM6hsmQqgpzYZfhwLI4W9AOHTrIIKi9iEKTBlMmsmmUcDarCJn0VW99pCZ7ag81ncu1GCOAbJCTxgPC0EnGjE8irmwjZndK6kwElvbIXUuf6trElnqlkJaObBhDarpVs57V6dkmLZojFSNqUWFiIo+J5lhBc0KMCHoHoaO6+/VCBS7rdTtAzLXAy99pfvya2/7L7P/1vI51mDoCMYev6DSpe86aUhZabJWEGfCswEsdUG0gbubL16KTCbYt5RmUHyiitVQnDQfHLTqXfBZjIikqaDT5RUNxSVFcjvihWDUDaJ8o9gLVsQzTRIID0ySShWZocPNOkN+VXjRkZYv2BdpnLE5o/KhjYxpxUovOYEpPigLSQFzMlE9ENLb14kAZEqbpFv96e+IQiWiKnZbikmFvN8ecFO1IiBof9RLExKTIrefifMSiynAu4EzA6EjbGoI3VCojJYXSsqjnB1BHQzPWzB/QVMcTySZ0I7ojP04Mn9Zk+4l8X9GODMWltrOQTiStxQK6kRY0lcRNDYShCVqhGt+1j6cuR0bapYsdz/CJjNm4YJC1TLIapwN1lV2zO/uoVnWzrVM31Jk8tv+c73/zh6Wb4HrtYrc62b4WOHnW+V1D+3JDtuIOMSX3hQva86ibBjA/9mPXF9+80CuFIJP1uHK0ApaaEmC1yr8uCu+dvDIDrIEXeoDQazIkHJMQhTlZcx/rDrRiG+CK/SzDG3XvhiZsSW84cEUbWCdoT50tZt8+dgU7AyvBf9/25uwVx16yUEGEi7QNKE3yHvf4eTb2N5m+fItmopcDbcgUpgES1BsatxBLyuEFT/70DL0/E+ZJKbCWeGyC3yoIucEPZcA3daQdafygoB3B8OKYwbkad3kuzJUPpEW5uv9aoUy2aj3r83KWjm1xBVz6a+nZmG6CoeoGsw95gqQLyas5AjBH9TzrVkHMzQCXa71+J8HMEYg5XJnKowYZugwY1QdHyrM3FIZQaJJ2qJFYFrcTsZx380h2EFEpLRPfbRk5+e6a+QMZe69wJOuIBnwRBciUIiIfXoi4WcQPhfEJOcxPW+otRRiAbgwhh3w3MdhJ4r6oxNJf+bhc5FJlgzvXYmY57qDg4NGM6pii3nYkBXbRZb8sPKpsMf3Y4iPKdUYsMQn70gSS1cvwYxICfqxm4+OeZtOy0AOq8YJpWTAuag6qnDYYjErslwVVKSAFoHACiII3+JkDk3CjBn2poD0W2HvIYzNPjJrhsGYIZFZAj9GRRZ0xP5NRJ8XOwqFKw9Z7MyZPBeyicyWLSboVetDVBKIzqCbiJw5TO9pJRijk9xmdImRix+xmUJ/PueA14YRmnNdY5wn5H8nYvZuq2zWh7sHJTb/vNrhuXVOY/zz3c1TXrlv+RF28eJEPfvCDALziFa/g5MmTt+2k7ll1+SDKmOWKvrq6PQkk0b2bgKe2Fe1Jl+ZLCKQOdCitZZXf6NVEuV+G6X6e/Nqku29/ApZp9LAyEOiYBmXMszJTrnBM03plCX0NJmnJWPT7vqJ1Ky3byUirFrNV4n1nrxwT6mDO5L0tcWOAn+QkozBllNaJKqB9xOwuhCUqK1IHDFVRgNH4B7aZPzQgONHFmDriFgGz8GR7iXbi8CMZ1KtTOc12hpt5sfvccbJP70l1A11+TwoRFbu8HKVX7mVX6ZmU1qDdipVqPQrQB1CkRH28oJocPUCO6vlXD0aeC8jcqFXsucDL9ba/U0DmCMQ8d2kfl8Ag5lb0IFrJpD9BKDTzBwQYuEXCzRPFThDxuxILemE9xLnR1R3g6DN6A5iFprgszmWmhnagIGmyacLNEiFXqATtRt/KK8GZySh83jloFYqYGYyXZ2EoDNpqdNmiy5ZMKQaXLdFqFic0bp6wC4hWo5xGewEsyWgRwbeBMHQikFepG39EFI9ShEJjEVCQHbRMntDoxnLOboNJNLXFuiBBxSZKy5gN+NbSVI6d2pKCRpmIXhiI4CtD2gjkmxWTYY3RkZgUdWvxQTMpRFB/0OQ03pCiZOboPBB1YvZIRsgtk6fEmMC0EbtooIWwPcD4iPZimZwUtBsZzaYlOIVpBaxFK0HNtkwUFzVhmnMpKPYGnuA1aXS0IHaYumsC9q6uBThuB5C5VSbnrgv5X8B10wBmPp/zdV/3dfzET/zEMsTSGMOXfMmX8EM/9EMMh8PbfpJ3rWJEWbNytbpi0qtl4usc8diE8uyE6Lo8Ey2JxLoO6FmDajt75Bhlooz0zyofhMnp2QHvUYPByi65Ewb2lepm5TAGoKMwDbCyDPZ++X3q97NevaHA8tsO9KyzN73YvyullGRPrrXLpboW1qgvrUizOSwW6IMZuVKrlrC+LW5dSA/C6nSaqebh47QTh26F9i8u1GIMMBdBZTIaO/cSMmYUIe9WuDYtzabFbRa4XWlnWx4jJpTVK4YsBoir75XT4JxoigY5yZiljbVq2iUA1fsL8pRo0xHnf1S3r25Vy3Kz4OVa771VIHM1SGn+/u9d8fURiLl+hdwug9ZUlEmuLiN21pDmClOIg5VpDPWWYnZW0w4U42c8ySiaiaY6rlicSZhKoZLFDxMhT6RhEOesykBUjJ+ORKMIBczPaJIFU0pApl0kNj8ik+96U4xVTJ06dy3RJrZjK7lcUYT3fmQh5phabJPdgWeorWhijkmOjCsTxSUxE9M+CmvRBRArH4mZEfYexHI4SftYaqWtWDdASIyfanALR3bgKE8q6pMOb1KXHSMMk2qEiSIodCWtYNA5vR33nH34Mp9+/CnapJm2BQufEVFoElpFCuOpgmhmnI4rG+muTW06LpiezahOZJz6XUusIqrNMbNa2rmVaHfqY45mIsGdzVgxfzjhJwk2vAAuBbEyqMqgK4W74LCLDJ0lQlvd3T/AF2h9sk3abxbIXK+l7PnWP3/kh27r/v7ux7/utu7vVuqmAcxb3/pWfuVXfoWf//mf50/+yT8JiLD/67/+6/nGb/xGfuRHfuS2n+TdKuWsMCE90wAyIc8cbE5oT29Qns5oRmKtaJq0tMasNw3RKGw9JNsXUOFmvkusNwJw2iA0fUhLdxM/dKiUCJlGtwlTeuzeAjUrUUgGCpldZZr0tc6c9G5k1gpAald2xKnPh+nBSuaWLmvK2iXjo3r9Ts9c6DXrYmdRg2LlBra0I14DOL17WgdqlVKkphGDg/U2N2sJpzapT2ToJuEHWlYYM0OyCuYiflW1sCj5bk0oLG6OuPcUhpAr6m1LuzFi1Ab05SimBJnrQKBetYdpUIMBaZDTnpjQbgirkzRdArP0iLtpIN+p0QclxIheNBRHIv6jusf1fMDL1fs5DIh5LkDSv94Dmebv/x7uu179vM/vk7lUAtqAm9UkZ4iZIeaWkGvK44aDRzXVmYDb10yeTGT7rVj0+oJq26E7maNqhXXRjSJqDbHLjUHMUYrdSBsV9abqsl0StgKSMDO2ShS7kZCJtb3qxxMlY1jINCpIjku0imTEkUxFJ687hR8q2hH4kSJdhmyqid4s9S8keb9qu2d+z0B1+wZ53upWWtDonrHZvqe4GAhDy/RBR7MhQCtkhjBM2LnqwJhcT76TyOaJ+RnNwXH49ONPseUWHPiCfRRD23DQFqBgaDxNNJxfTFBAbj1l66i9IQSN1gnfGlCJMEyUxzTbH2rEnMYZEe/7uAzBrLY17RiqU5F0rOHEiSlGC1O0sz9CDxPBJoLT6MuWfBcGlxKLlQPxUV2n7peE+ttx/NvJ5txu8HE76k6dU1iUwDceatubBjD/8T/+R376p3+aP/tn/+zyZ5/7uZ/LYDDgC7/wC1/QAAZtZHLvLCi70o4c22T/1cdohzIIuDJJKu8idpbBQh37AqpjmmzsBODUYi/phwpT2Y5qpqPSRS+igjij1NsyqCSd42Yjjr+vJn9iB1XWK2Zlnd1IauXelbo2tV7kDzKJN3RARKFUl0C/bo+sO4F+b9O8bk4QkxA/mVtZOfel1ApU9W11IAxIz+bYXmfTSsudc5AScXtM+cCIpBV24TG1tJzZWUMorDjU5AZ7UKFnDXGcCSsD+LHrVu4SppIBZfHoBqO6QU3FuGAJXlKS4xY54cQGsxePl4OyLRNuFpeWmton6i1LecLiyiGDcxX20gxzaXZH/9w+2erPf+HTN7X9f/6pWws8u9ZxbnVf93PdLvBy2LoZNiX73tcuQUz7tvfeqVN6QZduAzhp10pGw6Jl/pIRIVdceo2ieNUeJ8dzBkktk+QvvXTIM/s5uiwkx8W26JEnBUVqNVsnZzTdxLttLCbzzE87ZgsLNqHygLGRGKXtKkZN2M9AgS412+9VopnprJFtnTqr5CRZJm0iONVldsl1JNWBmQFLM5akoDouPWmbH4uEwgpASYmYG9x+LeBlHdB0OiA/MNiF7DcMNLYMmNJLy/G8ZXvakrqFPz80LE5qRhc8Ppextp3I+cwe1CzORj77Ne9jZGsOfIFWiWPZAoCRbQCISeGT5sHxPlZFtEpsZiVaJZoodsznzISyzqi2NZdfr4mu4Ph7K2gVzaYlGsXBizPKU4r61Qte/eAzHM/n5MYz0A11dJTBsT8puFSOyY1n1mZc3h5R+jGmVmy9v74nf4cvtLrX4OV2Vd8CdnU+zGFbxNbB3K2wHW9+S+D1P/Mvb/7Eb7KudW6Lr//Xt7Sv4Q9+ldgoH3L7mwYwi8WC06dPP+vnp06dYrFY3Ozu7r/q7XaNZIWkjRGLRzeXzi3FjieaTnCpkdamXDzltZfJfDtSDC9GCSkDsnkUHce2hIZFJ4ODqcG0EDL5Wc8yNJtw6dNyTsZt8scvSRual1anBF17VMcSabVqk+pbtjpnr2VmCmvi/X476JLu17Q2vQanF8H3+wtruThd3s3SuGC9UlqGUaY2LtvFUrevtDGifFDscYvLDaqJMrh16c1m3uK3ckARxjlm0QrAU7KKqXwSkWW3uudHimrbkJ3dJPtIjaJzu2mDtOY5iz+5wcFjI1SAbCrOPboLWrPzSLKK6DR2EcmbSLVt2Xv5kC2l4Jkjyv+wdbPg5Vbf80el7gR4uRELcyutYOsg5qieXUkrVIiYWU0Y5zSnR5THNZff4Pnzr30vPhrK4Jj5nIFtCVFTHPNMRxk+GKwJzBYF1ga2RiW7M2nPbhuLyzzRRPLMo3WisWJF7FvDZFySkqINhrrSqKE8F6My7L7asPUBsRLOpglTJ7SRwM2QKepNTTJd0KSS9jMVEXc02+XIjFXXboYsxOXCrqiELGIliLlF156oNSrqZZCkH5rluBidWmayJKuJgGk8pmxJlUK1Ft1Kfk3SisG0FZ3JZU071swegTOfeoGT2ZTL7YiBaXEqMA0FdbRoFXEqUncgZWhbcTXTno2BPNt3miHnFxPmZY4xEWUjyStmD8PGx7pxMEGymoOXQnuq4Y0veoIHB3uisYmOvXaIVompz5k2QrOMXM1OOSRGhVIwedJjd8u7/Sf4gqn1yX5ftzoJvp01/MHDTqWvrB58XH1dV//8Wu+7HS1kT/6xr+B//W8A777lfRz6WKe/god/8/9zxc9u9b7dbN00gHnjG9/It3/7t/MTP/ETy1TWsiz5ju/4Dt74xjfe9hO8qxUD2EwAghZHMH9shF0EiiQP+aQVOiTcPCx94XUr/vZukcTrf7NnQcDninw/ke82oDKUl5T68qSV96eECorBhYStE9WWorgsK1zTh3Lc5SF6dyZMxlX2zUugASug0jMibXPltZnOIQ3kPdpAaFfuav0+lF4BE7PGriyzVwLL+OUe0PSMR9eytQRIHSOknCVuDCkfGlNtG2yVCI0hDSx+oHHzsDy+ShJ6hlLLHmqlJSRMtwFTecozA/xAMz+tyQ4Si1MZ7uIINS9JVb1ke/zpTWaPDMn3AypIfzcxoYPkFrhZi6oS7STDNR7lI3agqbYNl14zYFQcg4/cyh/SUd3t+vNf+PQnDQtzJ5mXa4GY56NjOQIx16+YGVKSZ2ByhtnZjL1XJt7wqo/goyGi2MpKjmUL2iSJ804F9tohU59jVSQ/6bGd4MMdDxy0BU4HyiCLQ7M2Z68aEEaKzbzi1GCKU5E2ac4vNsiPe57Y3cYHzaIZok5X1OeGFJeSuEUqGH2iZPHAgGQUizOqAyygG/ADYTtQ0jrWTkTAP/l4ws0jg0sNSStmZzOaiSzCZbOIyTS21PihwdRRLJSDgJWQy/hQHbOETDG8IPkxS72MUYSB2OmbKuD2W5LRTF8yojymiTnMHo4cf8UlXn/y48xCjlGJTVuSK49WCUMkoDFEZiFnYDIGpmHuc6wOjEzNPORoEqeHU5pgiElxYjLn/N6EBpg+YhmdV8zOGMpTivyVe/zpBz6+bFXbciVW1xzPZixCRh0N2SAQk0KrxPHhnFHW8OSLDefCgONhDEdk5aHqfgAvcOvn8a+/Hr5KP7f75PMJv7zxPv/fvOPthif/2Ffcln0+Vz35x54NYu5G3TSA+YEf+AE+53M+h4ceeojXvlYGvt/7vd+jKAp+6Zd+6baf4F0vpURcX+SkzNFsOtzU46YeFW0n3Bc2IGXCvEQjSca6Tbg5aK9phwoVu/wTrzGNxc4C7YYlZgY3T6gknvrZLMp+Y8LNJYNERWiHipS7q6yQldgvp64XTRuWisaw0n2si9eJYQnKlBYNSwpR2sOMEXZHG2jrK+2i10GJNizDNUkrK+J1YU5Yy8Pp7JaVtSRraI4PKY9bTC2Aa/qQk9W/AKaW+wgiBhXLSr38fYTCigC2aiGKW1kzkX5kWyfakWbx4k1G76tWQZ/DgvJ0gS0jppKVv6SVgM3Y6WxaEcK6aUMYWmIuq4PFXqLaVsweOrK9PKq7W3e7bex2lPuuVx+1kV2nQm5I2wNQimZTkU5X/OHlkxidGGUNJwYztEoURtpky5TxTLlBHSxWRUauJiaN1YHj+ZyBaamjTLabYLm0GDGvM0Z5w/nphLGreWi4x347YGC7fVaOomiFSQiiJclm8nwvLtTL56JpEm4mrcy6EbezttNtJAN+2InUuyDIwYUGOxVdT7Fj8ENLeVLa5ZwTlgbADwzaJ5qJox1qsqks/oVMTAdQyEJVx6zHTMbIkGtpLdtfoOqWUW7ZfcWA9uUln/bQ02xkJZfqMVpFYtI8OrjIRFdMjLArVbLU0aFVIu+ERL5rnx6ahkvNmIhi05VUA8e0zbk0G8mw12gWpxUqGsoziuqU5w2nznE6P+BiM2HuMwbd78xHzcVmzKVqTKYDe/WAcSbtYkZHssJTv6Ti8r6D/3zH/+RekHX15P1ureDfat0s8LheO9m19nktHdDNtJv1272v/H341ec8tdtSrxp82t050FV10zO0V7/61XzoQx/iHe94Bx/4wAcA+OIv/mLe/OY3MxgMbvsJ3vXqtBMYQxwPCLmWJ7kWkaP2iZgpktbkuy35ZXkYq8TKSjI56k2NK6X9KWmYPSCBjyCCy/xAqHlTxyWVXm0JO2GrKFqPoJZkh1glx5XQPupV+GUvqk8RfASXrYIwtUJlRafr6UT2MaE6/3paCeRKdSeC7/cVAuj1PJW+Ha0r7yX00tmVNmf9HhJR2pGGBXFrRL1tSVquPWnVXWdaXr9dhG6VLokOJiV0d7hmS0BkUo4wtDQb8gEtdqQ1L2Qwfcgy/EgGZQXOEbZHJKMoLtVii6kgZuJk00w0+W7XbtYBpdD9r73c/3xP0x65Xh6qjlrBbk/dC/By5CJ250r5iFaR6mTOpdca6kcrXvOIfFYy4xnZhpFpsDrgVECrRBkcLx7vUAeLVomRrRnqBqcDIellMn1Avj49OOBiNcbqyMJnZDpgiGy6Eqsil+shWSZaGKIiTp2AEy12ymbeEsYZ2X5Lsg6QFrJk6cT6fbAmJC1t0skkpg9r6knB8LITM4AE2YHoZ0yTaMYy8JlWNJ7tSJ6v7VARcitrbyHR9plkfbxA0iQrzE10Cj92tJPjJKMoj4sg/uzpy7xq4xkO/ICIYqAbcu2ZhYI2WoyK5FrARZsMRq0e5CNTs2lL2mSY2IqBaRmZmlhomijjyvHNOef2CuoTgWZbkY7VnDg+Y9OVLGLGyWzKhrVLYNQmw8lsxsC0xKSJKMa2JqKYtTmZ81gbWGzmd+Gv7oVd9wvz0tf1gNRhQMv18mCuJe6/OvjyzW8Jz9vQ4JV/8M5bet+tVOTtt21fqSmBbzrUtre0xDwcDvmqr7q/EfIt1foE3WjiUNxXdEhELVR6MIpqSxMtuKnCVJIY3/f8JmdwM4UKpgsukzAylUQ8rn1CBdF9+EKRhvJ17zQTLdQTs7S07MWPAMoaSV3uahlOGelsnl0n7O8E/0YTt8bUJ4Y0GxZfqGVbm2QBdCnNu4HhBy+JYUDTdurOTkOjFKTOjnjdgUxpVJat3S+zuofaoPJMjr85ZPHggHpDY+uEz6XVLmQKSPhC04w10XX30irczBMKsd2UYDBp71JRBsPQAT7dysA62InUG5qUW7QSy+vq1EDAo1WYuWhpojc0W5Z6U5NNNWGYoWu58TqkpSV2MzHSRhGObMj+qNT3/OO/c93XvvUf33kh5AuReTmqG5cKCXJZtKkeaXjDYx/jVD5lpxmx4SoGumFgWoyKDHXDUDe0yVBFR5vkeWpURHcaxhqLUTDUDVV07PohMYm2owqWoW3Y6sTpyzZjYJg3VG031OedO1iEYqdFL2r8Vi5jUJOImbiTScuuvMUPEulEQwoKdhwKRXUy4QeKMLC4qbA3+UEgaWHFfaFYnBRTAFN3GhqfcKUcu95U6AX4IcLqFAbVykJgdDIe1BsyNqBgflYRcmGB3rBxkTYZ2qTx0bBlF2iVGJuKoW4wiFC/jo7Y3dOegdm0C9poCUmzYSuMijgVOPAFhWmXbmK4CN6gTlRYExllDWfyA5wSsFlFaeEbmpoulY2P18cogyPTntx49psCHzUhalnTO3Llv2aV/8sPwcYnweL3TdY6G3O1yP9a216v1oFOD4CGX/9K4Edv7wnfpdIHAX7qcNseCsD83M/9HG9605twzvFzP/dzN9z2L/2lv3S4I9+PZa20SsESzCS1mtDaMgpY2NQSBDaW/l7dbRsziwrSApU1AT+W1OLickuxI64rpvIM+mAzp2m25FcQrUIFGexsKRP88XmP2Z8La6IUKcaVfXJMpBSucB5TSoltsrWkyZDqoQ3mpx3tCOl37qo6obAzMG0CFLMzlsXJM2w8UZN/6HwXDLlWvXC/19usGwb096oHN1ott02ZI2lFNNJX3Y7kPItdMUIwjTBNSUuys24iMdfETNNsWEymcTMZeJrtrAM9oAO4eaAZr2w4VUCu3TlS5gSoDZQwK4Xc43ZilxbY0SnascUhICdpRRwIq5XveupjFt0cAZgXSt2q/uVGwGV9m7sBYo7qk6tUiLRDS7Oh2Dg2Z9RpMLZcycjWy8nwpl1Qx1XG1tDUMkGPlkXMcCoQu36sXPkrAA5Arr2I042njYaSjHnI2K2HZMbjTGC6KFBBLXWbKibsnrQ56SrgJw4/1OgampMJ3coiUXSiS1Qmcfb0LvrBRN7t86Au2F0M2J8WpNpAq3AHCjvVFJcT0UE7URSXum6DMkkDgFNEA/MHNb6AZmxohxpbikmLSgk39SLet4rpQ5aQQ3Xa86mvepLHhhe41E6WoGQWch7M9wBwShio/TDsQI78G+oGoyJttNSpY2mU5//P3p8H65Le9Z3g59ky813PctfablVpAQtLDNgIIzCYYZMmcHfLkjEw7UYQ8sjBSGCWcNtm6bY7JsDdf1jjBZvBC9gO2wQesOw27R7LQAvbyG1jwCCBQFupVFV3P9u7ZeazzR+/zPece3Wr6t6qu5ySzi/ixj3nPe95M9/3PW9mfp/v5nRgPwy53oyoTODUaMneaoAymVxFRsOGDJwezNcBASkrnIqMTUOlZB9msVrvz9C2WJWwOjG0LcOypfGWWJycT241gx//LoaV/F0eJwbmpcjY7nT//xH/jzuSo72QlKz/WfrV/zfzb7uj3ThWs7rbDMxb3/pWLl26xNmzZ3nrW9/6vPdTShHjrfV9r4hRSmKAs1yQ67brSOm6XrTPmGVgfAlW2xKtWJ8pKHckdtLUkVg5slKdVlhBkpQW7TMqZ8LQYppELAUErRNZDLRTWW3SXlaxymurdbmiRCEL4yJFk53hPklRZe5jg7vkrd0vGJOsaJ3tdQkZSEYe164UOrL2uPSxzvNHCtrpI4x/bxd29qEv8+x9MkdKNoFDf01P/3c+GaU1OEseljSnK/G6DDJ2BtU1j112euTutSh3BfikQhMLzWrbYuskmMgoYqHxI4nQrPYi1aVGtOUbRoBkJZpslRJYA84SS0Uxk5Sz+owlDBR+IAZSt5D+GTeL+Iml3uoYrwjj5yT+08261/hkPmvndsDL0fveKxBzwr58do72iaignShy0ixiweliwaZbsm0Xa3Dis0GrREQx1E1nPs84I+efRKdDRi7WfTbrC/WRbdayslkoKXTkaj2mMAGrI3NfsmodMSqyS6iiS2BcZXTbsc91IJ4uu0h5sEuFqeU+xb6mPpPZ2Jzzfz3/ezy92ma/rRhaj1aZlBVWJ/b3h6hBxleJWFjsSmOXUiEQhopswXYFlNIDI/tsa2inCu0VKiVMLcdhN/ckqyWSeZ5pziQ2HzngkeEeTXKEJK9HSIaprdEdOPHa0GQBg2NTk7KWIkvluRYm7IYhpQ5s2CUpa/bDkIv1BrO24tHRHhNX46NhxySUFfZqXov0axYrPrXc5vHhDht2xUNul4SmTo5tO6fSnst+SkiGOjoKLe9fiJrCRrI70SR/NswLgYiXAnruRCL2fL6Yf/gnpZMl/eodb/4VPbcFYFJKt/z6s25SEvZBKwgRPa+BIe1EYiKLlNFtpLoSKfYMzVbB7FFDqAqqnSgngJhQZGJ5+IeWCo0OkVAZ/NjgFhE/lESzMBDmpVgkqh3xg5QHkeGzK8y1g0Njfme8V1UlMi+6WOSj7Muwor6wyf6rCvxYIi/7ZBgdoFwk7CKupW3ZKuotudgvDyKh1CzOG5ZnT3P610vMs9ekIPJoqljfJQOgj0Qt970xMYFDzPcj6R9QOVPuy7ZNE8V3EgW0qBDRShO6kjDTJEwhAEtFAX/NppXysv3O5Om0FKdFCBMpdiNnKQlFIi/bsRRkNlORHqhEJ0+QXa+ueZLrewkUfqwYXk4CPo2W18ifAJhXwtwp+3InwOXm3zthYk7mTiZWmjAEXzsuLyeMTAsMRcrUAZFllAvk025GRK9Zg95PAcLKpKzXkrKEWntmZmFIkyxttNTRsfAFWzoyayt26wHzRUXOCj03FPuO4aUuFdMHSIk0kHCarKHHSu0GLB7NnH3dFc4WLRdGu1xtJ1wY7DB3JVYntJoCMHIt1iRiUizrgkZlmlWBDgo3l2NvMiL9datEsReprmXis4Z2olmd1mgvZZZu7ruCYTEu+rEsLulasTGoOVPMmcWKVSpoomXTLdmyS5yKVEb8KObIwpPuJGLLVLJMBaUOTEy9Zrd2/EgSw6oFE1cLE2M9yRtMGSlNJJcthZZ0sccGuwx1y2k7Yz+OOGMPWFCuGbFtu6CpLCkrnlqcOvQsJYWpTzRkt5rjKCF74okPAH/ylj97/wXgrxx+/+0/9xUve3s/9bZ//6L3+fqn/363/Xes9+Prv+fvy/e/LMjl0ld9ycvel1fS3PEn6h/8g39A03xmIVPbtvyDf/AP7spOPbDpLl4lYjhCiFTXAypJ9n2zZYkjR6wsYSAH3zhQLB7S7D9hmT9SMHu0pNnqChe7C+BswI8NqVBEJ2Z9lML43DEHYvYv9yPTT9WMPjkT8NK0hzKtzmOSw2EnS84ZtBbJ2HRM85iAF+3BzTMHr5aeGrJcsJfXG3QrPSqxkrZlEPai39fh1YQKsP95Y/J03LEqHQt0ZNvrskulb2RmugCEPChZnatox4ZYaMxKIpBjafAjSxxK8VmsjBSW9SbPke4CEVg3QddbCj9SksqmFakrQ9Mxr8spVRYJH3Tm2dAFKBgYXo24RabZUl3yWRZQ6TN+KMZ+u5QY61RoYqmlF6E8OeHczjzI+OL7BV7u1u/fPA+SfTkx8N/b6csdyz1I10oO6pLL9YRr7Yj9MGTXD9kJI5ZJvIQ9aOmBDUDMmpg11/yEK638248Ddv2QeSzZ8SNW0RGypo6WWVvSBMulxZTnDqbs7o+IQZOSoryuOf1bkc2PLtFLT64cFF3ZcqnWbHazneB1MzZfu8M3PfbrnKnmWB05U8z44uGneO3gMqfdjKltOFPOGbkGpeT8YW1CmUx7KuLHwrb05cFS4qzQMWGWHtNE8TkaYdbdXLyKIMdwojDls8c08ZTny898gqEWebNVke1iwdg2TEzdhSCkNeMCkLIW+V1WRBQbZsWGXbJlF0xMTdWZfEa24XQ5p00WqyM5K9ywRZvI+dEBA+eZuJqhaRmalmUqmKWKiVlxPY6Zx2q9/aFuOe3mhGzYWQ3xUc7b1iROCP1bz4XX/zueeOID63/HYZ566o/c8t/XP/3310AC7g54ud3pgUs/X//03/+M2z7X5o5N/N/xHd/BW97yFs6ePXvD7bPZjO/4ju/g277tFSy+g0M5FqBaj5u1mEYYgGZDY2uLmwd0zJT7kXpLs3g0o6eKckfKKWNh0EGYB7eU1ng/kovidiLyssG11BnaU0epZ9xBi1626INlx2Q4AQ0deFG9VKuw4osBsIZcFvgzYy5/SYldyQV7corleb0ugdQ+kZ1GtQmVE9qJXMs2iWQUy9OWYpGIrpOXActXbTE6mIN2wvqsTf1dUht0+6cPpWbdpKF4VmIhQC05TRg7VMjoVvZdh0QyGltH4kDjR0bScTrDZyy0BA54iKWc/NzqsARNJQFq/X6rTr6YCukXIEOxEJATKom/BoiFop1oTKso9yPVTlgDuqb3JBlI8SbJ3Mkcm/ls6Xw5mc/eCSPp+ip3M6NnDAenh2wOairj2fNDMaFnIylYqPWFcJ3c2hvjVCSi2A1DDIlSB1bRsYoFTkd81yez1wyIWVMHS0waHwyrVUFcWopLjmJfMX0qUl1t19JotCYNLVkp2qlidVaJT+NMw+sfusjvn14kohhZMbBfKK5zPYyps6NJjjPFjHkspcSx66c5aCq0TixUxfI1CfPhgnI3Y3ym3la4hUIlh7Ny/gmVVA3Um4bqiiI5g1m2ayDTx+5X45ZHyl0utpuEpNf+oVIJ6+JgLcUT077HkNYMCIg/Zqz9+jZNxnaP02TLPBTM2oqrixGhsZRDATi9FEyT1+9Dz/L4bDjn9okdWNqPA675MQdeDPwh6zU7xcnp5NjPiwGoHjDcbeBy24/3JYfg6XMdvMBLADC9B+PmeeaZZ9jY2LgrO/XAJsUjUcVS6Kh35wzGjoMLJcUs0441sXDoIKtDyUF1TQ5OdpXFY7GUg1tvOm9HluQkYUyHjKkRVmQvYuqIWXp0G1GLGuXDmtpHd4AlRjHwpywJY/30DIyzLB6t0B7Gz0aqa8LcVNeNsEZOsTxfYFppXg4DTRgomqnCroSBCUNQSQzukhyTWZ2xVOdPoZ+72r0+XWxz///R6Xw6fahAHIlWS0cBZ9kqmonI5+wyYueeVBgwIgkLpbyGbingRiR2oh/XgXVBmurYE7vq5HYI2FAJVNMzRPJehEp8L8UiM9iJDK4LwyMA0qPbJAZ+JV6lZJUUj84iudJrVupkXnz+9c88fF/ilF8OcLlb7MmJlOxkbmeS1WIjjJnhJZgfFFwdjlh6x9yX5KzYKFfsqCGFDl2TfGIVD7tLpnbFXhgCCFjJikUs1hfhKSuu1yNWXo63y9bRNA6tM3HmGH3ScfbXWswyYOfCXmSjULlfCDLEgWX5kMJPEubRJV9x4Sn+yObvsRNHXGmnvG50kaFumKWKZSzZsEvOugPZXirYsss16/G7/hzbwxX1SlilxaMJlTTVdQlxMY2cQ5OV433fBTN7XDG4VqJ9QiUn58MMpk2oZHjt2aucMnN+xz+M1XEtG/PZMFQNEWFZfHLrCOXeoxPRTHSNU4GEZpFF8jXvpHuLWBKzoo6Oq4sR1iRUl+FfB8fINZwp5uu0uA27AmAnSAdNm0Uy5rPFJ9sVWUpy2cB6DmqR8KlwgmCO69wJ83MvWZcXlZKdgJYb5rYBzBd/8RejOiP5137t12Lt4a/GGPnkJz/JW97ylnuyk/dtlJYGe6XJeEgJFQLlpzIbYYvVuYJ6rImlWqeS6Qjl9bRmaFQSU2K5l9BBddHJiVDJBbmO8nvl9QbdBHQtYEXVLYROpqU1OURJQsn5sGgyRXIbJb64cAIYlCJVFj9UDK8kquueVPQBAQk3T6jhEXlWSrRjzfIhhV1AKjJqBYPrIrkKA7WWlsUCVo+OGF+6Tg6dN6j3v/RhDT3r4o5GKmv8SMonJV2tA3tGunSKnRbVeJRRgCFZJfItq6g3DW6R0DGTs2JwXVqcTZvQbWZ1ypIsVHtywoxOURxETJNQrV8ntumQKWfynOwiYevYFaUV9AE+sTLSAK0VccvRTDU6CgNEJX6ck7n9uZcg5rgxLj0YOgEyJ/N8o4OY+HWQ1K/Bs5aZHRG3NNNCWJf9ZoAzEa0KkhMz+uXllNIGCh3YM4N1P8kyFKxCB25MoIkWHw0HdUkb5Hwco8bXltwahk85Jk8n3F4jkmOjSKUlVhazCuv9NHVA+RKSYli1lFqAwadWpym1p9SeSntcFraiUh7X0dleCQPhs6FJltODOctQcGpzzmxVsUyKuSogacbPyqJTLLrQm0YWynSrSE5CbIaXojBEORNHjlBp/CQztG3H/FgWseCsmzE0DfMoTZu7YSSslVmtpWRN1kzMqmO0Aj5blqlcF1zGbhUuZkVIhjZacu7KogHnAnW0FCay40c8Wu7idOy8NL4DT/K9IVPnjr3PmoHxnKoWzH1J7S1WJ9TJethtzRNPfICnnvoj921bN3tL4EZ51s1SrZ9627+/ZyCmf9zb9cT05v3P1bltANOnj/3Gb/wGb37zmxmPx+ufFUXBE088wdvf/va7voP3dWKEsuoa5Tv/SkyoVU3x6evY2Zji7JDlWUkgUxnK3bT2bJQHiTCQg19WYoxXEXSb1k3zxU6LbgN6Vgtw6RvvQwTvJRUsBMiJHEU2lo/unzFk74WNrkqys6weHpGsRCWr3PWZBFBeHr+dluSO3bDLiB5r2glorxhcz6gobfblfsQtIQykm6aYdSWbVQlt2zEvXYRySAJefHci7HpnlHYQu98Dqt1IGArDYussoM93+u7KotuIXXrqMxUqZuxKTKRuHgkDgx9r3KI37wswCUN1CEJKhZ8Yiv0OAHbBBr1pX9LVLKNLivJ6g2kT7VR8OKZNoMCPJcjAtOKD6aV+xcHJitlxmOMGXo7OK42N+ZvFtz/oXficmVRobJ3xQ4WtE9NPQBg5Vi5xyUzIgFEZpTJGZy4yxRrxYPilZuACMSucluNfGw2NtyiVGRSemDSNtyKpMpGYFYvdAZPfLhheSlR7voslFvtFHBeEytBODcNL3cLQUtiK6nrGb8CobNkuFsImZM20K2qMnTcHpJumzsX6e6cCjxY7zFKFH8lti3HJRw/OcJEpS6Cel4wvCqhbndJE+uh7Ydi1F6N/cl0qZieXjqWEsIyMdN+cKWZr4LGMJTFr5rFCIz0wEcWyk+JFFDFKV07dJZM1yVEnxzIV6zjkBsvVZkxIGqUy81WJNhmrE/O2ZHuw5MnBVYa6ZT8MGZqGTbOkVm7N8uzHIUPdsswlA9MyVZF9P8B34NNHQ3ppfYSfk3M/vTC3kmI9H3g5TnPUvN/P55qJ/7YBzP/4P/6PADzxxBN88zd/M1VV3bOdemCjVRcX3LXcd9HBOSlU3aAvtwz25pTPDWnPdu3yRpE0+LHCLjKqK4i0TcbUGbsImJVHL7tulShdLiqmNVtAPtzW2rSfs2hmVQ8YDvdLVcXhfaxhdcoQK0kzS1YO7u5AZGTNxGGXaZ0uo6IAk+qaRWWRaIEwRm4W5aRLwg81yoo8K1cFzA0QOwamM+/HKExQTOvnlk1CadkX0+Yu81801qFSnXxgiFsE6lOOwWUBRqZJrE5bTNtJzkynUw4iBQPWoEi30pcjpZZd7PR+fQgEgwAo3Unh+hjs5nRJudOSrGJ12krqmJHQANNkbJLXPCtFtZvgREJ2x9ODjZfLxNxt0HK3zfcnczIvNu3EUGYljLJPDOrM9GOWeVtycM6gqoirAqNBgzWH9QOVDaTsaIJl4DxtZwRPWeFsJES9Zlx6KVnjLcEblMk0Wxm7UBTzTh4LxIH4OFWU0uTkNKYOpMKsb4tlJiTNOXewloSVOkghZOfxKLWnTm59wV5qT50LDGkNaDbsilUs0GRK52lLg586rn6RptzTuFnHzKdMqATIFHtdxP8ykq0sQvmxyJ/RGasjs1ShVWao63UqW4VnFivOuX0AZkmuS5yK6M504rNBoySaWkXQrCOsL7YbLEJB072e1iRSUhjbhygohraV/hjyWkbWe14AjDqMbK60J6FYdjK/lBVKZXnMz8w+OpljPu+/8I4HAmK+/ee+4rZYmM/1uWMPzDvecTzR6F2ZHrj0KyW3KI1UTYv2gWp/TjkoxUTvDLPXTHGLhNtvyVZODnrRdAleCRWEFu+7V9Ym/J7tMV3yWVmgWk/W0sGSQ7cPPbCx9vAxtCYNHGEg/hqVwE+MdM4kh24TpkmEkREzfMgszxeomNn8RCAb2P08SzvNqKgp95UAH6VwM00YGrLRpKpAa/GJkNMRs373v9HrsAGlJIK6urJicWEomf6LRLkvMcfLc456W06apsnUZwq0F3M/gB9otBMgoduM6syPYdCt1IWMH4hXBSBbGF1sUTv7h6+jlm02U40faop5xs0kPjpbhamTgKtCQx0xy4D2iTA06Ea6Y8JAd5Kzk3kp80IA5PnAzXFmWl5oXikszAn7cn+n3tZErRleTYBG+8TWR2tGlxz7r3KEoaPZzOwNB+hTrRxabQccKs9qVZAmS0IU74vr2BmRPMn61mJRERsDrYYioUyiPe9BOdzSYOpEHFqJ9c9dUWQK6CiyZ5UhVYZYKNwBFEbkYyWeU26xbpp3KjIxKzSy4Up7Ns0SgEUqmXVSrlIHtuxCQMNGwpnT5Kw4OGXIpzMLrxn+dkWy4BaKOFCMLou30dby3PtUThUyyULc9jy73GRsGqyWMun9MECrzOlOSuazZRYrTAe8roUxp+2ciDrsiOnel3ksWYQSnzX7bUXKmjYZdMe+pKjJWbFXO8bTFW00PNNs8ZrBlXWq2TwNGZsaEFbHqcAyi7Tsmh+vY61dl2qmlATRnMxLn3shKzsuqWe3mlvJ1F4I1HyusS/wEgBMjJH3vve9/MzP/AxPP/00bXtja/vOzs5d27n7Pp2ELDetJH71oOLIz3P/vdJQNyhrUDmzcbDsbleHhnY4BB4ghnutD2VX61hivQYkNK0EJRgtUrKe3cjp8PF7EAPdChq4RSaW0I40xSLRbAnzYlcBu0yEyhBL1XlSpDRMVgZFSlbME2Ylz81PhG4PA00z0Uz659A/p6P+l5jIIaDKAlovr48r0G3s2A/5Xd0m7NIzjpkwFMlXHFiaLUuzoUX+FsF2iWymzpg64hbyGjVbDt0xOsU845aJUAmoKZ7ZJaeuQFMpVBPXMrDh1YSbd4WkIUv/jIViFnH7HrPw0oOgBNjYhRSouYOMVycA5l7MKxWovNC8UkDMydy/yR0z3zSaajei6kwymsHlFcWeIRVGIttHmuXpitU5RbuZSNOAnxeQYLedkGtha3QRyUkUAQBF1ZnVXSQBtgoonfCxkBh6LQtaKsvx97A8OYkCQIGKiWQMq3MQJpnSBmLWNMlJbLBuSVmzYRZU2jOL0tdxys5xKlAnYV+0EpDzaLHDtTBhPwwI2VDoQOkCqIyxkTBzZA3FDNwyk5wAFrtMuHkgOS3e0BgBJ17TqwV7Dw24Wo5JWXOuPGAeS0zXgwPiO7E6UuqAU1EKP5NhmQraZPHJMDAtIRtW0dFEyzyUHDQVKSt2lwOUytSLArVTkItMNpk8EXP/Kjqu+TGn3RyfLUPdSBqZSiQlBv79LmxhFYt1f48/ohvL9oTRfznzoMDGzezL/YxOPjo3g5fjAFjyv/st1B9+wwPb/h0DmL/0l/4Sf+fv/B2+//u/nx/6oR/iB3/wB3nqqad43/vex//wP/wP92If7++EgLK2u0jvJVPdBbsrJEoYIMeOmekYiflSihl7yVcPMnoWx2iykcQw3OHLrloPddOlnkUx7ad8Ywu8VrILSkvAQM929D8OkvDiFhmVYf9JCwnGF8Ur4oea6BTJQnNKsfmxyPwhQzYGP0bajzsvTnZ9+pchWTkJZqPQSskeKS1gylpoveyH0YdAqwt30AdLVBqhgsjDVBC5llkFlE9S4jk0ZK0wrUjVqp2AXUaSkw4WkRkoYqmFjYkZnMQyZwPFQWTw8euo+ZKcMjlFVM7oxYpYbBIHilgqqp0u2Wxke2k1dhkxC49uA7k06DYSKyPdDUEip4O944/Hydyl+dmtt97w/dt33/dA9uNez98svv2+dMHcin1p/+x/OemCuYczvByJMRMLWQyyC+nCImfsrEH5SC5Ehjy86GieKai3DCCsetbCkBSzTCgNy/OHrDMZ6rOO6uEFpyeL9QV40ziUTbTbkXrbSpDMQqHpovSNki6wzijf+wWra+AnsLcacKmdsuVkQW7eybMq7THkLqo4UyfHxK743fZhNsySU2bOVBsO0mDNUkxsDQPYbwX0OBdpomL6qSQFy/MEWRIl3Vxel2Jn1ZUJiwS4mCd0q3nu8ibORAotfStzL3TG2DXU0dFGy1a5ZGRaFrFgvxVGqE2WJlqMSkyLmjZaEoqFL9hbVTTeoXVitSooS09eWUYXNcnC6nxkcVBxUU8Zu4aLbDA2DWiIiH+mzRafLdfCeA2mmmRZhIKdesiidTSNlX6ck/WwuzZ3Iuv6j7/8B1/w51/6Vf/5jrb9/zxd39H979WcPwb+lwcJXuAlAJh/9I/+EX/7b/9tvvEbv5G/+Bf/It/6rd/Kq1/9ar7wC7+Q//Af/gPf/d3ffS/28/6MMXKB3n99VC7VlzfecH+9vv+aMekver2HshBQMB0RpxXNqRI/1HLg1nTtxwo3jxQ7Neb6TGKUgew9JH0oZzPm8LExkkSGnJTIIq3SHaGjIl22vuLggiOMYPRMpphnmlNqLScLVgl4ibA4a9C+kNCBTs4VhiIbUzHLc1MadBYwlbMAMdWBqx4ZgIC8VU11acniwlhWABVEo7BLAVmxEhmZXSZUL23wCR0k2jiMNCpqTJOkBNR20ciDLgxgHqk+tQuzBbkLF1BKSehC3TD5dENWlXhq+t6ZQiR1KuUupjOTlZLSNCtdNmGgKQ7SZ7zVJ3Pv52bQ8nw/+2wFM/dqTqRjD2aGV1tYyUWtadNakppKi44ZRRQpsXOQMnYVGfq0ZqfbqRVWeBmJpaZYOGIBswua+kzCnl1xbmNGaQK+0tStbEvpTK4Sq/O5C2TpA1xkH2Jl0U1ANeIHMbVhdNmxfEhRWjmJPFdvSlGkqWmzxeVIIrFpll2yV8HVMOVV5RVAjPwVENGcrQ49NKvoqIPF2ki9KjALQ70tCWTNhqY8kMUsNJ1/tPc7GnQUlUC5a2jPGOZNKSAtWoxOlCaQsiYhXpP9tiI6xU4zYuELYpJzUsqKgfNcWU4kVjkr5nVJBlKS80ZVeRb7FcU1Q7mTsatMsgbfaOYucTARpuaTq9OcKw+ouhSyZacLi1kT0ayiYxEK5kH6cYzO6O6fOukVu2tzJ56UOwUot/N4LwaK7ua2bnd6QHM/gMzN4Ol+bffmuWMAc+nSJd7wBkFd4/GY/X0xz/3RP/pH+eEf/uG7u3f3e5SSC/G+C6ZnUboI47UcTB8BNTFCyOCcMDe9zKosyM7iHztFc6pYG9D7UsnkeoYBmk1LszmmOD1g8OkD1HwpmfFGkUM63GaMsg1Y74taeYZXI4uHDKECt4RyL3fFjzC4lmlbKafUMTO8mFk8rHHzzOSZuN6vUMm+aC+emViK6d4uM3p3RqYDaSkegjw4InHrZWYaSOSUMJf3GCnF4rERsbRkBeW+Roe89rzI13JizVbTjh1+LIxRHCmKhTx2cSD3H+163M4SvTsnL5ddyIEW8NJJ77AWd22JPVdimrw2rJZXVuTSSPdBabBdGpryEUZOktrmAb30hI1yHSd9Mvd2Xgi4vND9P1uAzL1iYU6Ay4MdM/PYVpgW1QbC1pDsNOagReVMGpXr0JVsFGYVMEpi5+2sJVTSqeUnltljluU5Rf1Q4FWvfY5T1YLHhzusYsEiFjwy3GffV1xaTAlJM69LljYRz0GYlEw/Zph8uvO9kAVEAboOwj4XYJeK/VXFpXpKZTxD3a7ZFJ8NKBjphlkc0HaG/Zg0MSsKFWmzWaeTpaxZpoJVLBg6T5osabxluRrQTsBpRTETVt3U4mvJCuKwW5hrAnqZ0E1k+7cha8fueERRHna81FpKO5XKxKQpTGTfDlh6J0lunZelsJG91YBl4zAm4f3hZU+zKHADT/rUiOmzis2PB9w8ECtRB8wuKNLjcb3Ni6spD1d7AOyH4dpz47OhTZZFKDnwFQtfsPSORV0QgsG5KB7Sk3nReSmm+ZujkP9/73//S9r2m7/+6+/6vt3vefr/de+kincbDL7cuWMA8+ijj3Lx4kUuXLjAq1/9av71v/7X/IE/8Af4T//pP1GWr2yXmnJOPBJa+klEssWhbAyEcu/ZlqRviFtGqzWIycOK+pEpy3OO8kBSvcqDiJ1HdMzEgbAv4ruIZK2otwztdIvJxy3myj65bVFleURadsQrA5Kg1XoGl1e0k9HaE+IHcjKodlMHSkRKNXvUoDvLUtfFRdmVaTZbDu0zYWTwQ4Ufgl1mBrupiyc2sg+6SyPTHUOlOUxP61kYpcWPEiPm6j6TlWf12JTlWUu9bShmh0dyP9KAITrpZ8lG5GQ6wPCqlHKaeSMlnyGuSz5z6gBmjIflnkcS3NTBgvFTBauHBvixyDScP/I+AtmJDC9bLUxMlujTeKqSAIUTBdmxnp/deuttg5gf+It/81gnkb0cEPNygMqJjOzejmpFGpVKKWeMypBLA1EWVrIWwJJKgw5ywU6Q46qOYmZPhaY+pagf8Xzeay5yqlp07IOi6fwdIysRV200xKQI4XCRKYwT88cMo8udRzAkkQQbTaqkF0bORTDfG3CwUVFUkeeaDZpkeajYx+W47lOps2OoGwoV0ST24pC9OFw30c9jRZ2ks6VJhjPVnKXfkjQuC+VSAlr6AmI5CAszn5ySgmGjUbWw/uX1ms2PaerTFavTBqWE0ZgOagFQSRGSZtW6LvFLYqWVki6xxlsWqwJrBbzEoIlBS89abSg+XLL10UCxF7ALj/IRUxiSHZCc4dqTJZ9IpzizOacwkd+dn6PQgWUoGNoWpxJNsoSsqYMTxsd6dhbD7nQt57sTD8wLTw8OXgpAuPl3XgyIvFKmZ3qOA3B4oX04mO0z/PlfuDsbyv7F79PNHV+i/bE/9sf4hV/4Bf7QH/pDfNd3fRd/8k/+Sf7u3/27PP3003zv937vnT7c8RqjD1dJlD4sbkxHLs5zJ6eiYyRylyKmj5j2nWX5xCZh2FHkBpoNhV0pSi8Gez8QcBQr8XmYOlEeSITv/Mkx4wRm52Bt6j/cR7P21qi6JQ9K9LJldMlRn3Ikq6j2pKxy/rARE+QyY7yAAuliEVlYvS37oEKi3PUsz8nqVyiFsfETxen/shCWKR3Zhz7WOSfxBeUuDjomkZhpI+lpWqFCRM2XDD7uGTxtCRsDUmXWgMmuej9LL+2Szhy3V6P35gJYegDXScTkdU6dHyfLtrrvc5ILBmUt9so+xcixeKiQ9LKN6lD7jUSJ6u7/MDTr4kqV5DUZXVzci7+yk7mLcycg5l7O3TDwHwUitwNm7hbDcgJi7s0sLozYuBjWrHxW0oOSTcdSG+nbQiHFkkoWtdLIkZ2WBZ8tzfLhTLqw4qtf/TFW0dEmw9lqxioVTO2KTbek1IEzxZyhbWmTZe5LrizG1N4yz4rGJa693rH10Ui5kySOP2VhPpymmCWy0rTPFeQLsr/XmxFOJYamZRYrKu2Z5FqSyBDZVJ0ddS5YppJS+67xPrIfhl2MsJjrY9Ls7o5hnEg7BreAYiHeSBWzlAr7hK7lvKE7Wa9KwtAPL6547BcK9p907PwBBSaTtxVFJ3lTQIgaayPeG7yXRS1rI9Yk/EFJ3uv8mR4GMynPLHdgeCVS7AfctaVkIgN66bGrgmpXsflrBfuvM7A5F+YnOC63E3mTK6iMFF6GZNhvK9p46E9NSRG9oU4aU58w+vdy7qas6/ku1h8U+3K/JGvPN/3rcZSBuleSsVW7gp/5+du67x0DmL/8l//y+utv/uZv5sKFC3zwgx/kta99Lf/Vf/Vf3enDHa+xBmrfScPCjT9ru9uVlp8V7vBiGsS8341/aJP6lKHajXTOdwbXE4OrHtUKuGg2NNOnha5WQXpPTC0ekFVVsLwwYjxbolovj50zWXOYANZ1x6hgyUrhdlaokJk9XgIKt0zUpw2rs5nBZUXIAl5UhGovon3mYGpJVtFu2LVhNDrJ49dePCfm8p48z94U0oUMCLjTh0CmN/er7k+q69TJXb+Narqc/et7AJRFIa93D86OMCuHIQpHJmVy8Ie+JGtl2ylD6t+rbh9DIKeMipHyY1fQ7WnaqSMMDVaBqaUkU4csYQJjSbvJCoxPmHmLXrbETh55MjfOR7/qn/DaX/7Wu/JYdyofe77HuB0Qc9xZmKNzv+VfLxXEtH/2v9yDvfnsmGZDE2cFZuG7RS5NsnrNuEgsfe7CTWTVMTlDHAoj0k4U88cTcRJ5/Mwuzyw20WSciSxCySo6tMuMbINRiZhlka2NhoUv8MHQthZlEtkp/DQTSsWwDrK4VAeUD7iUyEqxPFuQNVxdjDA6MbQtq+j45PI0p8v52vdRJ0ehIpfDlGUqWKaCOjm27YIr7QSfDQPjWcSSUgdmocRHDUmRqyT+lgCmzuiY11LdZDUYLYtMyGujQlpXDti5Z+PjGT8qmX1eWAOVGAzGCuOymFWkRecFahVppckzxUMfS1TXWmHYK72WrkniZSBWlrA1oHh2l3B2ir1ygF0U6CZiGofKlufcadxGw2jYELOitJE6WErTyeySJibdxSZnQtQYkzA24ZeOwf6JhuyF5qWAg3t1Yf8ff/kPviDjcD99MEe3+aDn6Ht0Kx/M3ZDYLVL74nfq5mWLZN70pjfxpje96eU+zLGYeHqK9TNZ7Y/xxgjjoxfNcFg02V3c596bMh2xfLhCB6g3DaZjw6rrAbezBK0ZXbQMryjs3GMWLaoNpHElkgKnMbWsjvnzGxSfbMg9eEqZHLuTobXSL9N6VErQnQTtqmB1WqQJyUF1VQyTSpIspXCz1riY2Py4Jww1odS4ZSIbYWeWpw2xgNP/cVeebw9WQNLXQIBDD1yMEQCi1SHQs/YIa5PJKh0pClXkuoEsYOUGVqU70eeYDrd9tOCz99/02zkatBDjYZePSuQICo976gpma0rYrGi3CgGLTSQMLFkLS6VSxs095qBGzZYSwpBuAlEn84qfewFiPlvik3swcjtA5gS4vPioLMmHuum8dk0kVxaVIsSOAVFKjOtdN1iqDGGgWW0bKUkuE+cv7OBMRJN59fQaMSv2/YBCBwEvJHb9kEWQaOGNokarjFaZmS05oCIXkXZTc/CkxdYVg2stKiVU06Jaj7OajU8qdOuYvbpgNRAp1IaraZJlYmq0SlwNE5yKHKQB+3HAaTvDqYhTkSvthIv1Bg9V+xgS15rROi1ssSpRJoG32KUsppk6ko0iDozIxpQcl0FYcZSCEjlHxizx9nPP2V/LbH7CMnt0TH0KcpkJw4ypFePLCjeTwBoJo0kMLrckpyUsZq+VlEkr51q9kjLPbBVJaeL2GF0HcpcUKiWfmXI/M/6EpT5tmD+qGAwbtgdLjJYI6d16wLIpOgDTF2Jqcs7EywMGVzUbnzxh9O/29Bf1m99695PB9niwZe0vBFhuBRT6214IRPReIbg3bNLNj3mnLM2tQNELzW0BmH/xL/7FbT/gf/1f/9d3tAPHaWJpoSph0RlEeglZzy70F9TG3Vgs2c90zOrChqSqAM2WptxNDK4F7CKQjQGj5MCtJc5Std3t/eMlSawhZcLY4UYDASg9A5M0mC6uuWssJkTUqkHHxOCyJZYVB09odAeespQZd2WXmXassA2oVSY6WelTXbdAGoj3Y+v3avTugayCaU1um0NQ0gcddCWfN7xWfXobyP3WpZtKHqcr6BTT/RHjvVJkn0R+lpKAhy7lTRlNbtobWZce2ChNbj2qcIeyvyOTO6ZKX9ul2LO4yyV5WJK1RjdR9OArj1o1hyxQCF389QnlfzIvPJ8t4OXovBgbcwJebm+SkfhkVxrMMoBR2FlDKjqfZG8ZDKnrP5HjZqg0yYFdZHSt2V8MaINhc1DjkyFkzV4z4LHRHpX2aPK6h+UgDCTC2DUsQ0Fj7JoRQEEYZmKpiE5jrXgVcyWdM8Vuw7DQXNsZcMUkTo2XXFyJof9Tq1OAFFU2yVLqQEKxHwYchIpVdIRkWIaCZ+tN2ihf7zcVB8uKduXItZE+mFaYIBUSsep6XJyEuwiQkX4z3cZO5pZQbcYeYakGl2rKa5rV+VIeKwNkBlda3Nyjl614RXNG+UgaOFIpEfkqizDCLLvFyO447w5aVg8NGX7qgFxaVBNJ44JkFMlI/UB6SnE1DZhtFCyXkjRWVh6lMt5btE7EqElJCztUW6pdzfRTicHl4xG/+9k4e//k3oGNByXfeqHtvv+rbnFbBx5eDJj0IOflzPOBpJtvv1NAcqdzWwDmrW996w3f94lPN98GUnT5Sp3sNLlwqKZdX0xDlAvkHqgcLbIkrtkBVQ5oHt3ET4wUJ2YxyKuUMauIaSLN2QGxkvQxN5eLZ1U6UmU7XTSEoekuzOXkl0YV5mB+WGppNDSBXJYdxR7kQB0iCrCzhuElg/YWP5QTYTbSKRBLedzkoPEGP9CEShELxfKcISsYXk2c+q0F9tPX1l6ftUysZyS6/peehcltEhDSvz7OHoI+H9bx1JlOipY0FF2PTE6ScHYUCPbb7Tw1OcVD9uboxCReIKUOt9MDqt7Y3zE1WRuILdQ1ei4nTbReyxMA8dLAGqzmIz87mbs/d0M+dvSx7reh/7MRvPRzAlJe/qzOKrI3JFsy/rR4/FTMmGVLHJcdSy7HTdNEUuWIpSE5mD8O/pGWU6dnFDZwZiCr97vtgK1ixdnBjO1iwVC3xKylUDGrdVkjQKEjpQ0URSBGjRoEwlixOmUoZobsDHlQEiclyQnjky2UVwxLO5ACSoACLq6m7NYDzgwWVNbjCmGEfDYsQsm1eoTt2Ii9ZsDVxQhnEqvW0TYO+1xJuSPsSLUrcfh+6jB1IlmDSiIli5WRMmGlCENLsVuTjSFVFl0H0sDSbDtQjlBqFg9rYgGmAd2CSg6VwQWJi1Yxo1s5R2ajISOvcaGxC0lgk/dBEUZyXvCnhhSX5+uwnGbL4EdQ7WbKHc/Dv2yotwzL80PaKaxGiTiNYLPQbq3I5dy+YfysYnhF4qBVPDmf3Iu5F+wLCCj6+qf//g1g4X6AmXspFbtbrMvzPc799gjdFoBJRy7k/s2/+Tf8uT/35/iRH/mRtXTsgx/8ID/0Qz/Ej/zIj9ybvbxPo1ImbQwxq0aSt/rbj15cH40Q7m+qKuL5LZpNR7EXOolS95opichsTlWEgSYMZOVtcCWSrSZslOKBUR2Asmq9EgfQnhkwuGJE0mTtER9O7EzrcW07wWf0wZKyDdjlgGa7pN4yxELRxdVjGtmWH8mqlx+BXcLk2cjw2Rp3eX8N0tZANQojhJW8fumBucn/s2ZFutcnBAFbZXkIPvLhz3PbSbS6os++Z0ZZI03TR70tKUPh5L69B0d1+0LH+PTApZO1yeMcAUyxY3CUFvmatRAa2cce+PT7mW4E5ydz9+dugpeXMi8HxHw2A5eTuXsTy4yquzQxLYxDshqdNLr2wsLYAjKEgUhZk1M0U00sMqONFaUNTMuaabEiJPGW9Kb9ianZMEv24xCfHBFNqQM6S0P92DVYHdlZDGlbi3YJvCIVQJYUxpQQabJVxEIu8KurimQde27EzA1wRUDrjNEJo+T/6/WIiZMLx4WXfharEldXI9pgWdYlvrXExkCjKSKMLiaqnYipk5QT+4T2CbuCWHQMTEjoeUvaGpBKTaokvS13cdNm3mCmBWHYBdBECV3JGkzbRfN3vV+mEYVDKq0ExDSd4T+KBwa6kuY2QSWgpn8vio650U0g2UoUEz5h6oCdt1RXFdNPasLYUW9Z2rHtAnmE4QLxkE6e8RQ7LbnQ4E8AzO3MC0mg7hVYeb5t/Se+mb1/cnjbzeDibgOa2wEvN8vAXorv5F4BjfsdM33HHpjv+Z7v4cd//Mf5w3/4D69ve/Ob38xwOORd73oXv/M7v3NXd/C+TgI/LdC7Duqmk0UhF7khHPpgjrAwymjSqSmrh4aUux7dRqG/fSKMbNcinzC1sDEqSct8GFm0l1W53BVariUFWVJpTB1pTkky2Dq2GHPDhb9ybp2MpnQXk7msMTExWLaYekR9ytIqjVt2sZwOmm2FirD5scjkY3P0bCklmp335Abjfg+c+uk9JyDbLTpGI4rsq98nrCVPhqSqIE4LohOJl10EVJQTlaob1GK1ThLLPcmi1eE2+76dfhvqML567YFR+XB/tTpkU45OFk20vK/xSOdPPizk7B+/67M5mVvPpa/555z/xf/mjn/vQQOXo/NSQMy9BC/f9K63PO/P/ulP/O/3bLsnc28mDiB4WTRCKYlt91HM/IXBzGrcTpTuE2UIA8P+k5bV2czotXuMq4ZpWbNZrNh0K5yKjG1DzJphl4c/SxXLVIi5X0VQ4HIkdFIzgFHZUrcOaz3LqUM9c5g+qVICL4t3dhmxdWQjwvCq5mC/ojmVWW0GxmcWa79HzhJbfGU5IWbFoikYlS37sC7TbBYF7tmC4XUBTMVeppgnUQAUunt9JEjFT0QNEAtFcpbx0BIrTTuRc2V0isV5TRgOSAXEKhPGCTZabAeugrcsgThzFNcrhs8NKPcTwysB3SaSVfjp4eVO1jC4nMjaEAfScWOa2Em3DXEiiZXZaNwiEZ1e+3BMzBAkcKdoI2ZpGSlFLLWwWEaisU0jsdi6DcSjsvOTeclzVCr2d3/j/7gv23znP/nq5/3ZUcDxUsHMrUDLUSBw89c3z3HqpTmWDMzR+fjHP87m5uZn3L6xscFTTz11F3bpAU5/gOkvyPsIZc3hRXu3Or9mZaqS1aMTtO8SUwCz9GQrUrHkFCrI6pvqel+SVYShJhmNaYWW7lkbOegF4sgRC2lRpnCdfOoQOGDtIXjJWViQXhKlDcpLwkyRwB1YwriQci4DySrGz2WK3VYYFx+OXMR3kcU9GFini6nDi3rTfR2CvA7aiE/FWlRR4C+cZnah6k4KIhdIRnTKQvc7wgBQI0wN5SxR7AXKp3dQ82X3VggAOmSBjgALaw8N/0cZMWPWkaVruVt/W49n4iHIWXfXGHOTNJDP/PpkPmPuFMQcJ/DSTw9IXgzI3Avg8kKA5YXuewJmXiGjM8uHEsW+YZy7klxA1R6SJjuDXnnMsgUK2nMFi4cz8eGG7bJl1Tq2KvFjljqwZZckFJqOaehKFDeM3CeiWMaSgygXeSkrQpJzhjFJDnfDQCwkwn5dhpwzyifpqRk43DxQzDLVjiGWGj8yXP7SKWnLsxoXxKhwLpKSpGy1jaWuHaGxaJuxLpBrw+CyYvNjHlOn9eJctprkZLFOAEqXAGmg3VC0UyBbxs8F4inNaluTDcwfT5QX5vjWYkyiMomN0YrGW+rW4Yog+S8biTaXhKFmcElja0MsLCpKWXPWEiCQrKLqvC8qZkzM6FVABQE0qTBryZdbJGKh1mEv5CzATynwCdOdO3XTdYlZjfZRwCqQtcRB5yNJpSfz/HOcLsh/evtTvPPCZ95+K6bhbkq/jj72cXo9js5xKPW8YwDzxje+ke/7vu/jH/7Df8i5c+cAuHz5Mn/2z/5ZvvRLv/Su7+D9HNVl4+fCovoL5Jzk4reXGSUx8ueYUNaQxkPpWpl7ya5PmezMusnXLqLE9VpJQTFtJtcdkHE3tjD3ely99CifYLMUc2Iv4QtBmJiucyXj18AjG4OKUfarY2cAtBcpl7mmyGUhnpGedQhx3SmTe2lWP2u9bjpkoNY+oL7vRa3BC9aSHtpm8diQxTnN8rxi+omMrTOj5zztpu004HIiAU3WEuncTjT1ZoF+5DymzWx8ZB99/UCYIH+k1Ojo8b9nxGI8lKb1IKQPGziaUNa/j9DJ4UoBOT04Ovr8+3S1tnn5f1QnAxxP8HJ0jgKUHszcK7blToDLi/3+CZg5vmNWijSCZksxvijMg4pyfhBpsSYNi67EMeMHirAZmUxXOJ3ASVklSNP7MhU4FTEq4XTAkNcgZhlLEordMFwb6q+uxpQm0EZDYQONt7Luo2URK/fhKVYYoT58RjcR7SN2dwUJ0rggVCPmj5SsHjGoUehKIeXYmrMiHIhSIGaF3q3Y/LTC1ll8nIXCHUTs0hMri11lSYCcKmIBsej8syWkInPwWlg84mheXTPeWOFM5PPHc05Xc3aaEVplrOrSyrJGK2GG2mRZBcflwZi6dqzOGJaPFqAzZqEpdhWmgeqpRIoQRgZ3EEiFgLTe1G+aDpxoTbYauwq4UpEKjVkhZdd9gXWnepD3UHWSNHmcXromTFden+9P5uXP/WJfXmzuloTsB5/47vXXL8S8PGjAcHReqnztbs4dA5i/9/f+Hn/sj/0xLly4wGOPPQbApz/9aV772tfyvve9727v3/2ddeGYQjvXlTF2kq2jscHQXRwXpKETrW3qNbUdPV4KTe/HBlsnzEro86yg2G3Rq0AuDdloYikngnXySpbkFXKXlNJ7ULo0L0I+ZBCOjjFd90qSa/0+fjggwMaHw+cZ49qkrrq0lhtkYkdlWyEdghelBbz0j6MVeTxk9epTzB51DHYT5b7ogP1IUczBzVpMHWhOldSbhnYiYQKTZwJ2lchGTnbNRNNsaVZnttj+nSHVx67IiaEvsMypAxtH9sfZw+epbMeqmC6uuYtUJsvz79kWw+F72iel3fycj4DAk/ncmgclEzuZz67x44x2mY4QEZ+jUSRMt5iT5CJZK1Jp8BOFnbYYldfApYnS8L4IJU5FJq5egxan4hrY1MnRJLsuj1xFURFUJuBMpPFdLLDJnQyrk7Q1Ye3PwShU6Paru4BXMaJXnu3/csDk6YrlOcfyXMXy4RIUNGUiFwIQRs9o3DxjGhhdajGrSBwY6i2LGoLbr6GymIMWc9Ci0gA798weH7A8qwlD8NPMxqt2KV3g1RvXGdlmHRkdksGqRB0tq+xYesdDowPOVnMurSZsFktSHjGpGurakbyGQYRWYxcK7cEtMrFQUqK8jJ2PEnQQEEnM2IWcJ2NlBZD4tO6MyYUmR1mMzEqhUpIUUa0lSa2VcJ7sDKm0aN+HBBhyOGFgXmnzQmb1mw3+d2M7z5cOdnQ/7ocP6HZT3R40oLpjAPOa17yG3/zN3+T9738/H/nIRwB43etex9d93dfdUOb4ShzxoShSZTHGQNt20ikl/Scpg+5M4XTMhTPE0gjo6Ux6fmpppkYM+waGVzPai5yMDOogrQ+WqVTruEgV0iHtXNj1ys2aCeoigfFSpLmWfSkNTUM+UnKZj0qlQkA5d9gnAzewLTlF8O2NEqxesnX0Qr73kIDczxiYjNj/4rP4kWZ8SUo527HDzUR6lzW0WyUqZtqxpt1QmDqv5WWkjF1EshVPzvCarNotzznC8CHGH7pMns07toXDmOaOMVl7cFI+fI/ghpQ0TMcSKS2vXf+69GC0f65arTttcozkdFPq2cmczMuYE/DyOTY2k01eJ0oODzx6JceUfqErWfFNNJsOPwbrpDl+XDRolamMZ8PVPFztAVBqT5McPhuciVIkGQsimpSVxPrqwEo5ShNYBYePRzyLUY6znQqN5Axm6SEk0tChYlr7dLIzxKEjO43yCXfQsLFfM3nK0m4W+ImhmWj8pO9eSZR7oeu0yYShEX/LSKGDIpVWPDCVJVsti3MZludEJqYScLrhjeefZmprnl1tMvMVj1R7RDRtsiQU02JFHR2PjloJNbBLfGkodcCozNg1TIqG68sRy8ZRLwvaWmMajWlgeUaz/TsNuo6k0hCLTtamFLmQ57oGdcgimF0KS59tJwczAgAJqqs4EAO/mP2jnL+jlHaGkZUqg/aEgbmTOS4sy/PNy714P9rb8kI/e+RXf+JlbeclzTfBT73t3z/vfr3cuflxXurjvqQiS6UU3/AN38A3fMM3vJRfP7ajm4DR8bBYrJNqraVIqUuoMqy9EyomdJuIlSYONMszlmSh2kvif2lFb+vHQlf3iWRuHtA+YuYt2WhJOxk4OXlkMdvHykiMZB+hfLRrpf/+aLgAHO7vUTmYtYdSrHyEuVlHDtvDi/se4PTllNCVesbDC/yeMh8OmP3+MyzPGrY+KqbSg8cd7UQxflby9sNAr5uWswEV5IRe7SRiqdDdiVxFMHXCzTzljoDJ+WMl17/iIbZ+Yw916Wq3X/pQCgaHEcrdfuecoW5Qxog3yFoBJDlLF0J/Hx9RRztrjkrMtEJhUCc9MC84L8XE/7k49xK43PzYJ5Ky4zNmIWWJbgZuHjEHrfgHO89JquSCPjtNMzU024nHNg8oTWBoW3abIZvFiu1iwWk7x2ezlo2NtRcQoyJD06LJXEkTDIlZrAhZU5jIrC2JSVHYSIgabTI6wOBKi24CeuXXEmUzi4dBA6GFUUUuDXQpalkrzKxB7y+x+04u4HMmjsq1vFf71CVqGlZnS9qxHN91yIRh7xs1a9WBaSJ+Iolt5ev3+L+/6td5tNjhA3ufT8iaxwa7nC1mfGJ1mpAME9swtat1H83AeJpk2S4W6xhpnyWtbb+p8O2A5A2qzCwfjbi5wc0zzZbFHbSorMlWJHUqZ6LRpIHFroIUWuZMGDlMLedl1UhID7lLMOvea1nAjIfysiypZ36zEoVzllPvydz+vPOLvvp5f3a/wM3tXFi/1Ivvo70tL9TL8uyXvGt932//ua+44+281Om3dRTI3KsY5pf6uLcFYP7aX/trvOtd76KqKv7aX/trL3jf7/7u737Bnx/n8ZslukUu0J2FFYct9H2/CXQyo8PVFB0TNNBsWULFmk0AMK0cvJNRhJFB+0ysNG4miSYaSYMhSmxjHBWgFH5sZTVn3qzTvda+lJwknrgHL3CjDEodkXuleCiXAulHCR3b0gOi3vB+hIHovT49k5HbFkUnv8oZVVXUT55m79WWakcAV7Npybo7WBuIVuGHEAeacle2HwcKalnBihr8SIIMtJcwg56JyqWl3IvMH7Jc/sNbnP9AhGt7h10wPbvSP4f++ZJQTjww66CFzh/U31f17NGRyTF1UrUO2NxKoncyN8xLTSK7F3O7HTCf7fNN73rLCYg5JpPKjLIZlcAtAipGUtmlSnYSslQIe5+63JjSyPFt7MR/96rRNaqukVirRERhyBgyiYzTHpcj+3GAIRHRzELJMhRcXw1pg8FHQ+UCq3kJB45iv4tNrizKR7Lu5GU5i3m9sKhaFtswimT04XG9sFBY8X4AuvFdc734RcLYrdmdWKjDaOOQiQODWUVhOhSEoabelmCZMM587SOf5HXVc/zHxasYmZZHqj0eLXa47DeY2pqUFaUODE2LU5G6Y6LGpqFJlomVTpy+m+bMcIFRmeXIsViVaJ3ZHxdwYLFzzezChNFzCdNmkTJrhakDulXokMhWd7d13tSmi3PuF/CSnMNBwgnMqmOyqoI4cpBESm6aRBgY4tjd87+5k7l7884v+upbGvhvnlt5Vm5nbvf+D1qmdSsg81LnbntmbgvAvPe97+W//W//W6qq4r3vfe/z3k8p9YoGMEmLoVHFTBpWqN39G+/gj1zU9wkuIZEreRnbkca0YA8EaJT7Ed1mdMwirdqw6JCwu9IBkLqDPoCqLKYOkiM/MGSrsMsoEcM929KDmN7jofv/1aFX5yiLAnJx747EIPu2u+A/lIjlkA/lf4bDVLOUQXXgpQdvSokcbWPM3msLhpeFaVmedaiUKfcyxUFGZai3FWEAxQyJcNaQZgLq/EBRzjLJCfvi5lFOADGjYpQ0F6ep9hL1lmb3i06x/cGGvFgdSsgi6/4WASCHzFLujfkcJsatZXV0zM0ROV3//NfgxRiIJxKyk3l58yBkYycg5nhMNhk1CoTKCAgwZi0d0zESu/NGH25iasVePcDqxKsm13lyeJ1SBXw2a7bFZ9OljQ0otWcZK2LWzEOJ1YmDdgDAKjjaYAjREKMmaA0HjsFzhnI/0U4t5XUp1IylkQhhuj6aDHrguu/tOkEsdCxMn7aZjSKXRs6BVhMrSypEDhZLLXUAde5k0GCXUWRjCkyj2HndkNX5jHpswWOn9vnGrd/gQ6vHmIWK1w0vsm3n1MnhVOShYp9Se1K3Mz4btElrOd2WW6zZqSY5UqEY2YZT5YCnZtuEpElJo4uIPd/SzErCo4kwrNj8vYSbR+LAYpYBd2mfPKrEw9I9t+SsSOB0pyLQAsIwilgadJvEE2M1qbLU2wJU3UJKrWOl8O7EU/lKmRdif55vXk4Xy+0wEveTfblXc6vndTSg4IWYqFvNbQGYT37yk7f8+uXOj/7oj/JzP/dzfOQjH2EwGPDlX/7l/M//8//M53/+56/vU9c13//9389P//RP0zQNb37zm/mbf/NvrhPQAJ5++mm+8zu/k1/6pV9iPB7zjne8gx/90R/F2jtTyBkvbbl9UowqnDS5w6F0Cw59ISGgFw3+/BAUFIuEXYqkTOVu9aUVSl0lWeVJVpGMkWSWeaQ+5QgDMRgOr7T0TcEqZIorC9lW4Q6N9qOiS9Ey5N7AnjqDft1IVGPPvPRgpje5p9x5PdKh5wMjiWuwBjSqcIfysZzkor6PU86ZnBLNQxNUALcSb0t0UB5k3DKtO20GV2HxsKbclRMEgJsrBpeWxIEDDe3EgYK2y+h3ezXZWOJQOnQAqt3E8oymeeI05UcvQUrrAAI60KKM7H+fwLaWh/VJZVqhjsaY9f4XrYRVOvoaaQFp6iUJLO/+HLfPydG5XRbm7bvvu+9JZH/1wutuefufefoV3FV1Ms87x+1zksuELQOr8476tBznklU0m5bpJxbC1HsxzNsmo4Nm52BIVXl8MvIPw9CIPLfOh9uPWUsCF5k6G8a24Xo7JmTxwoxcSxMswSSWrSN3+iW7khTI5TlLsW0wXkztdKy5Hymy5bDd3oObZ8qDJEb3mMGJD6T3fJIzuWNpdCuRycmJCkHFLP0oSn7XKPATRxxokoM4TJyeLvlDZ57CkNkJIx4td5mYFYaEU4FtO8dnKwAOaJIjonAqsp+G0N3ms6FUAacDG3aFjpmQDCPXwghi0sxtwbDwXA6G2BpWj3lM7VDZUuwHVGXEX6rUOphHRXmu2SpJZSu0gBiABHYRMItW5HTjEj+21FuaUCncUgtgHGv8MdGQHbfPyc1z9CL2W3Yef1mP9XLmJ95y+YFtG0QO/E3vegvf/q7jAVx6APXlP/Fzd/VxvwlZ5PsJLvNNvAXfBt73U//mtn73gV6ifeADH+Dd7343b3zjGwkh8AM/8AN8wzd8A7/927/NaDQC4Hu/93v5+Z//ef7pP/2nbGxs8J73vIe3ve1t/Pt/L3RWjJFv/MZv5Pz58/zKr/wKFy9e5Nu+7dtwzvEjP/Ijd7Q/po4obUmVkWhjpYQN7y70b/CgdP0katVg2kQ7MRR7AbsMYtQ0ClMY+dpKQokKUm6Zun6XMDA0U40fSyqKW4gmOhaK4aUGtT+XJJhBJQfHzTF+qyIMJSCgHWtsLRIFHTPFQaS8vEDvzaVt/miogjZAPNz/lAWk9KCsAzS5TSil12b5dXpXL01TGlUUzB4tCENF67UwTUHM+GsNtNW4ucKtLOWux85aUmlptgtUSJiVJ4wLVqdEQqA96GBQqRRJRaFxy4BpNbHQlAeKvdeWnL04RO3PDjt6QICKK9Zs1JoxOhpC0AM7396YJNcHA8Chj4jOJ1McDwRz3D4nx21ulo89H3A5+vMTEPPZN8ftc1JMa6qBZXlac/DEgHZcoAMszynK/UoKfVMmA6FUxEqOZ1YnrjdDQtZMbE2TLDNdMdQty1RgSDfEKqesmMcBPmsKHaiMoU2WkDRGJ6xOLFYlZqXRXuKK6+3M8iEphcw2oUYB4wSQpKhkDcxryYlZWqYfMYwv9r0mAB0b47P0j2kx4dull24bX8lx3CqRUDuRUPuxYXVaszqt0AGyzVyY7vJkKR7H025GypqdMMapiFaJeaxEMhYtPtk1G5WUxqlI1fmB6uQY2pZKBZa5YKhbvDW8bnqJVSxIKK41I/abAeNRzV49RhWJ+Ws92js2WmGN4rhENxJGkBXEkRP5mNJghYExncQuOSP3BdLAEStDu2EJlaI5BatzisEVQ7MNcXU8AMxx+5z81NddxR05134Thwxy/PO3Ppabv3xvj99/9zf+D+4VX/Z8z+nm6dn7L/+Jn+NX3vW2e7Q3dz63sy93CnJ6sHano3J+caH/933f9932A/6Vv/JX7ngn+rl69Spnz57lAx/4AF/1VV/F/v4+Z86c4R//43/MH//jfxyAj3zkI7zuda/jgx/8IF/2ZV/Gv/pX/4o/+kf/KM8999x6deDHf/zH+XN/7s9x9epViqJ40e0eHBywsbHBV3ztX6T0hzrV4mMXyauVXPCa/qI3HyZwAaoqSZtjDj5vui6lNCthbeQA36e6ILKx0hKHTsDLliS0JAtuAcUsEQaK8acb3OUD1KoBZ4mnJjSnKtqpIfVpLUAsFaYRiVooJZpYJSgOEsNn5ujLO+QQpWQypkOvSx9OADeWQt4cFQ2S8qXUYbknwPYml77mLDoKO5IVDK55dBMl0SZnwmZFfaogaxhebDCLljAuBNgdtGSnWT00YPaIJRs5KVa7GdOI1MytEirK7cV+IFaGvdc4Tv+XlbwvKR36YfrndLTLpX+/+lCDo6ClZ5962Z21wnAZA0aThxVha8hsG/7j//rD7O/vM51OX/Tv6H7Ng/6cfPSr/gkTKyufx6HIsgcwLwZcnm/uFZh50Klj91pGdmnjwwDM8pzXHvyhk89JN/3n5FU/9QOoakAMmvJ3B5Q7YNpMGCo2Phkwq4hdBrLRLB4uuf56RXr1iulkySPTA0LSPDHeIWbFwMg5pS+m9B0DM+jYmVUs0CoxtTUX6w0+tneaRVMwKluWraOuHfHSELuQ8016uKYatuSsMCYxHdQYlWmjofGWVeNISWFtYnV9gF4a3IFm8qmMW2TKvYBpu6Z5n4hDKxHEezUYRZiUwtKspJQ5W03opNGLc4b6tMKPMuHJmm/+/f+ZLx1/gjYbPrx6lA2zwqlI7Bjz/TCk0n4tD+uBTT/LWFJpzyxWPFleXSeyzVKFT3JhPI8lTbLMY8nF1QbP7G9wMB8QZw5cZvjRgo1PJIZX2vVzUo0nl64z7XdBBlbqEXQjccm9DDkMHe2mZbWlSQX4sWL5sFQnKK+Im4Hqw5Hfe+8PnHxOuuk/J2/99q+7AcDAi1/Q3msAcy/n337iBx/0LrysudsMzM3TMzC38zm5rSXmX//1X7+tDb/cGOX9ffGcbG9vA/Cf//N/xnvP133d163v8/t+3+/jwoUL6w/SBz/4Qd7whjfcQG2++c1v5ju/8zv58Ic/zBd/8Rff9vZ1JyGLlRVjPohZvo/Z7RvpQaRW1kJM6IMlg2sDlmcLSs3a/Je1QhktC1R1WEsGVM6EkcYPFXYlJwS7SjQbBltn7P5KZFLTEbPP3yRZkZvZlcjbYqVJBgZXBRhlpTrpmQCaMFDsf/6U8ajAfeoq2XsBMXB4AW8QqZVS5NA9L6M4Gk4AoPo/kY61UdaQBgUosEsJJ9AhEwuNruM6mUaFTHSKekvhZpZYGdxevZbnZWdkxa7OXTrZYUpLuRc7eZmhOJBenFhJVOfqXEHxlD0Sca2PpMTlQ3QHnV9IywP3TIwuDqOVtQYMlAW5LIgbA1YPD9j5fItK0Jga/tfb/vO5b/OgPycvde6FjOzlgpf+d08YmdufHrgc93nQn5MYDDpp0szhFjDYSSQrxzwypFKTa/GUFLNIdc0xe8wwW1TsuEDMiphOU9rA1NUMjFzEr6Jjrx1S6EByiqa7SB8Yz7V2zLV6RBsE6CyaghAMKRr02Rpbel57+hqV9aSs2G8GlDYwtg3LIBedq+A4KEpyVsSkaSeWVCba7cy1M5bBRcuZX9e4+SFLoXySC/quFBOlUCESp4WoELqSZlpQ0WBWUJ/ODEcNPhuuhCnX/IShFkDmVMABEWFZYtactjOWqrwByCxTsQ45EIaqXIObSgXQMI8VPhusTpQ5sFksaUYWaxLXdrcxkwY/cSTbAZOUIXRS8tTVJhxNWetAi0oZvMRP16csq9NSExALaE5HRo/NWC5KUlKcO33A5evjO/r7vV/zoD8nt5oHvfhzN+dmxuXLuREAHCd25X7PWy//5mfctvSJ993m798WgPmlX/qlO9illzYpJb7ne76Hr/iKr+D1r389AJcuXaIoCjY3N2+477lz57h06dL6Pkc/RP3P+5/dapqmoWkOW9YPDg4AKC7PsW5AKkbY/YacumSq3jR/VLJkjMirnILWU3x6l6y3aTYdxUFXCJakHEuF1NHLdm36y6qLDm4yphbdcHXdUz17gKpbwpkpu6+TA9742ZZsFMVei24j7WbZycbSungsVpYwNJg6EUaG1bZmda5Et9uYZ64eFlUmfRgd3PqujfkIO3EzIRejSOVA2IkkB2+3EGM+SlgSFTOpNOggj5EKja0TxVzjxwYdMm5fAZJ0k61itW0EvNWir46lRvtMGIqeOitAgR9ZohOGKZlDACl/OF3E89GYaWtFKuaKG8spUz5MVwMBNIXDn9tg/7VD2qnCj6E+kxg+q7H3vi/qjuc4fE6Oy9wN8NLPCYh58XmlABc4Hp+T2Br0EKpLljO/UWMWnjApCAODaZO0vxcGUweKfc/guqH5VEnzmGI1sqSkcTqJIT8aNssVbTQsfElCEbRGq0wdRTq17yuursbEpBmXLbvLAUplYtBYFzg1XTB2LQmFVYmEWoOjq6sxTbSMi4ZVEM9M4y3LusCYRFJS4CjlzJlmU6ODQ7cJ6yO6ESYpDhwqZ+lCcYZkNWFb5HJhaCh3GlQSKV0aZAaFZ88P+e38MEPdcrY4ELlYdmtTPsDQNCxTSZ0tDmFnYucJciriVOxM/oprYbIGPUYlShXAiG/oWhgztQ11uWLuC7LKaCPnXx0l0pqQUfowBEaHJBLwrkw6lhq76pQYWs51ySnaqXg/mzMRtdVydjJntL3D9dUQp9O6Qu04zXH4nLyUuV0Z1nGcm9ml22E0jhPI+ZV3ve2usTDvO/eFn3GbbwNw67+hm+d4iPyBd7/73XzoQx/i3/27f3fPt/WjP/qj/KW/9Jc+43bVerCVpIEtarl4h8OL494QH7pG+JSBUkz0ixXlp3bggoAY7TPFvocktHO2Gr8ht/uRrI4NdqOUaJWKwXMrzN4StWpIW2N2XzfG1kLVp1LjDgK6CbJat98elmdFWflKTpJQYikX/8VCjpb7rxmxkTPm2WvyPMIRY38/IXxmTDMcyuRUBwI6j4hqA24hoEPuLwEIehVk9Q3J+V+eNowuR0zbaatLi6lrdO1pTg8YXgsdAMvYVaTddNRbwkJVO4FklWTth4yOIr+IxZH97uV8/fRApfe5pIgyTgBo/x7aIxHLRjP//WfZ+XxLcyozvAjlbsbUmnIv0/Ki6sr7Psfhc/LaX/5WLn3NP39Jj3k3WJijnpe7AV6OPtYJiLn1vJLACxyPzwmtxhXCAug2xrQ5zAABAABJREFUYfaWoCWit504WbSpNNk6it2G0XOecs8wu+TY+ZIpbtSyMahZeoczkaurMXuripwV1iQmZbMuqmycpYmWg7qksBEfNTFqShfY3lhgdOKR8T5ttJwqFwBoldksVsSsYAAhawbGU+iAVplZW9EMLE00zFyF9wavHXEYuJ5Lpp+0jC5H3EyebjYa3QZIkEtDchoyzB+2lAedqX1ucEsBBESovWXfV0ztig27ImVN6o67Phs0CtOBmFmsmJia/ThAk9m28zXjUnYszGW/gVGJmDVOhzWjc81PQCVGtsGpyFax5KCowHTx/lXGDxSh64BBa1LpuoQ1JDAnIYtzpZa6Fy1JorPHCtoNRbOdCWdbvuZ1v8vpcs5HZ2cYu4aQNEtfkIuT88ktPycvY878jW+5q493r+bqe356/fUrnV16ueDlVqzL0bkTBuYlVcP+6q/+Kv/9f//f8y3f8i287W1vu+HfS5n3vOc9/Mt/+S/5pV/6JR599NH17efPn6dtW/b29m64/+XLlzl//vz6PpcvX/6Mn/c/u9X8hb/wF9jf31//+/SnPw0g2fZKoXwU/wlATFIkCQJYjnavAHm1IqckXpPFivKZPaprbWdatDSnS+KwIFZ2nX8PkkZDlvjg4acX2KviecnjAcvHp7hVZvRsjTvwVJdXmHmLCqnbN09yRuIdK0fYrPATi59aVBJGRyVhRVSC5aNDGFQCTHqjes+0HAUv5gg700//XI25ge1YndKsThlUzBQziT+OI7c+qIeBpt1U+LFmcd4xf8jhx1a8MWeHxIHGLiLltRVu7qVUrUkUs4RdJOzCU16vKfYk9lkCAjKx4NDf0u+/OrLfR1kyuujklOV3lEJpjbKGPB4y++KHuPRlhnYzY+eKZlO0y26R8UOFHx8P02U/x+Vz8nLn7bvve8m9Lfe67+VuAqLPlnmlgZfj8jlRURGDJhaZdupIo0q8EhNHtrA8bfAjvV6oMU2kurLi1IdqNn+tID075OpsROMti7ZgZzEkRIM1CaMTdRDA0kbDflOx9B2Y8RajM6OqRevERlmjgEuLKVZHtMqsomMRCppoCckQssaqhE+GwkSGtmXkGrarDuzohNYZXUQJmpkkwlBhVp3HEzDLVi7yjVrLrJJThIGi3hLWoj7tuoU3pIvlypg6OumviRXLVMi/WAKH7IpTkYmpGeqGoW7ZtnOGuun+PwQpa4N/15cDklDWz9g0DIxnEUp85yfSOpOtRPrHSnXhA5o4LkQSrTXJ6nUvDkCsNPWZgmbLsjqjqE+Jr+g1F64wcTUTU3OqXDK2LdvlEmci2RwvAHNcPic3z/N59251+1FgcJznzN/4lvW/F5rP9vj7FwMvdzp3DGB++qd/mi//8i/nd37nd/hn/+yf4b3nwx/+ML/4i7/IxsbGHT1Wzpn3vOc9/LN/9s/4xV/8RZ588skbfv4H/+AfxDnHL/zCL6xv+93f/V2efvpp3vSmNwHwpje9id/6rd/iypUr6/u8//3vZzqd8gVf8AW33G5Zlkyn0xv+AXKgqix63pDrei2tUqbrS2nlYjqvOm1Rf9HcAZycEupgTvHUVSa/uys/GmjaDUcYGmKpiJVQ0eVBpNzxDJ/axzx3XeKajaZ+ZAoZRs/WmJWXg2bOpMrSnhoSNgayulUa5hcGtJtyQqy3Dautrniri24uDgK2SSzPGOLWaJ0sJt6RrldG6RtlY8bcGBfdF0D27EbOqNmC0ZXYmewVfmhpThU0W45200k/gOliOQeK5TnFwath/1UOv+FQGdwsYhdeAFlIxC7BRUVwM49etuhFg/YJ00VYJqsoDxI07SH7om4CXUe6XdaAU0togXJOpH/bG1z7sjM89xWGYk8xvKQYXskML0shZ3SKZks02sdhjtvn5KNf9U+AOzPw32ruFIzcadrYg55X+sno0saHX1Hg5bh9TuyBJlwZoL0s5DTnhizPO5ZnDe4gUswTbikJlv3xStceO2s482sLHvr3Gf+7Uw6ujDlYVvIcgZgUbTC0wbJqChZ10YGWhDMR3f1vTWRaNZyqFmiVOT2YM7Qtm27JdrFk4mpKExgYz9lyxiODPV49uioFktUerx5f49Xja7x28yoPTw84tzFjMqpRWjw87QadB0ZJWmbtUTESRw4/LSRyWSncPGMasHWCDM2GyIFHzyn0wnBpPuG51QbzWOKznHt6sFIpz9jUVMpTZ0tEc9oeMDESOuBUxJDYjwMBLR1bU3am/3msqJPjIFQso4Cjg1BxeTVh6R0qaII32JnGNGBWYrxHK+LAkApRE5DpKhA0fqiZP2zZe7Xh6hdr4pcd8Pu++uN82xf+n3zh5rOMTcMyFjw+uM7E1pQ6sLcaYA+ORw/McfucHJ1bHTP7256Pubj6np8+9kCm38cX28/ne4732jh/J/Mr73obv/Kut93R+e2tl3/zroMXeAkSsh/5kR/hve99L+9+97uZTCb81b/6V3nyySf503/6T/PQQw/d0WO9+93v5h//43/MP//n/5zJZLLWTm5sbDAYDNjY2OCd73wn3/d938f29jbT6ZTv+q7v4k1vehNf9mVfBsA3fMM38AVf8AX8d//df8f/8r/8L1y6dIkf+qEf4t3vfjdlWd7R/qRphU7A3kEnOcqH8cGtl7hIQB193Jw7k7+CkMnWoryH63sMWk85GZIGllSIP8U0Eb306GWDWtaH4MEa2sdO0WxZioPY6WpLmm1HdV1h5i3tVoGflpiVmAaLWUI34nnJWtFuKPzMSKTyLGLnHj+St3j10Ijx5T1yysKk9Alc/QX/UaBirfyLiXWWoDuUneWUGFyqmT80AmXwI/HEZN15epoknTfG0E4Vpga7UIwuR4o9L0AlZVQbSJUjO0McdLcl0RyTpPVZrTzKihTBDxUbT3W9PNbKvh7teumN/FqBVYfsTNPIz6wlnt/i2a+esHwkMXxOM3k6YbwwLm6ZKfcEfIWhhhcPUrkvc9w+J3dzelDyfLKyW4Gc4w5cPhvmlQRc+jlunxOVpbBxcFWyRdqJJhYSH2yXnkGWcmPjM3Ho5IK/W0RTMVFdbdn+cMnscccyKephwNhE3fk2tM7krGhbizEJpxPLLjp5XpdMqoaRa9EqU1pZZDMq47MhoZh2Ec0D46m0Z8OsWKaCs8VsHdm8TAWljvhkOKhL6tZhTCIGRagkXAV7pFMrIexFqdCtsEtumfBDTb0lJZqxUsQMg2uJMNBc3ZxSdfuXKoV2mS27wJAwKmE688hE14y0mP5nsezipC11tmuWxam4fv3nUUCLz4ZVErYJoDSBkDSNt+QyYmwkKXm/shZlRBhZASyFnFtT0T2XRaDZ1CweVtQPBVSreMO5S7xx81PshBFj23DWibejSY5ZrHhmscnA+XUQwIOe4/Y5uXluvoi/XcnV1ff89CtGUvZic7NP5p/+xP/OI8fIBwPwyK/+BL/CIbg6us9Hv74XwKWfOwYwH//4x/nGb/xGAIqiYLFYoJTie7/3e/mar/maO9I4/q2/9bcA+Oqv/uobbv/Jn/xJvv3bvx2A9773vWitefvb335DoVI/xhj+5b/8l3znd34nb3rTmxiNRrzjHe/gf/qf/qc7fWokozFXDqTFvY/ZDQHI6yLEHNNh8SOIKR4OL5Y70zvawO4+en+O1kp8JMZA6sogc5+fr6FwxNNTFg+XmFYATX3KUW9qYqUwjUWFLB6XynayrYRdSmKKm0dUgvJAVpC0TyLXGju0T5T7nQHR3ES43VTeuO6IaT048Yiso4qVXbMeSinslQPII0IlJyI3T7QbhnIvdmVmBjenAwNQ7uW13MAgJ4g4KmRlq9BdQZoiDDWmtigfD1urQ8I0iWKeKS/NyaEDLn2wguoKOn2Q2GdrjzwfJCa5qsjjAde+aMziscjGRwyjK1HkanXEzYW9ciGRSi0Sh2MCYI7b5wRePvty89wuG3MCXu79vBLBCxy/z0m7HRldU0yeCZTXPe2mo9no08jkmFzsh3UwSXKaOJQSxewUaBhcC7ilYXjJsDpj8dOMqRV+nPGlMCG5yOSBABVrIotVyavOXOcNm8/x7GqTTbdi6moeLvfQZPbjgKFuGZsGpwM+WYxKLFPXHq8idbbUyTEPJU1XBulL0zXaO1SEYl+h28zq3IBi5slmgGoipo7EUtNsW/xAU8wTtsnMLmjqLU19OqO9otyT5212HHtbFdvVko/NzlBuBC62m2zbBctUMDY1m2bJ0Db4zrjfJIdWiSSlNJ2BX6/jl+exYh5KprbGR1mFW8VDKVlpAqumgC6UJhYZP1IUM92dP6WygCwda730e/fzSlZnFX6a2H5kj//bY7/Dl44+zn9ePskilGxXizWLtEwFKSuUymiVCRtHYv8f4By3z8nRufmi/Zve9ZY76gh5MYbjQQKcl9p1ctynf143g5d7CVz6uWMAs7W1xWwmrr1HHnmED33oQ7zhDW9gb2+P5XJ5R491GxU0VFXFj/3Yj/FjP/Zjz3ufxx9/nP/tf/vf7mjbtxr39FVy4LAPpfdTHE3vSp0Eq2cujrbY97f5IOZAfbjkkmM67CTpAU63cpUmIxaPj7syyoBZBWaPOWKhsItMGGiyLoiFIlSKrCx2mdAhCX2P0Nt2lTBtQvlELBUqSlRxMojh3pjDUk5AWXv4HvQSsXWxZQduboiRjhCCgDilOP1bK66/ftDJBKSUrdhtZDUxJKZPB7TPHFywh+lhyCqX9qkz/EsxWJgYmg2DHyhMY1C5WJ/kzcJ3kriI2p+Te/DSvzdHCzdv8OwEAS9Gg7MsXr3Fwaug2DUMrwlL1E4NKDBNOmyWbhJMDMuHjseS2XH7nLz2l7/1ZT/GS5lXInh5UCetlypfe6WCFzh+nxO3ayj3QfssLe5Z2u1Nk2RBKWbipPOE1F4SL7X4LPrjumkTKkO10zJ9ShNLvY7OD0ONXSYOnrDMFxtcftJQz0qm2wvesPncmrkYmJYtu+TR4jr7cUSTLU+WV7ukLsXlINLvspNfaZUgaxKKiCYkw2axlMAAb1FKLuiTg2bDdPtpiE5jjUbFhKklUMYt5ThravG8qJQpd8ULmjXoAGapyFlxbTVi5S0+Pcqjoz18JX6Wx4trOBVZpAKfLZX2bNs5dXLspyFaJWFeVBR2KWuut2O0SuuSy4NQUZrAIhTMQkkT5XmoIknfzVKhvbze/XlbgmNE9uaaiB9bVqcV7WYijhKfv32VPzz+PdpsKFXg9aNnmJiaOjmuhQmzWHEQKrTKLNpjshrG8fucPN/0x827efx8kCzNnTyPW933uBVa3mreevk3eet/8zDcB/ACLwHAfNVXfRXvf//7ecMb3sA3fdM38Wf+zJ/hF3/xF3n/+9/P137t196Lfbxvk70H5W4sPtQ3XsSq3iPSAxxnDy/+++lvS3KyYVXL4xwx/wsoSqRTm+z//k2Mz7h5IhYaPy6JpWLroy1ZKw4uWLSHaj9R7UrrvTtoSaXBjy06iARq9qijmFnK/bRuP85aUrzMMkh3jVJQukM2pQcCvWys98f0r8nR0AJ/mESWQ8R96irDs4/STjRhZCUNraPcs9VHUsSgPBAWRbcSr5lRqCzmVj/SLM5pDr6owV4uGOxq7EKtM/lTKT0yo0/siTcpdmEErV+/3qoHkDHJ66+NgMgUJSr5/CZXvsSSVSabTKgEyCUHsZTQAR0l2a3YCyzPaOqH/V36yzqZlzuvRPDSz2frytvJvPBMnoJBm9ZewVQo3CqJzwLE3wiY7jiXnUKvIqm0KLKcOyLonAiVRC+7eYCc0SERBxY/shLJH6CelbiB5ysf+QSGxEEYMDCeR8pdNs2SWRpIDLGKLFLJSDcsUrlutzddmldvhB+bmqFuKXWgSZZr9ZjCBQaF5/KoonGZnUJTXVVkY4mFIpYC0rKBdqoIA3AL8TZWOwntIc0kTTI5CAMo9xSz3SFWJ5yNTFyNJjPUrSSKoTmIA6Z6RaU9y1SyF4fshyFD06xlY73xfzcMOQgl28VyzYK0yeKToY2W1Gm5YtTk2qCeLTj9mxntM+5AXl8VM8nptZxZhUQ7NtTnI6/+gucYWM//ZfoMmsRO3GDDLtd+HJ8NpfZMTM0qOgodKW2guDy673+Dr9R5Md/Ly5lXktTsuPkob+nFOfIe9bHI94N9gTsAMB/60Id4/etfz9/4G3+DuhYT+w/+4A/inONXfuVXePvb384P/dAP3bMdve9zFMT0TIzqzijd1zkHlA/Sk9LrgHspmTryvete5p7V6AFCVbJ8copbSmlWvWXQUZLJNj7psTPRzQ6vdVKqVjwiZtVFOEcprVRZ0WxqkqMzG8r+STmmUPi6K6vMOQtoUUoKHIcVeVAQxyWp0PiRxS4j5aUZarHqii7j4euxXr1JZO+ZfGSH3S86xeK8ZXgloDL4iaEdS2ymrTODnYSbi68nDpwY97XCTy1Zi7nTTzVERRwIuCgVhLEwOanUIpfbn9+4enQUSMYIxgnb0hdaGi3GfaVYPlyRde+xEf22aaXLpp1IMejwWhQTf6UZXE+oA8sz9+BP62RemfP/ffr/c8vb//iFP32f9+SF57id9D5XZ3AtYp3E3KuYsctEct2xX4m/IlkpH+7N8CojF9AZWeSJCbKS8KteENClUdou/avcM8SBIg4t5daSJll+b36Whwf7PFrtsm3m7Ee5eHYqUpnAPFZUyq99JiBdK31y18SsqJPDZ8tMVSSl2CxW7BTDbv/lXzbCxCQjHSjaQztRhCGEccasFH7YHY4bRbmfcauMDiLNkvNUptl01BPHsi54eHzAbjvgI/kcZwpJGTssp/RcjpvMo4QaXPMTQtJENKUOpKxIWfH7RpeZx5JLzRSjMrvNEKsjq+BQKvPs9Q20Fvlxsaeorrfy+mpQPpONws49qTTy9SyxPKuxZ+Z84eazPFbt8AcGT1Enx6ZZokkYlWmzQatMhWc/D3EqolViXDQ8N7jXf3GfvXM3Ac2DAC/9Nu80bOBk4euF57YBzBd+4Rfyxje+kT/1p/4U3/It8mZorfnzf/7P37Odu+8TA1i3TrbKIcgFsbWHkiVj5HalxGuR02H5e598ZThywZ/EPxJTt6IWoSxRVUn95Glioaiue9pNMXOaWrwuICt0qTCYVVr3oWQD7YbDLRQqZewq40dSAJmcwq0yps3YRUBHkZ8le3jSVM6Bs6TpkMWTE5anjayKOaHzYyH+FPN5BcUss/HxJfbZHXLbiuSsB2jd81W7B2z+tuXql2yyPGMZXfIkq1g8pLELKGZi6gcppsxWVrW0j5AtdpWwM8+ZADtNgV2CXUUOLpRU+5FQOlTKDH/vOrkvwTJH2LGe/Cq69y2Jl2YdC601eVixOqUJr1lRlh79wQ1UglAq3CJRHkQpyjwC/oqDhF2dMDDHYR4k+/J8oOVW93khIPNKYGFeyfKx4zg6ZGxI6JjXJnAVMrrr21K58zWWBkrpiklOr8sUAVJhpOEeYYpNk6DJ60AZMqCgPpUZXJjx6u3rhKw5X8045RYkFM+0p9Zt9U5FroXxkcb7yIZZMksCCHr2QEofJ50kS62lUKeHC66vhuAk6TLVisXjifnvi4xPLdkartiulmiVKIwcnOe+ZN6WXN6fsDMvoDYU1zUbHxXZVtYKUyvqlYCLmS+pg6WYREodmJjVOkr5apiuGaKYNSmLzK2Xy62iSLWu+xGXmym/u3OW7cGStotMPqhLRoXHLwuUzgyfcoyeS/LaF5pYGqxPFLsNyWrcfiMKgIElDMEvCqxODHXLVDV8xD/MSDeMdMv1OCZ1Zpn9OOxey0BlAvvtgDQ4hk2Wx3R678vN80phTp5vXs7+X33PTz9QGdlxSkLr57YBzAc+8AF+8id/ku///u/ne7/3e3n729/On/pTf4qv/MqvvJf792CmuzBWPVPSdYnknFHqiC/m5rnB3N9fSHNYENknZSG+l1RoBpcbYiUxjXYhJzuVoNm2uJlEIseBxg8UtsmdjjrTTi3VlQYVs+iMawiVptgP2KWYKNsNeXu1z+hlCymRByX+4Q2uf0FFsorppwNZK5qJRiUYXY5C71tFO1FcfuOY6fmK4acWmJ0DFJ2fpzPJ55jQ1/Y5/RuaK2+csnjI4ccK0wh4sXWi2TCYNmOaLNpvIAydSNyMwqw0bh4482uRbBRxoMX8X2n8UHHm/9yFg/lh4EDsyziPMF0xAekwSc11muNOEqcDxIOCfDpgaygPMmRhX0wr8r0wlIhMleU1U/kl1SSdzF2c4w5ebnX/5wMy9wPEnLAvx2ySHLNVyJJqqJCulJRRIeMWnlRaAS5GSV+YlgDMvktFdb0qto5yiGulJT4OC/HPpEzYSDwyXrDXDKis58JgZw1aZrHitJtRqMBlL36X03bGSDccJKEFJrqmzmJy99lwzU/WUqv+QrwsAsvgun2S82G2UD204IlTOzwx3mFiawyJDSug42K7wbNscm05wrlA6ywpaNrtyPwxy8bHE4PrgVA5VK7w48yz5QZFEZhXJU8tT3HdjxgYzyo6jMrErNb/p6zXHTalDlyqJ+uX/no9IsROvaAyl/Yn+NbSlE6A375jdDGLLHsd529JpUG3ETNrUK1HW0P7xAZxIM/bqcimWeBUYqQbnAqMdMMsVQxNw2W/ic9mLYHrwdNx64F5pczRY9rLjUv+t+/72Ze7Oy9pvvKtb38g271bcyvwci9lfrc7tw1gvvIrv5Kv/Mqv5K//9b/Oz/zMz/BTP/VT/JE/8kd4zWtewzvf+U7e8Y53PG+B0StmUhYDPnRAI5J9QBWFgBej1wb29XSysjVb08uabgVwlAZtUIOKxRNTMWGuArEyJKekfLJJzC4UNBuK4RVFuR9ZnepSseq8ztKPlWb1UEUyUO4GstWgpC8lDA3NpsXWSYzvKUsscVWyenKL5VlLMcvokFEBFJli0RVIrkTqtTxjSYVIGpanDe14QrUzZPh712C26NimLo4ZMJf3OPcfMhe/cpPV2cz4GSgPIn6k14BIxUQ7dWRbsDxjKA/E4BmGpvPjCFhbnpbHHF1scM/tw84eyjmyPeI3ivGQ6Vq/Dxya+dcFnXKyzxpGn7TE56ZdwWd3YRFlpbTZMmIobTPNhsItlQDQk/mcnDsFLzf/7oMAMSfg5ZhNEukUnWE9WyB2UfRdQIkUDwd0c+TXCgNGodo+MAbMMogMOAgbj9K02wUHFyyzJ+D0o3s8PNoHYLMQ8FBqz8V2U5LDOqZCq8QjxS4RTZsNhkSTS5wKhyWQXZqXUeLn0CoztTV7fkgdHTkrhuOGunY8+ug1vmDrEiPTcLmZMLE1Z4sDUtbUyeFU5LHhbvdyKMIpzX47oAmW3YcGXP2Cgny5YnhRsfGJRDNV7JwraZ0jbewzDyWbxYqQDKec9Nn4bKi0Zz8MeG61wTIUjF1DMoo6OkKXDDpvSlJWXF2MsCahFPiVI7QGe9UxflpR7cmCX9YK3QR5r1xXl9BdC6RRyeqUpTkV2To1w2dDnRwf9Wf4jcUFLpQ7eDsXeZ6S/pnTdkadHbthRB0dTkdUdZNX9mSed44ey+7G8fJBAZd7sv33CSC6r8/prcePfYGXYOIfjUZ8x3d8B9/xHd/Bxz72MX7yJ3+SH/uxH+OHf/iHectb3sK/+Bf/4l7s532ZHALZdj4KAGNQnX+lBy1KKfG09LHEOUOWiOUbShX7bhJrD1PHslxcp/GQxTlDNqB9IQZOLf6Y+rRj/7Xgxwm7kgvpwbW0TspKVhEq3X2fKfclQjkj5ZDZKJIRaZRKWbLr5xGVEu3DU3Ze10VgHnTpOAaK/UCxL6tDugmobBlcF0AVO5mVWyaaTYP/A+eY/u4++vrBOpEMJABBX93j/Ac1V944ITklDIsS4NUF29BsGpbnhO0ZXpXn3WwbQiUsicqZajcx+vQS+9xOF6wg8dXkdMhm9YlqfYy10Tf97EhgghFGpzeYVruZdqwpZolyXwBOKLUAum6/7DLhbyOt5WTu3TwI9uXPPP07d+VxXoiNudsg5gS4HM9JpSJ7tT4l6LZbNEmZWBqRkrUS5qISqCgMi/LpsGK6Y5BVK75F5SOpsGSnWJ6x7H9epnh0wZnRHKsjdXRsu8Xa2G5IvG70HABn7IEwAtlKxwvF2vMySxUpa+bJocnreGWAlBWr5NYxxIWJDApP2xq+cPtZQjY0yVLqSEiaa37CULdrBseQGBhPQrEfK5yONN2lh1YZvxFYBcfkUzC8mmg+WrB8OPL0eAtnItdXQymtNJGB9TTRymNEi1aZlBUhaZ7zGxidsDrho6H2lpwVdeOEvO/PFfuO4SXF+FKkvO67c97h+6ZXAeUjWAM546cFYQDZZZxJfHJxqivabHmikoQ0n806KMFnQ5Mdy1RQJ0ehAwfNmNycMPq3O7fqE7nTedCg5V7PcWR1/ulP/O/8o//m4fu2vTsGMEfnNa95DT/wAz/A448/zl/4C3+Bn//5n79b+/VARpUlio5l6a9/I0fihyWCUPlOwpSPNNT34GVt+O/+7ztVUn8/RZyW+LHCLSR7XgclkqWU2X9SM/p0pjyAcj+QnPxMLq4zpu4ZByj2wqE+utKdITSBVagGaa93YJae7AyLhwrsIq+ZBj9U6CgyrjAwuGVXdrYMJKsZXE34qaXYC+TObLo4b6g3NznzawZzaReyJ7dePEOAefYaD+3MWb3qFAePF4ShotpJFCspM/Mj2Sc3yyzOGoyXJBpTw+TTDcUzu6jGg/dr8CKpY0c6afrXO8bDDptW5HlroGm0+HW6yOjB9UQsDMXBYQIOdOWbdcY2CRXA1BHTxSmH4gTAnMzLm+djY+4GiDkBLsd7tM/EQq9lsyKXjaiYUFmjQtcvYjSKRMZIcHEbOta4S7FUCmImV4bs5HgWh452qsjbDZvjJYWODIxfl1IuU8FQt3ze4BJttlzzkzUjkrJiqFua5NasC0CdHAm19pvMc0XMWoojvXhgCh05Pzrg0mLK5pkVW27Jrh+iVWa7WBCSptJeggGyllb6VLDpltLdUmSuN5pxIZRTGtQsR45203JxY0hxxYrB36t1XsxR8DJ1NdfjiMp4Ch2poyVlw5X5mGVd4Fzk9HghHhobaIOlnRUUFx1Gw/iSnMc2nmqxcwEvcVgQS022UrbpVgndZNzMozK0U4tpgAyLpqAyfv26jFXNebtH0fXPOGVYxnLdBbPnByx8yco7lD8BMHcy//Z9P8v5s/Bv3/eg9+T4zb0GZy8Ejm513nlQHs+XDGB++Zd/mb/39/4eP/uzP4vWmj/xJ/4E73znO+/mvt33ySGIwb5nT7qL49zF9d4gHYO13Gxdnshhxrq6mYnpWQGt0W2k2sm4lUi86m1LO9G0Y40OMLqcKPe89KMMJQVFhSReGYR5SVaBEj10GlhMk/ATkWJpL2k32Uo/i5nVtOcnLM5rJp+OGJ/JStiRZqLRwaDbTLKaNCnEZN/E7nlI0aRdBZwCt9C0E8XFr5jy0K8ozHPX168PMYrR3nsGH1pRfXpC/dgGfmpJTjpskgO7hGIuAQTDSw12d4larMh1A61fa78BAYDGHIKXvmzTaAjp0Aujk2w/RlQXtIDS5JQgROxKyskkqEBhWpGVmUbMm4tzhvFzkVTKScb4hJudmPg/l6ZnX16OfOxW80IgBu5MInECWl45o6IsiCSn1z0wKkE2HahJWaRkIZGKrnw3WylPrAMqSxoWWneARiS9yWnCyNBsQjn0TIuGaSezGhiJQV7GgmgVO2HMLFZMTM0ylZSdL6ZSDfNcobsCy2Uq8MkwNC37YUCdDv0wEg2sKVVkaKUwU6vMwPo12IloJqYmas1pOyOiabrHGJoGHOyGEfNQUprApdWEaDVNFJbEmcjw1JKlHVBcdLh9TfOJKasyES8ckJImRs2gbLEmsd9UtEGKNUMwpKTwrSUlxaUwJUZZYAyNhVYz/SRMnm5lgWrh0Y1fp4HGgSOVmsVZix8r4kxRzBJuLudIt4i0Y42ZG+bXhzw92mZsWx4u93i23eKUmZPQ/P/Z+/NoS9KzvBf8fVNE7OEMOWeVqkolEJKREDJGgwXdfdVGjRC2GS4YLNsNjVhgjGQ3luEaLggWF5uhTcsssGzfe3uBrifAgAEvmsGmAGNoIZAQQgghxCBVlaoyK4dzzh4j4pv6jzdin5OprMqhTo61n7Vq1Tl7x44dESe/+OL53ud53qfCJotUMIslpQ7shCGh87+UNpCLtYn/ajj4IPw/Pv4Tt/lonnu4EY9RPyfdjrnpugjME088wTvf+U7e+c538id/8id81md9Fj/4gz/Il33ZlzEa3f0Z50opISWdRCxnkRSpLn4YkIdkYyBmVNEv4+93sj9IcnJvLAeUK/alaUoM+Tpk2g1DdAo/ViQjKVh9NQY6AqEVsTIyoSklTSq7e2EqDO2G22/CiDS1DEMjCV8XluADfmwZPSmEKVtFs6WxjSSXNZuG6mIkDAzaJ3SQ/SYnhnrdyPdqnxk+FShmmsnzDef+0phjTuM+dm4/IayTzGXv4cIO1cU9BmXRXdMDN/COmORG0nAyCEnpK12tX5HCVaJbT1R66d6q0WhaxVr3fyPZJkHSqNZTXGwZnLfsvghUzIyeEImbihlsZqMLM4jl/iqZWqwrMGscDq7mi7kTcHrvpeskskOELMJ3QSwIadFeUse0Fy9Ltlrmhbx/z48DK4tWsZtXcu4ifhUZiJU0/W1ORDZcQKlMHR3GtgxMy0k3YaYrts2Ci2HMhqnZMgsimkq1+GzRpFUne6cipQp4DHthwGPLIxwtFtxf7kKCpBRj2xK7hK2UFUerOYWJ7HiJVT7ppLn12C5WYQAAEcWiizzWZMa2waZEU1jGrqFNlqFriUkzaUtyVjQuwvkS3Sqyy0wvjCCIF6jWpQTZDIN0t/eG3IqkmqhIyRFahW6lOeXGjkJFGD/hKZ+ay3RsNfX9G8SByLizUixO6lXj4jBSXYPOoou4lnROFUFZ+RsVOrBllkQUI91wIY6ZxUoInY4sUsHUV/iuIWgT7CoGe42nxyXSsSu8f7enkN1svOh/+vWnfe+Bt76ax9/+bgB+c/HEDX/Hwb/R5b//ja/9vFvWxBKug8C84Q1v4Jd/+Zc5fvw4X/EVX8Gb3vQmXvziF9/MY7v1MKbnGyJHOtALRnVSMTWo5OHaHHjQLdx+laWLSSYEkaH10rKcAOkIn5U8RNtZRGUYnI1gFH4oxnk3C9KJuX9+N2CX0ksglprkNKbuJGlGcfEvSMTjsQ9GVEeA3DyKWb31oDX1thHTaMyEkenK9JnkoNxNqwnVjw1xoIlO0Y41sRJdslsEMZWCVDKEd3DhZUOOqZO4PzsjpAX2/Sc5iU8GwPuVoX7VD8d20jp1wD+UpCGlst2KJOaAr0izEodrA4Xa77tjrSiuDybB9ZWbpsVOarY/YgiDisXpjB9Bu6HRocC0iXrLoLL8XUwtFZhg1ib+NQ4Pz0Ri1rj3kKwiao1pu3TJIM0pdSv3/dzF28dS7ud9opiO++b9S5Az2Wj8hmH6oCZXnnHVsFnUVMaz5ZYcsQtmUSor81SyFwddU8gGny0Njth5U3bCCE1edatvkuVcO2a3kc/cX+6y66XTvVWR3XaMVpmZLymM9FwpdWBoWrasNI3s/SCGjFERjSIpzRE7p1CBNlua5DjupjTJsYgFF9yIPT8gZM1UVyiT4VRN3CmxU0N1zsp808l9k1OQC7KB4dmE8ULw+oU9Wyd0I9fczgO5UyqQIDtD2CpZnHI0W5p2C9yM7t4vC4ixlMagsVTURzXaC6mJo0j2mp3FgPaIZRornA58oH6ASgUWqeCIFf/RIhdYHfFR46ORtbZ1CtlVcbWq9I2mkD0XiM+5t/wY555pg3/y04f6fXdCW4BrJjDOOX7yJ3+Sv/bX/hrmYEf5ew0HJV+96a97KM45S/+urv8LsO/BAPm/7t7rJU7Q+TUSWSVUiOiFxy6lQaObBelObzSOgN6JxIEVA77WmEXALFWXmpVJrqDYk8+kQuRl5V5m8UCm3tboCKYRQ/roiUaik8cDwgDsUhFGhukD4gUJpSHr/YpNslAf1TTbsmrVbmV0VLiZplJKvDU5M350wfCsVKHqkyXThyq297bR5yVtZtUrZhW3HLsmMAcagprOP7Rq7smBSOQ+aaz7e2iJRFbWCOnpr3X/2RDlPPu/1YEwBeW62M/5EucMG487wsAw/5SW5z90ngvt/Yw/Dn6kGJ6L8tBRaVQ05LjWLD9XcFjm/avhVpKYxeOnABg+cPaaP7Ouwhwe3Dyiq/15IhWaHMS4nowkM+ogTStR4kUkdpX3XmJWaEmKTImsNSqKP8M0QFD4KDKqSRxwqpQqiM8GnTVJBSEvRqrjuksVS1mvJGPH3YxprNgJ0nTxvmrCA9UuEfF4jGxDyop5LLnYDDsJWeL5w4v78cpaGmJuaGlw7bT4bHy2OBXZsDWV9lTKM08Fs1xRqYDREkncVyvqYBmWLXXt0DqRNjzJF5S7MDoTUUF6iklAjJYWArMgJvwoMjwdkswJ3XWMIycqhoElDSzNtiMWiuaIpu0Sl+MAkun7lGX5eKnwA/GphkpR7mSqs4bl8xNaZZbRMYslPkgFamyalZdII+cVkuHj820mdSntF8J6PnkmXGsl+rlARm4EV7ouzzZ2+nrQE5qfOfXpAHzRLajEXDOBuZvTxa4ZBz0uMV6aKqb3ZVur9KuDKWOwX5npG18qvd90sZeZKSVVkW61H+TmSswon/CbBSTpD2AyxNJ03ZilA3Ox25CNXumqe79IdVZLY7Qg/phyL4q3xAdiZUGBWyRioVYrTYsHFW7STQ4R6YHSvYcF0yqRELjOBzPrjjskcF3UZ8yorJh/8iYb07n4WNRlN+qu6WcvF8N25KUnOLGLYz7QMDTHJETRWtSgIh7fpD1aEQtNGIgWvJiIT2mla54uULOFSPd6kt3/TX1ATxaMPqZQaQSq4LHJaSoLy+NSaYoTacAZRlCdNxSPrz0wtxP/z0c/dFv7wNws3CwS0xOWa3n9mUjNmsQcDuzcY4KTSkuCHLL4GENXzY+dxyXJ/3UTJcYXTdaKVJlVZaZfAFJBou61d6ikyFmxCAXb5ZKL7YihaYlZjPQRxZZd4LPhYhjTZIsmk1Arj8t5P6ZJlpAMQ9syNC2LWLCMjmkQ6ZdVkScWW8zacnVu81gy0C2V9myZ5aqRZEQim+vspAqD9EqZp5KRlSrQlllgugpRTIqQDFZHXrB5kcdn2/hRzWxeoXQmDSP1UcfGo4lir8XsLUlVQS4NqTSYpUfvzqFwKB9RTZD0sCAy4rBVEkqpWplGmj6DEBa/mfEnPGYQQWWMSfhGpF5ta/BbltHjmmKSGZwPjJ9I7Jwv2PsL23x0uCRmxaQdYHWk0HHVj+Z5g10moeJcM2bDNfjSYHTifNcsdI1nxtVW9vuH8jWR+UTcSsJyNfRE5nrh2wCcuaZtn1UK2T2HFEF3+t2UxVvRm8Zz2q/OpLwyi69M5rDfB+ZgWlYvmQLxz7QtylmKvRa/4VA+sTxVYepEMfFonzBzj5k1pIFDJS3+ls4/otCoKH6VZstgvPRysQvQHiEYdKllS1l5i5Xt+sgkmk1pmllMM2GoJJXMZ+wy0m4UlJNMOclMH5AHedMKoUlWid9myxIqzfT5mmN/4Fc9DpbHDMOT25jHnmLV/9F0vpUUhbz03pUY969RZLUNsJKNKWtRVUV44Bj18Yp2U2OXIh9IVlLUkpFeLRI0YFDbJbrexCxa1KJBzRbyJ0gJpTU0LeZ8ZBQSWW2ioqE+Jq2sdYT6iJxzczxSXjQsTt3DlcY1VjhYfTlsA/+twtORl6ttfz3VmTWuDyomdO3FoK/A1GkVyKKihKwQhLz03jvtpYKgugWrfLDlWGf6B5H92olmb1axWdXUwZGyYhELtuxyVWmJKHyy7MXBSvLVJLvqC9PDaul6v4gFF/yIlDUXGkkXq6Pj7GyDwgZ26wHb1XL1Oa0SO2G0SjPTKq1kZB7xwFyIY5yKTGK1IjhGpUv2kbLm4eEF6mhpoqENhuW8BCNR/37D4CaKXFhUjCQjcycxS8gBIg/rFwXzoCAOHX7D4oeaxUmNH3ek5Vhg4+Qex8qWWV0yKlsWrUMB1kZi1ESXSIPA3qbDTA3z+x3agw5Aylycy7Xx0VBakdMBDKwHtrlQj2iTYeRaBtYTsobqgLx5jU/A3/jaz7suP+D1PKyvyc69iTWBOYAcpfPYJc0qtdqPRzasGlwq3V26lD9BtgTsVxN0sf96//DetJiFZ/6AdEG2y7TqDZA1uFakVancN/6pmCEl4thiFr5Ls1HohZjuq4tZTPkG3DJRPjGDugFjMHUglhXzUxa7zNhaIpQX92WGT4pkCiVem/lxjV1kUgGDs5lqN7M4rsXsf8R1x6mYPz+iomPzY1K9MW2mPlkx3BujmpZcN1J1ifsVrP3rJdWtVfPPHr0cz1rY3mTx8PZKJmCXCjv3xIHFj6300IkZfMZ08c/ZalJpiIMhHBtiZyPMtEbtTvcDBALoyYLxRzLlzpDpQyXNNvgRuJApdhSDsxo3z+yePNR/Xmuscei4XuLydJ+/nMic3nspwLoS8yyQjZYFpS58pfcuZoWQFJ9XUmAwEuXbVWJUTJCk+S9aKt3J6s6rqBlciAzOOiZHKs5XI5rKcnSwYNcPGZuGHT8kdgb9WZTKSZMsPhtCEr+L05FCy8O3VlKZ2Q1D9vyAOjjOzEVjtWwd83nF0e0ZPhh8YbjYDtmw0lzSqMR9bndVVQFYxJLjbroiNj4bZnGTUktyWcyaSnmcibjBOR6uLgDw0s0nKXTkSbvJR3cGqCIRBl3ctIJcSMBBj1RZ0BV6KURRxYxqPHFQ0W4V+KFmeUwz/eTEJ73s47x0+0kutpIOdnYp51e3XVpa2VK3jqAzZRHwwUDlyccU4SFF7ipe1ohc+eJ8iNaJpXeUNhCSZuEdu/WA3F03rTJP7GwxrBr0dP24dTXcCb6Kux3XG2l8K6Re14OFT/zMNW67HlEH0Kde9aljyjqROcUov8coHpdV+pXafzDvInz7Zooq+S7FrLm08WW3rZotKSYj/IahmETMIhArg9+wqDzALIM01MqZ7Axx4DCLFjMXGZbKmXInYNpE1U9wTmEUDD82R0/nUnkA9KJFxUx9TDF6ojM8VlCdU2w8FqWCclSCAHrysjyZSE5TTDPVbsIuE7pNImdQMPqYxc0kpU3nTKgkQ78aVZjWdylucT8trA86gC5NrDPqx9hFILMy43N0i/kLj5CcYvjEsktAk30pZ3DTIBNVSKg+tjok1NLLaubAraoy6eQYpxRqZyKRyv01AYqm5ehOSRo45s8b4EdCXAbnAzsvcrTH1itmtxs3W0Z2q7wvl+MwZGTPlrxcaV9XIjJrEnNjUCF1HhZZEAtjRzJKFl6QhpUqCYlRKZPHjqwglRKHr1Imd3LcXiqcFWgfcdPM5qMav2GZVkOK41F6pDRDSh2YhJImWTat+FJSVtJwMlgSiqkXolGZQKkDVkeW0ZE6GVTImlHRsrusWCxKUlDEJA/vViVOVxMutkMq7RmbGqcCCc0sVpxyexibSFnRJIfRiQ29XJGZRZIGmhtmCRnpYK9r/rw5wdlmcxXTjAbrInGYqY9qBue69Dal0G0kjJxcY6NX/qD9PjmWMBKlwPJk4sSLzvPw+CLL6HAq0SIEruqCFNpgiJ3nVatMYeOK2LXekpPC2IRSGa0zKWmsDTiTWLROpjgbyVkRsqIwMtednQhJqlzA7q09MNeKw+4rcu4tP/acqMKc+Bd/k6//F3/zuqpTNyr1ullYS8huEDkEmTBSkl4iyxp0F3PpoxRD+odwgJD3o361aKmUUhIPHMI+EfJBKjd9dHD2qLqlPLsguRFmKRWX5QlZCXJzJTfl0qAWLapJ2Ln0M8Ea0rAga2lamfV+alnWRkyN0wU0rZCqlNF7c0ZPbbE3kqStYpZojOboxzzVU0va7ZJ2o0C34DeUVIFmyMqXgdETXmRhHVdrNiSFzC6ku3Ry0lclDBRhu0TPll0jyQMEoItZ7qtbOXQkMKX9apZWsDFi8YJt7CJi5x699BAzadydcx26/i9dP4WMdKnuHgq0z6gmiunVavzRIWFrgB44zPkJeVFLyEDnV1KzBbpwbD25Q9oe448M8GNLsZfZWKwnnHsZl5OXu0k+dpjk5fL9Pl01BtYVmetBrCzKWZGSteJlyUZJKKVVmND1gfGSSmYWQSrcAwsakpVmlyrlS3pjqZDQMTJ8YolZljwxKtgrBzxZbQJQR5lH7htMmMcSqyLLWLDnxYPRRsteW+GjSJxGriFlzTwUjGxLyJKc5aNhbzqUBR8rcqkQJFHLHRGTep0cpfY0acRZv9nJ1DzbZsE8lYxNTaEChYoMdcssVtTJsWVF3mtUYqQaduOQSagodSBkzZFyQTmWOSOcaNmjwDQl2x/p1BBd8Et2mpwyeeBAK5JSKAXz+xyT52vip8941QOPrQjayDZolTldTThaLGiiZacdELJBk6mjzEVaZVJWWJ3YrQfsLavV6yCEMCaNj5kQDFYntsqaWVuK7C5If5tB4ZktSy5MRqj1etg142ZUYp4rJOZGfDB3UhVmXYG5QSijUUrvx7VrISQ5pv2fs0i50Lr7vyL7sP8QDpDTShql+qf+nKQSEyNgyN5jLk4oh44wsiSjaDcVxUTiNnUTUHn/OECSzdLAicHTafwRjV0kYikG/mIvUHx8F/Zmcg69kT1EqnMtWRW4WSQONOOPB4q9llRashVJQqgkpUwlGJxRpALaMahTMiFWO3E1cegAzbbCNuJrsbU0hlyeKLC7A8x03iWRhf1ENmPkaijx8aw8Rf31ryra522j24RZBsykFlnYuCBWnXRARbCy2gb7K5ISMSrnm0uxjwLYmVSsUmlR22N06yXuuW922V0fckK3nnKyoARGhcO7xPpx7fbjVpn5v/Shv3tLScydGqt8JRLT43Iyc/D3NS5F39dFQleQ/iXdolPu+7t07yuf0J0/JvcV9YElO7UiMH2lBq3ISSrQbuoZPebYGwx40kVGVUtpA5tljVaZp+oxM19idSJ0FYYmWtoo98e5L2iToTRBqjPdg7lSmfPTEWSFKz1ta5nPKtLS0o4sH1sc5bHpNhuu5piTag/Apq1JWbMbh6Ss2XYLYmfq34sDfLJU2jPSDXVyXW8aCUsZm4ahafnTxQkqE9geL7mwOyZ7TTYSJhNLg9urRVq8U4v30SfSwIp/yEjl3Q8V9anIS06dE6KSLAOzZGyaVdPN837MsiN7IYk3pycgRqdVRSYkTc4KrRNGJ3JWpKxY1o6i0LSNI2fFnquYN5KYaVSm8Zb5UhNqh9p1jC62t+Yf3l2O29XV/V7B9ZK0z/4b//NNOpIbw9f8/LVVX2BNYC6F0rK6k3qy0ZX6lVo1qgT2yQzsv8Zl8crG7PtjevQP611EJiFiz+6RHjxCGFo2HguQxRSfBha9DKRRia6DpH7lTCosYWRpNyX2mKxxs4ibeOy5CUzn3XcIUZKfE6YOtBsVtk6YZWcmTRkVE8XFKIbHYYGbitRs43GRN4RKsTwh6WR98lc5iSxOWvwGVBcRuUPOmDbTbGv0w2M2z+1C9l1KW5L/936YXpIH+/I6a4mnj7D3cIVtMuPHIrmQhLcwkujjWCp0NOg24yYe00TU0q9kfkKO1KpZWVas/m66jcRxCXEbvTuV/jQ9gdIK2kRWERZL+XtPpii9XjK7F3G7ZGOHhZtVfblerMnLM0P7iNZd4lgTxYCfM1pyQ8CIr0Lun3RSKNX1JEnYhXj+erlstlJtkJ3L/KNDYvtPPW5uOVcNSEcUxWagiZaPzo5ycSE+y6PDJUvvxKfReT5KGzE60UbDUjmWrcMHw3jQ4IMhRk3OsNyrsOcd1Y4iVmKo//PNYzTBsIyOiRowsg0bpqbUHq0ShozTnothTJ2tBApkiWYeqoY2Wxap7LZNNEliiZ2ObLklU19x/3iPxlt2J5ukKtFsWfymwU01NEJ6dBDZmPYJ1QbSqCCVhvqYwp5c8qmbZ5iEioFp0SoLYdKeRSwY6hZXSMzzmXqTc8sxu4sBSmVSUhjTyY07QlO6wJFqiVKZaVuyE4d4b0heU88qnuoSzHLU5KjQEyvNNM8ptv804D4+XS+IXQNuJnm5lSldt7vac63n+i+/7s5JGP7NN7yCV//kr/HuL33tNW2/JjAHESM57vcqUSrLg7bRK6LSm/tXKWRaoUyxv48kn8EHlLNCZHoJWY+usWVuGlRKFE8VqDCkOdp3MO6qN8EQK4NuAyREDjUyNJsG02bGT7aYWYvZnUkVwfv9Ca5LS8Na0Bq9M4M8Zn7SUu0JOcmmS//q9dVGopZ1UNiFbGMataoOzZ6nKUbigcmWLikH6VTsFMUssSgU0wcN4z/bRJ25IFKyrPaJgj9wHbtqFIVDOUd7bICOQprm95cMn5Lmnu1Wp2su5Dv6lJ5VXxlrpMoTE8p7tFJEV6CbsOoVk61GLzxxs0TljLq4tx913YcH5CREpvcqHUyTW+O24jCqMNdCXPqKyK2qxNyOKkxfXXkmIrROKXv2yEqkwLqN6DaQvcGPHW7mUVGTrMZ4qeLH0uxX3DuomDFzLzKzlKXqkjKpNISBlWbGSpLLBucjds/ih3Yl/3Im4oz4NqZNuaqswEoNDNClaWlClPcn8wprE0URCN6g9ywbHwXIqIuwPKG5cHHMxuaSs4tN0mDGrh8wMJ6Badm0dedr8dTJraRhTot5/7zfWHln+upL7KIrz7UbDHSLz5rCREZly24GyoTfgFhoYmmwPqIaL/f3iLQVGDiykxYD7Vbm+NacI1aCDaRfTcCoRJ0ksc2pKBHS2aBVxupESiJB64361kQKu68SaJPMRT4anI2kpNBFJJtEmji5sDqjFwbdKKpzis1Ho/g2l+v55Ep48q99G3Y0vuS133zDK/jsX3gPAKMfuf92HNazxgn+y2377vc/8mnwxf/kmrZ96D2Dm3w0V8ejr5Bkw8/+hfcQ5rNr/tyawBxAjhHQq0pK7ismfTxy39DSB9BaSAzm0rhlrUQ2Zu3qoXolHVNd7xhnV71ScoioC7sU8yVmtiG59SNDKjTeamKpSG6InQfabUuxGxh8fC4xwX21JWeRuYWwXynqe7HkRK5rlFKMP96y86ISdsEPNGZssbWk3oSBkSaOhVr1qHGzQLYKO48sTjtmD2jaLUWxl6nOZdwiU8wiWSnCUPTaxUQqOP7ogHKvEh/RZURgRQpXErdA3hgRC025m0iFSCj6wADJ75fXmk3NeBZFThESubIkrdC135f4hYjZW5LL7p93zCgkclNr8EcGuKaFnXZf4tY3xQT5m9n9CtwadwZ6AnI9ROZGqy23Wk52K9FLxIYPnL1qNeeZ5GRrXAOyJGilwqJ8xHhDckaIR7tf4VWxW2RpItkZkZXVAR0jqZLI4Dyw4otpEwzAb1iSU7iJeGfGH1PMqDifFeXAsz1eYHUidrKwJoiEN0aNMYk2GLTSuO4BPQRDVXpCMCxmJbnVVI8XuCmMnwjit5xHqh3D+apk9oKM2doDWHlXUtYso6NRdtVvpq986JxX8c0VnkUsSV0E8iyWfHR+jEIHjpVzQjK0nUdHb0j/sfZIpN7WDM5pUtU1rYRVm4JUGvzYsjhuiYPMfaMJe3HANEilZ2A8Y9MQklSCvDKEbJiFQppP6khVeIyWisuiFWlYTEKm5k1BiIbCSkJZygrnIiEYclK4PcPwSWlNUMwyYQCD80F6sxUaXa1j+a8Vn/0L71mRmPlXPXFTvuMDb/6vh7Kfl73j/3bF19//yKcB8PLP+YND+Z6bgdtFXnrC8myxJjAH0RsDY2S/mck+YQEOdInvyc0+sVm91lc0mlbIkDagzarJZfZ+f/uYyFnD1KNnc8qnSsrCka1UJlbH5QPFxxMsa0nT6mRYK/Qyt77y0h9XpKv2tFSP7uKeJ9nAxSzhx0aiPUspwQPoIJGfcaApdyI0MrFWFzU6QCzAzaUjsl1GktNARvuEDhm3SPixZnmioPyoupS8dNWpVUT1wWuoNXYpGm9PJ5vwCe00fiR9D8qdlqwVcWAII4c771Gpi7xO8pBglo1cO1g1NctKtOVhqyK7jjiOB6i9GaRw6TH2JHONOxZXIiU9qbnb5WFXw50iH1vj6kiFQXf3G9UZzyVt0q4qK6mQhSPpMK/RjSSOpdJIpHKrVx6ZbLqkLaO6fjEKFRWplJj7YpLZ+mOYtiXtuODMVoEbeJzbv5/FqInBoHQiJU1cWJTN5KggKFpKSAoz15hasfUnieFTAd2mLgEM4klLuaPwmyWzEyXnFyMe2twhJMPcFKSsKHSkNIG9tlolctWh81JaT+807U3xZ5cbkpRmNFYnZr6kiZald4zHNfN5RSoTYWRWHqI0dKtKfBw5YinXMgwgDyN1dOx2kdAA81DSOmnm+cRykzo6rE5oMrvNANdVW4xOtMGufENGZ0LSVIVHq0xlAzFpbNLM6wJrIyFL+E0xyYyf8Nip338O0EpEFX4tSb4e9BWYm4WeeHzoJ6+tweinfml9Q9/z/kc+7Y4mMbcDz0ScfB159zXuZ01gDkBZi1J2nxj0Rn3YN+6v+sPolQxKIpftfr8YpcFolHao8Yh4cpswdqiQV3ImlTOqTdhJjdqbCalJmVzXUHcDRR9YsdFqvyIUxdC/8t/0fWgOEIJLeqy4Qn6ezDj6+xWzTx4TjUwCixOaYq4pdwOmySyPa1TMDC4kUmlIRo7V1JEyJFSi8850umylMMtAHIrJPmuIlaLehlw4uV5hX0K3kuP1JAvAWtKoot20uGmgmHpZacxg52FFrsgZO2lQqRTJQGnQi1bkc1qL76V04p2JEsOJ1p13yK0eBFRIpMpix0Py7mQ/TMAYcuv35W3moNBijZuNz/bN0773m6582vfg7iYut0NGtiZCtwbKJ+nllSUdEZsxKXU/d32rKtMtBIH2llSIfy8OLbEy2EVY3YviwEpSWaVptgx2mXHzSLNpSE7W3aoLinxR0W6VhGHBskqd7DejWkV5Qe672mS0lVwUUyuJxI8QKmmKXOzB8EwrYS9OYxZCuopZYnlM4yZiZncmsuVqdtoBk7ZiaFsSinP1mLOzDQZOFuzmrWN7UNMmw15TYVTGGYkrnjXlKqb5zHSDmITiVE761MTaYGaG8mLGTlshhDGThkJO/NjSbGrCULG4TzE8uiAmzU47ZBkcy+Bok+Gild/3lhWbVUNpAheXQ6aLkqIILBcl1kXsgaqUQlTKOSvxxxwIOgBoa0f2muGeQodEsdOgGo/ynY8TSY4L9drE/2zRV2UOSsyeLW6UmBw8nv5n+ETi9ZtveAUvb995w99xI3gmwvT+Rz5tdaz/8A5SGdzIHLgmMLAiLD7UUBpyIw0glVJklfelSRlURySUKfYJC0Dw+0RGZVAGNkf4U2P8GIq9ufRw0Zo4cquEmvaIIZ3YlurFzhL11E4nBTPgG/mOroLTQxWG3DYHZE+dK1T3Xe7petRYaRpJRmVN9h515gylOcb8/gGpUOSFQl0MsNdiYkE11xKHHKRcn0xmcF4M81khxCBn/MihdZIH/rpFzQGrQA0oH9PEQlFvGdxMd4fohUyEVo5ZK0gejEWhCMbjUw054S0UOzXBycSu55FsNPXYEo8VuKmXNJ8cMLGBlMhVCaFG5UTSmbBZEAuNm8ikm03EzpbgE7EwZGdII4Pa9RJllgMkA2bfQxSiv+Tfx3MdN+s6vPrCOQDCZHJT9n+j+NKH/i7/5oM/cLsP4xJMprd+FffMh05w+lPPXXW79TgR9NchT+ckE8Aqsk+y8JSBpmtuGRVpkUjarjrItwqi0mSrVlVtQkCRyY3HFwXNcUN0mXYcsTajK4CI1yLvjVYRKqirCAnKjxnsEkwL1YVEMY3YWqS/ftxVerzMb9lAshIkoH1GX1gQ60geWKJGFrAuZkbewMzw8VMlxiRmu8dpvCW0RjyPyKnG2qKMIwcFJnPRitwqx64yZRJKZ3ktKZTJ0sBTC+mqS4g+kcMCry2T45aR9pg6oGIkuoJsNI3K+KxplSKGTLsT+ei8QqmKtpHHnBwVGUUO0mB0t1LyN4iyqFYbTY6BVrG/UJkyC0Q9kaNCu4hxSPVLQ4yB2MoxNzYyWmZCs5Ro7NaDV10KZySk5pJ/H8919NchLObX/JlX/+SvEeaz1f/f/aWv5dU/+Ws36Qiv/Xj6n4ErejjayeFIpq4HH/i1p5Naz1bH+uGf+HuH+p0Pft61kZB3fOgvfsJrq+u3mPPer/ir1zROVF6PJv7sz/6MT/7kT77dh7HGHYrHHnuMBx544HYfxm3Hepys8UxYjxPBepys8UxYjxPBepys8Uy4lnGyrsAAR48eBeDRRx9la2vrNh/Ns8dkMuHBBx/kscceY3Nz83YfzqHgdpxTzpnpdMr999+dKSiHjfU4ufOxHie3H/faOIF7b6ysx8ntx3qc3Pm408fJmsAAujPob21t3RP/6Hpsbm7eU+cDt/6c7pUb62FgPU7uHqzHye3DvTpO4N4bK+txcvuwHid3D+7UcaKvvskaa6yxxhprrLHGGmusscadgTWBWWONNdZYY4011lhjjTXuGqwJDFCWJd/xHd9BWT5zVOvdgnvtfODePKe7Dffa3+BeOx+4N8/pbsO9+De4187pXjufuxH34t/gXjunO/181ilka6yxxhprrLHGGmusscZdg3UFZo011lhjjTXWWGONNda4a7AmMGusscYaa6yxxhprrLHGXYM1gVljjTXWWGONNdZYY4017ho85wnMO97xDh5++GGqquLVr341v/3bv327D+lp8eu//uv89b/+17n//vtRSvEzP/Mzl7yfc+bbv/3bue+++xgMBrzuda/jIx/5yCXbXLx4kb/9t/82m5ubbG9v89Vf/dXMZrNbeBaC7/me7+GVr3wlGxsbnDx5ki/6oi/iwx/+8CXb1HXNm9/8Zo4dO8Z4POZLvuRLOHv27CXbPProo/zVv/pXGQ6HnDx5km/6pm8ihHArT+U5g7tlrNxL4wTWY+Vuw3qcrMfJGlfHepysx8mzRn4O48d+7MdyURT5h3/4h/MHP/jB/DVf8zV5e3s7nz179nYf2hXx8z//8/lbv/Vb83/6T/8pA/mnf/qnL3n/e7/3e/PW1lb+mZ/5mfz+978/f8EXfEF+wQtekJfL5Wqbz/u8z8svf/nL82/91m/l//7f/3t+4QtfmN/4xjfe4jPJ+fWvf33+kR/5kfwHf/AH+fd+7/fy53/+5+eHHnooz2az1TZf93Vflx988MH8yCOP5Pe85z35L//lv5w/67M+a/V+CCF/2qd9Wn7d616X3/e+9+Wf//mfz8ePH8/f8i3fcsvP517H3TRW7qVxkvN6rNxNWI+T9ThZ4+pYj5P1ODkMPKcJzKte9ar85je/efV7jDHff//9+Xu+53tu41FdGy4fSCmlfPr06fzP/tk/W722u7uby7LMP/qjP5pzzvkP//APM5B/53d+Z7XNL/zCL2SlVP74xz9+y479SnjqqacykP/bf/tvOWc5dudc/omf+InVNh/60IcykN/1rnflnOXGorXOZ86cWW3zr/7Vv8qbm5u5aZpbewL3OO7WsXKvjZOc12PlTsZ6nKzHyRpXx3qcrMfJYeA5KyFr25b3vve9vO51r1u9prXmda97He9617tu45HdGP78z/+cM2fOXHI+W1tbvPrVr16dz7ve9S62t7d5xStesdrmda97HVpr3v3ud9/yYz6Ivb09AI4ePQrAe9/7Xrz3l5zPX/gLf4GHHnrokvN52ctexqlTp1bbvP71r2cymfDBD37wFh79vY17aazc7eME1mPlTsV6nKzHyRpXx3qcrMfJYeE5S2DOnz9PjPGSPwDAqVOnOHPmzG06qhtHf8zPdD5nzpzh5MmTl7xvreXo0aO39ZxTSnzDN3wDn/3Zn82nfdqnAXKsRVGwvb19ybaXn8+Vzrd/b43Dwb00Vu7mcQLrsXInYz1O1uNkjatjPU7W4+SwYG/ZN62xxtPgzW9+M3/wB3/Ab/zGb9zuQ1ljjTsa67GyxhpXx3qcrLHG1XG3j5PnbAXm+PHjGGM+IVnh7NmznD59+jYd1Y2jP+ZnOp/Tp0/z1FNPXfJ+CIGLFy/etnN+y1vews/93M/xq7/6qzzwwAOr10+fPk3btuzu7l6y/eXnc6Xz7d9b43BwL42Vu3WcwHqs3OlYj5P1OFnj6liPk/U4OSw8ZwlMURR85md+Jo888sjqtZQSjzzyCK95zWtu45HdGF7wghdw+vTpS85nMpnw7ne/e3U+r3nNa9jd3eW9733vaptf+ZVfIaXEq1/96lt6vDln3vKWt/DTP/3T/Mqv/AoveMELLnn/Mz/zM3HOXXI+H/7wh3n00UcvOZ8PfOADl9wc/ut//a9sbm7ykpe85NacyHMA99JYudvGCazHyt2C9ThZj5M1ro71OFmPk0PDLYsLuAPxYz/2Y7ksy/zOd74z/+Ef/mH+2q/92ry9vX1JssKdhOl0mt/3vvfl973vfRnIb3/72/P73ve+/LGPfSznLHF+29vb+Wd/9mfz7//+7+cv/MIvvGKc32d8xmfkd7/73fk3fuM38qd8yqfclji/v/f3/l7e2trKv/Zrv5affPLJ1X+LxWK1zdd93dflhx56KP/Kr/xKfs973pNf85rX5Ne85jWr9/sov8/93M/Nv/d7v5d/8Rd/MZ84cWIdeXkTcDeNlXtpnOS8Hit3E9bjZD1O1rg61uNkPU4OA89pApNzzj/0Qz+UH3rooVwURX7Vq16Vf+u3fut2H9LT4ld/9Vcz8An/feVXfmXOWSL93va2t+VTp07lsizz53zO5+QPf/jDl+zjwoUL+Y1vfGMej8d5c3Mzf9VXfVWeTqe3/FyudB5A/pEf+ZHVNsvlMn/91399PnLkSB4Oh/mLv/iL85NPPnnJfj760Y/mN7zhDXkwGOTjx4/nf/SP/lH23t/is3lu4G4ZK/fSOMl5PVbuNqzHyXqcrHF1rMfJepw8W6juhNZYY4011lhjjTXWWGONNe54PGc9MGusscYaa6yxxhprrLHG3Yd7hsC84x3v4OGHH6aqKl796lfz27/927f7kNZY447DepysscbVsR4na6xxbViPlTVuF+4JAvPjP/7jvPWtb+U7vuM7+N3f/V1e/vKX8/rXv/4TouvWWOO5jPU4WWONq2M9TtZY49qwHitr3E7cEx6YV7/61bzyla/kX/yLfwFIJN+DDz7I3//7f59v/uZvvs1Ht8YadwbW42SNNa6O9ThZY41rw3qsrHE7YW/3ATxbtG3Le9/7Xr7lW75l9ZrWmte97nW8613vuqZ9pJR44okn2NjYQCl1sw51jbsMOWem0yn3338/Wt/dxcr1OFnjZmE9Ti7FepyscSXcS+MEnv1YWY+TNa6E6xkndz2BOX/+PDFGTp06dcnrp06d4o/+6I+u+JmmaWiaZvX7xz/+8XWTqjWeFo899tglnWrvRqzHyRo3G+txIliPkzWeCffCOIHrHyvrcbLG9eBaxsldT2BuBN/zPd/Dd37nd37C6689/VXYckj98HFioTFtIpaa+WmLSqADVBcDto5kpUCBnXuSM8SBwc4DAFmBHzuykW1Gf7IDF3chBkgZtAKlQWvIGeUcVAVpNCQPLMlostWEoUGHjFnKflNhyFqhciZrRTYKO/WonEnOoGJCpYxqE2Yyh6Ylh7j/nd7LieYk35+T/G4s5AzaoIwGpWBQ0p7eIows2mfqYw7tM4OnagB0HVExomImDSypsCSnyVoRBgaVM3YZiYVGZYhOM/rTHdR8QQ4RpTU5JTm2/jhg/3o4K8ccE3lzTBo6kjOr8wZAyXGgIDuN8rKfrOV9lTJ20qAWS/KygRjBGLkO/YpP93/lHHk0gMJBzvjjQ+ajyHt/6bvZ2Ng4rH96dxWebpwcxK9+w//4rL/n//oD/+m6tv/KN/zss/7OHv/HL3zhs97H9/69v3MIRwLf/K/+3aHsB+BDv/KHV93mU//K4T48rMfJpfj0L30bixcMqO8LFEdrXBG5b2OCNXKfWnjHvC0Zurb7vWDZOrRONEsHQGgtudUU5yxH/jAzPNdSnFsAyBwxLqhPlKiUqc41hKElG83eJznqo5DKjJsqBk9ljM/EQpEshIGi2snU24pUQrudIYNZKnSAYpKxC8gaUFBMEoNzLdpHktX4DYcfG5othfZQ7UTcPKLbhKk9qo2k0hKHjuaI4+KnGtoXLikHntIFclYsFgVKZ2Iw5AxKZ3JUGJtQOqN0RutM8JroDam26LlhcFZz7A88xV5DGDraLUu7oUkG3DxTXfSU5xYoH1F1Az6Ql7Xc/61FVSXheceY3z9g8rBh/nCgOLpke1Rz/uIYWwZ848gLi5lr3ESjPZhG5nbtQSXIBpKT/5PkddNmdIDRk4FYalTK+JFm+qDG2yUf/b7vWo+Ty/CF3/gIrhzflO/8yX/6ar70W9+9+hngS7/13avXD75/cPuD217Pdz0bXM933cvwzYyf/f7PuaZxctcTmOPHj2OM4ezZs5e8fvbsWU6fPn3Fz3zLt3wLb33rW1e/TyYTHnzwQaytMKNNTFGhjSKPFLpUmMpQXUyoBE4ZXNOQCkMqDenYgGKvJUVDHhbYaUscOOJICIybRTh5FDttQAW5iYI8SAMoIALLhGnmqOGAPKxIQwuuQpmM9Z4wtJgEySmyVZgmoTLo0mKWHjWP6Fn3kN56IS5oCEm+xDogk2NCKSMP7lp3ZKp/mNeoogBriCe2yEcqqkUQwuAtbhZQgyFZK7RL6NrLjdtqojOo0pAVxA2LXSScDpishWAMLfpIxtSJnHxHXFR3/gFsR6IUkA0qalAWVIY6CTEqS+LQopIQOJUyquzIj1JQZEwT93nZtEbt1ZAhZ9ORNgUIWQPkOACigmmLMgGMwS2muIHudn33l7cPc5z0+J1//OWHcmy/84+/nFd+349f8/Y96fiaL/jlG/q+//0/v+6GPncl/MA3vOlQ9/UNP/DDh7KvjfGtf0hajxNBP07yRkX7Es2pU0tOj6dUxnP/YI89P2AZHVvZs9dYjlU1VkdmPjD3peyjVczqkqYxKAVt6WhmlvHEYIqEWraoOuCiwT9Q0Y41wVWYZUL7zGjuME4TPegIgzbi5okw0CxOaNrnw/JTMipDeV4z2gMUmGUmW4XNmdFeoNhp5Z6sFCo7siswWhHGJYw1pgTlgJiJg4xaJlhEzKzFKEV7csjkxYb2kzwv/uQJMWuOVXPaaHhitoXViTZmGm+xJpGzonQBozIZcDpRB8uyNcxmlryt8LpkuSipPmQYTD1Vm1nYgmZTU5IoAxSLBG0gt7JIlj0yz/oAbabSMwpvUOMt4okS9UDm6NElO75kPMpM5wWpKSlbg81gPZSThA5C6lQU8hIqRayUkL+YSSUYoIwtei+RrSJGDbuOZSX/Pu6FcQLXP1aebpz87Pd/Dm/8rg8e+vH96NteCoCrLiVHPdHo/++qMT/6tpfyxu/64Oo4rud4+u+5Et74XR9cvX9wn5d/pn/vW048+wXBg/iec/uLgxc/5VcOdd+X4+hH/soVX++v7fXiWsbJXU9giqLgMz/zM3nkkUf4oi/6IkC0lY888ghvectbrviZsiwpy/IT38iZXLrVCr9pEqCpdhKxULhlQreJ7Aw6JFCKWFiWpyqplNSJMC7QPqHb7mFaQxxYnHPk0FVofKD/0+SYpOrRV0mWNSpEzO6UwW5FHpbkwpKNQseE9pCjVDd07dGzBrWoyXVDhgNVFQPd95ETNI0QFIN8lzFCdiLyYA+oypG9h2FFc6xCdc/2WSmKPb9afVNAchrlNUpDGDtiabAzT7YaU8tqHgnssiWVFlMnYmUxRoOnq67QkZZO59iTCdtdnf74Y0TFhI0J3ZakyhErg26iVF5ChtSdd0roJqKnXQWqrzoBuW5Qzl76Xf31ikBhyDHJ9xoDi/1y992OQx0nNwHXS2LgUiJyLWTmMInLnY4HXvUgj//2Y8/4/hqfiMMcJ6FSbBydc/94wqnBhJQ1hsTItBQ60CZLSHLvMyozdnK/aZNl6DyLpoCsMDaCyoQBtNsWNyswjdwb1aJmcKYhPlixOG4wjcHWieg6hcAiU0wzxSTiJh431WRd4DeNVGOKjK2hupClirMTMbXcE3UbUTmjewVAJffO5DSpu43aJYQK2nFXGc8aFS3jM4byXI0fKJrjieP37WF1olCRgfEsQsF2tcTqRBMte1TobsJxOmF0wkdDyoqUVTe3gTKZVGVUUMTKoGJGxUTW4JYZu0joNkrVZbEkt1LdykEWD3PKgJdKf+vZshrYYNdv8JGTQ7JL7C4tamFwU6m82AXYpVRWQM7VLqXCrwOwzLiFkMHlUam6pELjJo08U2xXmDZj+znnHsH1jpVnmk8O++H66Ef+yoo8XE5OYP+h+krk4pnwTGSl38+Vtrl8//3v/baHTVwOoj/XpyMY14MLHzhyxdePvWznaT/TX5ObQVLvegID8Na3vpWv/Mqv5BWveAWvetWr+IEf+AHm8zlf9VVfdX07UnIT1l7Ih24CbJayItWtbKmQaDcdYaTRXsr2frNAhUQ2ilhqsrZkAzoqkTOlDNasHpqVMeTW71dBDiA37eoBWk3nqIVItobn7CXHSd3IZ1OSh/ScVyVycobWyw07Z2GyzspKVJTJScW4LyPrJGXZe1RVEbeGZANuTx7+40hL5UfLMRR7LWYZRMpmNbHQxEphao32CVNHUqGF5CRDNlIxCiOLKws59tQTl3RpmLe1q/PojxWtoG1ROWOaFj2s0ANHNjJZqCaiUkKFhJotpALVTVz05wmXkZdOTnaQzLWA0RCTyNjuMRzaOLkD8VwiJ2vcXBzWOFEZNquGsWtwKjGJck8ZWSEqTbJsuSVH7IKjds5eHLDjh0Q0jy+2sSrxJBuygq/AtFAf0RS7Dr2Qe5lqPXa3ZmQ1ySrm9xXEQqFDZnBeiIv2CTsP2N0FpMyQDbIpqbcV8welKD24KE/npkloL1Jkssx3wOrnsFUSBobk5Dtsk3ELSEbRbiqiU8QNaOcGFUqabU0+tWSzqklZMbRC3j5pfJ5SB+ahZBkdF+yIOlqsTmwXSya+ojIy/yxCwYXlkLa1GJNYDCzLU47BRSPzTKGIpcItEm7q0QuZ+8hJiEsnU84H5MqpblAxoh9XbBpN1iPmC0O7rUkFkEROZ5dg6oxKQJaqi8qQLKikiIXIyZAiDMUsY+tMcor2aIVZBCFeEfS9xV+Awxsrv/rY/+fQjulL6v9wye9XeoC+0UrL0xGUZ8K1fMcP/fw7rmuf14oxT/I1X/DLzA5pf89EVJ4JN4O8wD1CYL78y7+cc+fO8e3f/u2cOXOGv/gX/yK/+Iu/+Anmsqui83/omFA+EgcOlTNuGjB1oN0qSIVBpczwyWZFSHSbVg/0YeRITuN2PFkrYnezp0+rNgZSQBVu/wE9ZXKW14RM2EvIR64bObZOdqaUkvdyFk0vyEqP6rw1WW7eaCVa3ZxRPqw+u3pg1+kSEqNsAUYTxg7dJOysJTtDawrCUFNMRP7We0xSYUiFwS4icaCJpSYVGrMIZCs/o2SCTE4TKyFcylohXilJ5aO7LsrabqUskZH/YzR0q5TECCGg6gZjrRCuzkfUn1MOoavqKCFxAIUWDTSgqpLsG1TVrQT136/V/rU3iATvoDfnHsChjZM1gMOVjx3c52HJyNZVlhvDYY2T5OhkUHKTKXXEarmnDHXLfcUuTkUMCZ9tt03Yr0SYSGkj82Cge1hOBvyGpdgxQi66yrPda1BZqgCz+wtUyhSzSHVuifKRbDWECBd3cTEyDpu4eUk2diWJyhpMHTHzFrVs9+XOqpcZF/JrzCQrBEYW+0SalqyGqnvANxAHGj8G6yJNsBwpF2zYhtPlhC2zZJEKUlb4rDlWzvFZMzCeUgeclkqNJvMUY+a2QOssh2EzzXZm94WW4ZlEGCrKvUyxFzB7NXoulZccO/lYPHAv7+fhHMltIu3uYYBtfwI3H7M8qgkjYSMqg/ZSZUkW/KhXZsi1KuaJ1Mgcq32W69dmTCsKBD8yhGG3eJbB+HuPwdwtc8rBiseNPkxfy+eut6JzKzB75X03bd+3+3zvCQID8Ja3vOVpS/zXjK6ikLVC+YTWEZqMbsW076aebDTZGnQTiCNHu+k6AgOkjKmjGP26Er/2kVQaclXCopYbqbOiKTbdDc2HfRmZMfvyqq5Co0qZOLBWKjkhooyWfXaGf0TtJiX12ULkU00LWrw7K9LS719b0QMbhMT0BMkYQmXQMZMqK9ciCjkKQ015vsU0YuD3RytioXFTT7EbSIWm3TQ4rbDLQLsh0jIVIVuRVORhiZovVxOJcp1sLQQhYDF1ZOLAzb6rYl1i+u/IX04RZc3+SlsvnetJTU5dMICV84xRyMvBcn6M8jfpoS6tit1LOJRxssZNIS8H931YJGaNG8NhjJPQeR7moaDQgZQV55sxA+M5Ws3Z0DUR3T3Ia7bMkrGpaZKjMv2CU5YKTPf8bWvQIZMKKyZ1rYlbFWEk92qyVEVCqTpSIqEvwP49dTrHdvNANdbURzXL40bmuMm+5HalDlCKXDlSadFtQofEQllS58U0y4jqyIwfafxIoxIsjxra7cz9RyaUJnCsnHOimHGfE+LmVE/s5NocdzMiikUsGRhPpT1ORZbRsXAFpQu0wYCCuJEIU0NzRJQQbhqx0xY9W5DnS5FUh7CvMLhSu7ucyT6Q9ybolBn7iH3emHbTECpNLAAt5MV4ue5ZiVRNxYybxX0/ZsyEoSFWupO1SbCOH+huARNSuDe8L5fjTptTfqr6W7Tf9P5PkI3B4ciZrqUKc7MkUzeC8e88CdwcInO7z/GeITCHgpgw04ZkdZdqJTdY5SM4s9ICh9GQMC7IRpG13NhU/+CdMm7SipzJR9KwIDqNLS2qf/DOab9iELuKBEg1xWh5rSzBWfKgXEnQUmHJpSEbqTq0WwW27lbJMqRCJFz59BhTR+xTE5jMYHkpcVodQ1916AMFUiJ3D/JZK5HGRSmfD857mbwWHowiblToIJOZbBMxC4+Kcl38SPajg0wcqZsM07BA95NJXzE5mES2MvcfIFW9F0bbAytpPTFxl1ZL+opK7ynqqzdK7/+uOiN/jKu/mezf7P9b0Aql7z0Z2WHhsAz8a6xxr8I0sDMbcmo4ZdnJx5xKaNWlkKUSp8KKyFSqxWfLXhhS6kDImpwVWmcwmWIC1W6k2JXkyVxYciGLaM22od0Q0lJOM8lBs2VQqaQ418lrU4aiAGuJw5LkNDrKPXp5TItseFlS7hjM0sl8ZxSxssTKrLyhxU6D8ZlQKSExIP7MeQKE2MRS4ceKWCZODqcUOjI2DVt2gVORaapIWTONFU5FThYTNnTN+bCxqsxourkDxdg1jMqWlEtMGUk20ZxQuIXGzcC0CVUHkSc3zWWel2dAiqQmidcHGMSIPT6m3XY0m6IgAEkgNU3uUkGjyOemjTwbaE1Wimwq/NiQhxq7SEK0CkUsJaks+HuTwDxbfOm3vhtXj/mp6m8dyv6+pP4P/CgvfVoScTMfuq9XYrY6lo5k3CzczCrM7cSawByENZDzKulK136lAc5m36+igkwIpk64See1SIlkLNpH9KLdlzGl1EmplEikYiuVFKWFsIQugYtO3lUW4CxxY0hzckAqxKQeK43KmegUxSRi69iV6hV2LpIt3cpx4bTolJ+3TVE4OL+zTwKgSx478Kc3RqRYWkiDaKClTK4bicZUMWFm4ruJpaPddqgg8oFVWEQnLZOVQLCLSLaKZktWtHTI+1USpeR8tSY3jRAPc6DykUWDLUTkssQwpbuqS9yX4fV+lhS7RLLOS9NHLpsDVZ2DJFIrCQ3I+yRKOSd/E3OA0KxxCV75fT9+V5CY3/39awti+EuffmvCCtZ47mD8RGL2/k3+/BWBo6MFTkfGrsFnzdg0eGMYm3q1fU3BThgxiyUJRR0cTTDEIIEpps2Ypdzj9aIlGyNzFhKLDFLp9t3PyUEYaAqroYmy8DUaQFngj1a0m5ZmU8hGchAHsPvJBlMbVC6pLvQJjxLkorJUduxx28XZQ7shRnqQ6r8OGbdMZC35yyqLh0W7hmUq2AvDFXHZMDWV9oxNvSJxsQs6cDoziyVNskx9yV47YHcxWF2rvDSojEjUFhALvX+v1zK3ZKVZrWipy6r6lyNGcl2jJ3OsM8RSY6ouYr9f3/JZ/ESLIH+DWYNqPdkalDUkO6DZUkSncQu9kuWBPD/cY4rkOxYHidCPvu2lN5xW+Ux42n3+zpP7791kUnI9GP/Ok/ckiVkTmINoPIyk/BvGjuw0drcWX0wtccLZmS6dDJIzmOC7SF+kVJ8zWWtUjHIT11q2z5mc88okjtWdwVwqAMoa8saItDkgbBQrn4ldyA3Y1lHiiwspmSufMF0JPowkpcxNPChQTcT6RBg7Fg9vMnAG9eR5ecBfVTMQYpDEV4JzQmCUwi5lv6nQXRINxEqqN6kwZLuvEVZRbup0JnoLIrNTktISxo7kpPfA4HzE7C1X4QPkvEpmQ/cEr0sBsweqLSDHCd1ElMg9H+t72nT7oJfLpbySmfXEalV5gf2KTI+eJB14Ldv18LgTca2k5Eb2uSYy14//vPMavuDItXWpfy5h+FSL0yVP3LeJfjAxKjxHywWuq8DUyYkHRmecCjRJqjSlDsSsaJMhBENKIiELlUTo65Ak+6RrCmjahGkzKsm9Kwzl+5NVtBuG5IaMHl2gSkcYOfyGZe9hS6ygOZYJg0QeB3QZpUDfGGg1ix1DsSf7dBMIQ/l5tgmmFoN7MqCylQpIlBAAU2d0SdczRfHEZJMHtvY4WixYRkelu3CYrHlescO2mQNwMYxxOuCyxScj5CVUTNuKhXekpHA24opA8gV2LvNQqBSpVCJx632g/aIcYgl9WvbQrb7llFHek+dztLMUhZU+OwMtHqHUz3UZ3QQJjlnU4D3KGChFeRAGinYTmiMK0wq56qs4ak1groif/Kev5o3f9UG+pP4Ph1KF6SswPWavvG8lo3qu4l4kL7AmMJdCK1Tj0U0kDu2KRICsoKiYQUtEYiw0dhlJRWes92lFZHJpUHVGdUb1/rMrk3rRSZNit9pvDHlYEY6N8ZsSAqC7poyxS1mRL4Fyx0vDRqVELmYV2QhJ0m2QVbZO/tVuWlTOzJ8/Zjxbwt4MVRZCEnrp1MHmlSmJ8T1Xq6aZaWAxc49ZetrjQ0kUWwTR+BoFA2mgqZdpv2JikCpWyF0zLzl8N/XyHT1p6VfFjLk087twso02K2JDMuKVORBkAJCzujQOOuV9SVpPgvpqmNJCHPsqzeUrcjmJxEwjVbDNtYTsTsPNIC+X7/92k5i7yf/ySPw/M5+Eq2/4HISdtcQIxQXD4kRJYSN1lCm3SZK4VSfHllmgVcYnubcZlUhZE5PG2kiMuiMKyPrLgWSwXDmyAltnmk3VNVGWeajdysQCmiMGFYfoII0s/UjM9clBrDL25JLnHd8lZ4VPmtpbLj61iT8CsdJor2iOgm6hOq8o9iRQIFRgaiEQKorka9WfK3dNHRvFdDaArT1GpkGrjCZjVGJoGjb1kjo5Epo6O5rkqJNjGip22wGzUBK6a5GSIiZN21iKC4bqgpA1W+fOZ6lFwdC2kvQZxSsKHYnhabwwSgsJAZk7fEAvWuzSkayTPi/dgpz2adUgM9dNlxiqUVrmOZXkmmYDIQNZrRpc5rWC7GnRy66Kf/bym7L/f//BL7op+z1M/O2X/sxN2e+9Sl5gTWAuRXfzspOa7IZkpYijQgz5ypAdhM2yu6lLEgvIg772iVRKMoxu4/5DM7ISla1GpbQvnVJK9LnWkscDwpEh2XU9Adok8YtKdcle+1Km6DTFIqCabhVrXGK670mlJQ4syXWrRllu7Mkq4vENzN5MyEtOcnftI4vp5GNdvxWz8MTKkhWEyhBLSVLzI0OxF4hDWXGTKsz+TR0tx5CcyNnCwOBHmlgoBhejaIbrTnLXf5/WQvJ68tPjoGysS2RbRUXnTO7fP0AIlVJQDGTf3stnMKvPdLNYdyHTvmQtd01r+kQ2U5A2BsThesa5k3Czycv14Bt+4IdvipH/biIvazwzVB0pdgPDMyW7JwbUhaeuHG2yHC0W+Jw4audolWmSI3ZL9TFrSeGyHqsTwSRalbuu771MCvFIFha7jGSjaDY0fkvRHMv47UhxpEYlhVeZxx+o0K3GTRSpAL8dwCXGRxe8+PhTzHzJbj1AqUyIhmLckpOC7UwMhhwVceYYPa4xrZCf5JR4P5QkcNHNNdKNPmMaqdI0k4LpCVkUqLSY8zdUjVOB3Tik0p42W3w2+GyYhorzzYgL9QirpB9M4y05K9rWoM6UbP1pZvREy+yBovOgSvJXHlbSF2a5ROUuqCZGCGrfE3OwGtORF2W0qBB6nyjIlJBEUZEs6FaTbSczDpHsJelMZZlv7DygW4uKCjuHYg+O/ElLLDT1ESO+mDVuC77w/yFd7i/3xfzsO199077zZhGS68HslffdUYECV8Llx9c3GL0WrAnMAeSmAV2g9ySlJQ0dqTDEygopQR7otc/YmfRxMbOGOCq6Jl7dfqyGbMiFxW/KDTY7IylavWxKaTHsl464NaA9UmAXUeRhHfnRTSAVBSjQbabYaTELiTbOhSU5s+pdkxWgjGiBNZg6UewE0Ip2y9FuFQwLR65rIQe5k44pJTfhPl45JdS8xilFfVoqLioJWXPTiGmT6KFThijNz+LQopyGDPP7y1WcZNZg68TgXKQ8M5N0NN19T58SprWsmCkFVoshv6++dNWTrLtI5F7S1TbgWBn1VVWSx0P8ZkUu9GoV0Mw9elqvUs9y67t9q0uTzvrqDMj/uxQzP1pXYJ4Jd4sP5mbhsEnMmrzcY9Bgmsj4iYjfsCyPOpquAmM7U3ufOnYxjPDZdLHCBk0mIRUHpTIMIrOHNLq1lBcsZtEt5sRMrKQfSn1C0W5kwv0NL3v+EyyDY+kdI9fSHLVsl0vOLUcoYFw0+GQ4Vs3ZcjWLUHB0IJWg0kSasqVunRxPSDS1IxWJ5WmDXYCbZDY/Fmg3pP+M9J4BnRMqSEPJwkqlptk1PH7uCC/dPiMGfioSCp8MWmU2TE2dHLNYMo8lE18x8yVNsCQT2VkMCMHQTkrMnqE6rxk90WBqMdOHsuu3ppXMvVWB0l1YjZM4fuVbsg+dwkCtzP1KKyEvxqDKQkJhhhVxXBJGljDUXXy1QgeFygZdl+I1nS9RSRpE55wxdZCUuFZ69rhFxiwC2mvCQHEPpigfOg5DRvZT1d9aVXLab3r/J7z/lV/14wd+fuuz+q5nxq9f9yd+6uv/L4f27T15uRtwo3HMawJzEL0PpGkxe3NUHpK2K7KWnico0J3nI2uFWXqUj5hJA73EDCBmqUQM7EqvnK2UmXP/YA5CHsYDmiOyOpX7lZ8MKiaUTxTnF4CIms28Wa0Oxa4rMh1xUkivFdP3pOmlVBHK85GwUUilou4SyfqHdt2tTAUk1lkpFKAXDaapQIGde+LAkpUiGZkkUpaGn3IeEDbdSo+sOzOnnUeK3Qa9t9hf1QI5Dh9kBbGfQEAmGmulerLyxpgDiWJRfjdGpG+FIR/dYv7w5uq6gZC3MDT4sUVvl+iwidtZondnUvZv/aW+mNxdwN5P01XI+gz/NZ4et4rE3Mrqy+2Qka3Jyz2IboGrsopjf+B4YnvM7qBh4AJj03DUzklZryoPPovvIyTDMjrmXtK4AGwZiccy7VMVqTRS9W66NDKjqLcNoYIwynzy884xtFLpHlhPEyzTpqAOXSNiE9lrKnJWbBVLtEo8b7iHVgmjMrtuQMiavWbATj0gRI0xCTUMNCc0vlboRmMXkXZD024oTN0ndYH2CR2T9P+yBn9BMx+VnH/+iF0/kAaWsWDLLRkYT5Ok+jL1FT5rZr5k1pa00dAEy2xnCFFRPe448keJaqcllZowNoSBkp4zlSIMDKQS7QykgbQV6CL/Vd2uZF+5aUTenbNUX6yFsoQTRwibFc3RkjDUzE8a4gBUkBSxWGqKmUIFRy40LmfU7pQcouwjJGyd0UFCEZJF0kyTNLeMas1groYffdtLD01GdrkXpsd3feALAHjby/7zoXzP0+Ewycj14m4iLwdxvce8JjAH0cf6Aqpp0RMoGk/YHq5W9gF0vW8oz86g2kDGiFTMGTQQxgWp0Nh5kBupj+SUpIFlCEJmNkb4I5UYM1shNdqn/R4yrfRGiZXGjwx2XnQ9WbrSttPih7GabGQfupFji5X4X/RSfDG67SKSV9KsCCRoOylVTuIn8V4IRYwU5+fkwkLM5JEQlD46WkVAQbtlcTNJKtM+M4wZu5RIZTNvofWo0DXAdFZSxypHHJXkQhOdHLvKEs+pFy1qthA+0VdI+qhlEJGxtaiqxD9wrJPtZUk8M13PgyQBBKELPEiFojk1wg4L3JM7cgwhgm8vTRrrqmIiVcv7hHSNZ8RzuRLzbKsw10NcDn7PmvDcBejuX3oZcFoxfNKy+8CI6vges1iueqE4HURahQcq6XsSCqxKFDawqEupwsAqEQwgl04Wxrr7VBxm7PMWfNLGefb8gMp4tMpM25IQDXXrUAq2hkshL2XNkWLJ2DSSfJY1kChNoG4rQtb4IPdH6yJtq8hFIiW9eqCPheoW9iQyODkliuRloGgTKhe0G4p41vDejz3EeFTz/O0dhralTfL4sZcG+GSYeVk0uFgPqYNltiwJQWN2LG5PM3oyM3yqRYWMHxW0Y83yuGL0ZMYPNWBJpRaC0c3VEi6QsbMWPS9QUyPzXegW+YyBwqEGFcv7N/Cblnpbzq8+DmGYscv9dE2VwTSG5DSkMdYZ9HQpzwKlEelcLRI7YKVUICOyvzWuisMy8/c4KFF643d9EN5zaRXmZuFL/qVUYP6PH7m+ufHZBA6sJGOv/OCh9Ly503HdBCaEwAc/+EHOnDkDwOnTp3nJS16Cc/eA3GZlAu9M3oslqmmxKZMHBamy0m0YQEs+viotupZV+zAuiKXG1pIf30cwtxuOwSJItGO/+m8teSBGexRdV+OEqcPK7JetNKmMpaa60HlehlaijZeBHDRx6DovTh9jmVYmTwkPSPjtkmQUxeOB3McHNwEGVRcpvP+g3jd5VEup9qiQyIU0MEuFVHiaI47qKVkRHz4uK326kSjnImZU2zWS9EH643RIW0OaE8OuazOrbs5ukWjGBj822HmJm1TYc5N96Zc2cvPvY45HA5YvPAFAsVNj55J6hlb4sZPYaiT2sic+qdQ0x0pycYzi0YuyGpfMfl8c5G+es4QGqJTQawJzzbiZJOZO8r5cCVcjMQfJRr/dtRKQm9kwc42bDKWI4xLdRswyMDqbmO4W7A4GnNnYZG5LThRTxrBq6mhIhGSooyWhMDpTuECdHEpnYpWJA42b5G6RzKBDwi0S/mjiZaefYtPWbNqaJlkutiNKExiWLVplChM5Ui6Y+ooj1YKjxRynooQIZMOWXTILJVNfkrKiKjzWJNpgCN6QyghFRGWJGs4aTJ3FIwLda9II2kxrVEyU2yP8SNE+WdE8P1CYQB0tF5shPhnqYMWcHwwxaerGkZMieENeWI79kWL0ZMB0C3R9c85mW7E8nWiOSuKXbg0qGLKBVGS0lzADN4WNxx3VhQJXWPTUrVIw0ZpcOJr7Nmm3LbFQ1McVzXbGH/PgMmnXkl0mDDRuDosTmmKWSa7AbFrcbIBZBOLArqotzUDRbopHCCvELqOe8Z/LGoLDqsJ8ZOR4xdv/mPe89UV85IAc/J982b971vu+3uO4Lrz2IT7j1x697u9532sfWv18sJLxo297Ka94+x9f9/5uFfpje89bXwTAZ3z37/K+//kvXdNnr5nApJT49m//dt7xjnewt7d3yXtbW1u85S1v4Tu/8zvR+i5fZujieqXBpNmXGCXJ3k9bA1IlKWR9ElgsDe22ZfqAod2Ao3+kKXcDOmbiwGCXET2rVxHAIB6QbGUFy80Spo6krnlmrixh5DBGiNDgTI0KSZpnWiUVkUrkV6mQErVZRrSPYqZPCTONnYfHQsrEsfhbVhWHrpHmKqmrTwIL8nm0RrUegsRBS1VI+tyMJs2K2KwScWLGTOcyuYQDKV+d1yUc36A+OaA+YiinETfP0l8miRm0j2QGWJ6uqIzCnTOoyWw/Yrn1KGtoHzxGKjXFxRbVRHIllTC/WQCs9tsnx8RCGo3ZRcQPLekFxykf30VN8n6V53L4sC+RW+OasK7EXJ1sHBZxuV4iBPDp/9uVJ7Hf/9oXXfM+1rgORFlAyUYSH4u9SHXGUW8VnF1sMLEVIyvkfMsuiVkT0Syjw+pEjgqtMhmkApOR7vD9vo1U5/U8iZG9jGwXC1JWjG2Dz4aQNZUJUNZYnSh0YBEKnI4cLyS+uPfeOBUpVWAnDyUtTGXaYGiDRauMsYkYpLlmDzeXe6QfipQrdxUi3QbUosaEyPgxg/YlWRvi7ibvWRRUwxatMznDcl5CUhIa0FeagkbPDG6usMtMebFBNwFdB/yRAYvjhukLEs9/yZMcKcW7k7Jcr8oEtt2SP5ke58+eOkb48xGDc4r6mFRmnN4P1MlK4Y9UTB4uhBCdzLgXTjg2WlLZwNI7ntJb5NqQbWZxn6I6J94eFSGWBj/U2NqRNfiB7q6ByM6yUZhlwNQGs85RvuV4z1tfdMnD+3ve+iL4sm+/jUd0bXjfdZKYnrz0JKDHK97+x3z/n/wG/MlvXPO+vvGF/6dr3vZm4FrJC1wHgfnmb/5m3vnOd/K93/u9vP71r+fUqVMAnD17lv/yX/4Lb3vb22jblu/7vu+7/iO+k9Cb2WH1AK6aFqwhO3ndjyUiGHpJVV8BAVuDH2rcTEyNKmTxpEzmYuJfmcUVaI2bJdysk4z5JAZ9JXreMDCoLPIoncEuPGHoVt/rNwxkqM57UqHJUa36saBkFSxbjY6ZcsdD0+4ncq1M7GllXM9dQppoeoFGCI7em6FnslKVh6Vck1aaeeEDuXCoKMRHJT4hqjKNK+qTA8JQ45YJFZAIaiPyg+Q0dpmkX06S5ph+wwFjXKdfJkYx628Mabekt0y7XdDP57mPns7Iimcd8JslsdCorqmmXXhMo6mPF5jjY2wSHXluu2S01oshs/WolBg+up5wnou4Uf9LTyZuhFwcxPVUXX7gG950Td/zdOTl4Hu//7UvuuTna8HnmP/Of955zTVt+1yDSgkz7aqHVuMWge2PGC5UFU8Nx1SF59Rgiisie2GAVpl5KClN4JSZMo8FF5dDiVFOcq+0SyVzT79OqGB5vGB+2mDLmpAMEc3Y1Ax1i1ORJgkBAWiTJWbFwPhVtcVnw9g0lDqwFweEbNhy9UrSlbMidqRFaUhLg5uKz1GljJtF8km3SiBDIfPCfAG1wbWecb2JH26yOKVQ5wvqowpdRDHUzyxmbsRH49XKS1NelDji3Kkd7IU5uXKcf/mQvVc2HD8xodCRwkQ0mTpajnSeno/Oj3JhMcLaxPJYYO+THdVFaEeaQbeomJz0eZk8ZJh+UmLj+bt86hGRt51bjklZsWwdpogkm1CbmWbmaI9qNv7UEAuRzqVOAi1Gf5EsmxbKnYxuolyjRZAFwTWuCe03vZ+PfP2nPMu9/FXeeAdXHq6G9732oU+oFn3bf/w7T7v95eTl177+h6+LuFwL/un/dPq6tv/W/9eZQ/3+y3HNBObf/Jt/w7/9t/+W17/+9Ze8/vDDD/O1X/u1PP/5z+crvuIr7n4CA/umcZBqBEa8HDHBRik+FKuw8yhJW03ENArTJOng24jcKluJMS6fXHRxxUg1oet4L80hIVtFKAxu6vEb8khu6rhajMpK4TedNLO0Cj9wtGPR2+qQCSOL6Tot5z6ZzGriUCRtftMy/pMDVTN1oGlkHyigD5C2yw3uMULSEsvs93s+5K4LtKobuTZ95cWaFYnJZUFzeowfadyiIxg+SaZ+hlgJSSNKBSZ3pEbiowt0O8ZcnAnRqAqJm+4Otd00qLRP6Pp4a5e6FLc2kq1cm2SluqVixtSJ+mRJURyheGJPCvshSDOy7prkpKT6s8Z14blchelxK4jL5Z97pu98JvLydNt9+v/2x9dMYtZNLJ8GSsnCTkxkU2BmLdUFzdafFJzfHtMcbfhodZSdYsjQtpQmiKQqipG/TYa2a2SZkyYnRTbizUuFJQys2Bg3NM1RCI3l7HKDT9t4gqFuaZLrks6aFYmZZIVVIlXzyWB1wpIYmhafDeebMamTOvUBArKO1/k/TSQGh2mkaWWyEl5jvJAN06bOW9ItijXigzQps7FZokMBaNK5kjiQaOjhOUUxyRTTTDaSeGlrWcjSPovtceHJlWN5/5j6BNx3eocj1ZLnDXcxKjPxFVYnltERsu4CECBGTbHV0A4D/kzJ1kcUy+MG0wgDXJzWzD5zyV96/mPcP9hj1w+YtAOsSrTZYHRCG0npNDYRKw1lZPoCKHY15UXp8+IHkAqwC4VdZEDOIVstU2HMmHpNYK4Hb3zh/5ffj3/jhj//6eYnDvFonh0urwRdKw4SFtnHpQTm8v32krmv+YJf5t8/fmPH+hmPX7ny8yX/8tfJX3Z9+/onB36+HvJ1rbhmAjOdTrn//vuf9v377ruP+Xx+QwdxxyBFMLaTkRkyXUxvkP4oeVBKk67UpZIMuiZZVmNnnuJiXD38N0cKyFBeqFGzpUiV+g7zPbQ0CiOL1CkMpfuv9iIJ0E1cGd39hqHZls/qmLs+L2CXUrUIA0u7aSj2DOWFGhAPTtqwlBc9eqd7GO+Jhe9upkrte36MkQf4IMb/vvGmWvWLQUz0XWqYag9UKPrVpb56paTBZtocsDxmqXaE7PmxIVnN4KmMm3l0G/GbBXYZVoED9SmJYo6FpjlRMai99L1RCj+2q5SxHipLpcubbhXMG0wdxA/UREhCiNRGSeglfT4TRgZ9bIx7ojPz9wEO/d8oriswzzXcriaWd6LX5XqrMWtcConT15KuuGxR1lAAGxnqoyVTXbA7GuCj4ehAMfEVy+CYNvuVDx+MKJijQp8rGDzVV/sTpomEyuDmieq8ZvlJnXFdJQyJsanZMgumqZKUs2TZKGVucCpKXLNKq+aRjy6PUEfHzJdolYlZd4V61cm9Mm1ToGstlZYkC3QqCulInRpB9YErRhb+cjd3FE9MIG/SbJXUxxWbfwrlJGEXETeV0Jc4LmmOFpgmda0BZH9h5KgfGjJ9QBNetKD2Fiq4v9zjuJsyixV7YUBEEjJHpuVCMeK8C8SsmDcF023D4r6C6jyEgUxli1OZ553Y5Uix5M9mx/HRsFHUHKtaEp2Er6tAWZ1WYQqNyZ1v07L5Z5rqQiZWMDwnKoRQSlXGj7vY7EVE767nk2tF/yD+bLwwvx//Bv/5jV946Yu3WD72bf/x79wweelx8OH+Svu60Yf/q+Ggp+YwfEP/5Mv+3RVJzLM5/msmMK997Wv5xm/8Rv79v//3HD9+/JL3zp8/zz/+x/+Y1772tTd8IHcE9P7DN7qTU/UViLJA+YCZNGLeT2pltpeKjAYjCVhhaDBtwu02mKd2wftV13vgknSarItVFUblzg+SRDer20C0xUqmFgaKYirkJjqJTzaLIFporQilwvUxx6U02HTzQPHoRYkP1mrV3X5FSPrzTnE/6atwksgW0yqR7BIc9LhYiTnOKe0/+OdMLgvS5oD5A0NMm7HLIOcw1JAVYWTIRlHsNGQlDTpVkGPOSpGspJ35ocYcH1EuGvmuLljANAk3TRjfxVQbRdaWrKHZMqjgpIrlE9lo3DzQbDvqI4ZqR1HueqglFMFsj9G7M4hdL4GYUF1H5zWuHzdShXnl9938VJir4XaQl8MiLtcqJbsRXE81Zo19pMKQshW1V0pkLYlhZhlws4LiomFvPCRsaJZe7p0hGvG8wEr2lbMiecPwvGZwvvO7ZPH6uZCJVYGbA41h3hZcDCMASu1xKpKy7hLGYKhbtEpUynPWb7EXBixSQUiGSTsgoWiipTSymBOTWnlVvDekmaPa1RgfZSGtW3zrI+xVyiJxi0nmlT64Rin0ZIarHHZZrqroxSTgJi163oAPGKUw3SJT3wzabzjmpxwXXp5xz5+yWTXkrKjM/vn1QQROyULa3JSMXUMdLbO2JASDKhL16UAYGqrz0mwyHJPt/2RynFlTUtiAUpnNopb960jpAvOmwOh9abSxETKkDUVzROa0wflEsSvn0xyraLcMsRRZWbZq1ah6jaujf6i90SpK/6D/eQ98ogfmFx+/NSSmf1h/tgb6nsxdvq8rvQbw0t37+P/xf39W33k5/tFh7ehN/zsAH9x+cnXcl5v4rwfXTGD+9b/+13z+538+9913Hy972csu8cB84AMf4CUveQk/93M/d90HcEfh2BZq0qy6wufUNVQsrDy0W4OqG4qLXfpXIQ/hbk9M7akwpIGl2GvRsxZ9fkcqGl2vk1V1w1pZQZu3mGZAsy13c+0lkcs0cdU4M1t52HdzkanpVnTHppFmmjokkjLoNlFOI8kp8ckokaG5R8+Tl8v9hDXY/393nhgu7dNygLD0x0/q/EDW7ie4KCUP/XRViz4m2Wji1oDpC0aEgWJ4LqCbSBxYtJfGlFlLA840kPiaVGhSyIShkepSl+aSrGLycMHRxQZ61kriWi9dy5CMRpPQbaTaCYShRjfS3M0uwqpfTxw5WS1Mcp1VyCiVSYWmPTbEaY25OEE1bddVOj69wf85jr//d/8OP/S/PvOKzLWSmGshLn/p08ubnkR2N5OXg/tbk5g7B6kwJG2hk6/2nkrtE8NzCVtrLtqS2TGDciJbvQRRiUXRawZPGjY/liim+3MDWdQAIOZ+vdD4qJmGCkOi1G5VaQGotCeiiNkwixWPN0eYeIlLPrvYYFKXOJNWzTNjUizqgpQUoXbkheHIBwzFJFHueGlwbBRhZCWFrKvE5N5feaDjfQ5BvJU+opL0VlmeVGRTsPEoFCnBwBE2SlKpyT7hxxLdvzhhmT2g2HzRRU5vTAHYLpa8eHyWU26PSntJUDMLnJJI6nNuk70wZKcaMgkVH1KnuaAyvgh4U0rvmTFgE7vLis2qQXUpbWPXcLqaoFVm5ktyqTpS02BNJGe1n5hWOJYPwfI+RfqwRWUni2uzQCoUfihtAkRqV93sf3L3HJ7uIf1qn7n84fjgvr7tP/6dm55E1ldeetysFLDLyc3yTf/DTfmew8Tgh/8b8KJnXZmC6yAwDz74IO9///v5pV/6JX7rt35rFaP8qle9iu/+7u/mcz/3c+/6BLJUFeRkpGO8UeQUIUVy08X3RotqPcoH1ExICCmtCIHuH/RDIKckPWVSRh3wVnTCXOm3smwwTSKcMKuyczFNnedF5GqS6CKVnfJCi8pdtSZkVEwkZ2i3nMiimm7FTkN5fom+MBGDutKrpLFLeqroLhUt0iV9adEsa7UvLdNm3/hP97ORRLMcIoS434hSKfJGSdwasPspI5ID7cFNJCAgK4VdShPQWEqlqd1w4odpRRYmBsgsK1e+8/gMFM3RkuHeUlazdBcZ3URp5Bkzuo0UFyPJDOTUQhbC1AUamEWgWgbKHdNNohndyspmLA3+qEwuZmcKy1okdumyytMa14WDJOZOqLA8HW6XbGyNexvZymJOouuN65M0VfRR7oMGxo8a6tqhArg5mKX4AJuj4EeZclcxfDIzuBhEhtRIjy1yJo0HhKGRZpKbChWlWvP4YpuJq9AqsWkbNu2SUge0SsxixSIW7IYhZ5YbpKyZh4JJXaIVmE4mVbcOrRMpamLU5NrgJobBhUx1wWNnXsJX2kQYWXSQPjDtWGNqg9N6P4UyJ0hd75Vlg1sm3MKgW2n22ByxqFSJZ9EoTDdHhEozfcgwfUFk8LwZLzx6nqcWG5QmMDCe427KdkdaEpo2G0a6wWfLSDdgIaFWKWvWyDyehoE0kbAcpbOcH3LuhZZ7ft8TR6vMyDU00WJ04thgwaSpxJuUhdgol6DILE93/WEoqc57CTcwiugU2SrM0/1DWeNpcfAB/W7BQfJy2Md/JXLW//9uIC8gx/kK5Lpc6XxiPTv8GGUArTVveMMbeMMb3nCdh3yXQEPaGGLqdt8jsnpgz+R+uattQUupf/WQD/srTn1lQ3eSpKYV30jvqVBSjVFNS/nEjGQ38CON7vzx2Sj8WEhNsdNSeEkW011kceoM9dlowsiuyvG2jthpi7k4208c648rZ5HEaQN0crE+cS1GiPsN0uiN+oXbP78s/p6c877fpetc38vslBHJQHOspJgn2pGmnETC0GBrqaokJVK4UCrKnYQfGzlvpbvEsCwyuq5RpgqZYibmyVQVmDoSBqYz7RvxH80DqTBd1SauUnpWDd+6dE698GAkPS1bTdaaXFnJ6DcKtVWi61aqMF2q2hpXxjf+gzfx/T949dX+NXG5Mm6W52VdhblzkApNO3IUu37VEwylUG2gvFBjakdWUO0oqosBN/Xih4yJNJCeYzokzKxFhS5dsq98+4BuS4o2UW8bdFBsfEyxM9rC6MzH8yabVcOp4ZSBaVmEgrPtJrNQcL4eswyOpXcYnZgsK9rWYm2kDYblsiC0Bu0Scbdg+Jil2IMwlmQ13R2HWXiRAYdEu23xTgGSjlk5u/LC5JRROnULdwG7SNi5JlmZC6Zjw/w+w+B8YnA+EEtJB4sOlicyz//UMzw43sGpxMZmw0ODixy1c07bPUa6YUMvmSZZuDJkjPKcsBM2UkGlPKX2XNwactZtslMPUArmGxbVavLSslRQFZ7KybxX6IjV0mT0ZDVjtx1wtJpLHDXgo2Fal+SsMCZhCqnK+CORMFKgDKEqGD3RMjhT0x4p8ENNGKwpzNPh6R70+wfcZyIBV5JYPVPl5mZFKT+Tv+PZVhueSWZ1GJWMW43lm/4HXvqm++SXZzFdXXcjy9/+7d/mXe961yWNLD/rsz6LV77ylTd+FHcI9KyBjVIe3Ot6n7z0D/0hCBHRZl8SlvJ+k8WeuFgr2x9EL8WKcf/BPwT0dE553hHLIaaVfSS330Eeo1CtTBrJieE/bEjylmmkMlKda7HnZxL33Em90Fp6uaQEfZPRGFHWkH0SWVzsU8PsgZ4tB6pofcWmJ2YxdlK0jtR0xG51nZQibA2EEGiodiO6Tdh5wNSB5Ayp0BTThF2qrjFmptmUfjduLhUns0xkIytw5U5A5YQfGfyRCrdXgyoJlaE56lAx48cFdpkoduUBwE5qUmlXDTwdEsWprUbXAWxnsFVK+tuMpFEnSHdrZa0ko6W7u6J4L+GwZGTrasuzw5rEXDuyUiIj2rCUPso80Yc+zmqcj6DE6N2nd/UmeLtbi/Hfh1Xao3xQryrkdmcBObPdRppjlRjpreXCcANTROrWEZOY2kN3L1uEYtXjxeiEj5JEll0kRs2icYSpQ88NZqHY/hhsPOZxk1aijBf9wl6nOliIT3Bw1hKdeFv8QJPGBaZwKx9hTlnUAHVNeb4mDIe0I00YQnNEETOopCl3RXYVKkWsIDzQcGIwo46OQbFg2y3ZsguGHXER+ZhlnkqcCiIhU/JaVJoNs2SRSrbdkokd8FQYS9WkjDJNzg25KahHjsJGBtZTmkDZrSb2qWZaZUoTsCpRO8uolKpVzkr8MECqNAwyiyQBNsXUYpeRYqdFxQIf1gtiN4LrMa5f/volnpebZODvicu1kKzD8MNc6bVbVX35tvkvH/o+/9/cOAm7ZgLz1FNP8SVf8iX85m/+Jg899NAlHph/+A//IZ/92Z/NT/3UT3Hy5MnrPog7BSoElI+kjQF6sVx5YfCN+Dt6uVUO5NCZ23sZ1uV+id4E3wUBKNV1tzJmnwR08cz2yR1GPtGcHEh0cuyDLDWxFLKUUiaWGh3kmFKhsfPM4NE91LIhL2uZ3ApHLgrysCQ7Q6wsZulBa5lsmhbViI8lpwy+3U9GS1kqLaqbJFe59XlfgkYvmeuO/2ATTGu61DRpzgki5VpptgE786hoSVZW6rJWlHsHJu8sxE23eVWR0j5hFyKNU0G6MactS7kbsPNAfaIgK0W75URfvSEPqSpmiqkHBWGzIBmF1QqzV6NiJJcG5TPFbrPqNRDGBW5eQN2sKzBPgx/6X/8d3/gP3nTNVZjDQk8+boTIPJeIy+VVmIP9XQ4DaxJzbVA5s9zW5GMSre/20irmnpRQPuIuLtF1IcErVov/cenl3mPNvg/PySJTNkbuW0E+jw/oWc1gsgSg3Bmj/ZC9T41wn2fWFOzYIQvvqGxg3hYr4rJsHTkr6mVBbDVq4ih2NaMLUF1MxAKSk1CUrCVMpt3qFneySMbsMmOXkVhIj6/lUSFbsbLYQSXtB5qGHKNIqhdL7LkJQ6Mxx0rqZAgDSfVsN2D2PCsBNRqWJ2AwahjZFp8Mm1Z622zoWiRiiNSrzo5Ktzhi5/mx7Kbh6u+wYZYcc3N2iwFwBGcirgq0jaG8qDENLI4VFDayZyuGtuV8M2bbLTjq5oyMkDCtEstYUJnAyaF4cTLQOkuIGt2Z/GsF89KiW4sfVozOeKonZ9i2vgX/6u5ePFOl5ZkqMVcjDt/2H5/+O2/UC3Opx+V/WX3XM+Fuq5JcjuE/+5e8ncM/B3X1TZ4W10xgvv7rv54YIx/60Id48YtffMl7H/7wh3nTm97Em9/8Zn7iJ+6c7O3rRVYK1XrCsTG6LKBpOx9LWl3knIM8rBP3ze29NKxw0DTyH/txvApWVZfVw38vbwrihzHnMoPGU9+/QRgb7KxLObEKnfJKIpWclsjJM/P9kABrJPJ4UJJHFWGjBKNIVq+kViqBGjtUkBu7u7hALWryQkmVRamuOZoh1w2qKC5JK5NEMrPfJyZlSFKRUr30LMRuBVEkW6YWzbaKiTgs0F7kXamU1LZ2pIkV2MpIHLSSbs46SHO0Yi90DS27vgRFJ/syemXE102geioL+RgaUJkwFmlGtpLmhlJyLD6ha79vqu1WEQkJrCY5hW4hDwr0zMA6tv+OxPUQmacjLr//Mx+/5u/79C963jVv+1zBOmL56lBRmjomq4iFxhRCXnT2KLQsyLQBO6nBB1ToenmNKsCg2kAeFPsplzGTB05SMKMEl1D2TYRBNS327B6nf6Nh89ENzrx6k+VDDXXraBuHdYEUNapLFQORI8e5pXrcceSPxaNjlxIU40eanRcb9l4oPb90I3OEnSlildFeYWowjZW+MHUv3UWSNctC0hwXplvQi9C25OkM66zMTWVJmGuSUTTHwA8VyYHfgOZE4ETVMg8F9kAXe6MSQ91QZ0fqOnpWymPIpKzZTUN0V+qqVGJBySRUhGQYlS1t7EJgyoj2juGZDAzY/STH8pijNIGTgymbto+cnrMThpxtxDM0sq1UZGygCZbYhS+oLnLZukjcyCyepzGNppgZyicCerkmMFfCZ3z3765+vhYSc/D3q+Fq23zbDT6QX6nj/e3Craq+/M4//WJe8fY/Rl344KHv+0aTyK6ZwPzSL/0Sv/7rv/4J5AXgxS9+MT/4gz94D8Qoi/FQxUQupaGkKpzEQII8uPsoq2EglYuD5vzQPdg7ux9N7MN+1aXfR4+e1BgjnpsLu1StJ20MiSPXPbCL1Eoihz2mDphze0Kuella4chVSTg2kpWvWSs66q1K/B+I3CyrLrO/NLQnRmQ9pjg/R1+cSlJZB1UUIiVbpZQZlO2Ov5eMaSXH3p1XblqRXvkkPQL6GVJBKizJaeLAYOeSDEaSioqbZ7SHMNAdeRECkxXSiyZDGEpVx7RZulsvPWEkK4GqDth5gx4WqFzSbDtioShmEdMk2q0CHTNmETBTmUByYYUQZiAk9Lwhl450oiJgUbFEXxAJ3hpXxvf/4A/zjf/g9vYuuZqs7Erk5XqIy+WfWROZNa4Hy2MOvyGLMiCx+QBYTV51KTYiFWtamUuGlSyogFRcCrv6PZdaivhLL4QGSJWVRRejUQOHXrSo2jP68AUemmxy7uUDFveVpFGi3dTkViMdhBV6YSh2NEcez4yf8PixEIm+6rI8rqhf2DDcrAlBd2rjSEoKkiZ4g0+KHDR5adCNpjqrGZ6VNEk3KFCTrh2BOnAvVZ18NyTsMmGXGj/KqKhIBRR7Qo6SM+wdG7AYFZyoZvhscCoSu0joOjsKJQtsPltQgQtxTMqaoW4oVGSeSp5oj/DY8giLUNBGw7wu8LWFqUN7MD5TXoQwtDRpSD4mfhuAja6XjlFpFWvdy8oG1mNVwpkoiWTB4oP8sV0RWB5XTHSBSobhowVJr1PIni2uxRNzI/vr8a93PnrF7b7uyMNX/M47oaoy+OH/dtNJTJ8cBkJkXvmtP32o+1cXPkg+9lJe8fY/vjkm/rIsmUwmT/v+dDqlLO9ymYazEMHMuociK7IxZbrKidKdUb1L9eq7tvuAcnb1sA9IVUOr/d9z2vea9JWZA9HFK5nZfInxAXMRXOHEx9Ll6PfG/F7apoxMBHlY4U+OyUrhJo2s3HV+kzDUVOe6EngrxMN0OuY4ctT3b1AMC+yTO9IrBg7ELHdkre/50vt7+gqMlqSyrPd9NKYOqCiemzAy6ELM+TpkTB0lQa1bmRzsSENJgGUpPVyShVBp9KYlLROp6NJ1KnHiq5BQ8xozFoIZtiuRyCEpPyiRIzSbct1tk3EXWjHtOwNaE8ZOPC8+Ytqu+hQSgycXtNulPBw4C/ucbo0DuJYY5VuF65GG3Qh5ufzzdwuJudkysjWujsUpTRqCrZFAkiRG/Jw0adD5EnOW+rIxpI2R3OtBJK7OSNXF6pWJX8WM8pJuBawWllQUeVoaFqhWpNDuiT1Oz1rCRsnyZMHk+b20Vo7HLGFwIbH1R3tCKI4NWB537H6yYXF/Ih9vcKWQrrIIbFQNpQ0svBz7dFnhvUEVAW8syRnC3LGQxmbYeUW5I9uqfuHOGFThSM6K37FJEq2vpCKFAtPC4EJER8PuiZLJdsWmqzEuMYslW9ZxJmxjSEJcgDo5fDZcDGMqLcZ9gEUqWKSCQkfajpQoBWSFmWvsUuRwOsDgrMi0n5qN2ShqZkXJ0DSriOYjds5TfpNdP0CTqYwQmAGeZXDUwZK65nA5K5TJpHEkDB1xsyDW61TLG8WVVugPi8gcNPwfJCqXV3uuJSDgVuLgMd0KEtN/J9w8EvM7//SLL6nIXQ3XTGC+/Mu/nK/8yq/kn//zf87nfM7nsLm5CcBkMuGRRx7hrW99K2984xuv/6jvIKTCgpeElzwsUTusurNjzIGUsbRfUQHUoNonLCtScsAToxXKVVJl6RLLlOq2LZx4XnIW3bPW0nMmSUoZ1q4kXvmgJ6MnR4XDHxuhQsYsWnTjVw/rYShSK+0jqoscTlZLs7EkDdUAyds/tS0kpm/e2EcIp65ZJUkkZv15duTu4HUgJfTuHLNV4jdMp5PWLI9rtIdiqjFNxs2C9C/InWwvZqID46X60mwpdFCQRdZl2tR5aeQaqWVDcXZKODIkDqSaYppIKowQolJhvPQoKPaCyCuQ9J5sFHbmCWMnk6pW4g3SetXANA7MPmlb42nRV2FupQ/mduOwSMw3/MAP37QksjXuDGQDaKRCohVZd82OOxKSStvJizO5KshO/C1oLXH+USrOUo6Wz6G7e6BPInWtJaKeLrI5qwyu6MiOQ/lI8cQedj5ExSHtWKOSHFtyECpFdga/WRILjR8p5s+PDO6frW6BzkSqwnN8MMfqyMAKKdksGma+oA2Wuc54k2nvAz83VBe1pESWRZd0mS4Jg1EpkSqD3zAk13eERu7VEYpplOp75Ti3PcYnjdWRsW05WUzYCSOGumWRIoski1l7YcC5doNSB0rtiWjmoWQZHefrETFr5nVB2ziYW4o9RTFJFLOIjlpioRcSeLDhGoamxZCJaHw2+GTY8UMGxoPxLKOj0JE6WkobGDq/qtL0npjsxEvkhxbVPhu1/3MDz0RInm315WqfvZpE7eDvL929jyW3Obb4rbcugexmxUJfCddafYHrIDBvf/vbSSnxN//m3ySEQFHITaNtW6y1fPVXfzXf//3ff/1HewdB1y10KzpZa3RVkvtKi9Er3/pKBqYUIvrN+/4WzYEIZSM+ES1mTOXcvinTGDFplgUqRDHM99UaELKSMkp1FZeY9pPPAGVloovHN4mVodipV83SsjGy6lNIolcqDRoxViJHjF54SQVznf74eIWKW5gzOyKZ00bOIQQhMwcbXfogE7E5EEaQE2BQPuAu1iQrgQSxlO7RfdSzyhk/tuJH8WCXUsExLbhlIhklK2JRyEwfqVwsIsVOg1rUMoFPF9iYCA9tkyotMctOGoaZNotsrM7EQiYmtydVGDOpScOCWBpMjqg6d803hdyYJkolJxyIx17jEtwp1ZfrwbOtvtxtuFKU8roKc2vh5hkv63zESpEqi1lmJAhFXle+8xgWFt1VzmOh0a1UVPr3VVcpznQLLUp1zZOt9Czrb89aEQadPDaDnbXYWS1VmSQV7k5thQqAgvrUgDDQ1FuaxX0Ke2KJNSKZ6nudVFb6yFQmUHUpXT5rRr7kYj1i2Tpc8f9n77+jbcnu+l70M1NVrbTjSR3U3coSAiSQbJ7AFwwIS2CDhTESSH4Ee4Dta7BFuFyDDTIOcsAGATZwh4dxIw/xGODAgPeuCQ9jMEaPIEBGEhKSOocTd1qpwgzvj1/VWuucPqd77xO6T4v9G2OPHVatWlW19qo5v/P3DZJi34B0VAzEQYEupPPTUbG78SxkmnqoqYfCc9aNdKuKvYAdN9hxQ1IFj7+kx7m5IzeBrWLKxGfEpAWoGI8mEVEcNAU7VZ/CNIsQysJ4fNLst9ktKSnJfJlqBk8kepcCdupRwTI9bTAVTPd7PLm+RhMNPdOwlU0B6OuabTelSYYqWnqmYbfuEZNmzZXUweBMICZFTA5tImRyvXUTF+/lcV27jiLUP+pE+rCamWtaL9+m9WzSx4Cb3nm5kToShexHf/RH+ef//J/zu7/7u5w7dw4QG+XXvva1i47M871UkBCt1eRkYPE9eb+klEFrs9y1x/UK2IkIH21lkm/10nFBqcs1FmplHz6gnGstjNPitcS2eWVi7Sx+ICGWKnTgSRHWMqZ3Opq+QkXpxPhCYcuEnUWKcSW0hJQkEBK5wYZ+hh72YWd/eU5dByi0Pv7OgrbL41UdlcFK0rLWmL0JOdBsFiiTcPPQhrqBnQaaoSUUGjcWo4KQi4ONnUZ0SLipXBc39WS7EZVkoNe7E6gbeZ2UpBOzW1Ke6WPKiJ0nyi1xIjPzNjPHady+OJFFo4lbfeGQt3ogVXtZEU2tLqdnMZWHplmuGB7Xca3Uc9WFOez2T5cDcwxinr0yFaSZTGCDU212l0KhpTNTtZlUrd6SGFF1wqSWNtaCFtW0uV0pokwi5U62be/5sTUH8AMZzkMu99p6qLGlxW0VkBLNQMnCUCmOjwBuJkCiXNdUW4r06jGDrGGjP6cJBq0SfVfzgsEea3ZOzzSYloq1buZ8aHInZXCMepJMPzeOEDTzMxn5gcHOcvK9EYDQrxGNZXRW9J1WNDe0Jp3RIGYqjSya9Z8o6T06YH5fovSWi/Mh40a0JJq0CJ+so2HuHXUwzI1Dq8SscYxVYlZlzCvpGlXTDLPjGDyqGJxtsC0LQflItGCn4B7PeLC3TTih2S6m5Npz4HPuKIRCP/U5a3bOyJVU0VJHg0+acZ2jgMYbYlTEoPFTR/8ATBNJ9fF48kx11NyXm1GH6WBcuc3N7L4IQLiekmvwoY0nb1mYZe/Hf+0p1zptv2rx880U9K/u97B15ByYtbU1vuALvuDIL/S8KCX+7SCdAmAZBhn1ckLbgZfucW2X22m1nOzrpeZFtRQw1YVHLnQl3bYtIAhx+Zgx4oIG0n0pS+n0WHk85U7EkgdRdC9aEwey2pVNItEa5ltCXVApUewF3MSLrqZqUI3CaEXMDCHXkAFnRmR1Q5rNl7kvnSW00dJ90VecA5EUED2Ml66NiRE9LcXO2WpxzkkySNm5uJPp1gpUpQw3bTUsQNZI5o2u/ML+WU1mbVdEyyAeIooGc26PLLc0axmkhPYJOw3YmReaWJuLo+cerKZez0hOS8aORjjojSe6fBF+qcelgMVjCtlV63bSwDzfqwMbN4tOdqtCLK9Wxw5kT1/RQszATiAbt4BDKWIhnRVdetHbtQtZyZnlogp2uWKv1GJhSzZs7ZSdPCc5je+JNX2nAQxOUY8U85OabF+0Hh1YsCW4gyAd+jqR9JJSBhLqeLo/pvQOqwP39ne4K99Dq4hTYlVsiK0LmGLYJtWPq3zhwlXeU7NjHPUoZ92coHjEouYVWEMc9AijXLrmbUeoY1wnI65tMROraHtQcuoPMi4GxzmzgSk8/X6FMwEfDNa0IZJBQANACGI4ELwmyz3ea4I3xKAwFzPWHoCtj5SYuUdVgTDM8AODm6R2kU1RPtHncRPZK3o8ajdwOlJHmS5ZFdEqEpOmZxq0isx8Jnk7wdAE0x5DQo8NxU5LGwzHHZgbrVvRCXmugyDnf/XzbgDEXF43UwtzNfBy5bVK26+6Ja5kh60jAZiLFy/y4z/+41cNsvy6r/s6Tp48eUsO8lmrVZoUtNqPzkL46k/pkukl5yUK0NEK4Zot99kJ7xNJVqK0dGBUiAv3MyEc20X+SFqxXUzeC7c5z8QxLMuI/Qw7E65wzN0SdEWwk0C/TtRrhpBBPVTUQ4OdBfzAofpWJvVJVp9US1tohhZzYg3zRCM5Md6LeYFqaXKG1sAgLPUvtg287IIxUyJNA5QVelaSikzMLtusGLFgjuAsyWoJbfMSXqkaEa+aWok7T92IPXNVP9U8IIm9tXvwHPquE1TbsjLnJo3kyzwxIfWcnG+M+CIjZppgJGdG+SRUDiuTgJhbMSEYT0lNDcHf0L/Tcd0edSvoYzdb0H9Y4LG6XQd6jgpajrswz06pIPoXU8nCCtA6MC6F+MmYpf5RKaHatoNNlxmTOtv3VrCfWsATc0vo2UVyvS/Ewj5kCt+Hek0Chd1EgIGKQtMSm3pPi1dISmHXDMmAb+S11510WzLtGdpqAV4KJTQwpzxlctyR70s+WUs3S0mRWY9vDPW2xl+yzE85dFgnOz8VbeYoxw8svqfwPQFVnfW+CtIZT0a0msko8gslWx9RRJdRnjaMS4uyEW0jqXNBK5cDtKoVySUwiWbmUBOLmSuymaJ/LrH2UCN5ZPWy+6KC0JajBjuH3jlN6UfMNzxuVDHsVzRxA4C+a9irexSmoY6WwjRcKgdUjaUJhnKeYWygmTqKA02x5yWI+rgBc9X6/e/6zMWk+FZqLK4lyr8dqgMd1wtkVjUqNwKGLr/2h3sfbpa98vW874cGML/zO7/DG9/4Rvr9Pm94wxt42cvkxc6dO8cP/dAP8c/+2T/jF3/xF3nd61535IO4bapuIO/LoKGUaFPgMsrY4udW1K86UljXkejKqKU2hla0n7vlalrXvegATiE0guSM8KEP5gJuvJc7O5rkvdgV93pCGRjlxEyj60DsWQEBziwcamKmyPYDs9OWYlfEikkLX1pFhYmJZFl0KnQVMFoxP92jP19DX9oTDVAXbKla6+ROE9PZOKf2e9dx6rpMreWyms6XInlrlp2NRWAnsp0xkofg2o5WLQGc3Z1faU2KLZ2iA0pVDZnDPH6Rot6gOjWg2s7J9pplZoKPJK1p1lrnm47SpiCM8laX40hW03tgR7J5jGEBQo/rtqu3/ZrQUn7y88bP8ZE8d/VsdluO6+hl60QAfF+1nd4g97tugSqTLkvSGh0SyemlrgVaYb6MRYvHFw6R4p4VCk21Zgi5otpUuLF0VJqRohklVATfE3qsm8nvdh7F9GXetN0cTTaxZPuGcieHzTE+GqyKnMkPGJqSkS5xSib8a6ZkGnMK1XAqO6BQDVW0zHxGSiKCr3o186g4eFWi3LbMtwvWHxTtY71uqQcK31eEnlDtVGhBjBewp1qQRxS95uBBj50NmJ+wlBsZ9bp0jFQANwM37q4LZFPpNlVrGt+HfDcxfMJjy4CZe3TpFxS8mFm0j6JRiYbsIOELhasE2DXeEqaGPddjN4soF3G9hvXhnDuHBxxUBbU11EH0NQCoRAwas28ZPZTIdmt06UXfeVyHqlsJZG5nPcvzoa4EfzcDvFwPfQyOAGC++Zu/ma/8yq/kx37sxy6z/wXpLvyNv/E3+OZv/mbe9773XdeB3A6lYkSVtUyOe7m4hkELQsLyZ72ylNJN7mOrmtSXXxtltHRflCIVGappV/WVIvVyGUCckVU1Dc1GweOfl9E7u8aZ39hB74yXVDNoAYPcrHUdRLDpI8lIB0FXHg2YWUDFDFNJHooOIhxdCNWD2HLqlNCNRdcRuz9H+xw/6DF98RqjyUwS6TvFafBLN7b2vFPdSGBnlxujlOhhwvIaJR8W10x1rm5dhk4XlBmj7Kej09XN4rxTFCCXZMNFV2hhTd0+pp68RG9S4k+MiD1LjG2HK0G9Xcig3VqRRuS7bgKhsLIqeX4M++OnmhYc12X1bNPHOrDydI89F0Dm+WSrfGXdaBfmmD72zOXGkThNKI8IxatmcV+Jg1zu6SkJUGmU/B7jotuS6FwaI7GQ4MfOSVFXgdCzlBuG2RnRvISs7b4MEs0owomKOLM0Q8PaA5rB+YCdBnQtXwB63pC0ptipqdYL7ESzO+7zWLbB6b5oPppoKbXDqEgZHbOYs+OHjEyJU2FhZZy1onqlDFonrAt4oD6pyPcs1YbGzhU+VzQjWUhzYwFiybZayiRjVDc+oVkYFmQX5mQ7isEwoxnZtrsk5+EO6oVmCCBZTXTCdDDTemk7XYU2sJn29RJRgaki+UF7TRpFNknooLBzRb2miFlCBUPoJeqRYWoD88IRk0KrxHpeEqKmKXNibUgzw9qjmuFjFaYKly1WHtdT65m0L9cbdHjl86/8+XrrVtkWH3afH9p48qp/v9Jm+lrbrF7rq213VADZAZDf/daX8af+3n85ErUsbb/qut/XQwOYD3zgA9x///1PAS8g3YVv+ZZv4TM+4zOu6yBul0pKkbrck7pZyUOJy/BKWGCZBXiB5QTe2ss0Mot8l85tzBihEWgtN9nckpxhdianGWhCBtWpQMgN1ceHFGUjdsp1O8GnNRJwTmwzrZLWe+2pRz3KExmmjpjSYEoBKm6/aVebpKOgq5Z7nRIqgO8ZjFGo9R6hb1E+EfqacHIdU9VirWwthC7cUi/Pl5VrYdQCkChrSD4IMOnyappmkYEj13HJ6RbgoiHPluBl1cq46/SshGcKiElLo4EYSNMZdjYnjQaEbcnGEZ65wk080WlUEKFszJfdquz8BLWzL2nRnUmCObJE7E9c/UmyUP5kqw6EHBXIHIOXw1W+U6H7PaDN4FIKfCAOCpmke2QcaBvbRKQrHeUem6wWZ7JWlxn6QhczczGFKbct07s05YlEzBKxiGAjg605FuhlDfXIMCoq9s6fwVSR7NJscW9djAF1g5kYsnGG2zfMLvU4nze8eO0iufKYVu+xF/oANMlQ6AanPE2ykpNi50yznDpaXApMs4wYhVIW+p7pXRrQZPuJfD+iLyqxuZ/KQtLkTtPS20A3iWg19JxY/AP5+Wm7wOhxtcftKkI/w8zE9l/N6+WYoRTKaHTn3umDjJW5WFWrlMR6mrAYX8ysoajEHGa+NcD3FG6SWqc2hS8UukHc0mrDvJ8zOlWyXUyJKOpgaIKmLB0cWDY+atj6o2p5vfUV4+VxXbW6ifPTWRgfdh+r9S0XfvrQz/+Bk2851Hb3/sbHDr3Pm1n/918YLn5+OqDxTJbRT7fdYa731QBK51B2lI7MjXRvDj1DO3PmDL/927/NK17xiqs+/tu//ducPn36ug/ktihnRZdhFHp3IkBjMVlemUy7TCbMmZOJd+euopQAlq7rgrhziVA/SgemFemnzBH6GfMzBbOTYgFcbcL8hTX33XOB8U/fiZl5oVw1ehmCGcKCdmVmNWokKffdKl/INfNtS34Q0HUUrUdILd9ao1vKQtdU6fJiUJB0RsgVdi56lIMXD9i8eAB1DVWF6vWkm6LalUNtUFl7bbQkLuPcMqizNSLoaGDK2hYIhSV4MUbOqSiWbme0wK99DGgtqQOksHR5W83duTIUdDzF1g3JWVI/By3gTnjg7aBVBUwV0Psz1MFk+X+wMGs4Fl1eq779b4v+4lYDmKfrvly53XEX5vpqFZA8HZg5Bi5Hq5gbogFbCiWqM2hJeWuPrCEhC1Apd6g2kFc0hWFBL8MgLopWUY80Tgt1qtoQ8OLXxdbe9AKDQcn/486H8FHGpLt7uzw42+Z/3HOC+cMWO5ZJv/JdR1/upaoJuEnATQ1u3zBeL9AkRkZ0mGWyrXVxI0n3pqRMjio6Qlq2NLbzKQNT46PGmcCloAXEjALNQKOCon9BKF7ay9hk57LgZkuhvwH4gYzD1YbkiZmyENMX3eqBdBInytqLK1tHzY6tvX93biDmB61ZC1YLeNGQWoqwCkLb000gOiPUYqfQDtw8oQMUra0/T4gRzfSg4P3hPoabM2JUWBOZTgvibkbvScPwiYCdNZL3088W2T/HdfW60Q7Lal25j9d9/x/DEQDMocHOBXjv57zjCEd2tDr/x0884zZHCdW82dS5TvtyI3WjWqRDA5hv//Zv5xu/8Rt5//vfzxd+4RcuwMq5c+f4lV/5Ff7tv/23z/scmC4PRIVWvN761pPaMLGuYpC/1c3ipqlaMKMWK0Ark++uUmtf2Q5i9VbGhc/Q1FsRMxEK2de87n380fgM8WzAHpSX08dCuKzjoPdnxLsHYvuspe2eHTQon3Azj92di8PWqIAgQZcotdhfLByxZxcT+qTF5lgHsVuuRxp/cg1bVqQYBby09CqVZe3gp6HIFwAtrvcvW3FSpUc1HlVWSwE/Ha2sPRbvl52r1F7zmMR1rStrBXR1VL12m0W4JgjIaX9O2sB0BoAaG7LdDFdkLZXPoRadrUbOrTMl6GyrjT7OgblGffNf/yvPyuscFrw8U336m++6pTkwRwUxX/XmazuO/dTPPrcdrat1ZY6By/VVdBpTJ7K9VjAeI3HYa+2PZSKelGrV62rRHYiZFYPEzKKqhpSLyYgKbce8kIn5/KTCbzT0tuas9UvuHO7zaetP8OfX/oAn/CZ9VZGpwK+d+zLoBcb3Wtw8J7+kcTuzpXFMS9EyVcTOEnaimE8durVL3vEDJiGnb2qaNtCrSYZJKJiFjIAmJsXAVpxyY5yWzJgn5uvMqoxSgVKJetNQXNKEXJPvBZqhxs4j9cigIjRDEfWX21oc0RLYeaLaUJTbfXSTSAqySSKbRHSVyJQ4r9kOHOjW/KA1RSAocO0YegW9G6MWdtLQmiLkRiyug1Dbmr7CTRPFjseNG9Eo5RbT5CSVMT9liS6BAjPX2ACmFgc6P3DoueStGd8sXeSO6yl1q0T1r/v+Pz5S9+Wo9fCfeekt2e9hhfjPpRHBjbz2M3WADluHBjB/62/9LU6cOMEP/MAP8CM/8iOEdnJujOG1r30t999/P295y+Fab7dzKR9R0/lS/5LiUqDfaTby/Kn0pistRrrVn8wtW9uZI2WSHO+HGeWGob6n5p47L9FEzQvXdvjo5DQf+r9fzgvOjkX0Wa1Q2bRYGneTdBUidh4JhUHNkuhfYqKYNuhptdDzJK3EwaZqzxHEhtNomqFwiVVM6BWfehUTbh6pThbY85lM9jWkJkpGDYh717BP7OeUd/RpBkIVM1UkZOLxb8vWmnIWKS6UmEui6VGwuH5dY33RuerOd9UowPuFKcAi8HPV9S0m6Qx1tapjiYk0m0Fdt10gI5aeTbOwqQaWQMjadt/HA87T1a3qvlwPcLmR7sutBjhdPR1wudo2zyWYOQYtN17RKFyVlh2PzJFyI/bJrZZFhQS1OC9i1MIWOYXWpMRIt0ZpBYURgX5fUa8rmmGrhdSJl2xc5NNGj/PK4nHuNBUZl9Aq8V/2P5PH/vDMwo6k3DAoD2buRDtpAWcgJHQdcLOEnSv0xPDA5AQAO/UApwOZ9hiVGJiq1b4YQisoybVnqCrW7QyDOJZlOjAqKmpviNGSbKJeh3wfspjIDiREstqwRCeuac0A6o1I7EfsWk2oDSkoZgkBIwr01ODGBneg6F2wFPuBfhNR80a6LKtieaNkjJALBYAKQbovVi1MEVQS6/6YCaVP15BNI8Ep8n05TrtfomYlyWjWDgrcdEi1big3jYyfjZgnqACmTpLH44zQAK0mrhW3+l/ueV032iG41oT6B06+5ZZQyKT+zRG2PXw9nbXy9QKHK13Ynqta1eDcaOftSCT/t771rbz1rW+laRouXrwIwIkTJ3DdhPZ5Xkkp1Lwile1Mv5vILtzEVly3FnxbvdAFpZRQeunrvwA5WgsH1xlCz3Huswb4nvB9X/qCc7xm6zH2Gkn0/R8Pv4jh+bQALkkLn5cQRfti7UJPonzAHdRUm/mS+5tAz2povOh5nBU7Srh8xakNsuyoZEQRMkan8X2D7+llo2PYR1c1GCPnB+As4cQa03sG6CYRcoWbREwd0VUQ+oQTalzQimagiVkPs5VTPD5B708EMGgJ90whLugDi5WyqFG5XQZ4goDHzoms21YbliYLSxMBZY0YAHTbhkCKCbU/eQrgVNaSVFzQx5S1qOxYdHmtup20L4cBL9cCKTeL/vV0XZjDAJdrPe+57sgc1/VXyDX5rBWjh0gc5gvqlugwRHyv0EvxeTf5brsiqgnSkak8rGVijayg2kw0pxtsz5O7hnt6O7yu/wBnzISB0mAadqLlNy++CBUU4VRNupgTjVDPdFPgxo3oIZ10xlVMmEp0HyrApXmfewaGOhpiUuxWfbbzKSNbipg/ZJILowNDUxKTplANTTLk2nNXb4+IoomaGDVlz1BtKYpLClNb+k9WovVcV5RbAsjqu2uGG3NedeosJ7Ipf7R/mtJbCusZVzmhzXqJUTOZFkxmVty+Hhyx/mBD/4G9hetkh9qSM0LvXqEZd+J9XYfFGK19xOQGFSWzTPtEtuclKLoLtvYBZnP0ZEa/CbiTA6ItmNyt8P2ErqF/NmHKiB8YDl4ylC7TUOO9g9979v7//qTVlV2c3/3Wl/He7/zHR97Pt1z46UODmFsl5oenBzE/tvvQde3zb2zed/0HdJNq1TIbnqUOzGo557jjjjuu+0Vv11KNJ82q1r5XASuOV93q/kJEvuIK1qXRd2GVqwAGRIS5+BuMXxT47Nd9lMen62wWM3zUPDA+wd2DPV5z1+P84clXLHUjjZebplKy3zZUEq2gabDn9qk3TkkXptWPxNyhuxu2UUJfMIYwcMK3tlrslK3YckYnK1sh15gmoieRpB3KJ5JVxGGG3l0RIVpD2B6x/9IhOiAuMmpl8G1dckwZFrktSctqVzNyzO5bI9srcGf35fxiCxy6hodZUrcu65BYuwQvRkShQoNoQYoRQCkhlJHkWXZvshZkx0Sqm6UhQGv3nFJC5Rlxe40wzGmGljJr4NYvzD/v6pMpxPJWd16uF7xc+fxjIPM8LMUym2vVMt+1GpiQFuG5gNwjQ1qE7xJEbK5ibLO9GuzM0gzEQlhngXtO7fCStQvMYsZJM6VQgQ/Ua9TJsKZLXrP1GJ+46ySZ8/hBRrWpCDMBECokbOv61R2bqaSToLxiWmUcNAVWRawObOdTcuOp2kDHmBS58e3PMr4ZFQlonA649obudMSYCEa68c1ABPK+b9A+ES1UW4mNV13i5GBCFSwv6O1SRcvIVVgVya0nRE0VDCFKp77o1aSiYZbl7NsMcOSXepj9uQDERNvFTwvdy2qZqVCIsYbYN6gqYKYNa4/IhuWmxR20jm2dY5yzKO9lAXF/gvOB3tBSbjmiU5haKGTNyFBuaJqRIt8R17VQHy+IPVt1I5Pio3Vgbm1dL1B5xv199y/xun/0527qvq+3ruwohXLC73/XZx7quUcCMB/4wAf4+Z//eba2tnjLW97CiRMnFo8dHBzwjne8gx//8efxQLuzB8rJpPdK/UpYrs4vKolWJnW5J7CkOXVUpy73RHeDl6b/hEGryLe/8BcxJH7l4FN4bGeD8+MhBxcHnHosLfnJsNCTpBiXgZkBmdCXFdlOSb1VtLaRYNo8GGgtKX0UUFEHVEzUGznJKGKmiVYRMsX8hMVNI9k4kJ+dYA5qwlrG/ERGzJdCfKwhbgyZ3zEgaQgGSGLfaeeSJSNUCI0qA2ZcyWDS5tO4mJifKdh/SY91o8geuihdki5fBpYAsvFLCh4swjJF4J8twWUHnFISkX+nZwntfjo9UkdPy5x0d4yAHZU5wplNZncPGN9tyfcl2CzNmpv673Vcz1w3S/dyteo6JM8GXQxuHLwc1/O7sn2/0NGlTHKmVGhps84sQU2MAl5WTR0XXYT23tZSvLJppNwyKBI2C8SkeHn/HLluGMcMoxOP+00u+BFOBf5w707CviONQOUCfJKVYGNTG0zT2utbJWYwMWFqEa6HoBnYCh8NPSP3wiZpfDQ4FUT7gqKva5xajpcDXXGH22MW8za1PqFUwuShXWjTqASTOx06QL2uyF6yz3Z/SqYDLxldYGgqcu25s79PE2W8XHMlB01B5S1VsOTG07MNF/sDzmdD9m0PFQac+F8ae3ECyoJV8rXqatlRyeaVjDHOojLbshLA7VWEgaNeU2hvcfulZMe0bmaqyEXz2o6JpowtIFPU64mQKdzU0Awh2oSuFcMnAvUxJfmW1JVOXJcJ269D/3JUzcy7jvwKh6+v/bavvez3GwmpvLJuJGvnKOYBt7IODWB+6Zd+iS/90i/lpS99KePxmO/5nu/hZ37mZ/j8z/98AObzOT/xEz/x/AYwsLzJrQKSTgfTgQZYPr6aSA9L+lNL6SKlBYUraU25ldGMEr/5Pz+FndcNeMuZ3+Ebtn+Di/WQX/udT2HtEzKoSJhl21nobIY7sNS+XtedsBcOKE+Ly5adR6LVomdJSZxbukHTaFQLwqLTCz51yEQYWQ81+V5L6wptiFiXVt9WyjNmLxgRMyV2mE0kWfHLN3Uk9C1JK3QjXaLkDDSBmBlCX7ogbhoImWJyV876ZA1zbk8CKTvNS+cy5uxTrSe1QimzcCu7rHPTtDk1nWapo5fFsASgSrfUNSPv5SinunuDatNRDzSmSthSwtTS5Dg6+biur242eDmmkz3/Krs0w9qWBtYTzYlYKUfRYRiDCq2esV3hT8aAXt7zVBNIWTsR1wpaqV/SoFVi3jgerzb4tMFjPNSc5C67y0BXPBxO8BuXXsyDF7dBQ6wMRkm33fdARUXlDboRYwAQl7OYKbRvQyIVzIPDR8NWNqVJhhgVEck+qYOMhU4F+rpa/BySotANO37IzDt81ISg0SoREgug5nsSZFl9+owvuucTPDFbR7eWzZeaAQCahNNtPouKWBWY43Am0LMNa9kcnzTTXsZeL6PcNsxP5Yz25vIi3fjRao7Ezq2l8BmNSobk2rBjpcCJnqUZWnxPySJdP0OXfsFw6FxEO1vmZFQ7Zsj7U97psacnVOMC93DO1kcq3F5Jpo4XxG5FfYt+Jbxb5mNvf8fLeG/7M+euT7z/rv/z1uhabrT+/vT/C2+9ef9D8Wc+Hd5tePs7rh9Yf9tNPp6jHsuhAcw/+Af/gG//9m/nn/yTf0JKie/7vu/jy77sy/iZn/kZ3vSmNx35YG/Lim1wVgdalF4GK7bULdVdsdg6lWmFalfTFhoYkDwTIFnTWjNLd+Tcn9b8n2/+L3z/h7+QBy9tEc9o/qC6k7+4/fuc+9QRn9i7l41PxGXo2ZUUBNPyeTuTAW2gbug/fMDs3jXs1EOSzBdTelQViIXQBbSPQvVq9S92HNFNYmYt+a6nCAlTBkLfkbSiPJnhC0W+g4CRPMdvD0kWWXUae3TladYyQs8sujhuHFpKWkvPGsq1iJkWa+hM41qXs/kdA4aXxiivST4u82U6YX5nibkYPPSyE2Zt261pf181TAB571bfy86KWilU5ogbI2YvXKPpi1uQLSOmVphK0pMbjlfMjuv2qdsNxGTf92oAUhlovvuDz/HR3H6lmoBCgEkXoJiMQVfNZdsk07ax9VJgvuigs7T9bYaOg3sMB6/09E7MOL0+5nXbj3BXvksZHZ/SexxDokwOpz2FadgYzji7n6OmFhVVa5cPsQ2+rNbNQnQeLYRctaYuUNeGJ2fr3D3YIybF+XKEVomtbHpZx6XLhSmjLFDNYs5+6HO2XmO3kuwYpQS5qKAWbOx6HartyAtO7vLYbIODquDM4IA1O2doKgot16mMEqIZkmYScg58D6sDvu3MGJXQKhGTYjw17FWG3vkeZlItgElyeskigKWBTOZIuQAY5cPCZll50QKFTDG9K2eQEs4HoTy3Y0gcZjRDR71miEYRDfh1MR+YXBhgdyymVNRrFreHMCSO66ZXN+ldAJcbrO/653/rtgIx33X/ed71daf4x4M33Nwdf92pawZiHra++q5X8d53G/RX/q+bdFBHq0MDmA996EP8h//wHwDRenzHd3wHd999N3/5L/9lfuqnfoo/9af+1C07yGetOmtkWkF+JwIMkmGirF7SllYCGZeWwEncvqBd8U/i3tUrxMpRw/YfJr7vxV9EdZBTPJbxD8dfir6QMXxU0bsYuffhOfbiRGyH/TIvJbWhXEIlS5c5ZaUyoM55+hHm94wwZSsUjYmUG2JusPuV5Nu0ItJoFdoK59rNU8u9BmJC1556u4edBpI2YuccIvQt8zsKTCXp9roSAGcqESxGI85jSSP6lzZFOvQs0SlZ7UvizuN7Gu2hGWrC5gj96LS1pTZLTUvmls5v3TVoByBlzAJALjQssWmDKFtjhc5wISYBOZ0VdpJ9z+8ZEZ2id6HBVEFoFC3Nw0wbqOe38r/tuK5SP/l54yPRyK7HfezZch37ZKsOsBzX4So5I2GRQbXgJC27K525S9aarzSBpHRrxNLaKisFtu2cNxE/NFRbMDozJgTNfaMdXtF7kiYZ/tvOK7i4NuL39l7Ax3dO4L2hnOQwsfSebMGQRQT6kcu0izFTJCP35ZBBMpDtKeZn+zyZBemgDBV1NJwqJuTac+ALJj6jp3O0TVzwI6roWvDSY+JzyY0xol3JnSclhVeQHchYM7vX8/KXPU4VLA/vbqJV4u7hHn1T47R0pppk6LeuZ1V0NMkwsNVCh6NVYmBq5tbRyxoOhp5maKjXHEUdUE0l1zRGqMLCqnoR5pm3wdWdzrT2kFmyvZr1h6HcNExPa0yVY+YNeoKMQc6SjCYUhqavaQaK5tUT7t3e5/GLG+Ai/nSN39LMz1l65yyo+tn/J/wTVG9/R+C9Kx2F937nEXdw+p3L554+PBh619edOuILHa6+6/7zt3T/N6ve/o7A/+srb3w/+iv/F7zjVUd6zqEBTJ7n7O3tXfa3t73tbWiteetb38q/+lf/6kgvfDtWClFa9TFJlyNEEdJ3Ggpnha6kldCSFg5YK/uomzaF3sskehFkGUA5ho+U5PcXkMCNJafElGNxDvMB1aXQxxXRp/fLiX1Afu4m753WJgT0pT16RjG9byRdEFqBaGTRhUEl7Nyja029bhfOX/W6xU0CdhIFAPhE6Is/v5rJIBDWe5h5JNuvMdN6wdHWMaFrSzYR++TQk4HbTj0xt+gQJWW5klRpU0Virmj6rVjyTJ/BWSfXGwQg6rh0XutMEowWHZAx0hFq/OJnRft+tR0wATRXvMEhgLUo5/Cn16lHIiIF6Q4pL1bSKiZ01eDz4xWz27VuNLTyGMQcro5By/VXyi1JaVSSLktyLBPZ28WYZAyx70Qo7mPrDCm6FGWU0MwSpFwmyqGXGBUVTkeenK3x/6k/jcwEPnz+DB+7dJLxtEA92iP0I2YmAcV+lDCl2PtK0j3YWSJkoObSTW8GGhWlAwNiI2xKxfSidFCaYAhJ0bc1VgV26gGTRkDKo3MBH5n2bGUzYlLsNT1mPmOv7BGiZl5l+MZAhODkdfSgYVLnVN5idKSfNQu6WGfTLPS0GkOkwi2CNac+Zx4cJ6xQ13qmwehIMayp1xzTOyxuJjk6KoigXwKdkTE9JFIhsQaqacORu/cmRnTpyS8lfNEj5lCPNNl6gTUaPWvEHKcJ2FkgnTBM70686NQlJnWOdYGTm2MyE9iZ9hm/cAM37ZE/dkwhu1XVAZcOxABw7hmedPqdV93PUavrkNyKutXg5b03SCHr6qvvehWf+66XPOvHc2gA85rXvIZf/dVf5bWvfe1lf/+qr/oqUkp87dd+7TWe+fwpZfRy8gyitYDL7ItpV8kWVKY2gV46Nm2OidayfbvSn5ylvnONS68sOHhpZPCo5sz7piJwj3ERcKV8WGpAWppU6iycu+5EaPNNTKcXMQuqWZrPUY83DH1kdt8aSTui0+SXSmJmUEYGRVVHbAqEXMIzTRkxc4/vWwEclUc3kk7cf2wm1tL9Aj9wuInQxpLWJKcJfSeJyG3oV7mlUVHTuyS2yNonzMxL56VnUXXElK1zTWsgUG4b+ptrcGF3CcyaBIb2Oi6BjSpy0brEVoyp1YLqpzq6WbvtojqnONVunzmqrRztE24a0UF0Q9UJhxt7mjVLVhh8sxKkeVzPSj1d9+VGQcuVdTNBzKqF8q0U799uNLLjeobSrTmJ64T5LMT8SSlUCKhGg49ifDJrlh2CKLrJlGtibjC1PKcJBqcjW/mMu3p7nKtGvOzEec7NRoSkmKseuhK6mIpiiUyUzgpKAIz2reOYR+hQtqWW5bKtimDmiuKjjur8Gk/el2FMpO8aLpohVkfqIBSuMjgyHbAu8sh0k7rtjlTBEqKm9kZc0BqDbhTVpqJZS6SouLA/xLlA7p46uS+UJ9cNG2bKLOYMTdl2eTK0imxlUwrdsNf0CElhVMLaQLnuqTYy6jUnlOV509L0goy3tAt7bedr8T7B0r46JChrip6l3NLYMtGMDMnmWKvRtQj6dRA2gh8krI6s5TJmvGj9Ig8dbBOTolmPzE4b3Dn9lHM8rptbS/Dyvc+8cbfNVYDMUev50i25st71dafgHTdGI+tq9opvveF9/ADwb//ZN/ENf/dw+uNDf6L+5t/8mzz++NUH+6/+6q/m/vvv53M/93MPuzsAfv3Xf50v/dIv5c4770Qpxc/+7M9e9nhKie/5nu/hjjvuoNfr8YY3vIGPfexjl22zs7PD29/+dtbW1tjY2OCv/bW/xmQyOdJxLKrLC1kcQNsBuFKHAQthuLJWQAYt1ay7ERotbWZrqO5a58JrCmZ3JbK7p9Tr4g4mCcsrTmUpkXqSak9n1Wht66Sl5fhc67612oHpKG0daLq4S/9jO5gqCnDI2+5LSu3Neel64yYed1CTuhAvo4iZCBOzfY+9cCDOY4NCaGeVl32khGpExB+cxlSBbBLFwcanhbPZ6rU1My9iyJjQjWhl7Fy2bbb6y/PUohtaGiK059cBEb20rRanN3uZ9TII6Eyta5k4w7WgtM3piU7Ak1yThNspJYCzMGR7nlBoqs3rchm/6XXbfU5uUT0TdexWOJR9+pvvWnwd1/O7brvPSUzgW12l1iStiYUlFo7pfUMOXj5idu8a03v61NuFLIaF0NrcS26YipFqM+f8Z/Q49zoNd5acGkx4zfZjfMroSfqm5vx8hE8GBRglafXKS+e9+9IeVCPgRSVws0ixG8j3PKaK9HYi+UHCHSR6lyK9C5HRQ4m1hwKn3h8pPtTDXyw4uz/i4Z1NHj9Y49x4xLnZiHOTIVOf8eRsjYf3Nzk/HXJQFcwax8G0oG4s89Lh9zOyPc38dKLejKKTDBpnAs6IVbIW1Q9NEnCUKc849NBEClUTUJjWVaZJhgv1CB/FoMCZgNUR12toRkj2WEfpbt+DBTBsdasS5qnla+H4thzn7UHF6FFPtu+JTijXzchRb+Q0a45yK8P3IfUCVkXu6B3w0o0L5DqQW09mPWngGb8wMr7r9snLu+0+K0eoa3VJ3vtuI6DkMODlFtV33X9+AWZudD/PFhi6Wdqhb3nkm5/x6++9+d8849dR6tAztC//8i/ny7/8y6/5+Nve9jbe9ra3HenFp9Mpr371q/mrf/Wv8pf+0l96yuP/4l/8C37oh36In/iJn+CFL3wh3/3d380b3/hGPvzhD1MUkmr79re/nSeffJJf/uVfpmkavv7rv55v/MZv5Cd/8iePdCzA5fqLbpJs9LLL0TlZJbXogqzmlCijl7oNrYn9Ar9RcHBvRnkiMXoAqv0RpoT56Zzdl/UZPRrZ/OCBZNAYvRAJptZ5LK0mz3eajss6MWY50e/cyrSB/THZrMRur1Gf6BPWLHYaWtcwuanbuSdpRTPKZEJfiHtZ7DnczJM9vCvWkUUmFLREm+nSupStWDWnCHYayPfEitPOE6aO2LFYGevSC8/biSbH92x7DJHMKWJuUM6JvkcrucargLG7zl12Syewv1Ko335XVi+vFYA28v5oLedjRUxar8t5pZGT89BiKeoLTdW/PVbMbrvPyU2uW2mdfFx/cuq2+5xEwLG8VQ3F7KReM4zvMhJi2XJ4B1a0hAbkvm7VwkxldtoyuzPhNzwn1qecLCbck+/weLXBh/bv4PH9ddZ6JZvFnI1izkf0Bm5fo5vWNlkj7mWIBoYEqdUu6lq6DfW6RTeJbArDR+aUJ3OiVWRjCUvO9yzRKJ743DWquxvmJidFxTgv0CpR1jI5D0FjTKQ0lhg1MWhZ69vJ2fiIYfh4YO+lhsmLknReigZrIjEpYlJYHZjFDGJG4Tx1ssxiRqEazjXrgACXTgPjoyE3nvPlUK5jXlPWDuXlvFVq88Fa0KLqtAi4VE2re2mt/4GlaU4bgKznDcXZKaEn70UoNNVaO+5pqNcU43vhJS8+y0tH5znwBT4afNILOhxAKgL12u2TA3PbfVauUauT65tBdbqsjth5eTqzgCsfu1EQ8/Z3BF71dTe0iyO91s3cz3+JR9OxXFn9v/Ey+LsfOdS2z+kS8xd/8RfzxV/8xVd9LKXEu9/9bv7+3//7/MW/+BcBeM973sPp06f52Z/9Wb7qq76KP/qjP+IXfuEX+J3f+R1e97rXAfDDP/zDfMmXfAn/8l/+S+68886jHVCSVSHRuoTLgIxYK2uogyxhdRSu1pZXta5jnRgQIIxydl/eY+d/q3ndSx7idzdegt6s+NP3PsxvPXAfZ07uk5lA+S9P0nuwEpvGKBQyFfSyg5BSq7WJLThaWSnqMmc6elRM0h1KAq7U4yXFpYJwZpNQWEJh8QMrA1dKRCfdiHpkUCFRbVqGj86xj++QarE2VtYQ+laCLnODBtQs0KwX+IEh5MKv7qhk0Smy8zV6Lg5lpgzo2kt3p2chJGYnLfsvhZO/LwOorqXrRHOF0HFhV93+HkKrPF3plnUuZKtgrwMvutULEUipNWOYlbhJwA/knMV4QC3OI+S61fLcHgPObfc5+SSta3Vhno5mduVzjrNfnru63T4nMTeQhJKUnNyjTBWIRhZN3IEs9ESncNO44EN0rmPJacYvyJm8QOHXPG5Uc+/6Dq8ePcqGmbHjB9zV3wdEzP7Fpz7I/Q+8HhUUdgbZWLoxoWhF+g4Z37promhDM0E3iaTBTSNmWtOvA81aLvsuPeagBB+44ze32Hl5xuwueZ4fBYJJNM6hTFzsWNkoa36lIXvSsfYIrD1ck1+cM99aY/LihMu8dE1MwOnIKKvomYaRKdEqkuuGTHkqHGUSgLRuZzTJkGtPTJqea9ip+8Qk1s7DrGJH9cn3Id8Tmlfqcl9WnD117RfjtFhYqwWtbDGOarXQxKAVdh5IWlH4hJ0F5qcy5qc0MYvszHp8wp2gMJ4TuRgdXKoGrBUV+3mf5OKyw3Mb1O32WblWXSnM7/4GV+glrqfrctjntEDnMJ2KG3VEWz3PZ7MLczNr9kPXBh/vfv8zs7RC7YHDAZjbY4n5KvXggw9y9uxZ3vCGpXXc+vo6n/VZn8X73vc+AN73vvexsbGx+AABvOENb0BrzW/91m9d92unumnpWpdToBa0La2WQCLFpSOZWoKdZDSzOwt2XhN5xb1PUpiGl77icT71rie5r3+JtJ+x+z/O8NAnTqMS4lbWOY21bmNoA3ne7jMuQQq0nQjR3HTJ84tJfQiimWmka5GqGv2Jx8k+cRZ37oD8UomuA9G0hgUBehcaRh+fsPH+c9hHLy47HtCKTWWC37Q5L36twPcN8y1DcEpcxqpEPVT4drvqZCGON7VYOcd+RrOW0aw5VEy4icIX4lymGwmoxGXyBa0BQlpqXlZBWtd50stBIYXQGh10tLGw0Ckt3peqhpjIL5Xi8Z+12QopYaouKVoLX/wKRuHtWM/l5+Rm1POh+3I1mtkx7ez5Vc/F56TLxCIlEXyPK8ykZvB4iZ0lRo82aN82mzNFNFpE+00QV0ifyCatAUqpObU55otPfJDP7D3ESXvAC/MLfNb6A2zkc548WONXL72cnb0B+aU2VLhGaGGThGl/j07ASmdekrQiWbkHmkqovSTpPNhJLR0MaPUint7HL3LHb4458/+LnHp/YvMPDaOPOopHMuyTOebJHPd4RvaxHoPf7XHifzpOvT+y+ceVjDuzmmI/okpDXTlSUuQm0Hc1Lx2eZ92K86MhYYj0dcXIzDlpx9yd7WBIKw5kkVx7NtycM70xTTBcmA5oaiu0ubrVu7hVbWRrjNOBFSWMAqIs6Al4bMfWrI0/QMYwU3rspCbfqbAHJcVOw+CJyNYfKnYujnhiss7MZ2glxxhb10utIy7zNOvPgwGF22tM6YDAe99tLvt6Sp1+503RslytOnOAZ/rbYZ53M7a92XWzKGRdXe1adfWO1/76TX2t24Pkf5U6e/YsAKdPn77s76dPn148dvbsWU6duhyhWmvZ2tpabHO1qqqKqqoWvx8cHCwfjGkh5k91Iz83/rKJMrDUn7hMOh62Tatvb4r+1BpPfB7c+4qz7JY9Pn72JKPhHK3g4b1NNj6oWXu4Qb0fsktzUubEgWwl+0UZDc7JPNp7CCvH0YEoVoTuK5P1lJJ0hTrxv1bSUblUYw4m6JTInFvQzlKIqCInzecCFKI4dqWUUKEVNabWmlm3lK+YyKYROxOAo2Ki2IttjoB4dOpGXL1ibklO43saU0fyfeFg1yND02/b+B0VrDMu6LRFrUHCAsQZLqeMtatlypjl411XqrO9ln8OVKs30ntTehcc85MZoadxB2I0YKdQbktwnClv/wHnOfuc/AmtP2mgpf4/PvBJ4UT2XHxOkoJkNHGQi3C/FYyrmBg+Lh2A7CDQ9C3zExo718ShhCaSEiE3TM4YEdf3Ayd6U17gLvFEs8kFv0auG843azw63mDv3Ig/mPRIexkoaM26SK1oPxlI3ZpUO4TEXJLnoxXBf7SKemTRvgdIjpfYy+vWgl+6IKoJDB6ZAjB6QECQH2atCYCGCPmlEpUgFK0pTB0W55/teew0g9ORJggF7I7+AZtuRhkd41Cwbmc4tVxEK1RDowxNMqzbObMgQMGpQEyKs7M1dmY9FODndgnQlDhXi9OYWmqSEBAjrIEV2tiqllKpdiwRAEpcCv+Vj+gyMHiiIuSayUM58ZTiwd0tAPq2Fue2qCEpgteo5vbpwDxd3arPys0aT7oJ8WXdjluse+km+Vfr/lwNeFytY3TUevs7Au/l1ndhng3gdLOzerq6bQHMrax/+k//Kd/7vdf4h1+s1sfL/pZCXLqUdZ0OY4TyZIwES7Yhk/R7zO7IeeGnPMlrNh/jFx56JTzcZ1r3ISn6ZxOD8xFbBuxeha4aoY/5ILSvIgffTtw7wX5rAbwIaly1GE5xkVXTHbsyetFFSd6jMrfMUwHQhtTLxWGs7eCk2awFUJ3ts5J9Go0pA24iq3Whb1FeSNVuHNA+0QwN85OW3sVAdN0qF5Ba8KKlRR+dZK24WWxdchKmBt1aSi9AS+f8RgvkFpSxsDBNUKrrknVOMmoZPNp1z5Rd8pq9J9FywUPE7s7Jrcb3DDHXuP0GlaDYgXrN0hRH+rf6pKun/Zwc13NSxw5kt19d63PiJo3kYVlNebpHtte09vOKcsvQDKSrHTPpjAyfECorIPdNp5ifUlQnA6NTE16+do6PVnfywemd+GiwOvDRvdPiSjaqaUoLWWuJvK0wFdh560KWEJv4pEgKqpHG5Aqbt45oWkCMLzTNUHK7Utvt1lYLqOrMZtrjIwowUFpizlTViMFLWZOsIY4K7EEpmsuUZDHNGrJLJb3zOdN7DZmtGGUlVkWcCuyGPrn29HVNpgIx6UVopiYubJWdCpTRLQBMTIpRUVE2FmrR/0hGmdhTY/XCpjopvcjjSXGZu0OIqNiep1ICaFo6Hz6iIsTCoX1EzSt0YaEEuxs49XuGR09twahhPhKgN20yEqBbal1wzw8Ac6vqesaTy2yR27oSTLz9HeHomS9dHbJrszrJfybw8nyq77r/PG+/Bfu9VYDlyrptKWRnzpwB4Ny5y828z507t3jszJkznD9/uVjKe8/Ozs5im6vVd37nd7K/v7/4evTRR+WBmJZZJLCYQKd6xeKxm9xD65aVLS16O2pTVZPteXZnPS7UQ9LvrXPqdyKnfztwx2/WrD3khSLQRPRkjiprubnHKIAkJmg1NalcrlhQN/La3i8BljHLrlEIrW5FL8+lGxA7Glb3lSJqMiNNZ+05dXqauOxadJ0LHzD7pVANolynmGl8oQk9LYL4AKOHSty4IWTi1qKbSMwNITfETHJnfK5wk4idBUIm2QODJxvUdL54D7ocnlX75AVdrLWtluuvlnSxxfsn3aQr3cfkvdELIT8xosdz7Fg0NyHT1JsZSYHbKyl2auGl3+b1nHxOnqO62TbKx3W4qv+PDzzXh3DD9Vx8TnTpUWWFqsUsJWaa6lSfajuTjkYDzRBCBv2zieLcHHNQyWQ5JOzUU1wEFRR1bRn7gp998tW874n7+L1zd/M7Z+/hyd01CXPsV5g8gE4kC6FdfDEVhLylysIisLgDT/VAUw819UhTrQl11ve0ZM5kilCI6UoyrUakpSXH3MrswailBbFu2QpJMlZondRSl0DfbqfLmvWHPGHsCFGT6cCandPXNT3TcMJNMETO+nUOYg9DXHRj+roioNhvu0SzmPHgdJtL5YAmGA7GfexYLKdV2zlRISz0J0mtgIiFZKelkZn2q1sga507F7EFEVRLsUtaWAOqEWvm3pMzBg8Z0txwcdZn3OQk2vwcb/DeYKbPDwBzqz4rhxlPrgVWnrFuIYXsyupA1dNS2m7ia93KejYA2JVGDO947a8/7dff/Iz/eeh9HxnAhBD4d//u3/G2t72NN7zhDXzBF3zBZV83q174whdy5swZfuVXfmXxt4ODA37rt36L17/+9QC8/vWvZ29vj/e///2Lbf7bf/tvxBj5rM/6rGvuO89z1tbWLvsCFiv7wGISnBrpBCyDLVeE/atAAi4DN9luSfMb2/yPD7+MwRMJNwnklypMHSV9PteYeQuMVgBSCpFUVgIsOg1HB2o6/QcswzZbXU5qPCkElDECYmCRWg/INqvuZlUtdLEOtACqKJbgLLVWziGSyhLdAoxy21BtWqanlyGYySjm2yL0jy0okYFPEwpNvWGZ3JVRbkhwZMzUooOjEuTnJsvrGcLl2p7WpCCFSGoHT5x9SjcshSgaGLg8D+YKQWZqO1d40QnpyssqaJuDUG9miyBPW97+AOa5+Jw8F/V8AS/HHZLbs56T8URryDOS1Zh5IDrNwb2Og3st9VCRLAyeTGx+LLD1gQPMpJJcmJRIzqB9pH8h4PY11TTjd8+/gMd31plNBZ2kpMgyzyCrCa2IXbmI8tJ5Qck9LTqF77PoqsRMugqhlRqq1P6cZPumr6lHiuAU8xOG2emcmFlSYZeLP01LK1ZqaUGcpCOenBXHryYQeo7YgpjkLCmTPDU7Cei5JkTNiXzCppuhVeS0O8CpQEA6L1kLXJpkMSph2nTioamYxYwny3V2qz6lt4So8FOHriDfj7j9auk0FpJ0YaxealVNSyELy3yYhS6m/SKyBDGwoMGlotWm6tbdzEdGj0bcJct0nrM3L1oKmUKpRPQac4U/ze1at+qzctjx5OmAwXPR+bjVXYRP5rrV2p4jU8j+zt/5O9x///38+T//5/nUT/3U5Wr4ddRkMuHjH//44vcHH3yQP/iDP2Bra4t77rmHd7zjHfzjf/yPeelLX7qw8rvzzjt585vfDMArX/lK3vSmN/EN3/AN/NiP/RhN0/BN3/RNfNVXfdUNuWB0XZgUwnJ1yRixDu44suap2G9B4QLMzoQzv5XxhO2x+6rI+L6M4mKGnScmL1CsPZhaa2G/uEGmGJfajk6/Ydq2/ar2BYQiFeXmi9KXpdNftiLWdTO67+0+1KodTaebaVbCMgGckmOwFhpPttcwucPiC7EgdpOIqSPltsPUiWZgcFOwMxk05ieMtN2twhfgZglbievX9M6cZGD4eIXaG5N8WDqHdfqd7n3osng6KllsqXHJL88pRrkGsOwchSDsMmdbFzdawGlkn1pDSOS7nvKEw/cUpkr4gVgqq/Ds3SSfrm7Xz8lxPbt1DI6evm63z0ksDDEJShBNRiIa6YiQQaoUxTxip1FW+LtOAICXNPjikqf/pKYZOS7ZIS73uMxjTZSJcaM4dzBidlCQSkm6z8aK7CBhSunEhEJeUy3lH9KhSMjCjWlF/E1ClXKstmzNWIZy77bzHDsLZLWXTkTVhkNqlhP+zIrFvtVL2+JVK3wjYEf5iGkiulYYHdmpB/hk2Pc9hqaibypOm33KlBGSpsQxjTkBTZMMTbREFI/ONtmrexyUOTFqxpMe7qKld15J4PK0IuWi81S1b0X5agG8gFabtNJpab+rlJauYRFBeXppvdydN8j3mBmy/YBqDQZmZU4vFx1MTIpU6yVIug3qdvus3GhdjWr2jHWEjs0qbexqr3OzEu2vtt933fS9St0q+tizWUcGMD/1Uz/FT//0T/MlX/IlN/ziv/u7v8vnf/7nL37/1m/9VgC+9mu/lvvvv5/v+I7vYDqd8o3f+I3s7e3xZ/7Mn+EXfuEXFj7kAO9973v5pm/6Jr7wC78QrTVf8RVfwQ/90A/d8LEBqCxbTuY7bQUs7RVhwZ1Ft23ltiuiYiR7dJc7flNx/jMLxi/1NGsaM1f49cDgfVFoU41fdkpieyNNK7So9rVTiMvJeksbW3R/tALaDButZTtnBaKsdGYWx99R3Va7R12X4irArAuQtOf2WRtY6pG06E0d0VUgGieAZrw0GRDxvhHw0oNiR4T+0SrsPFJuaHo7EffEvpgl5NmimyTH1x5Ld95KLzU8Cw3MKiAzi8fUwkLZLilzqjUH6M4dIM9QjQhMTWXwhVhKV1sOXyhCfXsAmNv9c3Ij9ZOfN35GJ7LnS/flk7meD2L+2+1zkrQiWDE7QQn9aHAuEvYU09N6Qe2an7CYOief1Uu6klKo2pOdn7KVEv2LjguvKajuaFAuYkykrg0xasLMYnccxUVFNDB8LJLvixZxVhhCBiEXTU12AHaWMJVoFGObraiifGUHoT1eBSNNecKgtGJyh8FUho25x8wamcjrRIpi0ay7RHsrHZruu/JiZEBIooVpwY5qIsUlRVk5Pr53gsJ67h7usZVNOeHG7IQhTTIYRKhfJkuhPGWynG9GnC3XuDAfMmvkBMraEXcz1h+CwTmP2ytJxiyE+igR8CuWFLEFaOm+VsT8abEY1roAhLTcT+NBS8sqLbLQNNlBw9oDlosnC1QRsLZjMygIihVPgue8brfPylHqakChAxDvffc7n1nQ3wKXo+o0nmm7WwFibpWQ/7vuP/+c6XeuC2xeo1Ra5U0dou68807++3//77zsZS+7KQdwO9TBwQHr6+t84cb/E2t7C57vZfSjrjOxOgHutukm2B2ASUm6MUqBNaQ8ozk5xA8s+y+Syf7pX7+ImpVCH9OtfsX7pT2zNstuzApV7TIg05kLKCUgpcgFsKy4mC1oWJ3BQNulUVn2VPF/dz5XnqfRrZjfkNaHlHeOSFZjJ+KaNj+dYecRt9/gB5ZQiD5mvq2JGQyfiGifFnahOgi/eO2Dl1AHE+k8dUCxcxbrfo7dsejLf1+9Hl1npnu/nL18QOr2vTIodedDnhFHParTA6p1Q3YQqNct1ZoizUr+4L1/j/39/eeUPnW7VPc5uVV1LSDzfAQwNzsP5nbovlwLwKQy0Hz3B48/J211n5PP/8y/izWFCPILt9BOxMxQbluqdU2xF3HjgJt47M5UJsTtvUsFEb7HYQ+sZnZnj0uvsszPBNIgYIqAyzz14wPWPq5xk0Q2jmT7XmhdWvQss1OaclsRM7GuLy6mViMijQUVwdQRUybcvvCcklH4gWV6xhGdZMmQYOsjlVCzSr8If+woVNB2NGq/BAB22VFKTlzPVC3ja3lmwLk/neFfNaEoGl60ucN2PmVgK6pocSrSM/XCbWzdzni82uSPD04x945546i9YVZm1LMM93jGiQ8khg9N0TOhZasQiEUG3XF1xxqFArfoyMBlXZhFJ8wsx5HFdn458evocgBoqE72eezzLeF0TW9UCt5pDPV+zvr7PH/448fjSVdXG08OO7F9usn3Yh/nvlfAyiqgOf3Opzz3ZlLEbhUoeNXeHTd1fx/aePKm7u+o9XTXfFYmvuHvxkN9To7cgfm2b/s2fvAHf5B//a//9Q3Rx27LMhY1HBB39haT/4WofkFbSktqUdv5UM4JBapuFi4yqW5k4u8cKkSyRyuyEOk9WMgEelZCIzfZVFXLm+eqC1rb2cFoUtWCqrBibxwRd7Eu8ySEy8DLoovTOqqkljIlx1cvuzXd82JEtdS0lNKSZJYSqSwFBAFZ7pi8aEh0GWYehDutFM2aoxloqnVNKBR2lmDervRZRXDgC0VvNzL6ox3YOxBHtBCWgKKrGOWatiBwcU1WLa1jWjrFdL93AGy1S9WBse53Y5bvbeNRtccd1ESTE3oaFRPaq+5SHdezVKtApQMzz0fwAgI4bhaIuR3ACzw/ujC3VSVkstx2fnUTWrcvRf9sTf/JJFkrtWjyUi8jZXYRuJisQtUiek/GkO9YTvwv8B9TzE5mzE9DNImtB2D4RIOde1S9BBIh11gFo0cTdmbE7cyktnsOdh6x04CuQ2tzHNFVIxN0Z9F1RrKK+bal2mytmZN0luJajpksDWaS6eyFWaEwIw5gRgl9KrDQzBCheHLC6d8Z8ch2n8lGw15/ThksfVtTGBnvcpPRMzJOPjTb5pHxJvPGYU1gUuaUpSNMHP2HHL1zif6TFWZaEzOLrv0CvITCopwmmfb+Xjat4YGG0kt3ZUXrsqCIrYKaTgcDS1DT+EV+jIqR/OKc4SNr7K0ZZqlAu0icWczYkE1WzICO66r1TODiMABh2Vl557Irc419X6nRuFEwc6VD2s2om00jux2oYzerC3NkAPMbv/Eb/Oqv/ir/9b/+V171qlfhnLvs8f/8n//zDR/Uc1ZNQ7y4Iz+vTvrp/qSW4nFYdgE67UqXx9J1azr9ivekphEwczBZPN4J6hfUJs0SdOh2/01aOm8ZswA5irb70nWL0tK9qxPAq84KsqsoFLMFcIHFMShrSSDdGWPk986m2bi2w2RIZYk5v0u/Z5ndWdD0HTokQqHQXlb0kgYzl9VAHVrwkkkewcYnKrLH91DjaUuXMALIejlp2CP0nWTM+ISuPKqJmN0xqXMp6+yRW0qfamliC71SWDqyYQypHdBV19Xpuk1aNEcqRtSsxMREHhP1VkF9QowI3Oz24Sz/SavnK3BZrZsBYq4GXv73+v6rbvsj2dfd0Gsdpo5BzOErWS12+FovJsgqSWhvlyXSdS46u3m06AuT0wt7/aREsaibQL6b6J0LZAc56w8rqjUjXZedEl355biVWcCh2uFkcDZSbovxSjNQaC9BmSomTBUENEWEstt4aDwmJTJnlvkwTbv45Yw4UoLoYXxcunu1C0qq62LoFRDXnqfycSGsd+OG0QOO/U/V7M8LmlyTksInQx0MmQlk2vPkdI3dSR9nA0ZHQrTMpxlx7MgvGkYPR0YPl2gfCaOcpBRhmNGsWUKmaforFtVANskxdcQdeLRW6LIRh7FuEUwtzw+WWTHJGRJ2mdkWo+TDOEOyFkJi7RFPM7JM75HFOxQC/G7Nv9kndR0WCCwpZOYpk+Nr7WN1+yv3cTvV298R4B1P3nAXpqONdeDlqOd5K7pLN3q9jwxgNjY2+PIv//LrfsHbuVIIMlmPS0crYKEpAZY3uFVReOfklRlgBbzQAYROkyHhmIQonZP6ihWZ1W4DXLafRXij7tzQpFvSGQ5cRgNrBe2pW1Vq6WOXdWdgKfjvaG/OXvbaiy5UiELhasSiOXmPe/Aca/vrjF+2QT3S2HnrdZ8pcVtJUK1p3EzEov3znvyJCXp/Ip0npcBa4tYIv1EQcoPva5JSmEqyDHyvoBlA/8KQ3tkKd2kqnSsfSLP58vprhTLZknrW5eUsHNviErh059J1Y7pVtarG7EOeIOlC8mqOAcxx3WBdL4g5CnC52uO3Eswcg5jDlQpRQEwQwxZJf0/tRFkATswtyUjOShcSjNXS5Q+RZI2MPSlh9uekzBJzi516zLRBNz10E2UCXrWOlM5IsKRpM1+2HNWaol5vF61UK+j3Mg4oH7G1R5T8muRkgq7mFUZrCqAZaMotTXnCke0r3LgRp7TSQ+0XVDGhZbEAKGklPDIZLWNJGwZJSphJxYk/1CRVsJ8NGLsek0GJNUFc1mygaixl7fCNoanlPu6njt7Djt75RLEbyQ5kvJ7e3WN2QjM/owhFotkI4ESvoxRoFwlzg6oMZmrpnXX0z0dGj1aYiZgg6Fl1GShTLTuhc2DrqHNyrbOFNiYMMkIh43XvXCIpy/wOhTJgSgGmx3Vr6rJMmGfQolwrx+XKfdxI3Qo9zIc2niT952fQ91yjfvKRf3jDnaab3V26Gdf5yADm3//7f39DL3hbV3uDUsYsVvSXLlcrTmCtrTLWSmelyGVi3FkUt6BDaS2r/GZp3biw+G3/nvzKpLujPwGLNHpYGgi0nQZljKzmxKWY/TLHNK2XltBX6SQtOhbdvi+jbqUFnYy0pJgtE+9be+WYUAdTRh9siGs9/CgnGYWZC7fYlAHtI2Z3Jit685LUAkNVFGA0/o5Npnf3CE50MaaKuFnAzDzZXqIZOfzAQILyVE69mQlX/KDC7DjZp/ekqgbiEnDFpl1F00v3siv0TEpr0G45MDVeVjkPoEiJarugHN1eKzHH9fysDow8E5B5OqrYM4GXa21/q4DMMYh55lJ1gKxduV+x71VNWFB5KRQqxZZilVBeLIkVLZBo3bCSEUpUsnIvM/MGXXvcXoUKETWvheaU56K3AVRMhJ4hKem6+GIp1vc9ReU12id8tJLbVXpImpQ7tDVQN6i6wUw12TijGSjKDYUKBjv1JKOJmW2dMJfgiAixbxdATaVEoqVHJzFK0SmhygYFuJ05J/8X+H7B/M7Awdiher7dWdu8aYXwBIWZaobnNP2zidGjFXZc40cZ07sLzr4eencfCJnBG/qtkD6zAa1lrJ3nGb4x+KFh0nPU64bgCnq7jvxSI7bKIcm4ZbToelKrS/KtcN+ahasZXV5MEodN3SR6O4FsqjG1mCiYikXswHHdmrqaU9jTUdKuRU+73Towq/WTj/xD3nbP9xx621WQcLPO66hA5lZezyMDmK4uXLjARz/6UQBe/vKXc/LkyZt2UM9ZxYiyZulqddmkV8vE1zni1oj5nSOia/NMNGLbWAX0pBZebOsuplrgkLRCtdziRXfAe1Svt7RLXhkIAJmYdw5jADpKpwGWlsHeL35P3X5WqzMUWPzagp7V7k0n9m9LKSWJ9St0uVRV0jXqSivSZAqzGfpgQt45uXTnsWpL2VUIqJZyWL9gm2bk0I1oeYrzlRgDTJvWBUbLIKkVyUjoWsgUad1Sr1vceoHbFTrb0j0miYVn1yGLAeLyd+U0OCeDUi8nGbOwsVZ1swCgen9GnhLN8YhzXDexrlfLclTwcrXnXi+QuRKkrIZaHoOYp6+UW6EPdbfW1s63Axsd1SoMMprtPiol7EHVBiRKNyUOcuqNXPK1QiIUGlNGbBmEzqQV9VaBK0Rr6QcO3zc0fRHM1wOFmyW2PtowO2WZn1As82EgGoXKNH7kMNlSIxl7FuXzhQ2ynQZ6FxXlhmgcIad3scbEpt3ZyviRhJqWnF48P3UaxNhqEDMr2p8WyLgdOPNbivkpR7mpCZldGAzIAUEy4qCmA+QHgeJ8hZk2zO8acOHVluFnX+Dzts9ybj5it+xhVMKZQM82aJWwKhJRzL2jCYbSW+brjuq05eKZArdr2fiIYesDtTirxU6HunQui0WGX5cMmHrDEpyMT9EIVbraklBnXSeycWLwZCQpJD5gftyCuZV1ZVdldeJ+VHrZ7VzqL73zKecEh7N3fu+7Db/+4ks3fAyf+4ntQ213q2lqR3Yhm06nfPM3fzPvec97iO1NyxjD13zN1/DDP/zD9Pv9Ix3A7VBPcSFbtShWGjIH6yOa02vMT2fUA3F4MbVMvpORG200Clslsn0BFW7i28R6IwCn5T0T5OaOVvi+k0Es0+gmYeYeuzdDTebQNEtQshI4CSw1Hm1GykLz4uxS6N6J8VcAisrc8vHOmrj7efWcOwe0EC6nz3VJxavOYKtAry2l1EL3swqUcI5wap3ZCwboOlGviSVztudJVpHttuFjPhKHAtZCYRc84lCYNnhSoUNi8PED9KU9MSWwtgWBK+eSEqrXI/Vy/IkRzZp0dZIWUJm05B64cSDfqdAH85ZyZqh78Kvv/6fHrjFt3WoXsuN6at0IeLmyDgNiDgtIVoGM+0efeuxCtlLd5+TPvvY7yYJd6lw6vaI1xJ6DCH49p9p0NH1F76KnODtFH8wWneHUy2lODvA9i+9pQqYoLjWLe220inLLEDJFfhBREcp1TbKga1qLY8jHgZBp5tty70wG7DyR76eWTpYw84gOaXEvT6pdeEutjjFXzLc1zUiR7SU2Hqiwe5VQqkJadJEwXbK9WEGrJhD72fICtYBA+Sj3+u5cjRLrY6ely9EBISW6odiGe8bMoMsGPamIw5y9V46Y/+V9PueuB9EkHphsk+nlRMi2P898hlYJrRIHVUETNU2QCdbu/gB/kLHxh5YTH5xj96tlV6twqLIhZY4wyjl4cY9oFfMTivJEwp9sQIEykVTJ/vTEkO1pRg8nBuc8+aWSynp+/Tf/0fHnpK3DjCe3czfksPVsp91f7fVvxXW81nnd6Gt1+70lLmTf+q3fyq/92q/x8z//83zO53wOIML+v/23/zbf9m3fxo/+6I9exyHfJqWNDDLOgrJL7cjWOvufukXTV9gy4eZicWlnsbUMVpJ2XEC5pcmGTgBO5VAx4fsKU1oJCotLYV/IWp6wVlSbkpeSdI6bDNj+cEX+8A5qXi1BzGp3I6mle1dqaWqdyB9kEm9AtYJEpdoE+lV7ZN0K9Dub5lVzgpik8ZO5pZVzV0pBZi/PxgHpgHRgyXY6m0Yod05sROPmkPkdA5JW2JnHVEI5s5OaUFgBK7nBHpToSU0cZtKVAfzQCXCpE6aMRKeZvXCNQVWjxmJcsAAvKcnrFjnhxBqT+4aXDdxuEoWrnWTwrjYs8xMWN+/TO1tiL04wFye39N/tk63+3FueONL2v/TT1xd4drXXud593c51M8HLYeoo3ZTs+169ADHNd3/wVh3S87p0c4V4vW6o796i3szYv88yfmEknahRqiaWFjWz5Lub9M5uYEtaG2SFHwgIAZifSpAy7Fxhp21AZZJuysGLBLiEIhGzCJloT9TEYKeG/JKiuJRIA7DTJJ2hJM6QuoHgDKZJC6pTNGoRdBmtvIbykO0lUDC5M6NvFO6gZQoEUEQBHyGJUUEbGtkl2KM10bTXBpZBklHAl6p8uzDWhmM6Q+o7lG/BldViVgD4E0NmZ3LOfb7nc049SUiKzHjuG+6QaY8hEtAYIvOYUQWZ7kQUhWkoTINRiSYa/hjY05GDl/axs4LNj0Rs1SyAC0YT1gsOXlhwcK+m/pQ5n/6Cx7izd0CuG6roaJJmt+5zYT4kJcXFyYALd/VpPuA4MfXYnePx5Cj1yQBenq06DEj6ra/8+pv6mu/l31/22ld2e/70P9048j5feu5o3aEjA5j/9J/+E//xP/5H/uyf/bOLv33Jl3wJvV6Pt7zlLc9vAANLu10jWSFpbcDshesEJx2XYscTjaIZSQpxyGVlSnux3gXhG/cvxIVrSzaNouPYNOhGAsWiFV6saSBk8jc3BRLU63Dx03JOxk3yBy8KDc1Luz1BS49q9ShaLWlSHWWrdfZaZKawIt5fdVgJ7QjWAZdOg9OJ4Lv9hZVcnK7jcmVHCOT42jDK1MQFXSy1+0prA+Z3iT1ucalG1SJyVVHsLM20wW/kgCIMcwlMC5IfoxIon7CzsBj8/EBRbhqyO9fJPlGhaK2umyDUPGfxJ9c4eMkAFSAbB1Cgq44WEUlWEZ3GziJ5HSk3LXsv67OhFDxZ3sz/rE/qOip4ud7n/EmpWwFe/vf6/mt2Ya6HCrYKYo7rGqWBUtzB4rBPeTJn5xWG4rMvsoFoMwBCFPctgLKxzBqDc4H5PIOkcJmnmmbkg5q6tASg3M1INqGiEopVHlG9wMbGFKUSPhi0Skz7Gb6yhDwjOo1uZOzRHnRIJA+oVhezrkBdfgpJybYkyA8itmzpVFYRczEikA2T2DEnSE5Bg8wwkuhGVBVabYy4sKUVuvRirFn9yiwpF8czP8oxpQcvVs9hmDO9q+DsZ8PL7jvLpMnJtcfZktx6YlJtEOZyjMqNp4kGqwLrvTlOBaYhZ+ozQlQURcN4zTM7kzF8wmH3W91LSqA1By8s2H+RZuP15/j07SfYdlOaZKiiJdcN80bYJ9vFVLo8ZU69VlNty0Imza1fif9kqfe+2/DZ3/Th5/owrrteaF/+rL7etXQpf/3n9wD4dYDfu7mv+esv/pftTxtPOY7rAS8AHzu9fSQQc2QAM5vNOH369FP+furUKWaz2VF3d3tVDGAzAQhaHMH81gA7CxRJQsGSFuqSm4aFLaNuRGjpZhIO1rm9oMDninw/ke/WoDKUl9Wn+Ukrz08JFRS98wlbJcoNRXFJBo3x3TnuUh+9O5FOxhX2zQugAUug0nVEmvryczOtQxrIc7SB0CzpYd0+lF4CE7MywCyyV8JCXHkZ9WyRY8MSILUdIeUsca3P/O4h5abBlolQG1JLi3DTsHh9lcCUogWKmRGBqtYyiDYBU3rmZ3r4nmZ6WpMdJGanMtyFAWo6J5XVotvjT68zuadPvh8ktC0KPUKHhO8Z3KRBlYlmlOFqL248PU25abj46T0GxRZ84nr+kY7r2a4/95YnPmm6MLey83I1EHMjOpZjEHPtSq0TFzGSBgXlmQGTuwzhM8acHEzp25qTxYSeafDRkOsGqyNjXzDxGTFpBrbCR0NELfJQqmDZrXvs39FjWmfU3pDZwCivuG+4w4absVMPuFAN2c6n/NHOaea146AyhInCTSQVvqNAjx6aU23lrfOjQtftwloOzVAs8E0tHaGQG3qXItlBxFSyMFdtO6o1g++BmybyvdjSchuSQoBH2z1JRpwmVRPEUc0ZzLRClc2y8+IMyRliJtRhVUfMvBFntaFDV5bJC3pceK3iRZ/2GNvFlFPFmLvyXbaMgAqAJlkCikkooAGtEnMyrA5s2hkHvqCJhnVXcqI/Y9pkhHXN/E7D+Lwj2y8wdYPf6DG+p2D3lYqX/5kHePnoHDEpTrgJWkWcCsxihtWRO4p9YlLMYkbcVIwHBX9cWi5c6rP9vuMOzPOpfvNff8p1P/dWuJA9XXU0sadoYlqtys3QvVytPvcT2/xfV/ztesELwG9/5x7/ttR8w989nF7syADm9a9/Pe985zt5z3veQ1EUAMznc773e7+X17/+9Ufd3e1XSom4vshJmaNed7ixx409KtpWuC/dgJRJ5yUahZtJx8VNxZ6y6StUbPNPvMbUFjsJNGuWmBncNKFSJGSabBJlvzHhpnrhFNP0FSl3V1ghK7FfTi0XTZul0rG1qBQLlivE7C0oUy3/OIUo9DBjpLujDTTV5XqXVVCiDYtwzdZuU0DTyoc0RBZ5OK3dsrKWZA31dp/5tsVUArjGdztMlVr3MbmOANpHdB2ITi/ej1DYZfhYFLeyeqShFUc2A83svnUGHy6XQZ/9gvnpAjuPmDLi+yJ41U0StlxLcSCCG9eEviXm0iEr9hLlpmJy93V7XBzXcV1XPdu0sZtRnQbmuK5Snb7DGep1y+QFidxGUlIUxjM0Fbn25NbjVKBJhrlyGJUogwEvgvGeadhyU2JSTJT8rTCeicuZNhm58YQo90zpPmg2shmZ9lSNxZrQ0pZBBTBNIuSK3oUGEthZEPF9Mm02TKLcNDRDiFnroKVEUzM7rUXvWUo3JmSaeqSoNqFeU7K/MkESd7NkNab0BKtl7NsvW9thRzQaXXuhji0iCsTdLPQspgrYSxPUZEZ2kFHdu8X+S/pceF3kzpedx7X6FkNkpEsK3VAgQC8kxX4YoEkMbUVIuu2WePqm4kI9wunAyJZUfcOTs3Uu+CFqs6Ze7wm4yjPKkxn7L9Ksv+YC9/R3Adh0M7bshJA0RkX2vXRfCt2w2/TJtWczmxOTohjW7H26Qe+Nbvoq+CdbdSv4t0P35bO/6cPXBDHPpCs5rI3zzayrHdOtAi6r+//rPw//15duLP7229+5d0tfc7WOPEP7wR/8Qd74xjdy99138+pXy8rdBz7wAYqi4Bd/8Rdv+gE+69VqJzCGOOwRco0oIhGhvU/ETESK+W5DfikshI6kRDIakqNa17h5aoWQMLlDAh9BOMf5gax+mUrACwnKDelO2DK2InW1aHaIVXILEDraWBd+2YnqUxTPfZexCMLUCpUVra5HtcFbCVW0AKERekOqagE03b5CAL2ap9LR0dryXkIvnV1qc1avIRGlHalfEDcGVJsSouYLCRST80yL87ezsLCkDIW8rm5frt4QEJmUI/Qt9Zp8SIsdWQEMGYzvtvQ/kcG8FKOAzQHJKIqLlawCKoiZForeSJPvtnSzFiiF9rv2cv3zPU1zbBpzqDqmgt2cei7Ay7GL2K0rFaPcp61hdlef8Qs0vZfvcvf6PvcNdzidHTAyJX1d4VSgTI4qOvqmajUVhqEpWTfzhZ4jJtV+1wQUMWnONWtU0eKjYWArtuyUNVviVOBSM2CjP6duxeq6YwM3QqnNLpXEwmInHUMgoZuEDpLFFdsufL0ui03Kd3kmCl0bip1IPVKEAgFIOVTrGl8kqvUuEDihvegXk4ZQ6EWQZuhp3FiuUep0k1YE/bqWMcdvDzC5JfYzmoFl51PgnlecYyOfs51Puae3wwknwbchKTIlY1GDI6AotCx8NRjWbMmWnaJVZDubUEbHCTfGR82jk01SVPQHFfVGQXSa2HNMTxnK04HP2j4LwKnsgL4WhkPRipO27ASnPYZEYw2axFTnEsTpPPWwYXbqCm7ecd3W9XQdmGfS51zL0vlKZ7Sn2+/1gJzV17jV4OVqdSPdl67GMQK7h9r2yADmUz/1U/nYxz7Ge9/7Xj7ykY8A8NVf/dW8/e1vp9frHXV3t1etTtCNJvaduLiERNQiAA9GrCSjBTdWmFIS42Nu0ZUnOSMt+iDcXeUTvrW0tPMkN+4gug9fKFJffu4GlmihGhlpncc29KzLD7CGFK9w+kqtGNNoEeSHIFbQxsg5bAypTvSp1yy+UAtam/atQ41PFLuB/kcvimFA3UhHp9PQKAWptSNedSBTGpWtOMt0xgBR6Gkqz+T11/vM7upRrWlslfC5UO1CJrZivtDUQ8kGMGVCW4WbeEJhhEut5Xfl4yLoLbSATzciLO3tRKo1TcotWonldXmqJ+DRKsxUtDTRG+oNS7Wuycaa0M8WglAd0sISux4ZceYJK/8Px/VJXe/6B//7NR/7rn/wI7f89Z+PnZfjOkRZQywskzsM45c3vHJ9n6Gr2LAzCt2Q64a+rshUoKChVKIbDG1eWKFkotwkS2xXs0Z6TkQzDj1QkZEpialH39accBPydr9VdGiV2MxnXJwPIYrAH60wdSK/VKPHM7BDiBHtI83QYdtUejeJ2JkGDeXpKA7LrRtkvaGwU0UoBKSETAT+KIi5CP+7jk/cF+DTaW5ipvB9jRsH6qEh29HQuZTFSHRtjlqUbJrYs4xftk410tTrirVXXeTM4IBMe3qmISJ6l5GZs20nGBJ1MugUKaOjxOG0pwmGE25MTJpZyOnrmqEpKZSnio6Bq3GZjAf1ZqTatDRrhsm9YE/NWXdz+rpedMrK6HAm4JQXABMCsyjdMaMi05AtgaNuQz2P62nrdui8rNa1Oi2HyYy58rGjbHvlY0cBM7fKdeyZ6maAl6PWdXFk+v0+3/AN33Czj+W5L2uFKgULMJPUckJr5xLMxbqsEPmhwVQR3W4roV5CgcrqgB86koLiUkOxI5xoU3p6PhJzS3SaeqN1RrHiH+8LhZ3LBH94zmP2p9I1UYoU4zJ4MiZSCpc5jyklNpRYSxr1Ke9eY3ra0QyEw9xVeUJhJ0IjAMXkjGV28gxrD1fkHzvXBkOuVCfc7/Q2q4YB3bXqwI1Wi21T5khaSdZAFHMDgGJXjBBMHRercnYW0XUUUWimqdcsJtO4STegZC3oAR3ATWXwa/0JUKHNGnBOXGNaUWpwGgq5xs3ILiywo1M0Q4tDQE7SitiTrla+66m2LLo+BjDPl7pe/cvTAZfVbZ4NEHNcn3yVjFCiQqFQeSBEzZnigFPZAYVqKHTDKTtmGnMcAaOl09JVkwwhaZpkKHSDU4GQFOGKjCqnAkNTERD9xSzkTIJMpn0y7M0LzNjgDjSmFDMUO6lFY9iIs6XdrwhO43sWGxq5P2cQDSQXOXn3HpvFnNx61lzJQVNwfjpkb9IjeIOfW9x5B0nACkqeC9L5cbNIMoqmJ1qb2Qm5Lvmew5ZC51VetlExoeceFQKhKJid0MxPK6oXl/yFOx4EYGgqnA5oEhtmtui8yDVoaXa6wSUBGTOdE9BMosOoSF/X5LrhfLPGTt2nb2v6ecO8diQj1LjppqEZRtZ7NT4aJilnGHIK3dA3FQMt1LSAwimPU4ZceapksSpidcToiLGBkB8DmOdLffxF7+IUfwX4CU59/195yuO/fE/7w/fDFz3yE/zyPV8LwD9pDp+H+Mv3XFj+8v1Xe3z52C/fI69z2Hq2uy8fO324XJibXYcCMD/3cz/HF3/xF+Oc4+d+7ueedtsv+/vESjgAAKCjSURBVLIvuykH9pyUUmIDnGRCrmu5IXZZL7pJmJlneBbmW5ZoFOXJjHxHwqxMGQiFE3cVJZNkIoRcMl5USvi+xVSRkLdt8tapLBqo10TXoRvRduQX53ThimKFLB0XCZpsBfdRgipTZxvcOm/tfsqQaCGbJOyltAjbslXCzhU6sNC4dLbOk7sy6rW7GP7xLuzsQxfm2elk1BU34E5fY/Ty99SGdzpL6udUJwrRuvQSdgzFxQY7a20w22uR7wrwiZmWrIItiy2jYCKjCJkWgWmhKPYCxdmKkBvSuhEgWQjnWrX5LThLyBXZWFzOypMW31M0PXGMc9Mk5gHjQDOylJttxyvA8IlKVh/H7TU+rk/aOgx4Wd32VoGY4+7LJ2ep2qOMIQxyua+7iFIJpwJ9XQtdjIppO9kGGJk5TZJhWRMpkyMmTZ2M6GKiW6GSCYUMwOnAfuhRpIZ931u4b+00Ay7MBpSlAItiBwZnA+6gWQZqerE+1rMKO3OEntCNTRUodhIH9ymGp6b8b2c+wTxmzIPjVD7mRG6xKqBU4sLuCGUjfi0CGjuTsa+TZ5pGYgdUTK2+UVOvaaKDatOidsBUYsuvQpLMtJWwz/KEonxBzV2n9nAqoFViFjOmdc7p/ADNEviFpHEqUOiafqooVEODoWwyZsHR1zXrZkqZMnb9gPP1iDJYCuOxJmC0QUWhhYt1c0KpJDS9pHlBscO6mXHG7kunJeY4wOhEkyxGRULUaBWpg6X2lpQUKhwDmOdzrQKIX77na68KKP6eu/CUvz1b1R1T5zz2bNZD+V/gvur//ay/7qEAzJvf/GbOnj3LqVOnePOb33zN7ZRShHDzxUnPWsUo3QetwAf0pAT61CNJQc6i2EQW5wPZnqHazBjfbfBFRrEThNYUIopEyJctvJhptA/4wtAMDW4aaPriaOZ70nnJppFiR/Qg+UGg//gcc/FgKcxvhfeqKITmRWuLvNp96ReU92yw/6KMZqjIdxP1SLXGApBPI3YaFtS2ZBXlpkz284OAzzXTM4bZqROc+P0c8/hFCYhcdRXrsmQA9IrVcpcbEyI4WpFmJsAgJfJ9eW1TBdGdBAEtyge00ngn4M1UEZMJwFJBwF+1YcXCc19Gw+i0CE4D+BHoWi2C0UA41PVQY+pEtaYkKyEu8xJAgFR0Siw6e4pmqOifiwI+jZZr1BwDmOdDHbX7chTgcuXzjjsxx3XoChGcRvtIcSlxsJ8x3sq5UA95QZG1NKaKvSCT3i0j9CeUJyRNRLe/RwoVmcV8AV46vUyTDPteqNudpe9O3cepyG7d4/xsxLlzG6SZYXBR0T8ngb1mWqG6YM2O2pREf1huWcot6VTvvq7hRfee5zO3HiXXnvuKS5TJ0tc1u35A3bNolUhJEaJmNnTMej3U4w43VQsNKC0Y0HXETTx2ZlDRyb23r8j2FW7u0fXl9spJa3QVSBqG2zNed/IRrI74qJkHx+n8gHvySwx0LcAhaTIVMCpKR0slTHvtspbq1deV0MiiYt/3yLVnO5/hk5btdUR5JQYwtWI3Qu48J7Mxm27KektVK5NjQ8+ICMDMVGDbTih0w17o88D0BGVYTrG6LJ/junZ9/EXvAuAlD3zXc3YML7QvX3RUVqv7WwdcVrc5SuflyrqZoOeX7/la/uNN29vh64se+YnnpAujn3kTiDFy6tSpxc/X+npegxeQybjRrcVwAB8oLnlUTDRDRbVpCQNHKCy+Z6hHmtBTTO/Q7N9nmdyVMb5bkpWjXXZXkoFmaIiZIjgR66OUrEqVXdow5PuBtYdLBg+OBbxU9ZKm1WpMUhcoqVv9i9ZCGVsbUr1AwItuwE0SBy+WnBqSTNjzSxW6lhyVUGiilYHClmlxrP0LEeVh/2VD0tqw7aq0XaCV116EXSp9eWemNUBIvZz56YJ6aAiZxszFAjnkhmZgCX1xqAmFwRcGP5B/xWagW0MEuW5+YCg3Fc1ABrqkJUna94zwqdtwSpWEwgdCQ9C+NVAw0L8QcNNEtala57MkoLJJNH3duvCIjXXMNCHXknqdH+rj8Se+nkv74mcLvNys519Zz2X35VjAf4urW1xqAsPHaoqzlp3xgJ1qQBUdEcV+6DOOBZqIURHddk66yXiZHGV0nGs2uOBH7PoB+6HPJBSU0TEOBVW0zEPG+XLEI9NNzs9HPDTZ4mOXTnJ2Zw2161j7mOXEBxsGj5WSr+UjyYlDZGdxjNGEnqYeafZemTj4MyXf/Fn/jVdtPEmuPffkl/iU4jHudHsYhIJ1d77Lnb19TvSnDPOKImsweaDZiiL8b1jeo4MsMunK4/ZLil0vLmY52HlAz5qWhiyLXkQJRA49S3SJl584T1/XCyODbTfl7myHbTPBtK2euNKFiWickjHLKc+GmTHSJRta9EcjUzI0Fet2zsBWAAswllyr00xgZprcBDbdFENi1w8oo2OgK/ZCnzI6CtXglKevhFY2CQU7VX+R7ZM6/dBxPW0dhSZ1K6oDUF/0yE8c+lhuBLwc5flXA1W3Q/3lv/V3nrNjO7IG5j3veQ9vfetbyfP8sr/Xdc1P/dRP8TVf8zU37eCei1rQsQBVN7hxjamkA1Cta2xpcROPDol8P1BuaqZ3J/SaIt+RgLCQGbSXm7CbSWq8eOyL3SQKehdjK2iXybZuEu6gRs9q9MGsXb1zAhpa8KI6qlZm5eYO4t6SZzQnh5x7XY6dy4Q9OsXsjF6EQOomkpxG1RGVItoJXctWkWgUsxOWbBoJrqWXAbMXbTI4mIB20vVZiPpbpzZoj08vqWZtxb5oVkImQC06jR86cbmp5di1j0SjsWUg9DTNwJC0UPW0Fw6yz9uU6Fw0RG7eUu6c6GrcJC2OW7UAOmZ2MfhkUwE5vhD7a4CQKeqRxtSKfD9Q7PgFoKs6TZKBeNzyv23rkyXz5bg+icsaSZhvwO2XDB/NuHhfxu6oxwPzEzgV6ZmadTunUA3Ra0a6XIAXo9oA5JSx4wfEdgY88TlNMjgVmMeMg6Zg0uTMveOgzilrR9VY5hf65Octaw8k1h4ucXtluxiVlot1IDqTrMCfGTHftozvVdz1yrO86Y4Pc9rtMw4F9+YXOWP3F3S3QjdsmBllchS6wSfDPDgeYgutYE8lGpOR7VkJbzayAJjtyXh0mWEO4PuGLEaSMQt7e9UGN89OOeo7Gl4xOrc47007Y2TENrnLfQmIA9k05gvgsqoV6quKwjQt7a4iKLnGMRl8NOzXBeMyZzrP0KVQ15q+IvQia7m4uu36AetmvnAfi2hO2oPF68xSztlmnYvNEABnApn1NI0hHrvy37b18Re965qAZVXjcuU2NwpertzPjXZj/uO/+cGbcTjPmzryR+rrv/7redOb3rToyHQ1Ho/5+q//+uc3gIlhxapYAh317oTe0HFwT042TtRDTcgc2ouOIjooLgoosXPx1nczuTl3ovN6YIlOHMa0T5gS6YrsBUwZMLNGEoynpbT1G7/ID5AdBRHwxyQOY111HRhnmd5doBsYPh4oLkrnprhkpGvkFLMzGaYWf3/fiiirNYWdSwfG90FFoQ2YRrabn7QUZ7bRT7Qfqs62ufu+Wq1OpzMVCAPhaukg4CxZRTUS+pwISBtiZsAIJczncg3dTMCNUOygHokg1E0hm0RxE8s0dt7S7RCwoSKSJQCg5b3whehesmmitxPoXZIOjwDIBl1HEfAr4WtHqyR4dBxIhV50pY7rmeuXfvrOZ8VO+UaAy83qnhxTyY7rMJWMEheYlNDzhuETnp19x7l8DaMSufWcLCbs2T7jrGDLTpmafEEN0ypSKL+wSe6+pj4nJoVWiToanpisM6sdTTCEoKkrR5haNj5k2fqjiuzCVAI160ZAldYkqxeUWxAjk2ZoafoQXz7hL939+xSq4eHqBPfmFxnpkr0gWScbZtrSsyLj2KNQMpkfh4J5cKxnJWVjmVSG8qQmOo0bQ1NpknawI/frkGtCJt31yZ2W4kIugM9HoSd7ySLzhWJ0QrotH5ufBi22xSNTiiZIaerWLSAq0b90HZkGgyFJRowS8DLFUCbHpSAgo2nB17gpmM4EoOlaYeeBemBJvcDpYoxTgVPugG0jgZR7YYBRolNqkkUTqZMhoOmbmq2WlpaSIgaNOaaQHaq+6JGf4Jdf9OzRyJ4OvKweE9w82thx3Zw6MoDpRORX1mOPPcb6+vpNOajnrJSWBHulSTTtzdSTP5xY95vMT2eUQ03I1cKVTAfIL8VFh0ZFCfOSNGLVWidHfCETch3kefmlCl15dClgRZU1+JampTXJB5RJ0g3qgiZjINVB7IszJ4BBKWJhafqK/vlIcakhZp1BgFhhqv4KPStG6qFmdofCTiFmCTWH3iWhXPmeWlDLQgbzuwcMz14i+VYb1K2cdXTBruviVi2VNc1AwifFXa0Fe0aydLKdGlU1KKMAQ7RK6FtWUW4Y3DSig7Tye5fElcbUEV0n5tuWaKHYkwEqOEV2EDBVRNXNwrFN+0Q+lnOy04gtg1hSk9Eu2BEKg5l5lFaETUe1ptFBOkAUosc5rsPXrQQxt1vHpQNDx0DmuK5V3URcnCE12V7FxocH7PuCszpSFDKjndiG/aZgL+vRMw3nyxE905AbjyYxD45pyJj5jLkXoGJ0pPKWeWOZznNxAasMzA35RcPak7D+QI3br5ZApQUvMbOolOS7Uqi6QVcBO9M0a5atNaFaPVidFKqVLhnp+eK8Ct0scmk0kZP2gEI3HISCJhn2GgE6j5gNdtOIUDkxRbGKchNMbVCexdigm3a86VvsXikdGCVZawChgNwGmmTlNVOSwErV0ChDkwzTmDPSy85ISLrVDsnvhijWx8kxjj0OQkEVnTiItQGXPmpi1ITK0JtIB19FICjGPl+cc5kcLomVcifiz5Qcn3wZ+rpmK5vx2GyD2hsSS0OD4zpcffxF77qlIOaF9uVHfs5qN+ZW1D9pTj5tF+Za5gHPZXXH81xoYA4NYD7jMz5DbnZK8YVf+IVYu3xqCIEHH3yQN73pTbfkIJ+1CgHyok2Ub/UrIaLmJdmjl7DjIdmpPrNT4kCmEuS7caHZyA8ivtdyXpUI41UAXcdF0ny2U6Nrjx6XAly6xHsfoGnkxu09pEgKQhtLq8dnDKlphExQ5CRnmd85IFqxSlapzTPxoBrZf72Wk9ruhp0F9FBTj0A3it6lhAqSZp/vB9wMfE+yabJxG7JZ5FDXy6RkpSQw0xjpFsEid0ZpB6F9HlDsBnxfOiy2TAL6mtbusrDoOmBnDeXJAhUSdi6iTzcJ+J6hGWrctBPvCzDxfbUEIbmiGRmy/RYAtsYGnWhf3NUsg7OK/FKFqSP1muhwTB1BQTMUIwNTiw6mo/plB8cUstuhbjfwslrPt27Mj2Rf91wfwp+c6u7rTtwS9bxh649K8oOcC37AeNszn+UUvZpe1vC4WcfpSGEbUlIYHWnazkLlLXUwNEHTBNPFsVDXlqa2JK/JnshY/2NYf6jETGqx/NeQMrtwnATAapIXfUm34KOagPaGZgAbxRyjIoVuOGHHCzpWpykRMGCZJlm0KlTDtp1xVq2x7wacdges2TllsMzKjGpboyuLnQF9hakMppbss6SFIqwb+TnZLmtMqG2pvdErlWiSWeTcdMGf9Uo+TqYCZXTUreW0SYmgNE2yOOXJVCCgqJNZnEuhG3Z9nwvzIU0waB2Jk4zexYSdB/KxuIetuzlaJTSBLTNZOJt15z+NOUbJ+1Wohr6teZQtyiAOZLE2cOxqeei61UCh07o83+p2Ay/w3IKqQwOYzn3sD/7gD3jjG9/IcDhcPJZlGffddx9f8RVfcdMP8FktrVq74DblvrUOTlGhygp9rqa3NyF/ok99qk2XN4qooRkq7DSh2oBIWyXx2596zLxBz9pslSBZLirExeBBWr7WQrSfkoj+VAcYlselimy5jTXMt43kDASIbZqxOxAaWTVy2JlM1JMWIWU2jhQXLSoJRQukY+TGQehZRJq+Rtk2A6DIYGKA0HZgWvF+CNIJCnFxbslElJZjMXUiOsmBqddEh1IPNdH2cVNPue3onRNgZKrI/ISVga1Zhn5pLxQCYAGKdC15ORJq2dpO75fLCYMXAKVbKlxng12dyMl3aqJVzE9YcR0zYhpgqoSNcs2TUhS7EY4pZEeuDmzcaCfmZoOWmy2+P67jeqZKxiAcWenGKB+x44rhwxEVCg5e6JjdYZidVCiVCFExCYZea0bSBI3RCR80Ze2IbYixb+TxUBnUzGBmmmxXsfZwpH+ukeBeH0Xr0t5Hu5R75dvFOatRtZefU2q75BY/jJzqjRnpkr6uJSSz7TpkKmBIiy6GRjoc0pWwBBTrZspA1+yHHmtZyeZoxgVv8PuG7EARM8kD6xbcQiYU5t5OQNdCEU7GoLrgRyUU4sYbLjZDnA6sqzlO+YWQvkmGDTMjJM04FgDEJHYIAbWwpV4tyW7RnGvW2KkHzL2jDoaYFG5fMzgbFlrNZNrFR+UpVEOmggAg5LsmUuiaMmZyPZRmFnPmwS1F/FG6Tcd1+OqoZHDz6GSHoYs9Uz0bXZjnUy2ux+1qowzwzne+E4D77ruPt771rRRFccsO6jmrDrh0MpOrhEaqqkY3nmJ/Qt7LRUTvDOOXrOGmEbdfk6zGlB49rVrRZET5sBgsUGopwu+6PaZ1PsszVN2QtGSwJN8eQwds7MpqmtbEnsP3RF+jIjQjI5kz0aHriKkifmBEDO8TszMZKiQ2HvAkA7svs9RrCRU0+b4S4KMUbqzxfUMymlhkaC06EVJcEeu3341emA0oJRbUxfk503v6qABuGsn3xYFmdtpRbhlUEHBRnszQjYj7AZqeRjsBErpOqKgWoZTaC6BpeqJVAUgWBk/WqJ395XXU8prVmqbpa7JJwo3FPjpZhSmjgKtMQxkwM49uIr5v0JVkx/iebilnx3U99XQA5Frg5nbutDxdPV+6MMfdl2e3Us8STbEUzhtx1tKlZ/TQjMEThtmZnOmZHpMXFEyGkZRHDoJC9TypNOi+J0VFmltQCVUasj0tOkpg9EhcGsF0AEAryCyqCZL1YrTQsVpAoJpA6tLu/QrbQEMYBe4oDhZi+UI1C4c0pzxaic/Xhp7JYyqKriRlGBL3uB36umIaM5qRYdLkHOQFs03HVNuFK5kpFdlBIhSK9Qca8p0KVQVhJXQXsF28SwoODnpcqEeczMaUyfJYvU2TDKfdvuTlRLcwGDAqshf6bJiZ0M6SokGoZgHNNOZMQsF+6HGxGlJF2UarRJhZhucVvXOlXMd22L1UDXBtUGaZhHo20BWauAAz47ZbNIs5s5jRJE1uvWTA6KvoRo/rGaubHN+sjsnN6hTcapBxLRrZ/5+9Pw+2bb3rutHP040xZrfa3Z7+JDmEkAQFEyCBBF7FEG+ibyCAUiL9DeWNNIFLIRIotK5gWbfMC4pCVIjXEjGRGBGFIqCEtySoiAIJpG9Os89uVzPb0TzN/eM3xpxz75xzsvc5u1knWb+qXXutOcccY8wx1xzP831+3+a3nuI1d0LA/7N/cQvgjmTAwNPQwHzzNx9NK7ebUi2FLFW1OH51oGLt+dT9rjSUFcoaVEpsjuft42olaIcV8AAR3Gu9ol0tbYn1EpBQ1aIzMlqoZF13I8XV/jsQA8TMtCBB7CjrgSabRapt6bzYhcfOI74whFy1vGOFilG0Jo1QybJpxCzkvTUjEeD7nqYaaUbde+je07r+JUSS96g8g7qR6+MydB3a7oe8VtcRO28YhiSOM4c1oWepti3Vphb6WwDbOrKZMmHKgJvJNaq2Hbrt6GTThJtHfCGgJnt0nxTbAE2lUFVY0sD6lyJu2gaS+nYiYSGbBNyhrFbGniUqATZ21hCtxo0TzTFp+ZbUsxWoPFU9W0DMcd2+SloRM0NSYEoPSRMz0xq2VOhpYjQpGX7CcPJ/OxHRjwzltqbalMl+veUkPySBXcDgfCQ/EAOSUGgBLYmVbrGQSbRuIqZqRfspoatGqGTLhbNE0hqFjFUxM/ie6EZmPucg9NGdED5ZBnqGU63uoxXFOxWJSVErKBBa15Yu2Qt9JrHHPGRYHSmyhmrYELOIPpctacISISCLUqoJ6NqTXOtC5gOpJ0yDbJKIpeWR2RYznxFaTadTgXnMlhqWXAslLNcN85BzGPoCJKJBtwGiTWo1Mz7nYjVkv+ozbxyXD4fSJVkYho8H6ZZEyRpTjeKw7vFovcOmmdNPFRumbOl0iTqxNAWISTNptUB1tEzqnBDUcQfmGdSTgY5P1wV5IuH9E73mKNKyno4r2de+8XtuK4jpwMvNrofzVwP/+rq2vWEAE0LgLW95C29/+9t5+OGHqev6quf39vZudJdHq7xHWdtO0jvKVDthd5lYCQOk0HZm2o7EdC7BjB3lqwMZXRfHaJIRxzDc6rKruoGyal3Pgoj2Y7o6BV4rOQWlxWCg63Z0T3tpy7tZQiU4fNBChOHjohVp+prgpG1f7Sq2PhKYnjUkY2iGYEqWWpzkOvcvsX1MWtx0tFJyRkoLmLJWXG2MEbDXAa1WG6XHc1QcoLzQw5QXupZZeFQTJcSzb0haYWqhqhV7HjsPRCcZLNEqVFSEXEs3JiRwYsucDGTjQO+jV1DTOSkmUpT0Zj1bELItQk8RckWx1w7EA9s5h2LnATNrZNDMZVIRCkMobJuRoPH2hr8ex3WT6pe2X3fV76/ff9cdOY9bXf84+5bbkgXzRN2X+gf+4DgL5haWXjTo0BCGGTG3aBWWCzpJa1TdoGJClQ160WBmlvyKZvhxcZcMfYsvDLbtEkerMXPpkIeeo9nIWexmzE8rTCXdaCL0rhjyg0jRCFVZNUEobM3aYpxadV5IstCkIqhSc74c8by+LGIdhD53u30GqiagWttkyUwZKM8jYQOnPDu6xKjEPAqVzBA5mx0y7hVM6pzpvEAXkZg5Rg9HQq4YPlaJBqYUwJCcEW1lVymhai/azEuWj2/scjDqYbUEVFoVcTow9Rl1tGy6BRu2ZBE2OWh6lMFSR4smUdiGgalZBIfVgb1qwOX5gEXtiEnRLBxMLVvv19hZa6wTaV1CMw7Lgo8tTvCc3mW0SgySzHvq1hjgkt9YusdVyXLoe4zrgkXjiMGAV8ci/huo69FV3Czg8WQWyU+17d+9DY5yN2qpfDvBy9e+8Xv42bXfH7pw5aaJ+O+rfu26t73hGdrf/tt/m3/2z/4Z3//938+b3/xmfviHf5hPfOITvOtd7+JHf/RHb3R3R6uMkQl69/M6XaoLb7xqe73cftkx6Sa9TQN5JqBgY0DYKKh2c5q+xk0jaNF0JK1w00C2V2KuTJbpyKlpIOoVnc2Y1b4x4kSGrLSRZBVLtw0dFYRbXG4pxvc5/AAGjyayaaLaVUs6mbdKwEuA2SmDbjIxHWjpXL6vWjFlkvemtNhbBmTwc7btOLHMFAAE5C1KivNzZvcNJYdGQTAKOxeQFQqhkdl5RKWEnYtLmPZibewHGhU0pooSAmpba+ReawYwDRSf3IfJjNSaCyilxHShrBg9UpFUIZqaLncmE0qdiklWQVMiKSU0CitZNr6nycbxUz7q47r1dS1oebLnPlPBzK2qY+rYnSm1qNHeLDsLSSkR0Js25NhIRz4pBUYtaV1LvWRKmGktTpWNR1tDyiyh7/B9y+H9lun9kXSiIjUaooJGMR8bisuWweYAt0j0Hi8xs6rtKkQ5TkpX0cdUE3CzgFk45j7jY4uT3FvsLWlSAkoSW2bOQHnKZJhEx5YWcXuhIkZBoyInzYwmu8x5v0mudwlRY22gqS3aK0IGxV4gaSV2+u01ISLOlE2UzlHbsXDjhsFjjoMzGXtR8SFOMcorerYh6wY9YL/uU0fLlWrAQdkjJIVRso++q7kQRoQo49S0ypauY3VlSV6x9QHDzgdL7KRGLxpi7lARsgOFD5pL5ZA6Wp7bv0RMSmhyrb5mHiWbZx4zDn2PvbpPTGppMICScfa4rq+eDjh5prqU6wVN777vm/lhd+nIaVV+9i9u8Z3/4eC2HOdnufp638wu1i3twPyrf/Wv+Kf/9J/ymte8hh/7sR/jG77hG3juc5/L53/+5/O7v/u7fPd3f/eN7vLoVBfu1WXBdF2U1sJ4uWKl10BNCOJX75x0bjqaVZ6RnKW5d5dqN1sK0LtQyei6DgNUW5Zqa0h2okfvkTFqOkf5dlDrVqS00NlUB2K6gWfR0L8UmJ01+ALcHPKD1AY/Qu9yoq4lnFKHRP/xxOwujZsmRo+G5Xn5Qs5FN6KZCbmI7u08ofcnYgNpNCmGFciDNYpbRzPTQCTFiLlwwEApZvcOCLklKcgPtVAGWpAkP0fpylhNPXQ0Q+kYhYEim8m+s7FsP9hvcHtz9P6UNJ+3PGkt4KWl3mEt7vIcezrHVBKiaUpPfnFByg3RGUJusO2KpGoCDJw4tU09et7gN/MlLeO4bm09FXB5qu0/U4DMrerCHAOXO1wpoRpPCgFVAf2cZDV6IYnzKXcks0Yt6u71rY6w65zQeFIvozrZp9mwHD5gmN8dGTx3n5NZQ2E9fVczbzL25z2aU4bZXRmzezPsXLPzvh4bHwczb1BVq5NZmsO0FLLconwi21c8erjJ0FU8UFwB1tLtUfRVYJasiPoJklVD4DA6tEpMoiysjWNB2T42zCrCQFFmllk1wDQRU8mCVVKgawEhqtV2doYDnROZ25tz4g8V9UaP+X2aS0Ez7eeMeiVaXU3Lcjoybxw+rMaozAZK32dWZmKT7DUhaGJtUBNLvq/Z+Uikf77CXZlLnpiWYGRTBbY/HHjsgQ16WcN+1eeB3hX2/JCJLiiUJ6CoomMSCvaaAXt1n7nPmNY58yoj1O0i5zGD7JbWE1HGXlv+2et+/a8U/3n5+qeakN9qEf8zqa994/cAt6Yb0+2767xce71vZhfmeuuGAcz58+d58YtfDMBwOOTw8BCA1772tfzIj/zIzT2721zKOVn10ZJPIpQtVrQxEI1F122J+iq7ZbRagpjULyjv3mB+2pGPxdUrHwfsNKBDIvSk+yK6C1mNKrcN9cY2o49azMVDUl2j8nyNWramlQFx0KobehcW1KPBUhPS9AS8FPuxBSVCpZrcY9Dt4p5tbf3zNkyz2nboJuEHhqavaPpg54nefmztiY2cg27dyHTbodKs3NO6LozSokcJAXPpkNGiYXHvBvNTlnLHkE1W7Y1moAFDcJLPkozQybSH/iUJ5TTTSkI+fViGfKbYAswQVuGe65SI8YzhJzIWZ3s0Q3GLc83VS2DJtXakVlZBVYKYacJuIQYKxwyyI12/tP266wYxf+vH/vGRdiJ7JiDmmQCVYxrZLSytV865mRMTFB+FPraurUzpalE9tB3/1lUxJcIwZ3p3xt6LIJ6sGG7NOTOa4JOmZxtOFxMWmcNHjW87HjOVaHLH7KwFemx8DGztBbzo1hnLmuWiW7JyDwxBE5PiIwsJqy50A1EAzKANg9xQFX3tcSQOo2OcckyKXAlDDkKfwzBgEgrqaNnKFoyrgqpxhCItF7CS1QLakpZFpC68ubV/VmsunfZwwYk/cuwFy/Q5sEhirRyCBEWmBDEqjEkoJf+0bo1hgmE+y4mlgUajvMLMNflUMfpkYuPjC+ykEtpYE9rxXz4LPW/I9w2b7885l20z3FrwR8VdFMbjdGBkS3Ltl5qXcVMw99LdmddO/HZ0IumE793iv7fj+hRg0YGSp/v6O1ldJswTAbMnqw5c3Qw9TAdYuuN3wOVagLf+8yfy195WQf8NT9HuueceHn/8ce677z6e+9zn8uu//ut84Rd+If/jf/wP8jy/Fed4+8q0N09o6VJtcGNcm5ynlk5F25FIbRter4n2nWX+wBa+r8nHUSx8NxV2ocgbEdg3PQFHoRCdhykj+VgsfKcPDhlGMHvjpah/dY5mqa1RZU3q5eh5zeC8o9x1RKsoDiSscnqXkcDNecI0Agoki0VoYeWOnIPykXy/YX5aVs98Lh2bZqQ48Qcz6TLFtXPobJ1TFF1Qagea0CYoayPuaVqhfEBN5/Q+2tB72OI3e8TCLAGTXXR6lo7aJY467qBEH0wFsHQArqWIyXWOrR4nybHa31MUa1BlLfbiIdnAMTubiXvZZoGuV5206DS6/d/3zTK4UrW2p4PHZ7fir+y4bmLdCIi5lXUzBPzrQOR6wMzN6rAcg5hbU6lwpFqJU2VmBTjAKn8lpSWtSPm4zEBJSom+MUIcFZSne5RbhkuvbCg2Knp5zX2bB2TGM7IVZ4tDTjtxDjtVTJg0BYdNwcNum0lRMAt9Qs9gq4Jh7VcWy1q0OGiNLhuyfdj6sOH8izOulAN8NNyT73MQ+iLQN3I/LJSnr0XAPk+GcRL6FEoyUcRGeQCwFNAnYHapT9ax46xC+VbX2AI4VadlF0p1JgNL107oPzwm3y+4NO1z+LmK6czJeJOAKOY0jW2ZCV5BUC0lWrH9QehfDq0OJWEWNXbuV+OBj6iqXjEoAKxBVw35ec9ugvJExjQqPul2yKxn6GpGWU5hPD5p6mDYKwf4lqbWBIP3htRo7J4jOyxv2d/acUndSMflyepGQc+tqms1MNdL01oCnjfe+DHXj/GzT7HdU73+RhkV19a8Gl/3tjcMYL76q7+a3/zN3+SLv/iL+a7v+i6+8Ru/kX/+z/85Dz/8MG9605tudHdHq6yBsmmpYf7q5+r2caXlucytJtMg4v22mrNblLuGYj+0K3CSKN+71KBqARfVpmbjYY+belmNMgJitI8sioz5fQOGk7kIPdtVqKRZOYC12THKy8Do9hYon5jcnwMKN4+UJwyLU4neBYVPretLgOIgoJvEeMMSraLetJIRkyA4ybDRjWhOzIUDeZ+dKKQ1GRBwp1dAphP3q/ZPqs3USW2+jarkcXvlAIA8y5YOOXLRVp2VlYnCWsVE8s1Kl2StHDsmiN1n1Z6j96SYUCGQf+Qiuj5BveHwfYNVIsz0PYP2Yjnqh8J1TgqhN0xr9LwmtN3F47q6PvzKf81Dv/0NN2Vfz/Rm1+3jekDMUe/CrNftpn89XRBT/8Af3IKz+cyo2HMkpZdaO6wmKUTj4da6xm0wsOp+NwqqgFKKaitnepdl/4ViLV9kDdv9BXU0zHzGyFbs2Jk4b/kM3wZfxtYWWOtI6nuqbaEEx8xiqko65y1Fi9AqkrWmuNKgHym4kI/IdzyHoUesFfdkezgCNZomGXRKHMSCeRTHsi48srM3DklzsRlRRUMdDWVj0XND75IiO/Doqr2/t5oc1XWmlOh0uOb2n5y4fZpZzck/gGzSY35aTGqUNHHo0j2zw0R+KE6VdiYMA3tQimGOUjI2dSyGthsl2qQcPZ6Tigw1L0kqX34+2cUZu+9z7MWMy3qEzQPzQcme6ZNbGX9CUvhglufsvSEGDbWmf06x+bGrDY+O6+bWu+/7Zl57GzHirdTBrIOXGzEZWK8no7pd736ejEp37X6v3WZjtAk8PWvlhy5cuaHtbxjA/L2/9/eWP//lv/yXue+++3jve9/LQw89xF/8i3/xRnd3pCqc2MA2E1ntD+FqC+P1STOsgibbyX3qtCkbA+Z3FWgP5ZbBtGNDccXj9uagNYPHLf2LImA0sxpVe+KwIDpNchpTiitMc2aT7OMVqQNPMZFC0waRWcmXqRtptRuNWTTYRcbihBYLTwfFJSV2xl4ASjNU2FLjQmTrow2+r/G5xs0jyUh3Zn7CEDI48d/35f12YAXEfQ0EOHTAxRgBIFqtgJ61a12bRFJxLShUkcoKkoCVq7oqSRx4UoirY68HfHb6m+4460YLIayyfFQkBVA0uE9cxGxv4LcK6u1MwGIV8D1L0tKlUjHhpg1mXKImczFhiNeMosf1rK9bAWI+U+yTOzByPUDmGLh8+go9S0JD7ZfBkannpPOBXrmCWSWdhiZIFyZIFz/2M+pNy+FzwZ6dM+hVPG9HXLCulAMGtuZscYhWkcfqbS7VI0JS5MYzdBVbxQKjI01jaIJicTJj+JhBlwYVIyoGVNXqcZxF1R53ULLx0Zz9exx7iz4Hwx6L4Lgn26NMjnN+W0IkW9vgQjXUyTCPOR+vTnGlGbBhS6Yh5yOTk8yajNx4DscDikuawfkoWpzW9RIERCilSE6h6gCxpfVqccRUTasHEp4Ydl6xuzdju58RM0ssDNEocQxbNC0NbGWOoOe1jNPdONJS1JZUOmOWGTmpX6xiDkJYGtWolBh9bEp+UHDlIGf8OZ5xVGidsC4sh6fYam9iUoRxhtszbD2mGD3mcZPqNv8FPjvqXfd8AwOdPSMheDehvlndk27y/lSTeICvOPv/vinHe6p6JpqbZ3JNr1cH9GSUshs956dzrs+Y5f+yl72Ml73sZc90N0eiQm6hyGHWCkQ6ClnXXegm1MZdHSzZ1caQxX2bEoAFVNuafD/Su+yxM7+8UZpSNC+6DjKorQdVRjB1hJjwQ4cb9ASgdB2YKIFkql3RWwo+FxU6RHoXLCEvGD+gJT8A6Szo1IVdJuqhwlagFongFPVIaGwAsSfaj+0Plej9sdActCbV1QqUdEYHbcjnVdeqc28D2W4ZuqlkP21Ap4ju14T3SpGaKPSzGAU8tC5vymhSVV/ddemAjdKkukFlbkX7W6vUdqr05X2yA4u7kJP6OUlrdCUiWb1oUItq1QXyvrW/PhbxH9dT12cKeFmvT9eNOQYv11c+N8RoMO0EHMRaOVlZqMIo+b3TvcSIaoQ6FYY5oe/EnOVkzYlByVZvIc5ZSXQufVu3TleaXHlGtmTmcwlQ1IHMBJyOcvvNA/UmYl4CApKC2NmT52Im4COqElOYg8cLJrnnT/bPcKo/YcOeBk4zMiUhafqmIiaNVpF9P+BSPaIKllnIuFiNuFIOmDeORe2YLXLShZzBuYSbBXQtQE01gdjP2g7V2oXTrDRBTZvJ0viVQ6ezqLLGLCp0npF62dIMQVXNEoDImHCNPjOIw1nnerYEL23YaBjlmCuNHMMHkrPyeWVir5+fm3J6VlBc6XHwOQY/TJS9CDaugiqDQtWa/mOG0Scjg8drzMKTyuMFsSerp8p6+XQT2//fA2/g8Zt8Pmdj9YzP65nUUwGEo1JPF6g8WT2d93ldAOaXf/mXr3uHf+kv/aUbOoGjVMlpUuZQVb2cTEOQCXIHVNaDLNsQMFJC5T2qe7ZoRkaCE5MI5FVMmIW4mVSneoRC3MfctPXmzx2xsJIRA/h+K6pUEiQZBwVmPF2FWhoNlSfleWuF6aUd7gMKsJOK/nmDbixNXxOdCOOThpDLfqODqjE0PY0vFCFTzE9L4Fr/UmT3j2bYRy4vtT5LmljXkWjzX7ouTKqjgJDu+ji7An2NX9pTJ1oqWtSQtTkyKYrD2ToQ7I7bampSDKvuzXqFKFogpVbH6QBVJ+xvOzVJGwg1lCV6KhkHIhhd0QCT7+h5saWhHXsp38q6GfSx9X3dbkH/ZyJ46eoYpDzzmp+2uMsGXfmrMlh06YVeZjVhlIsmpWzvXxrQmvJ0j/H9loM/1dDfWnB2NMaqQBkcG1nJ0FXc19vjVDZuQyVFhxKNQkdLTK3zlUpYG4hBU29E6g1DfllBQzuxN8TMimg+yGJTfqXh5P/SnB/0uKIlrNLqyLTJOdsbM7AVm0nyVZpkuFBt8PhiQ/JUoqHyloNFgQJmswL34R4nPxzpX2qw01WARnJipR+dFvaXUiQHaiFi+pRJVwilwFlhYxsBE9i262/N0rUsOU1yBj0tUVWz0hzJhWgt89vPQQuHTqUkLqLI9YjKkgYFetw6XMZEyizRGXRIMsbuzdieNwwfK/ADQ7WhqbYtvkdrmgOmTOTjSP98jZ01AtDWtazHdVV9uk7HU1UHNm5nded1s2lkv/X4//dTjvFsqCf6/J6qg7Xe4XomdV0A5nWve91Vv3eWtdc+BhJ0+WwtFRNxs49ZVOL+0j2+PrletxDuHioKwpltqi1HduBbilJniQnJKKrdAt/T+J4iaehdlFUov5mLBka1N2Cr0NVq4lyf7NG7aITSZO2aDie0ovWwlJ3QJPR4Tl577LxHtZNTbhtCpgitv4Kp5FjNQMTrzQDsHEaPBfqPlbgLh0uQtvycg3SEsC1fOLDqsrTbrboi7fXxXsBWnq/AR1o9n+qWotUGfXY5M8oaUuzME1rAEpO4+ISw0uB03GXajk8HXFpam+xnDTCFtoOjtNDXrAVfyTl2wKc7z3g80Nzqupng5enUMwExn8nA5bhuXoVc7v1LYXhHj+06L0qRek66ID0nHRgf8SO5bx+8yDPYnYtdMAmtElvZglPFhE274Kw7oK8rDsOAMlmcCmzaBWV0jH2x7NAYE1E6EvuRpt9mwHQOX1q1HX61pG3pyjN8DLb+uMdhGrIY5lzcH5EXzZISVhiP1YE6WipvlzqQg0WPWZlRV44wcfQftpz8g4b8UomuPIQ1x7WQSKozVGmBXu1RZSUaU2daJ7f2NS1QCcN8FdDZgq7o9PI6KyfgRi0qea01oNc6/eud9bbz0nVPtI/ETMKZVUdtVgrto1yndvzTVUP+eE1mDD0nwDP0nJyPViSrICSxi65kwe94Qezm11FwDbsZIKbTvPzW2mPPpPNy7WufSLNyMzo7n+76X7v/9e1vRo7MdQGYuPbF+43f+A1+8Ad/kB//8R9fUsfe+9738uY3v5kf//Eff1oncWQqQrORofcdlFVLi0Imud6vdDBrXRhlNHF3g8XZPvl+g64DMTNtnoptU+Qjpgxt2rGkzPuBRTfivJXaQMvUuRAnMAsv9sa74gy2tC3GXDXxV84tndGUlhu0mpeYEOnNa0w5oNy11Erj5gJeooNqRxxatj4SGH1kip7MpUXfak+uEu53wKmrTnMCctys7WgEoX1154S1pFGfWGSEjYzghOJlZx4VInpao8oKNVssncRS12TRanXMLm+nO4Za2VcvNTAqrc5Xq1U3Zb1Skg9ZqxVFLcQVzS2s7b/NszmuJ67zf/bfc+Y//583/Lo7DVzW6+mAmFsJXr7uDa9+0ufe8dbrTyc+rqNRIVPUI0N2KDQy0pruo9XEqGkQGhOgUqI6M6Tcdey9EMyoYWcw51R/wqliyo6bsWnnAPR1jVOBJtllyKRraV0AjTFk2qNVRm4DtbbgIvVo1e3vaLjKR2Jm6e7wqomY2LD7PkX/YsZiN+fghZGmcFSVJc89w6Ki9nLePhj6ec2syphcGpKdtwwvKobnAtlhhZ17yUBRilS0HZOYSJmR8U8rASQhSncl5SRjCANHzAwxN5S74lqJgnogzIFmpAiF2O53nY/8MJGNCwbnK8y0XupnkjHEvpPzSGmZx7M0DljqceQapDyTsUCvtEqdU1xyZjk0qM5wICrMrGk1NRrVsAJZfs2l87ietG50Qv3u+76Zv1beuvvxmVP/mPMXB0+5zRPRqK4XzKxbJP/WU+z7eutaMPFk4OKJtnuqbslT1Y12Ua4FT88URN2wBuZ7v/d7+Zmf+Rm+7Mu+bPnYV33VV9Hv93nDG97An/zJnzztk7nj1U2Kuwl5Z6GsWU3a29X5ZVemyFncM0I3aenhb+bCc45WEZ1C+ZZf3Oa+RKvwfU00GlMn8r1m2bUxVURXnjBwhEyL7WPmWvrUCjhg7Qq8pCRdkI4SpQ2q5QxnEdzY4ocZoTCSs2IVw3OJbL+Wjkvj1ybxrWVxBwaW7mJqNak37c/ey3XQsmKVrEVlGc19J5jcV4CSjo/vKaJpMwYyMJUTT3w1wJSQTyLZgSd/eA81nbcfhQCgVRdoDVhYuxL8r3fEzCrTYEl36x7r8ExYgZwlN9qYa6iBfOrPx/UpdaMg5iiBl646QPLpgMytAC5PBVieattjMPPsKN+HhdXkBxbVBHSVVpqMlEjGiAmLD6gQicOCxQnH/vM16Z4FLvNs5CWZDgxMxWk3RqtITBqnAk7Jas9JO6GMTpLgU04ZHTEpfDQsvIQ6KoVM/jfbRbq5mL+k1o1LdRkomWRmSfZKxcbenA2t6V8aceXzMqqThsYmZoMCAG2lezM57MHEsfkhw9ZHG7L9WsT6tV9N+qHtgOhlxpZY54flwl8YOFTfkrRiccKh2wWtyb2G+RnRgcY8kgYe129ISRG8hqhgapklKC4YQlYweFzjxjVpkIvORisSq/F52cVvVuGeqpHxTbXdMmIE340pcYVw2vyzzoZ6SVeL3TB5dYdI+XgVXfm4nlndavAC8C+L/xd//jq3XZ+YX2t//FSvuVn6lqfbibq2C/J0HM+ezvl3r3mm7/2GAcxHP/pRtra2PuXxzc1NPvGJTzyjk7nTJR0S4byqboKc2hWWjmYURcifQkRZQxz2JWtl2qC9UJmSMwIWtMLOgtj1WrHTNHUilS2QcV0gpcIsxJM+aSWDSxNhK5cVo+7G5710YtrVnESzBB7JGFQIcl5tdwZAN0LlMpfVclVJdV2HNiRtFZS5Rp1arhbFVQdqqQPq8l7UErxgLfHsDrN7+8xOa+ZnFBsfS9gyMTjXUG9Zub4BfKEAcZgpDgL1SFNuZei7z2DqxOYHDtFXxtIJalac6eUSYXctOuDRUdM6ENKZDaw7lHWfI7R0uFxATgeO1t9/565WH7vG3Kw6iuBlvdYBSgdmblW35UaAy6d7/TGYOdrVDMAPDPmVzqQltl19BVaRtJMOQUuTWpzQlPc2bAxKRkXFhivZyeYMTUVAiURGtQtlKmGIBPTy354fMPYFPhmulAMWjaP2RroMILkzWoFR4pBm2kl4Sx9TqV2IS21GS9vJHn1kgpv0pZs/1JS7lmTFGCbpRD5X5AeJ3uWAm3oBCUaBMwJeQhI9C6DbDkgyumUgGILRVLs51Zam2pB8sslzIpyp6A9K7ts64GQx5ePjXXzU9FyD04FMB3xrarC36DOvMsqdjIt3O9x+xuCxHLtI9C8FzCIQCkOvDivA4lfgZb2SUkuanerOF7NcpBTgkla0tSRRCB3o6YBLUqzR9Y4XxD5bah2c3Kxuw3qtA4+tbyiBZ+Yf/T/4ywAc/OtntJvbXjcMYF760pfyfd/3ffzLf/kvOX36NAAXLlzgB37gB/iiL/qim36Ct7W6RGKl0M61YYwtZWvdNhjayXFG7DvhubaT3649H3K5CTdDgy0jZhFFD6Mg26/RC0/KDcloQt5692dGnMlau0gSmLlfaVA6D3ufVh2E9TKmzV5pMwW61T6PAJvOHrLrtLTASLU846toYuu0LR9X4EW1N+5uP1qRhn0Wz91lco+jtx/JDxMhVzQDRTYFN6kxpafazSm3DPVIzARGj3rsIpKMwpaJaqSptjWLk9vs/Emf4iMXZSDtAixTbMHG2vm0NpcC5OxSmEqrqRFQkuT9d90Ww+oz7ZzSrn3PayDwuD676k7RxI7rM6uSZXnPX5q9NCvKGNBqYmRtJvQc9SaYvmezV9J3NVYHeqbGqIghMdLikBnRFKohoDjwfcrkqKIwB7RKNEFAizOhvd0r8NIFX56PYdWF6PJnfFp1FlQ7gY8RtagpHosU5+W5WFhiLot0IdfokLCzVcRAMmrZgUiZBVrXMyX6H6LQxVTZ0JwaEXqG6d2G+WlFeZcn31nw/3jOB+iZhoOmx9BUVNGxlS9YeIfRMnbt5jNGruR8uUHf1uy5AWVRMc4LqqHjcCOj95jBzTQhk0gBP8pQPmHHq0mf6hYJWzoYCEhRseuc6Ksfa80WlouLbWdJ9sXyMdWyF5JRKye04/qMrSdLqH8qR7Hr0YI8kVXxu+/7Zt7/NQaqp6a53VB9Tfv///XExz1qdcMA5ud+7uf46q/+au677z7uvfdeAB555BEeeugh3vWud93s87utJToURSwsxhio22RepSC1E17disJpOxfOEHIjN+ZG7lzNhqXaMCLYN9C/lNCN0MlIoMat+0lIxLy1U46y8tXxbTvbxqVfftcR8l4oX5lb0b6UhqoirYVcpnWqlPco51Z5MnBVtyXFAE19NQWro2ytT+Q7DQm0A6CB0YDDLzhFM9AMz0soZz10uElqk56h3s5RIVEPNfWmwpRpSS8jJuwsSDJzgP7lhO9p5qcdvn+W4fsukCbTttvCyqa57ZgsNTgxrT4juMolDdN2iZReefyvGw5071WrZaZNCoG0DMg8ruN65nUMXj67SteCCUzVTugBYkKpSHSdEyKopEjGkpwmFBI+eaI3pTCeDVtxKhtz0k7QRAa6ZhYznAoYFZkFoXJ12henAoaIT5omGmZ1RgialBQEhZ2LTf96h0EvGum0OLuyIDYt7csooQbXXjr7UaEI6NqvxPBKLZ3Alr8boVZFo6i2c2wZyGq/yl9puzIYTbXjqEea+WlFdTLwxS/+CM8bXGLsCya+4P5iD4DD0GM7n3NXv6EKlp1sRt/UDE25DPDczhY0STMe9Dg/G7Gf9Zn3MiDj5P9u0CHh+4bsoFk6k2FZucQtadgs82iWOhZaU4aQllkyRFAptoBNSd7PEgylpQFByixUV3d5juvp1e2gj93Muh4AcD3bXEsTe//X3JoF1he+M1wFXI4yiLlhAPO85z2PP/zDP+Td7343H/jABwB4wQtewFd+5VdelUb/bCxdeYwOK+eYTnjXUZFi61BlWGonVIjoOhIKTehp5ict0UJxEEX/UieiVTRDgxv7pSOZm3p0EzDTmmTE+SX2hE5A64sfCkO2X64slNezVrrf180FYHW+63Qwa1dUrLTWuVlaDtvV5L4DOF04JbShnmE1we9WE/s9Ji88yfyUYfvDkjI8vt9RjxTDxyIqtVbQtl3RMqC8gJdiLxJyhe5WrQKYMuImDfmegMnpvTlXvvQs2//7AHW+5ZUafVVK89JCuT3vlBKUFcoY0QZZGZRFJ5RW2zQBtZ5Zs04x0wqFQR3nwDxlPR0R/2dj3Urgcu2+jyllR6dMCWkgnRhVBVTV2v4qJXTfTO7ZnQ4lGoXvQZ755UR8y805aSdsGdEGhqTJVMCpQJ1kAlO0gV8Xmk0iiio6qmBFBxN066cSqKUZja4jum51j75pKU9x5bwZ2oWg3LXWzuqqUOJOO6giS/t6ZXRLq0LozEoRCkuzYZmdsvT2FXYqhjQpb4XuIUIDk7st9SaU99e84vM+xMs3P8r7ZvfQJM0LBo+zY6Z8qDxLTIodNyPXnn4u402uG6ahYGArYlJsWOlQjW3FzGfMqgyfG5rNxP7nODYeDq0uNaHLRoBI13ECiTRQCt0EVNnmzmR2JeQPCMhpu1YddayjcC9dzayW7gsi/o85Kx3QcT2j+vMP/wvOnLr1AOZ2TtrXtSdPRDlb16fcKuDSVbf//4tvg3cebVfhpxVkqZTiVa96Fa961atu9vnc0Wq2cnQNne88C1Yp9F2+CbQ0o9WKkw4RKsQLvmDZTQAwNWifZHAaGHSTCIXGTRLRatEC+igc4SYQBhkoRTMUIaOeVkt3r6UuJUWxJ+7AC1xNg1JrdK8YVnQpEP98X189MHWC97UORKf16ToZqa5RtPSrlFBFQfngCQ6eayn2BHBVW1aSk5OAlWAVTR9CT5Pvy/FDT0EpN/2goRmIkYFuxMyg60Sl3JIfBKZnLRe+bJsz7wlw+WCVBdN1V9YH19ZkQDnRwCyNFrrBpd1Wdd2jtUohtlS1Ftg8EUXvuK6qp+tEdivqejNgPtPr697w6mMQc0SqGUGWxDRFpYRqvAjYW+DS2SqLnlATM41qm+pbbk7PNLygdw6nPE55QhJasmk5SiEZCt3QJMteHFJFSxUt58sR+1WfvVmfxhuCN2id0LUmP0zLRbJlaS20ti4cGCQ/S6kVfWq56BVX21xTKkbp1qREcOK0mbTQg81CNJ8dS0ElhF6WO0IB1YnI/fde5su3PsTjzRZn8kNOuTEPuEvshSEn3IQmmda8QLpMZXIYEo3yOBPWnNkMAc09gwOMihzkPfZsYH6fZvx5Drtv2Xm/Q/uE22tpZG0Ojl6sve8u4DJJuKhqVgBUOjBr2hmjpDvVXtuozDJoWtW+dVs7ppDdjJIOzK09xo0I+G9mPZUY/1ve+aW38Uza+kZ429f81yPbhbkuAPNTP/VTvOENb6AoCn7qp37qKbf97u/+7ptyYneiopZWuAqJ2C9Q+4dXb9CsTerbG7rykVTIZawHGlODHctNOj8M6DpJAJZP1JsW7SN2X26S0ell610VFlPKjS70DMkq7DyIxXDXbelATKfx0N3/aqXVWe+igEzu3ZoNclO3E/4VRSz5tOqeGVauZjGBasFLB96UEjra5pCDhzL6F6TTMj/lUDGRHySycUIlKHdkRTGbIBbOGuJEQF3TU+STRHSyquWmAbNoBMiFgEqSU1McRMptzf6f3mXnvRVptlhRyALL/BYBIKvOUgqrQboDMmnNxlJ1eqJ2++79L8GLMRCOKWTH9czqTtDGjkHM0ahkQDVI06LVHeKD5JQAybaavRYjiJgcvNdYHfmc4vGl0xgIcGmi3Mu6SXqTDLOYM48ZWiUOmj5lcDTBsNYzoa4t2b6mf7GRzgOIJiVzIuA3SqhORpMUmEWzWljrDF+W98u2w2+N5LV0HQlYshdCzxKdRANk04gtg7iSNUE6UMnjt3rETBMzSKcq/tJdf8iFZhNN4vnF42yZGSGJOcFJO8EQ6euKSewxCQV9XdO0IM6pgFaRQjXMY05f15zKJ2Tak9IudV+u+cxEwqhhXPYxjcNOaumMdczoWvJjUi+XzkvoxPmQnF37nNSqEwOrzksH8NqujFwvfbwY9hT1tq+8hOtA/Vs//fZvffUFXsHr+b/f9Uu37Jw+3WT9ZnW+3/rqC0/yRPvc2vV4+Vvfye+84WueePtbWN/yzi/l5W9953V9Nre7rgvAvOUtb+Gv/tW/SlEUvOUtb3nS7ZRSz2oAY5rY+tELb1VlTlaiYEXdgpUuxHv0rKI50wcF2Sxi50IpU0mE/MI3FoczuxAL5WgMMVO4aaDcdfieQjfQv1iLtCY3KJ/ILs7kWJlbCe0H2XLwSJ2APbYC/bKSG2vXeenATCdyj6nVesSV5gOzbHV3gEZlbkUfS1Em9Z2dckqkGKnOjlAe3EK0LcFBPk64eVxm2vQuwewuTb4fcVPp8ripond+Tug50FCPnNh7bsifojsoScYS+pKhA1DsR+YnNdUDJ8g/fF4EoEvxZAtSjJx/58C2pId1TmVaodZtzDr9i14Ts3bXSAtIU0+rP/nZVdfbhXn9/rtuuxPZT973gid8/HsefhZbvR/Xs6aSSwQN5Zam37PoYV9W53OLmZQr3ci6E3wJ3hsWwXHBb1Ioz46d0qQgHRggoKiTwai0tE/OdcN+0yei0CqRW48CtE6koIgzx+bjCXdYS8cl08TM4IeZLCx1jphW0fQ1SRdkk4ibecysQc9lHFQgC2lL/YheaWA6162WpmaBkGnKHYMKluDE1liXDSnKts3QUm0nHrr7Is/JL/LHi7t5XnGeXTNt3yuM9IImWZzyTGKPS36EIaGJHPr+EsSEpImmRKtI31TLTs2sl9OzDT5prrg+tTfs3WM5CBkwYOOjM3FI82JtjW1zefya7fGaKWen/em6LypGuT6hBS+2vbZ9S7Iau/D4niXc4q7BZ1J1izB3YjHmFa97Pe9Ym6xfzyLUraDydvvo9n0nwEtXv/OGr+HrOHoU5evqaX784x9nd3d3+fOT/fvYxz52Qwf/iZ/4CV760pcyGo04deoUr3vd6/jgBz941TZlWfLGN76R3d1dhsMhr3/967lw4WrU+vDDD/Oa17yGfr/PqVOn+IEf+AG8v/HVc1OKa0osWj/6rivRrciv60PafBK1qDB1JGSK7MCTHdRkV0rcYUV2UOP2SrLDGl0H7LQRcGQVKoLvGaoNTbmtKbcVzcDSjCzNQOOmHnU4lSCtQR+KnHD2BOVzTzH9U3dx8JIzXPrSU+x/4QkOvvAUhy85y+Lz7yXdfQrVL0TXkrmVNkZfc/6wAimwBDSpczxr3++y+6NVG2hpUFnG5J4M31fUQ01+GBie9/QuNWQHkgGQHXoG5xu2PhoYnqspLi7IDhtQMjCYNol6sWuYnzTUQ43vG/xGTrOR43sWN/fkBx47j+TjxMFDOamdBCwzekCAisuWn1Wq65VjXAc2rV1ts+4kF9Y4nmvXLKUE2dFAMEfte3LU6lr62E/e94InBS/d88f1mVdH7XsSHVTbidm9isn9PeYPbNCcHFCdKEi5k0lx+y9a0VAmWc/hYjXisWqbSSg4CH0OgkzUJ7FgHnPKlDEJBaEdwuchp0mGkS0Z2gofNSFKSGNcWHqPWbY+UqNLT+g7FncPmD4wYPxAxt4Lci681PHY/2F55M8rLr4ULr0ELn2B5coLCqYPDAijnFRY0XFofZX1cjKK6Iwk2CdQiwZdeeyswdQRHUQLWZ5wlKd61CcH+N0eKMVixxDvLnnx1jm29Jz788sAXAlDxrGgTK59v255HQ59n3mUe3nVBsqU0TGPGblu2DJz+rqmbyqGpuLFo8d40eY5XrBxnvs39uk5T397weLBmvEDmmonX4FJo0hFvnQOS0YJ5U/T5sG1oCUkEetb3XZeWkfL1vwgZkb0P6ct07tz9l7gmNyf3fDf0K2oo/Y9ebJ6KuBwK7sv65P0O2W88nVvePWRs8vvAOVRqjtKynzPe97DG9/4Rn73d3+Xd7/73TRNw6te9Spms9lymze96U38h//wH3jHO97Be97zHs6dO8fXfM0KiYYQeM1rXkNd1/zO7/wO/+Jf/Ave9ra38aM/+qM3fD5+ICsmynfuXmoliDdd8JVaOXABpER+YUbS4vefjF7d5NoVHLVoMNMKO6nI9ivcpHXr2pBAL+0Tbg7RKeqRpnexxl6ayHHyjLA7Yv78U0weGjE/7WgGWvQxQSwbdUj4XDE/ZTl44SbTF58lnT0hQZdKr7QgcDXPuZvYW7vSh6xbPXYT/c7CGSBFUi/H98CW0nEJmdDddB0wsxo7qVBJKHNJy2qc8tKJysYCXJJW1JuWZiB2y+WOotw2zE9lzE87QqGoN5zYUC8CxV4Qa+ZTo9Xn0P3rui2ts5jKMnlPnfNYCLI6tn5z1UoATXsNlHPyr8hhZxP/3LOM/9TZG/4buhV11L4n63VUNDDw6YHLE217K8HMnbzZ345jn998P+c338+HN/7bLT/W9dRR+54kBTpAyBLNQOELzfSunGYgK/SxpR6rlNC1RzcJUypCbZg2OefLDeYx49DLxP2S32DPD7nQbPJ4vcXD1S4Xmw0u1htcqkf4ZOgZ6TSMy5yUoGkMqtT0zycZX3YL5ncVXH6x49z/Edn/cyWLL5sy/KLL7L7oEtsP7lM8Z4I6W7J4TsXB53v2H9Jc/lN9Dj53iN8oVpP9pS5G/lNNQM9roQDHhC497qAkGweySaB3qcEuxCSnGVhipmmGio3Rgm07p0yOWcyBlc6nSZZx7NEkQ5MshsiOndHXIuLfNAuMihS64YSbcMYeMNILRnpBX9ecdoecsBM2rWTpnMhmbBULMhvIBrWAzC3b6oBkbExtdo0KremLVssMl2VwZUf9rj0qJWI/J/YzwkZBs13QjCyzU5KHNn5AszidiEdEw3/Uvifr1d23nmrC/o63/hqveN3rn9FxnqzW9/tM7qE36/7b7ecoAIeb/Z66n6/997pv+crr3pdK6dOTM7/v+77vunf4D/7BP7juba+tS5cucerUKd7znvfwyle+ksPDQ06ePMkv/MIv8LVf+7UAfOADH+AFL3gB733ve/mSL/kSfvVXf5XXvva1nDt3bplL8zM/8zP84A/+IJcuXSLLPv2qx3g8ZnNzk1e88kfJgiMUFh0i2YceF6pSZ7Ob4lWvU93k31mqB3aZn8oYnK/QVVhaMqvQDk5lm0isNWEjY3Eyo9zSAgJmQi+rNg2mSQw/coiaV5BnTJ6/RbRCN0tG9hcKTTTgpnFpSxly+Wcq0ZokrRg+WuI+eYnUNFdnqXTvpXWLSU+1atLpRlqrYmUN8dQ2F16+RTZOaN8CsGnAjdswz5YmMb2noNxWbH68kW0OyiU9L2aGaidjftK07mQCxmyZyMahpZcZsnHAzTzVtqPcNGSzyOZ/e0y6LOufy7pt8vq5dzkvXSdGr6hlqhNV5hkpzwibPRZ39dh7vkVFqEzJR3/ib3F4eMjGxsb1/yHf4rrT35MPv/JfM7J94MYBzM2mkXXdl2cKRG4FrexODzq3atXu/Ob7r/p9kqY8NP7i4+9JW9335MEf+7sUVQ87g50P1pi5Z3Z3AQqGj5SiNZk14mSlFLFnmTzQ48qLFIMX7uNs4Hlblxm5kg1b0jc1IWkWwXHQ0sUGpqaKFq0isX3u0ekW4zKnrB1V6cg+1GP4aIIE8zMKXnLI7nBO39VUwbKdzxm6irnPKIwnJiUhmN5RB8Pe4YDmMMeODZsfhK2PVbgrc6FTObM8f9WEldDdGVTtibkj9qzEB7RTDd931JsW35PJ/e6XP84Xn/wEDxSXGeiKvq4YaAkRLmPGlTDEEBkZoZJBqwFKeglstIqM9IJdOxUqWbs2O4s5kyCdHKcCD1e7PF5u8PBkh3GZM/3jHTY+DDt/PBcNZifYj+2iWxfE6ePy/EHGXF23kQZKEbb7xNxQbTnKLUN5QjG/KxI2AniF2WjgQ/DxH/vh4+9JW9335HXf8pW4zF5FGft0QKZ7/mZ3Ys5fHHDm1OzTb/hpah0IXc99+MnGiu61d//e0RCgvPyt77yp48rXveHVvO7CH1712LyJ/D//0/nr+p5cF0fmf/2v/3VdJ/NMbZQPD0U0v7OzA8D//J//k6Zp+MqvXCGyz/3cz+W+++5bfpHe+9738uIXv3j5JQL4qq/6Kv76X//rvP/97+cLvuALPuU4VVVRVauU9fF4DEB2YYp1PWI2wB5WpNg6U3Wi+XXKkjEiHHcK6obskX2S3qHacmRjsWlUMS2TjWNPgBFGtbkxrXVwlTBllFT6Kw3FY2NUWeNPbrD/giEAw8dqklFkB0JFq7fytvMS5TghEgqL7xtMGfEDw2JHszido+sdzKOXWAZVxjUgVjfSMVqnVF2LZ4OkRHfc59SGfLmZCPNRkvWiQiLmZgVgMo0tI9lU0wyNAJhDBSRiJiYFix0j4K2MaJ8kEK1J+L4WEKYABc3AEpwCJVaj3XkBovXpOiydI5m1YlbgsqvDKWNauauBAJrM0Zze5PChPvWGohlCeTLSf0xjjyhn+U5/T45K3Szw0u3jWBvz1HUtcDnqdae/J7oSnUf/YqR45BBCZBgTfujQlRf9Sd7mofiIbiLDh0ui6XFxawO3U3LObTLMCvZtzaYrWQRHGSx1tGTai10yikx7xnWPS4sBZSPDerVwxKnD1OD7iuk9ie0XX2KUVwxcjVWBwohl82FToFViyy1YBMcoK4ko6mDYHC04BBqdMT/rQOdsd0GQGvAJ3eWoLF26onQpjGqtmz1ojZ5Vwh4YGKLRRAeltzyy2GbTLhhkch0noSe6FhQxKQoti2yzmBOT3L+1SqL3UQ2Fqtm1opvZC0MK1Sw/jy0zJ6Ap26DPnWzOOO8Rk2JsEzFrNTwxtm5skNAo4vK9dJWsblka7WMxyuIesDiZMT+hmZ9VVPfU3H/vZe4ZHvCJ8Q570z6Vdtf7p3tb605/T7q6FrysP3Zt3Qo6k4COVwO3prvzdGqpf7nD59HV77zha+AZApjuPb3uwh/CNeDlRuu6AMx/+S//5Rkd5Hoqxsj3fu/38qVf+qW86EUvAuD8+fNkWcbW1tZV254+fZrz588vt1n/EnXPd889Uf3ET/wEf/tv/+1PeVzVDdhC3MBmpUzeYTU57uhXPq688slFRD9bkH9yD+4TEKObJJqPqJY3vWZTHm8G0kvu7QdCpom5ondugTmYoxYVcXvI/guG2DKRH3hirnFjj648ykeyw7pdKVJiOuAj0RnJo8ll8p/N5AZ7+LwBmylhHru8olGt08igtWO+xqYZljQ51TnotFQ0VXvcTECHbC8GCHrhiZkBJNxzfsIwuBAwtewv5hZTluiyoTrRo3/ZtwAsYReBestRbhtsmSj2PNEKB1n7hA5g6kTI1s47pavfRwdUmnppZKCMk0Gp+wztmsWy0UxfeIq951uq3UT/ccj3E6bU5AeJmk/bnLztdRS+Jw/99jdw/s/++6d1/jdDzL+uebmZFLBjEPPk9WwDL0fhe5J067xopVOhK9GG5PNmGXyclJiIKC8ULDer2J41JL3BlT/d54JJjPOc3cGccV0wbzJiEqH+MKuYRC3CfRKzJqNsLGXt8N4Q5xa90CxOR2af47n37iv0bMNdA5mwZi0oiEmznS3omZqhqbA6sOXmLIqMqc8Y1z2USkxsZJGgGVnsImfjo63pTZdd1k7sZZlKFv6iMzL+BaHN6RmYeUOmFW6qmZ8pKBvLlXJAvtlQJ4uOkYhoeJzy6NaopYwOQ+QwDujrmpGeM4v5EryEpDkIfZwKBDSFatjRUyKaK0EWAzfNgkYbJnnBwjuig1AoQq5XkyGlVuGUbXhncobY0ciUQvv2sytywkZOM3JM7zJMHox88Rd9gIeGF3l0sU1uPHUw1LV0oY5aHYXvybV1veBEtrt5bmS3TlczuO4tn+y9P/aSNxyJLszL3/pO3vEMXn8VeLkJdWSMyd/4xjfyvve9j1/8xV+85cf6oR/6IQ4PD5f/HnnkEaDlt3at8EW7UhDiimIV09XZK0BaLEgxkrxYHuePHlBcrolO4QeW6kRO6GeENiArdU6UVlam3DTQf2SGvTQW+8Zhj/n9G7hFYvBYiRs3FBcWmGktg0MTUItmOTDEwuG3hHPbbFhUlI6Oip3QEOb39KFXCDDp9DBdp2UdvJhPpckt36sxV3U7Fruaxa7whLOJ2B+HgSNpsYf2PU29pWiGmtkZx/Ssoxla/FZBeapP6GnsLJBfXuCmMrDrKpJNInYWsbOG/EpJdiC2z3YWJEMnQ86zK++vpvetd8lgzZSg/Wy1RllDGvaZfMFZzn+Jod5K2Kmi2oJmqHCzRNNXNMNn1lG8FXUUvifPtF6//66nndtyq/NejgX+n1rPNvACR+N7YkpFZ3wY+xmplxOGGaHvwLQ2+qbVHnaLLymh5xXbfzLl1P+A8kqP8aTPxcmQx8cbHCwKZlXGrHbslz0uz/tMqpzDqmBS5kxmBfNxQVNa6Y67hLt7xtbulNJbcuvRJHQ7m/bR4Ft3M7EiTmJBnE24Kz/gnuKAvq0Z5RW9vMYMPWEQqYeKWBhhGTShdcNcuyhKLRPpk1H4YYaKiWanT3JGqHNNxM5gsi901HnIudyM2AtD6lbvYkgMdMVA161dsqeva87YQ0Z6wYZeLIM8D0KfMmWEpFpqmaFMjnEsmLVGACD6mlnI8EnCOKNt9avOkNyavmcttyVZvVzE7EBbyg1+t8f4wR5XXpRx+Pk1X/xFH+QLNh/mlBtzIp+iSRTWo3XEbx69UMCj8D15orpemtKt1MPcznrHW3/tSd/zURDwr9cz6Xy97sIf3jTwAk8zyPL3fu/3ePvb387DDz9MXddXPffOd77zhvf3N/7G3+BXfuVX+O3f/m3uueee5eNnzpyhrmsODg6uWg24cOECZ86cWW7z3//7f79qf51bRrfNtZXnOXmef+oTWhMLi55WpLJcBSOaNi+l8ZLwXpdiNZxaA/82kyXFiBpPyRYV7kqfxX2b+J6GJBkpIVeSQBwT+Tjixh53ZYbaH8vN0lnKuzcgweAx6VSEnoM6EQtL6FnMwqNrT8wN8zMZ2UR89astjc8Vw4V47jdDQz72oCzzk4b+9gA9m7e6kY5CpcSncp02tm4V3XWZOhqWltwCNZkxuBioRoakFU3fShveKHSTsPNAMpKD0PQU5QlFM0r4vmPjYQn5dJOAnTXLwS/0HKEw7XONiEGbAKrANJEmt0SryMcRqnrVfblWm7SW7SJhMl5a/HUUgb4xpM0hl1+yw96LoHdRYRcstUP1SBGcotqGyh2tJbOj8j358Cv/tbzuGQr4b7Qb80RuY0e5jqJry43UsxG4wNH5nhT7aTmnT0oR+xnRamJhKB6v0JVQbkPfoiu/clcEzOGCrT8ORLPJ/gsM41MGZcUSWdmI0gll5HeAlBSpMtg9y8Z5hS+g2Ug0W4Ht0ZzaG04Npmy4kp1s1upmErlbEJPCqcAJN2XTzMXNzJQCAKLDaQE2MSmqxrIYakKR4wuDPUhtd7u1sG8n/R3FSjdiYZ/aBbtkNeWmI9uv28WvhD5w7J3o8YnFLncXB4xMyYZe0NcVmQqYFNFEythjoGtO2cky2NOY2HZeBpRJdBcRjW6v/Dzm1MkwDQUBxTxKB2vuM3FpC+CmSe7/Ri9jFEDOVdWtNXJMV0UsNNs9mpFjcp/l8HnwOS/5BF9/9veYhJ6cG5r78is8zC4becn5tCEizyNUR+V78kR1I/fNd7z11zhz6ro3v+11o1bQ19ond6+/UzkwXb38re+86vyerK59vze767JeNwxgfvEXf5Fv+qZv4qu+6qv49V//dV71qlfxoQ99iAsXLvDVX/3VN7SvlBLf9V3fxb/7d/+O3/qt3+LBBx+86vk/82f+DM45fvM3f5PXv15Q9gc/+EEefvhhXvaylwHwspe9jL/7d/8uFy9e5NQp+St+97vfzcbGBp/3eZ93Q+cTNwp0BA7G7U05rZLt62Z1c17/EnYCcaXER95aVNPAlQN6dUM+6hN7lpiJPsVUAT1v0PMKNS9X4MEa6nt3qbYt2ThIwJfLqXYcxRWFmdbU2xnNRo5ZOMpdSzaJ6Eo0L+LqpWgmBh0S2URsm5uBfMSLswOGFw5IMUknpQu+7Cb8XVJ9RxWztu3KtO/TrWhnKUZ650umZwegDM1ANDFJt5qeKkrmjTHUGwpTgp0pBhcC2UEjQCUmEXkWjuQModc+FhEdTUSCxBYNympI0PQVm59ouc3WyrmuZ710Qn6twKpVd6aqlm5j4cw2j33FiPndkf45zejhiGmk4+LmifxAkQz4voaj4Xp55L4nN7M6UPJkQOaJOi5HHbh8JtSzEbwcte9JdHK/LA4CKkSilcUrO5cVfDOrSLlDNXHlamXN0qxFNYHtD0wpDnrsf05GeSIRXSJZSDYRdUIlhaoUtlLYqaLYSwwuyEr//kMGHqjITWCY1WxlC3ayGXlLHesbWXwcmrKlZC2I6KWQvhPM93WNT5o6GIk5yT0hz8USP0bRgTQtAGvHCQl6RDpKdSBYKx2bJhJyRzNy5HsV/YsN2+9zjM/0+ESxw8DUbNr5MpQytlQwTaQwDUZJV2aWMq54oYVlKhCSImtDPwvVoFWkSXYZ8rnnB1TRsghyU6+DYVZnJAMhEwMcdCvoDIGUWWFLZJ1TnFD81LyiuWeb2V0Z5bam3oAXfdFH+Za7/itldMxUzl1uH6MiB2HAw+wyazJ2Nmecf/T6qUS3so7a96Sr9UnvjXYdzl+Ua/t0FoxupSXzZ1KtA6tP5xJ3bd0K8AJPA8D8+I//OG95y1t44xvfyGg04id/8id58MEH+c7v/E7Onr0x29k3vvGN/MIv/AL//t//e0aj0ZI7ubm5Sa/XY3Nzk2//9m/n+77v+9jZ2WFjY4Pv+q7v4mUvexlf8iVfAsCrXvUqPu/zPo+/9tf+Gn//7/99zp8/z5vf/Gbe+MY3Xjfa7yoajbk4lhT3Lt3ee0SFKEGIKcRV8COIKB5Wk+VW9I42sH+IPpyitRIdiTFys0+p3UYsGckc4cQGs7tyTN3yfXcd5ZYmFApTWZRPonEpbLtyFbFzsat004CKkI/BLEQM2gytiEWbSH4oA+dV1Cv4lPDGZf5L3YBrbYg7+pyyy66HUgp7cQxpgC+gdznippF605AfBHQdSdrgprRgAPKDhFm0AzdiWR0GGSSImZZVL6fwfY0prbTo2/PVPmKqSDZN5OenJN8Cl85YQbUBnY0neS/6luX7QWySi4I07HH5Tw+Z3RvY/IBhcDEIXa0MuKlYUzsfibmszNkjAmCO2vcEbr598vVSw47By62vZyN4gaP3Pam2YOvxhDsUuhSArpUEORoj2rx2gk9rLR8L24YlimuXagK9czOyg0xCH7cMKkpIMglslcQ0xYnmxpaiEzx8jqb/8suc7S14zugyu27Gc4uLBHTbhdDkbYJ9N/EvU8ZAVxRagMMsZkxCjzI6drI5Zc9RNpYYleh6tJIAyC5kuRtPlCIVVkwKjMLOGoiinemCnaPTy9DL0WOe2QcGTF+64L9fvI94SlFFxwuKc5TJsWumbJk5GZEaLXbLQT6LiKYdMgXk6EaASxDKmCEyDQVjXzDxBVWwS03NrMzQjdD8pAPfUYaNnJ9W7aKajJEKiJt9pndnjB/QlGcDL3rxJ/mue36DD1R3UUXHXW6fTAXqZESfoxt6tqEOhpQdjQ7MUfuewM2jST3Ryv9T5bocZfBybQf/HW/9Nb6OOxdo2QGX6/2sbmXnpasb1sB89KMf5TWveQ0AWZYxm81QSvGmN72Jt771xkRG/+Sf/BMODw/5iq/4Cs6ePbv892/+zb9ZbvOWt7yF1772tbz+9a/nla98JWfOnLmKpmaM4Vd+5VcwxvCyl72Mb/zGb+Sbvumb+Dt/5+/c6FvDPXyJNJ1J5yGE1eS9zRcBBIB0OgtY0ZeWyfbIatQ11sQpRFLdkBr5J6BB9hlHA2b3D6VzMva4SSPgJVPYWcL3NNVOJrkpPclPUT61jl/taVmFKROmju0ql8L3JHAzGrE6XoZx6lac33VausBLo5e20MvBKM/lMbUCaqmqYVFy4o8WwvFWCjf15PuebE+su5SPbDzs2f5QQ3aYVu5hyMCnmyhZCLlBtQ5k1aZhsa3xA0MYZvhRJroaRZshEyTcswMv3WeTWp1Slwkjfxjyv7XyPp1l9txtxs+BbN/QvyxdonrD4Hui5TFVQIeEriIomJ89GhqYo/Y9eei3v+GmvK8brWcjeLlT/OWne9xnK3iBo/c92fx4pH+xQcUkbmNd1lYVxKY3xqWWkdROlEGovV2IYptHZicVvcdnbH5owuYHDtn5gwN2/uiQjQ8cMHxkweBczfCxGlMlFjsa/swhz9+5CIBTkbvzfXbtlCYZqug47Q45acecsmM0kTpZMuUxROpkqFt7Ynl94HQ2pm9rYhTaVsxT27XQS31hypxkpCgJtmyGlqalGasgC26w5lrZk8U4UwY2Pxq5/OgWe4cDPnh4ig/NTvGx+iSTUCwdxcpkaZKhUA27ZsqunVKohkwFoZqpJF2QmPNovcM0FEuw4pNBk/BJM21ypnVOU0uXxS4SdiYGOUt3scQKvLSVnKE81afa0lQnIp/7wkf4mtO/T5kcA13xouIRHsouMNJi9zwNBWV0hDZUlHg8njxRvettv3FT3te1de1k+06Bl/XjPFWuyxM9d+17uJN6mKdz7FsJXuBpdGC2t7eZTCYA3H333bzvfe/jxS9+MQcHB8zn8xva13VE0FAUBT/90z/NT//0Tz/pNvfffz//6T/9pxs69hOeT9OAcqusFFiBkraUMavgxJhksh+uEed1j0UtEHFRXj257vYbI3F3i8MXbmGahJtGQqZphjkhV2x/uCZpxfg+i26gOIwU+0Esicc1MZdBQnuhQE3ucWQTS34oDmHRyaqe9gkz9xCCdIJyt+qmdECgAzNdgGd3TdZNC5qVE1nyAffJS/RP3UM90viBFTe0TAasZPWaixjkY+mi6DqIWBIlYZcbEsw5O60Z/+kKeyGjt6+xM4WupMMUc0soDIOPHYg2KbRmBHWzvN6qA5AhyvXXBkxLl8sczZktLr7EklQimYQvFLLSJquZvqfRQVbhsgPP/KSmvGtlxXkn66h9T+5EPRvBS1fPdi3Ms6WO2vekd7HBBtYWmVoXK2egvbWolK4KTNR1JF0beJjEer5znKRLgVcrkKNSotwRG9/DLyn5wlMXcDrwnNFlnt8/z0gvON9sUqiGrWzOlplhSNTtwQQY1EvqlSGyZeYMdEWuG/b9gNhaGseoMKUSiWFf2tSqCYSeIxayv2rLMX7AEC1sGkV2KONMyDS+kPvtXFl5/hM1xZXAxgcc48+FyWZO7GsK5el3eTDJUaiGkfLMkqVJlknoAVxFFwM4DD0iiqEpqaJDk2iioUmaK+WAECXo048zeoeK/sWAnVSSXePjcszqOkSktstVOBYnLItTkN875ctPfJjnZBeZx5yTdrzMrgloCl0zNCWXmyHOBHquOTIuZEfte3K7ap0CdSc7L09kF/1kupdrX3enui8vf+s7Ye28rwfM3GrwAk8DwLzyla/k3e9+Ny9+8Yv5uq/7Or7ne76H//yf/zPvfve7+XN/7s/dinO8M7UOYrpVGKUR1bv8nJJHNV5yUuyqQ4HSV3UscO1lXmuxA1DkzB/cwM1FHFhuG3QQZ7LNjzfYSQMK+pdbKlUtGhGzaMX1IeF7CpVExB8dQsmycn4SjqnJplG6NUrJuXoJ3yLPSP2C1MsIw1ySkQcWOw/k5yeo2aINugxrAZjdzS+SmobRB/bY/9O7zM5Y+hc9KkEzMtRDjS8Utkz09iJuKrqe0HPCJdaKZsOSNNgy0mxoCIrQE3CRK/BDJ6Ao10KXO5xeffNdB5IhgHFiuBCTCCaNRjkHSjG/qyDpTmOj8EXC1JJlU48kGLR/OZAUhELTuxJRY8ujt+BP67ienfVvH/7ZJ3z8a+/7ztt8Jk9dR8215rO1dCU27ipESaZHQAptx0WCjVvXy5BWfAilJBuGNvwx0M6kxSlTEeX/JqCSwsxrys0hs1Oaw+cnTp885PJiyJlCnMQ2zYwLfrPVuZSM9IJZzJcTboBBK5jPlIxvu0ZsiSext3T0GpiazAaq2mJAMruGDuUTaeDwfQMKfKGZnTUsTibcRDE/pWkGGaZO8q9JlNvt4lojAC47rNn8uML3LdMTOY9lm3wi3+Xu3LBhSrb0nEythPllchS64SD0mXg5R6cCTTLEpHlufoGI5v3zuzlo+jy+2KAKlkklIGd62MMdGPrnE/l+g6p96xIq+qPo5HOJmUWlhJ7XxFGOaRLV3Q3/54Mf4MsGH2Ska0xrGFAoT0CRERgoebxvagrTMK1zdHlkTF8/a+tOLCS94nWv5x3XkJOuPY8n68hcey9/7CVvWGXD3CEwc5TGl+sGMO973/t40YtexD/6R/+IshSa0A//8A/jnON3fud3eP3rX8+b3/zmW3ait6WCB+uWzlbJe5kQW7uiLBkjjysl1KQUV+YiLVcWw9qEP4p+JEQZoEKAPEcVOeWDJwiZorjSUG9ZTJMwpWhdQOwnY2Ywi7jMQ0kG6k2Hmwk/1y4SzUACIKNTuIUMEnbm0UHoZ9G2gEkpmdA7S9zoM3twxPyEQTcQHWgPIRN9ivmcjGyS2PzoHPvYHqmuUdZKR2YN2Kn9MVt/bLn0ki3mJy2D8w3RKmZnNXYG2URE/SArWslqtI/iTpMsdhGxk4aTHvaqDDsHuwiM78spDgM+Fwe3/oeukLoQLLPWHeuaX1n7ucVWSNrZQmtN6hcsdjX+eQvyvEG/dxMVwecKN4vk4yBBmWvgLxtH7OJodGA+2+tOdl+eDLQ80TZPBWSeDV2YZzN97KiWgJO4MoCJSQIT28UsFcXVKpmEal26aLNhAJKSgEWUdLVVSCSPOH4FeTxuFEzusUzvh43nHLCZl9zdP+T+3mUAJrHHjpktbYgPQn8JVDIV2DDlshMDLIHNQewzjzlNMlxuhkQUPdcwTgXJCG15ccIRMkW5q5neHzH3zLln94B7elM23YKZz7mwGHFl1ufilSEsDP1HDMWVRDYWqq7vG1RhyA49mx/TPP5gj/NJcWk4ZNvNCUmjlehfxm2Xpa8q0cLEnMt+SEiavq45DD0WwXHoexz4Pr9/6R6MjtTeEqJitsiJQZN/vGD0icTokRozbyRCAVbBnKWHGDEhCahpOzNNT1FsVjy3uMS9ds75VoszUA1lsoTWN/sg9mmSoa9rrI5MquwIhVZ8dlZ3/70T3Zene+9/qtfdLleyx17yBt7xac7lifRGt6OuG8B8/ud/Pi996Uv5ju/4Dv7KX/krAGit+Zt/82/espO7Y9VOjFXXKWmzRFJKKJVW21xbV4n7u4k0q4DIzikL0b3ETNO7UBEKI4LMWUS32S3VjsVNFKaOhJ6m6alWsCmCw3rDUlysUCHh5hFbyspXduix80DINfWmfLy6kRUkYiT1cpq7NrnyeQXRKjYe8SStqEbiiT+4EAiZIlpFPVJceOmQjTMF/U/OMHtjCSlbS71PIaIvH3Lif2suvnSD2VlHM1SYSsCLLSPVppGVt2rFKfZ9JxQ3ozALjZt6Tv5+IBlF6GkR/xeapq84+d/2YTxdGQ6ELoxzrdMVIhBXTmquVeC3lDjtIYwz0gmPLSEfCy2gHmlMLfQ939c0fY1Kcs1UOh5x7nQddfDyRNs/GZC5HSDmKK2OHVfrLxISiXg1hRjRCaoqLPNHOooZinbC3IKeAMnoVvMown7VuX5ZQ72ZMb0PsueP0TpSGM+WmxPb+9c0FGxlcwrVMIkFmshJO8apwDyuBNdldESlqZXhShxSpowqOqahINeekS3RSsbApMUVcnFCM3kocP/zH+NFg0N2shmnsgkn7AStEpebEVtuwUfUCfpZw8G8x6IeoZIsrBUHUWhzVmPmDcNPBopHB5Qq8fDmDj6KlfOmndNEy6ad41rwNY8Z+37Aoe9hiMSkuFwNWQTHubjJlXJA1Vg2eyU1MJ3nBG9Q53OGDyc2P7LAHpTSEdMCChOmtU2OqEpAjEpCFU9GnD7PbI3l+gHn/SaZCuxYWdR1KnIpDAhJU+iGgLi3ZTYQe0cvB+azrY6yaP9661q62a2sLrjyRo51o7bRz6SuG8C85z3v4ed//uf5/u//ft70pjfx+te/nu/4ju/gFa94xa08v9tbMYkAH9rBps1+yTIBL0aLC9l6+ntLK1t2azpa0xMBHKVBG1SvYPbABr6vsQtPKIy0rCOoKjK5L6PaVPQvKvLDwGK3dcUqBRCQhOa0OFsQDeT7vl25iySr8H1DtWWxZRThe0zibFPkLB7cZn7Kiv++T5IATSKbtQGSC6F6zU9KtotKMD9hqIcjir0+/Q9dhsms7TaFpSGAuXDA6d9NPP6KLRanEsNHIR8HmoFeAiIVIvWGI9mM+UlDPhYhvVAPZJUr9DTzE7LPweMV7twh7B2gnCPZNb1RCKtO1/JzEHClOve0Nr+HJAPu4OOWcG6jDfgUMKiCGBxU2wbtwdSJalPh5koA6HF9VtaNgpdrX3snQMwxeDla1a11dZW00KaMj0goigRYqhBIjRHxfttp6TrV8sKErhvwcal9QSuSywgbOdO7HNWpwANbB2QmcN9gjzP5IZtmweP1FoUW0XtXnf4FoE6GcSgA6dQ4FTBEAprYBkICjEzJzOc0URODxu9E9j9XUZ+tec2f+iNOZhPOVZucycbck13BqESTDJt2zqad85zeJZpk2PMDPnryBI9Otri8P+LwIGPnf2UMH5NFKZUSg3OJ6pThwuGIKhhO5FMOmj4bdiH5NEBMmkPf51y5xSI4BrZiGnKuVAPKYAlJdC4hKeaNY1ZmNLMMd8HRf1zRv+QxpYz1qgnS3fIRCBBbe+g1bWtyhpBpYgZXZn3+cH4vZ+whjzS73O32mSeLW8t52TIzmmSYJNHp9F2DLq429jmuz466WaDpFa97/W3t4r/8re+8bs3LnTIauG4A84pXvIJXvOIV/MN/+A95+9vfztve9ja+/Mu/nOc973l8+7d/O9/8zd/8pAFGz5ZK3pNsq6MAMAbV6lc60KKUEk1LZ0ucEiSxWL4qVLHLJrGt/bAWYKOMJg77zE4bkgHdSEJx0kIpKE84Dh+CZhixC5lI9y7H1uoxEq3CF3pp/ZgfioVyQsIhk1FEI9QoFRPRqtZmOVLftcHeCxwqQDaWLkMykB16skMZ0HTlUcnSu6Jau07Zl5tHqi1D84Wn2fjgIfrKWBzJ2u5Sahr0pQPOvFdz8aUjolPSYVECvFQU95lqyzA/Ld2e/iV539WOwRfSJVEpUexHBo/Msef2WmMFsa8mxVU3q3NU62ysjb7mubXVTiMdnZCDqSRgrh5qskkkPxSA43MtgK49LzuPNNchdjyuW1d3ovvyPQ//yU3Zz1N1Y242iDkGLkezkm5dxNIafQxE36JZuVLFhCJA0+perJHXrZVaLtxEsLLgk3JDtZMzfg6cuOeAu/uHLIJj280xSPDkpp3zufnjOOWXnYuQNA2aOorT2EDXS3evecxxylPohhpLrhvK6JiGnCZpMZ3UiTT01EP40hd8hHuLPdHXmJITdkymAoWW7JYtI8Y+41BQpky6Ka5kWiyY9TNKlZg80MMuDPk+RGfY/GiNXTgufeGACyccvxsfwOhI3zWc7E0pvSOi8FGTaXlP46ZgUuekpHAm0ASDD4a6tsxnBeHQ0X/UMnpYnOHspGnHZcCnlfsYSHerA4pKLa+3bq2wq8px4Puc95uctGMK1RBQFCTKpSmCJaAJKHwyHCwKUjzu6N/JerZ3X/7vd/0Sr3jd65e/d7bKcHP1MF1gJTy9bsqR7MB0NRgM+NZv/Va+9Vu/lY985CP8/M//PD/90z/Nj/zIj/DqV7+aX/7lX74V53lbSuU5irbL0s1/A6vJMuLgoZqWwpTUapWmAy9LwX/7f5epErvtFGEjpxkq3CzRDBTat2LGmDh8UDN4JJGPIT/0RCfPyeQ6Ycqu4wDZgV/eeEMhLXlTRbAKVUGyiugQjq8zzM5m2FladhqavkIHoXH5nsHNZYXIzD3RanqXIs2GJTvwJKswVWJ2xlBubXHy9w3m/D6khlQ3ohkCzGOXObs3ZfGcXcb3Z/i+otiLZItI09c0AzknN0nMThlMA74HpoTRIxXZo/uoqoHOblq1eharr7ambjN3lhk2tdDzlkDTaNHrtGTy3pVIyAzZWHISopPdJA2mTNgqojyYMmDagcpnxwDmuJ5ZPVk35maAmGPgcrRLeemI07mPdbkiKZFYM3RpRf2Y9l7XeFFSLLV+a/+3NsUY1bpiGeoznt3+jJ1sRkyKvq4JKJwKPJBdpkyOD1dn2DQzTtkJDUYADnrZYSmTo0xOXoeAnGnbmZnHjEv1iJgUVkf6RY0xkUFR87nD8zgVcMozMgtAbJc762NN09oM1xBh0845nVtGrmQnnzNuCj6e73DhTI9qe8joUY+dR/LDyOjjllmTc0Ulin6NG0bmPuOglK5Gdz4+aua1Y1Fl7WWKVJUjlFY6LpcUvcsJNwv0z5WYeY1q2vG4y2Pr8muMAdeaJ7QLWCmzqKpB+4SuIQbNuCl4pNnhpJ1wt91noDyahFMrG+oyOi43Ixbe4YMhNccA5k7USvtyZ8/jZlQHwm52N6brtgC846bt9dbXDQOY9Xre857H3/pbf4v777+fH/qhH+I//sf/eLPO645U8l4E9l33pJ0cp9auV12zKtbRzZbhiawsCtW1nZiuK6A1ug4Uewm3EIpXuWOpR5p6qNEeBhci+UGD8gnfb5OZfRStDNJ5iVYCuHQdiD2LqSLNaLVSFJ0iWclnMZOS+syI2RnN6JGAaVLruALVSKO9QdeJaDVxlInIvgrt+5CgSbvwOAVupqlHise/dIOzv6Mw564srw8hiNC+aei9b0HxyIjy3k2aDUt0Cl8IcLBzyKZiQNA/X2H356jZglRWUDdrgWIIADRmBV66sE2jwceVFkZLyz+FgGqNFlCaFCP4gF1EmqFpjQoUphZamakiMdPMThuG5wIxl0HGNBE3ORbxfzZV1315JvSxJ6qnAjFwY/ziY9Dy7CkVIhoRf3d6FmI7LrSSvWS1/NyCElxLp20n2Mm0WSupzYppuzcps+Ia2VeYQUPf1sxCzsCIAD8mjVOei37EBb9JoTxNshyEPgCFbphFoViVKWMeRe+iVWQecvrtfjoHMgCrA0oliqxhkNc4E7jcDMm1Z8fO0GpGoWoKXQMQUNTJYVSkUAuMiqIXMVMeb7ZxKqDVJoOiJm0pDh+ygGXjk55yy9C7EskminHZoxrmPDLs82hPziEFTYoKZSPJS6gnUUFQmIkRmtiFSO9yQ75XoWfVKjqgrGWs6PLOullQiOiUwLfgps23UYu6ZVrIx+DHGY/NNnmgf2XZ1WqSpkYvHdKMiksDBE0is6F1iDmu43rmdW035idPPb3F1q+97zuf0rr56dSRpJBdW7/927/Nz/3cz/FLv/RLaK35+q//er7927/9Zp7bbS+llICSliKWklCKVGs/DMiNzxjx4s+6ZfxVkv06yEmdsBxQLltR05QI8rVP1CNDcIpmKIGT0bLsxkALILQiFEZW7pQi5GrpfBYzQz1yy/Y2iDuM7xtx+LqygMbTDC2DxwUwJauoNjW2EueyasNQ7AV8z6CbiPay3+hEUK8rOa5uEv2LnmyqGd9vuPSFQ3adxn3y0sohrKXMpaaBK/sUe4f08qy9pmsmBy0wSZUMdgkEpHSdrrpZgsKlo1sHVDrqXtft0nFpa919RrJNhKhRdUO2V9O7bDn4HBHVDs4JxU2FBDYxas0MQr5aJVPz4w7Mcd2c+nS6mKNQZw5feOxEdhMrWU00unUhkwmwrtf0FkYtAcxyxb/TwBglQ0cXANyNPyou7fhDLjRkBdTRYlXghJvyYH6RmDR9XXGu2aZQnpN2TFizwQpJM2k7LFol5iFfOnjNfM6JfMppNya09LeYFIdNn2mV03MNG3kptsRNwWZvn7NuH4AtI65hqEhIWro80VK2xx0ZCXks04x+C3TKDct+3ueCThwMepQnMtwYepfBzSI7fyLXoB5ZQuaIFnFBc6JhdLO0pDsDAlwu1ZiFx8wqAYONR3kBLclo6OXEzJJyI45jSdzgUApV+6XrGFovtUehkKgCVSvqIKBONEOJWXItbUy1QDHjMPTwURNRVN4IY+O47kgdHvwcn/8Vh3f6NG5qHR78HACbW9+2BCJPZyy52ePPkaWQnTt3jre97W287W1v4yMf+Qgvf/nL+amf+im+/uu/nsFgcKvO8faVMR3eEDrSWhZMx0FWvUIm12Ztopu5VZeltUnGe6GhddSyFAEtbiZKJtF2GlAJehcCGEXTF+G8m4onfffpJAN2IVkxIddEpzFlt0qk2Ptci+/D7vsDqgVAbibZAqpuQGvKLSP0hZDwA+lEiPUy5AcR3bQ2kUND6GmCU9RDTSigfyni5h7V2js3Q0M79nDlxX121Sncx84LaIGV/iRF0ckANM1SUL/Mw7EttU6t6YeiBFIqa1swY9Z0RZqlF6U2kKlV7o61QrtYd4LrOjdVjR2XbH3Y4HsF8zOJZgD1SKN9hqkj5aZZOgaZUjow3hwPOMd18+qpQMxxfeZVzAzRGnTF8t7bWfKKsUgXbKmhie39K600Mpqrs8M6gKNUG+6raIZQ9Gr6tuZUNmHTzFsdS2ASe+z5IU576iR6FwCjIrOYcxj69HWNJjKPGRNfcFD30Crho+g39n2fqu0cXFoMxecmappgcDqwk804YacUulk6mpXJkS397eV4fSULXBu6ZJYynPPMYo5uV+L6tqZpQcHMa0Jh6F9M2DLhpg26DGi/1s1q2RGqaU1qQkvNa8Ghqtuss7pZ2lV3lXoZfqPADx2+r8n3GkzpCT1LyGRM0FXATmv5vACCHFslMKVmf9pnrxmwaed8qD7NrhWThI46Z1Sir2suM6QJhhCO6WN3qrqJ/mdqyfu7C7g+8HC7AMa7Tn/+LQ+zvG4A8xf+wl/gN37jNzhx4gTf9E3fxLd927fx/Oc//1ae252pdcpXJ7prJ8UpJRExtvkvwEqDAfK/bp/rKE7Q6jUiSUWUD+h5g11IQKObelmVMxqHR+8HQs+KAF9rzNxjFqp1zUpEl5EdymtiJvSy/DAxvydRbml0AFOJIH1wrhLr5GEP3wO7UPiBYXKPaEF8bkh61bGJFsodTbWlUAHqzYQOCjfVFEqJtiYlhg/P6V+QLlR5KmdyX8HW4Rb6sqzCLbNilnbLoQ2BWQsENa1+aDkws2aJ3AlW289Dt2nP1gjo6a5191of5H12n9WamYJy0iVTswXOGUaPOnzPMHuo5v77LnOlvovhY9AMFP1LgWgVodCoYEjHg85nTd0s8f6nq9sJYuaPngagf8+F637NcRfm5pVuIorVgopMgBUpAK3TGOsT63ayrFISelTrnrikjsFKK5PEQVIHqGvLuJZuSkAzawFMpjwjU5LrZql3aZKlSYZ5FEF9rhsuNxvsNQN6umbUL9mx4qA1bzNOfDLs1z0O5j0BLiZyuj8mJo1WCa0ihkRfVzTJYkjLXJkNXdLXFYVqKFQgJsVB7GNIFKphy8wZmooLjAhJMSwqylFGoxKzuxy6gXwvYibVkoGQ8nahUYuD2Mo1rHVpQ+h7qR0jVEwkawBD6mWkzNJsOqoN6WAl7dCNJVpF0sJ6sLM2r2zRiEYpatzEU1wSxsRiknNuvklIiqqQMWbDlGtdGMnO+dj0BJMqIyWFqo7HkztRm1vfBnzmA5nrBSXXu931UpvXqdC30+IZbgDAOOf4t//23/La174Wc42f/WdMrWtcQrjaVUyvaFtL96t1lzFYdWa64EulV0LMjmamlHRF2tV+gNizsoLURJqNDGLCzRpMgpAboSAk0D6SHVQkI12YZNVSL1Jc0JIY7EUfkx8G0ZY0nlBYUODmkZAJOIkW5vcq3BgG5wMqIBkoHVXXgqmFxhBdq4OZtufto3C1jVCwVFLMnrvBaDITHYu65kbdhn52dDFsC146gBNaO+a1wNAUogBFa1G9gnBig3qnIGQa35OVsGwsOiVTBsysQU/mqOlcqHvd32j3mTYePZ4z+KRCxQGojEfGZygsLE5IpymMJYDTD6C4bMgePdbA3Mn6nof/5I7mwNyqulUgpgMs1/P4U4GaYxBzc0ovPMZ3RiTtGJEbVArL+1JyRqjHCekawNXP+bgKQOxoZlE6OtmkQVcWXxsyE5iEgk2zwCmPIeJU4KQdUyfDYRgsKWNVspSti0mXo1IFy5ad0zfiSHboe1TR4pNh6jMeGW9Te+kkNEFjVMIpz6ZZMNKLVqhfrVHO9FIfUqiGmDRGeSYpo68rYpIOT0iKecwY2poHN/Z4fL5BNVwwTj2qbcvgMVn7UmUlrIgYUW1HKPbaxamyEoqyVqi6vbYhoJIWypizxH4uLIfNnFBoym1xvqw3Fb4PRAhFwlSK4kqiMAq7sCgfic6gncFOazY+qchmDj/I+MjmCS71B8w2ci7nQwBy7bkn22cSCi7VI4a2Yqe/4EDBIh1rYO5EPRtChJ9pverrzwHw62+//k7Mk9WNXqv17a997a3uwlz3N+rZ7C523RUD6FbXEpNoKzrReIqr7kxMS7H4UmQOqxyYdbesrv0Pop+pa5SzZIc1zcihmsjidIEpI9m4QTcRM2sw04rYc6ioRd/SrSyhUUH0KtWmwTSyEmfnoBsEYNC6li2kbR8K2+bIRKoNCc3MJgnfV+JK1iTsIlCPMvJxIh8nJvfIRN7UAmiiVaK32bT4QjO5X7P7vgZal9DFrqF/agvzyMXONbQVQWqIQcBLp10JYXWNAsttgCVtTFmLKgr8PbuUJwrqDY1diGYnWnFRi0ayWsRowKC2cnS5IS4z8wo1FQvPFCNKa6hqzOXAwEeS2kAFQ7mb5KoGKLflPVcnAvmeYX76MxSoH9dVtd59udkC/ttVTwZePt32N9KdOa4bKxUCKoalCxkxQmhF+zGikiwAJaOIVqOTWdLLFCtDGFrDFXXVvoU25WaJ2Bj2Fn0u50MK3XCq065E6cjs+wEX6xEBARVNMvhoiIjlPtB2UhJldCyCYxEzpj7DR8OVcsB4VmBtIHixJ66CZStbUOiGwzBYgqY6GTIVlh2YWcwJKAZKXMiatUm8I5CpQF/XGBt5sHeJnpEohiYY5sOM8QOG3hWHyzPptCsFPpB6mdDHQju+xiSifGevWizEWWJmmd8/IGSa+SnN/EyiPuXRfU9sNCYPhEV7XpWmGRlhImzmmCpHRckKs2VaUrlNpZnt96hKhwIe1VvcNThkYGvpMjV9FsFhdSA3nphgLSbmuI7rplfXaYKnp2vpwMetpn3dzDpeElirFCKoeHVYpVYre2TDMuBS6fbSxfQptCVg1U3Q2erxbvJe1Zh5w+wesYO0C8lsCS2ly7WrSDG3rbq9HbBiJAwtZt5IropR6LmI7ou9JKJ8A24Ryc9NoV21MqUn5AWz0xa7kBtx01fMzyb6jwtlCiVam9kJjZ0nYga9C4niIDE/oUXsv+3a81TM7g+o4Nj4pHRvTJ0oTxX0D4eoqiaVlXRdwqqDtbpe0t1ahn921dHxrIWtDeYPbKFCwk09dqGws4bQszRDKxk6IUGTMK39c7KamBtCrw+7fex0gJmUqIPJykDAgx7PGX44ke/3mdyXU21BMwDnE9m+ondB42aJg1M39c/ruI7rpteNApcne/21QObM4QsBjjsxz6R0647V6l2U1hKaqIQehpd7Opl0D6IzKK3QtVBilWeZM7ak34YkLlwxor2i2I+omeHi/oiBq9EqsWkWlNHRGOl07PkBTTIsQkZsheTd5NqqQBUtufbLx5u263JQ96m85fxkRLNwpAL83LLQkXFTMHIlWkWc8uzYqehbWh1MQEwEIhpDIqA4HzYlY0Y1QiHTDTtMeVHvUUAczxhAFQ1NMMzsgOpkZHbakh3kmEklIMYauZ5Bcs+UNfK4aTPaWt0nShH7GfO7ekzutkzvSzz3pZ/E6kgVLPPGYVRiVjvK3IlkprL4gSGchcWDGhr5DHWlKS4Z+uc1pk4Ul6Desvhac54Ner0apRKZDuxnPayOTJucmBQfv7yLtQFdH2sq71S9462/xqu+/k6fxa2tdS3M061nE3iBYwBzVXWuV53rmLJOaE4hyO8hiMZl6X6lVhPz1sK3C1NUsWldzKqrgy/bbdV0QTYe0IwM2Thg5p5QGJqRRaUeZuHRCy+8X2cIPYeZ15iZ0LBUSuT7HlNHCi0redEpjIL+J2foyUw6D4Ce16iQKHcVg3PihhMKKC4pRo8E6aDsiBFAB14WpyLRabJJojiI2EVE1x2vGAaftLipuL/olPBtW74YFJi6aV3cwsotrDM6gNZNrBXqh9BaILMU47Ozyex520Sn6J9btA5osi/lDG7ihbrmo0wEEFqbWjQkowg9t+zKxFNDnFKo/bFYKnfXBMiqmp39nNhzzO7u0QwEuPQue/Y/x1HvHi+Z3em61TSy26V9ubZuBo3smYKXJ9rXEwGZYxDzNMtH2lAVlErErO3Up1ZP6aPQwZrQZrzIeBIzgwrdgk/7f5dvlcKye0OE3sWa0Ud7jPMMTsGFcsTJbLK0P+6bSjocRBYhYxEcdTRMmxytEuO6h9WBvq1ZBAmIDEmxVw1oguH8ZMRk3IOppak1BEVoDKeLCU5FCtVw0k4Y6QUNhoPQl3BHXWNIlEmjiYx0uaSXzWIu1sqINqezXf5keRfnq018NOTWQx6JQDO0Au4yi/YCWqDNZ/Fx1doIrYg/GnEKtXoJXg5e7HnguRfYyhdoErUxjJx4oznTY2YiMSmMjtTWopQY5qg2z817w3zTUp6wAmIWkO9pql0IE8esNnjfZo7lNf2sofKWyTwneINzHl0eA5g7WZtb3/YZr4O50eqoZl335V2nP/8OnxE0tQfOX9e2xwBmrZL3JKVlgDCGtChBa+kSNEGaId0kHCTBd11UnrR0btockiUQarx0bjrr4NSgypr8wpzoBpiFdFwWJ4W+5mbitJJyg5rXqCpiZ3G5+hT7GUlLaGXSK9eypI2YAkzmULVe9zGhD2cMLm5yOBCnrWwaqYxm55MNxcUF9VZOPcrQNTQjETK6KfheIhkYnGuEFtbef6uRuJDZOZIf4yRXxfcUfitHTxdtkOQaAGhtlrvuVvItCIxx1c3SCkYD5g9uYecBO2tERBkScdi+59IveeHJ6BV3vOWY6yahqoCKkWQ1zU4fv9lD9xzm8pg0L8VkoNUrqekcnTk2H98nbg1ptns0Q0t2mBjNj0WXn8l1LXh5NtHHbiZ4uXa/T9aNgeOOzA2V1aTMLh2y0K1mMQptlc6m30e64GOVWqCjxUq567x3qfBJswwvVjFiJxUn/lCTdM7HhifY3ZryEXOSTAfu7h0sgczM5xw2BT5qZk3OYVUsJ+yF9UxNThXsMhgyRE3pLZPDHqk09B43FHsa31dMHoJL1ZChrZj0CkappAyOC80mWkW20pyBnjGLOYVqGOhq2XHZC0PK6OjramnrXCjJpGmSoWcaBrZmahtcr6HBUe2A7xvMol0wjKC0mNzQ6oSUXWkekzH43R7lbsb+Q4bwkglfcPo8VkcGRrpUd7s5MSmq6MhMYOQkA2e/6jMuczErsAGjIykpahOJLuALz3TTYg4sg4c1w4cVvm9phorpcwV41puWiU5oE/GNIc4tk5kjb8IT/ZUc12dY/frb7+Lr3vDqZw1Y6sDLua/+/9yS/d/17958y3RIxwBmrZTRKKU71paAF6WEBtX9nNoBRev2f0Vq/GoSDpDikhqlull/itKJCQEwpKbB7I3J+w4/sESjqDcU2TihfEJXvhvT2iRmcTaLPUfSiug0zbbGzqOsFKVEdujJHjuAw6m8h07I7gPFpZqkMtw0EHqa4WOe7LAm5pZkNb0rAV+IS5mK0DuviBnUQ1CnBVgV+50NMmgP1ZbCVqJrsaU45ixOZtiDHmYya53I/MqRzRi5Gkra/0tNUXf9i4L67i10HcXDf1wKLWyYEQorK29KOOWq7XQlxbI7k9r3m3JDog1fm8rqXswtamuIrhuxe+7CLtvrQ4rouiEfz8mBQeZoXOR4unbn63aJ+b/2vu+8rSDmqNoqPxGI6epaMLP++3E9QbXujSmtWSi3QKZrHCSlWhctoQqrlmKWjBVtjG+F7FEE/Elr2b6lprlJzc4HNY/v9Nh7bqL2hjOjCVtuwdjnjOueBFT6jJA00zqjCZqUFCEqfDAEp4lplW8SouZw2iNVBjM19C8kho95YqaoNw0fP72DVomeaTgs+tLt0TVnMwFNl/wGAAM7bnNfHFda8FLohkwF5iknJM1Ai9XyCTth284Y+4K+rRkNFxwmhe85Qk+vgiiDLCbqNktHxdiaISBjstWUOxnTM4bZ8xqev7uHbuldI1fS1zWbdsGh77GIGT0jZi11MNRB6GspKRlDWydSpZAuio4olWiC5PVk08joUU/INdo7yhOJOC1IJuEtKA/FRJPvQf+j1e392zuuq+odb/01vvRXRew++PlnRrV6supE9AIGzt2y4zxZverrzy3P4XqqAy1veuH/BP7nrTmpF341f/nNXw3IGPulv/p7T7n5f/0LL7nuXR8DmPVSra1l7MBGuyqmupWfjjrWghm4ygbzKntlY1b6mK66yXpsaVU+YC8cEu/dxvcto0f8Mu039ix64YmDXIK2nBEb5cziB5Z6Q2yPSRo3Dbhxg700hsmsPYYAJfk5YkpPPSqwZcQsWk/7mFAhku0FQt/R9DPcRKhmo0dFl+MLxeKkuJN1zl/5ODA/ZWlGUOwhg0pKmDpRbWn0A0M2Lh1AalqXtij/d3qYjpIHK3qdtYQz2xw+UGCrxPCRIKuXKeEHYn0ccoUOBl0n3LjBVAG1aJY0PwFHbQCc1ZIb1n5uug6EYQ5hC30wkXyaDkBpBXUkqQDzhXze4wlKH1PIPhPrTtHGblbdqu7LjdYxePk0tZ5HEiO6s30Prc2+RihiOpEQzUayHZhJ6EXT6iAlxyQZLTbLXWc7IiYBIVCci5z6/SEXVZ/xgwqjEyFqpk1GiJrCemZ1RkwwL3NiVMSgMTagtYCemBTlIkObSPCGMHYUj1t6lxKjRyTRPhnFqd8veHR7hN6pmYWMx8otBqZmlAslq0yy4DXSJZPYW2bQmDVL6ToZ6mSISS8pZV1HZtfN8Mlwoj8XMb/rtQ6ZrWU+rO71IS31LipFUlQko6g2NPO7Ew88cJGNrORUPkWrSF/XbDsZI4emQitx7bxQbTCuN5iWOTFqYlQYE8XcQEesCWgFJmuonWeqEpOHFCGznHhforhUsvtHkXLXETIFKEyTcLOIWTS4cU2cz27DH91xPVX917/wkk87gX46NftWAUa8fXWczhnsdtbsW88tz+FG6i3v/zM3/2SepJ7oM7gR0LJexwBmvUIgdX77SvivKSXppsQ1MAMrFzKtUCZb7SPKa2g8ylkBMh2FrKs22DJVFSpGsosZyvepdloHtPZGrrwhFAZde3Fw2enjB4Zqw2DqxPDxGjOtMQdTubE3DakDVK1bGtaC1uj9KaQhs1OW4jAuB0RxXmvfkxGrZe0Vdi7bmEotu0PTuzXZQDQwyQqg0R5QEJwim0bmmWJyr2H4sQ3U+StCJUtqBRSatevYdqPIHMo56t0eOghomt2V078o4Z71ZrsqmMkxSGI7uhS2WiMTghBRTYNWiuAydOWXWTHJavS8IWzkqJRQe4crq+vOPCBFATKdVmndTe647mjdjC7M9QCXriNyuzoxd6IL03VXngoIHbuUPfPq9HldknsykVhYzKIB4qqzDnLL7xwrlQJEI6NTs9K/dFbMRpGcRVVheRwVI8XFio2P9Lh8wjE2heg4ooCZSZXhg0GrRAiK4I1M9ltRv/caX1lSI8J1XWqKA03vYmL0aCDfk0wxXUd65xK9cyMWG4pz0022igWNk3v0PGT0Tc3QlMvrsOeHOBUkjyapZdDmQFeSIaNia/XcY78ZoFViERxKJQrnmfYj03sMg3MF2aJeUepaG36hT2twakkvrjcV9amGs/0xZVhNc7RKNNESUWgSVZRcnCrapcFBSmCMdFqUShidllSyrnNlbSQMGhZnFbNLBl1nuKmndxlCpjF1JCmw81bLGgIxrBY7j+vOVTdZvhVAZr1+/e138aW/+nu3tQsz+Pm7brgLczuru+brn8HTBS9wDGCuqhQCoJedlNR1TDp75C7QsvHCUQ4BhbnablkroY1Zu5xU///bu7cYKYs2D+D/qnoP3TNNTzMMMLIwkVV3/VyMMSg4erNZJ/Kp8RS9IWZjjNFF4cLEeGGMeomJidnEGO/E7F5I4hfBxKCJATzwBVDIoAKGuPEAH2EGYQ7dPX1436p69qLe7p5WYJDD9HTP80tImOl3Zqq65+mep6vqeepbx0TSO8b36r1SSBuIsxMIpspQxQXQPSF0t4INJGJPwoQC1u+CN6UR5TwEExrpk1OuTHBttYXIbXPTurFSVOvFQhZUqUAIgczJCOP/EgITQJyWUBkPXkVAVl1ZZusJ9+5R0qPGL2qQJ+BNGZT6fRSXS0Q9AsEkIfUbwS8RgqKrqqO7JIQmBHm3ghP3phFOptw5ot8lAvWksL7FTYMWuDKX4YSFDZLyoknBAFUlxN3uc9WsRKZoICMDoS0o5cFKAVmJG1v8tIGaLIPC5NfbkGsoZwhSAvHCNPxqBIxHjS1utXdHAfeYeY0VODY31BKQP5PIXOpqy2xvJ5tNtS1iXctHZ1zNudB2MnYRaj3CkqpZUktQLUmxjRWJWjllkXSbB5BUIqNG+fla93nAnYMMFUhJt91Yu1X2np+riHIpFK5VGOtTgCAoZd2XGwVrBKjouYaagmA8gogkUBHwywJBQUBVAL9ASE0ahGPxtKpobkVJxQbX7PNxCimc6e7GeCmNvyweRV6HiEmiZAOUTAAVuCaXFeujAh+TJo2K9WFJYKHvmmX6wkAJizGdwf7xlZCCkFIxxqrdqBoPKU8DC2JUeiUKAyEWFlOQU8lWrFqp5Nr9BQCehE350GlAdceoGA8V42MiTqPbqyYJlKvGZiAxZUIUdYCS9mFIQkl3mF8KgjYSxkhEGgh9t81MG+VWYyRBeRY6FyP/zyGE8ZH7P4Pgt+Q1WUqYbvfGpk17kLEEgd8Qa3fnS34u54/w+exy7zdOYKZLzneQMWg0M2kkLACmdYmvJTeNxKb+udqKRjVyyZBUgFT1JpcUx43rjQWRBAoxZHEK4ekQYeC7zsGB3xhXrBGctEC54qppJduw6mrb3GorL7VxGSSrPRFSxyfg/5OrDRwULeKMgvUlVKhcrxm4evckBExaIhw3QNWtXqTG3F5sEwD+FEFVLbyygfUlAIKMLaQm+CWLOCNRXhwg/EU0Jy/J6lS9RPX0+1BKeGUDYQkxPLcXPLaQvkTcDYQTFuF4BJICJq2gu334Z2LX2CzZNmYDD6pcTbouA6KqXcnNZO+57kmB/CRxzKQhJouA1c1jrCWZbM46V1JSS2rafXvYTObK9jE2M/IkSCkISW5lwMJteZWAqLoiI5DSrR6I5GNrGudmpi3QCOvOe0Anb4ChtiLjGi2KpNeMKsXo+06ga9RH/to0qr0WcYpAgU2aEEv4BQlZFfBKrlhLOGHhl8h1no/c87gwbtttrRImkFRLswTbFUBNxVj0g4d/LOsGFmiMdGXhK4O0517bAqlxNtUNSxJSWJSNj2IcQpNCxqtiVGXhSQNLEpokTpWyiK1C2osRGQ9l7aMcu2QnTMeoZnxUc64apyzHTWceAbiiLlYAEq7JswSslhivdsGTFiXto6R9aOsKBZyJulGMw/qXT1TSkMmhUykIltzqVBR57mMrEPoaStokb3IJjLUSupsQZ1zRBUgJUY4AIihrQaHvxiNcXyDWen/mXf/p1931yYFLWrWprcTMqkvYRtaOOIGZRngehPAaiUHtoD7QOLhf7w8j69ugXMllr9EvRkhASQjpQ2S6YZbkoDO+ezct2c4kiCAiCy9fgZgsuqTGEqhSASrJ8ruc/gQtGitCtT3Ute1itT400xKCph4rfuD+ny+i97sUitdlYJQ7SFpaLBFMSYQTGqpKKPe5vcbpsxY2VLDKjVVVDEJtXdUcS/UyxiQEVFnDdLlD9iQBkxKo5AAK/KTxWGMLXX07Xi3JAgDPg+1OIcp68AsaQSGG9VyFMW9K15MrEMHLVyFs6F4UQgVZityLupTu3Evo1yv/QCaPIRFs4Ls95LF7J9GmPHiZLtBEvlFMQClQFDe2t01/Z49ddXfF5z/k+nc/PO9tQHsnLq3YRsaJ0NXntoBNKxRS2/oEuBWNCC4ZqR1Al6hvJauvxChRXwm2oQ/KuDgg5Xp3CUuNBMO41xdV0sicsEifUTCBhO6SiLo9CAt4VYJXMVBlC78QN5oki6QPTa0NgHEJl6zGjXMn2p23kVLA+CkEkxr+ZIgoLVCohNBWIh3E8JWBLy2m4hA6eSOwUA1hrEB3ECPyFSraT7a4SRgSKEc+jJXwlKkfotdaIfA1rHW7AoI8uYItkdtWJxTVz8EILV27gVRQ7xNGFYWJUhqesihUXU+W8aALRAL5Suj6tngG1dhDuRpASotKOXDnUElAKoKZ8mCsQKwIZc9CehZCkUuWCLBlD37Z7RSoV4eLk8e8lKxaJUUXqMyH+GfT+RKVCyUvl3rbTF/zn//2N/zvkcf+9NezC+MEBo2Ox7GuAKECVV0DSCHcMnt9axIBIkkkhAoaCQsA6LiRyAgChAKy3YiXZhBngGByyvVwkRKm2zWEBIBooYJdnHOrF+NliNPjyVYwBcRV9zOSFZwaEShQVJ227SkpyylrXe6R9BTwXNNIEARJUBxDjIwgVIswtSwNGwhQSUCMaWAygjIBUlPSlUPWBpWchFWE9Bl3YJ4E3IspEeJuH1Ja9wd/JYKYAuAJQKQRnpAwgUClR8EvymSISXMxHTU6JdsYUB4EBLSKEdsKQBaxBwTjFWjfrRDJKQNSEpWMB7MogF+IXQlp0lDG7c2mVAjoCgRZWEnQ2QAmkPDzcfJOqIFXLAOxhQkUyFew3QpiIk4axWnAKkA1zhBpEzf9fsx3V+t+WHv2NwCAzuevyve/VI8N/Bf+58h/t3oYTfKF2S8sMfLDYvT/5bcZr+M4cWr3gy4XIES1UTWs9iZY40KQkUCUbBGr9YKpPa/H076pcNUuje9DZ3zAaqiKaWw9s+6Pe1mOQYEH0+UjCn3IokX6H1V0aevGERu3EpAUq7G1czeecj8j+SdqSU3szm+gVn3TWGAqAsUVIAqR/TaD8VhgLHKvT0XPg9WBW3UikTz3i/pK0hnlA9Rd/xh/eI9IucIGigBhUfUBUyJ4ExHKgUCXpxGYauP+mfaGIoyC8TRsWcOWAthKjPERCYq8pGACABkm1coE4FvABsnLJwGxgojcGRoIAFUBb0pDWIG4x8KmXF8aNzYCtISILMSYgakC1UAD1TKkqTS2I8eNx9PYqOn3Y7672vfDTAnHbG772jDwOoDX8R+PHLvqP2vXtn+96Gv1VPGyf97+x/69/v+1f/v8oq+dycX8fgjiaMJPP/2E6667rtXDYHPUiRMnsHz58lYPo+U4TtiFcJw4HCfsQjhOHI4TdiEXEye8AgOgt7cXAHD8+HH09PS0eDSXL5/PY8WKFThx4gSy2Wyrh3NFtGJORIRCoYBly+ZmRY/ZxnEy93GctF6nxQnQebHCcdJ6HCdz31yPE05gAMhkWb+np6cjfulqstlsR80HmP05dcoT65XAcdI+OE5ap1PjBOi8WOE4aR2Ok/YxV+NEznwJY4wxxhhjjM0NnMAwxhhjjDHG2gYnMADCMMRrr72GMLxwqdZ20WnzATpzTu2m0x6DTpsP0Jlzajed+Bh02pw6bT7tqBMfg06b01yfD1chY4wxxhhjjLUNXoFhjDHGGGOMtQ1OYBhjjDHGGGNtgxMYxhhjjDHGWNvgBIYxxhhjjDHWNuZ9AvP222/j2muvRSqVwtq1a/H111+3ekjn9eWXX+KBBx7AsmXLIITA9u3bm24nIrz66qu45pprkE6nMTQ0hB9//LHpmrGxMTz++OPIZrPI5XJ46qmnUCwWZ3EWzubNm3H77bdjwYIFWLJkCR5++GEcO3as6ZpKpYKNGzdi0aJFyGQyePTRRzE6Otp0zfHjx3H//fejq6sLS5YswYsvvgit9WxOZd5ol1jppDgBOFbaDccJxwmbGccJx8llo3ls69atFAQBvfvuu3TkyBF6+umnKZfL0ejoaKuHdk47duygl19+mT788EMCQNu2bWu6/fXXX6eenh7avn07ffvtt/Tggw/SypUrqVwu16/561//Srfccgvt27ePvvrqK7r++utp/fr1szwTonXr1tGWLVvo8OHDdOjQIbrvvvtoYGCAisVi/ZoNGzbQihUraOfOnXTgwAG644476M4776zfrrWmVatW0dDQEA0PD9OOHTuor6+PXnrppVmfT6drp1jppDgh4lhpJxwnHCdsZhwnHCdXwrxOYNasWUMbN26sf2yMoWXLltHmzZtbOKqL8/tAstZSf38/vfHGG/XPTUxMUBiG9P777xMR0dGjRwkAffPNN/VrPvnkExJC0MmTJ2dt7Ody+vRpAkBffPEFEbmx+75PH3zwQf2aH374gQDQ3r17icg9sUgpaWRkpH7NO++8Q9lslqrV6uxOoMO1a6x0WpwQcazMZRwnHCdsZhwnHCdXwrzdQhZFEQ4ePIihoaH656SUGBoawt69e1s4skvz888/Y2RkpGk+PT09WLt2bX0+e/fuRS6Xw2233Va/ZmhoCFJK7N+/f9bHPN3k5CQAoLe3FwBw8OBBxHHcNJ8bb7wRAwMDTfO5+eabsXTp0vo169atQz6fx5EjR2Zx9J2tk2Kl3eME4FiZqzhOOE7YzDhOOE6ulHmbwJw5cwbGmKYHAACWLl2KkZGRFo3q0tXGfKH5jIyMYMmSJU23e56H3t7els7ZWovnn38ed911F1atWgXAjTUIAuRyuaZrfz+fc823dhu7MjopVto5TgCOlbmM44TjhM2M44Tj5ErxZu0nMXYeGzduxOHDh7Fnz55WD4WxOY1jhbGZcZwwNrN2j5N5uwLT19cHpdQfKiuMjo6iv7+/RaO6dLUxX2g+/f39OH36dNPtWmuMjY21bM6bNm3Cxx9/jN27d2P58uX1z/f39yOKIkxMTDRd//v5nGu+tdvYldFJsdKucQJwrMx1HCccJ2xmHCccJ1fKvE1ggiDA6tWrsXPnzvrnrLXYuXMnBgcHWziyS7Ny5Ur09/c3zSefz2P//v31+QwODmJiYgIHDx6sX7Nr1y5Ya7F27dpZHS8RYdOmTdi2bRt27dqFlStXNt2+evVq+L7fNJ9jx47h+PHjTfP5/vvvm54cPvvsM2SzWdx0002zM5F5oJNipd3iBOBYaRccJxwnbGYcJxwnV8yslQuYg7Zu3UphGNJ7771HR48epWeeeYZyuVxTZYW5pFAo0PDwMA0PDxMAevPNN2l4eJh+/fVXInLl/HK5HH300Uf03Xff0UMPPXTOcn633nor7d+/n/bs2UM33HBDS8r5Pfvss9TT00Off/45nTp1qv6vVCrVr9mwYQMNDAzQrl276MCBAzQ4OEiDg4P122ul/O655x46dOgQffrpp7R48WIueXkVtFOsdFKcEHGstBOOE44TNjOOE46TK2FeJzBERG+99RYNDAxQEAS0Zs0a2rdvX6uHdF67d+8mAH/498QTTxCRK+n3yiuv0NKlSykMQ7r77rvp2LFjTd/j7NmztH79espkMpTNZunJJ5+kQqEw63M51zwA0JYtW+rXlMtleu6552jhwoXU1dVFjzzyCJ06darp+/zyyy907733Ujqdpr6+PnrhhRcojuNZns380C6x0klxQsSx0m44TjhO2Mw4TjhOLpdIJsQYY4wxxhhjc968PQPDGGOMMcYYaz+cwDDGGGOMMcbaBicwjDHGGGOMsbbBCQxjjDHGGGOsbXACwxhjjDHGGGsbnMAwxhhjjDHG2gYnMIwxxhhjjLG2wQkMY4wxxhhjrG1wAsMYY4wxxhhrG5zAMMYYY4wxxtoGJzCMMcYYY4yxtsEJDGOMMcYYY6xt/D/qwtPSWChJUgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAKqCAYAAADlgruKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wV1f3+3+dMuWXvFnap0kQUpQQ1C2sXUEqiMSIWxEQRbEGj2DCKP7tA7KJfxQoajYaoEI0xQcBOJKuIEgtWFEGp2/eWaef3x5k7ywpGNBhF7/N68WLv3Cln5s6ZOc/5fJ7nI5RSigIKKKCAAgoooIACCiiggO0A8rtuQAEFFFBAAQUUUEABBRRQwNaiQGAKKKCAAgoooIACCiiggO0GBQJTQAEFFFBAAQUUUEABBWw3KBCYAgoooIACCiiggAIKKGC7QYHAFFBAAQUUUEABBRRQQAHbDQoEpoACCiiggAIKKKCAAgrYblAgMAUUUEABBRRQQAEFFFDAdoMCgSmggAIKKKCAAgoooIACthsUCEwBBRRQQAEFFFBAAQUUsN2gQGAKKKCAArYBhBBcfvnl33Uz/iNOPPFEUqnUd92MAn5A2HHHHTnxxBOjz8899xxCCJ577rltdoztoW8VUMAPAdtTXysQmB8g7rvvPoQQ0T/TNOncuTMnnngiq1ev/q6bV8CPGCtWrOC3v/0tvXr1IplMkkwm6dOnD2eccQbLli37rpv3rWLw4MGt+uWX/ftvXx7pdJrLL798mw4gC/j+4ovP+3g8Tq9evfjtb3/L2rVrv+vmbTWeeuqp7WbgVMD/Hv/+97856qij6N69O/F4nM6dOzNs2DBuvfXW77pp/1N89tlnXH755bz++uvfeB8/lL5mftcNKODbw5VXXkmPHj3IZrMsXryY++67j5deeok333yTeDz+XTevgB8ZnnzySUaPHo1pmvzqV79i9913R0rJ8uXLmTNnDjNmzGDFihV07979u27qt4KLL76Yk08+Ofr8yiuvcMsttzB58mR69+4dLe/fv/9/dZx0Os0VV1wBaNJUwI8Dmz7vX3rpJWbMmMFTTz3Fm2++STKZ/J+148ADDySTyWDb9tfa7qmnnuK2227b4sAqk8lgmoXhyo8V//znPxkyZAjdunXjlFNOoWPHjnz66acsXryY6dOnc+aZZ37XTfyf4bPPPuOKK65gxx13ZI899vhG+/ih9LXto5UFfCP8/Oc/Z8CAAQCcfPLJtG3blmuuuYYnnniCY4455jtuXQE/Jnz44Ycce+yxdO/enYULF9KpU6dW319zzTXcfvvtSPmfg8LNzc0UFRV9m0391jBs2LBWn+PxOLfccgvDhg37j0Rjez7nAv53+OLzvqKightvvJHHH3+cMWPGbLb+t3VfSSm3+QRZYcLtx40pU6ZQWlrKK6+8QllZWavv1q1b99006geK7amvFVLIfkQ44IADAD2YBHAch0svvZTKykpKS0spKirigAMO4Nlnn2213U9/+lNGjRrVatlPfvIThBCt0n5mz56NEIJ33nnnWz6TArY3XHvttTQ3NzNr1qzNyAuAaZqcddZZdO3aNVqW12t8+OGHHHLIIRQXF/OrX/0K0IOv8847j65duxKLxdh11125/vrrUUpF23/88ccIIbjvvvs2O94XU7Uuv/xyhBB88MEHnHjiiZSVlVFaWsq4ceNIp9Otts3lcpxzzjm0a9eO4uJifvnLX7Jq1ar/8gq1bsfbb7/NcccdR5s2bdh///0BHU3ZEtE58cQT2XHHHaNzbteuHQBXXHHFl6alrV69mpEjR5JKpWjXrh3nn38+vu9vk3Mo4PuBgw46CNBpm/+pLwVBwM0330zfvn2Jx+N06NCB0047jdra2lb7U0px9dVX06VLF5LJJEOGDOGtt97a7LhfpoH517/+xSGHHEKbNm0oKiqif//+TJ8+HdD38G233QbQKh0ujy3dw0uXLuXnP/85JSUlpFIpDj74YBYvXtxqnXx63aJFizj33HNp164dRUVFHHHEEaxfv/7rX9QCvhN8+OGH9O3bdzPyAtC+fftWnx988EEqKytJJBKUl5dz7LHH8umnn2623W233cZOO+1EIpGgqqqKF198cbNnbP5e/vOf/8wVV1xB586dKS4u5qijjqK+vp5cLsfZZ59N+/btSaVSjBs3jlwut9mxtqZNgwcPpl+/frz99tsMGTKEZDJJ586dufbaa1u1Z+DAgQCMGzcu6if5d9yLL77I0UcfTbdu3YjFYnTt2pVzzjmHTCYT7eOH1NcKEZgfET7++GMA2rRpA0BDQwP33HMPY8aM4ZRTTqGxsZF7772XESNGUF1dHYUnDzjgAB5++OFoPzU1Nbz11ltIKXnxxRejlJcXX3yRdu3atUqHKaAA0OljO++8M3vttdfX2s7zPEaMGMH+++/P9ddfTzKZRCnFL3/5S5599llOOukk9thjD+bNm8ekSZNYvXo1N9100zdu5zHHHEOPHj2YNm0ar732Gvfccw/t27fnmmuuidY5+eSTefDBBznuuOPYd999eeaZZzj00EO/8TG3hKOPPppddtmFqVOntiJlX4V27doxY8YMJkyYwBFHHBFNPGyalub7PiNGjGCvvfbi+uuvZ8GCBdxwww307NmTCRMmbNPzKOC7Q36iqqKiAthyXwI47bTTuO+++xg3bhxnnXUWK1as4P/+7/9YunQpixYtwrIsAC699FKuvvpqDjnkEA455BBee+01hg8fjuM4X9mW+fPn84tf/IJOnToxceJEOnbsyDvvvMOTTz7JxIkTOe200/jss8+YP38+DzzwwFfu76233uKAAw6gpKSECy64AMuyuPPOOxk8eDDPP//8Zs+ZM888kzZt2nDZZZfx8ccfc/PNN/Pb3/6W2bNnf61rWsB3g+7du/Pyyy/z5ptv0q9fvy9db8qUKVxyySUcc8wxnHzyyaxfv55bb72VAw88kKVLl0YEaMaMGfz2t7/lgAMO4JxzzuHjjz9m5MiRtGnThi5dumy232nTppFIJLjwwgv54IMPuPXWW7EsCykltbW1XH755VGafo8ePbj00ku/dpsAamtr+dnPfsaoUaM45phjePTRR/nd737HT37yE37+85/Tu3dvrrzySi699FJOPfXUaFJ63333BeCRRx4hnU4zYcIEKioqqK6u5tZbb2XVqlU88sgjAD+svqYK+MFh1qxZClALFixQ69evV59++ql69NFHVbt27VQsFlOffvqpUkopz/NULpdrtW1tba3q0KGDGj9+fLTskUceUYB6++23lVJKPfHEEyoWi6lf/vKXavTo0dF6/fv3V0ccccT/4AwL2J5QX1+vADVy5MjNvqutrVXr16+P/qXT6ei7sWPHKkBdeOGFrbb5y1/+ogB19dVXt1p+1FFHKSGE+uCDD5RSSq1YsUIBatasWZsdF1CXXXZZ9Pmyyy5TQKv7XimljjjiCFVRURF9fv311xWgTj/99FbrHXfccZvt86uQ71fPPvvsZu0YM2bMZusPGjRIDRo0aLPlY8eOVd27d48+r1+//kvbkr+mV155Zavle+65p6qsrNzqthfw/cGWnvd/+tOfVEVFhUokEmrVqlVf2pdefPFFBag//vGPrZb/4x//aLV83bp1yrZtdeihh6ogCKL1Jk+erAA1duzYaNmzzz7b6r72PE/16NFDde/eXdXW1rY6zqb7OuOMM9SXDUm+eD+PHDlS2batPvzww2jZZ599poqLi9WBBx642bUZOnRoq2Odc845yjAMVVdXt8XjFfD9wtNPP60Mw1CGYah99tlHXXDBBWrevHnKcZxonY8//lgZhqGmTJnSatt///vfyjTNaHkul1MVFRVq4MCBynXdaL377rtPAa2esfl7uV+/fq2ONWbMGCWEUD//+c9bHWufffZp9Sze2jYppZ/vgPrDH/4QLcvlcqpjx47qyCOPjJa98sorX/pe2/T9mce0adOUEEJ98skn0bIfSl8rpJD9gDF06FDatWtH165dOeqooygqKuKJJ56IZhgMw4iElkEQUFNTg+d5DBgwgNdeey3aT57lv/DCC4COtAwcOJBhw4bx4osvAlBXV8ebb74ZrVtAAXk0NDQAbNG+d/DgwbRr1y76lw9tb4ovRgWeeuopDMPgrLPOarX8vPPOQynF3//+92/c1t/85jetPh9wwAFs3LgxOoennnoKYLNjn3322d/4mFvTjm2NLZ3nRx999K0es4BvF5s+74899lhSqRRz586lc+fO0Tpf7EuPPPIIpaWlDBs2jA0bNkT/KisrSaVSUTrxggULcByHM888s1W6ydbc90uXLmXFihWcffbZm6UAbbqvrYXv+zz99NOMHDmSnXbaKVreqVMnjjvuOF566aWov+Zx6qmntjrWAQccgO/7fPLJJ1/7+AX87zFs2DBefvllfvnLX/LGG29w7bXXMmLECDp37swTTzwBwJw5cwiCgGOOOabVvdyxY0d22WWX6F5+9dVX2bhxI6ecckorsfqvfvWrKDvlizjhhBOiSCTAXnvthVKK8ePHt1pvr7324tNPP8XzvK/VpjxSqRS//vWvo8+2bVNVVbXVz+ZEIhH93dzczIYNG9h3331RSrF06dKt2sem+L73tUIK2Q8Yt912G7169aK+vp6ZM2fywgsvEIvFWq1z//33c8MNN7B8+XJc142W9+jRI/q7Q4cO7LLLLrz44oucdtppvPjiiwwZMoQDDzyQM888k48++oh33nmHIAgKBKaAzVBcXAxAU1PTZt/deeedNDY2snbt2lYP7jxM09wspP/JJ5+www47RPvNI5+6+N88KLt169bqc/6FVltbS0lJCZ988glSSnr27NlqvV133fUbH3NL2LT/bWvE4/FIJ5NHmzZtNtM8FLB9If+8N02TDh06sOuuu7YyxdhSX3r//fepr6/fTEeQR14gne9Tu+yyS6vv27Vr96WDvjzyqWz/KfXn62D9+vWk0+kt9rnevXsTBAGffvopffv2jZb/p35dwPaBgQMHMmfOHBzH4Y033mDu3LncdNNNHHXUUbz++uu8//77KKU2u0fzyBOQ/L288847t/reNM1IS/hFfPH+KS0tBWil2cwvD4KA+vp6KioqtrpNeXTp0mUzUt+mTZutLjGwcuVKLr30Up544onN7u36+vqt2sem+L73tQKB+QGjqqoqcqUZOXIk+++/P8cddxzvvvsuqVSKBx98kBNPPJGRI0cyadIk2rdvj2EYTJs2LXrp5LH//vuzcOFCMpkMS5Ys4dJLL6Vfv36UlZXx4osv8s4775BKpdhzzz2/i1Mt4HuM0tJSOnXqxJtvvrnZd/n82bw+64uIxWJf6Uz2Zfiy2d3/JFY3DGOLy9XX0KFsC2w6k5aHEGKL7fi64vsvO8cCtm9s+rzfErbUl4IgoH379vzxj3/c4jZfJLrbK74v/bqA/x62bTNw4EAGDhxIr169GDduHI888ghBECCE4O9///sWf+//poDvl90/X3Vffd02/Tf3qe/7DBs2jJqaGn73u9+x2267UVRUxOrVqznxxBMJguAr97Et8L/sawUC8yNBnpgMGTKE//u//+PCCy/k0UcfZaeddmLOnDmtBnuXXXbZZtsfcMABzJo1iz/96U/4vs++++6LlJL9998/IjD77rtvYXBUwBZx6KGHcs8991BdXU1VVdV/ta/u3buzYMECGhsbW0Vhli9fHn0PLTM/dXV1rbb/byI03bt3JwgCPvzww1azUu++++433ufWok2bNltMJfji+XyTtJwCfpzo2bMnCxYsYL/99tsiac4j36fef//9Vqkk69ev/8qZ1Xy08s0332To0KFfut7W3rft2rUjmUxusc8tX74cKeVmM+MF/DCRJ+yff/45PXv2RClFjx496NWr15duk7+XP/jgA4YMGRIt9zyPjz/++L+uw7UptrZNXwdf1k/+/e9/895773H//fdzwgknRMvnz5+/1fv4Ir7vfa2ggfkRYfDgwVRVVXHzzTeTzWYjsrEpM/7Xv/7Fyy+/vNm2+dSwa665hv79+0ch1AMOOICFCxfy6quvFtLHCvhSXHDBBSSTScaPH7/F6uBfZ3bmkEMOwfd9/u///q/V8ptuugkhBD//+c8BKCkpoW3btpF2K4/bb7/9G5yBRn7ft9xyS6vlN9988zfe59aiZ8+eLF++vJUl5RtvvMGiRYtarZd3l/oicSuggC/imGOOwfd9rrrqqs2+8zwvuoeGDh2KZVnceuutrfrq1tz3P/3pT+nRowc333zzZvfkpvvK16T5qvvWMAyGDx/O448/3ipyu3btWh566CH2339/SkpKvrJdBWw/ePbZZ7f4jshrEnfddVdGjRqFYRhcccUVm62rlGLjxo2AJj0VFRXcfffdkVYF4I9//OM2T3Pa2jZ9HXxZP9nSeE4pFVmVb80+vojve18rRGB+ZJg0aRJHH3009913H7/4xS+YM2cORxxxBIceeigrVqzgjjvuoE+fPpvpFXbeeWc6duzIu+++26rq7YEHHsjvfvc7gAKBKeBLscsuu/DQQw8xZswYdt11V371q1+x++67o5RixYoVPPTQQ0gpt2hh+UUcdthhDBkyhIsvvpiPP/6Y3XffnaeffprHH3+cs88+u5U+5eSTT+b3v/89J598MgMGDOCFF17gvffe+8bnscceezBmzBhuv/126uvr2XfffVm4cCEffPDBN97n1mL8+PHceOONjBgxgpNOOol169Zxxx130Ldv31ZCykQiQZ8+fZg9eza9evWivLycfv36bTMNQgE/HAwaNIjTTjuNadOm8frrrzN8+HAsy+L999/nkUceYfr06Rx11FFRraBp06bxi1/8gkMOOYSlS5fy97//nbZt2/7HY0gpmTFjBocddhh77LEH48aNo1OnTixfvpy33nqLefPmAVBZWQlog4wRI0ZgGAbHHnvsFvd59dVXM3/+fPbff39OP/10TNPkzjvvJJfLtaqbUcAPA2eeeSbpdJojjjiC3XbbDcdx+Oc//8ns2bPZcccdGTduHGVlZVx99dVcdNFFkS1ycXExK1asYO7cuZx66qmcf/752LbN5ZdfzplnnslBBx3EMcccw8cff8x9991Hz549t2kEu2fPnlvVpq+7z7KyMu644w6Ki4spKipir732YrfddqNnz56cf/75rF69mpKSEh577LEtkrIfTF/b5r5mBXznyNvZvfLKK5t95/u+6tmzp+rZs6fyPE9NnTpVde/eXcViMbXnnnuqJ598cjNb1jyOPvpoBajZs2dHyxzHUclkUtm2rTKZzLd5WgX8APDBBx+oCRMmqJ133lnF43GVSCTUbrvtpn7zm9+o119/vdW6Y8eOVUVFRVvcT2NjozrnnHPUDjvsoCzLUrvssou67rrrWtk3KqVtJU866SRVWlqqiouL1THHHKPWrVv3pTbK69evb7V9vi+tWLEiWpbJZNRZZ52lKioqVFFRkTrssMPUp59+uk1tlL/YjjwefPBBtdNOOynbttUee+yh5s2bt8X++s9//lNVVlYq27ZbtevLrmn+uAVsf/hPz/s8/lNfUkqpu+66S1VWVqpEIqGKi4vVT37yE3XBBReozz77LFrH9311xRVXqE6dOqlEIqEGDx6s3nzzTdW9e/f/aKOcx0svvaSGDRumiouLVVFRkerfv7+69dZbo+89z1NnnnmmateunRJCtLoft9S3XnvtNTVixAiVSqVUMplUQ4YMUf/85z+36tp8WRsL+H7i73//uxo/frzabbfdVCqVUrZtq5133lmdeeaZau3ata3Wfeyxx9T++++vioqKVFFRkdptt93UGWecod59991W691yyy3R2KeqqkotWrRIVVZWqp/97GfROvn75JFHHmm17ZfdV1/2/N6aNg0aNEj17dt3s3Pf0vP98ccfV3369FGmabayVH777bfV0KFDVSqVUm3btlWnnHKKeuONNzazXf6h9DURNriAAgoooIACCiiggAJ+dAiCgHbt2jFq1Cjuvvvu77o5BWwFChqYAgoooIACCiiggAJ+FMhms5tpUv7whz9QU1PD4MGDv5tGFfC1UYjAFFBAAQUUUEABBRTwo8Bzzz3HOeecw9FHH01FRQWvvfYa9957L71792bJkiVRge8Cvt8oiPgLKKCAAgoooIACCvhRYMcdd6Rr167ccsst1NTUUF5ezgknnMDvf//7AnnZjvCDSSG77bbb2HHHHYnH4+y1115UV1d/100qoIDvHQr9pIACvhqFflJAAVuH7bGv7LjjjjzxxBOsWbMGx3FYs2YNM2fOpH379t910wr4GvhBEJjZs2dz7rnnctlll/Haa6+x++67M2LECNatW/ddN62AAr43KPSTAgr4ahT6SQEFbB0KfaWA7xI/CA3MXnvtxcCBA6PCdkEQ0LVrV84880wuvPDC77h1BRTw/UChnxRQwFej0E8KKGDrUOgrBXyX2O41MI7jsGTJEi666KJomZSSoUOHbrGi/JYQBAGfffYZxcXF27SIUQHbN5RSNDY2ssMOOyDl9h2sLPSTAr4tFPpJaxT6SQFbwg+pn8B/31cK/aSALeHr9JPtnsBs2LAB3/fp0KFDq+UdOnRg+fLlW9wml8uRy+Wiz6tXr6ZPnz7fajsL2H7x6aefblWF+O8zCv2kgG8bhX6iUegnBfwn/BD6CXz9vlLoJwV8HWxNP9nuCcw3wbRp07jiiis2Wz644zjMWJLsjm3xbYnhBPgxSXNHExGA9CBe42FmfZQQIMBsdgksAz9hYDZ7ACgBbspCGXqdog9qoaYOfA8CBVKAkCAlKIWwLIjbBEVJVMIkMCTKlHhJA+kpjIzeb2AbKCkQSqGkQBkCs9FFKEVgGQg/QAQK4QQYDc2Qc1Ce33JM19UnqgJ9fBXoz4YJSoE0EIYEISARw+lYildkIl1FtsJCuorEuiwAMusjfB/hK4KESWCbBJZESYGXMBBKYWZ8fFsiFPiWpOjDWkRzGuX5CClRQaDblm8HtFwPy9Rt9gNUSYogaRFYRnTeAAjdDgQoSyJcvR8l9fciUJgNOUQ6g8rkwPfBMPR1yM/4hP8Ly0IVJcC2QCnctkmai3yWzJtKcXHxtrr1tit8WT/ZFM+ePeq/Ps6Qm+d8rfXH/vzx//qYedz/98P/6338fsKvt0FL4MIZD26T/QC888zbX7lO74O27eCh0E9ao+ul/w/DTOC18RAZCUoggMAKMJsNfFuhkj5mrX4NSxeMtEB64CVABJCrCJCuwGwWmBlwyhSBqb+TWYF00ctLwOnkEi/LkK1LYBU52HEPpQR7dFzF0s+74HySwqqXCB/cPml2bL+RDz7pgNFgIl2BbyuseondAHajwk0K/Jg+VmDr95pXrPBSAWaT1Mstorb7NhhZsBoFubYKr8xDWAFFpRma1hWBBGEFqLSB8AQiENi1EiXAzOrzEJ7CTQm8BChDIXxBrBayFeCVBBhZgfDBK1IoAarIA0diNhmgwCv2Eb5+pitTYaQlygSZEyhTZ8vLnEC4AiOn2++WBogA/GIfTIW50UK6EBigDLBrBXZDeA0kBCY4bRR+TEGpi1KQKsvgeZKKVJqmXIzSRIYNTSmyK1MkujcihaJhnWD1xGsK/eQL+NvEP1IUS1L30J8BeH1mjHPWdeLZCz/m9ZkxAJ4p6c+Vc3ows6Y7J+1yP1bXCay74Apenxnj8uH3cdgz/Wk+/Vi8++Jc9fwnAFwxqwOXjVsLwHW8wSR254pZHZj7/xoB+Oy6eZyRO4q63f9O2Rs/Z+7/a+SUvdeTWVnNXw9aBsCRh/6ap96eS2ZFM8d8cDJ9PtJjsRfO6kXd7n+PzuGd6tcY+PBV0eeDGpZxzWmPALBwyhJ++/gpvFP9GpkVzRz9VArR61jOeKwIq+sEbq66ngv3eYxp9+vx2UVjLS6b3ZWlM/fl0P+X5v2Ru9Gm59s89rcHef6aiQz63XSev2YiQKu/8+d86S97c+UT73D1paPoG9zPkL++RM+xS+lrHsUe4zWBvPHRgRzUsIwn7v0Q8ekamv/UwEOVDmf/9RJK0/cBUOn9lMuH678vf/pEninpz18/WM8ZlzZQf8+L0TWqf/Aibmr/OZcPvy9qH8Dz10zk2LLPmHGVyUPPFen2HfkaC96ezAmzlvCWHAvA021/zx7jc4yxnmBRk81VTx/G3D3/sFX9ZLsnMG3btsUwDNauXdtq+dq1a+nYseMWt7nooos499xzo88NDQ107doV04xjFJVg2HGkIVBFAhkTGHGDeI1+yFnCwMrlCGyDIGYQVCSw6x0C30AlbcxGBz9h4RdpAmM1+dC+HLMxB8LTg2jQA2kAAfhAJsDINSOSCVQyTpA0wYojDIXpunhJEyOAwBIoU2DkAoQCGTMxMi6i2Uc2hYN0x9XEBQleoA9iWoBC+QFCGHrgLmVIpvKDeYmwbTAN/HalqDZx4mlPEwbXxGryEIkkSgqkFSCzLgQgTYlvGYiYgRLgF5uY6QBLehhKaoKRNJFtFEY2QAVuSFxEeP4emCGJEoAyEL4EYYJQkA00MYrF8JMmItAETgQKEQvJjxBgK4yc38LLGrOI+iwoUMoISZsANFkDdDsAfAGNDsLwwDCw0o1YCRnuevsPb2/LfpLHK78bvU3a9srvRjPwmtlbvX6edJzyywXf6Hh3PzH0G223Jdx89vhtuq+zb565TfZVnPrfD5IK/UQj309UhYVqI7At/awRKxMYGYFjB4iEwDAVgRWgygVWnSSW0c9DI5xfcsoVoszD2mAiYwLTBS+mIKYwmyQGgAXCADMGnmWSapPDqykiaCoi1wjCFWzolCNRYpLraBLYFsKHRHmOrF1MrK2BqEtgeIJAgIiD4YAfB8MHYekBeyytB+9WM3hCk4sgrl8hfiogcAUYCpUTZDsoMKC0cxbflwRBETKewGiWiLTArhcEMZA5MB3wkqCKQcXAN0HZYDngJRTSE1ACtgArrdsiBBiuwi1RBCkXY4Ot56VKAuKNIUFLKYJEgOkYuKU+gQIjIzUBKVEoS2GuMRGWwjTA8CBX5IIrsTAwPAE+mM1gpfV7KVckCOLgJxXCUsSbJTnhYRS77NChgdW1pdgpj326rOGDhna0S/h8JgQyESebtZCOftf8EPoJfP2+8mX95I7Dr2Hw8gAmw7Ad5rG86Ao+2OjTZdw4uryo11122O9Ixa6hz7g7GLTfXSyZHqPrpK4UnayPnTvzRBZObeS1f9Ux6dDdACgbchepl4cBYO9Tz3Re4Lr4MM4Y1sTYgc30bmtgGnGOOas3vz5zLp0ue4f3SnsDMW7sUMFpC6/m0ffWcfx+Yyn3HHb4WEKRtlg2jTh377tPy8ntuw/8a030cf4Am/QNF3DjmkeIrZ/JfWP+xD03XsY9B/6JTrsfyz0H/gn7nyfQO/M05iezufHN47GWPwDA0385mstfLaPywWs5deAFXGTEmTx8ByYPv4DKidcCmriMqt6TJdMv0Nf2Ln29rz26HxeM/hBOaMP/41mG129kx/OaOPWoIyk/rz1Mgpob1nLv4VM4o+3F7Hb7Y/Q3x3Bht7u4/vlizFQCSxqU3zebZSeOZlT1nkw4qj/l77TnhYMTjOv1DyZ4/ZmRMhhVvScA5/wqx8z374vakv//avEaE/vtxJO/PB+vRo8VzDUr2efCEh4ZfwAn7vQEJz7/Mf0+sHl0SZIjGcuFB+1MWbGefNuafrLdExjbtqmsrGThwoWMHDkS0LmVCxcu5Le//e0Wt4nFYsRisc2/UAoVs6IZfiMXAJJ4bYBvC6xMgHQClGUgvQCEwLdNMh3iOlKSDfBSNtINkE44mJbgJ0wsy0J5YYTG9cj/NMoPdNQjHyXJZBGej1HXSKIujkrGULaJMgTSD5AuKF9HN2TWRTblEOksKptDwSZRFQPC46ECyOU0QTHQxzIMTXZ89NsSEHEL5bqQjJOriCPCsb0SArveRbo+gSnDWUSJcCVCgpey8GMGZpOLMiVGVoECAjAzDkHMxMgG+HETw5DgEkZXCElLmOeYJxNmeHXy7fd9hB9g+gHSiRHELfy4gcz5OvLiKQjC8w4CZM5HNoYRqHzUCVDZHMIyWx8rf718wDZQfqCPaxiQbgl3b+/Ypv3kW8DXJTHQmohsDZnZlsTl+44uVV1ZVf3pf/y+gM2xLfuJ0WSgUpJEaYbGdSkSjQIRQKxG4qUUbqmPbDYwMoJYraBoTYBTLMiVCZQBCEh+oqMBytCREKtRkLPAyIH0Qfh6UG9kQWYkNetLwA4o3qGRxvUp8AQfvN8J7IDYZ5aOtMQVzeuKaJZJRFZSsl7oSEoGPdkj9LGEB34KvKTCjwnsen1MmQPQ0R8lQZkC6Qrc0gDlCqwGSWBDc1OckuIMdWuTOuIRkhfpgQfE6hRKCEwFuXLwUgrh56+eQJk6H95LCWIbwU2BDPIES+jnviMx0wLpgJE1MDO6TdIReCmBlwzAUAhHv2OUoVCGoqh9M80UYW8wsOv09ZZxn8AX+HGwGnRUyMgpAiM8XhD+Dh5Ioc8/sdrETRl8uLEzZkbwSVkSb0fJ6pUVCEciM5KMFSOIBZhpd7N7ZHvG1+0rX9ZPzn9lCEVNh1K558ssWfIW/Ewvn3rY73hsld7vv5b35vBd7uNMUtEA+Yg3cuz81N7Q736efutcDu41A3rBdQtXMGWf+QBMOrgH1y1cwcUhkTngltvhFlhXfCUH3RrjpRMu5SCO48Fb9+RS9uSdMTnKz+sADGF4/VKu6QBz9n2IF886vVWbh52qyUrlxGuj9swfUKe/e7WMC/e7i6ffnMHiSR/zs4fnc/HLMPaTcu4Blg/vw8ULp/IOy5ly8GRG/fME9nzsBUbfsxtn3eFRzSsMYxhLpl/ARXd15Om3ziW1jyYLo6r3pModCEA1r3DEGzmGx89g2qn3hOebiNr47msvYl4zgGmnlvHLq1fxRK1u78mnv8ff93ZZfcK5LHn9AiYd3INR1Xty7W9MTvgD1CVP5eJd72FS8lTK0neF1wN2uv1gak68ixmPLqPKHUi19Qrl981mwm/v4Qz0Nchf97rkqZijO1LZ+AYXruzFQafPoCx9F2e0vZhpbRfw0Gs9qH/hD/z5DwYP9BzFkdZf2O9Vl+l7Wfx7cTv+/BX3Xh7bPYEBOPfccxk7diwDBgygqqqKm2++mebmZsaNG/f1diR0epJ0NfmQOQ9KYihTYGYCpKsQXoBTYuEVSaSriK/P4ZbYCC9AGQI/JlHS1A9EX+h0pkCBaUSDZmEYKMdtiYJsApVzogG0aGxGpHXKVnK92aqdZHN62yDQg3SlNCHJRzIcF3wfpZRmspYJgY7AAAjfb0kjC1PKlOsi4nH80iTKAKteP3D9IqkjP1K3wa53MDKeTmUzJb4t8eMCIyuRboCR9QlsqUlOYKAMHTHyikysmK3bHuSJS9DazNs0o/PItxUpwHEQSmHkHGQyjkxYKEPqKEzORwQBwgsQTWkdgXIcvW3+POEL5CVMJ9uUzDmAIcEPdBrbDwzbrJ98D/FjIicFfLvYVv0kiClk2iCXs5BpA6sZjKwmA14K8AR2nU7ZAvAtndZkOGG6kqEH+NIF1wYVppVZzZoE5APYwtfEwmqU+I6Fv0OOdDqGXZLDabIxak2Eb+i0tLhOvRKegEBQ3K0Bu6dHTV0KP21ibTAxwkhQrCYkA66eUHKLddukC0gIAEwwMpoACFcgPYGZFrhSoeps6jImZq0ZRm80KQmEjuT4cZ0qlictwtP7CmKKXFsfmZF4nRzkBguURLpEJEIJ8Ms9yOlnu/R0u6QLfgKUqfcnAgF2ABkDJQFDn7vrGrTtUsfGXDlms77GgSsRcR9rpYWf0PsUPmTL9fn7cf3+NtPh54TCyArMjIhIVGBKPlvTBqPBQPgCu05gOALflriB981vyu8ptkVfuWJWB0zjTebtqUlL07jjqZ71AHXJUzm4F1w7uydPtG0GoHK/a7kQPcs/d/cYz71wG2bfG5l26hoq+02IyERd8lSuW7gCWBFFLQ56cwbcAs3XTWLEJfDrM5cy7KzTmU8dAE89/wxP/Qba7lPMhgWNHMJBURsPuOX2zdp98gvHMmqfPams0iRm2Ktl0brJnqlW695/VA3Lh/fhxbNO56K7YN5Dt3BT0SguuOFdLv/kF8y7bTycMZMqd1+WeQ9zwx4f8NCgxqjdTaMzLTu7aznPnLobqVmvMHf3GHBPFIF5t82LrD7hIX2uQGrWA/DyMPpeM4BJszW5uef2XpzMe3D65cA9XLdwBfMHDOSsO17RhOW+2fzjgn9Qtu4u4pkPmLIPxDMfkA3JCUC19QoANSeOprJqKUumXxCRuSn7zGen2w/mnrd64b05gyULO8DCFcAwOLUlSnXBa/cyZdy9vPZqMxd/OozKiddy3POfcMRpLaYQX4UfBIEZPXo069ev59JLL2XNmjXsscce/OMf/9hMXPaVCPUf0g8Qro+fsBBKYTV6GFkPp9QmsA1EoEh+nosIiXSCaEDvFVkElsSqdVFS4CcMAktoUgHhoNlD2FbLAD1QKKWXaTJhtiIfKpvTbQvTzoQQ+julwDR1NEepUJcjQfl6PzKcNVIK4XrRttGAXQatSIwwbTAkXspC5gLMJgdlGTiGjZeU2A36TZPXmAS2QWAbmGkfPyHxY5LAlhhpD2XqvxH6ZRNYEj+uCZcwTU28gkBHPsLrIkxTR6n8AIX+H0NCEDIc3wfPQ2RzGKapCVeoI8qfk/K8MKojNIkDsCUqo4mgiMdQbg4RD2eC8seXouXaG+gUvE21OT8AbLN+UgCwbdPHNt3ntkojK0RZvhm2VT8x0hKVBKcuhpUVWE0Ku0nhJsEtEYCBH1c0lSqtcWnWg3Pfhmxbrffw4wrpa8JiOECgtRkEoCytlVGyZbBt5ARG3GWPzqt5Z30H3KyJ38bDTHiIlQmsZoHbO01ZKkPzsnIyy8vI7NhMUGcT22AgVEgQTIVbLPBjCmXp4wkF0tPRmiAWTsb5YaREotPackJHcSSgwKwxMXJ6PbMZchUQmIpYrSAw9TpucfgedQVWGmS9QBkSL6FQaU08hEe0X02qQFo+qskAoXBKw2vgaTIifJCBjtKoRq1hFQHgai2MmzMJkkAbBycTw8gJrLV2pHvJw0tqQuXb+piBpdPrhB+SLRuUVHp5TBMma7WNdAVBqLlRUhNM84cT0I+wLfpK0e1/wkoZ3PiqyzUTPmeXtedyUHJG9L1ou4BftlkFwPxuY6PlF93VkamjbuSS7Cim7LNLq31q8qIxqnpPKhv2ZmH+eJOuA2DNqDksGPAoz5y6G9lf3c5NRaOYP6COavTg/Knnn+GSO/bjxfNO56ddiyiadF0Uibnoro7s8PFydmAgVYsGctGpHTnoruU89fwz0XEXHz6Jx90jmcEylg/vQ2rWA1w07ni82QlunH07lZOH836He7kGqD+1Hwt235dq6xXiHmw4/QqG94Wn3zoXMyQv865q5Mguf+F3q0by9OwEVfUDmT+gjiNHPcb1dy7jqXZXwKkD+PnplzNh4T18sCLJvdccz5RZDzB1wzVcwIeoOVdwyoIxra4hwDTgmbuO1wtnjaYHmoD2N8fwu1WdATi4V3uuW7iCSQf3oCx9V7SPk09/j8qJvZiyYAIXTexIt3dnU3PiaKaMmsCS9F3AsGjdKfvMp8odSFn6LqaMG8iwV8vYfUZbzOUXsGT6BfzDbaTnNR/yzFZKU38QdWD+WzQ0NFBaWsrQbqdD5474CROzLoeK6Rl66WjRfpAwUYbETxjYNVn8IgunxEI6AVaDi/B1epmXMLDr9NNKmZIgZmCtaYSa+pAshAPs/KV3vU2E/aIlCgGIWKxFN2OaOpLj+WBIVDym/zfD6TAJwlc6CpFzdDRHBa2jDIahj5E/bl6LY0h9rJhN867tkL7CanBQUuCU2bhFEsNVxDY4GDkfkXNx2hXh2xKr0Y0Ii1NiYDUFmBkPp9jSM3O+nhFzE5Kyt+qQ6+s04VJKi/nzESShRftR+wLVQtzyKXZ50X8+7QwQptFiCCBFS+pZft38uefJmtESDYuubT46I1veXp6fZeHGWdTX11NSUrKtbrftFvl+kse20sDk8XVTyL5LfBvkZVNsKxLzv0Shn2jk+0mPy6cgE3G8ZIBVL0msF5gZRfMOglx7H+GEwvJiD/NzG6tBE5X0DgFBkY9MGxhZgdWgJ6LclCY6fkIhnTDtyQGEjg445YHW8pW6DNntXV5d05Wco59rHcsaWflZBYniLN3La9m34iOeX78LH761AyoeYBU7BKuSeqAfPhrzERHD1ccWgUC4WgPix3VbhC8IbJ36ZTaLaPDvFivcdi7WeisyIJCOTgMzM2BmtFg/V6Zw2wQYTVJHlhww09DUPdAkSIJon8VYkUD4kGvvg1RYNSZB1yx8HtMmB2mhU97y1ybc1iltmYRSEpQVfjYVWPp6iYw2FbAatH4mIjtK/++UtaS2BaFRQWCD1aBJmFui2ypUGNkCrCbRQrRcTXo8N8uH0yYX+kmIfD957oK53HLUlVS2H8dbn1zMhtM3F/qPOEM/D887/U1W/XQg9187gOcnatLizW5JmxpevzT6+3drOzO1ZA1V49NUz0yysGN/htcvpdp6hcl/vYY7Nu7IyuefBOCgu5Zz5KjH+N1fu7FhgY58HDJIR2Ceev6Z6O/8Z4ARVcN4fuIuXD9lNJfv8Iso3e3ILn+hsmFvAJaULGbDgkZGVA1jSclimsYdz9NvncuBU3dmRNUw4u+9yJK+n3DugscAGHDVcA56cwYHr1nGW9aDJGcv4Z7bezG/21iqZyajfaRmPUDTuOOjNh1013KWeQ/T1/11dF1Ssx6Ivq9sP44R9+7GvEFzefXt9xnQZxeqxqe5rnj3aN1N95vfNp75gL7dp7Bk3Szqkqdy7eyeTD3sd6ycmKXk7rMAnVoGOhrTNO54Bk1/nyUli6Njv3rHgZx2nBO166C7WhzqLtzvLqYsmMDFQ2cwZcEElpQspu/nP+Wqw+/dqn6y/ZuRb0v4AUZjDuEGoauV1l4I10cohcx4GE16UO+lbAJThrNfCpEfeAd64C+8AJlxEb7CtyQqZurBsx/oQXOY8qUcVw+ohdTRFMuCQCFiMUSqCFVShCotRlWU4bcrw+tYhtu9HW7nctI7tcHpkMKtSOK2TZLrmMJpX0R25/a4PTtB2zaQzzlVgR6k5/U2vt8SdYgIQ4AKB/JKCtwSGz+hZ68SG1zi6x2MZk02/OI40guw0h7C1yTPqssRq/UQgcItCp11PBW5pgEESbuFuPm+TvXKXxMvNDnw/dbkxfMg8FvOI/9/4CMMqaMlfhgxyROSTd3eoIUcCtliWpC/BnlsQl6Q4geZRratsK3JSwEF/NBg1QtiNdpty8jqyEU+TcyqlcTXSQgE1iqb2EaB1axn+I2sTu+KbZQkV2vtidUYOmaV6BQwr0hFA2kl9P+kPNrsVINKG7y6pitNTXGcjIXrmGxsTpIsyaKUIG64PP15b+qzcVCCVLtmDuv1b4IOOR1tiCuEq1Ol8sTDbBZa+xI+LmVORJERIyuiz3mPFCMjEFkDI6dJGUpHKIwc2PUKu0G3X/o6YmNmBVYjxDfqd0MQVyhb/+1nTK2pVAJiPiIrMdICP2MgAu3QRkQ6BEYW7EYQrj6uMhVBLNBRk+Ywi8EOkLUW5gZLZwlItMbHA7tBi/ehRXskAr2OnwxACcym0L0yjEoJX0QOaXn9UF675Nu6HVbT/+a+294w+NojogH/Q4MaGTT9fQZNf19rP2Y9wNNvncsnh+/NogEWUxZMAGDsBa9G2x+8ZhkHr1lGWfou/IzBo+e/SLX1Ckd2+UtEXkCTm8oxOarcgSz42aOsfP5Jsr+6nW6DfkHlmBwfx37BhKP6A5qcfPDH87nyhIcYUTWMK094iCtPeCgiMyOqdFThoLuWc/bOT1DZsDdi1GWIUZdR2bA3Fw+dwfMTd6GyYW/ifzydedXzOXWHw5g6qh+jqvfkkEEHUTU+TbbXAbyxu043m3rY7wAofeYxLh46g77ur+kx6iamLJjAsJX3R6Rg3lWNEVnKw3rjn/Q3x/D8xF3wZiciAjKnaimVDXtH5AVgQJ9dWDHnnOi6ADSNO56D7lrOY6tGRiSmyh1INrEzS9bNAsAcnWHseWOj3+rgNcs2+y0Pums5S0oWM+Go/sypWsqcqqWcdpxO50/NeoDUrAe4cD/9Oz1zqjZbyJMXINr31uIHkUK2zWAaenAeOl3JrIvwQmteo0WvIjyttzCyAVZDqLUIAgLDRLo+Mu20RBSCIEylEjpFynd0JCVPWLzQgYswvStmg2XiFyfJtU8Q2Fqk7sclQil8S2A3+JhZH6EgMARms07Zko5uF5bESxgEncuwbQs21LZEJSAcyG/y0xuGTsWSEgytY8k/sGXO1/v1A4wmrbvxYxZOmYXwlHZDE5vslzDFTIGZ9lGmIFdq4MUl0lMt0SAh9PlKicrldCqXsQmfVkr/C7bgGCakjrp4fksaXj6qEvihI1kYxcpbLhubRLz8oCUSI4U2DVAtds7CsvRvYmxCaApohYHXzN4uSMxry7Yub+On/f83ZgUF/HigJDTt6IEdENTb+tEUzuwbuZCw1EhiNXp5pj3kOnjIrNSOXvngeE7hlAqUoRX2yobAbpkUcku0FsNYa1OTLSO+1qRRlWA26si8TlMzEM0GKh7werorNFgoO8DwQArF6mwZytWCeLNZIJSONBg68xa3SB8nH21B6JSvKMJugcgRpaBJD2IbDAJToZIQT2sCpwxo6ipC+2IfSjyMtbYmOHH97ghsMJolXhsPmTMw11s45T7ENHmwGiV2PeSazVDnEhINldfWQDalUKYKU9yUjrhsMlcljADpCaxGgfRkSyqcQWQdLQKiNDff1mlghA5sMiO0jbOBtp9u1Bodt1hF2wqlA2LITUhmAZvhksdP0oPzdYt1dCVcPmXBBC6umsHwvjdywh39qNyzK6uvfpKz7tBjmRR6kP58OOs/p2oplQv25pVJx8IqmFqyhuowkD33kuc46voDWPJwjF+fuZQ3n/g5/vT3eX7i6fxm1MdMLt6dQdPfZ8ppD8C9cMggn5enDuJnJ+7C5FUd4c7jeX7iLhw0SEcP3rIepK/7a54u3ZNn+k3g4HAAPrzvjUxuaMRYdCqgtSoH3bUcPzOMuz77KxPu/4TKQXtHmetLShZz3KsjmTdoLlXuQCZ06091nyRzWRARlglH9Wd+t7EMq7qfUdV7IkZdFg74iyOicuPy/uxlvUJq1itMOKQ/J17dm77XDGDKgr15fuIuGHc9yoh/HEXlni+z4OyPYOZNANSU3E15wykMmv4+lWNyHPnoXwDCNhtgQZU7ED9jsGTWAxz/1mFUbxJd2en2g/no9IUcvGYZPRr25umO/Tl4jQGkGVW9J3OqdETsL88OB4YzcsjTzKElSpaHkfDxO/eDD975WvdOgcBsipwLRQrhK7yUhbIkZl1W62Ky2k5YWUboTgaBZWB4bmjpi9akKIWSEuH7qJAUGLkgSpnKi8QxZZjWpKM2wjRQxUUEJQm8Yjt6OZlpfaubWV/bF9vaPEC4AUYY1/aKtEuZ1eCCAJHzMd0AL2WR3rGEhGUgPt+gB/h5IiPRxCAIIx+WpQmMEJgZvd/AlkhHEyU/rv0rA9tAmZqgCKVT1qQbaG2LF2ACypChk42+joGlQ+2JDT5GfSYyH0CpyJkNmSd4oQuYabbWoOQjMEJHjVSej22aTib1TFxEZjY1AchvSwsJ2mL0ZZNlyix0j+8jtpaUfJN9FojM18cTtfvwyzZbV6X+xwRlgnQkga2fQ9kKRdFqTQ58W+HHdY0Tw9HRiFy5AKkQrgBP4BaFxCSXr68iQYFTFuiBd17i54QamaxASYNcO1+THXTURihIlafJxGMgFLGYS26djUib+B1yNDfHed9oi7R9lGnplLGicPCOJmL5wbcyFEFCYTYYyJzAzGpNTiDC9C1Xp4FpJzAAndoVmODFNcEQMb1ufK2B/MyI0uCEp8lHYOmoiVVjEhgh7zC1s6W13gpJmY4QCV8fx8hBYmNAto0k3SkgSAQYJQ7B+jhmWuL72pggSAQ6FW5dDLNJoCzt7GY4+riBpSDQaXN5lzXpCZRUCE9gNOt3jR8DP6YwnFDAH2qQrEYRkhwQ4XkpQzu35VI/+mz9L0XTuOOZOqofZ93xO2AxlQ17M/aCVxn704Ecd9TtzKsaxjzg4tdeYUrDhGi7Ec8fwWTeBDThmXvJc8wNvyu5+yzM0RkGTX+fI64azNOl/TFHZ3h69p50/PAC3rukC1fPa0ftvn9kEjBs6P2s+ulAzrrD45lxu3FzY47ebd9mNU8yFlgyazG//o3JyFgTY47vTraXjkI07NObJSWLGd73RlKzHuBI4LFVIxl43Z8oZ7colW1O1VImdOtP1fg0w1ZqmjYK7S6Wj0LkoyJTFkyA0NwjT8IO6jiDyjXLqFzQEqX413JNVE6f/j407B1FnE4H7tzrEwaF6w39x1EMuGp4y76BhR37c8RVsKTkAZYAVfSP0tIeLbkbgCOuGswy60HGjR8FMzXxqszszUqe4+KhMzj59HN4pt8Engn323DKLazY83FW/AJgNN3GTwQcRg55mskNHZmKNiWYe8otlLNLRHKqrVfY76l/8snhe/P5G1ufSl4YoW0KKRA5F5nz8ZNmRCJAR2CEr0AqAls7b5kZn8AOQ9JuEBEZFTMQWYUIher5bSORuh2mJvnhbL9hoJJxvIoUbok2AZBhUUbflgR2fgAOsVpXF2wUAukGKFMLHo1cgHQ8lKEH5m6JjVNiIpSiuXuKVFMG6psQMVuThLyeZNPilUGghe8qHhXNDBImRrOLkXFx2ia1o1iYNhYYAhK6gKbMBC0REwMdxfIUfkwXPAOwGl19jDxpyeuADKO157dt6XWkEREbAkNrZTYxMgBQSrS2gw5Ui/YlT4Ly0TAhNXHMR2m+KP9SgTYMkOgoWEkhhez7hm+DvHxx/981idme9C8L/QNobvjhuSttEwRaJ+EIE7se7PpwUqoZfFsQGHoux4sLsuVhIctG/XyLrdfpUUYOAltE1sYoHfloHTHQQn/hgl0nyBkCUerg5udvspIgEJiWR67ZJp02MYNwsgcwLY/mTIzAk9hpvTzX2UHkDNxiqQflEGpxJG7CwyvzsBotlCRsI+TaBsQ2hkYAtBCCIAG5ckV8g4wIip8M8DMCkRat3MWE0ulxfplHkDUQrkAFAqPeBKkg0NcxvUNAUOKR+NgOjwNOqY6CBEU+ifIMlunTELMJHJ3K5tsKJRVIkE1a7xIZDhBe25yIrnM+kqRM/T9CITxtKw1aAxQYWnMjHaJolB8HK6e3C2ylyV8g8FI/LFOYbYl5VzUCL2+WQnT/tQMYscnnG27vR9/d2tH2zv0BmDxHk5c8Afh8wp50mrGUI64aTNUhOlJQTUuq1KDp78MagF9Tas3n8eMewv3FUxw1+UFOnvoex3U5hBv/ejuj9vobV+28iF6rnop0MoyD8UC3Ox6AV13mXvJctN+VE7O8+ta5DB93I4Omv6/JS8MpeLMTjBgNg6av0cRhfJqLOldz0FMzWgnh53cbyyzrQbKJnbeYRvX8xF0wyfA8LWYFqVkPsBdQPuhybv/scu77fxZDb96J2493mHObzZLf/IUlwKTGNLX3vxHVbVmCvi4L3+vIkV20pmZS4xvR9VlSsphBDYN5fuIuLCl5gJUTu3BR52qOYHB07COuGgyXwOtLD+fk09+jx6ibqBqfhpmDmXvJ4eyx5+MA7Pav7jz/Lx3pWTI9rp3l1izj+YZTAKIIDcCiARbX/HQub1mH8QgPb3YNtoSCBmZTBApcD7Mhq8mBEPhFto68GAZB3MRtE8ePS6SvCEwdkfDjJoRifWVJTXTyg2Z0+FgL7YModUpIGaWRqeIkXtsUytY/h+EEmM0eZtqPiEwefkhujMasLtToBi0RoZiJV2zjlMU0cVA63K+kwG+rC9upfPqU57VoYCCsSKY1P0ZaR5WUAC9u4JTHyXZIkK2wtH1l0tRtzPjabtrVOqF8G/yYgXQC/JjELZL4tiBR42M25hBZp+V4oYgfQKkWi2f9/SZpY76vRfp5q2jPQ/mBXj+vITI0ERPJBCIe06RHiihdTZMrvyWS4wchqdkkfWwTkX9QnMBPFgjM9wnfNnn5Ovi2SMb2RF4K+M/QM+8iSimyGxV+HBp7BPgx/bdTCpmO2sXKTEN8nRaz2/UCK5yBdYsg00FrX6zmUI/iEE0MBTFwSgKc8oBcRaDf6gJE0seuyBKUeKQbtB5GNJtY6yysBn0MBLQpTpNriCGaTAJL4SfASjmYFaF1q9Bt0xF3kM065OLHFW5K4YaOsSoW4MUVvqXbFIRRE+npyIcK56iUVMisDMsMaNtj6erUK9/S5MfcYCFcQVDs4RX7GCFBiNXpCJaKKfAkytT1Y4KYTt/KlYfHlIqmprjeh63wkgGGI7DqDKwaA4KWujOBrX8HN6VT4XTdG6IUPq9I/1aollowCL2uHw9Jiq4TraNVlsJLhO1p64e1chQqXiAwW8Lrxa9scfn91w5gckNHars+riMrlzxHttcBAGw47SWASC8zZcEEFnbsT6cZekB8+2f1zHh0GdcV787cS3S04KJDFrOwY3+en7gL8fdepP6qtbziWqx8/kna3rk/dw9tGTTvP1Y/hx+a91Neyl7KS9lLmTqqH97sBE3jjufhB/Q44u11n/L2Ol1va3hfTV4AXn35HbK/uj1yELt4qHZVy0deytJ3RfqUt6wHqZ6ZZMPpV1DZsHckdgeY3NCRt6wHo/PM739T1Jw4mr7XDOCiztWtlk84qj+3/Makd9u3Gbby/kiTsnJilsqGvTm4V/voGgJcV7w7VePTPLZqJM9P3KXVsY64anCrdgFMW10V/Z0/v4Ud+0fkpbJhb2pK7m5lJpBfJ78sT6rykZ9bXzuCW1I/2ewcvwyFCMwmULkcSBtZ34xpGARJKyIo0gnTteIG0lWYTbqOi9GUi0hOPjtJmRKUgbJN3BIb6SmUZUSDcOV5WsdhSFTMwi9N4LSxQ8IS2iMLgcx5BLat840dhV3rYKS1tbGyTQJLD86VockGwsC3dQTByAbYtZqkOKUWTqlN0rZQ2awmBypMHRNCF9PM2ysHAaI5iyUE2Y464iICTdasRh/D0cROBAp8hQhCzZCl0xuad4jpWTlHaWvNbEBivU9sTZN2R8uTirz1sZS6xosQYIaC/Hz0JYyeKCk0UcmndDk5sIiE+iIeQ6WSuCVxlC3DSJjCaHaRjVlEc0bvx3FbiJvcJAKTj86A/j+0YnaLCgTmP2F70cF8Wzj75pnb1I2sQF5+WPCTCr9YRwqcMhszo9OkrAZJYCmsJkIhvCCxQWl3rmZwSvVIX3o6VSkfIVCmwinRLmRkBCqci7FrBYGtbXv9hNJCc8eAnEQWOQhTIa0AP2dE1ejdlMKuF7Rp00RzzkbktD7GK3NwHIPiuEsmHcPM6AG5MsLIQqMmHUFxgJEx8RMKp02g7ZsbDfyiQOskk4EmEtnQ2cvXhMdoEHpdJ7SNNvU5OiVC/18WivtdQS6uEGaA8rTWxmwSmGlo7K4jMXn3NelAYLRocxCQzdiwPoaZC62gDS3qF4EIXTEVgalT22Re7C/DWi9CXx/pgpkRkX+A9MCNA20cqLFRaGtrIxfWt7EgVqePoUKra1ns4sUCxDoringV0BonndAXseoyBuzTm27T48ypWho5U604/T0+6tWekrvhgrLP+VmXK/nHqkuBkMQs14NnNecKQM/s15TczV67vRO5afUvrefVXfWxFr63jhEUs2iAxak7nAOPwI0joPb+P7LgfnjVWkPldS+zalEH2g4tZv8/thSw3HDaSzQc/QhHTB/M3Es0efnZw7uwcmKWt9d9Sp/2dzP3EihvOIXhfW+EP+rtpo7qB9xI5W51jKrek6Zxx1OXTDCq+i6WsJiVE7uwoaGFMJw7r46fdZnByae/xynAmtPb03fNMi4eOiNKU9sUm7qRiVGXATDqjIuBLmw8ahEA6v9dwYhLWjQzS1hMWVpHYpaULGbJo8A47Ug2tWQNg6brei11yVPpNv0uaNCWzoPQ6Wd5B7MjrkqypGQ0hGVyGk65hXtensCo6j0ZfVR/qqhi9n0XU3nVTVQdlaZ65jKWlCxmTtVShvfV7dYk5gFNrK6yKP0aNsoFArMp8jqQnINR34xQSYKyeJgDrJNxZaj5UFJgZFyE62M05CCfYgbgK4KYSZAwkV6gPftNqS2D8wNz0OQhlSDXRqesqHwalSJ0PwuwN6QhDIEazbkoquPHw58uJE4CXWvFyNekyadS+RDb4OMV2zo1K5sNow2iRQfi+ygPhKGJkwBkOoeRi+vZt2YXP2FqK2lDaMtkpQt+6vMAr0RPnXlxoa+RpzCbfey6HLI+3eL8BbodrgeWTtMTefG+H9aIcd1NtDGbWij7+rNh6NQ320CVl9K8Y0l03UCTNy9p4KZMZFkM6ZVg1WaQdU26po7jttbFqPAC5qMwYWTGSxYClF+F/xWJ+V9GX76LNLICefnhIbAUsUaJSlukPlHYzTo6IAJBpiPkKhSBpYivk+TaCLy4HtA7pVqsbzWDkQFiRMUklRGmMSUU8RpBYp3CbtLvk3RbSUNPnQJmf66fx35dCtXG12NnRxLEAl2fxlTkysH0DRprk8icgKKAoFlHPprtOIYZkOvkQQBmnYldK/CSmihY6y1EoHU3gRkSiZzQwZ8AVNwHV+IX+9qUQBHaGmudjJfQ55gX1ntJXVvGamqpnxJfJ8kpG1Xi4SUU0oO6Pj6YCtlkQKmLK0E4ApQmRsIDo8hDGj6BpyNVvg1GNj9BpVO6pKfdylT+dSzC5gSa8PjJANnQ0m5lKLwkeGUeUihUmYtfbyGb9Pr57Z2S0InM18cImi2MEgevxEBahVTLLeGKTkuYct+EaGA7ZcEEbj3ueg56sz891txEmfU4y0adz5Lp65myYEKUPgYwAriYGUwt0QPul7KXkn6riZLkDJ55awLDx91Im+nvAzOonplk2FAtgH9+3PH0iz3M+NwYzp1Xx+GDHmvVpsknHMeS5euZfFUjU0vWMLmhI5Oa72HwfTD5rY6s2PNxup04mpUTtctFn/ZdKQ/TouZd1ciCsz+KLIonz3kTb3aC/3e0FsynZj3AhEP6Uz1z701c0jR5ect6kIu7NDK8743UnDianUrXcvCnh7NizjmMql5MZcP7VB3VP9LKzL3kOcrDNnebHqckqSNNoOvmTPvleVx0yGIW8BEvWY/x+FFHcl3x7nQb9AtqTmx5b1c27M1Di67jbOC4V0dSNT7NvPnzaTjxOS3Fmb6Yg96cwZL0XTSNO565ne8Gqpl7CWHEpVe0rwH79AZgxqPLNIk8cTQfJU9lyaMtKXNa+3IuhEGc4X1vZMwZM7nktAfYtXyHrb53CgRmU+QLIQIi5yAbwM65eGXJaGYfQGZbBOXKMhCOh8LQqWKWgQRts2xLzGZPe9m7Og1K2BbK8zSZKS7CbRNHmQLp6JeQdANkTrdBOp5OY4tL3CIDs9lG+CoSyGurZ20IoAy9D5nTbfPjZmT9rAztUKYsc5PULB8IwAm0sYAKtJ7EdTWh8H3sDc0o2wRfoYqsMC84tM8MZ7ucUhOrSTuVSVeR9JVOLUu7GM0OOC7CCwtgWqZ2HYtb+EUxlC21xbSh0wLs2hwy7SCa0ppP5CMknreJA5nWtoh4DLdLBUHMQHhKO54ZQkevAm1A4IWGB4EtyHUowkzaWJ/X6jZ4PrhOa6exMCqmU9VUCyEt4D/ixxyJ+W+jMF+HuGx6nALh2Q4gwS0OsBskufJQp1GiHbh0bRAdGciVK8x0SARiOoqCQtd1kWDVSG1V7Ot0MqtRD779hC5kGVjaNCW9A/hlHuZGEz+mdLFJCRhhJMOQuigloDrkCFwDQ2oXSbtrMx1KG8l6JuvWlxA0W5htsghHYtVIzIwWuvsJbZGc17IgiLQkZkbbC2t3TAu/2EfEfS2LbDLCYo8K6erzNmpCEiHD6Iebn+TSEYzA1qRImQGp7vU01hTRtfNGVr/dATMj8IRCZKVOE0sGKBf8lMIyfWzbo6nMA0xdRLMptHOGKJUNiGreEABWWKMmLciFEXmvSEUTY9IFAk1KrLIsbtpASQMjo8mm8HTqXKZdSzTIrDPwAhvsANP0KWBzdLkmzpKUFu5XLtibW4+7HtDRkkl9NXnpP+d6nh91PsvWnwYPnR+tc+ZD5zNlUIuo/+I7j2fKaQ9Q+owmJIOmv8/CjtoaOZ/mlE+FGp8bQ03J3Rj7VoGlSci01VXMq9K/05KSxUzqupY2nx7OkV3+wsoTSwHo9/c7WDHpOn524i4Mvq+e2w9pCI/9PhcPnYEYpQfk+ePH33uRz60aPpreAXhAp3KxlAGX9GbRyitYd8llvDLpWBac/RFrXx7NlAUWU067lMePOpIZjy6jErjn9l5wO9qlLKwH89iqkYzNpeh8la5bw6qRwDq4eSeO7PIXAJ7pdz8/fXcHhhadzOP7avKiIz03kc58wLjjRzHjUR3dGVW9J+/2WhPpiUYMG0abmUnmXvJcqFXR13nKgr0h1MOsmHMOry89XJOW1UQRtPJxN9L29stYWXI3gxoGQ8MyQNtLH/TmDJ7pNyGKRuWh0wM/5iEnRe+tvHcKBGZTRCLwUOSdziByDmagUAmbIG4SmC2OV37cRMRMPcMkdG0YPyYxszJ0VdGkxCm2SKQ9hBA6jSksVqkSWmiP0PVSpBtgZL2WXGFTF6n0Y5L4Rm054ydNbW2c8VCexE9aBKbeQPhKR3w2sX4WfoBbFiMwBPYqD5W3D855kIiHlsItA3URj2lXtIyO9ggvQNkm0tF20IYTkGtjEV+nZ8STq7SmRea0lbPtK4SjU7BwPV0fJ0RQmiTXLomXkGH4XiA9hZUOyKUM3JSB2RzDaohjrm9oSf2Shn4R522OixJkdm4HgF2bxWzWL3CkwE1Z2rYanVedJz5BTJKriKHsCuyVNYhsDhWE+hg/QDsqCJTSpgEiCJAFArPV+DZJzPdJ+7IlfBWJ2ZRs5NfbWgLybRfMLODbg5ERmDs1k/u8iMDUqb6ZDgFGWj+vAxNEeQ7fl6iNFnad1ANqJQgSATInCCpcgiabWF2LRiMvdjdy4BaLqOq98MGsNcMUYoHqkMO0fZwmLWRHaXMAPw6q3ta1S9orysqb2KGkgUAJPqspQeUM7I0GDnGko+ubtDiLaQKW6+hi1ZhRmpU+JiTXKbJtNDEJEgIr4eJbATQZoSWziAb80tGp0V6RwLe1FsUtDjAyArcsQFkK7IDyNk3UrC+BbP65rg0QgqyJldG6lCABfioAQ+G5Bk69jqD6ZR72mrC2WWh4ENg6HU0EOkomcyHpktqYJrB1xMVolGS6eBhNkuTnkly5LuaJJwhWJzE9gXRE9FsoqaM9ytRObTKrz9XISIKUgyzkkH0pKtuPY+5ETTDODAlKp9+cT0PxdcCl1JzYlbezl0LxpSwaOpN9q/en/L7ZVI1PMzQcsP/zFy+x75P7c3FoeTxlgSYqB69ZxjPhcfLEArQIvmhxZ7geHneP5CKqtY7k6GotUi+BZaPO10U0B1h0mx4H4F2g7aCTgBf4qL4Dpz+l93fxrjOi1LeakrvpNj3Oq4cfwoAHDmDZqF14+q1zUXOuQLA0cgJbUjINJsLA6/5ErwdW0ZbRrO3tsn/8SoZ9qCMUlQv25hD+jNd3FTOiApa7MAKoKWmC6/7U6lp2mx5np9K1APxj1aX8v6MfYbcle7P2qfUM4n3mXvIcqz58lV5nz2fWA3NYObELas4V9Ot1R3SNLh56Lue/uwNtPj2crh+P4u2e06PrumLOL+gx6qboeEdcNZgppz3AjEfjuo5ONcQzl7Hh9Cto/1YX3rJOoq/7a+LvvQhAvF9FZJGd7KkjT+kPm3jpNC2me/tPw6D3a1t13xQIzBcRiryVHyDMTQXgATLtEJQmCOLahSzvBObHDJwyk8YuBk4xlC+XxOo8pK/wEwZmxkc2ZSMLYNAaEGVqgbvVFGBkfYKweKaKm3hFFoahiVBiTRbhBXgpW1sY+woVN0PPfKn1Hhkf6fpaTB8EGI1+qOExIVD4Ka1viSIO+er0eaeuvBOYp7dHSoTjgqftoHVUSNe5KWrIRcQmT5bwFUZjs04J8zZx+Qq1Ll7bYrLtE2TbGMQafaxmpevLBBBYIrJkBsh0jBM3BNZ6A9HQ1GKx7LgI08DpWkEQk9g1DiLno+I6EuaWaK/P/H4JI1W+LVFCYKZ93KRJ0KMtsVV1iAbVEuX5IlyvJUWugK1CIRLz1WRjWxGXr0uEAPrf9d4Wly87tdcWlxfw3yG+XpD5rAjphc5hHiTW6smbXHmAKvZQOSOy2s108hCu1BqLBk1ocoYOmYhAD/jNjB686zQyrRnxigLMJomRE8Q3CDLttP2y60uS8QzOxjjEtSbFj4Hs3oy3MU6sRuIHgobGJK5v0LS+SBcuCcX3ZoOBkrqwpVMGSJ3upgs1yqhwpFekRfKBJVBCkm2nI0cyI3HXJlBJH0Nq22htNaxNAZShDWbcIh1tCop8zFozEskLTyCyJjVOGbF1OoKzen0ZUoHdoJ/5ZrPALVaoWACuQBZ5JJIOzY0WwpGohI9XrDDSWqsiHV0Xxo/rqJfwNPkKBOF3kGvnIR397o1/FhobxAnztAkJmHY1E74mL35MkxevSNefUabCTymMrG6jp2yyMvml98qPGX89aBlW9Sy6TY9HDlxr1hUB0BFdUfSIO8/nlYaOYTrXOxyJFq8PHTqSQ0f15s3xNez7pE4tW1KymNSsxdCwt7buLVkTicXhgajQ5Cj2JHfWqVzXV6dbretdxoDfvMC7vdbw/H67AFqXkuUAKtv3pjb3e72L9zrCb16I2t9pYTl9fzmKNgvWM/eS5zj/3R147kTtsHXg1EZgGE+/dS6jqvdkxLhiBuzTO3Iw6/X7VZQ3XMGkxje47vRT4PbLaLvzaC3YpyWydNaqN1myfD007M2STYpUtpwXlN+n7YfvqerFSZMOpvboGm4cVcZv3r+BOyrPo1tJnKZxx7NuL5t9p+9P+X1P8d6iQ3hl0rFMLVlD5/0msXrRdQCoOVcw9dM1LClZTO7zi6Cnvq7dBp1Dj1E3bSLof5J7bp/Rqh1N444n+1YX5s15h0NHQTaxM7g6wjK/WyXVM58FYNVPB4aW1AaP12VJjK4E4Ib7H9nqe6dAYL6IvJgdogG4yDlgGihLL3dT2iIY8ilV+QgImFlwkxIrDFkLT2lNSkOzFvFHYnEBUmI1BVhNYcqYG2iBvhB4CQMvYSCUTo+SCsy0ixc6YylD4BbrWbX4BpfAlihfRPVYEEJbO5vaMS1W60LOCSvWq01E7EEkXFehQ5ryfF3nMqcJjqxvQjZJlG2hkjF9TRxPH8f1ULaF8DXx0S+11gP/IBUn2z6Bl5RYmQDhoS2oDZ0DHVgSMxO6qQW6OKZbbAEpLN/XzmW+r8X6xUmcUl1bximzydcGU3nraQXS8TGyHm5JDN/Ws5pm2sdMuxg5SbatjdE2hRkEiJyLckJnNMcFITVRCgKSKwszZj9GfFP9S55MfBNysSm+TtTl5rPHb9Vxvoy8bPrdslN7tfp7a3Cw8SJP1O6zVev+2ODFwaqXKEOFTlRhPRdHYeQkbqONU6oF8LJnE07GQuUMpFTgiHBWX+GV+2R8M3IdEwH4jo4UuKW+Fo2bQFZHdfyUj58zoMmk0Upgljl4GRPhSrwKl5Tt4XoCq0ngBxI/a9DsxbHXmrhlAUajoSMLviYZRlYL8P0yD7VBP3FFqYNqiOv3UqPQ+04p0l09ZLGLqrMxGwXSl/ieTo8jHiByQk/CCa17idXqqIaRFhhpE+lqkwKrVmI3aqF/ulNLzpeqtVEScm20lsYpVTpSIxWY0K1jDRuaihBFHso0QOoIi1vmI2oNXVcno88n11ZHe0A7u4kgFPHbAUHCx83amnx6IVkJU9AMJ9TLKP1b5MqU1t+E9svCC4tnxgICy4iInr2xUBj5y5AnLjsu7Mwfp/ViyoL8N+drwfjE3SG0+D0ylLzmq9E/xTHMXzCW6/51fKt9Tg5Tq+ZVz6ftUO3CunJilvI9z2F4313YsOB2Rix4lnnV8wHY7Y+n0/Sv49l11gPsNEenqL1gHsCBK8pZce3P6DHqnUi83j/8vs2nh9P/92mGdjT42Sgtsn/uxLt59eV3mLJgArVdH4dPteajsmFvqhrfYMaseEsjMzCp8Q1mPLqMQe0rGTtqN0bGFlHecApPv3VuS6Rm+Xoqd2vHjSPKMN8aQqzTG4yqbrluK+acE0VFpozS20xe1ZERwNqn/kq3kjiv3nEgzvrT4EngN/vz6XmX0GXVWo5M/AWA1KzFHFd3EfwN+pXdwa7vdaRL50pY/TTx1Zqw5I9RU3I301ZXMePRZUxpmMCdd9jcu6AO0Glza3u/zaGdh7PD6XtQAywaOgSv7yqqeEPbLQPv0Ie3rcf4/OASJhedzKhBN3LA04eSGLUHXPnRVt03BQKzJeRF46CjERhay+EHUBzTOhRTYDZri0Qz52tnlZy2DjZyOt1KVwKG2OdpTRxARxPCive6OCQoU+DZBlaji1usXxBG1o/yc5UQuCWWLmZpCtyEhZMydNqZp/CKTIycH+Y4h85kpsRP6pQ2t8Qk9UF9y/mJTYpGRjbKm5C2LwrcfR+C0JbZbREiKjOsyZLN6WuTj7yYRkRiVMwm1zGFWySx0iHBcANEoJAK/Lgmafg6AqNCUuPHJIFtI50URk2TJhpxG69NMrK3dEoMRNBC6Py41rxYQeji5vgoU1+bwNTRLeErjGxAtn0M226D/Vm91pF6HuRr5KgAFQgd/Snga+HHHIXJ439BXL643X865n8iL1+2Xv+73ttqElMoYvklCAe5kczCBGL6ea6EjqLY9RKrEbIiharwEDmJytoQUzR38enR53NWfNYWoUwCG/xEPj1Yu4nJnNT6Dl9g14P0IRMInLY+9gYDURPHaRNgtcvgSosdu2zg44/bY2Z1StR+HVfxUronXtrEqfDBUgSuThNzSxQqrqMidp0gSNtIPxTcN1iIcFBvp3VEwssIvCKBYwdgB0jf0MUcCd3W0iFJsEEkQyIWE6HTWViU0tX2xs4OHl6DSWKt1NGNtg6iWQ9XgniAVSdxOnjIpEeQNsGRWHUGa9qU4PtCR7ZC4iB8ECosC5BQETEL4tqMx2oMa8LkfzZT6ddeUYByBKIZDEdH0KQXpsIpcJKakMbqBE6J0pGZvAbIMfBTAq/E15EkX7TysSmgNSY3dATgIeBXF73Hr0K9ypQFE7iueHdSsx7g4qqlzO82NtpmAVoon+yZ4nAeg+xj7B+/MiIXgx5riXhtWNBIYnQlr748myOuuokeo2DVlUAVjKgaxqKhQ7jrpzr6MH7c8Xw06wF2Kl2L+uVemggNfZhT5pzDvN8cAmhnr9sPaSD94QzOf3cHDj+kIUy5ep+Lh2ryMrmhI1M/1XZaeaKRF99XNuzN3Eueo9v0naPPz4/zmFvSpGvYjH+Dmn16M7mhY+Qs9o9Vl7ZyINupdC1LWMxzdz7AeWNuioT3H9V3AOBX1gcMmv5rbnj4DM4bA/zmBZovHs+BK8qZt6CRtkPf448bz+dXFfp67dCxmEU76t+hcfwxPCdO4ddX3sxh+7jMeFRHfCoX7B0WsHyP6qtu4p+/eAme3J9+My+Cbn+Lzu+DzsOJV0+jR8PefFZ1kf49pr8P44nsnpOHufxs6C58VA/GsE/AggNXlEdapa3B1yYw1dXVvPzyy6xZo10fOnbsyD777ENVVdVXbLkdIPDBMMM0MgNFaNPr6fooKhFDBCrygvcTYQ0TU2I2udg1fjT4z7Wxdc7xxiyiKaNTlfIV5vOQ4Mdl6Eyj8JKmjpi4gSYnOT8SurvFBrkyva309YyeUGBmdNTCS5g4JQZ2vUFso3bGEF5AUGwSq3GRteFgPE8s3LCMsxAtmh/D0AN4Twv/84U3hWm2EDARiv4B4WwSoXDC/eWjV0IX2AxKEmQqTOK1fmjfaRCYksQ6hdXkIh0ft8TGzHiR4UC2QyzMJ5bk2sVJZF1ETttWuykzchnLQygd6XINCAyBdA2MrKf1QDlfV26OSURxDC+f0ucqvCIDWZHC+iwU8+cNHPK/0aZ1aQr4UeC7KmL5fdS6fN1oTAGtEVgQS4eExaBFsB5qWKxmbU0sAp1uZmQtAlMhfE1AzPYZLOljfRLTKWEdfVTKQzSboRg+HzUAH4USgvhGiK01cHplcHMSq0EQX2eQMeLE2mbYuWQDK+PlEJh4yYD36trhNVuImE+nLjXUNBbhFhl4a+KouI9MeviOxEwbJNcoAkuQbasoWmnix7VmJUgLTE+nhaEEfswkCNOrCHS0wsjqmjjIcJmhzzuwdTQlsEPykgQjLRC+hd/eIW2aCFcgpIISF7neJjDB6eyCo9+dsbIsubo4ZpMg+3kS0cYBTyAzMipGaTborAg/rnSdl5R2B5WuiBzUAkuhTBBGEOaUaRLjF+k2x9eZmGmdLuYlFIGh/waIbwxT93ICmROh3kfitXUhMDAbBEZjgcFsCYc9059DD+rNfgueZUc6A0RaEtAD38odDmMOSxm28n6SPbVWIj54Mf16jmQAHak6Mk2bTw/nhoeHk31Me/pecsd+jB42ib3vfZvFJ/Vh8MbjOYQ/s6RkWuR2lsfik/pw/5gBAHSb8wten3g3Gw5LMnleHYd26cdZq97kveWHkJo8FYBlr+9PfHANI2fq6PPj7pHMY74mYuF+J/W9E9BRmrmXPBdFZfIpbOUnvQkTjwbghofPYO+33uajkx7hhodh8KPH0404Ayf+KboWxr6fwKO6vkv1zCQ33HkGNff2Y8A+RzPltE91aYlD4HF3WEgSuvD+QcPp2VHrTJorenHv0R+x7x4d+eQXx8MqmLjXpyRurqL26BpmXvsAqfF3s//YmewP1A3ajw6X9OemlR2Js4wDp+4c/TY3POwwuGQx+z65P80VvchMncy8I9NUP5bkkjv244aT+sCdD/AckBp/N6cdp2cyqmcmqeihTRX+8UYfFhz1ETMeXQZoA4ZFQ4dwyeMOVx1+71bdO1tNYNatW8eRRx7JokWL6NatGx06aJa3du1azjnnHPbbbz8ee+wx2rdvv7W7/P5Btgy+kWE6VT4CEbMRrofRkNPi/UBEYnsdkZFgaAcsL2lgOAFWXQ5jXR24blT1HohIhMx4KGlHURihwpmoQGBkPKTj4Zt2lKbmJQR2oyY3vqXtk420B4bAlwIvJrDyNscxQ88uNXvYK2u0fbAUUXX7iJDkzzvwW5y+bEs7svlB5EjWCptqXExtc6yCoGXgrxQqZhOUJGjuksRwFGbG0+eQlGHetIEyBHZtThfHtCTCM8ICmkKLXqVOxzPaFhFL5/SxQmMBIxdgNQYYbmhTbQiUNHV6QamB8CwdxXK1+47V7JErs8i2MYjXCmJ1LmTDopxlKWRdk87/lmFdnJgN+dSyAr4WvkkUZuA1s7+l1mw9vgvysq2Iy9amkn0TfJ1oTAEtsJogKA4/qFAE77eIvc2Mtkn246EeJG/eIrUAnI+L+PDjIuINYQpWEK7g6yi1kdPuWk6ZAqEH335cEMQUQYOF4WkSZTjQ5t8GTd1SvF/WDivmgQN+Ebi+gWwyCHzB2poSAleicgZGADJtoBzt8pXXKubKwSvRek3QpET6Ol1OC/rBy+o2KKlJilfs4ycFic8MHY2S4IdV64WRJ3UKX4Jf4mNtNHXaXSBIdGomUxeHjAmWNkDwd3ApKsvQvK4IVRMjF7OIrzGx0hDUSURNIvoN3KIwMtIQXmcZuqiVBbr2jdAkJtvRA4GOWklNYmSjxK3wdBpaYxj9MXQkLf9bGrnQXc4KzyvRcjzpCPyEoS2wA6J6PgW0xh6NA4kveDb6/PHBqyMnrDyWLF8fDpzP4LwxtzGvej5vfghvfvgXzhtzGzdcewaDTzue2fPTXNVTbzPj0WVwpyYn5425TUcdqqdFbmdLSrTz2bzq+fTrOZ95YR3I9NLnAOi16ikenQpP0YumP+jBe593zwag+rEkD51wHP/v6C70vWowF3V+jm71HSI7Z9DEZXJDR47s8hdemXRsFEnJn1tt1+Fc99ZpTC1Zw6973wxXwjn76CjGlDHv87h7JMNW3s+rQ99pOR90BOMIBrPx0MdYMH8so/tMYuTv9yGb2JmVE7PM+v0cXh3UyIB9evPWn3Ra3e61r3HgqJvo8tpsplw7gKnodr5+/3OMGDGMtZ1dau7tx3kf38JHt1Wx0xmHswiYO2YG07pVwVH9GT1sEm2HHk9lw94MPk3vd+XELK++PJtR1Xvy9q5TSQGjT+oDwHljbtO/XYnWIy0aOoRzuv2NKuKMHjYJDn2M6plJXVxznyyDu9az+KQzeOrwY7b63tlqAnP66afj+z7vvPMOu+66a6vv3n33XcaPH88ZZ5zBI49svQDne4eKUkRDTpOWQKGCsKCibepBu2kgsjnsmtD9y9aDcKtei9oD2yBImNj1DrLJQW6o1RGNsNZJFN0wTV3xvtnByCXIlWliI13tyGXk/KhwpjL1YN9q9kMRoi4eaeR0MU3pBQTCQDoBsUafwBJaJyN0Gpq1cgMqk2lxWIOW/8PzxKB1nZZNCEu+/QShHsg0dVpdWGwTP9T/mCbkbZINiV+aoLFHEV5CkFzvIXM+fsLUFppSEzJlCIKEds0JbEngKbykEb74FGZWF9Bs2NGmPF2MbHK041o+dU1BYEgkAdLxidd6eEmJzCn8uIGZ9qJ6PX6RpV+YQVj12VMIoQhsiVORxJISo6YBkXP0i8b3v1zg/yPHmaf9mlvvfPA/rrO1JGZriMtP+8e+dSey7Zm8bLq/Aon5/sApBlGiIqvh2EaBDAe8UqAnoBwd5XeK87VG9Pp2vcRs0oRAGWHalQ9yo4VdK/GKdAFHq1GnNzllmgC5RVqDYdcaOtpQ4hPYEulI/HiAZfgEgcAvVsisRApFkNJR6ti/k+TKFX6xj1/qY68z8ZJE9VvcVBgt+szEj+vq81aTLkApXfDyFs0mCF/XelGGTnOLdW0ibSQpWmkiHF2lXnr63RGrE+TagNvWQ1gBXicH5UqMuKf1QIDRLAliAmWBkfAoTWbIpGwCLLADhN8SyVFh3p7X3gWhyAkLI6edzqxm/Ru4aV24U2YMpENkN+1U+AhXogJtzWyX5Ag+LsLIioiEKkO3yWoQWI3gFmszBVSY4hdIAluEv7uIavgEhbrIW8Trxa9gpcLJ3YP3bvXdoqFDeIpjIpH44NMWswS0puXDlvXyBOWq3+j0rqoj04wYth8bfjOSEVXD+Muzwxk5BHRREw0dydApZAAv9KjhwBXlvDC6BoAybzBtPj080pTUdn28VdtuPPc39Pr9TdR2fBwoZeXELBNWa33H0Jt3YmrJmojQTC1Zw4B9euvBPIQi/lIq+hwZDfQ7vGNxUedFdCuJc/Gdx8P4dETadnr7aOZULWXAPr1JHuZGKXd/fdni19wMjGb6v7py5PS/kGVn5nfrz+HrHuPkF47lsH1cZqN1MlMW6GMPtHTGzIg/nAUfvMMhagden7ozN1x1EEeU6/OMV0+jfdUVjD6pD4NPO57zGm5jUdVFLKmeRtP1fwOgvCsM7wpN10Oq+lCaK3ox4KKWOj3Qkj6334Jnue6uaUxafBGz51/Hgvlw8cr7mbJgQnhd6tnp7aM54/GTtn0EZt68ebzwwgubkReAXXfdlVtuuYXBgwdv7e6+lwjiNiowdMV4Q6ACHwIflQvte30T4bgI10M0aRJCEESEQOYH+p6HCgJdUyZQiE20Fbq4pK/rrWRyGLkAr50W+nkxHWHRmhedrqaEJi0EENvo6JxqU+gBuK9Fgk6ppdOicmF6mITYhgxyY4MWqAsZOY21qqkiQ1c0n9DpS6Jyjl6eTy2TRovwn/BvQzuaKc8Hz28pRCkEqjiGX5qgbpeiqN6B1eCFed8CM6Pzjv2YjjQ5xZbWwzg6LSywBYaj8GO6UKb0FF5CkCuPkazPIL1wZs/XKXYY2pVNOj52jU9g6Nk36SlNmEJDAyPtEc94xGoNrYUJlLYEdQ38mIFbroV1Rm0jZLI6xS4o+Pb/N9iUxHwfIixfhu8qbayAHzbMDGBrUXpg5NOO9Xe6JgoEjq6pgmyZodcidT1lH9g6/crMglgvNTlQLftwSkNyVKN1K0H4RhdZgVPhY7fJ4nsGfkMC4cMH73dCJD3a7FxDWSLLXhUf8/DagQBk2wdYjWHqbyLQz8cKX9dZiQXahewzS6cuNwsMN4wmxfQ/ZajofyMj8EoCZJlDkNWDU6s8S1olkFmdZqUS4XvTFcRqBX7c0KnLviDWRdelqc/EwdN1cMxmXUhTrY2zZm0c6QrMHAhl4KYUXjtX6158gUwbWOssneoV10YBeZG9V6Qw09pcwGqUCE8TjbZdawGoeaeC1CcSI6fwVqR0JkCRLrQp0QUzpUdkLa3ro4XObc26Zo4S+jszraMvZlrgmIUJsS0he9C5+CTZefXTYbX2Fu3Kfgue5amhLYPgfPRiScliNh4aFp8MB/OTd9NRgakla+BTgDRthxazqGoIIxc83eqYS0oWs2jlRezHsxEx+YkHH83rzSs109np7aPhvhZtDsCCYZrozJs/n8knHMeCIwcwYtgo/H92Z2afY9jp7aMZPWwSAydfRfWKlkhMZcPefDTvvciGOe9SNm11FaP7tG7TR30eoRvH80KPGuZ2XsarQ9+h/KQzePVlHYXZY8/HWfl6Cna7G4B7DtQWymNG7cXJrKDL2ZWsWr2Ewy19bR689Gzusfbm8Sd1+tarx5fT7fE4ziM7UPHiDcwdM4ZVH77KQY90BDpQc28/PufP7HTGGn3NFzzL4odbGnlOt78xA0idfyiVDS1RLP077M0LFTW0PSPkCO6veaFHTbTtgSvKGXTqVbBYE68HLz2bKWOS3Hrc9ez75P7UTX+OV1/uRafirWf6W01gYrEYDQ0NX/p9Y2Mjsdh2PhCQEBQnMbJOi0YkGrArVN4GxnFAhuHw/CAfWgTx+ciGDFOSco7WjeQ1FUJHY0TOIfZZE4FZjFskWwptGQI3pUmNXetgu9pZTIaWxUEoqFeGxCsyI1G7mfUxGx2MmqYWx7F8u5TSKXHSAMJ0sbzjmu+Dr3O1AcgL9W2r5fyU1vcopVr0LmHl+nyanTB0ileuIobdHOAUSWINPl7S0C/gQBEInQrnxQSx2gA3ZejzFjJ0DFORoFNbaepK035cEsRtjKyPlzBC0b6h9UfNHoFthFEbXzvEyZbzyTvGyLQLhnZPU6ZESYmKm9r+0xCI0hgy6+goTOiqVsCWcf5Z47n+lq+e7S8Qly3j29K8FKIw3x+IAHxTTz4ZXssylNaLBDYgQnvkdFjcMiYxHIVbFNYXCZ+bytC6CrdYpzGZzSKsAwMqpi2KZUgorCZNbDrvuIHa5gSGERBIXdNFNBj4nqCog8uAipVUpT5iSbdueEqyQrbFMSwo8ZB1FrkKH1nkIg1FsDZOUOqRa+sTW2+AGWay5ed4BLqKfcLHTGvtjdlkkHNjiHIHKRVu2oakhy8MCAykBLfcQ2QM5FrN3qxGqSNHrsGqDWX4zRZYAYFpEGsQODvmoMFCtnHw62yEL3XadomPaNZRFcI0MTMjcEt8kOH3OYmRA6fcx2w0sJpCF8yYQsV89my3itfWddWkA52Ol1wT4CUEKIFj5qNkRC5qRlaTH6tR4pQGKE+bM0gXPFO/e6QK3dzSBQ3Ml+Gcbn9j9pSLuf7ZSzhwRbJV+tgX/867hg1CC9pTk6dSXHXNZvtc8mjAq3ccCOMXwdAh7Bemqd35kA0cyGnh5+fCApUAu+8PNff2Y/y7O/Bv8wB+tvvb0Xc/mf9iq/3PvPZpZg6D85bfxk5vH0236XGmHXUd10/W0ZwXh/+Ni+88PiJdcyc+F5EY0ESoZtf7ufjelur1s1dfB/P7c/2zWT7q8wjlIXf4w46nsmzek8y81oHiGir+diQ3L7yF+MGLmT3/OpitScEtne9hfrexTEDrTGadsA9/eQ5mPTBHHzOp2P/69+iw5kA2HnAeR4wYzKKhf6Nv9yn07Q4jqt4BnoV8Kcmde3PeGB15WQSwSarfDQ+fQc29M5izSV2bA1eUA79m0dAh0bpFG9/juTsf4Jwr/sxNuXd54Vkgm2Xg5KtgRTlnPnQ+taVrefv215myYALZRoe/smwLd8nm2GoCM3r0aMaOHctNN93EwQcfTEmJ9rJraGhg4cKFnHvuuYwZM2Zrd/e9hGzKQXFMD9yz2Rbykh/0e54mItJoSQkLVEuRxTxxMU29/qbIp2L5fsvA3/OQjc3ENlj4sSSGo/cRWC0V5DEEwtHkJbC0aNELGaqR05GR+HoHc0OTtnsOU72QUtdyCQKwQkbr+wjTQLmBTovz865hZmQZnRfo6wOEEZs8MfP9MBUtJDUhsYuukxB4pQlNCCTE63ykE2A2exhZj8AyCGyJ3Rjoega2flnnSrTnvtWsI05GJkAZAi8uidV6CBXgFhm4beJY9VkQMby4Qa7cQvgKN2VjZgLsOlcPDhqyBDEzKuBpAUoKpCmRWQ9MbbyAELq+TZEu1AmgYpYuZKkUBIWk5e8LtlUaWSHa8t+hQGK2HmYGREaQq9BRZ8PUgnKrSeHbYf0RA5StIzPKFHhxCGw9gRNYQFwPkPPGMcIDI9TROKU6shBYIJTCaRsgMwIjJ8l1cllXW4zbYIOhiCmBW+EiEj6qyaSmOcmitTuxIZfik41t6NNxDWbMwyuFioomGpMx2hSnsWRAxrXYkDYxak0dCcno81NGS8QnMFUozNeWxW5J6PxlB5A2SROK45UmA8pQiKzAXm9qHY0DQdLHlQbKCiBrIutM4g2SbDcH4YfRqzDaYb2bCK+fwmnnI3yh7ZQV4Am8HRz43NZa1YSHvVprTd1U+L5Gp9pJD6xGQWBazH+7DypjUFyft/cHp1gTRcPR62c7eWHh6nwqmYw0rcLTbmyBRfR7yTC6Y+TAKS5EYLaEvR9/kZsOP5T4iaOBXpF4v5UGJpzpz5OBi4fOiETlT3EMVLdeH+DiqhnAUs5/dwdmilPYj2e54eEzSNEiKs+ndAEMtFxqnq9jyoIJvGBqApLHzx7ehRFH6QjMiXP2Y2jRKgafdjyn7nAY0I7KR7QYf978e4ADom2nnNbiGjZtdRUzWMbMa5/m5s9v4ZYTX+QPO/6Csw8+i2nzr2PGo8uobkhGNsNAZEAAcP2unwH9GFW9JxsWNHLL2xbjL3iSP5X3ZqcRvWi++T2mLJhA9abHHQ8jZ7YQ55EzBdnEoexzzEHcesDPeb96EiMWwAu+jpTUPHss6pnJHHEVsHNvlqybhTVZEq9eHF7TpZSf9CY7vX00NS/34xD+HBFDgK4n63HvsTsu4OyHzwIg+9zexAfr71+ZegmDTzue5ope0fXP17OJV0+jtnQtuaatnzgWaisT/XO5HGeffTYzZ87E8zxsW9v9Oo6DaZqcdNJJ3HTTTdtlFKahoYHS0lKG9jgTmSoFQyDX1oRpROEA3TJbBvAhAcEPXcfyBABaCIzr6ChLaAQgQmOAiBCFJECYBpgmfttScu0TOj0gXz3elkgv1GsECj+mPyuhv7PrXcyaZkQmh8pktT2zbUX1WpRl4MdNjIwLUiLTDuQc7egVBCjHBddpaX+gWs4tnw6XRz4FLV+5Pm8IsGkRzHgMp3sF6fY2VngTGk6A2ejo6Iuli7b5CZPA1HVslBSYaW2rrKTQERhTp80FtsBq9BFKF6MUviK2Po1fZJNtH8NMa3KUbWfrNIDQIc5s0hGiIGZokwMBbomN8ALMjI9Rr13aVExbbarQ8MCPm0jHx1rbAHWNeG6ahbX3U19fHxH2HzPy/QR0BAbYqijMtsY3ITLfN+LybbuOfTEKs7VWyluLLZGYQj/RyPeT3c6cimnEae4aID2BQgu/4+vDyHAo3Ne6jRZXroisuGHNERkKx41NIh4QVa4PUj5Go4GfDBCuwMhKpANumwCjUeqikjlwywNKu9TT0Jigc7s66jNxMhkbL2fSqWMtFYk0SdOhyHB44aOdtTuZFaAyBnZ5FqfJxv7M0nqQKHVKO3JJlzAKo1O0AktR3K2Bxrokxlobr9jHKs/iZixE2kRmdRHJwNJamNhGnUrnluj3hp8IwFLgC6xaA6tBkOnkU9ytgYbPiyl+38RLaNF8yR4b2fB5KSIjdY1oM0DkpE6Bi+mikvbGsOhlqW5bVA8mphBKF9JUhqL4AxPhgVsCvq2Qvk4Hkw5kO/gYbXMYHyS08L+9rwmaL5C50BGtVurtPBE5hQaGwnAEbpDho6svLvSTEPl+MqpyDyas3x2A65/NRoPcbNVFPMUx0SB57iXPUd51IU//eYeIxBz3fDGrFnXghckfRPvN11zJD47Pf3cHZl77NOMvGE6bTw+ncrd23NKlH+v2uYzkYXqs0Okvpbj/F/DcnXrgP/i04xl5zEB+YzzEnOfPBeCkNV24b9Qirn82+6XnVLHqKf7xh5fZ+963Ww3s86Rk3vz5jAhT0S7qXM1HfVo04zu9fTQf9XlER1RAC92/gPPG3MaioUNYt89lXP3I0Rx32TGRoD5bdRHndGshXZum4m2KJSWL2bCgkUzzdYwc8jTzqueTab6O8vF/IjN7CQCTTzhOr7t8PV1P9vn0nhbX1xd61HD+kDjDVt7PgH16U/Fgf351cEsU65ZOL5I8zOXND/8CwENX/Jm7PvsroEX/3abHaa7oxYEryllSsphs1UX6Wu2si4XmmgJurVyzVf3ka6WQzZgxg2uuuYZXX32VtWvXAtpGubKy8gfRIZUQCMfFq0ghYzbknFDHEpDnsEp5erCO3zLIz6eG2RbkcvofLXa8AlqIQaD0tvn0Jk/rYYz1ikTOJbtDMV7KwGzyQaEH84GKUqQCS2I1uhhrmltMAkxDWx4nYqiiOF5xDAxBYMoo1UoEIFIWwtM3tVWTRqSzqLTQURYRvpQwUNkcwrZbuZVpR7Kwvkv+vAMdkRL51DPP1yQkIEx/8JE5bUHtJ22kq9O79EtF4hRJ/DiYcUPbQQtdZVp6CqvJx673woKWoQjSDtO+DBkJ8WXOI75O4cdNba0sFF7K0hN9pnZzQwjdFjdAZl0Ia8LghwTNC8CUBJaeCVQJG9lkgPtt3WkF/DfIk5GtITJfRlyW/WX1Vh+v/8jOW73ujwUFi+Wvhm+DGUZLjKzWb/iGJh6BqWf4hR/+U0QEQLo6Y1eJcJnSbldChQEMQ4vgAxOCMo+yiiYaEglotFBJHy/lI6RCWgFe3AA3tL33BPUfl6GSPlIoGuuSyA0WqtRnfV0KQyi6ldfyr7XdYVUCEQ908D3u4+ZMzI0W0tVCej+m8EoCVEKnbpHWBYM9WxeWFJ6gvChNU1M8TNUy8HNJRLmDMvQklTAUSirwBLlyPflkZEPHNUMhbB9RY5NYE5oUJH1Mw8csdWjcVUEgMBsN0jkL2agnx6xaSa6bh90mS64pBlntDhrZV/tgeEI7hMUVbmmAigeIjCS10qTo84BMhYwc4XxbvyPcEm1249XZWDm9LYGgqF2a3HslWvcSHkP6mhgpQ/9uygLPUJDewk1SAH0vreTziXqAPO3NLKe+fTQQZ78Fz3LO+LGMHtYHhsIRCwCu4uk/60H4/G5jqXaTPDS5dcRmCYujKI4W/69l9vzr8K84mZt6vMsNl53BQ6v+zHGXPUI/RgLw+ch63rzzLwz791j6T63i4rDmyePjj2T0ZccwcPJV3Dfqk1bkpWjje5H+44UeNST33xm/ay8emvNnbrm3HwCvHl+OePwpusqBdApyVD+WZOawSYy/YDjd6jvARJ16NuGo/kAVrL6Om1Yeyrp9LmP2/OsiEnPzwlv4W/sl3MD99Js6kvaTp7Kg+WzGX3APz51YyhFXDeZijmG/mVr037Pj+wzqekZElubNnx+tB/DC5A84adL/8ZZVzccfjOfqZ/4Ofyzl03v0+gua76FN7EJqu97DDQc/zcAeV1G08T0mHNWfKnQa3PxuY2E1MASqZxrMbfgJPX9/Lz39JB/udhJ7T9bRI02y/srKVafQbfrdzKlaCizlwAUTOG3f53l1we90Gx+6hRFVh3P9/WOB1mYOX4avXQempKSEgw466Otutn1A6nCw8ANULKw4bFs6UgF64O6G0RjQkYtNxfleOLC3zJYoi+uFkQvZso888qTGMHS0Z2MdccclKE7iF1nhgF2nWmnLYRcj62Gsr9fkKh8JsS1UPIZXUYQfNzGbHC3wL43rmT10upkSWvwexAycdkUomcLe0IysadROZSGEbetUssilzECYYfvzESkpdNvD81I5R6deuYF21slHpAQEtklgSfyEgdmsncHytpJWs5698xIyJC9EUSZlhC/FpMS3tLhfBAFGxsUr0mleIuthNueQSRuhYuTKLHxbYDf5GLkAp9RG+goj7WE0hpEX29SEUAFegGzOoWIWQbs4HibCjyE36hS8AraM62+ZGUVhvit8VVrZlsjL1yEuX9ymQGQK+DrwkwovCHUdsVDYXqTTyQJTRxukI7RwPtRiyJyexAliqkWLEWYAS5/ICSufukUAXiCpKG+izkrgOSbKFwgzwDB9fKkH8MIKEHXawcz14LOaElTWwE8FmEUuhqFYU1vMxqadSdclEMkAZQcIR2qNSk63xS1WBLbCzAhIuRAIVMrDs8LCkQlf2z1nDVZvLCXImGR28DBLHdSGGMqTmPUGyTUCpwQCWw/0UZpc+LHwPA2FMDSpQYJTFoCAug/LCeIBMitRlsIvCkjXJjAUCFegpML63CbXXkAgEEpANnwJKk2QpKstld0yHXWRTQZGRmBkwC3S6ybWaTe4XJnQETITyP9WVhg9i/s4ORPpQqw2NGawdQTKcAS+rXQ0ytZpa37So4DN8daVS3ivvUFj9e9Y/EQfdkKnYy0aOoSqbn9j8GnHUzlmbz6ckKDnjIwmKg1QvUmQedP0sbxN8oCfXcOdDALgz3scD6cDN71LYsI/uaVLP2Z3uy6yXAYddXEBGvTg/POTfWY8uozBHA8b4fpne3H+kHgrEtP1ZJ8Oq65n7p8f5JVDDuS8MTUY+37CWasA2sED66H9ONq/tAH2/YRL7tgPuI7qMYez8pLnuDpMPfP/SRSlWDexmm7/n73zjpeqPLf/991t2umcAggIGCxgi2BBRQVRiUYDJiIY2wVBY8RujBI1ipjYYsESFbi2iGICRBODIqASBRENFmxIEVA4hdPPtF3e3x/PnplD1FzMTSLeH8/ncz5nyu4ze/a79nrWWndFOfWBQobN9ImLeOXqTzh++fu03yQOYe/vcSd1cxrY7/A/MLd1H4C8JTSIjXPw+c3MPGAoPYEuj+8L6+ClBx5j6ov3svZ5uQl1+FkzufuDHoyacpS4o10xiVGRveCTD5g5S8wPcqzYqcdckXdN61wHjUvyyuKX2femgzhoXJKrbp3GJb0OggUhI7RgX666Uz6bOfwNgEEjRLf0wBMOA/9SxHvHz+O9NQDbHyD+tQBMQ0MDM2fO/EKQ5aGHHsrZZ59NVVXV11ncjle2BT6Y7eGgyLJAh1kogQZlhEL1sI0sl9rueijbyg/2AWE1ci1jINPnWrVyzEwn6+J8m1lHCtP1MBvBdmzRsWQlxDEnzM/ZPCtTdBw6HsWtLkIrhd2aQWU9dKg38eIG0Xrp9zSyAjzMpAAyP2GT7l6ME3ewNjdJVgx0slkOwVou8yXXHpdjYAxxKtOd2ujMtIcKr7hewsRwRJxveBoz7YuDmi8Xh1iTBEoCpCJW/sLsRQ2MEosgFeT7wXVUbkUqL0B1pDGLBGB6ZVFpkQOUG4S9yZApkeNuZTT21qyI9m0TDAOvyBbNi+tjZkP2yQuIbU6SLYuIPsa2oIDpdlan2h4b5f9UfZ3WsH8GvPz9/N8WEPP3Yv53Ju7+L28j21n/uJSnyFQGcic+pYg0i0FLYBLaEAuLYrcJa21kxNnLyILvi0UvGoyIgJbcHf6ca5kfEUqmvTFOu6Gpqm4l41q0bShBZRXZRIBKeBSXt2MoTbNbjOuDX+xTVdpBixVQFMtQHMlwQMVGnt+wJ6mPy4ikQ5aoVwY/bYk0MmUTOLLNlHhQ7aF8A+0aKEfATrw0RSKapWFdBcpTeA0x7Fa5CRS0x1C2RrVZRLcqnGYxa8k64CUCzDB0MnRABl+hfbEyzhYbOE0GftrGTCmy5RDEAuxmE69I8lz8co+Kqlaa1lagizzIGqisgY76KN/ALfcxXGkjQ0l7npFWWEkDMyVZNm6RZN04bSHrUhRqYSwtups2Az8mIDO+WeG22bglFl6RxmtXRJo0sTRkSxTJbhqvKMi38xlZJar+nfWFGnDtQKIJBxDHqxVLP2Dqoa0cRwmXcBYLKn/KuYeOZhBw1/D5vDfuVc49Lcvk4ffzvNUK3P+luhmAcw99mQWr9sw/77LpOWbstgds2sTyD+PE+gzE3O2HLFkrBlW/3300K+ZfyWZDrisbLiqAlS6Pkwcvb9x0DYfMeJ93PrqYl85eQvXJ1zPqxXt55+rlvNMVTjg8ws+Sd3Bk7yP4rzlVnHbdaPrucgpHPdzCMQM+ZO41BzP1jdehNxjdJ7F8ZpyXZoW6lf4wqvVeBo69F8bCYSzm+eVQMf49Dht7L88vh4ndT+QXg69j7Z+f5qif3cjUAaez4sV3861qm40IF6/5KX0PPBiAtj3u5Ij1W3j5wR9x2cQpAGw6r5Ium2SVOWamoudCGpkHn3wQurP9lFmP9GLBqj15f487uexFAS+Th9+/jf7l+QULKBvbjUFvLSYARs28kuUIM/X8bk/xaO+JTB19engkRce0gisZNOJmqj94gY29Ab6+hn67bzG/8cYb7L777tx9992UlpZyxBFHcMQRR1BaWsrdd9/NnnvuyYoVK772BuxIFTiWZIy4HjomA+RcOjum2cllLCgwKoCKhc4ShhLmonOmSvi6ikbD9qsww0SFVsURByxL2s2Ukrv+ng9ZF9XWgepIQSot1r6eV8gmyYGjaAS3SwLlaayWjOhcAG2bkoniagzXx0i6eZ0JiF7ETHmYGR+3yMarKRPmJX8wwmbrELjlwj3zxyO/vWaneQKM5g7MTIAfM0TnkjDp6GbS0dUi3cUmGxoQ5Nx4tBI2xrfBdAVwuEViKe1HDfxILk1Zh3bSASqVwaltw8j6BBETtzRKEJVcHsOVK6Dpyt07p8WDgBA0iduY1e5K7kzEwi8OAYtV2Ec/ZhZA2876ytoRWJj/dP1vQVCu/l1OYTtrxyltaOiWQdWkw5ajgnuY4YnlbrRB3Ce9IskwsdrJ56oYnsZOasyU/JYFlvwpHbaaeWBEPXAN7C0O9VtKaa0twuowsNsNjCKXPXtuoSiaIeNa2MUZySSxA0yl8TyD+o3lrPusElv5JJMRCHU4aLAsn126hzaooS2wjgTQYVFd3oYT8dilRyPaM4gUZeha2kYqa0MA0VoD5QkAsNsVTqvCapPgTTRkSxVeHLFFDsX3ob5f9i1lQquNSnh4cY3dIcfOj0raPQiAi3VrR8ekB68insKsSuN8bmO3SNu02WqJCULUx3cgXSm/6VZa7Juj9SK610qYk2yZJlOqSNYIQyTZLjrfUuaWBVgpcXmzUpIF47QYaAO8hMKNQ6ZUAKou8kXLE35efnynLf+X1bIfDOGgcUl6nuMzqK2CBb3Owug+ieOZDcDP177JcV5BojD4vb/mwcuK+dJ+NPXFn+R1MYNG3MygETfn3wP40XMH0fvCP+BfIS2vp103mlf6NPLBVLFJHtK3hO8++WtAmIEn1w9n43STtf2fzrMkl+7xEFtPf4cum55j791GctiLiynf+AO4YhJ1cxqY27oPa34+nrblst5b4pdwQt1A6g7fwp0L76Zur2PZ97jvY3SfxIWbhzD2rA2smH8lpx5zRejotTezHunFrEd68evvTs9v+6ARN/PemnkcMuN9bp/1U4476BhU78upXno9fd8/hfKNP8DoPomDxiW5Y8MJee3LZWPv5cLNQwAoPuhm3hn9CAd+t5nkG5NIvjGJrae/w3+dcTID3NMZNOJmVtmP0zhmHgAD96zKLyMHAJeN75+3nD71oIFf+Bx7PrYZAL3+Nl7p08grfRr58dGlPNp74jbT5T6nHGu0+683MfWN19l7t5GM+9mxzHiix3Z9b+BrMDCTJk3ilFNO4be//e02zAEIe3DeeecxadIkli5dut0r39HKSGdDrhi0YWBEI+gc02IaYixmUmgDU4q8C0lO32LQyULZFJ2IYQrDYtsFAGKaYJnoiIMKAUuerQF0mC+jVMi4+EHB+QxE/G8Y+JUl+FETpyktug6t0aaJF5dWKjMVEERMDMCPyr4ZiKVwYJsEtkFgKjKVUZRfirmlSVrmDLMAWAJ/W1DmemCGjmVBeFB0AJgo18NuTBNYYkjgRwxiDUHe6llpjVtkiR7FBSslDI6ZBTsVEJhygTN8uYDnLJWdpI/TlEEl0wJi2pJYfoDXq4wgaojNsq0ILGk1M3yNmRbxf2Ab2C3CwpitaYK4gx8xMbWPSuswfFPAjZnxhcnx/G3B2c7K147Cvnyd+lcBj29LfRlA2snC/GfLcBXZtAEZA8tVWClNEBF7ZLtdBvBoaTsiCEMrLYg0h2YkSfkvwb9gdTbnCW/GZFJRDE/htEC0wSGwoKNflqLqNnokkiRdh7Rrkc1aBI0RKJKFdGQc3KSD2WYSre7gw7Ya/A4bO+dFY2sCz8Q2/byGJoiFTo2mZnN9KTpQbCWBvcUmMGzW1caxqlJQ6pL2JDtG+Ub4myxBkxK6qeU3vUXywIJ44UaR0yqtV8oDUARJS8I4myxpw0vL9cCLGWhH4/sGqt3EyCrWR7rAhhhWUgwBcjks2TKN9bkDhrSp5dgsq0OYL6dVPgeUwk1osuUCWKykfFZOiwjzfUcTqTPJloj7mx8RAGZmZf+8qACz/HY2yM26wNICYKM7bfm/rA754xKu8oUpWPtnAczHbHgEeIQlL03n52vfFL3LzCth+FD2vekgnhoegprhsoycO1nuzn7uNbifqRt/wor5VzL3mpcYddNR/PfJf6av+TRbT4cZn0WZctPVTL72LaZyNRPOvIbRVz5Nf2Bg4hx+WL+FFzumM2rKD1jQc09uTJzDmx/W03y12ATfPuunDGqryO9L45h5XGSNgE0jmHmAbOugETdz+8ntwM1snG6ykTi3zxJmo3ahz9HHXs6JL/SixirElPy+Zit3efNZsvXH/Hw+HDJ8KHVzGujLKwDU9ric9omL4Fmbude8xMDXBGQd9qFs01PBrdx9zXJ2q46zmx+nqfezrChuZN8Dp/HO1ct5avmbTH3xJwQjbmbuNQczCDjr6M9Y8cnDALzpVfL+HncC0P8jAS3HvHsW5Rt/wPPLF3DcTcdw0Lg/83zPBQLiEDvqlw48mF8dehCXvLYHb35YD4gBQK5dbMX8K3nn6uUhiDmfs6rPYpJ7OrU9Lv+nvjvbzcC8/fbbXHLJJV8ALyBswiWXXMLKlSv/qY3YkUr5YmWcAwP5u/Dhf+15YRClJ6DD7/SjlGs1y/0P/MIgP8xdUeFfnm3Jrzh8LZcyb9vSIpZr3YLQtrnTXRzbwktIiKXyQ/CkFH6JQ0d3m0yJOH2lKh1adouT7mLjxUyMjIe2JHNF+TLYt1I+ftxBF4XOFTmQFra74Qeyz4aS9qpO4ZUghgW5YEuzuZ1IXUrc0zyN3eZhtwdY6QCrQ7bfjxqYabk75UcM7FSA1REQbfIo3uRjJQPsdo/452kijVns5gxGUztk3XA9njAxTULpmukAp1XYIRWAmQowXLFjtjq8sBXAwK2IC8gL9UAq64EnOTsqI2DKyHjgugXGbWftrE71TbEw2zv9P5pup+j+P1fp7p7oMAIZCOdcx9JdNL4tzmBmVgbVVkphdeSsiYWVzjnHiBhci7ZQyWMjC8qTAb/VIUGLfkTE5nZRlv6VtSSsLHWtRbS2xfFbHVRWoeM+Pbs3UpFIQtbAaVFkPyrhbx/0xtpq5Q0H7FaDIGuyflMlRtLAaleYbSYq6oMVEGSEIXFdEyupsFsUylcEgVgMByUeRV3b8RPyG+rFNdrReDER1Buuwm7TJDaKlbJX7Avg8cDMyrLQoDIG2BorBdFGhZfQeMWiwdFOQKYhhtVuYHgKNsRwWsLrUagXstoh0mBgZgUEekUBWomWRwXSjpfTuFhJiDSLO5ndpnBaw3yeLEQbJFfGj8l11mnJhXcKc+M7spxMeYDXLQsanCbR2+SAn2rfeUPsy+qe309g6ujTufDSlVw29l7u2HACAM9brfx+99F5ZuH2WT/lsBcXf2W72OTh92/DwOTq1eFDAWmTyr9+xaS8A9k5Dw6jtsflJJ+18c8fwPI/xFn+hzh/OP8IfnjfK+x73PcB0ZSo3pczaMTN+Zazy8bey5ETp7D0/l05cuIURh3gUdvjcmp7XM64t6S9qrbH5Zy+/JfcuKjQk16kJYiyZtNtAMzNVLFi/pUc55Wg19/GXd58LrJG8PO/nQOwjaMZwMbpJscddAw9158MwH+fLFqTgXtWceDVU3hwRK1oXoD/mnMC1uy/csiM93l1+FAW7PMIFePf45U+jXmWKrfuE+ffyyv+q7ziv8qy8f1ZNr4/5Rt/QPnGH7DvTQcBcNxBIvRfPjNO+cYfcF/Zd5nV9ktWLP2AUVOOIvh8GnWHb8lbKufYnNxn9F9zTmDgnlU82nsijzT6vPzgNTx+0C9lv87oxr1vXviPvi7b1HYzMF27dmX58uXsueeeX/r+8uXLqamp2e4V75ClJIUYhCkACmGQgVEY0Ha2F/Z9MKzCdIaSwX7u9VDzopRCB2KrnLcj1tISlRfFg8ybe880BTCBsC/ptDA9lryvIzZe3MRuDUT3YhgECenddNol/CtVodCGgJVos4/d7omuJuOK5aahCBwTP2KAA3Qtxsm66GSqYBvt+6ELmVEAMZ33gQDtI3oYT1gbMwgwOtJi52wZ+FEr76JjpcSdzPAClOujtIPdEWpYAMeVzBsj4+Xtn1V7MmRFDHGv8QMULmZtM07Ewi1xQGsMT2N1+FhJD6/IRoW5OEbKA8sgW+qgbUMydgxCsOoR2JF8+KXRlhawuLOF7EtrR9LAfNsrBzb+VbbK/8nWtJ1g6B+X2WFgZi1xNrRFEC4DZo1rgJVWglNcaWnyY4i5SVS0GF5cidtiDvwY0pLlFotbolsEmcqAIBag4h7K0FR3ER3MwaXrMFRAidOH19b1xWo20bYmWpzB14q44YtQ3odYncJpsfPLRIkBgVHvEGkKHSAtiDQqgrYogS3ZKzruk4hnSBbF8kAlSFoYbRbYGq0VRkrCI7WnsJsNAifUgwSQLRM9EIDdauLFA2GcAtCWAAwjK0xVpgy5RoQBx2ZGYX1qY7eTZ/ezpQXnLzMjeiOM0IraAwKFn4BUb5fI5zZWEryYsP3akGtTpFFjJhTpSkhHASVmCmZWY2wV9zIQwb6VkiBRM0PImIEXU1jds2QTNk6zwi3SklGjwEztNIX5shr02IdMn/hL9h/dRzQTjOaUiSOofeFynlw/nMNmxlk2qz/HvHsWjD1om1YxuP8Ly+vcbgZw2PotvNp7KBdZI0TfsrwFbp3G+r1OoObq+Zw96DJ2e+EWLnxwGNNfuAWAAfMhsf8TzLjhc06k1xfWMfjnx8NEsRx+dfhQhnerYFD9lYw9awNFw9bQriYAG5g14ma63XMgAPue9xHvfLIHK399JO1HT2DF/Ct5dfhQLpo5m99WCbB63mqF3tB+0wHcdTUQgq+6OQ2y4luncXv/p2mcsXcewPXZZ1fWvPspM25YzvhrDyL11JukegNPwSVzTuO060bDeJn9srH35vNwJHQSpr7xOrc/2M4pE9cx5S0oeasFgKPNHCvSh0Ejbs4zSn9fh5//AGvMJN3CMM4V869k8vAH89s3/dEnOKfHFu7utgSWijXzNi2AD16TX9a4txYz5vb3gTlfWM+X1XYDmMsvv5yJEyfy5ptvcvTRR+fBSm1tLQsXLuShhx7itttu297F7Zj19+xSyIbI4P3LZ8kl0yulQjeyMEOFXM+UKkwXaDRajAAMYWCUH+Tdz9Chg1mYAK9TBQGZ9jywHVTEEccwxyGIO1hJX7zmI3YBdAVgtfvEs5psiYnvQLZIkS0ysZI+XsJGxS0Z1GuEfXAMjGyAW2RhVpZgfu6iAx1aLBsoFbbJmYQGBn5BB2SFgZe5YEyt0R0+pDMYyTQ66gjVl2OYghC42RbaMrCa0yhP2BLl+mjblLtwqawYGHg+OpP9onmAFntre10txi6VZLqIFslud9GGIvJ5Ozpmy/4GAV7UIXAMfFNyZpQnfelYpoCaiCUmBG0daDcL/k7XmP8L9e9oH/tXC/r/GXYlB3q+LmjZ2Ur2nykzpTD90IRE6/BufYCVFDYgWxJgZhV2yA4oD1Byx9/wdB6wKD8HYGQaK8yGUYHc3Y9XdZBOOcTiWeK2S9TyKDZT9HO24GqTtRWVNEdd0mmbLsUd9C5p5NV3dhcRfFyLNbIKhfu2aEyMLGhHmBOnRdqwvDIPp84SHU0AZswjnbHz+TNBPEAlBShpOyC9tphoo4GZFqbDSipUm+yjH8lf5oRpCsgHSwZW6ChmhuzHJlucyErEnc2PBdBqEmkU++VMlU+kXq5z2tRkumhhjDIhcMiQdznz2gy0JetBi9YosEMNkiXgUPnC3HT0DLDbVaidUbjFwhhpKwR6Gsy0MFY5Js0vCtCuGdpmg7YDzA5TrLF3Xk6+tA754xKiiT6AJLlfarUy+d2DIQQOt8/6KYfMeJ99Xzwo3yqWH/wO/5+X/2rvrvz6t9ew+YIRvHP1cp64ZzGPHHQTkOXdaW10q/Y4aMsRvHOSx3EHHcPLD17Dmq6wL78A2CYDZeoNBwBw0A+TsPEHrJy9jm5XfMzoO+YCMOuRXsAU7vLmA/CbNVPYx2vjpbNLqRj/HuMeOYVR000uQ8Tw/T+6GAZ8mF/+glV7MvOWFzjk6pvyGTh1cxr4aH+HPVaKvvmysffCWAEHG3vPoQ+7MmrKUbxz9XLe/LCe4w46hpWz1wEw44blHG0up+NBuVYMekSAkvvxbAbtfjNjz9oAZ23gwKunsP+6Pvn59h9dePzq8KHw4pU8NfxN1lyTZNSUo/KsFsBF1s1MHzea/Uf3yU//vHUzjJDjNfnatwAYNf1KRnFU/jNkhEx7mVXE1BsO4LiDjmHqDQfw3Tf+zKL/+WMFvgaA+elPf0plZSV33HEH9913H37IOJimycCBA3n44YcZPXr09i5ux6ysC5G4MDFKiTYFCi5knR+Hon6V4/lzjESuTFXQxhCK9iO2TJMT+mtdADhREdBr20Q7FkZrSsCN54lqE0NE/JksKhYDpfCKIxJ2mfUJYpaAANuUO09A4CicFp9kjUW0KcBplxYpEUoqzECjLfJMhZHxMQ1FqiZGPFWCsbVZNEC5YEulQq1PCFRyNs46/J9jnHIsU2i5rDpSAtJyACbPbhXydfB9AXY5Rzc/1AUZRv5KpwwD3akdD60F2Dg25mcNRLNlZKoTZLpEcJpddMwW5scL0IaBW2KhlcJM+eJKpsAvjoS6HBttGcTWNkqLmmmSB6E7a4er014uBuCJI9u+4S355mqnEcAOXkqE5trSOM0GTqsIvVUIagxXpBdaiQ7G8MIBtQPaCn/DTZVnCHKD8CD0WonVa7yEycD9NjKgaLMI8QOH99u6ETcyVBhyA2yv8lpWG1XUBUWkXIv1rRVYLSZ2i8It0WHrk8bMiGDdS2js9vyVTQBFAGbCw0uI53FFz2YaPy9FNVtEOhSZSgnT1FaY7aJA+aITkeVKpkqkSWGlZODvJmR9gYkwOFra6+w2JfqYaAjmwqycwAIrZZApk1BQt0jYEetTC98B5Ugrl7Y02lREGsHwNW5ChW1rEGlSosMpRgI+QwDjR7T8jwVEGk3sDohtkXa4dGVAkPCxWixh0ELRv5WRljOC3DLAaTQI2mPEaiW7JrHBIghZoXT0P/rt+9bUsh8MwVjzF9646Zq8RW+ffXblyaXD8yn0y8b357nhMr7MaVs6g5dTDxrIU8vf5Hhm8xzbjkOfYzS/Zg8mh45cqw4tZZ/Vv+CV7IH0Bm48aAvjex3C2EeX0fRMhtKycbQ0y2/rrtHuebvhvscJ43zcQcfARsLXbXn9DrjLm4+/5g+ACP4Bao9+Efg+Z/78ZY56g7xVcfxEl8nXvkW3exaxGchs3g9YzDEDPuQY4C7eB6R17NXhQ6lGWJi1/Z9m8vC9ed5q5S5vPtUMZf8pixk04mbeOWBoHhx4zw7k5ePHctnYe7l91k+57MV7mTz8fp7zhOXZ48e3M/nA2+n7fuhAtq4iD1g619MPzgfm89xwadl75+rlvHP1cuoGv0SffXal48FxTB8nx/v2WT/lyOdmUTf4OiZznSx3uSznOK+Eqfwk3042efj9HHGT2D1P5er8a1Nf/AkL39i+7w18DQ0MwKmnnsqyZctIJpN89tlnfPbZZySTSZYtW/btBy+ACgJUOit/Wks2C2zjOJYfzHd+nh+sBwUmRXcCPCCgKOpsYwCg41F01CEojhFEhVHJViVYf1Ixm4fXEJQXybI7gyND5ZdvZH0CU6E8+fEPIhbKlcBGuzWL3erjtLoUb8hS9HkGu9VD+Rqrw5OsGC/AyHgYboCZ8rFaUthtWVDQsVuJOKTlQFQgTFOeaQnBi87pgFRhv5RlbdNmpz1fwJfrQjoT2kEHsrycw1ruddctgJewxU4Hsg3a8wUsudlCm55pyHvZLGrzVmJrtxKpT6MtCfJUfoDyNdkuUXFqS/kYXmjH7ItDW2CJzXP08zZoafuiacHO2qb+0+1jp71c/IW/v3/vm6hvszHA/7b9a2f72P9cVofc6TfTctdeBeRduACcZkWsXgBKLvw3l1eSGyQbYWeyVoRMu4jF/YjY9brFGi8w2S+2gWGJD/he8TskrCxlRpKkttiYrmB9ewVJ1ya9OUFjQzG+VnhVLm6pxmmWnBO/1JPtVKAdjVusQ8AkIMfIKGJ/E4G8rsiSyjjgBPihKYDyRBBvZpRkxpgar4sr4nXAi2oBRzHIFodan4iWLBwX7FYDM20IixGV4yFsSkC6i87n3mRLJFdFrKdVnonSluhrgohk63jFAV4CfCd0GbMEMOWWY2ZEg4QhIEpeFEe0IHQyUCFDE9lqENli5zUtaFlfYJIPXhazBWGZ4p8rElsCnBaZ1nQhU6nJ1uxMRv6yOuSPS/LtTAP3rMrrMg57cTFHm5dz2dh7aQyDIZ/vJHTvXLnWps7gpbNGZlz1RYBkofzmowmAiM6L73yDrHsu/vE/ZtaZh/DSUYNkeV1/wafpz5nZcSnl53xA+Tkf0PRMhujKV/LLnNt4Fwv923h1+FCmjxuNv+YPXLrHQ1y6x0OcVSE3P2s23cbdv9mfZ78zjMvG3svc1n0YNeUozn09ydizNvDz86YICwJ5bU/n7R804mYuskaIMQDQ8eybVIx/L7+vOW3MivlXMu6txfl9zmzeL2SDhLHJMSbPW61MHzdaLJyR9rHJw+9n7jUvse7dTzln5uz8+p9+cP42bmPvXL2cYP+q/LFe9+6nPMdo1o04iXUjTmLWI704r/5KRk05ij777MrK2euoWf8dAS+5kNEP6/PLe+XqT750f79O/VNNmbZt061bN7p164Zt2//MInbI0kqhbQttWzKAzuehSLuTBFT+HXjJPTfDx1YYYhn+5fNdcm5jpom2cn8GflEEvyhCe98imgaU0NLHIVPt076rJtO1CB2PFoT9OS1NqIvRptDhSoOR9fBjJsld4mTLbLxiRxy1/AC7JS0WyxkPM+liJrMFswJf48VM/JiJVxrDLXFQniQl+1WlqGgkH5aJYxcCLM2/++oooyD4J3RJQ9zUlGmgDKOgE8pV7rkWpoYgENCUAy+drYxzTE+n8EzJ49GF9QY+uiOJtaEO+/OWfEudtuSzsdsFwClfY7rizpZzZnPq2jHqmkI9Upj1Y+707f+f6ra7d7IA39Z6Z+Lu/xQQ2QletrO0CLxzFsFePAQqgTALZjZkXlwKtvJGYV4xHpFBcs4AQIljMKmuPh0HpOi1l+SxGQS06ghpbdEn1oCpApalduOtxp6UR5I0tiTQCfm9PbBqA3bMJbEpbG8zNJGydD6AUZuaIO5jtwlqChxhVTIVmmy5D1rhf1hM7JMIOuKT+U4abWu8cg8vLiJ5NJhNoqvxHULhu0G2LMAtFqbEbhezAMMVe2WrI2SdIuIE5sW16HtyMlQ73P9Almem5bVsibAnhgeYAsa0E+SF9SqQY2eGx9mPyLH14iEAcRXRBgOr1ZBWOBsyFQJysqUaP66JbxYrZz8a2iqbBYCT7qJwiyFbLjbMgQXJKgMvdEJzE7L9ZmxnD9mX1ZQfzOCG0w7hmHfP4sWO6bw6fGi+henpB+czefj9nHrQQFqH1udbs563WrcBKLmB74svDd/mdad7PwbNuQ+Aow4cTK9LJnBJZA8AitafwDtrr+InW//Mg683s3f5Qnb79QyZ8aeynktPuyXvslV+kuiLm56RvLy+759C3/dP4bAXF9Px4DiOWFfB9HGjmT5uNENG/jD/eFTJuwB5hiNnHzzrkV4sG9+fcT87dhsgAnCRNYJBI27mLm8+5osn50HOtU8so+/7pzB9nOiEckL5zoJ8AG/04ayYLzkrk4ffz0XWiDz4e2ae5K302WfX/PSjphzFougrDB6S4ekH5zNp6g0APLX8zfw0C/Z5BGNlPbfP+ilr+z/N1DdeZ9Dgvdjt1zPoM/+Z/HSvDh9Kx4Pj8oDo780WTpk4glMPGpi3yQZhtV4dPjS/n9tb2z1Cq6uro7q6Ov985cqV3HHHHXzyySd069aNCy64gKOOOuprrXyHqxCkaFNhNLWHPcid3LZyg2nbESbCsUMWoJDtorUETObskoWNECtmHXUEOCiFdmz8uEOqa5RklVgAZ8oh1SdL7171tM3ujpn0wlwaoxCC6ft5at9MZlHFknKvPLA6PPyIQaqLRaTVx8gGovXwdWgTbGC4PtowRPsB+bwY8fl38CMKKyV6lNbdEpQ3tEI2C5kMKhYTFkSFTJNhopzw2Bihu5ptF4I6QyOCXBuYsix5z/cL4MU0ZZ+i0ZDdCfU/OtQK5c0RTGFGdMi65NrXOjE/udJao9o6sLKuANJ4BIwY6UpHBg9heKaZ8TEzPkZLEtXaKf01b9aw07f/qyqX//LvBjDby66c9nLxN9JO9m0Kt/yq6gxI/pE2Zidw+XrlRyCIBui0idUqA1ltafyIJrLVyLMBfjjIlhYpec3MyuA8B2q0CSorz3OMw27dGjiw4lNqMyV0MTuIKp/mIMJ/lb3JRj/Cqo5d2NoR54JdF7OqtiuuEeBlLDKBRaAVyRppH/OKfVTSQXfxKPrEhsAkiAijYbfLgN4tDcAEM2ngfG4R36IF3ERsvFg42K8OMFwRukfXSJ+bH5M2ZSMDZgpMR8k0nsxjmSoPMqwUoBWZco3XPUskkSWTstFJg+TuWfAMrK2WtOZFBQQpLdksyhUw5LsaL+JjpEy8hEbbCqu9ILT3i0WmqgLR+ICAEJBAUStp4kd03n3MaZb99xICmOT6oTA6wudaY4SOaaKJkRuKmfKQZXI0XresePLsdLX80to0ZC2LNv4a6gZy5h4PUjG+P0v6tvL7mTfzNCLIfyghgOI5Rufbp54bfj+tQ+spWVzFcV4JFePfwx/ei19/LAPjV4cPpaL6NjadBwfU/ZmWk06juettwEGcfWMT+wI37z+Lz350O7uvipM98RrYB/BhHMey0L+N/biFpmcyvH/3ndQNvo61/X/KWZ/Oh2nQZ599mbH6MXrPqmX90BrGz57JOTNn51uqZqx+jPH9ztimNWvRtFMY3+8MJlW+AGdtYP3aGjjvbQDmDn6JycPvp3XoDQyb9DQrTj6f45nN8KNepHVoDcOASVNvYPLSKhZFhQmax2TmXvMSi6KvcGPqM34R24Vh6SNY2/+n/H7qDfQ+awPPPyLHq/9HF/Pp7ftyeqnLXbfGqHv3U0DA4OCpmfw2tg6tz/8vWVxFxfj3ZDvXwgTgkBnvU3zQzQweMp9FvMKw9BHw7qfymTA6P//SJcIarZy9jhmrH2PpkgjTx41moX8bB86awvO7jeb4q2fT/6OLmXTeDRz80lgOun4WI8sat/u7s90Aplu3bmzevJnq6mpee+01jjrqKA499FAOO+wwVq5cyTHHHMPChQs54ogjtnvlO1yFeSDKD8Xr2fCXTYe3cHIVhK1MWTdvmaxCMJOzSN5m8J0rnRNmKnTEJFvhUP9dg2xFgNlugAFnDlrKB21dCbb4WK3pfBsVIMvLMQ6eh9GSJOiRQBsKZSiUH+C0umJdnPSwmlLisFUcBV9jJrMy0A+XF0RtgpiVH9CLN74vtspJSUD2qkqw0hl0EAh4CdurlOMIMPENiEbyAC0ojYfgRtgRlfZQrodKZwoCfqStTMT4YYtaru1Mh8c80OK6livLEtAVhFeKcBoMCuGahpl/rA0TOiSVVrWZOE0OdtQJW/lsVNpFZbJiyxwE6JwpQc622jR25sB8RU069/T/eaJ/Qf2rWsP2HbnLv7Xd6+uCmDEjv9px7Ml53yyjlQMpnYHMTuDyz5Uf06isgVsqWVlaCUugfGkbC0y5o2+GP3OdheW50pY4ZXkJYUCCqEZHAoqr2im207T7ETanStjqJ6j3S3gn2ZO9Yp/zaks/NrSX09aY4LY1Ynt67G4f8UFLDRHDw09bqEhoCtBmQruJV+YRmGLpnIkVHL2spMLrJr+rvjIJOgya95DttdsUZkrAR+BYoYW92B1nqzysJgu7DdAidI/VK7KlkC3TBWMCH1BKEu9Dq2OA9NaY6GjiAfgKlTGEwXJV2MaFWEObGpWVgNBYrYKNDihIVQtz5LSFzI0vutBsqQ41SJI5I+6jhYwZuz1nsiAte1ZH4TNSvmhvDBeUlht3Ofc2bRBqZgT8WSkxYbBjLpGIS+tHsf/E1+5bWb9bKM5Xx3Eq+3jH8gA3MHhIhlbqWbokAhQG2DMPGArLC2xDbqB95HOzGHvWWOZueJLfMJs3ZvTnzmf64b/9fegNHw2+mBPHzAAewHm2DzW9F5PdazoMkOXMPuNi/OFzaDhhT/gZUAlvP1XHrpe9Q90bS9nNj3NU4jfc8X4p1Uuv5yJrBL1zIARY6N/GwrM2gF8ws3pt4smF7T5kDCVeCa3UM2bxYp5jNMMG7wVXTAKg+uTrGTSngTEnL2bF4vN5tPdEajaNYNlZ79GbWg45uRKGCuCoWjWXh+KvAnDj06cw/oYzOPGFXow/dgO7rYxz4cK76X202BGPPWsD69cOZWloFjB4SAaGQsni0QwemmHYpKeZOvp0ef3v6nmrleNmlNB7/Hsc8+5ZrDGTrB3fn/Vr51OyuIrWofV5MFVCFc9brSxdQh5QAuDfRu++tdAXjiZ0N7sZKsa/xzKgP8hnPHwOww48mHkNf2Z7oyy3G8DkAxiBX/7yl5xxxhnMmDEj/9rFF1/M9ddfz8KFC7d3kTtkKS9AdaQK+hcdFDQoOd1FJPLF9qbg7+6u5DJeHLvQDuXYaMcicEy8Iod0mUm2V5Ze3bfiBgZ9Shr5qL2GVc/tQc8tbWIxnOnUypZrw8pZK/sBVirAj5qopBY9S6CJdrgYHRlUWgCLNpQkzYffTwVo00SbBm6RFfYRa4xsYR9UoLFTAZmqKFadI4N9A7QboHJtg5aJLooTxCOku8VxEyLUNzOB9B5bCistFyorGRCtT2NubRNgA/njl/tm5Zmr3P52NgrI6XA6MV7buL4F4a3JXHXWsQQanUxCNhuyQCYqlQHXzbfjAQUgZFnhsncyMP+o/l3syz8DXP437Mu/G+Dk6h8Bly+b5psEMztBy/++FBDEfFTWwMxIwKHyFbGmUNgeIR+qqHLMiglB6NLlRwQEuZUeRswjFs/i+wa7VTUwoHQz+8Y3srKjF7vEW+hptbDFK+Xtpl14tbYvbekIXYvbKK7ooL5R7mJHDJe0JwxMpChDRoPqMDFTBn5UdJTaFOexIBJgZEz8KJLdogFf5dkPbWtUWgbvVgqUr7FbRZMTaRZ9Dr7Ki+RR8j8wIQj1I9rS2G0GbpEmsAO0BUGxh7IDdNbA7DAE5CQCVNpER338rDAc2OKYZvsGypPtyoEGq0NMBMxUqO9xCsfWLRJw4TQbAhY92Qc/RqgjhcCU+bUln42RCVkij7xJAJ7CTQjYdIs0hicOZF6pgCkjq/Ktf0agaG+JYWT1V35X/n+uHkv68s6CPZjyVh9ammfyadk4bP8Qli6J5C2RI6seoX7A8Xmw0jp0KCXSdUXJ4ipGdZuM03M+Rz4H9z53MG/M6M/j5/ai4QSYmZFlXHVND7gG4HIO8P5MrTmUh+KvMm/dq9wSh8/P7gs9LuedW+Da897mb7fst812LtjnEQZtqWDeXT4jLzoW3hCGYVj6CKqXXg99+28z/dIlEWYeMgYQ0DDGm59nJ5aN78+o5ybDeuj/0VFc+UIVp6y5gKl7PAQWPDmknvH9zmDG6gx9T3iFRdNOYanVi2Hpg7mwxxD26baEmlDHctIBc6kfMIneR9cya2YvBg/JsHRThFmPyHacc9EEhqXfodq7nieHFtzDcsfy0XUTgdMpWVzIazme2VxkjeAub760es14n4eGzmfM4sWs7Q+9+9ZS0fc9hr1/xDbLyw8yFwtTA/Dk0KEMm/S0bMvo2fk2sdlnXMznZ/el+xn9+fmBB9Nnn1258IUhLN/obPd3559q8n/vvfe44YYbtnltwoQJ3/oWMq0UKpURQTkUBrJ5N7FOrls5UKKMfLin1lq0HjnwkgM5hiF6FdvEj9nUHpwQ/3kP+vWsZf+KTTS7MQJtsOTTvhTV6Txw0YYSIwA/QHueDMCVQrsuyvOxW7NkykNApUI9TDILridaHttCBVpAghmCGYAwyDLXSkYAZkbyV7y4iRczCkRHURwjkwXTlP0DsC38yhI6eiUwXI0fUdjtAWY2wMj4BBGTwJbWON9QuAmDwIlhVkSIftaO0dIugMEwBFD5QaH/O7eNgYGKWNsGeEYi5INBc9MaJuDnj7myZB5lmWIAkJvW99GBRrW0fwFwKstC50IIwufK2Snk/6rakbQv2wNevgqk/Kvav/4RC7M9wOWr5vumGZmd9c+XmVT4ppb8E1NjhIPvXOZIDjBgAH6oFQkrcIR18Up8zLhHj6omDq1aS22mhAFFn1NptVJmdrBiay8+ayijxEpRmykh7dl8tqkCuyhLixOlSyKJ7xscssun7BJplu1SmrKiFLVtEXSxh29aqKyCjCF6FyWsjJUWtiJwNLG1EcyUtFIBeBoMX8wJvLiwGZAzJgjo6KFQroHhK9HxOBqtFNmyXJsZEDIpZhpQimyFL8AhaWF2yMVA2xoj5mFsjRKUZtGmhfLCY1jsYTRGsFsMcXbTYnCQy2oRbahktXgxjQ4BlNNiiOObF+pgHECHTmUZwFEEjrA0KryP6cZB2xJgaWw2xFUtqvEt0eyYWYXKKHSZj9liC5PUxUNFfBzbx3ND0czO+kJ9v+Zy4FnWvfspi6I2vYtv45AZ73Mce1Mx/r28gL9331rWr63heauVksUl+bv9o7pN5pE9LwYu5sObRjPkyrNZs08pL5+wJw8tP42l/j4MNt+l4YQ9ueOsX8Ct0+izz64kALPL4fzt7Pu22Z53rlnB0iURjhnwIbU9Lmdkn6nM7F/LgVdP4f37oPGtlYDBXd58DpkBcH1+3vVra5jQMYK25VfmncRyoKEzeACYu3mqDPpfgFOmX8DT59zDvB6XMyF5GKyCk/rBmMWLYRJUrXqOjHcWLIV3Pmqh9sEhLNRrOXpFX55pHMXSJRC79TWmm5czHThnibTRLVi1J9MHfMjgIRmGzXmaMScv5iJrxDZsS82m2/JAsbNJwuAhGY5bLC1hYxYLWrzIGsGTazOMWbxY9idaMDWY0DGCNT8fT5/5z9BKQay/dEmEC9etzIdVjvvZsVx73tucNfZgdnvpv7n4lhc47ng5Zy8+WqOzm+Cx7fvufC0A09bWRjQaJRqNEolEtnkvGo2STCa/zuJ2uFKuh05mQvteBeRsjI3C3f28iDx83kmHkQ+r7AxgELF9AdRAW1+fQwd9xGcdpZRHk3iBwdq2Snokmtl/l894t2rPgm7E9STAUam8EF7nWAnXxaptIVtWLSxMqB8JIjZGaAWNqSRt3jTxE7ZcQC1D7JQtAxVoAju8sxYxMN0Aoz1AGzbK0+LmVeRgNBkFxsky8bsU09KvSFxyQpFqzr4ZU4klc9rP57ZoQ6ECjVtsk+xdgtMcxd7SIvsXhMAhR3iYhdatbRgSyyqAF9NAKCEdsiVarKuVEYZQBuK7n2NvnJA1CrQ4p+UMAUIHOa01KuIQdCnBL4rgFlmkHRe+vUZT/7b6vxRi+e9mXv5Z8PL38+8EMt++0gaYzVaeYTFTFOyTTUCFzAAysM5dYgI7TK7vkWL3mgZSnk2v4kaOKv4AimFPp4luZgwDxcZdVnDLB9/nmQ0HQ88Ue+2yhfLqNpJph6a2OI2BwquPsnjzAFb3q6K+uYg3vF50pB2sehuv0kXHPXRMAIzyFJYP2dKAoHcHbmOUsu6ttLbFCFptonUWRRs06UpFukKLzseRLBlx5IKW3Qy8UhcCRbqbj0qbELIWusRFOQHuVkfm8UOBfRqUp+T+kalD/UhA1a5NdC9q5QO7hnjEJe0IGFCGxjYCsmU2ZlIAkfIlEFTcJXOCfQEmga3IJgKUFrZFBQrfKAAUI5DPI4h0Apehc1yOQcpU+WRLlLi1hUOCwBGjgSBjYqUUrpXLf9NgBVi2j1Ia7Rloa6cG5svq6p/Po/dTS5l51uGccswFrD/nHkrYO//+8cwmMXImM1YfD5BnBY7zShg7ZRXnXX8lH970A4ZceTZLgKPrYrw89eD8/IkTB/LmZJf2lb/gt8uWs/WN15m+j+hUKm+9kO++fx+/++OdJLstp6bnYn6fsKmqmMtJI2dh9bydPz87AniEN266hmkNx3L5xhX0O76Jntpl4wk2Z1/fk8FDMpzbu455CycTHFtF3c8bWDTtFIZNepphPM2iaafkt2fYpKfhz0ewy4oH+dEt4RfwqjuYt24yAPUDjhe9CLNYWJ3iyCdHMmnJID6bvYrF03rz0qpH6Gg+go0nKB4+YSMPLKpm3rrJjHhqDaNnzs2vZ/CQDN0WF/Or6zayYPQxsOoXeTezXPtXbrpW6vMMzOAhGXr3rWXWI7049aCBebBy7rA6go4zGcz8/DpyoHLpkgjGdY9y1IBjOGb0h1RVzM3vx4JVe3LMgA9p/M3j3M5I9kUA24+PLmXkeW/z7vQL+N7Rpdz9m/0ZN/pGFr5xGU3/DgCz++7SVqC1ZsWKFXz3u9/Nv7dq1Sq6d+/+dRa341VjM6jQaesLjlmFu/P50qKV0bncEyi0OeVanXK5JyGroG2D+Ocmhgq4vM/zmGgWtvZnU2MZdW1FtDYkqN6k6WzFnNOT6CAoBGb6yIA+ncFpTJOtiBLYprizhHkwIKBCeYGAiqyPCjTZsgjaVASOIW5jjiJVaWF3BDhtPpEt7ZitWfwSh1SlQxApCPGxTIKyIlLdEmgDfIkFwHcUVkqyZDAV2jZQaR+zLSOW1GE+jR1oUl2jtHwnRqmpcNY3CEuSy5eBAoB0vUILHuQtnEXg7xTAZQ44aS0i/5yexQ+Xk9Mj5drTHFvYHVPAjnJs/K7lJHskaOthEWkR5xud3Gl7+Z+uf6clco4h+U/ZH/9vwcvO+naXH9NifRymtucY5sAh76ylOl1mAhux9Y1KWGPE9tmjtJauTiuVdhvVZjurst1pS8f4XrwBW5kkgwg67lP1mmKrF2NzSQnH9PyIP68bQHJjMbrIQ5mgoz5Z36Q4kaamqI2KLh0sad5d+txcA7skg44aZLIGVociiAXs0/1zGsqLsE2f4miGTX45mSpFrNYQgXurWCz78QCj2cy7fflRjVnsEotlSbZHICGBycbmKEGzja7MoB1NUOaiOyycRhPDF3F/0GHJTTYFxHwc06clG6UoLiKUgT22kA1MsoGFY3i8HfTA/DiOlRKtULpCtCx2O5gZjd2m8aMqbNUThkmAjYAulLAuKiAfGCrAUoEHVjJ0gTPAaZCcm1yLndVmSvsa4MVD85logHaV5NpkTPxmG51VRNIKP70TwHxVLV0S4UczruBQvSDUvEhLUm9qWTa+P+tXF0a0/T+6mGvPe5ulS1qZPOBx4HRuv7+VP89+jF8e9RPeXtHMW8evZr+l4+BwuHPh3by36nwW/ew1ALpceiF/uvp3HLH1fBpqhaWhmwSWnNRtM70razl52CC8jbNYPeBldntW2qGWje/PvJp9KWUcZ18/G/PFk/GHz8mzGX+4fyS7LO5g2YNDOGT+M8ApLJp2CucOq8vv4+AhGWkHWxKBR3pxzkUTCMYezX6DyniS4Yzp/SLz1k1m5JCpPNzzduoHVPMjXN61hlABnL6kHzNveYH1a2u4pGIMm289l6VWT0YOmcrLjGHcsidJ3X9o4cC+8QfuXHgXf2EBa9frvItbxXjR1XQGLrkWsDwoAca9tZjjKAHqGT/kIg5aJPPn2KSc/uc4r4Tnr2/lrmvu5BhLQCQDQr1NqL3pM/8ZWn/1MmcuKGbqzE94cv2V/GV8HRVPXEvNpp4smpYBTuG2Tq1s/1NtN4BZHFJIuerWrds2z9etW8fEiRO3e8U7bOXavjoDkpwOJgcaoPB+50R62CbnJbesXAuXNgzSFQ5usea1V/vTOCjB6K5vMKHLX2nIFvHyG/0pWWNiukEYZhkyCzmb4RxYCteXYyes+lbSNeKyZaUCyTXJSpubEeadgDBBKgRhgW2IxWNckoaddk22yCDSHLZ1+b50zOXS6sPSEYdkz2ICRxFpCTDcAG0prJTCzAb4cQttKAxXWCJtm+D6BI6JHxcWxO7w8R1F+y4RSttLMGubJZAyp3nJuYzZVgG8dDq+Spl5t7JtmBvX2zY3J9deFvgFAKqMsHXNlM+yOEKmRxmZcptswsDMaKy0liTs9p0XnJ31z9W/GrzsbCf79pUf0RgRjd0S3ryywLdkgJ1jYQI71JTIWFqCL8tdEqUpdqvYyi6RZo4reo9dLZ8SI8o+Tj0BGgMLD59lzX3o2XMrnx9Yg9OkaF3ZhT+9dijpvVIU7dqC/3o5mcoAu9ah1i8HO2BI97W0uDHsoixuykbZAdVl7Rzd7SOWNfTh063l0Bije6yF3YoaiBtZlm7tg2EHxLq3kaorE72IrXFLfFTCQ7eKCYDZauFFNNo16FKZpL0+gdVs4VW6GEirmRPPohICbsx2E6tDAAeBIc5hpsb0FIFrk6q0qG8porJUXCIDFFvTCTbVl+NEXPz6KCqqsdolh8YtC9Adoot0CQNDsznWRdrLvLg4qGlTdC1BUcjedCiUB4buBGiMghW20oSt1oogrsW9zTUo69bKLqUtrPq4BxjScme1mELCtCm8InnNrUl/xTfl/+/qNecFrrhuI5+N/wG9+x7C4CEZnl/SCmTyA+TOJeBFQE6/VUfyo49ns/DlEm7/WRP9L5zPeV2m0P3sn7L7OfcwLzKZCcnDeGZFXxbxGre+9C4n1A2Eqwthk890Fq+3Xsn7h9TzydwzWLjPI/BnWLvPEeJOFtZ+p1ZzTvEEpg+fw3FeCcdWfc5ZmUH88CcLeOrBG+h/PlyzYB0lD1ZxPLMpHTYgL2IHsU9++LqNzJm2gsqxR3PEXw7jbKsnx3kllI5fxQOLqilZXMUutz5I7/WHcufCu+HoUmo29WTword5f/FiGFrDkU/vxsihQ5nQMRSWLGbT9Epm7jHmC1bEV/1+EIc+eBlwG8vG9+e43opZ1/dk+rjRjO8Hzy9pzbeQgYCSMYsXs2x8f4559yxaE2EL2eKJPDmUPCPTWTPTOrSeqlVzeaZxFA9ft5GLrh8BZDhl+gVcusdDPHzdRixup+IJoOpkxr21mIenbKTxtBuoeOJafvPRBLa+fSSLpp3CHHMTJ/vbJ+PfbgBz5JFH/sP3L7roou1d1I5bQSD9yDnQokLRfMjIiK4iN23oVGYolC0sS14DA5JnAmjLDK2ZhR2pPcjgypFz+c37R7NuawVBV4OVme78oMvfqN27mDXNu1K2JhANTGejgE4J9yrUwAAyEM+6xD9tJblrCVaHB1oTOCZm2kNlfIKoJbS6Jx79OtS/WG0BhqtJWhaRJo+orzHTPn7cRhuKdJWDF5VEYwyFjkTwuhShLTDTAXabh5HxcEsc/JiZZ3HsNj9sSQvbs4rkWASOIdbQjoEdupyluiUo2tqG8gy0F4KXHGOVbxWjAFiUUWDCrDCvxwifdzZMgDBbptNnmbOiVgrl2ARlxST7lODGDcysxkoHmFmFmdE4TVlc/o6F21k76xusHQ3EOLeKyFWnfdxr3vuGt2bHK7tdYfgGflTE6oGtZZCcuyejQZvivOWH7mJmhwFNNkZZEk8bbM6WksWgOXAxVIa4cjBQePhs8jK8u7k72YxFrE8b1JWSqZTBdtBh09ZhY5dqSvo10byhjKKqDqqL29mSLuHT1nK6V7SS9iya2uJELI9qu5WqWDsfN3bHSBmU20kiysNUAUV2Btv2cSyPVLGERQp7YRDrmqGj3KR3nzo2bKnAcnx0oIjbWcw2Ez8WoNqs/OA/2RCnZ+8GOhriKB/S1QGBY+BHNF6Fh0qaOM0KbSlaWhP4SYtkNEtlUQdrmirJeiZem43X6uC0KcyUHFO7DdLdRO+Sy9FxS3zsVpPA0jhNBqYnQNItE0MF01cEhgBIPyZsTGAKiCFkXnLLUr4iiGh8R6NcAx3zKereRmVRB64vNzTNmI8fKEgKS6Utmd/MKGj/v5OZ96+u1QNeZn3VXRxy3hQYKqAlr7OgwF5UrXqOh+KvUoM4fZ19fU/Ovr4nd1w3GDiT2Id30zz0Ug6YPYV5s6Ula82fhrFo9OXA/izY5xEC83JA3LleOvCH8NRfAbgxJcz8yr9VUw4c8+5ZAPz4qWc4+8YmxiV+g7H81zxQ/CuCsUfDXXDcmlNZPORIVj3zS/YuvwHug/fvg3GHXcTYKUfywKJqzqUuHyp5UsVcTqp4E6bBM42jmLzhcf7afAN/vQh6cirPr9cCdhZDw/ER4E0eP+qXAJzO5cBULrJGcO6wjcBF/PnZETyUmM/S8Dj+5qMJHAiYu/2QujkNbO4lA9YxT0fhlMuZsfoxWAu9z9rA0Z2O/9gpqziXOs6+vid3efMFoMyoYsH49xgzo/A5TOgYwUXWYjq7wh3PbHr3rWWfSR0MnpaB63vSXnwm5w6byqV7PMRJFXN5aMarAiQbRzFu9kWsPWsDg96tgKvuYNbs7rQuCt3mhmR4fP/vw5tsV+1M6utcOWtkQkF+zuzKlwwTZRmFtqVOoY0FS2Atbl8Q3vHX4t4Vi4Itlr9d3tXcutsxZFojRDc53NB2Ika9Q9FGRawhYNdPU1gN7WI77BXyUrTW+WXqQG/jlKXTPqrWIx5AqlcxZkhVq0CjIyZBxMRqyUi+jRcyMJbCsMQy2k5JVowKbYqNrEe2Swyrw0cbptg5+wHELVLdopgZadw2MgLgzEyAlzAJTHEe0waif1Fi7ezHLAJbYbhhS4Wp8GIipHSLDPzyYoyNHaEttVnQtDh2wfktdwxC8b0yzTyAzGtYAlfskI3QWCFnuBBoATk5K2wty071KiawFbF6FzPji97HMiTossOFbOrf+W3bWV9STxzZ9rXayP4Z97H/lOvY/7XKAZadtX3lFmlsQ+76G1nQhiKIgNNcsEb2EtKORCSguEsHmYxNtjmCY8lvXr9YLWVGloShiCoLA4WpDDzt80a6J4f0XM8HjTVELQ81vJ1SJ81HddWUR7K0rC3H6lB0vFuBimsyaZtmKwpAQ1MxfWsaqIh20JaKkHRtWrw4/Ys2s6FPOZ/Vl7ElU8Leic9xtclHDdUYbxXTUpkgiGn8Eh+zxcJqV2RWl2BENO2ZCCjItkRAw1qzC36x7IfVbFG0QdG+q8bearG5uBSVMsUyWimcJsiWKqi38o5sRhrcz6PYPhhdA5pTMRo2l4IV/pZbAWbKwivSeAmI1SlxLlOSx2JmwGq3SHfz0XaAn1KQFgZGxz3MrQ5Gzg3OBqeBvLGCCgi1M5CP+9Y5O2aFkVT4QEk0Q8q1SWZtVNaA1gimVsS3qLxFdLZE2CG7yWBnfbGWv+awyDqFeetW8hyjWbqkdZv3ly6J8JuPJnDpHg/xDKM4CXgGaU8aNulp3j0vgfNjl88WzWdC85F8fkoZLz99Nj8Z3ZNjt17OC7+/BnC48NKVXHbNEZxz7mz+dIvLOas8Hl/1FKeffTgAt5z3kQjWZy9mwXix8Fq/tgbGwbSSY9nnwGIufLqCX9cs4dFyaDjhl8AQnntiV24tL7jvHtLWgrXqSJ5fr9nrVtGkPL9e2roSDMwzMIMXZXj3vARPuAUw0FF6N2euf/BLj9PjB/2SZ8vO4MR1vfjeDBjZZyqE+TiTZz/OVYMyHLO/sEpjWMzU0adT2+NyajbdxsPXHYYF9PZrOWTG+xzdr5BZM3hIhuOuGcApE0dA6D62dImwKvMWTuZJhgOim3neCtmaTg1ZTw4dypgZi6k7QZ4PHpLhR1X38UHzJTww5B5YBROSh7HPbzvoVncgcBF9T3gFnhyJNfuvvPPbPVjP4dy1eArtK5/IM1XbUzsBTKfSfgCWDIiVUqH7VVDIdLEtaVcylLQl5R2wOi0j64r7lefJIDofZOmDsinakCbycBQ02G1iemCm28Q5zPNRuRT6oMAkaM8rDOx95HFu8J7T2vg+xtZmYqaio3exsCAgLWcBeRYGpbFSHkbWIFtq5fuys6UWdruP1R4IAPA0flz6mlUyA0rhl8YwUwFOSxazIyuBmKbCCDRG1sJpF/tkP2aiLQOrwyOIWBh+gOEK4NGmIW5nEYUbl5Wnu8ZJbLHleIMARCMoOK/lTBJMQ3RApimMkOvlHyvCzytkwATQ/N0H7PtgWSjbxqspJVtsSoscwg4pT6ykVaAxMi5eZGcOzI5a/9vQyp0gZvtqJ2j558tuMdAVYIUZJTkbXzOqQhcsMTbBkRtCQWAQibhU7tpOQ0sRgYaybkmKlSatoQsmKZ2l2fdoDCxuXHU8g3dZz7g+r5EwMhwS/ZT1Xilvd9mVIjON+x2T11v68Oonu2HaPkP7rqY+XcQ7G3vgp0w2NZdSVdyB55kYSrMlW0K100av4iaGdv2Ydi/CR8mufCdei2N5uBlE26HBLHIxSzN4n8XFAcyHhs9Lw6wWhZVUUFtERCthoNrFsUz3SGN/GCO7OYqVUfgxYUaURjxZQoe2wBagp7SwU55vUhpLY7SZBHEVtmiZ5FOdkfyV+GZFe6+ATHUgzmoKjPIMQVam9Yo0qjqDEWqTckJ8reTGmuT0kBfpa1W47+VH5JpipkXsTwBZ32RrYxG6yUFHAwJErJ8pN8lWBFDkobMG0c/tfFzAztq2xp+2iU837ZZ/PnhIhgUrJ7Ds5Bthrbz29Dn3MMabz0XWCJ5pHMVvPppAxRPXctX4FyhqexR2h10+ns3F573MJyWfYv9wDVv3PYo7e1zOR/u9wMg+bzNv3WQOOGoKDScsAd5l2vyeAExDtDGxMTBs0VMs4hQJbewYwbCfj2fRtFN4ZnM3/vb+frxz/NnMM9+jbOwn0A1uXbCSK47Znys2bsUfPodxy55kxhWj6O3X0vHsmxzX+7C8yL93X3nt4evkC7X4l48zG4ge/WheR7P4l4/T+sv6/LRHHiUZTj87/0wOun4W1D8GfQrH7txhdZxbPoa1f57Fgyte5kEuyB+vpUvg2WM3YPXcyPPrNcf1VqJtsXoxePVQlgLrRpzEsBFP8+i6iex/wMv0Xi3bCdLqVsNtLBu/gZIZVds4lHWunCHAMJ7OM2WlZeO4c2aUpW0Rqi96jkPaWljHSfl51v75CNYWN/LSb6/hV/Vz2PpuOYyGojkjgCO+dD1fVjsBTKdSplEYPINoLWAb+2JxIVOFVqYwgV4YmzDHxDBk+vBOv7Ytst1L2LpXlNZ+AYmNBl2XdojAPQiEaQGU5xc0IGGblM5ZOOfYCT/MNzFzehEz32qmUynUZy5FXkCydwnasAlsg8jWNIFjokxQpkJlAyzt40cMEf2nA8yUhxe3BHBkPAw3IHAs4puSYi0dj+IlbOx2aRvThoG2Dfy4jdLCrLhxRbrCQAUGsa1ii2x4GjPpCfMSs1DZADMt2p2cgUC6i0m8vATqmwrAzNVgEh7HArBR0YhoXQI5zuICJ61+yux0h+vvdUm5z8xQ4NhkKiIYnsbuCDB80Q1lKm3sNg+3xMKJmnjuzp7l/3T9I/blfwta/r7+lSCms4Xyv1O8v6O1ke2sry6lC5knkscVOpApwJR2JctQ5C7DHWaU8i7tOKZPv5p69i39jAHO5xQbFm2BR4Dmfddk7Ks/oaQ4RTrlkPJtjoqvxkTzaqo3c2oH8s6nu1Bd2UrXRBtbOopRdRFimwwW693pU70VP2uAZ5CIZomYHqVFKRzTp2+snqhyMVQ1tvKpdtp4t20X3mrtRVWig7VVXVCuklaqpgi+oSEWgKWx6y2idTbZMo0f0/g90qhPoxguRBoV2oSO7hrb8UhX+xAonCaFtVWsmlNRARfSqiUBn35U2sO0qUmlbbKuRRAPwNAkNin8GKSqxZbZbg/tmm2ERTE0RqBQnsJ2PDKBhGsqH2zHwzQDkiWOXHpLPHTKxCtSeX2S4cpyJFRUoS0twv6w7c8r9kFDfV0JqsPCTBp4sYBIg0mmPJB1uQqj1gENblGA29mxYWfl6+5npzCvTH4/c85YE06+UeyTh9YzssEFDGpHDaV33w30PeEVuoTzls5txx8urVlPq+9xyso/8NDHr2Ime9Hl0jnwm7sZufJXBLv/iYv6ng/8ivPuuIEjtp7/pdtS9utPGL//MwCMrN3MM7+ewQRmcFK3zfDpZsbtCt/99B1+PmQIk/u1c8Ux+3PrgpX8dtxV/AAJq2RIJmRZCuh6wcoJPLQSTrNHMWfaCgDOvn48Y8/awKxO6x/6y9NZuiRCxyrpofrZ+Wcy+rE7Gf3YndwZupTlakLyME4eNogD/rCIWUsijOUafvIdg/s/CcTRrAfSMrY6nCEEg7U9LufcYRfh9buMySM3EneWMvasI5h1wW1c8dEEUl3uY15lod1x1iO9qO09ETbJ87FTCjqdXPXuW5snTpZfNxaesOj3qw+4fJFo1645YB0nvPoym+96g7Vh+GfvvrV8b9BlfHBFNUuXROh2z4H89vGr+FP384Dzvurrsk19o5zmK6+8woknnkj37t1RSjFv3rxt3tdac+2119KtWzdisRjDhw9n9erV20zT2NjIj3/8Y0pKSigrK2P8+PG0t7f/cxsU/N09Eh0yAH+vw4C8MFxZVj7kU/udLJRNQ7Qvlklml1Lq94+S3EXj9OggWyruYDpiisg951SmNTomqfZ4nmS9WFbopGXI9tmh+1ZnBibX0pYDTQ1NxFc3YmbENjKIhOyL1hLU6Qdia6zBbvewW7No2yBwjNCdTBzDnBYPq75VnMcSUWk7y3iyDK1Rroj4fdvAzPg47QFmVgTwOWezzsfWTHoYaU8YDle0MlZKpnUr4oX9NEQ3VDBECPcvB0SMgm21OL1Z21gvg4BOHbqWiTNcCErDnJ7AFvAkx0RjN6YlgDNq4jR7+FGDTPmOge93uPPk31T/U+vYv8OhbN+Ru+T/dta3u3bI8yTUT+TCFA1XmAi3WONHQ0cyTxHYmmhRlnTWxjICDq1Yy+6xLSxL9SWtfd7NlvPfrT1Z3N4fpaD5sxLO3mcpr769O+d8eDoPNh7O9StO5N2N4gTa9LcqPl6wG6kXqolslbYq1sVZW1uJVetAAOXRFMVOmu5FrdTE5eZArVvKW5t78pfP+7MxXUE2MHm3rjsffdpVdDoJH21ozHZDXLiyhtgjh/sEEBR5OFEPtzzIt2KpAPzigEyHg477+UwUu03YmWyVT1AqbmUEAkbcEo2ZgSCq8TfHSbdEMNIGZpuJW1TIdMmxMGYGssWSt2O1mThNokNJbY0RT2QI4j7ahEzKJua4aDMEJUpD1MeLS0ufRAIUbK0NT0IxzRSFYE4NdquJ2eCgTY3fLYNKiY7HSokLWVDq4ZV5eJUufrFP195b//nv0b+4dqRz5cITr9nmec1cg/Vra2gdWk/N3MIQdemSCLMe6cXU0adz6R4Pcfb1PTlh9BmcVDGXkb3vZtbjzTzhzuXclb/inCt/AsDIBpeTjj2WxIkDWfSz19j69pE8PPBPvHHTNdxz+1vcc/tbnHnpEsrGfsI9t7/FhFvK8+t7ZnM3gv2r+PFTzzCp8gXic8s57M7XKb7zDU781fdYM9HizEuXsGaixXkzf0UyO5hxy54EhEXK6XMAfn/pVJ48Jc3Jkwbxxg038d6PbmTwkAwvHfjDL4juBw/JMPvpRmY/3cgt9z3K7DMuZv3aGhItdSRa6vLT1Q8QW+nefWs5zith1iO9aLpsOS8d+EPu/s3+AHlr5s41ss9UHlhUjdXzdgCS2cHMeqQXY8/akDc2ENBY2B6Ah6/byMPXbeTs63vmTRRylcvqmXmAaGVmrH6MKW/1obRsHFP/UMrqq/bizpkZHr5uI4PaKoCCg9nSJRFGNriMq76I33804wvb+4/qGwUwHR0d7Lffftx7771f+v4tt9zC3XffzW9/+1tef/11EokExx13HOl04c74j3/8Y1atWsWCBQv405/+xCuvvPLPu6F11l+EpcwwKyQHYjqHWJrGNjklyjREt6GUDJITMdzqYlp3dUhXaorXgvVGMdGtkKqJsPHYUpr2KUU7MlDWpiG5KKEhAL6PznRyyMhpOnKD9dwAPjfQz7mVBRpa2nDW1RHd3E7gGGQrHAJH2Bod6nSslIc2FG6xgxc18aNiq+wWC6sS+bQRPB9tW9KCpgkzXYyC4QEhGFMKq8Mn0qyJNgZEG30SW1ysNlcCxdIeKiUnRRAx8RLCaFmpAKddE0RMlG0XWBKltgWUOTCSY50MVQBwnlcQ6oMwNZYln0cOCOWeGwY66hBY0pecLbXwEhaZmrjshwnaUnhRg0zJjtGzvMOdJ//iOu3l4n+rffLO+v+jdrTzRNuSEaJNsVT2o2LBmy0N8GIaLxHgO8I6oBWua+L7BqYKCFD0c7bQ1W6hMYCnGg7mhYb++NrAMAJi1UkqrTbi1R00p6L8/r3vojZHiScy0Gbns0pyIY5ucdgaFfZDKU/xWUspXmBSn0rgGB5rU1UEKHqUNaOAlG+zpqkLrW0x9uq9mZK+zey+6xYodQlsTWAJWChaZxFtUNhtikijIrrRwf+kiPhGk0ijCNk7entYLQbRNRFUuyWgLbQ09uJgthuolCmGBuUuRo8k2XKfTEWAtgUIWXGPoMSjpF8TPY/5lMw+SVLdPLyigMCG9H5Jsl18rJQSwBZqYWKbbNIpBxXz5RhkDTKeKWySK+J6lbQwMwojI9cAI2z50wZ5YJMtl/9GVhGpt9CA3SHH02hwiH8m5gOBJQYBuZ4xlTZRmR3jWpKrHe1c+cv4i3j2WBnI144KqJlrULvXobxz9SEAzKu0+WNyDidViKbk4es2AmB8/H15f/2FgACFYPc/Eez+J55MGwxY9BQ3Dmrl9cgoZr14B4umncKvZhzL0ebl1HzwGu+fKkzMjYMK7VEzVj/GjNWP8VCikHfyemQUAHFnKT+951Keveov3D9mASe2vs34CU8x8MI3GB1dSur+Q6mZa9C7b20emDx83UZ+9JvJzFj9GA8squbgMa/R7z4Bg1Pe6rON09rSJRGWLolwfiLBfz16DN95/AUOun7WNmzH4wf9kgnJw1i48Che+d6r4lKGmBIs/1OScdViqHX3b/bn7t/sz7BJT1Mz12B8vzMY3+8MOV7rJvO9GXcBcFrrKxznldA4Y29qe1zOvEqbeZU2g4dkmD5uNOcOq+Mv4y/aBpCBhF7mGLPWofVMHX06495aTO0d7zPgAGlls3reTqKlLq/NuWHzSH5fb7Ng5QT2unUuP9jXYdyyJ/mv+LP0mf8MR8/77df52nz9FjLf93n44YdZuHAhdXV1BH+XaL5o0aLtXtb3vvc9vve9733pe1pr7rzzTn7xi1/wgx/8AIBHH32Umpoa5s2bx5gxY/jggw+YP38+b7zxBoMGDQJg2rRpHH/88dx2221fP5dGB3Ixsa0CEOgMDkwDsuHdo1wLV2jLq0LXsVzoJIBfHKFpjxiNQ7IM+s56VpR9B6M8w0G7fsrra3vTtaoFx/RJ31ZFbF1GgigDaSFTvlFgELQOtTaiC8lvU07gnmNhckYCYTqY9jzUZ2miW6P4XcvxoxZ+VAbsRlZYlMAWNiJbbKJ8TabcomhjCuuzRnRWrI2VZeLHLQm6jJgYgEr6uKVRvISJH5Ee6FwrWWArnLosRkocysy0j5H1hN2JWeBrklUWLf2g6m9i82xkhXXCzW77meTtqsPnfph81hnc5FzIcnqg3GdpmnLcPA/w0To0Y0imsdt9vITssxgPqPx++BEj1PJ0arD+BmuHO0/+j9ZXsTD/qM3s7+fZmf3yzdWOdp5oE1TWyN/Rz5b7ROssnBZFpky0HYYLXiK8GaQVh++6lppIKyuadsXXBocXfYSNZs+izTS4xbzS8B28xih0SfGnun3pWtpG76JG3o/U0Lw6RuqTUoo/V6SqcqNn0W6gNNrW4BooR4NWZDMWG1rKiDkutgpI+Q4lVhrHlB9bVxtUxpM0fVrOR9RQ3aWVdtdB+4Z4opg5a+KQmbAEMBmuWBKLRbRoRpwGk2iDInDEnU0YDIUXl4BIEh7aNTBKPfAMlCGmN35RgF2SwSjTlCTSOBU+Ayo2c1DxOl6O7U5zNs66xgr8LWUEWZOKns1U7JHik9XdUI0W2pLt8rMmVsTDLfcwY54AOQOCaIDdKK3UVkdob23IvoHsn7SxQYDGzCixx/ZCnY8CszQLyagwM4jI3yxPU5RI0/5BuexHLBCTgx2kdqRzpeMvK2H3IVTdM4YFNRNE04JLzQevUbvXoQyZmGHwkICRyRMxPgYqwf7hGri+J7WjAubFX+XP1W/yo9/I4PpHSKsWwKJpp7Bw4b3EnaUhUzOCRdPmUzP3VJZW2kSPHk//iffx/qnns/y14xjKhYzvdwYzVj+Wb4Wa9XgzN4TbmswOJnjrIs5ecDhUNjN+3aW8bq3hvbTD3hdkWfvgm/AITB93OTdZa6gZ8hp9N4+kZn/R2ZQsroKyQqvcjNWPbcNm5NiOD64YxbnD6mi6+UAA/lA+kidPSTPv4dm8XzmQq0fuxhPn9aRhXoRlmw4l0uMwEmVT6PIVksXv/+wZnpk3Nh8uWcNtTJ79OJN5ldpRASWEov2QsZk+bjTMnM2J63pRs6kntT0u5zjvQZ63Whk8JFMAVItlvtzz1ef3gwc/ZNWQDOP7ncEDi6ph/4c4d1gdV536AT9d9DK/By5cIOzRH9/Jcs8Bd3Fa6ytUTMxyzwGj+bDPOP52+vZ9d742gLnooot4+OGHOeGEE9h7773zAut/da1bt44tW7YwfPjw/GulpaUcfPDBLF26lDFjxrB06VLKysryJxDA8OHDMQyD119/nVGjRv1T69ZZV/YrB2QgtOP1O935DwqMSM6RTBXAjjYNkt2jNO4fsOeum4maLv32/IyY5dI7vpVlLbvT9GFXUj09+uhA3MoMo1O+iS5klXRmGIzchckoMEB+6JgW5Frd/MIA37HRmSzGms8woxF0cQKzNI4fMfGjYnOsfHHishvTmC0dkMnm3b5k3wO0KQN8N27huAFeSRQvbpKqMKVtzAC7LSBVIRcnN25BkYWZCjCyYuWsbRO3xAlbCjR2u4EXVWFrhQRUYodA0M3KvndyIRNAEjJkObas8+fm+yijM7jxt2k5Q2t0JouKRohsTeMWJ0S4mdUoLe0KfkThRgy5gH0LVJff5Hnyr6hvA/PSGaTkwMzOlrNvV30T54nKApYWK11fYaQNtKHJlii8ogC71SCwZKCuXIVSmgqngx+Xv8678e7EjQzFRhpTQVR5rGmvZH1DBUZaURTP0JyO8fmWctZma4iWp4nVa7ou9/DiBgQm2TLJatG2xuow0K6CdkeYdAVexqI5U0RHzOVDoC0doTgqA6i2dITXW3rjZiyK1pl48RhbdrEp6dqGarMIHI2RkdBLIys3r8wsqBaF4WncovAmniOtXVZSkS0JRfOWgBzDg0wFaCeAQKFSBjrroJXGKU3hJVx0s4OXtrE2OzRaRRg9O8h4PTmsZDVvbe6J5xlk2iNETUBpGjeXMmCfLXxidsXMQrpYo3broCyWoUsiyeaWErIZC8sI0IawX0FEQJZWsm3aCsHZ30lWDDdkWzxFYIrRj5kBP23hpBTZsgArKXqZIGviRk1h3xI+RAP2rKzjw6/3tf1G6j99rjzZ9H2epiUcrM8DhIUBWPvgm1wG1E4cCCzD8H8FXMv7H25i8uzH+bTpCFqvOoyRvMnBz09jt+8von7A8TyzJAL3jWL8uNGcFq7H+Pj7PMP3eSZ83l58Jqevm8HIafPgFVg94CU++VkTf3rhBRgVMGPJXfzplq6MnLZFtvOQKGOWpWXA/Z0fMq/S5ghmsxY4+oNMKGYPO2Zmyuv9vBLGDlvF2Q9Km9Tqq/vJ/tEpbHLJm/SdOFAef/AaAw64gI23P8X5zz/Ms1f9hZLFT9E6tJ7T5j3H7PRgrp06jxmLqqnd61Bu+tGNcDGwaTI/iD/E4Ldk/UuXRASEhLWsuJSTRs6i1rqRyZMuYero05k6+nSS2XspWVxFpPoRFi48igldf8YzwIkv9PrC55QLuuzMBj1vtVKyuCT/eO2D0HfiQJY++Cb0K2zHjEWPMaGjiO/89QV+DviX7M3H78uxmLduBbV9Ava6VY7xB78/Gbhsu747XxvAPPnkk8yePZvjjz/+6876tWrLFvnS1NRsG2RUU1OTf2/Lli1UV1dv875lWVRUVOSn+bLKZDJkOrVmtbZ2clcIdF7Mr7OuPHa9wiA4V7n2JdsRxsMK0+rDAEuvuoTPj4Rd99xCUzrGJ1uqKC5KYSj4tLmcsvcMSj51UW+CszWFdmxxIOuU/SItUKF7ieeB32k7ciCKTkJ3XWBntNbCCuXE/4YSRmVrFrO1HUNrHNvOt51pP0BFI+hUSsBRII5dWmuUH4Zh6tCa2VDS8hVonI4AKykARwWaaHOQByhoCbRUgSaIWGjbwIsZmNmASEtAtMknW2zixhUq0ymzJWdckNMWhQYJeRBnUnict0lW4kiWez/HSuVsr+XLgQr1RkZzB7F6m1SVgx8zsFvFaMDqgHQXCyyFmd7xEcw3dp78f1r/vwGX7BVv/59wIvtGzhMFJDyMFgerXQkr4cjA2Ewr0r2yqKQJJS5B1sC2fD5o7cqqoq58kO5ON7uZvyV70ydSx8q2nhTbGTINMcxuaXqVNrOlQ8C/yhik62MUhZvQtLspxgFa2p8IzQSUp/JhmUqDzhioSEC23aGBItyUTYcVxYl4pBtiOA0mpiMMS1ACKE1rbRGxBrnBY6akGcGLk8/PcoskT0Ub0i6nNPhFPmarME9ukZYslZjYjpkZhdFuEkQDrA4DeidxWyK01yVAK+zKNF7GQnlgBsAnCRoTcV6u3JOOliiGFWDHs2SqTHTSIr7B4q3Knhgxj2ypheEhOTml7fQtbiDp2mxuLSdtifkAvsKPB4Dk9GgT/HiAkTKwUmKxbLcJM+8lNGZW5XVN2S4+RlrhbLZRvhJApMWcIB21SDs2dptCmwZGWZa48XfdBTto/bvOla86Ty5YOYUj50kL2DH7P0TNXJfaEP/kBva/WFHCvEqbkQ1XcfoDG7jzkRsZt/RX7PPbV9j8nMWaDeM52PgLIGxG29pZ2OuSPHPKWE777S3MPGAoT5SkCbr022abakcFVK0SUf3llxzF0FvmcNrbjwKnc8PmkTBtnrAIvMa89c8xhlvy804fN5p1I05i0bRTRKtTJq5g8yZ1BVxSZV1YfX4/jvreqzywaBTzKiPUDHktr+up+OQPsqBxTwJXMPOQMezb4DKv8iGwHqLvxQNp6jaPWTxF1arnAJg9dTbexssY3w/+dNMy3rn6EK72doMLnmT6uCcZvPoxQJicwasfkza8WQNYNi4U9AOzOJSaIafkmZ/nrVZOYi5Bl348VPoq00fO4sQXelHb43ISLXUMHpJh3rrCMRs7ZdUXWsmAfBjm8w+2CmhZ/Ri1EwdyE1C716HcCNwBHLL7a1xy/FTgNXbvvxr6n83I9yX3ZlzjYorjv2P6l36DvlhfuzHTcRy+853vfN3Zdqj61a9+RWlpaf6vZ8/Ch1G4Wx9s89o2Fr+BLrAAYcuTdl1hQzwPbItktwh9+m/mgIqNtCaj8Gmcjr91oe3NStT8chJ1AVbaJ1KbxEi50j7m+QIyzIIVcF6w7/sFHU6oD8lbDOtAtk8Z+cG6MsPBOxR0OmG7mXZdmT8WEU1MmFKvk8nCvofTqlDrY6Z97HbJSvHjVv5H3G7zMTMCWlJVFlYywMyEwEMBOgQvpoFWisAW+2SlQ8eZQAuD05Zbty5sc9AJyOWOue+LQD/HzHTWAOVApQ620b7kWTPPk8we30f5AVZTikiTh5HVBBEDI+NjZnyijR52h8YoyJv+v6x/eJ7srG+kdjqQ7Xj1VeeJkVF5sbrhhaJwDXaHJMartIndalBcksKKeziOR8qzSRgZ9o1tpLvdxJpkJcvbdmO3eD1uYFK2iwwWPmsrpXZDBbRZlH5oUrTWonFfzeeHWSS7+wSOsBzRegPlKXRNBq/UR4XtXVaHwkiZ6LQJWQM3ZaN9RZA1SbdFsNpMggh4pT7ZMshW+tglWYyU9Fbl2AmtyP9OBpYwEpFGhdOiiH9uYLfJ9Sind9Em6DIXo0tWdCtVPqo6A5GAwIJYLItTnhbNiJbnRWVJtC0Awo9ptKVZ316BMjWBJ77LKquI1FmYWXBdE2Xo8EaaQqdM2tMRWtwYadeiqCxJWVESpySDkXAlIyYeFGz3Q1tot1jjx4Jw+8MWs4zsu5FVmElDNDsOeEUBuksWtzgIbZjlc890CYSRCRSG2vFviP0766vOk8bSn+enKVlcRaqsS/7x2gffpN99qxn31mL6ThzIgEVPsWv5K/hvf5/K5zJs7mVRd+gY5vU4kb+suJ1nGgvMzxNXPM7I3nez9wVZbhzUyt4XZNl37Cr2HbsKa96R7Dt2FSBi+PoBx3PlC1X4w+fw5CvH5kFG8OyZVK16jtq9DqXyuQxPnCfbXPHJHzBW1tNn/jMs/uXjea3OVVUnAzBy2paQkXiTmYeMYemSCMd5JSxdEqF2VECqrAufDZrIB1eM4rNBE/lskGiHcu5f51w0gffukW6UUw8ayJNbbuHJLbfgbbyMc2bO5pyZs3nn6kN4++eX5/d3zNNRxvc7g9q9DmVCxwgAaj54bZvPYMHKCax98M28cD7uLGXwkEzeECD+ykDOmTmb+CsDmZA8DP3293jhkTnEXxm4XZ9x69B6jvNKePrB+dKq9sFrrH3wTa7tNo8h6hEABh+/OP94zzlz2HPOHPa6VYwYvm/An9/bfqD/tQHMZZddxl133ZV33vp3VdeuXQGora3d5vXa2tr8e127dqWurm6b9z3Po7GxMT/Nl9VVV11FS0tL/m/jRhGEEegCUCFkNpCWsnzlBvcQumU5BYveHKjJZHGaPZqSMeqzRei3Sql+I6BmuU+317KUrPckONINMNpTqHRWmJIgEMAQaAg1NTrdScSfdbcVrYOsL8ca+SEACrdFd9bL5KyHc386QLUn0R3JcJ9yoCUosBY55sLzMVvSaEtBIMcpcAy8qIEfE+G/8qF4fRq7zcV3JCDTcAOCiIkfMcVIoNTCiyjs9gAr6eM7BiqAxGYX1ZHKfwa5HJ7O9sl5EBLaVsvxV9u2ywUaHbJJf+8+Jp+NkRfyEwQYbSmsNjlZfMcgW+6gFdjNaaKNWeyOvw+S2fHqGzlPvqH6V9so76ztq+wVb3/Tm/C/rm/iPDF80GmTIKLx4giLkJa7+ngKq0XARWttEV6buI9FTI+EyvJRuhufZqv46+rvsCFZzqfpCpat64Nt+Rz9nY8Y1ett9tlrA7vuuYWWAzOkKzVmWqyCtaXFGSsqA2inxUBtiUIkkHY2Qp1GUmGkJLdFJ01Uh4lqszCbrNA9TGMkDbKlAQRiP6wtnd8PMyN6EbcI3IS0XylfQjr9KHgJWZdTZxFpNAgc8oCuqqIVr8yj1561dK9sRlkBQTQg5rh0K28l0bONyp7NJD8qo21LyDR5wo7oovDGXMrEaLbRG+MECR9tabwYuGkLv93GLQsIbA1OQHt7lHc2d6elLU5ZLE2fkkYMQ2OYGhUJ5Hg5QCDtbipAjmMkKGTC2ICSFjPDI8+qWSnZdxQERT5eQuM0mPjNTh7oBG02yz7b9Z/78v6H6991rmzP9WTQnPvymorWofX0nTiQSPUjjGxwee8eh58PEgCdaKnjrmrNXdXyfbJ+/hYA3e45MD94f23IdzBOfJRru83j2m7zeO8eh373rabffasJhkznnVkDtll3zVxD2rwGvLzN6880jmLs8EtoOD7CyNp3uOAtEcnnRP7PDxbnslMPGsjBY16jdlSAt/Eypo8bzfRxoznOK2HwkMw2+pHWofX5/XzeauV5q5WRDW7enCAYezRjuv6MvzbfgHHiozxxXk9+MukhbrLWAMIw9Z/+Jk/dKKYGI2vfyQOyq73dmLf+QqpWPcfSJRGMratZ9dY9AHkx/cgGlwGLnmLy7MdZsHICC1ZOAOBHvc4FwOxxN2/ccBOX3FXQtC9dEslPl6vjvBLai8/MP8/tDxT0PIOHZAiePZOWqXsw55Ld8+AF4Jk9r2RS+hMav/NDRq/uyX5PPk7XTdt/5/hrA5i//vWv/O53v2O33XbjxBNP5OSTT97m719Vffr0oWvXrixcWEg4bW1t5fXXX2fw4MEADB48mObmZt588838NIsWLSIIAg4++OCvXHYkEqGkpGSbP2AbUJYbBGtXMmAKwZadhP2dgQRsA26cpjTuX7uw5P3dSXyusdt9IlszmNlA0ucjBmboykUngKT9AJ3OCLDIsQk5UNNZ35EL2wztlLXriQbENAXEwLY6FkOyagruZllpF8uBFkBFowVwpkMrZz9Ap9MYIcBIdzHJlFt01BRCMLWpSHURoX8QghI/ahJEDPyoQbbMon0Xh3SZBEcGjkJ5IQOjIVLbXjieIdOktS4AkRCUaDf8YttWIbMnKFhY63Dbt8mDMTodu3CZwpT5kHUxMh5+RGw7tQHZcicf5Gmld3wA802cJ99EfVvAy06GZMesb+I8yZZrVFqctXIDX7dEk64MJCk+LfoRp97CabBobk7Qno2w1S9iRXMvFjbsCS02axq60OFF8NMm9Z+WM7bL6/RwtrK5rQQ/MNCBIohqIg2KaINB4lOLkjUQaZL1prt6BJGAkooO/JgWsbnqlJmiNCoUteuIsBFiMKAwsoogIm1o1SXtYoFMKNz3wv0yhaHI2UIHTs75LBCnMk/E8coXRgSgqS2O3Wjx6SfV1LUUoT0DHQ1obI2ztSNOe0OCrQ3FWB3iFOYVh+ArKutvTUdBiS7Fr85SuUsLgQmp7h5qq4PVbEEgrI1qt1C1EdLtEaJRl+5FLbR7EXxf4bsGdFgYGQMzE2pzsqHWJauEYlJybZBWPNl3Lxa2yIVZM5GtBkadg8oYBBaYGbFyNjy5xhWvtki37zgi/n9U/65z5avOk4f2FceqGzaPZNG0UwARredanPb5bQe1owISP2ni2LNOZuro03nylDRqv7/w6xU+F513Me9dO40TVu/PCav357Uh0iFU99jxjJ48mtGTR4dtYFIvnNudxE+aKB69/AvbeOn9tSyadgq1owL2vWkZNw5q5aSKubx7XiLPUkCY9xLWyElXA/DMCy/kmZg/3fI7oNC2BTKQX7okEupGqli6JMLYKatoLz6Tkyrm8nif8fntnHnImDyb9MCiapYVl9Lj6JVc220eD1+3keK+Y/lTIMu/yVrDQbvI3YLe372Hm6w1RIo+56SRszipYi5xZ6ns9yNz8kGTAxY9BcDU0adT1PYoT56S5pj9H+J5qxU1fk/8TRfyq/o53HHRMIr7jqW479j8fjywqJrjvJJ8y1gOFPW87FSet1o556ICyMm5qj2UmM/Be/2Ke5+4hUce2JtHHtg7z3Ids/9D1I4KOH3dDFacfD7v/tepX/r9+bL62gCmrKyMUaNGceSRR1JZWbkNJVhaWvq1ltXe3s7KlStZuXIlIOKxlStXsmHDBpRSXHzxxdx4440888wzvPvuu5x55pl0796dkSNHArDXXnsxYsQIJkyYwPLly3n11Ve54IILGDNmzP/KWSnHwmjfzye7Y5qF3JFQQI+57eHLMTYAZmM7XV9PEV/j0DRAs/lQh7pBCZp3i7B1b9F9GGkvb5sMoINgW9YhZxmsO4Gm3H/bKmyTMlCmibKtbbfZMApsRvhfhaL2LwzyDSWtZSGjkx/0e54wTa6H0+ziRRWZUumBttsly8UtEiG/mzAJbAMr6WN4mnS5SabUJFtk4EXB8DVWRly/OrpH8KKK6NYsqrlNWrt0YX9VxJHjaZp5DYyyLdmukE3qbGFNEMgxyH0+YbhlXr9khI5kuYBQzxOA52siTZ7olkI2yUvY+FHzCyLOb6p21PNkZ/1nayc4+se1o50nKpCBrN0mQMXqkAF1EJPWpMDWeatfq11Bm83Gz6R9ZmT13xhR9R6JHm1EbI/e8a0oU0Mk4Neffo//3ngYDXUl1L3elchGByOtKNkQ0PX1DGWf+JR8miXSFKbc+wod97FMHzNV0HJqU+cDGs12Q6yMswrsgCDh41Z4og8JLYlTro0Z8XFLhFFyQ4bFyAo7khPoS5CkuHdZSVmfF9Okq3y8ChfDDggCcfOy2k3czxKgNMrxsayA9uYYzhYLY6uN3Q6RrSZGeYYgGqBabZzPHVo7olhFLn40oLxLGy1tMdHV2BqqMrLdoWW01W5IFk7axHXlDn7Gs4hEPBIlaVRW5bdfBWLvrENjBafBFGcySyyUlRbAZqUUVkptA+TMjMJuNURLmYJIk8LrnsHt4pHqqikuS33t79C/q3akc+WPP70WgLHDL/lCvsjY4Zew4mSxOj7k47dZtvt+LDj/Yp5+cD7Tot/hqJdEvzLn0NM51U1wx0XD8vOePGkQcWcps6fOBmCUsYoz338m//6xD3z+hW35zU8Kup/aUYG4ioVVteo55tXsS2ufn6LG75l3KwPy0+1707JtlpezLc4J3/tOHMjgIRnGTlkl2S3XDEC//T0ydWdxmj2Kofv/Ypv577hoGLv3X83hZdeyatipjJ48Oq8/+b4hy1/+WQf97ludbxfb96Zl/P6YaYx5Okr9gOMZPCTD+lMPZ79f3wawTbbO4CEZ+k4cmGd2jvNKOORjYdx/eNZf+fWKbQdBv790an5fxk4RxifHyqx66x7OuWgCh5ddS6T6Ecb3O4Pp40bnWaVcqfF7osbvmd+WksVVTBndwgWzmgDY57+f+sLn8lX1tUX8//3f//11Z/nKWrFiBUOHDs0/v/TSSwE466yzePjhh/nZz35GR0cHEydOpLm5mcMPP5z58+cTjUbz8/zud7/jggsu4Oijj8YwDH74wx9y9913/0u2TzlOgZHw/W1BRI6tUTlHMhG351gRFQQ4G5vo9pqi7oAobf083BIDM6XwSn0SSwNpm3K9AlMSaFmu7tQWFa5b+0GhdSoHMnJgx1BAODg3jLyDmgLoxMzkt//LXLxygMX8Ekwb5rJYtS2UJCyyxQJYzGyAkfEJTBsVgN1WMBkQ8b4pgCAG0UYR+geWZL+kywxijQH25y1ilhBx8mySbF+4Lbn9zgESCkxZ51YyhZl/T+UtlK0CGFOhOUBu3wEiDsr1MLI+ZsbEi4qldKbCxosq/OyOgWB29PPkf1NPHNn2PzqRfVvYl//L9W0Q8+9o54nTpAiMAuvgFoltr/IUVtLAaVNkizVBRDQisa7tJOsTfJKpIRk4GGhSKYcU0CuylUgiS6Y2zqcv70q6m4eK+mJdXOFhpAzaehqkKqT1OLBskl0V6RpprcJXNG4qI5KVdl9JvA/ZBUKtR8550RP9icoa+WmpzJBwsjRAOKAHPDqx8HIZy+WmBFFhXgDc4gC7zUA7GpU0CTImiV1aSXVPotYk8OMaM+KTiGdIpRzsWtkHI6tIV2oBFIFC+cIIeXFNzPbJamFgGj8vxegwifTsoCiWoak1jtlmyHYUeVgddmieoMi2O6Q9m3bXob05Bp6B6SmCSIBrgZEGbcvxMDIGhi/7EJhihBDYsl3KF0PQwAE/FP9b7cJWZSs9rHYbw4Oy8g6aPi/FK/PoUdTOB//UN+lfXzvSufL7qQczdsoqZr14B2s5fZs2pHfPSzBozn2cu6pOBu5LPuQY4DZmctiF43h+j5cAqL3qL6x69x5uPSfG2fyYRV1/zwOLqvl5cg5XzfwV8Fdah9az7K79OOTjt6mZaxC7GRhVGAN9/2c/ZoJ6B5ABfO1eh9J3L+D3v8D54By+f99Kbth8I+fUbOXEirk80ziKpQBLPuTh6zbyxyuP4ZCP32b9qYcDr3HOzNl5liK3PAjBzOJO4vdeJXlb5YW330LfjOhNru02jx/t9xc4bR/Ovr4nPSrrmN0wm9FZYcGe7NIP/YtRZCa9wx/KRzK+3xn05h7+eOU+AkL2h/WnHs6Wv7Vx4rW/4uRJg1g9+3EGhF1h756XYIE7gR8uXs3YKat44AOINW+lBnisFV7/89H8/ISFTB83mnNmzmbwkAztv5kMIXAB+OPLdxA9ejwPX7eRwYuqmX6XsDFzKlbwp1t+J25yq2Wfj+omep3xRUNouOY+KqecT91jx9M6tJ7xfzuD3t+9h+etVhq+fxA/3s7vjtL/pJilvr6ejz76CIA99tiDqqqq/2GOHbdaW1spLS3l6LIzsKyYgArYtv3INAu6is6p77nQxVCnoZS0ailLghqxTHTEwa0qwktYtPSVwX7NKw2oZFraxwwjL07P2zPn2IKck1aOOegMZEJzAWlv81HRiACWTi5mncXuOfZFu56As1D835k52kZXkttP0yiwIaVFpLsXoy0Dq11c01I1DlYqwG5x8RIWflT0Maku0vdc9HmA4UnCse8oDB+Uryl5byuqtV2YpxxQzDmL5R4HuW0xtn3e+XjkRP65z8u2tnFz28aGGZBsG9kfIg5BcYxMTYJMqYnT6pMttciUKHQyzcrfTaalpeUbbZ/aUSp3nvy76quAzLcRwPyr82B2BPblqwCMTvu417y38zwJK3ee7HnBTbi7RFC+6CoCRwbzaIXhidg9yInToxpjlyRuu8P39nuPlG+zW7yeGW8ehmEHTNzvrzz07mH4rQ52s4lb7hGptXD7ptljl1rW1FUSjbh0rC4TfUpa4RVrvOIAu9nID7rNbKjBIWSDwsG3NjTaCa8bnmgdlacIogGYmpKadiqLOtjYUIbxcQIdMg6dWerAEQATOFraqNLSPpUtC7DaDbzSQFgeH9xKj1hFilSzDIiNNotIz3ZSW2MYHSZBkS/ASYPdaOHFNGaYcK/jPn13rWNjQxnBpriAsJoMiaI0fcsbefv9XVGukv3RYLWZsn8moKCkTzPNW4uIrnfy7JKbCM0WXAkd1bYWvacWQwIvIXEDZppw31R++9zi0Kq6TViZZC9P5o2KQ5r5YZG4wO1az+rTf73zPAkrd55sGrKWHwy6mcUrb2T5dWPxh8/ZZrqRDW7eVnnpkggLzr8YALWXtG6doU5g9VV7sfLAx9kztjsntgqIqNuzJzOW3MV/bTrmC+v+7x4LAGmHyrEkIK1fI6dtwdt4GTdZa7ja241n5o1l7x+/xqVrn6Xyz2KEfVLF3HymSk7rMWV0C9fMlutj7V6Hsm/oErb2wTe3ATI5sJIDag9ft5EHFlWzcOFRADxxXk+snrcz65oBPG+1cta57/HIA3uTzA5m7wuy4jqGiPaP2f8hAS7fvYeJ736PfW9alj9WueUBXHjF3hxedi2jJ4u18uyps/nRbyZzzP4P8cIjcryfunEuf7rld3kjgT8m5/D6lUvzy1i88kbOHVbHrGsGcMrEEZwzU5ith6/byNnX92TwkAy1ex3KsNgB1D12PCdPGsQDi6rz8zxvtfLitDrW/+0CZqx+jAEHXMCqt+4R7dG0LXx/xTH8+I+f41T+lmzDedt1nnxtBqajo4NJkybx6KOP5kMsTdPkzDPPZNq0acTj8a+7yB2nTAtVlCBobM4P/vOi+iAUDmqNyov4hflQti0tUFkXnbMxzroy8LdtlB/gbMzg+AGxdVEZQCfT4Ir2RWcyoXWw2tYFLWR2MA10ppOTWM7eOADl2Hl3Lnx/G/CSZ3GUkiwXwwA/bFfLZgtsTW6+IMi3aWmtyTcbaI1OpwUEAU7Epr1vEYHtYKb8sI9a4ZbYuAmDTKmBH1VYSQ0pQn99hW+DF1XEmgKKP2iE5laxiPb9AqDIVRDIMQ1BYP6YdLa0DmSb8/k7ORCTcyfLAZ0cGMs9N83CZ+t6qKyH3ZolMCP4MQMVyN1D//9v05j/eHUGKjkw820ELyCA418FYnYE8ALfDhZmRyptykDXj2u8ItGUdG7h8iMCKIo+hfaeCjdjYcZ8tqSK2af0cz5s70pkQwR3txTPfLYPfrstuo7igIruLXTbo41DK9bSw9nKrc3H0tqYgGKxj1eBwosHaKXzifIgAnsVXkp0yMJoUzJdAgJ0NEDH5LpjxVwcU+O5Jpbpk3RlYJMDKma20DamAlmuduSxlVQ4raKz8R1pOTbKMwSZKJarsBst0m4CqzyD12GjbU02Y2O2m/iJABXx0Z6B2WiLm1siwE9odMwHX5H2LPSGBHa7Ir1rlp5VzRhK0yvRyMdVVaSaoyg7oLKyDT9QJNMR0u0Oqs2i7ZMy7BB85R3UQiCpA2n5y5brvGGBNsVq2UgbGBlpi1O+5MdoQ5bhxTVeMRhh3o+qTuOnLIKNCXRcY2TA9xU766urdq9DeeCJ3bDClqMfnvVX/vDI4aTKBpAbxrYOrWfkDbdiH/AgMy9fyI8HReH6P9NR+1fOmzmQC68/jcjrc3jqxj7MeOoxnh/dQteqL94YmzemK/8Vf5ZzOZCqK8fw+J6beeSTx7GmbuHs63syfZw4eK0NW7o+/sVMqq6u4pBwkP5q0WEsP/4xpj9hcXViV+qMZu68OsMCpM3q40ZpZRsTGcabnjAsQ/f/BW/e8QAli6sYeMm5DNz/XK7mCt685gFmAVc88AmLPr6V9+YdSv2Aah4YWs/6Uw9kfNNcyXQ5ryfPzBvL71akAThtXpT6cH/uvu5VNk2aB8DPn/8zz171F3Jc2Oypszm8TMDaQsmpZPTk0QS/6ceClRP48SDR2lSfUcrIaVu4epLMufvNF7J45QkM3f8XvH/dTZSUdaGVepiyinmTurI2cQUAixfdyLkhAzMsdgCHl13LHFaIdmf3/YAFxJq3oq7ck8fe+z33Ph1l6Nm/oDooY/2ph1M76q/UzO2K97N9WX1+gr0e+v52f2e+NoC59NJLefnll3n22Wc57LDDABH2X3jhhVx22WXcf//9X3eRO065LkFDozzuPOgn95IqiMehwALktCu5PJYcW5PTr3ge2nUFzLS259/PCerzrU0GBdBhhMt3dcF5yzTzIEcRsi85tkgX3LtyAngV7kO+AmkxywMXyG+Dsiw0CDtjmvI8Z9Ns2iHDZKLTacy6JuIxi2T3KG7cxvA1flTlBYvS/6xx2gIMPwQvoa1n2ZoMzmfNqLYO2RdTwjp1LIIuiuHHbcmY8TRGxkO5AWZTGzrnUmaHX9mwpU+FbWJ57Y9fcGTDNNHZ0KAgx+rk2CZDoYMAFQSoZBoz0EQCTbYiSrZSjAjs5I4v4v+/Wt9W4NK5/hUg5svAy/nZh7902vucs/9X69qe2glitr98R7JLvCL5HTFShjAx9v9j77zjrKju/v8+Z9ot2xd26SgC9grGaNRHMZqosUSNAY0azWMvERuCGKOiiA00xlhiDBqVh2CJ9RcLmtijGFCJSlHp7ML226ad8/vjzL0LeUyiSUw0D9/Xa1/s3jIzd+7lznzm0wyYKSeEaSFM/G+3g8xL3mYQtW6Jj7sbCBpiNu/Xhh/ZyLxljPUh+P0dOkppXuvYnLMGfkifqjzFgkcsNOmlNk6PJvYkUZ+QsBasnAXCrNfOiQq4QmhQCSuuJCoyRYza0cS2IipJhK3IFVJEgYUq2Dia5KIVlbhm5SSWE6F7m+ttI72yfCOtirpdJCaOWHkQ1mlULCASpFos/MAzIWUa3HRI6NsI7WCVzG0AqRUuXju0r+6HqlWU+sVsNmQdw2vWs6pQS0+UIu0FlFwXNxXSkC4ghWZRTwZpKzTgdJnv9zJ4MfJnYYz5tTFxJIyELhuhC7Yx62cjlCvRvgNBsttsbeKlOy28VouwyjBpKqXYa/MPefFPI837Hpr9NLypjQ//tR/BL8U8/87ZTHrXgXHGlH7qYJNu9uDMPbl9bhMnnjqAw6a9w28mbA+LYJvLJ/H80Clc+UQX9735HK8/Adm79gRhUq36jn6S+978NjVD+jJqp1PR8df42ozXK+ubcv6ebHP5JK6ZP8XcMPdgOk5sZfZVhxoT/V4+/GI2zetDWr49hb48yaqjVrPvTpMZOaaV2+e+wqQRx/HaY43ccuxXueKR92lSdbx29YWsXO9z5Akv8foTFzJr0lcZ6/V6cuZNv53FZ4xgxK2LmXzDS3xbLmTU+FMr989ddF3l91PHtHL73CYWHXQeN9Y0o0aOMyEC28LTPMT4m+ZyxNk/YuTaxbyolzI2fJgd1kzhikmw4OILeAx4JjIAo37CGwD0/Yng0NN6qxDGAjuMW8g521/PyvU+i9pfYVH7zawKTmCgO7PCnjw/dwo1G0Rbf2fEN5m14BuE43dh6vS3eG3kjhx9ST37tu/JEyPms+igl7hizfXw3kF8ddECvroIYC2HTXsHgB30Qv502V0AXHnRsdyVbM+jj4zj8N0n8ocT9maXT1kE85kBzIMPPsicOXPYZ599KrcddNBBpNNpjj766C81gNFxbE7WVW+iFVDxlAC9V/nlBqxAOcnLtYANwAtlgFD2ZJhyTGJlmJMN45nNinrZBthoOZXyxnInTcKWlAMHNpKBJYZ2rRNPTSIf24idwYCVcvmm1tqwLxusu8JCxcpIuEIT0ayjCOejFmq6aukZWUdQLbGLZjtinjyV3AABAABJREFU1xyM0eDXSJyCMT5mWiO81TlkV84wT0KAbaMaqonqUsSeRZRJDua+IsxKonSKMAuZdVWk1/o4bXnDXEUxulDs3f9SICy3V3pm272gMNkfFeBSfi1lNiYBcsIPsLrA06BlCuUI1CYAs2n+wfl7QcxnAS6fdP/nCWY2gZhPN1YIeMYsj6uIpTbHAGlAjWgI8C0Xp8fIqtwOiXJAtbu8bG1ONh3gNhfom87xcVcDIjIMTlCniPIuhVVVrOtT4s36YXSXPBw3IpONKPRz8OsFUd8QlMDKWVg+KEdg+aarJcok7IljTsZjL/GaeAoSv4nudJG+IK6LCIo2IpAmcCBvfCjK0bhdosLwKNuEEijXACWTSqYr220VjRQsToFyNF5DkaDgIiJBqSkmvdoY5v0GgdWk8PMOVmyYLLdT4uQEfoMmqBM43RDUglUXMLiqg/nrBlIMHJZ31NO/tptt+6zl9eWbsaytgUzKJ847CMcEEkRV2oQmiARgheZfGYpe66kEHUrwFKIgsb2IVE1IT7EGlMSSZh/gxWgsE9JQNHI5EQu6gzRWOsIuuGipifv5pKzwr31c/s/ODcc08fv3roX3MCb2dhjZcA5g/p5aMIb610ZSMbk/VrMjl85ewHUPH8tuP7+PkU/eyJVvbc5dwO7WOxw15Hq+c8o3efS+PZh11BROHngYN1/2GLedNJHdppn17jthA8N8O8zy53LqmEc48oSXKqlb++40GRbukTAJhwBw6PvT6NlpKE0K0vdfx9RkEd0H78LKmXvy+hP7sXK9z4hbFwOLDUiZb/wlOwCL+SqcFTBq/KnMm347AKPGn8rz86fQsvUebIfxyjwz/2QOOOFOttlpEsMOX8YfjrmXzmEmpW36D8dw1rQu9gqvYIdrX+NXD/yA5vdeYdtdzoKb5tKk6hh/7lUAFRC13bHwIUMZll/Gh9mhvHb1hbwG7HHqYRydepUdzoQ/XXY1b0/6KnsPXULf+/ZgHSZ5rSx767vwSezBo9n3x02V92Ji5hAm8xKTb3iJRSvP4+yHTkOLl1mU7JeWrfegfsIlqEGCJ2bfyw5Xv8avNv8B3/voLj7MDjWP+baCbQ+i76vgZj4ELv9Un53P7IHJZDLMmzePrbfeeqPbFy5cyFe+8hXy+fxnWdwXYspazDHVx2Jr25z8J1f0NzLOlz0WrmNut23DrKQ8c2JcjiguAwUpzVV+kfhkZK8RvezR0FGSQiatXvkTbHwCXg4QSJiG8vaVQUrZA8MGbFFlygzMnzFJesP1JCCpLDsry8k2ev1/7gdSGlGVRadcVE2aqNqrmPRFrLFKMTJSWB0FwxIVSxWvi0ilwJJE/evJD0oTO+YKoOUr7KLCKkQIpQmrHaKsRbk0U4YaJxdhd/tY7TmzzChC+0Fl+yvMkxQb+2nKErKk3FLI3j4YbNv869hoz0VVp/AbU+SzEfMenLxJs5zM5+2B+U+fvwVk/ppU7G+Bl780nyeQKYOYTR6Yjaf8/2SLi69G1HjEKZNqpVIKEQoj13I1uipCOAprjWcYDcd4RwyIAJGJ0QULuy4g6jTeFyQ43eY7uTA8YLPB69isup3XVmyGX3AQUiPXpLALhlHQlvFueB2CsNqACRkAwng9yolhQMJKmHQwBEa6hUngQhsmJXaNvFY5OpGRGV+IFhDUaqykvFO5BtBo24AP6Rvjf5TWhpGyoHFoB+tX12J32sRZ85rTayyijEYPzxPmXOw24xn1OoyhP84qtGO+0+0OE+UfZ2OchpJ5fLtDnFLUbdZJV3cG24kJ8i5OOiTMO2Q+dJEBBHVm+832GcZFOYl/p7ztrkYWJTKGeGCJLQe1sKKzjlLRNWoFJcxPzsZbZ7pz4rRhYURTCd2aItUiQUBhWMDoIe/x0P4zN/0/Sab8/2SnM07k0gc60AsO5MGZewJw1I2XoBccSM1Vl9N9yWUcOzrFY9+eWHnuxMwhjBl5Ib/yRwCwT8+7leccO9r4qsqxx2U/yomZxwAYf+5VTIq2oO8tJgq5Y9quACwfXeSyRw5lYuYQJo7fhQNOOILmhyVq5OMbRSi/NtIEATz33D5MOX9PphYeqyR3vTZyRw64ffVGkrF0ZxsAj83/Ll+5/AF+MOI4fn3H/2PU+FMZ2XAOD1y6LQ+rbdnurIDm917htZE7srmVZe+RS7j1nG2YfdVsHjm7XyWl65R3Dvxf+3LvkUvQi18GwEndBMDY4VdV7r9lXD1vT/oq3z/kAQY8PJnNdja9MF+ddAGzvlPCHnwDt89tqgQNjPXG8O59e1Se/4OVmtcnvMrzCWt15dFdAOw/f28ANreyNL/3Cn0XPll5zjmXf43dDn6OccPHcXLO+GlGNpzDFWsOrzxm+oxL2K/5EY5xjIzt3aOmMO2K8/h5n9M/Hw/M7rvvzmWXXcY999xTSaQoFotcfvnllYzwL+0ohbCt3lSrjU7apWEyHAfVUE1xQDXKSfpMJDi5COnHyFyACJN4ZKXMiTKYhLIoNkxOGZxEESKdNib9suysDBjAnJiXE8YApDJMA5hUMTDPTf7W5eVsOOVAgcqfCbjakL0pm/2TEUIYzLCBXE77vmGNyiMFOpeHQgHZncMrg7Ty6yh7ejbEx3GMcMwygsGNhNUOMjRenlSrb4IB8qbQU1sSOx+hpTAaZE8QuwJdaxPU2ji1KZwOI2errENphF0uvbQSw3/v38KR4DjGU5T20JZVibEWQVgBoLKrgKc1of4EQLhpNs3fOX+vl+XvBS8bPvfvBTJ/zrRsWGq5iYn566Ol8avIUCSAQIIyJ8kIjeyxKylfUV1kIoB9iQgFKIEONF6fIplUQGe7h5NIv/wGwyRsvflqlrb2YfnC/njrJK5rzPimt0Sbx8tepgFl2KA4bdiGijdGGzmVtkElRZMaTLSxEsiCQNvG4+KEvSf7UVYT1ShkUVb8MHFaG4CkkmSydEzkC5zIGOFVUg4psxEF30HmLRNhHJpenKBGowaW+MYWi1hdqGVFcy3dPRlydS6Zpjx12SKN6QLtxQyrnHrQAtFjE3Z5WN02MoSoMSaIbHYcshKlJaXYpsrxWZOvYf2aZjw/CU+oSXrDYqvSySMjQaSNrI7IgLNgqI/rRVQ5Pv1qevi42IgKJfSYY5nTWCL0zbFCpRU4CnwLOxCJT0aTWuGyvin7r/4IfilmeP1pkPAYj5zdj/tr9mZK+55MBE7Yeg08dBpHnP0u3Sdc1vuk6W8BsOW087nz27+h+b0m2OlOnuYh7nuzxHE1R/F09xwApk4fwzaXTyI78sLKyb89+AY6pvUu7pGz+/H2pK/SvGgBI8e0suM1h3PgRaM4/Cdp6ldq9p0wmUm/bKH66D+Q/1k9g4b/nJnJc8vg5fkf/wq4EG4fb8oqWUcNt7PN5ZMY2XAOQ9cso2XrPbjrvVdY/dQySk/fyaL2mxk1/lSmnA+THmhh/52geMyF8D+38vtFw3kX41c5qnEEN94/mQu+cQIj5GIA+s/Y2FMlRhhLR7lc4lf+7Mp921x+CmO9MaTAsB5/PAt78A3MOe+qCgg4dUwrL3XuAkBYOoGm425iyNcv5IJvnMDsq2Yz+YbrYD8TDnCdXMjiM0aww7R32ObySbx73x68e9QesHAys9Zey9GpV4FWTtqnnR3OvJDsXRfSKp+i+ta7wWAV/rAqz9e+M4ljnKn4rSfgNc1kuzmT0bM/fdz4ZwYwN910E9/4xjcYNGgQO+5oDl4LFiwglUrx29/+9rMu7gs1wrGTq/Ea5AZX7l0HaqsJm2soNrsEWZlcfTIn39oCv9ZCWQLbz+B2mY+Qk4uSxnrLAJwwRkQKYo12zIl1lHEQWhO7EhlqrGKE3VlA5Iom5CSKwLUTmdoGG7uhvKycRmbbBiCVje5KoxPmqAJWXKeSsiZsu8L4iLJ/J2EuRJnBiA3oEulUbxpYJY54A4BTTk9LGB8hBDoITMDBhjI32yZuqsXv4yIDTZSWWIFGuRbaFpA3CWXCD0EKvA6fOGXj5AFtCjJjT+DX24Q1WbJhjGxTJpTAdRIQKHvlYRJEOo1Oe4R9qglrDKujpQGVxoSpcXpivHYf2V0EpZCFgNQmE/+m+TfPPwJe/nw5nwbE/C1AUr6/DGSCCxfgXLndP7x9/4mjHY1dkAY8CG0igOtiRCywe0xUcVSj0JZCpGJ00cbKS8OCpDQEEstShLGFtjRhlUbEENfE1DX3MLKmlWXt9YR1IUHsoFKGKUGDVZBGukYS+6swTfIJmyFiKJc0WiZEybA/lpGTIU0xpZYKGZgkLmNWT7wtrvGNBA2KuDaCbotK6osw4EiGJkZa25qoKgFF2kjadN6ikHFIt0uTMFYQODkDjgKZ4qlgO9yqwJR0KgGWptCZplRwWaPrEOtd7MAw9wDKN+DFKgmsdIQQmvZSlnU9WQpdaZxWh9jTSAd6RkSIdAQlC1mwsHwDrtwgAXUWuF2iElZgexGhbxPENiNq1tHje3Tl0/idLtSG7DBoFe+5zXhORL/qHtqLGVqWNxjpmJd4gGzNR+/3/1d+/L40s6TjNlOGeAIcPmYtXALv3rcH/ocT+aC7lcdqduTGYTczdTqc96FhUWYNzDJ2EUx8fRc+uirPgpkPcVzNUcBR3Ns9h922nsr0XxiGJXWAiSXmY/j+IQ8w5M00y0cXGfJmurINh/9kLQsuvoADTjB/j/XG8Py1Rt7E3IOBg2EnYBHUyL70nzGJKeefAhiGp/m9V9j3x98DoHvf73Hl0V20vLMHFx69hEtn17LlYU18f/QbfPjBrtzywMnAxn0vqQNOhl9O4Zn5J7P/j+/kwIv24uUDR9P93jqemX8yN95vHj+230U8faphou7ueYbb5zZx4EXL2OPjOm6+7GW2O/YV3r1vD0bP3JbS03cyy59rmu/dmfzpsqvZ5dWPAANiJieJZNnTO8j/rB6Ao5PtUY3XAhB/EDLl6T0Z2WBuf+65fcie3sHiM0aw3ZzJMOdx3qWXtdnuWNNFI+seZsYPv80OZ37MxPG7MHX6ddx8w7ucMXg2ewPfPuNuAMas9Zk16FpmX7WQRe03M8ufS/qd3zLoxU/32fnMAGa77bZj8eLF3Hfffbz/vomUGzduHMceeyzpdPpvPPsLPklho4nh7S2K1A21dG3XQJgR2CWNU9SIWGMXVBIZLFCOIEpBqUHiVjkG4PgOQmmijMAq2VgJ26CT6MbYNXIrLYXRLKdBSw8nl6XxTz7esnZE0e9lVjZkN7ToTe/SSZRw2eQP5iTeIgEiAiGSBvoN45FlYtAvxzRvGE6gtCF+XKc3yrk8QvSCKrnBVQCle9kcu+yzCY1ky3FAa1R9FcX+WbQU2IUIy1dmX+YC4pRNnLLBs7C7S8hcgKpyDSsDRFUOyhbIQGOVFMqRFDavIesHiB4TXFABL1qb9aY84j415DarQtkiKSHTODllYjW1ATB+nU2xj41TzJBeW8Jen8Nan/tcP27/aXPA0f+7GOyvzdOz/74SzU9az9+7rC/y/LPAy6edz8KmuNftWAEx4aXvfl6b9KWesDbGKsud8sY/EtVhksHAMCW2AkejfQsRJ63u7YJiX5AlQXFlNXZTEeyE7SgJiAU9+RRvrhvCiD7r6axOs8qtg8BCOoq4aBE5xp8hcrYpV0y6aKzAHGfsUhIXbJkkMjQ4OSot8mHWyL/irCbOKLS0sEvCxBEnJZUyAG+9RVhtel/spHtFp43vMa6OIemC0YCTM0Ah7BMjihJZkFjF5EJSGaApQIHVYRPmDEOlPY2sCRCWJs4Z1kalFSK2IDaAK66NjezOUxBJci1VFKo8dCQRPTZ2j0CEEG1WYviA9URKsqqtlriQIaxSRj7miEq0tIxMjLQMIVqVQYaCZTX19IQetlQ4TkQpHYMSLG7rm9TBSaocH1sqWv0+xNUxsa1R7Q5WAF6r9Qmfkk0DBgS8/cC2MOYqjun+PfB45b4L9l1D+9XmJPnxs3slSPOm305NwXzvH3DCEdw7cw7H1RzF1OlvUU01pafvZLdpu3PXIMHomdty82UvM3rmtiwfba7wP/STN9nu2FdIHXAyy5+9jiMZw6ljWlnUfrPxpuxr5FLl2yrzPKw5V/P7M+aaAsl91zFym8Uct10TK9f7PL+2i3vmH8XYzCE8n8Qqf/CbVg68aBk/OeI25vTsyXnHXMLV3+8tzVz+7HXceP9knrp2KAdetMz8+9SbtDy2B/vzCt/bXXLpjEt5a9GVHGKyIRg9s8gzN57MecfAjfdPRi76FqlXt+VdfxxvH7MtR3Y8wtjxpzIw4Yq2uXwSJRKwBIztZ/bpEWePhquMbK88z7Uczpi1PtOm/9K85LVdPNTvImatvZbDpr3Dvd1zWPfeQVx5dBezlpjnTfzhGKZOf4sp5+/JD1Zqsne1MncRTJ3+FrP8uezQ/Rp8H07MPFaRo5UjnA0DNpeP4jzbfIbPzd/dA/OfNJUemIbvY5PIpCyJ8Dx0TZbCsDpKdRZCQ3p9hLIEYbWFk48Jqi2ilEBGmtgVBNXmaldmnUKGyRWw2FwZK9VbyFAbg7htrnzZviZ2odAszZUwbcyJdgH6LijhfbTe+GsSr4yOIjbqhtnQ21GWbCmdMEl/VohZfnwZ5GwgGzMbKioxzRtJwCrJaGJjr07ZEF9Zvt5oW8rSNa01wnXR1RkKQ2vRlsDtCRGBQtsmtljECuHHRHWmpED6MVYhRDuWuVCoIU7ZKEciQ7PdUdamVG9RtdrHXdpaAVk6DI00z7GJ+tbQPTxrTLI9cSLlSOK/fYW2BcqRxK7EChSlepsoLahbXIQ163hu6U2bNMvJ/DUPzGcFL//s+U8DMJ8XePlLLMzfKwXbUFK26f+JmfL/k80vuwrd4KFFItGSJCfeAqddEmc0cV1kovITAGP1SJy8oDg0QPgW2WUWfoOJ8w1rFXbeGP6jTMLGNIYQSNx1NlZRUOoXI0KB1y4pNcd46yzDtkhzoh9lNHbRAKXYM78jML6NOEkIs43R3SoZU7rs46MiCV2OkVZhHidU+XkGACEhTpueFqRGSA3dDnZeIgMqACWuiZF5C6db4nVClIKwRhOnNcpTJgEsMj0uspQwSRq0q7E7k3AcJ1mvStbbFFBbn6cuU6Slqxp/RRVuh8TvEyN9SWq9CRUo9YsQSuB0SoLGGOFL4zlyFe4qhzhl3itlg5M3r1U5GukLSv0i7LoAIRVRYCPaXZPY5imq++Zors6xS8MKlub6MO+dYSZOOTZsl9Mj8L0iH1+6qVesPOX/J6nlH/HoVV9jYuYQnp8/hcaXPU7OmRPba75xMM0PS96e9FW2mzOZ0TO3BeCXj40zrEdiJG+VnTSpOkY2nMPRlxzNlPP3pHqWiU/+YMIN6MUv87OfnMx++70AwNMzH8L5qMDYHY8H4N7uORxwwhGcOqaVxx6+g+rjb2bAslMq2/r8/Ck899w+zL5qNovab2b10Dv44DcmLa3m+b70O/MVFv1pBPvuNHmjbbl9bq/Z/d379sBvPYEH6w8HQLYtZsr5e1YenzrgZJ66dij77jSZ1UPvAGDAslNolZ2suOF/+NpTbwJw2SOHAtAz+ysVEFQGJW/tvjkA1pgr+ONXn6Sz2kjCtvyD8bx88JWzPvG9WH6HzwmbD2V17cbMUPPDEmeXO/j5NvtwzlDNQHdm5b7n50+h+WFJnyvPAGBu8a1KkMDc4lvcsf1TAJVunA++chbPpBu55p7BzPvmL/hR/0cAKt00x3T/nt9M2J58oPj23Ws/1f+TTyXyf/TRRwmTzpJHH330r/58qUfFFZO3ife1iBqy2IWYVEeM5Ru2RMYaJx9XOl9kaG53ChqvU29ApZveExFBan1AqjPG61Jk14TYpeRx2hw40q2aTKsBPak2jVXS9AzyUDWmV0eHYa9P5c8jgSHpgtkAkIRBwtaoXmlYmXnRulceJkXvjyrfrjYGPrBB90rcGzRQlplVlil6gRRUIpJFJo1qqKaweS2lRos4JYg9i7DWpdTHJcrahDUuQWPK7N/AyL+Ua+qdRUI4yTDG6QkI6hwK/T06RjjErqDQ5KJrsuC5SZqaYXui5lpym2XxumK8rhgZaaSvkLFGuRIZxti5EBGZcACrEGGXFFEK1u+Qprh5wz/2edo0/7L5dwOof+Z8nszLJy37H/GxbPLA/OXR0pzoy0CgGkNz8aQkSTXnCfpFWIMKNPfvxM2EeA1FtBcT1cSE1ebYUDe4k/yQmCijCOtVEq1vjPAqpVB9QogkMhNh5wVuD9g5idNjwIt2TLJYcVBEcfMARuSNjC2r8Zsi4qxChhhmImNYCC1J5F8GvOhsTE1Vkf5NnchGH52OkX1LRFWKsE4R18ZoS1fYbANkNIQG8IhQ4HYYf4uqD5GDCpBI22JPJ8b5ZH9ZGqsmJNW3iGwMjKwuASp2TuK1WthFgdstcHpMJLXlJyCmx6boO6ztrCEKLQPQUhqdjYmrY4Q2Hh0Ap9300mArsDVWXmK12zgJKNMWqIwiSiWxyJbx+4hQEhVswrzLgKZOtNRYDb6R7AlNVylFPvJIWRFWXZDI0QxIjFOaOL0p1fKT5pUr9uPyw82548W/fYI+19by8K0nkr1rT04d08o2l5vCynePmsIvHzPpYN8/5AEGLft5xVQOJkVsQ6bk0a0m8OhWE7jp2VewL3wgYXZgQNcUvn/4n9j3x99jl1c/qpj7y2zAId82wKUMIv502dU0Pyy5aeCBHHmCSdsqz3PP7cPDaluO266JbXc5i5EN5zD9h2NolZ0AHHjRMv502dWAMbWPu3Ihc867iteuvp5Xbv/NRvvhqUSyljrgZIZt+Qa3nrMNk37ZwsK3btnoMXcPeoavLlrAjfdPZmTDOZV9cNkjh2KNuYKWbytOP/lsPorzbPmHW6jreYsrj+5i350mM3uzq1h+h1/52fIPt7DszDHoBQfyy0d6uY/mh2UFeP18m3347z+9wC0TTAzy8/OncJvbyZVHd/GrzX8AwEM2dFbvwnPP7cPp1Y28/cC27Hbwc+x28HM0vuxxy3/1+pcuPt70/Jy4cn+OvuRotjsrYMr5e9LybcXmVpb7Bmy8X/7afCoJ2eGHH87atWtpamri8MMP/4uPE0IQbxA//KUcIYy5PuWhXYeg1sHpiXB6IoSyE+M+iEijXcO8KEvgFAz4cPIgI0mYEQiV9J9EEiuwsXMxYY2Nci2cvEZoRexK3Jwyy1UaJ28y6oWCMCPQnlNJCjNRyMLEL+tEiyat3m/muNf3saF53QCzJJxAGg+LjpWRh1mWYS6kBaG/cVx0BZRg7i+Xa6J7o4g3NObECViy7UrcsrBttG0RNGYoNtpYvjl49QxysHydpI+Z/QggI4UMYpQjK+9HnLJNuWQpNPICXxFUm3QX29eEWUlhs1qyfyr1Fn1mUhSbUybVrKSIMpYBR6E2arlYI0IjO3B6AuKMjfIMQ5bq1JTqBblBn1lhuWk2zT80/2rZ2D9jnCu32yQj+4Sxiqa/S1XH0OVg9wi0A8WuFHabTViStMUS1wtx7ZigmAEJUUOIsBUjG9exNuWzbFUj7iqXoDkirNXYOQu3T5G+NTlWrmmgX98uVg9xEIHE7ZSGFcjEiLyFcsFtKKE19K/vZvnaDKl1ErREeSb1DAFeu4WyDKAIaxTa0WhH4bQ6dBbqEJt1sEXzevINLl3FFLmsTbbeSHEKxSrsQmKCDyVR5Bg2KdjAf2OByNmEJQuvtTe8QAsqsmpZksQFG9uJiHO2MehrUJkYt8Mx4QAkYQO2iXC2i9A1UkFNSFBy0JGEUGBrww7Z6Yi45OHXGVkbAuKMkbxVNRbIra3Czku0SEIXGiJEURqpnGOkfso2nhhtA1022oJVyxsRWuC4EbI1TVepFu0pXlWCou8Sd7sGbHUlHT/VJpp60/zv2eNHz/HONQfQ/N4rjBy/GDGi977n13YBJ7Dg4l0qt5Wm38ni32wGGNAxEXPfDjW3cvhP1jL7qnMY2WDAUHkOZRTwGBf/Fo5nZwBOndbKjvuZ760DTjiCAy9axnlJkll9P+PRuNX9PuMazmFR+82cXWrh6uk9wJ486m7HlUd3sfTqI3jsigvpd/bJ7Fo/EjS8/sR+jB2+H3ucehhTzt8Tdr+aVtnJHqcexr1XH0HLqMPw582iZdRhtC7pZM+6HwHw/f3K4Osw9vi4jnuvPgLOhx1W70H64TZ49SOaH5ZAP05cuT1D3nwGMPK7GS/sQp2VZcerjuNAlvHLx8YxYfAPuHtQK1esgaVthjn56qQLKn6aHfd7l+qzd2Tq9EMq+2nqTiYcofaSExjav4nFu9zBfwOZA/+Ls6bBQPctap7vyxtf+S6zllzCVzFpZ7OBlet9Hunux6VcymtXX8/RPzXSstmlm5l91WzeqTLr8MUsRsd53ux/ON8565lKzPPTMx9i6vQxHBzf+ak/O5+KgVFK0dTUVPn9L/186cELVLwTWBaqKk3sScIqm7DGJkonSSOuIMpYOD0RmdUlqpeVyKzxSa3zcTtDvC6F5Wu8bkW6TSGUJtffodDPIcwIig0ykZGZzhPlGAq+VGchY3CKhiWQceKXoRx9rHpZEyF7WZJy14xWvWDEtiuMiEilENk0IpM2oMVxzN9VWUTZnxJF5j5I2Jw/i3NW8cYMTxQZ43z5cWW2p/wcbRLYdCaFqsvi15vIyygl8KtlxUvk9sQox7AuQgOxJk7ZJrUteXlBnWNkXmmHoG+aoMYwSal2IzeIXegZZCKQsSxwHOL6LNoSeO2BkaMVYyPp0xBUS0ScpO045uAVJ//KSGOXFF6nkVBsmr89/0nsx79z/h3gZROD8jlOkgamXQMGkMZknlrmmhjllML1QjwnItYC7SrS/XLsutVHbDHI9C44Vky2toSIBdnGgmEnQvBbM6xuq0W0O7QuaAZbIxp9I/kKBE6LgwwEcVrRUJMnDi1qvBKiwac4JDRFlol8zJylQ1iv8AcFWP0L9Nm8HavbXMCRvqB7YSMfrWugs5CmkPNI1fgMqe8g8G1ELAjrYmKPSkGmjM33cjnlTNkGzFiJnMztAq8dRGzSzcrX4NCglEBmI8OsKMDSlIYEKI9K670MBHberMPtlOi8TW1tAenGyExE3OyjGwOUEohQJKDHgKRyKaYQGrfNQvqCoG9MuH0ep9o3sdG2Rjf7pId1Y+eNd9LbrIc4a6Kw7Q4Tm1zsShH0ibH7lpDZCK0FpYKLu94iziiijKbUV2NvslP+xXnliv1YcPEFtGy9B8dt18SAZadwdufp3DKunn371Vau/APseM31TBy/C794oYFfvGAUEmLHpxA7PkXU5OCLWZWftdcu3ejnG692sOC57So/y0cXWXvtUhY8tx0HXrQMMLKuuf28yvqOmHIpi9pvZmhjE4veeJOphcdYFRin/x6nHsYbHYuwW4066ZjjB+GLWZzyzoGsXO9zTPfvmeXP5d7uOQz5+oVsd5ZB4KWn76Rl1GEADPn6hZV1eXps5fdyPPRDk69kwgBz+1u7b86Bt8xgm8sncfnhj7Ko/WaWjy7SWb0Le0+8lR/1f4QZL1xH87zfVJ7ji1l8/5AHABja2MR9529fkaCNWetz2+AfsHroHaweegeTb3ip8nPLhHdY1tZK5sD/InPgf5nX2/8pJt/wEg+rbTl3nwt5yDZFmHMXXccrm3VWtn3Lm8z5wGlBHcvOHMOU8/fkxJX7s6j9Zs7LXQHAbYN/wDvWmYxJ78Isfy4TxxsQOnH8Lqy+YNSn/ux85kvM99xzD9/97nfxPG+j24MgYNasWRx//PGfdZFfnNlQNmVJVMYxdHqsUdJ8icWWoFQnjUa2R2CVTGO88mykH6EdCycnELFJ1RKRJspIhDbmcRlpRGx8H1FKoDPm93IrsLLBrzaJLkJpRKh6yxZtC616r+JUyikVScyzkxj7E8O/JVF1Vfh9MgQ1NlHKHLAizyTKaMucsKc6YjIfrDeBAUFojiZlD40QoJM44g0TyIREuO4G+8vq3YfSQniuWX9thsLANH6NxPY1kWekdrFrjpxRShJUGUBnlTTSFji5iDhlPEdamr9FZICgloI4AXzlBuh0u8KvkWjPRgoBlqTUlDZX1WyBlQ8RsUZFFkGdjV8rcXskccZF+mbHy1hXIrGDast0IsT/5+1h/2fm6h+f8Rfvm/TjWz/39X8ZmZdN89dHOxrKJ80YX4edgzid9Ke02RTiLMVAGB+GFhRzHkvdRhoyRdpKWdoLaaJIohxtTsaFSexSjiSyXDLrJV67plhw8PsaBkY5mrDB+DtELGhtq4F1Hv4AG7kmhZDa+C2TBLIwa7pdZINP3OUS2TZunZFekZPEGYWVt9CrMkSD8wzp106sJJtVtbPcqycamGdY3zY+WNmMXJNCS8NwAMTaSL201cvGKNf8iJjKccjpESZUwLHQVRLlW4jQHDe1L3EaSijbSXrGwO0BK9T4DSYSGUtTlynSuaoGEUp0NoIo8c94ClmyklJNUH1CdCSIIqvSgYOriNpTeE0FVN4ce5z6IrXpEq2i1ijjpAbLXFgUkYlcFj0O4bASYd5BlCw6fAvZYxNVGeAKgIJSH82grday/F/9IfwSzGX9jmL3XyxgUdP+zF10HauH3sGkczVH2I2cl1vEs8HLjNx1NCfW78a8b8JJ+7RvvID63QBI1/+UV6t6JWVrztUcMeVSBl+xnBU/GsLMF9v51tjDGeFeyv33rATglTUHsu+b6UoD/b3zjuC0FQYglJ6+k3nTb+eIKZcCcEWfBTjP3MFz37kJgNPPvpMX9Qm8vfkPeK7lcETzI7TcP5kFxw+CmfCj9Tvyo/6/hZkw/oSX4DGYtnoWP+r/CEdu+xIPztyT5aOLHHXjJSx6403efuC3tIw6jPOOmYJecBvTF47iiCnw1FnncuAtM3jqrHMrr6153m/wGs7hkd37cfd+B7LNhEmc53Zy7j4XMuTNNL4wDM/LB47miGSXbNF4AkvbZvLMTr9nj4/h/nkrOfaGd9j1jYFc0WcBr9zesdFuHTNyP5a2zeSps87l/pq9uffqI9jurIC3H9iWC9pOYOU3YO/u17i3ew6vP1HH/iv35hHeYdEbb7J01kyGNjZx9kOnsXvjZCYmJaCnBXVMPH4Q0xeO4lsjvsEVN5rgr/L78dRZ51J94Vuf+rPzmQHMiSeeyDe/+c0KI1Oenp4eTjzxxC83gLFtw15ABcxo0XtCaxdN2Ra1Em0JoioLy1fI5LHKtRGxkUC5QUxU5aAFpNpCUu2YlvlSRDpSKM8Y0oM68xaUv5ijlMAumhP8qpYIqytvoomFqBRBlo37WscbmfKFECY22bbR1RlKg2rINzuEWbCC3pdZ6mMOpFZoOPVcP5tC337ULPPxFrdUiiErIxI5WjnvYcPAgPK+KoObsp9Ga7TroKVAWebAFWbNdqY6TBCCFSiTDCbBLihkoFCeRLmSoMbGciVOzgCMoN5NQA+GpcrHBFVW79W0GPPaHQftOgaopQWxIyFl9nFYbVcisJUjCKtMZIO2TV+CShtWy+uI8BtsZLAJwHxZ5u818f814LLhY/4VIGbT/GeNnRMIzIm5ysaEynzXhHXmOOKttwjrTMyw3WXKHEWbS2dHAx11IXTb6GxMtr5Ivm+EKzUN2QKrt3Fw3AhXKnQfQc+H1aBMCpiRH5vYYZ2JDSkeWIiGkCWr+5JZb5h/k7ZlgENYr7DykrjTRVabq8mrVjfg1PpEaQvR6Zp+k+TaWc73sK2Y9X4Wv+SQyfhIodl2yBrW9cmyrr0GoSFbVaJndTVCWVgFgZ0z0cR2sfx9nfhNXBIPTZIU1u3itFuE/QO8qoBweRa1IotI4pu1BKukCaoFxS18rDYHtCCILayiRKU0omRh9ySFoVbSvYO54CXdGJlSRJEkbIxIbZMjFdqE7Vmi0AKhiaoV0foMXZYi7BcguxzC0OpNVbPMuYGbE/g5B2yF9lSyXkHQGJvbHIuwLkZkIpoym2iYvzQPdvWqd36/aDh3/Owpdjv4OU6b3srU6xTz3niTibzJDn0W8DZfrRjEwcijTltxF7cN/gHkJrNFo2FI+FnygJvg1YTRePVxWHPuqSw+w/z99gPvcMLmQ5n5UQtnHmMAzVPTzmWXVz9iaGMTq2cItvDMif8ur37Et57+Kdz5NVZOfZc9rn6KvdbM5LFTbmK/5keYc95VzHjhCqbOG0n58n7Tldcy+9p7WDznAx7gen7U/xEWtd/M4uAJ4LcJWDmQkTvCSC5hh3EL2eGj19jl1Y94+cDRZiGTr+SpzjbenvRVFlx8AQ/OHMvyUUXGb/sS/i0r6dBjuc01++OXj42rmONLT/9vKVZl3yS/DznlEna4Mc0cbxJzMT6i8tzy8z0YDJxyxXnMvnQ205L0t/vO357jMF0099fszSsPGM/KvAslZz3QwchJo7nio3MBcHbJ8NRbp3DgLTMAw1IBjN92HmdNm80bA56iZdRhNM/7DS2jDmOXVz9Klvzp5jMDmHLz+5/PypUrv/wt3UKYGGBtTshlkHSkqLKxUWMVIqrWQrHBRlmCUl8Xr92ULVqlmDjloIVhOpRjDIaxZzpehNZEGRvLV8SeAUHlpDJlQVBjfB0yNN4Ob32RcrmiiUIWlf2v0RUZmbBts822jUiStzq2qTLa3ZzGbtNoS6Ass1y7mOTnJx6XcqxzbqBLUDOQqkUd0N4F5TLPsk/mz9/3sr+mnESW+GSElKbVPuPh90kZr0taY/dAan2IXTCgpLwvvA4DfJRr0sCKDTZ2SRlMZAliVxJmTVx1qjMmtdYn9ix0rWWAZArskkYoBbYFjk3sCdwek3JW6muSxcK0KcR08qZ/xumJCatNkhnCHFSrVvuIUOH0JPt40/zHzqcBLxs+9vMCMZvYl//MMV5JA2Ti2BjLwyptJE2OiQ22uyycHhPXW/AEbqdJJ4u6HJAaq90hHxlAkm/JIvpptui3DseK8WObVR21xCmVRDJr4uoQ1nnY7TZxWmH18VEtKXR9SE1Nkc5hDl6LjZMTBNWmdV7bJjoYCXuPWEKHn2HBh4MQUqMLNl6nNIZ7T2PbiirPZ3lLA1FsobUgVpLOUprvDp7HM+u3Zu3qekZuthY/tslVpdE5qwJWrFIveJEBJkFMGbZKBgKnR+B12MgILN8jyrq4Pb2gQURgR4a9D2ph2OB1fGw30rchh2vFiP4lUm5EaW3WrMM3Hs6oXwB529g3l6aJkk6d6uFdDG9Yzx8XD8WOBPLDNFZRoIbkCQouTdU5cm0ZrKIgDGxEJiIuGaBo5837JiLjbRowqI01S/sCkF5jUxzmE3saqzqkb0M3GRn85Q/L/+F55pTTKQ3ZnFHjTzUG+bNMw/sz/J7UAaPoOaYFLjQJXL+fegZzzivygH0T4576IWBYjTt2+j3Li4ojumdAy408sdtJG61jGG9UTpIHjL+TsRiz/FIRsKU7k6v/q5k9Gp/i2BvegfvNc6Zeei2752BpbiZ/Pq/c/hu2aISnzqrn7syBnMhTDOrjcWj1bAYsO4WJ419icQCzr72n8pxxw5/ggSUHM9Ybw8hdRzOSS5h66bV4C7vh/lGcd8wU3n5gW7bxJsEBJ3PElEsrrMuBt8ygs3oXhv50Lo9MPIpiXSNvdbZxIDMqsdKd1bsk0rFZTFs9ixG3Lq6wR7uOvRu4u7ItX7/TlF5OrR7JaZ0vMrTREBLfH2XkZv57NbwZjOSNCd9l2Zlj2PGawyvPXdbWyr1XH8Fxk0zowW4HP8frT+xn9stmnTx431b0f+U6fvv4g9xx4VMsvWVGBTi93mtL4p5oby4fZZiulgNOZsYL1wFw+9R9+PmntMF8agCz8847I5KT6P322w97gwSsOI756KOP+OY3v/lpF/fFHKUM+yAFRDEyVwIyFc+EqzQyiEm1xridFn69S88giyjlkmqPjawpVgg0sdeb+a5ciYxiopRFWGXil8OMREtBlE4o8bwi1W78MF53TGZVEWt9d68xPzHei1TKyLzAdL9syL5kUpSG1NE1zCWsEngd5iqVCRYAL6+w83FF2qZtQanenOx73TGRJ8n3syg09aHPHz2sVeuNz2XDVLFylwyYtJkNo5YtzPY6GPN91jXAQGu8LrNuy49NiWdsQIuIYqSQRI5MJA0KyzUAS8QG/Pl15sDjdRmhtHIkIklvi6qNNAGtTUkooG0jS7MCjV8jiD0DQoU2V+DAACnlCLRt3oOwSpBpUQZ8WtLso3ATgPkyzGdlXz4LcPnz521iYjbNp52wRmNbxnQuYkHUJ4RQ4qy3CBoUylN47RZ2EfwGjdchsUsmvjc/SCMCaUBMzoAfp0fgd9Ty0eYOKjFH6rUpbN8cQ5QNcSDxBuUpdXnInE2Uc3AHFKivLhDG0sQGWybZy+028isrJ7F802j/7vr+dHRnIJLEKzN4OWlKNQFVHSGlon+mm9Z0FUpDv8Yu9um3GF/ZDPNacOUI+g3ooNotsWxNf3TJSi4AmlJHoRM5WUQS7QzKS9QOdmLmLxqWxYADk7qWWm/6a4SGsFrTtXWJIc3tDKtuo6OQpiuXpj3OEne6RMI1WTzVsSnNtDVWi4sYUiBeYyQr0jcy6kLBoyObQVgaK4DUekGhn6Y249OlBK09VRCZC3RydQqUMfrLvDm+xynIDMhRlymyurUO4ZvXF2U0lCzcDknJc+jy0qzPVP2LP4Ffjom2cEh3tjFr0ld5u3Fb7rj6ehr234els2ZSWtTKDuMWMiQ54QbQvzqUfjVn03DoPgDM2R8esG/iK7+q4027kVerprD7vEYA+l20BQBrr13KaSvuYmJbK7e5nQCcmyyvHEHcAtx4v/GmlJ6+k6GFezfazvHbzuOoISv5+gTjf3n/wy5gAfs1P8Lsq68H4HveYr76ywu4mrcYM/IFbrn8guTZFwHwNtvC90EvOBCxo2FNyizMhreVpywde+qsc5k49QymVo/krAc64GdLWHrLDB6afCXTzuhNPVjWZqKdP4rzXPizJZXb2585YaPlnhZcV0lZY/Bk+l20BQue264SasB+MKRwKXdftAVrr13Khk7JWf5cJjDWBBRgpGblefnA0UxdMog3Zp3Iz3aZghXyiTP69YD/t+f0jfZ/R+eL1NftxTsvbP3JT/qE+dQAppw+Nn/+fL7xjW9QVdX7n9F1XTbbbDOOPPLIT73iL+QkJ6+ViOEoJtUWkR/gEFYJ/MCueCViTxJUS+K0IJ8V+DUGKAilcfMKGWjT+WKZL7Swylzljx2I6yysMJFwCcO+aAFeV4yTj7A7S8juAvhBr7fEsiBOyigBZMLGWBYkZnl/UC1dw1xkCE5O070FZNYKnJwmtT7EKkWmNExLonQvwLJLZlvxTH9NqVbSNbKK+p6SYWI2jE5O1k2c+GJsC6OrS072kwAEnfYoNqeIXYEVaJyeCKsUJWWVMvECaeKUZfTcWYldVIRZo3tGk7RCW5TqTZKLssEpGrmdcqXxJtkGXAptJHxWAUSkkJE2HhgLMutiopQkN0hi53VvjHKgKNUYGZpd0Ni+uR1lGJpYfqqMi//z8/TsAf82I/+/Crxs+Px/Joj5d7Ivmwz8n+9o23SIRBkFFlQ35ulZXW0ks3UBthNTstOg7ASAaGRoUi5VWoHUONUBWgv0qrTxiuQExXUpI+eqCfE6TSSw3z/EabdJr5Wojmpcy/SquLU+KS+kp+gRLK0hu15UvhfBeGDijEI3m5jnEfXreK19cwiNtDfVBj2ba6z+BSi4pJyIQFkcO+JNGuwcr3cPw1c2tXaRF7q3ZuHa/oSBTUdPhvjjKqSjkYG5cBTXRSjXMtHHQKpVVMz7YbVGhuC1C7NNqUQgoEyEcZwysje7YJ7jLkmzcuUAlvVvxElFxMuzyBBwQDX5Zv/4FnFjiJWK0KtTZj+6Gp2AjKAupk9NgRXr6tEqua3GAKoolkStaSIJVn1AXJCk1kn8Bk1V3zz5sJrYFUQZRbwuQ9VgH2uth9shKA6IqRvaSb7oUSKFiASlNVk+rN0Uy/9J88yZ53AQd/LuLS6LznuTuT+9DhYdzNBGGDPyQsYugtQ+5iS3fJX+/V/9lBFHXVpZxpnBlRy1Os244U9gHd7JU3XnUnvJBzAeCk/9ju4Pr2TZ+FM3Wu+MF65j5U/+d3rilPP3rDASD02+ssJivPJ0HQ+rbVmJeU77My/AOJJUr87eBVx9PWOSX19LgA3A3EXXIQafDytu4OyHTmPY/W8w8ZiL0AsOBEwYwdRLr4UVN/DLx8bx/UMewH+vhmKdAWNM+C4tow7j2GMu4MiORzhiyqUcMeVS9q6awu8XDWfZmWMYes9KlrW1csDtqzliyszKa3hYbcuU8/dkzEgTGiAGn8/3vCRAwIOl187kW2Mn8/VLDVA8vflK3n/ojzy0YhK3Df4Be4mZ/HC86WuZOHwlR0yhsqylbTPZovEEjroxzYM3LuKNWfdyzPGDeP2JXjP+VyddUPn95evG8T/D34W1sEc4iueL5ktg0pYvcOShYxj91Dd5/X+9K588nxrAXHaZyXHebLPN+O53v0sqlfq0T/1STUWOBYggxOkJsHzDAPi1Ertk4+QiZKzxumJK9ZL8II2sEXjtyQHBtUyTr9Y4BdMaH2YlUVoSVBt5WXq9Sgzt5mRbhhqnO0AWAgNeYgXldLAExIiyVMu1jS8GwLbQnkvYt4qW0R520ZywK0dQ6CcrJZAyVGhHIgKF0AqZlDfavkJZgkIfGzeviJ1EXgYUhtWT7c6BdAzrUzH1694OmigyoG/DnhlAZYxnJXYFVqgNSKlyEJE2PS+YyGRlSexSTJyWhFkrufKmk2JQaQIHQnOlTguBUyxrmc2BzMnpynaLBGQp1zZ+GQ1uXhvNd9LHAySFoxIrEHhdMan2iDglUbYwbA8GVKpNsZdf2PlPK67cNP95oxxN3BCDBBEKetqzyECaJC0tGNLQwRLfRrVZxOne7zUrAhyFlYpRSuK4EaXqmDhLUt5oIovFWg8ZQZjREBnAUeqrSK2TuAVBfrBGxZLulirSyx1cZb7X7KKRb8XpxE9SkHjNASk3pDNIYzsxoSexOyzCLKAhLLjY6xxSAyN2qV1Bg52jwc4xMNXJYx9vR226xICqLhqr87TnMjh2THdVjFWQ5uqc1hALrL4l4g7PbK+dsEiSSp+LFhBme9nysEYhfWmKLl2N12H0ziIGXa3RShC2ptH1ISpvyjxFu4vlC5xugV+vQdjmQuG6FJYvTPpaSpNuzuHZEbFvIQoWyoKwybxfTVU5eoI64rqIvg3drFvbl6hKEzeG5FdVY+UlUU1M/aAucvkU69qrwdUUNouo69dDKXAIelyEEtg9krAhZtP1sE+e8UEt93bP4d5bjgBgaCMszxzHxJZLeXbsPojiXKC78vgHu2K2/C9zrC+bv6etTm+0zB+t35EHt5jLz1ouZT92YvEZI5jQ2MTyzHFMLdzLFo0ncOvRt6G6zcWosx4wBvalbTP502XnMjTxbJTBC8Dvu3fG+rPulqcPcilufyjP7PT7ShLXKe8c+Imvc+mAsSxbcQMzXr8eXr+e8UetYYdxC/noqj8AsPm4LEMK9/L071IseOQCStN7dVTpzjaYegalp+9kh3ELWcwIWD2LHa5+jbcnzeKO7Z/iVw+NYHcmIwafzxFTmpjYswiA49S2XDXjYf50WSPiF20ATJ/TnwOeDNjm8kmsCk7guO1O4KbpB/L1qpuYWj0Sb+tunt9/Lac3vwDAQPcGHl/8CHt8XMeFPzOvcWzC9pTBXnmmrZ7FNsPncfathk3arN927DBuFgC/btqfb74xnvQ7H/DwSU9CCAsu7kefa2uZ+V5/Tnh8DdP27+Knn7gH//d8Zg/MCSec8Lcf9GUdFZuoYq1AGnGu7MiRrnLoHuLh9miCKknsOsjIXKVXjqGdESZlLE5StoCK6TzI2qawyzapX1YJ0JDqjLFKpnFeBjEiX0KEEYSRASjlb7w4NgZ+pU3CWHm0No9xbPKDUsgQqlbFpNYHoDWpNgu/3iZ2BIV+LlagsXyz3VHasEZ20TAwUQaEMgZ3KzSPK/a1SfVrRK5el+wfnXTM6P8dwJ34dMqhAnHWaLVkbMCZtgV+tZHP2QVTIKlcCywjCYs8sw+dggE3RmIHQbWh+p08uDll0sRcw9YoR+BhDspCgfDL7JR5L6KU8b24eU26PSbdBmFWJgAyRAbKGPiFOXgqWxB5Aq8nRqdkxZ+0af72/KtYmH8EuPyj7MuGy9kkJds0f2tEJEw5Y49FXKVIVfv4tiLULul0wLK2elTOQQ8voNan8NosglqNagBRsqjuk6NzdQ3UALbCyRo9RtjpQSRxegROD7idAm3ZFf9kUANhNZAwN065c0UmccXlPhQ3kRa3SXRnLXlXs9htNIb36tj0wVgS7WncbIBbX8CSio+Kfci5Hn3tHnbILOfX/s5EsaQtl2FwfSdr/VpKLVmENpHKQpvuFYSmrqZAhxbEeZv8sBi70zapZa6RtSkv+dc1ZZ0yG6K6XHRoLljFKSMpizMmGAEl0LZGpmJEh2OOA1Hyfe6awJfYMx4bERn2qTQkQHoxmze0s7i1L04qIvQtoprYlGxqQX2qQJxVWOnYdK/18+HjFFabg5MzF8eiBk1HWxWpqoCw6JhDYiyIlKS4PkNqrU1YrQgbIzJ9Cgz0Olj07/owfoHnF8Hv+JCv8tRZ5/L7qWfw7MkvM/FOs6ceX/wIC09q5O1JB7OXmMkh/JCB7kxWBSew4zUnsCOm1HICMP7Ji2D4GppvCnhwsAEvsze7iq+fNJMJjOXZX2QYeRb89vQi3/jZTL7xszQwA4BbTzedRpf8pMBDdY08RC94eWXNgezR/ykW3fIg+174HcAAnWmrZ7GWt5i05Qs88M6BnPIOnzhjvTHc5nYysWcRe192K+defoEBMcmk3/mA7+z8DmLE1xiojoM/O30ffeMiHkgM/BMBruk12m9z+STGemMQRcWwrd9g4gvXcXrGGPSfHbsPb8w6kS1uv4qFJ9Vz1gMd5M96BYAHzoIDr13KK0kk9L3vGjBySO6HkIM95v2GqdUjWSW3NCsaCrvPa2Ip8GrVFF455A1mXGnum37QtTxfVLxyyAPwnnn4IT+6jt8tbK1s58cDxrJZv+2Iz3iSJ9ifo0bDHgd0UnPV3lwXrGb33KVM2vI4fnLE8/x+zlf+9ocmmc8MYOI4Zvr06cyePZvly5cTBBsb09rb2//CM78EI6RpsBcSTWha4KMIb5mmNqqn2OxSqpLEnqikkskYvDZVYWiEgqBG4HUqZCSS6GRFlDIn5DI2z/PafKQfIUsGrIhSAFGc9LhIdBQjLG3YoHK3i4rRQWzii13HAAYhUCmbMCPItCpSbSHKLQcEKJycQmQM2gizEqEUQZWk0N/k6CtXI4qQbjOSqyhtUmrAHOCKg7JUrW1DR4k3qOx/KUvKyqyLs2GksiTMmvJJk66WgD0LU9zZHiD8EGEJwELZwsi3bEGpzsLJmx4crQXpNmUCEgIjyys22igbUp0G6MSOwO2OsXyFCMJKYpuMNF6PeU12XmGXYhNJjVuRT8QpC6sQIaQgrnfwayQyNgwQKePH2TSffj5PEPNFY1zKYGgTkNk0f2mUZ06GywlYceKlUNmY6J1a45OojpPkK1O8qIYU2W7gGt5dOYBcPoXbZhEqgagKcb2IQneq0t0SVRkkoqUBCFG1Qgtzom56UszxyO8TI2KJDAVWAZRnTu7BgBptJRIvz4ChoA5Ep422NGGNYSSk1DhWzMjaVtJWSFuYpS2uYqS7lr61OVraa1CxYJWspU99D4WsQ6noEmQcrDYHEUFmmUNHdQbHjfBSAZal6FHVyJJEV8UIJ0YL0wODEjipkLDHM9HFJUG6RZLbIgIvxm5xAQuVjk0HzlqjPijHIod1MXK9ZeR4dQqnrkTYkUI4AiLJ8M3XEilJaV0a6UvwTE+PzEQICZEyfTEqlPihjZcKKNa4uO0WQZ1CNPl8bfOPWNLZh1hJSt0eylM49SVyHRlSq23j4RlZQkSSMLAZWN/5L/4EfjnmJPe/aHnoNOo4DTiam6bPRvf9FU/sdhLN835D7eMHMtYbw0BmctSZTzDnpwfzoj6BXzftz0M15/LiBwexV+ZJLr70Axad+QwjzzofgP1+vRPwa1rOMcZ0zoFLqoZxSf1TMMnctN1ZAe/e4vKQXMio8afy0ODzKc54mvS5S7ivyjzv2P6GVXhr79/wujOPb//iIKYfBNv8fB59rq1h2JZvMEj2XuzcfHGvcR+AAA5JTpOfPsilZdYuHLzPLYzkSFPiuNsFbHHAyfzyseHcsb3kzbduYsdrRjALY/wHWHCxkWBNnf4WJMWP5cSw1UPvYKA6nw8/2JWp1ZMrq31j1omV6OSzHjiBQ+9tZnxxD4Zs4O25ZcI7FRZrwym/9q9v+QYAB7/+C8bXPcCbs//I+MTPU57xT15Ey6z7WRxcyU2Pz648/8UVBZ64e38ArFu34/4/Duax8SVKL/4cgOaxxzD9ICNHm7Z6Fj/bZTumLxzF1/c9+JM/KJ8wn5nUvPzyy7nxxhv57ne/S1dXF+eddx5HHHEEUkp+/OMff9bFfbEmaXEHKhHBOlZQLOGuaKN6SQ81K8KKv0Jo8DpUEl0JXreqsBxaGGO8FRgJmZuL8bpjsiuKpFfnsdfnkF0FRNHvBS+hucKmowi0Mqb9DZO/EtCgwxCC0CSIOTbFAVnTqIyRrclIYfkx0o+xixHKNt0pTkFhF2JkpCsJNG6P8aJEKYFdUqTbYuySxgo02RYjRSOVhAKqJCa5LGWzLMMWBaEBWeUEsjgp5wRSHTFRxiSIWYE2oC80ryNO2cggxmv3TcKbb9ZvBSbK2C6Y5dhFZTTijgEm5dhN45ERhNUWViky+zABdeX3RCjIDbQNoIq1iW52BGHWRluG9QmrTJCBFWicgqpI/cqvYdP8e+eLBl42nH8Wq/Ovmlvd7/+7N+H/zKhMDF4MdSEyGxLHpnAx26dA0BDjdgpEOqKuLk/t4C4YWqBPXY5SbJPJlojXpQjrFCIQWGs9CmuqSC3xcNdbWEWBBkr9Y0r9IqJ+AXaXxG2zsPMSt8tI1cIqk+5V9tZAIo91MKApKYeMPU2cVaafRRsptNttTux33uYjhNCUAocV+XpaS9X0hCk+LvXh47APfmTDijSZKh/HimldV0NjtsDAPp0MHbQeu2DAlNehibtc/LyLZSmqUz7bb72c7GZdEAmEpclWlchU+VhujJQa4cVYtebsL9VmwBm+KYlUtSF2dQi2QvUJiT1MRPWAEiIbEXsG5GWb8ozst476gV1oV2HXBKzsrOWDVc1IX5q+HkubwIQVKRw3YmimnVTfIpmaEt09aYo5zyTH1Zrwhbhg8/J7w2n5uIG6dBHhKLA0Kk6ujgkI6jVV2RI6ZxPHkiXdff8tn8Mvyzy6xngsfjj+aPZ6ehr+ezU8NPlKAG5zOyvme4A55xV5sCtmwcX92Es9CcCzH4zl1Au/w0Vz27hobhst59xFyzl3sXKRqPyc/tZk7r36iEqnyYhbF7PdWQFX//gMjqy1eGDJwZXlHZsbt9H2dVxxDyMP+COPHtcCGJbhnG8N5FsjDmcYSxnGUgDEiK8hRnyNPfo/hRjxNX79x+352U9OriznpH3aKyWcH/wuxQe/S/HsB2MrIOW8n/8PCy6+gAUXX4BecQMXH/V8JeWrPGXwMuP16/met5iVS9cDBgi8ed5IXtmsk2VtrbyyWadhPpx5PHzSk7woD+Lph4wcb2LPIqYvHMUraw7klTUHsjxzXOX38uv58INd+fCDXQEqrw8M63LubheQ2uu/Se313ywOruSoG9MMdI3vZsa3SkzMHIJ160FYtx4EUCkkLT8HjD+nDJZOf2sySx//bEl9n5mBue+++7jzzjs5+OCD+fGPf8y4cePYYost2GGHHXjttdc455xzPusivzgjRRIXnLTcJ9HBWglEyUe2BKQ7c3irMwRNSbu8JVASwiqBnTdFWTqJK7ZKGjsfYRVDZCF5Y2LT5SJiVWEL0L3rqnSraGPwL5+Qb7hdIuX2Psa2KDZaxKlyEo0BF063kZH51Q52QfVKCGKN26NIrbcR2ki0wDBGTk9s5Fkowow0ufsW6JQLOQuIEwZG9wYduI55Tclr05ZCSLMtVqBRjumBCWqMDyWokig7g5OPKDU6pFsCUAa8FPvYWEn4gbaSzpfIgCugAihkYPpyTKllEjvdVUr2YwyRASkykcKVY7D9Ph5ee4CyBcU+tkkds2RywNbYyuxzLQSpDgWbJGSfecpg4x9lYv7ZoOXLBjQ2zZd/RCjxsgF+3gUJOpTIkqT4cTW1W3RS6ucgQ4vuxfWGOejro7RgeXs9YWCjXYW3zoAVGUPqfUmhvzHyh1mNkxdox0T4a2WkttI3Mizl6F7Gv0ua4kqdJHtZEKVNyIAMjIFepXRyMccUNSIgqFPY6YgtqtYzKNNJMXZZ0t0HKTS2UCzJ9yVjBfTN5ugcnGFgbRddfgrLUZQimyi2SDshIja+Gy0EbrsFw0sMq2/HljFDM+3kQ5dCwSOVChnesJ586LGk0Jd4bQa0ID2km1yNQ26Qg/QFznoLEUMxGxN1mmOhKEmiviFOJiAqOUhHETVECF8ipeLj9gaKBRenzSZyY0rKJJW5g3OUVmfxWmy0wHiRIsn8jkFYlqKYd1FFGxFIZCTQdSGULOPn6TYpY0u8ZggSdq3Dxe1bpNRf4tT69K/pJogs6rNFVq2s+3d9FL/wM2zLN2CNMeg/vvgR2o9r4cj9x7By6Sv8cPzRPJs8bs5PD+aoMw0rcWStxZibWtnt4Oe5/56VPHH8hVw3ZDhfe8pELs+alwCQAb3pXEed+QS7cjdvzDqREbcupmbYVEb9P5j3zV8w6v+dxJsnjWVI4V5enDEcMCfW01bPYu38t1j6RAuH3tvMnbtdwNDGJqatnsWEWSey69i7Gag+AGDGoWMY+OgH6BU3sIxW9JqX+c7O7/DjlYfw4wmPMv2ep/hF0oUypHAv3lXH8cvHxvH1LWfBQnj59OEAnJ4ki028+AKmTn+L29y51F3Ty76AYWUWB1tzyo1pXjnkAfz3PuD7h3TDraPx36thaGMT46/cEtiSiy/9gF8+No7NxT3seJXLqx/sSt3q4ZSevpOBLqwKTqiAIDBdPOOGP4G3dTe/fGwcY72YAV2nMP2gaxkdtQGNHHXmE5z+qAFS+z4j2XvkCIZt+QAT5jWx/NHjgBsAsMJRzF10Hb9bCOeuM8llD2/VyrLdLmDqPYOYQYk9jzfaM3F0DbufuhIY+Kk+N58ZwKxdu5btt98egKqqKrq6ugD41re+xaWXXvrXnvrFnzJwKdtMPqE0UvgBMoxIdeXw0p4x0TsWPcNrcPIKpytA2xKrFCHzfmJeVIgoNr8n3SsVE36szG2WZdbnuYggREvTwaKjZBvKwMa2e5chJSrtEJkgG1MWWW2ZzhnlIAOF5SuirGXM8JGm0M9FxJq6DyO0BR0jbYIajYglXpcwwEcInB5JlLHQlkSlXKQUSdiY2sCsX46ykZWwASFMBHWqtUh+SAYRg5NXeF0m5rjQ7FBqsAwb4mtKfV1kaMz9AGFaIh1zMJWBNqVsibRNRgbQhGnjVQFzEM6uCRDtXb37UZp1+jWSMCNxcxqnx8RHa1tglQxTplwJpRirECFDRZSxkL7pjonSMpGcbZq/Z/4aAPlL4OaLzLT8tfmyeGI2sS//2rFzkoENHaxQdUTr0lhlJiSE7p40aEhnA4KBirAzBaGkK5dGfZw13WJNysh6q7T5fo9FhWmP05qgb4wsSmTJXOQqs9JogZYmsUsLsMKke8Umifg1Ec9aatwuSVinyPTPkW/JGs+Ia25XjTE6kmSsgH1q3uOD0gAcGbM8X8+HHQ1oLai2fbavW82xA17nN+t2YtF7g9BSs9avw/Ji3IZuE1qQKcvUNFkvpMYt8n57M6XYIesEpNMBYWhR5fi4VozyLUgpiAVKCTKNBYp+FSISRCmNHlxCtLvYeZn4XTQoCNtTRpImwYrBKgpyogYUWEVpume0QBvVN37JIdViEVVrrJKgZqs29u6/hKW5vnzY1owoSpy+JdSqtFm3L40vJ7SINUSBQHaZXh1/sPHW1FYVaQstbCemvZihVHBZnfeIe6J/46fxiz3fGnE4z46AQT+ewLdGHM7XX/gaz/zqUMSIrzHnp6dUEq/GjIT2Z8zv+6/ZG9Y8wuWbPQqjRnH/Pb/h6VMHwCOHAnDb4B8wbbUxj885r8iDj87lwUfP58hDx9Ay6jDgSuZ98xcATBgwlpZz7qqwLulzl/R2qJx3N+teeJKRB/yRhQfDmCcuZGnbTAaN1NzHAxw760T2bTQAduoBZwIPVmRsH8mDGMZSFj09i98tNCf7J+2TqTAw47edx4JtL8CfU1PZF0dMuZQRk6+slG2CiRjuwKSH7ZuW3MGF8AQ07H8lndW7AMaY/52d1/O1p97kmiv7M/0g+M7O7/DrP27P+G3nsfMlB7Hlf80ETsY6/CwWyO0qqWWFp36HqlvL8/uvZdmZY5hwz1hWyS0Zxhv8uml/htqNLGtrNUAwMe2/MetEhnAv45+8iOkHXcvAzAf88jHTc0PbDZVt33/+3szNHALAcb86m1HjT+XIyGL54PN58FGzn76+13/zTNqkrS3f7D74w6f73HxmADNo0CDWrFnDkCFD2GKLLXj66afZZZddeOONN/A8728v4Is8cQxeCu0HJvGrDCo2uF+X/xYSSj7CthBaU9tdSG4XvYZ26AUeYAz3UhrZFZiT/vLtCSDBD5J4ZGmkZGV2Q6ve5ZdBDKBcKwEJJmc/yErcvMKvN8yLXTRSrChlEXsi8aQIhFLGaxKCDAVuTmEVzWsLq40BP0pL/GpJdfk1lF/Thv6XJNpZeC4Eodk/josM4oT9MM+VgcIuhFTFmihj4XYFxGkbv97Gr5VYgTnI2kkim1XSWCUTKw3g1zvIhNFxc4nUK2VAjbuyA60S+ZoQCD+uyMAy6xROLikkjbTpn7HB7YlxukKsfIhK2yhhgI2dD1G2xOnWhGITgPk85ssKVP7afFlAzKb5105rTxWpVEjBzyADw0yD8VYQSoptHrIkkK5GCY1TG5NviIgzEqsoiaqNXFn28elpktgtblKiKFGeRvomYt4AEpPYqK3ysQHsPJWEexFR8c8o2wSxmEZ5zVZ9W3grNwSVl70lk46iuW8Xq0t1rHAa8WTIIK+DaruE0oKWXBUfdDbxZmkwfYb3sDpXCzGIbMzIIWtp8Aos66mn2KzQ6ZjUKoe4OiZf8Hi/vZn29xpZ7zXQZ1g7TdU51uWydAdp1hezEEpEJoIeh0JbhpqmHDoTo5UgNaTAiD7ryfdzWdNVg+eEVHsBazurCdZksUqCqEYhIkHQJwZHGbO/L/AHRRALKFlYNQFxp0tYo4kaIuKcxeZ1bWyfXclvPtgBb41NNLyI40bEedOH47TbhLaG0HT0CGUS1Pw+MdJRxF0u6wo2WBrtCeOfSYcUO9I4Nfl/wyfwiz/emBOAZ9jz+Pd46Z6tufnxVbxRPZLSThP4/ZPPcMf2F7JwcD/22morfmp/mzOjhwGYt78BDbu9kEib+m3H/+s3na8+MgSAlsMdxra1mujiR+k1pDOQDz/YlRf36OGHBwme/FYVxRkPbCQZ2zB97MFH5zKkcC8/36eWn+5RxQ48xW5XD2LP6fsxtLGJZW2tbNEIv/JHAFcz4rCP2Tdttu3YtnHsvNME3gdW58Yye3Y39IOWpC1z+sJR+O/VMH1Of87d7QJG37iI0sgBHPT4BMY+dz5jntgPeItndvo9zxcVTSMHwIq1LBzcj8tf/AGl49/jmQMmcNp9rzL+qBoG0YfmeffSMmsQ48dexHjg6KNr4CE45QwD5l4Hmm8K+MV+x3LS8fdx0j4ZRhz2Meeu2w5Yy9CfzmUiMJXJtADie4/y0PCVBnjUWhC1VfbNXk9Po2XW/Xx7UhM37QIjbl3MqPFjaN7PAJiRO0xh4sJDOHl8PU/f43Dy8otp/0U36wf9F3rhDck64X32ZDCw+1aTWTVxBsz+dJ+dzwxgvv3tb/Pcc8+x2267cfbZZ/O9732Pu+66i+XLlzN+/PjPurgv3kQRwraTk/SyZCo56jiuiRIG0HHCzCSMRK5gihnLkq8yyCizOJZEWyYxDKd3t4sghJKfpJ7FxrSv9MYt8FKYTRCmo0aX2Y7y3RGEWdMwLzR0bW6Dgqo1SQdNRhI75uqd3yioWxKT62+hLYuwKmlHVoYd0k45/ctC2WWTp0AKo7lGSAOmbNt4XyzLgL0y0Eo8RLK7gFBZRGTkYSIyci2rGCFCZUo8MxZaJh0vFqTaI+xCjHIksWdijYUSxJ40bEyswTGxzNoCtzsmvbQNkSuglUar2HiA8kVit444LYg9Qao9STbL2hX7jl2IsfIhMojQnoUMYuKURZyyzbY6ksj+zP89Ns0/aR6sP3yjv4/seOTfsh2f99zqfv9f0gXzSexLcOGCTV0wn+OE9RGqO4UOJRaGIZeRIKhXRi0sNcpTWIWENW6zyTtpiASpVougxiRxZZbZlJSH3Vwiag5MAlmbbS5EAUIJpG++q6OMRvogY4GyNGG1YW5kmJRHmjCwykRpjdtmsaitL7YbEbkOVsHEFrtVASPq1jGvZRDzWgbR1Z3BshTbDVzNkf3e4u5le7B1fQtzF4/kyTXb0VlIo9MKChbb1q5hx+xyfpE3khGrJ7nQ1m4TlSxqm9tY12AuTtWmSnhWRF26RKAssk4AtkIXTQmm8GJGNK7jIysmiGzyXWk+UE0MbWzn4M0X4oiYVaU6WrursHyB2yXQtoRBRdOt3OMkaWfm9VvpCFICy1IoJUzaWCZi82FrydoBS0rNyGVp7IIgAgbXd7IkY66QR9UxTjZAf5ytJLppC2R1SCodUMg5iKIFSqBWuXQ2xohsBKFAZDZdEPuk8efOZOpFZ/Lcd4wv4nveYuo7b0RstRXjFs1lX+DyF3/AdktSvDh8KnOeC3hp6HPMPOIonr7H4YDj/0h20kCOGn0Tl1RdxWuHLwdgt1Vw4/TbGZWclg474A3892p48FEYV/NHHj7pSbqsLXhjwnc5cvhdbLtiLdedPpyDHs/x5LeqGDX+VIY2NtE0cgAlJtByzk7MPOIoHn17MuMm3c1Lo58D4Mid5sOKtXzPW8zCm/vRZb3P7Wf+mouPX8Fo4M3509i3/w/4IzD+qDUGhLxtwMMrTy+FGjh3txtIHXAy/nuQmj+Npx/qZsv/gqM/vgRGXgXAvmnJ3OfOpwUYw4UsO3MMxVW/ZK+np5Ha679pGnkiACUmAPfRMut+pi8cxbhVsyr7+v1+B1Mbw/jxu3DSPj/hpeT2I2st0uNdZj9xFUd/fAmH9k8QxAdTuPkD6D9DsJo7GHnEbTSPPWaj9+/gh67jiasvZMg99/KzCd9l9mYXstsO9wGw6BfGb9P+i25GA0/f08ho4HcL53JkrcUM3mVoYxPfft+wOt9+v4kzfn4ycPmn+ux85jO0a665pvL7d7/7XYYMGcKrr77KiBEjOOSQQz7r4r5YY1nmBL38+4ZyKSl6WZDK42Xl8RXGpHzSG4bguQYU1GSJa1L4jR5hRuLkTOKJcoyPw8nFuO0lrLYeE6NMYtRXslfOZlm9y8YySWSYfhe0kVbJhNARsUkQK9UJuoc4RFnIrtS4OY3fKCpyssgWBrzEkG+ykKGLiM2yAKKMkY2JWJvXJsxVJ2IMOHPshHGi19gPBuQVS6TWFsgPqTI9NAJiS2AXDMiKU0ZGZhcUQmvsgkkJk5GJNo6yEhFLLF8RVhkwZRc1UVpglzR2Lia1rAN68ugkXEAIYYIPSj7VK3y0SBlPTbl3xjWSOqG0ia3WJmxBRAps02UTpSVut/pfb/Wm+fznz0HLX7rvPxXMfF6zSTr27xkRSnQsEUULGZroXcsHt10S4FRihrVlvCvmSRqRjQhqLOLq2LAI9UZS27+xi7Ud1YRFhyitK0b+oE6hLY22ddITI7FKIJOIYeWYNDRImBXA6ZHEnlmuVRL0rKkm3bdAmI0ReYmIIej2aPZ6WJGuZ3V7rUk+Cy3eXTUApSV532VdqQopNfnAJd+exq3xCdpTvNU+mHVBFSta6hGNPvaHKZOWNqiE83GK5evrEbY5djkyRiaoqk8qhyU065qyFEounhvhBzZ//HgwyrdI15VIV5co5j3W5bM81r4dQWCjQokOJZkOUZGqDWrsYsXKRpwOGzuX7N9OF8t30Ta4XZqgxuzfxi262aVhBQs6BpK2QkRkwKDjxLTmqoizJmI53Vik2OPhYAo2ZWRkatZHKfysh6VMEScC7IIgrBHQ4YKnqM58NoPy/6WZ+PRPOf3Ruez7jGTh4H486D/Nj555gelzmpk6SXDZ4LsAeOmcnzDiMNhz2X6MeeK/gZncOb2DGR9ewhNXu+w8qZWbdvkGYCRVI5dfzL0LjwKMTO3F+H22XbGWoxc/xLIzx/D6Qjh3nwvZ4+O1ALwx4bvs+i1T0l5mV254cjbne6/DUFj09M5sxRM8vFUrR2G2Y2huGjT21ov479Uw8qwjebNwL8vaWlk9dAr78oPK/a2LVrNKbsmiN09nj5N25Jo5+9K838F08T5DCvdS2mkCD60YyYz9FjF7xVqqPvgmuS3/HwDN+91Al/U+fGyWtfLH09js+O+z7MwxdC18n/HbzgNgcXAlex7/HtcAF18KpafvZMbr13Pw2p+w/U/35/57VvLcd3pDvafaI5k05FRO6Tuby+6+i3O2epk5Pz2YedNvB+Cgx3P8cUk1Zz90Ghx9GgOWncLqoXcA8CFbMHX6W8x4/XpKwBX9d+bNsX8E4P6DVrJ66BTezE2mZdRhNM/7DS+NvpYj37yI0WseYTQwY79FvHnFmQC8+Zuz4aXHPvXn5h++xLz77ruz++67/6OL+WKMSBK2yl0wZRYliTCuyMHkBqAmjiHS4DiGuSnLrDwX7diEgxvxG92KAb1cKqmcMsMAfp2NX1eF2ydNekU3IlcwaSuWQEeqd51xbNYBlW0RxZDMuph8f4soBU4BvE6dFD9Cer0mCIwJVMaazBpNfoDEyWmqV8aV7YpSZltkaDwzsWdM93ZBIzt6THWAJdEq7gV5sIHEraxTkIBCK4XV0klWCPKDs8SeMUl6XRIZ6YrnxfyuDCtjS4Iqh7DKMEZxVuDmzbLdbvP4bEeI015AduTQhUISciANeEmkd9g2zvoCdrOH5ZsSTasU4bUW0Z6Fcixiz8JO0tBEGEPWQQtMSWkhJKr1KnHSm+bznb8GXP7a4/9TgMznxcJsAi7/3rF7JGjH9LXkIKhNShsDkIHxqcjQXGzSdgIyIomwI1Q6uejS4BPXmO/b7RrWsK67ikhqqAtQyjWPk4m0qTECJYirTYeY0yMQoUA5uiJdQyZ9ZAEIbTwy2gYrL7H6KYZv1sLH6Ua8+RmizSJGZT9moNfB/0SjKPgu+bxJ6fqwo4FSyaE9lWFY83r26PMhzzsjaUjlmd8yjGWrG8n3cVElm/rmbrqqPJwcWE6M2yXIFx3cTIDfnub9Zf3ZYfOVBLGFJ2Oytk99pkhPLk1TYyeDsp28smxztBNT7Ephr3eQg4t0tFXjLnfNtbOURvUJCeo0Ts6UWMZaIN2YqNpCWRKvXeB2g1UyF9HsormAhRD0zeR58uNtyHelWVVbi7bN9UO9PEtIFtE3QNoKy1K4mZDsNjliJeluy2LnXLyORK1gmyjqKAvFgTGp5jzFdlOyWG4g2DQbz/xb7+bVkcOZeN5Irj51AAsHL+LI4fNJzZ/GS/fczU03ppkwYCylnSbw8232QY5/m1+8fSxHv/gDLtvrLsSi1Tw6soW5099C7HI+1y95iWsPOpqLL30ff85JeFt3860Rh/P44keoBZ4vKm7/9U5sv88orrnSGNwXDu7HtivWsuu0/2HqkkG8+P77vLqkmg+rtuDI4Tfw0pKrmfPmD3n92C341ojDef/99zmSCQzNTeO0FXdx+ajDAPDfUxX5WFyzHU8/9AqTDj2d/kf8loFzPqi85p8ccVvl94uPep5r5uyLKXwyU1+3FwBzF13HUWeVWPh+Pw7dYQoL355MbbwVDftvxdkPrTLJbXv9N81jf86HR9fAtma5I1wjgRt99M7MeGEUHYUXmTrpBr4+v0Ap3gowPS/jnzSRyMuPWsMbExbx7MnnsX7WO7CVCTwY2phI6eZPY3cms6ytlaGNTZxWuIuJy05haGMTe2V6DftTJwm6rFl8eHQNOw/vYdysJr7NzWYZ77/Kcb+6knu/1wRszQG/urUi1Ttq9C1mX4y9jJH11Z/6s/OpAMyjjz76qRd46KGHfurHftFGOI7xSEjTT2IkW/TKxsB4LMpsi5Ibxy1LUQExOpOiNLCGQrOD121SvbzuGDsXI2NNnDbsi/FdxGgpKNVbBDX1VC+1sVq70EGA8LwNpGUbeGXAJGgFIemWIkF1tuIJCdPmWJhKIp5laKRUPYOsyhU42/Q24SVlmn69gww1UdYizAjCDNgFTbpDmWQvyzLbIJM0MpkwVJLe9LQyCyNkEqccY63roroYUhxcQ6HJptRg4fb00hthVgIWseNWTKjKMnKHzDpTymnlfFPyGcWVkk+tEoAZx73lnhskuInuPFUfuxT7pwmrTFqcE27wPgLaMTI8bUvDxGhQriRuTJkAhU0Ksi/0PFh/+KcGMZN+fOsXOonsHwEx/whQ2SQj+/zGKgok5js5SpP4UzAyLpX0voQCu2S6XEQkUCkL0hFURYhuGyk0WwxsJR+6hMpCKYHtJl7FGgNYEElfi62QmYg4Z2MXLKK0AS5CJbHy2rDtIjb+mDhtjPwIY4LPtVTxUdHFdSOiDNDq8cj6nekoZczJ+roqZCpicH0nH3zcH1GwCGoKDKnu4JX1wxhRu46R2bWUtnf4YFUz61pqESVJZ0fWFBbbgBYUmzWyzUFW+ciCRMcCW8bYUpG1TRIbgLQUllAMTHWyRdN6/NimUOvQ9VEzfksKXRPh9zHMiIikCaHsG+L0uGgHWt5tQgBOIQl8kZBerwizgrBKkO9vvuODEUXaihlyHRkIBfmuNFSb5E5ZEqTWSZylKfxGKDSYHp7OOofqugJoyKzViS9JEGU0ccoARCsvKXak8dbaoAUFz/3Ez8n/9dnpjBM5NjeII6YAK+7iyW9VcdDjOR6afCWlnXK8eFDvY28602E80GW9z2lBHWLRan7WcinPnvwyomhM8tb879DiGXP4UWc+wYvvv8+L77/Pt7baCoDdn7yCS366P9dcuWVluROv1kyd1C85ob6bJ79VxRFTLuVYoOW58zlyv/kwHJrnTaP94xfYyjFJaL9ra2XGIYu46rHZlXUDHFgyfSzrjn+C9LlL6F8nQMLZnacDsOgXva/pTbsRMub30k4TuPzFXrZmauEx3BunMMc7nzufg6PO3Ir2Z15gznMHM3Dw+Zy7TzczXriO1F7/zdmdp9PnGgdr/ndI7fXf7PrKqRSPHs5pQR2Lnzmblq134sid5tPynNk3zfvdwEtjt2LP499j+pz+PHvPywDsOvbuyvrLAGfDOXe3C5iYOaSSBjf++IuId9qN6QddC0zgqsfeBu7i2uEwuCYLYBgsjLfoYUwi3L3f+wkP08pFT84GvsNer1SzpvY8zjrwXqb+7C99WjaeT3WKdvjhh2/0d/lq95/fBqbo8ks7lkk0ARK5VFLcqDY4OdeJnIqEkdBJipjcwLTv2BQ2qyPKSLxuZSJ8awV2UeCFxmAfpmVSXmZ8HlZJ4XWbqMnc5lVUKbDauyum/t5ttCreGlEK0GkPWQjIrnUoNTooW5DqNGWVuQFGQ2wXNFaigbZLGrtoZGGlBrMNIlJ4HSGFZvMFG3mGsQmrBX0W5A3LtOHlo3Kss1bGF6STOOjYXA1EWiY9TQpEFCNyBdJLQ9LLbaLaNCplVQCTXSz7WcrSLoWMNE5nCdmZM4ClDOASiZjZzyrx42izruRvrSIDYGwbu7ULN+uQ7++a9LLaFDLoZdKUI5HJv1HGqhRXmjZnRXbNJtPlF30+C4j5POefYeDfEIh8GjDzz2JYNoGYz2eUrcHVhFUGIKTWmWNIVGUSs7SjCftExD0WVkmAYzwx9TUFSoFDlAqpyvh4dsSHLX3w7IhBjZ0sb22gf2MXu235McsKDbyxaHPsuoAo56CkYXLCaoXqGyDaXITSWCVZYWEs34AZnQCK2DMGf7fdIvUnm/xAjRpeRPkWC1YPJCjZqLyD027hblXgm80L+Xh9AyojaFlbB0DKjvCVRS5O8fW+7/P+in44rQ5hY4TodEmtkwTbFIh7XGwNIhCUWrI0LBTkB0nWF6toSBewUFgCYiXJpAJ6Ao81pVoavAJ/WD6EhpoCzugOmrMF2vIZSiWHsDOF2ybRna6RuWU0MoD0WmmUCBKCWgMy1u8okkQ2nfTTQKlgI4CahjzdrVXokoXXVKCuqkjed8l71aRXWdh58Bsw/TNuTHdbNgFxZplBrSaqi3E6LNxOQbpFoNc5KMdsU7Qy+2/5HH7R57LiU/R5cjEAc95cTnHGy+z53PnmBHf+NKatnkVn9S6cu8+FlJ6+k+Yrr6d2kmCPkRdS9cE3wRvF1+/8Grv3vMQlh+zAubvdYIz7wIvv96ZhDZvyNDd/t0D79nXs8THEO/0agGuuNKCjddFq3px8JXApYPpnHpp8JVOXDGLdC2MqKWK7Jg33u469m5dyKViyE+9WjwLgtN1eZ8br17Pu+Ccq6526ZBA3P76qAl4AHuyKuc3tZLv+8zg2N46ftSRMR0uyT/YykrkO/1ne3M1l3uknMWr8qbQ/8wJzF5m46euXvMQlW+/AZXvdRZf1Plc99nYFQIHpk7kE+K9tzc/XB84C3gcMsHtjVhNsBS/dszVvzDoRZp1YiZsuzxsHXQvA3G8tYIuZ/Su3rx56B1+/0/T25Hf6NTWnHcvE+47n/Vl3M260qVIZuGhPbh7wEcszx8GK1yvPPWf15gCMG/0Dhm35BvtMHs3UJT9iKoPYOreEH+oS/DMBjFK9V8yfffZZJkyYwNVXX12Rjr366qtMnjyZq6+++tOt9Ys6tgWlMJGG/VnkYZDcLqS5z3V6T6bpBXAAYf86So0WqY44SYAxjfLpdSEiMODCr5XULI9wchEiMr0nVsl4QIopl8KQLFU9BUQQmmVrk+tfSQBLumNEZKOFwGkvIiJNz1APMKWVpT4WxSZNukUQaQNeRAypzhgZarprbJQtCGqNwVFoiB3TYSNDQ7FbLZ3mdZZNIUnIgAF3shfIlM39IvlIJZ06Oum3Eb653W7rBMBzXbO/y+BsA2alN0Rhg1EaHYW9viTbNutWGlT5vUq2MYrQSiPiGG9JKzLoQ1DjEGUsbAFWKSZKW6aQVAqiKsd0xQiwQoWVC5CFgDiJCN80G8/ivR9gxO/H/e0Hfor5rPKxv7SMTwNivugszIbzr5Z//b0gJrhwweewNf8ZE1Vr3AhURiGLxkhvkleMrMvutlCuxkr8LyIGLE3HmhpwFQds+yfebe/PknV9iDpdVsg6AOwPMqwY6DCidh1L2vvgrXQIam1IxeiijZWXJoClaGGFxqQeZY0/RgYkcfRg58yFqihF5QKcsg1T1NSni+5iCr/kICSk1prv73x7mkdW7WSYIFtR19xF2glZvrYBpQXzWwZy0ohXQQnCuhir00Z5iuLACBkLREnidhrQ5LVYaEvj9MCajhr8GouMXYfSAs+KiLWgq5CmK5vClTGeF+GHNj1daWwrZmTjOnar/4gn12zHx7LJMDG2Mr1tlsbvb5j5bGMBXXKIl6WTUk+gZBgwEQvsDpu2+ixCaISrSC31CKptuvJpSj0eeArlmGU53RJrnUeU0Yg6hfYUpb6mdsAwNhLLFzg9EKfAb9SGacvEiHX/so/el2ouTx/InXv9N6c3X8mSWzt4aaZJ9zpu+tmVKOHSiz+nFFzAbW4n5176Af57NWyblhzkjeJJfx6PDXmS63uMJT11wMlAt2EClph13DzgI2Acz34wliOHzwfg4Hfgie33psrdmUNOWsj00/oz9fEcy547n8vPHc5lSYnmG7NOhMRsPrFnEVNnnVi5/c0nL+Lc3S7gg9+l2Op7Z8KKGzh3twtg2X7MeP16Rh+9c+V1PrHbSRXJ2g2PvU3p9e+w11FrOGT9Qby//ocAfNjnJgB2e3YnHhvyJDOPMolqZanV6NcDnt/hfFbJLcmu6eSqx2BF96sMrslWwMvUSYKW5+p4KXdJpZQTAOOnR5TjizMkfS1UGCCRMf00G05ppwk8csdsrj3oaF4ZdAx7rLyfofOb2HXalYy+cRE0w74vr+DQF38Ow37JzsN7+OOSalbJLXlzsmbU+FYO1Sbw4LLJS9jx3OG4Z5UY8NNTKC27kyOmXMqcnxrgtAXA8Z/+s/OZRTLnnnsut912G3vuuWfltm984xtkMhlOOeUU3nvvvc+6yC/MxH1qsMMec7U/jjeOMN7wpBl6iyaTk3td9qbUZCkMSCEjKNVZWKG5OdUW4bQXQEqya2wyrQI7F2LlA0QQoapSKEeiHWk0ukoT9qvF/chHl8GT0ug4TAosbdMvE4QIpcCSWMUQu+hS7CPR0pgZU+uEiTOODEAJqwR2SeLEirqlIVFGEnkSp2CMoHYRCn0sYhf6/KHDvN4yWAGTvgYGOJSBi2UZACJFL9Cz7Q1YG40WaoOiUIEu+aANWNmIVdEapDS3lde9YcFn2X9TXs+GQQtx3NvlIxQ6BkGI83ErVn0NUV2KoN41YNGPidI2WiZJN0rj5EKs7hKip2BCGNSXmE3cNJ84nweI+U+JTy6DkU8DZDYBl789KqXQJRC+MKxIlSmfdLoBIQirTMJjWKNQnsYqmJAU2WOjBDQ6eVavqcdb7iEaYqLAhk6HqClm6GbreG3VUAD8phgRCrA1Awe2sbatFh1IrHYHt0OgchZBnTLyMQ/jjSnXkDmANAxMVKWJUqb8cvWaepqbuwhDC7koC9qUXDY0d9Pju0QlB+3GZGt7zGst2ASxRW55De8N6I+OBU5HwizlLILhRaSliTFshOUb9kO5BsxoJejMZfCsmHzgYlsxKSei2vMB+LCrEaUESphesI4PG+iw61k1rBbPipGZCNXt4K1wsUrgNxjGRTmaPBlk3jJAMUkN05bGCozkK2oMSTsRvm9kYaWUS9ztIOtjRN5CNgSUBgjcNiPLk6Ekypjjv/BNwaVyNXZeQMH4nZQDURbksBy21PhFB5nf5Kn8S/PAiCPYmz9y/R2HV+RGYGJ5izOG88ODBLe92EnpxZ9Tu5fggOXn8DUvz2V73cVeW23F9Te+xM0DPqI2PjqRJG0856zeHDKv8fqiSVy0qPf+hYP7weD5HII58U/NnwbA61+fT3GznQA4NkclJWvqVoaVOe/n/8PrA7dgOtfSvNMNTFj8DkefN5KpSwaRvuUARv3BAJE3Z/+Rm6lh99xklr9Xk8isDuOSQ3bgKn4N7MljQ55kSJ972XH9Azwq9gOonPBvKKc76PEcH47diiOBOT89BdxOrPnfYbMNXudL92xNy08PrvzdNHIAXdb71MZbVW57MgkpKM4Yzl7qSZpGDqi87rnfWsCLL/xpo0jp1Pxp3DzA/LtmyZ84crgpBq2bfygYUopXNutk4aR+7PbsTez27E20iFNYesIa6ubDjDOuryzr9ccF7lZbMS23C9secDJgSKfURu/W52jiX7p0KXV1df/r9traWj7++OPPurgv1MSeDSkP8olBpCwhK7ML5RNqy9m4WLI8NVUUh9Sik6tZfr3E61Ck10fY+QhtWWAJrJLxvMggRgTJ7eXlKbACBUoTVTk42bQBKGUGRkmwkrhmO/HERDGi6CNjRbrFJvZSdG8mzZUmDLMgdbnsUhNUCWwfRFETO4Kg2sjYAFTa6ILrF5WQHd1GjiUlOvB7QUk56CAp+dxoX5XT28A8rlK6KcxykoJOI0PcwHgvBDpURn6mlAEPScqbsCTaDzZmXcrARkh0ECJcp1f2t8HohKmS6ztwO22cFg+d8dBSIv0YESlkMUQU/V4WKIqS+OtNB5xN89fnPwW8bDh/i43ZBF4+3YjYnGwLDXE2xu22DQMSQ5g18fXKMd4JvyYmrorwMgGi1ieOJGv8WkTBxi5gouS7PWIX4vqQ5Wsa0AXbXERzFUQWDU3ddOTTiFUppKMRofHWKE+jPY3blCdYlSVOur+UoytdMGgI+4akanz8NRlSyzzWu9VksiVKnsbOCVRKmcOfVHjZgFKPx+r2WvYbtgh7uGLpyr6IWDB3yZYQCeMBCpMizqKNAuyCYSqcbkh1mBSwKKvxUiGOFbNDwyqW5xvom8rR5mdY2VOHFBrXMheTerrT0OVg+YLIVbSurzHMx+qUCchMafxGhU5KMHEV+NKkvUlt9l9V+YIZ6KoIN2MOlEF7Ct2RxQoMWNGdWaSjibscs5+kSW8LazRW/yJeKqS0uBa3M3mdKbOvC/3Me0QsECUHa42H1CBi/9/yOfwyzKFv5ZnvvsTv3N8ztHEcD02+kiOmXMpDk68kfe4SoIongXu/tye7PXsTsDcv+0aSF9yS4nzvdZp3MnKxw095hEfuOLyy7JsHfMQ5qzffSF5VnonzNVMnCaY8OoXLexZxWlAHwOUXN/IucNk1bez27E6AYUjuq3qAPcefSt99zuea499j9NEP0PdH3Wx1xh4c8dVLmTj8Sr721BmM+oOJTAbje3nTBr3iBrYYeSHnPPZ7stW/hWo48tAf8eCjc1meOY7lQ45DAEceOsZsXGI9L4OLlufOh61MLw3cwLn7XMhVPb+ueF5Ob74S/dODOerMJ3h88SPc/tuQraqe4P1+BtC8MugYtpjZn+KM4cx584cM4xwGAn9cUs3OO/Vw+Ys/oGXNjzg295tKOeWGU9ppAns+18rSfY6BJHRtSOFe9l6/iqdH3kxq/jSGJUxS6tjd+fEvzbHx6KN7wwkmPHsiPHsA6c3u5kMeY8LHJ260jl8NuRj6/dWPykbzmQHMrrvuynnnnce9995Lc3MzAC0tLVx44YV85Stf+ayL+0KNdiTadRB+UDmZhticIJeByoZFlsQVdkB4afxBdYTVlilO1MYgL5TGKsZYfozflCZOmfQxJ2dOnoXnoFK26YgBooyVnJibIkmVTWF153pLLS0JfoT2PLPeKDKm/ihGAHaPT2athQxtwoxEOckVJwmxZ5arHPBDizAtiVKC2BUUmi20gMw6ReM7eewV6yten4pMrMxIJP0vZRZGB8qAkPL+cexe0BdGlXhqTSJFUxLcpEdGK5NwtiEQLK838dRoFfeyNxtOrIwXSIje9ZQBVdnYnzA1WloQB1AqIXOmqBMpYQN5pI7K8jyVyNA2ZSl/nvPPkI9tuKx/taH/PxG8lGcTSPnHR2ciQhkjSxKhTOJXbBS+yLB8lV6bC0sFC+0I0vUhTVU5Fq9q4vWVQ9GWJqgzQIPQ+GZkKpEmK4GVl2hpZEvtq2tx2mxs31zcCbMa7UBYrUCBX3AQJKEuGcPKk5z0a1sjvZgwMKAorFaodpfIC4mqFSKSUBOyfo0x5uuUQqYj+td3s3l6HQ1OnlUdtcSpiNC3cdfZKE8n373g1ZUQf6omdk38s+WbXq//z955h0lVnv3/85w6bfsuLB0UERQMqCgq8Bo1YNDEghB8id0UUwC7KMaoKIoagRhNsSuRiEZNlAiWELBgR0VBRKSzy/bZaac+vz+emdlFTYJJ/Il5ua+Li52ZM6fNKc/33N+iOyobx/N0TD2g1Mixd6KBpB8lZnj4gUbU8IgaHjHTJZOw2JyrRmvV0Hu6yEAQpkwirULtpxAFXnT1N466L3nlgbKojgYkSrO4rkHg61SVp/ACjTDUQEKkSRBYyuSg0K0RcR/aTAI7T61OCeSHMXI2+GUBfrlET3gYRoCUgpjtkWqNoTeaGNtNtDxukZkv4yj8atSfDozz7TdHMnucGggfdP4Pdvr85JlXMj/xEK8/fCZzalZxmvRYOPZHlHUiSexYu42b170AnLjTd6ds68e87h8zf0AHnatzh2Hk6008dejZTEN1AnJLfscPv3Emv37m3qLg/aFJZ1H/3IU0bRgNQoGIhrMX8a2D96OBp3hkaX/S37lQBWK+8QS3joOb1ymtx+bkIHoBv558Ai/Rykt9D8BZPZI77h7CayWX0JudKVuvLThL6UY+sf1/nHEtXY9OMf7bA/MgJom+cgLnn7Kdm9eN5Q6uJPfKnfDKzTx5pXI821C3ih3JYdxx9xAAvvHgWFiqqGo/3LA3b1c/ALEPGDVwILnrV7O+WyldmcHEvIvYmGenMNQdyRXfOoA5F1fxdeuHGGdA69A/qQ4MUNU4jMjKGzl/0SU8f8gwLukLAy++iMHn9mLVnZv503ETeSZaBUCmXG1PQQ9UeP2NR+5i2k0v0vuNB/jR4sgupsD8CwDm7rvv5qSTTqJ379706tULgM2bN7PPPvvw+OOPf97Z7VYlQklYFkPPOsp5q/B+58F1ZwvhwluRCEFtBU65idXq5ylK+cGvUDQBpyqCH9Xwo+qCHt0RIA0Nv8xWGhiRB1CGQHM6Bs5uTZToDl1Rmgyjkw4nyIvWg6LsBE+iJTPYro+RieJU2uQqdIJ8mx5Ad9SyvLgSr3txMDJQsjUgtjWHWd9WBGlFs4ZAdYQwlJOGyoH5hP6n2BXJ7x/fV2DLtjvAh+z4XLp5ilY+6LOQMyMMHRkWzBPygCWUYJlq2oIGR+TXhXzHpwBc8rQ2NZ9OgCnId3CEpuhrhgG+o9axAHwK67nH7/ILr/8kePlX6t8BMf/NwGVP/efK2mwTdtGQlkQKZVaCR546lrf7bRf4sXxXwJC0tSgtBi0Wcl0EW6eonQlNiTQlMmViV2ZxdBMjJXCqQ/SswGwx8g+sJEZWBQR7cYmRUuHE0rHQc8pt0UipTnuoS6QuIRDIVgtZ6qFXOUgpMI2AbuVJcokMGcfC0EPSOYtsU1QN7kOBEJJ1mS78df0++E1R9HaNSFqBNa9UGdh4VT6iLkbUARAEUYlbpjJS3BKJW+VTYvmk0hGW1u2DqQdsay7D99RDqIqYYkS0ZiO0tsYhFLhVAft3r2fdjmqC7ZFi9ovmA16+c27KfAC0pLQ6Tcx2ac9GCAINpy1CvCpDEGo015WBJ9CzWl4PpG5VCGXoIttNIjt0BfQ01UHTvDxVrFUBvsA2lS5GQlaCle/4iALjXCd/v9pTn6xelTWc+uEfoQTa9AO4esFshq9y6DPzSsY9mSp2IKLT1vHapecybetIfj1Z6a/HPDuFaXPWMWtdTonSUaCh0HXZnEwzsMcLPH98llHPL8oDHFiy4m2+/6PDAXih9jjmLD0HnnqcaTe9yEdnbOeoJ1UHuk9VF8Yt2MwrxyhtzREXH8Gmafdz6odXsmjTGzx/yHusPgr2Pwr2B1b3eY/6re8CEG+/SXVJ/vwOs8dN5NCtT7GhbhUAm2Kncd7Z79I788CnwModdw/hvLM73ssNvRSAq6c9xBJ9DU9++Di3PtIN6MZlV37AHUtvIk0++2bc7J2cw3JDL+WOy6rIlTZy67jZHPUkrFqwGI7pxf+4l3NJ4npWbV/LtA8f57VxsxnWv11ZJqdmwMobWXLMPJatvJGub3zMrEmXYBz/NtuXvg9z+rPqoSizSmBz/9VAFZFkNePsE5mcGkDuhkvZsXYbvSc9sFM3DTqD0beYdbk6V88vX1Jc33NXOMDO3Z+/V0J+0k5sF0pKyTPPPMOaNcrRYNCgQRxzzDE7Cdm/SpVMJikrK2P04VeixWLYG5uhLbWTZkMNyPWidS9QpDeFXSrI9CnFbPfR3IDQ0vN5KkY+RV4FKIaWhh9VKfNWMkDzlPMWEqRWaPdr6LkQPesjNYFTZVHy+hY14C/oPYoUJ11ZP6N+E6FpRZAjbQsZMXGr4+SqDNwSDS2PIUITnErlnFKyKaBkXQqtPaNCNPPak52E+0JTYKOgRek0wJe+r+hboNbJMNQ65XU6siRGGLEISi0CU1G8jLSPCEK0lIvIOYh0dicnMeDTHZfCsVUM1BQdy+zUDQLU60JWj+d2dIN0/RN6moJzmvj0/AFf+DzXdA9tbW2Ulna0Qf+vVuE8+XD0Q5QYMWqfP+Fzz+OLBC7/ihvZ5wUxXyR4mfD9Y//uZwt/+/QXttz/VO05T1QVzpP+l1wPZerJkVsdEN1sIE11DXarApUTI1QHxOiWoXtlG3WtpbiOQZg0MZM6wgMzLXBLlQGLH5dotTkS8RyaFtK8tRyjVZkBhBUeSIEe8RFbolitglx1iOYL/ESA5mhojiC0ZUfOTFYjjAVoWR3hKyAV75LG99U1sLo0jR9qBKFGKmsjJTjtNkbUp7w0Q9Y10bSQ9m0lGO3KfSs0ofLwOmqiaba2l+H6OsltJZhJncBS4CqISKhVrYnQ06iuSRK3XAaU7eCD1q5sXN8FqyKHlzPQzJDq8hTNyRhe2oJQIOwAw/IJA52wxUK4Ammp67qe0QiiITIeILI6whHo3TMkYg4t20vRsjp6RuB19RTtbn0lZrsgtCgGXgYxifBAmkofZDfnWRERleNTML0RgbqfilDpiWQeSPkxibRCIvWKAuglJLLdYd3sy/ecJ/kqnCegAiQBXnTiLKvuAUD9QScwZ+lNzCoZwPQFakD7deuH/PUbKnRy2pEXUxYMZNHxCZYf3s6t42Z/JhjguBMBOK/rtUUA07ku6q/03OO/fRRPfvg4AF3feKK4TIA1Q5WOY331XF45ZiXTr5cEefet5K/n86cDd3aYe6XH3oxZPIk/917E6NK3ADj1wz8y7ciLcVb/49/+jruHcNUNTSw6PsFrg22uuqGJHWu30WVAd65efg7Pfu9FnvzwcX44/2UAcvfHGTp9MWu2juSxgUoMf7DfxN4bfsJerw9j0TG9eLv6VDbFTuNbm5Qn9f+4lzOv+8dMXzCbF4+ZXNzn0xfMZtakT1sng9LHAGzPa2Smt68t7tfO63zyzCvJDb20qLX5JHiZ3r6Wwd3eYNX2g7hq1F1cskgZBOxYu401D/4KGTik3/71Lp0n/1LShRCCMWPGMGbMmH/l67tvFQa2hQF5wUJZo0Monh+8F7syEZtszxI0TwUyAugZD2koqlhoCoSv0t5FPvclNAR+TCPUNXRXYjd7xa6N7oRojk8QNwksTYktLTM/mNc71rUTUJBSKvBYoERpOsLzEZ6PFYKZNPATFkFEVzkrhiCxTWK1uKrj4vkdWpWCZXFn8FKwSc6HVKLn//Z9tR80XelUDANhWXi9q2nvrfzydUfiRwWhrp78BRbojokfBUQcPQd2e4jV6mNvakakMvmfQgGgji5QXqAv8iCtIPjv3BErABTooLsV3is01AqGAVoeyBQ6MDtRA/n033vqU1V31BOfC8R82V2Xz6oCIPlnQOaLAC7/CLD8o2m/CmBmT0EQlwgj/8Q+pxFEleuV7gCBIDQgKPdBgpu2SCcsnLoYmisgHmImBX5UkukVYDXlheMa+FmD1nQJGCHCExgZgRMLwdHRS11CXyPeKCCE2PZ8qF7SINvPJfSF0ma4AhkNVbBm0kAL8oNyRyPdFANNokd9tjeUIdssKPEoKcuSbIkhcjq+L2iR8aI+RISCIBqS6+Fi2T71TWU0bOqKCFTejA7ombwLmqfE9Jrls3dNI++t60HT2ioyfdrJ+QbJTAQt4eFmTLQ2E+EKWvQQTcsDlJhPNOaQbotixVzCqhC/OUK8ezuplhgipan9HQ+QdoCMgi4Frm9gtBoICborCNoM2iJxpB0S5nTMpEDPKXtpEaj7FVkUXS9/W9H8fJ6N6Lj9yHynRoTgRSV+SdBha21KvLhQ97tgT2f/79WMYQpEfHPFW8X3XvzmwZz3i7Us18axKv/eX91f86IzmSNsFXHw6LqhzJ7Wn1urVedh1EslvHbpdxjc7Q1+s2E0z5xyTvHp/nLGsWrZZq66oQlQWTKHbv2IO+YMYdakS3htwVl0RQGXwef2Ys7jNRxzorKOe2zgDnJDL+XRdXPp1vN/mXX57xnz7Av8PHycZ5Yt5pVvvcici4/goWn3c+qc07nu3F6senYz41AA6qF9TuaZaBVzlt70qW0/r6sa3PfOPFDsthQG/wBXLz+HaUdeDEF3XnTiRZD168mHKaA1XQGJLT+/kem/O4Lc8jvZsNe9JO9fwbTFKtul6xtPYA9KUrZpNEfYaXKvTiA3TsCC2TzY+7LismehQMy0m9T3Oru2Hb5F5eVEXyoBrmX+nP5qvVMPqG7SyhuLbmmFrtnBv1jLHy8YwGuDbdKj72AeH3Ne12v51oZxjLOV1ui8s99l+bqhjB+wkuWnP8W3uy/jmYkdQZ//qHYJwMybN4/vf//7RCIR5s2b9w+nnTJlyi4teHcsESr3L2kZiMIAWYZq8Ft4yh8qIb8MQoShEyZiKmsl5aH5isokTV2BBU1gpANl12toCCnRXYnM5YGMWQikFOhZ1b2RmkDLeAgvhHJbXUQLWgzfV52FfOdA4hWBh9R1RBCo9Sp0JQDNU1QuvVF1ZQgCRJDfNj9PySoGZXa6wBYtovO6G9/vMCwo5r2IInjBMAi7VZLuFSPdVSNTKyhdLzFykvg2D7fcUPs3AD8iAEVriLQGuCUauXILrUctuispW9OG1pRUnSDP6/QDdfqxCh2xIOigphVASMFsoLNDWeF3hDwdzlYgpwCOOm9/oRPk7hFd/qdqdwQvnaszQCmAmS+q2/J5gMs/+/4eMLP7ltRAzw94hZd/wp9ROSyalx/0ZnRkJMBoNGmOxJFWSCg0ItsMBXQQyDalZQwjEhn3FXs26hMkLYQnyPX00KI+osEm0E30pE6oQxhF6W0ctVxrm4nb0wVHx27UccuF0nhIdQmVugRDKic0W2kqA19TTeusQUqPUFqRIWVE0HT1pXhtGtv00DUltG9oS+BuiSunM18UwzulVgjOBKfax2jX8XbEqI+WUNOtjeZogky7Te7jEoJYCGaIVWcWKXFuS0SZIlghQki6lKRwojla0lECX0dGA1KNcbSIj1+iI4ViNugxn9DT8Not/KYIRpB3YZNAOQRtJsJXGW26o8CLFB3dFcjrlSy1DaA6LgU6mZEHZaCm8St8tc/1EEJRdDwLynzCiPfJQ2RPAX8dZHHSwGc46smvsWnwWKbPOT0PMtST/VWfmP6gV+eSA6bUb2Zy/1OhWgUuvnHIVLIT+/P6w3cy/nLBowwFoNuR+wFwyeM9eeGG2QysUxkta2qPY03twE91HL5u/ZDR/a9jFAMZvsph+eHtwGyuXn4Ot0bHsH3pEn6zYQrZnyzh7KW38NC0yVz353e46oYmBtY9xbOP1/AsOTi+BoCGpScD0Njzf3io03IKdLLXLxgAQO/84B/ynYoFsznv7Hf57qYbmLD4drpefCEMu5AJN93CQa/OJRi6kJXWVmZVD2B041ZuTB3I8lF3wSi4evkLfOOdLJfu8zP6RhfTf+la1sx/mfXVy1hf/ye655eTHq0CVyacNYmF99xYBDFzLj6CwecqichpwzYW12vLQjj5nisZ3biVUeFlvH7BAE6eqbahd77TUui4HPyLtarj84u1cPcQjrz9bE6eeWW+C3Y56y4+lG7tYxn/7aOYA4xiIKPWPk/F5zh2dgnA3HrrrUyePJlIJMKtt976d6cTQnylAUzh6b0UAs0082GMuhrodrYNhvzg2CKMmeiOEusDRTF+YCt6gJfQMXIhejZUT20EWC0uWtZH2jpS1whsNcgOLV05k0mpQIsEPeN3aFDybl74sqOD0Lny9DLph/m4gfw0PgrYeH7HdgZBUaQutLxbWGcHL010AAI/7AAvQll9FuejCWQiRnbvKtp7mkRbQuw2SWALvLjASoHZ7qLnfJwqm1y5jlui2vElW3yMbIjUBUZO4pRoOBUa2ZoKKlfHiKzboYwKCgGWMsyDjU7rYxod2ymMfFdF76CChRKQavsL3Radjt+04JT2yW3uBAL31P+t+rJoYnvqv6sCSyLjIVpOXTODiETPKot6pKIM644gDHX80gBTC9HLHbz6KLnuPlpNGmdDiRoop5QzlucKyvq3UBbNsU0vw0/olJdkaa0vQVR6kNEJ4iGyVVNBmkIN2ENTdT4S5VlS2xNFh0r1gAykIQlKFOUKATIQ+BkDzBBphWjtOkZjhIwRQQP8rmrUnvFtspqFti2irIRTAisQhIZEkxBpVpQxP6aAXBCRCKkoZFpGo3FzOdW9WtGNgCCrNDphREBOV3oTF/y+DoYuEVrImL0/YEO6EoCN9VWETRYiENQObKA1pcIsXEA6+e0IBZG4i6OZSM/KL18xATRHEMYlVqOOntv5t5P5zooWKM0SeU0MoQI0XokktCVCavix/D42JIQK/bgZE7M8h2dYCDOkoiJNa/2ejv5n1X5n9OTPP5pPJFnNjBmKqlWgItGJxjVr0iVMXzCb5w8ZxrhnN9NyzfmcP+mK4ucHvTqX119VOpBTF3ThwfsvB+DnF7zAz89spP76NPvw4+JzzKsHnM7wVQ4H/2Itd9RfyawSBSTGnFxK4XA4eeaVbFhzL6A6Jcu1cay6czPxd0aSXb+E6i1/4/zyJUzufioD65TjVw0X0rBUOaJtqFtF306uWhvqVnH+oks4eOIwXtl2ObPHTQSuLXYuHl03lMmTLmHCWZN4qHYwN7/5Ahf1v4xbH+nGGzdN5aBX51J/CLxxiPq768JD4Z4FABy+5fcAnDTuYdYN+9lOWZDrpvyMnzZM546aJwiRbGETp176PLMnnQVrt+Ff+jy5Sar7kxt6KevOmsRVb/VR8+v2MI8tmljsqgAsq+7BHXcPYXj+dfnKbzPlt/2Yful3YMFspg+2GX7BAO4YbPPKDd0ZvspRdtDHJ5jyo7vZfsWh9J93DZTAyNNX88L9g4jeNobvcgNf29TKM7t47OwSgPn4448/8+//tlI6FEEYMdB1HVw3T50SIPMDXi0vCiffuTB1AltXoMdTgMArNXBKdSXY1yHWIPO2lap1LpKhAimBJLTzdsqhoqAJT51e0jLU61B2dILylsB4KkizSPsSGjgOslPIpexMlfJ9hGl25MnAzjqWMFBakc4UrAJlq/NAXubvdqCm03UoidM2rAteXCNRp0I53YSJ2S6L1pNuhY0IJG5Cwy0T6DlZpJcRSox0gDSUJifWKPGjGpmuJn6sG4lV9cj2VL7bQodNc75jUtTghLLjN4KddTF6vkskNLXvCvulAEYL26qJYqaNDAJk2EmDs6f21L9Ze8DL/60SEijxCTUDQjBbNPSc0rFIQ6I5qhOg+4LQhpJ4jubGEoyshp/wKIk65EQJYakPKTNvuyxoaSwhW2LhtlvYpQ7tqSjC08DTMNo1tAA10PbVtVyEYGTzFCdPR3M11WmwJdIOMNpNvCiYJS5BTMOyfNz6GFarhuyfwXcMlFmK0uMQgu7YxeyTIKIMCZxyig/p9KzAyKGoYgUzy5hKqkeXEJUEQiIyBo11pWjtBsJSRgd6u0aQCPEqA6XvyRqUd2ujayLF4PgW0oFFkxMnbLKI7FBAJ2Z6VNU0UmmnSXk2OzIlJCyHpkwcy/Dxojq5EoPUxjLcKuVIhiHRIwFgqG6LQHWuLPXj6VmB8MEI8l0kQZ6CnRflA35U5c24FR3gRcvoiJSOV6aMZoQu6V6axE/vnHaxp1S9f98WEt8+l87uYa8Ntrlq6KUMTjzE4xOeoP/YA5lw1iRoXwvOG5x39rvcMW4I5519NqNL3+LUOadz3tnv8voFAzh1768xsMdAmA4rZ43llaY3eOahgeQOvq04/1vHzebFxsm8xnzIO3QNf7ym01rdAyjb5EeYyklrujCwx5WM6rqIqUMXs/ruOKfOaQDuYvwNTZy64B7eqlXdiv5jG/jGg/P584/mc+u4VZz64R8ZfuMfitS2UaecRu/UqWzqP5LeeVBQ6FxMTp2qOi+x0xj/7QvZvPRSugzozgv3D+SY3x3BVZcLTht2IfU33cKWhZuov+kWRgNLjpnHSz3/l/7P38zA65Vd9Ia97mXugWO59ZFuRJLV3LH4zeLW3fIHEw4cy/iBA+m54FK2/PxGrj7xomLHJzVuJKcBD7zVh8T2Qz/zd1O0u9nMAo568mscefvZO33+2mCl/7tk0cPs+MVarr6sikt+dDf6ygn0nAArXxjL0OmLiSSr6Rt9k9QvXuE3c0ZyXy4F/HGXjp1/SQPz31qa46NrAVIXHcCl8ORf1xV9LJTqCX7+ab4IQjQ3JIhoBFGNTI1BaECkNVT6F1cSGgIvoWMm/aIjmZny0bwAPeUidQ3N8QmjpgIwUjmFBREdqyXXYaHcOWul8LqzuQB0rG9nOphhdFCxZKfOTdFy2OgY3BcATiGcEvKhnkHHAL9gHR2L0r5/DZkuOhUfqidyyT4mbokgsTVEyLwVtJHvbOkgfAVeIs0hgS3Q8h0rEYCeCzHbPexmBSZTvWyajuhGxcpWRF0+xljXOqhg0GGhnF9vKSXkHISuK22QYShAIqVy9ylM4wWIzpk1nSlmmkCgI/bkwPzD+ldE/P8X64sELp+c9x5K2e5TUoAZ8RBRj3BjHM1VD7Q0V6AZEJSE6CllrqKVeuxfXccrmQihtBBpnYamEqW/zIv+ETpBTIKr4Xk6wtFxmqMQgijx0LfbRTF6EFNgQIKicgWqa+A2RtEDlHGMLhFpdd8wMgJND/FyBm5LTDlyJSQRy8dLm5hZgZbPlSHfGdFz6vpY+N9szztDhooupvkCL5EXv8elAlaAsAKELtH1EE8KNCvAqDcJAgUIzHZBWOZCKNAadLSoj6mH1KcS/CY5CoBQCmSJj7ZVJ9MjYK+SJta3V7HVLycINdKORW08ydf7rKXNj/LYuq/hbI9hN2n4MUEQDyEn1DMxrUOU78cloSURvkAKiQjFTt2ZAiXMSAukrvaHunepfRBaOmE0xGzRCTM60pCErkZjJk5pJP2FH3P/DVXowsRX3sjjZz3BLX8wuXDxm5zaY39eG2zz57OVy9fwVQ7jBnRnyPXX8OIxk+kyoDt/OPN9vnPvfnx76+/pP+8aEtsP5YLuA+Gpx4nwOCvfUX2JGatmAHDUmY3FzJhpT15ftFcePkkBmNcffouf3j6ZZ767mDXcDCo5hGXJYUrncudmdqzdxltHqqDL8xqm8/NjJgONBEMXMn3BbNYtfpODu14LeTrc66sGcOHW97jlD2o5f5zRse25oZcyfMa1LF33An+7LcKWn9/Ijj+NhYGQW34np269h1vWjuXCiy9k4T0L2NRbdWemzUmw9Ed3Ay8QDIUPb4PI6TD1zcXAmXzjwbE8M/bA4nKmDr2ZUw6eyxyURTRrzmL5DcDabSw5Zh6R628EPoahl/LAW32IrLyRTbHTWK4pE4DJqVPzon5Fv5u+YDbpBb8kvm5HUbA/fJWi4C8dDTeve4FnH6+hb/RQFt4zG/uDP3HBAWsYvsphzrSz4aZbiP9iJD+Y9gIL7m3c5WNllwDMBRdcsMsz/MUvfrHL0+5u5ZXbis8qhKImZelIoS/km0CeZtTRDtaCEBxwKgz8CMVuAijHEs2XhLrAj+toniSIaJjtktDQ1P3JDyGQCC8giFuolGZD6WFSTr4LonXoUmSo7IkL4AV2pkGJTnSvMOigS4HKR/Hz3ZYCICoI3jt1IApan0InQ7ougjz9SkpEJEKuXzWtextEmhXgcsqN4o1A6hAYAi8GQVTDblHLD6ICchKpCwINvLgyMtA8ZWZQ6ERJ28BuDUh1M6gfWUHt3wJobO1wJit0VwrbUNheQoSpNDBFo4W8PqgwrSh0jzqVDMI8VS0PbD6LorendqrPK+L/IutfcSD7b6wJ3z92D4jZTUpGArqUp2nLRsiFaqArdTW497t4Cl2kNUTe4LE5H8wX9swhGmxEXQTdBTcBZoWDq9kkuqZIt0cQgDRCtKyO5ghI6titarAdeuQ7I5CrkUp74inrYbveACGRhTu/kARRCCp8uiay1KctZDwg1itJdSKNIUI+yln4UQM7q5LrjUweiAWKiiVC9b+RA0KlESl0f9SAXy3Kj0uMVp0gEGhp9SDK0CGoDVXXJifQs+CVqm6GdHTcmoBR/T+i1Y2xamVfKt4XNA8L0EtdrJhHrkYZ7ry4uR++pyuwlXDxUhbv5izeq+vG3jWNOBkTI61hpkBIgeibxctYiHYDI61AFgFYSaEeOJZIFTKa6XAZA+VIpnkd2p7QQLEqQhXYKWMBetzDD2z1+xqSWFWGIVXb2diwpwPz96ogZL91XjdmTrkXgJPWdGFDdizLtQij/rBIuVstuoQLv7MJgLWb+vP2yhvZdMgK3q4+lcjKG1lT/hCvDbZZc+nzsPJx+j/1OOsWv8m9w0YSX7cDrv+Y549/m+1LrwdgO8CA9wF4Ze3lbMo7kg3nHqK3jeHgicN4/LeXA4s55eC5NG14CxjG1DcX85vq0RzBfO64W5kA9K0dzFFPfo1l1fDnH83l1nGzmQ4svGcBxE7j2U6mAPctn0x1d1i+Zg0nz7yxOOiPrLyR1wbbDL/9bJb+6G700yfQd+EmFt5zFtMmDuP8cBEAJy48gZ6LOgwPlh/ezvn9VXBm78wDcD2chAJVbxwylf7P38ysSV9jdONWta1Nd8LrU3nnjTvZMWzbp36P+YmHGN9/JacN28iJC09gVGwRvTMP0O34/ZSNMhStpgumB4/XzSU6Yx0nz7ySdP8uLJ70UwCOvP1ssnP6M2/BWUyfsT8nz7yStu+8yKx9b2T5okuYdYy6Vpy2fSP+pc/zjZJ3eG4Xj5tdAjBvvfXWP58IvrI2yoUKNaHE9oEkjEUQLW07T+B1GtTnB7fCD5ERtRvduIbugpFUVzu7LUBzJVogFbWqzEDzQ4wWD4QgNDWkke9ARAz0nI8IJUFURxoCIxMoi+FCt6UAYgoaD63wv+jQ6nTuooAa3JtGx3uemx/wd1DEpC87fjudDlezUKqbnesqUAAghKKjlSVo3cciVq86LZkuJiKU2K0SK6l4xrlK5b5itYOZUaLHsF2BOi8qsNvVTUIEYKYC9KyngFwQIKTKqYm0huQqNFqGVlH5soNMZzsoZAHF/BYFQDo6S7IgzKfDMa5IqyN/rHai0xW2vwhedB2CPRSyPfXv1ZdBG9sDYnaPMpIGrZkomZQN8ZAwItBzgsCS2AmHkphDI6XQZBK0mWwvLQEgzOnoAVitAmlCoko5M0ajLpYREK1qJ2L4bE4qyksQkdhNGkYadFdClrxdvkB4qrviVEriXdI4raXojsAtDdESHqUlWbKOSdASoT1rIwRYcQdDD6hrK0FKQdBuYvhCdSZCZQlsZJWuxsjlgZnyZck7kqGAjKWya4QvMFKqgwNg5HRCU6pOlAfZmFnMXtFcgQgkotECoOv+Oyg3syxfsw+xOg2pSSq6t5FMRfF2RDFcQVDlEbVd2pw4wtHxpI0e95ChwA9U90O6yoHTK4HQkMSjLmkpCJvMoii/8ODNbBNYbQKnqvCAjKL+peA2Bup/PQd+ApzSkLDcp6K6naxj4Za6yFCgG5L9u9ZxRNmHvL35qx30/UXVfmf0pLr7xPyr5eiJswhTI4FzAFh152aWnzsOErAqORt4k3uXPw8jpgLwytCVTLj+h/nvj2DWpFMZc/pWVk2awK9O+Rn8Aaq738XwSerJ/jf3uoaT1igQ9PSklWTzblqHDrie5cCc43MqKLI3dJ1wIf6lz9N0zGTWTbiQbHYsD62Zx4612/jBtDjpn4xEXzmB6QuqueqGJkYdeSHL16zhuv4jadz2MCvf6ceE7YfywFvd+dvr1fxtRjVMWsnTk1Zy7IKhhKmR/HHGSsY9meL86yW3jlNgYPnDbzHq9hLGLkizuMdPKV/5bVZ9dzNThy5m7oFjGRUu4ruHTOWIZ+cX9+O6o8Zy+JbfM/0yZY3sr/+YP0xZxbErDqTLgO5MGDaJ/mMPLLqwKUOBs+hCh1D/lj+YXH1ZFY8MvZlF0xLwZIoH+q+EtdvI9P8z59+b4sQRUxHcxfiJU3j04XlcOWMQKwb2ZsSaTTy09T3uWz4ZOIdjFwwtrlt00kqWH34J5x9+CVvO2kT/sVWqG7ZIZfkAMOxCHjwevv63XT92dgnA/PWvf931OX6FS/dCRBAiAuUkJixTJblDB3ULOnQhvo+WdvBqYyDASocYGUUpE1IJ+XU3zNssSoysslAOdZ3QEpipgFyViR9VF/LYDldJa2wd4UusHWm1LMvsENrHrbyLlo4sCNjDvEA/5yALmpjOYKZzfovQlI6nmKWiK8c1KAIaYZkd9DEZqkF9wU5ZSmQY4nQrQfhgZpW2JTDBTkrMTFjMtIk2QLq7ht0SYqZUl8dMCaJ1GYKoumm5JaaiSJSqQ9FszSF1gyCmMnQAIi0hmRoNp2819od1EIZFAwLyoEXoav0LDmxFeljBqUwTiM42Zp3zZnR23keaAmliD8Hyn9audmHGtzz+/92JbG7vQZ/5/tRNq/+/rsee+r9ZoSGpTqRJWx7tERvPNRAbI8hKj9rydrrH28i6JpmMDhq0tsYJHR2j2cwHQUrC7jlKLA8pBW2pCFlpITSJY3voKQ0jrVreIoBctaJCqS6C0pyYafUQKShR198gpoBUGAlJxB32qWrgw6Ya/BIdzzWQgcBJ2pQnsrR7On5jVBkQRENEoClgFJH4KD1MaIDhKF+XwMpvuN5hDqB5SkdSuPRKoVzYRKC0M35Uien9hLKEFgHYTRrZPh56wmPvskYSukN5ZZpMwiJXI+mbD7ZMaSF6rcTSQ9raYwQ5Hc0VGG0G8S7t9ClvAaDViUIg0LMCLyEJIyGtjQmquyZpEVGkAX4ixEhp+IkQpKbMBAz1G5rtqpulBUrPI3XUensQRsBLhCqDx9Ex9BDT9HHSFlqjSZAICaWgNYgRSI099el6fd2FNFrfAOD8U7Zzx2VDuHLGIAauvAgj+iZwIKPCRXQZ0B1ugDOu2IR+ylnFLJZZo+9hwZQOncYrA58h/dI3mD50AD9+5BoWXv5rdqx9mEf/pKhMN4yex2N1KU6qTahBdl0KgJNqlXXxsbeN5rvcwFB3JH/6S5xhQPYnS3gi+hzr/vA8N697mIv6j2Sfn8D2Kw4FNvHAW02cNmwjG7Jw6oJ7WF+d4s+94TdzRvL6BQPyA3uKwKVQT09aqfQ+wHVTRnHFvOUw8SEOnjgMXoIzRx0FC34Ja2DGDLWPvrviBo54dj4vHjP5U/vypZ7/y0PT7ufQF4bQnV5cMQ9u33skpy64h/6XXcSaoTdz6oJ7aKreuSnxAPM4bdhGqrtPLGbePPDdX8KCe/jlpl/x3QMPh00HUtU4jJfy33n0YeVI3LjtYR5fpvbrA3nhf2HbCtt67IKhMA+eP2QYay6LcwGQvuAFQOl12ljGpr+M5Zur3mLgGzcCD+7SsfOlnlGzZs1i+PDhlJSU0KVLF0488UQ++OCDnabJ5XL8+Mc/pqqqikQiwfjx46mvr99pmk2bNnHccccRi8Xo0qULF198Mb7/+Z+e67lAdV8iOkHc7OhKFJ7Id9aH5PNJRNZBd0MCS2C1+litLlZTDrPNwWp1MZtzWG0umhtgpDwFjgyhWs5RHadUI1ehkasQeHEDr8TAi2uYKR/RlgJNQ8RjELEJulWT27sLqa91p/XgWhqO6ELLgdW0HtiFtoO7kT2gF7JHF0QsonQtltmhjdE+sf7QAVKgCGhkwfEsv73F7o8m8iGZOsKyaO9p4ccEbkLDbgtI1PlEGzysVg+rxcVq84nXeZR/FJDY5hLZkcVq80CorpWe9ZBCkK3SydTouAkNP6bjl9p4pTZ+1MDM+NitPkYmxE5KWvexkYlYB9DobHtsWsXfSrpuh2NcAWwaRsc0nZ3kCsYHsNM+k1KCtXsgmN3tPNnd6pP0sbm9B/1d8FL4fE/999Xudp6E0ZCI4ZFMRyiN59D1kCAiqahqZ0ztalK+jesYGNU5NXjfYUMgCCIhYVeHyIA2ZChoaYvTtKGCoC6GWBeDdXGSzXEVXmlJRWPSwI+Hir7lKvASmuCWS9zKAC3hkdmeQM8qypqe1ki3R+gTa8bxDHQ9VKjD0xA5nfasTeDraHlth4yEhJYkKAmhysEvC4oUqtAEL04RpHSmVZGfLVKtl8y7sUlNBT4G8ZAwIovTe+UhDEvStWcLR/f/gK52O9VmijG912AMTFLWv4Wo4TGgqgHTDPha9624rk6QMdCbTexGDd0VxGyX7rE2ukaT+KGGWeao/RMJERUuZoNJ1jUJSgNCAxXy6Qko9ZRMVAMj22EzbWTVe8pJTdHhcl1CvLKQIBHmkZkkYviM7PExvbs3IbrnMMtzvF9fy/yPD8EPdg8As7udJwf3v6X4d5cB3cmVNvL0pJXF99YtfpMuA7ozs7fJacM28u2h32bMs1M4/5TtnPj9x5k075Wd/t36o1ImzXuFWaPTLJhyaLE7U919IjeMnse1M1ez6s7NADxWl2L2Bnh8whOcMWo+WuIFqhqHAaCvnMC2ky9h4MqLAPjhjKv4wbQX2H7FoSzXxrE5meaWP5h0u+4VLln0MP3HHsgxJzYoTQkqkPKOu4fw2mCb/nn9ye/Cu3k634G5duZqlh/ezpUzBhGmRvJYXYpg6EJAdZ2UpgUEd/F43VwOXzGXM0cdxYO9L+O8s9/lwd6X8eIxk4v/fn5vNT+/t5qT7h5H97XKAjmSrOZHH73A3APHkittpO/6M5l//F08PeJNVvzsOZYcM48lxygg8sBbfZj85Dk7/Tbzj7+L6kte3+m9mTMv4jvzBgMgOYcLv+Mxa3Sax+pSvNTzfwGYMe9Mjl0wlGtnruaKecuL831pxFSOum8qV84YRPwXI9mw1707zbvrxRfu8nED/6KI//XXX+fhhx9m06ZNuK6702d//OOuuQcA/O1vf+PHP/4xw4cPx/d9Lr/8csaMGcP7779PPK74wOeffz5PPfUUCxcupKysjJ/85CecfPLJvPiiCtoJgoDjjjuO2tpaXnrpJbZv387pp5+OaZpcf/31n2u7/LiB7ml5oXmhc5F3HdMLT+zpcOACkBK7Po1TVoof19GdfNAjFIMtRdZTnv5COY4FMVOBlwodaSiNjJlRLX8/KkhsdjAa2tVyLJOgqgSnKoJbqvz9Cy1sLVB/a4HEtwV+F4NsdRlWsoTYlhRafTPSD1TIZGdXMiFQHs36zqGQoVRuXYUqBFeGEozCI7QQGbXxo2DkVMclsARWUuXY6BmVTeOXR3DKzLwVZpin2oGVVMBFagK3zMCLi2JOAELHi6l8GDMbEprq+1abn6ekmXhdSrCSqQ5QBSjeW6HdryEsq+P3CuhwGSs4qBX2g2apTpVhqA6XroOuIWMR/IoY7ZXAps91CH0htbudJ51rd9HAwOcDJp2n/aI6Ml+m69j/DxpZXdl7ALTLFPskP9up5v9n7W7niZbTWF9fDRtjaAdklN6kzMfxTFa09OPd9T3A1xB2AKEgNGWeR6VsjI/uvZaX6vrRsKkC3VEUrNh2QaaHRKR1NE/gl4ZKbC51zKSWH1hL3FoPvdXAr/DRrIDeXZvZtKMbZlLglUIQVTb9H7R3JZe2kI6OHvfRSzzi8RzZrEVpSZa2QKjOQouhQigdQeDYmK7AyFDUeoamAk0iVF2UzlSrMH+rNHKKIuaVQGhJ6OZQEs+R3Fai9IcCZNxnTL812JpPTHNxQoOXWvbivbpu5FojVPRqQhOSze3l2KZPbSTJ0J5beXtrD1xXI3B0rDZBWybKCrcPLTtKIBSYpQ5BWUBlbRuDqnbwUrAXQcZCOFremEAS2vn1tSRGThQ1S35UUcyMjLrfOFUBMuGDp4Ev0Nt1ZK2HHgvonmgjqrlUR1Ns10tx2y0CO8D3dCy5ezws2t3Ok8ld4ixPjmN8f5VwD8rBas3Qm3ko/0Q/SN3DjE1nEbz/PEx4gp83TOfPP+oGj8wvamYeGzkTgJNeUKr4s58+GoC7p0AVi7l+v1f4oGodcCDfeHAsI9Zs4vEJT/Dy8slcsvAERoWLqO4+kvnHw7ErDuRbt09m+/0mC0oncNgvjuLXM6/maK4i1e0VRoWLuGPlEG5dfyZbFh7KA2/14bQrDqXnhN4c+uxQXh6RYNyz8OIxk5k25+6dui6vDba56oYmrkyNBJQphZZ4gei0BK8NPo+TRg9ixYNjefy30H/sgTyWNwu49cGx3AF8d9MNf3dfxn8xkoPnDePBKcpC+vkzBnLUfQu544DzWPnOHQw94DxWDFTbnnzpveL+fuOQqfyg7zJeX/8W100ZxRmjFDXt2rEXAVXMmHEz19dv5vIRMHMlLJhyKIJVCO7ivuV3IejI2ymU5BxmzAC4txhQ+t0nITcRxk+cQvqCF0hXq2mPevUtrhsximGXnsOmvll4ddeOHSHl51MqL1iwgNNPP52xY8eyZMkSxowZw9q1a6mvr+ekk07innvu+Tyz26kaGhro0qULf/vb3xg9ejRtbW3U1NTw+9//nlNOOQWANWvWMGjQIF5++WVGjBjBX/7yF44//ni2bdtG167KIuLXv/41l156KQ0NDViW9Y8WCUAymaSsrIxRo3+GFZgEEQMtCLHWbldUpcIAWIY7fU8YRv7JvoHTt4pMF4t4nYPmBEVLZhFINNdHy/lIQ0NqGkGpRbbGIleuKRCQVvQyp0xH9ySJdW2IjAO2Rfu+5YSGoptJXc0viGiEOpipMM8dFgS2+qc76umW1ASJLTnMjQ1Iz9s5S6WwLbqu3v9HT00KwCdvVSwMnbBLBfWHl2MlpXLQ8SVmKsBM5sM8pSS0DVI9I+QqBGUfe2qa1lyRnhdaOk6lRaZGz7uT5e0+cxIrGeTpZTpWMsBM+zgVJrkyHSsdUvbKVtVl6fy7dLZN7rzuhZyXQidG66CWCS0PcmwLaVsEZVGy3aM072sgQnD0HB/Nupy2tjZKS0t3/UD+guvLPk8+HP0QJYbKXPi8AOY/TSMrdF/+3a7KFwFivmzb5C8KwBSAS6EKAGbPeaKqcJ70njUTvY8gGnPoV9nM6lf64de49OnRRLtj0bKhgt771hMxPD7c1kWlwe8w0TwVqtjl61tJ5mxaNlYgfIHdpGE3qw5AukeIldSUlsUXanAdglsZKtvlEBJrLFKDFC3ZKnEx3lYUmWz3ACQY1TkG99jGyg29qKhIsU9lI36orokfNHahOpFmw5ZqtFYTIy3QfIEflQrIBIoapuWv24ENbqnSkeh5oKK7FLsZkKdcmRQF8rI2R5g10Nt1whoXmTbACunarZUyO0eZrahiucDk3bW9iG408ROS6MBWupUmaXMi9CltIeebvLu5O2HWwKozVCOpX07ZImcNhBUgczrCDjFsn/LSDG0rqzHbBem+PkZS7wit3DuFm7EQzYriHFohdoNBaCujGmlIonslqYhlSbsmrW1xwpRJebck/SqaqI22syldgRfobG8vob2uhOqerTS3xDm823v8/ujf7zlP8lU4T54+ZCvzfla202dXX1ZFevQdzB43kdOGbeTe5c8zc+ZFrMtbASudBawY2Js7amZxgjwKgPeObeXKGR33givmLQdg08RyAB6oHVLsugCs/pnHoGtMVv+sI2T0x8ev4uCJwzixdiqP180tAqvnDxnGUa9+Wg++ZeGmnahTpYfvT/Kl97j6sioArrqhiUXHJxj3ZGqn9wpdlwJ17elJK1n6o7u5YfS8nehXj9WlWHXn5uJ2HbtCdXNW/GxnqfuFo+uK+pYwNZIr5i0nklQIQf99kuB/1TFXmM+Kgb2L2TFhaiSn1Sl3twF3Gqw910eb8E5RMzPm2SmM6lfNGnkL99fOAVRnCFCdqysE953Sm9OGbeSBt/oQpBQOOL1uGvfXzinqmo5doWhoufvjeQqZqoNencvMKfcyfVmcX15yFY/23bxL58nn7mlef/313Hrrrfz5z3/Gsizmzp3LmjVrmDhxIr179/68s9up2tqUaL6yUgVVvfHGG3iexzHHHFOcZuDAgfTu3ZuXX34ZgJdffpkhQ4YUTyKAsWPHkkwmee+9nW+0hXIch2QyudM/AKs+hdGWU3qVNgcZhh2OVWGgBsRBqITzhawVIcD1sDa3EG30cMpNgqiB1DWV5iuVq1YYNfFLbIJSK58bk7dfdCR6LlSp9E0eJaub0dqzBJUJGg+uxCnRlDtXILGbHCI7sphJn0iTj5nxsVo9Io05Ik0edmuA3eJj5CR+RJDtahN0q+wYqBeyTwqDfNdT4EVonWhVcud/QaCmcT3VfclrT8y0EubrnrJFFoEktDu6UqGlYeRCrJTES+h4iY6MmdBSJgXZSh0zLYntCIjv8LHbQ8xMiB/TVCdGAAK8uEFgirxPf77rUqB+hYH6PVyv4zcSmnrPMHbOtgll8bcD1GfRCF63CpoOrWHHISU0DzTIdQkRARi7qevll32e7C71nwIv/6l5/LdXXdl7nwIvu3N92edJj0H1dK1qw9BCVn3cQ3UdfA1b98m5JnpGwwl0nCBPhAhVLozmq4H/5ne60by1HGmHhCU+gS3J1UC2i7p+uaUhmpcXyLvqmiwNidBDIpst3HIJmsRsNPF2RHEqQ9xyiXAFZptGeWmGhOmgGyGlEYcSw6EpF+ej5moMLWT/8jp6dW9GVrr4CYlbGhLaCnzoOfVP+IoaRgh2s1qXwKYYBBlElJhfhB1uXn5CaURDV0c4GmFEIh2d2GYDe6tJw9pq1m6sZeXmnry9tQetuSha1Ce0JF4Xj1R7hEBqtKWjtORivL+tFm1LBKveIIhKjMFJRu+zjsrytKKuNVqgQc9uzZiWT1NzglBXoEsvdXdyGAsDDc0MCaN5IGhIZTftg1/hI7s4VCfSxEyXrokUvbs2M2CfbYzpvYbu0SSBFHywrSsf1VcrtzhP0J6xocmmwsr8x47t/2R92efJ1vu3cNqwjZw2bCPTr5fFrgBQHBBPXxZnzdCbSXV7hQfe6sNly6awYmBvti99nxMXnsAbE9cxv/ssVr5zB01PVdD0VAWHrUhx3ZRRXDdlFNqEd/jxkcdx4uHHMr7/Svr3/Zj+fT/mhOwiBlz8BCdkFxX/bVm4idkbQE+cxfj+Kzlp3MOseWEh3X9xOWteWMiaFxby/CHDeP6QYQRDFxYpZCeNe5jJ6xQQKz18f25ZVsvwVQ6Ljk8Ut+fKGYOK9sIFKttjdSm0xAuMe1JpcS5bNoXsnP5IzuHYFQey6s7N3LJMpWEetkJNM7/pYz6auhcjrjmaE7KLuHB0HQ9Nu7+47AJwWzP0Zq6cMYj3Zv+2qG1pvj1H+ZgWfn5vNWOencKYZ9W+1Ca8gzbhHdYtfhNtwjuECw9g8Lm9WHR8okjtOpl+RXexa2eu5tqZ6sFfeJ0sGgEUasa8M+n9cCuCuwhTI7ls2ZTiZ5HT1eCqQF/bsnATeuIs9JUTGHCj+ZnHz2fV56aQffTRRxx33HEAWJZFOp1GCMH555/PUUcdxdVXX/15ZwlAGIZMmzaNI444gsGDFb+urq4Oy7IoLy/fadquXbtSV1dXnKbzSVT4vPDZZ9WsWbM+cz2F64ERUW5g6ZwavENH5kqBfuXnuzKhBGwlok9nsTc2Q+9KnHITzZNK8xEqZzNpaHhl6n0vrgb60ZaAwNIIbUF0Wxa9NYPIOoQVCVoGJTByErvVJ7Q1zKSP5vgIP8RqcxWA0oQyHfBDQlNXeTS2aolbaXVVbusfp0xK9K2NHeCrSCPLl+9/2qYZijQ5IYTa3ryeRrg+ZjpE8wsaFGWAoGV9QksHVLhnplonXh+gu2p+oW2g53JoOQ+nOkqsUQVfikBiZAPccpNchY6Rk0SafUJDee1rvsoQ0F1JYHVa70KQZ6EKoMZzi0YGQjeRnXNzjE4Wy7pGav8uNO9r4FRJYtvBbpHoOQ27VeKy+9ko7w7nyT7LTqXuqCf+pfX/T4j5O2te/pPAY27vQXsE/n+nvkrABXaP86QqmiaIQMTwaa0vUbSqnMbWtjI818AvC2hNxQgCgRAwaJ+trKYHertOtE4jWqfhVAmsAUkq4xm2NdeiZ0HYeaASqk5NaEt0R2BkJPYOnZwhyXXzEZEAvcHCahUYaZ1sDx8toxGW+bgxjeb3q2FkPXt1bSTtWaxLVlPfVkK2NaI6NlpAKAXRhEPG1xApAwxJoElkm64uvUJRrERIMRNFSJVDo7vKzCW0lVjfTAvFVjYleosgyOnIaIC5w8RK6sS2S9r6q3loSQMvp6GVdDwZd7oEaGaAqIuwJVLO8J4beXdHd/zmCJar3NZECNWJNPvEdrBG74JwNUJLUlKT4oDKbWywK1kvqwidKF5CEjg6Rt5EINKqkW61MStyBMIEN6+dSelqnRMelqXYCgPL6ulht7DDLeXD9i5sz5XihzpuqGNHPDLbElT0aSEb9ehR0ca6tghfL3mfX/1LR/MXV7vDeRI+fhj39p0LwDcPeYuDXlV/K4G86g5sTioNRWL7oQSpe/j1zJt5fMZVnDR6E5ctm8INU0Zx7QGrefGYydz+1ku8seh84FBOBC5rfp/LrnuFEaM38TibgKfJTPldfumv7LQuQw84D4AHbmii9PD9OSG7CD4jyHHAxer+t3XhAcX3Gtd3g+O7cc/9Jmedro7bh7a+x6k99i9ux4qBvcnOSTEe1YV5dN1QTqpNsKLn/zJizSZgCiutFygs8Qd9l/HI0Jv54Yw4H94GFw98nO1Ll/GDvoWlbubE5cM4c/GbDOr2CoN4mEcfrmDDXvfSd/2ZGDcelaeBXcSiY3pxyrm9qKyN0LokwoqfPcegaxRYOP9eCPt2bAuoTsxJMxLMn6Nz4sITeF+cXNQOzZh3Jt948Bme+e7i4vT1N91CVeMwguPV6wK1D87hu08CpVDT9z7m50HLqQvUPmkjRc3C+5j+cCvXTRnFT5+9EPjxp/b5Z9XnBjAVFRW0t7cD0KNHD1atWsWQIUNobW0lk/nXnzD8+Mc/ZtWqVbzwwgv/fOJ/s6ZPn75Ttk0ymaRXr15ITVM2wV6AyDpF8PKptPeCsxUgs9kifUmks9hbWtG8UnLVFn7cIDSFSjTWhdJ+5F2zQkOgu4p6FanPoDenwA+QiSiZPqWYWUlsm6JcaV6g7IXDUAVdBpKgxAYB0lTdDC9uEEQ0jHSAnpNIXVd2lKEg0zNGSXMEku35AXyHxXCxU1GgW32STlbY1kIXSgoIQrJVyjI6tsPHTPtqneImwlcZL35Uwy0XWGmNnKU6TvE6kCKCV2IS2sr0wGh3lOObH6I5Ola7QHMlRtpTwMzS8WMGRjog1HW8qOjQtxTWv3NXKe8ipl7rHdqfQmCmpinaXSJGalAl9cOVJbaRT5I20wIrKfFiAq+zHfVuUrvDefLvVgGA/CtA5ovOe9kDYj5dXzXwArvHebJyfS8O+9p2+pc0sClRiR8IRCDIbipBahIrqRG0JpBAUOPhBAZ63EdmdJwK5SwmfMitL2GLnUCXysFLCwRWm46eA7O9EBApSXcTeKUhGCHxyixOziTUJbkqpZc0m3W8yoDSqjTtW0uxWwSh1Ei6Ng3NpURjDtl2JQTxt8d4vaw3O1pK8HIGwgiRdqjmUR6oPJisKNoniwBk/sFpaEg0T+CWynzuTYgs8RF1lrIeTmtIQ6KVu5SVpmlrqyTUBcm9wasIkXHVgkpUZOhemqR3ooW6lhL0MnUtD0xJ8GGCNbGutO4oIbFRx0gpRkBgwcbN1dzXcihu0kbzBGE0pGdZG8MSG/kwWYNhBLR3UwNMzQjRPBC+IFcTIqKBkr8GAuI+3ava2CIFEdtDCOhZ3sq3at9heHQ9tbrDm04tj6/5GoGn0aUmSXvWxvd1CCGViTB279Wsa6+hR68mVjs9gbVf+PH4eWp3OE/+0GV/js9rJF6fHqGrn3f1Qj3RP2PUfLotywON615BjL6LliUXMXvcRDQmcsNo9XQ/PRriv4ArH36Tx/74SJGaNQKVRXLs6KEAlI9p4bnWz37Q/uiMQVw7c7XqpKyDkAN4oHZIUbT+hymr+M68wZz10oPcc/h3WfxkT46bokT+x9x5Ec8+XsP4/itZVKkczu5jMg9tfY8TF57ASUDr0D+xarDN1SgqWXSVU6SKXbZsClsHfA82nFFc98cnPIHGAegPt5LYvokRa9Tgv/A5wDdXvEV9fv+t+NlzlI+BgTMv4soZd8Fy0PJ0tacnreTWld9mxJpNyvZ4CfTv+26RMja//ydiQ26A09aV8eQbg3ngOMF19cpQYfmE3vzqycEci3rdf+yBvHjMZJYcM+9T1LHC3/MntRGmRnLYin6EtSPzCziH0+reZR39iossH9PC3SNugDv/3lG0c31uADN69GieeeYZhgwZwoQJE5g6dSrPP/88zzzzDEcfffTnnR0AP/nJT3jyySdZtmwZPXv2LL5fW1uL67q0trbu9DSgvr6e2tra4jSvvrqz4qfgllGY5pNl2za2bX/6A00jjBhoKQeZy3UEI+r5vBTPVwnvbk4BGhmi7F9UJosMQ0QyhZV1MJtiZHuX4Uc1kCojJbCFopaFEjsZYiZ9zKY0oiUJmgamQa5HKUiIb1WdiiBqgisJIwZB1EDP+miuT2jrZGotrPYAKQROuYZvCxLZECMX4CV07KQPwiBToxOriKOlM3ndSMGNTCiRe2cZVGer6EKXSct3YDRDhVi2p4nvCHBKdKQm8GIGoZXvlngSIxMUA8y8qCBXrYLB/JhJ6SYljjTbAwVSPLU+QdQkiOj5zzy0jJv/LILuhXi2QWgI7GQIjtvRffmkNqlTtoviKfhKv+OGiIgNuo4sU/S85sEQ3SEwshS1Q26JIDAFTgU45u7VgdldzpMPRysH+X9XwP95uzGf5Ta2O9fC3z79petg/p36KgIX2H3OE5E0KTOz6IQILQRNIu0Qa7OlTF3ylxe3QrlwNaTihIGg28AdbNtQjQgEMuYjNAntCh24ZYqy65WGxDfr6C7YyYBspa5sl6s9ogmHdFsErdVEBOr6pnkKbHgh5BwTvcIhG9p8nKykPRshbLJItSstRzIZRbQabG8oI5Zw8B0Dwwow4i5uOkFkh4FXEioDGk/pXYKIelgmNYnZrqnwTB1kzyyxiIeU4NgBYaMNMq+f0QP2rmji432haWMF+EJ1ljKG2jcVsCOV4KDKTfSraWbthlqELqHcQ6QtGhtK0eMeoW7iVIJbJsj09hG6JNwQRyQUFUzLadSnEjxWP4y1H3RHxAJKu6TwXq/AqdaLXSLNFQg9pKIkQ/PHcXxpkHYtSuI5so5JGAoq7QypIMJLmX2o1FOsyXbHbzeJbTSpDzSO2X81m1IVDN93Iw+vVloFTUhMPaBU370oZLvLeQIKuAAcPCvHU9N/Bczm1B77k53Tn+i0dUxq7kPLkouYOfMirl0G33jwGW46IM5jiyZy7IoDufMq5ZQ19YC7SCx+k1euewVq53Fa3btkpvyOpyedzfiJisJUoC91rocmKY3G+IlTYOZ5DLhTDY1XlU5Au/zXLJiiBuaCVfxhyiqyE/vzmw1K57O+ei7jnt3Mi8dMJnobjGEKVw+2YebqomZnfP+VrOj5v0xqbuHKJRVcO3M133hwLPOXPsX8xAscumZn7Xj11w/nye3P8M2b3mLFz3rSUnsvZ3JUXqfSDy3xAtd+dA0At05P4ZtPFbsphZKcQ/NTf6TquJFMfvIcHpszl0duVlbMk59UDmPh63OAi1h1ywrGjJ+y0/eXHDOPAXcaPLTqbeZUnQ39oNt1rzDr8j5Mvn8LAOcdOR0eHMuvlt7H1ZfN55ZltbQsuYh1G/pxypQ4kdPThMxh5lEm780+h/nH31V0JFt8y2q++ZDqZq296QR+fPtkfn7N0eyTOohH/9MdmFWrVjF48GBuu+02crkcAFdccQWmafLSSy8xfvx4ZijLgV0uKSU//elPeeyxx1i6dCn9+vXb6fODDjoI0zR57rnnGD9+PAAffPABmzZt4rDDDgPgsMMO47rrrmPHjh106aKSR5955hlKS0vZb7+dXRH+WYWlEbQQaE3mKUeyI9ne9RTIAETnk7AgEBcCfIk0DITnQVMrUdfDLokRRg1CS0fPhehOgJbx0DIOIpPrAA+GjturCqfCwEoGhJZGaNo4lSaRJoGecnErLLxSGz1rkqsysNpDNCfEj+t5Vy+B166jBRKrXdk2e3H1E2e7xUnUtyJDqTopheDLwoC/kFRfoIoVuzL57TQ7aGcyDInW5Uh1iyvnsHief63lNT1OqDJvdB23VKVDG2lBvD7AavUUUAklwvUJIybS1Ami+fdClBFACNIyEFkPYWggwYsJyjbkKQWGoda1c9ZLQcivCeWaVujOOE7RcS2orWDrkSVkeoTEtmmUbArRPdVxMTMSu1W5ovkxDf65DvH/S+1u58l/sv5ZN+azOi67O3D5b6ivInjZ3c4TMyl4vb4XNXE1YNIyOmGpjx+TaL7ALQsxk+raZm+1kGss9C6Skp4ORqmLlIKw1YIQYj1SpOviWI6u7Io1yHYN0XyNZD+DXA+PSGWOwDHINsQwW3T0nLqWudUBWoVD2BBRmVsZU9klA3UNZcg2C83RCBIeyY/LCSMhdkbA+iipbgbV3duoiqXZ2lZGaEBsuyRlCNzqAOEJrGYdp5uPcDSVpRINEZUOMtCIWD5Ry8PQA9J6iOzlksta+K0WoinKulg1VfEMTSUJ9DqbUGqEEXXvTTXEiVTkCNBIeRZmg0lgSURtDrcqQABDe23hzaa96bZPA/XvdkVP6ejNOnpGIKSGH5VQ7dA1kaIxE0fEfWUWUK6skCk857JDjLQOWyOk4i6BJZGGxPF1KmMq7LNLeYpukTaqjXYWN+3PmsYulEQctJiP1WaScdT4IGp4RDSP/brXUWqosZKhhQRfbmpFsXa38wSg+bXZAKz42f6MuOZojni2ikfz4GXckynuuX8oJ9XexeBzexGdto7s0vc5ac0mysdczdOpCs7w53Pf8smkR99Bt+tUt+ayZVP48LZPLyt3f3yn17F53yNM3UX11w8nNu97/GLYYFqOE6SPDDi9y1GcxMM88rASrRcE9Wctq2XENUo4/40Hx1LGaP4yQtkvz9rv+9zU9AYtxwnOyC9jzLNTeOlMZcUcX6Zoaop+ZXA1VVx1QxNbB5TxQO0Qjt0A+8xawuPu5cwanaYin0t/66njgX0Y0Pwx4YyRwBjC383lg9cP5/a36vjRsMO5IHsb/cceyOBze/F43VwekVPhSbUOq+7czEBUt2jRMb04bAWc9uBPmdTch9Yl30NLvFDU8Ay406CNZVx1QxPjgKP8NryNc/nwNjht+0YeoI3G2Qfz8w3VPD3izeK+/Nb9W7i/Fj6cPob/+QlsPXga2oR3CMaWop3royXaWHzLJRw8K8fYC4fBwRAuPIAyzuBXS++DvsCqg3b5uNllAHPAAQcwfPhwzj33XCZNmgSApmlcdtllu7ywT9aPf/xjfv/73/PEE09QUlJS5E6WlZURjUYpKyvjnHPO4YILLqCyspLS0lJ++tOfcthhhzFixAgAxowZw3777cdpp53G7NmzqaurY8aMGfz4xz/+u2j/71Woa+g7kirFvZBu7/soJaAKQpRB2BH8CMpiGToGy0GgMkQ0HVra0NpSaJroZAaQD4OUUgEiTVNWydWlpLvbKkkZyFWZ5Mo1gohAdwyEL5XGJWIgAonVHmJkAkSoaGgiBDsJejZE80K8hIGfMNG8ELtNdX12ol7Bp8Ibi/kvrgemsTOlTBjFrocQAmNHEmQcPwLRxhAzFeKW6ditAZobIjUdM5W3oYyB3SrRs4oCp6Msq4O4BRJCS0MEEkyBH9PQcwbCC5D59dX8EN1RhgB2XQrp54GL73d0WoQGnq/ofobRaXtQNsmRCDIRpXFognSvgLI1OvEdAUZadazMlIbUBKYfEtoqK8HYTQDM7naewH/ePnlXqWF7wMsXX19F8AK733lipgSagIxn4TdFsds03JqAoFwQZkyCskBliGiSwNXQHR3NhY8bqrBsj14Vrazb3gs9J8h6JVDqw4Ach/bewPZMGdvbSmmPJLC7ZohpIdltCcykhuYINF+J5kNLEtmmk4urkEdqXEJXB0dDWiHS0YsdEyR0G7iDuqYyHCC+wcBcZ9LSVkVjopzoVoNI3rAliEq0jLo+e6UhlbVtZHI2OSOKiARE4y6uY+DmOxdR28NxTPbvtp2esVb+/Pow7G06rZTTVhZj7x4NrMt0AyGJVmXJNkcRnoaTtni7pQegrIylLrEtn6xmEi/LUhtpR1ohEUPdp3RX0dmCqCS+RdC6fwCBYM07vZVYv8IDOyS5rQTKAjAkOV11taQAu0WQ2ZJARkKMUhfXNaitSZLM2aQdi6QfxZM6m9vLyawro700ILLFpL1fyP6DNjMovp0Wdy9ebenLXolG+tkNbLCqMLWASm33cIXZ3c4TUDbJZ446ivD+LQzsV01IB03qkkUPs/qH73E9cCK/5Y25mzmp65Lidy9bNoXto5QVcXxZVVHwfnT5VcVpfhfe/allfk87m2MXDOWMCe/wdI/9eW3wahYd04+W40SxW1Oob654ixU/a+GP92+BcyH50nssOUZRtkYs2cSSY37PmXm3tA+q1inwkrcihoJY/X93mmfBMaxznVb3LvePOIfvPjmM+MrzYPTNPL3paxwK/LT3jxm48iJWvnMH2qKJhDMVDe32t14iPfoO9r3qdZ7iV/Cc6nBMPfou5s+4i/ETp/Dow/M47WB1jmgT3mFAYYFz9mdB5UYe2rqI+5aPZPK0gHce34rDXox7djNPvXkwlT+K8PaT59BU3cjQn8DscX0IUyOZevKHDLjzY6oab2b+pLM4deg9PJhvvh08K8fmZBpjwjuc2mP/Ik3uuo+uoX3Rwdx51etcUP99jPUn8+6G3tT0vY8ea3/HDaPnET9x1ylku2yjvHz5cu655x4eeeQRwjBk/PjxnHvuuYwaNWrXlvRZC+8swO5U99xzD2eeeSagApUuvPBCHnroIRzHYezYsdx+++07tSk3btzIeeedx9KlS4nH45xxxhnccMMNGMau4bOCnd8xtd9H9+mw4+2c1p5/r0Aj45P6iEKyfd6VrBh8WQiQ7By6mAc4wlItv7CilNSAMqQGdouPnvVp3i9GYAmMrMRuD9EdJWD3IwIjJzEyIWbGV7oaXeCWGhhZ1eERXki21sbIhIgQchU60Saf6LpGZDpTXBehaxR//oIAXs+DtgK4KXQ68qL4wt8iYuPtVUvT4CiRFklsu4Mf07FaHIKYSWgI/LiO5kmSvQ2kpuyU7aYcoW0gDVGkUIhA4pUYOOVK45Ko8zFTPqGhgJee9vBKLUJTI/7uNkXv+4RWRwZhMe9GCKEAmOeDbSsKYDRCav+ubD9C3cir3gsx0wFuQsdqD9CdUIE8lNNZrtqkqbfLuhu/fBvl3e08+bLq/xd4+U9rYL4MGtm/aqH8r4CX3cVGeXc7T/r9/Dr0/QJMM8BdW0qkQZAemsW0fbR3SnDLQ8KohISHtsPGbhZF0OH1ctivz3beW9cDo9lUVC1PUbW88kCl3LsaZlLgx/Ii/pRyalR5LPlIGU85m+VqAsx2DbcqQMtpisLlCSKNSmifOUCt1xG9P2b5hr3w2m3sbSZOb+WYZG2z8KMSu0UjVx2CLtGymgJf8ZBIVZayeJaG5hKkrxFJOERtl3TWxvcMwkCg19kEtQ7jB7/Fnz4cgtsSwSzPEYl4xG2XnGuiaSFHdl/HypaebG4sJ9geQ3OEMiqozeK1Ku0nukTYAd/e/x3ebu7BwVWb+OPSQzGyAq88xGzVCCISrXsWvyGCntUwsoLAlvgJRSsLEoGyUM4bEJB3gHO7+pglDl3KUxhayPgeb7HdLSOhOxxTsoqcNDljyfcxWnXMdkG0UdI6KseJg95mv9g2PKlTY7TTHkYwRcC1b48jDAWju67iniMf3nOe5Ktwnjx17q+Yd0zId5+EXqVxjrz9bJb+6G62X3Eop/bYnznTzmaoO5Jfz7wazj6a1knqif919WMw+0zlsaX/w0sjplKx4C0uueYOLn//UK6rH0P7BwMp2XcNV+TBzmXLpnDD6HlFcPLYoolcsuhhbhitdCXlY1qKNKzVG0Zz921PMb/7rGLifMFmGCjqRcLUyJ0+e6B2CNVfPxyA4/wOGtQT0XE8velrPPPdxVw5YxDX1Y9hjbylOJ/J68qY31/pRLTECwSpe5i+LM7scROpHH4JAJe8fAVvP/LHYgepYDhQKO17U7mi65Li8gH+p+bgnaYZesB5RRvl2ZGnuCR3HLMjT/He8NbiNKlur/A97WzKV36b5/42kPB3ylRh3eI3GfDIfcX9OX7iFBLbD8W/9Hm0g6cx4E6Duc+dw8GzVNexjWXs1ThV7a/j7+pYz0SH3urqy6pYe67PkL6biP7gAH46txeX936G0YfX7NJ5sssdmFGjRjFq1Ch++ctf8vDDD3PvvffyP//zP/Tv359zzjmHM8444+9yH/9e7Qp2ikQi/OpXv+JXv/r7/h19+vRh0aJFn2vZn7k+ngfC/DR46VRC19UgX+YDHk1j5zR36HgvVIJxsjk1n4K+pDDfMCSsKqdt/3J0T2KmQgJLw0vYBLag4kMXqQmSvQ00DyJtIZGWQGWqJF1CW8dLGGi+okC19zSx2g3sNuUQFpoqi0bzJXrGhyBQFy/b7OimFIBAgTZWCPAs7BPf71hvr8OJTPoB5sYGYl164pZo+HGjKLqXmnJe63ARAzupuiiaGyjjAQRCStxSEy+uke6qkRzqYNRbRFs0lTvgqA5TaBsEEZ34+lYFXoJQrYfrFfe3KADIIFT7X9NBz9PlLBOvtpwdBxtIoZ7i+REB6IQmBLaGH9XQAuXsZrX6ZGo0ct07HHC+zNrdzpMvo77KnZevuhbmq1K73XkiwXMMNE3iRyVuqSBsN9GiHn5cEmnUcEslnqkGwppPXlcikK7OjnQCPRrglwmEq+hZZpvAajEIouDnE+2NjNK3+AnVRVE5YB1hkqEliXRP460vwWrQcXt4CE2i1Vl4JRDfIsnusPE0m+eb98PeoWOayh5ZtwOCpIXb1UNkdKV1kaCn1DU62z1AuALXMRAJiQwFWpNJ1tGwa33CQCP0NGRGR+oS0/ZJ6A7Dem7hjaA3XcpTNCbjZNIRgqSJ1ajzRHuMeMzh63t9yAvmXjjrS4lv0dDXxWkbEKJVO5iWTyLq0MNu4cmGwQR5JoSREmieEtH7MYmXMTEymup0oaG5YLRr+IkQo03Pd2yEsrgGQgN131A/H6V2jo9yNWzLljGopI73nR4sbx2AllUxCbE6SaoPSF9jed3eVPTK0M1sJSdN3sv0YFTJB1iWTy5n8nF71b9/TP0Harc7T4CKMTczcGYd9sz1jBuXYuu6Mnpc9zvKV36bUX+rpv0DOCG7iPsmqfwXLfEC1F+Dv1c1/7PkcgaMOpQnxtzMbAbA+xUA3DB6nsooeetnhKmRzBqdZubM1TDzPIavcjh2wTxmjT6HwmindUkF455dzS391TJ+e/NxPD1i3k7gpFCnrStj3YZ+DLj4Cc5rmF6c5rPAC6h1p/c45j53Dqc99BtuOr2Fo8t/x5gLppCbYDC/fxsNf/gW0w56l/n94ZSJcWYnJha/3/DXQbxb1xvtYPieFvDaYJu15+78EPcvk1I83XUlsJL5cwpjzd/sNM3ac+HIXodw9A/ug5nKIIHX4IG3+nDtR9fw5k8HAnDsgqGMP+BE3jwAHu06iCN7HcLS5ZO5jjGcVvducV/s/1o5zaVxtgJrz/UJLnqRp48TSM7h8BXLmH/8Xeq3SikAc+3M1aw9V4G1k8Y9zNp1Ppkpv6P5J4tZeeoJ/HLqE1x28Pm7fNx8bhF/PB7nrLPO4qyzzmLdunXcc889/OpXv+LKK6/k2GOP5U9/+tPnneXuWZ1BTKF7IjSU6l39LaWP8HyklEqnAR1UMtHptZnfzYWuRgEgRGwy/UoxMyEikOQqdOUWkwoo+9jDaPdAQKwxT6Vy1ZM1PZsX1wcSPyoQUon4QxNFyTLU+qlwTA0rFSpdiRBqXQsdFttCxiLIqEWQsAktDS9uYGQC7Lp2RDqbD7oMOgVgFi5+IdLzKFnTTMvQKtK1BrEdvgoRK9FxE1qxWxRtDjFTStcTRE3l8qYJvFJD3YBzIV6pBoEgiCpwYQvwE6YCRbam6HJtqZ0vvp2BZBCAbqpuSyjVnVvXEKYJQpDpHkFqBY2NwI9IdFc517glKhg01hjksws0ok0hImmw5Qs4tPbUV7Me2fSbz3z/lN4/+P+8Jv+4vqgAyz31+cpqEziaul7pWYGVBKnrZKM2tqtAh5AQ2Wqq0Ecdpf0zQE/qNMhy0CRazCc0dEJX4MdBzwk0BwwE5EFKEJHoOaGsgWOhokRFAoSjI4Vkr/Ik6xMxhK1BTkOUenjlAZ4V4vSVGBGPMNARjbZ6qBOVGGlB2GJjtGvIXh5h2kDqEJb6CN9A+EJ1YQBRZ9MgSpGBIIwoSlZrcxyyaiBlpHT8kgDbCHh62yBaUzF8R6euqQyxJUJQ7SmL5qgCQRWxLO1ehH1rdvDWjjhewiCwlWFA16o2Gt7qSltfjTY/hmkGNLbHCSMhbrkgiIVoriBar+G4ptofger4647AK1XrpwUqC8ZIK+AjNSAiIacRmDoRw6dvvIkRiY9w4zrbvQpueGcs7o4YVrvqlrnlSssUSTjUJtr50+Yh1CbaKTVzrG7qwoh9P6JrSYr163tQX1vy5RyIu3ndeviv0ZdcxNpzp8GG3iyaFjA5PwB/5ruLWX5MNUcsO49u3AGjVeflygRcuffPYJNH6cyr+db9W+D0niRfeo/r6q9hjbyF6+ov5Ip84OVly6Ywa7Si8D33mzN4qO9U7ls+GT1xFnBW0T0LLuJbR94HQMOGM5CcwwO1Hd2D8gXKmOGBSfD0tJU8dDGMWLOJ+2vncH39Zu7/ay9qvr6aAY/cx9pTzih+r//YA3n6wbGMWPMSc94YzeQN/djHhRWTDSILfa7tdw1v3ncaA385nDA1kqaXD+EGfyyvfHsxf2uAw1fM5YERQ1gxsDffre/JXOD8BQnWyFt22pfHLhjK7MhTXJz7407vt9yugGjljyKc0Xcq9swOet0luePQEi+w9pQzaHp5LisHLQYqOPRPYwF4lHnFaa/ouoSnJwUcu0B1c5pH31H8rGHDGUwffy0Azy+9klH9Tsbu1cpfN9+jgGO+BtxpcO33ruHKRT9j9PAV8PIKuG0EQ38ykn3q7+aG3vDoPz1qVH1uANO5+vfvz+WXX06fPn2YPn06Tz311L8zuy+/Ah8Ms+hsJX1fDYgNo4OypOvqfSGU1kKGxSAsQtmhu+iceC/ygngNNdC2bUTEJtevmsASRJo83HID3ZPoOaV1AZC6UOL/bFjMQ5E6uGUmZlqowM2sxItraJ7quJhZie5KjLSPFkj8qOqEAKrjYppgGoSlMdL9SshU68WEZM2HwFL6FH2AhdUuKfsog7G1Gem6CMPoCL7Mb69oSVL+vkHDweVkagzidR6hIUh30zDSYLUrUT/kU5kNDc0PlTW0VLQ3o92jxodmx8LIgJENSPa2ibQF+LZycIutbUI6Tv436NQdKzS/rPzvFiotTdEWWtOQsQjZKg2/fxbb9tBeLlOBarbATIfYyUAFZXYCf1YyxMjuHh2Y/+v1ZXZf/h5o+axp/hGQ+Sp0Yb6q2pfdtfwIyBYLR1iYHuhZMGyBm1VuizL/kFQE+ZR6A9AUeAhiIVpKR/MEfheJEfXxARGYyqkxfymUhTu4VB0TaUiMlIZXERCryBKzPVxfp8R0MCtzBNtjGBUOZSVZGtvLqaxJks7a9KlqYXt7CRmATRHMNg23PEQaIX5NQHkiS2vGwNpu4pfolA5ooS0ZI8wYKozSCtm32w4+3NoFUe4ihERKgWwzsXumyBpRhB0gpaBuQxVGm47WM4dp+WitgtA0oMZB32Ggr46yucGmba8IZdEcmqPWJbRDtFKPusYyhAFsi/Ji9V6M6LUBL9R53+qK4xlIKchtTZDe1+HkA95iVWt31m2vwVwdRUjUg6xA4JWF6GktT89TgCa01W+AgE07KmlIxenVv5nuZiuHxT9kY78qlniD8HM2dpOGlwBZ6lGRyLBvST1uoFNq5hiYqCPpRXgr04cKO4Os9KiK7x4amN2tvrPjPYw/vUKPob/LC9wDHqgdwml8jwdGDwHeZNoch9c4j6dvdzjyxUMIN4/kyF6HALB0SQVz3tiLvU9fT+nh+/PDP+zFtIPgmYNbQcWWcMPoecVOy9LNr3Ikc/Pfv4BvvF7OMwe38tfNqqsw4E6DdYvfpGbhAVxfXw0outdAcSHhurnc0n8yKwb25o25Y3Yyxb68q4oYOH+B0u5s3DCXPn0VhWrd4jd57pH7eObgWlbdbPD0X1/iLwzjlMNGcGiDAgr7/GQx7Qxkdp+p0ACzD7uOJ9/ZwrINd3DxiEEI7uKmA05k6AHnoX1PzXfytIDv1v+ouA7lY1pwb32PmY8psf5zv1EgatwFzxWnWbThavZHAZj9XytnduQp3l1XRrgOegFLNw9hdkSN5d8b3sqRGw5R27FZgcFjFwzl6UkruW7uJcR/dx63LKvlhOw75DbMZRFXs6q/wdQZ87lixiAOW5hCjOhwq7tlWS0Xjq6j/YOBlJ62P6wey9u/foWWza/yy0c3M3+Ozh+f2fVjZ5c1MJ+sZcuWcffdd/Poo4+iaRoTJ07knHPOKYq8vkpV4GIeXX4ahhFVb3a2EO4kzheFLoaudQCUgvi9899B0EElK6bch0U3LFlTSa5nCUZKuXL5cR3NlWiBRPgSp9LAbFchkE6FiRcVGI7MP0VSQCayw8Ett5CGenrkRzTsVh8jEyhaVEInsBS4SXzUhtaWRlomXvcymvaLEBqC0s0+UhM4JVreCCAgsAShIZSlsK2miW1MozcnwXFVtkonXY+wTILaCnYML8XIgZcQeT2PxE4GeHEN3ZXojsRudtHcAK/EwitR/GOr1VNgLU85C6Ia2UodM6OocTWvNENjS4dov2CyUNivnatgsGAqBb6wLWQ8SsMRNTQeEhCtzmAvLSW2Q2mRQlPkAV+IH9NwE4oaoHkSkczwypM/+9I5y7tLfRkamC8DvBQ0MLsCXj6r/hGQ+aJBzL/TfflXAczuooHZXapwnvS/+Hr0SAQ/rix6zXZlaOKVSMx2pVcRIRgZim5YfkS5Y0lddVU0T6C5CtSIYhdBdWEKdLHQlmiOwC2XWP3acbYkkKbEqskwsOsO1jbUAKBpksz2hAqzjIYIVyC6OoStlnIpa7GJ1Om4ZSFGRhAa+XWJ5TU3GXW9rhzYRM+SVt76sA96s4nUVbdGH9ROtilKpDJHIurQ3BJH0yWGGeDsiGG2avhxiZ4R6K7AqQwo79tK++pK/JIA7BCjscMK1i8JELEArdEkrPbQrHz2Wn2kuP4lvZPEbJfGlhL8jKH0MYFAeBoyEtC3dwMbP6hVlLessm/O1QYYaWV2IEK1P400IMCpBD8q1bKlQCt3+cHXlhERPofHPqQuKOXilaeQ2xanYpVGrlqQ2y/Lvj3q6Zto5qNkNRO7v06VkeLPTUNpcaOkPZsPV/dAi7Xw8VnX7zlP8tX5fnLP4d9lcHJhnto1lGtnqlDK3ISOZ+yXHfFbjl0wlNPq3i2CjG7XvcINo+dR/fXDueTlK7h+9OH8cMZV9Hj0Yvapb+KNuZdw66QU5y9IFLUbBeDTp+9UNm5Q+o6lm19VA/kNvQFFF1sxsDfbql9h9aNn8MzBrfR67S7+fLqymx57/CjaDlFjjIIFdGe9yfNnzOX4g1YVX2em/I7nWq8uupBdOWMQ1V8/nOP8H1N/0y28Pj1C419f4rAVKV4ekeCMUfMZ8Mh9xeU2bDiDaXPuZs60s8lNMKg6bAR/a8hbRx99F7csq2XENUcT/4XS5DS9vIKlm3e2uQbVvQIF7sY1dHRh3hveStgplBOU2H//18pZVHM1ffIdq8I8CroYe+Z6mpcs5tczr8bwjuPgWTmOeFaZF1w5YxAVT0keeuBtXhtss6p0QnHe1sSHPrVuPdYqAKvXxziwoeU/q4EB2LZtG/feey/33nsv69at4/DDD2fevHlMnDiReDz+z2ewu1colfAb8rqPfPaLZRVBS1EkXqg8razYrSkAmc8KQRSaEu9HI6T7luLHNIysTxDRCU11MRVOSHtvC6dMENshsNsCslV5V6ycxMiFIBXNKdstQqgr4b80FOlZGgI/puOUGxi5ECupdCSEICM22X4VZLoYWO0SzZcIHwQSKx0qR66sonplalS2i5CQqdZxEyVEmmPE1jZCezrfbcrbMQN6fStdV0i2jyon20WS2EIRvBQAkQhC3FITaVhkanTspLJb9mN6Xo8TEkQ1MtVqnvHtDua2NmhuRZgmsmAoAHnKGB2AJQ9mCmJ+fF91YAIV2ik1iH9sEGwrzQd85i00A9B8iVOho/mguxKnTGBmhOrk7Kn/k/WvgpfCd/8eiPkiOzF7qGO7V+kuCCsPMiwV8KtyrgS6ozowmk9HNyZQ39FdRU9y8iGQmpu/tukKqIQm6DnVMXBjktCGwJJoPTPkUjZ2i4ZXGuKkLarsNN5Heyl9zYAUwlVam0CXaIFG0G5CLO/gldZwy0JCSxIEal0BoptM/KjEqwywd+g0t8WpjGbAV9fHMBIi2g1y2+PoVQ6aFpKwHcq7ZxleuZENmSpWmbVk28sRAXiVAZ4EPaORytiElkTPaoikjgC8ag8tEqA12uBoiEDQtWsrth6waW1XRI3DoB71rP64O65nkPmgXM0jQDmqFbRBO3Tq1/cgGkLk8Ea6lbTjhxobmyoJQ0HwcRypgwgF2a4KLIam0khiSkTEIx7P4YQmdV4Z290yetgtdClNsWVDAq9EkO0W0LOmlYTpsC1TxobGSt4q7cMOJ8GmZAVxy6UxFYeEzz5dGvn4SzgOd/c65u4hcCe8eMxkPmx4gn0mreRp4DXmo/WbmqctrQTU4PmgaSs5dsEQWD4ZRquuwzfv/w3Pb8jBaPh45fNsf3MZv+v2CqXdLuaSPu9AHyC3RDmWXXGoGoxvnsxpde+yefg5CgD99TiuExeyRt7C9fu9QvC/pZzdfzLQyNg/uLicytiHO9a77FUXgKNPcvPvPI//wlEAHHXfVHr8RL374W3w6MPzuGzZVcowYLR6KLfPrCWsZUn+b9gHsCccxWXzR8CyV7j1qhSD18Hm4efw19ohyslrBfzyoxRf7/86Vx3wB15/cxk/GraavVnPip89B63Pcfmyl3BmnMfRUNTJdNbvAHzj9XKi1yvRPADL4cjh5+z8w2yYy0b17INw4QHFz69gCdcC6dF3kF6yWO2D8qv4W8PrxX2y8p07KG+9mmumpvjLym9z5ZpNzI7cCIC3cS4HTQ2Y1NyHpzd9jWN7vw3A0NUrGP9ogvnzvwVj7t2lY2eXAcw3v/lNnn32Waqrqzn99NM5++yz2XfffXf161+Jkr6PNPI6CgBdR+T1KwXQUnS4KtgSS6mCufhEqGKhC2MYRdcxpBpch4kY6a66uoF5FiJU4nGkJFdt0rYPeIkQI6sG0tFGxWnWnVC5e0W0/GuJ3aYslCUqHFLqglBX1CgRSkJD5G2WQ9zupTQPUhQEK6m6DFIHq83HalPdFM3xEdIg2qQAVZCnWZmZULmEHdiV0g/a0JqS4PvFpHvpeWgNrdS+rLFjeAmhKZSJgFDAq+D04pTrZLqqbk+sQW23U6njR9SNVUhJpCUkvjmDsa05b6yg7KuRoaKGFfavJjpsrHXtE591MkzQNfVE01ZP2yItEjehYbWH2G0K4Pi2pgBdfr2MTIj3rzUn99R/qL7M7su/W/+IVvafBjF7gMvuWVKHIK4G05oPBQ6L5nUI7SEPcJRUj9BSgCY0FGCRkRCvwJjNqhl4XTzAxEyKvAmJEtZrUlBSniHZTSfeJU2m3Wb5x3tjtarvBRLCeABCxyx3kO0xjFYdmTdpiTQK0vu52OttgqgkNBXY8hJSrb8mcXp69O/aRLmdhbAg4gnx+2cpS2TZu7IRNzTI+iaDyuqoMNM83TSITMYmKA0wK3PsXdNM0rVpWNUFrzUC0RC91CXI622EFSqZaJcc1uoYRhrqNlZRWtuO2aLhhRarMz2w6g2cMp1oqyDT10fk9CIVzy8LsVp1/LjErQ44vudaYprL2209cDfHkZYkks47YQrVFUMo7UyQCIlVZrBNH12TbM4pUbgTmryf7EZTOoY0wC0FSnw2b6ukrr6W6MBWKkoyvN7Qi4amEsKcQWWtcpmSnkYXu/0LP+a+ypWbYND6bApUHmbeLasDvAAcNHV2sUNz5QwlLj969H3csqwnF906Ca6ByMIL2bhhLkuXv0rTH8czrgGiPziA8sNOIDFEdVDOGKVyYwbcafDn0xdzQnYR/WfexXmVOX7VbGD0bWTg0+V8NP1j7hr/IG/MvpQ/TFnFioGqQ1MYdH80dS+qjmvhO/MGc/7tSZ69Ss1fPvYtAMRJfyaxXdmAbx3wPaq/3nE/+PDrMO22E3feCU+D2PdZbp2UouGvg/grKn/m9Lq7+MupP2D+U6v5+thBDF7ns3T7TTS9PJe9565XJgH5WlRzNUtnDGLFwN68NvZFAB6YqwT0Ny1roXVJBSsG9uZXspXqr3+Hxr++xJG9DuHtX7+CnNu60+oMXT222Pl6+ojf8tpgG35zBs/95hDG5alvF+f+yG3dfg7bb8J/AfRVd3HQKhj6v+fR/kySEe8fysz3ZuPyHjP2v4Ty01qYdFofTsguonXNZE6oWUSq2ys8N+hqxgPLt+x6jtAuAxjTNHnkkUc4/vjj0Tu7af0XlbBtBPkuS2ETAzoGyygHD+H56rUUHR2BznQyUBd26MhUCQvTCYJSGy8hMNMSLy7QfJVgL0JJWz+N+GaJnQS7zSc01WdqcC3Rc4WOA1itPsJXr4OI0rroTgiGQDggjfzTuoyHNHXS3SyMtCx2GryYQAsUbcuP6piZ/JO4jLIwjjaEeKUGVquPNAS6I0nX6uTKy6l5U0evawHpIV1PaYYAfWsj3ZpTZPeqItnHwo8JIs0hVjbEi2l4cZG/MUrSXXR0D/yoeqJYstnB2tKCcDzwvCJ4Ua5j2s7WyXlaX5Hm56ogyyLQ1DWl18kncUabQgJLx0oqO+owz1SQGug5ieGECB/0XIDuqX3qW3sAzJ769+rvdWP+EyBmD3DZvUtq4FYE6mFTo3I8lCq3Es1VQKYwnezEiBWBkmGY7RpSQFgSgCfQPA2zXeD3CNH2TuH4unL4yukYLQZlpRkO7LKZVZFu7FdRz3OvDUambLLdA6LdUwyt3c6++9bT5kdZ3VrLh46BMELClAlWSKpUgKtoXmZKkO3jElohdtSjPJEhCDUa6suIGy5R3UNLeMgSEM0WRHw0LcTQQtpdg7jh8tfN+3Bwt80MrNpBrtygpn+KD1q7MrxqIwDzN1eipfI04mqfbvs2s35dLXgaGD5BxiDb24MQIttNss3lBAmJjAcYTSbSBLtJXd+1tNILORUSaSrgl+0J0doUlbEcT67fnyDQcNptdSsXFG38QyNPyROq6xQ6GrapAjgTpkuTE6dnrJUD4xv4IHkYcdslbUgCWyKzOon1Bm6pJJsz+XqvD3nqg8GEno4R9ziqx4dkA4unGocQyj0d/X9Wa8/1ee1Om+d+cwZH/+C+IqXs6UkrlTPWxCl8TzubawerrJmlm19l6YxBHLla0cIKlLOlm1/lyF6HsKq/war+1/HBmAOYdtB9yDvnc+/+N+eXdg4zZkCNt5pTe+zPpBPPZi/glsrD4d4r4d7juOtMJUqvvynGkRzCGTWKSnVCjQIM9x03me/MG4z/wlHcBLx1wBZ+e8YDMOxw7hr/IM6MveCHbyI5B5jGNx/6DQPuVOu4bvGbfPhDZbH8yWpZclHxb8k5bB6uXM4uuOE29rltK3N+8jiND8+jfEwLoEwCCtUf6LP4TeTy53l1+lMcMqscgBkzbua2QT/n0T+ORa4ZwgO1m5B/HQQM4q+bgeOGQEe8DmeOOkoFS/Jbqr9+OPPnvMvwaQ4P5XU90ZMPIPubd7ht6s/J/uYdml6+mqrDRmCsb8TbOBf998nivMp+eyoAp01vhfsVpS5V/grjJ04hhQoePbr8KpKXr6Fl8Z//+YGSr10GMP817mL/oKRfyA3Rdxocy7xd76f80/N0s2J4Ih0WheKTnZhCV0DT0NyASLPEzCqKV67SwC1R+gvNh3h9iN3qIXyJH9MV9cAPCSJ5upajOisI0NyAMGqgOyFeiaJiaV6ouh+GwEz56O053NoS0rUaJZsDdE+q/BgBTomG5iv9TWhohCWWEtk7QX47VNCkkfUxBZhpDbdEsP2IUrq9JNC3NRX3D0GghPaeR3RVlsjmEnK9yvBKDUJTZdiEpuJ8WyllQBCrczBaMoh0FplzwPVUN6pQhUydAngpaIx0DfywQwujhWr5QYDIGy0gNGQYgh9gZEO8hJ43KlC6F6nlu1qWRrqrTmJbQGirUYTuhZjte0T8/5fq39W+/L36RyAGPp8uZg9o+eqU5kJkh0FgSYyMKJq9FKhjBfqYCMHXUNks+c8LuSRCKkcyPasedEkDtEYLp1xDswNkxgArxE+E6FrIvrF6NqYq8aVydURA930aOLb7+7R4MeqcUta3V/NxfRXllSmyjkW/HvU0ZuI0bKqgulcrTbkK7BYdkdUxS1xM08cPdI7oth6/i06faCN3vncEhhVQWZqmvqUaWRehbXuE17ooKnlpaZZUQ5xXw94M6lLPkLJtdDGTvLq9D5uyFSQMF+FoSEMSmpJcyqasS1ZpbdoMQl1i1ZlIA4KeOdz+Pta6qNpXwsBqyT+okgoIdnkN0t0EueFpjui3ng3tlWzYXENFPMu2dTVE6nWCuCSWVPc9NNWNLxjYBBGU65qlHvC1p6K4EYNIqc/qHV3ZFKmgR58WMp5JeSRLvRkS36aTRic1wMNoNgiaovzJOYDomgiWgNx+AfVOCUk3CqFgW+bLy9Da3esPU1ZR3f9wlm4ewtOrVsIRv/3UNE9PWsnTk84GYPgqB/Kg5ulJKzlj63xuPn8crUsqimJzUHbGGzfM5YKLn2b18zGunDGIUyZ2yB1i877HkxcN5tgFQzl64sidlldw4QJ49Ncf5v/6Cb8+eAw3RcfxruYyY9Sz1K+4hVG/XMPFR/ej/caHKblU2R9P4098+5jJ1Cw8gNNRmpKNG+ayb9MpzNj/Es6AvK6kgiN7HVIU/O/z660AfFD1TQD2bfoLH9RNY+nmIWzs5fPUT9RYs+mpimJI5aULLuM3R88oru/GDXO5beqjvDpdvZacg0C5qY0/+VGOrrmP8oYE8POdtnmf+iYe2voe/cceyPBVDrfcPhiAB7vezvlzL+G1wXO5cvlkqr9+OPt8/yEs4Cdzf07FaGUf3fLwEJ4bczgfTd2LvU8bwCVb1nJd/Rgm7/sntp6rQNa+B47iVOCh95UTSX3Pa7h3ZDMAz/zmDDInrYU/fOrn/8z6t1zI/ttKCKFASZ4iJqWiFBWE+4AaJOs6BLIYRKkoYkrU3hnkKHqVumsJ0+qgpgklyNd8iVuiE5gCLyEIdfU0qNCNgTyA0ARBREdIBTwCu+NmGFo6bomJ5oXF5YZ5HYyRDTGasuD5eAmD+HYFmKQhcMo0DEeJ2J1SnUhzgB/V0bxQpThbSpcTRDU0Ry1X8ySxHT5WSiPZR6fhwARVpoa5saHDISxPmZOeB00tRJrbiNpWfp92rGMBmEhHcSYlKJBS6HS5XhEUFh3dCkClQN0rdLu0sGhrXfiN1DQhhBrC9bCaXaKNBq0DVHBmfJuiuIlAgiEpyZsZBHaHMYDI7OnA7Kn/TP0zXczuULVt++9xIvsPlghBywGhILTAyFKkk0kdtIzqhIeGyiIJIiq7RM+q6UNbEkYkVpOGkRFkugdojqY6Bs0moa00I0QlRrtG06oabvv4G8hIwObycoyMCrlMWA4akndae7B+ezVh0kTParQkTEROZ4vpE7dduvZppnuijUa7DLdcQ/gC39NxkzZhVYb1qWrG1agnwW5LBL3EQ0qBKHeRrZZiYzXZJPq2kclZoEmEgLp0KSWmQ5meZVB1Pd0iSTZnKhDlLvv33s6qd/tgbrV4S/bGbNWV1ibm4tsWRkZgrInilkmCgSl6VLWxeUclTmCr/ZAV+FU+TqUB/VPIQONvr+2HUZ1DtBtsf78LsiQg2y9AbzaQQmBkVdffj0OoqxBQM6n0ngiB1MFrs0jEczi+cjXzfJ3ndgykLRMlYvhgSqRQFDshjTwtUMPeGinqmyLvR3l56/4E3dS9sSGd+JKOxK9GTT06b1ecp4gNX+Vww4vfL1KYQNGgQHVqBtxpsLbuXVgwlAGP3MeOoy/j+Unn8fqVS5ix/yUs3fwqxy68haUj3uSv/JYtZ3bhvfKV/HLqxQBkf/MO9N3EkL5qsc4BewEqENLso8DEopqr6Xpxhh/Rg8HJhawqncA7H21j7B9G8e6i58hNmMX8vbcyv+ljeP01/h97bx5nSVGm+39jycyz1V5dXd1NswgIDKDsCF4XFBsUnVGY3xVcYNQR3Lh4URmRQS+DuADjwKjXKzMugCLOjMi4sa8qKFsj0LIICt1Ab9W1nDpbLhHx+yPynKqGhu6Ghqab83w+9alTefJERuapyIwnnvd9XoC//vfbO+d05Wvu4vDfHccdpxZ4cvXNLAI+d9l9cNmxcHVehwWvwrz59Rfyd78ZhE/Bhf98IbusuYLTdn8QMXoKjvP44hc/zXXfPqBTYyY7/23s9aqPcuAX/8zZc87ijHvezYOf9tdnl500993zbgCuOAbmcD9wMGfcM3O9x264heFDDmbshls62+5Y8iPcYft4l7OTzuaaQd259qdxNeRFMFff4H+37Zp1egR7/+Rmbj/6XB45yV/HR056BSdwOOKx5Xxz/C/Iib/m3DuuYiL8I3sdfT97zfru/+HS8wBYNLWY3W3IAxvyD0OXwKwNpdp8w4cjzaoFI/JQMVEs+Mm1mjXRDYMZlSW3SSbLfBhaO7TM+UJaBNqHCxiHrhmEg+JKA0qQlnzifFDLcEJ0vh2nQDd9rRgTSWwgUa08JE0JxnfVZCUYWmIQOQEK6sYnqycpSEmrXyGsQxjnHc8ycutliCYtMvVWzWlFYYoSEwiSisQUoLTaEjQyRG7vnFYUMs9bW7NniSExQvDnFZ60wEz+ibM+TwYgTTsJ9Z16ODoPrROz8oesL0gptM7JjJqVVyT9NWwfIxQzdXe09g9zN4sktZWbOEFXW/T/SZEVCzRGHWkZkh6JzEJUYmn1KYTz34tqeQUmU13Jv4tNh2cjMV1sfXC5Ha9M/W8nZ8LGdB3KK0wnLyYp+zpeaY8gK858RqSCZMiS9grozbCASyTBmgCR53jYNEDXfZ2ZrKio72hxTpCVLU475pWqDOoaY7UybiJEDcXM2WGaNZMVTLNI/dE+GhmYkmVlMEAwrlEtQbBzld5SC+dEp1BkywXcMbU9IvP5L9v3jft2nA95S0YyrBMk9ZBgVUAdaDxZ4cnKAL8Jd2TH0dUMRzWWrB4liDLuu3c7yo8qkJD2+bpg5ZE6c3pqPDpWRCUK0RKUlgsassSj4wWQEC2sIwRkqUJaQfhXdcpRwsTiOZRWCeqtEm4wRU5oRNMXAUV622mnwQW5+pXnIgV1r8TYwPkCnnVJnGqSzD/LWknAg3+az9yFE0zHEUJbajv45FPVFL7mz3BGmimcEKgUvyrnfJFLVVWYSvd5si5c+8F7OfzSvToV4q/Mk/jBO4+1twFcCZ0J9ZX33c3ho3tx3Ot+yF3zfs8R/+9rjIxvx4MXvZX3r/DKxbmf/zBcPcCi8W8zv34t/3bfzZx4n1fYhw86iy+8yi/1fze8kg8mOcH80ndYcOeFLDl8kjfjrX9XPflZRub/mnultyP+9NvezMIr5/KBW37AHW/2cVeLz1i7atwFx13MEHDJXbfgPj0PuJ8bjjiSLx+/jNPmXs33vCEY8vSL6F/kidPnvv/P/PzYbTj3f38YgAE8OVh9g1edDl92G++//VXsKj7FXvsdxj/ffBV73X8GoDnl1tO4d99tuXh0T58jk4fRHXqlV3za7msLb/8Ou4pPcdpcT2LahSmPe90PcV/ch4f+PmOXsUOBswF4y3jG4qNe3yFOtXm/57/+o0647+6I1ik4PsTeP7mZ+X/zYz71+n24+WM9LD7q9YzdcEsnV+l0duPML57Pj+6LuXO/U7Dcz9f23pWJIwRXHn039zz81z53Z9lt/PX/PoiftP2v14MugXkqZod8tRPE80mxcw4BnfovwEwOBvjfMn+vHeIEeb6GxQmLyAyykaKbvkBjUMt8dXolCciQEwZT1D4BX0pUI0M1Re6a5bBBSDjlP2NDH14WTTka2zha/RJpQMU+Ib38ZAzW4ipFsiLopiArK6a38bkgWaR8Ammu2FgNrUFJ3O9jgZM+hzSCoCYpCOFza5yjsrRBaaVXoVojEdPbFuif6keO+XjMTq2Yjt2yyYvAzCoIqvL8oU5xT2aCwDtOY/n3IXNLZO0tqDvXuv3ZzPjzbH9Xs8wUROBVMlFvEgSKnscD/5DfOWG7bcdYk8yn8gSkZUFptcFqgSlIhFE4sw6b5i62Smyq5P314cUkMY3H5wJQ2mblBn+mq8JsOtgARJTntxgfsmRC0C2/UGJC0TE3cYrcrdHvm5UcWclhywbRktiSYXBomvHlfYhUklX8QouuC1IFacWR9IHpzZCljEAb5u62gpVTPUgcqdPsMLCGuyfK9Faa7D38BPfruTT76qxcOoiaVsieFFsLyEqOnkdhqtLL9I4wt3caKRzbliaomQKPTA3hAouzggfHRjATES70/d17l0e5f+UowyNVpopFaAa4yEImcGsKPF7oZ7xZIjOSpBngAku8b2sm7OuRuQwXW6TGk5qs7BUqmUA0JpGpxIbA0h5PPMhzjaIC9X6L0pD2+pxK2/J5MbohEEZgtXeeNCHgPIkURoAEO6smj1P+JwoyUqOwVhAEGYPbrSHJNBNTZZgIkYl3LdNNTzrDNcoXYu6BeEELoRymGnpbZyOoVwub75/xJYxDv+sdstqT7StZxKLdv8bVS07u7NMmLU+FPfNYdj7yCf70kQO57uhpxl93ErscuQcPDr2V8z5xOTo9greM38w1g5o3Pno+i4Ab8eFXa355P+9Z1LYOPoVr8a+HjpiA38D44AAfzfbjsLcD/BbwqsuC134G+u6iuGqYwy/di5vGT2Y0uZ8Ljnt9p18Dd72DnfYZ55yzQ4696ARG5n+Fd1z0OBdxJB/9yc/oX3M8Z4lT6V9doVm4hy+f9Db+5dwacALwSyavHmDZ4f6+fdGlFWAZZ51+NWFhd04ZPQJ75ijZm3fgQxd9h11FP8EffgXzT+scv22h/JY7+jktJy83LrsNe+axvOmCD3HRsoW4M4/ly8ev4F+OOZizLq3Af13IA7lr2fbvPpA7uBqWwH5nLoKP3cfYpbdw3Ot+SGX5gRy74lXcyyd54/4f4oZlsPio17OYb/LQ4A4MDJ7AHO6nf9EEp7Mba345wNARE/zjP57Lv/3PMvvKD3a+T3vmsfzwvHv5TOsyHt/95yw4/jP8l2kBs+zengXdGdpszM5xaU+i20RFipnwsFm1YZilxLgknflcexKv8h8pOpNukaQ+vjnzE3pb1D7PJbWkvSFWCWQzI5j2Mocw3hxAppZwMkbFBqelT9IP/fELK/P6JVnuPFa3PrckzbAF748fNKx/aOYuN9Pb+7yUoGGRqVvrPRN5O0+Rxwjb0OfuyJbxxgEWUD4ESzio79gLkbebflp9lnbRz3ahT5mTF+NrsXSumZ7h087YGWWlXMRuN5fmnttQe/V8Jl+zgKn959N85QjNnUdIdhjBjA5BX2Um7KxtNCFyopNmyGqD8mM1Bh/MKD8csuy+UayG5rAkq3jHtdo2krFXKSZ3DmkOB3Sx+fBikYoXG5s6x6aNxuNz1/p5pu2z31sXRqd2f0H693KDzMDmOR7tXJeg7g1MwmnXycOzgSDpFaQ9/r5rit4Vyw2mPnk/EYhEMlhqIosZTjnsvBbJYL5I4w20sHMSCoMtbDWg9mgfjz00Svx4hd889gp+8sTeJNYn7QvhuH9yLlPNAv9z27von1fFhs7ftgPLvF1WUdvGh0dFQUor8/fU2GquXr4bKx+ag4j8sevN0D8LQoue3+APS7dBSsvUdJEsUT4Px4Ksal93RTjGVvey8/AYI3Oq7PbKJygWE/qCJq/sW4WspKxa08uK8d5OgUxTsbjAkwrRVjVy0tcaMbS2Tfz6WGgxZYuJHDITBOM+3M4U/Pcgc7ICnhBlJUgrkPTh7/+F3AUu86SnOl2k2QhJYs3cnhqHznsQJS2m5SMYvMFCRnNBRjJgKazx9c/MNi32f8VjvO4VjwCgphSmbJHa0sXTce0H78WeeSyQh1fBM5KXK4++u7Pv4ZfuhTz9Ij532X18b9FVjL/uJL58/Aruve4iLvy3cwB464++zWhyP/bMY7l7t6tYePt3WPNL7yp31Ed25uiDVnP0Qav56ZIa39r+VL61/al8ccnZvPtf9+Cj2UxdlzYWXjmXiX1+zv/d8Qkev910lKHz7nz9WvvJ0y/i0/sdtta2i0f3ZODSxQB8+fgVyA+fxInnLyS5cwnq3NcCvgjm/pf28JbxjL3jd7F3/C7+5ega59wwxoNDb2XJ/pOd9sP7vs2e2y8l2O4kRpP7OaV1BLuKT3WOd9bKRZ3aN+2/5ekXcf3xu3LIwnv5wNWHEWx3Eqfc6onPjcGvkP/fPVw8uifvve8irj38v/jTRxbwpvu+xeGX7sXwIQfz5H+/u9PeinA33nJHP+7MlC+86se8Yc5+vOLyJgOLzmWPhzPGX+fD8IaOmMCeeSyPH/4l/nPPSe48/xT6F03w72cHfDf6EW+4aB+uOvpEFrz2M3z5+BXr/id5BnQVmNmwBmQ+abXO51bMLlI5K7m/nSzeSTKHmTows92y2iFT4PNnkgQRaMKphLQnQKSW5twCqmUJqykytah6iqrF2GKAsNLnt+T5IwKJMD5fJe5TqNTXctGNPOzA+bouMnOIpo+9NQWd15GxxL0KHITTjqwkvCtZ6tBNQ9ITElUdUdUxvY0kK/u6BFZ7lcaGiqRPkxUk09tJhu5LO6ERzSFFaaQftWxVxx6UdrFPa3yuSzt3xZiZa2To7AN0wsaE1ohCgWybIVrDBZJeiW76nB2r89hx5Wu1eKMBheiPkK1eVCNBNGJEreG/AmsRUkKcoMYM5cziRC/CKFpD3kdTGmgN+HOOhw3RuKIxd+t02+tibcwmSi8UuXihsT5S8kz7b4w608XGISvhV/eDPB8moVN7CkGnPpYJcrITeIJjIghqgswGqFSgWpA5aKYB5Z4WNScQykGa3/sUmD7DwGCNaq2IakjUwgbpWJHK9lOE2vDkmj76epq4TDJdK1IIMpwTVFSLejOksFriJoqYeSnNJMCGkC6MGQwy+qIWbx1ZwnVju7LsyUFU6i2ZXUOjeg30plR6W9TGyuhxzZvffB+3rtiB6UbEvPlrWLZqEDGpMQtbLOyfZBnwxydHMZkk6VPUH+njV83d2W5kHGcEanmE2K6BHUggVjhlcTWJ0z53BeiE3qmmxGa+MGbW9KYApujIKo5gSnbCpIX1lsnt0GeZgmz6136xzhOS1vwMAouoBrjpACK/WJcaRZ9q0kgC79wWOHRNYBuKvu2miFNNI+3Blg1aOta0yvxlxTDBuEK1BK2+lG2GJ3nsRf0P3DLwpl2/hDz9IuAA//vomWrvQMeBbF1okxnwpODUC0aBUb505B7wjT343GU7AX7Cv9f9h7Fsf9jlGD/tvXr1nuhv7grAVQCX3cd3I19gcRRYedwhzL3wBj4YH9PZ/oG8T+9b+THAKy1XfRM++eHPdEjM4BFHAt+h90vf4QeXHcWHrv0Ev7hzD/rPn2D8zD3oZw9gBQ/97XEcx3Gw5AlOufU0zj7oLP7l6Bpv/ZF/HrV/X3HMCehvF7j4hj05at7vObvwS8Dn57Dan/vFo3v67dvBcfsfx/cWXcVpp1/UuX5v/O0BnHrBKPJ0eNMFD3DolX9LuG8/S/afZPfb+3nA/TOjCXz/19f7YBi+w43L4Ljt4bqHVvHmPU4AfP5bu+Bl+uqDufEPv2Jinzn87KB5XPMf/0r/Itj/0h7gFmDXXPF5AC54AJa8Ay54gGuAz1z8bn7w9Unu28l/F4ffkHLl0Sfzpv2O58mrL4RtN+Q/p0tg1oJf9bdrF6uUYsYeWdEpcClkfumse1rYEuDVhCzz4U/t7e3Je5ygGin1bfzdWDd9zRaTh3QFiQ+tspHuWD0K48BaTEWjGqkPPVAC2fBJ94Vx55PyFQRNS/RkDVoxKIVqZZioQH2uRjcduuUtlBvzHKXlPmQK4Ve06sMS3XDYEIorHYVJR2NY+mT/gSDvp6C+nUGYgN7HjA+PSBytkQKlqQoiTnCtGKF1p05MJ8zOOnA++LhT/LONtjqjNfT30ti+H2EcQS1DNwW6nmKKmrSifRKscZA6VG7/7LTERgpTLMFQCV0ro6ZbiMnpGQOBDGS1QeVPjmiixPS2EXE/pGUIMkc4ISiulAR1x+TIJv336qKLTY6NJS7P9PmnEpm2CtMNJ3vukAmQCpz0KjW5XTICssgvmlid58pYvwhlgzzkLPPqtg3zBZZU8MSTg77hRPqck5boWB6bHpiqlnzY1GhMGmvUtKTZDKkMTJPWA5pRRlROCIOMSpCweqKHJ5IBKqWYlqtgtUPEksmJMq7XoFaHTFRKKOH47eSOrG6WEbX8uddS6KoiKxjKvS1qyyuITNC/+xpeUVzN1Y1dsY9UeGJ7yY6jq1lR7uHQhQ8ihWNescoND+yCiyXRcAYOrJVMNouemElwTjA8NM34VBkT+/oupuDzU9rhYCr2Lmu0r1/N5xGpBNIen//TcX7TDl0VpL1eDcsqoGt58WjnHeDSPlDlDKkM4vGQtF/gQlCljKlmgZvX7EyjEcF0AH0pYjpC1yVTUyXk6pDCpCCaDEjLmodro4Srfb5r/0ErMVbyuv5HuIUu1oX3r7iXC888FtgVuHut2i+wNom5esnJcHT7nbtZtPvXgJkaMcOHHAzf2IOPPvplBngH8vSLSPY4gevf7Rlre5X/xuCb8PG1+/Fj4N3/XuSD8TFwAUzsU2HgLjok5vF99mebu27nf19awY0dCkd61WiXNVfwre3zRpbAtYcfQPVzi3jLHXDa6J64Iz7Ely5exmmnX0T/pfvw0N96peTCX7+X5N0n8OGBBZ0ckyfDmzv9GU3u560/+jYrwt24ZlB3nNF+NecMjjryJ5x4/m0c97ofMqwP5pqfHMZocj8XtdJ9WAUAAQAASURBVM5jaJ8LWbnHRwjv+zaHX7oX1x+/a04SPa49/L9422p/j//0aT/muA/7gpmHcC9vucMrN/9+dsCC8L8AOOe6v3Da3FsYTe5nz+2X8qs5ZxD84RauGdRccvU9/OygeZxd+CWfufoy3v3v/jjXnH4RXz9pGTu/dg27T87jH+vXdo7vrnyC9514Gp+9Yv+OicBhl36dQ6/chWt22IkHOGVD/m26BGY22uFHbdcxoQMf5mSM/9sYn+PScb8SMxPz3MK3XUxR2DR3MYvXLnyZ7ytqTcJqmbRHEVYNqpFhCoq0RyNcEdXMkM3MO48FClMMUI0EVc/DypwjmshQiaUg84ddIFACSo/VkdN1rzwAspEgjKM1JCg/mccBF6CwWtCzzHgFZdAbAbTJS3PEYgNJOO0oTFp00yIT6y2OBZQf0wQ1/4CQzpEVJK0BRaFcQCVp7uJmZtzC2kYHkLuJ5WFlxuQWyHRCxhjso77TADYQlJ5s5g5ovi0RKILpzIeuZRbRtq3OLKKZ4pTAFIOOKmNHKgRCICaq3lK5fU2AME4YnIiwxYD6giJp2ROX4ljGxCsDkqGu5L+5cdLS+1/QgpabK0xtU+TCPF/ysq621kVkuiTmuUFmQOpX+DvquJ0hLe1cC5vX2PKqgsD2+2RyYQXO5k6YBqLHA8Ip4R25Qt8W+eQ7XKOwVYXKYJ83/Jn7V8+lNhYinizyZN2zorgVYK1Aa0OkM3oqTaZySSOeY7FFg57UhAtieuZUGVsyh73mPUHmJNYJlq/s945qAZSWalQM032atKCQiaS8/RQ7D6zmruq2JCtLPg10KuKhifmopuRX6e7su2AZZR0zMjLF7oMr+PWjr0A1BakRTFZLjAxVqRYTkjjw4VqxgqbCFLySQo9D5MTFtYMlejOyVoBuCZC+ODN5mTanZ4wTbADpNjF77bCMlgm4/08LwAp6R6eZmihBS1GMUqwVJNvGuExCIrFKMTXRxx/WVBB1hWpIits0qU2G6LrANTTR9tOwAzSeqFBYpZA1hQlhp32Xsmf/k1z52G4UVUIXT8f1D3yOcHQvYO3QsafiqaQG6JCX9us3LnyA+4B/3P0UBnf/EF/abxmnAeF934bTZ8Kqrjz67o5F8OAP/LGv+2kvD/1/13PH7gnfXfIjDvzkzpy4486Qe2L9gL35yf/7E/vvfgj/cnSNi397KwBX7Q1w61r9uha4Zr9Jrj9+V65ecjd3nr+Mz81dyCELD+DGo2/j6N97YkBeULP1r77g5L6nfJXWD/Yi/J9e8XnPtp/nayv+s9Pul15/MHvdfxhHHfmTzrZf6m8Cnuz8/NhtuPLGce496ldcc/NhXD14Au7MtENekj1O4Mb7vs3wIQdz6JVL2PlOr06xYsYwgd8ezxevPJsVR8CKxfCnjyyAA+E4jmO/fV4PvIqjgNtOneT9KwD6uWZQc/vrD2ZOegQfPPMYBn99Plw9wE8uO4rDlu3Jsd//JN/7t6uQp1/E+1fcy4ND8OCx8L8vPYS5F7ZD9S/iQ6ccy8RPX4A6MC8HuCzDCeknuUrhmi2Q0qsEqfFiSHsSDpC5mZwL6WOphBDeHjjLZohQmnnlpm0d7FJEKyFa2cAGZVTTKy7NOf6LDOoCpyQuUohGgogtuu7rmaAVthTipC9a6eSMa5mTypsCTDcgTjypsg45Vae8qo+psnfaCmuWWEkGH0sprGqS9EckPSEy8S44TkJQg6zoHwblJ9OOow5A3ONdyHQDXz8m8HVVsqIg64+QtWZeSHIWAchtltvqlsvaVcTsjJolBfSUaezQj24YdD1FNn28gq3k59zK8vov4JTP+xFJ5mMayC2oY4OwFqcl6WCJrK+ILAaosSqu0fImA7mTnKg1kGFA3/IJbH+FdKBIWtGEU46eRjdFbGvGU8nLlhQ+tinJy1PbfSY1BrqKzMagnbPRsU1O/ITaBj6cyeVExmrIysKHNSUQVEGUfT4i5In9ed5HVvBJ6LbgoCVwgUOmgmR+ggotWUMz0Sox0lPDbC+pry4RPRlgInBVhZrfJFCGUGb0F1s8MDWXKMgoLJymlSfGD5SbrJqseEMA4Xhyuo8VS0YoTEqSPovpzzCFEN0CXVX0b9tkbI7mFQPj7Nf3GNeP7QJWkPUZ9JRCxV41adVChqMamVW8evgJFvUv4ZHqMI+NRggrGB6YZse+NVRLBe5/YpRIGQqVhBYhoqrQKbk85UlJVgSEo9jbomkEwWMB2FzFCnx+kUwg7fW1XQCCQsZA2OTP0yX0uEY4aA0EhKUUExniVkCpHDPSV+Px5YO4wFLsadEUkQ+tMZ641WsF6E/IVADCkaaKtBEi+xOK29fZZ2gVv/vtbjyyYg4PPjZK6aGI/3zVPsB1m+vf8SWNK4++m6/89gCu9qkgaxWvXBdxufP8U9j3pLORp1/ElUfPqDDXH78r4vSAq47+vxx2KZ2wqbNWLuLcO67i1LtGgWNZtPuxXD3o51tH83tWnlNi75/czN5Ha64ZFHz23P05BLjvKcc96iM7A/CTT9/PAax78ev2i2/g8Ev34otLzuZ67mPR7l/jc3MD0j00983RDO90sPcEYIZ8/N2nd+Y9P72MH7eOYGBHx6nbLwV80NZb5v89AG8BvsTB3L3bVdx9v3dM+/puy/j48E58c+wspo6/ggtfdx9vPf0ivrjkIN44/Dau4Tss+njGNWi+uOTsPCn/bt638mBumncy6asP5oqV7+LNh57Aot2bfOnIPfjHZadwKH/bOZ9X/teFPOD+GaBTV2bP7ZdyUW6hfNH5cNaSXSB/NJx2+oNMXP1pBhady6H/8rfcsPuDfOnvRlg4ehFvXHgAy3I3NIBlTMJ+ewNww7I9OWThvSy6/j72WeeVfTq6BGYWhJIIIdtRW568COHDoNqvnQ/lQsr8t8Cl2cwkHMDZTmiUaM/6nfVKjDGAwqUparxKVArIyhqrfCJnWHWIzCHjzIcd5P0A72xmiwFOCmwgSQckumExkUQ4RziVET4xCVM1fw7tRPbMUFid4ERIUDOYoqTyREY4lWAjjdOS4hpDVvAuZcJCcYWvRZBUQMz1A70w0bZB9g/luF+gY5/Xolv+gdGcE6Ini6jpem50kM04sqm8boHweTydnKL29S8USBb0IxOLamaoasuHhVVCTMEbHfhkHumNDfDPs7Y64/LzdZHC4V/rml/1spFG9FeQSertntvFLvPrg7PIJCWqNoiAchiQBpbudG3z44VWYdr4221PeFFJzEvVVnldJKaNp5KZbsL/M0Nk7dwX/wywgSctbSVGtRzxgMgn+HQcyVRMZ8ItjE8st4EnOmmPw5SsV2cChzCCZMDSM9BACUddhTz00HwKKzU2cKjIkfRbH/7swNQDJlPF4mqJ3p4m1T/3E1QlCEd5ShD3O55YNuTzayoZtzz8CuTKiKDmHbdsAINzq4zbPkwe4hwqw/DANI+MDwGwfLoHmfjcnqDqz6/2Ch++du/EfFqZZrueCZSwVMIYNamxJcvYRA9xqpnfW8WkkseWDiMCiwqtV6vIw8PKPnzMDHlpJcskspCRlXSuvPvrYiOfuK8bvkCl27FOoA2/eewVJFMRxbrvW/znMjZwmLIF5aglilYzJFgWEk0K0p4QVfLFSKM1ENQcrekirSGHmRejtMNaSe9gncxIpusFGIK9XvMn9ulbxi3jr+DBaC5vmf/n7vNkA/FU0vJUV7J2uFh7vzaRAeBocJedweEJiNMD3r/iXm4MM85ZUuSmD3+GZft/iH9YuYDDTu/h6iUn43b/GnLZRXz9jOWceP5CAC7+7VzulX+/Vh9OaR3B1XucwPV7fJTDL92LK8J38dW5T/APKxcAcMnSf+K8O1/PHadfjVh5LafmhgRD+1zIBILzHv4lZ8+5l1Vv2on3X/9wp93+RROIwS/w9x97CHXIeXAIHUHn06f9mHPP8onz1zx5GOOvOwmZh2YBfHz4NL45dhYnnr+Q9694K1868gpO2eME/t/N28Oav4e5V3PVNz+IPP0izvvE5Xzlrbdz+KV7MXaDD//64pV/y13D13LOsr9wzQWTnLfTw7zx4QO4dqFXiG5YtieCq0n2+AbBfRlXhuO8Nfkp21xdZyE+nG3pTb/gc9zH4K/PZ/LqAa7Kiefk1QP84+6ncMjCAwguGeKqbx7Lwg9/hgv/7Ry+fPwKPjd34dO+9xuW7ck1X90JPtgNIdt4CJk7ZbXJRh6eJESnUCUwQ2ZgZhtPsVdWaiY/po32ZL3txpUZ9Mop7MIBspKmZ1nWcVixRY1sZthyhGxlEChvoxxqsrIm6fW2xzhJUDME1RS9ugrT9fwYnij51xbVykh6CuiWRTV9zRdfF8YSjhtMKSAthQTTPtSs53Gfl5MVBM050j9gHYRVQ1Q1NEY0aQ8UxvEuY8676sT9Erl9hd7Vk+DSvLCl9b/b+TDtkDyYCa/TGjM6wNT2BXTsqCwzuNAXxczK3vrYRAJpFDJxBNUUFRtEM+2E+Xly5F1v0DKvuOy/N5kYTCUC04+cnPb1adoESgpILE4YaDT9912dRshuCNnWiC3d3eyFUl82Fl3ysh7kqrVKPJmBPKxJelJiIp+En5Xo1AxBe2es2bkZMgPsjB1zcbkC4a2TbeA/Nz1WRgQWqgEqFrRGM8KBFnZFCXozxESALRmwAqUtWVNTVxFO+gKbwbS3Ag7qArksIO21GKERxitBIvNELLKC8RV9qGmFXdAiiDIOn/dHLII7JrbjvsfnY5qK0oQgcYq0xxHPcaj+hLge8ufqCEI7xqfLzCtM8YrKGA8tnIONNSZRxKlm+XQPA4M1JiYquJZCF1vY1F8TU3C4koGmRoaGecNTZFayaqwXlecEIRy66p9ZMhFEE1DbzhFF3rjALCsRZCI/J29F7bTPM0oHM/TqABtolPXhejIVhJPCK2m5GlYYc8hEMF0JYCDBrSqQLUwphCmNsRK/v3k3ssGMAw/+C3v1P85Yo8yv7t8d+Mkz/LN00QlhAr7y2+O5cdltHXXly8evgAvWJjH2TK+k+NcAdwNwz+VPcOedSxC7n8IV4bu4BLj96GnSVx/Mk9u/mgP/8zvcueYKzj1rd+Dd/Pv+XwD248Tz4ZWv24/zf+8n1n67x/xHJVe+9m4Ov/Tb/PA8BSvu5f3HHMzYDbdxI3BF+C7es+3n2VXU8QFkMHL9w4zdcAufWnIO/5jndJxy62l8mh93kvbHbriF/kW+z6e0jqA/mMiPeBpfev3BDP4a0otXcM4NY+yf143Z5ub/4KtHwR+mT2CXcx/mth9NcuXRa+gf3449b96dc667lgtPO5u/v/0M/v5rLfrBJ/jfCn9/yhH0L5pgr/sP48Zlt/GPu/t+nbVyEZ997QXccfqMa9m+e9/KW1YuAxZxGn5h765li3jjfgfwD4f+iLuW+bnmv3yhRhZ46+c2iZxdIPPGZbdhv/lBAHYVn+Lcs97Np0/7MV8+fhmnXjDK1UtO5rBLvw6AOzNFfOriDf6fEa5TYv7li2q1Sl9fH2/ufR8qr/0homhmoq3kWkQFmHEha1sqt5F/BmsRgfZEph1C1vmw7VgGiyDADfaRDpaIc0lTJt4yWTcNpqAIJluIzJIOFMnKirhXoRJHcVWCqiWoyZpXEdJ0Jmk+TWZsiMMAV4wYe+0oTkJhypOTwuoEkfoJvClo6vPDjp1ylO/jlKA5qEh6vSITTnoFpjXsK0cP3G878cZhzVLd1ifYz7tpArFizYxq1S5imc5yaAN/XcIAEQQ0/2oejRHdsYEurUpIS5qkz187EwrCmidgYTX1KlXL5wl5gwSLSDNcMcKUQ2ScdWrFOC19eEFRo6daiPEpr8S0v7t2QU1jO25pmU24bvz7TE1N0dvbu4n+27ZctMfJ5sLzVWE2hri8mErMxqowz5fAtNWVDWlnY1zKuuPEoz1OdvlfX0L0FLyq0vL1X9r5L+2QMJwPhZKZ30e43Na35FUGmfj3hMnrlwgIpj3pyUpgIp/0biKfzB9MC5qj1i/e9CfoKMOkCjcR4rTzrl2BN6RxwlFYpdF1X/PLachK1tc3KTqccBSXa0zkfB6P8UUbs6J/FmYDGdFAizft8CcGgzp/rI6SWM3Dq4ZJlpf9OWpHONIgaYT0DdRJMq9usDrC9ma8YrtV/OXJYeTqsJP3Y0uGBduu4YnlA9BUiFRSGJOYgkNkgmTAUHlMITJoHlRjpL/GijV96EcKxHMMqi/BTkTIliAak6Q9jqzP4koZenWIbgh0g7w2Wp6PlIeb+QLPPuQP/DVWLf93WskDABoQVvPn4JDARJAMWJxyYL3iA14JYl4LKRz28RKprPP4yZ/vjpMcs58nX/nt8cDaJGa2wvJMoWSzlZnZr+88/5SOhXA776VdC6W9zY0d2mnno49+ufN66AhPIt648ACCP9zCVfnk++olJ3eMBPoXTTAbk1cP8P4V97LLmit4cOitgC+k+bGb/hcnHfkndhWf6oRhfefQb3Q+Nz9XZLIf+1y0kflf6bS3zc3/wf9aVCZ97HzmXngDP/j63rzlDu8YdsUxJ/DJb7yT8z5xORf/di7vf+1KVr1pp7XUmsf+5jX864J/5/BL9/ImCbm1tDz9Iv797IDmE3+m+e17AHjVOxewaPev8aYLHuD643flTRc8wNtWf4FP7vSzjuLUxhXhu3hr8tMOuXxqGF873+aslZ5xtb+HbW7+D5be9AsArjpzmrcmP+2QqeuP35XvRj/ig/Ex2E99j2s/eO8GjZOuAjMLzhhAdpQU11ZM2vbI7YKWaQZSehKDWttuWQofNqa1/5yZFTrWrh0T6M7E2WUGsWaSsN5E1XrI+iKyssKGklRLTCSwQQldz0j6NeFkRvGJurcJbqstznnikmUzSlF7Yu4srtVCCEHliYSJV0YwCWlRoioa3RLI2NsyWy0wocitPr37l9MCXTc0RgNq20iSPkE45SisdgQNR1gzOCHIShKROcKqV3DSwSLRVMHnEWVrk5YOKeyEuGW4njImlESTFht6U4K2YYCKHWnZb4t7JZWaQSa+Ho0raKwUyFY6Q5Yyg5pq4qL839s4BBaMQ0pIB4oEcQITyUyIW7soJvjvTM8ocF28NNAmIBtDZJ6r2vJih5O9mGiHiJW2WbleEvNs4WRdrAcyDwtTPgTMWDp5hFkEYRWvgjs/CW5b0juV/xa54hALH0UsAAdJL5hibqBiQDZz1Rk/Kbd9KcSK6LEIYQsQ+SKTIgPVEqiGQNi85lfkcxeTYcPggkkmJ8vIxwuolu+oanpL5+ntLSayBFWN7fPhVLKhiEWBq/+0KzvMXcPDD48yd+EEJlO4osFJT65eMWcNK2s+Zn+oEqN6ayxdNY/SwyF/zuaie1KY12LXeat4aPkINDXGCVRkMC2Fbgpf2yX1fQonvboS1ByNpWWSniZCOEwBVF9CsZjQdALT0GQtQTpgQDvCJ0Osys9p2pH0QrMCNrIUVyjvYBaDbjqfj2Rcx1rfRNCalxH0t7APlcnKPqTORN5hTiYCU3S40JJJ4Yt3Bhb1RNGbmBYcqK6i/0z47GsvoLRjhfet/BhjN9zClUff3ZkUX73k5HWSFz+p9rbL7f3av0+bezWlVwj+9SMauIGbpx7mykfu5ofnKb5z6DeYe/Z3+fS1P+60tSNw5m41vn7XuzjwP7/HxaN7cvduVzF+/ElM7PNzdjz/zxzNdsDE0/rRxns/abjjdP/6Jwe/inCnD1N592e5MHc/O+7D/r0jbv4mb1j+Nc793x/msv3X8D8K/8Q51/0lb2WmzsqpN/2CU15/EfaCY5nYp8IuO2nu26ld7BLO+8Tlax3/qTVUTnnHH3j8tr257IDFXAksygXz4UMO5rOHwFt/dBff2elnfOjaT+AuOwOY5qv5Z28Lboc5Z9DfuJ1Fu3+N0itmVJGjuJwSgiNv25vaB9pW1nd762qAJWcD8C+fuJxPfuOdlA66htNufQvXvPdc/teiL3D2QWfBb+d6gnjpLYwm3+FNF3wIToTftD7PtYU7uJZdn/E6z0ZXgWFmJeBNpaPRIvST2XaOSxtyxkFsNkQUzdgsd/YVMzbBWs+oLcorIi5NZ9qateKPEL69MMBpr0wAHeVCGAvNlnfTaisanY6IGZvm2bVr2vbOQQgDvYwdNEJUtcjMKy0qdqjE978+P/SqixCEdUvpyaZ3E9OStDck6fXOKkHdoWKvENkgJ2LCF9GM+zWNEUlxjaP/9uW46vRMH63rmBt03NvA93VogHhhP8I60rL2BGo6xZQ0cZ9CNx3RRIKTAlNUyMQSjDXyMA0Bxru1qam6v3bta6IVLg9xy/oKuLy/eipGPLHak6vZYX6dAqWKzCVcN3Fhd8Usx+ZWYJ4NbVKzKcPDXiwCszEKzKYKH3shVJjuOPFoj5OdP/UlZLHgQ8HMDJlxop0Dkyf457VivCPZjHOWivMaLwU6Ibwm9MfQTTpkyOauW+3kzazkSHNFQDYlwbQkqIOMvaIQ1P0xk15PkEzJ4fpTXFMhW/7+2M7bccoTB1N02IJFNiW2ZAjHtK9vsmMMdY0rGkRNIYcSbCoRymLrAdFKTbxtzNy5UxSDlEhlLK/2kiweQDehNewId6zy5u0eomlCnmj08cRUHw5otQLSyQJ9f9S0hr07pkzyvuXkTmQCs3ODqJBSHytBYAkKGSaTFO8rYoqw4xv/wmSryPL7R7CRRdcUMoZkjgHlUJPah9FVBbrpn2NtNcYUyHND/feW9DnCKdGxvLaB30fmBZ/Bf0/xoMEVLaqqEJkg6zG4Wsyyz5zeHSc5nvo8OTKfbD8b2vs8NScGnp4nc+Rte3deH3XLPewqPsVZB13D537+Vb70jn/gymP+xM3vuWyj+jz6y9NYedwhXLPfJAB373YV77joca445gQaj91K7QPv54nfnsPe8bt464++zXs/aTjg9bvSv+Z4Xw8FeN+Ji/nB1/dm4e3fYUW4G1d984NcveRkjrxtb/7Pk16h2NP+O19b8Z/cf5/v39KbfsFxH/4M4BUc/e4m5571btLHzufG4FcAfOpj9/HD8xR7br90LdUGPEH8ym+P522rv8A1Tx7GyaP/H/fKv+feR7dlV/GpvH6OV0YuWfpPnYKYZx10DQek+3fO/7OvvYA7z5/JT2l/bl2ofG+G9Fx2wGJ+eJ7ivZ80/PA81Wn/xuBXLD7q9ezxcMZ9O2n2/snNvO3bIbv94a6uArOxEFojhKbD6WaTmHbifqc+TO441g4za+d6tNUPJREyQFTKmJF+skqAyFwnnEk4h0gsutpCTNU8qbEO12pBq5UfY1bYmRQzilCb9LRJU5uodBQjtXaNlSD0r6s1Bu8pUNuxglECJwWNOZKwLokmM1TsaA5LhHEU11hspLDK91W1DFFmfWy2dR0bYycEqplhSj7J3kkwBUGrH1wY+OuVzYTQdcLx2iQLQGtsuUDSqwmmM8LpFKu9w5iuZ76QJ3izgGqMsBE28C5tspH48Dkpfd5LFPjcGeNX/5Ayzx0KvGtZahGZxRY0ulLCTVZnzASUwiVp53tFzSJZXbzgeG0aP+N7vw2iZ/3slpzXsjmS+V8qeTRbM2wAQueLOwkdktHOo0DQUV6E8a9tmO8jIC2BSj1ZyQqemLSVGaf9RN5J8tAw0Sk6HNQFMvX3Vpn6z9W3sxTm1hHCMd0IkU8UfP2wNQJTE8QmyNUfh57TIhsrIFKBi3yejevJIBXYgk/GSfssaT+4WBIMNXGPlsl6DTxZwJUNIgkoTEpwILWlL2oR6Yxlk/3U/tKHDhypFJi5fszvXFzFj5fty/KxPmxdEw20SKcjVE0SD+TXMp0Ju/NFLR0qgawa0tvToFEwuIZmaHSS8WoZJ6E16o8J/jpXHtXIGKq7ZPSMTmOMRDzSR1b0bmVZyatTKvGET7j82DmBRHr1yym/T1bKC2UaQVa2mLJFGIHTDqTDDicEj0dEqzWZTV/k/8AtB+6yM/hq+gSnnf+WTl4EPDupaROWr/z2eD772gs6nyntWKF+zmcoH3MOf6hF3HbqJOAn24PvH+98/vAf7cyX+Ie12jzt1rd0Qr3AKylt1D7wfirfy6h9YJSrTzqbH56nuP74c7gQOI7P8OGvFznzU98lXfIO3rb6ND60+i3cc/kB/OvVdXZ677mddn7w9b25/vhduerMz1P+zDm85r+LfGXqeP7pmEu4kl3W6s/nLzqXfzr2EgC+tOYKAM7+MXAkfGVgVz7LA6RzJgn+cAv//H/34MP//Ci/+2cItjuJIys/Y5vgdsCH6F3dtzdvywtfHrXN5Xzu5wfx4UuK/O6fTyL78c8AeDNF9OnncPWSk/n7jz3EAftN8g8rF3Dn4oPya74rp17As+I3rc8D8J7v38X433lF6YfnKW546H4W7f4LfnLwxRx1iw+D2/sn8JW33u7r7gBXsRM3fv378KZnP0YbXQUGv3LY39/P60t/SxCVcbEvANmxQW6HJpHXiDEGEYZPU146REbm4VE9ZdK5vbktb17DRUqysi8ICXmtEi2QmSOYaCJWTeShYMqHNznrX88iM0IrXJLMqC65etNRYMArHMonwaM1QkpcmiKikGzBEPX5RWwosEpQWOMdydLekKwoyYqCaMqQFSVWCYpjPmHeJ5E6r2aUA2ROYHQ9AQNOC1pziqQ9EhMK+h5uEDwxjmslMyQrS2YKVgIojQgCsoXD1BcUCWqerIQTLVygsIFEJganJGlFYwqSYDpDxRYZZ6haDMbiShE4T6psUZNVQkwoCaopTkuc8v0UqcWGyqs19QTxxKpcwcmveSeMzJCJlJumfszk5ORLVnl4MdEeJ5saB65Zvd59fj80Z5Mfd0Nw0ZLzXpTjHLv7JzdovxX3b57rMLrb+r+j7jjxaI+THT/2eWSp4AmM8cSjDeG8wkJOZFxb4A+9EqOS3C45cETjorPSL4zfXyaQlf3nVQzRlCOpCOI5DhP6/JlwUvj2JKCcP5YV3m1LgK76g5qSD4Oy2t/7TH9GMBZgIocbSHCJApN3PrDI0GCbmnClJu11BNOCaI2gsY2fwMtyipsKUU3pw8jyY8kUWnNNboPsQ9mySl6QcmEDs6qIjSxBVZHNTRBTAXpaIGNB2ucorBYd8wKnIJsfI7UnVAP9daamC6SNkLCcYB8r0/cwrDk4YdftVrC6XqG6ZBAnfDiXyMAULaolUTVJMjdFV3XHTMEFDlX3ZAbniR1q5jtUTb/dBl7Rkpl/HQ+6XLlxmIJFlDOKDxZQMaS2xcPf+qfuOMnRHieH/3x3rnzHc/Nne8f1nmB86soz+OfDZ5Luf/4mn9tx01dPYuSSX/Pjc/x+d+q7ANg324ef/5/fst93D+LJJ+8G4NO3H8I39vwOn7j3Q+y1oATAu77Yw0//cZq+932Z//nw3zP29ldQ/r+X8oMnj+BdX+zhCx9YyV4LSrzriz188fNHsmTpX/Gtxa9l+ZtGmXf9CvY/Ywfun9yL99/4aX52wB784MkjnvFcdq0/zAPlndba9i8jyzuv33jt33Rez73qzHW2sU/1Qa47606Omj6d1725j4//pMzIJb/mlH/J+OvbvCvaqsCTpCMvKrLbH+7iHde/aq1+vWOnObypes9a7R6yuI8b9p56xr5/9YT/fMb31oWDotM45u/+EYAfff+LAHzhAyt5wz+c39lnQ8ZJl8AAf/7zn9lxxx03dze6eIli2bJlbLPNNpu7G5sd3XHSxbOhO048uuOki2dDd5x4dMdJF8+GDRkn3RAyYHBwEIClS5duFSsj1WqVhQsXsmzZsq0m1nZznJNzjunpaebPn/+iHO+lju44eemjO042P7a2cQJb31jpjpPNj+44eenjpT5OugQGkHmCfl9f31bxT9dGb2/vVnU+8OKf09ZyY90U6I6TLQfdcbL5sLWOE9j6xkp3nGw+dMfJloOX6jiR69+liy666KKLLrrooosuuujipYEugemiiy666KKLLrrooosuthh0CQwQRRFf+MIXiKJnt2rdUrC1nQ9snee0pWFr+w62tvOBrfOctjRsjd/B1nZOW9v5bInYGr+Dre2cXurn03Uh66KLLrrooosuuuiiiy62GHQVmC666KKLLrrooosuuuhii0GXwHTRRRdddNFFF1100UUXWwy6BKaLLrrooosuuuiiiy662GLQJTBddNFFF1100UUXXXTRxRaDlz2B+eY3v8n2229PoVDgwAMP5LbbbtvcXXpG3HzzzbzjHe9g/vz5CCG4/PLL13rfOcfnP/955s2bR7FY5NBDD+VPf/rTWvuMj4/z3ve+l97eXvr7+/nQhz5ErVZ7Ec/C48tf/jL7778/PT09jIyM8M53vpMHH3xwrX1arRYf//jHGRoaolKpcNRRR7Fy5cq19lm6dClHHHEEpVKJkZERPvOZz5Bl2Yt5Ki8bbCljZWsaJ9AdK1sauuOkO066WD+646Q7Tp433MsYl156qQvD0H33u991S5YscR/+8Iddf3+/W7ly5ebu2jrxq1/9yp122mnusssuc4D76U9/utb7X/nKV1xfX5+7/PLL3R/+8Af313/9126HHXZwzWazs8/hhx/uXv3qV7vf/e537te//rXbaaed3DHHHPMin4lzhx12mPve977n7rvvPnf33Xe7t73tbW7bbbd1tVqts89HPvIRt3DhQnfddde5O+64w73mNa9xBx98cOf9LMvcHnvs4Q499FC3ePFi96tf/coNDw+7U0899UU/n60dW9JY2ZrGiXPdsbIloTtOuuOki/WjO06642RT4GVNYA444AD38Y9/vPO3McbNnz/fffnLX96MvdowPHUgWWvd6OioO+ecczrbJicnXRRF7kc/+pFzzrk//vGPDnC33357Z58rrrjCCSHcE0888aL1fV1YtWqVA9xNN93knPN9D4LA/ed//mdnn/vvv98B7tZbb3XO+RuLlNKtWLGis8+3vvUt19vb6+I4fnFPYCvHljpWtrZx4lx3rLyU0R0n3XHSxfrRHSfdcbIp8LINIUuShDvvvJNDDz20s01KyaGHHsqtt966GXv23PCXv/yFFStWrHU+fX19HHjggZ3zufXWW+nv72e//fbr7HPooYcipeT3v//9i97n2ZiamgJgcHAQgDvvvJM0Tdc6n1133ZVtt912rfPZc889mTt3bmefww47jGq1ypIlS17E3m/d2JrGypY+TqA7Vl6q6I6T7jjpYv3ojpPuONlUeNkSmLGxMYwxa30BAHPnzmXFihWbqVfPHe0+P9v5rFixgpGRkbXe11ozODi4Wc/ZWssnP/lJXvva17LHHnsAvq9hGNLf37/Wvk89n3Wdb/u9LjYNtqaxsiWPE+iOlZcyuuOkO066WD+646Q7TjYV9It2pC66eAZ8/OMf57777uM3v/nN5u5KF128pNEdK110sX50x0kXXawfW/o4edkqMMPDwyilnuassHLlSkZHRzdTr5472n1+tvMZHR1l1apVa72fZRnj4+Ob7Zw/8YlP8Itf/IIbbriBbbbZprN9dHSUJEmYnJxca/+nns+6zrf9XhebBlvTWNlSxwl0x8pLHd1x0h0nXawf3XHSHSebCi9bAhOGIfvuuy/XXXddZ5u1luuuu46DDjpoM/bsuWGHHXZgdHR0rfOpVqv8/ve/75zPQQcdxOTkJHfeeWdnn+uvvx5rLQceeOCL2l/nHJ/4xCf46U9/yvXXX88OO+yw1vv77rsvQRCsdT4PPvggS5cuXet87r333rVuDtdccw29vb381V/91YtzIi8DbE1jZUsbJ9AdK1sKuuOkO066WD+646Q7TjYZXjS7gJcgLr30UhdFkfv+97/v/vjHP7rjjz/e9ff3r+Ws8FLC9PS0W7x4sVu8eLED3Ne+9jW3ePFi99hjjznnvJ1ff3+/++///m93zz33uL/5m79Zp53f3nvv7X7/+9+73/zmN27nnXfeLHZ+H/3oR11fX5+78cYb3fLlyzs/jUajs89HPvIRt+2227rrr7/e3XHHHe6ggw5yBx10UOf9tpXfokWL3N133+2uvPJKN2fOnK7l5QuALWmsbE3jxLnuWNmS0B0n3XHSxfrRHSfdcbIp8LImMM459/Wvf91tu+22LgxDd8ABB7jf/e53m7tLz4gbbrjBAU/7Oe6445xz3tLv9NNPd3PnznVRFLk3v/nN7sEHH1yrjTVr1rhjjjnGVSoV19vb6z7wgQ+46enpF/1c1nUegPve977X2afZbLqPfexjbmBgwJVKJfeud73LLV++fK12Hn30UffWt77VFYtFNzw87D71qU+5NE1f5LN5eWBLGStb0zhxrjtWtjR0x0l3nHSxfnTHSXecPF+I/IS66KKLLrrooosuuuiiiy5e8njZ5sB00UUXXXTRRRdddNFFF1sethoC881vfpPtt9+eQqHAgQceyG233ba5u9RFFy85dMdJF12sH91x0kUXG4buWOlic2GrIDA//vGPOfnkk/nCF77AXXfdxatf/WoOO+ywp1nXddHFyxndcdJFF+tHd5x00cWGoTtWutic2CpyYA488ED2339/vvGNbwDekm/hwoWceOKJfPazn93Mveuii5cGuuOkiy7Wj+446aKLDUN3rHSxOaE3dweeL5Ik4c477+TUU0/tbJNScuihh3Lrrbeu8zNxHBPHcedvay3j4+MMDQ0hhHjB+9zFlgHnHNPT08yfPx8pt2yxsjtOunih0B0n3XHSxfqxNY0T2Pix0h0nXWwINmacbPEEZmxsDGMMc+fOXWv73LlzeeCBB9b5mS9/+cucccYZL0b3utgKsGzZsrUq1W6J6I6TLl5odMdJF12sH1vDOIGNHyvdcdLFxmBDxskWT2CeC0499VROPvnkzt9TU1Nsu+22vHH0A+ioRGv7YUwoUYnFRJL6qEZYkBkUxjN0y+CEAAG6nmIDhSkqdD0DwAlIKwFO+X3KD0/A+CSYDKwDKUBIkBKcQwQBFEJsuYQraqySOC3JSgqZOVTTt2tDhZMC4RxOCpwS6OkU4Rw2UAhjEdYhEouq1iFOcJmZOWaa+hN21h/fWf+30uAcSIVQEoSAYkQy2kdW1sjU0RoKkKmjuKoFgGwZhDEI47BFjQ01NpA4KciKCuEcumkwoUQ4MIGk/MgEot7AZQYhJc5a37d2P2DmegTa99lYXG8FWwqwgeqcNwDC9wMBLpCI1LfjpH9fWIeuxohGE9eMwRhQyl+H9opP/lsEAa5chDAA50iHS9TLhjuv+hI9PT2b+l9wi8AzjZPZuOGTRz7v4xxy3mUbtf9xb/3v533MNi684m+edxtf+ej7NkFP4LPf+sEmaQfg/uv/uN59dnvTpq2Y3B0nHu1xstMJn8cNFojnpey0wwqUtFTjAgCBMtSTiDhTNGoRUjqEcCAcaSP0DaUSWUrRUYbWjsbqEsIIolWKwhqHsBBNWFSaR4E7MKEg6ZEgwBQEWQHSiiMdtGAhXKNQMcTDFjucQC1A1SWmZHHlDD0WEkwJVAzC+B+VOHQLgrrFSf98E9b/AJhIIKzfjgTV8v0xocBpaA5LsgI0X5EwMneKxCgA9p+7lKX1AZ6o9lFbU0Joh7MCFRqcA2dk/liyqMBgjYKVETZ0BNMSGQtEBtGkQ8UgDUjjcAKsFsj8uqjEIQw46fucVnx/spIgLYGpOFRdoBLQTV8UAwFBzfnP5pUy2ucZVo2/Ns75nQWolkUaS2sgxBRFZ7uMHUHdEg8oGoWY+y8+sztOcsx+ntz01ZO4Ye8pAN79mXt418+feNa2fvqOBU/b1v5M+73d/nDXRvfxlkseIF32LU5/w3YAvKl6DwCHLO7r9O+Z8H8WfX+jj7cuBGfusUnaeSrS0+97Xp9/x/Wv4tO3HwLAG/7h/E3RpWfFhoyTLZ7ADA8Po5Ri5cqVa21fuXIlo6Oj6/xMFEVEUfS07VoXUOVeVFhAKoErC2QkUAVFYdwiLARCEcQxNlTYSGGHioRTCdYoXClETyeYYoApewIT1AyMDKKnYxCZn0SDn0gDCMAATYuK64hSEVcqYEsaggJCOXSakpU0yoINBE4LVGwRDmSkUc0UUTfIWj5JT1JPXJCQWX8QHQAOZyxCKD9xlzInU+3JvESEIWiFmdOHGyhQaGSeMKSaoJYhiiWcFMjAIlspWJBaYgKFiBROgOnR6IYlkBnK+YepK2nkgEO1LM6mOXER+flnoHMSJQCnEEaC0CActKwnRlGEKWmE9QROWIeI8qeoEBA6VGxmeNl0CzHVAgfOqZy0CcCTNcD3A8AImE4QKgOlCBrTBEWZN73ly9ubcpy0cfs/vHuT9O32f3g3+3/1xxu8f5t0fPivr31Ox/u3nx36nD63Lpz3yQ9u0rY+ed53N0lbPZUXf5LUHSdrQxUK2FKEHnRQKqJVRmIrvGO7+9g2XEPqFH+J53Db2HZMNoqkRpPEmv7BhMFyA+cEjTSglWoCZTAaspZG1iL0lJ8868CicDnZcGRKgpCoxOEykJMwvY3ERAZ6MjAhBnBzU3QkMAS4QCK1w+EQJYnVAtHyJEZPQxA7tHMo7fykHUCC0/77VgKc9gt8WLAlQVbw93ZbgGwUspKjd0ELFUVETrD3nMdJbJk0q1DuU4TljEKYkmQKayWZlQQqY7pWRAiHVBZrBakLEJlAGIUUAhs6dM33UUj/uBDW4YxAOofVgsBa3+8McKAySWokAkHW6xAFUJlABED+yJEZOAVy2p+vDbzjUWHSorDI/DoI6zCRRIb587gU4EIIGjmJKwlMEbSAyOaLZVvBOIGNHyvP9jypFCIK5ZD3nbgYlOLad3pic9j1jz9t36vetA2otbcddv3jqNyTqiefWz2+z/5sc9ftG3VOlVIP7HIKuvIzAArGLybc+j+aFAjX+ZnPvvYC7jz/FP7PRh1p3Tjytr0B+MVNdj17vrho96tSmPn+7jz/FAD2PensTXacO88/pdPehoyTLT4QMwxD9t13X6677rrONmst1113HQcddNDGNeYcLgo6K/wqtsjYUZiwmNArHzKxuEAhM+tfS0FzboG0ov0kuxIirEMmjnDSKy6mqL2q0D5MmhMZY3BJ6l9nmf9pthDVOurJNRQfWUO0so5MLU7lx08dMrbopiGYbBGsrqFWTSGWr8FN13H1Bi5NPTGxOVlyFuLYExSVf+VK+e3GgLFgLEIrXJriwoB4qOBXngAnBOFUimplYBzCOq+2KAlaklUCskqAjI1XjFr5ypQFXUuQiUW1LKagoX38XCXxpCXfZt2MWgT+ehgDrRgx3UCP1wkmW8jED24ZG1DCP7Ry9QlrkY0UvXISMVHFJYm/Hs7hWrFvc/axnM2vgwUpcMbi4hiXJLDm2VdctiRs0nHyAuC5kKF/+9mhnZ+N2f/lgG0OWPi83n+5YlOPE6thaLBGahTLq720kgDjJGUZ81eFJ9ghWs1Qoc5IpUZPscWC4UlGe6bZvmeckdI0gfL38HKYssOccXSUYQpeffEqgFechXE4JVCJI5oyqNihm16NCKcdIhOoFaFXC2KBmNawPCKYVKiWQNUk4bgiGpcUVwpKKxyllY5oyis8WUHgFFgl/PEyvxZkAuEJj137nK0GG0LS4+/lNnTUJotM1oooaXlFcQzjBMZKT9C0ITOKQFlSozxhs5Ko4KMGekoxhUKKCC3hhO+zDRxOe7Wl3QdpHDKbUV1U7BAmJ3gWdCu/Ni2LbjmKKwTFFQJhcgLmfL9N6BUWE3oiEzT8tWirOiLL27V+TkAeGaAS325QM+i6fx7KzD8PhXmO/5QvUWzqsfK+Exc/575c9aZNE5KXPnY+nz7tx+h3N1k09cz9ecsd/Xz2tRfw2ddeAGy6SfwvbrKcdutbNklbs3FreNjz+vxlByzmsgNmrkebvGxqbOx13OIVGICTTz6Z4447jv32248DDjiA8847j3q9zgc+8IGNa0j4m5BM/Uq+jDPojXBaoJv+5iUyS9IbkJUlMnUUVsekvSEi8yTDRBIntV+9Mf5mj3WgVWe1XyjliUtbBZkFFyd+kq0UYrqOaPiQrdJqvVY/acX+s9Z2JugYM6Nk5MTIOeeZbKDBegUGQBgzE0aWh5S5NEUUCpi+kr9pT/mHhylLr/xI34dwKkE1Mx/KpiUmlJiCQLUkMrWolsGGEhtIhFX+xh5bsrImiELfd9smLnZtGq115zzafUUKSBKEc6g4QZYKyGKAU9KrMLFBWIvILKLW8ApUkvjPts8TEEF+Da0D8nAy6/xvYyDBEyxj1yKcWws22Th5CeLlQky6eOGxqcZJe9KspCW1kmYckGWK8bSMKUoeTYa5p76QqaSI9IFLtDLNUKXOo9ODRCojkJYk0QQV48mMcD6Mywvbnjg40A0/O85K/n5rA0FSFqQVrwCIDJx2kPnwpnBKIEx7ESmf3DdApu1JP1jlyUFYc6jUoRsWmTmyosRp8g7k5+ry6ADh+2a1/zvtgaTfIgYTXDUgESFT0vFQfS79QZPBQoPRcpWWCVhR62GqXiRNFT0DLcarZQZ762ShQghHmmqoa7KiI8gEppB3X5GHePsFPk/ucuIAHaKRlRQmUlgtOuFgKnZIAyoRWOXbaofP4WaUFBX76ACRuTz6weGEQKQW6WRnAU0m0s8BhO9P+5o5KbDRS2tVfVNgU42VuRfesM7tG0NM2vuuPO6QZ2xvfbhmv0m4YJTK9y7mswcs5iu/PZ633NHfee8td/RzzX6Tm1R1aOPI2/bmFzdZDkqu2uRtb6o2X4jzfj7YKgjMu9/9blavXs3nP/95VqxYwV577cWVV175tOSy9SLP/5DGIlKDKQYI5wimM1QrI+kLsaFCWEdpedwhJDKxnQl9Vg6wgSSYSHFSYIoKGwhPKiCfNGeIMJiZoFuHc36bJxN6LfLhWrHvWy6NCiH8e86B1v4Zkt9QPSkxvh2ZxyY7h0izzmc7E3Zp1yIxQoegZK6mWHQtwQWKRIVkJUlY9Q/Jdo6JDRU2VOiGwRT9jduGEtXIcNq/RviVOhtITMETLqG1J17W+vC5/LoIrXFZ5vNe8L9REmzOcHKlSrRilNaecOV5RO1zclmWqzrCkziAUOKangiKQoRLY0RbCm0fX4qZa6/wIXhu63rgbLJx0gWwacPHZre5qcLIuirLc8OmGifC+tX8gs4Yq5XJMkUYZqxqVViiFzAQ1FnVqrB9ZZzMSarJCEmmGIrqFFTGZFJktFxFSUtPEDPeKiGlw7QLH1gfJdDJ+WvnHRpJWpKo1GFjsKEgqAlk4tVq3YB4QBBWQTdcrmDQUS5w+BAx6SfyLr+HqzhXuduhtTlpaEfltgmAEwKZeRIjrG9LSIcoZ0jtiJsBy5u9LChNMbdYJbOKlgloJgGVYkwWSkpBymojqcchkTZM1YqYTOFCiys6MhNgBlLUpMZpgQlBt/yzSbVy5SPxi2MiJxBtuHYQQOaQKX7hMXP+UaPyXJo0z/2JXee8ZOqQZlYYHZ64kVlQwj/ic+JiA7/oh2gTu7VVqq0Fm/qZ0g4Zez6KynMlLwDXH78rQEdt+OxrL2C2GfQLbQz99jfIl1z42EsZWwWBAfjEJz7BJz7xiefXSK4oOJmvrEgDsUMmPmk/mE5xSuK0QsYZphyQ9AY5gQGsQ7WMX32JPWGQqcFGCleIoNHyk+JAgxAIld8I08yHdrXVACn8xDpXaESUx15q7ZWczCCU9G3mCf+0HxTGeRUiTryaI33uToe0tNuXGtLMx5IKOUOQlCIrKKRx2IKeCU8QgqwkicYSVOwT+NPBAiaUBNMp4WSGDSVJryKQAt3MSHoCTKT8Q1DjwxBKEaLe7BA6EQReQcoyT8DyUC5mPSTIVay1kv5z8ues8aFvWTZz/dokph0m55xXX4QEYzx5sbPaN8Z/J22I2ZLQ1oVNMk66eEHIy+y2NxWJ6eK5YdM8T0DXBGvqJbS0zBmYphSk/GnNHJbXe9ljcDljzQolnVBLI6qNAkpZltUHqMYFjBNoYRkq1FnV6KGeBJhMIfNkc2HykOLUoFoZVkuEcejMUXSQlSRWKRAO1RQ+tKnhlQmnFFkRcD58CunJVjs0TeYBAk7SUVqyokIlNp+gi45yI8jVhpYnLT7syoeciQyiMUXaLOKGUgo9TXYaGmNOoUZZx9SziOXNXpZN9pMkmnKUMKdcoxLE/DmeQ0sGpEpTiFKmY03U5xeikoYCJ5Cp8H11oNL29fCKC3hC4wJBVlJkBYluWq+6ZD7krp1P6fJzNKHASX/+sh0i5vJ8S8NMFIV1yNggMr/IJhLjQ6udN7NBt9v1YWXgkHKLL7m3TmyKsXLfz94KwFVvumKt7evKgdlQPBcSdPWSk9e/0wuAs679KFT9619wy2bpw5aIrYbAbBIYi5qOsVrmrlZ+eV6kBgKFzN3AsnKJrBL6m7T0N2/RnnhbR1BNfDhTarClEBNIdKQR7Ym3szOKgckVCfBqipJ+WxRBoHHFqBOCZkONi5TPPXGOpC9Et9p5LmBDH8LlRiuolkGvqkK1Bs21iVOnD23VoW0oYC0un8g7KXxonPGSfHEsRSY+vwQlMD0FnweU2Xwfg2qkCOOvS1r27bRlfJuHytlS2EmA7Cgms53IOsn9s0hVO29F6pn9OsQkWFstaSsq7Vyatnoj5MzfIl8yNKbznfn2Z2UGSoGQW18Y2abCpkrg76KLrRW65bAGWs2Q7UbG6QlajLfKVMfLyCHHymYvgTLU0ojHp/txTpCmmtX1CvVWSJpoAmmRwrFisod4OoJYUmwJf59vpw4qgWwrDEqA8SHQNs8PtMqHgYXTXkFpDilag45k2BCO+XySZNDmKosgmhDouic0MqWTH+LDrgRZwSf6y8x1FAccntykPgy77folDbQGLKbiXdAA5pem2L38BKvSXpbWB1hZq+CcYKCnwWh5Giksq5sVyn0tlLS04oBKIUYrQzMOkdKR9iXgBE5pnATd9DmnTgofDdHOabSSrKg6z2rwxE+1rF+sFNBO9syKsuNeJqw/Jyc8EXNKIEVOemKLqiWg8zmCTTuh4EIaZJ7Yj/SqWPtaqfazuotnxPMhLC8Uzrr2owCcdui3eM9NM+Yol7xhuvP+aYd+63kf54zFt/D2N2y9i6cvBLoEZja0Auc6TleylfoVFvwNrHOTyny+hWpZgmqea2EtVmlkapCNZCaMydo8lEr4ECmTeCVFSE9YstyBizy8Kwoh0JieEvFIERtKROYwBemTCgNBWDXoluk8nHTdh2zJxPeLwN+07YJ+wjCAsYkZEgC589isr14pH4olPWmQqVdtnPSJ8jKxCGNRNZ93Y6KApD+YiQcWs9olDzHL47KdFsR9fvVLZm5GJRHCn6+UuDj2xEPNGrzO+R+7DscwIXPVxcyE4bXzWazJHcnyXBo168HeIU6zSKQU3iLGzZAoEQT+O1GzCE0Xa2H/r/54iyAxd90Tr38nYJ9XPbPbWhddPBcIA6boENLRTAMCaVj65BB6LCAbkEhhmWoV2L4yTiMLGa1M0x82GGtVsK6CMZLEKMYmK5ipENmSqJYnJU6R+/36Z5PIvI1v2lcAhQ/pDaUnUQpaA4LGiMIpiAcdZl4MRmBKknTQooeapI0QmwlvyZ/546imIAwEMgZTkMhEYvP8F5l60wAA8hA0J0THrli3HDYSmIGMUn+TKMiYU65TTQssjYeIrWZ5vZd6MyIMM6wTVIKYWurH4mC5QVGnNIsBO/aN8cDECFPVACEcxbJ/7jaDEGFEnnfjiYLTEhspRB5rJzo5QgobClTL+Wcy/hrO2O7TIXnC+HN0bWezjFyJ8i6gtqBxoURkKo/QII/OyEsjmJkwsjZxYqo7OX0mfKryb5usrV0eGuXBV6543u1cs+1x3PmjiHsyb29/5G170wIKzYcBT1yWBD9gCT/okBzgOZGZ0w79FuE5r+6Gj20kugRmNuIUyv7mk1W8vaSebPm8mJa3E3aBQsX+n8wGCpWluaUvuS+8w0mJMAaXkwIVe7XAOddJEkfLPMHcKwBCK1xPGdtbJOsJOzfVdnKmbhlvXxx68wCRWlRua5KVtbdsrqY+0TA26NSSVQIa2/dSDBRi+Zif4HfUDDwxsLkDWhB4AiMEuunbtaFEJp4omYJXb2yovH2my2/sxiFT63NbMosmv5ELL7NnlQAb+Bjr4phBTTU75gM45xUY8IpHO3G/Tepm56C0HdWEV41cm4+1a9rkbdAOl7OuE2bWcTVrKy8wo8i00SZJs2OldXd4vBSxoaTkubTZJTIbj59NHMRfD6y7Sv3LGfGAX73PWhr6oKQTXEthIodzgswptu8bJ5IZg1GDsk6wTrCgNEUoDU8IGJ8qY6ohMpbI1Csbug4qoTNpb1vq+1pcAhtIkh7p3w8ENoDmXEe2IMbFCpFKXCZRhQy90BOBcjGmPDBNLQ6ZkD30z6kxNVkiE9BqaPSkQsUCpxwy8TVTCmuc70fbCyC/d8qsnTgvSCtAKhntm2b7yjhFlfJ4o58/tBaQWsV0s0AxSukr+tCw/qCJdYJQZUzFRfqiJttWJijrmLmlGiseHaI8t05fqUmoDMuy3s6zqJ0sbyLpjWNaFt1IkXGek6lFx/q5TTCEcajEYpUgSCwiV5WcEl7Bkp6UCePzX1Qj889EY7FC5yqNf+YBuXLjCZINBVkkkLnFdad+WRcvKNrk5diLPgh7bJyN8myF5Xtc5q23c7SJSxtLgh+s83W7jd3T920UmXnj948D4Ma/u3Cj+vxyRneGNhtSIOIUGRtMSa+d+Kf8TQzpb04mlOimwYZ5Yn1qO0TGRQrRcog8Ub392U6SepiHJpl8tV8pXKlANlQh7fUmADIvymjyG6E/CEQTqS/YKPIwAi1wypMkmWT+RpqHfyW9GuEc9e0qVGpNmKohotCThHbo1Ozildb6xHdX6BTNtEWNqqeoZkoyXPIPhkbmHwBKQNEX0JRNO6OYKLyKlXkpvZ28GEyn/hht0iJEJ1dlLc/vMPD7SNUhNlhv8TzbyADAOZFbQeNJyWx75DYJaqthwts+d1Sa2Xk24Pe1Xvon0JjebgjZSw0vBHl5avubm8RsSfkv15nXUa9m69/xZQinvILBExFmRNATxOjeBCEc/aUm/WEDJRxl7f+nx5Iya1plrzpkAaHOCMKMNNI4IxBNn4gvjc8nlJnzk+SixmpBWskNY/DEJukVNOb5UDFCC6adm2EgkciSpbfcohSkZHmobV+xRTKo2X3OClZXKtTTkMlGkTplX1JMgqpJTCZQLZ9/oluu48oF+SRetHNpBHpKsXTVIPNKVabSAuOtEpHOMFYyr69KnPk6N0OFOhZBYhWZVUQ6o5GFjEQ1EqtZUe9BlDNKUcIr+1fzeL3fF7DMvGLiHUAF0jgwzif3Fz3J8GpK2wLadhbfEP5aAblT2EyhZKeZUWgCgcscIvMmPu36aT5HyJcUsKEEhzcByg0WZOr3MZHsfDddPB1L+pdz1qP/2vn7kv4vP+e2Frz2M7zh/D9xyX7/tEHhXUfetvfTyMlzwdjHzmD4/35hrW3vuamnE2q2Przh/D9xxuJbukRmI9DVNGfDOkgzdLXlyYEQmHKe66IUtqBJBwpeSje5e0uovDqRy9YuX9XpTJrJV2h0rjrkoVNCyk4YmespkQ1XcLmsrRKLrmfohukQmTZMTm7UdMsXakztjCIUabKekKQ/8sTBtSsQC8ywXxVw7fCpLJvJgQGvihi/sqQaaSexMSsoksECrblFWkOB9/4vad/HpvF206nt5AvZSGMihUwsJpKkZYkJBcVxg56OEa1k5njO+euAd0rrhIPB2mFjxvgE/rZVdJb5ei0mJ1y5+YBQElEqIgqRJz1SdMLVPLkyM0qOsTmpmRU+1nZkUwrbU8SUugTmpYQXmrxsDF4okrElkZcunh2+DgkE0/45EMqMSrmF0pZykNAyAVNJgUFdp6xjenRMZiXVuMCKag+hMkjpkNrilM/J0E3IimACHz5sQq+0JH2exFjlnbRMCGkFwt2n2G2Xx1kwf5zewTqlviaFvhhZSbFGMVKusU1lEi0tpSDhlX2rOHD+Y/QGLeaWqmRW0l9qUhhqMrrDGoa3maS80xTpYEZawds0R74ujD9p8km8/9ENRzAtyJq6k+sz1SywarrCzn2rmVOo0V9oUtQpRZXSrxsAjLdKJEbRzAIsgvHEGyFExZThUp2+oMljqwcIp7zjGcKHzTktvKlO7s6WFRXNOQGtoaBTs6Vd3wyZO5AV/HMqLUuyki8JYAo+ykAmDqshLYncFlrRmhMRD0akPQE2VGSVgLRXk/Yo0l5FWvJlFPz/QG6hrOls62L9eM/kqbxn8tTn9NnK9y7uvN4UuSmzcfK1P1nr7w+8/8jO66eSl7Yq0y4CuSF44/eP48a/u3CTk5fkM3/YpO29VNBVYGbBxTHIEDlVRyuFLQUdgiKTPFyroJCpQ9e8TYuqxR2S04lJ1hKcwoWatDf00nagOpNwl2W0i0q6KMD0FUkGwpyw5DaNQiDjDBv64mMycYQTCarhrY1dqLGBn5w71XZRUZjQKwiqZQknPElJ+gKSvpBSGOBaLU8OXB46Jnzxxo69srWIeotACFqjpY5Ti9WCYNqgEptbQrpOUUtT0ojArz7V50c46S0onQTdshRXG6IVNe+O1iYVbZcwKX2NFyFAS5+Q31ZfcvXEydwSuR3SlcQQ0EnUF4UIVymR9hZwYe4iZx2qniKnWx3XM5ekM8RtttNZW50B/zt3MUvLXQLzbNhS8mBeKHzyvO9uUjeyLnnZuiAzn1dhirB6ooc/h8MYJyiE3t69kYXMKdSYNgUKMiWQhkhltDKf5yGFw1qBzSSiYHBSkVZ8Yj14pUPFtpOrASCcIKkIGvMFzW1SXtlbRedGAH3FFmPTZZSyDPbX6S826Q+bTCZFBgt15herzAmnUcKyIu5DCYeWlt6oxXCxTj0LiTNNK9WocoaKgzx53+UqiM956VgxI1GxIJwCszzgj6VRKuUWtVqBkSFvuTQYNpDC0TIaiaOaFQmlIdIZ480SBZ3RNAHLpvtpxKHve9TgFw/sSfBgEdXy554WBZ6RQHta07Y+dlJgNAjj1RPVsjmpELkqQ66mzOTMmFBgAoEMHWlZYgNAQNDwbbbza2RqIfVKk8nDu50WOOefyTYSmFCQFQS2u168XrSVlzZ5WR+JWZdS8+ArV/AglwPrT7B/z009sBHqy9cOPWqtv7938WXr/czsApDPhtMO/RZnXftRxk/3i7z3HBlucL+eCa9J6/wuKD/vdjYEm8rMYGPQJTCz0c4DiRPUVB3hStj+go8lDpUnEnnOh3c7SRGpQVVjXxG+bdBvHDbS2KJGZt59xWmJkBLXnpiDv2lWisQDPmSlLcH7qr0WkVrCsQZQAkDV446qYwr5V5cTJ4GvtaLaNWnaoVQGojFD1hP60KxW7kjWnrRLkbuB4W2dhfC2mI0YFRdAgK6nmKLGCR8X7LTEOtGpSoyArNc/zLKCyKshO3TdEE7GyKlGp9+A70eaeZc1KXwIG/gCklpDms7KjVGzHMWM/1spH/oWKtxgH/XtezvXDTx5y0qKtKKR/REy6yWYaCIna76mTpKunRfj8gvYVmFyZSYrdR8468OLRWJeTPVlc4SRdcnL1geZ5EKyAPNokUeSEVRoWDA8iRCOgkrpC5o0TUDThtSykMlWkWKQIoCxWplmLUJIn2iRzUkRKwPCqg8jCxqOsJqBg7SicRqSsqS2jSDdpcn8oSn6oiZlnTCdREw1C2SpwjnBgj7/3qPVQeJMM6+nynhSomkCYqtJrGIiLtFfaBLKjMen+1kzUcEmChKJMMKfX16sUde8O6VN8uLC1iFTmRc/lggnmC4WaW3nVaWCzijrmOm0QFGl1NKIpgl4tDaIFpbpOKLWjIi1pjiYsmv/Ku5dM4/MSm65YxfKjyt0Lbc6NpD05bbNBlqDCt30kQ8qcZ48hD5UTFiI8nAyr46QP29dJ6eoOSyxoSdAWYFOoUwVizy3E8IpR1R1lBPr683Ydoiaf+5K4+vjSCPIIkl9niDtRpA9K07b/n9tcBjZUwnOuvZ9zx3v5LrRVz1jG0fetvezkpfd0/etldvygfcfyfcuvozLPzgTev7O7276L3VTEJc2bv7c8w+N2xCcde1H+fp7zuWsa5+f6nXkbXvzvYcOp+99GxZCuNEEZsWKFfz+979nxQqfKDU6OsqBBx7I6Ojoxjb10kPb1hcQcYKsQhinZP2lzso+gGzbIQqf1C+SDIfyoWKBQgJZJcSGEl3PvJ1i6sOgRBjgssyTmZ4y6UChI3uDX9Hp1JBJfG0UL3ErdD3Ma7L41Tdv9ewNAZzybcjY980UfP6LbPq8GJnkFsmd0CwDWEjyYpHO+nySNPWEwhjCsTou1D6euOwJStuOsu3SkvRpgpp3KpOpo2R8MTXVSFH1BJIUkeUFMAPtXccKAaYc4UKJCXzfhYNwIkY2EkSt4flEWyFpWy1Dbm+jEYWIdJsh7zaTOe94poRXr6w3IMjyFTEbCuK5ZXQpJFg+4fuQGUiTtZ3GclXMh6rNrLJ18ex4OSsxz1eF2RjiMvs4XcLz0ofMXJ5rkTt0xRJRSHlyvJf9Fi5jMGwwoBusTnrQwrCq2eMrzhvFDgPjjDXLhNowPlHGOQgKKTbSHdXAV7uXPpSs4BWFeEAQjxhGBqZRwpFZSWz8Y746XcJMBcielG0rE/xpag6TjSJRkNIfNpgbTTOelMmcZCIuUdQpcaZZWethzZoKruHzSXRVQW5dbAo+hEzFOXFp3zdz9y7VcjjpSPKaLc3VJRCwKqpwr5hPIw3oi1q0soBl1T6STFMpzCxW9BVbNE3gSU4zormmSDglEQZs4BUOV4bpPRKiZSG66bfrBp2QOxOJ3DXNF640gV+gstGMQ5hKHElFkvQJWkMOpz0BMmWLK1hELFE1n8/p1RhPItOyRqm83EInNE1gxUx4WtIryMoOUe0ymPXi4fu5ZL/LOyFkz0RiNjRH5s0r7uH6dWzfEOVlNnmBGbWlTVoe+uw2wPptnzcmD6Y9+V+0+9c6OTFf2Ptgzli8aWrDhOe8GoAv7H3w8yIas13Xvv6ec/n6e2Zej46c23lvxaqNU3/2rb6G983/5Qbvv8EEpl6vc8IJJ3DppZcihGBwcBCA8fFxnHMcc8wxfPvb36ZUKm1Uh19S6CSB50nejSYiTtDW4YohtqCxesbxyhQ0ItLIll+1zyohJpLolvRJjLkFc9ITUGxkCCF8GJMUPvel6BPt2176MrWoVjbj6qK9LaOJJIU1Pm7AlLS3Nm5muExiSkEnCVEY5xWfWdbPwljS/sjXAng8w7Xtg+MMioXcUnhmot4u8iiaXu0RmcWFGpl4O2iVWOKBgMIq/5ApPe7lzrbTS2gcIskLSaa5H38O21cinlPK/fZnbC+DhiWuKNKKQtcjgmoBvbo6E/ol/QOzY3NcLtLcaQ4A4UQLXc/9/KUgrQQdi0yZug7xsZEkHopw4RDh0nFEK8bZPD/GWLyjgpf+hdYIa30yaBcbhBeSxLyUcl/WhfWRmNlko73fhhKQF7JgZhcvPNq5D6opCMY1WcHgEsWD43PYZ+QJaiaiqBKaJmRBaYpWFpBZST0L0dLyiqEVPBoM0co0mZFMqZIvFhlBlkofriX8ZNtq7zYmBxIKOmO0XCUxiifrfbQyjRAOQkuhlFDPQsZqfnJRDDJqaUQjCzsmAm3U05DpRoRrKVRdEkzLPGTN5Y5oPiQLwESq49LlAoW01pelKQhU7Kg8BqDIioLmZC+PbhNiY8VYMUNISzodocoprWZIseTH/LKlwzzeHEE1JeGkoCjbasjM+aa9hlJfk7iQEdcDMAIRe5IjjLdNbpccCOoOqyXS0CleqVuOpEfSnCMwBUCCTLxaYypQHmqQJAo54sgyhakFZE1NIxBkBU1QUxQmLbphfBHLXOGxgSAt+vwXyElVF8+K9qT6ksnnnsTfxiX7Xc577njn07afde1HueljOz8tZ6WNyz/onlFZ2XfJdjN/fOWxZzz27un7+Fx1lPcOncvu6fuAjSMLVy85mTfgScLGkJc3fv+4ZyzG2SYvbRx5294d2+Yv7H0wPz39Rt515hvXS2xGR+rApwFPWABOvOTTnddPPcaGhtAB3Nn7O35+wD0bvP8GE5iTTjqJ2267jV/+8pcceuihqHzl2hjDddddx4knnshJJ53Ev/3bpvPz3izIk7x9gcnZCeAW2UiwfUVswbuQtZ3ATKRI+jXT2yiSHhh8QBJNZkjjMEWFbhpkrdWxAAafA+K0T3APahbV8jc/kRpcQZOVA5TyN8PiihYis754phZeESn4lTgb+pUv1TTI1OSFtSxq2uQ5PBqsw1R8fktHccgLaXacutpOYJn/PFIikhQybwftVSFf56ZcjTvEpk2WMA41Xc9dXma5fOW5LtlwD62RIq0BRTRtCOp5QqX1Vp8dVxigOVqgoATBaoWo1mYslpMUoRXJwiFsJAnHE0RscAWvhKW9Xnptt0uuVJlQ4oRANwxpSWN3GCZ6fBJRdTMqz1ORZjMhcl1sELpKzPrJxqYiLhtLhABedcFD69x+z/Gv3OA2uthwtOuhYEEZEJMCkUW4ACYLZVb3VqhnIQtLE1gEZR0zvzxFLYtYPt1LZiTVqMhwscaqRg/TjQK2YLGRn5y7PDxNZEDQDosCkwnGG0V6oxYl7ReY4lQzPDCNHHQcPPIX/lIfQkpLlikm6kW0tMRGoYSjJ4yxTnhDgVZEGns5IqhJgppXILKiAOny+ihtdy/nyYualYeYWlTsCGv+XmpCn+UfTQjStOBDuyJNOCnxT6YALKSyhIyhf4qOYY6JvDOYanqjgsZ8RzaQgXQMVRrUgpCatGSxpjCckGWSbFURpwW6LryqIr1K33Yus1oQ9wlaQ/7aqZYnPabovIqiHXErICqkXgULDLV6gClAVrKYgsCtFuhYoJKZAp4ur5WjEkdQExTWCGS1+zzZUCzpX87uk/OedztPnYy/jf8Abuj8/VSy8kzkpRM29t3HnnG/2SFnS4If8N4hv98ljzw3paNdG+apCswX9j6Ym07aeZ1E5WrWTV5mkxV4Oik6Y/EtcGTIPYtveUbSMaO6zJCXg3/xP7jl7b9ZJ3kBuOXtv2F0ZMOVmMsOWMzp//0hzvyb72zQ/htMYH7yk5/wy1/+koMPPnit7UopFi1axHe/+13e/va3b/kEpp3MDp0JuIgT0AoX+O1pxVsEQzukqq2AgG5BWpIENe+OIjLnc1KqdZ/E30kWFyAlQc0S1PKQsdT6BH3h3VOyokI4Hx4lHehGSpY7YznlHVFwUBhLsaHEGdGpx4IQ3tpZe8e0aCKFOPGkxblZSey2k7jucoc0lxlf5zL2BEdO1ZA1iQsDXCny1yTJ/HHSDBcGCOOJj7A8zZ7YVgq0RopkJUnQtIgMb0GtvLRvA4lu5m5qeWJq2hMAFQJjvHOZMT5Zv6dE0udryyT9Ie1oUde2nnYgE4NqZaS9ESaUnUJmupGiYklrOEQNV9DWIuIUl+TOaEnqLTGTFGEtpaXdolIvRzzX/Jc2mXgu5GI2NkZ1Oe+TH9yg4zwTeZn93j3Hv3Kt1xuCN6tf87OJgzZo35cbpAEr6NRKkQ7Cql/ltysK3CfnM3doinmFKeaE00xlRQCsEyhpCXXG9pU1lKS/P61Y0+cbtj6RP2g4VNOS9CrifolVEE0InIpoRRl/GR+kt9hiolZCCIdWloW9E6yMe5hOChSCjLAQY5wgUIaJRhEpHNOtiMFyg3KQYK3ETYYEdZlbFfuftiuaNH6RSMb5otUsgxSvvkuC6QwnNWlZdsK6ZOIorvKnYyJBVJ251zrpiY6TuWGB8KRJWBAJZGWob58R9LcInKBSbtEbtWhlmleMrEHm+UXLqgOMjfvCnm2TNBMKokkBNU8A04qgvsD6+C/rn9lZyYF2UM4oVmKEcNTHSugJjVvYJOyNcZWEbCoCIYkHfX6M1ZpoynhFSrddPKVXddyM+UIXz4zZieCbisTMxq/4n7yWj/KG8//Eknzb7JyWdf39TO89db/dvz1T++U9N/V03i/tWKHxSO059Tf5zB84jbUdxJ7697PBXXYG0SOXbVSBzH2rr6G2+/ufUcm5s/d33PL23wB0fq8PZ137Ue7s/d0GqTEbSl5gIwiMtZYwfObkojAMsXYrmfC1k8bBqxEon8thLPREPg9FC3TdeKet2KBiX1DMRL4miw0lTvtVnmh5wxMH8GpCXvHeF4cEpwVZqAimU9Ief41Vy3Riap0QpL2BL2apBWkxIKkoH3aWObKyRsX5ylfbmUxLTMmHtKW9msrDUzPnJ2YVjezYKM8ibU9NcDcGbG7LnM7UfHA6r8nSiv21aSsvWnVIjItC4tEKaVkSNHKCkfpqx9KBKXiSxuxiXyL3zQ9DZFJBjdc80SiEZAOljh1l0qsQdobQmYLPeQls7uKWGJz218Zqr24J40MeWiMRYThA+OQUAnyeTbtGjrM4K7z608VG4eWswrTxYhCXp37u2Y75bOTlmfZ71QUPbTCJ6RaxfAbMdoXPwCh8wngGuiFIxkOmyxF/qo0wJ6oRqQwpHL1BiwXDkwTC8o7+xazOenm0MYTSBlsSqET7ECjpnx0qdcgEXOTDlIJpgYoyWs0Q5wTlQsLcyjT11D9bxloVEqsYLtXZqWc1k2mRik5IjaKRBhR01ulLmiqCqkTGAhs4TI+fiKuGdxvrOHK1SwbkRYz9+TsQrrPApxKHcrNqr7RNV1JPTmTq3zOBJxLtEC/wC4HSCbIiNOdaKnNrBMqwx5zltEzA0uoAq1f24UYEe815gsxJVumMcKhFUo1wBYcx3t44MT7mzmlIesAW8mdVYLCJhJ4MhGPe3EmaSUCtESHrClOxBMoihKNSaTFpJEwXSHscTSsRyx3CSEIxY8ijY39tIuMwL+T/2laEp7pZ7fLQaKc45cbgPXe8k9OeIXTrrBMuXuf254N2m7PJC/CcycvzhbvsDADiHb3Vc/TI+h3TIFdj/u4W+MzauS5/uex/84v/WsCJl3ya2frNPqt+yV0jRzxrm22FZmPUmA3BBtssvf3tb+f4449n8eKnM6jFixfz0Y9+lHe84x2brGObBe0aIdaA9XVJnPUTc9FKcoXBdQozmqLERpKsqL1j2HhCcWVMOJn6m7ODaE0LUWv6UKUsW/t4EkxBkhX8jDwraZ+/kefEqEaGzKy3iexR1EcjWgOarOi9/4UD3fSqRVbUNOZFxMPFDokRmSdS0XiKnMgHUa4quTRd+3ydL27Zrq3i0nTG8jmvEUNmvHuYtf5aJKn/STNoxTPqDuQkSmF7izSH/MqUMI6sJGkNaUwgUa2MoJogDASNDD2doKdTbOBX37KCJJ5T8KpP3mZa0Z2Y6zbaVZit8i5opqC8qUFmUbEB6wlR1hPRGi6gYktQNWRlRTZUmbF2brentQ+nM1sJIe9ig7G5ili+FHNdXnXBQxtMfrp4Ovz92RFMO1TskJlXY8JpiCYhWq2YXlnhz2uGeHByhPGkRDUtsLLZw0RS4tH6IL+v78R1k3/F47V+pHS4hkY12xbKjmAqJZzM0C3nlR7pFYTeYotCMcE5mNdTpZn5hZ7MKbS0pEZRSyKW1gdZVhsgNpp9h5ay+9AK9hp6nILKyKzEGknaY4mHLMmg9YntkT+WrzcjiPs1SX9A2qPJyto7bjpyu3//PFOxIxrPKD3ZorgyobgqJZoy6JYlrFnCqiGomdzwwBFVDaWxrJOsL1Nf/yYZcBS3m+bgBX9h+/5xrJP06BgtLcXeFpHOiK2iqFK0tJhMQSrQxQxTtqT9hqTfkZV9rRwkiEzgioawP8ZFlrCUMDKnykChyUilhtYW25PhigZrJEkjZE65TqkcY/oz3GBC0mupL4C0LIh7FWm5bdPsz12mXq3qYv2YTV6W9C9/TuTlqe087b1vv/85tflU/NXIwqdtezYF58VCm7xEj1zW+dkQvCatd14Pfui+ta7hL/5rAcDTwsXWR15OvOTTa/09mxQ9X2wwgfnGN77B3Llz2XfffRkaGmK33XZjt912Y2hoiP3224+RkRG+8Y1vbLKObRa0VYhcCp+x9zWgJCLNUNW4UyhLZC7/8aFabaeytOILPUZjLdSqSUjTTtV7oDPJl80s96D3K2nkiX/eUcwgk8zbM+ZhallR5Mn+bWkGVCND5YpGllcRdlpiygG2oAjqGdFja3Ct2JMoqXzeS7uIY/u83UzCO2GuarTrw5in3Hkz4yf3WZsAOU/08qKUOIcLA+xAhfrCMipx6GaGbhpv7+wgKyuSvtBfO+ELdLpA+esoZm7+aUmSDJdxUeCVHeHtL1VsKaxJ0S3j83+SGW//uE/5ZH6du7QBQT0j6dM05mqSPo00FtWymJLG9le8E1v+vTtj89ygzX8j2hKx/1d//KJ8ZlNjc5CX8z75wU1CXl5IAtQlMc8RDn9vVz7hXKbOJ5Tn+RcqAT2hqY+VMHnOyWTLh5EtrQ6w5KFt+Lc7/wc3PLIztTikVQsp/0UTTXkyJJybqXrvckJRhHTAUAkSjJGUCwnVuMDKag9PjvfxRLWXyVaRkdI02/ZMMBTV0dLyeL2fpg2ZiEtMpkUsgpJOENLiIosrGVxgMcMJuiGQqc/zsHmuR/s55hef8h8tvItmKBH5YpJw/nkpU5s/R30YnEysLwHQsl7Zib0Nv0p9IUlTFGQVsDs02WfeMiKZYZ2381/e7GWqWSBNNPU4ZDwuM5kUaWUamwlEOWP7uWvY86+WMrBgChc4smLeX+3zeERg/e0+fywqaekPm+zUM0alGKOKBqEtUllkYNHSUp8uEPbGBIUMMTcmHjY05wiac3wtHhN5IwDVru3WxXqxLtKxpH8577njnetMyN/loVG26z+fV/+hxnvueCe7PDTK8k9dw5L+5c96nE2lwPxx1bJ1bj/t2++n8Uhts6gvbfLyXDC7Zsynjvkm4Tmv5reHHsJvDz2EfVZtuDvYbDyV8Hinsvoz7L1x2OAQsoGBAa644gruv/9+fve7361lo3zQQQex6667bpIObVYM9SGq+UTfOpzNCyqG2k/WtUK0YsLx3P0r9Cv9wVScqx0KW9SEUwmyliDHJvxkOCdDzlifa6K1r3hfT1BxkbjfExuZekcuFZtO4UynBVlZEdR9mJpMXGf1TddSZGaxQiETSzRtsIHweTLCh6EFS8dwzeaMwxrM/G6TFsXadVpmEZZ2/7F5PpDWXoHJi21i8vwfraFtk6wkpq/I9A5lsqKgtDpDxgZT1J3CYk56smWLGqS3PbaZIyupPPnVoVs+ebO6fchgowdZS3zoQTt0zYFVEolFJobCREZWksjYYQoK3cg69XpMOfCuNHmogsgcQjhsKEmGSgRSosariDjxD2NjnjnB/2WOE094H1//9g+edZ8NDSXbEOKyz6uiF9yJbHORl03d3gtlr7wxIWVdeNgAXEGgW46g4d2uhHWkJYlNHCr2oWRmTcDKZJiVPX241BciJhNEK3ReINHRTEv0TkE06WuM6JZFJg5T0F51iQRpRRAPOIpzGlSTiCxVDAw0GSg0qIQxmZVMxQWsE/xVr39+D+o6U2mBgsoYT0qsbpZpGU1v2KJHx2w3Z4KHmyOQSmRDoVdriiv9Qho2VxXcTPgX+BBh1UiwhQBTVqi8VooTdNQZGWeolncuQwlsnvgvjYMMbCgwLg+TTgT1BZD0WvZe+Di9OmZpfZC5xSqvqjxOzRT4Q7iNV6ny/BcpHKEyBIWMvkqTbcsTRCpjVb2CHGmRqAg7LTElh9MOV9PYfosILHE95MlaSJJpXjX8JJmRDPTVCbWPoJhuRSyb7CeIMob7aoTKsKZeYnoqIBmwmNiHqAnnlSqZOsJph2p1JZjninaRx6eGkz34yhW859obIM898dhjvW2Vdqx0/t7vQ2uXALnjO89N8XkpYL+DdttgtWV9aCf6H739tZzS+BcAXvVGn4pwz419z+g8tqHYFIUvN7oOTFt52RphCyHOKl8xXgmcNWANLs7te43uhEyJmichPpwqV1TaE/0sw1nrw6+sQ8zKrfDFJY2vt9KMUbElm6MQ1j+Ewmmb57xEvtaL8KQFC9GaxEvzWuSreBYbKJK+wDudxXksr4RorIlcU/UJ6kJ2nMbWqqkic1c0Q+70JXFx4rcLMVM4shMalr9W3tHMZT6srKNUCYHriTB9RSZ3Lnek/6DqDQKcEOimV0r86pQg6Ql8Pkzii0/a0MdWm8gXypSZIysK4sGI0lQTmbm8Dk2eOKq8K5tMDOG4wSq/gikz5wlTbmigGhmFZkY0oXwujPUPRpsqTKRIBwsAqIlpaLbWDrHr4jlhNol5KSgsz4TNFTbWxdYPmfofkRf3dXk9Ej+b99tFJig+oTBFiUyFd/YitwoOIBoXhFVPXHB5QUbjw4+d8gUc8/x/f0+znkksnDNBUacsKEwyqXyRypXTPQyWGyhhGdB1emSLHStj3F8dJZQZSji0tBRUSuok25YnmJ4bMVUvkk1W0HXRUVwEuf1/7h4pDH6RK7OdemUAMjZ5bRif2N5J8M/VdBwIMVN3SzUcWSUgK0riHklzRBDPNbiCoaQTJtMi4y1frqFWLNCyAXv0PMlIYZrMKrYrjvFYc5hqoYAa9GqJloam8TVn+ua2eGh6HqaUF6ZMBDqWmLjgOZjwOUvjk4PcMF6hVImZ01OjFkcMFhtUmwUcMNDT4JX9q1kTl5HC0RoIyWwBYX3hzMwJdANU4B3Zunh+aE92Zyf27/LQ6HOaBJ/27fdz1gkXP428PBv+n3nP07Z9RF2y7vZf5Ir0s/Gqy5JNWgxznvWLh/us+iUZ/4N7buzbJO168vMiEpgkSbj88su59dZb11JgDj74YP7mb/7mWZP8twhIsD0lVCvxE1iYNWF3uHbyS+JLLDuYmeTDTEJ8W9nIHVlcnPgQpXZOhfBqjIgToidrWN1DWpbI/MHllCCteFITTiSEqXcWk7llsc0T6p2SPuY4P7xuGfR0ghqvzTiOtfvlnHcYkwoweYKlmLFTNjOJh7QT9cNg5vyc8efinHfrarcrpN9mDEL5EK94KCKsW5KyJKoaspJCt7yqYoUPhcsiQTRhSSvKn7eQuWOY87bKeaFMkTnCmsUUJLYQolqGrKjypH0fcqbrGTZUuWpjvEOcnDkfl4dYyEYKKpsJ+ZMSV9D/P3v/HW9ZVtb54+8VdjjxpsrVdA40NEFgBmFUbEEadBzRURBx1FFAQXCU6CgoEkQFDIA5fJEZUNEvOj++Cj2I0IBgICqp6dxdXfmmk3dYa/3+ePY+594K3VXVVd3VeJ/Xq1517jn77LP3vvfstT7r+YQpbU/NJehJLl2YylVtq05cL/vJH+HNb7331f4t4HLiOleUr60uzPlTLlYYK1oL5RRBiX4yGnlZYEl0ld+iaB4FU9Fg63BF5SuAU9/GjVC0gGmXOpvTVVcZIh9I1mG50+KKJ9zB7rTHv63t4cb+ToaF5Mpsaw+5sLXKct7mttESD28fYNEOadqcQZFwQXuN3ek6R/I2Pmi+uLqD1X4Tbm4R1dQxJZQuY6jyVCRvTJeV3XHT4lND0bYSItk1xD2HGcm4EiKNxxKMrhYBJQMtWCV60tLjrWKyoJksKSbbPY1dA5baI/5D9w6OlrJ6PnGWuyaLrORNvm7uTo5mbeajMVll7LK7sU5qmmxLhljlaJsM3Qp4FPt3dBkcaqNHGpPJeBP1pDvk0kDZ8ahMYQ4kjFoRd3QT8Ir1pEHayGnGBbtafTJnuWttnnEW0WpmTKwnn1iG7YioZ/BGoe9WmMpNbatOXKezGr+RHvZF7pkqdjbrZGDl2HogRftnq/uysf7b5Ld58btfxg2//2r+9SNzPPKb1/nXj8zdp+5LXU995n7+73v2nPH7TxnA3HzzzVx33XXs37+fxz/+8ezcuRMQAf/v/u7vcsEFF/D+97+fyy+//IwP5oEuPcigk8jEfTKZgZd60l+WAkS0mVHCfJiFLNbAxVrZfmPVVCznZhP/skT3hyRHI1zSxOSyDx/NEuQxCpULePGR2FCWHblBm0w6I+mRHHt0IHbPFdULrSXLxXuIouoYHMoaQuGFFudq1zC7IbNlgyyq7tjUwMy5iopWgZoK2E2vk1KUc42pCD9dE22KHZaYSYmPDD7WxH2PHasqGDOQdWU5LxpKx8mMPcEoylSTrJao4ClahmIhJVqfgEooU0O2GKFcoGjH2LGfmifY3gSf2GmAZ4T4/2ur0ZMSrFAZUErybVoS1AkQkkhE/CGAP2WJ2Fad4zpbNLKtbst9qy0Qc+plioDrgs6rBZQKjNS2+aoMU32jckIvk46KdFWC2vCaE4GGcQKC6vwsk4UqQ0vsiPNOtepfWVhmzrIybNJMchq2YFs6IPOWQ5MOq5MGubfsSns8pLHK3cyzI+2jVeCuwQKHe20md3aIehqz8aunmBnZJPK53hrsJFTOYhLC5a2iTAUcqHLmVFaXzkpCPd5UAhQ5by2LXFUIpAqyaHdxd5lFO8ChWMkuwnk9pYwdzGRVuGFyvtDfw0XNFfql0OUOT9r085Qrukew2nF7f4lWkjMaa3SuMBNxWEMFAkLZA8mACb4S+fci6BSkjZzEOvrjBKM9ihb9YYrrxWRxgjKeufkRrjOh32iiypi8r0jWIURbCOZE9a28A/in+/1zT9Z9qZ8/VSrZw3Y85JQCIM9lveHvXkDy2bMPXgBWXv5E4Ik86fmvA14NMAUx9WNgCm7uqU7UvXnqM/fTftm3n1bgZV2nDGBe8IIX8IhHPILPfvazdLvdTa/1ej1+8Ad/kJ/4iZ/g+uuvP+2DOF9KlSWqcPhOAz0aT7UwFJnoO2q6VSgJZeXMVdOwjtVLODcVwYeq+0GoOh41CKjsme2BVVqFJ9vREOtk56vFGo1LBCx5Lyt2wj0W7YYdBhp3rqPGGWE8EdASR4Q4JjQTQmRwqcWMC9AaPcohy1GZ6FiCD1DkFeCiAj8VSNFq1mkhzCho1JS56vg3hmBacZ1xkYRzQkUxyGdgzg4KlLN4Kzk2QSuSdTEhqEPGfCy0ubojpQuPHVWrjqVHZw4/Z0nWSuywZLI9JihFPhfJ4N6RSapygbhfgIKyG+ONwmqFWZ+gnCMkBlUE4rVMaG2ppWzHRMNYXNW2OjAnrLf93v/mZT/5I6fchTlbVYOPMwEy/56Ay7FdmI35LmejtkDMqZfJZAJOqDrCOuASI5lVVdVCfB/raQaK8hD3ndjja4WPNF5JflYYiUBeF0qyVZS8x1vp0tih4oZPP4z23h5WeyZ5xPpakwODiD2XHWGURygVKJ3hVrfEobjDUjpkVMb0ipQv79tF+qUGOoe4LR0Jf+WIEBTsa2CHSgDNWAIti5Yi7gf8MBD3/JTaViZqmlXjq+66HRTTjjheOuGuYcW4pvBTepyPFGULirkwTbL3QdN3KV8e7qbwBh8UgyLh6s5Bbhst0StS9jbWuLp9kNWySeYsVnvWMuHXjV1EJ5rQiSf08oQQB1SmsGMojNDvkpXKMKDh5bq2HFGzoCwMSaNgsTmmn8Vs7wyJjGNURISKskeAuFHQSTO0CgzWG/L7TBRFA1SxBWDuqc6GJuJUq/6cb/olWXB/9e/+J1734/+waZt7o5dte0qH9/7Hz/KpW77Mp57yZUACI0GyVO5PQHNsMGVdi2/a/PzKy584fU6AyanXzz3ld3jqMwXAHAtejn18KrVx+8f2vp73cg4BzD/8wz/wz//8z8eBF4But8vrXvc6Hv/4x5/2AZxPFZRC5QXlUhudxJDllY7FT7u/IZQyWcfNxO01NSyOIMvkH5WwnapzXHVdppP/mt5Uih7GHAk0soLJng5l22AHbsp31j5MKVI+0kT9AnNwODMJsEZyXRoJoZVSdhIRRlo9pVopD6odoUrhDkcrI9RoQhgp6bIoVXnSGcIkQ8XxrGNE5UhmzCwnxgfw0pFS9cpa6aoEZhmgzMRV/GePa8boQuhdPgkEq8lbEvJlUyN20ErhjYCeaOCI18sq0FL2LwO8mATUQnydlaSHRcxaNg0o4U+HytnNjOXczMSJ882kgCoThopzTenBanykJE+hEaMHBraCx87LOh0gczLg8q9/ffcpf94jn7H3lLf991KnG3j577WUg7IpnZLa+j5Ua1mAAJsqEyVUOTGmEBcuMyql+6JAFR6jFGaQExKDTwzeaCKY2urXYY9xH9hnyNbm6e/JSVo5odDYvubwWhtjAtY60qjEaNGI3LG+yNF989ieIV1VxL0q6f6iCc1Wxt65dQ70uvR3aRxgI4crNVFSkq2mJIcsczcryqYEagZd5bu4gE+kkxT1cig9yki+WIjM1AjHxbr6JxkwRd19KcBU40s3mnDLZAfrRYNONAHg6FiocAdGc7RsTqoLjPLsTVYpIstNox3Y1LOWN8i8ZXW4gFYBrQLN3QNGrk16xJAsV2YLw8BkpHEthV2cMNcZ47xCqUBWRBxa77C9O+CxS3dyJG/zlZWd+L4wHOJ2zkJnhNGeYR7T7GSMOhHluhEt1HgLwJyoPsgP882cPWvdM6ljwcu91eh9Ee/92c9OQdfj3vvbANy5T16/E6bPbawLL/iDM+o03Fv94W89nuf+xKyLdSxwOdHzi2/6xD2CmBO9/qTnv25qqHDD77/6tI/zRCDnXz8yx5Oef2YA9pQBzPz8PLfffjvXXHNih4fbb7+d+fn50/rw8660ngoMQyJ6HhVHhLoToRUUTroxIJ2LjeL8sprYR1YoVr7KTam7LvU+6qpBjTGiuVleI80LfKcpNsiVLbOPBYjEqwVmUmKOrAu4qmlpcURIE8qlFi612EEuAv+5VFa7ELpZUPWAYsi3twi6TXx0iF7pi1NZVSqOhUo2dSkzKFsdf00Z00qOvTqvkOVCvSrEBnOWBwM+tvhI4xoGOxRnMLwMctEwVB7/ugIvTMWuwQgnuWxKV8fkAeU9ZlxQtoTmpSYldpihmzEqJGTzES5WxAOHyTz5XIx2MhkwfRn0QmwFEAag9OhhRkgi/PaUEotyCXpZz2yht+q4evNb/5iX/eQDm11yb7SyE4GX0wEux75nC8hs1emUjxSkAiyoKGSiywv4RG/qNkiavdjDU92ndS5hxj7Slf18wLXjKc3MJbpaMArYKmfGRxVA0grtFGaSUDZjrAI0lIcbFHFANUqGQZG0cg4d3ka0pmmvK1wEPobBRQFz8YCv232ATiTfMa0CrtOnE08YFAk7GiKav62zyKF0jnUSor7GjiBd9diRx44dLqm0Loj+RRXVgpHV4j4ZqSorxgNabPJz0faECMrFkh2dIWMXkTmLDwqrPVoFfFCMyhijPFd0DrNgh4xcwh3jbVzd2k/DFLRMTjeacHjSZuIiBnnC+qgxHaJ8BDaX61a0ZHy265q5i8ZT57GFdIxWga8e2k43mXAo69IrUrQKqIaDocU7zaFD84SyMlF4yDLshaLXxWTqDCyT/n3Ut/IO/vVn38Yjf+k/3q9dGICP/uzNfNMvXc5Hf/Zm3vB3L+D6f/7gCbf7wi1/zY+84qm8+ar9m57/q94juO6WZ7H8+VP7vDv3PY/r7Q9wXXl8I+C+1EbwArPuysmATF2n+vovVvurfzcbuzEnqxN1aer64iv+PwDctz0HEEH/i9/9stP+/Z/yV+q5z30uP/iDP8irX/1qnvzkJ081MIcOHeJDH/oQr3/963nxi198yh98XlZkwYEZVJMiK7QxZarOidKVUL1y9apT24sSFdnpZB+QrsbGgMSwIVuk7sxs4ARPaWbDMaYoMSsQxZHoWPJCOiSVML+mtqkquyQ0U4odbYJSRL0MlZfV6pambGrSIzmAULm0wowEkLlWxGRPh7gZYw+sEibVeU9tliuwptRmfU/dgdHiVBb0TEdjJiXKVaFpLYOuVtZ0KTaSwVbOMwoaq26aaTNOxA7UWwmw1F2LH3t8LIN8SIV3oEqPGk4wbQGY5XwqFDlklbLOXci6ct1tFoiWcxHtRwa0pmxHonkpHCavuk+lp3FgRD6fiD4msjDDdFu1oU7FRvn+qtOhhp0JeDn2/Q8WEHOuaWRbde/lIigXxe1QVVbDQvMSrUetI1FOsr1M7qe6RnEo82JVXGVs1d0KbyXra+rgVe07KKFsheoeqEpF1BNqbtmEsgUETciAoUaVCoYJ7QFTi3k85M2A25Fz8dIaPihWsyY1B2FPa53b+4tMSsuoiGnYAuc1re6E7ArH6FCD9JDGTBQmVyinKRsV9VnFxGuZgJfY4FKDi7Ucq5tdi5ruEPUg70LczdjZ7LM3leOBLrvTde6ezHPV/GE8iguaa1zROMQuu8a/ji9kV7LOwKVc2TzI7ZNtlN6wnjfY3VwnNQWDLKY3aBCvGswETC4GBEVLgjpdEjh6pANesXP3GquTBpfNHeUxe/cxKBNuWV8iLw2TPELHDhegHESoGnh1SubTMUZ79l0S4XpN1BaAOWF9kB/mDb/0Av7hKdfytzzzfv/8j/7szcDxtLK6vnDLX7PyR9fw5j/a/L43/N0L+OglNwCw9KgbTrr/5c8/afp46VE38Gs33sB1PIvrLzu7Bjftr7yL3/jQW6c/19bHZ6N+4eueyM+xGaW9/B//J79+57dTPvMbTvie06WUwem7t53yV+q1r30trVaLN73pTbz0pS+dTr5DCOzatYtXvvKVvOIVrzi9oz3PyscWCgVFSWgmqFUEiIAAkanLmJ91VADVSGeAZQpKNmhitEJFqXRZKscyVQdJxpFoXkIQzYXWkjnjxaUMa6cUr7BRk1GDoziiWGqhyoAZ5eismE7Wy6ZQrXThUJXlsLeymqd8EHoVULQj2DkvICbPq4sxC6mU3BVf5RNU51mBu43XAe/Ra0PMXELRMRDAxZrxNo0uIO5rSY8elDJYhtrBJuAioRzoMpDNKXQpXp0+UpIjUIbKTtqjxhnxoT7lQhPXkG6KyRw+NgKIEiUBaEYRr0sYqBKvToJR2EFB2Y5QlUucHuVy3asgS9cwM9C2VSetugtzf+pgHug6WyDmp37jj89p+ORWPfDlozrAUkIm66rzQHyVUo9TYnbSz9GjgpBaobgqJYtRVoMO4kKZWlSp8IloZ/KulQWe2rnMBWweMIWqgo3lOTdShGWZqMuGVEHBoVr0qe7DqdB40YG1cYOslCmCC4pOnJE5S2JKGraYAph9kzli6+gu9HFzQw6li2gnmWCmKQdmMumeB1ULYKQj5Z0YF1C5sblUT1/TJcTrivGBJsNtCStFiy+s7Oaq+cOsFC1WsyYLyYixi9ibrlEEw4prc9toGzuTHpelh/nKeDelNxzO2ty9OkfDFoxLWWBz/YjWCsT9gB0HijZkC4piR8W48ApKoY/VnZ7L2kf5/OpenNes95skSUGaFoy9QsUeFyymU9BpTVgeN1lqjOi0xxS+OQVpW3V8Pe5pv8I/8IEH+jCAGaCZ1YlZRx+9ZIWXXPUH/NqNz7vH/Z0M3Fx3y9kFMS999m/xivedOmj5X+kLAXEZu7c6EbB409e/kZW9T2aRD93r++uOy7Fl/vZdPPxX/zNwZrbKp7Um8MpXvpJXvvKV3HrrrRw6dAgQG+VLLrnktD70fC09ySHIJQlao9OEUHdajJ7q1qc0MFX15UOY6Vs0GyyUjehEtJEOSxTNwhGNEdF7EqNKJ4J5MxvlQpUvo1TVcXF+5nwGKCvdBLeti0sN8epEBr0QCMZQNoVKZcYenxg04FI5N41YCvvIiDjUKLJtKcrNYQ6uCmVOGzmHshQws9FBpijBVI5ltRlB8IBBFSXRygRvxZDAJZrGUT+1elYhULSt6FGKSpSqFSaHaOzxRlV0CwEztaVyPHLEqxlqNBEQ0x9hnae8cB6farFZjmR10uSSTWAmARdr0Q2tSxfG9Cb4ZoxLDCY41CRU4ZsCbkzmpJNTbrDH3qpNdb50X06n7mv35cFWJ7JS3urC3L+lS8RtMQoUHYU6ANoHodFaLV0UL5RlMyoxQ1k8UuPapj5AUaKqH1UcVfb5s4Uyk1X3SC/gJF0uKDpWDEwGMtYoJ8Yo3kgOl/LgUoWLJItL7r+eoqHI5oWypXUgtiXtOMNqz8FBB60Ct64voVQg0h5TCeTHw4RRocnmJly5/Qity3Nuby+R3ZXSOChdoaQnRi1mlOOTqls/LPBGEYyZJtXXJgbeihZGF2D7imERc/tgkcV0RKJLtsd9BmXMep7SL1L2pmsYPH3XoF8mXNkaM/IJmbdsj/scnHRoJDnDIqY3SckKS7RqsZNAuiZ0t6JlcUmAQkCUSh22ldOMChJTEmvHp5YvZC4ec3c+hzEeYzxZFnHhzhWO9NtE7TFaeyLjWR81iI1jvdeke3aCx79m62xTqs51veHvXsBHWblX8HJvdd0tz+IlV/3BfT7//OWf5207PsEFv/sn7PvxHzql95wKcLm3WnzIvYOXeyr3bc/hi3/7LvnhI885dxSyjXXppZdy6aWXnslbz/tSTrz4azAwXYWvb7BlOaOUQWWzXE3u66yXaeaL2zzJt3pmBa/UZo2F2rCP0qGiqLIwDtPPEtvmDRPryFK2JMRSgsIAr3DdmOGeiKKpUF46MWWVCG1HnrSfVYnIYs+pEacv14zR7SasrM/Oqe4AOS/al8iCtrPjrf5X1hJKh9IaszYgAYqFFGUC0djJgG3ADp3kA6SaqC9GBS7RRGOPHXq0C0RDuS7RsCRe9WITWjj06gDyQj4nBOnErE6Y7GpiJh47DkwWxYnMjKvMnEgTrYsTmTcav9jEjIupHkjlJbiACpUup2ExWQlFMeu4bdVWbagHqgtzqtvfUw7MFoi5/6pMISRBqFSV5g8FPpV8kKDrUEtAK3xa3VddQOflprFHxiVNaET4yEiXmJnwH8TtKluMGOwy0sEoJIMmHlSByGXAjpl9LgIWbHWvVEGhHcRHLOGyjO2NIQvJiGEZs9gYcXX3IHdFC9y+vjjVhBTOEEqNsh6lAv0i4eL2CsPFmOX9aUVvk+OzIyfOmM0IVRmnUDlPBi0LV7VFtC7FVtmOJdR4/407OLgt47JdRzictTmctSm95paVbYwnESujBl9s7ebIsMVglHLb2hIAg3FCu5HRHyV0WxOODFr0V1qooaFzSPYflGgwTQ7JapUvZgKMNMUCDPOYRrPgtt4iRgVGOkarQJIU9I+2oNQcto4kKummGYWXcV6pwKH1DupQggoBk2119E9U7zX7+PL1b3hAbYhPtz56ycpZ29ev3fg83nDbfdf+HDzc4v8evgpe+5snfP2pP/+Z6eP/+9rHHPfcierF737ZSY/LvufjACelkG2sh//qfz5hF8b87bv4o13ifPDpe/isk9VpAZgvfelLvP3tbz8uyPIJT3gCL3rRi3jYwx52Wh9+3pVSU1/6ekVoGgbp9WxCuzFV1zmZ0NfbaTWb7OuZ5kVVFDBVh0dOdSX1thUgqBKKJZPFiAsaSPdlMpFOj61cXJKIsmmIel6oBlrjW6IJiAcebw3jRUXQAlbSNScZBFqjsgJVKIxWwkdONMTArg5xXhBG41nuS20JbbR0X/Qx54AnOEQPU0rXxniPHk7EztlqXGqnDjx2LO5kuvSowqFCTDSsNCxAXEjmjc7Kqf2zGoyqrohGmSDHQ4E5tEacWIpuDEHSru3QYUel0MQq8asel2A1+VwsQWpx5boWAqoo8VEyDb/U/YmAxS0K2QnrfNLAPNirBhtni052rkIsT1RbDmT3XMqLda4dMs18KVPpLthxlVZfUbdCZXaCaPyr8cfIRHiSEyKLbyYU3YSyaXCpomjoabaMS0S/UaaKbAnsSOFiyOcDulTYgSIaKpKew0zks71VRH2HmThxqgyW8Q6DSwI+t4zLiIVKYqZVYK1osn8wh9Gei9srtEzG0CXsm5NuRBqVWOXZN5ynN0qBikZXxZCVTYOPUlyisUOHGZfo3OONEYovQFACrlSlyQlKrk2kKccpX813oiOP70eYkYzVruVZGcSsZgvokUY5WEmbhChge5pV28bHgaMLEWFoad1hSVYDcd+jy8oZzoAde5JV6eTn86KFqdfpMmdpxzk7G32OjNtcsrDCzcvbULEn5JqiEEC57AxaBWLrGA0S/DCidURjx2LSsFXH15G9r+JxT3sr9zWV/XRr8Ue/wMofXcPjnnA1f/xDnqf+/Gf4kxWZx91TR6TuvpzNOlvg7ZE/fiP/+rtXTX9+3+XfAsB33Pz30+dq8HJPVQOXn3vKybep9UpveP69O5KdCLzUwKWuM7kGpwxg3v/+9/OMZzyDxzzmMXznd37nJhH/Bz/4QR7zmMfwf/7P/+G666477YM4b+qYoC3RftQWwid+S51MLzkvXoCOVgjXbLbPWngfCGIEoKUDo5yfup8RKgezSusSxpPZ55QlRDEqicUxLI7xzRg7qpxqkmgGujzYgaOZB/KukYGsrcjbBjtylK0I1bQyqQ+SraJijc49RdtitnUx+wvJiSlLMS9QFU3OUBkYuJn+xVaBl3UwZgiEoYNJhh5NCGksDs1VVoxYMHuILMFq7NoEVUp4pSpklc7kCjXOxcCgdIQsP948IIi0NLrtEHrvNrIlGTSjQSH5MvsHhEYk5+s9ZRrjY40zkjOjyiCZa9YIqEmsmBD0h4QiB1fepz+nrTo/6lzQx862oP9UgcfG7WrQc7qgZasLc/+US0AbARC6lElyMOIahg9oD2YiYY41lSwYjc4ljywoWQwL1hDiCN+wkqfiZSUoHnoI4pxVpvK/LgLp0cB4p2Kyq4TYo3t26kw22GVpLjvMJEzzWHykcYmaZsnoUhFUYD1LWUqHWOXZ21ynDJpuMmE9S2mZjESXHM3bgARNNqOCyDh6WYrWAR8FxjvETCBvaUwByVopGshqscpbJblfpdyPjRfjFqGQyXgW94VS7CNFvp6Ia9hEOjtFE0JPY8diBFAbGNTUY12AyaXTZG5J0YVk1dgsTLVDJhPWRdES10s7BpMpBhcGQqE5dOcio119Lphbp1ekbG9I0npkHNdctJ9bl5e4ctthViYtjg5alF4xGKT4foSeaKJBpQEqtgDMierH7nwH19u33u8OZCt/dA3X2x78Czz9bX+G+dt38SPA+HeeCH90r28/ab3pg58D4OXf+ujjnjv2+brO5rk/8sdv3PCTPP45AFrV6xu3bp1wH/cEXI6txz3tV7jhuwc86fmvOw7InEz7AvCjBy+YgpgfPXjBqX/ghjplAPMzP/MzvPKVr+S1r33tca+95jWv4TWveQ0vf/nLH9wAJi8gaUonRinRpsAmytj0cSXqVzUprO5I1FV53deTfKUUJJFsU7mHyesVwEnFVStEhhBbdG8s4KaslojQhLIUu+JGA5Si7CT4WKNzh29YAQGRONUA+FgRrztGOy3pqiceiN4kKFBeYXwgWKadCp05jFaMdzZojrvo5TXRANXBlqqyTq41MbWNc6j+rztOdZepslxWw/FMJG/NrLPhZvk6OCfArnZ0c5UuSOspoFNaE7yrHOEqoJTlEEeYu4+S5vNkO1pkSwnxWkFoRNL5KYV+UXQtQSlMTWlT4DpJpcuJCFbTuHVFsnmMYQpCt+q8q++/oQPAu5/Uf4CP5IGr+7PbslWnX0JllWwpXQhty+Ilv8oF9MShJyUYJZSqEKb/U5Ryb9SaEEci7Pfi5OgSjcmrXBkP2ZxhuDdQ7snI9se074K869l10TJrgyaTXKNKTWHBrSnKVBOv5+LEGAIh0oDFJdItKfdkaA2jPKIMmivbh/nM6kPY2ejzHxbvYFAm/If2rXx0/aEsZy2yLGKuM8IHReYsWgXaacaw1SRoQ9FVmEyRrlYOaUqhjKJMDUXHzhzZDFMHMhVkLbDW9qggRgimcoasQ46bB6XrHrSavtcbMYQpU4VLkAW9ETSWxSzH1N0vK1bWwPQY7CRgJ4G8rZj7qoQjZ0uBQTbHV+aaXHnhQQYk3NWbQ6nAzrQPS7AQy4H1JgmDUUJYTohGinhNkax5orEnbHVgTlrXlV04jUnzmdb1tseP/OOfcffjnj/93Ottj2d3XgPAH//q/+VP/+RCznQWeyLwcirbnU1K2v1dn/rAK3kSnLALczLqGLAJvLxw7bMVyDq9OuWgi69+9as85znPOenrz372s7npppvO4BDOn1Leoya5/AtBXMNgs9NWPZnf+PN0su5nnZSwAfCAgKI03mQAEJopIY3xnQY+lY5Kvr3F7f+lw4Gn7MQvtGXfG8GRVtP969zhp4Mf+ETca3ThiXo5Uc8R9wo6d+a092dEPQlGs8NSsmJKj85KdOExY4ddHxP1c1AwvKwLSSznVJZyfnkx67RU4CXkxYz2Vp2XsnYTzS6UTsBXUUjCfZbLe/ICxhMYT8TCOctFe1KDl4piF7wcQyidgKUin9H0jJbX8hx1YJnGrcskRyYEWzmuORms8qUUVQahr5WVHbMThzZvxeYz3d+H9f7xpgVbtanub/rY99/QOe7fsa89EPVgNga4r/SvLfrYvVe8LhPp2trdWxHMo4VSpisdiCymbLjf1ItAkSVEVhbDkIl/nf3iEsVk3pB1pSNjR4pmd0KxraR/EfhuSekMk15CctgQr2nsQOyURzs0eddStC0+MRRNy2TRUDQUkwsKoqREG0dRWDo2Y9EO8UGxfzjHwazLpY0jALRshlWOJCkonaEdZzRswY5mn23NIcn8hNBwFJ0g7l5NcRkruoYyFRbCFLwE6RBBRb1zAZMH7NhjM4/JBciYfOZWaXIBL6ao/uUBO/FEY3leFwE7CkTjQNyfjUcqVC5nua/ClkXEH/UddiyOl3Yi2ydrgfSwIj2isftjvvpvD+HzNz+ElSNdlArc2l8iNQVaBXJvKb3GO0NIvJjPrIubmosULt0aUx7IesPfvYDryi67Xzxz6nrcE67mvyz+FX/8q/+Xb334Vxi+79P8l8W/utd9fdNtiyd8/uXf+ugpKNnYddlYb/rg5/jcLz/puOevu+VZ934S52Ft7Bx98RX/H5/qrPDFV/x//OWR6B7f9xe/+Q8z8HKG3adT7sBcfPHF/M3f/A1XXXXVCV//m7/5Gy666KIzOojzpYJSMmAoJRPoaR6Kn4VXgriRwWYwUwc/Hjt5r/NdarcxY6pBTAYun1hCZBjtSihaGhdDtsPhEkN2c5t0Uoidcu4FGFAZCUQRwWjJVQmg8pK802CyLZY8gYnBTBzKeaL1onKikY6CziprziBt9LJhMEah5hq4pkWVAdfUuO1zmCwXa2VrwdXhlnp2vmy4FkZNtUDKGgEu3s/yaopimoEj19HVF6nSAWkBTTV42WhlXHd6NoRnSh5PmBkNeEcYjrCjMaHTwi1JNk6oxKLRoJRQOBcwQQI9625VfHiAWlknuA0mCWbLuP/e6t+ThfLXWtUg5HTpZFvg5dTK5AEqV3oXM3ULq+10vRUbZVVWFvWu6ryUlZukNYRE7kU+NuRzMdm8ESpVV5EtACiinnQkHr3rbu5sLXCw26GTFozzCJwi2+5AgZ5oWNUSeGkVUREoG4b+BZZ8XjpFpllyyfZlDg/arB7tcPtgNlHb3hhwTWs/HT1mX77EnBlzYWuVYZFwsC8uZaXXxJEjjsd4r4jnMpjLmOw2QAMfGeJBpQfxAjR8lYujCzGVkcZ3LeoPU9qdRlX2yqEyfxHHyajv8JGAw2AljFOXkPQqGl69tlaNyyZzQp+urms9zuhI44KhTAVQ2rEAz2Q94AdQNhVhVeFtzOghJWvrLSLj6UQZNw53UHhNWRq0cdBPad8pFs0uUkJBz7cAzANR19seAE94Q8bP8Tvsu+VTvP5DL+CSv7uSl/7RT7MA8D74oUVY4HsAOMg9O3m9+A2v5aN/+KITvvacJ88B8DmexHN+menjY+tzv/wk+Nb1Tc9dd8uzmH/2zfz5P3/6NM7wga+fe8rv0Lv2tfDy76L74e30bpVFjr88EnH1Sd7zgWc9iz/atY+nPe7MqXOnlQPz/d///XzkIx/hKU95ynFBlh/4wAd497vffcYHcl5UZGXVyyj06qBqS886KNPJdBTLhDmOqi7ALNslBAmYrO2SpRshVswhjYUWphQhjnDNmPGulNF2EQ5mCzC+JOfiC4/Qf88ezKgUylWhZyGYzk1pV2aUozqScq9KsMMSl2jGS5ak59C5F61HJRYNRqMLR9BatB8wzYuRXIAYl4jANBhF77IWC0d7kOeQZahGQ7ogquo0aYOKq2ujlQC1KJoFdVZGBDUNTFlbASE3Ay/GyDml6cztjAr4Va8BlSW1g+BmLm8bc3eODQXtD7F5QYgsoZmAFnCn/MyBx2ROBrP1Eao3mP0dTM0atoz7T1Yv+0nRX5xrAHOq3ZXvv6HzgNDJHkzhlierjYDknsDMFnA5vfJWgRXAomtDw8rIBJhq+oKp0ukrmm3QGyhlLlR0Zo+dONxE48uAt5rhHjC5YrItUCx4WjYjMo7F7ohOkjEuIoa+xcWXH+LgWpdJP4HVmDKFbE6jS0PR0uKO5qFsgBsbJmUkAY2R48igReEM4yJiUkb4cClaBUZlxGrWZJjHlE4zHCUMmgmjIsJqz11r8xS9BNMu2DY/YDBJKJoprFTnryBYoWqbTM5TBapxlik9Lmg17VzVwMQb0bS4RKGcwlo1XYhSPhCNwvQe7ytaWh0a6qvPDKYa86IN3S9Vf650TUwepp/jIoUuZPjRBbTusIx3adz8kJuXt1GWGu80xXpCtGqYu42pjbW3snO7ZWp50updKxPe7oe3n/PPesdnfoUffszvcMFljwN++rTf/3NP+R0+9/zb6P4K9F45d9zr7/qQgJITdWDqzku9zYnqD1of4M8599fhbNfp/u6uWfgQT7vgvuXgnDKA+d7v/V727t3LW9/6Vt7ylrcc50L2kY98hCc84Qn36WAe8KryQJSrxOt57cfvN4w6VBPpigJVaWJUBWbqgMpNk++6artIpQiJIV+MOfJ1mnzRYwYaNPzg4z7Jl/u78AcdtjeZOZWB7G9Dx0Gvj/AXtGTA0wrlPHGvQJWBaFRiV8fisNVJwYkHP0pN9+dTEYbWN/ugxeZYO7FbzjuacnsXO8kI3gt4qehVKo5lwHUa0mQK0PxcswI3VYdnUqKKEjXJZgJ+hFYmA3hFUas7V6EOEQviulaXtQK6fGDqG1rn7tRho9pMHwdtYDgCQPUN8WpMlMYVlS9CTTtbhZxbbUpQ21YbvZUDc5J68Y/9wP3yOWeLGvbIZ+w9p3Sv0wUx3/eMkzuO/dlfP7AdrRN1ZbaAy5lVPg90AulRybmyY49LKuew0mPGBZQe5WUsUUU5MzhRShwfI6EQB6sltV4j918PwUIRe8KuDJziE3dfIrqMzgBNYH2c0tnVx2pPfleLKFM0DslilrcwXjS4pKJUVSYDlJqVUYOy1NjYsbMz4Ck7vkKiC24e7WQlb+KDomkLbl9LGQxTjPX4QrM6atBJM3Y31im9JrKOURbjg0JrT76zZDISWol2RrQtTnSYwappZ6q2eXaJpmwI9WyyJONvnQ2j84qalSjKhhatTOaFPr06wTUjik5UhSBLgGbQ4sjprQJlBDQGMHmlDa3G/mgkvyex5hfjhbgvrxcNVZkEQDCa5WhBxqWgsGNF+6jCjiAaeoJGKN6VjmdjtvVW3X9VO4rtfdPv03v5ET55ccL/7w/+M7AL+M/Hbf/C3z/IwcP3vt/n/vF7+LVXnjwH5oQ6mKrj8hfPfTvfe5IOzvf+4Yvgsnv//PO5uh/ePgWlAF9++XcBcPWbhJ539+Oez9kYkU+LI/PEJz6RJz7xiWfhY8/fUqVHDccz/UvwMw1KrbtIkuPpTf6Y5ZU64yWOZnSoOCLEkhxftmMm84b8wpwL9yxTeM0l3RVuHOzki397FQ852BeL4WwDlU2LpXE9SVfOy6CYGtQoiJ7FB9JhgR5mqEk+XdHDasiqcwSCMQSjKdp2tuqUz85B+UA09mTbU+zhWCb7GkLhJaMGxL2r3cQ3Eya7mxQtWUE0mZ+GkdlJEIvKkSc9MsEs9wXYwPT61ff1aeeqPt+NRgG1DmdDx2uT65sPs2U22Kxj8YEwGkGeV10ggxpnUBRTm2pgBoSsrfa91YG5pzpX3ZczAS73pftyrgFOXfcEXE60zQMJZrZAy32voMDmkq1SazzqSbaq9ZJV9wOo7u9iHS8LKNIpV8pX1u8aFwtlOGgo2w7bN6RN4amNhgnzc0Mev3Q7Nw+3k3tDwxYc6HUxmSJZFpeyZKWyUa50GWJtL2NU+2bLoOyi5nOCU4yKiPWywb7Jbm7vLdGwBRe01hi7iCQq6QVFeaCJcoqBCWgVWM2bbEsHYjk8aXPn2jwA7e1DspU5OZY16W6YvHYOk/HUR4qsK5P+yTbF6IIS5RTBBlSrJIxkIcsMDfGaonkQopFk6qhSOjIhEpq2nThxmgRCVOXu5HWuWHXRFfhYyyCkmBr4TH+uaGwmA1QVjFzRyxqHAumyBEED0/DkGrB4q0TKNJLP9FsuZCesfd94Kz/2LYf501c//Jzsv3ftEd739b/H3//5n/O+7mt4xT++hl993Y0n3f5Tn9x/r/v8i9//AB/60Tv5yDFdlnsT79d1MvBS13W3PIvrLzu17sSun/jESV/LJ11W/uiaU9rP2a5pR+Zx0OX508dns7ZI/hsqKIUaZyIoh9lEduomtsF1qwYlSkvXhYq6pPUMvNQgR2vRq0QG14g49PgWZUNWk654yCEevbiPtaKBD5qP3XEp7cNhClyCVqIhcV60L9ZO9SSqdES9nGyhAlRKBjc9yqEoRc8TiXtNADBqKpSkCrKcDp7VCpaPNGXTUDb0rNHRbqKzHIyR8wOILG5bl+GFrWq1TBENvKx4ZQ6fGHwk1DhXWVT6uIFZTEjvHqDXBwIYtIR+BScrVsBMV+Q1KrGzAE8Q8Fg7kdXbasNUmFSZCATnRYfj/Wxb5wg+oNYHxwFOZS1B+Sl9TFmLirc4yyer80n7cirg5WQg5WzRv+6pC3MqwOVk73ugOzJbdeZlJxCPIOqHKehQJVUnJSZ0Y3ykK82i6BVV4YQ+BqAUrhnhE8NkMSKbE+fEYIEA8dKEMm8yPNSisX2EzwzdNGNn1OMrfie9ScIdy9sImUY3AmVTsfTlknT/iGxHg7xrMBMBC9qJq5l1kK9qXJbg50uOrLX5y7VHU6ylmG7OQ/ccYlsyYK1ocFF3ldV+k8wGmex7RX+YwhJ0rYyhyyrQTTOO9lrsmu+z/6IIt96iTBWmCJSpqkTukHc1w72Qb3NgAu1tQ66aW0ergA+Kh84d4oZ9l1M4Q1lqJttj0Ally2DHgbiv0KXGjEqxpc5lTCjbMT6qxugKRAYrWkiXGHTViQlWYSYOGwJF01aUMoXJPXgZG00mRgK1DkdsmANlU/SrJmfGtAAay7IoVjYkyHmrjq8LPnYpfOzc7f/iSw/x9W+8ks9/agcfqJ57xatfc9x2v/r/Hsb96Z187/Pv5C9+/wPHvb6xetce4WIOHff8S676A37txpN3Zc5m3RNwqStOe9PtDv7W117z4awBmC9/+ct8+7d/O7feeuvZ2uX9XqooCaOssu9VCDG4rITj9aCiZ2AGNukwpmGVGwEM0mqegRroX+p44uNu5O7hHAvpiNJrbu1v44LWGo/eezf/tv2hM91IUUqAo1Ky3ypUEq2gKLCH1snnd0gXptKP+CRC1ytJRknavDG4ViQDqdWV4FEcbHwkQkeXaEzh0QNP0JGEr1mFb8fo1Q2ifWtwSx3Wr2jPVhfrVTQAo8SSeeKmuS1BixCz6ESMLu4Sr6VEB9cr2kQFHOqGh5nd6Td1SKydgRejkZZQqLolQUwElK5CKD2hZNa9iauukQ/inFYbAlQOciEEVBLjl7q4dkLRtkzigrPS5/waq6+lEMtz3Xk5U/By7Pu3gMyDsKqmcDACXOpck2AVntpJSxZ8VOGmjomqojxJ5pbsyk48LpGudlk5mj1q7918Or8QeyBl4lpE28b8p+230ncp/Txlba0FAytZWT1FvA7ReoEeTrDDqKKSKXwkICJZExCTLmvyUhG0xa1bgg2YQqHnAk2bEynHrqRH22RMdkZ8VW/HORnfmmlehV42GBQJ3WhC7gx23jOfjOm3Y4aNJi6ZuY6RQD6n6F/usEsTmnHJJUsrbE8HxLpkWCZc2FhhR9yjeWHOoaxLv0z4ytEd9PcYipYhXZF9mUwRYtEUqXqNK3cEK1k42m0w2KnMAep/oaaJV4t5LpVzCgqUFgMBOwniVlplyMj+PcGCNxoXgQpyXeUcjYj/FRRb68UPSD2uv8jDfvIDPOyd8HWtSwF4xX/dcdx2r/ivO7j7ja+C37/3fXY/vJ3FS7/AI3/8RnrXHuH2Z0ka/e63/wfg0Wfx6DdXDUYe81v7+MwZvPdrDcSctW9UnufccccdZ2t3D0ytrIGKZNJ7rH7FzVbnpxVEKxPq3BOY0ZxqqlOde1LdrEOkae43aOV52SXXYwh8qPcw9q3Mc7jfpne0xY59m62Yaz1J8H4WmOmQCf0kI16ZkC+m+MiABlPlwUB1ky69gIrcoXwgn09k8IqFD+xixXibJRp64r4jOTjA9HJcN2a8LcYnMyE+1uDn24x3twgaXDXIulhVacNOOj2RRk0cpp+JJXWVTxP5wHhXyvrlDeaMIr79qHRJ6nwZmAHIopxR8GBq4SwC/3gGLmvgFIKoLGs9i6v2U+uRanpaHEl3xwjYUXGE27XA6IIW/QssyXo1QI2Ks/rntVX3XufSErnukNxf9sf3Fbxs1YO7lAcfQ6Hl3ugjEYPXC1u6CKgQ0LFGhUgmxAHs2IkOU0OZGsqWkfchOpqiJav5h0cdfGGYe+gKjbjgos4qA5dw92SewwMJmDSLGW45IVlVtA56zLDSbRo1tSCuxeuiBwm093vydYU7pJhsV+RzMkEvJpbDow7bkiHzdkSiSxaSEbvne/Qm6TRj2CpP7mX8ibTc06+YO8KNazvwXpNtc0QDi86ozhFGFxdcfeXdOK/xKC5urdAwOXeMFrHK49BkPmJvssrueJ0D+Ryl19wMjOcShq0Ebw12COlqhBk74jXpApmscsZ0AZ8aWbQzoidyibAE6sU6qm6UHZaYSSkLh4WbupXV+wpKQIoKAibLRFOmamaZbQSUFReLXkZ50DNJwFbdj/XIXa+aPv7sUBbYn/3OW/m61qXTn+t682ns9/Zbd8K1R/i+D3+YX97ggHzZQ57OLXe9/74cMiDuabV+B6TrcyUSVfKZn7jn4Mc/+b1r+OAXHzr9+X+/9S+B8xfEdC994/Txl/Y+S7pyp1CnDGBe8pKX3OPrR458jXw7a9rXRkBS62Bq0ACz1zcm0sOmnJd6XzWFK2jNZDGm6AQ+8Q8PY+VxLZ6561943tLHOZq3ueFfHkb3FoMpfBVmWXUWapvhGixVn1d3J+yRHpOd4rJlx15yTaqQMl3lnYB0glQFwnwkN/CiqXCxOKbkbU2yVtG6nJObeZ1WX1VIYkYP6eBjRbIufO5gRcBoco9rWoJW0pbXwkemGgBcU7og0dDhYsVgb8LcoIs5tCaBlLXmpXYZi+wMvGy4vkqZqVvZps5NUW7OzanpZd7NAKjSFXXNyO+yk5BdME+2EEladCarbLoMhMGWbcxWnVmdbfCyRSd78FW6ElAtoRrpQrowIam0GK5yaay0FrWVcNAyKTYTNzN8UZC35XlSxdo1HtvXXBBnpHfGPOph+9mbrpF5y+54nfetPIK1wx3QgWA9qpSJeTSa3c+81ZQNLfkkkYAZhUy0ywbYLFC0NS4WDWOwgSgt6WcxgzKm8IbFeEjDFFzaWWbYiNmWDPjy+i4e072Tu7N5FqIRt422cWTYYpAn7D88j7EeGg4XWXQBBMjnAtsvWGNno0+sS+4ezdO1Y47kHSYuIjUFmbf0XQrAxEccyObwQROCotMe45oZvahD8w6LtwpdsQymNsxO0FVtpSw5YfXClxgZ1OuTyslClwoB1zAorcTps6KGKSf6lmBqvYxQ4cqGwieQV8ZU2XZHSB0UGj3RhMaWBub+rBoAPO2778Q95b2856e/a9Prf1/eAcns52f++l/xZk79HlsL1f+WZ/LLXMWBF/0L15VdHnLTDLw87IVnduwvueoPjnvuyoedes7iD/3YF6ACLcfWrp/4BF/90hX3i+Pbyap37RE++bGEJ3xjxgV3/CH7LnouF9zxh6e9n1MGML/5m7/Jox/9aLrd7glfHwwGJ3z+QVW+8uOvQYuqRPNVR0Z0FfW2lVOZVqhIuixTDQxIngkQrKmsmaU7cug/al75jL/i1770ZG5bXsTv0nwu28N3Ln2WQ9d0uGXtIuZv8aKB2WgUsCHhXtWZKiAT8bygeUeP0UVd7LAUMWRsMJMSlTl8aiW0sfQVh1puxrbv0UVgZC3JaknqqqTnZkTQisn2mDJVJCsIGEkSyqU2wYKZeKJ+ic5Kim6Ma5hpFyfqu4qSVtGz2nItfCz8ZGJNVLmcjXe3aC/3UaUmlH6WL1ML8+sg0BqwKD0baaytujXVzxsNE0B+dxt/l7UVtVKoOMLPdxhd0qVo6mkImsnF1jNezSk4pgu3VVv1ANb5BmLiNz0KgDBxFK/+wgN8NOdnBcU0OHHqcBVLfkltmmJHTtiwFdVWVxqYgELnniiEqbX9YLdh4cJVVpc7XNxa4WZ9MR/5t4fylEd+iWEZc0XjEJd3jzLYnbCy2sKPLNFAgZYuebazSbxmqkk904wUk4fq8yv75yCLV+lRhV9XZEuBIopZzQ2Hml2M9hyZtMm9IdaOnY0eC9GIhUScH69qikvpHWoJreDuuxdRY4MLkC4bkjURx7tEju3I4S5fVoFdLdGzfaG3h7VJA6M9fRIGRcLe5jorusXhSZv1vEHL5nivyINFa4/pFJRNQ9EUtzGTyYJZTSfTWUlwGm8r4X0QsGIyWeQLqZkuOKIlCNlHGj3NHKgW/hLIOwZfsZKVh7IJrgGjPR7XkHlEND+RSLn1BDtQWzkw93M94RszFi/9Aoeu/2t4+Vv5Fq5l25t+cvr6sYAGju96nGo98sdvBLo8+3VfZOX7XwvA8uefxPLnN2+39KgbTml/tY6m99wjU6D0vn1yv/2O3uc3gZm37PseXnrBicHKsfVb7/5VefDo4wHS/Vk/esV/4/o7nsQ+nstf3PkTcFHGlW+e49a/+Sb++R3xKe/nlAHM5Zdfzk//9E/zAz9wYgvVz33uczz2sY895Q8+L6u2RqYS5NdmV04yTJTVM9rShkDGmSVwELcvqFb8g7h3NVKIhBKw9G+BN132rWS9hHRfzGv734E+EtO+S9E46rnojjH26EBsh8tZXkoIYbrP4MMmp6wwcahDJU0P4ws7mEklRPeBkBh8YrDrmeTbVIOjrFJVtpHjyoe/sinWeUm+1MAOHUEbsXN2HpqW8e4Uk4noUWcC4EzmKVsGb2rPfllBRIm1s2tY4VkXImb1RqwvdYms8i100HcNK1tqM9O0xNHM+a2+BpX4XhkzBZBTDYsvqiDKylihNlzwQUBOzXEOsu/xhR18pGgcKTCZq1blqqDLYQH5+Fz+tW3VCerdT+qfFo3sTNzH7i/Xsa+1qgHLVp1aeQPKgB2LYUsNIlBy/1W+ohXX2SRaJsh1Z0AFqk6AJLlP5g0oWGyOWVtrcedogfiRa1w6t85iPKRfJvzT+qX0S1lWViYQrVrMRBH1A8laOevGV2YANcASsXqgaMl9ukwVZiJ2xRIyqXCJITQckXG0o4zSa/YPukwKy7CM8UEzKBIO5HMs2AiPomFyJoUFpwiRh9jjBlpCKDNF3gU7UtjbEw6NF0kvL2lGOXesLqBUoJNm+KAYZAlNm7OaNclKy3w6pqw6MEWh8S5mcX7AapKSzWvMYTe1MFZGoTIHLqBUkGyejU6XQbphyge5LlXXa8o8mDqUVVS7GvRl0t0ZbddMtgfKpsd13cxWuQp+0c0S1zDEp2DNu1Vnt4bv+zSdf/rvJFfImJLdNBsvvpN3btr22St33mfHrpsefgN8/kksPeqGTWBl+fNPOqP9nchS+dhOzKmCl7p+4vtfAdwEHz6jQzprte+i5wICNOu6/daddN2pd4ZOGcA87nGP49Of/vRJAUwd4vhgruA8WJkQK6Uq9ys/y3SJrNCVtBJa0tQBa8M+8qJKoS9lEj0NsnSgItp3TkjekUKAqC+rVWbSF+ew0qHqFHo/6ySEspxN7B3yuJ6811ob59DLazSMYnhxR7ogyM0Yz7QLgwrYcYnONfmcnQoR8zlLNHDYgRcAUAZc08gAMMrEEWeugRl74vUcM8wlENMotA/o3BIPZHXRNSS3wA5LfGLRzot3f1YSjBa3s0RRNOXDJ7uatA5Gcr1BAKL2M+e12iTBaNEBGSMdoaKcPlZUv6+qAyaA5phfsHNgLSqKKHfOkXfMVFjrYzlnnXuxlM4KymTLNuZ8rfsaWrkFYk6ttkDLmZcuAVc5fClxH6sBTJ0L4hItejvFTFBeAQpvBNCgYLDbsPooR7RiWL17O6xF/NvwQqK5jO72CYezDgeHXXY0+6xmTRJb4ktNNFbEfWisSB6KSwzBRORdM7XYDxpMIZ+tC4WPxE3LR0Ily+Ylo4xKJ3No0MF2POMyonQa5zT717rsW5lne3fAp5Yv5CHtVQ6POxwZthj2U1ShCSawd/cqB49KCHbZEqe2ogWuGTAjzdFBi8WW4qKF1el1PNDvkEYlWgUSU9KwBbEuuWVlG3lu0SqgtSe1JS71DC/QBG3QTuz79cAJrZrKUKfS/ygfpiYJdfdLroGfGt14q/BGnMqC1hWtD1BVdk4IuAZkOxx7Lj7KgYMLKOPx/YjIOpKopJHkrK7G5IsP7vnRg6Gutz0GnR+k3X8nH/zcD/JuoHjMX5FUYCW5osOg84NMflz8fDd2ZFbK03ekPJaG9anvfiGPe+9vbwIsxwKZU+3CAFx/2Z9vylPZWKfTealLwIvUA6GH+d7nPw2AP7rpf53w9U9+LGHfN9569jUwb3nLW8iy7KSvP+pRj8Ifm4XyICtl9GzyDKK1gE32xeJCpmZUpiqBXjo2VY6J1rJ9tdIfIku+p8vy1Sm9KzytuzS7PjkUgbv30mkBVOlmGpCKJhVqC+e6O+GqfBNT60XMlGoWxmPU3QXt0jO6uEvQET7SJMsTfGxQplqNyj02OFwiA5OZeMy4pGxaARxZiS48PrY0943EWrqZUrYiooHQxoLWhEjjmpGsXgXR00wWNcprGstii6zLILaWAXzDonIv4kiYGghMlgzNhS4cWZ0BsyKAobqOM2Cj0kS0Ll6us7jACdVP1XSzattp1U5xqto+jsgWE3QZiIYe7UQ3lG2LiPolRdcSp4ay2BCkuVX3S91T9+W+gpZj62yCmI0WyudSvH++0ci26uTlLWAlNFKMTqjuiZXmRctrZVMs683EV3bE4FKFi6vFGA3KweLeNdYHi7AWEZoOPbCoI03+aXAZKnHQi9g/2A0e4nXFfC/Qvb1AF57k6Bi9PsTPtXCtmGQVio4lLkLVMfdiMpBUk/hSclqCVqTLnsmSxg4VhY04WnbJSkMzLsgKS5FbimFEOpdxcXeZlayFD5pD/Q4uKNRyLN0L61kZNGkcrqyTNUSDgBkrio4iW4DJOGZVBa6aP8zdoznWs5Rev4mZG3L3YI7L5o7StRmfOvIQitKQJAWdhsxL2nFGiAOlFkZA0VB4o9F5BUCMnnW7KjZC/ZiAZMB5QCPjXyQBmRspzSoE+d0p5HrFSBhoruhPEuhbfOrBBsZjocI04oJ095DhxjDsrTondV3ZJYn+hL+4qc+3/sgf8JE/lowkrpht0+6/k+cdvpPxW3YzfuPp08XuqXrXHoG3bX7uW158Zvv6i+e+nS6SBfO+7qP4jt7neV93tqB0uuBlY71l3/fwHb3Pc3bP/tTqQ26zVcLzhk/j/Ue/B14mP//k6LtPeV/63jeR2rVrFxdddNEp7/hU6qMf/Sjf8R3fwZ49e1BK8dd//debXg8h8PM///Ps3r2bRqPBU57yFG66aXP7bGVlhec85zl0u13m5+f50R/90TPX4/hjVkhC1QE4VocBU2G4snbaeQpug4Wy0aJ9sYZs7xxHHp0y2huILxiSz4k7WEiMiNxrp7IQCA1JtacsJevF2spJS8vxRZX71sYOTE1pq0HT0VWaN60ItzeAT6ruSxCLTuX8VCwaDUqiXj4NShN3MuFIx+sl9khPnMdaqdDOslL2EQKqEBG/izQmc8QDL9zuavAbb9uAj70AGT0pp6tcUd9hx7JtsdicnacW3dDMEKE6vxqIVM+r2v3N2k3WyyCgM1SuZeIMV4HSKqdHBp/KZKEMRCuTyjrTEK+VuFSTLZwftpfn3ffkHNW9UcfOhUPZI5+xd/pvqx7cdb59T3QJdiL6lWjssZmvbHhn40y9iBPqDgdMc2B0IdTerCsC/9XlDq7tCU2HGhmUAzNRJPsj7P6EYAPFtoKyFWgcDiTrFWU30rhWTGiKCD5YhUuNhGE21KY0e/lM6RDZLEggY6QoWgLIVKGIDkUMb5/j0L4FxgfbcEcTNTZEUcnRSRutAmXQbGsP5RwbXgI5E09xa4e4F9C5UKqLrhKHs07AXjRAG0dsS5azJutZSjMqeNRD9pEVYgf9lZWdfPTuS1lZbzFebVDklvVhg8XGiJ2NPhi5tkUriFGCr1zIgnTBVClOmXZYojOHzh26WlSzwxJdZceEil49+0XJY1c5d9osYEeeMlG4JGC3T3BOY7dN2Ll3lfb2Ia1mxmN27eMRSwfYPd/j4ovOHw7Z+fZdORtVdyr+5j3/i+YdP8Q//8Kz+eYfifnmH4l5wjdmPOEbM7770Gv57kOvJfvVd6DdG+9lj2deP/Yth/nkxxKeN3za9LljaWU/fskXpv9OVHV3p/5/I3g503rLvu/hLfu+56zt70zqyeZl08c1eHn6tr/k6dv+ku+98Lf44PJ3nvK+HtAZ2nA45FGPehQ/8iM/wnd/9/Go61d/9Vd561vfyp/8yZ9wySWX8OpXv5rrrruOL33pS6Sp3Iyf85zncODAAT74wQ9SFAX//b//d57//Ofz7ne/+/QPaKP+op4kGz3rctROVkFNuyAbc0qU0TPdhtb4Zko5n9K7KGayLdC5FbL1DmYC450Jq1c26dzlWfhCTzJojJZclMoQQIwDNiTP15qOTZ0YM5vo125l2sB6n3g0wS51ybc1cV2LHbppexzAjkuCVhSduEplFvcy34iIRiXxHatQOkIaCwUtUGW6VC5lG6yagwc7dCRrki1jx5JxYPtiZawnJapwhEg0OWXDVsfgiSOFTwwqikTfo5Vc442Asb7OdXZLLbA/Vqhf/a+snl0rAG3k96O1nI8VfnQ+J+cVOpKLELQMXmWqyZqnjO/PaZ1335OzXOfSOnmr/v3U+fY9qRPZTS6TX1WtNZW1DqZKh69t6E0uk2ZTeFRPXs8WLJMlcbcKhaa7q0/pNOGOOYp2YLLLoSdaJuu5gjSQrEieV7LqiPqF6FuGOXhPiGKyhQhvhcIbNNNFJ+WqSb8TvYwdS2co7xqigaTcR0M5j8mSJliNLph2I4aDlJtGCbuX1mm2c7anA44OWqACfr7EHopp3ykUNZeIfTKA7waKeUcCtBo5uzt9HjV3N71Wyt5kjZ3ROvvmF5n4iA8fupJmVEBzjF9UDLKYwSjhlsPbiHc5bKugVJaypRjt0DQPe/SkAK2FPqckZkA+2EuIcmSEal1lo8ningCsoNjkKApCCdT5zEEuGNDGk8YFD995EK0CX13ezq6OuKpFymOV5+r5/Xz8tP+Kzk2db9+Vs1Hbv/i3AHzgvRcC8Du/sMgLHvHKTdu84Bfl/69rXcpz3vgqznZ1P7ydx733t/nUd7+QPwX4Z+i97QN0P7yd6255Fn/x3LeLrgX43dtOrre5/jLpvNSmAvel2wLw1S9JC+rKh8l+ahDzru/cw3P+z/77tO9Trettj+/9u98C4ALEcezp2+S19x/9nul22WD3Ke/zAQUwT3/603n6059+wtdCCPzGb/wGr3rVq/jO7xRE9s53vpOdO3fy13/913zf930fX/7yl/nABz7Av/zLv/C4xwmn8W1vexvf9m3fxpvf/Gb27NlzegcUqhZ+ZGcT443gwGjInageawpXZcurKtexOnQSwHUSVq9qsPKNOY+7/HY+NX85eiHjP150B/9068Xs2r5ObByTN2+ncVsmQZReKGTK6VkHIYRKa+MrcFS7bPlZ5kxNj/JBukNBwJW6e0K6nOJ2LeBSi0stZcuK1iMEEY1GirxjZLVvwdK+a4y9e4WQi7WxsgbXtBJ0mRg0oEaOYi6VjIJEHG1qKpmPFPHhHD0WhzIzcei8lO5Ow4ILjLZb1q+A7Z8VBxidS9eJIt/8O5naVVc/u4owvrFbVruQbQR7NXjRlV4IRwiVGcNoQjRwlC0zs8TUanoeLtGVluf8aPmfd9+Tr9E6WRfmnmhmx75nK/vlgavz7XviIygTSYcPSnQmdXZIQCi39c+60qAIjctMxfUA2TaPt6DTkv6+LsEGuDSDvJph54EyCbTuMhRtgx1JZyVbMNNuj+2DT2Mm29Lp/S4osUwOunbtki69ycM04LLuxkTDQDSQyXvRlFDMsg12CC6F5n5Nsd7AR4G71mP2z82RJAV55QQW749oHBKDgGxBUbYCBFlE8haUV7jb24wvHpA5y6G8S8tkfGL1Up6+7QvsjNbpuwaPXboTXV2YQ1mHXt7gTubp3bTArcmiiPRzjS4q++mWItvWmP5O7LBaSFMb7u0+oKo0ZlVrXDYI96fbBKa2zGVDgi1RYpGdj2KSuOQhjVWO5G2uXDrCYjzCKsdK3iJzFh2dPxqY8+27crbqetvjaOutPOeNr+JdrddDax7YrHX54At/is8Ob6Wxtsx4fumsH8Onvnuzd/InPyamGtdf9ud0+XMaS8t80/KJ/ZXf/pbPcMVvb+50bcx/OdM6mQXzd/Q+T+/a47U856KuK7t871OexnP/+D1874UCZDYCl7qS9gHyo6e2z/NjifkEddttt3Hw4EGe8pSnTJ+bm5vj8Y9/PJ/85CcB+OQnP8n8/Pz0CwTwlKc8Ba01//RP/3TGnx3yoqJrbaZATWlbWs2ARPAzRzI1AzvBaEZ7UlYe7XnoRQdITcEVD72ba/Ye4OLmMmE9ZvVju7j9lp1yY8zyqoPip25jaANJZVRedxg20qoqzU2dPD+d1DsnmplCuhYhy9G33E18y0GiQz2S5Qk6F5cWvFAGGkcKOjcPmP/0IexdR2cdD5CVOyMT/KLKeSm7KWXTMF6UkDUfKXQWyNuKstou254KLSEXK2ffjCm6MUU3QvlANFCUqQziupCASqJY/kFlgBBmmpeNIK3uPOnZQBScq4wOatqYm+qUpr+XLAcfSJYnEmQWz1xoxFWGaVAc5894c9J6IL8nZ6MeDN2XE9HMtmhnD656IL4nom9R5C017fjqUu4zAOmKo3mkJF1xleDckSznYmG/aHGxJm8rfBqI+oq0mWOGmquv2sfXXXYnC7t7kDj03hGdC3sMHppjJpXrWSEUNpN5dBko5lNcbWdfi9gDlV3yrFtkx7OME51LF93kXvKxsoDJIRoG0lVP6255Pu4F7ChIrosGlWvcMGJ0tIk7ktK6NaJ7K0Idq9z/lVfk857J7hLX8QQTCLoCJv02a3mDWwbbuPHoDvo+5d+GF7AvX2AhGjF0CZFyHB53GJcR1njcXMnli0cJQaGaDp3LOQULLq20L7bqpHiPKpzoTzXSeTGVQL+eESmmLmYgII8KvAQNZaqYzBnwkCwr9JGY2Dq6dsKjO/u4tHmUSxpHaJuMRJc8bOHgFHid7/VgHVNe/H038IyjBZ8d3srLfvJH+Ozw1um/D77wp6b/6jr0XZ7G2vI5P65jbZn/y1Ofetw2i+/+eYDjwMulz38sh64+d0L7Kx9202nly9zX+qOb/tcm17H7WucHyf8EdfCg+Mjv3Llz0/M7d+6cvnbw4EF27Nix6XVrLYuLi9NtTlRZlm0yJOj1erMXfZiK+UNeyOOi3DRRBmb6kyiWjoet0uqrdnO5o8v+J8FFDz3I6qTBzQe302mP0QruWFtg/gua7h0F6tMQL48JcSQOZBta1cpoiCKZR5cluA3HUYMoNgjdN0zWQwjSFarF/1pJR2U5x/QG6BCIo2hKOwvOo9KEMB4LUPDi2BVCQLkqDLNegdIV5csH4qHHjgTgKB9I10S8Lw4vEmipfMAnlhBJeJrJPcm6J1115B3x7VfZBipYbVxQa4sqg4QpiDNspoxVnTJlzOz1uitV217LHweq0hvptSGNIxHj7TGuoYl6YjRghzBZsmAVZnL+DzgP2Pfk32n9ewMt+cs//zXhRPZAfE90ASoPle5FHLEIkvgeKq2kHTlJcq+6vaI/lP0EK3StoANFJ7C7M+TI5fDUHV/irskiExdhdGBSWMbjGNMoKeYiTK5IVgV8qBDAC81XROphmvUiQErAjC6ZLlJJALKq2kQevMIUlYaksiWuwziTdU8dtimdH5hs09ixxg4DdgyomSNk3Vkq00BoVwtsEejYEdrw0J2HOTpu0TAFK1mTR+w4wNGiw5G8jVGBo7RZzlocVB3297ok1uG84qILj/K4+TtZmbToZzGrgwWah8RFs+6oRL1C8l4isymcWTnpwPhInCjr1pcOGo8HqyWYOYittNgpz3RLdhxoHlSs2EW+vLCLhimYi8a4QjN20oHaHvcJxYPDlv9cfVfO1XjSu/bItIPwX576VF7W/vnpa2++5v/wsi9s1lS8+Zr/w9e1LpX3zJ+VQzit+vN//jRc9uljMmf+HF594u13fvkTcBZBRk0fq2lp97cT2c9c/zc0f/pJjN5/6m5sJ6vzFsCcy3rjG9/IL/7iL574xelqvd/0XHB+5lJWdzqMEcqTMRIsWYVM0mww2p1wycMO8OiFfXzg9qvhjibDvAlB0TwYaB322InDrmXorBD6WOmE9pUmUFk0qlqwX1kAT4MaN1oMBz/NqqmPXRk97aKEskTF0SxPBUAbQiMRh7GqgxNGowpA1bbPSvZpNGbiiAayiuWatrrRQ9R3ssLXNoy3WxpHHT6qQJQCQgVetLi/+EiyVqKR0PWUl1U9XVlKT0FL7fxGBeSmlDE3NU1Qqu6Sudnvrg4erbtnyk73SVnOmAHOY1fHJFZTNgw+0UTrBSpAugJ511Kkp/Vn9TVX9/g92aoHpLYcyM6/uqfvifIQjYMYogwLymZEGYtmRRdyD7Rjh0sFtdhRgfIWXQTssGQy12B+T49xFlF6zWXblvnHtUuZlBGDPMF5xbCfEoYWnWminkKV0NmXEZQSo5VSHLhEr6GqzxEwU/jK2hnpRnsDNpstVFGZvdQWwz4SipUphPYm2hk/zQbzkaJ1yKBCQBeyj7yjKVpKQIOSfByfBqJmQac9JisilAq0kpyHdQ9wuxVaz+Wdo1jtiJSj9IYS2D+cY3nYpJ1mjEYJUWfEnm6PYRHzj6uXMJ+MuWr+EB+8Y6FydgMz9lOKnqpcQsHjk8pZdKq7lHOZUbQD2NkinM4cvnKG01HAIm5xtQ4m6ituX1/k8vmjJLqk9JphmbBepOxMDCPX4N9znavxpAYvd29/Kb/ZvnnTa8eCF4A3v/X8uIeeamDmP//Cs+EvXnvC12owAid3JftY+CG+Uf3Jcds/ENX98HZeyDv47l//Kvz68VqX//3QA6e1v9MGMM453vGOd/ChD32Iw4cPH2ed/Pd///enu8sT1q5duwA4dOgQu3fPTvTQoUM8+tGPnm5z+PBmZ4+yLFlZWZm+/0T1P//n/+QlL3nJ9Oder8dDHvIQaRHjp65jdWcj1F0MmK341/oKbWbdAB8gtpDlxGslq6MGR1ptwmfm2PEVh8kqj3mt8HE1uAzGctPMC2lt1zfUJIZJRphksxtqXhzfCaoE/croqehfxbE8rjsXLkzpZHJiAZRHDUayf6NnBgUbhPDTzkXpMOsT8vmODEI+4GNNmWrhAY89ykHn9gkqwGhXgqnCMX1ipnziom0oE0XjqMNOHNl8hPLQOlCghmMBVr4GJ2rzcejZ35nyVHbVarNWyYeKRqaFuqwqheyUdqanQn68R/fH2DSibDRwsSYsxMSrOdHaBF3GFHPnvy34A/I9eYDqbNsob9Wp1ddCF+aB+J5oh1CZqhwYHxmxrg/VpNqJAyIwXczRgxyVObKdTYqOrN5nheXyHUe5e32OlUGTbZ0h8+mYSWlZX29CPyI9bEhWZCJt8oDp5eiswLWFghxMZTqzcfwIgFJoJ3Q3XQR0EN2LtzIxV05AiKTVgyEQrBz/lBHlq3t9LFStjS5rtQW0zkU/4yIlFLdcYaznorlVjo7brI9TRnnEzcPttGxOwxQsxQNuOHQFV80fogyaWDvaccYwjymdjMfzjQk+KNZGDY4OWrTTjP2DLs27DOmqHLNoLJ2YJaQWXfiKYhYkugCmXSQBeqpy6pSxw6sqt0epadilHXnKpkaVQjuzA6GcHTowz8VzK6S64EjZmYaK3jzczny5eu9/qOdBnavvyrkeT1574Bm8+PLLTvjaH930v9j5V5pD3zUb0zd2bs7XuvX3P81zG8/b9NyxHZSNz58IxHyj+pOTApf7u/sC8NvxD/PC/B2nDVZOVKcNYP7H//gfvOMd7+Dbv/3bueaaa6Yhg2e7LrnkEnbt2sWHPvSh6Zem1+vxT//0T7zgBS8A4AlPeAJra2t8+tOf5rGPfSwgAMp7z+Mf//iT7jtJEpJaW7KhJHOleuw8SsmEuO4EyHMbdBdlKZP/6Q78VEger04oPr7Ex67qsG1/IBo4ol6BTw3jbREohRlXhOC8mO3CeXDZrAMUvHQRNkzSp570Sk1tnkMFUJQxhDwXOlVlCABMu0gAykmnh7LcJIZXaUoYjWfanrIkYKEo0MMI6DBZMphMUzSrLoqTwXG8ZDC5rVarwKWyCgciis/blZA1DwLeBnKtVYDk0GB2PZ2T7JyynCUn178b71GRhciKC1qV/zK9bhWY3pQHs/GaTfVCofo1O3RW4hJV0d4gX4hpZA5VBuzk/AcwD8T35IGoBwt4+bO//uMtIf95WA/I9yRQ0bMC+ZwVrV8ZiPtOsrHczCTGjB0qr+43WjoZRVO6JuN+whfX9tK4LcY1Ak/49i+wVjT4ty9eSOOAJeoJXS3uB6KRp3E0x6wNQCncjjY+FgqUNwqXznQdRVtTNGbanFq0H0xFOavm9mbiAMlSmVoLVxoRXVGLodKMlEHWmqq1IwCb+SllTivRwuRdRT6xrExatOOMhi3Y3+tyy+oSF82t0lcJWnkKr7lruMAgT9jWGBDrktJp0rhgcW5Ib5Kys91nsTXiwFqX3iglv7nL0t2exuECH4lbWrACvHysZ5ECmZdxREt8QIgtoeqwUGW2eKPYKF0JauO1El0QUMUVKOzRiLv681zeOoJVjrloQhk0y1mLYUUnO9/rXH1XzuV40lhbhp/9ev72jeLs9ZJnv4Zf+9PXTF/vLgldbGPP43wHL8fWsSBkI2A53VDL++pqdl/rvT99JT/wleOfP+cdmD/7sz/jPe95D9/2bd92um89rgaDATffPGv53XbbbXzuc59jcXGRCy+8kJ/6qZ/i9a9/PVdcccXUym/Pnj084xnPAODqq6/maU97Gs973vP43d/9XYqi4EUvehHf933fd59cMOqJfqhuboDQwza6XG2cJFc1pXABZmXArn+K2W8brD7c0784Jj0aY8eBwUMU3dtCZS1cTmlhwW/ogtT6DVNlxGzUvoBQpHyYTuQ3ptNPj1nrKdCZ/l/tQ7EBeNa6mWJDWCZApOQYrIWiJF4rGOy2lNUgGA1E4DlZijB5oGgZoqHwulGK8TZTucwoyhSikdzwvVUM9yQEA+27M9Ran1C6mXNYrd+pfw91Fk9NJfMVNS6Us3PyXq4BzDpHzgm7LLKVixsVMDSyTy3dqWS1ZLItomwIL7xsRdUAXlufPbB1vn5Ptur+rS362D3X+fY9CboOO5ROtS6lm6GL6r5mxLbXTEri1WIqLA8Y8raunMQUqhcRIs9kl8P2Nf/vlx/N4twQnWnSoyKiT1ccwSrSQ2PM2giKkpDGqCD0XjCYzGMmgdBAtC7Ioo2t3MdUkG5J7bQFsw5MrZ9RpZeuenX8qvCoUroSuqgADUzpwqZKHaDBNO8maAFcvh+x3G7SXsi4cv4grSjjwFCmmHPRhIOTLu0op5eltKKcLx/axWP33oU1nku6K+wbzJM7Q+EMB9a6KBUYrTdo9CRgsuhYon6JqbLK5LgQcKVUpaXUVZilriIChOpscj/tJHmrADMFZHXAqC5nuqCgAA8mg9445VDWpWFyLkhXuXO8iA+Klbx12n9D56rOt+/K2ah33vxZXvLs2c8vefZrAHho40q+o8qIebCBluvKLjeNrwB+iH8+5rX0o/+Rt3zTibsxcGK62EbAc3/ZJ5+sfvm6b+dnrv+b40DLsz61iz/cdmr7OG0AE8cxl19++em+7YT1qU99imuvvXb6c91e/KEf+iHe8Y538IpXvILhcMjzn/981tbW+IZv+AY+8IEPTH3IAd71rnfxohe9iCc/+clorfmv//W/8ta3vvWsHF9NxQJm2gqYrubLRrUjWXWjr7si3hPftcruTygOPyalf0VJ0dWYsaKcc7Q+6VHDceWwVfvSy0BCcJttgmuRfT1ZN2YmeK+Ph4rKprVsF0nwF0UpXaSNeTE1BW6jzqfuUpwAmNUBkvbQOt2WJe+YKt/ACy/YCBUs6s9MBqQTYyqBKqQrIvT3VmHHnsm8prHiifavi1lCEkvXZUr3UlNqm1Jqc7dlqoHZCMjM9DU1tVCuOlc+1Lyz2bkDJDGqkPAykxnKVCyls8WIMlW4/PwAMOf79+S+1Luf1L9XJ7IHS/fla7keDDSy8+17YvKA1iKa1xnE6wVmQx5WMIrgAnqUozIZB0IzAaWIxp6iKYJ+XQKFxkdQzDvUcsIoLVA7J6xFCUuf0diJE6rXIJuOJ6GVUrQsQUO8Jos+PtGYvBLsV3QvsXoWYGEnYqNcWoWuqMLKVeCmnNGoQHK/lAvStfDieFaX9n5Knys7ssClndhKe8DHoDPNYKXJ/M79XNE4xJwdc2DYpQyGls24tb/EMI9pxTmZs2zvDtg3mOeqxcNsSwYsTwQQrE4aGOO5YukIn9t/KdFAcmbytiYaCijRFRDzWmyqVRlQxSzyQAUBKkEptBPzg6B1xRIIM22mnm1PGTCFaHqm1L2JoiwNi/GQVBdsi/r8W28PqSm4bdg+o7+jc1Hn23flvtZ4fonJ79zM//rC8WGh/+2aj/I51gF4+TNv5k0vODvz1/ujrrc9bv396odvf+im1ybfNIM0J+vGnKzTIs/f//SxjfUz1/8NAD/wlc1amLx36mYXKtSzwVOst7zlLdx66628/e1vP2f0sfu7er0ec3NzPHn+v2FtY6YX2Ug/qjsTGyfA9Tb1BLsGMCFIN0YpsIaQxBTb25Qty/qlMtnf+dGjqNGk0rVU+pWynNkzb9TWlOUUbGwCMrW5gFICUtJEAMsGF7NQZ8XUBgNVl0bF8fHi//p8jj1PoysxvyHMtZns6RCsxg7ENW28M5a06fWCsmVxqehjxksaH0N7v5+uVrlYTcPSul9YRvUG0nmqgWKtwakf+/pY9OafN16PujNT/74iu8nNbbrvaYdGTc+HJMZ3GmQ7W2RzhrjnyOespF+PJnzuXT/H+vo63e6pCe6+lqv+npyrOhmQeTACmLNNIzsfui8nAzBh4ihe/YWt70lV9ffksf/19ZgkxWYSfBiv5ZiJhAeHyEwDFvUon+aS+GZEvpAwWbIMd0nQZLYUKLse09e4jojlt12ywjiPcE7jv9Rh2796Gkdy7PJ42tV3iy2yxaTK/IKyaSSoONL4WCzsa+AigY2VpbILU1dJW+kbayE7laBfOw8uYCYlPhK6cB0GKScSKhCgKDqRWBlr6cqUiWKyTZHPQdEKmAuHXLXrMEvJkJvWtvPwxQMYFbhxfQcrwyZJVLKy3uLSnUdpRxnNSiPzhZXdLPdaeK/YtdDnrv2LdP4tIV4XV7WkLw6ZPlJMHTSNwowdZuIElBXyf1CIqF8jXSUv+s2iaUWbVAZ06fFWVx0Z6cCUTUOZKrKuBg2TJcVor+Oihx7kO/d8npFL+NTahcTG8a+3L3Dj9//K1vekqrM9nuz6iU/w1S9dwZUPu2lDcKM8ft0z13n1e+YedB2Yunb9xCdO+tqpCPnr2hv/CXfnP/SAaF+OrRfm7zjh83+4Z0J+9MdP6Xty2h2Yj3/843z4wx/m/e9/Pw9/+MOJos28zve+972nu8vzp4xFtVv4lbXp5H8qqp/SlsKMWlR1PlQUCQUqL6YrNCL816goQjlPfFdG7DyN21KZQI8mUIj2JWTZzF1sowta1dnBaEJWgSq3wd7YI+5ideaJc5vAy7SLU3nfh4oyJceXz7o19ftqjYkPsv/6uoRAmEwEBAFxEjG4tI2PYsxYxJFBKYpuRNHSZHMalyrsKMC4GhyswkXin99Y9XS+vAJrPenK1zqjjcDQe7mmFQicXpONltZejnmav1ODmJrqVwOdGozVPxsz+90WJSoviXo53iS4hq4GLFVfqq26n2ojUKnBzIMRvMDZ1cKcD+AFHhxdmPOqjCzYRGM/BQASJmzwkSZxHj2S/K8QW3ReYgYZUWSYLMrQbEcV1Uxp7EhcIO1I0T+8nfKhI7TxRCNFVOtqqvv/5MJ58jmLnYhZgDeKYAScGOcIxojNs5d7tylFYO8tGF8J310FSkwglIAS8xmUwjOzudelR2VOmLuVQYrKqi5Tw8rkfyB20XnXoEuI18UhzHYUbr3NXWlOc1tOIyro2gl3j+dJTIkPilEesWuxRzvK2NNYZ61oMCwTnNdkwxg1sBy8rcXi7dIlMoWAlaKpGO60FB1F1JcMGjsJpE4sk0WnE2HHDjOU7tiUzr3R8ECpqVNbMBW9rPBgFMpplK+MEABVQnLEcHu6g4+nl3Nl+zCXtY9yReMQO9wiN96vf4D/vurgbz0Rrj3CV790Bdc++lX8Wfb3fPVLn+DHvuUwnGIw4vlc1+4SsPefP/Wtm4DKqepZBNydH+AFRMzfvfSNxz2ftCenHGR52gBmfn6e7/qu7zrdtz04qijwR1fk8cZJP/VTamalDLMuQK1dqfNY6m5NrV8pS0JRCJjpDaavhyqDZUpt0sxAh672X4RpZwdjpiBHUXVf6m5RtY+6AzQDXxtpYkIxmwIXmB6DspYA0p0xRn6ubZpNVHWYDGEywRxepdmwjPakFM1I3GWq1Tyx3AQzDsR9XzncCCdZFzB/S0Z89xqqP6x4yEYAWSMhtBu4ZiQZM2VAZyWq8JjVPmFYtRVre+SK0qcqmthUr+TC1JENYwiVMFbVXZ2626RFc6S8R40mGB9IfCBfTMm3aaHEjc5/Ef/Xaj1YgcvGOhsg5kTg5WQrV78d//B9+qxTqS0Qc+rlIiG2hiobzMcGVUo3GnzVsdD4liwCBiedd+X8NDumbAs9yccB76BxWIujVw75vzVJVwJmEiphuUZ7D4eXaWQ50a55ylZE2TQoJ9oNtyiUMJcoXKSmgnSTA4Fpd8FkAl58Il0ZXShCLQIJYZNGZNpt8WqqL1EhQOFQkbiu1SGSJpfuCFSamSKQLSj6N8/zVRWIrePjhy6ldIal5pAstyx1h1y9cBCjAv0y5aurO+iNUnbP92R9a6BJj0rHvegqJjEUXdHz+Ahc6jHzCjtU2ImAEZMJLU6XiA2yUpjMoXM30//4MO2+CI0uyO9IIRTnysBAu8oyWinsRD4Tpzg47OIrMwCtAj6cH5Tkr+V6+GNexBc/83Y+/eu/h/RgttP4q2XG80v86QN8bPelDv7WE+F1X+S9b/sUH/9v30jEb/Lr/+NbeNGvPOJe3/s7b3seL3jxH8z2c4J6Yf4Ofvqn3nBckOa5rn0XPZcL7vhDmk9/0vS5v81+gMf84am9/7QBzP/z//w/p/uWB00F52Sy7r08rqrWlACzVf6NonDnpFsSi1hyCl6oAUKtyZBwTJyXzskG97Hqg2bdBti0n2l4Y+0mVnVLps5iG2lglaA91Nzdij62qTsDM8F/TXuL7KbPnnahXOVmVuSgNKEsiW47RHd9jv6V8+QdjR3Lcbh4NhhmXU00koGiebgk2T9Arw+k86QUWItf7FDOp7jEUDZ1NZB4ipambKQULWgeadM4mBEtD6VzVTpxS6uvv1YoE8+oZ3VeznSA9TPgUp9L3Y2pOdBZjlmHJEDQqeTVbAGYrbqPdaYg5nSAy4leP5dgZgvEnFqZIqAslYW8xiUKO3REgwKVGILVlO2YsmUrjUksjmG5Jxo6dGEoG9Il8aknTyFes6CgbEHcg2gopij5nCVS4JMOeqFJMJpsKUKVAoB0Zf+rqgk3eUUX84HCqCp1vqJKFWHqTKac/JuOezDNVKkpZGJBrAiJEXpZVkLpILFQ0c1CEO2Jmcg9N2hduaEp4l6g6CgGX1pEOSj25nTmR9x8cDtR5Ii0ZzVvUnrNVw7vJARFWRjuOjpPtC+muX+WUeMjGF2dsWfXKodWhH7SSAuGR5v4iwvGvZhBqVCFIjmqsROIBmLtbCeBuOfQuceOCvCV1iVUFLrCiaPZlDauNhgfQLBQNsE1AirTjAvLjUd2oHVgNWvSW9tq6Z+reuxP/xif/vXf44ufeTvXPvpV8OHZa+P5pQfuwM5i/emrH86un/gEfz/+jDzxy5+BKt/lnqoGLxvpcy/M38G3HMz4+10zV7hf/42f44W/MXtfLbK/PxbGNtaOG/8OuPSUtj3jIMsjR45w443SEL3qqqvYvv3ByS3cVHX725jpiv7M5WqDE5i18ry10llJkypHRboZoQIdSmtZ5a+85WGDxW/1fCg3TLpr+hMwTaOHmYFA1WlQxhyXmbLJMU3rKVg5USdp2rGo972JuhWmdDLCjGI2S7yv7JV9QPWGdL5Q4LsNyk5S8YvFatNMHLr0mNWRdInGE0IFDFWagtGUuxcYXtCQlUAnItBoJFSIeC1QdCLKlri/THYk5Asx0aDE9jLMSiT7LEtClkOV3xOcR/kqL0fpmXvZMXompTXoaNaVKkoUoHuQhkC2lDLpbLguW7VVZ1g1GLk3IHNPVLF7Ay8n2/5cDT5bIObeK0AlHmeTpXKoc8Z8lU9iZHLvYwE5Ogd8IBpIkn3RUkTr4ugYr0v3JB7KfrOuJlgAjTeWxtGCohtXC0AKO65pXgGbebxVlVgdXAzxIFTdniBdFy0aF5NLh6hsaOma5H7amQgBythiJjKhF92hFi1M6cFDiGxlT1y5fCmFHZYShBzLPk0mVF1TCF2raAsAKVcjwjz4QhM1M+aTMaXX9IuU8XoKpSJatuhC0Twgx180Fdki5FV2l9WetJGz0BxTeE2yu8DowKSZ4b1Ga894Z8K4H5EeiIjXhNYWtBFAMyqk05QJN0wVs7yYOk/HR5qyoSlTRdGUzk7ZBIIi6sHqrYuEyKPaJdkkIt93//3t/XurT//67wFw7aNfNX28sU6U+dJ7EDqTHfytJ3IFcNMLr+CRv/SPzP3cyUmJHws/xPcl3wLMrs9jf/rHePyvPAFgE3g5UdUi+3PZnbn20a9iH6/ngvdvaLnsfdYpv/+0AcxwOOTFL34x73znO6chlsYYfvAHf5C3ve1tNJvN093l+VPeo6yZuVptmvRqmfhGEX6xw3hPR7zgS6F+RYMSnTkJIisqe2TvZaIMlRWlk05O3R0oS1SjMbNLdjNXFEAm5rXDGID20mmAmWVwuSH/pd7PxqoNBaY/VqBnY/emFvtXpZSSjLMNdLmQZdI1qksrwmAIoxG6NyCpVqSm51FrejZ6RDiHqjRT+UOWKDrRdLUvPZyJMcBQAj2D0TLgaeEju0QGiDBnZbVxLiVaFTrb9DN8QFk965B5B372s4o0RJFoihoJwZip4FXlxRSA6vURSQgU4QSObFu1VWdYZ6plOV3wcqL3nimQORak5C///KbHWyDm5OUShbIKX9YOVV4CgJtyj9a5R8eaMjWULY03iqKlGC8aVEAmxalQksxE4dJAPi+C9HxO4eNaVB/IO4poYBjtMJQtKtE62FGo8lyk42EysU0ukwosJFocuIxCmzDVfbhYDASAqX1w0Er0IqNSFqsyuc/7SLpJdZJ9SAwhmo17tSGAqz5LF4GonwFQdGOCpnILkw5+uU+zNpiHRU/eKLh5eRvDo01UpmkcMtgxmDFCVwPKFHqXe/xcCQr27FplPhkzn4zZ2eixK+kRKUekHBMfkXnLWtlkJW/yxcO7GIQ22XZFut9gJ4rGEYWZRLiGwY4ctp+jnMc1Ilwq5xpMTY1WjLdpijb4BLytQNlIoZ0iWwoY6ylWE+KjG8Kkt+qsVt2BgeOBSe/aIxy6+on02Px898Pbp9vW9WAItwQETPz2EmPkmK98mICL2sSgBjq9az+x6Xxq8HJP1fqjb2D4ox/f9NzG7sw/vfKTJwSJp1u9a4/A5+Txvouey5UPu4nR+2/g6rvuvatU12kDmJe85CXccMMNvO997+M//af/BIiw/yd/8id56Utfyu/8zu+c7i7Pm1KRlU5I3WkAmZDHEcx1KHZ2Ge+MyVtycze5TL6DgWzO4I3CZk3idblRRYOySqw3AnAKJytULsgNXivKZoQKQbICioAZl9i1EWowRoGAktjOMk3q2tg5qd3IrIQ8ToXuPkg3aGOIZRxNXdaUtdOOj6r1O3XnQm+wLo4sqpHO3MCmdsQbAE7tnlaHSSolgZpRtJnmZi1uxxzZthidh+kKn4+N8KSHIiBVmXRRktUMl1qiIUiSssElimzBUnRbtAqHXvZiShBHFQjUM3qYBtVoEBoJxbYORVe6OvVKY9CyOhn1HclKhu6NwYu4Nt3q+G/VA1z3Bbwcu59TATH3Bkjq12sgk7/880Svu+Y+H9/XZFUgAiW6QG+VOIEV0omZLEXknVpvIRQmXULZqPNjEDoula4wk22LTsAlooMxBRQtCCbg0uqzbEVrcrKfqDc7BpMHEepXY5fJg1gAl6KlAenwBCNajzrM0scyaS+bZpaPUq8bRRofV5ljLmzSkPhpMCTTAE3tfKWLkbHEjv1MMN82qOCZ/6qmbGrKRgddwvaB2DsHLZ0hb2XcRQlQDIlHJ46lhQEPnT/MLb1tpLbg0LjLetHAB8W2ZMjYRTyqcxcXJst8gQu4atthvlAYosgxSJvY5QidK+KBxRvQucI1I3ThcU1L0TJT/VDZENex8R4HnZJQaFRU6WIzjSo0dAq8V9iBzAG26szqWKBxLMj48OdeT5ff49O//nt0kcn1X/mHA7Czp4F/5NB3eT70oW/msS/9sel77ukzHizV/fD2KWWuC5vocxuvU+/aI/wMf3Ov+xv+6Mf5/Ifknv6oJ3/huNdrEHSqIOb/XXgGN/6P47OB3s4vTB9/7+EP8rEAj+VH6N/+i6e0XzgDG+Vt27bxl3/5l3zzN3/zpuc//OEP88xnPpMjRx58fwRTG+XFH8Y6PbPhrbUji3OsX7NI0VRTcaVyATvylWVwZQ+ZQtlQxP1QDThyEy+bCjOpONF16FVlKVwHhWULckMMGqIBLH0pI7ljBTXOBMTUVXc3Nlodhw1gSynR1mwAN3VWTSjL4y2TlZp2cTaZE9T7rkFKvU1NgdtoVAAzOltN47JGQAUI5S6KZLVuqcvowi4+ViQrRRUYGbCDHJfO7I9tbwIefDuepj+X7YiiZQXg+MpJRkHrK0dR/eGsixQqOp+1qDTBbesyuLgt1AkDdlwNmoYptSObt7gIonGgcXCCPTrATQb83R2/tWV7WdW92V4+9ZmnF4z1f99zZoFnJ/qcM93X+VxnC7zUdW8A5nS7KRu7McDW96Sq+nvyqB94AzZKBbA4IMj4MFmsJr87HaHhoVSoUmHGGuUg6lXdkXbAjhR2BC6qdBYaJldNiJISVxrJONaBcmzBKyhkPz4J0CnQhxNsJRdUpaJxJBANKjqbg2ggLpI+UdiBUJXlPildk9reWfkwBTQ6l06SdFzErYzA9D7tY111XGShqHb5UoXHtWPQoDM3pdLhA65phdbWMBXNrTpfo9jYCHeRqkBLlb9iFePtUFw2ptnKePiOgwDc1Z/HKDmeZpQTG0dqCrQKPLJzN6ku6LuUSDnumCxyZNKmX6TsX+tS3NQlPaJIVgJJT2h3tsq4GS8a1i+HYsHJ9WiUmMgTxSW753tE2uGCZlRELPda5JOIkBnSfRH24IQv/e7Pbn1PqjoVG+XetUd4+5N+4R63AXjRDb/Ihz70zQB8l/4if+Ufznve8B6+uvJWXvWWj5/0fde8KOfnd/81AI9wv8WLbpDJ84OhC3O6dV/Gk2+1b5o+/mD5coB7pZXVAPLLr33SSbc5tn72Nb89fXxObJRHoxE7d+487vkdO3YwGo1Od3fnX9V2u0ayQkK3xeiSOVwkq1XpSimt/o4BLas/LlEVv7laIWspmkc8upAbaDyUFafJgqy++dquMpMVNBfLc3WXIZ+Do49I2O4XSG47KjS0UqhOASp6VNUl0mpGk6opW5Wz1zQzhQ3i/Xo7qJLuN2htag1OLYKv9+c25OJUeTdT44KNFcI0jDIUfkoXC7U1ZbfFeK/Y46bLOSr3BCuDXbAaMywo5xNA4doJZlQIwKvEp6oM2JGbJlmXLcVkwRDvmSO+JUNRWV0XTqh5kaXc3qV3eQvlIO7LoKOrwcgOPcEKl9mOPEnumSxY1q5sMq8UHJiczb+sr+k6XfBypu/591JnG7zU+zwZiDkTKlj8pkcdB2K2alZqw+3RW8jbitEeyBdkxf6ivUdxXmO0Z5jH9Ecp2TDGX+jxpWJhccBglDIYxpBr7JqMOUoFrHW0mxNKZxiPY1BgWgVpWjA83EK3CkzkKJsR2bxHTTQ6V9ixrrQdClMETKxQtZGlEZtmb5Uce0A+z8nCm7cKRQVkqgWrYDVehyrkcva8N6Kz0WVAZwKMXCsSYBQCvrrvq9ITIrGVDlWXCCWLfVANP5GAmFAFRsoCogxFw52BfEdJpz2hk2ZY5dHKY1RgUlp2tfvMxyPuHs5z85FtLLRHlF4zKmMePneABTsi95bt6YClZEQnmvDZIy3M2FbXQ9gWRWHwEQz3QrGzYNeeVfLSsL01ZGXcJDKOy7tHGJaiKxhFEbFx3H7ndrAe1wgUO7da+qda9eSXJ5/a9m9/0i9w9THvfebPPfNe3/eFt8c84rW/tWk/L7rhFx80VLJ7q9MdR2rhfl0nAi517fzyJ4Djr1Hv2iNTMHk64KWufd94Kxd87ByJ+J/whCfwC7/wC7zzne+cprKOx2N+8Rd/kSc84d75ded1eQc2FoCgxRGsXGxhR440QNnQ01TfaOimbW9dSNs8qvjG+VwFEJQkDyfrgWQ1BxWjSnE0GW+38v4QUE7ROBywWWAyr0iXpUvTvyAhWm6iVweEouBY++Yp0IAZUKlb8UW++dxM5ZAG8h5twBUzd7V6H0rPgImZ6XFm2SuuaiExAzR1x0PNbDSnn6kUKrL4bpPxBW0mCwY7CbhcMgLKhiYauunnqwBmIlogH4ulqNIyuOnCYSYl410NyoZmuFMT9wKjHTHRkRZqOCZMsmm3p9w5x+DCJsm6q5xihPqmXaBsGHEDmgSKTkyUl6jSYxuayYLh6CMbtNJFuOVM/pC26v6upz5z/9dMF+ZcgJeN+z4WxNwXHcsWiDl5lQ0IMbh5jUvEoSrbWfCQi4+yrTHgqdu+xCRErJdNlosWf3/nlVx54UEuaq/QMAXbogETH2GU59OrF/Llu3bRaOV0GhO0CjxqaT+9IuXAqMvKsMkVS0dYzZq0lo5yRecwvTLl5m3buXbHV/nE8qUc7HcoDi1VXY1A0VIEZYiHnqhXYgoJaiTeYDJQioAfBT6y+EhRtC3eCABSrrJFtgo7cqjcY8clwWh0XlJ2E1xqhR5c3Xud1ZBUnR0n9OlgZ2wEFylUkLGx7tDnbY12s7HWxTC4CPyFE3Yu9GnFOYkpGZUCHLQKRMZxVecQRTAcnbSx1jHOI2jBeiZzl33ZAkcmbQpn2NNapx1lqGZJPieBlWYiQKxcBB9DefmIvYs99rTXSU3BJc1lbhzIgu5y1kKrwOFRh8wZHtJZY317yjiLmYwNdufwAfk7fDDXhz70zVzN5onw1T9/wxlNjE+1ahDztVCrv/IfNv288Mp/ucftN4IXOB60HLvtY1/5Y/dIJbv652/Y9PO9/d4aa8v8/i+/Ej52j5tN67QBzG/+5m9y3XXXccEFF/CoR8nA9/nPf540Tbn++utPd3fnX1WUKpUmhDgin4uI+iVRv0R5Wwn3pRsQ4spH3yiikXRcoiHoUlM0FcpX+SelxuQWO3AUXYuPDdEwoILHxZp4IGnBygeioYgtlRcRZ0iiY6yQK4pYqLho2syW+txM97FRvI53U1CmtKzABedFM2KMdHe0gSLbbBe9EZToiqpWd22mQZkbhDluQx5OZbesrCVYQ77UZLxkMZkArv4FkbjQOOF2SzYC6NKjcyf0sOr34dIqDXki1pYm8+QdoY/ZLFC0NKOL52h9aTIL+mymjHem2LHHTDxls7L4LILIY1wQZxkPUT/HNS0+kQ5ZuhaYLCgGF5yxSd9WbdUZ1bkEL+eqotddQ/Hq47nSW0XlVlVRnuJANJdhtGd7OmDkEy6Il9lu+8BO9s6tc1F7hatbB0hVUWWHKIpg2d3ocXSpRSvOGeYxc+mYyxuH0U0PcxApx3bbY+IjWjon1Tm3Zju5unWAKxKhVY3mY96z84m09mnSVQEeQVe2yAFcpEWXomV8U4FpxguV+D7vGtHmVEYA0napMrNGiOW+lufELlnhUsmCiYZiAOBSK5k1hXTAlQ/ocRURoGv3zOr6BVkUTNe8mLgYOeairbBX9Lh8uyTelV4zyBOOli12tfvsaPaJtWPOjlkvG1zcXmExGdErUlJTsre9Tq9MuXs0T2oKDvQ7XNxZJlKebUt9VmyL8mBKMZ7pbbIdJbsW+synY/Y01gFIVEmsS4wK7J/M0bAFiSlZGTUYpAnbW0NWjUftCBSDrQ7MqdbrX/oNm6hfx06Ej/35vlS9r42T6x9+8ls3aUkerPXQ5e8E4NCvvuqc7P/xv/IELlrawXtf9brpc1c+7CZ48R/wO2973mkDzVf/xqs5Hd7Lac/QrrnmGm666Sbe9a538ZWvfAWAZz/72TznOc+h0Wic7u7Ov6q0ExiDbzdwiRZVpBZnFl0GfCw+9slqQbIsnRjxi68sMkNENqeJxmHaFh/slsBHkDT6pFeJKDMBLwSYzEt3wk6Ed6udmjY7xCrZz4T2Xs/CL2tRffBQeohipkGYWqHidKbr8aJvUWkFEIrKxz+rRPD1vpwDvTFPpaajVVWWEnoZ2ZkeZuM1xKN0RGim+PkW2YIlaDn3oFV1nmF6/nZUBYg5SasmBOqxLJ8XEBlUhGta8q50ktIVoea5GPoXWJq3xDCeQBThFloEo0iPZgRxvqx425B3NMlqRTergJKr/telXP9kTVNsxcCcUm1Rwc5OPRDgZctF7NyVyUSfIi6KMglOYse4iLi1v43VvMklrS7DMmF73OdJ229izo5IVUGkSrpmwpprMnERlzcPc0njKNuiPn97+BEcHbe4cSQr/2MXsTvtcWe2xGXpYb462j3VeFySHOFTw0spguHCZBmfBnRGJeD32JGXjJNas7JRuB+JvXMYebFRVkKFmyxIR8lHFa3LAl6THrU0VmKioRdHsURXjmOl2EkrRdGJCVah6yDMKm+mFv7rwqNLGffq7ks0KsnmI9mnUWTz4u51+dIKPih2pn0yb9nbXMcHxWI8ZOxihi7mrskCB8ZzLI+btKOclXET3QmsTJr08pTlUYu9nXUet/MuLm0c5Y7JErvafR6xdIC/719NXoj7my5g20PWSIzj0fP7KIIh85Y7Josk2jF2EVd0j5Dogk8vX0gnzfBBYbRnW3PII5YOsG854dYH6G/xwVT/8spnse+NHz/lye8v/NIv3+Pr75ncOzPo9S/9Bja7JB0+pc8+n+u7X/9qDr3isrO2v52vENODE4Gh7379qwH4xIGnT5+r82d+cvv/PmvHcGyd0RJzs9nkec973tk+lge+Nk7QjcY3IwkBcwGvZfXHGcVkXuMtRH0lKchZiU8sOisJkfjIKyeuWqoMlE2xj7TjOtVX+L9lqghNXbXqq0OwkHXMlE+sig1hi9ZI2nFV03BKT2XzLC5cypqpAN/Pt8m2Ncm7ljJVU1qbrgPOykC66mjeeFQMA/KissSpNDRKQajsiDc6kCmNiuMN12uDmF8bVBLL5881Ge1tkHX11L4zGgVcrIBAmWrytpY06ElAW0U0KHGpWIkGLT+rUga8mmIgK4IyiDZWvOQhJBatFBjNZEdDBkGrREDqAr405POWbE4T9zWuGUvoGvI7ri2x845kLtSAc6u+9uuXXvPCk762UVh4rurB2HnZqnupasJfO4LpDEaDBKM9zmsO9dv08pTDgzZfv/sOAEY+5lDW5YJ0lUU7xKG4O1ugbTIuSo6SB0s7yljLGhyZtLHaY5XnwKTLoVGXYTehVyb4oLm4ucxHVq+iZXLGLmKtaGLXJVxYlxKAKTTm2SHbsascyxROK4qGokwNupCMmtWrFMVFE0KhQQeUCSgV8KUm22HplYrGQYsZy/3ZFAGTaci9UHebRoxUYJoZQ9XpQSvsxKEKcSXzsRFAk5WoTkTZ0EwWFfk8+IvG3L0+x9XbD5F5Szea8PWdmzlQLFAEw5wd84X+HmJdUnrNgYMLzC0MyUtDezHj/8/em4dbdtV13p+11p7OeMe6NVfmQCDEBAgIKg1oMwVoBlugBRREEIMM8UUGQwMaAe1+CUZekMbGZhAQW6QRgQZFASXKPCSEkMpU453vPfOe1lrvH2vvc05VqpJblUpSwft7nvvcc/fZZ+99zrl7r/1dv+/QyUK6aUiSK86sr/CQ6gH+tX0OFZWyq7rOjnAdfyIhjxU2NJBJBqlPriX7BlM0vYSb2ltY7NaZrfeYCAYsmjpnVFdR0iCEJc592nFIbiSD3Ke7GYx8l/W2t/wmv9HSPPsEZu7f+sbX3+nzxwNC412cstszvu63NnwEd6yHvcY5nT3+/Nfy0h88+Yjn/uv2T/Hj1WtOiRXx8eqtrz6XT68sso1TB2DuqovztcNP5tHbP8fXDj/5CNByzdLzjwlijrX8Tybfy6/P/9qGj2lDAObTn/40T37yk/F9n09/+tN3uu7Tn/70De/8tCvPc1QpGIIZK0Y3tN6guOBOSKwS5HWFSgyyFC4GHkI7ClSQavK6jxUQrWREq7iU+TinkhtM6Nro6aT7CownENp1KLyBu8GvL+SoVs91TYTAGjNy/jIWa/XIeYwC0BQCftuoEu9q0tvqk9VGdpwA8azA65ZCSUF3m0d/yzaatyeENy0UwZBjVQr3S73NuGFA+VmV4EaK4bo28N1ApJwoNKu544zWnBGCSk0xiOJmAlODCZ0lZ9r0UIEcWk+mU0EBenDuOT1NWlfDwVdo3Hv3fWzgO6BWEa6zErnPOGt4Qwvsksvt40COlQJTcV2tcC0nmfaQ6SaAub/Uyepf7gy4jK9zb4CYzfrJKquAQtsBAuuB52ssEHruunbb8jRp7HNduJ3JaMABJlnq11ipVdkSdQHIjWLBNlhKG2wLWzy0uY9HTd7MjOriC818PsFi1mQ66OMLzUzQJTMKX2gklpWkRqw9vnNoF81bIOiYkXVx4SRmPYHq565VXfq+FFSttClIpizZlpwLzj1INw1JtaIWpGRakRlJnPqs5w1krEibFjvtrJ1l6lBcdVmjEuceWbp4DrWSRbcFIZy4vxgzwNk2S9+FcsYzrpOlQ0sUZWgjecTEbRxOJ/CFpmMqHE4nmPL6RDJjOugz7fdYiuucsXMZawWTobNke/DkYQ70J6kHCTvDNWLrU1EpZ0Yr3NjfyqzXIQxzsopG1TO0Ddg+0aaThBzuT2AqHVpJhLYCYwUHOpNMV/p8d20XFc/R/25bm8JXmjT1WNR1RDa4V///7q/17IlRlt03vRkenq+c8n3cFQXtm97MSW33te/de4dlv/q0j/Ho2yZHC5YTzp9+JbwGfvjmt/Ggt74R2Lgt8Ubr6fYf4Hf+4ZTQx77+7kcPHz/iFV874rltZZfnNdwBvNxZHWu931p/OU9a/jy/t8Hj2hCAecYznsH8/Dxzc3M84xnPOO56Qgj0OJXo/lZCOBtg627IZVpkpBRZLzKzqH5OfR4G007IGG8JCFed7aSKNTrynfWkcDfJmFErXVhLXvVQiUGHDgSVTmVGQdp0ug6ZOW1HuDwYWSYLMey4uKDJQnBvXFClLW2DC+ettQfVMV6RtLziWvRGue16A1HYehbuYAWVubszIG3upP7jNVhtQRnmWepkxkI2gZG+prTDLHQyQjoralsNSWYjp3WpWLwORMsZXt8N3uVnEa454GMCiQ4kg2kPLzYOEymX3JzVnF11tK6J5hNHbZhQDkhGFPbWBjwFvufSqjvO5Sze4pFX3GyiDgV+z+XP+B1N1vCIp9TQIrR+KEFkBr9TfMab9RNbGwEv4+veUyBms/vyk1lZRaA8kIWgQ6YC4RkaUULNT5mu9OkOtiCVpZsErPUr9DoRUrnrTiut0M98pLBU/QyqLWpexK5glS1em3VdQ1tJZhUraZ1J3wEYgJWs5vYpLAc7E4ReTn5rHW9gnQ5ROOqXNQJdUah+jswNBomueuhQkkxI8qqge05OfWuX86fWAGiGMWtxhT31NTxhWIgbzJsGW3eusWCnMKkkmOuTrFSQqSKrC+JcEbYNKjXFZJMY/uig0N0U/jDSuDFODXJskaOWNiRGwWDOYJo5u5sdHj6zj3PDeXb4a8znExgrqcqUac+J5af9HsYKZsI+j5m5iVZe5eb+LNcvb2O6OiBUOQ+f3ofCspw1CGWORtDKKrR0lX4vBGWpVFIGVjAV9rl1fpZuxTmNedIwXR2wtdLhsG3SzwISrbi9NYWUlm2THQ4sT6ITxc7tawzMZg7MRus/Dlb4YuXkwMvJ6mPGuy/jmo6N1l9PPYN/BT58naOfveDCOYAjwUtRr/1P53LVp+c4+Ls3cpBf4dHbP8cZV72Jz73i1QwmTw48gaNy/dTyx1j4oyuHlK/y90bqeGDnaNBydP3b667llVu+fsznjgdoTgU43RCAMcYc8/FPXBnjug9SQK6R3RiokjYkQlsCY5GpJlrUBOuKZCqgs0uRRwHRqvPTl9ogcHzi4WYDicw1eaTI6gq/p8mqztEsr7jOS9AzRKtODxK2NdWDA9RyeyTML4T3IooczYvCFnm8+1KNiPdM0jo7IKsLwrUiobkHMoewZ/B6ekhts54gnnI3+2Fbk4eS3jZFf26W2e+EqIPLLstl3FUsz0dUOzlmtWysMznTBnyc+L7m7D2FtYQtt2+VaKc70Q60iFwjhSQvMl1UYlCBA1hCO/CXTHpgIWy5/z3jS0Qh7swb7sYA6yw5wVl7pnUXkJk03aydMM6K2ThnZ6LlDOM729C8IsjqguqCC0lDFa442SaAuT/UiXZfTgS4HP26zU7MZm20TDAycvT64MXQ6QVs33aYqcDNxq80qrT6FTKt6K5XQAuM72yAtZH0k4B+P2Tn7DrGSg4OJpn1O6zmdVraaU7nkyYLgybrfoWFQYPzmksMtM+kP6BlK5w3tcSNq1vwemNmKZm7fsrMYJUgm/BRhfbSBJLOLkUy6UIaL73wZqSwzIUdBjrgrMoyfRMw4fW5fTCLsYKq78TrrakY38+phSnznZBsCmTq4Q1c5ICzTy7ZDM7CPq+5ZSo2WF866q4AG0iymnOq1CEks5bojA6NSsLDZ/ax1W+zlDfpm5BbBluQwpIbRd8ETHkOzCXW49zqIgrLWeEiN3S3Efk5u2rreMKwPVinbwJ8oVnPqlRVSiBzVvOa60KlEiks1kI7dc5l1TAlN5KHb9lHJ4to+DHdPKSThmgjqVcTMq1Q0jgjBmXpxCHC3I8nd++leuNb3sM3Xvecu1xvXHh/qgT95XY+/LZnndDrHv7OH3Pg5mUuBxgDLyWQKf8G+NqZ6/zJzzwEgCuffiVPed+3aP3BA/iN1/0i/+kPf3C3wEtZ4+Dlzta5O7V731Gv/8Or+I9v+hwAT+u+akNdmKPBy59MvheAJx04a8PHccIamA996EM85znPIQzDI5anacrHP/5xXvjCF57oJk+fKm5ehwn0uSZayent8MnqgiT1hloJHUrShkRXBL2aIGk6oCCMJegZZGpd5oty2pms7mb5tQ96UqEKfjCiCOQSELY0fi/HW4+R7T4k6UhbotQwjBJwji3WIpQCKbHViGTXBK2zA2QGftfSPgeq8wK/a4mWM1Scu/R5K8krI4Dlxe5YCaG6ZIgnJK3z60x1YteJMfpIkX6ZA2Ok63gMicwMDRBsJWSwNUIHApU6IaeKnQONjmShBbLoSA0HMW9gyGqyMERwXS8dKuIpgUodn9wfMBxkpS7yBLRzzDGBh+o7brXMCwMFBdUlTR5JurskXs9ZeZpAIlND3HQ0NK/vbKzLROm8ItFyLEFts45bX/jEjvtMyH9vgZfx159KEHNfdl82Bfz3bMkUbJUiLNcBGjtQdNKIR0/dwgOiQ7Syn+HQvhlUPQMtEImiPtvDk4bVfoU8VwRhRj1I8KWmlwfs7c+xMGiSGkXdTwB4xNRtHEim2FlZZzmpo4RlLuhQVwnfXttN57oZJvbZ4ZgjcovSTm+iKx74gnjGH3bj0wlBOmHx5wZ0s5DMKM6orvJTtf3UZIIvNLekW5iPGzygsUBFZSyldZb7VSp+7myMayl56qFDRV4VeHEhrxzYocZQWKdtLK/hQrvcGF3xMEq6Caym099kMxkXblmk6mUsJ3Vu7c0QqQxfGA70JjmzsUJuFFkeMut3h0GVu4JVfJGzlDdZiWukucdKUmN7pUVXR/yot42B9glkzkpap+6l3NqbgZUQCVSCDNmwSGHZMbvOrvo6NyxvxUwJtkctftjeRicNacch/TjkvLkl6l5CbiW1HSlL/RraSITe7MBstH7+ry7m9S/cf9zn7ykb5WfK64HrN7z+X089A37/dwA468t/CcCt/8EBsJ8eW6987sPvW4SXwVPe5xQ2n33Zw2AfcPmtPOitr+SMq950Ut2f8XrNq/+AjwZ3vs44wDlRMHM0eNm/5yrm/2iUN3Eyov0SvAA8+dyNW12cMIB50YtexJOe9CTm5uaOWN7pdHjRi150/wYwMKJjASLN8DspKnEdgGRC4sUefte5qoQtTTwl6e2yyKYgXHXOMzpQyNx1Hvy+RcXuxjyvSNKGo5dVlk0haHc32zKz+O0U2U8deNEGfN91PAoQI0qqVuA5XQyAp7BhQLalzsLDXepydUljfEF/mxyGQMrMzW6J1CCsQfqOruUlBqME/VmPoGfQfkEvA/pnT1Frd0H6ruszFPUXTm1QHJ8cUc2KMlWnWdGBywswviSv+4gyVwBnmWyUxIs1uiLJampo6ylzlw+QhwKZORtSKwT+oKDc+U5X43ft8LhFAbJM4Dm9jIWg58SqeTQKbNOBIG1IVCoIW5poNUdHzvc/KTVJCow+ijK3WadN/aRkvmzWT26NG7MIC3kEMpbcdHCOS2dux0fjCYPfTKhXEzpU8CdjqkHGWr9ClnlIaVDKcLA1Qd13QY3/cuBs0sRDSMuWiS7NMOafV85hZ7VFLw+5rTvN/qUpvqLPxcSK8JDP1F4XxCxKYxIBxpOYSBVWzwLtQzwtyeqQVy35dM6Z0y08aciMu7YvZBOcES7T0yF9HTIVDPjWyh6UNNT8lJ3NNoc7TZJcYY3EJgqVUriSuU6UzC0q0c6qWRYGNiWxQ7rOiwsYdtdf47vXq5YiUjl7KqusZDX6eYCxglj77KmvsZZWmfBj+llAK6/QziPOrS5yIJ2mrmIWsyY1L0VWLIc7TbZXWqzmNRYGDdbiCjvrLaaDPotxg24WYiKD6rj3PVvv0U4iZis9VuIas/Ue61mFbUGbiSBmeVDHWsF0o8dk0OchjYN8r72bpUGdepAisWiT3Iv/ffffenvjfADe8aHdw2XHAjPH67zcGbi5s26NAy8nVyVAOfrxeD3lfd/isy972BC8lNX7Dac5fv+fXsNVn9443et49bodz+Wnlj92p+vcnQ7M/j1XHQFidu+7knlexGTn2wBc0/3gEMSUwOS31l9+zG2NA5eTqRMGMKUG4+g6cOAAExMTd+tg7vMyesyq2AU6yrUulbpPe09I0HGBWjrwkbmbpTc+RMsOlHgD6zQWfTdIlKLztOZhfDeQydyiYsBCtK5RsUb1M2SqEb0YkeXO2tgUxwCgtRPwG+scxsqy1q3je/R2RcgM6gc10XIK1hKtKJIpD+0L+tsCVOr4z3nFiSKTpsAbuA5MXgVhnMDdOcdYBls8om0zyENLxedT2DaXv8er0OmUpgK65rhaUjtwZj1B0nD0Oa+v8boZJlCgHCUsD8fyBKCg2EHacI5pfg+CrnFuYoHr1hhfEOLAhjAgkrI75b6LPHK6l6BnqaxqKiuQ1WQBIDNnDeoJRxsrkqbzUBB2NDaSQ33SZt113VtdmLsDXO5u92V8O5tUss26qwq6thCdUzgiQmVBkiQh2UMUsXXXyF8458espxXSKcUjp25lWvX4YX8HTS9mLa9yoD/Jgc4kN6/NMlPtobVEeYZKmDIZDciNdPlgwE3tLdyydxv1mz133Szs+mXmOtJZbZR4L4z7bWXhrOlD1nDHany49EG3sDSoA7C92mJPuILCsJBNcDidYCFpsCXostKrEng564OI7Y0OQliSxHfHZJzNfdZwuhe/Z0cuZzXlHDhTgzQGE0hn+GIhr0o3mZY7AxqdgzCCUOXsDNfom4CLJw+wkDSBAb50YLCVRfRzN/18Qe0wh1NHucusoipTHj51O4tpg9VKjR1hi8R4PG7LjRxMpujlIVNen54XMh30ucHbgfUla50qO+otFjt1OnHIRCXmzOYKW8MOLV3hnOoSEstaWmEm7JNbyXwyQW4l/3Hrj1jLqywkDZaSzVyxjdQnr/x9mme/nQ/u/Qhf/cB/BeAdb7vjeh/8r3dcdizwclcUs5MFLs+66k1cXtoGHwVKjlfHAjFPjh0Y+NxvXAVPOalDGdYnr/x9vvroDl96xJ0DmI3qYsaBzvhrUqLh4+AVMX946OP81dx/BOCVHAleysfHAzF3pzZ8Rl1yySWIQkj+8z//83je6KVaa2699Vae9KQnnfIDvFdLSJdgLySWDIxB5Dnh7ZaJfIrB1oC47trZJY9XaghXzLBDIwykTUG47vzsnXWyIY/cDbnU7nXhSoJMcmTswIqIU8h1ESopsblGKOu6QWXQpNHYVDv74sB3gEEITOSRVQXVRUO0kmGC0iDA4HcNourQRlaTCGNI65L+doHXc+FqYgCVFTfA5RWB8dxgqAMY7KpRn1/B5oU2qNS/lJSysuvij1sqO+6yMLZwVyvAnnJZOsFqikgyhBKAwnjC0bc8QTyp8HvOctNaQWXFcbRV6mh5gxkP47lgMwDtC4K2RiUGkWZDxzaZW8KOe09ezwztOSFw7kCAjpx4VUiBnvJJmqO0ZyKnx9msjdc9CWJOt45LCYY2gcxmHa9kbpFdlyFiAjG0fRfAF/c/gP0zUxgEi3Gdqpfyg8Xt7Kquc15zgUc39qIR3JrM0coq7GmuYaxgLalSjRKsFWxrdACIVE4vD/ju0k6WD09Qv9mjsmiH2Ss6KE1oXBdGB26yiMKm3niQ18Sw8xItCwZn5JxfX6SfBxzuNKlOpexLZtgTrqARJMYjlBpPGqaqA85srhBKzULcoBEmBEqjraBTiejpGjJXyMxNKAktkamzxPf6ZtgVErkdzovJzCJTR9UGB7TypmZntA4wdBrreiED7XNja46a72ayE+0hhaWVV+nljuo+63eYUE4X4wvNtqBNV4fs7W3h4mZCbhQ/XNsKU7AU1+nlAaLnYQKD0ZKql9GIEixQ9VN2RevUVcKhZJJpr8f2qEUnD6l5CT9uz7EU15kMBjyocpCbEpfX05KNe+Pf7iei2re8gat++2Vc+f/+Hr9y7vP54N6P8CvnPh9g+PhXzn3+ndLMyjpeR+buXLtf+969R2hcgKGF8Ebqsy972DGXP+GFGZ+8G/KUZ131JrYdeuhxnw9ecceYyPTd0THWdLX1d64avmYctPztns8OHz+bx/Pc8PE8fusVAEwtvBM4ftdlvMp1xgFOHKf8Hn92l6+FEwAwpfvYd7/7XZ74xCdSr9eHzwVBwJlnnsmzn/3sjW7u9CytIYyKRPnCRlkbxCAm2L+C16kTzFXpz3nDmaJwzQw1G2HbkFfczb8VThgvNG6GqRBPBqspMs2RndgBlzLxPteQZc4VLM/BGqx2tDE7fnxKYbPM+dpEIdb3GOyoYTw3UyVskWeSgygCytJmiC26G15fI+uStAEyE1RWHK0gq0mnwelDXnHZNEGnCNmMQkjToVc/QrjATKVctwiGuTNC+qDNsP0frWnyquuweLF1oC9z4EdHHjLVeP2MeEuE0BZv4AYrv6vJK4qsLvF7pXjfAZO8KkYgJBRkDUXQKgBgYWxQivadu5pHbV4QriSo1JA2FVnNQ6UGBGR1Z2SgUqeDKal+QXuTQnY61OkGXsbr/taNeU/wq/f1Ify7KRVbZEGRyotuh8gFKhasr9U4FE3wH7bexHzSZFvYZqHZZMIbsK6rNGTM3ngbi1mDmkpZSWokuRuurRVMVQd40lD3Eg73m9x26xyNG31m14qssWKiSWqL6hUOmkmpNRm5X1rprntBy4n6jXKAxm+k/P2hB2Cs4IKZeXKjuHbxLPbXpzivvkhdJdRVwpTfox4kGCvp5YrFXp1Wr8KOqRY1PyVUmn5eJ69bsoFzHUOC33dGMirOnduntehqMHTwBGfgkkeCrOqyX1QjY0+4QmJ8Jrw+VZniC8313R0stBtMVgec2VwlUhlVmVJVCTtCjUEwoQbUZEJNJsx4XfanM6xkNWbDHpHMMAgGqc/hQZPb16YY9EPCNUnWAG1Cbp6aoR6kKGGYDAdMeANuj2dYTysYBOdWFrmgMc++wTS7a2tcWDuEFIbFvMn32rvZGrZZT34Cgr7vg/rg3o8c8fvu1je9mbutM7l55YPAk4dA5Cnv+9YQvNwZkBkHLl+ffDMPfu7v8rno7tPGyvqp5Y/xuh3POy6F7GdfeAP//KELjlh2LFBzrApeEQ/BztP2Hb9VdM3S84ePN6qHOdnuzIYBzJvf/GYAzjzzTJ7znOcQRcdHbffbkqKwCy5S7gvrYGsEIk6QCymV9S7hoSrpXJEurwSm8Mv3ehZRBER6iUXFFq+XowYZsl9kq2iX5SK0GXYLsKN9DbNVrGtDzNdaAAEAAElEQVS1l12W8eMSUTBax1MMZhQ6cm5mxnMzVn7b0ciSho/XN0Xb3okkg44hWvYQ1lG0wHWM/I529CwMWVUivMJgIAqgqwBddGDsyOggcIClfG9WGYR0x6JSi/Gdp3/adDqUtC4xXhW/lxPP+FQWHDBSiWEw66EK84NhMnPuqGDAEBTJ1OXluFDLwna6FY+AYO4A1HDQLmywk9mQcDXFeILBrOdcx5QzDVCJxTMFvUEIojUDmxSyE64SbNzdTsypBi2nij62WZu10XI0LYuXFHoYAWCJ1qGdROxrb+Xja018X5NliiDIuTHayq39GVaTGoc7DTq9iDz18HwNt1fRkcV6ltZEFbse4LclXlcw2WaUsVIEIxvF0DLZCeaLTod21zjrldoUN2YIA1nTYhKYm+qQ5B6e0jS9hPm4QS/1WYlrnFfMXbZzd0M+GQxYjp1tcy8JCPwcYwX71yeJggw5k2K0IItDdAQqdvoWf+Box8ZX7tiK9ovQdtgZck6R7povhCWzzmWsrmL6JuBwOsHWsE2aKppTMXHRfembgMyqoaXyctagK6OhzfQN/e1oK9gWttEIunnArokWi706vU5EdFOE3waZSuIthvmDU/j1lEqUMb2lT0dHDLSzuF6M65wRrdDKKwy0T02lbPHaNNSAG+MdNH13g7jQ3uzAnEh96+r3ccOEu26Pu47BSBNzPHrY0U5idxewHF1XPv1KLvjSg7mhEPy/5XVH5iM+gWPnJX69WP6I9bfyiPW38vWPv3n43PuvXuPXmeJP972e91+9dlK5MG9+117evvfPj/v8l959Cbw72jBoKQHL8db/tPh5vnXu+4D3wWtccOfJiPjH632TG+u+wEloYH7lV37lRF9y/6kSuJQyk2OERookRWY5UatLWAmdiN5XdM5t4vcMfivFetLNLPWSIsfFIHI3y1RmrwxF+GW3R6miAxQg0gwrXQaLzYtjKIGN5422ISWm4pNXCqGogayhnEWm8ZGpQSWGvKacGD639LcFCG2ZvCXHKlg73yNtWoSWhC3hgI8Q+B1ZpCZLTBQgpSjMxsyYWL90SJNDswEhnAV1tDigt6eK0OD3DGHL2Rz3t/rE0wqhHbiItwTIzIn7AbKKRPrFoJtahBHDUEqZO0CTVZxWBRyvvHY4Ray2Rp+jdPtMmpKsKgm6Fr/j7KOtJ1CxceAqkBBrl4GQGRealrjsmLwiC8rZZp1M3RkAOR64OZ07LXdW95cuzGb35d6tUmciU4v0RpNbeUUStMDvKcSNdQZbAM/SmzB8sx+iY4Va8zCBJVxVeDnkNUt9n5ugyuqgbqlQmzf4fY0OpKOJSXeNV6lzv/T7FpU6+rIOJFjjAE1uMUERFinE0AFMB5J8NiUHHjx9GF8YpDA0vZhDgyZbaj3OqK+SGUU7r7C3M0sriWgGCRUvc+n26xV2bF9juVtj0A9JI8WO2XWUNOxb3o6JwKwKkoZExZJcuhwYv5sPJ63ctd+glMR4FpVAXhXotZDMKs4NF6jJhGt757Kc1pn2e+yYbhOpjAOdSRphghSWndE6B/UkmVXc0p0lUhmx9tkadZDCsjVsExufm7pzVFSGJzSz1R5r+7YQLbn9CitIpsFb9smM4HFn38RjJn5Mz4QoYVjLqoSFW8OZ0TJTXp8Jr49GspLX0QgCmTtXsmzT1fJEa3hdfQvc9Jvn8eEdM9y+ssiV/+8/3+nrXvDGT94tUf5G6obHX8/XJ998zOc+fP0v8oIH/+87LH/E+luHrxl/7fuvXiN6wq8D7jXv+rf/zs9xcsGWr/5MxLueeucA5Vi0sWOBlKOXjXdh4Njhmz/3hT8cPv7qE153l8d7dD2i+zv8LX+0oXVPGMBorbn66qv5xCc+wb59+0jTI1PbV1dXT3STp08VFDKbpM7xqwQVY8/b8m8hIU4Qnps9mmj3i+ViJGiHEfAAJ7iXckS7GloiyyEgIUkLe2TpqGRld8Oa0fZLEAOYQBUgwQlG05ok6BmSKdd58QY5Xt+QR6rw4RcILRDGOK1J5qhkQdegBu69ZQ0nLs0rkqQhaZTvoXxP4/qXwtpZhAGkmft8/ACZjpKXwQ1IXj+jri151VG+dMUjmfJIJqSjv2nwCkc2FVtU7GylAZIpH1l0dIKuxe8b8siBmuDAGtYUAZpCIBI9pIFVlwx+twgkza3Ln/Eg6Gj8VobqZZiKhxEO2Hi9DONJ/LYlE5sA5p6o+ytQubO6v4CYzbr3quz82mKUFdZpUqx0xikOYFjCdVFQjyVWRmQ118GmsIE3HtQOOD2lFRa/O6ZlwQnf84rrRJfOZ26HFBbO7ronMzeB5lwpHeCxqtDqZEWno+0xfd4qM36P8yvzHEqnAIi1T2YUxkr6JsAgOKO+ypJXp5NFBCrHy32kbwiURghLrRYTJz7dJEAI1x3SkzlWBuio6KgXOWEyM1jrDFVUnGP8YBhBIAsXM9FMaeVVHhLtJ7Y+2/11zo/m0VYQypzvru9iMho47aTKODNaoaEGfLt7BoHM6aQRWypdDvYn2F5tk1nF7f1p1uIqjcJJbDIaoGIH/oS22AF4fff5RlMxvjBkVpFZxZTXYyWts5rWmAvaAGRWsZw1hlqbtSJQdC2rYs0mgLk7dd57bgJcJ+WZV7tlz7rqTbzgjZ8E4Krf/tlTnmZ/vLrq01dx5dOv5BHrbz1ieQlKjgYv4+s9Yv2txetHYOb9L7qG6//of9ArzAqu//gfwJ6TO7afM5/lve9/0zGf+yzHNxtIxzoz6Z10acrlbzj3wB2e+9KP/xtTT1B3WH68Ov/Fd7Ty39UZ8LcbZNWdMIB561vfyp/92Z/x27/921x55ZX87u/+Lrfddhuf+tSn+K//9Ri2EPe3ynOE5xU36SVlqrhh9wNnJQxgddGZKToS3b4LZiwpXyXIKLs4SmKVcwzDH33sIs0gTgrXM+1E+8YemQIvhTsE4TJqbNntKJ/OIas5hxdhoXWWBwbqh4sMmsLRxXiQzAgm92q62xVWKTebFzPU4li/dP9SmIJiYJVACuGOSLiZPDwP0swdh5IjoFWYO8h2H2FqjuecGETu6FpqkCMy40I8q6rgYDu6Q7Sa4/U1xnf+/8YTCCPQoRN9Cm3Bd7bMVkHQ1lRuXkF0+1hjsUa7wbA3QAeT6IpAh4JotXA2q3mUTtReX6N6GTLNsaFCphodKXTkuWP1Jbl3wqfHZp2i+uupZxzx97PXPnWfHMc9Xe8JfvVeyYI5Vvclfe33NrNg7sHKahLrySG1y7fO7EUldui2aIWbPIrWLBhnd+/1c4SxZM3iJt5zE086cNfw0sUrmRRj1GFnUawT8HsCf2BcMGVQgILEDMGMDlyIcnlcMrUoafG7Fr8tman2+Pnm9fRMyGdaF9HPAyKVsRZX+O7STiYrAx46vZ9vruxhKuwzFfZpJRV8pdky3SHTigdtWWA9qXCo3WRtqQGpRMxmSM+QV92kmbNvdkYsGN/pdfr50Na5dEhzYEJg+h5reZVvD85kb3+OgfZ5SOMgu/1VujpkLa5wzsQKuZXMBl2mvS49E5IYj9vWp9k10WI9rdDPAjpZyFpS5Za1aXyluXVxhjPmVrnu+2fQ6LnxKIhBdG0BtCw7plqEMiO1Htf3drI1aBPKjMR4JMZnTddo5xUS47E9WKelK/hSo4xhMZnYtOW/B+qTV/7+mOj9nu24jNeVT3c7PboDU3ZYSsByrG6Le/1bueBLD+aq7vN4wgsz9/wxnNZOpvb0P8zf//q/AHfstBzdQTm6xp/baJfm6FrbesVQyH9X9eMPfO+Iv89/8U/xVx/bOP38hO/Q/uIv/oL3v//9XHbZZbzlLW/hec97Hueccw4XXXQR//qv/8orX/nKE93k6VNKuRv08vE4XUqKURdkuL4crj/smJQ3vVkGYeBAQbOGbkYkMyFZVeJ3DciC3ysFflcTrMaolY6zUQZslrmgyCFbS422jXJOZLgBrxyYytk3oZ2DWDwpaO/xyWtQO2AJupZkRgzpZLknHHjR0JtTyCxwpgMFnSuvOtqY0Na9NyFBWgemrHVATBTgSo3NLhkNg5hovk9vT93N+AnQSuD1C7pC5GhkXt8grMXrO5cwmTtr47wmEVqiEkNWd2DKG1jySmEG0NVEt69Bp4ctzAWEEM50IU5o7E+wInKamjJ3JnCUOmfdqYczoiI34Lksm7wiCdrmDl/1Zt3zdTRoOd5zP6lg5p6qTerYfVPGc9fhoOsmiFRcOG4VtCmh7dCMRGh3LTeewPoScmfGIo0lDxQyt87qOHDXZaOco1kybTFVg/UMXstD5FBZEogl153RgTM0QbhrqRVuPyJ1E1O5cIHAGmefrEPLLQuzdHY7fcuDm4e5qTvH7uoanSxisVNna6XDVr/NYqfOzto6sfa5aOogN7S3EShNaxBh6oLMKPJcIXyDzSQy0IRhRlqP8PpuckklZaZXMXHnOequKMYzoV34ZrhmyRY9vrm0h85kxI3rc8xVO/ztwYuIc4+paMBUNEAKw4X1eeoqRmHYl8xw4/pWksxj79Isg1aEGCgONKZQ886hrDOdIwLN7d/YxewNILXBGzjgokOBTAV5zbCzts7jJ37I9/pnkGiPpbRBRaWsJFVambvZa6cRc5UO+5IZOnlEw4s5HE9we2cKM9icELsv6llXuW7EM380x8ee+yKi7zqK093RxVzwpQdzw+OPDZiO7rYcr254/PVcCXydY9PQvvroDg//pUuovHrvCR3bJ6/8fc7c5rJoJvjdI567M/BydH1v9nkAXPrcP+cbH38Rlz7XaWuO1Xkp6/Hnv5ZHXvYPwF1PjB0NXk6mTviMmp+f5yEPeQgA9XqdVqsFwFOf+lTe9KZjt63uNyWEuxEvs2DKLkphYTykg8kxUKM15BZ833VuSppVGGB9j2z3DMlMMBSgl6GSxi87DJBMeiSTdYLZCpX9bUS3j8gFKIHNzWifWrt9wPBYxCCjuqTpbVfkEfh9CNftMHugsmxJUxdOKbWletjS2yHxu5bGAT08rjwSRV6A08zo0Inuvb5FrnWwFCDN6BHIgzGKW0kzk4DBGoNaWKcmBL3dNXToYQWELelccgqQ5B4b15XxJGndJ6u7jpGuCYKe23bQduvX1jL81T5yrYvt9wuTA+nAS0G9w/Pwl/t4W0NU4kI0VZwTLg6wocL4Ch0qvMINTWQaai6F2u/myH5GPhEO7aQ3656tOwMud7b+TwqQuae6MJvA5T4u54/iHCIzZyoitUH70nWKtXWXTVvmhkmQoH2JMoXxinKdl6wmaT0AsgmNamYAKE8jLVSjjG67gphwQYn9MyWd1ZBgVaJiQdCGoG3xPIFvnD28lS5rJas4CprxBVldOCDkGVKr2Omt8bj6DTyufgNVmfC4xg38Y+cCLqgc4obBDs6YWmPSH9ARlnOiRQY64OzZJb62djZrSZWKl7F1osO+eJrKlh7xIMBagdd3IcMys0TLKVnDc+OAdmNBEWmDSl3X3goH8IK24ODBabQVbKn26OcBC+sN8kzRrwacP7tIbhQ397cw7fe4jVm+t7qTQysTZH0fMVAE627sCm6PqB029LdK5+5mPKZvcJ0xHThQh4DKisGLJUuXSHKj6JmQqkrYU1nFF5pDySS3rs0QBRk76y3qfoISlsNxE18YGh54UlP1M9jswNwr9bDXvAyg0JTAM//iWj723BfBj/6c5338zwEXwv7M5/8JAH/zwMUTBjMleLkzgHJ36+qn/BGfPEHwUtbEdQ64HK9jspHOTOlklr474qf42J3SysDpYQ6963/wkU+Olp2ou9jbr/42O2obz5M8YQCza9cuDh8+zJ49ezjnnHP4whe+wEMf+lC+8Y1vEIbhiW7utCrh+04jIV0+iaNsMaKNgdNYlN0WI4+wW0aKIYix1Yh4Z5P+Vp+w7Vy9wrbG62o341Vx3Renu9AuTGxKkTanaNzsoRZb2DRFhOEYtWxMKwPOQSvNqCwMSBu1oSYkqzjwEq2ZApS4maTOLoUsJEvewP0OizDNZMpHZpa8psiqgqwKXt9SWTOFPbFyxyALNzJZdKgkI/e0sgsjpNOjaI1aatEYZAx2N+nPecTTiqAzam9kNQkotO/yWaxy7XuZQ3XJhXKqbuJCPnM9DPm0pgCYWo/CPccc3ES7R/22gMH2ClnducX52dj3CFjf0fCsJ10nxoIJJHomcgYKmxNmp3X99dQzNgxi3viW95zWTmR3B8TcHaCySSO758pK1yXRphCjAEbJoVjdCvfjxptRmVC6H1+Qh5LeNmfnm82mTG9tE6c+xkiiICPTCl9p6s0BO5ptJsMB26I2hwYT3Lg8R/tQg3xVDS2SvYHAGFGEB7vcK4QLXfb6lmhJ0o+qfKt3FrVGQly4eZ3pL9OQA57Q/AEzss+PB9voZQHfXdnFnsYa/7T2ANaTChWVsi1y+TTGCmRgsSshtXO75Lkiz5STfJrSYWxEbxNDc5qi66/E0FUtarkJLn/BZ7nSoBkk9LKAs7askGiPxXadH85voxqltFpVompK4GmSzMMYiVAWLPgdd52XqXPgDFqWaLmYWMwdpQ/rNJhEDCcZg3XBv91yJqHK0VZQ91IqMmU5rdGPA6phSmo8ql5KK42oehkrqaOTLcc1DqxODu2hN+uerVcvXege/MW1w2UOuBy7nvmjuSGYecFHfmtD+yg1MBupv/3Ag3nai68f2iYD1P7UMWi+Pvlm/p9nDPjvnxpZbJfrfOEpGxOyH6vuDGjcGXgZf/y9WWfH/OZ3jYGod931vv/om9cAsP/cG8jWv3BCx/3sySdwbX7X65V1wrdoz3zmM/mHf/gHHvnIR/Jbv/VbPP/5z+d//s//yb59+3jNa15zops7vUpJ57QFBV2qCG40YzfntqBTUXQkbOEiVg5CBbWqf+YkeVUSto2z8J1wg0eYOYF9VnHgSEdO56FiQ9h2F9DuWXXqBtRqeyjqHx2jGmprRJxiKyGyn1Kb94lnfIwniNZdWGV3h3KBm32LKgSeLovFDRDxtDsGkRvCtYz+VndS5aHr2GQNwez3eq7LZMaOobR1tsbpgmxhB62No5hJ5dzTpEDkGtHtU7k5o7LPI5+oYCI1BEzeoNSzlNQul5njr8fI9a4DLCWAKyhi7nM2hR7Hun0Vf1uTOwDjeXiLLYKaT2974NzLJqJh5gCA8SWy+J1X1TC4Uhj3mdQO9+6J/7LNOoV1IiDmnqxTIeAfByIbATOnqsOyCWLumSr1g1Y4sb6wrhvslgmktYjMkNfVUBuDtWR1RdqQ6NDRxeJZSzqjmd7aZnvDaUweNr2Pc6JF/rl1HktxnQua8wBMeAMkFl9oztizyleDc1i0MyR9hdcHqRVe7K6bMrdDPY2VTtgfrVp0qPjy4XOZ9Tts9VoEQvPjdCsdU+G8YJ5p5fJYulMh+3rTnFldYSFpAnB7f5puFmKswJOGg60JmMjoxQFBkNNdrBHIQtPiOVAFDkAYT2L8cnKOoXZHaBC+YxYYJWnVQ26V00hp6Uc+3X5IthYhY8laLQJlGaw2GAC2kUMikQNJ41bX/fd7FKY1LiTZqlHmjCwiENz3V7hdCgjaYPZW+PGWLWyvtWmnFfa1Jsm0whpBJw7Z3VjnQGeS1W6VPJdM1GOUNBgriDshwdImL/merKd8psvCP/w2LN3z+/rklb/PlU+/8rguZOO19YpfHNLEPvIGN4l6ydjrxsELOAF/CWJOtt5w7gGeddWbhrSv8Tq623IsWtn3Zp/n9EUnuN/Dr7bsf8sNw7/9ySccd90S3NzZOndVJwxg3vGOdwwfP+c5z2HPnj1ce+21nHfeeTztaU876QM5LcpTEGcFNewoGJgWy4V0zwX+6GYanHi/qGz7JPGMIlrTxcSbS5SvLGWI1IGLZELS3Jfjd3NE7mabVOw0IIMooL+nRr3TR6SZ27a1WMnIAazIjhG5hxUCf3WAyC2dM0JA4PcN8axiMGepLAhy68CL0BCta2RmaTc9jCdIJzzn8mJB++4CLjOnOVEL6+592jGqWBloaeQIyJTiflH8SxWZOrbItxGJW+6trAMQBoH7vEtwNtZZGZkojJWx2Dwb6ZI8z+3bWDDld1UcY55jjUVoTbh3EZnOkjZ98qrCE6BiF5Ipc5c3kNd95xgkQGUG1U2R/RRd0CM368i66TEf47yvPO+UbOtE6WPH28ZGQMzp3oUZr3ub/nWyICZ97d3nMf+kVlYTqEppbywJ/UI8r21BoXLUWZUZjJLIzIX8WumYDLHv6FNWAYG7tkUqY0vU5fzKPBLDUuxCWSa8AX0dEMqMg8kUxgqm/D67GutkeyRr9Tr+vhCZO7Di953Ww3GDLSp1FvZ5RRB0YHHvDH+rLuJn527mCc3r+Fz7Inp5yKTqEye+C3+0klh7GCvY255le7XNTWuzgAvb3NboFDkwDnT1+yHhgodMBCopMrqsm0AyTrIzCrIsPh8AHcmiU+/GpOZeRbpQJ29Y1hsGORB4WhQ6Is9ZL8eOjWDbPn5PEC1Zx4AYFMDNFh0eW9pbW8oWiTBuUk3FBpU4ExyZWby+YP5Hc7TPiKhHCdYKksQjzxSZ57ES12gNIrLUI+/5rBnJg3bO00lDlvuKcG0TwNyTVWpb7k495TNdAD771PpdrAkPvcidp9/+fnKnHZmvfGCMRvXz7tdfBH/HL6eX3WHdT3/fbePB2LudXXOkwcFICwTALMQXv46Ff/htzpiZG+3rXeUKJ7/vN77lPUeAJ/uRpx/xfLb+BT4tfp5nHwVcsvUv8L3Z5/G3b9n4voU9Ynr/32e1220mJiZ43ENfT3i442b7tT7SwljI0U2z1k7ALtXoBr6kz01P0H7wNMZzQkvl6MoErZzocBekJJ2pYJXA62aoXopIc0w9crNzviRt+Ahj8dsZwa2L2BI8Gev2Za07FmOdfbGnsNUIUw3onlFjMOucxLKGQKbuoi9yB1DyiqCy7CyUVWrIq45K4Pddp0ho6M8qEDD79TXkyrqja5UdGDPWjSk/FykcACmPURYubGMAD88bCwoVQ8AjPO/Iroq1iCBwXZW82GZJUSv3O76f0uUNCvvq0oTBGSyUdthmqkk+GZFOBajEoBJNXvGGWQ3u805R7RjR6UOWkZuUv194P61Wi2azec/8892PqjxPTjcAAyemhznVIOYnzT55I0DmWMBl8zxxVZ4n57zhbYhaSNASVJYt1cXcCeqtmzgBp0sEhtczoS1ZQzGYUsRbBFkN0imNtyVmeqLHL+y4kUhmXFTZx6FsiluTLcz6HSbUgK52QY3X9XYQyhxjJd9c2s1EGJNoj9tvnqNy0CNascMxABhSm0rKWh4JBlsEybQletA6Tz7jBm7uzvLoqVt4UHSQdV1lKW9yY38bsrCan4+bPGxiHz/qbWOgfW5rTdNLAupRwvz8JH6Uk3UDooM+wTrM/iBBxZqs7ijXKtZDZ7ThbyUKAOcob1lNYjwHDIUFrOtyqcR9jip113Gv58Y1mVuXwZM5KrUJCsOd3BTgZdR90qEkq5bfibPZVwNnKKNDyWBGOdOEyUK3OmVJt2VDgwIxUFjfQqidDLbtgRXYqsZf9mjeDKI14NufuHLzPCmqPE+eduXvcHj6JXzzivNPelvPuupN3L6yOKKPgdO9FHVnFLKy/uaBizzzR04f864t123YkvlZV71pqBd52ovv2gntfbc7/v4lP/WOYz7//qvXgGNnrNzf6q2vPnf4+M46Ld/0Zu4A2DZynmyoA/PpTx87VfRY9fSnP/2uVzpNS4ceRCH0CoFIeaNcdhfKG2rlHxksWVazzmDPxHBwSqYk4Zqhspzj9XKsUqBGF2uZakRaLC+3Z5x4EWPJ6z5+rYIwZtSBMRJUYdfsFZqYXCMGCVIbKgseOoxonymRBXiywjG7XNilJa0LvATEwKJ9QdpwNDYAU3Haj6kfx8i1tgMUUmLTZAiahkYHRcjnEZ9V6d4Gbr0hr1m47RQBnU50Pya8FwKbGUc/M8YBpTEQYpP0yK5LCWyExKYZIvBHYGqsbNGpkstrBOse/kKIrYZYKZGJRuQGOcgQg2TUBSpBqjpyW5u1WUfXTxp4gbvuxmx2XTZW6ZQmzJ0OxkqGQMFKp/PAOOG+St0NttPMOGF91nATYMI6GpS1AlP8bPfXuTHZTldHRDLDF5qWrqCwXLt+Nrd3pqj7KTU/Ya1TZbrSJyRnetc63eUZ8qooMmBG3SChLUK67ofUFm8gSC0YI1lO6pxVW+EB0SHWdZWqdGYBZ1eWkMLQ1RGJ8fhWaw81L2U9qZDmil47QggLqSTvRVQPKaqHLVKD304RSYYJquQVZ6evQ4kX68L4wDllmjK/rDCbscUxGsVQS2Q8R4/OKwACLxLDUE9PuS6PSJ2VfxnYiWSYjlDGfY1n6FhZdGcy68xn2m5fQceZ2wgtsJ5P3nDb9HoS41u0b5CRxgioHZD4HTHUm44nI2zWqS0HPOaOWPZzD3zg2F93HahYghc4MfBw+8oiT7jiF4HjO4qV9Z3vvZ5LfuodfOd7rx8+Plb9JICX8TpR8LLR2hCAecYznnHE36Xj09HLwAVd3l/L+hIb+IgkHd5Mg3Y3yCVQGQ+yRA+7AyKskOyaJGsoF5xonUBeGIsaaFSiSeYq6Mi5j/ldd/MsQh8TeS4jBsirqrgxd0GSphah2t1RqKWSkOTYMHT7zXMn6s81AvA6CdV5hcw8sqp0g6eimGUqLv4+JJlylIHIudz0tyqsgOqSYeYHPbz9y0Otz7DLVJoZFPkvZUfIpsaBkPLz8b0R6MvyoT21paCiGQlBkSNjjWMxjAPBcr+FpsYaPerejJc2TgskxGg/JaAqhf1F98pKBTqFOEZ2XVAnUoIZdYlsXtLzTEFD22z535N1qrov5bbubUH/TyJ4KWsTpNz9slWN7YGOKLoFLvfEihFVSWg3wSQEhW2vHJqZ5DWLjix+lLNjpsWFU4eZC9r4Imctq3EgnqSiMn7QcsGw/Tzg9pVpNxfWhFbiAMQg90m1cmJ246hWeaG99AZuwsyJ1Qt6FYKwZchrku5yla+LPbz0fJcrEcmMVV2nbwL6JuARtZtpyJhvqzP5WnoO31/aTqtdQ/c8/EZKvxeh2p5zwUwdIPMGxtF2QzXMpDG+KBzXnL201EXuFw7MZBU3lqUTTjsjUzAhpE2L13POZl48Wl8lJVXsyO/E+NKBQhh238EZCAjjQEz5eeRVVdC6XSdHWIv2lculMRC0HL1NhwITOD2PXAhQA+deJoxxGTelWcPmcHLMuuKv38Vrf/0lJ/36DxcC/KNr11vuCFr++KFPBOBV3/6/w2XjnZeyBu86l+v+bD+XXpfc5f6/dfX7eLo9l60FiLmzKgHL8YALwJ9+8X9x6V1uaWP1rKvedLepaHenRgYA7vc3Lgx58ztWeOvrZ3j7c3/nbh/bhqJhjTHDny984QtcfPHFfO5zn2N9fZ319XU+97nP8dCHPpTPf/7zd+tg7usSxmImqm6mf8wq+IibayGPeA5ARBF62xTJpE+wnrt8k4Fz95KZa1cnMxF5VZHVHM/Y62usJ8knwqFVpAkk1nO5JOXFO91SGQn3Pc899oOhsN7m2t2EGwcWZLtPeLhNff+A6lLuOL+pm6UCJxSVqSWrwWCLpL/NDaq1ec3cN3tMfX0e77BrYQ51PbqgkBWdFKCge5nRemVXpKRzlWAjDCHwHfgZo3jZNHPL8nxkjCCkcxTzvJFVNbhte54Db+X+y2NR6siuS3lMnhpl9xgLWToS+scJNtfY/gCbZVhjhqYD7jg3R5p7uk4leDmZujvg441vec9PNHjZrFNUuXS6jLTQsRS0J+O7SaPSZrnsJOQVSTwhSRuCtAF53aKbGmuFcxcLWw4s9M7kh+3ttNMKS3Gdup9grCQziijIaNZiZip9Mi3ZPtWmlwYESpPmirxmHJAwkEfO6Uxol1HjHDENXmxQiSVoWfxVj14n4ob+dv6lcz4HsynWdZUJ1WfK69HRFZbyJofTSRb7DfpxiBAWEWqyVoi3t0K0LKjfDtVFZ9qiskIkXzIIcJbKQSdz9N5CG4R1WhVRgJC0IejuNqSTlrwK/W2GdGdKOuX+HswK8ooYUr2SpiStS+Ip5SYGcWO8SjReT+MNNH47xetmBK18FC4qXXAoxoEhK8Dv5cUxavyOJmxropYLIK0dNtT3Gxr73E910aBSh5JU5gwcvNj93qw71hUv+Ne79fpxqthd1au+/X+PAC/AHcALwC93n7ch8FLWU/5+/4bXvbP6jT3vOKH9Hq8e/s4f8/B3/hhwIOYbF4Z848LjuwQfoY+5B+vS6xI++9Q6l16XnBJgdcIi/le/+tX86Z/+KT/7sz87XPbEJz6RarXKS1/6Um644YY7efVpXgayZoBc8yFOihta3I1zno/E42NdGKEkZqbJYHuVcC1DphoTqCJPxStS5A0q1kXysUuZz2tewc212CLQ0pYuxBbUIHf2xjPOGWxoW4wagQGlnPVzAQCEdAOC6Mcobaj0U1RcI57xSIXE77t2uAtAczNxk3s1jb1dZKfvQjR10X0YF+6X+pWy1Ahc2Dx39C0ojkkOjwnPwzaqmChANwO07wCI18sR2iC7KSJOEL3B0EnMlk0WOQaWSq1LuQ8xsq8eivqFHR2vFKNuynhZ677kEqgMM38KcKbHtl/k2WzWsWv+8f+HbV/6Tyf8uvsauIzXyXRi7kng8p9f+qTjPvdX/+P+PTn077G8jsL6blbf+BSJ7qOgYJm6LkHZeQHXFUgmBcm5MRMTfbq9iKmJHlIYlrM6vtAYKzinvsRc0GE5qzPrd9kfT2MQ3MgcDT/Bk5pGmLKl0qUR+CS5R5L4sCMmW6qiMopQYYtM3JhV5l6Joqnvdy2NWwT5QsQ/7L/EvYftMY897yYafkxVphxOJzkcN/nx2hyD1GfrRIdDq01ohzRuU1QWnXjeuV0WVLWCxlVqXWTOcCw0kXQu/cZgQoWuSJKGJJ0QtB+cUZkeMFitkG6zhI2ELPHQFUPsOVpe3hCkA6f9VCl4PUvYBhMIVCqGGTOuK+ImC23gKGwyGxtDcB0hRDG0FB00od135ujgpYumGFLaVOKo3sYTSG2dy5oo6IGbtvynvJ7yme6G9C0nWqW18kZtlS+9LoE9rqvyrKvedFxB/9cn33xEdszXJ9/Mw55y9SkBLWV948KQV1/QBuDJTzwLgFc/7F/4g7/9Pv/0mNF6ta+8fLjf+7JLc3fqhE+pm2++mcnJyTssn5iY4LbbbjsFh3QfVnlTXN6QlxbKktFNe0FRGnZlopDBrgYycyFcAKqfYT1HFTO+QORFV6XIfXHtaYlREpVawtWsuPi5pHiZ5Oia79rppjiePAfGuhKeNwIv1rouSEmJkgqR5YgsJzDgtz3yeoCOlMtZ8QT1Q5ZgLcVfaDn61fAmvrAsLi/kQ3cxMbqpV8XjPHefg1ROp+J5iCAg2zNLZ08EwnV88orAFKJJHYBKfMdXFjVUDGHHEKznhPtWEd1+8VU4ADSkK44DC88bmRmMd8OUGs7oDelu5bISz+gRyBlm1yh1FDWQOz7erDvUiYKY0wm8lFUCkrsCMvcEcLkzwHJn626CmftH5TWNSiCddA5WzhrYARqZFzfCwrlcWeUse/OaIJkx1BoxvqeZmuixrd7hcK/JWbUVtJXsjlaH+5j1u7TyCpN+n4PxJDNRDyksuZHsqLVo+DErSY2ltEYUZWyfaLO/WsW0XRfG62rX4RCAEI4xYBy9zEpZUL7Ab8NgTjCoBPzLvrMIg5xcS6wVaC2pVRLixGffehW54jNxq6RxICdcyzBeEUZpQCXuOps1fDdRlxrUIC80n4EDNp5Ahz4qtnR2eiRTEG/TbN21RmcQsmPPCkpY1gcRnmegliKEJcsUSTskTxSqK9GRo5fpRUn9oHbUsriYNBQCWWhiEIVZgBSYQCBy93noUKASsMK6Mc9ap0+l/LwcCBoBluIpM6IHepkp9Eab02HHq139j3M4eskJ052e8pkub/3qr/EjfvauV74Xq3wP4yBm3G65fPzp71/JZy86PpXsROtZV72J+OLX8fIfH+JlT/znI577g7/9/jFfU3ZlLr0uuc/pZidTJwxgLr30Uq644go+/OEPs3XrVgAWFhZ47WtfyyMe8YhTfoD3ZrkOicUGHqK8QbbG3fyW+grjhPxWG4SnMPVqMRBkyNzRlayvHFiQAq+n3UDlufRllVpsXACZoee9QA1yZFqI+/uZa6FPhu4CW2ox8tx1YorMFUs2BB5WKYTW7rjGnLlkloOSqGWBDR31TJRdh7zIRBkGZY61uIc0KjPqQA11QGXeixiCFzwPs32a3u4qva2Omta8xbXOa4cy0klveFHPIwE4p7RoXZM2JPFkgNy5DZVaJn7UQq60XScoy8a+oLEvq+yI6ZJELkcgpDQbKLszMPoeoaCkhQ7klOBo/P2X7mrpqZsV+fdepyN4Ga9xgFKCmXuq23IiwOWuXr8JZk7fCmYGhBM5g70TjkqW25FNMAy7AVKDlpBXIW0CArrLNc46fz+e0EhhibwcTxqUMGTGwyBYTBsMdEDTGzDl99kZrdPVIctJHSMEsfbIbZVWWmFlvY5UBl9qhAYVF3knUmACl79iBc4YppjIc90EF2qsUohWLKDI23V6AZjAgrIEq5I4rVNdg6BjC3czpwM1yjEQkO6xDpXrNhWWyVYo8kiNXMeUYP0cj95uQ7CuGOzMQVqmt7dQ0nDO7Aq7quusplUunjnAQAfkVqKtYDmus1St0+mH5FMK2/fIhWIgJXlFUZ2XhB2Dip2+xu8WeW65cUOccuJ8N065jkwJNN2KOC2TKtYxhTFOQQ0UBT1QGDfOy9RiArcdkVhEcv/VB9+TVWpg9lVfwOR3v8f6xRs3jfrRwdMLvJT1ySt/nye8MOPT37+Sp190lQMrT60fBRLuPnj5xoUhl16X8E+/+QE4BBz6BDe9+8h1znvFHV9307vh4ouO3M7b7/bR3Pt1wgDmAx/4AM985jPZs2cPu3fvBmD//v2cd955fOpTnzrVx3fvVjF7b4VA+n6hi1Aj6+DyxhaKm+MAU/VRiaOHAUMxvg5dSGRWV45TPDBDMV+wliIHOTZU2OKiDjjqWapdIrFxHv2qn99Rg5LbUQdhvJQqsleMGyNL++EcB2yyfPQ+tR6K1IUsBq1xmtg4bSs3I/AipAMv5XakwNarDM6ZobPLp7JmCFsWHQqymiDogt9JUXFOMhMSTyrShhvEGwdyvCJMzIstSUOSTEkGW6aYvqFKtHfRcaDLAEtrCrAxdjy+N3qfwiu6KoW9tZAFKLHu/ZfdFsXoO1WjAfsOVLUxqtxm/fup+4omtlk/WdWopsw0Y/ZO1LCePxTv22J2XxjhboiF08joyOk3MAKkRWKZCgb0dMBU6DrTh9MJ5vwOsfFJjIcvHcDp64BZv0tXh8yGXX6wtoNeGmCsIMsVWkukMmRGFTQ2ik6EM47RgZtgo+hIyMQicos3MICzJPYGELZKDWIBwIRwXYmii6MD97xK7BCoCeMCKEu9j9QWawUy15iCOmc8Z5MsDMQzFjObMqgrwqmYapRy8ZZD/HBtK2fXl0mNxyXN/fhCs9Vv8e3uGTyoeojMKv5p7QF06yGZVuxfmySvS4yR9NsBeU3h9RW1g5agaxBGOdaEGBkrGE/gpS5iwJb5a4KxsbGg/yWueyML7arEDmngKnEAKa8WE5ShwBsYvP4mgDlW/eDaq+EDJ/46l/tyR/3K8eoa8ck7LHulfdZw+Svts45Yr/z7ZOs39rwDeAefBUqwcio6HKVe5ZNX/j7f/f57+adXwB895Zf4nc868FIClkee/zYAPvLuNx5zO3v/77eHj7/xuet48ot7vPLQB/j0Q2vcNn/d/aIbc8IA5txzz+X73/8+X/ziF/nRj34EwAUXXMAv/MIvHBHmeH8sdwESmMhDKQVpWlCnBNjihlcWLloUnQtfoUPlQE8RvJU1PZKmIq+41nF1ySKzwgrSgmgbN1hoiwkLO2XjKGgicxc5G3jub1MScMuuSe4oX4E/on0JCUmCHQu5tONUqTxH+P4oTwaO6LZYo53IfZyCVVK2xm/kSw0JuPWUgkaN1iVzZDVJfd6FcqZ1H7/jqHdWQjoVIrQlrTsus4rtkF6GsXg97cwLNFSXLXlF0t/qk1e3U79uAdvpFt0WRjbNRcdkqMExdvQdwREuaaiiSySk++zKz6UEo+V7LU0BshyrNXYYkLlZm3X3axO8/PsqX+Wc3Vjl8GyTZGqCyrLTSEBBM9IUtCSnm5AJyAyCszpM1fvsqa2SGI8zwlUG2scXmqqXspZXGegAXxgqKmU5rTPQPgvKZSaEKqfhJ0MqWdeG+EGO5xkOrTeHYMO5f8kh0JCpHQb6lnksOhBHdIrs2LghtR05qlmn93DAyGldkGA9gdViaFSAscM8Fus7EwEr3DjZPkNiAkhncyYn+/QGAdYKHrb1AJdNf489lT0YBLHxqcqUmwZzdHTErb0ZdobrSGHYGa2TBD7tPGRrtU03C6l6GT9c3sqaaiL3+8NOifWK4yoDLXVBERMl9ZvivZWuZUW3qqBDi2K8F9oO9TEqodDSWLx4ZAogtB3qnDbryPrz9zwKVYTBn0j3Zf+N/8w1Y7ecdwU4xp8vQco4qDka4GxU/3Jv1xs+/kcAPNk41HfTu+GZfIKbnsLwb4CbeCM3fKB2J+DwujssuendcAE9/uCaj8G7zqXy6r3HeN3pUyclKxNC8IQnPIEnPOH43s73x5JJjpK6EO+JIVVrSEUyRQaJYqidENogU+PsFCuS/hYP40G0btxFMLXOBrKu8Nv50JHM7+bITKO6KVZJZJJjKr4DMMWsj44UwVo8slAez1op/x43F4DR8Y7TwTxvRMWyY52boeWwN7q5LwFOcSPvtlmYBpQ3+KV1dLVC58Fb6M8ppm5KAWif4ZM2BPWDpgjOlENxqFUgcgdeolWDDgWy6Fg5WoPB72SEq+6i390dsvIz25n67jpifqk4LjmigsHIQrk4bmstxAlCKacN8jwHSKx1mQTlOplGjGfWjFPMpECgEJs5MHdaJyPi//dY9yRwOXrbm5Sy06d8adgSdHnglgW+M9EgD90EVmn3K3Jn0YsQzmBRO0H/A7cs4UmNsZIb1rbxs3M3szNcJ5QZkcgwTGKsIJQ57byCtgKJZSmpu65N2GeQ+1S8jCT30EYgBPhKs364STVzE0tWMOy6+B09CndUJSgBL3YaDpFbdCRRmR06l7l1HPVLe6KwIXbGAAAUYEj7EqmdWYBVrsuiK6VpgSCrOv2PiqF3Rs4FDzzAIPeR0hCnPtNBDwAlDGcEq1zbPofFpEEvD5iPHWg7nE6wnlXJCze2fu7zyKnbuLCyn9gE3Lj6JMRAYj1L2nD7krnE6zt6mVUjEx0bFtd9z0LuwFU5OenelxiGjgpAJGXgpXJi/tzNc1rA6zlGhfGkY05s1h1q9txtrB3oAiNK1Ebqine8m3e+/hUn1Ck5Vhfm/lYXvmQ3H3ml66rc8IEaAF9pX8LV/3v7Eev9zYs/e5fbevq3e0dQzsruzb/xRh77nhefmgO+B2tDAOaaa67hpS99KVEUcc0119zpuq985StPyYHdF5VNhsgUd4PuezCgAA1ylG8CBc1oNJsitYEEkimPPGLYTQDHHZa5m53KawqZuYHA77iLmsQNZGiLyDS6FoAQZHXP6WG6ydDda6hLscbZE5fgBY6kQYkxupfRI7oUuHyUPB3ZDxs7EryPdSBKrU/ZybBpiqCgX1mLiCLis2ZZP8cjWnWAK5ksku1tQYnwHH9aVyThmtu/rgiIi0FPQlZzRgYyc2YGZSfKhh7huqa73WPhZ6fY9mUNy+sje+ayu1K+h/L9YhC+08AMjRYKfVC5rii7R2NltSmoagWwORZFb7OOqJN1IrsnaqMZMD/p9Z9f+qRNEHOa1HK3xnpWxZMGExl0qFAZQ/2E9STWGifw9osOvbBIYZDCsq8/RTOMqaqUjo7Y7q/RVDEdE6GtZD2rcltvmqYf084i1uMKZ08skxnFIPeHx6GkxfdzpDR4LYXfY6jZsMLdiFvltBplV8IEo8kbB0oYCthlWmg9iq6LVWIYJumCHwWl97HQ7r1icdkvxQRWaXCjA2d3nNddByraMmA67LMvneKiLYc51Jtge7DOjfF2FtMGsfFJjcdA+6TaI1BuPNg/mAJgaVBnJuphrOQHnZ0sZ3Uyq4gzDxRkdYtMHX1Phy4LLeiZYRdFZk4Hq0PHkbPKjdO2GA/GPyv3BnHLcyCwyGy8eyXd52wgq0vE2mYH5lj13Iv2894D7vt7+Yt/AFecv6HXvfP17m77JwGUbKSu+LO/5J0vec4dwAvAY5rf4W9e/J0T2t7Tv907YjsXvLh3h/19pX0J39zg93Ff1IYAzNVXX80v//IvE0URV1999XHXE0LcrwGMkcKJ7bXFVCPEWuvIFbKxm3o7mkWzkfsY05p01o1td6EPW9pZZWrHJ04nPGRu8Nayok0tnRc+ICIPFefu4llRWM9lxYjewNHBpBiBmFLjIcvfYqTVGe+igLu598dskLO0uOEfUcRsbkf0P8XI1cy4Uc6mqQMFAEI4OtpEnfXzAqoLrtPSn/MRxhKuW4K2G/DiaUFegaCDs3CWYDoO1GUVQdixGN91X/yuRg0yB+S0Ltr8kmjdEE9J1i6eYfraBNsbjChkmmH+jAMgo86SLYX5jBzj7Fi+ixjPtDGj9z8EL0qB3qSQbdbdq/uCNrYJYk6PMkYwHzdYiWuIWk4y5SFzJ4Yf1424m+NCEK4Ft7em2NlsszXqcGnzViKR0tI1+iakb5xrUFWmLJgmZ9ZWMQi6eciZzVWMlaynFSajAQfbTQJPU/EztjfaJLlHvzdbOFHi9hmIEfXLuokkE7iOiFUOlPg9d72VSUGJUgJZdCZUbIcATBbgxQQO1AjtzGvIDeDo2dmkcuzrwIEelboxIKtBeobmQVuW+fHaFpLMYyFoMMh9EuPz5eXz6GcBce7x4Ol5+nlAqhWByql6GZP+ACkMgcxppxWawYCb1rdwc2sGKSxp6iEmUqS0xH6IyARZU5AvC8S8wIvd5yEz103xBhYduMgDYSwG9xnpyOmBTOA6NjI1CKkwvnQgRUMQ58Vn52hjxnOZOzLe1FQeq65Yfgvn8ccn/Lqnzuznd86Ex3xr9yk/ppnL1uDDp3yzd7uu+LO/5IajKGEl8LjhA7UjHt9Vffqhbv2JK34XgENXwKEA/kP6xiGV7AL+mfd+YONdsXu7NjQlcOuttzIzMzN8fLyfW2655YR2/va3v51LL72URqPB3Nwcz3jGM7jxxhuPWCeOYy6//HJmZmao1+s8+9nPZmFh4Yh19u3bx2WXXUa1WmVubo7Xvva15Eentm+gVGac7iQ3WF+N7JRhRN0ad7vKc2QvIat75FVF0DPU5nMqixlB2wVfqdTRuYRxgkjjCfJIkUz7ICCe8enuCujtjMgbATry0KFC5JZgsef2FfiIIEB4HqJZR1SriGYDppowNwPTk4haxdkqB74Luiw1IFKMWQvbkdZjTPMhlBy7adejXBcAa9xN/dC8wGKNIdneQOTgDxxFTgduMAq6mqBr8AaGypJB5hCuGfyuJmhravOaqR92mLglJlpJCdqORpE2PbKJ0PGmAw9d9Yac4WjNkEwIkjNnEYHv3mcZ6lkcWynQL7srIggQSrr3UnRqhJLDn+F3qZQDeIHvfhfbFL6PCI8f/HRv1ul2nozX/OP/z4bWuy86JH+854Jj/mzWT2adbufJ9sk2u6rr7Ky18KMcL3YaF6sEOnJ2wVhQA40XG/yexe9Cq1MlUhlnVFZoygEdU3E5MHmDjolYTJvcHk8DsC1sUVMJD2gssKeySs1LqPsJgczJtWK1XSPVismgz2K37uhbISRTgsGspL1bsX6uYv0cxWBa0ZvziCely6KZlKQ1MeoO4RorMnfjmYoNXjfDb2WogUEmBpkZ18Uo81IkmNABgVJbY/wROEII0klItuaccf48dT9hutJntt5jOuyzq77OYtrg3MYSShq21TpMBz12VdcJlGYq6DPpO6OD+bhJPw+ItcdyXGem0mem0qfupzRrMUJapiZ6iMkU61mymZxk1jKYkSRNR20b6mOEGJkaUFLtbEGZY0g3M76joOnIdZOM777beMojnlJkNbc8q0N3x+kBYE638+Sds2854dc86eMXA/cMeAFY+bupOywbD4c8HeuCF/e44QO1O4CXC17cu0N3paznX/M2fufM0d//IXXdnfNecaR72fvNSbgs3At1n0YrffnLX+byyy/n0ksvJc9z3vjGN/KEJzyBH/7wh9Rq7kt4zWtew9/93d/xV3/1V0xMTPCKV7yCZz3rWfzLv/wLAFprLrvsMrZt28bXvvY1Dh8+zAtf+EJ83+dtb3vbCR2PijVCepjIcWKVEO76JQUwRrkqdCDWWsQgQaWGtKEI1nO8fo4c5KAEKlDusedsKkXuwi1Nke+SVxRJU5LV3eyV3/OGTi7V+QTR6oKUiEoE1qIn62RTEXnVGQSkdYkXuxa91JagrQkXesj1LjZORsAFimR7PTp+Y123pqRSFYDGpgZR3thbM3LvKqlpQiKCgM6ugLwqSDPpOk25E+PLzDiZjSfxuwJ/4BGuZXidFBN6JNOBs60cZOT1gMGMKjjGIHOFMGExiyfx+zkqlehAErYF6+eFzB2uIlqdUUYPOIDiB8Nu1LBjNG5CUJodZOmRTnKlMQCMdEQUOpng9EgeO93Ok9OtjgZHdwVS/njPBbxq3/04cHezjlmn23kSeTnbgxaLcQMpLeGqddbFgiFwsZ4Ti3v9lKCuSJsCvR7Q3haxK1ilbSrcFs9irKCiMg4lkwDc3p0mUjmdPGR3ZY26SvjG2hlIYRnkPg0/Zqo6YD71UNKwvztFa/8EFQM6gmRa061pvEqO52sGvYDuQOF1FMa3hZsWBGsCqyRezNCEJlzPnWB9kKP6zspfDGm8TvTvRPyCvDJ20y4FNhcQMNTL6ECQbHGWy4F0IZ07qy3OqS5xdrjI/myaro6oq5iZLT0eEB1mRdcBaHguTPO2gZtcvXlthkaY0gxjOmnI7voay3GdVhIhhKVSSdlW7zAVDdgrtlCvx3RsHb/lI7UgS9w4L0uamxJDevMRZVynxjEohMuXSQy+NQgD/VmPwZwoxjT3eaST0Js8PTr6p9t5su2/fxMe9B9P6r08dWb/Xa7zmZUTBznjHZhLX/A4AK54jtMRf3DHxXz+ud/lYwev552vfwXf+PA/nvD2704dq+NS/n2sOpoiduiKse/nTPij2+6RwzzpuuRt3+Y7b3zohtYV1t410f+KK67Y8M7f+c53bnjdo2tpaYm5uTm+/OUv85jHPIZWq8WWLVv46Ec/yi/+4i8C8KMf/YgLLriAa6+9lp/+6Z/mc5/7HE996lM5dOjQMJfmT//0T3nd617H0tISQRDc5X7b7TYTExP8zM+/hTAbdR+CvYexg0ExUz/qQDCmoRBRiJms0z6/OQylVAP3j26lQGSFs5jE0cZCD131HXgpZmiMB34Pgo4hrwjq+xP8hTZikIDvoWcaJDMRadOJBEXBhHJBW46ilocChHsuaBuqB7rIhVVsrl3IpDYjrUtpTgBHhkIebRUNzuVLiCO7UdOTzD9+Dqldd8QKqCxnyEQPB7R8MiKeCbASqocTVC8lrwcO2LVTrC8ZbK/Q2ekNZ7SiNTtMMvYHBqHd8qCVoyPF+rk+s98buO/FmJEepnxP41ku5fdVmhqMg5ay+1TS7jzPWUkrBUpiqxH5VJXONHz9b99Eq9Wi2Wze5f/RvVX39Xly02M+RsOrAicm5L+nsmBKAHOy3ZV7Cszc165j9zSNbH7iegA6tst57UdunidFlefJ07/wIs7d0mUhaXBLa5b2F7YRtC1BxxJ0NEErI53wnY18XzPY4tPbLunuMdTPavHy879CS1f5x6XzsVawq7ZOJw+JVMbioEE/C2iGMQ9oLFBRGf84fx6XzBzEINgatPnC4QdyRmONWHsc6Eyy/oNZp185r8/uLWt4wtFuW0nEwuIE1UbCRHVA3U9ZiytkuaJ1YALVkwRrLtQx6Fgqy85m2O+6yTqRGXTNjQ8uz8XlvIjckjX8oXlLqf9MG2oY/jjYIujtMZh6ztlnLnJuc4kzolUaKqajIxazBqupu9Ysx3V+dee/cHs6y/54mim/j8RyY3crqVHcsLiVXZMtEu1AW81PWezVGaTu2Pr9kPO2LzId9vn2oV3kuSTrB4T7A4I21A8agpYbI3VFklUFYcsU1LiRtlPkthDtS7TvbKGBoTvZ0sWCbFuGP+/j9QTxnCHc0WPGW+baZ/zJ5nlSVHmefP4RB7nyuaMb8Y1qLt766nPvcp3PrOy+A8g5GtB85WHu+bKbM3PZGgC/f9UNvPkdKyz95dM2dDwzl63x+ed+d0Prnmhd8Wd/OXx8vG4KHBvE3Nn6J1J//YlrTun7e8pnnHHDL++d4Jdf7c67jx28ntuvejuvf+9HNnSebGiK+Tvf2Zg46O7aKLdaTnMyPe3a49/61rfIsoxf+IVfGK7zwAc+kD179gxPpGuvvZaHPOQhw5MI4IlPfCIvf/nLuf7667nkkks2vH+ZGYQ26MhzwnxwYvnSZrdMpAdHtfI80AbZ7lNZrtCfCwhlIc4sLJmFkkgJMs7dbFvmLJTzmrtAegOL33P0smRC4cUWrzUAY7DNGp0HTGI8gd/VeAMnNtSRxCioLOlhIBh2BGjyiqD1gCb1WoB/+xI2yxyIgdENvGJIubJ58b6U4GhWoSj/RYqujfAUphKAAK9fWmc6vrCMna20EzVatC+IpwR+x0NHCn89drxoX2F95QJACw61yBnadYbr7n2lDUXQdi4uOhL4Hctga0BwmzdmcS3HXOLsCN1BoRcq7HbKTowMRtbKUgIKwgAbBuiJCoMdFVYf4CEMJCqGv93wv8+9Vvf1eXKy9ey1T51yEHN3wUv52s2OzMarBC6ne50u58kDawt8ff8ZTCy5a13Q1fi9vBhrJP0tEpUorAC/a6nMS9oTNQ5nk9RVjLaSTCsW4obTc2h3Ta54GU0/RiM5HE9wycxBLqrvpyYTfhxv46e33MZDagf4xOGHs7JWR0pI96TMTfRY7tbY3mzzmNm9rOVV9uxZpaEGTKo+vsi5Md7BwWSSr3rnsLJWp9/wEbkgXFboQCEzSfN2i2eAwGL9QrCeuq6SUQJCQV5xgcWuk+E69U734gxe8qq79tdn+tT8FF8Ytvot9qUzfOHQA5m/dYbGjg5nT61yy9IMnwoeSj8PCFROXSVkVjEd9FnPKjxuz17OrizR0RH7BtMsxA2UNExUYtYHEfVazP71SbKmy8XJUw/pa6fzFG7sVKlBB8450xSBlV4vH9L9ShvltKGKHBwwxT1Bf06SNkBXDRecdYh9k1P01irs3LlKaxDRjqOT/E++Z+u+Pk/+22/8BTPVCgArh554Uu/heF2WjXRojkVDW/m7KX7zkkfDBsFL+ZpLX/A4rnjHu3nezgdv+HUbqXe+5Dlc8Wd/yfX1RfjAkdk3xwMoJaUMoH74kQB0t//bKT2uu1OffWqdrz66w75fgsG7zuWT3Er+ui8xnV501y8uakMA5h//8Z5vkRljePWrX83P/MzPcOGFFwIwPz9PEARMTk4ese7WrVuZn58frjN+EpXPl88dq5IkIUlGoqR2uw1AsNDF8yuYoIbXSrCmcKYqRfPjlCWlHL3KF5BmBPvXsHKaZNInaDvbSWEcZ1bkBlPx0ZEHShS5MYV1cOK4xFZCtJIRHWwj4pR8S5O1C1yrvH4wxSpBsJ4iU006GRa0MeP2U4CuvKpQsSGvKQbTksHWEJlOow4sMQyqNHJkHZxmbrZsvDtxdENOa0eVA9edMO5i7fecMN+JUB1lwIQKmbttmEDixYagK8nqri3vtxx3wgTOpGAwrRx4i81Q8CgzFwBW2nwiIKt5aF8M2/rlcbl/nMLiedxm2vMcVcwPjgynNHbkrgYO0AQ+2dYJWudVSZuOqxxvMVQPOtrE6Vanw3lyutSpAC9lbYKYu677C3CB0+M8WerXCQc+C7JBvq8GAhegmNsihV7g9Q1Bx4X+6tB1440PasXnH+fP54KpebZXW9S9lER7NPyYxbhBahSRl7IS14i1hxSW7VGL5azBQTtFXwf8VG0f/7h+ATfs3Qmege0xs9Nd2v2IKMio+wkNFXNuNE8kMjqmQmx85vUEfRNwXmWB9myFW8IZsi2KxVadVNeKschpPVz2SZFXZkCmxbU2UM5RLZPDdPoy/FJmljxy12CZgd+R9FoVbrEzrMcV1rMK59UWCZVGDSSdww069R4P2jbPzso6X50/h7lal2uXz2Iq7HPTyha0luycavHwxq1s9VtMeH1gF+txhTj3EICnDI0oITeSLPGwWtCYGpDYigsQFU7TYgKB9hm6p7k8MwdghLao3KISF/yZhxIdCPpbBfEWS97Q4Fmmwz5n717hK/JsdjXW6adb6OenhwZmvE6H8wRA1V8EwOyOn93wsb/5XXt50scv5lH/2uWdN3+aK855+l2+5q7oZF952H4e83d3T1fzzte/gktf8LhTTi37Yf3tPLj7Bp73rhfysVd/aLj8rqhj4IIqXdWOCXi+9Ct/zOM/+KojdC/AERbLp6K++ugOUXuWC1+ym/fd9hj4Ouz5xDov+syFXPbKdwHwBfGhO9/IWJ0eJH/g8ssv57rrruOf//mf7/F9vf3tb+etb33rHZaLNAMvcm5gvdjdvMPo5rgUxOdFIryxQAjGIHoDwttXYY8DMTKzBK0MjHM2s54km3DLs5q7kFXWtJvtCQWVQwPUeh8xSDBTddYuqOPFlnA9x4QSv50jkxyRG4JW6sT0UiC0Mx0wvnJ5NKG7+Q96DqS0zq0xYS3q4LJ7H6Vr2Xi3LM/vaNMMI5qcKEBAoRERaY7fKzIMwPG5M4Mc5JhAAS7csz+rqC3oof2mCT1UHCPjjGS2QnU5LwCYxRto0kmfeMp1oaLVHFNYesrcIrWbxdNj9p5DOl9ZJVApdS5GI5TvAGj5HXpjFstK0n3wHKsP8EhmLNXDEK5ZVCwJ1y0pR4G506BOh/PkvK88b8Pi/aPrVHRhxjUvp1KUvwlijl/3J/ACp8d5cmDvHIuJZW6yS7QsHe2qo4dZK0IbgtUYv6Pobwvp7FbkFefSWFkU7N8/QzOMmQwGTPs9EuUx0AHTQZ+FQYOd1RadLOKH89u4aMchDsaTaCtQwhLInPfd9hgWv7eVMBYkO1O2b29R81Meve1WAFbTKofTCbb66wBoK1jIp/jX9bPIjeSs2gqJUTxgYpFpv8d10Q6+H+8kI8DrCeeslVlUrJEDF8YsewkiVshQgSxDH2WhnykmysTYtVwUWpvbQ3o7JA/dvh8lLO08Yq7aYenMGlmm6Gc+ocoJZc75U4soYdkSdvn+8g66SzUwgkPC8veVB1HzEpbiOmuJo575SjMVDTAIal5KahT15oAk8YkT3wV0eqXlc8Em0KD6TtNilDMhwIIJnWbJ+K5j4/eNy3iRAl01nH3+PHHucXNrhgun5zl3epmfnrwFTxiySspN9/h/44nV6XCe/JdH/wc+8d0/B0Dc4dk7r88/97u8/jc/gL74r/hvvOCI574c3FGLc7yOzJvftZdLX/C4U2oK8BfvcvdPJT3qVNTTv93jwpfc+TH+aNtlPHD+745YdvjLbxt7DC9rvOqI589rvAqOAi/ghPzveMw1vP4rr4THnPxxl/VzX2vwjQtDvvmJ7/Aw4FuPeBUP+/ofc/lTr+O2s/8XAC9qvJz/zeUb2t5JAZhvfvObfOITn2Dfvn2kaXrEc5/85Il7cr/iFa/gM5/5DF/5ylfYtWvXcPm2bdtI05T19fUjZgMWFhbYtm3bcJ2vf/3rR2yvdMso1zm63vCGNxyh62m32+zevRsrpbMJzjRikAzByx3S3gu3LsBpZEp6VW9AeGAdmTWJZwMn2PcFwbp0QVlCYAurX+M5gaDf1UQLfdRqF3KNrVfon9HEH1iqhxzlSmba2QubQk+jLboRuhkt33UzspqHjiReTxfWlqq4IAv6u6o0ViNod4ob+JHFMHnulpV0q6NdRMr3qgq9iHX6mcGMs4yuLub4vdwdU835/FvlqAPppCDoSeLAdZxq82BFRNbwMaFwpgedxNHJcoNMFEFHIFOL18scMAsUedXD62mMUmQVMdK3lMcvxrpKpfOaNYAaWSeXgZnS8bNtvUr3gmkWLnWUN68rSCbB7wmCtiWrCjJ5opfTe7ZOl/Pk7lYJQE4GyNzTbmabIOaOdX8DL6fLeRIuKLItgsNLE9Qy13mwZZdY4JwRi3DHoJUTTLjZf5FDuG7J9wfcMjlDLUrJi5v/CX9AK6vgS82WoMMPs60k7ZBvZ3uYaPZ48Ow8B3qT7L15G+G8RzAQZE1L2ExYXK9z1pZVlpM6t7WnqQcJvjB8i7OoyhRfaK7r7OD6hW1YK7g9nGK6OiBUOZMTfc6sr/B9sws7mZG3QtKGAOEmzoS2yDQrbPtxYv4yGLOYZNKhPMLZy0rQQaErsSArOZP+gKYXcziewBOGn9p2iFh7LPQbZEaxt7eFuMi4ibXHWquGGChsPcdawXpa4bb2NMvtGnmuqFYTksRHTXaIc4/bWjN4vhu7gyCnFqas+TVUKkgbziK5zHmRuXW0clvk9hRUZwdyIGk6GrTxCwq0b3no9H5W0xo9HbCSVPmpiYPc0NtOO4vQ2eZ4cqzz5Kmfeh6fOPM1J/0+HvueF/Ph5//JHZ+YvevXXvvT9XtMt7Lzx+8vHp3aQMj//c1XcQmLRyyLPzTqtlzAJ4aP64cfSZd/4/EffNVxuyx3VrWvvJzX894hiPn8KXgv77zkgaxe9r948r86acq3HvEq/mLl1uHzzUc/Gf5sY9s64WSlj3/84zz60Y/mhhtu4G/+5m/Isozrr7+eL33pS0xMTJzQtqy1vOIVr+Bv/uZv+NKXvsRZZ511xPMPe9jD8H2ff/iHfxguu/HGG9m3bx+PetSjAHjUox7FD37wAxYXR1/oF7/4RZrNJg960IOOud8wDGk2m0f8AG7GKPKQ3QQbx0NqlVBFXkrqMlTsoOAWlTfNxU2/NQbR7hLctkTjRicEyyuSdMInryp0WLTdjSVsa8LVjOptLdShFUgzUJJ4ZxMs1A7GqEHmUpGtxUQe6UyVfKKCDRUmVHT3VEgnfdKGTzytGEw57Y1KnbA+aOd4iaG/RaGnakNnMacdKYCAkEfSxkprYiioWfpIGpa1iE6P2qIuRPaCrOqRzAQkUz7ppBOlWuUu+FnFtdfb50DrbJ9swkcUyc9eL3NgMTfoio+OlMuE6WTIforsJcjMoApvfuMJwraBJB11X8bBCxyR7YKxo46TNs5+WSns9ATLP72FQz+jCNYF1XlBddFSXbBFcrQgmYJ49vTowJxu58lNj/kYcGIC/mPViYKRE3Ubu6/r/p7FMj9x/f0KvJxu54mpWIRnsGsBauDyVJzI3bksGl9hqs5O3+vl1OZzvL67sbcSomVIb6+zfHiCb96+h3/7wbl8f2UH37ztDNbjCrf0Z2n1K2AEOlEoabmlNcvem7dRvdUnWBfkdUteteS5IusG3LIwy9f2ns38apN+FrA1bHNrb4Z/XDifzx9+ENctbcMYiTGCWpBhrOBga4KVrOZS7ztuzjOvOdpzVhUk0z6DbRG64mPqISby0TWfvOoPQUsZEAluzJC5xR9Ygg6kM5q8YjlvxyK7CwG/JzVSWGLtUfUyWv0KDT+mplIOdZssD2ocajfRbR+VCIRvMEawd3GW+ZUJstRjqtkn9Ny4dWB+ivV2FQvESxWyfTWsFUxX+sU/T5FH1soI2hqvbwiXE8L5Ll4nRSVuvJMFYyBa1QgD8ayguxuSKYusZVRVymzY5Ukz1yGFpW8CVpIaK4Mqs2H37v+Tn4I63c6TX56roeov4ld/7vEnDSY+9twXccvsHx/xs5H6/HO/y5M+fjHvNx/gpR98AS/94KiLM/53+fjode6sXtv5MK/tnLowmV/+zK+xvz2if8Ufqg1/jmWfDEdqXsbBy03vHv28r/PHx6WKvfOSBwK4DgzwjQvvXrTEkz5+MWuXiSF4Ga/py54FuI7cRuuEOzBve9vbuPrqq7n88stpNBr88R//MWeddRYve9nL2L59+wlt6/LLL+ejH/0o/+f//B8ajcaQOzkxMUGlUmFiYoJf+7Vf44orrmB6eppms8lv/dZv8ahHPYqf/umfBuAJT3gCD3rQg3jBC17AH/3RHzE/P8+VV17J5ZdfTniCOR6mGSENsN4uKEdljornAIYsAM34dq0tRP4Ccov1PESWwco6lTQjbFQxFQ8TOH2KSjSynyH7CaIfj8CDp0h3z5BMeQRtXQxwIcm0T7QiUN2UdCoga4aogU884xF0nPd+XlNYKUgnBFlHOUvljsbrZmQ19xUPtteoL6xjjXWdlNKBq7zhHwcqnjfWlSnepz+inVljqMzHdLfXQCiymtPEOOtNx4n2BgajnC2oisHrCWoLmmA9c0DFWESaYyIf6yt0RQ0TqmVuwLg8GDHIEJ5r32dVwcRtWfF5ee5YSwH/sEtUfGeeGHVnksQ953nobVMcfGyD/k5D9ZCksc+gMtdx8fuWcN2Br7wq4a6NVO6VOt3Ok1NZd9WNORbIOd2By09C3Z+AS1mn23mS1SxyLaR2QKHS0c27CUTRJRfIJEemunCqFNQPStJGoS1JoXGLREeSwVYP6pqltQbWQrsfcbuYwlfuBl30FEv7p/DXFI0lQdCypJOCrGGctiOTkEr0IMRWNVoLDi1PsjDR5GB3grqfsqe+xjfj3UTVmLVWjemoj0GgKxJjJStxDetbSCUqFuQ1ZxEcdBwwM5EbLKwnwYCQYzkq2iLL4EzfWQz7PUN1AQZzkmxKs7u2TiRyFvImS3Gdc+rLHBxMsjBoIKUh1j4V1eYXdtyILzXfWd/N7UA7qDE12aPVqmIyBakbp3VTkBuJ1hKbKHIrUEFhfLM1YdfkOtq4dWUGUuMYGAZH0VZiFDRtLN4gx0pBPOMTT0oGWwTJtMVsSZG+IYpSvrZ8Nuc1l/hubw/dLKQqUyKV0wgS5oLOyf5rn9I63c6T5yxez9/McbeE7599ap3P4m6wP/sLd2QJnHvmrey97Sye8veOQnbpdckwS+bZv+Ruzv/HrxwJNsb/Pvq5O6uXfvAFR6z/pI9ffEq6PN4fPp5vfO46LvknBxrHOynn0ePTDz0SxBxL63IsoPL4D77qDs+d9woHbAAO/+4j2f4H/8Y7HnMNn3/PiQdaPunjFw8B0P7PuGP6yFNHzz//MzD9VGf68J7vfI3Xf+3LG972CQOYm2++mcsuuwyAIAjo9XoIIXjNa17D4x//+GNyHI9X733vewF47GMfe8TyP//zP+dXf/VXAbj66quRUvLsZz+bJEl44hOfyHve857hukopPvOZz/Dyl7+cRz3qUdRqNX7lV36F3/u93zvRt4ZRErXYdinupc1unuMiegWCIvF9fMa/uAAOb5YL0TtSwVoL2eoipRgGLGKcyN2tI91P4KNnm/R2hMOBrrxI6kigEs/ZUKZOrC+0JegYvL7jHftdNxsUtnGBYplx4Zp1H5kZwpbr+hxBvYIjrYfHM27SrAh1HKOUCW/Y9RBC4C22wdbII6gsG/yuIZ1QhOsamRqsVPhdCjDgKBFq4ChwCshrHroWDJ1dhLbgC/KqRMUeInPUCnCARiWGoGsJ57vYvAAupbGCKAI6s9zR/Txv7P3gbJKjCFuvsHxxnd5uzcSPFLVFjdczeLHG77rulZ8bTOgSlb3TBMCcbucJ3P3uy9G10W7MJni55+v+CF7g9DtPrG/w1yXhmsUbuOt3OuERT0mqSxqvVzgyWhyAMdZ1zfuOepVXJd7ABSH6HYEOPXTo9HpxI2DgV1AdhZ8JvJ4DBV7fuUNaD+ItFm9ugM4U9UZMUvFQyo1dg16I0YIfrc+x0q5Rn0np5QE/s+NW9vWnmK70uWRyPytZjRvzrXz98B4ARDXH9j3yqkV3BXnVwgGXg5JHCooMNW+gkbmzWnaWw24CT2hBWpNuomugsU2JSgSZhR+sbOdhjdsAqHqu+zMZDEiNYutch9WkSmI8NJKHVW7jgugQ32qcyRd4IL1BiOk5pzSrLISGbi9CeQaljANwmUREGf5kjM4US70aa7dOUekLvAHO5dPYYZYZODCmKz55xUPFLq8mnpT0twqsD6ZqqDZjKkHG6nqN25IZMq342bmbeeDEApHMCGXOzmqLJoMT/h+6J+p0O0/AAZBTUZdel8B1e4d/lyL/Ery86coLhmDi88/97nEDGjfaZTkWsDl62crfTfH8hd/kI1vfc4d1T6TOfeJD+carP8R3HutcyHZ/24GBTz/0SNBywwdqPKz7X+jz/iNef94rRiDlrz9xDc/+pVcOf5d18UUv57vffy+Hf/eR8Hqnlbmp6OKcDAj7i3cpPowDQf/rq1864rmrrvp/Ro+/C+qjbTT/DzOP2XhY6IZyYMZr165dfO5zn+MhD3kIF110EW94wxt43vOex7XXXsuTnvSkoSXf/alKP/Jf2PZSVM4d81DKm2FrsFnukumP1kcME+5FQQdTIxBUvh5GTl9SDRPvzVST7vkTWAnhWo4a5Kw+qIoOnM1y2DGoxIke80g4q+W+we/nTlejBGnTwxu4Do/IDINtIV4hQoynFJWVnMreZWyvPzwWoSTDr7+kiJWOayW4KTsdhSi+fCyikOzsbaxcWCFas1QPJ+RVRbCWoKs+xhPkNYXMLO09HlYKJm7NCFdiTOgNbSnBzc5lDY9k0mlc6vM5fjfHeA54qV5G1gwwvqT2g0OO3neUVqcM3LTaOcfhey6oMwwdBbAS0X3wVg7/jEKmgpnrDX5Pk9YVQUePnHRwTmfxrM/KnpS9f/jG0863/76q8jy5r+reAi+nWgNzX+TBnCx97WTAy+maA3NfVXmenPfbb6PaDwlbrrNcXUxJmx6DaUVl1VGIhbGuA5NkrhtdzPhbKdBVD6PcpI5VhUOZEs710To5oimmIHWldPVyFsX97ZZ0NkdWc/wwp1mLOXNilVj7pNrdvA+SAM/TZJnHpbtup51W2FFtcXN7lnOayzyicQu+0Pzd8kXctLaFQeoz6AVYK7B9j8pBDytg6sdFfkqR/aIrEpkW5iyxdstCVYQ0S7K6RKWWpKnQIfS3CQY7cipzfZ52znXM+h1uH8zSzkOuW9rOVHWAFJaZqMfuyho3drby1Lnv05QDrhvs4t9WzqQVRyzfMg0WbOA6P6Lm3nuWeND2QQts0xnrIC1CWvwDIX7HsQQa+zXVwzFZw3d2z7FGJjm64pPVPaR2n+3Cw3x01e0jbxZsgapG9BRiOmX33BpP3n49y1md5bTOTetb2FZrs8PO8//93Kc2z5Oi7uvx5FjgpQQfZRdlo0DmWNsYr1PhSFZ2jMpuBhzZNRkPrKxe8+t8q/7R41osv/b7n+K/XfSMOyz/m8/+Eqb7s0NQU9ovb/+Df+Ox7zkx/cvHDl6P+auL+PC2h/DLn/k1/u6a/w7Abz/GdfzKTlnZFVMfbaP/S5OutjzuhvTU5cCM12Me8xi++MUv8pCHPIT//J//M6961av40pe+xBe/+EV+/ud//kQ3d1qVzTIQ/h3By1iJUiNiTSFY9EY3/2WVy4wTjDOI3XZKbUm5XWMwM5O0HjyJyix+1xQX+BAdCqZuSrFS0N7jITOIWoZozXnp++0UEyp3Yc0dBaqzyyfoeC58K3cX25JvrPq5y64RAkJ/1E0pgUBJGyv1MeVnkuej485GTmQ21/i3L1Gd20XakOQ1byi6t9K13kcuYhC2XRdFpi4rxiIQ1pI2fbKapLdV0r44wVsIqKxJN6OYuA6TCV2OTO2WdQdetHHHkWbDz1uUAFIb9/lLBaqgywU+2bZJFh/uYYXFqtLGU2F8Jy7NKxKpncg2WM/pb5HEO7JT9J+1WXe37s+dl7/6H5+/z0MtN+ver/ohS2ick6Qu8kO8gcGLnSuXCSReL3OZX4HnrovC0ZWcKN644Uc46pXMhDNyMQ4oACSTCuMJdOTATFYTDLYZmE1QytnfZ6nH7JYe7TRiMhyw1J9ittpnXxwigOlGj8P9CW5fmqIzG1LzU/754FnInZaalzAXdajMZty4PoevNFIaVpPRjWcyIUjrHsaDaN2J360UJA2JsD5+3xQ2xAWNTrmJuMEWgQ6dCN7rKAZU+cT6w9mxa5XIy6l4GdUgY30Qsd6qoXYYLmwc4rEzP2ZGdVnXVdq5y1aZigYsNzPswEPkbvyKqil5prC6MBMIDAwUIpPY0CB7bpwJ1yx+1wVCpxOu7a5DF1SpYoWOCiZAasAIjG/JJjXh9ABPS/RCBboe/rY+58wt8+iZWzgrXKSVV9getliK6vxwYRuH5GnS0t+sDXVeTgS8nAjF7ESrpKCVep3xOppGVgKa/ivfzwWMwMvFF70cgO9+33XfjgVegCPACzgNzV9/4ho+/57vntSxX/7Yy/j//unv4OGv5mkfgvP/bAQ5SuDym5c8GoD34UCM/NzvwOs2pmHaMIC57rrruPDCC3n3u99NHDsR++/+7u/i+z5f+9rXePazn82VV1650c2d/jUOYsruiZCAHj62NkdkuctJ8Y6ikomxv/3iYy67GiVAiEL6ZzXx+87FJZ5SSA1+VzNxa4bXyUBAdbm8gLqZPDUoLJy1C60UVpBMSudlb4tZOSGLcExJ0DVOVyKEO9aywxIG2GqErQToeogJJFnNw+trwvkOojcogi716PMYNuwMNsto/GiVtYtn6G3zqC7mCAtZQ5HW5bBbVFk1+F2n69EV3wn3pSBrelgJXmzImhK0QFccuAgF5HXfgaJQOrpcq4s92nCgBJJag/Jdt6UMtFTSCfeFoL8jwspSYyPII8cx9/uWtOGCQavL2on4I0llxSDaHgfugX+tzbp/1v/e975jLv/FPS+7l4/kzuv+bh7wk1IqcbP8LiDZARLricKat+hAF8n1VkmMX+gtMoPINTItBO9+kaWCu345Z8rCFl5QOHsJkDDYbpg8Z5V+HBJ3QlToaE8HWhPEsU+9muApQ81PqFcS6mHCVNhneVAnTz2MFXTSEGsFmZUcHExirOC8+iKtLGLNq+IJw6qeRAcumLO3E2RS7H/OUdmsB2nTErQFMnVuXSopc2CKDDFwwCu0yBRUXyLXFYeYZvfuFWp+ygVTC9ywtpV14NzGMr7QPLRyGz+Id3NdbwfXrW4n8nJ8pak1Y9LIIwwz4kHA9sk2h9YmyIzARgZVyzCpcsHNmcTvSMJVB16qS87S3/hixA6wOPMY3zlj6kiRTCjXfVGWi3ceZL7X5PbYQ0jLg7cfZn97iu96uzg3XKCqnLPbgycOE8ic/QunZ5DlZrnaaMflWOsd63XjoKYUv1963cY1JOPAZbzGKWNHVwlaSsAyXh979YeOADUA1Wt+ncsfexn/7aJnsHLtv/LY3Y+4Q+jlyep3PvjVX+b1ux/BOWd/FICbb/kv/PglbsK8XAbwnje+EPXRUSaQ+LkrgVMMYC666CIuvfRSXvKSl/Dc5z4XACklr3/9/8/em8dbctblvt93qGENe949prszEoYEJIQEApcDam4gB1CUK4oDXEQmBUQ8KshBjiIH9Xi4SPSiqIDguUQUnA6CyCCCAoEkTBkgczo9d+9hzVX1DvePt2rtvTvd6e6k01Pq+XzySe+1atWqqr3feut5n9/z/N50tLs49WEN6GicbOWNCQ/EWq+ULCkVXhcieC28W2n+XiVfKVY98LvgH7EuqDHWhrKmNGF07jw2FqQHCvJpjSo8ahQmOqBMq1GooRv3Q/EK8qmIqF92CR56ipYclw5Ew9DpWPcN0npMIyghQFBcoggijZts0j93gsG8QhZhFUyaEGtpWhp1YUzc9UzdMUDvWMDnOULroMisInZiscP0zZp9T55msE7T2l3gtKC/SaL7EHeDqR/C5OW1RBoXoqF9KHvT3YJ1BhayONRwDy2dbQnpssUkEcJ5mt87gK+aYKlV6lglfsXl780FL804FlpKfDNlOCcxFwxJkgL55SmEA5MIor4j6djQKHMV+Ys7Dj2sFZhTASdTfTkcaTnUNg9EZE4HFeZ09b6csvDh3uxVHFTw8j6OYOXhONHYhkIWLtz3y8bHwgcigw/pXWogsKW/xEUS01LjxpA2FrgI8klIt3aJlOOijbtYnm2w/cA0RabHnecXhxHnbd3H903toFukKOFYGLVQ0hElhlaUs31pmjQyRMJxTvMAkbA0VYbzgnPaC2RO8z3pkUZQNBzFnIXIMzPfZWmhjR8pSCwycgyndAjDKSR6WWFbDt2VNPYKTCuQGlEuXEHwTOIF2+9ax3DLEs+a+x7X7drG+rkOFzT3cF68l3uLWe7NZtk3ajMqAukqrGKyMSJuW3KraMYFj57ay6On9vK1Pdvoj2LyLIKOJuqFxb5030pDZlmEBqM21XixQhZVVrZLEOH3NZyXuPkRal/M1+8+m83zS2zetMiF0/tYn3T57r717O5PMqGGdG1KKguaMudJ09uxg/XccPL+GmsQiMTPX/K0+5GQj330Pcw9d2W79730w/zxky/j1V//2v32caxlZXPPXeSyD2e8+w0/y0f++Zdxfx06zV/4Z3r8QL8aH974eH5m97e58LdvgVJxWe3beemOi/mLL/4UL33G/wrnNG5SGcrILrv6Ym7/57V/aau3qbYDoP3/8d51F8MuuOWW8NreW77Dze13AvC43puP6VxX41lbL+dft1/Hs5o/OD5fgOl9bX7yqj9e2fCSp8H/WJkbz33b+Uf9HUdNYL7whS/wgQ98gF/+5V/ml37pl3jhC1/Iz/3cz/GMZzzjqL/stEH5YCwqpcSGVX7vPaLs43I/DwysjfMdP0iz0iCySsoC3EQLF0saezJsqsCD7jukDTfObFaH2tzcYRuSoiHQWai7VZknn9SkezOEDc209AhMGvoJ6IHFJpJ8Kvx6ZeGRgzyUKjQSis1THHhcitOCye1mRe530Npjw4SoBfmEYM9lbSY3pjTv6aMWOmHuXdX13luH3L/M/Dckey+bpL8pomiL0Jys69EjRzYVUnhUthKlaZpRWO1SAjWURD3DuhssXoXUG6/C+RRNwbqvLkKntxI4YKtmnKuULusIraDLJLWolOvLkjhpwHZi/LxBjyDpePBBfQn9eBymKSmaMvQkKDyiarxW46ThVCcvh9r+cETmRJCYWn05deB1SDSEsgeMEtgkLEQJt/JQjPO4SCIzu6LOez/u/aWMC72ybKlaNPRKWVNZguUSyC8YctnGXUxFQ9bFPTomJVGG2/as4+zZRfYlbTKjiKTl7uEcy6OU86YP0BGeff1goj4wbLJpskMvT5iOBmxLDgBw82AzxisSZbhs8i6+MX8W9r4p7FzB1s0L7F1us3GiS240A5mwfr7DII+YXjdiX6dN1o9xQ4lvG2wRMdgYGnZKBFEvBL3IPJx7e77P4O5J9t83zb2bZjl/dj9XzN5JU+Z8N9tE4TSFV2xpLjETD/nGvs3kKGJt2bkwhSkUUWzYP9liY9rBWEm7kbGQa3zs0UNBsgPSRYceeaK+RY5sqWTpscIVfkehlCyQS8hmQrqanbS0mxmFk7TjnCtnbubfO49iuKuNXS/5l+WLubc/g/GKps65eGInu/sTJ/Cvr8ahUJUrwYpCMvfcxfFrH/voezjwiRkAXv31ryHu2YU/e2267rGWi33qJ77Bu9/ws3zyqZfAFz/Hm7/3p+y48BWHJC8AP7P72wBrAgcqNeZrFydcVqa1vf3iJ3H7P9/Aze138tJn/K8xSan+f9nVFx+euJS47OqLD3kMj+u9mZvb7+RdP/fjx3Suq/F/fn2a7/zE0/hvn38nBz4xQxVhsLSux/9743+s+V0AXPNjrwbgv/7bbx/1dxw1gXnGM57BM57xDK655ho++tGP8sEPfpBnPvOZXHDBBbz85S/npS996WEbGJ02cD4Yv6EkGjaY9uM4kJfVJvEKZVnZWK2pypoORXCEDOb9Rkr/nMkyZcZgUxVKBByIzNHdFpNNCZp7BcmyZThXpmKNAiHAhzKn4aYUp4Lx32sJIpQomKYim9bokSPuBB8JDnyaMDx3hsF6TdwNtcrCgMAT911I5BqGUq/BOh2aqnkYzCvy9gTpQpPm9/ZDt1+qTWUcM6D2LLHhK55dz5hmuN7Tvg+SjqVoyTEhEtaRT0Z4HTNYp0g6IW7ZNFXpxwlkbTAf9tnalRHtXIaFJUQU4atAASjJICuksSQylZkfY4ICY0PTTi+hdZfG7pwcd1yusv+l8WQzCmlCh+hsShANRCCgNR6ROFbycvBnTwaJqcnLKQYR7ie6LBGWZWNhF4eSpEBkPKoKVXGhD5VXMqgWGpzQQbUuwgN2SGcU45blsiHBC4YbHBds3sfWxiJNlbMpWuLGfBuFVVijmE97LGcpo0LTyxNsQ2CdIJYGLR2tOGf/vgmacwWZ1Txqeh+RsNw23MBC3uKmhY1cOLOXvaM2+5MJYm3oNT1Raphv9NjXaZOqgtnWgOnmkMfOhKaGUjj2LD2KuJkzs2GJqWTEXc058n6M62iSfaHkTGUChMdF0NvTRmgP0vOJ717MRWft4nHpDhSef+hdwrQe0DcJkbQ0VEFc9nqJpKMYafxQk7mIG+65ENuyqOmcy8++h4l19/Hv952H/N5UmP8KjxoFf04xGYz7FaomlvlUhGlI0oHFW4804fcqRpKZ5pBzJg9wYWsv1gv2jtqIXCAEfHtxM+saPfb32uSR4i51FF0VazzsGFxzK83XPWbNaxVhWb1NhYO3PRhHo8Z87cOf5xnnztN6UYvme17Bjgsf4Phe/6c03/MKIBCZt1+c8L2fM/xUSWSqErSqJO3FZ1009sW8+N0vuZ/yspqgHExmLrt6rZJzMJm5+YtHPLUHxFs2fJp3XHsVr/56uL4/f8nT1hCXa37s1ahffwkA9r9/aPy5xT8bHfV3HLOJv9Vq8bKXvYyXvexl3H777XzgAx/gj/7oj3jrW9/Kc57zHP7hH/7hWHd5ysAbg9eljwJAKUTpX6lIyzjhqoolLuuPBQc1Vax6k2g9Th3Dh4dr127S36DwCmQRh4mrNDmO5iOWHwVF26GH4UG6sT9k+avMhXSvVJY/e5LlEKHsCc0hvRI4JcZN05wWZcyyI988ycJjI4SFuFOtChK6QC+Hm7fMDMJrGgcCobJlmVU0cCEl7EkbmPzuMvJAB4wZd7r3RYHct8TGL0v2XjYRTKpR6BOgR+WKowym08GGoPY095Vmz1mFSYNKIrwnXXS0tg/QOxfKYIUQX413K2pWlfJWxVgredB7qwITVFB0bBJKFtJFT96WxF1HshwIjknkeGW0uS88dBTHFtBX4zjjZKgvxyuB7IHUmONNYmricmrCU/UWIfQeqdZaytecFngR7oWiLD8WMqz6exGCUEI3+/I960Kz5SQo9l6G+7NpgG05+kUcmj+6iHW6S0MV7O21kdIxqTMi6Vg/0ePRU3sZ2og0Mty5PE8/i9kw0UUnloV+k14/ZWnQ4I50nkhZpuIh2yYXyZ0mlpb9RXt8gibT3Lp3A1OtIVo6NrY6pKpgS7rInnySpbyBtZKZyQFXbb6Vixr38b35TVx7+6UM+m1UEe7L4073DuQo9JGZ2talP4y5Y2GO2+Y3EgnL5mQJiYcY9uUT3La8jkEWM9Mcct/+aXweyteEAJ9JhBNl6ECT6+/birurxYZ7LHoYfhl6aEPAQiyRxoZSPhPK+FwkKdoKGzH2J8kCkrRgRMyBXpOXbvsyu4pprt11OYVTzD36AHF5ze5YnGfTRAfnBXd254BDr7jXOHE4HCGZe+7imMgcibSsxpHUmFf+xc/wp+793EDwm6wmKKsxeH2IPD74vUqluf4PfpVLf/H3xq9f9p2M3/n3V8LT38eztl4OcD/ycjBWKzIVWanIyz+86SfZ9MxfZ/1jQ/PSH3zVX/CpY/DrHArv2HMVxbmXcs25l45fsz/2aq4BXvfXfzwmL5Q/VwrM7y/ew/cf5XccM4FZjQsuuIBf//Vf5+yzz+bNb34zn/jEJx7K7k46RJIgKFWW6vnXsvKwTOhiK4qyhMmLFUWgIi9jw3/5/6qniqu2E9jJhKItiPqeoiWQRow7FS+fK2lt9yQdSJZN2fRr1WrdqJoFIV4yCBN+tmnwuqjMgRaIrDIgghoU+EjR3xSj+36sNBRNgbShjMs0FNEgDBY1CBHGjX2OYlITL4Usf5V5+hsVo+lp1t2gULsXwRf4vAieIUDt2M+mhR7D8+bonB1jmoJ0wREPHUVTUrTCMUVdT3+9QhVgGpQxlhnxfYuIrICiGJOXkDom10Ynlz13xj1s8lCeNyaaSga/TtmJs3HAYWNF3PHjmnEom2+OPDpzCANqZFFFuKYmrglMjYeGw6kxx4PE1MTl1IYIuSlhoUhQlrMGsiIzhx6EMJVxQpcM/67KbEVh8SYo16K8J8lRTuQ9+XSCbShG0xKvQfUkT5jbyRXt21myTeZUj1uXN9BMcn7y/K9xWeMuLp+YZVcxw6ZokW8PtnKg0eKexRmMlcwmA4r1C3RGKdZIlnZOsqQ90+u7PGXubpoq557hHAC3d9fRHyaYszIuPnsndy/OoKVj37AdAgGKNkp47u3NkCjDf77wJh7d3M358V4iYZjXXS6Y2883l1OcVjgNpuHRo9DDxaUO1Zcs3z0NMzlT7REfv+8SFvpNLpzfOy4bm0wz+nlMEhnuuW8eCkE8ndFMc7q9BrYZ5lxzoMG9N53N5H1Bia88SMIHYlIFLOAJKlkZtOO0wKlAEvEelTv0QFN4gbACKcPvaWc2za7OJKM84uy5BXYsTzHfCGbpA8MmsbL085iJaHAi//xqHITnXPtEtj/n1jWvVWTlYBXmeKH/xi+x4Vd+md6mr45JyqFIzOqfH3/OveN/f/vu0H/pV37wXCBEE//FF39qTFoq9cX99ROQP/atIx5PRVzuufsPOPuc0MDyH970kyw+V7DIO3nX07/xIM7y0HjLhk/zqR/6PS77mUPTEfmKXxz/+4+BAojuup7+2/4EfuJlR/UdD5rA/Nu//Rvvf//7+djHPoaUkhe96EW8/OUvf7C7OyXgTdU3RK15OPZlXO+a0jEYl5uNmyfCOCVLHKzEVKqAlMjcki54omEo8RrNavIJSd6WSAOtPY5kqUAYj2kG46YwLnhlCMqL02EylLnFNTQqcxQToRRLFm6cphL1DKo7It84QX+jZGK7RRW+XOWDbEIijULmHqclbiIOJvvSvCjKRpN6aIgERH1JPiHY9fRJNv2HQO08ML4+WBuM9kVB4ztD0u0TjLZOUUxqXBSiM10Umq3FvRBA0NydoRcHiP4QP8ogL8KEXqHqqVORl6rZppJgqiQeCdKF77cWUQYtICTeOTBhxa1oqzKoQKDyMJmpzOFiSX+Dor3T4pKw0qYKR9StTfyPJFTqy0MpHzsUHojEwLH1ialJy2kEv1IWNn5oNr5UVUD1yhVOEcz8VXwyqoyyryKTXWgAPEbphRHGgwzBK3bW0FIZ5+gD3Ooicq+YjEd8/7rv8czWrWxWGbNqwMAlFF6XTSIH7NKTnDW1jEOwOGiglcPnEtWX2ClLYRV3DubZ2ljksa1dFF7xzf2byRdS5rcuMRmNmG4En4uUjiXdAGD/oMVyr0EcG85pL7BoWtzmN9K1KV86cD6ZDfPlaN4hTejDIvOgPlFOnXogYJiwpB37+xEYwbdHZ6EjSzaI6MYNkjTco5PtMTbxqLkhmyY7LO2eYPKWCGlCeqcehhI+L4ICJvyK4iNcUP5lUYYsEAJ0kAJVeBCgB6G0Wo1CLLVLHY24YGt0ANuWLM03uLc7w4FBi0EvYU/aRisbPEFZTFZo9i3UZWQnEwc+MQPP2bPmtdXlYkdC83WPGW+/WqU5eB9vmHzH+N8f++h7eOnqfRxGfVn9ekVaVuPln3kt8bVP5MK/+QvYAP+6/brgldn4eM4+5xd58dPfx0d+7PBE5uDXK/IC8JEPfxMehhTo+e9/Gs+5Fp619VFrXv/YH98GsCYgYeLXXkT3d4Oxf9vCzqP+jmMiMDt37uSDH/wgH/zgB7n99tt52tOexnve8x5e9KIX0WodPtrtdIEQIpCSskTM+zK2sowfBsJDslLBYBlXy/h+bGpfTXJ8ZSwHRBSvlKaJYMiXxpNPKGwkKNphtcdpxmoMlARChgQa4X1pKhTj5DMXK/KJKMRqlnClD0YPHfrAEApD0da0dgXC5LUgm5LoLCSXZZOKdMFiqjQcE/bromCol1n4Xll4mnsNcU/SOVux70lt5iJJdM++lYSwsmTOFwUcWCRdWKaRxOU1XRVyUBITn+XhWkEgKZXSlRdjUjhOdKuISlW6V6ld0o1jravfUdjGgZOIvCBeyGns1yxdGGJIWztDiZuwHrRnogwzsMmKcV8MagWmxvHBkXwxpwI2Ll9UJ5EdR3gNVpf9Wywhyh5Qg1Cq5CM1VmBcEvpoSWwoHZMC4Uo1eVhG4AuBTxS2Efwa0lrUUGMa4aG/bxOuG507/v6ZeMAFyR62F3PsNI6+S7h5sJlEGgqvWMqbaGVZHDXY1OiwrtVnX78FRuI3ZEgBjbjgtoV5BpMx3zJn0dAFC8thrn/C/E52DSfp5xFSOppJQW4UoyzCGoUdKopY880Dm9nfbjGf9LmgsZfpeMidy3PgQsiBtyFO2TQdwgl0T4EDF/lw7e5p0OyEBp5DDyYJ/Vis8gzumSRalkS9cL3F9ZPs3TvB5o5D2hAhbRpVMAIgy5+FDNH+SiCdL9PdAolUQ4uQgexUvhjbCD16VOFhdwINh5KO6wbn89h0J+c0DzCymm/fdxYuCwuNkXQo4RlkDYadFL9Ql5CdbKwmF+/uvOWYP7+auEz82ovYs+W3Drtt1eW+x1fHrw1e/6c85R+evXbDfwBWqS4Vvn33Np75oSfxhZfcwGPEL/P23/4Dbv25b/Mzu+HRBz4ZNtr4q9xz9x/wO//+Si549pO47DsW3nARXyu9M1Xyl3zFL/OW0u9yz91/wJue/r5jPvdjhYk+wbO2Ppu5K556xFK7PVt+C66Bx//fV1OQH/V3HDWBufrqq/nMZz7D/Pw8L3nJS/jZn/1ZHv3oRx/1F50WUGq8+oNSQUUpzeGiLBUTjTQ8XKtVD7pxtKKylDHJGBPK0KrSMu8ACZEuV4E8umcRHhp7LChB0QzG+ahnwkpU9fyuQA+DEdQmoV+AGpUrckqw8BiNacLcTRZREqCob4NZPS9ASkbTarzCZ1pBiQjRy5AsufHqU9FW2IbERoK8LbEpNPc5ooFBlPHORVshy7+xA49vMifWE925O5AWWPGfeBd8MgBFMTbUj/vh6LK0TqzyD7nQkFJoXZIZtcpXJMM1rL4jFit9d7QOvtbVSXCVcpPl6M6I6dsUppEy2OgpWpBPSKSJUbljNKVCdKn1qFFQYIyqTfw1jh8eiMTUOPPgpcAkApULlC19LB50Lw+KigjNLJFBLRd25XOIsglwZvBSgvL4WOMSDapS2SWqCPH3aknzrQObeWxzF+t0h416mR+cvplzov18O9tC3yX0bMrQxhiv2JIsct9gmpl0SKoK9mVtjJfE2qJ6EjnlOGt+iX4eM5nk3LpzA2Z/io988KikjtuW13Hfrllk5Ng8v8TSMEUJT6uR0e01ghEf2LlrhoV2CykdnU2hF8owjxBRiIt2TUe8LpRXme0tZC7KMAOgCEpMY78vy4wVoDAp2CSiudeRLBcM1mka+yDuWuJlg4sk2YxCZaX6YkJoix5aionQ/NM0QsCMKH2U0gY/q6v6wAjC4p0M25o0zIvJfkE2F5pnLpsGfRezKV7mXj0bPpYpdu+coTE1YrI5CqVmhUDMPDRPQY2HhsE1t/LuzlvGJKTJA3tdHkidGVxzK7zuo7zhLwIhenfnLbxh8h28u/MWPvbR9wDBA3IDcPWT38snv/4arn7ye1n4jb/jqz/0z2MSc7DaUhGWZ37oSTyTJ7HwG3/HM3/rBcDn+auffxQb81Al8N25qwF41taXE33zP/jln/8OV130LuCNQGn2fwOM+0yU/plPcdGRL9RxwtKnZ/jwc/4ROv8I16y8Xl3/Q13fOybuwuZHT/SPmsBEUcTf/M3f8LznPQ+1uqP8mYbVJV+VQbx8KPY+dDau+r8AKx4MCP+X5XtViROUfg2HF2WDskGBHoYGjVHPhO70ShJhkIsW2wgrQU5K1MCghmVdtPe4KCZeDp9xcSgvS5Y9gy2e0bREWlBZMKS3dmYhOrndwDRADwWmpehuCV4Qkyi8XFFsnIbRrCSbDpNpPuWRVhD1JKkQwVvjPe17BzT3BBVqtD6huy1lenkauT/EEY57xYzjlm2ZGbqqIagq/UPj5p6sikSuksbK30fZwVhoFUhPda2rzxobzrP6Xa0KUxBRUMlEf0gUKSbuizANRf9ROWdv28+BfDPtHaGDdXOfLbtaS4RVeFvHKD9ScLzM+0fCiSQxg/s2ANDcsucIW66gVmGOH4QLPbnUyK9KIfMrizjlNpXvZU23ei3KxooKZcIiFCL4YbxWoSlwEgzmAHbGsLm9jBSOW0ab+Yo5n6dN3MY+O4H1kp4NxKFvYmbjAQeKFlJ4njh9H22VsWia3NLZSDdLsNOGx23eg3GSwioKq0jSAjcnsMsxui/Imx4lHd4EFSXRBu8FT9q4na/v3krayDGRIo4MeaGZaI7oj8J9PHch8lhHliJ2oD3NNMd7wbIGUVXuilCRIEwoL1N5SQCHIczGRSKY8b2nsWDC4p4W2IZaSZksS8XyhgyhB2lYmHM6lDEDFM2yHNt4nArVEcIGVSZUQ4BNynnRhH0KI9i+NM3/MXcH26IFbnINnjJ1FzvWTbEnnqCV5nQHyVitUhMFTXH06Uo1Hj6895zQ2+Q1d7/zsNsc6uF6dYLZGybfAX+xQlzeMPkOPvbR9/Bf3vODmC/9AABv+eh7eGFJkj720fdwNRGzv/UCmnffwGxJVGCFtBwKs7/1ggc8l//z69Pc6m/hqovexadveuMDn/gJxqd+4htcddG7eNmnVxQn99dPgEv3AvDu1/2n8etvuPTfwj8u3ctg5HnFXx3ddxw1gTmd08WOGqs9LtauTRWTK2Vb4/Sr1SljsKLMVI0vhVxpuliVmQkRVJFytR/ANXQoSSscxWQMzhP1C5QHm6iQPuNDCUK8lI27Nnstxn6RdI8Mdbwm+GOSZRu8JYXBphoERAMXVpxsmBgGWwVRB1q7LcISeqCU76FB5aKU8ksfTK88buMgUqBCCZbwgv75k0x0+8HHIg568C+bflblYuiSvFQEx5ZxzKsahnrrAlHUGtFIsfOT5LMpNpaYRqghjzvBp6RGFtUvkN0BojcIpXsVya5+p4VBdga07hEI1wIRs72zkVTDcD4oTbYTGnCaFqT7FfF9tQfmZOIX773lpPaBebjwcJGYirAczesPRGpqEnN8IDzoLNyfqkyXyr/iYhUWrnQZ/y4EskpR9GE7Lxj3gMG58J9SpSJQNbUsO9s3C546fRcAt3Q3srM3xdBGPKF9H6koSGRB5iLmkx4AS0WTkY04J91P4RUbomWk8AzNNuItC7zqrH/lxsE53DWYp/CS/UmbW5c3ofoSL2BmY4dYWtKpjCgKPpctrSV+YOYW+jbmns4MS70mW6eX2NObYHO7w24xwVLe4N6laYxROC8gdcglTbfX4NGb97A808SqiGhZ4hz4KEghOgstBNTIoTKHaalyHgyGelzwM+KDqqKHKwmd2bQibwvyyTBvmGa4zAME+aTHxR6fOORI4qUjWpakB4IfNer54JlxIfxFlWXlsoDe3hZ3bZ7naa3beGJ6D4+KhpyX7OGbg7PZEC3zLwuP47v711NYhZSOaLWPqcYJR/N1jxmTl9U4FKE5nMdl9b87f/wufpY5COFZvPBFr8e8KJCVZ229nBe+6PWlt+VJ/NnvRXzy668Zf/aTr2fNvysPzBdecgOD1//pmvevfvJ7AfiXWc2f/d6TxtvJH/sWv7L4b7z79nt56Su28ek3HNv1OBJ+9LpLAPj1f/zdw27zXy/61XGvmkPh0ze9Ea56Fz/wvvK6Xbbik3/hZSvbbSf4ZF74ox/jx5/1OODoMpwfUgrZGQdnQZZLWs4Hb0VlGvduRZ1xfmwWH5vMYaUPzOq0rFWrbVgbOtpHmng5p5iIEIVjuCFFjRxxp0AWDtUvUL0M14gQTgZ/S+kfEUiEDX6VbEqhitDLRQ/CTRUPgjK1bBgka5vqso+MI5sMEZxx12OaIqSSFR49tOQTMUnHk3Q83S3hQV7lgdA4LYLfZkpjUkn3bMncdwoQIclrOKdorp9Gbd/LuP+jKn0rzgbyUnlXrF25RpbxNsC4bExojUhTzJY5RvMp+aRED4Nnx+mwGudU6NUSggYUYjpBjiZRgxwxyBC9UJbgnUNICVmO2m9pGYcXkwirGM2FCVJaGM2Ec87mLcmCYrDhDFYaa4yxWn053gb+E4XDkZcjbX8s6kyNY4NTAudFiOAtY/DRMqgpsoxJrpLJTIjKF7ZUo6milV0oa5aE/1e+Px/uySLYQUB4ptSAdbrD5sYymxvL9E1CS2ZEwnJXto492STT0YA92URQYbIW+4sJejbh5s4mpHBI4Um0YUKOeGy6k2XTYH/e5onT9/Hdb2wj6pRNhp0ks5pmmrFposts3GdLvEgqCi6duoedvSmaacYFE/vY1lqkU6RcfdZ2buuvZ6ecJLMReEHSzsj7Ch1ZjJPEaUHW13hJ2WYgeFtMUqZ15qHsTthwDUKpWVCBZOZDX7FGiD92GqK+Kz8bIq2LNoG0rM+Cz8ULpHZEkcVawfTEEOsECzumSfZo8glBY2+oRHAxCB8WAKO+gH2aL95zHlvSRZ7cupPdNqclcjbHi0zIERM6Y77d57LZe7i9v45up/ZUnko4mMwcitwAvHSVDb/5useMe79MvvrQiod7+0t4001vBN7Hs6+9hmcSepysNuo/kOpSEZZPfv01YwL0hZfcwM/shi+8JHz2mR96El/8MXjFzH/ipsuW+KkXHF9yXJGXI+G3b/o9fvut8OS3X3XYbX7gfbeOjftHwguBP/vcd3jSUW1dE5g18DZEkqxpVinFSjyyYtzgUsjy0jl/v7IlYEVNkPHK69XDe5ajBgX9LSGxRQ9DzxZblnRFuR0n01BVXdkwmdm2Rg2KMjdfIAfBdJ8u+GDKVxANHcnOHowyUAo1Mtgkpb9Bo4cePQoRyoNNnuauUDJFWXPcn5fogcfF0NjjSZc8g/mw0pXNROVxCvpnW4SNmLwnqDcq94zWpzSX24gsx4+yoLpUq4pVmZ3zwbUp5ErzzwpVOZ7WMD3J4JxphPVEPYMeCnS/wDY0RVuHCct6KDyqjH/2OvRIsI0mzDXRvRaqO0IsdVcCBAzIzoD2bZ5ksUl3W0I2DUULIuOJFwWNPZKo71laf1z/vGrUOO44VuJyuM8fTGQ2Loda6VqJefCQ1ocq11KpHsM4hF9R+4VxoVVMZhCFRVYmfusQWejh5WVQ2BmVc0WconKHyiReeopezH35LJEwbEsWWDAtEmlIRcHIR9zZn8ch2JwukTtN7jR9EzNwoXdMqgtyG1SRqXhIjCWVOWcli7RVxrc7m4mXZEhPG0DvninmHjfgiet28qTJexi4mK3xAc6L9jPyEedP7ec7+zexkDdxXjIb93ne5Df4drKFx7R386mdj6OfxTSTnJ0HGphCsaszuSKYz4QHMjmsYpbLKoBEEA09MvdEPVuGIIRkTjW0od+O0ggnMIkinwjzi2kI+ps9fuOIpFFw3vwBZpM+kXBMRwMWihZaOCb1kLbO+KR8HIuTLbLlGK/DfFNVJ7go9FFTI0Hm2nzYXM6/rb+AK+bvYltygIGLeVS8m+fOfpMDk22e2riLf00uZBgbPn2i/vhqHBKvufud/O1NQYX8kYtCP6ODicvBpWUH94V530s/vOYzN/7mfWve//RNb+R3/v2V/Ov26/jUT7wOnrQiNTzzQysKyuFQvbdalak+u/pzj/rjHQDc9uqzeM61T3xAJeRYcDTKy8H4+ls/fT81pipre9PT38f/erfiJ7f9xhH3c/unjxwFvRo1gVmFKvWqSh0TOgplTtaGn60NHpdx+pVYeTAvI3yrZorCFWWKWba28WW5regNiTstiglF3LGogcGmimJCI3wDNTTIoQnJY1FInlGDHNUPZVjCe5JFg8odqQwTpIsESkDznj6y2w/KAyAHOcJ6RnOC1s5QG2xTSPcJJrbboKDMhiCAirwM1weTaNz1pEsOPXTI3JUGU2jdo4O87kB6j0kloxlF2kpReVGmuNmVtLAq6ADKNLHSqG9tGYHM2IzP7BT9C2ZwkaC5c1gmoIV9iUgRdU0oXTMuTOqUDwHDAq8EthGNVRm3vk0kBGKxEyKVq2sCxFnO7GKCa0T0z2pQtAJxaew3LF4Ykc+tIqQ1Tgoe7jKyE+V9ORjHo4zsoZKXQ+3rUESmJjEPDjL3SBl8L8JTejIqBcWXqWMlbPDG+NLr4pUcJ1F6KcODuZAhSMX7UEal1LivSbQ/4vN7LmSwLubCdDdNmXFXto47s/V8q3sWdyzO004yWiont4qFvInE07MJ3SJlNh4QS8M3Ri3mkgF3F/N0XIPz4r38TefJ3PCN85m9zzNaFxTvibske7e0mYiDyt+UOVv1Agu2yYJpc3d3llacsyHp8qU95+EmBZ/sPoELkj1sipaYTEa044wDgxbtjT2euvke+ibm9qV5xDpPnmvsQGNaAqkkphWilpMlhx64cO3MCikMKkyZYCkFMi/9La3Q2Ll7nqN5/jKzzSH/x/o7mNV9duVTrI87RMKipSNzmrYO53PhzD5uMoqlgWa4pUC1DTZTRLsj0v1B+fKC4E/9bpP77mjwv9ZvIJ0dsWGqy7qzu0yrPo9KdvPPvYv41wMXso0dD/efXI0HwNc+/Hmec+0TefY14R53uIaVhyI0D0hyXnp/z8zBKV8V8TgUcalIzZrPfzKQnt+5+mvjz/zlNZew9Ws3rCI0b+HnfrWAL8Kztl7Ob7/19x5QCXkgPOfaJ9I879ChRf/9+b92VGTmt2/6PdxFoVHmp296I/KtH4KfCO/91BssP8XbAPAf/83D7uOC976eL3zlCfB7P3JUx10TmFXwxuCFDA+5SuGHI5AyqASFDWKIXSXVGb8S9StDLZUQItQpG7NChAoTlJsqOtgXiFFOsmeAi1ph5UgIhutC+VrUDxOYTxRikCMyh+6HfiZohWvGeBmaVnq5klrmpQqhAN0BZHkgVc4jl/u09k6x3ApJW3HPkSnJ7D0F6d4h+XRCPhEjcygmwopW1AvNxbyC1s5ipQEYkE2EFDI9CJO0i0JfFdMQmOkE2RuWjSRXEYAyZrlSt3w1+Ti3omZJARMtBudOowcW3S+QwwKsx7XLcx6Zsv8LYZL3IHIzri2XhV9ZtdSSYraJmWogGxFqfwc/GIWQgdKvJHoDZBwxtWsRN92mmGlQtDXxsmdiUJv4z2QcTF5Op/Kx40leDt7v4dQYqBWZY4GoSr88Y5+k0xKZqLAoI1ZHJns8qlyIkuN4ZSEJsf1lbxgfa1ysgmE9FtiEcP8dwd5Om2i9Zb+ZoPCKpszp2YRekZAZxXJ3GoBhEdGICvp5zO7RJBM6Yzbq07MJW9pLPH3qNvouQeH4YvfRfPGmC5m5OSSeCROUei+hmRTE0qBwnBPv54Bt0XUNduVT9POYi+Z286U95/GfNt5B16RYL9lezJK5iOl4SKIMy1lKQ3ieM/NtNuol7phbz8Al/O2uS7hr3yxuuYlrOExazjlDH7yYQoRraz1qZNYEIVSNmfPJsNi2fKHlcU+4l+l4SO4UPZuwVDRD75uiRVtlLBUNukXKfW4aKTwjG1FYhWpYotjQSHLyhqZvBFEvwmtwqoxudpDuFzR3R0Q9zZ6zJ/hTnoEQnok4484Dc8y3++wTEyfpL7HGavzF//yL8I9zjm77957z5gc0/MMKGfrahz8/fq1SRfa89PvB33BIolLhYGJz9UcqwrPy2ncu0GwtW6dU+5r//qex//P/AcCll3z56E7oUMd/CPLy35//a4f89+Hw6//4u/z3H724/OldUJbOAWsUIvGjbxu/ftuG0Bz3gve+nutvvIJLL/kykx/42aM+buHHDU4eueh0OkxNTfGD0z+DFvHKQ7b3a3rAjP/tXKhjdg4RaXxhwv+r0jN5aCa7JuFMa0SaUGyZw7R0WCXapok7nuaeIkRtekJXeinDQ7r3gbwoST6bUrQleuCwSSgviJcN8X1LsNQN31ceh9Ca/LwNDNfHRD077u0SL+cgBMVENG40OfZ9OHBx6FKfLIfzTxeDCjLYEJFPhqjL1p6wIihNSHNRBUzc1kXt2h/Kx4wpE9nMyvkLuTZ2ujrOVov8gg3YSKIHBr00DGVhzRibarwSIT7a+RBsUF3WXhZWL1XolePSVby8rElwsUL1c+TexRD3XH03jMv/RBRBmgDg44gicnzu27/H8vIyk5OTD/XP7LRHNU5OBh4OFeZQ6suJJjEPVoV5uAhMhaPxxuyeumkNuanHSUA1Ti5//tuJdBLUAF+WlNlQ8iqsQxRu7G0RVYmrEGW6pAyqsw3NKpHBPI8UuEhhmgqbSgbzYVEqmxH0zrU85qLtnNVc5u7eLI+a3If1goYq+Nq+bRRWYZ1AChhkEUlk6PVTLty0F+cFsbTcsRAets+ZWEDi+dy3HsvUtyP0KJyDaQqymeBNGZyXc8G5e3j11i+wTnf4dOfx7BhN01I5tyxv4NFTe7mjM8+zN9zM49IdHLBtvjXYyh29efYOJtjSXuK2xXV0+imXbb2Xq+e+TbdMS7t1uIlbljbyvXs2IqQnui8mPSCYutOQLBU4LcdleWpQlItZgcDk0zFFWzGaFhQTgu5jCs7aeoBHTe/jtqV1GCe5aHY3WlqMU2hp2Tdqs3cwQW4Vi8stTKZQByJkIXCRx6UerzwkjmhvRLRcepdcIDLpgkcPQI+C4jZYpzDtkOSZbygQmcJ3M+79tf9aj5MSJ2s+uexnvp/z/+BOLrv2yITy2i+vO2JqWeWJeYVc++B9/R/8Km/Z8GmetfVyALZ+7c/v99mDSU2lvAC87Qkhiqtx1nnACsn55IvvP2dcfLth69f+nA9vfPyDKiX76T0/z+CeB0+AVuNgtaYqLXugpLSKyLzuD7aS/7cX8blbf/2oxkmtwKyGkKHcyblQ9mVXiEvVqBIIhEKIoMi4Ff63Jl5ZqRV/TIXqgdmVZVXGovcs47bOYJqaie0mGBNlSCaTQ4NrJciRCalf3uNijWlp8slQG4wPDbmiToHe14Fuv/wOSzDtAM6hRoZ8Ig1JLsPQ80WURCBesNhmRNGMibqh1GzivlBrbVLBcJ0cdy+OO5akYxms1xQTkC4QUsZ8iAzNpiXynDaT+5bAF2VKmwv/r0hHVZIHK+V1WmM3zrB8TorOPO3tFh+HhDfTCtHHNhFIq0L9c6dAZRYxLMZlfiL8soLZVa9M+DiPzC22nYCdRi51Q3+a1QQqd3hhYTAMv+9OFyHrErIzESerbOx44eEmL0eL1eSlxiEgQrqYcH7cILGqGRPWIbMiKDOFCQtiOjS2DJuU5bfeI/IQ6UusoXBI55GRxFURyknwZ6R7FLdEZ5Gdr7loehcXt3bwjd42hjZiodtCa4sUnvl2n+nGkIloxHY5Q2EVm1vLWC+IlGXH/mnuvmMD0YJiapdAD0olfq/FxgKnFQho3hlzV2Oe7lkp+0YT3LC4Fesk6xo99vdaXDRtuXR2pUHfo+Ld7CymWYhbHBi1uHN5jkfP7uVuPcu3925iMhoh8czFPeajHjPpgPn1HZyH7q650Og5CgtSNpbEy3loAhpXDUHBNHTZ3yVcEzWCaJ9mh5hlOh2ye2ESAej5QF4cgu39GXp5QmY0o0JjlmKECaEBYS72+CT87qbnenSiBqaRoAeCeEmQLIaKBVVUsdmOmeUw1zslyKfK0vQlx/3bFdY40Zi54flcdu37D/netV9ed8jXH0iBed9LP7xGeanwL09egu3w6alL2Lzu23znghXicfVHDr1Q9jtXr3Sn56zzeNMnLxu/VpGdZ35oZZu/vCb4Vb5zgeanX/ckeMkNHEtb5EoZqVScw5WRHQsOVmuaZenOA8U8P2rPgfCPnzgAfOOov6smMKthLb4yWwqJED48aCs5JiqVuX+cQiYFQsUr+3DhM5SqDEqFCWp175yysaXPMoRzxHtjhGmSzZYzUjmFCaOwqULmBhyhHKqlyCYVKve0d+WoXo5a6oXysqLAV4SqTEtDa5ASudgD36a/XpMuB3LiVZn+VSogXoWoZWlEqDN2HpWFGuJ8UtA7SxK3wsqT14HQSAMIsJEg7jkGsaC7VdG+cxKx+0AoJfNihSgUq66jLUlWHCGiiHyugbSBNPU3JzT3huae+VS4djYO34GvasrLc9UqqDzWIYoCKQQ2ipGZGfeK8VoiBwV2MkF4j1hYXom6rsIDvAtEpvIqrU6Tq3FScTy8MEdDXCpF5EQpMSejuWWlrjwQEapTyo4DymaIQLmYsuotJcMCjSlV+/IeRRnOggMihShCt3jhfXhQX7VPNbKoQoEMnkY1AjlQWCeZi/rcm80xoUfc1l1HHBmGwxjnBXmh2TyzTO40Z08tMBWN2NJYpHCKhckWt9wxw8R9kmTBE/cdJhXkqaBohv5i6YJnOB/SuOxIcftoA02Z871d6xFA46yCwihu765jU6NDU+V8tX8+lzTvpilzLmztxnhJ38RI4TBOMtMcMrQRuwaTzM31KLzins4MQnim04ylxGMbgqIh0c2SEJhA5rwU+EjhEQjjsLFiOC8pJmA07/CppTE9YmgibC8insq4pzfLY6b2kDvNfNpjaCIGWcRgoYkoQoSyF2AmLHKyYH6mx6jQ5TNBOHdfJnDKKhpbgQh9RgOcx8dy3EvGrw5yqHHS8Omb3sizuZhn7nrXmte/sOmN/MQV+w5JYlZ7YFaTmbnnLh5W8ah8MD963fvY+wM/w/rP3X6/bQ5n5l+tsqxWZQ6Hqz/yJ7zkQ3/Iyz9z+HCAQ6F5nliTOLbUfCUA04P3He4jDwrHM2RgNWoCswreWkCOlRRfKSZVPHLV0LJcMfPWIlBr45alQFAmaZUP1UHNWVU6FelxrxRvLOLAEnF/iOpNYKYSTCs0Kiu0xCYCFzXRfUM+rYmXDI0d/RATXKkt3q+Ua1VKUdWLxTv8aIQQgvaOnMULE1iCoiFRbY0eCWQWYpmdFthYjHvURD2D1wLdtww2RvS2SPIpQbzsSfd5ooEn7lm8EJimRBhP3AkKTjHbIFlOg4/oICIwJoUVqTMGP9HCxpJkyeHiEEpQBQaozFO0wmvZpKTds8jcIozDpxonBXJUrJT4GYtaHuKT8s/begQOrEdKKGYaRFkOiznYssStaooJ4XemVxS4GqcGKgJyLETmwaot/9e2V51WnphjQeVzaW7Zc0Q151CemBpHiYq8KMCHxRhZOHRRBr0U4d7pS3U9+Dp8IC+VIV2FNMpqwcm0QiKWjeVKXL0L6Vg2CclYezttvhqdw3za43uL67FO0kxyer0UISAbRtydzaG0ZeNMlx1uii/edT7FckKyVzG5RxD1POmSDefgRSjZcqFEysY+NEVughgqvr6wjbPbC0jpKHoxdyyEcpCzmstc1N7BhByhhGOfmWTgYmZVn/m4xzOnd3BPNk8iLRc09/J9jXv5+uBcrJdM6QEz6RApfOgXU5baeQU2lWWoTKlSRQonwDYU+YRisFEyXO/xZw958rbtzCd9NidL3LC0lc3bDrDUb5DZkMQGMBsP2CGmKXIdviO1uFxC7CF1zM30OG/6APNxn0k95OOj7yObkqhmQeYkxfaU1vYQ1exGApNKdOaDIpQEw78qPN7UnsqTjR+97hI+fvmNvHHjj3H9rrXvVYTmWlYIyuH6xozN8h8+8nd+/PIb+dHrAK4Yv3ZwGdjBiszqn6ttf/XLbzn8l5zzFiD0anwoTS0fCnG5vAhE67roa/d/fSs8698vv1+4wUNFTWBWo+wI761lZXZYISzAqi7xFblZITbj1ypFI8sDGZIKpBo3ufRFsbK9dXgvoVsge32SvQlJHOF1UCbGx1UY4h0OhqOQplWWYY1RlblVykt1XJZS7clJ710iOitkA8c9F7LyI4lKVOg1Q+hG7IXANiTJooUsrAymC2FVysYQ9UMKjh7aYDjFI4uQChMNHEVbMlwXk9wt1pKXUp0aR1SvvoZSoocW4TwFOqSMFQ4ZSYpWSJ9JFkPJgG0oTCsi2l8gXLmC6cDFGjXMwrUDRGZAB8OsMA4zleKjkji2G4jlHjiz9hgrklnjlMWhSElFak738rAj4VQpH6txZAjrEdIjysASYT2yXJgRgGuU93chQjCJEmNTfyiFDU0UgbHvJZtS4R4ty47w1kMSSp2EhXhZYG6e4HuNCW5dlyOUG69lKW2R0pP1U7wTOKXZdU8LPRA0lmCqG0rFZB6i9qXx2Dh8OMTvO2wiyCcENgU9BDWQLAybnN1e4HGb9nDHwhz9bkqUGKRwLJsme90k6+MOd4/m6ZuEvomZjod0bYNZ3SeLNecme7l5dBbLpoEUnizXdLIULR3NKMdNGPxijFOMI/9tMwpl1onGaxlInSrVEQk6suwdTHDl3C20ZMZyu8HAxLSjnLm0jxaW9XGX7/XX04pyTKZBe0RfITMJ0uOtZr+awHuBmxa0dIYQIFQgVt4x7kmjRiVZFWBSsZI+R1BnXPLQy3NqPDR8/PIbgbVG8q+/dW249WrPS5XA9WDTvWAllvjqj/wJn3zxq7j6I38yLgd70ycvux95qbY5mOT83hXvAFbKzBZ+4+/G783+1gv4EMH0f6zk5YX/8S22r2oweTBWE5LLi8vuR1BWb3d5cdmYyJwI1CZ+Vpn4J386mPhXX5LKXAlj437173E5mfcr/peKPJRNG0W7hV0/jWlHYSIrSwWE94jcoTsjxHIvkBrnVxo6QiA+43+LVeTJrag7sNKHZhUhGPdYKaOJq34rdtM8vfND/rmXgrwliPueZMkwmtEM54M5cvJeQ9Q3uNIcubpxWvDOhBhQ29CoocE2g8k+m1L0tih037PhC/vgwOKKgb/yBFVlbpUCE0e4zevon9Mm6hpU4XBaBsM+If8fQGYW1c+x7QQXSXQ3Qw7yUD4nJb4RI7IilGasMr/iPT7WZUPPEMGJFOg9y/ilzsq1VQqfF+Pfq1GOzy58sDZdlni4TZdPL7LDvvfvUfKwfe/hcCIVmKMtIzsZBOZoFZh6nARU4+SpV/8WOkrH6ViyKp8t0xm9CpHEwnikDYmSTglMK5CU1fdbG0uyqeDrs2mIBxalX1K4smO8CSZ7F4UGxJWSbtOQVmZaofNj1CvLzYxHD0MplHCMPTUQSoNVFgiNL++HlSfSpqGZsGmG7XoXFDTmhjxj2x382z0XMNrfQFjBuY/ZxRNn7sMiuW8wza7+JPuX2yGdq5lx8fwuNiXLdEyDyyfu4FMHHs9ti+tItOEp6+7mX3dewMLOqUAqIkd8V0p7e4j194LQRiBzYUGrKclboV+ZacBwgyA/f8i2jQtcPn8PE2rEzd1N7BlOYJ1kOhmyodFhaCPu7gTFaPud61ADiczCNfRRUMNcw4GH5oY+l591L7sGk9yxex06suQjjdyZ0tgbmkIjyrJqt6rEugxwMGbEDX9Vm/grnCgT//V/8Ku844p/Yan5Sj538Wse9u87FO4re8Gsjkd+uPD6PzZjonYk/PSenx//++Lbj71k/lBk5nAEptr2aI+tNvEfJSrCUpgRJAqfhQaQQgi8WJVE5kFIUfpf4rUP46ZYITLCg1Aw2aLY0KZoQ7zcDz1cpMS2onHGfz6jcOumg3qxOETsLR/4pYIiC99RKjgVRKzwebaq7KksjJa+7HJP2aNGh6aReISX+KJA7N5Noubob27gYoEfCMSCgeUcZWPSvgxxyMYympY45WnsD4Z5Lxj3KyhaEVK68MA/yhF9QAsQDZLtEhsLRlOKqCfLQwxpapg8HLMU4ApQGoHAqILCjcA7Cg3x4ggTBYVI9i1eSUZtjZ2LibpFiJD2BmUzcA6fJmBGCO9w0mMmY2wsiTpFWNVUFt0bQhFqpH2kcC2FWCrKYmYTlsnUiofI2GLN38cjHQ/XdXjKgX0AmE7nYdn/g8X/te1VfOimd5/sw1iDTvfEB0vsvmUdGx+774jb1eMkYDyfuBG2VFvwoV+WcB5pSp+dCW+owmGEQBiPdwLfkxgJzgucFlBWmNENqVq5FthShQDQGeiSwHgPLhY4GRIkhQMxgsiCigNREYYQQw8U5YO2yjyUwS6s3ALLErJySis8GIkcgo9BDgVFG9JbYbBB8+ViI5PxAsP+PN4IduyKifNprBPcuWcO7wUqGlIUiuWh52uddXiC3+B7k2329tss7k4QRQN33kaykcH1MmhYROHxXbCZx+QOlXmMsTjvgxm/ELiRxFmBlWAygVk0LESC77kJjJtid6+N9QLnPdu7M9zebCGFR0pHt9tA7C/QS4GcubYfR/17FxLI3DDjtl1tcisgG1CMwO/QeDvC5AKRe/QoXKdAPMu/BwVWQE625u/jkY4TcR2+8Lu/yH97/Kfov+Qn+NytJ4e8ALzm9zN+75c0b7nqK7ztY0+iu6rK420fW0ki+80XrnhYXvUnP83G+ZvHP+/e/zgApgYf5L987fsBeOszz+ZPXvWXa77raAkCQN4NfQX3P+88fu6HQhXDv17592u2edZnfhiAS55wHf/P+l088Wcz/vxDN/GXO5/Lv28O5/HLn/pN/udzgqr11E9dPd7PL+3dxE9v/gQvf8lFjN7/ffy3qz541Md2NH8ftQID3HnnnZx//vkn+zBqnKLYvn07W7ZsOdmHcdJRj5MaD4R6nATU46TGA6EeJwH1OKnxQDiacVIrMMDs7CwA995770nrc3E80el02Lp1K9u3bz9jpOqTcU7ee7rdLps3bz4h33eqox4npz7qcXLycaaNEzjzxko9Tk4+6nFy6uNUHyc1gQFkadCfmpo6I/7oKkxOTp5R5wMn/pzOlBvr8UA9Tk4f1OPk5OFMHSdw5o2VepycPNTj5PTBqTpO6ly/GjVq1KhRo0aNGjVqnDaoCUyNGjVq1KhRo0aNGjVOG9QEBkiShLe97W0kyYmPan04cKadD5yZ53S64Uz7HZxp5wNn5jmdbjgTfwdn2jmdaedzOuJM/B2caed0qp9PnUJWo0aNGjVq1KhRo0aN0wa1AlOjRo0aNWrUqFGjRo3TBjWBqVGjRo0aNWrUqFGjxmmDmsDUqFGjRo0aNWrUqFHjtEFNYGrUqFGjRo0aNWrUqHHa4BFPYP7oj/6Ic845hzRNecpTnsJ11113sg/psPi3f/s3nv/857N582aEEPzd3/3dmve99/zGb/wGmzZtotFocOWVV3Lbbbet2WZhYYGf+qmfYnJykunpaV7+8pfT6/VO4FkEvPOd7+Syyy5jYmKC9evX84IXvIDvfve7a7YZjUb8wi/8AnNzc7TbbV74wheyZ8+eNdvce++9PPe5z6XZbLJ+/Xp+5Vd+BWPMiTyVRwxOl7FyJo0TqMfK6YZ6nNTjpMaRUY+Tepw8ZPhHMK699lofx7F///vf72+66Sb/ile8wk9PT/s9e/ac7EM7JP7pn/7Jv+Utb/Ef//jHPeD/9m//ds37v/M7v+Onpqb83/3d3/lvfvOb/od+6If8ueee64fD4Xib5zznOf77vu/7/Fe+8hX/xS9+0V9wwQX+xS9+8Qk+E++f/exn+w984AP+O9/5jv/GN77h//N//s9+27Ztvtfrjbd59atf7bdu3eo/+9nP+q9//ev+qU99qn/a0542ft8Y4y+++GJ/5ZVX+htvvNH/0z/9k5+fn/dvfvObT/j5nOk4ncbKmTROvK/HyumEepzU46TGkVGPk3qcHA88ognM5Zdf7n/hF35h/LO11m/evNm/853vPIlHdXQ4eCA55/zGjRv9//gf/2P82tLSkk+SxH/kIx/x3nt/8803e8B/7WtfG2/zyU9+0gsh/I4dO07YsR8Ke/fu9YD/whe+4L0Pxx5Fkf/rv/7r8Ta33HKLB/yXv/xl7324sUgp/e7du8fbvPe97/WTk5M+y7ITewJnOE7XsXKmjRPv67FyKqMeJ/U4qXFk1OOkHifHA4/YErI8z7n++uu58sorx69JKbnyyiv58pe/fBKP7MHhrrvuYvfu3WvOZ2pqiqc85Snj8/nyl7/M9PQ0T37yk8fbXHnllUgp+epXv3rCj3k1lpeXAZidnQXg+uuvpyiKNefzmMc8hm3btq05n8c//vFs2LBhvM2zn/1sOp0ON9100wk8+jMbZ9JYOd3HCdRj5VRFPU7qcVLjyKjHST1OjhcesQRm//79WGvX/AIANmzYwO7du0/SUT14VMf8QOeze/du1q9fv+Z9rTWzs7Mn9Zydc7zhDW/g6U9/OhdffDEQjjWOY6anp9dse/D5HOp8q/dqHB+cSWPldB4nUI+VUxn1OKnHSY0jox4n9Tg5XtAn7Jtq1DgMfuEXfoHvfOc7fOlLXzrZh1KjximNeqzUqHFk1OOkRo0j43QfJ49YBWZ+fh6l1P2SFfbs2cPGjRtP0lE9eFTH/EDns3HjRvbu3bvmfWMMCwsLJ+2cX/va1/K///f/5vOf/zxbtmwZv75x40byPGdpaWnN9gefz6HOt3qvxvHBmTRWTtdxAvVYOdVRj5N6nNQ4MupxUo+T44VHLIGJ45hLL72Uz372s+PXnHN89rOf5YorrjiJR/bgcO6557Jx48Y159PpdPjqV786Pp8rrriCpaUlrr/++vE2n/vc53DO8ZSnPOWEHq/3nte+9rX87d/+LZ/73Oc499xz17x/6aWXEkXRmvP57ne/y7333rvmfL797W+vuTn8y7/8C5OTkzzucY87MSfyCMCZNFZOt3EC9Vg5XVCPk3qc1Dgy6nFSj5PjhhMWF3AK4tprr/VJkvgPfvCD/uabb/avfOUr/fT09JpkhVMJ3W7X33jjjf7GG2/0gH/Xu97lb7zxRn/PPfd470Oc3/T0tP/7v/97/61vfcv/8A//8CHj/C655BL/1a9+1X/pS1/yj3rUo05KnN9rXvMaPzU15f/1X//V79q1a/zfYDAYb/PqV7/ab9u2zX/uc5/zX//61/0VV1zhr7jiivH7VZTfVVdd5b/xjW/4T33qU37dunV15OXDgNNprJxJ48T7eqycTqjHST1OahwZ9Tipx8nxwCOawHjv/TXXXOO3bdvm4zj2l19+uf/KV75ysg/psPj85z/vgfv999KXvtR7HyL93vrWt/oNGzb4JEn8D/7gD/rvfve7a/Zx4MAB/+IXv9i3220/OTnpX/ayl/lut3vCz+VQ5wH4D3zgA+NthsOh//mf/3k/MzPjm82m/5Ef+RG/a9euNfu5++67/dVXX+0bjYafn5/3v/zLv+yLojjBZ/PIwOkyVs6kceJ9PVZON9TjpB4nNY6MepzU4+ShQpQnVKNGjRo1atSoUaNGjRqnPM4YD8wf/dEfcc4555CmKU95ylO47rrrTvYh1ahxyqEeJzVqHBn1OKlR4+hQj5UaJwtnBIH5q7/6K974xjfytre9jRtuuIHv+77v49nPfvb9kh9q1Hgkox4nNWocGfU4qVHj6FCPlRonE2dECdlTnvIULrvsMv7wD/8QCIkWW7du5XWvex1vetObTvLR1ahxaqAeJzVqHBn1OKlR4+hQj5UaJxOnvQKT5znXX389V1555fg1KSVXXnklX/7yl0/ikdWoceqgHic1ahwZ9TipUePoUI+VGicb+mQfwEPF/v37sdayYcOGNa9v2LCBW2+99ZCfybKMLMvGPzvnWFhYYG5uDiHEw3q8NU4feO/pdrts3rwZKU9vrl+PkxoPF+pxUo+TGkfGmTRO4NjHSj1OahwNjmWcnPYE5sHgne98J7/5m795sg+jxmmC7du3r+lU+0hBPU5qHAvqcVKjxpFRj5MaNY6Moxknpz2BmZ+fRynFnj171ry+Z88eNm7ceMjPvPnNb+aNb3zj+Ofl5WW2bdvGsza+DJ00GZ0zj40lKnfYRNLfqBEOpIF0waBHFi8ECND9AhcpbEOh+wYAL6BoR3gVtmndvggLS2ANOA9SgJAgJXiPiCJIY1yriW9onJJ4LTFNhTQeNQz7dbHCS4HwHi8FXgl0t0B4j4sUwjqE84jcoTp9yHK8sSvfWRThhL0L3+9d+Flp8B6kQigJQkAjId84hWlpZOEZzUXIwtPYOwJAjizCWoT1uIbGxRoXSbwUmIZCeI8eWmwsER5sJGndsYjoD/DGIqTEOxeOrToOWLkekQ7HbB1+so1rRrhIjc8bABGOAwE+kogi7MfL8L5wHt3JEIMhfpiBtaBUuA7Vik/5fxFF+FYD4gi8p5hv0m9Zrv/n/87ExMSx/2GeYjie42Q1Pv+GH33Ix/b97/74MW3/0qv//iF/Z4W/+OQPP+R9/M5rfvo4HAm86b1/eVz2A3DL524+4jaP/YHj2zG5HicB1Th5wgvfip1t0HmMZf05B9jQ6jIZjViX9FA4MqfJXUTfRgBIPCMX4Qj3JOfD/42TGK/YsTxFr58Qfa9Je7sn6ViinkXmDmEcXglsqijamv4mxXC9x0x4/HTO5vVLNHTB/kELgOnGkGZUsDBssDxooJQj0ZYD+yaQXY3MBGogiPqQLHmividZNuG7rEdYF7pHlPderA+v+zD/COfwscK0IrKpiP5mRffJQy48ay/zSY8JnbE+7rBQtOialP1Zm4GJcF7QjAokHi1tef6KgQnXaFBETMQZ2xensXdM0L4XWrssemBRIzM+JjzjeVLmYZ7CONASMxlTtDSDdZrRvGCwyeFjF+bzrsJLj7CCdJ8g7vqwzxJR39PYX6AGJsy3Jrwp8zBHF9MpXktcLClaChsLvISiJRDdEd/6m7efEeMEjn2sHGk+edWtLzmux/cnj/nQMW3//M89gf9709VHte0f/cgUn7v113nr37+ct//wnz+Yw3vA49i8+YnHbX/Heh0Oh+d/7gncdsEefuzG5x33cz4UjmacnPYEJo5jLr30Uj772c/yghe8AAjS5Gc/+1le+9rXHvIzSZKQJMn9Xtc6RbUmUXGKVALfEshEoFJFuuAQDiKhiLIMFytconBzDeLlHGcVvhmjuzm2EWFbgcBEPQvrZ9HdDIQJD9EQHqQh3GwtMHSorI9oNvDNFNfUEKUI5dFFgWlqlAMXCbwWqMwhPMhEo4YFom+RvfIhPS8CcUGGmzYCdAR4vHUIocKDu5Qlmaoe5iUijkEr7Lop/ExKOjCBMBSaqGcQjWaYFCKHHBXgQGqJjRQiUXgBdkKjB45IGpSXYZJrauSMR40c3hUlcRHl+RvQJYkSgFcIK0FoEB5GLhCjJME2NcKFiUk4j0hK8iMExB6V2RVe1h0hlkfgwXtVkrZydpPl9Xfl7GQFdHOEMqAU0aBL1JDlrk9/eft4jpMKX/u1Hz8ux/a1X/txLvvdvzrq7SvS8Yof+syD+r4//Ycrj7zRUeLdb/jZ47qvN7z7/cdlXxPtE/+QVI+TtbCzDYqzUibOX+K89QNm44xYWh7V6DCtBgAsmDYDFyNFuGkVThNJQyQszkuWbQPrw31obtpxX2+anftnEIsQdS2RMIjYI6QPt9NYI71ALkkiIRl5wShN6QqYnVzk8fNLjKxGCo8UMDU1ZGAsC8MmC70JpGyilEIpiL0gyTzp0BENXbiXaxDKB8JS3cKtRxYGHCDBN8Pc6JXETSjyDYreRZ6nX3wnG5IObZ1xbrKPJdtEGMe0HzFvLYUP9+RJPSISlkhYBi6m8IrMaYY2Ineawil6CvYtJIgDEtGyKGdRziA8YR4pCQzOo4ocnIPCgROoXKOiCEYRzimy2OGaDoTHxxJRBPImGwI18mNSFA08ydCipURqjRAOaQ1eSkQa44VAJ3GYEweWxEqKpsZrASOwWSA5Z8I4gWMfK0eaT5KJ+OE61KPCP/7At/iF+15wVNv+6mdG6Ge/i7f/8BuPvPEx4txHX35c9/f6HT/He876s4e8n7d9/vf5Z/e30IKrLnoXn77p+J/7ahzNODntCQzAG9/4Rl760pfy5Cc/mcsvv5x3v/vd9Pt9Xvaylx3bjrzHJ9F4hV9l4Y6cLjpsLIiGDpk7fKSQxoEQ2Fgz3JAGpWTkMO0YWThkXj5MS7ANTRRFeFMqNIWh+tV464LqUakkwxHCWNRSl8ZSim8m+FjjlUBahyzA26BuyFGB7GWIwQg/ysJC0fjpXUH5fXgHWRYIiiJ8l1KB7FjCgz0g0ghfFNBMyebSMBkAXgji5QJZWJyWCMBFElFIhATTjrCJQvcKvJYrN30HepjjEo0aOWyqUUpCQamuUJKWss6xIhO6vDrV8VuLsA5tHTJPcGmETRUys0F5MT5MUADOITOL7JYKVKU6AX6UISK99ruq62WBWOGtC9+rFAxW6nXPBBy3cfIw4FhJDKwlIkdDZo4ncTnVseXyrdx33fYHfL/GoXG8xolNwLQ8myd6TEVDrBdEwpK5iJGIUMJhy5kgEpYJOSLShmXbIpEFmYvG+0plwaZ0mU6Rcs+cweyI8IpwryssWI9PFKJv8FogjEIakEaiMkk3bfO9UUSjkZPlmlYjY5jFCOERAvp7W0RLiom9gmTRo3KPyh16GOYaCIo21oeFI+PwWiIQpRIR5kOPCMRFSWwiKZqS0bxArx/Q0uF+2lZBxR/YBOslPZtgnKLwkrbKyJwmUoHQKBGUqqbMAXBegoRGVOB1eQ8XlJUJgPfIwoV5BcB6MBZRGCgMSIPUCu09sRY0I0HRlhSTAq8CIdMDgR5A1PVEg/JajDxqZMvvYKXawTgEK4toqheOU2QWORSIPA5zHWDy/Jj+fk4HnMpzyoN5cP/GPbt54tmHVlorvG/nP/Lxy298KId2WLx+x889LPs9Hnjy26+Ct8NFS5v4yT94AZ8+BabTM4LA/PiP/zj79u3jN37jN9i9ezdPfOIT+dSnPnU/c9kRIUJ5kiwC+ZCZgckErwV66JBFuGHlkxGmJZGFJ92XUUzGKxJ+IvFSh8nFilDO5DxoNX5oFkrh82JFBVkFn+XjB2jR7SMG4Wbf3KfXHCejLHzWufCQ7n0gJJWSkRdgLd77wGQjDS4oMADC2pUysrKkzBcFIk2xU028gmg5PPzblgzKjwzHEC/nqKEJEr2W2FhiU4EaSWThUCOLi2UgOU7hVVCMTEsTJXE4dlcRF7c2C0/r8XlUx4oUkOcI71FZjmymyEaEVzJMIplFuDCJit4gKFDVZFGdJxxEXspystVkLgeUBOtCGdsZhuM2Tk5BPJLISY2HF8drnKgCbOqYS/sk0tA1Kc4L2mrEtBrQdSkKT1PmNGVGKgsKr2jKDItECkdbjRjYhLYaYb1kOh6gWwVeRZiGxCUKWVhkbvDW4mON8wrf0iBA5Z5kAdzdmnxaUfRbSAfddntcGqUywcweT7ro0SOLzD3SloqODyRJWI/qZ6FkuBmX5dHl/KYkPlLj+dML8BK8FphUMNxkOX/9AgBaOgqnWTBtmirDUZE6jUWSygLrJUo4ujZF4WiqfKxCDW1EQxVMxBnRuiHm7jbCgsxDObLwHlFYRFFWOlTzorUlqVkpHZbGo4eO1i5B0RUU7UBgVAZx15Mse5KFYkxaZOGQhR2TtapywQsR5p/ClPOqCNfDe9Swmps9mDNrQQzOvDnlTU9/Hz963SVjgnLVRe+i/YEPAzxspOV0w03Tu3gL7z3ZhwGcIQQG4LWvfe1hJf6jRun/kNYhCottRAjviboGNTLkUzEuVgjnae7KxoRE5m78QG9aES6SRIsFXgpsQ+EisbIipBQ4g4ijlQd05/E+vBbIhF5DPvwoC8dWlp0JIcJ73oPW4ZbsfenLkeBt2I8UCBdSHUSxSr6uHtilW0NihI5BSUw7QmYO3cvxkSJXMaYpiTthUqg8Ji5WuFihBxbbCCtuLpaogRnXASPCpOAiiU0D4RJaB+LlXFA+yusitA4qlXV4wv9RElzJcKwFYxCjDKV1IFylj6g6J29MqeqIQOIAYokfBiIo0gRfZIi0lLKr75di5dorQgneam/OGYLjMk5qAMe3fGz1Po9XGVmtsjx4HI9xIqzHNxzzSR8pPBN6REMVqHLFflb1iISlJTMiYejaBiMfMa0GjHzEyEW0dMZIjii8pvAK52WoaLIgTVhQG88tgCgs0npUQ4eqgEyAg3Qp3EOdhmTZMpoJU78qwmfV0CGLUCZdcgWkL1WXat9ZeW81wROK8wi5QgicDvd7hBjvxzQFcjanoQucl6E0DoEUjkjYMUHLykeRSFgSEeaqzGmMUzRUTiLDa1Hpi3Fe0GpkuKyNHpZqiC8VkWG+ck2quc+UN3pbXi/jUIOCxDiinsLGkqItcVqgM48eOFRmUUMTzksJhHHIYZhTfKzHqr/wvixb82H/lHO0KBmgEAhnV6oEzjAcj7Hyjs+8hj0UR97wBGA1Ufn0TW+E41vRdVicyurLqYozhsAcF5SKgpcCUTiktJB5ZB5M+1G3wCuJ1wqZGWwrIp+MSgJDqLcdWbwgqDcQyq4ShU8TGIzCQ3Gkw01NlTfZwqyUkSm1Ul5VKjQiKWtDtQ5KjrEIJcM+S8N/VX8srA8qRJYHNUeGSWlMWqr9Sx0kdUUgMRVBUgqTKqT1uFSHa2EDOTJNSbI/R2XBwF/MpthYEnUL4iWDiyX5pCKSAj005BOhtExY8BpMKvDNBNEfjicYEZVla8aEG751JZlY5ZwsVaw1pv9yovDOIrQKxKW6fhWJUaokZz6oL0KGcrQ0WSkhg3BdotUK1+kfcVnj4cXDQV5W7/t4kZgaJxGrbjHGKebiHhLPHaP1zER9ZlWfkQ9KbyQUIx9hkfRdzLJtla8bpPDsL9rc3l/HbQvzsCsl7npU5pHGBQV6MIJI4+MIYS3R0gikDA/fUmAzFe7bRSjH9bIZHtbL8rCgoqvSzxLurdKseuCWAjfZQJRmdRyIgx7gpQkP+rYRFHuTSkZzMDvdYy7pj0nI+qhDS2aMyhK5rCRnbZWRyAKFJxKWZdsgkYbMaRIMiTRMRUOcF2jhyApNXPKSNcpLqYJU86wXAqHsiv/UuhBA48PcTo/gV+1GuFiFBczchX3ayl8kxhUH46qJ6vJ4H+bwwpTqix4vonkpgypj7HjOqnF/fHbjE7iY60/2YdQ4zVATmNWwDtXNcFqWqVZl7W9hIVLIMg3MtJqYdpDRvSxXwqoHb+eJOnlYCSosrhljI4lONKJ68PZuRTGwpSIBQU1RMryWJGFCaiTjEjQXa3xpjsR78qkYPaqkcnBxKOHyG9uokUXv7UCnB8O1xGl8DJXqUAUKOBduvgSVpZiMww3cQWN/gcwdclCESWoiRRoXJlDrEc6iBgXChutStMJ+ZJnS4sqbvmvGyHF9sl0hHpXaMTb3ryJVlRdG6pXtxsQkWquWVIpK5Smq1BshV34WpZHf2vHvLOxfrfwtSIGQZ14Z2fHC8TLw16hxpkIaoBB0ipQNSYdIWEYu4r7RdFBTolAmNiGHjFxjbGIf+ISBC4tWkVB0bcpNnU18Z9cmsuWUdFkG1cEGk7pwLijbxoZ7JiCGrlwkC+VMMg8P9y7V5NMNirbERgKvg5ozmlYUbZA5JB2HtMGqWCkwwoZ/y6wiN+HhXxg3VmaEtWXtWAhZsYnANjzzzT5npUsATOkB06rPpBxxgDYLRSBqbZUxH3VpyYzcazIXsSVeJJEFy7ZB5iJSClKpGNiYWBmSyGBj8AqE8UEdMTZcBynxspzjVKlaOTdWSkRhw+d88E8KGYjJ2NdSkQ0hAhGtKhxUSNUUWQiwGftrbJn2Wfpnx0RHgkchdAgQqHFofO7i13DxcVYgNtxSz98VjpeR/1RDTWBWQ4e61SrpSo6KINETVmiqlRdhgt9CjRxRp/RaOIdTOtQjD/KVMibnylIqEUqkbB6UFCEDYTFlAhdleVcSQ6SxE02y9Q1cHEzqNpUI77GRIO5YdGkodEqg+6Fkq4rTJJKYhsKdNU0cR7B/cYUEQJk8tupXr9T4Bo6Sa0oJZFbGdFqH6gXfjU0i8ukIYXxIQxOr9ktZYuZBDyxeC7IphUllIDOVSiJEOF8p8VkWiIdapXxUkrw7RGKYkKXqYlfK8Co/iytX3+LSS1NFLqtVqs5qEilFCA3wKyRKRFH4nahVhKbGGlz2u391WpCYG751dHXnT3rC4dNxatR4MHCaEATpZUj9wtOzCSMbMbQxVgcC05I5fRfUFiU8XZsiRfCKDFzM9YvbuHXnBmw3QhiJ1x6vCGbywoXV/apEypULUInCKxXijJUkn0mwqcQrgUkEozlJ0QY1lEgDpgXZrEcYGPYVpuXxmpDGVa0fFRAve/QIooFD99V4AU04P57zhAsBAMEzKljOUoY2YmOyzIQMpbxLtsmCadOzKdZL2nqA8xLrJc6LcTLblOgTa0PuNYumRSQsEk9L50ymGfsagVzhgjoivMeXUfihZGtlTqleF6Zsg6BKoiHK0uzcoDK/oqyooKBI4aCo5p4wp4+3gZV5RQq8VmHhMSoXGmUZatDQuNEqSa7GGvzodZcc1/3dt+N6NvDU47rPd3zmNfd77QvveysAz3zl2wF4y5WnhjfkkYKawKxGVkAryMamHeEjiV4aBV/MKMQJ+0iV6WTgIoUyRRnpuyKlV7KxL0mBysLKj/d+bBJHyxWp2/nwQD7Rwk02MBPx2GeiB2GC0CMb4ovjEB4gCocSZU5+K6SURZ0CREhA0YXDtCMG50zSiBRi1/7wgD9WMwjEwAVfCVEUCIxYKStwsQyrbB5sGtQbF6sQC+nL8t6q5KA00WsIZXYiTGqmHeEigdPQ2G9Ry8Nx+ADej5PZkBXBK1PA9Cq1BcJxQrki5vAVH6t62pT7oCqXcyv1yKyq0x7XdVSKTIWKJK16zet6eJyKOFpS8mD2WROZY8c/LF7BD818+WQfxikH0xAIIzBOMqMHTKgRB4oWsbRI4XAIptRwnERWeE3XRTgvQxmVyljOG3SyFDvS4AVeeZwOi0tVSuRKJH75wBwpzFRY/HJaUEwoOmcrRvO+NKMLTNvh5orw7O0EMra0JgK5yHPN5pkOwyLCOklmFMNBggd6Q028O6K5Q9E4EI5b5qGywAsxTueSuUOPPFFfsjxoMHQxqrz3Lpg2hdcsmKC+zOo+SRlgMHAr4y9zEQ5JKgokjikl6LqUWd1nkMQsJk0O2NUqUVm2lYaV92rxkUqZkpU6VCozFbdxpZpVrFrkEwKPRgiPN6tK5artV/teSl9pCDSowgzK34UUuCj8Hlyt6B8WH7/8Rl6/49Ljsq/7doRStD2PPXZPTUVSrp/8Ch+//EauetHO8XtfeN/hP1cRmate9Nbxa5/+6OZj+u77dlzPlrOOzzU4GGei+gI1gVkLKRBZgcwstqnHJAKCAiOsB+lxcUje0kOLi8vVm8KNiYxPFGIUpH3v3PizY5N6XN7IbLnarxS+mWLm2hSTIQSgqkO2scTF1QM4JItFWHUTIpSL6XCzVJkLSTTljbOYjMknNcJ7+me3afeGsNxDJHEgCVXp1Ormlc4F47tPx00zXUOj+gVqWJDPN0Oi2MCENBoloBEaaMqhW1FMFEHFMh6bSMoWB0TdInxHRVqEGHtV1mR+x1HYRqoxscGp4JVZFWQA4L1YGwft/EpJWkWCqklGyEAcK5XGH7Qi5l0oMZMEFWyynnBONTwc5OXg/Z9sEnM6+V8+a59Bv2OOvOEjEQLkSLCrP8nU3IBpNWA5aqClQ+GYUkNSkZOKAiU9SzYoLtWDfiQsU2rI5vYyu9IpTB7KyrwCk5R9sGx4OPdpjE9ifCP4OExL09us6W0TjDYamuuWSaRnOIzxQJIUzLUHNKNQQaClox1lTOgM5wXT0YBhWcY2tBGLWROA3CnunJijL9sIJxBeES+HkumxAi8COQhNmKHbSdk5mGJD3Bk36pR4UlnQlPnY51NFTFeldBJP7jUSV5K7NLyPZlb32TdshcjnoQ1pX1keFCD02H8SFurkCuEoy8CqxcU1c4BWY88MSqx4S1nx++BXBSeUxMlXvdQiPf5OUZTNPLUsAw4UNqm9lScCD5YEXPWinWtIylUvemjHUalKR5tedjxJ3CMFNYFZDRdWYXRnhI+aeCGwrTgY8oXCR2AmgxQvC4/TAggP+rJwuESFpJLcrtwsCZYOr2W4CValU0LgXUgR8+0GZqYZOhoDKneoQTAEhmSvlVImG0nigQk1uIBtJ6jye1yisQ2Ni2S5QucRFpwW2PkJ1HIvkBfvwPiVyGLKm3nZb0UNCmyq8QJMqrBJSFIrWop42WCbGpU7qmZhsgh+H2Q4BheFcjbTUBQtiY0FjQWL7maIUVlyV32flIHkrZoQwvurysbKRLZxJKb3+Or9VYRQCAFxI+y7KMJnUCsRmt6u7L9KOINyEluVyKZi3EQD26xrlk8lPNzk5Vjwhne//2Ex8p9O5KXGA0NYUCPBQrdF5iJaUca87iLxNFVGU2bEwpKKcC+fUEMscvwQHwlLVBrXm82Mbq7wTpSlUuUClCPcy6Lgj8xmE0xT0d8o6ZzvmX3sfi6aXGQmHrJcpAxMjBSets7Q0jIbD+gWKZnTtHTG2ekCE2qEReC8pGvT0FAyjYmEpWNSpuMhXxmeS76UEg2C4i5MERaHhAj0y3qE8UQ9j1iIWNjUHBOTKolsc7Q8jkyuoKRjTzFFz4ZFhEiGoJnCqzGxcwhu7p7FnpvWs3GhjDau/KrGhq2khEbwY7pEg2ccA135U8bGfBXmdiCUfglBlbZcLSR6t0rRqSKUJaW6o4J3tIyWxoQGl6HKQEEaYdqKXNSPW6cqVistxwu93/8E3HQtUMcvP1yoR9Qq+CwDGSOX+2ilcM2wmmVTHUgJ4YFeFh7dC31cVC/Dtspc/Cq5UUvwCh9riskYaXy4Ma4umxIyGPaTCDvVIJ+J0QMbysNK8iMzg4vjsJKXe+LFHDUI0cY+1riDsvcRIQ4SCWrkiBcNSEE+FZFPxTTjCD8aBXLgy9IxIUJoQBWv7ByiPyISgtHGoLgIF8ha1LWovCwVWNXUzDY1IpLgob85wcvQf8BL0CNHY58l2d0L6WiVzF6lhEkZerwIAVoGQ36lvpTqiZdlJHJV0pVnEDE26os0wbebFJMpPi5T5JxH9QtkdzROPfN5Ue5brE06q9QZCP8vU8yKVq3APBBOFx/Mw4XjTWJq8nJmQViIeoL+Ysp3BxvYHC2GhpVqVPpdXOj9Qniwd2V+cVAkwsNy4TQNVfCouX3cxjq6yw10T6JHLoTHODcOeHGxZjSrWXicQD22y8b2gMfO7GFd3EUKz3Q0ICv3N6WGRNIwKJtIzsZ95qMeTZkzpfoUXjPy0TjuWFnHyEUk0jCf9Jib61EMU1RWKhLGjVO65MiNFYykI0kWFDv2TnNne55HtfeSec2M7mO9JCojkwuvy/8rImmIvGZg4/E1WTQtCq+4qbOJXf1J9t24gfXf9KQHinE4gaiqCMo+LC7VYREyDZUI0kSQBV+rl6tu+d7jXZh/XKJwKqSorZg7A3mpggvGC3bOIYoqFMAE9d6Ui2U6/E59VKphGxW2qBfEjoQNxRMe0uf3RN866n284zOvGZd+PWy46CfgYe5Y/0A4U0vHKtQEZjUqH0iWo5b7CN/ETad4GXqeIECWng8vBWoYbp6qk4WceFuZxH1QIho6RFG6UoGRMigHfmUlx7cbZDNhtclXN0xPqCUuHPH+ARDke9XPxjdVm5a/upI4CUKvFVX1pKlKqSwk+y1mIg5KxahMJKse2qUo08AIsc5CIAA5yFBZCgJ0v8A2wmTgyonJ+dDwM5wHmMkIfIhKltaHJmF9S7yUIZcHayYD4ijUG0dlTHOlhFSJbEWxyhujViWK2fCzUqH0LVb42Sn650yOrxsE8maaiqKtkdMJ0kwSLQ6RS73QUycv1vpifHkBKz9NucJmmrXkfyScKBJzItWXk1FGVpOXMw/SeGQHogOaf7/vPDYny2yJF8aNKlNREAmD9ZKuazByEb1S8QDouYjMhy70c0mfwVTMd3spegiyKL2HNhAY244ZzccsXyBpPmGBq7fdTFPlNGUekrxMk6GNiIQllQWRNGQuYuBipqPBuIHkgmmxUJrlgZJgwcDFDGxMxwRDfqINxoLOggIChAUtb8dKhfaeJJa0t0tMM+Wu+VnWp12aMg8+n5KkxcKO+9yMfDTuBZNow5QakIqcSFi+11/P9Tedx+Qtmo33GOJlExYWHbhU4yaS0Ew6LRMvI4EwQQQJPXN86Bpg81DeRYh9rlLIrJaYVDFYH+Gi8LmxWV+GhDZpfPD29CxRz6AcoYyvqh5YHT6jVSAwDclwgxjnLNQ4NN5z1p9x1tcfwGhyVFhp2vLzSw+sfDzs5OVB4D1n/dlx6wdzOpKXd3zmNccUhHDMBGb37t189atfZffu3QBs3LiRpzzlKWzcuPFYd3XqoYr1BUSWIzsQZwVmujle2QeQVXRxudIjcoNHhVKxSAVluR3jYonum7Im1uKdCw0sjQlkZqJFMZPitQhGSIJkPe4hk5tyBUlStBS6H5c9WYJxMUQ9h0AAr8I+ZFbm+lerTsPgi5F5GZE8Ls2ygIO8LKXyLvhJiiIQCmuJ9/dDwy7r8a1AUKroaGEBAfmUJuqFpDJZeJrWo4chUln1c8iLEGsJ5fdLfBphWwk+ltgoHLvwEC9myEGO6A0Cn6gUkipqGUAEb4tIE4otc2XZng+JZ0qUsZghgMCUgQcuFmQbWuhmTLRrMRyDsVDka5PGSlWs6pw8JqQ1HhCPZCXmoaowx0JcVn9PTXhOfeghSO9p7BH09SR/zSU8fcudYyITCUuEZeRjImFY8qHMatk2aMo8pHCpIcs02Jh0cF6ye3KC7nSKjQUulvhE42NNPhWxfK7CP6HL5Zvu4axkEQjlWoVX4/9k6fyfkCN2Z1NYJE2d01bBwL9swjFUAQNVr5YqHSx3mr3DCXKrsEkoT/ZSILRcMcOX93uRhfkvXZY09ml2b5/ls6OE+Xafx8/spEgUTZnTlBmFVyyYdvAAiaD29E3CgaJFxzT49oFN7L1rjrkbJe1dBbKoepNp3FRM7yxN0RJ4BUUbvA5x/PEyRD1PNAhVBHFHoE3oAxNKx0IsstOSbD5hOKcYrhfYGGziQ1CNWSkpi7qCZMmPf8YnyMyECOeKvECZPhaae4YqBpB5rcAcCTue/MrjQGIC/t/pwyebPRwlY8cLD9XMv+GW6ISnof3odZcctdfngXCsx33UBKbf7/OqV72Ka6+9FiEEs7OzACwsLOC958UvfjF/8id/QrPZPLYjPpUwNoGXJu/BEJHlaOfxjTis8uiVxCubakSikaOwam/aMTaR6FHoSFytROUTEY2BCd15q9V/rfGNYLRHlKt1hUONTCgHI6g2XocO9+mB0vPS1CHaeGjwRmKbUenFKRPBSjkfquABRzGd4JQgvs/gq/jgzEAjXelMXF2CssmjGAa1RxiHjzUyD3HQKndkMxHp3rAi3rwveFpkFqKcY+tDs7Oqudeq5l1uqkm2rolpSJwOk580nmjgyNqKoq3Q/YSok6L3dVZKv6QK9cZVzHGrwfCCdQDEiyN0P6SeIQVFOwqx1YRVyor4uESSzSX4eI743gXEKMO7UIIX0srC79z7EBognEPWBOao8XCSmFPJ+3IoHInErCYb1XZHS0AezoaZNR5e6KFDSE/cAeEEw3ySz44ezYWb9lLMKC5Md6GEIxKGCNiol9kNY69IUwaD/5QajBte3pauY3HShpj8SIYV/nbMYL2id57l+7fexaObe6Dcz7JpcqBoMXQxmdUkyjCj+wxcQs8mRMLRMcEDI4VnaCO0DPfZgYtXmk06zdDF9E0w9meFDj1kXJkCVpncy540lEmcclSge4rWLgk+IpuZ5u6zmjR0QSQsbZ0xowUDm3DHYB339mfoZgm9UUJRKPJejN4f0dwlmO16mgcsouotFkuGc4reFom5tIvWDmsljSRHSU8rztnbaTO4p01yQNLYJ3CRIIVxEI6LA8HIpjW9TRLbABcxTtnM5i2iZfBOIATkiyFkBy8xqSCf0sTLhmRBIldVSFTJcJWvNeqBPLVvY6cMdjz5lbzjM695QAJytPjPfJR/Yq0b/1QmL1CZ/m/kHZ95zTElqR2N4jL78u9wzf6r+H/2TvFL65fXvPdTf//QrsvBMdMngkQdNYH5xV/8Ra677jo+8YlPcOWVV6LKlWtrLZ/97Gd53etexy/+4i/yp3/6pw/bwZ4QlHG9ocGkWikxcg45yHFTDVwaUsiqJDCbKPJpTXeLIp+A2VslyZJBWo9tKPTQInujcQRwCKAP9cI2FkQ9hxpZXNk806ca04pQKhChxu4RwrjQPFOLoIikofzKxaH5lhraFTOjc6iuLT08GpzHtoO/Zaw4lI00x0ldVRKYsSsTUB4ag3kpS1Uo9LlpdbIxsanIEtajuv2wGmdWpXyVXhczP8FofYPRjCLpWqJ+iNoUrpT6y0hmgOHGlFQJon0K0emtRCznBUIr8q1zuEQSL+SIzOLToIQVk2FyrfZLqVTZOBg29cBSNDXu3HmS+5YQHb+i8hyMwqyUyNU4KtRKzJHJxvEiLsdKhACe8L7vHfL1b73ywqPeR42jh7SE2GITVACvBEPZ4JZsE6kqmNXBazKtBqQyR4mcdbpDKgoGLmFCDkMJl9fgYOQiMqsQViBsSL/yUShtdhH4hmUiCgb8zAX/SuEVmYvomZjpaMhc1GdW9dhVzDAdDRnaEBhgnQw9VoRH4XDlKlrPJuROI/FoYdHCoaUj1pY8D95Myo71uLKkbdyp3iNHJqgwgMo0g6HEJRG3NdezOGqQKEukLLs7E/Q7KXJvgspA9wWNHswsOKJB8J84Hc7bRZKiLemcI+mfbWis63H5WfeSO02vSNDCMRkPaeucdjxDb7LH9j0zeNFAGInuK5QQSOtwkWSwTjNcF5p6VmXI+ZTHThnSmRHtRsao0AyHMXYa+olicJYg6krSvYJGFEJttHNIWxI4YxFCIEcW3ZdEXRmuVY2jwluufO9xITEHk5fTCW+58r2HLCd7sArL//rhzbD/KoD7kZfx+xw9kVlDWDpr37vmJ3+fjet/H4Dde1vHfKxHi6MmMB/72Mf4xCc+wdOe9rQ1ryuluOqqq3j/+9/P8573vNOfwFRmdhg/gIssH9ezAhRtPV4FCiVVlQICegRFUxL1QgMwYXzwpHT6wcQ/dg6GFZqo54h6ZclY4cYpKKahMA2F8KE8SnrQgwLTjMbfW0wo8JDuL8JKkhXjfiwIEaKdtURaT7JYxkxWiVxjE7sbG9d9mZDmjQ19LrNAcORyD9mT+DjCN5NwTXITvqcw+Dgq64BL4nAQKXDtlNH6BqYpiYYOYQgR1EqUk2/oLK0yBy40xywmIqBNZG1ILrM2mPUnmuRTobdMPh0Tl9/hq+hpDzK3qJGhmEywcSgR0AOLHhSoTDKaj1HzbbRziKzA52UyWl6AkIEoOUfzXkeNRx4erP+lIhMPhlysxrGoLu9+w88e1fccjrysfu9br7xwzb+PBj+ovsg/LF5xVNs+0iCcD+s3uUc4iLqhB8tolPDt5CzmkgGPbe1iQg2JsOOeJ7G2rKNDLCxNmbFg24xcxFLRCCVgVUf30mvhxiEu4LxgdzbF+rhLUhrwWzpjLu6RCMOEGrFsW4xc6YeJSmXfy3Hy11LRJJKWgYvpmwTjJQ1VIIGGKuiZBCE8ehiIi7C+vHeKsXk9lOGGB3nVD9KD8CCNQg8Vw31NlptNbBzKsdRI0BqF+VMNPTpz6KEnXSjCdSyTwWyiyKYUC4+VqIuXefqmHZzTPMCUHjCwyVhJmo+69GxKLE3w7CjD9/qbUblGjxRxVyCspJhQ9LYITCvMWbIQZHMW37bMzHfZPNnBecHdB2aJY8Om9QuMjGaYRyzunELmGpdIomGEl4IIQjkZjEua9ciSdDQmr+eTY8FbrnzvcSsnO11xPHws/+W7m7nkV49++8OVg60mLP9+5ffz71euff+G9c89pv0dDxw1gXHOEcfxYd+P4xjnzpABWpnGoZTGVfByWAcTSRnFKNB9G5K2MovKBCpz2CT0ZHFx6JgsLCS7BmVcMUFNKDveh+aQ4LXAxIqoW1BMhGusRnbcqMwLQTEZhWaWWlA0IvK2CmVnxmNaGpXZ0ECySibTEtsMJW3FpKZ9+yrGLVY1jawCBeSqiedgg7u14EKWvljV7MuXk5UYZeHaVMqLVmMS45OYbGOboiWJBiXBKMpmZx5sGkgaNigwXlUTlcTFMTJvoxZ6gWikcYibLg81n1QIt0LoqnjryJUpbrnF63BtnA7qlrAeNXKM1ifE8QzxzuVQzmwMVD1yvAslA53e8fqLesTgkazCVDgRxOXgzz3Qdz4QeTncdk943/eOmsTUTSwPjdAfJMToSwN6FAzgeEmv2eArjbOZPafP2fH+cRIZgMQxKUc0ZUZLGAYuoetS+iaUVqX7JUm3TKy0DuEZNxfumhSAjcnyuBRtSg2Z1Sv3sq5LGbgY5wWb4mWkcCg8SrQZ2JiWzjBOYZwiksGno4Ut/TTBM7Pv3hm27rZEAzNW7MM5l+0CVkfiO8p4foMaGqKuonEgRPObsjeKKucEUTamlFm1GBY+jw490QbrNPsv8ax/7B7OnlzkyVN3EwnL/mKCQdm3JilN/201ovCK3Gk2t5ZZ2NJksTdLsiRQuUBaGM4J8imPmbYQOygE6eyIRpKzZWqZts7YN2ozGsRMTQ2Yioe0IsUwiuhMNBnJQCid1kzcK2hEEt0rUCMz7hkjpCA9UJBzhjwfnUA8FE/Mjie/8jgfzemFSlHhGMgLwAvfsYdLj2CmPxxZed3/91+45id/f81r//G8L7Fxffj38VZjjprAPO95z+OVr3wlf/7nf84ll6yV9W688UZe85rX8PznP/+4HtwJh7OgdFlGpvCUMb0m9EfxjSTcZMt4d9sob9o63LTiBTt++M9mYvCQHBghesNQqlR1mK8gCYkpPty0TVMHxaQoIxszOza6FxOKbDp8Vlo/7sSsh2GyMA1NPqmIlxXJgWDIFMbhJjTJQoFcLCewilgUZW2lECueH6XCA7wJxv+q8aYY94shFD2XqWFi9YpSXu6vUq/KbsRussFwTpMuBrJXtBVOSxp7PVGvQOaWYjJGD804cGC0IUQx21iSrUtpjIrQ90YIirYep4xVCEZLT6HAKYEsFGpkgh8oCyk1NpGIiQRTlfQVHtNSyLk20c7SzF8FOFS/I1tPOI80nKwmlqei1+VY1Zgaa+EUKEu4VztC5LALfb4Qkk4yyXdnN3BhuptpwCIYuYjCa5ZEk1QWKDzbi1kWTYt7uzP0b59i5j5P1LVE3RzZy5DtGFeWPw1txHzcZ0oNcV5gZVB1Rj5C4cbNMTMXMXIRFsHApiRlU0kIasyQ4IXpmpTCKbSyaOlIpOXO5Xlad2vi5VHoV0YZ0AKlVzEsYo1TNWUgMDK3K5HHJgIliGWoFFBl+IzTMmw7KBDeY8po/KKl6W1WLDzR8qwn3cIVU3eMe+UoHL1SfWmrjFQWOC/HEcxaWBoKzp/Zzze2JQwPTCBzico9pilwqSOZHTI32WeQxcy3+8wkAzamHRqqIHeK9uSQiTSjHWWMbMSW5tI4RW1kIu5tzpJPJUzfqkmXJMmSRPXDomcVyqNkHUP2YPBgSMypQF4Wtv8gX//yLSflu8fk5UHinGv+fs3P7/jMa/ifH/kF4n889wE/dzB5ORgb1/fJn38XC39+8UM6vgpHTWD+8A//kJ/8yZ/k0ksvZWZmhvXrA6Xau3cvS0tLPPvZz+YP//APj8tBnTTIlYdvZFlOVSkQSYwoDKqTBfO+E2Oz/bg5lgoJWKapULkjWspQe5egKMZd74ExiZBDg5fxWIURvvSDOIEaGmRusDoel6mZhiDuBnJjo7DipgYGlMBKgUkEURVznIQGm1HfEN+7EOKDpRh3tx8Tkuq83aooyDgKiWzWjRPJ1mC1x0WHmGPv3MqDv/f4JMZNNuhvaaJyjx6acA5NCV5gWgqvBPFihhehQacw4Zi9EGW6TSjHU/MtkkE27pQsTCg3i7oOVZQx1UrgpcZLyKYUwkRBxSocXkmiviGbjhjNKNJFQbJUwCiEIqjpNnKpBzb83r11iCSGqrSsxjHhwagwl/3uXz1MR3P0OBnk5XgRl6MtJXswOBY1psYqiBBSUi02hZ4pHiSkC5DvlXxv3zq+2drKeY19APRsWprvGzgvWCoadPIG3SJhx80bmL05NAUeJyRKAQ7UyCOGilga5uIeqchxYoW8OCfJfERTZkTCsiVewHrJwCUMfELPBuVmsWiSSIOWjqbMyWTwvxiv6BvJntEE+67fwNzdZeJl2SYASfi/Y8XQH1WJlyBHZvy6KGzQmxwhxtj6cad7lRN+zotS2WmQTUd0t2qWLjY8+sIdPHP6u0TC0rUpCsfIR2RO0zUpUniaPmfkdWgI6hQNVQAFs1GffKPixrMbSKOJO8E7JCwUmWap30ApR2Y0PZmQNA0bog7DRoSbFcTKksjw37q4S9YMzT+HNiZSlrv1HJ28gb9bIpwm9qEFAcaVrRFqD8yJwKlAXoDTlrys3s9qP8xT//xmblj/wATmaBD/47nHHJd8OBw1gZmZmeGTn/wkt9xyC1/5ylfWxChfccUVPOYxj3nIB3PSMTeF6GTjrvDelQ0VYx0e2rVCjDLihTL9Kw4P4dFyMLW7WOEamng5R/Zy5P7FoGiUvU7G6obWQVLv56isQTYdbvSyCIlcKrPjxpleh4f9qB/K1GQemkeqLDTTlMbhhELmjqRrgyzfjMq6Ykt07378cLiSsAZrM+udJ4Tjr4p4XEVYquPHlX4grcsOw75M8Cr9P1pDFZOsJHaqQffcFqYhaO4zyMxiGzrEX8pAyLwSuIYGGRJlnPGYpipXLEO5hdOCzjkxs4MJZC8PiWtV6ZoHpySSsLqXLhpMUyIzj00VemDG/XpsKyrLE8J1FsYjhMfFknyuSSQlaqGDyHK8DNfgsAb/Rzhe96qf5po/+csH3OZoSczREJcnPSF52JPITmfysnp/NYk5dWAaAl0ED4waOaJOUBVsqinbrNDLJ/nH/ZfQXNcn1hbrBf1eissVFCKYzjuSqCOY2+lp7jcIW5YY56VibBxRH9RQMrIR66MOjnBfjIQdJ5hVzTEjYZhWAwqviYRh2TaYkDn7izZS+EACZD7uBRO8N469wwlu+8ZW1n8nNJCs+qBVsfOUaWSiVOP9VCuEwYwyRBHUdaREACIz44VBL0TZz8yH152DOMJryWhdTGebpvOkjCsfeyuXTtzNhByxz0wghWeuLI0rGopF08J6SVuNxseeyHAsmYuwXrK50WHx/D3c7TfQ3K7xCuIlSU7CYFIjEstwkOC9CMEGs5ZEGh43uZtIWFypkkXCcmFrD5GwLNsGfROTzWn2RZblpA0yLMb9/+z9ebxlaV3fi7+fYQ17PEPNVT1CN03LLK1c1ARRIoIaUHO9GHLxvqLidZ7lF5WbqCS5iZA4REXycwivH9EXMQQkiWKCRBwQAZnphp6Hmk+daU9rep7n98d3rbX36a7urqqu6qpqzvf1qlftc/baa6+19tnreT7P9zPowqG9hHyqpwrF/jJUA0oe3on5vs2Pn/dE+E/eefiSO5H9yTsvDog437pY4GVxfw2I+e98G5yC2158Kw/d/VHg7JSxc6lf/Ydv5lv+5q+fsDbmvHNgbr31Vm699dYn9KZXavk0JngjifFGEbwD7wh5vXLkLKooUWWFGgsIYYHvq5uJflURvJdMGR9QC9oKCZd0krcyyzG5p9pnUB6qRDosonlJWvGiLqSzk5wpWr6zqoT/7CNDsRQJLSqv6WEakrUZ+sy2CNSVbp3GdmSq6NoVzVE7fWlCXsjvG2qZNnPhP/VjI45moXLittIEUSpFGCS4pQ6bN/fwEegSom0xCAhKYWcSAuoS6TQVg0g4z4XQwnysMEXAJRKUqatA1VHkqwndrdl8RdMJxa5ZwdOFI153eNORU6uCAKba0MBMK9JZRbJhRAvjA7pQ+NLgEkO5KiuQZmMEs0wodn635f9EahHEXAkdlkery0Ub262nduXLimhL7mfKhTbw0U7KOtHdEk0M6bqhGC5RxXK/XBnJ/dml0mVP1z3JVtWGMaLEqET0iuJUacqAHWs+v7afv7Nyl+hoTEYRDC5oymDayXza/l9QBsOKnbQdGLOg05j6mEg5qqC5Z2Mfa/es0juhCdrjOpJ0rxvwAihXzrWQjSbGKHHzrGnY+Ic5P5YSL4DX80T7EPDdhGo5Zftay9bzC1526x08q3+UfXYkLwsWjcfVNLEb4jX22REjl7Jspkx8AnqegwPS3Up0yW17HmBWRqxN9hKNdG38oggTgy8VlQICPBCvcLi3xd543IKXri4ovWTqNBk2a2Ufj2I1nZLYioeA7aqPcppoEs0nWbvDyROuh3dXfuYyHcdjVf8nvgHe+eS/77f8zQvgn5+8JPt+OEj8wf/4E8DjU8Yeq/7qG/8CeGKamPMCMEVR8O53v5sPfehDOzowX/EVX8GrXvWqxxT5XxWlwQ+6mKyYa0TaCXsg1CtY4h9pxHGxmeTDXBDfdDZ0TUnKC9GNNJoKJd0YlRckx8Z4O6DsaXStjw9GUfYF1MQbBXEpzmK6tiz2taA+GE3Vs62o3WYOOyow6+O541hzXCEIJU4boKaLNY5rzoFjzlluhPpxND+/IPqeEMJc71In1zc0O2WE4pXvSYgnnqKnSbYdVddgM+mqeCVUuCpRJBuesm/kvJWuHcOC0OjqoExVBeKxx6Uan8aYTDIQRLRvRH80qfCxqbs2rqVpNOcTVO2AMy3BiHtasJqgNSG1+Ei6QWopQWeFdGFqV7XdOnv9xA/9Y978K4+/2r8LXM5el0rzstuFuXKq7ELhFaYUl8VFu2FTqHri7MUMxqjWlr9ZmHF1yKLYwoe26x2sag1bXM/iE4PJA8kmbD8w5P0rz+Sb9n9yThHzCQ4lmhAldswZorVx6FYPE2lH1xTstSPWqz5lMHx68zD3nNpDeKBH/6QiGod2nPKRERey0s3t9JscGGit9n0nQisl2WLezxfI6u2Vq0OWjSYkkdj+92KmBxJGT/M862lH+cqlO+nqnIGeMQ0JXZ0z9UkdzunZowW0DGrQBrBsprigiJXoYYyZ0TcZqap43t6U/9HZQ5hAMBIO3VgoK6/AQZFZtooUFxQzGzO0M0ol4GVcJpTeEOkOD2XLTKuYYZRxTXeTQ90tPm6vYVMvocuIrpKxWWW748nZ6o3v+U5+4VW/dbkP46LUn7zz8GUBLyDi+yej9n/o5/jLl8GPXvffnjCQObh/8oSE/ecMYO666y5e/vKXc+zYMV70ohdx4MABQAT8b33rW7nmmmv4oz/6I2666aYLPpjLXXqcwyCRiXuWzcFLM+mvKgEi2swpYT7MQxYb4GItj1huaahYzs0n/lWFHk1I1iJc0hVxZwj4aJ4gj1GoQsCLBGhBNRBKgMllFS49XWDXxmL33Ax0um7Xew9RVB+DQ1lDKL3Q4lzjGmYXMlv0/Jibjk0DzJyrqWg1qKmBXXudlKJa6ggg0JBuunqArjBZhY8MPtbEI4+dqToYM5APZWCNJtJxMjNPMIoq1SQbFSp4yp6hXEmJtjJQCVVqyFcjlAuU/Rg788SbJQSw2xk+sW2AZ4Q4AmmrhYttxXgBpURg2ZOgToCQRBJkGYKsCu7WFVEXi0a22215YrULYs69lId8VRFNIVaI5qMGMcEqdOVlIcsJ7RZE7K4q0e3ZSsaTNgxYq5q+Kws9ALryqFkg1orecTFJ+dTwGp7eP8216To+aByKVFUkumTqY9aqYZsRA7BVdYlql7GuLngg38MHTtzMqbUh+niKHSvsDFQl3X1vwSViqOISLQ5iVUBPDTpq7p1Bui4NsCnKVvupfADq3Bil5gtFqgY2GsphzOSARu2fccvgJKkqSVXZUuMWO0o9nbPtUzIf0dM5WUhqAwSPUZDVXZpFOlnf5NAvUScN0URJsHKkqHqKaqmCCOKkYlTWnSkVOJhskegSrVKqYJj6mKKyTKuYWFf0bE7P5hxONvEHNJ8IivHWEja30oG7hH9rV3tdLE3E5agff1efl1fDy3oMF5s69vB9L2phmmydr/xtsVV+Il0YeGIg5pwBzPd+7/fynOc8h49//OMMhzs/rO3tbV73utfx/d///bzvfe+7oAO5EkpVlbikDDro6azVwlDmou9o6FahIlS1uL2hYT1cL9GI4GsjAKVqP01j5iCgtme2xzfolZ58f0esk50Xa180LhGw5H3AJRpdD2o+1thJoPPAFmqWE2aZgJY4IsQxoZvICl1qMbMStEZPC8gLVC46luADlMXcGc0H6bQoLefVdFoIcwoaDWWuPv7FEExratc0CecEoXI1eh4AOy5RzuKt5NgErUi2ZIUxaPHN97HQ5pqVPl167LR286lkhdIvWZJNCUnL9gmPuliKJBl6IJNU5QLxqAQF1TDGG4XVCrOVoZwjJAZVBuLNXGhtqaXqx0STGLJ8twPzKPWrv/n/4yd+6B+fcxfmYlUDPi4EyHwxAZeHd2EW810uRu2CmHOrYKDsB4qBonNaFqMCYvYiE/sKBQQn3RSVO7kvRdJNVkUlmpBGb9hQlI10j1UIYpvvFbowJFuOpbsVukh4V3YbB65b52lLZziUbrEnmpAFuc+PXUrfZBgCWvk2Q+Xe6V4+fuoIm/ct0zlu6OVyDlUHxjeVdPbM2F7vYDctdqxJ1w1mFohmoleMtg3RdiHdlrISWvK0zoBpApKLUvLQaoaCiuN5Jlnl5NyMWCy7DsSJjEETn+DQDPRMcnFCREqJq2HBtH6+CIY9dkzm57qfCMfAzJjUHZsGuO3ZM2b7wYTOA3WX3kPZV2w9U6NWCpb7M1aSKakp6RkxdImUY2AyDkTbOBQbZY9N3aFjSvomxwdFGQyr8YTl7owTeweUxyX0UjXxBLu1oz778x/jhf/qyc2SajQqq9/5GW4brV7QPhrg8icLv3uf3eZnvuxFl03A/2TXry+/APPf3/HEd3Tbhb3snAHMX/7lX/I3f/M3jwAvAMPhkF/4hV/gRS960YUdxRVSQSlUUVLt6aOTGPKi1rE0gAJCqDm7uPmA0qyQxRHkufxjbseroO26tJP/ht5UiR7GnA508pLs8ICqb7BjJ4tUVqF9aClSPtJEoxJzYjI3CbBGLI87CaGXUg0SMApvdUu1Uh5UP0JVXQCi9SlqmhGmSros9coXGEKWzweWmoYmjmRmnhPjA3jpSKmGDlA5ASG+dt3JHDoX7rPrxuhS6F0+Ede2oqdxKdjUCMVCKbwR0BONHfFWVQdayv59XNO+jG6F+DqvSE+JMLbqGlCBqh8Ramc3M5NzM5kTekZWQp0J03C3qTxYjY8UuoDQidFjAw1+260rqs4HyDwacPnUu4+e8/s999VHznnbL5batVh+/Kr6AZUEpoege0qTbGh0WQp4CaEOiNF1GGQlVvGVQ7lInq/1IKo1X5HXhcjKvRjElZHaerhQpBsVpjDYzHJmax8bN3R51iFL2TUMbdbqX0Am41Mfc7xY4pPrR7jv7gOkxy39sWhxyj5Mry9ZObTNc1bXiLXj+PIQ5zW5M2xPU4o8wm0kJKcMw3s1nUQTbRnMpETn5bzLopQ4YTa0Zudl4WyRTgY1c0CAU1AQgkKrwMin9HTOyHdwQVMTuCXgkx5lMBg8PV2g8XS13BuacNDT1ZAyGHIfoZXHobl+aZ2/Ha5gCoXNanOcQjMZadjnuGFpnf3JiEg5OqaU6+USurpg1Y4ZOQkW7ZiSns3p27y2wZbPZn93xKnDA2bHe8QjjWpc2XbrEfWXL3sp77P/6knvZKz/1rNZev3Xs7V5fgtxf/LOwzuAS2MK8BbGrPJ+vu7aR77mo4P1i2YffCXUf3nj/4JffcHjbncudeSjb7sg97hzBjDLy8vcd999PPvZZ/8A7rvvPpaXl8/7AK6o0rWQ0HlCInoeFUeEphOhFZROujEgN+BFcX5VT+wjO7cmLqt516XZR1MNqDFGNDdnNkmLEj/o4npRPWEXqpVYDktAljm9JeCqoaXFESFNqPb0cKnFjgsR+C+lsrKE0M2Ckq6ETwzFvh5B94nXJuj1kTiV1aXiWKhkrUuZQdn6+BvKmFZy7PV5hbwQ6lXpMUWYd6QU+NjiI43rGOxEnMEQJgTRJKBLqDq6Bi8CYIJCsmgCVF3p6kiitcfMSqqeUBVUVmEnObobo0JCvhzhYkU8dpjcUyzFaBckRG0k+TghtgIIA1B59CQnJBF+X0qFRbkEfUa3QtTdemS9+Vd+m5/4ocubXfJ4tLKzgZfzAS4Pf80ukNmt86lq6DA24PqOfMnSOzqfrIfYErTeaSNcOVQ1dz9UeTm3qq8pwcFo6XSbOgDYiH4PpDttKqFzDXwgGhkmm30+ff9NfHzoOHzDGrFxrdPYtIw4vdnHHe8SbWsGW9QhwjC+wTG4dptvOHIP++IRS3aKD5pRL2XJTjlVDIm0Y1wljF3CPaO93HPTXuwDKaufMfQfUuiimtPCnKu79PXYGcnjZpxtnS2DxA00jpFVaZg52abRthjlWTITPFrE+l5+t8eOSVWJQzHxCT2dS9SA8qRa7KS7tiD3EV1dYLUnpJ58yQrVeObRDuJtxWQaczDd5lC81dLrEl2y5TokumS96rPlOm23JVJO7Ka9Zq3sk3vLNd1N9DWBj41vJF23qM3z9kz6oqjRx36ECPjoH78BXva4m1/0+k9v+2NAOjK3vfhWvvp3t/h7z7qDt3zLmB9/V5+3fMuY5/7Cbbz5lrM7l52ro9lto1Wot71cLmUXWmej+H30Q7fzvv/tNfzjv/79S/Yej1fn/I36ru/6Ll73utfxxje+ka/92q9tNTAnT57k/e9/P29605v4wR/8wfM74iutIgsOzLieFFmhjSlTd06UroXqtatXk9peVqjItpN9QLoaWs1/Dn6uNWk6MwsrTy3NbDLDlBVmHaI4khW6QkIcG2F+Q21TRnQcoZtS7u8TlCLazlFFRaj1JlVXk56W9rcuBHiYqQAy14vIDg+IuzH2+IaskMGCzXIN1prMl0bf03RgtDiVBT3X0ZiskhVEkKDIWMT5ugqYzImDmhMnnc6GBEoCzBLb8qurVKOHFj/z+FgE/SEVJb6qPGqSYfoyqFXLqVDkAFV6ydQxkA/luts8EJ0pRLQfyUSg6keieSkdphlkK0/n+JRiORF9TGRhjul2a6HOxUb5yarzoYZdCHh5+OuvFhBzqWlku/X4pTqVhCFTdxRq4X3TlVCuTrlEwIcqK3HlqvOu2gm984QGxFhDiMS8pO0gK7GlFxMAyYjRzmNnns4ZGQPyJcP6iYOUfU8woEtxSBueCKRbXpzFYpjt08yOOG5+5lFuXT5B3+RtRwHgULzJqXLImXLOWd8Xj9mzOuHm4Wk+vvcI62E/QSd0uoZoXKHzCj1SMna2gciKEFlCJ67dx1ybLxaUOFDG24HxOGKz7OCDJlYOrTxTLxqXqU8Y6BllsHR1zrKeopVn5FOW9RQQx7VN12vd1VJVEJuKqY2xyqOnBpOLi5s3ooVRDtTM8NB0mUg5VuyUjIhElxyONsl8RE5Ud4I8SzZv7ZVnPmZUJfig6JiS67vrHL92yPSTB/HRLoXsbPW95mX83nd+F7d9/TuBy6uD+eiHbuejt8CbGcI7kS7LO+FPziLM/+f/83v5s7e98YLe5+u+7dhVBWKeDH3Sry+ffzfnnAHMz//8z9Pr9fjFX/xFfvzHf7ydfIcQOHjwIG94wxv4qZ/6qfM+gCupfGyhVFBWhG6C2qBNZ8eYBZcxP++oAKqTzgFLC0oWNDFaoaJUuiy1Y5lqVqbiSDQvoRY1ai03ci8uZVjbUrzCoiajAUdxRLmnh6oCZlqg87KdrFddoVrp0qFqZxtvtfCrfRB6FVD2IziwLCCmCW9sLIR9vQKIF4pZc541uFu8DniP3pxglhLKgYEALtbM9mp0CfFIY/JANK5QXi5RUAJoXASmlO5LvqTQlYIgtC5T+FpLU+cMzHLikyOqlS6uI90Ukzt8bAQQJaodkOKtCjwoagcfo7DjkqofCSdZK9EGad3yzF1nYQKxW49aTRfmydTBXO66WCDmR37pty+ZE9luXRllrMdXoDLJtqK+x6u8GVM0oZnUVg6ynFBVKLfQ4a9BS9u5ae9Tej4eNPep2iBABQ91J0ZVBjt1JOvQPyr3U28V2vk6U0zAk080QRmy1UDv8Ihblk5i8OTekuiKVJUMbCa/MxFZHDFzER1TMnYJe6MxS3ZGZ3/Bnz4n4ky0wsrtEd2TivS00LCFXqxaUKaUg9LJOWldt1xE1RJtFXRPaWYPRHz2wEEOpVto5TEEDkSblMEy8QmpKimDIVaOIhh8iDhT9enpgiN2gzO+R6QqHKJNabQyLmhOz/rEm5p0wxFNHNmqJVvVZPsCZiWn8JaZi1mxU1JdtjS1Jlcn95YlOyPV0vXRSG5Z6Q0+KCZVwp54TGwcWRmw010f5Uer7/rtd152Ifz51oWCl6YuJoh57XuOXVIh/9nqfXb7SX2/s9V59TTf8IY38IY3vIF77713h43yjTfeeEkO7skunRVQCx2D1ug0ITSdFqNb3XpLA1MKIeyGub5Fs2ChbEQnoo10WKJo7oFvjKymJbEIHIty3q2BVuioVN1xcX7ufAaySqc1bu8QlxrijawNFQvGUHWFSmVmHp8YNOBSOTeNWAr7yOAjjTeKfG+KckuYExtCmdNGzqGqBMws8pTLCkztWNaYEQQPGFRZEa1neCuGBC7RdNZ8a/WsQqDsW9GjlGBn0sExBUQzjze1vagTMNNYKsdTR7yRo6aZTAJGU6zzVNct41MtNsv14GyKILSxLOBiLbqhLenCmO0M341xicEEh8pCTc0QcGNyJ52casEee7d21JXSfTmfeqLdl6utzmalvNuFeXKryi2m0jIv78iClarqhSmtCSauQQ2t6Qs0esMaqFgjtLFayK+C9HRCw+B1gdAsIjW6x4buG+YGKg2FONQ6jNCMYRrJ0XKB6V5LcU3BC/afwAdNHjQdU2CUp6zHxWPlSiuE71vp2I/KlMJbBjZjTzThKw/fy8eTgrXyAPFI190mcVZr3TgbR7XKocwcgMk/jS4dyWZJuqbZOD5k82CXRFdcl5whVSU9neOCYsuJ/sUFjdFeLKJDzH4teTEDnYkGxg3acMutqstD+Qp3Ht3PyvFAslGKVnPZUvXAdT2R8aSmJNElRvmWRna6GpLokg3fI9FVm7GzZKaUSq5RGQntrenKjPMEOxUzmt16ZP3Cl34NH//I1XVfulhBmBcTxNz3g6/ihl99z0XZ17nWxaKPXWhdECnzxhtvfMqAloeXcvVKUZMwvLC6BcgKWUMpg9pmuR4Mmht0m/nidk7yrW7NAJpVNBZ/bvZROVQU1RbGoX0vsW1emFhHlqonIZbKNeBJ4YYxk8MRZVehvHRiqlSEinbqSUc5wYqLTWPvqMtaaN/vwvrW/JyaDpDz0v6PLGg7P976f2UtoXIorTGbYxKgXElRJhDNnHSFDNiJE/vNVBONxKjAJZpo5rETj3aBaCLXJZpUxBseFUCVDr0xFhebysmxz3LijYzsYBeTeewskK2KE5mZ1Zk5kSbaEicybzR+tYuZla0eSBWVcNBDrcvpWExeQVnOO267tVsLdbm6MOe6/WPlwOyCmCexCrnfm1lNgzVKTEgi21LBGv2L8kG68bAjI4UK0ccoRYilsx4ig0+svKYZGyLRS2ogW41RQRZwmpBg7wXM6HHe2uw3LpW6cHigHCgOHNjiSLrZnsKheIuuztlnR0SqYlN3yaqo1Xx4FFtlyoqSTkSkK67vrDFZjjl2cJViEFEOY1TREUcyLdSxxnUyxBHUQEzaQXKNhFbm6Z725Pdb/mz56Tz3yDFOF3365iAHky0ATuRLgIj5BybjZDlkveyxlgy4Jj4DQE8XnHF9jhfLrJc9Pr+1nwdOrdL7VEr3lIAa17FiEpqDzhXFdsKd6T7ifaIZWrFTpj5myUyJVcVSnSmzVXXrLJpARIVHkXuZVs1cxLiKWTs15KBbmEvs1o5649/+Kd/CNZf7MC5bvZJ3ttbET6R+5mW/QbL/P/DbL/4nF+GopO77wVc9afbWl1TE//A6duwYv/mbv8ldd93FoUOH+K7v+i6e+cxnXujuroxSau7H39xsGs6u1/MJrV+4ETknE/pmO63mk30917yomgKmmvDIVlfSbFsPWs7PnzNGXNBAui9ZJstuVp4PSUTVNUTbXnQvWuN7ogmIxx5vDbNV1VpuppuOaFyJriYvUaXCaIWPDS7REAMHB8RFSZjO5rkvjSW00dJ90Q87BzzBIXqYSro2xnv0JBM7Z6txqUXVxjt2Ju5kuvKo0qFCTDSpNSxAXErmjc6r1v5ZjadtwrMyQY6HEnNykzixlENZzdRVwE4cdloJTazOxdGzCqymWIoJkZaMnZrWocoKHyVt+KUeZQIWdwecs9aVpIG52qsBGxeLTnapQizPVrsOZI9dKnWoscLk0hX2VuE7FlWL0glBxpnabYw4moOXsqoDhuvudxKDNbhORNWz+ESLeD0X8ONN3dWoECG+VVSJxpQBO63t6QPYWdkGFStr2oU6n1iKIdw83GBoM6Y+xgdF32TsMWPRmmDwQbM3ku6GqfNYtrqdOpW+YKAzshAxsBmDvRNG16+gXEw/yPAib6ygLIRO5r1YSzc2y8bUhgbSDe+sFfgoYYs+f3vyJkKvwnQcK0sTlAp0o5JhkvH5oKi85vi2uKQdGI64ob+O1Q6jAqU3fGb9IKfODLH3pQwegsFDFXYqi3/eKqKJp3tSaM+ZV2x3OqwNeqzGE7Zch73RqA3QBKTzYqeMXSrUupBwLF9mvejSMSWTKuboeInOvTHxdtUGUe/Wzjp95GdZ/XufeUo5dJ1PVd/2VRct/DI/9R289j2w/dLTALx3+LwL2s83bX+S4Qf2wXseHby8vBrCbWJF3fnev7qg93midc4Aptvtcv/997Nv3z4+97nP8RVf8RXs27ePF7zgBfy3//bf+I3f+A0+9KEP8dznPvdSHu+lrUWaFNTaj6alf/aXNMn0kvPiBehohXDN5vtshPeBIGJG3Vho+tb9jFA7mNXc5jDL5u9TVRDFqCQWx7A4xndjuQEH8Ek0B10e7NjRLQLF0OBiKPqKoi986KoXobpWJvWhFpDGGl14yr7F7B1ijpWSE1NVYl6gapqcoTYwcHP9i60DL5vBNgTCRDjdepoR0lgcmmtKhFgwe4gswWrsZlaHt0nnK0QGUyjUrBADg8oR8uKR5gFB7K2je0+ij+wl3yOhY9G4lHyZY2NCJ5Lz9Z4qjfGxxhnJmVFVTd+wRkBNYsWEYDQhlAW46gn9Oe3WlVGXgj52sQX95wo8FrdrQM/5gpbdLsyTU8HX3WmH6P3MXCOpmhX5opQxYLHTH+r7rtZyn4wjQhITYjFQafSDNnPozElnxhqqjiYo8AYmBw0+rp0em8yWImCHEemJiXRDSokE8J2IYiki3+N51uA4XdNYEItuZOJjjPIUwRCpCh8Uy0ZE8tu+Q9/kGOXrcEyLIbA/HvG0lXU+e0tCsdbFrdX319LN88Va1zHqhT8WFgI1qqgwIdA9obAzS3mfJl+KcJ2YSbdDMLCZBo7WwnuUdLsAHugNuWd4ECIPpUZnmu4xzepaoHvKEU0qMXIJAV16lJcxOR5Bui6f02QQCSAKmhv669JhUg5DYK3qEynHgdqlLNUl665H6Q2V12y5lGkVc+yhVfY+JLpPdgHMWeutB/7qqgIvF4s+9vB9XkxR//AD+85r+/fZ7YdpkM799b/3H67jZz73v/PPP/LhC6aUXUj3Bc4DwGRZ1uo3fvqnf5q/+3f/Lu9617uw1uK957WvfS0/8zM/w3vf+94LOpAroooSkm7rhKIquZkuUsbax7WoXzWksKYj0ZRRc20MtWg/qVfYGn5zE1AGhFTWp0JkCLFFb89kYKsqCVVBE6pK7Io7HVCKapDgYy0UgI4VEBCZ1lbTx4p4yzE9YEk3PPFY9CYS2qUwPhAsbadC5w6jFbMDHbqzIfrMpmiAmmBLVROvG01Mw2cODa/Zzs/JmNZyWU1mc5G8NfPBug3sRLYzRgbVqO5oFeV8EAeU1gTvake4GijlBcQR5ugaabFMvr9Hvich3iwJnUg6P5UnaE05tASlMA2lTYEbJLUuJyJYTeeedcnmMYYWhO7WFVf/8M8GAPzHl4wu85Fcvnoyuy27dQGViXmJcnN7eFW7hEnn3T8SvDTd++Y+msSEborvROJipoQd0IAYABdpXKIYHzJEE022VzF6ZomKHUoH/MySnLD0H1R0TwVcLybamsjCkBU62myvgYMZkXL4oOmaHB90212Y+oRlM2XZTImU46Dd5ES1TKwqBiYj0SU+aByqtRzu2oLl4ZTtgx16JzXRWOhqitqMwGh8N24tohXMTWNquh0uYEc5OnfEiSEeWVyq2nPXVWi1klWiMYV0pIq+Jl8RZ0uTBeJxoLNWYHKHmdbZbg2IDAHtPUaBqgy946BLg7eWbdtjqZOxUXSogibpVhjl2Si73JCeoacLjAoYxGCgYwp8pDiT9zg17tO9O6Z/vMRMS/wugLli6+D+Cf9h3V1WI4Htl54+b+BxseqJnPfLqyHb6WluvQx6mAuikP3t3/4t73jHO7C1HbDWmp/6qZ/iG77hGy7qwT3ZpbxHZYUMHJ1EXMOgBiFu/lgv3Iiayb0PiPp8ZxdHGS3ATylCGotVJsjPnUQm4ZGpnVigXE45+pKYzokhB/9iHb0+mlPNYJ5ajNgiVx1Tdy9khUvnFRowU4fysdywc492XjQejVDdeUm1DwFdWnThsVszdJVQ9TpMnj5kMJ5KIn1tQYmr5m5s9XmHopTAzkWhqbWtIBUQQFBfM9W4ujUZOk1Qpveyn4ZOV5TteQcvQC7Ihm1XqLWmrp9Tx8/QGWdUewf4jsX7usMVoNiTilNbJQOXR/7XpRMeeBWITo1ga/RI04Ld2lFPNn2sASuP9dzlADJXk63yw+uJdmF26WOPX8kpS6QVJqedcAcjIntVzEMpm+yxR1BWUJkWQQABAABJREFU40ishmutZDAaHxuCFbOS0BWb+qoj/0ZP87ieJ90748hgQuWlc35ms09eKezEYmcaO4uwkeRooRQ+0lRpTQDQFamq0MqzVXWJdIVDhOqnqyFZsFwbrXPG9cmCWAm7oMm92AwbAqkqmRKzGk850B+x8bQeG7MOQcV0Q8DMFDpb0FCGIN0JPwdyqvJiFKMUAd3SryIFdqbqnLDaoTKX+7VLaodPH4i3oXPG1It1obXxV6VDzUqhqTUg0QmVGU8bGtpZg6AMysc8WO3j1GqfXifnoe4yiano2oI90YRN1xWTAwyuXo6buJitImXj6BL7jofa5c3i/W4OzNnqcgn4t196mg/9ecLaNzwTuJk14H3/7eGdiCev/sG+qzs5++/+0VfywVf8Jb99ntkwt//kNzPkEndglFKtdbLWmqWlpR3PLy8vs7GxcUEHcaVUqL3pUfUEur2h+nl4JbRYpgUvMJ/AW7tDI9PmuzRuY8aIA4yWgcwnlhAZpgcTyp7GxZDvd7jEkN/VJ81Kca0p6gk+tZFAVK/IWSUi96KiGHTI9saYwmMyIzds54m2Spm0x3KD13klTjUhoBxUHYMxCrXUwXUtqgq4rsbtW8LkhVgrWwuuCbfU8/Nl4VoY1QISZQ2hcgJMmryaspwHmcGcLhBCDVy0cL0b8LJoZdx0ehbCMwXEhLnRgHeEyRQ7nREGPdweycYJVj6naFzhI0m+NkECPZtuVXxqjFrfIrgFkwSzO+A8Xn0xWSg/1aoBIecLZHbBy7lVvA02AjuRDoCufAsaAKHQao1yrgUpeC+0WSAkkdDGQO6fVrfgpezXnX0XKLuafFVx4wse5Kv23s2SnYplsEvompxPLx/hI/Z63MkBLlJCnV00hzEyhviJZeoSUlthZImH3EcYAmUwdHXBAbvV0sciVbEZukxrillXF0RKFqgkKNJxqLONvcZzuz3AdtnHFDHJmfqUGqMcqDNx6nt9nQejgpbAz0jXJjAaVXq0D4RI49DCGpiWcg61AQ8BdOWxo6K9djLGBJRz6Gk2pztDnecW0JVDhZSgFRYYPuDorhlG64bx9X02Bl3W7TLRUs7TDqzxULYi7mS6YuxSpi7m2GyJezdX2bpjD3s+D50zTvRKAMVuMPKVUG+/QSbL7773Z+Aa4JPf2D538pqfgPsuz3HB1ZcP09TwA/vgA7D9p6f5nn/6IN8++Gf83uifPe7rjt72+gsGL3AeACaEwDOe8QyUUozHYz71qU/t0LvcddddHDx48IIP5IqoyMqgYhR6Y1yHgzWT5YXJdBTLhDmO5EZo5tkuIYR51wVx52roAiGNZaVNifuK68bMDqZM94kFcL4CsxsLbrjuNKN3HpZWtzVQ6nkIpnMt7cpMC9RAUu5VBXZS4RLNbI8l2Xboovb6d6G2CRZ7yqB121Rp8mJQEHSMSxR2JnqU7af3WFnbhqKAPEd1OtJNUfXqlTaouL42uga4UTQP6qyNCBoamLK2BkJuDl7qcDOVpnO3M2rgtxh8po10RoKbu7wt5u48PBR0NMEWpaxgdhPQAu6Upw3PlO6UQ29NUdvj+d9Ba9aw69v/aPUTPyT6i0sNYB6r+/Lw7Xa7MBdWi4DkscDMLnA5vyp7gAWTgXa13q5Z3KpzwOa6xSbccsHEpe6SB6VQocIoJe5dSm7Bs72GYlmz+WxP6FX8w/13cFNykj1mTFfnrLs+n86uoWNKlnozTq32GNwn+8AYQiL3f+UCJgeVGR6YreI7kmkCooOZ+pitqoNWgZFJGfkOy0ZA0til+KAAXWehaAY6Y1SJHjHRFSvJlOv2bnD3tR2SdYPJI3GANLpdfBNa9nysbdzWXGpxXSsdJ10fuzCqRVeUiwW+jDFCg1alQ3lfL1xpuX7e126TD+tyNeOGbQKohYKmy5qhUHiGPqCCFT1pAtWm4fPZQbYOppzu9plUQv8eFzEnjq6QPhiz705PvO0xWW1jXXpCuTueXM46V2H7O553mNe+59F1Ln/yzsOXRAfT1OWkkj3RaoAMbwR4PUc++jb+6KNv4RW3/fiO7W7/yW++KOd4zgDmd37nd3b8fNNNN+34+a//+q/55m/+5id8QJe16jwQ5WoRZSs29GKf1ZR38ruirG2SA6oGM01A5Y7Jd1MhtInJITEUqzGnX6ApVj1mLBSy1932IW4fHcSfcNjtbCd9rFmlqjsOemuKv6YnN3Ytg1+8XaKqQDStsBszcdgapOAk6BKl2v35NMJ3bDuhD1psjrUTu+VioKn2DbFZTvBewEtNr1JxzV12GtKkBWh+qdvadBICKqtQZYXK8rmAn4ZW1mQBVPPOVaivuQ/iutaUtQsTgNBu04ZrgoCc+nHQBiayUqhGhngjJkrjmsoXodrOVinn1pgSNCuTRu/mwDxK/eD3/KMn5X3OFbw8Xj331UcuaQ7M+YKY17z60R3Hfv/dl7ejdbauzC5wubAqlwKoQLwJJg/ovBLqbulkAabR9pWVdB0Ww4xrDWZAqM2N5b5GOia68ARlqXqK655xkhftu48D0RbLZkKkKgyBU9WAT4+OsJ73GGcJ0VjRPV1hR7mEaKayiIaCdNORnrKczAYcSreg7qgciLY4aLc44/rclR2Yn1swZF4oZImuiJSjDOJSFtmKZTPlhnSNo/kKVjvy1HLyum22pstEU4MurVB4c4cOoosMRqIGfGwo+5Z82TLdryn7tIYEyoEuIZpAZ03owYQwBx2lQ48mcr06ibymsWmus9WCEVdOKjcHTdT7cQ6dV/jYorMK5T06t5gsxsWaqqspBprZesLayf2cive1YCra1qweCySbnmjqW61SA4bYzYE5a73LPMS3uEtvo3zD007ye//hOrjClQ5XO5VssY7e9nqO222aUe0f//XvP+Guy2KdM4D5ju/4jsd8/o1vfGKppFdKqcqjJrO5/iX4uUC/0WwkySPpTf5hN6eGEhBHczpULJQAHxuqfky2bCiuK7ju8BlKr7lxuM7nxwf47H+/hWtPjGQlKV+gsmmxNG4m6cp57MzjUoOaygCpfSCdlOhJ3up5glZgNeT1OQLBSEBa2RehY5MX0F4HH4hmnnxfij0V1+FrEEovGTUg7l39Lr6bkB3qUvZk4DW5x8VCdbBZkPyXqSc9nWHOiKZHQXv9mjWxtnO1uErZdFqqqjUFaAM/F13ffJBlyaYWdSw+EKZTKIq6C2RQsxzKsrWpBuZAyNp637srZo9Vl6r7ciHA5Yl0Xy41wGnqsYDL2ba5nGBmF7Q88VIBookiHnuhbbFAm9KqpagGmN8Pm/uZ1q2lP1rXgZZGdB5K4WPN6DpF1Qu85MCdvLh3Vyugd2juK/dyb76foc05OR2SZxHxWImF/agOA4YaUEngcbIJXzi+n5sGp0l0xdTFJLXz1menR3goW+a6zgYH1BYaj1aBVJdMK6GQeRlI8EGzasZEypH7iJFLIYWbVi0fP9AlX47pnEaE+lYLGSA2uI4l2xMxOSh6HrUv58CeLXxQGBXoRCXjIqZyhu1JyviBHsuft/SPI/rG3GMr3y7SqVm9aLZI/27DMhf0qo2utMlm88w7NXUYaLSVY7UimlqSTU33pCx2+lhRJbIfmzmiiZjMqFpPo3OHLirw4Hc7MGetSw1emo7G7/2H61j7yV8Bvu8xt/+mv/4eHs+F6w9OR5cUaJwPlezO77v5UZ/70H9/KT/ytT90WV3edmiKbru4+94l+S9UUAo1ywlZPdNvJrKtm9iC61Zzw1O61QaFEFC1owowBzn1YBQi8fE/+aIeVUecaW6+9iTPX32IzbKDD5o/v/9p9E+FFrgErURD4rxoX6xt9SSqckTbBflKskBJAD0toKxEz9OEhkHt7NK0zOtVqGbOX2cK+EhTdcWSs2109LvovBCP/ubcIovbO2RyXQ9dBlyiiMa+FVX6xOAjocY5rSh7Gh93MKsJ6dExemvcWoUqIDhPaBbDmmP0GpXYeYAnCHhsnMiabbVhbrIwNxFQ1ogBQLOtcwQfUFvjRwBOZS1B+ZY+pqxFxbtC/kerK0n7ci7g5dFAysWifz1WF+ZcgMujve5yd2R268LLTBSdU7Iir0svDlx5fV+2Mh4AqMJAWethGnF5I9xXShaO6oUv0RnK/Sw74GBYoQloPCeqFXqRhDZ+anYtZ4o+J7IBW3mKry2d7WYuC3TdFJwcE1phM0ey6dk+0eG+w3u4oX+GlTrj5PbJIT515jBLScahdFtE68Fi6sGjq0Vr4uobeBYidPAYpIvjgmbsEg52Rlx7eJ31pUO4jpGFro4hKEPZN4wPG7aeWzLct8XXHHqAZ/ROMNDShS+DZWBmnCyXyHzERtXls3sPcXd6mHw5Il0PJNueVIEeTUVvWtWOZ43WaAGUBGtkXLRGOmALrAGdl4TSzbfPC1Q9JpmJUNJalzSr8Vbj01pfWiy6yoGZ5ELhXlzw3K0nvf6PL38ha1/7K+e07Xfe/H8KDeoKrju/72ZelP8XPpw8Nuvpxa/8AB/mAxy4imlpj1UXDcDcfvvtfMM3fAP33HPPxdrlk16qrAjTvLbvVcCC41Wzut+KyBdcwRpv/yaschHAIO4xc1ADo6c5vuK2z3N0ssRKOqXymntGe7mmt8nzjxzl0/ueOdeNNPQCpWS/dagkWkFZYk9uUSzvly5MrR/xSYSuraAxSjjGxuB6kYRJWkltDlZLCFqkQIFLNKb06LEn6AhVBRGN9mP0xoJo3xrcngFbN/fRTcZB7QoDgFEirsxcm9vS8JfLQcT0hiHxZkp0YkvOz9fAoVmgMnPq1o4OibVz8GI0MrKHulsSZHBXug6h9ISKefemSbn2gVCUc0OA2u45hIBKYvyeIa6fUPYtWVzCpV+Yv+rqqRRieak7LxcKXh7++l0gc/VVNIZoGloqkSqFshQiI7SjhUWUYBsRP7Q2/nWXJHi5h+sQ8EGys7JVw/W3HudIb4vrkzVGvgNAV+c8UK6iCUxczLSKKSpDWI/pHw3oaS4LYdOsti9WKKshMkTTQPe44ZN3XUt8S0W3V1AGQ+Etwzhnf2dEVxdkPqKrc4wKRGqbke/UoZYWrTyZjyiCTC0SXTJyKV1dMHMRkXG4FKpUoUvp0udLmq2bNOZ5W3z14QcY2IybO6dYtWMMnolPGJiMVJV0kxxDIAsRe6MxyXMq7juyytrJHv27Ld4o7KiHHmVCW/ZC9W6z1xoLfqUIaqEb07jA1QwAVVY7WRaheezQtVmAMoYQWXRkRENad8yCVqLbMQo1jPCxGMcw0nDHk/O3t1vzeve9P8M38ELc7z1wTtv/p/v++HG3GX5gH9svPf2k070Wuy2PB14W6+StX8GdtwrouZoydx6vLhqAKYqC+++//2Lt7vLU+iaoqA7Veli7181X59uqA8dCk3sCc5pTQ3Vqck/qFZwQabrHDFp5fuLG92EIvH/7S3hofZlToz7baz32P7RwY4V2ZSh4Pw/MdMiEPsuJ1zOK1RRfD4ymzoOB2mGm8gIqCice+ctJ3f7WeKtwsWK21xJNPPHIkZwYY7YL3DBmtjfGJ3MhPtbgl/vMDvUIGpwBArhYYWfSMscoQqRRmcOMclRjFW0UkQ/MDqZs3dRhySji+9akS9Lky8AcQJbVnIIHbVimCPzjObhsgFMIIvJv9Cyu3k+jR2roaXEk3R0jYEfFEe7gCtNreoyusSRbHuUgTJ86XNSrpS6W7uVs1XRIngy6GDxx8LJbV3fFo5oiW4vvQRaXaMAKtbSyub/XOkaQybCqre9p1r4qj3El5UpKlSgOdEcMo4yDdosiGFbNmHXXZ60aMvUxPVPgvGaaxSRrhv5DuSzSQW0s48AlQpv2gXi7YukeUFXMx5LrGNyU07M5e+MxS9GMFTtl1U5a6pghkBHV2TGKgZmR+ajVw6S6ROOZ+hitApMqQatAvs+RDzXaQZUoxtdouret8Y3XfZYVO5FgSFVSBsOm7wJg6rF34hN6OscFxYqd8GUr93NDb52H9izz6f5hlO+QbKYkIWCyvDZCyIVG1tDymiy2xup/IaMsaI3C1Y5lC6BmwSWuce9sKOXKR4TE4GNFMIqqa8iXDdmqJtsLOgc7hfT+6BL+te3WxajX3fe2c952+IF9l1TMfykcyT6cfDMfuuH153WeT0Y9Mkjz3OqcAcyP/diPPebzp0+fPu83vyKrWXVZBCSNDqYBDTB/fjGRHub0p3qVpxEYBiBoTbYaUw4Cf/WXX8L6bT2+7eBH+O49f8Fa0efPPvIlDO824lgSW/R23VlobIYbsFS/X9OdsKe3yQ6Iy5adebzV85ThOvcE6kGxHgh8pAkayq7CxRCPJfwr2axpXU588XWTVl9XSGKm1w7wsSLZEmpEsAo7E09+17UErdCldIlCZKB0+NjgunIDjyYOFyvGRxKWxkPMyU0JpGw0L83gUmck7CitUMrMB5/Fzk1Z59Q0mqWGXubdHIAqXVPXjHyWg4T8mmXylYiipzF5wGaSGxDGu6LL3bqwutjgZZdOdvVVZ80RB4edidUv3os71oIhjAoCTAABNo1msU6mV86hitDa3rtuzObTEibXKvYnI07lA4pgeHp0hlQ5smD4ZLiOtbzPRtHh9KRHMYsYjMBkdTfbB4jMjkBl5TzKaeJtR7ylmZxOOH1tn8RU9FVO3+StPTMepiohVSUuKFJVgIJlM2WkOgz0jHXXZ9lM2XRdtquUSZWwngsYCd2KYGO8VVQdxfQ6x1ceeJAlM2vpaJGqmPoEU2ttQMDLluswduJw1vhxXpuu87TOaVJb8tFTz2B4vyEaWUwTpgxy/69d3nYwIloGQO36Vov7VSW2/mFRwwpyrSrXmvFga01SYqh6BpdoJgckTDTb7wgmEJ8xxFsL9O3desrUpdbCLNZjaV3Op178yg+wffuVQynbfulpvudrHqydy86vzhnA/PIv/zLPf/7zGQ7PjpLG4/FZf39Vlfd1az/MJ7tNsGJN3VLNFfO1U5lWqKh2UWk0MCB5JkCoRYTBSHfk5Jdr3vDq/8K/+dzXcu+ZVfxBzSfyw7xqz8c5+ewBd29ez/LdXjQwO1rY9U3UGKGqNSYD2kBR0r1/m+n1Q+xE+Lw+NpisQuUOn9aOL5WXTnitf7Ejjy4DU2tJNipSJ2FfrhsRtCLbF1OlimQdASNJQrWnT7BgMk80qtB5RTmMcR3TdnGikaspaTU9qy/XwsdarKFjTVS7nM0O9eifGaEqTaj8PF+mafc3QtYGsDQBliAApCjnwaIPH2yc2/lZNlbUSqHiCL88YHrjkLKrMUXAZh5TKEweiDcKSh7Whdut3bqMdaWBmPgXxY40ZI7yjZ+5zEdz5ZUuAkQiCFcBoSZVvtVjhIZ6XNTAIphWVxGUQruAyitUUbYif59G5HsUxbJnfzxiVKXcnh1hvxnRNTNWtePG5BR3TA6yNusznqQwijCZuHTJPdFJtyGJRR9Sd4RU3aGOpoHkjOaOYwc4MRyw2plypLvFdR2Y+piByXCoVp/i0Az1DEAS6ZVn1YwxNe1aq8DJbEDpDUZ51MhiaoPJYqgIJnDfaA8A16Yb9E1GqUy7vzIYpj7GB40PmjJoUl3S1QVbVZeuyomU44VL9/PZpx1kcvcy0STGbsZgtIARELCiFBgZj0RsX7uRLTiINrEHkpppduollSZYI/k0prZ7NprJoYRsRTHbp8gOVpB6dOQI4wg7VURTWRTbrSe/zLdfd07bfdcbvheWz68zcam7MJeqTt76FZdd5/O/v/7refXJT/Fensc3fhR+8wJ0OucMYG666SZ+9Ed/lH/0j85uofqJT3yCF77whef15ldcNdbI1IL8xuzKSYaJsnpOW1oIZJxbAoc5PaBuP6u8gE4KkVj+7vl04Bef/vfItxPSh2J+fvRN6NMx/QcVnTXP9ffPsGtj4e9W87yUsMDTDT7scMoKmUOdrOh6mF03wGS1EN0HaW0nBruVi/1mvdrnrUJbsYyOZpIVo2qbYl1UFHs62IkjaCN2zs5D1zI7lGJysa/UuQA4k3uqnsGbOiFaI/qXesXLdSw+UuhSBnJvFFVHoyso+xq3MkA/OKltqc1c0xJHc+e35ho01qPGtACy1bD4sg6irI0VGsMFHwTkhPkqGnHE7LoBPlJ0TpeY3NUhcXXQ5aSEYnYp/9p26yz1H18yOi8a2YW4jz1ZrmNPtWoAy26dW6mAyPS0qqliQjHCKEKT5qUUwelW+wLIxJog6fQN9TiO8IOUfG/K+JaC/uoUTeCZvRPckh6nwHB/NeREtcTHJjdwJu9xeruPO9mhc1KzdG+JOb4u1vS1DiQkdoEaFVBVQFmIR55kXVM81OX0SsRGt0e2N6JjSno2pwyGrapLaQypqkh0SRYiJlVCFuYUMoDMR6zlfazy5EBqKnQp4MzFkK8AAY6PBsyqiGRPhY5lor9qxzh0G8oZ6YoymDajpgyG3FvWygEGz0o04Za9p/jkdUt0zhjS2Na5On7eZUGc10Izti5mkrWZPHMKd1CqzV1rwkQXKyhF1bOMrtGMbynp752wL5Y5RGQc02HM9qBDMB26s52v3a1LW++z2wCscW7i/ZPf7Dl/EhP8+Lv6ADzt9S/k+9f+7AL2cPb6g9NRezwXq/typdQ7XnUYTn5qx+/eO3zeeWfgnDOAue222/jYxz72qACmCXG8mis4D1YmxEqp2v3KzzNdIit0Ja1kFat1wFrYR1HWKfSVTKLbIEsHKqL/QEbyuykEiEaSU2KykTiHVU5SmButRmMCUFXzib1DHjeT90Zr4xz6zCYdo5jcMJAuCLWLjaftwqACdlahC02xZFvnr2LJEo0dduwFAFQB1zUiPp3moBRuqYOZeeKtAjMpZLXQKLQP6MISj8U+2XUMwWrspMInFu08uhTAE4wWt7NEUXZr15qDXXonIrneIABR+7nzWrNSabTogGpBZiir9rGi/rwa955aOLujnANrUVFEdWCJYmDaVTEfyznrog4yy0uqZDcH5kqtJxpauQtizq12QcsTKZkAh5bOqgnG4CMxXFG+DhhOozqgMdQWvvXLNQRtULnCdxNGN/Yo+hrbmRHbir8483Se1j/DXjviwWIPI5dypuzx4dM3cOLMEn4tYXiPZs9ncpKjW4S8kMBgpQjdVFgBpnavrGnOygXs1DE4BioYykHMbL/lgXIVgMO9LfYmYxJdcboYsBxNuS45w8h1yIKlqwtGPiXzEVOfcF+2h+PTIduZ0L6mNiLa0ujKU3YVyoEZG8bbHXpJgVaBrsnZZ+X7PfFJSxnzQaMJLZDZKvuUwdBVQjvLfcThzha337zN9OgS/YdibFFBEVor6jlIrFkODZPBLoA5owlJJD8bRTAWVQdAB2OE1lc6qBR+kDA5GDG+peSbXvAJjiSbJLrkVDHEoXlwusL6oMtdJ65Fr+xSyK60eveZv+A/va0R7f/sBe2j0W68723b/Playd95fX5Rju3Af9GwfFF2dda68/tu5uZfv/PSvcGj1DtedXZdz5cf6TF8zyXqwLzlLW8hzx/9g3ne856Hf3gWylVWyuj55BlEawE77IvFhUzNqUx1Ar10bOocE61l+3qlP0SW4vCQM7embN/s6T2oOfihiQjcvZdOC0iru9GA1DSp0Fg4N90JV+ebmEYvYlqqWZjNUEdL+pVnesOQoCN8pEnOZPjYoAwoo1CFxwaHS7SI/jOPmVVUXSuAI6/QpcfHlu5DU7GW7qZUvYhoLLSxoDUh0rhu1FIkyq4iW9Uor+mcEVtkXQXMtJLOS8eiCt9ysRsDgWyPobsyhNMbc2BWBjDU13EObFSa1Lzl0LroNFQ/tRhK9nBdUvOZaQVxRL6aoKtANPFoJ7qhfG9ENKooh5Y4NVTlQpDmbj0p9VjdlycKWh5eFxPELFooX0rx/pVGI9utRy9vNUSKUKfIByv3TLQioCXgF9/qXlSonS/bHdS0rnphcHyNIdsT6HRzYusYFwmf2TjEiWyAVoFj4yXWtnvko4T4eMT+zwSW7thEr20RZjNxX9RKcryKUqjPhWttfrULkFrZZivQB4qRBq8ZLxmmZcT9oxUeGK1ww3CdRFd4eizZKSfyJY4km7XAXqNVaHNpNqYdtscdet2ctaNL7Dkui0tlT6FLMDm4UrOSzugb6fC4oMhCzNTHjFyKUZ7MReyNRhgCWy7FoTF4Iu1wQRMpx9BmvODQUT62ukTVs5iJlfEiBJRfABCLJjltrlitFbULC1cuzC2Tm1L1Z2o15cAyPqLYd3iT/fGIJTMlUo4ocZwqhySmYjmZkT5tRL4ZX/w/st16RHU2zwDwLe7nH3fbyZ7Hdxw713p5NeTOn74Z9sI9b/sYb/mWJyarmC3v2fHzgdv/SqhfV3E9GngB+JujE97xqsO89j3nTsk7557mwYMHuf766895x+dSH/zgB/mmb/omDh8+jFKKd7/73TueDyHw//w//w+HDh2i0+nwspe9jDvv3IkY19fXee1rX8twOGR5eZnv/M7vvHA9jn9YBynUHYCH6zCgFYYra9vOU3ALFspGi/bFGvIjS5x+fsr0SCC+ZkKxJO5gITEicm+cykIgdCTVnqqSrBdrayctXYsva/etxQ5MQ2lrQNPaBt071zG5F+CQ1N2XIBxs1dhABojGFdF2QYg0Pm7CucQxLN6qsKe3xXmslwrtLK9kHyGgShHxu0hjckc89phCuL6Ns9nitTXTqk43Fj52NHLYmWxbrnbn56nr8LHWEKE+vwaI6LlttTi92R3WyyCgM9SuZeIMV4PSOqfHRwKe5JoEovVMcglSQ7xZ4VJNvnJlxCRdcd+TS1SPRx27FA5lz331kfbfbl3ddaV9T3QVJBerqJPY63tXsE1Hpt7Qyz2ZSpLk1axE5SV6mkFeiOjcaqoOuBszrlvepBuVdGxJP86ZVjHHxksEYNjLSIc5diK5XIQg44s2QoNOE8KgS+ilAqjq+6YKQh3W9fhgZhXxVkX3VEX3VCA+YTl9/wrHv7CPE5/Zz19+/ul85MS13L55gDvGhzhdSDekCJYsROQ+oqsL+janE5dY68jyiO79EZ01TzR2KAc+gaoXWN475qbBaVbthK4uWHd9pj4mUo5r4nVcrXvZqrqcLIdsll1O5QPKYDhdDFrKWqpLDqVb5HsdVVfLwl1ZyfVtMtpqIf5ZnUbbD0/PFwqVanN7QlLrX6w4mrlY4VI42B+1oZ+RqjB49toxz+yd4GC6zTP2nsLdcOVQkq+078rFrHfvjfj7X/d1fOMrPvC4/y52Hbj9rzhw+18B8FPf9zr+/G0JS8vnv6B1NvexSwFetl965Zlv/ftXHjznbS8rKXMymfC85z2PX/u1Xzvr8//6X/9rfuVXfoW3vvWtfPjDH6bX6/Hyl7+cLJuvjL/2ta/ls5/9LP/jf/wP/ut//a988IMf5PWvf/2FHdCi/qIuZeqskAbELIZYGr0jp0QZLbqNOtHX9zqU+wdsXx+T7Q0M7gH7kQHpGZgdSHjw65bYeM4SIa4TmY1uQ7VC7TwWFrtejaajmaw3E/hmot+4lfkAWyPie0+RHh/jY02xGksQ2gKP184qglaUg5gqNbhUbJXLgXRVkvvXoXKEyAoFLVBnuui54QE1GFMKO3Ekm4F03ZOuO3onSuyolHDNrELNpF0vji3S0bIzTzwO+MTIymDTJVFqJ6BswEjTdWqdesSdrRXqg3RqrJXPowFCzc9aE1JxwFFeqHNVz5If6Mp5GAhWUaWafHhlcJavuO/JRa5/+GeDS2qfvFtfHHWlfU+ke0KtL5xnjASt8FF9L2q7w3NNjPI14KlF536py/bTe0yvrXj6wdPcMjiJVgGlArGumJYxlddM85jYOJxT+Eg0kLjGBlg6zyGO8L0En1pcT+x/g6mF62VVA6cCPS6wmznRZk7vWMGezwb2fdiw7yOapTsVyYMxoxMDHjy9wuc397NZdLk/28PxYpmxS3EoEeB7GavyUYL6fI/+g3JPz5cM+QpkByv0gYxrlzdb7UwZDIaAIdDTuYCSeJMlM2PskjZAc2Az+iZHE9gsO+1r14seIfZkS5J9tmhTHRqTmJauvHDtG3ey5uf6s5FxYa5Paqyvg5WFMB8HdH28kaowKuDQrNox18TrXJesc11vgxde9+AF/R1dirrSvisXs572+hfyX//opef072JP4Icf2MfwA/t4eTXkZV/9P5kt7+Ff2LvPax+/tvclO36+lCDjau/oXNYl5le84hW84hWvOOtzIQR+6Zd+iZ/92Z/lVa96FQBvf/vbOXDgAO9+97t5zWtew+23384f//Ef85GPfITbbrsNgF/91V/lla98JW9+85s5fPg8PbSDB0WtdZmHMNYHJDe4wglJuaFw1ba8qnYda0InAdwgYeOWDut/p+C2m+7jo8s3oVdyvvz6+/nwPTdwcN8WsXFkb95H59689v0XCplyet5BCKHW2tTuKM0xNQL3pgvTGAl4B0FJ9+hoRnomxR1cwaUWl8qEXRfSRfGR3ISLgUG5QL5i6T84wx5dJxRibayswXWtBF0mBg2oqaNcSmvrSOEyN1QyHyniUwV6Jg5lJnPoopLuTseCC0z3WbZuhn0fF5tnXUjXibLY+Zm0dtX1z07ObQe4aVzIGj1Q81kaWXmkqgBHCLUZwzQjGjuqnpyzrykezXm4pF5Z61wZnOUr7nvyFK1H68I8Fs3s4a/ZzX65fHWlfU9cpAmJRhcaiDB1B0bnrp0Y48UxEkDPqvnkuhHvdxPGN/QZXadZPrzJ04drfGn/fhJdcabsMbQZsXEcTLf58KnrqbzGlQajoOrUCzBao7odcRzrJnOr5tq0ZZG1Buygrnmj0VUg3nJERoGC3Gs6JzRmJpTjY3sTjkaeT0fXEHULjuzZ4kB3hFWeo5Mljt27l+EdluEDjmjiKIaGrZs0+TNmPOPwaSLjGEYyMW5smgG08qzne9kbjch9hEOxYqcY5XFoBiajbzKW7Iy7pvtJdMlW0WHiYlShMWU9vg06ollpcl3O1n2RP5JHPg4BauqZ8l4eq9qUQakaoMKJyYDRcsrhaAOtPEeiDVzQOBRdnbM/GlElF0cbcTHqSvuuXKzqbJ7hufVj7f7lY257/B+84UmxEhadiVyPO7/vZn72o0M2bnjvI7b7tb0v4eZfv5OHy/WvdpBxKevK4Micpe69915OnDjBy172svZ3S0tLvOhFL+JDH/oQr3nNa/jQhz7E8vJy+wUCeNnLXobWmg9/+MN88zd/81n3nef5Dj3P9vb2judDUQo9qQEyUDuTuIWVfz/viDSOZAte8cFopodT1p/veeb1x0lNyc3PPErHltzQPcNfbz2DjTsOMru24sbgxa1ML4RrNaDF2p0dBl3fWJWed4Bc7ZjmG6qbm0/w44iQF+i7j2LShDDoYZa6uMTgUrE5Vk6cuKL1DLM1gbzYaR3pPcHIBL/sWuLSUw1Tqq5htmqENqYhGnlmq3JTL7sW+hYz8+hCrJxDZCiHMUHL6mA01lSpdEJ0KQGVRDUQLAs59wUXMgEkdYes6ZYtfm7OofQiuHE7KGeEUAtZE5IzGeWghzcKXUhatsmRc0w0oQ7ovNLrcn5PLkZdDZ2XRZDSgJldytnVVZfje6LC3CBENxTe0stjqMFKaKnEqnSorA6bjCVQ2XVjir7GxfC8fSd4bu9BXtK5H4PnU9NribRjbzxhVKZ0o5KHzixjjqaka2CnvnWzDN20pSo34cbKy/Go8LAbnVFQyfHqhi7cbOMCdmLongSfaPKhITtt8LGhSqFYibg/txyNl6nWU+y2Zs9d0D9WtnS6sGQolj3XHVznlqWTVLXmpWOkQ99qXnxEqktSVbLmBqS6ZNVOOFkOMXgezFbYF49ZslOGVjJkTuYDKq/RuUJXYHI3Z0xYI+Cl0b8sjNdNJyY0TIuaRbH4Oe4ANUYTrMKUgXRNc+rUEqf3DbglPc5QZ3R1jsEz8QmlsTg0D4TOuf/BXsa6VN+VJ2M8Afj//qvfqB8tP+Z2lyMHpRHNb/ckP+bX9r6Ee972MV5eDR8BXODSu49dDhH/xawrFsCcOHECgAMHDuz4/YEDB9rnTpw4wf79+3c8b61ldXW13eZs9S//5b/k537u587+pA+tmD8UpTwuq/kkuKmGvhTFra9+235Wimr/kGMvgeufeYKNrMNdJ/Yx6M/QCu7fXGH5M5rh/SXqYxCfmRHiSBzIFrJfhAIVyTy6qsAtHEcDolgQuoeFlbsQpCvUiP+1ko7KmQKzPUaHQBxFLe0sOC/86NlMwJEXx67QhpzVdIiGApEYSW+eeOxUAI7ygXTTtwCFIIGWygd8YgmRpupoTOFJtjzphqMYGHGjyRcyWxrjgkZbVBsktCDOMH/c2iQrcSRrnm+6Uo3ttfxxoOpBXG9O6JyOmO2LcR1NtC1GA3YC2R4LVmGyKx/BXLbvyRdpfbEBl+InP/mUcCK7HN8T5cQgxc4cdlKit2eSvxLNjVeUc6iZJ1T1ItbCxBmlCLEmX1VUzx7zzP4Jro3PUAZ4ZnyCu/IDbJRd1osu4yphO0vxTmMKGD5Q0Tk+ka5+U62NcG3RDBJY3IrZdd198e0kX81KMX4pa1dLIzbzKgTYDsQbms5pi0sNVUeRL2nytZR4K9A544lGpXTYXRD7/K6hGGhcz7EUZ2gVWLUTALq64Jr4DGvVEIdCE7gxOUWsHEt22p5GVxdCJVOBMhjGLmUlkuc7pmQ976ErhZ06VOGlo9Nkvfiwc3GuudbN+VZuDmS8B6dAh1ZDivZirRwc2geibU3vuCLbE/M/u8/gpmedRNf2l0In8/R0zulqwKS6OkT8l+q78mSMJ/9x+HeZ8u07fvf6n9hsH7/tzcvz3z12g+aSVgOeBJ48unnzZ/5dzLN/oHjU56+2eu17jrH90tO8d3hxxpQrg+T/JNc/+Sf/hK2trfbfgw8ucFPb1Xq/43c7LH59mHcBaspTKEvphlQVRJbpoYQbv+Q4X7r6INvTFO7vMvn4HkYf24v64xV6pzw2cyQnp+hZWYs4nYAMM7cCbgX7zs11OLU+pLUYDl6OT+l2sq5MPXmHuU6nppuFspTXd2o6QZ1SH6bT+bm7hXAvozGZIxpLVorrWulOKIhGDpMLaJnts9ipx+Q18FAIDSGxBCPhbD4S+2QVAigBOqYI6FHz3mF+zH4ByDXX3DkR6DedmUUNUAMqg9+hfWm7ZlXV+v8r57EbM5KNCl0EfKLRucPkjnS9IpoE9Fze9EVZj/k92a3LUrsOZFdePdb3RLuAmZboSS4AJQQRgCvpggDiCDbJUFmBmmYwy1Djad0Jh/G1ni+99iG2qg4fn97A7229kD/Yuo1PbR/hExvX8JnTB/ncQ4dYOz3An0zpnFJ0Hxyjz2zLAlYzfoDoF0NAlQ6dl6i8vsnV91ehSQlVWVVeBPBFJd2h0qELh5mVmFGO2ZphN6YkJyZ0H9hmcNeY1c9OOfA3GXs+M6N/95j0xIRou2i72T7SuATwMKli+iZnyU5JdSldlxBTBoMPmr3RCI9GK89Bu8XhaINEl3gUkZ5TwBJVsVV1eCDfQ6IrDnW2ibYV8ajEzMqdHaZQj9uN+UsdNE0czS34m/HEh/kMqaGeVR5dXw9dOOy0Ih450jVFcbzHp0fXtG818h1GvsO2S8l9xNglF+1v7mqsJ2M8cQ/9EP+1+83tv4fX639ik72/+ENM9rz5or/3parP/LurA/iea13Mztd5d2Ccc/zu7/4u73//+zl16tQjrJP/9E//9KIc2MGD4kRw8uRJDh061P7+5MmTPP/5z2+3OXXq1I7XVVXF+vp6+/qzVZIkJMlZbiY+EPCt61jT2QhNFwPmK/6NvkKbeTfAB4gt5AXxZsXGtMPpXp/wt0vsv8NhcnHfClrhYyV0gvFMwEtRihtNI15PYshyQpbPJ+i1DeaOqq2VldF1J8Wh4lgeN50LF6SL1JQKoDxqPJX9m5q6ttjVWABDVA6zlVEsD1retI81VVpTI2Ye5WBwX4YKMD2YYOpwTJ+YFuyUfUOVKDprDps58uUI5aF3vERNZjLGNaClBmbtcej535nyNbhrAEujVfJBgiyDlvAxpYH5cxjdCvnxHj2aYdOIqtPBxZqwEhNvFESbGbqKKZeufFvwy/I9uUx1sW2Ud+vc6qnQhbkc35OgFgT8ShEiK0HBWTWfEDf0Ja3BOChL6YZ309o1S+53sa64c7Sf1JZc311n5iJOz/psTjs4p/GVwp6O6ZxQDO+v0FsTwngi9/Z67Apa3MyCSFnm4v7m/yaxvjmmhe6Nck3not6m0ZP4utsOkCp0KXpH5QKqELt95WuKbimdGDszqFITaceqnRAph9HSTTlVDsm8hGF2dcFDxSqHok0iVUEw+KBasb8mtI8j5ci95UQ25O6NPXSPB+xm1naO5CTkM5AxttaTNprVZlyAOvxStbk4QSkxOKh/D6AwkqEWxG0uHgXiTc3nN/fzoqUeQ51RBEPmI0a+w1rZp2oo3ld4XarvyqUeT7Zfepr3/sZv8o38lx2/f9ubl/mmv/4e/voZcg/7uurqAS9v+vGv4mff8heX+zCe1Hrh4e45b3ve36gf/uEf5od/+IdxzvHsZz+b5z3veTv+Xay68cYbOXjwIO9///vb321vb/PhD3+YF7/4xQC8+MUvZnNzk4997GPtNn/6p3+K954XvehF5/2ei0GczQp/KCUDZh5suSDsb7Qp7Yvmeo14I6P8iz38+eeeQe9YIBo7kjM5pvCSPp9oTO3KRVHueN+Q5YTJdN5NaEDNor6jCdus7ZRDWQl4MUa6OPCwVrlk1czdzQqhizXOXiAhZ20qcW3l7Dwhy9ATsYDM9hjyFcvkwDwEMxjFbI8I/X2sUR5cavCJxqWaYtkyPhKTLUtwpI8Vqqo7MAGSk+P59aw7TSGEeZelpriFBoRFdp7ZU1+P4LyAF9iZB6MXrl29T+mUOShKdF7hEoW3EDQUKzFNkKfNrnwAczm+J5ejrhbwstshuTLrcnxPGhcyQLouaSIr/mXVLljt0FXUDosqTQj9Ln7YxRuNmSk+c/oQnz16iM+eOsikSljL+5za7rO11WW61SHkhvS0YvXzJd17twnjaTsOKF2DGKvnblpWix1wkyPW5Gq1gKoGNk1OWVm1LmU7gBfsGGdUUQmjYCraG1XrfHTuMJMSu5nTOePQFTiva6CScyDaYsVOSHTJkp2yZKcCWoCpT9hyPbZcj6lPGLmUSDmWoyljl5B7S9/kODSnpgNGn91D71Qlx9AEQzd20tZIzktzro0JjnvYZ7HwT9Ud+/m29fnX+iBdemwWiEZwamPARtUT7UuweDRjl4rt87R/3n9Dl6Ou5jEl+d6zr+6/9Pk/y//2hU9yo+k9yUf0xOoDn3jTJaOQXan6l/2f/5/nvO15d2B+//d/n3e+85288pWvPN+XPqLG4zF33XVX+/O9997LJz7xCVZXV7nuuuv4kR/5Ed70pjdx8803c+ONN/LGN76Rw4cP8+pXvxqAW2+9la//+q/nu7/7u3nrW99KWZb8wA/8AK95zWuekAtGQxcLzi2k80oCb9uJMY/EfsrOL6dZH3PwwzHHbIeNZ3lGN8SkazF2FhhfqxjeKytxjW0yShH8Qhek0W8YM18hg/n/9WqeqrUei+n07TFr3QKd9v96H4qFTk6jmykXwjIBIqFdYSUMLN4sGR+yrfA+GntM4cn2RJgiUPYM0QTsVFa1ZnsNyktgZZVCNA3YXFy/JocTgoH+0Ry1ORJqV+Mc1uh3ms+hyeJpqWQ1NS5U83PyXq4BzDtHzsmCYWRrFzdqwGlkn1q6U8lGRbY3ouooTB6oepFoes7mVHMZ6kr9nuzWk1u74Oix60r7nugyEFKFSy0GUK6S+1TlZBJddwJa98mybLsxDdAwuWNwH2z0VwirBTNi7tyWSZrWYqWM9SQPpHRPBDoPjtBrG4Sy2DF2AXX6vJNgRltTyYKD0tfhybU2xss9sq0FXWZbtTYSX3crTEAVjQtmnTVW71N5T8CI2UwImNyTnLE8sL7C+t4eSVzWYEVW5w2BVTNm5DttN2bFThi7lL7JmPqYFTvhaL7SHs4dkwNi5fzQXlbvATuRsVuVNW1YS44L1MCy7bzUYMbM9as7RP6NuF+reRBmQ8OrrZmVD0RTT7ytGG8lHM2XuTE5RU+LYH296jO0M0JY4UqpK+27cjFq+IF9/AG/CZ/7dQB+99nfxv/1mXcC8K9+9Et4KT/LBz7xV8CTL96/0Bp+YB933npphfyXo75p+5MXRQdz3gAmjmNuuummJ/zGAB/96Ed56Utf2v78Yz/2YwB8x3d8B7/7u7/LT/3UTzGZTHj961/P5uYmX/VVX8Uf//Efk6Zp+5p3vOMd/MAP/ABf+7Vfi9aab/3Wb+VXfuVXLsrxNVQsQP5fBBHNDb1ptev6ZlZ3RZT3xA9ucOivFKe+NGV0c0U5lNW0asnR+5BHTWZ1qny9gtVkBYQFF7H6vYPz88m6MXPBe3M81FQ2rVsHNQWw0Jlhkdv7cBevpktxFmDW+OHbk1sMe5ZiIM5jpvDo3OGNUMGi0dxkQMT7RsBLB9J1Efp7K9kv2bKms+6Jjm2JWUISt90kOT7VUtuUUgJKGh53I0bdAchM+5xqLZTtXDujGspDmA/oSYwqK+F154YqFUvpfDWiShWuuDIAzJX+PXki9R9fMnpcJ7KrpfvyVK6rgUZ2pX1PTFahjZfui1boLJcORuPq1VCZqlqXWFXSBTe6Db7UWUnvZEywhtGNCe5IhtGeAx35TqzZLuvHl+geDwzvnaEePIkbTyB4VBzX2VpK3MhCQEVy7/SdCB9bjAuENJpToxqRe0Mrbib0zURe1V0JH+Zjl9a1dqZhB9Qd/RoohKjb6muCltDjdC2wcarLx/Zfx9/bO2Gq5tSiJTNl2UwpgyXVJV0tK9CrdowLmv3RNlMfo1Wgb3KM8lTeMCoSunfGDB4shaodWTmWBiyCAJlYtbQxtdB5CTWIUQtju1hd0y73KR/kGvgASrovPoCZeTrrivi04fNbB3jR4B56OseF+Xg6zq8cOu6V9l25WPUPrvseDv2S4vPvOcVP7NvPTzSn+InjfDC//7Ie25VUl7v7MvzAPt7xqrMD3ZveoeC6c9uPCuHhSyuPXW95y1u45557+Hf/7t/NJ5BXeW1vb7O0tMTXLv+fWNuZ60UW6UdNZ2JxAtxs00ywGwATgnRjauvGkMSU+/pUPcvW02Syf+CDayLYLMraPtnVlsi1k9iitmaBqrYDyNTmAkJvc6g0EcCy4GK2KHZXTRJ0WQk4q8X/i52jHbqShW6TqtPuw1Kf7PCAYDV2LCuGswMxduaJtkqqnsWloo+Z7dH4GPrHPLqSADAXK7QTbvHwM2dQ22PpPDVAsdHgNI99cyx658+L16PpzDSfV2R3rhou2jCDDFL1+ZDE+EGH/ECPfMkQbzuKJUs+VIRpxife8TNsbW0xHD66U8gXSzXfk0tVjwZkrkYAc7HzYK6E7sujAZiQOco3fmb3e1JX8z15yYt+BhN3UD6gZxVmc9x2LICWttSYqgByD48svpvi+3ErKC+WY0bXWKaHFMWKJ712RGwdRWXI7xtw6C8Cg0+fIpxca50kdSdF9boyvkRWrJnrMcnHFt+x6MLNzQRANCPeE4wRUNLcQxtwskitaqhlag4IUGpOMWuCgzsJwWpU6QjG4AYJs0MpmzcZJs/KeOZ1J7ihv86yndI3OTelJ0hVybrrc7oaMNCSEbNqx/ig2XRdpj7hZDnkeDZkWsWcmg44/omD7PvbwODeSX3NBSz6roigfWTEErry83OuvHTaKyfn05yj1gRrCGkk+p+82OlQ1nyGkSXElmopoRhGrN9iGX9Jwdd8yR182fBeTpZLjF3CetHjf33mGu77zjftfk/qutTjyaFfks/og1+QBfcDt//VZbFOvhh1Me2ULzd4aerR3Mi+81f/kuy6G8/pe3LeHZi/+Iu/4AMf+AB/9Ed/xLOe9SyiKNrx/Lve9a7z3eWVU8ai+j38+mY7+W9F9S1tKcypRXXnQ0WRtKmLsh1wRPivUVGEcp74wZzYeTr3pjKBnmZCGQBCnu/kHkOtp5HODkYTGrcYt2Bv7EHFUevO1Qj3YcG5C9qVvlBTpuT4inm3pnmd96iamhZCmJPMQiBkmYAgIE4ixk/r46MYM3MQIChFOYwoe5p8SeNShZ0GmImY1VuFi6BKFZ0Nz+D2ddjcFoq4c3NA0ZT3ck0b//7mmixaWjerhWrh5waALXapGjDW/GzM/LOtXXai7QJvElxHRKe6Us2l2q0nqRaBSgNmrkbwAgI4LhaIuRLAC1wdXZgrqtS8G62Lan6vWtSOLAYRe0fIcplkRxZ8JBN/L0G/vVMOXRrCQwr3hSV8ApGD1Yccw0+cIGxs1u+h5fUNPaoRrDfvW1aoer/BSqJ8M6EPSiyTVaPJWQxyrif2zX5C061wvna8rKcTjeslyPZlhc5qulk3RTlPtF2xfBfoMuWO7Wuxz/X0Bjle5PF4NF2dM9BCIVs2U7IQkfmILER0dc418Qb3T1e5Z2MPs7/dw747PN2TBbpwBKWollLKYUzZkzDOqqMxeSDeqlp9ki69OIpNS1Q1E/DV6GRqy2hAxoymS+W8LKQ1Qn8AF6NcINkIVPfFfDC9CZ4Ggzqg8+nd03xhb5/7Lvof2W49Wh3/EfnsbqaZsF+d4AUEdFwMEHPg9iuHQvdoXZi7Xhu45izbn63OG8AsLy8/aqDXVV9liV9bl8eLk36aX6m5eBzmXYBGu9LksTTdmka/UlWEshQwsz1un28E9S21STMHHbrefxnazg6N4LLWsAQnNpdyEGEu7K/F6q3bSlN1u78FLtAeg7KWANKdMUZ+bmyaTVR3mAwhyzCnNuh2LNPDKWU3QruASyU4TAURw5tZIB55tKvBSwy6hOW7c+Kjm6jRZM5BtlZW6fodXDeSjJkqoPMKVXrMxohQmwgQ1X+yNaVP1TSxVq/kQuvIhjGEoqEz1Neh6TZp0Rwp71HTDOMDiQ8UqynFXjEiiKZXvoj/qVpXK3BZrIsBYs4GXr6v+N2zbvvr8f/1hN7rXGoXxJx7hdqkpL0HGyOPm7wvkMWsNK0F5Qsr+yHgY0O+J0Y1DWkH6aZ0s0Eou7pw6LyCWda+ThZt/LyTHc8pYk2XJESm1W801OfGNQyroXHvWtSENP9Axp3KzUHYAiugYRQsakmC0S3YMZMC5QN25lA+JmjLZwZHsE9zHOyMmLqY/fE2pnZAWLVjUl1QOoNDk/uIU5WszH5+bT+zT6wyvDcQTTzlwOLSHsVAMzlkmO0PuDSgSy1IIyjS0wnxKGBnAZsF7MQTdSwmMuhJtpPSrcI8TLkR/rcfcH1uWsvnHCCaBTqnYdTv8InBYZ6+cgaAtbzPQyevHA3Mbl19dfOv38lP/sZdvP7Tr7jg118p4KWp177n2CNAzDV//rRzfv15A5jf+Z3fOd+XXDUVnJPJup87WgGtpgSYr/IvisIbF5PYAAvghQYg+HY1LBSl6DriaIf7WP1G824D7NhPG97YZNLU3ZLGcGAHDawWtIdmAKnpYzu6MzAX/De0t8jueO+2C+VqTnRZgNKEqiK69yTDrSVGz1imGGjsTI7DxQpTAAHyoSaaBlSA7qmK5NgYvTWei1Wtxa8OqJZTXGKoupKPYHJP2dNUnZSyB93TfToncqIzE+lcVY4wnc2vv1YoE88HbGvnoLC+Hi1wac6l6cY0q2p5gdmCJEDQKT5S+F0As1tPsC4UxJwPcDnb85cSzOyCmHMr5QIKoSuFVnPh5gYiNc04pPG8U7LoBFbnZgH4OihYO8TBUSNUqMY9rJPKuAKoJJnbJ7saZMRRq20JTYhm/XqF7Iv6eAliHdyE/i7aKQNzdzLv5+diJE8laCUmBa12cU4va7rtOIcGVFHRKR0mS1FVwic3ns79N61z/dIGm50usa7YH43oahHzr7s+G1UPTeCO0QE+ce+19D+Vsvd+12aP5UPN5IhmfEvBYM82h3tTOrZkI+uwks5wXjMuY9a2+pRrHaJNTXrakGxYOusRyRmL3cpQs1y6MIt0uVrnukP/GllCKu6bPlHkQ0XZU9gxrD+0zNaoi7WOfK1D93Nf5MFiu/WE6xe/9yZefwGdmEejjb3wR7+HY9e/7TFf+8Ev3HRJaWeLgv7XvufYeb32vAFMU6dPn+bzn/88ALfccgv79l1ZyO6Cqh5ElDHtiv7c5SrM2+m1rTLWSmclTeY2jE54vgBKa1nlX+DMtha/9e9DtTDpbuhPQJtGD3MDgbrToIx5RGbKDsc0reeW0GfpJLUdi2bfO6hboaWTEeYUs3nivdAFgg+o7QmDz5T4YYdqkBCMwsw8ygVM5tCVx2xMZbVulhFqYNgIVatDK0yu6eAi0cWY3BNNHWZaEW8GykFE1ZMcmWx/QrESE40r7HaOWY9kn1VFyAuo83uC8yhf5+UoPXcve5ieSWkNOppPGsoKBehtSEMg35OSDRauy27t1gVWA0YeD8g8FlXs8cDLo21/qYDMLog5h9JqDgycazUUqtuRyTGgCgkxDjUICKlQspv7tZ3UCnIFeLlHNrkrrmsprUK5QGyWMN1UAjB9IHTlHhuabo81rQsXWku4cKTRs6p1E1POiVuY1W0XImiNUn5+n1SqPY+2U7FAK2syb1RtVRwW7r2txkQpMW5RClM60rxib9mlcyZic7SHjx9aYu+hLfpJzr7OmIHdR+4t22XK3Wt7mG506Nwbs3I6kG56lIeir8lWNds3ezrXbfF3Dj1I3xb0TM7MxdihI1KuFf1nByNO3jDk+GzIF07sY3ZfD3+3gSBCe1vNFzAXO08o1X52xFFLU8tWDGVPka8ofFR3y05Y3KahigLJRBOPHrZguVu7dQHVgInHo5S9JvkaPvZvf/OszzX6oGM8NngB+LvPuItDv6Q4fP/rH3V/T6SeiC7pvAHMZDLhB3/wB3n729/ehlgaY3jd617Hr/7qr9LtnnsIzRVX3tc33trVasekVwYYFUX41QGzwwN8pNrVsGhcoXOHHheSXlw7tKiFdF9VOenkNN2BqkJ1OnO75MVWPMjEvHEYA9BeOg0wtwyu+cbKiDXwDjACsnq00J1puzCL3ZtG7F+Xari9C3S5kOfSNWpKKwlKm07R22OSdqXNzOkDD7ffdE5ccYDi2j2UgwhdipYnPZWLMcCkrEWkGjupCFqcYFyicLEiLFmKJUu0lBJtCJ1tUWiqrJ53yLwDP/9ZRRqiSAb2TiJC1drGWjV5Ac6ht6YkIVAuOMjs1m490bpQLcv5gpezvfZCgczDQUrxk5/c8XgXxDxG+brLUZTt5D10EtwgbXUnAh7A9aK64yIZYQ1ocUkzfiBUsjo8sexpir6YpMg4FBGPu8TjJXm+K69LtlxroKIrWVjCB1xqQSFamADBAB6xWFYKZRRUcl9UNVMgxDU1LBdXsNBM8rUmpPE8K6VZNKotoWVh0LWuYKpy7T6JxKI/KSriMxHdU13yJcP0wF5ODeHBPR68wk4VJoP+0cDq2GPykqAkEDofaEY3KqpnTLn54Gm+dv8d7LNCQR25DlMfk+iSVJUsmykOTaQqpmnC/elehlHG7Z0DbLOCtwblY3QhY5jOKsC1wCV0YrGgVopqEDM5FDM5qJkdCFQDV9PAIdoymJki2ZDrqSuhUO/Wbl2sevyuyNmfb8DL+dax69/GoV9SrbboQusdrzrMf/6y7+RfHft93nD4NbzrZ3/hgvd13gDmx37sx/izP/sz3vve9/KVX/mVgAj7f+iHfogf//Ef5zd+4zcu+GAud6nISiek6TSATMjjCJYGlAeGzA7EFD0tOo9CJt/BQL5k8EZh8y7xloCKaFzVifVGAE7p2hW5EMnEuupGqBBwsUaXATOrsJtT1HgmlN2qgtjOM02aWuycNG5k1rYDQtuxafJhGrASR63LmrK27fioRr/TdC7q/3ECulQnnbuBtXbECwCnEXw2FppKEYpCDA4WaW7W4vYvke+N0UUtrCyE7x2sgklNvcili5Js5LjUEk2AIAGZLlHkK5Zy2KNXOvQZL6YEcTQXxDb0MA2q0yF0Esq9A8qhdHWCFlAZtAzs0ciRrOfo7Rl4j54WpLsi/t26zPVEwMvD93MuIObxAEnzfANkip/8JNEvPPsJH99TsVo73sgSIktQipAYfMdSdi3ZqiFfEoG5cpKTpR0yca7v9d4qfMNW1uAig4+gGNQWvwFcDCpSTIaKiddUPUT3USh6xxS2NlKxWSDdUJi8vufXAIuq1gJ6T0C3NDLZSNLrW3pz0PPg44b21riNgTiXLTp11Qt2rVYTHuEOqSpVGwE44tOKaNvQPWWoUkPVNaACJpNOi8kdygeqjsUnQlmeHlJ0X7jGLaun+ZLBca6N1jlRLTF1CRtVl5mL6dmcQ/Emm65LV+cYNJmPOBBtkXctyYGKO5OCY919RBOLyRIR+LsgoZ8kuG5MNYgoe4bZqmZ0I4SnT1keTjncmeKCRhOogubUqM/4dI/0aEQ0BpPT0tx268qob3nTGwGe0AT6aqsLBS8P38f5dGPOJtT/1o/8Fn8DfOvR3+JbX3X4vKljTZ03gPnP//k/8wd/8Ad89Vd/dfu7V77ylXQ6Hb7t277tqgYw6DolObKg7Fw7srrE1rNXKbtKEndnAeUCdupry2DhKlcpZKuauB8JwMkjudl2FSazmLrbEJrVtVja/0FL67nqQNAJ0bjHns/lJPevCxe36awsdjeCmrt3hZqm1oj8QSbxhhqIKJSqE+gX7ZF1LdBvbJoXzQl8kMZPXAv4F51llJqDKr3whfBh3s2xjc6mFMpdFIkwdaXP7FCPoBV2WgklwgXsuMClVlYGE4PdztDjAt+PpSsDVP0IbxW6kAHNR5rpjUN6eYEaiXFBC15CkPdNE9zeIeMb+nirCAbsLBCNvaw6BgEw+bJlttcSzbp0TmTYtTFmbXxJ/9yeavV133Z+N6E/eeeFBZ6d7X0udF9Xcl0s8HKudT7dlPgXn9eCmPKNn7lUh3RVV9AK14mgG+E60jn2BmZ7NVs3B5Lrxgy7GXlpmUwTylGMnho6JwzRWLCCj2SBzFuoNe2US0HAQgjSRSnrbeKA7wRC6oi6JTpybKz0MDPpsqSnNSpYkk3AB3ReG6UUtRay1tDIAIWMhXXXYZ5KH3aAE1WJpkVl+ZxeFUetGUBQCj2aEkYTlDWEXqfN7KKm/ypr2qwW5Rxq5tGzEqM1thfhYyNgqwY+3mpcImPubI+meP6Yb73us+y1Y5bMhG3fYexSymAog6FjCgYmI1IOrWQfEy9UMYemb3IOJVus7pvwMe05dfIwpohINipUFYFWotHsGWZ7DOvPCaw+c42v3vcQh5MtPIrMR6zaCZFybLkOZ5b63DncxxfUIcKxiPQM6HIXwJxvvfWB/8+jPvcnb48eE3x8y5ve2D7f2TzDv93+Rf79v93gu3+0MVMoeeGv3cs/ecP/AcDHvv9G/u/r/t+LduxXWl0M8NLU4+lm4OzA5bG2/c9f9p3nDSbPG8BMp1MOHDjwiN/v37+f6XR6vru78qqx2zWSFRKGPaY3LuEi6bik6xXeKMqBAY1QmxKFrsR6F6DsKbqnfXvDiidedBwrBl0GEYjbelWmBBfL75ouQ7EEa89J2OdXSO5dk5WuSqhOAWp6VN0l0mpOk2ooW7WzV5uZwoJ4v9kO6pW0Ba1No8FpRPDN/txCLk6dd9MaFyxWCG0YZSh9SxcLjVvLsMfsiNjjpmcKVOFbm9BgNWZSUi0ngML1E8y0lAGzdvNRVcBOHbqU9616imzFEB9eIr47R1FbXZdOqHmRpdo3ZPumHspBPHKgQOfyejvxBCu0DTv1JIUnW7FsPqPLslJwPLuYf1lP6Tpf8HKhr/liqUsBXh6rC3MhVLBFELNbjywfG1xsCVaRrVomhzTTQwF745gXHX6II51NIiVdiO2qw1rRYyPrsnFzh81RhyhyVJVBqUAIimIaoUwg6ZTEUYU1rs2CmcwSrA4MuxmprVhOZsSm4mh/CaMCG9MO4/4AkxvAYqfS0QixbYHJPNBRSXij0QJEFrQuQmWzrf4yWMlWmQdaBkLlUE1D39XaF2sgTUTng0MFXWtJ3Vwr03Ryantm1RxXXaoK+FjjUk22YpgcVsxuybjtmqPsj7aJlKMMMqWJlMMFzaF4C608PmimPmbJzJj6hCxEGAJTH7PlOkTKsSea8FX77+YdN+0h2UrwRjpP3iryZc3koGZ8U8Xzbr2f5y0/RFcXXBOvc7oakPuIFTvBB0XfZByKNtkXjzDa8+DeZfKPL2P6u5Tkc63HAi5Nfd3rSr7udY+13cLz278IsABepD72/Tee9X2fakDmYoKXxX0+Gp3sfMBLU9/6kd/iXef5mvMGMC9+8Yv5p//0n/L2t7+9TWWdzWb83M/9HC9+8YvPd3dXVnkHNhaAoKVlXq32sFNHGqDq1InKLhBNXJv5ostAMEoctxwUS00XBKpEkWwFko0CVIyqxHt+ts+2jibKKTqnAjYPZMuK9Iwsgo2uSYjOdNEbY+lkPMy+uQUaMAcqTUekLHaem6kd0kBeow24cu6u1uxDzSkCmIU/+jZ7xc1X6BpA03Q8asrW3LKzXlWLLH7YZXZNn2zFYLOAKwyhY6k6mmji2vdXAeFpKyUrb050REGBLh0mq5gd7FB1NJMDmng7MN0fE53uoSYzyVGouz3VgSXG13VJthzK1QJTH9AuUHUM0bhEZYFyEBMVFary2I4MjmvP7dBLV+HuC/lD2q0nu77u2449Zbowl7LzcjYQ80R0LLsg5tGr7Ft8aij6ko01ORzY9+xTvPTgnRyKt1gyE2LlcGgMvqU3NZPwMohtMMAD+R6OzpYZRhkdXaBV4ObOSQByH3GyHJLqksxHpLpkpe4G+FXFspny+ewQH1u9jjtGN2IycYp0qUaFCAuoSb5TrK4RExfvoRAA4ju1s2YaC2ip9T1t5YV0Y5SCOJJujqkzVaJaG9sGFte60sgKeIns3ITGanw99gQjYCYYRQiKqmOY7rVsPhMOvuA4X7r3QQ7FWxg8Pig8cs0SXZLoklUzJgsxY5cy9TEbta6xDIa+ydrrNXUxpvarXtkzZnIwri+CMCUmRxTFrTNedMP93NI/SVcXdHWBC5Jb0zcZY5eilSelRKvAoXiTr9pzN3d29vO/1npU5cWfRO7Wbj1eXQrwAnD4/tdznEfSyL7lTW+Ej/zWJXnPh9d5A5hf/uVf5uUvfznXXHMNz3ueDHyf/OQnSdOU973vfRf9AJ/0UkrE9WlCiCOKpYhoVBGNKpS3tWBSVoNCLJ0XbxTRVDou0QR0pSm7CuXr/JNKYwqLHTvKocXHhmgSUMHjYk089rJfH4gmkkGiPJRdRUiih1khK7FfDjUXTRvaoIAmrEyzQ7yOdy0oU7VNZ3C1taYx0t3RBsp8p130IijRhjZckzC3Il4U5riFPJzabllZS7CGYk+X2R7b8oBH10SYPNTuY6rNNtCVRxcOH+n283CpFQvRrGydeIqBCF1tHih7mukNS/Q+l82DPrspswMpduYxmafqSu6BLoOw5VyoU6chGhW4rsUn0iFLNwPZimJ8zQWb9O3Wbl1QPdm0sYtR0S88e5dGdpbykcJ3NdmKJl8Bt6fkuXuOsT/eZmBmxMq1gCXVBfusdBEMHoemDIa6X8E+u80z0g6pLjldDTAEbohOk+oSHzTPScGhWvCTBel+r5oxBo9Wnr3RiE/vvZZwr0XngWgqxjOqqOTebQ3BmNZFE12DFCUuaSEy+JoarFyQxaVUuhR6WogDGswXsBoaMshCnZ93anCuDo1ExhJX05abcMwazBgXZChSEKym6mqmBxW9W9f5+kOfY9UKzbe5XpFyrVg/UpVkyXiIbUXik5ZW1lWupZmt2gmawJKdcqoYcsPyOg8+P7Bxxyo+0ngLs2tLXnTD/XzN6h1sVD3KYBi5FFcHb/Z0Tu4jUlUSKUcWInzQGOVZimbccMMpTnZ3x5Nzqdv+zReACzM8uVi1SD+7mutSgRd4dFH/tz4B8PKOVx1mWnq++7+fOKftz/sb9exnP5s777yTd7zjHdxxxx0AfPu3fzuvfe1r6XQ657u7K69q7QTG4PsdcYEJVuhisQgufSzhVclGSXJGOjESZFXzg0NEvqSJZkJ/ChrGhyTwESSNPtkOtShRwAsBsmXpTtjMi9bDqbbZIVbJfi6093oeftmI6oMIMonieRCmVqg4rXU9tcjeB1RaA4SyEnpXXovgm305B3oxT8W1tAE5iUpCL5vE54XcHFnF8ygdEbopfrlHvmIJWs49aFWfZ2jP306dUBdc7ZATArp+u2JZQGRQEa5rKYYyKqbrvhWxjq6xdO+OJdAtinArPYJRpGs5QUkzycdaKHoDTbJR081qoOTq/3Ul1z/Z1JS7MTDnVLtUsItTlwO87LqIXbrSZSA4ob/6JNAZZlyfrmMIbLquTLKDY+JjmWyr0E56DR6jBMho4IjdIIrW6KmKB80y217YDz5oshCh8ZQYeqpgEmKKYJjWOo/MRzg0PmhwimgSiEYldlygZuKaSVkREtFsqiYKwKhawG7x3Yhsb0rV1VSJUKCBNsDRlIHO2oBoMxddTSaujqqq7aOdl8W4JJFxqLaPnoMd32pg8Aoaw8uZQ3tPuZxS9g3ZimbytJJvv+5z3JIeZ9N1GZgZqSrFHtnHOz4Dh8LXnZRIOaY+pqsLtqquAETlyXxE1+R0dUHf5Dxn6RjPHJzk905/GW4toewHBgfGfPnSfaSqINExpTMMTEYZDKnOAejqXACo8vRUThEsZTDsjcbctucBPlcu8/lL+Qf3FKnv+geXF7yA0NPe9bOX+yieWF1K8LJYi2DvQqhjT6QuaEmg2+3y3d/93Rf7WC5/LU7QjcZ3I4IRHq/XIgB3RpEty6pMNFKYTISQPrHovCJEhmisUE5ctVQVqLoiorSzUDvOCFe4ShWhK491LTPxFvKBEXGmD6hyIWzRGoKf/1G24ZSe2royqoX9teDfaPxyn3xvl2JoqVLV0tp0JcJPXQXSDUf382tiGFCU0tFpNDRKQajtiBcdyJRGxQuDRbNq54WeppJY3n+py/RIh3yosXmgSoRq52IFBKq0tgON6mtpFdG4wqVG7D21/NyErgWtcDXg06WIXDvrnnyoCYlF19SEbH+nXrVTmIloaXxlKJYt+ZImHmlcN5YUaxqutgDCYmBQNX97t7446l/8s+971Od++p/9+iV//6ux87Jbj11By/08KHEFW+lmLNkpZTD4oBnV2oupT9hvRxytVkhViWN+j+/Vk+OeKhjogjJo9pkRy3pKgewnVSWTEJP5GKPn96xlM+VM1aenczZdl+PFEvFpQ7ItVFzp7GuoWWCq7oIErSSbJo1w/URoWwciNp6pKK8tiLvFDn1OnkVyPz6a0jsa0z/miLcqonGJHhfoaa0lVEo0N817RXaeqRKko9Pa/DeBwyFApSj7htERy9aXOI5cf4a90ZgT1RKpKtl0PQ7aTQ6abUYqJQsRDtUK9TWeqU+kS+MtZQ1kjPJoAkb5VnzvUXR1QWSEKq0q+Rx7SUGiS0a+w1bVbelmiS7p1p+RVoFUl20naOIT1qseubesFX02sqfAAu8XSf3J26PH3+gx6t/7s4OwP/oX93L/mVOXJE9lsZ4s8ALwof6bLur+Xnj43KNYzgnA/OEf/iGveMUriKKIP/zDP3zMbf/+3//75/zmV1xZK1QpmIsU1XxCa2fi2c+SJhhF1TeY3KPrbX1sUU4oUHHhqPoRQUF6piRdR1Lms4pO5fGJxUeaYlk+Am8VykmHws5kgt8/WWG2Ju3qVPCNz76pAyfdDucxpZSsnFlLGHTJrhkyORBR9sAsSGKyvZIUbMoAKMYHLdN9Bxnen5PcebIOhlyoRrjf8qMXDAOaa9UMNlq124Y4ImhVp0iLuQFAuiFGCKaQTlPQYKceXXh8ovGxphhaTKyJxgIwipW4Bj2gHUQTR9E3rTOPcsi5RxEhjgSodZR0VtKaUz6wrQW2jxRl3xIhICdohe9IVyvZqMhXLbrYBTBXS12o/uWxgMviNk8GiNmtp1YFo+p/4KNALy4wSDDlHrslQnMUq3aMQ7Hpdg7cBs9UJwJqtKYIhlg5BjprwUyGpcDgvKancyJVoYM8dkEzMDMyH7FR9fjjB29leA8kZ3Khz0JreaxcTU2OIxH3RxrXTyiWI7ZuiNj68oyX3HInX9I/RuktebCtUH67SnlwtsIdg/1sLQ8IxpJ2NZ0zmtQF6dQ3HZeZjC2tdqbRwjhPwM9/B62TmetEZMuGrWc6nv2c+7l1eIK+yfBB9D1lfV2yYCmCqWl5Bqd022HZZ0dsui5RNGLqYwYmwwVNqhvK13wqlPmIlXiCSZyYxwQIQcnn4ROmPibVJSOXcjjeIFaOM06AYqOpKYNhq5LPc7tKOZP3qPyuiP9qqQuljz0acGnqFT99I3Ajb4VLBmJu+zdf4Ci3XJJ9Pxn1sWPnbgZ2TgDm1a9+NSdOnGD//v28+tWvftTtlFK4RSrR1VZKifNKvTKli8Yvv+5WlAEzreifgNmqxRtFti8mWZeBymQOl0YEJZ0OH4mbi0sk40WFQNW1mNzjEgFBjVOZN1AMRdehS9F2JGszmnBFsUKWjosETdaCey9BlaGxDa6dtza+pI+3EI8D9oyIIL2R/dqZavMGUKq1dR4fiSmGR+h/YQPWt6AJ82x0MuphqL7R1xg9/znU4Z2RJXQT8r2paF06ATuCdK3ETgWUNNci2RDg42ONizWzVYvNvGAio3CxpuyJXXW66UhP5LjEEJaMAMlUMg6UFx43kcUlingkLmfZPkvVUZQdcYyLJpI/E40c5cCSrdQdLwf9Yzmq9ESj+hrv1lO2zgW8LG57qUDMbvflqVkubkxNQDlF6YTWtWSm9cS5IvMxy2aCC5rcR2y5DktmRt9kAnYQfYdHUyL6DR08hpxJiCiDJQuR0MV0TqpKSjSZj5n4mDJYtlyXzEdsPrjMtWsOM62DKa0GF6RjXzlwBZRKwjaXOmze3CXbqxg9q+Arb76HI+kmU5fQNTneq7r7UJDqks2yy3P3H+dz2rM1W6HqaHxkgZQU0FNTazel0zIX7JtHjiveS+BlWeHTlHIYMTugiA9Oee7SUW5KT7Zak57O0fi5GcIC/c5o0Q8NTcZAzzBKjBLGQcT2iS4Z6EyMErwI+zUBrZx0ySqFLhANjRFdy9F8mTIIfWzVjimClWseDA8Vq0TK0dVFTS0r2XIdjArsSSacVMMn609vty5DPR54Waz/+y0v4q31/9+t//FFPY6j+uoFL3AJOjC+sVF82OOnXHkv3QetoHLocQZ0KQYa5QKxD+jCkZ5yxJuGfCVmdI2hSmPSdSdtdOdRBFzy/2fvv6MlO+86X/jzhB0qndhR3WpJVrBlS0bGCCNyeh0wMGANYF4Gk+FyDcY2i+QRc2FgmZm5FwyeIdwx4+GaF/AQTfbYYK6BwRgTnJNyd0sdTj6Vdnqe5/3jt3dVtazQ4XSSz2+tXn1OxV1Vp/be3+ebzPRhY42uHFVqKLuGaOgo25JoVrWEeYmHnnRd/CDJtqP9yBizuj015tfGe5WmIvOijkWeZV/aKdmRBbaeEVN2FclGoOipOlgAkqHHDt1E2hasIluUk/1k21ElmuEBw2jfHvb8S4J5ZFUKImdTxZouGRCTZ8PENIZN50W/rBSuE8vBOwSSLXlukzvxnTgBLapyaKWpIgFvJveYWACWcgL+8gULAZIt+dvzka4jNqHqgS7qNLdKrg9WZGmmCORzCpcICFVBJGcgQMpHimDlMyi7ivYpL+DTaHmPdnP7r4o5V/blXIDLY++3y8TszllP4190YIeKle0u/QMph+M1imAoaimZCwJOplIkT6oKjAoYPEUwaDwRjr5vYQiUypzxVFp5PJo11yVSFcPaC7Ja9diqWrz92K20jxrsUJ4DJ14XVVZy3IssipQQWfxci+HhFmt3BLo3bPKyaz/BM1orGHwNmCyaQOktWzUb04syjtgRm0WLzeUOo8QClmAsukqIQ0CHIJ7LmdjlJjwAX8ct19eFJJb+lVZEvmjJFwM3LG9wQ7JCqspJ+MGs/ycKAjIyFRHhiOuI6gU9ogiGVJUUNdOy327h0ROpFzAx+HsUj+SLhLElWHBtOQ4YAnM2o2cyuiZjn91G1yDTEIiUm0jKmhCFVJdgYewiCeDZnSt+zjVC+WU//eM1s3KOz/OzL+BXfvC953y/K3We/5rvgQf++JI+5zlzmm95y1vI8/xTLi+Kgre85S07slGXbRo6W5tJSkq6VqF8oOxK+7vrRLjUUrUMRU/jWorhQc3W9ZbBoZj+4YR8sS5cLJtcfSi7Bh8rXCRmfZTClKFmDsTsn2w55h7O6DzYF/CSF1OZVu0xCdW0kyU0aS3WEua65NcKeNElRIPA9o3SU0OQE/ZkLUcX0qPiUo23skO1WZhsa3vFoyrYuqVLmOvWrErNAs0896TsUukzV9DqAITQShjvTym6BhdrzFh01y4xlB2La1uUC7i0blzu1PGWHT0xhgYDVceQLSrKjpJUNi25/FXLiDepLqdUQSR8AKry6KoOUDDQXnFEw0C+qOrkM+kT0GWgbIux344kxtrHGpdoqpb8vztPPZczvvhSgZeduv9j53KyL7sG/os7ugyYIqCLgC4VrtLk3jKnM+a0+EKKYHig2MdKJTHI+6Mt2rpg5BOGPmHTtcnC1GsYqaqWm3XYdJ1J6tghu0GqSg7YTWIlJ+9lsJwuevzRg7dTvXuZ5Y9UmPG0kFiFINKuskJVjtBOqZa7jA61WfkMzdLN63zJtffyjNYKAH0vUcQjlzBvaxZJVySqYtGOiJSjG+UsLg6IljLGhxzZsiKfNxRLKa6bCDBpphIApcY5apTBOCOMxnLcq2XTPtYUHUW5XHFNZ4tUlxJ77BP6PiWrV6Sa98GjKYOdeFQi5YhURapLimAweObNCI8W4BMMW67FlmvR1oUEJwT5nJRT+Aj83oLblk6wZAd8Rvsoh+M1fA1GjPKsu6583srT1gUHok0ORRuT5/dBYZUnNlexOuXTZC4VeJk838++gOe/5nskengH5lJ6X5q5ayBpB6/dIfDy7fEXnfVtz/kM7du+7dvY2tr6lMv7/T7f9m3fdq4Pd8WNsnbSeaKKkqhfYPJANAjk85qyK8Vk2gWSLYfOIVsOjA4qsiVF0VOMFw3jZcton8W1NLoQT0s+Z8gXNPmi+DCqRGHHnnTTEfcdyXqO3Rijt4ZC6UeR7MibPhWjUUqh4giltUi1rICFcm+XU5+V4FJFuulJNwO6UJMSSF16QiRMki7qE3ytsLlHucBoj0W7gItqeRkwesYiyhpUmkqyGUzBirUC9mZBjTGT9863xbPi4kZOp6m6crDRhYAfXUmZms1c7ZERSZhyEnbgYkm80SW4RPxBzUjstAC1dFPSyFQtX/SxnTx3NBKQU6ViyASRdhQ9TdkzJFuO+YcKeo9UKBfIFyz5UoSL1ATg7c6VN+/47WueNr0vu/P0HJMFTB6wGdghVOspH+/vZ+jF1zKnM7IQS7GijyaSqAUzpGcyAQu15+JYuSzsi/KTk3WHmjA5JytJJvt4fg3/PLqed248hzc9+Pn8wd/fiXn3PPMPOEzhRZLbigiJIUSG0E4JrURkY72EbH/CymdYOp+xzmfuO8bNrVN1JLF4b7YqMaIPXErfpZPX2jMZka64rr3OtXNbLM2NCG1H2ZVFoqql8S1JM5sY90GOb0UJZUmoXO3tnGFjQh0C2q7Yl/Tp6Jy2kgXUYtKXY2krYT0iVaHxGAJaeeKatRLwldDROT0zxgWNUUGSwrwlq7t0tqoWR8eLbJZtgpJFsFYn54bWCpmPKIIh8xEHoi2KYBj6ZAKEAOb0mAjHgh7R0yIFXLQjEl2RmCl43J0nnktdIvmOt0S84y3ReT3vhYCXZtS1PwiwYyDmUs/Da6d39PFe+dCfn/VtzzmFrPFgPHaOHz/O/Pz8uT7clTXezUQVC72tNwa0uhHbRxLifqDoalwcoatQ63whXZWTdDsO4rEYCZvRmM6LjpWVHCupXyZDWJFNh8lEk6wLhxpmk0jLCcUO4JwY+H2tV26mYWAiy/Bwii6h+4gjXRXmJl0zwhpFitGBGFPIAbVqaaqWIp9T2LEwMFUblBdgZUq53XivJT2wjH50pX5/6tjm5v/ZqX06DdhynRqsOGF3glXkPZHP2ZHDDkp8bMDU4CaR9zAaycqZSOyg6EliWjSEeCBgy8caO67ldoh/SHlQeQOm5LOoUvG9xMNAa93RWhOGBwWt1RJdeDHwK/EqeaukeLTvCKmesFK789Tzjt++5pLEKV8IaNkp9mRXSrY7ZzMmd6goYJJAvA3ViuFDxw/xT73r+bK5j7CgRzzCIl2TkapCTq71mGU9YjvIyfawBjcOTd+nE4bAKE9Uez+yEFEGw7Zv8dHRNXxg/RAP3bef9jHLgQc80bCSfZkPuLqLxA7qRS2lUF5CZcpuxPozLeWzRtw4t81n9x7kRLnAVtVmT9RnyQ5o67wGVQnrvsP+aAu09M70a9P6kc463SjHB8Wq6dEvU9SDBl0FIsAMrCzQqTApz2zSx84YJd1oykMUV5PQgEaat89u44ImUhWltN1AgLjugmnrkk2fToINekbARYmY/iNVUQbDdckq61WXo/kSubdsF5JGFm3KsTYbxzySL7KhO8zbMfujLdkOYNN1SFVBW+doJa9h3XUnkr5rog1Ka0l1yf22c3H/4J5G8463RLzwFeVT3/AC50LA0vNf8z07sg3f8+q/BRogdPX1zzRhBD/3jK/aMRbmbOesAczznvc8Wf1Xii/7si/D2uldnXM8+OCDvPjFL74oG3nJRmlpsFeaQClGwqoieTgwXy0y3h+TdTUuUZNUMu0gWRMGIJ+XEspiTpFsenSl6uhkT5XKCbl2cr9kTfLydSZgRWWF7NSrCrQmVA5l6h17UzTpHaFwEl8cRwIYlMKnlrKtaJ/2pGslPm4CAjzRwKPaM/Is7ym6mtFBhR2CjwNqDK01WW2qWlPmwcUwPtyhe3KNUNXeoMb/0oQ1NPHJ0WyksqbsSPmkpKvVYM9Il068XqDyEmUUYPBWiXzLKrIFQzT0aBcIQdFak1VDU3h0ERgvW7xFWBfARYp422HyuhW6lh7oKpD05TXZoReWp/RATL1YhksNZlShtMItRuRzGu1E+kEqfpzdOfu5mCDmSmNbGjC0C2R254nGZA5bFVJiPDaYQjPM2/zW6LM5ddscL5h/gFhVbFVtYltJp4keU6DpqAKvJY3HBUWE+Cm2XTqRSKWqpI9m07V5JF/k71aewcMP76X1cMTyyUCy7YkGwm7r0qMrL95DJceGRp4ctKbqxoz3Rgyvq+i2Cm7qrbBgRhMPTdvkkw4VrcTvsSfq0zMZHZ1TBMMBu8UD+T56JmPOZixEY+5N93Iv+9hWKd5a2lphtiN0WcliXTUjq6qPL0prQmQJVhIpq5ZieW5Yy9aKiV+oAXgezUo5h1GeBTPC1cWdZfhUgYmfWXnru1YdZV2RBctm2aZfJTy8uch2v0UyloRMkES4RFe4oCcMmnTrKDJi9IxfaeSTiXQNxFvT1vlEdrY7Tz2/f89P8fv3wK8c/dGL8vgXyvI8/zXfw//2sy/Yoa2ZzktedwMved2bd9zYfynmUoMXOAcA06SPvf/97+dFL3oR3W53cl0cx1x//fXcfffdO76Bl3ScgyStG+XrnbvzqHFGfGwN2+8S72sz2icJZCpAsuEnno1k21O16ghIJcZ45ZhItgDi9QJdVOh+JsClabyvHJSlpIJVFQQvJWhGT7Ow6gjlUJayCJUmhMgyvqaDtxKVrELdZ1KBKuXxi7mEULMbduTQXU3RA10qWmsB5aTNPtlyRCOoWtJNE/frks00gaKomZc6QrmqpW1lzXrUvTNKR+Dq+wHphpuUn9ksCOirIzxdatGFw45Ksr0pygXsWHL3o4GjahnKriYaNuZ9ASZVW01BSKIoe4Z4qwaAdbBBY9qXdDVL56QiWcsxhaeYEx+OKSTStOxKkIEpxAdTtTRFTxFv7x5wroS50sDL7FxtbMwvxd96uTfh02bsoMAaic43I0s0tKQbmng75l3Fs1l7TocX7/0w+6MtDthNhj5hQY+lPR5IVUlPjwHYdG1WqjnKYNioOmgCp4o5tsuU+7eWOfnQMr17LYeOOuy4lHj5AHbspEPLBXQppcvBaFnoASmrBFxLk88rzHyJ1Z55O+Zj2TW4oDmUbJB7SeBqmVKAhKrYa/vsNdsTFigLUgh5LFuiZWT1PLEVUVpR3DhmQIugDXaUEjs3Kbqkqqb1ACCeziTGpxEukWPV4XTMNdEmPZ1J8IFSAiKUZtO3GfmERJdopMwy0xGpKkmVbIdB5GhGeQiWYTBkISLRwt0YAj4oNvMWg2GKOpkQ9UW6HLwi9xGRGrIn6gPCOG269uRx582QVJesV13aOudItI6u/TGPujY+aB7ZusoVKk+TudQStXOdP3/9g5d7E8567hrcw++zs4zRL17/EuC/n9VtzxrA/B//x/8BwPXXX883fMM3kKbpU9zjKhyt6rjguuW+jg4OXqGyHH2qoLU5IHm0TbGvbpc3Cq+h7CrsMEjxVR1XbLKAHVaYcYke1d0qTrpcpDRsmjA2iSluqPQQhCpXDWCYbpdK4+ltrGG8bHCppJl5W7cOb4uMLO9F2JGcqAeNpKn1PemqRQWRaIEwRlHfiTwLT9nWKCvyrJDGMDCAqxmY2rzvnDBBzk9eWzAepWVbTBHwkfTAFHPiQym6Gm/bRMOKbDmidUqAkck94z1WTK+lxD6DSO4a70sDinQhfhgptaxjp7eyKRCsBEDpWgrXxGDnexKS9QJvFeM9VlLHjIQGmDxgvbznQSnSDQ+7ErJzngZsXCgTs9OgZafN97uzO081QUvaoq5KVFZhMotNLPF2Rboec+/xG/nA9UdY2N9nX3dAYisOtze5JtmkW7e8b1VtfFAMXMJHNg/SzxPGRURRWNyxNq2TmrgfOLgVsFmFrRkXVftH7LCcHlNcqNVXdZ+ZlsRGb6VIGCVSraWOMD+iQ1CUwdB3KWMf07U5PZ2hVZikf6WqxNXsQqQcczabRCsvJ0Nu2LtG6Q3H4wXWF9uYImZxuxDJrzUTGZk86Zl9Y+KHZMJeNCWRKY4CwygIG5LokgUzpO/Fo5P5CDTEyGJZUQMWHzSZj9j2LQyeWFV1iaUUUY7KmGoY0TuhSddEWj3airivv4drks1J98ya65L7aBKZHCuHr+maRp4WKQnAjpTjkWKOQf9peM50ked/O/IfeNlP//gFycne8ZZox2VZF4N9aeZqYWHuGtxzxvv6e3d+B3e/779d8OO+/5fODrzAeXhgvuVbvuVc73L1TANcGpvJ45RGqrxAlxXp1oCklYiJPjL0b5ojGnqirYJgNSar0MO8TvDyM6bEOnrYT0/6pRG5Tj5LYlRRErQY4kNVb0OzU7d2+hha41sRVUv8NcpD2TPSOeMjdOExuafqGDHDV4HRgRjlAgsPVAQDG7dYirmAcppkSwnwUYqor6nahmA0Po3RWnwiBD9dKWveqMbMb4z4oypHenrM8Egb5SAaepItiTke7Y/IlgzKCbjI9sboMhLWCChbGh0JkNBFQHk1KaXUlQCasiVeFRCDZ+dEgVrfmr6PWp4zn9OUbU08CER9iY8OVmEyL+Aq1pA5zKhCl56qbdC5dMdULV1LznbnfObJAMgTgZsrmWl5srlaWJhd9uUSj5FERJWJ/FaVFSqz6MgwN67oPmqo/slQzC+wNr9IvqC4tw35PoeaK2h3c8pS9rFVZeDRlHhLY4cwtxlorTmSzVxYlSZO3wd06fGRFplY5QWoGC3gpfaVYBQ+lv07IRCUPEYIsJwOORRv0KkLIYtg2aCDVY6uySZyqZFPGBUJbZ1PulZyv098JFXKetHGase+Vh+jAlllydoZ2YN7qDoRUekEwFQONRxP45VrX44qRRqcrgce2Zpnc3+bQ3aDGEdbl2QumjAsy2ZApCpGjakew4KSksvMR4yCXJ6qktRI1LF0xgRJJ4s8o1bMVpmycuwg3Uc86WpJ2bMMtjSDQsIUbos2WDAjtPITdizVEsjQgJVUy2KlRDJrYYzQaL27IHY+08jJZucr/mTAVz/3iRvgLwZo2Z0z57Hv7+/f81Pc/a8u7TH8nAGMc443vOEN/PZv/zZHjx6lKM5sbV9fX9+xjbvkU0vIQl5Ix0oDKmauD83vSkOWS0pXCMxv1+2hSk0N7TAFHiCGe62nsqtJgpeeABLyQoISjBYpWcNuhJmW4gbEAD42NUgIuASKjiYeevJFYV7suMKOPFVqcImqPSlygIiGHl2KlCweeMxYXlvZEwN+1dLkPU2veQ3Na5r1vzhPqCpUEkNRyvsTxejC1eyH3FcXHjsq6bpA1RbJl2tZyfif1yJ/c2ArYWBMFjCZIxrKe5QvRuia0YkHgWjkqVIBNfHxDYKvCzSVQuVuIgNrr4gOHBCQ5AJYiPuOaKvEDEtJx1ECbOywxFtNtB0o1S6AuRhztQKVJ5urBcTsziWcuiw4aAENAScS3xAIpcP0A1Yp0lNawERk8JGm7FmqVkLRSUmVLEzFfVmMUl4YltnjSqjjhhuGXU28LQqsliRKX+/7qJ9fKenNUgrlPNHQYQpNkUUcSLeJVcWyGUhXDZoyGBJV0dYSNuCComfG0sXiI7ZdOkkHK4Nh7GNapmTsIhJT0bMZBzvbxNrxgdYeqpbBbqkJWJmAF5gs9DWJmdEwsLbW4d7xfm6MTxOpinXXJgvRBEQAEx/O0CcYAqlyxHiGNElh09SyVBciNQsRLihOVfM8PF7m6PYi8Rak65UUTrcCyiki4zgYb9LROZmP5PF1SealTDRS4o9xKIY+IcJhlGfbpXJZlZxxKrA7FzZ/9pVd/uwyPv+v/OB7LyoLczXOy376x2EHGJhzmXMGMD/5kz/Jr/7qr/KDP/iD3HPPPfzbf/tveeihh3jb297Gv/t3/+5ibOOlnaqSKGXnmEqm6hP2KJbmeYDQRD7WjMRgJKtsjeSrARkNi2O0rHZFVv7Vo4oSsrxOPXNi2vfhzBZ4rWQTlJaAgYbtaK6uoOxIw7wKsHWDBQ/dE+IVKdu6jgWGfFmxcJ9jcNAQjKHsgsmYeHFC1KR/GbwV2VkwCq2UbJHSAqaslfhLYwTsNUCrDnfQ2yOU76AqkYepSuRaZlyhSi8lnm1D0ApTiFQtXa+wI4ePpIPFW4XyCpdIFLVyASLpzwkG4m1H6/411GBE8IHg5QRBD8e4eAHXUrhEka7XyWYdi2kKoEcOMyzRRUVIDLpwuNTgUivbGmkqe85fj93Zofm9xa854/e7N952WbbjYs8vxd96SbpgHo99KX7oA7tdMBdxVAgSvhJZ8VKW1TQmuLmNUlCAqde/CIGklIWrkMbTY0UIBGMIicG1Y8qupWprRvuiSTkvtecv2TYkG8Iqu8RIklfpJ4xQUEq2raz9m94LW1+vRSa64vpolVSVbPo2Q2+FjTGG3Ef0Sbk2XmOt6krLvB2wVnXZ9G2W7IDVssvhZIPTZQ8QaVYVDNe0tuhXKa4V8LGqy4jrxb7IyjHE+4mqIViNqjzpuiNaifjY5gE+p3s/23UkssaTGWFhTle9CROSGvG++KDIgsWj5fbKs1nN4dDMhTHbvsXASZfMP24e4RMr++Cf5ll+qCJez8AFbKwJ1jAfZzV4qv2bKGLl6FgBbS6IF8cHTapLYuUogmHOZBgVWI16tDpnLvbuztU7lwK8vOynzz2R7K7BPbyn+8TM1E7NiVdfPDR+x//+bWctIzvnM7Tf+I3f4E1vehMvfelL+Ymf+Am+8Ru/kRtvvJHnPve5/P3f/z2vetWrznmDr5gxRk7Qm59n5VJNeeMZt9eT208Yk+aktywhieXAM9fBzaXkywllWxMNhNb3kfg4ooEjXs8wa305yAGhLMHrqZzNmOljYySJDOo0GZFW6ZrQUU4SxLIFxfaRiKoDneOBeBDIl9VETlZZJeDFwXCfQZexhA7Ucq6qLbIx5YK8NqVBh8nKIpGtGaf6vWjGOxhnpCdHDI90pYdGgTMKOxKQ5VKRkdmRR4WAHUlKmK4k2rjqaJTTmNxLCaito5FbdRjAwJE+vAH9IaEOF1BKyYlCltM7lhNUWhfJyeem42YVM0hs9exKpNWgFVVLE2/7T/mod+fiz2NByxNd93QFMxdrdqVjl2dcy2JCLImLTVhL7XNUXhiHYI34IZtpfJB1yWQAQisW4NGKKHsx5ZxhuN8wPCRyM2KP0oHgFDiFHhhapxLapySJzIy9pDjmDjMuZSGoZoJcZCeLRC4GvGLopJk+CxFtnddFkAVDn5AHAQMuaPq+xaFoQ4z+0QZrrksRLFoF5u2ItbKDVoGWKViOhuTeChNhoEo1rh1hyxrAlFV9jFUT9iU46XKxg5LO0Yh7D+znvr37SXRJ6S37oy1OlvMTBsSoMNnmApGODUNM5mO0EsnbatUj0SVbrsVHB8IEbxUpHz+9H/PeOfZ8qCTaKtDjktD4SfuKRwdznK563BKPWPfdSVSzJJhFrLg5SUQLir2qj0NNyjL7LiX3dhKzvDuXfl77q//jjN/fe+hG/tdLPusybc3ZzflI4H7/np/iZT/94xcVxDwReNkpCdm1S3t5/1ne9pwBzMmTJ7n99tsB6Ha7k1LLr/zKr+THf/zqLOKZjFJyIt50wTQsSh1hPDUXzoAa56AKEEXC3DQyqyQmRJby2mXy5XhiQG9KJX3UMAxIeeJCl3hPi9axbdRghKoUGEWo/PQ5nZPngMm2qHFJe8UxPGioUohGkGyKnCwoaK0GikLKKbULtE8EhtdookGgd9xNtqtK1SRus+qI3KxKBXDojb4s7hlN8G4K8mBG4tbIzDTgCd5jTm3SUYrhtR1cYgkKki2NrsLE8yI/e2FlrKboRpRdYYxcRxEP5bHjbbl9Z6MkWh+hNwaE0agOOZCCz0Z6h7VEqyPs/gSTB3wknqTk9JiQGHxkcImRgyegSgedSJLaBhV6VFLNJ7tFlpdongy4PNntny5A5mKxMLvA5fJOMR+jqwhtNQZQ+cwK/EQm5adRwpGdelVmbheSiHIpYnQgZvt6TbbH4/fl7Fnus6c9ZCkZUXiDVoFYV/igOTXucXR1kXB/h+5RTboZiPsak9dpl1qLZC2WY5mPNS5WhFIzdhEORUcVpKpC60AWDGlS8ki5SKwcK9Ucy2YACBuh8axXXXpmTFsXnC7naJlSChx1xbwd8cnRAU5lPexAASKto3JyDK29olR1Ck7lUEZYf62g92iF+1DCH+55Li/Y/zDXJJtkIWJQl2kmWtEOOaerHp55YWdCPDH9GzxGedYr6WJZzbu89/h1eK/I11q0j1mWP1oSr2coJyxV0BqdO7rHPaeOLfKhg9eyYEZsunZd7ingZa3q0vetSZllk8gW4fBIh08ZDHlh2J1LO48FLs284JH7eUF93bs/8i5g2mdyNvPnr39wR0osn2ze5M/PyP/79/wUB3/+4py7PBXzshNG/mPrK2d923MGMIcPH+bEiRMcOXKEG2+8kXe84x185md+Ju973/tIkuRcH+6KGhVFohPW0k8iki2msjEQzW7Dtnh9RtwyWk1ATGinZIfmGO2PSLYl1SvZdtiBk8b7lrAv4ruQeMts0VDMLdK732JObxGKApUkM9KyGa8MtTGzKGmdGlP0OhNPSNkS8JJu+BqUiJSqf9hQ+wuxtXQ4qcs088UIXQaqjqFsK8o22FGgtVEfYI2RbdB1GpmuGSrNdNWwYWGUFj+Kc5iVLXrjkvG1c4z2WbIlQ9yfrjiWHQ0YXCT9LMGInExX0F6RUk4zyKXks3KTks/ga4Dp3LTccybBTW0P6T4UMz7YouxKWlxUznyOQIhEhhesrmUV9YF8OZUAhV0F2RU9v7f4NWcNYl73E790RSeRXQiIuRCgsisju3hTzBl0ZbGRFmnrIJOT9sgSImrWQU+KoYMRj2TQWvalkcW3Y8YHWmSLhtXnBQ7eepI9rSEghZFVfdKsCSS6ZDEasS/ahkV4ZM8i7917PZ88vJ/Oh1NapxUmizHjmeOHa/aZUmgcrVk+tr6fbE/Esh7hULigMARc0CzUWreiLs4c+oRUl3w0P8Qj+SLzdiwJYMDAJRxKNhi5ZJJUtjrqoLyUJU8W+5pppNcgFQN5hbKB4DXJWkkv1qx8aJm/qQxfcu29RLXkYORjVssuJ9QCkXI1AJOOlkg5ymBomZJ+lfK3j9xA/2SPaNOQrCs6q4E9W554K5fIaSeR08o5YeWRKoD0RMR7V67nYLw1kZE1r7MMFoMnD/L7pCdGVWy7lK2qzclsjmJ4dZ8fXS3zRKDlieaLnvOl8v+vfik/953fcFb3+f17foqXvO7N57xt5zIXkkJ24tXhgkHM+cjEdoKFuagpZF/7tV/LX/7lX/KCF7yA7//+7+ff/Jt/w3/7b/+No0eP8prXvOZcH+7KGqMlaQtquVRd3OhnTs5DLaeiZiRCbUDUM6b9yDK6foGqrUm2vUT4zivsWJGUYrAvWwKOXCo+D5N5km0xZA5u6NL1YNa3J6b+6TaaibdGZQWhlaBHBZ2TEdlyhLeKdFPKKgfXGCncHAVMKaBAulhEFpYtyTaoypNslIz2iyytSoSxKXuKPR8YygqZn9mGJtY5ePEFhToO2nmRmGkj6WlaoSqHGoxo3V/SOmqp5lv41EwAkx03fpZG2iWdOdFmht4cyEG+AXC1REzeZ1/7cYI8V/178JUAGGuxp7eIOxHDg7Gkl82n6GLKpPlIo+v/q7aZFFcqL+9J58TwYvyV7c4OzrmAmIs5O2HgnwUiZwNmdoph2QUxF2dG+zTOGdINhRmbKUCJjCyE1bcL1kzj9cuKkESENMF1E8b7E/qHDIPrPYeefYoXH/wo1yWr9PQYozzHimXpHjE5eX1CnfsIrTzPaR3n4IFN3tt+Bu8ONwMpuoqIB4ao7+puGNnnmcJjM02yrjl1coF/OXw9nc4niVRFR5VkwZIF8ZvM6QyATQer1RxlyNmoOqwXHcZOjiEL0Yiuydmq2rR1wf3ZPnzQbA5atLcDyUaJ3c6ElZqNUNbTxE1VVgTnUKXGWE3rtGLxowlb5QJ/3L+dbi8jiSqM9hSVoXQG7zXeK8rCEoJCqUA1jNADQ/sRTbIZOLThibcK7LBCF7VkO6oTN2MrPWVe2CmfGPGTHgsc//h+PjJ/DV+w8ElSVbLtW3R07YFBM29GrLsOW66FD4q2ztmqfz/eXyB+pDEr7c7FmvfdlvBbF3D/1/7q/zhrEHOlz9mAmD/6Vfm+fvV3FpP7XOjsVJzy2cw5A5j/8B+mJUDf8A3fwJEjR3jPe97DzTffzFd91Vft6MZd8rEGsrKWhlVnXlfUlyst18XR9GQaJqtoAOXBBbJlQ7rhqJ3vtNY8rZUSVQi4yOc1c0crokGFqqT3xGTiARmnMaMjHbr9Eaoo5bFDkFbgJgGs7o5RlSUoRbQ+RlWB/nUJoIhGnmyPYbwv0DqlqOoVNuUg3XToMrA9Z/FWUcxbSbAJ4CLpsNGleE7MqU15nWFGKtYUWno9BTKNuV/Vf1J1p06o+21ULpfbtU0AkjiedgDAGczKNERhZnwgVOXUl2StPLcP4JvPqt7GqiJ4WUVL7juNLvZQzEVUbYNV0pBdtQy6EhlD1Y2kK0aBKT1mUKBHBa6WR+7OmXPvF/4WN//1N+7IY52rfOyJHuNsQMyVzsLMzqWWf50viCl+6AMXYWueHjM65NHrimgkgSW2nZzZ81Wb1lUjIWv+NxoiQ9WxlC1FvggcyNnTGjBvRyyYIT2dse66ODRLVqRcOQJcsmDxXtiSJTvgBXMP0H9Gwj9v3YgdGSl0HHts5aVXzHnMCJItkQ1nKxF/dfoWDh9e54DdomNKCgwdnWMIbHuRba27LqfKOY4ka2xVLRJTcTrvciDdlhN4U6AJArTGizy0tYS/v0u6EbCDElU8JoWzqRloCi6h7vCq5deVp7VeoT9uyE62qNotRnVXmfKgnTD42kOrkn4wVS/apRueZDPDDmb6REKYHDJUJcEyKgRUKeWfelRitULnmg5QpRHv6j6L3h0Zd3SO0tE5Q58wcKn4coKEHLigKb1lnS4bVZv3rV7HiY/uY/GB/GL9qV3V81e3xnzJx3Ym4OC3Xv2WC36Mr/iTAX/2ld2nvN136W/nTf7isDA71QHzVIDkTuq/yVfvyNMBtXfnp3/8vEDMN/3hufXHXbBI5q677uKuu+660Ie5IsbtmcOWfVntd+7MCOPZk2aYFk3WJ/ehob7nOoyuSdEVZAuGupCYdK0iWh+B1nROWNqnFXZQYoYFqqjw3RQfaUKkMZmYPMsD88QP5oQGPPlAcHUxmZXUFlWUEkNpNGZcYscx4z2aoBU+gnRFSZxxJQCl7CpspomcZ+H+kqqtqRJNNPIEI+zMaI/BxbDnHzbk9TZgBSR9DQQ4NMDFmKkJs9lWa2dYm0BQfqYoVBGyHIKAlTNYlRBklbLRQ2t1ZsFn479pnmc2aMG5aZeP8gQHipLoodOYxTmqhZRiMRawmDuqliVoYamUD0SDErOdofoj0Yn7x4Co3bnq52KAmKdLfHIDRs4GyOwCl6ee5PoBeWiRbEr/VIiMlEk2scHWgKuZ68pNPJihnVAutRjujxgdVGSHS/bMD9mbDuhpiS4ug+FkOU+qSg5FG+JBcV1WqjmyYNHKM/QJIBKv58yd4JNH9pKfWiTelpJfVXh0fbLeBAl0AlTtiAd6B3h76za+YvmDtHVO36cs6+FEkpVScm20zoIZcaqcx+DZH2/T0gVJLe3aqlp0Tc4H+4c41l/g9APLLD4I3WMZ5tE1WbDqtmWBq6ygrAiZFBKrKJIQHK0lJS2rBGwYCZZJthxBKUzmRPpVujpprekH06i8vjxMi5GVk+AWjBLvY33bgEHn9XPUagJVOfRYoayUHS88AD6K+aPR83nfzUe4bekEy9GwBi6WRFdslm2qoOmXCQ9vLbH24CK9BwyHHqzQa7sA5vHmgT/4G3jWhad6veynd8aD/ayTf3rWEc0XE8RczfP79/wUvw/8xlnKyc4VuDRzVgDmj/7oj876Ab/6q7/6vDbkShiXWEgTGNYGkUZC1rALzQm1ic4slmxmrsv4yLzonIF8UZNseFqrFXZYEYwBIzvdoJUkYRX15c3jeaHz8YGqGxF1WpMDXtDUyWR1XLOtV64qhxrnaOdpnbK4JGX7eo2uwVNQouySsstA0VXYHNQ44CJF0RMZG4Bvifdj8ZMZemNbDiZaE4p8CkqaoIO65POM96pJbwO53aR0U8nj1AWdYrqfMd4rRSi9yM+8F/BQp7wpowl5cSbr0gAbpQlFiYqjqexvZkLNVOnVDeJNS3QqIbSTiUFTVR49LlHjfMoCVVUdf71r4t+dJ5+nC3iZnadiY3bBy9nNc/c/yj8MlihPW0mctBpFTfUqJStKtl78MRLXizFUvYTxnojRfsXg+oo912xx4+Iq16XSsRapipPVAn2fEjVxvfXOfrXqMnIx83ZMWRseDZ62LnjuvhP8/eI87rSSY8mM7FnlHoOczKfrhtYjln9aOMLz5x/mULTBghbvSxYsPV2gg2ev3WYhDNF4XNDkwXIg2WLkEnJvWS86DE3CQ1tLnHp0gflPGOYfKjDDovaQCtMSrEjqiCNZOJopkG48lsGoyf5YBXBWPKTKaULpUa4OvdFqcixqOnfw4gUF5DGT+pjdJMK5IAfIpidM1+9JfTxQRhIzVelY+nigtWrZeuQA77x2L91D2xOpWmId4yIiG8eElYT2cc2B457WSo4uPGF4/m3yT/c5W9bjieZlP/3jXH/gth3coss3O8W+XAnzVHKy37vzOy6ocPSsAMzXfM3XnPF7k/j02MtAii6v1gmRJsQRKi8mJ9Pg5AS5ASqzRZa46U4waZEfXqDsGSlODGKQVz5gxg6TO/J9LVwq6WPRoF75SiJ8KukzAFW73pkrKZL0nRSzPZiWWhoNeUVIkppqFyMolUMBtp/TPmnQpaVsa3wktHrQ4BJ5XB9BXhrKlqZKFS5WjPYbgoL2imf5Q0PssdWJ12ciE2sYibr/pWFhQuEFhDTvT2SnoK+sJvHUgVqK5jXEdY9M8JJwNgsEm+etPTXBuyl7MzuNbryJ4ZwFVI2xv2ZqgjbgCsgy9KDWItere5PPv5Fw1GA1zFy3Ozs/OyEfm32sS23ofzqCl2Z2QcqFzw3tVd7XqvCRSHV9VHdmRUGYj7IOJSlKOUnvtvHdmKobUfQ0wyOOzoEhty6f5PbeI1wXrwLSOQKQKtkfPlousqIcq1VvYizPfMRW1WbejiYpWAvRGLdc4m0sbH9ey6YaVqhS6NyRbDq6xxVbaYvfmf9MRocTvqT3UVJVoFGUQRPjKfF0dEEUO7IQs1r2KL0l95ZT+RxreYfNvMWpo0u0H7Z0TkkkMiHAwpx4G5sAg3pBSsVxvUgl8rrQSghphOskuJalnDNUqXSVeaPQLWG3dCGSYOUCZlTK4mD9/qom6awJwDF1UAJ8qozP+0m4QGgkziGgigrtPVFfY4cV7VOG8hOWfH6BqiWVCJWH1ijQywLJlkPnJdoFdO7Q4wo/3GVgnmi++XkPn3cx5cUAL+fihdlJFubpBF5gysQ84fzh+YMXOEsA42dO5P7iL/6CH/mRH+H1r3/9RDr2nve8h3vuuYfXv/71F7Qxl3uUD/j5NmacT/XIPObkejZCuLkoTXEHFskXIuLNqpYoNeJa0fDmyylVS1O1ZPWrddoRrKaaT8QDo2oAZRU6n77fxd4WrdNGVqasnfHhuNq07ia2E8qA3h6RFBV21CJfSsgWDS5W1NH+mFyeq+yIeb3sgB1B7xFH+5GM6NTWBKRNgKoTRgirZHXKcUYnjlJqhhWp359KVhVJkin4CNPrQ1FLtOrVtqZnRllD8E14Qg1YfJDVuSZu0zesDkDN+DTApZa1yePMACZXMzhKi3zNWqhy2cbJap+aMjy7c1FnJ8HL+cyFgJinM3DZnZ2bzEeyz6P+L4R6FyhsTDCqjsuv94mtiHIuZrTPsnkLpNcMWeqM6NqCSDkyHxErRz9IZG/PSOJXpBx9n6KV53C8AUi0sQ+anh6ThZi2LmiZgvZcRjAJKjApuFTei2RKKcy4JFa190RbNs0e3jp6Pv4WxV2d+4SJUZ5UOXqqYOSjSXywRzFyEl28UbT4wP3XkhyLWT4e6D5aEm+WkihZToNUVFX/3Bxvm328UpAmhFZM1Uso5yOKniFbVFRtRVDIMU0pTKaJhuLbjPuBZFPXBn2HzjUUFWrspyqHyqF8OeniaWTLKDUBUlgz3SbvofCoUkktm1KYzBBtFyQbEpxzxvsZEElefRxRzqOLCl8+ZgFud3ZkrgTm5Y7nfi/v/+Avn/f9n27A5VLNOXtgXv3qV/Mrv/IrfP7nf/7kshe96EW0222++7u/m4997GM7uoGXdDyUczF6I4Isr6lo5ABTVVMfzAwLo4zGL88xPtgm2ZCVHx+buk/F1i3yHpMJG6O8tMxXHYsuJXkr1IWWoUkhDmDGlcQbL0tKxCS2GHPGib+Kokkymqp3wmqUYZynNSowWYds2VIoTTSSA6iPIF9SKAcL9zl69w3Q/ZFQ5rX35AzjfgOcmmk8JyDPG9eMhhPZV7NNWEvotfFpjJuLcZFIvOywkp36oEBlOWo4niSJhWYf30gBmp/dzAFOTeOrJx4YFabbq9WUTZmdEORD1moqUXN+esB0M49f99nszuPPyS/9Qw6861+d8/0uN3CZnfMBMRcTvHzdd7/4Ca/7nf/69ov2vLtzceZENk+rl1G16k4ppSYlulS+li4pQqcFIeCtpmprtp+hWLx9hWu628zFYw4nG/i6OFLSxwI9nRGpCm+kLNE4P4n3BYnyLYPBqEBMhUMKKvf2hqyl87hEEW3XccFlBdaITCtIL5fJHJ3TEI0M40d6/P8e+QL+8lnP5K59D/J5vXslJhjF0Cdsug4bVYcyGByadxx9Fv1jcyy/X9M7XhBv5DOvud5Ga6CsTftlJQtaIMeSmiXxvRbZgQ6DQxHbN0BxoCJdkAQ0YzytqCQrIvLCMujHqFITbWqStZjWakRrrcKOHHYzR8+AFVW5KXBxfsrWN3IyJ6qAhp1Xvu6sCQGVlVNptDGYrEJF9XunqCOYfQ1mpgoNYFJ/sDs7N+camXyx5s4P56C/nZf99I+fcz/MToOXr/iTwZNe/5M/uizb+zSYcwYw999/PwsLC59y+fz8PA899NAObNJlnGZH05yQNxHKmulJe7Oq0rAyacL4cE9MkXXppBlJi6/IBmSVTVUeVfe+eKuo2hpvNKYIJOvlhLUxuUfnFa4T4WIt2t04quVTM0VY1k7BSwjCgjSSKG1QZYUqK2IP0bal6sa41EjPilV0Hw3EG4UwLmU1cxJfRxY3YGCSLqamJ/Wm/rmq5H3QIo0I1qLimPLIHvpHUlDC+FQthTeySuViMHlE1QJUB5NB0vfEmxXJ0XXUYFR/FAKApizQDLCwdmr4n2XEjJl2CzRyt+ay5tjupiBn0l1jzGOkgXzqz7vzKXOuIOZKAi/NNIDkqYDMxQAuTwZYnuy2u2Dm6phYVVyzsM2DC3OTxalpgaWr+7U0vhURIkO+nLB1ncU9c8hn7HmUhWjEvB3TMxmrVZdDJiPVJbFyaDweTapKimBYMCMyLy30WYiIlSGuJWYuaAYuxQXFQjJmJUYCaAJ14pYTSVW979RFvdjmIszYk24oWmuW9dUD/MGz53jw2mWua6+jVSBSjpGXRbaPbR7gk/deQ+9ey8GjjvaJMdHGeHpchYk5flae1YzqtAitBN9NKRYTRnsta5+h0NcN2TM/4FB3Cx8UvSjH1qaW3Bsqb9guU3JnOd3vkuUR/bWUeM3SPhXRO25pH6M29VcELaE2EtTjpoyLUnU3zpSVaRgi5ZkyRUoBMcoFvJbTAx+0gNPSSVBDKc8lb6j4VM94H3bngudKAS+z8/v3/BS/fw9nJSnbaeDyvtuSmgX67Se93fu/4pd5U/3zn7/+wQvyoFzuOWcAc+edd/La176WX//1X2f//v0AnDp1ih/6oR/isz/7s3d8Ay/lCEMSCLFFNSfIwcvJbyMz8mLkD86jrMF329K1MijRdSxliIyABa2wQydxvVbKzEwRCFkNZKKmUExhxkJ5B63Qo1ISVRaE6p/4NKpKmJg6JSVQToBHMAblnGxXY4IEdG0QNauKkMTiGWl20M1OdVKUeeaBRsZPGaiJD6jpe1ET8IK1+INLDK9tM9yvGR1QzD0QsFmg82hJsWDrgyJUqQJEx5xuOoqeJluI0YcOYIrA/Me30GvbwgSVM8bHWU99w4g5N5WmTVb37DQlrQGezecItRwuEZDTgKPZ19+kqxVPj1WKK2GuRPAyO7MApQEzF4ttORfg8lT33wUzV+7MR2NKO+SBSHq4zLicypU8db+WhyTCW81on6H/DM8dhx5lzo65uXUKU7PA80ZijOd0VpdLapGoaUhVCTjaJqdEYpJTVZKFiL5L6dexx12Ts6I8upQYZTMqoAET1giI0UwM6wZQzhAiTWslYDPD8HSLjxy4hX9Z8PhWzVAUGjtWdI4pDp9wpKdH6MrLgp6vfZBKiTfSSGnwpAA6rtPGOi1cL6VYTNm4JWH7rjFHDqzw1UvHmLMZbSP74kg5fNCcKudo64JUl0TKoZVnq2rzaG+ejaLNo/PzbOxvsX19zODalLl9c/SOV8Rb8hmYUYkajKddPHVxKFoT6mMmSsm2NkxMc9wMAZXLcUmHQCgdWqnJ+ycLnjPJnTVoU4+tZtidM+a3HvkI33joOZd7M3ZkGnDyvtsSfublPzy5fKfBwm898hEABgffy/vP4/4ved0NvOR1b+aO534vP37Prbz95efzKJdvzhnAvPnNb+Zrv/ZrOXLkCNdeey0Ax44d4+abb+Ztb3vbTm/fpZ3GvKcUOorqMsZasjUbGwz1yXGMb0eYXFasgIkZ3yVSEll2DTbzmLEXP4yCeKNAjytCIuVZLqk1xLGR1a/Q0N1gRtXUg1KneVGFKYMwO8bU3StedszNgaJCgE2zItQwLc2OWdeU+KxMbFa2VfkpeFFawEvzOFrMp+Mbl+kfjmhteJKtgEsUZUcRDyDqF5isIl9OyBYMRU/o9t7xCjv2BKOwWSDvafJFzXjvIksfa5Ped1oOFk2BZfA12JjZnshOX6eyE2qf2lMjoCTI62/YFsP0M23kAI99zTMgcHc+veZyycR25+k1VntapsTPVQRlZWW+SZNsGJnayxciTdlV6L1jbp9/lLYu8PXCjMEzb0aT0sRUlZRYypqJASiCoaMriThWJeu+y9AnbFVt1soOWgUSXdEvU0wuSZdNjDCRnaZ8KUVQoiZQRYWpUzKNUZiRIVnTLNwnXk0fKURrJaE12skikK6THSesPvXJv6u7PsL0+BFsLRfrJAyPdNg+Yug/L+Nrn/0BHJqWKemZjESXPDDeS9fmbJRtcm/pq5TDycYkrhkg0RU3dVa4qbNC7i0Pj5Z4eHGJ1bkFym5E56Qh3vbY1BKHIL1vk6TMusiy/miCUjMMTJgyRs7TaJ1VXVwt0c9WXg/IY7UiYX2axcCZ3rjdubC50MLKSzV3fjiHi8hwDA6+d0ce5/0f/GXuBuCNAFcNkDlnAHPTTTfxwQ9+kHe+8518/OMfB+DWW2/ly7/8y88oc7waR3woCp9ajDFQFLV0SkGoT3h1bQqnZi4ig0uMgJ661bics+RzRgz7BtorAV1Od/hq28uOzwV8oqaUfTU9qITYyu+THWfDmkhePnE03fEqDXlOmCm5DLNSqapCRdG0TwbOYFuCd1AWZ0qwGsnW7Il84yEBuZ0x0Ouw9bx9lB1N96SUchbdiKgv0rugoVhMUC5QdDXFvMJkYSIvwwfs0BGseHLaq4GqpRntj6jaB+l++BShP6jZFqYxzTVjMvHg+DD9jOCMlDRMzRIpLe9d8740YLR5rVpNOm2CcwS/u2K2Ozs3u+Dl02vmzJhuusnC8oB8YRHfjtBZOfW/wHR/26iX44obkhVc0JOixGU7IFIVhjCRjDkURnnKYNl0bQCyEGEIuBmq2qPQKuCDYhRitrIU5URtMN3Xe5FLZVWth5q+BuUkzSsYg2k8HTMTTH3ib6cR9o2UGiXdNyoEQu1BUc7LIp/WhFSkcyEy5IsJ6880VHcM+IpnfILbO8d5tFgk0hX7oy36TliktUKidrsmp2VK5u0Iozxdk1EGUxd9jibbdyDZ4kDa528qwyCfJxjNXAW6CvjEymuCOmBBTTpjQiTRycz2KzbAq0ncVIpQs0pUDooSVaqJ10XBVPHQ+G52Z0dmJworr9Z5320J9/3Pf94x8DI7d3/9q/i9334jL37rHVcFiDmvIkulFC984Qt54QtfuNPbc1lH5xVGu9qQpyZSrYkUydcJVYaJd0ISRjwu1biWZrTX4i2km178L0XAW0XZNUTb1SSRLBpU6NJhBgXBaHReyYpNndASFLjUEG9k0wjl2a6V5vfZcAGYbu+sHMzaqRQrzDA3k8hhOz25bwBOU04JU61wc4LfREe3W/Sfs5fRPsPivbKn374uougpuo9IGkvVEi8QQDCgKgEv6brHJQpdHwyUA5N5on5Jsi5gcnBtwtrnHWTx/Zuokyv1dumpFAymEcr1docQIMtRxog3yFoBJCGgVJjepnSo2c6aWYmZVigMarcH5knnfEz8n45zMYHLYx97V1J25UyqK4zJuG5hg/vnl3CpQZUOXVW1D6aOkHdhsvhlraOtc8pgJ6b8SFW1TEx+zoJ4NDWeYUgog8Uoz6brkKoCowJ91zpjW8pgqIJhbaPLQhmmIGUSE1xOwUltag9GQVn3odjaB+kF7DT+QVWDFFOqaUFkNZP41Xgz8dKxAgJe4ogQW1xqyZdj+ocso2sr7jz0CM9orfCx8TXMmzGltxwvlsh8RKIrrk3X2ag6ABPQ0tYFIx8zchJcIH4fjVHSf7M37rPYHlNdqxkuJhBS5o6CHVuRbSs1LRet/ARU4d3jL8o25wbNOI/KCjlup/GUqVHqDPDyuMEyu7M75zgXC7w0c/fXv6r+6Y1XPIg5KwDzxje+ke/+7u8mTVPe+MY3PultX/WqVz3p9VfylAsJumCq1x0zbaFv+k2glhlNDd7aecghX7RUKRM2AcAU9WqPUVQdgy4DLtVEfUmd0dQrVrXu2HViUIqya8UPM8gn6V4TCjp4iSduwAucKYNSM3Iv76ZyKajjIWu2pQFEjeF9hoFovD4NkxGKAkUtvwoBlaZkN+xh80ZLui6AK1+wBF0HghkpGyvb4FqaZEOe37UUZLLK5TSUHQky0KWEGTRMVEgsyaZjcNBy6vMXOfBuB6ub0y6Yhl1pXkPzevGoSDwwk6CF2h80KThr2KOZCXWMaHA1sHk8id7unDHnm0R2MeZsO2Ce7vN13/3iXRBzhUxL5yitSW1J1YaqZTBjjRpKbHGYGMcVPtK4BObTnI7OcaHEozkQbRLhKIOtk7/0xAMzqpPGUl1OGAqjw6QLRs8wE0OX8OhonviTLdorDpPV/TN14hcwkdQGKz0pk30mM3HHNYAJ1kx7yRoQpOrUzuYEv5FkG4UKckwNzk9lc1bjUsN4ybB5e8V1N57mS5c+ThYi2rpgyQ5Yr7o1OJFyTh80i3Yor7Vmm7Zci76TUs+xk1hpATIJfZXig+Lm+RWeuXCKY8NFPpYfompHlK2UzklDsp5LIlpTLkrtA2pCXoCgZyTKNficlF028mtjJ+BuwjTJByFeUaJL8We3OzswZ9sBc6nntx75yEUFL7Nz99e/im8++V1806uvXOB9VgDmDW94A9/0Td9Emqa84Q1veMLbKaWuagDj63x+5QK+naI2ts68QTlzUj/JsfeEVN7GoqMxBdhtARrJlkMXAe2CSKvmLbry2A1Z7fKRnmhmVWolktEHXMsQrMKOnEQMN2xLA2Iaj4du/ldTr84siwJyUIpmYpDLoj7hn0rEQhWmK02GaaqZD6Bq8NKAN6VEjjbfZfPmmPYpYVpG+yKUDySbgXg7oAJkS4qqBXEfiXDW4PsC6sqWIukHfCTsSzRwYnJ1ktCjgvTUpJuebFGzcccyS+/JCcPxVELmmPS3CACZMkuhMeYzTYwLMxpk1fiJ6ts3r38CXoyBXdPl7lzgXA7Z2C6IuTIm1SVexcS6omqJLzDomjFu5EQT74WUDo9Ly9AnYthX2SSuuO9bbPo2RTDEypGqkhHQ0wJQtAp0dE4ZzMS0X/poAmIyG7GZH6C1EmY6yhShFeO6dUlYzRq4RGRfTQGj9iKXVnk1c9yrX2QJVGb6WpQSadiMFwQvl6vSiWnfKEJsqdoRrmUYXKe45oZVDnS2ORBt8VCxZyKPS3XJNXaDlapHpBwbVYd90TaDGrA04KatC4zyEzBn8GxXKT5oWqZgKR4SKUfX5OhbAg/tWWJ1ucf4WMzeD0K8kdeAZKb7BZFyz5Zbymuv2ZSGudJaCjcjIzK50k0WG0Pj0TSakO1KyJ5qnk5G/p2e3/h5c8nASzOjV72J3+DKBTFnlRP74IMPsry8PPn5if498MAD5/TkP/MzP8Odd95Jr9dj3759fM3XfA2f+MQnzrhNlmW88pWvZHl5mW63y913382pU6fOuM3Ro0d56UtfSrvdZt++ffzQD/0Q1WNb289iTCnJKaqmkSdxyjCVbs2mXVUVephTdi1V2xAPPZ2TFa3TJfF2hS4DphA5l/IBO64jlFNDvhSBgmw5YnA4ZngoperFuNTKAaQKxKeH8lxxhIpjlLWouS6q3UbN9WBxDvYtw9ICqtOSWOU4gig+s5xRTU/UJ16PGc+HMjP+D+emvS4AwctJ/SS8IBC8Jz/YQ1UQjUUi52IwRSAeOOKBx449rRWPriDZ8EQDR7zt6Jx0LH60z/wDGelaQbzt0VWgmLOU84mszMUW15YOHYB0w5PPK/Lr96DiSF6ntbUhX7atMeg37IqKY5TR8lpqpkYZPfk3+SyNEYAXR3VKjpn066gkOee/oYsxV9r3ZHZOfukfntXtLgdD8gtHbn3cf7vz9Jwr7XvSUgU9PWZ/0qfqOVDUSZVTAKGKEj0qMKOKZD2wvtrj/cPrGHrZ9wxDzKZvM/QJ2y6lDJbMRzVLkROpikg5DthNFsyQns5YMgN6OkMrTxkMkXLsifqsDjoEpSjmDMPDbYbPXGblsxY4+TltTnxem1N3djj1WW1Wb0/YuDlh66Y240Md/FyL0EkJ7XSqQvBeGJyiRI1zSdlqfB5NjHDl64JmkWQ1KV3BanwkqZwA2YGKSHtu6oj3Z8GMKINhy0lhZ+Yj9to+hjBhX1zQrFcd+i5FqzB5nZpAz0hXzJzNmLNjtAoYPGMnMrSbeivcec1Rrnv2CQbPqBjuj6g60cyxfxopHSZS8sbAH6ZMVAgEawSk1MClAS++mxI6KX6+jZ9r4eZS/PyZsr7LNVfa9+R85qPdn7kkzzM7v/HzlzfUZ/SqNz31jS7S855NLPTlmPPywOzUvPvd7+aVr3wld955J1VV8brXvY4XvvCFfPSjH6XTEZ3ra17zGv70T/+U3/md32F+fp7v+77v42Uvexn/63/9LwCcc7z0pS/lwIED/N3f/R0nTpzgFa94BVEU8frXv/6ctsdkDqUtPpViKqOUeCu1AmYkV7UPJISAGueYwlP0DPFmhR1V6HEFRmFiIz83O+xKyi193e9StQz5XJ0+UwaioQUFLla0T+aorYGYK1sphIBb6FIuplRtCQgouhqbSUa9doF425GcGqI3B9I2P6vT1QZw0+33QVYCGylVDWhC4VHNiX3w0/SuRpqmNCqO6R+OqdqKotTCNFVixtdlfdCymmigiMaWZKPE9gt8YsmXYilKG5dU3ZjxsnTT6BJ0ZVA+ISiFjzXRqMIUGhdrkm3F5s0J+060UVv9aUcPCECJ4gkbNWGMZkMImrCDsjgzSa4JBoCpj4jaJxNf1q/HZK6078mVNo8FR08FUn7hyK38wNGruHB3dx53rrTviUfT0wXzdozulQQVT0+IGxmSUlCU2L6mtZ6yvR5xPFvgOe1HiFTF0LfZdB0yH03M6UZ5XNBEuiLzMUZ5jPIT0BMrx5zJiFxFGSwdnfN3/ZsYnejSacOgpcn2BMr9Jd3FAZ2kILUVldeMigilAtv9NtVmTPuYZb7TobVaYkYVZlyihlkNVkrxVhojhnUrx0iV1873yKJiKwb+IKEuE09MED+kSxSqXaJUoK2LSSDBkXiNZTvABU0ZDEUwJLpkwQwnr6nvWmTB8vB4D8vxQHpwTI6hBjQ4Si/s1LwdkXuRpgE8wgLjdsSJPXPkCz3aKwaT2jN8j8HUkrgmPc6rachBk3ZZF4DqQTaV1yUR1VyKa1uqdnOsgWqmEeByzpX2PTmfefvL38+zf/WiP81kXr5+Hbzl+ATE/PErDk+ue+vSw5duQ3bnjFEhPLXQ/7Wvfe1ZP+DP/dzPnffGrKyssG/fPt797nfzhV/4hWxtbbF3715+8zd/k3/9r/81AB//+Me59dZbec973sPnfM7n8Od//ud85Vd+JY8++uikl+ZXfuVX+JEf+RFWVlaI4/gpn3d7e5v5+Xk+78t+gqScsg/xfScI43G9Uj9lICYJXIBKE/xCl+1b5iallGYse6qgFaqsKeV65+0Ti2tHAl4WDWVH4S1EQ4j7nqql6B7LiU5to8Y5RBa33CNfTinmDN6AalIZE4XJRaJWJRJNrDzE25728QH61DqhclIy6fzU69KEE8CZpZCPjYoGSflS6kw2ammBk1+6D+2EHQkKWqslOneYkcRSVgsp2XJM0NA+kWOGBVU3FmC3XRAizfhgi/4hSzCSVpZuBEwuUrNo7FFOLo+3Klxq2LwpYs8HxvK5eD/1wzSvabbLpfm8mlCDWdDSsE+N7M5aiZI2Rqj+dkq12Ka/BP/wxz/O1tYWc3NzT/l3dKnmcn9P7v3C36Jn5UTjSiiybADM+bIrFwvMXO7UsYstIzs5Lx0E/TDg5u0X7H5P6mm+J7/+L7cTOm3Wqy6/9sALML+3TO9oQbw6RI2LM0+CrWZ4fY/V51rmP/cUX3ftv/BZ7QdYqeY4Wc1T1mWVLkz3zdKBUk3ilfuuRc+M5TpV8lCxl712m5PVAm+6//PZ+tAyBPDXj3nu4UfYmw4k5jkofNAsxwM0gbbJGbiUtaLLe05ex/qxBdrHLN3jgdZaRbqSocYluj8UFqbebzbgJCTRRE7meol4OUuPHslr9u0YHxl8augfTlh9UcadNzzMbb1H2WP7aBVIVcGcySiCwQfNpmtzolzgSLxGpCrWXXfSdfPAeC/LkTAzS3ZIVgcg5D7CBc2SHRApRxYienqMR/Ngvpe1oss/nD5C/717mb/fM/dQhhnk4gGqvUB6XKGLx7AKXjxMk/JLpVBZLiWZnRb5gR7rz07IF8HFgaobCFHAhSHHv+8ndr8n9TTfk//28ffS7nUnl5+thOxiFVk2/pff+HlzBlB5qrnYQOZysyA7Xbz5RPOm/6D5rh/1Z/U9Oasl5n/5l385qye+0BjlrS3xnCwtLQHwT//0T5RlyZd/+ZdPbvOsZz2LI0eOTL5I73nPe7j99tsnXyKAF73oRXzv934vH/nIR3je85531s+vS4l5dKkVYz6IWb6J2W0a6UGkVtaC8+jtEa3VFqN9MUlNkTeRzMpotAadVWLuLyVCuepoyrbCjgPRUORl+bzBZgG7NZbUkrkO/Wcu4K0iGjjsWOI3XarxBlorAoykGGwKaKqWYuuZc3Q7MdHDK4SyFBAD0xN4w0RyFar6dRnFY1WFiqkRXozxBt+KQYEdSTiBrgIu1uhMYqUJ4vlxkSJbVER9i0sN0WaGcmEiKVAebBbqdDIJSANINuV1FT1DvC29OC5VRP3AeH9M/JCdibjWMylxYYruYMZkqqZMjI6n0cpaAwaSmJDEuPkW42tarD/TojzkJoM/Pus/n0s2l/t7cr5z98bbdhzEXCh4ae67y8ic/TTA5Uqfy/090XiKoNDKs35inutWpKxYuTAJiglaC0MfS8BL91jg9Mf38o9z1/EZrYcnAEXjiZWjwLBazTHyMXtsfwJqmtSyCEeqSzZdm2U7YN11ecvDn8Pq8QVYqujtH/DcfSeYizKuSTa5NX20TvKS5DOYMjzDJGY5HnB07xKffMZeHj22TPcTEYv3KuKtiLgJtpkxrgM0/S4hMvhECp2pCRjKCpVplBVmvWqB1oFrWxvMmzFLdkBH52y6DmtVl9Xa+9IEF2y5NpmP8ChSKyWWz2itECnHghmxYATIDH1SMzQRDs3ICTs1cCltXUhMtc053NvkXw4skq7Ka1d1VHRohAm+ThFr/JKVk9dbJ7XhJfxF+UDotqkWWmzdENP7qhN85rx00XRsTr9M+cSjPY6f9V/PpZvL/T053/lo92d49uDHdvwxX/zWO1h44cY5H/pfvn4dAJvvWLzi07vOZ97k37zjIOY3ft5w7M7vOPPCvzl7au2sAMxf/dVfndNGnc9473n1q1/N533e53HbbbcBcPLkSeI4ZmFh4Yzb7t+/n5MnT05uM/slaq5vrnu8yfOcPJ+2rG9vbwMQnxpgoxY+7mC3ckK9cwqNaX5WsmSMyKsikQDExzYIeol8ISLeVqhKfC8qSKqWb0W41IJRdW9MHR2cB0zmhYFYK0kf2UZlBdXeOTZurTPvHykIRhFvFujCUSwktWzMy/PUoKtqG0zmqTqG8ZJmvD9BF0uY4yvTpBSvp9HBRSlJKbPsxGMJOedEKgfCTnjZkUdDMeajhCVRLuATIxrvEPCxxmaeeKApuwZdBaItBQR8LCEF4yUj4C0TH4xLNLoMVG1NqHEHCsqOxUXCMHkzBZDyh1NHPM/GTFsrUrEoPrOc0odpuhoIoIkjyv3zbN3cpphTlF3I9nraj2hs9rh/Ppd1roTvyZUyOwFemtkFMU89VwtwgSvje/K3/VvYaxwrRY/kpEXnUugrqVwGKofCgTdowI4d6YZi4eOG96Q3czDd4tntKcBo65ye8pP0Ma2CdML41qQnZt11ibykcGUh4pfu/yLWP76M3p9z+7WPcn13DYOna3MSXVIGw5IZMAoJfZ9OijEBOrrgULzBHjvg2d1H+eTiAf7CPgubJXS1wm7FYvCvk7mClhN5eV2I/LnwENfyZKtRQY6BQSuUZMTgSpGJnSjm0coz0rmEEyhD36WMXcS16TqH43WW7IBPZgdp64JT5Tw9k+EQBmmoEpbNgCxEpKokto5N16bvWmcAtESLQsLgOdze5P2u8bsggBLZLlWIj0fY+rrrpTHuw6QHJiSG0E4ZX9dj4+aI/HP7/PAN72JOZ5yueng0Hxoe5n7dPoe/4EszV8L3xL/tLvjmDwFnz75AXbb41p0DMR/t/gy6+7fMfe6FhQgsvHDjqulRuZzzvtsS/vLOb/mUy//HvucAHzqrx7gyRP7AK1/5Sj784Q/zt3/7txf9uX7mZ36Gn/zJn/yUy1VRgk0lDWyYyck7TE+OG0N8VTfC+wAksgozHJM8vA5HBMToMhBvleDr1SirKefl8rIjqzetDYeLNT5RtB4dYzZHqHGOX+yycWsXmwWSzQqfaKLtCp1XqMoTbxXTA4YT46GPjPTRJHLyHw/lQLR1U4f5EDCPrMrraFLLZtmyqvrUmGaYyuRUDQJqj4gqKqKhgA65vQQg6HGFjw0g5Z6jPYbOKSdBBiDFYVmGzkryPS3aq1UNwAJ27CgWIrJFYaHS9QpvJWJUVwHtJCTAxTPbPdP0DEyBSuNz8Q5lIgGgzWdoZyKWjWbwnH2sP9OSLwfaJyDZCJhMk2wGCh4D5q6AuRK+Jzf/9TeetXn/sbMTLMys52UnTfm7IOaJ52oCL3BlfE/+5wO3cvP1AwDiLYXJa5O4qUsSvRQVB+9RlcNajS48dmjQRcwftO/APtdzS3oSo4IwMMGwZAekumTBjMh8xJrrcsBu4VAUtV/kQ6NrefvDt1J+aJ4wF7j18EnuWnqARJcsmQFZiNlyrYnnpKgpB48m8xFaSVdMrCqWIynS3G+32Lo55Z9Xb8EONa2WFXlVUU7Zl8pJ/HIlcfym8vh2hG9ZfGLRNTsjHSlBmPeh5aHBMtd31+oIaT3pukl1SVsX9HRG36eMfCL9MMGwJ+rzSL7IdtUi0SXXp2vcmx8g0SWpKvCI9MwHjZ5h5gcuZd6OGLiU06MeOld1ZLKaJIoKUKlLo+vY58k0PS91BLXrJriWZf2ZEbd87Sf5/KX7eDDfx3XxKnMmwwXNoWSTm+Yj/nGH//YudK6E78lN/4/l5Def32PulBemkY29fH1nEtAWXrixI4/zdJ1/c+p/5xeA2+771NCHzz/8fP7iLAHMWaWQPXb+8R//kR/+4R/m5S9/OS972cvO+Hc+833f9338yZ/8CX/1V3/F4cNTzeGBAwcoioLNzc0zbn/q1CkOHDgwuc1j0zGa35vbPHZ+7Md+jK2trcm/Y8eOAfXqSx33qMb1SoHzUiQJAlhmu1eAMB4T6pIqNRyTHN8kXS3wkaLqWPI9Ca4t6WJBqYlMyluh1aOBo31siF0Rz0vothhdN0c0DnQeyYi2S9JTY8ygkJSU0qHGJT4S3bRPI6qFlLJnKecsygujo3ydZe9hdLgNrVSAiZ3uoIEzwYuZYWeaaV6rMWewHeNlzXhZDsRxX+KPXSciaImHrlqaYkFRdjXDAxGDg5GktS2kZPvauJbGDh3J6phoUKLzCp174r7HDj12WJKsZcSbEvssAQEBFzP1tzTbr2a2e5Ylo45OrvsNUAqlNcoaQrdN/3kHOfk5hmIhYAeKfAHKriIaBsq2ouxemCRyp+dK+Z5c6Ny98bbzTiW72GlmuyllnzpXG3i5Ur4nxVbC+rjNfaf2EG8FdOnk5L2Jzp9pp1eVQ2UiMbPDivkHczofTnnbJ5/LB4bXUgbDtk8x9Yl4VEcpa+WJlGOl6nGqXGC1muNtp5/H777vsyg/NA9BkV7b587Fh9HKS5qXCqyWPQYuJQuRsBS+hQuaIliRXPmYdddF43EoYuXo6IJbeyc5/Bkn6F+vqLoRvhURWvEkiWsSP9ywFiCvr/BNxQqq8lIaPapI+h47MIyriEUrcrhUl5NAgiPxKjelJyfenlPlPKtVlzIYeU+qFqtFB60C61WHkY85Ucj7MPTJRH7m6zCApjOm9FYSy2xeKwjqbXbhjBQ1VZRyzKsT1lRd7hySGLdnjuyaHsNDKevPSjBftM4rDvwd18er7LF91pwoKJr/O+YKcfHXc6V8T/S3fu8FvY4L6Wz5ue/8hhnwct0Fbcdj5+Xr1/G+266MJNMraV781ju47b7qccHLuc45A5i3vvWtfO7nfi4f+9jH+IM/+APKsuQjH/kI73rXu5ifnz+nxwoh8H3f9338wR/8Ae9617u44YYbzrj++c9/PlEU8Zd/+ZeTyz7xiU9w9OhR7rrrLgDuuusuPvShD3H69OnJbd75zncyNzfHs5/97Md93iRJmJubO+MfIHn8qUUPckKWTaRVytR9KYWcTIdxrS1qTpprgBO8R20PiB9aofcJQeBVS1PMR1Rtg0sULtXSl7LtSNZL2g9tYR5dq82QmuzQHAToPJJhxqUkoYSATy3FcptqvkVIRFs8ONKiWIgoehHZkmG8KN4bU4ixPt6usLlntNfgFjuTZLFJyVgjH5uVjTXRxFCDFXemDCsEVH9I57Sb7PTLtrQp54sRxUJEMKIhDkb6Xkb7Fds3wtYzIsr5CBUg6jvssJwcKFwrkqZqB1FfokX1MEeXHlN6glV4q0i2PeTFlH1RjwFdM90uE8CpJbRARZFI/5bmWf2cvTz6eYZ4U9E+qWifDrRPSSGnixT5ImR7rgwG5kr7ntz7hb8FnJuB//HmXMHIuaaNXe652rtYTs5/5KoCL1fa9wSv2B6lhIc7pJseXYe7+NhMOkOmEfce5VwtLfbYQcHC/Y74fV3++B+fx6888IW8t38jK9Ucx4tl+i6dSR2r6PuUf+4f4dfv/2w++L4baT8UoSpFcV3ODcvreBSlt6xXXR7M92Jq4AOwWgmYGfmELddi5GN80PR0hlGBkU9EqoairQtees2HKG7IyBcsxUKC6ySEtA55acJQ4khAjZX0TdPP0cMcVVSo0kl09DAnGnhUBZ0o55npCXpmTKrkfRr6hFg54no7ezoj0SWawOmix+lijtxbrPLk3rJWdlivOpTBMPLxBOSlquJEMc+Wa9UFoDGjOr2tZQqUU7LgV3r0MEPn9XGpPyL0B6jhWEz61bTfhcgyuqbF+q0J688xVF++yd03vH/CHD0neYQDdovMR3R0TqQcsb4yAMwV9z2p50L6X84HxMzeZ6fBSzM/+9ePD+bOZ37vt5+8RP5qmN/4ecMXX/vZO/Z45ywhe/3rX88b3vAGXvnKV9Lr9fiFX/gFbrjhBr7ne76HgwcPntNjvfKVr+Q3f/M3+cM//EN6vd5EOzk/P0+r1WJ+fp7v+I7v4LWvfS1LS0vMzc3x/d///dx11118zud8DgAvfOELefazn803f/M385/+03/i5MmT3HPPPbzyla8kOcceDz+Xoj2wuV1LjpoeFTttLYYz+0FCqE3+CqpAsBZVlrC2SasoSXptoc9j8aeY3KFHJXqUo0bZFDxYQ3HtMvmiJd52dbFZQr4Uka4pzKCgWIwp5xLMOCJbtsR9j87F8xK0ophXlH0jkcp9hx2UlB35iMcHO3RPbUqkpXfTBK7mhH8WqFgr/5wXsz9ANJWdBe9pncwYHOyAMpQd8cQEXXt6cumB8cZQzClMBnao6JxyxJulABUvFL1PI0JkcK36Mt90JUgfjBqXKCuxm2VbMf9QfRCwVra1MfA3Jv2m+8aqKTuT53Xaj8UdWOSRL+4xOuRpP6rpHfWYUhiXaBRINgV8VW0NTx2kcknmSvue7OQ0oOSJZGWPB3KudODydJirCbg0c8V9T2ygeKjL/P2yYIMLTMrYGwlSCJPVfayZpGApF2idyDDjmPYpy/bxffzhrT3uPbwPqxypqTiYbtEyJUfHi3zo9DVsHZsnPWXobYCPYPuGki945r0sRGO6dTfKetVhu0pZjEbMmzGJLhk5YSqW7ID1qjvxiOy124x8wjAkjHzCtm/VUcYjFhcHZIvLmNxgR1W9v46kgT6RF6m8l7UlpaZm+LpAOBgDWqNLT7Ku6JdSvrlsRHLXsCZaedaqLkZ5tmq52zPTExTBcKqaZ7Nq44MiUo6xjwHx9fRURqyq2tOTCKAJjkRLb06kHIkuOZ33SNYV8WAmgKA5zjdJlc00Xp9Oi+xQj60bLIPnj3nm4VPcMneararFo+Ui10brHK2WGNUMkMHT1jlWXxlFllfa9+S+f/X/ZeWhX7jg19UAkidLJ/vGn38Fd344P+OyiwVednre/vL3c/fXX77nvxADf2PW3xkNx3TOGcDcf//9vPSlLwUgjmOGwyFKKV7zmtfwpV/6pY+rcXyi+eVf/mUAvviLv/iMy//7f//vfOu3fisAb3jDG9Bac/fdd5PnOS960Yv4pV/6pcltjTH8yZ/8Cd/7vd/LXXfdRafT4Vu+5Vv49//+35/rS8MbjTm9LS3uzc6rqpAIFYWibnyfXfH3NYnVnCzXpne0gY0t9NYArdWkYHFSgNUcwLSGOMLtmWN4TYIp6nKv5YhsQeNShcktqgricUltLdvy2JFD+UA0cCgPyTaYsUeXXuRa3UgOEFvC+pwhvYIzo4dnO26Ksi511NOoYmUnrIdSCnt6G0KHKoXWqicaeIp5Q7Lp0IUnaEM0oAYDkGwGzFgkcAaoOhbXiSXWM5YDNpGiamtMZqW1ud5eXXlM7okHgeTkoG5B9tNgBVUXdJaVxD5bO/N6kJjkNCV0W6ze0WV4rWP+44bOaSdytcwRDYS9iiqPTzTKgb1CAMyV9j2BC2dfHjtny8bsgpeLP1cjeIEr73ti+ob2mqZzqiLaLlFFSUgMLjXovD4xbkoRax8MzosBPgRsUWK3I+LNlPbpiNHRlKPzz8DHUHbgH3qy7zNjRTRQzA/A1KmO/RsCz7nlOJ85d5RIuYmEaskOJzK0RJdycm2EIRj6hHkzxKNp65yOzieBAScrUVf4oOm7FjcsrHNvew8+UiK1ck7ioONIZHJBvI1SIaAJWqNU005vpEvFe0zm6Jz0HFtb4OF9e9hrt3FBs2wGDH3CpmuThYgFPSJSjnYdGT1XA7KTep7tMiX3EVY5luxwIpVr65yVOrGt8oZxiOianK7NSXWJIfCR0wewI8RnWczIxGrWXhbI4jOqB6qFFv1DEflS4MDeLT5z8dikSNMHzbFyidxHzJsRaNj0bQyerRqkXe650r4nv/V338lffPvZeR7OZp6MjXlsycfVAl6u5nncpLEdmnMGMIuLi/T7fQAOHTrEhz/8YW6//XY2NzcZjUbn9FhnUUFDmqb84i/+Ir/4i7/4hLe57rrr+LM/+7Nzeu7Hm+joCqFi2ofS+Clm07sa2r9hLhow03SLQF0QGaa/U3sxmh1iA3BqLbTvdRhe163LKCvMuKJ/bYSLFXYYqFqaoGNcrKhSRVAWO/LoykuEMuKpsWOPKTyq9FIQ5iSq2BvZQUuMsKKhVZS108+gkYhNii1rcHNGjLSDqhIQpxR7PjRm7bYWKEU0qFA+EG/kuLa0Gs8drdBlYPuInaaHwaQXQAz/UmhW9Qz5vKFsKUxuUCHGWwFeZljWkjiH2hoQGvDSfDazhZtneHYqAS9GQ2QZ3rjI9jMg3jC0V4UlKuYMKDC5AD8Acg89w+jgleGBudK+Jzf/9Tde8GOcz1yN4OV3/uvbL0sfzPnK165W8AJX3vdk7l7FwqmSdDWTE/k6kVI52U5J4lIz5Y7hDEZGVQ7KCguYUUG8YSf7zGA1VUvSHJvjQpUqXEvRv8Fzwx2P8LlLD+CDxqgSozx7raQ+NSCl8bsYpKl+y7UotXhLNJ5NOkTK0dE5RbD4oHBK44Om8FbKKJ2sHwUjx7OgVP2/vAdNbUATqwyAEZ9piKXU2RRQnGrz8A3LLNohB+wmBOj7FkeLPSS6nACwprCzCR1waHxQ7I37E1YlVRKv3ERLj3yMVp66bpPSG/oh5YHhHrJPzLP3pJdjy6RwU02P/U0ZcqM+aCUMrk3ZeDbowyNunF+dMEA+KPouZeRjeiabFI9mRJP45ythrrTvyU6Cl3OZqxG8/N5vv5G7v/5Vl/x5z5d9uZjgBc4DwHzhF34h73znO7n99tv5uq/7On7gB36Ad73rXbzzne/ky77syy7GNl6yCWUJKjqz+FCfeRKrGo9IA3AiOz35b6a5zGtxGY0zeZwZ87/sJD1+eYGt5yxgykA08LhYU3YTXKJYvLcgaMX2EYsuId3ypBvSeh9tF/jEUHYtuhIJVP9wRNy3JFuSEOYjiavUVcCMKumuUQqSaMqmNECgkY01/pjmPZkNLSinSWShckQPr9Ded5iip6k6VtLQYpGzBatnUsQg2RYWRRfSFROQ5JdiLqLsaIb7Ndt35NhTMa0NjR0qdC4HFZ9Ij0zngU3xJrk6jKCJs4wsqgGQztfdBEZApHcSlXxggdOfZQkqEEygSgXI+QhcIqED2kmyW7xZMdqrya65MjTLu3N1gpdmLheI2Z3LO71jJelWid4aTdh2VTpM1rDaaurls4ZgjaR56ZkTzBAk5avSmKKaKHrRmigy+NRSdiOqNKLsKfo3Om577sN8wfK9NVsiq/5LdsBKNce8GZKFmFQVDFyKVn5ibs98BBaWzJC+b028J22d0yZnvepi8Hg0a+M2yiEx972YMB/jY12HuMjxo0rFt2gzj3YSWqDLgM6FeXGptNgrF5i71/Dnye1sPqfFZ8wdp2syfF3amfuIk+U8LVMyb0YciDYxBIY+4VCywbwdczheZ+QTsmBZMgM2XZtD0Qb3ZftZKXoAjF1Ex+SsFD2qoHnPR29izyehe3SMXR/Kex1HwhbpQGglwizppvhYPsN8TsGhMV9y4yd5ZvsUq2WXPVGftpb3NFKOtsknfpieySiDnbye3bn8czWCF7g8MrIL8d78+oHb+eKd25RPmbMGMB/+8Ie57bbb+C//5b+QZULf/tt/+2+Jooi/+7u/4+677+aee+65aBt6yWcWxMyuxuAmP4dQSftuCOLTgKmUTM38HtVv8+wBCyBNGN0wRzSSVbls0aCdJJPNP1hi+yUoaK/WUqpCPCJmXEc4OymtVEGRL2h8hEiyrGyflGNq4oGwNSgl21rV0ZBJTGinhFaM6yb4WFN2LHbkSE72xbyo1FSydYbh3xPKkt7H19m4Y5nhAUv7dIUKUPYMRVdTpQqbBVrrnmggvh7XisQgqRXlnCVosJmnnNPgFK4l4CJRUHWFyfGJFrnc1uDM1aNZIOkcmEjYlqbQ0mgx7ivF6JqUoBuPjaJKA6aQLpuiJ8Wg7VUx0bpU01rzqG17RRaP7c7lmd89+n8/7uX/+sj3XOItefK52sMDni5jh5VoaEOQ48QsI19H4FPV0qvIThkY76f9W66W/0aPc6gOMdSxv2VHMToYOPLMU3zx8icnq/0jH+MRhqAxuEfKMaoNfrmPyHzEoC56TJWAq44WmVXmIwyBqL68kZQNsoQQQ7agKToxZRdGBxTFHgfdklBqVOwx1lP1I6INixkr7BBaq4F0w+GtqvvMAtEg0H4o4p/mr6V3Q8Y1yRYexb5oGx80j+YL7Iv7dHTOgh7R9y2GddhAWxcTWVyqKlJdslrNkaqS7SpFExi7iPlojFaBlazLw5uLdO+N6Jwq0Vkl8j6jxcg5eX/DROIdrAFr8J2E/vWwf2mb53WP4tC0TcFq2eOm9BQjH+PqAIQiWEY+5vp4leVkwN9yaEf/vnbn6p6Xr1/H5jsW+emP/CcA/uLFv8uPft5/fcr7XWoW5nz7bP7pF36Yj5/8WY7toGn/sXPWAOa5z30ud955J9/5nd/Jy1/+cgC01vzoj/7oRdu4Sz6uAhtNkq1CVckJsbVTyZIxcrlS4rUIflr+3iRfGWZO+L34R5wXNsY5SBJUmpDdsAcXK9K1kmLBYsqAycTrAhCMEvP/2E/6UIKBYj4iGkppmB0Hyo4UQPpIEY0DpgjYYYV2Ij/ztuHzlZzQRxY/12Z4Q4/RHoMuxfSpK3Cx+FPMLTFxPzB//wj7yDqhKERy1gC0+vWqjW0WPmpZ+awFRnstnZMl3iqGBzV2CHFfTP1QF4VZja48unQQLHbssf2SvRWs5zF2JIVu20cS0i1HlUQoH2h/co3QlGCZGXasIb/i+nPz4qWZxEJrLSVjy5rqpjFJUqLfM4/yUCWKaOhJtp0UZc6Av3jbY8e7DMyVMJeTfXki0PJ4t3kyIHM1sDBXs3zsShxdONBWFopCEHO4FZZC2uqNyKuipl+rlP1WzYI3Xhiqanr8gTqQpJaSGU05ZxkehuTmbb5o/730XUruLV2T069SjPVkwbJdibxpyQ7Fn6GgDJYyGObtGE2QjhlVkuqCCIfW/gwmpmcyjhdLjLOIzljO9zefBfN3rPJVB+9Dq8Aj4wUKb9iTDHFB8fBgifVxm81+i2wcUR5NqFoib5bjgxx70rXA6KNd/sbcyHMPPspSPOKW9CSbrs0t7ZMTX8umbzP0CWWwk1QxkYwZ2rpg03VYsgOKYHhm+yQPZXvo2JzKa+4f7OHksEf/vgUOPOCItkp0Pi2mnAQONN02DXDUmhBbql5MdU2BArQK9PQIHzSrZZdHi0UyHzFvR+y122y6NqUybLuU02GO7SvEA/PpPpeTfXnscy+8cIP/64Xf9SnXf9VbjvNNr36Msqeet7/8/bz95d/Oi996x2WRk53tvOHlA2677+LJx+AcYpTf/e5385znPIcf/MEf5ODBg3zLt3wLf/M3f3Mxt+3yTb1SphqmpO4SER+LO+M2Z8wZ5v4ZD0wTvdgkZSG+Fx9rWqfySSeMHdYeFg/FghVZVgi4liaf15RdTZXKR1bMWcnWd4Fo5OmccnROeOKtimRddsjFvOx8dRnQowK8J7QSiiNLnPrcBbavtbRXHUnfo0vRM3dOObrHHclWoOwoTt3Zpf/8a/DX7IUkFtA28/qD8+jVLfa8f5uqBcODEcMDBpPLwclmnnzeUMyJXlvVbFbVjvCRkuJNq4kGFXv/OWfh3kIO6gaqVFN2FPMf3YTtwTRwoChnDPx6+h5PIpNrqZvSk4OSrsBtx4SgsBkk2/K+FT0BeNFAfENlW1N0NUVP49Jdyv9yz5UOXh57+ye7z6VgRnbZlytnVBCWnMd4DnThhBGvu6k+pZC3SbsKcswJlSOU5eQfVVX7KQMuMWQLmvxgxRdeez/7om1J2dKOSFfc0Fqha/I6glhAkFaeVJf0TMY10QZH4lUOx+tcE2+wYIYcsht0lLAacd2jMvQJaZ1O1tYFrbSkasPgCDznC+7jy6/5BLe3j9HWBQC39k6yP97mGa1Vbpk7ze3LJ7hu7wbPuHaF4rqczed4YWy6IjMLCuwIWqcC1b09Prayn9W8w9AnLJsBn9l6iL1mmyxElMHS0TkHok2uS1Zp6wJX+1tOlXMczZdZqXqMfILBM2/H9EzGStEl1o7TDy6z8DFFslFh8ulJoqrqvpeiFCN/CIQmmCCyBKvJliPSbk43zhl5YbFGPub6dJW2yRm4hFRVZCEi1SUdnbPuupwu5xiVV4YH5tN5riTw8mTzx684zMvXr+M3ft484W3Olxk5l7mQ5LGX/Na5HT/PZ876DO0LvuALePOb38yJEyf4z//5P/PQQw/xRV/0Rdxyyy38x//4HydRfFf1+CAG/HLKMoSmuCoElNHy/+zBprndDEND8I8PcJQGbVCtlNH1c2IgNwqXGvGrWIWqAv0jMf1DhmzJUrUM42WNS2qQk0l7s48U44MpZVdjxg6TB2wufSlV25AtRxDE+B4NncRcpgnjG5fZvi4l7gfaK5LBr4tAPPS0VisBQFuOoMHHChVgtMew+Zwew+ccIHTbU5Ojn+78zalN9v/9FkVPMdofMLl03ZQdjYsFGHirKOYixgdabF8fS4KND9KRk9amzJZmtMcQNHRO5Oz9m1NwckXec1snozVxyVCHIkyBY5g0QldyuRPzbNDQedASPjhXF3yGuuxTAg7yRdFjmyJQthFwFV0ZJv7dufRzruDlbO97MQHGLni5wuaM40T9c+WlC6UQGa/IlsI0HKYx9EcRKopQSSz/rJV/dZcVRkzxVccw3qfYf2iDO7pH6eiceTviSLzGkhlyXSwn1j2T0TV5HelbTLpWmtF41qsuQ5/w8eIgm17Svxqz/NDHNeOhpItFBbI9geS5m3zJ8ifZEw0wKtAzGfuTbdq6YMkOiZRjX9znWd0TfPm+j/Ml+z7Jzdeeont4m3zZUfaUyIhzOQalm4H5e6F83yL/fPRaPji4lmENRFJdEtfdLoZAqsrJ6+3pDF33wYxdxOlijn8ZXcdHR9fggqZrMhLteO8D17P0fk33hBRpqtLhWxFuqUtoJdP3vy61Dql03KgaZJYtTTaMWRmKHG+hfo97OqOtC9q6kDCEYFnQI9o6Z6/tk+iSxFx4cd/uXJ1zvsDpj19xmBe/9Y4nvP5CAMZTzU489pe//V/vwJY88ZzzEnOn0+Hbvu3bePe7380nP/lJvu7rvo5f/MVf5MiRI3z1V3/1xdjGSzahqup44/pgYwwqTSRCWc2wMlG9um8ac58SqdlsqWLTTdJE+tYn38pofLfNcL8hW1BkS7HIpLUAlGxPxNbN0H+Gp+iJIbK16kk3PTbzAgJ6ZsLaJFtuImGL+tJWH7RIo3QZ8FahC4/ynuKaOdZvjcgX1OT+wUA0qGidKogGFWZUYnJHa82RrnmiQSCpwwPyBcPWZ+4nHFiWg2o0XVEKZYle2eTAe7bpPCoAwEf1yloWsJmAiHzBsHmjpewqTC7bmi1ZBgctw4MxRVeTbniWPzggvv+0MC9KTdkvN/P+ajX1G81GRNedLxN2xmiCAZeAySHdCBRduS7ZchLvXAMZUwqwa61U2OzKKLL8dJ3Lwb78wNGP7cjjPBkbs9NA43f+69t3wcsVOJO9RwNedP3Pz1xuzaRfbFIubM30f2um9585uQ7W4NOIbNEwOuS4ZfE0uY+kyV6V7LXbHIo2mNMZPZ3hgsIoz75YLtfKE9VMQRZi4roHJvMRx4sl7s33c7JckCQvHAtmVEcax2y5FklUoW8Y8kWH76PvUlbLrkimgpkUSW65Vn0yL9KuZ6YneG7rKF+67xPctvck0f4x+WKQ45ERpYDNPK11R+9owN7X4oPr19D3Ir0yePaabVJV0tY5LmiKYCapYyfz+TqJrMIHxem8x3bVYq3s8IePfgbv/svnsvj/pizclxOvF7X3pZJUuOYzcE6YmBAEXNoayBiFjwy6Cqi1mPXVHh/YvpaOKrgm2uBAtMk+u83BeIv5uoxz3XVZNgM6OscHjfPnfLq1Ozs477vt8vSdXSjrs/DCDf7pF374Ca/faRDzXfrbd+Qx/583/Z/8/Pe97cI36EnmnFPIZuemm27ida97Hddddx0/9mM/xp/+6Z/u1HZdllFJgkLXkbz1hY6Z+OGaiWly4sNMQ30DXiaG//r/plOlYSuUws0llF1FNBSZlq4UuhRWYOsGTedYINmGZKvCR3KdruR6kzWxzRBvVqhKfnepMBwm92AVKkfa6yMwo5IQGYYHY+wwoCtqpkGhneycq5YhGskKkRlVeKtprXjKOUu8WRGsAI7hAUO2sMDefzaYkxsQSkJRimcIMI+scnB9wPgZy2xfF1O1Fem6Jx57yrZIwnwEUT8w3GcwJVQtMBn0juXExzdQeQmNXKLJ37f6TB14E2/ZSPUKkedNgKbRNSsmH2RrzeNiQ7wdcLFsA9Tlm5mwV6oCkzlMHadcxbsAZncubH736P/9uN6YnfDE7IKWK3tUFaT7pKwEiPgZIOMC5MVEUjuJT27kZrPsTb2wpmDacxWJHyNbVpjlnL3xgHkzJNUlZZDD+rZPMQQORJuUwRKrVYpgBLj4CIeklLl6HTNSbsKwlN6yTgdTA52Rl5O/0+Uc94/20ktyblpY5fPnJDBg5BO0CiS6JPeWQSW/+6BYjEakqkTj6eicg9EG0bxjs2jxsWGMtxHxlqZaUZPFLlMEeg8pTqkD/OLaF/P/ufkA16Vrk5LNti6IZwIHVippdc+9Zc5mnMrneN+jRxgPY/zY0vtExMFPVLJ/H1forIJKqg1UXkrMdTUTpdy8/94TjBHfZuWJB55kwzKeUyzFQ7IQEVGRqpLMx/Xrjxj6GKMCK9UcK9UcHxkcZCNrX5w/tN05q/nZvz5wuTfhvOf//Ob/AT/wxNd/l74wT8y7V/6R0196E+/4yGvPcws/dd7xkdfy4r+6A87RxP8l/zLPT5zlbc8bwPz1X/81b37zm/m93/s9tNZ8/dd/Pd/xHRfXsHOxJ1SVGOwb9qQ+OQ51XO8Z0jGQAxMzBxWmGevqsUyMMRLtqzW6cKTrgWgs+fPZkqXoifdCV9A55Uk2S+lHaddRk5WfyKxMLswKSvTUvmUxuafsyWqdLv1EkhYNKkw/ozjQY3hA0zvmMGUgKGFH8p5GVwZdBLzV+F4sO+taG6zqokk7rogURENN0VOc+Lw5Dv6dwjy6Nnl/cE6M9mVJ68Nj0mM9smvnKecsPpKeAh+J1jkeSABB+2SO3RihhmNClkNRnpHWQ1HKe9eAl6Zs02g5ADUsjK6Te5xD1UELKE2oG6Dt2FN2TR1UIFKxoKX/xcea4X5D91GHT+RgbkpP1N818X86TcO+XIh87PHmyUAMcE5AZhe0XD2jQgDCxOui6mNDQIzizUr/tEi47hlrFsyak+l6JvLlhoUxiqoF2nis9nR0QU+P6fsWHi1ARlUTH0lPj9l0HSLcxM+y6aRkcVini2kVJslkKYr1qst61aUMhkSX9F1K6aWP5VBrU1LKVGDLtemajIFLMSqQ6GoCjDSB48USW65NW+e1j8WQmpLbbzzOQ0uL9E93KecsdqBJtmSBy2aBhXsV2Wqb/3nyDvSBjIPLW+xpDTjc3mRf3f1yOF4n0SUtU/LQaJlP9PfzkXsPM/+hiL1rnmgc0EVFNKzQuUMPClmEhPo9R86EjBbWZRbE6LoKwXmR/1UBMwYVeVqmFABTM1niGao4US3Q1jl9H5GqklPlHA9s7WFttXXp/vh252k3DZOz+Y7Fx/W/NOb+N/k3n/Vjrr3n788q+ex854vPI4Hsi37kF876tucEYB599FF+7dd+jV/7tV/jvvvu43M/93N54xvfyNd//dfT6XTOeUOvtFFKCSiJrJj2Q+2TqOOHATlJNgZcQMXNMv60/GoW5IgfQ4CMimKRmckTYXNhVYqewUWKsis0urdM2BioAYQWn4wKAjxcoiayMR8bil40LWFESi2rtpGEr7UxlBVl14rJf9sRrCKf19hcvDT5nCFdd1Qtgy49upLH9ZHCtTQ6l+fVZaB9uiIeaLavM6x8ZpflSBM9vDJNCLMSBxrKEtY2SNe3aCVx/Z7OhBzUwCTkYvoMMDXhA6Eop4EBTaJbA1QmuvGmaNRPYq2bz0hu48FrVFESrxe0Vi2bt4Bygc6jInFTLoAN9I5JzKlLpjS/Gu0yMLuzM/NEIAauHFByYOs5u0lkOzgh0gRd78M8km6FMDNUbnqCbKhPmP3EeyHXAYjJf3JUaRLI6v1fUNBtZ9yYnmbBDAE4ZDcoMLigyULEStWj71p0dM7QJ0SqQuMnrEoWInomIwoVWYjZKNssRiPauiDzEVtOTryHVcLHtvZjlUepwP5om9VqjqSOW94fbTFQKUvRcAKQEl1OGuqbaVK7lpMRC9GIuSjjeHuBY+1FqvUY19KkRpFuyL66vRJI1xVVq8Xq/jbH9zk+sFCQtgvGw4RQaJQNBKdoPRTTPRq4/mRJvNEHrfCJdJOJlDoQWhEhMaJeCKEGMBImI5HX4hlVtTdJoQmJJURaSo8LCKWmX6WsVV3SqGTTdTB4VqoeHsXIJ2y5Fl2TcXS8yOmNHmp4cf/edufTYxZeuMGL33oHCy/c4K1LD3/K9Y38azYA4Nid38GPnDrES4o/4Kc/8p/4rJ964SXb3os5Zw1gXvKSl/AXf/EX7Nmzh1e84hV8+7d/O8985jMv5rZd+jFmqk82RliU2kehaqmYaqVycj3juVBxNGVZ6phkqkpkaI20LHhAGuGDkh2zHThUgNYpB0ZRti0+FtZEGo3l8YMBO5bEMZdofKQxWS1JM4r1Z1mqNix/xKFqABQNnZjVixK0JlswYlx3gaojTIREL0OyKS30wSjKrsG1NC5SFF2NS6G94olGFaqOdy67hjpshrXb2yyrfUQPnBTQAsI0gbzmqhJwUpYTQ/0kecfW0jqlZiR44itSjXcIM+MrakTk9XPEatq7Y20dOzoDkhrmJi+w2xkL9xqqVsroQKDsQNHT6CrGFJ5s3qCCfC4mEwamMrsm/t3ZuXkyELM7T78JSGw8zqCQk2KUksWbJj5ZqcnCjqrZ4okHU6n69xlQE1lJxtJyHEBBK6om4GVBj2mrilh5UlWy4nqcKucpg6EIhr12mwUzmhRSLjDCBUUZTA1upsEsDjUBL6fzHidGcxxfW6CdFtywuFZLxyTC+GAsbEyiS8ra+N/WhXhiEHnaVtXGodgoOxwbL7Inlm2+uXOaQ61N9rQGHF1cZG2jy9ikoBTxtnR1tddK7MjBxwANZdeK9Gy7QheyQOcjTTTIiDazM0MRgFAzYKJksGAsuIBPjHhBrZosiClPLdcWqVkwCpTBt+SAHA0Camzo2YwD0SYg/pw11+VkPo9D44ImUo7TxRzbRQvntMgGd+fTYjbfscjCCzcu2uM3j/0f/td3PyGDcmYM83+lKTx5O5cOvPy/x/7hnFmYd//HHzhrFuasAUwURfzu7/4uX/mVX4mZbZR/us2s5Ksx3dUnxY0Ouel/Ac6MS9ZKcv+Dn0qcoPZreIIS2YAeldixFDRGg0ra6Y0mokJvOFzLStKY1phRhRmriTbXRzHxltzHxyIvS7YCo8OBbEGjHZhco6tA59FcNLzdFlUL7FhRdQz9w+IFqRJJ+2oYG28hW9LkCwrloJgPaKeIBppUKfHWhED36Ij2KWGhsn0J/SMpC1sL6FX5Uk26Ylwt8fKuLoGZKQQ1tX9oEiPKTCRy/cWb+I8krlLZ2pzfvNfNfSsnr7P5rGbCFJqgATUcE0WG3vGIqmUY3lxw3ZFV1opr6D4iRXDtFSlXc6lGOUNwu6bLT5fZKfP+U82lBDGj4/sBaB8+ddb32WVhdnYk8bCWKdXxyMo1vVhn/i7Jjh4wZwCbM5hrX/eKGUmINLkApU3XYdkMKINhJcSUwUza6iPl0CpM+lwMXsz5quKQHbHtUzHz+4hUFeyL+2jl///s/Xm0JWld5ot/3iGGPZ0pT86VRRUFxSwgVSBwtauxpER/zt4FtF5tsJ0AbRttG5cLbHWpaNs0jY12t79Gr62C11aUawuoICLIVFhMBRZQRVVW5XzyDHuM4R3uH2/E3vtkTZlVJ8eKZ61cmbl37NgRcc4bbzzv832eL2tlj5EJKk0sDeuTNsUopsw0etcpUlmyYUKvE+cFa6bH/miTL4/3si/ZYsu2WFQTxi5mb7xFT2bBo+M0h1obJNIQCYsSjkU14WkLx9iVjLjVHWJjM6aYKFQG8bBqBZCHeU8UBtWP8JFE5iFJTI00thPmCR8pMKFMz2uJaUeUCwobS4QNVQdOg6tK8Gwi8CoQFzzIEvTEE49iooElGhqEdZhU4WJBsuXoHFa868vP4KqnbvDVra/Qdyn79BZrusfpMlSjnCgWyK3GeEnaKhi2m/nksYTzTWIAPvWU957X/T9avOdln+KmD58bgXn9Pzv70IOzJjDvete7zukgLkvMe1ys3Z4qJmdlW+GhXM5Sxura5lqZqRtfzqdj1WVmQgRVpFrtB8LKjvWI0lEuxOA80ahEebCJChOcJ5gIN3O8CqtvXoupXyQ9IRE+lKU5LUi2bPCWlCasOAmIxg4bB3LiNIwPCaI+dI5bhIWyLafvoUEVAlxoculiiR5Wx20cRCECWliP8ILRdQv0BqPgYxFn3Kirpp91uRhazBLF6r4tUm1rGOqtC0RRa0Qrxa4uUKyk2FhiWmHyjvvBp6QyixqVyMEYMRyH0r2aZNc/09Ig+2M69wiE64CIube/j1TDZDUoTbYfGnCaDqRrivi+xgNzMfGvD3/hovaBOV84XySmJixn8/pDkZqGxOwM/Ny9v/a/4Py0kaWoy8jmiUpdGiuqv63dvtMq+dJHqlIJYGPYZq3s8bTkPjIf0XfplKAsyTG70uFUWcmq9BKLCOlicoIUbkp4LIK90RbXRGv8I9ewJQMJOZIvcer4ImKo8bFDCk8kLG1VsD/apC1zJF0iYVjQE8Y2ZlFPWNFD2i6iIws6ckDfpZwuO0jhSWXJ0XyJzaLFajLkia2TZC6iE5ds9EoKExbPWK9i7z0hNWySI73H+yjMRdYhSovMQxmwq5olYz1EhKjpZUWxFAhLvsthe5bWyoSV7hgPRNKRW4X3gkkRcbrfQp6KaR+N6N6nSE+XlF01LTtO1j3FHV3+du/1POPgvXxNeoRFqXhifJJ126bwii8V+zhWLLFRtNjdG1EuNn1gHit4z8s+dcF6ztzyjt/gvS/7sR3fb/u67llvO75z+KDvve6F/503fviHznpfL+p/hg+e5baPKoXsioOzIKubjPPBW1Gbxr2bqTPOT83iU5M5Iflqm+EctieaWBs62keaeKug7EWI0jHZm6IyR9wvkaVDjUrUMMe1IoSTwd9SlxkgETb4VfJFhSo9wgRjvCwJBIMqtWwSfCk21QgbesjkC0Eyjwce0xYhlaz06Iml6MUkfU/S9wyuCg/yqgiExmkR/DaLGpNKBo+T7PpcGUq0JUx2Kdp7llD3nmRa7lxHSzsbyEvtXbF2do0s022AadmY0BqRppirdpGtphQLEj2ZrZ6pwuOUgEhUQQMKsZQgswXUuECMc8RwHH4EziGkhLxArVk6xuHFAsIqsl0+XFUL2XI453zVkqwrxnuvYKWxwRTz6stOG/gvFB6MvDzc9ueizjQ4R0gxFZfnIZzHq9ADRjg/IzHOBZXf+6p5sttecgvh9dIgSo2aWKKhZ+t0i5Nlj9LraT8UCAb9WNgpQQGIhWXgWkgcJYoCifOS42YpmPhxyKqO+kC0MW0QearoojY18aYk2+3ZzFtYBIkIZv2xS1jU4X67qCecLHrT79ytB1gEPTnhuFmcbpPIkselpyndHvbFfSJhaMuCbpyztDyirz35IKW1VnkVqznQaxWuwfx18R45yEJpXhw8LnYxxcWSfEFS9gT9JxlWDm5y3UKf/a0tdkUjEmnoqbqHTCiBG9uE+/JlDl+9zD2PX+b05xbpHY7xEoSBaBJaA7SPSj5123W82UteeeDvuTE5SYQkqtLRdqkhLpK0lwruyVaw40Xu3PnfsgaXGGpfyuZfLQOcdxVm+cW/vuP7PBfyAg9dynau+OCPX3/W2zYEZg7eOhAurP5Ps/vFLB5ZUZEVi5iaM/39ypaAmZog49nr9cN7XqDGJaOrQn2xngRzoa1KuqIirMy5RE+bCdQ3cNvVqHGJcOCVQI6D6T5d98GUryCaOJKjQ8hyUAqVGWySMtqr0ZOQ7lK2BeP9nvaxUDKFCF6b0apEjz0uDl2R003PeFUGs/9yVB2nYPQ4i7ARC/cE9UYVnmxPSnuri8gLfJYH1cXOFKzZ9Qrqljdmm5doWo6nNSwtML5mCWE90dCgJwI9KrEtTdnVeAXSeig9qop/9lriEoVttWFXGz3soAYZYnMwW+U0IPtjul/yJBttBlcn5EtQdiAynnhD0DohiUaezT07+uvVoMGO41yJy4N9/kwis2/raQCNEvNo4Py0AeK2iH3nKr/eXISydXhjw2IPIGSVoHhmTL+tPqsUKtbEQ0d0WnN4tEx/IaUtczqiYORDOVUkDKXXDFyLtsiJZMnIJlgEzks6opj2UklF8K/s1n12qxFtmRMJy6Zt89mTB+jcFxT6sivJrWZJjXlWephUlBSoaWna2CVESTjukUvIXEQkLJkKfWYe3zpFXr22Es3UoRPlIrnTHGxvkaqSO0pNqVNsHOY6COVhAsLCYVFOyZ0YTaYeTBlF+F6bciklW9FM9kj6TzI852l38bSFY7Rlwd5oi7bMWZAZbZlX/Ws0FkHmYlajAU/rHOFLvb18LH0c69d3KLYS4hOa9LQkGoSeYZ0jks+Za/m5Jyzzf133cZ7ZuoeOKOipMUtywjOSo0g8n0/3sdvs5h/O9+9cgwfFO1buuWCqCJx/4nI+cK7EpcYvfN8fTj/7ht/7F/cjM/X/z0aJ+bq3fJH3n6VNpynKnEOdejVNHaubIVaJZNPJxM0nYM2pK6XBF2V4aK//zvO5soDZtmI4Ie5byl5VCjA2eAllT1PsamEWU+TEoCbhpmxbEQiBGhXTkoRkw6DHlnTT0jptULkjmjja94yQg9F0ApTjAmE92a7Q9RgPNoX0lKB3r8ULmKxoyo6YkpfJHsdkb0hGSzcdeuJINkqigSXpWzr3qGBmdKEBpFOCbFnhOmm1ouiDF8ZVcdR6jiuLOaN+TQDra6s1rCwyun4F01FEwxKZW6KtHFFahPFEA0NyukQPSqJhGUrnSose5OhBjiwsKg8eoXJPF78cegR458IxFSVyNCE+ssnKpzfZ+/Ehy1+0RKPQ5HLhHkO2Iih2zRHSBhcF59ubcqG8L2diJ5SeR0teztzXA+2vJjINzh3S2FDGVJMYXYebVGqCCb1HKE1Y7HLby8Wmi2jThryzfmS1nyZE0Qs+d3Q/dxV7GLiU0iucDzHKI5ew6dohJhk1TR4b2Babtk3fpWy6Nko4lHBVxLHmtGtx3CwycjHvPf00Rp9fpnXSoUcePRH0s4SRS+i7lEWZs1uO2afGFF7RUxkAq7rPLjVk3XQZu4TPZofIfETuItbKLpYQHrCih1wVn2ZFB0VkKRojhWehnVEuWya7BcWSDuSltFCUCGMRpUEUJWKSB/JSp4DGEUiJaStG+xXD50z45ud8mn++6w4W1YRVPZgmo6WiROFQ1UqhwodIZBzOS/bHW3zdvju55bovcONT76L7rNOMD3hsK5RXR31P706J+dAK/+XvvoGfveM7+G8nb+IfxtfxqfwQd5tlPp0f5LTtMrHx+f2Fa3DRMZ8KViswFwL/8Tef/qj38UjJy5n4he/7wwclKq974X/n/T/05If8/E1/821n/V2NAjMHbwxeyLBCphR+koGUQSUow8rYtppk42dRvzLUUgkhQjywMVMiJEoTJp86OtiXiKwgOTHGRR3UJCguk92hfC0ahfICnyjEuEDkDj2qJjytcO0YL0PTSi9nqWVeqhAKMBhDXgRS5Txya0Tn5CJbnZC0FQ8duZKs3FOSnpxQLCUUvRhZQNkLJCcagml5vILO0TIQn2ruzHshhUyPCf1jotBXxbQEZilBDidVI8k5AlDFLNfqljdzq5Fy7hr2OoyvXUKPLXpUIidlSIvpVudcNyCToca8rouuE15k6RG5nRo4y5U2ZrGFbEWotT5+nE1JjFASMRwj44jFYxu4pS7lcouyq4m3PL1xw++vZJxJXi6n8rGdJC9n7vfB1BhoFJlzQWhkaYNPQ4iQhDXf4wqmZCao/5WaUMcr1z1hqMhMNbegwx+vgym9teYYHmnzxev28Yz03umuQ++XDCxYIRm5ZPqAbqs+MaEBZSgbc4TkrLpxpUPy8cF13PrpJ7DrS6Dz4N8RVdr9E+PjxMJSIukJw7oLD+h1IlpPTjhaLvPV7buxCAa2xSmzgCOUkPVkhvUSi+SJ+jgLMuOw3IXCkUhDWxec3uowsS0mxxXxpkatW0RWzMrurK0aFlfXUkl8K6FcbjE4qOg/yfKtT/ksL+h9idJr1n2XgUsZuJQVNQzNPquSu9JriiqNbWjTSpVR7I83iYTlmvQ0j2uv8xdZwsh0SU+Hn6XKoXufY+FuMB/bzccP7uEDj38ysmVYWRrRikqW0gl33NMF/t/z9vvW4OGx/rX/mpW/P/s+I48GF1KB+cTLBrz4rW96xI0od4q81PiF7/tDPvmff5rn/Otfu997f3X7a/mrF4Z/PxDR+YV3nf2iYkNg5iCURAhZV20F8iJEmFzqf9erZ/UEIwW+NLOHcADvpqVRon7q9y70QrEWUPiyRK33SdoRpqNxSlAsCOK+R5iQuCL87DggJJu5VhSMipGkXJboscMmwcAfbxniI5uwNQznUBvZjSU9VeBFTDS02Jake8QQbxW4ROO1pHXaYtKQUiYctI4LXAxFF8TeQKzSjToGGaSBfEmg8+Br0VloDDnZHaM3W6jBqEoiM7NENlXJ/yL4eKaeovr6pynFwSVk4VATg+pnoSysG2NTXcVZWtByLskHZBmOy1fn6xOFJ/xbD0NwgEs0YqmLLMqwWlc3u6yuD94hi5KkPyYBOnFEGTmax7WLjwtl5v/uq3/4gpKYSzVW+YFITI0zyUyj0Dw4vBCz9LG69MvVpWQ+RMw7V6kvfpZ2KcN90s83uYSp6lJDGIfOLGxA596Iv7nzep7QOsnT03sZ+4Tdqk/mNXFFSiKCL6b0mi3bIhKWU2aBA9FGpTp4Tpke66ZLIku+NNnLX37haSx+XtFaN6gseCtHpWacR6zbLitqSOklYxS35we4r9jFgXgjeGy8pi3DwtU+1SfC0nctMquRwmGRVSmZ4fb8KlJRsGVbtGXBVfE6PZWRXRXxKX8VxUInNHKumoLOLkIgdUJW/sokxnZi8tWYyT7B/utO8azO4SryOWHsYgY2ZTUaAEwVqeAT0gxsylfy3RgnkcIjhQ9NPIVBCcf+eItnHjjCna1V1o4skh6JQuyyh2joaJ0qWbjHY27TZMsJ+WLK2i7BuoHWycl5/X1r8PD4q9tfy8s4P2VkZ/ZkudAlayt//59h5YJ93cPia9/ym/zBm9UZcc7b8Wh9Mw2BmUdVLoaryUaVCy/ErDMyzMgMzF7jjHhlpbZNSsD9S9CMRZ/Ywh1axrQ1vXtNyKSXIZlMTgyukyAzE1K/vMfFGtPRFAsh9hgviYaWqF+iT/VhUHXLcoEohX87VGYoeik6c6hJ6PkS+sI44nWLbUeU7ZhoEErNevcFX45JBZPdofa5Tv5K+pbxHk3Zg3Qd6i7TqvDkSxJ5TZeFU5vgyyqlzYW/az+MtdNI6rppKFpj9y2zdU2Kzj3dey0+DglvphOij20ikFYhC0/UL1G5RUzKsF9b2U3rhwYt8YLpz00WFttNwC4hNwfh4aEmUFJA4fDCwngSft79AUI2JWRXIi5W2dhO4XypL+eKhrycJYydRSXXaZTGBs+LMdOFlNk8U6n9UszIC5VH0/vpw3pI3rJIJWifdORf7PC/V5/O6lV9DkYbIUbZx1gvGbhWKJUSHiVK2j4s7KjKsL9Pb+G8ZNO2uTPbw9+deAInP7WXlTshXbeoiSM5neEiRWtZsXaqwwf7T+Jx6WluaN8FwJpZ4GTZo6cyElmyT26xW/cBGPmYjsy5OjrNYXYxdjFrZY/VaDA9hszHtGVBJCwdmXMg2iCRJf0i5b5WB9M6g7xUMfxCyrDIJyU+TTDdmPGqIttruG5xLZTPVWqK9ZK9UZ/duo8UoXSsLrkLTTvbjEzCxEZoaVnQWVClZPgZLaoxNy3fwVO6x/lA8kTuMfuIRmpaoaC3cuQ4J7KWVqRx7RiXRojS4rf65+kXrMG5YKeJxQM1kzxf33U+sNPqyzx+8DdatK976JSyR4OmRmYetRztfVAJasVljrwIISpVpkohkwIRx7M6Zefx1oU44Tq5zIX9Tf9UjS19niNGE+KTI5LTZUjYioO6YiOJjxS2rac/pXKlTbESM9kdIayne29O964h7S+eIrrvdEjdqgnVfNKXlMiNIXgY7dGYTsiz92ruIZ9g4o/GjvYJhx6HP8mWI94K6srwoGS4XzNeVXgdCI004Y+NBDrz2FgwOKRwu4LvZJrMBve7jnWiG3GESGKKXS2kDaRpdCDBLCZMDnSZ7I4ou5KyI0MEaZUyOl2N1CrUPTuPyApkYYIyk4dGZDIPP1M5LrELCX6xGybCOiq7XuX0lXdpqszMpck1uKjYCdLxrw9/4WH3891X//AFVUUuRtla+6oTD5s+9mCemAZnD2FDKetUOamSxqYLOTD1Ak7vk0LOGgHX+6kaWYo4CnNN5aURRdUXxYV7cOcI3P2ZA/zZyWezaTuctD0yH3HKLjCwKcfNIpmLWDfhgaX0irbMsQhOmQX+Kd/PxwfX8o7P3kD//fvY9zHH4l3F1GuJ9cjC0F6ztO/RvOfzT+VjG9dwZ7GXgWtResWinhAJQ+4ijptFTpmF0JvGLDCq1I6D0TpLakwqS8YuDuqPcKSiQBH+hqCOrKghz1g6yni/I1+QuCQK51/PWS6EH0znbR0aMY/3Cg49/hT/bOmLLKkxPZnRkxmRNKzoIaksqxK7CT01mQYJDGwKQO40I5OwXnSQeBbVhEUVzi0SlhU94oZdh7nqCScZXmspOyEMx3YifBo8OCIvkeMCvT5CrQ8Rk+z8/bI1OCc8FOm4GPvZKXznx599sQ/hAdG+rstfX/39O77fRoGZg7cWkFMlxdeKST251BJ/acJqj7UI1Pa4ZSlC2ZjW4XN2rnRMVL1jIj0lPN5YxOlN4tEENexhFpOKYEhKLbGJwEVt9MhQLGniTUPryCjEBNdqiw+kKaSeiRlhgnAeWYYQgu6Rgo3rE9iEsiVRXY3OBDIPscxOC2wspj1qoqHBa4EeWcb7IoZXSYpFQbzlSU95orEnHlq8EJi2RBhP3A8KTrnSItlKg4/oDCLgvd9ObIzB9zrYWJJsOlwcYjNDvwRQuafshNfyBUl3aMPEbRw+1TgpkFk5I5zGorYm+KT69bYeQegLICWUyy2ivICNYlbidmZUqZ4pcA0uDdTk41zKyR4p8bnQ5WQXEnWJWPuqEw9LUh6qnKzBw8ABhB4mQLVo4mb3Qzc3vyBn9+y5YBisw9cEJ45wndZ098JV/U8qQhQPPEv/JPiseQK//JRlnrX7KB2d01WhjGtoExZ0Rt+k4cFcBKP64cEy9x1fRh1LaJ0S7D3maK0VRJv5tIEyjmphKHgue4clLk65Pd3P1Z0NOt2QWLaqh/RUNiUrkTCkouSgDmVqVL1ndqsBaWo5bgLJ6lTpaX2XTs9v7BP2yS0WehkfuO6J5F9ZxSwmyMIgxlmlSNWqPqCD4jHao5k8IeebD3yOfdEmqSjpyYxTtsfAtrDI6WuZj1DeUQo9JVIdnVN6OVVitmyLtsrZrQcsqRFHyhWkcFyTrnH1Vev8iXg2J48fQE8EqhfhtSTyHjKq8mQfev74Zj65lPBI1JHiyyv86XNvO09H9OgRP2H9nLY/n+rLmfi26E92fJ8NgZlH5e/w1jJrZjIjLMBcl/h68lFzN9H5Xibg8yKQIalAqmmTyzrucTpBeQmDEjkckZxMSOIoZN3H0ey4SkN8xMEkm6aL+fkbYl1+UKsa9XFZKrWnID28SXQwZAPHQ1c15pKoRIVeM4REMS8EtiVJNizkHq8l6boMSksM0cijcoeeWFwUYs1k6ZDGE40dZVcy2R2T3C22k5cqzW2arjN/DaVETyzCeUp0aJBZOmQkKTuQbDqSjQIvBbalMJ2IaK0Mk3hVNuZijZrk4doBIjfB7CoEwjjMYoqPKuLYbSG2huDM9mOsSWaDSxYPREpqUnO5l4c9HBpV5DLF/L1ahwUtEUXb7uHTUqhphL8EXd3LI43rtDBL6fT9usGxre5psvQkW7D0BUF+fJUPLe+i2G2JFnMQniQxCOEpCk2RRXgjiY9EtE4J9px2pJsmWAwnJpSm5VU8vZTIwoRSOK2QmSXZcshSkq+1WDvUZbPVZlGNq4aYQUVxVX+YmpyctD0AMh+xWw3oCMNB3ee4DQ9Rh80KzkukcKSipG9T+jZFCc/B3hZfEavYVAUvpJKIOJqG5aAUJDFegNegYkdbFgxsi1SH+bYns2naWIiXDvHRA5dSeMWG6WC9ZGIjlPAsRROOZz3W8i7GSVTqsV6Quyg0Aq1UmwOdLY5HBxBz04Zrx4hIhUAZa/FK4ZsFsUsO8wpKrV7Mk4Diy8FUMiMt56641N9xqZeSXQh858efvaMEsCEwcxBaI4SeTSq1UR9mxv25yaUug/Lez/wvtfqhJEJGiG4Hu2cJ040QJqxmeR1M96Jw6H6G2BpOYyB9lkFWSc3zpQRSzBQhGwz903Kxug/NHCHY1mMlisO/+0NWPpMyvK6LVQIvBePdkngkSTYNKvdMVqtkm9MOlyicCseqMktiXDAsOh8IhnF4IVATg20Hk72XYFNBtgQ+DtHPGLO92WftAaoVGK1xnZRiQRMNDPGgxOmQMKZHZkqu8B7dzxEuwUUhpU2Oi7DKJWXwvSRR8M5YH0rvqnpxF0chtax0CONwqUZ32/jN/ixMQCl8Uc7K29SZLeganE+8sMwf9L0PR8lDfvZyJi4Xw8zfEKELBCnDgooLnsNZupicegenJWX1IpRSQX2uY5Odx0ca140pexGDqzWmLVATj87CopPKQ6S904QQljVP57hH3C6xcTv4KhUgIPYhUUwVEG+Voemxq/6YcG8OCricli8H0hAeF2RmiIaKaKgxm5Jj4wWOtJa5vnWcw8Uuxi5h3XRYjQbs1gNKr7nbLHBPsUrmIhb1mCNymV16iMRx3CzhvODObA9rRZetIuXJvRNI4fnM1kF2J0NGJg7H731YmBICIh365aQxvhVjeymmpUJD58p8n/mITdupfDChz0ssbEhkE46i6v8ycgl3jnfzxc3d9Ccpj1veYCmeYNxsDl4z3Sp8QDC0aSjHKzscGy9Q9hxlW6Cz0Hjat6Pg14xsiP+3fnsqZ4MLgk/+558G4N9+/bW8/+k/+pDbPvCD9aVVIna54z0v/9KO7q8hMDAlLKXJIFH4PDSAFELghZ+VJnkQsva/xNubk5lyRmSEB6FgoUO5t0vZhXhrFHq4yFAnW5cVFMsKt3spqBcbE8TJjaoUTEFZ+WgqBaeGiBW+yOfKnjwhGqzqVWOoDKA6NI3EI7zElyXi+HEStYvRgVbwwYwFYt3AVoGyMelIhjhkY8mWJE55WmvBMO8F074GZSdCShce+LMCMQK0ANEiuVdiY0G2qIiGsjrEMkzeppgZWV0JSiMQGFVSugy8o9QQb2SYKChEcmTxSpJ1NXZXTDQoQ4S0NyibhxjSNAGTIbzDSY9ZiLGxJOqXeC3xyqKHEygdNlb4SOE6CrFZhigzb8IMr2YeImPLbb8fj3Wcr+vwvNOnADD9S8vk+t1X/zC/d/ubL/ZhbEN/cOEfgo5/YTf7nnLqYbdrxklAfR2MDYRcBBk8kAHvEb5SNoRE4EMJ8rTni8D7qgJA+OBTjCQ+dlhtGC4oJqnFCdASijSQkWToUIWHQiBURThyj8wcyof0MKfDd8jSI21YfMJ7nJupOcI6hPch5r7y7ghT+XYqj4nXEvoFnS8a3ERzl1zhxOM0y+0DaOk4NeySF4qrVrZ42uIxVqIR62WHwkVslC0OD64NYQLSsTVp4bygk+Rsjlpkp9uIXPKp1V0kqaHINL1ewmDQorOVQX+CMVmI3/ch/stLhdOWUpU4b/BjizkM/2/3CUTSshhnDE1YAImlYWIiWrpkQWcUXjM2EafGXU6uLyCOpnjt+dzKCkKFsbaynLCvExErw6DYjxSe3GpODbuMBwm+lCQnCmTfIbYMDMuq9dscaXFgfDOfzONCXId/87x9fPBrHlm08E6j7N//3l3ctUz8+IeOW/7xP/pO/vbZW3z2+vcBcOxtEftfWVLcFfrMxI/fOKv9PBC+/rcfz+hVLwPgI/kv8fzkZ/lI/kvc/D+uY/Sql/GR/Jd49//5+7zkj7+Xd/+fvz/93E2/9h0AfOCn3wnAf/zGn+MHvi+Eurw8ehc3/4/r+Mn3/DzP/qqP85/2HOPfv/h3+fd/9S/59y/+3bM+trP5/RC+GU3cddddXHfddRf7MBpcorj33nu56qqrLvZhXHQ046TBQ6EZJwHNOGnwUGjGSUAzTho8FM5mnDQKDLCyEuocDx8+zOLi4kU+mkePfr/PoUOHuPfee1lYWLjYh7MjuBjn5L1nMBhw4MCBC/J9lzqacXLpoxknFx9X2jiBK2+sNOPk4qMZJ5c+LvVx0hAYQFYG/cXFxSvil67GwsLCFXU+cOHP6Uq5se4EmnFy+aAZJxcPV+o4gStvrDTj5OKhGSeXDy7VcdL0gWnQoEGDBg0aNGjQoMFlg4bANGjQoEGDBg0aNGjQ4LJBQ2CAJEn4uZ/7OZLkoaNaLxdcaecDV+Y5XW640n4GV9r5wJV5TpcbrsSfwZV2Tlfa+VyOuBJ/BlfaOV3q59OkkDVo0KBBgwYNGjRo0OCyQaPANGjQoEGDBg0aNGjQ4LJBQ2AaNGjQoEGDBg0aNGhw2aAhMA0aNGjQoEGDBg0aNLhs8JgnMG9961u55pprSNOU5z3veXz84x+/2If0oPjgBz/It3zLt3DgwAGEEPzZn/3Ztve997zhDW9g//79tFotbr75Zr70pS9t22Z9fZ3v+Z7vYWFhgaWlJX7gB36A4XB4Ac8i4Fd+5Ve48cYb6fV67Nmzh2//9m/njjvu2LZNlmW8+tWvZteuXXS7Xb7ru76LEydObNvm8OHDfPM3fzPtdps9e/bwb//tv8UYcyFP5TGDy2WsXEnjBJqxcrmhGSfNOGnw8GjGSTNOHjX8YxjveMc7fBzH/m1ve5u//fbb/Q/+4A/6paUlf+LEiYt9aA+Iv/zLv/Q/+7M/6//0T//UA/6d73zntvff+MY3+sXFRf9nf/Zn/tOf/rT/1m/9Vn/ttdf6yWQy3eYbv/Eb/TOf+Uz/0Y9+1P/93/+9f8ITnuBf/vKXX+Az8f6WW27xv/M7v+M/97nP+U996lP+m77pm/zVV1/th8PhdJsf+ZEf8YcOHfLve9/7/K233uq/5mu+xr/gBS+Yvm+M8U9/+tP9zTff7G+77Tb/l3/5l351ddX/zM/8zAU/nysdl9NYuZLGiffNWLmc0IyTZpw0eHg046QZJzuBxzSBee5zn+tf/epXT/9vrfUHDhzwv/Irv3IRj+rscOZAcs75ffv2+f/wH/7D9LXNzU2fJIl/+9vf7r33/vOf/7wH/Cc+8YnpNu9+97u9EMIfOXLkgh37A+HkyZMe8H/3d3/nvQ/HHkWR/+M//uPpNl/4whc84D/ykY9478ONRUrpjx8/Pt3mt37rt/zCwoLP8/zCnsAVjst1rFxp48T7ZqxcymjGSTNOGjw8mnHSjJOdwGO2hKwoCj75yU9y8803T1+TUnLzzTfzkY985CIe2SPDV77yFY4fP77tfBYXF3ne8543PZ+PfOQjLC0tccMNN0y3ufnmm5FS8rGPfeyCH/M8tra2AFhZWQHgk5/8JGVZbjufJz/5yVx99dXbzucZz3gGe/funW5zyy230O/3uf322y/g0V/ZuJLGyuU+TqAZK5cqmnHSjJMGD49mnDTjZKfwmCUwa2trWGu3/QAA9u7dy/Hjxy/SUT1y1Mf8UOdz/Phx9uzZs+19rTUrKysX9Zydc/zET/wEL3zhC3n6058OhGON45ilpaVt2555Pg90vvV7DXYGV9JYuZzHCTRj5VJGM06acdLg4dGMk2ac7BT0BfumBg0eBK9+9av53Oc+x4c+9KGLfSgNGlzSaMZKgwYPj2acNGjw8Ljcx8ljVoFZXV1FKXW/ZIUTJ06wb9++i3RUjxz1MT/U+ezbt4+TJ09ue98Yw/r6+kU759e85jX8xV/8BX/7t3/LVVddNX193759FEXB5ubmtu3PPJ8HOt/6vQY7gytprFyu4wSasXKpoxknzThp8PBoxkkzTnYKj1kCE8cxz3nOc3jf+943fc05x/ve9z6e//znX8Qje2S49tpr2bdv37bz6ff7fOxjH5uez/Of/3w2Nzf55Cc/Od3m/e9/P845nve8513Q4/Xe85rXvIZ3vvOdvP/97+faa6/d9v5znvMcoijadj533HEHhw8f3nY+n/3sZ7fdHP76r/+ahYUFnvrUp16YE3kM4EoaK5fbOIFmrFwuaMZJM04aPDyacdKMkx3DBYsLuATxjne8wydJ4n/3d3/Xf/7zn/c/9EM/5JeWlrYlK1xKGAwG/rbbbvO33XabB/yb3vQmf9ttt/l77rnHex/i/JaWlvyf//mf+8985jP+277t2x4wzu/Zz362/9jHPuY/9KEP+Sc+8YkXJc7vR3/0R/3i4qL/wAc+4I8dOzb9Mx6Pp9v8yI/8iL/66qv9+9//fn/rrbf65z//+f75z3/+9P06yu/FL36x/9SnPuXf8573+N27dzeRl+cBl9NYuZLGiffNWLmc0IyTZpw0eHg046QZJzuBxzSB8d773/iN3/BXX321j+PYP/e5z/Uf/ehHL/YhPSj+9m//1gP3+/P93//93vsQ6ff617/e79271ydJ4r/+67/e33HHHdv2cfr0af/yl7/cd7tdv7Cw4F/xilf4wWBwwc/lgc4D8L/zO78z3WYymfhXvepVfnl52bfbbf8d3/Ed/tixY9v2c/fdd/uXvOQlvtVq+dXVVf+TP/mTvizLC3w2jw1cLmPlShon3jdj5XJDM06acdLg4dGMk2acPFqI6oQaNGjQoEGDBg0aNGjQ4JLHY9YD06BBgwYNGjRo0KBBg8sPVwyBeetb38o111xDmqY873nP4+Mf//jFPqQGDS45NOOkQYOHRzNOGjQ4OzRjpcHFwhVBYP7oj/6I1772tfzcz/0c//iP/8gzn/lMbrnllvtF1zVo8FhGM04aNHh4NOOkQYOzQzNWGlxMXBEemOc973nceOON/Jf/8l+AEMl36NAhfuzHfozXve51F/noGjS4NNCMkwYNHh7NOGnQ4OzQjJUGFxP6Yh/Ao0VRFHzyk5/kZ37mZ6avSSm5+eab+chHPnJW+3DOcfToUXq9HkKI83WoDS4zeO8ZDAYcOHAAKS9vsbIZJw3OF5pxsh3NOGnwQLiSxgk8+rHSjJMGD4RzGSeXPYFZW1vDWsvevXu3vb53717+6Z/+6QE/k+c5eZ5P/3/kyJGmSVWDB8W99967rVPt5YhmnDQ432jGSUAzTho8FK6EcQLnPlaacdLgXHA24+SyJzCPBL/yK7/Cz//8z9/v9Zv2vQKdtMmuWcXGElU4bCIZ7dMIB9JAum7QmcULAQL0qMRFCttS6JEBwEsk8BUAAQAASURBVAsouxFehW06X96A9U2wBpwHKUBIkBK8R0QRpDGu08a3NE5JvJaYtkIaj5qE/bpY4aVAeI+XAq8EelAivMdFCmEdwnlE4VD9EeQF3tjZd5ZlOFHvwvd7F/6vNHgPUiGUBCGglVDsW8R0NLL0ZLsiZOlpncwAkJlFWIuwHtfSuFjjIomXAtNSCO/RE4uNJcKDjSSdOzcQozHeWISUeOfCsdXHAbPrEelwzNbhF7q4doSL1PS8ARDhOBDgI4kow368DO8L59H9HDGe4Cc5WAtKhetQr/hUf4sowndaEEfgPeVqm1HH8sn3/jK9Xm+nfvUuKzzYOJnH3/7Edz7q7/nnb/7Tc9r++1/y54/6O2v83+/+tke9jzf+6PfuwJHA637r93dkPwBfeP/nH3abp7xoZx8emnGyHf/Hs16LX+5x9Otilp+xxlULm7RVwfWdEyzpMaVXjGzC0KY4L7BItsoU5yWRtORWY5D0ixaZ0RztLzI+2Wb3xxSLXxqihjlikoF14f4tBMQRrpOy+dRFNq8XlD2PWMm5bv8pdqVjMquZmIhEGZyXDMuYSRlRWEWiDVvjFpNBghhq0hOK9LSnteaI+4ZoM0cWJnxXWf0NCGtnx6AkFCbc42MNSYxPE4aPX+DIN8CTnniE/a0++9MtOirndNllq0xZy7tsZG2Mkyy3JnR1TipLHAItHJtli1EZk1tNLC13HtvN8j8kLN0xITo5CMdQVPNbvWpbzx95eF0oCUriex3Mcpv+NS22roPiYEl7MUNJx3iUYAsFDigkwgq88iBBjSXtI5LlO0rSEyNEYRD1d1oLQuDjeHodypU2ZS/CtCSmLWEw5ra/+KVmnDwEXvbxd+zY973juS87q+2++2c/xr/666v4lm+55Zy/4+sOfh/ve+VPn/PnHg4/9sM7M6d8/Bv+FR/77pt2ZF+/Ef2v6b/7b3w9z/rCa/iFb3za9LXvffkaT3z282m/OebrXrD7UX/f2YyTy57ArK6uopTixIkT214/ceIE+/bte8DP/MzP/Ayvfe1rp//v9/scOnQIrVNUZwEVp0gl8B2BTAQqVaTrDuEgEoooz3GxwiUKt6tFvFXgrMK3Y/SgwLYibCcQmGhoYc8KepCDMOFGB+FBGkAAFpg4VD5CtFv4dopra4hShPLossS0NcqBiwReC1TuEB5kolGTEjGyyGH1kF6UgbggwbjwJToCPN46hFBhspOyIlP1w7xExDFohd29iF9OSccmEIZSEw0NotXGS4GMHDIrwYHUEhspRKLwAmxPo8eOSBqUl4FgtDVy2aMyh3dlRVxEdf4GdEWiBOAVwkoQGoSHzAVilCTYtka4QOCE84ikIj9CQOxRuZ3xskGG2MrAg/eqIm0CCGQNCMcBYAUMCoQyoBTReEDUktWuL395eyfHSY1P/LuX7sixfeLfvZQbf/WPznr7mnT84Lf+zSP6vt9+182P6HMPhDf/xCt3dF8/8ea37ci+et0L/5DUjJOAepzIVpt8bw/3+JKnXLXFVekWUnj2xiVt6YhFSd8JcueJhEEKT+kVzksSGR6MN0yHgU0pveIrI8cd3Yjy3i5+Q6HzAWLiQDG9j/tIo7xm6bggkgnjvZKJaXFsl2R15RgH4zET6ymdonCSZZlTOMPprMPGuEueLRAPNFFf0N7ydE5bkvUcmYNwGqFURVyi6VwmihxfOJAS4SVELUjDAp1vp0wOLbD2dZp/9jW3c117jVSW7I222LRthLUs+wkHfUHpt1A4FvWErsqIhCV3EQADmzK0CUObsFm2OGnB7G4hjkj0ViBQQlRkQszNadpD/boLx+iJULmkVcRMvMJojUhhqTtmdXXC1iSlMIo8U7jNGJEL9FDQOilYuqckHluUjBFKIYTAawURoBVeqUBqnENNBDECPwThLTavrtcVME7g3MfKw80n3/f5d52/g30I/K9feh7/C+DjEP+HZ57TZ88HefmpH9+5OeVrP/h7fGyH9vUPb3gKX/+L9wDQ+pn/yDHgB39vPNtAtElveC9f94KdOf6zGSeXPYGJ45jnPOc5vO997+Pbv/3bgVBb+b73vY/XvOY1D/iZJElIkuT+b3iPT6LpCr/KHSBJNxw2FkQThywcPlJI40AIbKyZ7E2DUpI5TDdGlg5ZVA/TEmxLE0UR3lQKTWmofzTeurAyVKskkwxhLGpzQGszxbcTfKzxSiCtQ5bgbVA3ZFYihzlinOGzHA9zqoqC6vvwDvI8EBRF+C6lwgRkCQ/2gEgjfFlCOyXflSKqZ3svBPFWiSwtTksE4CKJKCVCgulG2EShhyVeS1TmQ29XB3pS4BKNyhw21SgloaRaHaMiLdWKWU0mdHV16uO3FmEd2jpkkeDSCJsqZG6D8mJ8mJzCDx+ZW+SgUqBq1QnwWY6I9Pbvqq+XBWKFty58r1Iwnsndlzt2dJycB5wriYHtRORsyMxOEpdLHVc99xD3ffzeh3y/wf2xo+NECfIlQWdxwoLOsUgkli3bJvMRzksGNgWgrXLasiASlrFXlF6Ru4iBTZnY8BDf0zkrnTGHr16kd68iPq1RWx5flggpIY4QpYHSEAnBwqSkfTJmsjvmWK/HbUZRZhqpPb3uhHEWo3V4qB6vtYlPanbdA737DHpkkLlBFhaR1ypDda/0Pijl9T0UqvuomqoyAAiBizXD/Rpx7Yj9aR8lHFI4TpkeW6ZN6RXGSaTwOC+CCuJipHA4L7FeooRDifDdUniU8AjhsRFhHjkTplokrBfnqrnBOwfGInQ4znQ9oXMsJd+lsEuSSamJlMN6wWSUwCCidZ+itRZUqPRUHhYLrUeYunrAI+rvsw7hi6k6FaohTHjdWCjH9z/WyxjnOlYu5HwCgRD93lO/9Zw+81df+de8+Nr//JDbfFf2h7z99U97yG0eKXaSvMzv89ffsjMLYw+Gf1V8U/jHb57Xr7kfLnsCA/Da176W7//+7+eGG27guc99Lm9+85sZjUa84hWvOLcdiVCeJMtAPmRuYCHBa4GeOGQZblzFQoTpSGTpSU/llAsxwji8EthE4qXGK5BWhHIm50Gr6UOzUApflDMVZA4+L6YP0GIwQoxDyVb7lN52nGR5+Kxz4SHd+0BIaiWjKMFavPeByUYaXFBgoJL96zKyqqTMlyUiTbGLbbyCaCtMXLYjg/IjwzHEWwVqYkIpm5bYWGJTgcoksnSozOJiGUiOU3gVFCPT0URJHI7d1cTFbQ/z1np6HvWxIgUUBcJ7VF4g2ymyFeGVDJNEbhHOIYxDDMdBgSqK8Nn6POEM8lKVk82TuYJQAmFdKGO7wrBj4+QSxGOJnDQ4v9ipceKFIFsRHFgY0FLF9AG9qzI6Mier1AUpHJGwKBylV6SiJPMRpVdBhRCaSFhaqmQ5GXPPcolJImwrQrZTxJhw7zY2zDNSzhbhRiUtD8u3J2QnuvROemwqKBZaxLVg4WDfUUf7ZIEeFGHesx7hQlmYyIpZ2RiEMtt6ddT7oLxEUZiPhAj3UKXwSuLaEcOrBfuX+xgnsdV8VzpNT2WUXmGlpPRBEVfVtXBeBiITluVwiCnJaakSLR1Zz2OTqhS7DERhSmjqhatKMZqGrdakRgjU2NA+ZXB3aMabXfq9DgiINwSLfYgHntZaSdQvUaMSUdpZuVyNWu2pX7cW76r5w9qgkFkHZYm3xTn9/lwOuNLmlJt+85W8/Bdvf0iC8nbOD3k5Xziy+yeBR09g3v76p/F24OW/eDuHb5jw4Zfc8Kj3+WhxRRCYl770pZw6dYo3vOENHD9+nGc961m85z3vuZ+57GFR+T+kdYjSYlsRwnuigUFlhmIxxsUK4TztY/mUkMjCTR/oTSfCRZJoo8RLgW0pXCRmK1NKgTOIOJo9oDuP9+G1QCb0NvLhs3w6KUCQ1rz3CO9B66DmeF/5ciR4G/YjBcKFVAdRTT5CiNkDu3TbSIzQMSiJ6UbI3KGHBT5SFCrGtCVxP6w01R4TFytcrNBji21JbCJxsUSNDV6HfyNC1ZaLJDYNhEtoHYiXc0H5qK6L0DqoVNbhqSYkJcFVDMdaMAaR5SitZyuPfkZCvDGzevC6PjmW+EkggiJN8GWOSKuVoPr7pZhde0UowZv35lwB2LFx0gDY2fKx+X3uVBlZo7I8MuzkOCl7nt3pkEhYuiqnrXI6Mqctc5bUmMxFpLJE4hi4FiOXkIoCHDghSXRJKksyF5HIEik83gmkDdW1tbog5sumjA0P23m456utCXs2IrAen2pEaTG9JCz+mErZKMJnpvOU90HJqP8/p2TgZuoDQszuv0rOtgWII7LdMdmhgm6cT0kKBMVJVeRkYFPGLkbhUAJKr8hcxMRGaOlQOBJpiIQNf3vLcnvCxt4S05p7hKn9m6acHpef+mKqY6pVk9Ig+xNaeUlyKmKpE1F2NAiIhgY9DGVgorTgCGSuNAi73WdZq1E1eaFeMBTVwqWsN/Mz1f8KwpU4p5wvdeXh8MJ33wrv3nkJ4+Cp/7ij+7tY1+eBcEUQGIDXvOY1DyrxnzUqRcFLgSgdUlrIPbIIpv1oUOKVxGuFzA22E1EsRBWBAZxHZRYvCKtYEMquEoVPExhn4aE40iAEQlU3tNLMysiUmpVXVQqNSOKwndZhhc1YhJJhn5Xhn1DtFuTt4TiUT+UFyODdmZKWev9Sh1UrRSAxNUFSCpMqpPW4VIdrYQM5Mm1Jslag8rASVa6k2FgSDUriTYOLJcWCIpICPTEUvVBaJix4DSYV+HaCGE1mBtCoKlszJhCwehVtvhShUrG2mf7ricSFkgBvzOz61SRGqYqc+aC+CBlWxdJk+2RibfiZ1BDbVbErCTsyThqcF/Iyv++dIjENHhl2YpzIwgafovDkTrMcjQA4ZXq0ZcKSCkZ+6R0KifWiUmE0Y5dgEVivkCKUVR3LFrlrYxfRiQg9CfNMTRx8WS1owdS8DkwfsGW/DAs6lUKirQclQonTGURF2DmiUqsqAGkStnVzJbu1p7P+rmr/XgpsJ6Z/SLO85zT7W31aKpjyezL4W4ApqUllSSQsEo9DkIgwfwYfjJ4qMwBDm7AYT0h6OUUnwqUaaWw4NmNnx60VwoRFLSFEWDD0oYwMTVjUsxY1KVBbkijRwcPiXLgucD/S4dUsfCdc66rywdqw6CVFWKCrlR4pwZkwJ5krT4GBZk7ZKTz/PJCXKx1XDIHZEViHGuQ4LatUq8p0V1qIFLJKAzOdNqYb45XAS5DGh5t+9aAd9YtQzlRaXDvGRhKdaET94O3dTDGwlSIBQU1RMryWJBBpfCuZlqC5WOOTIM3jPcVijM6qCcSDi0MJl9/XRWUWfbIP/SFMthOn6THUqkMdKOAcvnqQ91KE0jjrEQ5aayWycMhxCUpgeynSOKRx1TYWNS4RNlyXshP2I01VAlCVDrh2jKxv/rViMp9ENjX3z5Gq2gsj9Wy7KTGJtqsl9Xxae4pq9UbI2f9FZeS3dvozC/ufrRAiBUJeeWVkO4WdMvA3aHClQhqHHgrGJkK3XFUWpdmyLVajwbRsDGDgUgqvpyZ+W7kka5/MPeMVPnt8P+ONFklRJSd6ZgtBtUJiRVjkUrJSYkylSoQHe99tB1+llrhYIyOFyAxoiW1HeClQman8K1XqoxYIE9QaNamUidxMzepT0gDVIlm4x7qWpliCa3oDDqSbtGVBIkvaMqcjCwYuZcsGH0xbFnRVNj13hWdFB+Vq4EIyW7iokDtNqgydVk7Z7eESjRxX3pOaULnKkyPETKV3dnaM1kIUTb2oSIEoDT6JZolqVXlcvb86PCbsy81UqaIMi2vhB1btb0b8fBIhXAqTmR+zwflH+SfXXexDOGucL/WlxoXwwVwMNARmHpW5r066klk5ldi9mvlVhAl+C5U5on61quIcTmlkacPNtF6Ncq4qpQorM94WQUkRMhAWUyVwUU1CSQyRxvba5HtauDiY1G0qEd5jI0Hct+gsrO45JdCjULIli3BcRBLTUriDS8RxBGsbMxIA1erQvPSuwk1eBtIgy6DaeEkwxBcOYR1qGHw3NokoliKE8SENTcztl0pe96DHFq8F+aLCpDKQmVolESKcr5T4PA/EQ80pH/UE4h4gMUzISnWxszK82s/ibJVIVnlp6shlNafqzJNIKUJogJ+RKBFF4Wei5ghNg2248Vf/6LIgMf/4mbMLYvjqr7pw5tIGjxF4jzQwKme/W0ObYJykdJpSKhxialYHUDjyyuBvvWRoE+4ar/LpowfJ1lNwAhd7nA4LL6IIyoovyxCDX/lBRF3alRcQR/iFDi7VmF4S/IlKUCwEpV2WYX/ZssQmIRkyXwSXeGQhkCUIC3oMrdOOZMsSbRWoUR6ITJYH4rTt/upD6ZWBrTxlaBJW0yGJLImFnZaJZS6aqiu5i6bm/bKiFqksacswx45dDF6RSEMvylhtjzkWERYWa//PvDenKKukTTnzh1Y+0NrIPy07g6pEzG5LMfN1zH49zwg5U1bqOYq6NLv6nK4WGedK6XwSQwycPh+/aA0uNF7+i7cD0P3EMT7/o0tcfWsLgH/584e4xSyc8/4+/JIbeP55MPBf6WgIzDzyEjoeYT2mG+Ejid7Mgi8mC3HCPlJVOhm4SKFMWUX6EiR87/FSIqzFVzdPlbuZkbAyiaPlNDse58MDea+DW2hhevG0xlaPw6qRzmyIL45DeIAoHaqS1E0npJRF/RIEiNyiS4fpRoyvWaAVKcSxtfCAP1UzCMTABV8JcyZMPQn7dbGclkHYVM9W5XQgKMKHkjVZurBCZRyaILN7AcKF6+gigdPQWrOorck0fADvp8lstfQ+TQHTc2oLzFbPRFCNfM3H6p421T6oy+Wcn5VR1PXKtfICM0WmRk2S5l7zuhkelyLOlpQ8kn02RObc8a6N5/Oty2fXpf4xBSHQIxiWMYtqwqoehJIxEcqkchfRlvnUsJ/5iGGVSlZjaBP6RUo+iRC5DP48GRbUxNwDdHionnvwjiN8K6jhppcwvComW5aUdbq2D/4cl4CLCeXHCxlxaogiw8HekNIqcqvoj1PGwzAuNjNF++6IlTskreOghJj6K6fqPkz9NXoMW+MWuYumqlLhFaXXbNk2SjhSYafEBUKogaz+BoiFQVZhL2ObEAnLUjShpUuikd/u3ZmPXp1TT4BA7oSfEZBKpQKq0mwTDPhSzhbZ6oXIarv6/17JQGrqOaYOz6mVl7k+Y17LkCRKc2+5kIi+6054/SP77AvffSsffskNvPwXb6f7iWP332Dutaf+1iawCcD/+qZj/CAhEfNcg2WO7P7JHfer1LgS1RdoCMx2SIHIS2RusW09M+pRTRjWg/S4OCRv6YnFxZWxvnRTIuMThchCiot3bvrZqUk9rkqTbLXarxS+nWJ2dSkXQgiArJoy2lji4vpmCMlGGRo2ChHKxXS4marcIQtT1eiG8q9iQSO8Z/S4Lt3hBLaGiCQOJKEunZpvXlnJ4fh0Wj7gWho1KlGTkmK1HRLFxiY0sFQCWqGBppzUq24eFEHFMiElppqHiAZ1ycHchFd5VbZlfsdR2EaqWU2xU2GVcS7IAMD7OgGGQEqcn5Wk1SSonoSEDMSxVmnmfTYQtnUykLtIYxeaErJLDeeDvJy5/4tNYi4n/8v77Ncy6puH3/AxinTDcezEEuV+RU9NsMjpw3xbFqSioFPFJ5dGT1O3ICRytVRJN8oR0lcx+UEN8SJUAkz9K1UIClrh4wi73GZ4dZvxHkm2C/IVh+8WyMTinQAniFoly52MRBs6UUEvzjjQ2qKrcroqZ2jDOOibFptli0haRibmn/bu4bRcZneZEEtBNMoQtWezKm/2UiCNIxp5BsPQu6X0irGLyQn31agiLgAKjxIWi6D0CoXH4afKVEEovRvaZNoA9PYj+9l30iGKKoEtr6ohar/nnFLia6O9FLOysW0+yOCbqQNxakO+L2blzqENwVxvsDPnD133dgvvCesC0TEO25HYTvyof5+uZJR/cl0gHRcR0zj+39rkqd/6N9uIyiPZ1+S3/5Tf33t2pWGHb5hw8N2P+Ovuh627/8Xc/y6fOeVc0BCYebgQFan7GT5q40UwIsrcgFD4CMxCgk3lVHaH8KAvS4dLFMI4ZGFnD82EycZrGZJM6tIpIfAupIj5bguz3MZHVRlB4VDjUIcckr1mpUw2ksRjM83mt90EVX2PSzS2pXGRxMuwWiQsOC2wqz3U1nDOyOhnkcXMZHZhHWpcYlONF2BShU1CklrZUcRbBtvWqMJVKkxQYERpQYZjcFEoZzMtRdmR2FjQWrfoQR4iOWH2fVIGkndmSst82ViVyLZtYqnfnyOEQgiIW1WsZllFZ6rpZ/BzhtM64QyqiWgukU3FuF4L254jVQ0uOs43eTkX/MSb33ZejPyXE3lp8DAwnvbJEnUs4ehTFnlK6wgLckKfUCoWjOuGVBZYJ1hUI6Rw0x4wSWVs7+mcxYUxm07gC4lcl6jCg53dL0PZq8Lu6pHtbbP+5IjRIQerE1RkiaWn08pZamXTz7R0yd50wMRGJMrQ0xmPb51iRQ0ByHxM6RVXJ6cZu6B8bNkWe5Ih/3vj6eR3R0RDGbyVtdemPh4XlJF00yFOx2xeHVSYSM1Iy6oaUfrwCFIrUwrHuu2QuYgxMRYxjZXOXcTYxUxsxD8cuZbOR9u0jwwqM35V6l2Xr0EgdFVJl3B+NicoNSMbXmwvXUaFfU1JiK2aX1ab18mgzm0nNfUiYF1mXrdMcB4XKcb7Uwoh2LGugg12FD/4rX/D8Mb9/PSxb+fX7vutHdtv6we/k7NtjrLTZWSL1/zhju3rUkVDYObg8xxkjNwaoZXCtSNcrLCpDqSE8EAvSx9iFoVADXNsJ0j19V3Oawle4WNNuRAjjcdHKtz06rKp6sbnkwi72KJYjtFjG8rDKvIjc4OLYxAgC0+8UaDGIdrYxxoXKereNV4AQmHjoCCozBFvGJCCYjGiWIxpxxE+ywI58FXpWJXOMo1Xdg4xyoiEINsXFBfhAlmLBhZVOLwIr4VeAZVnKJLgYXQgwUtQhcdL0JmjdcqSHB+GdDQpptn8wYMiQ48XIUDLYMiv1ZdKPfFSBGWoLukq8tD5uDLqizTBd9uUCyk+rlLknEeNSuQgm6ae+aKs9i22J53V6gyEv6sUs7LTKDAPhcvFB3O+sNMkpiEvVxgU6EFB756YW08c4tndw/RURlwlbCkcsbBkbvvKvPNypkwIRy/KeMLKGncKz/rJBZINQbxlkIWZJUtGGh9HDK/pcuK5koWnrnFNK2M5GRNLixQe4yUtVbIYTVjUEwCsl0xsxK5oxKIek4qSjiwovaL0btp/JZFlIBl49iVbHDqwTiH2hmqAOplMuLmQGI+YFLROFXTvafGF1X3sTodc1z5FIkt6MsMhpw0qMx9hPZRU6otwjG0aUslkCDLYMG3+ce0QR08vsvS3LVY/NUCdHoSQmvmUMVeRisoT4yu/i/AeYUxIJYP79WDD+el1JK4aWtcemNLOQhFcUH18RVJ83cxSCPBmSpoAvFaUSynrT1UUUsAfn49ftCsDb3/90/i+73rXju3v4Uz8ZzY/7n7iGL/GzpGXSwFXaulYjYbAzKP2geQFamuE8G3cUoqXoecJgsr0GMrF1CQ0t1L9PERS1iti1gcloqWRxoGrFBgpg3JQezuEwHdb5MtBqq8Ng6FMwCFKR7w2BtoAqFE+vaHatPrRVcRJEHqtqLonTV1KZSFZs5heHJSKrEokqx/apajSwAixziJI7HKco/IUBOhRiW1pvBA4FWp6nQ8NP8N5gFmIwIeoZGk90nj0yBJv5sit8fba5DgKK3ZRFdNcr4DViWxlOeeNUXOJYjb8X6lQ+hYr/Moio2sWptcNAnkzbUXZ1cilBGkWiDYmyM1h6KlTlNt9Mb66gLWfplLITPvKjVPeKVwoEnMh1ZeLUUbWkJcrD14IZGFZvKvk6Gd28TdLT+Gf77qDnpyghCeVJakoGfmE0usqPnlGZmrCsKzH0IJ+kbKhu6hJ5Ts0Va8wa/Fph2Jfj7VnSla/6iTfeOAL9FRGW4Zxs2Z6fGW8CsCinnAw3mDDdBjYlD3xgK4KysyWbTNwwYeTu2jbsUDo2eK8YCHJOKlFlULptpvhvYcizEF6Q7P8JU2+3OLOPausxkMWNVNjfiQskTBYL6dpY1I42sJOFSjnQ6PLL2zu49RH9rPvs5benVvIrVEIMPAeoRQiDSV0rtfCV808t/VxqZQVUZazFLE5rwqRwrVTyt1tbKLwipC+5kGWDpmHRUxZOuQwC02mjZ2lmtWlazWEgFhgU0W+y+Hm1K8GD4zfe+q38p773rAzO3vFrbz9EXpgLhZ+/S1v46d2QIU5svsnL6l+LWeLX/73r+JT31vw/zzh/39W2zcEZh51rC8g8gLZhzgvMUvt6co+gKyji0Uw9YvC4FGhVCxSSMB0Y1ws0SMTDJJl1aE3jsIKkJT4XodyOcVrgSwCqQk3yqqHTBF6o9hUUnYUehRXPVmCNB2inkMggFdhH/VN1qbB/yInwRcjiyoieVqaZQEHRTX5eBf8JGUZCIW1xGsjfKxDA7ROICh1dHSoeYZiURMNQ1KZLD1t69GTEKmsRgXU9clQfb/EpxG2k+BjiY2qicZDvJEjxwViOA58olZI6qhlCKt8WiPShPKqXVXZng+JZ7Wx1YUAAlMFHrhYkO/toNsx0bGNcAzGQllsTxqrywF8pS7NlWg0eHA8lpWYR6vCnAtxmf+ehvBc+hAmxO2mx0esfnqRT0dP5OQze3zd3i9zbXKKVJRTpSUShk0fFqrGNpk2euypjMxF7IkGFD3NkYVFyoUUF9XRwB5ijWvHbD4+IXrGFv/H3ru4NjkJgBJ+GlOspcU4RSIMHZmzQWcaX1z3WMmJpmRFCsfQplgflJK6N8ta0WUza+FUSJz0UoDSlandzrrRG4OYFCSnMha+orl33yqFVVy9sMH13ZOs6BHtqqnn2CUcK5YYmYREllgkI5MwsRGbRYs7T60iPt3jwD/kJEe2QvpaaUJq50KHcqlNuRCRrWgGV0uKZY8eCXr3eDpHC6J+gYKQNObcNESmLvvykcYttslXEiarGhsLvAJZQjR2RKPa7xlS25SWKKUQeTFNgmOuFHra463yqoLCu2ZB7Gzwf//OSx/YOH+OGN64H/iFB3zvTPXlUsKjNfMH1eXynR/u+dT3AueJwBhjuP322zl+/DgA+/bt46lPfSpRdAWU20xN4JUcPJ4g8gLtPL4V41KN07PEK5tqRKKRWVh9Mt0Ym0h0JkMaWBXBXPQiWuOqmVa9+q81vhWM9ojQL0WWDpWZUA5GUG28Dh3u09OV56WtQ7TxxOBNyO4PXpwqEcw4mIt+FtZRLiU4JYjvM/g6Pjg30EpnkZf1JaiaPIpJUHuEcfhYI4sQB60KR74ckZ4MK3vt+8JKmsxDlHNsfWgC5v22zsVAmCB2tzEtidPBmyONJxo78q6i7Cr0KCHqp+hT/Vnpl1TBWF/HHHdaTJ6wG4B4I0OPQuoZUlB2oxBbDUEhqoiPSyT5rgQf7yI+vI7IcrxTc8k54WfufQgNEM4hGwJz1jifJOZS8r48EB6OxMyTjXq7syUg57NhZoPzC+FceFguLAuf3yTu9zjR38+Hvs6j9jqiJPhfOpVKorTntO1OO9R3VUYqCjIfk7uIns5oxSX9TligmUa/a0W5mLL5ZPj6g1/hia0TKOGxXrBuuqybDqVXRMIRKceiHk9fj4SlLEOcsyQ03IzkrKHklmmhcCTSIGV4v3QK4yQurrwuzjOVv+uGw5WJXhiLHJcs3JPjooT1jd1sXNtGX+VwbUFXRWQq4lixxEdOXsux04s4J3ClhFwRn1J0jsLqcUd6akx0ahhim4XAtxLscofxVW1OP1WR7bXIXRmHdm+wtz3AOMk/fuVqJp9OWbhH0z6mUIMsEI46d0KG/RR7u4z3xjgNNhazBboFQdlTyDLMKdHIoyeeKJbBC5qlqK0MOZpAls+qBZjtXxaOeF2SpVfAM9IFQK0cnC+ScSmTF5id/7koMedSKva9J17FHW/5hm2vPenH//qswwYeDi//xdsfsfrzWfVqPvbdZ//ZsyYwzjne8IY38Na3vpWtra1t7y0uLvKa17yGn//5n0eeWVd6uaGK651mxdclRs4hxwVusYVLQwpZvbpiE0WxpBlcpSh6sPJPkmTTIK3HthR6YpHDjDoCOGRh+kBOYkE0dKjM4qrmmT7VmE6EUoEItY5nCONC80wtgiKShvIrF8vg95hYZGkrydyhBrby8ITse9sN/pap4lDL3XVSV50ENtfJONzoQxx0UIVCn5tOP58Sm5osYT1qMAolYdN6YD/1upjVHtmeFtmyIhlYopEP/WUcuEhMI5kBJvtSUiWITilEfziLWC5KhFYUh3bhEkm8XiByi0+DElYuhPKLer9USpWNJV4I9NhStjXu2lWS+zYRfT9Tec5EaWYlcg3OCo0S8/ATzk4Rl3MlQgBf9d+/+ICvf+aHrj/rfTQ4ewgTPBmi8k6kxwS7bl/gvsX9fOKGgvZqWPxZUsF70pMTImEYyBYjl7AgJ6SyJHaWTS+Y2AjrBIiKNEiJSBJ8HJGtRvh9GYfSDWJhsNUq2NjF5E5jkSxFY3oqoyNzTpSLKFzVOHP2wG2RME2f9xinKNDBB1M99Xd0Tqwsbgwit9P5MSz+zRasvA1eESkE0WlYKRzRKOW063CrP8ThpWW0dDgvOHJqCXkkpXtYoCeeeOCIxo7k9Cio8sZN5xMfheCbwXU9Tj9NYZ8y4qkHjpPqkpV4TEflU4+Pu0ZwR2cPJ1cX2P8PMal1iEkRPDAmlH0Ve7sMDiV4UTelhrIjyFbBdDxeeVQmEFag8kBuhFNEA097zdHSgqgiq6KaT7ypevGUBpUZ0tOEeOYGZ43hjfsflRKzEyrOxcSDlZM9Ul/LjT/7TgDueMv937vjLd/AjT/7DXzil77jnPd7w5tm88qtr72eL3UibnjTF7n1tec+r5wr8TlrAvO6172O3/3d3+WNb3wjt9xyC3v37gXgxIkT/NVf/RWvf/3rKYqCX/3VXz23I77UUJvZYXrDFHkR4imj8HrZDRHBUJdU1QoI6AzKtiQaCqQJZQRqYhD9UViZmprFg3QdDR3RsCoZK10w6AuBaSlMSyF8KI+SHvS4xLSj6feWPQUe0rUSF0u8FdN+LKHW14UGl9aTbJQhZrJO5Jqa2N3UuO6rhDRvbOhzmQeCI7eGyKEMvQXaSbgmhQnfUxp8HIW0FlcRhzNIgeumZHtamLYkmjiEIURQKwEieHf0xIV+OS40xyx7EdAlsjYkl1kbzPq9NsVi6C1TLMXUFeO+jp72IAuLygzlQoKNJcKHfjp6XKJySbYao1a7aOcQeYkvqmS0ogQhA1FyjvZhR4PHHh6p/6UmE4+EXMzjXFSXN//EK8/qex6MvMy/95kfun7bv88GX6/+nndtPP+stn3Moaz6WdV9SCYFnXtH7PpMjy8sHORge4vF3phdekgqg8KufDD271Z9AGJhGYm4SuGqGh4bEeafym/hk5h8UZC0wj5OmR49OfNbtFVBIkucl3RVxqZtk7mISFoi7DS6OXca5wUTl5BIQ241fZMED4pTlF5RVMcwyBIW1mcLZtOmkfUcMu3FFUrKRFaihKB3D8T9mNFdHQa9Li4KZVorW5546In7BpXZUGWQGeRwElT8miQJgVvqsv6MRU7d6PiqZ97JC3d9mRU1YuwSBjYl95p2FURwXXcNLR2fKhX9e7voUYQcx2EOEwKfxmQrETYBGwlUAWVXkO3yFLst0WKOM5JyI8anDrQHIxClJDmhEE7iZUKnCD3Qpo1E61J05xF5ycI9htI1cePngre//mmXvFpyvrETJvwvveqJ/IvlXzurbW/82XeeNYmZJy7JU/pc+9VvA77I29rfAsAr3/RFkqf0+fBLbjjnYz5bnDWB+b3f+z3+5//8n9xyyy3bXr/mmmv4oR/6IR73uMfxfd/3fZc/gYHtMrCrFJOiDDfSXhJ8KFqgRzYkbeUWlQtU7rBJ6MniYonXYTUnOTaemfukqBplyao5JHgtMLEiGpSUvfBIrrLQQBKCGbRciEIzSy0oWxFFV4WyM+MxHY3KbWggWSeTaYlth5K2ckHT/fKcaibmmkbWgQJyjrSdaXC3NiS7eD9rWkZIWAEQWR6uTa281F2OqSbXfV3KjiQaVwSjdAjnkR5sGkgaNigwviI1IT46RhZd1PowEI00DnHT1aEWCwrhZoSujreOXJXiVli8DtfG6aBuCetRmSPbkxDHy8RHt6rVuFBPXV8T70RQfxqcEx7LKkyNC0FczvzcQ33nQ5GXB9vuq/77F8+axDRNLB8EkQ49voinvUpkf8LC4Yj89hYfWnk8e5/YZ1+0RVbdxxwSiwjlXsKicCgfUXhN4TSTPKZ93BNtZIisCIstpQEH1oa0rtrzEsrGghk+FcFXAiHlzFXdUBZVUCqkcIxtEnq/TKukPYm0GB8SzAqnmdiI0ikGX15i77FhUOkrNQg5S/4SxlTNkmdR9WJSoAuD2spIT0ZhvlJVEEBuK6N9lcJZmmkvFUozbdJZHlzhvhe1MU8bcv2e03zj7s+xWw84bbtVcprC+voaWroqZ08y5MBKn6OHOnROaqItFTyosaRcaZMvSvJlQb5S+ScTh9tVsrJrQC8p2Bi36OeKdDGn28qZFBHGSDKdYluayVhSttt0j0YzH+c4m/psRFbSPtynlA2BOVf89rtufsQk5lwbSV5pqBWXf/Ew252Jh1JP5kkLwJO/58389DvfB/cQ/rTfN33vbe1vgXvga67rMr7z/DxLnTWBGQwGHDhw4EHf379/P6PRaEcO6qLBWVC6KiNTeKqYXhP6o/hWUtX8gldgW+Hm7LVED0vidTt9+M+XY/CQnM4Qw0koVao7zNeQYNMQPyycx7R1UExKF8hJbqdG97KnyJfCZ6X1VZ8X0JOgWpiWplhQxFuK5HRYfRPG4XqaZL1EblS/QDWxKMNqXWhgaafKk7eh0aRXctp4U0z7xRBM9HUzr2JOoSiq/dXqVdWt2C20mOzSpBuB7JVdhdOS1klPNCyRhaVciNETMw0cyPaGKGYbS/LdKa2sDH1vhKDs6mnKWA3hg9JVKnBKIEuFykzwA+UhhcYmEtFLMHVJX+kxHYXc1SU6Wpn561Wz+mdkGwXmsYaL1cTyUvS6nKsa02A7Qpw+oCReK0RpEIUjOj5gJZIcW+nx+b37uD49hlThXuOQFF4x8C2kcCg8A5eSu4hBmVDe2WPPEYMc5/i8wGcZMm8RTTzFMGZkEhaTCR2ZI3G4io0UXiOpF9EgcdGUxJReEREim6XwJMJQ+mD2N1IhK/ICEEvDp04cZPlzAtmfBAIDgbhIGeYNIWaNkud7bdVxw5FH5rMYe1HamV+yLjuum1LWc08cYfYscs83tnjezZ/jBYt3EglLKktGLmat7E0T3CJhKZ1m6DWZi9DS0o1zyr0lg4Mx6emEKLchva3qvVYseuxVGUpb0tiyuzfk+sWTLOiMtaLLV9q76MY5u9MhpVO0VMnnF/ZSHNRsDVPWl9pku2KW75CkayIEBlSLnqLqkSMpz9vv2pWMR0Jivueqw/z2eTqec8HFIlE1eXkkEKdvf9htfv3LH+Iv9Ifgl+D3eOFDbvuqb579+wPXvO4RlZY9GM6awNx000381E/9FH/wB3/A6urqtvfW1tb4d//u33HTTTft2IFdFMjZwzeyksJrBSKJEaVB9fNg3ndiarYPiowEFVZwTFuhCke0maNObkJZr1LNqRwQHthlPFVhhK/8IE6gJiHn3+p4WqZmWoJ4EMiNjUJ8shobUAIrBSYRRHXMcRIabEYjQ3x4PcQHSzHtbr8t7lGqQGLqpK84Ckky1k0TybZh3uOi1dS4OX3w9x6fxLiFFqOr2qjCoycmnENbgheYjsIrQbyR40Vo0ClMOGYvBE6HtLOyLVGrHZJxPre6F8rNooFDlVVMtRJ4qfES8kWFMFFQscrQDTkaGfKliGxZkW4Iks0SshCKoJa6yM0h2PBz99Yhkhjq0rIG54RHosLc+Kt/dJ6O5uxxMcjLThGXsy0leyQ4FzWmwQwuVngTSnmBsCDiQs+tZG3C4pcjPnP9Qa7ubHB1sk4kLJnX5C5iy7TInSZ3GuMUW2XKP/7jEzj4MUd6tFL06wh670k2LWo9YmIj2iqfxieHPjNR+OMjFB6LYFGPARjalMxFWCGnTSJbqkRVRhgtLc4JSqewXvC5U/sR715m12cHobTaVYTDAVT9xGofTJ3o6ColpVJRsBYxmfllRL0P78PcUiHchyW+12b8+CWOfq3mcTfex4uW/4klNSZzEYVXbNkOudcMbRIUKx28PaUL/p5IWJbiCYcOnubeYjfpRsKC8ahxuL/rzKMmkmIQQReM9EzKCCU8XZVDDL2VDCl8Fess6OocueJwXnJve4mjaclgsQPErBYxIrdI78EW2+OlG5x3/Pa7br7o5OW2m67e0Qf1c8GjIS/z+3igUrJbX3s9H3jVI59nbrr7jdz046/csf40Z01g/ut//a980zd9E/v37+cZz3jGNg/MZz/7WZ761KfyF3/xFztyUBcNuxYR/Xwahehd1VAx1uHGqhUiy4nXq/SvODyER1vB1O5ihWtp4q0COSyQaxtB0agmmqm6oUPkpBoVqLxFvlTFVpYhkUvldto40+vwsB+NQpmaLIKBU+WhmaY0DicUsnAkA4uLRPDJiFCGFh1ew08ms4Q1mP1dx3AqtvdpsdsnkelqmveBpMxHUNrK/6N1KJmoVuHsYovBtR1MS9A+ZZC5xbY0svTT6E2vBK6lQYZUHWc8pq2CuuQ8OgsNNPvXxKyMe8hhERLX6tI1D05JJA5ZWNINg2lLZO6xqUKPzbRfj+1ElfkyXGdhPEJ4XCwpdrWJpESt9xF5gZfhGjyowf8xjh/74e/lN/7b7z/kNmdLYs6GuHz1VyXnPYnsciYv8/trSMylg8m+FnodVD+rSmyrdEYiRF7Sva/A/G2LP9/8ajr7RrTiktwohlstfKHACkQhiDclybrgqrsN7SMTZGFCSa0xVRiLI94saJ2MODZZ4MaFEoVHCUckDBmhPC30XAllaZEwZD4mEpaBD31fhjbBuHBvTaTBEvp9DU3MZtHiK6dX0B9aZP8nB6j1qqeW81UnehUCXZSbLgD6SAfFpchnC1xahde8CYTujA7205JlrRHC4pZ79K9f4OiLHC961mf52qUvslv32bQhWS0VJbt1n0gYJJ6hTbBhAiGSlrYosF6ymgwZm4gTyz02ntxBT2LaJyv/ZeZJNkFYTb6iyBcNpwrN3a0V4gVDWxbsSYMnyXlJ5iKUcDy+tQbAUjRmKZlwb7rEUb8LYWJ2AfG6QBpbne92ctbg3FArGfNKzG03XQ1wzkTh0ZSlnS0uZ/JS4wOvehs3/eb956ibfvOVvPDdt/L8d3+ID1zzOm66+43nvO+f2iESc9YE5tChQ3z605/mve99Lx/96EenMcrPfe5z+eVf/mVe/OIXX/YJZC6N8U6FjvFK4J0FZ/F5tVJkdahlLg1iWOXe1+krgKwf9I3BOxcmGOcRc96KqbGxLBGTHJU7zG6FcGCSoLAEz0soVwvN0MIKV3K6QPhKrTFhVctFimIxCmVReVUeJiFZmyBP94NBXchp0ti2niqySkWzVElfEp8Xs5WyunFkbfxHzRp2ORd6qRg7a0QpBL6XYBdbbD6xMzVoRv0QEOCFQE9CE1CbBKWp6EXBD1OEsjAXC1ThsUlolCmNx7QE+UpCe2uCNFX5nA0ldqiQyiYLS7xucaoVTs34QJiqQAM1NqQTQ7KhghfGeWQhcKXCJopyJUziaiN0dvZlOU2ka/DIME9iLgWF5cFwscrGGlzZGB7QpIVADkMIjFBqFi/vHPEJWB2VtNbaTFYWcBpaE1jasngpKNshCKa1VqAHBTKvglPqB+K5RSdZWNI1zxeP7eHEyiIrekhHlIxcQlGZBuuysk7lj3EYElnSlgW51ygcTszKykqvyJ3m5KTHl47sIf18i8W7DJjQU2xbaTEE5b2qNhBxFDyFkZ55J50L8cV1A0nvZzH+1bODNwaMQSiF77ToP7HH0Rc5vuWG27ih+xX26a3p8Q1sCyslkTAsqTFSeIY23MfHLpCzus+OEo5RknDVrk3WkpKTcom9t8aoapEMH+ZNacBNgv50ZGuR/a0+SWKmylXtLapVq54KyowWjsUkwx7c4GS8gE1TVj8jaJUWJo2Sv1PYVpL1rot3HA+FK8V782+Xlx/0vQ+/5AbyN52dt/LBsBMk5pz6wEgpeclLXsJLXvKSR/WllywkuF4blRUzj8j0gd3jq5shRQGySuuvH/JhZoivlQ1ZrUTlRVhpqj0VIqgxIi9Ijg5xukfZkdQeP68EZTeQmnijIC5DspisIotdZaj3SmI6empq15lFDwrU+nCWOFYfV526IhVQlYvViWvWgg1hAUAwTUIoJavPz4eSBe/9zO9Sda6vy+yECiVe+a6EeOQoOpKkbzFthc6CquJEKIUziSDZcJRdFc5byCoxzIcyuiqHXxhPPHTYVOLSGJVZTEtVpn0V/Ecjg4tVpdrYkNAjZ+fjQ/IoclyCCg8BXsvQrTnVuCioQWIxQWZFUGGqVLUGD4yzvfk0xOWBcb48L40Kc+kg2wXZMCLeqlIa1ZwKnhdBSc8KupOSTqSmDY/FJBAe20vDQssor0hPUK+nBEApRBSF+7T3tE9Zhne0eVfv6aw8foSKNsh8ROlDDLKsysJKryi8YuQScheR+9DbRUtHSwRCc+d4N1/a2s19J5ZRxxMWDgt69xqSzTKcS006KjXeG1PNIy4smuUKoRU+TYL/p17sq+dTJQkTrps2dg77q+dOidmzwKnnSG58+hd5Qe/L07K4zAdFySIovUIJRyozRi5hRQevZ+KS6bmmoiQSlqvSDaRwPGnxJJ9ODzA4vo/Fu8N1VUVoeOxiH0rBgbzQDEwy9Qr1VEZOxMCmTGw0VbRypzFe0o1y9rf6PH7xNJ9MD3Had9k3TomqtE5xZil2AwD+VN3Hd9qrLvZh7AguJnnZSfVlfp8PVEr2vSdexT/9AY9IfZnHoyUx59zI8uMf/zgf+chHtjWyfMELXsCNN974iA/iUoEc5tBLwoSQZbObbf3Qb0y48Uo1KwlzftZksSYuWoft51GXYlk7e/A3BjkYkaxF2KSNKsI+XDTrII8SiCKQl9B9GUwv3MBVlcGfnirQa8PtNcnVhCCcg7rJqLVhUildKIuzdWqYnuvZMqei1YpNTcysrUrRKlIzH5VZkRez2AqEQEK6aZGFQ49CFr6LFC6WxAOHnoiqMaYnXwj9bqJRUJzUxOGVwKSSZMMgvKPsKMrllGgrA5FgUkW+EiGsp+zG6Ikj3izBg+5nuERPG3hGhI7RUktkZkBXBlshQn+bTmjUCeCTKDSy9B6azsmXDHaqjKxRWx4dGhJz9pAljPZL0vWEZFJWvVsq8lGVdYX+YllIdKxUCWFDR3c1yMC60FQYgkruZn3JgPDvokT2J7QcrLR7rOldvG/hyTx/5S7askAKR0fmpLKk9JqRS7DIqcqSuSh4R3D0TcpHNq/lK7cfoHtYsud46Meix7UqpMGmqFgjo6qcuC6TKsrZ/Abh2PNiRmoqiDMXh+p+ZNU5QrgPjw6muKsnPKUXnjVKrym9JvMRI5dUCksgZiOXhAQyJLmLkMKRuwiLIK88QA5BS4XFt4PdLT69ey+LX4FkwyCNwqSa3EuyjkGkloVOhvPB/zOxET2VsWVajGwS+uzIUHbnvGAlHqOFJZGGrsoxByWfLK9m43TKSuHQm+NmQewSwm+/62ZueNMXefYHDu/Ivi42zgd5eSj8/t7f5IY3/cSO7OvRkJizJjAnT57ku77ru/jwhz/M1Vdfvc0D82/+zb/hhS98IX/yJ3/Cnj17HtGBXAoQxiBKi+u1kOPJ1AtDmQd/R11u5Q3eyKmRckpe5lGb4KsgACFEkAKUmpGAKp5ZH9ugUzryPa0QnWzrNR+JTQJZcs5jE4k04ZhcLNEjT+vwFmKS4ydZIC1xhI9jfDvBRwqbatQkZPTLcRFW/vIw8XjnoSxmk4fzQWkRMpxXrbTgZyVo1CVz1fHPN8HUqkpNC805IZRy1X4eAD0sEVbjdOhj46Ug2XLT1UXhA3GThZ8qUrJ06HGQ+IVxyNziFjXJpkGPDNnuGC8ExWKEcCB64SFVWE88KEGAWYhxSqClQG1lIYEmUYjSE2/moawt1ZhuTDSKq67KzYTzQPiN//b7/NSPv3LH6ljPFjX5eCRE5rFEXM5UYeb7u+wEGhJzdpAGygXIljXxKTUjL1LOSqdsZXKvPRLeQ6RDU998EsqRK++EqLx/s073chvpkeOchS96olGHO8rr+NyTDvDVjzvMtZ3T7I36WCVRwpH5KEQpe0lbFkSRZcu2+OjatXzp9oOsfFZy9VGDzEN/sWxZsfGkmMlehywEUT8iGkOyEbrSJ1uWeDNHbU0Qw8n2uTDLZ+XTlVLv3dz7UT33zC0AynCNyrZkeWFMV4VUTYtA4aeR03XQABBKugil0okspyQGL1HCgmQaLz20CVo4in0lZVvTOjZBFppFC4NSke8W6MiymGYsxxMSaYiExXpJJCwtWbArGhFJg/Mh/GBJjWmrgsxFpLJkX9rn4O5Njl2/j+7xOAQGuDOeERpM8UgbHz4a3Pra67kVHpEf5kW/tZ+XH3zgpotvP3L7g753OeLBVJgX/T9j3HMvwgHN4awJzKte9SqstXzhC1/gSU960rb37rjjDl75ylfy6le/mj/+4z/e8YO8UPBCIIoSs6uLTGLIi8rHUhMK8L7qsIudmdvr0rA4gjwPf5jF8QqYqi7Th/+6vMkEP4w65WnlJdmBHqar0EMLHpwWSOenJVIukkSDEnV8NAsJ0CpEHrcSfCfF9BJQAqfltNRKOBDdCGHaAETrY8Q4w49FUFmEqPL/FT7LEXG8La0sJJKpWZ8Y58EFRUrUpWcmrNIJF0q26oZkwjpsO0aWobzLJSG1rehIbAo6VSEOWgicCqQnGlriLVM1tAz7d3FV9qXk1Igvc0N60gfy0VYgPKYb4atkNzUJ56YyG+KpsxKqnjDYakIxDrTERQJZgG/FyKGiSb28NHEuRObBiMtn/uzIWX/fV337wbPe9rGCJmL54VGseGTq6V8jaa2lqK1RKM+tiUrVDwxjw4N+RUyEjSqSY6eG+DrpcYp6kalWY+qY4lFG+8sFByaLbJxM+UT/Oo5eu8izdh3hQLJJKsu5njOhBOsr4138w13XkXyuxaHPGZL1CTZVDA7FrD/dE18z5Jpd6yzEGZkJn52YiFOjDoM8JttISY90Wfl8i+69E9TaIDQfhm1BKL5aENu2qFcRsPrchJIh4CWO8HMVdxYZetn44HlRwiFxjF1CRozzAoWjLXMcklgZCh8ac0rh2bItbEVyjFf0y5TWYka2vEBPS2RpifvQSgXjNUXRVbR0SUsVdFU+9QPlTrOgMxb1mNIrxk5P+80s6jFb1fyaSMOB7hann9Bm49gi0VaC6Efn9fftcsWfveIkb//yS3niRfr+337XzXzgVW/jD+67+qy3/+0z/DfzCsibfvOLD6qIPJJO95cy5Md/HPfctzzq/TzSxdCzJjDvfe97+eAHP3g/8gLwpCc9ibe85S1XQIyynEn4SciUF3E0vfEiBZR2tmqkdbWSVqkSpnqwj/Qsmrg0M9Wl3keNmtQoFTw3pzdJixLXa2M7UfXAHkqtQuRwicoM6tRWIFd1WVoc4dMEs6uDTTV6WASD/2Ia/B+EcjMvgirhEkWxu4OXXeK1EXJ9EJLKKog43haBiVIIXR1/XTImRbUCWJkv8yKUXpUOVfjZKpwAF2tcJLEthR6FZDDC4hjRyCNLMC1ZkZdAYLwg9BTwYNqy6pLsEc6hJiWmU5lDM4Me5ch2jPAJ+VKEjQXx0KJyR7EYI61HjU0oyQB8rAMh9IBxyFGOTyLc7hSDRtgEeVrOknEa3A+//pa38VM/fnF7lzxcWdkDkZdzIS5nfqYhMg3OBeWeAmVjTA8m90QkR6NQ0lslWqJU8IfMLQBhHV5YkG6qgIskhiQ6I/qeWWKXmBEZYR0IR3xyxGpmSPot+l/ex7uv2sOu60+znE5Q0pFbzdqwQ3+jTXI4Ydednu6RHGE9430Jp5+uUM/c4v/3uDvYH2/RlrMSsEU1Yst2iISZ9qj5TP8g//ikQ2x8ocuBv9ckh9dhks2UIl+llVXzhfAuJI21WlBWiWreQxRKeL0SeAWlVWyUHXbrAdYHBSkWlkgEM/2W14R2baFMLhYWi6+8LwUletrAMxz7hBU9wnrBWrvDYGmhqlIwiNLROlXSvU+ylSTkV2kSaVjUk2lT0MyFUrLcRWzZEBizJ+7TlgWpKNkC1srQVPNx7XU6Bwve/1VPZunOmGQtPq+/b5czXv6E/83bj5QXTbmo07ZuufOlfP434Ru/9IPb3v+D27/9QZsxnkv5Vr3tlUBkfu2jz+KGN32Rm+7emf09EhXurAlMkiT0+/0HfX8wGJAkl3mZRqTBghpWD0U6lI2J2nwpZGVUr1K96q7tpUFEevqwDwRVQ4rZ/6sbduidUikzcyky0xWp0QRVGtQ6RHFYiRNFaOJYG/Pr0jZRRVD6dkq5p4sXgqifIwqDr/wmpi1JT4XJRxaBeKhxmBhtJyI70CNux+hjGyEWE+ZiliuyNp0gq2OvFRgZksq8nPloVGbCCiKERpFxMOdL41GZDQlq1oOA1kZoKAkwSUIPF6fBpBK5oHETh4uDod+nwYkvjEOMMlQ3TAZmKQ0lchD6LQjwCvKFcN117olOF8G0H4Vma6YbBc9LaVFFpT4ZR+vYmGIpCf6YSMOM0zWYw9nEKF8onEtp2CMhL2d+/nIhMee7jKzBw2Nxecxg1AIjMUl1/zE66MnVYhlVGIswdSJk3QxZbd/ZfNRwrVzUD/1ybrGlVjLyAr1hWRrmLHw5It+VsvmV3dy92+MV6IkgOQ2HjhjSU6MwN3hPtrfNyRsl13/NV3jByl30VFalb4W5IRKGddtly7SDguMUy9GIZy3cx+OevM5HVq7lmNnHXr2L9NgwdKT3vipxnpsLvQgVCkoCEQLwZRnmQUKpcLrpWO+32DRtCq9RwmF9aPQphaPwqoqDjmiLkp7MQtqYS2jXZMZLTtsuUJWQqZyezHhcus6JzgID9iCtQxYGF4d5WeWgcsHauE2/l04JTFsWLMehWXfuIiSeVJasqNF0/w5B7jTOS1ajIWmrZN/+Dcr2bmLdLIg9ED77eLjjrV8NL/3YxT4U3ntdCJ35bc4ufOaRek8erCzrcsPbv/zN/Df9tTuyr5vufiO3nuNnznpEvfSlL+X7v//7eec737mNyPT7fd75znfyile8gpe//OXn+PWXFlwccuopDb5VrZZU3dlRai5lzM0UFUC0QnRjICxye0+V6nWRptVkU/UwqSehJA4rUVrPJqnKECkGI8RoElayJhnemJkkX5OjNKHc1UEYj97Kg88F8JEKPVFKjywtclzOUmwIiWBqYlC5pexGmL1LQXmZXoxqta8ibtNShvp6TI93bqJ1Drk5QuUO25LB59JRjPYrRvs02a6IogogEI5grRFBjbERqDIQjrIbIqVtKrGJxKvaS1OtMk5y4hMDZGFxiaJcTHFp6MsjSw8eVOlDituWAUdFmkLamB6G2m6XaGyvIix6do62NTPUNnhwXAoqzIXGoyVBNc5XUliDSwe7OiNQHlEITAu8mruvVEZ2Yd00ocvX6Ye2CozROpQlz9+LpglkVe+Vep9UDSHruSMrqj8lanNM+8519n9gnWv+94hr/veEQ+8dsO/DG3TuHqA3J2HekJLNJ0QkT9rixuV7aKuczOtp0ldPTUir2OVFPWZRTVjUE/LK93FNusZN+75E8vzTHPlnMZOrevhWUilLlbm/Vu6h6otWzTO1D7Mo8XmOGE3o3DehfXvKbWsHOVkucLxc5LTtEgtbmfljSh/IgqoSQjMXUsIAenKCEo4lNaIns6oHjq/CABSbeYtoGBpKy3EBAopFzWRVUKxaOnGJcQpbeYXqSGaARJZV6Vg2fU0Kz6KasByN6eiczIWkMiU80vqQLtfgfvhPm/dc7EN4RHi0xvmdNN5fDDL0Uz/+Sm792T+74N87j7NWYN70pjfhnONlL3sZxhji6mG3KAq01vzAD/wAv/7rv37eDvRCQGYF+HBJvJTINMHXSouSU9/6tAxMCEJer5/5WyRzRkQVfCJShZWlKJoREKWC6T2JZwkuakYGfNVfRohKcbFulnxGZeiUEru6gE0V8UYWfB3e45XCtEMplZo4XKKQgE3DuUlCpLCLFC6SOCXIV1OEXUQd3wglc1LNCIuz20lZaULUpJoLI/AOUIjSEK1nOB0CCWwiaa25adSz8J6yq4MfpQQ9CQqOKiCaOJwKmfzSBtJSRyrHY0u8kYcVPecQgzHaOszVS7hUhpjlSOB0KDWT1qMyj41l8A1tBRVG9TNcO8YmCuUtIvNV881AblRug5Jj7HZy1mCKS0V9ORfsFPG4XPBABKlRYS4sTg67iJFGFoKyJ/DRXBkuVPfPcK+ZlSnLmb9FihAvDJUyM1eGXJMY58M8ElWLb1rdf+FFCMQ4QwxGwdtZ+Qjr7xNlUHLyqxfZekbJTfvvBWDDdKbG9awiAJu2HZSG6vWxizlZ9MLDu57QlgU37jvMp7VlbWsPBzYS9GgS5tCqb4yIIrwT2yoQZn1tqrnUOlQ/Y+HuNseOLXNyd49IWPZGW0TC0hZ5SE0DpHekoiSVBaVtTf0yCk9b5KyosiotC+c8tClH80XuuWsPhw6bkERpLDI3eJViU/CRo6VLtLS4qv9LW+ZYJB2ZM3IJPZWFxpZE9OSECFDSsawFYzuLX86NpjN2TSjMQ+B/fPBjl5XxfafIx+WsxHzgmtfBrz66GOVHi3MqIfut3/otfvVXf5Vbb72VEydOACFG+TnPeQ4LCwvn7SAvJIQNjRZrMjCdDKq/vTGzkjKoYparG3Hd62Xa88Vuf8jXchoGsK0koP5/vQ8TbvLTEoHqu0Js89yDdaQxndDEUtiaPAnsQszoQETZFggXlBiTCnTm0WNHOsjxOvRcEdYHQlNWRvtuG9a3ZuekdTgOW5U3RBqknh1vvfqnNd5YhJSozSEJUC6nCOWJJjaUcCnQI0vZ1dhUEg1CUIFNJNHEoUcOaT3RKFyXaGSINxzCh/4IcmMYVuiMDcc+yYk3MrJ9bVTm0BNPthKSyNSk6pkTSaKtkETmlMSttFGTcuoHEoUB6xG+8uW0NCo3UJYzxa1BgznsVCnZT7z5befUD+Zst38odachMRcO42GCygWyFNNExdD42M1KyIytgmJseKBXKqguUBn3K4WiJjPVwpVPK7W88kH6JMK2q895kEXV9NKHslu0ClHGg+Hsnh2FZpNkOUQRk1XFNdcc4xndI1jCQ/hq1J9rFLn9flirMxMb09F5IBYq5ymdYzgv+ZsnrJDd0aKdlcjqvh3IWVWKDcG/KUUw/StVlZXVi2eW7n0ZS//Y5q+6T+arDhxlTzIkkSUHk02kcGyYDrLyvJwyCxzOVziWLXJ3uso16RqRsKSiIPMxJ8sFjmZLfH5jL0fvW2HvhyTt+4KvwbcTRGnRY4csFGKiuG9zkZYuiYQjEeEHuKKHKBypKFDSsWXbSASxsNU1CT+XtsrJXcTYxZxe77KQu+B/anA/fM/4f/Ln//VHLvZhXDTsFIn5xC99x47HKftdT3tQX8qtr72et7/qiTtWQvZIcM59YBYWFnjRi150Po7l4kOI6cqUqIlLbZx0cvZAOx+HaG14oLeziWb6sC9nnhchBN652SQ1Z7yc1T0TPlu/p1SY3KjSWbIsTAC6Sm5JIkxbEfVd8L1IiesET0A8dDitmKwIvAxkJd20REMTJpC8RJQCJQUuVthEQgzs6xEXJX48mRkw60hoJYP6Is84BxzeEvwwJqg2yjnkKAtxzlpiU43wIUlaT0I6mTQuNG7zMdGo8rAAcRl63sjcTOOfxXBcqSISoXw4HkrUiU3iRFMuxOA90nj0yKLHBtONQlmF98iJAS0pFmN8JEOPncoIK0qDixLq5pdykFXRn00J2QPhUvLAXO6oycZONba8kKVpTQLZQ0NIj7ACYUJPGOGpFJbqvmlCE0eKchZTr2cd7r23cwtoYvpZn0T4OBjdRR4igl0cIvNFFcnsZCAGMjcheTHS0OvAYBRKkpkr4fIOum0muyXXdzeC4mLTSnkI/WPmyUtP1rHGkkU1IRGGtCqpasucgUtZ0BOW9vc5/dQVVN4lzQ1iNNneIBqqioczSuRg2kNGnxqw+zZYz7vcdt31mNWSuFewd2lApCwtXbIUTyicol+kHF5fJs8iut2M61bW6EY5ibRI4fji1h7uObqL7mdSDn3Z0Lmnj8jLQBSjEAqTnM7oHg3z4XghZbQUU3rJ0AbFJRUlFoHzIdGsWxn6pXBkLuJkuUDmIhb1GIDTRZfonoSoP9yeItegwXlATYRueNMXEadv35F9PRSe+Jtf4tbXv5V3bL3jUX0XcH5TyADW1tZ429ve9oCNLP/lv/yX7N69+5wP4JLCmd6VOnffOsSDVBPVnelDnxcXiM68CbOOS66UFI8Pq09V1r2wc6txVQ+AWmr2k1l9rTcGohiRxCExLI5x7Rg9tggPLolmpMuBHlrahadYUNgYiq6g6Cr02GI6EaKtw0O9D4ZJEUtk4Si7GrW6gDpahrx+Y0J4gaikfcXMbFr7gHTV8HIuEcePQjSoHGf4NA7ifdUrJkQwO4g0Xkv0ZoYwoXmlKC0+UqhCICZFCDAwFp8X9w8P8EGkj75yAnlwlXxXqH2OhmXoL3N0iG9F4Xydw6QxLpZYFfrMCOPBUZVgBE+MygxiMMKXBVhDg8sf56N8bKcN/WdLPOa3q0nPuZKWRoW5MBCAiwOJCQElEqnkTKF3bnujYAj3tdxN77tAiKrXeqbYGwuRQhgQRYlPo6qsLHypjRXlLhVKiIsYPXZE/SL00EoT5OnNQCSqEBqRJNjlLuO9nr3JIPRbEY4EE5pDOklazWMKNy2jsl5Qek1b5Sg8Urjgl8HT1TkHF7f4p69qkd8Vk843SK6DaAgLhcLNFgt91RRZCAEGhLFExrI6Lln6UkK2GpH3OvR7XWwMNgWbeFQRSo/1BCIHZafFp1cWca2qH9lE0rtbcvBeS+e+AXKYTeOsRfW3TyNEXtI5WuB0QrkYc3RhAYnHdSWJNFNCt2nbpKJkRQ8ppSYVJVnVnDQ0vwyPVv9w7BpWP+OQwwxrGwLzYPiR5Wt4zr/5YT75n/7bxT6Uh8UNb/oiPEpycCZ2upTsQvbUueEXX8zbj9zOJ3/1P16w76xx1gTmE5/4BLfccgvtdpubb76Z668PF+jEiRO85S1v4Y1vfCPvfe97ueGGG87bwZ53FCUk7bDKJUS4scG2krHpvytTv6iLwubMlOH/YuaNoTLtJ9GsdrlehasJTlUS4COFjzWyPwnkxph66S6Y+PMiRE8KgekluFgGM3tLBxIQKbwK+3SxIN6yjPdq0g1HPAx+Ey9AOIFyHq+ZKhUytygpmOxt0Z4shImuDiyo667rJpxCTMsXpubMWnGqVaYqclmMJrOVx/kabTvrr4O1gdjViW628gVJOUvWkTKUVDg/I0p5AXGEOrJGWiyR7+mQ70qIN0t8KwqrksbhpaRc0HghUHVJmwDbSypfToTXktZd66HUQSnulwTU4JLBv/i7HgB/+M8GF/lILh6aIIBLG2YYkUwEeizQY1/dz+1Uofe1ub1elIHp/733YdGsLquKotm8Ud9LFRBpXBpRLsRMVjUmERQLgvFBj4vC/V0PNAt3arrHDMkaiKwFG8VMBRGCciHG7s9Z1JNAQFTG2MVkPiKlZOyTqcoCkIqSgU+xyMpEb6dKRCpKFtWEpXjC8uKI/uNadO9J0OMMUVcUiJBc6auUS1HKqQd0GnBT3/vzArXpkeOcaF3TjXUIo6kDaUzVQyySYUHOutBnbDHGJf8fe38ebllW1/fjrzXs4Yx3qLo1d/XcDU0zyWSD4gCKOAWiAYFE9JufJEYxKGi+Doj8IppEE1ATQ2LMg/jr6EOi4VETFUUQ0bZppgYaGnoearx1xzPtaa31+2Otvc+51VNVdY3N/TxPPXXvPfvsvc8+5+y13uvzHgSydKis9CBuUiKyfPpegAcxQjSLh/HxIXOFwURtVttdNtsZa0UL6wRtldN2BRtVm168GoCc7yrFJ4n67xkvkd26g6UHBr7Ts93Rf8z6vbu/g2t/864LfRqnVE+2s7Fdj6wzDcQ+ZQDz5je/mX/0j/4R733ve7eK7/DdhX/+z/85b37zm7nlllvO6EQuhhLWei6uENBKpu1uIfEK/vCzfJRAMesIhvRb96mkX20SApfGXjAJ/vdW4ifhkcJJ6dOC51MOfUNM62ifPR9fRa4OplQzmIaX4W2Rq5YK3QvfQZB5hQTU2CBsjMp9Hoo01ms8aqG6sX5FzjlkqZGFRW9MkFVC1WkxurpPbzj2/Og68dhUUze28LpdUU7tMMPrFFo3ZgOAH6jDNROzLmY11Q5vWlBTJ5Ai0Cr863ZhpdL5Daerk7U1dXhMHFmhNcyodvawLY21ocPloNiRIiqHqqzPwsH/L0uDSbUPzzw+gI3BI00LtmtLnW/6WA1WHu+xCwFkLiVb5ZPryXZhtuljT1ythyKSSqByRzRyniLrvPmJqzV20UnZICGxXlgHceR1L0r5+6uUuMhP+m3is6xkZbFaUnYUJ54lMPtyklbJ3v6Qfd0N9qfrfGrlIA/2d1PMRczfI+gUBjmaeAdIAK2w2ncw5tSEnppgnGSMPzeDpHSKzETkNqKrMparHgYZOjKCxqUFGirZ7mST9W6LL165wMbRDvMOn2FWVlsF7XUI58mifmtnYgmMH5+L0tO86xBQ6xoTAhnpKZNBCPS6ntnXTE5OXjxSUB+O77QCa9FrjoWvSJxKWc6XWN7bo9fJeHg0z450RC/KPKVMlkRBHzOyide9mJhjeZ+/+uwNHPycp/C5NMaRPunP1FOx/jj7LNf+t3vP6zFv/ulffMzH3vDLP3cez2Ral7Kg/3X7n8FLf+kaXnj0pTzvX731vHVjThnA3H777bzvfe97BHgBv2Ly4z/+4zz3uc89qyd3vssJ0awIUZQzeSh2Gl4JDZZpwAtMJ/Bab9HINPkutduYUmH1SOK0Bx0uUoz3JJQdiYkh32UwiSK/u0ualYi8gCJM8AlGAlGEU9LnqjgQRUXRa5HtjFGFRWUKlXmgEm2UftIe+8FA5pW3DnYOYaBqKZQSiLkWpq0RlcO0JWZpDpUXXvypNZg63FJOXy8z10KJBpAIrXCV8cCkzqspy6ldJszwoN3UZSeJp+Bl1j607vTMhGfWAWmN0YA1uNEYPZ7geh3MDp+N47R/n6JhhY0kwjiU84GedbcqPj5ErG54CkNtkqBOWyL2VVdnunKyXRe+ahByukBmG7ycWsWboIUjXXdEA4PMSz8G1As3Sk1dxmYMXbyo34XOS7gHhbHJ/1PkO1Js7KmwNhGsX6t45ovv4qbFe9kXrQOe7rWkN7ksXeUP3XM5VOwmXVG0jihkmjR5NC6Jw/1ZNBbEUlisk4QlPHIbkciSOTVmUQ+9y5ewDEyr6cqUAcTUlsaJrFhKh7T2DDnxnB6q6NAvKuTmeErfqhe6ZmhlwPS6RNqDivrvxnrAIiVOxf46Bl1mTQVrxoyymlL1auME4RfdGjOchpZsA1j024i8JDq2yVJW0T7RZv2aNsPFFhvdOe7bkXHj/sP0dbb1WjnFkWKOOzd2c89tB7nsFkPr8MifayxxbjvI8mKoxwMvcGaBimerPvn2D/H8f/2tF+TYT7Y+9jN38zHu5vf+1VtP63lPZg5xyjO0PXv28IlPfIKnPe1pj/r4Jz7xCXbv3n3GJ3JRVOQHDKcEcm3ogUYzWZ6ZTEexnzDHUTMQ+U1EaP3LKcdXB02Lsb4DE0T6Lo4w7ZjJnpTxkrcAzhdgcmXBFQeXGXxgH2pchVwaOQ3BNKahXalxgej5lHtRgR5VmEQy2aFJNg2ysF7rYVywCZbI0vhuTx1pE/JiEOBkjEkEeuL1KJtXd1g4sQlFAXmOaLWCk0xYSZQKEYdrI4MtZhRNgzqDEUFNBRBaN1aaDXhRyr+mNJ26nRGAX3gMCJbUBpyZcshrWlv9/oRyziEGI3RR+gG/nYD04E5YmvBM350yyI0xYnMmZbcxa5hJvt6uLVXnv5xrAPN43ZeTt9vuwpxZzQKSxwMz28Dl9CqfA4cgHjhUbv2Euq5a5zFrFqP86r8fR0wzbtRVLx4Ka4mGFaN9CcUuwfr1jqVnHOO7d93OVfFx5mWG8v1qSie5LFqln2Q8lFpsrALNWCKSuAFTKjPotYTPDfazKxnQ1z4UMhKGEs3YxgxMSipLDJIlvUlK2VgTq6B/KZ2mTe7DJVXBznjIM3Yf5XBnwvJkN/FGh1ZlvR0+TG2kKzN1WpPSj8ORxnVSqrnEGxIUwfSlnDp6CetA+cUvJ4Wnk5XVlK6sFTjZACZgqlENY5aTNO+FqAwu9nEHIi+Qa5bupCRe75AvaoqOJF/s8NlrruLhK+bZ1RkyLBKEcBRGcXR5jvRLLfZ/piRdniBy3zki7G+7Hllfcx67L08EXgB+fPkDvOFxHj8Xbl91/bAdXVAAdTZq1g778XLizsbc4ZQBzNve9jbe9KY38alPfYqXvexlDVg5duwYH/7wh/mt3/qtSz4Hps4DESaI12tv/pAc3JQNzi1FOW1jBzBT83e3TL7rciFIUghcoigWY5afKykWLWroKWTf//xb+NJgD/aoQW9mW+ljxmzpOMiNMfZAx9+4pUAYS7xZIipHNK7QaxPvsNVLwTjUONDjwv5sGmFbupnQO+ltjqXxdstFT1It9dFZjrPWDzKBXiVinyeAkZAmDUCzc22adGjnEFmFKCtElk8F/NAMWI2Qte5cBT4x1nnXtbq09qCrpuqFbZBMwzWlan52UsHIO8GIgSJei4nSsNKYRoims1X611abEtR0AyW3c2Aeo978z/7xeTnOqYKXJ6pnvWr/Oc2BOV0Q832veuyb+u9/8MJ2tB6tK7MNXM6sqq4jHvtQXT0MhiS1ljIsdgHTcaIGK01gstvanXaeouykX4gCmOwU3PCC+3jF0h0sqiEdUaBwpMKQOcVR0+feYon1rOWPa8JQFgACxnqh/OqY3n0JX75+F63dJV2Vk0rDTj1gSQ8Y2JT78iUkjo7MAbCBQlZ3XHy4pKbtNJEwLOgRmY3Yk24SS8Pxa3psHGoTbaboQCOrtSFCewc2l3hr53Jnm+G+hM0rJPlOi40cMpfE6wI9gXjT0TlqSE9kqA1vudwsDhal319Nu1MhviA4S9agJbwRUyBZj7U1da2sfBhoWZHkBclRjYs1ph3Rvz9ltGcn980veSM1C8ka7D9ckaxMUMMZsBJAojh5PrBdAPz2nbfyT5/2onN+nFMBLxdDnanG5vn/YXrPvlgA0CxIqc/vbJ7bKQOYH/mRH2Hnzp28+93v5jd/8zcx4cuolOJ5z3se73vf+3jNa15z1k7sQpWo7Fa7x9reshatGwNJ8kh608mc2roFHkdTOlTs7S9trKi6Mdm8ojhYcHDfCqWVXNlf5cvD3dzxf6/nsqMDv9qUz1DZpJymNOPb6XpiMalCjJ3Xv1hHOiqRo7zR8zgpfNJ8Hl4j4JRfhSu72q9AWYcsZlb7rCOaWPKlFH089pN9Ca60Pj8AvHtXt41tJ2R725Qd335XucXEPlRSZ87nv4wt6XKGWvGaHgHN9auJA03nqn69s0YBgVYx2/Ha4vpmne8M1TWrY7EONx5DUYQukEJMcijLxqYamAIhrcO+twecx6tz1X05E+DyZLov5xrg1PV4wOXRtrmQYGYbtDz5kgUkq45krUIW4V5SVVO75KaTPNUP+icGs5cmG0x5wJF650mkpGpHDC6XjK8teMXSHTwvvT9knhgiYSmcZOQ0kag4UfYYZAnCCOKh866Pk9xTs+puw6Sgf3/Fg/fPszK/zq5kwNjEDGQKFXxmeJCHRgtc1z/O5cmJJvckEoaRTZpOjP9bRUcWjGzMUKVEwtBSJft3zvHwFW36D8XoldA9CYHPLkqwvTab1/VYv0Yyuapgac8KL9xxlI7yYEAKy8PjecZVzEae8uDDiyx8usPinRo9KBBF5dPuncVVfpxDO28KU3dkqqlTppjNYjPT8UJUBheJ6RifF0ELCjKKkEqilyN6X4mwqTdRcALUpEROyiltbaars2Uhcru21LkGL83EfvkDZ22fbsczzqmY/1S7MC/4J980/eUz/+zR/w7c9rsfOWvndqZ1LkDVaZH8X/va1/La176Wsiw5ceIEADt37iSqJ7SXeDkh/I093KyaiWzjJjbjulUPOEI2rX3n3LQFDtMbYFgFcpHCtCKOvahD1QJZwbWXHeM5iw+zXrawTvI3D1xF97ib+tNL0Qx0rqr8BDzoSURliDYL8oWkGfCEAzkuoKz8ClvkswEcgApgBnyopnMNlQwLKvf5K1VbUbXktNHRbSPzYitnO9KYnX1GBzvI0mESQTS0qMIic4NNFDby1DgjBWVHYuMWajEhPTREbgz9YC796pgzdroqVp+jlYhETwM8wYPH2oms3lYqpiYLUxMBoZU3AJi16bQOsTF8xGAitMYJ26x+Cq0R8baQ/7HqYtK+nAp4eSyQcrboX4/XhTkV4PJYz7vQHZntOvNqnRB0D1dE65kPRq5DeJM4aCADZaye4NYajdClFzMuWS7S2DT29C8hKOY0oxtyXvmMO7g6Pk5PFmROEQmLcYJ8RlQ/MRGjcUJyQtE6niHXB1sn9EGLkqxktA/3WL2+TdWV7EwGKByfG13GJ49dRj/NSWTlhftOYhBkNgpOZILM6aAF0WTOYZFEwmCEf3x3e8Dq09YZ3DtP61CC2Bj5MUpKzGKHE8/qsPmNE5554FCj5fEuX35g6MiczX6KdZKRTfjirn386cINHNrVZ+7umPaxkmRZINalHzNnQIOrHdyUbNgKwJSOXLuDgo9FKCtvDuPcNCLAOq+fCWOOUBIVRcgkwqXJ1ASoPu7M+O/nBNsd/QtRP36awOWHPvDE6fKf/InrzhmNDJ64C3MyQHmiesE/+aaLAsSc7TojlXIURezdu/dsn8sFL1FWuHEe7HsFMON4Va/uNyLyGVeweuWmDqucBTAwdU0BEDC4yvDi53+ZQ6M5FtIxlZXcO9jJgc46z9l/iM8vPW2qGymrZtVIhA6Mq7sSZYk+tkExv8t3YcJN2SYRMlhBo4RPm1cK04l8mKT2fGGnJcI6bCRAgEkkqrTIocXJCFE5nBbYboxcmxHta4XZ0WPj2i7SAM7TEmpBPEp4S+ZsahHqpEBYR9mLGF/RJ15PiY5u+NdnA3CoGx5qeqPf0iHRegpelMS3hFzoljhvIiBkCKH0q3BN92Y23boOjhOysXt2ziGSGLujj+kmlF1NFpdw7hfmL7l6KoVYnuvOy5mCl5Ofvw1kLr1K1izRwHldRtB5iJrWNCs6hynVyda5KLPOk/VY4EMrXawp24LnXPUgX9u7mz1qkyiMT6lwGByxsIycZtVpVosOZhgxd8QRrU2mHXxrPYhRCqcVMiuZu9dwZM8u7mqN6evMAxAnWOqMuLy7ys5ogEESYTxVTZZ+8Uu6xq3M4AHG2HrR+tjGTExMZSVzrYy1vsC0I8TQa12qxQ7HXtjGvnSd7z54J7viAZdFq40bWuYifx4IOjInFSVLwLwa07824zNLl3HH9XsZfKHNzs8pOvUYnheNHb/Qs8HLoZybWlpbO82jCZqVLQtnwYm0CZYWFU4pT8Ery4a+VgMXl8S4dkI158cSYYDBEO47d5+37To7Nb5n+MQbce67MI9WpwtcHu25TyUgc1oA5vbbb+eP//iPWVxc5DWveQ07d+5sHtvc3OQtb3kL//2/X8ID7eo6iBAKdjJf1UxX55sKqzOuzj2BKc2ppjrVuSehq+AiSfuwQgrL2678cxSOD2/ewMOr8xwfdNk80WHXw26rm0qgGLgg8Gwm+1pDlhOvZhSLKTZSIEGFPBjwoEJU1oOKwiCso5hPcEpgY4nVAhMLJjs10cgSDwzJ0SFqs8D0YyY7Y2wyFeKjFXa+y2RvByfBKMCBiQV64rNkUAIXSURmUIMcUVtFK0FkHZM9KRvXtJhTgvj+E75LUufLwBRAltWUggfNSpgX+MdTcFkDJ+e8yL/Ws5iwn1qPVNPT4sh3d5QHOyKOMHsWGB/oMDigSTas54qPaw+e7TpfdbZ0L49WdYfkfNDF4MmDl+26tKt9vETmQQtYBht45ceDhu0aOucurP7XXWgxQxt2cdSEKovKQiqa51skbVl50b6wmJmmeuYUK6bL8qRLdELTXg4gCN/xxthp5kqkEaWhd/+Yst3l862D7H7ugAPpGvuSDZbiIbujTRb1kEhURKIiDvSx0mlK57NhFJZYVBROo3CUCDarlNJJCqtp6ZIjuxxVW6MTT4lbv6bF5EVDvveKL7A/WWtoaR4EJUhh6cickY3JXExH5k2g5u5og5fuyLi2d5wPd69jfbSD9HgHtTaC2ijAlV5/UjtgzoIYY7b+riRYn7nm2RZiqk2SAsoQegne3EYpiGOvea2Dr+OIcnefbClmcEDhBCQbjqTc7sA8lepcd2HOla3yU6kbI594E18f+tCHeOELX8jv//7v82//7b/laU97Gh/5yPQiTCYTfud3fuecnOR5rVnesVLTvJGGeqWnjwc6V+NUBtPt6oFhJmnYSUm2GFP2HH/3tzfwnx/+Jo5XPX5ox8f52svuZ/BQn/4XYlTpcLH2qzp2RshZVf7GGrpArqpwZYle3sRGgmxnTNXSlHMJVS+h6nrKwZZOUPjZRhInoWwLTAyqcBRdbzGMlP6Gb0FWMyMi4JKY8WU9bCxINiyt5YpobEk2PH3MtDVVaxo0VlMebKx88GaiiEYGPXEM9yeYnf2ppkaIaXfFOu8Kd3L4lxQhL2ZG8Fr/XFbTkFElg6tcsK6cyZzZonWZ75Fft4fR5V3yvkLlDp15/U803OYsb9eZ1dkGL9tg6NKreGWCGhU+9b3u+obV/UYsHmyARVlNKWPQ0MgoK8RoghhnPgNFS7KlmPEeyYH2OpEw9IRjUUoWJfTC+LNiE+4tdnHL5jUc2phDjwQqC26Y4X7pqckmhGv6Lr8cZnSPlLQe1ty9uZPNKqWtcnZHm8ypEUBDEzMIak/M0ilSWZLKknYAGHNqRCoqcqtZK9qMSn8vrvoGm0hsrMl2pqw823HD3mMNPa3e38CmGAQ2oLrSaTZMi+Wqx7ppN+CpqzKe03mQf3D559m8saRYTHFJjNDK/6spXPVYUodW1oBjyzhb2y57OrhotfyCV3DQFJH29OIQLirSxI81WuHiCDvfZXz1IhtXpQz3+v1HY0e6boiGM2yC7XpK1LnMbfmJf7FVM/Jkui8n19nc14WsU+7A/MIv/AJve9vbeNe73oVzjl/5lV/hu7/7u/mf//N/8m3f9m3n8hzPX1nrIZ11U4pRHawYqFuivmI2cGOlQER+Va3RwIDPMwHPc460bzdLOPZCyb961f/mP3zxZdy3sojdI/lsvo9/sOMzHLuxxz3rlzN/T3BnmW15zyTcizpTBbz+oyhpP7DJ+PI+euRDvWysUFmFyA021T60sbKe6hX0L3pgkaVjrDXJWkVqHCozmHaEk4JsKaZKBckqHowkCdWOLk6DyizRoELmlU9xbqmmixMNTKCkBXpW118LG0tvDR1LouByNtnbobsyQFQSV9lpvoycATMwBSk1oAQ/qBTlNFh01jABpinX9XtZW1ELgYgj7HyP8ZV9yrZEFQ6dWVThg+fitYKSk7pw27VdF7AuNk1M/CvPBsBlhvLtX7jAZ3PxlSgN6JkOcui+1G5YwMzilPATZOemuSez9CZjvItZJyWbU4x3O57deYiOzMkcpAJSoZBISlGw7CRHqzkOT/qMVlvMDUAVnpJcdxdcbX0vxFQnKQTRek77WMT99++iNIqnLxzjytYJElmCo9GllMbTxSJReSrZTKWyJBX+bzuiERtli0RVSOGQY4ksK2yqGVymcYsFFsFK2UEJy5yaYBAoHDLYMxfOD7wKR24jlHS0Rd4AKOMET28d4pqrjrJ6+QGiQYrcqBcbwxhSO182dD07pSDXWhcCbdk53w5T0usjqyrknynQfhFNCP+eoXxm2mR3i+F+xXi3wKQOWTnURKBHYJXA6W1N5cVeFyrE8tHK/s9nXehTOKf1ybd/iP/dPgDADa1nAvCGt5zenOuUAcwdd9zB7/7u7wJe6/FTP/VTHDhwgO/93u/l93//93nBC15wWge+KKu2RiYI8muzK2PDqouc0pZmAhmnlsDOu33B1LIxL6CVQuQtf3d83vErV38L+WZC+nDM/3fwXcjlmO5DgtYJy+UPTNAnht52uF4ZC+dT79NZt8Upy2UGcayibWFysOdX2vA0BJcobKLQG7nPt6mCTkYLpPaW0dHEZ8WIYFMsi4piRws9MjipvJ2zsdDWTPamPtPA+UBMpHcdqzoKq7zzmJN4/YvwYknT0thIIEuHcP5mXrUksoKyKzELPeRDo2BLraaaljja0jlxM6JMoVQDIBsNiy1DEGUwVqgNF0JQWWOF7fy+Jwd72EjQWi5RufF6Hx2CLkclFJNz+Wnbrkep//ENg9OikZ2J+9j5ch17qlUNWLbrFMv5/C2URBRuOj5IMe1qz7qNheeIGuCEHC1R56K0Ekw3JtspsPsn7InWWVID0vD0zBnGruJw1eKOfD8fOn4Dd37xMjoPKubuq0geXIPx9J4mtJ52JqwNgZASNczpP5CQL8QcKneyuS9hsivihi4saq8P8N0PhcKSypLSSsY2IXOaOeVzYyJhfLhjPkdWRZRW0Ysy3w2aGKpexHiPP/nNPOWE7tLXGYkssU7Slt59TOEY29hT0oI5gUEwtglDk4aQzZglMeA5Cw/zh9fvp/dwhD4WNTbN9bX1bpWe0udNFaoti16NtfWj5IsBzbjvwvsjANdKWLmxy4mvrejtXqetDJXxSTxZFjEpNNEDCQu3bQdZnu/69j8Zwt++55we41zmwjwVqwYus1fsi5PPA/Czvwzv+ukbTnlfpwxgkiRhfX19y99e//rXI6Xkta99Lf/+3//7Uz7oxVrOWNB+QiyECK1lO810ibTXnkgRknxrB6yZfQTBoKuq6QpNTRUQEd0HM5L3peAgGvicEpUNvHNYFVbZmhttuKnW1pu19mV28l5rbYxBrqzTUoLRFT3fBQGvz7E0XRiEQ08qZCEp5nTDuS7mNNHQoIfe1lNUDtNWCAtinIMQmLkWamKJNwrUqPCBmEogrUMWmnjo7ZNNS+G0RI8qbKKRxiJLD3ickt7tLBGUbX/wbE+bztGooTYgpAcctfNabZKgpF+NVD6EzJVV87MgvF+hA+ZmeeZ1BR60iCKq3XMUPeUpcvjukKi8lbSwDpmXVMk2Z/lirScbWrkNYk6ttkHLk6iygjrot7FIDnSmmRySLRNsaChMdVaLKCucVthuStXx92w7iPjbwXU8r3M/S/Iwq1awblMGtsUnx1fyibUruPMLl7HwBcn83TnxsZF3yGql0G1PXbhmJ+i10N1YkqNDdn6uR7KiWR/Nc7sTRNJwRUshhQcSQ+MtkqVw2LA41JYF1nnaV+4kx8o+y1mXE+MOSloqK2kfEci8YrI7xilgpBnkMbLrmNNj5pQHWdaJGWMAwdj66UokK398G1E6hQx2mSObsDfeYMf1Kwy/uJPWw+nUBKdmRswuBJblI3SUQghcDRrr+IRII6zFYafzgqry43GaUO7qsvJcy3d8zee4sfMwqSxZrbpsmBYPThaZmIhbq6vIv3LKjP3tOkv1f7+zyxueIP/lbHRdbnvXq7n5PYr3LP+vJ72vuma7EeeC8nWhtDB11+XRqu7EnGqdMoB5znOew0c+8hGe97znbfn7933f9+Gc441vfONpHfhiLKHkdPIMiNCCmbUv9voTsUUbU4eSNTkm0red65V+F2mKfX1Wnp6yea2l85Bkzy0jL3APScTg/ecxNY0q2D/WFs51d6L2q1dBXFjfZJ3DTSaIQyXdyjK+oo+TETaSJCsZNlYIBUIJRGHRzmASP5CqzKImFVVbe8CRV8jSYmNN++Gxt5Zup1SdiGjoaWNOSlwkvZuM852Vsi3IFiXCSlor3hZZVg41rnznpaURhUVlvlVfGwhkOxTthT4sr02BWelAhVVCNwU2Ik2mWhcZVjMD1U+omQHiZF1S/Z5JAXFEvpggK0c0skhjsVqS74yIBhVlXxOniqqcCdLcrvNSj9d9ebKg5eQ6myBm1kL5XOpVLjYa2XadYolghz+7sl/rYGqqbGPNLwDnF7TqCbdWlP2Y4V7N8Iacp19xhF3xJuumzcBp7i8XeajcwfGyz58+fAPLh+bp363Y8bkR0dH1ptsgiP2CUG3zW+tupEBMLE4rRFhISw+DnrQoey3G+2OWsy650SzHPZbiAUp4O+W2zBnbhEU9JBUlhfMgB7wDWW404yKin+bcf/durri3RDjI5iXCgSgEUsBiPKInM2JRIbEMXIvSKQ9gnGRoEiJpyI2mtHUnRhIpg3U+VLOrMr5h7938n71LmE6MHKjpa6yvfU3bmxXni5mFr5M6Yn4bb2LTdGiCI6ZLYjauSJm7fI2leMC8GtOWuf9XdQHYqFpcfuAEhy5bONufqu16nDrV4Mqbf/oXzwqIecNbDC/42Se9m6d0/ewvf/FxH/edmFPvwJzyksAP//APc+jQow/2r3vd63jf+97HS1/60lM+MMDHPvYxvuu7vot9+/YhhOCDH/zglsedc/z8z/88e/fupdVq8fKXv5y77rpryzarq6u84Q1voN/vMz8/zz/9p/+U4fDUbPAeUbXzS3MCoQNwsg4DfAcmUMvqm5ozMxbKQUTutCLfP8fyc1LG+x3xgRHFnHcHc4nyIvvaqcw5XMun2hME+r7NL2aE7cF9a7YDU1PaatB0Yo32Xauo3HrgkITui/OWnsJYz392EA0ros0CF0lsLIM7mXcMizcq9PKmdx7rpJ52lld+H84hSossLSaSqNwQDy2q8Nzf2tls9tqqcYXMKt/hKL1WRk/8tuVie/o6pdcNTQ0RwuurgYicrpY1ZgrqpE5YbXhQ62Bq4WpYAbWRB0/+mjii1cwHcKaKeL3CpJJ84Yxcxs96XXTfk3NUT0QdOxcOZc961f7m33Zd2nWxfU+EtTM6i6m5iFPeRtnrLgyuKHCTzOeP5T7DC/BBu8MRbjLx4ZUtxWi/4LlXP8iLFu/nOemDzKsxAxtThgyWRFREyiAminTVgfCuWMBUqA7TTlA9tlm3daJvLWJSEC2PWPhySfK5Nnd+6nL+/pPX838+90z+4sjT+MpoF4fzeR7Md3Cs7DOyCZmLsHgwkYqCSBiUsCTasLzRZeF2RXJsDJVf4Co7Dtur2NEesSueLlAMrM9FS0XJgh5h8R2gsYkZVt6ieWgSv61Jyax/jQrLwWSVyYES09L+Wuc+tJigRwW882UNXIKzZwNeZgMu658j37kXaYJIYv8vjiHSlD3B/rkNeipDhra/dZJ5Nea69Cj7kzWunVumvDw/o8/RuaiL7btyIets6l7esvS9vGXpe1m66VtodX6SVucnz2g/59IcYLZufs/FxzL5rX9z6p3KU97y1a9+Ne9+97sf8/HXv/71W1zJTqVGoxHPfvaz+U//6T896uP/7t/9O37913+d9773vdx66610Oh1e8YpXkGXTlfE3vOEN3HHHHfzFX/wFf/Inf8LHPvYx3vSmN53WeTQ1q78IJZSculrBVPAXgq9mc0qEkl63EW56ttOi3NVj8/KYbKejdy/o23qkKzDZnfDQt86x9sw5XBxuqkr6lncwBMAYf/Otq9Z01JP1egIvT1pZsg42BsT3HSc9MsTGkmIxxsa+W+OCTkdPKpwUlL2YKlWY1Nsqlz3fVUkeWPUDbKQ9Bc0RxJ9yanhAAGNCoEeGZN2RrlrSVUPnaIke+NU2mVWIidcX2URRdXxHS08s8dBhE+XdyOouSe1IVlcNRuquU3A5q93ZGqE++E5NnXRdA6H6dyl9orX2VqTFnKbqaPLdbf86FDgtqFJJ3r84Wv4X3ffkLNfr/7p3Tu2Tt+uroy6274mTJ3VcZh0uQ5hlo9eDGav3MMYEuqtIEqqdXdav1ojnbnDT4r3sjjZoy5xIVIxsghKWgUmxCKwTyAqSgUFOqub4dQfIaYWLNC6JvGHATOda1C5ceYGY5IhxRvvBTfZ+fMyBvzTs+5ij98WYQ4cXuXN1N59d2c9n1w9wz3AnXx7v4Vg5x8C0yFxE5mIGJqW0ihNH+6S3dNlxh7/W2b42470C9mXs3rfO5d1VAMY2Yd20GduYsY0bCtmcmjT0tK7OiYShr7Pm7wCR8K+1dIpkIaNqK1wrRiTJlKlQU/bqsaVmXdSB1PV7UWfwOBcy08J1qgMvtQrsCoUJ0pZIGG8lLWwwNzB0ZM5uvcF1naM847IjZ/Q5Ohd1sX1XznZ98u0fuiDHfcNbDG94i+H/fmeXj/3M3fyHyW+e9j5OBi/nEmS851On13Q4H/Xlyd+f8rYXdIn5la98Ja985Ssf9THnHO95z3v4uZ/7Of7BP/gHALz//e9n9+7dfPCDH+T7vu/7+NKXvsSf/dmfcdttt/H85z8fgN/4jd/g27/92/nVX/1V9u3bd3on5CwIgtZlGsIYTsjfuAoDwk0pXMIL+0VwHatDJwFML2Ht+harX1/w/Gvu55Pz1yAXcl54+QPceu8V7FnaIFaG7FeXaN2XTwcPJRFGTjsIzgWtTbAMrs+pFrjXXZjaSMAacMJ3jw5lpCspZs8CJtWY1E/YZeG7KDby3YiipxDGkS9oug9N0IdWcUXhBz6tMG3tgy4ThQTE2FDOpVQdhUkEwtBQyWwkiI8XyIl3KFOZQRaV7+60NBjHeEmzcS0sfcZ6h7Qi8IrLYut7UoO1mg5q/GvbAm5qF7JaD1S/l0r561ZVgMG5YMYwzoiGhqrjX7M3HhDN6zCJDFqei8M15qL7njxF67G6MI9HMzv5Odt2xxeuLrrvSRx5x8dCTFPva/oWHkQI50Al/t5flls1KUGz59KYYj5i81kF33Hwbl7Quo+Ri0mF4epoBYOgdCPulbs4UXYZ5zEqE8FopfQLYa0EXOwt/W3QCtb30JOF67X+UghcsLJXWYUwjngDpEnQo4jhziVs7Di8YHHa8anU0J2fcP3O4yzEEyYm4u71nax+bol9n3b07hsghxnVfJvlZ0eYpw95/mUPszMekcgSifOuYk6Sh47KibJHT2UezDhJV+dIHFI42rKgpzIMotn+WDnHStkhX/UmNEiJa6f+5dXmCE1A6Mzi3/SD8khThdmx5iRbf6cEsoTDm31OLHS5KjnmgzbVJrZe4QtD0g39I/zZ6X2CzllddN+Vs1g3//Qv8uXqE6e07bl2HXv+v/5WAJ734/+Mt73tx/jVX/11/kv3e/hhO9qy3See9zk+9Zmbmu1n62IEGRdLXRxLzI9S9913H0ePHuXlL39587e5uTle9KIXccsttwBwyy23MD8/33yBAF7+8pcjpeTWW28942O7opzmkNQ1Y5vsV/7ttCNSO5LNcGydkoz3paw+x/K0y4+QqpJrn3aIG/cf4Yr2Cm4jZu1v9nD/Pbs9DzgvpgLD+kYrFSRJ2KedghQIwkOvuamT55sBKaQP11QElxfIew4R33OU6NgmyUqGLAxWBcMCA63lkt7dQ+Y/dQz90IlpVgp47q/yE/yy7TNeqn5K1VZMFhUmEt5lLHcUXUEVtsuXUoTFHyvV2HZM2Y8p+xHCOqKhoEq9c5ksfUAlUTzNbtHav6Za8zIL0ma7MPX7ZkwwOqhpY4YtGT7O4fICrCNZyXwQZ+wHeuEcKnc4BWVHenHpSYzCi7Eu5PfkbNSl0Hl5NJrZNu3s0qoL8j2pV/tntRfOeY3JaOLv+XnRaFxqm2U3SzsL+6lakuuuOMrze/exTw9YUoNGOL9sOjxULXLvZIlbV65g8MAc6Qm/GANh4j6bhVLTo2Yzy5Rs6G1o1WwrjHfmlJMSNcrRa2O6d22w++/WOPDhEXtuqdj9d4KlWxWLfx9TfWaeT33xSv7yi0/jEx97OpM/38WBvyyYu2OtMapBQDHvuHxpjavaJ1iKB76rIiusk4ytv//POo5tVK3m77XD2VrVZmDS8FIsmYt5OF9gvWwTrSof3FxU02sZwIu/vieNmcHJsqmaXjf7XGO3vpeAyA1z91esPzjPw5MFTKC9zasxi2pIW+akwufjqEe4ylycdamPKRdjferd/4XX7X8Gn3r3f+H5//pbecvS9wIeuNz2rlcj/uE7HhW8nOu8lvMt4j8dh7FTqYuD5P8odfToUQB279695e+7d+9uHjt69Ci7du3a8rjWmsXFxWabR6s8z8lnqFmbm5vTB61rxPyuKP3PZfXIlZqavhTFvuNR3/TDylW1q8/hb4DLn3aUtazF3UeX6HUnSAEPrC8w/wVJ/4ES8SkfeObiyDuQzbjSeApU5OfRVQVm5jxqEMWM0H1msu6c812hWvwvhe+orBSozSHSOeIoamhnzlhEmni+tZDhNXl9jzA2aGiCNbMUnvJlHfHIosce4AjrSNc9t1lYB04gS+/qZRONiyRVS6IKH3yZrhmKnqJsC0Q+k9lSGxfU2qJgkNCAOMX058YmWXhHsvrxuitVu8z4Dwci6I3k+ojWcsRkKca0JNGmNxrQI8h2aNAClV38COaCfU++SuurDbQUP3n7U8KJ7IJ8T8oKIYKzZFk1DpV1Rth08mxp7CCFCPesYAzjHK6dsHGF4qr2Jm2ZkzlFR1QMbMy6jXio3MHd2W4eHC9wdKOHHgn69xtaR8fNOdXU5C0UqceyDJ41EzDGA6GajaAUWE9NE+McvapI24nXcypJ78GI/G5FsgbpiSFyfdQEdLo0hjjyZjGRm3ZSVE5ptadgyYwN027AS1v56zqnvTNZHZgpcZRCYUP3RQrL2MZ0VM7EROiRQA8L77xWd13qWIKqmr4egrOn8+OVA29dDWBqSpmd6ofqazYTk9A6Mmbui33+ZudVvKB/Hx25VesSCQ/M1sv2Y36GLqY6V9+V8zGe3PweBcdObdsLmfniHcZezcXB8Ti/dUPrmY1t8pOtixbAnMv65V/+Zd75znc++oPNar3d8jdn7NSlrOHPKk95UspbMoaQSdotxnsTrrzhCM9ZeJg/u//p8ECbUdEGJ2gfdXSOW3Rm0Os5Mi/9SldlPO0rTaAKE/dasB/oBM3gMmsx7GyTVVOfu1BySzCXiKNpngqAVLhW4h3GQgfHjceNoLF2OxMhqEtlhmjow7hMWyMqLxCNBgZZOcquYrKkaZ0w2CiAKAG4AF6k18nYyGetRGNP1xPWoQqQwVK6AS218xsByDVtfNOslAlRd8mmTjpN8GjdPRN6OuhUFQ7PEhTGotcmJNqLY20iiTa8XiddhaKvKdPT+lg95epxvyfbdUFq24Hs4qvH/Z5UxoOXqvKLQky7G8DUZj8vfJ4Y+PtUUQcVS8r5lMluRyQsd2d7KJ3GOMGJqs+hfJ57hkvcu7bIZJxgTiT0jwrah8bI9dH0HMB3WMJ9sXG8rPWGtXumOanTAKH7bRE1yasyXiMTxiKV5U04pD6haGuFmOQwnngzleAeKfIy0OZA5YJhGYfAy4oN60FLLks2qhZSOJSwjE1CT2W0pTcEyJxmHMT74HUnbVmwWnXIrfb6HxzJGt7+v3btrDvyMHXxnDV+mdW9zgK5xjkugCChGyDkrA8GlZOS7lHD8P4On7v6Mi6LV+iIgsxFFE5RoiicYqP66h5QLqrxZPc7LvQZfNXWG95i+NlfPjv7umgpZHv27AHg2LGtcPrYsWPNY3v27OH48eNbHq+qitXV1WabR6uf/umfZmNjo/n30EMP+Qesm2aRQDOBbgYTmE7uIbhlxVOL3pralBfE6xVr4xbLRRf36Tl23WbZ/QnD3r8r6N/v+cSitMjhxK8SFaV3fqlvtmGVzmUzqzlFuVW0DmFFLHQojAm6FTl9LTUgq2lY9T9nEcMxbjQOr6nW09hp16LuXFQGtZH5JGHrr5ONJVUqMS0v/BcGevdnRIMSE/uATFlabKIwifJGAnOaKhFEQ4seG0wsERY6R0rEaNK8B3UOz6x9ckMXq9OjYQpYZmkAoZt0svtYbVVaC/mxFjmYoAdec2NiSbEQ4wRE6xnpakE0uvhb/hfke3KB6mzbKG/XqVXxk7df6FN40nVBvidCIMKiVH0/cnVgZGWmK/paTV0WT6YKK+8IKRws510eyBa965aL2TB+fFnPW6RRhTWC9Liie8igBhliOPb31XJ2/AoT8VpvWd8jG6qufWR3pp7EW+uDIQPYqsMcKcomABpAjLOwjV9AE3rqtCnyApUZVCYw1gvdAVJZYhGcKLtsVi2GJiGzEZuVdxjLbEQWnNbq5wAYJ8mcbv62Wnb4m/uvYu7+EjEYTSl6tQVysyinpmOpme4PwJlAM2vGQ+Md4QLQJIRfNo6jQLxR0X1IcPvKPlaqLgU+uyZzEStVl4FtUdhLY734XH1Xzst4cuzUANLN12yc/WOfg7oQOS2XUp02gDHG8Nu//du8/vWv5+Uvfznf/M3fvOXf2aorr7ySPXv28OEPf7j52+bmJrfeeis33XQTADfddBPr6+t86lOfarb5q7/6K6y1vOhFL3rMfSdJQr/f3/IP2MKBrSfBrvSdgGmw5YywfxZIwBZwE69llB/fwd988To6hx3R0JCs5KjC+vT5RKKCK9fszd8Zi8tyDyxqDUcNamr9B0zDNoMux5UVzhiEUh7EwFSsCH6bLe5mhaeLzfjhizSd3sxdsHI2FpdlyAAwsh2KfEEz2j0NwXRKMNnhhf42gBKT+q6GSSXFvGa4Pyab98GRNhZNB0c4SI4Np9fTmK3anmBS4IzF1faikX5EN8wZ6zUwsDUPRs5cu7BPV4UJRFEi8wqTCKz2LI5iIW6CPHV28QOYC/E9uRB1qYCX7Q7JxVkX7HtS37vdSeOGPenecpK2kcjTrai8zX16XPDlo7s4MpkjlX68WC56HBv7Y+3qDJGHU+bvsnQeGiPGme9+lOVWp0xjG0qXpz3P6AhnnR8bZ7QZsFN6NkCjIQlVT/aFsZ4uV5R+0a+2jq47TkUJmdfRxGswyr0wXwrLrmiTrsroqpw9yQb7kzXm1AQdDFq8u5psfk5l2Yj7xyYhkhWRNBwezRF/pkt6ZOztqQPYwNrGQh8h/M+zeTDupH+zBgf1olh47fUiZ6NVqgx6VNI7VHH4yALHqjnGNsE4iUUytgkbVZv1rPWYn6GLqc7Vd+W8jCen0lnZ/Q7+73d2z/6xL7F6KoCj014S+Jf/8l/yvve9j+/4ju/gxhtv3Br6dJo1HA65++67m9/vu+8+PvvZz7K4uMjBgwd5y1vewi/+4i9y7bXXcuWVV/L2t7+dffv28apXvQqApz/96Xzbt30bP/RDP8R73/teyrLkR3/0R/m+7/u+J+WC0dygzEyCr1KIWZcr9Ujs11C4ALU6ZM+tMYd1i7VnWAZXxKQnYvTEMbxM0L/PeWvhGW5yMzDU3Y+qaoSdW7Qv4ClS1vlzEnJLOv1UpCmn3QzrtnQuxCz7stbNlDNhmQBR4GNrDWVFvF4y3KupUm9BHA0tqrBkOyJU4Sg7imgEeuzb9pOdCmF9YGWVQjR26Ny7fo32JTgF3UM5Yn3g6RO1c1it36nfhzqLp6aS2UCNc9X0NVnrrwFMO0fGeHZZpIOLG2HgVX6fUoJxJGsV2c6IqiVQuaPqRH7V86SVuQtVF+v3ZLvOb22Do8evi+17IsrSaxvb6bQjYYxfaIoiD1DqFf56xR/C/VziKj9Zlusjeg91OL63zdFuj+UdPUqrGVYxSnoNx3rWonVM0LtviD6+4Tv3tRFMnTkDU+A001XZEqRZLxrNWgrDlFYmJQJwoVPuJFNgUAOjOmOltt8K1s2iybepaB+3HF1pc/ygdxmLZY4KrimRMMypCWuu4zd3ip7KvD2yLCmNoqsyNqo2kTBYBF8Z7WFUxXzl7r1cdmeFHGX+tdeLirOW1gTwMVt1gHStq2zeRBEMECy40P2PPe1PQNPNF7nxuWbHYj4/2M+1yTHm5RglJqzLNqksqdwj5wwXqi6278rZqje8xXDze97xuJ2Y2YT77bow9a6fvuExQy2vb33tKe/ntAHM7//+7/OBD3yAb//2bz/dpz6iPvnJT/JN3zR1WfiJn/gJAN74xjfyvve9j5/6qZ9iNBrxpje9ifX1db7u676OP/uzPyNNp1zSm2++mR/90R/lZS97GVJKvud7vodf//Vff9LnBvigqnpQqbUVsHVAELUjmRe3110RYS3xQ2vs/TvB8a9JGVxbUfYlaiKo5gydW2xo78+sxjVCwRlaVDi2M3Y6WQ+0seZGWw8Wzk5zBSLtb7AznZnm/Guq2+yNuhFpPspNNvCk9bEN+h1N0VOowqEKi8wNVkUe0AymJgNevK88eGlBuuqF/lb77JdsXtJatUSHN7y4NYmbbpI/v3Au9esWcqrhaTQws4BMNY+JxkJZTylzIqyW1a8dIIk9h7kwqFxRpd5SOl+MqFKBKS6OG93F/j15MvU/vmHwhE5kl0r35alcl4KY/6L7nhQlgjI4WqlAZ/LjiFPK6x6DlqIRlofQyYaehUVMcvpfGVD0+yz35vmb7rXsTgck0nBNb5mWKvmTe5/B4v0G/dAydtN/X4RS0PL3QFeWW+izSBlAhb/XOq2CxbLbCl6kmNo/zwAAUWegWel5HHarQ5cQAkfocLTSaQ5LWKBqHytJH0r4/BX72LlriBSWJHSW5tSYSFS0ZYSMLG1ZoLBEwlA6RaQNuY2wCO/sFbo4DwwWWPiMpvPAhgdLSuIMzTWdnrzwAaNC4KQ3Jdgy3s5mkc2CODEDgmQYjyrjNZWlIdrI6T0Qc8eJPXzDfJf5eIwJoCWzESujzpl9js5BXXTflbNYb3iL4aW/9D7+2eAHLvSpnJV6y/M+dtatlJ8K3RcA4bZ4Bz5x7du3j49+9KNcd9115+qcznttbm4yNzfHy+b/CVq3pknIs/SjujMxOwGut6kn2DWAcc53Y4QArXBJTLnUpepoNq7yk/3dHzvhucJF2dwM/QpdWL2qV4/qToyru0J2y8S9/t0Z48X/ZTWd4Cs5pWHVBgOhSyPi+JHi//r1nPw6lWx4w26uS7avh9MSPfSuaZPdMXpiiTZKqo7GpF4fM9khsTF0D1tk5XDC2xZLA8I4+l9YQWwOp3xj2LoCVruh1SuEs7/PXo+6M1O/X5He4ubW7HsmALThQScxttci390hn1PEm4ZiTpP3BW6c8dmbf5aNjY0LSp+6WKr+npyreiwgcykCmLOdB3MxdF8eC8C4zFC+/Qvb35NQ9ffk5Zf/CFrMaBknIQQwjqZd4lp/CH78iKKtk+bQOXC9Ntn+PhtXxYz3CvJdhnT3iN1zA4Z5An+wg52fWkMcOj7VTUrZ5JM197s6A0Yr3x2qGQD1vbF26wqLR4QxYwulaua+2qTXQ7OPWc2oUNLrOYXATTLfrUkTzGKXjet6HP1Gw/XXHuby7irz0YRFPeJAvIpxgg3TwSBIhd9fT2VkNmJgU3IbMbYxh7N5NsqUBzcXGP3VLvb+3YjowRNTepjWuN6M+1dNc6ujCpwLlOJqa56a1v5ca+OcQKduNJhCNKYLIo5wnRZEmtFVcxz+esULXnIn37rjDgbG2z8PTMrvf/rp3PeDv7T9PQl1rscTqF3Jpt2YC+k89mTqbNopX0zg5dG6MFeIG/mh/9ee0vfktDswb33rW/m1X/s1/uN//I9Pij52UZbSiG4Hu7reTP4bUX1DW3JTalHofIgo8jezosTVdKyi9BP/KEIYS/xQTmwsrftSP4EeZ4240uX51F1s1gUtdHZQEpcHUFXflJ1DWH/zbBxWjNkCXrbwma31ydAmaEaKYtqtqZ9nLSJQ05xzU5KZc7gsa+wl4yRieFUXG8WoiQEHTgjKfkTZkeRzEpMK9NjBxLuRWS0wEVSpoLVm6X1pFdY3PWnAmOkAW5e1/poGENhck1lL6zqUbTaArQZgs12qGozVvys1fW/LClF4nrlVCaYlEdYhK1Ffqu06TzULVGowcymCF/CA42yBmIsBvMCl0YW5mMophVPaC99PnuxLMe261B1jmE6S68nzjAlLcnzEQuWYv0dgYslob4/lXX3m7rXMffoorG/6++Ms9TkApfp+7gJAETp0gAJFygUKmXBiyipo9jOThzLbldAhiLN+bbPi//o11ff0WvwerPvlpKR/zwgbdflKcYD+czN2RCOksB6w1C/baSJRkcqSsU38P5OQypKuyrBOcM/aDqoP72TvbWOioxtTSvbiHMWuLpOlCOHASUG8UZEeHfl8mKDtEaXCZfhxb8b9Mly46WsV3njBzYI4oAmbBpITOTtub3HL4tUsPnvMvmQdJSx743X279jgvrPz0dquUyxPF/s5bn6PuqSpY7f97kdwf/hOXvi/P3qhT+Wc15cnfw+88JS2PW0A8/GPf5yPfOQj/Omf/inPeMYziKKt7dk//MM/PN1dXjxVltgTq/7n2Uk/9Z/EVDwO0y5ArV2p81jqbk2tXwliShFFiM1h83gtqG+oTZIp6JBh/6WbrvrUbfigYXHGTnnFbureVQvgRZP6HKpefauBCzTnILTGge/OKOV/r22aVVgxlAqXZajja7RbmvG+lLIdIY3DpAJZEQYKUBNHPLBIE8BLDLKE+Xty4kPr3iGmfk1a41oJrtvCtCOfMVM5ZF4hSotaG+Bql7LaHjlQMUSgiTV6JTN1ZEMpXBEMCuquTj04Sa85EtYixhnKOhLrKBZTip3eiCAaX/wi/qdqXarAZbbOBoh5NPDyL4r3Peq2vxn/wJM61qnUNog59RLGIGzVLFSJOPIAoyhB1Z12ATLeSueFLV0SwIOLSUG87HBa4rSkfX8wazEW1ja2uDA2i08hz0vMiteF86BFerdIFyjRW8aS2Un6bKhxoKBt0ZDUC0cNPU1A5Wa0J3raSTIWRhNEZdBZwcKXALrc1r2C4irN1d1lxiZhTo995ouoWNJTfQx4Tcxa0WZiYj7+wFW0/rbL0ucy9PoE201xi10me9oce4GmuCJjYXGN0iiqSpGNY1p3LtA+4ugcrYiGFWpYIMe5DxadZDM5MeGAtWXy7ELZrAuoEAhjfTC0gPZyRe9LMR+eu46XXn43fe3NBk5cRBSyr7a6lMFLXeIfvuNJdWIer/PyjXvf9oi/ffTIr57xsU61Hk0Lk3/3d8NjS5i21GkDmPn5eV796lef7tMuiXLG+Mm6nTpaAY2mBJi5Wc90BWonk1gBM+CFGiDUmgwfjomxfjCbtWf2B5p2G2DLfprwRlm7ofluSW04sGXVKAjam5WiQB/b0p2BqeC/pr1Fesuxmy5ULXAsvUWzqyqi+47R35hjcN08RU+iJ/48TCxQBeAg70uisUM4aB+vSA4PkRtDP6AL36a3iz2q+RSTKKq2xAmByi1lR1K1UsoOtJe7tI7mRCsj37mqDG48mV5/KRBqZhJQt/1ng+Lq61O/lnoQCoOSyAvUBiQOnEx9Xs02gNmuJ1lnCmJOB7g82uPnEsxsg5hTLGPBlt4cBZrFJ1eUHmAoD06EDuPGLJUraFSa3Jba/tg5RGn8Qs04mxqdzFKHI+3Hl7Do1Cx+hf2eXKLWXtb3y9m8lABWmsn7yd3uOkS4HrushKKY6hjrkrJZFMMFTY5zqBObLH62RGfzfOlZV3Hi+R2unV+mpztEwrA/WSdzEeumzYmqx4myS2UVX97cxd337mHp45qFLw1QwxynJfmeLsvPjpk8d8wLL7+LG3uHSWXJsbJPWxaMbcxDVy/wpRO7eeBIn9ahFnP3JLSPpsSrE6SUMMm8E2gdjlx3mYK5wjRsOVCRpcQlEbYdk+9IsFrQOWzZ/EyPDxdP48o9J5A4xvdv08a268nVbb/7EW5+jzptTcxjgZdHAy4nP/ZD/+rd5xQAngxifuN5jx0afHKdtgbmqVg1F/Obe29AO+0n/2H1aAu/t75hx1G4YWt/I06TKad2lsYl5fTmX7uZzA4ONf921i2msTE+aUAJx26skuv/a8HkLG1gtuqVspM6SW72OGFwq2lnNZ1sy+s/WQ9kHaLbwaUxtt+i6iWNSF8Yh8oMsrKotbFf2ZtkU7vNNAUlqfYuMDrQwkReF6Nyi55Y1LhCWEfZi6g6ijp9UpaOaFihN3PU6tDvs6pwedGcf9N5kmKrnqamkM3ym+sVwzpMLtK4JMb2UvIdKaNOxaf+4Oe2Ocuhzgdn+alcTwRkHo8q9kTg5bHqXAKZGsRsa2C2VqOBueJH0UVwd6yH2XCfb+4/J+vzomlYsdNTC+Ja8A9Mx5J6gUpKvxgWOv1Y58ekWaOZupNT03LjyAv3q5lxoNZjQpN1AkwXyeqFL7N1YUfUjmb1IlFZTp8TR8251uf2iOcphV3ske3tcuz5MZNrchZ3DujEJbvaA6RwjKuYtazF4cOLRMci5r4CnWMVyYnMW+F3E9avbXHi+ZaD1x3j5Xvu5EC8SlvmZNa/9pqOVv98rJzjztFubn3wCvTtXXZ8saL98Bi5MYbNYfMeuarumsnpWCkERBGu38H0EvIdCUVPkS14h8540zu0jfZKRpdZWChIPg1feffPbH9PQm2PJ0+unqgbc7odl1Opc9mVufk9/rtVg6VzooGpa3l5mS9/+csAXH/99SwtLZ3pri6estavhtWuVlsm7f7mJaIIu9hjsq+HjUKeiYRoWCFzgxwWiDLYI9fe83j+rajMdICynlomWq2pXXJtXxnK5cVWO0ppfacBppbBdViY8tbAW3Qk4Ae/me7M7Crd7MC0JcBTCI8ZZuhyLs/9YFSXFLjhCMZj5OaQpAZp9euo+dIncYVFoBwWl+2g7EXI0mt50uN+BU2PfKCnUxI9qnBS4JTAJAITC9ycppjTRHMp0Zqns00tQh1Cy2mHzJrgkuN/F5H0HGwlPWVNqUbEKurcAmOQG2MS5ygvItvL7br060y1LGcKXmafe6ZA5uROy2yo5XYn5gnKOVB6apEcEuldtxW0f9Z3LYTAtuMGkIhap6j8PVWUBirbmMu4NMKmEaK0COewaejSGIcoKpyWmFaErGwzHqG8zbGQoQNSd9tnQU59v67BiA2ZWcE4xREo0nXQcRO2OZ3Y15pEEYIrmzImdIICdbnO4xLelllujGiNcw5s9ik+HZMtLjLqCO5c2IsqPP1YFo7LH66I18aoUd5cp2q+xbHnt8lePORbrryLl859hZ6cYJEhRDJF4YhEhQoam77KWNKb7IvXONha4+MLV3Oov5elz3Tp3+1QZeWvQzkj8A+aVrTCtRLKHR02rmkxvEww2V8hO7k3yywkrXsT2kcc3cOWZE1Q9lP0scm5+qRt11dhnakY/0zBS/3cJwNiPvCdt2z5/TV/clPz85l0eU4bwIxGI9785jfz/ve/HxtW95VSfP/3fz+/8Ru/QbvdfoI9XLwlIh1u3A7kzMp9HMFcj3J3n8numKIjvc6j8JNvpyCfU1gl0HmbeMMPNNGwCon1ygOc0iAqC8bhIj8AVO0I4RwmlsjSoSYVen2MGE686LKqvO98nWlS1yy9rHYj09oDpFrobh2uzoeZXREr64Rk3azqiVq/EzoXou5gGA+6RCvdmhcw6wzGVHxad3yEELii8AYHszQ3rTG75sh3xsjCUbUkqnDYWOG0gFEYiPMSpCBZyzGpJhoBzgdkmkSQL2jKfodOaZAr1psSxNHUSaamh0kQrZYfcHb2KPu+q+OkB5VOgqwc0cCQrObIzQlYixwXpF/1vcntutD1ZMDLyfs5FRDzRICkfrwGMsVP3k70r2980uf3lKwakMiZDkWkcZGiWmgx3hUz2Rm0KNYRDUHn/l4UjSuweP28DItWYbHMCYFJFbKwyNLitMBGPhwZPHW36Hkqb7LZQo9ss8gWLY8Qk7yhozXZLfV9HbYAmYYiFZgEzomtjIFZ22UpvGPLjNtj7WZWO3Y1z2nc1yzOeSAmihIN6GVo1xqgSOG0bMZNUdO1A/AznZjl57SR37zKK/bfw4t693JZtMLApqxXnnZ2vOiRyIquyolkxZyaYILApS1zDiYrfOuegk+/ZMhnkmuIN9u0J4HqXYVFtzTFtRJMr022r83ysyLG1xQ84+r7eX5njZ7OSGVJJAwbVYtPHjjI/ffsZv7zmtaKJR461IkZLdF2nXadvEK/XadfTwa8zO7jVEHMyYDlsR6fBTKnU6cNYH7iJ36Cv/7rv+aP//iPeclLXgJ4Yf+P/diP8da3vpX//J//8xmdyEVRUvnJfaS98LDWjizOsXHjImVboDNHNPGrZHpsg2WwwEY+rDFblMTdyAOcPEJYR9UWqEyjQrfBCUB4vUgtoswXfF6KkwnRsMOOL+YkD6wiJvm0szLb3XBi6t7lgpVwLfIHP4lXBCAiEKJeTXNbgA8qmto0z5oTWOcbPzWXelbIWYd5zWbjgO+A1N0cXetsSk/ZCu4zdqHLZG8HJwV6XKFy66/lsMCkGpNqSBR6M0MOC2w39l0ZoOpGWC2QhUNlFhtJxlf26eQFYuCNCxrw4pw/bppgdvYZXtHFaoFToCeOaGhxCnAewOTzmslOTTRp0zqaoU8MUSeG5/Tj9lSrb33N4dPa/kMfOLPAs0c7zpnu62KuswVeTrVOp5sS/8qzGxBTvv0L5+qULv2SMoAWje22MN2Y9WtSVp/taB0csHduk0ga1rIWq5sdirWU1sMRreM6hADXnRhPoRW1w38FwoI0YUyRUHQFVUtQdWB8ZYnqlJh1b2GsB4rugxE7b4fomB9DRGX8wo91wc1yKzWsCftNE88eCA6cDqgDgUUNfKqpnrK2sXdBzykGI8hzz2xIU58P0xzEggGnPFNA1I6atT6002qsoJvAT+1BjVOK0cE2w5eMeeOVn2WnHhCJisPlApu2RR6oY13tbaUjWdGWBbGoGNkEhaUUitIp2irnBfMPMHx2wtF7Lydeb6E3QsdEa1w7xc61GVzR5vDLHC9/7u08vXOERe3HiMxGtGVOLAybUYude4Z8qjXkNq7G3qnpHrZEg+Jsf7qe8nVf9eVH/u1Hpz//3X+84TEBzeM5j938HsWLf/TRgxSv1Nef/oleAnU2wMvsvp4IxDwReDl52zMBMacNYP7gD/6A//W//hff+I3f2Pzt27/922m1WrzmNa+5tAEMTLUSyq8+uX6H8ZVzmMh3XNLVCqsEZU+BxFObEoGsvPUuQNkRtJctsvQ36nhkwUG2oJCl8wJxDSoHVYKJ/d/qLkMxByeembBkF0juO+EHkVr8CIEeFbpEUkxpUvXKWXD2mgZ0zYj36+0grIC5KXCpNTi1CL7en5nJxampA/VK2GzVmh4pcKVt6GKu5nT3O0z2e3vcdKVAFNavrlnvrKNGJdV8AghMN0GNSw/whDfOEZVDjw2y9MetOoJsQRHvmyO+J0cQKBal8dS8SFMt9dm8poMwEA+Mnwjk/vl6NF291GNLUliyBc36dW3mhYAj2dn8ZD2l63TBy5k+56ulzgV4ebwuzJlQwWZBzHY9spzWOB2DVthuyuhAm5UbFfK5G3zHwa9wVWuZVPhV+8xFnCh7HCv6HH76HBtFihQOYyWVleSVZmOYghMI6VDKUpUKU0nfKJ8oEBC1S3bMD3ne/DLz0YRBldLTGcfzHrftvRyVpSw4hxqV3nmrNpk5WQorgjC/1gm60HHXyo9HM5bJtVmMgOn2QviQzLriKDAEIoSowEmcsI1GUUg57QLNUNiEDWNe7dgZzqlaaLF+dcqJryt5+dV3cWWyjHGCsU0onGZsY6yTtGVBWxYMTIp1EoUlsxGZ82OTdZLMRqEzM+ablr7Ce79mD90jKW0p0IH2Xe5ss3ZdyupLCv7hMz/DDe3DDR1t3bQpnSZzjrEVtGXO3qjg6xcKes/J+eSeyxh+dAF14qRAze16zHo04PJo9eIf/eIWQPOI/TzOY4937KcaiDmb4KWuxwOIpwNeZp9zuiDmtAHMeDxm9+7dj/j7rl27GI/Hp7u7i6usAR1P2+NaUS120GND6qBq+Xa/NI5oZJrMF1k6nBLecctAMVd3QaBKBMmGI1krQMSICmRpmSzpqX2lEbSOO3TuyOYF6YpvsAwOJEQrbeTa0HcyTrJvboAGTIFKkxtw0mqPCk43MKUAmHLqrlbvQ8gpMNniIlO7z5jQQmKrUL7JsWEKkGqLyUhj+20mB7pkCwqdOUyhcC1N1ZJEI9McXzhQmR+obOyzCoSUOAGyNKisYrKnRdWSjHZL4k3HeFdMtNxBjCa4LG+6PdXuOYYH2yQbBmFokqalcVQtRTQsEZmj7MVERYWoLLolyRYUJ57VopMuwj1n8kHarvNd3/qaw0+ZLsy57Lw8Goh5MjqWbRDz2OXaCU7E2G5M2Y9Zu06RvmCF77r8C1yXHmVejYgwWCQSy/5ojahTwYJ/vsIhscTCcNz0WK76RMKgsBgk82pEZiMsknXTJhL+PpqKklSWKCypLOnJCeumw/XdY/z/lr+edD2hfdjTmGWkEXmByIopQJjVLloLdfO9fqzWQpbBNKAowVmc8CBEkExNBoIuUtTsgNAZx3qrZ+dmMm+sC2OwwqXxdDHOOZ/XVRnfyWrHnLixRfXydb738i9xMPHBl5mLsU5gkF7zEl575mIMgrFJ2DBtpLDkNqItCzIboYTFOolBIoVl3941Nq7ag55EyHEKWrJ5MGXlxQWvfMYdXNs6Run8WFqgmudtmBY26CZTWdKWOV/Tf4DdySa/9+wXIDa2Acx2nf+6+T2K3/q3Z3+/v/Vvfxx4ZBfm5vco+Muzf7xHq9MGMDfddBPveMc7eP/730+apgBMJhPe+c53ctNNZ8Zju6hKCC+uTxNcHFHMRUSDimhQIawOwn3fDXCx77xYJYjGvuMSjUBWkrItEDbkn1QSVWj00FD2NTZWRCOHcBYTS+Kh9fu1jmjkM0iEhbItcEnU3MgbDnIYMPysXvmNYSY5mS3idazZ6n4TcmKIIz9AVFWgz+Vb7aJnQYlUM7xlN7UinhXmmJk8nGC3LLTGaUWxo81kh0blfmAcHIhQuQvuY/46Al54WhhsJJv3w6SeWiCzEqx3Kyt6EoTnjJcdyfiKOTpfzKZBn+2Uye7Uu5pllqqtPPgsnWfLmWBHaiEaFJi2xia+Q5auO7IFwfDAGXtcbNd2nVGdb9rY2ajoX9+4TSN7tLJABCbVjJc04wOGb9x7P1cmy/TkVNBtvIydtshJZUk8c0/1gMXRljn79RqRMAxsSuk0i2qIwjWT6XpfI5twtJqjJGJejBv3raenh1F7JxTdNm0hfM5WXngDk9qNcVYHU5u/BKczF0eeDjezsCWM85qaopy6jG0JF7aP6oSJMX57qcJ4ZafHrYzvDNXdIRHGPCFwcwkb13YovnmD77/mNi6PTyCFZWwTchthEETC0FOTBuyVztKWBQoXrjUo6RjbGOMkqSybAM2hS3nujkP8zYsTNkYL6HGCVYKNawQvuf4eXtK/i8xGbJh2c939cyvGJqGtPF2tdj6zTrIQjbjpunv5280DT+LDtF3ns54qXZhv3Pu2cwJeZvd/MpUs+suPn/H+TrcLc9oztF/7tV/jFa94BQcOHODZz/Yrd7fffjtpmvLnf/7np7u7i6/qFSKlPGc5keC0p4vF0gOWWOCkJFkrSVZ8J0Y4/1yfaByRz0miiac/OQnDvT7wEXwafbLpucsq9+AFB9m8707ozHqthxFNs0PUIWC10N7KadhWLap31rvVRDFNEKYUiDhteMl+QHGINAwmwW3F5UEEX+/LGJCzeSo1HS1UVfnQy0hPtTmz1xCLkJHnDs93yBc0TvrX7qQIr9M1r1+PjR8YjfM6GOeQ4XDFvAeRTkSYtqbo+4EjXfXUPBPD4ICmfU/sg8iiCLPQwSlBeiL3ulIBNpaeoteTJGuBbhaAkgn/y8pf/2RdUm7HwJxSbVPBzk5dCPCy7SJ27kqUFUJEiMpSdgXRrjFXtZaJhGFsEyJhMKIicxEdmQOezmSFxCBQODIXefcsHKmoaIsKJE0qvRSW0ilKp5tuzdglDGyLsY0pnB/i+wEwSWVRhV8MkoOJt6KvgzZD59rVzpVBKI+xuDSm2tmlmI/J55VfoDNei5MMDPFGRXxsiBiMQ9emmjqZ1cYuSvl9Ouedb+p8HHiEAydONQGS9bm5bovJgS7HbnL8f679JDe2Hmped6rKLZbJSrimU1UL9qWwlDYiEoYSgcQhZ7pWkaiQwnJZusrX74cPLz0PkyjyeUV1zYTnz93vTzW8T0pYjJN+f06RypJUVETCEImK0mkMkp7IuLF3mHsPtHn4nHzSnlp1qvSx7Xr8Ohe0sSeqM6GOnVzve8Vf8gN//vJT2va0AcyNN97IXXfdxc0338ydd94JwOte9zre8IY30Gq1Tnd3F1fNTtCVxLYjnPJCSSu9ANwoQTYvsRqigUBlPjHeJhqZV7hIEQ0FwnhXLVE5qrZEOC8el5VDGK/7qFKBa/ufZWjTWw15z/OZhXWIciZsUSucnVn9qsMpLcHKMgrC/iD4VxI73yXf2aboa6pUNLQ2WfkxQlaOdM3Q/vIJbxhQlL6jU2tohAAX7IhnHciERMTxzPWqbTQ9PU0ksT/+XJvx/hZ5X6JzR5V4qp2JBeCoUknRldgoXEstiIYVJlUI553CoqGndwnrDQ9MAHyyBBtBa9WS9yUu0cjgfJPtannwqAVq5LU0tlIU85p8ThIPJKYdI3N/4aVxjctP0VONQHa7vjrql37hXzzmYz/zC795zo9/KXZetusJSvqFLoCyK9g5N6SrsmaSDZ5q5CvneNUjDhPqetKtsL6jICeksiRz2lPLhGXVdBsxeuYijJN0ZE4ROgNzahLS7EtGNvFA53CH1okKOQnHVQFIGAu6zgBzjfuka6eUi23G+1JWbhRU10xYnFtnLsnJKs04j1kZtnDLCQt37KC9PE/r8AQ19F0ZURmfcD/b2ZF+8c1bEtcBw6YBTwAzUAYA10oYXzXPQy9T3PDMB9gXr7FSdVHCMbIJqSjoqwwbaNYGyab18xEP8Pw1yWyEVJbSapSwSOGvr0EyCML/0ik6QfjvhGdC9HtjImFYrbpeX0NYmcQDI+s8jUwKD5pS4bBYrJWU+ONvjyZfPfVo4OH5H/0ffPIbX39eEu7PJ3h5PC3Mua4z4si0221+6Id+6Gyfy4UvrX1LGxow48R0Qqsn1oOFOYlTgqqrULlFhm1trBHGU6DiwlB1I5yAdKUkXfX2lyqraFUWm2hsJCnm/VvgAyB9h0JP/AS/e6xCbYyalnwdBFkbDThntjiPCSG8bbLWuF6b7ECf0e6IsgNqRhKT7RToIajSAYLhHs14aQ/9B3KSu441wZBN1cL9JoztZJ70jL2yFM22Lo5wUmCVD/cqO/480zVvhKAK32lyEvTYIguLTSQ2lhR9jYol0dADjGIhDqAHpIFoZCi6qvYnQBj8a48iT3UQULWE76yEnISypxsLbBsJyq4mwoMcJwW25QfWZK0iX9TIYnvIuVTqTPUvjwdcZrc5HyBmu55iJSVoiYskTkEvzomDjVhb5n6F3gn6KsM4SeZiBlah8F0Hr+WwDcgpUU2eSb3Kr4h8l8FJVKASx8Iwr7weNRIV1klWTJePrFzP4u2C9NAAMZpMxfth8cnlhV94ioOLWCvBdBM2rm6x8i0Zr3r67Tyz8zAynJ9FMrIJQ5Pymc3L+MTiFWwcTth9W5vOQ6AGDnJ/7s45KEtvg1xTyWpNzUyJ2d+lbMIki31zHLlJ89wX3MU3LN7VgLJY5NPrNaM/MU5iwr6sS0hlydh6ipd1kkhWDRAEyG1EEp63VrbpqpwqrRkOkJe6AUJjGzddl5oyVjoVOmuxt2l2nspnEKxVHVaKLqXZpiRfKnWm9LHHAw6f/MbXN9ucDxBzvuqxtDDno07pG/VHf/RHvPKVrySKIv7oj/7ocbf97u/+7rNyYhekhPA2wMFxRRYhIyVkvcjSocYV3aMwWdRYJciWYpJVH7aoMoNJI5zwnQ4bCbBgEp/xIpyjamtUbjGJB0G1U5lVUPRlsMv02o7kxGSL+0rdcfFBk0Fwb32739W2wcF5a+2GLlZDPHToFW8yYJXfr54IpKHRuNS2zsP9MUV/P92vrMHqBtRhnrVO5qTBptHXKDn93YXwzkjj2gn5ztRrXVoOPYD0RIke+0G8vhbJmgc+NpaYWDJZ1OjMekykBCaWlB1vV52uG9KjOSZRuDnlgWQKOnOIYLFJpDGJIB54l7NsSVO1BGXLO8ZFI58/Ew0MZU+TLYSOl4Hu4RxRWqKB2Gr3uV1PuToV8DK77bkCMdvdl6dmOSX8WOBA5pBVEZmNmFfjptNSD8EWiXWC0ikv6g+aDCCAmwjlLIYpr1Xh6KkJpdPNJN5TyjwwKp2mFMqDGyyfffAyDh4qIS+mbIM6XFhrXO4n40Qas9Bj7cY+2aJg8Nyc737657mqtdx0jwwygChDIkv2p+u88Or7+VJ/N5vLC+gsJZECJaXvxJSVP+6sm1itc6m7MoGG7IKjmStKRBLjui02D6a4q8e8YP4BLotXGrCSuSjkr1QNgAMP3PrKUjiFEo5UlChhfScKqNU4qSiDRmi6gmydZGgSP0Za74AJHqQMTeqpZzjaKmv2YYVkbD0jYSwMpfCgcGwSjJNYBJXZDkZ+KtfpdD3OJYg539Sxj/ynHuIfntdDNnVKAOZVr3oVR48eZdeuXbzqVa96zO2EEBhzYVpJZ6Ws9d0H6YWEcpgBbYqeRBhHbB2yMKTHDfG6Il+IGRxQVGlMumr8QGUsAodJpsJKG0tkZahSRdlVRCND2faOZlXLd17ikSVd9XqQZNPQPjRBndicihiD8F6kqad5EWyRZ7sv7ZTs4DwbV8WUXUGy5ih6IhgLQDKy6JFpqG1OC7IFP9lPNg1VIhntUYx37WTnZxLUoRM+J2DWVazOkgGQM1bLdW6MsRDRhIwhQDhHsuGPrXLjdSfGgxZRGaSQVJEHbyq3qNgDLGE8+MvnNThINsLKXyR98JmBqgeyCG5ulX/caU9LU4Uj7wtM4kGocJ5yBh5I2UjgtH8Pyq6gfcz6CYeS/hqV2wDmUqjT7b6cDnA5+XnbnZjtOuWS0tvxG4fKHavjFpnzeSFK+Ml16ZSnNQnbdE0yFzVdjjhYLEeiQmKxSMBQukcO3YVT2EAly1xEKkoGpkXpFH+5/DTSz7fQg5G/j8sKisrb3huLaKcI2fK0t06L0ZVdjr+04unXHOLFO+7lymQZhT/nzMUYRyOat07S1xnd7jE2i5R7FuYZ7dLert46ZBD9iyoI92cWwxp3MmO8xtOG+UMU+XE40pi5FuPdgit3rbA72mi6TQavafTXKnTZnUY5uwWQdGSOcbLRyFj8zwZJLCqMlY17WCQMWhqOZn1U5hcmi56gk3oTgDk1IZEl1kl6amrEMLYJEocS3jAgFQUWyVCk9FTmAZGcAqztunjrdLsv7g/fyTf9yOC0j/MXB9/Itzz4O6f9vIutxD98x1nd36v/yYf5gVOU05/SkoC1ll27djU/P9a/Sxq8AE1ysAyi9MqQrlQI6yi7Pv3ddCJMqqlaiqInMS3BaK9k4wrNcH/M4EBCvhACF8ME2CkouwobC0zkxfoIgSpd6Bx4sX+yYeg/kNG5b+DByyx3uG7z14GSMuhfggWl63fJL/PgRZYQDR2bV/ucGpyfsCcrObLwOSomlVjtBxGdueZc28sWUcHGdV1cvxu6KmHVbObYTdilkFs7M8EAwbUSJrtTiq7CxBI18RbIJlGUHY1pa4RxmFRRpYqqE7jiHRkMEfx1qzqKbEFQdoR3ZZMCqwVVS3ltUginFM5T+ABEZZFVMFBQ0F42RCNHviCC85nzoLJ0lG0/COqxt7G2sU+0rlrTZOvtevy6kPbF5wu8nK3nn1wXsvuyLeA/xxUWVURlicYwGqSUThELQyrKpguzXPUbQf68GrOkN+nIAiVc0FOU9GVGR+a0RY7EYhCN0D8SFYtqSEcWLOlNemoSTAFgterwwUPP5uE/uYI9t2aoWvsS7I0BDxryAiKN7XUYXjvHsRdKXnTDPbxh3608q/UgCsumbTGwLTbMVq2rQTRArBvllJflbF4F490RtqVxkcIlsc+CiaIt3RdXlLgs9wuHuddguqL0YAZwWlF1IkYHDVf3TyCD3mfTpIG2VdFXGZGoGiE+gBK2yWmpuzOZjULnqGo0RoXTDE3adE+8pbIgq6KwgCbIlhxXzK3SVRnXJEfZozdoy5y2zImEYWST5rmRMKSiaGhsbVkQCcOCHrPQmrBdF3edLnj5i4NvPCPwAvCucgn3h+88o+c+Vl0I4f7Zrv/9uy875W1Pe4b2/ve/n7xuNc9UURS8//3vP93dXXQltG4yT0RREg0KVO6Iho58TlJ2NU77LJhkw3hqwA7HeK8gW/SrNZMFxWSHZrxLY1oSWXhNS95X5POSfMHrMKpEoCeWdN0QDwzJao5emyA3Rj51OArpyHWeipIIIRBxhKj5wdqDhXKpy7HnJ5hUkK5b0nWHLEQTAilLi4t8J0kWYYIvBTq3COMY79RI4zBRoJcB46sWEFoh0tQ7m8EUrGjtwd4sqFGquXa27TUrJq7pdJKq69sfsggrc5X12qLMBI2Mp4QJ480OTCy94UAJJvH6oLq87bQHaum6dyMTAUDbWDfHjsYe5FSpaFKsTSwoepKyp0g2DHP3F/QOVQjjyOc1+WKEiUQD8Lbr4qsPfWDfUyb3ZbuemiWKCpGXyKIi2TSoh1NuWb2KTZt6a2QxHUczGzVdlY4oGgBSOhUE6WnTebBh2DbOu5UZ5wXomYs4VC5yX76LTwyu4ncevInf+fjXM/qDPez+5AQ9DHqUSOOSGNdKEL0uot322sFIU+1osfo0za7nHOMl8/ewQw23TMxL53U4uY0Y25hamt5TGYt6xOXtVZ528Cji+iHjPZKyHRaVnB9vZjNk/L8Cl2W4PPfdfmP8v7JojATyBU37wJBrWsfpq6yhfdXCfONk8zegMTGIROU7WDb23alAe0tliQ32nnnofgFsVG0GJuXwZI5BmXh9pYCq47iys0IqitD5EVu6L3W3xwQhvw05NEpYkpAHk8oSuU1JPqW6EPbFd1/1S2d03HeVS0/quN/0IwP+4uAbn9Q+Lpa6EK/jtAHMD/7gD7KxsfGIvw8GA37wB3/wrJzUBSsb2th1J8lY5NqQ1okSqwXxwFF0JdliRNH3dr42gvSEIN70LmN2BgCY2HcNJjs0RU9Spd71Kxo43xVZ8/aTyXJGcnyMWhkiN8f+xl5VU2/84JnvajpZXXUHJtKMDqTIErqHDOmJgvbhjH1/m9M9YnACxnti8vmIci5msithslMzOKDI5pSf4LehbHmdiaw85WGypDF7dky7PnU2TP3/bHpzPfBAoI8FsGJ8d8dpQT4fAJ1xxBuFd/0igJtEYDXozCKN74xUqQeEwkE0gtaaB1s2lj7fJbckA+tBmgWR12DKvxcAZcsDqNaqYf6einTNEY0drRMl6YkClRuE8U5uVguqxJsLeNC3PeCcap0vMPFkgMvZ6p6c7S7Mdj1FqzKenmUc8UZF7374zD0H+Uq213cOZEZb5izpTebVmI7MSUXJvJwwL8fs0euhG5M3lsrG+dDLVJTN9vWkemQTHsx38Dcr1/Cntz2Lzf+zl8v/yLDj82PUqITKel1O4h0qiXxGVxNSrBWTpZjRFRXP2XGIa5OjHK963F8sMbApSjjasiAJuSkAiSzpyazpNFgnWEzGPG33cQZPKznxrIjNa3qUCy1sr43tpn5BLByzGW+t3ZoTA76TryVFR7K7P2BOjZtuSipL9kVrTRerBjTWyabDlYoSgyCVBanwQKIvJ6SipKd8RyuRJbv1BnNqTO40Q5OwUbRYn6Qk6y4s9OG7Mi5uumVjm1A63XRfpLBE0hsmrFZdjlZzZNbbY/dUxk49oHLbHf1Trbuv+qXzcpwr9fVcqa8/IyrX2eqevKtc4hv3vu2SBzJrz/rn5/2Yp22LUYvIT66HH36Yubm5s3JSF6yE9Cs/QuLw4V6iqkgecMxVC0x2x2RdiUlE40omDSQrvgOQz/kQyqIvSNYtshLBOtlSpb7rIo1/XrKSI/MKmXmgIrLCD3hV5UPDKoNQwVayDpq0BlcYb18cR42Li001ZVvQPm5JV0psXBsEWKKhRbRn6FnWUnQl470CPQIbO8QEWiueclW1pp0HE8PkQIfu0RVcFbRBM+JPYEpDiGYtlSVlx4dPenc1L5q3ymfpxKsFIi8RSgAeQOncb5vNK6KRBzHOCVorftBVhUUWjskOjdX4rgtgIkG8aVC5nQayCQ/CkoF/TXpkfZentEBMnftmUoUaVwgpMAsReV8iTQAuqdfjbNep14c+sO+cZcJcbN2WGsRsa2K267FKlCXCSLCWuDQsWocsU367+noGz095Xuc+YmHYtFFDOZLCUgQRfxS0LiU0AvXMeQ2HdDbQomKWqx6fG13GbccOcuLBefpf0Rx4wJCsZegAXITzAZOidlYsK9AKYUI4cRxhWxHZgkT1J1zfPtrQsWp62MBNqWORMKSqDODKNpSsgUnp68xT5Z5e8cUde1jp98nnWnSPxETDijgrvXVznkMZnDSboGbnmQZp6rPYlKLoCxaSMaksUThG4QYeC4MJ4ZTrpoPCNp0Rg0A62XSIDDQ6F+/a5gGJ7+LElE6zUbUYlCkbWcrqsT6Lxi9q2cTTyjyIiZrXWl+b2f8NounqdIJDmXG+Y5Oo6ix/wp669S0P/g7o3zlnmTBno8tzptSxx6oayACXjEvZLeaZF/T4pwxgnvvc53r6khC87GUvQ+vpU40x3HfffXzbt33bOTnJ81bGQJJO7SXxK0RikhE/tIIedIl3tRnv8g5kwkGyZhvNRrJpqVphZUl4YbwwNJQtgHi1QBYVcpD5AaXuZlTG39SF8B0PZ3HGC/Xd7PkphStL75OfJrhIM9nXwWpvlSxcyDOpQJR+/0U/wQmIxhY9NsiupOiBLAWtFYcwPs0+2TBEY6haPpsmHoSQzTSBIjjX1BbKVaC2leGmHHJnhIzAhOfhu0xV23dYdOY86CtDyz3VyMKgxyXZUoowDj3x9vrR0FC1FGVXEo1q8b4HJlVbTEFIIih7ingjAMBgbFCL9r27mqZzVJCs5KjCUvS9DkcVFgSUXW9koAqvg6lakqIniDe3KWQXQ11s4GW2LjVh/2/GP3ChT+Grpwq/GCWMhcoQOceOUYmedPmf2Ys4/oIe3zD/ZRbVkHk1pnSKeZk1T1c4lLRErmooYpmNGNgW1kmOFHPcO97J547sw97RZ+FOy9VHCtR40owr9QIZ1k07+s55QX2gdQkhfFBl15u/zPW8DmfddLBIejLDIBmbuEmdr+2dU1GSyqIxDljUIzKnsU4yF2UcXFjjywdj1tsJVUvTPi5Rkw66KHHGTPNewtgiRN0dikK2mcC0YFc6ZF6N6MlJExIpsWREZCG/JZFTGplxJaksifEmCHXV4KXuoNSdpNIpKqvIrUZJi1rXtJf9+IAO3Xyng3W1d3rbYqcsCyJRsVp1acui0cmUTjNyMZmNWM8u8Zy8p0hdCIraqdbPRst86vcSPvqSC30mp1Y3qc/z0Qt4/FMGMLX72Gc/+1le8YpX0O12m8fiOOaKK67ge77ne876CZ7XkiI4pISU++CW4qxAZDnyWEFrfUhyuE2xK6TLK4GVPqhMjxwiBETq3KEyhx5VqEmJHIdsldAyF8Y23QLc9FgNLcs5f/OsvfJnzkuk8XQbrZjsUJjUu5lZHdxUNr0BQN6L0GN/I3YST2cYWNITGuGg6HkP5WTdEg2Mp2dhKdsSob29s0tjGCrAhA5MEO8b4ztBxjavzSmLkP5cVOEpdVYJir7XoRRdidVtolFFtiOidcwDI5VbJju1T4kuve0zeMpdrX2pQZEsvB7Gh1oG2+mNbAoEKw+gZOmpcLUNdr4zIVktsFow2am965jypgEqd2jrr7kTgnTNwjaF7LSrBhtPthNztkHLNu1ru857xdoHAFeeEiwAWRnm76horXT55IPP5KNPu57FXZssdUb044xdyZC+nrAzGnrXLBcF+pjmvskSh8dzHBt32Ri1KO/u0b8Xdh2qSI9tIkrTODHW44jIZjK9ZseWKoCHmk3hvM1/2YGr59aCZsN6hy/h7YBLp+jKOrG+ntQrOjgMHnC1ZU5CSW4jOjrnss4a3Stz1va1eWDvApvrKU62WdyYIPLCL845Bxg/poAfT6wNLpUWPYTVok1mY0rh3cAi6fNcMudpWiOZ+P8DpSsSlXcjwwTntKgBgLPgQyK2OJat5m1WNjrMf0nQeXhE2YsRhcYgSUIeTywqxlWyRYMzax4QCYMUllj4DpoSjoFJWRu0z95n66ukrtTX8xcH38g19/7Mk97PpVDvKpfgey+drJhzcY7zd/z2KW97ygDmHe/wVmlXXHEFr33ta0nT9PTP7GKvGrjUDsiPEhop8gJZVqQbQ5JW4kX0kWJwTZ9oZIk2CpyWqKxCjvLg4GURldnqe2+nk/4mTMwYSGJEUeKk5ya7KpxDPfhovcU737YiqhZY7XUgZU/5zBkbIQuvE6k6yovhK8d4T4wwjvl7K5yCtes0Rd8hjCTZEB74CEE0kFRthVMSm8ZI6TNtcHZKG6svVC3mDzQAKkN6fMLoYBthIBpZkg3vyDPeHZEtqsZaNFuKkWXU6GHKlkRGHkjIwiGsaEIpZeUBTdnyWhUAp6FzpECsbkyvo/THzPuSsi2Jh45o4O2jnRaozHpwFUvIDGpcIUtL1VbI3GfHVC0ZKGfbdSb1eADkscDNxdxpeby6VLow292X81wBHLiy9BldlQkdckP6kGH/coz7G0XV6TGaW2BlTnJPDOM9gmxfSWuHp0NF2iCFY325S3wson1IsLBsaB/PiE6M/aJNvRim1bQTHcYWV3el64WmetvZIMnwWNl3XN09waIaNpSrddP2lCxck/1Sd0EyItZN21OmZI6yKZmN2DAtCusn7zuTEXvSTSJpKJcUJz5/GS6JEEp5aptSTTQAzk5dLwGRl3SOGe5d38FoR8yOMOTEGEYoOqHLMa9GKFyTe2NnhP2Zi5qOjbewzpgLIn4lXNAjTUIGj+CuWy9n7v4CuTFGC5BZRFsW7FBDOjJvTALaAQy1ZU5PTYiFoS1zYmHoSO8Wp4RFuZDNs50Dc0ZV08lOrn/zt2/itS9662M+71IBLZdqnQxeXvMnN/GB77zlvJ7DaWtg3vjGS1to9LgVKGQuL3zGSg0qZh53jVBdQpZ7ly7nmNsch7+LaVAXbBW6h1ThhnbVOHjJaZhXXjQ84Nqj3+/HTvdfgxjAxiqABIdJoOhI4pElX/CdFz2p0GNLlSpMIoImRSCs9VqT0lPJ4qFFTYIgsudb7lVLkvckvfo1NIPdjP7FWFxV+QTnQAsgipGFCd0P/1xZWPS4pGscVdtTvkzLO8zkc9LT3wzoyndgVOZQmSEa+WuUL0TI0NGJh45obIPhAMQPr+FsCNAUApGbhgbWXrZEwzAYVs7nz2iIB4Zoo0SNSmxLY4UHNnpUYrUk2nSUYhvAnIu6VIHK49WlAmK26zxWVuBsWBSzYVJed0bGBjX0QcVaK5JI04u01zTG3q6/6ra8RbwBlRl2VhWyKnynxbgQkum8q1ikoM5bySrvyCiEBy/ggyTNTHfGOd+SD7+LKjg4akci/T03FSVGimBJ7FgP4MVrUTyFDLy2pBas17+XTtGSRUPtSmTFNb1lpHD8VXoZphUho5npx6y+kqC1tRaRl6SrJYeO97nvwC526QGRqBi52LuPBV1MJrzBwaIaNhk43kJ5lkJW08tEk69TWkkpFOumzaF8ns+c2M/8lyE5OkQUJcI6VC4Y27gBJZbId20klMYDpB6TkOvjj+G7RZZNk2KRDMxTcMH3Atf/+5L/yv/Lf73Qp3HO6lLpwlzIOm0AY4zh3e9+Nx/4wAd48MEHKYpiy+Orq6tn7eQuSFWVt1I2hillqg7XiqdBW86EzkzoSAzHgcMrtoKMuoujpB9MIu3/hRJFCVneJBG74PK1JQVeCn8KQnqDgbrbUT9cQdnxCfPCwcaVGix0j3itSNmWwRYY8h2C+bsNw70KpxRlF1RGw5l2kTcbKHoKq/0Y55RACuHPSEgPprSGovTnUa/2gf87IDfHCNtBVJ4eJipP11KTClFaH+LZVjgpUIWnqqWrFXpssJHPYLFaIKzAJN6KWhgHkc/PcQriTUPrnhXEcIyzDmf9CqccTTDxPKYlMIkgXQ2rix1NGM/RY4MaeYtTlyhkYTCpwqTan2skqfRpfz226yzVHyy8asvv37P2wQtyHue6fjP+gfOSBfNo3ZfiJ2/fzoI5h+WDGQldBYurAGkRJztulZUHGFKCc6iqQlYVsdb+fmqMN3VJYlw7xfZSqjmvKcnnFUVXBAqxQ5bQWrG0D41Rw2DTbKeaTmYXoyozXXAzEicELvFdlk6wTDZBCF9TpKzzmS8dlTcBnD01YWBaZIGWZRAs6BEAiZ3SzboqZ7NqecZAqnCRbpgJQmsfJF367pCQ0wXEaHlM655F7rh2L1cmx+nI6ZzD4l3ZipCv05E5faY6ojorxlPHFIXTPrwSR+E0Nuhh7h7v5m8OXQUfWWDvFwaI1Q1cZZCtBJX1qayiJyfhckpGJB4k6bIR9Tc5M9C4pXltk6atctrtrXOl7dqus10fPfKr5yUL5lwCq2MyOeVtT3uG9s53vpP/9t/+G29961v5uZ/7OX72Z3+W+++/nw9+8IP8/M///Onu7uIqpaY8XKW20qXq8MYt28tm+6ZjUk96yxKS2IOCfgfTT8l3JJRtSTS0IL2mw0lBNDTEqxlqZeAHMgLtwMopnU2p6b5R3okMn++C89SqsHDmA7hiyOYFmwcjqg50HnbEQ0e+QzR0skoLD14MjHYpZBl704FA56ranjYmjPOvTUiQzoMp5zwQEwFcqZkB2RqYZKRHx4wOdr0lsQCjBHrsQZZJPY1Mj71Djh57lzBZWZwWVB2JMBKVWx8Cqr01ctUKZgBDQ/rAGgxGuEYAKrzpQpbTeyjHidRragr/vsnYU+qEdcjCgx0nPM8aLUEKqpYk3rSPeKu369zXyaDlsR57qoKZc1Xb1LELU6KdIErh7+XOgQnjgwj309oUpe7MyBlLY4KBjMbTimXl87729tm4ImXjWij2lSwurdJLClLtuyHDIuHIah/5QJf+PV16D1ckK5nXYObe/dHvPACZsJjm4ihQhh259ZbEmzb13Rds082wTlDM5K3MB4vnRTVk3XqNh3VeLxIJg5Su6doMTIpFYCN8Jsys5nO2Zv9mHSLLWfiy4dM3XMbTe0dpy4K2LJhTIwZ22tmwIbQyFd7RbeRiRjbBOknhFCObMDRpI9x/KFv0tsdFmzuW98BHFthzywC1vOHfM4DK0D7q+PLmLpbn+1yhV1hxXRQWKSwK580EAp3MB5XKcN0cCMvARgxNirHbFLILUXft3vGYj117bOU8nsnp1c9GyxdUIP9Yda67QsnT/zE8+L5T2va0AczNN9/Mb/3Wb/Ed3/Ed/MIv/AKve93ruPrqq3nWs57F3//93/NjP/Zjp7vLi6eEmOEO22kXJVgYNzdWOQNqjIHKQRT5VaSaZpXEuEhTXraDfEfcCNDrUEkb1R0GfHjifJd4Z4vWQ5uI4RhRCVACV4sypV+NEjWIqakIk5L2smG0V1GlEI0hWfd0MiegdcJRFD6bRhpH+4hjtE8SDR29h01zXlXqz0WWXjNjEi+612OHXBv4TC8lcXZGbAlbaQkQHrM4a1HH1ukIweiyDibROAHJhkRWrtG8+J+t78poSdGNKLu+Y2Q6gnjk9x1v+u07ayXR6hi5NsSNx4HHLbdYcKI10YkxeneCyh028pqk5PgElyhspDCJQgc3NFEa6ETeqW1YIccl1VyyHWR5nurxgMvjbf9UATLnqguzDVwubLlWClgEoRtT+o6Iq4dda8DS6D+EdsF5a2orXGd9uU6L8TWLHHmxJrphkxfsOcTVnWXmHiVQcbw/5tB183zueft54M7d7Phsl7n7cvS6Rplho8tESZwOnfw4ompLwDG2MQUqBD7KRt+yS2+ybtqkomRkk6YTYhAYFAPTCgJ/2yTbt1Xe6GZWqw7rRYtkzVPiZrUudfepoVVDoFULhHV0DmX0/6bNn87dwIv33Me1rWMo4TwzL1DhpPS20iP8Cq51couovycnTVjlZpVyx/pejm32yO7pM3cX7Pj8CLU+DtfGj/GirOg9WHL3PXu4d/cultQmQGPXnIXXqYTDYumI3Gf6CJ89M3L+8dIpqmp7PDlf9RcH38gV+Z884XY1uPmvv3Arv/LD15zW/t9VnvHpnVKdaUjmuerC/Gy0fEZ5Oadb50TEX9fRo0d55jO993O3221CLb/zO7+Tt7/97ae7u4uqRBR5jYT0+SSessWUNga+vV13W6zcYreMFA2Ice2UbH+f8e6IZNO7eiWbBj00PvG+5bsvXndhcFKQLSiK/gK9ezTq+AauKBBJMkMtm9HKgHfQKkpaxyYUvU6jCSlbHrykazaAEk+lGhxQ1N13Hca9ZN2gMuM1JqWj6ijKtqBsgx47Wms2iEKVPwcZ3Mhk6FBJpitpdRdGSE8BMAa1vEFvUjK5rM94lyZbVMSDaXuj7EhAYSKfz+KUp5PJCtrLPpRTDXPEKPN0g9LbgjprG3qF0AFQztAkxOaI7v0xk70tyq53i4vKmfcRcJEfvJ329AnhwMYSs8MHrbltBtlFXX+w8KpTBjE/8wu/eVE7kT0ZEPNkgMo2jezclemn6Ej4zkdWYLPMG0vWGV715F3rGRvhGWG9UqAVtptSLbQ4/PWaZ33dXbxo4T56MmNftEbmItZNB4BUFI218Y2th/i6/le4bedV/N/9N1D+9RwLX1GkxvjAX/vIFrPKHNGq4u7BEuO5hHk5JsPrW8B3XNqyzjaRjbNXR+Ycr/psmJbXo4TtxyZmTk3InCYShtxq7t3YQbrqUIPMm9VUxr/uWgcaxVOmgw0UPGPRKyN2fF5wtLfER16saV9eoBK/nQ+WjDlWzhHJijwcv86vya1GYTmW97n92D5Gh3vEJxTpCswfMrSOTYjWJlMzhFqPE7pE6bExc1+Y5/9cdSPd/Rl9OWnsk4HQibHeMU7YBlAZBKXTDEzKctGjGJw6NWa7zrzu2r0DTgG8zNabfuFFvGn3jlPuyHzLg79zzqlaT6bTcTZAzP+TbPL99081Rh89heecDSH/qx7+vVPe9rSnaAcOHODIkSMcPHiQq6++mg996EN8zdd8DbfddhtJcol/QZX0N0wIdCkxFWDWk3PnmmR6oaTXwDg3bf0HatX4inmqtiTZtN7Cd06gJ4Kk9AL7suXBkUm9zkNllmTTW/gOr+zStaBWNxtR//QcVbNyJbIC10qQ44LO0YhsR4TVgnTdh1UO9ykfuDl2qNKDAp/F4mlh2aI/B1FZkrWS8W6/WlQlvmNT9gQ7bx+FpOSZc6htnZ2dDjhC+JUr6UFOMzBVBjEc07qnpPWgppprYVPVACY9qfUsNbXLZ+ZE6xlyfegBSw3gAkXMX2cb9DjOHyv87mzVcKr18Q3iTsRob+zdy+ZSZDHtpNlIIsP/VVs1wZXC+mvSOTI6F5+y7TqLdTog5lzW2RDwzwKRUwEzZ6vDsg1izk2N97SQGxK94R3AhApjipTeLawW2NcLQHUqfT2Z1wrXaZHt7bL8nJjuM1Z48cK9XJMcZV6NsU4yqFqUTpGKkrFNGNhWoDc5dulNvrZ7D+1rCn6vfB6y6KBHLfQgR0zCSpYUfjGorIiGFZ3Dmq8c2cWdS3v5mtb9AJRMxemxMMiQg1JP2jMbMbZxAxwy60Xuiawau+JhELEfe2CRqw4VyM0xbjTBZdmUuRAWB0FuGWcBxFgQHbPsuUVwPF/g9575Qno7R7TjEiV9l8s4QWUUlZEUlcJaSZFp3HpMckLRedgxt2HZvVKih2PEpEQY09DqXBKB1N5iOiyK+UXCip2fz3h4535u+dY1Xrn4ucayuQYsShh26GHQwQg2bUoqysZA4OikR/vembDn7Ton9RcH33ja4GW27joNEHOx1+mCmJMB00fP8Ljn043stAHMq1/9aj784Q/zohe9iDe/+c3843/8j/nt3/5tHnzwQX78x3/8XJzj+SutICsDNeyk1Nwi/F1I/1gcTSfThEEoVLl3nmyHIl0zBOU7rRVLa7lEFB5c5HOS/oN+0BCVzz1RmdeATNKY8cEO3cHYO6HUbjOS6apdaLeLSuOEIFqdICrH4PIEEERjS7ZTMdnlaB0TVM6DF2EgXTfI0rHZ11gtKOa0z4hxYCKfYSNLrzlRx9b966xXxYLJgAd3cgpkanG/CB+pkKnjQr6NyP3f9co6AEkc++tdg7OZzsrURGGmrMNV5VSXpLU/tnVg6/cqnGNV4axDGENy93FksZOi7zneWnj6QtVSyMoHuVXdyGfFCFClRQ0L5LjAhO7idm2tu176e1z7sdedlX2dLn3ssfZxKiDmYu/CzNb5pn+dKYgpfvL2c3A2T43auFKR3K1QYy9YbzSM1np3lDrEOGhg6vts08VvJZhewnBfxPig4br5VXZHG6TCu4Ct2zYjmzROWzVtq7TTYX1ejXhW6yE2rm3xR8vPo3MsplVZdF56wFTZZgIfnRjTPRQxfKDNxw9cw9KuAfNq5LstNiINGTArVbexJx7bmCU9YGz84uVG1SKRFXYmX2VsY44XPT67coAdn1QkR9ZxI08BEMl0Uu+sneahhfgCIIw1PoogWh2z+xOW+XsSiv4cJhKUideTCuO3VxV0Sk9P1pnzjpObE+Sw8KY5dQxB81646bgG/r0I4Z8iXKf4GOy5VfHXizeweNOIF/XuaWyavVGAwTjpBf0Oxi5h3bU5UfX5+OrVfOHj17D305t85ex/zLZrpk6FNvZEdaog5lwK5s+WzuRCuZgtfO69rD3rn5/2817zJzed1vanDWD+zb/5N83Pr33tazl48CC33HIL1157Ld/1Xd91uru7qMrs7KPLgV/tN2arhfHspBlogibDoOPqwanfYbwvRVaQzStU4EmmKxXR6hikpHNE0z4u0MMSNSoQRYXtpthI4iKJyrz9cLlnjvi+3HOkQzfImXAD1trnyxSld7VREjUp0ZOYyU6Jk14smS4Lb2dceYBSdgU6k0TGMn9PSdWWVIkkGluc8t2Z8U6FiWHnJ9b8663BCnj3NQiDbwAuSnkAIsUU6NW0CP8knLAzQaECl+XNYL2lq1Jzvo2dHntW7Fnrb+rjzBotGDPN8hEWZ0BQEt1/HLXQp5pPKRZiDxZzQ9XSOOm7VMI6omGJ2swQg7E3YbAngajtuuTrXICYp4p9cg1GTgXIbAOXJ67iOSOG40XiDY0cimlXv+lWh2wtGSjJs1b5aYJZ6DC8rMVov0DOF9zQP+pzT/CC9OWqj3WCJT3A4N20RjZhGHQrYxuj8E5YN7QP8+nrLmP4xT0ka0HfUWeTlSXOOeRwTOd+xY5Oj0/NX8WOZMRL+nexQw+JhKEnJ16YrocYJxnbhI6MGJhWQ6dKZEUkTNOZiIThvvFO7tpYYvnv9nLZnWPE6gZmcxMRx8j5Ob9wVfj7rcs8RU3Ese9QOed1QmFBSjiHLiv0+piOEFMHt7pCJ8eF5wrju0uNtsja6bg+S6PTylPadNAfSYljZtGurGjfv8n+D8/zJ2sv4m+fdxVfu/t+rk6XkcKS24i2zDF4C+mNqs2Xhnu49StXMvfphMs/N0E8tH4OP22Xbv3d/7iTF7/+aU96P0+2+3Im9f8km/z3vH9W93mxivdPp77lwd+BB3/nlDsxC5977xnpa540y/+mm27ipptODzVdrGUSDWkCYXWooZDV3YV6Qq2i6YR61mq332VycM47rAD5giRZs7ROVOhRhVPeq19lXvMiC4Mowt/r/VlQhV/9qboRUaflAUrdgbESVOBKa9nYYYpJjjSW1jGNSVI2r5DI2nBGeGaXD7t0FF2BzkFMHCYSFD1PYwOwLa/9WPhKhlzb9IOAlLgin4KS2ujgEatkbureBtMBqBZjStkEdHrR/YzwXghvoSlVWP0yjcubUBKXF1u7LvVEQEhcUQZeudzi4gM+T4CqQp5Y+/+39+dhklz1mS/+OefEllvt1V3d6m7tICEJEEiAEGAbNALMYmwW2+M7ZjzMyPYIj7fxtbEx84zn98As92fu4GHs4XcHsGfG5mdsFhswY4FsFiMEAoGQ0L51q5fqpZasXGI759w/TkRkVqOlu1XdXd2K93n66arMqMyIyDxx4j3f7/u+BCse/mKIbYZYKZGJS66WwwwxTEZVoDwv7K9r0WWNJ8fZQl7G8VTVmJq8HBteecH9fGnfi+nsDVC9BFlqX9RYNowUkOnq2ikK8mImW/TObbJ0qSLelXLlzsfYFR5BW4lEckS3WS0CJDOrkMKQWo/VvEliPUKRo6StdCoTcsjLtjzIX+5YYOJRRSALAX+WjwhVrpG9Ie29IfH3I26eeDbbL1tlSg2YUq6d1jmPOWvgSGSsmUYllM+soinTop3M40jWIpQ596/Os/eurez4do6/f8VV5MfdOsvWsVLL+AOERI5y2WAstLOYNzzlYgAKQmKlGJGXcv7RBXEp5qJ1i2Jag3bz1zqLa+0IlVCyIkKd+yA61GD5kXk+e/E86oIeYZDjKc1ElJBqxeqgwWB/m859ip2P5DR3ryJ7Q3R/ZLhQY2NxrKL9jcbPPvKhDa/CnAqh/KnCsbSTHW/VZRzHRGD+6q/+6phf8I1vfOMJ78zphvUlNvARSVrdTIN2N8jlBXc8yBJdXQhF2CDZMUXWUS440TqBvDAWNdSoRJNsaaAj5z7m99zNswh9TORVgWN5UxUXbRckaVoRqtsbhVoqCUmODUP3vnmRH5BrBOCtJTQPKGTmkTWls6xUrmNBh+51jQ9JpsgakjwS6EAw2KqwApqHDLPf6+PtOTzqQS5XB8uKRJH/UlZhbFr0d5fnx/dGpC/LK3tqS9GKZiQERY6MNc7hbJwIlu9baGqs0aPqzTiKnnFRrMStI1TlZFhUaqxUoFOIY2SvCDaTct0qnM3L9jxTtKHVXsonExvRPjb+Wqda0H82kpcSNUl5+tjZOEI2adChcItUvueqLYU2kFxDkmEHQ7eQ02yA52F9j3SmwfIlivTiIS88bw8vm3mABW8FQymeD5DCYKwjMwMTsJo3UUeF70bCrWLF1mfO75FuT9GRhwk8pLVuH6BaRMJavG7C1IOKvNnkrzqXwy54cetBmjIpcl5kIVwXrirju/0YmIBQZihhOJy1WU6bPLI6w9Lds8x9V9A4MHTXW89DTnQK45fiOl1qYKTEygyyFFJdnRMCH+spbOBXC0vWkwhfITLtWo+TrNCGJm7Bz1o3NxR5Ms6WWrl4Aynd3U9JcsrWNXDbS1nNYVaDUEXFLMvxD6yy5Uifue+GxPMNso7CKIiFa9OeTS3bVhJU7PSYMs0RwwQb1wTmiXDHp/by3Dedc8J/v9Hk5Xi0MBvVSvaOV53LP/mfv/S0X2ez4ekQlKfCMRGYN73pTet+Ly1rj34MXNDlmQphLGayiRom1YUdjrq5HrcQLh+KIvTCNMmUT7CSFy1KZTsAWCVIZiPyhiRvCKyExkGN9ST5ZOg0MKIgUJ5AJqNJKJ1v0Dio3EqV543pcHQhWteV7ITMIrsDwjTHGzRIZkLiaYUOBEWLMipx75W1nHg9a4E3gM5eTXNvjL+4WpG06nPWriKEJ5zrmGZUZSm2G1VFivOTF2X7MByRDzt6vmwZKIM+y5wZ4SmsKc0TCsJiLAT+KC/BlFUdgKLiU/Uvm7HXGSNMuqjgCOnaFDwP8mSstcCO9tOs/27X2HhsJHk5ETwdEnM2E5caG4fEeNjQYDzprlWl1oJCyC+KioDvFnOElM7OeL7DwReEpJcM2bVliUs6i0ypAYOi0tEvXLdKGCsrAX1TplXOSWl/XAYthjJjYWGFeHILLYmb48r5urQNTjJkd0hDW+Zsi0Nijj8dXEXv4pAXth5h3uu6FjEMCMisR2pVtS8DHWIQ7I8n+eYdFzJ1l8e59ySEB3qQpOtdJEsNkDsI939VvVduvmlEmFYD0w7IWz46kOiGJA8FxhfIzKJSizc0eAON18+Q/QQRp666NLYIVS2y5UVINVTEBjmqyIjy/YvWaRfU7BzKRFnNSTLU2oDWUg8bBcUcOVbxqSIXikWyM/i+aLPjyXJeThWeDokp3b7+/n9u8E49A3BMBMaMXQS+8IUv8Ju/+Zu8973vrVrHbrnlFt797nfz3ve+9+Ts5amCgWwiQC77ECejHmVViNVLHcxYFUYoiZmdYLitSbicIVONCVSRp+IVKfIGFbtqjDAuZT5vecjMOW/ZItDSli7EFtQwd/bGs8VEVdoWo9bd+AvfrxxbSitKMYhR2tAYpKi4RTzrkQqJP3DkxfiQzAiEhqkHNJ0Hesi1gbvgF9qTdcL9kjiVUKMJy+a5a9+CYp9ktU94HrbTxEQBeiJA+67Fy+vnCG2cqDJOEP1h5SRmyyKLFKP3LPN2yvcQI/vqSgMj7Gh/pRhVU8ZhrfuQpRi1qK1rMxh7/SLPpsbj48ArP83CzT923H93uonLOE6ExJxM8vLWG17zhM99/EOfP2nvW+PkoJs3mNjaI56ZonnAR5XX51J7Au4aHkXV6r9pRhx8YRP5smWuml/kguZhdoVHSK1XaEpcwntTphgrkNISibSqxrg6vCM1CtdCVloe93TE1maPhye2YkIPueraqqwxCFW4ouXazQODhMZjhu3diOH9DT5z+TX8/VUXc+22h3hp535ahZ1yZr3KNlkKw1Le4lP3PRf7YItdt2iau5edm2RxPbZ5jhDCaVyyrOosKB9HKQh8hO9jo4B0YZLhQsjaOYreuQa2JLTaMZHvJop+5jEYhJjlEK/rER2OCJfatBZzov0DZG+IGMSjaoy1rh25tG4+mkABFoOQRbbY+HploYUB1psA5HpERMuKlh4jLUK4Y6IJKxv17aoBm4O8lPj7/f9XkQ9zfPkt41bFG4G/nH4T/+qmH33c5973lts2/P1OJ45bA/Mrv/Ir/NEf/REve9nLqsde/epX02w2ueGGG7j77rs3dAdPKcqLWXlDXvUpM9Z/W6zSlFWZKGS4o4PMXCAjgBpkWM+1ihlfIHKX9i6K3BfjCfKmxCiJSi3hUlZVbVRikEmOLlabhCn2J8+BEXHA80bkpbw4l6s90vU2iywnMOB3PfJ2gI6Uy1nxBO19lmA5dRWXLB+7iS8siytBaekuJkY39ar4Oc/deZDK6VQ8DxEEZLvmWNsVgXAVn7whMMrlrOgAVOKTNwDRQsUQrhmClZxw9xKiNyg+CkeARlWgMWLheSPB/3hFTKmxiUWvf6zkM3pEcqrsmqLFoDreEo9TbasxwvGSmM1EXkqUhOSpiMzJIC5PRliebNuazJwZmPIGPHvuIHdunWbqgbGbZRhVP4rWMiEEdqLF8vOmGLy0x2t2PMA54QrTntOeLOctpr0+kbAonOMVQhIId0PdkglrukGzCPoqrZVLd6yejoiNT9tPMIHrNig1IpWDZmHdjLWIJHWuX3GGf6RPc2+Tpb2zfPqqSe65eCtXTO1jW+BcGpfyFonxuO3ILh67fTtz37F0HhngLQ8QvWFRfbeVXtRqgxD5qIvD84qqh0S0mthWg3S+xdqOkMMvALl9yM75ZV4ycQiAtnJVJWPdfg91wGoWEWufg/02K70GS4+1mLxvgvaBFo0DMWp54NqJjVs0XKd/KRbKqgyeMXL5A8GaZSuaGs0NQht33sb/tiQ2pS7HGNcKXWPD8O//4Qb+8mS+wbXHf6Nf6leeqhpzMtzBzrnN7e+/epJt3vUXV3EOV1W/f/Qn/uGM1twcN4F58MEHmZqa+oHHJycneeSRRzZgl04fXIXEYgMPUd4gW+Nufss2I+OE/GU/rWk3XdZKL0PmrixufeXIghR4fe3sej2JsK7cbeOCyPhlIKVADXNkWoj7BxkiMzAVIiyjMnieu0pMUca2jCwhrVKI8uJaToyALBxY1GGBDQPXI1z1/Y7SkO24jSSMbvQxowpUpQMyRd6LqMgLnofZNkN/Z5P+VslgQTDxkLOxbO3LSKe8YtKEPBKAxEpn6Zx2JPFUgDxnAZVaJu9ZRR7pukpQNhZ3O66pLytiWo9a044Ohht3KCs/Ryja4UJHcsZsTI9uQyNNnv6XqgawOcnLOMYJSklmTla15XiIy1P9fU1mNi98qZlUMcYHkVtX1RfCaTC0xsaxq8AQQeAz3DXJwRfB6y+6m8tbe6sqR9+EhDKjJRM6cuise4WqKh+RcKSlDJlUwhCIvApULLNIfKGJtYfXBzlI3f6UxMJTzoGLseqBdvUcay3eyoDZ7xpaBxoc3LGLz2w9l2TeaT1lIvD6gsn74fwHB3iH1kZzTJa5a7gQiDBAqKKXWRuEtW7eEgKilgvtnGwx2Nlm38sV5zx/P2+bf4hpv8+5wWEy66GtC4dc1c0ia8ZZSoMjbYenOxxMO9w3t4VHd86wvBYS7G3ReaTF1EMJ/nLsrKPTwrilbBuTcrTYNWazXC1UjsUkCOE0N9W8AZAW2wa+y44Bd3dVRg3kuWtZrvGEOB4dzJ+cdwPvCq966g2fFk68UjFOUG7a9fbq55NBFkriciL4p5+4lnO4FoC9V92wUbt0ynDcBObqq6/m137t1/gf/+N/sHXrVgAWFxf5jd/4DV70ohdt+A6eUhQXKSsE0veLMMaiZWvcNhiKm+MA0/RRiWsPAyoxvg5dSGTWVnixQQ1dz7AVECynyGGODRVWSXToJg4TKOdMZgtHFQtqkI80KKWDSm7X9exWKFaMbO6CvaqLcV6seo2Xv7WuROpVKX28TWy8bSs3I/IipCMv5etIgW03GV44y9oOn8ayIVy16FCQtQRBD/y1FBXnJLMh8ZQi7Tgzgc5jOd7QYJXAiy1JR5JMS4bz08zc3SR64GC1Qli1tOkitLLcH98bm3S8kTC00NQ4UmJHq2ZKuUJW+ZmqsZXRo1vVxlrlajxzcLraxGqcXejrkEQqso7BemOr+9qMqg9ji0bxtKK5c40XtB+lI2Ni61cOX2WmSma9qk3M/bkgxoVI+sJZGEsMsQ3IrGKQhxzO29VrHOhPEPRslZlSVV3GbtBtEbgpcu1sio1rtVXa0Fod0nrALZiZdlAdgzAWEedu7ipbrcpWZHCdAnGyrtpTXtOtkND2yecn6O9ssPgiePnL7uSK9l7aKiYSKZHIWCryZ1YL22aJZaaoUHXUEI2zbT4vOsJC0CWZ9TiQTHDfzi08OrNA3oyYelC5+TdWqGIBT4zPo55ab6+clxX7Yt4v9TulU6W11T2CNW6uEvlY63Opiym1NjU2BM/6wKv4y30n9z1eskGvczIrHE+HvDzRa51JROa4CcyHP/xhfvzHf5xdu3axc+dOAPbs2cPFF1/Mpz71qY3ev1MKp0MRmMhDKQVpWrmjYIsbXlmIwikuSr5Ch8qRnqxYCZrwSCaUE+wraB6yyMy1k2FBdN3qE9piwsJO2bgWNJEVvcKB534vy91lRSjP3eQQ+KOVIiEhSbBjIZd2vFUqz11PcZmdAut7fo12ri/jLVhly9b4jXypIQGqsLFOi9Urt5C1JO0DLpQzbfv4a671zkpIp0OEtqRtSTopULGt2sswFq+vsZ7T5DQPW/KGZLDVJ29uo33nInatV1RbGNk0FxWTSoNj7OgzgnUuaaiiSiTkqId53HCgPFYpqkwbqzXWjLUP1KjxNFGTl2cWApEzH/RQ24Yk0xFhGLiqR9mWVJiKICVWSdKOYOvEGvNeFwBlDdoKJlRcVVOUMMRjpCYxPgMdOH2MzIlETljcbCsMWdF2nBnFwAYs9ZpMJWPXyJJwCDGqmkBFtChv1j1vRE6sIyxylaIKX9gZl61YZWVfSkQggbIl24wWzWCknQRMK2Lt/AYHXmF4y4u+yUvaD7JmIiSGCRUzMCEaSWzdLUsociKZVdkrJcGb89aIZIYu2su2+SsshF2+oBUHsi2Az/T94EuBTILRot7R4vvxaIPxLoUSRdhoWaGxRjvCBuvn2Cwt8tt0nStWY0OxkeTl6Nc9U1rLjpvAXHTRRdxxxx3cdNNN3HPPPQBceumlXHfddevS6M9EyCRHSY1VYkRcypV/pVz7mLFuBb9YzRfaIFODjpw7ymDew3gQrRinf0ktxhNkbYXfzStHMr+XIzON6qVYJZFJjmn4jsBYJ7bXkSJYjkcWyuNZK+Xv4+YCMNpfs/5iW7Vi2fE+3VEPcnVzX158y3BKqNoJqhv80jq62WDtsnkGWxTT97s2hu65PmlH0N5rELawgvaKypYqWikEREvOXlQWFSuhQcUGfy0jXHJksrcz5Mi125j+zgriwKFiv+SoFQxGFsrFflvrWjWEUk4b5HmOkFiLEHa0TaadcLXU+oy3mEmBQCHqHJgnxYmI+J+JOJnE5ejXrlvKNg98qZnwYrZMr5G2m1jfK4xSnPW7PUpjZzxBy0/x0QxsSGx81kyDoLAuLlulytaxUgNStlK5n901O7MKhRP2SyxSWDKjGC41mO+bkQZHjuyTGauOVFUIIZzIv9SxjGs8AJtrR0SkrHQslTGKGWvhHa/4l4tfUoKS2DBguL3N0qWCH37+3VzbuZ8jeZvY+igMAxMWBEYwqYYMhMZYSSizIgPHsqKbJMYns6oiM9W5ETkXTh7Gf47hsflpsk6DqQcUnSRHptnIvAbcefFdrIEYq5isIy/ji3/jWhpj1wc4F/Pw0Y6tNWo8HZws4jKOf/qJa7npJzZ/Js0JBVkKIbj++uu5/vrrN3p/TiuyqRCZMnIUGTJKoS/zTaBoMxpNPlIbSCCZ9sgjqmoCgEpB5hajBHlLITOLjiT+msV4EglO/K8tItPoVgBCkLU9p4fpJZW7V3WRtcbZE5fkBda3QYmxdi+jR+1S4ErkeTpmE2lHK0NjFYhS61NWMmyaIijar6xFRBHx+XOsXOgRLTnClUx5WFkYginQniBrgm5IwmX3/rohILZYJdASspYzMpCZMzMoK1E29AhXNL1tHosvm2bhSxoOr4xWL8vqSnkM5fFiEL6bRKr+5UIfVG5bTaBjcMJSgdUFsXm8Fr0a63CiTmQnA8eaAXO24603vKYmMZsEkcjJhEZbgQ7ANkNEmo1s6pV0N7fVwhAEMicQGkOGFpIp5UxNMqtcuj0CVYRWlu1kvtBVmGW1LSMrZYCh9jkQT9C+z6exuIaIE2yWIcJwrLVNj1XgzVgel3YVhLjQcHiey1Mp932M7FTGKOXvpfNXaZtcVSeMqzz5HmaiwfKzfba/ZC8/PvstlDBEMsO3OQMTElufgQmYVC5HpWyvKzEwAT0dVSSudGSLjY+WgkhmXNJa5Fmtgxyc6fDVzgUsTs+AbdF5RKAOd0cZa2VOT1l9KioxPxBwWS4qlguJnufmmcKl1JEWBarQpEYhwkoYbNjXq8ZJxEve+JOnexdOO0p9zGZuKTsmAvOBD3yAG264gSiK+MAHPvCk2/6rf/VkHgibG0YKJ7bXFtOMEMur6zfIxm7qS/FfbrCRO41pS6JS8Lrugh6uamRqkdq61qpJD5kbvGUnajS+xHpFBSLyUHGOMBbdUFhP4A20sxguL5IliSk1HrL8X4y0OuNVFHCThj9mg1yUtF0IpywuxmNONIqRq5mxIAryUpI3IVw72mSblYsDmouu0jLY4iOMJVyxBF2LsBDPCPIGBGs4C2cJZs2RuqwhCNesE7hq8HsaNcwckdMaYV1OTbRiiKcly8+fZeaWBNsfjlrINNWk6AjIqLJkxwSWYsz9poQo9UTF9uXxV+RFKdB1C1mNp4fT0TZWk5jNgYZMQEa0g5SDHeGsi6Vc395bahuVRGaWw8M2XROhigwXjBPhlzbKZcUhEilKutfRSKQ1leg/Nn7RRiWRwoLnWs++vbST9j6DSPNCVB9iJ1royYbTvViLzAxWuG4EMUicm2XMKA8MnG7FjK6dFlfRcXkpwrU3lxEEhaZE5AJrNcILRyRJSfAU/Z1N1p6f8BNb7mdW9TiinWbHETRH4nyhiYSruEQyZ81ENGXqdD46RFvpqk3CMNAhUVGdybSryEQyQwpDuxEze26fWzvncZ/chfFaTA0zZG8wIigwaqFThY5y/Dkz9vlpDTJwVSivqCplwlWshHDBm8ZDBL5bAKxR42ngVFRfjsY3f/Mnufo//P9P+fseC46JwLz//e/nZ37mZ4iiiPe///1PuJ0Q4owmMCozCG0Q2jmJicB31oswat2CkS4kz5H9hGyh6VbP+gZv4FrKhHVCfpW6CUEYF7ZlPIFRChMI/J4mnvXJGwKZQfNg6qQ1oULkluBg371X4I+E9q2gKFUrbClgN4VAP06wpSZmnMyUK2PGFj3XZqT5QDnHNagIjQj8UfuYLTICSjvlYjUt2dZB5OAPnbZF+xB2Lf7AVJk2jUPQ3y4Jlw1+z606+j1B48AA3fBBQtrxQUA64b6K/kqMVR666TJ0AKJlw2Bekpw3R3j/gXW91BSkRSi3/6UDW9UeVjqVSYEYtzEr2zekcFWl8XMkHUkTJ1SffGbhWKswb17+1Cl3IvvPuy593Md/efcZbPVe44xBW8Y0lMcFncM8umUHJvRGOkYlEdLH5il2GCOspfNYzqN7Z7l72zlcFC7ii5wjul21RmVWoa0kkplb3MeghEFhnNBdZq7dTDqi07UNACKRMSDk0b1znBNbdDtEt0PyhmL1woDBVkHedlV0AKkhPCJoLlqaixmNx9YgSRFx6lqRy3apsnJfuEBaa90VttJtllUINbJKhlGFxrp5dvV8xXPO283ljceIre+OwQpi62OsJLUeHTnE4HJwMuthCmvo0tBACeMMDITBV26/OipGIzCFfshZS+ecGx5mbusa3lWGu/X5hKsdGrtB9oeuhawZYYVwVZcSYxqZSsQvZNXJYNNsFCtQVm7GNDKO0NULYk+FY3Uie8kbf5Kv/9Wpu6l+6w2v4Y/fc/sPPP7237vylC0W/cl5N/CuU/JO6/Gmt76Kc976qk1ZiTmmoIuHH36Y2dnZ6ucn+vfQQw8d15u/733v4+qrr6bT6bBlyxbe9KY3ce+9967bJo5jbrzxRmZnZ2m327z5zW9mcXFx3Ta7d+/mda97Hc1mky1btvAbv/Eb5PnxXyxUrF31JVLolj+qSpQr8uP6kCKfRAwTVGrQgSBYyQlWUoIjMf5qQrCS4i/FBKspMtV4vcyRI08gDOQNRTIhiacl8bQga3lkHY+sJfF7OWK153qLW02IQvS2OeILt9B73nZWrlrg0LVbWH7BHCsv2MLqVdsYPncn9pwtiGbkStqBP9LGyKP2H0YkBSpCY0vHs/LCXFZ/yjK5VIggYG1HQN4UpG1JuKppH8hpHMoIVjKC5ZRgNad1IGPqQU17X0p0cEiwmoFwVSs1zLBCMJxVDOYVaVuSNxX5REg2EZI3PPxBTriS4w0MYdeycnGIbTdHRGO819gPqs/KpunIMa4km5432mbcSW48IXnsnFlrIdgcDGazjZPNhqPbx/7zrkufkLyUz9c4+7DZxkkkMqbUgJ3RMtlMjg5lZVVc3QgXVXQ7iIkODgn3BOxNplDCMCGdA1epa2mrmI6KCWWGsYLMKvqmqD4gGZiQtGg1iwrb5SnVZ8br8Z3uDqIHQqyE3s6IfS9v8vBPSlo/cYDL/tF9vPpHvs3rX/lNXvVD3+FHXvkdzn3dw5i3HWH3az0Wr50hvmAWMzsBE+0i+2tMqD6eG6bUSPhfEoDxFrOylayo5phmwGC7YVuji0awolv0jaugzHtdZrweLZlgkGgrKz2QRhAbn8w4V7KwqLAo7DoNjLHyBzRCpSHCszuLqPN6DLZ4mHbgPpvxljhZVF9KJ7HiGFxgtCwqSJ773egqZwbPw7YamJkOesskessk+bZp9PTEcX+HTgY22zjZbDi6fWzw2NbHJS8Af/ye2xk8tvVU7Bbv+ouTbRt95uG03qF96Utf4sYbb+Tqq68mz3N++7d/m+uvv57vf//7tFotAH71V3+Vz372s3z84x9ncnKSd77znfzET/wE//AP/wCA1prXve51LCws8LWvfY39+/fzsz/7s/i+z3vf+97j2p+85aEyWQjNy8pF4TpWrhpJRg5cANYSLvZJJifIWwqVGBf0CFWwpRhmqMT9nUw1uuk78jKtsJ7TyPgDML4gbwjaexK8Q2uUCb56tkMyG5FOKIwCUV5ftftZakseCvItHsO5SYJuh+ZjPeTikhNZqqPaFoTAeTSr9aGQxq4L6KqCK42FQoiPNdhGSN4AL3YVFx0Igq7LsVEDl02TT0Ukkz5W4ipSucFGEHQdcbFSkE56ZC3n1GYlIBRZ0+XD+EOD8d3fB6t50ZLmk23pEHR7I1IFuL63Ug8jXcpzeRyakcsYYytqUoAM3MRTTkJFGrVtRuTTTdZmgN3H9RU6Kdhs42Qcm0UDA8dHTMa3PVkVmdPpOnYq2sgOTN4FwJrtcXH3xSf1vY4Fm22cNGVCTMSkGiKbOSbwXDtvEUwspHSLJKWzV25o7odvHd7Jc5r7aAbuxn3NRK49yhoyqzDGXdvKikMksso6ObIZGluRnik54KF0C996ZBcTK9Dbrli9POPKSx7kBVN72BUcxiBpyoQJGZNaRSA0csYQW59v7Tyfbz7vXO75/k7mvjHF5CMx/n6BSFJsTKE1HHPsgpExAFSxAkIbV70pqzTFNiZU6JZhe7RS/fl41aQ0LNBIBibAFznGisI22hGVSGYoLApLUyZOyC91tc2kclbLkciqNjttJOdFhzlnZpWDWzq09wWoZUdYhDZY38M2PER/OJo2xoiNiML1H7YsJuYwwLSb9C6epLtLkXUgnTYYD9RBBd89rq/QScFmGyebFU9UdXk8lCSmuWPxKbassZEQ9hgsMn7t137tmF/w93//9094Zw4dOsSWLVv40pe+xCte8QpWV1eZn5/nT//0T3nLW94CwD333MOll17KLbfcwkte8hL+5m/+hte//vXs27evyqX5oz/6I37zN3+TQ4cOEQTBU75vt9tlcnKSl7/iPQTaR0ceUhuC+/aPAqvKFqoxCM8rVvY9kvNmGWwJaB1IkImuLJmFtsg0R8Y51pNYKdETAcP5gHhKOhLQd+1lyaRCZZb2A6uIQQJhwNqzpzCeazezyr2ejiRGgd8zzqpYCHTo/qnEaU2sFLQfi/EfPeTEmuNZKuWxFCFi9slWTUriU1gVC09htkyz+NIpgq5F5gUB62n8bhHmaS0m9OjtiIinBZMPZ26blbhqzzOBIpkJGMyrwp3MXf+92BJ0ddFepgi6Gr+fk0z7xJOKoG+YvHWvq7KMfy7jtsnj+17mvJSVGDlqLRNlX3MYYMMAPdlguL3B0rM9hIFExTz4vt9mdXWViYnNsXoGp3+c3P+KP6PjNYHjJzAb3UZWVl+eblXlZJCY022bfLIITElcSpQEph4nDuU4+eR3L2KtMcvDyTz/469/hPM/0UUt9bADJ0YXUehu5Isp2Ew0Sba02PfykKv+0ff56S1fJzZBZScMsGYaLOctYuMz6Q1oyrS6KZe4yovTingoYTiQTfLf7n85yTdn0A2LevYaL97xKBc3DzLnr7HLP1JVbcpKjrayaMnK6ZuQFd3iO71d/O39l9C6tcnCrT3U8gDRdR0CeGrkPAbuscJe2Tac5kUMYmeHn+fgBwhPYVsN+pfMs+8fp/zGlX/LrOqhitW5ro7IrMdiNokShqZMkcIwpQYcyjuVzqVsIfOFZkb1aMm0MDlQZNYjNn5leqAwlZtb6XB2a/cCvvrly1m4xdC5ZwnRG2JDv3AiU04bkziHTaxzFKsWu4rHqmMugjiH21o8+gbB1c99kOlgwIQX09chX31gG3f91H+qx0mBcpx87U/vod3sVI8fa5glsOFtZGX15elUVf7mimtOiqnM6dC/HI2T0Ub22AuuXvf7Zw9fxs/v/ugxjZNjqsDcfvuxsdCna6O8uupE8zMzMwB861vfIssyrrvuumqbSy65hF27dlUD6ZZbbuGKK66oBhHAq1/9an7xF3+Ru+66iyuvvPIH3idJEpJklIrb7Trf/WCxh+c3MEELbzVx9pFFyr0riY+1LCnlhOO+gDQj2LOMlTMkUz5BVyDyItyrWFkzDUeMUKLIjSmsgxOLio1LpT+SEe3tIuKUfH6C5UudmLG9N8UqQbDiWtHSqbCovBj3PtqgI4+8qVCxIW8phjOS4dYQmc6gHjs05hgzRsTSzK2QjbdUHc1nC0eV0iKzFG/6fSfMR7jqidAWE6oRgQkkXmwIepKsrRyBWXWVHxM4k4LhjHLkLTbI3KJDJ2TNiyqMFYCArOWhfQECTGltXLZ+mcIOdNxm2vOcWYEfrA+nNHbkrgZuEgp8sq2TrF7cJJ0QZG2I5w3NvRIvPoYv7WnA6R4nmwUbRV7K16i1MU+Oo4nLZsfpHiffGFzIpAf39bfQWCwcJePE3QCX7Uk6H5mNxBnBcszCrZJvhJcy9aohz23vAag0LgADGVRtUMZK+iYsRO6pc+0qcleWdJv/3z3XYm+fJN6qufg5e7l69lG2+l2aBelx7VopfROyphsVkfFFzoRyF8Bz/CV2TR/hWc87wH8VP8TaYpOOsXhJWtgxj80bZsy9y7gWaxsFbp4Zz1Yp2rB1KAjCDIWhbwKUsEVI5WghKjY+k2pAR8VMqT6H8g4dFbOmI3yZY6wkAwyy2v9AaBQWpNO+BKLUdFLoaJwZwlzQA1t0AJhRxo01FqGzkWlO2f6W5y7guowlKBfCwoBs2xRLlzZY/uGYX3r+l7ggPEhqFcZKDuUTpAspm3EEne5xMo7jIS8A/9/PfIRff/3PHdffPNlrwdMjLwCv/d4t/OUVb6qdMZ8CRxOXEq+YvuOYO1+OicD83d/93THv1InCGMOv/MqvcO2113L55ZcDcODAAYIgYGpqat22W7du5cCBA9U244OofL587vHwvve9j3/7b//tDzwu0gy8yLmB9WN38w6jm+Oy/So3IyEjoRPR94eEjy7BLkdiZGad5sM4ZzPrSbJJ93jWcqs3jWWNDiQmFDT2DVErA8QwwUy3Wb60jRdbwpUcE0r8bu6cYXJDsJq61aDC7lHkBuMrl0cTupv/oO8mgNWLWkxai9p7eGSNWbWRFShEpetsmqFaZRKiIAGFnkakOX7fkQ63vTNAkMMcEyjAhXsO5hStRY1Ki37n0EPFMTLOSOYaNA/nBQGzeENNOuUTTyu82BIt5RhPYJVA5hapQaUWHYzt93h2AYyISpZWRgZC+Y6AjttdlhbLStK7bAtLz/ZIZi3N/RAuW1QsCVcsKZvPRnkzjJOLv/zTHHjlp09o/zdCzD8+MWyknqUmMU+MM428bIZx8oX9l3ARfR7rTRGs2lFoYqlLLFuSipR24XvIrqU5zNiRT/DZqecxe02PS6N9NGVCJDJi4aOEZUU2iURWtVZFIsMgkRgy6/H17oV84fuXMPXNkHgOzr90Py+ff4Bt/grzXpcl3eZQ3iGzyond7cieGUAhSa27/jvjgITnhHv5oQse4CvPeS7hSoRa7rvQyiLjparyS4Eow5SlE8PbMHDulaWdfXHdltqSJD4DEzLvJfhC0zchgcjxRU6nIFEledNWEgn381Z/lcPFMZSmykfydiXoh1ELGrg2NACsV7m0dfNoRGAKp09bWOiLUtMylo8jhMBiq0U/ISU0IvRsh5WLGjTfeoB/fM53CYvXn1W9yk1t2m887vfndGIzjJPp//CPyf7tX5/Q/n/8Q5/fEAKzEZWXcbz2e7fAjg15qbMST0RejhfHJOI/Fbjxxhu58847+djHPnbS3+td73oXq6ur1b89e9wqly36ckWmEcNipUCbUYuVseuzVwA7HGKNcVqT/pDwsRWiw6nTs7Q8krkQ3QzQkee0H6X20RNuNainae7p4x3qutWqdoPBuRP4Q0trb4zfzYgWh6heishNsW8ZxldYT2Iin3wqcuL/CQ9hXEVHGFcVEQYGO5rQiBwxKSfPciVsnLyoH2yTq45VqXXVjuGsZDirENoSrDn7Y93ysdLZQ+cNSTolyNqS/oJPb5tP1vbIpyLiLU10Q+L1NeHhIX4vQyY5MjEEawavb/D6GeGRmGDF2T57fe0ydAJG+pZy/8fb+8arZDBmSiArAabwFLbdZO3KbRx4iSKdsng9QTIFWVvg9y1ZU5C1n15F8WRgM4yTp4s3L3/qhFenTvaqVi3w/0GcaeQFNsc4WRk0WBx22L1/hmhVu5vhwMdGwUgsPu50leWINEOsDWg8cJiFL0v+150v4uu9C1nSbQY2rFq7OnJIRw1dZUZkrJmIfek0dw138OFHX8pX/vdzmfuKa+PJLhnwsvkHmfPWmPe6GGQV/DgwIUt5m4EZaTqMFaRF+5Wxzhwgsx4Zisvae7noFY9w+Aof025Ump6qFbnMHBMC4RXViVw7MlBqR7V21vzDhPBIhlkOWcpblfWxYlRF2VoQro6MURjWTIPY+m5/Cme2uNC69IvAyxXdrIhLRXyQlfFBZlWRo1Ms0BWty+Ta7as2bn/jBBvHTruT52P5Li7DR3Ra6IVZhhfMsvjiDsmPr/Dz532ZC8KDzHvdikg5owVRBY9uJmyGcfLuTx96Wq/7dDJbXvLGn9xw8lJi8NhW/uS8zefcdbqxUeQFTlDEf9ttt/Hnf/7n7N69mzRN1z33iU984rhf753vfCef+cxn+PKXv8yOHSPaurCwQJqmrKysrFsNWFxcZGFhodrmG9/4xrrXK90yym2ORhiGhGH4g09IiYk8ZM9duKpgRFXkpWS5S3hPY2c1bA0gq0wWawyi2yMYJvhHmgx3TZI3JFiXkaJD4RJ+jSXsGvxujn+kj1juupYC3yM+ZwIstPa6SoVu+JBaTOShGx5qmCPTHBMqBgsBwZrGCkEyJclDQXto8GJN1laE3RyEx2Be0ZxuIfuD9WFlSjiR+3jb2LhVdFllqvzuneBUrPVpHdQkHYWVgqx5+8KqAABKBUlEQVTpYYKiWpJZvIF2wnzl8l7iOUHWseRNn4ndLuTTX9N4/QyRuf3RDR8dqeK5DDlIi+ciVGbIQg/jCcKucT3JZfXlaG3SuDuOKFrGAh9S43rOlcJOtjl81QxLl0PjoMAbUmmH0o5A+4JkGhJ/c1VgNss4uf8Vf+b+7mkK+I+3GvN4bmObGR//0OdPuw7m6eBMJC6wecaJEHBwrU3jnojwcKGlCAN3068NNo9dhaLUjJTXZWNgGDN1xwoqmeSzV1/NF571bF597t28oP1oVaEwVqKERQrLIA+5Y+0cbr3vfCZvD5k9YEg6gpUrM1587m6mvb7bzoQc0e0qyV4KU4Vgljf1xkpCkRWEwj3msmgUkch449bv8r5LzyG/LUTGKSLJigDkoq2qdO2E0eJYqSMpXcvyHAt4q0OiAw2Wc1dRSoUikhmx8Ss3Ml/kVYgn1onxV3UTbaMq4DOzijgfkRY9ZrkM0NNRVZUxSLAu8DI3imC1yFzTBhvHrl1aCOxg6IhWELjIgqJ6j3HB0nq2Q/eCFisXSy76Rw/xo/PfqwwVtqhBEcA5+l5IUc8nj3vfBbz3FS/lYzOPnvCxvOSNP8lbb3jNcVVjxonPyXISe8tXP83PblAlZtsvvZ/9f/CrG/NiJ4CN0L9sJHmBE6jAfOxjH+OlL30pd999N5/85CfJsoy77rqLm2++mcnJyeN6LWst73znO/nkJz/JzTffzPnnn7/u+Re+8IX4vs8Xv/jF6rF7772X3bt3c8011wBwzTXX8L3vfY+DBw9W29x0001MTEzwnOc857j2x0xEznFkpUjmNXpd21EZZuXSiwvtSCkQt0V/rLXuQn5khcYDh+ncv0a4lOANNOFyTnQ4pbm7T/OBZYJHDiG6ziEFT5HunCWZ9pCZwQSSvBMSbwnR7QCZ5uhIEm8NSeYa9LcHro0rMYWLlyCdFGQdhfElwVph21wUj4bbWgjfH+1z+X95w18GP5YEx/NGPvfCkavSmc0aQ+NA7PQiM4rueR7JpLOETtsSq4TLvFGQTghUDI0DgtaiIVjJkJlx+qA0x0Q+JvTQDYUw1rWL5QYM2MBDDDNEasBC1hRES0e1YZQCfhjta6FtqYhNklSfo942w54fneXIlZbGIUFnt6G9T+MNLc1Dhs4eQ7RiCte44/r6nDRstnGykXiqakz5/NFtY5udvJzpOBPJy2YbJ9bC4L4ppu/T+MvDatHFjgn3MXaUrZLnTpeY59gsQx5ZYeKOQ5z/10Oan57gE7e9kD957Bq+cORS/vbIZXy1+yy+vPosPnXg+Xzkzmv47t9ewpabA2buSbESjlyluf55d/Ly6fvZ7i/TkkmlyZDCMKP6dKSzZS6zZBSGjhoyIYdMFFUPXehs1nQDX2i2eF22b19isCVwgndwbdS+X/0DRtrEsRMilCws/YvqR5zRecTynSM76JuQCRnTkkllAw04XY/xq6rKjNdjR7BUtZdJLFIYDKKqerhjsZVwv6y8gHM50wgUht39aVr7LH43dYuLfhFIWVaLCsF+dUzGzY920pGX/a/UXPuG7/KP5u7GF9qZAwjDEe0CSfsmLDQ4ujIoON3YbOMEQP/W07+ef/xDn3/Kasxjz19ZV3WBk0deNhq33XLmtjc/9oKrN5y8wAlUYN773vfy/ve/nxtvvJFOp8N//s//mfPPP5+f//mfZ9u2bcf1WjfeeCN/+qd/yqc//Wk6nU7VOzk5OUmj0WBycpJ3vOMd/Nqv/RozMzNMTEzwS7/0S1xzzTW85CUvAeD666/nOc95Dv/kn/wT/uN//I8cOHCAd7/73dx4441PyPafCEZJ1MHuqE+3TLrHVkGIVptR8CM4UTyMWpnKMrNUsLyKXO0hpeudrTzyCzcTSjFn4KPnJuhvD1Gpm9jiWZ94SqIjgUo8RG6dxiXyirYt41aNjHMAEwbCLqihQWbGtWu1fWRmCFdd1Wdd6xX8QHhjlf+SZo6wqKK6BCC8agIWQuAd7IJtkUfQOGzwe4Z0UhGuaGRqsFLh91wVJm9CuGJRQ9cCp3CW1boVgAUTSIS24AvypkTFHiLTlQWnzA0qMQQ9S3ig50SU1oyMFURByLIcW4aJVceDs0mOImy7weHnt+nv1Ezeo2gd1K5dLdb4Pdf77OcGE0qEBu+pjVROCTbbOIGNt08+1tawmricfJyJ5AU23zhJH20z9wC09g4hSd3cIQQ28rCxHHOEdNf8yiylgI0TSFP8LGd2rUlrscPK/E6OhJA3BToCmbj2p9meJVrK8IaavKU4/FzBy59/D9dMPEhTJkUeSk5LamIbVJULAB+NsYJBYQYArjpRQhctZyUB8HXOtlaXR5tbsX6xeFRoCtehFL6PtY6hFCKUbo6xFtKMiUdiHnhwC/cubOMFzUcAaMkEbWX1T0oDRaVIYVEicxWkQqdY5r1MqgG+0JUbWWwd8Sgtp8ufjZXE1ufBx+bZseYW74Qu9vUHsm2KvJc8x2qNaDTIJxv0t0kue/ajPL+zm6ioWHXksGpl84XGFI5nEsNK1jyu78/JwmYbJ1f/hx/itz70Pzfs+I6npexMIS9nMt56w2vgtiMn5bWPm8A8+OCDvO51rwMgCAL6/T5CCH71V3+VV77ylY8r0noi/OEf/iEAP/zDP7zu8Y985CP803/6TwF4//vfj5SSN7/5zSRJwqtf/Wr+63/9r9W2Sik+85nP8Iu/+Itcc801tFot3v72t/N7v/d7x3to+LsPYXNGdrylnmLcvau8IJeVi/EU+/KxLAc1Vt2g0GKUNsYlwfEKJ5lOi/65baS2BN0cNcxZ2+mjA4HXt+QNiZUBOhDkkcAKD29gkLnBFm0HxnNVD5UaRGbQoUBohTBglLM6HoVxFqtfZWAjjATwZTWjJDdhOGZX7FYJy4l47ntDjlzeACFc8KaxBMsJuukjcsPE7hyZWbq7vJF7GK5a5KpMxX7klryjSCYVWUOgEoWwAcZzxEv1M6yAoKsRqz1sSV7Kz8Yat0+l0015HCZ3E49yFaT+hdN0L4BgWdE8bPCGhnRCgQCVOOIHQGKgoxhs2xwlmM02Ti7+8k+f8LE8HZyJ5OV0tZGdqIXymUpeYPONk623Wqb2rCKX1wB33UNrlw9Wtr/COiMSW1X0yznILczIpTWa3QGNh/x1oYquWq5ci3E7YDgXcPAqyXNfdj/XTX+fKTXAIEmhqmhMqT6Z9egX7U2J8ZHCVG1WvtCVC5gUhlaRrZJaj8T4xDZgOWkiy/Zj6xbHbKO4cZXOtMYtjjEyLyj1PiVRK7QyXjdm4r4G37liBzNerzIVMEiW8jZ+EV4JEFg9nuZVVVwm1QBw7WPOyEBVVZayRQ5c9UXinMm+vnI+re9FNPeuIdfiat+qToQShfmN1UVIZadF79wma89PeMnMw7RkUp2vskXPF5qOdK+ZWsWqbpGYkXb2dGKzjZPf+sONIy/HgzORvOy96obTYqf8dNrH3n+SyAucAIGZnp5mbc1dkM855xzuvPNOrrjiClZWVhgMBsf1WscQQUMURXzwgx/kgx/84BNuc+655/K5z33uuN77cfcny0D4o5UxWEdCAIRShR1kQXB8b/3FDkaPGema9Ibx+r7g8nWNwcxOsXrZFCqz+D2DDiRZO0SHgun7U6wUdHd5yAyiVUO0rJ0lcTfFhIqs7SFzJzpf2+ETrHmEq84hzPgui0bmFjVwIkQhBIT+qJqSj7VkeaM2seqcjJsWZCMnMptr/EcP0dyyg7QjyVuec0MLnC7GenLMRQzCrquiyFRjfYXFOdWkEz5ZS9LfKuk+P8FbDGgsS7y+QCauwmRCDx0pWg+tOG1SMZGQZtX5FiWB1Madf6kciTTaWSUvTHHwKg8rLFZZ8sgROeODDp3pgNTO2S1YyRnMS+Lt2dP+Tm0ENts4OR04E8lLiTNdC3OmYLONk/ZDXWQ3ww6HCM9zAbs4F0dgncW7c0V0FXprLGBGNvAlshxR6P8qolO0NwlvgrTjs3i15MqX3cePzn2PCRUzMCGpVbRkyqF8ogq8DAor4bLi0tNRdaPfFDkDE45S7wvxeSlCT4zP4V6Lhi4qR54C3yOfbKCbHvGMhw6cRXLeFDQPGqd5jLXTcA5SGLrXEtoghilzdyTcvvAsJn845rL23sphrRTpD0xQVF8Ms14PychpDGBCDqvtSw3NlEw4pCdIitaz8niXdcRq3uC2b13Mud9LUYdWscMYfN9plMp28TCs5hWb51U7nOlEdM9X/Mgld/GsaH/VkqdwFtCRcLqdMqNmQsUEQhPK6af9ndoIbLZxcjpwJpKX04WXfugTfPwE//ZkVl/gBAjMK17xCm666SauuOIK3vrWt/LLv/zL3Hzzzdx000286lWvOhn7eHowTmLKSoyQONW7+9naHJE53YvwjmolE2O/+8VpLqsaJUGIQgbnT+APDEJb4mmF1M6ZbPLhDG8tAwHNw0UrVepcxdSwENdrS94QCOtE/MbHtWR5bv9cOKYk6LlqDUK4fc1ztw9hgG1G2EaAboeYQJK1PKfXObCG6A8Ldxn9A+0O4JKVO/cssfz8WfoLHs2DOcJC1lGkbUkeCbzY0lgy+D2NCSS64TsnNSnIJjysBC82ZBMStEA3HLkIBeRtV8kxoXTtcqu99RffcSKpNSjfVVuMddYyZU+zEAy2R1jpzp/MBXlkUanLskk7Lhi0eVhjBehI0jhiEF2Px07CV6vGmYm/2P3fHvfxt+z6+VO8J0+OkxVgWeP4IIapu0aVC0DGFIntYpQDY+1o4ahsPy6r9FY7LWARIGyNGXUHFK6RoghQzKYbHHqex/OuvY/Xz32XlnTuZCu2yZpuYJCsaWfjWwr3gUobUrWHFaSl1KGUVRpZaEkAYuuRpB6RFOjIQ0cTDLeGHH6eJLsgZn7mCEnmMdfu0/Fj9vUm2bdnmuBgSGtfSHt/RLSYIOMcmWSQ5fhLMfPf9vnC3KWYywTPai26PBqZO22J8QkLl7LUKmITVee5fAyczbIpAjkjkbn2LWFICqeyzCr2JVPcsu88tnwTor290Zw2bnBTnmsoNDsF4fJ9eue1GWw3PKu1SCA0CM2KbjKlBkWWjaElUzSCzHpEIqOjhvTzTdKTXOO044kIVHPH4lP+7amuwjyd+eRkVl/gOAjMnXfeyeWXX85/+S//hTh2pdHf+Z3fwfd9vva1r/HmN7+Zd7/73SdtR08JdA5eKXR39smi6H+tWpaUco8L4VbNrLMsBgqHkkJ3MZ54L7wihwR3kQxDRBQSnz+HDgTRkYx0ykNlFhU7rQuAVQITKNTQVHkoVkE66eP3BcJYvKEla7kASOML/KFFpRavnyO1az8z3piPve9Shs1Ek/75HQZzCpmB8UHmoAOnT1HPCgjWLJMPDvD2Ljk3Fs9zK1FjxE4sd5n6vsehq6YYzHu0DmQYT9DfJvH6EKxZVFIcjwDrSWRukJkG6+ENDd5axnwOS0mANwBvqOnuColWNXnoHNya9x3BliFYaqw6Vi7CBcXnZpyWprKFlhLbjBjOSvKLhoRhhrxlEmEgDwV+3xB2tQvKHCN/QdfgDTdHBeaZjtNZfXki0vJ42zwZkTkTqjBncvvYZoQo3CmdJs8RDesprBIIVEFKRCUQt3E85q44nndlsKke3VBXGkwXoKinOxx+bkT04iP80Mz9rOoWh/MJ5rwuK9rpLtIx22FfaNoqxljhKiyIqprRlCmByGkWbVGRyMhwLmSRyIhUxmI2SZZ4BH2D9SXLzwpJXt3lHc/6OvPeWqEBCdjqrdKSKXuyGfZsneE7yzvYc3iK5I42054gXM7xuxKReSCh8+gAbmpyc34p8vmW7dEKW9UqGsmcNwo9jI1fuYspDAMbMDBhRbAy7bJtMhSzqseBfLIgZoLVvMEjvRnib88w/2AfESeFYY/FYorPTBZksZhcyuw0Y7FTDdZ2Kfzta0x7fabkgBXTJC1a8jLr0ZKJq8AU+puBCembkJVs8+XAPBNxOqsvT/Xe488/GZnZe9UNvPWG1/C1G35iw/btTMQxE5jnPve5XH311fzzf/7P+amf+ikApJT81m/91knbudOG4sZYlJNIeYGzFlFaIR7VWgast/OtbqQZObEUJX9wuhcTSBqLCTpSYMHrG2SR3ZLMePhrApUadEOSNQReYl1oZGJJJzyigwlCW/yBwYshjyTBao430OhQkk66j1dm1pXtjcE2QrLtkxx5ToTxBBN7cqwUJB2JMNBa1OhAYDxB2hEsXt1mYiGi+WgftdRFQBVQhnFhZfLwKnPfkRy8eoL+Np+sLVCJIy9ebEgmFSq1qMSlHAPkTd+1uCmBGkr8Xs78tzVWCXRDOvF/JMmagvlbl6HbGxkO6DKMc6zSpQ1gRm0ZfrHaVdwMyBx0N8DO5XgxhF23+pl2JCp17Xt5U5I1JcK6cybspolJesZis5OXx9v+iYjMqSAxdfVlE0Gbwsq90E5KgdAC4qyqwohSc1FiHXGx60iLHXP0EkU13zYjehe06b4g4Z+d9122+iss5W2yQndRCtYjkdIjcpkpatR6pTA0pbM49oVmQg6d6L9Itc8Ku2EsRcq9cL8L0L5g5aKQ6McXefP2u7g4XORgPsHABMx7ayhhK3K0JVjjBTN7uKBzhFujXexbmGDq+wFTDwm8nlsoksOcziMD8lta/H3nYl598d2cEywzIYfMqB5Luk1sXSUlksMqvJOyIw/LwAQMbFAdW78S01v2JzNkVnHft3ex45sZ3urQCferz0tXlTDXRqbcomO5GCnBthsMt1rmJ/oYK/BFTmx8WjKp9DYAsfWd8xiWvgmIrU9uN4cG5pmMzUxeHm/7JyMxH//Q5znnJBOYp6N9ORmuY0fjmO/QvvSlL3HZZZfx67/+62zbto23v/3tfOUrXzmZ+3bqYawT4GejKoMtBIi2sIB0JGZskim3G6vQYM3jExzhLCRFI2Jw3oQTkCuBjpS7mfcEIres7QpYO0cRz3jkDcVwVqJDVyHwYmdBbHzBcFtE1paooUYlFi8xWE+QNxXxrA/WCd/9ftGKEIUML5yle25EsOZsg0XuWtOCvqFxOCdYzQlXNVaCCQTCwmBOsXJZh/5lC9h2c+TwZcYmwsUVtn59lbQjGGx1ZCXsarKWRAeCrOkqQemEz3ChQfe8AOO7KlLeVI7EAbohGcwprITW/oT5ryzCgUPunJdON0qtX40cI47VJJ/nRauFE8RaCa2HPewdE0XApy3CPp3BQTLtVkZVasmaYHyXB1PjmYnjJS/H+rcnk2DU5GUTQ5ZVaxeSKJK0suitKi7lYkzZdiZEcb0r7PuFcAGKavR3NvBYvUDx/At2c3njMVoyKWyGjzDvdV0IpBrSkmkl0G/KhEiMfne2w6P2rEP5BKlVVQaMGVvIUcLSlCnWCIZzkpUfGfJPdt3KBeFBJKao3qSVqD02rnKzI1ji+a3dvHzyXn78/Dt42dV3s3KFYW2HT952lQphDCLRTN03YObzDT57+3P5/mA74MT5HTVkSg2YUn1XDSoyV/wiKyCzisT4ZMZjVTd5KNnCYjaJKrZZSlt8+rYr2f5lQ7R/gIhTN9d7CtGMRlbJ4MimkogorB4XnkI3fbyeC6Wc99ZoicyFVlamB5a+CQvSmFXtZGqd9UCNZxpOlDgNHtv6pIteG5HNcrJee8e3v7lBe/LEOOYKzMtf/nJe/vKX8wd/8Af8+Z//OR/96Ef5oR/6IS666CLe8Y538Pa3v/0JA4zOFNg8x3qFjgIKgaQ7RSVpEUI4TUtpS2wtWGexvC5UsbSN9LyR65h1Tlmm3aS/VWEVyCxAGCcex1riOZ/ViyFrG7yhwB8IGodN5ZRlPEEeyeJ3S7jqLJQtLhzSKoFRrjVKGIvxRGGzbEi3T7B0qY/QEHRdlcEqCFZzglVHCGSSI6xH44hAGNBFm5U/MCRTiuwFW5m4dxV5pDtyZsEZIMhDKyzcIjl4dQfjC0fKhLP5FAashGRKMdjqqj3NQ+64kxlFHrkqibCWaNnQ2jPA27dUGCs4++qq97s8v6U7HIwC06rnxla7lKvo6BBUAtGyJW1LgjVDuOoITh5KZG6r/fIGhuwYxI41Th5OR/Xll3dvjNf+k1VjNroSUxOXTQzzONeQoysupTaycIgUhVZx1Ko71j5WWt0riQhD0umI3sUZV03tBqBfZKYERUuYwtKUiXPfEoYZr8eM1yM2flFRkSic05hvc5SwrBkfrSVBQQzK9rI13aCjhhzOOmBh5fKcNzzrLnyh6ZoGGklqPXo6qjQnpZA9ko5wKGk4PzyELzSLl0xwn9iODn06j0nCwsJYppqJh4Zov8FnWlew5Yo1dvpH6MiYAJe1ooUgtr7TusgMZS2LyaQLsbSS2Pgs502aMiWxHn+77xJ6f7eV8+7IaOxeccRl3PGtIJi2rHpZg1XK3QvYIv5AKWSqCZdhpddkRTdJfVnpbAACkVcGA7H1aYqEGNfyFucnlBteY4Nwpgr3//g9t/PH73niasxGa2JOJinaaBz3iGq1Wvzcz/0cP/dzP8cDDzzARz7yET74wQ/yu7/7u7zmNa/hr/7qr07Gfp4SiDBEIAtL3uJBzZj9cFGJyYoWJjtykanISyX4L/4vM1XKaoUQ6ImQrC3w+5asJZC5S7AXxrJ6vqS1xxJ2IVzNMb57zt1cW1Rc2jZDsJI7S06c8Nx4wulNPIFIwHoC44MaZFhf0d8W4PUtMqeoNAikdm1ceUPhD9yEpQY5xpM0DhmyCY9gJcd6ApVY+guKeGqK+W8r1IFlsBk2zdwFH1B7D7Ntqcfwglm65wbkTUG0ZAiGhqwpyVpun/w1S3+LQmWQN0DF0NmTEDy27JKds6wiL851bCyTpjzfValfQFo48pREU8miKuY+yMYRgw4UQde6Frlisc1KULGrXokcVKxRhZ1yHtQEpsbTw1/s/m8njcTUxGWTI9cgc2yuEUFBRkqNizbYNB1tW1a0y8WscZTi/up1c4QKsI2Q3jkB23cd5ILwIFNyQNdEZMKrKigdNSyqKx4dORy9HS5fZWBCpDBEZK7ly4qqWlC2X8miFUsjWMwmuW1lF36Uc+l5e7mq/XAlWAdQ+OsCI4FKPF9WTJoy4fzwEHLeMhv1uaVxAfFsSGuvorGsCZcz0JaphxKEjfh/ln6Y71y5g6unHmFSjY6h1Oq0ZMKK9ohkxpp24v7FdIJb9p3HypE2atlj7nY45+5V5DBD9IejxS5rK3tna8x6R9HSZKHIPkMIRKbxBtY5RwvDwIQoLFNywJpxGpfYBmAoyFSDNRPxSDzL4lrnBL5ENc50bBRxerKWsr1X3cDMO+6k8YtfO6HXfumHPnFGzidPa0ngoosu4rd/+7c599xzede73sVnP/vZjdqv0wKb505gX1ZPiptjW9j1rmsdA7eKU/ydKO2Fi4lGHF2JKasCUiJTTbRk8YeGoKuJZzzSjkuxlzm0Fg3hSubyUZqF6DM3VZuVSlxlBQEy1ZiGh0oMWce1FcjMVC1pfi9HrcWkCx36C5LOHo3KLFa46kjSkchcIVOL8SSmEziRfVLYexZBk94wxxfg9yVpR7D/2gm2fU2g9h2pzg9aO6F9ltG4c0i0p0O8c5JswsP4LsPG+OANIOg5A4LmgQRveYDoD4vgtmz9BJ5m7tyV5GVsBZLcjLQw0k0+VmtEYbSAKMSYucYbGrK2KowKXKuYlUVVK5D0tyra+zQmdDcaKjP4a7WI/5mEsvrydNrHHg9PRmKA4yIyZ+Ik80yHUHJ9QGJZuX+86gyM2snGWmPXzT3SGchY3yOZkOxsDFjwVmnKhNQqTFFN6OqIQGgy6+GLnEiKKs1eYpDCIIX73bU9uffIrAeWwkVLMSAoCEjO4azNo6vTBEHOrtYSmfXQONviqHAJC2W2zuK4KVNHgKyswjPLn6+c3A3Pgnvn5jn82BTN3R6TD0uipRyvnzN9z4DmwZC7H30237zgQnZeeIhnTx1ka9hlzl9DltWjwhb6m8vn8sjSDMkDE8zcCRfuSfC6a875MnFRAqSZc9YsncXKcywLw54ibNqdKAlKQJY54phpZA6N0JGxrokwyKqVzReavgkJhKzOyYpusjeeon9ocwRZ1jhzUZKhz5nf+4E5Zem/Xw7/neOqxpTVlhO1ST4ZeNeVM/DdY9v2hAnMl7/8ZT784Q/zl3/5l0gpedvb3sY73vGOE325TQEhhCMlRYuYtYVOoizpg7tJVgq0RQTlMr6tdCHjE40theWA8INRa5pwgnyZW9KOQvuCrC0wyrlgldUYKAiEdDoZYR3x0KGonM9MoEg7/iiEERdqmTeVc/g6MoQsJ2t7tPY7wmQ9QTIp8RKnpUkmFNGSJm8oZGaQuXtd4ztBvUzc+8rM0jyYE/Qk3XMVh17QZtaX+I8eGjmEFS1zNsvgyDLR0iqNMCjO6VgfcEFMbOJWIS2M3F4Am2YVKaxElCVROfoGQJrK1rr8jNw2LghOpBnBUkrjsMfKs0BoS2ufa3ET2oJn6RRmBjoc9XuLQV2BqbExeCISA5uHlCysXlY7kW0kpHDuiEcTlVy7a5QU6+cLWzhVqrKNrCA95XWvrDYXGhnTDMg6EKms0LVolDA0SchweSipVazoFuByXKSwRGRVxosT+QsikWKEawGLjVfoWFzmS2YV2kp6NuJL+y9iac8U0fyQhspY1U18kTvRP9YFSQpbkSGnsckJina4shozMCGTasCUGhBN5Tyns5+vti7kvsYCuhEwfbdHKzWoQUZjcci2JUl+h8/KBQv8/XkL5FMa2cowsQe5AM8iUsn0dyXb7o3xDx5GDIrMsDJ4WpuqXUwEsjBWkFUYaIVyO2vdZzWmOQLwEsvBgx12nz9HEC4WttRhFfgJjqCleGBcxs6+3iSqV4v4n0l4++9dyR+/5/aT8to/Kt/zhHNKSUrGF+K2/tQ/BuADl7+Vf3Xnx3n51zZvNfBTH/3CMW97XARm3759fPSjH+WjH/0oDzzwAC996Uv5wAc+wNve9jZardZx7+img1JUWjulXBWluPCKMnCsEbmbazV2oxv4oypLYZPsyvyMVtKsAVwivBXuJtrraYSFxqIGJciaHiZwVRMrRPXpWAXe0GXF6FBifImKixUuJVi6xCNvwuxdGlEQIL+vnVg9zUBK4inlhOvakrdcJcJZL0O44lLorRJkbYVuSLQvSNsSHUHzkMEf5IjC3jlrKwrjGo5c0WRWbMF/6IAjLTDSn9giwRjcClbZb1z2fHtFa934iqOR1Qpj2RM+0hVJKt8JqSAQo9wdz3MraeNOcGXlJknxujFT9yvyRsRgwZK1IO1IZB6gUkM8qRDWfS4qdhWYXNUi/hobhycjMTXOQpQ3x5Kx1mJ3zbLWuhV/GLNOli77pdyuzIQptX7SjG6kjXEBvw1oeSkDE2IKYXuM79rApNOt9HSELBLrp2SPKTlACUNsnXtWJdg3smofK4MkV02zqqwcSdsc2jONv6Iws07IXt6wd2RMZhVNmYCBFG+dcL0kLuAsndd0xFZ/ldQqZrweHTXkBdMBM+GA28JdrA1aeIlPpC0qzvFWhvgHVokeEiwohW0EmEAhkxgRZ9jQZemIQeIcK7XGFiGUQoyFSBvjSGXx2dgowDR8TOA5a//i8xC5QcSZaxcHR3CK1whWc4KDPgfTDlc1H64yaGLjs6YbxNYjE86uOjEtJBYljbPor/GMgGv1+jx//J6Tp7v5UfmeJ31+/VxT/Pw1+Dibl7wcL455SL32ta/lC1/4AnNzc/zsz/4s/+yf/TOe/exnn8x9Oz0Yb/kqBeLFTbG1FgFV/gswWhUD978snitbnKDQaxisMIhcIwcZ3tAFNPq93KXTK4lPjlzW6IbnBPhSogY5aujcurAW4wcEq+5vTODay8JVy2CHJZ6SSA0qcYL01r7EWSe3G+QN8IaCvKVY2+G0IHno3L7Kio3xIJ6RJFMCoSGdtEgt8HuSSAinrbGW9u4BzUVXhYq3hKztiphanUIeXnbnqSQVld2yLkJgxgJBlRjZVlrr6viVJXIxkVT6oyLB2lOO9JTnuvzbXLvjLD+rsfaLykGmP8T3FZ3HfPKGon9xyrm7DnMk3U57L2QtQfOQxngCHUmEVlhd2yg/U7BR4v2nwqkkMWW7wbGEo5WoqzAbiPLapHURXOlW/Cvjk7Eb/Grx5ehqTUlqxg1LiteWqUYNYah9jug2C96Ky2CxIalVKGxlO1wSGCkMgdDVTXdHDquwyvKme16sEYmMA/mky47Rbts7l7cR7fcQOYRRSlu5qnup+YhtwKzqsaYb+CInsSGTql9kowxoFdkysfHpqBglTKW78YXmwuggW4IuK2mDe45EBCuSYEWiYirSJpIcm+fIvo8MfHdOsxzRHSMmvu/mAq0BBVGIbYTY0Md6EhN6LrS57TGcUaSTgryIaLESvCGEy67bIFxOkL3ULQR6CutJwsNDJu/3+fyFlzJ96YDLGi7uuFm0sg1MQFMN6ekIjaCpErY1uzw6W7eQ1dhYPJXV8kbirTe8ptJudl/5Ov73T/3SU/7Njm9/87jtlO9+3gu49LvfPqZtj5nA+L7PX/zFX/D6178epc7SUuh4n7HW6/uQ5ahtq5pMxl3GYFSZKYMvxcgCs2ozE8JdDIvVfgDT8FxLWmbIJgIwFr+foSzoUDmvegsyNwQrCVa5Koz1RKUXiRZdpoDMnT4mXNVOW5Ll6MgDAf7AoANHTowHg50CvwutAxqhcRkoxXN4oFIBxoVcmkA6v36LMw7wnQW00BZhBf0LJ+is9Z2ORRx141+EfpbtYngFeSkJjtauojIWGGq1cUTR8xCNCD03QToToQNJ3nD2zkHX6ZRUrFH9DLk2QPQG7gah/I6Wn2mWI7sDWo8KhGmBCNjTXSDyYDjnKk266wI48xZEhxXBY7UG5nTil3fffVpzYE4WThaJeSKx6OM9/mSTXk1iNgjltad0u4Kqdaz6ubThlxStS2WrWPEa1lQOlkWjbTGvKOQgpXHIsq83STznE4mcFZpjafSuMjKjegRFK5cvNAEFkbHOPhkJgXWZJQC+yJlVPbqmgVGSUGbsTmbZffcCUwcL4xlpiGRGU6ZMyKELkbQUhClH4/6udAjzRc6EjOlbl4kCrhKzopskxqetYjpyiC80WxtrPLqtR29tgtaihxrmCCVcxcoYp2GhaPkuMnascYuDRYDb6LwDNgww7Yh4LmI479E7RxDPG4KdfRamukxLTcPLMM7Ch1h7HOy12fPgNO1H20w9mNPY18f6bk4RiaazJ6V/R5uvzl3IhTsWeW64l47M2KLW6Bc5NHuzaQySvgk5r3mEB6ZbPLrx37IamwynilCUOFkk5vq37Vv3++oKXP829z+fgOvf9ubqud99rPOEbWknQmKOFcdMYM5kd7FjhtEgC12LsaO+4zLbZUzcX4rFK5E5jPz5x92yyvYAcGXtNEX4HsFqStbxEZlhuDVCxYagmyEzg+pnqF6CafgII52+pdCPCCRCO71KMqlQmUXkThgvMxzBoHAtG7oVMh15CO0yZJIJF5oZrFnypnCuZJnFG2rSTkDYtYRdy9oOdyOvUkdojCec3mbSI48ka+dKZu/MQLjJdziraG6ZQu05SBUboArditGOvJTaFa1H50hTbQOMrEQ9DxFF5Dtmieci0gmJN3SaHeM5FzWjBPiiMBpQiKkQGU+gBilikCB6A/cRGOMmvyRFHda0coMVEwitiGetO6sa4ml3zMmcJlxSDLaepUS9xjqMV182WsB/qnAiIWlw6ifbZxSkAMYqxSWKCn+l8aOoWpfkxRqsEU8s8i+ry4OYzu6Uhx+b5dCODhcHB2iJFCUtEsOKGelTUuuE+5HI6NugEtmnKGe9bEfp9kDVXjYwAcZKHu7P0jggiZYNWUeQ5k4n0ylcwZxwPUdbgUY6G+UiMLMl3TwUiYwV46oQTZmghCFQOYdsxxEpXPjkjN/n2fMH+U4vpL8QEqx6eCuDkWbF80ZzSJmlYww2jkfnLPARzSb4Htlcm8FCyMGrJeGzV7l07iA7mits8dfoqJhJ1a80Qa51TnAon+D+c7Zy18o2Hnhggc59kzQOWhpLOcFKhtfPmPueYm+4gw+9+BW8Zee3ubrxEC2RkeKycyKZYayk48UMTMC2dvfpfZ9qnFF46w2v4e2/x0nTwZxMHE1engr/bscar/7YHxxTVWYjUXdljsFqA8IlHlfiSilGE4uiICsaIYtTV0w4R7vGVNUEGYweL2/ekxQ1yOjvcHVrb+gyW3TR0uWnbhXJhN5o0U07u0fd9lCDzOWqKIEcONF9tGSdKF+BPzSE+3oQJ6AUKs7RYUR/q4c3tHixs1AebLM097uWKYTT2vTnJN7AYgJoLFqiFctgTjqx/7Rf7Kegf65GaJ+JR131RqWWeEtEc7WNSFJsnLiqix5VsEbny6082jxfpyWq2vE8D6YmGJw3hdAWv5fjDQVeP0M3PLK25zJ0tIXMogr7Z9ceoNCNJsw28Xot1FqMWFkbGQjkILsD2vdbwuUma7tCkinIWuDnlmBZ0FiU+H3LypYN/XrVqLHheLoWnU9EZBZWLwOoKzFPB8V8grXuOljqMUoDEjWy5gdGxjHrLH4t2PwojWDx+rkmPDSg+cA0Dzx3K1c3HqpCHWPro7DO9cs62+QyGR6o3MiwqqqIlKnyEyomEhmzqofCcES3+fbunWx52BCuaHrnSEI/Z97rstM/gsLSNc6+eMU0Wcwn6ciYSKQu/6TIpenLhNj4zKqey07BVXFmijlgYEI0kgkvZnujywOTQ+KZiKyjCBelIyuBj8ARPmtM0XpnYRg7EliQHKE1NBvoyRYrFzc49BLNK5//PZ7f2VO1eilh6cghLZm4qlVxYlOrOMdfZsFb5ZLGfu6Z2sY9F2/l0SMzLD/QZvr7Hu29KUE3Y8u3Ybm/wB8890d43SXz/MT0t9iqekTCMK/61VdhSvURMwM+s/HfshrHiOaOxVOaBfNMIC7jsJ94M9e/7c3c8H/99Q90GJShlhtdiakJzBjKFbHSdUx4vpuECh9+obXTuFTuV2JdO4At26IAYbLCxSxZH3xZbCt6Q4Jui6yjCLoaNcjRkSLreAjbQA1z5DB3zmO+Qjd81CBF9V0blrCWcDlHpYZIulYu4wuUgOajfeRav7rAy0GK0JZ4VtDaZ51FZgTRIUFnj3YVlBlnBFCSl+EWg/ElwZolWjF4Q4NMjWtZE9B61MPvOZc2aS15JImnFVErQqVZMRnr0SRcGh1A4apTCPW1LiyQqcT4zEzSv2ga4wua+4aFA5p7LeEr/LXcta7lBlHaVucGMcywSqAbflWVMVva+EIglrvOUrk8J0CQpMwsh5iGT/+cBlnLEZfG4ZzlZ/mks3V68unGyW4jO1Xal6OxEW1kGzkZPxmRqUnMCUIbkMYRlHHHscIVa5y4VBUaM2b4AmOLXyNDGYx1iz9SIoYp0/drvvjIs7hm4gEWvBUX5Gh9F/hoRGWjHFvf2SxTPF+ETZYEIy3cwcBZMJftT5/YdyWtbzRpPTYAJZCZj6dcxeKIbnOOt8Ks6rvKhZ6gI2OksFU+TGZDQFctVWX+TEcNyaxXhVz2TcCaaRDJDE9qzpte5nu72vSWPJr7AmSSOsF+kTsGReVKa0doiq4IEfjgeZhOg9VLOqy8esAvXP41nh3tR1tZWC57FXEryUuZW+OsoQXGSqbUgKvbD/P81m4em5vh6/Pnc3fjXPyBR+NgSngkZes3c+IHA/7386/iGy88l2u3PsQL2o/SkUNH3ExIJMcyf2qctThdFe2NaCN7OuRlHB/612/g+re9gb/98+0/8NxGE5mawIzB5rlzLjHGZYkMY7eaoyRkekwYWCC3ozYA6XqpSscTm+cjIpTlrnJTWgfbDBGnhIsDjN9CDV3FZThfrIT1BVZJbKgQgxSRGLy+yzPBc/aZVrrQSitHrmVWKmcKsDaAJHUXdmORq31aBydZbTmnraBnSJRk5tGM6OCQdCok7QTIFLKOcFWgHuQNi1XQ2pe5trBi/k06zoXMG+DyY3yXq5I3BPlUiOwNiyDJMQJQ2CyX1S2bjybsqpolBXRaDM6fwhtovH6GHLpQM9MujjnOi/wXsEo657A0h0JPJDOLSDTCGKwnyWaa5JMNZMNHHe5iB8VKXaFXEr0BMvCZ3L+MmWqTTTfI2h7BqqUzqEX8ZzOOJi9nUvvYyVpJfLyJsKzGQF2ROS5YWyyajBm9HJ0ldjSk/EENIYweU3IUwgiIXNPcF3PonjbfuXAXb5g6QkukGCPpeE5TslZUR1KrUEKgraxIDkAgtLM/LkhBS6ZFBUdzd387e247hx13Jqh+hmm4dmQpLOd4zrRFYQmFZslEY5ksHkoY+jpiRvXcoVmfQ/kEiRkRB3CtbS019nfKQAB+R7P/nAlWl2aZuccnWGbUOla0I9u0cLcsK+zGuCy3VpOVS6c48COaX7j8a1zVfIjMeqyYJmsmQhctXpn1CIqwzvKsx4CxEo1zZSuJSEfGtOdjli9psJhsZfaOkMZhl1fTuX+V9iOK4a0zfPGCLXzikquY3rHKc+YWMVYwEwz4ykPbgK8c23enxknBqazCnEwb5Y3GRpGXo1/z8UgMbByRqQnMGISSCCHLri1HXoQoyv9ylAdT9uIa1xZgs3x0Ew5gTdUaJcq7fmtcJaZwRrFZhlrqEjZ98paHUYJ0QhB0LSK3yCRH2NF+gHM2Mw0fKwXGl2TTEm9g0KET8AerOcHeFVjtuWMohey5JjqUYkWA39PohqS9NydYTTGhh/UkjSOaPHIuZcJA44DABJC2QWx1E060XNogg8whmRJ4iZtIvNgFQw7nA7yVBmqtXziR5SNHNqXc2RBFib/UFJXnP4pIz5lCpgY1zFHd2LWFtQN05GGVwIl5ZNVmYQVVdcYWx2tDhcX97PXcypcJPcRUG5lmzu65DLsszg/WINOMsDsgBFqBT+Yb6tu1049TJeZ/y66fP6UkZrPaKj/Zat7RZGb89xpHQUmEFdiqD3hMC2PsSPdX6irL56xxF7bKelmuf1zJUTXHGLzlAbN3NfjEec/nwhce5JJwP0ClKyktjjWSrLguluSlb0Km1KAiE6u6xZppkBifewdbuembz2XH112rmogzZJoTrDXpxSErpklHDkmRpFbySDbPobyDsS5fRhctcmumUelgwLWvlSn2LmDTOZ75QlcVoGmvz6QakG1T/PVKi3gmIDgYYNf66ypUVUioLJw6fQ8m2uSzbVaeJXnxZfdxZeMRtJWs6CYr2hGYjoyJcPbQpfFA6dr2aDoH4EwIinNopPt/u7/Mjyzczx2NAd+b2snsN3za+wVeL0V2h7SX+7Tu99j69QbD7ZPctWOWtAN+HxqPjlrKapx9OPqa+fEPnVwb5aNxKh3JjhXXv23f47aUlSiJzImiJjDjELKYWEqyUbQnlUFYVetYQWZgndBynb2yUiN9TInyZt0UbVW5xltcxeycJm96dPbkYJ0o3jQ85DDHtEJknDvXL2sxgUfe8kgnnO0xVuL3NH43wzvUhbXiImkKC0kAY1BxTtqJ8GKDGrrMF5cLYwiWNLrpkzUD/DXXatZ5zOly8kgwnHfuZKXzV9jVDLZ4LkRtCecyZi0qtSRTEnlem4lDK2CzwqXNFMJLU52H0pK6aq/zPPTCNKvnRXiJpb1HYwPn8Ja3nPWxDgVSK2Rq8bsZKtGIYVa1+Tly5JzT8CRWUH1uMtXodgh6Crmy5rIYSgIlBaQGKzQMhu7z7q4hZN1CdjbidLWNbRROZR/3k6EmL08BUYj4rcHlWRWGLuXcUAr2y6wR+SSVlxLlwk8JaxFJRueRAYNvtvn4thfyS+fezLzqEomcuBDma+vIi49GCVvcsBvXDiwTOoWTWGY9FrNJPnvgcvZ9eQc7v53TWBy6JPvCFKV1oMOhvRPcdt75nB8e4opoT5Xx4gsNQldVlrI9LLMeCsus6hX5KD4DEzCp8qoaojB01BBtJS2Z0JQJHRXz0M459s2cT7sZICkdKovjV8pNc8Y6Q5cowrQi1s5tkl4y5CVTD5EVRgVHdJvE+MyoPh01rPRArq3MVaiO5G2W8haZVYXAf0gkM7SVKGGIRM5zm7vZFqzQ9hJukRfB1z38tRA/07C0Ct0Mb3WNzmJA6+E2JvRQq0P0ytLT/07VeNrY6CrMk5GGU627ORGcjOrLOD70r9/AX+w+OpdmY1ATmHFojdWjVS8hClGlkhVRKVe+KhcyKRAqGL1GuZKW5QjfcxfYsoWsRBFsaZMEYQzBwQCRN0lmCmFlubqUK3SkkGkOBtcO1VIkEwqVWtr7U1QvRa30XBUhy7AloSpW9fA8kBK53APbpr/FI1p15MSqwv2raG+wylkty1zgDdw2KhFVdah3jiRoOQ2M9RyhkTkgQPuCoGcYBIK1nYr2QxOIA0dcK5kVI6KQjZ3H0qc/8BG+TzrbQGpHmvrbQ5oHXbhnOlmkGwfuPbDWVafKFUtPVa0VIsuQQqD9AJnk1aqn9SRykKEnQoS1iKXVkdV12eJhjSMypVZp3E2uxmnFRlRhjoW4lBfZU1WJOR1VmHLCfbKJtXYp2wBoMxLcG7veKtmOFrdEOTeUi2TlNamyVC7bz2RlxW+tdWHJAKFADlJm7knZP7mD/+dVL+f/2PZ1ptTA5a5Yn0HhNDalBlVGDKJwJStu7vdlU3y/t50v3Xsxk7dG7PxOH281dvua5VWbVrjYZ+6bU/yvxou54sLHaC0kLHirwMhxzBQ6F4MkUk7fUmJCDuljkEUVRgrjzAYEFVFIrUIXlZtrZx7kQ5eeR3tfROtwY3RdHjtH5XxsZYYVgt4OycsvfIAroj3uWCXE0jmmdZQT7vvoscYxJ8PMrCKSGUnusZo3isyaYdVGVjq5zXtdfnjmXsIrcv5eX0rQC2lrgz9MKrtnO4iRxiI9BXGCTWsdzGbBRhGLzXZ9vPZvbuMfXnvV6d6NH8DJIjE1gRmD1RqQVSXFlhWT0h65FA5meRFIphGo9XbLUri2Mc8b9SuXrWOiyI7xvZH/f64RR1YI+kNUr0M+GZK3lAva8iQ6FBi/idfPSac8gpWcxt6+swkuqy2ly02er58EwR1HHCOEoL03ZflZIaxA1pCotocXC2TibJmNJ9CBqDJq/F6O9QReXzNY8OntkKSTgmDVEh2y+ANL0NNYIcibEpFbgq6r4GQzDcLVyOmIjiICFSmsWtxybKeFDiThisEEzpSgNAxQicseENqSTEjaPY1MNSI32MjDSIGMs1GLX65Rq0OXzgwuYwcD2iIlZNMN/CSF5XTU4jbe3qHLitET2JjWOC0oCcjxEJkTrbac6nayU4my1eBYJvHN2JZwxsCOifOrx8z6rKuyug/ueijs+nmmDMFUChEoRBCM8k2UckYtRWUnWIpZuMWye3A+77l6nqt27uG85hGm/T6Z8TAIVpTLXVnNGyTGY388yQMrcxx+YJbOI5JwybLrUE60uIrsDov8MukyVoobczFImLp/SDLV5HvxLr7WOsLrp75DJLLKhrgUy7dkSiQytnhrrOgmsiBNHTWkJVJWTJPUKiKROSMBqVzAJRaNYFb2mWn1+PwVz6F773YajzVdG3Cagc6qlm5nQ20Rvodu+axdlPOyyftpCUcaOjLGRzNlByhhaIm00txoRGV6EMmMOW8NgNW8wUrWZJ+chgDmvS5NmZEZRUsktGTCj812yZ6r+Nb+5xB0A7xl55JGVpBLYyDOXdtyvSC2qXAiJOZEroXHsmC0UbjpitdxPHGpJ7v6Mo4P/es38JWX/uMnzIs5EdQEZhyFvsNqzSjMZERYgPWBZLCO2FSPlRWNJHVkSCqQqgq5tFk22l4brJWwliF7fcKDIWHgYz1Xmaj2K8sJ9hpnF2lGzmgVyomwrLyU+6Upqj0p0e4V/HOcN3DQM2RthfElKlQuawaQucUKgW5IwmUNiateREsSmYMOwO9bVGLwhhrjS8AiM4PMLf7AkLUlw/mA8BGx/qJd2oSO5eJU51BKvKFGGEuG51zGMoP0JVkLwhVDuJxipUA3FHnLxz+cIUxxE2DABB5qmLhzB4gkd+nJQiByQz4ZYf2COLYbiNUemHz9PpYks8amxeORkpLUnOntYU+Fzd6OUOMJUF2LbaX9W2chD6N25DJXbNyaX0iE72M7LWwzxATKLdpkGuMrdDMAAd5QM397Qry7wV3nXMo3dhrMXIr0LJ32ECkNSeYz6IWw4tN5SNHeq7ngUIq3miC0Wxgiy13gspRYIVyFv7guijRDrcUEqw2CJcUj/VnWJhp05LDInFFk0kNbQVa4nkGhu7FghKSjhvgiZ7u3zIpuYpAVwVHWVlWYzHp05JArpvfxpcY5rq1YCFfZ9z2npRTCVbGUm2fzto+adASlWxgLSASRzMA40wJZpFL7IictdDdruoEuHNqaMgUPunnEkaxVbKvJrEdatMuVFZmLWwe5ZfoSTCDc/uUawdgCpiky5M7WAPAzGOOE5Nq/uY2brnjduuf/0fc+uykrGmcq/t2OtQ19vZrAjEF4HkJ4I2JQCvVhJNyv8mFk1QblLJe9UclfSCe0lD6i3UJvmSJv+4jcVu1MwlpEavC6MWK150iNsS6MK46L9xi74EkxqghpJ+ivJrzSYnOMEKzLWPED93O3x8wdEb0L22glsFIwmJcEfUm4kqMSy3BOIrSlccRgQoVRbl9VrAlzgzAU2hlnY2yFQA1zdNOJ7K0EHQniKbCB785XPmqhq9rxSpIFzvKyFZFOePhrOcFahvGcw5jXzytyhbV43QRhQozvXNrkIHWTq5RO9xL6bhLRrm0AKQvtkO9cyzKDyA0m8vDaTexKd2QmoBQ2zUbtbeopHINqbCiuzZInfO4f/PBJ//ZMJi6no42sJkKnBtba9RlhQhT5MHJULa9axcptXIVeBIUpSV603zYikp1TLF4Vkk5ZGovO9MWLLcGaGWWGGUu4qomWcua/azG+xCiBjiaxEpoG5ocGlWR4Kz1kko3s7o1xhEC7/48O4bTWIpIUuSZp7++QN3z2did4dHaO50R7SQtR/GI2yaQa0JKOSKwZ147lBPOarmkQF63XfRMQCM2+bJqBCVjTEZHM8IVmXzLF9nCFoQ4wvvMwAIoFumK/ikq78DwIfKwCz9OV61iGqrJqyoBJXzjtTRne2TcB9wy3cXd3gUwrnj25SChzhtpnwotRwrCUt4mLoOvY+hgryaziUNrBTmWkHZ9wIsKz1pnW5No5kJbGPzVOKX76340seP73I5al/375k27/D6+96nGqFzV52cyoCQyjILEsjyFU2MQFQAohsMKOWpMsiIJICBWMJh6APBsRGWFBKJhokW1tk7UhWO27DBcp0S0XCAmQTivM/JSrXiwPEQeXi1YwBVni3qOo4JQQgcKmydjkYnHWYLawmaTIqPHAasAirMRmGeLAAUI1S397w60YDQRiKYfVFKUDor50dsi5Jp6SGGVpHHaCeStwxMBaspaPlMbd8Mcpog94AkSDcI9EB4J4UuH3ZLGLbjWPPC3aEgSYDJSHQJCrjMzEYA2ZB8FyTO67CpHsa6ySxG0PPRvgr2XOQtrmKJ24FoIohDxGWIORlnwiQAcSv5thPYlVGq83hMygA4X1FaalECuZmxVtDkaBGmmIcp2t+34803GyzsOLjxwCIO9urqTqt+z6ef7krv/7dO/GOnTXTv2N0IG751m49NBTblePE4fyPOQmxQq7zujFoTRzqf5i/WKJMYVTo1sIwxfgSUxTsrzNMGwNEUPQsSD2QAUWMKjUOIvj3GCMRQ1zRD/D03q0yKOk07OUbWjWosc/t9JowIzNbda6ToF81GEgEo3/yCEmhi32d9r8t+UX8Kz5nUQq55HVGVYHEefNLnFR5zAzfo+DySQAq3nEPUeKLgClWelHKGWZag7pJSG91Qb0PWyo8ZsZQhlmO7McWWsy9cgAu9olz1xrm8uAyYFigQ6LlRIzHJLe5/En4fMAaPoZB/tttBH40jDIfGaaA+YafVLt0U1DlgZNeodaNB/xyRuWe7ZNudiAXDC5tcfOyRWkMCz2O4ReTqoVR1Zb5ElhRf2IRS4NsKsDdD92lSFjCs2TBavJydd9P57pONnn4c9+d3OZjDR3LHLg7vnq9x+76+MAfPqytz7h37zzf36G//J/vJ53/s/PIK59FW849//DXz/6bv7g/MYx/f1T4W//fDt/ctf/TUvu54O//c/o/8x+Wv9rGwD/5942//GcHje+98P0zbbqb372sl953Nf6/Iv28p9+4X9h//rHALjxvR/mns/9Fb/z63fz4r/4ewBufcsPH/O+Hcv3Q9h6NPHQQw9x4YUXnu7dqLFJsWfPHnbs2HG6d+O0ox4nNZ4M9ThxqMdJjSdDPU4c6nFS48lwLOOkrsAAMzMzAOzevZvJycnTvDdPH91ul507d7Jnzx4mJiZO9+5sCE7HMVlrWVtbY/v2xw9jeqahHiebH/U4Of0428YJnH1jpR4npx/1ONn82OzjpCYwgCwE+pOTk2fFl67ExMTEWXU8cOqP6Wy5sG4E6nFy5qAeJ6cPZ+s4gbNvrNTj5PShHidnDjbrOHmc5KwaNWrUqFGjRo0aNWrU2JyoCUyNGjVq1KhRo0aNGjXOGNQEBgjDkH/zb/4NYfjkVq1nCs6244Gz85jONJxtn8HZdjxwdh7TmYaz8TM4247pbDueMxFn42dwth3TZj+e2oWsRo0aNWrUqFGjRo0aZwzqCkyNGjVq1KhRo0aNGjXOGNQEpkaNGjVq1KhRo0aNGmcMagJTo0aNGjVq1KhRo0aNMwY1galRo0aNGjVq1KhRo8YZg2c8gfngBz/IeeedRxRFvPjFL+Yb3/jG6d6lJ8SXv/xl3vCGN7B9+3aEEHzqU59a97y1lve85z1s27aNRqPBddddx/33379um6WlJX7mZ36GiYkJpqameMc73kGv1zuFR+Hwvve9j6uvvppOp8OWLVt405vexL333rtumziOufHGG5mdnaXdbvPmN7+ZxcXFddvs3r2b173udTSbTbZs2cJv/MZvkOf5qTyUZwzOlLFyNo0TqMfKmYZ6nNTjpMZTox4n9Th52rDPYHzsYx+zQRDYD3/4w/auu+6y/+Jf/As7NTVlFxcXT/euPS4+97nP2d/5nd+xn/jEJyxgP/nJT657/t//+39vJycn7ac+9Sn73e9+177xjW+0559/vh0Oh9U2r3nNa+zznvc8+/Wvf91+5StfsRdddJH96Z/+6VN8JNa++tWvth/5yEfsnXfeab/zne/YH/3RH7W7du2yvV6v2uYXfuEX7M6dO+0Xv/hFe9ttt9mXvOQl9qUvfWn1fJ7n9vLLL7fXXXedvf322+3nPvc5Ozc3Z9/1rned8uM523EmjZWzaZxYW4+VMwn1OKnHSY2nRj1O6nGyEXhGE5gXvehF9sYbb6x+11rb7du32/e9732nca+ODUcPJGOMXVhYsP/pP/2n6rGVlRUbhqH9sz/7M2uttd///vctYL/5zW9W2/zN3/yNFULYvXv3nrJ9fzwcPHjQAvZLX/qStdbtu+/79uMf/3i1zd13320Be8stt1hr3YVFSmkPHDhQbfOHf/iHdmJiwiZJcmoP4CzHmTpWzrZxYm09VjYz6nFSj5MaT416nNTjZCPwjG0hS9OUb33rW1x33XXVY1JKrrvuOm655ZbTuGcnhocffpgDBw6sO57JyUle/OIXV8dzyy23MDU1xVVXXVVtc9111yGl5NZbbz3l+zyO1dVVAGZmZgD41re+RZZl647nkksuYdeuXeuO54orrmDr1q3VNq9+9avpdrvcddddp3Dvz26cTWPlTB8nUI+VzYp6nNTjpMZTox4n9TjZKDxjCczhw4fRWq/7AAC2bt3KgQMHTtNenTjKfX6y4zlw4ABbtmxZ97zneczMzJzWYzbG8Cu/8itce+21XH755YDb1yAImJqaWrft0cfzeMdbPldjY3A2jZUzeZxAPVY2M+pxUo+TGk+NepzU42Sj4J2yd6pR4wlw4403cuedd/LVr371dO9KjRqbGvVYqVHjqVGPkxo1nhpn+jh5xlZg5ubmUEr9gLPC4uIiCwsLp2mvThzlPj/Z8SwsLHDw4MF1z+d5ztLS0mk75ne+85185jOf4e/+7u/YsWNH9fjCwgJpmrKysrJu+6OP5/GOt3yuxsbgbBorZ+o4gXqsbHbU46QeJzWeGvU4qcfJRuEZS2CCIOCFL3whX/ziF6vHjDF88Ytf5JprrjmNe3ZiOP/881lYWFh3PN1ul1tvvbU6nmuuuYaVlRW+9a1vVdvcfPPNGGN48YtffEr311rLO9/5Tj75yU9y8803c/755697/oUvfCG+7687nnvvvZfdu3evO57vfe976y4ON910ExMTEzznOc85NQfyDMDZNFbOtHEC9Vg5U1CPk3qc1Hhq1OOkHicbhlNmF7AJ8bGPfcyGYWg/+tGP2u9///v2hhtusFNTU+ucFTYT1tbW7O23325vv/12C9jf//3ft7fffrt99NFHrbXOzm9qasp++tOftnfccYf9sR/7sce187vyyivtrbfear/61a/aiy+++LTY+f3iL/6inZyctH//939v9+/fX/0bDAbVNr/wC79gd+3aZW+++WZ722232WuuucZec8011fOlld/1119vv/Od79jPf/7zdn5+vra8PAk4k8bK2TROrK3HypmEepzU46TGU6MeJ/U42Qg8owmMtdb+wR/8gd21a5cNgsC+6EUvsl//+tdP9y49If7u7/7OAj/w7+1vf7u11ln6/e7v/q7dunWrDcPQvupVr7L33nvvutc4cuSI/emf/mnbbrftxMSE/bmf+zm7trZ2yo/l8Y4DsB/5yEeqbYbDof2X//Jf2unpadtsNu2P//iP2/379697nUceecS+9rWvtY1Gw87Nzdlf//Vft1mWneKjeWbgTBkrZ9M4sbYeK2ca6nFSj5MaT416nNTj5OlCFAdUo0aNGjVq1KhRo0aNGpsez1gNTI0aNWrUqFGjRo0aNc481ASmRo0aNWrUqFGjRo0aZwxqAlOjRo0aNWrUqFGjRo0zBjWBqVGjRo0aNWrUqFGjxhmDmsDUqFGjRo0aNWrUqFHjjEFNYGrUqFGjRo0aNWrUqHHGoCYwNWrUqFGjRo0aNWrUOGNQE5gaNWrUqFGjRo0aNWqcMagJTI0aNWrUqFGjRo0aNc4Y1ASmRo0aNWrUqFGjRo0aZwxqAlOjRo0aNWrUqFGjRo0zBjWBqVGjRo0aNWrUqFGjxhmD/xeMcOO7tIjeNwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -80097,8 +80160,8 @@ " # break\n", " raw = zarr.open(f\"{run_path}/validation.zarr/inputs/{dataset}/raw\")\n", " gt = zarr.open(f\"{run_path}/validation.zarr/inputs/{dataset}/gt\")\n", - " pred_path = f\"{run_path}/validation.zarr/{validation_it}/ds_{dataset}/prediction\"\n", - " out_path = f\"{run_path}/validation.zarr/{validation_it}/ds_{dataset}/output/WatershedPostProcessorParameters(id=2, bias=0.5, context=(32, 32, 32))\"\n", + " pred_path = f\"{run_path}/validation.zarr/{validation_it}/{dataset}/prediction\"\n", + " out_path = f\"{run_path}/validation.zarr/{validation_it}/{dataset}/output/WatershedPostProcessorParameters(id=2, bias=0.5, context=(32, 32, 32))\"\n", " output = zarr.open(out_path)[:]\n", " prediction = zarr.open(pred_path)[0]\n", " c = (raw.shape[2] - gt.shape[1]) // 2\n", @@ -80119,7 +80182,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ffa84147", + "id": "90625096", "metadata": {}, "outputs": [], "source": [] diff --git a/_static/js/versions.js b/_static/js/versions.js index 818bc9969..4958195e0 100644 --- a/_static/js/versions.js +++ b/_static/js/versions.js @@ -1,6 +1,6 @@ const themeFlyoutDisplay = "hidden"; -const themeVersionSelector = "True"; -const themeLanguageSelector = "True"; +const themeVersionSelector = true; +const themeLanguageSelector = true; if (themeFlyoutDisplay === "attached") { function renderLanguages(config) { @@ -8,10 +8,14 @@ if (themeFlyoutDisplay === "attached") { return ""; } + // Insert the current language to the options on the selector + let languages = config.projects.translations.concat(config.projects.current); + languages = languages.sort((a, b) => a.language.name.localeCompare(b.language.name)); + const languagesHTML = `
Languages
- ${config.projects.translations + ${languages .map( (translation) => `
diff --git a/autoapi/dacapo/apply/index.html b/autoapi/dacapo/apply/index.html index a55013008..561af160d 100644 --- a/autoapi/dacapo/apply/index.html +++ b/autoapi/dacapo/apply/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/argmax_worker/index.html b/autoapi/dacapo/blockwise/argmax_worker/index.html index 8d3d0e249..4639b35e6 100644 --- a/autoapi/dacapo/blockwise/argmax_worker/index.html +++ b/autoapi/dacapo/blockwise/argmax_worker/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/blockwise_task/index.html b/autoapi/dacapo/blockwise/blockwise_task/index.html index bdb68250d..c73011867 100644 --- a/autoapi/dacapo/blockwise/blockwise_task/index.html +++ b/autoapi/dacapo/blockwise/blockwise_task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/empanada_function/index.html b/autoapi/dacapo/blockwise/empanada_function/index.html index fba445cb0..d9b33709f 100644 --- a/autoapi/dacapo/blockwise/empanada_function/index.html +++ b/autoapi/dacapo/blockwise/empanada_function/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/index.html b/autoapi/dacapo/blockwise/index.html index 71ed448ea..86d798aa4 100644 --- a/autoapi/dacapo/blockwise/index.html +++ b/autoapi/dacapo/blockwise/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/predict_worker/index.html b/autoapi/dacapo/blockwise/predict_worker/index.html index c61c46934..c9334adc1 100644 --- a/autoapi/dacapo/blockwise/predict_worker/index.html +++ b/autoapi/dacapo/blockwise/predict_worker/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/relabel_worker/index.html b/autoapi/dacapo/blockwise/relabel_worker/index.html index ab4d1d48a..b865a0ce5 100644 --- a/autoapi/dacapo/blockwise/relabel_worker/index.html +++ b/autoapi/dacapo/blockwise/relabel_worker/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/scheduler/index.html b/autoapi/dacapo/blockwise/scheduler/index.html index 6d93a8350..69652005f 100644 --- a/autoapi/dacapo/blockwise/scheduler/index.html +++ b/autoapi/dacapo/blockwise/scheduler/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/segment_worker/index.html b/autoapi/dacapo/blockwise/segment_worker/index.html index a99886593..7755272ee 100644 --- a/autoapi/dacapo/blockwise/segment_worker/index.html +++ b/autoapi/dacapo/blockwise/segment_worker/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/threshold_worker/index.html b/autoapi/dacapo/blockwise/threshold_worker/index.html index 447617fe8..d9230bd50 100644 --- a/autoapi/dacapo/blockwise/threshold_worker/index.html +++ b/autoapi/dacapo/blockwise/threshold_worker/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/blockwise/watershed_function/index.html b/autoapi/dacapo/blockwise/watershed_function/index.html index 3d8a32e7e..0fa4cbd78 100644 --- a/autoapi/dacapo/blockwise/watershed_function/index.html +++ b/autoapi/dacapo/blockwise/watershed_function/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/compute_context/bsub/index.html b/autoapi/dacapo/compute_context/bsub/index.html index 21529e072..9d3b3d904 100644 --- a/autoapi/dacapo/compute_context/bsub/index.html +++ b/autoapi/dacapo/compute_context/bsub/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/compute_context/compute_context/index.html b/autoapi/dacapo/compute_context/compute_context/index.html index 1feb4b17d..6b0b34fdf 100644 --- a/autoapi/dacapo/compute_context/compute_context/index.html +++ b/autoapi/dacapo/compute_context/compute_context/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/compute_context/index.html b/autoapi/dacapo/compute_context/index.html index b2b7e320a..be0dd2f6a 100644 --- a/autoapi/dacapo/compute_context/index.html +++ b/autoapi/dacapo/compute_context/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/compute_context/local_torch/index.html b/autoapi/dacapo/compute_context/local_torch/index.html index 6979f78fd..275075c9f 100644 --- a/autoapi/dacapo/compute_context/local_torch/index.html +++ b/autoapi/dacapo/compute_context/local_torch/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/architectures/architecture/index.html b/autoapi/dacapo/experiments/architectures/architecture/index.html index 2deeb1513..b405ba49d 100644 --- a/autoapi/dacapo/experiments/architectures/architecture/index.html +++ b/autoapi/dacapo/experiments/architectures/architecture/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/architectures/architecture_config/index.html b/autoapi/dacapo/experiments/architectures/architecture_config/index.html index c5a6de090..becd5dcf7 100644 --- a/autoapi/dacapo/experiments/architectures/architecture_config/index.html +++ b/autoapi/dacapo/experiments/architectures/architecture_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/architectures/cnnectome_unet/index.html b/autoapi/dacapo/experiments/architectures/cnnectome_unet/index.html index deef08c37..3682966a5 100644 --- a/autoapi/dacapo/experiments/architectures/cnnectome_unet/index.html +++ b/autoapi/dacapo/experiments/architectures/cnnectome_unet/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index.html b/autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index.html index c0230aadc..06ccd63fe 100644 --- a/autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index.html +++ b/autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/architectures/dummy_architecture/index.html b/autoapi/dacapo/experiments/architectures/dummy_architecture/index.html index c3909cc3a..0f055a776 100644 --- a/autoapi/dacapo/experiments/architectures/dummy_architecture/index.html +++ b/autoapi/dacapo/experiments/architectures/dummy_architecture/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/architectures/dummy_architecture_config/index.html b/autoapi/dacapo/experiments/architectures/dummy_architecture_config/index.html index 7193d4450..c1e1ab9fb 100644 --- a/autoapi/dacapo/experiments/architectures/dummy_architecture_config/index.html +++ b/autoapi/dacapo/experiments/architectures/dummy_architecture_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/architectures/index.html b/autoapi/dacapo/experiments/architectures/index.html index 11fcd3732..975d7e2c8 100644 --- a/autoapi/dacapo/experiments/architectures/index.html +++ b/autoapi/dacapo/experiments/architectures/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/annotations/index.html b/autoapi/dacapo/experiments/arraytypes/annotations/index.html index a3c5411f2..8af4a2bc8 100644 --- a/autoapi/dacapo/experiments/arraytypes/annotations/index.html +++ b/autoapi/dacapo/experiments/arraytypes/annotations/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/arraytype/index.html b/autoapi/dacapo/experiments/arraytypes/arraytype/index.html index 8b7cca13b..60817223e 100644 --- a/autoapi/dacapo/experiments/arraytypes/arraytype/index.html +++ b/autoapi/dacapo/experiments/arraytypes/arraytype/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/binary/index.html b/autoapi/dacapo/experiments/arraytypes/binary/index.html index 99f51d82c..2c19a18f5 100644 --- a/autoapi/dacapo/experiments/arraytypes/binary/index.html +++ b/autoapi/dacapo/experiments/arraytypes/binary/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/distances/index.html b/autoapi/dacapo/experiments/arraytypes/distances/index.html index 4c6f9fecb..676e63dc5 100644 --- a/autoapi/dacapo/experiments/arraytypes/distances/index.html +++ b/autoapi/dacapo/experiments/arraytypes/distances/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/embedding/index.html b/autoapi/dacapo/experiments/arraytypes/embedding/index.html index 95cabdd19..7df7d3e77 100644 --- a/autoapi/dacapo/experiments/arraytypes/embedding/index.html +++ b/autoapi/dacapo/experiments/arraytypes/embedding/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/index.html b/autoapi/dacapo/experiments/arraytypes/index.html index 5cdb1cf85..345212302 100644 --- a/autoapi/dacapo/experiments/arraytypes/index.html +++ b/autoapi/dacapo/experiments/arraytypes/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/intensities/index.html b/autoapi/dacapo/experiments/arraytypes/intensities/index.html index 9cc83f132..871538bea 100644 --- a/autoapi/dacapo/experiments/arraytypes/intensities/index.html +++ b/autoapi/dacapo/experiments/arraytypes/intensities/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/mask/index.html b/autoapi/dacapo/experiments/arraytypes/mask/index.html index 66dec60dc..0aec9d17c 100644 --- a/autoapi/dacapo/experiments/arraytypes/mask/index.html +++ b/autoapi/dacapo/experiments/arraytypes/mask/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/arraytypes/probabilities/index.html b/autoapi/dacapo/experiments/arraytypes/probabilities/index.html index ddfe21e0d..62c9787a4 100644 --- a/autoapi/dacapo/experiments/arraytypes/probabilities/index.html +++ b/autoapi/dacapo/experiments/arraytypes/probabilities/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index.html index 242f405aa..66d3e6c5f 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index.html index 9c79854e3..1ac52137c 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index.html index 7daff1ecd..567d358c9 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index.html index 41dc26b33..e3c275724 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index.html index ba3f1ea9c..155a47c70 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index.html index 93f8352d5..4103824a0 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index.html index 7cb5aec84..42474ffe0 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/index.html index 44d7cfe58..37406ee4b 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index.html index 9c8fe3d3f..2d29af987 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index.html index f2eba9f3a..72e479c8a 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index.html index 36cadddea..6781e3e5b 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index.html index 8cc2bd63d..d4d6ab6d4 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index.html index 104230608..7d002ddff 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index.html index 95dba9cd4..37f61c2bd 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index.html index 7a1d9e3a6..0ab51d62f 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index.html index 7841e7fa5..273d338c9 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index.html index 5b5b85753..6d05d9521 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/dataset/index.html b/autoapi/dacapo/experiments/datasplits/datasets/dataset/index.html index df8f4418a..0a492a056 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/dataset/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/dataset/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index.html index ec203b7d7..7feebede4 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index.html b/autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index.html index cdff8aece..137474e82 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index.html index 7e7be8962..3afa40fef 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index.html index 0ae6b809d..6aff33f3e 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/graphstores/index.html b/autoapi/dacapo/experiments/datasplits/datasets/graphstores/index.html index bf02a6849..00d663eb1 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/graphstores/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/graphstores/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/index.html b/autoapi/dacapo/experiments/datasplits/datasets/index.html index 7a1999f55..49bededcd 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -129,6 +130,7 @@

    Submodulesdacapo.experiments.datasplits.datasets.graphstores
  • dacapo.experiments.datasplits.datasets.raw_gt_dataset
  • dacapo.experiments.datasplits.datasets.raw_gt_dataset_config
  • +
  • dacapo.experiments.datasplits.datasets.simple
  • @@ -154,6 +156,9 @@

    Classes

    RawGTDatasetConfig

    This is a configuration class for the standard dataset with both raw and GT Array.

    +

    SimpleDataset

    +

    A class used to define configuration for datasets. This provides the

    + @@ -635,6 +640,90 @@

    Package Contents +
    +class dacapo.experiments.datasplits.datasets.SimpleDataset
    +

    A class used to define configuration for datasets. This provides the +framework to create a Dataset instance.

    +
    +
    +name
    +

    str (eg: “sample_dataset”). +A unique identifier to name the dataset. +It aids in easy identification and reusability of this dataset. +Advised to keep it short and refrain from using special characters.

    +
    + +
    +
    +weight
    +

    int (default=1). +A numeric value that indicates how frequently this dataset should be +sampled in comparison to others. Higher the weight, more frequently it +gets sampled.

    +
    + +
    +
    +verify()
    +

    Checks and validates the dataset configuration. The specific rules for +validation need to be defined by the user.

    +
    + +

    Notes

    +

    This class is used to create a configuration object for datasets.

    +
    +
    +path: pathlib.Path
    +
    + +
    +
    +weight: int
    +
    + +
    +
    +raw_name: str
    +
    + +
    +
    +gt_name: str
    +
    + +
    +
    +mask_name: str
    +
    + +
    +
    +static dataset_type(dataset_config)
    +
    + +
    +
    +property raw: funlib.persistence.Array
    +
    + +
    +
    +property gt: funlib.persistence.Array
    +
    + +
    +
    +property mask: funlib.persistence.Array | None
    +
    + +
    +
    +property sample_points: None
    +
    + +

    + diff --git a/autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index.html b/autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index.html index 57767ea5b..3291e210f 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index.html b/autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index.html index c19d0a285..3c50734ca 100644 --- a/autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index.html @@ -23,7 +23,7 @@ - + @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -238,7 +239,7 @@

    Module Contents - +
    diff --git a/autoapi/dacapo/experiments/datasplits/datasets/simple/index.html b/autoapi/dacapo/experiments/datasplits/datasets/simple/index.html new file mode 100644 index 000000000..8e1c1b82b --- /dev/null +++ b/autoapi/dacapo/experiments/datasplits/datasets/simple/index.html @@ -0,0 +1,252 @@ + + + + + + + + + dacapo.experiments.datasplits.datasets.simple — DaCapo documentation + + + + + + + + + + + + + + + + + + + + + +
    + + +
    + +
    +
    + +
    +
    + +
    +

    dacapo.experiments.datasplits.datasets.simple

    +
    +

    Classes

    + + + + + + +

    SimpleDataset

    A class used to define configuration for datasets. This provides the

    +
    +
    +

    Module Contents

    +
    +
    +class dacapo.experiments.datasplits.datasets.simple.SimpleDataset
    +

    A class used to define configuration for datasets. This provides the +framework to create a Dataset instance.

    +
    +
    +name
    +

    str (eg: “sample_dataset”). +A unique identifier to name the dataset. +It aids in easy identification and reusability of this dataset. +Advised to keep it short and refrain from using special characters.

    +
    + +
    +
    +weight
    +

    int (default=1). +A numeric value that indicates how frequently this dataset should be +sampled in comparison to others. Higher the weight, more frequently it +gets sampled.

    +
    + +
    +
    +verify()
    +

    Checks and validates the dataset configuration. The specific rules for +validation need to be defined by the user.

    +
    + +

    Notes

    +

    This class is used to create a configuration object for datasets.

    +
    +
    +path: pathlib.Path
    +
    + +
    +
    +weight: int
    +
    + +
    +
    +raw_name: str
    +
    + +
    +
    +gt_name: str
    +
    + +
    +
    +mask_name: str
    +
    + +
    +
    +static dataset_type(dataset_config)
    +
    + +
    +
    +property raw: funlib.persistence.Array
    +
    + +
    +
    +property gt: funlib.persistence.Array
    +
    + +
    +
    +property mask: funlib.persistence.Array | None
    +
    + +
    +
    +property sample_points: None
    +
    + +
    + +
    +
    + + +
    +
    +
    + +
    + +
    +

    © Copyright 2024, William Patton, Jeff Rhoades, Marwan Zouinkhi, David Ackerman, Caroline Malin-Mayor, Jan Funke.

    +
    + + Built with Sphinx using a + theme + provided by Read the Docs. + + +
    +
    +
    +
    +
    + + + + \ No newline at end of file diff --git a/autoapi/dacapo/experiments/datasplits/datasplit/index.html b/autoapi/dacapo/experiments/datasplits/datasplit/index.html index 780074b58..f414d32ce 100644 --- a/autoapi/dacapo/experiments/datasplits/datasplit/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasplit/index.html @@ -24,7 +24,7 @@ - + @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -176,7 +177,7 @@

    Module Contents - + diff --git a/autoapi/dacapo/experiments/datasplits/datasplit_config/index.html b/autoapi/dacapo/experiments/datasplits/datasplit_config/index.html index 33b45656b..64e560639 100644 --- a/autoapi/dacapo/experiments/datasplits/datasplit_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasplit_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/datasplit_generator/index.html b/autoapi/dacapo/experiments/datasplits/datasplit_generator/index.html index 4a8c7336b..01a2d9d55 100644 --- a/autoapi/dacapo/experiments/datasplits/datasplit_generator/index.html +++ b/autoapi/dacapo/experiments/datasplits/datasplit_generator/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/dummy_datasplit/index.html b/autoapi/dacapo/experiments/datasplits/dummy_datasplit/index.html index 36fefe6b4..555853f92 100644 --- a/autoapi/dacapo/experiments/datasplits/dummy_datasplit/index.html +++ b/autoapi/dacapo/experiments/datasplits/dummy_datasplit/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index.html b/autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index.html index b848b08ac..17acf7b98 100644 --- a/autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/index.html b/autoapi/dacapo/experiments/datasplits/index.html index 492219e4c..121bbcdf3 100644 --- a/autoapi/dacapo/experiments/datasplits/index.html +++ b/autoapi/dacapo/experiments/datasplits/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -127,6 +128,7 @@

    Submodulesdacapo.experiments.datasplits.dummy_datasplit
  • dacapo.experiments.datasplits.dummy_datasplit_config
  • dacapo.experiments.datasplits.keys
  • +
  • dacapo.experiments.datasplits.simple_config
  • dacapo.experiments.datasplits.train_validate_datasplit
  • dacapo.experiments.datasplits.train_validate_datasplit_config
  • @@ -160,6 +162,9 @@

    Classes

    DatasetSpec

    A class for dataset specification. It is used to specify the dataset.

    +

    SimpleDataSplitConfig

    +

    A convention over configuration datasplit that can handle many of the most

    + @@ -964,6 +969,68 @@

    Package Contents +
    +class dacapo.experiments.datasplits.SimpleDataSplitConfig
    +

    A convention over configuration datasplit that can handle many of the most +basic cases.

    +
    +
    +path: pathlib.Path
    +
    + +
    +
    +name: str
    +
    + +
    +
    +train_group_name: str
    +
    + +
    +
    +validate_group_name: str
    +
    + +
    +
    +raw_name: str
    +
    + +
    +
    +gt_name: str
    +
    + +
    +
    +mask_name: str
    +
    + +
    +
    +static datasplit_type(datasplit_config)
    +
    + +
    +
    +get_paths(group_name: str) list[pathlib.Path]
    +
    + +
    +
    +property train: list[dacapo.experiments.datasplits.datasets.simple.SimpleDataset]
    +
    + +
    +
    +property validate: list[dacapo.experiments.datasplits.datasets.simple.SimpleDataset]
    +
    + +
    + diff --git a/autoapi/dacapo/experiments/datasplits/keys/index.html b/autoapi/dacapo/experiments/datasplits/keys/index.html index 38ac7a9c4..03729acb5 100644 --- a/autoapi/dacapo/experiments/datasplits/keys/index.html +++ b/autoapi/dacapo/experiments/datasplits/keys/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/datasplits/keys/keys/index.html b/autoapi/dacapo/experiments/datasplits/keys/keys/index.html index 8b1b0e27b..6f179c2d2 100644 --- a/autoapi/dacapo/experiments/datasplits/keys/keys/index.html +++ b/autoapi/dacapo/experiments/datasplits/keys/keys/index.html @@ -23,7 +23,7 @@ - + @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -281,7 +282,7 @@

    Module Contents - +
    diff --git a/autoapi/dacapo/experiments/datasplits/simple_config/index.html b/autoapi/dacapo/experiments/datasplits/simple_config/index.html new file mode 100644 index 000000000..a16a5efd0 --- /dev/null +++ b/autoapi/dacapo/experiments/datasplits/simple_config/index.html @@ -0,0 +1,229 @@ + + + + + + + + + dacapo.experiments.datasplits.simple_config — DaCapo documentation + + + + + + + + + + + + + + + + + + + + + +
    + + +
    + +
    +
    +
    + +
    +
    +
    +
    + +
    +

    dacapo.experiments.datasplits.simple_config

    +
    +

    Classes

    + + + + + + +

    SimpleDataSplitConfig

    A convention over configuration datasplit that can handle many of the most

    +
    +
    +

    Module Contents

    +
    +
    +class dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig
    +

    A convention over configuration datasplit that can handle many of the most +basic cases.

    +
    +
    +path: pathlib.Path
    +
    + +
    +
    +name: str
    +
    + +
    +
    +train_group_name: str
    +
    + +
    +
    +validate_group_name: str
    +
    + +
    +
    +raw_name: str
    +
    + +
    +
    +gt_name: str
    +
    + +
    +
    +mask_name: str
    +
    + +
    +
    +static datasplit_type(datasplit_config)
    +
    + +
    +
    +get_paths(group_name: str) list[pathlib.Path]
    +
    + +
    +
    +property train: list[dacapo.experiments.datasplits.datasets.simple.SimpleDataset]
    +
    + +
    +
    +property validate: list[dacapo.experiments.datasplits.datasets.simple.SimpleDataset]
    +
    + +
    + +
    +
    + + +
    +
    +
    + +
    + +
    +

    © Copyright 2024, William Patton, Jeff Rhoades, Marwan Zouinkhi, David Ackerman, Caroline Malin-Mayor, Jan Funke.

    +
    + + Built with Sphinx using a + theme + provided by Read the Docs. + + +
    +
    +
    +
    +
    + + + + \ No newline at end of file diff --git a/autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index.html b/autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index.html index 78a860ee4..49c6d2edb 100644 --- a/autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index.html +++ b/autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index.html @@ -24,7 +24,7 @@ - + @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -178,7 +179,7 @@

    Module Contents - + diff --git a/autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index.html b/autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index.html index 220b79570..b04da5cbe 100644 --- a/autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index.html +++ b/autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/index.html b/autoapi/dacapo/experiments/index.html index a07af96de..eec1519a9 100644 --- a/autoapi/dacapo/experiments/index.html +++ b/autoapi/dacapo/experiments/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/model/index.html b/autoapi/dacapo/experiments/model/index.html index d9accddb2..90302306a 100644 --- a/autoapi/dacapo/experiments/model/index.html +++ b/autoapi/dacapo/experiments/model/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/run/index.html b/autoapi/dacapo/experiments/run/index.html index a875b38df..098c1bc29 100644 --- a/autoapi/dacapo/experiments/run/index.html +++ b/autoapi/dacapo/experiments/run/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/run_config/index.html b/autoapi/dacapo/experiments/run_config/index.html index 0fa720a62..fdba2666f 100644 --- a/autoapi/dacapo/experiments/run_config/index.html +++ b/autoapi/dacapo/experiments/run_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/starts/cosem_start/index.html b/autoapi/dacapo/experiments/starts/cosem_start/index.html index 5950d94d7..30651e95f 100644 --- a/autoapi/dacapo/experiments/starts/cosem_start/index.html +++ b/autoapi/dacapo/experiments/starts/cosem_start/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/starts/cosem_start_config/index.html b/autoapi/dacapo/experiments/starts/cosem_start_config/index.html index a91be3e56..cff1ba407 100644 --- a/autoapi/dacapo/experiments/starts/cosem_start_config/index.html +++ b/autoapi/dacapo/experiments/starts/cosem_start_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/starts/index.html b/autoapi/dacapo/experiments/starts/index.html index 005242b39..4c644dd6d 100644 --- a/autoapi/dacapo/experiments/starts/index.html +++ b/autoapi/dacapo/experiments/starts/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/starts/start/index.html b/autoapi/dacapo/experiments/starts/start/index.html index d022be3d6..33d9bf71e 100644 --- a/autoapi/dacapo/experiments/starts/start/index.html +++ b/autoapi/dacapo/experiments/starts/start/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/starts/start_config/index.html b/autoapi/dacapo/experiments/starts/start_config/index.html index ccdbc36ea..7213248d5 100644 --- a/autoapi/dacapo/experiments/starts/start_config/index.html +++ b/autoapi/dacapo/experiments/starts/start_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/affinities_task/index.html b/autoapi/dacapo/experiments/tasks/affinities_task/index.html index 516c1afe3..d8a90c77c 100644 --- a/autoapi/dacapo/experiments/tasks/affinities_task/index.html +++ b/autoapi/dacapo/experiments/tasks/affinities_task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/affinities_task_config/index.html b/autoapi/dacapo/experiments/tasks/affinities_task_config/index.html index c26eb3040..d1e197e26 100644 --- a/autoapi/dacapo/experiments/tasks/affinities_task_config/index.html +++ b/autoapi/dacapo/experiments/tasks/affinities_task_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/distance_task/index.html b/autoapi/dacapo/experiments/tasks/distance_task/index.html index b2cf228a0..31b976f31 100644 --- a/autoapi/dacapo/experiments/tasks/distance_task/index.html +++ b/autoapi/dacapo/experiments/tasks/distance_task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/distance_task_config/index.html b/autoapi/dacapo/experiments/tasks/distance_task_config/index.html index b74f18d1f..012d9fa7a 100644 --- a/autoapi/dacapo/experiments/tasks/distance_task_config/index.html +++ b/autoapi/dacapo/experiments/tasks/distance_task_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/dummy_task/index.html b/autoapi/dacapo/experiments/tasks/dummy_task/index.html index 07ab6b929..bfe8a3c61 100644 --- a/autoapi/dacapo/experiments/tasks/dummy_task/index.html +++ b/autoapi/dacapo/experiments/tasks/dummy_task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/dummy_task_config/index.html b/autoapi/dacapo/experiments/tasks/dummy_task_config/index.html index a4d3534f3..934c68ea0 100644 --- a/autoapi/dacapo/experiments/tasks/dummy_task_config/index.html +++ b/autoapi/dacapo/experiments/tasks/dummy_task_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index.html b/autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index.html index 211488082..6139386d3 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index.html b/autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index.html index a100f90bc..7ccdca0c6 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index.html b/autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index.html index 597d5820b..de6dd3999 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index.html b/autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index.html index f7b515518..b2b73a5f0 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index.html b/autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index.html index a2fbe1608..0164a9ce9 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/evaluator/index.html b/autoapi/dacapo/experiments/tasks/evaluators/evaluator/index.html index f6ea05dcd..d54f6a6a5 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/evaluator/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/evaluator/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/index.html b/autoapi/dacapo/experiments/tasks/evaluators/index.html index 83c03c4bd..baf6512bd 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index.html b/autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index.html index 18fdba4dd..30a10ee89 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index.html b/autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index.html index 2ad1eba0b..5a14f76a6 100644 --- a/autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index.html +++ b/autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/hot_distance_task/index.html b/autoapi/dacapo/experiments/tasks/hot_distance_task/index.html index 45d7917ae..46cddd19b 100644 --- a/autoapi/dacapo/experiments/tasks/hot_distance_task/index.html +++ b/autoapi/dacapo/experiments/tasks/hot_distance_task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/hot_distance_task_config/index.html b/autoapi/dacapo/experiments/tasks/hot_distance_task_config/index.html index 0e5547e81..214e38ae0 100644 --- a/autoapi/dacapo/experiments/tasks/hot_distance_task_config/index.html +++ b/autoapi/dacapo/experiments/tasks/hot_distance_task_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/index.html b/autoapi/dacapo/experiments/tasks/index.html index bbe5d3b97..18248c7d1 100644 --- a/autoapi/dacapo/experiments/tasks/index.html +++ b/autoapi/dacapo/experiments/tasks/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/inner_distance_task/index.html b/autoapi/dacapo/experiments/tasks/inner_distance_task/index.html index 908f9b011..8cb15db57 100644 --- a/autoapi/dacapo/experiments/tasks/inner_distance_task/index.html +++ b/autoapi/dacapo/experiments/tasks/inner_distance_task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/inner_distance_task_config/index.html b/autoapi/dacapo/experiments/tasks/inner_distance_task_config/index.html index 7e3c63af9..523eb5a8f 100644 --- a/autoapi/dacapo/experiments/tasks/inner_distance_task_config/index.html +++ b/autoapi/dacapo/experiments/tasks/inner_distance_task_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/losses/affinities_loss/index.html b/autoapi/dacapo/experiments/tasks/losses/affinities_loss/index.html index fcce7da4a..d2e3d2bb2 100644 --- a/autoapi/dacapo/experiments/tasks/losses/affinities_loss/index.html +++ b/autoapi/dacapo/experiments/tasks/losses/affinities_loss/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/losses/dummy_loss/index.html b/autoapi/dacapo/experiments/tasks/losses/dummy_loss/index.html index ce3275c13..d1e1fa4a6 100644 --- a/autoapi/dacapo/experiments/tasks/losses/dummy_loss/index.html +++ b/autoapi/dacapo/experiments/tasks/losses/dummy_loss/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index.html b/autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index.html index b28433dda..303263501 100644 --- a/autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index.html +++ b/autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/losses/index.html b/autoapi/dacapo/experiments/tasks/losses/index.html index 2237fe637..e5699f4a3 100644 --- a/autoapi/dacapo/experiments/tasks/losses/index.html +++ b/autoapi/dacapo/experiments/tasks/losses/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/losses/loss/index.html b/autoapi/dacapo/experiments/tasks/losses/loss/index.html index 29e3c9bc6..af32fbd25 100644 --- a/autoapi/dacapo/experiments/tasks/losses/loss/index.html +++ b/autoapi/dacapo/experiments/tasks/losses/loss/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/losses/mse_loss/index.html b/autoapi/dacapo/experiments/tasks/losses/mse_loss/index.html index 7d79bae78..6a5632309 100644 --- a/autoapi/dacapo/experiments/tasks/losses/mse_loss/index.html +++ b/autoapi/dacapo/experiments/tasks/losses/mse_loss/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/one_hot_task/index.html b/autoapi/dacapo/experiments/tasks/one_hot_task/index.html index 2abcb8984..241455e7c 100644 --- a/autoapi/dacapo/experiments/tasks/one_hot_task/index.html +++ b/autoapi/dacapo/experiments/tasks/one_hot_task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/one_hot_task_config/index.html b/autoapi/dacapo/experiments/tasks/one_hot_task_config/index.html index 2d4130c57..9b757787d 100644 --- a/autoapi/dacapo/experiments/tasks/one_hot_task_config/index.html +++ b/autoapi/dacapo/experiments/tasks/one_hot_task_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index.html b/autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index.html index f15e06a1c..54cb6b876 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index.html b/autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index.html index ed7200006..3fda73864 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index.html b/autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index.html index 060bcc313..5861f80a5 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index.html b/autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index.html index fbbe53d04..75361d6f2 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/index.html b/autoapi/dacapo/experiments/tasks/post_processors/index.html index 61e0f1e18..ed01140ec 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/post_processor/index.html b/autoapi/dacapo/experiments/tasks/post_processors/post_processor/index.html index 4728bf267..eacb1d539 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/post_processor/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/post_processor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index.html b/autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index.html index d3fb884de..e54de1528 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index.html b/autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index.html index b1ab7be77..5a2e994c5 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index.html b/autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index.html index 9a556e7e7..22b1a5ee2 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index.html b/autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index.html index 3df4899c5..045f8ae12 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index.html b/autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index.html index 677d2012f..a2b4d4d9a 100644 --- a/autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index.html +++ b/autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index.html b/autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index.html index 87cd8b729..86fa98bde 100644 --- a/autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index.html +++ b/autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index.html b/autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index.html index bd1ec8032..557792d3b 100644 --- a/autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index.html +++ b/autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index.html b/autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index.html index 617949449..9f8428c50 100644 --- a/autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index.html +++ b/autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index.html b/autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index.html index 0714292f1..2b1dd3ee3 100644 --- a/autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index.html +++ b/autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/predictors/index.html b/autoapi/dacapo/experiments/tasks/predictors/index.html index a333d226f..b390eb2cd 100644 --- a/autoapi/dacapo/experiments/tasks/predictors/index.html +++ b/autoapi/dacapo/experiments/tasks/predictors/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index.html b/autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index.html index 0c1c3c911..b39009a54 100644 --- a/autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index.html +++ b/autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index.html b/autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index.html index 0f4f192ed..1437e6682 100644 --- a/autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index.html +++ b/autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/predictors/predictor/index.html b/autoapi/dacapo/experiments/tasks/predictors/predictor/index.html index 542bc56bb..5adce5332 100644 --- a/autoapi/dacapo/experiments/tasks/predictors/predictor/index.html +++ b/autoapi/dacapo/experiments/tasks/predictors/predictor/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/pretrained_task/index.html b/autoapi/dacapo/experiments/tasks/pretrained_task/index.html index 494977940..866834753 100644 --- a/autoapi/dacapo/experiments/tasks/pretrained_task/index.html +++ b/autoapi/dacapo/experiments/tasks/pretrained_task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/pretrained_task_config/index.html b/autoapi/dacapo/experiments/tasks/pretrained_task_config/index.html index 0e0fd6319..0348b7e11 100644 --- a/autoapi/dacapo/experiments/tasks/pretrained_task_config/index.html +++ b/autoapi/dacapo/experiments/tasks/pretrained_task_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/task/index.html b/autoapi/dacapo/experiments/tasks/task/index.html index cef3005bd..aa75b05cd 100644 --- a/autoapi/dacapo/experiments/tasks/task/index.html +++ b/autoapi/dacapo/experiments/tasks/task/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/tasks/task_config/index.html b/autoapi/dacapo/experiments/tasks/task_config/index.html index faaaaccc6..bc81f0f3a 100644 --- a/autoapi/dacapo/experiments/tasks/task_config/index.html +++ b/autoapi/dacapo/experiments/tasks/task_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/dummy_trainer/index.html b/autoapi/dacapo/experiments/trainers/dummy_trainer/index.html index 1218e9e06..a03205af4 100644 --- a/autoapi/dacapo/experiments/trainers/dummy_trainer/index.html +++ b/autoapi/dacapo/experiments/trainers/dummy_trainer/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/dummy_trainer_config/index.html b/autoapi/dacapo/experiments/trainers/dummy_trainer_config/index.html index e962c5e55..1ec2a4f50 100644 --- a/autoapi/dacapo/experiments/trainers/dummy_trainer_config/index.html +++ b/autoapi/dacapo/experiments/trainers/dummy_trainer_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index.html b/autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index.html index 2e68569f3..cd399e91b 100644 --- a/autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index.html +++ b/autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index.html b/autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index.html index 8e0706dfc..50519842a 100644 --- a/autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index.html +++ b/autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index.html b/autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index.html index f4e4cb07b..a46260764 100644 --- a/autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index.html +++ b/autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gp_augments/index.html b/autoapi/dacapo/experiments/trainers/gp_augments/index.html index 1cd9427bb..abef0e593 100644 --- a/autoapi/dacapo/experiments/trainers/gp_augments/index.html +++ b/autoapi/dacapo/experiments/trainers/gp_augments/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index.html b/autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index.html index f0d0bbe73..be581ffde 100644 --- a/autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index.html +++ b/autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index.html b/autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index.html index aec5414fd..637aa7493 100644 --- a/autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index.html +++ b/autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index.html b/autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index.html index e6d52b781..c8a883076 100644 --- a/autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index.html +++ b/autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gunpowder_trainer/index.html b/autoapi/dacapo/experiments/trainers/gunpowder_trainer/index.html index 6c6830660..dcc52ee21 100644 --- a/autoapi/dacapo/experiments/trainers/gunpowder_trainer/index.html +++ b/autoapi/dacapo/experiments/trainers/gunpowder_trainer/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index.html b/autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index.html index 33bd6537c..26f679669 100644 --- a/autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index.html +++ b/autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/index.html b/autoapi/dacapo/experiments/trainers/index.html index 49cdf00c0..d9ebb5528 100644 --- a/autoapi/dacapo/experiments/trainers/index.html +++ b/autoapi/dacapo/experiments/trainers/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/optimizers/index.html b/autoapi/dacapo/experiments/trainers/optimizers/index.html index 080f23398..d7e9cc242 100644 --- a/autoapi/dacapo/experiments/trainers/optimizers/index.html +++ b/autoapi/dacapo/experiments/trainers/optimizers/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/trainer/index.html b/autoapi/dacapo/experiments/trainers/trainer/index.html index 60d8cea06..1eb0c72ca 100644 --- a/autoapi/dacapo/experiments/trainers/trainer/index.html +++ b/autoapi/dacapo/experiments/trainers/trainer/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/trainers/trainer_config/index.html b/autoapi/dacapo/experiments/trainers/trainer_config/index.html index c0a2fe464..ab0ef75d9 100644 --- a/autoapi/dacapo/experiments/trainers/trainer_config/index.html +++ b/autoapi/dacapo/experiments/trainers/trainer_config/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/training_iteration_stats/index.html b/autoapi/dacapo/experiments/training_iteration_stats/index.html index f37d7709e..b563a49df 100644 --- a/autoapi/dacapo/experiments/training_iteration_stats/index.html +++ b/autoapi/dacapo/experiments/training_iteration_stats/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/training_stats/index.html b/autoapi/dacapo/experiments/training_stats/index.html index fd8b26b06..2d4cada2d 100644 --- a/autoapi/dacapo/experiments/training_stats/index.html +++ b/autoapi/dacapo/experiments/training_stats/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/validation_iteration_scores/index.html b/autoapi/dacapo/experiments/validation_iteration_scores/index.html index 4b52f4534..8cf9f1760 100644 --- a/autoapi/dacapo/experiments/validation_iteration_scores/index.html +++ b/autoapi/dacapo/experiments/validation_iteration_scores/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/experiments/validation_scores/index.html b/autoapi/dacapo/experiments/validation_scores/index.html index 464280127..8ec3187b9 100644 --- a/autoapi/dacapo/experiments/validation_scores/index.html +++ b/autoapi/dacapo/experiments/validation_scores/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/ext/index.html b/autoapi/dacapo/ext/index.html index a744a5150..ae4832677 100644 --- a/autoapi/dacapo/ext/index.html +++ b/autoapi/dacapo/ext/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/gp/copy/index.html b/autoapi/dacapo/gp/copy/index.html index 602159379..9ec95a094 100644 --- a/autoapi/dacapo/gp/copy/index.html +++ b/autoapi/dacapo/gp/copy/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/gp/dacapo_create_target/index.html b/autoapi/dacapo/gp/dacapo_create_target/index.html index 6707bdfbb..633a95711 100644 --- a/autoapi/dacapo/gp/dacapo_create_target/index.html +++ b/autoapi/dacapo/gp/dacapo_create_target/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/gp/dacapo_points_source/index.html b/autoapi/dacapo/gp/dacapo_points_source/index.html index a7bb28d8d..8aa406b54 100644 --- a/autoapi/dacapo/gp/dacapo_points_source/index.html +++ b/autoapi/dacapo/gp/dacapo_points_source/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/gp/elastic_augment_fuse/index.html b/autoapi/dacapo/gp/elastic_augment_fuse/index.html index 7949e3883..c469b82df 100644 --- a/autoapi/dacapo/gp/elastic_augment_fuse/index.html +++ b/autoapi/dacapo/gp/elastic_augment_fuse/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/gp/gamma_noise/index.html b/autoapi/dacapo/gp/gamma_noise/index.html index 8a9783701..d132d185d 100644 --- a/autoapi/dacapo/gp/gamma_noise/index.html +++ b/autoapi/dacapo/gp/gamma_noise/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/gp/index.html b/autoapi/dacapo/gp/index.html index 9b85644c2..4d91c79fe 100644 --- a/autoapi/dacapo/gp/index.html +++ b/autoapi/dacapo/gp/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/gp/product/index.html b/autoapi/dacapo/gp/product/index.html index c92c7e39f..1d3f2101e 100644 --- a/autoapi/dacapo/gp/product/index.html +++ b/autoapi/dacapo/gp/product/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/gp/reject_if_empty/index.html b/autoapi/dacapo/gp/reject_if_empty/index.html index 2beee3264..1bd34f38a 100644 --- a/autoapi/dacapo/gp/reject_if_empty/index.html +++ b/autoapi/dacapo/gp/reject_if_empty/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/index.html b/autoapi/dacapo/index.html index 3b06f7aad..b8508dab9 100644 --- a/autoapi/dacapo/index.html +++ b/autoapi/dacapo/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/options/index.html b/autoapi/dacapo/options/index.html index 66aed9f5a..bfc24f375 100644 --- a/autoapi/dacapo/options/index.html +++ b/autoapi/dacapo/options/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/plot/index.html b/autoapi/dacapo/plot/index.html index 62aa64a15..2255d50b0 100644 --- a/autoapi/dacapo/plot/index.html +++ b/autoapi/dacapo/plot/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/predict/index.html b/autoapi/dacapo/predict/index.html index b17ebc4be..c710e3456 100644 --- a/autoapi/dacapo/predict/index.html +++ b/autoapi/dacapo/predict/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/predict_local/index.html b/autoapi/dacapo/predict_local/index.html index 53f1d204a..4a79075dd 100644 --- a/autoapi/dacapo/predict_local/index.html +++ b/autoapi/dacapo/predict_local/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/array_store/index.html b/autoapi/dacapo/store/array_store/index.html index 1ab7ac42a..07981aee1 100644 --- a/autoapi/dacapo/store/array_store/index.html +++ b/autoapi/dacapo/store/array_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/config_store/index.html b/autoapi/dacapo/store/config_store/index.html index 25ce612cc..1f9ad38cb 100644 --- a/autoapi/dacapo/store/config_store/index.html +++ b/autoapi/dacapo/store/config_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/conversion_hooks/index.html b/autoapi/dacapo/store/conversion_hooks/index.html index 83f49142d..332cf43b9 100644 --- a/autoapi/dacapo/store/conversion_hooks/index.html +++ b/autoapi/dacapo/store/conversion_hooks/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/converter/index.html b/autoapi/dacapo/store/converter/index.html index d5dee4ee1..b5604330e 100644 --- a/autoapi/dacapo/store/converter/index.html +++ b/autoapi/dacapo/store/converter/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/create_store/index.html b/autoapi/dacapo/store/create_store/index.html index 9dbcb8647..e97ff4b90 100644 --- a/autoapi/dacapo/store/create_store/index.html +++ b/autoapi/dacapo/store/create_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/file_config_store/index.html b/autoapi/dacapo/store/file_config_store/index.html index 913ed4e63..d2c9896f3 100644 --- a/autoapi/dacapo/store/file_config_store/index.html +++ b/autoapi/dacapo/store/file_config_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/file_stats_store/index.html b/autoapi/dacapo/store/file_stats_store/index.html index 08ed0f30f..23316aedb 100644 --- a/autoapi/dacapo/store/file_stats_store/index.html +++ b/autoapi/dacapo/store/file_stats_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/index.html b/autoapi/dacapo/store/index.html index 7ce4051f3..fbd98472a 100644 --- a/autoapi/dacapo/store/index.html +++ b/autoapi/dacapo/store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/local_array_store/index.html b/autoapi/dacapo/store/local_array_store/index.html index bad8a01c9..777ad69f5 100644 --- a/autoapi/dacapo/store/local_array_store/index.html +++ b/autoapi/dacapo/store/local_array_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/local_weights_store/index.html b/autoapi/dacapo/store/local_weights_store/index.html index fc0970a4b..be5983d08 100644 --- a/autoapi/dacapo/store/local_weights_store/index.html +++ b/autoapi/dacapo/store/local_weights_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/mongo_config_store/index.html b/autoapi/dacapo/store/mongo_config_store/index.html index 0e7e56bdf..bf2477c10 100644 --- a/autoapi/dacapo/store/mongo_config_store/index.html +++ b/autoapi/dacapo/store/mongo_config_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/mongo_stats_store/index.html b/autoapi/dacapo/store/mongo_stats_store/index.html index 1e0de8b48..4d1a7fa60 100644 --- a/autoapi/dacapo/store/mongo_stats_store/index.html +++ b/autoapi/dacapo/store/mongo_stats_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/stats_store/index.html b/autoapi/dacapo/store/stats_store/index.html index fc691d1f4..27f804e6a 100644 --- a/autoapi/dacapo/store/stats_store/index.html +++ b/autoapi/dacapo/store/stats_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/store/weights_store/index.html b/autoapi/dacapo/store/weights_store/index.html index 7b049b54a..63911f3fa 100644 --- a/autoapi/dacapo/store/weights_store/index.html +++ b/autoapi/dacapo/store/weights_store/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/tmp/index.html b/autoapi/dacapo/tmp/index.html index db4a46160..1bd42f10e 100644 --- a/autoapi/dacapo/tmp/index.html +++ b/autoapi/dacapo/tmp/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/train/index.html b/autoapi/dacapo/train/index.html index 205ab4d13..02a6b4236 100644 --- a/autoapi/dacapo/train/index.html +++ b/autoapi/dacapo/train/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/utils/affinities/index.html b/autoapi/dacapo/utils/affinities/index.html index 19e6875ac..1bde2b925 100644 --- a/autoapi/dacapo/utils/affinities/index.html +++ b/autoapi/dacapo/utils/affinities/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/utils/array_utils/index.html b/autoapi/dacapo/utils/array_utils/index.html index cc5a43610..b5ea4c1fb 100644 --- a/autoapi/dacapo/utils/array_utils/index.html +++ b/autoapi/dacapo/utils/array_utils/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/utils/balance_weights/index.html b/autoapi/dacapo/utils/balance_weights/index.html index 1ce689f90..96c6b8556 100644 --- a/autoapi/dacapo/utils/balance_weights/index.html +++ b/autoapi/dacapo/utils/balance_weights/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/utils/index.html b/autoapi/dacapo/utils/index.html index 57c31959c..7dccc7f44 100644 --- a/autoapi/dacapo/utils/index.html +++ b/autoapi/dacapo/utils/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/utils/pipeline/index.html b/autoapi/dacapo/utils/pipeline/index.html index 0f7f887ae..cb93bd862 100644 --- a/autoapi/dacapo/utils/pipeline/index.html +++ b/autoapi/dacapo/utils/pipeline/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/utils/view/index.html b/autoapi/dacapo/utils/view/index.html index a2cb0806b..4b421d4a2 100644 --- a/autoapi/dacapo/utils/view/index.html +++ b/autoapi/dacapo/utils/view/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/utils/voi/index.html b/autoapi/dacapo/utils/voi/index.html index 03fcb68e0..f29bfd5cd 100644 --- a/autoapi/dacapo/utils/voi/index.html +++ b/autoapi/dacapo/utils/voi/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/dacapo/validate/index.html b/autoapi/dacapo/validate/index.html index aeb434636..7a899ba70 100644 --- a/autoapi/dacapo/validate/index.html +++ b/autoapi/dacapo/validate/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/autoapi/index.html b/autoapi/index.html index b15a62e9f..12cf46976 100644 --- a/autoapi/index.html +++ b/autoapi/index.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -165,6 +166,7 @@

    API Referencedacapo.experiments.datasplits.datasets.raw_gt_dataset
  • dacapo.experiments.datasplits.datasets.raw_gt_dataset_config
  • +
  • dacapo.experiments.datasplits.datasets.simple
  • dacapo.experiments.datasplits.datasplit
  • @@ -176,6 +178,7 @@

    API Referencedacapo.experiments.datasplits.keys.keys +
  • dacapo.experiments.datasplits.simple_config
  • dacapo.experiments.datasplits.train_validate_datasplit
  • dacapo.experiments.datasplits.train_validate_datasplit_config
  • diff --git a/aws.html b/aws.html index 92857a11d..375a6befb 100644 --- a/aws.html +++ b/aws.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/cli.html b/cli.html index dca6fee61..4b120034b 100644 --- a/cli.html +++ b/cli.html @@ -50,6 +50,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/conf.html b/conf.html index 7fd00c398..2dd33cadc 100644 --- a/conf.html +++ b/conf.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/cosem_starter.html b/cosem_starter.html index c67bf51e2..c3bb5b32c 100644 --- a/cosem_starter.html +++ b/cosem_starter.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/data.html b/data.html new file mode 100644 index 000000000..8cef466ca --- /dev/null +++ b/data.html @@ -0,0 +1,235 @@ + + + + + + + + + Data Formatting — DaCapo documentation + + + + + + + + + + + + + + + + + + + + + +
    + + +
    + +
    +
    +
    + +
    +
    +
    +
    + +
    +

    Data Formatting

    +
    +

    Overview

    +

    We support any data format that can be opened with the zarr.open convenience function from +zarr. We also expect some specific metadata to come +with the data.

    +
    +
    +

    Metadata

    +
      +
    • voxel_size: The size of each voxel in the dataset. This is expected to be a tuple of ints +with the same length as the number of spatial dimensions in the dataset.

    • +
    • offset: The offset of the dataset. This is expected to be a tuple of ints with the same length +as the number of spatial dimensions in the dataset.

    • +
    • axis_names: The name of each axis. This is expected to be a tuple of strings with the same length +as the total number of dimensions in the dataset. For example a 3D dataset with channels would have +axis_names=(‘c^’, ‘z’, ‘y’, ‘x’). Note we expect non-spatial dimensions to include a “^” character. +See [1] for expected future changes

    • +
    • units: The units of each axis. This is expected to be a tuple of strings with the same length +as the number of spatial dimensions in the dataset. For example a 3D dataset with channels would have +units=(‘nanometers’, ‘nanometers’, ‘nanometers’).

    • +
    +
    +
    +

    Orgnaization

    +

    Ideally all of your data will be contained in a single zarr container. +The simplest possible dataset would look like this:

    +
    data.zarr
    +├── raw
    +└── labels
    +
    +
    +

    If this is what your data looks like, then your data configuration will look like this:

    +
    +
    A simple data configuration
    +
    data_config = DataConfig(
    +    path="/path/to/data.zarr"
    +)
    +
    +
    +
    +

    Note that a lot of assumptions will be made.

    +
      +
    1. We assume your raw data is normalized based on the dtype. I.e. if your data is +stored as an unsigned int (we recommend uint8) we will assume a range and normalize +it to [0,1] by dividing by the appropriate value (255 for uint8 or 65535 for uint16). +If your data is stored as any float we will assume it is already in the range [0, 1].

    2. +
    3. We assume your labels are stored as unsigned integers. If you want to generate instance segmentations, you will need +to assign a unique id to every object of the class you are interested in. If you want semantic segmentations you +can simply assign a unique id to each class. 0 is reserved for the background class.

    4. +
    5. We assume that the labels are provided densely. The entire volume will be used for training.

    6. +
    7. We will be training and validating on the same data. This is not ideal, but it is an ok starting point for testing +and debugging.

    8. +
    +

    Next we can add a little bit of complexity by seperating train and test data. This can also be handled +by the same data configuration as above since it will detect the presence of the train and test groups.

    +
    data.zarr
    +├── train
    +│   ├── raw
    +│   └── labels
    +└── test
    +    ├── raw
    +    └── labels
    +
    +
    +

    We can go further with our basic data configuration since this will often not be enough to describe your data. You may have multiple crops and often your data may be +sparsely annotated. The same data configuration from above will also work for the slightly more complicated +dataset below:

    +
    data.zarr
    +├── train
    +│   ├── crop_01
    +│   │   ├── raw
    +│   │   ├── labels
    +│   │   └── mask
    +│   └── crop_02
    +│       ├── raw
    +│       └── labels
    +└── test
    +    └─ crop_03
    +    │   ├── raw
    +    │   ├── labels
    +    │   └── mask
    +    └─ crop_04
    +        ├── raw
    +        └── labels
    +
    +
    +

    Note that crop_01 and crop_03 have masks associated with them. We assume a value of 0 in the mask indicates +unknown data. We will never use this data for supervised training, regardless of the corresponding label value. +If multiple test datasets are provided, this will increase the amount of information to review after training. +You will have e.g. crop_03_voi and crop_04_voi stored in the validation scores. Since we also take care to +save the “best” model checkpoint, you may now double the number of checkpoints saved since the checkpoint that +achieves optimal voi on crop_03 may not be the same as the checkpoint that achieves optimal voi on crop_04.

    +
    +
    +

    Footnotes

    + +
    +
    + + +
    +
    +
    + +
    + +
    +

    © Copyright 2024, William Patton, Jeff Rhoades, Marwan Zouinkhi, David Ackerman, Caroline Malin-Mayor, Jan Funke.

    +
    + + Built with Sphinx using a + theme + provided by Read the Docs. + + +
    +
    +
    +
    +
    + + + + \ No newline at end of file diff --git a/docker.html b/docker.html index a7397ba99..b0b5b434d 100644 --- a/docker.html +++ b/docker.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • +
  • dataset_type() (dacapo.experiments.datasplits.datasets.simple.SimpleDataset static method) + +
  • DatasetConfig (class in dacapo.experiments.datasplits.datasets) @@ -3746,6 +3767,12 @@

    D

  • (dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig attribute)
  • (dacapo.experiments.datasplits.TrainValidateDataSplitConfig attribute) +
  • + +
  • datasplit_type() (dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig static method) + +
  • DataSplitConfig (class in dacapo.experiments.datasplits) @@ -4638,6 +4665,12 @@

    G

  • +
  • get_paths() (dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig method) + +
  • get_right_resolution_array_config() (in module dacapo.experiments.datasplits.datasplit_generator) @@ -4678,8 +4711,6 @@

    G

  • (class in dacapo.experiments.datasplits.datasets.graphstores.graph_source_config)
  • - - + +
  • gt_name (dacapo.experiments.datasplits.datasets.simple.SimpleDataset attribute) + +
  • gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor method), [1] @@ -5458,6 +5505,10 @@

    M

  • (dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset attribute), [1]
  • (dacapo.experiments.datasplits.datasets.RawGTDataset attribute), [1] +
  • +
  • (dacapo.experiments.datasplits.datasets.simple.SimpleDataset property) +
  • +
  • (dacapo.experiments.datasplits.datasets.SimpleDataset property)
  • MASK (dacapo.experiments.datasplits.keys.ArrayKey attribute), [1] @@ -5504,6 +5555,16 @@

    M

  • +
  • mask_name (dacapo.experiments.datasplits.datasets.simple.SimpleDataset attribute) + +
  • match_heads() (in module dacapo.experiments.starts.start) @@ -5867,6 +5928,8 @@

    M

  • dacapo.experiments.datasplits.datasets.raw_gt_dataset
  • dacapo.experiments.datasplits.datasets.raw_gt_dataset_config +
  • +
  • dacapo.experiments.datasplits.datasets.simple
  • dacapo.experiments.datasplits.datasplit
  • @@ -5881,6 +5944,8 @@

    M

  • dacapo.experiments.datasplits.keys
  • dacapo.experiments.datasplits.keys.keys +
  • +
  • dacapo.experiments.datasplits.simple_config
  • dacapo.experiments.datasplits.train_validate_datasplit
  • @@ -6185,6 +6250,10 @@

    N

  • (dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset attribute)
  • (dacapo.experiments.datasplits.datasets.RawGTDataset attribute) +
  • +
  • (dacapo.experiments.datasplits.datasets.simple.SimpleDataset attribute) +
  • +
  • (dacapo.experiments.datasplits.datasets.SimpleDataset attribute)
  • (dacapo.experiments.datasplits.datasplit_config.DataSplitConfig attribute), [1]
  • @@ -6193,6 +6262,10 @@

    N

  • (dacapo.experiments.datasplits.DataSplitConfig attribute), [1]
  • (dacapo.experiments.datasplits.DataSplitGenerator attribute), [1] +
  • +
  • (dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig attribute) +
  • +
  • (dacapo.experiments.datasplits.SimpleDataSplitConfig attribute)
  • (dacapo.experiments.run.Run attribute), [1]
  • @@ -6673,9 +6746,17 @@

    P

  • (dacapo.experiments.ValidationScores attribute), [1]
  • -
  • path (dacapo.store.file_config_store.FileConfigStore attribute), [1] +
  • path (dacapo.experiments.datasplits.datasets.simple.SimpleDataset attribute)
  • + + - + + -
  • Weights (class in dacapo.store.weights_store) diff --git a/index.html b/index.html index c6c0f8d47..8a54fb3f9 100644 --- a/index.html +++ b/index.html @@ -50,6 +50,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/install.html b/install.html index eadb6f0bc..d339e739d 100644 --- a/install.html +++ b/install.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/notebooks/minimal_tutorial.html b/notebooks/minimal_tutorial.html index 8304ed5d9..ed1b88ee2 100644 --- a/notebooks/minimal_tutorial.html +++ b/notebooks/minimal_tutorial.html @@ -23,7 +23,7 @@ - + @@ -69,6 +69,7 @@
  • Visualize
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -307,57 +308,10 @@

    Datasplit
    -
    from dacapo.experiments.datasplits import TrainValidateDataSplitConfig
    -from dacapo.experiments.datasplits.datasets import RawGTDatasetConfig
    -from dacapo.experiments.datasplits.datasets.arrays import (
    -    ZarrArrayConfig,
    -    IntensitiesArrayConfig,
    -)
    +
    from dacapo.experiments.datasplits.simple_config import SimpleDataSplitConfig
     from funlib.geometry import Coordinate
     
    -datasplit_config = TrainValidateDataSplitConfig(
    -    name="example_datasplit",
    -    train_configs=[
    -        RawGTDatasetConfig(
    -            name="example_dataset",
    -            raw_config=IntensitiesArrayConfig(
    -                name="example_raw_normalized",
    -                source_array_config=ZarrArrayConfig(
    -                    name="example_raw",
    -                    file_name="cells3d.zarr",
    -                    dataset="raw",
    -                ),
    -                min=0,
    -                max=255,
    -            ),
    -            gt_config=ZarrArrayConfig(
    -                name="example_gt",
    -                file_name="cells3d.zarr",
    -                dataset="mask",
    -            ),
    -        )
    -    ],
    -    validate_configs=[
    -        RawGTDatasetConfig(
    -            name="example_dataset",
    -            raw_config=IntensitiesArrayConfig(
    -                name="example_raw_normalized",
    -                source_array_config=ZarrArrayConfig(
    -                    name="example_raw",
    -                    file_name="cells3d.zarr",
    -                    dataset="raw",
    -                ),
    -                min=0,
    -                max=255,
    -            ),
    -            gt_config=ZarrArrayConfig(
    -                name="example_gt",
    -                file_name="cells3d.zarr",
    -                dataset="labels",
    -            ),
    -        )
    -    ],
    -)
    +datasplit_config = SimpleDataSplitConfig(name="cells3d", path="cells3d.zarr")
     datasplit = datasplit_config.datasplit_type(datasplit_config)
     config_store.store_datasplit_config(datasplit_config)
     
    @@ -607,13 +561,13 @@

    Visualize
    Creating FileStatsStore:
     	path    : /home/runner/dacapo/stats
     <xarray.DataArray (iterations: 2000)>
    -array([0.88576496, 0.90838391, 0.8469612 , ..., 0.40522465, 0.40965399,
    -       0.43413094])
    +array([0.81003344, 0.78063643, 0.8337096 , ..., 0.32482904, 0.35309637,
    +       0.28647012])
     Coordinates:
       * iterations  (iterations) int64 0 1 2 3 4 5 ... 1994 1995 1996 1997 1998 1999
     

    -../_images/740324669767434e3255abbf72201f026346cb4364f2e6f09e376c501f4c34ea.png +../_images/8be921556f6acfaaec95b290e4988697111466d547af287c05c75c5e4b1f0218.png
    @@ -736,7 +690,7 @@

    Visualize - +
    diff --git a/objects.inv b/objects.inv index 1868ae06a..6fd7a7af2 100644 Binary files a/objects.inv and b/objects.inv differ diff --git a/overview.html b/overview.html index 711db19e7..b5fbe8d43 100644 --- a/overview.html +++ b/overview.html @@ -55,6 +55,7 @@
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/py-modindex.html b/py-modindex.html index 0fa7e941d..ba9b75d9f 100644 --- a/py-modindex.html +++ b/py-modindex.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • @@ -396,6 +397,11 @@

    Python Module Index

        dacapo.experiments.datasplits.datasets.raw_gt_dataset_config + + +     + dacapo.experiments.datasplits.datasets.simple +     @@ -431,6 +437,11 @@

    Python Module Index

        dacapo.experiments.datasplits.keys.keys + + +     + dacapo.experiments.datasplits.simple_config +     diff --git a/roadmap.html b/roadmap.html index ab88785bf..e7466ab1e 100644 --- a/roadmap.html +++ b/roadmap.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/search.html b/search.html index ad9b89c37..95d11b5cd 100644 --- a/search.html +++ b/search.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python
  • Docker Configuration for JupyterHub-Dacapo
  • diff --git a/searchindex.js b/searchindex.js index e4f2a840f..4d328ea6d 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API Reference": [[184, null]], "AWS EC2 Setup Guide": [[185, null]], "Architecture": [[192, "architecture"]], "Attributes": [[0, "attributes"], [1, "attributes"], [3, "attributes"], [5, "attributes"], [6, "attributes"], [7, "attributes"], [8, "attributes"], [9, "attributes"], [59, "attributes"], [71, "attributes"], [74, "attributes"], [83, "attributes"], [87, "attributes"], [90, "attributes"], [116, "attributes"], [118, "attributes"], [120, "attributes"], [121, "attributes"], [136, "attributes"], [143, "attributes"], [150, "attributes"], [151, "attributes"], [154, "attributes"], [156, "attributes"], [157, "attributes"], [158, "attributes"], [159, "attributes"], [163, "attributes"], [165, "attributes"], [166, "attributes"], [168, "attributes"], [169, "attributes"], [170, "attributes"], [171, "attributes"], [175, "attributes"], [176, "attributes"], [183, "attributes"]], "Attributes:": [[67, "attributes"], [70, "attributes"]], "Available COSEM Pretrained Models": [[188, "available-cosem-pretrained-models"], [188, "id1"]], "Building the Docker Image": [[189, "building-the-docker-image"]], "CLI": [[186, null]], "Can Have": [[194, "can-have"]], "Citing this repo": [[190, "citing-this-repo"]], "Classes": [[2, "classes"], [4, "classes"], [11, "classes"], [12, "classes"], [13, "classes"], [14, "classes"], [15, "classes"], [16, "classes"], [17, "classes"], [18, "classes"], [19, "classes"], [20, "classes"], [21, "classes"], [22, "classes"], [23, "classes"], [24, "classes"], [25, "classes"], [26, "classes"], [27, "classes"], [28, "classes"], [29, "classes"], [30, "classes"], [31, "classes"], [32, "classes"], [33, "classes"], [34, "classes"], [35, "classes"], [36, "classes"], [37, "classes"], [38, "classes"], [39, "classes"], [40, "classes"], [41, "classes"], [42, "classes"], [43, "classes"], [44, "classes"], [45, "classes"], [46, "classes"], [47, "classes"], [48, "classes"], [49, "classes"], [50, "classes"], [51, "classes"], [52, "classes"], [53, "classes"], [54, "classes"], [55, "classes"], [56, "classes"], [57, "classes"], [58, "classes"], [59, "classes"], [60, "classes"], [61, "classes"], [62, "classes"], [63, "classes"], [64, "classes"], [65, "classes"], [66, "classes"], [67, "classes"], [68, "classes"], [69, "classes"], [70, "classes"], [71, "classes"], [72, "classes"], [73, "classes"], [74, "classes"], [75, "classes"], [76, "classes"], [77, "classes"], [78, "classes"], [79, "classes"], [80, "classes"], [81, "classes"], [82, "classes"], [83, "classes"], [84, "classes"], [85, "classes"], [86, "classes"], [87, "classes"], [88, "classes"], [89, "classes"], [90, "classes"], [91, "classes"], [92, "classes"], [93, "classes"], [94, "classes"], [95, "classes"], [96, "classes"], [97, "classes"], [98, "classes"], [99, "classes"], [100, "classes"], [101, "classes"], [102, "classes"], [103, "classes"], [104, "classes"], [105, "classes"], [106, "classes"], [107, "classes"], [108, "classes"], [109, "classes"], [110, "classes"], [111, "classes"], [112, "classes"], [113, "classes"], [114, "classes"], [115, "classes"], [116, "classes"], [117, "classes"], [118, "classes"], [119, "classes"], [120, "classes"], [121, "classes"], [122, "classes"], [123, "classes"], [124, "classes"], [125, "classes"], [126, "classes"], [127, "classes"], [128, "classes"], [129, "classes"], [130, "classes"], [131, "classes"], [132, "classes"], [133, "classes"], [134, "classes"], [135, "classes"], [136, "classes"], [137, "classes"], [138, "classes"], [140, "classes"], [141, "classes"], [142, "classes"], [143, "classes"], [144, "classes"], [145, "classes"], [146, "classes"], [147, "classes"], [148, "classes"], [149, "classes"], [150, "classes"], [151, "classes"], [152, "classes"], [153, "classes"], [154, "classes"], [155, "classes"], [156, "classes"], [160, "classes"], [161, "classes"], [163, "classes"], [165, "classes"], [166, "classes"], [168, "classes"], [169, "classes"], [170, "classes"], [171, "classes"], [172, "classes"], [173, "classes"], [180, "classes"], [181, "classes"]], "Config Store": [[192, "config-store"]], "Configs": [[195, "configs"]], "Configuration Parameters": [[196, "configuration-parameters"]], "Create a Run": [[195, "create-a-run"]], "DaCapo DaCapo GitHub Org's stars": [[190, null]], "Data Preparation": [[192, "data-preparation"]], "Data Storage": [[195, "data-storage"]], "Datasplit": [[192, "datasplit"]], "Detailed Road Map": [[194, "detailed-road-map"]], "Docker Configuration for JupyterHub-Dacapo": [[189, null]], "Environment setup": [[192, "environment-setup"]], "Example Tutorial": [[190, "example-tutorial"]], "Examples": [[196, "examples"]], "Exceptions": [[161, "exceptions"]], "Fine-Tune Cosem Starter": [[188, null]], "Full Example": [[188, "full-example"]], "Functionality Overview": [[190, "functionality-overview"]], "Functions": [[0, "functions"], [1, "functions"], [3, "functions"], [5, "functions"], [6, "functions"], [7, "functions"], [8, "functions"], [9, "functions"], [10, "functions"], [12, "functions"], [13, "functions"], [59, "functions"], [71, "functions"], [74, "functions"], [90, "functions"], [155, "functions"], [157, "functions"], [158, "functions"], [159, "functions"], [162, "functions"], [164, "functions"], [174, "functions"], [175, "functions"], [176, "functions"], [177, "functions"], [178, "functions"], [180, "functions"], [181, "functions"], [182, "functions"], [183, "functions"]], "Further Configuration": [[189, "further-configuration"]], "Helpful Resources & Tools": [[190, "helpful-resources-tools"]], "How does DaCapo work?": [[193, "how-does-dacapo-work"]], "Installation": [[191, null], [195, "installation"]], "Installation and Setup": [[190, "installation-and-setup"]], "Introduction and overview": [[192, "introduction-and-overview"]], "Minimal Tutorial": [[192, null]], "Module Contents": [[0, "module-contents"], [1, "module-contents"], [2, "module-contents"], [3, "module-contents"], [5, "module-contents"], [6, "module-contents"], [7, "module-contents"], [8, "module-contents"], [9, "module-contents"], [10, "module-contents"], [11, "module-contents"], [12, "module-contents"], [14, "module-contents"], [15, "module-contents"], [16, "module-contents"], [17, "module-contents"], [18, "module-contents"], [19, "module-contents"], [20, "module-contents"], [22, "module-contents"], [23, "module-contents"], [24, "module-contents"], [25, "module-contents"], [26, "module-contents"], [28, "module-contents"], [29, "module-contents"], [30, "module-contents"], [31, "module-contents"], [32, "module-contents"], [33, "module-contents"], [34, "module-contents"], [35, "module-contents"], [36, "module-contents"], [37, "module-contents"], [39, "module-contents"], [40, "module-contents"], [41, "module-contents"], [42, "module-contents"], [43, "module-contents"], [44, "module-contents"], [45, "module-contents"], [46, "module-contents"], [47, "module-contents"], [48, "module-contents"], [49, "module-contents"], [50, "module-contents"], [51, "module-contents"], [52, "module-contents"], [55, "module-contents"], [56, "module-contents"], [57, "module-contents"], [58, "module-contents"], [59, "module-contents"], [60, "module-contents"], [61, "module-contents"], [64, "module-contents"], [65, "module-contents"], [66, "module-contents"], [68, "module-contents"], [69, "module-contents"], [70, "module-contents"], [71, "module-contents"], [72, "module-contents"], [74, "module-contents"], [75, "module-contents"], [76, "module-contents"], [77, "module-contents"], [78, "module-contents"], [79, "module-contents"], [80, "module-contents"], [81, "module-contents"], [82, "module-contents"], [83, "module-contents"], [84, "module-contents"], [85, "module-contents"], [86, "module-contents"], [87, "module-contents"], [89, "module-contents"], [90, "module-contents"], [91, "module-contents"], [92, "module-contents"], [94, "module-contents"], [95, "module-contents"], [96, "module-contents"], [97, "module-contents"], [98, "module-contents"], [100, "module-contents"], [101, "module-contents"], [102, "module-contents"], [103, "module-contents"], [104, "module-contents"], [105, "module-contents"], [106, "module-contents"], [107, "module-contents"], [109, "module-contents"], [110, "module-contents"], [111, "module-contents"], [112, "module-contents"], [113, "module-contents"], [114, "module-contents"], [115, "module-contents"], [116, "module-contents"], [117, "module-contents"], [118, "module-contents"], [120, "module-contents"], [121, "module-contents"], [122, "module-contents"], [123, "module-contents"], [124, "module-contents"], [125, "module-contents"], [126, "module-contents"], [127, "module-contents"], [128, "module-contents"], [129, "module-contents"], [130, "module-contents"], [131, "module-contents"], [133, "module-contents"], [134, "module-contents"], [135, "module-contents"], [136, "module-contents"], [137, "module-contents"], [140, "module-contents"], [141, "module-contents"], [142, "module-contents"], [143, "module-contents"], [144, "module-contents"], [145, "module-contents"], [147, "module-contents"], [148, "module-contents"], [149, "module-contents"], [150, "module-contents"], [151, "module-contents"], [153, "module-contents"], [154, "module-contents"], [156, "module-contents"], [157, "module-contents"], [158, "module-contents"], [159, "module-contents"], [160, "module-contents"], [161, "module-contents"], [162, "module-contents"], [163, "module-contents"], [164, "module-contents"], [165, "module-contents"], [166, "module-contents"], [168, "module-contents"], [169, "module-contents"], [170, "module-contents"], [171, "module-contents"], [172, "module-contents"], [173, "module-contents"], [174, "module-contents"], [175, "module-contents"], [176, "module-contents"], [177, "module-contents"], [178, "module-contents"], [180, "module-contents"], [181, "module-contents"], [182, "module-contents"], [183, "module-contents"]], "Needed Libraries for this Tutorial": [[192, "needed-libraries-for-this-tutorial"]], "Non-Goals (for v1.0)": [[194, "non-goals-for-v1-0"]], "Notes": [[188, "notes"]], "Overview": [[193, null], [194, "overview"], [196, "overview"]], "Package Contents": [[4, "package-contents"], [13, "package-contents"], [21, "package-contents"], [27, "package-contents"], [38, "package-contents"], [53, "package-contents"], [54, "package-contents"], [62, "package-contents"], [63, "package-contents"], [67, "package-contents"], [73, "package-contents"], [88, "package-contents"], [93, "package-contents"], [99, "package-contents"], [108, "package-contents"], [119, "package-contents"], [132, "package-contents"], [138, "package-contents"], [146, "package-contents"], [152, "package-contents"], [155, "package-contents"]], "Prerequisites": [[188, "prerequisites"]], "Requirements": [[189, "requirements"]], "Retrieve Configurations": [[192, "retrieve-configurations"]], "Road Map": [[194, null]], "Run": [[192, "run"]], "Running Docker Image on AWS EC2": [[185, "running-docker-image-on-aws-ec2"]], "Running the Docker Container": [[189, "running-the-docker-container"]], "S3 Access Configuration": [[185, "s3-access-configuration"]], "Start the Run": [[195, "start-the-run"]], "Step 1: Import the CosemStartConfig": [[188, "step-1-import-the-cosemstartconfig"]], "Step 2: Configure the Start Model": [[188, "step-2-configure-the-start-model"]], "Step 3: Create a Run with start_config": [[188, "step-3-create-a-run-with-start-config"]], "Stopping the Docker Container": [[189, "stopping-the-docker-container"]], "Storing Checkpoints and Experiments Data in S3": [[185, "storing-checkpoints-and-experiments-data-in-s3"]], "Submodules": [[4, "submodules"], [13, "submodules"], [21, "submodules"], [27, "submodules"], [38, "submodules"], [53, "submodules"], [54, "submodules"], [62, "submodules"], [63, "submodules"], [67, "submodules"], [73, "submodules"], [88, "submodules"], [93, "submodules"], [99, "submodules"], [108, "submodules"], [119, "submodules"], [132, "submodules"], [138, "submodules"], [152, "submodules"], [155, "submodules"], [167, "submodules"], [179, "submodules"]], "Task": [[192, "task"]], "Train": [[192, "train"]], "Trainer": [[192, "trainer"]], "Tutorial: A Simple Experiment in Python": [[195, null]], "UNet Models": [[196, null]], "Visualize": [[192, "visualize"]], "What do you want to learn?": [[192, "what-do-you-want-to-learn"]], "What is DaCapo?": [[193, "what-is-dacapo"]], "apply": [[186, "dacapo-apply"]], "config": [[186, "dacapo-config"]], "dacapo": [[155, null], [186, "dacapo"]], "dacapo.apply": [[0, null]], "dacapo.blockwise": [[4, null]], "dacapo.blockwise.argmax_worker": [[1, null]], "dacapo.blockwise.blockwise_task": [[2, null]], "dacapo.blockwise.empanada_function": [[3, null]], "dacapo.blockwise.predict_worker": [[5, null]], "dacapo.blockwise.relabel_worker": [[6, null]], "dacapo.blockwise.scheduler": [[7, null]], "dacapo.blockwise.segment_worker": [[8, null]], "dacapo.blockwise.threshold_worker": [[9, null]], "dacapo.blockwise.watershed_function": [[10, null]], "dacapo.compute_context": [[13, null]], "dacapo.compute_context.bsub": [[11, null]], "dacapo.compute_context.compute_context": [[12, null]], "dacapo.compute_context.local_torch": [[14, null]], "dacapo.experiments": [[67, null]], "dacapo.experiments.architectures": [[21, null]], "dacapo.experiments.architectures.architecture": [[15, null]], "dacapo.experiments.architectures.architecture_config": [[16, null]], "dacapo.experiments.architectures.cnnectome_unet": [[17, null]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, null]], "dacapo.experiments.architectures.dummy_architecture": [[19, null]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, null]], "dacapo.experiments.arraytypes": [[27, null]], "dacapo.experiments.arraytypes.annotations": [[22, null]], "dacapo.experiments.arraytypes.arraytype": [[23, null]], "dacapo.experiments.arraytypes.binary": [[24, null]], "dacapo.experiments.arraytypes.distances": [[25, null]], "dacapo.experiments.arraytypes.embedding": [[26, null]], "dacapo.experiments.arraytypes.intensities": [[28, null]], "dacapo.experiments.arraytypes.mask": [[29, null]], "dacapo.experiments.arraytypes.probabilities": [[30, null]], "dacapo.experiments.datasplits": [[62, null]], "dacapo.experiments.datasplits.datasets": [[54, null]], "dacapo.experiments.datasplits.datasets.arrays": [[38, null]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, null]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, null]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, null]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, null]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, null]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, null]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, null]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, null]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, null]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, null]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, null]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, null]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, null]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, null]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, null]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, null]], "dacapo.experiments.datasplits.datasets.dataset": [[48, null]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, null]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, null]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, null]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, null]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, null]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, null]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, null]], "dacapo.experiments.datasplits.datasplit": [[57, null]], "dacapo.experiments.datasplits.datasplit_config": [[58, null]], "dacapo.experiments.datasplits.datasplit_generator": [[59, null]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, null]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, null]], "dacapo.experiments.datasplits.keys": [[63, null]], "dacapo.experiments.datasplits.keys.keys": [[64, null]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, null]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, null]], "dacapo.experiments.model": [[68, null]], "dacapo.experiments.run": [[69, null]], "dacapo.experiments.run_config": [[70, null]], "dacapo.experiments.starts": [[73, null]], "dacapo.experiments.starts.cosem_start": [[71, null]], "dacapo.experiments.starts.cosem_start_config": [[72, null]], "dacapo.experiments.starts.start": [[74, null]], "dacapo.experiments.starts.start_config": [[75, null]], "dacapo.experiments.tasks": [[93, null]], "dacapo.experiments.tasks.affinities_task": [[76, null]], "dacapo.experiments.tasks.affinities_task_config": [[77, null]], "dacapo.experiments.tasks.distance_task": [[78, null]], "dacapo.experiments.tasks.distance_task_config": [[79, null]], "dacapo.experiments.tasks.dummy_task": [[80, null]], "dacapo.experiments.tasks.dummy_task_config": [[81, null]], "dacapo.experiments.tasks.evaluators": [[88, null]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, null]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, null]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, null]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, null]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, null]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, null]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, null]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, null]], "dacapo.experiments.tasks.hot_distance_task": [[91, null]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, null]], "dacapo.experiments.tasks.inner_distance_task": [[94, null]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, null]], "dacapo.experiments.tasks.losses": [[99, null]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, null]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, null]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, null]], "dacapo.experiments.tasks.losses.loss": [[100, null]], "dacapo.experiments.tasks.losses.mse_loss": [[101, null]], "dacapo.experiments.tasks.one_hot_task": [[102, null]], "dacapo.experiments.tasks.one_hot_task_config": [[103, null]], "dacapo.experiments.tasks.post_processors": [[108, null]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, null]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, null]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, null]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, null]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, null]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, null]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, null]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, null]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, null]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, null]], "dacapo.experiments.tasks.predictors": [[119, null]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, null]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, null]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, null]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, null]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, null]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, null]], "dacapo.experiments.tasks.predictors.predictor": [[122, null]], "dacapo.experiments.tasks.pretrained_task": [[123, null]], "dacapo.experiments.tasks.pretrained_task_config": [[124, null]], "dacapo.experiments.tasks.task": [[125, null]], "dacapo.experiments.tasks.task_config": [[126, null]], "dacapo.experiments.trainers": [[138, null]], "dacapo.experiments.trainers.dummy_trainer": [[127, null]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, null]], "dacapo.experiments.trainers.gp_augments": [[132, null]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, null]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, null]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, null]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, null]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, null]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, null]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, null]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, null]], "dacapo.experiments.trainers.optimizers": [[139, null]], "dacapo.experiments.trainers.trainer": [[140, null]], "dacapo.experiments.trainers.trainer_config": [[141, null]], "dacapo.experiments.training_iteration_stats": [[142, null]], "dacapo.experiments.training_stats": [[143, null]], "dacapo.experiments.validation_iteration_scores": [[144, null]], "dacapo.experiments.validation_scores": [[145, null]], "dacapo.ext": [[146, null]], "dacapo.gp": [[152, null]], "dacapo.gp.copy": [[147, null]], "dacapo.gp.dacapo_create_target": [[148, null]], "dacapo.gp.dacapo_points_source": [[149, null]], "dacapo.gp.elastic_augment_fuse": [[150, null]], "dacapo.gp.gamma_noise": [[151, null]], "dacapo.gp.product": [[153, null]], "dacapo.gp.reject_if_empty": [[154, null]], "dacapo.options": [[156, null]], "dacapo.plot": [[157, null]], "dacapo.predict": [[158, null]], "dacapo.predict_local": [[159, null]], "dacapo.store": [[167, null]], "dacapo.store.array_store": [[160, null]], "dacapo.store.config_store": [[161, null]], "dacapo.store.conversion_hooks": [[162, null]], "dacapo.store.converter": [[163, null]], "dacapo.store.create_store": [[164, null]], "dacapo.store.file_config_store": [[165, null]], "dacapo.store.file_stats_store": [[166, null]], "dacapo.store.local_array_store": [[168, null]], "dacapo.store.local_weights_store": [[169, null]], "dacapo.store.mongo_config_store": [[170, null]], "dacapo.store.mongo_stats_store": [[171, null]], "dacapo.store.stats_store": [[172, null]], "dacapo.store.weights_store": [[173, null]], "dacapo.tmp": [[174, null]], "dacapo.train": [[175, null]], "dacapo.utils": [[179, null]], "dacapo.utils.affinities": [[176, null]], "dacapo.utils.array_utils": [[177, null]], "dacapo.utils.balance_weights": [[178, null]], "dacapo.utils.pipeline": [[180, null]], "dacapo.utils.view": [[181, null]], "dacapo.utils.voi": [[182, null]], "dacapo.validate": [[183, null]], "predict": [[186, "dacapo-predict"]], "run-blockwise": [[186, "dacapo-run-blockwise"]], "segment-blockwise": [[186, "dacapo-segment-blockwise"]], "train": [[186, "dacapo-train"]], "validate": [[186, "dacapo-validate"]]}, "docnames": ["autoapi/dacapo/apply/index", "autoapi/dacapo/blockwise/argmax_worker/index", "autoapi/dacapo/blockwise/blockwise_task/index", "autoapi/dacapo/blockwise/empanada_function/index", "autoapi/dacapo/blockwise/index", "autoapi/dacapo/blockwise/predict_worker/index", "autoapi/dacapo/blockwise/relabel_worker/index", "autoapi/dacapo/blockwise/scheduler/index", "autoapi/dacapo/blockwise/segment_worker/index", "autoapi/dacapo/blockwise/threshold_worker/index", "autoapi/dacapo/blockwise/watershed_function/index", "autoapi/dacapo/compute_context/bsub/index", "autoapi/dacapo/compute_context/compute_context/index", "autoapi/dacapo/compute_context/index", "autoapi/dacapo/compute_context/local_torch/index", "autoapi/dacapo/experiments/architectures/architecture/index", "autoapi/dacapo/experiments/architectures/architecture_config/index", "autoapi/dacapo/experiments/architectures/cnnectome_unet/index", "autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index", "autoapi/dacapo/experiments/architectures/dummy_architecture/index", "autoapi/dacapo/experiments/architectures/dummy_architecture_config/index", "autoapi/dacapo/experiments/architectures/index", "autoapi/dacapo/experiments/arraytypes/annotations/index", "autoapi/dacapo/experiments/arraytypes/arraytype/index", "autoapi/dacapo/experiments/arraytypes/binary/index", "autoapi/dacapo/experiments/arraytypes/distances/index", "autoapi/dacapo/experiments/arraytypes/embedding/index", "autoapi/dacapo/experiments/arraytypes/index", "autoapi/dacapo/experiments/arraytypes/intensities/index", "autoapi/dacapo/experiments/arraytypes/mask/index", "autoapi/dacapo/experiments/arraytypes/probabilities/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/index", "autoapi/dacapo/experiments/datasplits/datasets/index", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasplit/index", "autoapi/dacapo/experiments/datasplits/datasplit_config/index", "autoapi/dacapo/experiments/datasplits/datasplit_generator/index", "autoapi/dacapo/experiments/datasplits/dummy_datasplit/index", "autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index", "autoapi/dacapo/experiments/datasplits/index", "autoapi/dacapo/experiments/datasplits/keys/index", "autoapi/dacapo/experiments/datasplits/keys/keys/index", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index", "autoapi/dacapo/experiments/index", "autoapi/dacapo/experiments/model/index", "autoapi/dacapo/experiments/run/index", "autoapi/dacapo/experiments/run_config/index", "autoapi/dacapo/experiments/starts/cosem_start/index", "autoapi/dacapo/experiments/starts/cosem_start_config/index", "autoapi/dacapo/experiments/starts/index", "autoapi/dacapo/experiments/starts/start/index", "autoapi/dacapo/experiments/starts/start_config/index", "autoapi/dacapo/experiments/tasks/affinities_task/index", "autoapi/dacapo/experiments/tasks/affinities_task_config/index", "autoapi/dacapo/experiments/tasks/distance_task/index", "autoapi/dacapo/experiments/tasks/distance_task_config/index", "autoapi/dacapo/experiments/tasks/dummy_task/index", "autoapi/dacapo/experiments/tasks/dummy_task_config/index", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/index", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index", "autoapi/dacapo/experiments/tasks/hot_distance_task/index", "autoapi/dacapo/experiments/tasks/hot_distance_task_config/index", "autoapi/dacapo/experiments/tasks/index", "autoapi/dacapo/experiments/tasks/inner_distance_task/index", "autoapi/dacapo/experiments/tasks/inner_distance_task_config/index", "autoapi/dacapo/experiments/tasks/losses/affinities_loss/index", "autoapi/dacapo/experiments/tasks/losses/dummy_loss/index", "autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index", "autoapi/dacapo/experiments/tasks/losses/index", "autoapi/dacapo/experiments/tasks/losses/loss/index", "autoapi/dacapo/experiments/tasks/losses/mse_loss/index", "autoapi/dacapo/experiments/tasks/one_hot_task/index", "autoapi/dacapo/experiments/tasks/one_hot_task_config/index", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/index", "autoapi/dacapo/experiments/tasks/post_processors/post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/index", "autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/predictor/index", "autoapi/dacapo/experiments/tasks/pretrained_task/index", "autoapi/dacapo/experiments/tasks/pretrained_task_config/index", "autoapi/dacapo/experiments/tasks/task/index", "autoapi/dacapo/experiments/tasks/task_config/index", "autoapi/dacapo/experiments/trainers/dummy_trainer/index", "autoapi/dacapo/experiments/trainers/dummy_trainer_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/index", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index", "autoapi/dacapo/experiments/trainers/gunpowder_trainer/index", "autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index", "autoapi/dacapo/experiments/trainers/index", "autoapi/dacapo/experiments/trainers/optimizers/index", "autoapi/dacapo/experiments/trainers/trainer/index", "autoapi/dacapo/experiments/trainers/trainer_config/index", "autoapi/dacapo/experiments/training_iteration_stats/index", "autoapi/dacapo/experiments/training_stats/index", "autoapi/dacapo/experiments/validation_iteration_scores/index", "autoapi/dacapo/experiments/validation_scores/index", "autoapi/dacapo/ext/index", "autoapi/dacapo/gp/copy/index", "autoapi/dacapo/gp/dacapo_create_target/index", "autoapi/dacapo/gp/dacapo_points_source/index", "autoapi/dacapo/gp/elastic_augment_fuse/index", "autoapi/dacapo/gp/gamma_noise/index", "autoapi/dacapo/gp/index", "autoapi/dacapo/gp/product/index", "autoapi/dacapo/gp/reject_if_empty/index", "autoapi/dacapo/index", "autoapi/dacapo/options/index", "autoapi/dacapo/plot/index", "autoapi/dacapo/predict/index", "autoapi/dacapo/predict_local/index", "autoapi/dacapo/store/array_store/index", "autoapi/dacapo/store/config_store/index", "autoapi/dacapo/store/conversion_hooks/index", "autoapi/dacapo/store/converter/index", "autoapi/dacapo/store/create_store/index", "autoapi/dacapo/store/file_config_store/index", "autoapi/dacapo/store/file_stats_store/index", "autoapi/dacapo/store/index", "autoapi/dacapo/store/local_array_store/index", "autoapi/dacapo/store/local_weights_store/index", "autoapi/dacapo/store/mongo_config_store/index", "autoapi/dacapo/store/mongo_stats_store/index", "autoapi/dacapo/store/stats_store/index", "autoapi/dacapo/store/weights_store/index", "autoapi/dacapo/tmp/index", "autoapi/dacapo/train/index", "autoapi/dacapo/utils/affinities/index", "autoapi/dacapo/utils/array_utils/index", "autoapi/dacapo/utils/balance_weights/index", "autoapi/dacapo/utils/index", "autoapi/dacapo/utils/pipeline/index", "autoapi/dacapo/utils/view/index", "autoapi/dacapo/utils/voi/index", "autoapi/dacapo/validate/index", "autoapi/index", "aws", "cli", "conf", "cosem_starter", "docker", "index", "install", "notebooks/minimal_tutorial", "overview", "roadmap", "tutorial", "unet_architectures"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["autoapi/dacapo/apply/index.rst", "autoapi/dacapo/blockwise/argmax_worker/index.rst", "autoapi/dacapo/blockwise/blockwise_task/index.rst", "autoapi/dacapo/blockwise/empanada_function/index.rst", "autoapi/dacapo/blockwise/index.rst", "autoapi/dacapo/blockwise/predict_worker/index.rst", "autoapi/dacapo/blockwise/relabel_worker/index.rst", "autoapi/dacapo/blockwise/scheduler/index.rst", "autoapi/dacapo/blockwise/segment_worker/index.rst", "autoapi/dacapo/blockwise/threshold_worker/index.rst", "autoapi/dacapo/blockwise/watershed_function/index.rst", "autoapi/dacapo/compute_context/bsub/index.rst", "autoapi/dacapo/compute_context/compute_context/index.rst", "autoapi/dacapo/compute_context/index.rst", "autoapi/dacapo/compute_context/local_torch/index.rst", "autoapi/dacapo/experiments/architectures/architecture/index.rst", "autoapi/dacapo/experiments/architectures/architecture_config/index.rst", "autoapi/dacapo/experiments/architectures/cnnectome_unet/index.rst", "autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index.rst", "autoapi/dacapo/experiments/architectures/dummy_architecture/index.rst", "autoapi/dacapo/experiments/architectures/dummy_architecture_config/index.rst", "autoapi/dacapo/experiments/architectures/index.rst", "autoapi/dacapo/experiments/arraytypes/annotations/index.rst", "autoapi/dacapo/experiments/arraytypes/arraytype/index.rst", "autoapi/dacapo/experiments/arraytypes/binary/index.rst", "autoapi/dacapo/experiments/arraytypes/distances/index.rst", "autoapi/dacapo/experiments/arraytypes/embedding/index.rst", "autoapi/dacapo/experiments/arraytypes/index.rst", "autoapi/dacapo/experiments/arraytypes/intensities/index.rst", "autoapi/dacapo/experiments/arraytypes/mask/index.rst", "autoapi/dacapo/experiments/arraytypes/probabilities/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit_generator/index.rst", "autoapi/dacapo/experiments/datasplits/dummy_datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index.rst", "autoapi/dacapo/experiments/datasplits/index.rst", "autoapi/dacapo/experiments/datasplits/keys/index.rst", "autoapi/dacapo/experiments/datasplits/keys/keys/index.rst", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index.rst", "autoapi/dacapo/experiments/index.rst", "autoapi/dacapo/experiments/model/index.rst", "autoapi/dacapo/experiments/run/index.rst", "autoapi/dacapo/experiments/run_config/index.rst", "autoapi/dacapo/experiments/starts/cosem_start/index.rst", "autoapi/dacapo/experiments/starts/cosem_start_config/index.rst", "autoapi/dacapo/experiments/starts/index.rst", "autoapi/dacapo/experiments/starts/start/index.rst", "autoapi/dacapo/experiments/starts/start_config/index.rst", "autoapi/dacapo/experiments/tasks/affinities_task/index.rst", "autoapi/dacapo/experiments/tasks/affinities_task_config/index.rst", "autoapi/dacapo/experiments/tasks/distance_task/index.rst", "autoapi/dacapo/experiments/tasks/distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/dummy_task/index.rst", "autoapi/dacapo/experiments/tasks/dummy_task_config/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/hot_distance_task/index.rst", "autoapi/dacapo/experiments/tasks/hot_distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/index.rst", "autoapi/dacapo/experiments/tasks/inner_distance_task/index.rst", "autoapi/dacapo/experiments/tasks/inner_distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/losses/affinities_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/dummy_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/index.rst", "autoapi/dacapo/experiments/tasks/losses/loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/mse_loss/index.rst", "autoapi/dacapo/experiments/tasks/one_hot_task/index.rst", "autoapi/dacapo/experiments/tasks/one_hot_task_config/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/index.rst", "autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/predictor/index.rst", "autoapi/dacapo/experiments/tasks/pretrained_task/index.rst", "autoapi/dacapo/experiments/tasks/pretrained_task_config/index.rst", "autoapi/dacapo/experiments/tasks/task/index.rst", "autoapi/dacapo/experiments/tasks/task_config/index.rst", "autoapi/dacapo/experiments/trainers/dummy_trainer/index.rst", "autoapi/dacapo/experiments/trainers/dummy_trainer_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index.rst", "autoapi/dacapo/experiments/trainers/gunpowder_trainer/index.rst", "autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index.rst", "autoapi/dacapo/experiments/trainers/index.rst", "autoapi/dacapo/experiments/trainers/optimizers/index.rst", "autoapi/dacapo/experiments/trainers/trainer/index.rst", "autoapi/dacapo/experiments/trainers/trainer_config/index.rst", "autoapi/dacapo/experiments/training_iteration_stats/index.rst", "autoapi/dacapo/experiments/training_stats/index.rst", "autoapi/dacapo/experiments/validation_iteration_scores/index.rst", "autoapi/dacapo/experiments/validation_scores/index.rst", "autoapi/dacapo/ext/index.rst", "autoapi/dacapo/gp/copy/index.rst", "autoapi/dacapo/gp/dacapo_create_target/index.rst", "autoapi/dacapo/gp/dacapo_points_source/index.rst", "autoapi/dacapo/gp/elastic_augment_fuse/index.rst", "autoapi/dacapo/gp/gamma_noise/index.rst", "autoapi/dacapo/gp/index.rst", "autoapi/dacapo/gp/product/index.rst", "autoapi/dacapo/gp/reject_if_empty/index.rst", "autoapi/dacapo/index.rst", "autoapi/dacapo/options/index.rst", "autoapi/dacapo/plot/index.rst", "autoapi/dacapo/predict/index.rst", "autoapi/dacapo/predict_local/index.rst", "autoapi/dacapo/store/array_store/index.rst", "autoapi/dacapo/store/config_store/index.rst", "autoapi/dacapo/store/conversion_hooks/index.rst", "autoapi/dacapo/store/converter/index.rst", "autoapi/dacapo/store/create_store/index.rst", "autoapi/dacapo/store/file_config_store/index.rst", "autoapi/dacapo/store/file_stats_store/index.rst", "autoapi/dacapo/store/index.rst", "autoapi/dacapo/store/local_array_store/index.rst", "autoapi/dacapo/store/local_weights_store/index.rst", "autoapi/dacapo/store/mongo_config_store/index.rst", "autoapi/dacapo/store/mongo_stats_store/index.rst", "autoapi/dacapo/store/stats_store/index.rst", "autoapi/dacapo/store/weights_store/index.rst", "autoapi/dacapo/tmp/index.rst", "autoapi/dacapo/train/index.rst", "autoapi/dacapo/utils/affinities/index.rst", "autoapi/dacapo/utils/array_utils/index.rst", "autoapi/dacapo/utils/balance_weights/index.rst", "autoapi/dacapo/utils/index.rst", "autoapi/dacapo/utils/pipeline/index.rst", "autoapi/dacapo/utils/view/index.rst", "autoapi/dacapo/utils/voi/index.rst", "autoapi/dacapo/validate/index.rst", "autoapi/index.rst", "aws.rst", "cli.rst", "conf.py", "cosem_starter.rst", "docker.rst", "index.rst", "install.rst", "notebooks/minimal_tutorial.ipynb", "overview.rst", "roadmap.rst", "tutorial.rst", "unet_architectures.rst"], "indexentries": {"--channels_out": [[186, "cmdoption-dacapo-segment-blockwise-co", false]], "--context": [[186, "cmdoption-dacapo-segment-blockwise-c", false]], "--criterion": [[186, "cmdoption-dacapo-apply-c", false]], "--input_container": [[186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false]], "--input_dataset": [[186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-id", false]], "--iteration": [[186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-validate-i", false]], "--log-level": [[186, "cmdoption-dacapo-log-level", false]], "--max_retries": [[186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false]], "--no-validation": [[186, "cmdoption-dacapo-train-no-validation", false]], "--num_workers": [[186, "cmdoption-dacapo-apply-w", false], [186, "cmdoption-dacapo-predict-w", false], [186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false], [186, "cmdoption-dacapo-validate-w", false]], "--output_container": [[186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false]], "--output_dataset": [[186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-od", false]], "--output_dtype": [[186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-validate-dt", false]], "--output_path": [[186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-predict-op", false]], "--output_roi": [[186, "cmdoption-dacapo-predict-roi", false]], "--overwrite": [[186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-validate-ow", false]], "--parameters": [[186, "cmdoption-dacapo-apply-p", false]], "--read_roi_size": [[186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false]], "--roi": [[186, "cmdoption-dacapo-apply-roi", false]], "--run-name": [[186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-train-r", false], [186, "cmdoption-dacapo-validate-r", false]], "--segment_function_file": [[186, "cmdoption-dacapo-segment-blockwise-sf", false]], "--timeout": [[186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-t", false]], "--total_roi": [[186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false]], "--validation_dataset": [[186, "cmdoption-dacapo-apply-vd", false]], "--worker_file": [[186, "cmdoption-dacapo-run-blockwise-w", false]], "--write_roi_size": [[186, "cmdoption-dacapo-run-blockwise-wr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "-c": [[186, "cmdoption-dacapo-apply-c", false], [186, "cmdoption-dacapo-segment-blockwise-c", false]], "-channels_out": [[186, "cmdoption-dacapo-run-blockwise-co", false]], "-co": [[186, "cmdoption-dacapo-run-blockwise-co", false], [186, "cmdoption-dacapo-segment-blockwise-co", false]], "-dt": [[186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-validate-dt", false]], "-i": [[186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-validate-i", false]], "-ic": [[186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false]], "-id": [[186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-id", false]], "-mr": [[186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false]], "-nw": [[186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false]], "-oc": [[186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false]], "-od": [[186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-od", false]], "-op": [[186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-predict-op", false]], "-ow": [[186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-validate-ow", false]], "-p": [[186, "cmdoption-dacapo-apply-p", false]], "-r": [[186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-train-r", false], [186, "cmdoption-dacapo-validate-r", false]], "-roi": [[186, "cmdoption-dacapo-apply-roi", false], [186, "cmdoption-dacapo-predict-roi", false]], "-rr": [[186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false]], "-sf": [[186, "cmdoption-dacapo-segment-blockwise-sf", false]], "-t": [[186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-t", false]], "-tr": [[186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false]], "-vd": [[186, "cmdoption-dacapo-apply-vd", false]], "-w": [[186, "cmdoption-dacapo-apply-w", false], [186, "cmdoption-dacapo-predict-w", false], [186, "cmdoption-dacapo-run-blockwise-w", false], [186, "cmdoption-dacapo-validate-w", false]], "-wr": [[186, "cmdoption-dacapo-run-blockwise-wr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "__attrs_post_init__() (dacapo.experiments.arraytypes.intensities.intensitiesarray method)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.arraytypes.intensitiesarray method)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig method)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.__attrs_post_init__", false]], "__augment() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.__augment", false]], "__augment() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.__augment", false]], "__enter__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__enter__", false]], "__eq__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__eq__", false]], "__eq__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__eq__", false]], "__exception (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__exception", false]], "__exit__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__exit__", false]], "__find_boundaries() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.__find_boundaries", false]], "__find_boundaries() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.__find_boundaries", false]], "__generate_semantic_seg_dataset_crop() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__generate_semantic_seg_dataset_crop", false]], "__generate_semantic_seg_dataset_crop() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__generate_semantic_seg_dataset_crop", false]], "__generate_semantic_seg_datasplit() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__generate_semantic_seg_datasplit", false]], "__generate_semantic_seg_datasplit() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__generate_semantic_seg_datasplit", false]], "__getattr__() (dacapo.ext.nosuchmodule method)": [[146, "dacapo.ext.NoSuchModule.__getattr__", false]], "__getitem__() (dacapo.experiments.datasplits.datasplit_generator.customenummeta method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta.__getitem__", false]], "__hash__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__hash__", false]], "__hash__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__hash__", false]], "__init__() (dacapo.blockwise.blockwise_task.dacapoblockwisetask method)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.__init__", false]], "__init__() (dacapo.blockwise.dacapoblockwisetask method)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset method)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.dummydataset method)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset method)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.rawgtdataset method)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasetspec method)": [[62, "dacapo.experiments.datasplits.DatasetSpec.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit method)": [[62, "dacapo.experiments.datasplits.DataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit.datasplit method)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit_generator.datasetspec method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__init__", false]], "__init__() (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit method)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.dummydatasplit method)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit method)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig method)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.__init__", false]], "__init__() (dacapo.experiments.datasplits.trainvalidatedatasplit method)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.trainvalidatedatasplitconfig method)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.__init__", false]], "__init__() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.__init__", false]], "__init__() (dacapo.experiments.starts.cosem_start_config.cosemstartconfig method)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.__init__", false]], "__init__() (dacapo.experiments.starts.cosemstartconfig method)": [[73, "dacapo.experiments.starts.CosemStartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.start method)": [[73, "dacapo.experiments.starts.Start.__init__", false]], "__init__() (dacapo.experiments.starts.start.start method)": [[74, "dacapo.experiments.starts.start.Start.__init__", false]], "__init__() (dacapo.experiments.starts.start_config.startconfig method)": [[75, "dacapo.experiments.starts.start_config.StartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.startconfig method)": [[73, "dacapo.experiments.starts.StartConfig.__init__", false]], "__init__() (dacapo.experiments.tasks.affinities_task.affinitiestask method)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.__init__", false]], "__init__() (dacapo.experiments.tasks.affinitiestask method)": [[93, "dacapo.experiments.tasks.AffinitiesTask.__init__", false]], "__init__() (dacapo.experiments.tasks.distance_task.distancetask method)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.distancetask method)": [[93, "dacapo.experiments.tasks.DistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.dummy_task.dummytask method)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.__init__", false]], "__init__() (dacapo.experiments.tasks.dummytask method)": [[93, "dacapo.experiments.tasks.DummyTask.__init__", false]], "__init__() (dacapo.experiments.tasks.hot_distance_task.hotdistancetask method)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.hotdistancetask method)": [[93, "dacapo.experiments.tasks.HotDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.inner_distance_task.innerdistancetask method)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.innerdistancetask method)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.__init__", false]], "__init__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__init__", false]], "__init__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__init__", false]], "__init__() (dacapo.store.weights_store.weights method)": [[173, "dacapo.store.weights_store.Weights.__init__", false]], "__init_db() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__init_db", false]], "__iter__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__iter__", false]], "__iter__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__iter__", false]], "__load() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.__load", false]], "__name (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__name", false]], "__normalize() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.__normalize", false]], "__normalize() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.__normalize", false]], "__open_collections() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__open_collections", false]], "__parse_options() (dacapo.options method)": [[155, "dacapo.Options.__parse_options", false]], "__parse_options() (dacapo.options.options method)": [[156, "dacapo.options.Options.__parse_options", false]], "__parse_options_from_file() (dacapo.options method)": [[155, "dacapo.Options.__parse_options_from_file", false]], "__parse_options_from_file() (dacapo.options.options method)": [[156, "dacapo.options.Options.__parse_options_from_file", false]], "__repr__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__repr__", false]], "__repr__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__repr__", false]], "__same_doc() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__same_doc", false]], "__save_insert() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.__save_insert", false]], "__save_insert() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__save_insert", false]], "__str__ (dacapo.experiments.datasplits.datasplit_generator.customenum attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnum.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasetspec method)": [[62, "dacapo.experiments.datasplits.DatasetSpec.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.customenum method)": [[59, "id0", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasetspec method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasettype method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.segmentationtype method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.arraykey method)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.datakey method)": [[63, "dacapo.experiments.datasplits.keys.DataKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.graphkey method)": [[63, "dacapo.experiments.datasplits.keys.GraphKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.arraykey method)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.datakey method)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.graphkey method)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey.__str__", false]], "__str__() (dacapo.store.config_store.duplicatenameerror method)": [[161, "dacapo.store.config_store.DuplicateNameError.__str__", false]], "__traceback_str (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__traceback_str", false]], "__typed_structure() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.__typed_structure", false]], "__typed_unstructure() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.__typed_unstructure", false]], "_axes (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig._axes", false]], "_axes (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig._axes", false]], "_device (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch._device", false]], "_device (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch._device", false]], "_eval_shape_increase (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig._eval_shape_increase", false]], "_eval_shape_increase (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig._eval_shape_increase", false]], "_grow_boundaries() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor._grow_boundaries", false]], "_grow_boundaries() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor._grow_boundaries", false]], "_gt_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._gt_key", false]], "_gt_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._gt_key", false]], "_gt_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._gt_key", false]], "_mask_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._mask_key", false]], "_mask_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._mask_key", false]], "_mask_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._mask_key", false]], "_member_names_ (dacapo.experiments.datasplits.datasplit_generator.customenummeta attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta._member_names_", false]], "_neuroglancer_layers() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset._neuroglancer_layers", false]], "_neuroglancer_layers() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset._neuroglancer_layers", false]], "_raw_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._raw_key", false]], "_raw_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._raw_key", false]], "_raw_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._raw_key", false]], "_spec (dacapo.utils.pipeline.zerossource attribute)": [[180, "dacapo.utils.pipeline.ZerosSource._spec", false]], "_wrap_command() (dacapo.compute_context.bsub method)": [[13, "dacapo.compute_context.Bsub._wrap_command", false]], "_wrap_command() (dacapo.compute_context.bsub.bsub method)": [[11, "dacapo.compute_context.bsub.Bsub._wrap_command", false]], "_wrap_command() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext._wrap_command", false]], "_wrap_command() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext._wrap_command", false]], "_wrap_command() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch._wrap_command", false]], "_wrap_command() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch._wrap_command", false]], "activation (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.activation", false]], "activation (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.activation", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.activation_on_upsample", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.activation_on_upsample", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.activation_on_upsample", false]], "add_iteration_scores() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.add_iteration_scores", false], [145, "id5", false]], "add_iteration_scores() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.add_iteration_scores", false], [67, "id23", false]], "add_iteration_stats() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.add_iteration_stats", false]], "add_iteration_stats() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.add_iteration_stats", false]], "add_scalar_layer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.add_scalar_layer", false]], "add_seg_layer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.add_seg_layer", false]], "affinitiesloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss", false]], "affinitiesloss (class in dacapo.experiments.tasks.losses.affinities_loss)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss", false]], "affinitiespredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor", false]], "affinitiespredictor (class in dacapo.experiments.tasks.predictors.affinities_predictor)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor", false]], "affinitiestask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.AffinitiesTask", false]], "affinitiestask (class in dacapo.experiments.tasks.affinities_task)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask", false]], "affinitiestaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig", false]], "affinitiestaskconfig (class in dacapo.experiments.tasks.affinities_task_config)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig", false]], "affs_weight_clipmax (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.affs_weight_clipmax", false], [77, "id6", false]], "affs_weight_clipmax (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.affs_weight_clipmax", false], [93, "id33", false]], "affs_weight_clipmax (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.affs_weight_clipmax", false], [115, "id5", false]], "affs_weight_clipmax (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.affs_weight_clipmax", false], [119, "id27", false]], "affs_weight_clipmin (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.affs_weight_clipmin", false], [77, "id5", false]], "affs_weight_clipmin (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.affs_weight_clipmin", false], [93, "id32", false]], "affs_weight_clipmin (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.affs_weight_clipmin", false], [115, "id4", false]], "affs_weight_clipmin (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.affs_weight_clipmin", false], [119, "id26", false]], "annotationarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.AnnotationArray", false]], "annotationarray (class in dacapo.experiments.arraytypes.annotations)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray", false]], "apply() (in module dacapo)": [[155, "dacapo.apply", false]], "apply() (in module dacapo.apply)": [[0, "dacapo.apply.apply", false]], "apply_run() (in module dacapo.apply)": [[0, "dacapo.apply.apply_run", false]], "architecture (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.Architecture", false]], "architecture (class in dacapo.experiments.architectures.architecture)": [[15, "dacapo.experiments.architectures.architecture.Architecture", false]], "architecture (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.architecture", false], [67, "id4", false]], "architecture (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.architecture", false], [68, "id4", false]], "architecture (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.architecture", false], [69, "id4", false]], "architecture_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.architecture_config", false]], "architecture_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.architecture_config", false]], "architecture_type (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "id0", false]], "architecture_type (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "id19", false]], "architecture_type (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.architecture_type", false], [20, "id0", false]], "architecture_type (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.architecture_type", false], [21, "id8", false]], "architecture_type() (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig method)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.architecture_type", false]], "architecture_type() (dacapo.experiments.architectures.cnnectomeunetconfig method)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.architecture_type", false]], "architectureconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.ArchitectureConfig", false]], "architectureconfig (class in dacapo.experiments.architectures.architecture_config)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig", false]], "architectures (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.architectures", false], [161, "id6", false]], "architectures (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.architectures", false]], "architectures (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.architectures", false]], "argmaxpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor", false]], "argmaxpostprocessor (class in dacapo.experiments.tasks.post_processors.argmax_post_processor)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor", false]], "argmaxpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters", false]], "argmaxpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters)": [[105, "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig method)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.arrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig method)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig method)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig method)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig method)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig method)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig method)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig method)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig method)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig method)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig method)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.sum_array_config.sumarrayconfig method)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.sumarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig method)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig method)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.array", false]], "array_identifier() (dacapo.store.array_store.localcontaineridentifier method)": [[160, "dacapo.store.array_store.LocalContainerIdentifier.array_identifier", false]], "array_key (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.array_key", false], [147, "id0", false]], "array_key (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.array_key", false], [152, "id14", false]], "array_store (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.array_store", false], [181, "id5", false]], "array_store (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.array_store", false]], "arrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig", false]], "arrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.array_config)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig", false]], "arrayevaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator", false]], "arraykey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey", false]], "arraykey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey", false]], "arrays (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.arrays", false], [151, "id0", false]], "arrays (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.arrays", false], [152, "id6", false]], "arrays (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.arrays", false], [161, "id3", false]], "arrays (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.arrays", false]], "arrays (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.arrays", false]], "arraystore (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.ArrayStore", false]], "arraytype (class in dacapo.experiments.arraytypes.arraytype)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType", false]], "attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.attention", false]], "attentionblockmodule (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.simple_config.simpleaugmentconfig attribute)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.simpleaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.augmentation_probability", false]], "augmentation_probability (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.augmentation_probability", false]], "augmentconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.AugmentConfig", false]], "augmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig", false]], "augmentconfig (class in dacapo.experiments.trainers.gp_augments.augment_config)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig", false]], "augments (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.augments", false], [136, "id6", false]], "augments (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.augments", false], [137, "id2", false]], "augments (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.augments", false], [138, "id27", false]], "augments (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.augments", false], [138, "id17", false]], "axis_names (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.axis_names", false], [46, "id3", false]], "background (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.background", false], [32, "id2", false]], "background (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.background", false], [38, "id9", false]], "background (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.background", false]], "background (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.background", false]], "background (dacapo.utils.pipeline.expandlabels attribute)": [[180, "dacapo.utils.pipeline.ExpandLabels.background", false], [180, "id13", false]], "background_as_object (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.background_as_object", false], [77, "id9", false]], "background_as_object (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.background_as_object", false], [93, "id36", false]], "background_as_object (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.background_as_object", false], [115, "id8", false]], "background_as_object (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.background_as_object", false], [119, "id30", false]], "balance_weights() (in module dacapo.utils.balance_weights)": [[178, "dacapo.utils.balance_weights.balance_weights", false]], "basedir (dacapo.store.local_array_store.localarraystore attribute)": [[168, "dacapo.store.local_array_store.LocalArrayStore.basedir", false], [168, "id0", false]], "basedir (dacapo.store.local_weights_store.localweightsstore attribute)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.basedir", false], [169, "id0", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.batch_norm", false]], "batch_size (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.batch_size", false], [127, "id1", false]], "batch_size (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.batch_size", false], [138, "id10", false]], "batch_size (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.batch_size", false], [136, "id1", false]], "batch_size (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.batch_size", false], [138, "id22", false]], "batch_size (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.batch_size", false], [138, "id1", false]], "batch_size (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.batch_size", false], [140, "id1", false]], "batch_size (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.batch_size", false], [141, "id1", false]], "batch_size (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.batch_size", false], [138, "id4", false]], "best_score (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.best_score", false], [181, "id10", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.best_scores", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "id13", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator.evaluator attribute)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.best_scores", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "id1", false]], "best_validation_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.best_validation_array", false], [168, "id1", false]], "bestscore (class in dacapo.utils.view)": [[181, "dacapo.utils.view.BestScore", false]], "bestscore (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.BestScore", false]], "bg (in module dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BG", false]], "bias (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.bias", false], [114, "id0", false]], "bias (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.bias", false], [108, "id21", false]], "billing (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.billing", false], [13, "id9", false]], "billing (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.billing", false], [11, "id3", false]], "binarize_gt (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.binarize_gt", false]], "binarize_gt (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.binarize_gt", false]], "binarizearrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig", false]], "binarizearrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.binarize_array_config)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig", false]], "binaryarray (class in dacapo.experiments.arraytypes.binary)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray", false]], "binarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores", false]], "binarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores", false]], "binarysegmentationevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator", false]], "binarysegmentationevaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator", false]], "blipp_score (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.blipp_score", false], [84, "id1", false]], "blipp_score (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.blipp_score", false], [88, "id1", false]], "bokeh_plot_runs() (in module dacapo.plot)": [[157, "dacapo.plot.bokeh_plot_runs", false]], "bounds() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id3", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id3", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id2", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id10", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.bounds", false], [88, "id20", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.bounds", false], [87, "id8", false]], "bounds() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id4", false]], "bounds() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id54", false]], "bounds() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.bounds", false]], "bsub (class in dacapo.compute_context)": [[13, "dacapo.compute_context.Bsub", false]], "bsub (class in dacapo.compute_context.bsub)": [[11, "dacapo.compute_context.bsub.Bsub", false]], "build_batch_provider() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.build_batch_provider", false], [127, "id4", false]], "build_batch_provider() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.build_batch_provider", false], [138, "id13", false]], "build_batch_provider() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.build_batch_provider", false]], "calculate_and_apply_padding() (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.calculate_and_apply_padding", false]], "can_train() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.can_train", false], [127, "id5", false]], "can_train() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.can_train", false], [138, "id14", false]], "can_train() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.can_train", false]], "can_train() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.can_train", false]], "can_train() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.can_train", false]], "can_train() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.can_train", false]], "chain (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.chain", false], [67, "id6", false]], "chain (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.chain", false], [68, "id6", false]], "channel_names (dacapo.experiments.arraytypes.arraytype.arraytype attribute)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.channel_names", false]], "channel_scores (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.channel_scores", false], [82, "id21", false]], "channel_scores (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.channel_scores", false], [88, "id22", false]], "channels (dacapo.experiments.arraytypes.binary.binaryarray attribute)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray.channels", false], [24, "id0", false]], "channels (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.channels", false], [28, "id0", false]], "channels (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.channels", false], [27, "id2", false]], "channels (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.channels", false], [33, "id0", false]], "channels (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.channels", false], [38, "id20", false]], "channels (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.channels", false], [71, "id3", false]], "channels (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.channels", false], [73, "id7", false]], "channels (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.channels", false], [73, "id0", false]], "channels (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.channels", false], [74, "id0", false]], "channels (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.channels", false], [79, "id0", false]], "channels (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.channels", false], [93, "id10", false]], "channels (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.channels", false], [83, "id3", false]], "channels (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.channels", false], [88, "id47", false]], "channels (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.channels", false], [92, "id1", false]], "channels (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.channels", false], [93, "id50", false]], "channels (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.channels", false], [95, "id0", false]], "channels (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.channels", false], [93, "id41", false]], "channels (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.channels", false], [116, "id0", false]], "channels (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.channels", false], [119, "id5", false]], "channels (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.channels", false], [118, "id0", false]], "channels (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.channels", false], [119, "id46", false]], "channels (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.channels", false], [120, "id0", false]], "channels (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.channels", false], [119, "id40", false]], "channels_in (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.channels_in", false], [19, "id0", false]], "channels_in (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.channels_in", false], [21, "id12", false]], "channels_out (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.channels_out", false], [19, "id1", false]], "channels_out (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.channels_out", false], [21, "id13", false]], "check() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.check", false], [71, "id4", false]], "check() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.check", false], [73, "id8", false]], "check_class_name() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.check_class_name", false], [59, "id28", false]], "check_class_name() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.check_class_name", false], [62, "id31", false]], "class_name (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator property)": [[59, "id27", false]], "class_name (dacapo.experiments.datasplits.datasplitgenerator property)": [[62, "id30", false]], "class_name() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.class_name", false]], "class_name() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.class_name", false]], "classes (dacapo.experiments.arraytypes.annotationarray attribute)": [[27, "dacapo.experiments.arraytypes.AnnotationArray.classes", false], [27, "id0", false]], "classes (dacapo.experiments.arraytypes.annotations.annotationarray attribute)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray.classes", false], [22, "id0", false]], "classes (dacapo.experiments.arraytypes.distancearray attribute)": [[27, "dacapo.experiments.arraytypes.DistanceArray.classes", false], [27, "id6", false]], "classes (dacapo.experiments.arraytypes.distances.distancearray attribute)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.classes", false], [25, "id0", false]], "classes (dacapo.experiments.arraytypes.probabilities.probabilityarray attribute)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray.classes", false], [30, "id0", false]], "classes (dacapo.experiments.arraytypes.probabilityarray attribute)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray.classes", false], [27, "id11", false]], "classes (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig attribute)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.classes", false], [103, "id1", false]], "classes (dacapo.experiments.tasks.onehottaskconfig attribute)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.classes", false], [93, "id22", false]], "classes (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.classes", false]], "classes (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.classes", false]], "classes (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.classes", false], [121, "id0", false]], "classes (dacapo.experiments.tasks.predictors.onehotpredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.classes", false], [119, "id16", false]], "classes_separator_character (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.classes_separator_character", false], [59, "id25", false]], "classes_separator_character (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.classes_separator_character", false], [62, "id28", false]], "cli() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.cli", false]], "cli() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.cli", false]], "cli() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.cli", false]], "cli() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.cli", false]], "cli() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.cli", false]], "client (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.client", false], [170, "id2", false]], "client (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.client", false], [171, "id2", false]], "clip (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.clip", false], [133, "id2", false]], "clip (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.clip", false], [132, "id12", false]], "clip_distance (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clip_distance", false], [79, "id1", false]], "clip_distance (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clip_distance", false], [93, "id11", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.clip_distance", false], [83, "id1", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.clip_distance", false], [83, "id36", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.clip_distance", false], [88, "id45", false]], "clip_distance (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.clip_distance", false], [92, "id2", false]], "clip_distance (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.clip_distance", false], [93, "id51", false]], "clip_distance (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.clip_distance", false], [95, "id1", false]], "clip_distance (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.clip_distance", false], [93, "id42", false]], "clip_raw (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.clip_raw", false], [136, "id8", false]], "clip_raw (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.clip_raw", false], [137, "id5", false]], "clip_raw (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.clip_raw", false], [138, "id29", false]], "clip_raw (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.clip_raw", false], [138, "id20", false]], "clipmax (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clipmax", false], [79, "id6", false]], "clipmax (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clipmax", false], [93, "id16", false]], "clipmax (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.clipmax", false], [116, "id3", false]], "clipmax (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.clipmax", false], [119, "id8", false]], "clipmin (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clipmin", false], [79, "id5", false]], "clipmin (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clipmin", false], [93, "id15", false]], "clipmin (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.clipmin", false], [116, "id2", false]], "clipmin (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.clipmin", false], [119, "id7", false]], "cls_fun() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.cls_fun", false]], "cnnectomeunet (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.CNNectomeUNet", false]], "cnnectomeunet (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet", false]], "cnnectomeunetconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig", false]], "cnnectomeunetconfig (class in dacapo.experiments.architectures.cnnectome_unet_config)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig", false]], "cnnectomeunetmodule (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule", false]], "compare() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.compare", false], [88, "id17", false]], "compare() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.compare", false], [87, "id5", false]], "compare() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.compare", false], [145, "id8", false]], "compare() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.compare", false], [67, "id26", false]], "compute() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.compute", false], [59, "id29", false]], "compute() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.compute", false], [62, "id32", false]], "compute() (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss method)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.compute", false], [96, "id2", false]], "compute() (dacapo.experiments.tasks.losses.affinitiesloss method)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.compute", false], [99, "id5", false]], "compute() (dacapo.experiments.tasks.losses.dummy_loss.dummyloss method)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss.compute", false], [97, "id0", false]], "compute() (dacapo.experiments.tasks.losses.dummyloss method)": [[99, "dacapo.experiments.tasks.losses.DummyLoss.compute", false], [99, "id0", false]], "compute() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.compute", false], [98, "id0", false]], "compute() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.compute", false], [99, "id6", false]], "compute() (dacapo.experiments.tasks.losses.loss method)": [[99, "dacapo.experiments.tasks.losses.Loss.compute", false], [99, "id2", false]], "compute() (dacapo.experiments.tasks.losses.loss.loss method)": [[100, "dacapo.experiments.tasks.losses.loss.Loss.compute", false], [100, "id0", false]], "compute() (dacapo.experiments.tasks.losses.mse_loss.mseloss method)": [[101, "dacapo.experiments.tasks.losses.mse_loss.MSELoss.compute", false], [101, "id0", false]], "compute() (dacapo.experiments.tasks.losses.mseloss method)": [[99, "dacapo.experiments.tasks.losses.MSELoss.compute", false], [99, "id1", false]], "compute_context (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.compute_context", false], [156, "id2", false]], "compute_output_shape() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.compute_output_shape", false]], "compute_output_shape() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.compute_output_shape", false]], "computecontext (class in dacapo.compute_context)": [[13, "dacapo.compute_context.ComputeContext", false]], "computecontext (class in dacapo.compute_context.compute_context)": [[12, "dacapo.compute_context.compute_context.ComputeContext", false]], "concatarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig", false]], "concatarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.concat_array_config)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig", false]], "config_file() (dacapo.options class method)": [[155, "id1", false]], "config_file() (dacapo.options method)": [[155, "dacapo.Options.config_file", false]], "config_file() (dacapo.options.options class method)": [[156, "id7", false]], "config_file() (dacapo.options.options method)": [[156, "dacapo.options.Options.config_file", false]], "configstore (class in dacapo.store.config_store)": [[161, "dacapo.store.config_store.ConfigStore", false]], "connectivity (dacapo.utils.pipeline.relabel attribute)": [[180, "dacapo.utils.pipeline.Relabel.connectivity", false]], "constant (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig attribute)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.constant", false]], "constant (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.constant", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.constant_upsample", false], [17, "id7", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.constant_upsample", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.constant_upsample", false], [18, "id10", false]], "constant_upsample (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.constant_upsample", false], [21, "id39", false]], "constant_upsample (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.constant_upsample", false], [21, "id29", false]], "constantarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig", false]], "constantarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.constant_array_config)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig", false]], "container (dacapo.store.array_store.arraystore attribute)": [[160, "dacapo.store.array_store.ArrayStore.container", false]], "container (dacapo.store.array_store.localarrayidentifier attribute)": [[160, "dacapo.store.array_store.LocalArrayIdentifier.container", false], [160, "id0", false]], "container (dacapo.store.array_store.localcontaineridentifier attribute)": [[160, "dacapo.store.array_store.LocalContainerIdentifier.container", false], [160, "id2", false]], "context (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.context", false], [114, "id1", false]], "context (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.context", false], [108, "id22", false]], "contingency_table() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.contingency_table", false]], "control_point_displacement_sigma (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.control_point_displacement_sigma", false], [130, "id1", false]], "control_point_displacement_sigma (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.control_point_displacement_sigma", false], [132, "id2", false]], "control_point_displacement_sigma (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.control_point_displacement_sigma", false]], "control_point_displacement_sigma (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.control_point_displacement_sigma", false]], "control_point_spacing (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.control_point_spacing", false], [130, "id0", false]], "control_point_spacing (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.control_point_spacing", false], [132, "id1", false]], "control_point_spacing (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.control_point_spacing", false]], "control_point_spacing (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.control_point_spacing", false]], "conv (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.conv", false], [19, "id2", false]], "conv (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.conv", false], [21, "id14", false]], "conv_pass (dacapo.experiments.architectures.cnnectome_unet.convpass attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.conv_pass", false], [17, "id25", false]], "converter (in module dacapo.store.converter)": [[163, "dacapo.store.converter.converter", false]], "convpass (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass", false]], "copy_key (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.copy_key", false], [147, "id1", false]], "copy_key (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.copy_key", false], [152, "id15", false]], "copymask (class in dacapo.gp)": [[152, "dacapo.gp.CopyMask", false]], "copymask (class in dacapo.gp.copy)": [[147, "dacapo.gp.copy.CopyMask", false]], "cosemstart (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.CosemStart", false]], "cosemstart (class in dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart", false]], "cosemstartconfig (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.CosemStartConfig", false]], "cosemstartconfig (class in dacapo.experiments.starts.cosem_start_config)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig method)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig method)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig method)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig method)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig method)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.create_array", false]], "create_array_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_array_store", false]], "create_compute_context() (in module dacapo.compute_context)": [[13, "dacapo.compute_context.create_compute_context", false]], "create_compute_context() (in module dacapo.compute_context.compute_context)": [[12, "dacapo.compute_context.compute_context.create_compute_context", false]], "create_config_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_config_store", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_distance_mask", false], [116, "id8", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_distance_mask", false], [119, "id13", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_distance_mask", false], [118, "id10", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_distance_mask", false], [119, "id56", false]], "create_from_identifier() (in module dacapo.tmp)": [[174, "dacapo.tmp.create_from_identifier", false]], "create_model() (dacapo.experiments.tasks.one_hot_task.onehottask method)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.create_model", false]], "create_model() (dacapo.experiments.tasks.onehottask method)": [[93, "dacapo.experiments.tasks.OneHotTask.create_model", false]], "create_model() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_model", false], [115, "id13", false]], "create_model() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_model", false], [119, "id35", false]], "create_model() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_model", false], [116, "id4", false]], "create_model() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_model", false], [119, "id9", false]], "create_model() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_model", false], [117, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_model", false], [119, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_model", false], [118, "id7", false]], "create_model() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_model", false], [119, "id53", false]], "create_model() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_model", false], [120, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_model", false], [119, "id41", false]], "create_model() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_model", false], [121, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_model", false], [119, "id17", false]], "create_model() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_model", false]], "create_model() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_model", false]], "create_model() (dacapo.experiments.tasks.pretrained_task.pretrainedtask method)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.create_model", false], [123, "id1", false]], "create_model() (dacapo.experiments.tasks.pretrainedtask method)": [[93, "dacapo.experiments.tasks.PretrainedTask.create_model", false], [93, "id26", false]], "create_model() (dacapo.experiments.tasks.task method)": [[93, "dacapo.experiments.tasks.Task.create_model", false]], "create_model() (dacapo.experiments.tasks.task.task method)": [[125, "dacapo.experiments.tasks.task.Task.create_model", false]], "create_optimizer() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.create_optimizer", false], [127, "id3", false]], "create_optimizer() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.create_optimizer", false], [138, "id12", false]], "create_optimizer() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.create_optimizer", false]], "create_stats_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_stats_store", false]], "create_target() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_target", false], [115, "id14", false]], "create_target() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_target", false], [119, "id36", false]], "create_target() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_target", false], [116, "id5", false]], "create_target() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_target", false], [119, "id10", false]], "create_target() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_target", false], [117, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_target", false], [119, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_target", false], [118, "id8", false]], "create_target() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_target", false], [119, "id54", false]], "create_target() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_target", false], [120, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_target", false], [119, "id42", false]], "create_target() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_target", false], [121, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_target", false], [119, "id18", false]], "create_target() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_target", false]], "create_target() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_target", false]], "create_weight() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_weight", false], [115, "id15", false]], "create_weight() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_weight", false], [119, "id37", false]], "create_weight() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_weight", false], [116, "id6", false]], "create_weight() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_weight", false], [119, "id11", false]], "create_weight() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_weight", false], [117, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_weight", false], [119, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_weight", false], [118, "id9", false]], "create_weight() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_weight", false], [119, "id55", false]], "create_weight() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_weight", false], [120, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_weight", false], [119, "id43", false]], "create_weight() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_weight", false], [121, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_weight", false], [119, "id19", false]], "create_weight() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_weight", false]], "create_weight() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_weight", false]], "create_weights_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_weights_store", false]], "createpoints (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.CreatePoints", false]], "cremieval (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.cremieval", false], [83, "id10", false]], "cremievaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores property)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.criteria", false], [83, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.criteria", false], [88, "id44", false]], "criteria (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.criteria", false], [85, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.dummyevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.criteria", false], [88, "id5", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores attribute)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores property)": [[86, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluationscores property)": [[88, "id8", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.criteria", false], [90, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instanceevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.criteria", false], [88, "id56", false]], "criteria (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores property)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.validation_scores.validationscores property)": [[145, "id9", false]], "criteria (dacapo.experiments.validationscores property)": [[67, "id27", false]], "criteria() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.criteria", false]], "criteria() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.criteria", false]], "criterion (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.criterion", false], [71, "id1", false]], "criterion (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.criterion", false]], "criterion (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.criterion", false], [73, "id5", false]], "criterion (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.criterion", false]], "criterion (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.criterion", false]], "criterion (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.criterion", false]], "criterion (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.criterion", false], [75, "id1", false]], "criterion (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.criterion", false], [73, "id3", false]], "crop() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop", false], [17, "id35", false]], "crop_factor (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop_factor", false], [17, "id31", false]], "crop_to_factor() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop_to_factor", false], [17, "id34", false]], "croparrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig", false]], "croparrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.crop_array_config)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig", false]], "customenum (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnum", false]], "customenummeta (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta", false]], "dacapo": [[155, "module-dacapo", false], [185, "module-dacapo", false], [189, "module-dacapo", false], [195, "module-dacapo", false]], "dacapo command line option": [[186, "cmdoption-dacapo-log-level", false]], "dacapo-apply command line option": [[186, "cmdoption-dacapo-apply-c", false], [186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-apply-p", false], [186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-apply-roi", false], [186, "cmdoption-dacapo-apply-vd", false], [186, "cmdoption-dacapo-apply-w", false]], "dacapo-predict command line option": [[186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-predict-op", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-predict-roi", false], [186, "cmdoption-dacapo-predict-w", false]], "dacapo-run-blockwise command line option": [[186, "cmdoption-dacapo-run-blockwise-co", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-run-blockwise-w", false], [186, "cmdoption-dacapo-run-blockwise-wr", false]], "dacapo-segment-blockwise command line option": [[186, "cmdoption-dacapo-segment-blockwise-c", false], [186, "cmdoption-dacapo-segment-blockwise-co", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-sf", false], [186, "cmdoption-dacapo-segment-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "dacapo-train command line option": [[186, "cmdoption-dacapo-train-no-validation", false], [186, "cmdoption-dacapo-train-r", false]], "dacapo-validate command line option": [[186, "cmdoption-dacapo-validate-dt", false], [186, "cmdoption-dacapo-validate-i", false], [186, "cmdoption-dacapo-validate-ow", false], [186, "cmdoption-dacapo-validate-r", false], [186, "cmdoption-dacapo-validate-w", false]], "dacapo.apply": [[0, "module-dacapo.apply", false]], "dacapo.blockwise": [[4, "module-dacapo.blockwise", false]], "dacapo.blockwise.argmax_worker": [[1, "module-dacapo.blockwise.argmax_worker", false]], "dacapo.blockwise.blockwise_task": [[2, "module-dacapo.blockwise.blockwise_task", false]], "dacapo.blockwise.empanada_function": [[3, "module-dacapo.blockwise.empanada_function", false]], "dacapo.blockwise.predict_worker": [[5, "module-dacapo.blockwise.predict_worker", false]], "dacapo.blockwise.relabel_worker": [[6, "module-dacapo.blockwise.relabel_worker", false]], "dacapo.blockwise.scheduler": [[7, "module-dacapo.blockwise.scheduler", false]], "dacapo.blockwise.segment_worker": [[8, "module-dacapo.blockwise.segment_worker", false]], "dacapo.blockwise.threshold_worker": [[9, "module-dacapo.blockwise.threshold_worker", false]], "dacapo.blockwise.watershed_function": [[10, "module-dacapo.blockwise.watershed_function", false]], "dacapo.compute_context": [[13, "module-dacapo.compute_context", false]], "dacapo.compute_context.bsub": [[11, "module-dacapo.compute_context.bsub", false]], "dacapo.compute_context.compute_context": [[12, "module-dacapo.compute_context.compute_context", false]], "dacapo.compute_context.local_torch": [[14, "module-dacapo.compute_context.local_torch", false]], "dacapo.experiments": [[67, "module-dacapo.experiments", false]], "dacapo.experiments.architectures": [[21, "module-dacapo.experiments.architectures", false]], "dacapo.experiments.architectures.architecture": [[15, "module-dacapo.experiments.architectures.architecture", false]], "dacapo.experiments.architectures.architecture_config": [[16, "module-dacapo.experiments.architectures.architecture_config", false]], "dacapo.experiments.architectures.cnnectome_unet": [[17, "module-dacapo.experiments.architectures.cnnectome_unet", false]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, "module-dacapo.experiments.architectures.cnnectome_unet_config", false]], "dacapo.experiments.architectures.dummy_architecture": [[19, "module-dacapo.experiments.architectures.dummy_architecture", false]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, "module-dacapo.experiments.architectures.dummy_architecture_config", false]], "dacapo.experiments.arraytypes": [[27, "module-dacapo.experiments.arraytypes", false]], "dacapo.experiments.arraytypes.annotations": [[22, "module-dacapo.experiments.arraytypes.annotations", false]], "dacapo.experiments.arraytypes.arraytype": [[23, "module-dacapo.experiments.arraytypes.arraytype", false]], "dacapo.experiments.arraytypes.binary": [[24, "module-dacapo.experiments.arraytypes.binary", false]], "dacapo.experiments.arraytypes.distances": [[25, "module-dacapo.experiments.arraytypes.distances", false]], "dacapo.experiments.arraytypes.embedding": [[26, "module-dacapo.experiments.arraytypes.embedding", false]], "dacapo.experiments.arraytypes.intensities": [[28, "module-dacapo.experiments.arraytypes.intensities", false]], "dacapo.experiments.arraytypes.mask": [[29, "module-dacapo.experiments.arraytypes.mask", false]], "dacapo.experiments.arraytypes.probabilities": [[30, "module-dacapo.experiments.arraytypes.probabilities", false]], "dacapo.experiments.datasplits": [[62, "module-dacapo.experiments.datasplits", false]], "dacapo.experiments.datasplits.datasets": [[54, "module-dacapo.experiments.datasplits.datasets", false]], "dacapo.experiments.datasplits.datasets.arrays": [[38, "module-dacapo.experiments.datasplits.datasets.arrays", false]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, "module-dacapo.experiments.datasplits.datasets.arrays.array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, "module-dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, "module-dacapo.experiments.datasplits.datasets.arrays.concat_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, "module-dacapo.experiments.datasplits.datasets.arrays.constant_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, "module-dacapo.experiments.datasplits.datasets.arrays.crop_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, "module-dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, "module-dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, "module-dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, "module-dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, "module-dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, "module-dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", false]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, "module-dacapo.experiments.datasplits.datasets.arrays.ones_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, "module-dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, "module-dacapo.experiments.datasplits.datasets.arrays.sum_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, "module-dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, "module-dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", false]], "dacapo.experiments.datasplits.datasets.dataset": [[48, "module-dacapo.experiments.datasplits.datasets.dataset", false]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, "module-dacapo.experiments.datasplits.datasets.dataset_config", false]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, "module-dacapo.experiments.datasplits.datasets.dummy_dataset", false]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, "module-dacapo.experiments.datasplits.datasets.dummy_dataset_config", false]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, "module-dacapo.experiments.datasplits.datasets.graphstores", false]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, "module-dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", false]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset", false]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", false]], "dacapo.experiments.datasplits.datasplit": [[57, "module-dacapo.experiments.datasplits.datasplit", false]], "dacapo.experiments.datasplits.datasplit_config": [[58, "module-dacapo.experiments.datasplits.datasplit_config", false]], "dacapo.experiments.datasplits.datasplit_generator": [[59, "module-dacapo.experiments.datasplits.datasplit_generator", false]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, "module-dacapo.experiments.datasplits.dummy_datasplit", false]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, "module-dacapo.experiments.datasplits.dummy_datasplit_config", false]], "dacapo.experiments.datasplits.keys": [[63, "module-dacapo.experiments.datasplits.keys", false]], "dacapo.experiments.datasplits.keys.keys": [[64, "module-dacapo.experiments.datasplits.keys.keys", false]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, "module-dacapo.experiments.datasplits.train_validate_datasplit", false]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, "module-dacapo.experiments.datasplits.train_validate_datasplit_config", false]], "dacapo.experiments.model": [[68, "module-dacapo.experiments.model", false]], "dacapo.experiments.run": [[69, "module-dacapo.experiments.run", false]], "dacapo.experiments.run_config": [[70, "module-dacapo.experiments.run_config", false]], "dacapo.experiments.starts": [[73, "module-dacapo.experiments.starts", false]], "dacapo.experiments.starts.cosem_start": [[71, "module-dacapo.experiments.starts.cosem_start", false]], "dacapo.experiments.starts.cosem_start_config": [[72, "module-dacapo.experiments.starts.cosem_start_config", false]], "dacapo.experiments.starts.start": [[74, "module-dacapo.experiments.starts.start", false]], "dacapo.experiments.starts.start_config": [[75, "module-dacapo.experiments.starts.start_config", false]], "dacapo.experiments.tasks": [[93, "module-dacapo.experiments.tasks", false]], "dacapo.experiments.tasks.affinities_task": [[76, "module-dacapo.experiments.tasks.affinities_task", false]], "dacapo.experiments.tasks.affinities_task_config": [[77, "module-dacapo.experiments.tasks.affinities_task_config", false]], "dacapo.experiments.tasks.distance_task": [[78, "module-dacapo.experiments.tasks.distance_task", false]], "dacapo.experiments.tasks.distance_task_config": [[79, "module-dacapo.experiments.tasks.distance_task_config", false]], "dacapo.experiments.tasks.dummy_task": [[80, "module-dacapo.experiments.tasks.dummy_task", false]], "dacapo.experiments.tasks.dummy_task_config": [[81, "module-dacapo.experiments.tasks.dummy_task_config", false]], "dacapo.experiments.tasks.evaluators": [[88, "module-dacapo.experiments.tasks.evaluators", false]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", false]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, "module-dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, "module-dacapo.experiments.tasks.evaluators.dummy_evaluator", false]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, "module-dacapo.experiments.tasks.evaluators.evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, "module-dacapo.experiments.tasks.evaluators.evaluator", false]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, "module-dacapo.experiments.tasks.evaluators.instance_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, "module-dacapo.experiments.tasks.evaluators.instance_evaluator", false]], "dacapo.experiments.tasks.hot_distance_task": [[91, "module-dacapo.experiments.tasks.hot_distance_task", false]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, "module-dacapo.experiments.tasks.hot_distance_task_config", false]], "dacapo.experiments.tasks.inner_distance_task": [[94, "module-dacapo.experiments.tasks.inner_distance_task", false]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, "module-dacapo.experiments.tasks.inner_distance_task_config", false]], "dacapo.experiments.tasks.losses": [[99, "module-dacapo.experiments.tasks.losses", false]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, "module-dacapo.experiments.tasks.losses.affinities_loss", false]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, "module-dacapo.experiments.tasks.losses.dummy_loss", false]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, "module-dacapo.experiments.tasks.losses.hot_distance_loss", false]], "dacapo.experiments.tasks.losses.loss": [[100, "module-dacapo.experiments.tasks.losses.loss", false]], "dacapo.experiments.tasks.losses.mse_loss": [[101, "module-dacapo.experiments.tasks.losses.mse_loss", false]], "dacapo.experiments.tasks.one_hot_task": [[102, "module-dacapo.experiments.tasks.one_hot_task", false]], "dacapo.experiments.tasks.one_hot_task_config": [[103, "module-dacapo.experiments.tasks.one_hot_task_config", false]], "dacapo.experiments.tasks.post_processors": [[108, "module-dacapo.experiments.tasks.post_processors", false]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor", false]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor", false]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, "module-dacapo.experiments.tasks.post_processors.post_processor", false]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, "module-dacapo.experiments.tasks.post_processors.post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor", false]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor", false]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", false]], "dacapo.experiments.tasks.predictors": [[119, "module-dacapo.experiments.tasks.predictors", false]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, "module-dacapo.experiments.tasks.predictors.affinities_predictor", false]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, "module-dacapo.experiments.tasks.predictors.distance_predictor", false]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, "module-dacapo.experiments.tasks.predictors.dummy_predictor", false]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, "module-dacapo.experiments.tasks.predictors.hot_distance_predictor", false]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, "module-dacapo.experiments.tasks.predictors.inner_distance_predictor", false]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, "module-dacapo.experiments.tasks.predictors.one_hot_predictor", false]], "dacapo.experiments.tasks.predictors.predictor": [[122, "module-dacapo.experiments.tasks.predictors.predictor", false]], "dacapo.experiments.tasks.pretrained_task": [[123, "module-dacapo.experiments.tasks.pretrained_task", false]], "dacapo.experiments.tasks.pretrained_task_config": [[124, "module-dacapo.experiments.tasks.pretrained_task_config", false]], "dacapo.experiments.tasks.task": [[125, "module-dacapo.experiments.tasks.task", false]], "dacapo.experiments.tasks.task_config": [[126, "module-dacapo.experiments.tasks.task_config", false]], "dacapo.experiments.trainers": [[138, "module-dacapo.experiments.trainers", false]], "dacapo.experiments.trainers.dummy_trainer": [[127, "module-dacapo.experiments.trainers.dummy_trainer", false]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, "module-dacapo.experiments.trainers.dummy_trainer_config", false]], "dacapo.experiments.trainers.gp_augments": [[132, "module-dacapo.experiments.trainers.gp_augments", false]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, "module-dacapo.experiments.trainers.gp_augments.augment_config", false]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, "module-dacapo.experiments.trainers.gp_augments.elastic_config", false]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, "module-dacapo.experiments.trainers.gp_augments.gamma_config", false]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, "module-dacapo.experiments.trainers.gp_augments.intensity_config", false]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, "module-dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", false]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, "module-dacapo.experiments.trainers.gp_augments.simple_config", false]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, "module-dacapo.experiments.trainers.gunpowder_trainer", false]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, "module-dacapo.experiments.trainers.gunpowder_trainer_config", false]], "dacapo.experiments.trainers.optimizers": [[139, "module-dacapo.experiments.trainers.optimizers", false]], "dacapo.experiments.trainers.trainer": [[140, "module-dacapo.experiments.trainers.trainer", false]], "dacapo.experiments.trainers.trainer_config": [[141, "module-dacapo.experiments.trainers.trainer_config", false]], "dacapo.experiments.training_iteration_stats": [[142, "module-dacapo.experiments.training_iteration_stats", false]], "dacapo.experiments.training_stats": [[143, "module-dacapo.experiments.training_stats", false]], "dacapo.experiments.validation_iteration_scores": [[144, "module-dacapo.experiments.validation_iteration_scores", false]], "dacapo.experiments.validation_scores": [[145, "module-dacapo.experiments.validation_scores", false]], "dacapo.ext": [[146, "module-dacapo.ext", false]], "dacapo.gp": [[152, "module-dacapo.gp", false]], "dacapo.gp.copy": [[147, "module-dacapo.gp.copy", false]], "dacapo.gp.dacapo_create_target": [[148, "module-dacapo.gp.dacapo_create_target", false]], "dacapo.gp.dacapo_points_source": [[149, "module-dacapo.gp.dacapo_points_source", false]], "dacapo.gp.elastic_augment_fuse": [[150, "module-dacapo.gp.elastic_augment_fuse", false]], "dacapo.gp.gamma_noise": [[151, "module-dacapo.gp.gamma_noise", false]], "dacapo.gp.product": [[153, "module-dacapo.gp.product", false]], "dacapo.gp.reject_if_empty": [[154, "module-dacapo.gp.reject_if_empty", false]], "dacapo.options": [[156, "module-dacapo.options", false]], "dacapo.plot": [[157, "module-dacapo.plot", false]], "dacapo.predict": [[158, "module-dacapo.predict", false]], "dacapo.predict_local": [[159, "module-dacapo.predict_local", false]], "dacapo.store": [[167, "module-dacapo.store", false]], "dacapo.store.array_store": [[160, "module-dacapo.store.array_store", false]], "dacapo.store.config_store": [[161, "module-dacapo.store.config_store", false]], "dacapo.store.conversion_hooks": [[162, "module-dacapo.store.conversion_hooks", false]], "dacapo.store.converter": [[163, "module-dacapo.store.converter", false]], "dacapo.store.create_store": [[164, "module-dacapo.store.create_store", false]], "dacapo.store.file_config_store": [[165, "module-dacapo.store.file_config_store", false]], "dacapo.store.file_stats_store": [[166, "module-dacapo.store.file_stats_store", false]], "dacapo.store.local_array_store": [[168, "module-dacapo.store.local_array_store", false]], "dacapo.store.local_weights_store": [[169, "module-dacapo.store.local_weights_store", false]], "dacapo.store.mongo_config_store": [[170, "module-dacapo.store.mongo_config_store", false]], "dacapo.store.mongo_stats_store": [[171, "module-dacapo.store.mongo_stats_store", false]], "dacapo.store.stats_store": [[172, "module-dacapo.store.stats_store", false]], "dacapo.store.weights_store": [[173, "module-dacapo.store.weights_store", false]], "dacapo.tmp": [[174, "module-dacapo.tmp", false]], "dacapo.train": [[175, "module-dacapo.train", false]], "dacapo.utils": [[179, "module-dacapo.utils", false]], "dacapo.utils.affinities": [[176, "module-dacapo.utils.affinities", false]], "dacapo.utils.array_utils": [[177, "module-dacapo.utils.array_utils", false]], "dacapo.utils.balance_weights": [[178, "module-dacapo.utils.balance_weights", false]], "dacapo.utils.pipeline": [[180, "module-dacapo.utils.pipeline", false]], "dacapo.utils.view": [[181, "module-dacapo.utils.view", false]], "dacapo.utils.voi": [[182, "module-dacapo.utils.voi", false]], "dacapo.validate": [[183, "module-dacapo.validate", false]], "dacapoblockwisetask (class in dacapo.blockwise)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask", false]], "dacapoblockwisetask (class in dacapo.blockwise.blockwise_task)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask", false]], "dacapoconfig (class in dacapo.options)": [[156, "dacapo.options.DaCapoConfig", false]], "dacapotargetfilter (class in dacapo.gp)": [[152, "dacapo.gp.DaCapoTargetFilter", false]], "dacapotargetfilter (class in dacapo.gp.dacapo_create_target)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter", false]], "database (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.database", false], [170, "id3", false]], "database (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.database", false], [171, "id3", false]], "datakey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.DataKey", false]], "datakey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey", false]], "dataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.Dataset", false]], "dataset (class in dacapo.experiments.datasplits.datasets.dataset)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset", false]], "dataset (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.dataset", false], [47, "id1", false]], "dataset (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.dataset", false], [38, "id4", false]], "dataset (dacapo.store.array_store.arraystore attribute)": [[160, "dacapo.store.array_store.ArrayStore.dataset", false]], "dataset (dacapo.store.array_store.localarrayidentifier attribute)": [[160, "dacapo.store.array_store.LocalArrayIdentifier.dataset", false], [160, "id1", false]], "dataset_type (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig attribute)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.dataset_type", false], [51, "id0", false]], "dataset_type (dacapo.experiments.datasplits.datasets.dummydatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.dataset_type", false], [54, "id10", false]], "dataset_type (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.dataset_type", false], [56, "id0", false]], "dataset_type (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.dataset_type", false], [54, "id18", false]], "dataset_type (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.dataset_type", false], [62, "id34", false]], "dataset_type (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.dataset_type", false], [59, "id5", false]], "datasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig", false]], "datasetconfig (class in dacapo.experiments.datasplits.datasets.dataset_config)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig", false]], "datasets (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.datasets", false], [59, "id11", false]], "datasets (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.datasets", false], [62, "id14", false]], "datasets (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.datasets", false], [145, "id1", false]], "datasets (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.datasets", false], [67, "id19", false]], "datasets (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.datasets", false], [161, "id2", false]], "datasets (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.datasets", false]], "datasets (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.datasets", false]], "datasetspec (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DatasetSpec", false]], "datasetspec (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec", false]], "datasettype (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType", false]], "datasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplit", false]], "datasplit (class in dacapo.experiments.datasplits.datasplit)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit", false]], "datasplit (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.datasplit", false]], "datasplit (dacapo.experiments.run.run property)": [[69, "id10", false]], "datasplit_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.datasplit_config", false]], "datasplit_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.datasplit_config", false]], "datasplit_type (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig attribute)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.datasplit_type", false], [61, "id0", false]], "datasplit_type (dacapo.experiments.datasplits.dummydatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.datasplit_type", false], [62, "id6", false]], "datasplit_type (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.datasplit_type", false]], "datasplit_type (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.datasplit_type", false]], "datasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplitConfig", false]], "datasplitconfig (class in dacapo.experiments.datasplits.datasplit_config)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig", false]], "datasplitgenerator (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator", false]], "datasplitgenerator (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator", false]], "datasplits (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.datasplits", false], [161, "id1", false]], "datasplits (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.datasplits", false]], "datasplits (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.datasplits", false]], "db_host (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.db_host", false], [170, "id0", false]], "db_host (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.db_host", false], [171, "id0", false]], "db_name (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.db_name", false], [170, "id1", false]], "db_name (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.db_name", false], [171, "id1", false]], "default_config (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.default_config", false], [33, "id2", false]], "default_config (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.default_config", false], [38, "id22", false]], "default_parameters (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.default_parameters", false]], "delete_after() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.delete_after", false]], "delete_after() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.delete_after", false]], "delete_after() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.delete_after", false], [145, "id6", false]], "delete_after() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.delete_after", false], [67, "id24", false]], "delete_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_architecture_config", false], [161, "id19", false]], "delete_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_array_config", false], [161, "id31", false]], "delete_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_config", false], [161, "id7", false]], "delete_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.delete_config", false]], "delete_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.delete_config", false]], "delete_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_datasplit_config", false], [161, "id27", false]], "delete_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_run_config", false], [161, "id11", false]], "delete_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.delete_run_config", false], [170, "id6", false]], "delete_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_task_config", false], [161, "id15", false]], "delete_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_trainer_config", false], [161, "id23", false]], "delete_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.delete_training_stats", false]], "delete_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.delete_training_stats", false], [171, "id8", false]], "delete_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.delete_training_stats", false], [172, "id4", false]], "delete_validation_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.delete_validation_scores", false]], "deprecated_start_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.deprecated_start_neuroglancer", false], [181, "id13", false]], "detection_threshold (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.detection_threshold", false], [81, "id2", false]], "detection_threshold (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.detection_threshold", false], [93, "id4", false]], "detection_threshold (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor attribute)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.detection_threshold", false], [106, "id0", false]], "detection_threshold (dacapo.experiments.tasks.post_processors.dummypostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.detection_threshold", false], [108, "id0", false]], "device (dacapo.compute_context.bsub property)": [[13, "id10", false]], "device (dacapo.compute_context.bsub.bsub property)": [[11, "id4", false]], "device (dacapo.compute_context.compute_context.computecontext attribute)": [[12, "dacapo.compute_context.compute_context.ComputeContext.device", false]], "device (dacapo.compute_context.compute_context.computecontext property)": [[12, "id0", false]], "device (dacapo.compute_context.computecontext attribute)": [[13, "dacapo.compute_context.ComputeContext.device", false]], "device (dacapo.compute_context.computecontext property)": [[13, "id0", false]], "device (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "id0", false]], "device (dacapo.compute_context.local_torch.localtorch property)": [[14, "id2", false]], "device (dacapo.compute_context.localtorch attribute)": [[13, "id3", false]], "device (dacapo.compute_context.localtorch property)": [[13, "id5", false]], "device() (dacapo.compute_context.bsub method)": [[13, "dacapo.compute_context.Bsub.device", false]], "device() (dacapo.compute_context.bsub.bsub method)": [[11, "dacapo.compute_context.bsub.Bsub.device", false]], "device() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.device", false]], "device() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.device", false]], "dice (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.dice", false], [82, "id0", false]], "dice (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.dice", false], [88, "id23", false]], "dice() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.dice", false], [83, "id12", false]], "dilatepoints (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.DilatePoints", false]], "dilations (dacapo.utils.pipeline.dilatepoints attribute)": [[180, "dacapo.utils.pipeline.DilatePoints.dilations", false], [180, "id6", false]], "dilations (dacapo.utils.pipeline.randomdilatelabels attribute)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.dilations", false], [180, "id9", false]], "dims (dacapo.experiments.architectures.architecture property)": [[21, "id4", false]], "dims (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id4", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.dims", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.dims", false], [17, "id15", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.convpass attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.dims", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.dims", false], [17, "id27", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.dims", false], [17, "id33", false]], "dims (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor property)": [[115, "id10", false]], "dims (dacapo.experiments.tasks.predictors.affinitiespredictor property)": [[119, "id32", false]], "dims() (dacapo.experiments.architectures.architecture method)": [[21, "dacapo.experiments.architectures.Architecture.dims", false]], "dims() (dacapo.experiments.architectures.architecture.architecture method)": [[15, "dacapo.experiments.architectures.architecture.Architecture.dims", false]], "dims() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.dims", false]], "dims() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.dims", false]], "distance_loss (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss attribute)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.distance_loss", false]], "distance_loss (dacapo.experiments.tasks.losses.hotdistanceloss attribute)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.distance_loss", false]], "distance_loss() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "id2", false]], "distance_loss() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "id8", false]], "distancearray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.DistanceArray", false]], "distancearray (class in dacapo.experiments.arraytypes.distances)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray", false]], "distancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor", false]], "distancepredictor (class in dacapo.experiments.tasks.predictors.distance_predictor)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor", false]], "distancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DistanceTask", false]], "distancetask (class in dacapo.experiments.tasks.distance_task)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask", false]], "distancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig", false]], "distancetaskconfig (class in dacapo.experiments.tasks.distance_task_config)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig", false]], "distribute_workers (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.distribute_workers", false]], "distribute_workers (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.distribute_workers", false]], "distribute_workers (dacapo.compute_context.compute_context.computecontext attribute)": [[12, "dacapo.compute_context.compute_context.ComputeContext.distribute_workers", false]], "distribute_workers (dacapo.compute_context.computecontext attribute)": [[13, "dacapo.compute_context.ComputeContext.distribute_workers", false]], "distribute_workers (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch.distribute_workers", false]], "distribute_workers (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch.distribute_workers", false]], "divide_columns() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.divide_columns", false]], "divide_rows() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.divide_rows", false]], "do_augment (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.do_augment", false]], "do_augment (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.do_augment", false]], "does_new_best_exist() (dacapo.utils.view.bestscore method)": [[181, "dacapo.utils.view.BestScore.does_new_best_exist", false], [181, "id8", false]], "down (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.down", false], [17, "id29", false]], "downsample (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample", false]], "downsample (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.downsample", false], [44, "id2", false]], "downsample (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.downsample", false], [38, "id12", false]], "downsample_factor (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.downsample_factor", false], [17, "id28", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.downsample_factors", false], [17, "id4", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.downsample_factors", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.downsample_factors", false], [18, "id6", false]], "downsample_factors (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.downsample_factors", false], [21, "id36", false]], "downsample_factors (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.downsample_factors", false], [21, "id25", false]], "downsample_lsds (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.downsample_lsds", false], [77, "id3", false]], "downsample_lsds (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.downsample_lsds", false], [93, "id30", false]], "downsample_lsds (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.downsample_lsds", false]], "downsample_lsds (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.downsample_lsds", false]], "drop_channels (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.drop_channels", false], [147, "id2", false]], "drop_channels (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.drop_channels", false], [152, "id16", false]], "ds (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.ds", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.dt_scale_factor", false], [118, "id2", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.dt_scale_factor", false], [119, "id48", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.dt_scale_factor", false]], "dummyarchitecture (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.DummyArchitecture", false]], "dummyarchitecture (class in dacapo.experiments.architectures.dummy_architecture)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture", false]], "dummyarchitectureconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig", false]], "dummyarchitectureconfig (class in dacapo.experiments.architectures.dummy_architecture_config)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig", false]], "dummyarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig", false]], "dummyarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.dummy_array_config)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig", false]], "dummydataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset", false]], "dummydataset (class in dacapo.experiments.datasplits.datasets.dummy_dataset)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset", false]], "dummydatasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig", false]], "dummydatasetconfig (class in dacapo.experiments.datasplits.datasets.dummy_dataset_config)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig", false]], "dummydatasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DummyDataSplit", false]], "dummydatasplit (class in dacapo.experiments.datasplits.dummy_datasplit)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit", false]], "dummydatasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig", false]], "dummydatasplitconfig (class in dacapo.experiments.datasplits.dummy_datasplit_config)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig", false]], "dummyevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores", false]], "dummyevaluationscores (class in dacapo.experiments.tasks.evaluators.dummy_evaluation_scores)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores", false]], "dummyevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator", false]], "dummyevaluator (class in dacapo.experiments.tasks.evaluators.dummy_evaluator)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator", false]], "dummyloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.DummyLoss", false]], "dummyloss (class in dacapo.experiments.tasks.losses.dummy_loss)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss", false]], "dummypostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor", false]], "dummypostprocessor (class in dacapo.experiments.tasks.post_processors.dummy_post_processor)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor", false]], "dummypostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters", false]], "dummypostprocessorparameters (class in dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters", false]], "dummypredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor", false]], "dummypredictor (class in dacapo.experiments.tasks.predictors.dummy_predictor)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor", false]], "dummytask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DummyTask", false]], "dummytask (class in dacapo.experiments.tasks.dummy_task)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask", false]], "dummytaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DummyTaskConfig", false]], "dummytaskconfig (class in dacapo.experiments.tasks.dummy_task_config)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig", false]], "dummytrainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.DummyTrainer", false]], "dummytrainer (class in dacapo.experiments.trainers.dummy_trainer)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer", false]], "dummytrainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig", false]], "dummytrainerconfig (class in dacapo.experiments.trainers.dummy_trainer_config)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig", false]], "duplicatenameerror": [[161, "dacapo.store.config_store.DuplicateNameError", false]], "dvidarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig", false]], "dvidarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.dvid_array_config)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig", false]], "elasticaugment (class in dacapo.gp)": [[152, "dacapo.gp.ElasticAugment", false]], "elasticaugment (class in dacapo.gp.elastic_augment_fuse)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment", false]], "elasticaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig", false]], "elasticaugmentconfig (class in dacapo.experiments.trainers.gp_augments.elastic_config)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig", false]], "embedded (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.embedded", false], [181, "id11", false]], "embedding_dims (dacapo.experiments.arraytypes.embedding.embeddingarray attribute)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray.embedding_dims", false], [26, "id0", false]], "embedding_dims (dacapo.experiments.arraytypes.embeddingarray attribute)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray.embedding_dims", false], [27, "id9", false]], "embedding_dims (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.embedding_dims", false], [81, "id1", false]], "embedding_dims (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.embedding_dims", false], [93, "id3", false]], "embedding_dims (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor property)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.distancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.embedding_dims", false], [117, "id0", false]], "embedding_dims (dacapo.experiments.tasks.predictors.dummypredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.embedding_dims", false], [119, "id0", false]], "embedding_dims (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor property)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.innerdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor property)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.onehotpredictor property)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.embedding_dims", false]], "embeddingarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray", false]], "embeddingarray (class in dacapo.experiments.arraytypes.embedding)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray", false]], "empanada_segmenter() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.empanada_segmenter", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.enumerate_parameters", false], [104, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.enumerate_parameters", false], [108, "id14", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.enumerate_parameters", false], [106, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.enumerate_parameters", false], [108, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.enumerate_parameters", false], [109, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.enumerate_parameters", false], [108, "id7", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.enumerate_parameters", false], [111, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.enumerate_parameters", false], [108, "id10", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.enumerate_parameters", false], [113, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.enumerate_parameters", false], [108, "id18", false]], "epsilon (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.epsilon", false], [118, "id5", false]], "epsilon (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.epsilon", false], [119, "id51", false]], "epsilon (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.epsilon", false]], "eval_activation (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.eval_activation", false], [67, "id9", false]], "eval_activation (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.eval_activation", false], [68, "id9", false]], "eval_input_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.eval_input_shape", false], [67, "id8", false]], "eval_input_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.eval_input_shape", false], [68, "id8", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture property)": [[21, "id1", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id1", false]], "eval_shape_increase (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.eval_shape_increase", false]], "evaluate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.evaluate", false], [83, "id4", false]], "evaluate() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.evaluate", false], [88, "id48", false]], "evaluate() (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.evaluate", false], [85, "id1", false]], "evaluate() (dacapo.experiments.tasks.evaluators.dummyevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.evaluate", false], [88, "id6", false]], "evaluate() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.evaluate", false], [88, "id12", false]], "evaluate() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.evaluate", false], [87, "id0", false]], "evaluate() (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.evaluate", false], [90, "id1", false]], "evaluate() (dacapo.experiments.tasks.evaluators.instanceevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.evaluate", false], [88, "id57", false]], "evaluation_scores (dacapo.experiments.tasks.task property)": [[93, "dacapo.experiments.tasks.Task.evaluation_scores", false]], "evaluation_scores (dacapo.experiments.tasks.task.task property)": [[125, "dacapo.experiments.tasks.task.Task.evaluation_scores", false]], "evaluation_scores (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.evaluation_scores", false], [145, "id2", false]], "evaluation_scores (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.evaluation_scores", false], [67, "id20", false]], "evaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores", false]], "evaluationscores (class in dacapo.experiments.tasks.evaluators.evaluation_scores)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores", false]], "evaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator", false]], "evaluator (class in dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator", false]], "evaluator (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.evaluator", false], [76, "id3", false]], "evaluator (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.evaluator", false], [93, "id40", false]], "evaluator (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.evaluator", false], [78, "id3", false]], "evaluator (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.evaluator", false], [93, "id20", false]], "evaluator (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.evaluator", false], [80, "id3", false]], "evaluator (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.evaluator", false], [93, "id9", false]], "evaluator (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.evaluator", false], [91, "id3", false]], "evaluator (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.evaluator", false], [93, "id58", false]], "evaluator (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.evaluator", false], [94, "id3", false]], "evaluator (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.evaluator", false], [93, "id48", false]], "evaluator (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.evaluator", false]], "evaluator (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.evaluator", false]], "execute() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext.execute", false], [12, "id2", false]], "execute() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext.execute", false], [13, "id2", false]], "execute() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.execute", false]], "execute() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.execute", false]], "expandlabels (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.ExpandLabels", false]], "extractor() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.extractor", false], [115, "id9", false]], "extractor() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.extractor", false], [119, "id31", false]], "f1_score (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.f1_score", false], [82, "id20", false]], "f1_score (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.f1_score", false], [88, "id43", false]], "f1_score() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.f1_score", false], [83, "id20", false]], "f1_score_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.f1_score_with_tolerance", false], [82, "id17", false]], "f1_score_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.f1_score_with_tolerance", false], [88, "id40", false]], "f1_score_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.f1_score_with_tolerance", false], [83, "id32", false]], "f1_score_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.f1_score_with_tolerance", false], [83, "id46", false]], "false_discovery_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_discovery_rate", false], [82, "id6", false]], "false_discovery_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_discovery_rate", false], [88, "id29", false]], "false_discovery_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_discovery_rate", false], [83, "id17", false]], "false_negative_distances() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negative_distances", false], [83, "id50", false]], "false_negative_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_negative_rate", false], [82, "id3", false]], "false_negative_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_negative_rate", false], [88, "id26", false]], "false_negative_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_negative_rate", false], [83, "id15", false]], "false_negative_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_negative_rate_with_tolerance", false], [82, "id4", false]], "false_negative_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_negative_rate_with_tolerance", false], [88, "id27", false]], "false_negative_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_negative_rate_with_tolerance", false], [83, "id29", false]], "false_negative_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negative_rate_with_tolerance", false], [83, "id42", false]], "false_negatives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negatives_with_tolerance", false], [83, "id41", false]], "false_positive_distances() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positive_distances", false], [83, "id38", false]], "false_positive_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_positive_rate", false], [82, "id5", false]], "false_positive_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_positive_rate", false], [88, "id28", false]], "false_positive_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_positive_rate", false], [83, "id16", false]], "false_positive_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_positive_rate_with_tolerance", false], [82, "id7", false]], "false_positive_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_positive_rate_with_tolerance", false], [88, "id30", false]], "false_positive_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_positive_rate_with_tolerance", false], [83, "id28", false]], "false_positive_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positive_rate_with_tolerance", false], [83, "id40", false]], "false_positives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positives_with_tolerance", false], [83, "id39", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.file_name", false], [46, "id0", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.file_name", false], [47, "id0", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.file_name", false], [38, "id3", false]], "fileconfigstore (class in dacapo.store.file_config_store)": [[165, "dacapo.store.file_config_store.FileConfigStore", false]], "filestatsstore (class in dacapo.store.file_stats_store)": [[166, "dacapo.store.file_stats_store.FileStatsStore", false]], "find_components() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.find_components", false]], "fit (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.fit", false]], "fit (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.fit", false]], "fit (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.fit", false]], "fit (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.fit", false]], "fit (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.fit", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmap_inc_factor", false], [17, "id3", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.fmap_inc_factor", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmap_inc_factor", false], [18, "id5", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmap_inc_factor", false], [21, "id35", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmap_inc_factor", false], [21, "id24", false]], "fmaps_in (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmaps_in", false], [17, "id1", false]], "fmaps_in (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmaps_in", false], [18, "id3", false]], "fmaps_in (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmaps_in", false], [21, "id33", false]], "fmaps_in (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmaps_in", false], [21, "id22", false]], "fmaps_out (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmaps_out", false], [17, "id0", false]], "fmaps_out (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmaps_out", false], [18, "id2", false]], "fmaps_out (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmaps_out", false], [21, "id32", false]], "fmaps_out (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmaps_out", false], [21, "id21", false]], "format_class_name() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.format_class_name", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.forward", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.forward", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.forward", false], [17, "id24", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.convpass method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.forward", false], [17, "id26", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.downsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.forward", false], [17, "id30", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.forward", false], [17, "id36", false]], "forward() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.forward", false]], "forward() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.forward", false], [19, "id6", false]], "forward() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.forward", false], [21, "id18", false]], "forward() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.forward", false]], "forward() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.forward", false]], "fov (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fov", false]], "fov (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fov", false]], "frizz_level (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.frizz_level", false], [84, "id0", false]], "frizz_level (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.frizz_level", false], [88, "id0", false]], "gamma_max (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.gamma_max", false], [151, "id2", false]], "gamma_max (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.gamma_max", false], [152, "id8", false]], "gamma_min (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.gamma_min", false], [151, "id1", false]], "gamma_min (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.gamma_min", false], [152, "id7", false]], "gamma_range (dacapo.experiments.trainers.gp_augments.gamma_config.gammaaugmentconfig attribute)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig.gamma_range", false], [131, "id0", false]], "gamma_range (dacapo.experiments.trainers.gp_augments.gammaaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig.gamma_range", false], [132, "id8", false]], "gammaaugment (class in dacapo.gp)": [[152, "dacapo.gp.GammaAugment", false]], "gammaaugment (class in dacapo.gp.gamma_noise)": [[151, "dacapo.gp.gamma_noise.GammaAugment", false]], "gammaaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig", false]], "gammaaugmentconfig (class in dacapo.experiments.trainers.gp_augments.gamma_config)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig", false]], "gaussian_blur_args (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_blur_args", false]], "gaussian_blur_args (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_blur_args", false]], "gaussian_noise_args (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_noise_args", false]], "gaussian_noise_args (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_noise_args", false]], "gaussian_noise_lim (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_noise_lim", false]], "gaussian_noise_lim (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_noise_lim", false]], "generate_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.generate_csv", false]], "generate_csv() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.generate_csv", false]], "generate_dataspec_from_csv() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.generate_dataspec_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.generate_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator static method)": [[59, "id30", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.generate_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplitgenerator static method)": [[62, "id33", false]], "get_best() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.get_best", false], [145, "id12", false]], "get_best() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.get_best", false], [67, "id30", false]], "get_datasets() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.get_datasets", false], [181, "id17", false]], "get_ds() (dacapo.utils.view.bestscore method)": [[181, "dacapo.utils.view.BestScore.get_ds", false], [181, "id7", false]], "get_model_setup() (in module dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.get_model_setup", false]], "get_overall_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.get_overall_best", false], [88, "id15", false]], "get_overall_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.get_overall_best", false], [87, "id3", false]], "get_overall_best_parameters() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.get_overall_best_parameters", false], [88, "id16", false]], "get_overall_best_parameters() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.get_overall_best_parameters", false], [87, "id4", false]], "get_right_resolution_array_config() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.get_right_resolution_array_config", false]], "get_runs_info() (in module dacapo.plot)": [[157, "dacapo.plot.get_runs_info", false]], "get_validation_scores() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.get_validation_scores", false]], "get_validation_scores() (dacapo.experiments.run.run static method)": [[69, "id12", false]], "get_viewer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.get_viewer", false]], "gp_to_funlib_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.gp_to_funlib_array", false]], "graph (dacapo.gp.dacapo_points_source.graphsource attribute)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.graph", false], [149, "id1", false]], "graph (dacapo.gp.graphsource attribute)": [[152, "dacapo.gp.GraphSource.graph", false], [152, "id21", false]], "graphkey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.GraphKey", false]], "graphkey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey", false]], "graphsource (class in dacapo.gp)": [[152, "dacapo.gp.GraphSource", false]], "graphsource (class in dacapo.gp.dacapo_points_source)": [[149, "dacapo.gp.dacapo_points_source.GraphSource", false]], "graphstoreconfig (class in dacapo.experiments.datasplits.datasets.graphstores)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig", false]], "graphstoreconfig (class in dacapo.experiments.datasplits.datasets.graphstores.graph_source_config)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.groupings", false], [32, "id1", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.groupings", false], [38, "id8", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig attribute)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.groupings", false], [42, "id1", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.groupings", false], [38, "id18", false]], "grow_boundary_iterations (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.grow_boundary_iterations", false], [115, "id3", false]], "grow_boundary_iterations (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.grow_boundary_iterations", false], [119, "id25", false]], "gt (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.gt", false], [54, "id2", false]], "gt (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.gt", false], [48, "id2", false]], "gt (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.gt", false], [55, "id1", false]], "gt (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.gt", false], [54, "id14", false]], "gt (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.GT", false], [63, "id1", false]], "gt (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.GT", false]], "gt (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.GT", false], [64, "id1", false]], "gt (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.GT", false]], "gt (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.gt", false]], "gt (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.gt", false]], "gt (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.gt", false]], "gt (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.gt", false]], "gt (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.gt", false]], "gt_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.gt_config", false], [56, "id2", false]], "gt_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.gt_config", false], [54, "id20", false]], "gt_container (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.gt_container", false], [62, "id37", false]], "gt_container (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.gt_container", false], [59, "id8", false]], "gt_dataset (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.gt_dataset", false], [62, "id38", false]], "gt_dataset (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.gt_dataset", false], [59, "id9", false]], "gt_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.gt_key", false]], "gt_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.gt_key", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.gt_min_reject", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.gt_region_for_roi", false], [115, "id16", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.gt_region_for_roi", false], [119, "id38", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.gt_region_for_roi", false], [116, "id10", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.gt_region_for_roi", false], [119, "id15", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.gt_region_for_roi", false], [118, "id12", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.gt_region_for_roi", false], [119, "id58", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.gt_region_for_roi", false], [120, "id5", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.gt_region_for_roi", false], [119, "id45", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.gt_region_for_roi", false], [119, "id21", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.gt_region_for_roi", false], [122, "id0", false]], "gunpowdertrainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.GunpowderTrainer", false]], "gunpowdertrainer (class in dacapo.experiments.trainers.gunpowder_trainer)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer", false]], "gunpowdertrainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig", false]], "gunpowdertrainerconfig (class in dacapo.experiments.trainers.gunpowder_trainer_config)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig", false]], "hausdorff (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.hausdorff", false], [82, "id2", false]], "hausdorff (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.hausdorff", false], [88, "id25", false]], "hausdorff() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.hausdorff", false], [83, "id14", false]], "head_keys (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.head_keys", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id2", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id2", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id1", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id9", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.higher_is_better", false], [88, "id19", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.higher_is_better", false], [87, "id7", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id3", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id53", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.higher_is_better", false]], "hooks (dacapo.store.converter.typedconverter attribute)": [[163, "dacapo.store.converter.TypedConverter.hooks", false]], "hot_loss (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss attribute)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.hot_loss", false]], "hot_loss (dacapo.experiments.tasks.losses.hotdistanceloss attribute)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.hot_loss", false]], "hot_loss() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "id1", false]], "hot_loss() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "id7", false]], "hotdistanceloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss", false]], "hotdistanceloss (class in dacapo.experiments.tasks.losses.hot_distance_loss)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss", false]], "hotdistancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor", false]], "hotdistancepredictor (class in dacapo.experiments.tasks.predictors.hot_distance_predictor)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor", false]], "hotdistancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.HotDistanceTask", false]], "hotdistancetask (class in dacapo.experiments.tasks.hot_distance_task)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask", false]], "hotdistancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig", false]], "hotdistancetaskconfig (class in dacapo.experiments.tasks.hot_distance_task_config)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig", false]], "id (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters.id", false], [110, "id0", false]], "id (dacapo.experiments.tasks.post_processors.postprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters.id", false], [108, "id5", false]], "in_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.in_channels", false], [17, "id13", false]], "initialize_weights() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.initialize_weights", false], [71, "id5", false]], "initialize_weights() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.initialize_weights", false], [73, "id9", false]], "initialize_weights() (dacapo.experiments.starts.start method)": [[73, "dacapo.experiments.starts.Start.initialize_weights", false], [73, "id1", false]], "initialize_weights() (dacapo.experiments.starts.start.start method)": [[74, "dacapo.experiments.starts.start.Start.initialize_weights", false], [74, "id1", false]], "innerdistancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor", false]], "innerdistancepredictor (class in dacapo.experiments.tasks.predictors.inner_distance_predictor)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor", false]], "innerdistancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.InnerDistanceTask", false]], "innerdistancetask (class in dacapo.experiments.tasks.inner_distance_task)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask", false]], "innerdistancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig", false]], "innerdistancetaskconfig (class in dacapo.experiments.tasks.inner_distance_task_config)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig", false]], "input_resolution (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.input_resolution", false], [59, "id12", false]], "input_resolution (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.input_resolution", false], [62, "id15", false]], "input_shape (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.architecture property)": [[21, "id0", false]], "input_shape (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id0", false]], "input_shape (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.input_shape", false]], "input_shape (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.input_shape", false], [18, "id1", false]], "input_shape (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.input_shape", false]], "input_shape (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.input_shape", false], [21, "id20", false]], "input_shape (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id3", false]], "input_shape (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id15", false]], "input_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.input_shape", false], [67, "id7", false]], "input_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.input_shape", false], [68, "id7", false]], "inside_value (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.inside_value", false]], "inside_value (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.inside_value", false]], "instance (dacapo.experiments.datasplits.datasplit_generator.segmentationtype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.instance", false], [59, "id4", false]], "instance() (dacapo.options class method)": [[155, "id0", false]], "instance() (dacapo.options method)": [[155, "dacapo.Options.instance", false]], "instance() (dacapo.options.options class method)": [[156, "id6", false]], "instance() (dacapo.options.options method)": [[156, "dacapo.options.Options.instance", false]], "instanceevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores", false]], "instanceevaluationscores (class in dacapo.experiments.tasks.evaluators.instance_evaluation_scores)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores", false]], "instanceevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator", false]], "instanceevaluator (class in dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator", false]], "intensitiesarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray", false]], "intensitiesarray (class in dacapo.experiments.arraytypes.intensities)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray", false]], "intensitiesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig", false]], "intensitiesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.intensity_array_config)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig", false]], "intensityaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig", false]], "intensityaugmentconfig (class in dacapo.experiments.trainers.gp_augments.intensity_config)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig", false]], "intensityscaleshiftaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig", false]], "intensityscaleshiftaugmentconfig (class in dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig", false]], "interp_order (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.interp_order", false], [44, "id3", false]], "interp_order (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.interp_order", false], [38, "id13", false]], "interpolatable (dacapo.experiments.arraytypes.annotationarray property)": [[27, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.annotations.annotationarray property)": [[22, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.arraytype.arraytype property)": [[23, "id0", false]], "interpolatable (dacapo.experiments.arraytypes.binary.binaryarray property)": [[24, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.distancearray property)": [[27, "id7", false]], "interpolatable (dacapo.experiments.arraytypes.distances.distancearray property)": [[25, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.embedding.embeddingarray property)": [[26, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.embeddingarray property)": [[27, "id10", false]], "interpolatable (dacapo.experiments.arraytypes.intensities.intensitiesarray property)": [[28, "id3", false]], "interpolatable (dacapo.experiments.arraytypes.intensitiesarray property)": [[27, "id5", false]], "interpolatable (dacapo.experiments.arraytypes.mask property)": [[27, "id8", false]], "interpolatable (dacapo.experiments.arraytypes.mask.mask property)": [[29, "id0", false]], "interpolatable (dacapo.experiments.arraytypes.probabilities.probabilityarray property)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray.interpolatable", false]], "interpolatable (dacapo.experiments.arraytypes.probabilityarray property)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.annotationarray method)": [[27, "dacapo.experiments.arraytypes.AnnotationArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.annotations.annotationarray method)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.arraytype.arraytype method)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.binary.binaryarray method)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.distancearray method)": [[27, "dacapo.experiments.arraytypes.DistanceArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.distances.distancearray method)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.embedding.embeddingarray method)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.embeddingarray method)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.intensities.intensitiesarray method)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.intensitiesarray method)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.mask method)": [[27, "dacapo.experiments.arraytypes.Mask.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.mask.mask method)": [[29, "dacapo.experiments.arraytypes.mask.Mask.interpolatable", false]], "is_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.is_best", false], [88, "id14", false]], "is_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.is_best", false], [87, "id2", false]], "is_zarr_group() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.is_zarr_group", false]], "iterate() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.iterate", false]], "iterate() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.iterate", false]], "iteration (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.iteration", false], [138, "id0", false]], "iteration (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.iteration", false], [140, "id0", false]], "iteration (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.iteration", false], [142, "id0", false]], "iteration (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.iteration", false], [67, "id10", false]], "iteration (dacapo.experiments.validation_iteration_scores.validationiterationscores attribute)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores.iteration", false], [144, "id0", false]], "iteration (dacapo.experiments.validationiterationscores attribute)": [[67, "dacapo.experiments.ValidationIterationScores.iteration", false], [67, "id16", false]], "iteration (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.iteration", false], [181, "id2", false]], "iteration (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Iteration", false]], "iteration_stats (dacapo.experiments.training_stats.trainingstats attribute)": [[143, "dacapo.experiments.training_stats.TrainingStats.iteration_stats", false], [143, "id0", false]], "iteration_stats (dacapo.experiments.trainingstats attribute)": [[67, "dacapo.experiments.TrainingStats.iteration_stats", false], [67, "id13", false]], "jaccard (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.jaccard", false], [82, "id1", false]], "jaccard (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.jaccard", false], [88, "id24", false]], "jaccard() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.jaccard", false], [83, "id13", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.kernel_size_down", false], [17, "id5", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.kernel_size_down", false], [17, "id17", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.kernel_size_down", false], [18, "id7", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.kernel_size_down", false], [21, "id37", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.kernel_size_down", false], [21, "id26", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.kernel_size_up", false], [17, "id6", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.kernel_size_up", false], [17, "id18", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.kernel_size_up", false], [18, "id8", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.kernel_size_up", false], [21, "id38", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.kernel_size_up", false], [21, "id27", false]], "kernel_sizes (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.kernel_sizes", false]], "key (dacapo.gp.dacapo_points_source.graphsource attribute)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.key", false], [149, "id0", false]], "key (dacapo.gp.graphsource attribute)": [[152, "dacapo.gp.GraphSource.key", false], [152, "id20", false]], "key (dacapo.utils.pipeline.zerossource attribute)": [[180, "dacapo.utils.pipeline.ZerosSource.key", false], [180, "id15", false]], "l_conv (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.l_conv", false], [17, "id19", false]], "l_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.l_down", false], [17, "id20", false]], "labels (dacapo.utils.pipeline.createpoints attribute)": [[180, "dacapo.utils.pipeline.CreatePoints.labels", false], [180, "id0", false]], "labels (dacapo.utils.pipeline.dilatepoints attribute)": [[180, "dacapo.utils.pipeline.DilatePoints.labels", false], [180, "id5", false]], "labels (dacapo.utils.pipeline.expandlabels attribute)": [[180, "dacapo.utils.pipeline.ExpandLabels.labels", false], [180, "id12", false]], "labels (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.labels", false]], "labels (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.labels", false]], "labels (dacapo.utils.pipeline.randomdilatelabels attribute)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.labels", false], [180, "id8", false]], "labels (dacapo.utils.pipeline.relabel attribute)": [[180, "dacapo.utils.pipeline.Relabel.labels", false]], "latest_iteration() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.latest_iteration", false], [169, "id1", false]], "latest_iteration() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.latest_iteration", false], [173, "id4", false]], "learning_rate (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.learning_rate", false], [127, "id0", false]], "learning_rate (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.learning_rate", false], [138, "id9", false]], "learning_rate (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.learning_rate", false], [136, "id0", false]], "learning_rate (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.learning_rate", false], [138, "id21", false]], "learning_rate (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.learning_rate", false], [138, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.learning_rate", false], [140, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.learning_rate", false], [141, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.learning_rate", false], [138, "id5", false]], "limit_validation_crop_size() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.limit_validation_crop_size", false]], "load_best() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.load_best", false], [173, "id3", false]], "load_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.load_weights", false], [173, "id2", false]], "localarrayidentifier (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.LocalArrayIdentifier", false]], "localarraystore (class in dacapo.store.local_array_store)": [[168, "dacapo.store.local_array_store.LocalArrayStore", false]], "localcontaineridentifier (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.LocalContainerIdentifier", false]], "localtorch (class in dacapo.compute_context)": [[13, "dacapo.compute_context.LocalTorch", false]], "localtorch (class in dacapo.compute_context.local_torch)": [[14, "dacapo.compute_context.local_torch.LocalTorch", false]], "localweightsstore (class in dacapo.store.local_weights_store)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore", false]], "logger (in module dacapo.apply)": [[0, "dacapo.apply.logger", false]], "logger (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.logger", false]], "logger (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.logger", false]], "logger (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.logger", false]], "logger (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.logger", false]], "logger (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.logger", false]], "logger (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.logger", false]], "logger (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.logger", false]], "logger (in module dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.logger", false]], "logger (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.logger", false]], "logger (in module dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.logger", false]], "logger (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.distance_predictor)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.hot_distance_predictor)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.inner_distance_predictor)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.one_hot_predictor)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.logger", false]], "logger (in module dacapo.experiments.trainers.gunpowder_trainer)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.logger", false]], "logger (in module dacapo.experiments.training_stats)": [[143, "dacapo.experiments.training_stats.logger", false]], "logger (in module dacapo.gp.elastic_augment_fuse)": [[150, "dacapo.gp.elastic_augment_fuse.logger", false]], "logger (in module dacapo.gp.gamma_noise)": [[151, "dacapo.gp.gamma_noise.logger", false]], "logger (in module dacapo.gp.reject_if_empty)": [[154, "dacapo.gp.reject_if_empty.logger", false]], "logger (in module dacapo.options)": [[156, "dacapo.options.logger", false]], "logger (in module dacapo.predict)": [[158, "dacapo.predict.logger", false]], "logger (in module dacapo.predict_local)": [[159, "dacapo.predict_local.logger", false]], "logger (in module dacapo.store.file_config_store)": [[165, "dacapo.store.file_config_store.logger", false]], "logger (in module dacapo.store.file_stats_store)": [[166, "dacapo.store.file_stats_store.logger", false]], "logger (in module dacapo.store.local_array_store)": [[168, "dacapo.store.local_array_store.logger", false]], "logger (in module dacapo.store.local_weights_store)": [[169, "dacapo.store.local_weights_store.logger", false]], "logger (in module dacapo.store.mongo_config_store)": [[170, "dacapo.store.mongo_config_store.logger", false]], "logger (in module dacapo.store.mongo_stats_store)": [[171, "dacapo.store.mongo_stats_store.logger", false]], "logger (in module dacapo.train)": [[175, "dacapo.train.logger", false]], "logger (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.logger", false]], "logger (in module dacapo.validate)": [[183, "dacapo.validate.logger", false]], "logicalorarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig", false]], "logicalorarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig", false]], "loss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.Loss", false]], "loss (class in dacapo.experiments.tasks.losses.loss)": [[100, "dacapo.experiments.tasks.losses.loss.Loss", false]], "loss (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.loss", false], [76, "id1", false]], "loss (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.loss", false], [93, "id38", false]], "loss (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.loss", false], [78, "id1", false]], "loss (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.loss", false], [93, "id18", false]], "loss (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.loss", false], [80, "id1", false]], "loss (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.loss", false], [93, "id7", false]], "loss (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.loss", false], [91, "id1", false]], "loss (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.loss", false], [93, "id56", false]], "loss (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.loss", false], [94, "id1", false]], "loss (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.loss", false], [93, "id46", false]], "loss (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.loss", false]], "loss (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.loss", false]], "loss (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.loss", false]], "loss (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.loss", false]], "loss (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.loss", false]], "loss (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.loss", false]], "loss (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.loss", false], [142, "id1", false]], "loss (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.loss", false], [67, "id11", false]], "lsd_pad() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_pad", false], [115, "id12", false]], "lsd_pad() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_pad", false], [119, "id34", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsd_weight_clipmax", false], [77, "id8", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsd_weight_clipmax", false], [93, "id35", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_weight_clipmax", false], [115, "id7", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_weight_clipmax", false], [119, "id29", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsd_weight_clipmin", false], [77, "id7", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsd_weight_clipmin", false], [93, "id34", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_weight_clipmin", false], [115, "id6", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_weight_clipmin", false], [119, "id28", false]], "lsds (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsds", false], [77, "id1", false]], "lsds (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsds", false], [93, "id28", false]], "lsds (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsds", false], [115, "id1", false]], "lsds (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsds", false], [119, "id23", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsds_to_affs_weight_ratio", false], [77, "id4", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsds_to_affs_weight_ratio", false], [93, "id31", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss attribute)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.lsds_to_affs_weight_ratio", false], [96, "id1", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.losses.affinitiesloss attribute)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.lsds_to_affs_weight_ratio", false], [99, "id4", false]], "makeraw (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.MakeRaw", false]], "makeraw.pipeline (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline", false]], "mask (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.Mask", false]], "mask (class in dacapo.experiments.arraytypes.mask)": [[29, "dacapo.experiments.arraytypes.mask.Mask", false]], "mask (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.mask", false], [54, "id3", false]], "mask (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.mask", false], [48, "id3", false]], "mask (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.mask", false], [55, "id2", false]], "mask (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.mask", false], [54, "id15", false]], "mask (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.MASK", false], [63, "id2", false]], "mask (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.MASK", false]], "mask (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.MASK", false], [64, "id2", false]], "mask (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.MASK", false]], "mask_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.mask_config", false], [56, "id3", false]], "mask_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.mask_config", false], [54, "id21", false]], "mask_distances (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.mask_distances", false], [79, "id4", false]], "mask_distances (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.mask_distances", false], [93, "id14", false]], "mask_distances (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.mask_distances", false], [92, "id5", false]], "mask_distances (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.mask_distances", false], [93, "id54", false]], "mask_distances (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.mask_distances", false], [116, "id1", false]], "mask_distances (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.mask_distances", false], [119, "id6", false]], "mask_distances (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.mask_distances", false], [118, "id3", false]], "mask_distances (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.mask_distances", false], [119, "id49", false]], "mask_integral_downsample_factor (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.mask_integral_downsample_factor", false], [136, "id7", false]], "mask_integral_downsample_factor (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.mask_integral_downsample_factor", false], [138, "id28", false]], "mask_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.mask_key", false], [148, "id2", false]], "mask_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.mask_key", false], [152, "id2", false]], "match_heads() (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.match_heads", false]], "max (dacapo.experiments.arraytypes.distancearray attribute)": [[27, "dacapo.experiments.arraytypes.DistanceArray.max", false]], "max (dacapo.experiments.arraytypes.distances.distancearray attribute)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.max", false]], "max (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.max", false], [28, "id2", false]], "max (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.max", false], [27, "id4", false]], "max (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.max", false], [38, "id16", false]], "max (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.max", false], [39, "id2", false]], "max_distance (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.max_distance", false], [118, "id4", false]], "max_distance (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.max_distance", false], [119, "id50", false]], "max_distance (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.max_distance", false]], "max_gt_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_gt_downsample", false], [59, "id16", false]], "max_gt_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_gt_downsample", false], [62, "id19", false]], "max_gt_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_gt_upsample", false], [59, "id17", false]], "max_gt_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_gt_upsample", false], [62, "id20", false]], "max_raw_training_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_training_downsample", false], [59, "id18", false]], "max_raw_training_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_training_downsample", false], [62, "id21", false]], "max_raw_training_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_training_upsample", false], [59, "id19", false]], "max_raw_training_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_training_upsample", false], [62, "id22", false]], "max_raw_validation_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_validation_downsample", false], [59, "id20", false]], "max_raw_validation_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_validation_downsample", false], [62, "id23", false]], "max_raw_validation_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_validation_upsample", false], [59, "id21", false]], "max_raw_validation_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_validation_upsample", false], [62, "id24", false]], "max_retries (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.max_retries", false]], "max_retries (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.max_retries", false]], "max_validation_volume_size (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_validation_volume_size", false], [59, "id26", false]], "max_validation_volume_size (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_validation_volume_size", false], [62, "id29", false]], "mean_false_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_distance", false], [82, "id9", false]], "mean_false_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_distance", false], [88, "id32", false]], "mean_false_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_distance", false], [83, "id22", false]], "mean_false_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_distance", false], [83, "id52", false]], "mean_false_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_distance_clipped", false], [82, "id12", false]], "mean_false_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_distance_clipped", false], [88, "id35", false]], "mean_false_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_distance_clipped", false], [83, "id25", false]], "mean_false_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_distance_clipped", false], [83, "id53", false]], "mean_false_negative_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_negative_distance", false], [82, "id10", false]], "mean_false_negative_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_negative_distance", false], [88, "id33", false]], "mean_false_negative_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_negative_distance", false], [83, "id23", false]], "mean_false_negative_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_negative_distance", false], [83, "id51", false]], "mean_false_negative_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_negative_distance_clipped", false], [82, "id13", false]], "mean_false_negative_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_negative_distance_clipped", false], [88, "id36", false]], "mean_false_negative_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_negative_distance_clipped", false], [83, "id26", false]], "mean_false_negative_distances_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_negative_distances_clipped", false], [83, "id48", false]], "mean_false_positive_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_positive_distance", false], [82, "id11", false]], "mean_false_positive_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_positive_distance", false], [88, "id34", false]], "mean_false_positive_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_positive_distance", false], [83, "id24", false]], "mean_false_positive_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_positive_distance", false], [83, "id49", false]], "mean_false_positive_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_positive_distance_clipped", false], [82, "id14", false]], "mean_false_positive_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_positive_distance_clipped", false], [88, "id37", false]], "mean_false_positive_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_positive_distance_clipped", false], [83, "id27", false]], "mean_false_positive_distances_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_positive_distances_clipped", false], [83, "id47", false]], "membrane_like (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.membrane_like", false]], "membrane_like (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.membrane_like", false]], "membrane_size (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.membrane_size", false]], "membrane_size (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.membrane_size", false]], "mergeinstancesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig", false]], "mergeinstancesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig", false]], "message (dacapo.store.config_store.duplicatenameerror attribute)": [[161, "dacapo.store.config_store.DuplicateNameError.message", false]], "min (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.min", false], [28, "id1", false]], "min (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.min", false], [27, "id3", false]], "min (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.min", false], [38, "id15", false]], "min (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.min", false], [39, "id1", false]], "min_masked (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.min_masked", false], [136, "id5", false]], "min_masked (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.min_masked", false], [137, "id4", false]], "min_masked (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.min_masked", false], [138, "id26", false]], "min_masked (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.min_masked", false], [138, "id19", false]], "min_size (dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.dummypostprocessorparameters attribute)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters.min_size", false], [107, "id0", false]], "min_size (dacapo.experiments.tasks.post_processors.dummypostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters.min_size", false], [108, "id4", false]], "min_size (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.min_size", false]], "min_size (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.min_size", false]], "min_training_volume_size (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.min_training_volume_size", false], [59, "id22", false]], "min_training_volume_size (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.min_training_volume_size", false], [62, "id25", false]], "mirror_augment (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.mirror_augment", false], [127, "id2", false]], "mirror_augment (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig attribute)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.mirror_augment", false], [128, "id0", false]], "mirror_augment (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.mirror_augment", false], [138, "id11", false]], "mirror_augment (dacapo.experiments.trainers.dummytrainerconfig attribute)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.mirror_augment", false], [138, "id7", false]], "missingannotationsmaskconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig", false]], "missingannotationsmaskconfig (class in dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig", false]], "mode (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.mode", false]], "mode (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.mode", false]], "model (class in dacapo.experiments)": [[67, "dacapo.experiments.Model", false]], "model (class in dacapo.experiments.model)": [[68, "dacapo.experiments.model.Model", false]], "model (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.model", false], [69, "id6", false]], "model (dacapo.store.weights_store.weights attribute)": [[173, "dacapo.store.weights_store.Weights.model", false], [173, "id1", false]], "model_configs (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.model_configs", false]], "module": [[0, "module-dacapo.apply", false], [1, "module-dacapo.blockwise.argmax_worker", false], [2, "module-dacapo.blockwise.blockwise_task", false], [3, "module-dacapo.blockwise.empanada_function", false], [4, "module-dacapo.blockwise", false], [5, "module-dacapo.blockwise.predict_worker", false], [6, "module-dacapo.blockwise.relabel_worker", false], [7, "module-dacapo.blockwise.scheduler", false], [8, "module-dacapo.blockwise.segment_worker", false], [9, "module-dacapo.blockwise.threshold_worker", false], [10, "module-dacapo.blockwise.watershed_function", false], [11, "module-dacapo.compute_context.bsub", false], [12, "module-dacapo.compute_context.compute_context", false], [13, "module-dacapo.compute_context", false], [14, "module-dacapo.compute_context.local_torch", false], [15, "module-dacapo.experiments.architectures.architecture", false], [16, "module-dacapo.experiments.architectures.architecture_config", false], [17, "module-dacapo.experiments.architectures.cnnectome_unet", false], [18, "module-dacapo.experiments.architectures.cnnectome_unet_config", false], [19, "module-dacapo.experiments.architectures.dummy_architecture", false], [20, "module-dacapo.experiments.architectures.dummy_architecture_config", false], [21, "module-dacapo.experiments.architectures", false], [22, "module-dacapo.experiments.arraytypes.annotations", false], [23, "module-dacapo.experiments.arraytypes.arraytype", false], [24, "module-dacapo.experiments.arraytypes.binary", false], [25, "module-dacapo.experiments.arraytypes.distances", false], [26, "module-dacapo.experiments.arraytypes.embedding", false], [27, "module-dacapo.experiments.arraytypes", false], [28, "module-dacapo.experiments.arraytypes.intensities", false], [29, "module-dacapo.experiments.arraytypes.mask", false], [30, "module-dacapo.experiments.arraytypes.probabilities", false], [31, "module-dacapo.experiments.datasplits.datasets.arrays.array_config", false], [32, "module-dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", false], [33, "module-dacapo.experiments.datasplits.datasets.arrays.concat_array_config", false], [34, "module-dacapo.experiments.datasplits.datasets.arrays.constant_array_config", false], [35, "module-dacapo.experiments.datasplits.datasets.arrays.crop_array_config", false], [36, "module-dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", false], [37, "module-dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", false], [38, "module-dacapo.experiments.datasplits.datasets.arrays", false], [39, "module-dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", false], [40, "module-dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", false], [41, "module-dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", false], [42, "module-dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", false], [43, "module-dacapo.experiments.datasplits.datasets.arrays.ones_array_config", false], [44, "module-dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", false], [45, "module-dacapo.experiments.datasplits.datasets.arrays.sum_array_config", false], [46, "module-dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", false], [47, "module-dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", false], [48, "module-dacapo.experiments.datasplits.datasets.dataset", false], [49, "module-dacapo.experiments.datasplits.datasets.dataset_config", false], [50, "module-dacapo.experiments.datasplits.datasets.dummy_dataset", false], [51, "module-dacapo.experiments.datasplits.datasets.dummy_dataset_config", false], [52, "module-dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", false], [53, "module-dacapo.experiments.datasplits.datasets.graphstores", false], [54, "module-dacapo.experiments.datasplits.datasets", false], [55, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset", false], [56, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", false], [57, "module-dacapo.experiments.datasplits.datasplit", false], [58, "module-dacapo.experiments.datasplits.datasplit_config", false], [59, "module-dacapo.experiments.datasplits.datasplit_generator", false], [60, "module-dacapo.experiments.datasplits.dummy_datasplit", false], [61, "module-dacapo.experiments.datasplits.dummy_datasplit_config", false], [62, "module-dacapo.experiments.datasplits", false], [63, "module-dacapo.experiments.datasplits.keys", false], [64, "module-dacapo.experiments.datasplits.keys.keys", false], [65, "module-dacapo.experiments.datasplits.train_validate_datasplit", false], [66, "module-dacapo.experiments.datasplits.train_validate_datasplit_config", false], [67, "module-dacapo.experiments", false], [68, "module-dacapo.experiments.model", false], [69, "module-dacapo.experiments.run", false], [70, "module-dacapo.experiments.run_config", false], [71, "module-dacapo.experiments.starts.cosem_start", false], [72, "module-dacapo.experiments.starts.cosem_start_config", false], [73, "module-dacapo.experiments.starts", false], [74, "module-dacapo.experiments.starts.start", false], [75, "module-dacapo.experiments.starts.start_config", false], [76, "module-dacapo.experiments.tasks.affinities_task", false], [77, "module-dacapo.experiments.tasks.affinities_task_config", false], [78, "module-dacapo.experiments.tasks.distance_task", false], [79, "module-dacapo.experiments.tasks.distance_task_config", false], [80, "module-dacapo.experiments.tasks.dummy_task", false], [81, "module-dacapo.experiments.tasks.dummy_task_config", false], [82, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", false], [83, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", false], [84, "module-dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", false], [85, "module-dacapo.experiments.tasks.evaluators.dummy_evaluator", false], [86, "module-dacapo.experiments.tasks.evaluators.evaluation_scores", false], [87, "module-dacapo.experiments.tasks.evaluators.evaluator", false], [88, "module-dacapo.experiments.tasks.evaluators", false], [89, "module-dacapo.experiments.tasks.evaluators.instance_evaluation_scores", false], [90, "module-dacapo.experiments.tasks.evaluators.instance_evaluator", false], [91, "module-dacapo.experiments.tasks.hot_distance_task", false], [92, "module-dacapo.experiments.tasks.hot_distance_task_config", false], [93, "module-dacapo.experiments.tasks", false], [94, "module-dacapo.experiments.tasks.inner_distance_task", false], [95, "module-dacapo.experiments.tasks.inner_distance_task_config", false], [96, "module-dacapo.experiments.tasks.losses.affinities_loss", false], [97, "module-dacapo.experiments.tasks.losses.dummy_loss", false], [98, "module-dacapo.experiments.tasks.losses.hot_distance_loss", false], [99, "module-dacapo.experiments.tasks.losses", false], [100, "module-dacapo.experiments.tasks.losses.loss", false], [101, "module-dacapo.experiments.tasks.losses.mse_loss", false], [102, "module-dacapo.experiments.tasks.one_hot_task", false], [103, "module-dacapo.experiments.tasks.one_hot_task_config", false], [104, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor", false], [105, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", false], [106, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor", false], [107, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", false], [108, "module-dacapo.experiments.tasks.post_processors", false], [109, "module-dacapo.experiments.tasks.post_processors.post_processor", false], [110, "module-dacapo.experiments.tasks.post_processors.post_processor_parameters", false], [111, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor", false], [112, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", false], [113, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor", false], [114, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", false], [115, "module-dacapo.experiments.tasks.predictors.affinities_predictor", false], [116, "module-dacapo.experiments.tasks.predictors.distance_predictor", false], [117, "module-dacapo.experiments.tasks.predictors.dummy_predictor", false], [118, "module-dacapo.experiments.tasks.predictors.hot_distance_predictor", false], [119, "module-dacapo.experiments.tasks.predictors", false], [120, "module-dacapo.experiments.tasks.predictors.inner_distance_predictor", false], [121, "module-dacapo.experiments.tasks.predictors.one_hot_predictor", false], [122, "module-dacapo.experiments.tasks.predictors.predictor", false], [123, "module-dacapo.experiments.tasks.pretrained_task", false], [124, "module-dacapo.experiments.tasks.pretrained_task_config", false], [125, "module-dacapo.experiments.tasks.task", false], [126, "module-dacapo.experiments.tasks.task_config", false], [127, "module-dacapo.experiments.trainers.dummy_trainer", false], [128, "module-dacapo.experiments.trainers.dummy_trainer_config", false], [129, "module-dacapo.experiments.trainers.gp_augments.augment_config", false], [130, "module-dacapo.experiments.trainers.gp_augments.elastic_config", false], [131, "module-dacapo.experiments.trainers.gp_augments.gamma_config", false], [132, "module-dacapo.experiments.trainers.gp_augments", false], [133, "module-dacapo.experiments.trainers.gp_augments.intensity_config", false], [134, "module-dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", false], [135, "module-dacapo.experiments.trainers.gp_augments.simple_config", false], [136, "module-dacapo.experiments.trainers.gunpowder_trainer", false], [137, "module-dacapo.experiments.trainers.gunpowder_trainer_config", false], [138, "module-dacapo.experiments.trainers", false], [139, "module-dacapo.experiments.trainers.optimizers", false], [140, "module-dacapo.experiments.trainers.trainer", false], [141, "module-dacapo.experiments.trainers.trainer_config", false], [142, "module-dacapo.experiments.training_iteration_stats", false], [143, "module-dacapo.experiments.training_stats", false], [144, "module-dacapo.experiments.validation_iteration_scores", false], [145, "module-dacapo.experiments.validation_scores", false], [146, "module-dacapo.ext", false], [147, "module-dacapo.gp.copy", false], [148, "module-dacapo.gp.dacapo_create_target", false], [149, "module-dacapo.gp.dacapo_points_source", false], [150, "module-dacapo.gp.elastic_augment_fuse", false], [151, "module-dacapo.gp.gamma_noise", false], [152, "module-dacapo.gp", false], [153, "module-dacapo.gp.product", false], [154, "module-dacapo.gp.reject_if_empty", false], [155, "module-dacapo", false], [156, "module-dacapo.options", false], [157, "module-dacapo.plot", false], [158, "module-dacapo.predict", false], [159, "module-dacapo.predict_local", false], [160, "module-dacapo.store.array_store", false], [161, "module-dacapo.store.config_store", false], [162, "module-dacapo.store.conversion_hooks", false], [163, "module-dacapo.store.converter", false], [164, "module-dacapo.store.create_store", false], [165, "module-dacapo.store.file_config_store", false], [166, "module-dacapo.store.file_stats_store", false], [167, "module-dacapo.store", false], [168, "module-dacapo.store.local_array_store", false], [169, "module-dacapo.store.local_weights_store", false], [170, "module-dacapo.store.mongo_config_store", false], [171, "module-dacapo.store.mongo_stats_store", false], [172, "module-dacapo.store.stats_store", false], [173, "module-dacapo.store.weights_store", false], [174, "module-dacapo.tmp", false], [175, "module-dacapo.train", false], [176, "module-dacapo.utils.affinities", false], [177, "module-dacapo.utils.array_utils", false], [178, "module-dacapo.utils.balance_weights", false], [179, "module-dacapo.utils", false], [180, "module-dacapo.utils.pipeline", false], [181, "module-dacapo.utils.view", false], [182, "module-dacapo.utils.voi", false], [183, "module-dacapo.validate", false], [185, "module-dacapo", false], [189, "module-dacapo", false], [195, "module-dacapo", false]], "module() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.module", false]], "module() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.module", false]], "mongo_db_host (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.mongo_db_host", false], [156, "id3", false]], "mongo_db_name (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.mongo_db_name", false], [156, "id4", false]], "mongoconfigstore (class in dacapo.store.mongo_config_store)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore", false]], "mongostatsstore (class in dacapo.store.mongo_stats_store)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore", false]], "most_recent_iteration (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.most_recent_iteration", false]], "move_optimizer() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.move_optimizer", false]], "moving_counts (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.moving_counts", false]], "moving_counts (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.moving_counts", false]], "mseloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.MSELoss", false]], "mseloss (class in dacapo.experiments.tasks.losses.mse_loss)": [[101, "dacapo.experiments.tasks.losses.mse_loss.MSELoss", false]], "multichannelbinarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores", false]], "multichannelbinarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores", false]], "name (dacapo.experiments.architectures.architecture_config.architectureconfig attribute)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig.name", false], [16, "id0", false]], "name (dacapo.experiments.architectures.architectureconfig attribute)": [[21, "dacapo.experiments.architectures.ArchitectureConfig.name", false], [21, "id6", false]], "name (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig attribute)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.name", false], [31, "id0", false]], "name (dacapo.experiments.datasplits.datasets.arrays.arrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.name", false], [38, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.name", false], [54, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.name", false], [48, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig attribute)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.name", false], [49, "id0", false]], "name (dacapo.experiments.datasplits.datasets.datasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.name", false], [54, "id6", false]], "name (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset attribute)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.dummydataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.name", false]], "name (dacapo.experiments.datasplits.datasplit_config.datasplitconfig attribute)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig.name", false], [58, "id0", false]], "name (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.name", false], [59, "id10", false]], "name (dacapo.experiments.datasplits.datasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DataSplitConfig.name", false], [62, "id2", false]], "name (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.name", false], [62, "id13", false]], "name (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.name", false], [69, "id0", false]], "name (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.name", false]], "name (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.name", false]], "name (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.name", false], [71, "id2", false]], "name (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.name", false], [73, "id6", false]], "name (dacapo.experiments.tasks.losses.dummy_loss.dummyloss attribute)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss.name", false]], "name (dacapo.experiments.tasks.losses.dummyloss attribute)": [[99, "dacapo.experiments.tasks.losses.DummyLoss.name", false]], "name (dacapo.experiments.tasks.task_config.taskconfig attribute)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig.name", false], [126, "id0", false]], "name (dacapo.experiments.tasks.taskconfig attribute)": [[93, "dacapo.experiments.tasks.TaskConfig.name", false], [93, "id0", false]], "name (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.name", false], [141, "id0", false]], "name (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.name", false], [138, "id3", false]], "neighborhood (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.neighborhood", false], [77, "id0", false]], "neighborhood (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.neighborhood", false], [93, "id27", false]], "neighborhood (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.neighborhood", false], [115, "id0", false]], "neighborhood (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.neighborhood", false], [119, "id22", false]], "neuroglancerrunviewer (class in dacapo.utils.view)": [[181, "dacapo.utils.view.NeuroglancerRunViewer", false]], "new_validation_checker() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.new_validation_checker", false], [181, "id21", false]], "next() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.next", false], [136, "id10", false]], "next() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.next", false], [138, "id31", false]], "next_conv_kernel_sizes (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.next_conv_kernel_sizes", false], [17, "id32", false]], "node() (dacapo.experiments.trainers.augmentconfig method)": [[138, "dacapo.experiments.trainers.AugmentConfig.node", false], [138, "id32", false]], "node() (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig method)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig.node", false], [129, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.augmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig.node", false], [132, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig method)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.node", false], [130, "id5", false]], "node() (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.node", false], [132, "id6", false]], "node() (dacapo.experiments.trainers.gp_augments.gamma_config.gammaaugmentconfig method)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig.node", false], [131, "id1", false]], "node() (dacapo.experiments.trainers.gp_augments.gammaaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig.node", false], [132, "id9", false]], "node() (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig method)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.node", false], [133, "id3", false]], "node() (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.node", false], [134, "id2", false]], "node() (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.node", false], [132, "id13", false]], "node() (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.node", false], [132, "id16", false]], "node() (dacapo.experiments.trainers.gp_augments.simple_config.simpleaugmentconfig method)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig.node", false], [135, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.simpleaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig.node", false], [132, "id7", false]], "non_empty (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.NON_EMPTY", false], [63, "id3", false]], "non_empty (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.NON_EMPTY", false]], "non_empty (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.NON_EMPTY", false], [64, "id3", false]], "non_empty (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.NON_EMPTY", false]], "none() (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig method)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.None", false]], "none() (dacapo.experiments.tasks.onehottaskconfig method)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.None", false]], "norm (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.norm", false], [118, "id1", false]], "norm (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.norm", false], [119, "id47", false]], "norm (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.norm", false]], "nosuchmodule (class in dacapo.ext)": [[146, "dacapo.ext.NoSuchModule", false]], "np_to_funlib_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.np_to_funlib_array", false]], "num_affinities (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss attribute)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.num_affinities", false], [96, "id0", false]], "num_affinities (dacapo.experiments.tasks.losses.affinitiesloss attribute)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.num_affinities", false], [99, "id3", false]], "num_channels() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.num_channels", false]], "num_channels() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.num_channels", false]], "num_channels_from_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.num_channels_from_array", false]], "num_classes (dacapo.experiments.arraytypes.arraytype.arraytype attribute)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.num_classes", false]], "num_cpus (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.num_cpus", false], [13, "id8", false]], "num_cpus (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.num_cpus", false], [11, "id2", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.num_data_fetchers", false], [136, "id2", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.num_data_fetchers", false], [137, "id1", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.num_data_fetchers", false], [138, "id23", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.num_data_fetchers", false], [138, "id16", false]], "num_fmaps (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_fmaps", false], [17, "id2", false]], "num_fmaps (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.num_fmaps", false], [18, "id4", false]], "num_fmaps (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_fmaps", false], [21, "id34", false]], "num_fmaps (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.num_fmaps", false], [21, "id23", false]], "num_gpus (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.num_gpus", false], [13, "id7", false]], "num_gpus (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.num_gpus", false], [11, "id1", false]], "num_heads (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_heads", false]], "num_heads (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.num_heads", false], [17, "id12", false]], "num_heads (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_heads", false]], "num_in_channels (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.architecture property)": [[21, "id2", false]], "num_in_channels (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id2", false]], "num_in_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id4", false]], "num_in_channels (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.num_in_channels", false], [20, "id1", false]], "num_in_channels (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id16", false]], "num_in_channels (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.num_in_channels", false], [21, "id9", false]], "num_in_channels (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.num_in_channels", false], [67, "id3", false]], "num_in_channels (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.num_in_channels", false], [68, "id3", false]], "num_in_channels() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.num_in_channels", false]], "num_in_channels() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.num_in_channels", false]], "num_iterations (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.num_iterations", false]], "num_iterations (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.num_iterations", false]], "num_levels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.num_levels", false], [17, "id11", false]], "num_lsd_voxels (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.num_lsd_voxels", false], [77, "id2", false]], "num_lsd_voxels (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.num_lsd_voxels", false], [93, "id29", false]], "num_out_channels (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.architecture property)": [[21, "id3", false]], "num_out_channels (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id3", false]], "num_out_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id5", false]], "num_out_channels (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.num_out_channels", false], [20, "id2", false]], "num_out_channels (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id17", false]], "num_out_channels (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.num_out_channels", false], [21, "id10", false]], "num_out_channels (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.num_out_channels", false], [67, "id0", false]], "num_out_channels (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.num_out_channels", false], [68, "id0", false]], "num_out_channels() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.num_out_channels", false]], "num_out_channels() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.num_out_channels", false]], "num_points (dacapo.utils.pipeline.createpoints attribute)": [[180, "dacapo.utils.pipeline.CreatePoints.num_points", false], [180, "id1", false]], "num_voxels (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.num_voxels", false], [115, "id2", false]], "num_voxels (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.num_voxels", false], [119, "id24", false]], "num_workers (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.num_workers", false]], "num_workers (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.num_workers", false]], "offset (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.offset", false], [46, "id1", false]], "offsets (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor attribute)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.offsets", false], [113, "id0", false]], "offsets (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.offsets", false]], "offsets (dacapo.experiments.tasks.post_processors.watershedpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.offsets", false], [108, "id17", false]], "offsets (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.offsets", false]], "onehotpredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor", false]], "onehotpredictor (class in dacapo.experiments.tasks.predictors.one_hot_predictor)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor", false]], "onehottask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.OneHotTask", false]], "onehottask (class in dacapo.experiments.tasks.one_hot_task)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask", false]], "onehottaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig", false]], "onehottaskconfig (class in dacapo.experiments.tasks.one_hot_task_config)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig", false]], "onesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig", false]], "onesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.ones_array_config)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig", false]], "oom_limit (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch.oom_limit", false], [14, "id1", false]], "oom_limit (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch.oom_limit", false], [13, "id4", false]], "open_from_array_identitifier() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.open_from_array_identitifier", false], [181, "id16", false]], "open_from_identifier() (in module dacapo.tmp)": [[174, "dacapo.tmp.open_from_identifier", false]], "optimizer (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.optimizer", false], [69, "id7", false]], "optimizer (dacapo.store.weights_store.weights attribute)": [[173, "dacapo.store.weights_store.Weights.optimizer", false], [173, "id0", false]], "options (class in dacapo)": [[155, "dacapo.Options", false]], "options (class in dacapo.options)": [[156, "dacapo.options.Options", false]], "orthoplane_inference() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.orthoplane_inference", false]], "out_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.out_channels", false], [17, "id14", false]], "output_array_type (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor property)": [[115, "id17", false]], "output_array_type (dacapo.experiments.tasks.predictors.affinitiespredictor property)": [[119, "id39", false]], "output_array_type (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor property)": [[116, "id7", false]], "output_array_type (dacapo.experiments.tasks.predictors.distancepredictor property)": [[119, "id12", false]], "output_array_type (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor property)": [[117, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.dummypredictor property)": [[119, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor property)": [[120, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.innerdistancepredictor property)": [[119, "id44", false]], "output_array_type (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor property)": [[121, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.onehotpredictor property)": [[119, "id20", false]], "output_array_type (dacapo.experiments.tasks.predictors.predictor property)": [[119, "dacapo.experiments.tasks.predictors.Predictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.predictor.predictor property)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.output_array_type", false]], "output_resolution (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.output_resolution", false], [59, "id13", false]], "output_resolution (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.output_resolution", false], [62, "id16", false]], "output_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.output_shape", false]], "output_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.output_shape", false]], "outputidentifier (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.OutputIdentifier", false]], "overlap_measures_filter() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.overlap_measures_filter", false]], "p (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.p", false], [154, "id0", false]], "p (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.p", false], [152, "id13", false]], "padding (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.padding", false], [17, "id8", false]], "padding (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.padding", false]], "padding (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.padding", false], [18, "id11", false]], "padding (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.padding", false], [21, "id40", false]], "padding (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.padding", false], [21, "id30", false]], "padding() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.padding", false], [118, "id13", false]], "padding() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.padding", false], [119, "id59", false]], "padding() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.padding", false]], "padding() (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.padding", false]], "parameter (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.parameter", false], [181, "id3", false]], "parameter_names (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters property)": [[110, "id1", false]], "parameter_names (dacapo.experiments.tasks.post_processors.postprocessorparameters property)": [[108, "id6", false]], "parameter_names (dacapo.experiments.validation_scores.validationscores property)": [[145, "id10", false]], "parameter_names (dacapo.experiments.validationscores property)": [[67, "id28", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.argmaxpostprocessorparameters method)": [[105, "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.argmaxpostprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.dummypostprocessorparameters method)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.dummypostprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters method)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.postprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.parameter_names", false]], "parameter_names() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.parameter_names", false]], "parameters (dacapo.experiments.tasks.task property)": [[93, "dacapo.experiments.tasks.Task.parameters", false]], "parameters (dacapo.experiments.tasks.task.task property)": [[125, "dacapo.experiments.tasks.task.Task.parameters", false]], "parameters (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.parameters", false], [145, "id0", false]], "parameters (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.parameters", false], [67, "id18", false]], "path (dacapo.store.file_config_store.fileconfigstore attribute)": [[165, "dacapo.store.file_config_store.FileConfigStore.path", false], [165, "id0", false]], "path (dacapo.store.file_stats_store.filestatsstore attribute)": [[166, "dacapo.store.file_stats_store.FileStatsStore.path", false]], "path (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.path", false]], "path (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.path", false]], "path (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.path", false]], "path (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.path", false]], "path (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.path", false]], "plot_runs() (in module dacapo.plot)": [[157, "dacapo.plot.plot_runs", false]], "post_processor (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.post_processor", false], [76, "id2", false]], "post_processor (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.post_processor", false], [93, "id39", false]], "post_processor (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.post_processor", false], [78, "id2", false]], "post_processor (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.post_processor", false], [93, "id19", false]], "post_processor (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.post_processor", false], [80, "id2", false]], "post_processor (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.post_processor", false], [93, "id8", false]], "post_processor (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.post_processor", false], [91, "id2", false]], "post_processor (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.post_processor", false], [93, "id57", false]], "post_processor (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.post_processor", false], [94, "id2", false]], "post_processor (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.post_processor", false], [93, "id47", false]], "post_processor (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.post_processor", false]], "post_processor (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.post_processor", false]], "postprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor", false]], "postprocessor (class in dacapo.experiments.tasks.post_processors.post_processor)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor", false]], "postprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters", false]], "postprocessorparameters (class in dacapo.experiments.tasks.post_processors.post_processor_parameters)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters", false]], "precision (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.precision", false], [82, "id18", false]], "precision (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.precision", false], [88, "id41", false]], "precision() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.precision", false], [83, "id18", false]], "precision_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.precision_with_tolerance", false], [82, "id15", false]], "precision_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.precision_with_tolerance", false], [88, "id38", false]], "precision_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.precision_with_tolerance", false], [83, "id30", false]], "precision_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.precision_with_tolerance", false], [83, "id44", false]], "predict() (in module dacapo)": [[155, "dacapo.predict", false]], "predict() (in module dacapo.predict)": [[158, "dacapo.predict.predict", false]], "predict() (in module dacapo.predict_local)": [[159, "dacapo.predict_local.predict", false]], "prediction_array (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor attribute)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.argmaxpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor attribute)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.thresholdpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.prediction_array", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.post_processor.postprocessor attribute)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.postprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor attribute)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.thresholdpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.prediction_array_identifier", false]], "prediction_head (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.prediction_head", false], [67, "id5", false]], "prediction_head (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.prediction_head", false], [68, "id5", false]], "predictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.Predictor", false]], "predictor (class in dacapo.experiments.tasks.predictors.predictor)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor", false]], "predictor (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.predictor", false], [76, "id0", false]], "predictor (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.predictor", false], [93, "id37", false]], "predictor (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.predictor", false], [78, "id0", false]], "predictor (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.predictor", false], [93, "id17", false]], "predictor (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.predictor", false], [80, "id0", false]], "predictor (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.predictor", false], [93, "id6", false]], "predictor (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.predictor", false], [91, "id0", false]], "predictor (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.predictor", false], [93, "id55", false]], "predictor (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.predictor", false], [94, "id0", false]], "predictor (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.predictor", false], [93, "id45", false]], "predictor (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.predictor", false]], "predictor (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.predictor", false]], "predictor (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.predictor", false]], "predictor (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.predictor", false]], "predictor (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.predictor", false]], "predictor (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.predictor", false]], "predictor (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.Predictor", false], [148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.predictor", false]], "predictor (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.Predictor", false], [152, "dacapo.gp.DaCapoTargetFilter.predictor", false]], "prepare() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.prepare", false], [147, "id4", false]], "prepare() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.prepare", false], [152, "id18", false]], "prepare() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.prepare", false], [148, "id4", false]], "prepare() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.prepare", false], [152, "id4", false]], "prepare() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.prepare", false]], "prepare() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.prepare", false]], "prepare() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.prepare", false]], "prepare() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.prepare", false]], "pretrainedtask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.PretrainedTask", false]], "pretrainedtask (class in dacapo.experiments.tasks.pretrained_task)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask", false]], "pretrainedtaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig", false]], "pretrainedtaskconfig (class in dacapo.experiments.tasks.pretrained_task_config)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig", false]], "print_profiling (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.print_profiling", false], [136, "id3", false]], "print_profiling (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.print_profiling", false], [138, "id24", false]], "probabilityarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray", false]], "probabilityarray (class in dacapo.experiments.arraytypes.probabilities)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray", false]], "process() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.process", false], [104, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.process", false], [108, "id16", false]], "process() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.process", false], [106, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.process", false], [108, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.process", false], [109, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.process", false], [108, "id9", false]], "process() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.process", false], [111, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.process", false], [108, "id12", false]], "process() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.process", false], [113, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.process", false], [108, "id20", false]], "process() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.process", false], [116, "id9", false]], "process() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.process", false], [119, "id14", false]], "process() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.process", false], [118, "id11", false]], "process() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.process", false], [119, "id57", false]], "process() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.process", false]], "process() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.process", false], [147, "id5", false]], "process() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.process", false], [152, "id19", false]], "process() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.process", false], [148, "id5", false]], "process() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.process", false], [152, "id5", false]], "process() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.process", false]], "process() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.process", false]], "process() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.process", false], [151, "id4", false]], "process() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.process", false], [152, "id10", false]], "process() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.process", false]], "process() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.process", false]], "process() (dacapo.utils.pipeline.createpoints method)": [[180, "dacapo.utils.pipeline.CreatePoints.process", false], [180, "id2", false]], "process() (dacapo.utils.pipeline.dilatepoints method)": [[180, "dacapo.utils.pipeline.DilatePoints.process", false], [180, "id7", false]], "process() (dacapo.utils.pipeline.expandlabels method)": [[180, "dacapo.utils.pipeline.ExpandLabels.process", false], [180, "id14", false]], "process() (dacapo.utils.pipeline.makeraw method)": [[180, "dacapo.utils.pipeline.MakeRaw.process", false], [180, "id4", false]], "process() (dacapo.utils.pipeline.randomdilatelabels method)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.process", false], [180, "id10", false]], "process() (dacapo.utils.pipeline.relabel method)": [[180, "dacapo.utils.pipeline.Relabel.process", false], [180, "id11", false]], "product (class in dacapo.gp)": [[152, "dacapo.gp.Product", false]], "product (class in dacapo.gp.product)": [[153, "dacapo.gp.product.Product", false]], "provide() (dacapo.gp.dacapo_points_source.graphsource method)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.provide", false], [149, "id3", false]], "provide() (dacapo.gp.graphsource method)": [[152, "dacapo.gp.GraphSource.provide", false], [152, "id23", false]], "provide() (dacapo.gp.reject_if_empty.rejectifempty method)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.provide", false]], "provide() (dacapo.gp.rejectifempty method)": [[152, "dacapo.gp.RejectIfEmpty.provide", false]], "provide() (dacapo.utils.pipeline.zerossource method)": [[180, "dacapo.utils.pipeline.ZerosSource.provide", false], [180, "id17", false]], "psi (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.psi", false]], "queue (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.queue", false], [13, "id6", false]], "queue (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.queue", false], [11, "id0", false]], "r_conv (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.r_conv", false], [17, "id22", false]], "r_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.r_up", false], [17, "id21", false]], "random_source_pipeline() (in module dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.random_source_pipeline", false]], "randomdilatelabels (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.RandomDilateLabels", false]], "raw (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.raw", false], [54, "id1", false]], "raw (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.raw", false], [48, "id1", false]], "raw (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset attribute)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.raw", false], [50, "id0", false]], "raw (dacapo.experiments.datasplits.datasets.dummydataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.raw", false], [54, "id9", false]], "raw (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.raw", false], [55, "id0", false]], "raw (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.raw", false], [54, "id13", false]], "raw (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.RAW", false], [63, "id0", false]], "raw (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.RAW", false]], "raw (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.RAW", false], [64, "id0", false]], "raw (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.RAW", false]], "raw (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.raw", false]], "raw (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.raw", false]], "raw (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.raw", false]], "raw_config (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig attribute)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.raw_config", false], [51, "id1", false]], "raw_config (dacapo.experiments.datasplits.datasets.dummydatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.raw_config", false], [54, "id11", false]], "raw_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.raw_config", false], [56, "id1", false]], "raw_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.raw_config", false], [54, "id19", false]], "raw_container (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.raw_container", false], [62, "id35", false]], "raw_container (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.raw_container", false], [59, "id6", false]], "raw_dataset (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.raw_dataset", false], [62, "id36", false]], "raw_dataset (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.raw_dataset", false], [59, "id7", false]], "raw_max (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.raw_max", false], [59, "id24", false]], "raw_max (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.raw_max", false], [62, "id27", false]], "raw_min (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.raw_min", false], [59, "id23", false]], "raw_min (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.raw_min", false], [62, "id26", false]], "rawgtdataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset", false]], "rawgtdataset (class in dacapo.experiments.datasplits.datasets.raw_gt_dataset)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset", false]], "rawgtdatasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig", false]], "rawgtdatasetconfig (class in dacapo.experiments.datasplits.datasets.raw_gt_dataset_config)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig", false]], "read_cross_block_merges() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.read_cross_block_merges", false]], "read_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.read_roi", false]], "read_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.read_roi", false]], "read_write_conflict (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.read_write_conflict", false]], "rec_forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.rec_forward", false], [17, "id23", false]], "recall (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.recall", false], [82, "id19", false]], "recall (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.recall", false], [88, "id42", false]], "recall() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.recall", false], [83, "id19", false]], "recall_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.recall_with_tolerance", false], [82, "id16", false]], "recall_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.recall_with_tolerance", false], [88, "id39", false]], "recall_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.recall_with_tolerance", false], [83, "id31", false]], "recall_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.recall_with_tolerance", false], [83, "id45", false]], "register_hierarchy() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.register_hierarchy", false], [163, "id0", false]], "register_hierarchy_hooks() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.register_hierarchy_hooks", false]], "register_hooks() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.register_hooks", false]], "rejectifempty (class in dacapo.gp)": [[152, "dacapo.gp.RejectIfEmpty", false]], "rejectifempty (class in dacapo.gp.reject_if_empty)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty", false]], "relabel (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.Relabel", false]], "relabel() (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.relabel", false]], "relabel_in_block() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.relabel_in_block", false]], "relu (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.relu", false]], "remove() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.remove", false]], "remove() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.remove", false], [168, "id7", false]], "remove() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.remove", false], [169, "id4", false]], "remove() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.remove", false], [173, "id7", false]], "repetition (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.repetition", false]], "repetition (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.repetition", false]], "resampledarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig", false]], "resampledarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.resampled_array_config)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig", false]], "resize_if_needed() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.resize_if_needed", false]], "resolution (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.resolution", false], [83, "id11", false]], "retrieve_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_architecture_config", false], [161, "id17", false]], "retrieve_architecture_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_architecture_config", false], [165, "id8", false]], "retrieve_architecture_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_architecture_config", false], [170, "id12", false]], "retrieve_architecture_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_architecture_config_names", false], [161, "id18", false]], "retrieve_architecture_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_architecture_config_names", false], [165, "id9", false]], "retrieve_architecture_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_architecture_config_names", false], [170, "id13", false]], "retrieve_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_array_config", false], [161, "id29", false]], "retrieve_array_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_array_config", false], [165, "id17", false]], "retrieve_array_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_array_config", false], [170, "id24", false]], "retrieve_array_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_array_config_names", false], [161, "id30", false]], "retrieve_array_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_array_config_names", false], [165, "id18", false]], "retrieve_array_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_array_config_names", false], [170, "id25", false]], "retrieve_best() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.retrieve_best", false], [169, "id6", false]], "retrieve_best() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.retrieve_best", false], [173, "id8", false]], "retrieve_dataset_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_dataset_config", false], [170, "id21", false]], "retrieve_dataset_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_dataset_config_names", false], [170, "id22", false]], "retrieve_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_datasplit_config", false], [161, "id25", false]], "retrieve_datasplit_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_datasplit_config", false], [165, "id14", false]], "retrieve_datasplit_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_datasplit_config", false], [170, "id18", false]], "retrieve_datasplit_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_datasplit_config_names", false], [161, "id26", false]], "retrieve_datasplit_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_datasplit_config_names", false], [165, "id15", false]], "retrieve_datasplit_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_datasplit_config_names", false], [170, "id19", false]], "retrieve_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_run_config", false], [161, "id9", false]], "retrieve_run_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_run_config", false], [165, "id2", false]], "retrieve_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_run_config", false], [170, "id5", false]], "retrieve_run_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_run_config_names", false], [161, "id10", false]], "retrieve_run_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_run_config_names", false], [165, "id3", false]], "retrieve_run_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_run_config_names", false], [170, "id7", false]], "retrieve_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_task_config", false], [161, "id13", false]], "retrieve_task_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_task_config", false], [165, "id5", false]], "retrieve_task_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_task_config", false], [170, "id9", false]], "retrieve_task_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_task_config_names", false], [161, "id14", false]], "retrieve_task_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_task_config_names", false], [165, "id6", false]], "retrieve_task_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_task_config_names", false], [170, "id10", false]], "retrieve_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_trainer_config", false], [161, "id21", false]], "retrieve_trainer_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_trainer_config", false], [165, "id11", false]], "retrieve_trainer_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_trainer_config", false], [170, "id15", false]], "retrieve_trainer_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_trainer_config_names", false], [161, "id22", false]], "retrieve_trainer_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_trainer_config_names", false], [165, "id12", false]], "retrieve_trainer_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_trainer_config_names", false], [170, "id16", false]], "retrieve_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.retrieve_training_stats", false]], "retrieve_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.retrieve_training_stats", false], [171, "id5", false]], "retrieve_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.retrieve_training_stats", false], [172, "id1", false]], "retrieve_validation_iteration_scores() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.retrieve_validation_iteration_scores", false]], "retrieve_validation_iteration_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.retrieve_validation_iteration_scores", false], [171, "id7", false]], "retrieve_validation_iteration_scores() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.retrieve_validation_iteration_scores", false], [172, "id3", false]], "retrieve_weights() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.retrieve_weights", false], [169, "id3", false]], "retrieve_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.retrieve_weights", false], [173, "id6", false]], "roi (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig attribute)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.roi", false], [35, "id1", false]], "roi (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.roi", false], [38, "id25", false]], "rotation_interval (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.rotation_interval", false], [130, "id2", false]], "rotation_interval (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.rotation_interval", false], [132, "id3", false]], "rotation_max_amount (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.rotation_max_amount", false]], "rotation_max_amount (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.rotation_max_amount", false]], "rotation_start (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.rotation_start", false]], "rotation_start (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.rotation_start", false]], "run (class in dacapo.experiments.run)": [[69, "dacapo.experiments.run.Run", false]], "run (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.run", false], [71, "id0", false]], "run (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.run", false]], "run (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.run", false], [73, "id4", false]], "run (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.run", false]], "run (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.run", false]], "run (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.run", false]], "run (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.run", false], [75, "id0", false]], "run (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.run", false], [73, "id2", false]], "run (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.run", false], [181, "id0", false]], "run (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.run", false], [181, "id9", false]], "run_blockwise() (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.run_blockwise", false]], "run_thread (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.run_thread", false]], "runconfig (class in dacapo.experiments)": [[67, "dacapo.experiments.RunConfig", false]], "runconfig (class in dacapo.experiments.run_config)": [[70, "dacapo.experiments.run_config.RunConfig", false]], "runinfo (in module dacapo.plot)": [[157, "dacapo.plot.RunInfo", false]], "runs (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.runs", false], [161, "id0", false]], "runs (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.runs", false]], "runs (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.runs", false]], "runs_base_dir (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.runs_base_dir", false], [156, "id1", false]], "sample_points (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.sample_points", false], [54, "id5", false]], "sample_points (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.sample_points", false], [48, "id5", false]], "sample_points (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.sample_points", false], [55, "id3", false]], "sample_points (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.sample_points", false], [56, "id4", false]], "sample_points (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.sample_points", false], [54, "id16", false]], "sample_points (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.sample_points", false], [54, "id22", false]], "sampling (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.sampling", false], [83, "id35", false]], "save_ndarray() (in module dacapo.utils.array_utils)": [[177, "dacapo.utils.array_utils.save_ndarray", false]], "scale (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.scale", false], [133, "id0", false]], "scale (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.scale", false], [134, "id0", false]], "scale (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.scale", false], [132, "id10", false]], "scale (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.scale", false], [132, "id14", false]], "scale() (dacapo.experiments.architectures.architecture method)": [[21, "dacapo.experiments.architectures.Architecture.scale", false], [21, "id5", false]], "scale() (dacapo.experiments.architectures.architecture.architecture method)": [[15, "dacapo.experiments.architectures.architecture.Architecture.scale", false], [15, "id5", false]], "scale() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.scale", false]], "scale() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.scale", false]], "scale() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.scale", false]], "scale() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.scale", false]], "scale_factor (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.scale_factor", false], [79, "id3", false]], "scale_factor (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.scale_factor", false], [93, "id13", false]], "scale_factor (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.scale_factor", false], [92, "id4", false]], "scale_factor (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.scale_factor", false], [93, "id53", false]], "scale_factor (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.scale_factor", false], [95, "id3", false]], "scale_factor (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.scale_factor", false], [93, "id44", false]], "scale_factor (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.scale_factor", false]], "scheduler (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.scheduler", false], [136, "id9", false]], "scheduler (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.scheduler", false], [138, "id30", false]], "score (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator property)": [[83, "id5", false]], "score (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator property)": [[88, "id49", false]], "score (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator property)": [[85, "id2", false]], "score (dacapo.experiments.tasks.evaluators.dummyevaluator property)": [[88, "id7", false]], "score (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.score", false]], "score (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.score", false]], "score (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator property)": [[90, "id2", false]], "score (dacapo.experiments.tasks.evaluators.instanceevaluator property)": [[88, "id58", false]], "score (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.score", false], [181, "id1", false]], "score (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Score", false]], "score() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.dummyevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.instanceevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.score", false]], "scores (dacapo.experiments.validation_iteration_scores.validationiterationscores attribute)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores.scores", false], [144, "id1", false]], "scores (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.scores", false], [145, "id3", false]], "scores (dacapo.experiments.validationiterationscores attribute)": [[67, "dacapo.experiments.ValidationIterationScores.scores", false], [67, "id17", false]], "scores (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.scores", false], [67, "id21", false]], "seg_to_affgraph() (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.seg_to_affgraph", false]], "segment_blockwise() (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.segment_blockwise", false]], "segment_function() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.segment_function", false]], "segment_function() (in module dacapo.blockwise.watershed_function)": [[10, "dacapo.blockwise.watershed_function.segment_function", false]], "segmentation (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.segmentation", false]], "segmentation_type (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.segmentation_type", false], [59, "id15", false]], "segmentation_type (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.segmentation_type", false], [62, "id18", false]], "segmentationtype (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType", false]], "semantic (dacapo.experiments.datasplits.datasplit_generator.segmentationtype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.semantic", false], [59, "id3", false]], "serialize() (dacapo.options.dacapoconfig method)": [[156, "dacapo.options.DaCapoConfig.serialize", false], [156, "id5", false]], "set_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.set_best", false], [88, "id18", false]], "set_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.set_best", false], [87, "id6", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.set_prediction", false], [104, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.set_prediction", false], [108, "id15", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.set_prediction", false], [106, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.set_prediction", false], [108, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.set_prediction", false], [109, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.set_prediction", false], [108, "id8", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.set_prediction", false], [111, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.set_prediction", false], [108, "id11", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.set_prediction", false], [113, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.set_prediction", false], [108, "id19", false]], "setup() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.setup", false], [147, "id3", false]], "setup() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.setup", false], [152, "id17", false]], "setup() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.setup", false], [148, "id3", false]], "setup() (dacapo.gp.dacapo_points_source.graphsource method)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.setup", false], [149, "id2", false]], "setup() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.setup", false], [152, "id3", false]], "setup() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.setup", false]], "setup() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.setup", false]], "setup() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.setup", false], [151, "id3", false]], "setup() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.setup", false], [152, "id9", false]], "setup() (dacapo.gp.graphsource method)": [[152, "dacapo.gp.GraphSource.setup", false], [152, "id22", false]], "setup() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.setup", false]], "setup() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.setup", false]], "setup() (dacapo.gp.reject_if_empty.rejectifempty method)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.setup", false]], "setup() (dacapo.gp.rejectifempty method)": [[152, "dacapo.gp.RejectIfEmpty.setup", false]], "setup() (dacapo.utils.pipeline.makeraw method)": [[180, "dacapo.utils.pipeline.MakeRaw.setup", false], [180, "id3", false]], "setup() (dacapo.utils.pipeline.zerossource method)": [[180, "dacapo.utils.pipeline.ZerosSource.setup", false], [180, "id16", false]], "shift (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.shift", false], [133, "id1", false]], "shift (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.shift", false], [134, "id1", false]], "shift (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.shift", false], [132, "id11", false]], "shift (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.shift", false], [132, "id15", false]], "sigma (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.sigma", false]], "sigma (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.sigma", false]], "sigma() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.sigma", false], [115, "id11", false]], "sigma() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.sigma", false], [119, "id33", false]], "simpleaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig", false]], "simpleaugmentconfig (class in dacapo.experiments.trainers.gp_augments.simple_config)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig", false]], "smooth_values() (in module dacapo.plot)": [[157, "dacapo.plot.smooth_values", false]], "snap_to_grid (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.snap_to_grid", false], [47, "id2", false]], "snap_to_grid (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.snap_to_grid", false], [38, "id5", false]], "snapshot_container() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.snapshot_container", false]], "snapshot_container() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.snapshot_container", false], [168, "id5", false]], "snapshot_interval (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.snapshot_interval", false], [137, "id3", false]], "snapshot_interval (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.snapshot_interval", false], [138, "id18", false]], "snapshot_iteration (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.snapshot_iteration", false], [136, "id4", false]], "snapshot_iteration (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.snapshot_iteration", false], [138, "id25", false]], "source (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig attribute)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.source", false], [37, "id0", false]], "source (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.source", false], [38, "id27", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.source_array_config", false], [32, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.source_array_config", false], [38, "id7", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig attribute)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.source_array_config", false], [34, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.source_array_config", false], [38, "id29", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig attribute)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.source_array_config", false], [35, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.source_array_config", false], [38, "id24", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.source_array_config", false], [38, "id14", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.source_array_config", false], [39, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig attribute)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.source_array_config", false], [40, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.source_array_config", false], [38, "id23", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig attribute)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.source_array_config", false], [42, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.source_array_config", false], [38, "id17", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig attribute)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.source_array_config", false], [43, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.source_array_config", false], [38, "id19", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.source_array_config", false], [44, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.source_array_config", false], [38, "id10", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.source_array_configs", false], [33, "id1", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.source_array_configs", false], [38, "id21", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig attribute)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.source_array_configs", false], [41, "id0", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.source_array_configs", false], [38, "id26", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.sum_array_config.sumarrayconfig attribute)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig.source_array_configs", false], [45, "id0", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.sumarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig.source_array_configs", false], [38, "id28", false]], "spawn_worker() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.spawn_worker", false]], "specified_locations (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.SPECIFIED_LOCATIONS", false]], "specified_locations (dacapo.experiments.datasplits.keys.graphkey attribute)": [[63, "dacapo.experiments.datasplits.keys.GraphKey.SPECIFIED_LOCATIONS", false], [63, "id4", false]], "specified_locations (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.SPECIFIED_LOCATIONS", false]], "specified_locations (dacapo.experiments.datasplits.keys.keys.graphkey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey.SPECIFIED_LOCATIONS", false], [64, "id4", false]], "split() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.split", false], [98, "id3", false]], "split() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.split", false], [99, "id9", false]], "split_vi() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.split_vi", false]], "stack_inference() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.stack_inference", false]], "stack_postprocessing() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.stack_postprocessing", false]], "start (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.Start", false]], "start (class in dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.Start", false]], "start (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.start", false], [69, "id9", false]], "start() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.start", false], [181, "id15", false]], "start_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.start_config", false]], "start_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.start_config", false]], "start_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.start_neuroglancer", false], [181, "id14", false]], "start_type (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.start_type", false]], "start_type (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.start_type", false]], "start_type (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.start_type", false]], "start_type (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.start_type", false]], "start_worker() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.start_worker", false]], "start_worker_fn() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.start_worker_fn", false]], "startconfig (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.StartConfig", false]], "startconfig (class in dacapo.experiments.starts.start_config)": [[75, "dacapo.experiments.starts.start_config.StartConfig", false]], "stats_store (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.stats_store", false], [181, "id6", false]], "statsstore (class in dacapo.store.stats_store)": [[172, "dacapo.store.stats_store.StatsStore", false]], "stop() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.stop", false], [181, "id23", false]], "store_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_architecture_config", false], [161, "id16", false]], "store_architecture_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_architecture_config", false], [165, "id7", false]], "store_architecture_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_architecture_config", false], [170, "id11", false]], "store_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_array_config", false], [161, "id28", false]], "store_array_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_array_config", false], [165, "id16", false]], "store_array_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_array_config", false], [170, "id23", false]], "store_best() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id4", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id4", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id3", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id11", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.store_best", false], [88, "id21", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.store_best", false], [87, "id9", false]], "store_best() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id5", false]], "store_best() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id55", false]], "store_best() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.store_best", false], [169, "id5", false]], "store_dataset_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_dataset_config", false], [170, "id20", false]], "store_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_datasplit_config", false], [161, "id24", false]], "store_datasplit_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_datasplit_config", false], [165, "id13", false]], "store_datasplit_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_datasplit_config", false], [170, "id17", false]], "store_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_run_config", false], [161, "id8", false]], "store_run_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_run_config", false], [165, "id1", false]], "store_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_run_config", false], [170, "id4", false]], "store_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_task_config", false], [161, "id12", false]], "store_task_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_task_config", false], [165, "id4", false]], "store_task_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_task_config", false], [170, "id8", false]], "store_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_trainer_config", false], [161, "id20", false]], "store_trainer_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_trainer_config", false], [165, "id10", false]], "store_trainer_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_trainer_config", false], [170, "id14", false]], "store_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.store_training_stats", false]], "store_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.store_training_stats", false], [171, "id4", false]], "store_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.store_training_stats", false], [172, "id0", false]], "store_type (dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.graphstoreconfig attribute)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig.store_type", false]], "store_type (dacapo.experiments.datasplits.datasets.graphstores.graphstoreconfig attribute)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig.store_type", false]], "store_validation_iteration_scores() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.store_validation_iteration_scores", false]], "store_validation_iteration_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.store_validation_iteration_scores", false], [171, "id6", false]], "store_validation_iteration_scores() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.store_validation_iteration_scores", false], [172, "id2", false]], "store_weights() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.store_weights", false], [169, "id2", false]], "store_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.store_weights", false], [173, "id5", false]], "sub_task_config (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.sub_task_config", false], [124, "id0", false]], "sub_task_config (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.sub_task_config", false], [93, "id23", false]], "subsample (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.subsample", false], [130, "id3", false]], "subsample (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.subsample", false], [132, "id4", false]], "subsample (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.subsample", false]], "subsample (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.subsample", false]], "subscores() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.subscores", false], [145, "id4", false]], "subscores() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.subscores", false], [67, "id22", false]], "sumarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig", false]], "sumarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.sum_array_config)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig", false]], "target_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.target_key", false], [148, "id0", false]], "target_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.target_key", false], [152, "id0", false]], "target_rois (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.target_rois", false]], "target_rois (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.target_rois", false]], "targets (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.targets", false], [59, "id14", false]], "targets (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.targets", false], [62, "id17", false]], "task (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.Task", false]], "task (class in dacapo.experiments.tasks.task)": [[125, "dacapo.experiments.tasks.task.Task", false]], "task (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.task", false], [69, "id3", false]], "task_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.task_config", false]], "task_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.task_config", false]], "task_config (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.task_config", false]], "task_config (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.task_config", false]], "task_type (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.task_type", false], [81, "id0", false]], "task_type (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.task_type", false], [93, "id2", false]], "task_type (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.task_type", false], [92, "id0", false]], "task_type (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.task_type", false], [93, "id49", false]], "task_type (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig attribute)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.task_type", false], [103, "id0", false]], "task_type (dacapo.experiments.tasks.onehottaskconfig attribute)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.task_type", false], [93, "id21", false]], "task_type (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.task_type", false]], "taskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.TaskConfig", false]], "taskconfig (class in dacapo.experiments.tasks.task_config)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig", false]], "tasks (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.tasks", false], [161, "id4", false]], "tasks (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.tasks", false]], "tasks (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.tasks", false]], "test (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test", false], [83, "id7", false]], "test (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test", false], [83, "id33", false]], "test_edt() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test_edt", false]], "test_empty (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test_empty", false], [83, "id9", false]], "test_itk() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test_itk", false]], "test_mask() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test_mask", false]], "threshold (dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.thresholdpostprocessorparameters attribute)": [[112, "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters.threshold", false], [112, "id0", false]], "threshold (dacapo.experiments.tasks.post_processors.thresholdpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters.threshold", false], [108, "id13", false]], "threshold (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.threshold", false]], "threshold (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.threshold", false], [118, "id6", false]], "threshold (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.threshold", false], [119, "id52", false]], "threshold (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.threshold", false]], "thresholdpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor", false]], "thresholdpostprocessor (class in dacapo.experiments.tasks.post_processors.threshold_post_processor)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor", false]], "thresholdpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters", false]], "thresholdpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters)": [[112, "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters", false]], "tiffarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.tiff_array_config)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig", false]], "time (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.time", false], [142, "id2", false]], "time (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.time", false], [67, "id12", false]], "timeout (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.timeout", false]], "timeout (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.timeout", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig method)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig method)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.to_array", false]], "to_ndarray() (in module dacapo.utils.array_utils)": [[177, "dacapo.utils.array_utils.to_ndarray", false]], "to_xarray() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.to_xarray", false], [143, "id2", false]], "to_xarray() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.to_xarray", false], [67, "id15", false]], "to_xarray() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.to_xarray", false], [145, "id11", false]], "to_xarray() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.to_xarray", false], [67, "id29", false]], "tol_distance (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.tol_distance", false], [79, "id2", false]], "tol_distance (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.tol_distance", false], [93, "id12", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.tol_distance", false], [83, "id2", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.tol_distance", false], [83, "id37", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.tol_distance", false], [88, "id46", false]], "tol_distance (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.tol_distance", false], [92, "id3", false]], "tol_distance (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.tol_distance", false], [93, "id52", false]], "tol_distance (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.tol_distance", false], [95, "id2", false]], "tol_distance (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.tol_distance", false], [93, "id43", false]], "total_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.total_roi", false]], "total_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.total_roi", false]], "tracker_consensus() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.tracker_consensus", false]], "train (dacapo.experiments.datasplits.datasplit attribute)": [[62, "dacapo.experiments.datasplits.DataSplit.train", false], [62, "id0", false]], "train (dacapo.experiments.datasplits.datasplit.datasplit attribute)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.train", false], [57, "id0", false]], "train (dacapo.experiments.datasplits.datasplit_generator.datasettype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.train", false], [59, "id2", false]], "train (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit attribute)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.train", false], [60, "id0", false]], "train (dacapo.experiments.datasplits.dummydatasplit attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.train", false], [62, "id4", false]], "train (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit attribute)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.train", false], [65, "id0", false]], "train (dacapo.experiments.datasplits.trainvalidatedatasplit attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.train", false], [62, "id9", false]], "train() (in module dacapo)": [[155, "dacapo.train", false]], "train() (in module dacapo.train)": [[175, "dacapo.train.train", false]], "train_config (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig attribute)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.train_config", false], [61, "id1", false]], "train_config (dacapo.experiments.datasplits.dummydatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.train_config", false], [62, "id7", false]], "train_configs (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.train_configs", false], [66, "id0", false]], "train_configs (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.train_configs", false], [62, "id11", false]], "train_run() (in module dacapo.train)": [[175, "dacapo.train.train_run", false]], "train_until (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.train_until", false], [69, "id1", false]], "trained_until() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.trained_until", false], [143, "id1", false]], "trained_until() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.trained_until", false], [67, "id14", false]], "trainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.Trainer", false]], "trainer (class in dacapo.experiments.trainers.trainer)": [[140, "dacapo.experiments.trainers.trainer.Trainer", false]], "trainer (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.trainer", false], [69, "id5", false]], "trainer_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.trainer_config", false]], "trainer_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.trainer_config", false]], "trainer_type (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig attribute)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.trainer_type", false]], "trainer_type (dacapo.experiments.trainers.dummytrainerconfig attribute)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.trainer_type", false]], "trainer_type (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.trainer_type", false], [137, "id0", false]], "trainer_type (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.trainer_type", false], [138, "id15", false]], "trainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.TrainerConfig", false]], "trainerconfig (class in dacapo.experiments.trainers.trainer_config)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig", false]], "trainers (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.trainers", false], [161, "id5", false]], "trainers (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.trainers", false]], "trainers (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.trainers", false]], "training_stats (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.training_stats", false], [69, "id8", false]], "training_stats (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.training_stats", false]], "trainingiterationstats (class in dacapo.experiments)": [[67, "dacapo.experiments.TrainingIterationStats", false]], "trainingiterationstats (class in dacapo.experiments.training_iteration_stats)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats", false]], "trainingstats (class in dacapo.experiments)": [[67, "dacapo.experiments.TrainingStats", false]], "trainingstats (class in dacapo.experiments.training_stats)": [[143, "dacapo.experiments.training_stats.TrainingStats", false]], "trainvalidatedatasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit", false]], "trainvalidatedatasplit (class in dacapo.experiments.datasplits.train_validate_datasplit)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit", false]], "trainvalidatedatasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig", false]], "trainvalidatedatasplitconfig (class in dacapo.experiments.datasplits.train_validate_datasplit_config)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig", false]], "transformations (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.transformations", false]], "transformations (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.transformations", false]], "true_positives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.true_positives_with_tolerance", false], [83, "id43", false]], "truth (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth", false], [83, "id6", false]], "truth (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth", false], [83, "id34", false]], "truth_edt() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth_edt", false]], "truth_empty (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth_empty", false], [83, "id8", false]], "truth_itk() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth_itk", false]], "truth_mask() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth_mask", false]], "type (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.type", false], [156, "id0", false]], "typedconverter (class in dacapo.store.converter)": [[163, "dacapo.store.converter.TypedConverter", false]], "unet (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.unet", false]], "unet (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.unet", false]], "uniform_3d_rotation (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.uniform_3d_rotation", false], [130, "id4", false]], "uniform_3d_rotation (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.uniform_3d_rotation", false], [132, "id5", false]], "uniform_3d_rotation (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.uniform_3d_rotation", false]], "uniform_3d_rotation (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.uniform_3d_rotation", false]], "units (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.units", false]], "up (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.up", false]], "up (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.up", false]], "update_best_info() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_best_info", false], [181, "id18", false]], "update_best_layer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_best_layer", false], [181, "id20", false]], "update_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_neuroglancer", false], [181, "id19", false]], "update_with_new_validation_if_possible() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_with_new_validation_if_possible", false], [181, "id22", false]], "updated_neuroglancer_layer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.updated_neuroglancer_layer", false], [181, "id12", false]], "upsample (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample", false]], "upsample (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.upsample", false], [44, "id1", false]], "upsample (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.upsample", false], [38, "id11", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.upsample_channel_contraction", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.upsample_channel_contraction", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.upsample_channel_contraction", false]], "upsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.upsample_factors", false]], "upsample_factors (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.upsample_factors", false], [18, "id9", false]], "upsample_factors (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.upsample_factors", false]], "upsample_factors (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.upsample_factors", false], [21, "id28", false]], "upstream_tasks (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.upstream_tasks", false]], "upstream_tasks (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.upstream_tasks", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.use_attention", false], [17, "id9", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.use_attention", false], [17, "id10", false], [17, "id16", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.use_attention", false], [18, "id12", false]], "use_attention (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.use_attention", false], [21, "id41", false]], "use_attention (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.use_attention", false], [21, "id31", false]], "use_negative_class (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.use_negative_class", false]], "use_negative_class (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.use_negative_class", false]], "users (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.users", false]], "users (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.users", false]], "val (dacapo.experiments.datasplits.datasplit_generator.datasettype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.val", false], [59, "id1", false]], "validate (dacapo.experiments.datasplits.datasplit attribute)": [[62, "dacapo.experiments.datasplits.DataSplit.validate", false], [62, "id1", false]], "validate (dacapo.experiments.datasplits.datasplit.datasplit attribute)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.validate", false], [57, "id1", false]], "validate (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit attribute)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.validate", false], [60, "id1", false]], "validate (dacapo.experiments.datasplits.dummydatasplit attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.validate", false], [62, "id5", false]], "validate (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit attribute)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.validate", false], [65, "id1", false]], "validate (dacapo.experiments.datasplits.trainvalidatedatasplit attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.validate", false], [62, "id10", false]], "validate() (in module dacapo.validate)": [[183, "dacapo.validate.validate", false]], "validate_configs (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.validate_configs", false], [66, "id1", false]], "validate_configs (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.validate_configs", false], [62, "id12", false]], "validate_run() (in module dacapo.validate)": [[183, "dacapo.validate.validate_run", false]], "validated_until() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.validated_until", false], [145, "id7", false]], "validated_until() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.validated_until", false], [67, "id25", false]], "validation_container() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_container", false]], "validation_container() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_container", false], [168, "id6", false]], "validation_input_arrays() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_input_arrays", false]], "validation_input_arrays() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_input_arrays", false], [168, "id4", false]], "validation_interval (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.validation_interval", false], [69, "id2", false]], "validation_interval (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.validation_interval", false]], "validation_interval (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.validation_interval", false]], "validation_output_array() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_output_array", false]], "validation_output_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_output_array", false], [168, "id3", false]], "validation_parameters (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.validation_parameters", false], [181, "id4", false]], "validation_prediction_array() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_prediction_array", false]], "validation_prediction_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_prediction_array", false], [168, "id2", false]], "validation_scores (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.validation_scores", false]], "validation_scores (dacapo.experiments.run.run property)": [[69, "id11", false]], "validation_scores (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.validation_scores", false]], "validationiterationscores (class in dacapo.experiments)": [[67, "dacapo.experiments.ValidationIterationScores", false]], "validationiterationscores (class in dacapo.experiments.validation_iteration_scores)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores", false]], "validationscores (class in dacapo.experiments)": [[67, "dacapo.experiments.ValidationScores", false]], "validationscores (class in dacapo.experiments.validation_scores)": [[145, "dacapo.experiments.validation_scores.ValidationScores", false]], "verify() (dacapo.experiments.architectures.architecture_config.architectureconfig method)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig.verify", false], [16, "id1", false]], "verify() (dacapo.experiments.architectures.architectureconfig method)": [[21, "dacapo.experiments.architectures.ArchitectureConfig.verify", false], [21, "id7", false]], "verify() (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig method)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.verify", false], [20, "id3", false]], "verify() (dacapo.experiments.architectures.dummyarchitectureconfig method)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.verify", false], [21, "id11", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig method)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.verify", false], [31, "id1", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.arrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.verify", false], [38, "id1", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.verify", false], [36, "id0", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.verify", false], [38, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig method)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.verify", false], [47, "id3", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.verify", false], [38, "id6", false]], "verify() (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig method)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.verify", false], [49, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.datasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.verify", false], [54, "id8", false]], "verify() (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig method)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.verify", false], [51, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.dummydatasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.verify", false], [54, "id12", false]], "verify() (dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.graphstoreconfig method)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.graphstores.graphstoreconfig method)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig method)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasplit_config.datasplitconfig method)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig.verify", false], [58, "id1", false]], "verify() (dacapo.experiments.datasplits.datasplitconfig method)": [[62, "dacapo.experiments.datasplits.DataSplitConfig.verify", false], [62, "id3", false]], "verify() (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig method)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.verify", false], [61, "id2", false]], "verify() (dacapo.experiments.datasplits.dummydatasplitconfig method)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.verify", false], [62, "id8", false]], "verify() (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig method)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.affinitiestaskconfig method)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.distance_task_config.distancetaskconfig method)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.distancetaskconfig method)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig method)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.verify", false], [81, "id3", false]], "verify() (dacapo.experiments.tasks.dummytaskconfig method)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.verify", false], [93, "id5", false]], "verify() (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig method)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.hotdistancetaskconfig method)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig method)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.pretrainedtaskconfig method)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.task_config.taskconfig method)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig.verify", false], [126, "id1", false]], "verify() (dacapo.experiments.tasks.taskconfig method)": [[93, "dacapo.experiments.tasks.TaskConfig.verify", false], [93, "id1", false]], "verify() (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig method)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.verify", false], [128, "id1", false]], "verify() (dacapo.experiments.trainers.dummytrainerconfig method)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.verify", false], [138, "id8", false]], "verify() (dacapo.experiments.trainers.trainer_config.trainerconfig method)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.verify", false], [141, "id3", false]], "verify() (dacapo.experiments.trainers.trainerconfig method)": [[138, "dacapo.experiments.trainers.TrainerConfig.verify", false], [138, "id6", false]], "vi_tables() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.vi_tables", false]], "viewer (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.viewer", false]], "visualize_pipeline() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.visualize_pipeline", false]], "visualize_pipeline() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.visualize_pipeline", false]], "visualize_pipeline() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.visualize_pipeline", false]], "voi (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.voi", false], [82, "id8", false]], "voi (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.voi", false], [88, "id31", false]], "voi (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi", false]], "voi (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores property)": [[89, "id2", false]], "voi (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi", false]], "voi (dacapo.experiments.tasks.evaluators.instanceevaluationscores property)": [[88, "id52", false]], "voi() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.voi", false], [83, "id21", false]], "voi() (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.voi", false]], "voi() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.voi", false]], "voi_merge (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi_merge", false], [89, "id1", false]], "voi_merge (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi_merge", false], [88, "id51", false]], "voi_split (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi_split", false], [89, "id0", false]], "voi_split (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi_split", false], [88, "id50", false]], "voxel_size (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.voxel_size", false]], "voxel_size (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.voxel_size", false]], "voxel_size (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.voxel_size", false], [46, "id2", false]], "w_g (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.W_g", false]], "w_x (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.W_x", false]], "watershedpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor", false]], "watershedpostprocessor (class in dacapo.experiments.tasks.post_processors.watershed_post_processor)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor", false]], "watershedpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters", false]], "watershedpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters", false]], "weight (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.weight", false], [54, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.weight", false], [48, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig attribute)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.weight", false], [49, "id1", false]], "weight (dacapo.experiments.datasplits.datasets.datasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.weight", false], [54, "id7", false]], "weight (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.weight", false], [55, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.weight", false], [54, "id17", false]], "weights (class in dacapo.store.weights_store)": [[173, "dacapo.store.weights_store.Weights", false]], "weights (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.weights", false]], "weights (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.weights", false]], "weights (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.weights", false], [123, "id0", false]], "weights (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.weights", false], [124, "id1", false]], "weights (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.weights", false], [93, "id25", false]], "weights (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.weights", false], [93, "id24", false]], "weights_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.weights_key", false], [148, "id1", false]], "weights_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.weights_key", false], [152, "id1", false]], "weightsstore (class in dacapo.store.weights_store)": [[173, "dacapo.store.weights_store.WeightsStore", false]], "worker_file (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.worker_file", false]], "worker_file (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.worker_file", false]], "wrap_command() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext.wrap_command", false], [12, "id1", false]], "wrap_command() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext.wrap_command", false], [13, "id1", false]], "wrap_command() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.wrap_command", false]], "wrap_command() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.wrap_command", false]], "write_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.write_roi", false]], "write_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.write_roi", false]], "x1_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.x1_key", false], [152, "id24", false]], "x1_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.x1_key", false], [153, "id0", false]], "x2_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.x2_key", false], [152, "id25", false]], "x2_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.x2_key", false], [153, "id1", false]], "xlogx() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.xlogx", false]], "y_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.y_key", false], [152, "id26", false]], "y_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.y_key", false], [153, "id2", false]], "zarrarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig", false]], "zarrarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.zarr_array_config)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig", false]], "zerossource (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.ZerosSource", false]]}, "objects": {"": [[195, 0, 0, "-", "dacapo"]], "dacapo": [[155, 1, 1, "", "Options"], [155, 3, 1, "", "apply"], [0, 0, 0, "-", "apply"], [4, 0, 0, "-", "blockwise"], [13, 0, 0, "-", "compute_context"], [67, 0, 0, "-", "experiments"], [146, 0, 0, "-", "ext"], [152, 0, 0, "-", "gp"], [156, 0, 0, "-", "options"], [157, 0, 0, "-", "plot"], [158, 0, 0, "-", "predict"], [159, 0, 0, "-", "predict_local"], [167, 0, 0, "-", "store"], [174, 0, 0, "-", "tmp"], [175, 0, 0, "-", "train"], [179, 0, 0, "-", "utils"], [183, 0, 0, "-", "validate"], [186, 8, 1, "cmdoption-dacapo-log-level", "--log-level"]], "dacapo-apply": [[186, 8, 1, "cmdoption-dacapo-apply-c", "--criterion"], [186, 8, 1, "cmdoption-dacapo-apply-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-apply-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-apply-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-apply-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-apply-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-apply-op", "--output_path"], [186, 8, 1, "cmdoption-dacapo-apply-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-apply-p", "--parameters"], [186, 8, 1, "cmdoption-dacapo-apply-roi", "--roi"], [186, 8, 1, "cmdoption-dacapo-apply-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-apply-vd", "--validation_dataset"], [186, 8, 1, "cmdoption-dacapo-apply-c", "-c"], [186, 8, 1, "cmdoption-dacapo-apply-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-apply-i", "-i"], [186, 8, 1, "cmdoption-dacapo-apply-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-apply-id", "-id"], [186, 8, 1, "cmdoption-dacapo-apply-op", "-op"], [186, 8, 1, "cmdoption-dacapo-apply-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-apply-p", "-p"], [186, 8, 1, "cmdoption-dacapo-apply-r", "-r"], [186, 8, 1, "cmdoption-dacapo-apply-roi", "-roi"], [186, 8, 1, "cmdoption-dacapo-apply-vd", "-vd"], [186, 8, 1, "cmdoption-dacapo-apply-w", "-w"]], "dacapo-predict": [[186, 8, 1, "cmdoption-dacapo-predict-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-predict-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-predict-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-predict-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-predict-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-predict-op", "--output_path"], [186, 8, 1, "cmdoption-dacapo-predict-roi", "--output_roi"], [186, 8, 1, "cmdoption-dacapo-predict-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-predict-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-predict-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-predict-i", "-i"], [186, 8, 1, "cmdoption-dacapo-predict-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-predict-id", "-id"], [186, 8, 1, "cmdoption-dacapo-predict-op", "-op"], [186, 8, 1, "cmdoption-dacapo-predict-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-predict-r", "-r"], [186, 8, 1, "cmdoption-dacapo-predict-roi", "-roi"], [186, 8, 1, "cmdoption-dacapo-predict-w", "-w"]], "dacapo-run-blockwise": [[186, 8, 1, "cmdoption-dacapo-run-blockwise-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-mr", "--max_retries"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-nw", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-oc", "--output_container"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-od", "--output_dataset"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-rr", "--read_roi_size"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-t", "--timeout"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-tr", "--total_roi"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-w", "--worker_file"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-wr", "--write_roi_size"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-co", "-channels_out"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-co", "-co"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-id", "-id"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-mr", "-mr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-nw", "-nw"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-oc", "-oc"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-od", "-od"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-rr", "-rr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-t", "-t"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-tr", "-tr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-w", "-w"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-wr", "-wr"]], "dacapo-segment-blockwise": [[186, 8, 1, "cmdoption-dacapo-segment-blockwise-co", "--channels_out"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-c", "--context"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-mr", "--max_retries"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-nw", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-oc", "--output_container"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-od", "--output_dataset"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-rr", "--read_roi_size"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-sf", "--segment_function_file"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-t", "--timeout"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-tr", "--total_roi"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-wr", "--write_roi_size"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-c", "-c"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-co", "-co"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-id", "-id"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-mr", "-mr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-nw", "-nw"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-oc", "-oc"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-od", "-od"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-rr", "-rr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-sf", "-sf"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-t", "-t"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-tr", "-tr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-wr", "-wr"]], "dacapo-train": [[186, 8, 1, "cmdoption-dacapo-train-no-validation", "--no-validation"], [186, 8, 1, "cmdoption-dacapo-train-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-train-r", "-r"]], "dacapo-validate": [[186, 8, 1, "cmdoption-dacapo-validate-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-validate-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-validate-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-validate-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-validate-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-validate-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-validate-i", "-i"], [186, 8, 1, "cmdoption-dacapo-validate-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-validate-r", "-r"], [186, 8, 1, "cmdoption-dacapo-validate-w", "-w"]], "dacapo.Options": [[155, 2, 1, "", "__parse_options"], [155, 2, 1, "", "__parse_options_from_file"], [155, 2, 1, "id1", "config_file"], [155, 2, 1, "id0", "instance"]], "dacapo.apply": [[0, 3, 1, "", "apply"], [0, 3, 1, "", "apply_run"], [0, 4, 1, "", "logger"]], "dacapo.blockwise": [[4, 1, 1, "", "DaCapoBlockwiseTask"], [1, 0, 0, "-", "argmax_worker"], [2, 0, 0, "-", "blockwise_task"], [3, 0, 0, "-", "empanada_function"], [5, 0, 0, "-", "predict_worker"], [6, 0, 0, "-", "relabel_worker"], [7, 0, 0, "-", "scheduler"], [8, 0, 0, "-", "segment_worker"], [9, 0, 0, "-", "threshold_worker"], [10, 0, 0, "-", "watershed_function"]], "dacapo.blockwise.DaCapoBlockwiseTask": [[4, 2, 1, "", "__init__"], [4, 5, 1, "", "max_retries"], [4, 5, 1, "", "num_workers"], [4, 5, 1, "", "read_roi"], [4, 5, 1, "", "timeout"], [4, 5, 1, "", "total_roi"], [4, 5, 1, "", "upstream_tasks"], [4, 5, 1, "", "worker_file"], [4, 5, 1, "", "write_roi"]], "dacapo.blockwise.argmax_worker": [[1, 3, 1, "", "cli"], [1, 4, 1, "", "fit"], [1, 4, 1, "", "logger"], [1, 4, 1, "", "path"], [1, 4, 1, "", "read_write_conflict"], [1, 3, 1, "", "spawn_worker"], [1, 3, 1, "", "start_worker"], [1, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.blockwise_task": [[2, 1, 1, "", "DaCapoBlockwiseTask"]], "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask": [[2, 2, 1, "", "__init__"], [2, 5, 1, "", "max_retries"], [2, 5, 1, "", "num_workers"], [2, 5, 1, "", "read_roi"], [2, 5, 1, "", "timeout"], [2, 5, 1, "", "total_roi"], [2, 5, 1, "", "upstream_tasks"], [2, 5, 1, "", "worker_file"], [2, 5, 1, "", "write_roi"]], "dacapo.blockwise.empanada_function": [[3, 4, 1, "", "default_parameters"], [3, 3, 1, "", "empanada_segmenter"], [3, 4, 1, "", "logger"], [3, 4, 1, "", "model_configs"], [3, 3, 1, "", "orthoplane_inference"], [3, 3, 1, "", "segment_function"], [3, 3, 1, "", "stack_inference"], [3, 3, 1, "", "stack_postprocessing"], [3, 3, 1, "", "tracker_consensus"]], "dacapo.blockwise.predict_worker": [[5, 3, 1, "", "cli"], [5, 4, 1, "", "fit"], [5, 4, 1, "", "logger"], [5, 4, 1, "", "path"], [5, 4, 1, "", "read_write_conflict"], [5, 3, 1, "", "spawn_worker"], [5, 3, 1, "", "start_worker"], [5, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.relabel_worker": [[6, 3, 1, "", "cli"], [6, 3, 1, "", "find_components"], [6, 4, 1, "", "fit"], [6, 4, 1, "", "path"], [6, 3, 1, "", "read_cross_block_merges"], [6, 4, 1, "", "read_write_conflict"], [6, 3, 1, "", "relabel_in_block"], [6, 3, 1, "", "spawn_worker"], [6, 3, 1, "", "start_worker"], [6, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.scheduler": [[7, 4, 1, "", "logger"], [7, 3, 1, "", "run_blockwise"], [7, 3, 1, "", "segment_blockwise"]], "dacapo.blockwise.segment_worker": [[8, 3, 1, "", "cli"], [8, 4, 1, "", "fit"], [8, 4, 1, "", "logger"], [8, 4, 1, "", "path"], [8, 4, 1, "", "read_write_conflict"], [8, 3, 1, "", "spawn_worker"], [8, 3, 1, "", "start_worker"], [8, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.threshold_worker": [[9, 3, 1, "", "cli"], [9, 4, 1, "", "fit"], [9, 4, 1, "", "logger"], [9, 4, 1, "", "path"], [9, 4, 1, "", "read_write_conflict"], [9, 3, 1, "", "spawn_worker"], [9, 3, 1, "", "start_worker"], [9, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.watershed_function": [[10, 3, 1, "", "segment_function"]], "dacapo.compute_context": [[13, 1, 1, "", "Bsub"], [13, 1, 1, "", "ComputeContext"], [13, 1, 1, "", "LocalTorch"], [11, 0, 0, "-", "bsub"], [12, 0, 0, "-", "compute_context"], [13, 3, 1, "", "create_compute_context"], [14, 0, 0, "-", "local_torch"]], "dacapo.compute_context.Bsub": [[13, 2, 1, "", "_wrap_command"], [13, 5, 1, "id9", "billing"], [13, 6, 1, "id10", "device"], [13, 5, 1, "", "distribute_workers"], [13, 5, 1, "id8", "num_cpus"], [13, 5, 1, "id7", "num_gpus"], [13, 5, 1, "id6", "queue"]], "dacapo.compute_context.ComputeContext": [[13, 2, 1, "", "_wrap_command"], [13, 6, 1, "id0", "device"], [13, 5, 1, "", "distribute_workers"], [13, 2, 1, "id2", "execute"], [13, 2, 1, "id1", "wrap_command"]], "dacapo.compute_context.LocalTorch": [[13, 5, 1, "", "_device"], [13, 2, 1, "", "_wrap_command"], [13, 6, 1, "id5", "device"], [13, 5, 1, "", "distribute_workers"], [13, 2, 1, "", "execute"], [13, 5, 1, "id4", "oom_limit"], [13, 2, 1, "", "wrap_command"]], "dacapo.compute_context.bsub": [[11, 1, 1, "", "Bsub"]], "dacapo.compute_context.bsub.Bsub": [[11, 2, 1, "", "_wrap_command"], [11, 5, 1, "id3", "billing"], [11, 6, 1, "id4", "device"], [11, 5, 1, "", "distribute_workers"], [11, 5, 1, "id2", "num_cpus"], [11, 5, 1, "id1", "num_gpus"], [11, 5, 1, "id0", "queue"]], "dacapo.compute_context.compute_context": [[12, 1, 1, "", "ComputeContext"], [12, 3, 1, "", "create_compute_context"]], "dacapo.compute_context.compute_context.ComputeContext": [[12, 2, 1, "", "_wrap_command"], [12, 6, 1, "id0", "device"], [12, 5, 1, "", "distribute_workers"], [12, 2, 1, "id2", "execute"], [12, 2, 1, "id1", "wrap_command"]], "dacapo.compute_context.local_torch": [[14, 1, 1, "", "LocalTorch"]], "dacapo.compute_context.local_torch.LocalTorch": [[14, 5, 1, "", "_device"], [14, 2, 1, "", "_wrap_command"], [14, 6, 1, "id2", "device"], [14, 5, 1, "", "distribute_workers"], [14, 2, 1, "", "execute"], [14, 5, 1, "id1", "oom_limit"], [14, 2, 1, "", "wrap_command"]], "dacapo.experiments": [[67, 1, 1, "", "Model"], [67, 1, 1, "", "RunConfig"], [67, 1, 1, "", "TrainingIterationStats"], [67, 1, 1, "", "TrainingStats"], [67, 1, 1, "", "ValidationIterationScores"], [67, 1, 1, "", "ValidationScores"], [21, 0, 0, "-", "architectures"], [27, 0, 0, "-", "arraytypes"], [62, 0, 0, "-", "datasplits"], [68, 0, 0, "-", "model"], [69, 0, 0, "-", "run"], [70, 0, 0, "-", "run_config"], [73, 0, 0, "-", "starts"], [93, 0, 0, "-", "tasks"], [138, 0, 0, "-", "trainers"], [142, 0, 0, "-", "training_iteration_stats"], [143, 0, 0, "-", "training_stats"], [144, 0, 0, "-", "validation_iteration_scores"], [145, 0, 0, "-", "validation_scores"]], "dacapo.experiments.Model": [[67, 5, 1, "id4", "architecture"], [67, 5, 1, "id6", "chain"], [67, 2, 1, "", "compute_output_shape"], [67, 5, 1, "id9", "eval_activation"], [67, 5, 1, "id8", "eval_input_shape"], [67, 2, 1, "", "forward"], [67, 5, 1, "id7", "input_shape"], [67, 5, 1, "id3", "num_in_channels"], [67, 5, 1, "id0", "num_out_channels"], [67, 5, 1, "", "output_shape"], [67, 5, 1, "id5", "prediction_head"], [67, 2, 1, "", "scale"]], "dacapo.experiments.RunConfig": [[67, 5, 1, "", "architecture_config"], [67, 5, 1, "", "datasplit_config"], [67, 5, 1, "", "name"], [67, 5, 1, "", "num_iterations"], [67, 5, 1, "", "repetition"], [67, 5, 1, "", "start_config"], [67, 5, 1, "", "task_config"], [67, 5, 1, "", "trainer_config"], [67, 5, 1, "", "validation_interval"]], "dacapo.experiments.TrainingIterationStats": [[67, 5, 1, "id10", "iteration"], [67, 5, 1, "id11", "loss"], [67, 5, 1, "id12", "time"]], "dacapo.experiments.TrainingStats": [[67, 2, 1, "", "add_iteration_stats"], [67, 2, 1, "", "delete_after"], [67, 5, 1, "id13", "iteration_stats"], [67, 2, 1, "id15", "to_xarray"], [67, 2, 1, "id14", "trained_until"]], "dacapo.experiments.ValidationIterationScores": [[67, 5, 1, "id16", "iteration"], [67, 5, 1, "id17", "scores"]], "dacapo.experiments.ValidationScores": [[67, 2, 1, "id23", "add_iteration_scores"], [67, 2, 1, "id26", "compare"], [67, 6, 1, "id27", "criteria"], [67, 5, 1, "id19", "datasets"], [67, 2, 1, "id24", "delete_after"], [67, 5, 1, "id20", "evaluation_scores"], [67, 2, 1, "id30", "get_best"], [67, 6, 1, "id28", "parameter_names"], [67, 5, 1, "id18", "parameters"], [67, 5, 1, "id21", "scores"], [67, 2, 1, "id22", "subscores"], [67, 2, 1, "id29", "to_xarray"], [67, 2, 1, "id25", "validated_until"]], "dacapo.experiments.architectures": [[21, 1, 1, "", "Architecture"], [21, 1, 1, "", "ArchitectureConfig"], [21, 1, 1, "", "CNNectomeUNet"], [21, 1, 1, "", "CNNectomeUNetConfig"], [21, 1, 1, "", "DummyArchitecture"], [21, 1, 1, "", "DummyArchitectureConfig"], [15, 0, 0, "-", "architecture"], [16, 0, 0, "-", "architecture_config"], [17, 0, 0, "-", "cnnectome_unet"], [18, 0, 0, "-", "cnnectome_unet_config"], [19, 0, 0, "-", "dummy_architecture"], [20, 0, 0, "-", "dummy_architecture_config"]], "dacapo.experiments.architectures.Architecture": [[21, 6, 1, "id4", "dims"], [21, 6, 1, "id1", "eval_shape_increase"], [21, 6, 1, "id0", "input_shape"], [21, 6, 1, "id2", "num_in_channels"], [21, 6, 1, "id3", "num_out_channels"], [21, 2, 1, "id5", "scale"]], "dacapo.experiments.architectures.ArchitectureConfig": [[21, 5, 1, "id6", "name"], [21, 2, 1, "id7", "verify"]], "dacapo.experiments.architectures.CNNectomeUNet": [[21, 5, 1, "", "activation"], [21, 5, 1, "", "activation_on_upsample"], [21, 5, 1, "", "batch_norm"], [21, 5, 1, "id39", "constant_upsample"], [21, 5, 1, "id36", "downsample_factors"], [21, 6, 1, "", "eval_shape_increase"], [21, 5, 1, "id35", "fmap_inc_factor"], [21, 5, 1, "id33", "fmaps_in"], [21, 5, 1, "id32", "fmaps_out"], [21, 2, 1, "", "forward"], [21, 5, 1, "", "fov"], [21, 6, 1, "", "input_shape"], [21, 5, 1, "id37", "kernel_size_down"], [21, 5, 1, "id38", "kernel_size_up"], [21, 2, 1, "", "module"], [21, 5, 1, "id34", "num_fmaps"], [21, 5, 1, "", "num_heads"], [21, 6, 1, "", "num_in_channels"], [21, 6, 1, "", "num_out_channels"], [21, 5, 1, "id40", "padding"], [21, 2, 1, "", "scale"], [21, 5, 1, "", "unet"], [21, 5, 1, "", "upsample_channel_contraction"], [21, 5, 1, "", "upsample_factors"], [21, 5, 1, "id41", "use_attention"], [21, 5, 1, "", "voxel_size"]], "dacapo.experiments.architectures.CNNectomeUNetConfig": [[21, 5, 1, "", "_eval_shape_increase"], [21, 5, 1, "id19", "architecture_type"], [21, 5, 1, "", "batch_norm"], [21, 5, 1, "id29", "constant_upsample"], [21, 5, 1, "id25", "downsample_factors"], [21, 5, 1, "id24", "fmap_inc_factor"], [21, 5, 1, "id22", "fmaps_in"], [21, 5, 1, "id21", "fmaps_out"], [21, 5, 1, "id20", "input_shape"], [21, 5, 1, "id26", "kernel_size_down"], [21, 5, 1, "id27", "kernel_size_up"], [21, 5, 1, "id23", "num_fmaps"], [21, 5, 1, "id30", "padding"], [21, 5, 1, "id28", "upsample_factors"], [21, 5, 1, "id31", "use_attention"]], "dacapo.experiments.architectures.DummyArchitecture": [[21, 5, 1, "id12", "channels_in"], [21, 5, 1, "id13", "channels_out"], [21, 5, 1, "id14", "conv"], [21, 2, 1, "id18", "forward"], [21, 6, 1, "id15", "input_shape"], [21, 6, 1, "id16", "num_in_channels"], [21, 6, 1, "id17", "num_out_channels"]], "dacapo.experiments.architectures.DummyArchitectureConfig": [[21, 5, 1, "id8", "architecture_type"], [21, 5, 1, "id9", "num_in_channels"], [21, 5, 1, "id10", "num_out_channels"], [21, 2, 1, "id11", "verify"]], "dacapo.experiments.architectures.architecture": [[15, 1, 1, "", "Architecture"]], "dacapo.experiments.architectures.architecture.Architecture": [[15, 6, 1, "id4", "dims"], [15, 6, 1, "id1", "eval_shape_increase"], [15, 6, 1, "id0", "input_shape"], [15, 6, 1, "id2", "num_in_channels"], [15, 6, 1, "id3", "num_out_channels"], [15, 2, 1, "id5", "scale"]], "dacapo.experiments.architectures.architecture_config": [[16, 1, 1, "", "ArchitectureConfig"]], "dacapo.experiments.architectures.architecture_config.ArchitectureConfig": [[16, 5, 1, "id0", "name"], [16, 2, 1, "id1", "verify"]], "dacapo.experiments.architectures.cnnectome_unet": [[17, 1, 1, "", "AttentionBlockModule"], [17, 1, 1, "", "CNNectomeUNet"], [17, 1, 1, "", "CNNectomeUNetModule"], [17, 1, 1, "", "ConvPass"], [17, 1, 1, "", "Downsample"], [17, 1, 1, "", "Upsample"]], "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule": [[17, 5, 1, "", "W_g"], [17, 5, 1, "", "W_x"], [17, 5, 1, "", "batch_norm"], [17, 2, 1, "", "calculate_and_apply_padding"], [17, 5, 1, "", "dims"], [17, 2, 1, "", "forward"], [17, 5, 1, "", "kernel_sizes"], [17, 5, 1, "", "psi"], [17, 5, 1, "", "relu"], [17, 5, 1, "", "up"]], "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet": [[17, 5, 1, "", "activation"], [17, 5, 1, "", "activation_on_upsample"], [17, 5, 1, "", "batch_norm"], [17, 5, 1, "id7", "constant_upsample"], [17, 5, 1, "id4", "downsample_factors"], [17, 6, 1, "", "eval_shape_increase"], [17, 5, 1, "id3", "fmap_inc_factor"], [17, 5, 1, "id1", "fmaps_in"], [17, 5, 1, "id0", "fmaps_out"], [17, 2, 1, "", "forward"], [17, 5, 1, "", "fov"], [17, 6, 1, "", "input_shape"], [17, 5, 1, "id5", "kernel_size_down"], [17, 5, 1, "id6", "kernel_size_up"], [17, 2, 1, "", "module"], [17, 5, 1, "id2", "num_fmaps"], [17, 5, 1, "", "num_heads"], [17, 6, 1, "", "num_in_channels"], [17, 6, 1, "", "num_out_channels"], [17, 5, 1, "id8", "padding"], [17, 2, 1, "", "scale"], [17, 5, 1, "", "unet"], [17, 5, 1, "", "upsample_channel_contraction"], [17, 5, 1, "", "upsample_factors"], [17, 5, 1, "id9", "use_attention"], [17, 5, 1, "", "voxel_size"]], "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule": [[17, 5, 1, "", "activation_on_upsample"], [17, 5, 1, "", "attention"], [17, 5, 1, "", "batch_norm"], [17, 5, 1, "", "constant_upsample"], [17, 5, 1, "id15", "dims"], [17, 5, 1, "", "downsample_factors"], [17, 5, 1, "", "fmap_inc_factor"], [17, 2, 1, "id24", "forward"], [17, 5, 1, "id13", "in_channels"], [17, 5, 1, "id17", "kernel_size_down"], [17, 5, 1, "id18", "kernel_size_up"], [17, 5, 1, "id19", "l_conv"], [17, 5, 1, "id20", "l_down"], [17, 5, 1, "id12", "num_heads"], [17, 5, 1, "id11", "num_levels"], [17, 5, 1, "id14", "out_channels"], [17, 5, 1, "", "padding"], [17, 5, 1, "id22", "r_conv"], [17, 5, 1, "id21", "r_up"], [17, 2, 1, "id23", "rec_forward"], [17, 5, 1, "", "upsample_channel_contraction"], [17, 5, 1, "id16", "use_attention"]], "dacapo.experiments.architectures.cnnectome_unet.ConvPass": [[17, 5, 1, "id25", "conv_pass"], [17, 5, 1, "", "dims"], [17, 2, 1, "id26", "forward"]], "dacapo.experiments.architectures.cnnectome_unet.Downsample": [[17, 5, 1, "id27", "dims"], [17, 5, 1, "id29", "down"], [17, 5, 1, "id28", "downsample_factor"], [17, 2, 1, "id30", "forward"]], "dacapo.experiments.architectures.cnnectome_unet.Upsample": [[17, 2, 1, "id35", "crop"], [17, 5, 1, "id31", "crop_factor"], [17, 2, 1, "id34", "crop_to_factor"], [17, 5, 1, "id33", "dims"], [17, 2, 1, "id36", "forward"], [17, 5, 1, "id32", "next_conv_kernel_sizes"], [17, 5, 1, "", "up"]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, 1, 1, "", "CNNectomeUNetConfig"]], "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig": [[18, 5, 1, "", "_eval_shape_increase"], [18, 5, 1, "id0", "architecture_type"], [18, 5, 1, "", "batch_norm"], [18, 5, 1, "id10", "constant_upsample"], [18, 5, 1, "id6", "downsample_factors"], [18, 5, 1, "id5", "fmap_inc_factor"], [18, 5, 1, "id3", "fmaps_in"], [18, 5, 1, "id2", "fmaps_out"], [18, 5, 1, "id1", "input_shape"], [18, 5, 1, "id7", "kernel_size_down"], [18, 5, 1, "id8", "kernel_size_up"], [18, 5, 1, "id4", "num_fmaps"], [18, 5, 1, "id11", "padding"], [18, 5, 1, "id9", "upsample_factors"], [18, 5, 1, "id12", "use_attention"]], "dacapo.experiments.architectures.dummy_architecture": [[19, 1, 1, "", "DummyArchitecture"]], "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture": [[19, 5, 1, "id0", "channels_in"], [19, 5, 1, "id1", "channels_out"], [19, 5, 1, "id2", "conv"], [19, 2, 1, "id6", "forward"], [19, 6, 1, "id3", "input_shape"], [19, 6, 1, "id4", "num_in_channels"], [19, 6, 1, "id5", "num_out_channels"]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, 1, 1, "", "DummyArchitectureConfig"]], "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig": [[20, 5, 1, "id0", "architecture_type"], [20, 5, 1, "id1", "num_in_channels"], [20, 5, 1, "id2", "num_out_channels"], [20, 2, 1, "id3", "verify"]], "dacapo.experiments.arraytypes": [[27, 1, 1, "", "AnnotationArray"], [27, 1, 1, "", "DistanceArray"], [27, 1, 1, "", "EmbeddingArray"], [27, 1, 1, "", "IntensitiesArray"], [27, 1, 1, "", "Mask"], [27, 1, 1, "", "ProbabilityArray"], [22, 0, 0, "-", "annotations"], [23, 0, 0, "-", "arraytype"], [24, 0, 0, "-", "binary"], [25, 0, 0, "-", "distances"], [26, 0, 0, "-", "embedding"], [28, 0, 0, "-", "intensities"], [29, 0, 0, "-", "mask"], [30, 0, 0, "-", "probabilities"]], "dacapo.experiments.arraytypes.AnnotationArray": [[27, 5, 1, "id0", "classes"], [27, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.DistanceArray": [[27, 5, 1, "id6", "classes"], [27, 6, 1, "id7", "interpolatable"], [27, 5, 1, "", "max"]], "dacapo.experiments.arraytypes.EmbeddingArray": [[27, 5, 1, "id9", "embedding_dims"], [27, 6, 1, "id10", "interpolatable"]], "dacapo.experiments.arraytypes.IntensitiesArray": [[27, 2, 1, "", "__attrs_post_init__"], [27, 5, 1, "id2", "channels"], [27, 6, 1, "id5", "interpolatable"], [27, 5, 1, "id4", "max"], [27, 5, 1, "id3", "min"]], "dacapo.experiments.arraytypes.Mask": [[27, 6, 1, "id8", "interpolatable"]], "dacapo.experiments.arraytypes.ProbabilityArray": [[27, 5, 1, "id11", "classes"], [27, 6, 1, "", "interpolatable"]], "dacapo.experiments.arraytypes.annotations": [[22, 1, 1, "", "AnnotationArray"]], "dacapo.experiments.arraytypes.annotations.AnnotationArray": [[22, 5, 1, "id0", "classes"], [22, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.arraytype": [[23, 1, 1, "", "ArrayType"]], "dacapo.experiments.arraytypes.arraytype.ArrayType": [[23, 5, 1, "", "channel_names"], [23, 6, 1, "id0", "interpolatable"], [23, 5, 1, "", "num_classes"]], "dacapo.experiments.arraytypes.binary": [[24, 1, 1, "", "BinaryArray"]], "dacapo.experiments.arraytypes.binary.BinaryArray": [[24, 5, 1, "id0", "channels"], [24, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.distances": [[25, 1, 1, "", "DistanceArray"]], "dacapo.experiments.arraytypes.distances.DistanceArray": [[25, 5, 1, "id0", "classes"], [25, 6, 1, "id1", "interpolatable"], [25, 5, 1, "", "max"]], "dacapo.experiments.arraytypes.embedding": [[26, 1, 1, "", "EmbeddingArray"]], "dacapo.experiments.arraytypes.embedding.EmbeddingArray": [[26, 5, 1, "id0", "embedding_dims"], [26, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.intensities": [[28, 1, 1, "", "IntensitiesArray"]], "dacapo.experiments.arraytypes.intensities.IntensitiesArray": [[28, 2, 1, "", "__attrs_post_init__"], [28, 5, 1, "id0", "channels"], [28, 6, 1, "id3", "interpolatable"], [28, 5, 1, "id2", "max"], [28, 5, 1, "id1", "min"]], "dacapo.experiments.arraytypes.mask": [[29, 1, 1, "", "Mask"]], "dacapo.experiments.arraytypes.mask.Mask": [[29, 6, 1, "id0", "interpolatable"]], "dacapo.experiments.arraytypes.probabilities": [[30, 1, 1, "", "ProbabilityArray"]], "dacapo.experiments.arraytypes.probabilities.ProbabilityArray": [[30, 5, 1, "id0", "classes"], [30, 6, 1, "", "interpolatable"]], "dacapo.experiments.datasplits": [[62, 1, 1, "", "DataSplit"], [62, 1, 1, "", "DataSplitConfig"], [62, 1, 1, "", "DataSplitGenerator"], [62, 1, 1, "", "DatasetSpec"], [62, 1, 1, "", "DummyDataSplit"], [62, 1, 1, "", "DummyDataSplitConfig"], [62, 1, 1, "", "TrainValidateDataSplit"], [62, 1, 1, "", "TrainValidateDataSplitConfig"], [54, 0, 0, "-", "datasets"], [57, 0, 0, "-", "datasplit"], [58, 0, 0, "-", "datasplit_config"], [59, 0, 0, "-", "datasplit_generator"], [60, 0, 0, "-", "dummy_datasplit"], [61, 0, 0, "-", "dummy_datasplit_config"], [63, 0, 0, "-", "keys"], [65, 0, 0, "-", "train_validate_datasplit"], [66, 0, 0, "-", "train_validate_datasplit_config"]], "dacapo.experiments.datasplits.DataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id0", "train"], [62, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.DataSplitConfig": [[62, 5, 1, "id2", "name"], [62, 2, 1, "id3", "verify"]], "dacapo.experiments.datasplits.DataSplitGenerator": [[62, 2, 1, "", "__generate_semantic_seg_dataset_crop"], [62, 2, 1, "", "__generate_semantic_seg_datasplit"], [62, 2, 1, "", "__init__"], [62, 2, 1, "", "__str__"], [62, 5, 1, "", "binarize_gt"], [62, 2, 1, "id31", "check_class_name"], [62, 6, 1, "id30", "class_name"], [62, 5, 1, "id28", "classes_separator_character"], [62, 2, 1, "id32", "compute"], [62, 5, 1, "id14", "datasets"], [62, 2, 1, "", "generate_csv"], [62, 2, 1, "id33", "generate_from_csv"], [62, 5, 1, "id15", "input_resolution"], [62, 5, 1, "id19", "max_gt_downsample"], [62, 5, 1, "id20", "max_gt_upsample"], [62, 5, 1, "id21", "max_raw_training_downsample"], [62, 5, 1, "id22", "max_raw_training_upsample"], [62, 5, 1, "id23", "max_raw_validation_downsample"], [62, 5, 1, "id24", "max_raw_validation_upsample"], [62, 5, 1, "id29", "max_validation_volume_size"], [62, 5, 1, "id25", "min_training_volume_size"], [62, 5, 1, "id13", "name"], [62, 5, 1, "id16", "output_resolution"], [62, 5, 1, "id27", "raw_max"], [62, 5, 1, "id26", "raw_min"], [62, 5, 1, "id18", "segmentation_type"], [62, 5, 1, "id17", "targets"], [62, 5, 1, "", "use_negative_class"]], "dacapo.experiments.datasplits.DatasetSpec": [[62, 2, 1, "", "__init__"], [62, 2, 1, "", "__str__"], [62, 5, 1, "id34", "dataset_type"], [62, 5, 1, "id37", "gt_container"], [62, 5, 1, "id38", "gt_dataset"], [62, 5, 1, "id35", "raw_container"], [62, 5, 1, "id36", "raw_dataset"]], "dacapo.experiments.datasplits.DummyDataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id4", "train"], [62, 5, 1, "id5", "validate"]], "dacapo.experiments.datasplits.DummyDataSplitConfig": [[62, 5, 1, "id6", "datasplit_type"], [62, 5, 1, "id7", "train_config"], [62, 2, 1, "id8", "verify"]], "dacapo.experiments.datasplits.TrainValidateDataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id9", "train"], [62, 5, 1, "id10", "validate"]], "dacapo.experiments.datasplits.TrainValidateDataSplitConfig": [[62, 2, 1, "", "__init__"], [62, 5, 1, "", "datasplit_type"], [62, 5, 1, "id11", "train_configs"], [62, 5, 1, "id12", "validate_configs"]], "dacapo.experiments.datasplits.datasets": [[54, 1, 1, "", "Dataset"], [54, 1, 1, "", "DatasetConfig"], [54, 1, 1, "", "DummyDataset"], [54, 1, 1, "", "DummyDatasetConfig"], [54, 1, 1, "", "RawGTDataset"], [54, 1, 1, "", "RawGTDatasetConfig"], [38, 0, 0, "-", "arrays"], [48, 0, 0, "-", "dataset"], [49, 0, 0, "-", "dataset_config"], [50, 0, 0, "-", "dummy_dataset"], [51, 0, 0, "-", "dummy_dataset_config"], [53, 0, 0, "-", "graphstores"], [55, 0, 0, "-", "raw_gt_dataset"], [56, 0, 0, "-", "raw_gt_dataset_config"]], "dacapo.experiments.datasplits.datasets.Dataset": [[54, 2, 1, "", "__eq__"], [54, 2, 1, "", "__hash__"], [54, 2, 1, "", "__repr__"], [54, 2, 1, "", "__str__"], [54, 2, 1, "", "_neuroglancer_layers"], [54, 5, 1, "id2", "gt"], [54, 5, 1, "id3", "mask"], [54, 5, 1, "id0", "name"], [54, 5, 1, "id1", "raw"], [54, 5, 1, "id5", "sample_points"], [54, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.DatasetConfig": [[54, 5, 1, "id6", "name"], [54, 2, 1, "id8", "verify"], [54, 5, 1, "id7", "weight"]], "dacapo.experiments.datasplits.datasets.DummyDataset": [[54, 2, 1, "", "__init__"], [54, 5, 1, "", "name"], [54, 5, 1, "id9", "raw"]], "dacapo.experiments.datasplits.datasets.DummyDatasetConfig": [[54, 5, 1, "id10", "dataset_type"], [54, 5, 1, "id11", "raw_config"], [54, 2, 1, "id12", "verify"]], "dacapo.experiments.datasplits.datasets.RawGTDataset": [[54, 2, 1, "", "__init__"], [54, 5, 1, "id14", "gt"], [54, 5, 1, "id15", "mask"], [54, 5, 1, "", "name"], [54, 5, 1, "id13", "raw"], [54, 5, 1, "id16", "sample_points"], [54, 5, 1, "id17", "weight"]], "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig": [[54, 5, 1, "id18", "dataset_type"], [54, 5, 1, "id20", "gt_config"], [54, 5, 1, "id21", "mask_config"], [54, 5, 1, "id19", "raw_config"], [54, 5, 1, "id22", "sample_points"], [54, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays": [[38, 1, 1, "", "ArrayConfig"], [38, 1, 1, "", "BinarizeArrayConfig"], [38, 1, 1, "", "ConcatArrayConfig"], [38, 1, 1, "", "ConstantArrayConfig"], [38, 1, 1, "", "CropArrayConfig"], [38, 1, 1, "", "DVIDArrayConfig"], [38, 1, 1, "", "DummyArrayConfig"], [38, 1, 1, "", "IntensitiesArrayConfig"], [38, 1, 1, "", "LogicalOrArrayConfig"], [38, 1, 1, "", "MergeInstancesArrayConfig"], [38, 1, 1, "", "MissingAnnotationsMaskConfig"], [38, 1, 1, "", "OnesArrayConfig"], [38, 1, 1, "", "ResampledArrayConfig"], [38, 1, 1, "", "SumArrayConfig"], [38, 1, 1, "", "ZarrArrayConfig"], [31, 0, 0, "-", "array_config"], [32, 0, 0, "-", "binarize_array_config"], [33, 0, 0, "-", "concat_array_config"], [34, 0, 0, "-", "constant_array_config"], [35, 0, 0, "-", "crop_array_config"], [36, 0, 0, "-", "dummy_array_config"], [37, 0, 0, "-", "dvid_array_config"], [39, 0, 0, "-", "intensity_array_config"], [40, 0, 0, "-", "logical_or_array_config"], [41, 0, 0, "-", "merge_instances_array_config"], [42, 0, 0, "-", "missing_annotations_mask_config"], [43, 0, 0, "-", "ones_array_config"], [44, 0, 0, "-", "resampled_array_config"], [45, 0, 0, "-", "sum_array_config"], [46, 0, 0, "-", "tiff_array_config"], [47, 0, 0, "-", "zarr_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id0", "name"], [38, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id9", "background"], [38, 5, 1, "id8", "groupings"], [38, 5, 1, "id7", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig": [[38, 2, 1, "", "__attrs_post_init__"], [38, 2, 1, "", "array"], [38, 5, 1, "id20", "channels"], [38, 5, 1, "id22", "default_config"], [38, 5, 1, "id21", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "", "constant"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id29", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id25", "roi"], [38, 5, 1, "id24", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id27", "source"], [38, 2, 1, "", "to_array"], [38, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "to_array"], [38, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id16", "max"], [38, 5, 1, "id15", "min"], [38, 5, 1, "id14", "source_array_config"], [38, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id23", "source_array_config"], [38, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id26", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id18", "groupings"], [38, 5, 1, "id17", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id19", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id12", "downsample"], [38, 5, 1, "id13", "interp_order"], [38, 5, 1, "id10", "source_array_config"], [38, 5, 1, "id11", "upsample"]], "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id28", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig": [[38, 5, 1, "", "_axes"], [38, 2, 1, "", "array"], [38, 5, 1, "id4", "dataset"], [38, 5, 1, "id3", "file_name"], [38, 5, 1, "", "mode"], [38, 5, 1, "id5", "snap_to_grid"], [38, 2, 1, "id6", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, 1, 1, "", "ArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig": [[31, 2, 1, "", "array"], [31, 5, 1, "id0", "name"], [31, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, 1, 1, "", "BinarizeArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig": [[32, 2, 1, "", "array"], [32, 5, 1, "id2", "background"], [32, 5, 1, "id1", "groupings"], [32, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, 1, 1, "", "ConcatArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig": [[33, 2, 1, "", "__attrs_post_init__"], [33, 2, 1, "", "array"], [33, 5, 1, "id0", "channels"], [33, 5, 1, "id2", "default_config"], [33, 5, 1, "id1", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, 1, 1, "", "ConstantArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig": [[34, 2, 1, "", "array"], [34, 5, 1, "", "constant"], [34, 2, 1, "", "create_array"], [34, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, 1, 1, "", "CropArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig": [[35, 2, 1, "", "array"], [35, 2, 1, "", "create_array"], [35, 5, 1, "id1", "roi"], [35, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, 1, 1, "", "DummyArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig": [[36, 2, 1, "", "array"], [36, 2, 1, "", "to_array"], [36, 2, 1, "id0", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, 1, 1, "", "DVIDArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig": [[37, 2, 1, "", "array"], [37, 5, 1, "id0", "source"], [37, 2, 1, "", "to_array"], [37, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, 1, 1, "", "IntensitiesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig": [[39, 2, 1, "", "array"], [39, 5, 1, "id2", "max"], [39, 5, 1, "id1", "min"], [39, 5, 1, "id0", "source_array_config"], [39, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, 1, 1, "", "LogicalOrArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig": [[40, 2, 1, "", "array"], [40, 5, 1, "id0", "source_array_config"], [40, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, 1, 1, "", "MergeInstancesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig": [[41, 2, 1, "", "array"], [41, 2, 1, "", "create_array"], [41, 5, 1, "id0", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, 1, 1, "", "MissingAnnotationsMaskConfig"]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig": [[42, 2, 1, "", "array"], [42, 5, 1, "id1", "groupings"], [42, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, 1, 1, "", "OnesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig": [[43, 2, 1, "", "array"], [43, 2, 1, "", "create_array"], [43, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, 1, 1, "", "ResampledArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig": [[44, 2, 1, "", "array"], [44, 2, 1, "", "create_array"], [44, 5, 1, "id2", "downsample"], [44, 5, 1, "id3", "interp_order"], [44, 5, 1, "id0", "source_array_config"], [44, 5, 1, "id1", "upsample"]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, 1, 1, "", "SumArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig": [[45, 2, 1, "", "array"], [45, 5, 1, "id0", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, 1, 1, "", "TiffArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig": [[46, 2, 1, "", "array"], [46, 5, 1, "id3", "axis_names"], [46, 5, 1, "id0", "file_name"], [46, 5, 1, "id1", "offset"], [46, 5, 1, "", "units"], [46, 5, 1, "id2", "voxel_size"]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, 1, 1, "", "ZarrArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig": [[47, 5, 1, "", "_axes"], [47, 2, 1, "", "array"], [47, 5, 1, "id1", "dataset"], [47, 5, 1, "id0", "file_name"], [47, 5, 1, "", "mode"], [47, 5, 1, "id2", "snap_to_grid"], [47, 2, 1, "id3", "verify"]], "dacapo.experiments.datasplits.datasets.dataset": [[48, 1, 1, "", "Dataset"]], "dacapo.experiments.datasplits.datasets.dataset.Dataset": [[48, 2, 1, "", "__eq__"], [48, 2, 1, "", "__hash__"], [48, 2, 1, "", "__repr__"], [48, 2, 1, "", "__str__"], [48, 2, 1, "", "_neuroglancer_layers"], [48, 5, 1, "id2", "gt"], [48, 5, 1, "id3", "mask"], [48, 5, 1, "id0", "name"], [48, 5, 1, "id1", "raw"], [48, 5, 1, "id5", "sample_points"], [48, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, 1, 1, "", "DatasetConfig"]], "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig": [[49, 5, 1, "id0", "name"], [49, 2, 1, "id2", "verify"], [49, 5, 1, "id1", "weight"]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, 1, 1, "", "DummyDataset"]], "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset": [[50, 2, 1, "", "__init__"], [50, 5, 1, "", "name"], [50, 5, 1, "id0", "raw"]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, 1, 1, "", "DummyDatasetConfig"]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig": [[51, 5, 1, "id0", "dataset_type"], [51, 5, 1, "id1", "raw_config"], [51, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, 1, 1, "", "GraphStoreConfig"], [52, 0, 0, "-", "graph_source_config"]], "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig": [[53, 5, 1, "", "store_type"], [53, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, 1, 1, "", "GraphStoreConfig"]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig": [[52, 5, 1, "", "store_type"], [52, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, 1, 1, "", "RawGTDataset"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset": [[55, 2, 1, "", "__init__"], [55, 5, 1, "id1", "gt"], [55, 5, 1, "id2", "mask"], [55, 5, 1, "", "name"], [55, 5, 1, "id0", "raw"], [55, 5, 1, "id3", "sample_points"], [55, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, 1, 1, "", "RawGTDatasetConfig"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig": [[56, 5, 1, "id0", "dataset_type"], [56, 5, 1, "id2", "gt_config"], [56, 5, 1, "id3", "mask_config"], [56, 5, 1, "id1", "raw_config"], [56, 5, 1, "id4", "sample_points"], [56, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasplit": [[57, 1, 1, "", "DataSplit"]], "dacapo.experiments.datasplits.datasplit.DataSplit": [[57, 2, 1, "", "__init__"], [57, 5, 1, "id0", "train"], [57, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.datasplit_config": [[58, 1, 1, "", "DataSplitConfig"]], "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig": [[58, 5, 1, "id0", "name"], [58, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasplit_generator": [[59, 1, 1, "", "CustomEnum"], [59, 1, 1, "", "CustomEnumMeta"], [59, 1, 1, "", "DataSplitGenerator"], [59, 1, 1, "", "DatasetSpec"], [59, 1, 1, "", "DatasetType"], [59, 1, 1, "", "SegmentationType"], [59, 3, 1, "", "format_class_name"], [59, 3, 1, "", "generate_dataspec_from_csv"], [59, 3, 1, "", "get_right_resolution_array_config"], [59, 3, 1, "", "is_zarr_group"], [59, 3, 1, "", "limit_validation_crop_size"], [59, 4, 1, "", "logger"], [59, 3, 1, "", "resize_if_needed"]], "dacapo.experiments.datasplits.datasplit_generator.CustomEnum": [[59, 2, 1, "id0", "__str__"]], "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta": [[59, 2, 1, "", "__getitem__"], [59, 5, 1, "", "_member_names_"]], "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator": [[59, 2, 1, "", "__generate_semantic_seg_dataset_crop"], [59, 2, 1, "", "__generate_semantic_seg_datasplit"], [59, 2, 1, "", "__init__"], [59, 2, 1, "", "__str__"], [59, 5, 1, "", "binarize_gt"], [59, 2, 1, "id28", "check_class_name"], [59, 6, 1, "id27", "class_name"], [59, 5, 1, "id25", "classes_separator_character"], [59, 2, 1, "id29", "compute"], [59, 5, 1, "id11", "datasets"], [59, 2, 1, "", "generate_csv"], [59, 2, 1, "id30", "generate_from_csv"], [59, 5, 1, "id12", "input_resolution"], [59, 5, 1, "id16", "max_gt_downsample"], [59, 5, 1, "id17", "max_gt_upsample"], [59, 5, 1, "id18", "max_raw_training_downsample"], [59, 5, 1, "id19", "max_raw_training_upsample"], [59, 5, 1, "id20", "max_raw_validation_downsample"], [59, 5, 1, "id21", "max_raw_validation_upsample"], [59, 5, 1, "id26", "max_validation_volume_size"], [59, 5, 1, "id22", "min_training_volume_size"], [59, 5, 1, "id10", "name"], [59, 5, 1, "id13", "output_resolution"], [59, 5, 1, "id24", "raw_max"], [59, 5, 1, "id23", "raw_min"], [59, 5, 1, "id15", "segmentation_type"], [59, 5, 1, "id14", "targets"], [59, 5, 1, "", "use_negative_class"]], "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec": [[59, 2, 1, "", "__init__"], [59, 2, 1, "", "__str__"], [59, 5, 1, "id5", "dataset_type"], [59, 5, 1, "id8", "gt_container"], [59, 5, 1, "id9", "gt_dataset"], [59, 5, 1, "id6", "raw_container"], [59, 5, 1, "id7", "raw_dataset"]], "dacapo.experiments.datasplits.datasplit_generator.DatasetType": [[59, 2, 1, "", "__str__"], [59, 5, 1, "id2", "train"], [59, 5, 1, "id1", "val"]], "dacapo.experiments.datasplits.datasplit_generator.SegmentationType": [[59, 2, 1, "", "__str__"], [59, 5, 1, "id4", "instance"], [59, 5, 1, "id3", "semantic"]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, 1, 1, "", "DummyDataSplit"]], "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit": [[60, 2, 1, "", "__init__"], [60, 5, 1, "id0", "train"], [60, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, 1, 1, "", "DummyDataSplitConfig"]], "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig": [[61, 5, 1, "id0", "datasplit_type"], [61, 5, 1, "id1", "train_config"], [61, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.keys": [[63, 1, 1, "", "ArrayKey"], [63, 1, 1, "", "DataKey"], [63, 1, 1, "", "GraphKey"], [64, 0, 0, "-", "keys"]], "dacapo.experiments.datasplits.keys.ArrayKey": [[63, 5, 1, "id1", "GT"], [63, 5, 1, "id2", "MASK"], [63, 5, 1, "id3", "NON_EMPTY"], [63, 5, 1, "id0", "RAW"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.DataKey": [[63, 5, 1, "", "GT"], [63, 5, 1, "", "MASK"], [63, 5, 1, "", "NON_EMPTY"], [63, 5, 1, "", "RAW"], [63, 5, 1, "", "SPECIFIED_LOCATIONS"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.GraphKey": [[63, 5, 1, "id4", "SPECIFIED_LOCATIONS"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys": [[64, 1, 1, "", "ArrayKey"], [64, 1, 1, "", "DataKey"], [64, 1, 1, "", "GraphKey"]], "dacapo.experiments.datasplits.keys.keys.ArrayKey": [[64, 5, 1, "id1", "GT"], [64, 5, 1, "id2", "MASK"], [64, 5, 1, "id3", "NON_EMPTY"], [64, 5, 1, "id0", "RAW"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys.DataKey": [[64, 5, 1, "", "GT"], [64, 5, 1, "", "MASK"], [64, 5, 1, "", "NON_EMPTY"], [64, 5, 1, "", "RAW"], [64, 5, 1, "", "SPECIFIED_LOCATIONS"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys.GraphKey": [[64, 5, 1, "id4", "SPECIFIED_LOCATIONS"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, 1, 1, "", "TrainValidateDataSplit"]], "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit": [[65, 2, 1, "", "__init__"], [65, 5, 1, "id0", "train"], [65, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, 1, 1, "", "TrainValidateDataSplitConfig"]], "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig": [[66, 2, 1, "", "__init__"], [66, 5, 1, "", "datasplit_type"], [66, 5, 1, "id0", "train_configs"], [66, 5, 1, "id1", "validate_configs"]], "dacapo.experiments.model": [[68, 1, 1, "", "Model"]], "dacapo.experiments.model.Model": [[68, 5, 1, "id4", "architecture"], [68, 5, 1, "id6", "chain"], [68, 2, 1, "", "compute_output_shape"], [68, 5, 1, "id9", "eval_activation"], [68, 5, 1, "id8", "eval_input_shape"], [68, 2, 1, "", "forward"], [68, 5, 1, "id7", "input_shape"], [68, 5, 1, "id3", "num_in_channels"], [68, 5, 1, "id0", "num_out_channels"], [68, 5, 1, "", "output_shape"], [68, 5, 1, "id5", "prediction_head"], [68, 2, 1, "", "scale"]], "dacapo.experiments.run": [[69, 1, 1, "", "Run"]], "dacapo.experiments.run.Run": [[69, 5, 1, "id4", "architecture"], [69, 6, 1, "id10", "datasplit"], [69, 2, 1, "id12", "get_validation_scores"], [69, 5, 1, "id6", "model"], [69, 2, 1, "", "move_optimizer"], [69, 5, 1, "id0", "name"], [69, 5, 1, "id7", "optimizer"], [69, 5, 1, "id9", "start"], [69, 5, 1, "id3", "task"], [69, 5, 1, "id1", "train_until"], [69, 5, 1, "id5", "trainer"], [69, 5, 1, "id8", "training_stats"], [69, 5, 1, "id2", "validation_interval"], [69, 6, 1, "id11", "validation_scores"], [69, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.run_config": [[70, 1, 1, "", "RunConfig"]], "dacapo.experiments.run_config.RunConfig": [[70, 5, 1, "", "architecture_config"], [70, 5, 1, "", "datasplit_config"], [70, 5, 1, "", "name"], [70, 5, 1, "", "num_iterations"], [70, 5, 1, "", "repetition"], [70, 5, 1, "", "start_config"], [70, 5, 1, "", "task_config"], [70, 5, 1, "", "trainer_config"], [70, 5, 1, "", "validation_interval"]], "dacapo.experiments.starts": [[73, 1, 1, "", "CosemStart"], [73, 1, 1, "", "CosemStartConfig"], [73, 1, 1, "", "Start"], [73, 1, 1, "", "StartConfig"], [71, 0, 0, "-", "cosem_start"], [72, 0, 0, "-", "cosem_start_config"], [74, 0, 0, "-", "start"], [75, 0, 0, "-", "start_config"]], "dacapo.experiments.starts.CosemStart": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id7", "channels"], [73, 2, 1, "id8", "check"], [73, 5, 1, "id5", "criterion"], [73, 2, 1, "id9", "initialize_weights"], [73, 5, 1, "id6", "name"], [73, 5, 1, "id4", "run"]], "dacapo.experiments.starts.CosemStartConfig": [[73, 2, 1, "", "__init__"], [73, 5, 1, "", "criterion"], [73, 5, 1, "", "run"], [73, 5, 1, "", "start_type"]], "dacapo.experiments.starts.Start": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id0", "channels"], [73, 5, 1, "", "criterion"], [73, 2, 1, "id1", "initialize_weights"], [73, 5, 1, "", "run"]], "dacapo.experiments.starts.StartConfig": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id3", "criterion"], [73, 5, 1, "id2", "run"], [73, 5, 1, "", "start_type"]], "dacapo.experiments.starts.cosem_start": [[71, 1, 1, "", "CosemStart"], [71, 3, 1, "", "get_model_setup"], [71, 4, 1, "", "logger"]], "dacapo.experiments.starts.cosem_start.CosemStart": [[71, 2, 1, "", "__init__"], [71, 5, 1, "id3", "channels"], [71, 2, 1, "id4", "check"], [71, 5, 1, "id1", "criterion"], [71, 2, 1, "id5", "initialize_weights"], [71, 5, 1, "id2", "name"], [71, 5, 1, "id0", "run"]], "dacapo.experiments.starts.cosem_start_config": [[72, 1, 1, "", "CosemStartConfig"]], "dacapo.experiments.starts.cosem_start_config.CosemStartConfig": [[72, 2, 1, "", "__init__"], [72, 5, 1, "", "criterion"], [72, 5, 1, "", "run"], [72, 5, 1, "", "start_type"]], "dacapo.experiments.starts.start": [[74, 1, 1, "", "Start"], [74, 4, 1, "", "head_keys"], [74, 4, 1, "", "logger"], [74, 3, 1, "", "match_heads"]], "dacapo.experiments.starts.start.Start": [[74, 2, 1, "", "__init__"], [74, 5, 1, "id0", "channels"], [74, 5, 1, "", "criterion"], [74, 2, 1, "id1", "initialize_weights"], [74, 5, 1, "", "run"]], "dacapo.experiments.starts.start_config": [[75, 1, 1, "", "StartConfig"]], "dacapo.experiments.starts.start_config.StartConfig": [[75, 2, 1, "", "__init__"], [75, 5, 1, "id1", "criterion"], [75, 5, 1, "id0", "run"], [75, 5, 1, "", "start_type"]], "dacapo.experiments.tasks": [[93, 1, 1, "", "AffinitiesTask"], [93, 1, 1, "", "AffinitiesTaskConfig"], [93, 1, 1, "", "DistanceTask"], [93, 1, 1, "", "DistanceTaskConfig"], [93, 1, 1, "", "DummyTask"], [93, 1, 1, "", "DummyTaskConfig"], [93, 1, 1, "", "HotDistanceTask"], [93, 1, 1, "", "HotDistanceTaskConfig"], [93, 1, 1, "", "InnerDistanceTask"], [93, 1, 1, "", "InnerDistanceTaskConfig"], [93, 1, 1, "", "OneHotTask"], [93, 1, 1, "", "OneHotTaskConfig"], [93, 1, 1, "", "PretrainedTask"], [93, 1, 1, "", "PretrainedTaskConfig"], [93, 1, 1, "", "Task"], [93, 1, 1, "", "TaskConfig"], [76, 0, 0, "-", "affinities_task"], [77, 0, 0, "-", "affinities_task_config"], [78, 0, 0, "-", "distance_task"], [79, 0, 0, "-", "distance_task_config"], [80, 0, 0, "-", "dummy_task"], [81, 0, 0, "-", "dummy_task_config"], [88, 0, 0, "-", "evaluators"], [91, 0, 0, "-", "hot_distance_task"], [92, 0, 0, "-", "hot_distance_task_config"], [94, 0, 0, "-", "inner_distance_task"], [95, 0, 0, "-", "inner_distance_task_config"], [99, 0, 0, "-", "losses"], [102, 0, 0, "-", "one_hot_task"], [103, 0, 0, "-", "one_hot_task_config"], [108, 0, 0, "-", "post_processors"], [119, 0, 0, "-", "predictors"], [123, 0, 0, "-", "pretrained_task"], [124, 0, 0, "-", "pretrained_task_config"], [125, 0, 0, "-", "task"], [126, 0, 0, "-", "task_config"]], "dacapo.experiments.tasks.AffinitiesTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id40", "evaluator"], [93, 5, 1, "id38", "loss"], [93, 5, 1, "id39", "post_processor"], [93, 5, 1, "id37", "predictor"]], "dacapo.experiments.tasks.AffinitiesTaskConfig": [[93, 5, 1, "id33", "affs_weight_clipmax"], [93, 5, 1, "id32", "affs_weight_clipmin"], [93, 5, 1, "id36", "background_as_object"], [93, 5, 1, "id30", "downsample_lsds"], [93, 5, 1, "id35", "lsd_weight_clipmax"], [93, 5, 1, "id34", "lsd_weight_clipmin"], [93, 5, 1, "id28", "lsds"], [93, 5, 1, "id31", "lsds_to_affs_weight_ratio"], [93, 5, 1, "id27", "neighborhood"], [93, 5, 1, "id29", "num_lsd_voxels"], [93, 5, 1, "", "task_type"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.DistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id20", "evaluator"], [93, 5, 1, "id18", "loss"], [93, 5, 1, "id19", "post_processor"], [93, 5, 1, "id17", "predictor"]], "dacapo.experiments.tasks.DistanceTaskConfig": [[93, 5, 1, "id10", "channels"], [93, 5, 1, "id11", "clip_distance"], [93, 5, 1, "id16", "clipmax"], [93, 5, 1, "id15", "clipmin"], [93, 5, 1, "id14", "mask_distances"], [93, 5, 1, "id13", "scale_factor"], [93, 5, 1, "", "task_type"], [93, 5, 1, "id12", "tol_distance"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.DummyTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id9", "evaluator"], [93, 5, 1, "id7", "loss"], [93, 5, 1, "id8", "post_processor"], [93, 5, 1, "id6", "predictor"]], "dacapo.experiments.tasks.DummyTaskConfig": [[93, 5, 1, "id4", "detection_threshold"], [93, 5, 1, "id3", "embedding_dims"], [93, 5, 1, "id2", "task_type"], [93, 2, 1, "id5", "verify"]], "dacapo.experiments.tasks.HotDistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id58", "evaluator"], [93, 5, 1, "id56", "loss"], [93, 5, 1, "id57", "post_processor"], [93, 5, 1, "id55", "predictor"]], "dacapo.experiments.tasks.HotDistanceTaskConfig": [[93, 5, 1, "id50", "channels"], [93, 5, 1, "id51", "clip_distance"], [93, 5, 1, "id54", "mask_distances"], [93, 5, 1, "id53", "scale_factor"], [93, 5, 1, "id49", "task_type"], [93, 5, 1, "id52", "tol_distance"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.InnerDistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id48", "evaluator"], [93, 5, 1, "id46", "loss"], [93, 5, 1, "id47", "post_processor"], [93, 5, 1, "id45", "predictor"], [93, 5, 1, "", "task_config"]], "dacapo.experiments.tasks.InnerDistanceTaskConfig": [[93, 5, 1, "id41", "channels"], [93, 5, 1, "id42", "clip_distance"], [93, 5, 1, "id44", "scale_factor"], [93, 5, 1, "", "task_type"], [93, 5, 1, "id43", "tol_distance"]], "dacapo.experiments.tasks.OneHotTask": [[93, 2, 1, "", "create_model"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"], [93, 5, 1, "", "weights"]], "dacapo.experiments.tasks.OneHotTaskConfig": [[93, 2, 1, "", "None"], [93, 5, 1, "id22", "classes"], [93, 5, 1, "id21", "task_type"]], "dacapo.experiments.tasks.PretrainedTask": [[93, 2, 1, "id26", "create_model"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"], [93, 5, 1, "id25", "weights"]], "dacapo.experiments.tasks.PretrainedTaskConfig": [[93, 5, 1, "id23", "sub_task_config"], [93, 5, 1, "", "task_type"], [93, 2, 1, "", "verify"], [93, 5, 1, "id24", "weights"]], "dacapo.experiments.tasks.Task": [[93, 2, 1, "", "create_model"], [93, 6, 1, "", "evaluation_scores"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 6, 1, "", "parameters"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"]], "dacapo.experiments.tasks.TaskConfig": [[93, 5, 1, "id0", "name"], [93, 2, 1, "id1", "verify"]], "dacapo.experiments.tasks.affinities_task": [[76, 1, 1, "", "AffinitiesTask"]], "dacapo.experiments.tasks.affinities_task.AffinitiesTask": [[76, 2, 1, "", "__init__"], [76, 5, 1, "id3", "evaluator"], [76, 5, 1, "id1", "loss"], [76, 5, 1, "id2", "post_processor"], [76, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.affinities_task_config": [[77, 1, 1, "", "AffinitiesTaskConfig"]], "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig": [[77, 5, 1, "id6", "affs_weight_clipmax"], [77, 5, 1, "id5", "affs_weight_clipmin"], [77, 5, 1, "id9", "background_as_object"], [77, 5, 1, "id3", "downsample_lsds"], [77, 5, 1, "id8", "lsd_weight_clipmax"], [77, 5, 1, "id7", "lsd_weight_clipmin"], [77, 5, 1, "id1", "lsds"], [77, 5, 1, "id4", "lsds_to_affs_weight_ratio"], [77, 5, 1, "id0", "neighborhood"], [77, 5, 1, "id2", "num_lsd_voxels"], [77, 5, 1, "", "task_type"], [77, 2, 1, "", "verify"]], "dacapo.experiments.tasks.distance_task": [[78, 1, 1, "", "DistanceTask"]], "dacapo.experiments.tasks.distance_task.DistanceTask": [[78, 2, 1, "", "__init__"], [78, 5, 1, "id3", "evaluator"], [78, 5, 1, "id1", "loss"], [78, 5, 1, "id2", "post_processor"], [78, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.distance_task_config": [[79, 1, 1, "", "DistanceTaskConfig"]], "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig": [[79, 5, 1, "id0", "channels"], [79, 5, 1, "id1", "clip_distance"], [79, 5, 1, "id6", "clipmax"], [79, 5, 1, "id5", "clipmin"], [79, 5, 1, "id4", "mask_distances"], [79, 5, 1, "id3", "scale_factor"], [79, 5, 1, "", "task_type"], [79, 5, 1, "id2", "tol_distance"], [79, 2, 1, "", "verify"]], "dacapo.experiments.tasks.dummy_task": [[80, 1, 1, "", "DummyTask"]], "dacapo.experiments.tasks.dummy_task.DummyTask": [[80, 2, 1, "", "__init__"], [80, 5, 1, "id3", "evaluator"], [80, 5, 1, "id1", "loss"], [80, 5, 1, "id2", "post_processor"], [80, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.dummy_task_config": [[81, 1, 1, "", "DummyTaskConfig"]], "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig": [[81, 5, 1, "id2", "detection_threshold"], [81, 5, 1, "id1", "embedding_dims"], [81, 5, 1, "id0", "task_type"], [81, 2, 1, "id3", "verify"]], "dacapo.experiments.tasks.evaluators": [[88, 1, 1, "", "BinarySegmentationEvaluationScores"], [88, 1, 1, "", "BinarySegmentationEvaluator"], [88, 1, 1, "", "DummyEvaluationScores"], [88, 1, 1, "", "DummyEvaluator"], [88, 1, 1, "", "EvaluationScores"], [88, 1, 1, "", "Evaluator"], [88, 1, 1, "", "InstanceEvaluationScores"], [88, 1, 1, "", "InstanceEvaluator"], [88, 1, 1, "", "MultiChannelBinarySegmentationEvaluationScores"], [82, 0, 0, "-", "binary_segmentation_evaluation_scores"], [83, 0, 0, "-", "binary_segmentation_evaluator"], [84, 0, 0, "-", "dummy_evaluation_scores"], [85, 0, 0, "-", "dummy_evaluator"], [86, 0, 0, "-", "evaluation_scores"], [87, 0, 0, "-", "evaluator"], [89, 0, 0, "-", "instance_evaluation_scores"], [90, 0, 0, "-", "instance_evaluator"]], "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores": [[88, 2, 1, "", "bounds"], [88, 5, 1, "", "criteria"], [88, 5, 1, "id23", "dice"], [88, 5, 1, "id43", "f1_score"], [88, 5, 1, "id40", "f1_score_with_tolerance"], [88, 5, 1, "id29", "false_discovery_rate"], [88, 5, 1, "id26", "false_negative_rate"], [88, 5, 1, "id27", "false_negative_rate_with_tolerance"], [88, 5, 1, "id28", "false_positive_rate"], [88, 5, 1, "id30", "false_positive_rate_with_tolerance"], [88, 5, 1, "id25", "hausdorff"], [88, 2, 1, "", "higher_is_better"], [88, 5, 1, "id24", "jaccard"], [88, 5, 1, "id32", "mean_false_distance"], [88, 5, 1, "id35", "mean_false_distance_clipped"], [88, 5, 1, "id33", "mean_false_negative_distance"], [88, 5, 1, "id36", "mean_false_negative_distance_clipped"], [88, 5, 1, "id34", "mean_false_positive_distance"], [88, 5, 1, "id37", "mean_false_positive_distance_clipped"], [88, 5, 1, "id41", "precision"], [88, 5, 1, "id38", "precision_with_tolerance"], [88, 5, 1, "id42", "recall"], [88, 5, 1, "id39", "recall_with_tolerance"], [88, 2, 1, "", "store_best"], [88, 5, 1, "id31", "voi"]], "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator": [[88, 5, 1, "id47", "channels"], [88, 5, 1, "id45", "clip_distance"], [88, 5, 1, "id44", "criteria"], [88, 2, 1, "id48", "evaluate"], [88, 6, 1, "id49", "score"], [88, 5, 1, "id46", "tol_distance"]], "dacapo.experiments.tasks.evaluators.DummyEvaluationScores": [[88, 5, 1, "id1", "blipp_score"], [88, 2, 1, "id3", "bounds"], [88, 5, 1, "", "criteria"], [88, 5, 1, "id0", "frizz_level"], [88, 2, 1, "id2", "higher_is_better"], [88, 2, 1, "id4", "store_best"]], "dacapo.experiments.tasks.evaluators.DummyEvaluator": [[88, 5, 1, "id5", "criteria"], [88, 2, 1, "id6", "evaluate"], [88, 6, 1, "id7", "score"]], "dacapo.experiments.tasks.evaluators.EvaluationScores": [[88, 2, 1, "id10", "bounds"], [88, 6, 1, "id8", "criteria"], [88, 2, 1, "id9", "higher_is_better"], [88, 2, 1, "id11", "store_best"]], "dacapo.experiments.tasks.evaluators.Evaluator": [[88, 6, 1, "id13", "best_scores"], [88, 2, 1, "id20", "bounds"], [88, 2, 1, "id17", "compare"], [88, 6, 1, "", "criteria"], [88, 2, 1, "id12", "evaluate"], [88, 2, 1, "id15", "get_overall_best"], [88, 2, 1, "id16", "get_overall_best_parameters"], [88, 2, 1, "id19", "higher_is_better"], [88, 2, 1, "id14", "is_best"], [88, 6, 1, "", "score"], [88, 2, 1, "id18", "set_best"], [88, 2, 1, "id21", "store_best"]], "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores": [[88, 2, 1, "id54", "bounds"], [88, 5, 1, "", "criteria"], [88, 2, 1, "id53", "higher_is_better"], [88, 2, 1, "id55", "store_best"], [88, 6, 1, "id52", "voi"], [88, 5, 1, "id51", "voi_merge"], [88, 5, 1, "id50", "voi_split"]], "dacapo.experiments.tasks.evaluators.InstanceEvaluator": [[88, 5, 1, "id56", "criteria"], [88, 2, 1, "id57", "evaluate"], [88, 6, 1, "id58", "score"]], "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores": [[88, 2, 1, "", "bounds"], [88, 5, 1, "id22", "channel_scores"], [88, 6, 1, "", "criteria"], [88, 2, 1, "", "higher_is_better"], [88, 2, 1, "", "store_best"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, 1, 1, "", "BinarySegmentationEvaluationScores"], [82, 1, 1, "", "MultiChannelBinarySegmentationEvaluationScores"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores": [[82, 2, 1, "", "bounds"], [82, 5, 1, "", "criteria"], [82, 5, 1, "id0", "dice"], [82, 5, 1, "id20", "f1_score"], [82, 5, 1, "id17", "f1_score_with_tolerance"], [82, 5, 1, "id6", "false_discovery_rate"], [82, 5, 1, "id3", "false_negative_rate"], [82, 5, 1, "id4", "false_negative_rate_with_tolerance"], [82, 5, 1, "id5", "false_positive_rate"], [82, 5, 1, "id7", "false_positive_rate_with_tolerance"], [82, 5, 1, "id2", "hausdorff"], [82, 2, 1, "", "higher_is_better"], [82, 5, 1, "id1", "jaccard"], [82, 5, 1, "id9", "mean_false_distance"], [82, 5, 1, "id12", "mean_false_distance_clipped"], [82, 5, 1, "id10", "mean_false_negative_distance"], [82, 5, 1, "id13", "mean_false_negative_distance_clipped"], [82, 5, 1, "id11", "mean_false_positive_distance"], [82, 5, 1, "id14", "mean_false_positive_distance_clipped"], [82, 5, 1, "id18", "precision"], [82, 5, 1, "id15", "precision_with_tolerance"], [82, 5, 1, "id19", "recall"], [82, 5, 1, "id16", "recall_with_tolerance"], [82, 2, 1, "", "store_best"], [82, 5, 1, "id8", "voi"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores": [[82, 2, 1, "", "bounds"], [82, 5, 1, "id21", "channel_scores"], [82, 6, 1, "", "criteria"], [82, 2, 1, "", "higher_is_better"], [82, 2, 1, "", "store_best"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, 1, 1, "", "ArrayEvaluator"], [83, 4, 1, "", "BG"], [83, 1, 1, "", "BinarySegmentationEvaluator"], [83, 1, 1, "", "CremiEvaluator"], [83, 4, 1, "", "logger"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator": [[83, 5, 1, "id10", "cremieval"], [83, 2, 1, "id12", "dice"], [83, 2, 1, "id20", "f1_score"], [83, 2, 1, "id32", "f1_score_with_tolerance"], [83, 2, 1, "id17", "false_discovery_rate"], [83, 2, 1, "id15", "false_negative_rate"], [83, 2, 1, "id29", "false_negative_rate_with_tolerance"], [83, 2, 1, "id16", "false_positive_rate"], [83, 2, 1, "id28", "false_positive_rate_with_tolerance"], [83, 2, 1, "id14", "hausdorff"], [83, 2, 1, "id13", "jaccard"], [83, 2, 1, "id22", "mean_false_distance"], [83, 2, 1, "id25", "mean_false_distance_clipped"], [83, 2, 1, "id23", "mean_false_negative_distance"], [83, 2, 1, "id26", "mean_false_negative_distance_clipped"], [83, 2, 1, "id24", "mean_false_positive_distance"], [83, 2, 1, "id27", "mean_false_positive_distance_clipped"], [83, 2, 1, "", "overlap_measures_filter"], [83, 2, 1, "id18", "precision"], [83, 2, 1, "id30", "precision_with_tolerance"], [83, 2, 1, "id19", "recall"], [83, 2, 1, "id31", "recall_with_tolerance"], [83, 5, 1, "id11", "resolution"], [83, 5, 1, "id7", "test"], [83, 5, 1, "id9", "test_empty"], [83, 2, 1, "", "test_itk"], [83, 5, 1, "id6", "truth"], [83, 5, 1, "id8", "truth_empty"], [83, 2, 1, "", "truth_itk"], [83, 2, 1, "id21", "voi"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator": [[83, 5, 1, "id3", "channels"], [83, 5, 1, "id1", "clip_distance"], [83, 5, 1, "id0", "criteria"], [83, 2, 1, "id4", "evaluate"], [83, 6, 1, "id5", "score"], [83, 5, 1, "id2", "tol_distance"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator": [[83, 5, 1, "id36", "clip_distance"], [83, 2, 1, "id46", "f1_score_with_tolerance"], [83, 2, 1, "id50", "false_negative_distances"], [83, 2, 1, "id42", "false_negative_rate_with_tolerance"], [83, 2, 1, "id41", "false_negatives_with_tolerance"], [83, 2, 1, "id38", "false_positive_distances"], [83, 2, 1, "id40", "false_positive_rate_with_tolerance"], [83, 2, 1, "id39", "false_positives_with_tolerance"], [83, 2, 1, "id52", "mean_false_distance"], [83, 2, 1, "id53", "mean_false_distance_clipped"], [83, 2, 1, "id51", "mean_false_negative_distance"], [83, 2, 1, "id48", "mean_false_negative_distances_clipped"], [83, 2, 1, "id49", "mean_false_positive_distance"], [83, 2, 1, "id47", "mean_false_positive_distances_clipped"], [83, 2, 1, "id44", "precision_with_tolerance"], [83, 2, 1, "id45", "recall_with_tolerance"], [83, 5, 1, "id35", "sampling"], [83, 5, 1, "id33", "test"], [83, 2, 1, "", "test_edt"], [83, 2, 1, "", "test_mask"], [83, 5, 1, "id37", "tol_distance"], [83, 2, 1, "id43", "true_positives_with_tolerance"], [83, 5, 1, "id34", "truth"], [83, 2, 1, "", "truth_edt"], [83, 2, 1, "", "truth_mask"]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, 1, 1, "", "DummyEvaluationScores"]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores": [[84, 5, 1, "id1", "blipp_score"], [84, 2, 1, "id3", "bounds"], [84, 5, 1, "", "criteria"], [84, 5, 1, "id0", "frizz_level"], [84, 2, 1, "id2", "higher_is_better"], [84, 2, 1, "id4", "store_best"]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, 1, 1, "", "DummyEvaluator"]], "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator": [[85, 5, 1, "id0", "criteria"], [85, 2, 1, "id1", "evaluate"], [85, 6, 1, "id2", "score"]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, 1, 1, "", "EvaluationScores"]], "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores": [[86, 2, 1, "id2", "bounds"], [86, 6, 1, "id0", "criteria"], [86, 2, 1, "id1", "higher_is_better"], [86, 2, 1, "id3", "store_best"]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, 4, 1, "", "BestScore"], [87, 1, 1, "", "Evaluator"], [87, 4, 1, "", "Iteration"], [87, 4, 1, "", "OutputIdentifier"], [87, 4, 1, "", "Score"]], "dacapo.experiments.tasks.evaluators.evaluator.Evaluator": [[87, 6, 1, "id1", "best_scores"], [87, 2, 1, "id8", "bounds"], [87, 2, 1, "id5", "compare"], [87, 6, 1, "", "criteria"], [87, 2, 1, "id0", "evaluate"], [87, 2, 1, "id3", "get_overall_best"], [87, 2, 1, "id4", "get_overall_best_parameters"], [87, 2, 1, "id7", "higher_is_better"], [87, 2, 1, "id2", "is_best"], [87, 6, 1, "", "score"], [87, 2, 1, "id6", "set_best"], [87, 2, 1, "id9", "store_best"]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, 1, 1, "", "InstanceEvaluationScores"]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores": [[89, 2, 1, "id4", "bounds"], [89, 5, 1, "", "criteria"], [89, 2, 1, "id3", "higher_is_better"], [89, 2, 1, "id5", "store_best"], [89, 6, 1, "id2", "voi"], [89, 5, 1, "id1", "voi_merge"], [89, 5, 1, "id0", "voi_split"]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, 1, 1, "", "InstanceEvaluator"], [90, 4, 1, "", "logger"], [90, 3, 1, "", "relabel"], [90, 3, 1, "", "voi"]], "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator": [[90, 5, 1, "id0", "criteria"], [90, 2, 1, "id1", "evaluate"], [90, 6, 1, "id2", "score"]], "dacapo.experiments.tasks.hot_distance_task": [[91, 1, 1, "", "HotDistanceTask"]], "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask": [[91, 2, 1, "", "__init__"], [91, 5, 1, "id3", "evaluator"], [91, 5, 1, "id1", "loss"], [91, 5, 1, "id2", "post_processor"], [91, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, 1, 1, "", "HotDistanceTaskConfig"]], "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig": [[92, 5, 1, "id1", "channels"], [92, 5, 1, "id2", "clip_distance"], [92, 5, 1, "id5", "mask_distances"], [92, 5, 1, "id4", "scale_factor"], [92, 5, 1, "id0", "task_type"], [92, 5, 1, "id3", "tol_distance"], [92, 2, 1, "", "verify"]], "dacapo.experiments.tasks.inner_distance_task": [[94, 1, 1, "", "InnerDistanceTask"]], "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask": [[94, 2, 1, "", "__init__"], [94, 5, 1, "id3", "evaluator"], [94, 5, 1, "id1", "loss"], [94, 5, 1, "id2", "post_processor"], [94, 5, 1, "id0", "predictor"], [94, 5, 1, "", "task_config"]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, 1, 1, "", "InnerDistanceTaskConfig"]], "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig": [[95, 5, 1, "id0", "channels"], [95, 5, 1, "id1", "clip_distance"], [95, 5, 1, "id3", "scale_factor"], [95, 5, 1, "", "task_type"], [95, 5, 1, "id2", "tol_distance"]], "dacapo.experiments.tasks.losses": [[99, 1, 1, "", "AffinitiesLoss"], [99, 1, 1, "", "DummyLoss"], [99, 1, 1, "", "HotDistanceLoss"], [99, 1, 1, "", "Loss"], [99, 1, 1, "", "MSELoss"], [96, 0, 0, "-", "affinities_loss"], [97, 0, 0, "-", "dummy_loss"], [98, 0, 0, "-", "hot_distance_loss"], [100, 0, 0, "-", "loss"], [101, 0, 0, "-", "mse_loss"]], "dacapo.experiments.tasks.losses.AffinitiesLoss": [[99, 2, 1, "id5", "compute"], [99, 5, 1, "id4", "lsds_to_affs_weight_ratio"], [99, 5, 1, "id3", "num_affinities"]], "dacapo.experiments.tasks.losses.DummyLoss": [[99, 2, 1, "id0", "compute"], [99, 5, 1, "", "name"]], "dacapo.experiments.tasks.losses.HotDistanceLoss": [[99, 2, 1, "id6", "compute"], [99, 2, 1, "id8", "distance_loss"], [99, 2, 1, "id7", "hot_loss"], [99, 2, 1, "id9", "split"]], "dacapo.experiments.tasks.losses.Loss": [[99, 2, 1, "id2", "compute"]], "dacapo.experiments.tasks.losses.MSELoss": [[99, 2, 1, "id1", "compute"]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, 1, 1, "", "AffinitiesLoss"]], "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss": [[96, 2, 1, "id2", "compute"], [96, 5, 1, "id1", "lsds_to_affs_weight_ratio"], [96, 5, 1, "id0", "num_affinities"]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, 1, 1, "", "DummyLoss"]], "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss": [[97, 2, 1, "id0", "compute"], [97, 5, 1, "", "name"]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, 1, 1, "", "HotDistanceLoss"]], "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss": [[98, 2, 1, "id0", "compute"], [98, 2, 1, "id2", "distance_loss"], [98, 2, 1, "id1", "hot_loss"], [98, 2, 1, "id3", "split"]], "dacapo.experiments.tasks.losses.loss": [[100, 1, 1, "", "Loss"]], "dacapo.experiments.tasks.losses.loss.Loss": [[100, 2, 1, "id0", "compute"]], "dacapo.experiments.tasks.losses.mse_loss": [[101, 1, 1, "", "MSELoss"]], "dacapo.experiments.tasks.losses.mse_loss.MSELoss": [[101, 2, 1, "id0", "compute"]], "dacapo.experiments.tasks.one_hot_task": [[102, 1, 1, "", "OneHotTask"]], "dacapo.experiments.tasks.one_hot_task.OneHotTask": [[102, 2, 1, "", "create_model"], [102, 5, 1, "", "evaluator"], [102, 5, 1, "", "loss"], [102, 5, 1, "", "post_processor"], [102, 5, 1, "", "predictor"], [102, 5, 1, "", "weights"]], "dacapo.experiments.tasks.one_hot_task_config": [[103, 1, 1, "", "OneHotTaskConfig"]], "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig": [[103, 2, 1, "", "None"], [103, 5, 1, "id1", "classes"], [103, 5, 1, "id0", "task_type"]], "dacapo.experiments.tasks.post_processors": [[108, 1, 1, "", "ArgmaxPostProcessor"], [108, 1, 1, "", "ArgmaxPostProcessorParameters"], [108, 1, 1, "", "DummyPostProcessor"], [108, 1, 1, "", "DummyPostProcessorParameters"], [108, 1, 1, "", "PostProcessor"], [108, 1, 1, "", "PostProcessorParameters"], [108, 1, 1, "", "ThresholdPostProcessor"], [108, 1, 1, "", "ThresholdPostProcessorParameters"], [108, 1, 1, "", "WatershedPostProcessor"], [108, 1, 1, "", "WatershedPostProcessorParameters"], [104, 0, 0, "-", "argmax_post_processor"], [105, 0, 0, "-", "argmax_post_processor_parameters"], [106, 0, 0, "-", "dummy_post_processor"], [107, 0, 0, "-", "dummy_post_processor_parameters"], [109, 0, 0, "-", "post_processor"], [110, 0, 0, "-", "post_processor_parameters"], [111, 0, 0, "-", "threshold_post_processor"], [112, 0, 0, "-", "threshold_post_processor_parameters"], [113, 0, 0, "-", "watershed_post_processor"], [114, 0, 0, "-", "watershed_post_processor_parameters"]], "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor": [[108, 2, 1, "id14", "enumerate_parameters"], [108, 5, 1, "", "prediction_array"], [108, 2, 1, "id16", "process"], [108, 2, 1, "id15", "set_prediction"]], "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters": [[108, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.DummyPostProcessor": [[108, 5, 1, "id0", "detection_threshold"], [108, 2, 1, "id1", "enumerate_parameters"], [108, 2, 1, "id3", "process"], [108, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters": [[108, 5, 1, "id4", "min_size"], [108, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.PostProcessor": [[108, 2, 1, "id7", "enumerate_parameters"], [108, 5, 1, "", "prediction_array_identifier"], [108, 2, 1, "id9", "process"], [108, 2, 1, "id8", "set_prediction"]], "dacapo.experiments.tasks.post_processors.PostProcessorParameters": [[108, 5, 1, "id5", "id"], [108, 6, 1, "id6", "parameter_names"]], "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor": [[108, 2, 1, "id10", "enumerate_parameters"], [108, 5, 1, "", "prediction_array"], [108, 5, 1, "", "prediction_array_identifier"], [108, 2, 1, "id12", "process"], [108, 2, 1, "id11", "set_prediction"]], "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters": [[108, 5, 1, "id13", "threshold"]], "dacapo.experiments.tasks.post_processors.WatershedPostProcessor": [[108, 2, 1, "id18", "enumerate_parameters"], [108, 5, 1, "id17", "offsets"], [108, 2, 1, "id20", "process"], [108, 2, 1, "id19", "set_prediction"]], "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters": [[108, 5, 1, "id21", "bias"], [108, 5, 1, "id22", "context"], [108, 5, 1, "", "min_size"], [108, 5, 1, "", "offsets"], [108, 5, 1, "", "sigma"], [108, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, 1, 1, "", "ArgmaxPostProcessor"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor": [[104, 2, 1, "id0", "enumerate_parameters"], [104, 5, 1, "", "prediction_array"], [104, 2, 1, "id2", "process"], [104, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, 1, 1, "", "ArgmaxPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters": [[105, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, 1, 1, "", "DummyPostProcessor"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor": [[106, 5, 1, "id0", "detection_threshold"], [106, 2, 1, "id1", "enumerate_parameters"], [106, 2, 1, "id3", "process"], [106, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, 1, 1, "", "DummyPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters": [[107, 5, 1, "id0", "min_size"], [107, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, 1, 1, "", "PostProcessor"]], "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor": [[109, 2, 1, "id0", "enumerate_parameters"], [109, 5, 1, "", "prediction_array_identifier"], [109, 2, 1, "id2", "process"], [109, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, 1, 1, "", "PostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters": [[110, 5, 1, "id0", "id"], [110, 6, 1, "id1", "parameter_names"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, 1, 1, "", "ThresholdPostProcessor"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor": [[111, 2, 1, "id0", "enumerate_parameters"], [111, 5, 1, "", "prediction_array"], [111, 5, 1, "", "prediction_array_identifier"], [111, 2, 1, "id2", "process"], [111, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, 1, 1, "", "ThresholdPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters": [[112, 5, 1, "id0", "threshold"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, 1, 1, "", "WatershedPostProcessor"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor": [[113, 2, 1, "id1", "enumerate_parameters"], [113, 5, 1, "id0", "offsets"], [113, 2, 1, "id3", "process"], [113, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, 1, 1, "", "WatershedPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters": [[114, 5, 1, "id0", "bias"], [114, 5, 1, "id1", "context"], [114, 5, 1, "", "min_size"], [114, 5, 1, "", "offsets"], [114, 5, 1, "", "sigma"], [114, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors": [[119, 1, 1, "", "AffinitiesPredictor"], [119, 1, 1, "", "DistancePredictor"], [119, 1, 1, "", "DummyPredictor"], [119, 1, 1, "", "HotDistancePredictor"], [119, 1, 1, "", "InnerDistancePredictor"], [119, 1, 1, "", "OneHotPredictor"], [119, 1, 1, "", "Predictor"], [115, 0, 0, "-", "affinities_predictor"], [116, 0, 0, "-", "distance_predictor"], [117, 0, 0, "-", "dummy_predictor"], [118, 0, 0, "-", "hot_distance_predictor"], [120, 0, 0, "-", "inner_distance_predictor"], [121, 0, 0, "-", "one_hot_predictor"], [122, 0, 0, "-", "predictor"]], "dacapo.experiments.tasks.predictors.AffinitiesPredictor": [[119, 2, 1, "", "_grow_boundaries"], [119, 5, 1, "id27", "affs_weight_clipmax"], [119, 5, 1, "id26", "affs_weight_clipmin"], [119, 5, 1, "id30", "background_as_object"], [119, 2, 1, "id35", "create_model"], [119, 2, 1, "id36", "create_target"], [119, 2, 1, "id37", "create_weight"], [119, 6, 1, "id32", "dims"], [119, 5, 1, "", "downsample_lsds"], [119, 2, 1, "id31", "extractor"], [119, 5, 1, "id25", "grow_boundary_iterations"], [119, 2, 1, "id38", "gt_region_for_roi"], [119, 2, 1, "id34", "lsd_pad"], [119, 5, 1, "id29", "lsd_weight_clipmax"], [119, 5, 1, "id28", "lsd_weight_clipmin"], [119, 5, 1, "id23", "lsds"], [119, 5, 1, "id22", "neighborhood"], [119, 2, 1, "", "num_channels"], [119, 5, 1, "id24", "num_voxels"], [119, 6, 1, "id39", "output_array_type"], [119, 2, 1, "id33", "sigma"]], "dacapo.experiments.tasks.predictors.DistancePredictor": [[119, 5, 1, "id5", "channels"], [119, 5, 1, "id8", "clipmax"], [119, 5, 1, "id7", "clipmin"], [119, 2, 1, "id13", "create_distance_mask"], [119, 2, 1, "id9", "create_model"], [119, 2, 1, "id10", "create_target"], [119, 2, 1, "id11", "create_weight"], [119, 5, 1, "", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "", "epsilon"], [119, 2, 1, "id15", "gt_region_for_roi"], [119, 5, 1, "id6", "mask_distances"], [119, 5, 1, "", "max_distance"], [119, 5, 1, "", "norm"], [119, 6, 1, "id12", "output_array_type"], [119, 2, 1, "", "padding"], [119, 2, 1, "id14", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.DummyPredictor": [[119, 2, 1, "id1", "create_model"], [119, 2, 1, "id2", "create_target"], [119, 2, 1, "id3", "create_weight"], [119, 5, 1, "id0", "embedding_dims"], [119, 6, 1, "id4", "output_array_type"]], "dacapo.experiments.tasks.predictors.HotDistancePredictor": [[119, 5, 1, "id46", "channels"], [119, 6, 1, "", "classes"], [119, 2, 1, "id56", "create_distance_mask"], [119, 2, 1, "id53", "create_model"], [119, 2, 1, "id54", "create_target"], [119, 2, 1, "id55", "create_weight"], [119, 5, 1, "id48", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "id51", "epsilon"], [119, 2, 1, "id58", "gt_region_for_roi"], [119, 5, 1, "id49", "mask_distances"], [119, 5, 1, "id50", "max_distance"], [119, 5, 1, "id47", "norm"], [119, 6, 1, "", "output_array_type"], [119, 2, 1, "id59", "padding"], [119, 2, 1, "id57", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "id52", "threshold"]], "dacapo.experiments.tasks.predictors.InnerDistancePredictor": [[119, 2, 1, "", "__find_boundaries"], [119, 2, 1, "", "__normalize"], [119, 5, 1, "id40", "channels"], [119, 2, 1, "id41", "create_model"], [119, 2, 1, "id42", "create_target"], [119, 2, 1, "id43", "create_weight"], [119, 5, 1, "", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "", "epsilon"], [119, 2, 1, "id45", "gt_region_for_roi"], [119, 5, 1, "", "max_distance"], [119, 5, 1, "", "norm"], [119, 6, 1, "id44", "output_array_type"], [119, 2, 1, "", "padding"], [119, 2, 1, "", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.OneHotPredictor": [[119, 5, 1, "id16", "classes"], [119, 2, 1, "id17", "create_model"], [119, 2, 1, "id18", "create_target"], [119, 2, 1, "id19", "create_weight"], [119, 6, 1, "", "embedding_dims"], [119, 6, 1, "id20", "output_array_type"], [119, 2, 1, "", "process"]], "dacapo.experiments.tasks.predictors.Predictor": [[119, 2, 1, "", "create_model"], [119, 2, 1, "", "create_target"], [119, 2, 1, "", "create_weight"], [119, 2, 1, "id21", "gt_region_for_roi"], [119, 6, 1, "", "output_array_type"], [119, 2, 1, "", "padding"]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, 1, 1, "", "AffinitiesPredictor"]], "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor": [[115, 2, 1, "", "_grow_boundaries"], [115, 5, 1, "id5", "affs_weight_clipmax"], [115, 5, 1, "id4", "affs_weight_clipmin"], [115, 5, 1, "id8", "background_as_object"], [115, 2, 1, "id13", "create_model"], [115, 2, 1, "id14", "create_target"], [115, 2, 1, "id15", "create_weight"], [115, 6, 1, "id10", "dims"], [115, 5, 1, "", "downsample_lsds"], [115, 2, 1, "id9", "extractor"], [115, 5, 1, "id3", "grow_boundary_iterations"], [115, 2, 1, "id16", "gt_region_for_roi"], [115, 2, 1, "id12", "lsd_pad"], [115, 5, 1, "id7", "lsd_weight_clipmax"], [115, 5, 1, "id6", "lsd_weight_clipmin"], [115, 5, 1, "id1", "lsds"], [115, 5, 1, "id0", "neighborhood"], [115, 2, 1, "", "num_channels"], [115, 5, 1, "id2", "num_voxels"], [115, 6, 1, "id17", "output_array_type"], [115, 2, 1, "id11", "sigma"]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, 1, 1, "", "DistancePredictor"], [116, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor": [[116, 5, 1, "id0", "channels"], [116, 5, 1, "id3", "clipmax"], [116, 5, 1, "id2", "clipmin"], [116, 2, 1, "id8", "create_distance_mask"], [116, 2, 1, "id4", "create_model"], [116, 2, 1, "id5", "create_target"], [116, 2, 1, "id6", "create_weight"], [116, 5, 1, "", "dt_scale_factor"], [116, 6, 1, "", "embedding_dims"], [116, 5, 1, "", "epsilon"], [116, 2, 1, "id10", "gt_region_for_roi"], [116, 5, 1, "id1", "mask_distances"], [116, 5, 1, "", "max_distance"], [116, 5, 1, "", "norm"], [116, 6, 1, "id7", "output_array_type"], [116, 2, 1, "", "padding"], [116, 2, 1, "id9", "process"], [116, 5, 1, "", "scale_factor"], [116, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, 1, 1, "", "DummyPredictor"]], "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor": [[117, 2, 1, "id1", "create_model"], [117, 2, 1, "id2", "create_target"], [117, 2, 1, "id3", "create_weight"], [117, 5, 1, "id0", "embedding_dims"], [117, 6, 1, "id4", "output_array_type"]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, 1, 1, "", "HotDistancePredictor"], [118, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor": [[118, 5, 1, "id0", "channels"], [118, 6, 1, "", "classes"], [118, 2, 1, "id10", "create_distance_mask"], [118, 2, 1, "id7", "create_model"], [118, 2, 1, "id8", "create_target"], [118, 2, 1, "id9", "create_weight"], [118, 5, 1, "id2", "dt_scale_factor"], [118, 6, 1, "", "embedding_dims"], [118, 5, 1, "id5", "epsilon"], [118, 2, 1, "id12", "gt_region_for_roi"], [118, 5, 1, "id3", "mask_distances"], [118, 5, 1, "id4", "max_distance"], [118, 5, 1, "id1", "norm"], [118, 6, 1, "", "output_array_type"], [118, 2, 1, "id13", "padding"], [118, 2, 1, "id11", "process"], [118, 5, 1, "", "scale_factor"], [118, 5, 1, "id6", "threshold"]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, 1, 1, "", "InnerDistancePredictor"], [120, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor": [[120, 2, 1, "", "__find_boundaries"], [120, 2, 1, "", "__normalize"], [120, 5, 1, "id0", "channels"], [120, 2, 1, "id1", "create_model"], [120, 2, 1, "id2", "create_target"], [120, 2, 1, "id3", "create_weight"], [120, 5, 1, "", "dt_scale_factor"], [120, 6, 1, "", "embedding_dims"], [120, 5, 1, "", "epsilon"], [120, 2, 1, "id5", "gt_region_for_roi"], [120, 5, 1, "", "max_distance"], [120, 5, 1, "", "norm"], [120, 6, 1, "id4", "output_array_type"], [120, 2, 1, "", "padding"], [120, 2, 1, "", "process"], [120, 5, 1, "", "scale_factor"], [120, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, 1, 1, "", "OneHotPredictor"], [121, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor": [[121, 5, 1, "id0", "classes"], [121, 2, 1, "id1", "create_model"], [121, 2, 1, "id2", "create_target"], [121, 2, 1, "id3", "create_weight"], [121, 6, 1, "", "embedding_dims"], [121, 6, 1, "id4", "output_array_type"], [121, 2, 1, "", "process"]], "dacapo.experiments.tasks.predictors.predictor": [[122, 1, 1, "", "Predictor"]], "dacapo.experiments.tasks.predictors.predictor.Predictor": [[122, 2, 1, "", "create_model"], [122, 2, 1, "", "create_target"], [122, 2, 1, "", "create_weight"], [122, 2, 1, "id0", "gt_region_for_roi"], [122, 6, 1, "", "output_array_type"], [122, 2, 1, "", "padding"]], "dacapo.experiments.tasks.pretrained_task": [[123, 1, 1, "", "PretrainedTask"]], "dacapo.experiments.tasks.pretrained_task.PretrainedTask": [[123, 2, 1, "id1", "create_model"], [123, 5, 1, "", "evaluator"], [123, 5, 1, "", "loss"], [123, 5, 1, "", "post_processor"], [123, 5, 1, "", "predictor"], [123, 5, 1, "id0", "weights"]], "dacapo.experiments.tasks.pretrained_task_config": [[124, 1, 1, "", "PretrainedTaskConfig"]], "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig": [[124, 5, 1, "id0", "sub_task_config"], [124, 5, 1, "", "task_type"], [124, 2, 1, "", "verify"], [124, 5, 1, "id1", "weights"]], "dacapo.experiments.tasks.task": [[125, 1, 1, "", "Task"]], "dacapo.experiments.tasks.task.Task": [[125, 2, 1, "", "create_model"], [125, 6, 1, "", "evaluation_scores"], [125, 5, 1, "", "evaluator"], [125, 5, 1, "", "loss"], [125, 6, 1, "", "parameters"], [125, 5, 1, "", "post_processor"], [125, 5, 1, "", "predictor"]], "dacapo.experiments.tasks.task_config": [[126, 1, 1, "", "TaskConfig"]], "dacapo.experiments.tasks.task_config.TaskConfig": [[126, 5, 1, "id0", "name"], [126, 2, 1, "id1", "verify"]], "dacapo.experiments.trainers": [[138, 1, 1, "", "AugmentConfig"], [138, 1, 1, "", "DummyTrainer"], [138, 1, 1, "", "DummyTrainerConfig"], [138, 1, 1, "", "GunpowderTrainer"], [138, 1, 1, "", "GunpowderTrainerConfig"], [138, 1, 1, "", "Trainer"], [138, 1, 1, "", "TrainerConfig"], [127, 0, 0, "-", "dummy_trainer"], [128, 0, 0, "-", "dummy_trainer_config"], [132, 0, 0, "-", "gp_augments"], [136, 0, 0, "-", "gunpowder_trainer"], [137, 0, 0, "-", "gunpowder_trainer_config"], [139, 0, 0, "-", "optimizers"], [140, 0, 0, "-", "trainer"], [141, 0, 0, "-", "trainer_config"]], "dacapo.experiments.trainers.AugmentConfig": [[138, 5, 1, "", "_gt_key"], [138, 5, 1, "", "_mask_key"], [138, 5, 1, "", "_raw_key"], [138, 2, 1, "id32", "node"]], "dacapo.experiments.trainers.DummyTrainer": [[138, 2, 1, "", "__enter__"], [138, 2, 1, "", "__exit__"], [138, 2, 1, "", "__init__"], [138, 5, 1, "id10", "batch_size"], [138, 2, 1, "id13", "build_batch_provider"], [138, 2, 1, "id14", "can_train"], [138, 2, 1, "id12", "create_optimizer"], [138, 2, 1, "", "iterate"], [138, 5, 1, "", "iteration"], [138, 5, 1, "id9", "learning_rate"], [138, 5, 1, "id11", "mirror_augment"]], "dacapo.experiments.trainers.DummyTrainerConfig": [[138, 5, 1, "id7", "mirror_augment"], [138, 5, 1, "", "trainer_type"], [138, 2, 1, "id8", "verify"]], "dacapo.experiments.trainers.GunpowderTrainer": [[138, 2, 1, "", "__enter__"], [138, 2, 1, "", "__exit__"], [138, 2, 1, "", "__iter__"], [138, 5, 1, "id27", "augments"], [138, 5, 1, "id22", "batch_size"], [138, 2, 1, "", "build_batch_provider"], [138, 2, 1, "", "can_train"], [138, 5, 1, "id29", "clip_raw"], [138, 2, 1, "", "create_optimizer"], [138, 5, 1, "", "gt_min_reject"], [138, 2, 1, "", "iterate"], [138, 5, 1, "", "iteration"], [138, 5, 1, "id21", "learning_rate"], [138, 5, 1, "id28", "mask_integral_downsample_factor"], [138, 5, 1, "id26", "min_masked"], [138, 2, 1, "id31", "next"], [138, 5, 1, "id23", "num_data_fetchers"], [138, 5, 1, "id24", "print_profiling"], [138, 5, 1, "id30", "scheduler"], [138, 5, 1, "id25", "snapshot_iteration"], [138, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.trainers.GunpowderTrainerConfig": [[138, 5, 1, "id17", "augments"], [138, 5, 1, "id20", "clip_raw"], [138, 5, 1, "", "gt_min_reject"], [138, 5, 1, "id19", "min_masked"], [138, 5, 1, "id16", "num_data_fetchers"], [138, 5, 1, "id18", "snapshot_interval"], [138, 5, 1, "id15", "trainer_type"]], "dacapo.experiments.trainers.Trainer": [[138, 5, 1, "id1", "batch_size"], [138, 2, 1, "", "build_batch_provider"], [138, 2, 1, "", "can_train"], [138, 2, 1, "", "create_optimizer"], [138, 2, 1, "", "iterate"], [138, 5, 1, "id0", "iteration"], [138, 5, 1, "id2", "learning_rate"]], "dacapo.experiments.trainers.TrainerConfig": [[138, 5, 1, "id4", "batch_size"], [138, 5, 1, "id5", "learning_rate"], [138, 5, 1, "id3", "name"], [138, 2, 1, "id6", "verify"]], "dacapo.experiments.trainers.dummy_trainer": [[127, 1, 1, "", "DummyTrainer"]], "dacapo.experiments.trainers.dummy_trainer.DummyTrainer": [[127, 2, 1, "", "__enter__"], [127, 2, 1, "", "__exit__"], [127, 2, 1, "", "__init__"], [127, 5, 1, "id1", "batch_size"], [127, 2, 1, "id4", "build_batch_provider"], [127, 2, 1, "id5", "can_train"], [127, 2, 1, "id3", "create_optimizer"], [127, 2, 1, "", "iterate"], [127, 5, 1, "", "iteration"], [127, 5, 1, "id0", "learning_rate"], [127, 5, 1, "id2", "mirror_augment"]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, 1, 1, "", "DummyTrainerConfig"]], "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig": [[128, 5, 1, "id0", "mirror_augment"], [128, 5, 1, "", "trainer_type"], [128, 2, 1, "id1", "verify"]], "dacapo.experiments.trainers.gp_augments": [[132, 1, 1, "", "AugmentConfig"], [132, 1, 1, "", "ElasticAugmentConfig"], [132, 1, 1, "", "GammaAugmentConfig"], [132, 1, 1, "", "IntensityAugmentConfig"], [132, 1, 1, "", "IntensityScaleShiftAugmentConfig"], [132, 1, 1, "", "SimpleAugmentConfig"], [129, 0, 0, "-", "augment_config"], [130, 0, 0, "-", "elastic_config"], [131, 0, 0, "-", "gamma_config"], [133, 0, 0, "-", "intensity_config"], [134, 0, 0, "-", "intensity_scale_shift_config"], [135, 0, 0, "-", "simple_config"]], "dacapo.experiments.trainers.gp_augments.AugmentConfig": [[132, 5, 1, "", "_gt_key"], [132, 5, 1, "", "_mask_key"], [132, 5, 1, "", "_raw_key"], [132, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 5, 1, "id2", "control_point_displacement_sigma"], [132, 5, 1, "id1", "control_point_spacing"], [132, 2, 1, "id6", "node"], [132, 5, 1, "id3", "rotation_interval"], [132, 5, 1, "id4", "subsample"], [132, 5, 1, "id5", "uniform_3d_rotation"]], "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig": [[132, 5, 1, "id8", "gamma_range"], [132, 2, 1, "id9", "node"]], "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 5, 1, "id12", "clip"], [132, 2, 1, "id13", "node"], [132, 5, 1, "id10", "scale"], [132, 5, 1, "id11", "shift"]], "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig": [[132, 2, 1, "id16", "node"], [132, 5, 1, "id14", "scale"], [132, 5, 1, "id15", "shift"]], "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 2, 1, "id7", "node"]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, 1, 1, "", "AugmentConfig"]], "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig": [[129, 5, 1, "", "_gt_key"], [129, 5, 1, "", "_mask_key"], [129, 5, 1, "", "_raw_key"], [129, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, 1, 1, "", "ElasticAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig": [[130, 5, 1, "", "augmentation_probability"], [130, 5, 1, "id1", "control_point_displacement_sigma"], [130, 5, 1, "id0", "control_point_spacing"], [130, 2, 1, "id5", "node"], [130, 5, 1, "id2", "rotation_interval"], [130, 5, 1, "id3", "subsample"], [130, 5, 1, "id4", "uniform_3d_rotation"]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, 1, 1, "", "GammaAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig": [[131, 5, 1, "id0", "gamma_range"], [131, 2, 1, "id1", "node"]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, 1, 1, "", "IntensityAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig": [[133, 5, 1, "", "augmentation_probability"], [133, 5, 1, "id2", "clip"], [133, 2, 1, "id3", "node"], [133, 5, 1, "id0", "scale"], [133, 5, 1, "id1", "shift"]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, 1, 1, "", "IntensityScaleShiftAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig": [[134, 2, 1, "id2", "node"], [134, 5, 1, "id0", "scale"], [134, 5, 1, "id1", "shift"]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, 1, 1, "", "SimpleAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig": [[135, 5, 1, "", "augmentation_probability"], [135, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, 1, 1, "", "GunpowderTrainer"], [136, 4, 1, "", "logger"]], "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer": [[136, 2, 1, "", "__enter__"], [136, 2, 1, "", "__exit__"], [136, 2, 1, "", "__iter__"], [136, 5, 1, "id6", "augments"], [136, 5, 1, "id1", "batch_size"], [136, 2, 1, "", "build_batch_provider"], [136, 2, 1, "", "can_train"], [136, 5, 1, "id8", "clip_raw"], [136, 2, 1, "", "create_optimizer"], [136, 5, 1, "", "gt_min_reject"], [136, 2, 1, "", "iterate"], [136, 5, 1, "", "iteration"], [136, 5, 1, "id0", "learning_rate"], [136, 5, 1, "id7", "mask_integral_downsample_factor"], [136, 5, 1, "id5", "min_masked"], [136, 2, 1, "id10", "next"], [136, 5, 1, "id2", "num_data_fetchers"], [136, 5, 1, "id3", "print_profiling"], [136, 5, 1, "id9", "scheduler"], [136, 5, 1, "id4", "snapshot_iteration"], [136, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, 1, 1, "", "GunpowderTrainerConfig"]], "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig": [[137, 5, 1, "id2", "augments"], [137, 5, 1, "id5", "clip_raw"], [137, 5, 1, "", "gt_min_reject"], [137, 5, 1, "id4", "min_masked"], [137, 5, 1, "id1", "num_data_fetchers"], [137, 5, 1, "id3", "snapshot_interval"], [137, 5, 1, "id0", "trainer_type"]], "dacapo.experiments.trainers.trainer": [[140, 1, 1, "", "Trainer"]], "dacapo.experiments.trainers.trainer.Trainer": [[140, 5, 1, "id1", "batch_size"], [140, 2, 1, "", "build_batch_provider"], [140, 2, 1, "", "can_train"], [140, 2, 1, "", "create_optimizer"], [140, 2, 1, "", "iterate"], [140, 5, 1, "id0", "iteration"], [140, 5, 1, "id2", "learning_rate"]], "dacapo.experiments.trainers.trainer_config": [[141, 1, 1, "", "TrainerConfig"]], "dacapo.experiments.trainers.trainer_config.TrainerConfig": [[141, 5, 1, "id1", "batch_size"], [141, 5, 1, "id2", "learning_rate"], [141, 5, 1, "id0", "name"], [141, 2, 1, "id3", "verify"]], "dacapo.experiments.training_iteration_stats": [[142, 1, 1, "", "TrainingIterationStats"]], "dacapo.experiments.training_iteration_stats.TrainingIterationStats": [[142, 5, 1, "id0", "iteration"], [142, 5, 1, "id1", "loss"], [142, 5, 1, "id2", "time"]], "dacapo.experiments.training_stats": [[143, 1, 1, "", "TrainingStats"], [143, 4, 1, "", "logger"]], "dacapo.experiments.training_stats.TrainingStats": [[143, 2, 1, "", "add_iteration_stats"], [143, 2, 1, "", "delete_after"], [143, 5, 1, "id0", "iteration_stats"], [143, 2, 1, "id2", "to_xarray"], [143, 2, 1, "id1", "trained_until"]], "dacapo.experiments.validation_iteration_scores": [[144, 1, 1, "", "ValidationIterationScores"]], "dacapo.experiments.validation_iteration_scores.ValidationIterationScores": [[144, 5, 1, "id0", "iteration"], [144, 5, 1, "id1", "scores"]], "dacapo.experiments.validation_scores": [[145, 1, 1, "", "ValidationScores"]], "dacapo.experiments.validation_scores.ValidationScores": [[145, 2, 1, "id5", "add_iteration_scores"], [145, 2, 1, "id8", "compare"], [145, 6, 1, "id9", "criteria"], [145, 5, 1, "id1", "datasets"], [145, 2, 1, "id6", "delete_after"], [145, 5, 1, "id2", "evaluation_scores"], [145, 2, 1, "id12", "get_best"], [145, 6, 1, "id10", "parameter_names"], [145, 5, 1, "id0", "parameters"], [145, 5, 1, "id3", "scores"], [145, 2, 1, "id4", "subscores"], [145, 2, 1, "id11", "to_xarray"], [145, 2, 1, "id7", "validated_until"]], "dacapo.ext": [[146, 1, 1, "", "NoSuchModule"]], "dacapo.ext.NoSuchModule": [[146, 5, 1, "", "__exception"], [146, 2, 1, "", "__getattr__"], [146, 5, 1, "", "__name"], [146, 5, 1, "", "__traceback_str"]], "dacapo.gp": [[152, 1, 1, "", "CopyMask"], [152, 1, 1, "", "DaCapoTargetFilter"], [152, 1, 1, "", "ElasticAugment"], [152, 1, 1, "", "GammaAugment"], [152, 1, 1, "", "GraphSource"], [152, 1, 1, "", "Product"], [152, 1, 1, "", "RejectIfEmpty"], [147, 0, 0, "-", "copy"], [148, 0, 0, "-", "dacapo_create_target"], [149, 0, 0, "-", "dacapo_points_source"], [150, 0, 0, "-", "elastic_augment_fuse"], [151, 0, 0, "-", "gamma_noise"], [153, 0, 0, "-", "product"], [154, 0, 0, "-", "reject_if_empty"]], "dacapo.gp.CopyMask": [[152, 5, 1, "id14", "array_key"], [152, 5, 1, "id15", "copy_key"], [152, 5, 1, "id16", "drop_channels"], [152, 2, 1, "id18", "prepare"], [152, 2, 1, "id19", "process"], [152, 2, 1, "id17", "setup"]], "dacapo.gp.DaCapoTargetFilter": [[152, 5, 1, "", "Predictor"], [152, 5, 1, "", "gt"], [152, 5, 1, "", "gt_key"], [152, 5, 1, "id2", "mask_key"], [152, 5, 1, "", "moving_counts"], [152, 5, 1, "", "predictor"], [152, 2, 1, "id4", "prepare"], [152, 2, 1, "id5", "process"], [152, 2, 1, "id3", "setup"], [152, 5, 1, "id0", "target_key"], [152, 5, 1, "id1", "weights_key"]], "dacapo.gp.ElasticAugment": [[152, 5, 1, "", "augmentation_probability"], [152, 5, 1, "", "control_point_displacement_sigma"], [152, 5, 1, "", "control_point_spacing"], [152, 5, 1, "", "do_augment"], [152, 2, 1, "", "prepare"], [152, 2, 1, "", "process"], [152, 5, 1, "", "rotation_max_amount"], [152, 5, 1, "", "rotation_start"], [152, 2, 1, "", "setup"], [152, 5, 1, "", "subsample"], [152, 5, 1, "", "target_rois"], [152, 5, 1, "", "transformations"], [152, 5, 1, "", "uniform_3d_rotation"]], "dacapo.gp.GammaAugment": [[152, 2, 1, "", "__augment"], [152, 5, 1, "id6", "arrays"], [152, 5, 1, "id8", "gamma_max"], [152, 5, 1, "id7", "gamma_min"], [152, 2, 1, "id10", "process"], [152, 2, 1, "id9", "setup"]], "dacapo.gp.GraphSource": [[152, 5, 1, "id21", "graph"], [152, 5, 1, "id20", "key"], [152, 2, 1, "id23", "provide"], [152, 2, 1, "id22", "setup"]], "dacapo.gp.Product": [[152, 2, 1, "", "prepare"], [152, 2, 1, "", "process"], [152, 2, 1, "", "setup"], [152, 5, 1, "id24", "x1_key"], [152, 5, 1, "id25", "x2_key"], [152, 5, 1, "id26", "y_key"]], "dacapo.gp.RejectIfEmpty": [[152, 5, 1, "", "background"], [152, 5, 1, "", "gt"], [152, 5, 1, "id13", "p"], [152, 2, 1, "", "provide"], [152, 2, 1, "", "setup"]], "dacapo.gp.copy": [[147, 1, 1, "", "CopyMask"]], "dacapo.gp.copy.CopyMask": [[147, 5, 1, "id0", "array_key"], [147, 5, 1, "id1", "copy_key"], [147, 5, 1, "id2", "drop_channels"], [147, 2, 1, "id4", "prepare"], [147, 2, 1, "id5", "process"], [147, 2, 1, "id3", "setup"]], "dacapo.gp.dacapo_create_target": [[148, 1, 1, "", "DaCapoTargetFilter"]], "dacapo.gp.dacapo_create_target.DaCapoTargetFilter": [[148, 5, 1, "", "Predictor"], [148, 5, 1, "", "gt"], [148, 5, 1, "", "gt_key"], [148, 5, 1, "id2", "mask_key"], [148, 5, 1, "", "moving_counts"], [148, 5, 1, "", "predictor"], [148, 2, 1, "id4", "prepare"], [148, 2, 1, "id5", "process"], [148, 2, 1, "id3", "setup"], [148, 5, 1, "id0", "target_key"], [148, 5, 1, "id1", "weights_key"]], "dacapo.gp.dacapo_points_source": [[149, 1, 1, "", "GraphSource"]], "dacapo.gp.dacapo_points_source.GraphSource": [[149, 5, 1, "id1", "graph"], [149, 5, 1, "id0", "key"], [149, 2, 1, "id3", "provide"], [149, 2, 1, "id2", "setup"]], "dacapo.gp.elastic_augment_fuse": [[150, 1, 1, "", "ElasticAugment"], [150, 4, 1, "", "logger"]], "dacapo.gp.elastic_augment_fuse.ElasticAugment": [[150, 5, 1, "", "augmentation_probability"], [150, 5, 1, "", "control_point_displacement_sigma"], [150, 5, 1, "", "control_point_spacing"], [150, 5, 1, "", "do_augment"], [150, 2, 1, "", "prepare"], [150, 2, 1, "", "process"], [150, 5, 1, "", "rotation_max_amount"], [150, 5, 1, "", "rotation_start"], [150, 2, 1, "", "setup"], [150, 5, 1, "", "subsample"], [150, 5, 1, "", "target_rois"], [150, 5, 1, "", "transformations"], [150, 5, 1, "", "uniform_3d_rotation"]], "dacapo.gp.gamma_noise": [[151, 1, 1, "", "GammaAugment"], [151, 4, 1, "", "logger"]], "dacapo.gp.gamma_noise.GammaAugment": [[151, 2, 1, "", "__augment"], [151, 5, 1, "id0", "arrays"], [151, 5, 1, "id2", "gamma_max"], [151, 5, 1, "id1", "gamma_min"], [151, 2, 1, "id4", "process"], [151, 2, 1, "id3", "setup"]], "dacapo.gp.product": [[153, 1, 1, "", "Product"]], "dacapo.gp.product.Product": [[153, 2, 1, "", "prepare"], [153, 2, 1, "", "process"], [153, 2, 1, "", "setup"], [153, 5, 1, "id0", "x1_key"], [153, 5, 1, "id1", "x2_key"], [153, 5, 1, "id2", "y_key"]], "dacapo.gp.reject_if_empty": [[154, 1, 1, "", "RejectIfEmpty"], [154, 4, 1, "", "logger"]], "dacapo.gp.reject_if_empty.RejectIfEmpty": [[154, 5, 1, "", "background"], [154, 5, 1, "", "gt"], [154, 5, 1, "id0", "p"], [154, 2, 1, "", "provide"], [154, 2, 1, "", "setup"]], "dacapo.options": [[156, 1, 1, "", "DaCapoConfig"], [156, 1, 1, "", "Options"], [156, 4, 1, "", "logger"]], "dacapo.options.DaCapoConfig": [[156, 5, 1, "id2", "compute_context"], [156, 5, 1, "id3", "mongo_db_host"], [156, 5, 1, "id4", "mongo_db_name"], [156, 5, 1, "id1", "runs_base_dir"], [156, 2, 1, "id5", "serialize"], [156, 5, 1, "id0", "type"]], "dacapo.options.Options": [[156, 2, 1, "", "__parse_options"], [156, 2, 1, "", "__parse_options_from_file"], [156, 2, 1, "id7", "config_file"], [156, 2, 1, "id6", "instance"]], "dacapo.plot": [[157, 4, 1, "", "RunInfo"], [157, 3, 1, "", "bokeh_plot_runs"], [157, 3, 1, "", "get_runs_info"], [157, 3, 1, "", "plot_runs"], [157, 3, 1, "", "smooth_values"]], "dacapo.predict": [[158, 4, 1, "", "logger"], [158, 3, 1, "", "predict"]], "dacapo.predict_local": [[159, 4, 1, "", "logger"], [159, 3, 1, "", "predict"]], "dacapo.store": [[160, 0, 0, "-", "array_store"], [161, 0, 0, "-", "config_store"], [162, 0, 0, "-", "conversion_hooks"], [163, 0, 0, "-", "converter"], [164, 0, 0, "-", "create_store"], [165, 0, 0, "-", "file_config_store"], [166, 0, 0, "-", "file_stats_store"], [168, 0, 0, "-", "local_array_store"], [169, 0, 0, "-", "local_weights_store"], [170, 0, 0, "-", "mongo_config_store"], [171, 0, 0, "-", "mongo_stats_store"], [172, 0, 0, "-", "stats_store"], [173, 0, 0, "-", "weights_store"]], "dacapo.store.array_store": [[160, 1, 1, "", "ArrayStore"], [160, 1, 1, "", "LocalArrayIdentifier"], [160, 1, 1, "", "LocalContainerIdentifier"]], "dacapo.store.array_store.ArrayStore": [[160, 5, 1, "", "container"], [160, 5, 1, "", "dataset"], [160, 2, 1, "", "remove"], [160, 2, 1, "", "snapshot_container"], [160, 2, 1, "", "validation_container"], [160, 2, 1, "", "validation_input_arrays"], [160, 2, 1, "", "validation_output_array"], [160, 2, 1, "", "validation_prediction_array"]], "dacapo.store.array_store.LocalArrayIdentifier": [[160, 5, 1, "id0", "container"], [160, 5, 1, "id1", "dataset"]], "dacapo.store.array_store.LocalContainerIdentifier": [[160, 2, 1, "", "array_identifier"], [160, 5, 1, "id2", "container"]], "dacapo.store.config_store": [[161, 1, 1, "", "ConfigStore"], [161, 7, 1, "", "DuplicateNameError"]], "dacapo.store.config_store.ConfigStore": [[161, 5, 1, "id6", "architectures"], [161, 5, 1, "id3", "arrays"], [161, 5, 1, "id2", "datasets"], [161, 5, 1, "id1", "datasplits"], [161, 2, 1, "id19", "delete_architecture_config"], [161, 2, 1, "id31", "delete_array_config"], [161, 2, 1, "id7", "delete_config"], [161, 2, 1, "id27", "delete_datasplit_config"], [161, 2, 1, "id11", "delete_run_config"], [161, 2, 1, "id15", "delete_task_config"], [161, 2, 1, "id23", "delete_trainer_config"], [161, 2, 1, "id17", "retrieve_architecture_config"], [161, 2, 1, "id18", "retrieve_architecture_config_names"], [161, 2, 1, "id29", "retrieve_array_config"], [161, 2, 1, "id30", "retrieve_array_config_names"], [161, 2, 1, "id25", "retrieve_datasplit_config"], [161, 2, 1, "id26", "retrieve_datasplit_config_names"], [161, 2, 1, "id9", "retrieve_run_config"], [161, 2, 1, "id10", "retrieve_run_config_names"], [161, 2, 1, "id13", "retrieve_task_config"], [161, 2, 1, "id14", "retrieve_task_config_names"], [161, 2, 1, "id21", "retrieve_trainer_config"], [161, 2, 1, "id22", "retrieve_trainer_config_names"], [161, 5, 1, "id0", "runs"], [161, 2, 1, "id16", "store_architecture_config"], [161, 2, 1, "id28", "store_array_config"], [161, 2, 1, "id24", "store_datasplit_config"], [161, 2, 1, "id8", "store_run_config"], [161, 2, 1, "id12", "store_task_config"], [161, 2, 1, "id20", "store_trainer_config"], [161, 5, 1, "id4", "tasks"], [161, 5, 1, "id5", "trainers"]], "dacapo.store.config_store.DuplicateNameError": [[161, 2, 1, "", "__str__"], [161, 5, 1, "", "message"]], "dacapo.store.conversion_hooks": [[162, 3, 1, "", "cls_fun"], [162, 3, 1, "", "register_hierarchy_hooks"], [162, 3, 1, "", "register_hooks"]], "dacapo.store.converter": [[163, 1, 1, "", "TypedConverter"], [163, 4, 1, "", "converter"]], "dacapo.store.converter.TypedConverter": [[163, 2, 1, "", "__typed_structure"], [163, 2, 1, "", "__typed_unstructure"], [163, 5, 1, "", "hooks"], [163, 2, 1, "id0", "register_hierarchy"]], "dacapo.store.create_store": [[164, 3, 1, "", "create_array_store"], [164, 3, 1, "", "create_config_store"], [164, 3, 1, "", "create_stats_store"], [164, 3, 1, "", "create_weights_store"]], "dacapo.store.file_config_store": [[165, 1, 1, "", "FileConfigStore"], [165, 4, 1, "", "logger"]], "dacapo.store.file_config_store.FileConfigStore": [[165, 2, 1, "", "__load"], [165, 2, 1, "", "__save_insert"], [165, 6, 1, "", "architectures"], [165, 6, 1, "", "arrays"], [165, 6, 1, "", "datasets"], [165, 6, 1, "", "datasplits"], [165, 2, 1, "", "delete_config"], [165, 5, 1, "id0", "path"], [165, 2, 1, "id8", "retrieve_architecture_config"], [165, 2, 1, "id9", "retrieve_architecture_config_names"], [165, 2, 1, "id17", "retrieve_array_config"], [165, 2, 1, "id18", "retrieve_array_config_names"], [165, 2, 1, "id14", "retrieve_datasplit_config"], [165, 2, 1, "id15", "retrieve_datasplit_config_names"], [165, 2, 1, "id2", "retrieve_run_config"], [165, 2, 1, "id3", "retrieve_run_config_names"], [165, 2, 1, "id5", "retrieve_task_config"], [165, 2, 1, "id6", "retrieve_task_config_names"], [165, 2, 1, "id11", "retrieve_trainer_config"], [165, 2, 1, "id12", "retrieve_trainer_config_names"], [165, 6, 1, "", "runs"], [165, 2, 1, "id7", "store_architecture_config"], [165, 2, 1, "id16", "store_array_config"], [165, 2, 1, "id13", "store_datasplit_config"], [165, 2, 1, "id1", "store_run_config"], [165, 2, 1, "id4", "store_task_config"], [165, 2, 1, "id10", "store_trainer_config"], [165, 6, 1, "", "tasks"], [165, 6, 1, "", "trainers"], [165, 6, 1, "", "users"]], "dacapo.store.file_stats_store": [[166, 1, 1, "", "FileStatsStore"], [166, 4, 1, "", "logger"]], "dacapo.store.file_stats_store.FileStatsStore": [[166, 2, 1, "", "delete_training_stats"], [166, 5, 1, "", "path"], [166, 2, 1, "", "retrieve_training_stats"], [166, 2, 1, "", "retrieve_validation_iteration_scores"], [166, 2, 1, "", "store_training_stats"], [166, 2, 1, "", "store_validation_iteration_scores"]], "dacapo.store.local_array_store": [[168, 1, 1, "", "LocalArrayStore"], [168, 4, 1, "", "logger"]], "dacapo.store.local_array_store.LocalArrayStore": [[168, 5, 1, "id0", "basedir"], [168, 2, 1, "id1", "best_validation_array"], [168, 2, 1, "id7", "remove"], [168, 2, 1, "id5", "snapshot_container"], [168, 2, 1, "id6", "validation_container"], [168, 2, 1, "id4", "validation_input_arrays"], [168, 2, 1, "id3", "validation_output_array"], [168, 2, 1, "id2", "validation_prediction_array"]], "dacapo.store.local_weights_store": [[169, 1, 1, "", "LocalWeightsStore"], [169, 4, 1, "", "logger"]], "dacapo.store.local_weights_store.LocalWeightsStore": [[169, 5, 1, "id0", "basedir"], [169, 2, 1, "id1", "latest_iteration"], [169, 2, 1, "id4", "remove"], [169, 2, 1, "id6", "retrieve_best"], [169, 2, 1, "id3", "retrieve_weights"], [169, 2, 1, "id5", "store_best"], [169, 2, 1, "id2", "store_weights"]], "dacapo.store.mongo_config_store": [[170, 1, 1, "", "MongoConfigStore"], [170, 4, 1, "", "logger"]], "dacapo.store.mongo_config_store.MongoConfigStore": [[170, 2, 1, "", "__init_db"], [170, 2, 1, "", "__open_collections"], [170, 2, 1, "", "__same_doc"], [170, 2, 1, "", "__save_insert"], [170, 5, 1, "", "architectures"], [170, 5, 1, "", "arrays"], [170, 5, 1, "id2", "client"], [170, 5, 1, "id3", "database"], [170, 5, 1, "", "datasets"], [170, 5, 1, "", "datasplits"], [170, 5, 1, "id0", "db_host"], [170, 5, 1, "id1", "db_name"], [170, 2, 1, "", "delete_config"], [170, 2, 1, "id6", "delete_run_config"], [170, 2, 1, "id12", "retrieve_architecture_config"], [170, 2, 1, "id13", "retrieve_architecture_config_names"], [170, 2, 1, "id24", "retrieve_array_config"], [170, 2, 1, "id25", "retrieve_array_config_names"], [170, 2, 1, "id21", "retrieve_dataset_config"], [170, 2, 1, "id22", "retrieve_dataset_config_names"], [170, 2, 1, "id18", "retrieve_datasplit_config"], [170, 2, 1, "id19", "retrieve_datasplit_config_names"], [170, 2, 1, "id5", "retrieve_run_config"], [170, 2, 1, "id7", "retrieve_run_config_names"], [170, 2, 1, "id9", "retrieve_task_config"], [170, 2, 1, "id10", "retrieve_task_config_names"], [170, 2, 1, "id15", "retrieve_trainer_config"], [170, 2, 1, "id16", "retrieve_trainer_config_names"], [170, 5, 1, "", "runs"], [170, 2, 1, "id11", "store_architecture_config"], [170, 2, 1, "id23", "store_array_config"], [170, 2, 1, "id20", "store_dataset_config"], [170, 2, 1, "id17", "store_datasplit_config"], [170, 2, 1, "id4", "store_run_config"], [170, 2, 1, "id8", "store_task_config"], [170, 2, 1, "id14", "store_trainer_config"], [170, 5, 1, "", "tasks"], [170, 5, 1, "", "trainers"], [170, 5, 1, "", "users"]], "dacapo.store.mongo_stats_store": [[171, 1, 1, "", "MongoStatsStore"], [171, 4, 1, "", "logger"]], "dacapo.store.mongo_stats_store.MongoStatsStore": [[171, 5, 1, "id2", "client"], [171, 5, 1, "id3", "database"], [171, 5, 1, "id0", "db_host"], [171, 5, 1, "id1", "db_name"], [171, 2, 1, "id8", "delete_training_stats"], [171, 2, 1, "", "delete_validation_scores"], [171, 2, 1, "id5", "retrieve_training_stats"], [171, 2, 1, "id7", "retrieve_validation_iteration_scores"], [171, 2, 1, "id4", "store_training_stats"], [171, 2, 1, "id6", "store_validation_iteration_scores"], [171, 5, 1, "", "training_stats"], [171, 5, 1, "", "validation_scores"]], "dacapo.store.stats_store": [[172, 1, 1, "", "StatsStore"]], "dacapo.store.stats_store.StatsStore": [[172, 2, 1, "id4", "delete_training_stats"], [172, 2, 1, "id1", "retrieve_training_stats"], [172, 2, 1, "id3", "retrieve_validation_iteration_scores"], [172, 2, 1, "id0", "store_training_stats"], [172, 2, 1, "id2", "store_validation_iteration_scores"]], "dacapo.store.weights_store": [[173, 1, 1, "", "Weights"], [173, 1, 1, "", "WeightsStore"]], "dacapo.store.weights_store.Weights": [[173, 2, 1, "", "__init__"], [173, 5, 1, "id1", "model"], [173, 5, 1, "id0", "optimizer"]], "dacapo.store.weights_store.WeightsStore": [[173, 2, 1, "id4", "latest_iteration"], [173, 2, 1, "id3", "load_best"], [173, 2, 1, "id2", "load_weights"], [173, 2, 1, "id7", "remove"], [173, 2, 1, "id8", "retrieve_best"], [173, 2, 1, "id6", "retrieve_weights"], [173, 2, 1, "id5", "store_weights"]], "dacapo.tmp": [[174, 3, 1, "", "create_from_identifier"], [174, 3, 1, "", "gp_to_funlib_array"], [174, 3, 1, "", "np_to_funlib_array"], [174, 3, 1, "", "num_channels_from_array"], [174, 3, 1, "", "open_from_identifier"]], "dacapo.train": [[175, 4, 1, "", "logger"], [175, 3, 1, "", "train"], [175, 3, 1, "", "train_run"]], "dacapo.utils": [[176, 0, 0, "-", "affinities"], [177, 0, 0, "-", "array_utils"], [178, 0, 0, "-", "balance_weights"], [180, 0, 0, "-", "pipeline"], [181, 0, 0, "-", "view"], [182, 0, 0, "-", "voi"]], "dacapo.utils.affinities": [[176, 4, 1, "", "logger"], [176, 3, 1, "", "padding"], [176, 3, 1, "", "seg_to_affgraph"]], "dacapo.utils.array_utils": [[177, 3, 1, "", "save_ndarray"], [177, 3, 1, "", "to_ndarray"]], "dacapo.utils.balance_weights": [[178, 3, 1, "", "balance_weights"]], "dacapo.utils.pipeline": [[180, 1, 1, "", "CreatePoints"], [180, 1, 1, "", "DilatePoints"], [180, 1, 1, "", "ExpandLabels"], [180, 1, 1, "", "MakeRaw"], [180, 1, 1, "", "RandomDilateLabels"], [180, 1, 1, "", "Relabel"], [180, 1, 1, "", "ZerosSource"], [180, 3, 1, "", "random_source_pipeline"]], "dacapo.utils.pipeline.CreatePoints": [[180, 5, 1, "id0", "labels"], [180, 5, 1, "id1", "num_points"], [180, 2, 1, "id2", "process"]], "dacapo.utils.pipeline.DilatePoints": [[180, 5, 1, "id6", "dilations"], [180, 5, 1, "id5", "labels"], [180, 2, 1, "id7", "process"]], "dacapo.utils.pipeline.ExpandLabels": [[180, 5, 1, "id13", "background"], [180, 5, 1, "id12", "labels"], [180, 2, 1, "id14", "process"]], "dacapo.utils.pipeline.MakeRaw": [[180, 1, 1, "", "Pipeline"], [180, 5, 1, "", "gaussian_blur_args"], [180, 5, 1, "", "gaussian_noise_args"], [180, 5, 1, "", "gaussian_noise_lim"], [180, 5, 1, "", "inside_value"], [180, 5, 1, "", "labels"], [180, 5, 1, "", "membrane_like"], [180, 5, 1, "", "membrane_size"], [180, 2, 1, "id4", "process"], [180, 5, 1, "", "raw"], [180, 2, 1, "id3", "setup"]], "dacapo.utils.pipeline.MakeRaw.Pipeline": [[180, 5, 1, "", "gaussian_blur_args"], [180, 5, 1, "", "gaussian_noise_args"], [180, 5, 1, "", "gaussian_noise_lim"], [180, 5, 1, "", "inside_value"], [180, 5, 1, "", "labels"], [180, 5, 1, "", "membrane_like"], [180, 5, 1, "", "membrane_size"], [180, 5, 1, "", "raw"]], "dacapo.utils.pipeline.RandomDilateLabels": [[180, 5, 1, "id9", "dilations"], [180, 5, 1, "id8", "labels"], [180, 2, 1, "id10", "process"]], "dacapo.utils.pipeline.Relabel": [[180, 5, 1, "", "connectivity"], [180, 5, 1, "", "labels"], [180, 2, 1, "id11", "process"]], "dacapo.utils.pipeline.ZerosSource": [[180, 5, 1, "", "_spec"], [180, 5, 1, "id15", "key"], [180, 2, 1, "id17", "provide"], [180, 2, 1, "id16", "setup"]], "dacapo.utils.view": [[181, 1, 1, "", "BestScore"], [181, 1, 1, "", "NeuroglancerRunViewer"], [181, 3, 1, "", "add_scalar_layer"], [181, 3, 1, "", "add_seg_layer"], [181, 3, 1, "", "get_viewer"]], "dacapo.utils.view.BestScore": [[181, 5, 1, "id5", "array_store"], [181, 2, 1, "id8", "does_new_best_exist"], [181, 5, 1, "", "ds"], [181, 2, 1, "id7", "get_ds"], [181, 5, 1, "id2", "iteration"], [181, 5, 1, "id3", "parameter"], [181, 5, 1, "id0", "run"], [181, 5, 1, "id1", "score"], [181, 5, 1, "id6", "stats_store"], [181, 5, 1, "id4", "validation_parameters"]], "dacapo.utils.view.NeuroglancerRunViewer": [[181, 5, 1, "", "array_store"], [181, 5, 1, "id10", "best_score"], [181, 2, 1, "id13", "deprecated_start_neuroglancer"], [181, 5, 1, "id11", "embedded"], [181, 2, 1, "id17", "get_datasets"], [181, 5, 1, "", "gt"], [181, 5, 1, "", "most_recent_iteration"], [181, 2, 1, "id21", "new_validation_checker"], [181, 2, 1, "id16", "open_from_array_identitifier"], [181, 5, 1, "", "raw"], [181, 5, 1, "id9", "run"], [181, 5, 1, "", "run_thread"], [181, 5, 1, "", "segmentation"], [181, 2, 1, "id15", "start"], [181, 2, 1, "id14", "start_neuroglancer"], [181, 2, 1, "id23", "stop"], [181, 2, 1, "id18", "update_best_info"], [181, 2, 1, "id20", "update_best_layer"], [181, 2, 1, "id19", "update_neuroglancer"], [181, 2, 1, "id22", "update_with_new_validation_if_possible"], [181, 2, 1, "id12", "updated_neuroglancer_layer"], [181, 5, 1, "", "viewer"]], "dacapo.utils.voi": [[182, 3, 1, "", "contingency_table"], [182, 3, 1, "", "divide_columns"], [182, 3, 1, "", "divide_rows"], [182, 3, 1, "", "split_vi"], [182, 3, 1, "", "vi_tables"], [182, 3, 1, "", "voi"], [182, 3, 1, "", "xlogx"]], "dacapo.validate": [[183, 4, 1, "", "logger"], [183, 3, 1, "", "validate"], [183, 3, 1, "", "validate_run"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "data", "Python data"], "5": ["py", "attribute", "Python attribute"], "6": ["py", "property", "Python property"], "7": ["py", "exception", "Python exception"], "8": ["std", "cmdoption", "program option"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:data", "5": "py:attribute", "6": "py:property", "7": "py:exception", "8": "std:cmdoption"}, "terms": {"": [15, 17, 18, 21, 38, 47, 67, 68, 70, 83, 87, 88, 96, 97, 99, 104, 106, 108, 109, 113, 157, 173, 178, 188, 189, 192], "0": [3, 9, 10, 15, 17, 21, 24, 25, 27, 28, 32, 33, 38, 39, 59, 62, 67, 69, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 108, 109, 110, 112, 114, 115, 116, 118, 119, 120, 127, 130, 132, 133, 136, 138, 143, 145, 147, 148, 149, 150, 152, 154, 155, 158, 168, 169, 173, 176, 177, 178, 180, 181, 182, 183, 185, 186, 187, 192, 195], "0001": [192, 195], "006": 3, "02": 190, "02834": 190, "05": [115, 116, 118, 119, 120, 178, 192], "0b8956f13d7bdfe7b": 185, "0x7f2e4f8e9e80": 164, "0x7f8b1c0b3f30": 83, "1": [0, 3, 7, 10, 11, 13, 15, 17, 19, 20, 21, 22, 24, 25, 27, 28, 30, 32, 38, 39, 47, 49, 54, 56, 59, 67, 68, 74, 79, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109, 112, 114, 115, 116, 118, 119, 120, 130, 132, 133, 143, 147, 148, 149, 150, 152, 154, 155, 157, 158, 160, 169, 176, 178, 180, 181, 182, 184, 185, 192, 195, 196], "10": [3, 26, 27, 83, 96, 99, 106, 108, 181, 186, 190, 192, 195], "100": [108, 114, 136, 138, 155, 157, 158, 181, 186, 195], "1000": [3, 67, 70, 192, 195], "10000": [3, 195], "100000": 195, "1000000": 3, "1016": 3, "10x10x10": [106, 108], "11": [3, 96, 99], "1100000": 188, "1101": 190, "12": [0, 3, 96, 99, 108, 111, 155, 158, 192, 196], "123": 83, "128": [10, 15, 17, 21], "13": [96, 99], "132": [192, 196], "14": [96, 99], "148": 180, "15": [88, 89, 96, 99, 192, 195], "150": 180, "1500": 181, "16": [2, 4, 7, 59, 62, 96, 99, 104, 108, 109, 113, 186], "1634500": 188, "17": 190, "1820500": 188, "188": 196, "1994": 192, "1995": 192, "1996": 192, "1997": 192, "1998": 192, "1999": 192, "1d": 182, "1x1": 17, "2": [2, 3, 4, 7, 17, 21, 22, 27, 59, 62, 67, 79, 82, 83, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 106, 108, 143, 150, 152, 157, 176, 178, 180, 182, 186, 192, 195, 196], "20": [19, 21, 115, 119, 180, 192, 195], "200": [3, 83, 88], "2000": 192, "2001": 192, "2007": 182, "2012": [18, 21], "2022": 3, "2023": 190, "2024": [187, 190], "21": [3, 192], "212": 195, "216": 196, "216_000_000": [59, 62], "2333333333333334": 83, "24": [17, 21], "2408": 190, "25": [83, 195], "254": 192, "255": [59, 62, 192], "256": [104, 108, 111, 113, 192], "2580000": 188, "260": 192, "290": 192, "2d": [17, 18, 21, 34, 38, 43, 59, 62, 192, 196], "2d_unet": 196, "2pi": [130, 132, 150, 152], "2xlarg": 185, "3": [15, 17, 21, 59, 62, 67, 83, 85, 87, 88, 90, 96, 97, 98, 99, 100, 101, 106, 108, 143, 150, 152, 157, 176, 178, 180, 185, 190, 192, 196], "30": [186, 192], "32": [3, 10, 17, 59, 62, 108, 114, 192, 195, 196], "33333334": 178, "35": 195, "3d": [3, 17, 18, 19, 21, 59, 62, 130, 132, 150, 152, 180, 190, 195], "3x3x3": [17, 21], "4": [3, 59, 62, 83, 96, 97, 99, 106, 108, 136, 138, 150, 152, 157, 176, 188, 192, 193, 195, 196], "40": [19, 21, 83, 88], "400": 185, "40522465": 192, "40965399": 192, "41421356": 83, "43413094": 192, "48550": 190, "4d": [17, 21], "5": [3, 82, 83, 88, 96, 97, 99, 106, 108, 114, 150, 152, 154, 157, 180, 192, 195], "50": 3, "500000": 188, "528834": 190, "5d": [17, 21], "6": [96, 97, 99, 106, 108, 150, 152, 192, 196], "60": 192, "600": [59, 62, 181], "625000": 188, "64": [3, 10, 17, 21, 108, 109], "650000": 188, "6666666666666666": 83, "7": [96, 99, 106, 108, 150, 152], "70710678": 83, "72": [195, 196], "75": [3, 83, 195], "775000": 188, "8": [59, 62, 83, 96, 99, 106, 108, 116, 118, 119, 120, 150, 152, 180, 188, 192, 195, 196], "80": 185, "8000": [59, 62, 185, 189], "8469612": 192, "85": 83, "8571428571428571": 83, "873": 182, "88576496": 192, "895": 182, "9": [83, 96, 97, 99, 106, 108, 178], "90838391": 192, "95": [115, 116, 119, 178], "975000": 188, "98": 182, "A": [2, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 108, 109, 110, 111, 113, 115, 117, 119, 121, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 138, 141, 142, 143, 144, 145, 147, 148, 149, 151, 152, 153, 155, 156, 162, 163, 165, 166, 168, 169, 170, 171, 173, 180, 181, 182, 190, 196], "As": [17, 21, 195], "Be": 192, "By": [17, 21, 116, 118, 119, 120, 122, 182], "For": [34, 38, 43, 162, 163, 187, 189, 190, 191, 192, 195], "If": [0, 3, 12, 13, 14, 15, 16, 17, 21, 33, 36, 37, 38, 47, 49, 51, 54, 58, 59, 62, 67, 68, 69, 71, 73, 74, 77, 82, 83, 88, 90, 93, 98, 99, 100, 101, 104, 106, 107, 108, 109, 110, 111, 112, 113, 119, 122, 127, 136, 138, 140, 141, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 181, 182, 185, 186, 187, 190, 192, 193, 195], "In": [57, 60, 62, 119, 122, 182, 192, 195], "It": [11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 25, 26, 27, 28, 29, 33, 36, 37, 38, 39, 47, 49, 54, 56, 57, 58, 59, 60, 62, 66, 67, 69, 70, 76, 81, 83, 85, 87, 88, 90, 93, 94, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 126, 127, 136, 137, 138, 140, 141, 142, 143, 145, 150, 152, 160, 161, 162, 166, 168, 188, 189], "No": [31, 37, 38, 47, 49, 54, 58, 62, 138, 141], "Not": [129, 132, 135, 138, 194], "One": 190, "Or": 182, "TO": 192, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127, 130, 131, 132, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 177, 178, 180, 181, 182, 186, 187, 188, 190, 192, 193, 195, 196], "Then": [190, 192], "There": 195, "These": [182, 192, 193, 195], "To": [67, 108, 113, 145, 185, 186, 188, 189, 190, 192, 195], "Will": [32, 38], "_": [163, 192], "__attrs_post_init__": [27, 28, 33, 38], "__augment": [151, 152], "__enter__": [127, 136, 138], "__eq__": [48, 54], "__except": 146, "__exit__": [127, 136, 138], "__find_boundari": [119, 120], "__generate_semantic_seg_dataset_crop": [59, 62], "__generate_semantic_seg_datasplit": [59, 62], "__getattr__": 146, "__getitem__": [59, 177], "__hash__": [48, 54], "__init__": [2, 4, 50, 54, 55, 57, 59, 60, 62, 65, 66, 71, 72, 73, 74, 75, 76, 78, 80, 91, 93, 94, 115, 116, 117, 118, 119, 120, 121, 127, 138, 152, 153, 173], "__init_db": 170, "__iter__": [136, 138], "__load": 165, "__main__": 192, "__name": 146, "__name__": 192, "__normal": [119, 120], "__open_collect": 170, "__parse_opt": [155, 156], "__parse_options_from_fil": [155, 156], "__repr__": [48, 54], "__same_doc": 170, "__save_insert": [165, 170], "__setitem__": 177, "__str__": [48, 54, 59, 62, 63, 64, 160, 161], "__traceback_str": 146, "__type__": [162, 163], "__typed_structur": 163, "__typed_unstructur": 163, "_ax": [38, 47], "_build": 187, "_compat": 163, "_devic": [13, 14], "_eval_shape_increas": [18, 21], "_grow_boundari": [115, 119], "_gt_kei": [129, 130, 131, 132, 133, 134, 135, 138], "_mask_kei": [129, 130, 131, 132, 133, 134, 135, 138], "_member_names_": 59, "_neuroglanc": 192, "_neuroglancer_lay": [48, 54], "_raw_kei": [129, 130, 132, 135, 138], "_source_arrai": 181, "_spec": 180, "_static": 187, "_templat": 187, "_wrap_command": [11, 12, 13, 14], "abc": [11, 12, 13, 14, 15, 21, 93, 119, 122, 125], "abil": [83, 163], "abl": [67, 145], "about": [15, 21, 190], "abov": 192, "absenc": 83, "absolut": [97, 99, 187], "abspath": 187, "abstract": [12, 13, 14, 15, 16, 21, 23, 31, 37, 38, 44, 87, 88, 98, 99, 100, 101, 104, 106, 108, 109, 119, 122, 129, 132, 136, 138, 140, 141, 160, 161, 172, 173], "abstractmethod": [15, 21, 23, 86, 87, 88], "accept": [17, 21, 83], "access": [38, 47, 155, 156, 166, 188, 189, 195], "accord": [17, 21, 57, 60, 62, 195], "accordingli": [166, 194], "account": [15, 21, 67, 68, 83], "accuraci": [83, 173, 194], "achiev": [67, 70, 181], "ackerman": [187, 190], "across": 194, "action": 194, "activ": [17, 21, 67, 68, 190, 192], "activation_on_upsampl": [17, 21], "actual": [17, 21, 83, 151, 152, 189], "ad": 163, "adapt": 194, "adaptor": 194, "add": [7, 10, 17, 21, 67, 143, 145, 180, 181, 187, 188, 194], "add_iteration_scor": [67, 145], "add_iteration_stat": [67, 143], "add_scalar_lay": 181, "add_seg_lay": 181, "addit": [2, 4, 7, 12, 13, 14, 15, 17, 21, 132, 133, 155, 156, 162, 163, 189, 192, 193], "addition": [23, 190], "address": [69, 136, 138, 181], "adjavon": 190, "adjust": 196, "advantag": [79, 93, 95], "advis": [49, 54], "aff": [77, 93], "affect": 187, "affin": [76, 77, 79, 92, 93, 95, 96, 99, 115, 119, 179, 184, 190, 192, 193], "affinities_loss": [99, 184], "affinities_predictor": [119, 184], "affinities_task": [93, 184], "affinities_task_config": [93, 184], "affinitiesloss": [76, 93, 96, 99], "affinitiespredict": 195, "affinitiespredictor": [76, 93, 115, 119], "affinitiestask": [76, 93], "affinitiestaskconfig": [77, 93, 192, 195], "affs_task_config": 192, "affs_weight_clipmax": [77, 93, 115, 119], "affs_weight_clipmin": [77, 93, 115, 119], "after": [17, 19, 21, 27, 28, 33, 38, 67, 69, 87, 88, 116, 118, 119, 120, 136, 137, 138, 143, 145, 186, 187, 188, 192, 193], "against": [83, 85, 87, 88, 90], "agglomer": 194, "aid": [49, 54], "algorithm": [10, 83, 194], "align": [38, 47], "all": [32, 35, 38, 67, 69, 70, 76, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 99, 100, 102, 104, 106, 108, 109, 111, 113, 123, 126, 136, 138, 149, 150, 152, 161, 162, 163, 169, 170, 176, 182, 189, 192, 194, 195], "allow": [3, 83, 188, 189, 190, 193, 195], "allow_one_view": 3, "almost": [26, 27, 194], "along": [3, 18, 21, 58, 62, 67, 70, 77, 83, 93, 104, 108, 145, 188], "alreadi": [0, 59, 62, 67, 83, 145, 147, 148, 149, 152, 155, 158, 161, 165, 166, 170, 171, 172, 173, 183, 185, 192], "also": [7, 12, 13, 14, 15, 17, 20, 21, 54, 55, 56, 67, 69, 82, 84, 86, 88, 127, 138, 143, 150, 152, 161, 185, 187, 192, 193, 194, 195], "altern": [177, 192], "alwai": [20, 21, 24, 27, 30, 49, 51, 54, 61, 62, 81, 93], "amazon": 185, "ami": 185, "among": 83, "amount": [15, 18, 21, 38, 44, 79, 92, 93, 95, 119, 120, 182], "an": [7, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 38, 39, 40, 41, 42, 44, 54, 56, 57, 59, 60, 62, 67, 68, 71, 73, 76, 79, 81, 83, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 102, 104, 106, 108, 109, 115, 119, 122, 125, 127, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 144, 145, 146, 150, 151, 152, 153, 155, 156, 160, 161, 162, 163, 164, 176, 177, 178, 180, 181, 182, 183, 185, 186, 192, 193, 195], "analysi": [83, 182], "angl": [130, 132, 150, 152], "ani": [16, 17, 21, 26, 27, 36, 38, 83, 99, 100, 119, 122, 128, 138, 140, 156, 161, 163, 180, 182, 187], "annot": [23, 27, 32, 38, 39, 42, 184], "annotation_arrai": [22, 27], "annotationarrai": [22, 27], "anoth": [81, 93, 187], "anyth": [26, 27], "anywher": [79, 93], "api": [187, 194], "append": [119, 122, 178, 192], "appli": [5, 17, 21, 67, 68, 79, 83, 92, 93, 94, 95, 96, 97, 99, 108, 109, 111, 113, 119, 120, 131, 132, 133, 134, 135, 136, 137, 138, 150, 151, 152, 155, 163, 180, 184, 192, 193], "applic": [2, 4, 7, 17, 81, 93, 166, 186, 190, 192], "apply_run": 0, "approach": 190, "appropri": [169, 176, 192], "ar": [0, 11, 12, 13, 14, 17, 21, 22, 26, 27, 28, 29, 38, 41, 54, 56, 57, 60, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 83, 87, 88, 90, 93, 98, 99, 100, 102, 108, 110, 113, 114, 116, 118, 119, 120, 122, 123, 124, 143, 145, 150, 152, 153, 155, 161, 163, 164, 165, 166, 169, 170, 171, 172, 173, 176, 177, 180, 182, 185, 187, 190, 192, 193, 195, 196], "arbitrari": 182, "arbitrarili": [190, 193], "architectur": [67, 68, 69, 70, 93, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 138, 161, 165, 170, 184, 190, 193, 195, 196], "architecture1": [161, 165], "architecture_0": 170, "architecture_config": [17, 19, 21, 67, 70, 161, 165, 170, 184, 192, 195, 196], "architecture_nam": [161, 165, 170], "architecture_typ": [18, 20, 21], "architectureconfig": [16, 20, 21, 67, 70, 161, 165, 170], "aren": 194, "arg": [2, 4, 7, 15, 21, 106, 108, 186], "argmax": [24, 27, 30, 93, 102, 103, 104, 105, 108], "argmax_post_processor": [108, 184], "argmax_post_processor_paramet": [108, 184], "argmax_work": [4, 184], "argmaxpostprocessor": [104, 108], "argmaxpostprocessorparamet": [104, 105, 108], "argmin": [25, 27], "argument": [2, 4, 7, 59, 62, 99, 100, 116, 118, 119, 120, 155, 156, 186], "around": [17, 21, 54, 56, 150, 152], "arrai": [0, 1, 3, 5, 6, 8, 9, 10, 22, 23, 24, 25, 26, 27, 28, 29, 30, 48, 50, 51, 54, 55, 56, 59, 63, 64, 67, 69, 83, 85, 87, 88, 90, 104, 105, 106, 108, 109, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 131, 132, 136, 138, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 158, 160, 161, 164, 165, 168, 170, 174, 176, 177, 178, 180, 181, 182, 184, 192, 194, 195], "array1": [161, 165], "array_0": 170, "array_config": [32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 59, 161, 165, 170, 184], "array_evalu": 83, "array_identifi": [160, 168, 174, 181], "array_kei": [147, 152], "array_nam": [161, 165, 170], "array_out": 6, "array_stor": [0, 1, 5, 6, 8, 9, 104, 108, 111, 113, 138, 140, 167, 168, 181, 184], "array_typ": [23, 35, 38], "array_util": [179, 184], "arrayconfig": [31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 54, 56, 161, 165, 170], "arraydataset": [38, 44], "arrayevalu": 83, "arraykei": [63, 64, 129, 131, 132, 133, 134, 138, 147, 148, 150, 152, 153, 154], "arrayspec": [147, 148, 152], "arraystor": [160, 164], "arraytyp": [67, 184], "articl": 190, "artifact": 192, "arxiv": 190, "as_dict": 163, "aspect": [81, 93], "assembl": 193, "assert": [67, 143], "assertionerror": [67, 68, 69, 150, 151, 152, 153, 154, 178], "assign": [20, 21, 180], "associ": [22, 27, 54, 56, 67, 71, 72, 73, 74, 75, 78, 93, 116, 118, 119, 120, 122, 144, 145, 171, 172, 173, 181, 182], "assum": [0, 26, 27, 83, 119, 121, 122, 182, 183], "astyp": [178, 192], "attent": [17, 18, 21, 196], "attention_block": 17, "attention_upsample_config": 196, "attentionblock": 17, "attentionblockmodul": 17, "attribut": [17, 18, 20, 21, 24, 35, 36, 38, 51, 54, 78, 81, 82, 88, 91, 93, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 113, 127, 128, 137, 138, 145, 147, 152, 162], "attributeerror": [17, 21, 87, 88], "attributeoverrid": 163, "aubrei": 190, "augment": [127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 150, 151, 152, 192, 193, 195], "augment_config": [132, 138, 184], "augmentation_prob": [130, 132, 133, 135, 150, 152], "augmentconfig": [129, 132, 133, 134, 135, 137, 138], "author": [185, 187, 190], "auto": [184, 187, 192], "autoapi": [184, 187], "autoapi_dir": 187, "autoapi_ignor": 187, "autoapi_opt": 187, "autoapi_typ": 187, "autobuild": 187, "autodoc": 187, "automat": [13, 14], "autonotebook": 192, "autoskip": [147, 152, 153], "avail": [13, 14, 67, 70, 169, 170, 171, 172, 173, 195], "averag": [17, 83, 88, 89, 157], "avoid": [31, 38, 58, 62, 67, 68, 83, 93, 126, 150, 152, 192], "aw": 194, "aws_access_key_id": 185, "aws_profil": 185, "aws_region": 185, "aws_secret_access_kei": 185, "ax": 192, "axi": [3, 18, 21, 104, 108, 150, 152], "axis_nam": [3, 38, 46, 47, 174, 192], "b": [17, 21, 82, 83, 88, 162, 163, 170], "back": [13, 14, 162, 163], "backbon": [67, 70], "backend": 192, "background": [32, 38, 77, 83, 93, 115, 116, 118, 119, 120, 152, 154, 180, 192, 193], "background_as_object": [77, 93, 115, 119], "backwards_map": 90, "balanc": [83, 178], "balance_weight": [179, 184], "base": [0, 12, 13, 14, 15, 16, 18, 20, 21, 31, 38, 48, 52, 53, 54, 55, 63, 64, 85, 86, 87, 88, 93, 102, 108, 109, 110, 117, 118, 119, 123, 126, 129, 132, 138, 140, 141, 149, 150, 152, 154, 155, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 173, 178, 182, 189, 195], "basedir": [168, 169], "bash": [185, 191], "basic": [192, 194, 195], "basicconfig": 195, "batch": [15, 17, 18, 21, 67, 68, 70, 127, 136, 138, 140, 141, 147, 148, 149, 150, 151, 152, 153, 154, 180, 192, 193, 194, 196], "batch_norm": [17, 18, 21, 196], "batch_provid": [127, 138], "batch_siz": [127, 136, 138, 140, 141, 192, 195], "batchfilt": [129, 132, 138, 147, 148, 152, 153], "batchprovid": [127, 138, 149, 152], "batchrequest": [147, 148, 149, 152, 153, 180], "bceloss": [98, 99], "bcelosswithlogit": [67, 68], "becaus": [24, 119, 122], "been": [27, 28, 33, 38, 67, 83, 87, 88, 116, 118, 119, 120, 143, 145, 162, 163], "befor": [17, 18, 21, 79, 83, 92, 93, 95, 119, 120, 180, 189], "begin": 189, "behind": 166, "being": [31, 33, 38, 52, 53, 54, 56, 67, 71, 73, 74, 116, 118, 119, 120, 145], "belong": 192, "below": [13, 14, 188, 196], "benefit": 194, "bennett": 190, "best": [0, 67, 72, 73, 82, 83, 84, 85, 86, 87, 88, 89, 90, 145, 155, 168, 169, 173, 181, 183, 188, 195], "best_scor": [87, 88, 181], "best_validation_arrai": 168, "bestscor": [87, 88, 181], "better": [82, 84, 86, 87, 88, 89, 157], "between": [3, 17, 21, 38, 39, 82, 83, 88, 90, 96, 97, 99, 130, 132, 150, 152, 182, 186, 190, 192, 194], "bg": 83, "bia": [10, 74, 108, 114, 192], "bill": [11, 13], "bin": 185, "binar": [32, 38, 42, 194], "binari": [27, 32, 38, 39, 42, 82, 83, 88, 91, 93, 94, 98, 99, 104, 108, 116, 118, 119, 120, 184], "binarize_array_config": [38, 184], "binarize_gt": [59, 62], "binarizearrai": [32, 38], "binarizearrayconfig": [32, 38], "binary_arrai": 24, "binary_segmentation_evalu": [88, 184], "binary_segmentation_evaluation_scor": [88, 184], "binaryarrai": 24, "binarysegmentationevalu": [78, 83, 88, 91, 93], "binarysegmentationevaluationscor": [82, 83, 88], "bind": [69, 136, 138, 181], "bind_address": [69, 136, 138, 181], "bind_port": [69, 136, 138, 181], "bioimag": [190, 194], "biomed": [192, 193, 196], "blipp": [84, 88], "blipp_scor": [84, 85, 88], "blob": [18, 21], "block": [2, 3, 4, 6, 7, 10, 17, 18, 21, 82, 86, 88, 104, 108, 111, 113, 186, 191, 194], "block_id": 10, "block_siz": [104, 108, 111, 113], "blockwis": [108, 111, 113, 155, 158, 184, 194], "blockwise_task": [4, 184], "blog": 190, "blueprint": [138, 140], "blur": 180, "board": 194, "bokeh_plot_run": 157, "bool": [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 44, 47, 49, 51, 54, 58, 59, 61, 62, 67, 69, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 115, 116, 118, 119, 124, 126, 127, 128, 130, 132, 133, 136, 137, 138, 140, 141, 145, 147, 150, 152, 155, 157, 158, 163, 171, 180, 181, 182, 186], "boolean": [16, 20, 21, 22, 26, 27, 28, 29, 31, 38, 47, 49, 54, 61, 62, 81, 93, 126, 127, 128, 137, 138, 141, 180], "both": [54, 56, 67, 83, 118, 119, 145, 192, 194], "bound": [82, 84, 86, 87, 88, 89], "boundari": [3, 25, 27, 79, 83, 92, 93, 115, 118, 119, 120, 122, 192], "break": 192, "browser": [189, 192], "bsub": [13, 184], "bucket": 192, "bug": 192, "build": [17, 21, 127, 138], "build_batch_provid": [127, 136, 138, 140], "builder": 187, "built": [12, 13, 14, 15, 21, 189], "builtin": 187, "c": [17, 21, 27, 30, 186, 190, 192], "cach": 69, "calcul": [3, 17, 25, 27, 30, 48, 54, 76, 77, 83, 88, 89, 90, 93, 94, 96, 97, 99, 116, 118, 119, 120, 150, 152, 182, 192], "calculate_and_apply_pad": 17, "call": [27, 28, 33, 38, 71, 73, 74, 81, 83, 87, 88, 93, 149, 152, 162, 163], "callabl": [1, 5, 6, 8, 9, 163], "caller": 160, "can": [7, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 30, 31, 34, 38, 43, 47, 48, 54, 55, 58, 62, 67, 69, 70, 79, 87, 88, 92, 93, 95, 99, 100, 108, 109, 116, 118, 119, 120, 122, 126, 127, 129, 132, 133, 134, 135, 136, 138, 140, 150, 152, 163, 182, 185, 187, 188, 189, 190, 192, 193, 195], "can_train": [127, 136, 138, 140], "candid": 182, "cannot": [0, 71, 79, 92, 93, 95, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 138, 140, 141, 155], "cardona": [18, 21], "carolin": [187, 190], "case": [67, 83, 93, 103, 145, 194, 195], "cattr": 163, "caus": 192, "cel": 3, "cell": 192, "cell_arrai": 192, "cell_data": 192, "cell_mask": 192, "cellmap": [190, 191, 192], "cells3d": 192, "center": [3, 17, 77, 93], "center_confidence_thr": 3, "central": 162, "certain": [67, 83, 119, 122, 145], "chain": [67, 68, 74, 194], "chanc": 192, "chang": [98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 150, 152, 195], "channel": [15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 32, 33, 38, 39, 40, 42, 67, 68, 71, 73, 74, 79, 82, 83, 88, 92, 93, 95, 98, 99, 104, 108, 115, 116, 118, 119, 120, 121, 147, 152, 186, 192], "channel1": [27, 28, 82, 83, 88], "channel1__dic": [82, 88], "channel1__f1_scor": [82, 88], "channel1__hausdorff": [82, 88], "channel2": [82, 83, 88], "channel_nam": 23, "channel_scor": [82, 88], "channels_in": [19, 21], "channels_out": [19, 21, 186], "charact": [31, 38, 47, 49, 54, 58, 59, 62, 93, 126], "check": [2, 4, 7, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 47, 49, 54, 59, 62, 67, 71, 73, 87, 88, 93, 126, 127, 136, 138, 140, 145, 170, 181], "check_class_nam": [59, 62], "check_funct": 7, "checker": 181, "checkpoint": [71, 73, 93, 124, 169, 183, 188, 192, 195], "child": [50, 54], "chmod": 185, "choic": [192, 195], "choos": [71, 72, 73, 75, 132, 133, 192, 193, 194, 195], "chunk": [3, 38, 47, 106, 108, 109, 190], "chunk_siz": [106, 108, 109], "cl": [35, 38, 81, 93, 162, 163], "class": [3, 162, 177, 178, 188, 194], "class1": [24, 25, 27, 30], "class2": [27, 30], "class_id": 178, "class_nam": [3, 59, 62], "classes_channel": [71, 73], "classes_separator_charact": [59, 62], "classif": [24, 32, 38, 39, 42, 119, 121], "classifi": 83, "classmethod": [155, 156], "clear": [150, 152], "clearli": [51, 54], "cli": [1, 5, 6, 8, 9, 185, 187, 189, 194], "client": [170, 171], "clip": [82, 83, 88, 116, 119, 132, 133, 136, 137, 138, 178, 192, 195], "clip_dist": [79, 83, 88, 92, 93, 95, 192], "clip_raw": [136, 137, 138, 192], "clipmax": [79, 93, 116, 119, 178], "clipmin": [79, 93, 116, 119, 178], "cloud": [38, 47, 190, 194, 195], "cls_fn": [162, 163], "cls_fun": 162, "cluster": [3, 11, 13, 182, 190, 194, 195], "cluster_iou_thr": 3, "cmap": 192, "cnn": [19, 21], "cnnectom": [18, 21], "cnnectome_unet": [21, 184], "cnnectome_unet_config": [21, 184], "cnnectomeunet": [17, 18, 21], "cnnectomeunetconfig": [18, 21, 192, 195, 196], "cnnectomeunetmodul": [17, 21], "co": 186, "code": [150, 152, 190, 191, 194], "coeffici": [82, 83, 88], "col": 192, "colab": 190, "collaps": [147, 152], "collect": [67, 145, 151, 152, 165, 170, 171, 173], "color": 192, "column": [182, 192], "column_titl": 192, "com": [18, 21, 191, 192, 195], "combin": [17, 69, 82, 83, 87, 88, 190, 192, 193, 195], "combo": [87, 88], "come": [160, 168, 187], "command": [11, 12, 13, 14, 185, 186, 189, 190, 192, 194, 195], "common": [71, 73, 74, 187], "commonli": [83, 192, 193], "commun": 190, "compar": [67, 77, 83, 87, 88, 93, 119, 122, 145, 165, 166, 182, 195], "comparison": [49, 54, 195], "complet": [7, 188, 194], "compon": [6, 76, 80, 93, 136, 138, 140, 192, 193, 195], "compos": 194, "compress": [38, 47], "comput": [11, 12, 13, 14, 59, 62, 67, 68, 78, 83, 87, 88, 93, 94, 96, 97, 98, 99, 100, 101, 115, 119, 127, 138, 145, 156, 178, 182, 190, 194, 195], "compute_context": [155, 156, 184], "compute_output_shap": [67, 68], "computecontext": [11, 12, 13, 14], "concat_array_config": [38, 184], "concatarrai": [33, 38], "concatarrayconfig": [33, 38], "concaten": 17, "concret": [161, 162, 163], "concurr": [38, 47, 166], "conda": [190, 192], "condit": [61, 62, 83, 182], "conduct": 192, "confid": 3, "confidence_thr": 3, "config": [16, 21, 31, 32, 35, 36, 37, 38, 39, 40, 42, 45, 46, 47, 51, 52, 53, 54, 59, 61, 62, 65, 66, 67, 70, 71, 72, 73, 74, 75, 77, 79, 93, 95, 126, 128, 129, 132, 138, 141, 155, 156, 157, 158, 160, 161, 164, 165, 168, 175, 193, 194], "config_0": 170, "config_fil": [155, 156], "config_nam": [161, 165, 170], "config_stor": [167, 184, 192, 195], "configstor": [161, 164], "configur": [3, 16, 18, 20, 21, 31, 32, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 67, 69, 70, 72, 73, 75, 81, 93, 94, 108, 110, 124, 126, 129, 130, 131, 132, 137, 138, 141, 151, 152, 155, 156, 161, 165, 170, 187, 190, 193, 194, 195], "conjunct": 162, "connect": [180, 192], "consecut": 90, "consensu": 3, "consid": [32, 38, 79, 83, 88, 92, 93, 95, 99, 100, 118, 119, 138, 141], "consist": [17, 21, 67, 68], "constant": [17, 21, 34, 38, 83, 132, 134, 196], "constant_array_config": [38, 184], "constant_upsampl": [17, 18, 21, 192, 195, 196], "constantarrayconfig": [34, 38], "constraint": [18, 21], "construct": [91, 93, 131, 132, 176], "constructor": [27, 28, 33, 38, 57, 60, 62], "cont": 182, "contain": [0, 1, 5, 6, 7, 8, 9, 20, 21, 25, 27, 30, 32, 38, 39, 42, 47, 54, 55, 57, 59, 60, 61, 62, 65, 66, 67, 69, 81, 82, 83, 88, 93, 104, 106, 108, 109, 113, 124, 126, 127, 128, 136, 137, 138, 141, 142, 143, 144, 145, 149, 150, 152, 154, 155, 158, 160, 162, 163, 166, 168, 169, 180, 181, 182, 184, 186, 187], "container_id": 189, "context": [7, 11, 12, 13, 14, 17, 21, 108, 114, 116, 118, 119, 120, 122, 127, 136, 138, 156, 186, 190, 192, 194], "conting": 182, "contingency_t": 182, "continu": [67, 70, 192, 193, 194], "contribut": 182, "control": [130, 132, 150, 152], "control_point_displacement_sigma": [130, 132, 150, 152, 195], "control_point_spac": [130, 132, 150, 152, 195], "conv": [17, 19, 21], "conv_pass": 17, "conveni": [160, 168, 194, 195], "convent": 194, "convers": [162, 163, 194], "conversion_hook": [167, 184], "convert": [67, 104, 106, 108, 109, 116, 118, 119, 120, 121, 122, 143, 145, 162, 167, 184, 190, 194], "convolut": [17, 18, 19, 21, 192, 193, 196], "convolution_crop": 17, "convolv": 192, "convpass": 17, "convtranspos": [17, 21], "coordin": [7, 15, 18, 19, 21, 27, 30, 38, 44, 46, 47, 48, 54, 55, 56, 59, 62, 67, 68, 77, 93, 104, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 122, 130, 132, 143, 150, 152, 174, 176, 192, 195, 196], "copi": [18, 21, 34, 38, 43, 74, 152, 177, 184, 187, 195], "copy_kei": [147, 152], "copy_mask": [147, 152], "copymask": [147, 152], "copyright": 187, "correct": [162, 163], "correctli": [83, 183, 188], "correspond": [17, 21, 31, 38, 52, 53, 83, 93, 126, 129, 132, 138, 162, 182, 195], "cosem": [72, 73, 190], "cosem_start": [73, 184], "cosem_start_config": [73, 184], "cosemstart": [71, 73, 188], "cosemstartconfig": [72, 73], "cost": [160, 168], "could": [17, 26, 27, 79, 93, 95, 194], "count": [79, 92, 93, 95, 115, 116, 117, 118, 119, 120, 121, 122, 178, 182, 185], "coupl": 195, "cover": [177, 192], "cpu": [11, 12, 13, 14, 67, 70, 136, 137, 138, 140, 194], "crash": [2, 4, 7], "creat": [11, 12, 13, 17, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 38, 41, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 67, 81, 93, 94, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 136, 138, 140, 145, 150, 152, 160, 164, 180, 181, 184, 185, 190, 192], "create_arrai": [34, 35, 38, 41, 43, 44], "create_array_stor": 164, "create_compute_context": [12, 13], "create_config_stor": [164, 192, 195], "create_distance_mask": [116, 118, 119], "create_from_identifi": [108, 111, 174], "create_model": [93, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125], "create_optim": [127, 136, 138, 140], "create_stats_stor": [164, 192], "create_stor": [167, 184, 192, 195], "create_target": [115, 116, 117, 118, 119, 120, 121, 122], "create_weight": [115, 116, 117, 118, 119, 120, 121, 122], "create_weights_stor": 164, "createpoint": 180, "cremi": [83, 195], "cremiev": 83, "cremievalu": 83, "criteria": [67, 82, 83, 84, 85, 86, 87, 88, 89, 90, 145], "criterion": [0, 67, 71, 72, 73, 74, 75, 82, 84, 86, 87, 88, 89, 144, 145, 155, 168, 169, 173, 186, 192, 193], "criterion1": [82, 84, 86, 88, 89, 169], "criterion2": [82, 84, 86, 88, 89, 169], "critic": 186, "crop": [17, 35, 38, 59, 62, 79, 93], "crop_array_config": [38, 184], "crop_factor": 17, "crop_to_factor": 17, "croparrai": [35, 38], "croparrayconfig": [35, 38], "cross": [6, 98, 99], "csc_matrix": 182, "csr_matrix": 182, "css": 187, "csv": [59, 62], "csv_path": [59, 62], "cuda": [13, 14, 69], "curat": 194, "current": [11, 13, 58, 59, 62, 67, 143, 145, 160, 164, 189, 190, 192, 194], "custom": [59, 187, 192, 194], "customenum": 59, "customenummeta": 59, "customiz": 196, "cv": 190, "d": [178, 181, 185], "da": 3, "dacapo": [184, 185, 187, 188, 191, 192, 194, 195, 196], "dacapo_create_target": [152, 184], "dacapo_fil": 192, "dacapo_options_fil": 192, "dacapo_points_sourc": [152, 184], "dacapoblockwisetask": [2, 4], "dacapoconfig": [155, 156], "dacapotargetfilt": [148, 152], "dacapotest": 185, "daisi": [2, 3, 4, 6, 10, 104, 108, 111], "dash": 194, "dashboard": [191, 195], "dask": 3, "data": [0, 1, 3, 5, 8, 9, 11, 13, 17, 18, 21, 23, 25, 27, 30, 32, 33, 34, 38, 39, 42, 43, 47, 48, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 73, 74, 83, 106, 108, 115, 119, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 149, 150, 151, 152, 154, 155, 156, 160, 163, 165, 168, 170, 177, 178, 180, 181, 186, 190, 193, 194, 196], "dataarrai": [67, 143, 145, 192], "databas": [156, 161, 165, 166, 170, 171, 192, 195], "datakei": [63, 64], "dataset": [0, 1, 5, 6, 8, 9, 57, 59, 60, 61, 62, 65, 66, 67, 85, 87, 88, 108, 111, 131, 132, 136, 138, 140, 144, 145, 148, 152, 155, 158, 160, 161, 165, 168, 169, 170, 173, 181, 184, 186, 192, 194, 195, 196], "dataset1": 169, "dataset2": 169, "dataset_0": 170, "dataset_config": [50, 51, 54, 55, 170, 184], "dataset_nam": 170, "dataset_typ": [51, 54, 56, 59, 62], "datasetconfig": [49, 54, 61, 62, 66, 170], "datasets_config": 183, "datasetspec": [59, 62], "datasettyp": [59, 62], "datasplit": [0, 67, 69, 70, 87, 88, 108, 111, 127, 138, 140, 145, 155, 160, 161, 165, 168, 169, 170, 181, 184, 190, 193, 195], "datasplit1": [161, 165], "datasplit_0": 170, "datasplit_config": [57, 60, 62, 65, 66, 67, 70, 161, 165, 170, 184, 192, 195], "datasplit_gener": [62, 184], "datasplit_nam": [161, 165, 170], "datasplit_typ": [61, 62, 66, 192], "datasplitconfig": [58, 59, 61, 62, 67, 70, 161, 165, 170], "datasplitgener": [59, 62], "datatyp": [23, 194], "davi": 190, "david": [187, 190], "db": 187, "db_host": [170, 171], "db_name": [170, 171], "dbpass": [192, 195], "dbport": [192, 195], "dburl": [192, 195], "dbuser": [192, 195], "de": 194, "debug": [186, 194, 195], "decid": [67, 70, 73, 74], "decis": [150, 152], "decod": [17, 21], "decreas": [17, 21], "dedic": [137, 138], "deep": [116, 118, 119, 120, 190], "default": [0, 17, 21, 32, 33, 38, 49, 54, 59, 61, 62, 67, 70, 81, 92, 93, 116, 118, 119, 120, 122, 129, 130, 131, 132, 133, 134, 135, 137, 138, 150, 152, 155, 158, 165, 168, 170, 171, 177, 178, 180, 181, 182, 186, 187, 192], "default_config": [33, 38], "default_paramet": 3, "defin": [3, 12, 13, 14, 15, 16, 21, 27, 30, 49, 54, 67, 70, 108, 110, 111, 113, 114, 119, 122, 136, 138, 140, 161, 180, 182, 188, 192, 193, 194, 195], "deform": [130, 132, 150, 152], "degre": 83, "delet": [67, 143, 145, 161, 165, 166, 170, 171, 172, 173, 192], "delete_aft": [67, 143, 145], "delete_architecture_config": 161, "delete_array_config": 161, "delete_config": [161, 165, 170], "delete_datasplit_config": 161, "delete_run_config": [161, 170], "delete_task_config": [161, 192], "delete_trainer_config": 161, "delete_training_stat": [166, 171, 172], "delete_validation_scor": 171, "demonstr": [193, 196], "den": 178, "dens": 195, "denser": [79, 92, 93, 95], "dep": [147, 148, 152], "depend": [119, 122, 147, 148, 149, 152, 153, 190, 194], "deprec": 181, "deprecated_start_neuroglanc": 181, "depric": 194, "depth": [17, 21], "deriv": [12, 13, 15, 16, 21, 31, 38, 49, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 93, 103, 126, 129, 132, 138, 141], "describ": [27, 28], "descript": [185, 190], "descriptor": [96, 99, 115, 119, 190], "design": [12, 13, 14, 15, 21, 38, 47, 155, 156], "desir": [38, 44, 151, 152, 186], "detail": [130, 132, 150, 152, 188], "detailed_valid": 163, "detect": [13, 14, 83, 106, 108], "detection_threshold": [81, 93, 106, 108], "determin": [17, 21, 22, 23, 24, 25, 27, 30, 82, 83, 84, 86, 87, 88, 89, 106, 108, 116, 119, 150, 152, 163, 169, 192], "develop": 194, "deviat": [130, 132, 150, 152, 157, 180], "devic": [11, 12, 13, 14, 69, 127, 136, 138, 140], "dga": 10, "dian": 190, "dice": [82, 83, 88], "dict": [3, 22, 24, 25, 27, 28, 33, 38, 59, 62, 74, 87, 88, 90, 156, 163, 166, 169, 170, 178, 180, 181], "dict_factori": 163, "dictat": 17, "dictionari": [3, 24, 33, 38, 69, 82, 88, 162, 163, 166, 173, 180, 181], "didn": [10, 194], "differ": [17, 21, 23, 35, 38, 59, 62, 63, 64, 67, 70, 97, 99, 119, 122, 182, 186, 190, 194, 196], "difficult": 195, "dilat": 180, "dilatepoint": 180, "dim": [15, 17, 21, 67, 115, 119, 121, 145], "dimens": [15, 17, 21, 26, 27, 32, 38, 39, 42, 67, 68, 83, 115, 116, 117, 118, 119, 120, 121, 122, 130, 132, 145, 150, 152, 176], "dimension": [38, 47, 190, 192, 193], "direct": 192, "directli": [93, 119, 122, 126, 138, 140, 141, 182], "directori": [6, 7, 8, 165, 166, 168, 169, 186, 187, 189, 190, 192, 194], "disabl": 186, "discoveri": [82, 83, 88], "discuss": 190, "disk": [38, 47, 192, 195], "dispatch": 163, "displac": [130, 132, 150, 152], "displai": 181, "dissemin": 194, "dist_task_config": 192, "distanc": [3, 27, 30, 78, 79, 82, 83, 88, 91, 92, 93, 94, 95, 98, 99, 116, 118, 119, 120, 122, 130, 132, 150, 152, 180, 182, 184, 190, 192, 193], "distance_arrai": [25, 27], "distance_loss": [98, 99], "distance_mask": [118, 119], "distance_predictor": [119, 184], "distance_task": [93, 184], "distance_task_config": [93, 184], "distance_transform_edt": [116, 119], "distancearrai": [25, 27, 116, 119, 120], "distancepredictor": [78, 93, 116, 119], "distancetask": [78, 93], "distancetaskconfig": [79, 93, 192], "distinct": [79, 92, 93, 95], "distinguish": [67, 70, 192], "distribut": [27, 30, 130, 132, 150, 152], "distribute_work": [11, 12, 13, 14], "divid": [83, 182], "divide_column": 182, "divide_row": 182, "divis": 182, "divisor": 3, "do": [17, 38, 47, 67, 143, 150, 152, 182, 186, 193], "do_aug": [150, 152], "do_valid": [155, 175], "doc": 187, "dockerfil": 189, "dockerhub": 185, "docstr": 194, "document": [170, 184, 187, 189, 190, 194], "doe": [59, 62, 71, 73, 96, 99, 161, 165, 166, 168, 169, 181, 183, 192], "does_new_best_exist": 181, "doesn": [181, 195], "doi": [3, 190], "don": [18, 21, 160, 168, 185], "done": [11, 12, 13, 14, 17, 119, 122, 192, 194, 195], "down": [17, 21, 38, 44, 194], "download": [188, 189, 192], "downsampl": [3, 17, 18, 21, 38, 44, 59, 62, 77, 93, 115, 119, 130, 132, 136, 138, 192, 193, 196], "downsample_factor": [17, 18, 21, 192, 195, 196], "downsample_lsd": [77, 93, 115, 119], "draft": 194, "drop": [17, 21, 147, 152], "drop_channel": [147, 152], "ds_": 192, "ds_store": 187, "dt": 186, "dt_scale_factor": [116, 118, 119, 120], "dtype": [0, 3, 35, 38, 155, 158, 174, 176, 178, 180, 186, 192], "due": [2, 4, 7, 17, 21, 150, 152], "dummi": [19, 20, 21, 36, 38, 51, 54, 61, 62, 80, 81, 84, 85, 88, 93, 97, 99, 102, 106, 107, 108, 117, 119, 127, 128, 138], "dummy_architectur": [21, 184], "dummy_architecture_config": [21, 184], "dummy_arrai": [51, 54], "dummy_array_config": [38, 184], "dummy_dataset": [54, 184], "dummy_dataset_config": [54, 184], "dummy_datasplit": [62, 184], "dummy_datasplit_config": [62, 184], "dummy_evalu": [88, 184], "dummy_evaluation_scor": [85, 88, 184], "dummy_loss": [99, 184], "dummy_post_processor": [108, 184], "dummy_post_processor_paramet": [106, 108, 184], "dummy_predictor": [119, 184], "dummy_task": [93, 184], "dummy_task_config": [93, 184], "dummy_train": [138, 184], "dummy_trainer_config": [138, 184], "dummyarchitectur": [19, 20, 21], "dummyarchitectureconfig": [20, 21], "dummyarrai": [36, 38], "dummyarrayconfig": [36, 38, 51, 54], "dummydataset": [50, 54], "dummydatasetconfig": [51, 54, 61, 62], "dummydatasplit": [57, 60, 61, 62], "dummydatasplitconfig": [61, 62], "dummyevalu": [80, 85, 88, 93], "dummyevaluationscor": [84, 85, 88], "dummyloss": [80, 93, 97, 99], "dummypostprocessor": [80, 93, 106, 108], "dummypostprocessorparamet": [106, 107, 108], "dummypredictor": [80, 93, 117, 119], "dummytask": [80, 81, 93], "dummytaskconfig": [81, 93], "dummytrain": [127, 138], "dummytrainerconfig": [128, 138], "duplic": 194, "duplicatenameerror": [161, 165, 170], "dure": [15, 18, 21, 67, 68, 70, 137, 138, 141, 170, 181, 192, 193, 195, 196], "dvid": [37, 38, 194], "dvid_array_config": [38, 184], "dvidarrai": [37, 38], "dvidarrayconfig": [37, 38], "e": [17, 21, 59, 62, 67, 68, 79, 83, 85, 87, 88, 90, 92, 93, 95, 108, 109, 119, 122, 150, 152, 161, 176, 182, 190, 194], "each": [3, 15, 17, 18, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 38, 42, 52, 53, 67, 69, 83, 87, 88, 93, 97, 99, 103, 116, 118, 119, 120, 126, 129, 132, 138, 141, 142, 143, 144, 145, 149, 150, 152, 160, 162, 163, 166, 168, 180, 182, 186, 192, 193, 194, 195, 196], "easi": [49, 54, 169, 190, 192, 193], "easili": [58, 62, 67, 143, 193, 194, 195], "ec": 188, "edg": [6, 83, 176], "edt": 83, "effect": [138, 140], "effici": [17, 194], "effort": 194, "eg": [49, 54], "either": [2, 4, 7, 17, 21, 24, 83, 182, 192], "elast": [130, 132, 150, 152], "elastic_augment_config": [130, 132], "elastic_augment_fus": [152, 184], "elastic_config": [132, 184], "elasticaug": [130, 132, 150, 152], "elasticaugmentconfig": [130, 132, 195], "elasticli": [150, 152], "element": [17, 31, 38, 182], "els": [13, 14, 59, 62, 194], "elsewher": [67, 145], "em": 194, "embargo": 194, "embed": [27, 116, 117, 118, 119, 120, 121, 181, 184], "embedding_arrai": [26, 27], "embedding_dim": [26, 27, 81, 93, 116, 117, 118, 119, 120, 121], "embeddingarrai": [26, 27, 115, 117, 119], "empanada": 3, "empanada_funct": [4, 184], "empanada_napari": 3, "empanada_segment": 3, "emphas": 17, "empti": [32, 38, 57, 60, 62, 63, 64, 67, 69, 83, 143, 152, 154, 178], "empty_cuda_cach": 69, "en": [187, 192], "enabl": [147, 152, 153], "encod": [17, 21, 92, 93, 116, 118, 119, 121, 190], "encourag": 195, "end": [168, 186], "endo": 188, "endo_mem": 188, "engin": 3, "engine3d": 3, "enlarg": [150, 152], "enough": 17, "ensur": [17, 188, 189], "enter": [127, 136, 138], "entropi": [98, 99, 182], "enum": 59, "enumer": [63, 64, 104, 106, 108, 109, 111, 113, 178], "enumerate_paramet": [104, 106, 108, 109, 111, 113], "environ": [185, 189, 190], "epsilon": [116, 118, 119, 120], "equal": [38, 42, 48, 54, 56, 127, 138, 182], "equival": 177, "equivari": 17, "er": [59, 62, 188], "er_mem": 188, "error": [58, 62, 67, 82, 83, 88, 93, 94, 98, 99, 101, 145, 161, 178, 182, 186, 192], "error_scal": 178, "especi": [35, 38], "essenti": [138, 140], "establish": [190, 192, 193], "etc": [11, 12, 13, 69, 193, 194, 195], "euclidean": 83, "eval": [67, 68, 162, 163], "eval_activ": [67, 68], "eval_input_shap": [67, 68], "eval_shape_increas": [15, 17, 21, 192, 195, 196], "evalu": [35, 38, 67, 68, 76, 77, 78, 79, 80, 91, 93, 94, 95, 102, 123, 125, 144, 145, 182, 184, 192, 193, 195, 196], "evaluation_arrai": [83, 87, 88, 90], "evaluation_dataset": [85, 88], "evaluation_scor": [67, 82, 84, 87, 88, 89, 93, 125, 145, 184], "evaluationscor": [67, 82, 84, 86, 87, 88, 89, 93, 125, 145], "even": [192, 193, 194], "ever": [118, 119], "everi": [138, 140, 195], "everyth": [194, 195], "exact": 195, "exampl": [0, 3, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 36, 37, 38, 43, 47, 49, 51, 54, 58, 59, 61, 62, 67, 68, 69, 71, 72, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 178, 180, 181, 186, 192, 195], "example_aff": 192, "example_dataset": 192, "example_datasplit": 192, "example_dist": 192, "example_gt": 192, "example_raw": 192, "example_raw_norm": 192, "example_run": 192, "example_unet": 192, "exc_tb": [127, 136, 138], "exc_typ": [127, 136, 138], "exc_val": [127, 136, 138], "except": [71, 73, 74, 146], "exclud": [48, 54, 90], "exclude_lay": [48, 54], "exclude_pattern": 187, "execut": [12, 13, 14, 67, 68, 193, 195], "exist": [0, 59, 62, 67, 71, 73, 74, 143, 145, 150, 152, 155, 158, 161, 165, 166, 168, 169, 181, 186, 192], "existing_iteration_scor": [67, 145], "exit": [127, 136, 138], "expand": 180, "expand_label": 180, "expandlabel": 180, "expect": [17, 18, 21, 32, 38, 39, 42], "expens": [150, 152], "experi": [0, 148, 152, 155, 158, 159, 161, 169, 171, 172, 173, 175, 181, 183, 184, 188, 192, 193, 194, 196], "explain": [31, 38, 138, 141, 188, 196], "ext": [155, 184, 187], "extend": [20, 21, 81, 93, 94, 163, 177], "extens": 187, "extent": 3, "extra": [59, 119, 122, 160, 168, 185, 192, 195], "extra_str": 59, "extract": [54, 56], "extractor": [115, 119], "extrem": 83, "f": 192, "f1": [82, 83, 88], "f1_score": [82, 83, 88], "f1_score_with_toler": [82, 83, 88], "f_g": 17, "f_in": 17, "f_int": 17, "f_l": 17, "f_left": 17, "factor": [3, 17, 18, 21, 77, 93, 116, 118, 119, 130, 132, 133, 136, 138, 150, 152, 157, 196], "fail": [2, 4, 7], "failur": [2, 4, 7], "fall": [13, 14], "fals": [1, 3, 5, 6, 7, 8, 9, 17, 20, 21, 22, 23, 24, 27, 29, 36, 38, 49, 51, 54, 58, 59, 61, 62, 69, 79, 81, 82, 83, 87, 88, 89, 90, 92, 93, 95, 115, 119, 127, 130, 132, 133, 136, 138, 140, 147, 150, 152, 157, 163, 171, 174, 180, 181, 182, 192, 195, 196], "false_discovery_r": [82, 83, 88], "false_neg": 83, "false_negative_dist": 83, "false_negative_r": [82, 83, 88], "false_negative_rate_with_toler": [82, 83, 88], "false_negatives_with_toler": 83, "false_posit": 83, "false_positive_dist": 83, "false_positive_r": [82, 83, 88], "false_positive_rate_with_toler": [82, 83, 88], "false_positives_with_toler": 83, "far": 195, "fdr": 83, "featur": [17, 18, 21, 196], "fed": [67, 68], "fetch": [136, 137, 138, 195], "fetcher": [136, 137, 138], "fetter": [18, 21], "few": 192, "field": [17, 21, 162, 163, 170, 182], "fig": 192, "figsiz": 192, "figur": [160, 168], "fiji": 190, "file": [0, 2, 4, 7, 35, 38, 46, 47, 59, 62, 93, 102, 123, 124, 155, 156, 161, 165, 166, 169, 185, 186, 187, 188, 190, 192, 194, 195], "file_config_stor": [164, 167, 184], "file_format": [0, 155], "file_nam": [38, 46, 47, 59, 192], "file_stats_stor": [164, 167, 184], "fileconfigstor": [164, 165, 192], "filenotfounderror": [59, 62, 165, 169, 181], "filestatsstor": [164, 166, 192], "filesystem": 193, "fill": [33, 34, 38, 43, 106, 108, 177, 180], "fill_valu": 177, "filter": [3, 83, 147, 152, 170, 180, 192], "final": [104, 106, 108, 109, 195], "find": [0, 6, 17, 31, 38, 87, 88, 93, 119, 120, 126, 150, 152, 155, 160, 168, 169, 189, 192, 193, 195], "find_compon": 6, "fine": 3, "fine_boundari": 3, "finetun": [71, 73, 74, 75], "finish": 192, "first": [17, 21, 31, 38, 87, 88, 98, 99, 119, 121, 152, 153, 182, 188, 192, 194, 195, 196], "fit": [1, 5, 6, 8, 9, 38, 47, 150, 152], "fix": [67, 145], "flag": [17, 20, 21, 186], "flatten": 10, "float": [3, 9, 10, 13, 14, 25, 26, 27, 28, 38, 39, 54, 55, 67, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 95, 96, 99, 106, 108, 112, 114, 115, 116, 118, 119, 120, 127, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 150, 151, 152, 154, 178, 180, 181, 182], "float32": [151, 152, 178, 180], "float64": [151, 152], "floor": 17, "fmap_inc_factor": [17, 18, 21, 192, 195, 196], "fmap_increment_factor": [17, 21], "fmaps_in": [17, 18, 21, 192, 195, 196], "fmaps_out": [17, 18, 21, 192, 195, 196], "fmt": 187, "fn": [82, 83, 88], "focus": 17, "folder": 192, "follow": [3, 17, 67, 68, 69, 142, 143, 144, 150, 152, 166, 182, 185, 189, 190, 192, 195], "forbid_extra_kei": 163, "forc": 192, "foreground": [116, 118, 119, 120, 192, 193], "fork": 192, "format": [0, 59, 67, 143, 155, 169, 186, 190, 192, 193], "format_class_nam": 59, "formula": 83, "forum": 190, "forward": [17, 19, 21, 67, 68, 185], "found": [0, 32, 38, 42, 58, 62, 74, 90, 146, 155, 156, 157, 158, 175, 190, 192], "fov": [17, 21], "fp": [82, 83, 88], "frac": 178, "fragment": 194, "framework": [49, 54, 190, 192, 193], "free": [13, 14], "frequent": [49, 54], "frizz": [84, 88], "frizz_level": [84, 85, 88], "from": [2, 3, 4, 7, 12, 13, 14, 15, 17, 18, 21, 22, 25, 27, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 52, 53, 54, 57, 59, 60, 61, 62, 67, 71, 72, 73, 74, 75, 80, 83, 86, 88, 91, 93, 98, 99, 101, 102, 103, 108, 111, 113, 115, 116, 117, 119, 122, 123, 124, 126, 129, 130, 132, 138, 140, 141, 145, 147, 148, 150, 152, 155, 156, 161, 163, 165, 166, 168, 169, 170, 171, 173, 176, 180, 181, 183, 185, 188, 189, 190, 192, 193, 194, 195, 196], "from_arrai": 3, "from_toml": [35, 38], "full": [150, 152, 187, 195], "function": [2, 4, 17, 20, 21, 24, 61, 62, 67, 68, 73, 82, 83, 84, 85, 86, 87, 88, 89, 96, 97, 98, 99, 100, 101, 108, 111, 113, 116, 118, 119, 131, 132, 148, 149, 152, 163, 186, 192, 193, 194], "function_path": 8, "funk": [187, 190], "funkelab": [191, 195], "funlib": [0, 7, 15, 18, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 56, 59, 62, 67, 68, 77, 87, 88, 93, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 121, 122, 155, 158, 159, 174, 176, 192, 194, 195, 196], "further": 166, "futur": [130, 132], "g": [17, 21, 59, 62, 108, 109, 119, 122, 161, 190, 194], "g_out": 17, "gamma": [131, 132, 151, 152], "gamma_augment_config": [131, 132], "gamma_config": [132, 184], "gamma_max": [151, 152], "gamma_min": [151, 152], "gamma_nois": [152, 184], "gamma_rang": [131, 132], "gammaaug": [131, 132, 151, 152], "gammaaugmentconfig": [131, 132], "gate": 17, "gaussian": [180, 192], "gaussian_blur_arg": 180, "gaussian_noise_arg": 180, "gaussian_noise_lim": 180, "gb": [13, 14], "gen": 163, "gener": [3, 11, 13, 17, 18, 21, 26, 27, 48, 54, 59, 62, 67, 68, 70, 76, 77, 79, 83, 92, 93, 95, 108, 111, 113, 115, 116, 118, 119, 120, 122, 148, 150, 152, 180, 181, 184, 187, 192, 194], "generate_csv": [59, 62], "generate_dataspec_from_csv": 59, "generate_from_csv": [59, 62], "geometri": [0, 7, 15, 18, 21, 35, 38, 44, 46, 47, 48, 54, 55, 56, 59, 62, 67, 68, 77, 93, 108, 109, 113, 114, 115, 116, 118, 119, 120, 122, 155, 158, 159, 174, 176, 192, 195, 196], "get": [49, 54, 59, 62, 67, 69, 79, 93, 95, 105, 107, 108, 110, 115, 116, 117, 118, 119, 120, 121, 122, 129, 132, 133, 134, 135, 138, 143, 145, 149, 152, 160, 168, 176, 181, 188, 194, 195], "get_arrai": [33, 38], "get_best": [67, 145], "get_d": 181, "get_dataset": 181, "get_model_setup": 71, "get_overall_best": [87, 88], "get_overall_best_paramet": [87, 88], "get_right_resolution_array_config": 59, "get_runs_info": 157, "get_validation_scor": 69, "get_view": 181, "git": [191, 192], "github": [18, 21, 191, 192, 194, 195], "give": [17, 193], "given": [1, 2, 4, 5, 6, 8, 9, 16, 17, 21, 59, 62, 67, 68, 82, 83, 84, 85, 86, 87, 88, 89, 93, 99, 100, 102, 108, 111, 113, 116, 117, 118, 119, 120, 122, 123, 127, 130, 131, 132, 138, 140, 145, 148, 149, 150, 152, 160, 161, 162, 165, 166, 169, 170, 171, 172, 173, 177, 181, 182, 183], "global": [12, 13, 164], "go": [17, 21, 166, 194], "goal": [67, 70], "goe": [192, 195], "good": [38, 40], "gp": [129, 131, 132, 133, 134, 135, 138, 155, 180, 184], "gp_arrai": 174, "gp_augment": [137, 138, 184, 195], "gp_to_funlib_arrai": 174, "gpu": [3, 11, 12, 13, 14, 136, 138, 140], "gradient": [18, 21, 195], "graph": [52, 53, 54, 55, 63, 64, 149, 152, 176], "graph_sourc": [149, 152], "graph_source_config": [53, 184], "graphkei": [63, 64, 149, 150, 152], "graphsourc": [149, 152], "graphspec": [149, 152], "graphstor": [54, 184], "graphstoreconfig": [52, 53], "greater": [17, 21, 83, 104, 107, 108, 112, 178], "grid": [130, 132, 150, 152], "ground": [48, 54, 55, 56, 59, 62, 63, 64, 83, 87, 88, 90, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 138, 140, 148, 152, 154, 181, 182, 192, 195], "groundtruth": [182, 190], "group": [32, 38, 42, 59, 185], "grow": [115, 119], "grow_boundary_iter": [115, 119], "gt": [48, 54, 55, 56, 63, 64, 115, 116, 117, 118, 119, 120, 121, 122, 136, 137, 138, 148, 152, 154, 160, 168, 181, 182, 192], "gt_config": [54, 56, 59, 192], "gt_contain": [59, 62], "gt_dataset": [59, 62], "gt_kei": [129, 132, 138, 148, 152], "gt_min_reject": [136, 137, 138], "gt_region_for_roi": [115, 116, 118, 119, 120, 122], "gt_voxel_s": [116, 118, 119, 120, 122], "gui": [191, 194, 195], "guid": [188, 195], "gunpowd": [129, 131, 132, 133, 134, 135, 136, 137, 138, 147, 148, 149, 150, 152, 153, 180, 195], "gunpowder_train": [138, 184], "gunpowder_trainer_config": [138, 184], "gunpowdertrain": [136, 137, 138], "gunpowdertrainerconfig": [137, 138, 192, 195], "h": [82, 83, 88, 182], "ha": [17, 20, 21, 22, 27, 28, 33, 38, 50, 54, 67, 106, 108, 119, 121, 138, 141, 143, 162, 163, 192, 193, 195], "had": 10, "half": [98, 99], "handl": [67, 71, 73, 74, 78, 93, 145, 192, 194, 195], "happen": [79, 92, 93, 95], "harmon": 83, "hash": [48, 54], "hausdorff": [82, 83, 88], "hausdorffdistanceimagefilt": 83, "have": [17, 18, 21, 26, 27, 30, 31, 34, 35, 36, 38, 42, 43, 52, 53, 67, 83, 87, 88, 93, 108, 109, 116, 118, 119, 120, 122, 126, 128, 129, 132, 138, 140, 141, 145, 150, 152, 160, 168, 182, 185, 188, 189, 190, 192, 195], "haven": 195, "hdf5": [38, 47], "head": [67, 68, 71, 73, 74], "head_kei": 74, "head_weight": 74, "headless": 181, "height": [17, 21, 181], "heinrich": 190, "heirarchi": [38, 47], "held": 195, "help": [23, 67, 70, 83, 185, 187, 195], "helper": [11, 12, 13, 93, 125], "henc": [119, 122, 162], "here": [81, 93, 187, 188, 190, 192, 193, 195, 196], "hierarchi": [162, 163], "high": 194, "higher": [49, 54, 82, 84, 86, 87, 88, 89, 157], "higher_is_bett": [82, 84, 86, 87, 88, 89, 157], "hold": [51, 54, 130, 132, 151, 152], "home": [155, 156, 192], "hook": [162, 163], "hookfactori": 163, "host": [156, 170, 171, 189, 195], "hostedtoolcach": 192, "hot": [91, 92, 93, 98, 99, 102, 103, 116, 118, 119, 121, 190], "hot_distance_loss": [99, 184], "hot_distance_predictor": [119, 184], "hot_distance_task": [93, 184], "hot_distance_task_config": [93, 184], "hot_loss": [98, 99], "hotdistanceloss": [91, 93, 98, 99], "hotdistancepredictor": [91, 93, 118, 119], "hotdistancetask": [91, 92, 93], "hotdistancetaskconfig": [92, 93], "how": [15, 17, 21, 49, 54, 67, 70, 77, 83, 93, 116, 118, 119, 120, 122, 145, 161, 162, 163, 188, 189, 192, 195, 196], "howev": [150, 152], "html": [157, 187, 192], "html_css_file": 187, "html_extra_path": 187, "html_static_path": 187, "html_theme": 187, "http": [18, 21, 187, 189, 191, 192, 195], "hxgy": 182, "hygx": 182, "i": [0, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 170, 173, 175, 176, 177, 178, 180, 181, 182, 183, 186, 187, 188, 189, 190, 192, 194, 195, 196], "ic": 186, "id": [32, 38, 42, 90, 93, 103, 104, 106, 108, 110, 169, 185, 186, 188, 189, 192], "identif": [49, 54], "identifi": [0, 1, 5, 6, 8, 9, 49, 54, 83, 85, 87, 88, 90, 104, 106, 108, 109, 110, 111, 113, 160, 168, 181, 192, 196], "ifram": 181, "ignor": [130, 132, 165, 170, 182, 187], "ignore_groundtruth": 182, "ignore_gt": 182, "ignore_i": 182, "ignore_reconstruct": 182, "ignore_seg": 182, "ignore_x": 182, "imag": [3, 83, 180, 190, 192, 193, 195, 196], "immut": [105, 107, 108, 110, 112], "impact": [67, 70], "implement": [12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 47, 49, 51, 54, 58, 59, 62, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 160, 161, 177, 180, 194], "import": [3, 17, 162, 181, 187, 192, 194, 195, 196], "importerror": 3, "improv": 194, "imshow": 192, "in_channel": [17, 21], "in_plac": 182, "inbound": 185, "includ": [12, 13, 14, 15, 18, 21, 38, 47, 54, 56, 67, 68, 69, 70, 71, 82, 83, 84, 86, 88, 89, 93, 94, 136, 138, 145, 150, 152, 162, 163, 185, 187, 192, 193, 195], "incorpor": [129, 132, 133, 134, 135, 138, 194], "incorrectli": 83, "increas": [15, 17, 18, 21, 192, 196], "ind": 178, "independ": [17, 21, 194], "index": [67, 82, 88, 105, 108, 145, 160, 168, 195], "indic": [10, 16, 17, 20, 21, 25, 27, 30, 31, 38, 47, 49, 51, 54, 61, 62, 67, 83, 84, 88, 90, 93, 126, 127, 128, 137, 138, 141, 145, 180], "individu": [180, 192], "inf": [116, 118, 119, 120], "infer": 3, "inference_plan": 3, "info": [181, 186, 195], "inform": [15, 21, 82, 83, 88, 89, 90, 138, 140, 152, 154, 163, 182, 187], "inherit": [11, 12, 13, 14, 15, 21, 27, 29, 35, 38, 71, 73, 80, 83, 86, 88, 91, 93, 97, 98, 99, 100, 101, 117, 119, 125], "init_callback_fn": 7, "initi": [2, 4, 17, 21, 27, 28, 33, 38, 50, 54, 55, 59, 61, 62, 65, 66, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 93, 94, 115, 116, 117, 118, 119, 120, 121, 127, 136, 138, 140, 152, 153, 170, 173, 188], "initialis": [57, 60, 62], "initialize_weight": [71, 73, 74], "inner": [67, 69, 93, 94, 142, 143, 144], "inner_distance_predictor": [119, 184], "inner_distance_task": [93, 184], "inner_distance_task_config": [93, 184], "innerdistancepredictor": [119, 120], "innerdistancetask": [93, 94], "innerdistancetaskconfig": [93, 95], "inplac": 90, "input": [0, 1, 5, 8, 9, 10, 15, 17, 18, 19, 20, 21, 57, 59, 60, 62, 67, 68, 73, 74, 98, 99, 104, 105, 107, 108, 112, 115, 119, 122, 138, 140, 150, 151, 152, 153, 155, 158, 160, 168, 180, 182, 186, 188, 192, 195, 196], "input_arrai": [3, 10], "input_array_identifi": [0, 1, 5, 8, 9], "input_contain": [0, 1, 5, 8, 9, 155, 158, 186], "input_dataset": [0, 1, 5, 8, 9, 155, 158, 186], "input_resolut": [59, 62], "input_shap": [15, 17, 18, 19, 21, 67, 68, 180, 192, 195, 196], "input_voxel_s": [15, 21], "insert": [170, 187], "insid": [25, 27, 180], "inside_valu": 180, "inspect": 195, "instal": [3, 185, 188, 189, 192], "instanc": [15, 17, 21, 27, 28, 33, 38, 41, 49, 50, 54, 59, 77, 80, 88, 89, 90, 93, 94, 104, 106, 108, 109, 111, 113, 117, 119, 122, 131, 132, 155, 156, 185, 190, 192, 193, 194], "instance_evalu": [88, 184], "instance_evaluation_scor": [88, 90, 184], "instanceevalu": [76, 88, 90, 93], "instanceevaluationscor": [88, 89, 90], "instanti": [48, 54, 55, 63, 64, 138, 140, 141], "instead": [17, 21, 150, 152, 194], "instruct": 189, "int": [0, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 34, 38, 42, 48, 49, 54, 59, 62, 67, 68, 69, 70, 73, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 93, 96, 99, 104, 107, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 127, 130, 132, 136, 137, 138, 140, 141, 142, 143, 144, 145, 150, 152, 155, 158, 160, 168, 169, 171, 173, 174, 178, 180, 181, 182, 183, 186], "int32": 176, "int64": [67, 143, 178, 192], "integ": [17, 19, 21, 81, 93, 180], "integr": [136, 138, 187], "intend": 166, "intens": [23, 27, 38, 39, 132, 133, 134, 184, 194], "intensities_arrai": [27, 28], "intensitiesarrai": [27, 28, 38, 39], "intensitiesarrayconfig": [38, 39, 192], "intensity_array_config": [38, 184], "intensity_augment_config": [132, 133], "intensity_config": [132, 184], "intensity_scale_shift_augment_config": [132, 134], "intensity_scale_shift_config": [132, 184], "intensityaug": [132, 133], "intensityaugmentconfig": [132, 133, 195], "intensityscaleshift": [132, 134], "intensityscaleshiftaugmentconfig": [132, 134], "interest": [0, 83, 115, 119, 155], "interfac": [73, 74, 75, 161, 186, 194, 195], "intern": [151, 152, 190], "interp_ord": [38, 44], "interpol": [17, 24, 25, 27, 30, 38, 44, 150, 152, 192], "interpolat": [22, 23, 24, 25, 26, 27, 28, 29, 30, 118, 119], "interpret": 182, "interv": [69, 130, 132, 137, 138, 150, 152, 171, 195], "invalid": [20, 21, 31, 38, 51, 54, 59, 93, 126, 128, 138, 166], "invert": 83, "io": [8, 160, 192], "iou": 3, "iprogress": 192, "ipynb": 187, "ipython": 181, "ipywidget": 192, "is_best": [87, 88], "is_seg": 181, "is_valid": [16, 21], "is_zarr_group": 59, "item": [59, 146, 178], "iter": [0, 5, 67, 69, 70, 83, 85, 87, 88, 90, 93, 104, 106, 108, 109, 111, 115, 119, 125, 127, 136, 137, 138, 140, 142, 143, 144, 145, 150, 151, 152, 155, 158, 160, 166, 168, 169, 171, 172, 173, 180, 181, 183, 186, 192, 193, 195], "iteration_scor": [67, 145], "iteration_stat": [67, 136, 138, 140, 143], "itertool": 178, "itk": 83, "its": [22, 24, 27, 30, 35, 38, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 160], "itself": 160, "j": [3, 182], "jaccard": [82, 83, 85, 87, 88, 90], "jan": [187, 190], "janelia": [191, 192], "januari": 194, "jeff": [187, 190, 194], "jitter": [150, 152], "job": [11, 13, 190, 193, 195], "join": 190, "journal": [182, 190], "json": [157, 169], "jupyt": 192, "jupyterlab": 192, "jupytext": 187, "just": [18, 21, 36, 38, 67, 99, 100, 128, 138, 145, 192, 194, 195], "k": [17, 21], "keep": [7, 23, 31, 38, 49, 54, 58, 62, 93, 126], "keep_tmpdir": 7, "kei": [33, 38, 62, 129, 131, 132, 133, 134, 135, 138, 147, 148, 149, 150, 152, 153, 165, 178, 180, 184, 185], "kept": [130, 132], "kernel": [17, 18, 21], "kernel_s": 17, "kernel_size_down": [17, 18, 21, 192, 196], "kernel_size_up": [17, 18, 21, 192, 196], "keyerror": [59, 147, 149, 152, 161, 165], "keymateri": 185, "keyword": [2, 4, 7, 59, 62, 155, 156], "know": [67, 145, 162, 163, 195], "known": [79, 92, 93], "kwarg": [2, 4, 7, 15, 21, 59, 62, 106, 108, 155, 156], "l": [17, 21, 190], "l1": [27, 30], "l_conv": 17, "l_down": 17, "label": [3, 22, 25, 27, 32, 38, 71, 73, 74, 90, 116, 118, 119, 120, 121, 178, 180, 182, 192, 194], "label_cmap": 192, "label_data": 178, "label_divisor": 3, "labeloverlapmeasuresimagefilt": 83, "labels_arrai": 192, "labels_slab": 178, "lack": [49, 54], "lambda": [162, 163], "larg": [7, 17, 35, 38, 47, 150, 152, 190, 192, 193, 195], "larger": [17, 119, 122, 150, 152], "larger_tensor": 17, "largest": 17, "larissa": 190, "last": [67, 145, 166], "latest": [169, 173, 191], "latest_iter": [169, 173], "launch": 185, "layer": [17, 18, 19, 21, 48, 54, 71, 73, 74, 119, 122, 181, 192, 193, 196], "layer_nam": 181, "lazi": 194, "learn": [17, 21, 67, 70, 127, 136, 138, 140, 141, 190, 193, 195], "learning_r": [127, 136, 138, 140, 141, 192, 195], "leav": [13, 14], "left": [17, 21, 67, 70], "len": [178, 192], "length": [17, 21, 27, 30], "less": [67, 79, 93, 127, 138, 143, 178], "let": [182, 192, 195], "level": [1, 5, 6, 8, 17, 18, 21, 83, 84, 88, 163, 186, 195], "lib": 192, "librari": [3, 63, 64, 83, 136, 138, 140], "like": [17, 21, 67, 68, 70, 169, 180, 187, 192], "likelihood": 192, "limit": [13, 14, 59, 62, 151, 152, 180], "limit_validation_crop_s": 59, "line": [186, 192, 195], "linear": [17, 150, 152, 192, 193], "linearli": [150, 152], "linearlr": [136, 138], "linux": 185, "list": [6, 7, 10, 12, 13, 17, 18, 21, 23, 27, 30, 32, 33, 38, 41, 42, 45, 46, 47, 48, 54, 55, 56, 57, 59, 60, 62, 65, 66, 67, 69, 71, 73, 74, 77, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 103, 108, 110, 113, 114, 115, 116, 118, 119, 120, 121, 130, 132, 136, 137, 138, 140, 142, 143, 144, 145, 157, 161, 163, 165, 166, 170, 171, 172, 176, 178, 180, 181, 182, 187, 189, 192], "listedcolormap": 192, "lm": 194, "load": [0, 35, 38, 71, 72, 73, 74, 75, 93, 102, 123, 124, 136, 138, 149, 152, 155, 165, 173, 183, 188, 194], "load_best": 173, "load_starter_model": 69, "load_weight": 173, "local": [13, 14, 67, 96, 99, 115, 119, 145, 155, 158, 160, 165, 168, 169, 185, 190, 192], "local_array_stor": [87, 88, 108, 109, 155, 158, 159, 164, 167, 184], "local_torch": [13, 184], "local_weights_stor": [164, 167, 184], "localarrayidentifi": [0, 1, 5, 6, 8, 9, 87, 88, 104, 108, 109, 111, 113, 155, 158, 159, 160, 168], "localarraystor": [164, 168], "localarryidentifi": [155, 158], "localcontaineridentifi": [136, 138, 140, 160, 168], "localhost": [170, 171, 189], "localtorch": [13, 14, 155, 156], "localvolum": 181, "localweightsstor": [164, 169], "locat": [63, 64, 151, 152, 169, 190], "log": [1, 5, 6, 8, 67, 70, 71, 73, 74, 150, 152, 182, 186, 194, 195], "log_2": 182, "log_level": [1, 5, 6, 8, 9, 186], "logger": [0, 1, 3, 5, 7, 8, 9, 59, 71, 74, 83, 90, 116, 118, 120, 121, 136, 143, 150, 151, 154, 156, 158, 159, 165, 166, 168, 169, 170, 171, 175, 176, 183], "logic": [38, 40, 49, 54], "logical_or_array_config": [38, 184], "logicalorarrai": [38, 40], "logicalorarrayconfig": [38, 40], "long": [17, 21, 194, 195], "look": [160, 168, 187, 188], "loop": [8, 97, 99, 192, 193], "loss": [54, 56, 67, 76, 78, 80, 91, 93, 94, 102, 119, 122, 123, 125, 127, 138, 142, 143, 150, 152, 157, 168, 184, 192, 193, 194, 195], "low": 194, "lower": [67, 82, 88, 145, 151, 152, 186], "lpxgy": 182, "lpygx": 182, "lr_schedul": [136, 138], "lsd": [77, 93, 96, 99, 115, 119], "lsd_pad": [115, 119], "lsd_weight_clipmax": [77, 93, 115, 119], "lsd_weight_clipmin": [77, 93, 115, 119], "lsdextractor": [115, 119], "lsds_to_affs_weight_ratio": [77, 93, 96, 99], "lsf": [11, 13], "m": [157, 178, 182], "machin": [13, 14, 190, 192, 193], "maco": 192, "made": 83, "mai": [35, 38, 47, 67, 68, 83, 138, 140, 177, 182, 190, 192, 193, 195], "main": [190, 195], "mainli": [81, 93], "maintain": 17, "major": [192, 193], "make": [38, 47, 176, 187, 192, 194, 195], "makeraw": 180, "malin": [187, 190], "manag": [127, 131, 132, 136, 138], "mandatori": [54, 56], "mani": [67, 145, 192, 193], "manipulat": [67, 143], "map": [17, 18, 21, 22, 24, 25, 27, 28, 30, 33, 38, 82, 88, 90, 98, 99, 163, 189, 192, 196], "marwan": [187, 190, 194], "mask": [27, 34, 38, 40, 41, 42, 43, 45, 48, 54, 55, 56, 63, 64, 79, 83, 92, 93, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 137, 138, 147, 148, 152, 154, 178, 184, 190, 192, 194], "mask_arrai": 192, "mask_config": [54, 56, 59], "mask_dist": [79, 92, 93, 116, 118, 119], "mask_integral_downsample_factor": [136, 138], "mask_kei": [129, 132, 138, 148, 152], "masked_in": 178, "mass": [77, 93], "master": [18, 21, 150, 152, 187], "match": [17, 71, 73, 74, 83, 96, 99, 170, 182, 187], "match_head": 74, "math": 195, "matplotlib": 192, "matrix": 182, "max": [17, 25, 27, 28, 38, 39, 82, 83, 88, 131, 132, 147, 152, 192], "max_dist": [116, 118, 119, 120], "max_gt_downsampl": [59, 62], "max_gt_upsampl": [59, 62], "max_raw_training_downsampl": [59, 62], "max_raw_training_upsampl": [59, 62], "max_raw_validation_downsampl": [59, 62], "max_raw_validation_upsampl": [59, 62], "max_retri": [2, 4, 7, 186], "max_siz": 59, "max_validation_volume_s": [59, 62], "maximum": [2, 3, 4, 7, 25, 27, 28, 38, 39, 59, 62, 67, 77, 79, 82, 83, 88, 92, 93, 95, 105, 108, 115, 116, 118, 119, 143, 145, 178, 186], "maximum_objects_per_class": 3, "mayor": [187, 190], "md": 187, "mean": [20, 21, 23, 36, 38, 82, 83, 88, 93, 94, 98, 99, 101, 128, 138, 180, 192], "mean_false_dist": [82, 83, 88], "mean_false_distance_clip": [82, 83, 88], "mean_false_negative_dist": [82, 83, 88], "mean_false_negative_distance_clip": [82, 83, 88], "mean_false_negative_distances_clip": 83, "mean_false_positive_dist": [82, 83, 88], "mean_false_positive_distance_clip": [82, 83, 88], "mean_false_positive_distances_clip": 83, "meant": [38, 44, 93, 126, 138, 140, 141], "measur": [27, 28, 82, 83, 88, 182], "mechan": 196, "median": 3, "median_slic": 3, "meila": 182, "member": [59, 187], "membran": [22, 27, 180], "membrane_lik": 180, "membrane_s": 180, "memori": [13, 14, 18, 21, 38, 47, 160, 168, 194], "mention": [51, 54], "merg": [6, 38, 41, 79, 82, 83, 88, 89, 92, 93, 95, 182], "merge_instances_array_config": [38, 184], "mergeinstancesarrai": [38, 41], "mergeinstancesarrayconfig": [38, 41], "mesh": 181, "messag": [16, 20, 21, 31, 36, 37, 38, 49, 51, 54, 58, 62, 81, 93, 138, 141, 161], "meta": 59, "metadata": [23, 192], "method": [11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 47, 49, 51, 52, 53, 54, 56, 58, 59, 61, 62, 67, 69, 70, 77, 79, 81, 82, 83, 84, 86, 88, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 149, 150, 151, 152, 153, 154, 155, 156, 160, 162, 163, 166, 180, 181], "metric": [82, 83, 88, 182, 192, 193, 194, 195], "metric_param": 83, "middl": [67, 144], "might": [83, 85, 87, 88, 90, 195], "min": [27, 28, 38, 39, 131, 132, 192], "min_distance_object_cent": 3, "min_ext": 3, "min_label": 195, "min_mask": [136, 137, 138, 192, 195], "min_siz": [3, 106, 107, 108, 114], "min_training_volume_s": [59, 62], "minim": 190, "minimum": [3, 27, 28, 38, 39, 59, 62, 77, 79, 93, 107, 108, 114, 115, 116, 119, 136, 137, 138, 150, 152, 178, 190], "mirror": [127, 128, 138], "mirror_aug": [127, 128, 138], "misclassifi": [79, 92, 93, 95], "mismatch": [71, 73, 74], "miss": [33, 38], "missing_annotations_mask_config": [38, 184], "missingannotationsmaskconfig": [38, 42], "mito": [59, 62, 188], "mito_mem": 188, "mito_ribo": 188, "mitochondria": [22, 27], "mitonet_v1": 3, "mitonet_v2": 3, "mitonet_v3": 3, "mitonet_v4": 3, "mitonet_v5": 3, "mitonet_v6": 3, "ml": [190, 191, 192], "mlflow": 194, "mnist": 173, "mode": [17, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 67, 68, 174, 192, 195, 196], "model": [0, 1, 3, 5, 8, 15, 16, 21, 26, 27, 57, 60, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 83, 85, 86, 87, 88, 90, 93, 96, 97, 98, 99, 102, 104, 106, 108, 109, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127, 136, 138, 140, 143, 155, 158, 159, 169, 173, 183, 184, 186, 190, 192, 193, 194, 195], "model_config": 3, "model_nam": 188, "model_state_dict": 173, "modifi": [132, 133, 150, 152, 185, 195], "modul": [13, 21, 67, 108, 146, 187], "modular": 190, "mongo_config_stor": [167, 184], "mongo_db_host": [155, 156], "mongo_db_nam": [155, 156], "mongo_stats_stor": [167, 184], "mongocli": [170, 171], "mongoconfigstor": [164, 170], "mongodb": [156, 170, 171, 190, 192, 193, 194, 195], "mongodbhost": [192, 195], "mongodbnam": [192, 195], "mongostatsstor": [164, 171], "more": [17, 49, 54, 84, 88, 119, 122, 194], "morphologi": [116, 119], "most": [181, 187, 191], "most_recent_iter": 181, "mostli": 192, "move": [69, 115, 116, 117, 118, 119, 120, 121, 122, 157, 178, 194], "move_optim": 69, "moving_class_count": [115, 116, 117, 118, 119, 120, 121, 122], "moving_count": [148, 152, 178], "mr": 186, "mse_loss": [99, 184], "mseloss": [78, 93, 98, 99, 100, 101], "mt": 188, "mt_out": 188, "much": [15, 17, 21, 77, 93, 116, 118, 119, 120, 122, 192, 193, 194, 195], "multi": [17, 21, 32, 38, 39, 42, 47, 59, 62, 82, 88, 190, 192, 193], "multichannelbinarysegmentationevaluationscor": [82, 83, 88], "multicut": 10, "multigpu": 3, "multipl": [3, 17, 18, 21, 38, 40, 41, 47, 59, 62, 108, 109, 116, 118, 119, 120, 192], "multipli": [17, 21, 152, 153], "multiprocess": 192, "multitud": 193, "multivari": 182, "must": [36, 37, 38, 39, 40, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 138, 140, 141, 162], "mutex_watersh": 194, "mutipl": [59, 62], "my": [185, 192, 195], "my_dataset": 186, "my_output": 186, "my_run": 186, "mykeypair": 185, "mymodel": [15, 16, 21], "mypostprocessor": [108, 109, 113], "mypostprocessorparamet": [108, 109], "myst_nb": 187, "myst_pars": 187, "mzouink": 185, "n": [17, 38, 47, 90, 157, 182, 190, 192, 195], "n5": [59, 62, 190], "name": [0, 3, 5, 11, 13, 16, 17, 21, 22, 23, 27, 28, 31, 32, 38, 42, 46, 47, 48, 49, 50, 51, 54, 55, 58, 59, 62, 67, 69, 70, 71, 73, 79, 92, 93, 95, 97, 99, 105, 107, 108, 110, 116, 118, 119, 120, 126, 138, 141, 145, 146, 155, 156, 157, 158, 160, 161, 163, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 180, 181, 185, 186, 187, 188, 192, 193, 195, 196], "nameerror": 162, "nan": [82, 83, 88], "napari": 3, "napoleon": 187, "navig": 189, "nbsphinx": 187, "nbsphinx_custom_format": 187, "ndarrai": [3, 6, 10, 33, 38, 83, 90, 116, 118, 119, 120, 121, 176, 178, 181, 182], "ndimag": [116, 119, 192], "nearest": [17, 25, 27, 83, 180, 192], "necessari": [7, 32, 35, 37, 38, 39, 42, 45, 46, 47, 91, 93, 152, 154, 156, 180, 188, 195], "need": [17, 38, 47, 49, 54, 59, 67, 81, 93, 116, 118, 119, 120, 122, 145, 160, 162, 163, 168, 188, 193, 195], "neg": [25, 27, 79, 82, 83, 88, 92, 93, 95, 176, 182], "neighbor": [17, 192], "neighborhood": [77, 93, 108, 113, 114, 115, 119, 176, 192, 195], "nest": [38, 47], "net": [17, 21, 188, 194, 195], "network": [2, 4, 7, 15, 16, 18, 19, 21, 138, 140, 169, 173, 190, 192], "neural": [15, 16, 21, 138, 140], "neurogl": [48, 54], "neuroglanc": [48, 54, 69, 136, 138, 181, 190], "neuroglancerrunview": 181, "neuron": 195, "never": [20, 21, 32, 36, 38, 51, 54, 61, 62, 81, 93], "new": [6, 67, 71, 73, 74, 90, 117, 119, 137, 138, 143, 145, 147, 152, 165, 166, 181, 190, 192], "new_best_exist": 181, "new_head": [71, 73, 74], "new_validation_check": 181, "new_valu": 6, "next": [136, 138, 195], "next_conv_kernel_s": 17, "nhood": 176, "nice": [160, 168, 193, 194, 195], "nm": [181, 188, 192], "nn": [17, 21, 67, 68], "no_valid": 186, "node": [6, 129, 130, 131, 132, 133, 134, 135, 138, 148, 150, 152, 195], "nois": [131, 132, 151, 152, 180], "non": [32, 38, 63, 64, 71, 73, 74, 192, 193], "non_empti": [63, 64], "non_empty_mask": [63, 64], "none": [0, 2, 4, 5, 7, 11, 12, 13, 14, 17, 18, 21, 33, 35, 36, 38, 47, 48, 54, 55, 56, 57, 59, 62, 67, 68, 69, 70, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 93, 96, 97, 99, 100, 103, 108, 109, 115, 116, 117, 118, 119, 120, 121, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 148, 150, 152, 154, 155, 156, 157, 158, 159, 160, 161, 165, 166, 168, 169, 170, 171, 172, 173, 174, 178, 181, 182, 183, 186, 192], "nonempti": [152, 154], "nonzero": 178, "norm": [27, 30, 116, 118, 119, 120, 182], "normal": [17, 38, 39, 79, 92, 93, 95, 116, 118, 119, 120, 182, 192, 193, 196], "normalize_arg": [116, 118, 119, 120], "nosuchmodul": 146, "not_membrane_mask": 192, "note": [17, 21, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 88, 91, 93, 94, 95, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 145, 150, 152, 165, 166, 170, 171, 176, 178, 192, 195], "notebook": 192, "notebook_tqdm": 192, "noth": [149, 152], "notic": [150, 152], "notimplementederror": [12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 47, 49, 51, 54, 58, 59, 62, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 147, 148, 152, 160, 180], "now": [188, 192, 195], "np": [0, 3, 6, 10, 33, 34, 38, 43, 83, 90, 116, 118, 119, 120, 121, 151, 152, 155, 158, 176, 178, 180, 181, 182, 186, 192], "np_arrai": 174, "np_to_funlib_arrai": 174, "nuc": 188, "nucleo": 188, "num": [178, 186], "num_affin": [96, 99], "num_channel": [115, 119, 174], "num_channels_from_arrai": 174, "num_class": [23, 178], "num_cpu": [11, 13], "num_data_fetch": [136, 137, 138, 192, 195], "num_fmap": [17, 18, 21, 192, 195, 196], "num_fmaps_out": [17, 21], "num_gpu": [11, 13], "num_head": [17, 21], "num_in_channel": [15, 17, 19, 20, 21, 67, 68], "num_iter": [67, 70, 127, 136, 138, 140, 192, 195], "num_level": 17, "num_lsd_voxel": [77, 93], "num_out_channel": [15, 17, 19, 20, 21, 67, 68], "num_point": 180, "num_snapshot": 192, "num_valid": 192, "num_voxel": [115, 119], "num_work": [0, 2, 4, 7, 104, 106, 108, 109, 111, 113, 155, 158, 186], "number": [0, 2, 3, 4, 7, 11, 13, 15, 17, 18, 19, 20, 21, 23, 26, 27, 30, 38, 42, 67, 68, 69, 70, 73, 74, 77, 83, 90, 93, 96, 98, 99, 104, 106, 108, 109, 111, 113, 115, 116, 117, 118, 119, 120, 121, 127, 136, 137, 138, 140, 143, 145, 155, 157, 158, 160, 169, 176, 178, 180, 181, 182, 186, 192, 193, 196], "numer": [49, 54], "numpi": [0, 3, 83, 116, 118, 119, 120, 121, 155, 158, 176, 178, 180, 181, 192], "numpyarrai": [115, 117, 118, 119, 121, 136, 138], "nw": 186, "o": 187, "obj": [59, 62, 71, 73, 74], "object": [0, 3, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 38, 39, 40, 48, 49, 51, 52, 53, 54, 56, 58, 59, 62, 67, 69, 76, 77, 78, 79, 80, 81, 83, 85, 88, 91, 92, 93, 95, 106, 108, 110, 115, 116, 118, 119, 120, 124, 126, 127, 128, 130, 132, 138, 143, 145, 150, 151, 152, 154, 155, 156, 158, 161, 162, 163, 164, 165, 166, 169, 170, 173, 175, 180, 181, 190, 192], "obtain": [83, 150, 152], "oc": 186, "od": 186, "off": [192, 193], "offici": [48, 54, 189], "offset": [10, 46, 108, 113, 114, 174, 192], "often": [67, 70, 192, 193], "old": [6, 74, 90, 194], "old_head": 74, "old_num": 178, "old_valu": 6, "om": [59, 62, 190], "omit_if_default": 163, "onc": [98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 188, 189, 195], "one": [3, 17, 21, 57, 59, 60, 62, 67, 92, 93, 102, 103, 116, 118, 119, 121, 143, 145, 150, 152, 182, 185, 192], "one_hot": [119, 121], "one_hot_predictor": [119, 184], "one_hot_task": [93, 184], "one_hot_task_config": [93, 184], "onehotpredictor": [119, 121], "onehottask": [93, 102, 103], "onehottaskconfig": [93, 103], "ones": [34, 38, 43, 67, 145, 178, 187, 194], "ones_array_config": [38, 184], "ones_lik": [33, 34, 38, 43], "onesarrayconfig": [38, 43], "onli": [3, 11, 13, 17, 21, 35, 38, 57, 59, 60, 62, 67, 68, 71, 73, 74, 118, 119, 145, 150, 152, 154, 160, 164, 177, 182, 187, 188, 190, 192, 194], "oom_limit": [13, 14], "op": 186, "open": [170, 181, 190, 192], "open_from_array_identitifi": 181, "open_from_identifi": [83, 88, 90, 174], "openorganel": 190, "oper": [17, 18, 21, 48, 54, 182, 186], "opt": 192, "optim": [18, 21, 69, 99, 100, 127, 136, 138, 140, 141, 169, 173, 184, 190, 192, 193], "optimizer_state_dict": 173, "optimum": 192, "option": [0, 7, 11, 12, 13, 14, 15, 17, 18, 21, 33, 38, 47, 48, 54, 55, 56, 59, 67, 68, 70, 87, 88, 90, 99, 100, 131, 132, 133, 134, 135, 137, 138, 147, 152, 154, 155, 158, 164, 165, 168, 170, 171, 177, 178, 180, 181, 182, 184, 186, 187, 189, 191, 195], "order": [33, 38, 44, 67, 143, 192], "ordereddict": 173, "org": [187, 195], "organ": [67, 144, 166], "origin": [15, 21, 59, 147, 150, 152], "orthogon": 3, "orthoplan": 3, "orthoplane_infer": 3, "other": [12, 13, 14, 15, 21, 31, 38, 48, 49, 54, 83, 93, 126, 178, 182, 188, 190, 192, 193, 194, 195], "otherwis": [23, 58, 59, 62, 79, 82, 83, 88, 92, 93, 95, 104, 107, 108, 112, 127, 136, 138, 140, 155, 156, 158, 181, 192], "our": [149, 152, 190, 192, 194, 195], "out": [13, 14, 67, 70, 79, 83, 92, 93, 152, 154, 160, 168, 182, 195], "out_channel": 17, "out_path": 192, "outer": [67, 69, 142, 143, 144], "output": [0, 1, 5, 6, 8, 9, 15, 17, 18, 19, 20, 21, 26, 27, 38, 42, 59, 62, 67, 68, 70, 83, 85, 87, 88, 90, 93, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 138, 140, 147, 148, 149, 151, 152, 153, 155, 158, 160, 168, 180, 185, 186, 187, 188, 190, 192, 193, 195, 196], "output_arrai": [83, 85, 87, 88, 90], "output_array_identifi": [0, 1, 5, 6, 8, 9, 83, 85, 87, 88, 90, 104, 106, 108, 109, 111, 113], "output_array_typ": [115, 116, 117, 118, 119, 120, 121, 122], "output_contain": [1, 5, 6, 8, 9, 186], "output_dataset": [1, 5, 6, 8, 9, 186], "output_dtyp": [0, 155, 158, 186], "output_path": [0, 155, 158, 186], "output_resolut": [59, 62], "output_roi": [155, 158, 159, 186], "output_run_1_1": 0, "output_shap": [67, 68], "outputidentifi": [87, 88], "outsid": [25, 27, 177, 180], "over": [7, 38, 40, 79, 92, 93, 95, 103, 127, 138, 150, 151, 152, 182], "overal": 83, "overhang": [67, 145], "overlap": 83, "overlap_measures_filt": 83, "overload": [48, 54], "overridden": [15, 21, 23], "oversegment": 182, "overwrit": [0, 119, 122, 155, 158, 166, 174, 186, 187], "overwritten": [155, 158], "ow": 186, "own": [12, 13, 14, 15, 21], "p": [18, 21, 152, 154, 182, 185, 186, 189], "p3": 185, "packag": 192, "pad": [17, 18, 21, 115, 116, 118, 119, 120, 122, 176, 192, 196], "padded_tensor": 17, "page": [184, 187, 196], "pai": [11, 13], "pair": 185, "panopt": 3, "parallel": [0, 7], "param": [150, 152, 157, 173], "param1": [108, 109], "param2": [108, 109], "paramet": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 59, 62, 67, 68, 69, 71, 73, 74, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 143, 144, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 181, 182, 183, 186, 188, 192, 193, 195], "parameter_nam": [67, 105, 107, 108, 110, 145], "parametr": 194, "params1": 168, "parent": 192, "pars": [0, 155, 156], "part": 161, "particular": [10, 25, 27, 36, 38, 128, 138, 160, 168, 190], "particularli": [67, 68, 195, 196], "pass": [2, 4, 7, 17, 18, 19, 21, 59, 67, 68, 70, 116, 118, 119, 120, 122, 186], "passiv": [149, 152], "past": 195, "path": [0, 1, 2, 4, 5, 6, 7, 8, 9, 17, 21, 38, 46, 47, 59, 62, 93, 102, 123, 124, 155, 156, 158, 160, 165, 166, 168, 186, 187, 192, 195], "pathwai": 17, "pattern": 187, "patton": [187, 190], "patton_dacapo_a_modular_2024": 190, "pem": 185, "peopl": 195, "per": [3, 17, 18, 21, 33, 38, 67, 108, 109, 130, 132, 144, 145, 150, 152, 182, 195, 196], "percent": 187, "perfect": 182, "perform": [3, 17, 19, 21, 38, 40, 67, 70, 83, 84, 85, 88, 90, 93, 103, 127, 130, 132, 136, 138, 140, 147, 150, 151, 152, 180, 194, 195], "perfrom": [17, 21], "permiss": 188, "peroxisom": [59, 62], "persist": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 54, 55, 87, 88, 108, 109, 111, 115, 116, 119, 121, 122, 174, 192, 194], "perturb": [151, 152], "phase": [67, 70], "physic": [17, 21], "pi": 195, "pickl": 166, "piecewis": [150, 152], "pip": [190, 191, 192], "pipelin": [69, 129, 131, 132, 133, 134, 135, 136, 138, 140, 149, 152, 179, 184], "pixel": [3, 79, 83, 88, 92, 93, 95, 180, 181, 192], "pixel_vote_thr": 3, "place": [32, 38, 42, 90, 162, 182], "plan": 190, "plane": 3, "playlist": 190, "pleas": [190, 192], "plot": [155, 184, 192, 194], "plot_loss": [157, 192], "plot_run": [157, 192], "plt": 192, "plu": [61, 62, 67, 143, 145], "plugin": 190, "pm": 188, "png": 194, "point": [27, 30, 48, 54, 55, 56, 67, 70, 71, 72, 73, 75, 83, 130, 132, 150, 152, 180, 182, 192, 193], "polici": [73, 74], "pool": 17, "popular": 196, "port": [69, 136, 138, 150, 152, 181, 185, 189], "posit": [2, 4, 7, 25, 27, 79, 82, 83, 88, 92, 93, 95, 176], "posixpath": [155, 156], "possibl": [18, 21, 24, 25, 27, 28, 104, 106, 108, 109, 111, 113, 181, 194], "post": [0, 2, 4, 7, 67, 76, 78, 80, 83, 85, 87, 88, 90, 93, 94, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 144, 145, 155, 186, 190, 194], "post_processing_paramet": [87, 88], "post_processor": [0, 67, 76, 78, 80, 87, 88, 91, 93, 94, 102, 123, 125, 145, 155, 184], "post_processor_paramet": [0, 108, 109, 155, 184], "postprocessor": [93, 108, 109, 125], "postprocessorparamet": [0, 67, 87, 88, 93, 104, 106, 108, 109, 110, 113, 125, 145, 155, 186], "precis": [82, 83, 85, 87, 88, 90], "precision_with_toler": [82, 83, 88], "pred_path": 192, "predefin": [83, 85, 88], "predict": [0, 1, 5, 6, 8, 9, 15, 18, 21, 67, 68, 76, 78, 79, 83, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 111, 113, 115, 116, 118, 119, 120, 122, 155, 159, 160, 168, 181, 184, 190, 192, 195], "predict_loc": [155, 184], "predict_work": [4, 184], "prediction_arrai": [104, 108, 111], "prediction_array_identifi": [0, 1, 8, 104, 106, 108, 109, 111, 113, 159], "prediction_head": [67, 68, 74], "prediction_run_1_1": 0, "predictor": [67, 68, 76, 78, 80, 91, 93, 94, 102, 123, 125, 148, 152, 184], "prefer_attrib_convert": 163, "prefix": [48, 54], "preload": 69, "prepar": [147, 148, 150, 152, 153], "prepare_d": 192, "presenc": 83, "present": [152, 154], "pretain": [72, 73], "pretrain": [72, 73, 93, 123, 124], "pretrained_task": [93, 184], "pretrained_task_config": [93, 184], "pretrainedtask": [93, 123], "pretrainedtaskconfig": [93, 124], "previou": [72, 73], "previous": [183, 192, 193], "primarili": [80, 93], "print": [3, 16, 21, 83, 104, 106, 108, 109, 111, 113, 127, 136, 138, 140, 192, 195], "print_profil": [136, 138], "prioriti": [67, 145, 194], "privat": [151, 152], "probability_arrai": [27, 30], "probabilityarrai": [27, 30, 118, 119, 121], "probabl": [27, 93, 103, 108, 109, 118, 119, 150, 152, 154, 182, 184], "problem": [32, 38, 39, 42], "process": [0, 2, 4, 7, 10, 17, 38, 47, 67, 76, 78, 80, 83, 85, 87, 88, 90, 93, 94, 104, 106, 108, 109, 111, 113, 116, 118, 119, 120, 121, 137, 138, 142, 145, 147, 148, 150, 151, 152, 153, 155, 158, 170, 180, 186, 190, 192, 194], "processor": [0, 67, 87, 88, 93, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 144, 155, 186], "produc": [18, 21, 67, 69, 136, 138, 142, 152, 153], "product": [150, 152, 178, 184], "profil": [136, 138, 185], "project": [11, 13, 187, 189, 190], "properti": [11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 54, 59, 62, 67, 69, 82, 83, 85, 86, 87, 88, 89, 90, 93, 108, 110, 115, 116, 117, 118, 119, 120, 121, 122, 125, 145, 165], "proport": [83, 182], "provid": [11, 12, 13, 15, 21, 23, 32, 33, 35, 37, 38, 39, 42, 45, 46, 47, 49, 54, 67, 83, 84, 86, 87, 88, 92, 93, 94, 98, 99, 100, 101, 124, 125, 127, 138, 143, 145, 147, 148, 149, 150, 152, 153, 154, 155, 156, 160, 162, 163, 176, 177, 180, 182, 189, 192, 193, 194, 195, 196], "proxi": [83, 118, 119], "pseudo": 192, "psi": 17, "publish": 190, "pull": [32, 38, 39, 42, 138, 140, 185], "pure": 194, "purpos": [20, 21, 51, 54, 80, 85, 88, 93, 127, 138], "push": [116, 118, 119, 120], "put": 194, "px": 182, "pxy": 182, "py": [12, 13, 18, 21, 108, 113, 182, 186, 187, 192, 195], "pyplot": 192, "python": [12, 13, 187, 190, 192, 193], "python3": 192, "pytorch": [13, 14, 15, 21, 190, 194], "qualit": 195, "qualiti": [82, 83, 87, 88], "quantiz": 3, "queri": 185, "question": 190, "queue": [11, 13], "quick": [35, 38], "quickli": 195, "r": [18, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 174, 186, 195], "r_conv": 17, "r_up": 17, "rais": [0, 3, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 47, 49, 51, 54, 58, 59, 62, 67, 68, 69, 71, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 178, 180, 181, 182, 186], "rand": [3, 10, 181], "randint": 181, "randn": [17, 19, 21], "random": [3, 10, 132, 133, 150, 152, 180, 181, 192], "random_dil": 180, "random_source_pipelin": 180, "randomdilatelabel": 180, "randomli": [130, 132, 150, 152, 180], "rang": [25, 27, 28, 83, 131, 132, 133, 178, 180, 192, 195], "rate": [67, 70, 82, 83, 88, 115, 119, 127, 136, 138, 140, 141, 192, 193], "rather": [18, 21], "ratio": [83, 96, 99, 152, 154], "raw": [0, 1, 5, 8, 9, 18, 21, 48, 50, 54, 55, 56, 59, 62, 63, 64, 129, 131, 132, 133, 134, 135, 136, 137, 138, 155, 158, 160, 168, 180, 181, 192, 195], "raw_arrai": [1, 8], "raw_array_identifi": 159, "raw_config": [51, 54, 56, 192], "raw_contain": [59, 62], "raw_dataset": [59, 62], "raw_gt_dataset": [54, 184], "raw_gt_dataset_config": [54, 184], "raw_kei": [129, 131, 132, 133, 134, 138], "raw_max": [59, 62], "raw_min": [59, 62], "rawgtdataset": [54, 55], "rawgtdatasetconfig": [54, 56, 192], "re": [188, 192], "reaction": [49, 54], "read": [2, 4, 6, 7, 33, 34, 38, 43, 156, 186, 187, 190, 194], "read_cross_block_merg": 6, "read_roi": [2, 4, 7, 10], "read_roi_s": 186, "read_write_conflict": [1, 5, 6, 8, 9], "readthedoc": 192, "real": [20, 21, 81, 93, 97, 99, 192], "reason": [20, 21, 38, 47, 81, 93, 126, 128, 138], "rec_forward": 17, "recal": [82, 83, 85, 87, 88, 90], "recall_with_toler": [82, 83, 88], "receiv": [149, 152], "recent": [181, 191], "recogn": [82, 88], "recommend": [58, 62, 190, 192], "reconstruct": [163, 182], "recreat": [162, 163], "rectifi": 17, "recurs": 17, "reduc": [17, 21], "ref": 195, "refer": [3, 18, 21, 92, 93, 182, 189, 190, 196], "referenc": [118, 119], "refin": 190, "refrain": [49, 54], "region": [0, 79, 83, 92, 93, 115, 116, 119, 120, 122, 155, 182, 185], "regist": [162, 163], "register_hierarchi": [162, 163], "register_hierarchy_hook": 162, "register_hook": 162, "regress": 194, "regular": [79, 92, 93, 95], "reject": [152, 154], "reject_if_empti": [152, 184], "rejectifempti": [152, 154], "rel": 187, "relabel": [3, 6, 90, 180], "relabel_connect": 180, "relabel_in_block": 6, "relabel_work": [4, 184], "relat": [12, 13, 14, 15, 21, 51, 54, 93, 94, 127, 137, 138], "releas": 191, "relu": [17, 21], "remap": 10, "remov": [160, 168, 169, 173, 192], "repetit": [67, 70, 192, 195], "replac": [67, 90, 145, 185, 189, 195], "report": [116, 118, 119, 120, 122], "repres": [15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 48, 54, 59, 61, 62, 63, 64, 67, 69, 70, 71, 72, 73, 75, 81, 82, 83, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 131, 132, 138, 141, 142, 143, 144, 145, 151, 152, 160, 173, 176, 177, 180, 181], "represent": [27, 29, 48, 54, 59, 62, 63, 64, 156, 160], "reproduc": [150, 152, 194, 195], "request": [116, 118, 119, 120, 122, 147, 148, 149, 150, 151, 152, 153, 154, 177, 180], "requir": [12, 13, 14, 15, 16, 21, 138, 140, 150, 152, 186, 190, 192, 193, 195, 196], "resampled_array_config": [38, 184], "resampledarrai": [38, 44], "resampledarrayconfig": [38, 44], "reshap": 10, "resid": [147, 152], "resiz": 59, "resize_if_need": 59, "resolut": [18, 21, 59, 62, 83, 150, 152, 192], "respect": [57, 58, 60, 62, 65, 66, 83, 98, 99, 100, 101, 182], "respons": [119, 122, 193], "restor": [150, 152], "result": [13, 14, 17, 21, 49, 54, 83, 93, 94, 150, 152, 182, 192, 195], "result_data": 177, "resum": 192, "retri": [2, 4, 7, 186], "retriev": [71, 73, 74, 75, 161, 163, 165, 166, 169, 170, 171, 172, 173, 181, 193, 195], "retrieve_architecture_config": [161, 165, 170, 192], "retrieve_architecture_config_nam": [161, 165, 170], "retrieve_array_config": [161, 165, 170], "retrieve_array_config_nam": [161, 165, 170], "retrieve_best": [169, 173], "retrieve_dataset_config": 170, "retrieve_dataset_config_nam": 170, "retrieve_datasplit_config": [161, 165, 170, 192], "retrieve_datasplit_config_nam": [161, 165, 170], "retrieve_run_config": [161, 165, 170, 192], "retrieve_run_config_nam": [161, 165, 170], "retrieve_task_config": [161, 165, 170, 192], "retrieve_task_config_nam": [161, 165, 170], "retrieve_trainer_config": [161, 165, 170, 192], "retrieve_trainer_config_nam": [161, 165, 170], "retrieve_training_stat": [166, 171, 172, 192], "retrieve_validation_iteration_scor": [166, 171, 172], "retrieve_weight": [169, 173], "return": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 43, 47, 48, 49, 51, 54, 58, 59, 61, 62, 63, 64, 67, 68, 69, 71, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 162, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 178, 180, 181, 182, 183], "return_backwards_map": 90, "return_count": 178, "return_io_loop": [1, 5, 6, 8, 9], "return_json": 157, "return_panopt": 3, "reus": [31, 38, 58, 62, 93, 126, 188], "reusabl": [49, 54], "rhoad": [187, 190], "rid": 194, "right": [17, 21, 59, 119, 122], "roi": [0, 2, 4, 7, 10, 35, 38, 47, 115, 116, 118, 119, 120, 122, 147, 148, 149, 150, 152, 155, 158, 159, 174, 177, 186, 192], "root": [166, 187], "rotat": [130, 132, 150, 152], "rotation_interv": [130, 132, 150, 152, 195], "rotation_max_amount": [150, 152], "rotation_start": [150, 152], "row": 182, "rr": 186, "rst": 187, "rudimentari": 160, "rule": [49, 54], "run": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 67, 70, 71, 72, 73, 74, 75, 93, 108, 111, 113, 124, 136, 138, 155, 157, 158, 160, 161, 165, 166, 168, 169, 170, 171, 172, 173, 175, 181, 183, 184, 190, 193, 194], "run1": [161, 165, 166, 168, 169], "run2": 169, "run_0": [170, 171, 172, 173], "run_1": [0, 72, 73, 155], "run_blockwis": [7, 108, 111], "run_config": [67, 69, 161, 165, 170, 184, 188, 192, 195], "run_config_base_nam": [157, 192], "run_config_nam": 157, "run_nam": [0, 5, 155, 157, 158, 160, 161, 165, 166, 168, 170, 171, 172, 175, 183, 186], "run_path": 192, "run_thread": 181, "runconfig": [67, 70, 161, 165, 170, 188, 192, 195], "runinfo": 157, "runner": 192, "runs_base_dir": [155, 156, 185, 192, 195], "runtimeerror": [17, 21, 71, 73, 74, 147, 148, 149, 152, 176], "s3": 192, "saalfeld": [18, 21], "saalfeldlab": [18, 21], "safe": [150, 152], "same": [17, 21, 34, 35, 38, 43, 83, 85, 87, 88, 90, 98, 99, 116, 118, 119, 120, 122, 149, 152, 161, 165, 170, 182, 192, 195], "sampl": [17, 21, 38, 44, 48, 49, 54, 55, 56, 83, 130, 132, 150, 152, 194], "sample_dataset": [49, 54], "sample_point": [48, 54, 55, 56], "satur": [116, 118, 119, 120], "save": [31, 35, 38, 58, 62, 67, 86, 88, 93, 126, 136, 137, 138, 140, 145, 165, 170, 192, 195], "save_ndarrai": 177, "sc": 190, "scalabl": 190, "scalar": [99, 100, 177, 181], "scale": [15, 17, 21, 67, 68, 79, 92, 93, 95, 116, 118, 119, 120, 132, 133, 134, 178, 194, 195], "scale_factor": [17, 79, 92, 93, 95, 116, 118, 119, 120, 192], "scale_slab": 178, "schedul": [4, 108, 111, 113, 136, 138, 184], "scikit": 192, "scipi": [116, 119, 182, 192], "score": [67, 69, 82, 83, 84, 85, 86, 87, 88, 89, 90, 144, 145, 157, 166, 171, 172, 181, 183, 195], "score_1": [87, 88], "score_2": [87, 88], "scratch": [192, 193], "script": [12, 13, 108, 113, 185, 190, 194, 195], "search": [160, 168], "sec_api_run": 195, "sec_api_runconfig": 195, "sec_api_trainerconfig": 195, "second": [7, 31, 38, 87, 88, 98, 99, 152, 153, 182, 186], "section": 196, "secur": 185, "see": [67, 119, 122, 145, 187, 192, 195], "seed": [150, 152, 192], "seem": 10, "seg": [176, 181, 182], "seg_to_affgraph": 176, "segment": [3, 7, 8, 10, 59, 62, 77, 79, 82, 83, 88, 89, 90, 93, 94, 95, 108, 109, 111, 114, 116, 118, 119, 120, 122, 176, 181, 182, 190, 192, 193, 194, 195, 196], "segment_blockwis": [7, 108, 113], "segment_funct": [3, 10, 186], "segment_function_fil": [7, 186], "segment_work": [4, 184], "segmentation_typ": [59, 62], "segmentationtyp": [59, 62], "segmented_arrai": 3, "select": [17, 163, 169, 187, 192], "self": [20, 21, 22, 25, 27, 28, 31, 33, 35, 38, 57, 59, 60, 62, 76, 77, 78, 79, 80, 81, 83, 91, 92, 93, 94, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 138, 147, 152], "semant": [3, 23, 59, 62, 108, 109, 190, 194], "semantic_onli": 3, "sens": 195, "separ": [17, 32, 38, 59, 62, 67, 77, 93, 116, 119, 145, 192, 193], "separator_charact": 59, "sequenc": [17, 59, 62, 83], "sequenti": [67, 68], "seri": 17, "serial": 156, "serv": [138, 140, 149, 152, 196], "server": [190, 192], "servic": 185, "set": [17, 18, 21, 33, 38, 54, 56, 57, 59, 60, 62, 67, 77, 81, 83, 87, 88, 93, 104, 105, 106, 107, 108, 109, 111, 112, 113, 127, 132, 133, 136, 137, 138, 140, 143, 145, 147, 148, 149, 150, 152, 153, 154, 180, 185, 188, 189, 192, 195], "set_best": [87, 88], "set_predict": [104, 106, 108, 109, 111, 113], "set_start_method": 192, "set_titl": 192, "set_ylabel": 192, "setup": [71, 147, 148, 149, 150, 151, 152, 153, 154, 180, 187, 188], "setup04": 188, "setup26": 188, "setup28": 188, "setup36": 188, "setup45": 188, "sever": [12, 13, 14, 15, 21, 194, 196], "sf": 186, "shape": [3, 15, 17, 18, 19, 21, 26, 27, 34, 38, 43, 67, 68, 83, 96, 99, 115, 119, 122, 176, 178, 180, 182, 190, 192, 196], "sheet": 187, "shift": [132, 133, 134, 194, 195], "short": [31, 38, 49, 54, 58, 62, 93, 126], "shoulb": [59, 62], "should": [3, 12, 13, 15, 16, 17, 21, 23, 25, 27, 30, 31, 38, 48, 49, 52, 53, 54, 55, 59, 62, 63, 64, 67, 72, 73, 77, 82, 83, 86, 88, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 126, 129, 130, 132, 133, 137, 138, 141, 145, 155, 156, 161, 163, 171, 190, 195, 196], "show": [81, 93, 187, 190, 192, 194], "shown": 187, "shrink": [6, 8], "side": [17, 21, 194], "sigma": [108, 114, 115, 119, 192], "sigmoid": 17, "sign": [25, 27, 79, 92, 93, 95, 116, 118, 119, 120, 190], "signal": [17, 79, 92, 93, 95], "significantli": [18, 21, 67, 70, 150, 152], "similar": [38, 47, 83, 88], "simpl": [57, 60, 61, 62, 83, 132, 135, 163, 169, 193, 194], "simple_augment_config": [132, 135], "simple_config": [132, 184], "simpleaug": [132, 135], "simpleaugmentconfig": [132, 135, 195], "simpleitk": 83, "simpli": [18, 21, 22, 24, 25, 27, 30, 33, 38, 93, 103, 169], "simplifi": 194, "simul": 194, "sinc": [10, 18, 20, 21, 49, 54, 67, 68], "singl": [3, 17, 21, 38, 41, 67, 82, 83, 88, 145, 149, 152, 166, 192, 193, 195], "singleton": [119, 121, 155, 156], "site": 192, "sitk": 83, "situat": [92, 93], "size": [3, 15, 17, 18, 21, 38, 44, 46, 59, 62, 67, 68, 70, 104, 106, 107, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 122, 127, 136, 137, 138, 140, 141, 150, 152, 176, 180, 181, 186, 192, 193], "skew": 83, "skimag": 192, "slab": [115, 119, 178], "slab_count": 178, "slab_rang": 178, "slice": [3, 178, 192], "slurm": 194, "small": [17, 194], "small_unet": 195, "smaller": [17, 35, 38, 194], "smaller_tensor": 17, "smooth": [157, 190], "smooth_valu": 157, "snap": [150, 152], "snap_to_grid": [38, 47], "snapshot": [67, 70, 127, 136, 137, 138, 140, 160, 168, 192, 195], "snapshot_contain": [127, 136, 138, 140, 160, 168], "snapshot_interv": [137, 138, 192, 195], "snapshot_it": 192, "snapshot_iter": [136, 138], "snapshotcontain": [127, 138], "so": [31, 38, 58, 62, 93, 116, 118, 119, 120, 126, 182, 187, 192, 193, 194, 195], "softmax": [67, 68], "some": [106, 108, 138, 140, 160, 168, 192, 193, 194, 195, 196], "someth": [67, 68], "soon": [17, 21], "sort": [192, 193], "sourc": [33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 131, 132, 149, 152, 180, 181, 187, 194], "source_arrai": [33, 38], "source_array_config": [32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 192], "space": [83, 186], "spars": 182, "spatial": [15, 17, 21, 67, 68, 116, 118, 119, 120, 122, 150, 152], "spatial_shap": 17, "spawn": [1, 5, 6, 8, 9], "spawn_work": [1, 5, 6, 7, 8, 9], "spec": [150, 152, 180, 194], "special": [31, 38, 49, 54, 58, 62, 93, 126], "specif": [11, 12, 13, 14, 15, 21, 23, 38, 47, 49, 54, 59, 62, 71, 72, 73, 74, 75, 115, 119, 132, 133, 134, 135, 136, 138, 140, 141, 166, 169, 171, 172, 173, 180, 188, 189, 192, 193, 195], "specifi": [11, 12, 13, 14, 26, 27, 35, 38, 49, 54, 59, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 106, 108, 127, 138, 143, 145, 150, 152, 153, 165, 166, 170, 171, 180, 185, 186, 190, 192, 195], "specified_loc": [63, 64], "speed": [150, 152], "sphinx": [184, 187], "sphinx_autodoc_typehint": 187, "sphinx_click": 187, "sphinx_rtd_them": 187, "split": [57, 58, 59, 60, 61, 62, 65, 66, 82, 83, 88, 89, 98, 99, 127, 138, 182, 192, 194], "split_vi": 182, "spread": 190, "squar": [93, 94, 98, 99, 101], "stabl": 192, "stack": 3, "stack_infer": 3, "stack_postprocess": 3, "standard": [11, 12, 13, 54, 56, 62, 66, 93, 125, 130, 132, 150, 152, 157, 180], "star": 162, "start": [1, 5, 6, 8, 9, 67, 69, 70, 93, 103, 124, 178, 181, 184, 185, 186, 189, 192, 193, 194], "start_config": [67, 70, 71, 72, 73, 74, 184], "start_neuroglanc": 181, "start_typ": [72, 73, 75], "start_work": [1, 5, 6, 7, 8, 9], "start_worker_fn": [1, 5, 6, 8, 9], "startconfig": [67, 70, 72, 73, 75], "starter": [71, 72, 73, 74, 75], "stat": [67, 69, 127, 136, 138, 142, 143, 145, 166, 171, 172, 181, 192, 194, 195], "state": [49, 54, 69, 150, 151, 152, 169, 173, 181, 192, 194], "statement": [81, 93], "static": [59, 62, 69, 82, 84, 86, 88, 89, 187], "statist": [67, 127, 136, 138, 140, 142, 143, 156, 164, 166, 171, 172, 195], "stats_stor": [167, 181, 184, 192], "statsstor": [164, 172], "statu": [81, 93], "std": 83, "step": [150, 152, 185, 194, 195], "still": [192, 193, 194], "stop": [181, 192, 193], "storag": [160, 168, 170, 188, 190, 192], "store": [0, 1, 5, 6, 8, 9, 12, 13, 14, 17, 21, 31, 38, 47, 52, 53, 71, 72, 73, 74, 75, 82, 83, 84, 86, 87, 88, 89, 104, 106, 108, 109, 111, 113, 116, 119, 138, 140, 155, 156, 157, 158, 159, 175, 181, 183, 184, 190, 193, 194, 195], "store_architecture_config": [161, 165, 170, 192, 195], "store_array_config": [161, 165, 170], "store_best": [82, 84, 86, 87, 88, 89, 169], "store_dataset_config": 170, "store_datasplit_config": [161, 165, 170, 192, 195], "store_run_config": [161, 165, 170, 192, 195], "store_task_config": [161, 165, 170, 192, 195], "store_trainer_config": [161, 165, 170, 192, 195], "store_training_stat": [166, 171, 172], "store_typ": [52, 53], "store_validation_iteration_scor": [166, 171, 172], "store_weight": [169, 173], "str": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 54, 58, 59, 61, 62, 63, 64, 67, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 99, 103, 108, 110, 116, 118, 119, 120, 121, 123, 124, 126, 128, 136, 138, 141, 145, 146, 155, 156, 157, 158, 160, 161, 162, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 180, 181, 183, 186], "stride": [17, 157], "string": [0, 20, 21, 31, 36, 37, 38, 47, 48, 54, 59, 61, 62, 63, 64, 81, 93, 116, 118, 119, 120, 126, 128, 138, 146, 155, 160, 162, 163, 187], "structur": [67, 69, 70, 142, 143, 144, 162, 163, 169, 180, 193], "structure_fallback_factori": 163, "structurehook": 163, "style": 187, "sub": [150, 152], "sub_task_config": [93, 124], "subclass": [11, 13, 14, 23, 24, 31, 34, 35, 38, 43, 45, 46, 47, 52, 53, 72, 73, 76, 77, 78, 79, 80, 81, 91, 93, 94, 95, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 115, 117, 118, 119, 120, 121, 122, 124, 126, 129, 132, 134, 135, 136, 138, 140, 141, 147, 148, 149, 152, 163], "subdirectori": [166, 169], "subgraph": [149, 152], "subplot": 192, "subsampl": [130, 132, 150, 152, 171, 195], "subscor": [67, 145], "subsequ": 188, "subset": [67, 145], "suggest": 194, "sum": [26, 27, 38, 45, 83, 98, 99, 178, 182], "sum_array_config": [38, 184], "sumarrayconfig": [38, 45], "summari": [187, 195], "super": [18, 21], "support": [18, 21, 38, 47, 59, 62, 152, 154, 160, 164, 166, 177, 190, 194, 195, 196], "sure": [38, 47, 176, 192, 194], "sv": 182, "swig": 83, "sy": 187, "symant": [32, 38, 42], "symlink": 169, "symmetr": [17, 182], "system": [20, 21, 24, 26, 27, 29, 189], "t": [10, 18, 21, 160, 168, 181, 185, 186, 189, 192, 194, 195], "tabl": [182, 188], "tag": 189, "take": [13, 14, 17, 22, 24, 25, 27, 30, 37, 38, 39, 40, 41, 45, 67, 83, 87, 88, 104, 108, 109, 145, 178, 188, 194], "taken": [67, 142], "tanh": [79, 92, 93, 95, 116, 118, 119, 120], "target": [17, 59, 62, 96, 97, 98, 99, 100, 101, 115, 116, 117, 118, 119, 120, 121, 122, 136, 138, 140, 148, 150, 152, 192, 195], "target_filt": [148, 152], "target_kei": [148, 152], "target_resolut": 59, "target_roi": [150, 152], "target_spec": [115, 116, 118, 119, 120, 122], "task": [0, 2, 4, 7, 17, 21, 59, 62, 67, 69, 70, 71, 72, 73, 75, 127, 136, 138, 140, 145, 148, 152, 155, 161, 165, 170, 184, 190, 193, 194, 195, 196], "task1": [161, 165], "task_0": 170, "task_config": [67, 70, 76, 78, 80, 81, 91, 93, 94, 102, 123, 124, 161, 165, 170, 184, 192, 195], "task_id": 10, "task_nam": [161, 165, 170], "task_typ": [77, 79, 81, 92, 93, 95, 103, 124], "taskconfig": [67, 70, 77, 79, 81, 92, 93, 95, 103, 124, 126, 161, 162, 165, 170], "team": 190, "technic": [118, 119], "techniqu": [190, 192, 193], "templat": [187, 192, 195], "templates_path": 187, "temporari": [6, 7, 8], "tensor": [17, 19, 21, 67, 68, 96, 97, 98, 99, 100, 101, 119, 122, 173], "tensorflow": [17, 21, 190], "term": 83, "test": [20, 21, 36, 38, 51, 54, 80, 81, 83, 85, 88, 90, 93, 97, 99, 127, 128, 138, 150, 152, 192, 194], "test_binari": 83, "test_edt": 83, "test_empti": 83, "test_itk": 83, "test_mask": 83, "text": 185, "than": [17, 18, 21, 67, 79, 83, 87, 88, 93, 104, 107, 108, 112, 127, 138, 143, 145, 166, 178, 194], "thei": [48, 54, 67, 77, 93, 116, 118, 119, 120, 145, 187], "them": [17, 71, 73, 74, 155, 156, 163, 166, 192, 193, 195], "theme": 187, "therefor": [119, 122], "thi": [2, 4, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 145, 146, 147, 148, 149, 150, 152, 155, 156, 160, 161, 162, 163, 168, 169, 173, 177, 182, 183, 184, 185, 187, 188, 189, 193, 194, 195, 196], "those": [48, 54, 92, 93, 190, 194], "thread": [166, 181], "three": [192, 193, 194], "threshold": [1, 3, 9, 83, 93, 94, 104, 106, 108, 111, 112, 114, 116, 118, 119, 120, 122, 190], "threshold_post_processor": [108, 184], "threshold_post_processor_paramet": [108, 111, 184], "threshold_work": [4, 184], "thresholdpostprocessor": [78, 91, 93, 108, 111], "thresholdpostprocessorparamet": [108, 111, 112], "through": [116, 118, 119, 120, 195], "thrown": [71, 73, 74], "thumb": 187, "ti": 190, "tif": 190, "tiff": 46, "tiff_array_config": [38, 184], "tiffarrayconfig": 46, "time": [2, 4, 7, 17, 21, 67, 98, 99, 142, 188, 194], "timeout": [2, 4, 7, 186], "titl": [190, 192], "tmp": [155, 184], "tmpdir": [6, 8], "to_arrai": [36, 37, 38, 39, 40], "to_ndarrai": [177, 192], "to_toml": [35, 38], "to_xarrai": [67, 143, 145, 192], "todo": [169, 195], "togeth": [192, 193], "toi": 194, "tol_dist": [79, 83, 88, 92, 93, 95, 192], "toler": [79, 82, 83, 88, 92, 93, 95], "tomancak": [18, 21], "toml": [35, 38], "toml_path": [35, 38], "too": [17, 35, 38, 194], "took": [67, 142, 195], "top": [18, 21, 162, 163], "torch": [13, 14, 17, 19, 21, 67, 68, 69, 96, 97, 98, 99, 100, 101, 127, 136, 138, 140, 173, 190], "torchsummari": 195, "total": [67, 70, 83, 96, 97, 99, 150, 152, 186], "total_frac": 178, "total_roi": [2, 4, 7, 10, 186], "tp": [82, 83, 88], "tpu": [11, 12, 13], "tqdm": 192, "tqdmwarn": 192, "tr": 186, "traceback": 146, "track": [23, 194], "tracker": 3, "tracker_consensu": 3, "trackers_dict": 3, "traffic": 185, "train": [0, 5, 11, 13, 18, 21, 54, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 93, 97, 99, 100, 116, 118, 119, 120, 121, 122, 127, 136, 137, 138, 140, 141, 142, 143, 155, 158, 166, 168, 171, 172, 180, 184, 190, 193, 194, 195], "train_arrai": 195, "train_config": [61, 62, 66, 192], "train_run": [175, 192, 195], "train_until": 69, "train_validate_datasplit": [62, 184], "train_validate_datasplit_config": [62, 184], "trainabl": [67, 68], "trained_until": [67, 143], "trainer": [67, 69, 70, 161, 165, 170, 184, 190, 193, 195], "trainer1": [161, 165], "trainer_0": 170, "trainer_config": [67, 70, 127, 128, 136, 138, 161, 165, 170, 184, 192, 195], "trainer_nam": [161, 165, 170], "trainer_typ": [128, 137, 138], "trainerconfig": [67, 70, 138, 141, 161, 165, 170, 195], "training_iteration_stat": [67, 138, 140, 143, 184], "training_stat": [67, 69, 166, 171, 172, 184, 192], "trainingiterationstat": [67, 127, 136, 138, 140, 142, 143, 166], "trainingstat": [67, 69, 143, 171, 172], "trainvalidatedatasplit": [62, 65], "trainvalidatedatasplitconfig": [62, 66, 192], "transform": [79, 83, 92, 93, 95, 108, 113, 114, 116, 118, 119, 138, 140, 148, 150, 152, 192, 193, 195], "translat": [17, 192, 193], "transpos": [17, 18, 21, 192], "transposed_conv": 17, "treat": [77, 93, 115, 119], "tree": 192, "true": [0, 3, 8, 17, 21, 23, 25, 26, 27, 28, 30, 31, 37, 38, 47, 49, 54, 58, 59, 62, 69, 79, 82, 83, 84, 86, 88, 89, 90, 92, 93, 115, 118, 119, 127, 136, 138, 140, 141, 147, 152, 155, 157, 158, 163, 175, 176, 178, 180, 181, 182, 186, 192, 195, 196], "true_posit": 83, "true_positives_with_toler": 83, "truth": [48, 54, 55, 56, 59, 62, 63, 64, 83, 87, 88, 90, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 138, 140, 148, 152, 154, 181, 182, 192, 195], "truth_binari": 83, "truth_edt": 83, "truth_empti": 83, "truth_itk": 83, "truth_mask": 83, "try": 161, "tupl": [3, 6, 10, 16, 17, 20, 21, 31, 32, 36, 37, 38, 42, 47, 49, 51, 54, 58, 61, 62, 67, 68, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 98, 99, 115, 117, 118, 119, 121, 122, 124, 126, 128, 130, 131, 132, 133, 136, 138, 141, 145, 150, 152, 160, 168, 176, 178, 180], "turn": [32, 38, 39, 42, 116, 119, 121], "tutori": 194, "tutorial_run": 195, "twice": [98, 99], "two": [17, 21, 24, 67, 83, 87, 88, 90, 98, 99, 145, 150, 152, 153, 170, 180, 182, 188], "typ": [162, 163], "type": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 44, 47, 48, 49, 50, 51, 52, 53, 54, 56, 59, 61, 62, 63, 64, 67, 68, 69, 71, 73, 74, 81, 82, 83, 85, 88, 90, 92, 93, 99, 100, 102, 103, 108, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 178, 180, 181, 182, 185, 186, 190, 192, 195, 196], "type_overrid": 163, "typedconvert": 163, "typeerror": [160, 162, 163], "typic": [87, 88], "u": [17, 21, 188, 190, 194, 195], "uint16": [22, 27], "uint32": [3, 22, 27], "uint64": [22, 27, 32, 38, 39, 42], "uint8": [0, 22, 27, 155, 158, 180, 186, 192], "undefin": 83, "under": [162, 163, 182], "undergon": 190, "undersegment": 182, "undoc": 187, "unet": [17, 18, 21, 192, 193], "unet_class": [18, 21], "unet_norm": 196, "uniform": [150, 152], "uniform_3d_rot": [130, 132, 150, 152, 195], "uniformli": [130, 132], "union": [38, 40, 41, 45, 82, 84, 86, 87, 88, 89], "uniqu": [16, 21, 31, 38, 49, 54, 63, 64, 67, 70, 90, 93, 126, 138, 141, 178, 193, 196], "unit": [17, 21, 46, 180, 192], "unknown": [12, 13], "unlik": [83, 85, 87, 88, 90], "unprocess": 190, "unstruct_collection_overrid": 163, "unstruct_strat": 163, "unstructur": [162, 163], "unstructure_fallback_factori": 163, "unstructurehook": 163, "unstructurestrategi": 163, "until": [152, 154, 192, 194], "unus": [130, 132], "up": [17, 21, 38, 44, 67, 119, 122, 138, 140, 145, 147, 148, 149, 150, 152, 153, 154, 160, 168, 180, 185, 188, 194, 195], "upath": [0, 1, 2, 4, 5, 7, 8, 9, 38, 46, 47, 59, 62, 93, 124, 155, 156, 158, 160, 165], "updat": [67, 145, 150, 152, 155, 156, 166, 181, 185, 192], "update_best_info": 181, "update_best_lay": 181, "update_neuroglanc": 181, "update_with_new_validation_if_poss": 181, "updated_frac": 178, "updated_neuroglancer_lay": 181, "upper": [82, 88, 151, 152, 186], "upsampl": [17, 18, 21, 38, 44, 59, 62, 188, 196], "upsample_channel_contract": [17, 21], "upsample_factor": [17, 18, 21, 196], "upsample_unet": 196, "upstream": [2, 4, 7, 150, 152, 154], "upstream_task": [2, 4, 7], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 152, 154, 155, 156, 158, 162, 163, 165, 166, 168, 170, 171, 177, 180, 181, 182, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196], "usag": [160, 168, 187], "use_attent": [17, 18, 21, 196], "use_gpu": 3, "use_negative_class": [59, 62], "use_quant": 3, "user": [49, 54, 155, 156, 165, 170, 185, 192], "user_instal": 192, "usual": [99, 100, 119, 122, 150, 152], "util": [155, 184, 190, 192, 193], "v": [152, 154, 190], "val": 59, "valid": [0, 1, 5, 9, 16, 17, 20, 21, 31, 35, 36, 37, 38, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 81, 82, 83, 85, 86, 87, 88, 90, 93, 126, 128, 138, 141, 144, 145, 155, 157, 160, 166, 168, 171, 172, 181, 184, 192, 193, 195, 196], "validate_config": [62, 66, 192], "validate_run": 183, "validated_until": [67, 145], "validation_contain": [160, 168], "validation_dataset": [0, 155, 181, 186], "validation_input_arrai": [160, 168], "validation_interv": [67, 69, 70, 171, 192, 195], "validation_it": 192, "validation_iteration_scor": [67, 145, 184], "validation_output_arrai": [160, 168], "validation_paramet": 181, "validation_prediction_arrai": [160, 168], "validation_scor": [67, 69, 87, 88, 157, 166, 171, 172, 184, 192], "validation_score_nam": 157, "validationiterationscor": [67, 144, 145, 166, 171, 172], "validationscor": [67, 69, 87, 88, 145, 171, 172], "valu": [6, 13, 14, 22, 24, 25, 26, 27, 28, 29, 33, 38, 49, 54, 59, 62, 67, 77, 79, 82, 83, 88, 93, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 115, 116, 118, 119, 126, 127, 128, 131, 132, 133, 136, 137, 138, 142, 145, 150, 152, 157, 177, 178, 180, 182], "value_typ": 83, "valueerror": [0, 12, 13, 17, 21, 36, 37, 38, 59, 62, 67, 82, 83, 85, 88, 90, 96, 99, 127, 138, 145, 155, 157, 158, 164, 166, 168, 170, 171, 172, 173, 175, 180, 181, 182, 186], "variabl": [130, 132, 185, 189, 192, 194], "variat": [12, 13, 14, 15, 21, 82, 83, 88, 89, 90, 182], "variou": [63, 64, 83, 88, 136, 138, 140, 195, 196], "vd": 186, "ve": [188, 195], "vector": [27, 30, 83, 93, 103], "veri": [79, 92, 93, 95, 194, 195], "verif": [51, 54, 61, 62], "verifi": [16, 20, 21, 31, 36, 37, 38, 47, 49, 51, 52, 53, 54, 56, 58, 61, 62, 77, 79, 81, 92, 93, 124, 126, 128, 138, 141], "versa": 182, "version": [33, 34, 38, 43, 188, 191], "ves_mem": 188, "vi": 182, "vi_tabl": 182, "via": [18, 21, 116, 118, 119, 120, 147, 152, 192], "vice": 182, "video": 190, "view": [3, 17, 21, 48, 54, 179, 184, 195], "viewer": [181, 192], "viewerst": 181, "visibl": [150, 152, 162, 163], "vision": 83, "visual": [69, 136, 138, 181, 190, 194], "visualize_pipelin": [69, 136, 138], "voi": [0, 82, 83, 88, 89, 90, 155, 179, 184, 186, 192], "voi_merg": [88, 89, 90], "voi_split": [88, 89, 90], "vol": 3, "volara": 194, "volum": [3, 7, 23, 32, 35, 38, 39, 42, 59, 62, 131, 132, 180, 189, 190, 192, 193, 195], "vote": 3, "voxel": [15, 17, 18, 21, 22, 24, 25, 27, 28, 30, 32, 38, 39, 42, 44, 46, 54, 56, 59, 62, 67, 68, 76, 77, 93, 103, 108, 109, 115, 116, 118, 119, 120, 122, 130, 132, 150, 152, 176, 180, 181, 182, 186], "voxel_s": [17, 21, 38, 46, 47, 67, 68, 115, 116, 118, 119, 120, 150, 152, 174, 176, 180, 181, 192], "voxel_size_input": 71, "voxel_size_output": 71, "w": [178, 186, 192], "w_g": 17, "w_spars": 178, "w_x": 17, "wa": [73, 74, 146, 181, 194], "wai": [11, 12, 13, 14, 79, 93, 95, 125, 192, 194, 195], "wait": 7, "wandb": 194, "want": [17, 34, 38, 43, 44, 67, 68, 145, 193, 194, 195], "warn": 186, "watersh": [10, 108, 113, 114], "watershed_funct": [4, 108, 113, 184], "watershed_post_processor": [108, 184], "watershed_post_processor_paramet": [108, 113, 184], "watershedpostprocessor": [76, 93, 108, 113, 114], "watershedpostprocessorparamet": [108, 113, 114, 192], "waterz": 194, "we": [13, 14, 17, 18, 21, 67, 145, 149, 152, 154, 160, 168, 182, 188, 190, 192, 193, 194, 195], "web": [189, 191, 195], "webserv": [69, 136, 138, 181], "websit": 189, "weigel": 190, "weight": [0, 17, 48, 49, 54, 55, 69, 71, 72, 73, 74, 75, 77, 79, 82, 86, 88, 93, 96, 97, 98, 99, 100, 101, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 136, 138, 148, 152, 155, 164, 169, 173, 178, 183, 192, 195], "weights_kei": [148, 152], "weights_stor": [167, 169, 184], "weightsstor": [164, 173], "well": [83, 92, 93, 190], "were": [25, 27, 30], "wether": [86, 87, 88], "what": [67, 145], "when": [17, 18, 20, 21, 59, 67, 68, 73, 74, 99, 100, 145, 146, 161, 165, 182, 187], "whenev": [81, 93], "where": [17, 22, 27, 30, 54, 56, 67, 79, 82, 83, 88, 90, 92, 93, 104, 108, 136, 138, 140, 145, 147, 152, 155, 158, 160, 165, 168, 169, 192, 193, 195], "wherea": [54, 56], "whether": [0, 3, 7, 8, 17, 18, 20, 21, 31, 36, 37, 38, 47, 67, 69, 77, 79, 82, 83, 84, 86, 87, 88, 89, 92, 93, 115, 116, 118, 119, 126, 127, 128, 136, 137, 138, 141, 145, 150, 152, 157, 171, 180, 181, 182, 186, 192, 193, 196], "which": [11, 12, 13, 14, 17, 18, 21, 22, 23, 25, 27, 28, 30, 32, 33, 38, 39, 40, 41, 42, 44, 45, 54, 56, 67, 69, 71, 73, 74, 77, 79, 83, 85, 87, 88, 90, 92, 93, 95, 103, 108, 109, 116, 118, 119, 120, 122, 129, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 148, 151, 152, 160, 162, 163, 166, 169, 171, 173, 181, 186, 192, 196], "while": [67, 68, 84, 88], "who": [137, 138], "whole": [0, 155], "whose": 17, "why": [31, 38, 47, 93, 126, 128, 138, 141], "width": [17, 21, 180, 181], "william": [187, 190], "window": 181, "wise": [17, 182, 194], "within": [17, 21, 59, 62, 82, 83, 88, 116, 118, 119, 120, 132, 133, 180, 192], "without": [69, 71, 73, 81, 93, 150, 152, 195], "won": 192, "word": 182, "work": [10, 38, 47, 67, 145, 162, 163, 185, 192, 194, 195], "worker": [0, 1, 2, 4, 5, 6, 7, 8, 9, 67, 70, 104, 106, 108, 109, 111, 113, 137, 138, 155, 158, 186], "worker_fil": [2, 4, 7, 186], "worker_funct": [2, 4, 7], "world": [130, 132, 150, 152, 180], "would": [119, 122, 160, 168], "wr": 186, "wrap": [11, 12, 13, 14], "wrap_command": [12, 13, 14], "wrapped_command": [12, 13], "wrapper": [17, 21], "write": [2, 4, 7, 156, 160, 168, 186, 194], "write_roi": [2, 4, 7, 10], "write_roi_s": 186, "write_s": 174, "written": [186, 195], "www": 187, "x": [17, 19, 21, 38, 47, 67, 68, 98, 99, 162, 163, 176, 182, 186, 192, 194], "x1_kei": [152, 153], "x2_kei": [152, 153], "x64": 192, "xarrai": [67, 143, 145, 192], "xlabel": 192, "xlogx": 182, "xr": [67, 143], "xy": 3, "y": [17, 19, 21, 38, 47, 162, 163, 176, 182, 185, 186, 192], "y_kei": [152, 153], "yaml": [155, 156, 169, 185, 190, 192, 195], "year": 190, "yet": [67, 143], "yield": [3, 127, 138], "ylabel": 192, "yoshi": 196, "yoshi_unet_config": 196, "you": [31, 34, 38, 43, 44, 47, 67, 68, 79, 92, 93, 95, 119, 122, 126, 145, 185, 188, 189, 190, 193, 195], "your": [18, 21, 25, 26, 27, 28, 38, 39, 47, 77, 83, 85, 87, 88, 90, 93, 119, 122, 132, 134, 185, 187, 188, 189, 192, 193, 195, 196], "your_key_pair": 185, "your_security_group": 185, "yum": 185, "yurii": 190, "z": [17, 19, 21, 38, 47, 176, 186, 192], "zarr": [0, 3, 38, 47, 59, 62, 83, 88, 90, 155, 158, 168, 190, 192, 195], "zarr_array_config": [38, 184], "zarrarrayconfig": [38, 47, 59, 192], "zero": [33, 38, 54, 56, 67, 83, 127, 138, 143, 178, 180, 182], "zerodivisionerror": 83, "zerossourc": 180, "zip": 178, "zouinkhi": [187, 190], "zubov": 190}, "titles": ["dacapo.apply", "dacapo.blockwise.argmax_worker", "dacapo.blockwise.blockwise_task", "dacapo.blockwise.empanada_function", "dacapo.blockwise", "dacapo.blockwise.predict_worker", "dacapo.blockwise.relabel_worker", "dacapo.blockwise.scheduler", "dacapo.blockwise.segment_worker", "dacapo.blockwise.threshold_worker", "dacapo.blockwise.watershed_function", "dacapo.compute_context.bsub", "dacapo.compute_context.compute_context", "dacapo.compute_context", "dacapo.compute_context.local_torch", "dacapo.experiments.architectures.architecture", "dacapo.experiments.architectures.architecture_config", "dacapo.experiments.architectures.cnnectome_unet", "dacapo.experiments.architectures.cnnectome_unet_config", "dacapo.experiments.architectures.dummy_architecture", "dacapo.experiments.architectures.dummy_architecture_config", "dacapo.experiments.architectures", "dacapo.experiments.arraytypes.annotations", "dacapo.experiments.arraytypes.arraytype", "dacapo.experiments.arraytypes.binary", "dacapo.experiments.arraytypes.distances", "dacapo.experiments.arraytypes.embedding", "dacapo.experiments.arraytypes", "dacapo.experiments.arraytypes.intensities", "dacapo.experiments.arraytypes.mask", "dacapo.experiments.arraytypes.probabilities", "dacapo.experiments.datasplits.datasets.arrays.array_config", "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", "dacapo.experiments.datasplits.datasets.arrays.concat_array_config", "dacapo.experiments.datasplits.datasets.arrays.constant_array_config", "dacapo.experiments.datasplits.datasets.arrays.crop_array_config", "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", "dacapo.experiments.datasplits.datasets.arrays", "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", "dacapo.experiments.datasplits.datasets.arrays.ones_array_config", "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", "dacapo.experiments.datasplits.datasets.arrays.sum_array_config", "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", "dacapo.experiments.datasplits.datasets.dataset", "dacapo.experiments.datasplits.datasets.dataset_config", "dacapo.experiments.datasplits.datasets.dummy_dataset", "dacapo.experiments.datasplits.datasets.dummy_dataset_config", "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", "dacapo.experiments.datasplits.datasets.graphstores", "dacapo.experiments.datasplits.datasets", "dacapo.experiments.datasplits.datasets.raw_gt_dataset", "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", "dacapo.experiments.datasplits.datasplit", "dacapo.experiments.datasplits.datasplit_config", "dacapo.experiments.datasplits.datasplit_generator", "dacapo.experiments.datasplits.dummy_datasplit", "dacapo.experiments.datasplits.dummy_datasplit_config", "dacapo.experiments.datasplits", "dacapo.experiments.datasplits.keys", "dacapo.experiments.datasplits.keys.keys", "dacapo.experiments.datasplits.train_validate_datasplit", "dacapo.experiments.datasplits.train_validate_datasplit_config", "dacapo.experiments", "dacapo.experiments.model", "dacapo.experiments.run", "dacapo.experiments.run_config", "dacapo.experiments.starts.cosem_start", "dacapo.experiments.starts.cosem_start_config", "dacapo.experiments.starts", "dacapo.experiments.starts.start", "dacapo.experiments.starts.start_config", "dacapo.experiments.tasks.affinities_task", "dacapo.experiments.tasks.affinities_task_config", "dacapo.experiments.tasks.distance_task", "dacapo.experiments.tasks.distance_task_config", "dacapo.experiments.tasks.dummy_task", "dacapo.experiments.tasks.dummy_task_config", "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", "dacapo.experiments.tasks.evaluators.dummy_evaluator", "dacapo.experiments.tasks.evaluators.evaluation_scores", "dacapo.experiments.tasks.evaluators.evaluator", "dacapo.experiments.tasks.evaluators", "dacapo.experiments.tasks.evaluators.instance_evaluation_scores", "dacapo.experiments.tasks.evaluators.instance_evaluator", "dacapo.experiments.tasks.hot_distance_task", "dacapo.experiments.tasks.hot_distance_task_config", "dacapo.experiments.tasks", "dacapo.experiments.tasks.inner_distance_task", "dacapo.experiments.tasks.inner_distance_task_config", "dacapo.experiments.tasks.losses.affinities_loss", "dacapo.experiments.tasks.losses.dummy_loss", "dacapo.experiments.tasks.losses.hot_distance_loss", "dacapo.experiments.tasks.losses", "dacapo.experiments.tasks.losses.loss", "dacapo.experiments.tasks.losses.mse_loss", "dacapo.experiments.tasks.one_hot_task", "dacapo.experiments.tasks.one_hot_task_config", "dacapo.experiments.tasks.post_processors.argmax_post_processor", "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", "dacapo.experiments.tasks.post_processors.dummy_post_processor", "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", "dacapo.experiments.tasks.post_processors", "dacapo.experiments.tasks.post_processors.post_processor", "dacapo.experiments.tasks.post_processors.post_processor_parameters", "dacapo.experiments.tasks.post_processors.threshold_post_processor", "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", "dacapo.experiments.tasks.post_processors.watershed_post_processor", "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", "dacapo.experiments.tasks.predictors.affinities_predictor", "dacapo.experiments.tasks.predictors.distance_predictor", "dacapo.experiments.tasks.predictors.dummy_predictor", "dacapo.experiments.tasks.predictors.hot_distance_predictor", "dacapo.experiments.tasks.predictors", "dacapo.experiments.tasks.predictors.inner_distance_predictor", "dacapo.experiments.tasks.predictors.one_hot_predictor", "dacapo.experiments.tasks.predictors.predictor", "dacapo.experiments.tasks.pretrained_task", "dacapo.experiments.tasks.pretrained_task_config", "dacapo.experiments.tasks.task", "dacapo.experiments.tasks.task_config", "dacapo.experiments.trainers.dummy_trainer", "dacapo.experiments.trainers.dummy_trainer_config", "dacapo.experiments.trainers.gp_augments.augment_config", "dacapo.experiments.trainers.gp_augments.elastic_config", "dacapo.experiments.trainers.gp_augments.gamma_config", "dacapo.experiments.trainers.gp_augments", "dacapo.experiments.trainers.gp_augments.intensity_config", "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", "dacapo.experiments.trainers.gp_augments.simple_config", "dacapo.experiments.trainers.gunpowder_trainer", "dacapo.experiments.trainers.gunpowder_trainer_config", "dacapo.experiments.trainers", "dacapo.experiments.trainers.optimizers", "dacapo.experiments.trainers.trainer", "dacapo.experiments.trainers.trainer_config", "dacapo.experiments.training_iteration_stats", "dacapo.experiments.training_stats", "dacapo.experiments.validation_iteration_scores", "dacapo.experiments.validation_scores", "dacapo.ext", "dacapo.gp.copy", "dacapo.gp.dacapo_create_target", "dacapo.gp.dacapo_points_source", "dacapo.gp.elastic_augment_fuse", "dacapo.gp.gamma_noise", "dacapo.gp", "dacapo.gp.product", "dacapo.gp.reject_if_empty", "dacapo", "dacapo.options", "dacapo.plot", "dacapo.predict", "dacapo.predict_local", "dacapo.store.array_store", "dacapo.store.config_store", "dacapo.store.conversion_hooks", "dacapo.store.converter", "dacapo.store.create_store", "dacapo.store.file_config_store", "dacapo.store.file_stats_store", "dacapo.store", "dacapo.store.local_array_store", "dacapo.store.local_weights_store", "dacapo.store.mongo_config_store", "dacapo.store.mongo_stats_store", "dacapo.store.stats_store", "dacapo.store.weights_store", "dacapo.tmp", "dacapo.train", "dacapo.utils.affinities", "dacapo.utils.array_utils", "dacapo.utils.balance_weights", "dacapo.utils", "dacapo.utils.pipeline", "dacapo.utils.view", "dacapo.utils.voi", "dacapo.validate", "API Reference", "AWS EC2 Setup Guide", "CLI", "<no title>", "Fine-Tune Cosem Starter", "Docker Configuration for JupyterHub-Dacapo", "DaCapo ", "Installation", "Minimal Tutorial", "Overview", "Road Map", "Tutorial: A Simple Experiment in Python", "UNet Models"], "titleterms": {"": 190, "0": 194, "1": 188, "2": 188, "3": 188, "A": 195, "access": 185, "affin": 176, "affinities_loss": 96, "affinities_predictor": 115, "affinities_task": 76, "affinities_task_config": 77, "annot": 22, "api": 184, "appli": [0, 186], "architectur": [15, 16, 17, 18, 19, 20, 21, 192], "architecture_config": 16, "argmax_post_processor": 104, "argmax_post_processor_paramet": 105, "argmax_work": 1, "arrai": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], "array_config": 31, "array_stor": 160, "array_util": 177, "arraytyp": [22, 23, 24, 25, 26, 27, 28, 29, 30], "attribut": [0, 1, 3, 5, 6, 7, 8, 9, 59, 67, 70, 71, 74, 83, 87, 90, 116, 118, 120, 121, 136, 143, 150, 151, 154, 156, 157, 158, 159, 163, 165, 166, 168, 169, 170, 171, 175, 176, 183], "augment_config": 129, "avail": 188, "aw": 185, "balance_weight": 178, "binari": 24, "binarize_array_config": 32, "binary_segmentation_evalu": 83, "binary_segmentation_evaluation_scor": 82, "blockwis": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 186], "blockwise_task": 2, "bsub": 11, "build": 189, "can": 194, "checkpoint": 185, "cite": 190, "class": [2, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 160, 161, 163, 165, 166, 168, 169, 170, 171, 172, 173, 180, 181], "cli": 186, "cnnectome_unet": 17, "cnnectome_unet_config": 18, "compute_context": [11, 12, 13, 14], "concat_array_config": 33, "config": [186, 192, 195], "config_stor": 161, "configur": [185, 188, 189, 192, 196], "constant_array_config": 34, "contain": 189, "content": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183], "conversion_hook": 162, "convert": 163, "copi": 147, "cosem": 188, "cosem_start": 71, "cosem_start_config": 72, "cosemstartconfig": 188, "creat": [188, 195], "create_stor": 164, "crop_array_config": 35, "dacapo": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 186, 189, 190, 193], "dacapo_create_target": 148, "dacapo_points_sourc": 149, "data": [185, 192, 195], "dataset": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "dataset_config": 49, "datasplit": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 192], "datasplit_config": 58, "datasplit_gener": 59, "detail": 194, "distanc": 25, "distance_predictor": 116, "distance_task": 78, "distance_task_config": 79, "do": 192, "docker": [185, 189], "doe": 193, "dummy_architectur": 19, "dummy_architecture_config": 20, "dummy_array_config": 36, "dummy_dataset": 50, "dummy_dataset_config": 51, "dummy_datasplit": 60, "dummy_datasplit_config": 61, "dummy_evalu": 85, "dummy_evaluation_scor": 84, "dummy_loss": 97, "dummy_post_processor": 106, "dummy_post_processor_paramet": 107, "dummy_predictor": 117, "dummy_task": 80, "dummy_task_config": 81, "dummy_train": 127, "dummy_trainer_config": 128, "dvid_array_config": 37, "ec2": 185, "elastic_augment_fus": 150, "elastic_config": 130, "embed": 26, "empanada_funct": 3, "environ": 192, "evalu": [82, 83, 84, 85, 86, 87, 88, 89, 90], "evaluation_scor": 86, "exampl": [188, 190, 196], "except": 161, "experi": [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 185, 195], "ext": 146, "file_config_stor": 165, "file_stats_stor": 166, "fine": 188, "full": 188, "function": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 59, 71, 74, 90, 155, 157, 158, 159, 162, 164, 174, 175, 176, 177, 178, 180, 181, 182, 183, 190], "further": 189, "gamma_config": 131, "gamma_nois": 151, "github": 190, "goal": 194, "gp": [147, 148, 149, 150, 151, 152, 153, 154], "gp_augment": [129, 130, 131, 132, 133, 134, 135], "graph_source_config": 52, "graphstor": [52, 53], "guid": 185, "gunpowder_train": 136, "gunpowder_trainer_config": 137, "have": 194, "help": 190, "hot_distance_loss": 98, "hot_distance_predictor": 118, "hot_distance_task": 91, "hot_distance_task_config": 92, "how": 193, "i": 193, "imag": [185, 189], "import": 188, "inner_distance_predictor": 120, "inner_distance_task": 94, "inner_distance_task_config": 95, "instal": [190, 191, 195], "instance_evalu": 90, "instance_evaluation_scor": 89, "intens": 28, "intensity_array_config": 39, "intensity_config": 133, "intensity_scale_shift_config": 134, "introduct": 192, "jupyterhub": 189, "kei": [63, 64], "learn": 192, "librari": 192, "local_array_stor": 168, "local_torch": 14, "local_weights_stor": 169, "logical_or_array_config": 40, "loss": [96, 97, 98, 99, 100, 101], "map": 194, "mask": 29, "merge_instances_array_config": 41, "minim": 192, "missing_annotations_mask_config": 42, "model": [68, 188, 196], "modul": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183], "mongo_config_stor": 170, "mongo_stats_stor": 171, "mse_loss": 101, "need": 192, "non": 194, "note": 188, "one_hot_predictor": 121, "one_hot_task": 102, "one_hot_task_config": 103, "ones_array_config": 43, "optim": 139, "option": 156, "org": 190, "overview": [190, 192, 193, 194, 196], "packag": [4, 13, 21, 27, 38, 53, 54, 62, 63, 67, 73, 88, 93, 99, 108, 119, 132, 138, 146, 152, 155], "paramet": 196, "pipelin": 180, "plot": 157, "post_processor": [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "post_processor_paramet": 110, "predict": [158, 186], "predict_loc": 159, "predict_work": 5, "predictor": [115, 116, 117, 118, 119, 120, 121, 122], "prepar": 192, "prerequisit": 188, "pretrain": 188, "pretrained_task": 123, "pretrained_task_config": 124, "probabl": 30, "product": 153, "python": 195, "raw_gt_dataset": 55, "raw_gt_dataset_config": 56, "refer": 184, "reject_if_empti": 154, "relabel_work": 6, "repo": 190, "requir": 189, "resampled_array_config": 44, "resourc": 190, "retriev": 192, "road": 194, "run": [69, 185, 186, 188, 189, 192, 195], "run_config": 70, "s3": 185, "schedul": 7, "segment": 186, "segment_work": 8, "setup": [185, 190, 192], "simpl": 195, "simple_config": 135, "star": 190, "start": [71, 72, 73, 74, 75, 188, 195], "start_config": [75, 188], "starter": 188, "stats_stor": 172, "step": 188, "stop": 189, "storag": 195, "store": [160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 185, 192], "submodul": [4, 13, 21, 27, 38, 53, 54, 62, 63, 67, 73, 88, 93, 99, 108, 119, 132, 138, 152, 155, 167, 179], "sum_array_config": 45, "task": [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 192], "task_config": 126, "thi": [190, 192], "threshold_post_processor": 111, "threshold_post_processor_paramet": 112, "threshold_work": 9, "tiff_array_config": 46, "tmp": 174, "tool": 190, "train": [175, 186, 192], "train_validate_datasplit": 65, "train_validate_datasplit_config": 66, "trainer": [127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 192], "trainer_config": 141, "training_iteration_stat": 142, "training_stat": 143, "tune": 188, "tutori": [190, 192, 195], "unet": 196, "util": [176, 177, 178, 179, 180, 181, 182], "v1": 194, "valid": [183, 186], "validation_iteration_scor": 144, "validation_scor": 145, "view": 181, "visual": 192, "voi": 182, "want": 192, "watershed_funct": 10, "watershed_post_processor": 113, "watershed_post_processor_paramet": 114, "weights_stor": 173, "what": [192, 193], "work": 193, "you": 192, "zarr_array_config": 47}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API Reference": [[186, null]], "AWS EC2 Setup Guide": [[187, null]], "Architecture": [[195, "architecture"]], "Attributes": [[0, "attributes"], [1, "attributes"], [3, "attributes"], [5, "attributes"], [6, "attributes"], [7, "attributes"], [8, "attributes"], [9, "attributes"], [60, "attributes"], [73, "attributes"], [76, "attributes"], [85, "attributes"], [89, "attributes"], [92, "attributes"], [118, "attributes"], [120, "attributes"], [122, "attributes"], [123, "attributes"], [138, "attributes"], [145, "attributes"], [152, "attributes"], [153, "attributes"], [156, "attributes"], [158, "attributes"], [159, "attributes"], [160, "attributes"], [161, "attributes"], [165, "attributes"], [167, "attributes"], [168, "attributes"], [170, "attributes"], [171, "attributes"], [172, "attributes"], [173, "attributes"], [177, "attributes"], [178, "attributes"], [185, "attributes"]], "Attributes:": [[69, "attributes"], [72, "attributes"]], "Available COSEM Pretrained Models": [[190, "available-cosem-pretrained-models"], [190, "id1"]], "Building the Docker Image": [[192, "building-the-docker-image"]], "CLI": [[188, null]], "Can Have": [[197, "can-have"]], "Citing this repo": [[193, "citing-this-repo"]], "Classes": [[2, "classes"], [4, "classes"], [11, "classes"], [12, "classes"], [13, "classes"], [14, "classes"], [15, "classes"], [16, "classes"], [17, "classes"], [18, "classes"], [19, "classes"], [20, "classes"], [21, "classes"], [22, "classes"], [23, "classes"], [24, "classes"], [25, "classes"], [26, "classes"], [27, "classes"], [28, "classes"], [29, "classes"], [30, "classes"], [31, "classes"], [32, "classes"], [33, "classes"], [34, "classes"], [35, "classes"], [36, "classes"], [37, "classes"], [38, "classes"], [39, "classes"], [40, "classes"], [41, "classes"], [42, "classes"], [43, "classes"], [44, "classes"], [45, "classes"], [46, "classes"], [47, "classes"], [48, "classes"], [49, "classes"], [50, "classes"], [51, "classes"], [52, "classes"], [53, "classes"], [54, "classes"], [55, "classes"], [56, "classes"], [57, "classes"], [58, "classes"], [59, "classes"], [60, "classes"], [61, "classes"], [62, "classes"], [63, "classes"], [64, "classes"], [65, "classes"], [66, "classes"], [67, "classes"], [68, "classes"], [69, "classes"], [70, "classes"], [71, "classes"], [72, "classes"], [73, "classes"], [74, "classes"], [75, "classes"], [76, "classes"], [77, "classes"], [78, "classes"], [79, "classes"], [80, "classes"], [81, "classes"], [82, "classes"], [83, "classes"], [84, "classes"], [85, "classes"], [86, "classes"], [87, "classes"], [88, "classes"], [89, "classes"], [90, "classes"], [91, "classes"], [92, "classes"], [93, "classes"], [94, "classes"], [95, "classes"], [96, "classes"], [97, "classes"], [98, "classes"], [99, "classes"], [100, "classes"], [101, "classes"], [102, "classes"], [103, "classes"], [104, "classes"], [105, "classes"], [106, "classes"], [107, "classes"], [108, "classes"], [109, "classes"], [110, "classes"], [111, "classes"], [112, "classes"], [113, "classes"], [114, "classes"], [115, "classes"], [116, "classes"], [117, "classes"], [118, "classes"], [119, "classes"], [120, "classes"], [121, "classes"], [122, "classes"], [123, "classes"], [124, "classes"], [125, "classes"], [126, "classes"], [127, "classes"], [128, "classes"], [129, "classes"], [130, "classes"], [131, "classes"], [132, "classes"], [133, "classes"], [134, "classes"], [135, "classes"], [136, "classes"], [137, "classes"], [138, "classes"], [139, "classes"], [140, "classes"], [142, "classes"], [143, "classes"], [144, "classes"], [145, "classes"], [146, "classes"], [147, "classes"], [148, "classes"], [149, "classes"], [150, "classes"], [151, "classes"], [152, "classes"], [153, "classes"], [154, "classes"], [155, "classes"], [156, "classes"], [157, "classes"], [158, "classes"], [162, "classes"], [163, "classes"], [165, "classes"], [167, "classes"], [168, "classes"], [170, "classes"], [171, "classes"], [172, "classes"], [173, "classes"], [174, "classes"], [175, "classes"], [182, "classes"], [183, "classes"]], "Config Store": [[195, "config-store"]], "Configs": [[198, "configs"]], "Configuration Parameters": [[199, "configuration-parameters"]], "Create a Run": [[198, "create-a-run"]], "DaCapo DaCapo GitHub Org's stars": [[193, null]], "Data Formatting": [[191, null]], "Data Preparation": [[195, "data-preparation"]], "Data Storage": [[198, "data-storage"]], "Datasplit": [[195, "datasplit"]], "Detailed Road Map": [[197, "detailed-road-map"]], "Docker Configuration for JupyterHub-Dacapo": [[192, null]], "Environment setup": [[195, "environment-setup"]], "Example Tutorial": [[193, "example-tutorial"]], "Examples": [[199, "examples"]], "Exceptions": [[163, "exceptions"]], "Fine-Tune Cosem Starter": [[190, null]], "Footnotes": [[191, "footnotes"]], "Full Example": [[190, "full-example"]], "Functionality Overview": [[193, "functionality-overview"]], "Functions": [[0, "functions"], [1, "functions"], [3, "functions"], [5, "functions"], [6, "functions"], [7, "functions"], [8, "functions"], [9, "functions"], [10, "functions"], [12, "functions"], [13, "functions"], [60, "functions"], [73, "functions"], [76, "functions"], [92, "functions"], [157, "functions"], [159, "functions"], [160, "functions"], [161, "functions"], [164, "functions"], [166, "functions"], [176, "functions"], [177, "functions"], [178, "functions"], [179, "functions"], [180, "functions"], [182, "functions"], [183, "functions"], [184, "functions"], [185, "functions"]], "Further Configuration": [[192, "further-configuration"]], "Helpful Resources & Tools": [[193, "helpful-resources-tools"]], "How does DaCapo work?": [[196, "how-does-dacapo-work"]], "Installation": [[194, null], [198, "installation"]], "Installation and Setup": [[193, "installation-and-setup"]], "Introduction and overview": [[195, "introduction-and-overview"]], "Metadata": [[191, "metadata"]], "Minimal Tutorial": [[195, null]], "Module Contents": [[0, "module-contents"], [1, "module-contents"], [2, "module-contents"], [3, "module-contents"], [5, "module-contents"], [6, "module-contents"], [7, "module-contents"], [8, "module-contents"], [9, "module-contents"], [10, "module-contents"], [11, "module-contents"], [12, "module-contents"], [14, "module-contents"], [15, "module-contents"], [16, "module-contents"], [17, "module-contents"], [18, "module-contents"], [19, "module-contents"], [20, "module-contents"], [22, "module-contents"], [23, "module-contents"], [24, "module-contents"], [25, "module-contents"], [26, "module-contents"], [28, "module-contents"], [29, "module-contents"], [30, "module-contents"], [31, "module-contents"], [32, "module-contents"], [33, "module-contents"], [34, "module-contents"], [35, "module-contents"], [36, "module-contents"], [37, "module-contents"], [39, "module-contents"], [40, "module-contents"], [41, "module-contents"], [42, "module-contents"], [43, "module-contents"], [44, "module-contents"], [45, "module-contents"], [46, "module-contents"], [47, "module-contents"], [48, "module-contents"], [49, "module-contents"], [50, "module-contents"], [51, "module-contents"], [52, "module-contents"], [55, "module-contents"], [56, "module-contents"], [57, "module-contents"], [58, "module-contents"], [59, "module-contents"], [60, "module-contents"], [61, "module-contents"], [62, "module-contents"], [65, "module-contents"], [66, "module-contents"], [67, "module-contents"], [68, "module-contents"], [70, "module-contents"], [71, "module-contents"], [72, "module-contents"], [73, "module-contents"], [74, "module-contents"], [76, "module-contents"], [77, "module-contents"], [78, "module-contents"], [79, "module-contents"], [80, "module-contents"], [81, "module-contents"], [82, "module-contents"], [83, "module-contents"], [84, "module-contents"], [85, "module-contents"], [86, "module-contents"], [87, "module-contents"], [88, "module-contents"], [89, "module-contents"], [91, "module-contents"], [92, "module-contents"], [93, "module-contents"], [94, "module-contents"], [96, "module-contents"], [97, "module-contents"], [98, "module-contents"], [99, "module-contents"], [100, "module-contents"], [102, "module-contents"], [103, "module-contents"], [104, "module-contents"], [105, "module-contents"], [106, "module-contents"], [107, "module-contents"], [108, "module-contents"], [109, "module-contents"], [111, "module-contents"], [112, "module-contents"], [113, "module-contents"], [114, "module-contents"], [115, "module-contents"], [116, "module-contents"], [117, "module-contents"], [118, "module-contents"], [119, "module-contents"], [120, "module-contents"], [122, "module-contents"], [123, "module-contents"], [124, "module-contents"], [125, "module-contents"], [126, "module-contents"], [127, "module-contents"], [128, "module-contents"], [129, "module-contents"], [130, "module-contents"], [131, "module-contents"], [132, "module-contents"], [133, "module-contents"], [135, "module-contents"], [136, "module-contents"], [137, "module-contents"], [138, "module-contents"], [139, "module-contents"], [142, "module-contents"], [143, "module-contents"], [144, "module-contents"], [145, "module-contents"], [146, "module-contents"], [147, "module-contents"], [149, "module-contents"], [150, "module-contents"], [151, "module-contents"], [152, "module-contents"], [153, "module-contents"], [155, "module-contents"], [156, "module-contents"], [158, "module-contents"], [159, "module-contents"], [160, "module-contents"], [161, "module-contents"], [162, "module-contents"], [163, "module-contents"], [164, "module-contents"], [165, "module-contents"], [166, "module-contents"], [167, "module-contents"], [168, "module-contents"], [170, "module-contents"], [171, "module-contents"], [172, "module-contents"], [173, "module-contents"], [174, "module-contents"], [175, "module-contents"], [176, "module-contents"], [177, "module-contents"], [178, "module-contents"], [179, "module-contents"], [180, "module-contents"], [182, "module-contents"], [183, "module-contents"], [184, "module-contents"], [185, "module-contents"]], "Needed Libraries for this Tutorial": [[195, "needed-libraries-for-this-tutorial"]], "Non-Goals (for v1.0)": [[197, "non-goals-for-v1-0"]], "Notes": [[190, "notes"]], "Orgnaization": [[191, "orgnaization"]], "Overview": [[191, "overview"], [196, null], [197, "overview"], [199, "overview"]], "Package Contents": [[4, "package-contents"], [13, "package-contents"], [21, "package-contents"], [27, "package-contents"], [38, "package-contents"], [53, "package-contents"], [54, "package-contents"], [63, "package-contents"], [64, "package-contents"], [69, "package-contents"], [75, "package-contents"], [90, "package-contents"], [95, "package-contents"], [101, "package-contents"], [110, "package-contents"], [121, "package-contents"], [134, "package-contents"], [140, "package-contents"], [148, "package-contents"], [154, "package-contents"], [157, "package-contents"]], "Prerequisites": [[190, "prerequisites"]], "Requirements": [[192, "requirements"]], "Retrieve Configurations": [[195, "retrieve-configurations"]], "Road Map": [[197, null]], "Run": [[195, "run"]], "Running Docker Image on AWS EC2": [[187, "running-docker-image-on-aws-ec2"]], "Running the Docker Container": [[192, "running-the-docker-container"]], "S3 Access Configuration": [[187, "s3-access-configuration"]], "Start the Run": [[198, "start-the-run"]], "Step 1: Import the CosemStartConfig": [[190, "step-1-import-the-cosemstartconfig"]], "Step 2: Configure the Start Model": [[190, "step-2-configure-the-start-model"]], "Step 3: Create a Run with start_config": [[190, "step-3-create-a-run-with-start-config"]], "Stopping the Docker Container": [[192, "stopping-the-docker-container"]], "Storing Checkpoints and Experiments Data in S3": [[187, "storing-checkpoints-and-experiments-data-in-s3"]], "Submodules": [[4, "submodules"], [13, "submodules"], [21, "submodules"], [27, "submodules"], [38, "submodules"], [53, "submodules"], [54, "submodules"], [63, "submodules"], [64, "submodules"], [69, "submodules"], [75, "submodules"], [90, "submodules"], [95, "submodules"], [101, "submodules"], [110, "submodules"], [121, "submodules"], [134, "submodules"], [140, "submodules"], [154, "submodules"], [157, "submodules"], [169, "submodules"], [181, "submodules"]], "Task": [[195, "task"]], "Train": [[195, "train"]], "Trainer": [[195, "trainer"]], "Tutorial: A Simple Experiment in Python": [[198, null]], "UNet Models": [[199, null]], "Visualize": [[195, "visualize"]], "What do you want to learn?": [[195, "what-do-you-want-to-learn"]], "What is DaCapo?": [[196, "what-is-dacapo"]], "apply": [[188, "dacapo-apply"]], "config": [[188, "dacapo-config"]], "dacapo": [[157, null], [188, "dacapo"]], "dacapo.apply": [[0, null]], "dacapo.blockwise": [[4, null]], "dacapo.blockwise.argmax_worker": [[1, null]], "dacapo.blockwise.blockwise_task": [[2, null]], "dacapo.blockwise.empanada_function": [[3, null]], "dacapo.blockwise.predict_worker": [[5, null]], "dacapo.blockwise.relabel_worker": [[6, null]], "dacapo.blockwise.scheduler": [[7, null]], "dacapo.blockwise.segment_worker": [[8, null]], "dacapo.blockwise.threshold_worker": [[9, null]], "dacapo.blockwise.watershed_function": [[10, null]], "dacapo.compute_context": [[13, null]], "dacapo.compute_context.bsub": [[11, null]], "dacapo.compute_context.compute_context": [[12, null]], "dacapo.compute_context.local_torch": [[14, null]], "dacapo.experiments": [[69, null]], "dacapo.experiments.architectures": [[21, null]], "dacapo.experiments.architectures.architecture": [[15, null]], "dacapo.experiments.architectures.architecture_config": [[16, null]], "dacapo.experiments.architectures.cnnectome_unet": [[17, null]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, null]], "dacapo.experiments.architectures.dummy_architecture": [[19, null]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, null]], "dacapo.experiments.arraytypes": [[27, null]], "dacapo.experiments.arraytypes.annotations": [[22, null]], "dacapo.experiments.arraytypes.arraytype": [[23, null]], "dacapo.experiments.arraytypes.binary": [[24, null]], "dacapo.experiments.arraytypes.distances": [[25, null]], "dacapo.experiments.arraytypes.embedding": [[26, null]], "dacapo.experiments.arraytypes.intensities": [[28, null]], "dacapo.experiments.arraytypes.mask": [[29, null]], "dacapo.experiments.arraytypes.probabilities": [[30, null]], "dacapo.experiments.datasplits": [[63, null]], "dacapo.experiments.datasplits.datasets": [[54, null]], "dacapo.experiments.datasplits.datasets.arrays": [[38, null]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, null]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, null]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, null]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, null]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, null]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, null]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, null]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, null]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, null]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, null]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, null]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, null]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, null]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, null]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, null]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, null]], "dacapo.experiments.datasplits.datasets.dataset": [[48, null]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, null]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, null]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, null]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, null]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, null]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, null]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, null]], "dacapo.experiments.datasplits.datasets.simple": [[57, null]], "dacapo.experiments.datasplits.datasplit": [[58, null]], "dacapo.experiments.datasplits.datasplit_config": [[59, null]], "dacapo.experiments.datasplits.datasplit_generator": [[60, null]], "dacapo.experiments.datasplits.dummy_datasplit": [[61, null]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[62, null]], "dacapo.experiments.datasplits.keys": [[64, null]], "dacapo.experiments.datasplits.keys.keys": [[65, null]], "dacapo.experiments.datasplits.simple_config": [[66, null]], "dacapo.experiments.datasplits.train_validate_datasplit": [[67, null]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[68, null]], "dacapo.experiments.model": [[70, null]], "dacapo.experiments.run": [[71, null]], "dacapo.experiments.run_config": [[72, null]], "dacapo.experiments.starts": [[75, null]], "dacapo.experiments.starts.cosem_start": [[73, null]], "dacapo.experiments.starts.cosem_start_config": [[74, null]], "dacapo.experiments.starts.start": [[76, null]], "dacapo.experiments.starts.start_config": [[77, null]], "dacapo.experiments.tasks": [[95, null]], "dacapo.experiments.tasks.affinities_task": [[78, null]], "dacapo.experiments.tasks.affinities_task_config": [[79, null]], "dacapo.experiments.tasks.distance_task": [[80, null]], "dacapo.experiments.tasks.distance_task_config": [[81, null]], "dacapo.experiments.tasks.dummy_task": [[82, null]], "dacapo.experiments.tasks.dummy_task_config": [[83, null]], "dacapo.experiments.tasks.evaluators": [[90, null]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[84, null]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[85, null]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[86, null]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[87, null]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[88, null]], "dacapo.experiments.tasks.evaluators.evaluator": [[89, null]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[91, null]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[92, null]], "dacapo.experiments.tasks.hot_distance_task": [[93, null]], "dacapo.experiments.tasks.hot_distance_task_config": [[94, null]], "dacapo.experiments.tasks.inner_distance_task": [[96, null]], "dacapo.experiments.tasks.inner_distance_task_config": [[97, null]], "dacapo.experiments.tasks.losses": [[101, null]], "dacapo.experiments.tasks.losses.affinities_loss": [[98, null]], "dacapo.experiments.tasks.losses.dummy_loss": [[99, null]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[100, null]], "dacapo.experiments.tasks.losses.loss": [[102, null]], "dacapo.experiments.tasks.losses.mse_loss": [[103, null]], "dacapo.experiments.tasks.one_hot_task": [[104, null]], "dacapo.experiments.tasks.one_hot_task_config": [[105, null]], "dacapo.experiments.tasks.post_processors": [[110, null]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[106, null]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[107, null]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[108, null]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[109, null]], "dacapo.experiments.tasks.post_processors.post_processor": [[111, null]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[112, null]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[113, null]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[114, null]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[115, null]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[116, null]], "dacapo.experiments.tasks.predictors": [[121, null]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[117, null]], "dacapo.experiments.tasks.predictors.distance_predictor": [[118, null]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[119, null]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[120, null]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[122, null]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[123, null]], "dacapo.experiments.tasks.predictors.predictor": [[124, null]], "dacapo.experiments.tasks.pretrained_task": [[125, null]], "dacapo.experiments.tasks.pretrained_task_config": [[126, null]], "dacapo.experiments.tasks.task": [[127, null]], "dacapo.experiments.tasks.task_config": [[128, null]], "dacapo.experiments.trainers": [[140, null]], "dacapo.experiments.trainers.dummy_trainer": [[129, null]], "dacapo.experiments.trainers.dummy_trainer_config": [[130, null]], "dacapo.experiments.trainers.gp_augments": [[134, null]], "dacapo.experiments.trainers.gp_augments.augment_config": [[131, null]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[132, null]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[133, null]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[135, null]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[136, null]], "dacapo.experiments.trainers.gp_augments.simple_config": [[137, null]], "dacapo.experiments.trainers.gunpowder_trainer": [[138, null]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[139, null]], "dacapo.experiments.trainers.optimizers": [[141, null]], "dacapo.experiments.trainers.trainer": [[142, null]], "dacapo.experiments.trainers.trainer_config": [[143, null]], "dacapo.experiments.training_iteration_stats": [[144, null]], "dacapo.experiments.training_stats": [[145, null]], "dacapo.experiments.validation_iteration_scores": [[146, null]], "dacapo.experiments.validation_scores": [[147, null]], "dacapo.ext": [[148, null]], "dacapo.gp": [[154, null]], "dacapo.gp.copy": [[149, null]], "dacapo.gp.dacapo_create_target": [[150, null]], "dacapo.gp.dacapo_points_source": [[151, null]], "dacapo.gp.elastic_augment_fuse": [[152, null]], "dacapo.gp.gamma_noise": [[153, null]], "dacapo.gp.product": [[155, null]], "dacapo.gp.reject_if_empty": [[156, null]], "dacapo.options": [[158, null]], "dacapo.plot": [[159, null]], "dacapo.predict": [[160, null]], "dacapo.predict_local": [[161, null]], "dacapo.store": [[169, null]], "dacapo.store.array_store": [[162, null]], "dacapo.store.config_store": [[163, null]], "dacapo.store.conversion_hooks": [[164, null]], "dacapo.store.converter": [[165, null]], "dacapo.store.create_store": [[166, null]], "dacapo.store.file_config_store": [[167, null]], "dacapo.store.file_stats_store": [[168, null]], "dacapo.store.local_array_store": [[170, null]], "dacapo.store.local_weights_store": [[171, null]], "dacapo.store.mongo_config_store": [[172, null]], "dacapo.store.mongo_stats_store": [[173, null]], "dacapo.store.stats_store": [[174, null]], "dacapo.store.weights_store": [[175, null]], "dacapo.tmp": [[176, null]], "dacapo.train": [[177, null]], "dacapo.utils": [[181, null]], "dacapo.utils.affinities": [[178, null]], "dacapo.utils.array_utils": [[179, null]], "dacapo.utils.balance_weights": [[180, null]], "dacapo.utils.pipeline": [[182, null]], "dacapo.utils.view": [[183, null]], "dacapo.utils.voi": [[184, null]], "dacapo.validate": [[185, null]], "predict": [[188, "dacapo-predict"]], "run-blockwise": [[188, "dacapo-run-blockwise"]], "segment-blockwise": [[188, "dacapo-segment-blockwise"]], "train": [[188, "dacapo-train"]], "validate": [[188, "dacapo-validate"]]}, "docnames": ["autoapi/dacapo/apply/index", "autoapi/dacapo/blockwise/argmax_worker/index", "autoapi/dacapo/blockwise/blockwise_task/index", "autoapi/dacapo/blockwise/empanada_function/index", "autoapi/dacapo/blockwise/index", "autoapi/dacapo/blockwise/predict_worker/index", "autoapi/dacapo/blockwise/relabel_worker/index", "autoapi/dacapo/blockwise/scheduler/index", "autoapi/dacapo/blockwise/segment_worker/index", "autoapi/dacapo/blockwise/threshold_worker/index", "autoapi/dacapo/blockwise/watershed_function/index", "autoapi/dacapo/compute_context/bsub/index", "autoapi/dacapo/compute_context/compute_context/index", "autoapi/dacapo/compute_context/index", "autoapi/dacapo/compute_context/local_torch/index", "autoapi/dacapo/experiments/architectures/architecture/index", "autoapi/dacapo/experiments/architectures/architecture_config/index", "autoapi/dacapo/experiments/architectures/cnnectome_unet/index", "autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index", "autoapi/dacapo/experiments/architectures/dummy_architecture/index", "autoapi/dacapo/experiments/architectures/dummy_architecture_config/index", "autoapi/dacapo/experiments/architectures/index", "autoapi/dacapo/experiments/arraytypes/annotations/index", "autoapi/dacapo/experiments/arraytypes/arraytype/index", "autoapi/dacapo/experiments/arraytypes/binary/index", "autoapi/dacapo/experiments/arraytypes/distances/index", "autoapi/dacapo/experiments/arraytypes/embedding/index", "autoapi/dacapo/experiments/arraytypes/index", "autoapi/dacapo/experiments/arraytypes/intensities/index", "autoapi/dacapo/experiments/arraytypes/mask/index", "autoapi/dacapo/experiments/arraytypes/probabilities/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/index", "autoapi/dacapo/experiments/datasplits/datasets/index", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/simple/index", "autoapi/dacapo/experiments/datasplits/datasplit/index", "autoapi/dacapo/experiments/datasplits/datasplit_config/index", "autoapi/dacapo/experiments/datasplits/datasplit_generator/index", "autoapi/dacapo/experiments/datasplits/dummy_datasplit/index", "autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index", "autoapi/dacapo/experiments/datasplits/index", "autoapi/dacapo/experiments/datasplits/keys/index", "autoapi/dacapo/experiments/datasplits/keys/keys/index", "autoapi/dacapo/experiments/datasplits/simple_config/index", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index", "autoapi/dacapo/experiments/index", "autoapi/dacapo/experiments/model/index", "autoapi/dacapo/experiments/run/index", "autoapi/dacapo/experiments/run_config/index", "autoapi/dacapo/experiments/starts/cosem_start/index", "autoapi/dacapo/experiments/starts/cosem_start_config/index", "autoapi/dacapo/experiments/starts/index", "autoapi/dacapo/experiments/starts/start/index", "autoapi/dacapo/experiments/starts/start_config/index", "autoapi/dacapo/experiments/tasks/affinities_task/index", "autoapi/dacapo/experiments/tasks/affinities_task_config/index", "autoapi/dacapo/experiments/tasks/distance_task/index", "autoapi/dacapo/experiments/tasks/distance_task_config/index", "autoapi/dacapo/experiments/tasks/dummy_task/index", "autoapi/dacapo/experiments/tasks/dummy_task_config/index", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/index", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index", "autoapi/dacapo/experiments/tasks/hot_distance_task/index", "autoapi/dacapo/experiments/tasks/hot_distance_task_config/index", "autoapi/dacapo/experiments/tasks/index", "autoapi/dacapo/experiments/tasks/inner_distance_task/index", "autoapi/dacapo/experiments/tasks/inner_distance_task_config/index", "autoapi/dacapo/experiments/tasks/losses/affinities_loss/index", "autoapi/dacapo/experiments/tasks/losses/dummy_loss/index", "autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index", "autoapi/dacapo/experiments/tasks/losses/index", "autoapi/dacapo/experiments/tasks/losses/loss/index", "autoapi/dacapo/experiments/tasks/losses/mse_loss/index", "autoapi/dacapo/experiments/tasks/one_hot_task/index", "autoapi/dacapo/experiments/tasks/one_hot_task_config/index", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/index", "autoapi/dacapo/experiments/tasks/post_processors/post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/index", "autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/predictor/index", "autoapi/dacapo/experiments/tasks/pretrained_task/index", "autoapi/dacapo/experiments/tasks/pretrained_task_config/index", "autoapi/dacapo/experiments/tasks/task/index", "autoapi/dacapo/experiments/tasks/task_config/index", "autoapi/dacapo/experiments/trainers/dummy_trainer/index", "autoapi/dacapo/experiments/trainers/dummy_trainer_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/index", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index", "autoapi/dacapo/experiments/trainers/gunpowder_trainer/index", "autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index", "autoapi/dacapo/experiments/trainers/index", "autoapi/dacapo/experiments/trainers/optimizers/index", "autoapi/dacapo/experiments/trainers/trainer/index", "autoapi/dacapo/experiments/trainers/trainer_config/index", "autoapi/dacapo/experiments/training_iteration_stats/index", "autoapi/dacapo/experiments/training_stats/index", "autoapi/dacapo/experiments/validation_iteration_scores/index", "autoapi/dacapo/experiments/validation_scores/index", "autoapi/dacapo/ext/index", "autoapi/dacapo/gp/copy/index", "autoapi/dacapo/gp/dacapo_create_target/index", "autoapi/dacapo/gp/dacapo_points_source/index", "autoapi/dacapo/gp/elastic_augment_fuse/index", "autoapi/dacapo/gp/gamma_noise/index", "autoapi/dacapo/gp/index", "autoapi/dacapo/gp/product/index", "autoapi/dacapo/gp/reject_if_empty/index", "autoapi/dacapo/index", "autoapi/dacapo/options/index", "autoapi/dacapo/plot/index", "autoapi/dacapo/predict/index", "autoapi/dacapo/predict_local/index", "autoapi/dacapo/store/array_store/index", "autoapi/dacapo/store/config_store/index", "autoapi/dacapo/store/conversion_hooks/index", "autoapi/dacapo/store/converter/index", "autoapi/dacapo/store/create_store/index", "autoapi/dacapo/store/file_config_store/index", "autoapi/dacapo/store/file_stats_store/index", "autoapi/dacapo/store/index", "autoapi/dacapo/store/local_array_store/index", "autoapi/dacapo/store/local_weights_store/index", "autoapi/dacapo/store/mongo_config_store/index", "autoapi/dacapo/store/mongo_stats_store/index", "autoapi/dacapo/store/stats_store/index", "autoapi/dacapo/store/weights_store/index", "autoapi/dacapo/tmp/index", "autoapi/dacapo/train/index", "autoapi/dacapo/utils/affinities/index", "autoapi/dacapo/utils/array_utils/index", "autoapi/dacapo/utils/balance_weights/index", "autoapi/dacapo/utils/index", "autoapi/dacapo/utils/pipeline/index", "autoapi/dacapo/utils/view/index", "autoapi/dacapo/utils/voi/index", "autoapi/dacapo/validate/index", "autoapi/index", "aws", "cli", "conf", "cosem_starter", "data", "docker", "index", "install", "notebooks/minimal_tutorial", "overview", "roadmap", "tutorial", "unet_architectures"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["autoapi/dacapo/apply/index.rst", "autoapi/dacapo/blockwise/argmax_worker/index.rst", "autoapi/dacapo/blockwise/blockwise_task/index.rst", "autoapi/dacapo/blockwise/empanada_function/index.rst", "autoapi/dacapo/blockwise/index.rst", "autoapi/dacapo/blockwise/predict_worker/index.rst", "autoapi/dacapo/blockwise/relabel_worker/index.rst", "autoapi/dacapo/blockwise/scheduler/index.rst", "autoapi/dacapo/blockwise/segment_worker/index.rst", "autoapi/dacapo/blockwise/threshold_worker/index.rst", "autoapi/dacapo/blockwise/watershed_function/index.rst", "autoapi/dacapo/compute_context/bsub/index.rst", "autoapi/dacapo/compute_context/compute_context/index.rst", "autoapi/dacapo/compute_context/index.rst", "autoapi/dacapo/compute_context/local_torch/index.rst", "autoapi/dacapo/experiments/architectures/architecture/index.rst", "autoapi/dacapo/experiments/architectures/architecture_config/index.rst", "autoapi/dacapo/experiments/architectures/cnnectome_unet/index.rst", "autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index.rst", "autoapi/dacapo/experiments/architectures/dummy_architecture/index.rst", "autoapi/dacapo/experiments/architectures/dummy_architecture_config/index.rst", "autoapi/dacapo/experiments/architectures/index.rst", "autoapi/dacapo/experiments/arraytypes/annotations/index.rst", "autoapi/dacapo/experiments/arraytypes/arraytype/index.rst", "autoapi/dacapo/experiments/arraytypes/binary/index.rst", "autoapi/dacapo/experiments/arraytypes/distances/index.rst", "autoapi/dacapo/experiments/arraytypes/embedding/index.rst", "autoapi/dacapo/experiments/arraytypes/index.rst", "autoapi/dacapo/experiments/arraytypes/intensities/index.rst", "autoapi/dacapo/experiments/arraytypes/mask/index.rst", "autoapi/dacapo/experiments/arraytypes/probabilities/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/simple/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit_generator/index.rst", "autoapi/dacapo/experiments/datasplits/dummy_datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index.rst", "autoapi/dacapo/experiments/datasplits/index.rst", "autoapi/dacapo/experiments/datasplits/keys/index.rst", "autoapi/dacapo/experiments/datasplits/keys/keys/index.rst", "autoapi/dacapo/experiments/datasplits/simple_config/index.rst", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index.rst", "autoapi/dacapo/experiments/index.rst", "autoapi/dacapo/experiments/model/index.rst", "autoapi/dacapo/experiments/run/index.rst", "autoapi/dacapo/experiments/run_config/index.rst", "autoapi/dacapo/experiments/starts/cosem_start/index.rst", "autoapi/dacapo/experiments/starts/cosem_start_config/index.rst", "autoapi/dacapo/experiments/starts/index.rst", "autoapi/dacapo/experiments/starts/start/index.rst", "autoapi/dacapo/experiments/starts/start_config/index.rst", "autoapi/dacapo/experiments/tasks/affinities_task/index.rst", "autoapi/dacapo/experiments/tasks/affinities_task_config/index.rst", "autoapi/dacapo/experiments/tasks/distance_task/index.rst", "autoapi/dacapo/experiments/tasks/distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/dummy_task/index.rst", "autoapi/dacapo/experiments/tasks/dummy_task_config/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/hot_distance_task/index.rst", "autoapi/dacapo/experiments/tasks/hot_distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/index.rst", "autoapi/dacapo/experiments/tasks/inner_distance_task/index.rst", "autoapi/dacapo/experiments/tasks/inner_distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/losses/affinities_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/dummy_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/index.rst", "autoapi/dacapo/experiments/tasks/losses/loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/mse_loss/index.rst", "autoapi/dacapo/experiments/tasks/one_hot_task/index.rst", "autoapi/dacapo/experiments/tasks/one_hot_task_config/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/index.rst", "autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/predictor/index.rst", "autoapi/dacapo/experiments/tasks/pretrained_task/index.rst", "autoapi/dacapo/experiments/tasks/pretrained_task_config/index.rst", "autoapi/dacapo/experiments/tasks/task/index.rst", "autoapi/dacapo/experiments/tasks/task_config/index.rst", "autoapi/dacapo/experiments/trainers/dummy_trainer/index.rst", "autoapi/dacapo/experiments/trainers/dummy_trainer_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index.rst", "autoapi/dacapo/experiments/trainers/gunpowder_trainer/index.rst", "autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index.rst", "autoapi/dacapo/experiments/trainers/index.rst", "autoapi/dacapo/experiments/trainers/optimizers/index.rst", "autoapi/dacapo/experiments/trainers/trainer/index.rst", "autoapi/dacapo/experiments/trainers/trainer_config/index.rst", "autoapi/dacapo/experiments/training_iteration_stats/index.rst", "autoapi/dacapo/experiments/training_stats/index.rst", "autoapi/dacapo/experiments/validation_iteration_scores/index.rst", "autoapi/dacapo/experiments/validation_scores/index.rst", "autoapi/dacapo/ext/index.rst", "autoapi/dacapo/gp/copy/index.rst", "autoapi/dacapo/gp/dacapo_create_target/index.rst", "autoapi/dacapo/gp/dacapo_points_source/index.rst", "autoapi/dacapo/gp/elastic_augment_fuse/index.rst", "autoapi/dacapo/gp/gamma_noise/index.rst", "autoapi/dacapo/gp/index.rst", "autoapi/dacapo/gp/product/index.rst", "autoapi/dacapo/gp/reject_if_empty/index.rst", "autoapi/dacapo/index.rst", "autoapi/dacapo/options/index.rst", "autoapi/dacapo/plot/index.rst", "autoapi/dacapo/predict/index.rst", "autoapi/dacapo/predict_local/index.rst", "autoapi/dacapo/store/array_store/index.rst", "autoapi/dacapo/store/config_store/index.rst", "autoapi/dacapo/store/conversion_hooks/index.rst", "autoapi/dacapo/store/converter/index.rst", "autoapi/dacapo/store/create_store/index.rst", "autoapi/dacapo/store/file_config_store/index.rst", "autoapi/dacapo/store/file_stats_store/index.rst", "autoapi/dacapo/store/index.rst", "autoapi/dacapo/store/local_array_store/index.rst", "autoapi/dacapo/store/local_weights_store/index.rst", "autoapi/dacapo/store/mongo_config_store/index.rst", "autoapi/dacapo/store/mongo_stats_store/index.rst", "autoapi/dacapo/store/stats_store/index.rst", "autoapi/dacapo/store/weights_store/index.rst", "autoapi/dacapo/tmp/index.rst", "autoapi/dacapo/train/index.rst", "autoapi/dacapo/utils/affinities/index.rst", "autoapi/dacapo/utils/array_utils/index.rst", "autoapi/dacapo/utils/balance_weights/index.rst", "autoapi/dacapo/utils/index.rst", "autoapi/dacapo/utils/pipeline/index.rst", "autoapi/dacapo/utils/view/index.rst", "autoapi/dacapo/utils/voi/index.rst", "autoapi/dacapo/validate/index.rst", "autoapi/index.rst", "aws.rst", "cli.rst", "conf.py", "cosem_starter.rst", "data.rst", "docker.rst", "index.rst", "install.rst", "notebooks/minimal_tutorial.ipynb", "overview.rst", "roadmap.rst", "tutorial.rst", "unet_architectures.rst"], "indexentries": {"--channels_out": [[188, "cmdoption-dacapo-segment-blockwise-co", false]], "--context": [[188, "cmdoption-dacapo-segment-blockwise-c", false]], "--criterion": [[188, "cmdoption-dacapo-apply-c", false]], "--input_container": [[188, "cmdoption-dacapo-apply-ic", false], [188, "cmdoption-dacapo-predict-ic", false], [188, "cmdoption-dacapo-run-blockwise-ic", false], [188, "cmdoption-dacapo-segment-blockwise-ic", false]], "--input_dataset": [[188, "cmdoption-dacapo-apply-id", false], [188, "cmdoption-dacapo-predict-id", false], [188, "cmdoption-dacapo-run-blockwise-id", false], [188, "cmdoption-dacapo-segment-blockwise-id", false]], "--iteration": [[188, "cmdoption-dacapo-apply-i", false], [188, "cmdoption-dacapo-predict-i", false], [188, "cmdoption-dacapo-validate-i", false]], "--log-level": [[188, "cmdoption-dacapo-log-level", false]], "--max_retries": [[188, "cmdoption-dacapo-run-blockwise-mr", false], [188, "cmdoption-dacapo-segment-blockwise-mr", false]], "--no-validation": [[188, "cmdoption-dacapo-train-no-validation", false]], "--num_workers": [[188, "cmdoption-dacapo-apply-w", false], [188, "cmdoption-dacapo-predict-w", false], [188, "cmdoption-dacapo-run-blockwise-nw", false], [188, "cmdoption-dacapo-segment-blockwise-nw", false], [188, "cmdoption-dacapo-validate-w", false]], "--output_container": [[188, "cmdoption-dacapo-run-blockwise-oc", false], [188, "cmdoption-dacapo-segment-blockwise-oc", false]], "--output_dataset": [[188, "cmdoption-dacapo-run-blockwise-od", false], [188, "cmdoption-dacapo-segment-blockwise-od", false]], "--output_dtype": [[188, "cmdoption-dacapo-apply-dt", false], [188, "cmdoption-dacapo-predict-dt", false], [188, "cmdoption-dacapo-run-blockwise-dt", false], [188, "cmdoption-dacapo-validate-dt", false]], "--output_path": [[188, "cmdoption-dacapo-apply-op", false], [188, "cmdoption-dacapo-predict-op", false]], "--output_roi": [[188, "cmdoption-dacapo-predict-roi", false]], "--overwrite": [[188, "cmdoption-dacapo-apply-ow", false], [188, "cmdoption-dacapo-predict-ow", false], [188, "cmdoption-dacapo-run-blockwise-ow", false], [188, "cmdoption-dacapo-segment-blockwise-ow", false], [188, "cmdoption-dacapo-validate-ow", false]], "--parameters": [[188, "cmdoption-dacapo-apply-p", false]], "--read_roi_size": [[188, "cmdoption-dacapo-run-blockwise-rr", false], [188, "cmdoption-dacapo-segment-blockwise-rr", false]], "--roi": [[188, "cmdoption-dacapo-apply-roi", false]], "--run-name": [[188, "cmdoption-dacapo-apply-r", false], [188, "cmdoption-dacapo-predict-r", false], [188, "cmdoption-dacapo-train-r", false], [188, "cmdoption-dacapo-validate-r", false]], "--segment_function_file": [[188, "cmdoption-dacapo-segment-blockwise-sf", false]], "--timeout": [[188, "cmdoption-dacapo-run-blockwise-t", false], [188, "cmdoption-dacapo-segment-blockwise-t", false]], "--total_roi": [[188, "cmdoption-dacapo-run-blockwise-tr", false], [188, "cmdoption-dacapo-segment-blockwise-tr", false]], "--validation_dataset": [[188, "cmdoption-dacapo-apply-vd", false]], "--worker_file": [[188, "cmdoption-dacapo-run-blockwise-w", false]], "--write_roi_size": [[188, "cmdoption-dacapo-run-blockwise-wr", false], [188, "cmdoption-dacapo-segment-blockwise-wr", false]], "-c": [[188, "cmdoption-dacapo-apply-c", false], [188, "cmdoption-dacapo-segment-blockwise-c", false]], "-channels_out": [[188, "cmdoption-dacapo-run-blockwise-co", false]], "-co": [[188, "cmdoption-dacapo-run-blockwise-co", false], [188, "cmdoption-dacapo-segment-blockwise-co", false]], "-dt": [[188, "cmdoption-dacapo-apply-dt", false], [188, "cmdoption-dacapo-predict-dt", false], [188, "cmdoption-dacapo-run-blockwise-dt", false], [188, "cmdoption-dacapo-validate-dt", false]], "-i": [[188, "cmdoption-dacapo-apply-i", false], [188, "cmdoption-dacapo-predict-i", false], [188, "cmdoption-dacapo-validate-i", false]], "-ic": [[188, "cmdoption-dacapo-apply-ic", false], [188, "cmdoption-dacapo-predict-ic", false], [188, "cmdoption-dacapo-run-blockwise-ic", false], [188, "cmdoption-dacapo-segment-blockwise-ic", false]], "-id": [[188, "cmdoption-dacapo-apply-id", false], [188, "cmdoption-dacapo-predict-id", false], [188, "cmdoption-dacapo-run-blockwise-id", false], [188, "cmdoption-dacapo-segment-blockwise-id", false]], "-mr": [[188, "cmdoption-dacapo-run-blockwise-mr", false], [188, "cmdoption-dacapo-segment-blockwise-mr", false]], "-nw": [[188, "cmdoption-dacapo-run-blockwise-nw", false], [188, "cmdoption-dacapo-segment-blockwise-nw", false]], "-oc": [[188, "cmdoption-dacapo-run-blockwise-oc", false], [188, "cmdoption-dacapo-segment-blockwise-oc", false]], "-od": [[188, "cmdoption-dacapo-run-blockwise-od", false], [188, "cmdoption-dacapo-segment-blockwise-od", false]], "-op": [[188, "cmdoption-dacapo-apply-op", false], [188, "cmdoption-dacapo-predict-op", false]], "-ow": [[188, "cmdoption-dacapo-apply-ow", false], [188, "cmdoption-dacapo-predict-ow", false], [188, "cmdoption-dacapo-run-blockwise-ow", false], [188, "cmdoption-dacapo-segment-blockwise-ow", false], [188, "cmdoption-dacapo-validate-ow", false]], "-p": [[188, "cmdoption-dacapo-apply-p", false]], "-r": [[188, "cmdoption-dacapo-apply-r", false], [188, "cmdoption-dacapo-predict-r", false], [188, "cmdoption-dacapo-train-r", false], [188, "cmdoption-dacapo-validate-r", false]], "-roi": [[188, "cmdoption-dacapo-apply-roi", false], [188, "cmdoption-dacapo-predict-roi", false]], "-rr": [[188, "cmdoption-dacapo-run-blockwise-rr", false], [188, "cmdoption-dacapo-segment-blockwise-rr", false]], "-sf": [[188, "cmdoption-dacapo-segment-blockwise-sf", false]], "-t": [[188, "cmdoption-dacapo-run-blockwise-t", false], [188, "cmdoption-dacapo-segment-blockwise-t", false]], "-tr": [[188, "cmdoption-dacapo-run-blockwise-tr", false], [188, "cmdoption-dacapo-segment-blockwise-tr", false]], "-vd": [[188, "cmdoption-dacapo-apply-vd", false]], "-w": [[188, "cmdoption-dacapo-apply-w", false], [188, "cmdoption-dacapo-predict-w", false], [188, "cmdoption-dacapo-run-blockwise-w", false], [188, "cmdoption-dacapo-validate-w", false]], "-wr": [[188, "cmdoption-dacapo-run-blockwise-wr", false], [188, "cmdoption-dacapo-segment-blockwise-wr", false]], "__attrs_post_init__() (dacapo.experiments.arraytypes.intensities.intensitiesarray method)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.arraytypes.intensitiesarray method)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig method)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.__attrs_post_init__", false]], "__augment() (dacapo.gp.gamma_noise.gammaaugment method)": [[153, "dacapo.gp.gamma_noise.GammaAugment.__augment", false]], "__augment() (dacapo.gp.gammaaugment method)": [[154, "dacapo.gp.GammaAugment.__augment", false]], "__enter__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.dummytrainer method)": [[140, "dacapo.experiments.trainers.DummyTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.__enter__", false]], "__eq__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__eq__", false]], "__eq__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__eq__", false]], "__exception (dacapo.ext.nosuchmodule attribute)": [[148, "dacapo.ext.NoSuchModule.__exception", false]], "__exit__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.dummytrainer method)": [[140, "dacapo.experiments.trainers.DummyTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.__exit__", false]], "__find_boundaries() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.__find_boundaries", false]], "__find_boundaries() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.__find_boundaries", false]], "__generate_semantic_seg_dataset_crop() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__generate_semantic_seg_dataset_crop", false]], "__generate_semantic_seg_dataset_crop() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.__generate_semantic_seg_dataset_crop", false]], "__generate_semantic_seg_datasplit() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__generate_semantic_seg_datasplit", false]], "__generate_semantic_seg_datasplit() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.__generate_semantic_seg_datasplit", false]], "__getattr__() (dacapo.ext.nosuchmodule method)": [[148, "dacapo.ext.NoSuchModule.__getattr__", false]], "__getitem__() (dacapo.experiments.datasplits.datasplit_generator.customenummeta method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta.__getitem__", false]], "__hash__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__hash__", false]], "__hash__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__hash__", false]], "__init__() (dacapo.blockwise.blockwise_task.dacapoblockwisetask method)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.__init__", false]], "__init__() (dacapo.blockwise.dacapoblockwisetask method)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset method)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.dummydataset method)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset method)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.rawgtdataset method)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasetspec method)": [[63, "dacapo.experiments.datasplits.DatasetSpec.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit method)": [[63, "dacapo.experiments.datasplits.DataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit.datasplit method)": [[58, "dacapo.experiments.datasplits.datasplit.DataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit_generator.datasetspec method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.__init__", false]], "__init__() (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit method)": [[61, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.dummydatasplit method)": [[63, "dacapo.experiments.datasplits.DummyDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit method)": [[67, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig method)": [[68, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.__init__", false]], "__init__() (dacapo.experiments.datasplits.trainvalidatedatasplit method)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.trainvalidatedatasplitconfig method)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.__init__", false]], "__init__() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[73, "dacapo.experiments.starts.cosem_start.CosemStart.__init__", false]], "__init__() (dacapo.experiments.starts.cosem_start_config.cosemstartconfig method)": [[74, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.cosemstart method)": [[75, "dacapo.experiments.starts.CosemStart.__init__", false]], "__init__() (dacapo.experiments.starts.cosemstartconfig method)": [[75, "dacapo.experiments.starts.CosemStartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.start method)": [[75, "dacapo.experiments.starts.Start.__init__", false]], "__init__() (dacapo.experiments.starts.start.start method)": [[76, "dacapo.experiments.starts.start.Start.__init__", false]], "__init__() (dacapo.experiments.starts.start_config.startconfig method)": [[77, "dacapo.experiments.starts.start_config.StartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.startconfig method)": [[75, "dacapo.experiments.starts.StartConfig.__init__", false]], "__init__() (dacapo.experiments.tasks.affinities_task.affinitiestask method)": [[78, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.__init__", false]], "__init__() (dacapo.experiments.tasks.affinitiestask method)": [[95, "dacapo.experiments.tasks.AffinitiesTask.__init__", false]], "__init__() (dacapo.experiments.tasks.distance_task.distancetask method)": [[80, "dacapo.experiments.tasks.distance_task.DistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.distancetask method)": [[95, "dacapo.experiments.tasks.DistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.dummy_task.dummytask method)": [[82, "dacapo.experiments.tasks.dummy_task.DummyTask.__init__", false]], "__init__() (dacapo.experiments.tasks.dummytask method)": [[95, "dacapo.experiments.tasks.DummyTask.__init__", false]], "__init__() (dacapo.experiments.tasks.hot_distance_task.hotdistancetask method)": [[93, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.hotdistancetask method)": [[95, "dacapo.experiments.tasks.HotDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.inner_distance_task.innerdistancetask method)": [[96, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.innerdistancetask method)": [[95, "dacapo.experiments.tasks.InnerDistanceTask.__init__", false]], "__init__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__init__", false]], "__init__() (dacapo.experiments.trainers.dummytrainer method)": [[140, "dacapo.experiments.trainers.DummyTrainer.__init__", false]], "__init__() (dacapo.store.weights_store.weights method)": [[175, "dacapo.store.weights_store.Weights.__init__", false]], "__init_db() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.__init_db", false]], "__iter__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__iter__", false]], "__iter__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.__iter__", false]], "__load() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.__load", false]], "__name (dacapo.ext.nosuchmodule attribute)": [[148, "dacapo.ext.NoSuchModule.__name", false]], "__normalize() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.__normalize", false]], "__normalize() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.__normalize", false]], "__open_collections() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.__open_collections", false]], "__parse_options() (dacapo.options method)": [[157, "dacapo.Options.__parse_options", false]], "__parse_options() (dacapo.options.options method)": [[158, "dacapo.options.Options.__parse_options", false]], "__parse_options_from_file() (dacapo.options method)": [[157, "dacapo.Options.__parse_options_from_file", false]], "__parse_options_from_file() (dacapo.options.options method)": [[158, "dacapo.options.Options.__parse_options_from_file", false]], "__repr__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__repr__", false]], "__repr__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__repr__", false]], "__same_doc() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.__same_doc", false]], "__save_insert() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.__save_insert", false]], "__save_insert() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.__save_insert", false]], "__str__ (dacapo.experiments.datasplits.datasplit_generator.customenum attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.CustomEnum.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasetspec method)": [[63, "dacapo.experiments.datasplits.DatasetSpec.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.customenum method)": [[60, "id0", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasetspec method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasettype method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.segmentationtype method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.arraykey method)": [[64, "dacapo.experiments.datasplits.keys.ArrayKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.datakey method)": [[64, "dacapo.experiments.datasplits.keys.DataKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.graphkey method)": [[64, "dacapo.experiments.datasplits.keys.GraphKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.arraykey method)": [[65, "dacapo.experiments.datasplits.keys.keys.ArrayKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.datakey method)": [[65, "dacapo.experiments.datasplits.keys.keys.DataKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.graphkey method)": [[65, "dacapo.experiments.datasplits.keys.keys.GraphKey.__str__", false]], "__str__() (dacapo.store.config_store.duplicatenameerror method)": [[163, "dacapo.store.config_store.DuplicateNameError.__str__", false]], "__traceback_str (dacapo.ext.nosuchmodule attribute)": [[148, "dacapo.ext.NoSuchModule.__traceback_str", false]], "__typed_structure() (dacapo.store.converter.typedconverter method)": [[165, "dacapo.store.converter.TypedConverter.__typed_structure", false]], "__typed_unstructure() (dacapo.store.converter.typedconverter method)": [[165, "dacapo.store.converter.TypedConverter.__typed_unstructure", false]], "_axes (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig._axes", false]], "_axes (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig._axes", false]], "_device (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch._device", false]], "_device (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch._device", false]], "_eval_shape_increase (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig._eval_shape_increase", false]], "_eval_shape_increase (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig._eval_shape_increase", false]], "_grow_boundaries() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor._grow_boundaries", false]], "_grow_boundaries() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor._grow_boundaries", false]], "_gt_key (dacapo.experiments.trainers.augmentconfig attribute)": [[140, "dacapo.experiments.trainers.AugmentConfig._gt_key", false]], "_gt_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[131, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._gt_key", false]], "_gt_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.AugmentConfig._gt_key", false]], "_mask_key (dacapo.experiments.trainers.augmentconfig attribute)": [[140, "dacapo.experiments.trainers.AugmentConfig._mask_key", false]], "_mask_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[131, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._mask_key", false]], "_mask_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.AugmentConfig._mask_key", false]], "_member_names_ (dacapo.experiments.datasplits.datasplit_generator.customenummeta attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta._member_names_", false]], "_neuroglancer_layers() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset._neuroglancer_layers", false]], "_neuroglancer_layers() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset._neuroglancer_layers", false]], "_raw_key (dacapo.experiments.trainers.augmentconfig attribute)": [[140, "dacapo.experiments.trainers.AugmentConfig._raw_key", false]], "_raw_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[131, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._raw_key", false]], "_raw_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.AugmentConfig._raw_key", false]], "_spec (dacapo.utils.pipeline.zerossource attribute)": [[182, "dacapo.utils.pipeline.ZerosSource._spec", false]], "_wrap_command() (dacapo.compute_context.bsub method)": [[13, "dacapo.compute_context.Bsub._wrap_command", false]], "_wrap_command() (dacapo.compute_context.bsub.bsub method)": [[11, "dacapo.compute_context.bsub.Bsub._wrap_command", false]], "_wrap_command() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext._wrap_command", false]], "_wrap_command() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext._wrap_command", false]], "_wrap_command() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch._wrap_command", false]], "_wrap_command() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch._wrap_command", false]], "activation (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.activation", false]], "activation (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.activation", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.activation_on_upsample", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.activation_on_upsample", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.activation_on_upsample", false]], "add_iteration_scores() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.add_iteration_scores", false], [147, "id5", false]], "add_iteration_scores() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.add_iteration_scores", false], [69, "id23", false]], "add_iteration_stats() (dacapo.experiments.training_stats.trainingstats method)": [[145, "dacapo.experiments.training_stats.TrainingStats.add_iteration_stats", false]], "add_iteration_stats() (dacapo.experiments.trainingstats method)": [[69, "dacapo.experiments.TrainingStats.add_iteration_stats", false]], "add_scalar_layer() (in module dacapo.utils.view)": [[183, "dacapo.utils.view.add_scalar_layer", false]], "add_seg_layer() (in module dacapo.utils.view)": [[183, "dacapo.utils.view.add_seg_layer", false]], "affinitiesloss (class in dacapo.experiments.tasks.losses)": [[101, "dacapo.experiments.tasks.losses.AffinitiesLoss", false]], "affinitiesloss (class in dacapo.experiments.tasks.losses.affinities_loss)": [[98, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss", false]], "affinitiespredictor (class in dacapo.experiments.tasks.predictors)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor", false]], "affinitiespredictor (class in dacapo.experiments.tasks.predictors.affinities_predictor)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor", false]], "affinitiestask (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.AffinitiesTask", false]], "affinitiestask (class in dacapo.experiments.tasks.affinities_task)": [[78, "dacapo.experiments.tasks.affinities_task.AffinitiesTask", false]], "affinitiestaskconfig (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig", false]], "affinitiestaskconfig (class in dacapo.experiments.tasks.affinities_task_config)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig", false]], "affs_weight_clipmax (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.affs_weight_clipmax", false], [79, "id6", false]], "affs_weight_clipmax (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.affs_weight_clipmax", false], [95, "id33", false]], "affs_weight_clipmax (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.affs_weight_clipmax", false], [117, "id5", false]], "affs_weight_clipmax (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.affs_weight_clipmax", false], [121, "id27", false]], "affs_weight_clipmin (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.affs_weight_clipmin", false], [79, "id5", false]], "affs_weight_clipmin (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.affs_weight_clipmin", false], [95, "id32", false]], "affs_weight_clipmin (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.affs_weight_clipmin", false], [117, "id4", false]], "affs_weight_clipmin (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.affs_weight_clipmin", false], [121, "id26", false]], "annotationarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.AnnotationArray", false]], "annotationarray (class in dacapo.experiments.arraytypes.annotations)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray", false]], "apply() (in module dacapo)": [[157, "dacapo.apply", false]], "apply() (in module dacapo.apply)": [[0, "dacapo.apply.apply", false]], "apply_run() (in module dacapo.apply)": [[0, "dacapo.apply.apply_run", false]], "architecture (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.Architecture", false]], "architecture (class in dacapo.experiments.architectures.architecture)": [[15, "dacapo.experiments.architectures.architecture.Architecture", false]], "architecture (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.architecture", false], [69, "id4", false]], "architecture (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.architecture", false], [70, "id4", false]], "architecture (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.architecture", false], [71, "id4", false]], "architecture_config (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.architecture_config", false]], "architecture_config (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.architecture_config", false]], "architecture_type (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "id0", false]], "architecture_type (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "id19", false]], "architecture_type (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.architecture_type", false], [20, "id0", false]], "architecture_type (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.architecture_type", false], [21, "id8", false]], "architecture_type() (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig method)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.architecture_type", false]], "architecture_type() (dacapo.experiments.architectures.cnnectomeunetconfig method)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.architecture_type", false]], "architectureconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.ArchitectureConfig", false]], "architectureconfig (class in dacapo.experiments.architectures.architecture_config)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig", false]], "architectures (dacapo.store.config_store.configstore attribute)": [[163, "dacapo.store.config_store.ConfigStore.architectures", false], [163, "id6", false]], "architectures (dacapo.store.file_config_store.fileconfigstore property)": [[167, "dacapo.store.file_config_store.FileConfigStore.architectures", false]], "architectures (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.architectures", false]], "argmaxpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor", false]], "argmaxpostprocessor (class in dacapo.experiments.tasks.post_processors.argmax_post_processor)": [[106, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor", false]], "argmaxpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters", false]], "argmaxpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters)": [[107, "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig method)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.arrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig method)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig method)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig method)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig method)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig method)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig method)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig method)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig method)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig method)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig method)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.sum_array_config.sumarrayconfig method)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.sumarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig method)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig method)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.array", false]], "array_identifier() (dacapo.store.array_store.localcontaineridentifier method)": [[162, "dacapo.store.array_store.LocalContainerIdentifier.array_identifier", false]], "array_key (dacapo.gp.copy.copymask attribute)": [[149, "dacapo.gp.copy.CopyMask.array_key", false], [149, "id0", false]], "array_key (dacapo.gp.copymask attribute)": [[154, "dacapo.gp.CopyMask.array_key", false], [154, "id14", false]], "array_store (dacapo.utils.view.bestscore attribute)": [[183, "dacapo.utils.view.BestScore.array_store", false], [183, "id5", false]], "array_store (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.array_store", false]], "arrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig", false]], "arrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.array_config)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig", false]], "arrayevaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator", false]], "arraykey (class in dacapo.experiments.datasplits.keys)": [[64, "dacapo.experiments.datasplits.keys.ArrayKey", false]], "arraykey (class in dacapo.experiments.datasplits.keys.keys)": [[65, "dacapo.experiments.datasplits.keys.keys.ArrayKey", false]], "arrays (dacapo.gp.gamma_noise.gammaaugment attribute)": [[153, "dacapo.gp.gamma_noise.GammaAugment.arrays", false], [153, "id0", false]], "arrays (dacapo.gp.gammaaugment attribute)": [[154, "dacapo.gp.GammaAugment.arrays", false], [154, "id6", false]], "arrays (dacapo.store.config_store.configstore attribute)": [[163, "dacapo.store.config_store.ConfigStore.arrays", false], [163, "id3", false]], "arrays (dacapo.store.file_config_store.fileconfigstore property)": [[167, "dacapo.store.file_config_store.FileConfigStore.arrays", false]], "arrays (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.arrays", false]], "arraystore (class in dacapo.store.array_store)": [[162, "dacapo.store.array_store.ArrayStore", false]], "arraytype (class in dacapo.experiments.arraytypes.arraytype)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType", false]], "attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.attention", false]], "attentionblockmodule (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[135, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.simple_config.simpleaugmentconfig attribute)": [[137, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.simpleaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.augmentation_probability", false]], "augmentation_probability (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.augmentation_probability", false]], "augmentconfig (class in dacapo.experiments.trainers)": [[140, "dacapo.experiments.trainers.AugmentConfig", false]], "augmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[134, "dacapo.experiments.trainers.gp_augments.AugmentConfig", false]], "augmentconfig (class in dacapo.experiments.trainers.gp_augments.augment_config)": [[131, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig", false]], "augments (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.augments", false], [138, "id6", false]], "augments (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[139, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.augments", false], [139, "id2", false]], "augments (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.augments", false], [140, "id27", false]], "augments (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainerConfig.augments", false], [140, "id17", false]], "axis_names (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.axis_names", false], [46, "id3", false]], "background (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.background", false], [32, "id2", false]], "background (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.background", false], [38, "id9", false]], "background (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[156, "dacapo.gp.reject_if_empty.RejectIfEmpty.background", false]], "background (dacapo.gp.rejectifempty attribute)": [[154, "dacapo.gp.RejectIfEmpty.background", false]], "background (dacapo.utils.pipeline.expandlabels attribute)": [[182, "dacapo.utils.pipeline.ExpandLabels.background", false], [182, "id13", false]], "background_as_object (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.background_as_object", false], [79, "id9", false]], "background_as_object (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.background_as_object", false], [95, "id36", false]], "background_as_object (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.background_as_object", false], [117, "id8", false]], "background_as_object (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.background_as_object", false], [121, "id30", false]], "balance_weights() (in module dacapo.utils.balance_weights)": [[180, "dacapo.utils.balance_weights.balance_weights", false]], "basedir (dacapo.store.local_array_store.localarraystore attribute)": [[170, "dacapo.store.local_array_store.LocalArrayStore.basedir", false], [170, "id0", false]], "basedir (dacapo.store.local_weights_store.localweightsstore attribute)": [[171, "dacapo.store.local_weights_store.LocalWeightsStore.basedir", false], [171, "id0", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.batch_norm", false]], "batch_size (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.batch_size", false], [129, "id1", false]], "batch_size (dacapo.experiments.trainers.dummytrainer attribute)": [[140, "dacapo.experiments.trainers.DummyTrainer.batch_size", false], [140, "id10", false]], "batch_size (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.batch_size", false], [138, "id1", false]], "batch_size (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.batch_size", false], [140, "id22", false]], "batch_size (dacapo.experiments.trainers.trainer attribute)": [[140, "dacapo.experiments.trainers.Trainer.batch_size", false], [140, "id1", false]], "batch_size (dacapo.experiments.trainers.trainer.trainer attribute)": [[142, "dacapo.experiments.trainers.trainer.Trainer.batch_size", false], [142, "id1", false]], "batch_size (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[143, "dacapo.experiments.trainers.trainer_config.TrainerConfig.batch_size", false], [143, "id1", false]], "batch_size (dacapo.experiments.trainers.trainerconfig attribute)": [[140, "dacapo.experiments.trainers.TrainerConfig.batch_size", false], [140, "id4", false]], "best_score (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.best_score", false], [183, "id10", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.best_scores", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator property)": [[90, "id13", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator.evaluator attribute)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.best_scores", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[89, "id1", false]], "best_validation_array() (dacapo.store.local_array_store.localarraystore method)": [[170, "dacapo.store.local_array_store.LocalArrayStore.best_validation_array", false], [170, "id1", false]], "bestscore (class in dacapo.utils.view)": [[183, "dacapo.utils.view.BestScore", false]], "bestscore (in module dacapo.experiments.tasks.evaluators.evaluator)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.BestScore", false]], "bg (in module dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BG", false]], "bias (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[116, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.bias", false], [116, "id0", false]], "bias (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.bias", false], [110, "id21", false]], "billing (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.billing", false], [13, "id9", false]], "billing (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.billing", false], [11, "id3", false]], "binarize_gt (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.binarize_gt", false]], "binarize_gt (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.binarize_gt", false]], "binarizearrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig", false]], "binarizearrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.binarize_array_config)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig", false]], "binaryarray (class in dacapo.experiments.arraytypes.binary)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray", false]], "binarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores", false]], "binarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores", false]], "binarysegmentationevaluator (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator", false]], "binarysegmentationevaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator", false]], "blipp_score (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[86, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.blipp_score", false], [86, "id1", false]], "blipp_score (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.blipp_score", false], [90, "id1", false]], "bokeh_plot_runs() (in module dacapo.plot)": [[159, "dacapo.plot.bokeh_plot_runs", false]], "bounds() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[86, "id3", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[90, "id3", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[88, "id2", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.EvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[90, "id10", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.bounds", false], [90, "id20", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.bounds", false], [89, "id8", false]], "bounds() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[91, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[91, "id4", false]], "bounds() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[90, "id54", false]], "bounds() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[90, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.bounds", false]], "bsub (class in dacapo.compute_context)": [[13, "dacapo.compute_context.Bsub", false]], "bsub (class in dacapo.compute_context.bsub)": [[11, "dacapo.compute_context.bsub.Bsub", false]], "build_batch_provider() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.build_batch_provider", false], [129, "id4", false]], "build_batch_provider() (dacapo.experiments.trainers.dummytrainer method)": [[140, "dacapo.experiments.trainers.DummyTrainer.build_batch_provider", false], [140, "id13", false]], "build_batch_provider() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.trainer method)": [[140, "dacapo.experiments.trainers.Trainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.trainer.trainer method)": [[142, "dacapo.experiments.trainers.trainer.Trainer.build_batch_provider", false]], "calculate_and_apply_padding() (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.calculate_and_apply_padding", false]], "can_train() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.can_train", false], [129, "id5", false]], "can_train() (dacapo.experiments.trainers.dummytrainer method)": [[140, "dacapo.experiments.trainers.DummyTrainer.can_train", false], [140, "id14", false]], "can_train() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.can_train", false]], "can_train() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.can_train", false]], "can_train() (dacapo.experiments.trainers.trainer method)": [[140, "dacapo.experiments.trainers.Trainer.can_train", false]], "can_train() (dacapo.experiments.trainers.trainer.trainer method)": [[142, "dacapo.experiments.trainers.trainer.Trainer.can_train", false]], "chain (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.chain", false], [69, "id6", false]], "chain (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.chain", false], [70, "id6", false]], "channel_names (dacapo.experiments.arraytypes.arraytype.arraytype attribute)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.channel_names", false]], "channel_scores (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.channel_scores", false], [84, "id21", false]], "channel_scores (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.channel_scores", false], [90, "id22", false]], "channels (dacapo.experiments.arraytypes.binary.binaryarray attribute)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray.channels", false], [24, "id0", false]], "channels (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.channels", false], [28, "id0", false]], "channels (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.channels", false], [27, "id2", false]], "channels (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.channels", false], [33, "id0", false]], "channels (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.channels", false], [38, "id20", false]], "channels (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[73, "dacapo.experiments.starts.cosem_start.CosemStart.channels", false], [73, "id3", false]], "channels (dacapo.experiments.starts.cosemstart attribute)": [[75, "dacapo.experiments.starts.CosemStart.channels", false], [75, "id7", false]], "channels (dacapo.experiments.starts.start attribute)": [[75, "dacapo.experiments.starts.Start.channels", false], [75, "id0", false]], "channels (dacapo.experiments.starts.start.start attribute)": [[76, "dacapo.experiments.starts.start.Start.channels", false], [76, "id0", false]], "channels (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.channels", false], [81, "id0", false]], "channels (dacapo.experiments.tasks.distancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.channels", false], [95, "id10", false]], "channels (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.channels", false], [85, "id3", false]], "channels (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.channels", false], [90, "id47", false]], "channels (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[94, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.channels", false], [94, "id1", false]], "channels (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTaskConfig.channels", false], [95, "id50", false]], "channels (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[97, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.channels", false], [97, "id0", false]], "channels (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTaskConfig.channels", false], [95, "id41", false]], "channels (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.channels", false], [118, "id0", false]], "channels (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.channels", false], [121, "id5", false]], "channels (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.channels", false], [120, "id0", false]], "channels (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.channels", false], [121, "id46", false]], "channels (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.channels", false], [122, "id0", false]], "channels (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.channels", false], [121, "id40", false]], "channels_in (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.channels_in", false], [19, "id0", false]], "channels_in (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.channels_in", false], [21, "id12", false]], "channels_out (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.channels_out", false], [19, "id1", false]], "channels_out (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.channels_out", false], [21, "id13", false]], "check() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[73, "dacapo.experiments.starts.cosem_start.CosemStart.check", false], [73, "id4", false]], "check() (dacapo.experiments.starts.cosemstart method)": [[75, "dacapo.experiments.starts.CosemStart.check", false], [75, "id8", false]], "check_class_name() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.check_class_name", false], [60, "id28", false]], "check_class_name() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.check_class_name", false], [63, "id31", false]], "class_name (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator property)": [[60, "id27", false]], "class_name (dacapo.experiments.datasplits.datasplitgenerator property)": [[63, "id30", false]], "class_name() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.class_name", false]], "class_name() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.class_name", false]], "classes (dacapo.experiments.arraytypes.annotationarray attribute)": [[27, "dacapo.experiments.arraytypes.AnnotationArray.classes", false], [27, "id0", false]], "classes (dacapo.experiments.arraytypes.annotations.annotationarray attribute)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray.classes", false], [22, "id0", false]], "classes (dacapo.experiments.arraytypes.distancearray attribute)": [[27, "dacapo.experiments.arraytypes.DistanceArray.classes", false], [27, "id6", false]], "classes (dacapo.experiments.arraytypes.distances.distancearray attribute)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.classes", false], [25, "id0", false]], "classes (dacapo.experiments.arraytypes.probabilities.probabilityarray attribute)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray.classes", false], [30, "id0", false]], "classes (dacapo.experiments.arraytypes.probabilityarray attribute)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray.classes", false], [27, "id11", false]], "classes (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig attribute)": [[105, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.classes", false], [105, "id1", false]], "classes (dacapo.experiments.tasks.onehottaskconfig attribute)": [[95, "dacapo.experiments.tasks.OneHotTaskConfig.classes", false], [95, "id22", false]], "classes (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.classes", false]], "classes (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.classes", false]], "classes (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor attribute)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.classes", false], [123, "id0", false]], "classes (dacapo.experiments.tasks.predictors.onehotpredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.OneHotPredictor.classes", false], [121, "id16", false]], "classes_separator_character (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.classes_separator_character", false], [60, "id25", false]], "classes_separator_character (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.classes_separator_character", false], [63, "id28", false]], "cli() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.cli", false]], "cli() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.cli", false]], "cli() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.cli", false]], "cli() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.cli", false]], "cli() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.cli", false]], "client (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.client", false], [172, "id2", false]], "client (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.client", false], [173, "id2", false]], "clip (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[135, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.clip", false], [135, "id2", false]], "clip (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.clip", false], [134, "id12", false]], "clip_distance (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clip_distance", false], [81, "id1", false]], "clip_distance (dacapo.experiments.tasks.distancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.clip_distance", false], [95, "id11", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.clip_distance", false], [85, "id1", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.clip_distance", false], [85, "id36", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.clip_distance", false], [90, "id45", false]], "clip_distance (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[94, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.clip_distance", false], [94, "id2", false]], "clip_distance (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTaskConfig.clip_distance", false], [95, "id51", false]], "clip_distance (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[97, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.clip_distance", false], [97, "id1", false]], "clip_distance (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTaskConfig.clip_distance", false], [95, "id42", false]], "clip_raw (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.clip_raw", false], [138, "id8", false]], "clip_raw (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[139, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.clip_raw", false], [139, "id5", false]], "clip_raw (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.clip_raw", false], [140, "id29", false]], "clip_raw (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainerConfig.clip_raw", false], [140, "id20", false]], "clipmax (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clipmax", false], [81, "id6", false]], "clipmax (dacapo.experiments.tasks.distancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.clipmax", false], [95, "id16", false]], "clipmax (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.clipmax", false], [118, "id3", false]], "clipmax (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.clipmax", false], [121, "id8", false]], "clipmin (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clipmin", false], [81, "id5", false]], "clipmin (dacapo.experiments.tasks.distancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.clipmin", false], [95, "id15", false]], "clipmin (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.clipmin", false], [118, "id2", false]], "clipmin (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.clipmin", false], [121, "id7", false]], "cls_fun() (in module dacapo.store.conversion_hooks)": [[164, "dacapo.store.conversion_hooks.cls_fun", false]], "cnnectomeunet (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.CNNectomeUNet", false]], "cnnectomeunet (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet", false]], "cnnectomeunetconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig", false]], "cnnectomeunetconfig (class in dacapo.experiments.architectures.cnnectome_unet_config)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig", false]], "cnnectomeunetmodule (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule", false]], "compare() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.compare", false], [90, "id17", false]], "compare() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.compare", false], [89, "id5", false]], "compare() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.compare", false], [147, "id8", false]], "compare() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.compare", false], [69, "id26", false]], "compute() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.compute", false], [60, "id29", false]], "compute() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.compute", false], [63, "id32", false]], "compute() (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss method)": [[98, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.compute", false], [98, "id2", false]], "compute() (dacapo.experiments.tasks.losses.affinitiesloss method)": [[101, "dacapo.experiments.tasks.losses.AffinitiesLoss.compute", false], [101, "id5", false]], "compute() (dacapo.experiments.tasks.losses.dummy_loss.dummyloss method)": [[99, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss.compute", false], [99, "id0", false]], "compute() (dacapo.experiments.tasks.losses.dummyloss method)": [[101, "dacapo.experiments.tasks.losses.DummyLoss.compute", false], [101, "id0", false]], "compute() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[100, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.compute", false], [100, "id0", false]], "compute() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[101, "dacapo.experiments.tasks.losses.HotDistanceLoss.compute", false], [101, "id6", false]], "compute() (dacapo.experiments.tasks.losses.loss method)": [[101, "dacapo.experiments.tasks.losses.Loss.compute", false], [101, "id2", false]], "compute() (dacapo.experiments.tasks.losses.loss.loss method)": [[102, "dacapo.experiments.tasks.losses.loss.Loss.compute", false], [102, "id0", false]], "compute() (dacapo.experiments.tasks.losses.mse_loss.mseloss method)": [[103, "dacapo.experiments.tasks.losses.mse_loss.MSELoss.compute", false], [103, "id0", false]], "compute() (dacapo.experiments.tasks.losses.mseloss method)": [[101, "dacapo.experiments.tasks.losses.MSELoss.compute", false], [101, "id1", false]], "compute_context (dacapo.options.dacapoconfig attribute)": [[158, "dacapo.options.DaCapoConfig.compute_context", false], [158, "id2", false]], "compute_output_shape() (dacapo.experiments.model method)": [[69, "dacapo.experiments.Model.compute_output_shape", false]], "compute_output_shape() (dacapo.experiments.model.model method)": [[70, "dacapo.experiments.model.Model.compute_output_shape", false]], "computecontext (class in dacapo.compute_context)": [[13, "dacapo.compute_context.ComputeContext", false]], "computecontext (class in dacapo.compute_context.compute_context)": [[12, "dacapo.compute_context.compute_context.ComputeContext", false]], "concatarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig", false]], "concatarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.concat_array_config)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig", false]], "config_file() (dacapo.options class method)": [[157, "id1", false]], "config_file() (dacapo.options method)": [[157, "dacapo.Options.config_file", false]], "config_file() (dacapo.options.options class method)": [[158, "id7", false]], "config_file() (dacapo.options.options method)": [[158, "dacapo.options.Options.config_file", false]], "configstore (class in dacapo.store.config_store)": [[163, "dacapo.store.config_store.ConfigStore", false]], "connectivity (dacapo.utils.pipeline.relabel attribute)": [[182, "dacapo.utils.pipeline.Relabel.connectivity", false]], "constant (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig attribute)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.constant", false]], "constant (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.constant", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.constant_upsample", false], [17, "id7", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.constant_upsample", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.constant_upsample", false], [18, "id10", false]], "constant_upsample (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.constant_upsample", false], [21, "id39", false]], "constant_upsample (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.constant_upsample", false], [21, "id29", false]], "constantarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig", false]], "constantarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.constant_array_config)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig", false]], "container (dacapo.store.array_store.arraystore attribute)": [[162, "dacapo.store.array_store.ArrayStore.container", false]], "container (dacapo.store.array_store.localarrayidentifier attribute)": [[162, "dacapo.store.array_store.LocalArrayIdentifier.container", false], [162, "id0", false]], "container (dacapo.store.array_store.localcontaineridentifier attribute)": [[162, "dacapo.store.array_store.LocalContainerIdentifier.container", false], [162, "id2", false]], "context (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[116, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.context", false], [116, "id1", false]], "context (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.context", false], [110, "id22", false]], "contingency_table() (in module dacapo.utils.voi)": [[184, "dacapo.utils.voi.contingency_table", false]], "control_point_displacement_sigma (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.control_point_displacement_sigma", false], [132, "id1", false]], "control_point_displacement_sigma (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.control_point_displacement_sigma", false], [134, "id2", false]], "control_point_displacement_sigma (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.control_point_displacement_sigma", false]], "control_point_displacement_sigma (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.control_point_displacement_sigma", false]], "control_point_spacing (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.control_point_spacing", false], [132, "id0", false]], "control_point_spacing (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.control_point_spacing", false], [134, "id1", false]], "control_point_spacing (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.control_point_spacing", false]], "control_point_spacing (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.control_point_spacing", false]], "conv (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.conv", false], [19, "id2", false]], "conv (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.conv", false], [21, "id14", false]], "conv_pass (dacapo.experiments.architectures.cnnectome_unet.convpass attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.conv_pass", false], [17, "id25", false]], "converter (in module dacapo.store.converter)": [[165, "dacapo.store.converter.converter", false]], "convpass (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass", false]], "copy_key (dacapo.gp.copy.copymask attribute)": [[149, "dacapo.gp.copy.CopyMask.copy_key", false], [149, "id1", false]], "copy_key (dacapo.gp.copymask attribute)": [[154, "dacapo.gp.CopyMask.copy_key", false], [154, "id15", false]], "copymask (class in dacapo.gp)": [[154, "dacapo.gp.CopyMask", false]], "copymask (class in dacapo.gp.copy)": [[149, "dacapo.gp.copy.CopyMask", false]], "cosemstart (class in dacapo.experiments.starts)": [[75, "dacapo.experiments.starts.CosemStart", false]], "cosemstart (class in dacapo.experiments.starts.cosem_start)": [[73, "dacapo.experiments.starts.cosem_start.CosemStart", false]], "cosemstartconfig (class in dacapo.experiments.starts)": [[75, "dacapo.experiments.starts.CosemStartConfig", false]], "cosemstartconfig (class in dacapo.experiments.starts.cosem_start_config)": [[74, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig method)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig method)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig method)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig method)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig method)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.create_array", false]], "create_array_store() (in module dacapo.store.create_store)": [[166, "dacapo.store.create_store.create_array_store", false]], "create_compute_context() (in module dacapo.compute_context)": [[13, "dacapo.compute_context.create_compute_context", false]], "create_compute_context() (in module dacapo.compute_context.compute_context)": [[12, "dacapo.compute_context.compute_context.create_compute_context", false]], "create_config_store() (in module dacapo.store.create_store)": [[166, "dacapo.store.create_store.create_config_store", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_distance_mask", false], [118, "id8", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.create_distance_mask", false], [121, "id13", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_distance_mask", false], [120, "id10", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_distance_mask", false], [121, "id56", false]], "create_from_identifier() (in module dacapo.tmp)": [[176, "dacapo.tmp.create_from_identifier", false]], "create_model() (dacapo.experiments.tasks.one_hot_task.onehottask method)": [[104, "dacapo.experiments.tasks.one_hot_task.OneHotTask.create_model", false]], "create_model() (dacapo.experiments.tasks.onehottask method)": [[95, "dacapo.experiments.tasks.OneHotTask.create_model", false]], "create_model() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_model", false], [117, "id13", false]], "create_model() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_model", false], [121, "id35", false]], "create_model() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_model", false], [118, "id4", false]], "create_model() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.create_model", false], [121, "id9", false]], "create_model() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_model", false], [119, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[121, "dacapo.experiments.tasks.predictors.DummyPredictor.create_model", false], [121, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_model", false], [120, "id7", false]], "create_model() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_model", false], [121, "id53", false]], "create_model() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_model", false], [122, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_model", false], [121, "id41", false]], "create_model() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_model", false], [123, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_model", false], [121, "id17", false]], "create_model() (dacapo.experiments.tasks.predictors.predictor method)": [[121, "dacapo.experiments.tasks.predictors.Predictor.create_model", false]], "create_model() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[124, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_model", false]], "create_model() (dacapo.experiments.tasks.pretrained_task.pretrainedtask method)": [[125, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.create_model", false], [125, "id1", false]], "create_model() (dacapo.experiments.tasks.pretrainedtask method)": [[95, "dacapo.experiments.tasks.PretrainedTask.create_model", false], [95, "id26", false]], "create_model() (dacapo.experiments.tasks.task method)": [[95, "dacapo.experiments.tasks.Task.create_model", false]], "create_model() (dacapo.experiments.tasks.task.task method)": [[127, "dacapo.experiments.tasks.task.Task.create_model", false]], "create_optimizer() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.create_optimizer", false], [129, "id3", false]], "create_optimizer() (dacapo.experiments.trainers.dummytrainer method)": [[140, "dacapo.experiments.trainers.DummyTrainer.create_optimizer", false], [140, "id12", false]], "create_optimizer() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.trainer method)": [[140, "dacapo.experiments.trainers.Trainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.trainer.trainer method)": [[142, "dacapo.experiments.trainers.trainer.Trainer.create_optimizer", false]], "create_stats_store() (in module dacapo.store.create_store)": [[166, "dacapo.store.create_store.create_stats_store", false]], "create_target() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_target", false], [117, "id14", false]], "create_target() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_target", false], [121, "id36", false]], "create_target() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_target", false], [118, "id5", false]], "create_target() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.create_target", false], [121, "id10", false]], "create_target() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_target", false], [119, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[121, "dacapo.experiments.tasks.predictors.DummyPredictor.create_target", false], [121, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_target", false], [120, "id8", false]], "create_target() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_target", false], [121, "id54", false]], "create_target() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_target", false], [122, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_target", false], [121, "id42", false]], "create_target() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_target", false], [123, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_target", false], [121, "id18", false]], "create_target() (dacapo.experiments.tasks.predictors.predictor method)": [[121, "dacapo.experiments.tasks.predictors.Predictor.create_target", false]], "create_target() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[124, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_target", false]], "create_weight() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_weight", false], [117, "id15", false]], "create_weight() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_weight", false], [121, "id37", false]], "create_weight() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_weight", false], [118, "id6", false]], "create_weight() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.create_weight", false], [121, "id11", false]], "create_weight() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_weight", false], [119, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[121, "dacapo.experiments.tasks.predictors.DummyPredictor.create_weight", false], [121, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_weight", false], [120, "id9", false]], "create_weight() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_weight", false], [121, "id55", false]], "create_weight() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_weight", false], [122, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_weight", false], [121, "id43", false]], "create_weight() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_weight", false], [123, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_weight", false], [121, "id19", false]], "create_weight() (dacapo.experiments.tasks.predictors.predictor method)": [[121, "dacapo.experiments.tasks.predictors.Predictor.create_weight", false]], "create_weight() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[124, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_weight", false]], "create_weights_store() (in module dacapo.store.create_store)": [[166, "dacapo.store.create_store.create_weights_store", false]], "createpoints (class in dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.CreatePoints", false]], "cremieval (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.cremieval", false], [85, "id10", false]], "cremievaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores property)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.criteria", false], [85, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.criteria", false], [90, "id44", false]], "criteria (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[86, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator attribute)": [[87, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.criteria", false], [87, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.dummyevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluator.criteria", false], [90, "id5", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores property)": [[88, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.EvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluationscores property)": [[90, "id8", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluator property)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[91, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator attribute)": [[92, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.criteria", false], [92, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instanceevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.criteria", false], [90, "id56", false]], "criteria (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores property)": [[90, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.validation_scores.validationscores property)": [[147, "id9", false]], "criteria (dacapo.experiments.validationscores property)": [[69, "id27", false]], "criteria() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.criteria", false]], "criteria() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.criteria", false]], "criterion (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[73, "dacapo.experiments.starts.cosem_start.CosemStart.criterion", false], [73, "id1", false]], "criterion (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[74, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.criterion", false]], "criterion (dacapo.experiments.starts.cosemstart attribute)": [[75, "dacapo.experiments.starts.CosemStart.criterion", false], [75, "id5", false]], "criterion (dacapo.experiments.starts.cosemstartconfig attribute)": [[75, "dacapo.experiments.starts.CosemStartConfig.criterion", false]], "criterion (dacapo.experiments.starts.start attribute)": [[75, "dacapo.experiments.starts.Start.criterion", false]], "criterion (dacapo.experiments.starts.start.start attribute)": [[76, "dacapo.experiments.starts.start.Start.criterion", false]], "criterion (dacapo.experiments.starts.start_config.startconfig attribute)": [[77, "dacapo.experiments.starts.start_config.StartConfig.criterion", false], [77, "id1", false]], "criterion (dacapo.experiments.starts.startconfig attribute)": [[75, "dacapo.experiments.starts.StartConfig.criterion", false], [75, "id3", false]], "crop() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop", false], [17, "id35", false]], "crop_factor (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop_factor", false], [17, "id31", false]], "crop_to_factor() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop_to_factor", false], [17, "id34", false]], "croparrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig", false]], "croparrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.crop_array_config)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig", false]], "customenum (class in dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.CustomEnum", false]], "customenummeta (class in dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta", false]], "dacapo": [[157, "module-dacapo", false], [187, "module-dacapo", false], [192, "module-dacapo", false], [198, "module-dacapo", false]], "dacapo command line option": [[188, "cmdoption-dacapo-log-level", false]], "dacapo-apply command line option": [[188, "cmdoption-dacapo-apply-c", false], [188, "cmdoption-dacapo-apply-dt", false], [188, "cmdoption-dacapo-apply-i", false], [188, "cmdoption-dacapo-apply-ic", false], [188, "cmdoption-dacapo-apply-id", false], [188, "cmdoption-dacapo-apply-op", false], [188, "cmdoption-dacapo-apply-ow", false], [188, "cmdoption-dacapo-apply-p", false], [188, "cmdoption-dacapo-apply-r", false], [188, "cmdoption-dacapo-apply-roi", false], [188, "cmdoption-dacapo-apply-vd", false], [188, "cmdoption-dacapo-apply-w", false]], "dacapo-predict command line option": [[188, "cmdoption-dacapo-predict-dt", false], [188, "cmdoption-dacapo-predict-i", false], [188, "cmdoption-dacapo-predict-ic", false], [188, "cmdoption-dacapo-predict-id", false], [188, "cmdoption-dacapo-predict-op", false], [188, "cmdoption-dacapo-predict-ow", false], [188, "cmdoption-dacapo-predict-r", false], [188, "cmdoption-dacapo-predict-roi", false], [188, "cmdoption-dacapo-predict-w", false]], "dacapo-run-blockwise command line option": [[188, "cmdoption-dacapo-run-blockwise-co", false], [188, "cmdoption-dacapo-run-blockwise-dt", false], [188, "cmdoption-dacapo-run-blockwise-ic", false], [188, "cmdoption-dacapo-run-blockwise-id", false], [188, "cmdoption-dacapo-run-blockwise-mr", false], [188, "cmdoption-dacapo-run-blockwise-nw", false], [188, "cmdoption-dacapo-run-blockwise-oc", false], [188, "cmdoption-dacapo-run-blockwise-od", false], [188, "cmdoption-dacapo-run-blockwise-ow", false], [188, "cmdoption-dacapo-run-blockwise-rr", false], [188, "cmdoption-dacapo-run-blockwise-t", false], [188, "cmdoption-dacapo-run-blockwise-tr", false], [188, "cmdoption-dacapo-run-blockwise-w", false], [188, "cmdoption-dacapo-run-blockwise-wr", false]], "dacapo-segment-blockwise command line option": [[188, "cmdoption-dacapo-segment-blockwise-c", false], [188, "cmdoption-dacapo-segment-blockwise-co", false], [188, "cmdoption-dacapo-segment-blockwise-ic", false], [188, "cmdoption-dacapo-segment-blockwise-id", false], [188, "cmdoption-dacapo-segment-blockwise-mr", false], [188, "cmdoption-dacapo-segment-blockwise-nw", false], [188, "cmdoption-dacapo-segment-blockwise-oc", false], [188, "cmdoption-dacapo-segment-blockwise-od", false], [188, "cmdoption-dacapo-segment-blockwise-ow", false], [188, "cmdoption-dacapo-segment-blockwise-rr", false], [188, "cmdoption-dacapo-segment-blockwise-sf", false], [188, "cmdoption-dacapo-segment-blockwise-t", false], [188, "cmdoption-dacapo-segment-blockwise-tr", false], [188, "cmdoption-dacapo-segment-blockwise-wr", false]], "dacapo-train command line option": [[188, "cmdoption-dacapo-train-no-validation", false], [188, "cmdoption-dacapo-train-r", false]], "dacapo-validate command line option": [[188, "cmdoption-dacapo-validate-dt", false], [188, "cmdoption-dacapo-validate-i", false], [188, "cmdoption-dacapo-validate-ow", false], [188, "cmdoption-dacapo-validate-r", false], [188, "cmdoption-dacapo-validate-w", false]], "dacapo.apply": [[0, "module-dacapo.apply", false]], "dacapo.blockwise": [[4, "module-dacapo.blockwise", false]], "dacapo.blockwise.argmax_worker": [[1, "module-dacapo.blockwise.argmax_worker", false]], "dacapo.blockwise.blockwise_task": [[2, "module-dacapo.blockwise.blockwise_task", false]], "dacapo.blockwise.empanada_function": [[3, "module-dacapo.blockwise.empanada_function", false]], "dacapo.blockwise.predict_worker": [[5, "module-dacapo.blockwise.predict_worker", false]], "dacapo.blockwise.relabel_worker": [[6, "module-dacapo.blockwise.relabel_worker", false]], "dacapo.blockwise.scheduler": [[7, "module-dacapo.blockwise.scheduler", false]], "dacapo.blockwise.segment_worker": [[8, "module-dacapo.blockwise.segment_worker", false]], "dacapo.blockwise.threshold_worker": [[9, "module-dacapo.blockwise.threshold_worker", false]], "dacapo.blockwise.watershed_function": [[10, "module-dacapo.blockwise.watershed_function", false]], "dacapo.compute_context": [[13, "module-dacapo.compute_context", false]], "dacapo.compute_context.bsub": [[11, "module-dacapo.compute_context.bsub", false]], "dacapo.compute_context.compute_context": [[12, "module-dacapo.compute_context.compute_context", false]], "dacapo.compute_context.local_torch": [[14, "module-dacapo.compute_context.local_torch", false]], "dacapo.experiments": [[69, "module-dacapo.experiments", false]], "dacapo.experiments.architectures": [[21, "module-dacapo.experiments.architectures", false]], "dacapo.experiments.architectures.architecture": [[15, "module-dacapo.experiments.architectures.architecture", false]], "dacapo.experiments.architectures.architecture_config": [[16, "module-dacapo.experiments.architectures.architecture_config", false]], "dacapo.experiments.architectures.cnnectome_unet": [[17, "module-dacapo.experiments.architectures.cnnectome_unet", false]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, "module-dacapo.experiments.architectures.cnnectome_unet_config", false]], "dacapo.experiments.architectures.dummy_architecture": [[19, "module-dacapo.experiments.architectures.dummy_architecture", false]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, "module-dacapo.experiments.architectures.dummy_architecture_config", false]], "dacapo.experiments.arraytypes": [[27, "module-dacapo.experiments.arraytypes", false]], "dacapo.experiments.arraytypes.annotations": [[22, "module-dacapo.experiments.arraytypes.annotations", false]], "dacapo.experiments.arraytypes.arraytype": [[23, "module-dacapo.experiments.arraytypes.arraytype", false]], "dacapo.experiments.arraytypes.binary": [[24, "module-dacapo.experiments.arraytypes.binary", false]], "dacapo.experiments.arraytypes.distances": [[25, "module-dacapo.experiments.arraytypes.distances", false]], "dacapo.experiments.arraytypes.embedding": [[26, "module-dacapo.experiments.arraytypes.embedding", false]], "dacapo.experiments.arraytypes.intensities": [[28, "module-dacapo.experiments.arraytypes.intensities", false]], "dacapo.experiments.arraytypes.mask": [[29, "module-dacapo.experiments.arraytypes.mask", false]], "dacapo.experiments.arraytypes.probabilities": [[30, "module-dacapo.experiments.arraytypes.probabilities", false]], "dacapo.experiments.datasplits": [[63, "module-dacapo.experiments.datasplits", false]], "dacapo.experiments.datasplits.datasets": [[54, "module-dacapo.experiments.datasplits.datasets", false]], "dacapo.experiments.datasplits.datasets.arrays": [[38, "module-dacapo.experiments.datasplits.datasets.arrays", false]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, "module-dacapo.experiments.datasplits.datasets.arrays.array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, "module-dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, "module-dacapo.experiments.datasplits.datasets.arrays.concat_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, "module-dacapo.experiments.datasplits.datasets.arrays.constant_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, "module-dacapo.experiments.datasplits.datasets.arrays.crop_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, "module-dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, "module-dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, "module-dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, "module-dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, "module-dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, "module-dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", false]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, "module-dacapo.experiments.datasplits.datasets.arrays.ones_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, "module-dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, "module-dacapo.experiments.datasplits.datasets.arrays.sum_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, "module-dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, "module-dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", false]], "dacapo.experiments.datasplits.datasets.dataset": [[48, "module-dacapo.experiments.datasplits.datasets.dataset", false]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, "module-dacapo.experiments.datasplits.datasets.dataset_config", false]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, "module-dacapo.experiments.datasplits.datasets.dummy_dataset", false]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, "module-dacapo.experiments.datasplits.datasets.dummy_dataset_config", false]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, "module-dacapo.experiments.datasplits.datasets.graphstores", false]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, "module-dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", false]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset", false]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", false]], "dacapo.experiments.datasplits.datasets.simple": [[57, "module-dacapo.experiments.datasplits.datasets.simple", false]], "dacapo.experiments.datasplits.datasplit": [[58, "module-dacapo.experiments.datasplits.datasplit", false]], "dacapo.experiments.datasplits.datasplit_config": [[59, "module-dacapo.experiments.datasplits.datasplit_config", false]], "dacapo.experiments.datasplits.datasplit_generator": [[60, "module-dacapo.experiments.datasplits.datasplit_generator", false]], "dacapo.experiments.datasplits.dummy_datasplit": [[61, "module-dacapo.experiments.datasplits.dummy_datasplit", false]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[62, "module-dacapo.experiments.datasplits.dummy_datasplit_config", false]], "dacapo.experiments.datasplits.keys": [[64, "module-dacapo.experiments.datasplits.keys", false]], "dacapo.experiments.datasplits.keys.keys": [[65, "module-dacapo.experiments.datasplits.keys.keys", false]], "dacapo.experiments.datasplits.simple_config": [[66, "module-dacapo.experiments.datasplits.simple_config", false]], "dacapo.experiments.datasplits.train_validate_datasplit": [[67, "module-dacapo.experiments.datasplits.train_validate_datasplit", false]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[68, "module-dacapo.experiments.datasplits.train_validate_datasplit_config", false]], "dacapo.experiments.model": [[70, "module-dacapo.experiments.model", false]], "dacapo.experiments.run": [[71, "module-dacapo.experiments.run", false]], "dacapo.experiments.run_config": [[72, "module-dacapo.experiments.run_config", false]], "dacapo.experiments.starts": [[75, "module-dacapo.experiments.starts", false]], "dacapo.experiments.starts.cosem_start": [[73, "module-dacapo.experiments.starts.cosem_start", false]], "dacapo.experiments.starts.cosem_start_config": [[74, "module-dacapo.experiments.starts.cosem_start_config", false]], "dacapo.experiments.starts.start": [[76, "module-dacapo.experiments.starts.start", false]], "dacapo.experiments.starts.start_config": [[77, "module-dacapo.experiments.starts.start_config", false]], "dacapo.experiments.tasks": [[95, "module-dacapo.experiments.tasks", false]], "dacapo.experiments.tasks.affinities_task": [[78, "module-dacapo.experiments.tasks.affinities_task", false]], "dacapo.experiments.tasks.affinities_task_config": [[79, "module-dacapo.experiments.tasks.affinities_task_config", false]], "dacapo.experiments.tasks.distance_task": [[80, "module-dacapo.experiments.tasks.distance_task", false]], "dacapo.experiments.tasks.distance_task_config": [[81, "module-dacapo.experiments.tasks.distance_task_config", false]], "dacapo.experiments.tasks.dummy_task": [[82, "module-dacapo.experiments.tasks.dummy_task", false]], "dacapo.experiments.tasks.dummy_task_config": [[83, "module-dacapo.experiments.tasks.dummy_task_config", false]], "dacapo.experiments.tasks.evaluators": [[90, "module-dacapo.experiments.tasks.evaluators", false]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[84, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[85, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", false]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[86, "module-dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[87, "module-dacapo.experiments.tasks.evaluators.dummy_evaluator", false]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[88, "module-dacapo.experiments.tasks.evaluators.evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.evaluator": [[89, "module-dacapo.experiments.tasks.evaluators.evaluator", false]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[91, "module-dacapo.experiments.tasks.evaluators.instance_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[92, "module-dacapo.experiments.tasks.evaluators.instance_evaluator", false]], "dacapo.experiments.tasks.hot_distance_task": [[93, "module-dacapo.experiments.tasks.hot_distance_task", false]], "dacapo.experiments.tasks.hot_distance_task_config": [[94, "module-dacapo.experiments.tasks.hot_distance_task_config", false]], "dacapo.experiments.tasks.inner_distance_task": [[96, "module-dacapo.experiments.tasks.inner_distance_task", false]], "dacapo.experiments.tasks.inner_distance_task_config": [[97, "module-dacapo.experiments.tasks.inner_distance_task_config", false]], "dacapo.experiments.tasks.losses": [[101, "module-dacapo.experiments.tasks.losses", false]], "dacapo.experiments.tasks.losses.affinities_loss": [[98, "module-dacapo.experiments.tasks.losses.affinities_loss", false]], "dacapo.experiments.tasks.losses.dummy_loss": [[99, "module-dacapo.experiments.tasks.losses.dummy_loss", false]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[100, "module-dacapo.experiments.tasks.losses.hot_distance_loss", false]], "dacapo.experiments.tasks.losses.loss": [[102, "module-dacapo.experiments.tasks.losses.loss", false]], "dacapo.experiments.tasks.losses.mse_loss": [[103, "module-dacapo.experiments.tasks.losses.mse_loss", false]], "dacapo.experiments.tasks.one_hot_task": [[104, "module-dacapo.experiments.tasks.one_hot_task", false]], "dacapo.experiments.tasks.one_hot_task_config": [[105, "module-dacapo.experiments.tasks.one_hot_task_config", false]], "dacapo.experiments.tasks.post_processors": [[110, "module-dacapo.experiments.tasks.post_processors", false]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[106, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor", false]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[107, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[108, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor", false]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[109, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.post_processor": [[111, "module-dacapo.experiments.tasks.post_processors.post_processor", false]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[112, "module-dacapo.experiments.tasks.post_processors.post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[113, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor", false]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[114, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[115, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor", false]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[116, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", false]], "dacapo.experiments.tasks.predictors": [[121, "module-dacapo.experiments.tasks.predictors", false]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[117, "module-dacapo.experiments.tasks.predictors.affinities_predictor", false]], "dacapo.experiments.tasks.predictors.distance_predictor": [[118, "module-dacapo.experiments.tasks.predictors.distance_predictor", false]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[119, "module-dacapo.experiments.tasks.predictors.dummy_predictor", false]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[120, "module-dacapo.experiments.tasks.predictors.hot_distance_predictor", false]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[122, "module-dacapo.experiments.tasks.predictors.inner_distance_predictor", false]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[123, "module-dacapo.experiments.tasks.predictors.one_hot_predictor", false]], "dacapo.experiments.tasks.predictors.predictor": [[124, "module-dacapo.experiments.tasks.predictors.predictor", false]], "dacapo.experiments.tasks.pretrained_task": [[125, "module-dacapo.experiments.tasks.pretrained_task", false]], "dacapo.experiments.tasks.pretrained_task_config": [[126, "module-dacapo.experiments.tasks.pretrained_task_config", false]], "dacapo.experiments.tasks.task": [[127, "module-dacapo.experiments.tasks.task", false]], "dacapo.experiments.tasks.task_config": [[128, "module-dacapo.experiments.tasks.task_config", false]], "dacapo.experiments.trainers": [[140, "module-dacapo.experiments.trainers", false]], "dacapo.experiments.trainers.dummy_trainer": [[129, "module-dacapo.experiments.trainers.dummy_trainer", false]], "dacapo.experiments.trainers.dummy_trainer_config": [[130, "module-dacapo.experiments.trainers.dummy_trainer_config", false]], "dacapo.experiments.trainers.gp_augments": [[134, "module-dacapo.experiments.trainers.gp_augments", false]], "dacapo.experiments.trainers.gp_augments.augment_config": [[131, "module-dacapo.experiments.trainers.gp_augments.augment_config", false]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[132, "module-dacapo.experiments.trainers.gp_augments.elastic_config", false]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[133, "module-dacapo.experiments.trainers.gp_augments.gamma_config", false]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[135, "module-dacapo.experiments.trainers.gp_augments.intensity_config", false]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[136, "module-dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", false]], "dacapo.experiments.trainers.gp_augments.simple_config": [[137, "module-dacapo.experiments.trainers.gp_augments.simple_config", false]], "dacapo.experiments.trainers.gunpowder_trainer": [[138, "module-dacapo.experiments.trainers.gunpowder_trainer", false]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[139, "module-dacapo.experiments.trainers.gunpowder_trainer_config", false]], "dacapo.experiments.trainers.optimizers": [[141, "module-dacapo.experiments.trainers.optimizers", false]], "dacapo.experiments.trainers.trainer": [[142, "module-dacapo.experiments.trainers.trainer", false]], "dacapo.experiments.trainers.trainer_config": [[143, "module-dacapo.experiments.trainers.trainer_config", false]], "dacapo.experiments.training_iteration_stats": [[144, "module-dacapo.experiments.training_iteration_stats", false]], "dacapo.experiments.training_stats": [[145, "module-dacapo.experiments.training_stats", false]], "dacapo.experiments.validation_iteration_scores": [[146, "module-dacapo.experiments.validation_iteration_scores", false]], "dacapo.experiments.validation_scores": [[147, "module-dacapo.experiments.validation_scores", false]], "dacapo.ext": [[148, "module-dacapo.ext", false]], "dacapo.gp": [[154, "module-dacapo.gp", false]], "dacapo.gp.copy": [[149, "module-dacapo.gp.copy", false]], "dacapo.gp.dacapo_create_target": [[150, "module-dacapo.gp.dacapo_create_target", false]], "dacapo.gp.dacapo_points_source": [[151, "module-dacapo.gp.dacapo_points_source", false]], "dacapo.gp.elastic_augment_fuse": [[152, "module-dacapo.gp.elastic_augment_fuse", false]], "dacapo.gp.gamma_noise": [[153, "module-dacapo.gp.gamma_noise", false]], "dacapo.gp.product": [[155, "module-dacapo.gp.product", false]], "dacapo.gp.reject_if_empty": [[156, "module-dacapo.gp.reject_if_empty", false]], "dacapo.options": [[158, "module-dacapo.options", false]], "dacapo.plot": [[159, "module-dacapo.plot", false]], "dacapo.predict": [[160, "module-dacapo.predict", false]], "dacapo.predict_local": [[161, "module-dacapo.predict_local", false]], "dacapo.store": [[169, "module-dacapo.store", false]], "dacapo.store.array_store": [[162, "module-dacapo.store.array_store", false]], "dacapo.store.config_store": [[163, "module-dacapo.store.config_store", false]], "dacapo.store.conversion_hooks": [[164, "module-dacapo.store.conversion_hooks", false]], "dacapo.store.converter": [[165, "module-dacapo.store.converter", false]], "dacapo.store.create_store": [[166, "module-dacapo.store.create_store", false]], "dacapo.store.file_config_store": [[167, "module-dacapo.store.file_config_store", false]], "dacapo.store.file_stats_store": [[168, "module-dacapo.store.file_stats_store", false]], "dacapo.store.local_array_store": [[170, "module-dacapo.store.local_array_store", false]], "dacapo.store.local_weights_store": [[171, "module-dacapo.store.local_weights_store", false]], "dacapo.store.mongo_config_store": [[172, "module-dacapo.store.mongo_config_store", false]], "dacapo.store.mongo_stats_store": [[173, "module-dacapo.store.mongo_stats_store", false]], "dacapo.store.stats_store": [[174, "module-dacapo.store.stats_store", false]], "dacapo.store.weights_store": [[175, "module-dacapo.store.weights_store", false]], "dacapo.tmp": [[176, "module-dacapo.tmp", false]], "dacapo.train": [[177, "module-dacapo.train", false]], "dacapo.utils": [[181, "module-dacapo.utils", false]], "dacapo.utils.affinities": [[178, "module-dacapo.utils.affinities", false]], "dacapo.utils.array_utils": [[179, "module-dacapo.utils.array_utils", false]], "dacapo.utils.balance_weights": [[180, "module-dacapo.utils.balance_weights", false]], "dacapo.utils.pipeline": [[182, "module-dacapo.utils.pipeline", false]], "dacapo.utils.view": [[183, "module-dacapo.utils.view", false]], "dacapo.utils.voi": [[184, "module-dacapo.utils.voi", false]], "dacapo.validate": [[185, "module-dacapo.validate", false]], "dacapoblockwisetask (class in dacapo.blockwise)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask", false]], "dacapoblockwisetask (class in dacapo.blockwise.blockwise_task)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask", false]], "dacapoconfig (class in dacapo.options)": [[158, "dacapo.options.DaCapoConfig", false]], "dacapotargetfilter (class in dacapo.gp)": [[154, "dacapo.gp.DaCapoTargetFilter", false]], "dacapotargetfilter (class in dacapo.gp.dacapo_create_target)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter", false]], "database (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.database", false], [172, "id3", false]], "database (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.database", false], [173, "id3", false]], "datakey (class in dacapo.experiments.datasplits.keys)": [[64, "dacapo.experiments.datasplits.keys.DataKey", false]], "datakey (class in dacapo.experiments.datasplits.keys.keys)": [[65, "dacapo.experiments.datasplits.keys.keys.DataKey", false]], "dataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.Dataset", false]], "dataset (class in dacapo.experiments.datasplits.datasets.dataset)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset", false]], "dataset (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.dataset", false], [47, "id1", false]], "dataset (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.dataset", false], [38, "id4", false]], "dataset (dacapo.store.array_store.arraystore attribute)": [[162, "dacapo.store.array_store.ArrayStore.dataset", false]], "dataset (dacapo.store.array_store.localarrayidentifier attribute)": [[162, "dacapo.store.array_store.LocalArrayIdentifier.dataset", false], [162, "id1", false]], "dataset_type (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig attribute)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.dataset_type", false], [51, "id0", false]], "dataset_type (dacapo.experiments.datasplits.datasets.dummydatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.dataset_type", false], [54, "id10", false]], "dataset_type (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.dataset_type", false], [56, "id0", false]], "dataset_type (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.dataset_type", false], [54, "id18", false]], "dataset_type (dacapo.experiments.datasplits.datasetspec attribute)": [[63, "dacapo.experiments.datasplits.DatasetSpec.dataset_type", false], [63, "id34", false]], "dataset_type (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.dataset_type", false], [60, "id5", false]], "dataset_type() (dacapo.experiments.datasplits.datasets.simple.simpledataset static method)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.dataset_type", false]], "dataset_type() (dacapo.experiments.datasplits.datasets.simpledataset static method)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.dataset_type", false]], "datasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig", false]], "datasetconfig (class in dacapo.experiments.datasplits.datasets.dataset_config)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig", false]], "datasets (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.datasets", false], [60, "id11", false]], "datasets (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.datasets", false], [63, "id14", false]], "datasets (dacapo.experiments.validation_scores.validationscores attribute)": [[147, "dacapo.experiments.validation_scores.ValidationScores.datasets", false], [147, "id1", false]], "datasets (dacapo.experiments.validationscores attribute)": [[69, "dacapo.experiments.ValidationScores.datasets", false], [69, "id19", false]], "datasets (dacapo.store.config_store.configstore attribute)": [[163, "dacapo.store.config_store.ConfigStore.datasets", false], [163, "id2", false]], "datasets (dacapo.store.file_config_store.fileconfigstore property)": [[167, "dacapo.store.file_config_store.FileConfigStore.datasets", false]], "datasets (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.datasets", false]], "datasetspec (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.DatasetSpec", false]], "datasetspec (class in dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec", false]], "datasettype (class in dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetType", false]], "datasplit (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.DataSplit", false]], "datasplit (class in dacapo.experiments.datasplits.datasplit)": [[58, "dacapo.experiments.datasplits.datasplit.DataSplit", false]], "datasplit (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.datasplit", false]], "datasplit (dacapo.experiments.run.run property)": [[71, "id10", false]], "datasplit_config (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.datasplit_config", false]], "datasplit_config (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.datasplit_config", false]], "datasplit_type (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.datasplit_type", false], [62, "id0", false]], "datasplit_type (dacapo.experiments.datasplits.dummydatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.DummyDataSplitConfig.datasplit_type", false], [63, "id6", false]], "datasplit_type (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[68, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.datasplit_type", false]], "datasplit_type (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.datasplit_type", false]], "datasplit_type() (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig static method)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.datasplit_type", false]], "datasplit_type() (dacapo.experiments.datasplits.simpledatasplitconfig static method)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.datasplit_type", false]], "datasplitconfig (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.DataSplitConfig", false]], "datasplitconfig (class in dacapo.experiments.datasplits.datasplit_config)": [[59, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig", false]], "datasplitgenerator (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator", false]], "datasplitgenerator (class in dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator", false]], "datasplits (dacapo.store.config_store.configstore attribute)": [[163, "dacapo.store.config_store.ConfigStore.datasplits", false], [163, "id1", false]], "datasplits (dacapo.store.file_config_store.fileconfigstore property)": [[167, "dacapo.store.file_config_store.FileConfigStore.datasplits", false]], "datasplits (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.datasplits", false]], "db_host (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.db_host", false], [172, "id0", false]], "db_host (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.db_host", false], [173, "id0", false]], "db_name (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.db_name", false], [172, "id1", false]], "db_name (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.db_name", false], [173, "id1", false]], "default_config (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.default_config", false], [33, "id2", false]], "default_config (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.default_config", false], [38, "id22", false]], "default_parameters (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.default_parameters", false]], "delete_after() (dacapo.experiments.training_stats.trainingstats method)": [[145, "dacapo.experiments.training_stats.TrainingStats.delete_after", false]], "delete_after() (dacapo.experiments.trainingstats method)": [[69, "dacapo.experiments.TrainingStats.delete_after", false]], "delete_after() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.delete_after", false], [147, "id6", false]], "delete_after() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.delete_after", false], [69, "id24", false]], "delete_architecture_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.delete_architecture_config", false], [163, "id19", false]], "delete_array_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.delete_array_config", false], [163, "id31", false]], "delete_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.delete_config", false], [163, "id7", false]], "delete_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.delete_config", false]], "delete_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.delete_config", false]], "delete_datasplit_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.delete_datasplit_config", false], [163, "id27", false]], "delete_run_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.delete_run_config", false], [163, "id11", false]], "delete_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.delete_run_config", false], [172, "id6", false]], "delete_task_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.delete_task_config", false], [163, "id15", false]], "delete_trainer_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.delete_trainer_config", false], [163, "id23", false]], "delete_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[168, "dacapo.store.file_stats_store.FileStatsStore.delete_training_stats", false]], "delete_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.delete_training_stats", false], [173, "id8", false]], "delete_training_stats() (dacapo.store.stats_store.statsstore method)": [[174, "dacapo.store.stats_store.StatsStore.delete_training_stats", false], [174, "id4", false]], "delete_validation_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.delete_validation_scores", false]], "deprecated_start_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.deprecated_start_neuroglancer", false], [183, "id13", false]], "detection_threshold (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[83, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.detection_threshold", false], [83, "id2", false]], "detection_threshold (dacapo.experiments.tasks.dummytaskconfig attribute)": [[95, "dacapo.experiments.tasks.DummyTaskConfig.detection_threshold", false], [95, "id4", false]], "detection_threshold (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.detection_threshold", false], [108, "id0", false]], "detection_threshold (dacapo.experiments.tasks.post_processors.dummypostprocessor attribute)": [[110, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.detection_threshold", false], [110, "id0", false]], "device (dacapo.compute_context.bsub property)": [[13, "id10", false]], "device (dacapo.compute_context.bsub.bsub property)": [[11, "id4", false]], "device (dacapo.compute_context.compute_context.computecontext attribute)": [[12, "dacapo.compute_context.compute_context.ComputeContext.device", false]], "device (dacapo.compute_context.compute_context.computecontext property)": [[12, "id0", false]], "device (dacapo.compute_context.computecontext attribute)": [[13, "dacapo.compute_context.ComputeContext.device", false]], "device (dacapo.compute_context.computecontext property)": [[13, "id0", false]], "device (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "id0", false]], "device (dacapo.compute_context.local_torch.localtorch property)": [[14, "id2", false]], "device (dacapo.compute_context.localtorch attribute)": [[13, "id3", false]], "device (dacapo.compute_context.localtorch property)": [[13, "id5", false]], "device() (dacapo.compute_context.bsub method)": [[13, "dacapo.compute_context.Bsub.device", false]], "device() (dacapo.compute_context.bsub.bsub method)": [[11, "dacapo.compute_context.bsub.Bsub.device", false]], "device() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.device", false]], "device() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.device", false]], "dice (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.dice", false], [84, "id0", false]], "dice (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.dice", false], [90, "id23", false]], "dice() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.dice", false], [85, "id12", false]], "dilatepoints (class in dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.DilatePoints", false]], "dilations (dacapo.utils.pipeline.dilatepoints attribute)": [[182, "dacapo.utils.pipeline.DilatePoints.dilations", false], [182, "id6", false]], "dilations (dacapo.utils.pipeline.randomdilatelabels attribute)": [[182, "dacapo.utils.pipeline.RandomDilateLabels.dilations", false], [182, "id9", false]], "dims (dacapo.experiments.architectures.architecture property)": [[21, "id4", false]], "dims (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id4", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.dims", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.dims", false], [17, "id15", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.convpass attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.dims", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.dims", false], [17, "id27", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.dims", false], [17, "id33", false]], "dims (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor property)": [[117, "id10", false]], "dims (dacapo.experiments.tasks.predictors.affinitiespredictor property)": [[121, "id32", false]], "dims() (dacapo.experiments.architectures.architecture method)": [[21, "dacapo.experiments.architectures.Architecture.dims", false]], "dims() (dacapo.experiments.architectures.architecture.architecture method)": [[15, "dacapo.experiments.architectures.architecture.Architecture.dims", false]], "dims() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.dims", false]], "dims() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.dims", false]], "distance_loss (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss attribute)": [[100, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.distance_loss", false]], "distance_loss (dacapo.experiments.tasks.losses.hotdistanceloss attribute)": [[101, "dacapo.experiments.tasks.losses.HotDistanceLoss.distance_loss", false]], "distance_loss() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[100, "id2", false]], "distance_loss() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[101, "id8", false]], "distancearray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.DistanceArray", false]], "distancearray (class in dacapo.experiments.arraytypes.distances)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray", false]], "distancepredictor (class in dacapo.experiments.tasks.predictors)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor", false]], "distancepredictor (class in dacapo.experiments.tasks.predictors.distance_predictor)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor", false]], "distancetask (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.DistanceTask", false]], "distancetask (class in dacapo.experiments.tasks.distance_task)": [[80, "dacapo.experiments.tasks.distance_task.DistanceTask", false]], "distancetaskconfig (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig", false]], "distancetaskconfig (class in dacapo.experiments.tasks.distance_task_config)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig", false]], "distribute_workers (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.distribute_workers", false]], "distribute_workers (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.distribute_workers", false]], "distribute_workers (dacapo.compute_context.compute_context.computecontext attribute)": [[12, "dacapo.compute_context.compute_context.ComputeContext.distribute_workers", false]], "distribute_workers (dacapo.compute_context.computecontext attribute)": [[13, "dacapo.compute_context.ComputeContext.distribute_workers", false]], "distribute_workers (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch.distribute_workers", false]], "distribute_workers (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch.distribute_workers", false]], "divide_columns() (in module dacapo.utils.voi)": [[184, "dacapo.utils.voi.divide_columns", false]], "divide_rows() (in module dacapo.utils.voi)": [[184, "dacapo.utils.voi.divide_rows", false]], "do_augment (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.do_augment", false]], "do_augment (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.do_augment", false]], "does_new_best_exist() (dacapo.utils.view.bestscore method)": [[183, "dacapo.utils.view.BestScore.does_new_best_exist", false], [183, "id8", false]], "down (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.down", false], [17, "id29", false]], "downsample (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample", false]], "downsample (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.downsample", false], [44, "id2", false]], "downsample (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.downsample", false], [38, "id12", false]], "downsample_factor (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.downsample_factor", false], [17, "id28", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.downsample_factors", false], [17, "id4", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.downsample_factors", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.downsample_factors", false], [18, "id6", false]], "downsample_factors (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.downsample_factors", false], [21, "id36", false]], "downsample_factors (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.downsample_factors", false], [21, "id25", false]], "downsample_lsds (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.downsample_lsds", false], [79, "id3", false]], "downsample_lsds (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.downsample_lsds", false], [95, "id30", false]], "downsample_lsds (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.downsample_lsds", false]], "downsample_lsds (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.downsample_lsds", false]], "drop_channels (dacapo.gp.copy.copymask attribute)": [[149, "dacapo.gp.copy.CopyMask.drop_channels", false], [149, "id2", false]], "drop_channels (dacapo.gp.copymask attribute)": [[154, "dacapo.gp.CopyMask.drop_channels", false], [154, "id16", false]], "ds (dacapo.utils.view.bestscore attribute)": [[183, "dacapo.utils.view.BestScore.ds", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.dt_scale_factor", false], [120, "id2", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.dt_scale_factor", false], [121, "id48", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.dt_scale_factor", false]], "dummyarchitecture (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.DummyArchitecture", false]], "dummyarchitecture (class in dacapo.experiments.architectures.dummy_architecture)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture", false]], "dummyarchitectureconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig", false]], "dummyarchitectureconfig (class in dacapo.experiments.architectures.dummy_architecture_config)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig", false]], "dummyarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig", false]], "dummyarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.dummy_array_config)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig", false]], "dummydataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset", false]], "dummydataset (class in dacapo.experiments.datasplits.datasets.dummy_dataset)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset", false]], "dummydatasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig", false]], "dummydatasetconfig (class in dacapo.experiments.datasplits.datasets.dummy_dataset_config)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig", false]], "dummydatasplit (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.DummyDataSplit", false]], "dummydatasplit (class in dacapo.experiments.datasplits.dummy_datasplit)": [[61, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit", false]], "dummydatasplitconfig (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.DummyDataSplitConfig", false]], "dummydatasplitconfig (class in dacapo.experiments.datasplits.dummy_datasplit_config)": [[62, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig", false]], "dummyevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores", false]], "dummyevaluationscores (class in dacapo.experiments.tasks.evaluators.dummy_evaluation_scores)": [[86, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores", false]], "dummyevaluator (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluator", false]], "dummyevaluator (class in dacapo.experiments.tasks.evaluators.dummy_evaluator)": [[87, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator", false]], "dummyloss (class in dacapo.experiments.tasks.losses)": [[101, "dacapo.experiments.tasks.losses.DummyLoss", false]], "dummyloss (class in dacapo.experiments.tasks.losses.dummy_loss)": [[99, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss", false]], "dummypostprocessor (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.DummyPostProcessor", false]], "dummypostprocessor (class in dacapo.experiments.tasks.post_processors.dummy_post_processor)": [[108, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor", false]], "dummypostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters", false]], "dummypostprocessorparameters (class in dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters)": [[109, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters", false]], "dummypredictor (class in dacapo.experiments.tasks.predictors)": [[121, "dacapo.experiments.tasks.predictors.DummyPredictor", false]], "dummypredictor (class in dacapo.experiments.tasks.predictors.dummy_predictor)": [[119, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor", false]], "dummytask (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.DummyTask", false]], "dummytask (class in dacapo.experiments.tasks.dummy_task)": [[82, "dacapo.experiments.tasks.dummy_task.DummyTask", false]], "dummytaskconfig (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.DummyTaskConfig", false]], "dummytaskconfig (class in dacapo.experiments.tasks.dummy_task_config)": [[83, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig", false]], "dummytrainer (class in dacapo.experiments.trainers)": [[140, "dacapo.experiments.trainers.DummyTrainer", false]], "dummytrainer (class in dacapo.experiments.trainers.dummy_trainer)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer", false]], "dummytrainerconfig (class in dacapo.experiments.trainers)": [[140, "dacapo.experiments.trainers.DummyTrainerConfig", false]], "dummytrainerconfig (class in dacapo.experiments.trainers.dummy_trainer_config)": [[130, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig", false]], "duplicatenameerror": [[163, "dacapo.store.config_store.DuplicateNameError", false]], "dvidarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig", false]], "dvidarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.dvid_array_config)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig", false]], "elasticaugment (class in dacapo.gp)": [[154, "dacapo.gp.ElasticAugment", false]], "elasticaugment (class in dacapo.gp.elastic_augment_fuse)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment", false]], "elasticaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[134, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig", false]], "elasticaugmentconfig (class in dacapo.experiments.trainers.gp_augments.elastic_config)": [[132, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig", false]], "embedded (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.embedded", false], [183, "id11", false]], "embedding_dims (dacapo.experiments.arraytypes.embedding.embeddingarray attribute)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray.embedding_dims", false], [26, "id0", false]], "embedding_dims (dacapo.experiments.arraytypes.embeddingarray attribute)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray.embedding_dims", false], [27, "id9", false]], "embedding_dims (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[83, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.embedding_dims", false], [83, "id1", false]], "embedding_dims (dacapo.experiments.tasks.dummytaskconfig attribute)": [[95, "dacapo.experiments.tasks.DummyTaskConfig.embedding_dims", false], [95, "id3", false]], "embedding_dims (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.distancepredictor property)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.embedding_dims", false], [119, "id0", false]], "embedding_dims (dacapo.experiments.tasks.predictors.dummypredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DummyPredictor.embedding_dims", false], [121, "id0", false]], "embedding_dims (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor property)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.innerdistancepredictor property)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor property)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.onehotpredictor property)": [[121, "dacapo.experiments.tasks.predictors.OneHotPredictor.embedding_dims", false]], "embeddingarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray", false]], "embeddingarray (class in dacapo.experiments.arraytypes.embedding)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray", false]], "empanada_segmenter() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.empanada_segmenter", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.enumerate_parameters", false], [106, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.enumerate_parameters", false], [110, "id14", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.enumerate_parameters", false], [108, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.enumerate_parameters", false], [110, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.enumerate_parameters", false], [111, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.PostProcessor.enumerate_parameters", false], [110, "id7", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.enumerate_parameters", false], [113, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.enumerate_parameters", false], [110, "id10", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[115, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.enumerate_parameters", false], [115, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.enumerate_parameters", false], [110, "id18", false]], "epsilon (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.epsilon", false], [120, "id5", false]], "epsilon (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.epsilon", false], [121, "id51", false]], "epsilon (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.epsilon", false]], "eval_activation (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.eval_activation", false], [69, "id9", false]], "eval_activation (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.eval_activation", false], [70, "id9", false]], "eval_input_shape (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.eval_input_shape", false], [69, "id8", false]], "eval_input_shape (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.eval_input_shape", false], [70, "id8", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture property)": [[21, "id1", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id1", false]], "eval_shape_increase (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.eval_shape_increase", false]], "evaluate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.evaluate", false], [85, "id4", false]], "evaluate() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.evaluate", false], [90, "id48", false]], "evaluate() (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator method)": [[87, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.evaluate", false], [87, "id1", false]], "evaluate() (dacapo.experiments.tasks.evaluators.dummyevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluator.evaluate", false], [90, "id6", false]], "evaluate() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.evaluate", false], [90, "id12", false]], "evaluate() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.evaluate", false], [89, "id0", false]], "evaluate() (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator method)": [[92, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.evaluate", false], [92, "id1", false]], "evaluate() (dacapo.experiments.tasks.evaluators.instanceevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.evaluate", false], [90, "id57", false]], "evaluation_scores (dacapo.experiments.tasks.task property)": [[95, "dacapo.experiments.tasks.Task.evaluation_scores", false]], "evaluation_scores (dacapo.experiments.tasks.task.task property)": [[127, "dacapo.experiments.tasks.task.Task.evaluation_scores", false]], "evaluation_scores (dacapo.experiments.validation_scores.validationscores attribute)": [[147, "dacapo.experiments.validation_scores.ValidationScores.evaluation_scores", false], [147, "id2", false]], "evaluation_scores (dacapo.experiments.validationscores attribute)": [[69, "dacapo.experiments.ValidationScores.evaluation_scores", false], [69, "id20", false]], "evaluationscores (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.EvaluationScores", false]], "evaluationscores (class in dacapo.experiments.tasks.evaluators.evaluation_scores)": [[88, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores", false]], "evaluator (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator", false]], "evaluator (class in dacapo.experiments.tasks.evaluators.evaluator)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator", false]], "evaluator (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[78, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.evaluator", false], [78, "id3", false]], "evaluator (dacapo.experiments.tasks.affinitiestask attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTask.evaluator", false], [95, "id40", false]], "evaluator (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[80, "dacapo.experiments.tasks.distance_task.DistanceTask.evaluator", false], [80, "id3", false]], "evaluator (dacapo.experiments.tasks.distancetask attribute)": [[95, "dacapo.experiments.tasks.DistanceTask.evaluator", false], [95, "id20", false]], "evaluator (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[82, "dacapo.experiments.tasks.dummy_task.DummyTask.evaluator", false], [82, "id3", false]], "evaluator (dacapo.experiments.tasks.dummytask attribute)": [[95, "dacapo.experiments.tasks.DummyTask.evaluator", false], [95, "id9", false]], "evaluator (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.evaluator", false], [93, "id3", false]], "evaluator (dacapo.experiments.tasks.hotdistancetask attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTask.evaluator", false], [95, "id58", false]], "evaluator (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[96, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.evaluator", false], [96, "id3", false]], "evaluator (dacapo.experiments.tasks.innerdistancetask attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTask.evaluator", false], [95, "id48", false]], "evaluator (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[104, "dacapo.experiments.tasks.one_hot_task.OneHotTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.onehottask attribute)": [[95, "dacapo.experiments.tasks.OneHotTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[125, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.pretrainedtask attribute)": [[95, "dacapo.experiments.tasks.PretrainedTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.task attribute)": [[95, "dacapo.experiments.tasks.Task.evaluator", false]], "evaluator (dacapo.experiments.tasks.task.task attribute)": [[127, "dacapo.experiments.tasks.task.Task.evaluator", false]], "execute() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext.execute", false], [12, "id2", false]], "execute() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext.execute", false], [13, "id2", false]], "execute() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.execute", false]], "execute() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.execute", false]], "expandlabels (class in dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.ExpandLabels", false]], "extractor() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.extractor", false], [117, "id9", false]], "extractor() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.extractor", false], [121, "id31", false]], "f1_score (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.f1_score", false], [84, "id20", false]], "f1_score (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.f1_score", false], [90, "id43", false]], "f1_score() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.f1_score", false], [85, "id20", false]], "f1_score_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.f1_score_with_tolerance", false], [84, "id17", false]], "f1_score_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.f1_score_with_tolerance", false], [90, "id40", false]], "f1_score_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.f1_score_with_tolerance", false], [85, "id32", false]], "f1_score_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.f1_score_with_tolerance", false], [85, "id46", false]], "false_discovery_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_discovery_rate", false], [84, "id6", false]], "false_discovery_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_discovery_rate", false], [90, "id29", false]], "false_discovery_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_discovery_rate", false], [85, "id17", false]], "false_negative_distances() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negative_distances", false], [85, "id50", false]], "false_negative_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_negative_rate", false], [84, "id3", false]], "false_negative_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_negative_rate", false], [90, "id26", false]], "false_negative_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_negative_rate", false], [85, "id15", false]], "false_negative_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_negative_rate_with_tolerance", false], [84, "id4", false]], "false_negative_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_negative_rate_with_tolerance", false], [90, "id27", false]], "false_negative_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_negative_rate_with_tolerance", false], [85, "id29", false]], "false_negative_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negative_rate_with_tolerance", false], [85, "id42", false]], "false_negatives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negatives_with_tolerance", false], [85, "id41", false]], "false_positive_distances() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positive_distances", false], [85, "id38", false]], "false_positive_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_positive_rate", false], [84, "id5", false]], "false_positive_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_positive_rate", false], [90, "id28", false]], "false_positive_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_positive_rate", false], [85, "id16", false]], "false_positive_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_positive_rate_with_tolerance", false], [84, "id7", false]], "false_positive_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_positive_rate_with_tolerance", false], [90, "id30", false]], "false_positive_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_positive_rate_with_tolerance", false], [85, "id28", false]], "false_positive_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positive_rate_with_tolerance", false], [85, "id40", false]], "false_positives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positives_with_tolerance", false], [85, "id39", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.file_name", false], [46, "id0", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.file_name", false], [47, "id0", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.file_name", false], [38, "id3", false]], "fileconfigstore (class in dacapo.store.file_config_store)": [[167, "dacapo.store.file_config_store.FileConfigStore", false]], "filestatsstore (class in dacapo.store.file_stats_store)": [[168, "dacapo.store.file_stats_store.FileStatsStore", false]], "find_components() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.find_components", false]], "fit (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.fit", false]], "fit (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.fit", false]], "fit (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.fit", false]], "fit (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.fit", false]], "fit (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.fit", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmap_inc_factor", false], [17, "id3", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.fmap_inc_factor", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmap_inc_factor", false], [18, "id5", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmap_inc_factor", false], [21, "id35", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmap_inc_factor", false], [21, "id24", false]], "fmaps_in (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmaps_in", false], [17, "id1", false]], "fmaps_in (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmaps_in", false], [18, "id3", false]], "fmaps_in (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmaps_in", false], [21, "id33", false]], "fmaps_in (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmaps_in", false], [21, "id22", false]], "fmaps_out (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmaps_out", false], [17, "id0", false]], "fmaps_out (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmaps_out", false], [18, "id2", false]], "fmaps_out (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmaps_out", false], [21, "id32", false]], "fmaps_out (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmaps_out", false], [21, "id21", false]], "format_class_name() (in module dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.format_class_name", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.forward", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.forward", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.forward", false], [17, "id24", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.convpass method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.forward", false], [17, "id26", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.downsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.forward", false], [17, "id30", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.forward", false], [17, "id36", false]], "forward() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.forward", false]], "forward() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.forward", false], [19, "id6", false]], "forward() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.forward", false], [21, "id18", false]], "forward() (dacapo.experiments.model method)": [[69, "dacapo.experiments.Model.forward", false]], "forward() (dacapo.experiments.model.model method)": [[70, "dacapo.experiments.model.Model.forward", false]], "fov (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fov", false]], "fov (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fov", false]], "frizz_level (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[86, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.frizz_level", false], [86, "id0", false]], "frizz_level (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.frizz_level", false], [90, "id0", false]], "gamma_max (dacapo.gp.gamma_noise.gammaaugment attribute)": [[153, "dacapo.gp.gamma_noise.GammaAugment.gamma_max", false], [153, "id2", false]], "gamma_max (dacapo.gp.gammaaugment attribute)": [[154, "dacapo.gp.GammaAugment.gamma_max", false], [154, "id8", false]], "gamma_min (dacapo.gp.gamma_noise.gammaaugment attribute)": [[153, "dacapo.gp.gamma_noise.GammaAugment.gamma_min", false], [153, "id1", false]], "gamma_min (dacapo.gp.gammaaugment attribute)": [[154, "dacapo.gp.GammaAugment.gamma_min", false], [154, "id7", false]], "gamma_range (dacapo.experiments.trainers.gp_augments.gamma_config.gammaaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig.gamma_range", false], [133, "id0", false]], "gamma_range (dacapo.experiments.trainers.gp_augments.gammaaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig.gamma_range", false], [134, "id8", false]], "gammaaugment (class in dacapo.gp)": [[154, "dacapo.gp.GammaAugment", false]], "gammaaugment (class in dacapo.gp.gamma_noise)": [[153, "dacapo.gp.gamma_noise.GammaAugment", false]], "gammaaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[134, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig", false]], "gammaaugmentconfig (class in dacapo.experiments.trainers.gp_augments.gamma_config)": [[133, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig", false]], "gaussian_blur_args (dacapo.utils.pipeline.makeraw attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.gaussian_blur_args", false]], "gaussian_blur_args (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_blur_args", false]], "gaussian_noise_args (dacapo.utils.pipeline.makeraw attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.gaussian_noise_args", false]], "gaussian_noise_args (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_noise_args", false]], "gaussian_noise_lim (dacapo.utils.pipeline.makeraw attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.gaussian_noise_lim", false]], "gaussian_noise_lim (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_noise_lim", false]], "generate_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.generate_csv", false]], "generate_csv() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.generate_csv", false]], "generate_dataspec_from_csv() (in module dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.generate_dataspec_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.generate_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator static method)": [[60, "id30", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplitgenerator method)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.generate_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplitgenerator static method)": [[63, "id33", false]], "get_best() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.get_best", false], [147, "id12", false]], "get_best() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.get_best", false], [69, "id30", false]], "get_datasets() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.get_datasets", false], [183, "id17", false]], "get_ds() (dacapo.utils.view.bestscore method)": [[183, "dacapo.utils.view.BestScore.get_ds", false], [183, "id7", false]], "get_model_setup() (in module dacapo.experiments.starts.cosem_start)": [[73, "dacapo.experiments.starts.cosem_start.get_model_setup", false]], "get_overall_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.get_overall_best", false], [90, "id15", false]], "get_overall_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.get_overall_best", false], [89, "id3", false]], "get_overall_best_parameters() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.get_overall_best_parameters", false], [90, "id16", false]], "get_overall_best_parameters() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.get_overall_best_parameters", false], [89, "id4", false]], "get_paths() (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig method)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.get_paths", false]], "get_paths() (dacapo.experiments.datasplits.simpledatasplitconfig method)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.get_paths", false]], "get_right_resolution_array_config() (in module dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.get_right_resolution_array_config", false]], "get_runs_info() (in module dacapo.plot)": [[159, "dacapo.plot.get_runs_info", false]], "get_validation_scores() (dacapo.experiments.run.run method)": [[71, "dacapo.experiments.run.Run.get_validation_scores", false]], "get_validation_scores() (dacapo.experiments.run.run static method)": [[71, "id12", false]], "get_viewer() (in module dacapo.utils.view)": [[183, "dacapo.utils.view.get_viewer", false]], "gp_to_funlib_array() (in module dacapo.tmp)": [[176, "dacapo.tmp.gp_to_funlib_array", false]], "graph (dacapo.gp.dacapo_points_source.graphsource attribute)": [[151, "dacapo.gp.dacapo_points_source.GraphSource.graph", false], [151, "id1", false]], "graph (dacapo.gp.graphsource attribute)": [[154, "dacapo.gp.GraphSource.graph", false], [154, "id21", false]], "graphkey (class in dacapo.experiments.datasplits.keys)": [[64, "dacapo.experiments.datasplits.keys.GraphKey", false]], "graphkey (class in dacapo.experiments.datasplits.keys.keys)": [[65, "dacapo.experiments.datasplits.keys.keys.GraphKey", false]], "graphsource (class in dacapo.gp)": [[154, "dacapo.gp.GraphSource", false]], "graphsource (class in dacapo.gp.dacapo_points_source)": [[151, "dacapo.gp.dacapo_points_source.GraphSource", false]], "graphstoreconfig (class in dacapo.experiments.datasplits.datasets.graphstores)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig", false]], "graphstoreconfig (class in dacapo.experiments.datasplits.datasets.graphstores.graph_source_config)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.groupings", false], [32, "id1", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.groupings", false], [38, "id8", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig attribute)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.groupings", false], [42, "id1", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.groupings", false], [38, "id18", false]], "grow_boundary_iterations (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.grow_boundary_iterations", false], [117, "id3", false]], "grow_boundary_iterations (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.grow_boundary_iterations", false], [121, "id25", false]], "gt (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.gt", false], [54, "id2", false]], "gt (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.gt", false], [48, "id2", false]], "gt (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.gt", false], [55, "id1", false]], "gt (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.gt", false], [54, "id14", false]], "gt (dacapo.experiments.datasplits.datasets.simple.simpledataset property)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.gt", false]], "gt (dacapo.experiments.datasplits.datasets.simpledataset property)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.gt", false]], "gt (dacapo.experiments.datasplits.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.ArrayKey.GT", false], [64, "id1", false]], "gt (dacapo.experiments.datasplits.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.DataKey.GT", false]], "gt (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.ArrayKey.GT", false], [65, "id1", false]], "gt (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.DataKey.GT", false]], "gt (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.gt", false]], "gt (dacapo.gp.dacapotargetfilter attribute)": [[154, "dacapo.gp.DaCapoTargetFilter.gt", false]], "gt (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[156, "dacapo.gp.reject_if_empty.RejectIfEmpty.gt", false]], "gt (dacapo.gp.rejectifempty attribute)": [[154, "dacapo.gp.RejectIfEmpty.gt", false]], "gt (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.gt", false]], "gt_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.gt_config", false], [56, "id2", false]], "gt_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.gt_config", false], [54, "id20", false]], "gt_container (dacapo.experiments.datasplits.datasetspec attribute)": [[63, "dacapo.experiments.datasplits.DatasetSpec.gt_container", false], [63, "id37", false]], "gt_container (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.gt_container", false], [60, "id8", false]], "gt_dataset (dacapo.experiments.datasplits.datasetspec attribute)": [[63, "dacapo.experiments.datasplits.DatasetSpec.gt_dataset", false], [63, "id38", false]], "gt_dataset (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.gt_dataset", false], [60, "id9", false]], "gt_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.gt_key", false]], "gt_key (dacapo.gp.dacapotargetfilter attribute)": [[154, "dacapo.gp.DaCapoTargetFilter.gt_key", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[139, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainerConfig.gt_min_reject", false]], "gt_name (dacapo.experiments.datasplits.datasets.simple.simpledataset attribute)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.gt_name", false]], "gt_name (dacapo.experiments.datasplits.datasets.simpledataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.gt_name", false]], "gt_name (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.gt_name", false]], "gt_name (dacapo.experiments.datasplits.simpledatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.gt_name", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.gt_region_for_roi", false], [117, "id16", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.gt_region_for_roi", false], [121, "id38", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.gt_region_for_roi", false], [118, "id10", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.gt_region_for_roi", false], [121, "id15", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.gt_region_for_roi", false], [120, "id12", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.gt_region_for_roi", false], [121, "id58", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.gt_region_for_roi", false], [122, "id5", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.gt_region_for_roi", false], [121, "id45", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.predictor method)": [[121, "dacapo.experiments.tasks.predictors.Predictor.gt_region_for_roi", false], [121, "id21", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[124, "dacapo.experiments.tasks.predictors.predictor.Predictor.gt_region_for_roi", false], [124, "id0", false]], "gunpowdertrainer (class in dacapo.experiments.trainers)": [[140, "dacapo.experiments.trainers.GunpowderTrainer", false]], "gunpowdertrainer (class in dacapo.experiments.trainers.gunpowder_trainer)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer", false]], "gunpowdertrainerconfig (class in dacapo.experiments.trainers)": [[140, "dacapo.experiments.trainers.GunpowderTrainerConfig", false]], "gunpowdertrainerconfig (class in dacapo.experiments.trainers.gunpowder_trainer_config)": [[139, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig", false]], "hausdorff (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.hausdorff", false], [84, "id2", false]], "hausdorff (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.hausdorff", false], [90, "id25", false]], "hausdorff() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.hausdorff", false], [85, "id14", false]], "head_keys (in module dacapo.experiments.starts.start)": [[76, "dacapo.experiments.starts.start.head_keys", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[86, "id2", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[90, "id2", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[88, "id1", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.EvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[90, "id9", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.higher_is_better", false], [90, "id19", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.higher_is_better", false], [89, "id7", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[91, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[91, "id3", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[90, "id53", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[90, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.higher_is_better", false]], "hooks (dacapo.store.converter.typedconverter attribute)": [[165, "dacapo.store.converter.TypedConverter.hooks", false]], "hot_loss (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss attribute)": [[100, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.hot_loss", false]], "hot_loss (dacapo.experiments.tasks.losses.hotdistanceloss attribute)": [[101, "dacapo.experiments.tasks.losses.HotDistanceLoss.hot_loss", false]], "hot_loss() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[100, "id1", false]], "hot_loss() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[101, "id7", false]], "hotdistanceloss (class in dacapo.experiments.tasks.losses)": [[101, "dacapo.experiments.tasks.losses.HotDistanceLoss", false]], "hotdistanceloss (class in dacapo.experiments.tasks.losses.hot_distance_loss)": [[100, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss", false]], "hotdistancepredictor (class in dacapo.experiments.tasks.predictors)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor", false]], "hotdistancepredictor (class in dacapo.experiments.tasks.predictors.hot_distance_predictor)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor", false]], "hotdistancetask (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.HotDistanceTask", false]], "hotdistancetask (class in dacapo.experiments.tasks.hot_distance_task)": [[93, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask", false]], "hotdistancetaskconfig (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.HotDistanceTaskConfig", false]], "hotdistancetaskconfig (class in dacapo.experiments.tasks.hot_distance_task_config)": [[94, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig", false]], "id (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters attribute)": [[112, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters.id", false], [112, "id0", false]], "id (dacapo.experiments.tasks.post_processors.postprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.PostProcessorParameters.id", false], [110, "id5", false]], "in_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.in_channels", false], [17, "id13", false]], "initialize_weights() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[73, "dacapo.experiments.starts.cosem_start.CosemStart.initialize_weights", false], [73, "id5", false]], "initialize_weights() (dacapo.experiments.starts.cosemstart method)": [[75, "dacapo.experiments.starts.CosemStart.initialize_weights", false], [75, "id9", false]], "initialize_weights() (dacapo.experiments.starts.start method)": [[75, "dacapo.experiments.starts.Start.initialize_weights", false], [75, "id1", false]], "initialize_weights() (dacapo.experiments.starts.start.start method)": [[76, "dacapo.experiments.starts.start.Start.initialize_weights", false], [76, "id1", false]], "innerdistancepredictor (class in dacapo.experiments.tasks.predictors)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor", false]], "innerdistancepredictor (class in dacapo.experiments.tasks.predictors.inner_distance_predictor)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor", false]], "innerdistancetask (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.InnerDistanceTask", false]], "innerdistancetask (class in dacapo.experiments.tasks.inner_distance_task)": [[96, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask", false]], "innerdistancetaskconfig (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.InnerDistanceTaskConfig", false]], "innerdistancetaskconfig (class in dacapo.experiments.tasks.inner_distance_task_config)": [[97, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig", false]], "input_resolution (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.input_resolution", false], [60, "id12", false]], "input_resolution (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.input_resolution", false], [63, "id15", false]], "input_shape (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.architecture property)": [[21, "id0", false]], "input_shape (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id0", false]], "input_shape (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.input_shape", false]], "input_shape (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.input_shape", false], [18, "id1", false]], "input_shape (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.input_shape", false]], "input_shape (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.input_shape", false], [21, "id20", false]], "input_shape (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id3", false]], "input_shape (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id15", false]], "input_shape (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.input_shape", false], [69, "id7", false]], "input_shape (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.input_shape", false], [70, "id7", false]], "inside_value (dacapo.utils.pipeline.makeraw attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.inside_value", false]], "inside_value (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline.inside_value", false]], "instance (dacapo.experiments.datasplits.datasplit_generator.segmentationtype attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.instance", false], [60, "id4", false]], "instance() (dacapo.options class method)": [[157, "id0", false]], "instance() (dacapo.options method)": [[157, "dacapo.Options.instance", false]], "instance() (dacapo.options.options class method)": [[158, "id6", false]], "instance() (dacapo.options.options method)": [[158, "dacapo.options.Options.instance", false]], "instanceevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores", false]], "instanceevaluationscores (class in dacapo.experiments.tasks.evaluators.instance_evaluation_scores)": [[91, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores", false]], "instanceevaluator (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluator", false]], "instanceevaluator (class in dacapo.experiments.tasks.evaluators.instance_evaluator)": [[92, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator", false]], "intensitiesarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray", false]], "intensitiesarray (class in dacapo.experiments.arraytypes.intensities)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray", false]], "intensitiesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig", false]], "intensitiesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.intensity_array_config)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig", false]], "intensityaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig", false]], "intensityaugmentconfig (class in dacapo.experiments.trainers.gp_augments.intensity_config)": [[135, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig", false]], "intensityscaleshiftaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig", false]], "intensityscaleshiftaugmentconfig (class in dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config)": [[136, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig", false]], "interp_order (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.interp_order", false], [44, "id3", false]], "interp_order (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.interp_order", false], [38, "id13", false]], "interpolatable (dacapo.experiments.arraytypes.annotationarray property)": [[27, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.annotations.annotationarray property)": [[22, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.arraytype.arraytype property)": [[23, "id0", false]], "interpolatable (dacapo.experiments.arraytypes.binary.binaryarray property)": [[24, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.distancearray property)": [[27, "id7", false]], "interpolatable (dacapo.experiments.arraytypes.distances.distancearray property)": [[25, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.embedding.embeddingarray property)": [[26, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.embeddingarray property)": [[27, "id10", false]], "interpolatable (dacapo.experiments.arraytypes.intensities.intensitiesarray property)": [[28, "id3", false]], "interpolatable (dacapo.experiments.arraytypes.intensitiesarray property)": [[27, "id5", false]], "interpolatable (dacapo.experiments.arraytypes.mask property)": [[27, "id8", false]], "interpolatable (dacapo.experiments.arraytypes.mask.mask property)": [[29, "id0", false]], "interpolatable (dacapo.experiments.arraytypes.probabilities.probabilityarray property)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray.interpolatable", false]], "interpolatable (dacapo.experiments.arraytypes.probabilityarray property)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.annotationarray method)": [[27, "dacapo.experiments.arraytypes.AnnotationArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.annotations.annotationarray method)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.arraytype.arraytype method)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.binary.binaryarray method)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.distancearray method)": [[27, "dacapo.experiments.arraytypes.DistanceArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.distances.distancearray method)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.embedding.embeddingarray method)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.embeddingarray method)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.intensities.intensitiesarray method)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.intensitiesarray method)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.mask method)": [[27, "dacapo.experiments.arraytypes.Mask.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.mask.mask method)": [[29, "dacapo.experiments.arraytypes.mask.Mask.interpolatable", false]], "is_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.is_best", false], [90, "id14", false]], "is_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.is_best", false], [89, "id2", false]], "is_zarr_group() (in module dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.is_zarr_group", false]], "iterate() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.dummytrainer method)": [[140, "dacapo.experiments.trainers.DummyTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.trainer method)": [[140, "dacapo.experiments.trainers.Trainer.iterate", false]], "iterate() (dacapo.experiments.trainers.trainer.trainer method)": [[142, "dacapo.experiments.trainers.trainer.Trainer.iterate", false]], "iteration (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.dummytrainer attribute)": [[140, "dacapo.experiments.trainers.DummyTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.trainer attribute)": [[140, "dacapo.experiments.trainers.Trainer.iteration", false], [140, "id0", false]], "iteration (dacapo.experiments.trainers.trainer.trainer attribute)": [[142, "dacapo.experiments.trainers.trainer.Trainer.iteration", false], [142, "id0", false]], "iteration (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[144, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.iteration", false], [144, "id0", false]], "iteration (dacapo.experiments.trainingiterationstats attribute)": [[69, "dacapo.experiments.TrainingIterationStats.iteration", false], [69, "id10", false]], "iteration (dacapo.experiments.validation_iteration_scores.validationiterationscores attribute)": [[146, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores.iteration", false], [146, "id0", false]], "iteration (dacapo.experiments.validationiterationscores attribute)": [[69, "dacapo.experiments.ValidationIterationScores.iteration", false], [69, "id16", false]], "iteration (dacapo.utils.view.bestscore attribute)": [[183, "dacapo.utils.view.BestScore.iteration", false], [183, "id2", false]], "iteration (in module dacapo.experiments.tasks.evaluators.evaluator)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Iteration", false]], "iteration_stats (dacapo.experiments.training_stats.trainingstats attribute)": [[145, "dacapo.experiments.training_stats.TrainingStats.iteration_stats", false], [145, "id0", false]], "iteration_stats (dacapo.experiments.trainingstats attribute)": [[69, "dacapo.experiments.TrainingStats.iteration_stats", false], [69, "id13", false]], "jaccard (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.jaccard", false], [84, "id1", false]], "jaccard (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.jaccard", false], [90, "id24", false]], "jaccard() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.jaccard", false], [85, "id13", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.kernel_size_down", false], [17, "id5", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.kernel_size_down", false], [17, "id17", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.kernel_size_down", false], [18, "id7", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.kernel_size_down", false], [21, "id37", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.kernel_size_down", false], [21, "id26", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.kernel_size_up", false], [17, "id6", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.kernel_size_up", false], [17, "id18", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.kernel_size_up", false], [18, "id8", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.kernel_size_up", false], [21, "id38", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.kernel_size_up", false], [21, "id27", false]], "kernel_sizes (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.kernel_sizes", false]], "key (dacapo.gp.dacapo_points_source.graphsource attribute)": [[151, "dacapo.gp.dacapo_points_source.GraphSource.key", false], [151, "id0", false]], "key (dacapo.gp.graphsource attribute)": [[154, "dacapo.gp.GraphSource.key", false], [154, "id20", false]], "key (dacapo.utils.pipeline.zerossource attribute)": [[182, "dacapo.utils.pipeline.ZerosSource.key", false], [182, "id15", false]], "l_conv (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.l_conv", false], [17, "id19", false]], "l_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.l_down", false], [17, "id20", false]], "labels (dacapo.utils.pipeline.createpoints attribute)": [[182, "dacapo.utils.pipeline.CreatePoints.labels", false], [182, "id0", false]], "labels (dacapo.utils.pipeline.dilatepoints attribute)": [[182, "dacapo.utils.pipeline.DilatePoints.labels", false], [182, "id5", false]], "labels (dacapo.utils.pipeline.expandlabels attribute)": [[182, "dacapo.utils.pipeline.ExpandLabels.labels", false], [182, "id12", false]], "labels (dacapo.utils.pipeline.makeraw attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.labels", false]], "labels (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline.labels", false]], "labels (dacapo.utils.pipeline.randomdilatelabels attribute)": [[182, "dacapo.utils.pipeline.RandomDilateLabels.labels", false], [182, "id8", false]], "labels (dacapo.utils.pipeline.relabel attribute)": [[182, "dacapo.utils.pipeline.Relabel.labels", false]], "latest_iteration() (dacapo.store.local_weights_store.localweightsstore method)": [[171, "dacapo.store.local_weights_store.LocalWeightsStore.latest_iteration", false], [171, "id1", false]], "latest_iteration() (dacapo.store.weights_store.weightsstore method)": [[175, "dacapo.store.weights_store.WeightsStore.latest_iteration", false], [175, "id4", false]], "learning_rate (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.learning_rate", false], [129, "id0", false]], "learning_rate (dacapo.experiments.trainers.dummytrainer attribute)": [[140, "dacapo.experiments.trainers.DummyTrainer.learning_rate", false], [140, "id9", false]], "learning_rate (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.learning_rate", false], [138, "id0", false]], "learning_rate (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.learning_rate", false], [140, "id21", false]], "learning_rate (dacapo.experiments.trainers.trainer attribute)": [[140, "dacapo.experiments.trainers.Trainer.learning_rate", false], [140, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainer.trainer attribute)": [[142, "dacapo.experiments.trainers.trainer.Trainer.learning_rate", false], [142, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[143, "dacapo.experiments.trainers.trainer_config.TrainerConfig.learning_rate", false], [143, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainerconfig attribute)": [[140, "dacapo.experiments.trainers.TrainerConfig.learning_rate", false], [140, "id5", false]], "limit_validation_crop_size() (in module dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.limit_validation_crop_size", false]], "load_best() (dacapo.store.weights_store.weightsstore method)": [[175, "dacapo.store.weights_store.WeightsStore.load_best", false], [175, "id3", false]], "load_weights() (dacapo.store.weights_store.weightsstore method)": [[175, "dacapo.store.weights_store.WeightsStore.load_weights", false], [175, "id2", false]], "localarrayidentifier (class in dacapo.store.array_store)": [[162, "dacapo.store.array_store.LocalArrayIdentifier", false]], "localarraystore (class in dacapo.store.local_array_store)": [[170, "dacapo.store.local_array_store.LocalArrayStore", false]], "localcontaineridentifier (class in dacapo.store.array_store)": [[162, "dacapo.store.array_store.LocalContainerIdentifier", false]], "localtorch (class in dacapo.compute_context)": [[13, "dacapo.compute_context.LocalTorch", false]], "localtorch (class in dacapo.compute_context.local_torch)": [[14, "dacapo.compute_context.local_torch.LocalTorch", false]], "localweightsstore (class in dacapo.store.local_weights_store)": [[171, "dacapo.store.local_weights_store.LocalWeightsStore", false]], "logger (in module dacapo.apply)": [[0, "dacapo.apply.logger", false]], "logger (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.logger", false]], "logger (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.logger", false]], "logger (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.logger", false]], "logger (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.logger", false]], "logger (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.logger", false]], "logger (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.logger", false]], "logger (in module dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.logger", false]], "logger (in module dacapo.experiments.starts.cosem_start)": [[73, "dacapo.experiments.starts.cosem_start.logger", false]], "logger (in module dacapo.experiments.starts.start)": [[76, "dacapo.experiments.starts.start.logger", false]], "logger (in module dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.logger", false]], "logger (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[92, "dacapo.experiments.tasks.evaluators.instance_evaluator.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.distance_predictor)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.hot_distance_predictor)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.inner_distance_predictor)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.one_hot_predictor)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.logger", false]], "logger (in module dacapo.experiments.trainers.gunpowder_trainer)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.logger", false]], "logger (in module dacapo.experiments.training_stats)": [[145, "dacapo.experiments.training_stats.logger", false]], "logger (in module dacapo.gp.elastic_augment_fuse)": [[152, "dacapo.gp.elastic_augment_fuse.logger", false]], "logger (in module dacapo.gp.gamma_noise)": [[153, "dacapo.gp.gamma_noise.logger", false]], "logger (in module dacapo.gp.reject_if_empty)": [[156, "dacapo.gp.reject_if_empty.logger", false]], "logger (in module dacapo.options)": [[158, "dacapo.options.logger", false]], "logger (in module dacapo.predict)": [[160, "dacapo.predict.logger", false]], "logger (in module dacapo.predict_local)": [[161, "dacapo.predict_local.logger", false]], "logger (in module dacapo.store.file_config_store)": [[167, "dacapo.store.file_config_store.logger", false]], "logger (in module dacapo.store.file_stats_store)": [[168, "dacapo.store.file_stats_store.logger", false]], "logger (in module dacapo.store.local_array_store)": [[170, "dacapo.store.local_array_store.logger", false]], "logger (in module dacapo.store.local_weights_store)": [[171, "dacapo.store.local_weights_store.logger", false]], "logger (in module dacapo.store.mongo_config_store)": [[172, "dacapo.store.mongo_config_store.logger", false]], "logger (in module dacapo.store.mongo_stats_store)": [[173, "dacapo.store.mongo_stats_store.logger", false]], "logger (in module dacapo.train)": [[177, "dacapo.train.logger", false]], "logger (in module dacapo.utils.affinities)": [[178, "dacapo.utils.affinities.logger", false]], "logger (in module dacapo.validate)": [[185, "dacapo.validate.logger", false]], "logicalorarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig", false]], "logicalorarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig", false]], "loss (class in dacapo.experiments.tasks.losses)": [[101, "dacapo.experiments.tasks.losses.Loss", false]], "loss (class in dacapo.experiments.tasks.losses.loss)": [[102, "dacapo.experiments.tasks.losses.loss.Loss", false]], "loss (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[78, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.loss", false], [78, "id1", false]], "loss (dacapo.experiments.tasks.affinitiestask attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTask.loss", false], [95, "id38", false]], "loss (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[80, "dacapo.experiments.tasks.distance_task.DistanceTask.loss", false], [80, "id1", false]], "loss (dacapo.experiments.tasks.distancetask attribute)": [[95, "dacapo.experiments.tasks.DistanceTask.loss", false], [95, "id18", false]], "loss (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[82, "dacapo.experiments.tasks.dummy_task.DummyTask.loss", false], [82, "id1", false]], "loss (dacapo.experiments.tasks.dummytask attribute)": [[95, "dacapo.experiments.tasks.DummyTask.loss", false], [95, "id7", false]], "loss (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.loss", false], [93, "id1", false]], "loss (dacapo.experiments.tasks.hotdistancetask attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTask.loss", false], [95, "id56", false]], "loss (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[96, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.loss", false], [96, "id1", false]], "loss (dacapo.experiments.tasks.innerdistancetask attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTask.loss", false], [95, "id46", false]], "loss (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[104, "dacapo.experiments.tasks.one_hot_task.OneHotTask.loss", false]], "loss (dacapo.experiments.tasks.onehottask attribute)": [[95, "dacapo.experiments.tasks.OneHotTask.loss", false]], "loss (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[125, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.loss", false]], "loss (dacapo.experiments.tasks.pretrainedtask attribute)": [[95, "dacapo.experiments.tasks.PretrainedTask.loss", false]], "loss (dacapo.experiments.tasks.task attribute)": [[95, "dacapo.experiments.tasks.Task.loss", false]], "loss (dacapo.experiments.tasks.task.task attribute)": [[127, "dacapo.experiments.tasks.task.Task.loss", false]], "loss (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[144, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.loss", false], [144, "id1", false]], "loss (dacapo.experiments.trainingiterationstats attribute)": [[69, "dacapo.experiments.TrainingIterationStats.loss", false], [69, "id11", false]], "lsd_pad() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_pad", false], [117, "id12", false]], "lsd_pad() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_pad", false], [121, "id34", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsd_weight_clipmax", false], [79, "id8", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsd_weight_clipmax", false], [95, "id35", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_weight_clipmax", false], [117, "id7", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_weight_clipmax", false], [121, "id29", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsd_weight_clipmin", false], [79, "id7", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsd_weight_clipmin", false], [95, "id34", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_weight_clipmin", false], [117, "id6", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_weight_clipmin", false], [121, "id28", false]], "lsds (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsds", false], [79, "id1", false]], "lsds (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsds", false], [95, "id28", false]], "lsds (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsds", false], [117, "id1", false]], "lsds (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsds", false], [121, "id23", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsds_to_affs_weight_ratio", false], [79, "id4", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsds_to_affs_weight_ratio", false], [95, "id31", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss attribute)": [[98, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.lsds_to_affs_weight_ratio", false], [98, "id1", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.losses.affinitiesloss attribute)": [[101, "dacapo.experiments.tasks.losses.AffinitiesLoss.lsds_to_affs_weight_ratio", false], [101, "id4", false]], "makeraw (class in dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.MakeRaw", false]], "makeraw.pipeline (class in dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline", false]], "mask (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.Mask", false]], "mask (class in dacapo.experiments.arraytypes.mask)": [[29, "dacapo.experiments.arraytypes.mask.Mask", false]], "mask (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.mask", false], [54, "id3", false]], "mask (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.mask", false], [48, "id3", false]], "mask (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.mask", false], [55, "id2", false]], "mask (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.mask", false], [54, "id15", false]], "mask (dacapo.experiments.datasplits.datasets.simple.simpledataset property)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.mask", false]], "mask (dacapo.experiments.datasplits.datasets.simpledataset property)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.mask", false]], "mask (dacapo.experiments.datasplits.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.ArrayKey.MASK", false], [64, "id2", false]], "mask (dacapo.experiments.datasplits.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.DataKey.MASK", false]], "mask (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.ArrayKey.MASK", false], [65, "id2", false]], "mask (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.DataKey.MASK", false]], "mask_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.mask_config", false], [56, "id3", false]], "mask_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.mask_config", false], [54, "id21", false]], "mask_distances (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.mask_distances", false], [81, "id4", false]], "mask_distances (dacapo.experiments.tasks.distancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.mask_distances", false], [95, "id14", false]], "mask_distances (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[94, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.mask_distances", false], [94, "id5", false]], "mask_distances (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTaskConfig.mask_distances", false], [95, "id54", false]], "mask_distances (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.mask_distances", false], [118, "id1", false]], "mask_distances (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.mask_distances", false], [121, "id6", false]], "mask_distances (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.mask_distances", false], [120, "id3", false]], "mask_distances (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.mask_distances", false], [121, "id49", false]], "mask_integral_downsample_factor (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.mask_integral_downsample_factor", false], [138, "id7", false]], "mask_integral_downsample_factor (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.mask_integral_downsample_factor", false], [140, "id28", false]], "mask_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.mask_key", false], [150, "id2", false]], "mask_key (dacapo.gp.dacapotargetfilter attribute)": [[154, "dacapo.gp.DaCapoTargetFilter.mask_key", false], [154, "id2", false]], "mask_name (dacapo.experiments.datasplits.datasets.simple.simpledataset attribute)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.mask_name", false]], "mask_name (dacapo.experiments.datasplits.datasets.simpledataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.mask_name", false]], "mask_name (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.mask_name", false]], "mask_name (dacapo.experiments.datasplits.simpledatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.mask_name", false]], "match_heads() (in module dacapo.experiments.starts.start)": [[76, "dacapo.experiments.starts.start.match_heads", false]], "max (dacapo.experiments.arraytypes.distancearray attribute)": [[27, "dacapo.experiments.arraytypes.DistanceArray.max", false]], "max (dacapo.experiments.arraytypes.distances.distancearray attribute)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.max", false]], "max (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.max", false], [28, "id2", false]], "max (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.max", false], [27, "id4", false]], "max (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.max", false], [38, "id16", false]], "max (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.max", false], [39, "id2", false]], "max_distance (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.max_distance", false], [120, "id4", false]], "max_distance (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.max_distance", false], [121, "id50", false]], "max_distance (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.max_distance", false]], "max_gt_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_gt_downsample", false], [60, "id16", false]], "max_gt_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.max_gt_downsample", false], [63, "id19", false]], "max_gt_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_gt_upsample", false], [60, "id17", false]], "max_gt_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.max_gt_upsample", false], [63, "id20", false]], "max_raw_training_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_training_downsample", false], [60, "id18", false]], "max_raw_training_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_training_downsample", false], [63, "id21", false]], "max_raw_training_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_training_upsample", false], [60, "id19", false]], "max_raw_training_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_training_upsample", false], [63, "id22", false]], "max_raw_validation_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_validation_downsample", false], [60, "id20", false]], "max_raw_validation_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_validation_downsample", false], [63, "id23", false]], "max_raw_validation_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_validation_upsample", false], [60, "id21", false]], "max_raw_validation_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_validation_upsample", false], [63, "id24", false]], "max_retries (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.max_retries", false]], "max_retries (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.max_retries", false]], "max_validation_volume_size (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_validation_volume_size", false], [60, "id26", false]], "max_validation_volume_size (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.max_validation_volume_size", false], [63, "id29", false]], "mean_false_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_distance", false], [84, "id9", false]], "mean_false_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_distance", false], [90, "id32", false]], "mean_false_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_distance", false], [85, "id22", false]], "mean_false_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_distance", false], [85, "id52", false]], "mean_false_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_distance_clipped", false], [84, "id12", false]], "mean_false_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_distance_clipped", false], [90, "id35", false]], "mean_false_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_distance_clipped", false], [85, "id25", false]], "mean_false_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_distance_clipped", false], [85, "id53", false]], "mean_false_negative_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_negative_distance", false], [84, "id10", false]], "mean_false_negative_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_negative_distance", false], [90, "id33", false]], "mean_false_negative_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_negative_distance", false], [85, "id23", false]], "mean_false_negative_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_negative_distance", false], [85, "id51", false]], "mean_false_negative_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_negative_distance_clipped", false], [84, "id13", false]], "mean_false_negative_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_negative_distance_clipped", false], [90, "id36", false]], "mean_false_negative_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_negative_distance_clipped", false], [85, "id26", false]], "mean_false_negative_distances_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_negative_distances_clipped", false], [85, "id48", false]], "mean_false_positive_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_positive_distance", false], [84, "id11", false]], "mean_false_positive_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_positive_distance", false], [90, "id34", false]], "mean_false_positive_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_positive_distance", false], [85, "id24", false]], "mean_false_positive_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_positive_distance", false], [85, "id49", false]], "mean_false_positive_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_positive_distance_clipped", false], [84, "id14", false]], "mean_false_positive_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_positive_distance_clipped", false], [90, "id37", false]], "mean_false_positive_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_positive_distance_clipped", false], [85, "id27", false]], "mean_false_positive_distances_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_positive_distances_clipped", false], [85, "id47", false]], "membrane_like (dacapo.utils.pipeline.makeraw attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.membrane_like", false]], "membrane_like (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline.membrane_like", false]], "membrane_size (dacapo.utils.pipeline.makeraw attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.membrane_size", false]], "membrane_size (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline.membrane_size", false]], "mergeinstancesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig", false]], "mergeinstancesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig", false]], "message (dacapo.store.config_store.duplicatenameerror attribute)": [[163, "dacapo.store.config_store.DuplicateNameError.message", false]], "min (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.min", false], [28, "id1", false]], "min (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.min", false], [27, "id3", false]], "min (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.min", false], [38, "id15", false]], "min (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.min", false], [39, "id1", false]], "min_masked (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.min_masked", false], [138, "id5", false]], "min_masked (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[139, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.min_masked", false], [139, "id4", false]], "min_masked (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.min_masked", false], [140, "id26", false]], "min_masked (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainerConfig.min_masked", false], [140, "id19", false]], "min_size (dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.dummypostprocessorparameters attribute)": [[109, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters.min_size", false], [109, "id0", false]], "min_size (dacapo.experiments.tasks.post_processors.dummypostprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters.min_size", false], [110, "id4", false]], "min_size (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[116, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.min_size", false]], "min_size (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.min_size", false]], "min_training_volume_size (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.min_training_volume_size", false], [60, "id22", false]], "min_training_volume_size (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.min_training_volume_size", false], [63, "id25", false]], "mirror_augment (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[129, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.mirror_augment", false], [129, "id2", false]], "mirror_augment (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig attribute)": [[130, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.mirror_augment", false], [130, "id0", false]], "mirror_augment (dacapo.experiments.trainers.dummytrainer attribute)": [[140, "dacapo.experiments.trainers.DummyTrainer.mirror_augment", false], [140, "id11", false]], "mirror_augment (dacapo.experiments.trainers.dummytrainerconfig attribute)": [[140, "dacapo.experiments.trainers.DummyTrainerConfig.mirror_augment", false], [140, "id7", false]], "missingannotationsmaskconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig", false]], "missingannotationsmaskconfig (class in dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig", false]], "mode (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.mode", false]], "mode (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.mode", false]], "model (class in dacapo.experiments)": [[69, "dacapo.experiments.Model", false]], "model (class in dacapo.experiments.model)": [[70, "dacapo.experiments.model.Model", false]], "model (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.model", false], [71, "id6", false]], "model (dacapo.store.weights_store.weights attribute)": [[175, "dacapo.store.weights_store.Weights.model", false], [175, "id1", false]], "model_configs (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.model_configs", false]], "module": [[0, "module-dacapo.apply", false], [1, "module-dacapo.blockwise.argmax_worker", false], [2, "module-dacapo.blockwise.blockwise_task", false], [3, "module-dacapo.blockwise.empanada_function", false], [4, "module-dacapo.blockwise", false], [5, "module-dacapo.blockwise.predict_worker", false], [6, "module-dacapo.blockwise.relabel_worker", false], [7, "module-dacapo.blockwise.scheduler", false], [8, "module-dacapo.blockwise.segment_worker", false], [9, "module-dacapo.blockwise.threshold_worker", false], [10, "module-dacapo.blockwise.watershed_function", false], [11, "module-dacapo.compute_context.bsub", false], [12, "module-dacapo.compute_context.compute_context", false], [13, "module-dacapo.compute_context", false], [14, "module-dacapo.compute_context.local_torch", false], [15, "module-dacapo.experiments.architectures.architecture", false], [16, "module-dacapo.experiments.architectures.architecture_config", false], [17, "module-dacapo.experiments.architectures.cnnectome_unet", false], [18, "module-dacapo.experiments.architectures.cnnectome_unet_config", false], [19, "module-dacapo.experiments.architectures.dummy_architecture", false], [20, "module-dacapo.experiments.architectures.dummy_architecture_config", false], [21, "module-dacapo.experiments.architectures", false], [22, "module-dacapo.experiments.arraytypes.annotations", false], [23, "module-dacapo.experiments.arraytypes.arraytype", false], [24, "module-dacapo.experiments.arraytypes.binary", false], [25, "module-dacapo.experiments.arraytypes.distances", false], [26, "module-dacapo.experiments.arraytypes.embedding", false], [27, "module-dacapo.experiments.arraytypes", false], [28, "module-dacapo.experiments.arraytypes.intensities", false], [29, "module-dacapo.experiments.arraytypes.mask", false], [30, "module-dacapo.experiments.arraytypes.probabilities", false], [31, "module-dacapo.experiments.datasplits.datasets.arrays.array_config", false], [32, "module-dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", false], [33, "module-dacapo.experiments.datasplits.datasets.arrays.concat_array_config", false], [34, "module-dacapo.experiments.datasplits.datasets.arrays.constant_array_config", false], [35, "module-dacapo.experiments.datasplits.datasets.arrays.crop_array_config", false], [36, "module-dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", false], [37, "module-dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", false], [38, "module-dacapo.experiments.datasplits.datasets.arrays", false], [39, "module-dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", false], [40, "module-dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", false], [41, "module-dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", false], [42, "module-dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", false], [43, "module-dacapo.experiments.datasplits.datasets.arrays.ones_array_config", false], [44, "module-dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", false], [45, "module-dacapo.experiments.datasplits.datasets.arrays.sum_array_config", false], [46, "module-dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", false], [47, "module-dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", false], [48, "module-dacapo.experiments.datasplits.datasets.dataset", false], [49, "module-dacapo.experiments.datasplits.datasets.dataset_config", false], [50, "module-dacapo.experiments.datasplits.datasets.dummy_dataset", false], [51, "module-dacapo.experiments.datasplits.datasets.dummy_dataset_config", false], [52, "module-dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", false], [53, "module-dacapo.experiments.datasplits.datasets.graphstores", false], [54, "module-dacapo.experiments.datasplits.datasets", false], [55, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset", false], [56, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", false], [57, "module-dacapo.experiments.datasplits.datasets.simple", false], [58, "module-dacapo.experiments.datasplits.datasplit", false], [59, "module-dacapo.experiments.datasplits.datasplit_config", false], [60, "module-dacapo.experiments.datasplits.datasplit_generator", false], [61, "module-dacapo.experiments.datasplits.dummy_datasplit", false], [62, "module-dacapo.experiments.datasplits.dummy_datasplit_config", false], [63, "module-dacapo.experiments.datasplits", false], [64, "module-dacapo.experiments.datasplits.keys", false], [65, "module-dacapo.experiments.datasplits.keys.keys", false], [66, "module-dacapo.experiments.datasplits.simple_config", false], [67, "module-dacapo.experiments.datasplits.train_validate_datasplit", false], [68, "module-dacapo.experiments.datasplits.train_validate_datasplit_config", false], [69, "module-dacapo.experiments", false], [70, "module-dacapo.experiments.model", false], [71, "module-dacapo.experiments.run", false], [72, "module-dacapo.experiments.run_config", false], [73, "module-dacapo.experiments.starts.cosem_start", false], [74, "module-dacapo.experiments.starts.cosem_start_config", false], [75, "module-dacapo.experiments.starts", false], [76, "module-dacapo.experiments.starts.start", false], [77, "module-dacapo.experiments.starts.start_config", false], [78, "module-dacapo.experiments.tasks.affinities_task", false], [79, "module-dacapo.experiments.tasks.affinities_task_config", false], [80, "module-dacapo.experiments.tasks.distance_task", false], [81, "module-dacapo.experiments.tasks.distance_task_config", false], [82, "module-dacapo.experiments.tasks.dummy_task", false], [83, "module-dacapo.experiments.tasks.dummy_task_config", false], [84, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", false], [85, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", false], [86, "module-dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", false], [87, "module-dacapo.experiments.tasks.evaluators.dummy_evaluator", false], [88, "module-dacapo.experiments.tasks.evaluators.evaluation_scores", false], [89, "module-dacapo.experiments.tasks.evaluators.evaluator", false], [90, "module-dacapo.experiments.tasks.evaluators", false], [91, "module-dacapo.experiments.tasks.evaluators.instance_evaluation_scores", false], [92, "module-dacapo.experiments.tasks.evaluators.instance_evaluator", false], [93, "module-dacapo.experiments.tasks.hot_distance_task", false], [94, "module-dacapo.experiments.tasks.hot_distance_task_config", false], [95, "module-dacapo.experiments.tasks", false], [96, "module-dacapo.experiments.tasks.inner_distance_task", false], [97, "module-dacapo.experiments.tasks.inner_distance_task_config", false], [98, "module-dacapo.experiments.tasks.losses.affinities_loss", false], [99, "module-dacapo.experiments.tasks.losses.dummy_loss", false], [100, "module-dacapo.experiments.tasks.losses.hot_distance_loss", false], [101, "module-dacapo.experiments.tasks.losses", false], [102, "module-dacapo.experiments.tasks.losses.loss", false], [103, "module-dacapo.experiments.tasks.losses.mse_loss", false], [104, "module-dacapo.experiments.tasks.one_hot_task", false], [105, "module-dacapo.experiments.tasks.one_hot_task_config", false], [106, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor", false], [107, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", false], [108, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor", false], [109, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", false], [110, "module-dacapo.experiments.tasks.post_processors", false], [111, "module-dacapo.experiments.tasks.post_processors.post_processor", false], [112, "module-dacapo.experiments.tasks.post_processors.post_processor_parameters", false], [113, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor", false], [114, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", false], [115, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor", false], [116, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", false], [117, "module-dacapo.experiments.tasks.predictors.affinities_predictor", false], [118, "module-dacapo.experiments.tasks.predictors.distance_predictor", false], [119, "module-dacapo.experiments.tasks.predictors.dummy_predictor", false], [120, "module-dacapo.experiments.tasks.predictors.hot_distance_predictor", false], [121, "module-dacapo.experiments.tasks.predictors", false], [122, "module-dacapo.experiments.tasks.predictors.inner_distance_predictor", false], [123, "module-dacapo.experiments.tasks.predictors.one_hot_predictor", false], [124, "module-dacapo.experiments.tasks.predictors.predictor", false], [125, "module-dacapo.experiments.tasks.pretrained_task", false], [126, "module-dacapo.experiments.tasks.pretrained_task_config", false], [127, "module-dacapo.experiments.tasks.task", false], [128, "module-dacapo.experiments.tasks.task_config", false], [129, "module-dacapo.experiments.trainers.dummy_trainer", false], [130, "module-dacapo.experiments.trainers.dummy_trainer_config", false], [131, "module-dacapo.experiments.trainers.gp_augments.augment_config", false], [132, "module-dacapo.experiments.trainers.gp_augments.elastic_config", false], [133, "module-dacapo.experiments.trainers.gp_augments.gamma_config", false], [134, "module-dacapo.experiments.trainers.gp_augments", false], [135, "module-dacapo.experiments.trainers.gp_augments.intensity_config", false], [136, "module-dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", false], [137, "module-dacapo.experiments.trainers.gp_augments.simple_config", false], [138, "module-dacapo.experiments.trainers.gunpowder_trainer", false], [139, "module-dacapo.experiments.trainers.gunpowder_trainer_config", false], [140, "module-dacapo.experiments.trainers", false], [141, "module-dacapo.experiments.trainers.optimizers", false], [142, "module-dacapo.experiments.trainers.trainer", false], [143, "module-dacapo.experiments.trainers.trainer_config", false], [144, "module-dacapo.experiments.training_iteration_stats", false], [145, "module-dacapo.experiments.training_stats", false], [146, "module-dacapo.experiments.validation_iteration_scores", false], [147, "module-dacapo.experiments.validation_scores", false], [148, "module-dacapo.ext", false], [149, "module-dacapo.gp.copy", false], [150, "module-dacapo.gp.dacapo_create_target", false], [151, "module-dacapo.gp.dacapo_points_source", false], [152, "module-dacapo.gp.elastic_augment_fuse", false], [153, "module-dacapo.gp.gamma_noise", false], [154, "module-dacapo.gp", false], [155, "module-dacapo.gp.product", false], [156, "module-dacapo.gp.reject_if_empty", false], [157, "module-dacapo", false], [158, "module-dacapo.options", false], [159, "module-dacapo.plot", false], [160, "module-dacapo.predict", false], [161, "module-dacapo.predict_local", false], [162, "module-dacapo.store.array_store", false], [163, "module-dacapo.store.config_store", false], [164, "module-dacapo.store.conversion_hooks", false], [165, "module-dacapo.store.converter", false], [166, "module-dacapo.store.create_store", false], [167, "module-dacapo.store.file_config_store", false], [168, "module-dacapo.store.file_stats_store", false], [169, "module-dacapo.store", false], [170, "module-dacapo.store.local_array_store", false], [171, "module-dacapo.store.local_weights_store", false], [172, "module-dacapo.store.mongo_config_store", false], [173, "module-dacapo.store.mongo_stats_store", false], [174, "module-dacapo.store.stats_store", false], [175, "module-dacapo.store.weights_store", false], [176, "module-dacapo.tmp", false], [177, "module-dacapo.train", false], [178, "module-dacapo.utils.affinities", false], [179, "module-dacapo.utils.array_utils", false], [180, "module-dacapo.utils.balance_weights", false], [181, "module-dacapo.utils", false], [182, "module-dacapo.utils.pipeline", false], [183, "module-dacapo.utils.view", false], [184, "module-dacapo.utils.voi", false], [185, "module-dacapo.validate", false], [187, "module-dacapo", false], [192, "module-dacapo", false], [198, "module-dacapo", false]], "module() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.module", false]], "module() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.module", false]], "mongo_db_host (dacapo.options.dacapoconfig attribute)": [[158, "dacapo.options.DaCapoConfig.mongo_db_host", false], [158, "id3", false]], "mongo_db_name (dacapo.options.dacapoconfig attribute)": [[158, "dacapo.options.DaCapoConfig.mongo_db_name", false], [158, "id4", false]], "mongoconfigstore (class in dacapo.store.mongo_config_store)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore", false]], "mongostatsstore (class in dacapo.store.mongo_stats_store)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore", false]], "most_recent_iteration (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.most_recent_iteration", false]], "move_optimizer() (dacapo.experiments.run.run method)": [[71, "dacapo.experiments.run.Run.move_optimizer", false]], "moving_counts (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.moving_counts", false]], "moving_counts (dacapo.gp.dacapotargetfilter attribute)": [[154, "dacapo.gp.DaCapoTargetFilter.moving_counts", false]], "mseloss (class in dacapo.experiments.tasks.losses)": [[101, "dacapo.experiments.tasks.losses.MSELoss", false]], "mseloss (class in dacapo.experiments.tasks.losses.mse_loss)": [[103, "dacapo.experiments.tasks.losses.mse_loss.MSELoss", false]], "multichannelbinarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[90, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores", false]], "multichannelbinarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores", false]], "name (dacapo.experiments.architectures.architecture_config.architectureconfig attribute)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig.name", false], [16, "id0", false]], "name (dacapo.experiments.architectures.architectureconfig attribute)": [[21, "dacapo.experiments.architectures.ArchitectureConfig.name", false], [21, "id6", false]], "name (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig attribute)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.name", false], [31, "id0", false]], "name (dacapo.experiments.datasplits.datasets.arrays.arrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.name", false], [38, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.name", false], [54, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.name", false], [48, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig attribute)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.name", false], [49, "id0", false]], "name (dacapo.experiments.datasplits.datasets.datasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.name", false], [54, "id6", false]], "name (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset attribute)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.dummydataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.simple.simpledataset attribute)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.simpledataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.name", false]], "name (dacapo.experiments.datasplits.datasplit_config.datasplitconfig attribute)": [[59, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig.name", false], [59, "id0", false]], "name (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.name", false], [60, "id10", false]], "name (dacapo.experiments.datasplits.datasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.DataSplitConfig.name", false], [63, "id2", false]], "name (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.name", false], [63, "id13", false]], "name (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.name", false]], "name (dacapo.experiments.datasplits.simpledatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.name", false]], "name (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.name", false], [71, "id0", false]], "name (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.name", false]], "name (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.name", false]], "name (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[73, "dacapo.experiments.starts.cosem_start.CosemStart.name", false], [73, "id2", false]], "name (dacapo.experiments.starts.cosemstart attribute)": [[75, "dacapo.experiments.starts.CosemStart.name", false], [75, "id6", false]], "name (dacapo.experiments.tasks.losses.dummy_loss.dummyloss attribute)": [[99, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss.name", false]], "name (dacapo.experiments.tasks.losses.dummyloss attribute)": [[101, "dacapo.experiments.tasks.losses.DummyLoss.name", false]], "name (dacapo.experiments.tasks.task_config.taskconfig attribute)": [[128, "dacapo.experiments.tasks.task_config.TaskConfig.name", false], [128, "id0", false]], "name (dacapo.experiments.tasks.taskconfig attribute)": [[95, "dacapo.experiments.tasks.TaskConfig.name", false], [95, "id0", false]], "name (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[143, "dacapo.experiments.trainers.trainer_config.TrainerConfig.name", false], [143, "id0", false]], "name (dacapo.experiments.trainers.trainerconfig attribute)": [[140, "dacapo.experiments.trainers.TrainerConfig.name", false], [140, "id3", false]], "neighborhood (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.neighborhood", false], [79, "id0", false]], "neighborhood (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.neighborhood", false], [95, "id27", false]], "neighborhood (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.neighborhood", false], [117, "id0", false]], "neighborhood (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.neighborhood", false], [121, "id22", false]], "neuroglancerrunviewer (class in dacapo.utils.view)": [[183, "dacapo.utils.view.NeuroglancerRunViewer", false]], "new_validation_checker() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.new_validation_checker", false], [183, "id21", false]], "next() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.next", false], [138, "id10", false]], "next() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.next", false], [140, "id31", false]], "next_conv_kernel_sizes (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.next_conv_kernel_sizes", false], [17, "id32", false]], "node() (dacapo.experiments.trainers.augmentconfig method)": [[140, "dacapo.experiments.trainers.AugmentConfig.node", false], [140, "id32", false]], "node() (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig method)": [[131, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig.node", false], [131, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.augmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.AugmentConfig.node", false], [134, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.node", false], [132, "id5", false]], "node() (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.node", false], [134, "id6", false]], "node() (dacapo.experiments.trainers.gp_augments.gamma_config.gammaaugmentconfig method)": [[133, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig.node", false], [133, "id1", false]], "node() (dacapo.experiments.trainers.gp_augments.gammaaugmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig.node", false], [134, "id9", false]], "node() (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig method)": [[135, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.node", false], [135, "id3", false]], "node() (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig method)": [[136, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.node", false], [136, "id2", false]], "node() (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.node", false], [134, "id13", false]], "node() (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.node", false], [134, "id16", false]], "node() (dacapo.experiments.trainers.gp_augments.simple_config.simpleaugmentconfig method)": [[137, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig.node", false], [137, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.simpleaugmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig.node", false], [134, "id7", false]], "non_empty (dacapo.experiments.datasplits.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.ArrayKey.NON_EMPTY", false], [64, "id3", false]], "non_empty (dacapo.experiments.datasplits.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.DataKey.NON_EMPTY", false]], "non_empty (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.ArrayKey.NON_EMPTY", false], [65, "id3", false]], "non_empty (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.DataKey.NON_EMPTY", false]], "none() (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig method)": [[105, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.None", false]], "none() (dacapo.experiments.tasks.onehottaskconfig method)": [[95, "dacapo.experiments.tasks.OneHotTaskConfig.None", false]], "norm (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.norm", false], [120, "id1", false]], "norm (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.norm", false], [121, "id47", false]], "norm (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.norm", false]], "nosuchmodule (class in dacapo.ext)": [[148, "dacapo.ext.NoSuchModule", false]], "np_to_funlib_array() (in module dacapo.tmp)": [[176, "dacapo.tmp.np_to_funlib_array", false]], "num_affinities (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss attribute)": [[98, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.num_affinities", false], [98, "id0", false]], "num_affinities (dacapo.experiments.tasks.losses.affinitiesloss attribute)": [[101, "dacapo.experiments.tasks.losses.AffinitiesLoss.num_affinities", false], [101, "id3", false]], "num_channels() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.num_channels", false]], "num_channels() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.num_channels", false]], "num_channels_from_array() (in module dacapo.tmp)": [[176, "dacapo.tmp.num_channels_from_array", false]], "num_classes (dacapo.experiments.arraytypes.arraytype.arraytype attribute)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.num_classes", false]], "num_cpus (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.num_cpus", false], [13, "id8", false]], "num_cpus (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.num_cpus", false], [11, "id2", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.num_data_fetchers", false], [138, "id2", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[139, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.num_data_fetchers", false], [139, "id1", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.num_data_fetchers", false], [140, "id23", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainerConfig.num_data_fetchers", false], [140, "id16", false]], "num_fmaps (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_fmaps", false], [17, "id2", false]], "num_fmaps (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.num_fmaps", false], [18, "id4", false]], "num_fmaps (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_fmaps", false], [21, "id34", false]], "num_fmaps (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.num_fmaps", false], [21, "id23", false]], "num_gpus (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.num_gpus", false], [13, "id7", false]], "num_gpus (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.num_gpus", false], [11, "id1", false]], "num_heads (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_heads", false]], "num_heads (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.num_heads", false], [17, "id12", false]], "num_heads (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_heads", false]], "num_in_channels (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.architecture property)": [[21, "id2", false]], "num_in_channels (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id2", false]], "num_in_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id4", false]], "num_in_channels (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.num_in_channels", false], [20, "id1", false]], "num_in_channels (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id16", false]], "num_in_channels (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.num_in_channels", false], [21, "id9", false]], "num_in_channels (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.num_in_channels", false], [69, "id3", false]], "num_in_channels (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.num_in_channels", false], [70, "id3", false]], "num_in_channels() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.num_in_channels", false]], "num_in_channels() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.num_in_channels", false]], "num_iterations (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.num_iterations", false]], "num_iterations (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.num_iterations", false]], "num_levels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.num_levels", false], [17, "id11", false]], "num_lsd_voxels (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.num_lsd_voxels", false], [79, "id2", false]], "num_lsd_voxels (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.num_lsd_voxels", false], [95, "id29", false]], "num_out_channels (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.architecture property)": [[21, "id3", false]], "num_out_channels (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id3", false]], "num_out_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id5", false]], "num_out_channels (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.num_out_channels", false], [20, "id2", false]], "num_out_channels (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id17", false]], "num_out_channels (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.num_out_channels", false], [21, "id10", false]], "num_out_channels (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.num_out_channels", false], [69, "id0", false]], "num_out_channels (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.num_out_channels", false], [70, "id0", false]], "num_out_channels() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.num_out_channels", false]], "num_out_channels() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.num_out_channels", false]], "num_points (dacapo.utils.pipeline.createpoints attribute)": [[182, "dacapo.utils.pipeline.CreatePoints.num_points", false], [182, "id1", false]], "num_voxels (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.num_voxels", false], [117, "id2", false]], "num_voxels (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.num_voxels", false], [121, "id24", false]], "num_workers (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.num_workers", false]], "num_workers (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.num_workers", false]], "offset (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.offset", false], [46, "id1", false]], "offsets (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor attribute)": [[115, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.offsets", false], [115, "id0", false]], "offsets (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[116, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.offsets", false]], "offsets (dacapo.experiments.tasks.post_processors.watershedpostprocessor attribute)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.offsets", false], [110, "id17", false]], "offsets (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.offsets", false]], "onehotpredictor (class in dacapo.experiments.tasks.predictors)": [[121, "dacapo.experiments.tasks.predictors.OneHotPredictor", false]], "onehotpredictor (class in dacapo.experiments.tasks.predictors.one_hot_predictor)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor", false]], "onehottask (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.OneHotTask", false]], "onehottask (class in dacapo.experiments.tasks.one_hot_task)": [[104, "dacapo.experiments.tasks.one_hot_task.OneHotTask", false]], "onehottaskconfig (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.OneHotTaskConfig", false]], "onehottaskconfig (class in dacapo.experiments.tasks.one_hot_task_config)": [[105, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig", false]], "onesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig", false]], "onesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.ones_array_config)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig", false]], "oom_limit (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch.oom_limit", false], [14, "id1", false]], "oom_limit (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch.oom_limit", false], [13, "id4", false]], "open_from_array_identitifier() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.open_from_array_identitifier", false], [183, "id16", false]], "open_from_identifier() (in module dacapo.tmp)": [[176, "dacapo.tmp.open_from_identifier", false]], "optimizer (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.optimizer", false], [71, "id7", false]], "optimizer (dacapo.store.weights_store.weights attribute)": [[175, "dacapo.store.weights_store.Weights.optimizer", false], [175, "id0", false]], "options (class in dacapo)": [[157, "dacapo.Options", false]], "options (class in dacapo.options)": [[158, "dacapo.options.Options", false]], "orthoplane_inference() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.orthoplane_inference", false]], "out_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.out_channels", false], [17, "id14", false]], "output_array_type (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor property)": [[117, "id17", false]], "output_array_type (dacapo.experiments.tasks.predictors.affinitiespredictor property)": [[121, "id39", false]], "output_array_type (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor property)": [[118, "id7", false]], "output_array_type (dacapo.experiments.tasks.predictors.distancepredictor property)": [[121, "id12", false]], "output_array_type (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor property)": [[119, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.dummypredictor property)": [[121, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor property)": [[122, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.innerdistancepredictor property)": [[121, "id44", false]], "output_array_type (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor property)": [[123, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.onehotpredictor property)": [[121, "id20", false]], "output_array_type (dacapo.experiments.tasks.predictors.predictor property)": [[121, "dacapo.experiments.tasks.predictors.Predictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.predictor.predictor property)": [[124, "dacapo.experiments.tasks.predictors.predictor.Predictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[121, "dacapo.experiments.tasks.predictors.DummyPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.OneHotPredictor.output_array_type", false]], "output_resolution (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.output_resolution", false], [60, "id13", false]], "output_resolution (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.output_resolution", false], [63, "id16", false]], "output_shape (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.output_shape", false]], "output_shape (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.output_shape", false]], "outputidentifier (in module dacapo.experiments.tasks.evaluators.evaluator)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.OutputIdentifier", false]], "overlap_measures_filter() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.overlap_measures_filter", false]], "p (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[156, "dacapo.gp.reject_if_empty.RejectIfEmpty.p", false], [156, "id0", false]], "p (dacapo.gp.rejectifempty attribute)": [[154, "dacapo.gp.RejectIfEmpty.p", false], [154, "id13", false]], "padding (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.padding", false], [17, "id8", false]], "padding (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.padding", false]], "padding (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.padding", false], [18, "id11", false]], "padding (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.padding", false], [21, "id40", false]], "padding (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.padding", false], [21, "id30", false]], "padding() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.padding", false], [120, "id13", false]], "padding() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.padding", false], [121, "id59", false]], "padding() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.predictor method)": [[121, "dacapo.experiments.tasks.predictors.Predictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[124, "dacapo.experiments.tasks.predictors.predictor.Predictor.padding", false]], "padding() (in module dacapo.utils.affinities)": [[178, "dacapo.utils.affinities.padding", false]], "parameter (dacapo.utils.view.bestscore attribute)": [[183, "dacapo.utils.view.BestScore.parameter", false], [183, "id3", false]], "parameter_names (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters property)": [[112, "id1", false]], "parameter_names (dacapo.experiments.tasks.post_processors.postprocessorparameters property)": [[110, "id6", false]], "parameter_names (dacapo.experiments.validation_scores.validationscores property)": [[147, "id10", false]], "parameter_names (dacapo.experiments.validationscores property)": [[69, "id28", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.argmaxpostprocessorparameters method)": [[107, "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.argmaxpostprocessorparameters method)": [[110, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.dummypostprocessorparameters method)": [[109, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.dummypostprocessorparameters method)": [[110, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters method)": [[112, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.postprocessorparameters method)": [[110, "dacapo.experiments.tasks.post_processors.PostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.parameter_names", false]], "parameter_names() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.parameter_names", false]], "parameters (dacapo.experiments.tasks.task property)": [[95, "dacapo.experiments.tasks.Task.parameters", false]], "parameters (dacapo.experiments.tasks.task.task property)": [[127, "dacapo.experiments.tasks.task.Task.parameters", false]], "parameters (dacapo.experiments.validation_scores.validationscores attribute)": [[147, "dacapo.experiments.validation_scores.ValidationScores.parameters", false], [147, "id0", false]], "parameters (dacapo.experiments.validationscores attribute)": [[69, "dacapo.experiments.ValidationScores.parameters", false], [69, "id18", false]], "path (dacapo.experiments.datasplits.datasets.simple.simpledataset attribute)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.path", false]], "path (dacapo.experiments.datasplits.datasets.simpledataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.path", false]], "path (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.path", false]], "path (dacapo.experiments.datasplits.simpledatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.path", false]], "path (dacapo.store.file_config_store.fileconfigstore attribute)": [[167, "dacapo.store.file_config_store.FileConfigStore.path", false], [167, "id0", false]], "path (dacapo.store.file_stats_store.filestatsstore attribute)": [[168, "dacapo.store.file_stats_store.FileStatsStore.path", false]], "path (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.path", false]], "path (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.path", false]], "path (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.path", false]], "path (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.path", false]], "path (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.path", false]], "plot_runs() (in module dacapo.plot)": [[159, "dacapo.plot.plot_runs", false]], "post_processor (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[78, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.post_processor", false], [78, "id2", false]], "post_processor (dacapo.experiments.tasks.affinitiestask attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTask.post_processor", false], [95, "id39", false]], "post_processor (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[80, "dacapo.experiments.tasks.distance_task.DistanceTask.post_processor", false], [80, "id2", false]], "post_processor (dacapo.experiments.tasks.distancetask attribute)": [[95, "dacapo.experiments.tasks.DistanceTask.post_processor", false], [95, "id19", false]], "post_processor (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[82, "dacapo.experiments.tasks.dummy_task.DummyTask.post_processor", false], [82, "id2", false]], "post_processor (dacapo.experiments.tasks.dummytask attribute)": [[95, "dacapo.experiments.tasks.DummyTask.post_processor", false], [95, "id8", false]], "post_processor (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.post_processor", false], [93, "id2", false]], "post_processor (dacapo.experiments.tasks.hotdistancetask attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTask.post_processor", false], [95, "id57", false]], "post_processor (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[96, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.post_processor", false], [96, "id2", false]], "post_processor (dacapo.experiments.tasks.innerdistancetask attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTask.post_processor", false], [95, "id47", false]], "post_processor (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[104, "dacapo.experiments.tasks.one_hot_task.OneHotTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.onehottask attribute)": [[95, "dacapo.experiments.tasks.OneHotTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[125, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.pretrainedtask attribute)": [[95, "dacapo.experiments.tasks.PretrainedTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.task attribute)": [[95, "dacapo.experiments.tasks.Task.post_processor", false]], "post_processor (dacapo.experiments.tasks.task.task attribute)": [[127, "dacapo.experiments.tasks.task.Task.post_processor", false]], "postprocessor (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.PostProcessor", false]], "postprocessor (class in dacapo.experiments.tasks.post_processors.post_processor)": [[111, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor", false]], "postprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.PostProcessorParameters", false]], "postprocessorparameters (class in dacapo.experiments.tasks.post_processors.post_processor_parameters)": [[112, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters", false]], "precision (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.precision", false], [84, "id18", false]], "precision (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.precision", false], [90, "id41", false]], "precision() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.precision", false], [85, "id18", false]], "precision_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.precision_with_tolerance", false], [84, "id15", false]], "precision_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.precision_with_tolerance", false], [90, "id38", false]], "precision_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.precision_with_tolerance", false], [85, "id30", false]], "precision_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.precision_with_tolerance", false], [85, "id44", false]], "predict() (in module dacapo)": [[157, "dacapo.predict", false]], "predict() (in module dacapo.predict)": [[160, "dacapo.predict.predict", false]], "predict() (in module dacapo.predict_local)": [[161, "dacapo.predict_local.predict", false]], "prediction_array (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor attribute)": [[106, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.argmaxpostprocessor attribute)": [[110, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor attribute)": [[113, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.thresholdpostprocessor attribute)": [[110, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.prediction_array", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.post_processor.postprocessor attribute)": [[111, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.postprocessor attribute)": [[110, "dacapo.experiments.tasks.post_processors.PostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor attribute)": [[113, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.thresholdpostprocessor attribute)": [[110, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.prediction_array_identifier", false]], "prediction_head (dacapo.experiments.model attribute)": [[69, "dacapo.experiments.Model.prediction_head", false], [69, "id5", false]], "prediction_head (dacapo.experiments.model.model attribute)": [[70, "dacapo.experiments.model.Model.prediction_head", false], [70, "id5", false]], "predictor (class in dacapo.experiments.tasks.predictors)": [[121, "dacapo.experiments.tasks.predictors.Predictor", false]], "predictor (class in dacapo.experiments.tasks.predictors.predictor)": [[124, "dacapo.experiments.tasks.predictors.predictor.Predictor", false]], "predictor (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[78, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.predictor", false], [78, "id0", false]], "predictor (dacapo.experiments.tasks.affinitiestask attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTask.predictor", false], [95, "id37", false]], "predictor (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[80, "dacapo.experiments.tasks.distance_task.DistanceTask.predictor", false], [80, "id0", false]], "predictor (dacapo.experiments.tasks.distancetask attribute)": [[95, "dacapo.experiments.tasks.DistanceTask.predictor", false], [95, "id17", false]], "predictor (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[82, "dacapo.experiments.tasks.dummy_task.DummyTask.predictor", false], [82, "id0", false]], "predictor (dacapo.experiments.tasks.dummytask attribute)": [[95, "dacapo.experiments.tasks.DummyTask.predictor", false], [95, "id6", false]], "predictor (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.predictor", false], [93, "id0", false]], "predictor (dacapo.experiments.tasks.hotdistancetask attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTask.predictor", false], [95, "id55", false]], "predictor (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[96, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.predictor", false], [96, "id0", false]], "predictor (dacapo.experiments.tasks.innerdistancetask attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTask.predictor", false], [95, "id45", false]], "predictor (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[104, "dacapo.experiments.tasks.one_hot_task.OneHotTask.predictor", false]], "predictor (dacapo.experiments.tasks.onehottask attribute)": [[95, "dacapo.experiments.tasks.OneHotTask.predictor", false]], "predictor (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[125, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.predictor", false]], "predictor (dacapo.experiments.tasks.pretrainedtask attribute)": [[95, "dacapo.experiments.tasks.PretrainedTask.predictor", false]], "predictor (dacapo.experiments.tasks.task attribute)": [[95, "dacapo.experiments.tasks.Task.predictor", false]], "predictor (dacapo.experiments.tasks.task.task attribute)": [[127, "dacapo.experiments.tasks.task.Task.predictor", false]], "predictor (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.Predictor", false], [150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.predictor", false]], "predictor (dacapo.gp.dacapotargetfilter attribute)": [[154, "dacapo.gp.DaCapoTargetFilter.Predictor", false], [154, "dacapo.gp.DaCapoTargetFilter.predictor", false]], "prepare() (dacapo.gp.copy.copymask method)": [[149, "dacapo.gp.copy.CopyMask.prepare", false], [149, "id4", false]], "prepare() (dacapo.gp.copymask method)": [[154, "dacapo.gp.CopyMask.prepare", false], [154, "id18", false]], "prepare() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.prepare", false], [150, "id4", false]], "prepare() (dacapo.gp.dacapotargetfilter method)": [[154, "dacapo.gp.DaCapoTargetFilter.prepare", false], [154, "id4", false]], "prepare() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.prepare", false]], "prepare() (dacapo.gp.elasticaugment method)": [[154, "dacapo.gp.ElasticAugment.prepare", false]], "prepare() (dacapo.gp.product method)": [[154, "dacapo.gp.Product.prepare", false]], "prepare() (dacapo.gp.product.product method)": [[155, "dacapo.gp.product.Product.prepare", false]], "pretrainedtask (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.PretrainedTask", false]], "pretrainedtask (class in dacapo.experiments.tasks.pretrained_task)": [[125, "dacapo.experiments.tasks.pretrained_task.PretrainedTask", false]], "pretrainedtaskconfig (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.PretrainedTaskConfig", false]], "pretrainedtaskconfig (class in dacapo.experiments.tasks.pretrained_task_config)": [[126, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig", false]], "print_profiling (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.print_profiling", false], [138, "id3", false]], "print_profiling (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.print_profiling", false], [140, "id24", false]], "probabilityarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray", false]], "probabilityarray (class in dacapo.experiments.arraytypes.probabilities)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray", false]], "process() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.process", false], [106, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.process", false], [110, "id16", false]], "process() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.process", false], [108, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.process", false], [110, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.process", false], [111, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.PostProcessor.process", false], [110, "id9", false]], "process() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.process", false], [113, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.process", false], [110, "id12", false]], "process() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[115, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.process", false], [115, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.process", false], [110, "id20", false]], "process() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.process", false], [118, "id9", false]], "process() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.process", false], [121, "id14", false]], "process() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.process", false], [120, "id11", false]], "process() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.process", false], [121, "id57", false]], "process() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[123, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.OneHotPredictor.process", false]], "process() (dacapo.gp.copy.copymask method)": [[149, "dacapo.gp.copy.CopyMask.process", false], [149, "id5", false]], "process() (dacapo.gp.copymask method)": [[154, "dacapo.gp.CopyMask.process", false], [154, "id19", false]], "process() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.process", false], [150, "id5", false]], "process() (dacapo.gp.dacapotargetfilter method)": [[154, "dacapo.gp.DaCapoTargetFilter.process", false], [154, "id5", false]], "process() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.process", false]], "process() (dacapo.gp.elasticaugment method)": [[154, "dacapo.gp.ElasticAugment.process", false]], "process() (dacapo.gp.gamma_noise.gammaaugment method)": [[153, "dacapo.gp.gamma_noise.GammaAugment.process", false], [153, "id4", false]], "process() (dacapo.gp.gammaaugment method)": [[154, "dacapo.gp.GammaAugment.process", false], [154, "id10", false]], "process() (dacapo.gp.product method)": [[154, "dacapo.gp.Product.process", false]], "process() (dacapo.gp.product.product method)": [[155, "dacapo.gp.product.Product.process", false]], "process() (dacapo.utils.pipeline.createpoints method)": [[182, "dacapo.utils.pipeline.CreatePoints.process", false], [182, "id2", false]], "process() (dacapo.utils.pipeline.dilatepoints method)": [[182, "dacapo.utils.pipeline.DilatePoints.process", false], [182, "id7", false]], "process() (dacapo.utils.pipeline.expandlabels method)": [[182, "dacapo.utils.pipeline.ExpandLabels.process", false], [182, "id14", false]], "process() (dacapo.utils.pipeline.makeraw method)": [[182, "dacapo.utils.pipeline.MakeRaw.process", false], [182, "id4", false]], "process() (dacapo.utils.pipeline.randomdilatelabels method)": [[182, "dacapo.utils.pipeline.RandomDilateLabels.process", false], [182, "id10", false]], "process() (dacapo.utils.pipeline.relabel method)": [[182, "dacapo.utils.pipeline.Relabel.process", false], [182, "id11", false]], "product (class in dacapo.gp)": [[154, "dacapo.gp.Product", false]], "product (class in dacapo.gp.product)": [[155, "dacapo.gp.product.Product", false]], "provide() (dacapo.gp.dacapo_points_source.graphsource method)": [[151, "dacapo.gp.dacapo_points_source.GraphSource.provide", false], [151, "id3", false]], "provide() (dacapo.gp.graphsource method)": [[154, "dacapo.gp.GraphSource.provide", false], [154, "id23", false]], "provide() (dacapo.gp.reject_if_empty.rejectifempty method)": [[156, "dacapo.gp.reject_if_empty.RejectIfEmpty.provide", false]], "provide() (dacapo.gp.rejectifempty method)": [[154, "dacapo.gp.RejectIfEmpty.provide", false]], "provide() (dacapo.utils.pipeline.zerossource method)": [[182, "dacapo.utils.pipeline.ZerosSource.provide", false], [182, "id17", false]], "psi (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.psi", false]], "queue (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.queue", false], [13, "id6", false]], "queue (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.queue", false], [11, "id0", false]], "r_conv (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.r_conv", false], [17, "id22", false]], "r_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.r_up", false], [17, "id21", false]], "random_source_pipeline() (in module dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.random_source_pipeline", false]], "randomdilatelabels (class in dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.RandomDilateLabels", false]], "raw (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.raw", false], [54, "id1", false]], "raw (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.raw", false], [48, "id1", false]], "raw (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset attribute)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.raw", false], [50, "id0", false]], "raw (dacapo.experiments.datasplits.datasets.dummydataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.raw", false], [54, "id9", false]], "raw (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.raw", false], [55, "id0", false]], "raw (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.raw", false], [54, "id13", false]], "raw (dacapo.experiments.datasplits.datasets.simple.simpledataset property)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.raw", false]], "raw (dacapo.experiments.datasplits.datasets.simpledataset property)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.raw", false]], "raw (dacapo.experiments.datasplits.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.ArrayKey.RAW", false], [64, "id0", false]], "raw (dacapo.experiments.datasplits.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.DataKey.RAW", false]], "raw (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.ArrayKey.RAW", false], [65, "id0", false]], "raw (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.DataKey.RAW", false]], "raw (dacapo.utils.pipeline.makeraw attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.raw", false]], "raw (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[182, "dacapo.utils.pipeline.MakeRaw.Pipeline.raw", false]], "raw (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.raw", false]], "raw_config (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig attribute)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.raw_config", false], [51, "id1", false]], "raw_config (dacapo.experiments.datasplits.datasets.dummydatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.raw_config", false], [54, "id11", false]], "raw_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.raw_config", false], [56, "id1", false]], "raw_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.raw_config", false], [54, "id19", false]], "raw_container (dacapo.experiments.datasplits.datasetspec attribute)": [[63, "dacapo.experiments.datasplits.DatasetSpec.raw_container", false], [63, "id35", false]], "raw_container (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.raw_container", false], [60, "id6", false]], "raw_dataset (dacapo.experiments.datasplits.datasetspec attribute)": [[63, "dacapo.experiments.datasplits.DatasetSpec.raw_dataset", false], [63, "id36", false]], "raw_dataset (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.raw_dataset", false], [60, "id7", false]], "raw_max (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.raw_max", false], [60, "id24", false]], "raw_max (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.raw_max", false], [63, "id27", false]], "raw_min (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.raw_min", false], [60, "id23", false]], "raw_min (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.raw_min", false], [63, "id26", false]], "raw_name (dacapo.experiments.datasplits.datasets.simple.simpledataset attribute)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.raw_name", false]], "raw_name (dacapo.experiments.datasplits.datasets.simpledataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.raw_name", false]], "raw_name (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.raw_name", false]], "raw_name (dacapo.experiments.datasplits.simpledatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.raw_name", false]], "rawgtdataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset", false]], "rawgtdataset (class in dacapo.experiments.datasplits.datasets.raw_gt_dataset)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset", false]], "rawgtdatasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig", false]], "rawgtdatasetconfig (class in dacapo.experiments.datasplits.datasets.raw_gt_dataset_config)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig", false]], "read_cross_block_merges() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.read_cross_block_merges", false]], "read_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.read_roi", false]], "read_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.read_roi", false]], "read_write_conflict (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.read_write_conflict", false]], "rec_forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.rec_forward", false], [17, "id23", false]], "recall (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.recall", false], [84, "id19", false]], "recall (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.recall", false], [90, "id42", false]], "recall() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.recall", false], [85, "id19", false]], "recall_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.recall_with_tolerance", false], [84, "id16", false]], "recall_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.recall_with_tolerance", false], [90, "id39", false]], "recall_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.recall_with_tolerance", false], [85, "id31", false]], "recall_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.recall_with_tolerance", false], [85, "id45", false]], "register_hierarchy() (dacapo.store.converter.typedconverter method)": [[165, "dacapo.store.converter.TypedConverter.register_hierarchy", false], [165, "id0", false]], "register_hierarchy_hooks() (in module dacapo.store.conversion_hooks)": [[164, "dacapo.store.conversion_hooks.register_hierarchy_hooks", false]], "register_hooks() (in module dacapo.store.conversion_hooks)": [[164, "dacapo.store.conversion_hooks.register_hooks", false]], "rejectifempty (class in dacapo.gp)": [[154, "dacapo.gp.RejectIfEmpty", false]], "rejectifempty (class in dacapo.gp.reject_if_empty)": [[156, "dacapo.gp.reject_if_empty.RejectIfEmpty", false]], "relabel (class in dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.Relabel", false]], "relabel() (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[92, "dacapo.experiments.tasks.evaluators.instance_evaluator.relabel", false]], "relabel_in_block() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.relabel_in_block", false]], "relu (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.relu", false]], "remove() (dacapo.store.array_store.arraystore method)": [[162, "dacapo.store.array_store.ArrayStore.remove", false]], "remove() (dacapo.store.local_array_store.localarraystore method)": [[170, "dacapo.store.local_array_store.LocalArrayStore.remove", false], [170, "id7", false]], "remove() (dacapo.store.local_weights_store.localweightsstore method)": [[171, "dacapo.store.local_weights_store.LocalWeightsStore.remove", false], [171, "id4", false]], "remove() (dacapo.store.weights_store.weightsstore method)": [[175, "dacapo.store.weights_store.WeightsStore.remove", false], [175, "id7", false]], "repetition (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.repetition", false]], "repetition (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.repetition", false]], "resampledarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig", false]], "resampledarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.resampled_array_config)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig", false]], "resize_if_needed() (in module dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.resize_if_needed", false]], "resolution (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.resolution", false], [85, "id11", false]], "retrieve_architecture_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_architecture_config", false], [163, "id17", false]], "retrieve_architecture_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_architecture_config", false], [167, "id8", false]], "retrieve_architecture_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_architecture_config", false], [172, "id12", false]], "retrieve_architecture_config_names() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_architecture_config_names", false], [163, "id18", false]], "retrieve_architecture_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_architecture_config_names", false], [167, "id9", false]], "retrieve_architecture_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_architecture_config_names", false], [172, "id13", false]], "retrieve_array_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_array_config", false], [163, "id29", false]], "retrieve_array_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_array_config", false], [167, "id17", false]], "retrieve_array_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_array_config", false], [172, "id24", false]], "retrieve_array_config_names() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_array_config_names", false], [163, "id30", false]], "retrieve_array_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_array_config_names", false], [167, "id18", false]], "retrieve_array_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_array_config_names", false], [172, "id25", false]], "retrieve_best() (dacapo.store.local_weights_store.localweightsstore method)": [[171, "dacapo.store.local_weights_store.LocalWeightsStore.retrieve_best", false], [171, "id6", false]], "retrieve_best() (dacapo.store.weights_store.weightsstore method)": [[175, "dacapo.store.weights_store.WeightsStore.retrieve_best", false], [175, "id8", false]], "retrieve_dataset_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_dataset_config", false], [172, "id21", false]], "retrieve_dataset_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_dataset_config_names", false], [172, "id22", false]], "retrieve_datasplit_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_datasplit_config", false], [163, "id25", false]], "retrieve_datasplit_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_datasplit_config", false], [167, "id14", false]], "retrieve_datasplit_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_datasplit_config", false], [172, "id18", false]], "retrieve_datasplit_config_names() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_datasplit_config_names", false], [163, "id26", false]], "retrieve_datasplit_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_datasplit_config_names", false], [167, "id15", false]], "retrieve_datasplit_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_datasplit_config_names", false], [172, "id19", false]], "retrieve_run_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_run_config", false], [163, "id9", false]], "retrieve_run_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_run_config", false], [167, "id2", false]], "retrieve_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_run_config", false], [172, "id5", false]], "retrieve_run_config_names() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_run_config_names", false], [163, "id10", false]], "retrieve_run_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_run_config_names", false], [167, "id3", false]], "retrieve_run_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_run_config_names", false], [172, "id7", false]], "retrieve_task_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_task_config", false], [163, "id13", false]], "retrieve_task_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_task_config", false], [167, "id5", false]], "retrieve_task_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_task_config", false], [172, "id9", false]], "retrieve_task_config_names() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_task_config_names", false], [163, "id14", false]], "retrieve_task_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_task_config_names", false], [167, "id6", false]], "retrieve_task_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_task_config_names", false], [172, "id10", false]], "retrieve_trainer_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_trainer_config", false], [163, "id21", false]], "retrieve_trainer_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_trainer_config", false], [167, "id11", false]], "retrieve_trainer_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_trainer_config", false], [172, "id15", false]], "retrieve_trainer_config_names() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.retrieve_trainer_config_names", false], [163, "id22", false]], "retrieve_trainer_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.retrieve_trainer_config_names", false], [167, "id12", false]], "retrieve_trainer_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_trainer_config_names", false], [172, "id16", false]], "retrieve_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[168, "dacapo.store.file_stats_store.FileStatsStore.retrieve_training_stats", false]], "retrieve_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.retrieve_training_stats", false], [173, "id5", false]], "retrieve_training_stats() (dacapo.store.stats_store.statsstore method)": [[174, "dacapo.store.stats_store.StatsStore.retrieve_training_stats", false], [174, "id1", false]], "retrieve_validation_iteration_scores() (dacapo.store.file_stats_store.filestatsstore method)": [[168, "dacapo.store.file_stats_store.FileStatsStore.retrieve_validation_iteration_scores", false]], "retrieve_validation_iteration_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.retrieve_validation_iteration_scores", false], [173, "id7", false]], "retrieve_validation_iteration_scores() (dacapo.store.stats_store.statsstore method)": [[174, "dacapo.store.stats_store.StatsStore.retrieve_validation_iteration_scores", false], [174, "id3", false]], "retrieve_weights() (dacapo.store.local_weights_store.localweightsstore method)": [[171, "dacapo.store.local_weights_store.LocalWeightsStore.retrieve_weights", false], [171, "id3", false]], "retrieve_weights() (dacapo.store.weights_store.weightsstore method)": [[175, "dacapo.store.weights_store.WeightsStore.retrieve_weights", false], [175, "id6", false]], "roi (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig attribute)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.roi", false], [35, "id1", false]], "roi (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.roi", false], [38, "id25", false]], "rotation_interval (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.rotation_interval", false], [132, "id2", false]], "rotation_interval (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.rotation_interval", false], [134, "id3", false]], "rotation_max_amount (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.rotation_max_amount", false]], "rotation_max_amount (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.rotation_max_amount", false]], "rotation_start (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.rotation_start", false]], "rotation_start (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.rotation_start", false]], "run (class in dacapo.experiments.run)": [[71, "dacapo.experiments.run.Run", false]], "run (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[73, "dacapo.experiments.starts.cosem_start.CosemStart.run", false], [73, "id0", false]], "run (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[74, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.run", false]], "run (dacapo.experiments.starts.cosemstart attribute)": [[75, "dacapo.experiments.starts.CosemStart.run", false], [75, "id4", false]], "run (dacapo.experiments.starts.cosemstartconfig attribute)": [[75, "dacapo.experiments.starts.CosemStartConfig.run", false]], "run (dacapo.experiments.starts.start attribute)": [[75, "dacapo.experiments.starts.Start.run", false]], "run (dacapo.experiments.starts.start.start attribute)": [[76, "dacapo.experiments.starts.start.Start.run", false]], "run (dacapo.experiments.starts.start_config.startconfig attribute)": [[77, "dacapo.experiments.starts.start_config.StartConfig.run", false], [77, "id0", false]], "run (dacapo.experiments.starts.startconfig attribute)": [[75, "dacapo.experiments.starts.StartConfig.run", false], [75, "id2", false]], "run (dacapo.utils.view.bestscore attribute)": [[183, "dacapo.utils.view.BestScore.run", false], [183, "id0", false]], "run (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.run", false], [183, "id9", false]], "run_blockwise() (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.run_blockwise", false]], "run_thread (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.run_thread", false]], "runconfig (class in dacapo.experiments)": [[69, "dacapo.experiments.RunConfig", false]], "runconfig (class in dacapo.experiments.run_config)": [[72, "dacapo.experiments.run_config.RunConfig", false]], "runinfo (in module dacapo.plot)": [[159, "dacapo.plot.RunInfo", false]], "runs (dacapo.store.config_store.configstore attribute)": [[163, "dacapo.store.config_store.ConfigStore.runs", false], [163, "id0", false]], "runs (dacapo.store.file_config_store.fileconfigstore property)": [[167, "dacapo.store.file_config_store.FileConfigStore.runs", false]], "runs (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.runs", false]], "runs_base_dir (dacapo.options.dacapoconfig attribute)": [[158, "dacapo.options.DaCapoConfig.runs_base_dir", false], [158, "id1", false]], "sample_points (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.sample_points", false], [54, "id5", false]], "sample_points (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.sample_points", false], [48, "id5", false]], "sample_points (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.sample_points", false], [55, "id3", false]], "sample_points (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.sample_points", false], [56, "id4", false]], "sample_points (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.sample_points", false], [54, "id16", false]], "sample_points (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.sample_points", false], [54, "id22", false]], "sample_points (dacapo.experiments.datasplits.datasets.simple.simpledataset property)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.sample_points", false]], "sample_points (dacapo.experiments.datasplits.datasets.simpledataset property)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.sample_points", false]], "sampling (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.sampling", false], [85, "id35", false]], "save_ndarray() (in module dacapo.utils.array_utils)": [[179, "dacapo.utils.array_utils.save_ndarray", false]], "scale (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[135, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.scale", false], [135, "id0", false]], "scale (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig attribute)": [[136, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.scale", false], [136, "id0", false]], "scale (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.scale", false], [134, "id10", false]], "scale (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.scale", false], [134, "id14", false]], "scale() (dacapo.experiments.architectures.architecture method)": [[21, "dacapo.experiments.architectures.Architecture.scale", false], [21, "id5", false]], "scale() (dacapo.experiments.architectures.architecture.architecture method)": [[15, "dacapo.experiments.architectures.architecture.Architecture.scale", false], [15, "id5", false]], "scale() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.scale", false]], "scale() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.scale", false]], "scale() (dacapo.experiments.model method)": [[69, "dacapo.experiments.Model.scale", false]], "scale() (dacapo.experiments.model.model method)": [[70, "dacapo.experiments.model.Model.scale", false]], "scale_factor (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.scale_factor", false], [81, "id3", false]], "scale_factor (dacapo.experiments.tasks.distancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.scale_factor", false], [95, "id13", false]], "scale_factor (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[94, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.scale_factor", false], [94, "id4", false]], "scale_factor (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTaskConfig.scale_factor", false], [95, "id53", false]], "scale_factor (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[97, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.scale_factor", false], [97, "id3", false]], "scale_factor (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTaskConfig.scale_factor", false], [95, "id44", false]], "scale_factor (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.scale_factor", false]], "scheduler (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.scheduler", false], [138, "id9", false]], "scheduler (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.scheduler", false], [140, "id30", false]], "score (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator property)": [[85, "id5", false]], "score (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator property)": [[90, "id49", false]], "score (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator property)": [[87, "id2", false]], "score (dacapo.experiments.tasks.evaluators.dummyevaluator property)": [[90, "id7", false]], "score (dacapo.experiments.tasks.evaluators.evaluator property)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.score", false]], "score (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.score", false]], "score (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator property)": [[92, "id2", false]], "score (dacapo.experiments.tasks.evaluators.instanceevaluator property)": [[90, "id58", false]], "score (dacapo.utils.view.bestscore attribute)": [[183, "dacapo.utils.view.BestScore.score", false], [183, "id1", false]], "score (in module dacapo.experiments.tasks.evaluators.evaluator)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Score", false]], "score() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator method)": [[87, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.dummyevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator method)": [[92, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.instanceevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.score", false]], "scores (dacapo.experiments.validation_iteration_scores.validationiterationscores attribute)": [[146, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores.scores", false], [146, "id1", false]], "scores (dacapo.experiments.validation_scores.validationscores attribute)": [[147, "dacapo.experiments.validation_scores.ValidationScores.scores", false], [147, "id3", false]], "scores (dacapo.experiments.validationiterationscores attribute)": [[69, "dacapo.experiments.ValidationIterationScores.scores", false], [69, "id17", false]], "scores (dacapo.experiments.validationscores attribute)": [[69, "dacapo.experiments.ValidationScores.scores", false], [69, "id21", false]], "seg_to_affgraph() (in module dacapo.utils.affinities)": [[178, "dacapo.utils.affinities.seg_to_affgraph", false]], "segment_blockwise() (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.segment_blockwise", false]], "segment_function() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.segment_function", false]], "segment_function() (in module dacapo.blockwise.watershed_function)": [[10, "dacapo.blockwise.watershed_function.segment_function", false]], "segmentation (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.segmentation", false]], "segmentation_type (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.segmentation_type", false], [60, "id15", false]], "segmentation_type (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.segmentation_type", false], [63, "id18", false]], "segmentationtype (class in dacapo.experiments.datasplits.datasplit_generator)": [[60, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType", false]], "semantic (dacapo.experiments.datasplits.datasplit_generator.segmentationtype attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.semantic", false], [60, "id3", false]], "serialize() (dacapo.options.dacapoconfig method)": [[158, "dacapo.options.DaCapoConfig.serialize", false], [158, "id5", false]], "set_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.set_best", false], [90, "id18", false]], "set_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.set_best", false], [89, "id6", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.set_prediction", false], [106, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.set_prediction", false], [110, "id15", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.set_prediction", false], [108, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.set_prediction", false], [110, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.set_prediction", false], [111, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.PostProcessor.set_prediction", false], [110, "id8", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.set_prediction", false], [113, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.set_prediction", false], [110, "id11", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[115, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.set_prediction", false], [115, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.set_prediction", false], [110, "id19", false]], "setup() (dacapo.gp.copy.copymask method)": [[149, "dacapo.gp.copy.CopyMask.setup", false], [149, "id3", false]], "setup() (dacapo.gp.copymask method)": [[154, "dacapo.gp.CopyMask.setup", false], [154, "id17", false]], "setup() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.setup", false], [150, "id3", false]], "setup() (dacapo.gp.dacapo_points_source.graphsource method)": [[151, "dacapo.gp.dacapo_points_source.GraphSource.setup", false], [151, "id2", false]], "setup() (dacapo.gp.dacapotargetfilter method)": [[154, "dacapo.gp.DaCapoTargetFilter.setup", false], [154, "id3", false]], "setup() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.setup", false]], "setup() (dacapo.gp.elasticaugment method)": [[154, "dacapo.gp.ElasticAugment.setup", false]], "setup() (dacapo.gp.gamma_noise.gammaaugment method)": [[153, "dacapo.gp.gamma_noise.GammaAugment.setup", false], [153, "id3", false]], "setup() (dacapo.gp.gammaaugment method)": [[154, "dacapo.gp.GammaAugment.setup", false], [154, "id9", false]], "setup() (dacapo.gp.graphsource method)": [[154, "dacapo.gp.GraphSource.setup", false], [154, "id22", false]], "setup() (dacapo.gp.product method)": [[154, "dacapo.gp.Product.setup", false]], "setup() (dacapo.gp.product.product method)": [[155, "dacapo.gp.product.Product.setup", false]], "setup() (dacapo.gp.reject_if_empty.rejectifempty method)": [[156, "dacapo.gp.reject_if_empty.RejectIfEmpty.setup", false]], "setup() (dacapo.gp.rejectifempty method)": [[154, "dacapo.gp.RejectIfEmpty.setup", false]], "setup() (dacapo.utils.pipeline.makeraw method)": [[182, "dacapo.utils.pipeline.MakeRaw.setup", false], [182, "id3", false]], "setup() (dacapo.utils.pipeline.zerossource method)": [[182, "dacapo.utils.pipeline.ZerosSource.setup", false], [182, "id16", false]], "shift (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[135, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.shift", false], [135, "id1", false]], "shift (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig attribute)": [[136, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.shift", false], [136, "id1", false]], "shift (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.shift", false], [134, "id11", false]], "shift (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.shift", false], [134, "id15", false]], "sigma (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[116, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.sigma", false]], "sigma (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.sigma", false]], "sigma() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[117, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.sigma", false], [117, "id11", false]], "sigma() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[121, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.sigma", false], [121, "id33", false]], "simpleaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[134, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig", false]], "simpleaugmentconfig (class in dacapo.experiments.trainers.gp_augments.simple_config)": [[137, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig", false]], "simpledataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset", false]], "simpledataset (class in dacapo.experiments.datasplits.datasets.simple)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset", false]], "simpledatasplitconfig (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig", false]], "simpledatasplitconfig (class in dacapo.experiments.datasplits.simple_config)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig", false]], "smooth_values() (in module dacapo.plot)": [[159, "dacapo.plot.smooth_values", false]], "snap_to_grid (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.snap_to_grid", false], [47, "id2", false]], "snap_to_grid (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.snap_to_grid", false], [38, "id5", false]], "snapshot_container() (dacapo.store.array_store.arraystore method)": [[162, "dacapo.store.array_store.ArrayStore.snapshot_container", false]], "snapshot_container() (dacapo.store.local_array_store.localarraystore method)": [[170, "dacapo.store.local_array_store.LocalArrayStore.snapshot_container", false], [170, "id5", false]], "snapshot_interval (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[139, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.snapshot_interval", false], [139, "id3", false]], "snapshot_interval (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainerConfig.snapshot_interval", false], [140, "id18", false]], "snapshot_iteration (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.snapshot_iteration", false], [138, "id4", false]], "snapshot_iteration (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.snapshot_iteration", false], [140, "id25", false]], "source (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig attribute)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.source", false], [37, "id0", false]], "source (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.source", false], [38, "id27", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.source_array_config", false], [32, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.source_array_config", false], [38, "id7", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig attribute)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.source_array_config", false], [34, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.source_array_config", false], [38, "id29", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig attribute)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.source_array_config", false], [35, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.source_array_config", false], [38, "id24", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.source_array_config", false], [38, "id14", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.source_array_config", false], [39, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig attribute)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.source_array_config", false], [40, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.source_array_config", false], [38, "id23", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig attribute)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.source_array_config", false], [42, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.source_array_config", false], [38, "id17", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig attribute)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.source_array_config", false], [43, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.source_array_config", false], [38, "id19", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.source_array_config", false], [44, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.source_array_config", false], [38, "id10", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.source_array_configs", false], [33, "id1", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.source_array_configs", false], [38, "id21", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig attribute)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.source_array_configs", false], [41, "id0", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.source_array_configs", false], [38, "id26", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.sum_array_config.sumarrayconfig attribute)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig.source_array_configs", false], [45, "id0", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.sumarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig.source_array_configs", false], [38, "id28", false]], "spawn_worker() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.spawn_worker", false]], "specified_locations (dacapo.experiments.datasplits.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.DataKey.SPECIFIED_LOCATIONS", false]], "specified_locations (dacapo.experiments.datasplits.keys.graphkey attribute)": [[64, "dacapo.experiments.datasplits.keys.GraphKey.SPECIFIED_LOCATIONS", false], [64, "id4", false]], "specified_locations (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.DataKey.SPECIFIED_LOCATIONS", false]], "specified_locations (dacapo.experiments.datasplits.keys.keys.graphkey attribute)": [[65, "dacapo.experiments.datasplits.keys.keys.GraphKey.SPECIFIED_LOCATIONS", false], [65, "id4", false]], "split() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[100, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.split", false], [100, "id3", false]], "split() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[101, "dacapo.experiments.tasks.losses.HotDistanceLoss.split", false], [101, "id9", false]], "split_vi() (in module dacapo.utils.voi)": [[184, "dacapo.utils.voi.split_vi", false]], "stack_inference() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.stack_inference", false]], "stack_postprocessing() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.stack_postprocessing", false]], "start (class in dacapo.experiments.starts)": [[75, "dacapo.experiments.starts.Start", false]], "start (class in dacapo.experiments.starts.start)": [[76, "dacapo.experiments.starts.start.Start", false]], "start (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.start", false], [71, "id9", false]], "start() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.start", false], [183, "id15", false]], "start_config (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.start_config", false]], "start_config (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.start_config", false]], "start_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.start_neuroglancer", false], [183, "id14", false]], "start_type (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[74, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.start_type", false]], "start_type (dacapo.experiments.starts.cosemstartconfig attribute)": [[75, "dacapo.experiments.starts.CosemStartConfig.start_type", false]], "start_type (dacapo.experiments.starts.start_config.startconfig attribute)": [[77, "dacapo.experiments.starts.start_config.StartConfig.start_type", false]], "start_type (dacapo.experiments.starts.startconfig attribute)": [[75, "dacapo.experiments.starts.StartConfig.start_type", false]], "start_worker() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.start_worker", false]], "start_worker_fn() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.start_worker_fn", false]], "startconfig (class in dacapo.experiments.starts)": [[75, "dacapo.experiments.starts.StartConfig", false]], "startconfig (class in dacapo.experiments.starts.start_config)": [[77, "dacapo.experiments.starts.start_config.StartConfig", false]], "stats_store (dacapo.utils.view.bestscore attribute)": [[183, "dacapo.utils.view.BestScore.stats_store", false], [183, "id6", false]], "statsstore (class in dacapo.store.stats_store)": [[174, "dacapo.store.stats_store.StatsStore", false]], "stop() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.stop", false], [183, "id23", false]], "store_architecture_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.store_architecture_config", false], [163, "id16", false]], "store_architecture_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.store_architecture_config", false], [167, "id7", false]], "store_architecture_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.store_architecture_config", false], [172, "id11", false]], "store_array_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.store_array_config", false], [163, "id28", false]], "store_array_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.store_array_config", false], [167, "id16", false]], "store_array_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.store_array_config", false], [172, "id23", false]], "store_best() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[86, "id4", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[90, "id4", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[88, "id3", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.EvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[90, "id11", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[90, "dacapo.experiments.tasks.evaluators.Evaluator.store_best", false], [90, "id21", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[89, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.store_best", false], [89, "id9", false]], "store_best() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[91, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[91, "id5", false]], "store_best() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[90, "id55", false]], "store_best() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[90, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.store.local_weights_store.localweightsstore method)": [[171, "dacapo.store.local_weights_store.LocalWeightsStore.store_best", false], [171, "id5", false]], "store_dataset_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.store_dataset_config", false], [172, "id20", false]], "store_datasplit_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.store_datasplit_config", false], [163, "id24", false]], "store_datasplit_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.store_datasplit_config", false], [167, "id13", false]], "store_datasplit_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.store_datasplit_config", false], [172, "id17", false]], "store_run_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.store_run_config", false], [163, "id8", false]], "store_run_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.store_run_config", false], [167, "id1", false]], "store_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.store_run_config", false], [172, "id4", false]], "store_task_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.store_task_config", false], [163, "id12", false]], "store_task_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.store_task_config", false], [167, "id4", false]], "store_task_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.store_task_config", false], [172, "id8", false]], "store_trainer_config() (dacapo.store.config_store.configstore method)": [[163, "dacapo.store.config_store.ConfigStore.store_trainer_config", false], [163, "id20", false]], "store_trainer_config() (dacapo.store.file_config_store.fileconfigstore method)": [[167, "dacapo.store.file_config_store.FileConfigStore.store_trainer_config", false], [167, "id10", false]], "store_trainer_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.store_trainer_config", false], [172, "id14", false]], "store_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[168, "dacapo.store.file_stats_store.FileStatsStore.store_training_stats", false]], "store_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.store_training_stats", false], [173, "id4", false]], "store_training_stats() (dacapo.store.stats_store.statsstore method)": [[174, "dacapo.store.stats_store.StatsStore.store_training_stats", false], [174, "id0", false]], "store_type (dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.graphstoreconfig attribute)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig.store_type", false]], "store_type (dacapo.experiments.datasplits.datasets.graphstores.graphstoreconfig attribute)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig.store_type", false]], "store_validation_iteration_scores() (dacapo.store.file_stats_store.filestatsstore method)": [[168, "dacapo.store.file_stats_store.FileStatsStore.store_validation_iteration_scores", false]], "store_validation_iteration_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.store_validation_iteration_scores", false], [173, "id6", false]], "store_validation_iteration_scores() (dacapo.store.stats_store.statsstore method)": [[174, "dacapo.store.stats_store.StatsStore.store_validation_iteration_scores", false], [174, "id2", false]], "store_weights() (dacapo.store.local_weights_store.localweightsstore method)": [[171, "dacapo.store.local_weights_store.LocalWeightsStore.store_weights", false], [171, "id2", false]], "store_weights() (dacapo.store.weights_store.weightsstore method)": [[175, "dacapo.store.weights_store.WeightsStore.store_weights", false], [175, "id5", false]], "sub_task_config (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[126, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.sub_task_config", false], [126, "id0", false]], "sub_task_config (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[95, "dacapo.experiments.tasks.PretrainedTaskConfig.sub_task_config", false], [95, "id23", false]], "subsample (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.subsample", false], [132, "id3", false]], "subsample (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.subsample", false], [134, "id4", false]], "subsample (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.subsample", false]], "subsample (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.subsample", false]], "subscores() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.subscores", false], [147, "id4", false]], "subscores() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.subscores", false], [69, "id22", false]], "sumarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig", false]], "sumarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.sum_array_config)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig", false]], "target_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.target_key", false], [150, "id0", false]], "target_key (dacapo.gp.dacapotargetfilter attribute)": [[154, "dacapo.gp.DaCapoTargetFilter.target_key", false], [154, "id0", false]], "target_rois (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.target_rois", false]], "target_rois (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.target_rois", false]], "targets (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.targets", false], [60, "id14", false]], "targets (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.targets", false], [63, "id17", false]], "task (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.Task", false]], "task (class in dacapo.experiments.tasks.task)": [[127, "dacapo.experiments.tasks.task.Task", false]], "task (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.task", false], [71, "id3", false]], "task_config (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.task_config", false]], "task_config (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.task_config", false]], "task_config (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[96, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.task_config", false]], "task_config (dacapo.experiments.tasks.innerdistancetask attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTask.task_config", false]], "task_type (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.distancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[83, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.task_type", false], [83, "id0", false]], "task_type (dacapo.experiments.tasks.dummytaskconfig attribute)": [[95, "dacapo.experiments.tasks.DummyTaskConfig.task_type", false], [95, "id2", false]], "task_type (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[94, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.task_type", false], [94, "id0", false]], "task_type (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTaskConfig.task_type", false], [95, "id49", false]], "task_type (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[97, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig attribute)": [[105, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.task_type", false], [105, "id0", false]], "task_type (dacapo.experiments.tasks.onehottaskconfig attribute)": [[95, "dacapo.experiments.tasks.OneHotTaskConfig.task_type", false], [95, "id21", false]], "task_type (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[126, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[95, "dacapo.experiments.tasks.PretrainedTaskConfig.task_type", false]], "taskconfig (class in dacapo.experiments.tasks)": [[95, "dacapo.experiments.tasks.TaskConfig", false]], "taskconfig (class in dacapo.experiments.tasks.task_config)": [[128, "dacapo.experiments.tasks.task_config.TaskConfig", false]], "tasks (dacapo.store.config_store.configstore attribute)": [[163, "dacapo.store.config_store.ConfigStore.tasks", false], [163, "id4", false]], "tasks (dacapo.store.file_config_store.fileconfigstore property)": [[167, "dacapo.store.file_config_store.FileConfigStore.tasks", false]], "tasks (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.tasks", false]], "test (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test", false], [85, "id7", false]], "test (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test", false], [85, "id33", false]], "test_edt() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test_edt", false]], "test_empty (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test_empty", false], [85, "id9", false]], "test_itk() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test_itk", false]], "test_mask() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test_mask", false]], "threshold (dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.thresholdpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters.threshold", false], [114, "id0", false]], "threshold (dacapo.experiments.tasks.post_processors.thresholdpostprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters.threshold", false], [110, "id13", false]], "threshold (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[116, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.threshold", false]], "threshold (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.DistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.threshold", false], [120, "id6", false]], "threshold (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.HotDistancePredictor.threshold", false], [121, "id52", false]], "threshold (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[122, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.threshold", false]], "thresholdpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor", false]], "thresholdpostprocessor (class in dacapo.experiments.tasks.post_processors.threshold_post_processor)": [[113, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor", false]], "thresholdpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters", false]], "thresholdpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters)": [[114, "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters", false]], "tiffarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.tiff_array_config)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig", false]], "time (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[144, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.time", false], [144, "id2", false]], "time (dacapo.experiments.trainingiterationstats attribute)": [[69, "dacapo.experiments.TrainingIterationStats.time", false], [69, "id12", false]], "timeout (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.timeout", false]], "timeout (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.timeout", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig method)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig method)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.to_array", false]], "to_ndarray() (in module dacapo.utils.array_utils)": [[179, "dacapo.utils.array_utils.to_ndarray", false]], "to_xarray() (dacapo.experiments.training_stats.trainingstats method)": [[145, "dacapo.experiments.training_stats.TrainingStats.to_xarray", false], [145, "id2", false]], "to_xarray() (dacapo.experiments.trainingstats method)": [[69, "dacapo.experiments.TrainingStats.to_xarray", false], [69, "id15", false]], "to_xarray() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.to_xarray", false], [147, "id11", false]], "to_xarray() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.to_xarray", false], [69, "id29", false]], "tol_distance (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.tol_distance", false], [81, "id2", false]], "tol_distance (dacapo.experiments.tasks.distancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.tol_distance", false], [95, "id12", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.tol_distance", false], [85, "id2", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.tol_distance", false], [85, "id37", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.tol_distance", false], [90, "id46", false]], "tol_distance (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[94, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.tol_distance", false], [94, "id3", false]], "tol_distance (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.HotDistanceTaskConfig.tol_distance", false], [95, "id52", false]], "tol_distance (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[97, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.tol_distance", false], [97, "id2", false]], "tol_distance (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.InnerDistanceTaskConfig.tol_distance", false], [95, "id43", false]], "total_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.total_roi", false]], "total_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.total_roi", false]], "tracker_consensus() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.tracker_consensus", false]], "train (dacapo.experiments.datasplits.datasplit attribute)": [[63, "dacapo.experiments.datasplits.DataSplit.train", false], [63, "id0", false]], "train (dacapo.experiments.datasplits.datasplit.datasplit attribute)": [[58, "dacapo.experiments.datasplits.datasplit.DataSplit.train", false], [58, "id0", false]], "train (dacapo.experiments.datasplits.datasplit_generator.datasettype attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.train", false], [60, "id2", false]], "train (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit attribute)": [[61, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.train", false], [61, "id0", false]], "train (dacapo.experiments.datasplits.dummydatasplit attribute)": [[63, "dacapo.experiments.datasplits.DummyDataSplit.train", false], [63, "id4", false]], "train (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig property)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.train", false]], "train (dacapo.experiments.datasplits.simpledatasplitconfig property)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.train", false]], "train (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit attribute)": [[67, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.train", false], [67, "id0", false]], "train (dacapo.experiments.datasplits.trainvalidatedatasplit attribute)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplit.train", false], [63, "id9", false]], "train() (in module dacapo)": [[157, "dacapo.train", false]], "train() (in module dacapo.train)": [[177, "dacapo.train.train", false]], "train_config (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.train_config", false], [62, "id1", false]], "train_config (dacapo.experiments.datasplits.dummydatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.DummyDataSplitConfig.train_config", false], [63, "id7", false]], "train_configs (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[68, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.train_configs", false], [68, "id0", false]], "train_configs (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.train_configs", false], [63, "id11", false]], "train_group_name (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.train_group_name", false]], "train_group_name (dacapo.experiments.datasplits.simpledatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.train_group_name", false]], "train_run() (in module dacapo.train)": [[177, "dacapo.train.train_run", false]], "train_until (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.train_until", false], [71, "id1", false]], "trained_until() (dacapo.experiments.training_stats.trainingstats method)": [[145, "dacapo.experiments.training_stats.TrainingStats.trained_until", false], [145, "id1", false]], "trained_until() (dacapo.experiments.trainingstats method)": [[69, "dacapo.experiments.TrainingStats.trained_until", false], [69, "id14", false]], "trainer (class in dacapo.experiments.trainers)": [[140, "dacapo.experiments.trainers.Trainer", false]], "trainer (class in dacapo.experiments.trainers.trainer)": [[142, "dacapo.experiments.trainers.trainer.Trainer", false]], "trainer (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.trainer", false], [71, "id5", false]], "trainer_config (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.trainer_config", false]], "trainer_config (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.trainer_config", false]], "trainer_type (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig attribute)": [[130, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.trainer_type", false]], "trainer_type (dacapo.experiments.trainers.dummytrainerconfig attribute)": [[140, "dacapo.experiments.trainers.DummyTrainerConfig.trainer_type", false]], "trainer_type (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[139, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.trainer_type", false], [139, "id0", false]], "trainer_type (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[140, "dacapo.experiments.trainers.GunpowderTrainerConfig.trainer_type", false], [140, "id15", false]], "trainerconfig (class in dacapo.experiments.trainers)": [[140, "dacapo.experiments.trainers.TrainerConfig", false]], "trainerconfig (class in dacapo.experiments.trainers.trainer_config)": [[143, "dacapo.experiments.trainers.trainer_config.TrainerConfig", false]], "trainers (dacapo.store.config_store.configstore attribute)": [[163, "dacapo.store.config_store.ConfigStore.trainers", false], [163, "id5", false]], "trainers (dacapo.store.file_config_store.fileconfigstore property)": [[167, "dacapo.store.file_config_store.FileConfigStore.trainers", false]], "trainers (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.trainers", false]], "training_stats (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.training_stats", false], [71, "id8", false]], "training_stats (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.training_stats", false]], "trainingiterationstats (class in dacapo.experiments)": [[69, "dacapo.experiments.TrainingIterationStats", false]], "trainingiterationstats (class in dacapo.experiments.training_iteration_stats)": [[144, "dacapo.experiments.training_iteration_stats.TrainingIterationStats", false]], "trainingstats (class in dacapo.experiments)": [[69, "dacapo.experiments.TrainingStats", false]], "trainingstats (class in dacapo.experiments.training_stats)": [[145, "dacapo.experiments.training_stats.TrainingStats", false]], "trainvalidatedatasplit (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplit", false]], "trainvalidatedatasplit (class in dacapo.experiments.datasplits.train_validate_datasplit)": [[67, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit", false]], "trainvalidatedatasplitconfig (class in dacapo.experiments.datasplits)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig", false]], "trainvalidatedatasplitconfig (class in dacapo.experiments.datasplits.train_validate_datasplit_config)": [[68, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig", false]], "transformations (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.transformations", false]], "transformations (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.transformations", false]], "true_positives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.true_positives_with_tolerance", false], [85, "id43", false]], "truth (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth", false], [85, "id6", false]], "truth (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth", false], [85, "id34", false]], "truth_edt() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth_edt", false]], "truth_empty (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth_empty", false], [85, "id8", false]], "truth_itk() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth_itk", false]], "truth_mask() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth_mask", false]], "type (dacapo.options.dacapoconfig attribute)": [[158, "dacapo.options.DaCapoConfig.type", false], [158, "id0", false]], "typedconverter (class in dacapo.store.converter)": [[165, "dacapo.store.converter.TypedConverter", false]], "unet (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.unet", false]], "unet (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.unet", false]], "uniform_3d_rotation (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.uniform_3d_rotation", false], [132, "id4", false]], "uniform_3d_rotation (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.uniform_3d_rotation", false], [134, "id5", false]], "uniform_3d_rotation (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[152, "dacapo.gp.elastic_augment_fuse.ElasticAugment.uniform_3d_rotation", false]], "uniform_3d_rotation (dacapo.gp.elasticaugment attribute)": [[154, "dacapo.gp.ElasticAugment.uniform_3d_rotation", false]], "units (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.units", false]], "up (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.up", false]], "up (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.up", false]], "update_best_info() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.update_best_info", false], [183, "id18", false]], "update_best_layer() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.update_best_layer", false], [183, "id20", false]], "update_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.update_neuroglancer", false], [183, "id19", false]], "update_with_new_validation_if_possible() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.update_with_new_validation_if_possible", false], [183, "id22", false]], "updated_neuroglancer_layer() (dacapo.utils.view.neuroglancerrunviewer method)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.updated_neuroglancer_layer", false], [183, "id12", false]], "upsample (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample", false]], "upsample (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.upsample", false], [44, "id1", false]], "upsample (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.upsample", false], [38, "id11", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.upsample_channel_contraction", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.upsample_channel_contraction", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.upsample_channel_contraction", false]], "upsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.upsample_factors", false]], "upsample_factors (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.upsample_factors", false], [18, "id9", false]], "upsample_factors (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.upsample_factors", false]], "upsample_factors (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.upsample_factors", false], [21, "id28", false]], "upstream_tasks (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.upstream_tasks", false]], "upstream_tasks (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.upstream_tasks", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.use_attention", false], [17, "id9", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.use_attention", false], [17, "id10", false], [17, "id16", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.use_attention", false], [18, "id12", false]], "use_attention (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.use_attention", false], [21, "id41", false]], "use_attention (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.use_attention", false], [21, "id31", false]], "use_negative_class (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.use_negative_class", false]], "use_negative_class (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[63, "dacapo.experiments.datasplits.DataSplitGenerator.use_negative_class", false]], "users (dacapo.store.file_config_store.fileconfigstore property)": [[167, "dacapo.store.file_config_store.FileConfigStore.users", false]], "users (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[172, "dacapo.store.mongo_config_store.MongoConfigStore.users", false]], "val (dacapo.experiments.datasplits.datasplit_generator.datasettype attribute)": [[60, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.val", false], [60, "id1", false]], "validate (dacapo.experiments.datasplits.datasplit attribute)": [[63, "dacapo.experiments.datasplits.DataSplit.validate", false], [63, "id1", false]], "validate (dacapo.experiments.datasplits.datasplit.datasplit attribute)": [[58, "dacapo.experiments.datasplits.datasplit.DataSplit.validate", false], [58, "id1", false]], "validate (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit attribute)": [[61, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.validate", false], [61, "id1", false]], "validate (dacapo.experiments.datasplits.dummydatasplit attribute)": [[63, "dacapo.experiments.datasplits.DummyDataSplit.validate", false], [63, "id5", false]], "validate (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig property)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.validate", false]], "validate (dacapo.experiments.datasplits.simpledatasplitconfig property)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.validate", false]], "validate (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit attribute)": [[67, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.validate", false], [67, "id1", false]], "validate (dacapo.experiments.datasplits.trainvalidatedatasplit attribute)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplit.validate", false], [63, "id10", false]], "validate() (in module dacapo.validate)": [[185, "dacapo.validate.validate", false]], "validate_configs (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[68, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.validate_configs", false], [68, "id1", false]], "validate_configs (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.validate_configs", false], [63, "id12", false]], "validate_group_name (dacapo.experiments.datasplits.simple_config.simpledatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig.validate_group_name", false]], "validate_group_name (dacapo.experiments.datasplits.simpledatasplitconfig attribute)": [[63, "dacapo.experiments.datasplits.SimpleDataSplitConfig.validate_group_name", false]], "validate_run() (in module dacapo.validate)": [[185, "dacapo.validate.validate_run", false]], "validated_until() (dacapo.experiments.validation_scores.validationscores method)": [[147, "dacapo.experiments.validation_scores.ValidationScores.validated_until", false], [147, "id7", false]], "validated_until() (dacapo.experiments.validationscores method)": [[69, "dacapo.experiments.ValidationScores.validated_until", false], [69, "id25", false]], "validation_container() (dacapo.store.array_store.arraystore method)": [[162, "dacapo.store.array_store.ArrayStore.validation_container", false]], "validation_container() (dacapo.store.local_array_store.localarraystore method)": [[170, "dacapo.store.local_array_store.LocalArrayStore.validation_container", false], [170, "id6", false]], "validation_input_arrays() (dacapo.store.array_store.arraystore method)": [[162, "dacapo.store.array_store.ArrayStore.validation_input_arrays", false]], "validation_input_arrays() (dacapo.store.local_array_store.localarraystore method)": [[170, "dacapo.store.local_array_store.LocalArrayStore.validation_input_arrays", false], [170, "id4", false]], "validation_interval (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.validation_interval", false], [71, "id2", false]], "validation_interval (dacapo.experiments.run_config.runconfig attribute)": [[72, "dacapo.experiments.run_config.RunConfig.validation_interval", false]], "validation_interval (dacapo.experiments.runconfig attribute)": [[69, "dacapo.experiments.RunConfig.validation_interval", false]], "validation_output_array() (dacapo.store.array_store.arraystore method)": [[162, "dacapo.store.array_store.ArrayStore.validation_output_array", false]], "validation_output_array() (dacapo.store.local_array_store.localarraystore method)": [[170, "dacapo.store.local_array_store.LocalArrayStore.validation_output_array", false], [170, "id3", false]], "validation_parameters (dacapo.utils.view.bestscore attribute)": [[183, "dacapo.utils.view.BestScore.validation_parameters", false], [183, "id4", false]], "validation_prediction_array() (dacapo.store.array_store.arraystore method)": [[162, "dacapo.store.array_store.ArrayStore.validation_prediction_array", false]], "validation_prediction_array() (dacapo.store.local_array_store.localarraystore method)": [[170, "dacapo.store.local_array_store.LocalArrayStore.validation_prediction_array", false], [170, "id2", false]], "validation_scores (dacapo.experiments.run.run attribute)": [[71, "dacapo.experiments.run.Run.validation_scores", false]], "validation_scores (dacapo.experiments.run.run property)": [[71, "id11", false]], "validation_scores (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[173, "dacapo.store.mongo_stats_store.MongoStatsStore.validation_scores", false]], "validationiterationscores (class in dacapo.experiments)": [[69, "dacapo.experiments.ValidationIterationScores", false]], "validationiterationscores (class in dacapo.experiments.validation_iteration_scores)": [[146, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores", false]], "validationscores (class in dacapo.experiments)": [[69, "dacapo.experiments.ValidationScores", false]], "validationscores (class in dacapo.experiments.validation_scores)": [[147, "dacapo.experiments.validation_scores.ValidationScores", false]], "verify() (dacapo.experiments.architectures.architecture_config.architectureconfig method)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig.verify", false], [16, "id1", false]], "verify() (dacapo.experiments.architectures.architectureconfig method)": [[21, "dacapo.experiments.architectures.ArchitectureConfig.verify", false], [21, "id7", false]], "verify() (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig method)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.verify", false], [20, "id3", false]], "verify() (dacapo.experiments.architectures.dummyarchitectureconfig method)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.verify", false], [21, "id11", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig method)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.verify", false], [31, "id1", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.arrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.verify", false], [38, "id1", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.verify", false], [36, "id0", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.verify", false], [38, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig method)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.verify", false], [47, "id3", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.verify", false], [38, "id6", false]], "verify() (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig method)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.verify", false], [49, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.datasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.verify", false], [54, "id8", false]], "verify() (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig method)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.verify", false], [51, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.dummydatasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.verify", false], [54, "id12", false]], "verify() (dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.graphstoreconfig method)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.graphstores.graphstoreconfig method)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig method)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.simple.simpledataset method)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.simpledataset method)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.verify", false]], "verify() (dacapo.experiments.datasplits.datasplit_config.datasplitconfig method)": [[59, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig.verify", false], [59, "id1", false]], "verify() (dacapo.experiments.datasplits.datasplitconfig method)": [[63, "dacapo.experiments.datasplits.DataSplitConfig.verify", false], [63, "id3", false]], "verify() (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig method)": [[62, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.verify", false], [62, "id2", false]], "verify() (dacapo.experiments.datasplits.dummydatasplitconfig method)": [[63, "dacapo.experiments.datasplits.DummyDataSplitConfig.verify", false], [63, "id8", false]], "verify() (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig method)": [[79, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.affinitiestaskconfig method)": [[95, "dacapo.experiments.tasks.AffinitiesTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.distance_task_config.distancetaskconfig method)": [[81, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.distancetaskconfig method)": [[95, "dacapo.experiments.tasks.DistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig method)": [[83, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.verify", false], [83, "id3", false]], "verify() (dacapo.experiments.tasks.dummytaskconfig method)": [[95, "dacapo.experiments.tasks.DummyTaskConfig.verify", false], [95, "id5", false]], "verify() (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig method)": [[94, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.hotdistancetaskconfig method)": [[95, "dacapo.experiments.tasks.HotDistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig method)": [[126, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.pretrainedtaskconfig method)": [[95, "dacapo.experiments.tasks.PretrainedTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.task_config.taskconfig method)": [[128, "dacapo.experiments.tasks.task_config.TaskConfig.verify", false], [128, "id1", false]], "verify() (dacapo.experiments.tasks.taskconfig method)": [[95, "dacapo.experiments.tasks.TaskConfig.verify", false], [95, "id1", false]], "verify() (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig method)": [[130, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.verify", false], [130, "id1", false]], "verify() (dacapo.experiments.trainers.dummytrainerconfig method)": [[140, "dacapo.experiments.trainers.DummyTrainerConfig.verify", false], [140, "id8", false]], "verify() (dacapo.experiments.trainers.trainer_config.trainerconfig method)": [[143, "dacapo.experiments.trainers.trainer_config.TrainerConfig.verify", false], [143, "id3", false]], "verify() (dacapo.experiments.trainers.trainerconfig method)": [[140, "dacapo.experiments.trainers.TrainerConfig.verify", false], [140, "id6", false]], "vi_tables() (in module dacapo.utils.voi)": [[184, "dacapo.utils.voi.vi_tables", false]], "viewer (dacapo.utils.view.neuroglancerrunviewer attribute)": [[183, "dacapo.utils.view.NeuroglancerRunViewer.viewer", false]], "visualize_pipeline() (dacapo.experiments.run.run method)": [[71, "dacapo.experiments.run.Run.visualize_pipeline", false]], "visualize_pipeline() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.visualize_pipeline", false]], "visualize_pipeline() (dacapo.experiments.trainers.gunpowdertrainer method)": [[140, "dacapo.experiments.trainers.GunpowderTrainer.visualize_pipeline", false]], "voi (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.voi", false], [84, "id8", false]], "voi (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.voi", false], [90, "id31", false]], "voi (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[91, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi", false]], "voi (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores property)": [[91, "id2", false]], "voi (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi", false]], "voi (dacapo.experiments.tasks.evaluators.instanceevaluationscores property)": [[90, "id52", false]], "voi() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.voi", false], [85, "id21", false]], "voi() (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[92, "dacapo.experiments.tasks.evaluators.instance_evaluator.voi", false]], "voi() (in module dacapo.utils.voi)": [[184, "dacapo.utils.voi.voi", false]], "voi_merge (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[91, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi_merge", false], [91, "id1", false]], "voi_merge (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi_merge", false], [90, "id51", false]], "voi_split (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[91, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi_split", false], [91, "id0", false]], "voi_split (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[90, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi_split", false], [90, "id50", false]], "voxel_size (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.voxel_size", false]], "voxel_size (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.voxel_size", false]], "voxel_size (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.voxel_size", false], [46, "id2", false]], "w_g (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.W_g", false]], "w_x (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.W_x", false]], "watershedpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor", false]], "watershedpostprocessor (class in dacapo.experiments.tasks.post_processors.watershed_post_processor)": [[115, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor", false]], "watershedpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[110, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters", false]], "watershedpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters)": [[116, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters", false]], "weight (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.weight", false], [54, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.weight", false], [48, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig attribute)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.weight", false], [49, "id1", false]], "weight (dacapo.experiments.datasplits.datasets.datasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.weight", false], [54, "id7", false]], "weight (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.weight", false], [55, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.weight", false], [54, "id17", false]], "weight (dacapo.experiments.datasplits.datasets.simple.simpledataset attribute)": [[57, "dacapo.experiments.datasplits.datasets.simple.SimpleDataset.weight", false], [57, "id0", false]], "weight (dacapo.experiments.datasplits.datasets.simpledataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.SimpleDataset.weight", false], [54, "id23", false]], "weights (class in dacapo.store.weights_store)": [[175, "dacapo.store.weights_store.Weights", false]], "weights (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[104, "dacapo.experiments.tasks.one_hot_task.OneHotTask.weights", false]], "weights (dacapo.experiments.tasks.onehottask attribute)": [[95, "dacapo.experiments.tasks.OneHotTask.weights", false]], "weights (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[125, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.weights", false], [125, "id0", false]], "weights (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[126, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.weights", false], [126, "id1", false]], "weights (dacapo.experiments.tasks.pretrainedtask attribute)": [[95, "dacapo.experiments.tasks.PretrainedTask.weights", false], [95, "id25", false]], "weights (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[95, "dacapo.experiments.tasks.PretrainedTaskConfig.weights", false], [95, "id24", false]], "weights_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[150, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.weights_key", false], [150, "id1", false]], "weights_key (dacapo.gp.dacapotargetfilter attribute)": [[154, "dacapo.gp.DaCapoTargetFilter.weights_key", false], [154, "id1", false]], "weightsstore (class in dacapo.store.weights_store)": [[175, "dacapo.store.weights_store.WeightsStore", false]], "worker_file (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.worker_file", false]], "worker_file (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.worker_file", false]], "wrap_command() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext.wrap_command", false], [12, "id1", false]], "wrap_command() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext.wrap_command", false], [13, "id1", false]], "wrap_command() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.wrap_command", false]], "wrap_command() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.wrap_command", false]], "write_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.write_roi", false]], "write_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.write_roi", false]], "x1_key (dacapo.gp.product attribute)": [[154, "dacapo.gp.Product.x1_key", false], [154, "id24", false]], "x1_key (dacapo.gp.product.product attribute)": [[155, "dacapo.gp.product.Product.x1_key", false], [155, "id0", false]], "x2_key (dacapo.gp.product attribute)": [[154, "dacapo.gp.Product.x2_key", false], [154, "id25", false]], "x2_key (dacapo.gp.product.product attribute)": [[155, "dacapo.gp.product.Product.x2_key", false], [155, "id1", false]], "xlogx() (in module dacapo.utils.voi)": [[184, "dacapo.utils.voi.xlogx", false]], "y_key (dacapo.gp.product attribute)": [[154, "dacapo.gp.Product.y_key", false], [154, "id26", false]], "y_key (dacapo.gp.product.product attribute)": [[155, "dacapo.gp.product.Product.y_key", false], [155, "id2", false]], "zarrarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig", false]], "zarrarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.zarr_array_config)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig", false]], "zerossource (class in dacapo.utils.pipeline)": [[182, "dacapo.utils.pipeline.ZerosSource", false]]}, "objects": {"": [[198, 0, 0, "-", "dacapo"]], "dacapo": [[157, 1, 1, "", "Options"], [157, 3, 1, "", "apply"], [0, 0, 0, "-", "apply"], [4, 0, 0, "-", "blockwise"], [13, 0, 0, "-", "compute_context"], [69, 0, 0, "-", "experiments"], [148, 0, 0, "-", "ext"], [154, 0, 0, "-", "gp"], [158, 0, 0, "-", "options"], [159, 0, 0, "-", "plot"], [160, 0, 0, "-", "predict"], [161, 0, 0, "-", "predict_local"], [169, 0, 0, "-", "store"], [176, 0, 0, "-", "tmp"], [177, 0, 0, "-", "train"], [181, 0, 0, "-", "utils"], [185, 0, 0, "-", "validate"], [188, 8, 1, "cmdoption-dacapo-log-level", "--log-level"]], "dacapo-apply": [[188, 8, 1, "cmdoption-dacapo-apply-c", "--criterion"], [188, 8, 1, "cmdoption-dacapo-apply-ic", "--input_container"], [188, 8, 1, "cmdoption-dacapo-apply-id", "--input_dataset"], [188, 8, 1, "cmdoption-dacapo-apply-i", "--iteration"], [188, 8, 1, "cmdoption-dacapo-apply-w", "--num_workers"], [188, 8, 1, "cmdoption-dacapo-apply-dt", "--output_dtype"], [188, 8, 1, "cmdoption-dacapo-apply-op", "--output_path"], [188, 8, 1, "cmdoption-dacapo-apply-ow", "--overwrite"], [188, 8, 1, "cmdoption-dacapo-apply-p", "--parameters"], [188, 8, 1, "cmdoption-dacapo-apply-roi", "--roi"], [188, 8, 1, "cmdoption-dacapo-apply-r", "--run-name"], [188, 8, 1, "cmdoption-dacapo-apply-vd", "--validation_dataset"], [188, 8, 1, "cmdoption-dacapo-apply-c", "-c"], [188, 8, 1, "cmdoption-dacapo-apply-dt", "-dt"], [188, 8, 1, "cmdoption-dacapo-apply-i", "-i"], [188, 8, 1, "cmdoption-dacapo-apply-ic", "-ic"], [188, 8, 1, "cmdoption-dacapo-apply-id", "-id"], [188, 8, 1, "cmdoption-dacapo-apply-op", "-op"], [188, 8, 1, "cmdoption-dacapo-apply-ow", "-ow"], [188, 8, 1, "cmdoption-dacapo-apply-p", "-p"], [188, 8, 1, "cmdoption-dacapo-apply-r", "-r"], [188, 8, 1, "cmdoption-dacapo-apply-roi", "-roi"], [188, 8, 1, "cmdoption-dacapo-apply-vd", "-vd"], [188, 8, 1, "cmdoption-dacapo-apply-w", "-w"]], "dacapo-predict": [[188, 8, 1, "cmdoption-dacapo-predict-ic", "--input_container"], [188, 8, 1, "cmdoption-dacapo-predict-id", "--input_dataset"], [188, 8, 1, "cmdoption-dacapo-predict-i", "--iteration"], [188, 8, 1, "cmdoption-dacapo-predict-w", "--num_workers"], [188, 8, 1, "cmdoption-dacapo-predict-dt", "--output_dtype"], [188, 8, 1, "cmdoption-dacapo-predict-op", "--output_path"], [188, 8, 1, "cmdoption-dacapo-predict-roi", "--output_roi"], [188, 8, 1, "cmdoption-dacapo-predict-ow", "--overwrite"], [188, 8, 1, "cmdoption-dacapo-predict-r", "--run-name"], [188, 8, 1, "cmdoption-dacapo-predict-dt", "-dt"], [188, 8, 1, "cmdoption-dacapo-predict-i", "-i"], [188, 8, 1, "cmdoption-dacapo-predict-ic", "-ic"], [188, 8, 1, "cmdoption-dacapo-predict-id", "-id"], [188, 8, 1, "cmdoption-dacapo-predict-op", "-op"], [188, 8, 1, "cmdoption-dacapo-predict-ow", "-ow"], [188, 8, 1, "cmdoption-dacapo-predict-r", "-r"], [188, 8, 1, "cmdoption-dacapo-predict-roi", "-roi"], [188, 8, 1, "cmdoption-dacapo-predict-w", "-w"]], "dacapo-run-blockwise": [[188, 8, 1, "cmdoption-dacapo-run-blockwise-ic", "--input_container"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-id", "--input_dataset"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-mr", "--max_retries"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-nw", "--num_workers"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-oc", "--output_container"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-od", "--output_dataset"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-dt", "--output_dtype"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-ow", "--overwrite"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-rr", "--read_roi_size"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-t", "--timeout"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-tr", "--total_roi"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-w", "--worker_file"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-wr", "--write_roi_size"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-co", "-channels_out"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-co", "-co"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-dt", "-dt"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-ic", "-ic"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-id", "-id"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-mr", "-mr"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-nw", "-nw"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-oc", "-oc"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-od", "-od"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-ow", "-ow"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-rr", "-rr"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-t", "-t"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-tr", "-tr"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-w", "-w"], [188, 8, 1, "cmdoption-dacapo-run-blockwise-wr", "-wr"]], "dacapo-segment-blockwise": [[188, 8, 1, "cmdoption-dacapo-segment-blockwise-co", "--channels_out"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-c", "--context"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-ic", "--input_container"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-id", "--input_dataset"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-mr", "--max_retries"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-nw", "--num_workers"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-oc", "--output_container"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-od", "--output_dataset"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-ow", "--overwrite"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-rr", "--read_roi_size"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-sf", "--segment_function_file"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-t", "--timeout"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-tr", "--total_roi"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-wr", "--write_roi_size"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-c", "-c"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-co", "-co"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-ic", "-ic"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-id", "-id"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-mr", "-mr"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-nw", "-nw"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-oc", "-oc"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-od", "-od"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-ow", "-ow"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-rr", "-rr"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-sf", "-sf"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-t", "-t"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-tr", "-tr"], [188, 8, 1, "cmdoption-dacapo-segment-blockwise-wr", "-wr"]], "dacapo-train": [[188, 8, 1, "cmdoption-dacapo-train-no-validation", "--no-validation"], [188, 8, 1, "cmdoption-dacapo-train-r", "--run-name"], [188, 8, 1, "cmdoption-dacapo-train-r", "-r"]], "dacapo-validate": [[188, 8, 1, "cmdoption-dacapo-validate-i", "--iteration"], [188, 8, 1, "cmdoption-dacapo-validate-w", "--num_workers"], [188, 8, 1, "cmdoption-dacapo-validate-dt", "--output_dtype"], [188, 8, 1, "cmdoption-dacapo-validate-ow", "--overwrite"], [188, 8, 1, "cmdoption-dacapo-validate-r", "--run-name"], [188, 8, 1, "cmdoption-dacapo-validate-dt", "-dt"], [188, 8, 1, "cmdoption-dacapo-validate-i", "-i"], [188, 8, 1, "cmdoption-dacapo-validate-ow", "-ow"], [188, 8, 1, "cmdoption-dacapo-validate-r", "-r"], [188, 8, 1, "cmdoption-dacapo-validate-w", "-w"]], "dacapo.Options": [[157, 2, 1, "", "__parse_options"], [157, 2, 1, "", "__parse_options_from_file"], [157, 2, 1, "id1", "config_file"], [157, 2, 1, "id0", "instance"]], "dacapo.apply": [[0, 3, 1, "", "apply"], [0, 3, 1, "", "apply_run"], [0, 4, 1, "", "logger"]], "dacapo.blockwise": [[4, 1, 1, "", "DaCapoBlockwiseTask"], [1, 0, 0, "-", "argmax_worker"], [2, 0, 0, "-", "blockwise_task"], [3, 0, 0, "-", "empanada_function"], [5, 0, 0, "-", "predict_worker"], [6, 0, 0, "-", "relabel_worker"], [7, 0, 0, "-", "scheduler"], [8, 0, 0, "-", "segment_worker"], [9, 0, 0, "-", "threshold_worker"], [10, 0, 0, "-", "watershed_function"]], "dacapo.blockwise.DaCapoBlockwiseTask": [[4, 2, 1, "", "__init__"], [4, 5, 1, "", "max_retries"], [4, 5, 1, "", "num_workers"], [4, 5, 1, "", "read_roi"], [4, 5, 1, "", "timeout"], [4, 5, 1, "", "total_roi"], [4, 5, 1, "", "upstream_tasks"], [4, 5, 1, "", "worker_file"], [4, 5, 1, "", "write_roi"]], "dacapo.blockwise.argmax_worker": [[1, 3, 1, "", "cli"], [1, 4, 1, "", "fit"], [1, 4, 1, "", "logger"], [1, 4, 1, "", "path"], [1, 4, 1, "", "read_write_conflict"], [1, 3, 1, "", "spawn_worker"], [1, 3, 1, "", "start_worker"], [1, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.blockwise_task": [[2, 1, 1, "", "DaCapoBlockwiseTask"]], "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask": [[2, 2, 1, "", "__init__"], [2, 5, 1, "", "max_retries"], [2, 5, 1, "", "num_workers"], [2, 5, 1, "", "read_roi"], [2, 5, 1, "", "timeout"], [2, 5, 1, "", "total_roi"], [2, 5, 1, "", "upstream_tasks"], [2, 5, 1, "", "worker_file"], [2, 5, 1, "", "write_roi"]], "dacapo.blockwise.empanada_function": [[3, 4, 1, "", "default_parameters"], [3, 3, 1, "", "empanada_segmenter"], [3, 4, 1, "", "logger"], [3, 4, 1, "", "model_configs"], [3, 3, 1, "", "orthoplane_inference"], [3, 3, 1, "", "segment_function"], [3, 3, 1, "", "stack_inference"], [3, 3, 1, "", "stack_postprocessing"], [3, 3, 1, "", "tracker_consensus"]], "dacapo.blockwise.predict_worker": [[5, 3, 1, "", "cli"], [5, 4, 1, "", "fit"], [5, 4, 1, "", "logger"], [5, 4, 1, "", "path"], [5, 4, 1, "", "read_write_conflict"], [5, 3, 1, "", "spawn_worker"], [5, 3, 1, "", "start_worker"], [5, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.relabel_worker": [[6, 3, 1, "", "cli"], [6, 3, 1, "", "find_components"], [6, 4, 1, "", "fit"], [6, 4, 1, "", "path"], [6, 3, 1, "", "read_cross_block_merges"], [6, 4, 1, "", "read_write_conflict"], [6, 3, 1, "", "relabel_in_block"], [6, 3, 1, "", "spawn_worker"], [6, 3, 1, "", "start_worker"], [6, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.scheduler": [[7, 4, 1, "", "logger"], [7, 3, 1, "", "run_blockwise"], [7, 3, 1, "", "segment_blockwise"]], "dacapo.blockwise.segment_worker": [[8, 3, 1, "", "cli"], [8, 4, 1, "", "fit"], [8, 4, 1, "", "logger"], [8, 4, 1, "", "path"], [8, 4, 1, "", "read_write_conflict"], [8, 3, 1, "", "spawn_worker"], [8, 3, 1, "", "start_worker"], [8, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.threshold_worker": [[9, 3, 1, "", "cli"], [9, 4, 1, "", "fit"], [9, 4, 1, "", "logger"], [9, 4, 1, "", "path"], [9, 4, 1, "", "read_write_conflict"], [9, 3, 1, "", "spawn_worker"], [9, 3, 1, "", "start_worker"], [9, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.watershed_function": [[10, 3, 1, "", "segment_function"]], "dacapo.compute_context": [[13, 1, 1, "", "Bsub"], [13, 1, 1, "", "ComputeContext"], [13, 1, 1, "", "LocalTorch"], [11, 0, 0, "-", "bsub"], [12, 0, 0, "-", "compute_context"], [13, 3, 1, "", "create_compute_context"], [14, 0, 0, "-", "local_torch"]], "dacapo.compute_context.Bsub": [[13, 2, 1, "", "_wrap_command"], [13, 5, 1, "id9", "billing"], [13, 6, 1, "id10", "device"], [13, 5, 1, "", "distribute_workers"], [13, 5, 1, "id8", "num_cpus"], [13, 5, 1, "id7", "num_gpus"], [13, 5, 1, "id6", "queue"]], "dacapo.compute_context.ComputeContext": [[13, 2, 1, "", "_wrap_command"], [13, 6, 1, "id0", "device"], [13, 5, 1, "", "distribute_workers"], [13, 2, 1, "id2", "execute"], [13, 2, 1, "id1", "wrap_command"]], "dacapo.compute_context.LocalTorch": [[13, 5, 1, "", "_device"], [13, 2, 1, "", "_wrap_command"], [13, 6, 1, "id5", "device"], [13, 5, 1, "", "distribute_workers"], [13, 2, 1, "", "execute"], [13, 5, 1, "id4", "oom_limit"], [13, 2, 1, "", "wrap_command"]], "dacapo.compute_context.bsub": [[11, 1, 1, "", "Bsub"]], "dacapo.compute_context.bsub.Bsub": [[11, 2, 1, "", "_wrap_command"], [11, 5, 1, "id3", "billing"], [11, 6, 1, "id4", "device"], [11, 5, 1, "", "distribute_workers"], [11, 5, 1, "id2", "num_cpus"], [11, 5, 1, "id1", "num_gpus"], [11, 5, 1, "id0", "queue"]], "dacapo.compute_context.compute_context": [[12, 1, 1, "", "ComputeContext"], [12, 3, 1, "", "create_compute_context"]], "dacapo.compute_context.compute_context.ComputeContext": [[12, 2, 1, "", "_wrap_command"], [12, 6, 1, "id0", "device"], [12, 5, 1, "", "distribute_workers"], [12, 2, 1, "id2", "execute"], [12, 2, 1, "id1", "wrap_command"]], "dacapo.compute_context.local_torch": [[14, 1, 1, "", "LocalTorch"]], "dacapo.compute_context.local_torch.LocalTorch": [[14, 5, 1, "", "_device"], [14, 2, 1, "", "_wrap_command"], [14, 6, 1, "id2", "device"], [14, 5, 1, "", "distribute_workers"], [14, 2, 1, "", "execute"], [14, 5, 1, "id1", "oom_limit"], [14, 2, 1, "", "wrap_command"]], "dacapo.experiments": [[69, 1, 1, "", "Model"], [69, 1, 1, "", "RunConfig"], [69, 1, 1, "", "TrainingIterationStats"], [69, 1, 1, "", "TrainingStats"], [69, 1, 1, "", "ValidationIterationScores"], [69, 1, 1, "", "ValidationScores"], [21, 0, 0, "-", "architectures"], [27, 0, 0, "-", "arraytypes"], [63, 0, 0, "-", "datasplits"], [70, 0, 0, "-", "model"], [71, 0, 0, "-", "run"], [72, 0, 0, "-", "run_config"], [75, 0, 0, "-", "starts"], [95, 0, 0, "-", "tasks"], [140, 0, 0, "-", "trainers"], [144, 0, 0, "-", "training_iteration_stats"], [145, 0, 0, "-", "training_stats"], [146, 0, 0, "-", "validation_iteration_scores"], [147, 0, 0, "-", "validation_scores"]], "dacapo.experiments.Model": [[69, 5, 1, "id4", "architecture"], [69, 5, 1, "id6", "chain"], [69, 2, 1, "", "compute_output_shape"], [69, 5, 1, "id9", "eval_activation"], [69, 5, 1, "id8", "eval_input_shape"], [69, 2, 1, "", "forward"], [69, 5, 1, "id7", "input_shape"], [69, 5, 1, "id3", "num_in_channels"], [69, 5, 1, "id0", "num_out_channels"], [69, 5, 1, "", "output_shape"], [69, 5, 1, "id5", "prediction_head"], [69, 2, 1, "", "scale"]], "dacapo.experiments.RunConfig": [[69, 5, 1, "", "architecture_config"], [69, 5, 1, "", "datasplit_config"], [69, 5, 1, "", "name"], [69, 5, 1, "", "num_iterations"], [69, 5, 1, "", "repetition"], [69, 5, 1, "", "start_config"], [69, 5, 1, "", "task_config"], [69, 5, 1, "", "trainer_config"], [69, 5, 1, "", "validation_interval"]], "dacapo.experiments.TrainingIterationStats": [[69, 5, 1, "id10", "iteration"], [69, 5, 1, "id11", "loss"], [69, 5, 1, "id12", "time"]], "dacapo.experiments.TrainingStats": [[69, 2, 1, "", "add_iteration_stats"], [69, 2, 1, "", "delete_after"], [69, 5, 1, "id13", "iteration_stats"], [69, 2, 1, "id15", "to_xarray"], [69, 2, 1, "id14", "trained_until"]], "dacapo.experiments.ValidationIterationScores": [[69, 5, 1, "id16", "iteration"], [69, 5, 1, "id17", "scores"]], "dacapo.experiments.ValidationScores": [[69, 2, 1, "id23", "add_iteration_scores"], [69, 2, 1, "id26", "compare"], [69, 6, 1, "id27", "criteria"], [69, 5, 1, "id19", "datasets"], [69, 2, 1, "id24", "delete_after"], [69, 5, 1, "id20", "evaluation_scores"], [69, 2, 1, "id30", "get_best"], [69, 6, 1, "id28", "parameter_names"], [69, 5, 1, "id18", "parameters"], [69, 5, 1, "id21", "scores"], [69, 2, 1, "id22", "subscores"], [69, 2, 1, "id29", "to_xarray"], [69, 2, 1, "id25", "validated_until"]], "dacapo.experiments.architectures": [[21, 1, 1, "", "Architecture"], [21, 1, 1, "", "ArchitectureConfig"], [21, 1, 1, "", "CNNectomeUNet"], [21, 1, 1, "", "CNNectomeUNetConfig"], [21, 1, 1, "", "DummyArchitecture"], [21, 1, 1, "", "DummyArchitectureConfig"], [15, 0, 0, "-", "architecture"], [16, 0, 0, "-", "architecture_config"], [17, 0, 0, "-", "cnnectome_unet"], [18, 0, 0, "-", "cnnectome_unet_config"], [19, 0, 0, "-", "dummy_architecture"], [20, 0, 0, "-", "dummy_architecture_config"]], "dacapo.experiments.architectures.Architecture": [[21, 6, 1, "id4", "dims"], [21, 6, 1, "id1", "eval_shape_increase"], [21, 6, 1, "id0", "input_shape"], [21, 6, 1, "id2", "num_in_channels"], [21, 6, 1, "id3", "num_out_channels"], [21, 2, 1, "id5", "scale"]], "dacapo.experiments.architectures.ArchitectureConfig": [[21, 5, 1, "id6", "name"], [21, 2, 1, "id7", "verify"]], "dacapo.experiments.architectures.CNNectomeUNet": [[21, 5, 1, "", "activation"], [21, 5, 1, "", "activation_on_upsample"], [21, 5, 1, "", "batch_norm"], [21, 5, 1, "id39", "constant_upsample"], [21, 5, 1, "id36", "downsample_factors"], [21, 6, 1, "", "eval_shape_increase"], [21, 5, 1, "id35", "fmap_inc_factor"], [21, 5, 1, "id33", "fmaps_in"], [21, 5, 1, "id32", "fmaps_out"], [21, 2, 1, "", "forward"], [21, 5, 1, "", "fov"], [21, 6, 1, "", "input_shape"], [21, 5, 1, "id37", "kernel_size_down"], [21, 5, 1, "id38", "kernel_size_up"], [21, 2, 1, "", "module"], [21, 5, 1, "id34", "num_fmaps"], [21, 5, 1, "", "num_heads"], [21, 6, 1, "", "num_in_channels"], [21, 6, 1, "", "num_out_channels"], [21, 5, 1, "id40", "padding"], [21, 2, 1, "", "scale"], [21, 5, 1, "", "unet"], [21, 5, 1, "", "upsample_channel_contraction"], [21, 5, 1, "", "upsample_factors"], [21, 5, 1, "id41", "use_attention"], [21, 5, 1, "", "voxel_size"]], "dacapo.experiments.architectures.CNNectomeUNetConfig": [[21, 5, 1, "", "_eval_shape_increase"], [21, 5, 1, "id19", "architecture_type"], [21, 5, 1, "", "batch_norm"], [21, 5, 1, "id29", "constant_upsample"], [21, 5, 1, "id25", "downsample_factors"], [21, 5, 1, "id24", "fmap_inc_factor"], [21, 5, 1, "id22", "fmaps_in"], [21, 5, 1, "id21", "fmaps_out"], [21, 5, 1, "id20", "input_shape"], [21, 5, 1, "id26", "kernel_size_down"], [21, 5, 1, "id27", "kernel_size_up"], [21, 5, 1, "id23", "num_fmaps"], [21, 5, 1, "id30", "padding"], [21, 5, 1, "id28", "upsample_factors"], [21, 5, 1, "id31", "use_attention"]], "dacapo.experiments.architectures.DummyArchitecture": [[21, 5, 1, "id12", "channels_in"], [21, 5, 1, "id13", "channels_out"], [21, 5, 1, "id14", "conv"], [21, 2, 1, "id18", "forward"], [21, 6, 1, "id15", "input_shape"], [21, 6, 1, "id16", "num_in_channels"], [21, 6, 1, "id17", "num_out_channels"]], "dacapo.experiments.architectures.DummyArchitectureConfig": [[21, 5, 1, "id8", "architecture_type"], [21, 5, 1, "id9", "num_in_channels"], [21, 5, 1, "id10", "num_out_channels"], [21, 2, 1, "id11", "verify"]], "dacapo.experiments.architectures.architecture": [[15, 1, 1, "", "Architecture"]], "dacapo.experiments.architectures.architecture.Architecture": [[15, 6, 1, "id4", "dims"], [15, 6, 1, "id1", "eval_shape_increase"], [15, 6, 1, "id0", "input_shape"], [15, 6, 1, "id2", "num_in_channels"], [15, 6, 1, "id3", "num_out_channels"], [15, 2, 1, "id5", "scale"]], "dacapo.experiments.architectures.architecture_config": [[16, 1, 1, "", "ArchitectureConfig"]], "dacapo.experiments.architectures.architecture_config.ArchitectureConfig": [[16, 5, 1, "id0", "name"], [16, 2, 1, "id1", "verify"]], "dacapo.experiments.architectures.cnnectome_unet": [[17, 1, 1, "", "AttentionBlockModule"], [17, 1, 1, "", "CNNectomeUNet"], [17, 1, 1, "", "CNNectomeUNetModule"], [17, 1, 1, "", "ConvPass"], [17, 1, 1, "", "Downsample"], [17, 1, 1, "", "Upsample"]], "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule": [[17, 5, 1, "", "W_g"], [17, 5, 1, "", "W_x"], [17, 5, 1, "", "batch_norm"], [17, 2, 1, "", "calculate_and_apply_padding"], [17, 5, 1, "", "dims"], [17, 2, 1, "", "forward"], [17, 5, 1, "", "kernel_sizes"], [17, 5, 1, "", "psi"], [17, 5, 1, "", "relu"], [17, 5, 1, "", "up"]], "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet": [[17, 5, 1, "", "activation"], [17, 5, 1, "", "activation_on_upsample"], [17, 5, 1, "", "batch_norm"], [17, 5, 1, "id7", "constant_upsample"], [17, 5, 1, "id4", "downsample_factors"], [17, 6, 1, "", "eval_shape_increase"], [17, 5, 1, "id3", "fmap_inc_factor"], [17, 5, 1, "id1", "fmaps_in"], [17, 5, 1, "id0", "fmaps_out"], [17, 2, 1, "", "forward"], [17, 5, 1, "", "fov"], [17, 6, 1, "", "input_shape"], [17, 5, 1, "id5", "kernel_size_down"], [17, 5, 1, "id6", "kernel_size_up"], [17, 2, 1, "", "module"], [17, 5, 1, "id2", "num_fmaps"], [17, 5, 1, "", "num_heads"], [17, 6, 1, "", "num_in_channels"], [17, 6, 1, "", "num_out_channels"], [17, 5, 1, "id8", "padding"], [17, 2, 1, "", "scale"], [17, 5, 1, "", "unet"], [17, 5, 1, "", "upsample_channel_contraction"], [17, 5, 1, "", "upsample_factors"], [17, 5, 1, "id9", "use_attention"], [17, 5, 1, "", "voxel_size"]], "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule": [[17, 5, 1, "", "activation_on_upsample"], [17, 5, 1, "", "attention"], [17, 5, 1, "", "batch_norm"], [17, 5, 1, "", "constant_upsample"], [17, 5, 1, "id15", "dims"], [17, 5, 1, "", "downsample_factors"], [17, 5, 1, "", "fmap_inc_factor"], [17, 2, 1, "id24", "forward"], [17, 5, 1, "id13", "in_channels"], [17, 5, 1, "id17", "kernel_size_down"], [17, 5, 1, "id18", "kernel_size_up"], [17, 5, 1, "id19", "l_conv"], [17, 5, 1, "id20", "l_down"], [17, 5, 1, "id12", "num_heads"], [17, 5, 1, "id11", "num_levels"], [17, 5, 1, "id14", "out_channels"], [17, 5, 1, "", "padding"], [17, 5, 1, "id22", "r_conv"], [17, 5, 1, "id21", "r_up"], [17, 2, 1, "id23", "rec_forward"], [17, 5, 1, "", "upsample_channel_contraction"], [17, 5, 1, "id16", "use_attention"]], "dacapo.experiments.architectures.cnnectome_unet.ConvPass": [[17, 5, 1, "id25", "conv_pass"], [17, 5, 1, "", "dims"], [17, 2, 1, "id26", "forward"]], "dacapo.experiments.architectures.cnnectome_unet.Downsample": [[17, 5, 1, "id27", "dims"], [17, 5, 1, "id29", "down"], [17, 5, 1, "id28", "downsample_factor"], [17, 2, 1, "id30", "forward"]], "dacapo.experiments.architectures.cnnectome_unet.Upsample": [[17, 2, 1, "id35", "crop"], [17, 5, 1, "id31", "crop_factor"], [17, 2, 1, "id34", "crop_to_factor"], [17, 5, 1, "id33", "dims"], [17, 2, 1, "id36", "forward"], [17, 5, 1, "id32", "next_conv_kernel_sizes"], [17, 5, 1, "", "up"]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, 1, 1, "", "CNNectomeUNetConfig"]], "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig": [[18, 5, 1, "", "_eval_shape_increase"], [18, 5, 1, "id0", "architecture_type"], [18, 5, 1, "", "batch_norm"], [18, 5, 1, "id10", "constant_upsample"], [18, 5, 1, "id6", "downsample_factors"], [18, 5, 1, "id5", "fmap_inc_factor"], [18, 5, 1, "id3", "fmaps_in"], [18, 5, 1, "id2", "fmaps_out"], [18, 5, 1, "id1", "input_shape"], [18, 5, 1, "id7", "kernel_size_down"], [18, 5, 1, "id8", "kernel_size_up"], [18, 5, 1, "id4", "num_fmaps"], [18, 5, 1, "id11", "padding"], [18, 5, 1, "id9", "upsample_factors"], [18, 5, 1, "id12", "use_attention"]], "dacapo.experiments.architectures.dummy_architecture": [[19, 1, 1, "", "DummyArchitecture"]], "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture": [[19, 5, 1, "id0", "channels_in"], [19, 5, 1, "id1", "channels_out"], [19, 5, 1, "id2", "conv"], [19, 2, 1, "id6", "forward"], [19, 6, 1, "id3", "input_shape"], [19, 6, 1, "id4", "num_in_channels"], [19, 6, 1, "id5", "num_out_channels"]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, 1, 1, "", "DummyArchitectureConfig"]], "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig": [[20, 5, 1, "id0", "architecture_type"], [20, 5, 1, "id1", "num_in_channels"], [20, 5, 1, "id2", "num_out_channels"], [20, 2, 1, "id3", "verify"]], "dacapo.experiments.arraytypes": [[27, 1, 1, "", "AnnotationArray"], [27, 1, 1, "", "DistanceArray"], [27, 1, 1, "", "EmbeddingArray"], [27, 1, 1, "", "IntensitiesArray"], [27, 1, 1, "", "Mask"], [27, 1, 1, "", "ProbabilityArray"], [22, 0, 0, "-", "annotations"], [23, 0, 0, "-", "arraytype"], [24, 0, 0, "-", "binary"], [25, 0, 0, "-", "distances"], [26, 0, 0, "-", "embedding"], [28, 0, 0, "-", "intensities"], [29, 0, 0, "-", "mask"], [30, 0, 0, "-", "probabilities"]], "dacapo.experiments.arraytypes.AnnotationArray": [[27, 5, 1, "id0", "classes"], [27, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.DistanceArray": [[27, 5, 1, "id6", "classes"], [27, 6, 1, "id7", "interpolatable"], [27, 5, 1, "", "max"]], "dacapo.experiments.arraytypes.EmbeddingArray": [[27, 5, 1, "id9", "embedding_dims"], [27, 6, 1, "id10", "interpolatable"]], "dacapo.experiments.arraytypes.IntensitiesArray": [[27, 2, 1, "", "__attrs_post_init__"], [27, 5, 1, "id2", "channels"], [27, 6, 1, "id5", "interpolatable"], [27, 5, 1, "id4", "max"], [27, 5, 1, "id3", "min"]], "dacapo.experiments.arraytypes.Mask": [[27, 6, 1, "id8", "interpolatable"]], "dacapo.experiments.arraytypes.ProbabilityArray": [[27, 5, 1, "id11", "classes"], [27, 6, 1, "", "interpolatable"]], "dacapo.experiments.arraytypes.annotations": [[22, 1, 1, "", "AnnotationArray"]], "dacapo.experiments.arraytypes.annotations.AnnotationArray": [[22, 5, 1, "id0", "classes"], [22, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.arraytype": [[23, 1, 1, "", "ArrayType"]], "dacapo.experiments.arraytypes.arraytype.ArrayType": [[23, 5, 1, "", "channel_names"], [23, 6, 1, "id0", "interpolatable"], [23, 5, 1, "", "num_classes"]], "dacapo.experiments.arraytypes.binary": [[24, 1, 1, "", "BinaryArray"]], "dacapo.experiments.arraytypes.binary.BinaryArray": [[24, 5, 1, "id0", "channels"], [24, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.distances": [[25, 1, 1, "", "DistanceArray"]], "dacapo.experiments.arraytypes.distances.DistanceArray": [[25, 5, 1, "id0", "classes"], [25, 6, 1, "id1", "interpolatable"], [25, 5, 1, "", "max"]], "dacapo.experiments.arraytypes.embedding": [[26, 1, 1, "", "EmbeddingArray"]], "dacapo.experiments.arraytypes.embedding.EmbeddingArray": [[26, 5, 1, "id0", "embedding_dims"], [26, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.intensities": [[28, 1, 1, "", "IntensitiesArray"]], "dacapo.experiments.arraytypes.intensities.IntensitiesArray": [[28, 2, 1, "", "__attrs_post_init__"], [28, 5, 1, "id0", "channels"], [28, 6, 1, "id3", "interpolatable"], [28, 5, 1, "id2", "max"], [28, 5, 1, "id1", "min"]], "dacapo.experiments.arraytypes.mask": [[29, 1, 1, "", "Mask"]], "dacapo.experiments.arraytypes.mask.Mask": [[29, 6, 1, "id0", "interpolatable"]], "dacapo.experiments.arraytypes.probabilities": [[30, 1, 1, "", "ProbabilityArray"]], "dacapo.experiments.arraytypes.probabilities.ProbabilityArray": [[30, 5, 1, "id0", "classes"], [30, 6, 1, "", "interpolatable"]], "dacapo.experiments.datasplits": [[63, 1, 1, "", "DataSplit"], [63, 1, 1, "", "DataSplitConfig"], [63, 1, 1, "", "DataSplitGenerator"], [63, 1, 1, "", "DatasetSpec"], [63, 1, 1, "", "DummyDataSplit"], [63, 1, 1, "", "DummyDataSplitConfig"], [63, 1, 1, "", "SimpleDataSplitConfig"], [63, 1, 1, "", "TrainValidateDataSplit"], [63, 1, 1, "", "TrainValidateDataSplitConfig"], [54, 0, 0, "-", "datasets"], [58, 0, 0, "-", "datasplit"], [59, 0, 0, "-", "datasplit_config"], [60, 0, 0, "-", "datasplit_generator"], [61, 0, 0, "-", "dummy_datasplit"], [62, 0, 0, "-", "dummy_datasplit_config"], [64, 0, 0, "-", "keys"], [66, 0, 0, "-", "simple_config"], [67, 0, 0, "-", "train_validate_datasplit"], [68, 0, 0, "-", "train_validate_datasplit_config"]], "dacapo.experiments.datasplits.DataSplit": [[63, 2, 1, "", "__init__"], [63, 5, 1, "id0", "train"], [63, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.DataSplitConfig": [[63, 5, 1, "id2", "name"], [63, 2, 1, "id3", "verify"]], "dacapo.experiments.datasplits.DataSplitGenerator": [[63, 2, 1, "", "__generate_semantic_seg_dataset_crop"], [63, 2, 1, "", "__generate_semantic_seg_datasplit"], [63, 2, 1, "", "__init__"], [63, 2, 1, "", "__str__"], [63, 5, 1, "", "binarize_gt"], [63, 2, 1, "id31", "check_class_name"], [63, 6, 1, "id30", "class_name"], [63, 5, 1, "id28", "classes_separator_character"], [63, 2, 1, "id32", "compute"], [63, 5, 1, "id14", "datasets"], [63, 2, 1, "", "generate_csv"], [63, 2, 1, "id33", "generate_from_csv"], [63, 5, 1, "id15", "input_resolution"], [63, 5, 1, "id19", "max_gt_downsample"], [63, 5, 1, "id20", "max_gt_upsample"], [63, 5, 1, "id21", "max_raw_training_downsample"], [63, 5, 1, "id22", "max_raw_training_upsample"], [63, 5, 1, "id23", "max_raw_validation_downsample"], [63, 5, 1, "id24", "max_raw_validation_upsample"], [63, 5, 1, "id29", "max_validation_volume_size"], [63, 5, 1, "id25", "min_training_volume_size"], [63, 5, 1, "id13", "name"], [63, 5, 1, "id16", "output_resolution"], [63, 5, 1, "id27", "raw_max"], [63, 5, 1, "id26", "raw_min"], [63, 5, 1, "id18", "segmentation_type"], [63, 5, 1, "id17", "targets"], [63, 5, 1, "", "use_negative_class"]], "dacapo.experiments.datasplits.DatasetSpec": [[63, 2, 1, "", "__init__"], [63, 2, 1, "", "__str__"], [63, 5, 1, "id34", "dataset_type"], [63, 5, 1, "id37", "gt_container"], [63, 5, 1, "id38", "gt_dataset"], [63, 5, 1, "id35", "raw_container"], [63, 5, 1, "id36", "raw_dataset"]], "dacapo.experiments.datasplits.DummyDataSplit": [[63, 2, 1, "", "__init__"], [63, 5, 1, "id4", "train"], [63, 5, 1, "id5", "validate"]], "dacapo.experiments.datasplits.DummyDataSplitConfig": [[63, 5, 1, "id6", "datasplit_type"], [63, 5, 1, "id7", "train_config"], [63, 2, 1, "id8", "verify"]], "dacapo.experiments.datasplits.SimpleDataSplitConfig": [[63, 2, 1, "", "datasplit_type"], [63, 2, 1, "", "get_paths"], [63, 5, 1, "", "gt_name"], [63, 5, 1, "", "mask_name"], [63, 5, 1, "", "name"], [63, 5, 1, "", "path"], [63, 5, 1, "", "raw_name"], [63, 6, 1, "", "train"], [63, 5, 1, "", "train_group_name"], [63, 6, 1, "", "validate"], [63, 5, 1, "", "validate_group_name"]], "dacapo.experiments.datasplits.TrainValidateDataSplit": [[63, 2, 1, "", "__init__"], [63, 5, 1, "id9", "train"], [63, 5, 1, "id10", "validate"]], "dacapo.experiments.datasplits.TrainValidateDataSplitConfig": [[63, 2, 1, "", "__init__"], [63, 5, 1, "", "datasplit_type"], [63, 5, 1, "id11", "train_configs"], [63, 5, 1, "id12", "validate_configs"]], "dacapo.experiments.datasplits.datasets": [[54, 1, 1, "", "Dataset"], [54, 1, 1, "", "DatasetConfig"], [54, 1, 1, "", "DummyDataset"], [54, 1, 1, "", "DummyDatasetConfig"], [54, 1, 1, "", "RawGTDataset"], [54, 1, 1, "", "RawGTDatasetConfig"], [54, 1, 1, "", "SimpleDataset"], [38, 0, 0, "-", "arrays"], [48, 0, 0, "-", "dataset"], [49, 0, 0, "-", "dataset_config"], [50, 0, 0, "-", "dummy_dataset"], [51, 0, 0, "-", "dummy_dataset_config"], [53, 0, 0, "-", "graphstores"], [55, 0, 0, "-", "raw_gt_dataset"], [56, 0, 0, "-", "raw_gt_dataset_config"], [57, 0, 0, "-", "simple"]], "dacapo.experiments.datasplits.datasets.Dataset": [[54, 2, 1, "", "__eq__"], [54, 2, 1, "", "__hash__"], [54, 2, 1, "", "__repr__"], [54, 2, 1, "", "__str__"], [54, 2, 1, "", "_neuroglancer_layers"], [54, 5, 1, "id2", "gt"], [54, 5, 1, "id3", "mask"], [54, 5, 1, "id0", "name"], [54, 5, 1, "id1", "raw"], [54, 5, 1, "id5", "sample_points"], [54, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.DatasetConfig": [[54, 5, 1, "id6", "name"], [54, 2, 1, "id8", "verify"], [54, 5, 1, "id7", "weight"]], "dacapo.experiments.datasplits.datasets.DummyDataset": [[54, 2, 1, "", "__init__"], [54, 5, 1, "", "name"], [54, 5, 1, "id9", "raw"]], "dacapo.experiments.datasplits.datasets.DummyDatasetConfig": [[54, 5, 1, "id10", "dataset_type"], [54, 5, 1, "id11", "raw_config"], [54, 2, 1, "id12", "verify"]], "dacapo.experiments.datasplits.datasets.RawGTDataset": [[54, 2, 1, "", "__init__"], [54, 5, 1, "id14", "gt"], [54, 5, 1, "id15", "mask"], [54, 5, 1, "", "name"], [54, 5, 1, "id13", "raw"], [54, 5, 1, "id16", "sample_points"], [54, 5, 1, "id17", "weight"]], "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig": [[54, 5, 1, "id18", "dataset_type"], [54, 5, 1, "id20", "gt_config"], [54, 5, 1, "id21", "mask_config"], [54, 5, 1, "id19", "raw_config"], [54, 5, 1, "id22", "sample_points"], [54, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.SimpleDataset": [[54, 2, 1, "", "dataset_type"], [54, 6, 1, "", "gt"], [54, 5, 1, "", "gt_name"], [54, 6, 1, "", "mask"], [54, 5, 1, "", "mask_name"], [54, 5, 1, "", "name"], [54, 5, 1, "", "path"], [54, 6, 1, "", "raw"], [54, 5, 1, "", "raw_name"], [54, 6, 1, "", "sample_points"], [54, 2, 1, "", "verify"], [54, 5, 1, "id23", "weight"]], "dacapo.experiments.datasplits.datasets.arrays": [[38, 1, 1, "", "ArrayConfig"], [38, 1, 1, "", "BinarizeArrayConfig"], [38, 1, 1, "", "ConcatArrayConfig"], [38, 1, 1, "", "ConstantArrayConfig"], [38, 1, 1, "", "CropArrayConfig"], [38, 1, 1, "", "DVIDArrayConfig"], [38, 1, 1, "", "DummyArrayConfig"], [38, 1, 1, "", "IntensitiesArrayConfig"], [38, 1, 1, "", "LogicalOrArrayConfig"], [38, 1, 1, "", "MergeInstancesArrayConfig"], [38, 1, 1, "", "MissingAnnotationsMaskConfig"], [38, 1, 1, "", "OnesArrayConfig"], [38, 1, 1, "", "ResampledArrayConfig"], [38, 1, 1, "", "SumArrayConfig"], [38, 1, 1, "", "ZarrArrayConfig"], [31, 0, 0, "-", "array_config"], [32, 0, 0, "-", "binarize_array_config"], [33, 0, 0, "-", "concat_array_config"], [34, 0, 0, "-", "constant_array_config"], [35, 0, 0, "-", "crop_array_config"], [36, 0, 0, "-", "dummy_array_config"], [37, 0, 0, "-", "dvid_array_config"], [39, 0, 0, "-", "intensity_array_config"], [40, 0, 0, "-", "logical_or_array_config"], [41, 0, 0, "-", "merge_instances_array_config"], [42, 0, 0, "-", "missing_annotations_mask_config"], [43, 0, 0, "-", "ones_array_config"], [44, 0, 0, "-", "resampled_array_config"], [45, 0, 0, "-", "sum_array_config"], [46, 0, 0, "-", "tiff_array_config"], [47, 0, 0, "-", "zarr_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id0", "name"], [38, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id9", "background"], [38, 5, 1, "id8", "groupings"], [38, 5, 1, "id7", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig": [[38, 2, 1, "", "__attrs_post_init__"], [38, 2, 1, "", "array"], [38, 5, 1, "id20", "channels"], [38, 5, 1, "id22", "default_config"], [38, 5, 1, "id21", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "", "constant"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id29", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id25", "roi"], [38, 5, 1, "id24", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id27", "source"], [38, 2, 1, "", "to_array"], [38, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "to_array"], [38, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id16", "max"], [38, 5, 1, "id15", "min"], [38, 5, 1, "id14", "source_array_config"], [38, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id23", "source_array_config"], [38, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id26", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id18", "groupings"], [38, 5, 1, "id17", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id19", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id12", "downsample"], [38, 5, 1, "id13", "interp_order"], [38, 5, 1, "id10", "source_array_config"], [38, 5, 1, "id11", "upsample"]], "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id28", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig": [[38, 5, 1, "", "_axes"], [38, 2, 1, "", "array"], [38, 5, 1, "id4", "dataset"], [38, 5, 1, "id3", "file_name"], [38, 5, 1, "", "mode"], [38, 5, 1, "id5", "snap_to_grid"], [38, 2, 1, "id6", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, 1, 1, "", "ArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig": [[31, 2, 1, "", "array"], [31, 5, 1, "id0", "name"], [31, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, 1, 1, "", "BinarizeArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig": [[32, 2, 1, "", "array"], [32, 5, 1, "id2", "background"], [32, 5, 1, "id1", "groupings"], [32, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, 1, 1, "", "ConcatArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig": [[33, 2, 1, "", "__attrs_post_init__"], [33, 2, 1, "", "array"], [33, 5, 1, "id0", "channels"], [33, 5, 1, "id2", "default_config"], [33, 5, 1, "id1", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, 1, 1, "", "ConstantArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig": [[34, 2, 1, "", "array"], [34, 5, 1, "", "constant"], [34, 2, 1, "", "create_array"], [34, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, 1, 1, "", "CropArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig": [[35, 2, 1, "", "array"], [35, 2, 1, "", "create_array"], [35, 5, 1, "id1", "roi"], [35, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, 1, 1, "", "DummyArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig": [[36, 2, 1, "", "array"], [36, 2, 1, "", "to_array"], [36, 2, 1, "id0", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, 1, 1, "", "DVIDArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig": [[37, 2, 1, "", "array"], [37, 5, 1, "id0", "source"], [37, 2, 1, "", "to_array"], [37, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, 1, 1, "", "IntensitiesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig": [[39, 2, 1, "", "array"], [39, 5, 1, "id2", "max"], [39, 5, 1, "id1", "min"], [39, 5, 1, "id0", "source_array_config"], [39, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, 1, 1, "", "LogicalOrArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig": [[40, 2, 1, "", "array"], [40, 5, 1, "id0", "source_array_config"], [40, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, 1, 1, "", "MergeInstancesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig": [[41, 2, 1, "", "array"], [41, 2, 1, "", "create_array"], [41, 5, 1, "id0", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, 1, 1, "", "MissingAnnotationsMaskConfig"]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig": [[42, 2, 1, "", "array"], [42, 5, 1, "id1", "groupings"], [42, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, 1, 1, "", "OnesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig": [[43, 2, 1, "", "array"], [43, 2, 1, "", "create_array"], [43, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, 1, 1, "", "ResampledArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig": [[44, 2, 1, "", "array"], [44, 2, 1, "", "create_array"], [44, 5, 1, "id2", "downsample"], [44, 5, 1, "id3", "interp_order"], [44, 5, 1, "id0", "source_array_config"], [44, 5, 1, "id1", "upsample"]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, 1, 1, "", "SumArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig": [[45, 2, 1, "", "array"], [45, 5, 1, "id0", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, 1, 1, "", "TiffArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig": [[46, 2, 1, "", "array"], [46, 5, 1, "id3", "axis_names"], [46, 5, 1, "id0", "file_name"], [46, 5, 1, "id1", "offset"], [46, 5, 1, "", "units"], [46, 5, 1, "id2", "voxel_size"]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, 1, 1, "", "ZarrArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig": [[47, 5, 1, "", "_axes"], [47, 2, 1, "", "array"], [47, 5, 1, "id1", "dataset"], [47, 5, 1, "id0", "file_name"], [47, 5, 1, "", "mode"], [47, 5, 1, "id2", "snap_to_grid"], [47, 2, 1, "id3", "verify"]], "dacapo.experiments.datasplits.datasets.dataset": [[48, 1, 1, "", "Dataset"]], "dacapo.experiments.datasplits.datasets.dataset.Dataset": [[48, 2, 1, "", "__eq__"], [48, 2, 1, "", "__hash__"], [48, 2, 1, "", "__repr__"], [48, 2, 1, "", "__str__"], [48, 2, 1, "", "_neuroglancer_layers"], [48, 5, 1, "id2", "gt"], [48, 5, 1, "id3", "mask"], [48, 5, 1, "id0", "name"], [48, 5, 1, "id1", "raw"], [48, 5, 1, "id5", "sample_points"], [48, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, 1, 1, "", "DatasetConfig"]], "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig": [[49, 5, 1, "id0", "name"], [49, 2, 1, "id2", "verify"], [49, 5, 1, "id1", "weight"]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, 1, 1, "", "DummyDataset"]], "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset": [[50, 2, 1, "", "__init__"], [50, 5, 1, "", "name"], [50, 5, 1, "id0", "raw"]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, 1, 1, "", "DummyDatasetConfig"]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig": [[51, 5, 1, "id0", "dataset_type"], [51, 5, 1, "id1", "raw_config"], [51, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, 1, 1, "", "GraphStoreConfig"], [52, 0, 0, "-", "graph_source_config"]], "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig": [[53, 5, 1, "", "store_type"], [53, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, 1, 1, "", "GraphStoreConfig"]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig": [[52, 5, 1, "", "store_type"], [52, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, 1, 1, "", "RawGTDataset"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset": [[55, 2, 1, "", "__init__"], [55, 5, 1, "id1", "gt"], [55, 5, 1, "id2", "mask"], [55, 5, 1, "", "name"], [55, 5, 1, "id0", "raw"], [55, 5, 1, "id3", "sample_points"], [55, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, 1, 1, "", "RawGTDatasetConfig"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig": [[56, 5, 1, "id0", "dataset_type"], [56, 5, 1, "id2", "gt_config"], [56, 5, 1, "id3", "mask_config"], [56, 5, 1, "id1", "raw_config"], [56, 5, 1, "id4", "sample_points"], [56, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.simple": [[57, 1, 1, "", "SimpleDataset"]], "dacapo.experiments.datasplits.datasets.simple.SimpleDataset": [[57, 2, 1, "", "dataset_type"], [57, 6, 1, "", "gt"], [57, 5, 1, "", "gt_name"], [57, 6, 1, "", "mask"], [57, 5, 1, "", "mask_name"], [57, 5, 1, "", "name"], [57, 5, 1, "", "path"], [57, 6, 1, "", "raw"], [57, 5, 1, "", "raw_name"], [57, 6, 1, "", "sample_points"], [57, 2, 1, "", "verify"], [57, 5, 1, "id0", "weight"]], "dacapo.experiments.datasplits.datasplit": [[58, 1, 1, "", "DataSplit"]], "dacapo.experiments.datasplits.datasplit.DataSplit": [[58, 2, 1, "", "__init__"], [58, 5, 1, "id0", "train"], [58, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.datasplit_config": [[59, 1, 1, "", "DataSplitConfig"]], "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig": [[59, 5, 1, "id0", "name"], [59, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasplit_generator": [[60, 1, 1, "", "CustomEnum"], [60, 1, 1, "", "CustomEnumMeta"], [60, 1, 1, "", "DataSplitGenerator"], [60, 1, 1, "", "DatasetSpec"], [60, 1, 1, "", "DatasetType"], [60, 1, 1, "", "SegmentationType"], [60, 3, 1, "", "format_class_name"], [60, 3, 1, "", "generate_dataspec_from_csv"], [60, 3, 1, "", "get_right_resolution_array_config"], [60, 3, 1, "", "is_zarr_group"], [60, 3, 1, "", "limit_validation_crop_size"], [60, 4, 1, "", "logger"], [60, 3, 1, "", "resize_if_needed"]], "dacapo.experiments.datasplits.datasplit_generator.CustomEnum": [[60, 2, 1, "id0", "__str__"]], "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta": [[60, 2, 1, "", "__getitem__"], [60, 5, 1, "", "_member_names_"]], "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator": [[60, 2, 1, "", "__generate_semantic_seg_dataset_crop"], [60, 2, 1, "", "__generate_semantic_seg_datasplit"], [60, 2, 1, "", "__init__"], [60, 2, 1, "", "__str__"], [60, 5, 1, "", "binarize_gt"], [60, 2, 1, "id28", "check_class_name"], [60, 6, 1, "id27", "class_name"], [60, 5, 1, "id25", "classes_separator_character"], [60, 2, 1, "id29", "compute"], [60, 5, 1, "id11", "datasets"], [60, 2, 1, "", "generate_csv"], [60, 2, 1, "id30", "generate_from_csv"], [60, 5, 1, "id12", "input_resolution"], [60, 5, 1, "id16", "max_gt_downsample"], [60, 5, 1, "id17", "max_gt_upsample"], [60, 5, 1, "id18", "max_raw_training_downsample"], [60, 5, 1, "id19", "max_raw_training_upsample"], [60, 5, 1, "id20", "max_raw_validation_downsample"], [60, 5, 1, "id21", "max_raw_validation_upsample"], [60, 5, 1, "id26", "max_validation_volume_size"], [60, 5, 1, "id22", "min_training_volume_size"], [60, 5, 1, "id10", "name"], [60, 5, 1, "id13", "output_resolution"], [60, 5, 1, "id24", "raw_max"], [60, 5, 1, "id23", "raw_min"], [60, 5, 1, "id15", "segmentation_type"], [60, 5, 1, "id14", "targets"], [60, 5, 1, "", "use_negative_class"]], "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec": [[60, 2, 1, "", "__init__"], [60, 2, 1, "", "__str__"], [60, 5, 1, "id5", "dataset_type"], [60, 5, 1, "id8", "gt_container"], [60, 5, 1, "id9", "gt_dataset"], [60, 5, 1, "id6", "raw_container"], [60, 5, 1, "id7", "raw_dataset"]], "dacapo.experiments.datasplits.datasplit_generator.DatasetType": [[60, 2, 1, "", "__str__"], [60, 5, 1, "id2", "train"], [60, 5, 1, "id1", "val"]], "dacapo.experiments.datasplits.datasplit_generator.SegmentationType": [[60, 2, 1, "", "__str__"], [60, 5, 1, "id4", "instance"], [60, 5, 1, "id3", "semantic"]], "dacapo.experiments.datasplits.dummy_datasplit": [[61, 1, 1, "", "DummyDataSplit"]], "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit": [[61, 2, 1, "", "__init__"], [61, 5, 1, "id0", "train"], [61, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[62, 1, 1, "", "DummyDataSplitConfig"]], "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig": [[62, 5, 1, "id0", "datasplit_type"], [62, 5, 1, "id1", "train_config"], [62, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.keys": [[64, 1, 1, "", "ArrayKey"], [64, 1, 1, "", "DataKey"], [64, 1, 1, "", "GraphKey"], [65, 0, 0, "-", "keys"]], "dacapo.experiments.datasplits.keys.ArrayKey": [[64, 5, 1, "id1", "GT"], [64, 5, 1, "id2", "MASK"], [64, 5, 1, "id3", "NON_EMPTY"], [64, 5, 1, "id0", "RAW"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.DataKey": [[64, 5, 1, "", "GT"], [64, 5, 1, "", "MASK"], [64, 5, 1, "", "NON_EMPTY"], [64, 5, 1, "", "RAW"], [64, 5, 1, "", "SPECIFIED_LOCATIONS"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.GraphKey": [[64, 5, 1, "id4", "SPECIFIED_LOCATIONS"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys": [[65, 1, 1, "", "ArrayKey"], [65, 1, 1, "", "DataKey"], [65, 1, 1, "", "GraphKey"]], "dacapo.experiments.datasplits.keys.keys.ArrayKey": [[65, 5, 1, "id1", "GT"], [65, 5, 1, "id2", "MASK"], [65, 5, 1, "id3", "NON_EMPTY"], [65, 5, 1, "id0", "RAW"], [65, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys.DataKey": [[65, 5, 1, "", "GT"], [65, 5, 1, "", "MASK"], [65, 5, 1, "", "NON_EMPTY"], [65, 5, 1, "", "RAW"], [65, 5, 1, "", "SPECIFIED_LOCATIONS"], [65, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys.GraphKey": [[65, 5, 1, "id4", "SPECIFIED_LOCATIONS"], [65, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.simple_config": [[66, 1, 1, "", "SimpleDataSplitConfig"]], "dacapo.experiments.datasplits.simple_config.SimpleDataSplitConfig": [[66, 2, 1, "", "datasplit_type"], [66, 2, 1, "", "get_paths"], [66, 5, 1, "", "gt_name"], [66, 5, 1, "", "mask_name"], [66, 5, 1, "", "name"], [66, 5, 1, "", "path"], [66, 5, 1, "", "raw_name"], [66, 6, 1, "", "train"], [66, 5, 1, "", "train_group_name"], [66, 6, 1, "", "validate"], [66, 5, 1, "", "validate_group_name"]], "dacapo.experiments.datasplits.train_validate_datasplit": [[67, 1, 1, "", "TrainValidateDataSplit"]], "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit": [[67, 2, 1, "", "__init__"], [67, 5, 1, "id0", "train"], [67, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[68, 1, 1, "", "TrainValidateDataSplitConfig"]], "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig": [[68, 2, 1, "", "__init__"], [68, 5, 1, "", "datasplit_type"], [68, 5, 1, "id0", "train_configs"], [68, 5, 1, "id1", "validate_configs"]], "dacapo.experiments.model": [[70, 1, 1, "", "Model"]], "dacapo.experiments.model.Model": [[70, 5, 1, "id4", "architecture"], [70, 5, 1, "id6", "chain"], [70, 2, 1, "", "compute_output_shape"], [70, 5, 1, "id9", "eval_activation"], [70, 5, 1, "id8", "eval_input_shape"], [70, 2, 1, "", "forward"], [70, 5, 1, "id7", "input_shape"], [70, 5, 1, "id3", "num_in_channels"], [70, 5, 1, "id0", "num_out_channels"], [70, 5, 1, "", "output_shape"], [70, 5, 1, "id5", "prediction_head"], [70, 2, 1, "", "scale"]], "dacapo.experiments.run": [[71, 1, 1, "", "Run"]], "dacapo.experiments.run.Run": [[71, 5, 1, "id4", "architecture"], [71, 6, 1, "id10", "datasplit"], [71, 2, 1, "id12", "get_validation_scores"], [71, 5, 1, "id6", "model"], [71, 2, 1, "", "move_optimizer"], [71, 5, 1, "id0", "name"], [71, 5, 1, "id7", "optimizer"], [71, 5, 1, "id9", "start"], [71, 5, 1, "id3", "task"], [71, 5, 1, "id1", "train_until"], [71, 5, 1, "id5", "trainer"], [71, 5, 1, "id8", "training_stats"], [71, 5, 1, "id2", "validation_interval"], [71, 6, 1, "id11", "validation_scores"], [71, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.run_config": [[72, 1, 1, "", "RunConfig"]], "dacapo.experiments.run_config.RunConfig": [[72, 5, 1, "", "architecture_config"], [72, 5, 1, "", "datasplit_config"], [72, 5, 1, "", "name"], [72, 5, 1, "", "num_iterations"], [72, 5, 1, "", "repetition"], [72, 5, 1, "", "start_config"], [72, 5, 1, "", "task_config"], [72, 5, 1, "", "trainer_config"], [72, 5, 1, "", "validation_interval"]], "dacapo.experiments.starts": [[75, 1, 1, "", "CosemStart"], [75, 1, 1, "", "CosemStartConfig"], [75, 1, 1, "", "Start"], [75, 1, 1, "", "StartConfig"], [73, 0, 0, "-", "cosem_start"], [74, 0, 0, "-", "cosem_start_config"], [76, 0, 0, "-", "start"], [77, 0, 0, "-", "start_config"]], "dacapo.experiments.starts.CosemStart": [[75, 2, 1, "", "__init__"], [75, 5, 1, "id7", "channels"], [75, 2, 1, "id8", "check"], [75, 5, 1, "id5", "criterion"], [75, 2, 1, "id9", "initialize_weights"], [75, 5, 1, "id6", "name"], [75, 5, 1, "id4", "run"]], "dacapo.experiments.starts.CosemStartConfig": [[75, 2, 1, "", "__init__"], [75, 5, 1, "", "criterion"], [75, 5, 1, "", "run"], [75, 5, 1, "", "start_type"]], "dacapo.experiments.starts.Start": [[75, 2, 1, "", "__init__"], [75, 5, 1, "id0", "channels"], [75, 5, 1, "", "criterion"], [75, 2, 1, "id1", "initialize_weights"], [75, 5, 1, "", "run"]], "dacapo.experiments.starts.StartConfig": [[75, 2, 1, "", "__init__"], [75, 5, 1, "id3", "criterion"], [75, 5, 1, "id2", "run"], [75, 5, 1, "", "start_type"]], "dacapo.experiments.starts.cosem_start": [[73, 1, 1, "", "CosemStart"], [73, 3, 1, "", "get_model_setup"], [73, 4, 1, "", "logger"]], "dacapo.experiments.starts.cosem_start.CosemStart": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id3", "channels"], [73, 2, 1, "id4", "check"], [73, 5, 1, "id1", "criterion"], [73, 2, 1, "id5", "initialize_weights"], [73, 5, 1, "id2", "name"], [73, 5, 1, "id0", "run"]], "dacapo.experiments.starts.cosem_start_config": [[74, 1, 1, "", "CosemStartConfig"]], "dacapo.experiments.starts.cosem_start_config.CosemStartConfig": [[74, 2, 1, "", "__init__"], [74, 5, 1, "", "criterion"], [74, 5, 1, "", "run"], [74, 5, 1, "", "start_type"]], "dacapo.experiments.starts.start": [[76, 1, 1, "", "Start"], [76, 4, 1, "", "head_keys"], [76, 4, 1, "", "logger"], [76, 3, 1, "", "match_heads"]], "dacapo.experiments.starts.start.Start": [[76, 2, 1, "", "__init__"], [76, 5, 1, "id0", "channels"], [76, 5, 1, "", "criterion"], [76, 2, 1, "id1", "initialize_weights"], [76, 5, 1, "", "run"]], "dacapo.experiments.starts.start_config": [[77, 1, 1, "", "StartConfig"]], "dacapo.experiments.starts.start_config.StartConfig": [[77, 2, 1, "", "__init__"], [77, 5, 1, "id1", "criterion"], [77, 5, 1, "id0", "run"], [77, 5, 1, "", "start_type"]], "dacapo.experiments.tasks": [[95, 1, 1, "", "AffinitiesTask"], [95, 1, 1, "", "AffinitiesTaskConfig"], [95, 1, 1, "", "DistanceTask"], [95, 1, 1, "", "DistanceTaskConfig"], [95, 1, 1, "", "DummyTask"], [95, 1, 1, "", "DummyTaskConfig"], [95, 1, 1, "", "HotDistanceTask"], [95, 1, 1, "", "HotDistanceTaskConfig"], [95, 1, 1, "", "InnerDistanceTask"], [95, 1, 1, "", "InnerDistanceTaskConfig"], [95, 1, 1, "", "OneHotTask"], [95, 1, 1, "", "OneHotTaskConfig"], [95, 1, 1, "", "PretrainedTask"], [95, 1, 1, "", "PretrainedTaskConfig"], [95, 1, 1, "", "Task"], [95, 1, 1, "", "TaskConfig"], [78, 0, 0, "-", "affinities_task"], [79, 0, 0, "-", "affinities_task_config"], [80, 0, 0, "-", "distance_task"], [81, 0, 0, "-", "distance_task_config"], [82, 0, 0, "-", "dummy_task"], [83, 0, 0, "-", "dummy_task_config"], [90, 0, 0, "-", "evaluators"], [93, 0, 0, "-", "hot_distance_task"], [94, 0, 0, "-", "hot_distance_task_config"], [96, 0, 0, "-", "inner_distance_task"], [97, 0, 0, "-", "inner_distance_task_config"], [101, 0, 0, "-", "losses"], [104, 0, 0, "-", "one_hot_task"], [105, 0, 0, "-", "one_hot_task_config"], [110, 0, 0, "-", "post_processors"], [121, 0, 0, "-", "predictors"], [125, 0, 0, "-", "pretrained_task"], [126, 0, 0, "-", "pretrained_task_config"], [127, 0, 0, "-", "task"], [128, 0, 0, "-", "task_config"]], "dacapo.experiments.tasks.AffinitiesTask": [[95, 2, 1, "", "__init__"], [95, 5, 1, "id40", "evaluator"], [95, 5, 1, "id38", "loss"], [95, 5, 1, "id39", "post_processor"], [95, 5, 1, "id37", "predictor"]], "dacapo.experiments.tasks.AffinitiesTaskConfig": [[95, 5, 1, "id33", "affs_weight_clipmax"], [95, 5, 1, "id32", "affs_weight_clipmin"], [95, 5, 1, "id36", "background_as_object"], [95, 5, 1, "id30", "downsample_lsds"], [95, 5, 1, "id35", "lsd_weight_clipmax"], [95, 5, 1, "id34", "lsd_weight_clipmin"], [95, 5, 1, "id28", "lsds"], [95, 5, 1, "id31", "lsds_to_affs_weight_ratio"], [95, 5, 1, "id27", "neighborhood"], [95, 5, 1, "id29", "num_lsd_voxels"], [95, 5, 1, "", "task_type"], [95, 2, 1, "", "verify"]], "dacapo.experiments.tasks.DistanceTask": [[95, 2, 1, "", "__init__"], [95, 5, 1, "id20", "evaluator"], [95, 5, 1, "id18", "loss"], [95, 5, 1, "id19", "post_processor"], [95, 5, 1, "id17", "predictor"]], "dacapo.experiments.tasks.DistanceTaskConfig": [[95, 5, 1, "id10", "channels"], [95, 5, 1, "id11", "clip_distance"], [95, 5, 1, "id16", "clipmax"], [95, 5, 1, "id15", "clipmin"], [95, 5, 1, "id14", "mask_distances"], [95, 5, 1, "id13", "scale_factor"], [95, 5, 1, "", "task_type"], [95, 5, 1, "id12", "tol_distance"], [95, 2, 1, "", "verify"]], "dacapo.experiments.tasks.DummyTask": [[95, 2, 1, "", "__init__"], [95, 5, 1, "id9", "evaluator"], [95, 5, 1, "id7", "loss"], [95, 5, 1, "id8", "post_processor"], [95, 5, 1, "id6", "predictor"]], "dacapo.experiments.tasks.DummyTaskConfig": [[95, 5, 1, "id4", "detection_threshold"], [95, 5, 1, "id3", "embedding_dims"], [95, 5, 1, "id2", "task_type"], [95, 2, 1, "id5", "verify"]], "dacapo.experiments.tasks.HotDistanceTask": [[95, 2, 1, "", "__init__"], [95, 5, 1, "id58", "evaluator"], [95, 5, 1, "id56", "loss"], [95, 5, 1, "id57", "post_processor"], [95, 5, 1, "id55", "predictor"]], "dacapo.experiments.tasks.HotDistanceTaskConfig": [[95, 5, 1, "id50", "channels"], [95, 5, 1, "id51", "clip_distance"], [95, 5, 1, "id54", "mask_distances"], [95, 5, 1, "id53", "scale_factor"], [95, 5, 1, "id49", "task_type"], [95, 5, 1, "id52", "tol_distance"], [95, 2, 1, "", "verify"]], "dacapo.experiments.tasks.InnerDistanceTask": [[95, 2, 1, "", "__init__"], [95, 5, 1, "id48", "evaluator"], [95, 5, 1, "id46", "loss"], [95, 5, 1, "id47", "post_processor"], [95, 5, 1, "id45", "predictor"], [95, 5, 1, "", "task_config"]], "dacapo.experiments.tasks.InnerDistanceTaskConfig": [[95, 5, 1, "id41", "channels"], [95, 5, 1, "id42", "clip_distance"], [95, 5, 1, "id44", "scale_factor"], [95, 5, 1, "", "task_type"], [95, 5, 1, "id43", "tol_distance"]], "dacapo.experiments.tasks.OneHotTask": [[95, 2, 1, "", "create_model"], [95, 5, 1, "", "evaluator"], [95, 5, 1, "", "loss"], [95, 5, 1, "", "post_processor"], [95, 5, 1, "", "predictor"], [95, 5, 1, "", "weights"]], "dacapo.experiments.tasks.OneHotTaskConfig": [[95, 2, 1, "", "None"], [95, 5, 1, "id22", "classes"], [95, 5, 1, "id21", "task_type"]], "dacapo.experiments.tasks.PretrainedTask": [[95, 2, 1, "id26", "create_model"], [95, 5, 1, "", "evaluator"], [95, 5, 1, "", "loss"], [95, 5, 1, "", "post_processor"], [95, 5, 1, "", "predictor"], [95, 5, 1, "id25", "weights"]], "dacapo.experiments.tasks.PretrainedTaskConfig": [[95, 5, 1, "id23", "sub_task_config"], [95, 5, 1, "", "task_type"], [95, 2, 1, "", "verify"], [95, 5, 1, "id24", "weights"]], "dacapo.experiments.tasks.Task": [[95, 2, 1, "", "create_model"], [95, 6, 1, "", "evaluation_scores"], [95, 5, 1, "", "evaluator"], [95, 5, 1, "", "loss"], [95, 6, 1, "", "parameters"], [95, 5, 1, "", "post_processor"], [95, 5, 1, "", "predictor"]], "dacapo.experiments.tasks.TaskConfig": [[95, 5, 1, "id0", "name"], [95, 2, 1, "id1", "verify"]], "dacapo.experiments.tasks.affinities_task": [[78, 1, 1, "", "AffinitiesTask"]], "dacapo.experiments.tasks.affinities_task.AffinitiesTask": [[78, 2, 1, "", "__init__"], [78, 5, 1, "id3", "evaluator"], [78, 5, 1, "id1", "loss"], [78, 5, 1, "id2", "post_processor"], [78, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.affinities_task_config": [[79, 1, 1, "", "AffinitiesTaskConfig"]], "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig": [[79, 5, 1, "id6", "affs_weight_clipmax"], [79, 5, 1, "id5", "affs_weight_clipmin"], [79, 5, 1, "id9", "background_as_object"], [79, 5, 1, "id3", "downsample_lsds"], [79, 5, 1, "id8", "lsd_weight_clipmax"], [79, 5, 1, "id7", "lsd_weight_clipmin"], [79, 5, 1, "id1", "lsds"], [79, 5, 1, "id4", "lsds_to_affs_weight_ratio"], [79, 5, 1, "id0", "neighborhood"], [79, 5, 1, "id2", "num_lsd_voxels"], [79, 5, 1, "", "task_type"], [79, 2, 1, "", "verify"]], "dacapo.experiments.tasks.distance_task": [[80, 1, 1, "", "DistanceTask"]], "dacapo.experiments.tasks.distance_task.DistanceTask": [[80, 2, 1, "", "__init__"], [80, 5, 1, "id3", "evaluator"], [80, 5, 1, "id1", "loss"], [80, 5, 1, "id2", "post_processor"], [80, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.distance_task_config": [[81, 1, 1, "", "DistanceTaskConfig"]], "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig": [[81, 5, 1, "id0", "channels"], [81, 5, 1, "id1", "clip_distance"], [81, 5, 1, "id6", "clipmax"], [81, 5, 1, "id5", "clipmin"], [81, 5, 1, "id4", "mask_distances"], [81, 5, 1, "id3", "scale_factor"], [81, 5, 1, "", "task_type"], [81, 5, 1, "id2", "tol_distance"], [81, 2, 1, "", "verify"]], "dacapo.experiments.tasks.dummy_task": [[82, 1, 1, "", "DummyTask"]], "dacapo.experiments.tasks.dummy_task.DummyTask": [[82, 2, 1, "", "__init__"], [82, 5, 1, "id3", "evaluator"], [82, 5, 1, "id1", "loss"], [82, 5, 1, "id2", "post_processor"], [82, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.dummy_task_config": [[83, 1, 1, "", "DummyTaskConfig"]], "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig": [[83, 5, 1, "id2", "detection_threshold"], [83, 5, 1, "id1", "embedding_dims"], [83, 5, 1, "id0", "task_type"], [83, 2, 1, "id3", "verify"]], "dacapo.experiments.tasks.evaluators": [[90, 1, 1, "", "BinarySegmentationEvaluationScores"], [90, 1, 1, "", "BinarySegmentationEvaluator"], [90, 1, 1, "", "DummyEvaluationScores"], [90, 1, 1, "", "DummyEvaluator"], [90, 1, 1, "", "EvaluationScores"], [90, 1, 1, "", "Evaluator"], [90, 1, 1, "", "InstanceEvaluationScores"], [90, 1, 1, "", "InstanceEvaluator"], [90, 1, 1, "", "MultiChannelBinarySegmentationEvaluationScores"], [84, 0, 0, "-", "binary_segmentation_evaluation_scores"], [85, 0, 0, "-", "binary_segmentation_evaluator"], [86, 0, 0, "-", "dummy_evaluation_scores"], [87, 0, 0, "-", "dummy_evaluator"], [88, 0, 0, "-", "evaluation_scores"], [89, 0, 0, "-", "evaluator"], [91, 0, 0, "-", "instance_evaluation_scores"], [92, 0, 0, "-", "instance_evaluator"]], "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores": [[90, 2, 1, "", "bounds"], [90, 5, 1, "", "criteria"], [90, 5, 1, "id23", "dice"], [90, 5, 1, "id43", "f1_score"], [90, 5, 1, "id40", "f1_score_with_tolerance"], [90, 5, 1, "id29", "false_discovery_rate"], [90, 5, 1, "id26", "false_negative_rate"], [90, 5, 1, "id27", "false_negative_rate_with_tolerance"], [90, 5, 1, "id28", "false_positive_rate"], [90, 5, 1, "id30", "false_positive_rate_with_tolerance"], [90, 5, 1, "id25", "hausdorff"], [90, 2, 1, "", "higher_is_better"], [90, 5, 1, "id24", "jaccard"], [90, 5, 1, "id32", "mean_false_distance"], [90, 5, 1, "id35", "mean_false_distance_clipped"], [90, 5, 1, "id33", "mean_false_negative_distance"], [90, 5, 1, "id36", "mean_false_negative_distance_clipped"], [90, 5, 1, "id34", "mean_false_positive_distance"], [90, 5, 1, "id37", "mean_false_positive_distance_clipped"], [90, 5, 1, "id41", "precision"], [90, 5, 1, "id38", "precision_with_tolerance"], [90, 5, 1, "id42", "recall"], [90, 5, 1, "id39", "recall_with_tolerance"], [90, 2, 1, "", "store_best"], [90, 5, 1, "id31", "voi"]], "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator": [[90, 5, 1, "id47", "channels"], [90, 5, 1, "id45", "clip_distance"], [90, 5, 1, "id44", "criteria"], [90, 2, 1, "id48", "evaluate"], [90, 6, 1, "id49", "score"], [90, 5, 1, "id46", "tol_distance"]], "dacapo.experiments.tasks.evaluators.DummyEvaluationScores": [[90, 5, 1, "id1", "blipp_score"], [90, 2, 1, "id3", "bounds"], [90, 5, 1, "", "criteria"], [90, 5, 1, "id0", "frizz_level"], [90, 2, 1, "id2", "higher_is_better"], [90, 2, 1, "id4", "store_best"]], "dacapo.experiments.tasks.evaluators.DummyEvaluator": [[90, 5, 1, "id5", "criteria"], [90, 2, 1, "id6", "evaluate"], [90, 6, 1, "id7", "score"]], "dacapo.experiments.tasks.evaluators.EvaluationScores": [[90, 2, 1, "id10", "bounds"], [90, 6, 1, "id8", "criteria"], [90, 2, 1, "id9", "higher_is_better"], [90, 2, 1, "id11", "store_best"]], "dacapo.experiments.tasks.evaluators.Evaluator": [[90, 6, 1, "id13", "best_scores"], [90, 2, 1, "id20", "bounds"], [90, 2, 1, "id17", "compare"], [90, 6, 1, "", "criteria"], [90, 2, 1, "id12", "evaluate"], [90, 2, 1, "id15", "get_overall_best"], [90, 2, 1, "id16", "get_overall_best_parameters"], [90, 2, 1, "id19", "higher_is_better"], [90, 2, 1, "id14", "is_best"], [90, 6, 1, "", "score"], [90, 2, 1, "id18", "set_best"], [90, 2, 1, "id21", "store_best"]], "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores": [[90, 2, 1, "id54", "bounds"], [90, 5, 1, "", "criteria"], [90, 2, 1, "id53", "higher_is_better"], [90, 2, 1, "id55", "store_best"], [90, 6, 1, "id52", "voi"], [90, 5, 1, "id51", "voi_merge"], [90, 5, 1, "id50", "voi_split"]], "dacapo.experiments.tasks.evaluators.InstanceEvaluator": [[90, 5, 1, "id56", "criteria"], [90, 2, 1, "id57", "evaluate"], [90, 6, 1, "id58", "score"]], "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores": [[90, 2, 1, "", "bounds"], [90, 5, 1, "id22", "channel_scores"], [90, 6, 1, "", "criteria"], [90, 2, 1, "", "higher_is_better"], [90, 2, 1, "", "store_best"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[84, 1, 1, "", "BinarySegmentationEvaluationScores"], [84, 1, 1, "", "MultiChannelBinarySegmentationEvaluationScores"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores": [[84, 2, 1, "", "bounds"], [84, 5, 1, "", "criteria"], [84, 5, 1, "id0", "dice"], [84, 5, 1, "id20", "f1_score"], [84, 5, 1, "id17", "f1_score_with_tolerance"], [84, 5, 1, "id6", "false_discovery_rate"], [84, 5, 1, "id3", "false_negative_rate"], [84, 5, 1, "id4", "false_negative_rate_with_tolerance"], [84, 5, 1, "id5", "false_positive_rate"], [84, 5, 1, "id7", "false_positive_rate_with_tolerance"], [84, 5, 1, "id2", "hausdorff"], [84, 2, 1, "", "higher_is_better"], [84, 5, 1, "id1", "jaccard"], [84, 5, 1, "id9", "mean_false_distance"], [84, 5, 1, "id12", "mean_false_distance_clipped"], [84, 5, 1, "id10", "mean_false_negative_distance"], [84, 5, 1, "id13", "mean_false_negative_distance_clipped"], [84, 5, 1, "id11", "mean_false_positive_distance"], [84, 5, 1, "id14", "mean_false_positive_distance_clipped"], [84, 5, 1, "id18", "precision"], [84, 5, 1, "id15", "precision_with_tolerance"], [84, 5, 1, "id19", "recall"], [84, 5, 1, "id16", "recall_with_tolerance"], [84, 2, 1, "", "store_best"], [84, 5, 1, "id8", "voi"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores": [[84, 2, 1, "", "bounds"], [84, 5, 1, "id21", "channel_scores"], [84, 6, 1, "", "criteria"], [84, 2, 1, "", "higher_is_better"], [84, 2, 1, "", "store_best"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[85, 1, 1, "", "ArrayEvaluator"], [85, 4, 1, "", "BG"], [85, 1, 1, "", "BinarySegmentationEvaluator"], [85, 1, 1, "", "CremiEvaluator"], [85, 4, 1, "", "logger"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator": [[85, 5, 1, "id10", "cremieval"], [85, 2, 1, "id12", "dice"], [85, 2, 1, "id20", "f1_score"], [85, 2, 1, "id32", "f1_score_with_tolerance"], [85, 2, 1, "id17", "false_discovery_rate"], [85, 2, 1, "id15", "false_negative_rate"], [85, 2, 1, "id29", "false_negative_rate_with_tolerance"], [85, 2, 1, "id16", "false_positive_rate"], [85, 2, 1, "id28", "false_positive_rate_with_tolerance"], [85, 2, 1, "id14", "hausdorff"], [85, 2, 1, "id13", "jaccard"], [85, 2, 1, "id22", "mean_false_distance"], [85, 2, 1, "id25", "mean_false_distance_clipped"], [85, 2, 1, "id23", "mean_false_negative_distance"], [85, 2, 1, "id26", "mean_false_negative_distance_clipped"], [85, 2, 1, "id24", "mean_false_positive_distance"], [85, 2, 1, "id27", "mean_false_positive_distance_clipped"], [85, 2, 1, "", "overlap_measures_filter"], [85, 2, 1, "id18", "precision"], [85, 2, 1, "id30", "precision_with_tolerance"], [85, 2, 1, "id19", "recall"], [85, 2, 1, "id31", "recall_with_tolerance"], [85, 5, 1, "id11", "resolution"], [85, 5, 1, "id7", "test"], [85, 5, 1, "id9", "test_empty"], [85, 2, 1, "", "test_itk"], [85, 5, 1, "id6", "truth"], [85, 5, 1, "id8", "truth_empty"], [85, 2, 1, "", "truth_itk"], [85, 2, 1, "id21", "voi"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator": [[85, 5, 1, "id3", "channels"], [85, 5, 1, "id1", "clip_distance"], [85, 5, 1, "id0", "criteria"], [85, 2, 1, "id4", "evaluate"], [85, 6, 1, "id5", "score"], [85, 5, 1, "id2", "tol_distance"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator": [[85, 5, 1, "id36", "clip_distance"], [85, 2, 1, "id46", "f1_score_with_tolerance"], [85, 2, 1, "id50", "false_negative_distances"], [85, 2, 1, "id42", "false_negative_rate_with_tolerance"], [85, 2, 1, "id41", "false_negatives_with_tolerance"], [85, 2, 1, "id38", "false_positive_distances"], [85, 2, 1, "id40", "false_positive_rate_with_tolerance"], [85, 2, 1, "id39", "false_positives_with_tolerance"], [85, 2, 1, "id52", "mean_false_distance"], [85, 2, 1, "id53", "mean_false_distance_clipped"], [85, 2, 1, "id51", "mean_false_negative_distance"], [85, 2, 1, "id48", "mean_false_negative_distances_clipped"], [85, 2, 1, "id49", "mean_false_positive_distance"], [85, 2, 1, "id47", "mean_false_positive_distances_clipped"], [85, 2, 1, "id44", "precision_with_tolerance"], [85, 2, 1, "id45", "recall_with_tolerance"], [85, 5, 1, "id35", "sampling"], [85, 5, 1, "id33", "test"], [85, 2, 1, "", "test_edt"], [85, 2, 1, "", "test_mask"], [85, 5, 1, "id37", "tol_distance"], [85, 2, 1, "id43", "true_positives_with_tolerance"], [85, 5, 1, "id34", "truth"], [85, 2, 1, "", "truth_edt"], [85, 2, 1, "", "truth_mask"]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[86, 1, 1, "", "DummyEvaluationScores"]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores": [[86, 5, 1, "id1", "blipp_score"], [86, 2, 1, "id3", "bounds"], [86, 5, 1, "", "criteria"], [86, 5, 1, "id0", "frizz_level"], [86, 2, 1, "id2", "higher_is_better"], [86, 2, 1, "id4", "store_best"]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[87, 1, 1, "", "DummyEvaluator"]], "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator": [[87, 5, 1, "id0", "criteria"], [87, 2, 1, "id1", "evaluate"], [87, 6, 1, "id2", "score"]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[88, 1, 1, "", "EvaluationScores"]], "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores": [[88, 2, 1, "id2", "bounds"], [88, 6, 1, "id0", "criteria"], [88, 2, 1, "id1", "higher_is_better"], [88, 2, 1, "id3", "store_best"]], "dacapo.experiments.tasks.evaluators.evaluator": [[89, 4, 1, "", "BestScore"], [89, 1, 1, "", "Evaluator"], [89, 4, 1, "", "Iteration"], [89, 4, 1, "", "OutputIdentifier"], [89, 4, 1, "", "Score"]], "dacapo.experiments.tasks.evaluators.evaluator.Evaluator": [[89, 6, 1, "id1", "best_scores"], [89, 2, 1, "id8", "bounds"], [89, 2, 1, "id5", "compare"], [89, 6, 1, "", "criteria"], [89, 2, 1, "id0", "evaluate"], [89, 2, 1, "id3", "get_overall_best"], [89, 2, 1, "id4", "get_overall_best_parameters"], [89, 2, 1, "id7", "higher_is_better"], [89, 2, 1, "id2", "is_best"], [89, 6, 1, "", "score"], [89, 2, 1, "id6", "set_best"], [89, 2, 1, "id9", "store_best"]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[91, 1, 1, "", "InstanceEvaluationScores"]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores": [[91, 2, 1, "id4", "bounds"], [91, 5, 1, "", "criteria"], [91, 2, 1, "id3", "higher_is_better"], [91, 2, 1, "id5", "store_best"], [91, 6, 1, "id2", "voi"], [91, 5, 1, "id1", "voi_merge"], [91, 5, 1, "id0", "voi_split"]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[92, 1, 1, "", "InstanceEvaluator"], [92, 4, 1, "", "logger"], [92, 3, 1, "", "relabel"], [92, 3, 1, "", "voi"]], "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator": [[92, 5, 1, "id0", "criteria"], [92, 2, 1, "id1", "evaluate"], [92, 6, 1, "id2", "score"]], "dacapo.experiments.tasks.hot_distance_task": [[93, 1, 1, "", "HotDistanceTask"]], "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id3", "evaluator"], [93, 5, 1, "id1", "loss"], [93, 5, 1, "id2", "post_processor"], [93, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.hot_distance_task_config": [[94, 1, 1, "", "HotDistanceTaskConfig"]], "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig": [[94, 5, 1, "id1", "channels"], [94, 5, 1, "id2", "clip_distance"], [94, 5, 1, "id5", "mask_distances"], [94, 5, 1, "id4", "scale_factor"], [94, 5, 1, "id0", "task_type"], [94, 5, 1, "id3", "tol_distance"], [94, 2, 1, "", "verify"]], "dacapo.experiments.tasks.inner_distance_task": [[96, 1, 1, "", "InnerDistanceTask"]], "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask": [[96, 2, 1, "", "__init__"], [96, 5, 1, "id3", "evaluator"], [96, 5, 1, "id1", "loss"], [96, 5, 1, "id2", "post_processor"], [96, 5, 1, "id0", "predictor"], [96, 5, 1, "", "task_config"]], "dacapo.experiments.tasks.inner_distance_task_config": [[97, 1, 1, "", "InnerDistanceTaskConfig"]], "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig": [[97, 5, 1, "id0", "channels"], [97, 5, 1, "id1", "clip_distance"], [97, 5, 1, "id3", "scale_factor"], [97, 5, 1, "", "task_type"], [97, 5, 1, "id2", "tol_distance"]], "dacapo.experiments.tasks.losses": [[101, 1, 1, "", "AffinitiesLoss"], [101, 1, 1, "", "DummyLoss"], [101, 1, 1, "", "HotDistanceLoss"], [101, 1, 1, "", "Loss"], [101, 1, 1, "", "MSELoss"], [98, 0, 0, "-", "affinities_loss"], [99, 0, 0, "-", "dummy_loss"], [100, 0, 0, "-", "hot_distance_loss"], [102, 0, 0, "-", "loss"], [103, 0, 0, "-", "mse_loss"]], "dacapo.experiments.tasks.losses.AffinitiesLoss": [[101, 2, 1, "id5", "compute"], [101, 5, 1, "id4", "lsds_to_affs_weight_ratio"], [101, 5, 1, "id3", "num_affinities"]], "dacapo.experiments.tasks.losses.DummyLoss": [[101, 2, 1, "id0", "compute"], [101, 5, 1, "", "name"]], "dacapo.experiments.tasks.losses.HotDistanceLoss": [[101, 2, 1, "id6", "compute"], [101, 2, 1, "id8", "distance_loss"], [101, 2, 1, "id7", "hot_loss"], [101, 2, 1, "id9", "split"]], "dacapo.experiments.tasks.losses.Loss": [[101, 2, 1, "id2", "compute"]], "dacapo.experiments.tasks.losses.MSELoss": [[101, 2, 1, "id1", "compute"]], "dacapo.experiments.tasks.losses.affinities_loss": [[98, 1, 1, "", "AffinitiesLoss"]], "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss": [[98, 2, 1, "id2", "compute"], [98, 5, 1, "id1", "lsds_to_affs_weight_ratio"], [98, 5, 1, "id0", "num_affinities"]], "dacapo.experiments.tasks.losses.dummy_loss": [[99, 1, 1, "", "DummyLoss"]], "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss": [[99, 2, 1, "id0", "compute"], [99, 5, 1, "", "name"]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[100, 1, 1, "", "HotDistanceLoss"]], "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss": [[100, 2, 1, "id0", "compute"], [100, 2, 1, "id2", "distance_loss"], [100, 2, 1, "id1", "hot_loss"], [100, 2, 1, "id3", "split"]], "dacapo.experiments.tasks.losses.loss": [[102, 1, 1, "", "Loss"]], "dacapo.experiments.tasks.losses.loss.Loss": [[102, 2, 1, "id0", "compute"]], "dacapo.experiments.tasks.losses.mse_loss": [[103, 1, 1, "", "MSELoss"]], "dacapo.experiments.tasks.losses.mse_loss.MSELoss": [[103, 2, 1, "id0", "compute"]], "dacapo.experiments.tasks.one_hot_task": [[104, 1, 1, "", "OneHotTask"]], "dacapo.experiments.tasks.one_hot_task.OneHotTask": [[104, 2, 1, "", "create_model"], [104, 5, 1, "", "evaluator"], [104, 5, 1, "", "loss"], [104, 5, 1, "", "post_processor"], [104, 5, 1, "", "predictor"], [104, 5, 1, "", "weights"]], "dacapo.experiments.tasks.one_hot_task_config": [[105, 1, 1, "", "OneHotTaskConfig"]], "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig": [[105, 2, 1, "", "None"], [105, 5, 1, "id1", "classes"], [105, 5, 1, "id0", "task_type"]], "dacapo.experiments.tasks.post_processors": [[110, 1, 1, "", "ArgmaxPostProcessor"], [110, 1, 1, "", "ArgmaxPostProcessorParameters"], [110, 1, 1, "", "DummyPostProcessor"], [110, 1, 1, "", "DummyPostProcessorParameters"], [110, 1, 1, "", "PostProcessor"], [110, 1, 1, "", "PostProcessorParameters"], [110, 1, 1, "", "ThresholdPostProcessor"], [110, 1, 1, "", "ThresholdPostProcessorParameters"], [110, 1, 1, "", "WatershedPostProcessor"], [110, 1, 1, "", "WatershedPostProcessorParameters"], [106, 0, 0, "-", "argmax_post_processor"], [107, 0, 0, "-", "argmax_post_processor_parameters"], [108, 0, 0, "-", "dummy_post_processor"], [109, 0, 0, "-", "dummy_post_processor_parameters"], [111, 0, 0, "-", "post_processor"], [112, 0, 0, "-", "post_processor_parameters"], [113, 0, 0, "-", "threshold_post_processor"], [114, 0, 0, "-", "threshold_post_processor_parameters"], [115, 0, 0, "-", "watershed_post_processor"], [116, 0, 0, "-", "watershed_post_processor_parameters"]], "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor": [[110, 2, 1, "id14", "enumerate_parameters"], [110, 5, 1, "", "prediction_array"], [110, 2, 1, "id16", "process"], [110, 2, 1, "id15", "set_prediction"]], "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters": [[110, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.DummyPostProcessor": [[110, 5, 1, "id0", "detection_threshold"], [110, 2, 1, "id1", "enumerate_parameters"], [110, 2, 1, "id3", "process"], [110, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters": [[110, 5, 1, "id4", "min_size"], [110, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.PostProcessor": [[110, 2, 1, "id7", "enumerate_parameters"], [110, 5, 1, "", "prediction_array_identifier"], [110, 2, 1, "id9", "process"], [110, 2, 1, "id8", "set_prediction"]], "dacapo.experiments.tasks.post_processors.PostProcessorParameters": [[110, 5, 1, "id5", "id"], [110, 6, 1, "id6", "parameter_names"]], "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor": [[110, 2, 1, "id10", "enumerate_parameters"], [110, 5, 1, "", "prediction_array"], [110, 5, 1, "", "prediction_array_identifier"], [110, 2, 1, "id12", "process"], [110, 2, 1, "id11", "set_prediction"]], "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters": [[110, 5, 1, "id13", "threshold"]], "dacapo.experiments.tasks.post_processors.WatershedPostProcessor": [[110, 2, 1, "id18", "enumerate_parameters"], [110, 5, 1, "id17", "offsets"], [110, 2, 1, "id20", "process"], [110, 2, 1, "id19", "set_prediction"]], "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters": [[110, 5, 1, "id21", "bias"], [110, 5, 1, "id22", "context"], [110, 5, 1, "", "min_size"], [110, 5, 1, "", "offsets"], [110, 5, 1, "", "sigma"], [110, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[106, 1, 1, "", "ArgmaxPostProcessor"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor": [[106, 2, 1, "id0", "enumerate_parameters"], [106, 5, 1, "", "prediction_array"], [106, 2, 1, "id2", "process"], [106, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[107, 1, 1, "", "ArgmaxPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters": [[107, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[108, 1, 1, "", "DummyPostProcessor"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor": [[108, 5, 1, "id0", "detection_threshold"], [108, 2, 1, "id1", "enumerate_parameters"], [108, 2, 1, "id3", "process"], [108, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[109, 1, 1, "", "DummyPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters": [[109, 5, 1, "id0", "min_size"], [109, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.post_processor": [[111, 1, 1, "", "PostProcessor"]], "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor": [[111, 2, 1, "id0", "enumerate_parameters"], [111, 5, 1, "", "prediction_array_identifier"], [111, 2, 1, "id2", "process"], [111, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[112, 1, 1, "", "PostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters": [[112, 5, 1, "id0", "id"], [112, 6, 1, "id1", "parameter_names"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[113, 1, 1, "", "ThresholdPostProcessor"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor": [[113, 2, 1, "id0", "enumerate_parameters"], [113, 5, 1, "", "prediction_array"], [113, 5, 1, "", "prediction_array_identifier"], [113, 2, 1, "id2", "process"], [113, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[114, 1, 1, "", "ThresholdPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters": [[114, 5, 1, "id0", "threshold"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[115, 1, 1, "", "WatershedPostProcessor"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor": [[115, 2, 1, "id1", "enumerate_parameters"], [115, 5, 1, "id0", "offsets"], [115, 2, 1, "id3", "process"], [115, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[116, 1, 1, "", "WatershedPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters": [[116, 5, 1, "id0", "bias"], [116, 5, 1, "id1", "context"], [116, 5, 1, "", "min_size"], [116, 5, 1, "", "offsets"], [116, 5, 1, "", "sigma"], [116, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors": [[121, 1, 1, "", "AffinitiesPredictor"], [121, 1, 1, "", "DistancePredictor"], [121, 1, 1, "", "DummyPredictor"], [121, 1, 1, "", "HotDistancePredictor"], [121, 1, 1, "", "InnerDistancePredictor"], [121, 1, 1, "", "OneHotPredictor"], [121, 1, 1, "", "Predictor"], [117, 0, 0, "-", "affinities_predictor"], [118, 0, 0, "-", "distance_predictor"], [119, 0, 0, "-", "dummy_predictor"], [120, 0, 0, "-", "hot_distance_predictor"], [122, 0, 0, "-", "inner_distance_predictor"], [123, 0, 0, "-", "one_hot_predictor"], [124, 0, 0, "-", "predictor"]], "dacapo.experiments.tasks.predictors.AffinitiesPredictor": [[121, 2, 1, "", "_grow_boundaries"], [121, 5, 1, "id27", "affs_weight_clipmax"], [121, 5, 1, "id26", "affs_weight_clipmin"], [121, 5, 1, "id30", "background_as_object"], [121, 2, 1, "id35", "create_model"], [121, 2, 1, "id36", "create_target"], [121, 2, 1, "id37", "create_weight"], [121, 6, 1, "id32", "dims"], [121, 5, 1, "", "downsample_lsds"], [121, 2, 1, "id31", "extractor"], [121, 5, 1, "id25", "grow_boundary_iterations"], [121, 2, 1, "id38", "gt_region_for_roi"], [121, 2, 1, "id34", "lsd_pad"], [121, 5, 1, "id29", "lsd_weight_clipmax"], [121, 5, 1, "id28", "lsd_weight_clipmin"], [121, 5, 1, "id23", "lsds"], [121, 5, 1, "id22", "neighborhood"], [121, 2, 1, "", "num_channels"], [121, 5, 1, "id24", "num_voxels"], [121, 6, 1, "id39", "output_array_type"], [121, 2, 1, "id33", "sigma"]], "dacapo.experiments.tasks.predictors.DistancePredictor": [[121, 5, 1, "id5", "channels"], [121, 5, 1, "id8", "clipmax"], [121, 5, 1, "id7", "clipmin"], [121, 2, 1, "id13", "create_distance_mask"], [121, 2, 1, "id9", "create_model"], [121, 2, 1, "id10", "create_target"], [121, 2, 1, "id11", "create_weight"], [121, 5, 1, "", "dt_scale_factor"], [121, 6, 1, "", "embedding_dims"], [121, 5, 1, "", "epsilon"], [121, 2, 1, "id15", "gt_region_for_roi"], [121, 5, 1, "id6", "mask_distances"], [121, 5, 1, "", "max_distance"], [121, 5, 1, "", "norm"], [121, 6, 1, "id12", "output_array_type"], [121, 2, 1, "", "padding"], [121, 2, 1, "id14", "process"], [121, 5, 1, "", "scale_factor"], [121, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.DummyPredictor": [[121, 2, 1, "id1", "create_model"], [121, 2, 1, "id2", "create_target"], [121, 2, 1, "id3", "create_weight"], [121, 5, 1, "id0", "embedding_dims"], [121, 6, 1, "id4", "output_array_type"]], "dacapo.experiments.tasks.predictors.HotDistancePredictor": [[121, 5, 1, "id46", "channels"], [121, 6, 1, "", "classes"], [121, 2, 1, "id56", "create_distance_mask"], [121, 2, 1, "id53", "create_model"], [121, 2, 1, "id54", "create_target"], [121, 2, 1, "id55", "create_weight"], [121, 5, 1, "id48", "dt_scale_factor"], [121, 6, 1, "", "embedding_dims"], [121, 5, 1, "id51", "epsilon"], [121, 2, 1, "id58", "gt_region_for_roi"], [121, 5, 1, "id49", "mask_distances"], [121, 5, 1, "id50", "max_distance"], [121, 5, 1, "id47", "norm"], [121, 6, 1, "", "output_array_type"], [121, 2, 1, "id59", "padding"], [121, 2, 1, "id57", "process"], [121, 5, 1, "", "scale_factor"], [121, 5, 1, "id52", "threshold"]], "dacapo.experiments.tasks.predictors.InnerDistancePredictor": [[121, 2, 1, "", "__find_boundaries"], [121, 2, 1, "", "__normalize"], [121, 5, 1, "id40", "channels"], [121, 2, 1, "id41", "create_model"], [121, 2, 1, "id42", "create_target"], [121, 2, 1, "id43", "create_weight"], [121, 5, 1, "", "dt_scale_factor"], [121, 6, 1, "", "embedding_dims"], [121, 5, 1, "", "epsilon"], [121, 2, 1, "id45", "gt_region_for_roi"], [121, 5, 1, "", "max_distance"], [121, 5, 1, "", "norm"], [121, 6, 1, "id44", "output_array_type"], [121, 2, 1, "", "padding"], [121, 2, 1, "", "process"], [121, 5, 1, "", "scale_factor"], [121, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.OneHotPredictor": [[121, 5, 1, "id16", "classes"], [121, 2, 1, "id17", "create_model"], [121, 2, 1, "id18", "create_target"], [121, 2, 1, "id19", "create_weight"], [121, 6, 1, "", "embedding_dims"], [121, 6, 1, "id20", "output_array_type"], [121, 2, 1, "", "process"]], "dacapo.experiments.tasks.predictors.Predictor": [[121, 2, 1, "", "create_model"], [121, 2, 1, "", "create_target"], [121, 2, 1, "", "create_weight"], [121, 2, 1, "id21", "gt_region_for_roi"], [121, 6, 1, "", "output_array_type"], [121, 2, 1, "", "padding"]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[117, 1, 1, "", "AffinitiesPredictor"]], "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor": [[117, 2, 1, "", "_grow_boundaries"], [117, 5, 1, "id5", "affs_weight_clipmax"], [117, 5, 1, "id4", "affs_weight_clipmin"], [117, 5, 1, "id8", "background_as_object"], [117, 2, 1, "id13", "create_model"], [117, 2, 1, "id14", "create_target"], [117, 2, 1, "id15", "create_weight"], [117, 6, 1, "id10", "dims"], [117, 5, 1, "", "downsample_lsds"], [117, 2, 1, "id9", "extractor"], [117, 5, 1, "id3", "grow_boundary_iterations"], [117, 2, 1, "id16", "gt_region_for_roi"], [117, 2, 1, "id12", "lsd_pad"], [117, 5, 1, "id7", "lsd_weight_clipmax"], [117, 5, 1, "id6", "lsd_weight_clipmin"], [117, 5, 1, "id1", "lsds"], [117, 5, 1, "id0", "neighborhood"], [117, 2, 1, "", "num_channels"], [117, 5, 1, "id2", "num_voxels"], [117, 6, 1, "id17", "output_array_type"], [117, 2, 1, "id11", "sigma"]], "dacapo.experiments.tasks.predictors.distance_predictor": [[118, 1, 1, "", "DistancePredictor"], [118, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor": [[118, 5, 1, "id0", "channels"], [118, 5, 1, "id3", "clipmax"], [118, 5, 1, "id2", "clipmin"], [118, 2, 1, "id8", "create_distance_mask"], [118, 2, 1, "id4", "create_model"], [118, 2, 1, "id5", "create_target"], [118, 2, 1, "id6", "create_weight"], [118, 5, 1, "", "dt_scale_factor"], [118, 6, 1, "", "embedding_dims"], [118, 5, 1, "", "epsilon"], [118, 2, 1, "id10", "gt_region_for_roi"], [118, 5, 1, "id1", "mask_distances"], [118, 5, 1, "", "max_distance"], [118, 5, 1, "", "norm"], [118, 6, 1, "id7", "output_array_type"], [118, 2, 1, "", "padding"], [118, 2, 1, "id9", "process"], [118, 5, 1, "", "scale_factor"], [118, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[119, 1, 1, "", "DummyPredictor"]], "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor": [[119, 2, 1, "id1", "create_model"], [119, 2, 1, "id2", "create_target"], [119, 2, 1, "id3", "create_weight"], [119, 5, 1, "id0", "embedding_dims"], [119, 6, 1, "id4", "output_array_type"]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[120, 1, 1, "", "HotDistancePredictor"], [120, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor": [[120, 5, 1, "id0", "channels"], [120, 6, 1, "", "classes"], [120, 2, 1, "id10", "create_distance_mask"], [120, 2, 1, "id7", "create_model"], [120, 2, 1, "id8", "create_target"], [120, 2, 1, "id9", "create_weight"], [120, 5, 1, "id2", "dt_scale_factor"], [120, 6, 1, "", "embedding_dims"], [120, 5, 1, "id5", "epsilon"], [120, 2, 1, "id12", "gt_region_for_roi"], [120, 5, 1, "id3", "mask_distances"], [120, 5, 1, "id4", "max_distance"], [120, 5, 1, "id1", "norm"], [120, 6, 1, "", "output_array_type"], [120, 2, 1, "id13", "padding"], [120, 2, 1, "id11", "process"], [120, 5, 1, "", "scale_factor"], [120, 5, 1, "id6", "threshold"]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[122, 1, 1, "", "InnerDistancePredictor"], [122, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor": [[122, 2, 1, "", "__find_boundaries"], [122, 2, 1, "", "__normalize"], [122, 5, 1, "id0", "channels"], [122, 2, 1, "id1", "create_model"], [122, 2, 1, "id2", "create_target"], [122, 2, 1, "id3", "create_weight"], [122, 5, 1, "", "dt_scale_factor"], [122, 6, 1, "", "embedding_dims"], [122, 5, 1, "", "epsilon"], [122, 2, 1, "id5", "gt_region_for_roi"], [122, 5, 1, "", "max_distance"], [122, 5, 1, "", "norm"], [122, 6, 1, "id4", "output_array_type"], [122, 2, 1, "", "padding"], [122, 2, 1, "", "process"], [122, 5, 1, "", "scale_factor"], [122, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[123, 1, 1, "", "OneHotPredictor"], [123, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor": [[123, 5, 1, "id0", "classes"], [123, 2, 1, "id1", "create_model"], [123, 2, 1, "id2", "create_target"], [123, 2, 1, "id3", "create_weight"], [123, 6, 1, "", "embedding_dims"], [123, 6, 1, "id4", "output_array_type"], [123, 2, 1, "", "process"]], "dacapo.experiments.tasks.predictors.predictor": [[124, 1, 1, "", "Predictor"]], "dacapo.experiments.tasks.predictors.predictor.Predictor": [[124, 2, 1, "", "create_model"], [124, 2, 1, "", "create_target"], [124, 2, 1, "", "create_weight"], [124, 2, 1, "id0", "gt_region_for_roi"], [124, 6, 1, "", "output_array_type"], [124, 2, 1, "", "padding"]], "dacapo.experiments.tasks.pretrained_task": [[125, 1, 1, "", "PretrainedTask"]], "dacapo.experiments.tasks.pretrained_task.PretrainedTask": [[125, 2, 1, "id1", "create_model"], [125, 5, 1, "", "evaluator"], [125, 5, 1, "", "loss"], [125, 5, 1, "", "post_processor"], [125, 5, 1, "", "predictor"], [125, 5, 1, "id0", "weights"]], "dacapo.experiments.tasks.pretrained_task_config": [[126, 1, 1, "", "PretrainedTaskConfig"]], "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig": [[126, 5, 1, "id0", "sub_task_config"], [126, 5, 1, "", "task_type"], [126, 2, 1, "", "verify"], [126, 5, 1, "id1", "weights"]], "dacapo.experiments.tasks.task": [[127, 1, 1, "", "Task"]], "dacapo.experiments.tasks.task.Task": [[127, 2, 1, "", "create_model"], [127, 6, 1, "", "evaluation_scores"], [127, 5, 1, "", "evaluator"], [127, 5, 1, "", "loss"], [127, 6, 1, "", "parameters"], [127, 5, 1, "", "post_processor"], [127, 5, 1, "", "predictor"]], "dacapo.experiments.tasks.task_config": [[128, 1, 1, "", "TaskConfig"]], "dacapo.experiments.tasks.task_config.TaskConfig": [[128, 5, 1, "id0", "name"], [128, 2, 1, "id1", "verify"]], "dacapo.experiments.trainers": [[140, 1, 1, "", "AugmentConfig"], [140, 1, 1, "", "DummyTrainer"], [140, 1, 1, "", "DummyTrainerConfig"], [140, 1, 1, "", "GunpowderTrainer"], [140, 1, 1, "", "GunpowderTrainerConfig"], [140, 1, 1, "", "Trainer"], [140, 1, 1, "", "TrainerConfig"], [129, 0, 0, "-", "dummy_trainer"], [130, 0, 0, "-", "dummy_trainer_config"], [134, 0, 0, "-", "gp_augments"], [138, 0, 0, "-", "gunpowder_trainer"], [139, 0, 0, "-", "gunpowder_trainer_config"], [141, 0, 0, "-", "optimizers"], [142, 0, 0, "-", "trainer"], [143, 0, 0, "-", "trainer_config"]], "dacapo.experiments.trainers.AugmentConfig": [[140, 5, 1, "", "_gt_key"], [140, 5, 1, "", "_mask_key"], [140, 5, 1, "", "_raw_key"], [140, 2, 1, "id32", "node"]], "dacapo.experiments.trainers.DummyTrainer": [[140, 2, 1, "", "__enter__"], [140, 2, 1, "", "__exit__"], [140, 2, 1, "", "__init__"], [140, 5, 1, "id10", "batch_size"], [140, 2, 1, "id13", "build_batch_provider"], [140, 2, 1, "id14", "can_train"], [140, 2, 1, "id12", "create_optimizer"], [140, 2, 1, "", "iterate"], [140, 5, 1, "", "iteration"], [140, 5, 1, "id9", "learning_rate"], [140, 5, 1, "id11", "mirror_augment"]], "dacapo.experiments.trainers.DummyTrainerConfig": [[140, 5, 1, "id7", "mirror_augment"], [140, 5, 1, "", "trainer_type"], [140, 2, 1, "id8", "verify"]], "dacapo.experiments.trainers.GunpowderTrainer": [[140, 2, 1, "", "__enter__"], [140, 2, 1, "", "__exit__"], [140, 2, 1, "", "__iter__"], [140, 5, 1, "id27", "augments"], [140, 5, 1, "id22", "batch_size"], [140, 2, 1, "", "build_batch_provider"], [140, 2, 1, "", "can_train"], [140, 5, 1, "id29", "clip_raw"], [140, 2, 1, "", "create_optimizer"], [140, 5, 1, "", "gt_min_reject"], [140, 2, 1, "", "iterate"], [140, 5, 1, "", "iteration"], [140, 5, 1, "id21", "learning_rate"], [140, 5, 1, "id28", "mask_integral_downsample_factor"], [140, 5, 1, "id26", "min_masked"], [140, 2, 1, "id31", "next"], [140, 5, 1, "id23", "num_data_fetchers"], [140, 5, 1, "id24", "print_profiling"], [140, 5, 1, "id30", "scheduler"], [140, 5, 1, "id25", "snapshot_iteration"], [140, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.trainers.GunpowderTrainerConfig": [[140, 5, 1, "id17", "augments"], [140, 5, 1, "id20", "clip_raw"], [140, 5, 1, "", "gt_min_reject"], [140, 5, 1, "id19", "min_masked"], [140, 5, 1, "id16", "num_data_fetchers"], [140, 5, 1, "id18", "snapshot_interval"], [140, 5, 1, "id15", "trainer_type"]], "dacapo.experiments.trainers.Trainer": [[140, 5, 1, "id1", "batch_size"], [140, 2, 1, "", "build_batch_provider"], [140, 2, 1, "", "can_train"], [140, 2, 1, "", "create_optimizer"], [140, 2, 1, "", "iterate"], [140, 5, 1, "id0", "iteration"], [140, 5, 1, "id2", "learning_rate"]], "dacapo.experiments.trainers.TrainerConfig": [[140, 5, 1, "id4", "batch_size"], [140, 5, 1, "id5", "learning_rate"], [140, 5, 1, "id3", "name"], [140, 2, 1, "id6", "verify"]], "dacapo.experiments.trainers.dummy_trainer": [[129, 1, 1, "", "DummyTrainer"]], "dacapo.experiments.trainers.dummy_trainer.DummyTrainer": [[129, 2, 1, "", "__enter__"], [129, 2, 1, "", "__exit__"], [129, 2, 1, "", "__init__"], [129, 5, 1, "id1", "batch_size"], [129, 2, 1, "id4", "build_batch_provider"], [129, 2, 1, "id5", "can_train"], [129, 2, 1, "id3", "create_optimizer"], [129, 2, 1, "", "iterate"], [129, 5, 1, "", "iteration"], [129, 5, 1, "id0", "learning_rate"], [129, 5, 1, "id2", "mirror_augment"]], "dacapo.experiments.trainers.dummy_trainer_config": [[130, 1, 1, "", "DummyTrainerConfig"]], "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig": [[130, 5, 1, "id0", "mirror_augment"], [130, 5, 1, "", "trainer_type"], [130, 2, 1, "id1", "verify"]], "dacapo.experiments.trainers.gp_augments": [[134, 1, 1, "", "AugmentConfig"], [134, 1, 1, "", "ElasticAugmentConfig"], [134, 1, 1, "", "GammaAugmentConfig"], [134, 1, 1, "", "IntensityAugmentConfig"], [134, 1, 1, "", "IntensityScaleShiftAugmentConfig"], [134, 1, 1, "", "SimpleAugmentConfig"], [131, 0, 0, "-", "augment_config"], [132, 0, 0, "-", "elastic_config"], [133, 0, 0, "-", "gamma_config"], [135, 0, 0, "-", "intensity_config"], [136, 0, 0, "-", "intensity_scale_shift_config"], [137, 0, 0, "-", "simple_config"]], "dacapo.experiments.trainers.gp_augments.AugmentConfig": [[134, 5, 1, "", "_gt_key"], [134, 5, 1, "", "_mask_key"], [134, 5, 1, "", "_raw_key"], [134, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig": [[134, 5, 1, "", "augmentation_probability"], [134, 5, 1, "id2", "control_point_displacement_sigma"], [134, 5, 1, "id1", "control_point_spacing"], [134, 2, 1, "id6", "node"], [134, 5, 1, "id3", "rotation_interval"], [134, 5, 1, "id4", "subsample"], [134, 5, 1, "id5", "uniform_3d_rotation"]], "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig": [[134, 5, 1, "id8", "gamma_range"], [134, 2, 1, "id9", "node"]], "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig": [[134, 5, 1, "", "augmentation_probability"], [134, 5, 1, "id12", "clip"], [134, 2, 1, "id13", "node"], [134, 5, 1, "id10", "scale"], [134, 5, 1, "id11", "shift"]], "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig": [[134, 2, 1, "id16", "node"], [134, 5, 1, "id14", "scale"], [134, 5, 1, "id15", "shift"]], "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig": [[134, 5, 1, "", "augmentation_probability"], [134, 2, 1, "id7", "node"]], "dacapo.experiments.trainers.gp_augments.augment_config": [[131, 1, 1, "", "AugmentConfig"]], "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig": [[131, 5, 1, "", "_gt_key"], [131, 5, 1, "", "_mask_key"], [131, 5, 1, "", "_raw_key"], [131, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[132, 1, 1, "", "ElasticAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 5, 1, "id1", "control_point_displacement_sigma"], [132, 5, 1, "id0", "control_point_spacing"], [132, 2, 1, "id5", "node"], [132, 5, 1, "id2", "rotation_interval"], [132, 5, 1, "id3", "subsample"], [132, 5, 1, "id4", "uniform_3d_rotation"]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[133, 1, 1, "", "GammaAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig": [[133, 5, 1, "id0", "gamma_range"], [133, 2, 1, "id1", "node"]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[135, 1, 1, "", "IntensityAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig": [[135, 5, 1, "", "augmentation_probability"], [135, 5, 1, "id2", "clip"], [135, 2, 1, "id3", "node"], [135, 5, 1, "id0", "scale"], [135, 5, 1, "id1", "shift"]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[136, 1, 1, "", "IntensityScaleShiftAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig": [[136, 2, 1, "id2", "node"], [136, 5, 1, "id0", "scale"], [136, 5, 1, "id1", "shift"]], "dacapo.experiments.trainers.gp_augments.simple_config": [[137, 1, 1, "", "SimpleAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig": [[137, 5, 1, "", "augmentation_probability"], [137, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gunpowder_trainer": [[138, 1, 1, "", "GunpowderTrainer"], [138, 4, 1, "", "logger"]], "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer": [[138, 2, 1, "", "__enter__"], [138, 2, 1, "", "__exit__"], [138, 2, 1, "", "__iter__"], [138, 5, 1, "id6", "augments"], [138, 5, 1, "id1", "batch_size"], [138, 2, 1, "", "build_batch_provider"], [138, 2, 1, "", "can_train"], [138, 5, 1, "id8", "clip_raw"], [138, 2, 1, "", "create_optimizer"], [138, 5, 1, "", "gt_min_reject"], [138, 2, 1, "", "iterate"], [138, 5, 1, "", "iteration"], [138, 5, 1, "id0", "learning_rate"], [138, 5, 1, "id7", "mask_integral_downsample_factor"], [138, 5, 1, "id5", "min_masked"], [138, 2, 1, "id10", "next"], [138, 5, 1, "id2", "num_data_fetchers"], [138, 5, 1, "id3", "print_profiling"], [138, 5, 1, "id9", "scheduler"], [138, 5, 1, "id4", "snapshot_iteration"], [138, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[139, 1, 1, "", "GunpowderTrainerConfig"]], "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig": [[139, 5, 1, "id2", "augments"], [139, 5, 1, "id5", "clip_raw"], [139, 5, 1, "", "gt_min_reject"], [139, 5, 1, "id4", "min_masked"], [139, 5, 1, "id1", "num_data_fetchers"], [139, 5, 1, "id3", "snapshot_interval"], [139, 5, 1, "id0", "trainer_type"]], "dacapo.experiments.trainers.trainer": [[142, 1, 1, "", "Trainer"]], "dacapo.experiments.trainers.trainer.Trainer": [[142, 5, 1, "id1", "batch_size"], [142, 2, 1, "", "build_batch_provider"], [142, 2, 1, "", "can_train"], [142, 2, 1, "", "create_optimizer"], [142, 2, 1, "", "iterate"], [142, 5, 1, "id0", "iteration"], [142, 5, 1, "id2", "learning_rate"]], "dacapo.experiments.trainers.trainer_config": [[143, 1, 1, "", "TrainerConfig"]], "dacapo.experiments.trainers.trainer_config.TrainerConfig": [[143, 5, 1, "id1", "batch_size"], [143, 5, 1, "id2", "learning_rate"], [143, 5, 1, "id0", "name"], [143, 2, 1, "id3", "verify"]], "dacapo.experiments.training_iteration_stats": [[144, 1, 1, "", "TrainingIterationStats"]], "dacapo.experiments.training_iteration_stats.TrainingIterationStats": [[144, 5, 1, "id0", "iteration"], [144, 5, 1, "id1", "loss"], [144, 5, 1, "id2", "time"]], "dacapo.experiments.training_stats": [[145, 1, 1, "", "TrainingStats"], [145, 4, 1, "", "logger"]], "dacapo.experiments.training_stats.TrainingStats": [[145, 2, 1, "", "add_iteration_stats"], [145, 2, 1, "", "delete_after"], [145, 5, 1, "id0", "iteration_stats"], [145, 2, 1, "id2", "to_xarray"], [145, 2, 1, "id1", "trained_until"]], "dacapo.experiments.validation_iteration_scores": [[146, 1, 1, "", "ValidationIterationScores"]], "dacapo.experiments.validation_iteration_scores.ValidationIterationScores": [[146, 5, 1, "id0", "iteration"], [146, 5, 1, "id1", "scores"]], "dacapo.experiments.validation_scores": [[147, 1, 1, "", "ValidationScores"]], "dacapo.experiments.validation_scores.ValidationScores": [[147, 2, 1, "id5", "add_iteration_scores"], [147, 2, 1, "id8", "compare"], [147, 6, 1, "id9", "criteria"], [147, 5, 1, "id1", "datasets"], [147, 2, 1, "id6", "delete_after"], [147, 5, 1, "id2", "evaluation_scores"], [147, 2, 1, "id12", "get_best"], [147, 6, 1, "id10", "parameter_names"], [147, 5, 1, "id0", "parameters"], [147, 5, 1, "id3", "scores"], [147, 2, 1, "id4", "subscores"], [147, 2, 1, "id11", "to_xarray"], [147, 2, 1, "id7", "validated_until"]], "dacapo.ext": [[148, 1, 1, "", "NoSuchModule"]], "dacapo.ext.NoSuchModule": [[148, 5, 1, "", "__exception"], [148, 2, 1, "", "__getattr__"], [148, 5, 1, "", "__name"], [148, 5, 1, "", "__traceback_str"]], "dacapo.gp": [[154, 1, 1, "", "CopyMask"], [154, 1, 1, "", "DaCapoTargetFilter"], [154, 1, 1, "", "ElasticAugment"], [154, 1, 1, "", "GammaAugment"], [154, 1, 1, "", "GraphSource"], [154, 1, 1, "", "Product"], [154, 1, 1, "", "RejectIfEmpty"], [149, 0, 0, "-", "copy"], [150, 0, 0, "-", "dacapo_create_target"], [151, 0, 0, "-", "dacapo_points_source"], [152, 0, 0, "-", "elastic_augment_fuse"], [153, 0, 0, "-", "gamma_noise"], [155, 0, 0, "-", "product"], [156, 0, 0, "-", "reject_if_empty"]], "dacapo.gp.CopyMask": [[154, 5, 1, "id14", "array_key"], [154, 5, 1, "id15", "copy_key"], [154, 5, 1, "id16", "drop_channels"], [154, 2, 1, "id18", "prepare"], [154, 2, 1, "id19", "process"], [154, 2, 1, "id17", "setup"]], "dacapo.gp.DaCapoTargetFilter": [[154, 5, 1, "", "Predictor"], [154, 5, 1, "", "gt"], [154, 5, 1, "", "gt_key"], [154, 5, 1, "id2", "mask_key"], [154, 5, 1, "", "moving_counts"], [154, 5, 1, "", "predictor"], [154, 2, 1, "id4", "prepare"], [154, 2, 1, "id5", "process"], [154, 2, 1, "id3", "setup"], [154, 5, 1, "id0", "target_key"], [154, 5, 1, "id1", "weights_key"]], "dacapo.gp.ElasticAugment": [[154, 5, 1, "", "augmentation_probability"], [154, 5, 1, "", "control_point_displacement_sigma"], [154, 5, 1, "", "control_point_spacing"], [154, 5, 1, "", "do_augment"], [154, 2, 1, "", "prepare"], [154, 2, 1, "", "process"], [154, 5, 1, "", "rotation_max_amount"], [154, 5, 1, "", "rotation_start"], [154, 2, 1, "", "setup"], [154, 5, 1, "", "subsample"], [154, 5, 1, "", "target_rois"], [154, 5, 1, "", "transformations"], [154, 5, 1, "", "uniform_3d_rotation"]], "dacapo.gp.GammaAugment": [[154, 2, 1, "", "__augment"], [154, 5, 1, "id6", "arrays"], [154, 5, 1, "id8", "gamma_max"], [154, 5, 1, "id7", "gamma_min"], [154, 2, 1, "id10", "process"], [154, 2, 1, "id9", "setup"]], "dacapo.gp.GraphSource": [[154, 5, 1, "id21", "graph"], [154, 5, 1, "id20", "key"], [154, 2, 1, "id23", "provide"], [154, 2, 1, "id22", "setup"]], "dacapo.gp.Product": [[154, 2, 1, "", "prepare"], [154, 2, 1, "", "process"], [154, 2, 1, "", "setup"], [154, 5, 1, "id24", "x1_key"], [154, 5, 1, "id25", "x2_key"], [154, 5, 1, "id26", "y_key"]], "dacapo.gp.RejectIfEmpty": [[154, 5, 1, "", "background"], [154, 5, 1, "", "gt"], [154, 5, 1, "id13", "p"], [154, 2, 1, "", "provide"], [154, 2, 1, "", "setup"]], "dacapo.gp.copy": [[149, 1, 1, "", "CopyMask"]], "dacapo.gp.copy.CopyMask": [[149, 5, 1, "id0", "array_key"], [149, 5, 1, "id1", "copy_key"], [149, 5, 1, "id2", "drop_channels"], [149, 2, 1, "id4", "prepare"], [149, 2, 1, "id5", "process"], [149, 2, 1, "id3", "setup"]], "dacapo.gp.dacapo_create_target": [[150, 1, 1, "", "DaCapoTargetFilter"]], "dacapo.gp.dacapo_create_target.DaCapoTargetFilter": [[150, 5, 1, "", "Predictor"], [150, 5, 1, "", "gt"], [150, 5, 1, "", "gt_key"], [150, 5, 1, "id2", "mask_key"], [150, 5, 1, "", "moving_counts"], [150, 5, 1, "", "predictor"], [150, 2, 1, "id4", "prepare"], [150, 2, 1, "id5", "process"], [150, 2, 1, "id3", "setup"], [150, 5, 1, "id0", "target_key"], [150, 5, 1, "id1", "weights_key"]], "dacapo.gp.dacapo_points_source": [[151, 1, 1, "", "GraphSource"]], "dacapo.gp.dacapo_points_source.GraphSource": [[151, 5, 1, "id1", "graph"], [151, 5, 1, "id0", "key"], [151, 2, 1, "id3", "provide"], [151, 2, 1, "id2", "setup"]], "dacapo.gp.elastic_augment_fuse": [[152, 1, 1, "", "ElasticAugment"], [152, 4, 1, "", "logger"]], "dacapo.gp.elastic_augment_fuse.ElasticAugment": [[152, 5, 1, "", "augmentation_probability"], [152, 5, 1, "", "control_point_displacement_sigma"], [152, 5, 1, "", "control_point_spacing"], [152, 5, 1, "", "do_augment"], [152, 2, 1, "", "prepare"], [152, 2, 1, "", "process"], [152, 5, 1, "", "rotation_max_amount"], [152, 5, 1, "", "rotation_start"], [152, 2, 1, "", "setup"], [152, 5, 1, "", "subsample"], [152, 5, 1, "", "target_rois"], [152, 5, 1, "", "transformations"], [152, 5, 1, "", "uniform_3d_rotation"]], "dacapo.gp.gamma_noise": [[153, 1, 1, "", "GammaAugment"], [153, 4, 1, "", "logger"]], "dacapo.gp.gamma_noise.GammaAugment": [[153, 2, 1, "", "__augment"], [153, 5, 1, "id0", "arrays"], [153, 5, 1, "id2", "gamma_max"], [153, 5, 1, "id1", "gamma_min"], [153, 2, 1, "id4", "process"], [153, 2, 1, "id3", "setup"]], "dacapo.gp.product": [[155, 1, 1, "", "Product"]], "dacapo.gp.product.Product": [[155, 2, 1, "", "prepare"], [155, 2, 1, "", "process"], [155, 2, 1, "", "setup"], [155, 5, 1, "id0", "x1_key"], [155, 5, 1, "id1", "x2_key"], [155, 5, 1, "id2", "y_key"]], "dacapo.gp.reject_if_empty": [[156, 1, 1, "", "RejectIfEmpty"], [156, 4, 1, "", "logger"]], "dacapo.gp.reject_if_empty.RejectIfEmpty": [[156, 5, 1, "", "background"], [156, 5, 1, "", "gt"], [156, 5, 1, "id0", "p"], [156, 2, 1, "", "provide"], [156, 2, 1, "", "setup"]], "dacapo.options": [[158, 1, 1, "", "DaCapoConfig"], [158, 1, 1, "", "Options"], [158, 4, 1, "", "logger"]], "dacapo.options.DaCapoConfig": [[158, 5, 1, "id2", "compute_context"], [158, 5, 1, "id3", "mongo_db_host"], [158, 5, 1, "id4", "mongo_db_name"], [158, 5, 1, "id1", "runs_base_dir"], [158, 2, 1, "id5", "serialize"], [158, 5, 1, "id0", "type"]], "dacapo.options.Options": [[158, 2, 1, "", "__parse_options"], [158, 2, 1, "", "__parse_options_from_file"], [158, 2, 1, "id7", "config_file"], [158, 2, 1, "id6", "instance"]], "dacapo.plot": [[159, 4, 1, "", "RunInfo"], [159, 3, 1, "", "bokeh_plot_runs"], [159, 3, 1, "", "get_runs_info"], [159, 3, 1, "", "plot_runs"], [159, 3, 1, "", "smooth_values"]], "dacapo.predict": [[160, 4, 1, "", "logger"], [160, 3, 1, "", "predict"]], "dacapo.predict_local": [[161, 4, 1, "", "logger"], [161, 3, 1, "", "predict"]], "dacapo.store": [[162, 0, 0, "-", "array_store"], [163, 0, 0, "-", "config_store"], [164, 0, 0, "-", "conversion_hooks"], [165, 0, 0, "-", "converter"], [166, 0, 0, "-", "create_store"], [167, 0, 0, "-", "file_config_store"], [168, 0, 0, "-", "file_stats_store"], [170, 0, 0, "-", "local_array_store"], [171, 0, 0, "-", "local_weights_store"], [172, 0, 0, "-", "mongo_config_store"], [173, 0, 0, "-", "mongo_stats_store"], [174, 0, 0, "-", "stats_store"], [175, 0, 0, "-", "weights_store"]], "dacapo.store.array_store": [[162, 1, 1, "", "ArrayStore"], [162, 1, 1, "", "LocalArrayIdentifier"], [162, 1, 1, "", "LocalContainerIdentifier"]], "dacapo.store.array_store.ArrayStore": [[162, 5, 1, "", "container"], [162, 5, 1, "", "dataset"], [162, 2, 1, "", "remove"], [162, 2, 1, "", "snapshot_container"], [162, 2, 1, "", "validation_container"], [162, 2, 1, "", "validation_input_arrays"], [162, 2, 1, "", "validation_output_array"], [162, 2, 1, "", "validation_prediction_array"]], "dacapo.store.array_store.LocalArrayIdentifier": [[162, 5, 1, "id0", "container"], [162, 5, 1, "id1", "dataset"]], "dacapo.store.array_store.LocalContainerIdentifier": [[162, 2, 1, "", "array_identifier"], [162, 5, 1, "id2", "container"]], "dacapo.store.config_store": [[163, 1, 1, "", "ConfigStore"], [163, 7, 1, "", "DuplicateNameError"]], "dacapo.store.config_store.ConfigStore": [[163, 5, 1, "id6", "architectures"], [163, 5, 1, "id3", "arrays"], [163, 5, 1, "id2", "datasets"], [163, 5, 1, "id1", "datasplits"], [163, 2, 1, "id19", "delete_architecture_config"], [163, 2, 1, "id31", "delete_array_config"], [163, 2, 1, "id7", "delete_config"], [163, 2, 1, "id27", "delete_datasplit_config"], [163, 2, 1, "id11", "delete_run_config"], [163, 2, 1, "id15", "delete_task_config"], [163, 2, 1, "id23", "delete_trainer_config"], [163, 2, 1, "id17", "retrieve_architecture_config"], [163, 2, 1, "id18", "retrieve_architecture_config_names"], [163, 2, 1, "id29", "retrieve_array_config"], [163, 2, 1, "id30", "retrieve_array_config_names"], [163, 2, 1, "id25", "retrieve_datasplit_config"], [163, 2, 1, "id26", "retrieve_datasplit_config_names"], [163, 2, 1, "id9", "retrieve_run_config"], [163, 2, 1, "id10", "retrieve_run_config_names"], [163, 2, 1, "id13", "retrieve_task_config"], [163, 2, 1, "id14", "retrieve_task_config_names"], [163, 2, 1, "id21", "retrieve_trainer_config"], [163, 2, 1, "id22", "retrieve_trainer_config_names"], [163, 5, 1, "id0", "runs"], [163, 2, 1, "id16", "store_architecture_config"], [163, 2, 1, "id28", "store_array_config"], [163, 2, 1, "id24", "store_datasplit_config"], [163, 2, 1, "id8", "store_run_config"], [163, 2, 1, "id12", "store_task_config"], [163, 2, 1, "id20", "store_trainer_config"], [163, 5, 1, "id4", "tasks"], [163, 5, 1, "id5", "trainers"]], "dacapo.store.config_store.DuplicateNameError": [[163, 2, 1, "", "__str__"], [163, 5, 1, "", "message"]], "dacapo.store.conversion_hooks": [[164, 3, 1, "", "cls_fun"], [164, 3, 1, "", "register_hierarchy_hooks"], [164, 3, 1, "", "register_hooks"]], "dacapo.store.converter": [[165, 1, 1, "", "TypedConverter"], [165, 4, 1, "", "converter"]], "dacapo.store.converter.TypedConverter": [[165, 2, 1, "", "__typed_structure"], [165, 2, 1, "", "__typed_unstructure"], [165, 5, 1, "", "hooks"], [165, 2, 1, "id0", "register_hierarchy"]], "dacapo.store.create_store": [[166, 3, 1, "", "create_array_store"], [166, 3, 1, "", "create_config_store"], [166, 3, 1, "", "create_stats_store"], [166, 3, 1, "", "create_weights_store"]], "dacapo.store.file_config_store": [[167, 1, 1, "", "FileConfigStore"], [167, 4, 1, "", "logger"]], "dacapo.store.file_config_store.FileConfigStore": [[167, 2, 1, "", "__load"], [167, 2, 1, "", "__save_insert"], [167, 6, 1, "", "architectures"], [167, 6, 1, "", "arrays"], [167, 6, 1, "", "datasets"], [167, 6, 1, "", "datasplits"], [167, 2, 1, "", "delete_config"], [167, 5, 1, "id0", "path"], [167, 2, 1, "id8", "retrieve_architecture_config"], [167, 2, 1, "id9", "retrieve_architecture_config_names"], [167, 2, 1, "id17", "retrieve_array_config"], [167, 2, 1, "id18", "retrieve_array_config_names"], [167, 2, 1, "id14", "retrieve_datasplit_config"], [167, 2, 1, "id15", "retrieve_datasplit_config_names"], [167, 2, 1, "id2", "retrieve_run_config"], [167, 2, 1, "id3", "retrieve_run_config_names"], [167, 2, 1, "id5", "retrieve_task_config"], [167, 2, 1, "id6", "retrieve_task_config_names"], [167, 2, 1, "id11", "retrieve_trainer_config"], [167, 2, 1, "id12", "retrieve_trainer_config_names"], [167, 6, 1, "", "runs"], [167, 2, 1, "id7", "store_architecture_config"], [167, 2, 1, "id16", "store_array_config"], [167, 2, 1, "id13", "store_datasplit_config"], [167, 2, 1, "id1", "store_run_config"], [167, 2, 1, "id4", "store_task_config"], [167, 2, 1, "id10", "store_trainer_config"], [167, 6, 1, "", "tasks"], [167, 6, 1, "", "trainers"], [167, 6, 1, "", "users"]], "dacapo.store.file_stats_store": [[168, 1, 1, "", "FileStatsStore"], [168, 4, 1, "", "logger"]], "dacapo.store.file_stats_store.FileStatsStore": [[168, 2, 1, "", "delete_training_stats"], [168, 5, 1, "", "path"], [168, 2, 1, "", "retrieve_training_stats"], [168, 2, 1, "", "retrieve_validation_iteration_scores"], [168, 2, 1, "", "store_training_stats"], [168, 2, 1, "", "store_validation_iteration_scores"]], "dacapo.store.local_array_store": [[170, 1, 1, "", "LocalArrayStore"], [170, 4, 1, "", "logger"]], "dacapo.store.local_array_store.LocalArrayStore": [[170, 5, 1, "id0", "basedir"], [170, 2, 1, "id1", "best_validation_array"], [170, 2, 1, "id7", "remove"], [170, 2, 1, "id5", "snapshot_container"], [170, 2, 1, "id6", "validation_container"], [170, 2, 1, "id4", "validation_input_arrays"], [170, 2, 1, "id3", "validation_output_array"], [170, 2, 1, "id2", "validation_prediction_array"]], "dacapo.store.local_weights_store": [[171, 1, 1, "", "LocalWeightsStore"], [171, 4, 1, "", "logger"]], "dacapo.store.local_weights_store.LocalWeightsStore": [[171, 5, 1, "id0", "basedir"], [171, 2, 1, "id1", "latest_iteration"], [171, 2, 1, "id4", "remove"], [171, 2, 1, "id6", "retrieve_best"], [171, 2, 1, "id3", "retrieve_weights"], [171, 2, 1, "id5", "store_best"], [171, 2, 1, "id2", "store_weights"]], "dacapo.store.mongo_config_store": [[172, 1, 1, "", "MongoConfigStore"], [172, 4, 1, "", "logger"]], "dacapo.store.mongo_config_store.MongoConfigStore": [[172, 2, 1, "", "__init_db"], [172, 2, 1, "", "__open_collections"], [172, 2, 1, "", "__same_doc"], [172, 2, 1, "", "__save_insert"], [172, 5, 1, "", "architectures"], [172, 5, 1, "", "arrays"], [172, 5, 1, "id2", "client"], [172, 5, 1, "id3", "database"], [172, 5, 1, "", "datasets"], [172, 5, 1, "", "datasplits"], [172, 5, 1, "id0", "db_host"], [172, 5, 1, "id1", "db_name"], [172, 2, 1, "", "delete_config"], [172, 2, 1, "id6", "delete_run_config"], [172, 2, 1, "id12", "retrieve_architecture_config"], [172, 2, 1, "id13", "retrieve_architecture_config_names"], [172, 2, 1, "id24", "retrieve_array_config"], [172, 2, 1, "id25", "retrieve_array_config_names"], [172, 2, 1, "id21", "retrieve_dataset_config"], [172, 2, 1, "id22", "retrieve_dataset_config_names"], [172, 2, 1, "id18", "retrieve_datasplit_config"], [172, 2, 1, "id19", "retrieve_datasplit_config_names"], [172, 2, 1, "id5", "retrieve_run_config"], [172, 2, 1, "id7", "retrieve_run_config_names"], [172, 2, 1, "id9", "retrieve_task_config"], [172, 2, 1, "id10", "retrieve_task_config_names"], [172, 2, 1, "id15", "retrieve_trainer_config"], [172, 2, 1, "id16", "retrieve_trainer_config_names"], [172, 5, 1, "", "runs"], [172, 2, 1, "id11", "store_architecture_config"], [172, 2, 1, "id23", "store_array_config"], [172, 2, 1, "id20", "store_dataset_config"], [172, 2, 1, "id17", "store_datasplit_config"], [172, 2, 1, "id4", "store_run_config"], [172, 2, 1, "id8", "store_task_config"], [172, 2, 1, "id14", "store_trainer_config"], [172, 5, 1, "", "tasks"], [172, 5, 1, "", "trainers"], [172, 5, 1, "", "users"]], "dacapo.store.mongo_stats_store": [[173, 1, 1, "", "MongoStatsStore"], [173, 4, 1, "", "logger"]], "dacapo.store.mongo_stats_store.MongoStatsStore": [[173, 5, 1, "id2", "client"], [173, 5, 1, "id3", "database"], [173, 5, 1, "id0", "db_host"], [173, 5, 1, "id1", "db_name"], [173, 2, 1, "id8", "delete_training_stats"], [173, 2, 1, "", "delete_validation_scores"], [173, 2, 1, "id5", "retrieve_training_stats"], [173, 2, 1, "id7", "retrieve_validation_iteration_scores"], [173, 2, 1, "id4", "store_training_stats"], [173, 2, 1, "id6", "store_validation_iteration_scores"], [173, 5, 1, "", "training_stats"], [173, 5, 1, "", "validation_scores"]], "dacapo.store.stats_store": [[174, 1, 1, "", "StatsStore"]], "dacapo.store.stats_store.StatsStore": [[174, 2, 1, "id4", "delete_training_stats"], [174, 2, 1, "id1", "retrieve_training_stats"], [174, 2, 1, "id3", "retrieve_validation_iteration_scores"], [174, 2, 1, "id0", "store_training_stats"], [174, 2, 1, "id2", "store_validation_iteration_scores"]], "dacapo.store.weights_store": [[175, 1, 1, "", "Weights"], [175, 1, 1, "", "WeightsStore"]], "dacapo.store.weights_store.Weights": [[175, 2, 1, "", "__init__"], [175, 5, 1, "id1", "model"], [175, 5, 1, "id0", "optimizer"]], "dacapo.store.weights_store.WeightsStore": [[175, 2, 1, "id4", "latest_iteration"], [175, 2, 1, "id3", "load_best"], [175, 2, 1, "id2", "load_weights"], [175, 2, 1, "id7", "remove"], [175, 2, 1, "id8", "retrieve_best"], [175, 2, 1, "id6", "retrieve_weights"], [175, 2, 1, "id5", "store_weights"]], "dacapo.tmp": [[176, 3, 1, "", "create_from_identifier"], [176, 3, 1, "", "gp_to_funlib_array"], [176, 3, 1, "", "np_to_funlib_array"], [176, 3, 1, "", "num_channels_from_array"], [176, 3, 1, "", "open_from_identifier"]], "dacapo.train": [[177, 4, 1, "", "logger"], [177, 3, 1, "", "train"], [177, 3, 1, "", "train_run"]], "dacapo.utils": [[178, 0, 0, "-", "affinities"], [179, 0, 0, "-", "array_utils"], [180, 0, 0, "-", "balance_weights"], [182, 0, 0, "-", "pipeline"], [183, 0, 0, "-", "view"], [184, 0, 0, "-", "voi"]], "dacapo.utils.affinities": [[178, 4, 1, "", "logger"], [178, 3, 1, "", "padding"], [178, 3, 1, "", "seg_to_affgraph"]], "dacapo.utils.array_utils": [[179, 3, 1, "", "save_ndarray"], [179, 3, 1, "", "to_ndarray"]], "dacapo.utils.balance_weights": [[180, 3, 1, "", "balance_weights"]], "dacapo.utils.pipeline": [[182, 1, 1, "", "CreatePoints"], [182, 1, 1, "", "DilatePoints"], [182, 1, 1, "", "ExpandLabels"], [182, 1, 1, "", "MakeRaw"], [182, 1, 1, "", "RandomDilateLabels"], [182, 1, 1, "", "Relabel"], [182, 1, 1, "", "ZerosSource"], [182, 3, 1, "", "random_source_pipeline"]], "dacapo.utils.pipeline.CreatePoints": [[182, 5, 1, "id0", "labels"], [182, 5, 1, "id1", "num_points"], [182, 2, 1, "id2", "process"]], "dacapo.utils.pipeline.DilatePoints": [[182, 5, 1, "id6", "dilations"], [182, 5, 1, "id5", "labels"], [182, 2, 1, "id7", "process"]], "dacapo.utils.pipeline.ExpandLabels": [[182, 5, 1, "id13", "background"], [182, 5, 1, "id12", "labels"], [182, 2, 1, "id14", "process"]], "dacapo.utils.pipeline.MakeRaw": [[182, 1, 1, "", "Pipeline"], [182, 5, 1, "", "gaussian_blur_args"], [182, 5, 1, "", "gaussian_noise_args"], [182, 5, 1, "", "gaussian_noise_lim"], [182, 5, 1, "", "inside_value"], [182, 5, 1, "", "labels"], [182, 5, 1, "", "membrane_like"], [182, 5, 1, "", "membrane_size"], [182, 2, 1, "id4", "process"], [182, 5, 1, "", "raw"], [182, 2, 1, "id3", "setup"]], "dacapo.utils.pipeline.MakeRaw.Pipeline": [[182, 5, 1, "", "gaussian_blur_args"], [182, 5, 1, "", "gaussian_noise_args"], [182, 5, 1, "", "gaussian_noise_lim"], [182, 5, 1, "", "inside_value"], [182, 5, 1, "", "labels"], [182, 5, 1, "", "membrane_like"], [182, 5, 1, "", "membrane_size"], [182, 5, 1, "", "raw"]], "dacapo.utils.pipeline.RandomDilateLabels": [[182, 5, 1, "id9", "dilations"], [182, 5, 1, "id8", "labels"], [182, 2, 1, "id10", "process"]], "dacapo.utils.pipeline.Relabel": [[182, 5, 1, "", "connectivity"], [182, 5, 1, "", "labels"], [182, 2, 1, "id11", "process"]], "dacapo.utils.pipeline.ZerosSource": [[182, 5, 1, "", "_spec"], [182, 5, 1, "id15", "key"], [182, 2, 1, "id17", "provide"], [182, 2, 1, "id16", "setup"]], "dacapo.utils.view": [[183, 1, 1, "", "BestScore"], [183, 1, 1, "", "NeuroglancerRunViewer"], [183, 3, 1, "", "add_scalar_layer"], [183, 3, 1, "", "add_seg_layer"], [183, 3, 1, "", "get_viewer"]], "dacapo.utils.view.BestScore": [[183, 5, 1, "id5", "array_store"], [183, 2, 1, "id8", "does_new_best_exist"], [183, 5, 1, "", "ds"], [183, 2, 1, "id7", "get_ds"], [183, 5, 1, "id2", "iteration"], [183, 5, 1, "id3", "parameter"], [183, 5, 1, "id0", "run"], [183, 5, 1, "id1", "score"], [183, 5, 1, "id6", "stats_store"], [183, 5, 1, "id4", "validation_parameters"]], "dacapo.utils.view.NeuroglancerRunViewer": [[183, 5, 1, "", "array_store"], [183, 5, 1, "id10", "best_score"], [183, 2, 1, "id13", "deprecated_start_neuroglancer"], [183, 5, 1, "id11", "embedded"], [183, 2, 1, "id17", "get_datasets"], [183, 5, 1, "", "gt"], [183, 5, 1, "", "most_recent_iteration"], [183, 2, 1, "id21", "new_validation_checker"], [183, 2, 1, "id16", "open_from_array_identitifier"], [183, 5, 1, "", "raw"], [183, 5, 1, "id9", "run"], [183, 5, 1, "", "run_thread"], [183, 5, 1, "", "segmentation"], [183, 2, 1, "id15", "start"], [183, 2, 1, "id14", "start_neuroglancer"], [183, 2, 1, "id23", "stop"], [183, 2, 1, "id18", "update_best_info"], [183, 2, 1, "id20", "update_best_layer"], [183, 2, 1, "id19", "update_neuroglancer"], [183, 2, 1, "id22", "update_with_new_validation_if_possible"], [183, 2, 1, "id12", "updated_neuroglancer_layer"], [183, 5, 1, "", "viewer"]], "dacapo.utils.voi": [[184, 3, 1, "", "contingency_table"], [184, 3, 1, "", "divide_columns"], [184, 3, 1, "", "divide_rows"], [184, 3, 1, "", "split_vi"], [184, 3, 1, "", "vi_tables"], [184, 3, 1, "", "voi"], [184, 3, 1, "", "xlogx"]], "dacapo.validate": [[185, 4, 1, "", "logger"], [185, 3, 1, "", "validate"], [185, 3, 1, "", "validate_run"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "data", "Python data"], "5": ["py", "attribute", "Python attribute"], "6": ["py", "property", "Python property"], "7": ["py", "exception", "Python exception"], "8": ["std", "cmdoption", "program option"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:data", "5": "py:attribute", "6": "py:property", "7": "py:exception", "8": "std:cmdoption"}, "terms": {"": [15, 17, 18, 21, 38, 47, 69, 70, 72, 85, 89, 90, 98, 99, 101, 106, 108, 110, 111, 115, 159, 175, 180, 190, 192, 195], "0": [3, 9, 10, 15, 17, 21, 24, 25, 27, 28, 32, 33, 38, 39, 60, 63, 69, 71, 84, 85, 86, 87, 88, 89, 90, 91, 92, 95, 98, 100, 101, 102, 103, 105, 106, 108, 109, 110, 111, 112, 114, 116, 117, 118, 120, 121, 122, 129, 132, 134, 135, 138, 140, 145, 147, 149, 150, 151, 152, 154, 156, 157, 160, 170, 171, 175, 178, 179, 180, 182, 183, 184, 185, 187, 188, 189, 191, 195, 198], "0001": [195, 198], "006": 3, "02": 193, "02834": 193, "05": [117, 118, 120, 121, 122, 180, 195], "0b8956f13d7bdfe7b": 187, "0x7f2e4f8e9e80": 166, "0x7f8b1c0b3f30": 85, "1": [0, 3, 7, 10, 11, 13, 15, 17, 19, 20, 21, 22, 24, 25, 27, 28, 30, 32, 38, 39, 47, 49, 54, 56, 57, 60, 69, 70, 76, 81, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 100, 101, 102, 103, 106, 108, 109, 110, 111, 114, 116, 117, 118, 120, 121, 122, 132, 134, 135, 145, 149, 150, 151, 152, 154, 156, 157, 159, 160, 162, 171, 178, 180, 182, 183, 184, 186, 187, 191, 195, 198, 199], "10": [3, 26, 27, 85, 98, 101, 108, 110, 183, 188, 193, 195, 198], "100": [110, 116, 138, 140, 157, 159, 160, 183, 188, 198], "1000": [3, 69, 72, 195, 198], "10000": [3, 198], "100000": 198, "1000000": 3, "1016": 3, "10x10x10": [108, 110], "11": [3, 98, 101], "1100000": 190, "1101": 193, "12": [0, 3, 98, 101, 110, 113, 157, 160, 195, 199], "123": 85, "128": [10, 15, 17, 21], "13": [98, 101], "132": [195, 199], "14": [98, 101], "148": 182, "15": [90, 91, 98, 101, 195, 198], "150": 182, "1500": 183, "16": [2, 4, 7, 60, 63, 98, 101, 106, 110, 111, 115, 188], "1634500": 190, "17": 193, "1820500": 190, "188": 199, "1994": 195, "1995": 195, "1996": 195, "1997": 195, "1998": 195, "1999": 195, "1d": 184, "1x1": 17, "2": [2, 3, 4, 7, 17, 21, 22, 27, 60, 63, 69, 81, 84, 85, 90, 91, 92, 94, 95, 97, 98, 99, 100, 101, 102, 103, 108, 110, 145, 152, 154, 159, 178, 180, 182, 184, 188, 195, 198, 199], "20": [19, 21, 117, 121, 182, 195, 198], "200": [3, 85, 90], "2000": 195, "2001": 195, "2007": 184, "2012": [18, 21], "2022": 3, "2023": 193, "2024": [189, 193], "21": [3, 195], "212": 198, "216": 199, "216_000_000": [60, 63], "2333333333333334": 85, "24": [17, 21], "2408": 193, "25": [85, 198], "254": 195, "255": [60, 63, 191, 195], "256": [106, 110, 113, 115, 195], "2580000": 190, "260": 195, "28647012": 195, "290": 195, "2d": [17, 18, 21, 34, 38, 43, 60, 63, 195, 199], "2d_unet": 199, "2pi": [132, 134, 152, 154], "2xlarg": 187, "3": [15, 17, 21, 60, 63, 69, 85, 87, 89, 90, 92, 98, 99, 100, 101, 102, 103, 108, 110, 145, 152, 154, 159, 178, 180, 182, 187, 193, 195, 199], "30": [188, 195], "32": [3, 10, 17, 60, 63, 110, 116, 195, 198, 199], "32482904": 195, "33333334": 180, "35": 198, "35309637": 195, "3d": [3, 17, 18, 19, 21, 60, 63, 132, 134, 152, 154, 182, 191, 193, 198], "3x3x3": [17, 21], "4": [3, 60, 63, 85, 98, 99, 101, 108, 110, 138, 140, 152, 154, 159, 178, 190, 195, 196, 198, 199], "40": [19, 21, 85, 90], "400": 187, "41421356": 85, "48550": 193, "4d": [17, 21], "5": [3, 84, 85, 90, 98, 99, 101, 108, 110, 116, 152, 154, 156, 159, 182, 195, 198], "50": 3, "500000": 190, "528834": 193, "5d": [17, 21], "6": [98, 99, 101, 108, 110, 152, 154, 195, 199], "60": 195, "600": [60, 63, 183], "625000": 190, "64": [3, 10, 17, 21, 110, 111], "650000": 190, "65535": 191, "6666666666666666": 85, "7": [98, 101, 108, 110, 152, 154], "70710678": 85, "72": [198, 199], "75": [3, 85, 198], "775000": 190, "78063643": 195, "8": [60, 63, 85, 98, 101, 108, 110, 118, 120, 121, 122, 152, 154, 182, 190, 195, 198, 199], "80": 187, "8000": [60, 63, 187, 192], "81003344": 195, "8337096": 195, "85": 85, "8571428571428571": 85, "873": 184, "895": 184, "9": [85, 98, 99, 101, 108, 110, 180], "95": [117, 118, 121, 180], "975000": 190, "98": 184, "A": [2, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 110, 111, 112, 113, 115, 117, 119, 121, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 143, 144, 145, 146, 147, 149, 150, 151, 153, 154, 155, 157, 158, 164, 165, 167, 168, 170, 171, 172, 173, 175, 182, 183, 184, 191, 193, 199], "As": [17, 21, 198], "Be": 195, "By": [17, 21, 118, 120, 121, 122, 124, 184], "For": [34, 38, 43, 164, 165, 189, 191, 192, 193, 194, 195, 198], "If": [0, 3, 12, 13, 14, 15, 16, 17, 21, 33, 36, 37, 38, 47, 49, 51, 54, 59, 60, 63, 69, 70, 71, 73, 75, 76, 79, 84, 85, 90, 92, 95, 100, 101, 102, 103, 106, 108, 109, 110, 111, 112, 113, 114, 115, 121, 124, 129, 138, 140, 142, 143, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 187, 188, 189, 191, 193, 195, 196, 198], "In": [58, 61, 63, 121, 124, 184, 195, 198], "It": [11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 25, 26, 27, 28, 29, 33, 36, 37, 38, 39, 47, 49, 54, 56, 57, 58, 59, 60, 61, 63, 68, 69, 71, 72, 78, 83, 85, 87, 89, 90, 92, 95, 96, 99, 100, 101, 102, 103, 106, 108, 110, 111, 112, 115, 128, 129, 138, 139, 140, 142, 143, 144, 145, 147, 152, 154, 162, 163, 164, 168, 170, 190, 192], "No": [31, 37, 38, 47, 49, 54, 59, 63, 140, 143], "Not": [131, 134, 137, 140, 197], "One": 193, "Or": 184, "TO": 195, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129, 132, 133, 134, 138, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 178, 179, 180, 182, 183, 184, 188, 189, 190, 191, 193, 195, 196, 198, 199], "Then": [193, 195], "There": 198, "These": [184, 195, 196, 198], "To": [69, 110, 115, 147, 187, 188, 190, 192, 193, 195, 198], "Will": [32, 38], "_": [165, 195], "__attrs_post_init__": [27, 28, 33, 38], "__augment": [153, 154], "__enter__": [129, 138, 140], "__eq__": [48, 54], "__except": 148, "__exit__": [129, 138, 140], "__find_boundari": [121, 122], "__generate_semantic_seg_dataset_crop": [60, 63], "__generate_semantic_seg_datasplit": [60, 63], "__getattr__": 148, "__getitem__": [60, 179], "__hash__": [48, 54], "__init__": [2, 4, 50, 54, 55, 58, 60, 61, 63, 67, 68, 73, 74, 75, 76, 77, 78, 80, 82, 93, 95, 96, 117, 118, 119, 120, 121, 122, 123, 129, 140, 154, 155, 175], "__init_db": 172, "__iter__": [138, 140], "__load": 167, "__main__": 195, "__name": 148, "__name__": 195, "__normal": [121, 122], "__open_collect": 172, "__parse_opt": [157, 158], "__parse_options_from_fil": [157, 158], "__repr__": [48, 54], "__same_doc": 172, "__save_insert": [167, 172], "__setitem__": 179, "__str__": [48, 54, 60, 63, 64, 65, 162, 163], "__traceback_str": 148, "__type__": [164, 165], "__typed_structur": 165, "__typed_unstructur": 165, "_ax": [38, 47], "_build": 189, "_compat": 165, "_devic": [13, 14], "_eval_shape_increas": [18, 21], "_grow_boundari": [117, 121], "_gt_kei": [131, 132, 133, 134, 135, 136, 137, 140], "_mask_kei": [131, 132, 133, 134, 135, 136, 137, 140], "_member_names_": 60, "_neuroglanc": 195, "_neuroglancer_lay": [48, 54], "_raw_kei": [131, 132, 134, 137, 140], "_source_arrai": 183, "_spec": 182, "_static": 189, "_templat": 189, "_wrap_command": [11, 12, 13, 14], "abc": [11, 12, 13, 14, 15, 21, 95, 121, 124, 127], "abil": [85, 165], "abl": [69, 147], "about": [15, 21, 193], "abov": [191, 195], "absenc": 85, "absolut": [99, 101, 189], "abspath": 189, "abstract": [12, 13, 14, 15, 16, 21, 23, 31, 37, 38, 44, 89, 90, 100, 101, 102, 103, 106, 108, 110, 111, 121, 124, 131, 134, 138, 140, 142, 143, 162, 163, 174, 175], "abstractmethod": [15, 21, 23, 88, 89, 90], "accept": [17, 21, 85], "access": [38, 47, 157, 158, 168, 190, 192, 198], "accord": [17, 21, 58, 61, 63, 198], "accordingli": [168, 197], "account": [15, 21, 69, 70, 85], "accuraci": [85, 175, 197], "achiev": [69, 72, 183, 191], "ackerman": [189, 193], "across": 197, "action": 197, "activ": [17, 21, 69, 70, 193, 195], "activation_on_upsampl": [17, 21], "actual": [17, 21, 85, 153, 154, 192], "ad": 165, "adapt": 197, "adaptor": 197, "add": [7, 10, 17, 21, 69, 145, 147, 182, 183, 189, 190, 191, 197], "add_iteration_scor": [69, 147], "add_iteration_stat": [69, 145], "add_scalar_lay": 183, "add_seg_lay": 183, "addit": [2, 4, 7, 12, 13, 14, 15, 17, 21, 134, 135, 157, 158, 164, 165, 192, 195, 196], "addition": [23, 193], "address": [71, 138, 140, 183], "adjavon": 193, "adjust": 199, "advantag": [81, 95, 97], "advis": [49, 54, 57], "aff": [79, 95], "affect": 189, "affin": [78, 79, 81, 94, 95, 97, 98, 101, 117, 121, 181, 186, 193, 195, 196], "affinities_loss": [101, 186], "affinities_predictor": [121, 186], "affinities_task": [95, 186], "affinities_task_config": [95, 186], "affinitiesloss": [78, 95, 98, 101], "affinitiespredict": 198, "affinitiespredictor": [78, 95, 117, 121], "affinitiestask": [78, 95], "affinitiestaskconfig": [79, 95, 195, 198], "affs_task_config": 195, "affs_weight_clipmax": [79, 95, 117, 121], "affs_weight_clipmin": [79, 95, 117, 121], "after": [17, 19, 21, 27, 28, 33, 38, 69, 71, 89, 90, 118, 120, 121, 122, 138, 139, 140, 145, 147, 188, 189, 190, 191, 195, 196], "against": [85, 87, 89, 90, 92], "agglomer": 197, "aid": [49, 54, 57], "algorithm": [10, 85, 197], "align": [38, 47], "all": [32, 35, 38, 69, 71, 72, 78, 82, 84, 85, 87, 88, 89, 90, 92, 93, 95, 101, 102, 104, 106, 108, 110, 111, 113, 115, 125, 128, 138, 140, 151, 152, 154, 163, 164, 165, 171, 172, 178, 184, 191, 192, 195, 197, 198], "allow": [3, 85, 190, 191, 192, 193, 196, 198], "allow_one_view": 3, "almost": [26, 27, 197], "along": [3, 18, 21, 59, 63, 69, 72, 79, 85, 95, 106, 110, 147, 190], "alreadi": [0, 60, 63, 69, 85, 147, 149, 150, 151, 154, 157, 160, 163, 167, 168, 172, 173, 174, 175, 185, 187, 191, 195], "also": [7, 12, 13, 14, 15, 17, 20, 21, 54, 55, 56, 69, 71, 84, 86, 88, 90, 129, 140, 145, 152, 154, 163, 187, 189, 191, 195, 196, 197, 198], "altern": [179, 195], "alwai": [20, 21, 24, 27, 30, 49, 51, 54, 62, 63, 83, 95], "amazon": 187, "ami": 187, "among": 85, "amount": [15, 18, 21, 38, 44, 81, 94, 95, 97, 121, 122, 184, 191], "an": [7, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 38, 39, 40, 41, 42, 44, 54, 56, 58, 60, 61, 63, 69, 70, 73, 75, 78, 81, 83, 85, 87, 89, 90, 92, 94, 95, 96, 97, 101, 102, 104, 106, 108, 110, 111, 117, 121, 124, 127, 129, 132, 133, 134, 135, 136, 137, 138, 140, 142, 143, 145, 146, 147, 148, 152, 153, 154, 155, 157, 158, 162, 163, 164, 165, 166, 178, 179, 180, 182, 183, 184, 185, 187, 188, 191, 195, 196, 198], "analysi": [85, 184], "angl": [132, 134, 152, 154], "ani": [16, 17, 21, 26, 27, 36, 38, 85, 101, 102, 121, 124, 130, 140, 142, 158, 163, 165, 182, 184, 189, 191], "annot": [23, 27, 32, 38, 39, 42, 186, 191], "annotation_arrai": [22, 27], "annotationarrai": [22, 27], "anoth": [83, 95, 189], "anyth": [26, 27, 191], "anywher": [81, 95], "api": [189, 197], "append": [121, 124, 180, 195], "appli": [5, 17, 21, 69, 70, 81, 85, 94, 95, 96, 97, 98, 99, 101, 110, 111, 113, 115, 121, 122, 133, 134, 135, 136, 137, 138, 139, 140, 152, 153, 154, 157, 165, 182, 186, 195, 196], "applic": [2, 4, 7, 17, 83, 95, 168, 188, 193, 195], "apply_run": 0, "approach": 193, "appropri": [171, 178, 191, 195], "ar": [0, 11, 12, 13, 14, 17, 21, 22, 26, 27, 28, 29, 38, 41, 54, 56, 58, 61, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 84, 85, 89, 90, 92, 95, 100, 101, 102, 104, 110, 112, 115, 116, 118, 120, 121, 122, 124, 125, 126, 145, 147, 152, 154, 155, 157, 163, 165, 166, 167, 168, 171, 172, 173, 174, 175, 178, 179, 182, 184, 187, 189, 191, 193, 195, 196, 198, 199], "arbitrari": 184, "arbitrarili": [193, 196], "architectur": [69, 70, 71, 72, 95, 104, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127, 129, 140, 163, 167, 172, 186, 193, 196, 198, 199], "architecture1": [163, 167], "architecture_0": 172, "architecture_config": [17, 19, 21, 69, 72, 163, 167, 172, 186, 195, 198, 199], "architecture_nam": [163, 167, 172], "architecture_typ": [18, 20, 21], "architectureconfig": [16, 20, 21, 69, 72, 163, 167, 172], "aren": 197, "arg": [2, 4, 7, 15, 21, 108, 110, 188], "argmax": [24, 27, 30, 95, 104, 105, 106, 107, 110], "argmax_post_processor": [110, 186], "argmax_post_processor_paramet": [110, 186], "argmax_work": [4, 186], "argmaxpostprocessor": [106, 110], "argmaxpostprocessorparamet": [106, 107, 110], "argmin": [25, 27], "argument": [2, 4, 7, 60, 63, 101, 102, 118, 120, 121, 122, 157, 158, 188], "around": [17, 21, 54, 56, 152, 154], "arrai": [0, 1, 3, 5, 6, 8, 9, 10, 22, 23, 24, 25, 26, 27, 28, 29, 30, 48, 50, 51, 54, 55, 56, 57, 60, 64, 65, 69, 71, 85, 87, 89, 90, 92, 106, 107, 108, 110, 111, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 133, 134, 138, 140, 145, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 162, 163, 166, 167, 170, 172, 176, 178, 179, 180, 182, 183, 184, 186, 195, 197, 198], "array1": [163, 167], "array_0": 172, "array_config": [32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 60, 163, 167, 172, 186], "array_evalu": 85, "array_identifi": [162, 170, 176, 183], "array_kei": [149, 154], "array_nam": [163, 167, 172], "array_out": 6, "array_stor": [0, 1, 5, 6, 8, 9, 106, 110, 113, 115, 140, 142, 169, 170, 183, 186], "array_typ": [23, 35, 38], "array_util": [181, 186], "arrayconfig": [31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 54, 56, 163, 167, 172], "arraydataset": [38, 44], "arrayevalu": 85, "arraykei": [64, 65, 131, 133, 134, 135, 136, 140, 149, 150, 152, 154, 155, 156], "arrayspec": [149, 150, 154], "arraystor": [162, 166], "arraytyp": [69, 186], "articl": 193, "artifact": 195, "arxiv": 193, "as_dict": 165, "aspect": [83, 95], "assembl": 196, "assert": [69, 145], "assertionerror": [69, 70, 71, 152, 153, 154, 155, 156, 180], "assign": [20, 21, 182, 191], "associ": [22, 27, 54, 56, 69, 73, 74, 75, 76, 77, 80, 95, 118, 120, 121, 122, 124, 146, 147, 173, 174, 175, 183, 184, 191], "assum": [0, 26, 27, 85, 121, 123, 124, 184, 185, 191], "assumpt": 191, "astyp": [180, 195], "attent": [17, 18, 21, 199], "attention_block": 17, "attention_upsample_config": 199, "attentionblock": 17, "attentionblockmodul": 17, "attribut": [17, 18, 20, 21, 24, 35, 36, 38, 51, 54, 80, 83, 84, 90, 93, 95, 100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 114, 115, 129, 130, 139, 140, 147, 149, 154, 164], "attributeerror": [17, 21, 89, 90], "attributeoverrid": 165, "aubrei": 193, "augment": [129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 152, 153, 154, 195, 196, 198], "augment_config": [134, 140, 186], "augmentation_prob": [132, 134, 135, 137, 152, 154], "augmentconfig": [131, 134, 135, 136, 137, 139, 140], "author": [187, 189, 193], "auto": [186, 189, 195], "autoapi": [186, 189], "autoapi_dir": 189, "autoapi_ignor": 189, "autoapi_opt": 189, "autoapi_typ": 189, "autobuild": 189, "autodoc": 189, "automat": [13, 14], "autonotebook": 195, "autoskip": [149, 154, 155], "avail": [13, 14, 69, 72, 171, 172, 173, 174, 175, 198], "averag": [17, 85, 90, 91, 159], "avoid": [31, 38, 59, 63, 69, 70, 85, 95, 128, 152, 154, 195], "aw": 197, "aws_access_key_id": 187, "aws_profil": 187, "aws_region": 187, "aws_secret_access_kei": 187, "ax": 195, "axi": [3, 18, 21, 106, 110, 152, 154, 191], "axis_nam": [3, 38, 46, 47, 176, 191, 195], "b": [17, 21, 84, 85, 90, 164, 165, 172], "back": [13, 14, 164, 165], "backbon": [69, 72], "backend": 195, "background": [32, 38, 79, 85, 95, 117, 118, 120, 121, 122, 154, 156, 182, 191, 195, 196], "background_as_object": [79, 95, 117, 121], "backwards_map": 92, "balanc": [85, 180], "balance_weight": [181, 186], "base": [0, 12, 13, 14, 15, 16, 18, 20, 21, 31, 38, 48, 52, 53, 54, 55, 64, 65, 87, 88, 89, 90, 95, 104, 110, 111, 112, 119, 120, 121, 125, 128, 131, 134, 140, 142, 143, 151, 152, 154, 156, 157, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 174, 175, 180, 184, 191, 192, 198], "basedir": [170, 171], "bash": [187, 194], "basic": [63, 66, 191, 195, 197, 198], "basicconfig": 198, "batch": [15, 17, 18, 21, 69, 70, 72, 129, 138, 140, 142, 143, 149, 150, 151, 152, 153, 154, 155, 156, 182, 191, 195, 196, 197, 199], "batch_norm": [17, 18, 21, 199], "batch_provid": [129, 140], "batch_siz": [129, 138, 140, 142, 143, 195, 198], "batchfilt": [131, 134, 140, 149, 150, 154, 155], "batchprovid": [129, 140, 151, 154], "batchrequest": [149, 150, 151, 154, 155, 182], "bceloss": [100, 101], "bcelosswithlogit": [69, 70], "becaus": [24, 121, 124], "been": [27, 28, 33, 38, 69, 85, 89, 90, 118, 120, 121, 122, 145, 147, 164, 165], "befor": [17, 18, 21, 81, 85, 94, 95, 97, 121, 122, 182, 192], "begin": 192, "behind": 168, "being": [31, 33, 38, 52, 53, 54, 56, 69, 73, 75, 76, 118, 120, 121, 122, 147], "belong": 195, "below": [13, 14, 190, 191, 199], "benefit": 197, "bennett": 193, "best": [0, 69, 74, 75, 84, 85, 86, 87, 88, 89, 90, 91, 92, 147, 157, 170, 171, 175, 183, 185, 190, 191, 198], "best_scor": [89, 90, 183], "best_validation_arrai": 170, "bestscor": [89, 90, 183], "better": [84, 86, 88, 89, 90, 91, 159], "between": [3, 17, 21, 38, 39, 84, 85, 90, 92, 98, 99, 101, 132, 134, 152, 154, 184, 188, 193, 195, 197], "bg": 85, "bia": [10, 76, 110, 116, 195], "bill": [11, 13], "bin": 187, "binar": [32, 38, 42, 197], "binari": [27, 32, 38, 39, 42, 84, 85, 90, 93, 95, 96, 100, 101, 106, 110, 118, 120, 121, 122, 186], "binarize_array_config": [38, 186], "binarize_gt": [60, 63], "binarizearrai": [32, 38], "binarizearrayconfig": [32, 38], "binary_arrai": 24, "binary_segmentation_evalu": [90, 186], "binary_segmentation_evaluation_scor": [90, 186], "binaryarrai": 24, "binarysegmentationevalu": [80, 85, 90, 93, 95], "binarysegmentationevaluationscor": [84, 85, 90], "bind": [71, 138, 140, 183], "bind_address": [71, 138, 140, 183], "bind_port": [71, 138, 140, 183], "bioimag": [193, 197], "biomed": [195, 196, 199], "bit": 191, "blipp": [86, 90], "blipp_scor": [86, 87, 90], "blob": [18, 21], "block": [2, 3, 4, 6, 7, 10, 17, 18, 21, 84, 88, 90, 106, 110, 113, 115, 188, 194, 197], "block_id": 10, "block_siz": [106, 110, 113, 115], "blockwis": [110, 113, 115, 157, 160, 186, 197], "blockwise_task": [4, 186], "blog": 193, "blueprint": [140, 142], "blur": 182, "board": 197, "bokeh_plot_run": 159, "bool": [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 44, 47, 49, 51, 54, 59, 60, 62, 63, 69, 71, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 117, 118, 120, 121, 126, 128, 129, 130, 132, 134, 135, 138, 139, 140, 142, 143, 147, 149, 152, 154, 157, 159, 160, 165, 173, 182, 183, 184, 188], "boolean": [16, 20, 21, 22, 26, 27, 28, 29, 31, 38, 47, 49, 54, 62, 63, 83, 95, 128, 129, 130, 139, 140, 143, 182], "both": [54, 56, 69, 85, 120, 121, 147, 195, 197], "bound": [84, 86, 88, 89, 90, 91], "boundari": [3, 25, 27, 81, 85, 94, 95, 117, 120, 121, 122, 124, 195], "break": 195, "bring": 191, "browser": [192, 195], "bsub": [13, 186], "bucket": 195, "bug": 195, "build": [17, 21, 129, 140], "build_batch_provid": [129, 138, 140, 142], "builder": 189, "built": [12, 13, 14, 15, 21, 192], "builtin": 189, "c": [17, 21, 27, 30, 188, 191, 193, 195], "cach": 71, "calcul": [3, 17, 25, 27, 30, 48, 54, 78, 79, 85, 90, 91, 92, 95, 96, 98, 99, 101, 118, 120, 121, 122, 152, 154, 184, 195], "calculate_and_apply_pad": 17, "call": [27, 28, 33, 38, 73, 75, 76, 83, 85, 89, 90, 95, 151, 154, 164, 165], "callabl": [1, 5, 6, 8, 9, 165], "caller": 162, "can": [7, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 30, 31, 34, 38, 43, 47, 48, 54, 55, 59, 63, 66, 69, 71, 72, 81, 89, 90, 94, 95, 97, 101, 102, 110, 111, 118, 120, 121, 122, 124, 128, 129, 131, 134, 135, 136, 137, 138, 140, 142, 152, 154, 165, 184, 187, 189, 190, 191, 192, 193, 195, 196, 198], "can_train": [129, 138, 140, 142], "candid": 184, "cannot": [0, 73, 81, 94, 95, 97, 100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 114, 140, 142, 143, 157], "cardona": [18, 21], "care": 191, "carolin": [189, 193], "case": [63, 66, 69, 85, 95, 105, 147, 197, 198], "cattr": 165, "caus": 195, "cel": 3, "cell": 195, "cell_arrai": 195, "cell_data": 195, "cell_mask": 195, "cellmap": [193, 194, 195], "cells3d": 195, "center": [3, 17, 79, 95], "center_confidence_thr": 3, "central": 164, "certain": [69, 85, 121, 124, 147], "chain": [69, 70, 76, 197], "chanc": 195, "chang": [100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 114, 152, 154, 191, 198], "channel": [15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 32, 33, 38, 39, 40, 42, 69, 70, 73, 75, 76, 81, 84, 85, 90, 94, 95, 97, 100, 101, 106, 110, 117, 118, 120, 121, 122, 123, 149, 154, 188, 191, 195], "channel1": [27, 28, 84, 85, 90], "channel1__dic": [84, 90], "channel1__f1_scor": [84, 90], "channel1__hausdorff": [84, 90], "channel2": [84, 85, 90], "channel_nam": 23, "channel_scor": [84, 90], "channels_in": [19, 21], "channels_out": [19, 21, 188], "charact": [31, 38, 47, 49, 54, 57, 59, 60, 63, 95, 128, 191], "check": [2, 4, 7, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 47, 49, 54, 57, 60, 63, 69, 73, 75, 89, 90, 95, 128, 129, 138, 140, 142, 147, 172, 183], "check_class_nam": [60, 63], "check_funct": 7, "checker": 183, "checkpoint": [73, 75, 95, 126, 171, 185, 190, 191, 195, 198], "child": [50, 54], "chmod": 187, "choic": [195, 198], "choos": [73, 74, 75, 77, 134, 135, 195, 196, 197, 198], "chunk": [3, 38, 47, 108, 110, 111, 193], "chunk_siz": [108, 110, 111], "cl": [35, 38, 83, 95, 164, 165], "class": [3, 164, 179, 180, 190, 191, 197], "class1": [24, 25, 27, 30], "class2": [27, 30], "class_id": 180, "class_nam": [3, 60, 63], "classes_channel": [73, 75], "classes_separator_charact": [60, 63], "classif": [24, 32, 38, 39, 42, 121, 123], "classifi": 85, "classmethod": [157, 158], "clear": [152, 154], "clearli": [51, 54], "cli": [1, 5, 6, 8, 9, 187, 189, 192, 197], "client": [172, 173], "clip": [84, 85, 90, 118, 121, 134, 135, 138, 139, 140, 180, 195, 198], "clip_dist": [81, 85, 90, 94, 95, 97, 195], "clip_raw": [138, 139, 140, 195], "clipmax": [81, 95, 118, 121, 180], "clipmin": [81, 95, 118, 121, 180], "cloud": [38, 47, 193, 197, 198], "cls_fn": [164, 165], "cls_fun": 164, "cluster": [3, 11, 13, 184, 193, 197, 198], "cluster_iou_thr": 3, "cmap": 195, "cnn": [19, 21], "cnnectom": [18, 21], "cnnectome_unet": [21, 186], "cnnectome_unet_config": [21, 186], "cnnectomeunet": [17, 18, 21], "cnnectomeunetconfig": [18, 21, 195, 198, 199], "cnnectomeunetmodul": [17, 21], "co": 188, "code": [152, 154, 193, 194, 197], "coeffici": [84, 85, 90], "col": 195, "colab": 193, "collaps": [149, 154], "collect": [69, 147, 153, 154, 167, 172, 173, 175], "color": 195, "column": [184, 195], "column_titl": 195, "com": [18, 21, 194, 195, 198], "combin": [17, 71, 84, 85, 89, 90, 193, 195, 196, 198], "combo": [89, 90], "come": [162, 170, 189, 191], "command": [11, 12, 13, 14, 187, 188, 192, 193, 195, 197, 198], "common": [73, 75, 76, 189, 191], "commonli": [85, 195, 196], "commun": 193, "compar": [69, 79, 85, 89, 90, 95, 121, 124, 147, 167, 168, 184, 198], "comparison": [49, 54, 57, 198], "complet": [7, 190, 197], "complex": 191, "complic": 191, "compon": [6, 78, 82, 95, 138, 140, 142, 195, 196, 198], "compos": 197, "compress": [38, 47], "comput": [11, 12, 13, 14, 60, 63, 69, 70, 80, 85, 89, 90, 95, 96, 98, 99, 100, 101, 102, 103, 117, 121, 129, 140, 147, 158, 180, 184, 193, 197, 198], "compute_context": [157, 158, 186], "compute_output_shap": [69, 70], "computecontext": [11, 12, 13, 14], "concat_array_config": [38, 186], "concatarrai": [33, 38], "concatarrayconfig": [33, 38], "concaten": 17, "concret": [163, 164, 165], "concurr": [38, 47, 168], "conda": [193, 195], "condit": [62, 63, 85, 184], "conduct": 195, "confid": 3, "confidence_thr": 3, "config": [16, 21, 31, 32, 35, 36, 37, 38, 39, 40, 42, 45, 46, 47, 51, 52, 53, 54, 60, 62, 63, 67, 68, 69, 72, 73, 74, 75, 76, 77, 79, 81, 95, 97, 128, 130, 131, 134, 140, 143, 157, 158, 159, 160, 162, 163, 166, 167, 170, 177, 196, 197], "config_0": 172, "config_fil": [157, 158], "config_nam": [163, 167, 172], "config_stor": [169, 186, 195, 198], "configstor": [163, 166], "configur": [3, 16, 18, 20, 21, 31, 32, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 69, 71, 72, 74, 75, 77, 83, 95, 96, 110, 112, 126, 128, 131, 132, 133, 134, 139, 140, 143, 153, 154, 157, 158, 163, 167, 172, 189, 191, 193, 196, 197, 198], "conjunct": 164, "connect": [182, 195], "consecut": 92, "consensu": 3, "consid": [32, 38, 81, 85, 90, 94, 95, 97, 101, 102, 120, 121, 140, 143], "consist": [17, 21, 69, 70], "constant": [17, 21, 34, 38, 85, 134, 136, 199], "constant_array_config": [38, 186], "constant_upsampl": [17, 18, 21, 195, 198, 199], "constantarrayconfig": [34, 38], "constraint": [18, 21], "construct": [93, 95, 133, 134, 178], "constructor": [27, 28, 33, 38, 58, 61, 63], "cont": 184, "contain": [0, 1, 5, 6, 7, 8, 9, 20, 21, 25, 27, 30, 32, 38, 39, 42, 47, 54, 55, 58, 60, 61, 62, 63, 67, 68, 69, 71, 83, 84, 85, 90, 95, 106, 108, 110, 111, 115, 126, 128, 129, 130, 138, 139, 140, 143, 144, 145, 146, 147, 151, 152, 154, 156, 157, 160, 162, 164, 165, 168, 170, 171, 182, 183, 184, 186, 188, 189, 191], "container_id": 192, "context": [7, 11, 12, 13, 14, 17, 21, 110, 116, 118, 120, 121, 122, 124, 129, 138, 140, 158, 188, 193, 195, 197], "conting": 184, "contingency_t": 184, "continu": [69, 72, 195, 196, 197], "contribut": 184, "control": [132, 134, 152, 154], "control_point_displacement_sigma": [132, 134, 152, 154, 198], "control_point_spac": [132, 134, 152, 154, 198], "conv": [17, 19, 21], "conv_pass": 17, "conveni": [162, 170, 191, 197, 198], "convent": [63, 66, 197], "convers": [164, 165, 197], "conversion_hook": [169, 186], "convert": [69, 106, 108, 110, 111, 118, 120, 121, 122, 123, 124, 145, 147, 164, 169, 186, 193, 197], "convolut": [17, 18, 19, 21, 195, 196, 199], "convolution_crop": 17, "convolv": 195, "convpass": 17, "convtranspos": [17, 21], "coordin": [7, 15, 18, 19, 21, 27, 30, 38, 44, 46, 47, 48, 54, 55, 56, 60, 63, 69, 70, 79, 95, 106, 110, 111, 113, 115, 116, 117, 118, 120, 121, 122, 124, 132, 134, 145, 152, 154, 176, 178, 195, 198, 199], "copi": [18, 21, 34, 38, 43, 76, 154, 179, 186, 189, 198], "copy_kei": [149, 154], "copy_mask": [149, 154], "copymask": [149, 154], "copyright": 189, "correct": [164, 165], "correctli": [85, 185, 190], "correspond": [17, 21, 31, 38, 52, 53, 85, 95, 128, 131, 134, 140, 164, 184, 191, 198], "cosem": [74, 75, 193], "cosem_start": [75, 186], "cosem_start_config": [75, 186], "cosemstart": [73, 75, 190], "cosemstartconfig": [74, 75], "cost": [162, 170], "could": [17, 26, 27, 81, 95, 97, 197], "count": [81, 94, 95, 97, 117, 118, 119, 120, 121, 122, 123, 124, 180, 184, 187], "coupl": 198, "cover": [179, 195], "cpu": [11, 12, 13, 14, 69, 72, 138, 139, 140, 142, 197], "crash": [2, 4, 7], "creat": [11, 12, 13, 17, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 38, 41, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 69, 83, 95, 96, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127, 129, 138, 140, 142, 147, 152, 154, 162, 166, 182, 183, 186, 187, 193, 195], "create_arrai": [34, 35, 38, 41, 43, 44], "create_array_stor": 166, "create_compute_context": [12, 13], "create_config_stor": [166, 195, 198], "create_distance_mask": [118, 120, 121], "create_from_identifi": [110, 113, 176], "create_model": [95, 104, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127], "create_optim": [129, 138, 140, 142], "create_stats_stor": [166, 195], "create_stor": [169, 186, 195, 198], "create_target": [117, 118, 119, 120, 121, 122, 123, 124], "create_weight": [117, 118, 119, 120, 121, 122, 123, 124], "create_weights_stor": 166, "createpoint": 182, "cremi": [85, 198], "cremiev": 85, "cremievalu": 85, "criteria": [69, 84, 85, 86, 87, 88, 89, 90, 91, 92, 147], "criterion": [0, 69, 73, 74, 75, 76, 77, 84, 86, 88, 89, 90, 91, 146, 147, 157, 170, 171, 175, 188, 195, 196], "criterion1": [84, 86, 88, 90, 91, 171], "criterion2": [84, 86, 88, 90, 91, 171], "critic": 188, "crop": [17, 35, 38, 60, 63, 81, 95, 191], "crop_01": 191, "crop_02": 191, "crop_03": 191, "crop_03_voi": 191, "crop_04": 191, "crop_04_voi": 191, "crop_array_config": [38, 186], "crop_factor": 17, "crop_to_factor": 17, "croparrai": [35, 38], "croparrayconfig": [35, 38], "cross": [6, 100, 101], "csc_matrix": 184, "csr_matrix": 184, "css": 189, "csv": [60, 63], "csv_path": [60, 63], "cuda": [13, 14, 71], "curat": 197, "current": [11, 13, 59, 60, 63, 69, 145, 147, 162, 166, 192, 193, 195, 197], "custom": [60, 189, 195, 197], "customenum": 60, "customenummeta": 60, "customiz": 199, "cv": 193, "d": [180, 183, 187], "da": 3, "dacapo": [186, 187, 189, 190, 194, 195, 197, 198, 199], "dacapo_create_target": [154, 186], "dacapo_fil": 195, "dacapo_options_fil": 195, "dacapo_points_sourc": [154, 186], "dacapoblockwisetask": [2, 4], "dacapoconfig": [157, 158], "dacapotargetfilt": [150, 154], "dacapotest": 187, "daisi": [2, 3, 4, 6, 10, 106, 110, 113], "dash": 197, "dashboard": [194, 198], "dask": 3, "data": [0, 1, 3, 5, 8, 9, 11, 13, 17, 18, 21, 23, 25, 27, 30, 32, 33, 34, 38, 39, 42, 43, 47, 48, 50, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 72, 75, 76, 85, 108, 110, 117, 121, 129, 131, 133, 134, 135, 136, 137, 138, 139, 140, 142, 145, 147, 151, 152, 153, 154, 156, 157, 158, 162, 165, 167, 170, 172, 179, 180, 182, 183, 188, 193, 196, 197, 199], "data_config": 191, "dataarrai": [69, 145, 147, 195], "databas": [158, 163, 167, 168, 172, 173, 195, 198], "dataconfig": 191, "datakei": [64, 65], "dataset": [0, 1, 5, 6, 8, 9, 58, 60, 61, 62, 63, 66, 67, 68, 69, 87, 89, 90, 110, 113, 133, 134, 138, 140, 142, 146, 147, 150, 154, 157, 160, 162, 163, 167, 170, 171, 172, 175, 183, 186, 188, 191, 195, 197, 198, 199], "dataset1": 171, "dataset2": 171, "dataset_0": 172, "dataset_config": [50, 51, 54, 55, 57, 172, 186], "dataset_nam": 172, "dataset_typ": [51, 54, 56, 57, 60, 63], "datasetconfig": [49, 54, 62, 63, 68, 172], "datasets_config": 185, "datasetspec": [60, 63], "datasettyp": [60, 63], "datasplit": [0, 69, 71, 72, 89, 90, 110, 113, 129, 140, 142, 147, 157, 162, 163, 167, 170, 171, 172, 183, 186, 193, 196, 198], "datasplit1": [163, 167], "datasplit_0": 172, "datasplit_config": [58, 61, 63, 66, 67, 68, 69, 72, 163, 167, 172, 186, 195, 198], "datasplit_gener": [63, 186], "datasplit_nam": [163, 167, 172], "datasplit_typ": [62, 63, 66, 68, 195], "datasplitconfig": [59, 60, 62, 63, 69, 72, 163, 167, 172], "datasplitgener": [60, 63], "datatyp": [23, 197], "davi": 193, "david": [189, 193], "db": 189, "db_host": [172, 173], "db_name": [172, 173], "dbpass": [195, 198], "dbport": [195, 198], "dburl": [195, 198], "dbuser": [195, 198], "de": 197, "debug": [188, 191, 197, 198], "decid": [69, 72, 75, 76], "decis": [152, 154], "decod": [17, 21], "decreas": [17, 21], "dedic": [139, 140], "deep": [118, 120, 121, 122, 193], "default": [0, 17, 21, 32, 33, 38, 49, 54, 57, 60, 62, 63, 69, 72, 83, 94, 95, 118, 120, 121, 122, 124, 131, 132, 133, 134, 135, 136, 137, 139, 140, 152, 154, 157, 160, 167, 170, 172, 173, 179, 180, 182, 183, 184, 188, 189, 195], "default_config": [33, 38], "default_paramet": 3, "defin": [3, 12, 13, 14, 15, 16, 21, 27, 30, 49, 54, 57, 69, 72, 110, 112, 113, 115, 116, 121, 124, 138, 140, 142, 163, 182, 184, 190, 195, 196, 197, 198], "deform": [132, 134, 152, 154], "degre": 85, "delet": [69, 145, 147, 163, 167, 168, 172, 173, 174, 175, 195], "delete_aft": [69, 145, 147], "delete_architecture_config": 163, "delete_array_config": 163, "delete_config": [163, 167, 172], "delete_datasplit_config": 163, "delete_run_config": [163, 172], "delete_task_config": [163, 195], "delete_trainer_config": 163, "delete_training_stat": [168, 173, 174], "delete_validation_scor": 173, "demonstr": [196, 199], "den": 180, "dens": [191, 198], "denser": [81, 94, 95, 97], "dep": [149, 150, 154], "depend": [121, 124, 149, 150, 151, 154, 155, 193, 197], "deprec": 183, "deprecated_start_neuroglanc": 183, "depric": 197, "depth": [17, 21], "deriv": [12, 13, 15, 16, 21, 31, 38, 49, 51, 52, 53, 54, 58, 59, 60, 61, 62, 63, 95, 105, 128, 131, 134, 140, 143], "describ": [27, 28, 191], "descript": [187, 193], "descriptor": [98, 101, 117, 121, 193], "design": [12, 13, 14, 15, 21, 38, 47, 157, 158], "desir": [38, 44, 153, 154, 188], "detail": [132, 134, 152, 154, 190], "detailed_valid": 165, "detect": [13, 14, 85, 108, 110, 191], "detection_threshold": [83, 95, 108, 110], "determin": [17, 21, 22, 23, 24, 25, 27, 30, 84, 85, 86, 88, 89, 90, 91, 108, 110, 118, 121, 152, 154, 165, 171, 195], "develop": 197, "deviat": [132, 134, 152, 154, 159, 182], "devic": [11, 12, 13, 14, 71, 129, 138, 140, 142], "dga": 10, "dian": 193, "dice": [84, 85, 90], "dict": [3, 22, 24, 25, 27, 28, 33, 38, 60, 63, 76, 89, 90, 92, 158, 165, 168, 171, 172, 180, 182, 183], "dict_factori": 165, "dictat": 17, "dictionari": [3, 24, 33, 38, 71, 84, 90, 164, 165, 168, 175, 182, 183], "didn": [10, 197], "differ": [17, 21, 23, 35, 38, 60, 63, 64, 65, 69, 72, 99, 101, 121, 124, 184, 188, 193, 197, 199], "difficult": 198, "dilat": 182, "dilatepoint": 182, "dim": [15, 17, 21, 69, 117, 121, 123, 147], "dimens": [15, 17, 21, 26, 27, 32, 38, 39, 42, 69, 70, 85, 117, 118, 119, 120, 121, 122, 123, 124, 132, 134, 147, 152, 154, 178, 191], "dimension": [38, 47, 193, 195, 196], "direct": 195, "directli": [95, 121, 124, 128, 140, 142, 143, 184], "directori": [6, 7, 8, 167, 168, 170, 171, 188, 189, 192, 193, 195, 197], "disabl": 188, "discoveri": [84, 85, 90], "discuss": 193, "disk": [38, 47, 195, 198], "dispatch": 165, "displac": [132, 134, 152, 154], "displai": 183, "dissemin": 197, "dist_task_config": 195, "distanc": [3, 27, 30, 80, 81, 84, 85, 90, 93, 94, 95, 96, 97, 100, 101, 118, 120, 121, 122, 124, 132, 134, 152, 154, 182, 184, 186, 193, 195, 196], "distance_arrai": [25, 27], "distance_loss": [100, 101], "distance_mask": [120, 121], "distance_predictor": [121, 186], "distance_task": [95, 186], "distance_task_config": [95, 186], "distance_transform_edt": [118, 121], "distancearrai": [25, 27, 118, 121, 122], "distancepredictor": [80, 95, 118, 121], "distancetask": [80, 95], "distancetaskconfig": [81, 95, 195], "distinct": [81, 94, 95, 97], "distinguish": [69, 72, 195], "distribut": [27, 30, 132, 134, 152, 154], "distribute_work": [11, 12, 13, 14], "divid": [85, 184, 191], "divide_column": 184, "divide_row": 184, "divis": 184, "divisor": 3, "do": [17, 38, 47, 69, 145, 152, 154, 184, 188, 196], "do_aug": [152, 154], "do_valid": [157, 177], "doc": 189, "dockerfil": 192, "dockerhub": 187, "docstr": 197, "document": [172, 186, 189, 192, 193, 197], "doe": [60, 63, 73, 75, 98, 101, 163, 167, 168, 170, 171, 183, 185, 195], "does_new_best_exist": 183, "doesn": [183, 198], "doi": [3, 193], "don": [18, 21, 162, 170, 187], "done": [11, 12, 13, 14, 17, 121, 124, 195, 197, 198], "doubl": 191, "down": [17, 21, 38, 44, 197], "download": [190, 192, 195], "downsampl": [3, 17, 18, 21, 38, 44, 60, 63, 79, 95, 117, 121, 132, 134, 138, 140, 195, 196, 199], "downsample_factor": [17, 18, 21, 195, 198, 199], "downsample_lsd": [79, 95, 117, 121], "draft": 197, "drop": [17, 21, 149, 154], "drop_channel": [149, 154], "ds_store": 189, "dt": 188, "dt_scale_factor": [118, 120, 121, 122], "dtype": [0, 3, 35, 38, 157, 160, 176, 178, 180, 182, 188, 191, 195], "due": [2, 4, 7, 17, 21, 152, 154], "dummi": [19, 20, 21, 36, 38, 51, 54, 62, 63, 82, 83, 86, 87, 90, 95, 99, 101, 104, 108, 109, 110, 119, 121, 129, 130, 140], "dummy_architectur": [21, 186], "dummy_architecture_config": [21, 186], "dummy_arrai": [51, 54], "dummy_array_config": [38, 186], "dummy_dataset": [54, 186], "dummy_dataset_config": [54, 186], "dummy_datasplit": [63, 186], "dummy_datasplit_config": [63, 186], "dummy_evalu": [90, 186], "dummy_evaluation_scor": [87, 90, 186], "dummy_loss": [101, 186], "dummy_post_processor": [110, 186], "dummy_post_processor_paramet": [108, 110, 186], "dummy_predictor": [121, 186], "dummy_task": [95, 186], "dummy_task_config": [95, 186], "dummy_train": [140, 186], "dummy_trainer_config": [140, 186], "dummyarchitectur": [19, 20, 21], "dummyarchitectureconfig": [20, 21], "dummyarrai": [36, 38], "dummyarrayconfig": [36, 38, 51, 54], "dummydataset": [50, 54], "dummydatasetconfig": [51, 54, 62, 63], "dummydatasplit": [58, 61, 62, 63], "dummydatasplitconfig": [62, 63], "dummyevalu": [82, 87, 90, 95], "dummyevaluationscor": [86, 87, 90], "dummyloss": [82, 95, 99, 101], "dummypostprocessor": [82, 95, 108, 110], "dummypostprocessorparamet": [108, 109, 110], "dummypredictor": [82, 95, 119, 121], "dummytask": [82, 83, 95], "dummytaskconfig": [83, 95], "dummytrain": [129, 140], "dummytrainerconfig": [130, 140], "duplic": 197, "duplicatenameerror": [163, 167, 172], "dure": [15, 18, 21, 69, 70, 72, 139, 140, 143, 172, 183, 195, 196, 198, 199], "dvid": [37, 38, 197], "dvid_array_config": [38, 186], "dvidarrai": [37, 38], "dvidarrayconfig": [37, 38], "e": [17, 21, 60, 63, 69, 70, 81, 85, 87, 89, 90, 92, 94, 95, 97, 110, 111, 121, 124, 152, 154, 163, 178, 184, 191, 193, 197], "each": [3, 15, 17, 18, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 38, 42, 52, 53, 69, 71, 85, 89, 90, 95, 99, 101, 105, 118, 120, 121, 122, 128, 131, 134, 140, 143, 144, 145, 146, 147, 151, 152, 154, 162, 164, 165, 168, 170, 182, 184, 188, 191, 195, 196, 197, 198, 199], "easi": [49, 54, 57, 171, 193, 195, 196], "easili": [59, 63, 69, 145, 191, 196, 197, 198], "ec": 190, "edg": [6, 85, 178], "edt": 85, "effect": [140, 142], "effici": [17, 197], "effort": 197, "eg": [49, 54, 57], "either": [2, 4, 7, 17, 21, 24, 85, 184, 195], "elast": [132, 134, 152, 154], "elastic_augment_config": [132, 134], "elastic_augment_fus": [154, 186], "elastic_config": [134, 186], "elasticaug": [132, 134, 152, 154], "elasticaugmentconfig": [132, 134, 198], "elasticli": [152, 154], "element": [17, 31, 38, 184], "els": [13, 14, 60, 63, 191, 197], "elsewher": [69, 147], "em": 197, "embargo": 197, "embed": [27, 118, 119, 120, 121, 122, 123, 183, 186], "embedding_arrai": [26, 27], "embedding_dim": [26, 27, 83, 95, 118, 119, 120, 121, 122, 123], "embeddingarrai": [26, 27, 117, 119, 121], "empanada": 3, "empanada_funct": [4, 186], "empanada_napari": 3, "empanada_segment": 3, "emphas": 17, "empti": [32, 38, 58, 61, 63, 64, 65, 69, 71, 85, 145, 154, 156, 180], "empty_cuda_cach": 71, "en": [189, 195], "enabl": [149, 154, 155], "encod": [17, 21, 94, 95, 118, 120, 121, 123, 193], "encourag": 198, "end": [170, 188], "endo": 190, "endo_mem": 190, "engin": 3, "engine3d": 3, "enlarg": [152, 154], "enough": [17, 191], "ensur": [17, 190, 192], "enter": [129, 138, 140], "entir": 191, "entropi": [100, 101, 184], "enum": 60, "enumer": [64, 65, 106, 108, 110, 111, 113, 115, 180], "enumerate_paramet": [106, 108, 110, 111, 113, 115], "environ": [187, 192, 193], "epsilon": [118, 120, 121, 122], "equal": [38, 42, 48, 54, 56, 129, 140, 184], "equival": 179, "equivari": 17, "er": [60, 63, 190], "er_mem": 190, "error": [59, 63, 69, 84, 85, 90, 95, 96, 100, 101, 103, 147, 163, 180, 184, 188, 195], "error_scal": 180, "especi": [35, 38], "essenti": [140, 142], "establish": [193, 195, 196], "etc": [11, 12, 13, 71, 196, 197, 198], "euclidean": 85, "eval": [69, 70, 164, 165], "eval_activ": [69, 70], "eval_input_shap": [69, 70], "eval_shape_increas": [15, 17, 21, 195, 198, 199], "evalu": [35, 38, 69, 70, 78, 79, 80, 81, 82, 93, 95, 96, 97, 104, 125, 127, 146, 147, 184, 186, 195, 196, 198, 199], "evaluation_arrai": [85, 89, 90, 92], "evaluation_dataset": [87, 90], "evaluation_scor": [69, 84, 86, 89, 90, 91, 95, 127, 147, 186], "evaluationscor": [69, 84, 86, 88, 89, 90, 91, 95, 127, 147], "even": [195, 196, 197], "ever": [120, 121], "everi": [140, 142, 191, 198], "everyth": [197, 198], "exact": 198, "exampl": [0, 3, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 36, 37, 38, 43, 47, 49, 51, 54, 59, 60, 62, 63, 69, 70, 71, 73, 74, 75, 76, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 95, 98, 99, 100, 101, 102, 103, 106, 108, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 143, 145, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 188, 191, 195, 198], "example_aff": 195, "example_dist": 195, "example_run": 195, "example_unet": 195, "exc_tb": [129, 138, 140], "exc_typ": [129, 138, 140], "exc_val": [129, 138, 140], "except": [73, 75, 76, 148], "exclud": [48, 54, 92], "exclude_lay": [48, 54], "exclude_pattern": 189, "execut": [12, 13, 14, 69, 70, 196, 198], "exist": [0, 60, 63, 69, 73, 75, 76, 145, 147, 152, 154, 157, 160, 163, 167, 168, 170, 171, 183, 188, 195], "existing_iteration_scor": [69, 147], "exit": [129, 138, 140], "expand": 182, "expand_label": 182, "expandlabel": 182, "expect": [17, 18, 21, 32, 38, 39, 42, 191], "expens": [152, 154], "experi": [0, 150, 154, 157, 160, 161, 163, 171, 173, 174, 175, 177, 183, 185, 186, 190, 195, 196, 197, 199], "explain": [31, 38, 140, 143, 190, 199], "ext": [157, 186, 189], "extend": [20, 21, 83, 95, 96, 165, 179], "extens": 189, "extent": 3, "extra": [60, 121, 124, 162, 170, 187, 195, 198], "extra_str": 60, "extract": [54, 56], "extractor": [117, 121], "extrem": 85, "f": 195, "f1": [84, 85, 90], "f1_score": [84, 85, 90], "f1_score_with_toler": [84, 85, 90], "f_g": 17, "f_in": 17, "f_int": 17, "f_l": 17, "f_left": 17, "factor": [3, 17, 18, 21, 79, 95, 118, 120, 121, 132, 134, 135, 138, 140, 152, 154, 159, 199], "fail": [2, 4, 7], "failur": [2, 4, 7], "fall": [13, 14], "fals": [1, 3, 5, 6, 7, 8, 9, 17, 20, 21, 22, 23, 24, 27, 29, 36, 38, 49, 51, 54, 59, 60, 62, 63, 71, 81, 83, 84, 85, 89, 90, 91, 92, 94, 95, 97, 117, 121, 129, 132, 134, 135, 138, 140, 142, 149, 152, 154, 159, 165, 173, 176, 182, 183, 184, 195, 198, 199], "false_discovery_r": [84, 85, 90], "false_neg": 85, "false_negative_dist": 85, "false_negative_r": [84, 85, 90], "false_negative_rate_with_toler": [84, 85, 90], "false_negatives_with_toler": 85, "false_posit": 85, "false_positive_dist": 85, "false_positive_r": [84, 85, 90], "false_positive_rate_with_toler": [84, 85, 90], "false_positives_with_toler": 85, "far": 198, "fdr": 85, "featur": [17, 18, 21, 199], "fed": [69, 70], "fetch": [138, 139, 140, 198], "fetcher": [138, 139, 140], "fetter": [18, 21], "few": 195, "field": [17, 21, 164, 165, 172, 184, 191], "fig": 195, "figsiz": 195, "figur": [162, 170], "fiji": 193, "file": [0, 2, 4, 7, 35, 38, 46, 47, 60, 63, 95, 104, 125, 126, 157, 158, 163, 167, 168, 171, 187, 188, 189, 190, 193, 195, 197, 198], "file_config_stor": [166, 169, 186], "file_format": [0, 157], "file_nam": [38, 46, 47, 60], "file_stats_stor": [166, 169, 186], "fileconfigstor": [166, 167, 195], "filenotfounderror": [60, 63, 167, 171, 183], "filestatsstor": [166, 168, 195], "filesystem": 196, "fill": [33, 34, 38, 43, 108, 110, 179, 182], "fill_valu": 179, "filter": [3, 85, 149, 154, 172, 182, 195], "final": [106, 108, 110, 111, 198], "find": [0, 6, 17, 31, 38, 89, 90, 95, 121, 122, 128, 152, 154, 157, 162, 170, 171, 192, 195, 196, 198], "find_compon": 6, "fine": 3, "fine_boundari": 3, "finetun": [73, 75, 76, 77], "finish": 195, "first": [17, 21, 31, 38, 89, 90, 100, 101, 121, 123, 154, 155, 184, 190, 195, 197, 198, 199], "fit": [1, 5, 6, 8, 9, 38, 47, 152, 154], "fix": [69, 147], "flag": [17, 20, 21, 188], "flatten": 10, "float": [3, 9, 10, 13, 14, 25, 26, 27, 28, 38, 39, 54, 55, 69, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 94, 95, 97, 98, 101, 108, 110, 114, 116, 117, 118, 120, 121, 122, 129, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 146, 152, 153, 154, 156, 180, 182, 183, 184, 191], "float32": [153, 154, 180, 182], "float64": [153, 154], "floor": 17, "fmap_inc_factor": [17, 18, 21, 195, 198, 199], "fmap_increment_factor": [17, 21], "fmaps_in": [17, 18, 21, 195, 198, 199], "fmaps_out": [17, 18, 21, 195, 198, 199], "fmt": 189, "fn": [84, 85, 90], "focus": 17, "folder": 195, "follow": [3, 17, 69, 70, 71, 144, 145, 146, 152, 154, 168, 184, 187, 192, 193, 195, 198], "forbid_extra_kei": 165, "forc": 195, "foreground": [118, 120, 121, 122, 195, 196], "fork": 195, "format": [0, 60, 69, 145, 157, 171, 188, 193, 195, 196], "format_class_nam": 60, "formula": 85, "forum": 193, "forward": [17, 19, 21, 69, 70, 187], "found": [0, 32, 38, 42, 59, 63, 76, 92, 148, 157, 158, 159, 160, 177, 193, 195], "fov": [17, 21], "fp": [84, 85, 90], "frac": 180, "fragment": 197, "framework": [49, 54, 57, 193, 195, 196], "free": [13, 14], "frequent": [49, 54, 57], "frizz": [86, 90], "frizz_level": [86, 87, 90], "from": [2, 3, 4, 7, 12, 13, 14, 15, 17, 18, 21, 22, 25, 27, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 52, 53, 54, 57, 58, 60, 61, 62, 63, 69, 73, 74, 75, 76, 77, 82, 85, 88, 90, 93, 95, 100, 101, 103, 104, 105, 110, 113, 115, 117, 118, 119, 121, 124, 125, 126, 128, 131, 132, 134, 140, 142, 143, 147, 149, 150, 152, 154, 157, 158, 163, 165, 167, 168, 170, 171, 172, 173, 175, 178, 182, 183, 185, 187, 190, 191, 192, 193, 195, 196, 197, 198, 199], "from_arrai": 3, "from_toml": [35, 38], "full": [152, 154, 189, 198], "function": [2, 4, 17, 20, 21, 24, 62, 63, 69, 70, 75, 84, 85, 86, 87, 88, 89, 90, 91, 98, 99, 100, 101, 102, 103, 110, 113, 115, 118, 120, 121, 133, 134, 150, 151, 154, 165, 188, 191, 195, 196, 197], "function_path": 8, "funk": [189, 193], "funkelab": [194, 198], "funlib": [0, 7, 15, 18, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 56, 57, 60, 63, 69, 70, 79, 89, 90, 95, 110, 111, 113, 115, 116, 117, 118, 120, 121, 122, 123, 124, 157, 160, 161, 176, 178, 195, 197, 198, 199], "further": [168, 191], "futur": [132, 134, 191], "g": [17, 21, 60, 63, 110, 111, 121, 124, 163, 191, 193, 197], "g_out": 17, "gamma": [133, 134, 153, 154], "gamma_augment_config": [133, 134], "gamma_config": [134, 186], "gamma_max": [153, 154], "gamma_min": [153, 154], "gamma_nois": [154, 186], "gamma_rang": [133, 134], "gammaaug": [133, 134, 153, 154], "gammaaugmentconfig": [133, 134], "gate": 17, "gaussian": [182, 195], "gaussian_blur_arg": 182, "gaussian_noise_arg": 182, "gaussian_noise_lim": 182, "gb": [13, 14], "gen": 165, "gener": [3, 11, 13, 17, 18, 21, 26, 27, 48, 54, 60, 63, 69, 70, 72, 78, 79, 81, 85, 94, 95, 97, 110, 113, 115, 117, 118, 120, 121, 122, 124, 150, 152, 154, 182, 183, 186, 189, 191, 195, 197], "generate_csv": [60, 63], "generate_dataspec_from_csv": 60, "generate_from_csv": [60, 63], "geometri": [0, 7, 15, 18, 21, 35, 38, 44, 46, 47, 48, 54, 55, 56, 60, 63, 69, 70, 79, 95, 110, 111, 115, 116, 117, 118, 120, 121, 122, 124, 157, 160, 161, 176, 178, 195, 198, 199], "get": [49, 54, 57, 60, 63, 69, 71, 81, 95, 97, 107, 109, 110, 112, 117, 118, 119, 120, 121, 122, 123, 124, 131, 134, 135, 136, 137, 140, 145, 147, 151, 154, 162, 170, 178, 183, 190, 197, 198], "get_arrai": [33, 38], "get_best": [69, 147], "get_d": 183, "get_dataset": 183, "get_model_setup": 73, "get_overall_best": [89, 90], "get_overall_best_paramet": [89, 90], "get_path": [63, 66], "get_right_resolution_array_config": 60, "get_runs_info": 159, "get_validation_scor": 71, "get_view": 183, "git": [194, 195], "github": [18, 21, 194, 195, 197, 198], "give": [17, 196], "given": [1, 2, 4, 5, 6, 8, 9, 16, 17, 21, 60, 63, 69, 70, 84, 85, 86, 87, 88, 89, 90, 91, 95, 101, 102, 104, 110, 113, 115, 118, 119, 120, 121, 122, 124, 125, 129, 132, 133, 134, 140, 142, 147, 150, 151, 152, 154, 162, 163, 164, 167, 168, 171, 172, 173, 174, 175, 179, 183, 184, 185], "global": [12, 13, 166], "go": [17, 21, 168, 191, 197], "goal": [69, 72], "goe": [195, 198], "good": [38, 40], "gp": [131, 133, 134, 135, 136, 137, 140, 157, 182, 186], "gp_arrai": 176, "gp_augment": [139, 140, 186, 198], "gp_to_funlib_arrai": 176, "gpu": [3, 11, 12, 13, 14, 138, 140, 142], "gradient": [18, 21, 198], "graph": [52, 53, 54, 55, 64, 65, 151, 154, 178], "graph_sourc": [151, 154], "graph_source_config": [53, 186], "graphkei": [64, 65, 151, 152, 154], "graphsourc": [151, 154], "graphspec": [151, 154], "graphstor": [54, 186], "graphstoreconfig": [52, 53], "greater": [17, 21, 85, 106, 109, 110, 114, 180], "grid": [132, 134, 152, 154], "ground": [48, 54, 55, 56, 60, 63, 64, 65, 85, 89, 90, 92, 117, 118, 119, 120, 121, 122, 123, 124, 131, 133, 134, 135, 136, 137, 138, 140, 142, 150, 154, 156, 183, 184, 195, 198], "groundtruth": [184, 193], "group": [32, 38, 42, 60, 187, 191], "group_nam": [63, 66], "grow": [117, 121], "grow_boundary_iter": [117, 121], "gt": [48, 54, 55, 56, 57, 64, 65, 117, 118, 119, 120, 121, 122, 123, 124, 138, 139, 140, 150, 154, 156, 162, 170, 183, 184, 195], "gt_config": [54, 56, 60], "gt_contain": [60, 63], "gt_dataset": [60, 63], "gt_kei": [131, 134, 140, 150, 154], "gt_min_reject": [138, 139, 140], "gt_name": [54, 57, 63, 66], "gt_region_for_roi": [117, 118, 120, 121, 122, 124], "gt_voxel_s": [118, 120, 121, 122, 124], "gui": [194, 197, 198], "guid": [190, 198], "gunpowd": [131, 133, 134, 135, 136, 137, 138, 139, 140, 149, 150, 151, 152, 154, 155, 182, 198], "gunpowder_train": [140, 186], "gunpowder_trainer_config": [140, 186], "gunpowdertrain": [138, 139, 140], "gunpowdertrainerconfig": [139, 140, 195, 198], "h": [84, 85, 90, 184], "ha": [17, 20, 21, 22, 27, 28, 33, 38, 50, 54, 69, 108, 110, 121, 123, 140, 143, 145, 164, 165, 195, 196, 198], "had": 10, "half": [100, 101], "handl": [63, 66, 69, 73, 75, 76, 80, 95, 147, 191, 195, 197, 198], "happen": [81, 94, 95, 97], "harmon": 85, "hash": [48, 54], "hausdorff": [84, 85, 90], "hausdorffdistanceimagefilt": 85, "have": [17, 18, 21, 26, 27, 30, 31, 34, 35, 36, 38, 42, 43, 52, 53, 69, 85, 89, 90, 95, 110, 111, 118, 120, 121, 122, 124, 128, 130, 131, 134, 140, 142, 143, 147, 152, 154, 162, 170, 184, 187, 190, 191, 192, 193, 195, 198], "haven": 198, "hdf5": [38, 47], "head": [69, 70, 73, 75, 76], "head_kei": 76, "head_weight": 76, "headless": 183, "height": [17, 21, 183], "heinrich": 193, "heirarchi": [38, 47], "held": 198, "help": [23, 69, 72, 85, 187, 189, 198], "helper": [11, 12, 13, 95, 127], "henc": [121, 124, 164], "here": [83, 95, 189, 190, 193, 195, 196, 198, 199], "hierarchi": [164, 165], "high": 197, "higher": [49, 54, 57, 84, 86, 88, 89, 90, 91, 159], "higher_is_bett": [84, 86, 88, 89, 90, 91, 159], "hold": [51, 54, 132, 134, 153, 154], "home": [157, 158, 195], "hook": [164, 165], "hookfactori": 165, "host": [158, 172, 173, 192, 198], "hostedtoolcach": 195, "hot": [93, 94, 95, 100, 101, 104, 105, 118, 120, 121, 123, 193], "hot_distance_loss": [101, 186], "hot_distance_predictor": [121, 186], "hot_distance_task": [95, 186], "hot_distance_task_config": [95, 186], "hot_loss": [100, 101], "hotdistanceloss": [93, 95, 100, 101], "hotdistancepredictor": [93, 95, 120, 121], "hotdistancetask": [93, 94, 95], "hotdistancetaskconfig": [94, 95], "how": [15, 17, 21, 49, 54, 57, 69, 72, 79, 85, 95, 118, 120, 121, 122, 124, 147, 163, 164, 165, 190, 192, 195, 198, 199], "howev": [152, 154], "html": [159, 189, 195], "html_css_file": 189, "html_extra_path": 189, "html_static_path": 189, "html_theme": 189, "http": [18, 21, 189, 192, 194, 195, 198], "hxgy": 184, "hygx": 184, "i": [0, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 171, 172, 175, 177, 178, 179, 180, 182, 183, 184, 185, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199], "ic": 188, "id": [32, 38, 42, 92, 95, 105, 106, 108, 110, 112, 171, 187, 188, 190, 191, 192, 195], "ideal": 191, "identif": [49, 54, 57], "identifi": [0, 1, 5, 6, 8, 9, 49, 54, 57, 85, 87, 89, 90, 92, 106, 108, 110, 111, 112, 113, 115, 162, 170, 183, 195, 199], "ifram": 183, "ignor": [132, 134, 167, 172, 184, 189], "ignore_groundtruth": 184, "ignore_gt": 184, "ignore_i": 184, "ignore_reconstruct": 184, "ignore_seg": 184, "ignore_x": 184, "imag": [3, 85, 182, 193, 195, 196, 198, 199], "immut": [107, 109, 110, 112, 114], "impact": [69, 72], "implement": [12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 47, 49, 51, 54, 59, 60, 63, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 95, 100, 101, 102, 103, 106, 108, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 143, 162, 163, 179, 182, 197], "import": [3, 17, 164, 183, 189, 195, 197, 198, 199], "importerror": 3, "improv": 197, "imshow": 195, "in_channel": [17, 21], "in_plac": 184, "inbound": 187, "includ": [12, 13, 14, 15, 18, 21, 38, 47, 54, 56, 69, 70, 71, 72, 73, 84, 85, 86, 88, 90, 91, 95, 96, 138, 140, 147, 152, 154, 164, 165, 187, 189, 191, 195, 196, 198], "incorpor": [131, 134, 135, 136, 137, 140, 197], "incorrectli": 85, "increas": [15, 17, 18, 21, 191, 195, 199], "ind": 180, "independ": [17, 21, 197], "index": [69, 84, 90, 107, 110, 147, 162, 170, 198], "indic": [10, 16, 17, 20, 21, 25, 27, 30, 31, 38, 47, 49, 51, 54, 57, 62, 63, 69, 85, 86, 90, 92, 95, 128, 129, 130, 139, 140, 143, 147, 182, 191], "individu": [182, 195], "inf": [118, 120, 121, 122], "infer": 3, "inference_plan": 3, "info": [183, 188, 198], "inform": [15, 21, 84, 85, 90, 91, 92, 140, 142, 154, 156, 165, 184, 189, 191], "inherit": [11, 12, 13, 14, 15, 21, 27, 29, 35, 38, 73, 75, 82, 85, 88, 90, 93, 95, 99, 100, 101, 102, 103, 119, 121, 127], "init_callback_fn": 7, "initi": [2, 4, 17, 21, 27, 28, 33, 38, 50, 54, 55, 60, 62, 63, 67, 68, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 95, 96, 117, 118, 119, 120, 121, 122, 123, 129, 138, 140, 142, 154, 155, 172, 175, 190], "initialis": [58, 61, 63], "initialize_weight": [73, 75, 76], "inner": [69, 71, 95, 96, 144, 145, 146], "inner_distance_predictor": [121, 186], "inner_distance_task": [95, 186], "inner_distance_task_config": [95, 186], "innerdistancepredictor": [121, 122], "innerdistancetask": [95, 96], "innerdistancetaskconfig": [95, 97], "inplac": 92, "input": [0, 1, 5, 8, 9, 10, 15, 17, 18, 19, 20, 21, 58, 60, 61, 63, 69, 70, 75, 76, 100, 101, 106, 107, 109, 110, 114, 117, 121, 124, 140, 142, 152, 153, 154, 155, 157, 160, 162, 170, 182, 184, 188, 190, 195, 198, 199], "input_arrai": [3, 10], "input_array_identifi": [0, 1, 5, 8, 9], "input_contain": [0, 1, 5, 8, 9, 157, 160, 188], "input_dataset": [0, 1, 5, 8, 9, 157, 160, 188], "input_resolut": [60, 63], "input_shap": [15, 17, 18, 19, 21, 69, 70, 182, 195, 198, 199], "input_voxel_s": [15, 21], "insert": [172, 189], "insid": [25, 27, 182], "inside_valu": 182, "inspect": 198, "instal": [3, 187, 190, 192, 195], "instanc": [15, 17, 21, 27, 28, 33, 38, 41, 49, 50, 54, 57, 60, 79, 82, 90, 91, 92, 95, 96, 106, 108, 110, 111, 113, 115, 119, 121, 124, 133, 134, 157, 158, 187, 191, 193, 195, 196, 197], "instance_evalu": [90, 186], "instance_evaluation_scor": [90, 92, 186], "instanceevalu": [78, 90, 92, 95], "instanceevaluationscor": [90, 91, 92], "instanti": [48, 54, 55, 64, 65, 140, 142, 143], "instead": [17, 21, 152, 154, 197], "instruct": 192, "int": [0, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 34, 38, 42, 48, 49, 54, 57, 60, 63, 69, 70, 71, 72, 75, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 95, 98, 101, 106, 109, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 129, 132, 134, 138, 139, 140, 142, 143, 144, 145, 146, 147, 152, 154, 157, 160, 162, 170, 171, 173, 175, 176, 180, 182, 183, 184, 185, 188, 191], "int32": 178, "int64": [69, 145, 180, 195], "integ": [17, 19, 21, 83, 95, 182, 191], "integr": [138, 140, 189], "intend": 168, "intens": [23, 27, 38, 39, 134, 135, 136, 186, 197], "intensities_arrai": [27, 28], "intensitiesarrai": [27, 28, 38, 39], "intensitiesarrayconfig": [38, 39], "intensity_array_config": [38, 186], "intensity_augment_config": [134, 135], "intensity_config": [134, 186], "intensity_scale_shift_augment_config": [134, 136], "intensity_scale_shift_config": [134, 186], "intensityaug": [134, 135], "intensityaugmentconfig": [134, 135, 198], "intensityscaleshift": [134, 136], "intensityscaleshiftaugmentconfig": [134, 136], "interest": [0, 85, 117, 121, 157, 191], "interfac": [75, 76, 77, 163, 188, 197, 198], "intern": [153, 154, 193], "interp_ord": [38, 44], "interpol": [17, 24, 25, 27, 30, 38, 44, 152, 154, 195], "interpolat": [22, 23, 24, 25, 26, 27, 28, 29, 30, 120, 121], "interpret": 184, "interv": [71, 132, 134, 139, 140, 152, 154, 173, 198], "invalid": [20, 21, 31, 38, 51, 54, 60, 95, 128, 130, 140, 168], "invert": 85, "io": [8, 162, 195], "iou": 3, "iprogress": 195, "ipynb": 189, "ipython": 183, "ipywidget": 195, "is_best": [89, 90], "is_seg": 183, "is_valid": [16, 21], "is_zarr_group": 60, "item": [60, 148, 180], "iter": [0, 5, 69, 71, 72, 85, 87, 89, 90, 92, 95, 106, 108, 110, 111, 113, 117, 121, 127, 129, 138, 139, 140, 142, 144, 145, 146, 147, 152, 153, 154, 157, 160, 162, 168, 170, 171, 173, 174, 175, 182, 183, 185, 188, 195, 196, 198], "iteration_scor": [69, 147], "iteration_stat": [69, 138, 140, 142, 145], "itertool": 180, "itk": 85, "its": [22, 24, 27, 30, 35, 38, 100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 114, 162], "itself": 162, "j": [3, 184], "jaccard": [84, 85, 87, 89, 90, 92], "jan": [189, 193], "janelia": [194, 195], "januari": 197, "jeff": [189, 193, 197], "jitter": [152, 154], "job": [11, 13, 193, 196, 198], "join": 193, "journal": [184, 193], "json": [159, 171], "jupyt": 195, "jupyterlab": 195, "jupytext": 189, "just": [18, 21, 36, 38, 69, 101, 102, 130, 140, 147, 195, 197, 198], "k": [17, 21], "keep": [7, 23, 31, 38, 49, 54, 57, 59, 63, 95, 128], "keep_tmpdir": 7, "kei": [33, 38, 63, 131, 133, 134, 135, 136, 137, 140, 149, 150, 151, 152, 154, 155, 167, 180, 182, 186, 187], "kept": [132, 134], "kernel": [17, 18, 21], "kernel_s": 17, "kernel_size_down": [17, 18, 21, 195, 199], "kernel_size_up": [17, 18, 21, 195, 199], "keyerror": [60, 149, 151, 154, 163, 167], "keymateri": 187, "keyword": [2, 4, 7, 60, 63, 157, 158], "know": [69, 147, 164, 165, 198], "known": [81, 94, 95], "kwarg": [2, 4, 7, 15, 21, 60, 63, 108, 110, 157, 158], "l": [17, 21, 193], "l1": [27, 30], "l_conv": 17, "l_down": 17, "label": [3, 22, 25, 27, 32, 38, 73, 75, 76, 92, 118, 120, 121, 122, 123, 180, 182, 184, 191, 195, 197], "label_cmap": 195, "label_data": 180, "label_divisor": 3, "labeloverlapmeasuresimagefilt": 85, "labels_arrai": 195, "labels_slab": 180, "lack": [49, 54], "lambda": [164, 165], "larg": [7, 17, 35, 38, 47, 152, 154, 193, 195, 196, 198], "larger": [17, 121, 124, 152, 154, 191], "larger_tensor": 17, "largest": 17, "larissa": 193, "last": [69, 147, 168], "latest": [171, 175, 194], "latest_iter": [171, 175], "launch": 187, "layer": [17, 18, 19, 21, 48, 54, 73, 75, 76, 121, 124, 183, 195, 196, 199], "layer_nam": 183, "lazi": 197, "learn": [17, 21, 69, 72, 129, 138, 140, 142, 143, 193, 196, 198], "learning_r": [129, 138, 140, 142, 143, 195, 198], "leav": [13, 14], "left": [17, 21, 69, 72], "len": [180, 195], "length": [17, 21, 27, 30, 191], "less": [69, 81, 95, 129, 140, 145, 180], "let": [184, 195, 198], "level": [1, 5, 6, 8, 17, 18, 21, 85, 86, 90, 165, 188, 198], "lib": 195, "librari": [3, 64, 65, 85, 138, 140, 142], "like": [17, 21, 69, 70, 72, 171, 182, 189, 191, 195], "likelihood": 195, "limit": [13, 14, 60, 63, 153, 154, 182], "limit_validation_crop_s": 60, "line": [188, 191, 195, 198], "linear": [17, 152, 154, 195, 196], "linearli": [152, 154], "linearlr": [138, 140], "linux": 187, "list": [6, 7, 10, 12, 13, 17, 18, 21, 23, 27, 30, 32, 33, 38, 41, 42, 45, 46, 47, 48, 54, 55, 56, 58, 60, 61, 63, 66, 67, 68, 69, 71, 73, 75, 76, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 105, 110, 112, 115, 116, 117, 118, 120, 121, 122, 123, 132, 134, 138, 139, 140, 142, 144, 145, 146, 147, 159, 163, 165, 167, 168, 172, 173, 174, 178, 180, 182, 183, 184, 189, 192, 195], "listedcolormap": 195, "littl": 191, "lm": 197, "load": [0, 35, 38, 73, 74, 75, 76, 77, 95, 104, 125, 126, 138, 140, 151, 154, 157, 167, 175, 185, 190, 197], "load_best": 175, "load_starter_model": 71, "load_weight": 175, "local": [13, 14, 69, 98, 101, 117, 121, 147, 157, 160, 162, 167, 170, 171, 187, 193, 195], "local_array_stor": [89, 90, 110, 111, 157, 160, 161, 166, 169, 186], "local_torch": [13, 186], "local_weights_stor": [166, 169, 186], "localarrayidentifi": [0, 1, 5, 6, 8, 9, 89, 90, 106, 110, 111, 113, 115, 157, 160, 161, 162, 170], "localarraystor": [166, 170], "localarryidentifi": [157, 160], "localcontaineridentifi": [138, 140, 142, 162, 170], "localhost": [172, 173, 192], "localtorch": [13, 14, 157, 158], "localvolum": 183, "localweightsstor": [166, 171], "locat": [64, 65, 153, 154, 171, 193], "log": [1, 5, 6, 8, 69, 72, 73, 75, 76, 152, 154, 184, 188, 197, 198], "log_2": 184, "log_level": [1, 5, 6, 8, 9, 188], "logger": [0, 1, 3, 5, 7, 8, 9, 60, 73, 76, 85, 92, 118, 120, 122, 123, 138, 145, 152, 153, 156, 158, 160, 161, 167, 168, 170, 171, 172, 173, 177, 178, 185], "logic": [38, 40, 49, 54], "logical_or_array_config": [38, 186], "logicalorarrai": [38, 40], "logicalorarrayconfig": [38, 40], "long": [17, 21, 197, 198], "look": [162, 170, 189, 190, 191], "loop": [8, 99, 101, 195, 196], "loss": [54, 56, 69, 78, 80, 82, 93, 95, 96, 104, 121, 124, 125, 127, 129, 140, 144, 145, 152, 154, 159, 170, 186, 195, 196, 197, 198], "lot": 191, "low": 197, "lower": [69, 84, 90, 147, 153, 154, 188], "lpxgy": 184, "lpygx": 184, "lr_schedul": [138, 140], "lsd": [79, 95, 98, 101, 117, 121], "lsd_pad": [117, 121], "lsd_weight_clipmax": [79, 95, 117, 121], "lsd_weight_clipmin": [79, 95, 117, 121], "lsdextractor": [117, 121], "lsds_to_affs_weight_ratio": [79, 95, 98, 101], "lsf": [11, 13], "m": [159, 180, 184], "machin": [13, 14, 193, 195, 196], "maco": 195, "made": [85, 191], "mai": [35, 38, 47, 69, 70, 85, 140, 142, 179, 184, 191, 193, 195, 196, 198], "main": [193, 198], "mainli": [83, 95], "maintain": 17, "major": [195, 196], "make": [38, 47, 178, 189, 195, 197, 198], "makeraw": 182, "malin": [189, 193], "manag": [129, 133, 134, 138, 140], "mandatori": [54, 56], "mani": [63, 66, 69, 147, 195, 196], "manipulat": [69, 145], "map": [17, 18, 21, 22, 24, 25, 27, 28, 30, 33, 38, 84, 90, 92, 100, 101, 165, 192, 195, 199], "marwan": [189, 193, 197], "mask": [27, 34, 38, 40, 41, 42, 43, 45, 48, 54, 55, 56, 57, 64, 65, 81, 85, 94, 95, 117, 118, 119, 120, 121, 122, 123, 124, 131, 133, 134, 135, 136, 137, 138, 139, 140, 149, 150, 154, 156, 180, 186, 191, 193, 195, 197], "mask_arrai": 195, "mask_config": [54, 56, 60], "mask_dist": [81, 94, 95, 118, 120, 121], "mask_integral_downsample_factor": [138, 140], "mask_kei": [131, 134, 140, 150, 154], "mask_nam": [54, 57, 63, 66], "masked_in": 180, "mass": [79, 95], "master": [18, 21, 152, 154, 189], "match": [17, 73, 75, 76, 85, 98, 101, 172, 184, 189], "match_head": 76, "math": 198, "matplotlib": 195, "matrix": 184, "max": [17, 25, 27, 28, 38, 39, 84, 85, 90, 133, 134, 149, 154], "max_dist": [118, 120, 121, 122], "max_gt_downsampl": [60, 63], "max_gt_upsampl": [60, 63], "max_raw_training_downsampl": [60, 63], "max_raw_training_upsampl": [60, 63], "max_raw_validation_downsampl": [60, 63], "max_raw_validation_upsampl": [60, 63], "max_retri": [2, 4, 7, 188], "max_siz": 60, "max_validation_volume_s": [60, 63], "maximum": [2, 3, 4, 7, 25, 27, 28, 38, 39, 60, 63, 69, 79, 81, 84, 85, 90, 94, 95, 97, 107, 110, 117, 118, 120, 121, 145, 147, 180, 188], "maximum_objects_per_class": 3, "mayor": [189, 193], "md": 189, "mean": [20, 21, 23, 36, 38, 84, 85, 90, 95, 96, 100, 101, 103, 130, 140, 182, 195], "mean_false_dist": [84, 85, 90], "mean_false_distance_clip": [84, 85, 90], "mean_false_negative_dist": [84, 85, 90], "mean_false_negative_distance_clip": [84, 85, 90], "mean_false_negative_distances_clip": 85, "mean_false_positive_dist": [84, 85, 90], "mean_false_positive_distance_clip": [84, 85, 90], "mean_false_positive_distances_clip": 85, "meant": [38, 44, 95, 128, 140, 142, 143], "measur": [27, 28, 84, 85, 90, 184], "mechan": 199, "median": 3, "median_slic": 3, "meila": 184, "member": [60, 189], "membran": [22, 27, 182], "membrane_lik": 182, "membrane_s": 182, "memori": [13, 14, 18, 21, 38, 47, 162, 170, 197], "mention": [51, 54], "merg": [6, 38, 41, 81, 84, 85, 90, 91, 94, 95, 97, 184], "merge_instances_array_config": [38, 186], "mergeinstancesarrai": [38, 41], "mergeinstancesarrayconfig": [38, 41], "mesh": 183, "messag": [16, 20, 21, 31, 36, 37, 38, 49, 51, 54, 59, 63, 83, 95, 140, 143, 163], "meta": 60, "metadata": [23, 195], "method": [11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 47, 49, 51, 52, 53, 54, 56, 59, 60, 62, 63, 69, 71, 72, 79, 81, 83, 84, 85, 86, 88, 90, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 106, 108, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 143, 145, 147, 151, 152, 153, 154, 155, 156, 157, 158, 162, 164, 165, 168, 182, 183], "metric": [84, 85, 90, 184, 195, 196, 197, 198], "metric_param": 85, "middl": [69, 146], "might": [85, 87, 89, 90, 92, 198], "min": [27, 28, 38, 39, 133, 134], "min_distance_object_cent": 3, "min_ext": 3, "min_label": 198, "min_mask": [138, 139, 140, 195, 198], "min_siz": [3, 108, 109, 110, 116], "min_training_volume_s": [60, 63], "minim": 193, "minimum": [3, 27, 28, 38, 39, 60, 63, 79, 81, 95, 109, 110, 116, 117, 118, 121, 138, 139, 140, 152, 154, 180, 193], "mirror": [129, 130, 140], "mirror_aug": [129, 130, 140], "misclassifi": [81, 94, 95, 97], "mismatch": [73, 75, 76], "miss": [33, 38], "missing_annotations_mask_config": [38, 186], "missingannotationsmaskconfig": [38, 42], "mito": [60, 63, 190], "mito_mem": 190, "mito_ribo": 190, "mitochondria": [22, 27], "mitonet_v1": 3, "mitonet_v2": 3, "mitonet_v3": 3, "mitonet_v4": 3, "mitonet_v5": 3, "mitonet_v6": 3, "ml": [193, 194, 195], "mlflow": 197, "mnist": 175, "mode": [17, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 69, 70, 176, 195, 198, 199], "model": [0, 1, 3, 5, 8, 15, 16, 21, 26, 27, 58, 61, 63, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 85, 87, 88, 89, 90, 92, 95, 98, 99, 100, 101, 104, 106, 108, 110, 111, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129, 138, 140, 142, 145, 157, 160, 161, 171, 175, 185, 186, 188, 191, 193, 195, 196, 197, 198], "model_config": 3, "model_nam": 190, "model_state_dict": 175, "modifi": [134, 135, 152, 154, 187, 198], "modul": [13, 21, 69, 110, 148, 189], "modular": 193, "mongo_config_stor": [169, 186], "mongo_db_host": [157, 158], "mongo_db_nam": [157, 158], "mongo_stats_stor": [169, 186], "mongocli": [172, 173], "mongoconfigstor": [166, 172], "mongodb": [158, 172, 173, 193, 195, 196, 197, 198], "mongodbhost": [195, 198], "mongodbnam": [195, 198], "mongostatsstor": [166, 173], "more": [17, 49, 54, 57, 86, 90, 121, 124, 191, 197], "morphologi": [118, 121], "most": [63, 66, 183, 189, 194], "most_recent_iter": 183, "mostli": 195, "move": [71, 117, 118, 119, 120, 121, 122, 123, 124, 159, 180, 197], "move_optim": 71, "moving_class_count": [117, 118, 119, 120, 121, 122, 123, 124], "moving_count": [150, 154, 180], "mr": 188, "mse_loss": [101, 186], "mseloss": [80, 95, 100, 101, 102, 103], "mt": 190, "mt_out": 190, "much": [15, 17, 21, 79, 95, 118, 120, 121, 122, 124, 195, 196, 197, 198], "multi": [17, 21, 32, 38, 39, 42, 47, 60, 63, 84, 90, 193, 195, 196], "multichannelbinarysegmentationevaluationscor": [84, 85, 90], "multicut": 10, "multigpu": 3, "multipl": [3, 17, 18, 21, 38, 40, 41, 47, 60, 63, 110, 111, 118, 120, 121, 122, 191, 195], "multipli": [17, 21, 154, 155], "multiprocess": 195, "multitud": 196, "multivari": 184, "must": [36, 37, 38, 39, 40, 100, 101, 102, 103, 106, 108, 110, 111, 112, 115, 140, 142, 143, 164], "mutex_watersh": 197, "mutipl": [60, 63], "my": [187, 195, 198], "my_dataset": 188, "my_output": 188, "my_run": 188, "mykeypair": 187, "mymodel": [15, 16, 21], "mypostprocessor": [110, 111, 115], "mypostprocessorparamet": [110, 111], "myst_nb": 189, "myst_pars": 189, "mzouink": 187, "n": [17, 38, 47, 92, 159, 184, 193, 195, 198], "n5": [60, 63, 193], "name": [0, 3, 5, 11, 13, 16, 17, 21, 22, 23, 27, 28, 31, 32, 38, 42, 46, 47, 48, 49, 50, 51, 54, 55, 57, 59, 60, 63, 66, 69, 71, 72, 73, 75, 81, 94, 95, 97, 99, 101, 107, 109, 110, 112, 118, 120, 121, 122, 128, 140, 143, 147, 148, 157, 158, 159, 160, 162, 163, 165, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 182, 183, 187, 188, 189, 190, 191, 195, 196, 198, 199], "nameerror": 164, "nan": [84, 85, 90], "nanomet": 191, "napari": 3, "napoleon": 189, "navig": 192, "nbsphinx": 189, "nbsphinx_custom_format": 189, "ndarrai": [3, 6, 10, 33, 38, 85, 92, 118, 120, 121, 122, 123, 178, 180, 183, 184], "ndimag": [118, 121, 195], "nearest": [17, 25, 27, 85, 182, 195], "necessari": [7, 32, 35, 37, 38, 39, 42, 45, 46, 47, 93, 95, 154, 156, 158, 182, 190, 198], "need": [17, 38, 47, 49, 54, 57, 60, 69, 83, 95, 118, 120, 121, 122, 124, 147, 162, 164, 165, 170, 190, 191, 196, 198], "neg": [25, 27, 81, 84, 85, 90, 94, 95, 97, 178, 184], "neighbor": [17, 195], "neighborhood": [79, 95, 110, 115, 116, 117, 121, 178, 195, 198], "nest": [38, 47], "net": [17, 21, 190, 197, 198], "network": [2, 4, 7, 15, 16, 18, 19, 21, 140, 142, 171, 175, 193, 195], "neural": [15, 16, 21, 140, 142], "neurogl": [48, 54], "neuroglanc": [48, 54, 71, 138, 140, 183, 193], "neuroglancerrunview": 183, "neuron": 198, "never": [20, 21, 32, 36, 38, 51, 54, 62, 63, 83, 95, 191], "new": [6, 69, 73, 75, 76, 92, 119, 121, 139, 140, 145, 147, 149, 154, 167, 168, 183, 193, 195], "new_best_exist": 183, "new_head": [73, 75, 76], "new_validation_check": 183, "new_valu": 6, "next": [138, 140, 191, 198], "next_conv_kernel_s": 17, "nhood": 178, "nice": [162, 170, 196, 197, 198], "nm": [183, 190, 195], "nn": [17, 21, 69, 70], "no_valid": 188, "node": [6, 131, 132, 133, 134, 135, 136, 137, 140, 150, 152, 154, 198], "nois": [133, 134, 153, 154, 182], "non": [32, 38, 64, 65, 73, 75, 76, 191, 195, 196], "non_empti": [64, 65], "non_empty_mask": [64, 65], "none": [0, 2, 4, 5, 7, 11, 12, 13, 14, 17, 18, 21, 33, 35, 36, 38, 47, 48, 54, 55, 56, 57, 58, 60, 63, 69, 70, 71, 72, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 95, 98, 99, 101, 102, 105, 110, 111, 117, 118, 119, 120, 121, 122, 123, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 145, 147, 150, 152, 154, 156, 157, 158, 159, 160, 161, 162, 163, 167, 168, 170, 171, 172, 173, 174, 175, 176, 180, 183, 184, 185, 188, 195], "nonempti": [154, 156], "nonzero": 180, "norm": [27, 30, 118, 120, 121, 122, 184], "normal": [17, 38, 39, 81, 94, 95, 97, 118, 120, 121, 122, 184, 191, 195, 196, 199], "normalize_arg": [118, 120, 121, 122], "nosuchmodul": 148, "not_membrane_mask": 195, "note": [17, 21, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 93, 95, 96, 97, 104, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 147, 152, 154, 167, 168, 172, 173, 178, 180, 191, 195, 198], "notebook": 195, "notebook_tqdm": 195, "noth": [151, 154], "notic": [152, 154], "notimplementederror": [12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 47, 49, 51, 54, 59, 60, 63, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 95, 100, 101, 102, 103, 106, 108, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 143, 149, 150, 154, 162, 182], "now": [190, 191, 195, 198], "np": [0, 3, 6, 10, 33, 34, 38, 43, 85, 92, 118, 120, 121, 122, 123, 153, 154, 157, 160, 178, 180, 182, 183, 184, 188, 195], "np_arrai": 176, "np_to_funlib_arrai": 176, "nuc": 190, "nucleo": 190, "num": [180, 188], "num_affin": [98, 101], "num_channel": [117, 121, 176], "num_channels_from_arrai": 176, "num_class": [23, 180], "num_cpu": [11, 13], "num_data_fetch": [138, 139, 140, 195, 198], "num_fmap": [17, 18, 21, 195, 198, 199], "num_fmaps_out": [17, 21], "num_gpu": [11, 13], "num_head": [17, 21], "num_in_channel": [15, 17, 19, 20, 21, 69, 70], "num_iter": [69, 72, 129, 138, 140, 142, 195, 198], "num_level": 17, "num_lsd_voxel": [79, 95], "num_out_channel": [15, 17, 19, 20, 21, 69, 70], "num_point": 182, "num_snapshot": 195, "num_valid": 195, "num_voxel": [117, 121], "num_work": [0, 2, 4, 7, 106, 108, 110, 111, 113, 115, 157, 160, 188], "number": [0, 2, 3, 4, 7, 11, 13, 15, 17, 18, 19, 20, 21, 23, 26, 27, 30, 38, 42, 69, 70, 71, 72, 75, 76, 79, 85, 92, 95, 98, 100, 101, 106, 108, 110, 111, 113, 115, 117, 118, 119, 120, 121, 122, 123, 129, 138, 139, 140, 142, 145, 147, 157, 159, 160, 162, 171, 178, 180, 182, 183, 184, 188, 191, 195, 196, 199], "numer": [49, 54, 57], "numpi": [0, 3, 85, 118, 120, 121, 122, 123, 157, 160, 178, 180, 182, 183, 195], "numpyarrai": [117, 119, 120, 121, 123, 138, 140], "nw": 188, "o": 189, "obj": [60, 63, 73, 75, 76], "object": [0, 3, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 38, 39, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 63, 69, 71, 78, 79, 80, 81, 82, 83, 85, 87, 90, 93, 94, 95, 97, 108, 110, 112, 117, 118, 120, 121, 122, 126, 128, 129, 130, 132, 134, 140, 145, 147, 152, 153, 154, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 171, 172, 175, 177, 182, 183, 191, 193, 195], "obtain": [85, 152, 154], "oc": 188, "od": 188, "off": [195, 196], "offici": [48, 54, 192], "offset": [10, 46, 110, 115, 116, 176, 191, 195], "often": [69, 72, 191, 195, 196], "ok": 191, "old": [6, 76, 92, 197], "old_head": 76, "old_num": 180, "old_valu": 6, "om": [60, 63, 191, 193], "omit_if_default": 165, "onc": [100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 114, 190, 192, 198], "one": [3, 17, 21, 58, 60, 61, 63, 69, 94, 95, 104, 105, 118, 120, 121, 123, 145, 147, 152, 154, 184, 187, 191, 195], "one_hot": [121, 123], "one_hot_predictor": [121, 186], "one_hot_task": [95, 186], "one_hot_task_config": [95, 186], "onehotpredictor": [121, 123], "onehottask": [95, 104, 105], "onehottaskconfig": [95, 105], "ones": [34, 38, 43, 69, 147, 180, 189, 197], "ones_array_config": [38, 186], "ones_lik": [33, 34, 38, 43], "onesarrayconfig": [38, 43], "onli": [3, 11, 13, 17, 21, 35, 38, 58, 60, 61, 63, 69, 70, 73, 75, 76, 120, 121, 147, 152, 154, 156, 162, 166, 179, 184, 189, 190, 193, 195, 197], "oom_limit": [13, 14], "op": 188, "open": [172, 183, 191, 193, 195], "open_from_array_identitifi": 183, "open_from_identifi": [85, 90, 92, 176], "openorganel": 193, "oper": [17, 18, 21, 48, 54, 184, 188], "opt": 195, "optim": [18, 21, 71, 101, 102, 129, 138, 140, 142, 143, 171, 175, 186, 191, 193, 195, 196], "optimizer_state_dict": 175, "optimum": 195, "option": [0, 7, 11, 12, 13, 14, 15, 17, 18, 21, 33, 38, 47, 48, 54, 55, 56, 60, 69, 70, 72, 89, 90, 92, 101, 102, 133, 134, 135, 136, 137, 139, 140, 149, 154, 156, 157, 160, 166, 167, 170, 172, 173, 179, 180, 182, 183, 184, 186, 188, 189, 192, 194, 198], "order": [33, 38, 44, 69, 145, 195], "ordereddict": 175, "org": [189, 198], "organ": [69, 146, 168], "origin": [15, 21, 60, 149, 152, 154], "orthogon": 3, "orthoplan": 3, "orthoplane_infer": 3, "other": [12, 13, 14, 15, 21, 31, 38, 48, 49, 54, 57, 85, 95, 128, 180, 184, 190, 193, 195, 196, 197, 198], "otherwis": [23, 59, 60, 63, 81, 84, 85, 90, 94, 95, 97, 106, 109, 110, 114, 129, 138, 140, 142, 157, 158, 160, 183, 195], "our": [151, 154, 191, 193, 195, 197, 198], "out": [13, 14, 69, 72, 81, 85, 94, 95, 154, 156, 162, 170, 184, 198], "out_channel": 17, "out_path": 195, "outer": [69, 71, 144, 145, 146], "output": [0, 1, 5, 6, 8, 9, 15, 17, 18, 19, 20, 21, 26, 27, 38, 42, 60, 63, 69, 70, 72, 85, 87, 89, 90, 92, 95, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 140, 142, 149, 150, 151, 153, 154, 155, 157, 160, 162, 170, 182, 187, 188, 189, 190, 193, 195, 196, 198, 199], "output_arrai": [85, 87, 89, 90, 92], "output_array_identifi": [0, 1, 5, 6, 8, 9, 85, 87, 89, 90, 92, 106, 108, 110, 111, 113, 115], "output_array_typ": [117, 118, 119, 120, 121, 122, 123, 124], "output_contain": [1, 5, 6, 8, 9, 188], "output_dataset": [1, 5, 6, 8, 9, 188], "output_dtyp": [0, 157, 160, 188], "output_path": [0, 157, 160, 188], "output_resolut": [60, 63], "output_roi": [157, 160, 161, 188], "output_run_1_1": 0, "output_shap": [69, 70], "outputidentifi": [89, 90], "outsid": [25, 27, 179, 182], "over": [7, 38, 40, 63, 66, 81, 94, 95, 97, 105, 129, 140, 152, 153, 154, 184], "overal": 85, "overhang": [69, 147], "overlap": 85, "overlap_measures_filt": 85, "overload": [48, 54], "overridden": [15, 21, 23], "oversegment": 184, "overwrit": [0, 121, 124, 157, 160, 168, 176, 188, 189], "overwritten": [157, 160], "ow": 188, "own": [12, 13, 14, 15, 21], "p": [18, 21, 154, 156, 184, 187, 188, 192], "p3": 187, "packag": 195, "pad": [17, 18, 21, 117, 118, 120, 121, 122, 124, 178, 195, 199], "padded_tensor": 17, "page": [186, 189, 199], "pai": [11, 13], "pair": 187, "panopt": 3, "parallel": [0, 7], "param": [152, 154, 159, 175], "param1": [110, 111], "param2": [110, 111], "paramet": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 60, 63, 69, 70, 71, 73, 75, 76, 84, 85, 86, 87, 88, 89, 90, 91, 92, 95, 98, 99, 100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182, 183, 184, 185, 188, 190, 195, 196, 198], "parameter_nam": [69, 107, 109, 110, 112, 147], "parametr": 197, "params1": 170, "parent": 195, "pars": [0, 157, 158], "part": 163, "particular": [10, 25, 27, 36, 38, 130, 140, 162, 170, 193], "particularli": [69, 70, 198, 199], "pass": [2, 4, 7, 17, 18, 19, 21, 60, 69, 70, 72, 118, 120, 121, 122, 124, 188], "passiv": [151, 154], "past": 198, "path": [0, 1, 2, 4, 5, 6, 7, 8, 9, 17, 21, 38, 46, 47, 54, 57, 60, 63, 66, 95, 104, 125, 126, 157, 158, 160, 162, 167, 168, 170, 188, 189, 191, 195, 198], "pathlib": [54, 57, 63, 66], "pathwai": 17, "pattern": 189, "patton": [189, 193], "patton_dacapo_a_modular_2024": 193, "pem": 187, "peopl": 198, "per": [3, 17, 18, 21, 33, 38, 69, 110, 111, 132, 134, 146, 147, 152, 154, 184, 198, 199], "percent": 189, "perfect": 184, "perform": [3, 17, 19, 21, 38, 40, 69, 72, 85, 86, 87, 90, 92, 95, 105, 129, 132, 134, 138, 140, 142, 149, 152, 153, 154, 182, 197, 198], "perfrom": [17, 21], "permiss": 190, "peroxisom": [60, 63], "persist": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 54, 55, 57, 89, 90, 110, 111, 113, 117, 118, 121, 123, 124, 176, 195, 197], "perturb": [153, 154], "phase": [69, 72], "physic": [17, 21], "pi": 198, "pickl": 168, "piecewis": [152, 154], "pip": [193, 194, 195], "pipelin": [71, 131, 133, 134, 135, 136, 137, 138, 140, 142, 151, 154, 181, 186], "pixel": [3, 81, 85, 90, 94, 95, 97, 182, 183, 195], "pixel_vote_thr": 3, "place": [32, 38, 42, 92, 164, 184], "plan": 193, "plane": 3, "playlist": 193, "pleas": [193, 195], "plot": [157, 186, 195, 197], "plot_loss": [159, 195], "plot_run": [159, 195], "plt": 195, "plu": [62, 63, 69, 145, 147], "plugin": 193, "pm": 190, "png": 197, "point": [27, 30, 48, 54, 55, 56, 69, 72, 73, 74, 75, 77, 85, 132, 134, 152, 154, 182, 184, 191, 195, 196], "polici": [75, 76], "pool": 17, "popular": 199, "port": [71, 138, 140, 152, 154, 183, 187, 192], "posit": [2, 4, 7, 25, 27, 81, 84, 85, 90, 94, 95, 97, 178], "posixpath": [157, 158], "possibl": [18, 21, 24, 25, 27, 28, 106, 108, 110, 111, 113, 115, 183, 191, 197], "post": [0, 2, 4, 7, 69, 78, 80, 82, 85, 87, 89, 90, 92, 95, 96, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 146, 147, 157, 188, 193, 197], "post_processing_paramet": [89, 90], "post_processor": [0, 69, 78, 80, 82, 89, 90, 93, 95, 96, 104, 125, 127, 147, 157, 186], "post_processor_paramet": [0, 110, 111, 157, 186], "postprocessor": [95, 110, 111, 127], "postprocessorparamet": [0, 69, 89, 90, 95, 106, 108, 110, 111, 112, 115, 127, 147, 157, 188], "precis": [84, 85, 87, 89, 90, 92], "precision_with_toler": [84, 85, 90], "pred_path": 195, "predefin": [85, 87, 90], "predict": [0, 1, 5, 6, 8, 9, 15, 18, 21, 69, 70, 78, 80, 81, 85, 90, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108, 110, 111, 113, 115, 117, 118, 120, 121, 122, 124, 157, 161, 162, 170, 183, 186, 193, 195, 198], "predict_loc": [157, 186], "predict_work": [4, 186], "prediction_arrai": [106, 110, 113], "prediction_array_identifi": [0, 1, 8, 106, 108, 110, 111, 113, 115, 161], "prediction_head": [69, 70, 76], "prediction_run_1_1": 0, "predictor": [69, 70, 78, 80, 82, 93, 95, 96, 104, 125, 127, 150, 154, 186], "prefer_attrib_convert": 165, "prefix": [48, 54], "preload": 71, "prepar": [149, 150, 152, 154, 155], "prepare_d": 195, "presenc": [85, 191], "present": [154, 156], "pretain": [74, 75], "pretrain": [74, 75, 95, 125, 126], "pretrained_task": [95, 186], "pretrained_task_config": [95, 186], "pretrainedtask": [95, 125], "pretrainedtaskconfig": [95, 126], "previou": [74, 75], "previous": [185, 195, 196], "primarili": [82, 95], "print": [3, 16, 21, 85, 106, 108, 110, 111, 113, 115, 129, 138, 140, 142, 195, 198], "print_profil": [138, 140], "prioriti": [69, 147, 197], "privat": [153, 154], "probability_arrai": [27, 30], "probabilityarrai": [27, 30, 120, 121, 123], "probabl": [27, 95, 105, 110, 111, 120, 121, 152, 154, 156, 184, 186], "problem": [32, 38, 39, 42], "process": [0, 2, 4, 7, 10, 17, 38, 47, 69, 78, 80, 82, 85, 87, 89, 90, 92, 95, 96, 106, 108, 110, 111, 113, 115, 118, 120, 121, 122, 123, 139, 140, 144, 147, 149, 150, 152, 153, 154, 155, 157, 160, 172, 182, 188, 193, 195, 197], "processor": [0, 69, 89, 90, 95, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 146, 157, 188], "produc": [18, 21, 69, 71, 138, 140, 144, 154, 155], "product": [152, 154, 180, 186], "profil": [138, 140, 187], "project": [11, 13, 189, 192, 193], "properti": [11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 54, 57, 60, 63, 66, 69, 71, 84, 85, 87, 88, 89, 90, 91, 92, 95, 110, 112, 117, 118, 119, 120, 121, 122, 123, 124, 127, 147, 167], "proport": [85, 184], "provid": [11, 12, 13, 15, 21, 23, 32, 33, 35, 37, 38, 39, 42, 45, 46, 47, 49, 54, 57, 69, 85, 86, 88, 89, 90, 94, 95, 96, 100, 101, 102, 103, 126, 127, 129, 140, 145, 147, 149, 150, 151, 152, 154, 155, 156, 157, 158, 162, 164, 165, 178, 179, 182, 184, 191, 192, 195, 196, 197, 198, 199], "proxi": [85, 120, 121], "pseudo": 195, "psi": 17, "publish": 193, "pull": [32, 38, 39, 42, 140, 142, 187], "pure": 197, "purpos": [20, 21, 51, 54, 82, 87, 90, 95, 129, 140], "push": [118, 120, 121, 122], "put": 197, "px": 184, "pxy": 184, "py": [12, 13, 18, 21, 110, 115, 184, 188, 189, 195, 198], "pyplot": 195, "python": [12, 13, 189, 193, 195, 196], "python3": 195, "pytorch": [13, 14, 15, 21, 193, 197], "qualit": 198, "qualiti": [84, 85, 89, 90], "quantiz": 3, "queri": 187, "question": 193, "queue": [11, 13], "quick": [35, 38], "quickli": 198, "r": [18, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 176, 188, 198], "r_conv": 17, "r_up": 17, "rais": [0, 3, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 47, 49, 51, 54, 59, 60, 63, 69, 70, 71, 73, 75, 76, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 95, 98, 100, 101, 102, 103, 106, 108, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 160, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 180, 182, 183, 184, 188], "rand": [3, 10, 183], "randint": 183, "randn": [17, 19, 21], "random": [3, 10, 134, 135, 152, 154, 182, 183, 195], "random_dil": 182, "random_source_pipelin": 182, "randomdilatelabel": 182, "randomli": [132, 134, 152, 154, 182], "rang": [25, 27, 28, 85, 133, 134, 135, 180, 182, 191, 195, 198], "rate": [69, 72, 84, 85, 90, 117, 121, 129, 138, 140, 142, 143, 195, 196], "rather": [18, 21], "ratio": [85, 98, 101, 154, 156], "raw": [0, 1, 5, 8, 9, 18, 21, 48, 50, 54, 55, 56, 57, 60, 63, 64, 65, 131, 133, 134, 135, 136, 137, 138, 139, 140, 157, 160, 162, 170, 182, 183, 191, 195, 198], "raw_arrai": [1, 8], "raw_array_identifi": 161, "raw_config": [51, 54, 56], "raw_contain": [60, 63], "raw_dataset": [60, 63], "raw_gt_dataset": [54, 186], "raw_gt_dataset_config": [54, 186], "raw_kei": [131, 133, 134, 135, 136, 140], "raw_max": [60, 63], "raw_min": [60, 63], "raw_nam": [54, 57, 63, 66], "rawgtdataset": [54, 55], "rawgtdatasetconfig": [54, 56], "re": [190, 195], "reaction": [49, 54], "read": [2, 4, 6, 7, 33, 34, 38, 43, 158, 188, 189, 193, 197], "read_cross_block_merg": 6, "read_roi": [2, 4, 7, 10], "read_roi_s": 188, "read_write_conflict": [1, 5, 6, 8, 9], "readthedoc": 195, "real": [20, 21, 83, 95, 99, 101, 195], "reason": [20, 21, 38, 47, 83, 95, 128, 130, 140], "rec_forward": 17, "recal": [84, 85, 87, 89, 90, 92], "recall_with_toler": [84, 85, 90], "receiv": [151, 154], "recent": [183, 194], "recogn": [84, 90], "recommend": [59, 63, 191, 193, 195], "reconstruct": [165, 184], "recreat": [164, 165], "rectifi": 17, "recurs": 17, "reduc": [17, 21], "ref": 198, "refer": [3, 18, 21, 94, 95, 184, 192, 193, 199], "referenc": [120, 121], "refin": 193, "refrain": [49, 54, 57], "regardless": 191, "region": [0, 81, 85, 94, 95, 117, 118, 121, 122, 124, 157, 184, 187], "regist": [164, 165], "register_hierarchi": [164, 165], "register_hierarchy_hook": 164, "register_hook": 164, "regress": 197, "regular": [81, 94, 95, 97], "reject": [154, 156], "reject_if_empti": [154, 186], "rejectifempti": [154, 156], "rel": 189, "relabel": [3, 6, 92, 182], "relabel_connect": 182, "relabel_in_block": 6, "relabel_work": [4, 186], "relat": [12, 13, 14, 15, 21, 51, 54, 95, 96, 129, 139, 140], "releas": 194, "relu": [17, 21], "remap": 10, "remov": [162, 170, 171, 175, 195], "repetit": [69, 72, 195, 198], "replac": [69, 92, 147, 187, 192, 198], "report": [118, 120, 121, 122, 124], "repres": [15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 48, 54, 60, 62, 63, 64, 65, 69, 71, 72, 73, 74, 75, 77, 83, 84, 85, 87, 89, 90, 92, 93, 95, 98, 99, 100, 101, 102, 103, 133, 134, 140, 143, 144, 145, 146, 147, 153, 154, 162, 175, 178, 179, 182, 183], "represent": [27, 29, 48, 54, 60, 63, 64, 65, 158, 162], "reproduc": [152, 154, 197, 198], "request": [118, 120, 121, 122, 124, 149, 150, 151, 152, 153, 154, 155, 156, 179, 182], "requir": [12, 13, 14, 15, 16, 21, 140, 142, 152, 154, 188, 193, 195, 196, 198, 199], "resampled_array_config": [38, 186], "resampledarrai": [38, 44], "resampledarrayconfig": [38, 44], "reserv": 191, "reshap": 10, "resid": [149, 154], "resiz": 60, "resize_if_need": 60, "resolut": [18, 21, 60, 63, 85, 152, 154, 195], "respect": [58, 59, 61, 63, 67, 68, 85, 100, 101, 102, 103, 184], "respons": [121, 124, 196], "restor": [152, 154], "result": [13, 14, 17, 21, 49, 54, 85, 95, 96, 152, 154, 184, 195, 198], "result_data": 179, "resum": 195, "retri": [2, 4, 7, 188], "retriev": [73, 75, 76, 77, 163, 165, 167, 168, 171, 172, 173, 174, 175, 183, 196, 198], "retrieve_architecture_config": [163, 167, 172, 195], "retrieve_architecture_config_nam": [163, 167, 172], "retrieve_array_config": [163, 167, 172], "retrieve_array_config_nam": [163, 167, 172], "retrieve_best": [171, 175], "retrieve_dataset_config": 172, "retrieve_dataset_config_nam": 172, "retrieve_datasplit_config": [163, 167, 172, 195], "retrieve_datasplit_config_nam": [163, 167, 172], "retrieve_run_config": [163, 167, 172, 195], "retrieve_run_config_nam": [163, 167, 172], "retrieve_task_config": [163, 167, 172, 195], "retrieve_task_config_nam": [163, 167, 172], "retrieve_trainer_config": [163, 167, 172, 195], "retrieve_trainer_config_nam": [163, 167, 172], "retrieve_training_stat": [168, 173, 174, 195], "retrieve_validation_iteration_scor": [168, 173, 174], "retrieve_weight": [171, 175], "return": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 43, 47, 48, 49, 51, 54, 59, 60, 62, 63, 64, 65, 69, 70, 71, 73, 75, 76, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 95, 98, 99, 100, 101, 102, 103, 106, 108, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 143, 145, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 166, 167, 168, 170, 171, 172, 173, 174, 175, 178, 180, 182, 183, 184, 185], "return_backwards_map": 92, "return_count": 180, "return_io_loop": [1, 5, 6, 8, 9], "return_json": 159, "return_panopt": 3, "reus": [31, 38, 59, 63, 95, 128, 190], "reusabl": [49, 54, 57], "review": 191, "rhoad": [189, 193], "rid": 197, "right": [17, 21, 60, 121, 124], "roi": [0, 2, 4, 7, 10, 35, 38, 47, 117, 118, 120, 121, 122, 124, 149, 150, 151, 152, 154, 157, 160, 161, 176, 179, 188, 195], "root": [168, 189], "rotat": [132, 134, 152, 154], "rotation_interv": [132, 134, 152, 154, 198], "rotation_max_amount": [152, 154], "rotation_start": [152, 154], "row": 184, "rr": 188, "rst": 189, "rudimentari": 162, "rule": [49, 54, 57], "run": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 69, 72, 73, 74, 75, 76, 77, 95, 110, 113, 115, 126, 138, 140, 157, 159, 160, 162, 163, 167, 168, 170, 171, 172, 173, 174, 175, 177, 183, 185, 186, 193, 196, 197], "run1": [163, 167, 168, 170, 171], "run2": 171, "run_0": [172, 173, 174, 175], "run_1": [0, 74, 75, 157], "run_blockwis": [7, 110, 113], "run_config": [69, 71, 163, 167, 172, 186, 190, 195, 198], "run_config_base_nam": [159, 195], "run_config_nam": 159, "run_nam": [0, 5, 157, 159, 160, 162, 163, 167, 168, 170, 172, 173, 174, 177, 185, 188], "run_path": 195, "run_thread": 183, "runconfig": [69, 72, 163, 167, 172, 190, 195, 198], "runinfo": 159, "runner": 195, "runs_base_dir": [157, 158, 187, 195, 198], "runtimeerror": [17, 21, 73, 75, 76, 149, 150, 151, 154, 178], "s3": 195, "saalfeld": [18, 21], "saalfeldlab": [18, 21], "safe": [152, 154], "same": [17, 21, 34, 35, 38, 43, 85, 87, 89, 90, 92, 100, 101, 118, 120, 121, 122, 124, 151, 154, 163, 167, 172, 184, 191, 195, 198], "sampl": [17, 21, 38, 44, 48, 49, 54, 55, 56, 57, 85, 132, 134, 152, 154, 197], "sample_dataset": [49, 54, 57], "sample_point": [48, 54, 55, 56, 57], "satur": [118, 120, 121, 122], "save": [31, 35, 38, 59, 63, 69, 88, 90, 95, 128, 138, 139, 140, 142, 147, 167, 172, 191, 195, 198], "save_ndarrai": 179, "sc": 193, "scalabl": 193, "scalar": [101, 102, 179, 183], "scale": [15, 17, 21, 69, 70, 81, 94, 95, 97, 118, 120, 121, 122, 134, 135, 136, 180, 197, 198], "scale_factor": [17, 81, 94, 95, 97, 118, 120, 121, 122, 195], "scale_slab": 180, "schedul": [4, 110, 113, 115, 138, 140, 186], "scikit": 195, "scipi": [118, 121, 184, 195], "score": [69, 71, 84, 85, 86, 87, 88, 89, 90, 91, 92, 146, 147, 159, 168, 173, 174, 183, 185, 191, 198], "score_1": [89, 90], "score_2": [89, 90], "scratch": [195, 196], "script": [12, 13, 110, 115, 187, 193, 197, 198], "search": [162, 170], "sec_api_run": 198, "sec_api_runconfig": 198, "sec_api_trainerconfig": 198, "second": [7, 31, 38, 89, 90, 100, 101, 154, 155, 184, 188], "section": 199, "secur": 187, "see": [69, 121, 124, 147, 189, 191, 195, 198], "seed": [152, 154, 195], "seem": 10, "seg": [178, 183, 184], "seg_to_affgraph": 178, "segment": [3, 7, 8, 10, 60, 63, 79, 81, 84, 85, 90, 91, 92, 95, 96, 97, 110, 111, 113, 116, 118, 120, 121, 122, 124, 178, 183, 184, 191, 193, 195, 196, 197, 198, 199], "segment_blockwis": [7, 110, 115], "segment_funct": [3, 10, 188], "segment_function_fil": [7, 188], "segment_work": [4, 186], "segmentation_typ": [60, 63], "segmentationtyp": [60, 63], "segmented_arrai": 3, "select": [17, 165, 171, 189, 195], "self": [20, 21, 22, 25, 27, 28, 31, 33, 35, 38, 58, 60, 61, 63, 78, 79, 80, 81, 82, 83, 85, 93, 94, 95, 96, 104, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 140, 149, 154], "semant": [3, 23, 60, 63, 110, 111, 191, 193, 197], "semantic_onli": 3, "sens": 198, "separ": [17, 32, 38, 60, 63, 69, 79, 95, 118, 121, 147, 195, 196], "separator_charact": 60, "seper": 191, "sequenc": [17, 60, 63, 85], "sequenti": [69, 70], "seri": 17, "serial": 158, "serv": [140, 142, 151, 154, 199], "server": [193, 195], "servic": 187, "set": [17, 18, 21, 33, 38, 54, 56, 58, 60, 61, 63, 69, 79, 83, 85, 89, 90, 95, 106, 107, 108, 109, 110, 111, 113, 114, 115, 129, 134, 135, 138, 139, 140, 142, 145, 147, 149, 150, 151, 152, 154, 155, 156, 182, 187, 190, 192, 195, 198], "set_best": [89, 90], "set_predict": [106, 108, 110, 111, 113, 115], "set_start_method": 195, "set_titl": 195, "set_ylabel": 195, "setup": [73, 149, 150, 151, 152, 153, 154, 155, 156, 182, 189, 190], "setup04": 190, "setup26": 190, "setup28": 190, "setup36": 190, "setup45": 190, "sever": [12, 13, 14, 15, 21, 197, 199], "sf": 188, "shape": [3, 15, 17, 18, 19, 21, 26, 27, 34, 38, 43, 69, 70, 85, 98, 101, 117, 121, 124, 178, 180, 182, 184, 193, 195, 199], "sheet": 189, "shift": [134, 135, 136, 197, 198], "short": [31, 38, 49, 54, 57, 59, 63, 95, 128], "shoulb": [60, 63], "should": [3, 12, 13, 15, 16, 17, 21, 23, 25, 27, 30, 31, 38, 48, 49, 52, 53, 54, 55, 57, 60, 63, 64, 65, 69, 74, 75, 79, 84, 85, 88, 90, 95, 100, 101, 102, 103, 106, 108, 110, 111, 112, 113, 115, 128, 131, 132, 134, 135, 139, 140, 143, 147, 157, 158, 163, 165, 173, 193, 198, 199], "show": [83, 95, 189, 193, 195, 197], "shown": 189, "shrink": [6, 8], "side": [17, 21, 197], "sigma": [110, 116, 117, 121, 195], "sigmoid": 17, "sign": [25, 27, 81, 94, 95, 97, 118, 120, 121, 122, 193], "signal": [17, 81, 94, 95, 97], "significantli": [18, 21, 69, 72, 152, 154], "similar": [38, 47, 85, 90], "simpl": [54, 58, 61, 62, 63, 66, 85, 134, 137, 165, 171, 186, 191, 196, 197], "simple_augment_config": [134, 137], "simple_config": [63, 134, 186, 195], "simpleaug": [134, 137], "simpleaugmentconfig": [134, 137, 198], "simpledataset": [54, 57, 63, 66], "simpledatasplitconfig": [63, 66, 195], "simpleitk": 85, "simplest": 191, "simpli": [18, 21, 22, 24, 25, 27, 30, 33, 38, 95, 105, 171, 191], "simplifi": 197, "simul": 197, "sinc": [10, 18, 20, 21, 49, 54, 69, 70, 191], "singl": [3, 17, 21, 38, 41, 69, 84, 85, 90, 147, 151, 154, 168, 191, 195, 196, 198], "singleton": [121, 123, 157, 158], "site": 195, "sitk": 85, "situat": [94, 95], "size": [3, 15, 17, 18, 21, 38, 44, 46, 60, 63, 69, 70, 72, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 120, 121, 122, 124, 129, 138, 139, 140, 142, 143, 152, 154, 178, 182, 183, 188, 191, 195, 196], "skew": 85, "skimag": 195, "slab": [117, 121, 180], "slab_count": 180, "slab_rang": 180, "slice": [3, 180, 195], "slightli": 191, "slurm": 197, "small": [17, 197], "small_unet": 198, "smaller": [17, 35, 38, 197], "smaller_tensor": 17, "smooth": [159, 193], "smooth_valu": 159, "snap": [152, 154], "snap_to_grid": [38, 47], "snapshot": [69, 72, 129, 138, 139, 140, 142, 162, 170, 195, 198], "snapshot_contain": [129, 138, 140, 142, 162, 170], "snapshot_interv": [139, 140, 195, 198], "snapshot_it": 195, "snapshot_iter": [138, 140], "snapshotcontain": [129, 140], "so": [31, 38, 59, 63, 95, 118, 120, 121, 122, 128, 184, 189, 195, 196, 197, 198], "softmax": [69, 70], "some": [108, 110, 140, 142, 162, 170, 191, 195, 196, 197, 198, 199], "someth": [69, 70], "soon": [17, 21], "sort": [195, 196], "sourc": [33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 133, 134, 151, 154, 182, 183, 189, 197], "source_arrai": [33, 38], "source_array_config": [32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45], "space": [85, 188, 191], "spars": [184, 191], "spatial": [15, 17, 21, 69, 70, 118, 120, 121, 122, 124, 152, 154, 191], "spatial_shap": 17, "spawn": [1, 5, 6, 8, 9], "spawn_work": [1, 5, 6, 7, 8, 9], "spec": [152, 154, 182, 197], "special": [31, 38, 49, 54, 57, 59, 63, 95, 128], "specif": [11, 12, 13, 14, 15, 21, 23, 38, 47, 49, 54, 57, 60, 63, 73, 74, 75, 76, 77, 117, 121, 134, 135, 136, 137, 138, 140, 142, 143, 168, 171, 173, 174, 175, 182, 190, 191, 192, 195, 196, 198], "specifi": [11, 12, 13, 14, 26, 27, 35, 38, 49, 54, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 108, 110, 129, 140, 145, 147, 152, 154, 155, 167, 168, 172, 173, 182, 187, 188, 191, 193, 195, 198], "specified_loc": [64, 65], "speed": [152, 154], "sphinx": [186, 189], "sphinx_autodoc_typehint": 189, "sphinx_click": 189, "sphinx_rtd_them": 189, "split": [58, 59, 60, 61, 62, 63, 67, 68, 84, 85, 90, 91, 100, 101, 129, 140, 184, 195, 197], "split_vi": 184, "spread": 193, "squar": [95, 96, 100, 101, 103], "stabl": 195, "stack": 3, "stack_infer": 3, "stack_postprocess": 3, "standard": [11, 12, 13, 54, 56, 63, 68, 95, 127, 132, 134, 152, 154, 159, 182], "star": 164, "start": [1, 5, 6, 8, 9, 69, 71, 72, 95, 105, 126, 180, 183, 186, 187, 188, 191, 192, 195, 196, 197], "start_config": [69, 72, 73, 74, 75, 76, 186], "start_neuroglanc": 183, "start_typ": [74, 75, 77], "start_work": [1, 5, 6, 7, 8, 9], "start_worker_fn": [1, 5, 6, 8, 9], "startconfig": [69, 72, 74, 75, 77], "starter": [73, 74, 75, 76, 77], "stat": [69, 71, 129, 138, 140, 144, 145, 147, 168, 173, 174, 183, 195, 197, 198], "state": [49, 54, 71, 152, 153, 154, 171, 175, 183, 195, 197], "statement": [83, 95], "static": [54, 57, 60, 63, 66, 71, 84, 86, 88, 90, 91, 189], "statist": [69, 129, 138, 140, 142, 144, 145, 158, 166, 168, 173, 174, 198], "stats_stor": [169, 183, 186, 195], "statsstor": [166, 174], "statu": [83, 95], "std": 85, "step": [152, 154, 187, 197, 198], "still": [195, 196, 197], "stop": [183, 195, 196], "storag": [162, 170, 172, 190, 193, 195], "store": [0, 1, 5, 6, 8, 9, 12, 13, 14, 17, 21, 31, 38, 47, 52, 53, 73, 74, 75, 76, 77, 84, 85, 86, 88, 89, 90, 91, 106, 108, 110, 111, 113, 115, 118, 121, 140, 142, 157, 158, 159, 160, 161, 177, 183, 185, 186, 191, 193, 196, 197, 198], "store_architecture_config": [163, 167, 172, 195, 198], "store_array_config": [163, 167, 172], "store_best": [84, 86, 88, 89, 90, 91, 171], "store_dataset_config": 172, "store_datasplit_config": [163, 167, 172, 195, 198], "store_run_config": [163, 167, 172, 195, 198], "store_task_config": [163, 167, 172, 195, 198], "store_trainer_config": [163, 167, 172, 195, 198], "store_training_stat": [168, 173, 174], "store_typ": [52, 53], "store_validation_iteration_scor": [168, 173, 174], "store_weight": [171, 175], "str": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 54, 57, 59, 60, 62, 63, 64, 65, 66, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 105, 110, 112, 118, 120, 121, 122, 123, 125, 126, 128, 130, 138, 140, 143, 147, 148, 157, 158, 159, 160, 162, 163, 164, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 182, 183, 185, 188], "stride": [17, 159], "string": [0, 20, 21, 31, 36, 37, 38, 47, 48, 54, 60, 62, 63, 64, 65, 83, 95, 118, 120, 121, 122, 128, 130, 140, 148, 157, 162, 164, 165, 189, 191], "structur": [69, 71, 72, 144, 145, 146, 164, 165, 171, 182, 196], "structure_fallback_factori": 165, "structurehook": 165, "style": 189, "sub": [152, 154], "sub_task_config": [95, 126], "subclass": [11, 13, 14, 23, 24, 31, 34, 35, 38, 43, 45, 46, 47, 52, 53, 74, 75, 78, 79, 80, 81, 82, 83, 93, 95, 96, 97, 100, 101, 102, 103, 106, 108, 110, 111, 112, 115, 117, 119, 120, 121, 122, 123, 124, 126, 128, 131, 134, 136, 137, 138, 140, 142, 143, 149, 150, 151, 154, 165], "subdirectori": [168, 171], "subgraph": [151, 154], "subplot": 195, "subsampl": [132, 134, 152, 154, 173, 198], "subscor": [69, 147], "subsequ": 190, "subset": [69, 147], "suggest": 197, "sum": [26, 27, 38, 45, 85, 100, 101, 180, 184], "sum_array_config": [38, 186], "sumarrayconfig": [38, 45], "summari": [189, 198], "super": [18, 21], "supervis": 191, "support": [18, 21, 38, 47, 60, 63, 154, 156, 162, 166, 168, 179, 191, 193, 197, 198, 199], "sure": [38, 47, 178, 195, 197], "sv": 184, "swig": 85, "sy": 189, "symant": [32, 38, 42], "symlink": 171, "symmetr": [17, 184], "system": [20, 21, 24, 26, 27, 29, 192], "t": [10, 18, 21, 162, 170, 183, 187, 188, 192, 195, 197, 198], "tabl": [184, 190], "tag": 192, "take": [13, 14, 17, 22, 24, 25, 27, 30, 37, 38, 39, 40, 41, 45, 69, 85, 89, 90, 106, 110, 111, 147, 180, 190, 191, 197], "taken": [69, 144], "tanh": [81, 94, 95, 97, 118, 120, 121, 122], "target": [17, 60, 63, 98, 99, 100, 101, 102, 103, 117, 118, 119, 120, 121, 122, 123, 124, 138, 140, 142, 150, 152, 154, 195, 198], "target_filt": [150, 154], "target_kei": [150, 154], "target_resolut": 60, "target_roi": [152, 154], "target_spec": [117, 118, 120, 121, 122, 124], "task": [0, 2, 4, 7, 17, 21, 60, 63, 69, 71, 72, 73, 74, 75, 77, 129, 138, 140, 142, 147, 150, 154, 157, 163, 167, 172, 186, 193, 196, 197, 198, 199], "task1": [163, 167], "task_0": 172, "task_config": [69, 72, 78, 80, 82, 83, 93, 95, 96, 104, 125, 126, 163, 167, 172, 186, 195, 198], "task_id": 10, "task_nam": [163, 167, 172], "task_typ": [79, 81, 83, 94, 95, 97, 105, 126], "taskconfig": [69, 72, 79, 81, 83, 94, 95, 97, 105, 126, 128, 163, 164, 167, 172], "team": 193, "technic": [120, 121], "techniqu": [193, 195, 196], "templat": [189, 195, 198], "templates_path": 189, "temporari": [6, 7, 8], "tensor": [17, 19, 21, 69, 70, 98, 99, 100, 101, 102, 103, 121, 124, 175], "tensorflow": [17, 21, 193], "term": 85, "test": [20, 21, 36, 38, 51, 54, 82, 83, 85, 87, 90, 92, 95, 99, 101, 129, 130, 140, 152, 154, 191, 195, 197], "test_binari": 85, "test_edt": 85, "test_empti": 85, "test_itk": 85, "test_mask": 85, "text": 187, "than": [17, 18, 21, 69, 81, 85, 89, 90, 95, 106, 109, 110, 114, 129, 140, 145, 147, 168, 180, 197], "thei": [48, 54, 69, 79, 95, 118, 120, 121, 122, 147, 189], "them": [17, 73, 75, 76, 157, 158, 165, 168, 191, 195, 196, 198], "theme": 189, "therefor": [121, 124], "thi": [2, 4, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 147, 148, 149, 150, 151, 152, 154, 157, 158, 162, 163, 164, 165, 170, 171, 175, 179, 184, 185, 186, 187, 189, 190, 191, 192, 196, 197, 198, 199], "those": [48, 54, 94, 95, 193, 197], "thread": [168, 183], "three": [195, 196, 197], "threshold": [1, 3, 9, 85, 95, 96, 106, 108, 110, 113, 114, 116, 118, 120, 121, 122, 124, 193], "threshold_post_processor": [110, 186], "threshold_post_processor_paramet": [110, 113, 186], "threshold_work": [4, 186], "thresholdpostprocessor": [80, 93, 95, 110, 113], "thresholdpostprocessorparamet": [110, 113, 114], "through": [118, 120, 121, 122, 198], "thrown": [73, 75, 76], "thumb": 189, "ti": 193, "tif": 193, "tiff": 46, "tiff_array_config": [38, 186], "tiffarrayconfig": 46, "time": [2, 4, 7, 17, 21, 69, 100, 101, 144, 190, 191, 197], "timeout": [2, 4, 7, 188], "titl": [193, 195], "tmp": [157, 186], "tmpdir": [6, 8], "to_arrai": [36, 37, 38, 39, 40], "to_ndarrai": [179, 195], "to_toml": [35, 38], "to_xarrai": [69, 145, 147, 195], "todo": [171, 198], "togeth": [195, 196], "toi": 197, "tol_dist": [81, 85, 90, 94, 95, 97, 195], "toler": [81, 84, 85, 90, 94, 95, 97], "tomancak": [18, 21], "toml": [35, 38], "toml_path": [35, 38], "too": [17, 35, 38, 197], "took": [69, 144, 198], "top": [18, 21, 164, 165], "torch": [13, 14, 17, 19, 21, 69, 70, 71, 98, 99, 100, 101, 102, 103, 129, 138, 140, 142, 175, 193], "torchsummari": 198, "total": [69, 72, 85, 98, 99, 101, 152, 154, 188, 191], "total_frac": 180, "total_roi": [2, 4, 7, 10, 188], "tp": [84, 85, 90], "tpu": [11, 12, 13], "tqdm": 195, "tqdmwarn": 195, "tr": 188, "traceback": 148, "track": [23, 197], "tracker": 3, "tracker_consensu": 3, "trackers_dict": 3, "traffic": 187, "train": [0, 5, 11, 13, 18, 21, 54, 56, 58, 60, 61, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 75, 79, 95, 99, 101, 102, 118, 120, 121, 122, 123, 124, 129, 138, 139, 140, 142, 143, 144, 145, 157, 160, 168, 170, 173, 174, 182, 186, 191, 193, 196, 197, 198], "train_arrai": 198, "train_config": [62, 63, 68], "train_group_nam": [63, 66], "train_run": [177, 195, 198], "train_until": 71, "train_validate_datasplit": [63, 186], "train_validate_datasplit_config": [63, 186], "trainabl": [69, 70], "trained_until": [69, 145], "trainer": [69, 71, 72, 163, 167, 172, 186, 193, 196, 198], "trainer1": [163, 167], "trainer_0": 172, "trainer_config": [69, 72, 129, 130, 138, 140, 163, 167, 172, 186, 195, 198], "trainer_nam": [163, 167, 172], "trainer_typ": [130, 139, 140], "trainerconfig": [69, 72, 140, 143, 163, 167, 172, 198], "training_iteration_stat": [69, 140, 142, 145, 186], "training_stat": [69, 71, 168, 173, 174, 186, 195], "trainingiterationstat": [69, 129, 138, 140, 142, 144, 145, 168], "trainingstat": [69, 71, 145, 173, 174], "trainvalidatedatasplit": [63, 67], "trainvalidatedatasplitconfig": [63, 68], "transform": [81, 85, 94, 95, 97, 110, 115, 116, 118, 120, 121, 140, 142, 150, 152, 154, 195, 196, 198], "translat": [17, 195, 196], "transpos": [17, 18, 21, 195], "transposed_conv": 17, "treat": [79, 95, 117, 121], "tree": 195, "true": [0, 3, 8, 17, 21, 23, 25, 26, 27, 28, 30, 31, 37, 38, 47, 49, 54, 59, 60, 63, 71, 81, 84, 85, 86, 88, 90, 91, 92, 94, 95, 117, 120, 121, 129, 138, 140, 142, 143, 149, 154, 157, 159, 160, 165, 177, 178, 180, 182, 183, 184, 188, 195, 198, 199], "true_posit": 85, "true_positives_with_toler": 85, "truth": [48, 54, 55, 56, 60, 63, 64, 65, 85, 89, 90, 92, 117, 118, 119, 120, 121, 122, 123, 124, 131, 133, 134, 135, 136, 137, 138, 140, 142, 150, 154, 156, 183, 184, 195, 198], "truth_binari": 85, "truth_edt": 85, "truth_empti": 85, "truth_itk": 85, "truth_mask": 85, "try": 163, "tupl": [3, 6, 10, 16, 17, 20, 21, 31, 32, 36, 37, 38, 42, 47, 49, 51, 54, 59, 62, 63, 69, 70, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 117, 119, 120, 121, 123, 124, 126, 128, 130, 132, 133, 134, 135, 138, 140, 143, 147, 152, 154, 162, 170, 178, 180, 182, 191], "turn": [32, 38, 39, 42, 118, 121, 123], "tutori": 197, "tutorial_run": 198, "twice": [100, 101], "two": [17, 21, 24, 69, 85, 89, 90, 92, 100, 101, 147, 152, 154, 155, 172, 182, 184, 190], "typ": [164, 165], "type": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 44, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 62, 63, 64, 65, 69, 70, 71, 73, 75, 76, 83, 84, 85, 87, 90, 92, 94, 95, 101, 102, 104, 105, 110, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 178, 180, 182, 183, 184, 187, 188, 191, 193, 195, 198, 199], "type_overrid": 165, "typedconvert": 165, "typeerror": [162, 164, 165], "typic": [89, 90], "u": [17, 21, 190, 191, 193, 197, 198], "uint16": [22, 27, 191], "uint32": [3, 22, 27], "uint64": [22, 27, 32, 38, 39, 42], "uint8": [0, 22, 27, 157, 160, 182, 188, 191, 195], "undefin": 85, "under": [164, 165, 184], "undergon": 193, "undersegment": 184, "undoc": 189, "unet": [17, 18, 21, 195, 196], "unet_class": [18, 21], "unet_norm": 199, "uniform": [152, 154], "uniform_3d_rot": [132, 134, 152, 154, 198], "uniformli": [132, 134], "union": [38, 40, 41, 45, 84, 86, 88, 89, 90, 91], "uniqu": [16, 21, 31, 38, 49, 54, 57, 64, 65, 69, 72, 92, 95, 128, 140, 143, 180, 191, 196, 199], "unit": [17, 21, 46, 182, 191, 195], "unknown": [12, 13, 191], "unlik": [85, 87, 89, 90, 92], "unprocess": 193, "unsign": 191, "unstruct_collection_overrid": 165, "unstruct_strat": 165, "unstructur": [164, 165], "unstructure_fallback_factori": 165, "unstructurehook": 165, "unstructurestrategi": 165, "until": [154, 156, 195, 197], "unus": [132, 134], "up": [17, 21, 38, 44, 69, 121, 124, 140, 142, 147, 149, 150, 151, 152, 154, 155, 156, 162, 170, 182, 187, 190, 197, 198], "upath": [0, 1, 2, 4, 5, 7, 8, 9, 38, 46, 47, 60, 63, 95, 126, 157, 158, 160, 162, 167], "updat": [69, 147, 152, 154, 157, 158, 168, 183, 187, 195], "update_best_info": 183, "update_best_lay": 183, "update_neuroglanc": 183, "update_with_new_validation_if_poss": 183, "updated_frac": 180, "updated_neuroglancer_lay": 183, "upper": [84, 90, 153, 154, 188], "upsampl": [17, 18, 21, 38, 44, 60, 63, 190, 199], "upsample_channel_contract": [17, 21], "upsample_factor": [17, 18, 21, 199], "upsample_unet": 199, "upstream": [2, 4, 7, 152, 154, 156], "upstream_task": [2, 4, 7], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 108, 110, 111, 112, 113, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 154, 156, 157, 158, 160, 164, 165, 167, 168, 170, 172, 173, 179, 182, 183, 184, 187, 188, 189, 190, 191, 192, 193, 195, 196, 197, 198, 199], "usag": [162, 170, 189], "use_attent": [17, 18, 21, 199], "use_gpu": 3, "use_negative_class": [60, 63], "use_quant": 3, "user": [49, 54, 57, 157, 158, 167, 172, 187, 195], "user_instal": 195, "usual": [101, 102, 121, 124, 152, 154], "util": [157, 186, 193, 195, 196], "v": [154, 156, 193], "val": 60, "valid": [0, 1, 5, 9, 16, 17, 20, 21, 31, 35, 36, 37, 38, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 71, 72, 83, 84, 85, 87, 88, 89, 90, 92, 95, 128, 130, 140, 143, 146, 147, 157, 159, 162, 168, 170, 173, 174, 183, 186, 191, 195, 196, 198, 199], "validate_config": [63, 68], "validate_group_nam": [63, 66], "validate_run": 185, "validated_until": [69, 147], "validation_contain": [162, 170], "validation_dataset": [0, 157, 183, 188], "validation_input_arrai": [162, 170], "validation_interv": [69, 71, 72, 173, 195, 198], "validation_it": 195, "validation_iteration_scor": [69, 147, 186], "validation_output_arrai": [162, 170], "validation_paramet": 183, "validation_prediction_arrai": [162, 170], "validation_scor": [69, 71, 89, 90, 159, 168, 173, 174, 186, 195], "validation_score_nam": 159, "validationiterationscor": [69, 146, 147, 168, 173, 174], "validationscor": [69, 71, 89, 90, 147, 173, 174], "valu": [6, 13, 14, 22, 24, 25, 26, 27, 28, 29, 33, 38, 49, 54, 57, 60, 63, 69, 79, 81, 84, 85, 90, 95, 98, 99, 100, 101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 114, 117, 118, 120, 121, 128, 129, 130, 133, 134, 135, 138, 139, 140, 144, 147, 152, 154, 159, 179, 180, 182, 184, 191], "value_typ": 85, "valueerror": [0, 12, 13, 17, 21, 36, 37, 38, 60, 63, 69, 84, 85, 87, 90, 92, 98, 101, 129, 140, 147, 157, 159, 160, 166, 168, 170, 172, 173, 174, 175, 177, 182, 183, 184, 188], "variabl": [132, 134, 187, 192, 195, 197], "variat": [12, 13, 14, 15, 21, 84, 85, 90, 91, 92, 184], "varieti": 191, "variou": [64, 65, 85, 90, 138, 140, 142, 198, 199], "vd": 188, "ve": [190, 198], "vector": [27, 30, 85, 95, 105], "veri": [81, 94, 95, 97, 197, 198], "verif": [51, 54, 62, 63], "verifi": [16, 20, 21, 31, 36, 37, 38, 47, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 79, 81, 83, 94, 95, 126, 128, 130, 140, 143], "versa": 184, "version": [33, 34, 38, 43, 190, 194], "ves_mem": 190, "vi": 184, "vi_tabl": 184, "via": [18, 21, 118, 120, 121, 122, 149, 154, 195], "vice": 184, "video": 193, "view": [3, 17, 21, 48, 54, 181, 186, 198], "viewer": [183, 195], "viewerst": 183, "visibl": [152, 154, 164, 165], "vision": 85, "visual": [71, 138, 140, 183, 193, 197], "visualize_pipelin": [71, 138, 140], "voi": [0, 84, 85, 90, 91, 92, 157, 181, 186, 188, 191, 195], "voi_merg": [90, 91, 92], "voi_split": [90, 91, 92], "vol": 3, "volara": 197, "volum": [3, 7, 23, 32, 35, 38, 39, 42, 60, 63, 133, 134, 182, 191, 192, 193, 195, 196, 198], "vote": 3, "voxel": [15, 17, 18, 21, 22, 24, 25, 27, 28, 30, 32, 38, 39, 42, 44, 46, 54, 56, 60, 63, 69, 70, 78, 79, 95, 105, 110, 111, 117, 118, 120, 121, 122, 124, 132, 134, 152, 154, 178, 182, 183, 184, 188, 191], "voxel_s": [17, 21, 38, 46, 47, 69, 70, 117, 118, 120, 121, 122, 152, 154, 176, 178, 182, 183, 191, 195], "voxel_size_input": 73, "voxel_size_output": 73, "w": [180, 188, 195], "w_g": 17, "w_spars": 180, "w_x": 17, "wa": [75, 76, 148, 183, 197], "wai": [11, 12, 13, 14, 81, 95, 97, 127, 195, 197, 198], "wait": 7, "wandb": 197, "want": [17, 34, 38, 43, 44, 69, 70, 147, 191, 196, 197, 198], "warn": 188, "watersh": [10, 110, 115, 116], "watershed_funct": [4, 110, 115, 186], "watershed_post_processor": [110, 186], "watershed_post_processor_paramet": [110, 115, 186], "watershedpostprocessor": [78, 95, 110, 115, 116], "watershedpostprocessorparamet": [110, 115, 116, 195], "waterz": 197, "we": [13, 14, 17, 18, 21, 69, 147, 151, 154, 156, 162, 170, 184, 190, 191, 193, 195, 196, 197, 198], "web": [192, 194, 198], "webserv": [71, 138, 140, 183], "websit": 192, "weigel": 193, "weight": [0, 17, 48, 49, 54, 55, 57, 71, 73, 74, 75, 76, 77, 79, 81, 84, 88, 90, 95, 98, 99, 100, 101, 102, 103, 104, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 138, 140, 150, 154, 157, 166, 171, 175, 180, 185, 195, 198], "weights_kei": [150, 154], "weights_stor": [169, 171, 186], "weightsstor": [166, 175], "well": [85, 94, 95, 193], "were": [25, 27, 30], "wether": [88, 89, 90], "what": [69, 147, 191], "whatev": 191, "when": [17, 18, 20, 21, 60, 69, 70, 75, 76, 101, 102, 147, 148, 163, 167, 184, 189], "whenev": [83, 95], "where": [17, 22, 27, 30, 54, 56, 69, 81, 84, 85, 90, 92, 94, 95, 106, 110, 138, 140, 142, 147, 149, 154, 157, 160, 162, 167, 170, 171, 195, 196, 198], "wherea": [54, 56], "whether": [0, 3, 7, 8, 17, 18, 20, 21, 31, 36, 37, 38, 47, 69, 71, 79, 81, 84, 85, 86, 88, 89, 90, 91, 94, 95, 117, 118, 120, 121, 128, 129, 130, 138, 139, 140, 143, 147, 152, 154, 159, 173, 182, 183, 184, 188, 195, 196, 199], "which": [11, 12, 13, 14, 17, 18, 21, 22, 23, 25, 27, 28, 30, 32, 33, 38, 39, 40, 41, 42, 44, 45, 54, 56, 69, 71, 73, 75, 76, 79, 81, 85, 87, 89, 90, 92, 94, 95, 97, 105, 110, 111, 118, 120, 121, 122, 124, 131, 134, 135, 136, 137, 138, 139, 140, 142, 145, 147, 150, 153, 154, 162, 164, 165, 168, 171, 173, 175, 183, 188, 191, 195, 199], "while": [69, 70, 86, 90], "who": [139, 140], "whole": [0, 157], "whose": 17, "why": [31, 38, 47, 95, 128, 130, 140, 143], "width": [17, 21, 182, 183], "william": [189, 193], "window": 183, "wise": [17, 184, 197], "within": [17, 21, 60, 63, 84, 85, 90, 118, 120, 121, 122, 134, 135, 182, 195], "without": [71, 73, 75, 83, 95, 152, 154, 198], "won": 195, "word": 184, "work": [10, 38, 47, 69, 147, 164, 165, 187, 191, 195, 197, 198], "worker": [0, 1, 2, 4, 5, 6, 7, 8, 9, 69, 72, 106, 108, 110, 111, 113, 115, 139, 140, 157, 160, 188], "worker_fil": [2, 4, 7, 188], "worker_funct": [2, 4, 7], "world": [132, 134, 152, 154, 182], "would": [121, 124, 162, 170, 191], "wr": 188, "wrap": [11, 12, 13, 14], "wrap_command": [12, 13, 14], "wrapped_command": [12, 13], "wrapper": [17, 21], "write": [2, 4, 7, 158, 162, 170, 188, 197], "write_roi": [2, 4, 7, 10], "write_roi_s": 188, "write_s": 176, "written": [188, 198], "www": 189, "x": [17, 19, 21, 38, 47, 69, 70, 100, 101, 164, 165, 178, 184, 188, 191, 195, 197], "x1_kei": [154, 155], "x2_kei": [154, 155], "x64": 195, "xarrai": [69, 145, 147, 195], "xlabel": 195, "xlogx": 184, "xr": [69, 145], "xy": 3, "y": [17, 19, 21, 38, 47, 164, 165, 178, 184, 187, 188, 191, 195], "y_kei": [154, 155], "yaml": [157, 158, 171, 187, 193, 195, 198], "year": 193, "yet": [69, 145], "yield": [3, 129, 140], "ylabel": 195, "yoshi": 199, "yoshi_unet_config": 199, "you": [31, 34, 38, 43, 44, 47, 69, 70, 81, 94, 95, 97, 121, 124, 128, 147, 187, 190, 191, 192, 193, 196, 198], "your": [18, 21, 25, 26, 27, 28, 38, 39, 47, 79, 85, 87, 89, 90, 92, 95, 121, 124, 134, 136, 187, 189, 190, 191, 192, 195, 196, 198, 199], "your_key_pair": 187, "your_security_group": 187, "yum": 187, "yurii": 193, "z": [17, 19, 21, 38, 47, 178, 188, 191, 195], "zarr": [0, 3, 38, 47, 60, 63, 85, 90, 92, 157, 160, 170, 191, 193, 195, 198], "zarr_array_config": [38, 186], "zarrarrayconfig": [38, 47, 60], "zero": [33, 38, 54, 56, 69, 85, 129, 140, 145, 180, 182, 184], "zerodivisionerror": 85, "zerossourc": 182, "zip": 180, "zouinkhi": [189, 193], "zubov": 193}, "titles": ["dacapo.apply", "dacapo.blockwise.argmax_worker", "dacapo.blockwise.blockwise_task", "dacapo.blockwise.empanada_function", "dacapo.blockwise", "dacapo.blockwise.predict_worker", "dacapo.blockwise.relabel_worker", "dacapo.blockwise.scheduler", "dacapo.blockwise.segment_worker", "dacapo.blockwise.threshold_worker", "dacapo.blockwise.watershed_function", "dacapo.compute_context.bsub", "dacapo.compute_context.compute_context", "dacapo.compute_context", "dacapo.compute_context.local_torch", "dacapo.experiments.architectures.architecture", "dacapo.experiments.architectures.architecture_config", "dacapo.experiments.architectures.cnnectome_unet", "dacapo.experiments.architectures.cnnectome_unet_config", "dacapo.experiments.architectures.dummy_architecture", "dacapo.experiments.architectures.dummy_architecture_config", "dacapo.experiments.architectures", "dacapo.experiments.arraytypes.annotations", "dacapo.experiments.arraytypes.arraytype", "dacapo.experiments.arraytypes.binary", "dacapo.experiments.arraytypes.distances", "dacapo.experiments.arraytypes.embedding", "dacapo.experiments.arraytypes", "dacapo.experiments.arraytypes.intensities", "dacapo.experiments.arraytypes.mask", "dacapo.experiments.arraytypes.probabilities", "dacapo.experiments.datasplits.datasets.arrays.array_config", "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", "dacapo.experiments.datasplits.datasets.arrays.concat_array_config", "dacapo.experiments.datasplits.datasets.arrays.constant_array_config", "dacapo.experiments.datasplits.datasets.arrays.crop_array_config", "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", "dacapo.experiments.datasplits.datasets.arrays", "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", "dacapo.experiments.datasplits.datasets.arrays.ones_array_config", "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", "dacapo.experiments.datasplits.datasets.arrays.sum_array_config", "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", "dacapo.experiments.datasplits.datasets.dataset", "dacapo.experiments.datasplits.datasets.dataset_config", "dacapo.experiments.datasplits.datasets.dummy_dataset", "dacapo.experiments.datasplits.datasets.dummy_dataset_config", "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", "dacapo.experiments.datasplits.datasets.graphstores", "dacapo.experiments.datasplits.datasets", "dacapo.experiments.datasplits.datasets.raw_gt_dataset", "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", "dacapo.experiments.datasplits.datasets.simple", "dacapo.experiments.datasplits.datasplit", "dacapo.experiments.datasplits.datasplit_config", "dacapo.experiments.datasplits.datasplit_generator", "dacapo.experiments.datasplits.dummy_datasplit", "dacapo.experiments.datasplits.dummy_datasplit_config", "dacapo.experiments.datasplits", "dacapo.experiments.datasplits.keys", "dacapo.experiments.datasplits.keys.keys", "dacapo.experiments.datasplits.simple_config", "dacapo.experiments.datasplits.train_validate_datasplit", "dacapo.experiments.datasplits.train_validate_datasplit_config", "dacapo.experiments", "dacapo.experiments.model", "dacapo.experiments.run", "dacapo.experiments.run_config", "dacapo.experiments.starts.cosem_start", "dacapo.experiments.starts.cosem_start_config", "dacapo.experiments.starts", "dacapo.experiments.starts.start", "dacapo.experiments.starts.start_config", "dacapo.experiments.tasks.affinities_task", "dacapo.experiments.tasks.affinities_task_config", "dacapo.experiments.tasks.distance_task", "dacapo.experiments.tasks.distance_task_config", "dacapo.experiments.tasks.dummy_task", "dacapo.experiments.tasks.dummy_task_config", "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", "dacapo.experiments.tasks.evaluators.dummy_evaluator", "dacapo.experiments.tasks.evaluators.evaluation_scores", "dacapo.experiments.tasks.evaluators.evaluator", "dacapo.experiments.tasks.evaluators", "dacapo.experiments.tasks.evaluators.instance_evaluation_scores", "dacapo.experiments.tasks.evaluators.instance_evaluator", "dacapo.experiments.tasks.hot_distance_task", "dacapo.experiments.tasks.hot_distance_task_config", "dacapo.experiments.tasks", "dacapo.experiments.tasks.inner_distance_task", "dacapo.experiments.tasks.inner_distance_task_config", "dacapo.experiments.tasks.losses.affinities_loss", "dacapo.experiments.tasks.losses.dummy_loss", "dacapo.experiments.tasks.losses.hot_distance_loss", "dacapo.experiments.tasks.losses", "dacapo.experiments.tasks.losses.loss", "dacapo.experiments.tasks.losses.mse_loss", "dacapo.experiments.tasks.one_hot_task", "dacapo.experiments.tasks.one_hot_task_config", "dacapo.experiments.tasks.post_processors.argmax_post_processor", "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", "dacapo.experiments.tasks.post_processors.dummy_post_processor", "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", "dacapo.experiments.tasks.post_processors", "dacapo.experiments.tasks.post_processors.post_processor", "dacapo.experiments.tasks.post_processors.post_processor_parameters", "dacapo.experiments.tasks.post_processors.threshold_post_processor", "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", "dacapo.experiments.tasks.post_processors.watershed_post_processor", "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", "dacapo.experiments.tasks.predictors.affinities_predictor", "dacapo.experiments.tasks.predictors.distance_predictor", "dacapo.experiments.tasks.predictors.dummy_predictor", "dacapo.experiments.tasks.predictors.hot_distance_predictor", "dacapo.experiments.tasks.predictors", "dacapo.experiments.tasks.predictors.inner_distance_predictor", "dacapo.experiments.tasks.predictors.one_hot_predictor", "dacapo.experiments.tasks.predictors.predictor", "dacapo.experiments.tasks.pretrained_task", "dacapo.experiments.tasks.pretrained_task_config", "dacapo.experiments.tasks.task", "dacapo.experiments.tasks.task_config", "dacapo.experiments.trainers.dummy_trainer", "dacapo.experiments.trainers.dummy_trainer_config", "dacapo.experiments.trainers.gp_augments.augment_config", "dacapo.experiments.trainers.gp_augments.elastic_config", "dacapo.experiments.trainers.gp_augments.gamma_config", "dacapo.experiments.trainers.gp_augments", "dacapo.experiments.trainers.gp_augments.intensity_config", "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", "dacapo.experiments.trainers.gp_augments.simple_config", "dacapo.experiments.trainers.gunpowder_trainer", "dacapo.experiments.trainers.gunpowder_trainer_config", "dacapo.experiments.trainers", "dacapo.experiments.trainers.optimizers", "dacapo.experiments.trainers.trainer", "dacapo.experiments.trainers.trainer_config", "dacapo.experiments.training_iteration_stats", "dacapo.experiments.training_stats", "dacapo.experiments.validation_iteration_scores", "dacapo.experiments.validation_scores", "dacapo.ext", "dacapo.gp.copy", "dacapo.gp.dacapo_create_target", "dacapo.gp.dacapo_points_source", "dacapo.gp.elastic_augment_fuse", "dacapo.gp.gamma_noise", "dacapo.gp", "dacapo.gp.product", "dacapo.gp.reject_if_empty", "dacapo", "dacapo.options", "dacapo.plot", "dacapo.predict", "dacapo.predict_local", "dacapo.store.array_store", "dacapo.store.config_store", "dacapo.store.conversion_hooks", "dacapo.store.converter", "dacapo.store.create_store", "dacapo.store.file_config_store", "dacapo.store.file_stats_store", "dacapo.store", "dacapo.store.local_array_store", "dacapo.store.local_weights_store", "dacapo.store.mongo_config_store", "dacapo.store.mongo_stats_store", "dacapo.store.stats_store", "dacapo.store.weights_store", "dacapo.tmp", "dacapo.train", "dacapo.utils.affinities", "dacapo.utils.array_utils", "dacapo.utils.balance_weights", "dacapo.utils", "dacapo.utils.pipeline", "dacapo.utils.view", "dacapo.utils.voi", "dacapo.validate", "API Reference", "AWS EC2 Setup Guide", "CLI", "<no title>", "Fine-Tune Cosem Starter", "Data Formatting", "Docker Configuration for JupyterHub-Dacapo", "DaCapo ", "Installation", "Minimal Tutorial", "Overview", "Road Map", "Tutorial: A Simple Experiment in Python", "UNet Models"], "titleterms": {"": 193, "0": 197, "1": 190, "2": 190, "3": 190, "A": 198, "access": 187, "affin": 178, "affinities_loss": 98, "affinities_predictor": 117, "affinities_task": 78, "affinities_task_config": 79, "annot": 22, "api": 186, "appli": [0, 188], "architectur": [15, 16, 17, 18, 19, 20, 21, 195], "architecture_config": 16, "argmax_post_processor": 106, "argmax_post_processor_paramet": 107, "argmax_work": 1, "arrai": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], "array_config": 31, "array_stor": 162, "array_util": 179, "arraytyp": [22, 23, 24, 25, 26, 27, 28, 29, 30], "attribut": [0, 1, 3, 5, 6, 7, 8, 9, 60, 69, 72, 73, 76, 85, 89, 92, 118, 120, 122, 123, 138, 145, 152, 153, 156, 158, 159, 160, 161, 165, 167, 168, 170, 171, 172, 173, 177, 178, 185], "augment_config": 131, "avail": 190, "aw": 187, "balance_weight": 180, "binari": 24, "binarize_array_config": 32, "binary_segmentation_evalu": 85, "binary_segmentation_evaluation_scor": 84, "blockwis": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 188], "blockwise_task": 2, "bsub": 11, "build": 192, "can": 197, "checkpoint": 187, "cite": 193, "class": [2, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 162, 163, 165, 167, 168, 170, 171, 172, 173, 174, 175, 182, 183], "cli": 188, "cnnectome_unet": 17, "cnnectome_unet_config": 18, "compute_context": [11, 12, 13, 14], "concat_array_config": 33, "config": [188, 195, 198], "config_stor": 163, "configur": [187, 190, 192, 195, 199], "constant_array_config": 34, "contain": 192, "content": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185], "conversion_hook": 164, "convert": 165, "copi": 149, "cosem": 190, "cosem_start": 73, "cosem_start_config": 74, "cosemstartconfig": 190, "creat": [190, 198], "create_stor": 166, "crop_array_config": 35, "dacapo": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 188, 192, 193, 196], "dacapo_create_target": 150, "dacapo_points_sourc": 151, "data": [187, 191, 195, 198], "dataset": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], "dataset_config": 49, "datasplit": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 195], "datasplit_config": 59, "datasplit_gener": 60, "detail": 197, "distanc": 25, "distance_predictor": 118, "distance_task": 80, "distance_task_config": 81, "do": 195, "docker": [187, 192], "doe": 196, "dummy_architectur": 19, "dummy_architecture_config": 20, "dummy_array_config": 36, "dummy_dataset": 50, "dummy_dataset_config": 51, "dummy_datasplit": 61, "dummy_datasplit_config": 62, "dummy_evalu": 87, "dummy_evaluation_scor": 86, "dummy_loss": 99, "dummy_post_processor": 108, "dummy_post_processor_paramet": 109, "dummy_predictor": 119, "dummy_task": 82, "dummy_task_config": 83, "dummy_train": 129, "dummy_trainer_config": 130, "dvid_array_config": 37, "ec2": 187, "elastic_augment_fus": 152, "elastic_config": 132, "embed": 26, "empanada_funct": 3, "environ": 195, "evalu": [84, 85, 86, 87, 88, 89, 90, 91, 92], "evaluation_scor": 88, "exampl": [190, 193, 199], "except": 163, "experi": [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 187, 198], "ext": 148, "file_config_stor": 167, "file_stats_stor": 168, "fine": 190, "footnot": 191, "format": 191, "full": 190, "function": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 60, 73, 76, 92, 157, 159, 160, 161, 164, 166, 176, 177, 178, 179, 180, 182, 183, 184, 185, 193], "further": 192, "gamma_config": 133, "gamma_nois": 153, "github": 193, "goal": 197, "gp": [149, 150, 151, 152, 153, 154, 155, 156], "gp_augment": [131, 132, 133, 134, 135, 136, 137], "graph_source_config": 52, "graphstor": [52, 53], "guid": 187, "gunpowder_train": 138, "gunpowder_trainer_config": 139, "have": 197, "help": 193, "hot_distance_loss": 100, "hot_distance_predictor": 120, "hot_distance_task": 93, "hot_distance_task_config": 94, "how": 196, "i": 196, "imag": [187, 192], "import": 190, "inner_distance_predictor": 122, "inner_distance_task": 96, "inner_distance_task_config": 97, "instal": [193, 194, 198], "instance_evalu": 92, "instance_evaluation_scor": 91, "intens": 28, "intensity_array_config": 39, "intensity_config": 135, "intensity_scale_shift_config": 136, "introduct": 195, "jupyterhub": 192, "kei": [64, 65], "learn": 195, "librari": 195, "local_array_stor": 170, "local_torch": 14, "local_weights_stor": 171, "logical_or_array_config": 40, "loss": [98, 99, 100, 101, 102, 103], "map": 197, "mask": 29, "merge_instances_array_config": 41, "metadata": 191, "minim": 195, "missing_annotations_mask_config": 42, "model": [70, 190, 199], "modul": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185], "mongo_config_stor": 172, "mongo_stats_stor": 173, "mse_loss": 103, "need": 195, "non": 197, "note": 190, "one_hot_predictor": 123, "one_hot_task": 104, "one_hot_task_config": 105, "ones_array_config": 43, "optim": 141, "option": 158, "org": 193, "orgnaiz": 191, "overview": [191, 193, 195, 196, 197, 199], "packag": [4, 13, 21, 27, 38, 53, 54, 63, 64, 69, 75, 90, 95, 101, 110, 121, 134, 140, 148, 154, 157], "paramet": 199, "pipelin": 182, "plot": 159, "post_processor": [106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116], "post_processor_paramet": 112, "predict": [160, 188], "predict_loc": 161, "predict_work": 5, "predictor": [117, 118, 119, 120, 121, 122, 123, 124], "prepar": 195, "prerequisit": 190, "pretrain": 190, "pretrained_task": 125, "pretrained_task_config": 126, "probabl": 30, "product": 155, "python": 198, "raw_gt_dataset": 55, "raw_gt_dataset_config": 56, "refer": 186, "reject_if_empti": 156, "relabel_work": 6, "repo": 193, "requir": 192, "resampled_array_config": 44, "resourc": 193, "retriev": 195, "road": 197, "run": [71, 187, 188, 190, 192, 195, 198], "run_config": 72, "s3": 187, "schedul": 7, "segment": 188, "segment_work": 8, "setup": [187, 193, 195], "simpl": [57, 198], "simple_config": [66, 137], "star": 193, "start": [73, 74, 75, 76, 77, 190, 198], "start_config": [77, 190], "starter": 190, "stats_stor": 174, "step": 190, "stop": 192, "storag": 198, "store": [162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 187, 195], "submodul": [4, 13, 21, 27, 38, 53, 54, 63, 64, 69, 75, 90, 95, 101, 110, 121, 134, 140, 154, 157, 169, 181], "sum_array_config": 45, "task": [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 195], "task_config": 128, "thi": [193, 195], "threshold_post_processor": 113, "threshold_post_processor_paramet": 114, "threshold_work": 9, "tiff_array_config": 46, "tmp": 176, "tool": 193, "train": [177, 188, 195], "train_validate_datasplit": 67, "train_validate_datasplit_config": 68, "trainer": [129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 195], "trainer_config": 143, "training_iteration_stat": 144, "training_stat": 145, "tune": 190, "tutori": [193, 195, 198], "unet": 199, "util": [178, 179, 180, 181, 182, 183, 184], "v1": 197, "valid": [185, 188], "validation_iteration_scor": 146, "validation_scor": 147, "view": 183, "visual": 195, "voi": 184, "want": 195, "watershed_funct": 10, "watershed_post_processor": 115, "watershed_post_processor_paramet": 116, "weights_stor": 175, "what": [195, 196], "work": 196, "you": 195, "zarr_array_config": 47}}) \ No newline at end of file diff --git a/tutorial.html b/tutorial.html index 34715ca53..40d563b77 100644 --- a/tutorial.html +++ b/tutorial.html @@ -51,6 +51,7 @@
  • Overview
  • Installation
  • Minimal Tutorial
  • +
  • Data Formatting
  • UNet Models
  • Tutorial: A Simple Experiment in Python