From 59dab13cf99d6d81182bfb580ee35322f68795bf Mon Sep 17 00:00:00 2001 From: GitHub Action Date: Thu, 7 Nov 2024 16:13:49 +0000 Subject: [PATCH] Add changes for d0133fe61d91c118e4d74c41cc3e37d4d0aa909b --- ...34bf5544cbeeda78864d5ba72d5e8aa8d9030c.png | Bin 150333 -> 0 bytes ...5bc1b5620cd50c7403731d3668a9bbc58b6489.png | Bin 0 -> 165383 bytes ...5991c63d742fc7c4022c3069509bb1a20dd599.png | Bin 365136 -> 0 bytes ...45bb7b2c06c0dc7e6752090fa59dd6078fccd0.png | Bin 31350 -> 0 bytes ...2d4f77eace3ab471f33e8133780fc9a2e6e1bd.png | Bin 0 -> 437373 bytes ...75b031801dc021d21bbeb63a687c2ae205b309.png | Bin 22112 -> 0 bytes ...fc1d6f53803b2d1d4a45eb577f801db4d909da.png | Bin 0 -> 32355 bytes ...74cf359d26fb6dcff2709fc01c3b5f8de02768.png | Bin 0 -> 22219 bytes _sources/cosem_starter.rst.txt | 61 +- _sources/notebooks/minimal_tutorial.ipynb.txt | 12500 ++++++++-------- cosem_starter.html | 55 + notebooks/minimal_tutorial.html | 12 +- searchindex.js | 2 +- 13 files changed, 6359 insertions(+), 6271 deletions(-) delete mode 100644 _images/47638f102b6ae280b3bf78242334bf5544cbeeda78864d5ba72d5e8aa8d9030c.png create mode 100644 _images/51cdf388f441d27cb394fc34355bc1b5620cd50c7403731d3668a9bbc58b6489.png delete mode 100644 _images/543df62e8ee0c046852195b03c5991c63d742fc7c4022c3069509bb1a20dd599.png delete mode 100644 _images/861cf92042db801d4447df36db45bb7b2c06c0dc7e6752090fa59dd6078fccd0.png create mode 100644 _images/99d5fdd1d05e74662f078ac6762d4f77eace3ab471f33e8133780fc9a2e6e1bd.png delete mode 100644 _images/a2617a0b50e674893d8d0dc94875b031801dc021d21bbeb63a687c2ae205b309.png create mode 100644 _images/f0b777515a067bf92625a6b5c7fc1d6f53803b2d1d4a45eb577f801db4d909da.png create mode 100644 _images/fa87b4210262a0cea0da17811d74cf359d26fb6dcff2709fc01c3b5f8de02768.png diff --git a/_images/47638f102b6ae280b3bf78242334bf5544cbeeda78864d5ba72d5e8aa8d9030c.png b/_images/47638f102b6ae280b3bf78242334bf5544cbeeda78864d5ba72d5e8aa8d9030c.png deleted file mode 100644 index bf9e9c049acae6a018c75bec34fa21577e8f0d7d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 150333 zcmc$_Wmr`07d|>zl+;j4N;ilgASp1w&@BzpAl(g$APhrFDJesDcPSDIN=t|I&|Omh zJ=V|noDb*Axz4!^aJ%=O=UH*Dd)?~+rlKT+gGGh~0)cR3p%66?=;i@h=L7b8R<5p&E`nTK zc7Jc+ba1xhqEWg&4!i`@5vt{-EWF;1_)s+9~*Tzl{}5(2N9jY7l-H&YjzL$jPTb{8K*L zwX+7RXQrj@mRWbLs|q=eXZC%l#AY<#-i?rMDC8;awRse|@El(PgC^+jU!ve8d(c1s z4#HQC6WB$CfI;SOd&ICfEbe4h)U?o<-m44RnG_1&~F`k0&U z&$?N-2dQPpPBippG4wms+^8Nk1XkUV=CcKhp_BPBA!hOA4uxyKIC3x>+kL{CN%){& z@<8X8OE)76ocVu;0K#&*!A)Q_D|Tmr`s$8ls@s#1i6t0Q+T$oH5yx@!#0;4zD$nia zW5>g9TBiHUU+XT8CMA3Pj>av^&3j1nT?eGf*s*J;-N}Ik@_tDdqyF~o+l#YEN+A-| z26y2`=hsAhj@m_zr(SLcT%Bn*d2;_aTt^4Jd0>vEB)ki`O(lG1)WCysaFw^D_0rq6 z`EVrI1M8O^8G`<}mH10{JlpQ~mw59CIOppGv9pazNnptv*qIt?hVVwaw^!C|%@ZNy+OLUz3P+w^no0(}?@gz5^FQAiz9guCoh~ zLY!>xuD=&O+jwc%>}`Imm^XXZ7OYSZQNe_ zRyZ&=7CQGa6Av>sX77~N;e|!!?ob`(pD;=%__nM*VVw! zu}lki0VmgOCviFW-zu;s3Pq|9`~6y$wZk7k$V%k~f~`oe78m7mr^Of#S-rD-Z#qq3B38O51tSp7cl#?eAZsoqG zdmDT8E-UlJwKJ@yJ--kOhD$f_dj*yh?qkL%Kl}d}N}nHXy?n^t(*`88fvP*}sG$$X zjQ^RP@5Q=N7ek_cpsQen&vr8@03D<`N~yYA%LG52Xmb01uRB;D#Vc*S6ugB;72bNj z#8n5l%JF=+YoTV+p3P&Zg2MCr3(xi9+WuMxBYn4Tnw}fwU5*!rqYGoEQBnX-bWaQa z3XJgb6ge!d-(cWsr6h8wp^z?0>9YIX@-_dya`AxgySjN0oQhWY>_)`-I5{OXT?0|Ayag7DY9zg9&kvu&jg7>>vAdsu)((SD<72pV0SrH31ZaZ`{>o} zyJ}k&e`^kE^ZB3zcAY>Vrj;67hG0klC~icrz5$XVzW(7aj#<;ia;14(=Gb|Aj3=nG>{rC zF#ukKf4=3>Dygon4%3zYclB93s!s?mf=LbEnbi8CsYzZE7U4| zVt=(!**6~*a86fJzfATeZq`h`=T9xSj`w{YM8+;d4Zgwp*^n%DAOg%kk-bZX!G%YErl{IkA< zmg#;qHEGMs7C^9AwmQr-J!*M*?;q>NMF6QWGBV=K|5Ae)KyN5x?9D`VJ_5hZiE3!> z&>aECcU8XM-@kbC&?dn-ou^Nj&}Oux1E@*3T~5(**^av%r05g%Q_ejcbz2SVCU!!< zw~lgMmajnM%Xl^|lZDQRC3~!VM*y~7iod)S%!r4Bu%-1D1(5g_ut=V*)+>Js=T9_m zggiL?_mgM8zaqDPuc>8_J+%Vtv>k9p!bOYMzQygk53)2A8UI;+dpO%WygT~iYw?~nf4`p9$Vds7cp;efNInu|87#g@a}j%_D_qKGo=nP+|{f<82gIaOxLFp95-NCs2hVe*ExG z@tE-fJ$LDSgg$BC$YEci}Dnu<(CzJe-5^$$&>l)B!KMfo~HPBk2jK%lFFWb zxOSVI?>3N`EFLa`HvyjZfxl%J$9Aj?&F{wnaE+FL*HEE)zQXH2sf|Gs|Cf3F&Q|lx z?Ck6*MU1}`;a5n+fhKF5dN^vIj+Ge$41w)v+QX>ne6Pom0v%vd6iNbfH|n+~*GEgc z+$Zfq3QJqaK+#IMPM4=EmdDdTn(iLAUKy}n0g%~|pPLqz?9g)eIyx>SUDOW+^mOrZ zbHEKEH51R+Yyr}9vLbf%cG_~TEf^p{ePUO_xI!EEQS}a0WkgTDzkF|cSIC_`QeYm# zb#sDP^40ARr2!WR~#_c&VKq81z?aD<~n0_PNwdS`RciC z73}Q#b@-s2c0%QM%ITta9zG*-pY`)NKn`4IO7o1mbKtF|lpj ztkEHuuCYVy&T}<8@xE#2ZGFGPZzn_PmqDaPzN!Ta&Brqz_m+Bg0R)&YY20diII910 z+jm6>RfriC-aJRqF;W9pf&@+j*3ILy*(<6)o^rp)*w3VoYS=HV!!7-!J(?TOwTz{168W8MSS2?J6TNP8TV z{ceEj_PW`e00LpMF;;%E8x@c;y*((;)d7T*9|%AU;pYH#pD*vC`gnCQdvzKK_|E== zvi~08InXEE1Z_0!_tveX`8W=%%FMk$r@Ak9;{AoY>-%00SD(L8g&9m$tfr=B9_49( zjK|p>AC4M1RQ(PQ#NrnjCJ?CCXI`DX>2T8A9_J4*47R)lKo@0Qfa=Ki=;`W~U0t4C z2l=0Tq@EYMI>obZK71m)^Zq)DWn|l-s;e;2FQJ$`89Dg?P>+C?KzYIf2qFk=49~s0 z0*?29mZx;%*z5t!|Kf-7;o7%B|B^C1kfx@l0P@|-`!350OXUj5d^qU=mya$FO9RXk zA4OiDtSJZJVFReO85bzX3%1Wh09}<18YKuIWE(;Wb$>|fF9@)%buCsh0el%(Y_Gny zwgv(@H0|E1nReH+HUNIHngidN|Y01xW^r&%G+D+DN7MRu}5%8ULqpOKp`?Jkje%4H%WuZvHHRdHgR04ouH)g!oIegdkX4`68 zFYG8>zHoz{M~PkDK^1O)pi?rdP3LzowB0-da>Nl}(bqs~`9zG0Nm+*iV&9)%N2TIz zYEj{uAGI^yHlX)m#B3-c3VPd)h=05k#rY4|Vpy*nY>X44w(Eb~IQyZ-j>7+BZmi0h zQ1tS|^kD59_Qlz87trEF?k;pKJim_n9_Y<{&JS|MIsh|8w)mZytfYE$sw;~G1C5h0 zfTf;5z1RgZ&jk3syb4H|t&hDz+u=Y(q6|2joCVV0*7=5|n7aL0h}bz=2$eT8XY+xY zzT=0R$eCs#i!X0p07VNOXjU8y5Amo)DNs-dw5;%C`vy!Sze8fcE4>o9EPUX(RR)%n(O)YIcBKvW?T{`8S?so*_j_>o* zmLFI$6izpeW&;9H*f(a8Y`0g^+R#7-gg6Dz*98OZFM0sbSU4?2@Glz}rf4gbnN$&ZdcKTPLh}K3`$X9sOhFccxSeyF)J|2XRL-f1N`nB%O zNC6Hgw2L9qNrE8t9~TYU=arP)0`c=qiF}VF^q5+_F7n@JUjaxU>i6R*fCQlD z0P+1$QS_iTOoJ?P;ax@sid9Pk1s2HEeNOm)mY8M0ZPkAd^a*P<2#FlZRd#P$#Qvke z{9G-x5h#%;3E}#!+mCH*Z0eIGS>pgK2&C;d_`f74!)LPxBr$Q(_ugp7{j+`vjDg4h z+0g%&7vhMzoVurP{F}MluV@8X?zWzc(x-SH%UH>d1GM=MQlsv>BTkSS7tY_R4I3}4 z`92i9-ZM?~pXUSrW5FPN#EbuTF0ed`RNo@`*K(nEi3Vh49rIHDZ6POUP#4Q?;!Ia` zkK+EjGT1dK*ZGCn*u?pX(VUMp3vjC1V5sY@?EgHCtqCZR`NEt&PGq3(WvM^rl6`Q) zvK6paeueDMkB>gWpc{ZCMBo&c$D6B5{c2@@b00}&MC|LwIH~w*7z#=Xe z#*LPD9qVawvaVAf@{x8~P0N%bO_qVvXP#Kcy=K!GxygTRE%hqWttr9?8CVR9{i1k3DR%~lP)`3i}ryt{Y~M8809isQ#w(dGThRuwb0k2${5zO zI~RBVdH@96j@E9o0yZ^%#cl(CeC0g8JgB9FVSU{HD(vqHKvJ&Y$KfxKM49*w0bq$R zJO{nMmPZ3@3#JKERbqN5`|h3$^bAosQ~1Zk__UG)sa7x^XWat`S4cHBO%OyX?fjSA z1iS%i84ScVCc<$>r`Q0{&!DdDm;#29f8Wi5jtU!mJAxD?R)G2=)O#nTEK_&>J|B8p z$`#Qe;cJ|3LNDmXA`!~6)MT(@DE0T_0c_h~rgeX<|W^4QO%0Pt7p zbLWu{DYme&k>MU^X}#877DCt08TSP*S#xSS>9ZzSIUL=)k$*QxU5 z!UOVbiVUpuMANHJU+bqVyu_zmYO<$jwAK83b5Ouu$UsXhx=*tp;m0rPDxpq!5!eKX^bXhsYa6g$^G&`V=BdC0^Y4HZ%X;pM$)^*Clh1c_k)H zb?4xJ69+*qq5&9WKzJbI7{c`=mGepPSfmD&2P(8uZQbLv^EH#(df=6IkKaC=SYT5aoZ@4tzYGVPSl2ZfW~oM8wTRHj?$?%rT8H_vrzMz{Fx)h>;lo zO`96t1w^hGyn4#$+~z?J$8?Zb)1Ft+5=ofnc$~L{Lhq8wU;!G4khG}l#A{v7i2H8_ z(ie13gVc0FuN?>Ea(>KPEd+tE9WLB$mlA|4;&dHUpPKo3Su2vR2u=)6>Bc$lXBWLd z0^Wda>L=+AoeW4Wpn--;h0vyLPFIrtBp?eatHB7XgE=i5Q?^m};dFU%gv9U+mbJ94 zYuQI@4_7jygXoV6*>?J;+gv-d`8_73x=NuGKD#e?YnNZk4D;v8={@@25>d`$F%jW z^T2Q=#xX1o+6SaoqgnSnj=)hbp5v4O^~uNpp~3QnPGR}z!_1x0m`XV{Bg+`qkM^WJ zd_-xL;zqTiH2(uEK|H{xK?Yf&PPyS}$m|LioyzR`k5Yw^=gthEryV(rvx3ry9{uCi zRnT+v&M$0=!IU<6cQYDV$aDv#in!|R|0aSfE~^Bj6(FJaU6CrNb~}W^8G}(NC2#r& znHlxUT&E>q_R`%L#wGj8gkg|Sp0&Exk)?e`i;<&a)ZUx4wn;OIc~Q;yrYn_{>s`5` z4w@n(ay>W`LVoi*=3i+^ki(pGzzC4_^xenJ>z0#j?tAT-p*m85xgf$a@55(HM<}_w z+@vFHqm`@m9Q@e~EOtJJCqK0pDO(O+9d|#a9gsIhI$x~w0As!Yf!6Ti&~(Vt%*h3U zd~2oba&NfULj$cnsPA&&Tp;hY7j?-5bPq%GmJL|k`Dtp3+y;!g$ zD7nk6@_k3)Uz0e#3T%u3Yl;)DdLz?Ro^dn3%AlRhY`L@;9Tc9_@?iTx7g>*+u*h--R@UOashc%qeVal+MOW1E`{N@0yPOt^fFf$- zf6BmF_x;)?U+t7Lw)gQ?>IFZbCkIYWt9qJDNr2v`It0WUJSno0e}t%H*0f@grEd^t z_BNM|eb%C1Bm0BORl8$tv}2vDZ1!;bdlh;oac-bHMCFQfQ@6Mb!>U}QK$6qmL^Wdz zd<@S#{U7rfRCgCjlt4`i%7E@?0g&-V>|K`PwM>R`6vqSP6WCddu_w_HN?O1tH-?*N zu+Z8lZs<>3Z>hZz2!@m78(kfrI)mP?$nyu=-WAI}UdN+>Lbwdry5X4@*FaXR1x(&g zze#1!chdez`au{A;GzG!=E>|h3y6opK+A+`o37Uu78gqax>HsFM7g}^NxO->9UMRL zy@-b!<>mI0wRTmBp=wC$YmJFcQ&ZBXoqI>7G>ak^l;+Ow<0M`Ma5IJk+6IPYmp@5K zg`em+ed#!WgqTTcwm%~pGxzlg`GaRP56p=NY@R)H{Qd&n1dy%9&4JMY@bwP23FLbV zSMvclDLL6`M8}f2@hv5lYA#!XHl0s#q5xQgaW;lpSOAyHzlMlZ`1Gwqs@#Sz08vvr zKW_W3r$w3Mw-R~wDMp9tu?r<0J>xP8H|97Bu#8Z^-G^|Mq{6j5PQmaeNgcR<%`(p1 znA(F<^?^C;4Q0_&dW+r^m^^3wjl;u30U&iipp_IC+>)j}xmkadq>q}~0286oVa2Wf zI9hOX^RpM^}=R^u`T6?X0w(~I$AbqVm#PZoV zise^BX)4HG+M-vKmfV~A-EXytD8HwT$H->erR?r7)$JbM{U70s2CHap-AeKQv8r8Z zfm71*<5`h@Js1!lsHGz*-YW7ncj@-T*xP>Hch zLXu1wJ7RzDvHp3DWg6AMd|J(RcLoTq(Zwv+?lLLc?%ME@w&!}SWbLsY0$mEB6&XI0 zBDXLQMe-eKP}`X{dBEx6Vj{UQU$p?`-@v+K$UtLzt)%=7ZG(n~wU9p1ru@YbF6PS1 z(vhd<=Wchz0w^!{Qbqnzd8KkTXazy~-mBSl2ZQqQ>z(0u7xZcXo$N`_<8fpBpav7z z!R4brLV-cXx>Na8Gnuz}b(LovPrAgT%nwT#=Yu1P ze~av0;GGChzDJkNdST3n$-rk0tewi2 zzm3Mbceh_EYw0d@KL%bYe_;Xh#IuPy2LFXbI-u`?npo{_=%4q5u^{9FGc(3~CO?gP z&Q&tJY4SAv?yiZ|p??=&nLfEp2dUugfS^Fon}lNhm)5hGjxRjwlzrcI!}cGQCOtg6zJ;n z(S312PAHQ1u9|EN(&^A4JC)%PSl8YlTc?i*?o5?CwvwHe8)IiH*j4|x{IU`Q7TJ5p zneZD$+dDpT4X>J93u!gRfE1}Cr zwBrY&N(f{AbUm-@&a0HEN?*6c2KU`5k3n^#IgNhyKTsKs0D2bB4Sl&gFhhER=KO~d zBXP_}(vxDgK11yY1oFwJa(`Y+9RJG$dJ2~n^cFYeNWD0FIss^s^n|4*SHqpN!*La0 zH!~MOe6jsldB5A3f|lg5GlEuz0F&b6_Lr2SS$6ebR1DbuxrA0 zP$?0#R3|GF3eoaH6mIAzsny@e4pzAH1|wvDbi~FzQaf?S%fJs_#c8_o`pi%kCN)Gk z^p)X$xs^`_;J=F!AM~!7rCPcN8BJ-(cmmjrVV}s~3ZRTw-)fX?V8_q zIeE-Ikz4+d4nJ8}I}h^CBotYIw2Ea6qYZc?pkIt3q$P#m$BaR8SWk{tB*aCmWocI3 zNPTP^gESmevKAiLXBjPd{srD){o;-GaAi&^Mq#Cvy|}3j8GPj7qE2ASMok>_n!nCE zr}ek?P^=^=`rpJ(%@sJ)QNgaS=fF<%uoi~QnaF-tX+fjb_~s47NiGISgQ)55m8y=K zlzA=&_Ve?@K5B6%;`H`bvziRFrEeIee|a2{*K*U&ezHQ_Ks5$gK3=bppvyv)z*TMq zn|#d`TvM5H&ACJSb5&yOUyyNCL3IQ1n_=(;fj6x=xYm=Or4h*!xAWTdxq(l<14AMN zC@So#+j<%DD_jU52j=AD3_bCqIh>L%-JO#>Pl9VW@=lEd12i@{pm3$}8ru~$@t8O9 zPd!w_8C`D(k;eEU>U&mkIQ2fqaeN|L3#K z_lYAo?xIccg0!m*@@WSYlbEHo#l)Oo^v|zXoM-_Zf~vl(qQpTx|GY4<`l9Qba7s-d zY%rExqjN{o80`St#!kD_3LH{eR4ar%ljWyDS;DiTFc7R>Oga1B&M_jCt{4kLjJe>tYr1oH^b9~s$wCGvCdDzEWZsk(w|N7lS3C1t) zIV3d>@&+o!X>&&jn_m|x4{~Eh#=Ai7wjZ^-g)h-l8*5Wo8k=%%ae_-j2AN1S0~q6F zd_F5b{*8|G0jNz!F5H2mscz~I!=%h(bmCKZa1|zyiVBY`j-IXhz@xvZ62nR=G%<;? zUi!KS-$;$EqZ@eX4xLnz4Qlpn8d;EI*Zsu3B$QuPpHD0^dnsz~ZTiX~RlvRHt?)z6 ztFtD^0S2%Fs@FHp)tE>k?t4A%7T-d=d-X@Spri(Xlopyx7+m!UCWRwB@bSEPpWzvO zL)eIhHhqJ(k;UY_5BK?m67MS?gnqm6u;&O!W?ZM$o+W%Xqc?Routy($kBK75Ba36; z>`C%vUhHP)6}KQF5J4tY+M!oIv5(}ttJ-PhI8NAH<)$Tg_?1OLw<^Pg_Puqpx!Th6xw4UCb@*Y3g=XGW4@qVhU5 zRA;?=f!;aS(U%ZcP8|Oz1Nx^}2>_9xLlFc)U_bCM6C#!Ra0zwILh?Fsfkt?K>OqG)A~daHI;(IOf>NKIvo_1+dIPW*MxV?yJilj^J zQVR{snKuSbGtjtmdTo*OZe?374rbwprb^HiWNH`Oh?wo_w4lA9{_(WMYdWlkOK0|7 z%JVSt5ZdB|)gJ!qAj7v!MeK(tNQS4sO}XfO^hY*bJ^7_lVI0how2Nwi_=!6-CcT0e z=f~^sKoB-HZ!65`E_Y}2t>3O`Lxf1R`f&;#at>&1aBIdC=!%{^!vVQD5505u5*d)s z*mx8gS(7P15SAA{f1AbH?9R#s5G`b{g`?=*4+Q`Vmh0w_vbP#GfC{^63eTqIZ zTKmqSb`3G@ATRf}v$HfkecoF7td;LiO5gYhb$$Jjo0M(=%D$#pq9ZIs8fzyU=s$Ty zPDGH)N~1zdKsC%?yvhudI$VcPDrlxZo4tpfb}xf(a~HyufLF%MO8THhA*Q{%N&a&> zaMEecAbf6~ z-P6NX*I;-PYBYmkd#s|_Sl}&d>(g!HgShva$s0|gqHeoeQBmL^VSvW`MxxPeV=fH! z<_2eiGwxt9^(qfsVBocYR&CmTh zELQ0F5_rIrYLg2bf^thl*5BfK;8Q}|9Yc~(uRBgXJ_5_VcxB}oC!f=PSq4xgD+H9F zCaQBTrtR&B0+S1XET|4d2oF3Y7%RBM*r!tVqOH-ax^=n?d5?wvbf4x6mq8?itHs%j zm5Ri~?R6BW#zLM)S8ean7cD5EOtXi6sCfb_SY)eEg+kp6hD_?~wlm$L^$N_clCx%E zEP@K}9N?=NCKNf`p8ch-5-OOxjBTlXz1hVN zfh*?iwHpSMPb}#NMjh4NQU?%4l5_(%BWj7-(#qo%F$v+lM(QD@(+8YNKh8qDMpNAJn5dCH((Ss7o z2TGk;QtM6^R~A+mbT8YDR5xshAg+^WuW8o8<;-@lUOC-B6s~cDqv)8;3KW}7EP-z1 z)ntCqVxELPaL~_z-WxNB&b0AepzuKE<{2=SKm+ZM46hjEh6-%?(KhVVrzB7X>nB&> z8)(yetBju}IOx{angJ(}j*i0hT59%ud%|o9ZFye==hgv0PkZxda$B^{Z;rFF$J$2y9Vh~D1o}nw=I1SoFc7zNUr}H|ecrspA zxnZYIuF7Lb<-WO~zR5)8!6^Yvi(?bJ_S0Ug`u)Axv8vw^I#d`E1RZHT5k0itce>jV zqRI#TCb!pMLSO@qH?zl=`ub-Ru1oHW?wqPO2Hqjs5WbnBPhK&RaC}LkW6hb@(1%Gy ztUVaZd1$vVpUX5?UXCqMOWbA1`kt_P80b%$t?$(cwesKkvZ+7sFC-BL@whjA1MVjp z78CGJf_G(%d9>%QKPe5CXHXp31oO{Rq|s_0p$AIR6^f8ihMHlR{@wM!spFg{dfKFh zrE-pYXVIjQ6VDg|$O*rdL@sXg>J zd7W;e^hUMN=BF;r*U*D`EgGrDWQtgOa;MXToH(b8c~561Es|1)_cAUc-LX6jPcUtD zr21MZG6JvD%P_1=%{|nu4rmFsFS2M@69f5-{uB!iBVb=QP<3)Ti7E> zOpY2-smT~B4b1l6)Z&TZ8!-Ej0#;UKZ^{quoF8J4jIhV#dV_Vx&5zzxJG;D7vGM8E zVo5WSCxlV8rpgm(#2^diw4r;$zM+MDpL-do2}B&vlO2-r#A7u&sFJdK#UAg4)PRHH zs0`hHQu(Z56~LHvX~+VoRo4I4`$o(*Id7CuIvs9rRK7iRIFmQvsC?kr^r(G7bHv(lhWb%!ItQR5l)PToY-XD1mJwUjtaZ%LXjB~147Yu-ALzFbOgp*ILP@^v)Oy~DB( zAi26(Icg2rY7^ps2r?Y|<5%PHd$Fv__UHrciyIBXhu^DYY)4=RI2_i8Seklqf)#-7 znIqiMvWAKAC`n+7P(*^hq5o9`4#$M|M=-qLnJWeQP=f6je?0IrdGi(8LoXI~)7yAv z1_nG7T?3Q#i#h?iJ3^S?0r@m--kjdVE(K$E&Pz9`8W&9HGhF~$zd2nvOgK-S&7>e| zUc3=+Ozr(J%s{@ozLN9wv=fkDf}gkj8eg!85Df_3wWs%%XGJgxQfQOK3mKu&*!3Xn zB97u&<;0y~`^PV1j^EEYs0RzlN|TbA)-wt~{@N$T1aEg$Oq zDVhoaY9fBRr27CxAX41g)2GVBWqjRG>pOQ;dcg=G>C{z zGu3FmS~+NZIptX#J`?S<8A@2F)j7pb!pyT)4tz;1G2`dX7li1J~)vKa8(1C<_lZ>mFI zXGU#!XTeuRU@TxpBK>JdB21>-|K+b93-J<2*vtZs@;ttI;ivU8gd(jqS#~nuTbbS^ zg(?&E0&kI1g@za4g_Yu=8Y!JLlebz(-_^=&QR?k7Mj3f_RtLS=6txm;c$=1pqxU4) zFnj5!56g!BeB_bH(oB@oSDT^Tu7H3SrrYQ5i|_ZGRgQu{mptZgtBhy~wt`bj#cbrj z1BX6IKm*`VDfUB~XGD=DlF3^%1KB1c(&D6N+1R@Rdu)|J1AJg0?9A^(jCT*$_ z46~*}k9W}bcMh1~j-7PrcQ#jQq}*(asn}A?+V(JmjZHFAQh0T*>#n+6EQ~X34BeL8}h=+`v z>6T9VBzYMjVapu~>}#oxtPM;J#`J;=2YVkw$Ie-tS{B3Rv-=XB&aTg(SVYfsoI4&9 z-A_IYWqB7m^Eq$uZq#+qf#HlH+x6`RU+82c{p)8UqjWIj+7g?j;oZJbLP}6UEM|H? zX$PT*t={%C7O+9s#FO!QWDnYT7bT!-a7Kh`uZ0*BqOlXGN=7+ju&|U{J-(9JAl?4P z>%GkC%WE02dud`9d_yQV^*cA&1TG6$M1ZI{4<<$6+x!*aNoO#G^<; zxMe+bB1Xz5^$wAg@NjjuW#ZcR8ijnm+Sulte4EciL zEOQiqtcjet@|*bX3QneK!DcJq4?ntYuz;I4gYr5d!+E|=>o|uT0#~2=9FI&1KX!TZ zQ9l;;+dd>FJ#`*uJYV|8Rpx2%vPQHtnq!`lx}1rGxD>BcF*divbnE=5DBT*FLaaQE zHX>_cq#2efKjFT!pDX%tdfQ*KLXb^L(v-;dl3v0;R)f~b$eBX)^aKAdX#kp^0eA-h z0K6SJ8R4|0LH`<4dc#6nIag$Rc$z`MwOW|-Z9@XTsV27**SS~vI_@WuPH?Lguv+@D zc)3!zD-L0brr1@a9SQjoO(YI2FWPbe=6{oI*z2X$^zUw0nw`=^V%?)v_N|?ztS>A+UFJyt|^+s!>b#xbEmE zbZi@#OFB({(s@()46Z5^50EpS1tT$r7EM^UxTi9+5k?V5@cf`!(VL%`?b81aE4%w#9G{f=6-)LAy-4QaUa^#;O#TCA4U~~Ws9@lqzEWfg2v@c)_ zYV|2;hXbRnHI9lywSHBf9>PXsfmUn#h3WE~(A6EA;oh=6%Bbmhdy4jK%v(B4uufRovr6jRx1_tipc>w7?o`Us5luqF%Eb?NBirc`F<^|pzlrX@93m&9AX*^{>& zWHBc&%v8Gp{UPo*vzOXca*KPwmK|=5)mRQnR!&beSfpIF=X!c{vfAm0fAS-2@uNv{ zx0&E08u+;0GrB4*%#~jhy2UjIH&1rFButlPek5ZmZ-0+J+t$`Lx)g1xI`>g%LulG8 zP$3Qd_mDRze21(QbW-5UM_A*umwV3GoxKLwASIHH`E!e8#i6^V%OxE^G=2Ev}!U^;X@th zCK;`CBkAA}&R1(XBhB50-J=1v*o67F$|Rrd!upvXfv4>YKekQ-5pmypLSCrd5n{Az)kWcEqL1Hwtbe4=(SjYw?P4}CDDw&{6NgRBu> z9DPQ!CPq#1)sixJtZ=wGE4(+}>d`%^<6Jxa%Rycg!Z8f+>C$^|wJ!+|EX1Re-M~&n z?=)kK+wx^f1gSk#YL_xuG*3*jqHP#!e;~%xa;L+mpNL)i}$zO>Gd@)PKefQbc;->Tj8TnQ#O3RLz3bvCGZ0xW#?DqaFjIVTJbo z`>K=BFDhg8$hBUXkjhl6801_RN2$k6j8lo=l{SGR# zDGvm-UWalXJX61IlEHk`Fv961L=l9kSwMw0JN?Rg7~Skg!lUlgN7_L|Mt zYa_0gCUCV@XUs5(@{nFQ!DEe{pdl`lsnbI_6j{#ajZixaC9F#2XsD|kA0?8LblLJB zwtAD9@%mk|eDM1o&bYcO#-GDDS9fNFhlJ|@GIGI6YVBP+q9#_>q^j#-rsL!%1%&bt zvkIXQDS>%VX8(P{0Zq+UCC%b6J~s$Z9{^bBpTNQckGP(BW6EhG8DcS>unX61_;Qzj z!N(L_F;-|4u`cdt0x~?EE1#N~iHq`em}h zPCG#KeKwMtxnI{%8kvkZ_oqAyXtSbG$q9Q!1e?K?I;fjF`HY9v{=beW2Gq#INdOdu5Bt$)?~9cs$P8b}o$oP_*r_k?!|uCM zFb#e*(59S#BoOqd&JiyFViZMbDqP2Je{@(DX7DlewJR|O6~Cnj9~$cH);ZI+%MI}u zq}GLpV1mQ5wpK>=*S@(OUl$@Fr8cs2AMloq*IuIze}Ne_SoXu7G4eEE#2^)K5pSzV|t17Q{C@##j_1DFmIHcV%!vty8#VQ^6m zwxQ1|C1HBcn-?NqkpuX(%Pk_dEmUxB=B{z;Ph|TUz)($zfQjlryQlOG0Zf_@WbHB4 zhTh2QFp`OluosA@rs6~b`-BE=1Sh8_tU^jvp<}+q$;}s{UIWsovjJ~feAQ>nZyXwR z5*kcBX-;JpE}57LLXi%m##Ms_zMJFPL3ZimT}_fawB9>>lSiwpQl#*ub=rZB@qMC^f?QOpR&dxrgkV>l5r-KS0EGJGV#3L}%RP&2=`FI@%Cjw+?u>w9934N8| ziaau~c@2FAh9^NxLKr=W$;wJv%Cd?CUEMh|b4qW3+!lSFr-s7ss1|(mIcFqmuz&V- z5^H-gQ7^u(Nh|SO%5~Swvcv{DtJzMRwO0L_fS@b<*?Gdp<;S+B@}i~GRi-ANj3@K) zXEolXVv8K^2VY3*tEFx@{5(O@jjC3mKxgwf1sC63fo`Di^`*BS9V4Axw=`m0pD;9LAQiIzICKP(v2kda`PmYhsia@|#S(wRk^;J{i>>5cB~jID1hJv;4n z!SzR0xR<4LmUDHDqVE%Op3K(4)?}#MDQY&M?wlscNxUA#m=btx^>F89np!w*FV2!r$ zHQU;i*`cR@F$&>OTyAYem8U^bl(#YWAfwiuHFT3Xo}*r>ut8SxwLJ`ksH?GoICVTHPV>Zv zxwgQd3GKP>%zAPrbt|ls-5yK?E7^yV&RX1m`)P0vx?n)X*6^9MeDiBQuV_*wV}Heb z8$iy5c%IAwz4^$@89bhnSl3y-^SlKfr<_YNwx{Bay&);;*8ta|YHc2>flSGc3Yg^>}UGA`ZsM_Pa37FuQ6^*_42jvhSNX z-S9#?!=_ktaq}Fz(rvR{YQ2xWxi|fID=-m8--~_XnDvC>ShKyXJL9h0{&W&S$+ox3!Q%-%{?*0epsF~G8uRl%Tw0MGCKY;DwW z+5-ng%9+&i?z-N0R+6dIEr7VbxKFKHyEC4wt>rO+z_M+qq$YZij!Q7mvy0Wb0ps-e z@#6igoRQ$?$3lr#p$qEA{J9L~3$5yj#$OZW7h!qy%%Bz6hb#-rkZCnC zfpTd;G;pOtk(8=5B$mx>(n%*@zT49Uv2We5jOmL*^EAinp@--tU+-ILQeK{?bKN&G zeerbf-r*-1Y{!GmZPSjN6ocR`aZ#wo2#q%r(}cecx&Sf=%W!7PEs7gA;|rI>TCL(F zuC5(-TkT1ZwLMAE`^6~ZEF3UA$4+JsLV8ozj^6t@sDM?B)0N>S=AkO$)u_F7Oo>M= z7i5xl`{KP&=gheY1E=R2k8h1*vudh%^8)ENo~zodix}jo@S^voemGG5!jKKM0qxB4 zeKFl8Edf`~NJbO#W`Sf*bSEZFr&pHIs4_HqtQ)(0i7NF6{tZa!pttb<+Hwtbco zFxdnFhEK}$-pl(ggrp05q`6*2hVyfkQtR=XuBuW9nMxNYiL(KKy@g&Y=4_j^x&B&i z($l@o1UT-rGFemo+@I(0rSi?OcHZiw(bk+2SwTL2)>f^=wT%jnuN7|LTT_1Zwy}VT z2*H9rqyr=}nip{3gagoYJ}fXQl0SlshJOx?8e)t=&X`8i4oDtx5LYlY_!_WJzIj{b zyAF@fwpFtYy0Ak$C&h{VoabR_G4n*HB|o1?F$^+nlR|{vweOMOs^oda03ZUC zL7;m^e55uWZ)O~?Nv8!HsH(U@>Ai_mwX24sZ}eca=5(0BMF(0ppYB(?I0e7Z2c}UE zM!)Y>Nmx_RHqgnKpu>@o^l^;_E=xdv%m)0F5D=@i)%>-6URUS5XOGgY8YiWDJ45xP z7l4ufFxCiJEjis_&E+OG={7!ormY)rBxf=zS4<~J>|zBQbzG~PZxQaHwX4!jLwX=B zW#HoJtdjUpPdBS#3KO(DF*DW=9_zH#!`s}NalakBvZFJ6d3C(EQs*~p z`$eakq0T<)IW@g)BP0qk%8ob2%noj*2;J=0xlt{Xu^s@(yEgpIaOLYWDOOQkno8~E z2p@SytBQ2|_b$`BU=1~z04hOY@fQzJ)Ob}Jg)c}dCA+SHFuR$>Fi?L-wTtQoLXPnc zJ^l4lY=TIcGF}D-?O0^si+y?aB)GO)lmHaZ({hud`218@pdIHTJsqli{QJ06+Y^vrPKqM%d}I4&aQLaqpVoxyRarCGYfTvbmJ} z^Ye>IfwaYR0EwL2ouffop-c@|95=rnlB>x05fL<(=)5IT*+|F1DVDaw5>#wJx&Q~^ ziU;YFeL2ExpT$i!WVGD;KXjc{SXAHN#X&(r5n(8$q#FbkkWygi?glBP2Bcf0gkc0k zBqU`3rAs=M4v9gK7#eAY?tJ(B{@3rN7e0@kGiUE_to2#3(PkeHEde25{>z);W_q&0 zwo22Q4+pP;k@uH|)aW{DaW3MycmEnyB7a=0*KrwwzI8wI9y?y&P)tnNEPKyvFr1hQ zm7k<{OMM6S@!h31w~q=|T#5Au{CA0p|Ab68h<+)nK-Ma=?oTSP@~W7WmfY2W^6^By z<2I7ABS$PR!mnn56Qph9F>bOP(&BJEDY?$-F~9Gt3b&>jlIq2|h1cwhw`IjYJZ#h& zD#o=cG*I=Dn8lp~!+4UZmU~iZKRRo8EsgNO_bHD=-)*1gB@R=&h1#u#Onqx*Mm1T> z>L{qjt!`}CXn52JwEKyiFryA3?(BH5+*IgCNz~&!ercD97GFzlXP>}Z{62d+vuD3) z+4sCDT_sgjtT`XzmJLIi?i7@WPH;@tZF*mdPYhy=obJ}EqjxP6@LhuP&x9x7pB-W{ zFFtM$Zpvv(iJ>r98`j#vf0~bj)yAIZUl>2H4#tJe6@=l}(2TYryp38p$tByq-yX9z zyxs~%udhcT6{1MD>h0zNGWx#p&Lm%^fnnLKi;7O6TV4LPr<6~}=tB#4aF$<9AM#b; zn52#j_EAo5@u|HnAFH6a0c{t&_m>w9;hM0rSz)f>$cvF_{1f;$!`9d>PVYDH z_>wEhnUemAS$_QR_TK~~y^h8$vFs-|^TH>HqGcJzvp7hc|j)1+^HakZ7c@?lCqmdbe}H2=Rj<^&S7{vVc-D zp$RusS`@RZ>U#J|1{sF?L-F8Iqgo_ORvx0JC4^javRb5^Q*(u^y0GwI1yh*dIqu&u z<6EtJ`O)c@K$tuk?2nfZ*rVe$(=1JWRpWg?$F&KQZ4MY>KT`)I9~Q550)^}@AeUAs zcUMAZG`)h8p&YZ#{q6-?sB_jCXtjpp1;RfBaQ8zwnd#eaoykC`kQ#j zAw`ciFM%7h#zBk>r zKX)md)^N&J7w3Nx^;hy=E7YU(4UIKx{r6Oprdyi})iErm-QsTow0=Luja%iI6{oV` zoepDHJMi)`>5mat-cBB`lem}<0GCYWCI3WSvJaAFe7ohIh6nX=J!%v}vB@9@rH)^| z@vQtwH^j`5%+}|d$JOeWqdX4Hf9*&k%4vo1L;6bN8W$jIy@>z(w&8*AYtJto0ZXP5 zgBmdwV1H||)#6QAdM5P8HMWQ*4}502m67V(@1wG_)raDaaJLDu|L>JxFg|6?jL<2a zODHRHs!&DmUcWm)*U^A~&+|Br?g87ApA4(B+4^;}IdZgbe$!h6l}QIRJcCc5TJgZ{ z9DYdkn0%T?6}&U?n8n?=W0Rs0JSg(!eWpMlv_0c}uBr)7OdN(t&L|#y#=Klw{j{$(ur!m(w-k>VnRT{^>{PYhpw*L{BKxUmcRM&sRD&0mv}|2X3ugZx)`=-w=f8&>i|F4JN;>c<*PBMjz9 zqN3E%G5=;UKX>H>BjBqqmgxeY7^st{?6Su)P^OhpB$8$Ebz6#~!bP>9V?;ytN;nDV zCzikbE-u!TU>j*pnFa*V-H3T}m+J54NxDC2Z+Z4FLmu20Pnz=9WAzK|;;<0O3Gp+N z;EP^Sq!WNC=*IvSR0ks*4&^5|JKR|~ zhLYB}m#1Ig=d~^!X5B)lCd*+d`Qe!&AY_fwwYjpHFMgDJ0)ZV z5n9cz7iqS;S67$Z-~MfwoB#aySvN7q9q+q}NsJHex<`OM`B>fS$@j~Q)fvGoH7^Gr z82&`viNrAa%7qewn9N8>sYvi7s8(S?5>VTJc=C+!n#KT@G~Ils6<$E!QSA=;Y_jju z&+lfxE{UnL!N=vO)($IZm^md5qJLI6)lb+VuCE&uwAjlx#PAg-jZr#?mXM3>e-{7$ z9gPL8LIK=6QeSnIGFJEM!KW4De*H|#I8ikWU59f@q$yoZkch7vLFY1D5kNNXEFQw( zJSgd8XNM-;eVI}8Xz^4~(`(HOwDMN9Xuc1A`HPEn8zJaP z{W2HrU*K*#qe^>o9D&^$%c3oun`RT}A(oW1F(+ z=7wu41R-3RBYC5_-q~H8de?oY&f5S{EvxQj5)_W_i*#JhSLHucLI}^TU%!R-tDV*0 zgs@BJC?4F%Srcta*E?3Wa7Hk5nX%ye=eTLwZG8~6b5dH&K)LVyO!hSd#=)t6qW0rg z;mGT~o@p5|YH62^k9Rf`hlk+H7vPKfsIH+`NBcrq!#r*^=Her>KeA6~Aa_uG7n505 zguLwjeEI$I@V(>*1GdZN$%(xuG83evQ+Jyh^dqYIHsBc%QpO3I8rsQ(!u?!m&iZ~Y zI_ufv!$Urr=PoMF!8e_D3CpV9qed3)Jqd)(!oG3V8am73Q5EYbd@T(7SBarum08DI z{R&O3$AmaVv}#V&MXo$mgvNd{91&j|N{NOJ^7*^`b=VAQ6ZbjU41KdxR!m$C{lw98 zupxx$4xr``n}X@em>K>F>3m;Os>VFreEm}tr(&FOJO+oX>7(L-s7p`5`7qTWt8_VD zy4wbI$Gx4uqff0>bckioy+tO?(>~s=a4Eo31*1waaKohj{j$Tp!~RyR&E#&vN80R9 zE(YMtA%s)QgMM#s_ralZv{Da5GT=HaI9=si#wy-q9V;)ZEX8J+t-U15(~JLG{Ebr| zWJ4|H=yv%0xs;%D7Rsv{=4|vh@bndz)ok!05Mh@HiK~}CSM4CLVT1;9S{n7jA(Y&i zCqUt<#IT|z2#1m~v%y!x$LngD{hYsu)aA!;GS_3eZR-M8Bxk^fJ5i(M5&z^H>9MrQ z=?xTpo!OR9*W%?ixiAx@$Ab>fg{Ks@txla${ga-1Cis3Rt}fJ z1R{3@DjCD4R_p^5Q+7^*HA2Kl8s>puU{%iErU^|*O=%U8KPM-KaK|7sKQq`j;LdwDO=je&;m*wCA2RBC6}#2MW4vxK-9h6%kgOK`);zNim(qOS z@^!cs)B4z6CX1OpH`(Q%aN0M3I}p8YP@~i|~T3w1~AgQI`5O-pBgq7Ga>N34A%qBHws_%pM%np`t| z59JTxk(#+WI3m|G(KcMZl8sm8{H%dLO8Cno|BqfZg7DVku`H@RH3lk?r{6v} zSu`T;C;*~r@{h~*pn2%-erQuat}k!$t(OgYzW5F<`<`aSKL+fyA~(XV9O78ykSmL) zf8Gxlv_B%3RDR+-3A%%tSYdL>#^!#t;*%Bwsj-q{jtBii>$_WnB6apd#;}~AFqI~@ z-0kzPoGPvX`Rt>;Ohtw32SC@ZX!Ug{W&HO{sTXmKz=$EJh3H&jFn|RTFIKt2TSUe32i5Jw__z3r6eeB!$Up5F;febVfD+viS+PJ6Y|0$78u6M254@n#K0BM*Q z4IQiGi&O(^Fy?w|XUT;Q+yEjYwVoBVOCXb{ICNYtz5PNt%GgQuyaVQ_*Xks(2C7eS z2iK>obPDA^cGc@EE7er-Jc~;lAkv4ZSgP)GJE;4%pKEKo7ab-Q*YZ2pBOu8kpH2fm zke-2#KX<{y*lPJ^V4FtPSFpcEi9*QX?rW6a`>uJI+0&P^T`!U^Wm3z)ae2uSQ2#~} z$CtU7oIL&3eAAZhv5H_4e9WXJTZ=1R1ryur&+>ivYyW=?DaA%?TkFw-9$-6`{GwPP4Q`%wp1moa9Y{qJp{3AxdInG0i1k zy=(1jp>OYweU3?6?_g*{K!~|5!h%v2PHDZd5Vli@( zXD)b5OQFYDw9EfKo=+OAVhF)h zo=f~_^oX74%)rtGf=Mk0)l7@jDrh}oQdv~_b70R3{M~hkBc?8ZnXs37GVp-8zFEya zf#zW#wA zkX$U1qjG6&f`tdV-s*`fCm2>vwfh?ONix@S0d>i*z-RGJH4+@{CdCf?DwUQz^B3RA zKKF6obfxhe@mI<6c<-Da=050;74#1KayCT11?*i*0CK`oim{L;z^)X0a~@4AvXInr z!G`6q0_O2%MIXNppq8qPOvXqjNs!Y_f`aAOK)Y9KP@X@&Oqc6tq_)~Ha~tt>D{Sy|QK!OygqQIF%P>MH&^*>}Ew|FRIj zDILM!ttwpO2le>RO*I%$L0D{$7AU9*blC;owGGsg%ueEWnUtLFeKEVc6e!y)(+`@7 zB}TTRd#xH2zQhYuntFkBN9@w3pP30C<;94eyDfcVUu#&q6vUK2B5tjwPdoZ4dT}zZ z(aW6UkN#eN7xF36+>%=?pHOxGt%t)nA6sxR76_%dl2wqF&;kIXwct_hU@6HTW$*sN z(ju|Y(jTt}JKy2n3_#aZR?eL)#&&@}>;Pt*H5yjafs{iGeb>kw7HOuB*8pucSuZ5y zG7Q{#%8aU=4OZz4akPEqy-gCsOZ8#DXfsQHMy8*A86DG45Fs8zhaB0ge2Ru@ zuoG9f_ar2p^TNvn>HWkOQg27|*~2W72}cSP53IL-vzj@nPmBk?(O7!BfF_iN$SsT; zs8!&h>j*PDpqXU+M2m_ZtN7UgrL(ns&vlQvf&l7-g8q-nYaLmh`jLOs;`ekF1U>idl#}IVkdI4a52e51KbgeJX z4rxT3=?V%#b1oZkm(Mm{9IwjP2U$8k!b$W{Nkx&@Vdr2W7HZ&6aJ|169*183Tgok9 z8O}ik+$YB$w-^f4aa7rVf7+`XY%p(W->OpLavK8j1aG+}PG%#|VVSX%-&Ii?z=GF&{XItc!TCbtVZR@M;r1V!O8_OItC9PR}m2N4N`SjXGsdele8ocL~gOx zk~|pOvaI~p7`OV2ozFOS`qrUti3_Oy2*q~wDL6HPP9WE}aJ#q@xsF^uXWS(x$kl7^ zo}N2vj3|6y6tmd=K=OONLDZ3MM|;IPAPPR2UEz7NCl!kNZW8U13MypLx%b{>Rju-c zFQfA2ufjo$An|Kj%$@y(oJ=B_pyBJD^IU_UAb83b^pH3?piC!#5Qs@33SUh zIgS)P^nAfUluOP7HV|YI=tR`_d!Pfuvi)t^vEcLb`qVH*4+BmFl2Mlpvij#K3$nEE zF&Sz<*2XjK0)mLLe%0yr!*Lk){rJ}e`hrUB-!~EN>g41oDI`aI?+homo1650x9Gj`~PjBVuvt!?*Qq)Ume1NRsA5X@vsF=|TnNy=>mciAD?UFWv;Q z^F^8@=_ag1Bl!~tY=5=d3aGc~mA-{rNQ%hS^|#}1;M(v;F0iZf5LtZoYH#mj$8gom ztX}qit#C)tYcvPBFXYhp8BKaUa^5m_vUlhx2d+!-ck#CeO!;84edPDO6hzZZ|1-A3 zlPch=fa@zKmfra@_-5`B_BjITWx_d@=??HFLIBW?#ZzOs*R=q7jz!-&Y}5fnfKq(>N$=M{*;GYgDIG4~Y7B-NuLI zkp}saC>?NRrA9JHKgk2ymg#;8a>)Y8h{(l%*C|bTu3jRQ=dtHi*y4}t*20{RZmxkfW@)p z3Rm8?jirW@tSWQ8s1aTl%Vc5ApDO96mMcF6{ZczA^cel)FP7u?Tk-mC%%moe(LGQ3 zQO)UzNA_KP38U~w@jw?(!z0d3(W%*HBFd!Nri#@x!nH|HhtSnr1k6<~_80L*_fbSA zIdsyT074x!+C+(5m)@J9PA9;Ki3!+++_$*m&M*#rA z*aLZ|jdbxRfCgi+ya2j6=(F>Spz7SzcPRnj1a*#PKe4GOk1zDHf)SB`6>B{vOrhS7 z@ye+S&K8F>dH(eXoTfrl9KX&tFs2?M$@#1HYs@H5=6W!@0urH5FSbjt_AxS4cr~Wh z^H}jbs%xa_uakDybQkU62CUhj)_s@#883Th4^D^T0Zj=(xr-Y_`l|Y1TPw6J;&`y| zf^$(2hBnR;Q~Ws~k0cncW95?@p04J55Wc~=8VxTay5)@-dOLk_9)5Zses7_Nzy@cE&Cte~D?_fuOJN?#-c$~;piAv}SjIX7o0*0EzO`d%ql7&d z&dd6he%@W5+ourMGucH!=NYkp>tNSYYHiEU{&Y12<2<>+&e(VbaO(lf<@MENoGN=c zpgP;17U&f|0=U2>sZavaPX30?5E~(mdJI5D8rHe785@s;SOP3405h^(Zfv$w!ui>$ zNcsYo!LIEdA}}00L;k^vqM>%Ay*SHJe(#86@)tkD6$#YR(zN5JUOQpbK<;QXGRrB2S+OTU!$?x+i6W~SI9Ft{7mShP-&ICy5WS4z1WH~lwmyE2k9>u1sw#E13l(o zDVP^O?RuNs;%68&t8y)@uq4WhU(UknkL%pJYX#0fYQ-uqel`kJHnD{s9Ln4Jp*PjU z^KCrQ?L$5k28NVJejmPa>|;}W=~-w8%*zO^FNqo-+*=UwS_`xga~T#dv~uMf<9B5D zO8PiF6!e5W^|D%7JzN#^9Dlp6v_Y-b3-Ha;4#;aW9s29b?ZFQFRZ7?g%h2nv;s&BM=HnC?e#L7@!M{9yz3@qeUm5_& z0aR52=jXGPv{0VXMxlmFY;wWj#@M1r%PC3o**Xu1xS*{)T~6HvcU^^P#1Q`)d1$%{ zv!!h|(&=WVO+pNPQaXa?1}6mZV7xBx6XP;6WAxmH93j60J??(G!XT{6Rfb^pb2M4f zdJ?mqlR$|YyFXrsU10Z|F%vKRlO2bKQ)_{B{NO{na84)jm~AF4j*8DhmB+5k1UaU~#{S&z#R9 zU0zJ<;<)vfG*2!lox_ifm5T4yBrp|A-S0vx(*shBVJUczhaM%Becu&4|LCjQk^_@7djLP z7p6Wk$v$!z;l$<$v|*z>U^UZJEvNl1I{<*2g?%&dj)4wxjA<+5L15hK8>{&KHm5?WkJzp$~exMNT}C?=VvR4YGd&h zrh0e)*K)IjP@4ZG)ROx~T0Q|M(a@IL9{O`=z|{31VUP+&IL*$o^=i^M;X~Je97SrH zQ&0y75>18)(yo>wZ({2P##YRg;sG5zOvcCIoPV+|uQPI7>P1j`L!h0}75wKz()GAM z238w54QVL_VJ;y*Er7;k-;8e2c~nb|741q~5wU|Tm=V_+{#3CGv|9^|uQxNjB@0@f z0*0%K7D`bHIXQqT0E>4-}ps{Jdi2Cl+f>yh2 zAo6?tid;TPNH9R^&0DO799*D!P=f!0ct8wJzT0%NpmjhW0C@)kx>HVf@%niC3OoY= zCH22|O#GlaJ4Stw;P{I%Wlw5lk!JAmmEe9rU&W1_l&A@&cnow*x1k2UdA$87v`1Dr#gg@QZ{&Rwha1Pz;{_m90bPsH)yv=Cn<62{`N?4 z_~_oxSl#7*^#v|<=$iXvCBdhpLE`+??%8U54+cK)$Y$~!iu*r_mu;0h(-IRuAPV4- zR;YA4Z>#XGw;wsU4Hy_(u2{{%OIjuA%nlIveM1nl7FEv+WbM4X>wCGPC|x!_&;_Pk z;4Ju-0*sN!lNID(5|@O#ULFK-hOb>p`a>lbzG^kxUyuyEgifSDxp^&W-O{~;#zofF zOI9BR;IUJAvY;gOWs%cb+VgN{@fYzc{kI7Gn1(T>ulk|tULxV?h_uzmhIj{7R?{p| z%QFjlL^j#-6kV8b*aDn^pdfiVNX_sA=<{B+q&9mZ#crEb&8(lfQ@u7wnHg+cl|bp$ zP`aY6z^j?3=P4kfDQC~ui<+1xp4r|1GZWOr|&|_o8gYCHTQ9=mn+_Uu8 zeA~H#vq5tXeqp=~s98BHKBPBLm8u#OC$RbI4Y%&#N|rDFon}dJv6^N@_KM5_ZBhy1 z9(Bi7*pdrk5ht3jBGQ?FRn~LEUcHbn9GLBAHm1eDEb=sHswqVACWRZLmf3lOZhmcE z5mj%LDk+ePw34%p>e+dm{z%8n&1~OC$FYO`2mGgM`md&~CUZ48YdvktAF$}CSjy5j zr4@E$)bQgd4>I;ws`t>Q%5|y|Gj6Irxl0xvp}44-rlu*DIA(=pNhrUfrL$IRtE_zi?>X+89O zUceC96t{{Ta**+Cl_}-_C48$z?3Ir+!`GH)UMs%|I5>8o(MK+J@QmL)jw{RuU4UYU zJ>l)eOW%yO^h+`SqcYR*Ie7X2QpdqtbRZ&Fe(_PL5|0? zwf#a$Uyym0ta`Uvyz+vE@j~zThuf(EHFg{5%Cpm4p+-) z2`^8ovP^Xuw}m+O{U-F=u3WmF2p%oybD)a+5AD|Xnj@)!3tJWcXFgiO%+kY;OGU-D zFXM?GYrLV(oZA#Fk9_~4jPRqfxbH+=Sc2m(%^(M~;;3H1f?V*!glZPKtef{;_6ls6 zY57VPDi*zeeJrk*=Qe1s>MzF^Pg;L>raK}6w3jn~MXVT`#5|udoZ1CfrW-)LArgPX zN7gcswNCF_cjS>>S}=Z4q#xmI!pZIb)GQrB zRn$ewKocPl4tI2gOboML)zIpynm3XKF-j7&1X^;xYdu>7i^Vs;bTa3^$7<-79MAT+ zeLgP^?v>B5`(224WFN6`CFowh?dihfE=>`y47Rs(M7-D^wW1|B8gg_wAi-9@@FPfX zPdzWV3>$>d?@rX^F@H9zUi-r)AfEK$MUh43BURo4zZdSuI+6`aWZu;fBdB*%kK;{= zUcSDlG(z2WN(en6T#hBG+`NwjGSz&?fAw%O46Mp%wxAlOL@sTLxtOAd6iHyFz%2JP zYoQsRylSA5p09iraR0K*-Aj@PeC9Xsc(f#()l!MhVir01VDHlOLiow)L(&n?pShLU z-M49aiM*+-kI#TczG7mw@H9&%ls%19uzpqAna$X5&?2V;Wa9-b_yut#j#uC0o8Ul z!D>CEEZSI9U=&TVvEiN{6tuU>QM-LvH?ghdGAf{9O#INg^lPgt-O|$~(Y>e8S(p3Z z#QbyrOfKz39qgZzlfC-<`?1%btH}}yvkct+U>CYxN@d$O*M{&U3ActyP3D@L8vZ_{ zlzzC&v4qel@?ezeAo$G~1S4$zF(^Fly1{T_b9L5jTR^TKWwUA8+ULr6B3I5Hm5vxF zG>ULE)6q%5xxno1$~5xtw4k8jY?15EvB6yd3pWQsd4U>$pXeW9t7@Is~c z?tv>Q0_yFpv-E;ch4;aTMjQ)@2@# zAWz*$3+fRHBPOHm=&{|EqV)3ggG?@mjyoMQz_=eE%=pgiBB~k;nN2*IgW2s$c>1NR zWDIxdqFkPQZX5mwmi9ZlQ=Y!tE^c?h7h=D{yqIps`W7_JS)alkVsODElhvFCJ_9Ej zCieF(M3tx*{$x|w{v7Qm{43LN1l}*)7C27Ds7r9T71HKC5Ger$u{N!(OI_PYJ{^ik zJ;V2Lt6R{}G{X^CO^`p>DaAOiEEtdBP1NDMMK$>2G0vH?*3Yfc3r;>~a@cp) zjCOkk`d$90u3~%f9m*?bnDwL=U9sX;%Fj|=gpao+FNl^rRRGYg#%2{ya><6(t{(`0Nhk>+g93$=k3y5d0JnblCJsCXX(ALyh6}Jj}vP(7YzN>Ag zMk*=b%pKl)w<``*rgVONb^*sT<;@k^z%*wpQ42e)5s#F?t78wBi!Bfxea1@xAsIax zr)aZCyGPWQ{m{x`g`A>-^Djm{vc79?RbhYkPZ!4mN9c#8mApuXMhQ-WxVx*f1R+wI? z@xLefG8F1@++{^EKf-fwQr!brqw6N{>ox|de`Y9=+m#3Q152Y|($ja7*&}S$D^?6} ze);ze{`pbVa-a3liS0u4RWcI*%8oMw{VG|Xj9ArE7Ec`>tEevNh!m9bohUIG9zF%6{Ay0YL`D?pquxBoicv%crXCHV|vy|!BiP|tMU#7-bkwJWlKV9TWrWVWf}mkZ;1G*16DBC8oPETpr9K)Ze~0(u zR$RI+@7?SlN6PsTvTV0U(>?EipD9xZ)~3v^h_?mdM83X?eYL_I6nh@Layj9c0}V&| zWRv$ni2ZMop^2y(ctM}~gEqKYwq;9nagM2WwVVDX2Pu?^HNopM!xH&g& zs4-WWk%Is!>E?{pQ>)va>pR5WzzA|6Br0WK7{iV1nzzkRH4MJ`_X{G0>QSe`Ivlry z=w~PWKf3u|GrVPVHq$oKlDLc5D$4I2uM@pHG>+8I#2Un~8jgOow}=ll&8BgeML%5J zN?Ddn*u)r*-gzO+|7zRRt@P8l3jH#p^K@(Tq5}-;6^+36j8dZfkF3nOkUYWy^5lx~ zoc_l%lGdlMHod3OJ|}Iyy%^mtfg|@&cBF|XLh}%ApU%JV%ws#hgfh~{Pw!N*eV?tG z?RQeM;ez#0AWAYqnkb)5<3Na&iex?UYt4ynSk<%r#DrHCDAEj>a*xco*=8ngQ5)sZ z6Omwu7`8y@Vi#C)?D@oISnpwfblwh!?4oC{s7Rk*ym2C7>EKX&zCkq?huNZLJF7L+ zr)0MJSHLNh*M4QwO6;T~&pR?^%j6S8t@W{PsWR}*QjJ&Ay5{Icg_REE?Qv`6kQlVQ z^>Q=%$??KIH1;KSrKYfTf>h0e&JWSow2HTg3!PuapKi!@$duZBRz}Omt#%Xlp(bg% z#!HCr$GQ?8GCSLY3GIr(idKVDv1y6e6SV8+1&eqEx;vobOQfV?YjpVWyk{-s>9bjv z+w1$AGdJ~^zW~4XSCrVbb(i%DvtL_7`aM?8{DFxdkc+F+YRnwwe&G&SublJ+wdgwE z?Dk?RIFh$i(cziNXx2`l83G|2$qn`V9^&3Y3qY6>%-7E~b+OF5)z_vPa$7?i8 z_`V;KfJuJ^93>dC!i#y?#lZ8ZMcK3`#6R#5Zjv=QPFUuI)=1#c_RSh~(2(~G=iC6+ z4}T;r@C478mM@*Zc&!j4HON=`&QiKJd|@hSYC!JfcON$PWo`UlZa}*4@)w`$%VS&| z9)ps05W*M>A|e;Cv40?f_RNr0F-k#`)sNY7zNQOPgoeDRT(x#F>o|#<82aRYc%@)L z`{}Ys+0WjHDb7v3jPrBZ9ZA&9%{#gsD=hcApU*r#ACo_TZs(JsycwtZsHM|%$LpZG zT_Q`@>Qj`1WoP4_X zZ=reV%%Im^jXP>uKo>S7kMx&7g-$NSC=twSwMO&3MaKj;HP}2Kd;0xzJkOR*LP2r8 z$}>ex2#a&m+m`xvWUr!!24z9}dtkj^am=P!JKGHFIQbLQtjSo#m|`-3%8v* zOEg}ks=LUwKlv5<7Iy;SPj^b_SV3J=_sDsYL%N3A)yW29I;BLOWu`;raw%JSnZLE*ZH~R&hlOFv7BiIA0ORiB9VV%CAm$C0UK%`kIj%B8Og|nLKCYzj(TwZUM~OgjUeg3JRdhO%DnkK zFK$)bX_P+E_Vmmbmj2wquwC4>{8E4V4g~Qkk{fBj#(Rfx2tv(JXPtA|Xp0y99S}Rs zJR%By+^h)i$<32GsTa&&cR_1$oKxWc(p6-w7w@F!FrCwdZ(5ZE+tNN5jawyZiYx)r zSPvtvbzR=uF&xU0HO^O)VxlpN@ZQfGfBTnwC0q24C2CyS7qt#w>&|~=vu$&w`|zdd z7S7IKEVTpLXJMLgp*rpdHUc8L*NcO$v3bv2x0((~!#AVS$}5p_XU`xkfu&j`)o?^I z@uM4?IQ6_*@bbO5r%{7PI*Zh}IOb19Nu>ex$kML{MWnT`@`;VA7>E9M@P&T*IO%NA zOS-G0ErXM!WmsHH)B(Eu#sC?U`H4O@Mtiti@c7L=I~Yt32J7qs5sR}O-Yw^5I6s{m zFz+dO^zkst+>w(wSx*&zxOe0Lc+uWzoRLWaVSw#SwDxrU_s#O6D5!=Z6P!*KP+uX4 zTar6nhvFtjR=+P8*^&NZ$9Z~)-vyC@fYVakTFa6fJk?g=y;(Ft&W?QD`K#uLAuQBu zoR|ailrWRen9(@XpHR!G$=V;%{fk%b8KYE8i$K+>H6Ezsgzsw`YIbE8LP|Qm1@z&q8ERU zv72m}nn2%S?cc_A_yCeB$RE`4?OV0*QsNi+0%f8C7U-#P_y<7<*b3$VS>X|ZtW%AR zKLzvF%Hu3p$oh5(LR`NQ9XZ?1#B&;A@J>eWPOzCl&cH&C?SRAn29o9LAynYH>|r|1 zTD0cC7WO))PibsbIG%FXkN_Xg3CO|N0lS1b@X6re@LDv}0a*f~DmceyL?8bogCNpt zD@75Y64XK^#&D|$=|;@STs%_w%k4hyIEt%(t%|}wRoE}Pnl3+|GjGO(021D5R&kU$ zN$T8={Db2mD3XJ>rC(7WsxaU`?%zBh>BQ+Q;aOVtjbOnmw&qGNHTA}^qrKxFT=a3r z;9bV|&{iQZhAkIGk&POdc6^C&Vx+-k3{nrSwjTYA&NY@~Z~_uxy8Z#K$(+=I0XZ8W z^E_$ev9KFMU>phI(9(UVjY%RMZvD1bQ$qZ!#g)>wP{!YFfJl7ycdfnor8sq!WH1H~ zZ8)`ir&x;`*>*kr_-a zWwr@_C5$#`Kh{CKcN(;#>A6AX5IsAf-y*xM%B2?Zti7XU#zVDEjDqAW?5=$ zA7EScgiT9vY&Vdo&v>W)gbhl0a02mSPmL)x{YD2Xx#X9!xltVN)iILSjP*C21FT=A z&ek;Fy22=b$hRVr|+Wfcd5@rl$aGD zr4;Z*g<~oEVH_~cyFl5%gq-VIalNxv)knDwY z>-g4*tSTQ-^u7B;YYh-JcZUn#nfwPxjZy^S{pjduJ7?zs;#C9{Un^G8Hu2-N_0M;> zO#bo8GRKdc$fIf5M|zj;yF}TvYRlK%@~!PV@0-=L&395RAg2Nm6OZ1h9xNd}uU3aQ zuZZem$rE!a{6iQ{7SGc86hPZUo&847XD}U{d@}Qw8Q20k%Y4(i#zIwMF%&C3xiz>B z3{Ydu54i}RNP>yVkBn8+B)zSWl3exn4UQ7xg4PKCNU@Cv@s8+o;hSHnmkP;=Fp_d? zTTd%qk#166{KYAGIvh67U+|UTzAa372*fh> z7N_CtRFn~BgZHF`EqJoQ2pHed{rF7+VKKLngt}{pHph-%62^U+bJHDz)@JnGXx{9w z?-g#i(aiR5^GzQ~l{+ep@%Zg{QF$sE`qhKOndui$Y7YI5w-?x&&-o@8(?r5}H%Ssi z-<)s$2;Xq+OMNU0p-xT6H|K9A%YNXE^?h`Tyjqz4;^&w{R?}$k=A0Y9n8Q!5oh5!i zd3=@toN8enbbI6|jb}>~5{Dx?IPb7xO|0B7-FpTO0z)ZDC3apEk+60wrTQ1}i7ZsR z!d>ugjK>E*8;IHP{hDF z{Ddc7>53=a;J958Nc)I^IQ`>J!kDm62T>G#%~r-GU1BoTkgB@9mkK*Crrs*cA(NlF zZJFIy^;t|jCF8U!#k?26!{>mt`H({72R?1O6|$nt0j#nMs}aKzuA&h{6~Kd$0ba+F7g`wHI-8#T zoF6WRx3{-*{iCH>>)-sU`8E=LJoDNEmF8xJ8Y)ofBxRtBjgU%>$aNdEW zS!`f+JJ5Ch7yAs7h~ePcuQd(oH9r{@YzypL1aD-I*h|QM{vh=IT%7ye)+}-71T*Ic zaA${=1vB%61BLG!WxPSG^#y|=0qKiT`ef(TE;SEu=9%*hUKWi;t$w+dBb%0V7PL$k zrE;t01fpM?!V;hLfWW)qjf_$BL8-uq|D)B-hkn8E19yp^YnSEFd}oG1CCM)N)%n`_ z>*uMeAM>ks&Hd|^_NuC`j{*w@9(Yz-JD#mtasjS zuk{gb-_?y#Jb36j>d)V7T$O8w`FJ^Zh^E|df#x##BjaP#{qL;vkG20kSW3kj#!lX2 zXMS9fjsG&=zXx$P6A+voAQo7x{G%=lBA~M(7^375R2`Eqv`zg+^yl|nw$>4*G2+0= zFkH0`y#cSbJCJUww@FI%L#DD(0m=d^vt(pcssj*$XZTs4rKeZZUtD&b&npnXB6N;t zsoudO`D^qS&=s_e>7?Zj^^PqXXG-7t$aS|6Mx4 zf#%kqA*-!E9y!U|nGL!t)Nu1+(ZsOf0Xd9g3HhTY=0qd>Z zc__2*ZOZkgyiL<~cN$@${SE8)*)>*HGGo+w8PH~;+cZ*NUw>v-koUYJO~f0BeuXie zWJa-Myq*rN%qQez)2H}!lH!ypP#^|^%MI(ZaDiP=eSBaxR%@Ml`}x8%dxvrWaHR)2 z7zSrwM}2g4X9xGJ)Ehxq#=t;_zf@zTA2VuS$uD^y3j6@|eMs=g$qtOj%)nrD?^f_4 zXt4{YOvvkdILY!EpN^%wRHy^hXj%mEJ(Z>vi$m|XBL@khOU>uu^?SbAe0PnmSirtW02Km^BGnx5xbLc*vdcJkH0AwYJyURc^m zX`L-7JLh)pQGp@ z*ZsctZl~kyr_-XcTZBGyB9~d01KTlACe_>9{}@9zP4uo2fw}9XdRC}M^ELi3Am zLR=hqYKBx-+hJzqpuKR#^!VE(ZIIKigsxxdGFl3i)~Vg=2Q#w27$HqbBTl4$F8WD@ z;pA_k7K>Gh((JD(Hg*nb)|+Wn!$PBiPyjNKLb%{oP6|H=YXRaf&g~w6r;_<{#PwiY z|KQtu{QwDXJ|`0@K3g)$n$&eo9ea}sRWgnTfHf|JW`pP-oe5D!dlG4xNjE8h7o~lH z1qcIZQQupUXB-PmHFoUrj)na|isr5jHZxz{m(8*r{>W))v{teK{x(7PaYL10h!2~506QDm zv{S8LxJ1Gw*zTV~OFnSaw@6@IqtM0qeY8%!8lk#PEmNSY-9`TO-|Tp0!l zKHSX-A0a5&Ny7v}im$hK6C?tBp7*%Dc#8XYYX5JT_+M3Wgt8Yuz5;+EGb*s21qGcR zZoaO0QjS@W{mzdnQW>1&UJ@OmSJ7i;I&^HU7^?9nx$<9|7d_r+b3?Ngj~6-WLU3m% zUYG4&O(-7Z1eqqQuI68K-~yzGTaZTU+@sw$fq@94U$}Yg1DyZ~ZKqeoW-K^US%Pt9*WOZJxyPC|&QB0y{$bh+%~#zSH>_on&@OUJ zXIEP_GayHur9bNg_9D#d^D}u*>CMS>**1+5@weSwJcY6-c=V7n{5SnM0bipz^RX4d zrf?nygXD_iq*uz-kp7`N4IsuK@9|E?M=rSkU4ZU;y(ozWmDgMGZ7Jy+9!#Xn>={iW zK`t&_uEjiwDZa?t;QbL#IWywXJ7;+YxW@*M12slaUF)N@X|VV|KYNtsKduQR#`x zV7=8sX3Xfe08#Bc5#=D(&z%a)w$4wgCZ&Rv*We8EA(Yvba%7STi7bN}4MB8L89WNV z2*{pzg@nycz~D@?7jEIK)rf^sc(J^hyK}|3WMGS*7x9${tj@(Gfo7Bc2b8R-xU|*J z-~-e}Ydo{k?vsCt-SA9Hf^?ug`Yv6U;GW>|mD(7a3tvPe!x7b&lfTkK)eD9i?7Y}X zok*k9&DRop@XGY{GhhEs?y2*uDO1T?W8?lm^lx_0exI(U$0ijtexvz6n$A0(>i7Tu zDrHo{u__~blaf7(W3Q}ivO=?@)HAa@G#A}w%;w+Xx~)sv^Ni2jx$-$V#>E#p4wq8*am;}%M|Xl^t-yIV z)ocl$rvY4#w--(aD01+q zXkE(Pm+XztK;qsNs~ud88YTbUjbgZhPuZC~ndN35!pI0*f+|Mq=Dy*xRPzp^KQh+n zzX!hfJ(~)XL7>p*uGLo%Tm!FpDMkFgGk{{3M>5W1-7^dQ092>ER6y+Qxa5Dijyh_6 zT_iri5x29>)MpiGf0)H5l(FsxMBvr5kMb!;ZaDXFqgtn&14QxC%H=fOe)?@~aId#9 zo>je{(M!7}wh!dK_ZP2#rBD*wnoS=`KX0#XvV z#}JSHkdt{2szlvTs! zEKa@C&s$sNJt!Km?M()Get&-6s8$e#?m%fN!m$F(G!Oyv9ChlxMqC@jm;w^N~izoj<1+{4aj z-J`aui+7F|R?01#N{m>E2*F+G=_V4_ME*06PY>u-fY;8{L)G0kHAFDccDP`iOwHKj zx(uYVO`Xk;8|qoZiG2HUZKtIu3ah!EQyEp*oh%nYo(*~*-4V$AJYS*zSTw6bRMe;S^~IuEB2%p28gJl| z+(Y-1hvT*y=8e}toafaI8Zvy_Iboc+R0c{ML zP5X(Z!=mRCjhzSKT~a|lC3jO_a*I}mN1Z-p&Q}zz2Z2|4?uK;;M)28_L|>vl0VK4; z8hD;kCoA#32O~;uz3j=avjdM>uN1=;XJ}gAl~|?!?KS40I-1y%-3#B#$lTrbP(;6g z2h%l$oa3CTdmUuwNHu)qP~^Y^t?>q}#e3abrM0mXxvjsYM^-=SO~`}m?<^Lh0!(?O z=5957&-)fN;!4v%7y|{Y6jSW7iL9~tS1~qOzt66i9d(Y*60NwWp>Xh+|EEMM@#i}- zZbL7a*)bHIFOx6k9rL!6Y*nt;;b%HT3Kgq8v=6#l==4%rCl15O;_Kez`NK3)U;Wp* z*2UhLh9CV0HU?|BT%%BDc6(2x4qBxakD7a>ca4X~DS%S!O5wjMsL^hBdkQ~!^RB{n zJuy;5p#d)EVFGQEdgbCky4WKx<+JDu5SSpgAik?W^IM*?(ffq;jKU)B6ETrv{7d*c zIFs#DS`eieuj=nk0l@IXsV6B0l88WRtbt$lHUi~r*s^f>SZV+*g{i-seP#i+g`e^K-;2H;%L>y+A)H9LoQHuY+I5H3O;wAKBoG70U+G0X z%R%a}FobRf?n(@ea|2wKtPpBb_V^SJ@osOHKmGGj_b6fV83{b@;TK+!7ZZ$b+EiMe z6ZH~cTc6_94#Uu*`x&6M#+SacMW6VPOpa8|xmiwG%4h1|PXRqk;uJLyl-hAkw@+>9yVb zQXkjVnL`IeNi=`;fl{L_1du z$>6ExxO5mp;9BvdBaeT-$pdk`nlmmB34Y;@7DZf5rdT?oj(@%5;V2GE$V6b7PvSWt zNm_G-n#O&^Mk5<$rh?wdH+`W8I|xv2kwGr>4nVavBE1M)@u8O&dmCc@9WNc;=aP%B zacITI%blXExhFsQ!%h0Ei&fb^m-u@Ya!{OlB`dtYT^StYMF>_Z(;e2nTcc&mSDR-r ztd?IlJDYqlT zYM&9~+oBN2jPWauz6B>^un}AGgWrzDgaaIiw*ZL&)L>ii#2A%-1(oS=ERLJm2ar~I zPNyWNcjJD+#Q@4y<^G-r5FTIQC_T%@NpKtM#+BJ7ItY;$1=E*E>`Mjs#!G)Nhy`|$ zwjuvM@9Wznh^^zz@Vs;RxR-BON8(#S&AIdQEw1Y$&A$emIj^}jhgU~-NzL zh^dbA4b;e`*<-Pv7#6<+<%5v31gkEM9?4**K_zp$;shTn?e$EyTl5ZbHJ`6|1v;>u8yaA#r@t=4m z4PKM_L@=9ayUBa?FUOT7@^yNo8$;oGq>k1!8x-;TLy&+X8&Zr>lGKVe;#_4uE+WB? zr*JM7qh6^-%nX2eoeb$9=`uH3g481Lkh&Syv~9WE^<}!wja5@}OISTyhCxgA+;h%} zjrzF`<+rDoL<(L=&k_~%vGgs~BrYB@Mg;Z6c~tujT7flh)k^R6R}Svk#~7B$e2is( zn<$Qs4JKfYCrW-{bzM^^ZBiGJVJMtsKN~=SZ|~F_a{@MWgq8upFH!G@!w45=yNPmfV4pLAQMNC(y^MY0TAr7?=XlyrOXys05S3I_>(=ih?$zQn zylBk{xmi}ops)PoeoPmOp9#zFyf*Jn>iARd_?Q|V2au19EPM?%a?INQQrUv)x1aSw z|4h#n4}^3zP1QU71mR$y2Qv?VDI~i5_8ijmjc^J3S?tIi%js9@Vdrl$E zMmgW$;=%JpQgPraO(y?v0yNI9;KhQb;tmQ+x3?G4E3m^}9&S+2Dq9Klrn50b?z#Ls zmH>rA=#bLy;tVm*XUGT(V|!2a*?xyaPNRO5z02WN-tDW_#an)Xv{MB2E;QX4NmACh zM{53lm3q#1`O9><I*=RJ__|C3==2P9Hj@EXBPO@Du{-e=6RXUbbYlrJ|^BLFY zmOZ-7agLP8Zs3=ITX>E~cU}J(p*gM5HS7Z>C<|uAyJfe@dV_`{Fle?&8OlKAMd#@p z3!lc_jrQH%#BNm=KFnf3PaxJf{tmTyC}U$|pdZ>iHLn;=s6`&MZP~IK{e$xq>vW`8 zdAs^`?N&e1u|yMMwR>g)xYy79TJ%tuH(jAz`sfD|=M9#la4xUW3zzs@2b#{w-Yy z@$#zt)KJ79=PGbNZ_PlkX*^0v=+wJwZ@`di8c&eOT-_gwv2|25Ij0`Jatx`+mxbz1|*MvY6Rz_lE;il8c(g#1@uK@Nsz6wj)fu~uyEI+=#T4n|_H@y%C% zM%{ZM^Ks#t5Xoe@!XK*NBrJ2x%grgY-@}z)LK`}n9e)rcHzSG z21h*ttAvGx1BfaWCCofgU75960(8c;FQl)nV40j{KA2jKm^uVDtg&qQd;RE2`tFJ% zEZF*L#;oz|tT?Woc!z_TvZ+)&Tyda=k+ZZsUD+_?vL-aib9W;;6zGjW(G8IpV7$b= zQh^dhw`|;)^Z$EoR-!}sz@UJy`>*18-Ak|!&W!R8tiSF(eBO!(RlrwoeS7xn-2yK* zsOD{ydtidHr&k~tSh1W+pi_rqS<k zXt%?{*8?KsuN4Uecak)qFS6-V7<`JxIN7h$i0sTZ)LpMByUQ5GkQvcz-Lrc=b^jl5 z`}nC@fy=PA<^{sT4aK@3i=c#hLV`Vi{T|HcNv#qC7S0b+@q`c1(J?dtd?;becG`<~ z4$Y>o3_Sj*@CbAF8w~*IBqi{Fu>^)2J1>Ty!#Nu#26)5;V1XX5R-HQOyI9w?mDsM9 zmSu4IeNbkkfjJZ5y+6UK#3|+vp;HqOdYH4-S{%O`5YY|~6DyO*CVC4{fL*{e1GUv5 z`Jq!n0Q{)4#VNo1>-7)7-A(7hE25%$Wa7LUN0kY_gZ_C!en2tXGQILiL<2S}i~|0L zRff3bqPTq|4lz=~A8R|Ot%jD@c{u`_5QAVh!`DWYtIEzTo0W*6U?~StLz*kB-hYRF zTb3O}bL-bx>@~dqiFOOKT-&jyyPl^J$g<<{6sGCjN|&ZtPhyw_mc9JFGlD; z0`(H#pX=^n^EZ`j_}oi_0~NnV4+n<+`>P_H4i?ht8h1DKH%$IYmx1FJEU-lIM)cV? zq*kBR6eX71v{|pg>!Sr^gA6>2RnU!`GWw;s$?YWS1Yh@t=2TI^xl->fJ$IOb2P!iD zx;~8X!maBfrP}^R7G3R2lV*X6LggA)Gtu|Z13)Zp-dbi!Egw$vP5>FK6kDd6(;knS zD>ev#xfukN%a?E^1ECjYpcBt>EF{eWV0Mxz|*!ljP}2zK{aEfQ_Q*v1Brr zRh6?YWFx9@)-=b;ywCfq(&?uj=*diB)bRlR<&VeS%Bs$4Y_oR~ji7=)=U2z25@%dQ z(5yqj&CH*01mX6nyV$PVzI zBKciSUY#{>m=!^c-JbHn-pM^+3ZJR(_)im>%sR3v0z6X|&Ax=*59j(tyZ9Y`hAEAw zM_|mM*_Xp+@>!{kj3@GVA|>~2sc!`?sRpjJWyu@O4V*!)f4t+qM2pD~9V9fN4r4Ku znQA3}7e;G1Vm17Vb3t{2ex;$$vcpeO+cLi~54we_Slqg@=Oaj9)8bbdW)>vAMTSzE z8~Q$X=m|Lljr(!htfta{li4-gO;lgT62c}Na+{lyRc5Y(F}s5N}f|8%8nmf^L(Qo6EzpDuzuh5VfvN90rmNzzxR(F=~35qUK%NPi~J@FAX3x9?W2Icis{a{otS%aiQ62u9#-=0)YLN;b2#8oLO^fA zhGcR0X{tpPMYHecwVFn?gcut~=DoC>5w?8GJ>m~HFgHe>781 zWtcSWZ18J>WJUjhn;DN54=RpPEQ$e^TFrNM>?rTLCTX$sjp6jc7Ua9*-OULF$NLn{ zYw!ztXa(m3y&f5$wu7(1S-rYhP*WHVBlm1jZ^ZH&c|XjEx>e?=X*oNw2*xg6D{oQ? zM{`A3PZ^Qcvh+ynmS0ZSz7==rnzK*I!>!of`@K2O6^N7W~IO1c$Zng3k6t}6F0gd9x>~P5r2;ggW@*jVdBR&!5 zV67ZH{)+tuztP!Y_I5XQwWB}T)5tO3)*!5`cpbS6)qQ*es6(+Yuan! z@JOsrcf@M%dm*>h(_fYEBtayolccJD;-()6Un(00U^`%l*%n>uaMv?m?xbw1?tGw^3>g_%?;C)Kz}5GrN7AlB6Ki$S#Z(^1v?Z~P zB8C$zlR`nMgH2g4|H{7~f z>j`5Qn#s#3CMtT5I4gZBHKDaqG?GYVeMsyi%77&N`CS55@6At7!=Wh)8goYxE)Ee} zs`sNXnkM4+M_yHLP;BfaJ+K9L`=8z6 zT#R)j7R6HC9Ls=6-}xksMG>y_Vxj;J!iyV<^&&V=|9+p`dA%H#@20 zcoc>~u6*N&9mjGDYdlViG33k2{U)R<5Yo{Ha%Xm{IAz*#Omr@$w;Zw)ObUN>b+pRaTz%8gFARHN+cBUT&wXUoz)d>9vZOG z82D!^E@1N^`UtuhRP0PwVJ-W=lG*93S17!fa%!;i5#@a4ovu$i^^>pLo*&K~Zd=fQ z#0kif`YZTWEoV?j9w#0C{1POcRlfFU&OMDThrdiK%#;ouYy1yTNdmdU>WINBB0V6g;rbJu&OIp6s6f1@&;v7MWLLH#)J z4YMVuowya5bzhQpKilrg{J1>?^9c@P-*{NFaSqC$>=si5w`203%!vDQ4N)sM7Sl+N z3XdX@6KU2zT~r*xxeRuimk#gStDufsk_%1{C;h?A9aqva$;A^@qg#(+h$g}mO&2!I zJ-co9_FK=TZFojkJ?_BGG<#V_YWk^hj!V;H0OSa8xd+y!Jo5Xg2~3AJ1=;0}-^PRg zvr=(?2niSq>Cga+F%bJ%(-I11qg5{`GU=F2k`qeJdm#+wZvAc1Cb*Z1o<(0-Mo`e8 z-VHM@bE@0F`J`1J*4R?Q@MG;Ctwt@P`-22K`WK45d^@RlV zRH%c0Me|)KB6v9nNB$fwtin^Qw!=dTtI_Xmj4n3Op!U`~j`yeNUjUE3`EXYGfLOjQ zo9c00HsBC`#xDyUAIEfundfRI++_T;zD0zJJzp@<@h+70H7)F5@rkun061h9%}=KW!8;Sc9sH=`08Eb4 z&o`ZPYiIMoLyIE|`gJs!`;g~w;Kzp!_#Wwmx1feGDS_|n-%`1V!a;?Ku)=a;{3B2d ztUxFp(&Sj&>2M>T+(sMk9>Yx$RQGw~0UMxgFgWP;kd`Su(kVYv&cW*Y?=QvGT!Et( z_5Z%y7u$~|sYA10<~?KHiX?6kB_;`Bkq~N2|5~9J5u*6gN*=PJe6WtNUAH%O8HG}# zt!~pq&jSTGt}r&PxHB9xb0kTUL(?BF?+2g;|qN}3Rzj;RA53J!i2iV>Y@*YKz z@XYV?MYbbZ@@r}CEa(j@=tZ5KPA^Rt`QHt4JJ8HQ`H}c1)+r?`{}W8`z31V&Eif~L zbhJso5^w&>`>5umPbpbD^8^;MBNB+@svQ!gG<%l%XRGvDlg*_!uH->x#FZdXVO7#1 zvpj&JPhz(r{ZZQ|jUulfnzuBi>hQtBc1|c9^k`N&KNp7SymO770=*_^PJ})0lqNG{ z(E>#YJ^x+K;lWPpXVi*;9!1~6(t*HLZP9CzWkKY9gYdfyU;Hba=(im9M-_#3?}t~s zYCp`8p}oGRz2<&Jg%GJIeBp)I`UM1dn4H%QahpfckP~L@y+}bLHa}Px$YG+%M;+fTH(8r5z122ANKU# z45P)oua13s2-iyEd!O@}rFMcxl9n$8?%7bpPkjhfVGaLiz`JSc3IFPg^^*GvW|$PG zrcdj93<8eUmUn_Vu{4$WOuL_c0cXKs32h9w1>%T}XddCBNgwm{bo$H3TW2DV1xhja zV(X7LK0Jx7P&L^=@y{(_{#c6R6H1U%uV1GZF65~^`FARyL^Glvi-Cn{L5nmw5~fPI z+Ca!ajXudZp}K^hPnqh9)QA&jT4of?OIv2MUPEy164Im(`F8Qbbc;hnpT7O?cPd3q zi`4UlxXLf*-*4v|E!AR4;Zd~;6*fMS}rTzT$-?J-XIU!)yG5s=ozlOH6 zSFAgM+wxqXlvc~+O@)yS5_TC-?+W%>?++lRd%yES`s`z%4qgCG!&S?Pe9j)@0({(5 zk%0v(nRV9kSLa)#SpK-04`WJIz14rBU9EhcRzw)R zX#I%bPYA0wpDKeyWA_12{VmVjCTo=)?1?a5t#)+<*!)0ZpD*RCallfehXF0?xEfVu)l zuvAHYrPkj&gB5nL;vR^KfBZ`ceC#4z0>J89$yPOEmwg%T<6D~Ie?BU2*KEDn;U!}$5zx)qmq zxBmdUY9)T1fB4}`nqw8*)zw)X?S6y*Q zp}osJca;4aXweci^Uu#Yx1!KeTXAGc^_!-p7lVv|^cud+RL=0GY?h@YiV>ED|5;f} zK9xRQpI~jZ1SUiu-aD?BJEk8h{Mb<_;(&;~^S#{kaZpZB(GsQT4FRs}WfiGK6I?=W znOWD6Niy&r^HO}W)6kcTv?(o74I|am-nk$@KHa%Ee*Ei(IO*bo-Q(t_q1TJ5a#QwTq;RhqodP z0>uN4CujCO4g|y4PRm%qN;a1xSn7AE_S-nM{vO%JqI84Cw6u7< zq40C4fhp~YAG{$+d~w15@xn1nvq7*1q4dPIWo`CGdON2d96Cqa=f`|H)tM<S(W4XruXZL6pU>h9FX+a=KU?|-8zQ0yZ`0qtB7cY=UXJPVDR6>Hw zSV9>}+Z``aVPE~JxO(f?V`;SoXyzX`dQQDzf3LS34x3jQ+QSTZ6&KnBo}nnQA}}BX z{r2isNOVJ7cKQ}wnANs3BEHu{`=23k^jtiL2G1s2WC^#@SO;cbbpvSHe?WZ;*sjR) zR$<5ZhJ;CmK;*<9Fye0mi|*q|1srt938cR;!*3IDkkY*Y^58M!S4>GH__i}K)#$c!T1M7gMavlSU(4&2jT`!F zefV_`4gKrZLBYbM$A1NM#O-3HuMxPe2$-m$>>yE!XO2axe8!pT$Iw=rHn}I3OO8NF zq3NXZ2DI6+j0p{ToYxoUc27?mysqDGNaKRYl!kXT*{u&*$fVE%rn^sNL8*9v`}YJc zg@d1*e$}ES>uI`OBQY=9Dx;i7J9sxmKSu1DH#To2**ZYfH~M#G>w6YEH&`%+3jY}% z*0L65s&RW37gCfupoE;0Q7)^%Y(KW;)eB|l7K*-A`mQ0W&FMvB@WVca`&+hwfw!Ce zw+*FscSDr%y=#(x6{#bZse%?ri!F{#_hvzzcdor@@{Chh5+sbnD8T3=Rqjhu%`Jsj zA9E;2I`jcyT~A-gyZ&WHb-((X zBYD)G*Fyhk8{2S~;17ana~aiz_l^i?I_>|A7QAb7_D@jyja{$I%J0zH?n?n_`g_@d z->OS^{gj#-^&t0p!>EsQv094@46+OrHx$p0dX%*z0~;m?6-E37w-cP~@O(~6`%oW{ z6T@+eR7wfZCV|9XxMv)gP54M#D;JsE34tC!8DR<<=f(Q*qUN3~NSsTlfYt{xm+FAF zKK2ulPTozwPG_OM<_7e3V-bH*3xhUOkm^!C)1d+hs#nREmUTq!l7Mag{- z*HU|bfzxLezVFe`yG0>NW$DnQa~ueg+=5l5EbIl64|CErp9H)z|W& zs?edc>R=nKk`iY$~D=3LB+{$M`3G9+GZ&eJ>vh)IV0@b% zz5g1K@4u@2Ek(WGwU@busDvA4L9vg~-5u8-dSbU1y>G?Dd13^3<5);)sD5L;!YW1FIPLa^Nm=e{ZYcU zyNbCIW{o&ZSmJv%7E*I&^MHnbz<};L6EzlaXa*YmfaPc*U)>$dJqXC*^vqXQPLF;R zdBd4Sr;6cC$y`Vk6M&tyv4#B@3d)&&Kw%b6$L-<|gkWL6r(}mR@K?sCkq5cc2#~4T z6x(xBTR^vh_cx-CNfe>b!2+>6TSIbO+sW@}&F+_m$|JF%rTzP%zwvLq#{qEO zbz1Y>4HJEyXN!L~^^m}Ijkz4BLLK09Vk3OC1oNzm~<7 z=Nxx|n2O0U_t;L{W4vIpBHrJp_pP-4%glh z$)%t2wcP-Zrm`jugv~XN;I!$a{#lIz*`$Pn3@gy`p8kIdg zic`_!*?4tHS~+5ER+(+RS&*<9sGa&IClCD#~qB; zJ-I+N<9`OSUqSts%F4PcHJ)^mUa8Q}w&u$|AK@;J)!6v5 zD|fo%z1y!6p*~1WcJ9m6`Ox~hx z1d=7sp$_?9PK$Wa7a1wUH6E~I*H!Zvz{Lw#@TSi3n$~2anD-`y466cuG|5+HugEo2 z!cC0Pc1`-6~Ql%eeO;&h@SO@!_K?A(Nka0n}O zgxz_AQnx6MM2d^;Fsi=@EXxAgO1Q*Q?Tg)T$_ZQ@kFU06b6%%GH(@IIVyj83viHmt zH^=YcT^5PXsk4sw-#7XR$o%efTGQcUR#33RGykc{Bj&$t++!ko| z_tP!jN-rcBS25SHr+$DccEmpLX$VS@JM$I?pDEpBizF~0Hw^n}&Ig;AdY=jS0pUy>Vb0(V#!OI4Bl|Rt0q^4reo5kDG|Kpnk6la@Z2R5TH(a!hO_K*>-Udm-4^+ z*@|qS5oU5grSdVt-5lMl^~yNR6;K~o5V;bmzpg%qxfK;*k`%DGi9ijmM!I0H6C7{3 z?L8#uq^mt4ZC#xA0RqC(8|_=deXwb3v*P&wvM@y|W#33@1Ip%=2E~c57Pxb`_&<#| zB`PNT`{0o~3m%LjKRfciTIr(>u#fVv;2Y_WxZ@@?^54&cIrB}qVqP8MtBMpIv!L3mt&6!4NDhyn zu+yvSso~ttF*9%|dq`V+Z%=_egNhH{{cdfq-{nqs3U73minm+#oKZCRk{x_XM6fNZ!@83X2UZ%l))H`iWz`|eLE{mEVn94O3asvYk7ES&$ifnccKc7N3r6xkyD+HEknny|#ff@7JvxWbAAQ3(VCW+zCuM`M(}gQWBHv zJmR={o$dK`LgLrz&*iDo*A7XRe~_?ei{sXn*H1tC^Wu;{ELm zf6r!;sXfGvfuss{-fHhKSL%uCyvV>JtMJLqghih>ajXagdG z1s7S&hRQVJK%fqc7g}qG(DQTA;zTkxf6pY1G8Zdh3KDSByMc{t@nY+xw-{c$u;6{t zI;UZ&E%{^%iu0Aim>9i2X(U9wfEuhmZOCy{5pb9Ila?Rqd+T=Sy1C-Zqh|*vT)fbcDcHC9yOoO|aHn&Yu$*0ezWsK=Y z$C2G?jIOxHvsBi);_LlXC~Z?#R+Hs)ZpqAb_4ma`-%Oj~ZmFOCLeURQOB%^^!$Kzg z!c+pQCa&F8h8`er&QVFTBlDdrUsQY4ec;-E-;tdL8on-y&+%B^mFMf%YeUZqmQ?dS zy-feJ@8^0R-@iMXEV)yQ6JvW+`cy7c2 zZxADzqJKuv9fOHvJxx-ZD%fbGjy)gNL_E(-J<3R+=+)5vS+#6X5YzQO9{*=`TXV>F zapr?BesyhHa>RBz(4g9%Bg@9f=)VU4!?NU_PK95m_g#^Joe?}`-JvqnH^nS%YDFxi zDt2MH4a<{|Pe!L>oW|yLlfE%G1I$1FGka@q-IWn;Hhv`BT78lDan)HS^gp(6)0uOt zX}fgdEY*ytJ2Ne`5PZ_|cCuz<%T!eHq>2@k;IQU5v>AU`MTABz`+q+OOvbj`g1$JQeuu)E-SYhr%~i>Bl5_+ zaV`I4MVFJ-xz;3GpKJ-rn8qqbC9`F)d)4oupRTkc#8AM(z0>bOFlsC*q@W(Tf@GZxT~3CDHSuya;;N`Q-VQvfhYX=cgmrYMu)SBy9;km~d@7cWGbV z{nP0f<9R4-^__f3p-4;AFayKj(_hCjF~*%0^X`4f>)z9*qyk=vg7QNDY! zS(GSxNXb%6T-nWB*z9do;ZvjFsrsZ1o@+&+X7@v&9hWkG5-26%p1h zUTS5u>Dfmy+KnTG(V)?u_1tIOi-QmAa_#>6b_aX+pMAu^>l`n{qGV5R6Rsh&p*Yel z2+B{2F@bjF&v(d2<1XLD`_``KoBz?-KX7yiB2#78imrp*h6PR`X}L2y+|H%eh_x

^z%(A3j zh#JTm@cj48fW@~sOux!E?~DD*#jD-; zp3e_jB%TS#RD-&X%y_o8+#X#P&>)tqE_UPIty6t!&m;0Xch+?%}vLp3*t6g`s>yyeC1K0)KU_EKHsW5@QF)w*IR?fC+E%Wd~F zb3N*t+G~{rxnsw_aoNW!I)NV3ETcwGM@mrnazW987bg^#bxadgP#$=;WWA_g(rUN0 z;S;j}BUynN_QUtmIwMz%%nZz5CLyA<6>M--yW~HyWcxOlfOSCj6FyY6U+A4G{N7(kpo)MVfL~~4!1004;X*nnG80F6_evz3e zh<-#Hyf@`ZN30#oI>%T~biPLhW^anHH0zGUFjX7U?2vA(SlDqrh(c~up2I3C8~g6W zCyYLWKA`V9vy&%x<>j>$GPqb)(QW)o^lUECpAhcAotS=3pQD!q1k3n@zGmB7fw1v_+$wbZc{Bnoi zn~N0le8d*`bxSj)$-zH%?QtY_UTvRGmay~iZ^(ZGOC2%l+I+ON6uDBfYVmIS%g<&= zC}O&;H|p+!ujsmrAd;%!XgiAUw3Y8CJ`iRY>jy)b9lB^D7a8;;gP(F9R7_S7A6p4Y zQ-=`zJMe^7Vx~;I8(*{-Af@h8Fc27<%2>J3e2zbN%da&Mk3lB?wZxW}svJ6ef0j|N zejuSRq8%H-BB&rt6PEczf3_U5pr49)B1eH^*)Q7iO7X+VWt=@{X)qhhxT)m!(|J2I zSr+wi<8oK%fk}L@p8|BwV%<&PyZQkiWF($~TOY!xN%4%~(5_*#8B4{99DqES@j8@b z6veewv;;vG12EE!rCf^Y#Nx+a197na@8>Pyh58*llxV_C%*war=BM3%#s-KU+u7qg ztvvZ*w(7LE0vXairIxI$9lLe+&Lq|cw)HqW;Fb>kc80~5pFVyts@;=;VX2f&b3YRa zS9p4S`{|#3!^r!S)zY1Ay|K>>Ym2XSlhx9WX0`lPKHEC~Qg>Ro!r`3}#6?3Y@Ma$x z#;5h*F{#rnPCrhhs1A&ZIL(|A64!Iy2A&(vnuf)CV#$X79$}xOr{aUKL2oiK zgKG+_P+EoIN#*g0Kug@Yjcc-GKyAd@l**qVy8&l{UquXFedoQ+{TWZjY)wyUZ3#YH z(+{unK6-9|>LH(>1c7}sjB9aF6E_T6iPwZatditE&HL%{P;HTl_ZF;-{w_BJGA6Z* zrI1gjwZRzI_hf%7rM*W%j*P@+F&quTW^%Z)O!uA%Jngi2^X_tMl((0L3mzXD9p8QM ztJm7E8Xq*6K36c0dqM1`c$Txy1y{RxTj>M0!wzMDf;C53{cF&AB)6~6fOCdW4($g+ z^}Z&%&u*L6uan^k96vMA79l}Q=8afo`?P27a;s=+AsR0=Ki~W9rgNjqZj3PxIsG0# zk{FRLd?h7bzQ@_EQib%AqokM!aFW{j#x)gV=Ed*3^QGo^h|}cm#=!YTZA_1Bmf8+=(57k68H=U_pD9V$`JZ*e9FrX_I+^Fs_ngUa;2 z#Q`~YJk=W;&EWg5IFZEzVMi5rZKjwa>T8=EBu-4)Q~RMl%gs8lI<(X9gJ?OOh3A!D z$T_Je?))W8Z9kUHe%EQzmKR+oJLCO>MG~rQqlMsF!=5GycgJ7ge!j1I7wti@eRGEE z?%>&-jC6HYJa*la6X{@vnE5amY(p}+<^0RUVylaHF?|G!uZoI$63>sLW@Zb_$iRf< z-B`YoUfVoFYkiYbvDBt8+U<<)gWe;y+Uf{eJzfwBovrZ>jWFA~mAN#p_81r%Z0q~- z`B~nm_#}*BJ2#?1NiR7ve?e9rpmhyqLTK6u=%$T`&q!{fl9@1Icg~|E=y(vCAPF|@l zg@bZA-y^@#($dOmjVj|?~yh6v~qkLMbDPx+e%E0~wh`zhC-4Zh`v*P#d@L1uS2ze z-dU@-Bw2N8{qrk((8SLRF49xCrh(b<(poo#38vq1AI$h^@@O@4^<5>&KdaqDYmBq5vitNHE^`q0|f9zEU<%)KaCkXbDP zf9p9-#wYkIokN4N_Y8ldOU;B;n)=0PJu*Moge#e$YCPZtOlxpkzQKG1_vUo++a}*q zJt2uV9Yg=Rq`!RhLjQP0^7Zs($A0>{Ppyz03TZBdRZiaz-nig6J8QA9+HY3exOLq- zKGo5Ca(PK~3Oz{M{8IBZ-BIQbv1IRyHks8{pIvO4^zq`TP(8AV@t4Da_msjAi1Qjufk-pM ziO$V!Cu{DfM(}tH(XJLHN!=j6gR-O>%y5 zRNXWC3uIpSDEktpMj+%9oXOqXd1fBo3CmjH$ELur8ZD3Cb#UONjozlqs}|Hpzip!9 z9z&xW+JDb2HirASNJ(UUdPfz#ih@47n^jm*ZoeKb`sLjCi2d`6?8kKn6)`)V2;;`1 zPBOl;RzBNBbj!1B=Y<$h^K&`!4)U5eB)RIH>P4CTr(Bz&5MsmXpko`H+fX3W5mPfJ z%@r*TEJL0%x-T+?M0SPKe6pR~1Q;}ws8iX)Z0lIp0R|KLvlnUR{{`I979pQM9PMqY+fqdlJ zm4P9d@_sU$zQ_%`vTzJuVx!3!4LVOjl?Y7bzR9BqTxA=4 ziyht%C2J6)t$KOBPAf@37qzx7CO-0iOuc1PlwZ^biVC8nbc2L|NJuv*4k9fj4bmM$ zcL)eWr{sVR4bnZNq)0h*$B;5~4b6S{zwdkR{lpj7VtF{vK70RapRVG`3G6sn_msnR z3fx)b*AXvC7BU~OiGAmOn8k_DMI=Y$^Q#$^Peh00g~zz^?xXhioiLw~WbFH&zOoR9 z78Nj>!&!?XQ#inIQPN-4%2#+-2=pOvh8Pfb9J0%H;r)uakR*C93jTd><~Eg|&42T} zF4;)JWQQ2`VmUbV9FC!^NM)e2Q+Wd7d;Kfk#(e#gn1y|Y&lg7VVIX+XjgxPx$s#c! z$(}`)9Y!Maq~CS}Z}%a_eUD~Ve$+3xjuGU_iXQ$D_@;BhuV}1PqJ07VgP3VBfywa} zgJ4z+Q3mFI+dlQ&rTJw`i5dAN1_~5AwOU1%b;OyzRj}Jie|?giFj~knSnipym;aQ= zu;6EetS?FWmdt+_PJs=MtPUgXbjUWZ?k=t@%GOwz3-07dtS@#-UPK^}`R^*c!gn-XzpE*#FYu{as7Tq)?ScXF7}Wc&^*N(RPTkM*5Rr49rM-B;N>7sLP(27}t2o82s1i?psIEiTAS|d61--T$v z95RK8PrLnRrL}w2rIC<0(BoAMr5`dOH{~||CPZ$TW<@D4{d-P=c!lGdd@&m6=iBPm z#7WW|6GEtii7uRwOFKh%x*lvQbwPp52D=e2qQm}(ZKhSvjLd}$J0hKDY!bkZ zHAPJ`8&)5-Xyvgrw17=uwR~Rt<^DjWkCi0%&4AprGg@Nc@{uy5U;R2p!MLUf`CHbt z&vG2FW86gZh<9iTX+ZY>?rU2LmU;rGmdhil=xyEYlGpkAu~g))gW9A;{H27SZhiW@ z&rvP340{sZm<0qy_6;}1k#{HMui?u)&_%+Ep&UpKluvyo)vz1FO&o>(ws^bZ+P4Cq zdBmF^2xMk9DDc57!en=|w%`!~`~Py)bSb+ZS;e`w28u&Jk%BGSnQ<@=jXbTRa^lWh zVfv}~dwO}-_EMZ8VX}jO?z3%+JzhkGNZFNqX$T~!Ott>doO}3%hRTV#PDAtJfl(H_ zZ4Bt}XmhU0(n?Zlwo-eh@3!ER8H0mNuI{qd(|ENZ>eZx3k)OW|8OO}e7_$lek#c7@ zFCw?_6^JA`T85Qa;hB&i%^BS};=o-Yg~0=sppdWSE*qZTzTQst&^Y&hAzV$uu727v z{F0NSt>8m4ANED@+~&vBd{#(C9nu4!;woG4n}* zFSd`i`riWdl?_mVzx+d1H#`ElrRzxL*(GQiG%)vV%2pgr*Nw6988?xr2Am6Gq(m$}1xk}0vfS~{k1u1b4fR}|s0-El*?Q)+ zkNM2)*%yX>)?Fe1Tgu4tXzjf9{Omj%DjA*UjjZnXI$1b9AN~noTko35RtFsFMt644 z-mimr`U#hBYkFBHQlTV<6hg-=DsE7_So$Cb>4NbZtxv&oqT&|TB zRb<+?4pdSXKGJ7`(@|Td_Ho0vtfxY8#zIuUU#aW5o1jKN_#DpKah@RyQG>&KzU*g+6Q1!Qg^qHjG5!tI1=sW?mFIbqW> zHy(j%XxARIQ4(Mgobhj7)&x{CurqSUFKx73$Xfzt1E2w??ZqqN?jC8kiFtRinW9k% zR%QO`o+>^*m!z~UW%=V|gn}-(Z*eYYq@K1T`fb$*>V+G84AFpGK6T0yV6>A4CTVTMje^fVPY z=~YaH1WDfi(ZAq+$a0H2*CA!s?Ns~5q zOi;7V-DTb*IhNB^)H9Mq5>ohzK%9Vq8IJN*J)L1$`zVtQSv*{Q9?q&uw0Q)iG{T&g z+I|lW_2kJXRhst`Tg+kMl6R~gQr->>4H;C40#`S*8!0LF?hQ8It0$4V)3Nxmc?&Yiufh`HwWELU(a;Te55?Z!xeRfe0s+FwuP7Neo_QCjFbBeG4?_h;{9 z<|_t&EEt8k$^s6`Ejjss=k*d0-|tqs^m`PnVs5`?cVI$EuSAFa@jZa7gikH<>5vau zqfBi|WaM=uh&h|YF3$NVBHFqy5!r(pBtYljV4^lu&8aJ+HuU^?zt6Lg+)V%9tb^TM ze{*!a>dKs7VhFrM8Vsrm=Y4rGoKL4UK^{V~;E<(=tUL0NJH2|xoh2T*RsKFv?6NU0 zOji5_2{f1+Dk}tWnGqnD5z84K0&Qx%4HtrP!=!;gr!?t6DPZG)5T|}UUankR?|hSM zmFuR;x=>F~&vdOG;b7F_5t|1Fn!!3WRR(a)dPx~mr3MhXh zKCRLqB^_e=CiPhBldn-CmYWq}jHp4>mjIiVAUrgf8$w{Qx&9~p2GH`z($;t_a^Sie zFpL;;XGh2jLLOE+vdNfFeXfX!C?_t-&9Kab?49O$8vjFAay(`csz19(T5M58K)J|2 z$GkUdTDS9{#!dJWVFha*-2Vn$N(P;L(A3k>yq1Wll6B-m=!cqiUOs~cNDP>I8(sK` z-!{3qUbmLSeRIa7VNtCtvYry506%2RS8}@$%H2O_0LUMcKOof>k6A4_2t_rdZP@uD zvM>Q2lVDyzPUwLsm6S$>(%S!psLUp*P$2eO(MARyGZu|ou&CGe)2}7254wJjjPwDS z>?QNPtB2o#VD`g1xZ6LNJrMg58Xpp(SU9!ZnrWHqDI3sxNebO6(b>Na(t0yYO8%p0 zSG!eV%blhl=87zG)Nw`-dEH?1^S1at4bm}D5nlsyPr81b-N4a~u``b&p8N96FmhsM zUkvt@D^$tEZZIKmK@Jn4sfUNbySagoujYZVo1`##W zSkpvC$E&sQ%!5|8RGM%7@sO=R-zDoOiI7ooR0i*rwv*{355-DZg@^pr-tSJBX>FW- zUo!`ZVT&(Hud~tXmt27t4Z0j1J4#%`NkIVe@-V<@1@i zo#PI6=ERp`S|BF}hn~@VMP94ntaHAKsVGs`jnBZc;y=6FC=>#S2t3)Iz-7zv80KiM7^3)81v<$W`c4at_BpCX6cjn6e6pU#uQ_y|!}}EQxYCtZ|C% zAW2mQ-hFzT=9nF{U9dBO8&RvT4gH>&I}5#te)iM-LyU@%oUmIhtkKiE7MGIMbJ>RG zi=&gWc(fg>b;h}~I8ov&FiiTqSI^=q^5I3^8-G{IJKZ*|CTONe>d_b4b@+UJA&Jng zns~f8=dkQEl_lL)@mn$Ci35+hE3AEo%3Y0hP(zGs{~K1Z&%~>9k3UXv^2BemrWybn zc6`25jRdq{jd0GHHY?|{4EJ0wu!y(4K%s%zTnCi!=g-t=1s~pcT)jp zOH|zU-QCg>a;Zn{s|_vM5MWqb0AZZcQd(~nIw;>I%J1+Ygm-MB+Xe_mZtf*Ly;hv^S>%QL<)i-WmNepPizs8E+h6J123eqYW98JsV zG_?{m++Nk3SD#(~w8HTpJyh;V5(uqjo4I?+h>Z&c&{NL)bi|9zoH$;y-p?C@>0TS@ zRv)#r!j|rC(W7Uc3+@yO3JS;F@Ygnsa)GK8WNlf>wTKSOMjt$bJQ;u@mE3rzIlq>Gz8B>=moA<)t{7Tm zvh$*kZ{e+8YrCh1=%LQ(1q)c=b6CR%kXywBDVsz+f6p$xSa;AJJVcpK}&HqGlphh)s@j+O&If7UTwWp=+4{omz%h7UFYZNwe=bjr9; z((%3}pruvX(T*i+V2ILh<5l{nK!V#H#-A1VnXMbblYAhSAtu-ee$blyZ;>?iFy7 z#(YRSCEV-^Yq07L5hYnj8**?6yabkYmecYh$Yei2>2~T%`M=uJLWwp_pAEe&Jp3^{ zo)Yfn*a7d zia_A&L3qQYNgh(n?Qfxy7^`luZgIro zb0CC`#CB7%8q>+Y4p;aZrBVBS=XlA2M34`=-g_8yCdgu0JEh2Ef`Q(IW0-u_j}WA z{^EcB{COR4?bQNgB~l96>-@jx%SRQsOiE$u3~SIZ`F+;GEtaPUE?@EIlh(^J|C~ay z5bb5;AbY}+wPmQ>hlL@PO2olP!**G-l>QjQYr6|H|9#4gv+6RC4X(+>3b|F*TqDAj5F4$YT;g1g6Q@C zw)^MUmGesy=dguptDkAdzvj=t;Q)-i@Nx|Z@w?j$z;X@K@S7uCd3`13>ME_fSr%EF zT4&xmG%Pwx0e}Dj^HW)v*J%`;2+T>eWYqcS&v4oHH$>k&eHb^s4Y%IrTD8@ya8uTn z^HT(ss?;-=*Uzs!J6e89;u3oHhI0H9sYX)F2~HV=0Am9zKOc+1@8AKeat5h!gEfMQ zQ>XIz?fo(-_mE=!L?Hr7Mqyr-~=zS^-%frXaL(@G!?e}VnZ}U~}Pqj@4 z-}!pTDpb7>r=}xgAmWwuj^~_tzN_|`1^VlkQ2X>>;@%!yDSkGN)!;5TJ-H>bR`xTXq z8WrWnNqr&IBMo4E!a1)o#qIQ+_tvDgO4%1T>eH;)sRc>NV;rm`c=#V{tw>5b&692- z4@H_c__ct~lg$Dl`nH{dR9nGhsH*-Zycu!IUG1^w3UwOsw~UUNB;--zf)Q#`M3}%FQDyYHX>-(dz_y zs?+Gg28?--dnHA%T7psn+5a7@`PpCY`);Wm$Idd6w^d=a;)ZSugdJZUM8JZ6Vy_P7 zCRixpLkvYAUiLKE5-kivj5Ks3?%RWx-yiKQEF~0u4cZb&wfEd^qzBwYPP0xTeMWI| z8T(vFA-&$G{?dFVv%}tZnNy#{&lXw*gadXM<@4n2L^#OOa@BOYZ4Eyhd5xpP?2&I- zZA+aw_*wv*7#Lcc9WuXF3N{-E20v#au{I6?D)%%VzVz@xdg$dcFG~sF*jPARN)zgk; z^VEcw*ygc3tRDtIC+1mNmTxU?c|!oQ@8v@WRfFH5YrT_|nrpGP)Bse^#~rn8_VDNh z(`BV&53pCfCU+q=;@yfO#we!;QTi)mq2TWvS+=xsuB`BjaNmN}cK}^?K4fQXvQX~R zmDWE0DQb43n=nAwSNRVl8x$IrRGtRe%B7H6hz#VKv)APoXF2oG+ zm&+Q?S7Kcj0tvBi3@0PK&$NFgBNognsR$mN6JrOV zEcz0Q74I5yeZDo$7P2SLLRLIf+=NwGe$!s~znEDER7u?Qef3Fb^ju9ZvLaQfJEi85 zX1H={m3M6u6#EtRt?gOy|vG<7HH9 z3^ALJWnkFd+6B)6a8Jz^Z}usBTPk=%b=lrrV&xBZ81Fx!{Ud4IDeq`}QGSOI%bOu|_KbiG0pE9O!Qu3DWeVU)#+|QnR zXYmpMAB3;%!b;CbvE_Z4n|lcA=VI#~RZ~RXueN)_2o0J-{TgW#CHBmc=yXpQuzyZv zD07`44Gbz}ne)T>1Q>DzMQ(K?@z3{WEQaPp5ewZ5X$zB9N?T!7tpl99M=pK`@XB_d zR(d4{9Ws&w<@BvsFgH~RXGsnT096u6M&hF~WcI?U0a?drz>ULda#IzJUgw|A9C$=I z1<{18R$L!*YayVdnta;nTXEDf9l*Z>QpHO5vhVjxB^?!rD{NA3yxxdoCR?@JH# zT4GXJxEWP2xSS3j1?MrLJ`@UL`sSKGc=LdT?SL)m(eAh%2SbWm_4=InMko7$ zXKZDLvdYP@OD1d0oZHtTDk>E2cZ$I1l;vAWr}|BWog& zL{9fg&`Vx!Bn@F>bkqK;9+|T<-m5)94^|IRqLZ`_SH8B&#~6+u>N`Z%!io6iN-K+8 zvlNd;A#?g~h3d_jLe<~WW)|2y{!x^h6+N>Cq8O2r`$R4O{;vw#*B-A{jjf<S$qH*-Me{xQjstfi(%-mCuM+#SmfpeYWUx2s3=m2x_NTurT@s5#OS86$>9pZixw%Wh_;emjD8feXBQN|^UfnKoubYTAn(tV#d6lN*>Vtjsw!X$j@o68`A+9SQ1OoPUFWqG9 z9Vs@EkLB3l2YM}BFtwpG-+ca61M`Oge5%qcT@8T^l%*cyjK*HX@5X-0e$)a9;4k9! ze*nHqVS_IOgRY1~Q7oZ`?%;xFQU>i5KkKTalOrHX`<(<3PXP_B$Wh0P*}VcB*4c~YSkTJn9qz`}do&l@lfr+c zIEAj@00qP@eR`(`>3-ootYX)Z0iplcos;(RmGe}4LU+Oz)8+5%7hactUV82K<{CB^ zxIU7~4{F|a)Gi|@>AA+3jyW1)!+&xX?55~*rw~tvFHXmZN zdpp#vwElcK}K8{YZ! zP|hC?=2n^N{P+g3)>cPCC}^!y*Ggb@0|2YKPD6f9Bb~77Ip&4qJX1hRf$_%74#`h8 zu|pS+v>7npk>^O?+W1|llu%unwejzRWxEI0NZ{HdgUi%7=Q~tsJ}T*Db>>c+cx3FK zZPhT~ByliwS{zl`;zIL6b_fPGu2gz|3C?!m{_l&~4d{4R_1GtEM*4;p8Y^}^cr0N{ zUf0h^AK#p>%>OD!=lqNaSV}i@p6oUf0Vf-Hk@GU>>O4c@U~c{+@*hC73h)?t@f(6X z+c?CBnKgv9U667Y%IG0}8Rrm2}o0@XX zjS)g%8HvSUdI*;kxj{#9p)|m-W_Qd#p_<3u3IzqAYU|hVlcXUhRkE4QNeFYm8FlvU z7AiXCt(-*pnZ(qa?Q-YlD|sH$>zzLRJXFt!42OzVhJOD_kic+0^ZpIqPE-!?Hh{VR z`+oBbe{b}u$xfXD{iIF+iuZtxS3cf8YXA_IF0b+K!JG%ha<*i?#ehA(8bC{|Nuj}p zIQaX!I1LZq0C+X|jq^9u4MRLAb_>jH80A{UsWxRAbL;KDuF`d-B;Ke^_%gPEk9)Uo)F08j>5|NnZ!DGSy|@&cA%^R(Xsk!BDEBp zxzv>wfk`f{hEU9Asnx3n8#et-0o{0cPB6Dn$WR{1f`R!Am$d((B2aI%dwU=J&UtLj z1G2K?E98f21XlJmNuUqOLz&dN+@+p;<+51$LwDfaS}&;j!Q;6nj3kljf9rp|$B&vo zPHhS-;9YAHn0)J2?JJp`hw1kGR3uf?nFHC_EVTlXhB;BS&=X3<)7FqwKcPqfYWr8T z%BKBi_aCJ)d18D-h7{$1{D!kly+K8zQ0WBO5~K+dPExQBql14hH8x)0;*Qmz7#aGK zp3T4`Hm-%17lGxkkqfN~kt__Y>9RwVPAdB$jyVv=rHY~-b{QKbx54`83Z-%TiidS2 zH&MPdLm*XG17xUzYh?OXF{!sZ( zoYB4?hDZLH3#sX(h#_Pp=i)mMscH_~6z3LvVXi$h^6g;(LDNj@z%l+l6c9+5$I=9x zjHsrdfZp;OJ3+&j^rciiR(QJHqHfOQndRAd!*Y=^cjs;I^jdJX{vx$Xw1#KAK6DHI zP7=JUg+B2c>Ou*^*rjWbf0~^-U(qpw4x`Y~P{dasmGk?ft+mD~kJD=Bf@L{h`Px zpkjTjX=*7#twrvl^d2LIa=veSciwLgN;~^i$t@`Y`ZJzRznqbH0+0jG$&-PLJQ^as z4N#uK%enad(nN_I8$~q7Uft*ff%Z&h#5ksTg67db=xcb_?i_q5PJ2(Wks@&bq#9r> zhICIlT|LEUM(H2Se0xN-)PN(bT_u?FC7S(Y8Xwf=u+RDb;h$SIFA5_xd%6?@c7DnB&`o`ZC~{_y*Wst^Gy)%<%Iydppr z7Gr6`J-nR^9F!F?Lb>m{t0@G$b5MSW?iWJ@>zp-38?;YA%Ali94XO2FWNHK2K&kb6odlVfOF3=lFD@5OjPKR_=X@#ej*1C|SF^Q0$xrn& zxoJi)g#tJ%M9HlRSFN&jGet}1VDE9}?wYvte!>fpjYVPnVgH6CHcKKv+-&AE4v@0H zgeT#%;rctQl0N}q1zx9ThUKhM_jqIamLjJv$B$z4!dPcg9yOgNdhjZ z+YaYE4=z46#V?u^vDQ{^@H|3CG}sDF`7rW!`|fDp>4)7vkSTL0F)(QDBap}UUk`3W z5$RHsd#xgC661=66L^!TL$FktrX7aI~DLDd*=(Z|~4Y{5B_`9*iTfZ4AA*SJLv&So=%vV2vPJ4fd ziqyDm8OfZt>-xw@5i^Xv`@I85(pbXRV6or@t!zry7!KbC1OJo2b^-Up1x`?EoiZk% zMjq~r;V@lCcuw#NcuL)21sonJU{tw!bxBM20M|CYo=jH!7&9nB*IcirW^t6YxD!@j zb~jOKJY&yhd^?=60La=NL~ znNo@zCTe2>*C$~-m2X@Kw~ZOZZ8IH4?9^8kWTsU-Q@=iqGDjL1)Fv#jA&S28G`!d| zo;mM<^rENS=QW=3C2!t6pZYFdJ^Vl(|8VkZw^Ps>5YlxgD$_OG;mxmQmG&D|ucqE_ zfRTA3y4JY26@2bz$JHiTZdDj-X0TuF@lTtSlaFfC^wYEiebabdYj?^P+&@ zb$OIzfaBe(!A(T~#Ij!n?W<9{#;2}f9Sl`T9stkj!4R(`-ma54m~zk8U+~uFkR^Ic z4G(}6GgT=gKMF+d)(xc@Xwb(Q@g~t6=w@}ntR?(ElNlLQ;TuMlnR>NU7Ri`9K9$p0 z{{tDocz}T+4|=QVG6Xz5YTtNrzJo(_PY53W43l*~oR4u%QV=@D&2fB$aX*RqwbhZU z2Al|DP_jlK&A=C>ixT6a=r$W0W-%1hw&Mk}9>f$_y~m{TCZb{?a;wCe%I;lih*E-d zYYo9l(bqt~^Ewyw#tNiIqo+$*yOtpH=gvwI>kWay?PI0)IQ|x>BrHGB2 z=X~JgbZswY8b44%3SPP8?}1bu0zF$#US#VeHl9`c*UN!oNlMso@Geev6N8q(l&s&` zVOElkQf4ze>Q*-xg!=#A+xqi4wyGg-eoc6A3GDge`7chuMD%x>8X_JrCYy{kh+t1= z>D%v_NlJ7bY(}ULrf;ZFZCL)$C3R?i!pqq%<{&UE0;A|X;Sj8Cx7L$35UHzp>vrfP z`NYTno`=Es{QHUU{v53~Q`_A=djpCi&JuxVTId_@7&pvqM@)h_N;sI8k9%`XN7n&Y zSvS_}!$!9UGcg}hRSy5cH(paa%&#MgHuT(_nN`GOi}N@?;#8a#zLO!glEw%PeOL}i zk-s_2h6A2u{YXsl^^XI+GxQ0BDyq#OL6qQVZMSDIdsZQ;AVrdl=~a2l5-ay_)Zucl z@FWJt?Q#EPp6p4V^mHhok4&4ckZ4nqcwfk@geHc}vAK#FN>)85g5I6igZX6I`?}4@ z+eaGnk8xGvR`63j+ zkB=E&eRV)?Hx_(L!X%PSB#0Pkti+hS8I2|CK*QwBw6p^sN#Is8x_gR4*>X(%9Xsq^ z!BW?-odGMxmhLyFnNK;KfZHl;jwY7Il+x~PthlyM$G*E;fLPPjgXL?$h1V(?f_#|9 z{#uTSx@~bTVs@j_Ou9tLO?b!7UQh%wRDNcTd09kGqd5JZUD&E6lW2++xQ`B}t_+`^ zd`5b=U8IwVT*Wag-?i3`juz@ulq~MW00Sccq&3sm=s#3JCt5-~KFT)cy~50p^#aRu z{vF;B1A4GztO@kg?ysSd@{WJ)#`Zdnr1f-ryvnz;ThTFQ;W`{!fF z*EOe*p9e{WC1MhhR&2x*f2X&vB~?ZXYxb)`4#?T$-`rbL?r8$e-$=Ic1&K*%_cvkS zOqPWcUm86q%?pUA>3g;<^p75vKX5L*;>d_%_TRryOF58NR+G=Qe}_mr$na?2JZ_=4 zLbu@(-2iOs@~IC}l|N$mUxmk{$tBNX2b=M}=gwxxX|dJwrPHMpud`LILv#$+d!mK% z_@eZU$tMMiH)3r!2c{O?(PkzHQmiE(lWIn8815C$OC#wqkDcl*B4tKUCL-J$@r4k) zgmNLe0XWpd;q3*F@b93F6LQ3NU0Os*e}tQ1+J+tMlJos&+2@kaAxKDydH3uIZWOB# z8}lrL;D|x$<|(~e_kzg2^rUL{GH4__Fu5B{#mXu6d1>VXY37-L<d!ukIfWqTqYyp!QU`p%!ObW6T?)tQB=PkB~tK{Xq}r26<9EN@z@vtciF+;G}{hv~QKSv2x*z=D=I+ z-^cjzmm6%t%Yd>s&DV&0^XRbPro8uIo^WxMdDo(slo-Z%10`LOGT^ds=Q7zTcj`H+ zKgEy8z>O{a5nF-&fy}q9eo-dr2*@71^qjH1!Gkc{2u>yK zy@HFT!Tq_Y8|Q0$gL6eg0<#w{hKf4#T2RU4Jm(Zhz{kh93HCwh{{!BJ<^?4MWpJdwCV@jz zUk>9h12}ePSfJ4tM#CshR3Sl8chA`63IY(F_5p~0dIl2k;7=7G5e(+yER zRkg}8wZ!{GH+5dno(~KSNiX(R4GakRUt~p6*kw$tms0z}nc%t~G|6`B=Hjr6`TDl~!W1bn3esJH9 z-cD(o4GqK3`3{>^j4Fk1GEblr&4|C$y+AgG!(4IXBhS$6HUPN7=wROe*>}iX=FXQW z+tT)Ll0<~krn)#aA*PY&_uMg`CCo1JdIlHzf5+DG^Osg5aL=xfY7tbs+MhJJb<3q} zF))A;b-`ioqJ{qYG*SM%-McFfwaFm<>y;>fzd zHZ$_|Yj+448Q(ox`Rd=;VwP9kqR{ zQAtU4MLVlA__f{cfLX_QEh?3vgEp zreFaFlqmDl@{5#R@Wfe%0fs6oY;*IRGuEB|ij;`oXE2<`>gTqYwA?(AkPH7VA6Q)l{`*tIP%3$GmH9B}FNY9}j|$TkzpGbcG&N`|WzNU%5h z8iD-mk@2eQ^BQrs;27RpH?t7T7CRei>jorZ0^b+}#U1@CkDF9I9Dp zSHR$J?1E-HfBZQmF!bCYirRyvZ-pxV~IHhq^3~G0=T6dQE$MT=Mb|t#U|R;-3TTUwLMyr6vQ|cR^@)^sqO&H<#D- zV@hc~-yqgoi}WoZ6eUQEr&5<$S4c67@mL}Ccg%pB%TR2gE! zFMz=iQMY(@*NR`3=7E;EHi-B}B<*4n_L(d4QUz>qX^A}0gw3ro*jMl3zBZaVOWqSu z=2z;j<&e@AGo3TvrZ!Jhf}}g5nAjVn@m$Bn$+VXkXZ)4_>&pJ`fn?MTR$`8&AjdCc zg^4%)8Y;qk+rgfNs)(cgSZp8o{beXHCVZjK_x3u3Gap_H${~LTL(V2(5qmPp9=;mrL zdc9tk1_s>Mh_!R}DUF)4tKrXaTGwM>yw_>*h}#tcPKC0kz1u}xu9ap`#uUI->CKJU z`69Pe97rlohi>6s%=Prvy$p+b6vkE&u8@eE=B3n#pT(nO`!e{XBVZkMyN>5)h2S>9 zp{)~7AL0*Mzw4Rnekm;&BTwZm_+BlH(DX~Ru&`+TADbdm{V=^*pF(6vW(WNugJr1QAi$>qKAoXOeW)&Akz zg4VgFk4Z!bblUKMaKIJ8@a5{&w8xw5T>Lz8W|Q9_;qE4ug%lgkf~RH4I8g=k%6Tr+ zG-2QwmWWRI#WOu2H4`@&Tdc->Y9sVYBy~`v4r(x(PK+zqu?A{jsA)9r^8Xu*v?y?? z&?0$QY_B@YAZ*oK!_(hv=dlWt=7C7#Td>aY&kl?j_E))@7+3-k$aO1dL5HQtq z;4b2~UoUBk> zMlICcEOG8Me9b-I936uA%W7S@1hS|DZcTxvf1haOJ|NG9qWSSnxJzt${quJ~`y$}i z8ZY@WkO8hyhsQGD+E(zfx0^3R0q>O6z`f7R>E~=1!_6^?_oGEtU0m7!q&fiNIQhC# zk%;x=WmG$%Lif511=dUVw#8C%R#|!}PYKquSA9T_sZmc9W`iIrmm9|5Rht~v;*K@k z>58e*S1NcpSSO8L?RQ~*F@TKu<9@-7G?>-6&;5#p0p(S)Z<9A7&W9B)F)Z6EtvrSY zruL`}W$v`I!wip3u1=c+{HB5=h5_?j^-OR%Z>c1r{J@)S?Wdj%%B+_mPCtJE`DTX? ze^y_+9sVFw9y_=ao}z{sMyGE<>XHAPFUR}&fE3oZj>BJmY~`jFE!EaV$r@O?&a@2n7^V8SFQ&f$$*Xoc{(nz%%k7 z;-Q1=TNOS3Qw~q<@28DKhT!=pzMjpLn@qR0+{Bo>K_gMX=q$ABkbDLPayQOD-xw+F z8k^|saSY2&muj#!={9a_WpDb({K5wyPG2%GcX|gZA?hnrSwd0nUwR1jl}&WiR&~7x z6Wmp$R;A{d6|x$1A58C5j{v+wz<|FKdJz@LTTF zg*cc$nVRvor9zgGd7tc9BEw2O^m@sbj6|A|O{XFej+c$mQ|}iihsx5L8*CG#qh9KcyaG_7#Fj(7u~17cfbAcr$g-HJs%YdL-v zF85F#1KegIrN`g@6f_JB)sJC7K>^3JbalMKg}jbEwK4xh%)x*>pte}h^xr$$R4-BW zmz*V3<;q`OirLDpsc|%2a&t!bu#to99ZW7ggNI`XyrCiII!_kL=+Iqps}RkIxWMW=xmw zHlw=+a-8~}GB>}N0F*}z$8mJg;Y$XavoC*kqE44XGOd_tC-5A-dG+#N(Dt+>{3nKF zS77q!-8_BXw_is_FRND6p#~DZeL{HNB4VY^ki}n22<$j0_CNe}*?RtKEK=zcw!+c) z%%Pa?oFEC^6VZq`u9YIj6502Lt~y3Kn$_usp|YGL3yp1ZHuUe&oIRPwyL_BZIyg=e{z@z(NQUTu3B=0 z7=&1gSaA{b1Z(w8{Yc-UnoVKkV;ky(IfBmrhbn}F8CWM+vUT9Q(m9VX_5%F{H*noW zJ{&bp6fM|prIWYzENZI0h#wCAAN|{Xjzt2+hlmk43BZD41IEE!g_abeWKwqJFn}uE zQnQVYc>09kbmJo?h0<=+y?)@XHNZ#Re}KvG)_L*#9QFR!udGd=TO$WNR=o@>fPezr z`N6YC*S%XlcvNCD4eI6=CPj9U#$OAp_vF-=Ym3|X*j?ZF0%N?661pWU-TZJsXg4X+ z&|}zBd5kkjARy;Dn*_Rr% zz8Zmj`@vy^^6^b2(XkYJsc`$9ZRSghN25E8W@Devc|rXqfN_`b|9t>HG4?jOy#lA& z?1BF7)21dq&3H$2-twPxz$ayst*%T7L;;Oh2y^}Mhb8cQK5fg9T;A4K+jnKV!Jz0tDN{96jM}faKaeUm!mLTPXdo{5U&5&ExPwXj^6@?A|WVQWG;}; zJa3#eTD;8}0bh1S(cvZ+gxK2WI^Hp`-d?-!cwXd1Gy1TlD4lq;O|p2;8(~eUoFvO3 z=NWPhtN)Mb4vqgQ;}(MgbN}NjHuiph3GRIPYMMZI*c)8VFc9E}x7d7Wy@tyx%tz#J zzdz~)*3`|4qN$vP>j4+e zT~Y>*Rq zQB>e&Z*(}7e{MhUfP&curHF*rTf#~krltV5wtdXB7$OCT#=)e<4X~~Er|Qk8uV!xd zIenFNKIe&-e)X8wc+B~hS@HGZW<_rKOq0i3&6>q`D!cA7iIiD@$E+g}-}eyEEN&?C ze@!|&U#}O_zKLjP@P7DjZ0HJnx;jv46W0=7>rGP#NS_n*w7ZyD=NktXwnz7%Tf1y- zV~}ja|0Baf&B+!Nj-2}wZthW1T3l=Ry44bG@T>oaud|Gba^2hbpd#HVDTsiGAV{ae z3?U@~(jeX4jR-hHs;EfIfPkQcNDV0|Eg;JJRfwvO^2D>DiR(sr?@^0fJ>4tSWci^jkgkKrc5mC1^FxBq|)|GT{ z<4dIN4%biI>Hc5>2KkVNNU&YBN;&)jlc32rT9K9uk6sg78_^jKtI*vP;dRidbN~xm zZ=3Tbk^tlQJLw1(;izVI?_s?~sEa)~Qbh!wwsFUd$7?J$$KfBo?SG$z`irDNd+Dlm%5#7PPg3vBiVpB&?GT=l&VchKd+(ncH>lUc`@))dBiiNw~*&I z5rj*6i_hfDldj$;k6pfAjL z@VhEg|468ix9jKK=`=IF41V|;t{mq{ zg0AY%G%m6>ol?q#Yu0W&Tvypoeq+ZuuqyDqeSy|r3uM{*rqn#^E6qZ@Y(O1SWV4X6 zteI@Xt-1JQ9pqTLGEH3W;6hz2 z)s>xqb1+f#JuY?X&lS{Ol0)$;_+-a2_KmLVtKX)QrlLn1366^@ll@oh68^d=l0y11 zR#JN(a4bB~)UNKfV{Y@I9Y?DL@eH9q!)%G0C-$!9gK~d4i$r~|qwywK_=|2dT>nbJ zh!b)$3IPh-R#PrClx}jA#tVU2SD8&|fGUB&ouQicK-5VMf1!I}4iqQEOII`0+sP?$(ZS}cyUO^oh%TVDef(E42OR7C3A%y-rb^_{zy<-}yQCA8q|Z>qJd93q_-X4VY% z>hAGRJ!_EkJ?~^L9AkB4cLtt-aSa&VD-?j0)*a68WX}~USp(MNUo|H_+YR^~n z0(4Qma9yqy5c{y1q{vd`#;qcx+}jK8pk2;fY%Td_2;sml$#tD0T) z5vFh6&?bjD>ZC^ZL{64e(kIz+INxP-aexM2tjQ2jyb?>aWU9j25*mYC(EQP&9Oa@U z1K@GR`Z|6Wqti{oP+GEA0Zbcbvr3a##Q85y`Q}M|PPXSLvbW@Y@)Y|e<+%^A4KnSovzwto7 zBp0>0zYE&Q6BXR;lpQQcr<IKoGpRLgZdV}th>g+7Nekb~ z$?pg#c69I>dS-#IqTD`FRV9Y!S}Wd^-mOuS(jb0h_0w*3&s|y`@c-JsH+CK^ZW3v9 zubC#UG}MVZF18Glmx3*pS#$Y=4%01!F~SB-MbTQbbRfSdLMw~s9HF68R~-}UgsZ@4 zcnhu|EOom5Asc!WN8Y#J-XKpS%I8s$E8adfenb9jE!x7kw#it)s6QCE=l}aC?RJJ$ zIA@cyuFq81#H$r#e7VXa@HL>sLmnu~UItgegU3Z983mhl%!g(9GGef9N|H9RpW$^@ z{UVpAQ^aSpHQSLg+NVL6IinbMv0qnZ$lR|2+|8og2cFo`Y0h$4zhg@yp>O;>>3<~a zOy7r+LXO2{6uC~;*apRX++93%=kr&oxjDH5S$x#@tnn%~u7akxGs8)g_ilGQVh~LF zfoIC!9Asff%YEvaH5va<#aFFyKrp&Cm)!(dM%NnrQ#ZIrk2KLi`KY-)*E2ZG_zDO)-;HD^-0aW`$IwKGfrMJ28{H(usLAWh+o zpHWKEUvjPhTO<=M-{bxHYMN-riN>4`qphH(O~JCyBP+~)v<7Wj#4V5r>Qcy1AwXp;<-(kB>ck=+$ZN2}UdA&$ ziBQrml`5fhgP%Um!MDq=JT{T|=yuDtI^M%=m=7HRqtST%y64s3WAkvPFx3^^IKM0u z7NKNZ=Hotj9AqNp*FufOfR(TBTp#DTDWI6k1@9?aH#uC+s6Za@Cbv{OL>8kG)W1z#lRVxa!hEo+s zH~c{z12CPRKUg53vCeC*(1bYtfyUII2tFzg5(?oVrvwULokAZEUey5h@z|fs>)$gh zna)@S4pWXDy6jGiqq(Tz()lA?6ctq5g%A3S%iQD5e4{q$`o;f!%jC&{mjbVsOF zNnWOULZ!nU9}&S@Q+Th~{~4NxLzF6ivDSME28;RJPe1PwvKqH3OpbalD^98dQ&2pF zZ`|G<2C!b@H`fVYGDAKY{gOBg&^rB+oPln-$wo94gW22ANp~3=azKM=PyH; z3jld4k`Z@Q0Y)6B#F5YDcx#?ht3f-mOZl6eDVMs$*>c+ch&@jOH>!dJCI-vR`?5LY zO5HYnSZ??$OvS^D5!+6}_!#~XM-ebPl=8}Ic7SsU3<)~{ci`r>o1+3E7w2vwAq z!}mMcj)^E5CDnAt2B|3AX*oVS2fgf^Bk^6y>aN^zQIQOscIG738vHD**7SnY;pfsp z%~QNhV^`b1$eRDTCLlBGjB$-2MJaJ$L*=%wd3Da&}aEn2*ZM@m#%LeStZXPRUV;@SD^6gm%`zH9vl%+Um2zMif?LSUSU_0vm*d3T;ic_=q^SLW8y zbbo8L0N`Hy@|G&_>M+>A=)Yk=RMU}FmR4dPAgnAdI&ejNH z>d+xau1zLQJK8Q5I#SUBRML_gS1DiqbAFLS9$J}^H&N@)@VIl}Du=l5xOUNNM|f~D zM%be*R$84pp2m3GxsRBJ+%F5ceG$BDnR@>_W3Yb*9BRnc^BL&)k~^S#F?xD~e9vHX z!yy4fdQ!dzVpi3bshAUS>cjC`q28M(SDiEk`CxlbIQ+O!F|9-R2f_>yeV;H;QGz%7 z;O}Wub`u__*T99TCIKqq10MezC)Ff?A;M?<&!$T=W~VzV4931qn7q=gxFpMPk$ycv zN)7J5Rg1SUJ*cpSLe11O$9xI0MODu%_=Y{^4qNr&oIuUivWQfrYpjQ?vREI(ruw6L|nYcS_|;fHZm4?m!aW*pvdGOi!X0f-=Zw4I4%W4q#_(heenL> zL*|^&S;W0x@E}vLm5E#h^0~Unm9n!g< z9+YzBU+?FBEOVwUgXa4D=8xK5G4kpoa867L0Dk%oFKbU6SyTFu!+xXrq~^ekwpw^F z*p^{67zO3S`camgogYB7!ZxR1U#xj8@5aN(v~ek8F4XaqJJk}UJGmH)&Ru&JT5%nv zXGaPnF<%A){L14|nvR2d!yiK>8lvBth>)XP&^aMOJKGDzqu4Vm)38k(*$lG1-A`kgZ2B2x;cV7n|GA76UKzr zfs1#W``#?vOz$*SM0A#mor%51V+S^AUb2+6V6mtKM#Qcq;pJ zC7v(b!cz3VH3RCix_>~0M)63HHOaPWl!#hR9-oH~5I7?Z4n%$+Z(=-xTo?)Is>i}S zssEYt<0~gI(ZNJ6Juj|J`0cpLYscvSA_tlT=7>;D*Vl+?dmzU_R zs2IWAIUp$6Uf-7fT29)-4^@PdBoLYp7XnJw zEoJfI)szRfkU;*8xl;6%HdLnXwe8(bXkv8UTwPZJjk#=vRK=B-E`B!v5?Gu$>Tb6B z9yN4I+oPlDE#gM*x}-L=_qSz)QcgPW$a^H!8ml6YdV~C?{OOVRT+Nmtyu~#n1a@|B11^(!i2ip%8d`~!&j)i z8~Ln%F71Cp-sCnO{>CAaRP2eCY1(0W1a*mRCbU4^<6gO5J7bYQim{%&V|i->mer%l z_Ym2w)=QtIJ0YeEOI8Kzddm((;ie!p!d%g*)T)-xyYm*Wkm3u`e7mO-lu z!3k-Qcd_KGQ{a^8Ft<%r5)S5MC`%{HRrMUaCZ9vj#kD?X^fc&7vzjJgwdFHbdn3n> zs#_dBMS0lS3j+o=PRQ!)p=;~r^s5{@U!QfrTK8_ZA%)Z(|E~UEb)8E>c<*c2e|;?A z=k|0Fq*lz7-ota9dM8sjR=@pHAM2PG^DyUca_WK1;v+_Ri5E#siVV{g^BIt4%c* z<-7CjRD^Rk+=p_Tgo=j^mVtq>z-WJ znExa4iW#=$Rm}j>gv#Xg^nUFAJKx~20>DDESu*P?;57LT#*FI^P+(&&%|gZ^<5J_4 za>m5UV0i0ee|=-I5p{EmcJX`P9E(G;g<~jf51pPnSQNwoT5n&sD{LoETkH-Sg}t4y*0D zml2rp1=ZBuX1~#CXZnW2eRr~-9bV7#;^@aKI*WyaKkQy_+fQ7`CTx%e!&S$Q25Fcb zZxaoBb$2&nPoxdq-Zc>qKpE& zw&vZf6nP4va%*)c;EQT`R-~Y5)|z|sa;l;-pCBCCQ7I_~x5|-qNvc*z$xIt$=VKX0aUi|zAeGgvr-E)zptr($^D+3EWUb(t~Z3a&Iu}4y| zVyc3WVth%4_Qn$jCbeOfm&!D!hN5Ay;AJYc*Gh3qaOfsUb7)jK& zQXUG{Y1~M!b0?&o7Gn&~pp#9Nq}T0Ui3h$WNGJ%_fIvQq+?;*RuN{RM!mF*9Y~vog zJc;SUKdG%;8qdl`@A*m{g-o+VfL5A!FNMCecU4nD$!qOww5ODH|qc_>FC|c>~Lpf-X3xZ$@uurp4O6et}5A~b1v%d(34N9)Kp6+HymcKWn ztzRP?R1glxMa4aaoco(nrJuP{88m778f7CzUu7w`g?U~(frjz+0KdX8W7L-w^RHrp z?`LeOBZc7-o*Ye&OU#Jh7HZw;=T`s4k#Nk6FyOLDjnk#Bda&L<+{O_w$#Ncj=CN!o zby{+A2d>&j*%Jy5tYYI0-9c06z|)RI(WzE#a0LH_bpA_k-A)+n(Mo@|*TTP5Frer& zBGYmuSC>_|p?IU(;Bd@RP@$I9&`z5u4J-h;@NK72$3`n3u`d!cA4WMqN(90S+4-Jt590 zgHylxw0%hEt9)}cSiMx6eNnM9vh=#qp`^t@3)JTJuUT@M(FB7kaYbUJ*_sJ;N% z5*c*k+7pNAJK}v>U9Ry;shGGV%$q+43$#tw6eRUhtt@1I(>Ic(#|2HrGfs7vIOD$d zH`A)v*6==$9&T9Aj?Pb-Jd9&rl(-@h1KkY#XP}SYP6&i$SGnSsHy;05#RnXAAmxXB zBj>->S_hv)fRpUWuP2~EQzpPH1_znM|0LkQ#Xr*&{0j|&F`MgJRChm_-gBf;fqEK$ z<>}bB08qpO;qunfYND{6ZDR@PXG()=+8RMBV)t^tikr8nbHv*xOLF-`o9YzyN2ZNS z$KPWCgzdMx=i(pk$njcsj+A3I9owuCmi3Ic8 zoF;qtrfzLZB+;k43MB_}qO7HKlN6}E#;ZfpTA!G+e-);LvGm8+KAjyyIG6U!Kz;n8 z#zcE=pVr+awV}s`)c;lfaX9><#WChkB(H0^l8v;@qKt=;G~bDWDbxWPymEMjhkukN zvpJ5kPAU=P-DBt;u(pvNBzMR`8o<=Y*0GbHpZLUy$dPv8x@((qlcs)NT%fY9WuX(P z#iF#!bDtoh(5~hxC{lCH4!*Ao>KqTQLy@nC{!)b?N!$}zp(gaB(sg%b7$5|7nG)z# z`WX-moI-MxfKIP=iUR?bdS$wN&yLb(1a02>W6RA|A2%&>SEthbwnOduvzVLpM;8QD z9e?ZwZ4M!vMTxhA)rJx2_NmdnDOR((EoLNt?{e|kny-U`zm7IKFsc*AL+CMAl;D+l zRe=ko^^OP}Azwr)IyLFgMy>mNE!|wiKe1pA$aQTlsOKaiJp)}z(}(ky%m5II*BC#y z1KSxENb_5WghT|Uk;R8Ldgdq|8bl(%H|8fitN&h!a)KMb_2bylGlO zrsML(`hu}dkw!Y@c`DI=zUOdq^Ou-7x|W^fd^sb5tm`_kN1tET-NdvtZuUYOmW1IO z&h1o2bEtrtzc|C95QsX%Br_P_VCU$hkmokW(ck%t%r8NOxQeJ^-Jkn}gv$W_3tt9^ zB{ZSys|OP=Wcfz`9G=#B(H(aaX$KS#BdvnAd?2DjWWCL>zy}8oo0$K|saC_{Lwb_) zMCgv9hvGI!Q6p}V2Z}S8{p^_fJ212}>$0PQ71egA|r6f=M*fNl!PQOyArlw=oaazEm-kk1vuLl<*6*%P^ zxU|`cO(hd^^YoEF1`-Hm7@@i)$Ng(ELgceU5mbNP? zYm(*PWPdM{B$Uo?B}u0BcpQBtvmfDXP-pt`K%^!<)_x{FjF`7obG0@j>@>xIs$L zBJpit4oh8?@Z_!Nnsewd`q3s~LGk7BkU{V6bp~6Q&&gqL*~@OkQX$#OQ>>8w2R;Vk+DcLD z+F6t7yL__jCVDIl?tX%xPHY?Nx>n40)PCm{@i@FqTa&yQM9jS_Lttp+ysN~&Te}Xk z1F3zznSK{yBMywqjmlMB_xr9AZx#vH(j5b>MX|T;OQ(=nkoYh@XVTSJnUo{)qJn$a zMV!tVZ3ILiKfrQsW2mKos!u3^%J@CP*~nx#6+ZOFX@L4WVJ0Aj@K+3)ccm50#k+jd zifdnEic=7-IUDu<3g#qjv@V|Ob#W4^q>e>S-qe{3>U$he&qOLo;OeqIcc-wP*o_oA zH4QxCc;EQh+5P8|>^?#Ixo@<#YI$dhZYIy48x|uu0d^*5UivReUSobc!^%&qw~yG4I$NkT zCul(i^1$R42A8V%h%-R3C`l@T@#3_NRKY4!ils3&FUPK7_|#m0^Ee9m6{rV@H={ky zBh5=6f(Ng_;b0#-LMtJy2ZzS8qaJJjpkloB)|YDV&KZE^%{f*Bx= zc!t|2X4h|zp?aaZMWvmCbZIkl`qlxE%wHzB$IPo|F7#Ddr9H} z6*96kE$q1*ej&h8u4VT09H(0mP}JUR(83!Z*^MxDWwb}aF?eY6J1Nf{GtWz=5 zOR$Q!(93CAYw{0{BhgrO!w;$lGu`YGkfU1nkWYqfhZ-hFS0Jxhx6EYaKI{*|9(|oo z6Y~awm*G_rF#AIrb)BuhRmKj99={OEx4YhFK!dPIyvov>=WiRn49<9S z-XhYSIV&95Rl2AW-{iYaU~BVM1dFEWRkvSr30Lwjc)^^Y$1gyvuN&|Q+Hzf$h|_QX zT{X<#v;q7t*S**FSQr1YQ_F;h$5|M6>Zw`mkXRoftxgZwnjF5xG&BbI1CKy?l1eb;<~t7@aaRm82xGIH)<Atq0wPCL-GoBQ?4F9p;y!cSnH10szzTuA;VMe*JH&vTTG z=k#$PtED%AexBNYGHQZd@X_%mt79YJx6sy9;LO#88@`d`!2i_kbROO2*NtXH=kf>Q zbiXs(^gdEwKM)xs8W!Y24OlAhFnkBIijYZ`M5n=3_Ump&(wdgGxtO~^dnxG=kP=<( zL?%5svGj8*=-s{leG(qQVB#FJtP`aY|ATM=Sn6j3+KA;e3w7|{Zx3iG%>CGIZ<_{? znKt4F63bxW!C}2n@Y<`Qg?IqT0C?$_CpZt&5b3-;iaFOwj^&;OzRAX7J9$Btd?k=G65`-`W`o6)#KS*E?-rx4ai(Sa2}neW>oZh6lZZQ*0`s768aLX+YwB21yR-y17@t+wgh70RjpBsm$PkY|AE^M3{hk zlqh#!9_*wb;JRX0JO}Gz4&hc%!@=u6z%($J)9a!Afe1JsJVJ1|tg^PpYQW*ilsB<6 z7A8?Ro)aae4&rI_UEhnx!D?9a(p8l@5kMKgXuHCpz85(J*S7R#&lguT;<$CTs`(In zd5cek0IWv12PSgx1o{BpkZetpU^V=R>6MsfrYvH19-7GPAvPydKXLDr!F(F$^D)j+ zmsg4x&#S7O8(dCn-v_)JHM_+G-bPUwk8nK5)ENqV=D-L6XW8;I zBGQ9Z1*>l8&W<>@thddzP17&tYuuO<10>T$w+b=*KPK^Q?&qF;BA)}dmHvz(rYJ>X z2EM@y?HI6;%1#MgANRRGfjvL9FK(@#pg~BEidGF<5r#(vt}d1L zcu!)d>t2>#9Mw57axK-u_1-;uFFVN)$IxRZmOsnIABaH6hLG@wlpBv$_-+`CwQ^MF zHumK$B*TPArjOPoeSx3=Bnjs}oO5LXdw_C+FxBrx0<%z`C^e9#epvIJ z&?01q=c3v?#Vjp9FLxBiq6uG*tW#C@9CqU~C#^-sf|~;jZa|w-R3Nkd9N;9s%Rxi7 ze&Y32xR}l_E}HjeE9-r?L=>!F0O~c!YMFVbrEWKkL-}{*kS$M66af;P=NCa{dN;g; z4faSDM7FGV;4%Pu?2KbU<=02@@(ywj_mrcYqs%jPGe@EmATP?rh%2sqNT+jo6&!q) zf8#2S0NR*C^tD*wC)1$1?l^mW(h7K+#Tug$eu;PC1|i#qwbC&1=$bOONV|DeIO6?mqQ@$2=Z)@+`& zn{6}|4wykaO{}TpFYzsy8d|=1FWHw>p3$Z~?{#kXu0L=|)f0mCp+FkeFOMgRjZ&5F zUc&*z{NggxgbL-P?hyKGDYeUshN@QAyvBFouTgv~vjn zO!$QNxDyurtq{)=TjjB2zSNUeKJGM9j3ayWlk9%b$sQ@goxgi|xrv=6A}%C=OP}^I zCH(Qm$K577hF;%a)J7OACC?3{4O6Q*V{dZ#d+xEZZ!zJmZP}0kgKhY@uKM1xeC^@ zl&jrT>WdS;qwY7s3Afnu!Ug`0;zP74PRgOM!~vQ%m*D=}PXn;MfX!OEL}Tw8d?*Y% zF{21Ene5s9o!#ASOjbNk1p>-0wv_7O+Q#hjDJLiAsval7pFGWm59c0b5x%gxW;p}V0%MD&v=bd)ExCF+K&%x zNNM?>$-Z@6O7lUYPz;Gi?#hb934b@>Yf1A@Bg@a z(%d&W*ZH3amH=KXya(diZ(G&G1bMu3MGSB$fTZJ{QicW+_jto17pGrC)6t{It3E@Mi@${b-y`8Sc8}4RoDmhmXf07oH+9D;I8BW{MOo7c$Q`~ zIj_WS1*@%y*Z|e(;~Hlmea^kv5SjIi6~)MQgp~mju^5N#S2McqT-^kOZYsY;aA{Iq z0o7Tw!$eG_L2B{oeu3$1QM735w4#%_4zYQ)+&&mxyc`JzgBf$(+92)MId-jFoYb$_ zqcDrPmTzy5_U_Ea>{hr+eh)ZwhO$$5F88+-*Qg}&=~cOZ_DliHf4q399sCdcrW^LG z_wL=ZwNswRE-M@2$Nl@X47bEQrP-{(Y7ZoMyplFE;hHCiN&)6DZj&+Yab3kt%3+i_mJdl_;Jh8W`)}Av0g&lic{Z181iT8QhyC*?H&6^qLYHV$JcO@}UAC26$ zDh_#LW9A;oO(|^Z0@TXt^X_%X25Ob>-Me?qm#c#Xx{~p4|9PLk%yFWi*}w`0(y80# zJZamv1Nuzg2sl{-4LPI%I|t4MDI#vQouJd@({nqWsLYbiBkyyO3eNjJZ3F_AD=;u| zl5I}N)Ysbq)eUrPqI42p$W?X=bvf#5IC#QQ6|Mk}b3WUlw*PZ*-Ek+|x zTc-Ka!Zqrq;_a^Tkj#BKGN1)j;o1v&#{|VGAmw8HI!$zw?K;_}Nlb6WkojXZT-u`X ztO=3ads?SEH_o?qFI&?muy7@$1`G##;{2v=oS1#a+!DiAhY*kiMzXDHk2b@xF~pl; zne7sE9hAYa37n8OpMC8IeEz%bEkKR~iAkVg5R&Kg&nF$TM0x_}Z&P0SXMEpUTLtqF z(@iJ$$ydW@1nVmx%yOF`xo7tB=G1S>XOevpEoSl@F=GfmZ16X`Zc9}-l3~No>OJ~E z5G>7G+4JYLaFZh|@17xUo1zP~6mJ;q`iaXljU0-$TyrhL+u(fBth!g;`$L~&xDA|i zaj^A|GQ_~ymX*Aps!|l2^D}xxtZUfP)B+z1l7zH!=@Ya2Q)<9|y{19lc9$4Lq$ec2 z+(x&dL3T?#f3!lD@A>|)fK>;z$|;+C}t0KtShlh8e|5}iHU?|s`32Pn;~Qd~Cn{aq*ft^#2m zEKuJ{^T{X+q;>yJY(41@L_T&#f{lgVkahUFUXH>KSbignO(dR;W$kJlP4K@8p$!h< zyzpC~?qbrm8ppfIuU(l{u0J*uJ6r>(Z~$~YH^TP;;r#y7N^;W&_Rr@$R2sza2v!)E zzXZF#V1f|J*S=?Yx;Xde`9)3o5y!7@mlwpW&TzGC_!VE^Vw;h3wna2Q=;@}PGYa>} zB`Owtb&)Y`94}jA<@rFg+7;=L90|_%t)^VrpEibM&54~+uTi%hd3YJ(6wKmUL}g>y z(}@HK?@$gF*LNd~-_jNTx%!$dT{cLT$KrTI(zInHqlTf#@AZg_c|*QlX0hem+-0p} zY$5IVN7!D@Q1Op6?iH@P$dpd)Uxa;>;%O^TywKy_C3F}OUqd(n)qS@)=-HxZJ*aN4 zV#^gs12!v)McRL+uzEwz*_lrvhTd$X?#B;m2yf?K$nd|kSzCP|JS$^LL^nw?od?K> z0E0US5~|^n;c)kDwb@0<%Mvr6tJpa)CRon5(|E_6_ljZT zhhNdb?{R%yoVwm;SVSS)DM0wiEi2Er?ODUj9oDl!=gx=hsNNJ;ByifX=w5i;`EYSW zukxeKgzc$ih*p7wgCTVvu7GZa_G>l1z#ncIR!P7C!jV5aULQafpvwOJIQe!HZakkr z4H--b&gwO)2h**qT$LudH!>_z-XG{AAU*eMe>1cgS^16S*6#A+)yRdyR177Bu>?yd z0;mrs;>8rQsA_5IPo{Z<$`o8XMI&#Q$%cXiTZ|{g`TrjYvnrj39RKGrzrCJB`x|Gb z6&;Bz5e@_Cud0R*hY9e}LQC&cD42&%)iyK*Om1Ti4G4*^-`3>*a+3XnsHg`ys zmD{ISmu^YoAa^M`kxq>0qdgaDTQ4ASsm(Mx&XRxAUeV75}0M!c~~3RoAgjABr; zye=QaT@76h765cX5Fh=hav0aH)FM#X@DJH@>R5+-!eVD#xgWYTw1dno&ZTpcmdK(h zeSTx-VE>!Ujc>T6SWbI^{r-DFVat|5uM&T^PvR24y5Ldm&{zK(i(F#fL*-cWa^ok{ zf5yigfgSk z6`D}0YCLfB=Vrg-N9C)z$9ot@Njkyk352{BYtNBhpFk{02y&eubtDDyq6HM|6!lHc z%6ey@!^8=+U*6s_D)qZnZ80!)y$n8;!=IBdu(|7BtVJH|5oltYy!aS?;2R30=?WCm z`In|mmvtj7riDa5one}Q%t6DmqFN(rT=qoWAuPW0<$hn?3uYyAu zx8AnXIAnXksd9ZfL!9vV%Mh&?)4zHwAk4V}fb+m?FUlwVoi)m165*?kxjVMfyU_3NT1X^x#;@x)RgKX`aWUXSq=$fP1>}2Td zP#q0!WXzs61J#_tv&vg^+jAXo-qc9uoAXMn@>kveK zzR3vk$X+c+pT09&ZVf6&`WEd3N_n+VH+?rxypkCOED_FtYEEJ`PI$!~yy+*j4os0r zVDL!>0opW5(C=Rb!Wi&k>1f_hcdC_#OW=fdgx!=msTUs^_#Fj~)*}!Oyj5{1I=AR2 zzdb%Yob5@>ZY~rzy;_pS0neU+V#~hp&52Mls?+z3g1s(&&bVNNsasz4Vj^^yav`fa zm&haLZTg0zi>(`1a}L$gTTP%V@!&NdN7AoKWHuD=@+n1PB!+wSwW12o$|P4cwRCP8 z(+vu}>@E}T=^>@^C^7=Jpp=`Aq_*8 zAxXLk5`2NQfC(hz6gh~{#;zN@jmG|Csx_DqCABIz4Zs!lL%gpWpfMU9gMV`~teRtb zBpjydVzeVHZk9&Czz+N2%a^`uIj;-G1LQqltw!i;r9IKBE-*R1uONo3az{qz1XrNR zxdgg^lP-Y_cwtyYEjR@Jrj%ia127^_!1$V|+4nWp4pVoC zb+^^MC!pKluM;LrWYK>K8XJILl?djB%m4`sx)To=Iz$z`ngA!YNzut~08n;f^#he@c9O2PWO~HHk}04SAvs~&h;;!QwANy zvY&*mu=7@8@N0Z0-+XZLq5yqd+R2Ce2SOYG4QP_3nBbe%pN9Cx4yvV*_5@W+riVq+Rmo;=Hd7jyy1%eZ(tm*dFMDZosHwQD9GG zyui~e736U(CILJ)a7O>n+%}y2j#oDlo{lfX{Y#l|;uD8#=%Gt;Y=Al=3FKF=fW()A z=(UJv4Km;5%g^5>69&2tIPURwCLYW>QJvY46t-?{-2SjmG{&ygjC`-&q6P+P&wY#w zJdF>Z+ECQi++;&`3Ia(GQZ~d^e`t&ogYrS<@}+ZX>3KR9J*^4Zbxak^33z;JPoQ{j zZs%C*#9*wwu=8~x?1L5iwyI~M{`~inJHQ^8Z1GbY5-H-$C1TJbmRMX1-*{1*m);(D zDi4mM|IVtwfdq}xJ94$Zi~=p@6Q5{IhqDktBEaYXSWedq$$VV`;MOzy8Y>rr5SKMr z%JgW>1TI&=OXG#0OUA1DtEutaM)w$ggfE!el7X3!EE_wQD0a=3=R$yP4f*D3%q^G( z_HtYPAY$O1(|%ZnjEg;`r3$yb8!{!s91||iWSZ=ZD?n^e!fzV~B&p$K`Y&FZi08lNOTKb`zU_jJH zyh>?mLa$oXH3c3J{gf`9WHgYiTEy*u=~?hutXZTNAerDo=m$%$h16m2Q)M!_3Nxh1 zA#=FW7C{_Pd!4-&fRZtrJ+v{?J2Z#1THI^bVm(xABZHa5ksYRq(}K+dHe@n#|GQYC zxO{s zB^9x#*WC$M76mlHrzeX3XYvi+NN|brp8foKbgEk?c~!=R_o_6reLms8B21Lny!F)v z@S*13Z}vRQhzgv)9(dGFWZFF3%{)cJAL1i%@{IbX=uDHQ+?#%&$nbF%BfK=JqiKuB zM7^4hSwI9B6ISD1r!ZcJ4o4gI0CSLri{udd1jxS&E~1mkoCK@^uxx4{8U7t*5$W|4 zKr%<;oUogG0M@FKAf+%?=_WgIgpFQGnsEmoO!Jd;GT<&9{J|;7r6LTw0PHGwa9!XX z%MVwb*ir3w(ru!yT$zu6c@XzW57o)r(b75*D1Ln}F>Y&1V9_2~8y5s;@aDX>zBmMT zf~t)C=s8Qz``@Yp2+>B^Y$R@+JmWB$rIDkpB#dv%nyAMnSr)c*I0bxIKm&&O^AHR6 zqKR)`3v9BklCt~XWE<;9?e+hG_*Hm9yH}`WSq`+Ss)fqUi(=w^X;I!1v($7Jd^d@} zst9@2XmM?r%kat<31F0<&GoJ0h&SB;m^6TX1`xykXb;V=r){q`(h14aW}UNq*KA1@ zf17(qS#zBLFOMzQ81&u|X#Ag&fV_Ve8?Cbut7x&UrkK0#=o8JIgW8{of@#Ajq{m@lnq2vgN&3OiCn zbi?d$Y$%LHzTjZT9MK@A__I(sZHlUA1sqVaT#>^f5dypEuB z-Zg+a$9#Ms^bE5XLr`nva%(ZZI+mW|mRbj{jrV2#72aAab)+nv-1Z@0LSZlX5L0Oq zu-uJ3?PYMdE2B%xfV+J~i|t9$r-=fo>F=sASY}X+x^lW#kcDAt^z=O6;i&5Myr@cv z5;qMHx(!=|iXLok=Yh3vgtFE`8NW|XSuOCuF-HX^@Ad)T{2a^mseif}Q0m2jJ<3a; z;kDM7M>>TS?Va1RQAxtKB#N5rf*OJ5)9zg?Ph(9Mjz9huoxMhOQX5InAgaE{R8ME4 zzD5F}pDdsbtv!z1$zM2js0y6SIQYlX@qKc9-M&YPQ{#HplZ+vt3L zjF;HC+-h`^+uH19jIU~{e%xZcTXmQO^>j-|0{kbaOf!|}(_($OfigFb6Sr&W@d9*M z=-%hNtfv2wrh|X)Tv!bgD|R}xNV*vYiZ_x*xBRMUuDF#rR%TIp4HKEsl5hHXB9hUU zz8Aj3Eqr)B0#S#TRn`V)`we^%7@c(fZU&d9z_oc@)WOy3tjyQhIY|_#N2&w-pLf>f z_ySC9%Iee?I5#;}cMAbzI~6cwpW=ns+%%CjzUD(kWT_zRW==blMM#lG>h%wX_OBbZ z`8K!`SVNd;p^tOf(|Br3$m$+AgjSb_8CKqGdj+cW?L(kaVZ$6gdMWwH^T{wfXy6g` ztYhEAF8o)4f5`o(0bSYEV2~nyzZ_)KZFdeRv`o_x;p$(NDQZb7M3&zPe{PtqT6hzq zfzgVL5C6qbaCgdrK7)G;n4s+n{UuUGtH`kYNYJe)JLM`9MqfW~ubw9g3tmg0#;3t< zyziu8GU3-lyu0pNf+6gG*>l(n_3f1^9DZxk{KolYcTm1K9G)Yp(5#d0suO7>9M?AI zjJ#%5H62+dKL09Kr|ufwurKBv=p%Z5z2@1h!IGlKt54e8jXbnU-P-}iHrc~v;e8{N z9(B=eCtH4Kl0K0|0^*`C#kOiX=HF)ry77pEsy+jA(uS0um`UYXz^OKknW;p364;8@H8NvXW6oN`-78BSJz6nIWT) zy|=RWN@PY#wv1%&S+cT2_TDq|Ij)cH?(XNG-|zY3`~2~E-MPJdK0eoV9p`brkN5FD zj`KXfPJg8PcWVP=#-X0;+-{|AetqagB@MZGR=u7IgW@W)TE%bB!BAH8m>CLHE6kf})ISky;XUnUPavDRM zp?4#Cpb`Vkd@Y*xmDP0J#`DOXWmw_>hpD4hzi8b*70V90!7{;iVr@2+j|1<>@Bu;X zU6$aLPSUvkjp-S~OP|grU15#Cx;|igH7aYx`?p`S-~42E8SQ5#gCnM|Uu%elJ(gTz z`<3A-FXNCp*d1;R)^^oJZC+~4uZt11tUis(jy2ffX+HbkEgm$uph5br)$m%R*GbsC zep>W-z*wrIX)&$nWAdnaDM}C___m;X=q&~9b0o`w^RgLfrY)gy)#6F{Rc6?Az{2?; z1OMv0k~p+AkZP<^xet?AXjvx@lCegTF)`ha{lnoPyvmaY8G)>8 z_l0CuLx?MJ(BM3X7q9^j8X9skicrfMY!Yt{{P3z;AwH~uAVP!L7LuABO+T~^bU`Ig z$85j6{$TO6Rz~~`T6@M5F>8oS3UxOX2!n(}GZ<$v4 zz%~o$BAs3m>y{+bny*~g;J^p^M2^G#C7d6JiEQk~=47^?CcAKD!vv6~c)OH(dVNT3 zdvjGtJ9w826-`+`F zwA;5abR|M`n+zA?S!KObuvqkbvbhQQ$NHM&LfH!&tVRAa$YM;ytf$NQ+Cml!{Wgoy zZQgiyL)Y$z5sBXcD}L;pZ*u8Enn!qr2VgCDvb!+o5^l z$mJs@^ype*-pm|MBOkwXu-2wS+jfcGhOw7W^mW#QJg?AF^-~oe%k{b zm7>SBdu^Y-Qw;}<<*C+@_tHGYONtVQst^$z0m9*I_f2GfD)2gv4pr`r4vDW4a;;)^ zeWVZRWk&e*@7ldXONi2COY&dkYA*TFign<(xURYN&QK)L(l{{iJ-S_G0SVelcd+B+ zR-l!|pM9fIXeZu6JWbSq?4n|$AwOvQxW(^lR+hk+Jk<~;?D}_gew*i04Rme5nxRo> ztG^d#Oxm%CXX;o!%R&LL|^sdw2iWyx%5i2TjuNGwY7S{#Zc^|8x(Ow;p8#cbMCf{MYc{k|B|=L ze|YZ+iy(eF8uuiX59hi*_s)y9FW;(SHhV_ekwr39#oF^Y{l=73r1|$tB(dWf7dK@{ zwIU}AW39f86pvn-tSEm(Os>IoT6k|tO8=Zd9sNgv`4~-;w}mvJDpg8)Aiknitt{2Q znmOlg!D{*+7&~F1S1lp=vk5&C>N1k5J$_?W9K}ENUkGT5lX?QEAPCXUKfVInKCAW2 zmeQ%voJo7fbnW!3k=a?-f4aq#HSnKPtOvN;xo@i&=Q zb|DvobOPLn`x6Gc++APxZ}n#l{*G8;)UUZeQ$awL>Gga4Bd;c&r3K$I_W_AIy+QKy z?j&r97Wgt?yku|}j`*w#9x#v*58x|0ZP-x2Ecw(Des^9aI1pzBq=lQd|(207` zNeJXuAjpkG^ZrmC9P1A$QW@B~)LIKH9*tzW6sk+}2E^jqor3#6XXVFCco+Qi%QE8T zlGr7zng14hE_kL$P+WLY`jLCVQ9$!V&Q-1(of5s)el?;dQ=iWG00$ULFblysWtIDd z;~OkBr4YG0!Sew6{tlHIOu}3BdW)9>Kkh&oatukrlSP(3Q=F9G+91(bn)KrDoS{bh zJnMO3wRb9TJMG{K!SaaanKLT^WW}>npU*w^`e!dsRFjI78tkN^A?$P>*-7SOd6uau z8M5>-8yFBzZYL~zb0uz%BOWaax|Byx)4eND#YZNz%8Wmfg>&~;op zj#Vyt(Cy=fl(ns4twY*52%+a0Nw+o}g?4^U^*=o+ai4O7LHH8Iio}qB5l6TkTWf82 z>=R^f*M>7PJoO=Or6$Fn#04XIKRJ+o3-XnzR0*JYsqN(CTcjq50CdE6=5=K)?yk(}DCM*m_9% zZE5W|I%}fNHO3e=QtpF(UdaY6Nvta+?@uJr4VDtDd;YNR@H-sXev+)EfA!PtixX!U z{#q6RD3ueG>E@MT%Rir{9YZua-A zN2gv&=0c8U>!ndImiAa&PN$u&O`SM)UE3G?zdoObcfEm;7j_cI2;CX(-=ww@w z?(hfGPm5nQ__FBG;M|!qj*742tLKF!S-aBl0&Wvpuo{t-+c_lPOXG*tsR8v%$W;1U z6oRcZYpzVB!x@_kD+kE2qX{Z&+^}d%v!vp96WD8-(>PY5_sQTCV0+lgK8%8$oRV8F zdC*#yv?D0^P(=Nr;J8NIe}Sp_25qG^NyTulZ%6qZ*x?1~^3E5SN{eusC4dbRK zz0O0ER*8q`Z|odI_Y32(Sp8>2Bi;&MNbd4m!uof)9RwSxp6fOu`l(Bm_rfF-PU6^H zu8};q%~U=loD&C2Y3HxMbAuxC_XhujsPWoKPNUqnpU%R`4c<2VCg23WmOcMY9xr%W zUqa%JslyT{EML2rws>*lTBB#hq_@7D1#jMqcW6J&tdfg3zSW=pkBv@sKHp$zYlL%y z?`DJ`s}L$HD^CmGFqOJ9$oZ}QudZ$+DomW$g*_Ytr5V^9>i>kgS zOZ~p0B34LaSAXp+sgbd9N5(@oXJ~4;#LBv~FdABWYS<$se^f{+4}I7N^}~&G!yb(1 ze!55@KcwXI|5z54?Yj5yq0iD#Y3;lcb0QrqkILx{NDy+e-D1ysF*Y_Jxu)PXKpeMx}?b8jBxOEH4MEX&h-X?>e>W|JGb%co1NAsG| zs;R554m&N6er%+zh3g<@vE3LA^>{g2>vL`?2O0*ME0&x__GlB_4jlv!HoENBTX{d) z%qzz^&ZVtxmK{l5+*zq5Cfxp+kyC+(#393mIG43I;M{8m_-4S2qg_3;DMC zbURYz>5#6`?H^Xerj-Y_`=i8ePq)Vz`a_0<`uh5O^}oCtZ4^Gd{_2{#_mcz%9Owe8 zk!Ft9GjxKkQmTq`IptdeJ2!?s>Q1IEi=pu?eI6&+?mHtdsH4*MdmQYS!7hX$H+P}S zfw*Eb%k1pHYH4VS|2f%S zjZrSYCZnj(OjgJ0W8SYGGA!0Y16I!F@`x7nV8L&kLJQc?3Z5jo@EqQx3Nq3xwe4Oi zo=(`wJJ{PcuGYTiH0H<5CEEr2>+XnQzH!+Z^;zX%E8hs8TD32@rvB+^%zHy(p^Z>w zWo3iUxMtwjCM!Ry7oEi?v}>J-TaYe$9Ff7#7P`)=i8oyew2pRrTTJYU!}UUkd?+-` zpW8xT`IVwky9>>XrWN?$s(Opi7R_^Y9Qlob?8OI_er_9Y=?rUqhRbHa zu+R6|c0bqX_JINacQR3rzs2#d>Oab%fF9xMvHAc33%!YZlU2_#(cIV8ENj;)j}DeU zWMr|;H!w7 zoLpJ!k7BEjM%^q6gGD(W!QRv?)O_Y>v>~`Ky55s^BQCrwEG+D{3o1XX+Jw9%8y$$l z@8-gs2iVgEgMXe&&&Yk!maucfl_ES?uQ8a$ezl$gfg_b3@Jc3_4@9?MdiY@tSpHK56-NutqqKaB6#W<8fXQvWE?EQIdLD8 zT@No9fPARLrgot}|D)}q+Q#xocC^CT$o7;zZJ^aCdhf{IMEbF32)flUJijqD4nf^{&+qPOTIOjL8zc)YMQOXUx_dM z{+=NRqY&k^W%NB&)su;BPtrZc7kJAiY#bsIeap;%(1=B0u;EVlf6< zrfNP88qzpBE0mtYz<3q{-1VpJ=aF9nOh|y=Z!M3QJ!NpkU4y~Y8*d1*Uo7l3pM4iK z@M(PeyrKMtQ^V47WwvIin*UdyTAhWV(x{OTM%@{V-G-oZNT{LGnBll68{=ut7f5)H z2kj>W0eM+jLY6C62#*feN<*!&%qkCfl(W<(cX;Wm0C=fbP>`Tx0$riR4(n7B8?~Ns zanyly!n8S+hmOvwK+NWIDuXXScyB${)Rgq%z2WDn7~>Uiz{jICUauOz>Rr{Uphj!Y zQs+ghdU^Rl?&EsATDsg_;w+t7@4_#io0DW*T!ebEH3LkCN_6&jR!?AIcrRBeWhm=( zy_a2G78!P9jM)Fx=62i0h8w8IlfmE-j})QV-W<9T+eM?DrHrhsdI(_JJ4=I=Zo+^W zRA%|+qhjK3J9Ze`;DReX>Sh;6@#+W5cIPrE1?}1CXqbb+B6Hmts{_V4Ny*7I7O|6G zqH5E~NfzB8KEO)?|7RC$M89}@_N-W%JB>pW;k{uqrw0s=!_rMhCn+pG-XxG#XkZ6iJ`fw9oKjj^x*USkzW!O=hCn}! zTW&a$QPeYSI?~d9*KOt$b^G)55#SAkB}VN4IUyZs514`W(yv|LI1>BC?K-=x3m*!< zV7Pp_8CKHB1x?Q%d94{AC|uN~l$_#T-5zl>V`O4F>vp)F7zAPOY>4pTXPx~1KnOua zkAz3;@A(dY6$FCSaJ`XQmoHvUx5^#80T|ABIg=s1yP8>>&~}^-rT0gxX*q+Z@tjhv9q3d^o*2@Ou{7&35~!xK7~a`KP`CLQM1#Pc&LYk@tn{3c4wc4ZNL6) zcviyHE<++57~w7efjbwNIK%;+1c6I+X@Qd*B{rN(Cy9Eyia$_?QlZM zez|;`psKIT!RmNON5?~ivw`YlWS6wC6V#sYscisG9<;FVtaj4!EYLoKAmLaTzlNqT z2Ew92la!PcN&&#hq3(NrNc}1@^6Zm%n^$3x zk@|epL~j8?8|wVd7!yRyA|tThIf8r=FrXB~D5T`%J@yrcT9+z&*z`HPEhZkFaf55! z&UsW$fSAQ;;p6?@r!80EPi(j*Sn2&&F6scJaJ-xlc{vQ{*6~M5 z#Rbv`yb53~IpN+VClCa9{C%(xSgnkjnp)6i<#NnK;CRNx=9hs@aO$DSzSLvh+xgn zYLC}^7WAdIi?BncW`W7ztC||IZ+znfKrCByD0sf&zVS>YQ$orB^TLd}Tu>Ck8k~|^*ZvL7$gD_e2T;pEW+riY$JFDYJh7GK7 z3dn5(dtk|qf%m4meF;0#d0IdMXYu+Km9FO60Cr;y@%%%b0NHP#w z0F>|n`f=VoNR`_^Sau89jqcv-9xO6z)3h6^x9Qbvgz#o@BR=K*`^O(ulCz5{Atrs) zsl@>#yA6MjZV&trp-Za8mQ0YA;C{_@S^7~79e!w#F19911bp6GD(x>crl{5q1$>OQ zT^vAfe=8ZHwc1UB++~_p%(2@Wz5&&yv60R#aBwmB2Lx=q=&li^-K|CS@nSmHoeKa7 z7m>v$v>`s=L=jO@lB%lxqFQbc`eBH8NZw#tFAv8T6mapF43MfCk5srYir_vSD&Ynm zjq|hajQj);V#K{PESs5-)R&Z$lzN{+6!BulZ@(RY>)xZBC>YU11n7q<4z|?g_$OaB zjfY1>yiF(qnv5(AbKF{J1`MWC&Uw@dC`J^G8$xSH{l)NTAQcv$UV zlkqU;A~n%^6(%t|aJw6JOJCcBkM;w42epb!hhSpUA^+%&&+(e3V6Sr&^!B~hpz=T#ae&kI= za|f2AAgou*^%s+t^C~t3!qM*!(e%vY`ifQNRzmp%9Ds;bx}(y`3^Z?M}a?cLWLUNGF5 zJ$)lBi699H!VLNW>v`kMYfgSm6i!5Bn7QlB@zx~0nszkEB41TiRc@k-*j6w0A$w;O z5{iEy$M2PN%g1uzW8>P|7d9|oWO#T@YNBfkWR|x85`WEW9kpN*3swPwxvXeWBOV*Z zmq+QXQ|EN%FYG1^yZC>M&nQput$TCo|6WM=pSfh`iDx4fGy(NBkR~%2L(*LJ_#^fA z^=st#@H1bs(+yCO5G5&irV$0VhEIRbw(rk@Sh=U9FhWp&eAD3jhxtvkrdR9Jn|MjOp#NTOL{ec}4`u&-b5vKCK-fACueaSc!_3c3|$Q*}S8KzP0SsEqPM`570u zC?XK*J$V9mTII)_&;;;Bw;7%8y1lntnV6d3=szATKos>w0v1vNNKdl44x_BO*-X1k zh;j%nrMI_(#$Yko^vKa6Zv?Y^aOU*%^g3kd*DWWc0I=)NnUz&DMQMon5YaS2;A>`1 zoPcSq4?_eh#8hZDzfKL-Bj;6#?9XF(NT5Ta-Z!D`A5mq= z!`TAUp%_H$V-a_ojC=?gB;rf3h%Q(E3wdUbix~-xkRuoHzsc865_CWx!F4IOneSPJ z7|Q_y3a#6|1sbAn+zz6u-`$*lOA9D7y|y=Ubkk^Yf4%Jq=so+>!bdtV?g$SgILqNF zN$2u%1Y$S$`)}LZV78BjT^GSv^-{8}NPJC8O=tn>?O{U*T?j~2g028N&U=eRDXFQL z?eAnL5Q+dpAq0`9%;T^Oh2wMKa~deXob!cP1Gaqvar{2_Wf1>J`uqFi9Hw4>*2tD} zr^WL^6!AsdF8H7dNHK4f3=f)B5>|o1DGP7vx4fhZk-d92aNp|usq<`XA>e-DuU^?U z^=7#qKxPla-_#USJNmQXoLSxcCdh$_;zEacUswaMX3%bV6QKVD7Zc8$N72ncG0o zszvsJ0%Cd3=CN&F9JArD8{c6^5#SLmm4};bXos6QZaS2=88s5QjmddOoHb9+%jf_o zL-uOlK=vNg5l-WICHDZgK{xW8FNBb1)zsWPIvJ%EoQdrrO6#<6{f8+pAjn*`GZhLm z2>pMDxj7Yp0>0Ul2&8_1o-DQjqC^NdXoSUhgGHw_Gr|y|uF(c{2&bmr+3pMq2FYMO z5WyhDM7<93Xax{Mst}>&vUQ|#0ofVC-$46cg*yy?{aSTgci}?_R{;F!8rw^SgWk{n{Q)0w_F&-Bgn%T~G1eEOV z;N-V^%*r>F0p=Y5t?faCp9KjJpMrJb=y3UnX#NJc?NuNP2#eqyw)f!t#^>RMPtgg! z_@Pk<^ufMoJn(e#5)# z6pq|bQAAk;_3eK+Pd>i6|1lo6F?Dgqr#HuAnZg4|Bk#X8>Uc3TOW)8g@NFP=S7f5Hn*q_c-}S?proMYy;Ex;t?Vx2vD%(r z3j=j^er~qUqG0j=%KeaKg9Z~b+pFM{#ZbbZ z8)(XTcS;DP5TB}PFPozmlUC>5GKvj8iWaT6rbm6k9Q*rYYg3NjdV$(|`KG&mNbM*2 ztt`6kHbKvVJuhvmIy1L_?dv0jx&^m)aXH%c)G9}Kp3YNhE%({A={IQb{bv7j3)T00 zX+6X?80t!Km4%FLQ=^uy_fktwp{HQxc#y~c=N2%3zxC>j2VqXlT7T$Xcg3b$?bq}u zU3ts^Cey()f2@!egtAxf>00;2#Ol2M+)2$hYavQs##`CT8<~De`OcI7E9#_Q5)To* z;3(8Ih<7EyoqPSlJ)>-IG^zMlW}R`b?Cw!<0hSVUKh@vn`~s;$||CJ>^&RrRkg z%lfI#oDnnzz3g{(?6n(@9=d-y)4TY`Wu(^Mpx#L+-Vw4=-<9jgsz@4RoUJ&+Nrj_< zIlDMkEbzw!hGV43jc-nsKVOZiDRHY_;}6}AhrtyqTGweOY_~;Ixw<;^_Kz!Y@uTi` zSj4M#WeC@x`^$E~c2?0WriYpP62*(w(?x&XL{~EECW1tkdZ+YucinC^J;`<$sB-sf zx4X)yUuWa=#}hhtE~8A#FgAplk>C}1ki6(e-oG05|I?=9u&ohA7{Q;F)D*9-`8 zW}Yu@?#u}rbjy76cA2Mf!}nmW{+OD<`){g7k0zh-pBvyhzJbRr z_&TkE$kbir>dhpYS#`3yQNHQ-&)9Og=vSO7_PS|_=Q0t6C1u;+w8GcC!3W=^tOv%* zCE%)QUdMNM9~t^rs+()IYcBJPuDaf{n%{6TDlEuQx2DBL&C_({Waxt#hN5;!X@?p2 z5P3^g_^4)cfu;>UDd{}jj$%2mrNyz+wN`~>wBC~9tw0}rQ~YWe9p@2lx#aUd{vkE~ zV2LW?NxVpU}s+0VD?f7|tR*3*oT)639Oz3NOFi0b@jh(NSwvwFu&M8R5 z@q=iA$5_af2d;wwE}-B$97uYAbtTbTsZCTOsd(zn^P9TbRotP&tl7u&E6n@KGfH@J z`s!bYI-kGjFbQ-^+m-~pN|TG*8o0G0!hZL8FTwZq@~JFGG%Y6XX1Vu`I&zs#)QrU& za%wOlCGSz*(;8Yy+H;LPjc> zLKTCn)ZSSE+Wq4z2aS6@gBv`x8%q?=htB@?W~l=X0uKzc&>t

n}QI46S^I#B9?8 zlxOAC-j|s3&%L*N_k)7I%@}9SfeGFJj>p20*pLDD745IuLz(Utb44ZB9x-|4sU*kS+ z7)NW@Zu*evz8ayWikW|;C@6AAA3Lx=XNj>{zx(++7#SZClovDInSGSc=`z{%6J+8A zKl8Ck_8G^fIg;N9)s&;4lo+l)!;o4fU%`9Irn1%`Nk5&FB#xQy+#`x&9m!#`vUR zl++z|oBk9*erc1uToS*<627=ya4KVevz%2YORI$UV8vmTlkNnVwpXtcUpO$hpvZmNz=oT-%jpqLaNTFq`zTOI zR+2TECf#kiwh}fSMD)_6C*9D>YD}=Xd*ywrTh_hL=@{?x)Q8TUKb85*awOs@L)UoV z-Av}vXX);65d#^N#U|fOx)EPV@Z@HDF=Cv}WFS(xYG7BAs^q-QjDS>UAoi`P0tclc zhhkyJfgkbOZ zS>UF>P>yEJuSX`aGAYP;k8Qv(Tb0JVrXGwJ`{*}jNLc}q8}<+FH+eL}oYN=IXEZ>q zmJ&^Nt>2I}{7lSn!LOW2d`||SNM)re&utm3OmZnZfpqM7ISnGEDiBP%j$^N7pO|Q0 z*{N5p-gK{))y?ekR5v>(sdMMf*`V-*fr*l%PyLx(%ryC~G4=b`3wdGjra05r6k{*^m`tR%sB>pdN3-~KlgwuoO^U!3O|c`(7OcrCI} z<$MxY^uj>mwkuzY7-dozEfUbs3|H@pAL&$=%N zzsxiKJy$HTJP83T-G7J)^JCxi--^9$J8&(`|J5r)xj1+to*EsGfQH-PzhqUp~4;f%Z=b>l`AYzM-Nl zE*^aT*kGSI3Hpi&UI`J6T*YEJI`gap8%L8^hz;|Jf=1CLWZEm7g8*`gFeb_2c?jVC z&n_L#)YkkiB)*vQliIgbpHx(;vd5fwXq&ODg^m>(qZdN095ZSWI-!6#GxcvT!(nne z=e$bl%ul?}G^O?!XXD%x+tkzozvaW<5e&C>fpsI|0pKL@?MlzPvUy!B$ioZ~WybJC zF;uaqKdi!PVq1NnEQ5VFxl7GKJB?ET{jIPEJ-ub_@pPn0@qetcPM>LyfoB(OtSmt7 zcAX#r%fzwK4n?;+pDB7p6-QP(xJsX&b1iKZ`=a<{;$Axz4bJ7wlpl2dSpNhrx~F}a z2H1gTGXuV8eXsl4n5Q7f+Cj$PQOt#+YN=fg2JN)F=utT|jAze+C6V=oaHoNhhB#dg-G5F3JM6+WXUpbSJ$aH?;gzwpUPf{xhnuL0Bq*gi^F}S zl-4wQoxme}?OsYUQx2oZ=0k6u41SYG-6q+?hK2;`hZ@sLa_Q4iSeG`vj09P$b%uD; zmMp?w>GcwOi;KskU8G5_1P#C$YBXWor9*O{5EIS)!s~d~ad{XU#caeJo)=GTh%8^x z`B@m+aiL-l$sEFNU!cUxPd$!ok1Dh(3k0ff+r}VtfI~>`86MfYlOI-mkZ1q^bT#Pk z`Dyo7yxC@hH>NoAL~+PeG9)MBx$>!ZJRz78E(?;xSUF+XZdfPPw=x>ez{m!Sh$!xm}s)RC|YR&-2Is*))#}= zO4s#Q4#qCYXW!GgUGIxu9nL~vrcU(Iv)oj*qF;wf4 zkYAQN-=FE8c0z*aN-NvRpIImFE6^sVl*KKUenB_q&(!-&6DGY`pyzYA2X?wmr5XPP zQB`~Ap_PMmVW2SJHRqExXb)cPeyBCNYHuW1@rlSr#D=w#YvHgVPD-l??FHFXjKH~F zc~95z3;dkFhwR2fHGY$X2Q#|z_gf9uzmh&-?#ni8a0X03d=w26*$G0|bBt*s1%%hmnd9PZWU&Cnp05%q? z>~pSBwNzGZzwlydo~a`p3>Mfk74`1J{QVanjUX{b1jvw}-#iTBkmD7wv~ zKrjE034(3y;`wUBfaz5DT->w{*<|_n8<9xm7wR3W@P8}NqI03K2MS11%E~=#H?<;W zIu}Tv`H;z1N3pqA)@jJx^{E)wt`e6r{3kh1tD&PWY6nglG9=;pB55Yd=q!>kwEh(2 zZq7Ee3d6Zdjf_S3GWV^`vT!trF%9G4nmkr&L*o$szY9oWLXu1QvVBt+vYD{ z7@+z&0>z{sF55%Yc0Vj|H=Vs^I-e<#)(-s2btWQRV(-ng<#WY?v_*3BH|EEjtz}Pb zwZd;TU9Um%iPRy5ev_qS{g^YU?^`9Pu0hyY_k#H4gvmXugYh$0l|ISQdr-P$@cGbt z;NL0PT>YmGdKG+GTOaXZ#g06m%-3lQcbPZAt^O(9KBCrd-J0Sw!Ru#%~z#6afblhfpVIaSspsV+qyLNH$)HmdJqkFBw_P+)9huo3Azf~$$OHWFi{ag%$;+0|Fp43w|V5YRDiQ^-Q zYd#jWn%GWw5pI$1HDBHcQ~#NBnvtnE6SyiwsRbTvDf-S0#hqId4wzx4n=nsXSlEp- zIwM*|h6s9S_z;5y#T^^$`|}qxARDbr;{UwD(@O&T_V9rqtPtWqzlBh|^eb6?0LMjr z@*mV>0_riY3CiVlwYpl_y^yuRq3>MqtWhFkpF%~U=i041P5&mT8%K9f8)_VLycD8e zceGobK|H|w6bl^By0R(Lk-x-D&<@E_TNU}9n= zOYfbplnqQ3h134PP_;;^)bHnGG)(4(kJ>`q=?bU0!6qh7bu4UAq~VU9dged@`6Ept zB1Ta zG9p54=iaoR^SvR7@im{Z^9K>f&|XQmCegtg1#v1O6#b@1ds5m1a%1kO(m$ZW-R{K2 z_`V(mDxF-ONFWhm*3sJ&F}~&cNWpU_&Ip zfJne|*3{>0TxzM5Y-d5SuapZ&KArxj93ms;elZme5}CYE2$!fFN#qt zn2>@}y0KHgR%p9&^4>ie>_Eu2nhg$Q-ZzSR4~o9%B2Od?_%l@qJ$0(K19W~p+u1sB zna^^J*4aH-iCKCDC1i(rS5uq-okddadE$^n1ywg1NJjaCf~^uI>RnUx^g+^m&+e&^ zGgfja!nJ-JRHlOR4U>3!_OTp~`Ns{EO?7iCUewvYJ#8q4N>&GYGnNRy^NnMCt;FX5 zxRHarYk|jWj^1+Sw;!Wl`QpQt2w_^Zxos+@6~(6OcX)eLfu z`b5rkujm*(W`R~|2wVgqm>KVhCB$P0-9S9F8+rZ?h(^-E4ehJsQZjiF_Z?IW0r!(# zn^@>^kL6qms^|C6cq&eQq4i0ugqq2yBBe8?_5L-LZVMJrbyUuJi(06L#(}K2ACA_o z^|H@|JWm1g7G4i4>+pu`5%$})b8o)}v#;EkvBBnx7%!CsFW|rQ{9d$>#G#aVh1<_j=>kCfWTlvZ zyYM(lqCSu(Qo~%-I-7}mDg7NrgK2)~@uY-wm51<&AD7*+Gj~dnEqRj3*8sK2>C=#r z@~Y6)0ln4HTB8V={~cib6hU#*q!38Fon-bE-6nPN#gzT|4HF>1@QWh8V5x^C2D0Rf zq?px*M&UxBzJa~MW!xzIxOjhGr0Lh4ub5I%ZO>nrOvTjW46$)#JPKZ-Kq-e@y49i8 z36HHh1&gXA`(3-Hnosfor)&aIkG|ed7P*1~ak^36+MVOX3GZSLx{qZxsuZz6NJreV|CCcjW#RQCc}zoVq!G5K-HL4#vgw`&qCS z)yxpm!s59(8JT#uQPBvU}zQq@K~O^V@I4xyJ-k!H<)Spb8*o6&}A-6QTVe8Y*`|kGlJ5 z9heTA>KxP96vr)263tgg+k`|EFqRTEk{gQuo-}7qC{}qt1fva|yFziT-GLAC`$eDV zoE?y{Qxg5EKi0RfGh8TCi$gkc~QM>NoVW*_Kr}Wro|u>1Ep>$Eb#(s#oJ%Fymls2 z+0+!BLois%JRw}K7ZB5z%PGlR2|EyGVFItnc@<8Bb;bdxPqg~k6nW^C8_T2|m+-8^ z42+hGa>q`p?2%x#d@Y=~IwOp}t4X+&i7K+BBzO^e?1zi!%LXKZPW1hN)u%i2skBuG zM|axg8vv{Qfk^!~`HE>cqE&=ea?Cthge2!Om*00{XaI zt`e<^k!?mPz_SAL@5>nNjN(JlF9?B{EZehS_Xt5pN60X4a-%y6@h{?A|&Vkf)3_hTA*QT)Jav?p*12~br^~>CJHJtCu zlp>axfs}N5j%j$BmkyvIcJpO+k9Fri0RWU&Kxc?psqsJ$nyOcDYr`%hxf3>s$0}Dt zUzO!N6zW=RA6cdM`3=ew6u-)#aC>D+5|`A4)9GNk46$Ox3b}%Y6J}7$PT&t8LLP%iV(xPzb%R-e{PB9J{DzTJ z^d0Y{xxjAkVcA2Aa|iA#@+fR$!EZYG;$oWwMXKWlMVA#R(&SKu1Br>;iD&MUR@${! zPOZfnUzV(e^5!;+)ZOE!X+G)s)o?xiXITxMkj0dAfdq>hXhfUIU@9)%L+xmcTEvJsZSWe+0x2c$9`yzenDcY}r)h7eVGe^UFnUsCh#vpVD5aV1^O_WvRFNsFHzd zhr-V%W`2otBWZ(~?ez6=Ty1hzVR3IL${{u=l;-N(Q>4m_Q{-jt`EmeLCS0QjCeUkI zTwv!)RZ{uKm0EgBaV(af84tmk`wliMHow*CfRZt)xZb#r71 zN&~IkHK?@@xy)Y+;jP`EjdEwWfEpN_Ms*$A*lF?|0L;`~fvhZYs{uhMOlEK~FNw#O zLrkW(VK|kpihhQmJMd&H9_4y&Cqak@V|+QitncyXOU3u^(SQ)z^UX)(b@8h>?1OCY z!-pQF`Y1rQIE@F1k_CTDnUH9L=r)3QBdOPH`$=Tg37}f2QoXz*g=ONDrM15u{b6br_*?m zZjVGL3XiuyQP`*IC%_6j6mjsuG0&qa!r~>ZGA)29XQ-7yZPiOHefoOrJH8Bzh2cv` z(IBUH&Jk9?Jo5pbgsEB1fKkORd?L^2sR$M0F#`|#yaW3Fdo$-Vfi2oh<0{}*8zmST zODG^FQY{wNvyG+L?bDpd>9`OxYXR4L5We6ziU^Ui!AO}f7Wb91*W9~`dqIs%e3^R} zyM^RB!xvO+v`e_qejCd|X$LdYnM%3M%b(t=H4@LIvC7@}LY4`NwR}WjJsP4M;2!|C zyj`;6&n&oWgA@tBa52lFkXVXSag;c0no!(G8&3vvA@SxwW@tj0nSxO5c>A^-37nq- z?Gvo@gfH6g=MS;JOp6>UTeUv+FrAK7Vl%<5L%2SMJ3xtb>@w>{uYIXy$)G6s6V%i? z!$FyZhsmqF*9V&9jZCgKq)d2L(vidjDS9oQ=NFxBkQzEJN1QgiSEIAD2O@{FsQP<<{3CPmh{?kZfJ|+dRQ6d!?`jjwE0;tiP=f^fMPgo`tA2I_?WoWA3 zP>v+-6W=1z_m$#+=S7Gov%Q%<9l2vna03k~6F%AmN?Qbvaq5`p`EpT-(mk{9&U9=( zFdA`8&DU;cwSIYl-cwE7p zvCbv{2xAbcqW!hKtV$A?$>y@7iL%u|S^A)0^E(uBg*DXC5j>Pjk1e0WeupmBVMX#+ z+$tqt^8XDiZ(kLWDGQ<-Pu+U+T|>qQ{h;C2(aE39!ARaR2BJr5Yeq@ymxGR+~bP>AwAvwy0Nw(6xR%4aSOEIXo|;pu8BcA z*v{DHOS{z?`TV1vBTx#+azg2Bo7LpD@m(fJcblR3Nh6|PD56|wx;}yBw9kX; zz~4lLtkI?vM|e^T)!c@0Y91LzMF^kLb^^JBr0Kl>Oc&WZmrjiAw`Ds1S`9$(C0fUE zdK66GEuJ!a!kYjz5r%4q*K8&Doc;O%iUoS_j0R8*&0DLuwWRi~mpAuYTsQCW-JpWP zD0ee0ebcgV3{3#E2$3Xze%NhI; z|E6dhRnnA+0oNiUiw`hwlb4IX(2|ov8nvccWfR*{4RI^5P90rsKq(Sg^V3K zHjL8TKMr0+N)J@g)285{e)q1u;PdR9jk({pe~G?)@++eg=J{|&jS?x$N__Ir^ETWfiFw zU&w+|46pnt3Flm|ju^FQ2i&!diBR0UiwuPn!~G>jx2` z{~vhAu-~pqf1)!foMc^8Y#{IXhyjYhq22rt3&Sp6fb<#4qvX5Imsh%HBCP+^fgMjH zk(^#ugk8^-E^c{K(nuQvNCQ$8w0@Z5{?RBjCE+)QNO6nOId9Ub@SL;cT~J@%QKu9< z87!n(K1**Y<@}tz*sG!?wz46>YeP=}ks`V@Qkad8JvHVgB8Bo2U(LenmT^g<3Xw5a z*_KUriUW=NquSb^hUKkobY{p0KLcz+(BB(K-&dS2Igo#$~L$8r8GdN%v3 zZ(n1&)H-yoeV#@+cZ@q>2P#r0?e%{tCQN(rYxZpn(9l`a``?irh{2Em1Mf|s^*G!o z_RsGc&+$aIqif``a6vtkuI3S5$X}V|gzdDgUf2a8Y)FO$Fo9DHydAPRD-M_iG zwV-xCS*rIW>;3N@u)FBf5WOQN>NVjp*(@SbBz~Ou$>3dt?Nt9?C}C5>qic78<@H-W z4AZI27IlYUZCRfxEYt0iY`~fb&Y@k1i3-)^Os;VF_c_pI6iy8IEvN8kJ4mz5?(vNK zvy5{mysQZ45V>yo?G+w6SR~6N6h)jlfFj@TgwXNx-V{VX%7Hm%k7)9%6+Kb^9!=@4 z^{YEWGjwK|XLM)trtCP2qtJaYP2SJH)yQ}m>z)TQ>&|j?Kj9qn63D;erDZCi3=3FW zJ&&DaJ-`8wHuw1D_BpA3g^?N6(-GIUfq3P6=l(|a6K+0imq0Vw(e7cPKWgdZyxoCi zGH;7!gu{qD{w}`wLHvI8@iWn)jMr64&)8PSA3CaF)qm5FY%cb(ZKSXo8N3LnpfOH; zl?7)Ld+q>oUbBk@C;kHVw@NoFPHrXXi8vLVPfy5!)lPoCo{iE@*<`h7E@q&KDHZBqvV)ZEYnX6RdSgRubr&D?!V@F z{H3??(fa0ZB?pEhfq!2d6td@R>dH_fv1{{e{d}PX8aK@e+KNm&w~31uS3l*Qvp;jU zZ1KmiPU??Sf4*Gn{_;c&I>X7K=EL7L5byHBK36Rn_leTH==%>28yrk!RYRz6;%tEW1mjXPFqLhw2 zv#9_IM%G;Ir9JnpwzLgS)xbK)pfaKY;?$FnTNCv|jp9!;Z)7uVWh9%4XyDh0W_-t~ zPcpL#DWj7Q2~)&J;xAQ*8?_7Ly07&&m%H6HE{wjOl&YcqCO7tK^%C8MzrTOsaa!>Y zMzP^`1)JJ>C*VNBp3le2`*OJ%d-BA9`v1y(6WH|(Fv;!6uoc!nS~WI{UytZZJGGxc z%12Eb{^m8fs5`Hv*z#_m=k9rEe0Yxf9~iUY(#55 zYzic$i3ZC!wJEDs#({GT!qobCu5CTpcjvw1?*ksk#WiGe_^5(x+P}Dj=7nIq>?AY^ zp0H*agQWUIR+S)GCzZ zw>Ze#V<=0PSXIQcaB7Uv<2?{hj`M7UX0j?1Hic z-6LN&qh)>jz+E3|db`{Bdh2^j_@F#7s(oo$w2pKBM+wQqYdn;<6$VX|OXXgR%`~tr zSjRvzaVLW7PgU@v9&VLRZOKU%0F%xr14V@fAyEn}XX3yp-vjT>D(QN)`7tLa=cA`j z9Th3T_z~b=_XFYs(CZY0GpM%6eY6eFlFn$hyF(!=CB3fC@6nn(Gl7KX-4s z7hx`=@b1!@Uf!BEG^Lgg%`5Z!`ymAK-}}Yj<_JSb#yI$Rb@~GVDCl90S zH_LY6Q2V?%_BYew`n4u{#J-6;EfKZu(*cgcS8O{;rY+M3LB`C&qJ#PIpSP@zGUux< zx$+OZ{<>#7b&A8-71B4SyQGP+>7B6J+Pi1Z>WmgGHVq2pUcf@vwk=U#7TcH*={3H> zx}u*@XFEWhl|XVNybZ8GTYXlAtEWZX!Yf%qqygUuwBh7`8Q6e-`=}v=-QLBWm)(+O zc0URXJOvJkvFjysuYnWoZ?96p?#U1uwHX(Qcc#rnQ23OwEzO*Ekzi908#|$8zDpXx zM`m}||HOUUzU}Cll~=c~IjLWWUWK;oWLjq1GCQ=!JR)v6Ti$$oYcYQl5F)(>I5K)?ly*y?cy@UasF_0D~YGgbpFE1~hgNIb`QOhf?rVw>A z9WdN7xr5gAQ&EGT&TLoDo6tqW@9NWsiYL2Hd$ci*ww*alzt*=|Ylt(WVCcx3Ci8Et zXpAj`0St()DhX~g%Nm$52I@6j2M#=k-v+!lK01rCpH_zElLD&pmk=x6)EZXe+cgJq z=ck$%a+V^`i|<2HJpm3$eF;6z^V?MQXSIqG@BWeJn$qdD^VdkcXIXRBBM%Ic2?oiq z(l-EE_H;k{VrGrPVeZc#Q`|O!*`R`Ha%BG7xEmGrZCerN-*Q`k?xG~~`c*47ik_go zS?s^GGvUuz3EP;1*wowAh{9*o?YuUy`WznhsIM$ySXyOH<6^_$;v^a7AWWUZs&03G zTK>iDbx6RKn<_K9OPB<6~kIzRv3+|Yb7>U2|qO<4MAO5lF{xa2j0{S zxDZBAIFijpb@$FK0bO58(V)VVlFm>csqV{`JXr-%gU@>P4N9^~DZPuUzMk~x3`1&X_}&YjE9NGl4`cy^>CMY z$c~BR6h0xxanB6=WSZ)ia{siWt}q%mfj%sya=_8R#-n-DSO&6CMcn!4?A;@XVEG{* zR}9M^GM{bfxEtG1=9p}MI7e_becQT)Psf(lJ*?ULJ^RU;n6xXGGiJYE0fNH=ne;Mh ze}wa^_&TB7`isl&(9;3Ju}p|xi6W1f7vP)`JD0KVDyfHIHMV}k21mTxfvGIKQ$yGb zK@I;x{>_EnT~0eUMVT}v2fj$i^q2~7QC3~2!6Da z*?Z%XZ>+qRAuL~(q~G^YHr1p({v&N##&dPHN18tATXDcSAD4^-YV(t8H-PV2mHRsM zu#+Btj{OEFwovKNd#hIWEx(bCb#PfIg-;9P5i@24hhC_kcXDyv#$o);5UHW6T8gQe zkXScY}-S{Jnve^ADXW4Mc$3B9E0cA4$Hi*(TB{kJDyA3{Jk;tU@ z2bi$Bz3{ud0xA0YHZ%B>l|T`C8A8Tl9|rAPEyFKi?3SpWzJELn5^ZQ_p_I)z7Aqev zBO{~Jl&lMXL|UqOmqnOT)xdXV%a$#D-_j4H8dgg5z3GBh`Pk_9Tv-{JC=$igQuhul zD(?G$?Q{<6N}01~W57xyc4Yp449kNHK}xC&HP5^K@k-&9x5>B!C|;fmJ%vatd*;j! zh&lBkJ%vqAsdXcKG++exprmUTJ~z2fsScmoP zUR~N&;v8$`?R_A-BLACOQS_8!PPPG`Nyd}pgo4xjrX5zQ!g~*RQidxD$6lt7WsW=+ z^gKZJoLyYfa#<6yOhlsUvJ!p#e8+;DB&3`MeO1r=1rzGOR6RSchTDZtVktn5R~H)h z90*JkwR1xxT<0u$o*D*3Mk+u*Omv#?7|^MYzlib7{7#eCh@}ja+v_|U2fGoXbgQFJ zVqtw@e`&oq+nZ|L`!#M*Y_jTjn9KNQ@)vOI3xb^pe#!QvobfZzNXtDC9Xa~x9^=-j z%%CSvEaCMsQM7?CS?}`}oH@eGy6VOY|F_=XE#|#2&@zDkNO_3hT_{K=pr2g&(O5V* zW%b>$7yfbf#32N6C0NAPxbA9ECqGf(zR4M1566z5R<(iYBDZ?lTKE&dw?jr= z{z29fr1S}cJSX~e&V%~B?|&ew8tl0zu%B)b+9Nk)Fkt0wU3=0!^wEeNs{0`!1-W+z zxJf?bZ(t5~blLo|toB81&EF|wUv)WzX_H*%kgoK=cyn2d%PMv>#jT7d;}?YGFnhZb zT)BWH6oxNobFT9d-k<|1#CU|*=MWdX0%qz(94BJuwnNBN2g&n!zxMWZoM8o!(KD=b zB&Id6lqF(f3SnVkBJ{^Yv4&^pie#5rEBK3*!|v`{eLNj@fj)9exXp#Z7-|Kf16Sd6 z5KJl)?Hjhp;t=nt)3Yky9sS4a76~h4bsK5DL9dq{At{ zXL}>92VTW0sjHunmM%h8b0oy;WNl5&3|vVsu?0c!And^Py0g4Rw^Uhm=@571RaWV& zD-W8VeV@|YF7R0_PFdH)OKG7I;8x5m&~vt8LKEjjw}8-kA4qo<9p3fx$OznpR* zVL$acC@3fuv9NS>6c(;f4Xz@_3fM+0bWzT^+OSwEEb`g#&$0(@988b;#GQY`Bf!p1 zh(g?HGVbj=Oru8-UG33k7VEyW=wCvz^uNwK%3W1;u(2cgDY+IAoOchx`KPX~?()34 z>9@4oaC|xCQ&#W3?|e5BmtOd)5JOes4mthj>YAbYT%0g5Sgk=8Pxqz~QRv?K1oOOE z1GsY*|!b@$8Ry;IdSv;eS4a_E$Or>$V-x&O@H?EoO<1h|0(KI&C%w2jZ}2f z?ov=-ApLAF{xFW?x0U8*Gu(ERXT;%YBQevlk~rsz*bT`b78Cc=u|Esv+1|v5th$vW z^y)efGY#9!R*8b%6~B=6oZj1*&}2%rG$r;B-gLwiht;8j5?lEmGJgo@MLW_Y3sUsU zw!?G>)}?y5a^TdIqEom6Kj&F`l{`$;3FLv|+}pp06^LrG4kb(iF%{AZj*wPJA{u6z zN|>$7H_x`xsN{P0T_m>~>=P;bYF=!B3VzDb5$Abjs%lgh64^gHtl3@LRy3v4Xy?-- zk^M)7o(PhRVBY-y%i`fU>Q{c`&fo3m4@-l-Gfy0>M8YSBTZoB}W%Wr0N`p_6f7)XAUjLTX3C9XU7|q;tc?}au;uMB7g}t_~ zEQrs~sT>y9#MA&5EJ}K>=RQaTFG)y0Q>^=j)ZVBui6x`WPDAfH3|s|&S7llo5<@1~ znSOvnog=8z+wl(Ywsql(0!O`rJ&PvUW?FGU(*oEHhur2J)HBQ~h}jALlMWTSP7DH2 zSS0xIkewA0sMR@ty5r@2i%&Kd87s_rU0fK%>R1+?cMpBvHmW5g3~&MPAB*#s=H%zz zdqUScI8U+CyFaOX$tJg((&^R)Mp-irr);5%TK44-*iGCn6eJe} zU>+rg7ybc5sMxf$$FOQ(`Q-?kM17c+XxdbtBt92#@(D+nvue4XaWX5*9Ja-9UvR)x z^Hk_M6Kt3a;BM)^Y+b1BJS+&ei82J1_do6&pm7dyai_WIB?&j@L>N86rI+NXYc?_| zKmYRL3rt@?E_WusiCB&yfOp`}U4SR%KbmM+exw78uvb2;6y~FjFh9w}TY1h}3x`D5 zkbH!xQwhwVgC$%=4qQsQ=X4f(LJcQB^oY3u5~x)xC}HXN;cK|48um8Me|Pn1wr(=Z zUMvpEpYgI3|&;EjrXbGD@vIb9@ynS_o*Uipc4GV+HvkxRc9S40#r9OQ*7754^M=MxD zO5$b`&2^f(0>{`KSZer3jA1P|5OY>yaf03W9QPeD;0CDT1%E|)KJ9W+&LNu0$jTNP zrys&8koYrnxTpN-$^xX+GEPn+#5N08wFG=Eo-0I3oc=jMJenZn(8RMM$rG|+ZT!w) zzewC>OYpoQM*viQD)@!$#|yr|#>#i#$!MuqTAY>?GHsH=lgb=^*YbY)yYq8aYZ7~4 zgKXWbA9T>7Lkjmy^vfDbYylbAzx3gbN8}-n9>gIk)GX^Z@c@E}KTKP{z$bEdqcVKvDjSYq89a>uQ9$6$}u_*DG34a%% ziXNcbtZqKh<~YDOSQsW%(G9Q$zDg_w5e6?bYTP>7wDl75Rb&0_$<~apM}VB``5`g$ zYDQ>FwElu7eaw4qne*LmKI$J^@$6gvYRe|>n7z%ivhPCk_ln5Ky}O#e ze>pMQEL?+#(**Mj77?3UBAQA+uEH;mc$pOy6*-u{_6zO1+F`AHLdo6pAbb;eescH`- zeZeG0UNt!PJn7q!Tw1?GUChi1c;>T{}?&v5?E)j%- z<;vcFH(#zeb>!;U1-8U+TC~19X=dhksm^U@mRtcX+vzEw34TYRPUPXH4fb?&e5iO& zC3Mxzdg{*!MdKWz&@l!rN1#&wBkqeXNpNjfA4O%#a@l>sR(y1y8|DR&I?OoNy!7EN zlHgC}Jpc4cdq5Mu>j!){?(nVb?Lz6hN(adc2M5P5xFA`gDsG&jXD2upyX{`)8x^C$ z7x_d3hd?A=yGG##Z|{xQosm|TwLnW%$}>;N8ECvCHEfhwv7YO;fnr3!&s*L-yr*-S zika{7dMMp z03Y<^&a>x@(vx$ z%te^%eB7G+L$=TA0kpj%dJ{1fyG!}0&$w1oxzayb&Gq`0Wff5i2<=LmwJ2!Q}IiErYg=(u+8P9ybg8RSEr25R; z=8ki_jAhAfRiWHtbH1@?@0H|@oK#PA_E+rrJY?ifcale*@-AI=y;9f1N^l(HvuWmt z-URP-0ABoMFjs|xRAQ#muJ_*@BS7` zgBHJ8Z-4B5(9Zd9Cs2?(v=zq0q-aMu%QbobIV70B06aid_01`F1U(kwnCk$2Xm! zSmXLBaTcxdt{?o9*JgGE?xiJNV+05)>ikA~Y%3O#yU6z#4l3Kk{-znPApOt{4x?q_ zIqAluWIbqz`I9E~-n&+m_rul&vW zE#oXl+i-zds+5!HcDp03Ih%dkH}nrbi{2#RzLvFr-5YJV?mU=eC zs#>&JemsmEoR|fIu%DQpqPirA+sC^MD;3Y5FGK}ZDcGpF)o~u)sQ`h+{tTs3kZTdX zeGfzi_5}n4kSiI39rB}-EWa7WjuCG&82&zth>%A-AXy=NaLI5IzmnrfY)O&8Ua6Mj za1d6e#PSM`^8l^33tZcD8Nx(L_+hoXJOT*w5N3k}`p1R4ZjBe!RQe3?3|OUJ0PqzB z(^KM?CdhjD`Zobw&u5jCw!jFCyEayVbJJQ1gWPibGqnse7W%uZ|Jp`UI^gH~@mBEx ziQz7Mq&ugacC*>zJ%zz-3TAkZ!oteQ=Y=U8OXd>Bll*{j{HI~NN8#ZW_>jcKl;Ud1 zgKpgYod8R2YuY1Aq?!_Dix&w$L1G>kH}_BEcn=b_tSbb?Cdv;}5LZ@YBYrsV4c$VB zFb~#VMu1k+Y1eb?=4m(^Gou^S#XGmfW?l-dH%*J9g`*;Iv&8TP($e^a^!u>Oj0H)F z02BsGx=XC2qWK9cux{LeU8Ks%$Y0<=sHQ^C2orG5h6>#Wen8KwS&GjojBzL1`E{gz zijZ_Zqt$8yFeq*EjtCGuwql%y+k($yW2{P$NqTS@#GF~s0U zpoSTli$Kw8QM_?x!A)Xe@&df*n%`UQHp@`Etd0zu(J-tK7_LL#vzz<)_zX$<>D2$i z1;2;DqA-K=*(!h36B6F79>|rv=BC}_;JW?6p?_&`Ba^@_ILrp3%Ax!PoX!gH-(idr zLAmk?Fik&3`;e@4(0GI3HU@@AAt7hZpWh6(vMD<)9DFfpUF)nICsl1_`VS0o3!<{2 zbV>ot^+n@OB7GCR>EM?){o3zcv5rE?&(pI}YP9-cuu8^XKS2LeZ=$1b0A#I3{{UwP zbf?7(D|^k~R&GmyJ)%~$#m|_%v2OCjr5`@HvM9;e2T2(QcppgO1`jNo9{~nP&c19W zi6k7r&8PYIIGwBrrriLRsLEw00Tu)6UL&<{8@r(36XLE6Q*25P3|%0#CV>TTZiz!Q zY8e7Vkq1NZv$xk83rN-iS#Avz)m<7Ek;i0c#lX;KJZ66lvrL~zoH>uncTrwM5`+{G z@rgWobR&2PwoaKJLFx{4u?g^6P-wp_bl0?Rv-LL`2fj0&-M*02kh}!k{0EE&$=Hv( zi3^zNK~6Rb@>+a)(o0;bbg-ogrEBbu`$if)`ECpB`R?!&%*410_^)oGNHwUqvuX%8 z3L3j`UFbB{&2;RD%@8}07|D;W75gs7i#icQDfKOBCmsvs>U`MBZ?gtzl8X4slcJpq z`9&qu|HSo8k30Y@C1BOQ*i45J}T7t z6}9Fu`e4UVOtI$8_Uync4aC>;f3nbY&jiZoh(S=qy_`%KV!upayfFmD(|c5-)SN`ts_6sl1 z7LHDzcFkEByadm|I`w*~hBv~ZHG@-!VAP;ad#TNRe9nSf^{|NyKg|?ggGh{;wp)AMuwsgQ*K--!dC8>1Qf$| z8tI!1KN0UK-cQb{V~C#`qu=1LW$2G>P>ZaEde>pCMU$gjo>gv7{nGvCW3r2o%O43- zw-#i&P`gC_5>3wjkqf#E$C(xW1ciUR7w4AW+5bVmG2S%dg4f5pg$l~Tu!QEI$1y{+l&PJk#_ ziUNold-$dn;I`XLClwMex^*w{)2vg$0C{SXv_vtO>RstKSYk%AcG-xm^NGG}kEATb z;%GTsuRZFG7rlR?L1BMioSa>ZzNRWC4+@xtZy`(8!D}%Sr z=$0GkG?v91kNm>JnE)PBjafA?bKjBa4%mfQblYZt=tUC39R zAo{S#HW_9YaG9fr%fraX=ueR)L?A1`edKDRVs-EU8i3{-D?N|;iOL9Z(rIu+MTu4u zBe9}I(B{^B{}9{lEgA-Je1_fZ55U;^c+1E@Cg9K?5E|?Q8|2VJ{SVk_8yA$2cTTb7R;vYrU*Wa3X7!&J= z-KaksJ-JcI148>EfP`}dCIS}IbE_6eF3l>ySevN6Jt%7iPJoZ<8aRIjK0fz1>GS)+6U34K0+n}86eNV4yN}&;fwhb zq{yHtAg;^knHD2L5PNcThU$;87&|4CISXSLKyL@RZ+)CFEP!eafIQ`RU|lgZd}MyaFGL{-W9LG(s5%0Z^z3}vny!9O%BxG#i=`$ zM|05)1H29*2PCe*DJdy4jrofoiFG&WXXCakBTcRO*$IM}Mn^EL_j%vxy8}M?JJ8%i zL+fjKg!m4UN|Jzp(NvgRLXU8v0~SEcix($vjK8`Ni)h@36bE+>^1lfJVisN5ekw7w zHYCPN+!7pvfk@r$%Bzg+f`T4X-JZ(07*Iwps7BC(@J+E^5<9&9M`deWp~CQT5gViX z9|lF|tx3bOHw0oOA7}mg^)hmDcc<+_yjLzTN;W0Fmmeh5?kixO+$r;VV#`f=XaC9x zspQ{jt=hI#hUv*-d#WE4ClyRTY+|nJnl|8@qrDuQ+aJ2Pp+(}L`BN6%4qIX`y0-)j z!oOc|A|$ZLV?e2M()C$o6&gk-hrA@kZom7I+`4&P#nv5N$09dA{kWopTEN^#RQKZ} zNar6;v*d`=NzA#!Vg^iZCBFyLW`FB(nr}#IJ^?*snQ(j4sNt7=`_1e`F99eUoGt@m zn3*%FcV?xo2c}ZGxr^4<#Jd|HpLFN9rFhGFtE$*oF4oCr)tUcY*-HLh)C(S|G6r&9 zS`4|yS!k5d8(v14DMp|rNy>LQpmmxqQRlf;-41V>xZ@Ic575rtJE$oS=OwaL~F0v9i+kr^W zXtoZo{^S|+D(Apt(BZsT2HTJcP=1&2ivTL}o9ey%434eePMD zvK5C^WHszWX58LFOEv7A+|4o(*j7ArZgkA~KUY0urLVQ6ZDMO*9dd_;Ynu@DnFG+| z1ySvrsCTQ1eKB_|@`*0WOqQVIwcS<^x#^FN*i5{e)=(W=mFT+8>PSK8qmE+H@|9=) z+^4cH`|qXynXE=#e9Kax)qeth;lCE9+b75hjdY%c$1?o1;kE4_5U`~&7yTugiKt2` z)UuXpLtYYF*{NJre7f;Hg@ht2;i50&on^fhPC-8+%LPNXI%yiq$7YE9^P}4A&-5R> zdgrcPyS}&hd+}fWL`|mCp#P)6$>xqin=q*aO&Y3@If-PRauxXpV(V{NKnJuJo$?+` zL+K=Q{W>j9v@KzpT73yBZl))SO;Ir}OI{LQGb^yVEr|~Uu5s>Z-u#ri@mQqNn}9sv2CU>rAghITQb@SO+Gx3-E~`Hdw9BzS|3{Y z;NM~OUqPy7tt$-5$u&%I=&a7B1oQuwy{_T)fEXIL)!=KJV5mfFYndJ4zY}KXxKh1qIVvCNqbuRQP z&K%FN|GRAW%aM_nVQqu~)Cz;l^%Q4V)P6*7YM`EKY92$6kUvWSXGK{|+}8=+%>z^b z0w4gpr*oWNraXod4v7bv-B#!#1cZlU($h<@0!ZbLF<9++;>dj%a6cDf3;{CEMGQ+w zK@LVTS=h_t_bs<-d&|Q`gTNsm+X~&h6YvW|+1quKjb=WpA6O+PngApr0fpm`^Y0fb>Bb7Jt1wDG4$VlR{5VkGZakFZ1V?EnBw|>`vy~x#j5`7L-%mpVnUbKe$pIHX=`fDwEk;$WvcUSw98FMY@!v zz{VuLBN$Aii@FALzDO#}@@ueT%1Ib=0A_~G-OB)Dlp=?p>0(>jJ{62Y1jR$efj2qQ zsJh7{5jaghL)lA!ptG>-0xy^3(Tu@KbJPFmQfTvoj=1q`*wM{?CB-}$tt$#Z&m=F5 zy0XxKOalETLpOumoKeE%DA}EaM}|$Mi!6fN`P0Q0 z`Kay&1_q835EV#^r$y7yczUxbDJ}qS-UG^(^N`mwejQ+GCM5Vcx~RhMi%D@J?YGCg!y0Uzsu7c&+W;uv}i(aMvHT zslL2E_1g!-!x@XzUyr}JvhHTFCdS2}0X+`l(9(}C%!9JVq!mrO(eL-my6+^~4>c_V zIC$G@Jjh5V&=?;=2tWohs3d7JPR%TYqxd3V4L&I&KWFt#YQ`e8f+;{WCF^=NQX+gA zP{W+d!w$c6uvRC*|0dTvFwCo%DhU93lLsg{zNksbOvN?S+ZDTXs!>CZFM%|56_Zc> za|wE#gY+D8o+kk$p(%Vv!#wv1W`Z2F>g&P67Gm4D7kHiIRERh$FHiF(Z*ITEukgNq zz|yU=p|LSBzrbp&XZo!W%ug9wL54Cis{J7Zv8lQXTs%B`cJ1nn5~wwoRk?B{I6I=5Dn9O2w;RlQZAGo>$#N0EaCwLzB;Cgp-1nZ03bTftZN38m!PHs+A z>9cz0Sk_EY)(abqj@XO81{`FBnbw^3&bxH%ic^mL-vLA$n+Q1)^_;CDrAROxJH}su zcOEx|QA8j-G0iUE3a%u%JGN^P#tuGTfsyfL*d7FcKqkq)of>nAzM=$tE&&yb`0k~! z@bHaNAm14$4u8)L1=oR6C!?jm-Mu~A20wpBU7ZQ&;1$#p=h^bnxgbFn!0PF9SE;;? z!Rg<9%!Evn!9X%bI$l~hHzNA5cb{o_tP`Zp=^M53@KDI3TEL#rMxgpkqSDx{wV8 z_>u!z0jbF$spwPq{B|^5?&2xM7WIqHCC|p4aw$l$?EiUczfkCKvP91!DU|D8U2p`> zM8?1Z=q8vf-2oNmUycZ?SAi&$hY3GIl<^M<`GSlQWGgCmzo!SUuDPUXxtdH8A?Xg7 zq&k3IiC6~v0QpH7G7#0StC!xCzoJFQ3o-MgTfCAMekIp|yBA6VZmoq2!sEx6e7Zel zu8q((LXtEWSJ*;DzQ&edZlwRa9`WCV+{-PqCK#)Mrf@DlHm-+v|v|37! zq}P%6e*^yWA=^BR!UaRtBs}NqSJJ=}asgC{?)bpNH}$}uKqxznD@%{b6(QujpIVCE zI>IqQAK*^n#mFWq3z2Yd>FVAB9<8j$h&h&ofYboa&iSjf07qUT?QgZIJx2fy5}h~i zK2-%N7%^u=hv@1^{=2~jAE$NIR3Le>*tZsL;LF)G8+0Cr4V@+vS7(n~rT&oJ=;tAg zcRFxo$q)L*-FvDDC*m;&6?8CLY^!2r+N?PM7(Z*=m&)fl>{8mkW>0px#?iGevMXAW zY~M;g5I<;F!1~nKe50M=f~(o`9<@3_lDwSB8aa|$AY;HpXbRlIdk!8P^QZ*HV;^xn z1tRf-OsB#p=>dFW&{^bzO>qNpnS9Rk%E}*bIPbI!_kf2)7*>S5PeE`Yatk5zU_+M- ztQXq`Om0$wkb2p1>&=$$)DP#m^ar=@HJ^v$C zwYw6iM=#>SVbZoBEgrP~cY~_+lQ5Af2-gZw3AtIU)b_TX?xqQgVIL+Bn>CIt7zW`5D@=%$b{vIAE)z+8653yFE+d^%`1 z{F;AkGQoNkY}Q@VBWrMNq#Chi%F*^ zJWweRRU1Z!|AJKLpkC=FG92nJnF{kdNqR+KtG&X)PcfT}`B!qqe#|;0+%s}>lcX2; zx;56~)D2S)(&j?#WdSOc?pxLE!d4ulyM_RCTa3WRWbhDn8v3cTsJ}7+Ns-ZW!D5bw zBqIGtcLyx#!zkzq5<_7)dKF3skXkXKY6EZH%oT&LVe5ij$I0ai_Tvr={en*bVaW4l z52cjaB59Kcu}7VJ2MVxLiLBo*f4)*zfBL(Eni?aa$rGMTdB%DY2pHTC*~G96-A-Vy z`Q@{5rMY9=A#U0e(i7t=nJ4>Y(;EAD6)aevKH%SMB(B*BCuI;u<_$bzzippQs zE{rf-+-`qd@%d@b>x+I(ejDcYb2cVW4M{eJ+0d#;Ip#T*E$shYk}6!-X57BbnZw4M zCATN8-F}cL1#bz^k#$Bz{dy`7k#h`*RU*tzWZhq=fA(L#Eb^9|M1`Y_^egO$GGr}pD9F?N+A1O^# zu6s|gOd2f?$R-a)DQxyHrd!Xd6Q8SoIlJB2g01q(O8eh#l+IICx#O3D_Bs)WE+pWk zYA?HzmRFMXtFQd`)ML-!B~BxKr0u`T0!hd`%C6_&+HCh-))+z9REk;}Lw#4~xT>F^ zk=tk5!Q&Uf4W~?{&0SFnXoYVXj^PlMIoE1m6w&t_EQU&SWQ4*hlw zLg&>K)4|X$WUDD575j5HcSvwROJok@yPUL1>*pnG)H`3iB)~C@PJx5KrnleU1PsOF zAz9rZ>?b3|ElTAYDnU(t>u#1i1v63paeJ2iX8Zh}hnH43wtrf5pg+Ko(aMlqvc64= z%OE3&93eyzmDpW#CmFO>6+q*~2%O(6L)0p=wx7^}=SS@GMTh*@*84bMWaK^`9zvK- zm-zG_dAP*TAe5PfioripHl5V>lyL{n_E0JjoY@dFl1Gl!d}y#?=@`m?C5I=1@b3nh9kcJ-4dELLjDY>q3v z#I;@p{WN7wbt$gJYw5RCVzzO~Z9XQYa#DG1Q~JLF(hp zvmXs)B3y;IE8l(VyP$L;Eg;vpc)lQ+gRTMJoA3VI#B73eyE$D5_i=jtJl+Fgm zvsL1JTKmfb<=F&i<%GC$o(@_a)IUBQ=fK6`t2T@`6gLf==>_ucYZ$~`ue5}1@gz7n z4r$Z?2683^n$(??P)i)gXw1Z#IY=tv2-8elTnp;=XCt_pt~VtYUVpfV7Md|;u|9}A zeCSXePTc>?-k-DGXtJXV|(@KGQBY_6u5ZBYrW0l7gbc8hz<1lma$0zjS45 zu$5vkQBo5Z=Bs93K`GqYK{YisX{eVYwKK4~A!3dxNZvGu8^>jDX=`dG0xnS_0Ex|H z-+8)i+urB6p*MA=9+NF&?1sx36`^{$jce{D%Fl~rdSPZtVPWBV8XAe|Pb<^!wVCZZ zP^o#Rd+1yD$u9>iA_M<4|7>cVFulfFdMc8_BZO|-UO^)hR+S+;uHMIkSwmlULHIP3%iHJx-(`f*mE-3RN@z89)Pqhr&1=&`5&K0!wrK*Q>jecg@*KJPMG{eVK8yGgWEw|t=!=U za*ym}?cW5LEhY&3;_4s2U32n??CZHR2Vd`53SjIL&Oh_Y`32kJZr6pRv_;1L%a3AS zEuS!4z+t14@k2r7n zxE*5@Z``<%27`IonnEusK{NwDe)%(+df?ku~jtX}W7)Ujk z@Z`sFzr}%Q_btygyGtBsrV8e`Lc#V7@96*s#|f`B8*4!C`#I(YMrVE;lA`tN)}068 zY!VbqhXr9b;0OcFsj<@1(sgL74!8Da#h$mcd`l>pd-m?#FCd_dvbhe0{(yrkQVAzS z;VERfWd^CA4N{F3=B5H-kT{Z$kE*X0mqr|JvH0ZVs60i${H616 zpOv?=$3E@u@r_)4a^%PywZ*r-R2w@-I!q!JOSZ<(xRepiB6MORe_o_e_JV5}c z&oFOaU)B!Z+xm?g!G}uN#=-)$-$@Qr$HViM7M<}K&H@prBi#qc4dX#lWIAkc58Ox9CZ#lRQ9a18@Qd;`P?~%3y@+$a_pV;^< z4kNG<$*Tip+3D`?4&92Jr>AE?x#u06gh8_7!GW+H|0xS25VRg-5s7NXyUXgIpQb$* z%zq5b$Tz?2-SSL*b>A!W$16HGy#GDg{s!O~mxP2is!nAvSkM62H3b1je}BJrqb&+0 zW4z26S=sY8HfdS*qe)n_L43s5mqsf~OBM0Wn%Y`AIy&2=j8$Q9pm_Yq+}``=i)W51 z5r6JW?BQbn&`w=eymA{IeOz1>h0p5LYEBA@`sjV_nvdG{=t!z8YWfEqu3lKtwrbeY z@W=@safa>cxznpDD0Fu5@hM;(&zwE0EF*JES##%W=V${a>*1kPg-uSn$bSY}GTwl% z1={vAU{#laisqI~Ln$eXlT{DoSu@bXtT8E^)$!+M^63KvKpb}knQ@>kJA*Jq*M3+DqoWNNx`Gi-7=VQWiechQTV>tNE3=&TKG#i0iiSSTn8 zWPvV0AIAG4Hg*u2sXBzES2&z;XhZ~#LZqC5!&?_4yESMcGc!}f;a5~wFUXDYco=iQ zH_|ZGI*9u4fdg`2GS&c7c@hwSfXLq6(=*U_zR`WccJzDOn5(I2BF8HtTl*S*)KVJr zZ~|gHJSe96YfH|*L|T65_U&p6XtBkp;;g#J@bK3_lm-wbY@goOQdW-X>$_G~8C8d$ zsE6V_NT<2&>>@Ui76~~}wm%6CO}KGmMVUuiGw@G)99;!~WXdWkfe`j--Wb5Ojq_@$ zo}zafKzMe=VlK&>e0)PECD>4+%uIT5%V8 zmh)0kM9C*NmsgxFW|Di$D)f3kFSn#un^vE8@b2yxPfI>8G)&E|mf38nFLcV5rcEwy zjnAbimX#D9z90Ci!ZvGPXiV~sirR^XBOgF+m}}7fI^j;!GT;NO`s4*ReMwf^*DF`9 zFt@XbIVj>mK58>-LuHW*;d38!AX?JDDx2I zd)jqCVqG<;wrVBQ7@Vz)dteg3mgHhgLZ-oFX>ZR9~^&7{n z*OyhO^=#g?IDXYmn1W&|(miThZO!r(7o@%A9h+#jP&V18y}frh`|!IS!XgAW?bJdi?x(f543+!M1K41(XmR zWQIGk?AVcj#w`$18T1vCCeyLC62UVA&%5&Aj@+S7iR8*cUpJPD&85ontK+9UJsN{; z4B5OF(XBE_H)~UeX@f7$lw6^e)^Q>AP790f-8w36PJ zQrBoTT(jSr#h@oU%h)qENJ-l`6~un!Ktw$&vs%49H3fy@p8q`^`8|_IxpGY$UX@UI zr_jD4DHCdyV6@|2;Sj~ykA4q1c-0pdkRXJZNbCAQny!Un>pAi_<$yYXusoOZG?8;Y zsxYVpo?YoEiV|#h!#-lqTLT6ShrJaq$!&Z)4=jPT*THH@3aEd`>{>)l^go07!c$pE^JP zCOwI(>%(BmkyeZ2wt_2vL5tQ+fAo!(nc2+KCmP%dEcV56Nbp3nIpkE6CFR~yP^r(xi_1|Ea-9Ups4o|cF;GHmOV(DA!>K<$nAcj~SM6FoB;3W{q5@?l4x zft0l$v&gHfs|UX4X2TERbvu}VtnG%W&68k<86oe=LK}!ACLce3?2k`KQbOczcysv; zNRlUU_N^1!bHT`)>Z?9ZYC#Zaqk^=ZWI;0ZBm0=p!m(0cN=xGc{*as*h`ud$=O8M- z^T>?FM>Y$awI22H@##l4U4?n;+gMqX&}6;%zWF5w*%u%z1`+cBlGuRgSPk&DcWug^ zeq7qMXetUq_0w!BL=FJ0#7q$>lyH76Kp}UQ^8W@E9S2Q4dOnt zaE)afG|)<@4kF2oJU9Xp>qjmb)b0+gP#HOO=J@H$=dy!x+AZm(6m;LV zz0HiBI2Gyhab#)jsx?hvMdMN@Z?4{VNI;5m(Yu?1B8n!JK~9bHjP#^(?8ftD-XpWx zi#MYx6xN%MII1}7g>Bn%{c8>t1x5N9ZS4q9Gyw|qr4(|wn2-JVND6CI+QwO2Q+Hw| zMy{)9UcYcEj7@h2M^Dgo&Zgq&;gYxa%CP9KBp3P>LJk|s+X_-{e0)Bu+VH`k6}Ry0 z2$hNHo*k|tmE3;oHz=;%;ktstW3IHaojT+B5AmR~%JD0&e=A$R{+*~iQ6)b(x1#vW zir=eZqr~CJp%<1JD28G|@$Sse%raDJgP^L`J-MXafAq+;s-1YYMo65$<-6zeg?Kvc z%dZ;Q7RVqXG{^l;)ptKf)u^c|tC`z<>UBEL6|jp_ZtRZfuv5A)SP`a|A=k|L+AuvR zqD=15dh3{4stVX7tvBz<(!2*?B5iZ(H%bZ*4df;DU~}~TPAAnOu=g>`yT)J9j^O6x zpB`;**O#StP`O@~d2|D66`aaCu(E?D$UUzgr1i43wROPk#>%qHx^o}xj;omo&6TIN z_FcHMo+n(5wGX%V(T603qHsytSz@~;yX()@q~0N)@AV9u2AI;aH?-~Uit*?e$mPQw z;yL#&Ob&(F12)N#-{}PfQV7`JN_gUhV-+GBkbJl0(W4ODz#FHNAMO;b!q@vF5k&G3 z5!-n9IYc)#smj(MJ_$lURu-;b&ClrjOe}~*>!*$=E&m{ny4`Sl zymRkfV!uJ%dKBy`pf{LgF;3k;ZUg0;G0bsDnu++vC5!q#lEmTHs&9)J&PnkoE1L#~ zI`@Q>CF|*hKFjPr6}kA%O4m_O)nmoNQ!PXk#opOj+07N@yYsSbGmCN#9dnKktrEYu z|Lc+Cvtbu%#&VI|P>ELP`K8jdtsGn|CwnGrN2GTjGOAigXwnQSnD89!17dKlO^7gv z-i(5}Skcby?Nt@We(H%KvAd{CPI}J;d3Sq0s1g&nwftn5atb!RvW#|AJxI+peRj5a z=s{Jk-lMv(%N5Due=FP4a|I*JS)9R#+ZTd6@GKSEaVrLKgjT#nZED<6;F*`jVJvmb zzfGSpu;$H2yXn+2uka&t+_Oyog^W=YWTrHi>#G+r$ysW>E~D#?4F5cmv&;C@(>?lk z#>*8YrtjGl6&vWedCJRue7vqH{K%<|>l5aj*HBPMrN4T&$@P1VV+gEmA*Zm%MaNjWa}nwLF4PJD%8in z$fd4r3O7hMj1)L>>YSu8YlQcS>~&2D6`d8q_2dc2HBlEEXMdV_1i%nCTLL77XU?X% z)zuiJqCK^TWOp(>?%l>E9;*l(qIR6ZJv3T6+#v8K)xP}#Ql6CM!FUK#E4$eCeM}Re zJ>a{m+YoCeXOJcuSthZo`EJa;$cioo+Qy9!tkk9V78*TLjCJu zKq@Gqv6UtLrtbDHpEE=QuW)Vrn#wIS_c-R(rlmtBK~(#>gO@iB#hYf+9wpvg)k+ic z4c&L{mha3pZPFI9;VTt5K08m{-?)-BX^`{e2a)Tym`2@HoYyK0te_Z30&`l$Phu{P z)v0e+?)aAjf^A`Ih+i7)j6wiLb=D5PGpaoW z!(&;f4l64Ux!E}?dQ^~IXItLfw-pEC*XAXP!$S|wJhZuOn>k-TUiRrIAIl?uc72wh zdp}a&u>AR!l^3;^Huala-v8I$cgJJ>{%v0x>f2rl4Gk?7vNtV4Wn`3$l#xp$TnZVb zq+ui@qsU%SM!3vUlwB@KcCuF)`I7M*r}X{(?)!B=uh;X>{XEYf_w~xF#C3hvd7kh0 z`*8ObbxLaD=?M!kz-VmUrE79Vzay6&W4}4)|1+?(;ShT(iPX~?h)+aoG%wN z!eSsF?dat#tYGgaua~{`ncd;>BGxXR8hM^852otX0_zUg^-#N}-MytAbD3Q`@Fi1i z{PHvFb9p{NJ4%-N002J+20y!`T`CO4HVRT1?|Md&KAWImqkc*VKrJ~O)HERrFG@eo z#}c-xs2vf{Ji;fCivvTBKy{?xy=;?24060ZLP8qoaCcWldlEA^e^VqFvPzO8K7}3| z6*?@f8)kDkx4Yt5$_UbYlvSC+?(m>(=$4a8*BdF6`i;L)DP9 zW_#^`NP}Rbv<36jyZYu(%Aunu-dFtWf$44Ln;K#ZQNoA0F54J~q@RGdgX0cR z)ZD}6rctZ8j>yS@#nku_1yVFbB)Z6Zs|eNw6DG3sc7J{mPS8E@QHfy4yYxFq1W7eu z2s~?UK1(1yQvEI4AVP9G(ZnH$2Tc*&$&G;*i=jIkzbtUsnbHCD!~>99*8n>nK?)+$ zFS&E49O{Ww0xv=+)CK1q1}F_ts7qh><$$KA<|#duK}>x}b_o_REJ#2>2CQoB z@Ip!5G}(V;9KFJL0uU;kIPnSm&~K`R=IQaEZ4kVJAR%Ur*{4_UIHr8 zq&w)mre654RbCZQcDp}ss#h?bpO&ZitW50d@NYPoe zWQmW#GPNa}BuujV^6NHg z66lt4g0wwq2AS+l-s#$L^OTh=GE=>JQkcm;xW}&Vse9?jHzrE;*8hOiSuV1&uKnd- zee}%B#$0v%>-xI>dMI@WwhF}UIHmx-JXh`e(q7Jw(4=6Ba0RIQTr%5P&k9wmk%fi8t1Sq{5 z-aMV_40`ob`B zXyWaFGNAZ_ABdLIjw?abJe5jYOenHE;5uDOOuTJ<` zy5_y^F2fK3Pln{Dk@+`+8zxc(PVuax7b!A*ddf@*og%^+NUfHeV9K=J_;9xu@D!Ft zv=Q!C9vr6l$cn9ohY%a336XUkK&YMvLCQWrQcy2*T#+S7N&wD(IRxpAZ%*3GdKEoWJ` z&J;726z4u6Av^$R(+A3mi&ZhZ&o`JG@87@QV*tF<7@W_0^YotYEd|^yqZmO6XnI_L zuMrikydt{x;m z1O()R0f3@i37`d+X8Mq~Xm0bv6%JT5?MPPzP&$H0Hzb}UCK34UZBfy$FccKX{l2`e zsL(Fno*lcUse!Jo-&o7m7f_@<*QTQ~M?|k!)NoVLs8&q}hni6)>%B_J=a&5JOrcV+ zrSjEMjf^5RtuI+MBLfrASe${5^dqW$N#=Jj>QbdrbR{bb$${4rcP+x`BRr^{bs*#!2%ME1!J3 zJJj%K4w@j)j+b3>3`cwTR~XyOouqT}9;OCgn918EPa0`tS#|0T3U+A5X2>Xrlhj>k z@SKMIYAaqOwA%otk~!>e)zZ>Jx`dfShD%v_WiTG9Ne2xpmoCsg=wXXe;eP7Qy8j?q zS;5`$K@*ywVMtuaiboXm4k+BbBap(Ff^CW<60ehpAwu*rLXfP4Uld_&I_ z9(1K3RwYb{VW`$R34?%Oo#<%B0`Vg`A997b2nT(Aee#WY-lWYW5}od*ygbrg(DLIT zz~SrH!vt{$qjJ&m<(lc{4HD)rPm}gJ@w%}F^Ee*H%-tU&@1aX7D(AINo&Z#&-3idT z7^4)!+73~IBxP~|KpIRjIY>th{Tvv_iZy`LOPUx6&sg`8z>lZG9S^K1KTfO605oMx z&~X)WoX7|iGK+&f-TVD5bkdA}uJ1yiRWxHtc$bjH9I2;vfy{~`N*2H-3&r-F~ zr}jVP<#nf`t&dudooz65wZE~Z@z`K|AkCC1G#TwgpWxsG*pew+s=O1Ij;!JM6N%G! z-hvH2b_FLnMuqkyehTOWEQ~ga&Io$-An+=A3t&*sXJ)2iMWBPtJQ6KE87mevGdi5F zTokg}?O!RYdU0Kk<=b2R#%ab;V*B&*Sjm2PZBMVwW)CXMr|ruFS-@-_tE5HzPFAcs*#Uju@X6p)ak@t`zow(ogk$xY6~St~r_o%W`}{oxG_ z?J>KJHV?1_AyYXgn^l$Rb-}7#(wR9)io3%*ARrdOHp^ijFRwBr89xce226`KK5UYn zM4CxZeSg1v?^+Ur6A~)jkA6ze5cHxSy!j6`U z3pqY9HY}ku^G{7pc}F0(#QpwcVd@;`{}6H!?d8+j>h^Aq@L%1hn|%rdgik1IVz9WF z0Cl2+R*#ZKx4|FSF#KUxY63Fq~wNJ9ZTAKWoh$CwQ2H z&%lk8*+4MWNU}zjI4GnvI=0U|XXm7O^Az2+f-vHFYxJ)KeCRhCdz7%+J4abz`n?49 zpt9i)&%r|j(vxSk{Ft-rYoipxZUB=&%rfG}P6cN%984DVeuugoNPDCk1RDAX=o|gn z-i|X@rz|%E={$9h_{AS3rW++xcgx}5k80#zNFEzi?yWtyrdOZi*rVj@ zSvl{58=la#6>80N^kia!+RlG1x#+=eoVa~CC5C@?KFJiUS;H-8X8fD@rYT%f&6Q7{qf4b8xoS~qj=bAckXRKxb-PPA#@$7C{Amha(~Mc z0Y$$dT;J1DQKk2Pezdy&RNbk9LRojSbLQQYjy=3;zf+!q;1~T1YfHE}PV$vV{#(xT zMr0pL>zYLIkj0mbmH`_r|7(lb%zK@AK3{C-+o$gynURR+wkRTj!BWd$@*H`&d}6?CAaq76XNU z+MW-$p4;c=d0DGKQsl0?3KL`fpUWNbb#h+gaNYK*cZkW0Ysb3wj;amu-mS=Omp_~F ztL^;O)?lObBKfK7>Q|B|%E$klD?7dUXzb|-MuH2C&Hjat!^eWb{o7OOhdxHWzSza^ zY}bEpWNz2JAt9@dQ*frk!Ps@s`uF`+E3L>gc<(1t(Y7eLOs1iVtQVL)#Zvm4V(k-p z7B9T4!&TTYxE~{0#-h5BhvKt&b|lGE|Fy_JFja8*9-Ay5tKub}HeR<6Xgkm6A)gr? z879$Hsz3CdGxbH)eH)CH!`mMjPE5oNnllMd{#@(#ePD)$1=zkBea@}f@4wS4IQ&v#dM?@B-J1l7;DGr z{@R_9U+3(ei~;v-Ro|Kf|MCl-SC-Zl1O+J8g9Q8Mekot6y{LNX{E%A@RVOh`C)vROH*kN!*ODbwu`*5&m&n6k)KeL_^cgP~bR>16% zPND8z!|86@u}7un+xhr!iGJ*IX>XCg%3s0%C45yxr7Wu0?8CEnn8H{i?euTl-GIy| zUj^<-zNO*a{~2dstu~Ye3e@{E-zzT9IMm~xBU7_Nd1K|zfG3o$m>Iq2l+=zR#iH9; z+T@Lw1>N5H)V*OZ$LbEcDD~9p_Z3N818ZZ{|GD7t{0ej`shfT@pgYnY(35n=%uUNK zaaRS>XeGs+xj!r#@>76XyU;q=`XcpQUK0i}$Di>@VfRK4M`b->D5>_dEyt2IudjAz z*>;1EPJCnvHbTHl1IR>{*SBu zNcOd3q=~9NGP>l{KgYE&pO_o@$d3$0cSxEoFvZ4b|gDBWLCv-EDv*|A3=ySJVg z+&T4TEPUNe7z02pg`=)A+f*ig+J6tXcd}B3o>ZZzMMZ_zqU4B^(vNPB+=_H-U(5fc zwZirLmiCucSrx$RfE{X-0YuNrHtTGi|yh-LwC^+_(F=Q>yN;jJaN z`^Y?2_HE?u_7GbaCJphrR_?V-LRLfgkHhXMb}084s0jnj*?*5%=kB!|w#-lW4}6)< zeLg)X2vW)wX{CEdvjt*zX^J_#Ly$GqGFoeYaO`wH$%J&5*TM~&N?+-_AEb!}n>sUs zl!GHR47?15ox?Z`E=lsx@(V0-QW_2qTOT>{f@$_fRGww|_9*2Oe*#j7fCgRdW*vvA zSKF`KW&gr6Zd%}~G2rlOPovRW8uwwI9yCL!joF#7O$?1sq{qD;{O6uz8?maE?|GSlIa4?6^}ZmOQ^{XKos*H<`O`;_DOr5sZYcE|0rPTNWH5Cb_x+(2eVQb7eGb zz&ZZ*@|dGzE~o(;rHu^?Vz9|o>Fm-;X+GnspIFe(7cN;%vtry|V#552KLMNM*vI* z!Q@vAZT5tkw{1~r|Bw(q6NPB6?GC9KJ=KgUzcq6a*f1aoIpirI)C$Ls`*H%q-yU!pPVgeF^TS#7}keyn#^?~EUQRZ=0C7CFQ(>vB7EyvCw@vlei#gA~z9!lA%x~ENh z_8ZFg`FVlnf4-rlvHUZaDQo|%CKSqZnLq0q#d-dp_(!4aUGY1^$J@_dpG{iu?|)4% z%D<*IC4bKUd^F{MZph3~`@b|oVyw1|V|fz1_?dS*C+9n0F7TTZY~Y+7?lO|<9S4We zq9b%Em@L{I7Y6rm=A~RQpJ6?h%M^Ai?0g1Cj|dEFkjUh9@~$~iXJ!Bi97`~+vEr~3j8X-G`4v^bPH?ICQ6=fEecEbwggx!2DzN%33*wHO^ zAo$;KaRJXH?KbF4ON5OB*4w<_CG{)kjI4aXxuK$SA!(`YK8vd>488JoMD$dg^?r_6 zv2yMjrTe4ZKl92UH!dMzFL6}$2zmJMAt5LWn%AF#79#GIU-e4&I(g0M*a_PLFN32t z(aJd&(ezSNi>mKAVc4rNqA@&ft6QVP#?~*r&C_Mkh)QkrQm%zxbL`lkaxt%rYn7k( zMCkW{WZD>+D}cN9(IFSuC=F_nB`jvB;8+PV;_UK`9vVEHSYMg&&GP!MOxF=ZJ?WwY zbHYD&(e8=$nm3*dc$qo9nf>o7X5YtsPMcg7vPhOGo4G7pG8>2HH{;kkdAC$>(xc=aBUn(Q=PDi@_>MCZBiU@z9Sp(kE)YzNs~yKb>{b zwqO#8uO<9K8&0@v;FiwH%nj}q>@|1%8Rf3q7@eKtv2K03IP<=^_L_TlGZuH|TpNGY z7kV>`Uc5{}%~Gboa>eU1`;uk5)NCx?Ryn)YMN4v>6n0sQV?LK90gIaC`ZM*waV}vu zWt+-ZWz8~~*KfvcX#UQ7>a1v}ip}@%8$z0Pp-;IM2xPO}+10>Gk8^zgy|jDxbpThX$mK8dl}NgtFw9#|@+^-tHhdO?ODtK_1xxFZrW8_WyPAZ-4xpF}MWblId<(GL6i4`&3 zEMDTMW--9B%uTJW<6Bwtowvs78%ND)(ky9{+K$E=O*P*JzGh3E;i>D3ukb%0i18l! zq{ZZR@#SBsF6y1S)k@-5Gft>W^_>;0R5=r3<7Q6lA28cYE>8B9yS3qKbv}h@&E$vK z`tL5EaBUT5!&lL0WJlZIv8lnuKKwoV>`$Di5j&GtoL!+36eRR6wzRhA)Z-z>&qZ}Q zQSQ}cV~vU@C>KJt4_yrsmCxV)oX7TU2PN#R&=Qf0$5WZD0Al9GMHZ|Gko045@o7&JlX0rt`%JsC-_>Uz|)(&3om%K`Pe=!!|y4;_hGQ;so3P7Bno=6Fvh z@=m+Fp?QV#O*?&4YspLt=bEa|Ed45Mz`sPUbKvjXZ?vFo*La{T+D$nmw*IT4P%R5f z?ZJIZT;z2&tq2q5y`!=*joLRN*l=I0w6fNqt}FidrgDFWXW#6DR0b^rMr-RCtuYl} z)4Yd-JZZKcbW7-5bUCGt5{72~rtD`)6QV(N<6Ie6?v0+Rp)DKbey>qmk^3?4Veu!; zsYadgkRr#9cB%46?x43J9Kr)H`g!^tcWU&}ChdM+xh547J~Z&sZhs7*K2Y0k-8iX9 zHU4<**8G($XIdUIaYY)eN!c535r3mHK8}AspHRMkxv-bCxUzEJTxwglcnDLl73-2g zJLP9#^z4?Xgqpb=9alD{TM2OqcB(GzlNhj1ayJ`HtRI_{DjywfPvm$qkXAlgaX^q^ ztJ}uKzpJawSUX^}X1L?BZp~;})18;hL$+#%9(Rl<4O(rANp}qC7`vGk{aAfkYWcvA zzn@;E`*{uoO)1j`hCUaHRXV=ME`@DV()nZVX> zf-QD)SF?8}T?*NtR#iqW5ie!Mo6N~ipYOccx%7USQR@dtC1zgVSDjh#C#U=Wy>_|f z9BA&G#OAt1o)Gt2{AMqKLRB!4)edAkV`8zz4m@YhSk%da^{ZxoEOWf1v{VhU!nPiv z@UTZYPhQmZ5zPmh+lDE%RJv%49J-v)qAS99N(m@KTvt0~(+52j|H}X3OJI14%IeC; z&+qHywOLxa$G2jA{V{84X=#Wu!=i$&+wJAziaRhB=|aCVb(engzxaySGODS>U#a-w z#jZaW@SiG7wFjt*C1C;yNqJ&d6on-$FO2)?fB9t>{mN_>&qqj3e{|F@5|Ge zd`MTr#QQT2LBFeV;X(|$!BK?BpewxO5MiEuZEYpeU_zUNI?E!q6?_T8_W;Ln&FaLX>a znT&xcCDA~G8A4<@nxoI2ZW?6hEnd8s$O1@19E<~nqem;jnWLeB5&}U1Br;i$DjQ%xP1?kY z8^H&v2JM(-?b;}iGfmOB1_>yxzwVHvs)`<=)Ig2_qQ%q7N@ZHt$0I~YsmM0Yb*&A% z*{a~v*RZk0;*C8}Z!^Hu)-G04chb&t1fQfk5>Jlk;Lz<#?5~R#1az<*443ddi5Umc z7$QP5vY|Fnt5F#-55h|!)=UCZVut($od99^5lRh|S1LwOt`Q~i3;`YNi7yc3zy(x! zb^1-aUieX0k-k0p#U^O363lHFchYofV$6eYSd-!NuX2uFR}&w0$;iOq0(gytUIHtx zr-YP9l#n2i==6==9)Ek%sqFpx4^S&UBZRk}q`Xhi`O=^fBmH;ow%Pl?Zv-+WB3#A8 z*)_^O$&#z8;v@;NB{9OMbu;AQ-ChIIya4tHxOMZUNHKO(J3@E>!yq|cz+fOV&z#=1 zqo@Z%hh5A%2CSP@h{$rl3?e*4NTPpG^Q0LZEF;y##sEUebYcQdE|SPezycUX3tyzT zQnO_bHan@rUMEC~{_J#$EF>N5A{L<#f^Rg83zOclbEhfjGo)f7Wf^I^gFjUTk*b4T zo?s#6tO+DQg&0UCV|45}gzoQs+?7|Cx%cfWTexhQ(9Ev0uKKKnP-&SS<-_1^-<1NA zLV-~VTOKwi9ueHMv>fBe-M&AwsI4B`Pa53cB>9DR$@m`Xa`{5^ZNL4U88_aJZK(AH zz!!dp(%2^eJcEF-kMEZEB9Ptdv*NjJh@TqAm{`9~+v55QkVC>T z844lO>b>edbvN*9Vx9+dK4kCEy-g4O{EX%?GqV#Zcxye{=S$@aA*C^4b=4Q`#2q=0Cqf0Pe6=vh{5 zQ(h#u$@Wb~XV^XMM51LPreW0%ifMBI^evYf`?h+dzu^pF(*_D(O2qRfCIOeTpMdGW zV5os3lz*8UtT1eg7(ljhmj6g3K93%;;$3wrM$k|I(yYR8ceuhIGfD(mctG7i_xw4D z))mUekJvq!6Kk-&x_T3|bUZYelS1qGPQ?f(B4*L-j7ilRo^{|5m`2`>f%WLx)k!LrUR73M3Z z;4!~k)?rFf-v{mp;Tpqa6_(T65re+8VW~JNBjXGj_P3ujjLmzbJq{@?q~i(LEG2=^ z0EkAEOiQ@59PqAf0wHaKi(h2%RM7RQyWK)yoRWnQzG=$J%3kC>MAfXRL-QqRQ~$wuQsFZIk`m6k2t7=@fX(>#SjP9F5%|ssR{3D?Q$sbYhQ?8)7B2=^sW2w zHyGI-HCQsNzrOj)A65BXYcNj8)x@?0S@(7T- zqo9eM8TbnqEmB1^mY5o?+3v3$24Nef?*>pY5#MQJ!UY&@I?T5f7KoQH59eoM^F4Cd zqUoPuNw58(-$Ia=8t>dTi4!M`(~=(bY7PKwJ*sjh0UyP>bJ!a{uZgK9`(JL`ygC0W z09lwviUbnaSEh(a%#k~QYuf6VfJL) z^uU4ZWa}4J%w1l%M;O8wS;Pa%P`Qo6ntv-Camw?n#%4vWpj+CA$|0RnW9VU18gmj? zuvyT{AK(D9!qZN8Vsg@*IO%za5!Gurb^s~Fc-1?PJ0^>9;EwuGOqYj?i;r&8M};kM z<>xe0{~r(@*Ij@*<_Bz_#wQ$AuBbCKVJ}Q=g$pMi#*y&`G3$4yz-e8%YSp=Hh_XGz zI^)0lVtbf;HxCaX(j*$ZRE15nd+r^#P$_8z<+R4D5ylWrtD5O)-*UAvCjj7jGog zF@09`8eyo%&9rUXd}Vb_aHbg3W~1?t2PPbUE=avUz-i`mJA-K=--E`)By5PP+(Ek6XX4VEI z;^EM5M@9t^_?5vv(}|T?nu&dmtRc%$@J`HZXGa=WYh0uITLo48xCtsVB*o1sHl&zJ z(~&tYO#UHLjcftIs!}vB526G0&jjiY?LWUm41X&Z^wWE|NvOkEjQg!}!VTRk|0VrW z2pk$owEzbwD(pAM5nnbAU-bRm^2glS#E zd1LNyqmCu|50XVg{+oycSGP?P12IJS;kWDbIw3mo;Y8ntaPmm8F%0H?H>_imh{=t- zDmH=}#x{t%kUn0{K{1%2orN$noC1wdBj^nYU zsZL~x-aar}!B$Q)K1oPa(;O%58ek#JwDHJ@6zWEXr@4e?88a4TgYRoiPj67 zJ;I6z9d6$9#STRyAU8P(xT1gpW(jz{-H^ACxoMbQN0cLvr5vQG&bC5o(>~Y~4 wSrWc?{sMXk{+@aLH!bVrv;Pl1`ujA~!RW>{b@87I$UEeZoH(3#@a&EM1txsgi2wiq diff --git a/_images/51cdf388f441d27cb394fc34355bc1b5620cd50c7403731d3668a9bbc58b6489.png b/_images/51cdf388f441d27cb394fc34355bc1b5620cd50c7403731d3668a9bbc58b6489.png new file mode 100644 index 0000000000000000000000000000000000000000..6f3c116fc2a95fc8dfce9e445bf7a1ab6980a794 GIT binary patch literal 165383 zcmc%xby!s0_XdoQVt}AXBPk(+Fm$)#5K4negMf%MLk*G!-5@C?0}|5RprnMr&@c=s zFf>Cq@0mv*KhO8~d;fp0OT_DV=A6CPUhBT^wf0^Uq^_!P^9Icg5D0Yhu_9Cx1iFd@ zf$*mAuK`!)2elS}Ut-R3I?h`5ubkl~j^-d06K4k-duJO<)4Q(bj!u^Lb^_dD-29Nc zubrJ8oWyx}Z2#WCZSQEo!=#Eg4m^awK~dKU1R^%U{anhC$+iSt0)ZYwA3k+UUQ2-| z&<>Bc^(p4rR*p89b+l(u6I~0nwGrog=Noxj@iOa>;N3{iOR}V-dUr3$5;E;xk=Hl0|YP%ul{NG!cpqKtXz97!Klmch)ze!7Jg<37FyX9~4%k{zU zDU=JaBgp<4ttN=5rT^G|qTJGtf#dfCQ)qw*=k7?^nxp@paIBKxQbI?XQiCuH>*@wgUz{I+ z-o_ib6M$2kNw3|c@hvUo52fb2EHdeU7u}heK@4X*{`xHM1@$$%x^-d6!>I2MQbhrPJhLKS? z35)#9yXy=udd2@4lO;Tc+#U31<%LjH_8p^5=Pt>x_B*1h`DL0&?g+_k{94!b;BM|Z zBEve@Hi^yp57vb>*M^6OtM^9qy-vJVa;jmonsy zorKr1bN%65$l+0+Pq-brcDAr?quDY$#b3yJlI3lg=LhHeBY-^gz{rjHyUcW;w_<2~4ee<~<=@cbfak{ijc#W=NMi3vgb++llm?0l_!}ap- zb-m9U>hx!Pf%iE%TaK2}(n<`-`>n04ifvKCbZ>q|(MClX$cJE9UJj&~*m4yI;S4)kLvu#^MX1=p?asAXeUx+uJ`M)YqG2U8M$egcVoA*YIBLH9dTwhP;wAl0A z-seO=A!`|BFGv&1T?OGRLXrLxU;|U1|6LggGr-Np8oeZpJh5_gE<+l*3!K`8keQr; z-PKXzg@py3N*mpF@p1m&I1+s4)t?|8=q*l}LG0Ak)Z96k@~}_$|881Fi+1_7ahgUpjUkDZ5y zXLswjb0FJ`gF6dCEce?Com`QO1Yy)l{j_D*!Oey13itLfg#aP?;6N&nE0FAzeeMGgBLe_#II zPww}GnBL6dVrx)MCQKzsI6Xg~hzzXS8YVKOc_b#2>^b=l$bm|1yBagFi6$ z_d@?NKT>6|6#(D<0(}u`e+|s+zyJ4-8SjJQ%+s^7u6?+6Q7k!3g;3$jt}cLAhVQa%{c+?|r`H?*Z>7y2H=<P znYosJR`c02x&J#baWU_bX$a)W|M?*MzYhBERd)93K<_@OgBN4PCcuhy_!5xuT8}{b z_Tf`+!29DCi~ydz_z}rey*r?U92*;x&$#yoAAfs%BKvE$K5F8{PO#8^NDJQ%I z!jBA`>~NWq$0*eM?AW~A2Y|(`y6Ll9#4@M6Y$~68?dFbcm*(5UTF~(6n;>2lvPb?z-+8>T zgr^(urta51o%iBj06>-??qX#%4xmAJgv>ehV7A)mgoTTXP%V5j96*G!V)ozm{^zCZ zx4TP=0T^AIsL1Po#3ZL0!63!^;v2{kt8Q3O{X%tjaq(48suZoZ(HnCsT~^ZXzdAqi znY9xw3x8x&X(m&Xe5YIX%H;GAt5afn)yQLADA{X&+*ZiukGJFAr1-An>Mmf2^wLsI zj>zcVFmqiT7RGVu11jqJEh4n`cj&Gys*)*D8R2tr9=-t3Ee&6;&j$X9pMMNi)7tx>C_f*vrKsrftx>JCvzI4ckH^m*?KoX!&aJYbC$13N6lYR{E+b1O9z z6&7Yi{wB76yi-vkfP@V$}oi!)stD+y;#&$2XK8Olu%g&~}ij*pLt(kClt z@>Vk9Vq??4e(l0C{%2`@ZzCQ(oHyXETjM{SXT1295g{GyM@Th?2;r7BG^Fp9x$p#i z6I)82XP0ybq{DpU$wrGnpX7&FPHoe!nETa$Ibgu`fZnqI`_NYaw(}C<)w!;7?5f|8 z{XS;^n%Nyx>li7}hy4^9eKDA&B8vI^VGGb3nZaR&x@GONl1(dLajK=Tc7-F~xQW5* zWWTKwoE9o`an$E0e&s*Tg3m-x-J-eh*;)N-ULLZ+1HLxZkc8y^Pk@vQ(9qJBI4(RP zVw9!>sKk#!HTwll)d0v*;W#o1#&fEkb8_`)`GR+D`_}bVzsr@m$Q3I!&pu366bATj) zS)l+2zwUE_nx;ET17HG2(GK%rA~@H@ATzEP0@Q?aR9G7YW;l-u2WO|N#ura)%dCbu zsQuqrq`tWZgpTZ+H)1&M0a&hYM<+`yEu1Anl9Ymi0suyQ9CaZI3sqMoiD-q1aN@65 zY>DpavuCpwGAD_G{EGnO0N|lhVMPI&iBe#A2n6lcVv@b-P>u#>qJmRZ5(~ANtk$q@ zGWl05{YE^?DxEmL<3;Ghb3&SJ*r1BYY)J=0%h|zn1W(f`DIh%W_lmDV>Mzbu+;))) zSYU}}0F8DTgbO=rNjHZlP!Sa}kF}EPsXpg#AUee$oN2r-PNwH;mQtP8=2PHP-vK7r zIzQP2fNkR&Kwu&E-aAQ{@iMUV`Jox^IXJOaY=;)_aMd<|UFB{%b?ixzpu$lR&Lh@Q zRZ0frziGg^=2e=qVmvtD0sQSVoFmQ|e9ttq%=akgV-;INx2YB5(VOC0c*rC4v@ z#Io+!E&hDJ=J9FsF{Et^a1*}a>8;ro98gLgOgbH&A2g-uP339xOuCF3211#~ zEYiFjy1A-8H#RafU7T%R0s;7X&#v+4m2#Riy+txi-l|TCyXH!EiYpCh1{avL_Vw=q z7~Jujj(*znhc9F$*)SK;bV}a@oNp+CmyR#Ig7)fY9DXVpYyJ^ZxM=Gn>yG1k8p01eQ2ZhZ&6-Spb@IPCK||Bz(gc;^5OXWXB#=21X-Y}8!G(c4JA?gv1>2#Scz zfBtaGv3wkODM?T!p5pPrW(1J#WKSt%XyAmEex(h}#)9w!q^_y?{t>YhIUyBy3`2MQ zn;l-Cb5F^mUmtVL#sh1=f<>X1aE0WaKi)$ZPKz5rgDdNg*J69ws4lRtwETP0$RIKibR*gH!BbdLCx5S_PCEDDP@7XZ3m1p)C- zBIU7vrC(F0oSOZ-F638CM4W94PudaD2@xh3?Bl4D9`GpmExXYFlKIH`K|sTu9*;J) ze~CA`F(?QFi1)?82KsQTg;?X+Ge2ps;~79e186DW@PjE}CYZDE8xR;FM>|Uy7JaE> z)lIY;VKja?dymyPfxUM#7$2j~ z_p6%POakcraZWFD)T!40MTrWBFIrj3-vO~hZ*{?<5Z)Te^vD6H;{o>*h=b_9N7*+? zB|Yl8Lvq2E$r8oOWs_&y9A4X_z_k5cDXpL*Sx5r)(wLQwRS-I)LJ4*+Xr&an|N+$$m<-MR!i#YXr*FV4?kvwl>ULEP0dmy_LBaz%ms zjnAa{ip_K*diF_Q94-(j5t&iAX{Qb)_oB9R^ z!dC`w=#E{i???7itIZ|(q}>8x1}lhAR!LhK3es&wY@1g>hYsVepaJdL`+KP)8vr*5qbn6PoY%Fn0*!|m7teax?|)~=K5BAw%E7_sMe2cH1k|1Mx`~^ zK>gGrcrsr#(bOHshBx0;cHa96#-BQM6o}69qgu*WXl;U|vp{qU9#t0;>z`8ipb=#)joUQlqdfzv? zJ~FkKqd(R5ZnVL#-HlY^p1|*!=^B=*E)hmR}DFM@z zHM^%7zY77tYa@x{1!$RrF|lp!;8mP~V<24KTNS~p2Au7K8P zl#lDx+juCEVEf?ax@@-0;gWLxm|lRI_GYV0uh`Rx2x>X4oN<+=AUr8>?al&u=-?24hl)ByP2q>rKu_(aFJo z?CMqNB$cS(lNe5BL7moqzCWZ7gGLGtM)6njHkw+~gJ#fjE92e%i@UCV?hkTW`+~Uf z=W1cxbCx~ArV3XD{?uszVvQz7AYZFOHD&8xm>^aCF;l%G1l%_=_`$UaKHM!u#jnjI zgRatkr9XkmmtoM2c1Rsby94S5`JvltRX6n_1+@=V=mM>u5z|(KMOwROM6e{3R+zSj zhFXaJN55;sxcOPaamEW|wyCVa%q{Yh7>24u%`Ul1AI$0=wi`0eOgoKa#|gEiAR*#` zs?LL@k+*&4va0pfUBh!5#ojIGTk9KV%k8#TA6$9ZxWx(i#H(VkGeDJ4>rf_6hIW}! zX=9b+E}_O~I%IK8y+14RBCDz|$pLcmzqYm1#tlF;1v5^Ng*fC0d4(nWbao@eyWa6S zXeKBzPpkV=v~1d^L=FV6&8IlC?FT(#_IExyp|m#7@QoYJql48`j~5l5 zOCDULHZVl|)CpshIldnqyt+!+)wUDWBpP4utaRA{-EDjsw2@L-|BdB8Lomh-;nzq| z>eP8e5#-xFwVyE28d^`NGg|acNi2qL^ygE!II>~hU=lL%6c6O)a^8+`KyY9U3w`@n-_XfdRFR;N#Uq;6X4I_rh{qu&KYoTUjA zf_%sZqJRYV9tj@7;FF+kW4oO8i$z-y$hjzR_I<`a6v|?6z!n<(-Yz4e8?_FVng5;$ zdMj|jM;2mt=x$ZhkW?U~BD&sqC-o$LHqfaA(&3$U_L9r}X`J|kjIO- zT{%ngo43HVL7A4bnRU_+1Wjjr;_1>|dQ0Wvg1B!?qr1#UT_1l)o_4mcpkBkzB@S$}_}aFSIlCUZQyA zCbpa%O|E7-9yjrHvU|f{)ZG;pj6J%$I1lBa;2(q!30ah1OjnniI&xVL0M0HTz^%P?@2VIi+M?gVOgKss3?r)7);kZ zAg@tEkVsxE>q&Bx>r;TQwh~0GSEvk}&v9Ec3QVz`xvz)2PaaOl+DxKB^r@*8*MO+{ zLDFQ#qW@fRu?XdtWMmvz%hs^^>eF*1{Uh~+p#Pdz94Wzsa5F^3K%4A(Q4iwkxE`@_ zH13XHs|S7{O<3AS-Ps90IsK&A>N(9;(fF*F;#TG(UG#?&=XfAc09sJUj22C_ld^{$ zTJ?7$-TP_zy@Jn9e0w^Nb{=0=#f%PRoy3=~79WQNN4vc~enM9Umsu0Z=|Vma&ENwW zV4HyoP0$JPgK0bSUfJCDAwK#AlR@0=O{~h@Fqy#1C&U*=d?RZ)9SYr5v$4i>%O1+w zjfY~O8S4|`Zx0{2i;hqvou3xe$y@=kMpG7^FM6lil07B^qlM`4YUAgTjA8a6vkQL0 zinPpsL1sC!KWK`8B&C}lT&SP_eD;gnsPMhWt^1lsvjesXEaW6y5uNr5-FrT?B|gYq zY3qes3(_is1C*O>qA~uj$ifPn5rA0CoT`&^9xN|*)K3{`@SI%VoJ~MwnJiR_gTBeg z=mhCc>4e%(?md)8u`z|qul?+OP1X14W8|Zz2Gy3J4USNb_L}^0QudS3VTTiPAi%YYfG};nu;zsqBcr0 z;idQ=IkS=jtjmP>T$3lAI@`k?w1TEI@{?LkB5ORFxJYg!&7L~Zc=Easq9QRT2SXe2 z1dnZ;h1jix4Tmw9U5oxyGi?g#X<;mE^;s-bYp@RmYw(cMxOCJQTy$N=X%%wbKFc;Dhg=p2xD*P6|;y)POVH*wwc0=YgL`$?*@7HxsJz9DQOsI-BX^jT~+&YZ%q@^FHF zFE=m^NJ*Z~Apa*poh1SB3rs@DLbR++HX|tWzDrh`!_rCW*@(!!inf(c?N@5!;@Rg7 zY~tU1=nmozN8NcmuwoF8-y3Is)ZQ}|c*{W~44awJZ|P!od1qv!nI|oE^|b}zP+ryO zY*3ETR{Qh2i1PR1sn}Z@dN0T0^d?1Y-}ukm4{j=*OV~K1s!J)X-n_>y!ln$p zqEVW~7Y>MRfr)XCXt5uc01h)8L*MSOu!cV#tz%Jan|TE6vj%FY-*fJ}#;1jl{Vsc4uIaGmF| zhjayMlL)zMF|&62uHH?=aLm$zDu)Hdd{0*VeFYoa?GRlN7l6NRg=8<8o)!9kGb?S| zszwy&gx}quM7pG4Dlx{R`L3%WfdPz}KQNO*60o+NonjMhyyx~sgA8eb@kT}9MZ&8# zA(D5|tDmSk>#zQ$4#m0;s=$!LYZr+u_6N8ss!xyJgqvTV=DlhW&iFn_RZ2Z?T4LIW z#tpL3<0PU~IV3uj#FUJA^;X%L=ez4!;kB5!Ko~cygPQ*!uRnD1*s4L_daG{*dIsa|z6)m|rfpvJ*ZVHc-s zF1f-@C&!J|TNo0(`75RH7ZPAlu)f@=*YSt{`8DPd*d1)4Z|mfLc+&KSHq$mOwSp2< z{94P!sC_Q>;Vlp&mlGvFMVo^K>tk!ST4iVzgjL8-p2tEGls_5AEvPq0eE`YiAd73c z8$7v>?Y@z7*}ZT((^Aav^b?HR@Cpe!OxeP9DY*O4t1#icPHxw%y9-43r7yOoYM8K$Y7? zVpXbYRWr*K(GB%VX`w1wLRP7^ME^|m(?gFXuBGKqq}!Oe;V<|j=U(}o4_1unj;_@; z&5fLYp6{3`8$V(C!zG%c?1+y<%Ea0GJ~AH_8h%~oxn57? zlB|?RW;n-M1vyjRWedVLCgtM=XuYR|m5Y(Y&^rFy%uy~G#}x`D8YE}Uh-KHG1Y|hn z&2qk7xa3N~pz1vCjZVZ2toy?9$2B54UgdAoeNY@~dBs)eIE}jYHt*u(YN4BnwD&0n zoV!rfR6&iak|+<}FeI-ixSb{%=%I2O84MVFFfeKMx)!DuPvC6QD? z*k-voZjAzXt?OXsi4&c-6EViZjxCEmKY*>}AHe-lKXzxigu)Jo7S!QtpQ*2H zP4|u9ffn<}WA)At;Bm7+)x~u2N%re`7u)y6WrcTuRUV7VW2D4-dZ;9;%YuE&EgYZe z|0_hAft}`;w}(ikMxIvQs3vY~x(o<6YVfoanr~5MI83MV%e634uzP~?uC!sdW_PW2 zdw-F>t~{!GnSKeuaen{N0^~Y>O8?_Q%^TSO^OdMQV>`AtN?39;o@GKP2_U($$R>aB)2(Snh6#Ebl+*AU{w=wcPo#${>w}t`H-mz`TaBmM;G1dhj$|uqC63ulsqdhI z%?yjvCxl!VA}?d>sFvn8;PJCV9x^?(JXmoLxx;?o41{GL`O)bgF`W4UI2rU(eNE=6 zEx49_q}EKFZ5rDsNQM^VT7P^Q)rtNBp*I}JVD|S$^QT~fUT!2~u$e({O50usjc(M} z2n883bW<_LDXnm4ol_`lguo9dN@QJm9Y99^t&ib?9GmGEkX57{F?!Fz!~EBU{nRzc z^e0!Cg24^gBPV_r2%+$E!jm7)h`I{%lFm}DiZ}Nm$H-F3fVw&zJL*>Ot@>1H3_Hy+ zVc95d7OinKE_}MOiX9n0E-e3OkL4L4=WC6TXE{9LW8sfmrJRD0$3`RKO7UqD@lR$> zIJXXahV@QLa?=;$yW#y80yU-oj zkr+Nx9uCvC^Jcc3O%AY_l{oPBjbEyGi3us-A{(og&;kv6$$mpKf}mIYs_#d&a_$U{ zpUr*5+hAwJllKSlq(%S)O5gmZ5bE5w=12_TbQ)+SS(@X+&Pey#6hjE(WkiUzFAhSI z_j0?7($WINtX&r>e(*769kW5VuwGFZD!@OzK=SqeFf33i3;&6jaDWx%xdaN z#vnMyi6yiQoe|ot2%sdVLF3}>Oq%6ao7HnR&Wab91qcr7Dizi}!Y^I@E{Hnpgt?@p z>HbOz=q*?e41r>Gdn(pP3y3a`9qxtKdC`ol+w?P3)kWs8-@ce(WSkGCT9j!2=)T@~ z>l!~~V(w^6W10x|(I7}vT#evIH6}#yFp6T}cgLp>%X zz%AFx^#ae)VppYzr^^ab`56+7Sty~rBtrw^h+cIaG1ICLH)`fwnhaAu)sEsV$WNtH z{1n&HR>X<$ph%Z&I#Ht0%K zhy)NSeBil~VPQ62rNH6NSTaLNg-ysrsQ;@5>+|;bq~e;|PLdBS(hHxpl!d8ma#f87 zWrx*&EMx*Tg}(0+A(b;H#D_9x5ApBc#$oY4uyEBESTHuqu+Qb0)pqZg8aS}X&G43- zch9dX$*3#;nN{dVF;xlXu)#3}0As}q?hQ9qbP>tEwDBfvi& zTy97L*p=;W{S{A%44|mo$NY7!1gHmofcbdSrV+MD(d+Ir1uziY{T$p8qo@}yn|_VI zO^0vWTnSK6pK1m7q#50@5e!G$#(*z9AMsfinxSNuIn_^GT;zx1@p+ zaDK8L-Lk>56c1)j+V_&U84>-RkzZyt`O^Wm$zwDgvVqzEq)!~Wvck=Z?s@|3me>0) zP$HEwNYpIKgU_yO&ng5EAJ|fnU2)P^=OMT|(}pKsDA=}#ZsqcmYpIKXkBCV0qW5cG znWJ#E2z@IWY`}&0yLf5TXB%+H!QoSf00}U8b0@RirD4ttz_G!~-Auk!i{Da4ZDHs{AHLd!x*MzDK2P}QAH9c;9qb~P+ zf87d6|3l%Cmo*J;a9ENx!ZEi!U4LS!PhySamY`J`T9b*R%o}_PL@Y7*lws7E=SGO( zUbcIP>j|E(pRh*Z-!4NY^uqzb=pGH4s!;X{)vo7dtXrASJ<#`Lwp`4gTBfa=i$CCM z@AHKt@?Cn7|eCVekFUfKEY7}I5lKGeb|ks5Ug9Np;e zZtq*bzSPowdwW3mZ;^*QdQMaQags?nhkB{YLHNPZPaX2rx+ zcYTZnkySray=vJ5+K-Ji!M)7=$?$Vsb zx1-c*$F*g0G@ly$Y@&QE-_%B2dePTtSaGsrwlQJYXnPv|3=*un8db0%=LW77(93QM zDxB8Vmq6MIuQ^Ul&xz6%I`e>QKdYjaW;!EAXJnj4=c&~CZVINZzX^3hp1pkIrEuko zdYeW_Y~K0F)saoBZ$dm?8kqFk(eKkV|3EKOI-o{_ECauzIqR=(HJrfP8u9AhR3e4y zv!Tw!*;UGi7lV0(d#-oYN%_iy$>cMxO*O8uPad>9aya}UU4UBgasEX1>ht9GMAltD zIWEDIKn%-?Yn#35q(Yq<4^Y=xK((tydfK$F?HQkeOyx+X+?jzI1YBcyh8F@^kg+w1 zRNIOpC&Vh^Bt;f~nfiYoPYTot=~9$;8_`{oqpN|srn~RsLFfv|3QD^$IDMi+`t#Sx zvXq{J!uc0fx%R4aN8_vIsOzLivaF&q37ViQH1@Z<%o0ZtTu^5?c6iC6sO@S*UpoQ3 zakIv-+4&VBDJynVG(M5DQeq0I7SUZU=Pm``X}tJGbn3A$9>8f_Rh$FCs|Tv!X_EW* zy^qJT8~G$qR)e?pKQq@(v&z1D(vWP>Uh^xMLf;y;W;?hw3AQGbikWqCjz=oWFHRmlHm-y|l!XdV2@C_q6Y6W>|l{ksBiY zexY}5x|oT0uTx}@AAqB{4~69t4%@-kMdRlN`vENWd>4ya*-G;1Ou-Ng&&VvUD7V=dVp0E%j)Ox*$e@A{$oA zskor>j+%$^Q_NIu8}*VV<8~wDd24kVP~~=;X;=u)zKw6G)C@KGeMVJQv5-A9EQb6h z;%)(pe|I1>G}OjimzI{E1RY{vjzFpIZqnCY|4KVweS$XE1ee*=*G7?XbUk72LU>h# z)leW=NLY3&_A-<#O&VqElLw4gRk~+KTsvxd2160!1_fZ&;Itb&CFAztES8_1bX3(9 zV~n#Q-fAyyul3&Jq18+129_A-VsI6t zyLl(A5T_hOUqo!^9wgnQ*Zp;}Y?d}xR#C?bY@OFTATxn8Le8=}7xBMcP*V{D-TZY( zFi_=r@L*c{az~9D`R*EG7CL(0->S@Fn!C$IibF~NzIa8(vj90XI?`St-7{{5sxk(x1WR#ev z4x9%xLxy1{J)2zP!A&ZLpGf=PIk$%7-tIA<-yuCktGUHHJU zl&6c+JFso^V3Z(N{^WCQUcR~vOUxX0tm2k*EP40e!>i)rI08X*PjFdFIi8DpUi348 z-hOq=of&@g-e_n46?aj;%kW-HxJLumyY{JWn+CIJ<-U zgr6WJOA%^TEDZdT@OQpC?uT;ECgaDDzWlN6mT@nptzcbEIm?B+!ZNiCC= zTw~e>yj(dW%*T^NG+JbOzerN<(JQp_ZUNSE=#lo)>gF(A=OIHox5kOep+4V&50>*D zg&#P~r7*rYj4d+hT%<8ay&@(-j|SQ4Jt?UjZ<)Q7+4f3?1(8NHra7sdXSU@OEU_=#zYwZYy`0)vC5tA_xGmI%xY z3fOy=5DZemwlvQ@yt_C` zB{n6IJjHOiVR{b>(2n#Qj(r!WUujCdn{Ki^y=_vVKmY{$^cgLQUHf*YZ7#RYBl!k) zV%$l;lpxl|n)1qQo7k$ujEntjhB-?1=%oc@I{bru!uxoAFld5s?rcuzAuG!otB#KM z*{LKB5R*L*c7@SAom~G@;=at{kD0nuPl&&E>F@-*A)KBMT|6B}nI<({<(pCok{7Ph zPF50}bN-4tTBVt&=g&3}&axqN32uJ#CLBHKbJ)(_aq_zLhv+#_q6Br^2;bh;xng(* z-5rsDl6%(0RPcb^2g)PKeeDNJ={6S4^@mg)pZPGmsPwWkzzVddYSRLNlL^4?Km-|D zeg&%CTJujVcj$+FIji0o%7%=EcBiE+)m`|`8~8aR2s>yViy;Lzucq{Q6ds~O(lWB{ zzXMJN&8vrR@0<$}0s{JQVbBTBRvS3FF;46iy0lGgIPW58S}xx|m{KI$!BL-jyYqTl z0orfX=$v#oEYa`lW4FKO|H%Qx01fUjftr3QNUob zNmTfx!oxs2xmc~ek^^R>r}I=wlB??~*geQ!%OK#p6o&)qp#4SQ4Ec4vc6;hxgIy{2 z=QD6)wUBjj82A3e5VCuQPY8cOiS>1c1O;xq4)zn%wk;waGH$+yuy`%m9Kc2ku3esm z##0cu9l#OWV9Ic+;N8^*JCR{UIu|UjtWj4U{wJ2E52% z%{Ie*lt1m|5)>YU`II=tKgsP-rEd2opA1{KNtX46ygP|>YKhqpIt1>OV+JKfyPBwJ zYYLE|33Ur=1t+p^%1z)MU{c*1Ea7HJ>!X{sOP7nfe+~72NZAVKMxY?JX4gFx0#yH; z?NbEwwyI`evp=NDfV>e}RaKqxRT{y*CeLz>Thv``+LfbzA}1L$#}<2IR{L48AV-i> zr?8W54{kcn_c0&YFY_#in6l| zxK^}M=kcrL5G#*Z(S)>Sgeq9P-%-^?)6f)&e+yM6;{LpyKMwCf>+s`ea!L}go=OM% zkAhrJZ;X1XM{I|lO~}T$Npk?W+;q{-?m7SV()o47yA{1*A#i5*nPNiLqn@y&SFbIE zBA21l258Lf?zU=jo~13|{8aTyQyS-J9pUHTLkiuns&EbR*^i~l&OtwTy7l|Mgc$gb zDm)N$FVGy`)F$5LM@B{r{hc zRiUvd0rsZ4c)}f^S%I?I>@&}St^QO-hRfgXWSdq+)uaq2VpL=0oF98o%-O&Y zgfQ-cqPFuV)?yWo(rXrNjM4y1=)QZppY8VuT?C_#MC7Zl=p zaWtZ5so&%!#pe{}E)(~K{Pn6A8@WwYz1CW+d5BUnCb|!*lPW*57{=K^pqE8T>ND|5aN*un0Kt$nGZTDQh$bajRXlF090+h&^RGitzts~D~v zu`0pRV)p~u1pYMt+`mhXe0-yYB?}L9?8@1a*5m||C*DX6#=n$o3ZR^f<7VT1c-bI9 zc&NEBKNz!?$0k9yVtDVePpy4RlnKK}XkyOf1_#rV6=9e_S4$@=8*3 zTTPEnBRyx;7r70aHU<5c8_%D==PMW=3laI^6v;(62JF!+NgIZsZ^Ak%OKb5sBUY4TBZYfviTrO9rw^=CRy$@kXdRhS4vQh~kHJKfEJnDLbk zlcvY5?pKDxU=eXg-=mO>TXb%Q^ZU(~2S2~jYsJkZs*O;(v#0nACujWG{f{KtX8igj zI8~s7xNWd(WG327VeVL)5~RN5j|vR8M0(|N@N-ycmCD8om!4v$47=%Q!r~nWL44_$ zTnL%ry_nAAW;Cbi9W49X)G|IAzL-Ko4LVA>;{lMWbJauX*q{wPAjxRxeP^i$oWbYa z&0%ljJK1e(7>u)68>MUnk|1quZYO1uo%s$EkNtLOyjpXJb`Yk5Y2H9ur}icQ>MFQAu`lrw^C(s|{Qj&n=U82p8vAC^-O zTw5b&qD1bHK{{*T$u$^a`)*80GpgoSTS<%}P*uKN*d-N5@YRc=P1@y(Y1KD~CS`XI z^!j@-B-+l+WBZ#_Tv>PmzjpA&*bghJPtT?Zfs2HiDdi9kE40bB8A=6 z6%WW)Z=2Q~R%Wt;T0i!33=n4m=_Z8LNX08G`VsKuSJ`BSY@bnQ7gpO-U5)hbOLD`V zuq@o;y_DWF7#2!$Sms)ItYkx#fs&qvpE@n9wdRLF!zCA^nm|Yqy1g6{ zaM!vcOBA6@esYKZ_N~=7-(1A#~xJz6!}9jHNw`z)8{uWtt^s z7$VPqRz$o+G1tOGqjTMBUCDR`9N|3&ocOZW)%_LPJ{m~Q13peNwrd`fX$Z46Ivyyg zS7$DEyJ1bU!-By32F`Pxv)77$1%WFEUkP`5++-JGnt!xgQ)Nu-b@Czc-@2--rUS{@ zxJ6oEKz2fQJ{S2&>-!w z?0!vrwGK_#tF;Wi)Ybxf?sl)iIJ5b}_94e2fTc-EqjcE}x=c-+tFE5XkJlz*>~#54 z1+kdWVK{h|s7wWb-NVL~C}yXRs5D)TZ!uJqKPR8xb3YDBC(!DvSsN*-8WH?r zq;T(Qm^rhnj-l3pH$~@&BK`9%s)HmT0%*s@C=VD7uE(o2FNS!&D)a!#akfP%WT|TZ zR&4L*1Wrv(hK`q6m;o(vx#m%dS3ZK(aIGNa$8MPP0EhNF7N3>kxsPaGWj}OAT)SVq zbQ>uL)4lzKnUtzLepMj+)_xW<1C9=4jFSHzG$phERU`cL zIOuH(jj>=fpKeKmFc-DNoSNerv?|0i*sIIxvZ9=`ALb4#8CsyX4Vmr7^*)gM)fg)K zxp;CUA{Sx=Mt|`%tW;eoCZU+~j>i`}J$fMAY!i+mSsIv1!K_!aTX}rAv-6uLB4stz zNxV>%wu)>YG1E;=W^aIwk`kchc6#07=O;fPcrW8RUSe#4ZdP?e!}Y_6A6QPdugvLz zP9$wi8da5TId^3nxL;Yn>&fPE@L`+U^qI^p|8eT@9WLEkGH^8ZKWaUeBfe zI2x6yL4n;3aU${CWVoa1d{$Id8vWWo(q8Xd>@@X4P0Biyhh)y+)74qA+1b)CIhH#g zDNxpfs?Hj`sxLKko&x7}mjXjB*9rEvl{=j1hrm`E7!ifT>-jYPMP%rxpbd$&r*%Jv zmvv}0FjZ~Zi8+k>d2Q!wqk`=My;Wb87LM>?4ZU7&l$198C$#r&1V?z5-?;fR@#EbZ z*$pT$;}UafH}6tz!e`$p*YZt?KZlzJrtZ5XD+x;i-(?{>^A?ZS`_#=m3D?mHbj+xo ziM$M~$7j71PB(siNrlE=zbVi7HmO7KU5@#Z`oNsV)6c69%KU^{cn=Su0SSkcq=yj7^S zIYQ*IuOSI+AU&WvXrov00Floc&G*hkFRqB%S^}wr@GppUoMNvYnsz@&kK>gb}?uu_a-FX_TLaLY-g{TF!`&gAZJjU2H%u zn-mrJ4mdOG@C_((>|Re+dz5SEG7SG%*rMlYy3}w_A9nn~UCksY0G-UMF-Wd0(u-$O zm>qU_Hckn2zswczh|KQwiHOI&X|E|ydt^Y5eVQ2AY_(GD1 zef!%>c#>5GK(jKgADHptup@Q7uzvdq(2FavH$72dUB&=cxJSz8fUer_IJk9F7fj)wzx^5uaArv<0-)b$S!@7U**rnvi#yG-)$IGpBEy zEoz0v?LjuAlU~Q~Bhp3gMIVmOm%)%9or?3M&sr77Ji?Hy-)Haq{@w^*^62-${|`^+ z9Z&WD{(rqoR%NfUviC@36CEKt$tIh!j-6Q~hhr;ydIL9V4$M`+H z-=FXAullQ7uh)6LuIDu#kNbto&(CL&@fIx5%1kr1OXCKAMn+Kc__^Ru_Xcx|i%IM= zy^`#kf%Ok~d8N)d8kIjq2!n*d@vJ>L?v6CI*#hP6?Mrzr#`Z zz;L(u-)%6pd;G-|kAiRrqLTk953}UYMr~y=-C&+3J4?)O=pj_o_?SdZSO(RABz&Zy&oG ziT`QIY%Y@)3My1*YWLyxJIUbG7?!GJi^6P)-2IVBF5*;DuTM*$kDT#W{wsNM^RF#- zYet?G_@;l=HDz??^$I6kr~0 z$aK4?2zhsp$~80&ybuP>^G>5z%u6!eH^ z_8MSB-OdkF9>$y2wk{VF{F2N{X}k@(Ryr|{qw030sZ=m(!%80P)5a}XLX;9oKsVWQ zOIB1!;45#5pC9Kc<#Hm~R0!hi!RbzTsawDEu-hieV#UQG!M0%WN66bVk~=kplJx2C ztrrZZwY+Rx0~$%-4}ZO^TN%EU7k21V_`jK%G}S!6+DaVYeK4EUyC5HonuY@I$2_p* zb^teVJpaQcyMfyf)4#NEdXet^)#2UWCa$zryx8g480hPx?d80|W`@PGp8S81=nBTex9 zW1sl)-aMq9c^OzvKZK+25D_#SkHxnksgMq-TL{=plOYX4UDn;L&no_gLD8D|M71{k zMv-fG`AN+qm!s+YFI|;WlMz{OTp*Ma%!I>CL$$^Nlo;Ei+WrXPENT-SgUn=;S<@Q? zhF*JWLkDW%ctbh!O8k3Asl!p6->b)5-#!QlzA|2O)~|0`Gqkz&*L1-Q3^a!aTa5fcw%noFZze^lG}sad@YfBUW-^ z8#wlXEUAYzIN(m~$6gAgnC@Gu;O)L^ysl^6CMga3$E~}o`ibH_2zLaLo3?9mgXeUH zgrg+ETuR_coghV%?7o296@s4aQH9zsVp*OLYoL)1INA^~g@+gNj}>#c$ShcNsSztS z98xcOiDNor^q36DbK;7eLJBxbwo1XRMA@D*M3_s-@%UQ}e(Tv+l=1(%po|sQt-OOhTDzcAcdoTMI`aIG9u=yZR z?5b&;?17=`h82!cuY0CA6S!ZvYSVw9-S!ZfeonJWU9fx{M47Fj+Vnf(J(^J>6h85a z$1iKq)O7pKf|}{kpMN%YgKL~jjx)c%$qXT#x4YBRxTJ)m3tx>A-5cx0w&(Iir5fM!~`+#7|{v;I)I zo@Xzppf=uDUqNd)U)c}`A4(NJ*SOxR)3~jF4T|VN#E{p~kp3S7V6A|1>@5QzCT579P`8H9v(MwFj#kysc$&x&YsQWv6gE{S)^l}-wP zcUGxot#vmXRyH$VWZ@HF$!efB|1BJLK2)OuJbxq91z&kdRI;cO{?{Guq6SU<*Ut&} zAlCNG$rI>-eaM!%wx&F%> zkQ(_ie_n2*+&01+^33jLVISTD!%|CS!__lK#mN~ba#w>uaqcNe+V-HJtg13kgQO!r zkqiv)_qy7@p1*Dd)OjbrnEYJWkRugQE3?Lo8qxBM#5pUA$^4(al9~1L<#}cnyBsqA z6e?VlT>h-su<$-GZ#`zJlsxF~uhyM~K^{xhioT4kQTSxL!gW^*@B3{YJ1>iixL15j zC9P~&GlGwIM*L?rJm>Ywyb<`V-~A=%1FQ-t2$9A(tJDiu{`L?-L0msVZuMqt9SpbtW$D<>S27EUX}Q?rSQLN3cjWxted@Kei@O)MUltks=>t!7laboNy>$zxj=Bl% z7E%Aqs?{gqHme@OkZg7QP#Sq-lsE? zHV%hdf7n1)7PT=-`@vE*v(3dOeAU|n53;Tjt^T`+!olJgygpZV1pMsYU~B(xMNbK6 zOXtb^^lQ6R`zX$ZdIN6157csy4ESbL@cK}0O+877oFkh@rUW-9d(+bS7gul6o#xwV zSGCi|wKH(i7^Jrv%H1^l2^d^b@HB1Kw4LOOe8N90n>!#KfeN>!+l4u`7vxJQUe6me zJBsuax^i?-7ccd;I>M3?OW(1tC!}#>HK5|UEihFOd^53d(Gv2I#t>4AvB z&G^t9ss`pIxnA4LF?=}y0 z`r)x9h>` z8PMYCkgiZGeuoUWZ$rNx`4gg_KlPlR2mJnDL_v}%dnP>K&r#!P-~UUtgp|P>d|JG8 z;PsLnA>IwDAw#u$kI0MIp5xn9v>Fw&eLdxvNYC7A@8sXChB#>r>X zFnD%GC?l#qe4iPuGBn2th5Yia{kgBRdf827V?qbc7i_&$(bAR(-+>XW)Fd(LC8c zo1>yZz9Or2RS{QAC@OSp5U3;~XgiUm&TFU{P#uCX!;?&bnOrGHKhimZIJar+AtXlY zL!GS=;~Cuf&I4rdxbt{B{~4oMb*@%ZrlV1ebEmxAKi7B#OMdnJ0D9f~T`#npc>EG6 zHgjn(fR#!5&WK1rozg6?43R&;B!z*iT<0F&xfISCD9plukhc2&JFsgg!5qn9gW+vX zT9|Zp^GkNS^YcMfbqg163|YRmpjB~Bo>ldUpKfU@=lD9a=3M#q z(Erlk_cY9xujSlhmouZ`f`Y!6GLB9Ze-#{3hpjjoB{!tIvgt z?>s_HGQft__D-f`^1Eq)9b9bp;#lBGe$u$oO20sRBwsR1*f~{w6O7k1*(N@soE>(_ zDnOYYHWfkkXUtBs3F35FJZ8dexhOB=D#6>?jD}cj-96|8orVC7%SFi_pyBsy55~^P zxlOg5-J8I%ugsCZiZ1zqy!HXSG^x~muM3`pf?QR{h^~n8wN4>fl_)nv?#563)Zgp{ zwo->!?_Z^L@$)m@K$gSgJ8g2jYJD#JM}Kn7ZRbGGZEqbOFlpC$b-UslaD+Z>HDIn7 ziO2$`sWI(3t$o=@oYE-5P^9UoRo=F$w**~~qixo}*fTAE6ZjSTnkvA%oSZcdX)X{( zN^G654f_9Y`c|U?61txo3Pmzo3jTsmN)RvZ2k)+Qs4__J)!meO)6Yh5uH`OK*L(l7 zztrInuM*$dgq7}436o@l$x)o&a^Y|cxK_X%)@u9Q43jU|0uzbEEkHATjzt5U+s_*| z{l8~S<(L1+s4~3PF6qKqaB*m8>bXxm=$wn`53NJm*=E3P{^3|zQ>iVxMcMi7N@(*{ z0<`pofY4(9JDB-)q=#cxmD3W`b0;z=O#p{ke zdaXX(WYyaOiZ`tHh`x%)Jf_83Np*jYd@d%$_KJXB;em?ObsrjyxYE1u3rDhqNJg@w z@qokO+LZhE&gAGk*`J@H$rm9$u$|lWDr4>B3xRokkR$x9{k3ZGoJc_H6U%Hw`!WAl zZmsr%tD3N|TC(Y>Iy=Z)A8j5cGq?NjTX7PjC6o8ps}gw6_x3i#mqSSdycLI?m~ua` zqmh~Pt_*%hdg?WC@%&7y-UVY*pWkDe!r zW?d>typq5p++I}sGGQJbc;Yjh_LidEReGqAO#1Kt#y@v2E&cyWrE zk*Z01{s7iywmV6Ege;qt6V+j@D!OF`ku&TUr-!ruliE>3U-IL+#Gr*FW#W@OvwFZ5 z*{u4gTm@`yzy#be_xp?c9iJPJFP!y0&^q>$2Fp}!!TVhO-_VvatY%T9(4&{|Usde! zTM<;uHcIXJ6pGV$zjc&m@llEOuOCl+RC2F1vP}04?@gMNq%*DGew;yW_FT)8kxZfh zE^?i=3c1cyAX-!{T6}S6sX($2^gQ)MQDt_V3?6jxj!|+KO}^7jpMH9$)9dD+``mZd zCjP4tDMUa>Y01Hd)>p$x|3Y5;yhm^9*-sp>{qyd-Iueegaac%oO04-df50l&hh|Db z9}#-rH-eF^@24(`AVn2>Fpr3u?yi92=0&%mD<|6QHtP4)m2qhCTWG`I8KPHJe8vd9 zG{bYBgBgIKi^U&NM5TY!rCRl(-z?j&0*tkHz7IJUk3z$WPFL45eU~~vWm(73s{K-y zl>_z^=Jk?03n$EkkjyLDjZV7-w+9ax19^t2MaSvr9!&OT3VI9O(re)f?T+_4Z1>(9 zt(E> z`#oiMNTX8wNF@071Uy2+ALL+Vsl3qn1U3&OYOmfGl59jI!7x<8BMcIH$|j+6St&9A z0~2#pB1td7-_zKvuv!O5H3`cLHXU}!)PX((l!1LA1BNZdx9M4Bo~_F~dyvCt(o|cg zX1E<_!J|oLfnUe-M%?z@Gf-*lTHS!`2hh>|a!2@Yn1f04l;3ITa%^sZGo@yOz0Ai$ z@6B{7H3reDlIj2WxtG`!X+Fu>JIzE{*{!!!qBf|TVh;~P@6Vnd!{((nMNACDbEik#O)(qYD`&iLP*O3un`+@I7))I!uhEd#W6UNSdX~Z zfvU0vC4Z=goP6}zL=#!c5w(YJ%;e~r!8oc}9LhFAdqmlS<4 z%MxvUxEjuJbV~%`^90Cvk!j2aZ>D=v7sD_0-)`xjXH?D@?S`T|1 ze$eN@12@*aOS%;KIk21-$xwmJ$NvE=@T8_cz6%% zuGayvCB_U#Z*p#p=hKwd)lYTGtflK=d2Wm87*i3(?L?XDT9UaIIL|F#&KL4utf09rpR7iz1=4shR}gJJ-O_T1I$2*OvfME6TbSRwH83gfB7H#6avrP# zW?Y8v!=s!saF@q@ChYmIFqSi*Z6UaQ;9$ZBMZjtJ(a0=QSfkZzMEpx_#``?|8C~|h zO=J4AQJZDL>*cmwyaNc{^686>2Qs@&d2e&dMYqu$3UOQqD zVNbn|1QvXLoV|D3-J{k{i#Z4KsXPm;I9mC%k79Ax7Aox1UQGk;#U3#u-aCx1-(Jhr zDMXp=y&QJIV#`wywtr%Frhld0O8@T&NPt{*#sM{JoT>A;XGh*_XB*Bv58VFre!Rvu z;FD{A49r`!iY(&vgg*5R8&5t(u$k*++ zZmIY~BMQQW%mZk@Q7bip+Z>BrRo_hQV08&^u?zP}_w>B7rx&|I1+>>{qign|QiXCFOQW`eLxoZ@ghl)u@mC3s`GzP0w+WeOFW z>~OUt!(Q#kc4%GQI^ z#=%&AbbdQ~QURZ3L5w93g8MESs8|lloBb0zK*zGEwDe;?e^S(56AlaN{W%50mH2CM zl{Z71wL{rRhs@(e?}=%)XisUq_Q}y@_T+I*P*Y#~dN4UP_(`DLg%We1ymJZBE3_{| z0=SZ@5Ow{iRE=qHU7GAx_DbGS>oSA?`h}~%hnVo2SHkF1;A_88!Al}=8%`}LJ=z2m zBS)+$@7l>~Sv|!}gE_kJO>z-4jZb7f<<Dq5 z+r*1-KUujN4rBQQ$6;Vsj!wUW-fu_!tpxjvhdc><^p!&W;grcvce(j&Y+!`iM*vQk z!udhDJ@}=GGj(~uuE*-hlYtJzxFlvVl0EYgN{`VzQ86nO2e1`QNSVYWE}_0P5d?ly zVfwR?Z`zfg^viW*!p^A0(Bhng?BcIgKvR|orHl0vydN(#Hn`yLPKxL4G)>!Z(TpG#0-+JDjB9HVB zsn|0ISu}&hHE<){+s5A>$^FNk^^o@YN4xBC%|Gf7t&&|b;4)z$kQ~_9 zt8?xMJR}Vu$m)CrXIF}|Sw4_-io>)1sZve9-$=(}0}wNZ&HWMQo1xcpE$ZC~z7-RZ zUngLatsx>PgpXy75kC|4c%-l1epuNAcb)L$i?&+^vt2S^)h7Eg`-{zN_9vZ|C;76p zi(l!)!cqv{qxu2FQWrSq`Fs#~=WY5Uc9+?WKFBETu}~P^6g#HW(=&v6PY@ z4cb+WQA#b7ag+J1=Ifb#5A%JG1TNTKF*!_2-;=hzQ0|PR41PmTFE2)Pk=|bUf0g|v zG3an&nQDD3rUEA3;huF9F{|FLAEWI$|;lp*3ruB_Utt1Msd^jsps+@G;*7#(0#S3p7>QNfN-4>qM!GI`D>)W5{as+M`;Y; zxF&1*-Lw{H6zZc4=8XGWh~%&I1+^aeB-b*eW`$7Kq4C*|E8_1Hje#ha5sJ4iY zR^%}NOG?rsp0u<`V+HQ$Rr*`i++=0qeONG6y3N%$SKAxR$w zGf!xxo?e&7c$L18;8u#g8-ITnQ{|lEwm6x(9x&24StzL1>YdF|k-|VblPKY+F`OW+ zc~*BseFuyw)a~tH4=Y979XOQi}&5ld_;xDsqMe$ULi^#k{+Aqy+lJ}0b*0D&EF4rY*ixz zx+^cOY=1)lSvXI#cZC&&=w0H9xwWbvkt{6Fba_4MT+9%vWor2XE%|_+g4~TuiLb2Z zR>Mfux;A4pNvHq(yXqdh8U?EgdEaGvmAT&56Wq;-@FE+lZ*o^CA{ZEcwoXAcsul&P zuQ^YWFn7Ik87|X@)Vqc?C|wbXRj%?z_(xadNcqH*^8@C92TK;0(6u$%gN1IPmpp-p zmwAB>G8oO(rKEOhxknl59Un;zs$XpGY%C6f^Kf~>Zw_ej`0MbTfWI3wmvs`B^+CeJ ze1V$gC<3xAOKMIhNeW-Vy&o{GWCoJyv;%6o@t;}l4b0j$I|a_kU&bk2{=~%v>~8S9 z7F|n|*qN_#4r94YxT(OG@;)wv;;^ux;KOEnuq8oIhi{i|p5FFr56EnJ!*a7V;GRrG z$Tz4EX0^U#2T|v(XF4XdIhQ>NeH6SMY3+8B^SI^^`(y>?1;=^cQ3+~VGKGbBKlXsX z#Cg}Q|11-{{zy=;1Rw*ed=UPQ&n?+?L#VWY(XX*#N?XH2rLxFg@e9s z+?S24i`3?s#xq&$*Sk30uxBKWuBV5y*|}1d3kV)NkQIP{smk{6he6v& zCEmq47(^-bgc#U0A@-XFem*2Z+^CozLSH5muX4$=`*B+3vAf9G^((l6QrOJNfSG}VL6pN-^ zm46$(`R4vw^O=_t|G`=w97+#5%PpE#wfJtTCHiP^?`AnC*W^w{Uw-a+MVDlFK4N=K zhTE^2Go&zKqd^@l0Gn&eVh=a@Ix_Imhl3X5m4S;~6cBNQ_Fme0Cw)mYL7wo>7T!`i zyUpYcoH`Kjr0mM3;-!C^n`Id7E>}8{!Hu)D-uPso{0*3>{Ve#Y)W~cjtyR9-aQh8?w9sr1beWhgYQ3PNG{b1u`Y1d?bwz;%6+08yJC(j3H(Amv zrE3EKAa)T5Wfy==%r;~3GHY->H_N*Dg-Qh}2G_o7m;~f7gN)mPg0JimdJE6)n#VeY zt$+44>vK{WDlhk?+f_qqtH`kYTm2_!KP8nTP*TM%7H4aHJGN|9a=yb2mof1pB~tomhO#W37F`lffvD%8%=j?^fPN01vkH)K~K&-slro3aZ@} zpBn$V&H<8tBYa$o5)TMz1F82Bq4aA@4QGgImyR?BWqoe# z`~z}CfiZ&$|4m6&ODTAkaev&~=@#)J82`45LBo-VKL5dssScl;gLh-mwmwDwbS zHJ?I6z&rA`)c5IvYuY-lTz$T^SS7eU##&F^>aVPUxhG2k6mFK7g0+#?vxp3(tNJ<5 z6g(GAK^Lm{>z(d1VRq8t0W~k~OC6ldR00_Oj_eKfhRWN{@!G61zytc}1Xa3QEvCYX z@AmsZI#^!+>_C`j{Ebb`N|Z~L8FUHG;&qt-K;+9RVESMt@ihTp_6b}e0LmY}!p9zq zKp(erRICnN$lSKBAH2rK$CASEiCH|!wI{kl2%^V+aq#@IHTrA{^!wh|2t@rOYq(8; znVcJS*e$J-+SVC=LmDu|Z<^tjy8mkXrdCTx@ z^=^umlvQ+--IsCm*{Wd6dQGSv2+!^alxf9>D+b(6M`Fl-X*2IFM0$v|D!Z#3 zl~q)qJuP;OTEuFjyVtW_`^$5!y6z%gPhDKmDzH%3l|>^*+tA0Z0nT@YgI?W22iqjM zP6l-8{BTpDn3lIC0eSNG&S8VPALn~&VzRoABC{{KD3>HDa<8}kS(l&0xFXmZ^lTrd zwQA}(rbwE1u$AVmJQ?<2lGNw-CTIulj1H4`TuNsFg#8KuI1v(MZTA*Ujl=wI=0M%F z3yU&`4rvQ9ZFYzhGksy703SYT<^3Yh;Nm)}?~|=xlp)En>UjV#1e}wvnG1vQY@8bE zjB1N?@K!fTjF*SeRA9}_y7X%&G!)PvO*<{`nE67mP;g}VG`p3t1j^gWP0!2Po7t1C3UrDl3|o>Il~o?Ao-DNH-?oo4-!seZ z>~_~M_7Yt8F6XZLcS@j&eS4YS;lyrS4VF9moN>tbf~?nvyD42hgzQ|TkQtWKI$U`f z>T?gb)+fVxLm(Vao-#$|v0IJ+9dd*S)^A)4WG6xo0t?BMW;QYJ41DXaA?HHMeFrV> zPg^?{a(G7WXk2tq8TJvKg|(d|rnTpVF_j=epV6`2RE6}4a*J?DM_!e@2iL6El2xpt zIHo#1&do(|CU^^xYbpPmw!!ZYPurssp{IKkMCOjw}?!d{of^ZH_zQC zt^k{Rkfil#+{0oTzouD7ug~GvIj{QaHV;2?i&L*87i@zpKlg{QizC` zP*^OnrA6OYIO56A$Io`ETR0;}FSb>&hho?Ow?GdnRQ>N0rg%L!54g>Ef~qku*VMBVMH*GMUXO^<7iVMK3M*|%RT)8Cs|CG6h^xWo>-5{JP&FnxipTt%=p8;_gZGyAt< zF4q0u)loaf9^HmgEwTKk$<_KdZ+p-3Nhk!z68UAljvF`FJKS><*@=xtsZ%}`@gqaO zX6|WVy>;Zp*+M-X*VPCUveCV|CCS)4OZuIbPnuJmlU?_XUOoH-_fsZiE&yq^*j`)qaZ6xg4_&em|5aLxK2#R z`DK2TYMhsi$y*KF40&R1*b(rK!w>n`l%9w26kVB3eKr6@+6AL@PkAVwU+S2)%5X3$ zObY5p{^IZTHu61P_pZjJmnn+bo^Nt%XTDD`-;@{1lw3%ZP9d25eoH07x7{nrntL&XL(!ur2sRhDxuNVcd;wr?10po1ENJ7ruOab2 z+WsIjDB19{Qx#(#^du6ou=QaBo)+2U8P|buff{g2!-aK>lB=9Sy;KrO)rGjephniS zIVoZt!0sJy05ww3O^mO zGv$CXwqbeoJq-`Urre;O*EKC^u}$4LsZ-OO>cKx|CRnLI^yEThFrJK_!q}$G6#}G^ z44jv4pI0cmh*e@M37k(7B@^257nbD5B2CVC%lAASW! zzns1W(+)|Db8h1?zDLB`v^KqOhzgXFk_^|~mdsa`itq89T+&;2mw+Th;QN=FJY`61 zdck&Vr;9CDk>gXzq{c-Rd6Q-`>+@qeek)z@b9d=jKea{F$6Gh%NVVodhTLKEYQuPy zYDq`VX6__g+b(rjy&6CfP~5%-oO7zU+scoGP)gM=36F-a+JxBDJ+tu#94DmF$k2sk zW{k-<)R#^3dXy^Vi?J^6g7?D)50Xw{ZF9Tq`NHb+AnQ2OHC)!5KO zyO6Q&M44x>+sqz+KmX{7uv-rgt$1*d*InQ|yG?XsE9T;C0j5OG^IAB->LJ0){m)yH z&KoRJtKy@Ceq;lHfm>NyKw>c&{OCWDSDY3B*tn@$m?w7@C2M`ElOY!5pmpL7!&Z>wS3+B>ZisNfL;gd`hy2Ls%+RczALrLI{%$`s z-+Cs-jV!3TA9=FUzsz1o-6C}DD~W`ba$?*xt9BY=BCUC+Xh7DjhWSr~hLvRxr?X2n zhpL!ruZGOzm*7Zkxtnb7W@%Iec%47lK4-2lnfa?61H9fUr^{v^lOUp-qdhiV*Jzt% z7JrRZ594FpF|1EYL!dP1BUcQOy7178J&zc8oN_6Q9-OO-H zAC4>)g-pS(FyW~653aG@8Ktp3U6ifjzx6+OBAS`|73<@5fAb@HGzGYJN+L}n3H6<) zpu+5$yBa(v+wEec)E|yIlzXCdTt<@sN7fYSnphx%M*d+6XNYE}R-^}+3GBDpa394C zQtUlc1Z55i5ecHAjpB6({dP5IDU3azhCKkPNM#e}iBK2|UE$kON^HX8N}Y_)Q0?FE zS100m%8yfs7^{z&4MB11kjjjX$X{q1?HI|yInn&(x-ro7yKqDm&%S?6;4%UKx04{v z)h-9MAow;O9+>})!_kBtU`(HLNJy_y`RIX}p)G&N`Ex33yBnR4MD8yB=0k)F3En>K znFPtX?C4~eHZmk_mPuS^;>8NYfMn~@M1-)G-+l#uPc^+pSABO;ZjjTJuN2fO(BVE< z=+12wQ;Kh1K!#qGAvIR84D;As&mHGFDZTdiSDeX$>4>ffBZ^aMJ;*1AcdpN6+=~98 z?R&;5^g~3t>{n_zK-^%w^YMXHo5sSDnze^K8A~rmOr$QJ^mIwB*^gUD!gIv>8~}-1 znjO^tTjm*e>(;-AdI@Yz>Ea1aiCS-O4bBN4DgX_qx)L^ktV@wWDF@dhMS z1-5rtfW(S4p(*ip(10{Z!N}-6e-1CSX}6RI7pc8vf+sI5MQ@OVna&Gt@duj;Uh}S{ zn-^P3w`y@|oSSh(LC-m|^CDvt4;AeL`9FfZ86S3;K@Jbqn-~@Pe;i@N4*fal!Uz#I z`jKgEM{SyhRA-(Ekv?uKyf;_utnL;T&iFRu} zIZqkLZ(|dvFkzccyHl^_KMUQ%6bes-1Z!EuSITbje?0*c^f7KqDel-;sVNRx*Jv@B z(kYHcx9-lY6P;vRm=F^jAMEYDKimlvvN9s(M5I^AbB&_s%YA5{dF6_B&_Adi-RR16 z6@k*&ewqgzHcX}4LRIT55GK61C4mq z_L14m-G8F;JTP;5;g<@))!wg{OGG`{nZWJ?{ZFo}_ld#u*QyV$5{WZ>la zHFXy2%k^ZPGSr{z>HA$oT8q{A*sirEo5(IhB!(9%OImTfqpOqNhH$huo}%RzlJ54O zO~ba`T4hF*@x7mCM>1dir3ebyGDpUQ9i_=Wr4@+Fm=}`Ae+HRjOq4fe>bFI3PkAB) zx|5B6-^#=R5=WB=^J>cEyn#hC_O}H6e3no0zipvB%0N;%rpqqbK+fd?TxrS}$>iUoV5K!^ z1t$)ny$EtmUn^{u~0S zh{0?$NUj;M32h(vH$3!-uYw8ntIbh#xGU)z#K*RrN64PrPbZ$sjoa^=B)w5~8^{bE zCYaS?C6kv;UdfHha8qc^fjZCXG<&ui_{NV9na6~(uo|A~0D|-+Sj8$sU4HxRH|?u& zh=Qw(n8^bl3;$*CG*=1AFJ?nB_D9FFt^@ej(E0x!2jRBCHP!^h7TihD*f;;QCYh4t zJXE1AV?)l=pyCt7S}r`Yx(uNwEN6oX+j8l4B}PQ;`p$cQNq)+-^bjHH(o+E%I4Dqo zwr1co6V8VKqZV-IyBdq!fbI6{U^=hrdemr5Mn@J{5}=y$`AsPrM-$9bMF7CDJumxYGwwM7Gbb+*Nn z7-6H+-ab-+92tD`AO~hHDUF(C2ES3)%}ijGANo!iybkN|bbM|R@PeLI(R8 z=nM+-_K$TmVKac{>A`celXsAqv6hWJ@(F*u@dt(+#2xxY7y7;4SM-G5G7|RTfkUbftsTZ#&RFf+Khw?ztA>F7Q-IL`9LCyCS;Cys_azc zK&!H^vS04SqpdEzi0@TUPaCmLsdsVa!gR6v@qye;0Zc;Mp+`K2IaJD_`*-Le=cdzF z(o65i#nz5JKz)M>GapyyA~=}ce>Mmw$WS5AZ7=r*E|GwKJH=20j5y>gza8YmQ#ZQc z&ZHiM?@q?!-LuExs*{obgooeC>?r+Ol=67<7do2vk?YiSQEfDSjDuyN`3eWuIUbCH zJk~%N&7Kyq(46CjnDt$A$PjbkeOnV}3Y%?#>PeuH-UuSpn}?bxs43WM)n$rfs_t_v z1*5r)%G)lW`>ej)26i?qF7RMqrfTO!%t}gE-4S=-ZbCm$pFinuPv_U3L`N5@3k3@&8gX zrP%vxSR@n54yPEZ^nEjP{d8U-n}d>VCceh?vWQdVQS$WhZ_Ju5au*0aJ*6Z&T3veC zRNbrWlw4~eBVo1Q4IH6m&Yom({|G4%JI7CY$CSQ@rXFvb8P+@i7s(#UKSvZdJKs+0 zOH;QJXzl0abG7Kd_e7*8eYzXa%wZW~Qy%H>8ToPTQ1KoHsRsoT&z&{wo%~IR?uZm0 z8{7jk6ZpM1tfAN|Ly=w2^yU;`;wrzwzJGKm$?bYydLPeZig!o7kIj6OvDUr|rmN(to&N%I!d?oa~E8iCYg<7x62EI%?2Q%071@#tzCeYa6#?|}+`m{$T$o$IIJl>2(7sC)xFb$fwnf^TlHJW7a%uwYVr3>yv*Q3m`ArD* z#uR(DP7Tz8*;}2zkQo1?gAMJUT(udvx6824@w+GVcf_ob-ctwYd(Kw?*CkQD!%atQ z@e)`LDE-|76(Tok%qV~!6}db(u;)x~Lxrvq^c2`T41%@V0`F2ri;jM%#EpEW#Wyk6Ggt&Q^=weJW@od_Wm-9#DWqCln`gsc9 zS?PO_tTG2WZ_iL&s-HkiW=Fidvt<7f(3LJaf2ix+8Wt8*g!t(J^au$%!hf@rFMidj zey|}ClXsf{wm&*`N{n1S$_^;VIg~vpmyVMxw z5ZABZA8BGg0Env@yjt`CUizQ!ZQ95m>85$cMQw?b`rLkx6w7JYD z^geLf0I%Aw#vffGPa+Sdz*n9#S8s&{>-xY)pvWf_@$y1(ni(75p`*tj?UC%e|2$ga$Z zQnCE+O3=``kYO8pQ$w)Xv?3P*FNG;1VBBeR6Df_O-TY)$2!4nH+nmx^Sb5YU=9?VN zHVnL<>YmS?=FG$ypG48~ON8eHbB7`3G)4qzaCS;-_T=2%;U z$4qb8si%Ma79B#&RcDtYi;seMY5jSkaiM<|6+@_6ZyN|;qmReVtJ-(E;^JPOA2jA1HKmpRPJ>+$G)!iv_R znV)h;?f9br(^2D^l*^2f_;U0Rr}Z8T=I^1o=x;%oEsaO7uypacRByj^8Cni)N?s(N zWe5vADI6t=Aa?ix0c+&cX|P5Q)pQobDl47T)la*@N~^r2@#JB-ZkVMcH$7M_5%zc8 zTLAB^4GGBi;j%kBFU38(t?!hhGS$Q9LOl`T@`hgcfl#5-^u5M8+22hs!WH6T`k{-o z?KvifL#3<|YI;E|zznVk$v17t38k=eMHADInW2W+{Q|3(j3YL$ZlMA#V54mGg?*Ho ziJ|9IYS_jfbU-Q30DZp1?^j7fC-l%gaGRD48KmHCY^?o zX0UtursUZ>M&Ctv^uI&&rECA)=@h`FMNPz;RJVeGLgFok6hGJOpd&sCaf}{H7M&L~uaThrC&i({j5K&Qt)Dz)maJWW9v>R|RLPpH+|?N?LF@nG`I z=*5ZrmAAl7X~TNu5bF^Pa`$p-))mz*;VQYkBwH!K>eui@wwdCE>@vDBZsJ7zs|&PGZ0kVr?V;Fdcdjw*{G zjK5d}QSOo>jz-)qza@}FuhPk?VmzP+l-jBbrl#lv zwuWueVf#PqyyH;=(Rld**HaiY zRH1BjTUwY+$n*HxT339zeI+iVqXThym-ixLwRDS!1(a|OBbOwS!QUGl1}X=8PFSwq z;K2PyPNk0Bpn4l?vUoFT(&o?RB5CW%pDv>Txk11w^m&LDOQlES_DQPK7EeoP=ObqL ziF#V}M#IgWAYE3VL>s1if7AZLQY~!;D)5k2$w>p~O^wt>C=2JO+mHNoZCrmq$b}IC znK-v6KaX?pyZ+!@61>IFn#AA-Z>P^#@OU7at2553GMTL`lftnQZzw;SW;xft{X{Kh z__wlm^Gz?0VtXwd@8GVYk|G!<_eKdkspngh$QsHP{mUJHmz$OIsN=~fIf)#Fjbpz5 zF{C-lmZO`M@l@??t!ZdQ`qF-S=)&;i=_8^Msg)o@(CW~@Bs&RK?Xf>GEHd5Pin!L< zOS7~XiAb#q#P&sGsTv!jd-{eFM&3-C&9W!q9EOFoJixT*(>&xz`u?Y8tyHia6682B zXM`7Bl4Ni@7ZI(PYrrfh`|-=p#B7z&gOtjEW+#E3!-b>dvnIZH4YSZkP+^y;L@gGq zTof-rWD86<%&>;JBj}qQQsKlUF);Cj!k3-BQb=RN5jY5pV7&tk*lPjcct#kOK{>t~ z%IEfA)zd$h{d7#M34stVAH zD?p{ow(9K?KNW2&MaX$I)o7QUB#f<`N>k{Y1X`K%t)pCP^kd1SC`B6k(5}XsHOtyqXq2+9&@@r<%ISEtJ1#Ec3mAkT0aT;z}#rx5^XB1?Xx164Cjej zLQN(T+&T6y?TzKJZ;)4ECd@4S6d8R7uv26T1iz1-p9F!Nl~(aWXgq#PhAJv%hx5i= z>75tbvi}8ghzk>Zbu=fKVR>Ba_!5i!{*1^5tdcC}qk4$W=K_r*Ec@XBs$wfFn?;K0 z;_qM1Vh1h(!8JF8J@{{D1lO~%#@htrkui|HIfzA7BV9#s<&Wy<%-NaJ*YL|VZCnb& z-d|NX)~r4ULB-UD0q9W#?4*Ji1iA>KE?R!y=YD@43YSOd*cj7MsSU@A@y7_kWZYJh zj597OjQFs@ZJ57XMs3QQXs7WRKBtPQ7vUgHez@V%@4N8bHDRv2SeI?czWxoD7?3O8$|_0>6DU?4naBvhEQ5s zN=i`at{Idbh7eJZmLWtMq`O;S=pLGp?vD5H`Tm~w4;SikxtPO=`<#34Yd1PW?VaWA zv~F`&j4T(ld~+t@XF z8M7U4qI%rz=p`~(KlNIKQz`^M*`^R@+^XR|te-GI_Hil0Vc+; zXcsOUcoPDT3q;zZi|sqAZk#C3wi61|taE?xkiW&G|s(xNM} zvZlxeA4v?jQS)VL&;VIRx)#Z8o)%Gpe%U{Y+@XDxe9=8jvoiyGq&+o=ilrhw=u*tr zSNO}RWfySdJ##~m=T)CF zZ(f09IQ6=Ehe;scb-O+%whpI%?3rhR!JXLpxEYz|2%fpRM2@v^WRlTTeMd&%xpr^N zOsQI`N37zzH%HE0aQ(lmmXz1HaV29l=B7F{df?Bds~#KMTC>L;oA5FC@PmgAQ$_!= z%>8B%9srJ!|C=9+Csm!0V`psZmS~^D@0(nX(j~W3#eR_ULk_ad<`Qx6Tm2(OfO#}^ z*je*g?cRF2hUQ~=V=Xc1sjGR0>IG%8@*^Ng_^RScpqS+&5d?Q}A|qF|LgxB?YN&I3 zK5J5GFyWz)gx73^bodzY!)Yi9*Zn&8L7calcW71B57Jz6{wceQdKO^)0rpr%nm_8M z;Fom%W%e0qR6q3nG#_cKIqjGDs6yglw~javdBJ5h+NSrqVEYPR7rqe*4`-x6 zSt$-sj$QY5^(iYho>p~T3UUpz$EbRfAJa}&Ii7H{Ww^h&37Y+91I$bR?@WOdKlNqt zp1NG?Q)D@V0do=-fV0i(+b58Bn*%pqsM*{WJ&phGINHrn?`Zfal6qRIj8A4DiXCzQ zK61S10?di0Z2^Lw;6RGwA%atf9Y)^0Aqo0qvTB}B)Z&OpWT8?pT=+FkBRi~NH~t_ckC&(b~+-b zjH_rP7kB{VRTVz)Oc%+Dr2bkTHVU7u{$sz)P0%q?TD{vQ5{E@}h_5o_Eb{(Qz_?A*uOmtr(_otw}Ih3>$KD5s4j8zRCZjt?>r|}aetR%*@x@{+9DSwYgZ!*Y? z51oKKt#D+|k`a}Ql(8Gk9Ah1-jwml;O67AGMd-6}+ zFYJFXvFpp@#SuNzHo*4`M_+DvP;Jt~PRusOi?QjU2Snz@vGhJI!H+)nFo5B!VWEh} zfSyM6EDp)Q=W;jtpb0%4`QC=;#v7AZxRV@+=hC&y^~lqb*QO*Ul3cKva?WqHi611^ zG3`4Bu~HzFXj89b>Z!S>bjtZkVWh0UZI${(X#ZvA(Ue$U0S}SnY;}yj!0n+2D<|bn zQO|8zs>6Od0eMfR2{UPPW?qqv{#wFUH6r7|l|gIi7I1(p0Ld>Os3028HK2!pr-MM7 zW-XIO&BXuPV$8V0cCA0`h7d3zR|g*@5v>wC`b?bYq~h)7k^3YeZ1?&Lf96o1`(*#< zlv00_WYk^4d0(dAso<>{>Ij<`AzVYffT7z#CvV=pDd=e<{M)JogoQ1RHYR>ZcsYAN zi^gS9PXVOQcS;prr^|7CP74qt-`zHVvy@hdqKg1HF`_QZO8PNy%1?A=5zb5Zi;`Ld zA2gb(OS7#zk=Br0u6BgqBvQ{sp(jm!s0|z0qW}nhc~ib_dfoOL?v@L9B2v%}H?s^q zR+R!Tm=q>X;wDuiAcFmd99DR+wNS-t;8*UcGc~*?EIBJSt1mz-1@Zulw(MG5UO&z5 z+@y$JYI>gBu^G6EIJRa!9(VzeNt7;y;sC1|Wz<9*g=9xH2z>a-=W3?O*;1FR#p?ZnNV1nXRwOIKLiS0`OTK8}KU}OcE#yZXAr42n zd);1eBeVI@nRYT^io8nsd(kpS_1{`)@RGv$=?(bddRJg!$#M8E6+Vai5tU27t1xeL z{duoEW!uNKFTEH@1hwh$oTjU?e@CnP!_+&s_6w{~y+NBaAtZH`yk<|DTP>o?TTbr; zCNcW4MK66aKks{QqlQG5f-MM`d?Nkf80gu73}8jC{7t0o5q6jjzlD8Ise($x@rijc zB@%T&fzH-UF9Miauo0w}mI_!Tau$Ld3}bhLHK?1LVDLk#uj%RFq2mZZer9&pc%!(+ zuU3uRB+5sH%q<)2?^4UvJK=TND^^ByM@R#~Xvg{M2;dea!X7W`VRr>hDdae>%l7qV zctFuxIl;9A5>NB2X{WsB_4dn8Z?cvv5C67tpTB}*_UHwRzbavRjfb2cgcG%}*|2z1 zw&GHH(5Mt7Vag(AZ&y+~6|PE1;N8T6P%YM8+hr2JC21A~@FYYF2r%k#rn$a(tLjQW z6CM3^b|28iDv$1h&?|wS3i{+LtCrK_B)7rMEH0Z28g)@ zsbw4KMBBNM{~*UHjYI|&f9RBj#^wO9r0o6Yf6u@fRM)Alh?=k5o||cQ z+?GnE$*ah+i})dphz7?`>=y|0G}oXZ!2WQC)54DDCw-l|Db|bYoVmLiEpw4B znxd(0eo+W{HMithfb9USYnq;f08;Yr54Wap9<|>9eA#8!TMxn~(s6EZ9#lO&uaJY4 z34=DRLy}uTpd0iV#oPB3W6=Q<-LHD#nkt@*sp8~%Gn7G&65g~2_A<9S!@#?Zh1Ks{ zqC3(4$%Li){K6WNSBW&8Hs71Vt5B+Vq^URjbljTvj(*q}OrY&~VXY-qDhVl!U5VD#)*P=+R{^U;bd|=) zYx(={qnp2W-x&XVeco{0^7X0m&RTBaLOZoXYa4~BQ8sv;BYeH|a7**E`qeY4ZDS|f z#EpJ#*WAG6&=u1;I{#2Q#M*B%qV&wh)#09~cBk|5N|!|`e}`5@@Uo-JK(`*hxZG#i z;#f}7AJ-c}#|dYfxqwx=lssxVuRX6ioGA?oo&Banq3+;L_PQS!1j^Yzx7a6y75jNl z6-$KMS$z*bF5wtyNzl37-G&83ZR0FTk-GG8M_DHr{b+OjcxEGR2ZYY3~!^lPNriFCQoL45BogdhL|F)1$N zIh-uvUo>uh{mT(q!}PgC#_dBJjdufja^bMpNS(@ZL%mYq4Pb~Q*R);QB0dDW0mxzi ze-h^LWvEBphK9EJpK)CYR(UErB1es*Vt9-at>#X#QH*+3mPUpD#(LqRaoqxv8EJ}W z*-ak1C9MaEVoddU%51&!v0z_g$C{kCYKhp$x$Ehm+fbHjkG>EnXL^%FpZEV4gwY&L zwfZ$bln1n5;FuSahckrzuBBn2&F=c2Rk-{g1M}W!4Ic0oI7R$*tZeEr|F{1X@j4V7 z3Gz@6GtHJA_bhUY6_=PN$g9g_SF=ILV0SVA`yxXmx9#677|DvDW}3^>JD<)yjThxd z31$d-;5A?X+nRfe4dK$o#+48tK{3)oXFjIp0V^^tzgr^b$QzTKo6vsHYD@&XyYvm{ zk<6mot6Vd%xnvoM&`W1b0hPft$-E_{}$K;3e2R za~*N%@F1XCHMhWao;rvb36S0qtE|zGxCNr+% zIarcHw0+S|X3^y2e;2R9_WmJ+SRT(Y+ek9BxFk>rZP_>8L@^%I{Qya#uARSpz~{=F zH3<=}A8&oht9m06z-16^HKx&e3fU6QesGh=HGLTnAbCzA?>cirs99TnTwYx4fo z!)y+{^8GWMSVNyUTA$WuG(9~*ph5onCFoMJp8XDas6g>jn%lFZiZq?X*zNCP7VtBk z9v$yQ)JQe#gQ`EL2dAZ=Jq;x+q~27*r$QOhk*lDMB&gB$oc@;@kjW zlwz#_`LqDvKa8|wG^anvQv$hPaU#X;UChWYV^F(oxw@C<*VhbQNLr7#hDb78+l$K- zjPu4+M@d8+XM1SxRspdB_CLs-)5N!@z6DBGo>sF8Sd9Q)hbQqh^4gVvf%bE{Lvk=^ zwScI}LqwRzyZ;*pT8afS`n{p_qgG)8nx%6$SYzVV3f**Tyy8& zp80k+vFs?#xpZ}{qwsDSW{os=Cf~@s7{o?%nzylse+Wl$kJmg$391L@7z{A_bW969 z@=!5AIwHm6?y9*&+x{d4c0>5jqbnhWRUcWQ4~hp-8BJMh3Ro{9`XL!S*B5W^wqKsw z0fhp;RiaUKQ{Jc4yFW8w5IzQR+C5gLJr7gzd2aMd=(U<7g-Bn9h1%?ww~n`iz8tk| z2nMBkek8bgi3NMu{lf&tY6d6dIgwK+hEB~jO3J(d+BIlBEfz=Vx7Zhh17H%_lhj`? z5v8oG-i+^0+xx%Sq*MkXQ;n<&3}eqiO5;G!bUfrAASyjbpAbc<_6!n+*B&pk4tJjb zZ`%O#Z>za_6R{b%on;6z2EN6%kyG4Xu8;tdZrJ|5$7kTTZUNcyxL7yEOt(g}yq)Tu!>_yIWYKtlsvC>c*eRrDMMg}DBG2py5q zW^|)m{bNfFGSl@p%jhfS3W%>~pjN5yg6%A=F!{)_Ggb|EyNd@!ua36~OZlgAji=3% z5NB`5IJdT+O=P$2YjSmb@6iOuy8UBlm^uaV#3nn56Jl}A&4`Avx*tv70o7wpjcf$&7WwP^c`n2?Hd(-Qjf^NeQ{xO|?5Z_QTJM8p*( z3)C^`a_QTs{qWpd9HAWi^ZH|W4m3Vi%jR%HkuT%RW3dDPR~U1`NoM|%ETl=JoS?hL zey{jFa(vOKlppmxs)=_ki*N~C_|`n<+t-l3#2t8ENy=A|pZyDC-da~fXAGG=Kp=3& zWn)w>-HjGM@C%KW!Q;QbLsK4A+b;p5o>n2J^2oKs&Y27;LhSgdOH+;f27jtZ9FX|L zdO9tcKpp>foxeObTjcq$wz7XXawY!tCTOhqy$4ekPd8NOoCU~;^pfrmfUr=I0CBp- zLUdYrD|;9UX;+cNC|dcW+pSef z1%9ACQd7}eJRX`FmSL3%dy-9a*~S)*xk2MNS#Me^^Qft+^*eOlr!ju8{3Z^pA{gao zwpdo$W=50u4RTJf)n#jmjFb7Yo42%^S5`1Df1m=YDZFvnU0rTsP^{{B^F=7ekR`;) z&B&_`Ab2YL7FyT`5tcxFv(J6xfe&)D7t;3IgC<7_bkv-nF1O>PrTbkBXMPbbc=2*^ zP^8gcIX(p?0BY9M&4Tgp&95R%2dDcT%Jls@Ey$QOMNTD?wUgqe*-NJ=dBqb!C{n+* z{|D17BpOb~JXV*FyG}X^Pwos>PDuzbm68-55UP@Bpq1(U7EzOrhd4U~5e`$yiPD^T zvD@D{Q&K}heiil_C9if-4@$jF!uy9yir@<)#rc0f!{^|;mnC2bG90HHxq*a?hc(m!4%L=lEGSH$LinD9k2k(O*ZOpQCBwmE8eVgd3A%K@1^#Ofc`>bAF zBs-oEcv{I&`cF*&exfccu)6@_zksPb2c23f`=yY6+K^p9Uf89N^5Bxb;UzXMcWl#o zn`*{=;NkwT_U7RG?7!L%!052kbGcxlIQK2!o>eKy%qmCP^s@u!m;gqSYZv+SjG_!4 zzQ5on{gRW3u~mTkz0qw#qmzLMxhjipVnC@b)s|`)V}Wfs4wc-7W3~!_9n|$)QxxUG z`ofx={BV0feITroAEjkScFx_d{~-UrcEqmh+B@|6g0NRKuRRP(RB*LTL1od|fjhZS zWI3jL7SA?;Msd2NPYuuZ zS*?A_IotgxqAwa%ZUP>eI}SEphf(RlbU1^V(V?>L?*;tp&OBONC{%iFJbK>aEZ{7L zm|r+LP}Eto0Boqd^Tkn#Uy2JGux2(9F`Z|Oc0msG1r`YFqh@R9+X=RVu3_a(D7ESD zuh^tPP}>bE^zc?7b1I{^5U4UQsBbC#i08ZG)KyZXk9)LeuI$E?(`}Jb@Or2Nq}RUq zqyEmf{mETO)3^X=QJ?Vkk8-c`aOJE*;)Ev+#=_5M4I?uXhZa(Q6ZTj|KLh!6+TS}| zgOfch>3xnpKHKs$q^j8|2D^URETK|he7|sY9E*(wb01E5a13=P4bXo=EjzC`;#K6! zLILmu@;mCxvXhc!s`sb&+8L8v8(*l5|M5r*ky8r!CE|B@Bc$6*(idR#Ft6Z4lGGsu zp1T+s2|Ga?BKUIs1Zx)METI$1H)D+G{tG#$i=j(S@NJls;_IKaM=4Fir5HBXOQ(du>TD2~5Jo8P- zT(1uH?WMk@6VKLD=lv4Td>09p`E!;|xBhp?w#$Q0z0krNc(LP=9KA)?N6R}jap z-8)P_V*L9OPGVfbMLoUsp0~DjSKBYvBUKmZ)(ef_NTK*5%O3-0avL{h9akHlwRUHv z=dkAaxt?We4J)}l)P)agu7cNht7@C+dXERc8ukj)Tn8JMO__%CIB+g>=Jw~37&mO& z2G7sxcEEXjyjOu-ZZ05m%JHf}s%u*DWPbS}D2tyl4RtMU<5s3-@1D)5HT^;yo6js4DCF zISww4QhY;wS7lX%=heR)+B53+dz~SiPMwdmiX1J=Bj$c zd7H^{RO)qzoF4rdd9S07zc6P%yBbO&q zMnKP0a<$$zyu_1v*MzX&%kaGc&8(| zpF7O5$`O$FG@v!#MQ3{!jA~(1-`OFsVroqriZ*9WOmurSHQl&DkIM;9sx zY5{2$bq|DY7BWNUAjOH1ffOf>E^}+_JU)VPx6QST4 zCpsG>3q7knU$=O6lL7&Z@t+DefizLnxzYtqyu1k1E6-ymvduMtiA`)yLP*+adW$Lh zONDYLSw)by2f?ALw|QA2otHauOz>Y@Rp(y+*jAq21GE{e@GcP{*uP&6?UA1T{TYv; zTW@Z!8i$0d?6Ol&kI7rx_ObjEF8L)*Q_S7G7w9O}Vv{AaPPBAeJ-WZUw%>A<-w|q) z1|9E;*#I^+P$*aIydR=N8iUxK{mOTsD2}339@`Nj|=50;c%xy_DGNWU8W}zrl;%o+C&0+_m-wp7aKq zNpKAO^pSt~D~dV{r(aY+r*=qzw2EHDhYM)-1Ypl#+0K4Q&Z8TJhOsr>!$$Tu2s;{4 zjBH|=feIIpFrWLU53Qw5d{zf9pOK(EGL>EAbI$ z?6~nUwpWnurx{(Md7Ve~EF|D@t9C!}=r1Nea{4aLi8TgcutEk{0*O(JyCU7)Z|Ejq z=bII~`3_J#tfKAubMwXah$?E@|AuQm67p|Gkb8Iqm@FeGSNT7@AnTLb;2f-VrgoZH zHl4z`$<_Fze1HJpRmK9FxErm@SaNNu1=XDE_eknlPK$?IDyOM*RjiRy6{fES9RBrG z{T(}^{wcx2>+O1f3nFbXO}JS;33S)3@OrsT2!Y&}`i*kf)=s%IvZ8V}pyOr+?L=B0 zi+t+EJWNjeePqg59D?|zx-qHgsJ%}KapFi6iJQpvxCtX(_QrEg<4Nz#GEG7(#day2 z5g3LGCYqKkT)w5;+BaWb3W1s66@6d?ZF+a3>IDaDr{6g7Uo=&x$*3#pswi>L&+dNo z7zRbDXd0zdqFvKXge7lk3gS6^k^v@-G)c|5>puHqSvcl=yFq%Z;Tq-(Hklv%Ru9x9 zb|F}e!H=j1YCN`+@V|f~is7s>8DvsrxpZ36nPcZ?F%X4?H2RfpV)? zLxlj0ANkR$D^A?fAZmscT=ln~W#-LjMh$HxelDE7N-2r>@Q?~L^Xvl0O4j2dUaV1& zrBCxv^Nlb5Q04SQmoNsk{hUz3L#%kdt;(~)BJJ?%xpyqNu?g|0?fK9k!vYC#KCbC0 zs$qx}N1G&6K$oa@#dF5x4~!(ggDke#1SW*=7~q*4sW_SLMyeJ|TgmOoWt&3%PJ2vu z8nFrHepo~{#apMq`7GM8uuNd5%i6toH#2aOt|F9&{M=R1eTiDLb(9Dt|JjiA7_!?( zw8}`6lXsjw(75$x`rY=G@$+){d)$Qu0^NAr-^%@j@faCKFOZvpH9+W5J~Kk7XN?Rw z>B{1i#cuSvP6*-_i~!;(OHw(qs`X^6TMDaCmHS%gI?lh4s3nE)KW)+B&B$BHn1%P8 zhag3}>GlOm zdi!6X5(vTj>pn5fwE18xUOb~Sl zew&n(tpAhQe%g6>2EHS%oou!#tb@koVY%H@u-#Po{Co(#8u#@?KP>oW{#ggyFfo*# zb-zkt%w?-y6N{h2nIb;=f2&h6qbCsx<$&9bnn_M)#w8PMr8OFp#p*dHb%{ zAGGs+v}$yO|CyJ9lsmq^MyF&9I>{P5Ff*cCWu$1hC~2``b|zg#1_*3V1AH*9nv6(= zn(J!S!vzRI)GD8xiT?0DAp)4UBJdDjd;6otNZ2E{5nM;7zw{_>W5M>DFSxu>KWWht z3(RVKzCv|ud-G(Ez-8iM38lW%;6?pFl2kSnp~2`aCx;D^H3$A!t7A2;jpRCkzPtJE zLK|kR&{Pda2^{!@&~EcJX^?t6fxyTRwz1Q)o)t+MJN{d$+wE}J+zz!SIwy)loTaMt zxRcV^*@@fjjt-XqA_#vuT>jCGUlQvEmap8w9?4+)4R3&des{DmvRO+y{%4&kRAR^& zHg(({NEZ+Rg3O+cII)`OZ1YQfY+gUo zsQh!Hn61bs@pM6+&)1_A=Ss?r9Vq4QHh6j$I2fi3HO~u1>#J~0y+)WyOB3W)jFEY> z(fVsNT-1YR(PD829X8g+WEma_i%R2W1v*koP4w>ZjK}{!wl{wKDne9%#2(kxkD&<3 z(}pged0=It>Cv7T)uh*vi-lkPNe{;URMPpL>v5BGpD5||F~}6^cOm$G#JM&4FZh^7 zZRO-4c68`xIFt9{MoYbaZbMb-wou2$%-HT#2uZN{3!SW;Tm+QsQ2{0{);wX)u6b$b z9=rtW699Yk``ERIZF+ueT4`L=FuTV6UX>Y>HC?wp7N@GrQe7!EOsK_}XUx=irShJP zoXkXeXZFF(XGLH5)PoM(FUl-?a1*RrEHM0uuwSVuO`f9Vg#W-zG%N`4wDVVCu9{hF zI{IBNl%>vn%Q#GiYrt#o$vG5*GPvWu8W^)&+3-B&Q)e`Z@u;bkO~0&VO*e%101GrB z))Vj~?;vG-PG?WHF6rlkCe|H+_wIq@H+&g3B4}Tds0b)SZej7(?%X~*-i{i{)w>z$ z7GsZ@??bn4qB|k<9!Ypu;dIjrl~?5&G|vTYUDdH&HTJO_G5_v#rjU0uzzYeTJ>%R5 zW4)7_s@{Bvo;97c=6Wo1o#SleeKCtEB>bgwS0kWZXZ)f0P1Z&NQHr)^7ZXK;;(XX8zlQCX4E1#GlJSJ6@GAJ9Wh>F3dp|nZ;wEyoO^+aHE z3bf{JR04@ZQE{9%jCS`w}+;Jw07t^SnX&sBcTu zS}k#+?s!X8YJ0nfw??Z^)aBhfhZWI&iH>dM>rH&lXoHfMdJZOHm2LQ6v%AaPk&5BZ z;rkzmt$1Sa*>#b71=WqghmZ$fxWNIT!AngOl-hvGQg{MLW4C zBtw~z9`5eQw6rfw-e99y7}ipk=OS+z%v9b54QTDs&v#@9@5qd6#XJbZ_+9M0o_3tQ z67l)Bq+#`!((uHvU-b={x!)1Po0YS2`DI8{F=MqQNj!;Ua;U|8hS@8 z;E~Bzsp5Y~ONro>gu%d!UHv=>qPoJtqb-`T;M#R|)21kX89RNVnZs_s@f1O!A6|vc zg~~_nawcC1QbR>4HRB%G`kWf)7MIoGNY|`>U*PX>;t(sg(S&SkUF0tqF?-na)5Sb! z-8j|x{?|QZt7MslNw9n{{8gx4+qXM+ELZ-Z1+KV1zhzJJtNKA}YjnwPn|#GT?y~4D zb6mHfOByxh+B@=urW41LV~T$w5pQraCr$1i)|H6l=Jp#=2d#(qa-=m=D7I8V+h=l0 zjII_|WRY$kX`eoz$h$bQ!uRx`dJ`-pkB8&)YMfBM=H-BUnO{C-0(e$nNpJoN(BrVZ`Nva#o!Nn#LBEWhZ0Fw>m5$ry!82NMjldqRy&hsa)PrQ zhVF;jmvaI5kAF}~aL^jcKYYXp$J``Q@>F9ORpR;Y;?Ou^0dd*ApL4HFD;>?`sg=O= zBMgjJr{klI@;y}w|E>~F`Tc&&2d9a1^0!APUn!|pWYS+Z`*Y|r+dCrv_-ETO2dKJ> z8@~1jPQn~yY2CY!Z%A6Wet3^rR0oZ~yRU#;vdh_53$#UXxx*d^)3Ls`;`%P>opWPhOg5%;2@JsI2Ld2t}K9jaWSNZbkyGl`FCc2c|_97U~Hw?MH-1e&kQSo6t zQDSRsMxfRt`$%)MhzaH5UP+4N20quNjDw45mW1a+Ty>I^m8w+5`Ety4IOyb(h_*=h za0Gvgz}(w!3n+xT5j{t(4+e?+Oj_qShqj%K4je*=P(IG{ZQfWXv+OR8X!($k$3{Da z^adMWR&R+iG_#OvRgPwkrD1f#+$~O^7)0?)>AtoP3xA)$E1AgLef9xFMew80cJp8L z{D5`uwwD^8yCpE|fi~Ztp9TqgAoInk$FnRU!niYLehQ>p`x*+a0Y!!AxI!(7cc*W$ zuc2(MRh@58spf+z{9f7kQtvv4#8E+Z%gZ`M!R^`}_dKj{IL~7~kkI;hp>wf5`Ej8| zI=LBgXiuj&0tUXo0~>a^lewmXZTV$LTKBEKW^hpxMfFR(CARl=rmav}h2VU0Wh5v3O5*g3E#-EQiYu1L zdl@|4x;ngu+G`!HeeC61jp$S_60B{AUfrz$R3d>+h^dLbGZD@9i z#C;HBQ6J_q^=y=Tqm?;IK8}2DF-;|Mz%$L*TgP1mW;jGgQe)unPj)QT)r0B0K1GEW zlq=-|2Ak;tQ7))Z%vURdf?5BQH~N*ltO8*f^ht3yWVM|4QtQ>KuPMKqXAx8^dJMb$ zCDM!7DFpGwOnQttAf`J(>4Ex}GIlh)AVpu`0f&r9$cLR)$Pb+O#R5;lU)L*6wN>eO zpU#p(iG(5-mHI1GjKbSI`4~PFp2=%Fn`_2*HqqtUGpdvHjBUS&^y0}5+{vL1k1jjx zixawqHEX|)Z@Wmb{NVOCCDC|HEk^(9iNA63#gkCXhl+UpZ}RRJ*q1-KbJg7?btFh; z_U!ZDeJ=aD(_qnz#!bVMXj}bY#fDJK`rO!rlxB+KSpE^Q*KS@`{OjUMTiliWh=x%V z)o?aaxG?##u#Ld)M2^OFKnCkm2tAAveX$~pnwg2%hHm?i*)jjOBuAQjC{!UVR2{IG zUauiA@lyOcwIyom$+i>3BMtk)#7n9fRk;#ysaMVQLTri&Ryg*SMoN&LNBWJ_Pb6U=A=>$I@Y=}5J4ybU zJ3U7@%-vvUS)yFJf&r1{{-&*;Hgli66O~ty&nLl-syoN*iWa|>00>dctq+Qdr^~b} zamK+mz~h+Vn9@(?z(n5q+^`)a!?^qAk7qze!ctF~FMfLc?jXAJicWX!QQIrptkK?Q zkZhz@eTNLR!J7Cbu5%}xa+O$5 zm5YPKOp}VWnm5w*u_Z6-h z$8t2y;$8YMiQh9g4Uj6fnNV{rdtRq)TKVeU8<8)MECbz!6`RUSKM?br$IKZ%T3b)7 z$qIgPthD`^0a-YyVDdBm-R8bd}atE}D zdpg*OaQ!LIwE6K{1M^sPGs@jqr!0|wte#fF<&{AdcIyXU*5@hf?$9?@=a%7l>WfjU zyluNK?c{M!7y0@m`$SPpp%`=O4_bGL>HzMB+QU6)mX(^XFEeTEkIpZMt+EPuVsM#l zqfrcf2p<(1+aE~&Yw>r*9jkE`Iux# zTVZjHld0nN`e;o7J0JMicHc3VsJNjGF5f0a_~$g2_TRGh<==Zh{VdFXZj;p8Pc(Ob zGiKkMVr(j0qhgF>m)Q`45TjQ6Q=@>Wm%r!&WURN=dhK`Hlm72yOa1H$c_}X|L^1=+ zoOy70FDD;Yiv&ZDeZ{!6Dxof}KOadrAuQ$~$5@}JF0+c|3IFIXJgb8hqv@0JNsZ-y z>4Rv8f3*oi9lPuJoe29Qm7(Tw0?`%ej1*%Ze|I6KoT-W8khLx-K(0E z1G=&vNCnZ>sgaL?aa4WvBdnbYYoR-%r_in{W4Cy)H7`iAkQ}LKikr1PmZA&3q{(`C zr0jUl*MGAt{2vDDODEhBMfVjEI+>8|~e#XI|*j$YiB=C}fk zsD>hX!3cJ-NWTbnX4b9xb9*ks@`qSE;}%h7muH73{eD+ksC)kvr+flb`b3hI;r);b zAI6u4V3u{Xsr9mtHc2J5(Y#f$xVOra=%0$-f0Zp%EGsXuf~$7$`Z7KvSs2NX+$cO- z$BRGX!z^_c@~g@X2CjIeZmW6Sf6Q7U!M_W2;#rm;0j8W*xV(_Z_j%>q84Hl)jF2u z-P)GLSgUPy=ILT;sxP(L5WOW|<-}0&{GP0^(tVz(^%*^>+dp@xkAJ5h>5kHaj>sM? z=SYNtY7j2Zna2|3>G3nq`vTo@u4~7Wn{)+{kR97Eb)gI8lO2iN@R%r{sH#Ownfg*A zSP44xy8`DfBVcraO>$?3T2^EJYYta$wd^h-ooPd**2Gfyv3R z(NWzb@3r5az!tW9j=ruRv}3+m#OApCUnb)CcbU5bH6Ky^Y54Tl>m4g2nV?Sj8FKFN zd{-zL2TjL(;5nPx0c5(#hg`K0)2`C!WgHi_RH(skr!9lE*(Lu&zcg&Y2m;LLySz51 ztw?Xwgs!%SB*CWS-PPTqN$ui%-2%t1%jlk(*9;}X4l!_h`$C*3YHi%-o;&$|^?{MI z5-{I$4mFXn%dE~w&27kW&v4DMoH&Z?FbLsdCY^h1SoL1-ZM?_?)9P!TQUJx6m?r>V zbi;E2XSQHNQfB8tdliNipB()u+x7Ch0!(sZ|H*7x<{cYy| zDlhC)2j%!mAv1kdjPqmuwfp!`eJ5d}#hDc@^IAMYySFl~=p3LOVizY$=2mqz8_626 zQlZmC2$#FP8JTzKJc#zRQ&!A|`Z|**3p#l|8g*DT-ddKplYP&`HW^bw! z7UMlH|3RWWFP3qqQz{$y`+`in-4iz=;y-+Obgy;!gMmp~PJVEt4k69OqF=h3?5V1H zL5t>}_B$}s+?R!5!S;Ipt@3(%NRIWw+ToeW`zHgJ!H-s+KBX_pEkH+2oK;~tG?`d={_bUo1!gGt^`OlJbKl~WhqFa4! zU`v~VEebz+%YgWZs&8xZt#cS5pS~DAgV`FNc5dUrUgW%)XH_Im#$eAphR%$*=Z?3p z={(mN&GaE1KK5Z@Mv~mr2Pj^yq+yA-ZodOtq3r^12SeYiJKI8B`O>EqeMw{5s>Y>W z>@`y~XuXbpiVUMfF;o}1p8nkZ(W091VIj#%E02FgXS}s4+^%;{xud_e_P%PH)pA?a z&Ux1PJr;j8S1(C`y<7c98&QtU>DAAvke@+ZywKt|tm68eB$)&y_lbhD{txbFjw^#FXVKmFO#j== zWe%L0(uOn=U(F3b6%KujHR&C<&!*EvR`zfZ==Gs_ew2YL3F6G$?VEd;xw9;T<&@OJ z>M$9s7wCH6B#;wwxbCiw2u%qWf4yr^u9A_(+Z^mRpa&2*$>C|7iHeE@(p@=&a2`#z z{emybw2rQmWq&P_F>rlNNRcy=v(}m|8`1r5~2yaElG*bxW9 z(w08;uys7FPZsZ@nw-vK`;0U3KME_k{9e12GDEj^Cizu^@$C1nlpJI9g_D6MEu4&k?0!O@sP~QWI4aFxA!B1PFT6wPEq@_Tp4&Jsa^m4ykh&kV?0bgs zrV(@z*fOXxFf{QfVD?8Ki#eQcPDMq6DZFd_dZHJUL^CveBvD=Ru8ATPrWu76_oSP} zLJV4Q*0j-wJ7|j8mDpU9TXAlw>;D#w@{%$3?+5!WC3F+?hs{kVgeGbuZnmX-5@X@r zpZMj*qTm8x$~%0QV8?$okhZhCny2y6yA%J~T9cnoUWY*ceCGa)K*BK)0t6@S&O)Qi zIG57|O0NatJ}9JDX;9uaail1CV5n{BFo3z&m7_W4^U*raIXSOtp-wyBQSD&I#q*f@ zd#${O+iEYhLGx9{`fNQlhxXZ^FRVq)^A$yS?v96{WCT~-#u_K8>T_Z7dBj-U46j$uXu%6 zc6&8$Vv0RqssRg_XRgg7a2%uGX5t*pAvKG(6jc$pG{Hc(Ahs$7MW={xcY{yFx80`T+uW}wCAmWaY)?qaySt3(xiUx)_z5JE z67*HOekXsc5KJ4QBAv5Wb2wdrho58kPRy+^O-TMDTK(bUi?F*-pM!`Qk>{>9v4?k#u zC(&LAFZBOo>aD|~+`9i^6s6N4rBMOtP&%blS{XtZI+X4XDPcfBq$M3CB!-e0y1NFX z92#K;hVJHfd(Lyd@B6=8mu&96_FA7>nh_o_cMuOzG@DWUW=IlsD0a+`G9%WV9xM=S zuMWf&Z=geyS27~~j;Q_D`tzPQ1JENROZ3e3^G?Q9+!~C@xWplGI_8m8 z1%YUt(~CvTM;2Yk+vD4?C})`12$AqUlW)P##>@uO`H!Y^H+Fmeg4+uA#C$=6YP0al zP2X`gJV4$@oy8|tXF5&j4{k>|I4pm`H|=1_F^D8Lxk;-0SWdnUcll^xXue`>Me@_d z%x#u76b;mSh z`^+C%B-Uq+b;1CL`1Y5LjiHs^9NG85@aeaP#L)>t@87(K?k{p}f0Jt35KnEs0TLkF zZW}I1W_U;FmmPVYg%3^ZBQVz1Wedo6yo%`AB-?|79xlnP)v1_#vYAP6F5~lf7z@f; zVht31BReuut$lZ{=pp6_{{GowQy<*+hnHjbpHJ`)_9hYAv8f7=m@JILlaF?xr6$CbkO`U$s50WXld1Ef#9Y*sKPY4TBM9kha8a${*;Hf$yl^!Cp02bWmA9w=!rn5_oYIk~YUhoNZm zaMLlLYLhc^bzNW=SoO0ua{tEKG<@o%2L4cw_sKyOQn^_giDH7MnTw*TeEt@(}*b z7Sx9#;s%)JAyG;-r=V^bJxuzU^}k(~!lqNepV4<|qLpO$>P#kj63dD#ShJ(7{z+H< zL0bk@Q8nK1s9_>>5eA4&>Uu~M^KgZXvFExDG-#DAnJ}?1$=UIO?CgfBzu=Dk!6VXp2b z@i-9G^Yk460;*UIU3GFKnPE4y8Ak|TtlR5gXG~v5wMp8GuZOLm|Xke z>`4_!X*hD^D5o)yDuB#lN%))GTLVivXFW@v(=oxQ#&1 z*bc5??ynl(=oBfSH6`Fn-dhRUJ%Z2z3>fw0(w^sO#|rl2)@>s865e5D4qZmq^(&nB z5s6<)`)&5-wuAlsaD%QEi^m*c;z7y@d<7CLjUbs*2`<@wqfVRqXk#%}F4_$XENKd* zo{JUvIG}CtBUV_ATbRh|ieW(gJaXSYS-#;(#uB!h%@Ss785Z-O^$;slHnq%om%N8R z1L(I1)Y4VI+LxS`&m-#dSdjuoLfUT~C{0*3$XEyNt@oRPZ{#YUM7DB7LvpT?{Z zXIX>^i{aA%xZr>!0=^tcH^~%DhPagr*jt0?$aeLyAPXI^D3@5p+hAx)fkhUulWWZAT|3v6pp6O+FMt8Jgm%VBGUkWs>>w5R6n!|30M-~NkaV8VW#N{+)pvQ z5&o*lA^Q?=kGb+Y&KWk=giI`0emSzwUaTxtG!7 z+U?9dRiofBi4B);(a4v!$C;i<<_m)3>BA52my}1FLo#ioAf_)C3NfnN5Cnah<2t}5 z1d1FsTd2wGo|p@6M-&+MRo#P7d$ESIxV+kdJXR3no^?(WZxxR+F?^S!;-K|t!OBdF z_ChQ;7r&ZY`BAV6-hm(ehW5yo#3xYJU!sEmb~}oEtOO|5z*6e4Ioh}^^NG0oVNt_? z$4nUMUXza5w-nLj=iW?-LIHK2-)|B+ENh?BSbmpNz@hD%ea!}H6kqC-UFZ@>o-K8+g^7w)&TWbrm$6d~g54A_NZpYfl?nhX5u< zssOxQ^PU*uHnZ0rsNI{2&tD-D- zVlQD~w0NHq*kJpd)oeGy=E3J?N;GZMGcEr3xNK>lTEVEz!iJ%;QT^GQ3wI{+Usv7W z36sw1^CVx+nQ0kTFH}z8Or2OMFIcj2O8(op-KFr<)w^?i*A8X-M<-*Tq~@lcA1u?)6003Eg&?k zJmD>`z?G;mnVuYBW$)57Ci_FF#78|jXnSN;#$oqSRJYVma*^7ed)t~J>$bv>aj}E%|*^=D^yU&H+x*P@zY%^p85XS^vvDJ z#qTu%voWxsj;CPKHwwR?Zyrn)42)0yDz+cfc54P2m~1vs6H#FL`N4OV6sVuH>gAuH z&6BJKped6YyB3W)U@RwDGyF7SWHtqB1=g2RdCV+m94`>p*M2*uDq5-ye7^KTj_mPU zw_m%TqBQ@qj(2o!DedWT+*WmkneM}9#BUaV)NPI98`XR}oOuYVa@6DsU!=EWh|ci@ zz0Iy)xFdaVWO?7N-^5L6&zSvS3*He`b#w4jIw{v3`Zac zHxEChoZWB!AlhkBH*`p;Y!mkr)_3~eE2Wz)#j>y8I1A=f960?iVO+!3Fg12+s|xN) zC$qAznSvFC4stVBec3aU{7s6c;e5_pHJSh(%+T(47L>Wmw2w5VT9k3hVuks)dC{a` zu_bt0wTvPBub3z!+#rc~mKMmuC`Wghv!)-vo9`1yQCMVnmo#jPZu3T=$y+Q=M0Kg^ z{7sC-qBz-=Lc#At+!U%NNDMjs?qK-lCVbnZ!^sZ+~5q#6XCSyg&({zn# zrT|>1P;E&>b!UiAt-FIKx*n=bt3@9NxVZnMP>Uc*H63fVN>)sccYlBohGZE+L?`gs zk8lU(m;w^TvR6vp;yN!xah6v6}iV`{TIm)Afa;LxAwb`VR5077EPlMesl8b zyyx9DWC5GxBa4=i8j8<^bSg=O6Ec|=KSMWp$BZw6WUq09eabuo^Ti9foD)c?90rU> zWXXzJ5~d)KtKQ?}cg!hvd7ot@DR94M$?OvjM6!b~tISBd5aE$Z|H6||M67mqgek=n zKdvl;Y>w=uPQ_C{zZI?*iXG50Wpyad26!`RtS}Oc0UElV%=dI_wT}g%Fe_7*Nml`X z=JI6Og7~5yTvO@B^7s`l$ecxkrz^kj)CvdX5sG$FXxlHZ@A=FDE3YMr(C^N*2Q?nx}oO$JM5J4q;)I9dhbi?Ky#JyfxjaCvNk2*PiPnRrA>m0NpsE) z+>DQ|uh>%`Fh^pPc6LIN%W)0Ng@6Ttkf0mSPn=O#tDOqqdow#xj$((lnZ!mI~dIV1%rFqzwMv@4m|%~u}aIeo+_ zDOXXrsI>Dm1|#n>`dycNbTXNALKLS^t*hE;C>Jy*41x&zejRMHuSZqF#R!BRwpTOt zLE%nSy2g{?pL{}F^WB~m*8}Ce03!E^M2SOEzov#yGPNG~ZZ2crmVLs$mL?ln!H*7O zm%5qTx1FoMer}DylOjQ3hbuIAHGo^W9d{C*&0V#eDq3T1X`kw=NLX3qDB$Zl`cVB) zi*EYB?#p1~n;(C6vc;YZorbAA!vBpIV|VH=`-_$Gzs6%)omX;n%dDzh`4;(Nm#L0! zGPLA?WhVUK|_(-Ze zU@_&(vHheO-ZH$j`@d0?2=HGYEf+id>s=mK_9p$cD;p&Jcc_IUHSh$jDHK%F9N(F=~%q=1S3enEbA1?Xt9qaH{#3)H?@5Nx-TRo z9R%TkF)-h$@)bK&g!|}$J&nDlxQ#s*ibGZ{q`E>L1AGF}!kP_{BkvLs41uq;zHh6; zcYu;pd0RA@caasw%f%nEB-Y?ssc64Vh-uVT= z)MJ1Cegvm_f}PFz4RdV&T8&fVO|6#M(Ax2GC0hp6q)pa(V55v6uZ=~sm~nYw>g)6B z*+fM`xBm^Ky6;;%VPS{z-O&RMnK9~5tbx6n6EGeI92GIE(XqjpWezqgO|{V`lcI$- zLie6qI2@#9TlT7_;ErK)Kk>S)JA!+?@EYriiQnn?GPD&6%Gx2;VmmAXD2IF{ zm8GnlhiPLgsn|zPsZ`B^P?mT!miM<4xiBU}yGIT-}Mq+o_toZ1>$_b$JwLy$bg8Wt&t6RV72x@=s7LhK@(ZI6s!uc}}3T-Sj2 z&s`T6_Zv)??s&Y<#K?P+d?I^P*FxN&Fm-e?3u++#A2sq%iJ|6HW8`9th{}EfY=zVT zaVMN-3oz0Y$pBp`_f!`nehdeBN0X^IiFd&9XtP%mC+y^9Ww#>>aVNg_aB`O<(voc2 zPS`w(KL!%u^E?xE=hLw?DzWDc(;?$2e*Ks$t9U#)Z9*q!*|e zKadVscOEgHJJt-?E90qC_t`U9GO0k{@w{mP(vE2mZaSHmxYsEnT2wDqLexFZf@(%q z^9jX>_xLth!_#i@%8kI=pt7Sg`@&YsX2FukZ%$$u&BLHEC24u7inqC1yquBXN&OJ` z*lNuHyx^roJx@hTjRTx{L>$;_uWO%4tR0)0vPQI-xT2LI$|Cq1DfhGCPP4L^q!nG4l;Qjp}+2nUnbGmBLYanDN9> zS7tnJU&$l=0J2t;`V|$;_kaQodn_kj!8M9x2&!z!3QP>lzbDjbnb)T!Goq;P%*-SD zb2)V3YDAJltC^-@IwAs8-8>4qH3FI`-Q^0j5T6=~{=y{T4D4e&WBR0M% zM1n8Y;E8YDgsiN?RPr~-+~J>k`HblnR|Wi^({W=v;Of?xk@KTfNso(zLO{V$<`>=+ zLWhYCUFpSFiYx*(eGYun7xGOe*6!SqxP!v+IQJR*|BW;&+LeEAn?_wa?^AC6qCf35 zFp824UJ(cX?FNiXU3TP3na?K>(($f47{N;(xK7YmQ3|@yxKA@Zd93Y0_E;8_<;_(L z(|IooC_!W}BSAU$Fe9WoH6WeJADXn-2^Jn3B zs;cVcK!2gj=@vU3$J2DWgps(sFUWiVZ(rLc`1El8x+Nhj88si99$pMIm z$?M%L*qOv=);D6V7fd=;Z07b#X|+Jt3>luEw5|LH#x7y~_qx zQK5f2m#W2mb`rcuU*-C1+m4j2h#Tuh4nwm~!o_KQ5;8F;DZg8}r@N4C9%TJ=CKsrr zFB7wVhe7J~o2d-%1lv2rhTRBqtkTJa@mi9o4Bnctz~|h~?Y4SaZ~`ZYU2tlUUTY>cz-Uu@^=t|whT zf3@;!mAjdkGN<+O-~1%zP7$f|zv*XLvMJCOK)`M)`NQR>D?}$MX8zmm;R|uMUQKjv zdbt8Zif5v9wpa}9O*3?O&+YnBBKqnA1-<_DdrN$y0Psi+Fh6l(;E*i&Tq@d>r9(K~ zEcd79IJcBP_c$# zH??n3ROU2Z88^D!zriL1#W!%(N5-|?i#m5Q?S zP|E|{8U7rgE+s*b>1|Nt&Rv|-Wml1(uKbb;zk%mLCLDykA~dh{+-3JeoF@)L=Rpce z0^-Os>*^mq6+4jlve$q~riXLB_0i4Z-8aW>yWWJIEk0{lZWf{8yF_f8uf=3y9`HA@ zu+&{YUWLQ7A0JEjGuqdBnnfs;9Ac$0ktcYQhJZY;&e3t%Sl8l})?^oAO2*KYvR6q0 zMAiLd>WtdEC3LFBYw=5@iO3|wgrifmyZK0@-N5zemyTJYVzFAa6I+p^E;SWtxh`OP z&XL}i#SE4WPf@G}iEi^x3^NT{c@&v7wDLggnp{k-TC)L?SHAV(n$bk(s=>O~23D0b zFtklOZ^ybxKX?n~80Z?TLsw+D9Y*;79c2Lj#fFsa60I$Nrzgv(R2dH`&vYewJ#VcM z4f@^(F2s6%a5<_z*D=Di)g=7h-ADmuG2FitOu+JP(`{U`Oc3OC8?kfER}mvOO8@N0 zVG39N>-XI?aqWt)@|KM~&?wPYk&iOSC6V@NFW$=d(CMXe2kls#chV-Z7*s#f<~Pb0 zaEsD>M{W}$y`$p(cH4SYPNoUW-I4&0!vUjGul2gEuW}Fv>bS3`CaI|mT zV)xC`K(PO?1q$QoV26blvX)u6EXe)f&0qKwvREmlZ;tfd>CSm@9S9#TZmwthzu5qg zXt*qh^oeU`$}wwH_uX>D$C9ZFZ6Abp@-d;=U$RGGR&Ao6mwUn@+eA%usm2+5+Wt^_ zx-dq%!=%`jjd5HOfB4}@`fX)ljsn^1O(CU%6>oJt62GcI-FT#X}?Pnb}Pvi99HFlLD+~+{P>+k3PXrTrFCjQ4aN&j#41R`b=rk9uV zPjM)GVn%3c=FBTkPptl{mW4Ps-k0i(QvM`x3Gcn!ny^@l=iN-1H4AqJ>Biqbu!$pb z7?4fdSeDUMLXK*X--n5RV;}5*IZAnwBjW@YTQ@$|_YzQoInH~}e|lWlm{a7}Xz9ia z16-~rOqBw8Ymw8t1Xv>baHXr+TgF7t0lRjwxG>W6C{|?2twRO@Vk(buhr)>Nh;(oD z5u;)*s-`||EKP((dUfT-2)R!aJ6Y1AUqSZ!`fI(HmYy2zO%;dHrFHYSb7|e#(w(N=q?JlGuE*kFzQn(D*Pu`tW z)$WB6eKAK$A!QuwciJMIeTcjpPrVA=W?Fn#HT#XZdup7P{4u{f##wMrdCkv1$z1b_ z6+~Zq3v5uIRQa1MT^kkhSeW}$Ozhj-)&2l#_9HXzHKX-;@$XRomR>Kl-5JkN9^dEI zpey6$Vc@}%Z?@3&gO3!(!?FM_gpZ?s--HJu5G}&pF5NJV85+osZLQ1y=oa`9gglEZ z5X7Z`qnGkI!{UU&lpS`jXHR}x-PpoZfet|@@nb5SGTvLZ)=-l5Z1b=^SUF+J(>#D; z&>zVxG}Bbc)@7};N!t>`-taT1D_6}N;u7pSszCK?`lx7yo@-BlXbvH5_nHvcKV$(kt7>^fH2W7jKsPDv zktO`M26)0^etlo=%J!Ct2hIPk-%>iv1eEVoIm)gE9~c0~hZhU#R<=dfEl$bcY{aeG z$}7@14fU(+^^f`66txM~lsvljk{IlFFF$0RcFC0GO4+k0TE+s=|4bw{DRCGw>nPmvs zLKq|w0Q&Zr^Vj)A>Kr834O;<3k}#5z7Y|a|Cs}-AatFzh=V-5Fd<>vt8jc^I?BKt) zQFAAKO=Awb=X{GqR8jYWMHg=l8gwuuwsMejBMompx8pUeyrXaIdN)pLTfF2=HPJWK z_>}GO>FFqN@yoK9ZTL6Ce}M>d!}R?-DUxl{H5cRskFf%)dmxm>FAPwucRt|?lDgL}6|JS6_i z72Z}{cQ=S^uJhH_6$l)8+&?LSTtzI}DU>b-@H+w+;m^i`jem49g62M?nug+EODdJ> z15&?RWl4jYJhD#KAXXN8t)lf@Ovf3~g}43ZkCMVTlk4%p;jS7g{Ytc6P~nQVU0GST z9_dwS8hlUVkRMnCrr*F#iVFg>=Ky~L34kx(0+tv^4`$0S=$i&UwX?T(o%5V} zeB#Q8Z`l*ackMiwCWJd}@o$g6@rc>oI2z=4&v3LVe`aD}{+j9*WMoB?Ax8^tmsvoGJYr8CBpd-W9BiP#p*2X? zh&hK+bzbqvoKr@OKs3g@JdO)$paPuRa!Ig{3__aOq-qGx#zx>CZEaEGBY-)4m-|GU z(uTD-)08a(+rg!IKXap7R9DbOF;ZN+TVhit_a1avN6EqW&u554TkpLqKl;CHy;Sfu z#r46ZQRRL1TE|?<1wG2gVoxzcOu&C&GhhX{>SF?VWHh+$@t}#W+-OWwQ0KSN=WcpFp4cd8x+^R7A!p%Y}JIGRXuWCCsvCzXV6XOthxd#>7O<=g`S=}vOw%4uw zteM%r3IX_dF_*cHGTOPlG2tY8BD8dYHek+N&A1651T0#x$B*uR1xODLJP~BXK5xHR z^;bq$ZQ0g`b*rSP1NOT5TcX2jZVTI^ON1xlwCLMSizV18x0`2a#^b*Oy9ORVyD~k; z5;fLUkmj7Oh|He7zA7!{piFXvy>qj_4v3T^I2Pj?nV_yOl=<@Y3!h18nCiq}Za3m@ ztnyia?BYWf5gQUcxbfpT+wPC_b=&n=LBN2sIg0?Ln)p2?lirnYJY9}S6J$HBUnCFO z#SOq3Eo`J7|0BFr*yIn7efUEu9QqNk?}FCiM4V{5>Gc!DX}kTF#mP<OXTG`LQ%6q*p!d(xa z>0sGgWf2_pgBiel{g%j?Zwzt<{6jCA_BB03*S^VxcMQ)rH-C~4P9HICTD^4R$W#LxJsL8yjcun4?)Ddcp(s%C%7UJ_u?{Pj zlsWgwuRpC!%gh~ib~zQ!`DWa|{IKOJf)3qIo(Z<0ka)#Wzv+ncLdbWjV@|-iy&XD4 zH)oKB)uej(?b55t{l&ESOtI&)Rl%)jH-bwut@UQ+BG|6{t8F8kiPpamiZI5NA1I>^ z^usbI#=HjQIFU?Vbl2A>EtbCubxx1Ug8AmIc}&lUytZczFBi^_u=sUd{}$f~XslH6 z8^Qzf;ADG$O*PB!!WLu#6e_MT02UY~g;OE1KAh)u`CocHD@nqmOcJ@RVQ65Qr)=`8<9+IxVsE8G=^rh>bS901#%#ybNe0<2Vi9ZPGn>O)so zqZTXzlk?TYDhj{XZ>i6hZCw7?zJpvEsH`e}BIIP0I`$ji9b?Rdy zVloIamaD6A@$*Xj{vxf&fh!}`Y7J{F6*LoHAl=vq;TZlhDLC@{hunv0xu?}hC&W62 zu*s1gJh;{5{rb}!{t43AQQZkZ{g=VPkf^jbtF{h$iz3y;`Irr_gAf%4C6&nIWx z!g0)WHm7{hbr0Wim16*cbxgLUupyxu3K%&-WU7CG_kLQI4;Lyeab>P)CBh?_yB+nH@hfwC?7vZEl(73OS* z?S4w$`~gt<&WbwDNm!l*`}*NtUm2T+O5n#GNmxddXFDJ?J+9d%x}iZgMSOMVA^Le( zEA|HsnAKXZr3t>RJV|3fg+_rK@cB&kfYIdg1noMWh;>;`CO1lDnS?gS(1+_l9_T2k zjO>eR49kKuxYv}>97MchaXCY{T02cio&D+i_?eop22 zQ+e^{S=~Hg0^4uXtDF5cr=DCJ7;Y{u zLH;_EWe?D+IPDU+s*?q-M>8?Its8t@AD57%^c^PBp6hqA>rT1;sz(?l+(}+R>734c zU*WX2=sA#p^@O)sY1}FF#gQvQ1zZ~dOnG^=f^T7@Dxf0vJqA_Y{#=oxtxK=`J4lHC z-lMFjyBh~DIvIP_){R)=U(7WYY)^%@$Q{_2`D$>RP|bg0rL4fCA+Q%H>Y%JLbx&+i3>`r;>Zqy$YRm0 z&;0Qc8y6_RujYxUEL<@jL@b?@{SN&WUztbuX8V3P7$ z3?=4oEitTeX(!~&EiEODmp$jQ8OfG0h?M_l+7x<7Zzq9aWV@*jzRau;H`^$$EMgo_ z`>TqQ=We?JNjhYz2{U6a1gcmL5d~DNRv5$i@YPO_aZv6ZHv%g>@Y#ti`=;0Oi{Un@FZ!%DXN4wH}LFT2$G? znYB2#aByBIDd^%Y)zuPsu-AVj183-hhCWb>%w$`gkUXI4-=HdEdfm|P+516Rvh`s% z&tnT-t0UES{jGr9%=0)AB-1aO(xNryZ^*byF^M7}DOB>9Xz@P>w$EreT`q3$B^-+Z z|1t?6R)9qSYSAjeM;G$tMx6+k7I(!%R=l*La!ClVY^-j#oj4EsH_&YRVl~w?Za|+aaRJO+{--`j4<%@9RC@Nn}jHi->WYE=O-o z2lwyF2g=q*C9Z$N?zQ0-EZWyLQy6f@4BR5Jh_H-umvCEq>)^1}ZdvA-2qzzC=8HY; zhF0wXW})x%y{@;>yp*XvF?aNBG3p*mp`b3k$w1~u&59hd7$vGbMk{L1l!NI|JcLAZTvR=f^F%GA(-Eh_q0Wf?07?gRx+?OqZx_6WKGgBxgm)r^# zV_m2>UCaJ!QW*JWO2x3n?QGOq5_$1-IHFj@$B9SCfVmIK@18YKlbFS`ryMD7{0Sjb zGRlkrK?xQXKrtUeXl;+aNn8d(OdyS*reH~>Mn;~eqat)9;HAun1~IR&6?y_-y!=3iRbeK)nem+rlh-F4jH~@iPRqcF6w|NSqHQjRjx&z_vpQ>(4q0|i%XME^W zPWZClH^>FksZ18+VeMZlm=5<5cjIzFkD76^UUs_d9wrPn??r3A-7xT>0wha@EcMwv zP*w8?CmsAD;(iLAq$1-b$#zL(m->l=oI39tDC66?E!|85-Ho>sQ?xblo=)B2l%8NZrSgtLvexlb z)Mb?%*wk!+fNMKRY>g#bu4oE~4M)h(fP;1I@x=Z4)Gp$$jJ-BLHDQ}x>Drb>+Ll9R zb?gOBVl!kCid_E3Ra4vIED;TWdsdZ!mvqQr4tI#;34&m(;{Y{q4bDLF z^(E?imcj?F+|=XL>18Bni|6Mfu3EgwodO(6&FvAR0QH2$V;a=-P|j3~z!R@~PTcmj zWCcN5+BH(i-Nlvr9`kr}h4AL@w5Q7P2LHjcLsV4{mHE6W*8aP(@sfC_Pkec>(f3uA zX!is@260Zwi^%r?j_oGq_f!HYLEE%cO7Xg;g>a(PHrO+A`UL!I>+8&%@vNdmP7v#V zkhukU9)DJ=qN(KV)SPCs@{D_5?D_?&kz59;wH_A8QO}g)tsw-RUI7IXwBMVS)VY*x z_B+uG2DywpjR0ljc}69Oka2b&^wd>1r83|Y`eYI(cEC{_6hN{YZMOb=*j|1O^L7K* z_X<-m=*0#Fi%-s*2E~S^v~_qii4I?_!eGcXAa3i#FAF9DhE(@SYYgM&wON?1PgO6= z&AFUO>*O)B@qRpQ%m7$FM)S@SF$`FHb-2*uvEy;h-fj9 z6g^t_M;fr)WR*zF1|1g9!W1Al`@?MYnASx6>_<^PCtr4dKZKr6)a@}k|#Sg7Kyfu9@y2cAq!N$XJbz-!gXzfnzs zmCZj{czCNE4{~xi$;!H%M<9%a-|`S2E{0`Y2JUQ;Jb+DoU+%UfcZW&}+TutNXu`Pt zGvo(p`DwE#C;`3Cj^zfY&Z(|-xOZfxJa{6%@h=h#EU&pnSOC+X(mwor3uhehig29U zBQ%HmHk(6+pIec-$Apkd3#+dyxP?zjCiEB7DaxI2Mai`32at9HNd0|piqBOd@@37pmklyc!m^;u$#X**auok5dle|GT^0{1 z#RK=0E;m2k?RUJF32NF+r=A=b9YrR3?!nJizGKH;0AUhj{Qe8K1Fj%dF$2@LsB4-^ z>dH^j{NR^4&EB%d%;T+mmR)aV%<~fSR^S?sK58DOm_Pk}#0z8v9EieP1ndga{Y%Tr%hr?_N&JuY`t`b_k@t(hnl0c{ry_GB&Gr{ zPLxecMmS>IL9Pek;?6fMg`APnuPHsP37zImECjR$S4}R|q2|-5QOz`K#=6gK^s7BMoJZ?n_`flI?YpJ(9HuyFT#Q73PT#@#Wi81;toV6jpL%kDw7!PXIpc& z@O$g)0GRE1mJGZ{PchsxD)W)OVc@+=u;Txu6?cUG6mm=%NK*F1&x??A@@d-+RDr_J zfxX=am_%@~b?P2{%??c^3{sSdF>g1I0j-L- zBQjh*y#$AAyl3XMeul6XuVg)&CDYmR;Z@E%h6-uJ%ow^@ZGJyaKc5pZe-qJa&lU1` z>|7`eYq+W;fX~0C5fX;OKJ(!)5@$%(Twr_yd{FsHb68O|_ICdS^!vvx3>TNB;d8R;_} zV6&~`JQc%hPc6G|%)k}tmh9C)J^OxwwdNb+>4CIvyoK2d5-;3;0YL%_Z%eDd`>KO< z5rClW7S4``<|Cr*-EfPsk^C4x+jkGb_vQ%3TWN@RR`cbz&eW&OIHo z>85h3k4XTI57cWIBAXTUg7e4<;3$MjL?eJH^Y<1`D|Du-B?{HcZmkZ-lURu`u*L-{PrK}_nLvLl|`s#Ns=7*eWW#IeW z1SxJS^uuZI%acqjTiaj)Z}hlmU3B1gP?m5^zc1(o)rB&?@2|?UTOkA&MvbJ}g+0s0 zgbQ6_yx)USNe%vhbAVr{_LuyzbJ%07Tt8bO{vG^$#iGYw1bB7WbBbc!=1*r{v;EJ) za7U+_Q9AG;j@kOpC7ky=nbP>N>38@8cP`r;QWC6Y+q3{9*fZB6I`peI-O)Ja%JC+# zbob-e2dp8e%^GgbdW|?Kp5gwQwDGaAPe3mUCYn){DmWkg&0KwdSF8s${nJY?u% z%fIkEdFst3OIS)on3cF>LX{!otH!`(@+vl;UNu@l+z< zPK48f)tdbVh+kIdPH<2cUHTq%!rE4+WG^MjF8Z!c7mu{eSB9NDj%mWrfP){1i5;Yb z9HydwI?ELvd?$`#Z>ftFmQ-e!bk#f*-aqx+N~nGz?Od<$2$d7kBHMIpr)ACcr`PfQ zh5o`M?D)zy;#pswSLLuox}qSn`)S4?xN1Od03#ovaelW85WxAn(m38j(Wd1 z8XSlDA6j#f@$3LAy|_IzkgK_o3QTB=9O(5ol>W;a5;Cc3pXjFEv8off-ykh0G z!`2}8K*~~?*wK9!^u4Bd>nR;pc-MFtnyGoCru^!1!pH;%=daO(QN&;U2X99wZ1wUf z@uiJ20I4%m=#ykCNzo$jxX*m3-vAd++Z!C}4_vG0CMFsj<;Rr7>Qr8UFEU`3=V5jm zC*|QsTeb)MlKuy8iz-C!lH5_OJ;5ixhx`|BiYm$jaxdIdG?r4p4e!ZVStlQ*Z-Roe zxQDxrPifR0y7!Mtl`HZ^lUo;Ln@QqU7WbxV%smwG;+yI<-l)3LUl^uCO@4QCWMop? zf}K2R5e)2QDx5U=?&T7vjsl@2vKK&2tdlHkkm|U#rhKk zA>ZzK(L}hUq&-syo8NcZpHdS+&S0V&U2c>+Ifj)l`RBtFB5N59PXH(V$HWmgc0UPU z{%7ehk(nBYsRIhz2()lkZ%ruT$+7a7XiDyY@lB5gBSj$)UsD~$JX>Q-ndQIo{wz^Y z+jl|HK(W@ZBV?6H&Y!?uv~~p=6W^ZJtu9wH$gEW-Mj-N^E|fwk0?-N40SpHI@N_VH zZDRsu$W@;#DEcjxk<4l>i@`@!wm&f^AKl0=)2OBy=P^MXz=&DJUN74pIzek#kr^0; z=3oKW`56jDQ?GoO;BW;@-MFZXEDYhVysbN?JwgqVOyVJ&^JyTe1DTOxjFOS$NhSY= zvND3aQHR}1_i`IqeY&?*TxTtO;)qDcNM6c-t^dfxGYoQX6;PBs^_ zk82-%s=0o)G2B1W@KPyN^-nK0j?mdU3bhVrIj(JA6Mo%Yi|Oa8A6Mg<3CVI>e(G@k zVpb`DA>4?ik`D-YjQ^{xy8zU|N4J+bX@^$)`WH}(tYMc`o(&|96ONqoruEzU)f#|` zlDp{3vhj3Hd9cWT-%|ZgI;JEs8_3#u^4x3e74_!VfRjH618M8J@3H5?cCUmE|16)!UY;+~U1)K< zrCv5ZwT7d?oml`ucRT{O2Rnhf0O_B!BfOdrk`iQ~*EGj$z`^iDuq!u7L~wDZ=w96c z|0nfc3&z9MzQUwJ11KPtSd9Ybt9wu;Vhp3*3G0n!Ec>}LG3E_MlYt?#UI5p<#Qbxp zDU~u_qWkO?cOFw^&l2GOy4(qxKcINs?8_EpJ3zW%fRdoJ3gqD*n}FYo15cGtbBcPB zJaI6ZzNI(O*`7DDgngy?K}w#?8q(+8@{{lz!#Du#A{I8vsLam`zs%?Hp2Q}~Q2uwX z31H8D6@bLcorQH%npBdP8AX43-Cm5a%P867D!*O*3pyMS_xO(Iaa%MbyYe1V4OOh< zZ3$poar3$aob_LEt6ojjf?VF#J6U&zDGdrm{{hlFA-S*F+J933#}g&-D%FF7Ub^-b z+qg^Gssxhwf_ueS+LyyG$(>PIH)(4uPds=7s=S2-?VQMS)H#_Bw>h!FVs1N_#kAiO zvQu)P#VQG)=c}OZlrgj`u|5y{0K0AnBr^Xv=^$gIXV@pSDk+}7uYvh<^xkvGjqZjY zklrlRO7ZATpN`6S;j(d&s=}WYcEaBRlc;tEqlQ@@2lkk(DI^v z_cO#8t#rAXek|*H(WK4MUZjKn*Vcp*bUj7$cl*<7v__I=zcH>cSEa>~9gYC&0P#hl zoutdsJU=Urt}#D-yGBZII-L?L)4nIn$?{RYx#gaz#zC*D(LaA-Nrim0;WS8i?4QR$ zQ!SCB(`gBWyUl^&d8cQ@DEAw!9iP_T;E< z%xVACV69KCuc^yf4@~o;`U;f47WfHRAVNN_{2~6IK%5hveNH<{(j4lQ472&K+`z5X zL&cccop=m?kf%F-l_qbkbYztSZN{bhOeNP*G29%i1OEQiJupX1y=Fk`Jp=Q^LU!Tp z3c@`vouiB2rCHP^)h$tzFY^0F@Kg4;5B~q(OOCkBG2P{#rh|kR-4z~h*!us3BUW&z z+}r~#$adkr5v#WRKaBM_c(eyPnKgTCW#jF+HT=2&RFGZrLE-#GM924|DsVo?jre;X z)Fk6&F26NBdO3|nyGlY}lpe@K3?3dQ<4@b#ou-CQAkYhH7l;7RM@!YNd;Y1_V^ak4|)<%QwaqlvC1&_1`rWL+-Il$UYj-)%2J!x^0dPysX~J z6DCDxP-E((-^KWO+;%Vrf*Hw)f=XHkV=y$-Jg5hh3=rRpm!8E_k&Z9f*XUNXxgQxI zp2+~xcpD=sgx5z&fgyiegMER28-N}Ev8OS3l zwBu*p<620D${*ow)24Ac3;FQXm-XtYL8a9HO&tm(I4!dNLP6*AXLYCHhB%$-9{4Td z?reHNXdeJ{(Jj$DzV(8Gze-4?Z+!a>>R%j_l%4giw_!1C(>ue9*C+CgNDyCa0(&(4I|#MBY|m-{q%-Qa+9_t4$-o;=^* z{oK#{pKIx2>E#vYaqPW68zwn12pAcQc&>%Of?VoHYD%t(Uc&y0w#=5Y#QI|7x`?ee zGFDrv)~VO(K6%@2uFUIm>*c78+;Ee}FOGZ)#)G1YJTNF-x@JbLRL?A>sm=&}2wG_U zH>P6`wN+skfscOTr3Z(Cm)&&Q3*$HczS(h56v}0iDlE`8h65~!6hVuoQJ{P%2j-~Y zG!F;MfD(mPU?QhxaIKgtiw6a22(Tt@nI0Pe90WVz+S{m5<6UmtyN&PDjVSZRvM#2- zq3xf+3{~0p{9)!(b;YA>drou?c-#`y$2jr)_{xC?;U)Mu|14dozh;WVsmWQ_MqsS|#q z$L-TfGe;b;MYiovZrxOBQml)*VFN@TT8zQucCAz0KzQlRvRR=rwR75p8&O9?-uKAj zjQ~FWKNeUF?gzy{=s$k!c;HJ)C1y-~w<9Oli~DXrKu?kSHBbbr(k=fFYh4{Y8p z#P*zgP|$37_{Til`uXUB!0K-mEz&AZ@3EjhhdLpbb79 zZ1^ypm2{bgw8GO0+7Q|FPcPoy+UgHX)O-gfS!QMswoa~xS>1nvwp|*u^i3Ec7ZVUh zd2udUG#{-mHmQ-B5!S*J^|-qejxkl5o?dCI`>jeLDa53aB?zsAJfZcbZljQPX1O?q z$lP@7d%gugFt86VrVs#HoW9BB83jII6_-BR6E`F#E4Co`#9&<@}wH&I=p5w{UK zCWT}aC8t?vurk*a&N$~_OnN#*f0JG zWKjF{#*M~4m=zW;v-)CAl;~IOF2~E6AL(ob_tK8^R8IOI3lZuPn~1Kjv23$(M%j=# z!9u3iFJvj!TCVAou@S$7qSfql4*yu5-T0_4hF&u-2KHf08%~<}&P0S!5Mes{5<(F- z;cuqWEFuQ&HAI4T@XB?y_UxM{8szJy2{ZBXXUcvjk^hP2ftQAlaHDf1uAR!{zprZN> zA2TplZl&`C(sCO|mr!$TQDV}+@PcGY0bBF&=WtX~1U2Rz|7*Xnq1)ce`}U0Ti*-64 z4pfp9pXk>>Sb?tF7#B^8e(J12eFQ8#CFxxdj(CYh_D4Z^zgJu5i!;5er3(9$fNA>V z6@-1Ow3FI&QM*KJhNtB0^JOZ;^;}K7#_I_Hd}yb{$(kz_%!KQUpS{oFOhB)FwMeqd zuu^vFvo{x`vs1D2=ubTivhuEr!OEm}-0SZpn+go6qdnfg;*eGFz+*x;4;977`(wTR zRCc2|fLpLCRfWqFDyTc>K&@UIdJ~U8`j*>)UmfBQ?7!}bd1aqCmzqa4Xgl6LGsOrG z{3pW;__7$9m?z-_vl3P^s9Jq6JOpgOtnRW{Q4mbpzXqiTA3-#CvHSTZ76Ij^6i_0> z+$F=?*DsaYQU~;X&mliTw^7f!)g(7A!WEo|Czb8s_&|w_544IQ$Y%&eGKPCXf#1>y zae8~mqvuwJ3y5ecWlGs>#b%DeE>5|aJwQzrEU^&Wv1&b^rz%P+{!lnf+_=ykD>tA4 z*vuTId?D@k(z%~QLO%M7P2|)pwJT_rG{od+)6+QGb0Y{PE%wLtr^nSl2CmNjS(%h} zfNOKHKLr8ex|FSUA6k$^y5(RWJTYhJQ!3AqANj}$5iN3ohxnASpPxh&R6TNet7Gq} zMyrOHPLyR7H&++H^O;_e=b(zc^CUL9XFqQ;4=$kh{de8z7piDL$pU4rdB_bBWmO58 z;8CL&x}3bmS4s?F<`l!a4Ch)&y`--RgVZahczfB-;)<~KoT$LCVVXFYinOrR_wF5a zR-PozUYxfqzK+1Nx2K2Bk4VOzt9W)%d3N%-(GtA=GJ}$QQHTn|fsCY6+aTp8_xeS) z10VwmEb&JeZjXj5AEQgqX%G{gZ>^+ZyEn@8gS3;@`wDUhkzJ8C~V%ci?KZjMtUnls_W#8`ob_aB!$RV%x@9jIR9o28>-)iz&$6CJrJqH~- z-b)bY!sp~~tHxmZU?MKvwLCiVbVnl=l3dVvj22+;n?H(py2DKSu0&ESA=ipxSd8B- z`E07L<`=cb>?PJ@fCZ!4l;+PF5+Uu1knI)HRsNp8*0~jB*U`g4NEM?d=)1sH*MyoB z2i?Ew_9|+*J6{u`qeSmxUbVG?N_4Kj%tggQp4AusWT1hs=0hJW{4+TFh@E`>)OE^W zqq$!n594&-yWDtKhSqCE^9FxnD#@~tNbU+#Sq@h>@qCB2=p(&M?50>%{AG%x==A;~ z6H3$HNN1NY*ynA7FF~mZlwV813XKuvwyym7nC57=4?pgxfb!ak^e?{0@J;sd36h(B zlHr%Qp7mu$c|M9p;T~>m^Fbt|oATWtT)rZV(4U&*)J<{yqF_C9wgj$}aZVE2Anap|M__9zg{oZGbtOLa|Ff)qU_T!6W~ zs+YFymuq3i-QzEAmu5lfSy0+2Nh6ZicO`4UrdqE4VvjCmN)~iZqm{2;gvvhq+NqH9#Ir={ zI#MuT3$Dh$og=K8|MTGsk31v;4D_s1oFBjvc#89Z&}sGXzmUvVd0G9P`zFS2x>|fCsdRjZ}%uh{rA_}PiXKjr^rTNg}oN$ z0gma32@oC8f}lcYxFw*0U)CR~8x9RMij~ogbILR>>yjxoG$ad)*$^}}Dz?dc{Y;+r zSfPvAxy3U>TLrN25U5?4&@)ogq2Zy1;Fa&)>ZZ=HQ{!j`Wj&(UYn4L$CZ?#FBikrd z?{gMXpHrK<(hnL51rGzaU!oJ#onG{=+oC5LD*<1||9q_(&B837+rBeRsxuG)E(&{a zQKt{=6<$)uw%z-pwX#?7qN9YqYK!h4$E$zVB9 z9Ca@d9GYxe2ZpdiuyuEWeqnQp9@r!0!18C zjJAnT!H#X}`n#p~{Wd+Zd2wE z-#o>nG2KcD=9=rrUl|S=3VP*?m@mKj>ql4_shpIlC1D>{4=;Md9F%Us zV%M#$-0X*!j0Y3wA_>$(Dg3o*tYt>C;IqFyq z7D9CT8>?tx5Im=++&U5QXhdSIk|7u}6R{2U+nV}X0V@sP=%hxodkkgTjYkVDwcq*H zNA$N=aP2)GWekNF))WS6_Nge2uj3OJ!&M#+w3C@qfF4uQ(8rM@xF}k3Qx>kH?Vzt^ z_@lNqfI-&>aSB;lD_38krb%;;uW*N3cRs}0=kAnnw8paC-jcG^;HsnzX-v$&w`E_t z_L*cK^h50V-4^a{O>V|Uci*&VcLr;ASM9XUC zp=*YNwVbQYTVy_&wd*5f4T0b@h@?(0rHla>zE1ixG^ztZ>jvjCfKJKl}Uv z!zfsFOZ{voYZ$!Ph8&z6Rrd%ICm^{_R+c)bfy~OtM8Wj!X?rzJiobFq7T`WXl-MKr z2fa05q2Q}Ta;XMV#E!DIA;mT>jmV)y#tmbT)()0;ij~%%36`9zr@Vb%qT(@E;W`zB zY~I>?+3@@?Jy|NuroqO-TW7T6G z!=m+Mk-NCD5q%p)!xSDxID_}!!HK;~{gGf_YdV*iG`CNPqSM@7eSJDXz)#2MJoV$wHaP3+BsubrZ|xahaKAv= zTkPN~I25A6mU?gx1bgqCmEb&iU-{A2GwNWU9qT2X3v|$EqMw9(Wv<(IUv7vy+TXdiFuuY6{7MSPYYq z1i)&*8Da%d#@wkltNy$?AG*4D2RscVNq}Ep5A*PiMmct!!_cY$h(Y zlTpt2UtS&NIKn-@qkaPbO#H^um_$FnnGQCHXiEr7roL{vz(+cRvN***u)>BcYZc%? zIV@sL>qFH^B*p)$#4D_ zwrpWxFWEb6bUtk!o{a^EP4f(#bHW5v=z^Dr@|yPx0)F z!^bio_O^x?L(xAd&F**+m)F#1@<&5!&mx~g{~Z{7vpt-mY|vin_PD|iBaZoXi;0!I zjxC;#W|vhf;78;?*b=vx>gWJO9!_nS{gx8Nx=~Yj-l*tF48xsGK6oxGG+Xj@N0Le* zQGL3I35YnWCv1Z*9dr}`|FAm?Rhh1-VjOsagr5HC4=Vm;<)lsMwa4gBD1Rbuump_& zh(Q)O?}khkJxwOFcF%aY44|P2<83@iIBghTbFFWT>wD54ER#QO)q{q)ych)tk0wSc zt5>$0$dyspNXDyRq+ndpE^Mp9jvu?<*)6G5CmcDJLyCv z+q2LIm*&p|=zdot(0_54bs8Ohm5Dclm9UnQr+<01@;VFXW&fUsf^s`ET1PXn(aMn* zR4S=0*c1EM)EdBUs2dwMu zySND%YB*u615f%eY+mG4#gttajQa9A>!?aSnt^~oDKqIYRtcV%=tPUNfk$o27*8pB zfyuMbTqXOtGIu3*dJT~QNjeeNHQD1fDrN$*1%W?8h-*|F(JYjS&LX-_}&7RKyL0htT9R3#N&$1j9+jvve67RY;x>t3l zD?d8!UpAS-;Sc@@+K7!}Q*#I_hrQ zCKTp3HA!^I9~I3WprOof-nvCj-2!i~fT^LJLF#sL{ho*tpf5Nd?u{H)@3MV~(X}~T zmGYUsQAw`PrSe=dsUpl(rLMG2QaZQiY&LDI0Oj^%F9H5Uaf01OswSV4(NdKSLp8$g!n!V`= z$CUit0$Dmj9G{J4;l=J)dZ3uyn|4zn|7}SIl$Hb}$~XD8&kgV5G9L3OQR(>|Phl^X z%3>=%RCG$V&`DLqShO+m@7Cm333BB2th@?cE(xQkD=!PtUK0RCuJ@RQL;yz0NWkMl z=kKaOT#HYuKmdCf3mo0-)JlUdV$x*K<1JmyH{G#TVegY~F0`W)`d!d9$=djI5U`F< zFSLy!w`{`dXCq|a5$Jj?x>wT61feFv&^ngoA>4d&HHFjjakJ9m;H9MVp{*Z=4};TGAaEaG;!lWT8hvyfX(VJJ`rjiK zdFh=gbiai^g1zR2lJ;}dDCxhXV^b!KfHklkb<%zy7v8K=CWSd#1~28B-AL+PY;zR@ zeB~zTEJi`@q&dYW_nDV`g9@$G^pir2LI6i>h%ZKtZg9GxZqf-2*qaU8`NLN(K8O89 z^}Sv~9d8DXnnfLsWTYX+x-3zIV746Q%yi~v#n`j+>>!rdgwhJsH0EA&c*qhCHzpRd z#|PSzTFqZ;``g9#@UpFFXwKPnX74eV3H)%SNV5^LrhCh%H#we3EIzl9cr}{23w^i$ zT&!;D2iGlrL?bGR(NSRGht!63t$yhD4TtpUM-ACX0f(P2cHM`9e!iNys?hQN{q55G zd?qi=*OEt$P<=nZaAT&%GtmBnM@?U=5hiz^ z4eWWD*M0;tw%|O6O`PO{9oNfaW^msN|6>3LRb79Aeo*$dVC4hEgveey!!s`@QJ!w{ zRYeP)O4NI<>WH6=ibqGNGDrBadnw4 zren=M2x}4_-hAk;DP#LM&n?3))cIGH=%GGOZ7+*1vtr@w%U3qPP z6#FrO(^QB6j7uYn%&I$Aq1J9L_vxKjK+>0@vVUc1&~P2eDPnbJ!uJetzLio)+pe?fdO!jXcCGR4Z^ z9*Pjo&ctjIWp2MjfXX7 z11yaO8`)249a_!cA!L4Gd*aH9+fDT*lX~Zp>U=&l6PJOs5syT^fcbPg4JP@2HcBAy zJ)aeHr5fEuws}W=rKp@SmlsvH{aDGyPZ%M=6T#dmji2~+ZFIMdkXMe7lSkTtivbQQ zl6$rR4!vY7+rx%}9V*LA8rCZb`fWYe8S_E2PT(MUKdkw99g0Z)L7IdtmEO}9cPDr+ zTt+?>ts*oz5$F-~c-7Yaj~+vCZ)QYc=a2pk$M5~MKbhDHAooQ-sfa#3(zWvy602w? zV+ytB^vXgISE|SuDduDDZIAke2k0FMAP2vtcidvHT^ z9SI6C+c+*#NieJjG&Fzmt?qeb$wMQypytd8{do}#d;Bb~oO4qNCLRZeI_UNfoum4r zmuz=9l)H?~2Y7f&k>l?ts&pNjH{jbv$IE7A36KeQ{Wm?=mPQyN2nyMTOPnSjELHHm z@+5CK2-m7wXOI&_R0&hQBN;bsK(cyv#fm236|oCCn}+XaFtXie30hc(Qi%&V(}YjC zaxif@~ZH0R|WB z9a=I0vl=iLg#s*p^R?sKokdxYUN+cPHZ8~O6^E_6o}`ol!SR0S6`KjVy3tIJGZV8% zw7k=BHIYs+2NNUGeLz!#DG~a80WwE-W#++^Y#jLkH0f0DgQj7CqHSCQ>ya#CDIz zR=IW6p3-2N8c_jpxwkHpw-3GEVdlry-?B+>-u1mXrT7bz#7x_n`Jb_noanBPJzlT^ zRbRwLs&RxHR1O+w@snAqxS_;6bSsq}RyqD~wSM*FY%Bm%Zc`QD4O%oi^>u3)2{ISC zZN3Xf&8HE?v?|65xI?KQ@pd=)r*hn$AJKuI$ejcceM%-SSu$}9>WadeBj$LEs`7Pt zD6(Xxz1@u|XZOnj^QW@tLxTnsA8!h8Wj%{pKyyhz8bXhN7zp3fwd;Dfx!oz*BGF*yxLqgv#V8^e}%qakQC za?-Xm8Z(vm1NA+`3#%?kOeq9IfaE%bZIry20SjsHblvx~+dk%qLy;Dkbtvy#xZtxL2Ziq)O1cqA5hJtuBY;O#g7Uwj;H z_44yCW?CB~6?@f$H%|v>|0FN*0{Mv3i|ndcNNng=JZ#oA{zlIz47AbxxJ)sH+6yz+ zcu*QAg_tFOc+3_&-iGJa<+64d@3+ZSU-m~syjJ=td}>)Bk24`HsLhmIrdL5d_AH8tGU?e&$_Cg|1Siqo?>ZE@ zT05^iyFMC`QBmYz!-2=UfkHNS28=0km+#{@i~=Ru-kvsT-O3dLEbTBP>6k>kGt)b+ zuQS&NO!>3F*&V7qvHrcl63+n2HpTINZ)uzZUrh`k;WME_M9;-&#T$x-V&|x)NuwFpHgdwO07Q! zz&#;^t@}xT6W^jXNqQ?G%)S zu>N-ex$q+Pa3$y518Px04R-pFaVs`FgR{k-bD3Z@c<1CJo>~=tlt=;~kZEt%zZ2j8 z>Mzzy;crH$yWAV!5$dAfc=b-?D`y-nqo>_5>2`xkQb~sZ8QqQqV{*_>X^8%k@eeEY zWEdw{5jmD0Y^MpwYk41L+abo_^ z+#9j6A}O7NTPQlUJ8-sYU&p@E^gX2Ss(8pz!XY9XGVU>PNRgB=b|_+#CK3usj<6+M z(p|n>)>S$`W#4$22n#Y^2UVSt|6a~TXe_G0 z_O(;al*cnSmb*#!P?F>tsffOItF(ujSZno_1aZIMX?`nZYe6_uSHLFQ*;u#8jS1Au zU@bjO?h5XHYyD8ig*B2FLI_u<`$gy3IplJ6ovdCk`Q=LyeE(8K(8Y4$8yQ`?Mea&}3 zj5=KKxcdC0R>9mBZ)Tzn!CjQATAjpN^h?mq3wV;)6@TySstaCN|1sr^L9naqlaGHi zNkC5Kd%vcvmf(q_{j4IrfgF%HQbb(K;2cVgq+tD5cb6bQV?xN%tPxEQfUXpKmi+O* zOoRxpk8iI`G7OWDY=mC#yx!L&Nvi+OPleh)2Q*v`BFqOhvDZ3hzlNpkAV%RIv%AwZ2K&g*t)X2x8_NRLPKB4@DLOAR@I8~)CpAA*@nbVi zT(0SzGV*P)NFs~#6rP%NhF~c=tqN1FwM?^@q891Qwx<`_;MV1k-XEFMG?-r;{L1q` z@5u-8RG`9C^2rp1q?6Pqqhq9c7<-%}oY`pl^}d!I6DkT`JdaLI5!*mO*!PEi^8UoM zZLPqh5~R5Ip6SGNZeO8&5ZEst#ap>2D0^Nt81MI%onWi^^gK5DO6afsHRj-?{VYsB zsk&I8Iy>}xP)b|_?#~t}sKyGSEU+Wxz0WzS>bYeh+p{oMn zt9F672Ot-uf~8c~pi5)e%n=hah&Pl!kstAF=w}ZiPEtcNZrwvi{KQ0;ZcS?du)v$W zPBBr~xl1hXp6M)YC&;Dm+NL(PE!x(`fMkQ>I|aijmJmqDTWxYOC#5-PYfZyOfA#q2 ztlx`7SHqjiownQSZNY{x(lISNN>gW3;La}AWlPLB1su-mrG;F+->*Y$7kGzOF1rd- zQ)dpbW_|i0XUN^#tOBLLow$;>wl>=X{~F{l=$eH5DS7YN+bGJhu3hSSMR5#JO)2Xz zIm0P=5poeG`Q(L;(KHo<7QlOMaO2O!5&yTZK-hcEzUuNYa1novD{?1~2!Wo^LBxbt zgv${H`vwn6`R#`!XC&{`0?|(pX#-Q$|K$E_h%j4Nv z3$#KpPZj&?0BQNo5p%AVRPoZ^Rr%APgFSz%XVo+j9R(~mS{U@jh;FO)44#|0sZ9F? zuBTH*<7vkP6)q`}aWvnhQQ{&}DKwe$q@7G7Z2qjNUMBrcldM+kqcTqy)?9Nh__p~J za_{4J`*q7rA&pWQM*JnHdF6C*I(xBRl2!Dt@G!@cc#EMmuJ%uHFCRqRM`J%Y#zEIM)=uj%lAQQpxHZehgA`@2I#I&{^Q(q6Ti?3DWre?d z5NVu6GE%*Kym^$t5stpmET}3xJ~eO%HLsbD;k;DHhfW6<;tc)i_owv!Pl@CmCuI&;tJGeE->#V4;CmrF%s||(6mX|n)tiiqR1q>nGTf;lBXhd3Mm5t5BzCM zM!adu45ws~fq+|Yu)sK*5H0dAjFSY{m$}&llV~I04G{w7y%dP|QdfvjKttcVQ~t{F zT&nI!J@L19lp8n*Q=@FWwFkLEZkffMB9)*vj(T?u)}WqZcZOFhTH~-=;?Wng8=r~Q|fFxs*fDe^A1(U`0cAjug8$7eYJAv;#F;eD(FPOj&!riblY7MLDu>>63xL9ZwNjuy-fz^x69#aa{> zkq;xOB*{b_V*(S-;@Gvzbq*?C(XSF?+Oj`dgC}bK4rNJT8B5r%X62uhBrXQkwqvEN z=_&0b_n)|Bi91ruv>l(MP=SAvK)5PlWa6SukKaGhT5!l9$_&ka?O5QYE^v8vzBIgQ zco6jd({6P2q?ac1R#y%256jk&X_UP|Z2T5yTAfhVuP|0ELa$WrW0cSMGy+fFCV$pB zBcnbamKs?amfohW#(Rv!FgMm7w}_2AzB)IW832_Ti+{YZY)n;%ixk?+(P^0W=|f-t zv8S3o==QS%uB)moFKo0;OJc<%cgT-oJ0srD06%H_Aj@)`YW<$qG0KJj+5Wd{=LR=q z5f?bv|6TyScO>G0-4W`7h|S@LcRSpY-7}_iyQv9Pw_%3iL3_>$KXsjG|BS00E17S& z!UnD19YsIrV={fhp#w5goa3ZejTz<5^|Ut1)-2ZE#P2*xX&n!78V}Pv=NYyZb9mm^ z1PBLLtiK3C<}yukoMPrKax>ed21rmmfp>4kDsg<&s08Yw-P4c3h07V~Ny5{|84T!K zb9^r4>)wPQsA^U=!@9avq&XKXI9G*EcKz#H`|KRV=WS95#lK?oV>Z;o&zB9r%75ox zs+StEbOkXTslQqKAgOGykYP6M)cm$zPhwTUq9c;Glf2T>1Y=E!hMRiO>rnI4QrpDO z4Wr0*!!G}@LE18io_eWAIp4Q{jCXG)*omWrVpu+00#koQ@ zGuPy+3OI!O<0g`@5YV~S8xYcKFS_myDxEgI+$Yp~ei{whDqh`i?dqeWoK5itSe@TQ zIMNZ$VEj`N1>~uBpIIVO^YH{r#R3SAKTIFM{MbgBBB3H*Rmm#uK5JB!yPDQF6}SLh z%4V|^JWMuU#?KY;PU#iFrWV}`!ia_NL7L!r$aJ`u=!{BG^ULO$y4O)JtR0X6_FsM! zLSi7)EXS@&17TETbm{zS4&iTHl)sRuk9!l`BlCeP>x*!-R}(k*oX&BvZw>|qWx|M> z=}V1Xv!fVj2JtJP%qLl<;*@(upJhBNyeeMSQ4(4=1KXHIkAYgwF*6r}G_bAE6{N0j z&OZaci{D)Znf;mXEZiG62LSPAlwkKCv3~O|cqMpdyx`h{C=?Dnfk-HV_-F(NW#SWv0s8276z9Daj*1?|t%+_w*}~0wG~$(D+gsC;dN( z$!ruAd7UjrKf`DkeF_%I9TRY*a!}A%?ML7ELPi0L*XnpC$X2<YbhSRu@yni5(Q018$9)mf66|&8z4Pu)$VG` zj*Io<2c21^=kzuGEl00uk-v(L28JM_|9=h!DyVRg&lTLD;JjUA=y?>YD46h7a6fFH zJ7x*C6)Mw*(30(Ci!$Eekg%%j{le;%<`7tiexfjyopqoQW%=5R`bVPgvSL=zo zRj!P>NvRkBIk*t2G;MM@B_Khec%kQ+bNEeAy}+??i7pq@ z2jy?yEIuwl*9I5Izk*iO@;STpetiO4e5qro?jU zhXMK(?L&uiN}1bW>c~B*7a5VVZGRGZclo{Ez1}~BkkLMIPVO~m-`!WBSa(1Xu()^w z&`3-I;eKv?D#7fAzo}GZox-Ht6o3yYn?8APuZFnce8+16SiH5Le}U{yR6aDqTF}{g zy`L>>&lzw=LE>{g&a*U+9n#e!qkGUqJk` z{Eqi8G0#|tW`QB#CNARXT~&K!DhpE^6{eEUwng3V65QR}ZO9i7wnuC9u-1LKQ|d)g z!7*|&LnEjc7LeZVsAsRJQv!#{l-iaf%ctib08}j#Bsq+U%}V=h*HT+(58&NQgG zf&uNX_^BN8UwU`I+Kx8!64U`fSBvf6ss4YnM6!ygd{9`jK<~rRh&9SzG`Ny6E*Ha! zt`dQ+T&i)n@ly*8o&m`^S_rqaFkRlxNjYKIwHwLFHbG*uL}EqPO(AGq^l5zHd>+X6 z!R_g&^{z?mp%Ev@h;t3J4|`+!cK*x@i%Bq@x(4P5PwD_~e~E zCjx3FW~@i;!w5v18RK;O+vV^Wi!R1}P}upsaO_&xl%)Ze|BrGK_J1h%;AjKASKNPN zdfxSOcn@G0n|;I`--!RtzBQz+k>(p;mcyo(eXzdPcD__%H}q_CTk`$a7@$A4#S4{& zPuaNXvXQGTqV$)u0x$(_wKwgsDV&ngqKg=#Pj_YlO90`1TDc@}hVWcnfCMV7B_X$* z`|&t~d_x4d+1X1kxrtwNyQSF<2jh5=fYf0{#2mLd$AE~zcc7 zEIMukjdx{+lkOE+*>qBK-N#gJpMz=*dzHMPaSTRtb>+Ky?CE1pEAbIyiHOT!2@c+;Ls(2cYR&_Mn$eP@o?3-5I_+1+7 zsD{~3SwMPYI%`+MT3bM@O2`^&uO+X3QhfFo!8wA1QQ!={1lc^ zv;&s}dJg}5Q?x@{$O=!gnZZlc#Ml%dlhWIY5QsCGlj&O#&0&~2Oe1cQe8gK9l+t^M zCgQ0j^x#BQ)*incI8-h}x$!mo$y?_fb1Qk@p>wr<#O@?AHB#|Td{u8Xx5}|I2!avo zO{G9lApg2265$9}TBpSLWGxq1B1U*y2Se9_tNsXcB%Bl2pR($?cUn2@#l`V^Txv*h z#-(2H5CwheCTX)96ZpsLKRk=4tUCC+FAb;EYXeKD%RKlZmGq3pzU+1LWZ3^WX5naC zIfJR7X0DSk7H{@h(S}Aa`&=Wf&3T(d&l@y-a`D@5A2iRCm+S#P70oDMw?_S86+pL~ z4AMN(Oo@g@_}9xbMP#?LUMirVgd!ayY%O;m28A1b=*u3~)iO*Z*&p{Nyho;z6yvOR zHwN7}@g#9X{!Y-0zRtIQJ!VeyhDp{EY-qzxnY2fK68U}k{^nP2Wt=tsky4VJFHonT zhDr=uFdWEzeI1~9z;ePN1YcBx`SE=bBo~KQ*Q%?FGuR!Dy&e~BZ&irnW-8aAp)j7e zW5&GMDo$`-(z9$o9V6>Sr8fh|!DwD0I|jQAmB#9}lO#2qx8rU6Oyiar&$#VAB+Dk1 zQ&|b^ZhD7w2TLaJHXM#@*%~Hjf*Iz1GxXkM@*iSbY+aXFW?RveqWvs$) zbyqCZ6zJoN2|hW0y4tG;xS7CoF=_5geu*YH50w}+VDF~r83Q$xZUtpqmk;I#j zSHej`ywjTEnF#oA$u(3EuMKoa@huvnVdYeEoxl9;}R%`wH*@NhFj z>gc6S&2LQ|k4`p@>t@lOYt8S$maMxTcYf0G@yT{-M@60-<}}h01@j-fX!dxhnW9({ zGo4OK#kS>RpN509}KIq;Yf;IWW44r~IjmXxPL>!YfD1`+pf9`{WUQ$s&L@rts#*f!KX zg^xaR{EKGEMu_gQy!lB2!3VhpHe^3zv#@sa@LA#SkZa(Pt6G`hkJ%d z4XmlbT@;hX&Y zLU{JduSk;HW~G6;JHHdhuRXF``GvX*wAsffO>g8dqvCU$pVDAE6aM!DM}bo$7x~!+ zcJ@a61N5o4OUJ7%;f9(EC6YBbk@35z2R-zvP6HOHcd?t!J{muKDuIN#G5cq4qfBjj z`4y)%YEzuG@~AR1uXNm#umQ~KPh9vP#f%zYRuDNXHx7;@`JC*S4E)M<*#p6K$Lkn8 z@=2jchcTGCkaW3twh`spK}(`_)z!|3o9Qs8sn4b+kF!8{%CGQui$G2mKpe&@9zpw> z&oPyrf<|qQAI`cvpO}rpop(z6v9U_wd|OB?c?b49-qq+07V`tyv_D00vn5#CQ*!BS zdtuemShriTJ)^&ntHHvzZ| zo&Xfpz~uF0l}~lC%2Ta?%^AYK{^C9+tf#t6E@QtSNxiyB8E+XWTnT_b;Yh_39Yt}b zsC}T@YCT@5&A98Cq7!0;Mh%2MWTphjQY&`y`Ly3BcNf{>gA3bOE{wJ*N_YBxE#H|6 z^Y%16p}msgz+Fr!nFOayFrpT0T|0$bCw?b$Zt6jIpj`D&Rcw;vW{*Ks&w9EPq^aOd ztQBKLi7U283dCBV0%1B%PF!VFOaS_n1gy ztZ41>7+C63FY=_HSkG5(nuKeUybApY!^@simsrtU^-tOQ*~G7frQlRxL)XUu20Odnn~ z>i)ZMb`1RAa6XRfMSlro!X*S3El82^ z&apvs0j&6|Ps&gdBzbOpFfH!qAT-WgA<<&9hc)0gC}EeH5C~7VR$?7!ZymGoqAS)5 zb>v>}=yt=&I#zH=JQY!F>T|H?D`|8lS=;(38}Xc#nx$C~b#Xj7y)O zjf9@7GE8|UQ+LMAMc2|m+`d+^Bc`Y(cKi}%t*sXcEA*&sLPE(dqBixzRP~{*N^bL* z94;-H_uZ^XllJl49{>km~(a!!A%q*Fu!yVUDq}M(TJ! z#L!YjYo1Ab0Ew!lA3W{O`Aqf~H&J$n(s4g?)OQ>Bemeet)V+0B)N9u^3<4s8C?X{# zpdeBL0s|6?gtVe`Np}vNDoTfl^Z*J1QbTul3^gDfLo;-Dz1R5MJMQoJj_3R5`{$iw zv-jozW`0+#b*^=-b)JP7geAPQz+}I+#%(;<;LzW=4S0|4JtE~E#l{7ve^Wvr7@cNF zi_-R0m*==&v}FzbNh0LG&U+oJSaGjFfeJ%7n&$K?#q0go5tD?#jZ|>SGskV5NDP`$ z8toUfMFrdr${U^5-A_htP!TXQ`jO#jH1MtNDDJ6u6_D43#-UZy?tBqK#_>4%TP6f@ z@(UCO^t^4WT<~(>1j5DYYRR11rY<$b1OlQbSFtKAkG<-=iRygLZfM&NTfjqS$7!{T zWs>SlJR@`^29*T6r{!bi_Y!q9CJrXFFe;^E>z+vlQ{`V0gUg(qw>j-hB7xHB2)~L| z41uVjXlz8!Q1%NKrSg9Hy=iB<_CQ@?6^0Z&r$Loi9^>mgaYWJV8XsAbJ^L-{#4e9} z?P&19Hx8HlU;grUA4gJSg;U4@IS9tc`Ed)*(+fIsc`nThmhVFSXE6yQv81|hTD^<6 zvtg?XuT1R($^Z@Xh*w**PHzl~o0O%CHW)0~1062jPeoK)Sr7`ialX`E6uC z)lthEKe9SZq6Jo|M_3E(r@;cE7kB7DX*1QS(zl@>-4ZTMfF88i$(T=ZFBWi57X(28 zeU{V^#q4{V)4hh+f!ScRr($8Jb=Pc_!7g0r=F=D#!2%DE4b0Ag)(c|;)zhKKz0Rw; z7y>MN&I(V^L=$f{g1btm*!;0cOo&AYtGcuV=Y8#^?)X@PWc2;d32`EeHVnjz!#As$ zId-EI*83MGN=R-YeF49-`OW%ltugLPEtgqLEw5PJ5}BKbc4@i4(#3Mz?4j;+2~bO% zh-o6N=x`m?ga$!kUqN6O^n>};GizRZg(86?H((ziPA>J~tS z^!i-vmY=L-7Z`Qi*0ygUgKU(~F3g1o2xC6IlChw+% z9WVm*j9gM3GMX8zmo0-IYkWdLl~DS_FT?4#TMQ9|q-+Of4#i$)UQobm8V_}w`f(1b z8fFH3yoc2J-z`a$#r-Vn8=7_t;3n+}a@zuorUw06nvgI}uf*$q*(b(Y2Y!^I=<%Y!bz`V08IM#QTdA+ekh{<@=`R;vyB^Gj7U zpkjM_shBq*=Awp7(vv(0%FX-#CEnGsvyRy8U<6!s|FeRZd|w zwhmYJ;)H77?%8$x*W%3VIQ82hr=FY0b5w7kr|yv86q57~3Q&Lq0_6=fb*V9T#yyE7 zps5Oqr}0XSQ`ygU`3kuR&jYAZqn2K|SQL4M4N3%H<9wf%P&3b4{?vn^ZC=)D6Y3fW zr0n;4%|BTo%rfm{$^k=rS=)bxP(=^wD3%^?2(w(e8+IvoS(EV*8!oH4i7mYjp5V{A>^n4-C2j# z=!+hi6POM&u~mV>W~nRN%)aPh6_L$th1d54qP1^%Su>M5^EK8%zB44-MN%Ly_a|EG z`89xk#w2_&!FdKK{Z&}2AZ60!T0wJabONHPU*6F*$>CkQb3aNX?zvOS;laV|az=8i zTJ28MY@s^4UuwAM-EfhEScf`WpVM(l5%(veXEQhFe)!Y%4W)T!5k$r)QipNT2&5j>Wby~D_Kwp7MXisk z^cq^*{8$dyyxsG`Wrw(PxGR7#nzZoDC83OJSQK$om`sXJR19XtqG!6$P&?KE^%`S=aW4Z zbl#q)S@rxDER`n^-SNhoj{}fg+MHE@6kn87Bqm0>znl)VC^dZ-LYCP~26>8xa~mGX zC;=rf-!hc9R%LI~O|cNmyc+UhZD^u4lw;Xi zaOrBUCg=w76ZT9tOIIVZNNO$~N}-k`|5`%KWz^{GmnGrv@DSJR~?2uyc^baZ|hJhqAiawVNJ*jfD$edpzd*)Pg^-Z&jijym;4=-i3%OtysQTSe!^} zb-@FG*(hjI!XQzBN|#6T&m&foxJ$9;5_n?83P#JVs~CGE7ar+6sd#+6)I7u2Vq9pQ z3qyCA#@*@#4Gme>NaC(hxBjqB<-RI$XHzn!CPxp50mTzh9SIIgTAFf|b*X+Iq_u=vKd|)>Godyp%Oqg$}QnKJT{XK)0H)4hU>!$W8 z>i(nBu(x;egYyd>0A8-`JQh?`jj@_iW{vnDe2Kw$M#7YK%77*U(#}L0@s#SYa>Y8( zYAWg=G^;9Uye|j}_xg$=r=u8eG)_r?p)2JbV<;}6ZfZg^nM;|pn||9;SA1!fcpT9vfNSlZ79vXIAATv)OP;;QCqey%wHGD$?*&|#0D>h~pc@>P``xYwu#DLrH-CtQXp02?ihbY-624jl(~rO`(Vg{^sOFuQ zIpGyauk_m+!w`8rQ#XBFJ!z-PT(1ycAic2WHQIU3rSG_DAd6e?r4(H$>RhG@7ToCy z6HUi-nKB11p(a>$Y;R**zOi>aSVRsbE;uXz!6u*_be6(_!OWp7p>GeQ?z5EB;Mo=>e?I7g2#Irqwqitb)Cw71b2w#8z|Kj#|f@uE~zd zK4HcL`h9%@a}ozks2ot~$XOqGa`vDU#(& zNghE6?co-Y!wFwwL^NJ$vLKW>$>+k2U9YzKsLrMCbP_Tfz?AQK>=0zZ@Ye<4y{l0u zSQRBo&|FWu6Y_zL05rc@e0@#-I)9@e_Hn-iBi(?>?n%l-HG#qhr^-M{X#u0HV~|?^ zq@VU2JMM^Wz^9q=<0~M%N~|Ig%Dy-~k2i;nrRUZrKe79{$sWN%{B}tHHnz0Doe&@E z5T>)72a$G7Zl@Gw9rq2jyxp%(K7YInzEazv&s@(Wl2sL1@uNgus% zXT|e|>KJH-+^qJF_kH>N%|~us)TajFBfHBkRZG|y;ccvX-|Pjd9YCf;V06x3H#+v2 zY*nkmNkn`il>OXt z{$88JNENlO&Cuo9l32JUyy7aD<;|@f1lQag{Ut<5NXTx=Z3!C-Xc|t;Hm3raUg%=i z%*F7;M2Mf?)vh>R{LHtqYGi+9cW|HYu`#U}v~+_*WEbbv1VGujI8J$(}Y zO$>_)1f-4w+GsKIv11FMs}3o~K7JNMlCZ(FEtr zK3n1}{^zE|a4?#JPLLKvq0_UZCJqP%M)#imtrC}>D_EX;`Q|Og?513a_a|c}SCT2{ zn!DNV5nqp$*b7Ud=@EXP*Jl6TDCKRKReyUft;iT8W?LaD84|lte6D$=fFIl{5(pQ; z$(}8bC5pfc%BScb&Ve?G=~1AKOo4g}Fbi8;;6(&VEL3MwW5cshV{g`r$+>JbD{(DA_abiJ(LUBi_L@6+{`4yoZ>Eq_Y9 z-M_kC!Sb+##iz*5hCDmiIG#J@Fz_>;-O_}KdfrZYH!I<}(ofKpJQ8AB>n&fe(B&|C zx@fpws<H(}LeEONixpBM zXN-$4J5~ji{ZO1%aW!L8j09BfYihZ?t#v#j@|^!-esm)CQDa%uTTI)tk^QXh(i#iP z@zkDE&Me0?pgPv?bcph)b4F3yl>gYd@h`vr=o8s3OCq3gvUt}M{XLU%^h+ZP@vu^@y15C@ zhI;Z??LjAOfIS0nURH#WwPWs`jy9~h<_ZTWw#Hwsyk$sGFX)HJlkxoM42O19(3O@_ z7(4)s89fhRip}K$1j=2Ni(}L8ai7+wIE*J;)%SeMeG{}He^eiCE)FN7NwD}Ti(kk7 zVjRqGVWfB`8g#zPu#8sHzzDky5PUXD7)r3%mo9GIE+Ov8-dJhs$MeRBN)5r%w%rH7tN zXKC*SUZ!>v7V4(=&rq(NgX^ThSv^0jZe{i}R?b0S-&Ze*0Ut#nHcszuIW{&K+`r!W zVmh?0dT2{EDBQJYRP<{%TZ7Hz9`*RPkB=AeQ{3mMr936u`X|famQ{lKxC2(5xvz2q*}VY4W9-UU-!t zJDt=^ui7ONQ<15`@sQNO0O?>4dzTK?ukiKpS$XIBrAmai19I2$>j-EGE#3HdPdJCa zrQ%b|xw=5MmH2NU?kDgl1qzZjSsl+3oS2!gOgwg2NvOnG8_^Hr?UJl?RrEx$7&I(YZ|W%s#@kc>Rz6vK1V3aW!XB9xN#3V4iDxaBBWPChNh2Ne@w z#hlWZMVj=@CGNKV;BNAuNwAF6)-8T$7igoQ;iXpV!{BYVq7BTCVr6KiZIBZy&wx|K z!KRMz2dMXHzzJl=~eu=^@ zB?hV$e!i=TP8AT~wi`7n_4y45>ZW*+9|A5T}dOsoQbg zX&-irF&PC?$NMYdE9mFYT|sx?eL`V)vq5x}RX{wvTmAtD%PfZ##-=AxMl$z7{Oktd zQ}uohrxg6t)u`@uRVT8-uI}-L&jd1(!dt#Ng2Pc#M*;Rc?1Q2YwQl_Dx*e1>)M2g? z7OM_hSP2IOm(FFZmASg;09!Oh0q3Y&Ft`)G3gX8(v_>ihZWWJR6drcB?V^Oq=MpTh z*laJ3-C?o7lW=S@`i=z{-{t=U5*9F3rXkB%ihYVN zXSIPA3C7Uk!}^k|+$yR=L`lx`y`*M^#!XnrSP9by*Ra($uZkoY-zF4iZ7a9nJ-QAF*iBwb3esn z5e4abXbJ-HYg$gQisN5xGq}&!qGK85K-=+B*eHJ6^@^3(pt6Iw?!5j&9bz8qT!o<> z_dZK<156r(cX{xBgojGWw9@`gn}yBk-YKtjogl)h2m8^$N-eQ*CQ&By!H+mYInpK* zvaAHoo)&(~B(jehES1_ttat!CRjgG9%NhKY70_nOd5J_q! zXuZxGY7M4<*ks*LdiW~t!evdt3r#8IuQGYiI_VkE9QYPP|Bnwes4)bXtFF!m}C82+F&6w6A`-(8aV z{`&(VWQ;uZ2LL6sLUQ_k1j)z{be`#-hBV@2mtkS?bo5tNGuoz9NQo5uvetEtg-}p~ zNUe{8yT)k64pSQ#m*GW<#;gJD0pZ?1-ukkw` zMt_3G8|??8dBR|Vl}8$|uGy_W8 zo-9H>oFhkMalxK%UyO}NWkX_WFM-%5xD1cjPkT;uFak&r3PT{dt7->F!HqQyf!^Ro zW^AANOb7}`2qF+jVpSxYx2;Dg$C;6b0Q;E+RLdTEWmZ9p)FH z`v`Xk$o@EVy;I}de15>=zq*{qD*g|nJjTs~u`hvCSPuQCAD5mdUxH%XR=hbRvDFu2 zO>P>-8>GAgpr;AYCj z^Wavq(90-Qbkq{QX;xyFOTkRe0gIJsvfTdRo9?g*bz|sh zaZ3B}l1_MmPgctD--REya0|vC+pAkkB0QF=KVFNIZQjZN1=fHpzKL$eo(A8==i)I& zx2qPa+-H6lN`oO{wQCM}U4F7=7x}$#)=_G%%anF?S%M)_Bc}7)2-kVmv85 z_?oSDrvm7!0!A1Xt9{z8#2O3a69y7wi?$8bBNyRduGmiP8IRDcwmqaL&8=}41-=f0 zr+0Y>)&-4v-yqLzULjSiOViL2y;W%atJTeCZnU!!^+`s5TF^Bn7z}}O4g@Z?`Mz&qh^Mhaaeg5Y?L6xy2fYFE zs@K`eLZSLa)1$7jzkqr~#J!YY=<%mr28HT=fDjYY zbFbf}b%%|AEu>!?E3F|~E5CeamhU$14sE zF3}28sQ=bq`-5w%$fSE{e7)KPRDQCz*`MeUD{~RI@NaAP5;o@>-R53CyYf1piUzrADb81 z`=XCHMfJ%+$)R$AJUP%XeE2Y0VsCo8&XO*fqetooO=a&x%vT8L7#$E02_8%si?TLq zkyZKRhf<9r)mgwj#22kBbhDX#n@B3c07(5MDhlXpPeoXaQtBp$NGplxN1IdlG9f}9 zY)mQRt)!VRTMgS6Qw?`7o2meNj>eo(nEIAR^k%KC{o5W>Ch*~ha>j*KB^BqpPKiNr1dA&|trKo_7;DyAR<5}EnaA)GqA{413W?nw| zsd@ntO`9?A4ffEU)A-Yp)577O>^%?erLfFG?D8VY4{(A@7KYS`C<96R`~bh24{Da6 zeC7O9X1F4Wa_KfGr-?()x_tijjyMQSn0PI>3soYIK;6+ zG+0-tj(BEbo$Q0f_a_Jxj@npm&PI!X%7pDHNm4LQ*`@cnx~l$;2CscdMK;~h-Blo2 z6=K*M!WC$hc(LE$c6VXuizG zf_1*EsY-1!8APB1umuuFM#6rYE!tPyD8yleb)u_Rfi6jzqHx};Xd;jW`XTT5_uUN0 zR8Pi&J7Nk^=Mmj8>;6Cp-Dzh;MDr8=>#g@Sv);ALxOCHpC!=<+6OWs|{aI)PST1WS zK2EoHhJmn|UlAro_w1EKOkAE5fGVJ3;Hbl635t*p^BBGV#avP+g;Kay&{sk@9T?Wh zW2a@@)+gx&GG7(w!UZLtqgn$lI+zX`L1Fe41nswp%~6rJ2yKvfYIoB>n+#`9m@ z3z*~gkR|sCx2ZVkLBj8l4kk==-x0BT+0y~F>qR7hWjJVTBTg_OE72!p>p$hxQGIm= z#5{tN0lgA4dr@N+C6_@kYY8(T70e-)d7wI~>e0^6rvSCjp457?+1RJxp}TMYwO#`9Bb-iA7PLT@CMAN_jf zCCXFtW{DkK7DF$#cAH2Au00g!jX@e4pVI63 zWlS9863U6m0I5``lbg(`5wT%%yb(=qyTd{{RYZ9va|gka0SwXZUcpq$AN6ptVii|+ z=sfY;JSHOsS~=Xx)T2Wm_tKS7CWD62;6|4>3b#Qo16DoS?+O3rqvoLzAX#t2T-iP4 z?J;0q6u`Lxr~*LhBqyKUb=~zYOXd2f0*`-psbefzl}Om!`@t6~9~lz@r?lB9qDezY zYwGr-HDHK?upA@Am7HvM$K-4nSt%j7JErFDG5*#V*b~&A0`cC|PPEzV&!9-5w*zQ8sqM>)WH%YIo3D@s?XAmTIw0BXi4_ha`Vr#$f&@rSp{; z8m8rOf_7i#&xxJTqtjKLPv$Qq#xG&H20TaXIR zk9de_%Uf+GFGYyD_T2%5V$>t8$<^Q1SI;wu2(4Ixp`e4Z_@HI)2!|+3fV|dul@ROw z=o~c$V`N%fsO%y9JF? zNelW_iOXJ7;)Wi04*!KQ&>a#!7~{u!z#_!<4S!DiH{;1x<=fY>WO&<#CgBY_T-%Bk zByl5E!@nv)d1z7D{gm(=rI~S-?$^=#AQ(s~5>SIp6l<%S)`SMY-3=SaOIf}Km6PiU zn;M!Kc~OSr&1qK_aXLFuoIu}t-L)-sred+6)kyxRwt=pvyZW~v(jRXSAVQoN0I6i~ zC20B>rcX7OVDS@y; zzW9PM6h>TLy`HdA6fU^Smy5F2|GZ?I1fj;4rwt1ZOMETNEcWpMSvb{hIhUZl^Qeto zG-Or6lx72}b+mSBn_SHGen-+VTB0k$r2G_z%xbF2!aR>^|Gb6#CH8{+XYs= zZt4ny3?bu_|Ar&a*X;ARnO>KJkKN8LI%xV<`-_ZfK_dL@EaWrgcx=N$MsL}e_i{1G z2X_r*H8a@~^Ib9)a@yAUy2Hnciw7GtWjb%HZ)4;s;G!g|uHKhlJC1zlb^J*7m+S8* zrch6%3rA$eU&N3Y_Q=F{gowEh#m+8)a^DI>I@Uw6p3h#X_eg^6y%0nATR1F*meQqG za;W>6p>Y!See<2CLwANRk3@E_oUZXz)~5L4cwD)&B>peJ0iOPBy11fzc0+9o7&gf< zpFk-II4%ZZYzK!IPI)8e^)c{8zklniZ&E0mxj7uLYJIJK-+jG!oYG|%PNyqT_JJ&H z6t?;E)(xi08A-Tk)veEw6hLT|HElGUV)kMxR*-J zgQ4lhuc9Jb02xbrlp!}h8>b+-Tki{Sr2~}sEU-O1q;0o%Q)C(lI2H06d8vmPg^&u2 zC)?2LZFARUOMSogoqskodDr5X2r(HlgW1>L?|IGTOUwRF(oq#=qBHioun7gKJT6Z5 zu3|kC)f*F|gZ@->q<5}=PPW7oA2^Bq9>g2iSl!}_Ugq?*FmPR(3T}6LbH?@U?|=I5 z3<2;z2|JggRl7&A8|UG3c^ygZCV|aKUs~=q57}8S4C!W3JSZWX{3)9~IF$B7(!+8y z%RTT>=t^FBZdS^T2WHLD(aH>gssU-wuZ{L>hX4Nk<<{M}FNeF^v2ER+OCCLk&@gC5 z+@a^L2py+SuC4d}ZBE4lJp7T-imO_BwaH8woD)MKr8lg;HszO2hGVZ%J>%-c9p_dwj`_)bSnYDN zW1s~HTS1D*K>vid#=W-Y&6nQM$=+h77mZEhlgpL6gwecf{^w2M1e2>*q6NN2B@D!) z8UK2v)erL4<>`=~Yeosf%r&wbtwW*fJ8WtbD-N7$+Ew0%D0Pb@goaNy?qRjXko)sP zfg1O<%BV>{ew?%QTl^p7&Ubyfrl1# z`abdEk5&~9UFy*(F;pFA`3d4fc3rWVMz(P8#Aa_5j`&WlBs;4F1<8M2ta$9v&<>WL zPEhuENw(`x!Q)+SsJ5N$4$9?fQ>P@9pWiuGKG3uLS|xbyRDGQLJV~H*VV6P(uV8jL zn%w%}m}a;%=4t*}$E)}gO-}#08LQsnsT;p$mpv!>)%>T!j&WzzhF$k#RfH4G)w_97 zTvG6h#)gh5hsAR+0G%@2FY`)>ih#df->#_j#`f5Z6j|AczcPo0Z?(7)W`D_hbn3UPg2)JizlufmJuu$_qJ&u3KBP z9}rG2EC$3RFxCBpu{m0+B_~_t?mV%qe#~in z&PRH_5{JU;wyAR__w?Q&tj>Fg)}F6QPB;T=-{!Snk)!cr`qsI{b);=F=ra6!%sj_< zaK0MtV-v@Ox|+?8A5F(C#rGPo0wuI;Nx1%2Z{<`yDlzavEx_C9NM|}8U2$Bd$5FSS z4R2@l^s^~Q_B2h=Q<)#U^u8d|$+JY*QcIsw=lOEs4GiD>XHZ=wADmx5dg#g@XTv4o zQdqWdjQ{Z(e1+hwCJwEkmNpj6;C^wM^QPlG{j?e>zxQ#-zqhx0D5uU{FebZ>=t%m# z+7$os)y?BgJ)6)T*k8~7lGSd>04n!F^Y}`iX#1+)c_ATh_fvYX*KR)BY*n$bJY}O< zyAWc+^UBzo!1*AIEM?a7yG)%vpD+`Q5ogDTwhZc5zYr}N&jVs;D+!-YCf^BCBqXrU zFnvy4(3be?CHvvjBC2h4>Y$RZHP{mtzc6|si~p!xXewW?XWbYrJeAID?OVNd=ulHb zd)8sV?2hfFO}p+|A(tq=xujWE$n1XJNw=76OCI0?-)#DIdTvg7G)zHu-2FrVa8pLS z3gG-}qLie2_* zOXnUoUCgu{Fl7*~xv(vr=qY45@G}K3dM}JPADwtO>a^9YZ#4RUAV=Vz8G z&LpVsnHPh5)O>du&nwq>w`rCahc1(2sQha=0`3Igq_b{}Om4;oLbU7F3gka_bE9Y9 znZAg;yKpg~)-Y3?ol2W+lb__?us`WO?X@qz7v}V+zs#I3c-ZUu_AvHWvCsdQEM<0~ z;Y03AtL|Hq9X;fy**5I)=K>ZLq=>osvL}dKt6kY)q2FiF?xRa$o6gY?_N*uOx~U!Rb`-ae10;K{)LzWR%{Ufn{>-4uevcgY~I}Z`B&>Wh=~VMe4Y_9F|cT z9(D@}8@nskaN^%je^(qU^Eep(Ys!9(bb0;cwwLkgOEIZ1p!ew5BF`E3`RIRFt)VB~ z%p^t4k?q7-8BW}gd}?}6!OPYgzLq!EiiFSSc=>SsYnd5aT1OkAeQ@9AcaD%vCSJ3A zJy&@E)AkjLnix%XAifNOmlgL?2;tlBg$M6hs;)045-zW3>^Ohc=4@TeT3)XVG(#%? zvuhaBG@TVWFKH*fNotW&-C6OF8&|b+GFlEewJ}e?=E&Mjwk5u$S>#!przZl81l6v9 z0i{oOdL8L%ag52ohxZoI!}n`#xeKAQatGn6RGcX}XJJeLUy0aURm&@~QETTL&eQ$U zy3KDR{|N8RzaL->r9pb`JTex0EjQ|t-7%l2fe;vTi}Zxainlg_wO?=jW$`1FIi6;? zzSv7BP$!*Cw8d4R0p*LJJ zIvlH5!i};%pJ8lGfVo4Remix3>PT3AI?(`w)FWmZQ_^Gyz+S6Z^%=T;DNukbb_< z^X~;zZagc3mzBtU5nHy!{`=`9B(8t|*TYKu#QN8J|6ljRcc$xCf)ey8v0zVKdOD;2 zHW~o|CE6VUc}A^xtWFFk$Gc0|zf^PMquBo1G2p+JPkkFDV2YHfII$cs>h4p69| z^BSd%jZLgPvt^7S8K{d*)hw}~5ploc;^JZ%!<6;~{=9%+$5;6_TIi1D0N=x*bjw$= zS9JUhtShg!jLDwznNeO{>P^mYSm+!Xxl_I4mYEP}V`%tdFiRy@M=Ef7V?+1RWiP`6 z|Ns4ccKKXWsnBZZ)|7wt8zbJo&pM+r)@O9um(*0IyxNmTVPRoIoRYGvI=+|(NxR?Y z^ykTP6o$Wl!>uH48FRc5RI+@R9j5GJ`1+qIh-d_*^#A(y%ENy^6bT9Id-4DEhkMG4 zlP;*1;b96E78cE7vxac73$yjF^K{(SV^8AwEd3G^sL9w=f2!r_(m?F$Q_lKyg+)ZD_^l|HmzT-C4mKv` zR)=!!9UM}?vV)Su%ZdSiW|u%}9bXL%jSy;qu&X!jzDk#;dZY&L`u^M(;=C5yBD&+T z={XlFzS;~ zM|Rv9G@V7G&BVpU?HnDOQK;nh_V%Yi*0( zEXr@*eK8%EfTToqqcKd3(24tjK0ksP<%q4XjY}T)3Ex_xVHxRCuc% z=l8GIzUAeRDfd+lu+@*i0&gB|%XGM;T5ip@1Y?FyK+2pCT~e$)nk6Krfz zbwsjgRSSsjcJVF_JKpH*o>;57^&Ps@Lq0r`k?d`;T{%U#uvtFJ=el1K^Yv@vM?6BX z^Muc~n#j-hbRU*wgYRB@GK)IQUjutE)$8ThFg+&%NCAEOfld=-)@gY~h5k)w$xSChTZ)If_ zGS?QKFh1pT>D4qjIav<&ZX&zd1~xdTS;&0-CQm&%IXT|7_4UvNL`=f?!6wQUt92+> z>qb-GK8s6hQLm`w?<^HWdv`Y<(Th!A2UF};a6-Czp-|`zdV2b~+_EX2vb3}`Dsbvs zF{7pQ(_b4e>%|Hg8BvEO^H~m2GDmhCogboZG(8SEobu>>s8yQN!UwULfG|CLh$g0w zn6QS|T;1ITD{=RI#J6uoHrcOJ{kScMa;}si`5u-r)~(uYO*csOCW#PENNs*r{&sy= zccjQvY3|~5v&?M3n964x0Xy^^vr_M%T6RGCNZ>X5|CgFY8u5chxQa7(MT}U<$5y zz41yXwi|b!)Q^vkPYi)g-;?;Xtyk<)Tlh0VXMI@DCk+_a-#HqQ`T38(Mn+->1P6ly zfS47@cU~WRo2NT@M)zw~DM-`AggM!BhXC{eVWwjOe)yb~Q#y=h=4gA4eA5fq{bDm@ z<7`duz(8cWLPGqh3D|?;Sv99cq{`;%j`pOR@Go~j>hipZUd?tePG@a&v-B!P5V_cINlKv5g&?* zb`v2#Z$AeS!kvl;Ch464B{7X0=^N@ftRvr_<2+KylJF;{efjd`chFVQqLV&hSn0TI za3KhR#FBGpzDkw4A$q!2=fo`Poy6{Ct=MkEG$HimvQ;&Z-Kq8 zRedl4?TzyxCMIreX!yXAzk>PO^!q&9npOa zK~Xa1#h@Cxv9Zz4!J*J>7z`uoBM;TFM=?x}_4N;NJS%JKysFiWKvI^i?d<|(6$h^C zH*YRw=he=hZq{X33}y+eji*QwViD5{;l2+KSE?OGM-5BZe9p*V`S9TbjgaFtUh~FdDVs|IWe(2j@NYW z;-TcC?E9o|-+>bmSVW_b$(~FH5UzgEmuZ zLkIZb`}gm^%2a+3|HS-bO-)UU$22&AFBKK}>+n~=CM~v`5r3qb^Aa2zn-L{o9$Ai$ zk7wrQ47aCTHYNly$9H=wCOTS5TN_r<>w@xN^gA{ffkQv%M0=It zdV`w3+8oSJXKuO1pF{lO#S4xD`!uD@cJf?L!#Au_uV26ROHEBBp`tR!*k;$W?Y0|A zN=m_18$lCrU>G{LwzeLpq^5>``*vq{4!Al$eahA!FZ@G*XQO`Vy!JSZM$jNfv!wHv zMo~Hvn4?|M!lI(kll@ido5EY~3p@^O<`QgcxvQ(ILxANR)%1Vh60wx*GZhdP#*g`1 za5h`eBL%6L?Z(8%H~5&S$#tiLC3Iyln;PYHm{?%gM$Gi&$?t17Zt&UW0fQ;4s2KLT z#@)$qqTHT*9eDYtGiS%Ut#F;H5S=P#s`uQ`MR~(vxQ>*v@>hLIzwK6PTS{ODTeDQM zLx2IgE8=nR6pSDsFp%4% zJKh+0>v3?xAB!H(1N(wNP(CsH;zp$7>%c2eN!*((W*b8LbZDf~DcgR&ox~8BOR1MH z14wS&dIv03NA*pxa47qtOFC*leVB;Hke$6fH}KZyKv&4)$C-`*!iXrZHMhOk0#@QKxnSG`_seA=wL6h&QL5Yq{dfJwvv3ugJ)cfh$& zgXfU~))HRD53rr}-X;oV=j6l(jCd&6i+4dJQ-&@w?WF_FI7j}#?3rPn!WDqspw(Mx zpQ@02uJi2?SA3+;fUU%U4S?iQfjRN>_xGQfpEvrQ`KB#a$SF&*+?=xV>O!lHBdu<= zE7EoP13nQK7gy8N)YLBw@Gxi&SY?h}u6cD4mT-Oup3!is+Rd-1s3;;j+IjK-ILo?K zleiH5JCmlfU@TK+zkfww<^-UC0fP{axQ@p}bHoY`e-Y<^Sg&^6Kg7 zne--Euk-wgvt^0?lP*%_F>1dBwg=ub5d45fWXFO~S}Ll*jEp6xbzo+MFOKF~RQ)kg z>q{9^;Qjyn^-nZF?6cF;cH`q7Zf<1ye1C#K7qRaDiOvcN8D9A1+s{cYcE$O27&RL4 zL;%}euOxOZ5yPni)~{uJJOS8Dhn3%~yQQG@p9z>?fNkFZO91c;ZawImGVlA2ZQS|o z2S5|TppWNgMh4C;TH5ZuA1?$w4szV80|Ks1pDbtte6>7U!~%!I%d4se%53!%VGw<9 z5k|(30C^O+ZX0-dd2MfPO#?@WF&2xW$vzi?80sN7r4nTm+#K92?++T8QD0LAqPPNC2)ZpWuqiVf4O7)7(NPrUt zM(s1O3|LqIs4ey+A^=vFHDKN~-W)l#INfPmJ zSnQ(01Wmy5Lp+Zj1B+0Ej`{MX9^jedmF&DD@HJ9y&xC<=SRi@=2O+tQ&Liaf^pKR6 zR$+6hhMQ1t}i!NrGUCU{+0~zw zSPVj3x9$O#jfIPgyOn%-)@G2bmY27&x{3g?LQkZUXotsUjlZui4#1-z=@7gPF9F_j zc5Y4(geG84aHawBOxLY(2T@pmjt1{NF01g6kmm008}GpiV?1rTd>m%}fcet#h(x&Z%3ij@~}pL@9w`bYTlU1Ci49-kuS#gp2%OyF=d-W85?dNwLjF z@)>A_9Kq*a-CG{;2icb0HhP~s7xyu%9-togKY4_R+mA#<66r+T^MUgUZp*8?kOgM3 z>%8+Dt6_nTfdS)Wl?w|%X_u#UmrR_TVZe7&v{!ALy)G&%D|5Bsi35fUuYPDK+G%yD zz@+=`%1|z1+_p~P)vH?o*R$>j{TcBF?thNngZE%s1qB7ktr-{?&VX4xIysr$+_c>; z=ZDm3YHQO}R8(}ua{HccRE5{qKMMl^%D^^UB}0)mj83EzoR@Cv(}Q))rUaXY{A2{c z{#?xxgZ`f~YhxvZVA)l3)L*05|75;%Wd0{#{gPlBEbYPixQx8~Jg|QA0JDSSL=Q~x z1(>$L(9j1A3?E7?hj{=@q`o?RadBZ}Y`lFiZVNry(kJKAwW^8-1!WE6pwRZJ9$ z+T`H^&-D{bEC{3vKp5MYx{$?rxSXo9t^J!alt9X9Rw`anK`zdJ<<5zXNSu*C9k9=)!v?(k&nogI@ed733b zg~o_}fK`N?*IstV^J$b?Y5WLBOim^$B=93kEY+^y;2Z zh?*Yf=zRL~&7Xh0l=&I=Ps*P0|0VVHzvjjMum7O~#Y=hlW+NU9e6#_VYV}4uWELLa zx(2)=hJM3!o`UR{+RxKFm<47v|4-_A0vp)Idz_q{FfpIndQp9SeGuWID6nWR?G9`zmlipaODF?^=S$j%&TQXC*=4Bnfh#ta`O))}h;*K9>mq z)z!UOR9FXZA`{8HK%L?PIzBzYmy4t4pH22xmfHbe_-NXanvSu(E#i@#%=w_83D|6ur>-E;NH<9JqNx9?5V2&Q-EJ~-DCoQhz(}&5wk{rx$X@WFzf7^#R0vd zry*NgcF`h`u#5Gjnu&TmYKa{fMZ)wX`X-1QkLxZ^#jb+)02ai2vXT#k{R_ZzE;$wT-4n6b6- z_otxg6obJJ&#xv_zfRc)33ffZ~B4FYv({cVoLNDiUWXCASU^Mu9hS z-k5NcoAWx~AI1u~%h#FWwTDIy?*ld_{!3U?R14T3+lPm30|UF!Z8h$mAU;1i+_bd; zzRMKkI03*a0*Ed60w51wd^8qFcU+y`nrZq!Oaucg zF3bX(J`4&n6WBBdoGg$@dGa=i6^p`$uUOxg=us@yd(6W9alNA`m0Ctb zbW-f7^#>Z0S^7~{X1uj@ZOfP&Z)k6CSO55U&ncSL6e|fSpyLj(Y5TMiiW{GRWkF4H zFDi-~8u8kw#VWR)#K z6A}{AraFVLF<9i}b+ENvI--0xH8u5d6eXW7{$WP$9WX%1WKqX_ z%%u%%zWyJj`qm>GVXbj3VV3p({H_05w>$hsYb`~pR!9KJ47M{`$5Yy(|^D$e> z78p3TC?9ZR_={47P+*&7!w2kWf7$WKT z_;@w199c~Z50;L#1W& zvIR|lSw|Y*quc==vdbS2_4mJ3c+L=1lEWoN@}a&tzqQm6;dIph1R1oq%OcrN4(D^m z=%~KgzX;pU^tDY-PYVJ%8FH$T@4Vyn8_Q%G{8tJcS+7Gx3hmvB>T<2S-+$vt05HJ+NK^u|2$^l|g??jwb!*ks)WA>Iy)*K13@Rv) zhv2D^Y{NxOO)VlSS^<3paOY}n+f;YB52+iJm6cIn20=E8E$_l=xJ7{3C%^ge!YSl~ z^TQ-70vP0$l`)%`m|VMd&0omm{?solHt6+FU<0A80m_2gq-GViUWL#PPM>ql6;VOtiT7;e!x%yAcv5SOaQzd>_=QPyPZ%#ciZ!El5AQ z7@Qu7cp6v<2sP|w&gG}qF@e-$ZEXz!r=rmqVmnS|9WdL8#KEdp%qZ!iH9mNPnS#*T z4U`M%H@m3FdpQFO>?7IOcp|U?fGgVpmIQn|)q{`_Wzd|Y1V!!i0_6u1{dKTe-qr}r zN2AWh)W(}_02nrE&GKN}xc`BUi5;0{(r4?E%#cTa=W$Jkv<4s$fB%@adIi zxXk#ASZ|9>8=((%8E2z{NE>O{l3_Q{7=Tj-b%&52R9IEnW5?cGwn%~<%0(awIAHd~ zu?5xE=@`w&5D0(#_;IBt@@ZURBJBuXZ{C)@YvZbMX`V{^Mklo}Wtap`+L& zVE0)1@y9I2`3N`Kqu8B=ju!FqB~)*^ED!}`8xq0@z5x*=(es~ftp>^^8x5QIpce>dWzj1 z#IRYw)x5&O+o14B>zscmQwx=^`e)K*GLD#4=Zi%F=k-;c8!AiJ(+56PPJsolH$2nCxVWl_6e8sIhc9S zVL-b+!Mq4DKqc9xBQ8EZucV|u#hNe-?aj|urGKp3^s6S^Sj<$4<4>K1t@0!w4MZbc zkSz=Kf~Q_cP>|5#QUEuH2x7;7#BK^$>QE4ry%~E7Nf|29RxvRG=z5J`fW-)M%UClh zY+Bx$l7N|ewyQ3gn8ZlnBX$1LI{iB{lcRuXmZyAPNBxng$$^0`t&+xiLq6IS6Ei zlSAJ><>#MzXLyt<;Zj`=%C9TkVP5WO{9*zE@8s|EU>|{Y@;3>FMCktU<40!`T_-1} zQ^_{xnK&ht)YWTwdl^KV-E}FLnJ6eMd}r!? z`*s*M%Uw>X=Ef(F9@*)vMDkchLnCNh%nC47mUENA5#LX@Vub;Y+vLp526Z>r-{I+q zFbhx2muh#~7EcrV!{Pk=by?X5_+wYf-pn2jjn)Yx*+b`ha#x7a{Ol9~=m6xSIL+2@ zvUoCWzM9)lNGns*-RW0<{lH1*5)c5Z&idJhvkWPMidD*0998&v>|kO80$<4C)F&`1 zi9?KY%~uOi6GZ~S?THdWvzn-5#Nkc3)RGa5!~?{g<1*3o6s?(5emhSXg10LU7JG_7 zvxbwC+!aW+&J+0?`Sqz_Tf+H@L-@{^pEi4`5^7PgYs(gQtTNmUnhBJKI1qCfjzsH_W3SJqV=;dyTNzs;X^XnLJ<|ULzQw zoD!FC^U8C($3gRGpK5FiLP3Cdrwg9i@++4yt1PI_Q|6{kDs6IIZN z1RcTI)&2F&T5Q>)Hrimh$b-PKDgW~fx3-QBAsapBz+99fAAiE460Qgsj7v~(jg(Yo z(EW~|KfeG05|DLold$pZ3@`97khRa;Hj&5-1$d>N!P4Q75}7mE{1(&Rl**GrV8~ei!Ixv_u|E3V1Nv z(@uTMb*bz8k20FIU)@;i)0eGZ60I4C4c(Z^tCR8x7KowI(GN+<5$ba1&h0=d*~!CG zQXknUWOtAF@gIrbEV*-Ft>B#ClkO+|G2XtZbItdZchC$621Q@EKll3(_(ZHwyEyCF+S|WWc)T}H`;Xz&4YAggeW+vb!7$Y@`uKqH z8JR7YMA`4%?0)lLX!9qY8%>H^&hdYAWoqPZah4+25P1XsLzF|+yy3FD)!wpqe0luA zo{e&KiARf)3u4|>Gt#_u4>QY3JkWklrq9{Gimp0sS=VT&ITz)($R9SsFw`c#I;O}v zvYv5%&7WQ}rRQtsC5tc6ndRr+JhiwWi%ZvT38Sx@k6uukM$b|;nQz7qf~mDyJnFLJ zB$x1ZW{yYVSuFk(G#%cWGV8K)?bnOUxz*COT_=+T&gr<9e9*UFIyrE;U^2J<%pyfg ze!o%hX1A)H(oVX`U3VurrsX_TmKG>^ov_UA^ISEzQ~Quv|6Ym)LAeTgp!anWek-n} zWVHq1A)b84p)JW!accC5W8MDEyrGHqkN>{6ZNibObOzWrZF*g`G^CMnL6dI%wN}-Q z&J&ut{uz!3&*{c3{<6)cZQHj)`AG{mLR}Ah?O9yd1S^FP9mWB|{I%4L zK_m_upPvt0msF?G*={=0C-=amZt*FsQ-G>^1<{M-9t+0?)OSMmed>Rnej^hgc%Fm| z*nX&p1&S1jsBnX3P*JpYc7BHIkV*ux0jcH{HZtL9;T4jc8$0DK07^1ns7yS!yCQs# zR>D5S!QxP#=t}HuF<>yBTpM~2%}OsnZJ)bUkBPKuWnQ{qzFRM^yLYUQ`J1^ zcTlCHu!N+t{`p8OrHV3~2rn2q!?R)nt)&?eZcZ4I}bH#m8%n4(paT19qN` z)h&T&PW-5)SsqKL0CsskYv8Y-Vr&KQZ4WRB`Tpir$P3^KQm+8xjbtrl=C^7+3~ki( zT@wReS{7snq~kmQN}y=}BfVyGu&@$T2vG0@zEb#F#BqGEQ@#M?fi?miNvvd0Qbx0B zIr%LblX|BCG@$ep5&$A(!Zg}dW`a793hoadFrXpWRsp*j@o&ukiR@i6vl)as=oDix zX(-r6k#~Rm{7HWpj46_+6iIg|YMn<*grA96U&Gfd;WsH|M}Z1b;)Y`*{ANvK{)>gR zf#99dQ!%tH!iXpd!2{%%(W;jnRnP^CNasY-Y!M5;73+RRt4ErxL6Zvyw;50i+djHZ+MFHam+83kkjl^cRg*+AgSsBFVbsfqz!AhKU0Yi#^NSf}JIL5&w6wN(5-7)%QEg96b%nlx zI*`$zo#70Cx}dqS9gpj%YHB03{rz(1W&2&%+3&kiBD9rf#aW4!Qc7M4eA3t5I$~l7 zYi;w?+s6k%#tT)i_c+3z){S;>$Ku>-Z`*?%nhg+8SYkWc+xhW4V67B#U6^x#H!<0H zN)S~V%S_tUI$5aBU!L-*Ahr~ntIekf9r!ll?G2zlT86X?Q!**XyPU*H4UOw%5h}B_ zu_1IZsFbv~FQfWfGDERTHJk&ie$}dhX}^p5_ThsEhryb_`EWCk^@Ho&RoHkx^JUKF z;Qt{KCcHL7Ng@90>nWmBf*kVo;&iQbE`@5Ci&J4465tvS61#VPj*=*vjpA3$AsUOr z92%{a__ka~00)G}HNXP2%H^M54PZ%18?QH;vJgUh1JKmz9S0Nz-Z^-dzXBg}YmVCO5^zrNj~WT1EPg+Z$=V%~WZjtBHS5V?VwndtG>pIHYF9C!>E z0OxBFu|q&}Es0Hsml%AZSKSAbpqg1kmHlv1v&{Tug4kED^fE1A0wKe#_X;jU7CSlC zDQ35^u4PloV`y>YzoB%8ziHPcX#^#6Dtq-2WIDDux^f>0Vcqy-xuZw7lwZQ$}8nv z@KKq%N2zlrn6PxP%WRR9Y<^)5N|NxcSg5A`hrQCuB_t(7;JIX}&9A6fEhm?ssS~U2 z8_tc&HgKg^|EPX%gO!bx^Fg|_P3<>(q;<0GoXnn*VsUmeQY(w!A$UJ?;9=dP_V$^m zd#Q@P{uXe5Bq3oZlqXpmDTjy`!h=r7#PkxXXByb=OV~HaN<=I~N<0BN3JaEt90fp0 zB9x(_AsPtwp)PL+v^&c3LM23;xVzf=`%9pEy*U{siWN1bndG-K0FQG-Dsu@ADCdyGz=02hZezcZpm9)5}EOhp=degnd0y9T&K1x?GhkV*3ZoZa7|Ho#ec z{Ti(2I(2h{?iCNx!7=;v5fK7$t_^`Ysb;}~?u5f07NH85L7)`SUp`fpa}~}^(uzVX z%K1K=UD%ADva`41eh*##LEPn7#7K<~#w61f2OjW-I?`wd0I&&GCh23xXwdFrf;(a{ zi&{!t9N6WaV1w~nvPw#Kr^K~~k&~)m->*-!^nrmW)OC6f$k}s1YXnM@CJrveC;SMH z-u*T!@-FqoNaJVl=-Jod`qcVFvl=FB4b)TAtU|_&dd|bkahtDz&i7xayn)t`rdf|j zetM_;Gsz6v;!A+2lVTlRWgvakcJ!JQwGeiM=**}D zhsMS}+KWys(`h3mE0>DFhaYR!zt})~vwPw>!z=wF_DO5Wb0+QaXHxn2lw#|uQ{r#K zyBW4yf1k#>7aJu0`D=zeUw1iV3a)SUsL>zOO|slkE1F$lJ~VuNRo&(_iR!5`*mZku z5{Vxhk-_=VPAI>7hQz-{sg>1t;4=aI9vHtUO7GI9zZA0EnqliMq1c#3?)O0A#S6H& zhnY^+Pb~1*K-M^U#Lj>ZGdfUx`Cl>hO-4Gi%bva?bhAQUbK5|C%y|ceb7LD?wnzKjtsgqva#-Y}Rp<*V}bu>FSiA=66He33K zfz|9TGqv4+{pL2VM>2MMB))vRp*xsepl({efj^s1FPk=|^+Wc9l$QGSe?wvU6%Y^= zLh0v+hMZZGH~;)qYSxgrrkUYpnOF83y%^09vTBr{N9^QMH-eB`ai&=7~;($2Buu9Z4`QjOonpzPIuH%x{U3|B z$yE&E%M_L&M6=V;>b|I#ty{CG&7PjQxROoq2L5&ZOcDYUO6=6ye4^y~{s>#8)2>P3 zI2g5<;|IJNF98H49?}1$F5*y3xdHhV@8BpwcUobBd4oD!7C>~QqYlbhc6}se2g$F7 zb4T^T#S;Bide-TclkpzUlx_tx+iuJbeA+s@V)5$Ej^q7d{LniQedQqR-M)Kw2SPH? zs*HK){{V3^eORy41>qJP6D@(dDCyyuReL>3HH7n8iIhgXTHxuxCcM8QfjSj+!S}8% zFNle-4WN|DpS_AF2zA#GpcWJcoK6I?|0Z(b-bIhaPS{Vjpp7i8|NoLa*~zB>1TO~$ z6Rnd1i~Pj|3-n&$Q`^_kxUIOJdF^M|16#I)OssZJ{qO_VO3FiPbYfg8$fw?Az?!Ht zjtY+&wU~C;H0)(wP+x%hj=-1-h7`)UyiGRt1cXhNCT8>H+Rd8!x-G`*qRIOC@b7X zQezx|@@Gu$@c z@4v?LVe9zzq`^IOn^%;ckI^9w-|Ig7Zsl9Q7gaEqY-Lpy{F-S;osi!kJa%@Wk@6L4 zGqS%Rsd!UKz)KF#0jXFQ?eFK#ozoUxD$?9tOvhD)z{aD03494 z0yg8fiG9CibEDw`F{eT<`3)s(oghrYiZ3j&0lFv5=(XFlnO3e$f7^oIpCX(@^r7v9 zx30Ljc*)Z7D7dHo9f-1UJ`DL^Ry1|m?fsQjm9L%^%gVMKF@DMELs;H%M@Q*t7Zs1H z5~=;jgz}PoIwQt6w9NXn)`9&}({srK?8S+>7?yAx0RfHfotIN%J9~OA%!}g2;1U2} zQAC%~(Mbu=mY~b>!H5v6BD89^xn4a$KuwOyP(?qg&I75VW<@0>Jg57oHZx=a#*_%v z#6pKok8#oE{(nx{+~($0xJ+7SOPml#x_NeAi0gMTonriWWeIyzG}$o)O?l^1 zVz|zb;SWS>i&lSk4Gl_g*3ze&1Ky!9%r7lPx!B@7gIgSdy`>TY6-sPYNoSGa;bCOr z)$YXqhSW#er?&7FD=R6@rg|-JFWJ^Y+%nZuh_-MN7CCgrV@H8|>I6^*ec3dkP8fmV zA94@F_N+(~@iYK#8%gWr`lJtnCC7tHO zb%W8qw0Iq$i}n!GWI#NzPk43iK=mNCKMpodM5A2;ylP5;`)`AC7J!2R8l^lWHrx}z1;U%npot>q9=pq$4dQVU&fEY=mz1NS z0GHsyvXMna(IP{#FNDb#KC!WUsIEG|$C5Va=;(b=SjnNo?t}M<^!$)s_y*h>5#nIm z2ANOPIXGKJpDu6ve2-Wb0a`$?l^_m&0X8o-E7fCj069Ur)bOc){stBUOt7!rd3bN- zS0}oVX8LrgYa{aytZAw<>1{X46pKA@te^-0@~a&e<|fb>AqzmMudBYP}^<_#*9WGz) z0KVG+x&RGRLfBi)XiM~#R1qIu1~mT??f9_0TtnE@DpsInh5HP}(0=p!b#U7eF&}dj z$o`{aW_|^B_tU3O{02G8Mh}9YdM4=-h_71B$|_H?c4Z_3MC&CZ)qXAifu1>{C!7&1 z?kITs_H7I;VBq76l?m1(@juzgpVHMKYrVH`v)a)+vdRZP@p;{|%;LQ5X#Tc&$fxUh z;i@=?l!|HqfymGB2Z*5M3I0MB;iv0*No4?J7!et%k^0EVlaf+=AHIsyc!z$b#^e8p zHq;c+CWDRk-$ff_6vRquxS7|{YB|xd(E+VYXte4sFXg=ctt_|U#1`H)Hn2VtQEpur zP;2YYpMitK$Xv}Et9~N*P<)mxQ8vt;!khsL^oVBZ(N7!S^W~QM7*yHGONG>QYAmhK zpv(4YFVP2qu;=JNULeKBW+AH$(<|*3m3!d3CJm0$>(^vhiCq_f4lt2EX zn?5GAh@q-sVbe45)^=BQN!HGI552QTdQ$FrkngAboB@*BbNg9iSU-cK!PN%q)>fKb zKek?^a;{}zdV9v7;(sPP&}1(VABeFWh=W)&a+!&?Y%znP}JLq)8u%sK!bl% z(`M8=Abr7*+>0;T`Ugo4g&RC+7IX;I#D!3Ba419SZ~c*~J*QhO3mutAJrCtWX1 zP05HX2szADyHrA;fq0Q7#F_k0pITd6v%vRJk%0)X6rjJM?dMMg00i|+*YrGAz|J(N z4Il{V;1h+jK6_z)LJB0|aSZ=}qm2sjY0xgO5)x)Ny-6v-LUxH{!|DS|tK85@W zHBEG7e>+|BAj`uG-pB?CoX1l#2UvX`{;lig!u^M&C< zrrWnec^^X`C7#yYnwOuycH_n`$RaR6lRh51{`y~@4aCn10PGtWcn8B6lAADO2@R6I z;EUPafj8bmGzvUuu7G+4IhtiI_DrU$3lZdO3wnEd$tWm|v?~HsgkwbBSMulg0L)w( zXWnoSQ38cWHqIGjLHNhM0HqNt09EGf2m`4NK_>!WV5TG;3=cP4>5<4vJ`){q&53`Y_Avw7{QVhAZ!_uYz~Y{3I?19oXs03 zt$@&skyeG-CsNEPlPII#BBkmGRPWf97fG>q&9;fwPVPje*30 zAh8uE7H%;jED~J+sIVBN#~a899t{B5gcyLxXIT+~wlf)-Yg1DI8gKM6B}tzcFK_9# z!x(@;ypG?Z)cnx(4X6ckT1|;8GZWLn1BR-}Ca4^XO{5gVkNj&VFh2zAjd3SG)Rb79(xZ0xr{b_}hqu zoq7w?8z{nI>ihjG^mRXoWhQ`e$>AJ3@UNa#b4#<(nmh1M^wqv2k{={l{MMD;n8ezQ zxzECL-`9!~n1(D#M%i}W}{cF|M%cBk=X z+O_9pIhi?Qa|_o)CA~s3-DzCH`n^wPJc*A&1Imng(0iON{Mcmvr`zi;L6Zh{7Tedm=(nfJwNXlTkGQBw@2cT&FK!h_TT4 z*1@8?WO!2o%%dcm0)~~CBUIFUTZMWWY8?2&FsM_co5_pg>a7P4R-s+oWd7j}slOl} zOH_;cer!%?xt(R9Dj?=8YaLKR5~n}WgOF;6>dj(TuUV5LHkfvbtW-x@uXJYK&?n|q zUwJIk$I}1!cM99#F&VCfGz?2C0cT{(f&mp?>4zKs4^6L@x=~J0Kc7iBJpqeGhD)J$ z+p+Ime(?+>yH;<$41ILdkV6j#X5;v!5wp662B7e=IF}iFlsuRrMTbt$mdlFC+Qjip zqUTCYZGpYcvQB7p*S zaf5d?d^Tl50ng7my{=zm)}n20RoROt*w_1pI?=+l*5@;JnG2wib-SkVsplKoYLdx7hRc0cc82z zeLnBzcJ15=+ioo=sLh*>5dA)aAKxfn@jl+`fyXKi+9s3hPG>~i7|%*ETMBz5$rlv9 zr`U`gK5ep0^FWs->eFi8$kQ8N+)^6HFqzd?466}c!8F>2!x%J@lU34XKS+8}< zr{Hs4UHMS|oBWkTwmuD-WKjx9(ryVJeb>HycOglgBAl)zrpf)!ZPEPk-`t{k_-wVF z8(Shg!NlbOG8ym!?ut)8oC%nMe9(pw9cW!(1-%9Fgz7oS38Yy8^yrKxk!7~AB;z9T za+}!(oajTEmNKU?{Y^$SEcqej)u>I`G+Z|fShb5&Odoqe4AmaQINP4;m`&gs(jxm& z1RS||aW4jvZp9!VL`LMzEQAg+^#CP3c2yiEL=n0TMDYqxm@xSq*1ggKUF+bb+AR2| zNMobK)iIch>I|QO(5XO|2--=H!V$(QVzmW8;|F|V=i#^mZRriVQ-ggb&wB%Wy7cIj z7a)x?Kw5GfjuBZ#=tEn9_)B^^`(Q)_vmywt6bZ+!YLqmyp%MZJ;)NRy7sd~f#aj|3 zDN!X+BYZ$F&raoM1>CV|Iq(G2WFcPlV8A5Y#5*w%1g)FsZCT-tg@(_ROacKXLVC)` zn7d{SMqq`G%Z2eD5WUcA&jpy|k;b1#l_j(`7$Q2f$N9hlXb*c$}=V@S2_XPt!+MO2V)PF4{*UKQQIvh z32@W?PdY@VP4d6&%c7{I9{HqyX+oRfplbL0f0T(+dN$S(VGw{2UOh6~*kWR0qAPEM zUOT+iv?EKPf&TZZqK*qp|C@mOdwct`EVTAy5pN{+4Skx&1=Nm2K|#Ey9jTU8QB*WS z*cWEE#IBS*dNjZ!C^a>86k3YVm7&(&X*j~zVQ+;hY+}&>RT{Er2ilL&5lPyz!H`)d zvCPN+i({AcugJFZ-G5s?Eoyp@J)!J+jAd@&T%0ril^PHpNBS+EOWkH!?YpM$A3N&6 zlj{}#=Z&5k%ZR_8oDQ@Sq9YhCSg4h4DFNMTu~h^An*cliL|NYa+zg6<1QD;Wu&|n6 zPN?uT;`FI8aRqwJgMa`H{Vdmb45}bH5DIb_6n2S;HT*bIiJ2k!fM0}7!2yqep`M5Z z1v3uysSbQFJ_$?+GhT0O)P{Lc2E3xhA<9&g#wG;pTbD(Xk2Gu;sXoy%E_um`S$TF@ zQOBX!Hd%#$3~N!otGDn4W-+;mhwY_nyUoB{F*#w+8fa z9kilxvA@9pYOri~>ZR)GSAn3TzkgHH<|zTKyi4TNRkaGMBhejMI#-!?$3AG$ka5AB&)5Y z7Z$DJ2Ri8r%RNHk21oV0ix?Zm<210Sk*~GB5b(rM}Gx9{IKhS8o3sR2=snds^``ckt)OG&Rj6`V~GpkPQ-4gBrpm_gwk zd48S=<3qqF=Hp11e*1Gh8Vq6dkItGWL$P38GW?!%leoUYw64Jj&Ct-66Ztm(Gepq; zvZ-^o&Z$ETu%xcuV^GTJ1$D1creMl8SS>Tb(d?y~rFEP6QQ3%3sehY~2A^1#?>Wkc zq1~84xHx-dfGy=S!NCe4@YIk|LJqXToZZu$tnr%ynU-#H5_!LxMV!jpDc92apN_=# zx4wR65BvkO^NLaui%Ot=_@;Wxt?!mxd#wM)gKT{x+7+8x!)FXGNQopgP|RsmahTr& zH|nU%q6>9>6iOYIE4*ZWcK-;zUsmC9kw)_Dh}I!9hhW2+@3!oct`+rMkFNmW$PQST z+|PQMs9*LJa-H%Bc34KpYp?>vwnFiS7cy`3xfl zTWX#K2SXfH5KuckJCH}gg9E%>LhnT%+4#2mv9-?!(20rFu2N5CJm8`ot@Z3NP*MW- z=Rk~P(G`_KUos)C$2e2QLm`(_ujy59fYQ#Elw;0uf`8$v3kjcX_dA^#L zV3UZi0*u#Bb-fp{n_ZH>P_RGI>B+m?%!dqTzKFuV{@(DW1AM5c}|9^c}G>3=*u zk~PGibQ)MCR)HBM+ga8ouo%ca)!Nk zL>fPs>$=u;fBfLrG5gPD4a?=6HgT(6aj3d?^k{_Lq>G8J|9o$KTGv7Q^2t9;C0N9x zG!mi3Qj>`fC~8TE9A#)w;kg&E1>)r$nv|hI$zIPyLkq(mdC$6bzE3VGsbg7CIRE-= z_6n^S2iGI$RK{>4`JR6#YFg9czcz7ek&n;jXGH!%!SN2D?&z21W)75IW>2>wH%?IH z@{5e;pJ&>fS`aX{&(`TEGwm#Q^2v%LZr?Q2=_?q>h&3wt`oIk@IqM!xG*+(;WV-2g zms*&UqA!v3y3OWZ-!tup%DUUOc5K_g+jZiQK)`d&<-71Pt>0gqZ?kwTGe&tw3WJ=h z``{}X8>MDjv0bR)H1E-<@kKqMiD~iFjX3=NoIMW=vcgsl&8-tj5Q;6yUau*>B5Zqh*1i2S!29~oq2$7A~pr#qV8A6WF9`FZ`z zhbSn&l^!W%WQx?@F;^Md8@%+)7qK6DZy3+(#5Yf2eqB0wk5EK8<5Jft`ixMTH&R{k zqK=1)Oh$}fiKS>HN-pvbn9QtG`lVxN*qdF_+PAnb&A+;|`iA9ElZ#VHtv_D>DjnQ$ zvzzj!o5X#>8^&X=bqlw)^EsNAc0B*K+w|ZPcAXfl&_#Q|t;RE@=g-;h?${=$V*Fsn z_Lgr=r}BRU}D0Ui|k} z?McSiuJ+`#U!^J$bMeiNb%OSjYI~1#jNGp^O&>LkT)ew>OU%Csl`IPin9ui3JE&$k znQvQuj;>Zr(x~X}4aRd2o^YdHo^g_SN zZ3~ZRY)Q;|FjMk>QWd7XqsZjjhj!R42) zHeVXE&CFH{{~o+EuGcS(OP{0%{IrLhW2JdjX7axO@Wx*I(9WUTX;e*3dG~k5H}-r@ zS|WYs%kIOOiW#F_Gf95Zz_?kE590`!g`W3|n3mICy0qvZC7WWMhjwmjZ9oybLUI9Tk4C4x zr3#4wtsMi;XGb_r{&-@GmLGP@^j|D6x~C4r|J~DBZ$7ApS2oJOD@>ykn`a0z$Sxt{7>Eta{daeYy; zHqXCW2TVQYhU{dwl2R%YK~va@1AIkEKXdAT1k zz(1tK18KOBj zYvE9Hqr2uOCJBL|GDOGb&7Un8w+dc;a;!>a)J2ETs-IG>&?ICqG)TD@kCE1(=V%Rz zx=wKuk!Zk;W@M48d#{r$p805LyNhhBX7h>#1>P%9-X+@HR6R|<>BZBe2q z!YyuuiJ|QyMZt%K#8=umISrq^8 zSH(rJYJVyIK6IP${<9=`WBcYbBPXr38S8`JbhKUj5FYcGd!5<4i?`;{Xj}y=8s_Mg zf|4YRG?cAqvKepCJ=qx6Pq1gGhSBH}ShS z3wCswm{5TAAIWELD4%-XAvBb$bW4lwxYm~UTFrOI#@oWKGW>HPHA0NnzkUe7F_!;X zr)29Ss^&yedGfRHYOxI;)+Fwn4nA9Z8AFbu2l@twav5u<1ls2vm-=aLhHqNU{32z> z2nk06GNQ>enZYTakVf(L^n;0Nyj{1DBfg}Hs=qt5$HJli-qFGRq%f;FuIPE9%3xwm z!Q80S5OwhLxuTQF?=GADPNHZiEB(SH@N3(Oe4(Ugj~U!!?yYFKqx^NmI_&PL+o_i$ z)-C;=Y#d^Q!dzhjW87 z_n|iZSBS_$e|=7R)rz>`6R2p1y0oq|g_IARf32SX=VE6M%0l>_pGk)1#Ujtl=byJt z_43|K{aELt#j z`;G?UqWiShoT5ZURHz5EE-8^J1xF@H)GXb$F!XoQb2|G)7o%*LqD!4D-rw|`3oB9I z-DUFk$K0vSD-tD-yt0t-z3s?0WmKFOuZp#G^C`PP$`qKkbx`@`Gw?#8Ep`;?;Lq7c5|(@ivShXP3_~d(x<<7Uh;N} z6g(Z(dLss(D5JXgiK-W86P9L#(y!Pwf=M+;{IcOr%?iKs&%hV>7>>^eX|bw4&A>>vC~3~0EQVsISYvnUBlK-e$6kme6Xx*FuoAPyFc=P=+{_#?F0o%7#5*zPb#5jTa z_vgLmGZzLIPFY*O1J@Gs@FC14>o=EwlH0WP5LE$VRd48%kh!prGY4!#KgdrPJdNy7 zQ)s@EQ_4)fhyOgQXV{bRxSv5wF7`9N8du@AfBp7zRG`g$9QCkyT4R?RO!I} z{kzxE_dwGum!{nufeu;Cu#@s=j-8-ZaoxZA#nQtxxep|-4G7WnfTb^+bfp{1MFsp`II2kwy#0 zZSD;|(IMaEJ{-l(ddB6{;gvDcd27=J#Fe91PCFflt=#VAQt&Gy%b(Te7Kcy%dhfjH zzLsR$S9iR<<<6;6xi5LA8JX9m=oPX(eeS_W?ptpijVy5!^ZTJ~S;@IIy>GmfRXu zn~ccDnsEtf^9xL`cd(b82b6@v!+LS}rwCRa7832Ghc399scDsOMH;6qEkMoD2l z#6MyGOuUPVkKt|4E?%!Q41Y=ls`WfBlFqcfD;2)xh1|B)n{5iVUWI4J4ugyC7s%#s z#M!y)ZYqDZU$jfv%p9ITDLBEQEg_xni|l`?7-CMy2yI-N@Eg&mtOzxg=K(K97he2~va_dHGS zD`zdu=?jGyxyO_!=VW^^KVyG0XC=;l{AD@S8E(a3eDI&|zaG!DRoZ*RqRXc0gfQhC z#=8FEuIpbLTlql2j*4~pclVFqYbqI}o-A=Haj9YnG?@M|x}u7Frv92+pMKQ8dnKn8 zxRm~e;lmwKNB;~SIID9{g{%4Y)AfcIH^ql^!)={GtXT*i7hnnckU|$+ZqP96 zRxI=%>wZ4bowMx86N}UjO1AvG)!5&)JNe;bjw@s__$!tj5x|o)oe6oqO+ZM&uAV1Q zuj8Ba8II)Ob;<^Y8z0;AK0JN)>`N7wpQmW|i&ACn=-B&EdDin|AAL{9!o%touK0{y z5<{YIF5b5La<6i$iDFs|B|?2pw|A5M^*a!+ zC1Y<=?z(pQiyw;#R#e3s_3&aVm*bTfqrIQJ)?E(vSY%f=OZ-FBusC$1YfI8h>A zkBF+geeqM5c;~G=@R8eK6QhQ+b&e^PyBf?Z7-kAI{Rx`yIJE`H4RSmn(561 z4x~@$=CxTLe^_E%b^fW&%hZ7sMcvqmEMv(pbQRRk-DhVaE;}g1&L*x~;XiXxYFqI1 z<_q(MH+m?G`}t~)fVugKi&~0@zrSW%TW`)%5;bNj9j~TK!nEVcgWMb=^p-WcPBADj zqflU$U9_}Rb8<>0Z8kAFsb_0+9Ga+4Y^35ZoO*eDVaT%bo27hF?882bH^b+9nr$P$ znJ6~s?H*&K>=uP?M%iEWPnaZzr*+dai(;+5KB&3ytup!Oq0#Oh%|nU)RGZ~lZMY!u zRsDJ;HFx~gGaH5Kc?h;=VYv&_)Y6i(aov8O>`A$lz{m~rr|O3`?P0;%Nflli73`YK zDP2kKYA0JR|JQo9vvULPnul`U%yk@P;)x#q^JNYf_u#6}>jaSzB)=}DT|#~4%$Z+x zdKwyU4sYTAnoCXf^8JsCJ<(bb>-C<7Wa{9AUTCoGOlaNzp`@tq{LK(9^5IIR!%1PE zT_parq<<~6>O_C2#&=bndur>CGO;i$pB89W7^_kiI{`msRr*9TcVYw2aeA8TDHy*S zk7>ga7=#lpSm7(fg&<(mzp~O+>fynrU3qIWYk9Qy1YZr`Kl=KwoA9^V|JIyG+T0vL z?4f!?`QDP??-kcJ#@=Z>@-}w)&c}afsoTL@teI>RDHHbKzQ_-{FC^UX*# z#eLcqUT0{}I339Rvi+4yLD7ySewD9pc0a7E?8ulIs6x~CuH%Qs%8y(wg)-+%FK*0_$bo%th*^ zVlxLyl<-77e!_G3U9&|vcdUe2L2!pg1lI=nU2a-|)>dIAlz_W@tuO-E z22~e7J@a`SwLb-4k(8Bw!?o+MWH`$U%qmg9Bc0CKkntdXK{#{j9=6Qo+?B$NmcOqu z?ukQ0ys+Y+xM6dGdSqni6Xgu)z=Y>e~wQ-@S5iY_43?KF^3qIH};-# zm%r&gzS85s#CYzj%owtH4;t8N(Es*+9IAKGbg_vfd40&rzrMnwGcm$M?fBqAUYhy4 z<8s>jg2zt0F?2QPq9KbNzI)Z33yQXf8zz>mzZdW>q{^Z~`i$=8)BTj3p&v&Rw4Qm& z?F@!JT)cR3x-V3~$TKi7(9g&2=shPK;GL(8;FG2R*U{0Nh% ztVN<02#0U59M^1>*oDyiT6eFGbLLp&fy$i6oj<~ZT>0kg0>-*)BF8;t%2tu9Id)ph zK{nR4_HAZnh8iN_Q6tYgjR!Z2W~!TTNF4F1W?B7wY52KUiA({=A5m z!Xt;O;XA#IVPOmayWgflLFROg~UrwFTtyAY;$9je&FW9AjR%=;)Gf!-K>EqI8 z^e_UmZ8gz~o&Gj;;7}7@m`A%m?9LtfCi@2SlplAvryCtAj&3MK6n&S^q1Z2mrt!<| zzH&b?I+^3^@P)1=RDSBYij^OPk2h2YCYmev_?Ibirk~yWmbb5wT-^V`*jt80*?xP& zBbcN}h)9T(l0z%00+I^S-K~Jq4y}SB2m;cjGz=jvjUpma5`#1%3JfXIAo#2cy!XEU zdq3}cJjZc=@czQgbsM=?rq9#(WdNSxM2~%63Ra8+47q-AMz35Zl8`ZVroE#r z@tyi;{aS&O9rW;R&+0Vf-Mz%E=v*^eJrQ)4?824sW^)W&!}on-ryTAlPO^aEtwpzs z>O^jjLu=U@bSh3uI$oeszd)rlx;Q^izfOM$H93+rnc2n^UD0q(az!TBEP3^lUpx-q z;(JSM!ag^ro>DN|Qb8>PN!1{eoCO-c<$pTv6V2eeU z7v<$Cftzzbya7hm?tVQcP1_G|g|e@fGPCOsE?>cK>Tyq}PR5#aw8-!4VvDI6)H=%b zc7M-Mg-EgA6!6~4T%5wc1*cF*#oi!><3PNLr{)?oJ`4#)8h`kf=&xMGT1XO zb*L`8j=as>e$0|>ceOkg#Xx)Ps8R4<;`s0D3kwT+3!3$-nS6M-E~lJTki-uLplcc! zh-aL*lzbDebyJKCyF5i(2V>2vVa>0Z{8=;c`Jk<%gU!rjyA794hvZ>bHmcmJ44Vog zkD*iuXhJkSs;hp^98*>3+EcUl)xhk@_i#152>X-g`df!pRqvGz5whBdo&X|PT(|{? zpV3=g`#yC0hvznQ2viB>NlaEhz6sD`UxIsU~3{3mM0iVi)kT!)~ z;;HbKQcRqUe!X`Uz%hKjkE+y`F0a1dPWLx64mUB{;@mSSw(d> zX3a)P;Nwy0EL6dBb;+ZcZ)scZ zD^|~!w851M+;BySQl#q|PG=70HS{AFNx_xe27a4OOl2@Yd-qpt1AWg50V)d}A}6*= z*^?Hoyd=e0ptq0pc9?pUr3FtjNv@}|>fHMK{!YyhT}R-Q%xyGoX=Ji&_N9H%losZD zS#RMH+NGlmX~!O3jehYW!?DPq@}`dAJ-OL+prd_D1gTYU(#gjfxyQpvtf{Y`2azvB z=&g9PH^H=bHL~yX=W|%$-Dj3?aaT38|E-NK`Ra^sb$TFoleL76P1&w5Tg>hW{-V%U_&jNhK$Qw!bfc^V5HmM9gqU?WO!Vyuq#C&i z8+YX0ZL=?@x*LQFdS^}>#2*&`d5|1mcptM5hz0X zr;`M~pYzFw>yh%x$}|}m81zmbL7_AZxj7y7qROVMa~%?^x^yo3tm-3&8<~gMG*V|x zM?zXi7ly{up;`~^cK7YgI`7xnf&u1`z@PNAd`OY1KD7&y=ok2yT$s0L0Ktn;vdiC} zYx?uXN8>dg5u(_+6OF{a3HC(#y%_ubuxyEDH% zT^cV0K`2tsp->i|tYgEr^UGGR+4cG$uu9BB$!|An^<8*oRQ*MU`@xnrZ<&yX%Ujua zUzU0KC4<+4r|fhoHT2pHnm@XKa~2trZ6^~(y?r@cr9xBYatKADD8yRlUbOmqL0u=R zs_0IbYtNeXkLr$F16#xkD*M_ z=OueS;H={o$1N7QQu&g9Ig}m=eO76M=m}BrX0$`2H0pp-*FF9R9W#BvEZg-EaMj%_ z?+)2D6?OFU2GmW}+Yxu5eU`T(aet)`TD@*vLvektvdoL;{4TI7g1j(}tSsZyFO#0?nv4`O7n2|6_`b85GE!zSIq)Y? zap<94IM0tD1V1u2zRN+ws9eXz+7pbLIrOcMpZT|*+bgq=L{ z*qghj@n56&sYv4`sP+0o9nIGa#G7(=d!I5O+%#)MuEE9h6kYjANtzHl7)dJW;P=hi;)oo=)QLXFUYeSxSBQ{E}HbB9N-IRxrE|jZv@mW_gp{XsQMNjSk7TB)!wgx&u|n>e5iL zLFd8#qceE;l;aeCcyHbjI0F(VBAOg|<_{kV&AoMdS^y&a1$w2|Avg)WiX|t3?V*lz zk~kh$~jcOpw`4I%RskAF2FmVI3#srFQ^lRn7w!O5VX} z!nrDcE@8+-V-ev(@Z(Vm3=^Q8;ZI6~7Pbcc8F^`G2qlSWil}Qu#vWX%Jrhm=+@$f% z=dp8=8!WJE)g_jRci%<#n>v#NyEjyMr$XVjQ^XkNiomIc zWhP7*=m+XJv%uuD@C%`Df>O0Ry1(qb{4SI?yuYmj&t95cWmVc!a^#9*dVeQdZh5&D zgstjX?Vz_h0S4Fqv=;k-ywyqlxgG1c`mL*qL98KVo8E#dsr>w>*AR|yU4I1KS08<9khzY1I&&5GAH?$ z^ff;E{41<%-5Q@P-#$!(EnDsFX%$uIrJ>qqeOCfx&F?J?Q1-=4`4cb;#+K;spB%VN z&2O3Gm;K+KMX;;2+W!ObN3m)$up4<6t^PQj0S7{b=lvDG%v44$$=_Obe<}`$2CZO# znu^oHOwVM|0?t6Zn)-P2k1_+-kKC!+jKW6pd>7cR97Ed&83sewr|T|W)vxDbc2Z>d zpFx{c986!#>F@84NE&~Veu@EwW?t|$!nj9Q{mfz2TR`+U4xe7b45V_#JsLW-+v%~e zbW7kZr}OY%SsPy3rE?EEo<8;t<~?~lCoeCrYwy!1r6U9ZuNcWtD3TBD=^4s<7Zyg& zNqR+<{jfuLNaA8_SiQ>jjGH<>|6126_}iCE0VY=QWWbhOchB5OR^__~YIgRl0P>p{ zz><+(DC>p69zvtQkOAOFW|*RL5O@j`jJ`msS(uZO;Ub7hDE7dh*mktfu>ML#$3=#f z`}p)PO3k>xONyjB?$w7nU=&CCMk%9M^|*WH?HqA9Ppv5zD$gJkd*c5)=Wom?**zkt zGQOO4e|Rw_#)vuD^O>fm-sfE8ba~iK8D@7|S#4OKfJnY0?h~*B<4k$tyt-d+?i@*B z_HVWCyXM+@2k#6bJRW3>C{_l{%&Y3}k;rigMVDxW7C$*S(j&9;U-km;Z|tKC zIXhHUDZkcn$n9ua?yevgQXN2=F7+=ZL~A{>ed1WIj~f}uhh?Kzur;n^QLIZ9(i|lE z_dN)Z$Y7TEdJ?qM+pJwuYc%!ugiFOnJG!pITL>)#&tSoeV5o;)^TH`aiUxtr^)?7> zQk8X$f``%3-JNXY$T|3e5`nPxLHL3x4EwJa%3Srl3>$2%TAKTC!?Xua2Jn?0;Hw(H zpm^-C9S-Wt0e)SgzcR5e)OqA1Gx=Vr<#g@cy@dSRBj+(ZV0wprG)*dpk5%$&u8DFl zjnZ2YJf2CxgORsxlky_{g?%D~ehbH0U9wq$UxSfqeX;7WemknJ@AemdVx_WQAMs+I zS>Y&##z%tRm0S}$va+(+wY0UZ7se}{QaQP}5VG9pc{*GX!A zE|E_-(13D=CPN;dfPN!vOzkz}K?a0;)uS{$OiYO;L=OJTPIgb2Utg86D2{_PYZlxC;G)TX0?yxn z4qk>eJv)40&)E&-+fGscLXw41VZZY&J!mjl@Y~YL6TFH8KVztyPE*KQiz3VU1o*vai>UsG3ai>U{)HDnf z5CwehX~ufjg?o8m(B%nmz_wD+MUG5*P{0BGp-9v(opabM9~@$P{bfY7;HKEta8D$0 z`xsD1RNRaIn+!tJ?+F;x=qZZ5{;hShjH5a@RjcVty9zA~9!YsvtQOGwa?)mKlW_%a z1TmMQqoc)u%ddjEwy_fj9qZYcQjW@CeQI*R2ve&{T=ncmyFsqo8*Hjoh^zH8q=!#i z!AY96dGbJ2xUPn#?;R#J!u&4Rt}Cun26Kj9B!nylkNcFKbz9Hq;vq5ri#8vbx5<5f z5{}+$VW^%-3+e0beg%q)_G!br0r}e4`aio%9T4DP{r4fk^;h-4jnTS==kf2I6m%Lc`pnlv)@a)MsA9gl^o(*SE$!(g=sVqk zJs9T-iibna(r3z|CET$Z!l&;^whToW_>11e$;2qs zu?qvdb*seq%v9x9H(gBDCVFzmBgmwBy;J$%C;K1?`gjkcwvWq|0tR51c3@dRk@rGkktqZRqUVN{qK(R-j>4NP@UWAt-}x zi&fLJz|cFzMW~2!Vc_R&c;I7=8tkBF4^I6^AAgY~r@oTd^T+%8_ENYala!nltW4Og zaO~D|yv!aS$zEHk%qCdXqvlPn&A7(FQ~0@^Nc4~xik0NDY^tPJ1rTr6cr83~n;V;A zQT=wFA@7&h9H3{obqIf%c|>{hGj!Sh3Nt9PjqqJb9G{7hXY7W%7rnq1DbOvxCJudC zmwh4m#mU2S!=b#qyeWkRh5Gol;Q7s+6!?aZZnHkt`3vn$Qkfm@$DkPy+HgYd8^+0| zGR4!U$as7xv(QwKqZw5Yn5=uw!n&f>97AjWcDyx8qgzrwJ)^k=U~ zYG<&^9z7GK;o^s;gpWG)zo>T?ocwy>+KQLRq@eA45el*hl?NtkzPr=# z$18P5=GF6SuheGUZEUjP_3j_83UiLp#=nbKXNxjy!>gPYPgp0$-shlkwTGWmLr>>` zE9e7PP(O!o1)MS1I3LZJoS(6wREQorObdKJSyu^-U$^1fSN%74UrBAXs*=so>KM62 zBTf!Dxh@IPetXZE{s8*Ycds$}vm*UR@T)Ec>NEP&U$fi1WaDYnb95T>HZ&=S&2UIfC%GJzT*sR1<{`K5O2R-@{W9BI z_I_YzOE8AB;!E0id*MpTGEgrSdm46!8}KlGRmaFEd1!dpZP=j_5A$I9p%KDu!0a*U zW)gA=h89EN0n7G_A73-2-$xz^8Spsl`n&&rGm5Z(iqGtcmVKrI#Rpak=lTG#gba$- z@4Ap|rGBZGg&sG}ny>CJPHS$Ov#YEtMq9PhDPF5pT|PG>T|ZsSwuM!r4@8s|e|CH` zh|&A!Rbf$4Y;CO}BJAuUp60W>)T9IAb0Cf=sd{U!{m{)5r>z;PZ92KoHkH zFYdnTt3L&XrT2kdea!#RGyNy^(9tjocdv=TEqbNv2qWC?iLK9oh=+%#AS28EyQM5( z0)WYn#JS0krBjJX)J+YOQJsHg8L&329u=qSj9jFixf-pD$hUej~eQ&nhIbOIP`K9 z+C!b_-9yOoe$Bq*3?I2^5CDz`<#0~9OKwro7q}^;h+Jy(3LI6D86Q4eM`U>jMZBJ! zoh7?7l^%-x^7kA!=B(rP-cC+AV2u(y(u8aRg{D32){7&14F)a)WC%_Bm%VL2=>mjk z;h&t(A^!-pJ#)3?`d7@aR*p5$i4`NsBv;jvK^LY>Tk3y7-c9J0`Nfwfx=$%HxWF^Z z(uD?N4T8vU)m6+oyIouF;7);i?v#R{T58R;gi^y_+EkWLVIijk4{0Aj!N>`)5x3jP6KQ?J1qHOgm&9X@!Nx_At(5W==3Dx0BHud5 zkA#>hERb5iOd-K-)Q@`@wsMzVlhiAanpA83)NBS7-*@$q#ZdpLzWx~hceex+ivLsa zX|z4tebNVRI7DnQh=pctt*r3PTNUe;!SE79uTt4MStr``{2IfVSKBuQEyLxv!`z~? zxNyq1JNzGrpi%zUR+ggZOd{R$1s|?uiDq~Td4<+!=1EE!6-ccpK+ff(>mi^m{b!!! z)wdRXsFMVV=uFXpM3f8?QD>kZik7R)rS;)SpOfGCTN^lxa>u%D$F!F;n$J^fSsk0J zR~l+Wp@_KVMR#&Ju(-1((dYN(`Q0mp=Hg__x1Dp>FST|o0i-r{g%DSN=YELGjy!uE z(To!Dz3oJ?`DJN@{`~TYz_^W;lTn{8bbUQGcp*@1C#>{x$2uQdxw_rA^cvUsX=2nB zb?)=R4Ht!3u{aZf(?gw>#Y$Qs9h_@b!KQU@s?jU(K~dKw9CPj+#DhpO#xIJNzJmx? z5$98SZW{RxT!~jV&1+W@XdNSwp~uS#^6OIsfztXkN%2? zgDI@po+@#QoCZr??V%DqA79@s>p0?Qb}SAXqa?D20!hbiRPvUC9g(g4U+!jxy9x!m z=+{RG-k@l8Y^NjPCDMijWfYDMzQyFEFI`I1;7p0`Hu0&bdVZ1G4;IAn3T1JV8#>sf zp@EH2?auSC&x7sPCNuTgShFk7^}-trJg^NADNe&+Uyl0nj;_dB)uqk;hm!${HvD+^ z$~jr4W7m=gUty*@M;uI(nyqtE>MuBb&&P%@=Wb<)3oZuAIDJ^n0jl0mi^q05S8`XQ)Ou7<_Gi4 zxy-_>`bleg^K}hXZES4EnVl*iNfgxow&uqRv_mw-o6@W8iU9npt{a-zrIB-T1cMgyjxGT`mgU>?ldPf*MF>y-pL~*kCs`*NfynF+ z_eo%%ma#E3l=3R}Ajk`D8|N{q)&xhD=r94H1Rd>F8tfp;sLsU>i4P;ELllf^dWd7( zg_I;6B7wXLI|#MtEvPT&%jQV68LSvGo@GmvmZwUBV3)jUL>*6sNU#ku+ zKd4fi>Z+d2w9dpha}{#-aluK}6Y_y%KT$>hyrISWSbX#Oj+7}#s_9rs$s@)0!XxI# zGaSjTk;v#l5t!BF+1|-}-*A2G{+Ma4p&Xoy;d4m(0dg0J@#wQrGp=?2{+4ammjCC@Bi3i*eDE~r z_Bkg`cJ=N7-)Io)};&C#M*4HegZy_TaIXODvv1(wfuIb=T(1JlPS z66bZ#%gWy@e$rPiUT11&lTI}<4qJ_vx=RS#2enQco#M=iI)t)d8DJN#k1W(4-%X$* zwh6ySqg>vSfSYv*i?!yPOx6O}fhLgw?GJI=ROPp)ZRH|lkdr6>F0#0?o=}i?!wu&5 zMhp_gzhA5y2NDk>0xnqXPP2Y(-IZwV2VpW@;q+1>USrBPEl= zqZwL}rsofWMbHfK4yNWlEtqVpRqdkar?+hh2~o5@%W;FhGAGzv-u5ueWiC!3=U~E2 zZc2_eAC>_*2hrCNtEv1jSWP)<@9#|7Rq6{>_RM=My7V3;MP=pPBJLK%efcs6^Y6Qt zd^f~_In2R4xITmwjWj(wam_U}$FuJaVU%70#>06R8*PiwMUb&N^vAQqa7ZUaM;IIJ4MwqXDOi0DOCnZuob5!bxGmHO=Pj zJFWP$J6mAn$1L`THYSn`Mhtn!@17V4NLG{mf#BR;hIy1oRnAS5|2$;n_7?zN#lr&)E)Aj07 zu%w|j37QEM`KP-wNJ#+e1Xe?4J`0QUaGa?*`ef9CS1lo5yGZh;^Nn`7sY9qJ4GBkZ zdl?aVela|2T_;vtOJ|{X_0+MDKmyb@ZS+YW7(#V0#;bXb+Gi2;{B(d2P#^ zGW|i!NruU5682Epw6IGr2)qC*4Yd2t#^Ywk@MQsqP@yThvi2C3(Y;KwI;xRW$q(jH zd9ewvwnu(UwWNJ|*M1s>&it2KZdPg&f;-<4KXD6=v1Z1nkto#GGtVc!{dzWdgw{cf z(hV_&h)p&hz@Qu%217K;xTX+xKaWu-Pz*t@REG?>WCb%WDj)_&jF<WB0n@gYADy?#FOjQeLLr6YRfxIbSU2Q#vHDs_4NsLy_EhFSF{> zd08HLU_>qYXr1_mONTPe;vJgg;sCpwNL&EMCXG}@V#p&u`#eP+$Gf#}@sS<;>n=x8 zDx?hJfCpinrFgKeZAX{naCYyp-6}9Hmo2$DGR_QsS<_zOli9@IL*>#hhIHnObHRK8 zt9uZ1T@>vDeuzS*G0V0*q6t?T<*`0uTB0xcc?gy_Cp9hu!PRU_LI}HH;enH;HVICe zwFIhgOE_r~>-wT_v!!7%^eOwV_Z8sXQ3qz+5}B=^$M&?cRW5>Yv|_{{0EnWcxwa~C zyqg~{`{0a&=_%^DiN*TKdB@UhjP>h9ZaQQcvo|PwCh0lbAHQHiXA<$wXwc%$O}nXE zc>A@>Oc4@40^|8mriM>Hd>iT>N(T#aONL+3I{Wp|fy)D?eI?4DP-fq?XP0bxju{ff zU`3UTYMd(r?!{)G=H@AgermJ7QGb2o&$TK&lLP3z#sEWFq7eN!ez$L$eLF9ZmV*H0=?gja})w(4gRTvBM1!N~TB=Ls0@cRPF z$0l@!n!J0?SQU2Z-QCFVyluxJu*_E4K2`w)`h{9-*$U2;I4=2YhArAFbd;sTIL7gh zz|N)CW(*SwP4OOTg8oDBcHqvc?j^&Xb~{9kf?PpJ2Fkx%l=<2!&sV& zHY+~96$TN=e6R)NrBeB(Ent>ccGOKVMVNxw!y&bNV$|=?ZuO5CgH;$VYS$XcMkvL> zEQUV39QWNRLd-qO;O*wd1)H<9CR*!hne}J(4~-;S-Tyi??zAyl6e|ipw&B*UHsnmW z6$fk5nMm&2(9o&R5U_c7Yh{V3rX%fsG|~?7X$}NmlzZfq<=KiceG_5qAht7e>J%+^A(f1*t+ zkCO@LQH=v&J>Ow!x=fmro-Pxq2|j^GJB+MygUfZS7Yrcm4EGOBbSKgIv(^~o>6$vK z!JE5shIDa9b`B=q@wa-welqTMq+&4j(i!5tJB4&c(fl;-oPmr z{pqCF&`j3N7b@1`iOJWLBxtlnP=+|m_UqQ7n01I3J0rm>sg9(n$Y|n3l>Z6Skw-Jj zo`zoxU7p>%H1WuHxCCT!Y+fGcZ4*dDCL|`hgpmhcBMQ8hJDi-H%pz!pVh@pXj!iJo z`u4|B!n(o-e@CVA0p5|{t8fYbeErT%DP7Ll(W6?5oDCz-<&i)yQWW~c`^g~p#W@6&F$CD!``xHQ(8vug_t&}? zP^Q<;h%#>@{sl~Go&*1!wtKP=;&jrRZ^^H(#-WaymMb<3Pl?Q3axoFI)XuTtHKdyr zY6@Mnw)=vex|ApgIC|do%_1+)$n8TY6~i$iyKcQHc136d*(sOZiFH$-~ zojP>$U6b$ERF+)sNuq|rfIn8Md(r=53jmy@upBt%Mt6F7G?i=jWpu9u0}-zAvrqts zO-sK$2%0h3oz-!JIRSHs#{qd*^&Mqp zH0@51`+dG4I+}qbI>wD>6=4e>rbI|^PY95#ggTs8sTgojR;g;G6T-kkvaoC*8of5Q z_id}4No>`K$Wb?O44M;utSlmr0OE9RM_T)#|86G2DkXz5gbO`|h_Wck505}@*fp*D zzbV^pvwO!FJ+F-KE_#&1pkhSagidL!6bJ|8vzJeF2PmHFi#L8Pq*u;Jyv8ui-DzA_ zW*K8?Q+x^4cxVRy!o5BLDtP(Tr|VF`Ju?T}dZ2>GC>Ew675usaE6ta%{oXH7bNSfy zdDItNp>xKYb2%);u^7C}R`_bf0Vf&a9vw&$xSGTrZK6--x2!EUbolbp5Gc5r#+-{M zwQH#cHB4Du)oYzL|lMa8|@ z*ISNdJ<-*j9ZH5rNH2EEVP+d@Y*#uwSK1N2D1b0(4pDjB4WZx!xJDrFr#VD->j1!Z-E8`b!JUwIQl2L@IHOJ;w#mgHdiv;>P& zw&_K9vG>BW;441KdbwlUj^q5z!q$P9l1j`Evsw+J#yCL|nT`cB+|v4OC!Ol?t<_Ud zP`&ebA-D*|_#k(9wkjr#kvCU83&NyN`raCya>WcUl%N0!Wx0% zWqSy&37p}bF4#o*zal=CVRRO@s<=t?yHUVVykND!hYU?ZCi-d?vFWdw69917avXRL z1*TgIeFcD1)RX=YLM+u6=-}LPd^B?(l7X}(cRi{}RRj#f*H>XNMJid_Z0LA+en6y^ zU>=%i{V@R$cf7DW23~-ow3Gplx7x2oCOl9%-T1!u-xBMgqBd~Wq&f;*+ssO7+#di! zpx6gdhv?BPyhql7LwkrQ8FfTb%!&7lvoPeuvJW>7wD@+y2epABX&^wuWyDeLFehGk zr%=d4u3Fz```Q@uk#nG#m%Be&GyC5GmvKR`_ec&hnAhdFK@;mTEE9Uu0PkzmP=dGo zE}p(s20>{j-Gn&^)?{Cgl~gSyFpl97<)gS~mWB1~Y3G1kb{gotbb{VX!da4xFD7vZ zEla&mlaC~U(HVFU6ZPk(TnC7GV_hfw@J^V^X1fSFH&EF|nQUpG3-JHFHCKga2khv% z`Kx(;vQ!~2J$Qt5fmS?MyZ52c>VG9&%#AHe^>`8t@Y)arl@dJ-LEm%xIPl6_+90Zt zSfhe5+>30|cA-*zNxfoY!~JLYDksykctgEO46xrao1kr%Wx2Ajd|lDGzIda;AFomt5G=nF zwx-ESux5ESE*`;rBw>E3gX?U11!HBoOI>sxxtco>@69v0GGGh3>%i_%v5K%YgeD^- z^J+RUKWJXA0D0W9mmjdF$Q%9~LZN97c1Il5w_CY2gCw}9w-{5WaUev4s&yG6qeLIX zlPjkPQAcUk6Nz7dnElrx5Qzng01-y+S$`%o)jWKSABp{@3+LFj|JE2obWnTHL4Sb` zntUG4+9Q7-ra%FmuJ4n*RqQdqtmqy-xSc6fN~+Smzp#qmr$IVkUuM885x=3qYL;Ib z-2?q8ci$UekJt}cZk2nPD6~p{4UrTLl>u7lV3y&o$Xm${&3^v-(9Q=yMTurK!@*ykpvzGL&^ zk`^RuwBnSa|at-#SWC2qwIRcW8D{y=mTvBmXv_7q!LmRCyJw})%4QVd`(ry zjzqS#ZI>odnFJT_YW=$HyRFy%Sf9H{C)oFyP7~r5kV#=(sqXzJ)tCMmJj#e`2Py5< zQw#jqKEczxq#hd#HXexqm=g2413`LkfA3|0GU4#zVDD*q-GRN=4||WN-8+DQD9B=H zi2gI+uJggZ(`1QqD_9A!oFT68UTwtEKyUqxU=yNAa-Js<&mgZEfB!@e*i?c~|8qS6adoI?~ z5cK})-L|kb^)Eo9t?46e4@H5{RghUE#xC@q0hOobkC8ypen17H{{9C$ke0cd5sbO= zyLRbRi?iaLQ;|xP4yKV4)mTr&b)x+PTGqH(g|DJEc4_zJ(wj&*%0khNQ8G;{-zk5T@S<%H@9k{(7)koKvf6;H-FNXYv*>Sm5Bf!c8ZU z+U>l&BrJo77K=Cj3iFzIu<30WFAf?ViQ|55aN!gnVSf;Esh>i0*&QqA!X*g_vFNTF z;QOG60{%XR43N8VkYN_b)1iucYYp!1bC-{7^RWj|XDg5Dgk^YfO{QK8tN|M)j;gIu zCX1qf4G3u1^GrhWmG%(hBol9#L!s0Z4t|F#0dg{+{yu%AGOi1m$Z+CxnT1B` z+#?=ISRoL5?Fuv{LMrD7Q6*=B$~K@+%?P%Gk36#ZGOM`SO?^6@?S=?wxSC&s;Bw_c zp@^TX!zcw*K^(=Cti>W;4?DB{9693tHC{SUL{KWI>$Og2;}&Vw>((%5(Fqy==b0Mwb^rQKjy0~4aAf6%P{z~3?{*X5zyqzjULIgkTyXzZc^U? za;A7-!!fAs+i(C$^jZ{dI$g~Qc^51@X}=+_VRj$dD&O9%?Ya~q$GJA7wdj&l`|;JR zbF3j5?=0Y_F^YqRh$w{|!5aNK7n>9jG#mV#$iXS3L|swOkRRIBhZnZ|qkhg!m!YSf zrFWk|-{&F{FbWL=16;nSv9^XI#^nw)o(QDMK=*Mp^<~Z3^0w=#u(a6e4~{LS7i@U-XR$BxD;}tvg~s3a7Ck8*rxr~5ihb7+2IgWYJsm&I7pu(BvX;P})&haR7Bk zth94MVozDGpUfxAwbXWhy~t@5aT(=brE53rzE8*MmzqFDvQFGZq&Gpbi2O$df!4gg z&uAEURDY@+Wzymv+fX&j9*rbwYomO7*+CEDbF~L(8g-#Bx|<-Yd%pB9HGt@VwW9mR zej(Z0+^`1O=))FjX3dx%ck5el-fXo5_ihsgBLuZ==$V@IIU z*?vWFQH6*r>$Ein3FX{CgT0czbMm%(a|A00rR4C2XA!Iz68q^#5&N-Y;$nB`AqsT7 z9eQ8C{e2n|CGPWX3rc*tL){nF%GMZS?+|JTh%@BZv>~6PVZ?2&oz3BeI5Q7+N?UaE z)z{SRI-f%My=7%KC4LCxC+NE=w<)v2J56-8S8%g&|AvHw^WSGc-+9F=sHR%}VDO@x z*LIi-jTK;&&MY{6RosG@7j~}<74rfR8~f~G*i2BW1Vq{R-scy!=(D0EZb#Dew5F2Z zN)Y>1-{IUC)R1h4T-Tt(DnB%c5waZY7PNWj8>)d=$3wk?7u&60 z;C_5~pfn^K0{%8Xq4UfsAOnJV+tc}>-f29R6(I@8`oi{){?I5HI*EFI@(u(gkPYd3 z<7r@N%cYRaA&U+*pG9Z8ett+E$8C{mpp(ejhbbNO&KJ`Y`wek(Zd@**`LlXSZ<7)Z zvA-JyWx+d=yogO9`I7#&ev-akHWPE*Z|ww4D8zx)ST8JKc;H2CKBby%XS8rr5DfpM zo4?8uS(%1j>0qXRhOHA%6Y&$GNRscPY%Tqn-Sz5MXk+cij(4d@g5t)Lle;j%q!;N+ zhS_U*xw(o+J8dUi8&o^_C0{Qc+5^hF_K--mj?O*-hBh8>piQ0JUytEf&s?UFU%9EO zllR|j;$28fMocB;!M-)v4#P@tj}llfI`J!OcdZTgfmYWOW;C->=Gn~zRi7cff+KHMjZ>k`)-w{&cFnmCteAcX; z)+Cn{&iYzN6_$y375CsnSmy%PD8gGv-HuY?e(dE8)v(Nx$a;CW#h&E+#o7nYQ$TUlALNHas_Y_^Y8nvOG2A4r9tWze?1 zydk}NgpLyV;fUix_h!kQt{NXjnUd&nt2bYra_?iCs$Y~mK$t6uQ(d8zbdX}R4O@PZ zXojrGspGAS?K?sM1Z!I6EgaX;qF(VWF050$k8%0DUAn)c_E)8>DDybEFLa1=QV}7_ z?DpP9LlNc8OUz3HY8NupF1)B7h0B~hxFJ9EwAV(P_@;^FmV^1C>2LO$m9plw!HV`KtJ+`1D%U7yi|`2vbV$e!8FB>kAbi)bCioW`H@l$; zB_FZ>rY+z)+e{>MU?HJ_q}-d$*A+Hy#^!|!Z8WFD%juK_8C6in3lLuD-%muJ4RBGD&KI*7;2y;owGVop*WlxTOrLC!W!GmuDbk+=mlR? z`fpmjw(tm?q>)wd5$U#&dCryMpB!+6i-DSE%O27!@bz6lM1Il&N^P(=bozo#pf`$Ja^*HR{aj%BC6g)^Uj;G4*?1 zEBEAZ)~ag&dcr|m2vmhYBm1ipOleL-Ws1VW!htCe5Sol_K7XI9od-CP2Sn1J7iyE2 zDZSmD>i>29Td_#)8!?9b*uI3_eje^q$54}UQ}0q+8*5p*-laNbYyD`g;FhZS1Ycmt z%TKi^n$tcr^N;Nq2_hp$(DldHAu5dWnlK5el%+Z6^?6y&b1T$Nc} zTyzA}INQ-_xB@yA9Mt9H0%62MIs{g3!S#nd$Q%>J?d5R4e2A~yhWq)D)FUz?ND}TE z+uj-fW1IuRZ{vHQ>)@Q+XzTEaFui^@PPQ5I#sKhuqqvDc%it(v-R`WUm*$xA9YJNC zYC==(CAY%;+io50k;7fQncZ?Z)c&4RVA+g{OH_O6=^Bv)ty%H@#6w;= z8hL)7Mp#>?Uclgp4!x8Csq^sIBhz%5 zfzk|&c4NVyl^5rfO*=sG)yD2@C_Lj!91f9=v5ep(7X+>8;aZO#i?k?AX}E=UgyqTg z(1C^=%J!3%_R60i#?LxM_sxAd5rPA`(eQOynf9-n2xVGjp$ox|GIit$kU!c!It6nB zz7=QZ0Tgqm_F5Jh-?jH_2LUm4Vw{wOM47BQF4GSC%4mFSPmC$+vSRn4sAs3%06U+`IOvu z7VRVGOq6u6q77_k>Ud8gP94VlZBGJ=rw$ZTTCD>{0D*B586r2!$Fs>b8J-zSx*mE^ z!Zpv*PRFU9L0ykBqlL+7J(BHE0FKML@czc%)2EbdXUJ1n74TTq+jKc~+>H&CGCtv2 z)&*}|?S;hF#RzLYI5jV~We&C|@%Dd(h0F5zfIXpz&M`*)=236yboF!l!}!CIP$LB;{vy%Y;il`@1jIrx@&onjIckzev*EX_;a z1EuPg^FAV*upO5!zM~!T$vaqTD!5s?F1;N2P{bdLbk$Ea# zDzl-W_B6=(@bYDXP1|rP;%DuK+}eVcU0;IOZP>ie$Ehx6KRrdO1%+9VR?EOcb0N5b zn;{^_c{lUBo4z0>PW2n|iFdCImGd9qv&BwE3zvke5SXw=G%9HEJIF>JsO7LkUwF2Y z^pp~;8y@ohNHSwl_i*#2<*LI9np;~wMMP+~Jgt>hRaoM=`2iiVj=rynphmHUnEV)S z7$a3he|U=WIyYx|t<^qn-WQGIcuc0aRT2GR@b~9Kg`Q|a4-;8xy(2H7zTrH6 zXzgLw^Sq$0-lxdZEsg!uY_c$iUIB!ZVBl@K@co87kEXVz>X8FZ!sXM>L5WyKHxAG8 zDU!~$57$L^97qnUfrd{Gqf8_J{)Q+O+E)8bU#^Lj!#{J!ezItiI=PU&I#sW8eCcN# zZuOBGE$D#~w~QFIYNY?XOYIL0lx{l}J;nX|vfRFKyk`9dQI0omER_NDHOF2yEV)c1 zXab?Ww7+W~rE%R_*t=6{bBx(LtbUnApLATcEk1z8F_Vt5?q5V?v9;l+jkQ6{DVjZ5 zDamAH1`Lv`5*J-HVriO)hJB3fo92zRX5zZ+gQOu)m(Kk?HBcm1C1Q^EdGUQpu({eV zh5MDRMVi|EG^;^Gs8z|cCeeQL1b9xfM6w!MQ=k>N9fh)iFUcLTQC&mxtqfXKcDK+s zQIRUvh-RMVa?s^la|O)=_A?7WQkO7MEY7EwSOA7AqJ{qXz|dEg!rrX%sMOih zJlxL|W38WCoD-BA!-kqo;fI>g-^rU#Nw#-FrL9Q>yUXPIs zlD}w5WU*yZp-mll^Ys|2@#SA(4~1@~4btn7N>bXiJmMoEAmCE0yL0qsh2`hP*@jb6 zRb2x2xC)xO-vH{iUy-MLdtX*E0?6GqJ!jYP_K*>Ho)hQ$c#aHbq_~%^DNoVN*A;zP zP@DeP{#Hxi?&lP~P!Af#{@@*-qhQRyTqDGwhsuev=rUJ4+{de!*(82FkFH*)dFRR@ zZ*GfFl2U2!_fC#YRxUqupO>e~=?TKw!Psig6lK3@+YYk=B5^UzsWuZ`r-~%8;rD}E zc)5uE%+s8y;}h*4?+tk7JN=Z(K}+%To+WA6wUBggYNH!Z*Vwx z&y1pdXH+y}chc>_ZWTP)F(}(IU6Nb-v9RR)F1-@zaCW(X!zpE)$VX9%}h{2 z^~l1)?y+BbX5KYhKA)a&d?<%;Q9;Xe^bd0|T@)WVS_X`oycU2>oDE5aioDvYs&f z+W4Wk-`Rv(Gw)v(!Imy0OZUN}K&F1cN~h3Wur4yU>Hf)>nioW#r`ok4L0m}}@tx)c zTR#hyBAQjtoO#fKd64aXUzb(DbJm88F+Kefy83b0=DS}7TUHB#j-d(Y9b0elQ0tKI z76&m0?mjHSED2_5M4I`M&n`w(8w738CCTj`ULbt5TzG2xEg=f*J*Y0ItOxn_n;re*l2%;((2hP&Uqv_5VW1~C;{ zI(fF35^U06mB8gSek{@L+5M_)L%O@X>{(6S@!acOB~18Oxdc-_=0=2*PDgZ;OMQ8e zZ?*e)x%2#(6(K5$>fqszz%;X=U2EO36y4vwOtUpVvk~BIP42Q2!1LSgy&$HE-0(yy z!+VbP<_`N!3OwnO0(ZUr#&@!zor0KbI!4-C+SoHnUY~+CHg$z4-c?SM5A6_7ro+UB zElIXMX3}Yckmi{5cXb{E#xX2Os-eX-CngS=CLKIIdzB}Mbm#1YkfJY6*qvnIO~B zdx4=6S=>bU1;hX z%3?(7cdjV2L0hQ8mve%FQSfd$yo59Ev6`B8jxtuXQyWpWW?o)l==v{l-#6I(uvMgU z!k*5D7wVj*i6$v43o0fg`A{l{kajK@FAL*;A56?kO)c!@q!rf(S2bDlH~l*Q_|qu| zJ&DeXv~iZ&O*L&n9-+Fds?^@9VJN8=;!j{Q!rm3^#6qE2Sz7B1o6`@~YhV5KxFdUS zJF*GO_|=-ljUPKoG~}ZF!6Rc>U+$s0j@qm}-Pqh+8glxwY2wM`X6{c!rs|WTSr@13 zc9-yrqKh#&^XLxqwmsV$;}stx-D(<^we@x+q*g5IyEMX?<}LE8rp=3Ww|#iD^FTOl zWTki-7jVBuI&F8<+LZC>`<>8Iy-f8~7A#Llm(||bBMMWOxJ0a{XSk|%(p27~uBvml zi+mzp4vJj6?tVd)X^ z|LwC5l69Vv@1)xkxBcc@&37Evw%X67*n56$)OCo= z9vKN@p^3mmhLlv0t8I<#xIfV zpAk?GU)UH3ws`e=yY5mqR|Zpi4ZZqRpKnHFTVsLfq!6-)J{#}+Ps=+SX3T6n2o&CU z^R|}jQQlQl-0%M%s`5L(@#L9hS!}#Fammzexu{z_PT!^EAGg~x8FSGAf?a0riQ=$z zVlt#<>Z<#^_I$wbvi|4q$A?QlSbBF}>uP)fL!;wPGDKbTyXw~v;3u)OXP9cUaCRYt z?93$Tnfs|lU2;TLU3}xZP3T|sdwa%|M7Lj`zIfEW;KkAd89(^fj^m@Z#;&w|HP8%*Q{wP+_(=v7bh<`CmJF0$A>`K0}_(Y7LJBip2lhiLu?(&%PR9!p6 z|7q^LgQCp3KaV;(qasFfauAFNG$=`ef)WHlL6YQ*pajWTMu9<)s01Y_ib%FWLL<-! z(qs_HSz?nBo7{A>=eG0izQ14XTeW{|)$UVP5$t|=`i67QJ@=f?cg%N0UG+ea=^kVG zoX4&AOr4L1=36OiS05}oB14ja5Ac^T{h1>yS3AAEsoEFW0(2WkX4AR1=uFG99$(W7 z*n97T9tMBLL_;aaG@94X?P*DXfX4D(qT&=!&E*KzpVxw$+$ENsZ}Bc(i|`ZBpm&LS zhtKOash~nn zgpcS{^-G7?diYK5khj7rsiokaH*su^jX4!WkS~YkP1O#;Cn{exiXQcirbu z?Ksc1&nxabOy1`_=VwxxG5n1wl+ShK_=@L)*}_&H6?}y9&@hoSPO>a(H$Pp=($pi< z`h1oYkSy5k(fFMxl}NnoS05-V(x3nM4NRz)ovFgcsS%!LOX`B)s$^nyn=ki`L|q6o zYJtxPvxxY|caf}-vBPILlz+FC_s96^H}!B#DrTMV{ru+!t}_AK+B@rKorh&8&`4f9 zc-dInPBM}!T=#?ybZ+^~hiJEDv1jE` z#pOt+u+IiQN=Co2ehZ8VGhg<`eEx9um}tjQOvh2tWArtQPxX$>>cvMC)}76&;mK>v z*NGxtrEw-l=-sQ{Ni&YH9LP$w5m>R zRxAFck?nqn`$EK@Colryse+j1XwK}ly+rTdmvB2ht*Pd`vUl!1c8b4q&#hkH)V})g z0X`GYdh4nBwv8$itfUvJ2Z9=uKBhLXek?vH z5GH0exwh}0g>;XNd^_1q!L=;wOWC0vsyh+^&}`C^FQ8#kB}{*Uv6Q%PKyzg4xWFNL zm$nn#fdRXu6>`ZWqnj*W633QGz@UvBv|kl*@8SJ) zBiiy0<2WDV&?`pb^&1=#)THReSk{)nqskec&Px_EEDw58&aD?SI9?f{6EvY;sj7dK zd}1t#z50HJWd(ap*`X*8hbJ4jW}eVy0g1Wjnxvr=>oWdmsI>G@Wjb+EMe1bDn~>JA zkVt8q>`9f;igBV<3Da}FFTOJ?i%}QV zL-~mKE0bjfR0@A@p17TAg+JbBo1i%@$M~~A_Z#!lldNE>M|EV?Aac>~$;Yg-%tgwD z42iV8>fn4<`Z9P;@_#w41$+mEb|8ivovKs4iOE@`Ll|aiSVqpJ7c-_q3lV3nFuZY1 z=Re;qwt(obSe&_;U-O<)N8z5YenN{(tP7t+%@p_-F+pUG1d_~GcfVzFAsc1JT*D=lV!vE6=Er{EZ~Jg;fBljDD)99H z-)e9ZrtRh^X}nfxR6K}(CYr}E|EgOBeu@WUD>Ue-z|>cE#ld_ zjk3UxxgT}Wx(-#N=*vJad@*xQyL0ovn%xjtieo|InP>J$;v4yLI5Sboh|0<5)x2a zb~ina%dNX9kVro%5!6>@r@Lq(5t(;wbdW!~mwI+3_n>@6>j75bu!@vZ4yU$rglp3e zw$EZ&$3!C9yj8m>^1eOmtWi4XSrgOjpLyhTyRgp1>w&R?hsR>TWP&uJL?&#eR|6H2td{>KwJKkfpn zW;R3b`9d%9e6g0kKAbGBecBu#%7~prb;^}r4u=rn{OT4ugLpJj(OCkOs56BxO+8b; zmGzjvybvG}`E1VL-aP7%s+EGl6GhVUOLc$ytIb>_1u32rZI6cj4z#>_BKmM_YWeCZ zZsyRszZIK^Hzj9VN>n2mhg2H=SSJN;;<)WBqyqk||B!Irkv?m1Yrrhdv_OUFlZDEh z`p0_AJvUaSmlnlAef18JGjQ1=ZMyu#hBLnV)=wWM z`$6to-U|A$3(2}I*cvWxePT3`B{4<>Q#*3fJyfbk&dMvq%J)3XBdcj%Jn1uJ#4> zO!A)!7IVkDt9uSp7ja%yq-_&9EQ{}u$ZZy;P|M2e%k1_gR{)G-3D)(~Wz_hyF^k;h*oi+T<~?_ANL}%nG#6g8FW!eG@jT{4Fmq1g*r($F%{hfb)Cpm6~UaHv%ZOS69XJ zb2>9G>~haEJw|bYO#13b*<&hT-X4({{I6m;YUBliFQWN;auppMD+!;|$`N%AsA)4} zv8wT|_%6+)_OY&B^L|QRzRX5^lX=>v=9jlNsv50RkZB9*$8GYmf~68uI=q}{_Q7@aCK|aNiJ!!t4(}aLO0v$j}$Q*!CBcbcaOaz z!8US%Q^1!7Twg<M^`+he3>u)fr>1?WgT{L3;)^)S%!3BB_`srx<5q9 z*R6TGiX~g@3*HY9>+Wo|k0nBk3)0_!v{GPQ+L;?=%rE@NH2$;K&~YkV-_WxC>zHE^ zFZ3^nd*!Lj^e>#$(elA-tx|s5%wQ6ClWSe7vK7%U@@Rmti%k!GYs_nMWYxMG$wzE7 z1T$alb0B=~rth@u^~OAoA?&-q_cEp)tOcOe@+0o8S6|!Vxh@Ni*ci-1T9f5(lm9K; zwinJO&9HBGnbn?_QOAciuIfmnj8UmvM_Z>N-)uivFn?nbBh1wFOu_Q2`+S2vb*M zc~I9sw2>imzS+d9&ssphj(1_d%A164__lwTr@*(bpB|eo9cs&vQhndPMr&8Ze6!Ho z4|s>KMxxeV(j|IT-yibb_&KpTYrOrUaIyYWN(V^Xkz@!H59%i#JYDU8hlo5B!9GKO zGP99#tI%DsgZ1x8gZw69egfkpoR&aZ&Yb8@*pv&k=w(L_^4)zVlI{Z!bX!mMrvD~< z$L4f~Nw~Pp0z2_OlKXxB(3##jN^!ZVQ!f=l23d6j*R2`7M2}woKRw_Cq;xi_`7Q<4 z@JgVd&lSWprmok@&H(pH<+TwYRVtsMZJW25?OJ+PQ$OW!&3{i4pxe9^Sz}4ow{SZx zJ@3qM!r7@;_ujp#%`1T<`FXq6(R|Gt|9(`dR%8f5zKw+-6b}Y2;6s+l{CPH>c)9y2$`B@+Hbs zpd+Nnofo+DtVm3L@45)NogH(AEhbg^&06W(t6IK`MPii4KOQkG>lwI}LGE4DY*Jy2 zHh`vpw$}+PG?4z5Q->wqWMH4-SjKMIm{9+qpZr^TFue*OL@LaU<`dnk%bWZHm*O4$ zgr2WZ;JcIj@^%3+g$@sk#28Y>S!(v59_xW}mA#!uA-x>X;cOyJvHaA(`;KZ&Qg03i z%AOZyrZ!~@TaTb4=rDG3T*yEUu3LYS&9q4llx^mkWO&Zkm+z5Sw6lo~-a|(aL*d?sd(R#VIrZ01m*<|jfwK3t zGdhTMwvD6Cw4?_}9N2@Rk(Iw4LgAU#1#_;tLI_0u*We7Kgu!Rir3LT^3ADiBi_X}z zb3I~0ac_Bw&z}<#T#>LSI1&#oDqW=#Xy(w-ojwkOfH5p>Cu#M67eSyUfSgo;2X+uqw1Fy{v!tx7Om<}xnD1R)JeWs4SiL${= zpEA8*`#_#th zbaW-@S#oLd4_BqIp4V##<#-^0Qt6=G@@eg%sjV*l4wA4stIL{GyhqeOb*AR?c%Oxn zA&GHUy=imkRVbx^00NxH9N}s6NG+9uyvFCALbd;X90u8Q@G557t6Z7_Wl!kc*DLk@ zDY%u;8=Ll+HofTRSW#P5K4zk&$z>Gr|EI$!bgxKm+P#E+EwGO#;6yQ4HdS{xmmjdh zN)C9$C1Iwp#rnHvCDuRfk=VL_UX)MEPM>Qh ztMOU^C&g0LFIAl~__KmHaMPV7`^pUmgA|n$Iajwk#P>k{sAZRNYQ zXkA~!6?*pRL)Jfxhp>5@oYS^LpS6o4#!2B@5@LUCb1Q7kUg{y9uiT#g%;oUg_UC;o z6f550Y0Z+n#p4lT@vICFl(O)(^v(S{ZD;7uiVh8{p_ZhJzktG{z3l^~-`6wc)X`jk zt5ST#sb`;bpwrVszE7~a{ACya`4751^>?Od{fS;CWQ0hwzplt%rz5lRJa`YU0Pb2=VCF- zu9~?RRVl9Sg~3l+1_u10H5yaXCP$D9djEb78#_Bl$G~ssD5E|#SF1LjgghoO9^Fek zck)P!jw)|rUcAz~%?(>v-%3j_09hPJx0h1Xao1h4Ix_)O$n3=y|K+ihyZYNQ#^kKa>Sm_5{`G`EkJFBW(2vKVILG91iGctGzrD6S{s6a6 zn$hI)f4bLR;_P=-T;R2TH3SR)S#-idyXp`d|JU^pD)RsR*DRGFU%cGg>Zc7FOfj`% zZQs&V3QennIw(P=Q%H>i*gGd8YTvZ0%Nhcs$FvKxx;UJtB7nQf$HxaO+jd4BgVzfS z3s}E1@#ALL_=>gi#k&CW`spEc2f&o!pJ>N>qz%#b(p2Iah@`uaWfk%8|3u-<8_G|i5PFwfH+T2h z%&gpRplkuPqb|TWoCevO7Pe~K6Kp<|)1%u1vq;<0G7a)nrOH9qLeE@b#>b$*>S?&l zrVY+O0HjV3kRR?yI3VZpiu?Zk`;sG%kB&QvF9V472B2KS?eP@1=W%iAgaNPFoXvW5 zzf?dD=?mhw@_l4dv~vwIl9Q7=;!)E(;3-9jyYsJ_V8m|AI3&0?rssU|Kq}Hc+5|3T zChQ1xiU%Hq+Ly0r54v_6W?&NYP9MV$=bZ=_my-qJ=7S;GBSb53XArKnIq8xPyO@0k zO1uRcD0y>2&|hLE?_i7y^uzH(UxEAjZqawq+Y3s|k+Q@LWo@_{nmFcSIEm5R^3`G< zEm7CVYnrb)QKF#LH!+Xp+^(cN{i1tqA*YhxBhe)UvqZg(?gPD@fkAHDGEsJ04>T$s zBF(hHPwumjW2-dC9a`hE+G~A|gTW5;pf>>m3WzWr@QzoE6)7vGKUt;>${}@a1!yI+ zYxwPQB*|mw+P^Huf@7{(b~b3P=@@yYp{J7G7>{{!l}B; zO=oKnKAeyMZX8njz#{l533CA|ykkB}Qp}%9N@1Uvm{0)yqNg}eJPNxO%JlT-xhjh; zvQP5_6sTi(SueTG3DG|yF$Tsg`V0c~83Woc<{)cE7{EC{-QH^5RvoO}cp_KtT4ChU zc8y>Sy<8S?*TF%IgCTgSa@WDPtL5Z{PeHuq05%OWWg&q4l}@#7Asg%+Gcfq|8o@Ad zX|tVKSh5X>Gov-3PyNZo{*8U^fC*>c{wcU^#E3`^KcGqxuZY&QM`a}e785>G6Mq}@KQhx8~JTaV7)Q%%i7txuaQy} zs5k`hPJ@imSHy-bXpvMoLOch@c9LSU5o+lo7p;IJ?FIGUon2j`3VC}pZz(DU zL&r2UH1IlAnE8a%j+HKdQ(4Jz@Ku2iu;45U_Xq_b5`Jq!P!b>+g#bqb&cndmHA`kRN#-<1HOOfSy#5+xIpk zg+`mQc)?&^`TRTgRG3IhOR=ylnpE_r}@uY&fk~fQ})w~%voL+Q(MLn;>sYN?`d$2o}T@;|uf@EX{rc!Br zwHTj+A}f;Pk@8?+T%gsbA$-w>q=iCAjAPwONiU(tB_g6WI4YH9AwLxv*-*g>T`=m= zFfJe~`%<22U@&dzFEC6zHJ6jp*RuMxAI2$Pl zTzlTAOuX~WJy<6a^XP>30f-vGgaFl!Y+_(C!`E8GsD*9f4B!!CYRusD^`Re9gZu_1 z2U!k2W9-pyPee#*%y#9p!wQlE95Y;G`>y-}u%2GiX>rJ~*e(p<5QxDArXA$+q^}Ifn;v=jT zC;%gQ%Y(W>L`pBs2_lLx65t=0im&k4=@4gA1|Mb}17Z=q^Q$|ysr!PfA?DV~)=qZc z16}(Lv=rY(xnwp zLb8KUNA%l?#<;BVazj{kRG-3_vOX43yAl=QV?l4U``wev$3ZBH++W&krJ}V0i+vee zhO;xg4YmETkgFQzH1gb?k4j)O&6jP37U>6K@I5sh`F&1DtA^4my=mqrD* zYDuIm?Oq^4hUWj4qhyjKa5cyj@@%|$cvSUB-Dc7VtZO>*^737a^bW9acGbKduW1?D zAuYrK=;x5M~yaUD!7ef3u@9m6z)Xhx9__>d{C+e%3h00nN9RCu8JlO@I|fLU}m zp%B)enh*W+goFO;@?)Tebpd<_nd;dUHay_dHOu3VE~|L7YDlZQ^*}> z|7;?3aT0iB7tpvLn}{sgc@dJgTLb*E6+h&iUG#LQVKo>0l@rW(ClC1 zWqeDWz$m8^klzI!YFM|i{~$8c2b2k%?gOS}5VRqLb6%paW=U`^C@&ubp$}m|pli_9 z5^m~`-_i5IQoDU|GLQMFK6n7)9HO8S!C?;Z6#_JG7=pSp?F-bX{q9qv%Q{82b8sfM zT%?kKgKftRRoBNI!us!;&f@|K2%nGY=KV$l4ApOz;3rsn1@%$Pc1oG-`OqI0YP=9Qh&Oo1URbZAw@Z2%CC1*Az+k(Z%YV8se! zgQQ!2Rh5U5l-FN$ztJ;=cMK$7Zg7G>K=Z%KC-${T7-O{eID-IKH(nI@$MnVh_c@%t z945fHOLPr05wh`tN|%cbjg1HLy6qDEsT&HKnwnkl^Zmu_sCsB*$s-Ijq}f5IHtBH4 zRl+ErSu}WB_ib&3W!7-5tRmJe7Y6K$u{LcyW2^lRVxvnQGc1W&Eax`-#1Oqi1G&9E zu+%*TGx`mt7Xeh^o~>}iBmuR-{9`5x$kDF&x+&0f`gL7Knpyu`<4F4I|I)9ITLK## zRbm)S-9@(?qXn1fZXQn|4-j3zVN;G)lbAS$yhiiY0pJj7>*?vGP!KU6Nftism4Y`t zTxvlJ5nL=1BaXUi>CQb7pfgJNqXkYU=;GIr^bu?<=bTf>iO7M4IyKE-iWz{=isMDg z6>8WgPo996kcP|=>|Sn2ucBfjWI*h4aSH9}>fIn=$*1f-;1nDyV0bpAHNCIzjxThT z7Oc6vcR^o%69!`*Qfwso0@pvTqc}-LUj9*w^qK)$_20g|O4Izkb4LS2y2-=cz`My9 z24u_&F^6ObR<0zp`Y0G0!WIDhu#}H3(;A*qTu{Ao1G!gQe%q&gFG9~ejJif^{bM~z z?n4=1oo7?1(NF^G%MgSG7g#;*N>0ywbZI&T{W~C%p zKBW7b17154k|?qt%mk0}wA}!>kZ8Y%v`5>`Bc$IUH3!%?#`3}%I}LxZi@D;*ZsgkD zfi0In$@iVCK^UmLfSxh=($)eek#wg&z*bNqNe#+bpl~pKbsI#xI*~UD6MuGJ947i^je{42!c78fN1z@7( zX>cBwQBU3BiHq zQwGkg^us))YA#gtYhV#F#D+ZNTV=@EFoHDt{|x5fsn4dWNlwO_Z%VBqY$2GRcVHee z;N~E}kpVU+9rT%}i2mRd!HMk4eP8*eKU6blg6|z#&N6>7opkm2Jt=-n`1F zwo&cU{Dpr}Tvvv-DZ|hf>|4xeww@OHm8P3Gv#`*0N_Io}e&5G4c4X)c*Kf+F(g+(q z71_1-hbs(I*1w!`Ssw|WMgILqr!fWO?!{OLNJ)O@Aq52K-g`8PI@mG3}>O!x*(MEyHCXsLbG2K70twAF@=jTl5fFQ4au=y!HdE(Kn>y*#P(X= zoXu;TcA0q{%*D1mhDN{KuVhq00Fo_+<+cmjve11I$%P{-aUb3vk7Os1SZQCrWoWX; z=w4s2@QY$}d0APS5UK!i@3b8K;u&{5+0gcLTN7~>nhYW*IpyAKllMpu;CL44gdk-o z1gxW}P9hC*SjhB1wUxbN)@x%T&J}!JG`o-%2CSeU=cSDtNO|&3)E&E#m=wf}cMWe% zidh!)qG-fjSQ^o*A+UmG-&v;6X;?VFLMR6*e!S1lR@Jtn8c#&P=`l^o1%P=Uk;nk7 ze0K_MwYuUN&uLFJ8dLL;9!_&S=1ptW+i1NjRFEWn4@wFM^Q$IHap83NdSw$0jw|?F z5LHGh7@H7u$%Tj1MYhHjasXyQsg!Mt8QH|s$3sn76keY~PmQihkE@{L{m=FPIFeYq aebBX6|5(C#dvo+a%GcDc=E|A;^*;asR>yV# literal 0 HcmV?d00001 diff --git a/_images/543df62e8ee0c046852195b03c5991c63d742fc7c4022c3069509bb1a20dd599.png b/_images/543df62e8ee0c046852195b03c5991c63d742fc7c4022c3069509bb1a20dd599.png deleted file mode 100644 index 1ee4d4057e353a972a7bf7a94c42b725bc4cf43c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 365136 zcmZ5{1z1#3`zIyc-Hn8FcZ1Rr(%s!PG?Gep3eo}sf^>H`5`r`g-OUht=i7bu|Lyub z!U%WHJ@-BD`PCV}d{ljpfl7)B0|SGh@Ih7s1_quJ1_rJI84>u&?&r3zz&9aJIbBap z7i&)+Gj}T(6*Es)M;A{=J9BDpD|Zh&7iS)JA$D$7YFkfFR}Wzh4yXTn0lSO44F`=X z{9j-Y6xR=W9xyOiX3)Q|KP1ZRU|?Zj6lA5ed~=VVL77&cK(`6O3;O=T9&xMlc&ih! zOh1M#VQ4-haJ6s5P-hFEqYg45#%d;;kmEA`k^QWRi#O2zwkBMbP9o~Z_b-CfvWRl9 zB&`K|*+;SdhDVSg;XSQSK3%#%?iJssi!z6%&oBbzT)-dt7L8zu$~Xnc5rKyAnME zO>MKefY7?`2RLqT&hxZ$gB}mAz`K({d50PAfB)TiJ_~*|Hj=#k^=b~8f>0w1KArc0 zjttgE8=Y2wHxS0T1Rfb6jrW#E*-&;p?Q*o7_oC@_`0+_$|1uvyofJM|6~8H0J2@&4 zD_Uv?@c^SiTJF~T@0#Om#tc1fZ(#gw(7`4+3KUO$aH{7kTJ z?0WK_|K?u|3Ut;&9;@3@VF2Py%_eNrnH3N@wpVRd~R^9n{7%0|ngPtSc0*2nvVd3Xy z1V_LoWy6JImIKltlm8N3uE(TM`wjyK>;~|lbTTqBhCZua|J=ve3_WM$Aikbrq8aD= zMG2S7i=FB7l{y|PPEECrf9pVJCct$8x4-k{Mvagn$l?$qq&E-959cC(PYOG%9Z@4U zZ$^>{9{v37t-y=9<8iu~)pwhJ7Zw)wbYt?$XY%^E*s_zXi-O@cNV(h zK}PjB9rZ(t<)7E0(e=&EgujcYr{_BQq25<`yXqT_;XE0^n?IVcZJ7ws+nINrcOB$D z|J<}#2v8&7%JTeJB<_2#z!Y~|L|vIWU61oujU5|rI3$s|I8OFTbDX7-d*HD|&w29| zu#iZ_Z)+1~Y@^|K(~*BHz4r`23vn%y&p+xX!UA zR|X4$6a;AsCi`WV)0VBI?@-x{U zgQ!ie8zNAt8t;7{8`8}D=VP1p%e0zeU>4E^-CRTDed|vX>oB*JFXJ}i@SGeJ)nO5* zoBpRQQ9#>7xwk0S>hA1v1PcMHFw`C>eBdSVa*+UntgKH0Q;U!eMPqLcsjaPD?fM~h zj3@fIUql{wJtLAx6vCjCKJNbvyfq8x)_6nqq3&*&n!po>zrW1-Foy!cJo%d&VOVc7 z#@u>Q7+oPJO=ssMD=itXK=Y(w1#H0o)UEvt)G&g`czApqT^-+Tf^YGc(iF{~zbKM3>cCJ9$KXrSCfYk?W3%%TL!!|!%jy1X6h>aZ(`&FNSTy!$tJ1Dq8T<`2A1&t;%}-#lLtb8jU@GQWUeB>!yBRVJ zd((7`6{@tisa`LrgdoSiTdpQW+BQct)x^?X?_OU_n!b&UC;(7lLQ}GHyW(o5^chvm*e#YUwD`E@5v-T@sy@I;Q z*3J=)?|X?Zznuj{`E*`=a|9Ye4FCau(a9M0*60R@#ml6Gfbh1n&Ya-;s9@8PWCrMF zUJYEk9~8KR)_Sqy)T{lvgku-7{wltg=YL9h*Me;fJhkhRS=7ZQR!;vU`LtFy3 z$)0AYo^f3K=5nC;z7AQtyYB)DE^g-!?Pn-VFlUUl9~qtXdKtZ(p1s7+sY!f$eK~tw z+w=e*R@RgPJ$?s_53Fh4QB7A~6M(V*Jm*x}yj1*`1atu^k$65(Yk7TvfL^ZhyXKz7 zuM4m)_JUvbpvc&M5$9s*=oqUOc&G^l>VF#@$;UTv z_B45ReyG!x4PE14V1sY3o&^bT`1YU)?&W$20>pA3({+!w1{A=3{*#Uum0}mL!f!Uf zIWDDt9WTKGU0FRnQm5@#s!&3#b=#JA?tHKgu~{_a5feQ+AK(a@fdMZVxbRt6SXlQ( zVu06QPS(fI&wpJ6t~)OM>LIpJ&MtlXwGcFG`SMA89_u!6As!*dLPR*_|u?i5(XS&^0bBd z30iIVJe!T50jtl%5jhz!#Vsa`gzCRfh9YW!C*oy19muMUv_ zV!+&P{@;XS#o?a?`a5Ra*mtYM(eVeM?pBDOqoZS)#ev~m7f{U1re`@0za*j4=50c; zTgqE1)@#r!(3=D3n3&my>^A()|C;AoJOR8Q>wdbDc)e;rd40%#6>@>>@Bg?EoyrC9 zQQl#7^$g1V7^dtU*R!XMR8Jd7SEon3Dig~M4iks-l@ovd{AmvYH{PT-wGSLSD%3qc z2fRG&kxgBV7bS=|LUT=X!2I^5d^B>#uEXCxFUXKDb-{cQ%D74!{pFux3veLv1U0Y#vn^(zmRG zSvGki02x$jS8es8aTI@Kavfu9^33OCDruEgs^UvYNh!7)RWiQBJ?(^?I*U-GzxGkR zVE;-=-%gOo1H?qkic1$o$iac#Y1iw^X(u3Qr5g0#=uUUuUC*i6`1&?O=1`ob25!|u zp^A{H#CK(7jo$?Vg=34@&6V|+TgrqRtd|WeaECYm3R#(%`+0r99%T!mcMMIAXOlC=s6@69!Kik%y+4u5; z#R2u`>I12>8uMK}G9F3@x-L2mIN7MEtj=CsEHBGbOt%sRsHtr=7;8!ts$_!z)O241 z?YXT7-d)rt1jhcJ63-!crwy$n%=vsx5J43mk&)+2yFUoP$39GvpZ*-LQ?E~0czAe* zpxv~q{==H!=cBg2%q!b>!LN61NgqP+)I@PC&~*&m2HKxhMK5Ie9hW4tOWXKLF#!tg zy7TW^3_Jl*GUmGW7E0uJv>4u<$rtt9-wSdC9w>1Qx=xARu~x*jEUoY9b3`2L#ZCo) zdB}tAH^;}v&jE=UO7(Icb>AuBk`KN9Y2M_S089LyS|Qo9sm7?S5pp+Mq9kmG2L2#XNFh;#dfKQ`crTeB#rg;^{#zf zcs0=rgfjpZTXxe8yqlYBtgQ*>2Mv$UJgVNC<_!pLhU2wX^Flihsw@ClJn{u@0d#J_ z!>)>-`veti~cUmVFl+5g=bbp}y8RBq%sK0Y|D z?mtv4f76t+I$dy#F&>z_5Q=Ty<91wqA7rx!utZ!-{vDcGK}&IiH6UI7gRGy29MwFr zw2nEhTBFJ^r>+EneF2qiLO{h@0Oi*50M41wrwiYJ?(@&DXJs1QJ~nq#DXThdBBf>S z`PO=adN$t%c6R8`g6`UcE{Exu@lm0=X^g!Mz3L{Vu~y(*d9r~r6cqnmMtM?j8(kbA zeSnVIqy9s+fCdEv3wPK)0Oi+Cig*bCLLLCmFs##gNdRo=5{^J-4MkO<-Bk8a(1DW4 zvH|(cFX~CLJ41kkUP49A+EegU1vi-+8vJhTojY!{?HiWcna0Dg#Fql8tn;6g)zqd$ zUdm-{wQG#y7P8+{1$wS&mII2=Hetn(^$`LgQf63s3Am+aD~sBD3$!pcbdaEXfb{KlmQ9=*j8{mmZx=Pj@Rn>@kXr$bJ391Te&Ul+eC^9 zz#&h7n%Gn_dBp8{g>*2PrN zEe{mHPF)=t`HowUs<$&O;twJ}s)^lbIk%ngzW|b|EJJ*uPxYeOrz0jne2PHFu-4S; zd=(^oHLBB@%sO^|T_z#s0%4SRPzc9{8djLpF{{YP$kyd5OmWEHsnZ@3UC-rCz;J?{ zx?UcS?wThCwt&am>_MW+wNU^;_Z*N@)w)1tF>6BICjiqtv^SX7c}L+hUpgp#73z}NjT8d2=vKCP2_}k?fKLP z9vb$D446ex3<6Kx@7RE&{g8*;pqcyl5IJg>R zL{SB0=D2ibbv@*CZ33d>cmefs_`P^#1q?3i0yWeE$ukc)m_U}_tN@BmVi*V^#Gq^c z0@y+9A-DUsE{I4WQ?`ykQIri5kighyPrM~EbcKCS38Hr+ze>q}3eRzF{Q^zZ9(FV4 z78i$rZjpM~QF|$Nh%sbIgQ^B#^u^}Gib}xRuZ8Y`+Fzf~_5jBMZUQi=Wxp^+w<|~t zNF3;*$lZsH<4mdChiPI+=S~~{0;55Tr@@lOgpZo*yY+<}s55X8P5U;*nJJLR0sH3V zdHpp|O5^rtmV^K5;?JnS`1o(DMn0xdk65y$~L3wr!`f7W2H|MO~bP1y7YXDN@0A2V8LCVy< zB^L_36I4$a`K)8(KpF%4 z+wm`V%GmDsL0P^tAWwsS``sKGEi?I?7g0SA=Xx#ZLEkD}Uab(AIf1@NN|h^cDYr`3z7?4r@#(`5@LUuJ z#N6kHi-cfD=!0L0bX|$81`6MeObD!to-KV_)e(U_8INZg-_~Vh0S?43%EM&;3Wz*k zTS0(9vmqbKvMGN8{<)kB03|Su?1BOs4G~r;}x3NJDjS61x6JCb_(KRp?{Bq?SdPaHcaxMGxU%9s^<1gz8Qtc}J z0StkE-GC5)hlhUxQUGzP=l%EoJG(Hwzu!h2^W;CE1L-IYG8|M317>+LP^_5JZ|Q70 zhf(bMd}n_mh0;%#9J9Zr4j9e3WtXtgc~y~o$Z@qb4G2`xSoP{GO|Yt>R=a{kQe^zL&Q&dz0@v{X^0@l9^r~x_t$P9G!UxL?QMJx#J6e`B}7sk9{ zz?-eJIhHk8&sTgh47{0#W(9wTijE4Rp5Z${vocs}@oS<$jz3T!pyRicA-KWE2>=TK zi@6dHDG~?HDH`qo|Fi3=2hrG80qx3DqG4A<$aT2c9my4`Uo{9Q<)q7QOzm5+0+t$) z-<74f-&Ju`#JOWOtl-=%Fr$;8W9oKpCVqB!a^-8n$r9)K`e5Q@BFSBGnpe ztQ3n#f-^&xM~%f5Y(OwWU;Y%WOjj?}Px{G865nFhv2lvNmeIccWZf2`FJy}TA>t!$ zcu20As0Iz2;BY@SX6tZ&A{hp3qFLlHx2*NF5YmZ|t&Vvy^#pS`mta-wcnUIn);nfV z;Rst^F1yG?+@b~w0~>Nqe=)O&j8RKcZ>7ahAP&`suMCmY{IawDO77%F#K;Y8@s&94ih>hmP?bWmqxF4OOLf7T-@{%93vp(}>*-WVFQOC;xCx5YiHT zM;h&y0nJKs1;xrVbHiG>zBQ`1;e_cmg~LE}MK6Y{;V3qYW`fY9Oo--A!H^ClC!e(|1S80!>W6(EZ-R)>n0{}WO+;r9lp2*R2|X*8Ef2#Ue1WOzAMnv=bRzzKohV}% zdg+(*Eg!$zNiseBX>0wpPC%`(kIm$sHAR48vSLi&`0^gZ#BhGqrjJMm_SfMh#_Gv8 zCy_pB$Uhz&*EJE!yv3ngh|Bt(x!Yf#Nra8T-!4Yy&#zq`bX_^d3nxeUoxI&TRLwcB z_xsrtkE?$l*gRie-4>DesJgt$_MSW~bOOcy`f3|>hOP$$g$S(Qb`kQaVfw=H@bZRh zdRXPLhGFrFSlh!$A<(wCBwu-`;{--aEK{( z;UB#>*{yPvy$G*xH$fXrb(^TA64bV(>74YK&SG*qm&DA8)$)-jwu$ld9t6EQ#ISlJ zJ$CknS%tCn2y|!E5Db<-#NX<_#MtHsqpIe}qI5IKzLgTBMh{=crCVnl6G3)D$(=^r zY#K?x-XPIRow%&ikIqEt3E`?xSw=7&AvGO>O+@)IfSmSOqZzub2nTm+cW<#ChoXUAyCA!p<~?!4m}j4OI@+uf4{0m0AH{ zB83i+`Ain0lChS>PyKE;G0}i}w7A`5UaX4(Hc<&0zxodcTt7q!w|V*S1KUZay!)QoLQ)E>i%VNCMfM@X5_y+1598u~fgCw(oFw!7#HQ0>Lym1$c~d-BMg-C4 z54I(Vn`(iP)HbrzRU+|>R`aJX%B&#w?2Y2cV(RaviScNBBeF$UnyTH%#W|aMxGWKb zZ!e=^e9Gw+1I9-Q_2|@gYZ16ChR9pl&yO=1e?dH~Y_5tEr*K-|pgugYL&m25GM?$X z8xHTat%$4$-{(2HrZ=u&wjQFG4h04<3e>E(oJ~3TL+%K}f&=FrNmu381wm^LFpC%W zwV!|2pKKd8gx8Fi_5=|LcYXWT^-gJLb-Dd6U%~THbiabpck2ubPI!@u@R7>n;Sth zd;E727KuY_Wny__u#%L6our26F>TvEO}*40qRX#zhsHEG2h7? z&x0;`P1S~{_gsX2Lw<`uB#3@ph8szE`Pbd$S1#pTS*|RI|5GQL|NMxm;P7FKS4y5* z;0^sz%#Hxc6G_O1HU^28?wvL4kF8M+f0!DJi^ zn_{^*cFSnRSYwK<+xNs6)ft!lmJ$<71NHdC*u5W*9cGjbPnZ3$C05+AePU~@EPf~a zVWN*TnPA<%C=YTEQs%j~b7Jp}jS(ntb-29}A+N(p;$>ugNKAZ41Y^vE(2(=m64hHw zqsk&8%Yd3yg@|Z7(1*r2nTpsH~h3&>^t!`+CU)RnjbNB&`=8 zd+{eeL>9v+C?xJm`VS@-$x`EC^C7A0?3c<^f;Ao9$R;T<5N)-R*fCf&cgcHX(J+6o zEW9YC6#?7ec>7d~rmQo^)Ht&<61&hOoBxVH08O7aX?fbjj1b4qTg;{&K zZSpuM$+%3;Xb%U%rcmf<77*6%W|(yPW1!^Z(c?krP2`zV17qo2^+~gcWh;RA%T9_G zPll5)DOF6?UO^tL6zj=}YH8g!YYQKLD1JhusJAuy<@0#x7xT7ZZB%s!>TG_icM{-n zGDb7Yg!$GsNyag2Iua*y%h+1w1uw}JWb}~Xy1%@2-ilcYxU$%ZpDu~toW?$zkE71Y z2NhF<3E&m!m#bKL&}T7@z=fioL^YuD)HBXh%i2b$^P8s<8~j=Xj|4^Up>hFAbZ9M`G2(@=fE^oC=^xSfv?FMk(cRlk9M_CiPISA_ zNWsGnHc85`v3yhyX6Cy}8g6;_yMFW?gK)M4%VnG8DYxTcYeklwh)VuT*PzUHDm+1E zf|`LreJVUnxp@7SG^-Ytrst_E9C;j_fJZ7-N8VMYX+Up`Y^nqZ(4FHR#)WiGFo9{^ zoj>D8${)`li)~@N=`B=Q8Cdj{QUqEFM#l=7nlD-VaF&YKu9OmQ0xmDbZ6y2EjGN8X z;KFtA?O5|WbMiFxD)2Phkoff_Z#}-MQ4;2m?*qd6??B}R)P1dFRYvkDy7NLa;(A5T~6Ko5ee44N)`i8>R3IPCSGl;Lf$?U96KDUO1C zx(CkS#)5`cCa#WXeHr$0;ySJu%9mI#AE|u8W1?h{G}B^ghp38!=1=e52+R4N9>W=t z#n!H{X1Risu<+!)9Z%|cXu<=hh+WAMmXO129UPRcSCZfgsw%@i%%0Y+zG?e&^&!?( z^kW@`%8cL*@ivS3ZW5TmcwSuk&{ny=Y&x&k&e~E)0jyNds6K(ez0`%n@1WF{%=#-_ zNid$lSbycZ<<<))K1@Ng(!b|LUSZlPaxPx$3#YVDJcFSVh5BBua&}{paBs38jGDQA zI`Y@Uh7eYX%pliD&sKqxVu6BTeQHxh3m)1>A|`TRFw(>zay;Wtl?-N0v z7orQaknMN_>)*L{;9DTry;Vr1pR3EUa}b4}rKWvj{FQ4%F)lefnM_?NfSZkET!8qJ zR5ZztmyW1}H=#a#dXHC6J=d%>iSBGD^$D2BFo ztLAZjj{h8#!VvWBfPN@&C7nm}_ko=>DTFT%B^Kug2~wFAo!qAqJJuV)P8YEo){VS_ zPt9r3g8AmwqShL6Pd{~?CWb;EzqwC;QgfXJ5nWZMoC3-`rqhkv$M9yyZery&FZ3+6y$kj!W4qaSeV+ z=V{qaA1Dc3-0AWhS2Xuh%{XQ*5(o~ZxY&ZZD>MyD(5boUo()oCFqHxD&>Y`35 zq(#GDCMpi?-U*y;RoV|fTE0@AV+Yk*nyZ2eZ*MsDSMY0i8ibjkKllFVX` zb#veEU(c3Oe_8Li?cpKSI(sIL9Ka!eP|7ZrkYW8|JIHQPMcb*!yi3b6Kv)I%RX+H> zPpHpqg`c=mhHUK}sF~4{KU0(ATXsqgkP=9{ed}xW*LGd3!2;*pQT9zlOp3xu3E4{Cw;@$QUgb2qXr9D2j<`aFy_iUjF&$^UBy+ z9qbA{jdYqyxSk@PRQJS+vluYns_cm*c?~?f^B?}1srq2!Em71KZ*^73@a-%*KD`vL z!!AY0bHysod(?<=0Lwb!+4M_(z->v=3EMFnY%rFXs6jz^sIu#GY4#cx z9fp%qLh%&0vhy#SHSx>qgo7>P9n}OZVUc$hpFhqWzCfv-*F8e?}o?iXQ++9e~epai1H2L!D+wyeF z^8P6XUQ*b~sao^ij7$^>ZFejIBZvLW?{pgwZ zK1aMWKan1lraS!WzmF+&h=cbBGEv`4$*)bNj}_|o64z;`+5hMub1%{`qioel*@kuv z3{=T@WPQ$+k6KV36dV-Jg%zG&Xc_0)@3wb){7g9U$AV=<)72ccM4^~dl)nXGo+?R2 ztc~^&LPm%?DnW5Cb@MuYR3>8%mdES7q%zrfr^|g+Q}cMBIdZDJ`&HGAH5nuwXf81WGNm^CmD?ICr6dH*L(km6(ywcYAH9kLxZ0{Nq?3a z@2J_jm|%2FmySEG!eCVe+}0n+PRqA|p)zil;r%rWwk*qxTuMv5IJDlf6weCxWH>Q3 zlc}y>X5vc#u|@DTT)dgIeqShWj!NIrzMkiTH@$;{opAb?y{eWC`+*^MqTzW$v ze%krI&w?+lIhe?}9(Nps89pyt7Efg$dNI+(^OOk(X3^uMb!!Qqf2Ge9L~oowQP(RO zYWK(YIOtUx#WrB2d&wE?;=p5&mz#~sSaMdO?#piSG90)nlD7~qCW0NmW-9kE9WA60 zNfiM2f}G5W*G z!pW1!GPybQmX?4bm6hPqzONwc4fkqW&ytgo1>z%RH?vr@J{-GJt(aVB%@u;pb!K9N zpH|^)o|>K^tVT;T-%za;#{MmS<8NBrV14UeS9x(VdBK0k8~plisx2-5b-vGa%o)of z!F3nZLeNmiNs%pa5D2!T%?)4GxWCCpqw4spdV)soEcC}yas zA-IIJiJdQLAlj`VCymWe zOfuM!N7cpeI6;?{`ELrpzpVA0+t{Cx+{Lcomg8eA+gL)~i{`fi=}S{ePPQ0r;WD^M zp#t#S>GTX?u};r8MbzcQu@2a5a>;^B9A+bC+sfKk#RV~_8g=c5?5EF8n8pNJ=-gq& z$eSV5rvk-cC=3#2dd@(?EXr%G*|sGP39sOzMu|d@C$^shJzlXD^Wuj^kI3iseDAUS z-5+T$!P7u4O^P^*frzT|Ryog6DGyxQUFwy_Lz(f6em6f-U+jE23?v&>bGnVp@3W;l z-=0@2{QBM?TEsa`8&42lq=1Jcwn-B!xyKWpK_hLoGM%_vMWzcTOU=RI6AdpK`9#~B zZi9hsD6_$^qt#nsnmmUY6dr{XMKU@sWVN9_m_qxSrBGUimRSm49Vts|E@|MToW2-s zZr{aiZdW8;ErmqdM4V!|Kxj}5*TiDi{Dyz$Q8&Bhcgv^E&@3Ez2f110y7rpU1$&gT zZ}E$Lb5UiQ#a%p}g(zs7Qzq(2K@YL| z%R6Uv2BGsFv=VLa!Fe4cFaB`M*y`pdpe%yQu(?RS+% zGu~$FVvXC_;Fi^hI#;9cGc(0Evpuvkrji=2(@wQ!V1?vDT6Ph7hKQB=NI2w~h3(Ah zv5eR%g0ktz;$xf}y~}A`qi~HCgOxj0p?%iLlI-~cTc?P#LC+YC!(58r_6)$mLbCX} zKC=yCmGIj)v$#>J{RqRCn0gzD54ba69A~!Lz~b`fRg_gGzV(|ikCmj<#>gR$s-Tjh zUG>I|(*5F0ujB6`t?8GsyWwbH#Mpysz&4rYOwTq^l za3K0C^}i}_G#>v66bpYQTq~w!L93J0x5)ex1TKN)eUCnYBcs7h95G>wL4C?YAIAJ# zS;oX#lSKbjpYHoIIun8PBjVw{?xw2JKMe66?WlkJOpYV22H9ZTkv}up3(;@cR?cdd zZIcXwJ?OjsHGf_J)2`Lm%a%LZvf0;Y`#0X->r=GV>5j_>886*+-Xr2s;2i$ zTsfwx%;&N5jPPwvFs`w~m35lzN?8l7-kc~+$&86s{HL6+?g#DRj|B`IJ>hRNIeqc? zM_7;nnunllM#ZUup{Al1oU5CS%_?5PuzhgM!?*A^DBB0qeUZ>&LY4 z&s4w5^=M|ZAkGBzFBK(is*nqL2`1`pv07_wBy+lv}grpsjT;{S}Ed5;~B&U&RnMW;;`Uj{&cf+^WA&$cuFOe@ojnTH3BD+Y&5A0nKYE2fx^;YX-L@;@$)7r* zc*jwh40p>1Pdc_k3;Guo>~@%2K{Cyv1606=au>jG6%1Tb@-0h+X|292MQP2*R=Q1I(KFIX zq0%Y2DV!+?u?T#KX#8v}hKJLR=`*47_!^_n7~0y_wk7P_y&oMA$U7ZVwGZopo^f;E z-qPed9)*z0h*Kq5ehm$X5p;__mqN3&b!fCT(ZGNwFHvv7ufeS=c8sy6pX1^1>F)B)bh=AUXzA?1xa^QEO{LW`+ z_5Dw`+N{w(HnC$B)&(2~|NnR;D$0wpn6+RvqyAgZ0Dn9RTF;?R0zGtW#LdY{`9737 zc|Pwl*6NOEXNUr~E!#6FL{=sx(8YIaj}>-)zBdJT%i?^%5}NB)M+J_D^Jvk?l@x!W z`DGF3wpMKy9^&Zrpe~C1RTxY%#UJ$eFiOeIN35f_vZ1=H)%K(K!l+I$zInaR&YEBB zr%I4zYN6Ov5X}Ih3yVBoRYUCsd3|MTgF`G#IPDevhmQq=If_!KTVIt7FNXcu-=eb# zai09)GK&%L{x(`K&ns<6gZ%!I->;ZW&%=R)Wr5hN$?L1WH3(@_k#k!2)PnxUk}17l z0l>zaE>$a}Y;~(@iww%kq#V*AbXC+6Dk~O_CLDhoWlv?}wvY{5r2}#9GtKjg$xYiE zV{-X{VB=>*wES2j9^*;lKtS1VRZqm@vql0Bjr}k8J`wP8NLQX_E-9ImAdq)KyLI+Q zTT*qLvhraS$>gSfL_5y%dc@c;lzv4NNJd%mIP8E(%7g}67nw(e5WYYBfzcTl3} zXDW#Kc0VrB4~r^zrO7-~!|x)n8HT6-7{-lgHs|A}eUpUZ-Z}3Oj{2`v(h_s71#UNK z_)sV}Ra(4IVjXVdixd2Qs}iVKera#3GIho;X?K^Us>nc@|I%0WYZ33!TO?ietOA0T zXhwI(cLbo3Sqw*(Ptor%t8irKa4kcnGPt!WIOVCsX{coB`_e^Wit&UhBXA-)-H<OL?cp?z334TW)VA;z| z9YLc+UzMHU$tz7#r_9~a5dMLog1sE0cn2wazXZp8)Z&>=38w{}gUUmB{q3aQ&uO4qJSBsu$tAcLc3z=_>zVVU+pcSu7?0QqK;bBH?ZOn#> zSoat3NpC#1kAR($dyj-W@FNSccV{LLR$iY96z=7c^kwivs69h8z04;%103E7k z*&TAriW5A>_sh02HfEUVqWB)N&-`a=o*EUxX}fs9e-=f!g!v)=C+^Tv3SzSORu#^` zLC(v5)>EUL`+TTsmn#p=Y$fUEZ`+K*6GTL5y)Al}zp)>aCY-!UQS>Hj)%sF@@fpXm z-P=vU&(@(K&Ppyhq>|>!M+#8T*ku1cFgG1aDqgTsLCrx$Yz!&hUfNgCAu9q4ezm%7 z(BQwB(98@)jpN%r^@3Mgn{B6M79JL-%1U=D(;q%)tt!W3yz=5I4TKf(%k~auow(y> z%}1ZY{{nhj#NqQw>o?fIDRy~z+*bgf>9cVfM;QIDi5u8Arl zO7+xpn5r@b6dzDa9mZ+RrPdNiCi(6^%`qy&18wYl1rjAOx3x>l&H0E|FM;Sy`lMwqH`w606D(I6~O=CFMOSC!6(%(P=3&Z*2N79PsvrfXcS5fd2nu&;<1S;>o+ zFlY-)uEMjIbYTiO9^HMf z%nK1ohiA=h4!D}zb3ZlcYB8e116sW*B(7gHOXM%vnqcj=;IeLX`!Q-$;BHL&Q$x(V z@MVL73AvSpMPhjM*q{6tjq|Rg~t2R7||sb5GeyocNQR-gsWE**XM_qhw3b8SYq2rO7VY zcB%p(w2g?Zf$T=gPd!CZL&;*qrtB?Vo`3SoRr3}_>To9tg(Yv2cj2QAO^>>Vh03ic z>Wj>8pC(voPRufZ@F0*1b6v-`qJKO4sO#50e{~o5>!}(RL?SQqpo|1$nMcEnyj9qZ z&%LG0HCKlf_2k~K{LZv6X~^p&<=LF3-$xU(T>00}j|_YC=!h7l2C!JMYy-BT!#0kU z=^sUJ+Oed+RJUj`qKS%g zN%CAWVew{?b8!6~)+8;b5mhPL>j-ClY8@43Yc@e3ROo7cG*An!`N zs`AZYlf~b*4I2S9{wm@*@=be#+3S;75NMxID8_BF72XIJIP_Tv_*`~2vovzfAbrGq z=Z@%BodumpdED_2&H+z2uK0ez#@;~AnT7Tp3J0fuid^ONV{Jw~UBj_)_v5uegjsJ7 zu4WWBoRqmJAR9~(hSQDsdC#UN_#k{XvJ>F2-xrg+(R-R@LH3!w=SLuI-nuOx8+V=d zq_H)2tx6BAf>U5FzbAtlZ!Y76LcK+U5I0}5ii(yNyC2y57T zwmIvHT`O=aBv6(tFRBx+R z>P2*s1t)UG4 zOX<{RY+$M}QA%tV=lH)kI?Jf2x;6|e0@B^x-QCU5H6X&!okMp>cXuP*Al)V1-CYt= zFCr-EclZ_@)~p50uYJz!eaH2ToGPM`%0IdFUBae6M7Pftwt_J;jQ1p?#Pg`QrPDP9 zYEg92yYTvrc_~I3U_9IEG)ye3cjyV}oaB+&6m_XmH;Jgg&=@PB0gx{YanyW%vrmF{ zxH1=W*(%Ye$qgd1kIj_K5Pzk%R)wxa%hfs^#%gJW%NzNqNNo99(&kuj|4Ij=Rxw+{ zSt2c0NENTW8^g5aH$A=cWVAGdj3b06+%K$yPy#(8P>6@@YBFH~FBS$vkZ>8s@?*`g zOD+Y8Y_~1OrBe6!8YlvW7*T10@1 zIr~Qehj4JVK#S3LW+lo^hy_nDZy4fMYlsfFa}+q@W*Rp;L}lUuV|F|d?7FaU_e{5X zbTj_N?R38~_7$9>tdzRMgG}apKoMHVODdt4Vd4Uh73FbxlEYY9frw8c-Mg#Z@aM6b zpt917vba%(`WHfOsx3j)a535$O^z|V5X)f3M_|PB1#@xjMhM4v32Skk zKaKpiK=_VHGIFTCks}T#{E1!;!7SsuVhHt<+<2_9zk6cZuuc5sZm4h~XBG}Y0@AbX zCc+593W_S%`b3IlvVP*6yeLh2O*~)p(;l1ORY8+ee%IO+OTme$m5qt-2Kf|LQpaZg zg-#&X3L|ef!Ehe(h1`X}32d68% z4%^{N7DcrZMhFYJRBwr7?JdWC8@dwjwoOMc*qDMqZ7zSvyhtwr&SY^imO3fx`&UJZ zXsgAtPAZRW+`61r>1+jVy%VlRSh<;{B=@KredV3D)e`8sajUB{D-w32{&Vh1SbDvjjL|DZo?NwHT{PBIp?ntt5<{V zt?%gJ&2tL}QcEsUys_rls?K<@wP+9{M3&SsO8)VroSE zDt9Z5f=jIY`PQ79>@^wQVVl7jU^c32dKw5A-M<+R;eDDPavE}$102F<>FqG7Xa%@N#-xURhB<)> zbqef=3S)7N@*KfmU#4dH>dG*NN+4XzQ}gzZIMI}}{8ZONETTmtk6G_W=oGEh_R&I( zVHX$SuIy{ezO9*d=2J(J7D)~(Wz-BZm)qOk-~81Q$JThit2Pf=%VvT3MeXiVjSXo~ zT34!&Bg4KE(Kss7w9!1(hay|TbLOW2t{%tw1UIJvjZH@)B9Y<9k=FZdm&AwE=MARX zGQhW+bm7)QUZE3TPPV*gY=JZ;l`qjMLzzhXV=-$y;Vb0CG^)mw#dC;pweiZMTBw$j zU!`K8DHg3OidyG_9Kj(^^ztnONrVyXq-HP2TfH5aU#Y#O=MMXy%bzlO&E#C_`HMw2 zvD0UE>GM1}jXH0p>Uzzee%D@({y#ynar^BZ+NPbEZS$S2!`)ste(c=_Btb zfATE9EZj3x75X;zmYCod_h&0Na=tBkI<+yz8_*Xv+BO^-L8NMa#7H8HrS3#_C{H_3 zqt#lW*IKbSqSI^!l44Q!G&62Z(9f}Pbj{2=n+J);B$D9fJMH9TxpY@`lkmj}^+NX- z#R;~JHd&gKXeGO`7T9-sV_<7DWcki?>$84JW}g!8h>G3eyv#w{uzL5;LfS(dM#N1$ z{h}&RAsrlQE21&m#pGy@X#&jF%cRArGPCjZ&56Hc^YTe0b99U*n;yD)g?%2SExxLo z+1NG;DtPimk_q+&k%;z}MA%*{4xOSG?KScfbuWwpL%0#mb9Ix{GHnRu(OkrF3XOan z^Px(92Wc;vxe5P?gr>HF&~!u-SNI+m2Oai1Y9h{zJ>6Jc8_FNk>4hynA6ZyEvECCD zd>(S4w^scq&^LaVz-XH@VV}pi|G?=D1jJoJA0wFz^Vf}cM5@+{U z#T{`2K^sLSq}mzzP1#zms?k6gdP64NH>2pM>yG(YaD0FTX^T%6hQu@mZ*-)fvIO!c*&q)Z7W_z4K} zzY{tHVV+J4x)sT54l7g3WiyG0Tex*ksex7-OF!*Lorx`IX^iQ@P{9_|2=x7Z7VveGnn6XURpsRi;HFGGImJPc8~a&zEY8zQ&Tau z_kegecXIRiF5=V3J8N1rS@979N$TI34sc7^@8K~9;;m{{RG%~n>y|<*2Yd8B*B7pg zdR31})J2igAeb;5QHzKJA3&IvXqDQqOeXDfPh#GDCQsJ0_t&Do*#CVu`r^4?u_*;f zwW|}z`Dqr=_?eeV4NfiX^z!H5j%)WK@x0qFo2_Q}+oKM0#&7hDw+?Hg`?>ZzAb9^4 z78V3r)gEn?FX%!ael#zR;e@xUINF{UXXZMFJ#T0$&$wK|q{k0c(tD-odft%V`5O0s zMZmmESNZf)EAv`nBh05<(KXxCeu!pX8ynk#KrOi=xuhiW@uGo?`%;K~ubCxE(G|^E zcYm7U88OF>863wZ_%{X7rRrsWJw86OgmnksRQt9#wH7<23`j?AXlFwt{UZXS)*l(E z^05m~GvB)veU>s#mC0~zh9?cKM4_f+WNM}!k0aXh36AAXZj4w|tgVw%7${wd7QCgI zcamUJw%;Z;i836usQF-GU&5?WkS0Nggj=SKj$={Kz>B3QWJP`TTc+3H06Ma5Y@IB!5gH@x53J^b52nkp#kE!W+G`pE zI!Lm-zilOuQEvWa|HVFXE17Nsfv7<)V9pdpKAX)@^BvliB&Hne_Cz`;D+?4)LC*bY zGQ|?Y6XwL>|$;7oZ+^Cx|Q=c<~3cgFs z$xvt7|EPSgP?V^cQi?OaP#PgC;j9{sjV$zX4Mk(DzB%9VmZxn1zA zB<1fBz4$mlqw((rny0rwRWdn6RVeC>Xf!`RKg`z_AT`6*n`L#K6OIWy3zED93+FUA6f!D!jHkkl}TBk zuxys=f~V;8)RuqObc;}^y4r^(`n42>saK4Sb^Id>$Bt;xJXmYbB2Lk%0e9}l36=0k z_s6Gm60Q7!&x~M#@MzTPd3jPkzNgG+*P3dy#tse2DH0b4scgj+N5Z4~+KBoVh^bA( zjPaa=Lfm1g2p8wj3M9&YLQYj!CTVb`)BQwolh?dx2&6Ib0rgiHMxH{WGS!B=wzU-| zFJT?VVF*n+EWXjq(!4(!BJxZzrt6wNCS;36E%9~5#3 z1zds!TnM1)48E8_8E&Ktz@~#S5+N6dE67@i2OGZ@&MtyZ!1jkW8Y#g^hF&_ho$QRl z-|01u+VBLm@tB#oZ zuy9c{cmu0iTY}q}5SpGD^`UiXq8V%Sr*ABU3T{Vti;hFHU+Z!V0rec{Kt67R{>vYDy6@#wjD^t6IH%-Lv3_F0& zQIFo`mUTT_4ssus^j&Jz%1YHj4bJFs=aVM}hPjOZ zz*y$GZ)B1F$Gh`~_1P~YZ+wE4Z$`8Kr;TK{b^l=P5)FJo3Q5y_GTd&(S-A|3u~|{c z_(i8Da0iRKE+55Dy001mgyONfvj_rQNl&6Ql(~lpxRt_%_@=W!yrx>_k&ieU!>KYa&W5jRb1xwQ-uk#-&GqJ-&UdH&rn!b9u@q{Xjv-X^ z&o&?=UcS{yWqwyJ>97BYL}PtN(=}s&iqnt!Uj%j&*s0x#9Igbvh<`t+48^y}qq}l= zzVFKnyFK~xcdUCASys{m_vUo3nq15@i8?nSFDbJl^hdm&Lw5O~;8}Of+x2i~ZQW)`R`y8U3IxuPPEjP5(RBPD&6b^)9Ds!i;D=0)IUoi!n}oINV)pcTzRb$`sE zC-r`JLMS_nCxj=5)=J7)QB0S1^tTCIvt6}B*C#s+#ycJmyLYw*l?MnTjJ_yC^Dxs>jj zPWc#RgfrBgysz*3cYkc4Yg=*lZjOgKgGPhL58W*Eg~5?A6f<&dC4du2#@>J((^w?V zhOzl8pkv$6A#TRoXdLVb5-Qs2&FK&Zf8zDyFHG}B@#O_V7RM-N*tAHci2@$-W)VCt z98s{;4Brsu^WR%ohm+OiaBi@0V&V~?5Xn>yx=nszQ?hY-PBj&iQW*S;?Ozezh+aja z0=XlMA#p3hP;3$tm&gkp^yCn_)JSqhGfpOrab!Ng)pH>hDNY(vdLvh0hM{JpO#0{l{vW@7N33d5~Zy(!kQc&%@ z)osvze*J0KN0v`QdeG1W_gnI_==(EfMpHGRJbn(UmPXmJ}8vCJiLR6kGA)NBS2^pcaQ7zI5{#8UQDMz_aeBU_e_7!)8*okbq>QwSrFBeEQcc$Lj1-gCk@ZFhT;~xJHR}(?Y2N(VQ>Gp@a^i z!#1S`ddI2;r0dG+cL>XowcBnRs=}^tS?mhTy~~2`;C&%@G|`Jd&u*x*+7mvu$@*un z8_w4z)!T)bfeUeY(}-a5Lt)0aHEAU2y^_C@Qn^AkEGn+ny8bO{s8K1^Ka>f_yf?I9WQcV0 zY%m??>2QfWw7BFEk}V_vGlU+!WO8@_@sR5>c^eM+Uy@VvAEEn^gZvHV718JG{}Nny zn7)EZDye_n`)Z_NxpZU#3S>eo8fT&-aFFgJA}(xbF($WlxTVBR?TH+cpV7JHnAK}c zV_oLT|0#;0hw$b#B4fqPP_>!$ba7A73Jb@yi=@aLzdg6{^Uh=pgs$ClJ6;byWn9in zeW_bqPq}RBS`*ubI+{FHXnlN>TuyrLa%#j+8uN(AE|6mAIPi`9I01YL;~OL97&FVZ zWn#7Wp7)I~3-~$7+hqN(u)2;Xr`~n6Y;V>=iP>Gju0gOx2tr znGb9Vk_(WZn16f;EKo6Xt5i-F^PAm`T+nRhX_+4g7`x!4GzM1MFk#mDXzC%vqh&+m zvT6xr`IZ-~Me~%bJr$Grg>t5N=#0G1Rn~NDn%r;)OO*54!t*sxB8Hb%l}4o(5jb0! zemNL{{-+19j8tR)J%>h<(mztGPk;=;tWn&< zfx9wDgO88z;;r!=9q^B)xWc%;o~bf`F@2DsXh4U8?o$H~EZw6$Vc50D)W8nzHp& zzBK66^p=MF>9$#Y%(~=ddt0QpV=G$?tRpSS>4)OkppU* z`&S+!N@);dSom@WAfN$wDcT!c@$CAVK4UUz@&|z7J9&dHzWw5je(T};?g?8an<^Q_ zU}Ac40HY;Jg+4lYh_4Duwkg!yw?`)3Qra4I9`#P7biT`$47~we? zompHgYSy+bR*q7K@}wX6ncufX;J91(oG}4Oj*KCR^^)4KE7abGe7*7g zlmwjS7^TbQt=($CSyA3AyiOx-8?QuGew>W^!k*CKS3TH84d^OQ&|*E^M=o9iQS?Af zwGCcfE-s_QW181ky3FPoW2P1BS)@CQu9bLY9@WLp%&4WGHqGq+m23Xeqt4N$gLNKm z(a1_pxW}R5_FCjDGO*`i6*%oi&XSaYs%Qe`U+P>-+c>OfGCJ$>X8<~ke4rWd$HMqV zBeN&0TuLNgsl?)mVQR+%^E@eYn6mP5O6&F=%I{@BvD3|N!`)3QUcVp1FzPuO-s<}z zm}AK#lO>(Zhz8+P*xg_Z)>rN&Y4mVP_POBZ(=8%;yuSto*-}#|lT;PX{?$UC{f|4E+8x3S9-w6$nU7o&^U_qr9%0kCC?JWe z6fTJhNnBy9!Fv=D5*m_5uiYE{Lp~A^@Q+{xN>p?dhH{i0+Y&8uKZbCyN=w(K&G1y{ z@5PI1I8D?sRz_3Z!9$Hcs>XQ7e>T}R#x)*(CU&*k7^^+`Gg!a$Mhheu8EGbKW`?Ny zS-?T@dyHU>$jE{sY93-b`b?rHHgLGqk|tNv#c#uBSs#%6!6=gE?DP+|H-}5i;3!_D z`r*ft%fQl)Q9ZO{eC$caC(6on22Q(8`zpTZPd8F;g;#jM00mtH2fGPaE-x^`yQqBW zu?dxHMWv(@`SLL2!nLj0e}O`Z`R~fuYCavd$Ps;qAxmKF^acYqdCyv;J4EZzb0^obekj2>3SI1DLxO06`cy ze>MSa!7NM|OnP%~biY}oheeze3%=T_m(FUlGi$@f`=VaWWwGd*`%;zQi$%YAIyTFd zRswrPNOc%d4qaQJEo)Lt-q=S2{yG+Q?dB`RTy4-*6wy_&p0OWM(Hevd-{rKIYJ7pq z#z+EuGyV(BIY0vZD>4H|KK%~!8{x?BG>l=9zhC(8kk?zm@rSK;8}>tEZVS6Y?xx3y zr1PBb7TshA0=M3W5rN=#3dAS4{Xi;4`Gsy8CT1?R0#g+Zy!GE~ z-|`^G3dE8cjm$$C8j2i5Er{`~Q|WlD>q@s(d5f%_?(XK9fs1vbDOnzMfg;UhBnsE7WrssrhjT+2T3{VKZL916+nrcqLX$>9Q;3^wW$c&;`4Fbm|1?OxN^E|fi1&GSoN6uqvn02VEm5={3(ECbzGMbvc zNdniotgfJt{17>{du8Zg$fnI1BIPPw(2lU=cc`^!MpKU73!K?R^eDwCfD z`cL)tRW`L{ahRzuiKQJxa(Hc6b`b)aB0_?pSm8m6A-z&DKw$x5J`UbnGffBUK;uu! zy$mNBrAM4{V;i*J&yH8XQp%w^n%OkOJM$1!=Z(k8s68-PU?@>D;p&B`Ok80KKGQaFh;|8j$OHG+8b zHj0*0Q(U#4ZpW6^cz0t^SlW0P$3GB8JB$T*#$i(;+sm zKjfR}JO`@X`r6vW#k^H%I&z$57$(u&%R_mH&cv0qq?#HOlCs(D2kTN_D?!Urz!4Ez zCTh3I0^5j5DV^hzjz`iM?D+4b2d6Rb0Gt0pH|?P(ik_OYi;Ar)ge>XIM9t~HF@kDz zQd%c)$sAxj-e_ZzGIJ!NmQ<)4H%s7R#q0A;1nwT4TIhN0MAz0ZOecDp>RaTEG5vrC z6ATP}cLf9ac@m4oy72UA43yT)%43_FZxVx)cI&ejpvg{m-jQ4TZ2{w_kBtrQ9D5Sl zhGiX5Bdz=};M4-F|RO>OS07SE_@mTEsJNQJb3#m#mkEXABiB(C{5f&L|R3af=NjGz=8d}4CvEShdOwK;bf;lv!ZB@-!*JcKP`$$tLU451`gl4uV zyP!26D`Ly~H42oE+9F1$=j{^0`fMsQqfjwQ1|k}WB9UY}{_i^{Q%B--N}9hr^VOfV zFZ){xO~Iu2le^EqJA}2o{@s3F>bf#?ZD=DM!5dK9dF`PWwR9j_w?X&MOc48T{OTMq z?oZL4pyKJCd2Z|huhBkjke3t_&lZ+0tQB_i=z5*Tzvinql@Pw`6(lIYMN9C%F#A7# z)9=@KE^xiQ_Io}gw*pAwZNj_PdmHF}%ku-x=cQAf_6joea44O4Lv#vO#aN^U^7OcN zb@3&OGr422>W#$TF{CJnSeMLk9S30_BIp@JL=^UeG@|>6hV}TPHv}wEKX5@4(y&s{ zEnzQ>Cp_5Y~kFC7h^EKL- znby{Ar!I$RB&*?D8_6U*10XYXsjFvoxb~X^_Nc6exB0W99!O~ptt5zsQJ6+Hf`@*S zO%TeTsYP8*Y`__?fnRV7ZOpP(dc={jkhPnmoK(;UnlD(B) z)}rlU{>SjtM2=+y^pG{6uQGWrzIj-gocJMXNMzf_TvSAGB>}Y_S~fHiB}O+06E{?R zDvR?7`5VIe2!C$9tIpKsv>gjz0V3!kyp1;zh|8X=OUO))u`JMVzsY7ZW;ZB7nP!it zKk%4k6#9iwhl3Qj$A7&N!aovO8&T(A>AD(gqLDFT@QH+$Yb>J4U?r*Dl+g~;7yO3B z;Zs|(p2VTuU2&fWsmHmB2y~<} zxB|Ln#7Mf+c{sJ#O(QA~dW^y?1=tB9!33zo}z1+_fn8(=pGdHBU_j3_%3Zds_ z)t@&7aURyXFzj&)`WExfV|&Dp_F)N)4*>>dG_J`jT0NN}j+_43)HOmbeQ`JJvpl_# zZ4t!>&Yr+934DO9D!{+x^dU_#Y*AG>?(I@69e86a0^b0rrk zbvDm}3_J17TIFd?TgS})__&P<(=RKwjmwsdyR=#=fz^4^83DN9eu0v{%jU~sJjOck zKnqsvj{>+E5JjsXcRKFq*7T8;0?b+jM?F+RD{G@9Ef}}GB2kMNKO*%gN$dYC?K#zz zvh6Pk%k$SN(yw()`l!EWiH@?Y@(GZWRnM0lL&Xc zdAB(=2@e%VQ-&5^uGmaAT`_c_-Jh~E6X1wtz7m+h_D(oiSQ-p&MRK^xgWpIowuNex zk>kxr0jN8Z8g~5He~6orcVfS1X#?Syduhvqz#Hu#?VsS^W+eP(Toao2(jaXWE^y5} zIgj_we|+&oJ0rIdZ9vw2l$`vSe>0pBod4PU#+fv(dhCIwRrMxr5DJn80v6* zp)-2<53~Ec#P@_02yw1Ci zS)pKemblHKk<-?z5(D*lfJGp>q2sS2Jj_VUlmdrDNVh_?Mi2`w@y?iPk_xzFj{PPd zW4P*|Q_{K<>j8Z~Zp}cU2hLK#O_|8o6Q1BgR}fM%KaPHQpH$MGLRnSn3~8OSa?n3q z-n=H31~;!N)4{hT6`96GH-s^B*YtB2Gauj+dM(Eqv&isBE1BA=@;ES|*Sys-h&Yi#OI1CZeGQ>ADmbp#XQmlf=Cn2XZ0xfq0@5g{;~= zJRX&N55p8UvbbaQ>}aJa6-y$~IAE~P-*ClMk|>m^8;%&)DXh1_mYmAP{$3puR9Mxh z;mo3*#tF(vE_2~yZ$DPgVZkUvtD6{WHW!+rG>uZG$mBU1K`lki?ln?SME7cUSF(O~ zmc=7DNTwK9YKGyVKm`##ODXqa6#il?X*En&P4(x?SdUO$GAK%)JdQ#-ANj~Agjt!S z-1-a9NdA*Z(_RG9?7;q|o|3RXiHI8ddl(VbK?S26El82zcMfn=MS)fMgR`rH?$%gy{Y)<_Iv+@wAGh@%f)w1OVp`}W;GbX5cXD! zskMHw>Q`pvGGdIP4J-qmKW(W{m}%r#IgLsJYq7t5Z5n|iE`j55ZM+--8X*Dw#G5Hx z3>_x1iZ)V-|4#<`&J1<~0YofImaRL$4$7FXf{WC_fJMX_^y&%BQM#Xw^9nRBOl_Ef zX}f*h`g6>dER30Dkd*S~kova3k6#Tu{cZ3f7x##`L{7>)pLwi>+x)wQPQJh3>1W+W z#p2rFfAn+we!X|vpfvO{)(sjkCABd=^Y5sy)z7p|<~e32rQ^Ey>1`UC72KvPMd%(d zv+9Q|`$mh=pP+Y1>l+lLTyy?NyRXoNrLt7_ixgpVc$UKP-xrQtPr#TKi{ZoV_#wZz zu*^kJwr=BMW$nV%q>$OPu1?oV-jt2SWtcz#obGyY!xrs0a%gK(CJ%-{VG9kKZ4xaf zl(K6`$lt;nU3Y5mXzD^xFrHLyG-}FSLa6ERvZN1yDd~cX%Fh4lY?>9KI8^5il=j=0 z16vlB#CF~s`1A*?wo+#zqAbF#@E$fGMv$|xlEpfnsOfIKT7WsSCO@SmFOb~kG0iG1 zut&vHkq$K4(%QMBmJb-B$i|8xh@iEK*htNDMazxO+}x08u%2`|wll!p75qCKV1JN# z`&s0NM_tD&a@VIei-xCbrq0`#YP9R9>#vlshEg+WG!UvV6QQXF@5OgJmKk0&rFd__ z+o3&qJp!(A96^4Q8V#Chn(C)A0k=y&Fl(0ek%IJU@<)sF%tQph#P3%ioLDbkNn!rQ zb1N9@#OT1&&ieF{M7|j6pZxPXpTTDWy%eRcd&dBXv3{65?0mY2iK?DPK%xl>>@dOT zxcmVLUB>=rDiQutAq@$&P7#ftqk%2LWVI9qK;l)gSC;yw-PMP+Z-*zChwqaB8&YF` zeC^&)2?*>VjifrHoNQL}sf2yi6ex6T|4ceYWezVx)QkX#XS8U2xrVBuHw>MeaYKhe zwMv*#C1TnVLkr0bX^0W1v6{&KWo@Zl?go6yzcnW0mf|FuaT?i+aXT3*ZNkY?avo2O z#H8orfJ8kn(pU%M-B>Xm#2|^9H>&jozbDe?LX()4Do6XIxrj?TQ&7u=(tl88?ZWmxW4Zs1mDsv6>}K!1oQp$SYehOOG#b6mph9n<%z!wq@5y0yN8(-m11L+R zEx_eGT`xnmig_ulSw6jydu_LTkib+2IO~e)wK#-r)VSWVTnirb=ee4j&eJ8(JhkK* z2$Sc`w?lB*<(D!Wcahf-8y7vIm9qByJr(*$t;1$6z=|!;+FPR90x3GMjO0W)|3vJ7 zvObR^loPE-j=3RQZSoZ1t~XSBP|ndvLUTrPqUZBzZcF02m%v*P((xxYJrcT50@6k2^ zEec$@!J+KNZ^m_X~NAvya-i&;AEt<7c zaOmrIAzfR$HI%x%f$?&A8$_h2q4sbUy+>e||JyXw_MF0OI9)Cr(CDk4aXJmG=#VMu z5Sp#*s?9-ra@!cZ4Cm?R~JuYz|ab$w1 zI~41X0D&tOQ#s6gE`nJ;aHyo=YM5C?6a6W?}Py-V8vejx3gt;Z@y|;DCXfl1%z>@e0R)? zKi>#n>pAUS7PAY-P)z%Ola?`g{r4lqs@wD=WETxsyKmzG-sTS-0FZV;_JD`UE^`ZD z!p@e*Ce-h3EY#k4|3!g;joumL`}05qftg(g!h9>q3e;KH)-b1xRDqMg4weE63o`FK z{}OH^oY@i;Zxhz^Qo`6yHt>g|7SD@J=z5MVcR)l{MsqB%P@8s1(rCi2wG%*K>! z34%CbdVgG3EHv;0HOt;B%uAxCY2;ulk22}5sduUrnyt9k7JqQj5>`xckIJ$!#{i94 zMk0z#rf#;F+7so%uYMQ6vJ$%JERLcXY)8UHmSF}B@#Rg*+|(pVtcplbzw_MYJBp?( zlB||>IY$H`Jx{v>Ltjp+d2RM|i;7{nTKT4|g})p^RAP}dWom;IOvjFw#?JNwhZmE? zTHA^^NLkXornbLf$E_PI03NCcHwUmama?mksYiokwPdZ9rv5SxQDkdIHmYT4=Y-?` zDRzUdnE^UjRMtP>Q{a3+fnMx3(vJJZotN4ZT}#(ZCXwNo()qh=(lCX#vmktgQys)W zQ*7)npi<|g!3{~Gphlp($h4r5{~R&ozKUmc5yJ@qJ8pb5TZW(+cz&N911m6~coBVy za!R9{#z}yZN%8B;u*oun-1AC5z$ONn0k$?U-o{Z<@lu(lBOr^zK1WLn#Vg_E8LG+CCwl<7I?;5_<&T z{CA-_0m5Pvgc{{T2OZJ()`G})$y$Xi{jOZ;C@PJ$+5inegi91wVm!eMi1t*6mwWjw zV%&|DWBSHItJN<6d|_iO7=Cn|f&H7tcvywU^w;{IO)8gPN^eeJw)*_UsC2x7aQkk> zR1Xf=bOkRfP6pG2jh@-6`k3>3PbW2ped9Y@&(&Ko#2)+UyI@VN7;S{5Bih}@Oi%6r z4ae&XY;}(s{l?on`1b57wC#3W2GY`Q%1wE!h)@0dCyL9G-47(Y98IjPBi|-3y$vp< zwUZ-A1-}gt{r{9gV5pz3h58eUGt8GAkZGty^Bsq)=16Bio9s*Qy7jmSOvz9UUwEta z?zOeSkv(jgv=a<-0e{_q7h2;+;}M+-)Q{Yzm{`Lenh^H)-`dly^<-mLFZT1rzOv_+ z+Zak}D(=1(VI!(k83$`+Qc!Z?rmSueY|Ka* z@rNp`AL#^fG~A^!mWotq6O_mNyEn1E*RN)~uGjuan825`jN*;ndF`K_9;>yJt^JGZ zhu7ZSYo2-yA5LGcWp7x+&G*LAl570Rd^|V3v?MA`;2|Ekb)nq*4#oi?a|d;Bq5}=j z0-DR8cb|#z#wyPwNCy~)a-CgTj^$<(D$(Baju2zY3x4F__L!W}`x$%FUsr<>bZ=b2 z@ZzH>L0>YooSj3&@B=RN{m%TdAFY!)^8JmfU2OS z?q8;|?363iIB6A;Q=xyra|DgN-`^|6+o0vD#|gpU)mj@mXr|u!G=`;2g8)kWjJ3?h z88(z|=t_NW7SLqJEzPGiuy)cyfPXZSquEr4}evJ1Kof*|LYz9Lv`rMmv0-W<+S8bSe5> z?L{mlQ5ohmXlABDVPVEvc8AY<)16R!=Q}UTs48^Y@Sj7bv(H>9<_S&~U1FPF^0#t4 z`k(GEQ}ny2jy|@V-D&Tqmiv)O;8E4IGuV7ui`m1n}R8gYmabbIK%sX29!>51o#na9>H;<#o!uV@8ACxj-Q$N>y>Id zY$Q>G;OOl-Bwet@un=A3F@pf+H13c6R({HE%zmkyyy~)A3kyVDH1GXY#)*zW z$cvZm%=gLW;Tc_V_|Gbv4-=+4W#uISbqp9Mo(f`JO3ir>UA`OK`U3*dX=}nQrSQ5c zgUoTB)=e92`NJpSbL3=5L_G#-HCB2<{}Nv7UqZhseeEK=)8~Wts=734+Z@gBHs8bE ztHn;$_OYs31Gk`<9OYG&xS0<|E+{tF(@2iHI4V2v98R>U|45^n{h+-6jn;<+Q`^{= z)&vYDlwEGk^*Zx5oZFUaW^&XNx$zjDz74n5OKNtx$hQJ3PoAS&RF~KaD6`ZjInugT z4#e`5AQh5qmvXvLOWQxj2U-djW1jE~27{=}7Zt``1DqGe9E;lfUe* z-%KcOfgLBE*rqelB?|nTo=aaLqoC=9->@SWHF5`T@qm^3rD%;t#ydz2|16 zTFcrxbWzPLebX$p8D*4naGP%33>y9tI?hlu_5qC!5iFq14_~v@BR9w7^?bl(b4EHx zwr-T)gRh+~x7E{q%hLNK#{bg=`#+_CfV$V0Qh?$k#jVi#TIWo{aK)vrE2QM~+;5uE*R)A9L$7mDscF@{Bf025ClIFLjw zhY-96;&WC?$A-bT)-QO0?aU7q-n}}4yT}O4kbNIO>cF^sF)GM!VI(zs$`H1AmoU^! zrOa&V_BrMy!|imJF!>uXh@SMp5_vV!s@7i0E)=6T4~6{qX|sgDS1VJj;Uk@pqLU_7 zEeDJdtl!*@4Y{8eQ8EXbgf%e((ioJBDmoD@=zq^xK#W&9ccP#~=?Vhw8r25tcuLBo z>pug|?}deDtFz96e?pcJ2@kW<8FE81WSI}M&oEuk7{YRGV&Cm*^W_(i?@|e@er;J2 zyfn%&K6;+#DKDY-($PCFM7-&}q^zGK z?{fVRCu|~8lxZ6^C^u=H!5G%k)mhGNrL*&CVo7}R?>jU?eO~i=J?DN02)sv|;3>$2 z)j8QbNk2%H6YrX_^p(%WXV6^DqxT@!M;AE4gan&x%I)Wu7pO|`x+!p{bM%Zeh z{K}NXY}z4kxi&~}t>HHA;4K{E3B_Yl$i5a_objTLJdDxYyMt&w0J+*rU6o=4axh{q}_C?ZU^ z2RJ!{!Of3bSx*}ITK;ayI|X??aQ8fKC83KDlu|k;io$7TW}7$_FIoF zWZe06GsrTQVt;)ZaMGgojxFZo#^uRy>nh>jmGA$TwEfo@_nvQ(r~`N{A~74;|DFQ= zg{*eh+QD<^>FGth_5sq1*V}-j&;HAwZ-4>PyC-kMOY6ML+w4^&qholen2%HLgg#od zZt<{}wu;wKs->au!`?|1|XEGjIhB{=tI`^11wY+f9J2FySD- z4jw!E71EW1q4weZt)K0OS`n`-%Z*5m%piWsP$N17%Mmy!yMKMTucE@_i^#jF2H8K3 zGAmz4I|kXHE*n0U(HE z71Q_Sp*J`0XBOLg{Wd#o$5*S}KQ-q4`pjJ}Ibj_)RY6lJ?^B53M81CeL?rtyk1CA1 zHdq%~V`+R{|I!y^i9_M4AQY=G`R))_7n6hWgCeuD>Rcp}`i=#d%sSf&?z?&-*$@sW zNk!^N;&%0GXGpD@eLbMdUs<8{^ab7ZRS@LPX+;&g2FP2)|#y9Q!v zjda!D-4bXhvY~9&w2Z!Hl9Z%G8s@rm`%4%;a7<_?E~0|tJ>W(Djp3DFbwnDl+VHu= zv)utdA8n?>OmdKcyNurOTQV#yJ>MU%*F1ayZx`ZPmP3;%>%Q+Rb0On#BasVC@UqGj zD59c;*yb#?=r;cQY+UsvvJy4Ssm&z1=P9`)T)l%inUaqArd9;O*O zpWQYY8|viU6r}NMhRkxYKl@bs?W~p_{5Py!rL^6EcMjRC-1#r(x~uL7{<#lfxK-nq z3t2}$m^~eHi#n|gTm8LX%JMHdsBAwkjUIjUqbj`{nShng+&cd9_qz8_c58#qs$a~* z7!Xw#56Hi}bASD<_Am9@Q|Grs=DuId4^`hDnXbC7#d>du`;yT8Po@2)SN*2l(GSuq zZO9@yG;e$WEzs5Dst5gx>3JEex~57j!iR5%nW`mWU^R1+EgpF=f_@1@x^!!wJeWmq zX{@X1IfeZJ;VX%QDLcV$o~DwOz^SdivXzlW@$Y1gJ_S^813CkeQ57WLOQf#LBO3== z%{b6_8J}qaIz@>;uE{+8C)eFlMn+t6<1s0#2d;IW)4g)FVdA#?hGla4K0Jx+h~Rv4 zzcY@p{f0u$9JiOJRnI1i#3^o@lI)ku zlHeQIcbr{LVt-D1f+mONTVpEdGyQefh@)C~?b22{-|qO8_}w9;w1qMYCF$e))=!ubv{sJ>Rf?3IaMiV(5S=3l zYGlb$7`E6A5=Zj67)>c%%!z0Todu@7m<+XBiGK)jsw2j2<4%c*Jg(XhG4T@$C4oPu zOgaeZ+$+A+Qa0^fO@kgw2U2r%>^*4>?!i4Zk`Q<;kc-@Hpdp6|`=1VW1)ZX1N)>5U zXuhN;OG11);zs!QJlYqNkkeOqK3EnSd{{GVPJ0l^8Om5ypy@>Ja{ry?Cb5j9f~i=* zozLg$$*8~Q9+hqX@>UH!^3Lajm-b3upG0>(&rdQ9&erf|N2xU7dP^@{I{!z~IR#1D zbX&M>+cu_c+qP|+)3$AM+O{!m+vc?G?o;1?BI=?ls-mtk^WC}Dv-e8fz}izDF+=vP z{<{BqeChpYq&IUoZ3$n?mr3^mp?cq@6sY}srFZ3-UtNpcKZUXv*w%Ap_j&058UJ<+ zh}B#-aqt|%eI3vLl=?4AetS;PJ{2WZEM~Fe`|o-OMCpp2=sfCXwsnG%#xz05KsP=O zoMYig7{4m>1$7iEIAz?mvi5jxE+0SN#$Mph7x1%A|iZc`=!2qSzU>+x0NNA)wx4-{Q1 z3t3d{eQkJKQWBnp0$cAg>0=C3nCjp4)|42z4U4^`)rl@mfuMwmZt zoMjkmE^ANI+(@u>14VIvxwlL~#F)$iQ`$^_O=|HFFhUAz@0uId7UoqvH{b&QQV^T^ zkp<1^tcB41)iyN^#?mGKy&)C1~9kZa6$%&DlSwvoOfFFgo# z%!NsuYos`1#ybDcJ}Ap%WzJb7?3)~Q z&Exg>`V!r|f>g0^bTb_iQV~2=Q!&BL^r^l};LXbV)RGQvBagbj1B^yB97TV8an-A7 zy`7@mf_Sn%Y{^8Dc%;8C51=VJ`XHVLQx+llpy-XO|1djv(1nn)`C(Jzc@?fV!AI#9 zgZ{U*T-=w;`Xr%BjBJ*S9Sh}pbCe%RMJe8b?_d>Uqug0Uq$h=T+s5SNRmUPl%Y!P3 z87Ik=6ccgf?9r^V-dr?1(!c10q@$DKx;wX%d|Nu3`Kt4(4QfmOtv8GGs@Ff7A{eiB zZOgFe?A?#*1t$xbA?RZa$Zqqymwx$#9d{vK73-gl>OYQ929#CdPpWw7)t+uGyNTdr zeBAWqul8KKg%bcWqV-29`R^ie*SF|Z~kADGjk2o341EU4whr-1TChjt+dtxM!&jZ=BPRh>-gK~v2?1O&Si#c^zU@J{AibC;HZR~U9 zMXR;#ZLy69W>?k1@$`y>ua0kWvhfehwS56VAVMuq$}k5?^gv$Dg^ zw<>HSin2TRarRJXPkuGo5|B>IM5d6Ae!mPf=h5^2Q48IzYu~f^v_-E&vw|zqnb`MW za2g=FpD@_4f`xjK6r9-i@pHQagLv(58@XM~+uRlA()(4(ywGNf9SDtYWH9%^N+)2c z^-&dc3`tqN!(n)yoOY~m8nK9pY|)0i((sW)kqjTW9hngSmrN(fQNxHOpTZ%gUpt@d zXYCqAlhBsBP2~Lx0#ky1CbmlwFOiuwIH<)`v;?j+l{Gl$)T1pzRqPL3ATu20x6i{` z17C?N7VZ2533KEanpY`yI`P#q)A+w(7L`SWJwa_@Jtg%hCuB#zwf$Ll`TM(Elh5e^ zoR=H?ea)`f)jZFPW6#0zmlf=1)Fk;ZeHku4(|FNzJX2^3aX$T}j{b-ARwR%(SIDi7 zUK!fE)t7Iw{loJ3hf^Jo*9@S3E}^+!j`SjPbPc6Pd%odC3$8q)tMXO!h*+ zBhyJ?{yb1r?dw_M!b03V`IXB&f%3Z{-qFyQO|A=bjVgd@ICKX`6AitnIYaXhBvg*o zoW>Ay#RwD_M3yXZBwVj@t1S^4v=x1($r`A6u)6ttcX7~qwwZIFx(1j$p@SGJO_YZ# z78dXVziYJ!p(y7@qttMk9&Srr#^xU3ExejhTmIa#xzbAP{96T)?lyP!_;g2{vY5t^ z(e_7fAcj_2SL^*a1@n^U)OTd2!L9O?(B!_62kX;A!C+?eRGDw{m+7qO?}N4({^H9? z6>wq>7(e^fX@4GI!hRMwoXkAW^V z(hZ5BNJLyfn}dVds7X=6P)fmBt#zD^8l=*1c1?88F^Optw`X;cEycpjJB|#B;_>m> zYHF4%k`XpjRM|^c2hPW@B?>*(>{39|KnpEf9$Uxdkfg0M(2^6kJ+`Azlgxu4>pTMA zj%E!?iqGd8c{NV9#!J8eHfVRxJKc4OBVw$66z{&gUIdiV!d#-oB(rQoN`sL*z|y$) zLLpRS+?AH2Tvv<$cK#v9`g#FYMOf_)a318GdtlqPNKz6<{&JYXz2nkM&)(C&Fqs|E ztS!%jx$VUGnm%qOT}^6I#syvyH2e54;P&xV0&UW4fjD&zxVIklB8RwgF3g$ST;=a; z|0VzMHv3`+KEw45Ag^*5-isKr_+I)!5gi}T<}cQ_YBYQxiOS@46db1-A0l1#W^BxK zbA3P_*vmVYD`xmInZbS~u+C7I)OWwl?27Ea&h7mLNIng0woGeQjeaNf=q~UCIV}(U zvcdT&7F_%K;thBvpx`J=tcVc2e~?n23W^w^E~vZ{A-M}5?M(`a^p?R)WH?zxF~$D~ z1)hhLR1vc)Kk#DI)c0VVCsN1LGt(&8Mi3b7d*}=?}UNE^W0N!+Z&h~T;~c`+@~{5#^L0GoS70~pLXSGA*irdfCa5zXsgDK zh60^BK}kN83mauq+6Cp{==eS0)q0VMcDQOg*+kym2hYpjCj%Ka`aby>4m~X{&vMU^ zm(;%rffyZOgi)AcmLtwdsd*ix4ky00 z4^>LG><#&KzPKh81qG_BhRo}oxKkkGIyVB5)JR={l28Sb?k$K;9SlRK>}|mS_*t8+7n+H&FGDdyv7OisNm=`&}nJnl6X8`(N{*v&OF3e(i5>s$ub{wkS6?@ z4vg16&yvui*B0rH@FEM7V@*IjFrEeekUhnq>E#J?X~dgvP7a#h-U$zq_ej z<0|Wi&QyW@V-MbmTi5WJFXBqqc152mlZzAfA+=-dNNQMBi>k9LV0I+aDq^)F>Mmq8 zo+9f|f-yQ~p~XHsA}5rIu>Oz&7>W6$oqj>-5GKPrdPCUuX))qto{cp{q$m1ucQM8W z(cjTDbY=Vay<5%jQ{XU^A*)}_q_!ncBM`aV;-e%}))uuD$i_3Znx}gE7|j|_Z|K^y zTNAt)+24BV4+%=-<+aW#qwU&#VBsyldf49{II#0=6FpKa@|f#>pvBvQN9|W*mlxsn z?Sl(X^`VckQyK4t(!N;B8k0&b2P0Sbx2Z&cw%w)GsI}o8v>WFM?z*4wN5mwL$v(6O z{rOxlfAVL0;WDKsOyBu>x5RRI!!k_IY6hn67Re#x5eKRL>no=iZwkac|5~rX8YVr*b%m~#5IM@=$OAB}coSKKVF^jzFW(u&4 z`W>7Gyf`ZeE+b_UV?uXqNc4*5n13hoTs(d2vr_8#LoVtidMn4sRekDT|3j&+f$NRT+FPh;`isl zZr_`Sl#U48H7V*mq*mT@ojI~+Vr@EOwJp|Pe@VI&+l1-m11?UZ+kA6QuCw!z#ZPJ& z`fi|u-efMUlnxZNv;){X_oO4nHx*k`H&({Z_40WzJzM~i{aS-H8% zKW{)f`mD~*ecA;xeW71*%o1=fU6elKF8E?Zzu#;bLen{ zRGy+-kknm_yWLuya(gx;l{RFspZ8J@AF4J}wu2<~oJE_Gm=C5yp_qmwDRkyq;Tc5k zt&V017P|V<5&>Js{X4UFttp|j`ku{`tpX7%v>MKGI`r0kp$JLXO8sE#j!35tUj(LA#33I)1z>`4sJ^<34W1XONEDDINC8HH8#WAH+SXzc>JaQEKE)TtO&%)0aoU33Ja7x@y|Ra&6!`8k@ui*RY>n?-t;_y3{Y^B!qlF5t<_- z=4~JC_bdZuguUj}ihcb}?H}6wnX&O2a_Dt{u+O7jDPGCZjn6xl-bj|Yp!I*ot?Qhn z+?Q~poXU4-O&cD=GD(Wai+4%=m4Dy_nDmq7iBmfbimIrTJzv%JcJ%n|VpO)^~mX9PfwwbLjsq(S3#a4gK-+ z4Mr)DvGAGAXX<~Md|v+H;wCPw<^>;~{+GFq5k8gxS9QO;D)!DO?>upB^B2!&Yl#QG3kt*gDhQ>} z351q*NW+?-G8OTl5; zWCz{Lsl_~q4}>#d7ARIio}~$>P@`Uw?J;XBOj2%=p=RL-`M~!TkNK>-US0NDYwQ{|RoJQMP+Aqq4UV*JEfOK^Qr{yfnfe0StQr$F4HEq z9O%tat6?%kfI#1I+VaTj>f&vqAy3=o*Epl~HGzk%7O%{goz)$>ckor4-o z9F>*X!1jUv;8B6IYjBcwSeRwclTpaSFoGyaE{US(EtOd49PvQschp1lOSA4TRnVt6 zmS_pKWiDKJUfER3kmxlmNopD36NQ@56FAM@$IT{UQ^t%id12pzXP@@unV~4FMHMMu zB4qKlwoH-1&Tjxde-%3D(Z*)A?4hghMYRMK*YHaz&M>RX)?(#eDa!Iz?Jj|*rfO1_ zJx@UxftOi9dvj6h_{iEyTKk5{URAsEUm5504^hZ%(5YHgRg1yj^$Vt~~D>LILDvI{ANHlYQPI>%?u!d^$oo z=~b8I*L;sZ@jYj;EU}X$hPq2tx-ew^C&@RxMayiuU$3EEvuCNU+48 zKPxjVdLUOVlnbEYnV>5N>`^F%=(Ux+w8bqJ?lHi~bKbn9-VSgGL4`jD8tZdB;c5^{ zxKK-%ps?2_Eze>VZ$~{V8(6_xd_+n?cNOdda|XjXw<}rfE4_TOoUYo$uu}6+7!yEZ z8mKXF-lo4{wT>C#L+gnsxS#^hDgG>>Ji{)v-v(w#6V-@dWH}yPCCdS#T_4*A#c{0Y z8Xp5jsUs)o*-=v9`yOnYgdT($E!soC&UJ>&PZKMqoxi*#18J+)cZ1F^*w|zoXYifX zAU-=5aFD@NarL5F@9CWx&BD7=o9huW(^coM@G^8-@}lgRd3{#KXP-LZRqeZ_X|XNz zOX8jD@txe;C%(ml)Gy$Q$yD>01mYjsz?o5)`tgh#Qrs4Q!8K9g=h=7hd(q>B z08H6?_B!A2QV(LXXe7wIBci4U(QoxexBx>LU5HFkPbdyGQyeJ~>tA>Wjx8v`H)VAl zFNk2=PH9})>S-OCDH%7(*Rwdc%=g7pc1K&0l&`*gSkHbk_l;Y|^?Uf;{Y?Kd)9a5x zx#`l@7!~8g(Dkjd&d}fY6}QT}-|?6Aqx`++^*>$V=Jo9H)$f_w?w=yx`r3cyiO*oe zG8bdC`h+9r=Y6@s*P9CQZ|y<|1oLM9zB{Ep6LBRymoTHs|89%WzQQsgNYf2OyDFU{I%-sg1;A zY2<^_NqVyrV-tlGsTTSuu~c+4*-e5JXr{DLBg&AiFQ@(0t_5Y!Bd`dLBylI&nA8^T zlUOVcBH6!qsyb_AWz!Ks?~kFh-rV`D=+tHImjetnmE2j4s{c%c5>0PDRWB`zek!0h z>uM`dMrfJ3<&CS?-FQE}Y(LgdZo1jAP4KZ4rI4Sg9;s|gaYyYDk!?Kf_K9s6?n)1e zN3x+bV4^rkJ%UY8lz4C^AoSF&uR9#(2*#7C4KZXGH@L)%5;Lo<4HLNx3`N%-m>C@x=>tcqxP#xf!A5tr7tR>mX+uXdB56GNSeZ zFU6eE5WmC3jAz+VfKpf1Z}p2?b{sxDXU-)$e6)=Gk`mUU;qP@xQQ7XnR&iG()5UAa zJOcJ2K(ZDgy@mVv6JrTRF3ssmTFM&rbOPlzK@u=>!XK&xR_HL$rMIfDu`J#FsYL*% z02kof+4|zTqGRAk_>)E%R96L@{h!&*m9YG?Dp+dXzBAJG#OG@V^TocC0uDdx5qE6K;PB@E^*Na8^bF z+X(Jt@Y%hHjbC0gBp%v{gcps!9j1;lNO}3o&b&PsG2d)6GF38N+R3uoqEbuq`&YFX zSG<(Gw@1`j7=>q8Y;uBgf8!utz3E~?vS&3i%)AxIn>a04jDQtK87l69M8cP|PZfH= z!G557`|Rb8W-+P5n(DvVafVaTH#TPo7CDP>HvSnTrsZ&9*WqomRwizmV8JUT$MRzt|+x3 zgX(HIhbrU>R5Oa#qX2#IfiniFefE*fsvtAS?@Cys`Q2RjgdJ<0s@el{rz!jy8Ir2N z*@?Jsca3g33DdMB&Wa*Rnu#+d8KNA)Ir0}+O+}>@Z7@&;VZHiK8Vz@DilkaI4)**= zNI`ZoK^@kv8cDo@WnJ95WEkM$#Uc52e;D7ej?*}gGmW?0%+6XIL`K(9ziZxceh3V3 zY+P^>ta1gVMltDfi_wn_!Da@$eTFv{5=^Qf$&`eQ(DHZmDd|B&TFGj1mQ9DB+sBEb zp_&WlWxVF^V5=!iS{E@8&W5?Fa6z-KVvb9hMs*;0o$F;wXyt!hvB;CUD&HNDVoJ&N zuQ!jDz`R!Fnv|46QULit(tjT$qQXsNOi0ZjZo*L_D|6@hn?{pSaW$8+F;hhAV(Pt^>a?ONxjUR2mDr}1vOanZ|cQ?&dk^lEHv zu$YM0lg8$`6%F*$`=6f7lJCpm@KLwxr8Q#e)HB(FA+X-CWTLHmBggQ%Uscx+%kH&Yr7xB?eG}vV;^EJM$a@R) zbKLid=?D0fF7RF~(CNg{+$m=RJO)L6TC48JIjlS`B6Te+#Xy!HrnO-%+_7Ws$V{f= z)+_+~KD#m8m0&NL^S!C}+*c3{`z5+geePng#kw?)rJFZ9su6CvlKkWiVxaJ7)5d&J zAVB788vXhSg)1F(JZED97?|cy$6e#7tk^12scB^FP^H_-SB1jY3Yj_pzR^~|1wiI> zXjaQbp>vSV8i=_ahkepKXXm;Vi^5A0SEp!1|J`V>ODeJP6_={Wa60Rkqk_4lnJTp- zx-j`ob1xgEwM%x&(9H;{;#nDV)$W z!MFYMyccJ@*5|zDXZ*@2S81#>r*!_EB)$bg&fG*B=)*j5&nDP459Hh7D%|i#YSPL|O0=B$v|RkDl4CYAjmms!WV_WC_y~7Sn&C_Bko?!BUD7Vv~KU39f#nPBHV?0{Agn zG_nGwjMAF+@@EPtGqIhj*DJt`Z5tNH=ap4*3;EVxYtcKN%g}G>xu1EowHm7}XOQ`D z1@r`mu>rZXHGO04y4nsOl|L_qW|--)yKl_;g!~QkHSP{wX-pUnZ?Cqx0w3p-eUuCu ztG}byv4(thKlJ~zx*J+rLR-Q^Aqc;3!|S|sc0Z?gr#So{I1HY-PVs)8cfWPM0b3#6 z_oL092MEB2^bL-TKmZ;ceSbZEuX^15H-Q$>?>6{zJ^u^a;GWz7q@Uq)kl~ho_nyA{ zLhq*YTNmeaySaPC37)+a^a zh7YkL<-v@S@X#cm@9&9rz9M#`M@=Gcl7e0GZ`e#m=NTeSj^zzm`rr$u<)D|W(2Cry zYG6uUA6ItLomi%9nG8)6V*#V|Pzxp7z4eHq8l;g#1}p7ymB)2H-Th$7Q1uMJU=kE` zYBC~zGfGi22rbpTZ7Ei)QB%3aKFF2t36hxAJViA{ zjBtZwoa*H;!x6$wVn-Icx9s!4f2+#W{yUX0jGU*~EKK82;$fBN@$0yV5$jGFlJYIQ z2k$!qvx?i!`N^~MohYy_E$mG)s~yWZgZ%mbZ6!EyWT7S!s2D_BI#$3f_KkB`Eoj-~ zchn4x_d#E9ii;#DcWx&q1q?2f>G|4c6LmBbn|`8}6zeY}QU{bn947M?k=9-W3{|5@ zf?WwqvEB`$8=8rgB~!7$DKPU(h96~4f}58=FtM~~oV&~`(9D1+U%1AI?QM)?^#GXTbF<0vo9;G3I$Pd;$~l;Yz-N=>s|7G#8e z;ELaYe`TA5Icxcg&tn#~%>}5t`)2RCAofg*&t)lmSaJkI*CCU*nWz%A_+bXkDi|aT zs#KAjzlak(_MK;U46QIgv^0||aRq=LMDRRX$pef+RzuDf!d7He;~DM=^K#4!tfDe9 zRJ5j+j>QRA+w7QCzf7Z?C@HLts@o*M77TOu4(g{pQQp|wlYMNjT+hmxggKwz<>KfJ zy1zM|SXBSpHqLHVHuE)#3gOSk3-67|yF>Z+26?U>v})UxPe0yos}Fk)1Un@1+T0 z*Z%LWqMXx&rIs^q^1pbJOYXglZ8vTR2@4q;kP}DrcW|V@O5{xLS4Sjzmoc|qRggjiPZBTTqbkhYji(!=c zZO3Hd;L~XuGMK+|p5jkblWt7=B3V#%^OZe3kIM_Kr?guMp4RAdJh)w7Y(_iav63fFheql8b&b`{6v7z%(bq4ujPm~o{!c3Go?AM?~ z65t-Nh#W|~^oaQ#M?5==S|#xOURxiE9dTsrrykgW1$8$-0YH@zpTj8TH8MMkrZP#k zS_!p06LCYVH9vkVK~mU_OOlaEC?%x-%vfCqI-Jr4u^Z_GCD5g{Hez$8z&Y>&y1$P;{UGtNM!d!hX&&PTVJh$_S6@8$CopK|LlkjV zc=E)o!@!-23$W8d8jW?s&{B&Qr?AkVWsD~DWV(FsA{X)2x58CWgAPsd`kG^t(iCyh z(nnb15v;>9}rC z1JV|`0$+0f9{NAqv-zL>np zZfWV+=hz+nPryVxzWUtjYftC+Jo$JX@OQegeQWFe?4{MFH`pN2=srH|eu>W?)76VL zn=o)W${O|GhMTJUd9QoG?YqPEoow@+e5&=Z6tZ@zBE0q5^$*E+u-53C}BAR&bH2d_p+w z#gOm41^LKqE3|D>E(sV#NITnRIOkO-`34!>M#F^I3A82t_}eB3?nj`fW{5GO6ikH? zat)j8cA8@mYJJy-mZ!8%uNaKHz%@ve(UQw$g6tF`qk@Q5?Q!WmLmZQ9ZCSQ5rTm)4 zZ~--n!FLBFp()|J_xEFv`^H(tTY~}DN|&et<@^TWnf|V~(2_RaCLw#seN=d6M#L_G z5!5N_ZI{h4d5|Y*d3Lp0760>m7cZh>N0J~$sugsh1u0oFD3AkZ&SXrT)iQ9x{x_J* zB0pt*`O_POcHXq;xkaP>$mvlit`3?}wt9jK*$xFq)~v2A%9Ru#flzpBJjeKw^6y(z zfs;H5ohG@(6eFvnasq=@(HBe=`2x+BXV9ec(FC)5sYovx^3D5=RW6U|^}3H1*8#v4 z13S+ufckvNvR31S9O5 z8Y}&%jzy?7^GV0G`C8-Q_h#^YjNH`Z#nkZb{{Gs~==N#tkpW&irtulY9#=HAtm&vV^w@_lq^-^2H~MjUN$aYEPMd_107>hM-c1I3z5 zitN$*%4^W=3ozTlMsZ?(tV8z=s!90UMO`L~SVUZ%f@EcO`PH!znU}U;JSo;V%xi}- z|B0Am49(0mTK^mGRCFFGnsVh{bZ61<4jU&=TpgCh#^cDGivQhNonif3)f`G3q8z+z zpP?NJD$G0$G`ZI5ak%K7`W7i5I|!59X^@4@YzWedgm+FUR0QGTch_6S6-YwWtXD3i zO4}^Gb%3?v`6cnyWK2Z`jV>GCFO&HX>UqCVIz0BIv8@7Uk!}s-82o$3t=UsOy(bsv zE_>;1ccQMRf71EMeSVLe@z-=Fxkrztk)s}I0Q=o~OoL9C3veiC_PJor)7Q(1EC*B) zORkaycY#5^P=$GjnpOdONucQA$?3!bTOb>q^<9)*`ZGF_b%hz4{zj_1qo4-jb_)@K z`T${5l{B+#W!_K<99F`>*&xp)JDiyzC`*cI9AiNo^g?1;DZp3O8l3YNg0V}i7)Fnh zrxl|bJ+CpFf#)tU3rO2x=8mBS^g0M)H?soT*xtrER6fsV^my}rxwvncsEX!bKc6Au zTH4Jov}M>SWU&UJ)WCmq(a*?wUmnrV!b5dH$beO>#JuL_|01CV7C zCiVe%n3NG3H{*`4As6_uq>R6S2NwZpsE2%24p|ilh1!|I-I6DfI{Fo7`2;Iink|a6 zQQx#-%3co9uFM$h^gw}-K6O-++~Dj3>_jR*rNCppf8<&8?kkziF85Ph{LUm`Mc$xq zmi&5oElvLN@O|77Av*I8oGjh!a?M{gc1`#>M#av?30T_fTWHX=`-vtpPbBUHbd}W* zTIKj9CC*-S0#C(%pT*z12)wwkoYq)WvU6|%w|m|>?wmJytE^nx z+{~tT>3Bc=`OIIud9e^ES5Q#U#E;;lXR?ELaib!cqI_X=n}j*V=wbUa4m%he^(8gv zK0o+nmi{ErWc$f6lqf)d#;g6dH?}|`K~0hk!JvHs9PGxpywq+hG%Nt`niIJ)a8qX< zJB0=$H+q2a#O#Kv{&h%a%sLQDxoA=;6rJ0I!RDfbttv2Nwa<{VVk9DkE+b1){(F7S zkChZFEyHo6T<^aIoWy%^5Is3`=%7R~1vrXF58UiinPJY{9tbyt*`nX~a3QjGRbOwI z5AF@?7ZxXb<^#W{`q-T*jz+bQ7{w6zfY=I4G+~@Tf`Vf_>xi%naL8OPmgU}Zwo1G^ z?NS_8Tb8HcbbLDhnfuBoDM)0DX7h4uipvm&oe4|$bqf;6L>48P(ANdKsuMZqBjhve z`>((ipQhsR5{8YEuU8i6+9|dO%d!Me-3$LdU$@5fc2s32H&aPskT8|Ng;Ss!ksx1h zeB5;)z0rrzzh945CegbaG{NNT?U)5%#_Gk$MygELlmIalAnwPAx=DLi6=S!L$;2um zwCUc0&k9TfF0e=oPNyev3Pp%6(zKbE?2<(w)OgyO1cY=AEVfCd#QqPr$lul%8EsN= z$|=nN6hP9WAJ$uEhhQBV;QLD33@%JWDA?KEYMjOeBdh8_V-jfXPlb}h6kCFULs|_A zB^p+nQp;=E#GJcP*xD1!*_GL{hLI@^cw(8<5Lu?hEJi5kZw<@$6fe>cRk3Q7T7h#- zPD3k=wk63`CN#xYlTg6qs)jg8u~1vGI!`eIoinC_?2k3}2dns8M7-9i&n{UUSLiC} zf6lzz9eD7&fPC3h$Oy@Nr{A3P_wvZ6X*Y2HM|gd z*8;lK>a2XygGOXVoz8#K8v)He2MbUCDh-;d>`oWnf4<`VKTAyN{#*O`pX2$rRekSO zTfbkneK*^FrX}sa>c8)xwV0}C@f`0R7$LCH8|6|uAD9KPRTt@*0R);8%zp4I z=3YVl^$;>&;UR|<3%h6=PfatQpHOOPDK#2A;3($F>i%#%NA8c1T+L5_*V>6{`r!nO z1)MN7qH#Yi$P)Q)_35qc>f0-0HcMbpyxD=wY;7*w=t<@yG(&*W?<>W!lM!ynO)ja? zJ+~__6d8%mo|K`f{K#5tLaa3lDY2nQR7nkbNYu%hl|M_p$h!EvRGrw+UQreUH|j@)DE=#_>ztiW<-|=GVErcc-SR;HRpx}fUs|t0H2kkjF<){4@7^+(w4d(8 z&QGp9oo!eH$X&Q-{q!_ySAvl>GI;1raRmY4j5{LT{-2Q*D|dmLkqfLkeKiQ{s#nPPYC8 z{{bt~sb9ihwDR_-9TAq%W1Huswc=ngRW2;;IPf`Bul%oUDPB$XZq)fbG`%`V#|$f= z(H-yb9$Clp_)0QXN%^lu-xT?*`x*VFmjuhR@$1z8&7Qz_Qa8unDth}^GhXI`-r!yI zwjHW*=l%WzA+Y4{-Rh)1f}%dmJ>X|HwQJVyrSAg{?;aZXAI5rZ5M`?ucOF02yFEM0 zzjTV{BW8V1Sekwa0r%Yhnu5~O)47}u!2Z`PQIY>necf?N@LvMg_j2F61|FYxibmi2 zGEn!K7{ft!?|HW8f2cac*8+o58o9tdslecWnh_s4W=vM7)5uiPwh~OknR97g#FzC5 zgy2=|+Nb6iS8n|e%H*x8WH)M&%IFz_&?)k1O=x-RI8JYO0G74)_;K;)0xsL8P;nhg?bAXFm-kK-z_J>}v%*nV-g z{X0E!=j(FA#nbDtZ<&>9&_+H%@aYZo)gKYJ7~5$V(gvgBpsXe*%a-_jgzuPu9rFnB1=NWgHR5>4=j1u9cb2O zT!em?HVg>Kszn-fYTY$!T-|fn!U<$wYc(__;Z_pYw&r#U8*cFEm6;nqZ)Ijrg9H%b z(%LIoCM!CmVPXIz;=F}Ia{nv@8}X)&NIBF>Gb<4iKp2!9Mtl_vYD!gQdw1=V7zsGk z3s^gra1e21X{v=R)F+Pu$adHv_Cod@SE4_hNC?FE$L@p5tEbDh7WCeoC5=hunu<7L zR^+&`#M+uLRgx(jknJvFj_(B$N@rHHEGg zGAJo3E29GHTH_Dboq|O&1ltD2rRUSo&+Z$;|5mJsyHfdS1zt`K;2pJc!8}_BV3&5` z346S_7*`v2#SEQFpAgPv0$>e(^553M{ljTn%Jph%E!O{fpXTdz;QK;w>N}aW9{pGH z>pLA^8QAyO;9oHK-Gg>L&j~p@y+=2@94-5bsd@UPHLkheK9dPE=JpA_@`5cS?gxbA@-wjAfx_OQJ zf4d<+?JklrN8u!v3y#FPReUMVRDVmqiDXcFaPb50O=VyOa}@5Tf{F(v6{fPb@D2H5 zvuwh8CPkA2zFF5YI_r89nb_#A*a<`x2%=?}OENISjs`(D8PbhcVc#d!(+nwB~GGSXn(`u3V1Og~Cn~(eyUCL9pnY`>Y@IMpC2w_nzV%XpbbhS(R(ud;! z8jOsC6(Gj8_tT?_CBUTkTdCZ!Jlf02Q)fQR;m@{>Q`7UY0Hx9fQaL5+5=Q{?vI0dz zihYbcBqh2NkK7^JOp~S_26q@@O}n3L!NK%_e5Z(nfH&X&epwkyK@;mJZ45g84J(YG zZ|pQN$H})!sSY3h2TW}dna)C0E5K4+_5jET%o))16A(jtPiN@0JX-=&#iYIv2h&_1 zQd!i(PJuu}Lt0Ue;8lTL!UX6-De^xK)?ASHwwCC)xwjta<0+@`#-|UG-oK4Gk-liea_PfUaXdoW&bzZ>bT` z&1|@tHZJ#5gwah%+j4poJ!Tw^j-LbMl4e%Yd{Ov@b#zTu-uq z{>5wVFjs*0A-JG~0sx#DBO`}UfXRfUN@&7DJrJ&jxjb4tu(Oev=5ug&c_BU)I+yur zHL}(WtWWLeo^}N+$%iZ4NY9i|t(N1Gk@k?_#G6Z7053L}iIQt}~DUwbp@gf<( zIXW4@9Bm#@(EQDfRh2YoO~Bn2M@zoFoYLYsY>;#3;deOP#^rI4QzH~jKX2T^WYmo} z9|6lPH1Z}DZiHMILOLxH(#lD@cEtgmMmI!P)VC`d8aBPmzgbKH0Mg^0I;y&ceq+Wf zsYS(J&t0gC6KJMHmTiwgr4*v0Jr=n>XPJ#a+K}Lhm0F6D1C~7;j00ki8clToFRVEQ zP_a}V8z66npdKU;61)V%rnT zc-^&ad9t|99bY}Kxi{IsT~${v(#D@Q*gpq94%WOQC*gfxjUS#jgnfySyUu@!bzQz@ zlWjO)JMH18Jb6z(dT%~BosXal9@q?q0A0$ffZhtFUI4J3KYrA)@8b7Y8E4-59r3y7 zVNDoAs)jfd7~vNB9!Ttbv%V6BL+Y!9mjNj`=JxSdEaXhnTOmFBw;?W*v{BaA!TnYp zWVqg3%#-_wv^*QZGb5}KJ_#JgAi;D_?w`#X!^*-27d_~`DC3!bOEdanOsIW?@6Ij= z>1OS8B99UwUD#%e(K~WS^g_8vDY*ef#TnJq3v7`yct*Q#TT)jn1`}a|>Txr{KKxz% z8`uR%N+D37KVAIg#xN(=lSj@%9;W3$w@5%$xnn1_W=(LJTI^GgyqbM{N~&PNL58M) zl6ZDqGW&AsF;z- z>CIW0SG!BlaVS@(UdG`0g97hk6(VMm;K-;{!j)}bOwUe<+{PA%`H(m84|Q`gk9I+Bt!LG|1O zff-KkE-uF&ce5xNMcb=kziI?O@)Wg^e{Fr;>-GFnl<}o}T1(sEw0zMGSjAnow9Cu? zp7w3bFBn=E^(OB7W6k>Lu1}p0yR^S9kB-oV6ly#=HlFkB4ZQ(!dG^jD#rG}ZPr~k7 z?(Tk7@4qS_hRYv|pUeEaVgP&adBE^}u*ltS(K3P3)pYt(OZnv-cNc=>a>qHP6`xZlQHFzIQN23XZ;LA&fvt$V zXp*5e{k&vn&WIa4hXc9OEJ*$1Z?{+-M2%bIs1>%cQJ!c?Az?Bh9>9u#3Tt{S_9h=B zjlVy~!k`W-3)L91GsLyO4m#|3881ei&yg(Jt{!9s#&1&QJk~9og3%%{y!^||t^KUI zR6%xg*xZ|(#luvDT9*ktlkKd+O?ts54lt%jDy%VXj63Q$!+04N87x`HVECs)dsc0) zQBwgD)rIT!UgR$T=)3HLHTXz*cB6mNwIuISt6ZEKucAQI-y*{ouV)p48f{SbKN(Te z6f;62#Z9yb^zf1eHT^YLA()1M3uUXgtLYT6Rp>0Td`mnSOCQaMLfJFJm@OHVCs=Ac zvF3>iR6+_zYpmDMvMoe4IpNU@*D(#so-9yX1B%-XZ zB1dJvjnE+H|tKUt!h|ad_JH(10_Zf zi>YhgEG*C?DVol!^z4+Whm5p}bp=|yIAhc8trHJdQ9wQV@9sn3%dB={-jx%6R)&I$ zQf=tnYk!wPzmCCo)+E12v0B~Ffk$uri?c~}xInt!wzqGz?acB&YdgbPb{BWRVs-dF zak!uC`<(QB06+p$QU^M{$2zb7jY4_I|6cU>rWkpxUM{lib8il!c7zVD*zL_}^IXQ5 zXh~i*u38t4POJLYokX3i94@mVV}G}58?29%J3EMN6C0hu<-AO9Jkucp0n&o+vdte> zE%ptI&9tcA=-oHNC0c;&<`>2EfWd0=8&*SW>fRzq;@864Q6T0GhiQ%fa0rN6KsC{g zWToUD8EY#|Cn6paUpE^hgHV9pl`^kG@MSIfNV#?iE|XeOhHV&Lcm3a$NuI~PBdBB8 zxPcAkqUFbfWwC4vY9ymG9iR*KroRt1m@&v0S}j>pRd6H>ieD*~9HcueqQ8TC;SKFq zRjP5#6#Ty0zE>%$KL8804oV**zi)$CL1Nq7xVDBp+b>90Eve-Rc=}I)fc%=2&gCgQ zKpMWg-Jvlng=!wiJRin#goz>_dc}g1mmZNoOLn{Y)@&tHD;o2LL4CuO$X!I2K}=2}SA0q8arERLzi*b*)S`G1Ba(we)A{?EsI=^2tz=a$ zCLZgu}uVaYiV}vdcCt!~{vHpi@dSj{quS z%tL}7P7{mu{rVR=U_b;IS}5YY?UVAK63i=&sQ7&TxU@7$4LAxWqP7KFo&ZQHhO+qR8P(&^Z?ZQHhO z+crA7``j_|yz;OY=3lewE2I%=a?dg4EaU97j##SM0Wk1vN)xUeL`fNK>k4I|ijzHX z$9S<8Y0<&~vF{8dD-oUvtYe}>TGND3SDy3ZUCP|k=YI_EiIpvMe1N%kOZ98=nEWc$ zM1;O|C;OEDuUO>%q+P8$htAgSf9o8JOM32fzU|Xv=gkgW5f>^Ecb4^rOLIf=#Bmg4 zZQzyF)!Yv{(?xH@{3Y0_DZLu>tiF<#3CrvBWX=ba!;JzDX#Jq1Z~ESZ#=QFU;oB!C z4LU|pw-1!5#WN#&LPj&}Am#581-vK9A)`@Ns#7|{RHFp*D6ww4Vt4@!8<(uC=CtW& zE|ouKmxzH(*B>&r6#3Q?oMejSVwj;5uni4mU*Q(v3$PZ~s+A~#391q)m;?%p{({(w z?PO_~OGU)Ij!D;k73JR6&t9VSsK`;&PlOWJ;69mZ!ILnCUi{HwYtGiZgr_%Vk?s@H zo)FAfQ(EN>!a&YI^)5#=Oj;l9`?n^%%X8qf zHaBt2-8F!z67VZ$DjckZeS;-0FOYO4M+~Jg@=S3pT+;BZ|Y0}A#WGH1selN zuoGiUddj_Bzd6woIwYptcZ{&YEO|t^LbipZcU9SrHl+ZB{meYwB+KCHYdoHwu#*Dj zMIXmmvzX`r4yuC^2yD;u^dKoDN2dkyxRkH(S?zM_@N!gT&+G}tNKNaaGyDFL2frIt ziw4vZ*$PMZn1sA1p;YyT9egLFIda92f(22bVGrbdP~Yl>1>`1ZFFb+SHGB^}X__f6 zj`Mh293*fwvEuXdq;BQF-c>OC z*&El$QMb#x+t7IX>gD&IrWG)E>LPgC<9Mvzee%_PbkD8num^fX1L(+~Lkgc@|Cy?o zU5X?Zlm1hpvpj?Tk88+XGMh>E8^OPVxUF2nk8CR z6q5RRlGH{TIo&2T)rb;I?Ne>1V9$VjjP-e*uQzDD#&~_U3~^nvZRdpeQs=k42G*oz~9{&_RUZ?NWD;f>RN(^#~(35 zBFL^1%J43{^Q94O)MHq`iSM8>F6maFfA*`_UJ-7Ewo@ubsyWng?Wjex4GgV9Q_Ge4 z(EQs11H+@KNbNesk^>O>xNDvN9Y}rtP;wpp8)j;_L zcKlz^igGR?l~a8m_795XAVyWL1&`f46iZXnl?7BjbJRoFmr`KC+!__hK~=B4TDx#? z3M))m)X~sC{Mk#}#0_?T_q)g7sj%+OMFCI3c0wc z5QGS~SP5*Rj>l4%Owx7Sg1&~hgwEEpe15{&y%olvi z++o&skS&V{>u+bT(0QO^Xv^(|k8Nnh(f^0uuGa_Sd$Ib~dFz2Dz{3Tl>vQmxgV5#s zl7$i3dol<14Mp02zrJ0MW(NQ5XaJk=On^CrzZT=)Lhnz|^|9~!4MmXU zj-?(zS8LDx;L?At&~W;EbJBld_Pzi2HYy;GJNmhE`?a&kT$ZUuoYvy7EDQPu<%ucS zD%U(X*?G=JRlkdZZVu29nLur2~t<^fu&m3@mSjm<)dC=%1^p5e>ADOP(~g zkiP)^mr*E68H^t^SaFs`?n2vCzQoQ<*ajhPq8+ck^3lk;4tYjzC1{0ZL}KY*c1C*~ z%*wF8IO#p@w2!?+7m(uxdPn(*IHW%fv?$`#E1z8~%cb7KGNP8prL-ESZJDEXA7&6> zqHLs`_lXH->&JBDCtMT_@Rm|>&tR1a+-lzOBZMs>RGa}7Bnu<$Cqp{6&TKf;!lU3T zb44~ih71X@WRQSYu0!Xd3Ui2jb6AzDDXql23XOQxM+x&}7E~5608KxjBcOO&W%xUB z_@P@h3$L*@i$hw8QiT=;!IXr|72h@&A1fluayU$LS`Qh8f@_7qC17h(b)?xkn;u9n z)tFa7`c63@9{1`!Bjd=F*Eml>2O>TR?1h}C;?G?R6@nO*)hlln;5rDraEVICvK`_Q z-~xdsOLp$wEnbRps(aPyY4|6xYe{#`E(M#vdxyJL0gIdokY1*YrhEY6c_;zpMgch4 z3sK1&5mT;4;rQFT`|IriCd~!vJQVY)5EALiIu#Os`>c6L>6zQ#CGvJD(*VL?4FIU4 zDT*3wyvwe69<{#K<(HD;eB|#RPAZY|D=IRM6{b#{X-Xu+NXmxFVheU$W;)#{cKRgF zKF-;zYiOp3Ywcekj@St@%RH~6W01-Ec+^(mlx} za{J!*fmPcT`TBj2ldDSe2zah?Z{HVv$A2C-y+T`@tk{0YJMMPyNRU{CyF<>vZg|ue=IpsQ+&v^4b+518z7i5p%d(e06H^7pf zNIL#(f3ree{&~bdN7xl34C$|Pv*3HqY$lS&A`!EGG`3qJ7nndUuyTFi-s6qQlMn})*I5-Rz~)z~m*-v-WO$YG~a zDfZ2{Jk1DB3_?@_^%TiP=}bLWThVUDGPOC3ijTUKpWz0@1fk|UgX!6MN|jky+E+sR zcTx}0&tJ`Vh%{2rOq+L!EpJGrtNn!)8Hr_+%|x!t|~6 z{B(@4{UxocUx3KR*9ek%^Wd2(OeMIyzdT<5*a7MuuiyBe3|BRjBDe$?EH8_o4J^Jw zht}EVf15vF?U&l$KcCS!F!NnoKK8CUt49t^gBWZ}-a^uAd0 zB}LR%A+oM+oPOR(o>qQc!2zJilrq6C0SW|Fjm^6wTtZo>mR4H!(QTa8OzZZ-mht&U zZhr-Ps_N7i;ACDt#L5nU@jTQInJcD2oxknO7db&S%TbG&M4jJywmz z5wTztWKMMwjX3$r?ziM)95KR}P6j|U(X^H`XP-vz&kNIvAa8QJ`I#jK@Ccg%vL>Ye zi3K<%2w|I4gLMTvt6T4atWECO`GEu8+1s8d`E6 z&{!Br?%hzI4{om)K=bQrnFi_wfVzqe(?zoQ?8&3bVV|9D1qSa^lz=5m_MWb~5 zXojBrE=s0L!zek=mL~3PrDRM8baF!BWU?f$-Y&klcN#6Gdew=xyuC8&S8^bAf6#Y* zh8bl?-6J@XjeGc6Jl<}I`nx&>#NtaCl?>@{mt2MYdItBOcXVorzn#_Sx3hvV={pfR zh=V3mOLBJk;D9REQyY}PjW)yjtju7gj)j?x;VoC4nnhB+lWfz2Z4f2Rtd|>Zd6}iQ zq6;yX)lj4)rPOH|;(1&D3G~Ko(4o57*&5;MFN0k_Z}qlO6$t1PR*pLX#t5-n;1w-F z)_}@td6Hl{<`gBqzOj_+Z*j5-DPq%x`+|wydXVbu$ef)XAy6_{I|WGwvi{v_8q(qxs(`=HLnEc%7SQWBu@R4XEsyu#z8l z_<3{27J+yZnHI}+t)XC5G^)V`mC#-8 z|88TevoJIZ2~OuN3ApJ;XpO0tSDI^Ar8j3!15Mjz9xw`KfKbg#)=k=x|8^f&MmSX;_Y{C=n&-`2E2NfQYm6J5$F_*02Sbpxu%F6ARRNt<`Q&KajjBvn-bTV+rw=NB1h#7| zs`*p<=2*r7EVoSsu~BCoP?uwEyC~1`_(y;|oYch1jisb}khKTkKY5>T9PSiw!ttW; z&Y`~krkZ747uX~dSRIlB_Fsd7;-4q>Bn@hWf;i<--DJX`e;T8nCXB3;3%pETdj`2b zAZpQ2dcqw<3E0mLG2NX1vXwdvAn7S{5=V51(y}h9dKOO-cd{=XeJPVt2dDi#3Xq^l zAZU0S8VCO7wncu8rjCu|V>D_cOj$Oude7gpG#PZr^w@gSrv)_}GG<3mK5(Q|p=d%B z5@%_nNbs&07;6pz2+0z^QveX=w*N3n{^FWU+#1-G9H6Q1< zj?xoTU%D9en7-dNXFoD*Y^gV|Ud~3}p}Smd2QHCZoPAZ@m)e&LCU!SH?@~g#fAJ08 zR95k0yyRe~DhO6`7S3?#xCTDHXanY(>w%8elMzzt!lEuT+A$`BA=I&I{P+-1zrie z4)B!7ikOhh#tlQn*h(>S`-p%YUw7zn=+3%tt}QC{_xhY)vo}nt+Owv|QyN)~asee0 z?|s%y2OHs#(V1fsQb1=znG(g3eRn9m;bJCo+5+_p8b7lx79aPvI)XIg)GZqfj_gdV zY6)#o)~V>`IF*UDFKnI6#T~nXs;opBT;s>yQX#OXOd)xk?j&B5+t2#C`Dj1>KR0Fm? z1=&MsYEp=AFEzAqR4mbHl&17$6G29({z!)VRl3h`(D7z=g$R8w@AS;% z-Xn!D*U3v&`gG1+>Se&)EAUyp%d)t&M5j*hIWFLb@L@)8CW(GIu=->12IX;w{Q}z8 zIz!O8)ZiKa)s9-XH2JS@x_R>EP+Mr*yZt=+R%WGhOEXt`xg$H)A*cJqt;QJhh8$rF_-w7(XGY_c+Jou@j5So6)BV)uvK_6ms@c-=K*nOhpnKI- z67%tA;vA5mhKFmtcU7?7G(!dq+(pJvt@MfqEmr>=8yEChB6K29U6PTPj3XIrim!Se zs*=%j^U+$0U!`D}r*4chM5UcHUihNiNQT%M1&0EP_c;#JEJU!eHrNQEaps6%X~pF7 zPzTvtt@4m{`A>9Sc2Z3Ob{v@?WGr8FG``=3pi=K#-|D^{7cSvnZRu_-eUo;-j?*ih zkdSm_%*eW}W+ctXMl=7)6FdR%JnL16Bw}kAX^;(afiQH$fL@QEuazcFsQVUD9(AYD za=aFZo@d%wkSoT#dUom-Cg^5ZUd2w ztilW`$*7%+Xr7EGu>|8e6yUi#2Dj1KiKcbP3o6cs`6o88-c4^-^FH+kS)o$r!I9c;~#J5^1FkNKp-&A zbMH+3!UId2J`)HTMd_*_W6V1Of%joavvGE6)yYd+_=U6zWlFR71>?v#0B_vAA!-Ar zuA68?IyX8oBuzL!6KjySqx^PMr`hLbwinyuK<}p`haUYny~69@YjF1;U+4e_1{-7Z zp!Q$dRg|%JzzLP*e--Gt-sL;|@TF&FXuZ5J!vjDlpM+xZF8c+wW*FMFaj5C)Jt_|iZ1UBF zh~`oDYf0c$OX~A`_tETaW=LgxKm&o4AT4pC;wkOwlKV8JtZ?Ods@&Js{;4;ki8y%5 z_U_(wwIc;7N##IDp0Az3*2~YqsTiv{?RenHD^azK%0(qpTAdGZm3I7Lb(>+7wfY5q z$b9tlf^4K(4_H>qvv#NzH0ML&^$YH?TG~m4BAqUfO^N54YvvW1`7Rk2@)YI6jF^eG z@e>hzAWD+a5%hYv{=(LlK@snSi*SO34{@4Gt>K$7=QQliXh{G^tIi{&11V6Kw;(BG zb~bP1RiF8@pM=cxA~bbKU6g4Gs~vt@^h>_#7Pt15ft0U&$tEP2@evPQ>h#c>Pkyvd6MD2unnySD=S_xp}xuRgc0J9C8g=?fdJ(*3Yg zock0_@N<^{4e!1

f^MD~XwC12qrqulf|_qPKTT3=X`G|BMEB3DZ5Yh+pAGGlkS7d@kar|Vl)8!B>*D$Z9XL)90uoJy|=WD zv2KX~;Ia)A!xD?6gk))MLm2udx1d>pW1QE96fTk4 zR5zr`b%eGSUdy_qX&~U9(Y%=N#FK_caz8IYv^uMKnji4e7Ro0-s6~iDmYlqQ0lsED zG`l?IY+&6poHJyN(YlS|MGS|r&7a#OqDE^|b@E!h3=eWX%L9P`Sfl`dhe}g`Je&3} zR%|X|?uv5DA5RHhmgXK_LFvgA`_M)nzJxZ@^CkWc6+pj*d&J7L2M)i5P1i$BX2ye$ zm7YCq>SER>La$5T>*smzQK&)H+df9+Br^fvK=~0jMN=me`O)zq@O__uIzn@Mz=x2r ze&oyZwQD{rH)DI(^7B+dVe0_6+T=|s{_XS1@yPZMMrlqGU1jVsAA!dYks+JD=c;Yg za;qMXit9Ge2p5M!sX-Zw#mwBbd+l$RR&^+*-xtcrTCyz4C0Yy(u3&=+E5Q+td(8~% z+F@2;X`+FsY36&^ekir6PRfSF;V2;cxN0WcRx!Mngfgew6Iq34kbu@B?K~HWro@>6 zw68l}#F(lb98D%o;*PSIiBY&q6?xchVSo<)MO(gQyGI-Sm! zz#_-N&*VuvU4ozspkgS}6D38KGDS|Tv*u+>n}j^aLg_QO1KM-YAkpDq`*WRHW;RHL zC`^ZLVmrxYxD`XO?Y1`J5+WlKAhq*UbkvoA@LS1hyIyXl8(-g1Iv7*ydg|;nbklzQ zHW`Rno8z33atOfZx&4Jc=o0`B%l>>N{TM?;(~YEsp9d;pV~4s0g3odkafn%G;~ z_-B%TfxilgO&M&M%R$5ecfLCc&&tkAui{WW$K$yL(`zo*M0)7TIRCa8z@jG=+8mI* z&2C>%E)MKvU_vah{*=xt%qjo!0>}!`!|U*J>%Is|aZ^)_SNIK3E({pBM4_;{0mB0l z%R)JMC4`fz5uIM0-s}HNvSd25W;?TRT-!Y6PCnZP2me%7Nr(XC$rY#@&COG>?nq8S zs#`=1Sg`pXLD}sMcX(}163D@bJgvKhW|%5g3Q9ApA#k3+5(j@3doO%&okH~Znzx1K z(Q`5^X{`y_$AD$J|L9-BobLbl%O2hN>ak-#7bp4k6&`ZSJ9bu@WGJ>)wQB`__Al{e zTwbTWS7$$$(NY2Z**knVB8P9o>xa>Y7+Nyl_b4g8>{vCEz?5wd@A$P{mvc5>3X>Ee z2KwbS?ZH=(J!g@K!hrr`oSuE0IT(1&5zPOh_<+bkO}*2#I-N~7x+ruRtaB1DTttf~ zrUa*%#sQs(N8VVfaL6c{8ZPp!=PQ~OEl6nil6PaisCo#sdJ>%&BYP5DcwzuG($2we z+wj*ed{S&oYzvj88AJN1T(IJ>uT*>-1df z0GGtl>xX*#eFw^67k??UBvCmC!-Ph=STKkcZ>2G@)Xw4_;l&3`Djcct#g2Nj5W0$? z#`|gZi=9=4;}PDj4t-Utaf=Eq`fU=vq4f`T5}nXt!LXdpTo!uR1G}Fm{nB#-0|&JD ze{cGys;0#4n%U?Lu5FPP5?Pw!F}Bm+owRPFfOI*a5oD0}0mVwMe&y+%xU(jl3E6~n z2D*tIKzKM#7@^}yXcJX~rowZlBKgf!fLykWyNTdb-g^VNf7YZD0kDkl)^$s%gW10P zVjW0mSTg;?)S+ig9Xy7nE@*~IGakf~+4;GAMB1NIVy&rb8oxu8Bg z&RV33W@9=kUq(~Ft*;$Mrsvwu08k!d3)!NIdjxgJT7)YKYnN&2HekI;;7c=gE=C1N z$U7v|0a~-p0!VNmU>DK=K|@Q-k4qul1T|oUB8fE|j<|(_ph9X?Eu^^AjGx1L3?$0I z`DA{EGyD5F!{|qhl>cliv!mp6pVKec!=yp^ zxgV^bVQp$wM!+`WMoG^D)yr`7h`s?_0M}0=Kz;@6}<8TWgKF5>>L5iVQLyEtRWykN(#E6L3POwK#q`W!%O*)QNUj z2y7-3hv8L{%ouM0CQFRT0q!{p3T}kAzeWr*Tcvs2%wjfqsVxgsQmRN+wxC0$bF8ym z&_jf&aTW;6l_sb^)l4SsU;o&`bpFgBOcjT`8a5vL`+OITSSELXw+#my1FU}x={BjX z>f!uRUYX3ruegy4235#pGr^7Q>$Fu9+q`a7z&4wAo5Q>!az3J*Y{u0j2hLeav;)aR z*q<7=zfRa}nYBt;zF80+g~pb!Jflaf)^?(tD8QmywrDH`tm5up9^tc{1N#%;!-cO4 zeX8@e1SV=0zq}+U1o$_K!wK_F;rN~H(auKW+|amZ;UcHsPF01{q~iJEzQUpbNZr>jRf2QxQd2$pGIKfW#R{ z4A9nJ+N9!b07-W$kOrkNY)k6vunn&Em9iq^YA$0g?8gs_TcKMpu)hQgwoQbX(6;1M zJn+dd1$<@Lh9YC`CiEa?*n7BHoojya%!r)!8;0YnyY&oK3r{vbl4kDp(xE|DQ!8DRH zWVNUdYfH6?nN~XUv?$)L9E0Uq1~vP)ukpUmPP*V6&NH^&VK{j2^>rNpa|nDrLgeqy zT2>_A|IU`Pc<){UP`>Zc=iE8v+A`lv)7um=f4d&&2MS*mv;Le#TBQ|Q$jgKKgi6k5Z>lnCQ}`MsHnGFd{wb@0=8Og8k!m#I!ljG-bSMKA=z zi16Ky#qDe%8PDxM{kKQhKNas$e3IMPv^bu9e*L;pprr6=jA^NR9Iy_!=64flhKh{- zh7TFAeQw^XZxxfJ$0x=Wt_$#QmSO!v1|3 z{fcG^^}=i(;$}0pr3LXT{|iJ_4Qb>(=1HVU&O))E^vhNQj z2z85=_ljNeH1y#`gP3ABfQsiP95O9s7nR?Bs5#eGq4%U>vEU`g_nBnYJpIG?E;2%` zi7ei2609lx1?&F!R28h^vZ&`Z1)Tbe8(EC*at|pYnEnd55*!dk8*{PRL(>uVG^2m| z>rdizus@FIPri*D6`l2IwWlJiWJ?nRUALSU=?|Ir4cGQQ^MYSNZox{_DX;I;>vB25 zl7{~PYHzZ#@qXbUfKV5DoR6TFE}*%G%3*J3l~3lSu*S-!J+WYC2gqwT@W8Xr@js~Y z#a0Q)k0Z23fJ#2rO|*WO)}GiHyuYDWofgplG8LR#9ID-yBlsXhx+CX@v~j%D5peByR%q&V zc)Qb~|Jd4F&UF3xc!ybeoH40wH{Y{p&w=;*WI^xRv#q1fX@pxLLKrda zWRr(Eh%dF4ideQJXVz$gT+kEZg{3#Khx+dx-~fBiD6y82#n$aDP(m~;fk^Q%lyrwq zcvM;1;q*)0n9^=Od8dD29COz4J^H(MM>2hMf~qBQ8AY~TZJ9;K`MoQneM+m}_hc!% z9$D7O^lmQPQ-if#McF|udxxWFft(m3i>~JN02j^I;Xd|ns?q4g_e(i4ShKV306DM z0&bY|jC`;Qu%ZP^Uz@`@pQR)MNZFLT&B8XcnsyMJyuCb(EU{v8rhg9(ovDWQEP9^D zk1ywU6WGVB=r-c>ZW&E^YL#ug7@P8&Sc{XsnCL`)^Dy`L-_ls;pBruyltpDSF|_$B z^sSDbS#9q9DU(XsS8U9}xQWB;ymt2Dc=aMHIhIPs=8~&YMH$9`iWO3&Xdv}QDm=Y7 z$;moNfLEu>!z_}Aqg5&0$mQ>txXTob`fn$F#`3_+)Ytt#jT?+@N<|BIKD7}KC_klG!v-Q1D zt7tj$`{@e&P!oMpAkmE}&toujcfj=e`txJc_t+`%-)(gddYj^t58dV(AS+qdm2D9A zy@=L(QvnPJ&$sq|U3=eS_%cbv;+wg-JqK()b_8XSt#txnUSKojB=B}9yyhFT*TZYv zPSyyoAr7r^-dfrQU!m{kU4ZrXuo@9(!_v)@hOI4vDzrFQWzR^tmkjZsER_kulZO>R z+nM-r03&*w2EY%$1JzYf17&gsutJ4DmzUT>VxQuj>*EdGMI(M=M&o&*V`^~(IteaA zU#sdv>EdE$*v=MKXvt)vuaO2ho^WskQtqycj52Y8(K^2@;?lLJQb}#YZoU!+iEn7` zEz!!9)`c~QuceomnQIfujSWE2Dq^~{oQ93=V^$0(xuYhMWOQIDP6h6}0$m*F9fwv|1IBTg+ZHG?rJK(y&b zb|Akt;5@JE<>K2iQYx3YiIS8nZZM}8sfy3b2Cyt^be;LgS3SKyUT3}qy8O;dI@J6< zRws?APIV~}n#ZRmKqPO?z8X5Tk!NaIFMWuuLoJHOTqA1jB)^wcw3wsJHC*nU93DQu zFdt@}g@8pSp&l9)86@$l(dKXp8OSU)3!;+HRKls>=w<77wUj@tHDH>+ylr0~ZN48v zNF(_#XT(#&d2f6M=0F0u;1Q_+-2-RsPDr5XkEh|+nxFmeiR$gY{JzIb9ZoYMg>2%B zNr~5>D>y0_(v6!APCm6F{LxZPMr70LG#Odjw+U?0*x4XnXxBQwR9jQpO2BD2*KCxI zm?~*dR69eIjY_a_Jt*P^Tv)N3iQK2$~q4EQ0FQ-3F1g6l>gC zirJSaL8rRO20ZCdIZ-&QaLBGwKA)8-C(GG_jhv^^<>&D(EyqQG7rPssi~Byu&fhhm z23YtLdgD~&QG?118=aI<=30*I55nngg5#eE-w&+Konya=W^RO37xTbMlzRgydAnBV{BAj19vz3KU|2OLg&ps2_k{$A?Ty1T7vOe=5sgLm##2X+zicT0TuBV{i> z3mXvel0wkye*KPv#jAk63dRt^tgV<6MvtW%pIhL~PR!2E`#n0=j~br}+=dC`hIsnN zq_2~3!@ykE95%GprtHG78W+HinBLm}XW2VaEEY>a&&~vrBxY))X^}iE-@wNZ;f2;t z+B-TPd$EN~tKyx$o{JFYp8RzBo)g9rp47A(&@?weR}RPyc0tx8XE9MxJ)UnDSuql@ zt%y%1TW5%OgKVC98DNruhxOuyX`jLy2x+O`Qy-b~hqWax+k{q2bA+{^w|aCT#*K1V z09MqBtr+0GG_O+^7u<#x|5foIs?uutoOwGK?PY)I1wxOp`Up4lY5bWz`;5qMW6d_H zHC=+*Y)&?lMlA?24{RiLt9qY`4+{Z(3~sE zCc-8ttt-t5$^D{NCRjORJPk3GZq1_v+6V3!Rz02;CEk7UyR*9s#z?}rTG*4q}caacy zy@(at1<{Gqx;^gN%{gbrN}&RsBGh957ajtn=mFt3st~9_?qWO)+nT5_Vwo&V?P?G@ zJcg?)MQk}X*)>bKw}Hdb_QxZ1ZLLq$P&+G#_5%Eos1hh`oiN-2)iB-tEYn)c2MP#^ z_U2}ZF0SGlG`IY4V-X9NDf2(LRW*@e;<^wz$76*nG8Jr*mY5A?CF_$)He`^q)_(@@ zy7gk7#Equ9sp4U=c)y$i7vCpb?%BQdS6TXjbjvr_oHLhjad|Oh5pkL69J*S25w8Ks z2pkOB#}XHUuA?{l=QR?CuLuiQ??*e`$U_%4*eNv#t?y3X*V{LZp9_O~H-lHVuIFlp z>3mLY1pjQrl!#kt8otwxYy+)b zQs`^J?NEX!S_72N{hi>;-y>=ET)hqXmp@YcxGxF6i2 zGtvn>(0o*jq4uCPfuOa5yRs0iu|Vja^V0AnU`FU@E7Z<0*w>D|gc}U@n+Oe7``u*0 z7lG8gnqWq^V1&H(_QYY<)mCwBdG(ZjSm3mC90U)=`F>+%xJClnrBOq2+8X3AhF@?>08`N%mPR70NHaWigOdlG;Rr+h+}M3u{vq&QAiUht(oO32BV(Ihr<21JiG9+D~egT)@!nk0;f-A9mW zlo}p2V@J5e>TlvCU_Rxg8z@9dg;oop>)ZC&wpAN<(+t~)Z5?}2RiZWW7;PK9) z+sG=@H3b~BJxNK0U|2e;)2mg_;fGwM~ zBNZqAqZgi*`dpOO{Qn*8Kba-f#9jwGbNIK7VFFqUXQ4lhR3;#dUpeaL3{ehuK5xJ# zoEp|ydB#~6cVJCqI}B0gA36rU3bidmIFed)Dm7e#(A@|NA2vx<>1$j+4W~zZ$%RKyGASsMUo4_1Nw`%|oP6qtB$c_j ziM>=+ZxSdA3l1W&ref)-3poW2B+UF!JZ!-9{gb3Nyp=u_+$i6Qdh>d}EKb zmS+%3q@uJHNM3nko|^yM$Q-W*(F;WAs8Wbs3ZB$<+>nU^EA-2}K8z|-8Z(9rC9Sn} zT=O6+Y6I*#6JRCt4{&d*R8xQurh;;;vMfG`K6}?|^z`@ecCuBQ@UvN(bde^YQ}M1y zZAgVbf;8e>`Tc&RA1*1$L{n8~8dK4ZMkeDcR@$m>pA6)=%;MQC+#U~4KK^W)K4-Bx z+lI{Lo{~megJ5$p$XdtQT=IVcoD&)48#3hHpVmpXoK0g*qKP`i66Z}M-WE@wx-g15 z$d%ERB*kOh=2XJR%`p~%a@P^Jct3jUkEIZF8O6`R=*+ettcY%AS@W9RI+<#$ki-xEj+KP-kU80oS)7)X5y!ZNK2=7U(1^@jy&#fbCAlH^*+BeRG8Y>sFZ)_M4!TWh8hUP-=iY7Cg>Hm?;O#2}_pL0oFwGLqs-l&4lJX~kMm9tZ_bvmQsl?)SaEU&a39c{$P2>x7=+tOJz z$pC~5fUD*@J^EqZ_93eqqxRIA_cO5T(xvCb31v-Y9b)z}ryC}<9Tn$JG-?oKnfZgs z!sG;2$>mmJ&>)9T(e0keV-X+Y)3+LUr?|z5ZL{mGOaG#Ia`Kaa;UBb598IHgk2T!X z?q{ZN;_gTHF6bVF?;XVZe~2mlw*ia?fIs%y8$jcKU9P$LM`I$~(EZq0h2l%8iSZC8 z=7b&vW$b%MX)qCK6^LvVTl_ zC?>SP!8(&X1R9u|4#i1Uj>BEYxyihsv%5i~J@mlSD2;Mro^>^T2%-f}UaISqHkD`xr5!7o5Ey5dauW(;02yHRHD*FG z77G@lqhRs!ngG<)G+MP>^?MWmOU!piz66KUtIvrpk0K6-RkE#179IVStm$fubwnkn zcfYWMo~$NY0m%|E_XlZQJ?O&bNnZ3Zi5MHo760lL*t^`Z6UsUdalu47*e#(VDz3hm zl9<>|>pGgt#XdMTmn+7ND0I{&6tQk4-B7R2!biy=RAc9xGV@Zzc9Yoc?Rqn(<^EK; zVCk;l`H{5%yP8hQbZ+7vu+X=6c7?O?1mWrRb;4QxtbYgd&^8Py;^7n3e zNoD>7R=@kbXp$F+#pS;KZ-d>>Snl7805f|1?{NK}5QJW`rZ_z#y=U0#Q=gkt^w-{F zou1%C3WbOGSnnW=p1a_#8@Jldjb%N9;-!Sdl#V(*=?D>Y)A}x5+FnE16LKIoI4N8~ zq0;c{q9hwAHxcCMK%4N$fEW^Nor5osW)9&gLI2uIMAY`P73I)NaiW7eP*NKR{wDQt ztb7vMHOz<{Ll5Qw*8KN03j9A4Z1t8DEZSgq#zqb0ac;bqI`D%1tiqdVb^KSEkgi-Q zKyAc)CRv=QFCsv{J%u{h%$yt0Xv4uZ$>tUjxvduG#7jznb$^*fhhMjMiw9eXBOl1C@0Y{O)rMLSb5@Qmel3g#7=@$v908A?3A~M^!b&v#8=s`|- zA}P`1r1x`tH>$g3HUi6m(xL2A1=x{PP~RW;E??yDkAj}!vs=RU67cfNijc=-)z#& zWM;8Yv^fR(aX`w=%(@U!5b^e?uoKX(!d!t253e1jY@DcNu7h{=a$3Dqa_$r_p^9AV z&4|jl7lg1199+6i3#4f$Kkhm$!eg@srp#4^QWPE0HAP9m)Pj{U%Wc(Peh;nep=`I- z)*kyBuqE1bnBY=B8e{DKhc3xAOY@SYn&jUg`NpoHVNMynd}=Rdm2L#Mrahlm$y!+U z=k8tLtv6OLD*#@0%0I>v+a1EOvw6Dvppf&N(&E|uxMuSk1Q4}<={=+qbcqF zpp{TNb*ZRW)@8fQD1$WK9yW}5Rq2|^zHo6n>W`w|k`3Wr%1&b(EvUungEH|Du7!%BnzFd;(Z z%&=e&ef+3_mXkvynM3WSw)er)pgx|^jhjVYzI=P?5((pn=&%Y5lMJu>5AtY<6nG_w zYpG=!$`xW;QUFzL5wc2y*L7@TkymHl%TVy8+-~ibVPicAF>-~ciF_mb7fCR4kR|k` zV#;ReVD#yaQ2S5szkM7 z*g_x;|E!%%6^+(OdzSV7>Wg0qYqphUm~J<-%hgw(i=dg1ZsfCf^4TD-C9aTmF@E&h znE+FvnIJaimUT*mB+u|pQpCXKg9rJhtgIJbkf!#E&eDm!n%7I8vkHRxa7|kXvxdfT z+HIFpwu@U(QaFs`AmO8bAsoDwcx3XQ0R|oy8e@tKMU3X1Un?kO8@C61TRf1Q=PK;y z27&fl>7OBCzP8a%-8)dlf>Pj5!B0!@0Jt=MATBz*?io}fycwt_XV*-w3YGr=71AC6 zSx{8Mc}d(~tCFemSEk3q|2R6w;7GeI3MZLZ6Wg|piEZ1qZBA?_6Wg|J+qUi8{_c;i z>gw+5uIf7bea~5Y?e!d_IFhEF5%h{NPka^^tg}?s#B$U#_NtHBw@C0z9B?w9D#{uL zyQ&wgn#;Pc%{d8QA+;elH0&G$?lD5K*7vh#fG(sais;`?OzN`}N`QJ;9ZHiPWC4k~ zh1JaYvI~CXD@snAy~V!!PjhpDNtZ_g2Ff+^zH&wX;qO*J$CF4^nMi433QA>^ zTGn4>m2YXA3!c-YqxsXba9zC31?1q2XwcJOEV%s0SlV7wXm_k*9eNQ13#)m!On@ z@Vj8xe@!eH6q~069n}{;)I07&){}hh7xcO-vc^3ae&j!1PunG*>m`~?nLk;tIX>G; zzF*Pp-nb~3B9)k^P>NjBPu!h{qiBlmWG>R|bgS9T;!T9vMfmJ4L#A$%u07ES0$J5A zX{RS9(n+AA`8`XbF9R>Brz532{!!(`r7NUcw)&`&6=TjaSS#Lp??yn62{;F&a5{UH z`|%6dn+_9fj>u7PHaebE2+Mz;rf6OoXa!h8>Zwb)5MTnPNMQTjN@YlopwpVku|gyH z%0V|EuZ)h$g(zZICCj`*9oWg1$QT&r5hWrOV`!jloG%(cy(qoSYpjxzl8-NKf2&Ew z;G8XlOW|F(jm>}+?|9YPMA{%<0wTHw3As}$73$Y;jIsuY6QVcBtfSXqMS-owujJPe zhe8#SXX%+TG=>OlcVR+oF(w&8p@+GOq*2hp>DcmB)MuotHa}u{E1@&;i-q zS;5~pttviuS?OV?#Q^jRm|>$g4tU+JF`b{wGMgVm_Qp3OxxW%^7)f+B7pIYK)$Y7% zEFvGncAvvA-#L0$-LH(00;w|_icB0feU&goQUfu~rgS|54{KvfKFi3=Flw|H9=}ihy*2pd z8T7OqY=CH;+%n^4;pQa!_|C!I5cvXPMatgt0rdG+mN|BiVasgR#b}^j9JN7NZGo@> zb+y3col^rwORB5Gr+w>IJ~K~DEJx=iam7r(&bJfu5Uh=ipkwHRRPM{Lv- zp9s(p29BkFW2h%t4k6;FE2h|Jn⋙pIXdnfwYP%xD?nkN(QGGd)vn}Hbh!DQaPjx zNwbs#Sq;%BGhaRk%;{^7RI-(@xQN&i0cuXy>Yk~XhA62SSRMs&8wwzeKX~D4m&GOX zFM{N2m~@s8;2(k{VE_LjI>H}mL{VtUVdEuXv_p_Qu&KE!+u`>pCY&C>|1 z5LLR&F&`3yAZj&SqZqL0K>+~|4B2zEPzZw5kuDMiF#~tm zK@Fs)B9m#!FykJbWxrh{H2>Og|F-q5HZ@`azv1cEOn{gsu5c-r4Yr_Y1X59#E*2yx zLrGIbsW${IUC$dvb<{L4L)&9N?{EK^__5P{h1hwHs=P=y2kTHoaO!Gcn0T^o@#R%P za2kNzy>CiorvSH!VG&i9O>}_{g@7ww2(DCMsv>qa9NpioW~~bPI7nBrI#o5l<6^(8 zZDuOYL<5lBPWzy3s}~rsEWnPSOBLgC7=-JJnho+dZ4N6*k>Sgu)UnpP0v8fdxf}!v zX@28Y&Y#ODP-l;uFGfKzitfdzN-Ia%Xo*{!(@OEYWx%eB11}V0-)E6sQH`SpMCP4y zDkBPiCuVxjPN0A+G!yVzqGzB+>!kjYCn6*v9(ZHU~F+Ow= zHepe8FFuOKNh7a_T#F02Se`eUATWJjMPxIL?b#c!+uN$S2pPNUlAEDxt>#*^LeBud z-4kNlZ=3I%Y~kJc;av59(XO3rGK@an@Bysp?XUK2m9FQ5t(yarAU_uX%x9_noGcyx zdk_Cu50K6?ruRneXL7fy=J%wwV9xUTee>h{=WR^x&ru)GipdK1sV7SHvzAw0$lZM* zCVUW?S)v!;%9wM8bZm+EFA=#sQ(20$Y{K=Nz$BI#3#=0`PwfIS)O@B^)rd%vKM4To z?DvXT$KdbOS59|FJi7}G|04J|CY5M=_$1*YR<78w6;fSjZP2qANY`O9prm%v*$|TY znC&3eVnW7nk_@g+=*vlG9RnlvpBxASzY~41-WmUphrhidWkCFe9H5>~L8M=}zN#XVD z8q=f?O!UiwAA}FESZNRnEEo*zXN=hHM0M(`!NT68>*TV7;;Dg|*!?FG)!1oQGpm0Q zY8iL&8rX?yH7+D{Mzq=(;rn-4B#u)|+r0Eb%GzExFk3KY7Y<6u_^sw%laC69MkOv1 zJsSoG84m1mvszT-Z&8?&lbZc*Z_JP2oFhnEYP2^lXnxeuVX-n zCMA1%6=krxBVzcOla$ao6)9y9yx6Uz>PX+u zm%yOY5@su+Q!%T6%efywu=RAR&F};*)apt>6)-*oqC5oAr!&>a)1-)U5X@3-F-*GE zNRV^XQCX}Mm3k?g2{;ac8=w%p4Q1{!x;Wk*J)K>@LctPeSNZm z`B`a|;ThIRv}XC=?N=*rIzLbx+0GOF!(_g<3-7?6?^f4>H#K**A{U)WZEc(D zu}#mmwwHpvZ;>kXhY|V_Jb>juAOHHFjhCHk<+b+)*u=Ef(B$P^$DdDk`v>RYTU*nN zOs^fJNwnqe=W?LYp_2o{fS;vh6?T(9ue(8yo?Ron+gGk0hw)%+6xux3z? zrI!1AEd+7tbtLAv8Wn(@H4n)mbGQ97U)@9(C!D-Zkd$g7)#SbC2k>Boy3$bo4%l$y{->Egcyi@B5nHB#y?t2|=V;)|Fte5pbA!%> zRu`5CU7juUsh*RNSlmvUHu-f%O#YmX$iu<0+Dn`6RmJZy-Ee^wB*3yyG{%}X5SMIanD603#;g<=`bYfB*;!JKOZmr zTT{9Ofa%1W#33|+@HXH__VmvsJEt>F~#4M zFJiY}iaPJMzez{DSx-*)ecI-q8Qq~_C;y}L{pZv8p6YpH2LO>l{jaWUwm*;AABF&s z54Dc=i*j$0JBMHjYVRwwKo`9w10=Y=RWgDgu6^)fBn6#qVq2<&9CHu>o%VRiTFMrb z?9A3w4qWQwFb4<{!BQ^b?BLQy;F7|S3C>d}tT_0gnp99ledH3W)r7^2-riiNLLcfoJh?vGc1Al|I&if4Vwm-)YtdkE4WDAaa?E z47`uv0qnhhYt%FRdNyd!ivVIlMk2yRE#6IkGE>*1YL=Z_aoOE8UOoGS$yR^5P2E4v z*Q{Upm`VplAX)+n1S8BqR3@Xl={bJPb~8>5Y>n8u<16*q66AF!g0nyAkh;e%zY2N2 z+HXF|s&oTh0{hJyohu7DgP4w_XMoWT(v$@~{Mwx)YA0WG3U?N2NMW zR=di^zH0@xYq{W?G}jvS<%?1e5| zC3Qx#ZDOhcKEU!tVyfBgP;a5eo-B-8zCaDJtc zh=MrvL{8wQ@N5Yr463%2uqYr_OfbK6Fo?r2kqe$+d8RF=yC*UK)y@rE(K6CSGFrH- z8Xog3F6GVkP}~jgmv}%Dx!4+TAq;!`YSq5*thR~Efq#94u=^UCF~4;z$WE^poe#6Z zlBo5y7De46DM3|hoJTSP+c;nwru4i+p~Xd#)3A!*A+t*Hp0+tLH$|OlHIz4zK2KYx z%8(d}M}~N08)j*U5F@Mjyz8UQ`sZ9$*}sx-m(D;rSs&44Jzf}t2|%{VuAG(kzFR*I zZ~Bg)wK%^hl=U_8lq(@pN|Do94550U8bl9bgvblfm`6Y=QDa$%6et8fLz0)WTXDoA zZ?WWgJ@_X-Cpp9;41uS5M8HY8IEBRW7*^JCThw|_OBUW5$LBFcr~*<^griCB5E24} zRP$t_B?U`FvBX~jr^)z^F}IE}avsxQl@Twq3nUoA5o3BMFF)c8n13*T8N(@Zd0NPF zm&MH|7PD5|1-mNGM@b^tm;y;DriHCjwMS>Q>I6I!@J@&Bu$_P<&!MOUCuP^in3JI@ zZoleyvX_WGEinC;ZoVg2Pag6npR?stdoz55G) zxBKJz*X|I#FQeXDvYtmk+?R(2{JCrtPgpL68M0>o;98mx?j#ZnanfLw%V;dCIJ~8? zi9;Q<2bD~;3`xCXDN!wBe@HF;!r~|whuxb-Zc$DLf|q<7)bp@a!*gSs4dXciECnhc z2NH;XRKJ0y7;K!Y-Xer51H~#sQar!xH$P>dBkLpW3tnv_J_fPa0zy9LLbf)+X3ojp zq*a;BBz90*%i`MXGb=u_=D`M>HkJ`LBO5f3upDeZ*I}z53aMcNeb(S-ma&E{SmOR| z+Kj+#Ka)ps0OGfOry@>0<;0N>$Cy)Y{-N~1;qPCZCl}}mLQ?J6E)F(b$Lt*MeLpKI zJ=bmEbQ4d?X=zqa+TY7BKhYC^UhsDwcBxBrtjJ}6uuYkz3+RKpJ#|`(?^vX_wkLlc)pKCY37H$5u2ZVsF!=A zR1g@yN4X!e8uw80Gd1S39whMNY^&Z`ZJuGT>u)|Znn`5b0rGOUo@(^vI~6tdl#(Q8 z!ru{8~%EgPPZKdGwVh0yK(mozc6Rd@ol z0=BSC7_P8Tw8hY>a!3{`t@*#FK?u~jXM#pOTCzLliG5BC_14Jn0g0}REp{>-2uv1Q zT`OT6r5tTDXC^R24E#i>END(@HgFZuG*|=~W#F+<#22`+GM_y(m z<-dVHCT!AWLR;gVTQ=XTI5Vq4aSfx@3g`LD{CIvpqP*4BXoK2vyC%9${P)KE$C^N? zfI+~`J+Z8gug{d;88iVI6Hxw zdKLs^13#7v!^$f26H&tovRyUnv!mBy)|EpckruZ! z$kNc$Bv7iq+yz);@=|sMI07ocWIgJevYfjB{?FO<1oH{Npg=$acG#e!Je#=)=>U(2 zYG6IO?_ZgXJXOj3QN?7e`IDX2833~FK1nQv4ph8TYmp)2yUG3K~Thh1g;UnFU47f*c7CT)cJg(32Ov`%sioe zw+OSlmn^7`J6J*fdKU;H^As7k2*X7cH6+68W&?Y`<4!*D(rKcPs)Qg}XpVc`Z~8o)zKobPV*o z5|(g`P&BlKu(Z>SNJBppqeGVd9%JP7A-~s*J)>)Z0kB{ zue6W2gx!76hCnhz84o?69Q2G+gm;_*JH}WK@rikwl^aEjro@vqT6Jtr>-n^^_Aq`+ z#hWj0A)5&)+Y+Nd6j}jByBaZ>gq}EphDZVY2C!ajkW5Yo!E&;#@A>fBlc$~t>)3?H ziA)Jhl1c{Kb6uh32-1jbFlYQHC5cb;sT*&raPjs3>1XWJD)`p7y9fF*!Z@-b?;o{i zJXe!jPIwP5I~BgS0h(WVQcDYKKRF-&h*P~k zKf3qa(2d*=y1pvrd$ke$-`;Y5JiecIzBdXj#%F#$XY^b-2?rmrdM9hPy$ItJSQbPk zHJejxf(+O=V;rI(RYIQ`^a+PsBp{#4wV-u4l&=GSMfktw3Lb;!P;@4&l6+#cs)Ly^ z-TX4Y%Pl^>!$LXujTwBTXqnQr->>aw%V!PQTg>+N!{SP?kgl+kAqtt!dV}d2p%W6b zcfy-jaaRlO9=(#Wos)>$p5#}o45*6|LM$PcN@>4*H7N?O$P&CM$khle*KaIB9ry9( zLhblNZ0btidV%-eH+^M>-?e}iA6v>W^4Y)_isx{7X}ZqCq#`E%v)^1}_sb~($@idvm9XM&r9d=!gx8Y&ApNz^FI zczy<YvzusAHNV*IK!CbwO%Mn&<6dI9-OGHy?Ueg8LhGlnuh&Ye$wbo77= ze6H%&M6jMdTr>{PUHPmG8)=W{j>MTox;Vm6g^81n@;=SHORgn(;icBE8hbcXbAF>F zE!L$jeNcpO(NS?|Q4>jGq*na)PuR0s17)?M@O)iUm!O>yVEu_f1GX=9jTrRkyEWM8 z9H1W_LCPzI)L??{mByJkLhR(gZ@$TOfY12* z$o4nyUC;7dA;eZ^vJ|(6;1^QH*Uy_t;0ZD4ObY9A2ZdURYEMKHHO4JSy>dDv zciO;T8Z<)O=`WBMcbcHH``)iwf1w&whAPVMm{p0xe!lV$`87gaw7lH4jLS!dJb!CVn1Z~!CibCQGjXELtuvj5!_iq0 z$CeBIc5F(}XO>w?P}T`32SF|xul3=rJKcLT0E-IDN|@fLF0$0Dek$I(`Zm;Oh;X(pi+0*eoBN&&ZEh#b)8` zXzFjxVWb5)cR;Cfh5pSsS>v~yn1idyHh^{B%aEWtWit|6p z2&rFWBp_1ii77n;%VCy6MNGiWKucyS>zulUc*T36)?ciae+Y^@dxGqD8%LUGDz>1; zCimAp07^<{6viRt0MpS>OO8ncqu`Bb6!~5j#a>vEiQ`Z5bL@F4QqGpU+sP)Ic@ zrUNsj`y=*%<+H^7-=&cp=V55~=)Y^K)5!*!2kXRBR7;#sa}o`lq-JM^SyY&ayh+;X zbixiQ%vEqLVZ%@{Ql>;PHdYDYRY$I08ILT?c?uC$MhLM63)|>={xGVpgt3La1`1Hr zZ$qz4s{Nq-SwRm@E0gb^`Zge(7`HZD>5BnXnx4T;8k)aPdxyT56qA^loVn>8zEf2N z*q8;WwhUX!m7DlkuAwc$$~FQQQ9`fjsEyf-TF}8zx}Rs=17skaMwP)}DjfL=GWGbq zhp)o@+ZC~O_dV}nRsYsn4-Kd>a5O1qhOfH*<_k|Un>L27PdW>J+o!J+C2@foPtckw z639b7@vs-Q4nHXif96EH&<0ElU3AYWx_%|4%cwt1`cP?1S&)*3%#n;c-jDv#VI~@*6dGGxRfF^nX!x+BH}{$S3nGU$rvFtf_!Tv)=O`ZWfs+#OC}M} zC}}W2038m*t;XC{xjrc67C|bI4uL3?Y*XdB_$bVD&?;OPFqJZZ$;R>F?$3Zk1peSE zi}qtgJ1NgP0WTl&PL0PR+oDZKws|KK2W^;GOgU|MC{RW{((5E*6ICa=`q7=ptgooj z%zMs&vyi+S(3QC`Ya$g+gQ#*|VZpzYOIR(~ND>CQ;IEiQfV|dd82bQ1$@2u;D?G2T zn9;{ka85oN-p`6-OG_SYm4%G56nzH345rg+)RKQT4gIJoqBj7g8tGLJLhk<8O;Br` z^59Kuqk;K1HjlC6ZkO|Iw+W|4>F8HH;(TYM2J>2N{ASh}a(UfRg9F!nfIHJU3K%wT zPbHx42j!iQb4nBBn_&-FTlyHNpq%HT$kU!nOVSVFS&364h#sK~u%I%&sw*SG^2kaN zhurtOKx`UfGeQV#FABml)u!9*LTg943FN&4lO9mSPExmgaeS`TffoD|Q3ikY_a7fh z=M1o<4Vq>S7_ov1r0JE~Ht~GYezVIv{cPa}uzhmZt}wAT5Vb1IIryq{0#5MNhBW`) zouoeL;*`EI!G*plfi{ECZ8+JP*6;|+hM!4D0e*e$Mh}Dh0)0UH+xI?#!fY>16q@OK z?pwX#G#+hoi|ukb+b_0M%ef8(^hG5Xq7F2dB20#yv!|BsAG=K;#uW*fcg&XyGVCoz zjhbH0KA9=t*k~`H#sj2q@`RMLOUrK6(5Yn%(jdCRHJa8kW>9_2;iwTxTO7g+_;prE zcPc8g&gjjU=-!sfBFF;B^ifJN9Gf!uNp{#+W9mcsb;MP^aak2S`* z1%R*(OEFzL-zB%9r7UH1w(Q-zZ-65I)Si_K)npiBto@mWp^{ab~ZC%C8$? z0dqkvuO48hWoo9lVrU|=QC`$cw6n}gVQK#LkYgiNZZRoa60RB}YPdEj%EP2> zX5XplFji+hTEZr^ze-cDorO-Ar3n6f@w|-Jp^_Ms-?!E};G8vUi;i;xdxnk)bnrP0 z1_*9Gt=R74we$V$_SJB668-Y*@p0kV>ELSO*Y^Eb&@)5beOSYL_MTnc`YqXfr+o3> zCtlWz8jP|_eXdTn{m9*T#ehuPQbIoc-sg5s{C>V(?&fk{Pt-m$%<8Kldq3B5zSdBy zF5hemE(;+Iy)GQ0Q5+ar?E^e56!|hYp$~2?IHFXP@~LJA)=*mlL{#xCc>CSUt3|Q? z{wWoJ)F!#}9Of^?Qo#s*Se4#$8I3?pR#4u4+8wd6Vctl?NZr)i)-AbXihfOFKD zBKveD^nMw}&*mP=t4M#ybIC0Sq43vVz!7=1jr@i&!rBP1NVgS*Jdt?Mc0WbLi%Td2#wi#>%fa170VRDyRKo9r;O!s2c1g`h*Aj55PwwG&ycUdkd{J% zBPmB=nT9GJA$gjE#^g+LJf&z1mB4gPnQA3cAOp3-ihc-8W+6|A>9&BV-6!dYeF{^9 zt}iv^k_~%N)_35F0Kk9xptaBCyCOW};%qJEw`Lg-fFedLO0fgS6lB_vfFiRaZZk21 z)Upe8=53RdMGc}0Cy6_g<2cHz2ZsXN59B#_^QxEjH$UH=WnkSh8<&d@7lI`%WwnNK zr5%!qq66c4a?FesqEWJiF&pi@En6jY#gtX!PZ)jq3|J!E-A()DqmVWQo^X1IbNE~+ zfqy#b%yhgdS86Ysw%zUU|9E3$d)zs#NDWVP9*;P+HC@sLCO^`DAJ#lXPi{e; zzCSO1KN;4ap42Mb!El5Le-sIK3NxB?r?gsj<#z$?M@2<^8-IWI{n>?CMKW)M`-<_Y z`2b$7-+@9UD0FDTMpAWX2225!c@Etmzu6QZ55i~U`kVJp<;{1Z%;+?s`Os@S()j^8 zxs%K!Q(AiD=7}d7Co^#zhy59XA`@i?Y2Cf*u)VqeFM~23jdxoMKRV1}2D5p*<75JHJ?rTVELB;|%bz^Ld``a<+^8~oBj6DM9xaK}}h%{WaVwxoA#lDN&i-}hyD_PdM z9wC15VuSFHAz;iZFSn^3`vcNvkM2#Zce zJRmaQlBrcZKus$y@e$(-4#~Ef4+}C7P!KufhBGECpN|KSC4D}c%=?k`#x>}%NPCY58(XmFhlxCtfr*aVV62T z#1k*1{qf7~A@BKuPQT$l&kLywypQkdI z6v~Lej_dZwrY2U+DzqBEuZy+q?QZ>ar4rfy&lv--4{Yr09uJv2Q6A7B)+(#L-G$H_ zQSch!k;pq{TnIP3MDz;D1H*x>c3~f=ce(;B6yYDJbG`yRrE$q3u@@osdK?Vt&_si% z5_LqSnHlX>Wtj=))&N4Ac(^$mflTelGNo?q*y}^g!cTs|Wv6FikXq$}-w;_4J(uYB zJ@RWN8)7uesV1OUu!-rh_;3PI)Pb=0+;}ptZUVpJ4bjZY5F92?k1-YylxZcHY8#tj z*JNcjYr=n1?FZzwsVsQS&U0zSXU~K~u!i+&mURxp2y~-O!UKwj1*JGq-VI5*IJ`Kt z&~8>qjOp=FFKt&VS}3>9+6!kW(&?z;e3sD`o~`MRw&|LLt;S@J^JM1>f*wBPvFAsY zww;T^$11m6_iO#G$@gdU`((w%l@n3083*+8&=ZLuh`tb=1ReJ2}X_iDKsTd zGF*)Mu!LwLN+o|W+P@5fG`nTzWpeYYxN+ucBdU_I3&_8_fMN)VzSXTwk>yB;4%`;S z2KRtAQ)+Z}&JPT&J}m?rSpj$UQquJv!R+2$Ug$iZhVZzf#v}dc=RMCZdhc@i<8w|? z!|{!wXFpPKIyi5h;@x*Q^4fV|=6*Kk)S25M=C(YnddRr3!8s4KFnacV?Ap4#CYLCpE7l$MUo|)w?f7Ebcb&(nUph{a3Zt9ArLtg`69@ z4cY1alIo2ERD5{d&@r0El+##d#5hAf3fcQGJqEd0M36CB0XbX>WFd*=msSEBHC4sx zbqm129M05uP+Jqu2B-;j&H6@BpylZ)7r_&Odh%H%U?flSceO9Pb~KkRAKC1QcR)M! zdgu$F*Sl#{>>Rb9Ox^6s@x4##F6J=Pr6P~(X*-=%mnhl!tx%vIQLyyo(ti>Be-q3pyPj?ioNwh{NdMG z>3nXgF=0xlNqLLMe?z?PdeQwp@cWGQJ{7{>zg%lTw;s`)Sn=6fQBXm}|GxeEw(|3? z_ptrao$B`rVAiYLq*|QM3YvcAh56Bisol>GyK4yT@s2%%()Y0h(K0dLz3{9m9foH|VKl5}4GrXaE&3J)yAv}wLy?d{F_J%c2d4Gg;h(;Z3_h5H%|41=lo)R(8 zvB6*20@#NVA$ZA<_?pL^Bn*mV3<`G)KR1~Tx3sY%l@sOF&<+3Q& zrA~lIsvy<}(~n!8Njs-z5%6b;L5Ed9U_x3`-jnUygh~XEx#(=(?=^@YfAwGd`qU^4WZ1*MNm7oZ%8Um_gQ_0C2X zgXdVst6Rf#x`^l1R7f)>U$5o0ygS)ocko<107zyv>R&9#$d&$j+uQ>(Tfog$oE$sH z-+SN?CckKLs#*&(QIk}Svhp1xoC?@7s~B@$_QfnZT{E}O(|R^JvHZo&B&lh~77hNS zqQFz~oPgur#x=nh+Nj%ro0=+L=5w0Z)YxSLT)({!mxSzpHgYr8NAQbg# zhS!)GP6-4n#ymA4ew&9|uV54ia@YHp&tJl8Di`D`tmCz~TQ45eDa885*X6Kta9=Z| zlcgyt$QgD%EAx&#mYO{hNo_rs)*TL6ZN&N|@<9AoHM?UW@94jxsjJ9;VNJje4)uSL z8&Y%|I@8~}s~T!d{#>s-rB!zQ8(ZJ-0AvHz+h1r_zg+;1iTMA?5i@#|fMA=9pm4A4 z&untu;#8x79YS!b!flsTV={02abd&B*_;{O<3 zx1HdXpPzfm9#w`+irn9hl8o&MW5AQ&FN22;a~;}CHftHp-*VNE(y8vHSbFCpxGtY7 zL%^6UBrU=PO!H3BiXC)9@#o&23gE35a><0|_yy0|$aI4K<4y<=St7J&-e4Rwilh?M zFSO5CjKbqeNDStlcZHkou?FQPRM&i<0a*qs1Ji76h`J|rZZnk>=0SWZ6%Ga z6L*dj_hoSMA<>)6hYk2BQf=nM;+lFAdJy)8?+^Jxdi0zm2jGDQxEAho*6ALPZ2^iJ}sD>bpdbP)^8ckxbmz zhL;5=9DdSew!hAL`j-m_a;4t@nMMpWO2Tv&m50(7VZPalnp4DH6ClIvv7Ez25fT)#zZBOm}J7{CLIbnh$SQ;EgmY8VFu0q4t`-uJHh|5YcEa>s< zTx~cT*r33>6m5J=Us9*sIO9VlMG`33JwoiL@_)#4iKD)GoXz96Y$pU|H1T zUa&bikuK$F=Pi(z7NTP=On?p7pQfKfwU?ae_U%99x34rQk>rc18J~I*K8HRpeAjgo zGRyS3&sR6^MVl>^gvIdC=egl?+5_OWd9a z;rm>m*4TY!3Z3g!Wrp&_;+&%aAO=~_Pk|sdfbnHWzwqz z2_Q_>R9A!ClKb70FS<;r0V;_urR`yw8}JDd{I^jtpx05cKmGrW!#W<0?xha=XL)AE zfq$Fm>3oc})<}Wlz67N;5Kg&0VX|*c@z`*_KdkRdDI*9qU zo_pp=p0bO+p6Pm`Ia2UjIXvH=eot-3QOP#-d>ApF=S5nPEk&5ylYM=~xEiYb@DhjZ zc^*4)(HQe{1~@>n2JkFoX(kpn6vFNzp+78j!=AVD(;g=h6Av4Np3^MnOhkG|Bqf-J zq>pt-*N;umgWjg;kE~1`rf1F59$48$dG^K3*puQ6sC)Vf9Kyq)OBYD$#FEoDXE+X# zW9jOiC0IdNRS;XWX}H9|OHUbVlZrTxBv*z;xb2E?* z8&>n23`}L>Wh$KQ)wPqJRQwtePZK?%t#{yFR381xwF&jA)qV9f=$Zq1|hx|PBdYk zz(j|1E_pyDqGJIl-yDun@PR*KThh_j4-W2C*W$vGtWW^PzAOl}Ap-w!2v;w@G2UvuJsJzga$B(Z5s zI-XL+tgEU;LgBHymG~lcUW)OBQbOhM`YpD{$(>F2VTzc1f5UwCyzS8|#i>2u^o4IZ z@8=FyMzeOu_#Q&6Ngi6*?)#Z}!c}_m>Ex)O<1KQ?S%2=Kp5@r5ayWdatz!pw;ztq8KC3u5GXhJWj{ps;a6XrV0G~w}*!lIu*W; z20p2l4V_KdEDm7*v=E~5egd+gkVH2QXOJL<0A2NWu0axV59b_nV@fYX6?SMtSH!HT z&XmP1$V`fJ)3j4F2)5RE(m>-D0^TLDC?{?1gWVxo=RFJCrB>lkw5oXmODUexuuxJa z_R)ONW8mG5 zokEfS8gr>)qf>+9e9M|_d}TXfWUZKqgTR3PWugr#%-&6=72ip*bH1FDLC}NK6LQ|> zL3r&T$5!)UA6@J@-S_joHka^xn+1k=07k_ZT-_GRvw^Qd!Oz&5yy#>#VjIc z;nylwPosmF)%NGWUav@69m^1k)s+$dJtxUF@I%kkS@%+_%07f#l&p!504=K4#miu% zLVfWVsgp)k1b5|!-zC_h>2|Q%9yE=Nz$asAYK*lB`~^%7rAs3ZpJ+zCV6}#eqCjU6 z=u)fe;47#BI!yL>)3EKA(bzcB%vs0)XEZL`8sLC|4khSrSt9NtQ^QIsWoc*=XrzIo zUUZzZNQF^5gNLGWgD893B| zKrL_g!6|&bhLTFg({nI=`x#10^%XOX5+K{8%=#7A?`Te`G_%AVmtUiq)|`)K4&REA zcgMJi6^5>AzvQFYclg5dHA}mkE*o}6V5CSr-h;LQClv%c)iOCluDXWQ{J;JYSdcTN zy{m)H1k?{eqB{S4=Dy+nE*yE41m6Fz7Bn<83|O#$?H6R&@9tv#aQuCHW}LaY&VeT{ zsynXt5Ac6D0DHHd_oNkvq9%tq7NJ(8k4YB zo{^3?PkJ)WF(V&9#3wqGw31Ra`KoA?j0+I66B9qoZQq|(2hYH5Orm?Fo$<8odBSnt zDQ2*_TC%Nag#&1VO>1jbI>kH{+GvI@mardgtUZtdVr_kq;GnZ9xY2orwwxBdDS;?P zspmw$!HVkM#n95rFZJ9T*H{Z`Ck-RZZYM0&TFJ4Re7fcIXm5h$&mOm`G1&rQjIBAr zb`Q8XaLOkRN{XSVZ{+5*P~GdyEoX5VQK}44rOM-x;f2v{OkiQcv4{rDObHdZe7paU zL!#v-E1JqX{OhGK}mX|SAN7WAG3@`q-GT~Zl{vq&^QRX6v|AlqIAR>p6 zL>G8`L7Zw*GkRf9P^l{+0pAK7+ZV!wy!M$6Iwt$BTUZ)pESqE_<+O|(Z^jop0^y$0 zF+7sDUpyF{1CGe`Rnefc&^5xe1BgCN88N-wL*ay{tQs?!vA|;dc@6L8M~{Ahcb;So z29s-!L>L@}o+jLrRMCB$YyW|LTKnN;e`y);H@7M4*fM<<@I7v+Z5q0iK|LJx_VK-S z+39WeB!oW>O=#OXehZ&H=0H6OdvK%w8YTxZCCB1xZ1t02WzhRR(wm0(a|;agy}a|T z)p;gkxBt<7^YPkj_rdo4uJ?1H*1-kjy9?p#zw=(Tvky>lU)tV|Gtp!5c|DWL%THfE z&}n+Qx~Ap|#Ly?SFJl;g{JJNHl1ZTc$({sa11at+M&qQu=5rY1EYi>yK_^<|K%gfK z6?%Z%cRGdbr2%G6)^oTZh%`fjs3Yg(ADusDQ%$zM~~Bq zI9$r~Z!Q#NnwEQ=nZ5Jv!wtQe3eH88ufhyf;%h)1em2`V@vxlF(rhUJm_y->%)e7a)>!qx`3lils-qI&mAK`u?zjo5iFrZwT*i8XBDq$S8z#UU zCbLxG6d*;n6*{gx#z74=s)IfPMpCmJHx||qxG~Y7N6;u2E9k$Ry1Zqtf9`*{JFhLE zUu)2!w8w2OJ*!W=&?X+LOssWRCQb%3Zh13=Sud)f*k9iNlbVpQwKsytUNj{V7IBi` zG#$c|vbzit<^J*Z7e-J<7rRD$S%~^&AW8ua0EOkOK|ChP!_t2#RWKDWrU2NvVF}&U zEd#Sf>aZ~GuXLie_Kz)S z$SIovgC(q~DD@b}CbreaB-T`WP6FD{WUL~Lrke61j476(sh=~vDPfFah^tRZwb>#I zL%|Fr6LLSE{0t(r>jS7TmZbD5xRm}E_P6-tn%GJ&^e}m#M)VlU2mRck7*9Wc9oc9s zWI4Ptb++YD9$7*m{`#Ub-u;L(d_6RXFYo_2x~izSwk4PZg1dWy2X}YZ!QFzp`=G%Y z+#LpYcXtWyuEE_k1bB1b2VcOj)?uIC-Bs09$(|=S$U%zq-Kv;o9Ar%k8ecuQsOyT1 zKk7(6-s;wYhK+rtvMc_TVXtbDkJKhh?_tH>LaqutOM=Styf#W-pLOb&2=92h?jUPL zCf+090FNg&O~?b@w>|~orA68R`#X`i8DR*=rv5mtoBi)_{-OtaEkz3}!-J0f>7U0|2&uON&IVSx@;jX8Dy{P{_ zLDI&0reKAhMeI8+nh|q8{u{;ff9(Dj*@P483(3OXg^cZ;5HFH1JL)xF*xz1PM!5ao z{~4#FLZsoYyu=2#38{LEo_f^Jm-FAI*2>QFd~5HR=M%yycow23T*;nuqi?pv^al*U z=K=a_PqEUEa`)`Vs&ktW!)5T%uqff*Rz;93L=me>6)KghEln>R>joP!BPOBOBjS_$ ziW7FFMcZ;%cu2xHtLMJfeuv;!5CcEPggiSNJ#zDXWxvWcM@q!RkJX=Tg*53`k!cqV zabXvlcN6%e*HiI!*b59lG_VJBIn21UL^T;enq-YpWjj;_2)~=5C+(y*YJ#)_@50A+ z=HOB-ZHv*S!rWQ*dIMrP$ZF8lrGHfuk~JpxVI=M|nt~2ZVhY3zRZ}AGEMu#j|Jp3C zynaz^CbtATH%{reURs@Vuayv6ZRg4E@RAx#SBTf(SpB z>G~G|ba5yN_P9db2;+)TsHblOQDl#=48~?W-K>UgW}K5!wm%XdTx8#Zqs_)U1m&eyR++rEb@G<^=xlCKXkis@3|uMO9j6#_dMXk8yp^$ zz6EsPdgTEHvVH#vZQpLu89YV=LA<4IQ}6!cQvS;|)Bl7=Ln-vWC*-#Xm9?zzu{qT9 z@$`}NAHkBlY0u!DP2lf4Xjn`tua{|)~#wUZ< zwPnc5(;3`z=kbo>;Jv;M8Blf^9Ds=b!P7Dckhcn=Fuxm!+Z9x7;R^je2qzN0)jqHz z^@(fX*PRBH4ODnM0t(FUK0KPC1pHolq`B!&@ksWD?p*`>o`L24>L11o`NuN0v`R&i zY3ak1iw(^TVL3XGrC*as$2cUB0~GC!nd-%exF&LZ=%u5;B|1+%&pon_qH-uhx08Sm684uk&THdpWSAEKGwqS&p%c?jd!_W0lf&E)vztDt6l>?%sA zO-IY3ke4hWBT@s|zMUyu*|i?6l|CN+x<}i`CsLA_c#<&!qYqs>n{&M~g)nf(pjI)= zMX#(;&{R;08M@98s+?G<>Ue4xaZ5oSZUTNQ4J)f*GpTWrV{J59d`$vA#hA)AX}uP&>E>_8>K(sZnS zg{`;h7iO<5BC`unC7DNq>@N$RC?)Sae?zckM>O0*r+6jE49xkm41yhlK=dz=jkGpP zvA=ijVW|J+KfWDKwKy$Pro5f_zv&7aa!$NniElrde2&vQU}5&?j_!GlABRdS;r-n6 zANNx2|M;eO(zNWXznqVAKK9CVv(liZInn!nj--gmm&X6<>P;Yqm~Yqvl9Y2D=Kma~ zXtVdR`|}?nOweclhnjbF$Tyo?-_~m0){N63a4z`hzog6m-$<$cFR3o~$I9<_{_oR~ zN69MxmK@%2WNH5MoVW?)>J0cVn)~S6TY*rssMN9by zSg$;p%9)64QgAv*KNp{QH&XD4m+e{Gib5K5JT1c|-99nZ2`lnLj4>;megj5D{UXxX zup9EY83NO~ox|6RFat&dp;A>v;CkTpk^<_`?vT=eI|mz*z^P`>Z?=U;wn)$^WtHEV zv_7;*v=B%kR`L72Xjfs6yhcRXs-ek>%Y#t<$0U-5kzdBKbp8b2tca_)ixFm7(c01t zH}2(Dz-P$q<{|&dak*v{;_@q2&9LYX=8}A_a9f#{W&`#i46Kt1DzUp0^LnTehl~cM zNG0P~3DmoOH}pFHoBRL!WFGxSDBDXgF!iWB`n=5k=>@@H=kIIQ3ak9{y3A1R*vwr0 zY+9|5r3zt)0)4g0@yc%3&Ux#=k_h1^i0f1+aii-(gGM7R@wWNFahw93R1r)Oe^n)g zy;|QUUGsiH@JYG`oLLlqv(4x$jUV1Te-*?ta}EYq=1;EPOCfB}!4(Y6ocrE+UX!4=ZWIM$&j3JB z^$&uuPovY`LqS9Weh_Bf-o1^JAgq}!5h8oK)(Fwnqgwg(Q|f(?uM0m?@3mJcgo^rNR9}7d%HntA zI|5cYjD*|_$FF|p?T*)8`ADf1#M>P|m%TOcGQas>_%8bpF6URL1-#TVy|Q+nk9SA? zd=B}!BlIuqqt|=;)u4Nqt~-$LvNh-mQu84$K6`wO>#v?|x40cf`uTJ02RYuCe;{9N z=d3Lo&WJs4>pi~e>)rdFrv&1zX}c(4xuzP%)#&N4dXj(p**&;@CMIu9Z+H7gAAGu| z{w#SR8LWvd=2)KB))m@Qu87w<`-h|k{()Fjk`i;zK@kQrg<&%)FEB*2i?|9xH0~r; z2_lYghzmZBmddIwY5IxcVYU(4)}wP_cE*t=^|m@n>k?-vTq(!1!~~gKs!f!|WkLF` zm4UArDclU#v|8p=1HJjb$3iRd#Nj&5gAJ!f(MPZEeS|2xmXw~?oREl2DNw+%(r9n&DlVht;;NmL@FAtH}PFV>)lH*#|U zuhEj3Y0FXnJ1N6lDU&oy=?pK0g!@K*SyZMAUw+cB$)?AW7xk)eqs%R3>Ud`({9dS!C!{ zJXC0v7x%p2V%wldSFR=FVqNmXCi>~iYI)hO)8FU)1`Lpi_Cj*haOM+Tue5s$pOWlv zTf-S&!vJmrV@}~5fY_c`iKLxX#t~6FQov+5egjzcG^Lkav?HB~QhoYQ6Dn@m6oO!z zZ;~+)rsBYrQXR}3TzL*enmi#Yne6Tf7vuD$Ts!R`p4_*YM3+*4X*Mx8@_wwq1+q*^ zqj;9ca*#1H#O!JGNwGfEn7mPmyq8L;@KWU}!J-TD@J1^SHLv_H-#l(PYJ|owQnk#d zTIqYt-&Zj8-+G?irq%T?@N%kHrq{1>9NdOJnHx-+Ctm%nzS`~RKI`z@34nc0{`rFa zAHN21;r5H@x#4<;flv)SK!)L$^JUiXbT&rF&b`yNcTj22rNnWh&S(lAVt&!iklEQb zyOEb}nB^(jl4|8dbxbtFW|+-=Da_~SO>H`L4#bLyi-}9_U=0MOAKn^fGTvdsKqqqP>NwL6(1ZEU3kWn1px6quP*r@g%q6AO1)da&i0?Pj7Q(s|5S8| z1sTJ@pliq&pe|=Thc=OZ!Ixh*G=z~UA=1k9)lDkw*Hpi<2ZdI^B*fwg8sgw1JUbz& zgEWlm_reGzVpIJ^kmq*ya8UCy)(|m*` zHfgfFQw0&wgCD>O`t8bpK74PZr*EZmT63-rKZ9u&PY>=1QpU=^&)|~miS9V~XQ6vA z#MiSIL=;y$CVwHXQx$P3$R!!Uve3y=X4E1VN~u4CRyNkMQXDm%`HhDQeVZQ#M;+Ka zEGzj67;gK5DEKJe0&r3=CIJNPrBDW=PFE|cS3s;JNE^{h;nxydzjdds{sy(Dv}=gZ zIhoH;E``=FB}w=^CzcUQOY2Y`x?*Np+|NTdT0km%e#CDN!sGb@_X2w~-+q1?Qi5j`bu4D*NIIm2s8mQlKT=A)I_H z!P1~CRs}u?5wh$Qu~2T zf=kv&^jxDHupL!l*5dI-J!IxD^Rshv&#s~L6=p^@(<#g53~7rbBGpJgc7^A@@`0^C zv?oLSFsTiqL4ivc$)YXZ3X{n_ma9E}j=VH1PNF#6k(G}Z>d&dlsznSwPU@cBRiKNA zTtjV03dXkd=rYA&Ocq61{I?S_qBL=c+5PBDXzm2%H7+VKZ;v2e+VrCr<7(=7K#Cm0 zow)GfOK(3vczvXL#G0Ct36hqk#1URpR10w>Iy)l`-7$UrWt2S!LV!^xSWDv}1z zolJiu8^Z?h!)2hWBAPOk@#Q?O1xu>baar!3rCG9O#*s6}a?&L9F7anb!JXVNq}g*> z3FV@*k#^K7ReOzb1ZY*vg8Gm#=0?a+@^L=aBS{Voi~8Qct)O#T=4_f}2F{z`@uCFi zqJjmr{w`Km^&s06YCw2nd6=r?p4GENboCo*osCaQ3zrjmF zeX3$3Aq=oWm?OsTHNp&5eLfQ#@Yi3`eA`DIcx5ytI^5Ye9zGa7RjGMBIl}Aww~5;o z=znt})V1>goP-2;r=JCIv}d7M;ByP6n)r-;Iz)ZnL47{>`ECZ$20f7$?f=Kp{x<{W zSUB5GL!`yS##2cX_2QkV?~jpYjMa#PZ+D>k^9N=V`2GXNW&2%YnPz?CdB-6cMIz^v zO_gfveC1m4=JdiT=yoKv4q5?qsl*&6^d(FHaXVa+7eDiH*$@>3hE%Aj6mZrFaCxTB z6WlVpqNGtk@e5|sYQkU-heN%c#zTz;L=o+5(*ye$=~E;K=4 z^oP@@ft$QPzc|9$3whG&Q5?fkrf1~?gls^GFz3v}HH5C8M`wai&m+r4UvsR2=|BG& zV8L9Lo4>Vi(!bg{P#OP;@|zzbZiabveoMm2>8b~%*x&Tr1xjmc%w>s(Mj9upMxC-V z<0_~q8hc&v%UAzQnzzQLSgY+8%qLD|cN9v`gAe{g_^9Hw3-VC(n5O?2+K5KxCT^P#hYNel9y3#TL;|k zXXbd~iQjsif~1t9$jWo1HVuqegO(A1Xg9b=F{)X1j4`Usd$S=3{r_m;?kaMmv_6|i z@MA3i(ugoy(*^kn0w#NxbEySQD@S`148K-?Be(vnpj;7dN#sX;lK>GN)iq<8i6<=B zR>qW8_5;z^eg{j*jJ!BSvZLVE`5dAtpvUqv;w%&mSA5DLI6^MJPtup*Z(h;b4UMaj zIc@GW-&wLTcJqb!TE{;8$N99%+!Rq=D?(czPWvt@zF!;rPIG+n>`v{z8ew+u`?q&@ z*PwNX&p%c1^f3UzFUmhntTtExue`U%|LavrJa;~KLwra6zg6sW$K}s9X?{1V>DZNe zC-MuGE!XI#No3IJ6O$|qZvDaileX?^U{!hxhd#m%9KOmcV__=++7n{P(k zc5}b0>hy+QV4Cs{h`Qm^D1W0DfQy|G2M%@KO=8hH@si8Z#|u|75r5qjH}sQr$8>zG z*Oaeztk3+s7g9oAk^R`$?-)zUZe*P?>GnSojL_yXLo-gCzG!7uhq-Z1CyQIa)^1CQ zqZ=@tL{|!!w&NU;{-R^?P|Q4dn#gv`K(#qvouc2ltG&`8P;A2(EGfTD(idUJ{`_mJ zbb72^=i2$k28@X20`ZIb*#rq)#DK7PE4ESL$!6BZ?J^=_nn?=eH(B6jF`INu5pNZ_ zzXeED`qFj&rQ^(q+b*!1R74>L8S`>3C=pRr*^Hmun+}T$U~NB!(09AP_l&Ce8O0D% z4Du1oWBe8|%qVGD*l=D)VfraB@Zs|4{x|k9F8RA)oOl7;{Ppt>W};P~qKU3jB|`Ct z7+(g7Og>x0VcRv|?$-qdA)9OrPvYK0+C0C)5Y7PNS2H~Jc(lVZL zJhwAw)(B~jwiCofz_(BK94d+F8WZNEtJR->xn3hkk%8k)EAgg3E)7p>w%( z0SYAUsX^w%M=4ZAnD}MLbaRI9vQ`z=PEG|jKV^vjfRtCFM%5sbX&3od*WmsZ_=BAd zvA(7AZ&7S`&UrTf6(v(c&(Hn=NK|hd$(ny1XO(YJI4Wn*{~sK_ zw7d+2BmfTyy^nmP)jUVkcrHYDlAvdkuSrUMHbg3)t(lOHRFP$8VAI|GaY-HF5&?A#if=s_lX zg(=35ROE*{l-ZAeC|)MtV@v_AG)o+RCpg1|@_F6@Nl2A3jFd$?lj!}F840Pv_J_9x z$=?_?kr`8efFk03=w^60`vf~z@#w;RIatmm8_Z*@*$8b4rhyKzMuD?{%SL{syDI6$ z#livMW^(8eGaWenc}70?g;Y{^y`7tZrtt30_r7WUH zJ$itFP6FY`0_7*uHJ0zG(z0qlFtxP_ja~Pf-*I%!2*0tT0w=8dRs6h@VR#8o#vTLdxZy zFAXa!PDJW~)yG-Zp>z2ms7yh=6A*QqJK#pv41)PuQ0hR(<7wF2Hx;hNC&=POzyj}z zB7beLH~-6lZoye1O^X?Q-o3Td@&Fsw%cR@-fm;=P+e6YGq`(-$y$&+hZ93G(5wwg# z3C^97`L5;IhC!Z2k$|$F&gvCms-z}>Je%892q=M4?52@~w{&md!fE|}?&~nvW$!V! z;q|9$<5kpi{w(J%-0le@eYN{jr+Pl~V^wU_620Tg0EOw((dSWSJaH3p_bftk}1b%WRPB6`kxPy78q;0wC)Fd~?O7c=+Gg z({%X%0X}z`P@ahCmez-+Z#G)r)4MAIGFBfR{aQi+lqW!!e5=M|w>Z@LCiLqvQetrs z+$fQ#H3=5FE=&@Xs;4}|@qyaW3$oK-3WKCygV73HKdmYhp3?YGg~Tdj^wsgfgkaUk56|TMKuC45Hs;y9 z#I%VvsFqe8v9{(451QV>w+ zwc>>xAv%uMvIG1EOv>^e#7?N<6Wd^B9EmnTA6S2Hgj%H;pG%eSj!-^c+q=U8%lZQj zttb%z2O*A(_@7Bh9lSPY5$!!L9~(gTx(075z(14M0WIBcH&)kxh;)>ZttZKij^3>& zcj55<^S?Q-LoPcDv?B>0@`C<69`+CUMJ!u7 zDAL6!RQz^SZ&50AVpZ6LKf3{Urv3DPZ?)z|rotlQ@pdA@CjuKcxbblC*Uf}6ftKFs zgPxLmSyjn6EVRvv566{?%wbaUVLZI>&!sE0I>DtYL@oFZ&CCqbvfg71n|6O?`pg&2 z3yx>%Ilw}`Xhme%on$OIBH2NK?R=QqVzxlb(=2f)mZ#uc$e#e}sCvqA(cr7&)18S$ z_=!eE;Ps^mt5dDSQ*Ej&bV+YMsj%Nh!F{+Tl4y8@xI)ua>z^o)4_}R)T!_;yXCfpx z2`?jXsqgFVs%SHoMA@Ud##o)JWsUeyhhO;WDl4+Pm)5EtZ#dkf4;{t-l{N*cBlwdX zM~_DBy^pCxtNviOH)atF;zF;0qE@JKG_R1VP@f&8bv`T28cN0ys2!wN!GWLW&r3}q zvPXV79$kNq7%1UMVPg9?ZZ;vj*B<{bO48e@&eaaNFj&nf;`{VHmDBFol zP**$_iA2U6y|rTzx2Cv%gOS7j0d9|-HqjR2FBbqdq~LZ^$N)#_NVagxfMm6J%HFw2 z7%Fpx;X^-YB+Bc)!I&o4B0Y!8T8uw;B%ePeWN~ArK+(#0sLm(B-8Mz42?Qx(xoILO zz>M<~Kp_XrAb<(guy+5jad-$KmgSvN9(!qi$0Hz)%7!@~#Tak z*MP9n&EU^tQoN{g5t+B>wuQ@S_|LYQtu<7Ua1&oNVIjL?dZ^r;cjqCPtLow`GC)T* zYDJqEdgT9ya~i1>BPrYqi*Pa3@uCG%Nm^2K*u12rlxa^=*)p}@spF?RWijwZog!^+ z{0nmned<_?DAMQ~Zj5%$r*Ya0*L6a}^0IZzme#92VFZAbA^%+x!6tco;&i8|@ud1@ z`RQh5gF2rxPXDLo>D!a+f`3Cx#KGcD$EzhTB_8jB9|wa!_qzLt^PRMBDWD<|>baBc zBBzGcjPHJ?|3GD>)P`*i&&}1FTM(!XA=^ZUow6)qE^?0pN2}moG-KrFDE&H=#fr1I3XcWM#DW#R;tAP`VZ?rDY zp*l&{B3vPoMgXhl3_`Cp?@Igkx_88;qXkJ-qVra`i5w}d?w1>!j$UrCV0Kn zVzSDi>`7KztGyQ4RpvB&9&!6rOx5K4V)rQTY9Vgk?4J@a_oG00X{@;+T;3QYOEv4h zKiW+E#-ynIv5=I^v{1QqBrT~xMiKqy#BNyri>6@4tUM0%rHUu1Gl1bkuD1(c&=+eGnIL6ea>r3Qll`U>no10_1S?O#1pKJ`! z=UUaWqXV`=&S>;77S+-G)#qF+lqHS@JBhXoW`W#rnL(_2f7XQjxH|S@ia7e@v?7A- zryopKBkuW*1Ho3=j>a2Dk$kXt8u(VHxd(OQ*mP1J(kZgWBYAWo>6T?IY)uOxX53RW z!!&(1wk4sZKd5LfZ6l*!HJ|Tq3iwS9*n?<~q-}nk$oV##QoPYFVXuCl<2gvHrh~+y z43+0=g&A{TXwuaW*0GJ&%yQlQ9cjbdzgwjNM|Rcp)V_ATzJH8*bfu140~THyP-%T>=;YD{d{uX0HkK4L+0MEhA9Y$OV#{AMeu zJG`4Q231zBiWx3kc2CI(S%4Qw*h28@RQ70OjE@D9AW3OA^K|w-7xaXS%Izb0mp|4l z`1@#ms+G6U-U7FUv>lrUUsL;s$XGN96T?tG&vYLwm|Zo5_v;Bfm!?JO*v2v}8V$Ih zWX1J|^J3VF#}4hLe)5!PQLoo;v|Nu6S+ppbpy{GyLn$KLRKpWHVaQCxN#r%E5-4_r z=bO(ucvPEuQIqJ(&X)}#1{ul9_sX+7$-uATH(8ls!=^}KZLwyVLzkSGQ+jN*^-?{G~;O0o3rBRk0aisKkJ^`u5`orgF6kNdSrXRK-E~L$b_s3NPqg58>l{4(tufO|8Eeg>vzf5qRSBOoHKSl7DIuv%u`+04 z+glQ2-yvT1d$7o7@>a~p=Z|47oLvgfg+F9Z8QWTHaSQFTKCH7r;TLn1WZTcCH|?)q_Tt!i)0F4!alf+|Qhb$@7TzBy82Q z1Mt@D@e5tr`{s}7ODFjk*vRQq@BR)+PX-R^5f7GXX%jSZhfPmdkG#RY>cqPuA^nHrwOu}s*Q`2g3G|v^{qrE(jsR5?Gj-k zkPtwI9~swu`NMV>q^xY)_@f@n#qf9h0o%qR-#9KTY-u3rVva7Vy>s#DEof5LYL(z8 zezU?uofH&!T@XoCOsl4>^UsRm*H3IqyK3&PqSr8?@b2pv_2G(r3rf{mz;59?`G{kk z^P~%Lqp)3BjY`XMLACME^X{fV0o(-#B))spsN)05c^#Byfk}LOS7rvO5`B!o{B0U$ zUM23xyNseO=w-%q9FXUL_)vqUVxrZEGpiASN;kWnNy)^Gh>LrHR5p)+=e`ID0n=Rv zDu3n;H?>fej0f2$HwHZgl!V*w#BJWfYUC4Kue2}4VFxccQCNEyM4RdS@jrVA5snl} zEhzSUYWyL)?%)5W2|OQi^@wcwpAk-H+CNr%Y(YKMUo~Z7H`ut=u~**}{n4LtYkN8p zn#?qKA~JZ5I=YE@+8D_6|J&e_dG;U1)apT6W)*u&0KQ`D!NY+zX9|SftV9X9Ml!}C@tt_#nAdQa!(0tR z2cFh)wuSvKdWa-&wjxOmMpcdhmk%A)H-EuxmNCD$-uMV|Q^&(6`PTW!hml1!ngD;T zl$D$onFdL7h9fz|gF4GBZ5fk~?NaC&mysNnD}CE@Iws_okuHM9(@aXzm;KqJ?I}G; znbN$>TnLqy?~bOC`o5Iw)4z9t}g8t47K093z)d9GnPYs zj~6xfBpgH9&zK3`OJ3KMMcY7)0NAjK;9MmWIe93ra*#q@+q_X3ml5|=nG}sD(7d%2 zUyWz8(6quNV6K=Xngf1-!UVB%|ei)P7XG335@xS)XgOA8Nfr_-DgEKCrtI*^_ym$qSo z8OE5$yRUVDg*3urO-+qYQw(ce?l!H#S7Pw6Vkh@%B*7ZhDlZfA8F{guJI$&_Nue@T zjLtBioHgnUtAf9!#!kgcZhWb-`Af-&KFk0oExdS5sdeNM`Vq&HXXrdp0hD^O5)Mt3 z`>2jZph~=AwxB2z(=2U$mSXw>O){IYnXhMJK{he#9`_7Ep4z^rn&-T=>=#QGh`5VD zm#RRJ6!o~daBdR8CI+mW2Ql~qFx~>RKTTb+x|hjRdH>gHy66qkocXkBhrE95oPc2% ztHpp9Y&o#krLR{xFAh8UR|gC=el*kEw_=?S-@4+#K8HQP39nqbGN^{%@vA}FRq@(( zn7MUwTPCp^TC`X5Iumm#kH#tH%`GIOwzmcvX)=H&(=u<6rIOE}MW`WGd%{9_+^Xaz z<1B%?w`jhyo9gS(1bqtWcGQZBJnWqEcW+N<33x$6gs^F>J+XdGJ5rpnL~``y_#_%9 zzMvaYz^ZC6mQD%T8*JgDyfoH9#Kte*V!Z9kRUeHxtWqpdWught8zXJ1dS4ryzdNx= z_1*-j?Uh?j7gvY74V`?BZ*Y5NToloTD#rz;s*VNioRM(H51s`x%eix+F$q!g(xtVe zmg*gQ0b#vMcpyA7B)k+-fZrf;oA*M)hlYf9v?#1b`4+<$whUW7l?Rf=Wy^rCIn44T zyskt02hNW|op-h=!bz&KZvGGk*qir@?}*bWf;Dp4WdkPA`b~)Q`(>>|SL< zmQ)O9)p680?Gw8)=0*kB#fQp_QX#3C>+?iaWK)F05)n@sRhYh&D5gtn8T)EYlvbKp zQZ^A{C>QKJ8_b+Y7}V87V<`2Adh1ylA;%v7kjxehkxP4JwOZDSgW z^YDC9gRVdX8G58YrV;>aoCCe$<|l*GzdUsk-lqPa+4_5Vm=(4Ht^MgHbXjXBPR4VP zVie}6e0MwGKYT%_tD;Je8$Ev9EbZhC5>!G<47cWqAkXolk?or<ze6O#1(L)CPY%NNMrzJ8M0*^>+*^`(c{F_$1?$<4c&-(`!jD8)@Sm2I1J;7Z zIN^0H=xC#-H66qXxhQa5#2H?Kax|mBr~=L4q(nj<`Fd&HK!&NB+^OD0-2et3{g7=g zRsGlVZRD(9p%SKeL;gq%CI517rJGwN8OVzAe@$Ng?`Bg)*5J z0zF;e^)2fsrFm!Qk5s#Te6np-hG-sW)k*`{+ z;|FnV8(&)3s#SKy3(e~AvM2?!7+p_f-2S2_qGz$%!Ix4OE!|o)l{W}ESp{()r1h4op8KrAK8^Bd-KlE%|Fon20`Holo9INR(=@GK_ zKBOBuKudDD$=BrfeSb0_yZQFb2Xp*i?8`^0SnHI)$3dZ+{^dh=*2TNgd(~SrEm0vF&9YHBIfXdsY}z#j8ib8zkFS7A-mb9(s#pdREICLU()x`& zWMwe#J|B>K=@cNqGUg(NZ8FyCVxH%Irw!4y{u5g*V_Hh8;lwV2JaRm*yMn1p|8_F) z-?8t4mCH{Fv%DIQ{Nu#7r+4d2UKFbjxOFbuo62WFWOXrfG$>Fn1Y_-MBU6dCQ27s| zEM|YrBfch%yq}iSMiE0a5O0WR9jG!*`@zo@gAWB&a8XwUEWD6Mm z7(1p09;-a{!cB&gC#qIm+5QVvpY3@&-2E05nkDRNV*I4tYHWtaDe<)utZb9`$1>q& zVk=@frKbK%youi2Q%Rfj@Bwq_gO@yhih}TL*+o{HOnuLtB%$J`Dfp5ESJ;3|G_~biCD30G$HrmI2$JRJk z&kOQVG)(6s{`3HZ8u+h!)^{cQI0V0+cgy@!>^|#i^xG?$^6or?7y6j~z;yVV^7`2I z`0+1A{a2g9!7OjEK5e^m+gkE+=Xub7pVD#M^!n8Dc4^jP!y>j0Wj6R1Z&NQNG*0~6 zzJtkQSD1>*vGWxL(f80pZtM3@%ZB~-D)16Iun>RgB-O5u&MMcK zu@p*8972`0S zUr_NYop&M^?WoB#@3c9!P7pyOH5+ykar~_nxZr)k2Cm1~pa7P7#8*0_?3*>c3pEC(4A{tmWv8SbNKsXwFMT4IIIn9WbyP7aqj1`K>&mV%Hae*I=UPSx!V;(U zg?b77nWO<1B?D7z>@&&~Gx<$C+D7zuDjIADh zy7n45oc}l=hZ}m?_-$}kk80p2kbo#(%+&a?wNSch`k}XRQx;ibq%Y?)SwgY>w)OEY z|K6h5MPjJ1^dA^JU2`>5y}iZW;36}8u7%tGGJ#W##TE#p)CzxoGUoh)g1l-87i=9q zX1}H-W^4GwF;%C@Y0f2J9qOVwlQojFM!L}+Xrt>jLNqA(Z@K=sjNFyg_0Qk~ousI> z6S3SP?z%}n6+SRQBwB#&*Pm9NFjxX-G;vtf2WMM!X4NvMd{OZi;r5f8i{SR`1SHDE z%BQ%65T`a{FJX-d^QoV!y=**|W!`ZPWQ-;(#^us&m9rkMC*ajktt;z*O6=vjL*5Dc zG7AaF1nBP>lFjFAi+@6LH>gImr6*Mx>svgtm0KarTFO!+1)wYsd2;5boU+o=mdW(B zZ@+!Ehw;Pj5=gR)Tcu=E3n=B6FTMq$hW_Z1Chfp?s+t?F#v!RW9#1w#k8k5n(N#rh z3H7->SA|O^RZ!V5id_o$MMY7+%M_D@u#B85OzFH0T$`VokwZWL*Jc1#=+`%T>c(#4 zKQmfdJ4icE%LQ2n~^OD%r-qEt(Iu)XGT1Nejn3BoIVDYvYm^gvpRYxv_0(LKrRU;yDI08AXqIS zcHs)?@uhP$290`nQtM%}h^^-R7Da8o+R2k_Mp9Zm_R5Em=Ukblqy5%tht!{ly=*B8 zF2?PH!>s^)-SRo-EJ|MOq0_lEnTq^!dfC1u@oF0+G+D6;A_xpg@3hg~IJ6HmAz3ph zUb8j=P(Yv*uybHT1#!%FkAl~*(zh!|TfU=!eDA96h-D6qo@Y!SHisQZkNy41b6Q~K zb&Gr1v=e8id((2{{E2VNCDzsjET8i8t_<}yL9cKxA`Of>Rr-v{$-tQ z-Mofv8TQ`u{k<(lzy1xgCWHr<&7yX>Q}p+UO-@~f%}cND_LR-jvEJ5Aj`w31s^ees z*zg6vUKBvIm^&{|Ji2RqSBcI2NRNuI7)g#wKa!a$b|?1qsADh@a(Rzca%!}7@@`;i<}&$YY{#U zJ_yAa(5bff8gn0m?zj3U%gCi-U|$|q0GnD0%*CNcmPTW$i;>QP8FB>^(e&F@|BqLE z(E+@Dm$@@Ls{k6j$@u66$U8hZa`$hKoWTPa@?bq*X(>s9d&)QBI$x30MX5aWM3LfVp38)`KD z?94v8Lgcza&+D3)a74^Ae9@9)W(OS1dkm+=BN6P9xA7HiI)o=i<;++42*3LMCGbvy z>%Rm0D-vJE}-G1iqNfgQ6|Lx-? z7{{R#&%gymCLO)Y<)=T{THVv%Y*e#(B@8EK0L#eWr9w(q>IY#zX10`_ZDLGGnlfrj5(l)Hs&4c&7O9oVNR0Jrf<2$k z$cQl}e`K>bDPZD(*C|zLNSGcWNyRl*(^h~y$gWhEV7_TZG*7P13`OIQDo2fSVieIV z?fD8DPZo2#gen6_kU|JkhAQ55U&3N;=?AV1EJk0MrmiU;kCP66Alx9{6DHwNco&M` zqUm}-oUCtp>7w3-w#R-`ea%S>fBWqZ-0(I^%Miv>{r(eva|_vtjGC6%A77rsmy~K6 zrN=cmae5tq}>;Ms1SD4UE(7;av?TYR_OGIt-eSb)bfS%Z2Jg%i#C zJ7db&Dg8~OeAph<4vws6bzL+S*Vb8vBN6Sm;Z@(8N3D8SgsaH1HDsb9>SaQ79HLwI zu3;cdb(oZ#Yl??-)R7YBPK*zPVt}L`Rz#gf34QEVrP)RDeaC#ZS8;w_qZ*(kXUWNC zrLN1#VX&gch7@I|s*FS<)9o8ym%1y?O^&`FRt$UAb@;capZmzcxc-U@s za0({FI^hvm4I@n=JiocfRuyvXZN}6kq&d1VORWK2=alMIn#!>ZtD(b!NlI9u)h zuD1>TqPIem`tV;v7`fP<_w1+J82?5>eeX%IKkj2Ut^gUvef5+7tJyaX5yQv)GPrMD z7A~hb#4SsMb{Dg<1i(NkPBhUe2mXDF_nr%Q%9#BP5Eh z8UDxBTZYBeL=T?9CBdBp2<~pdlg8cMA-Dy1cX#*3A&}ti?h@SH-JQL>v;Uph`O>%h z=_}RMr%qKJ`5o!Ho!khavO&&TAq@qwJ~TzxVVz5OehYW>pQyDN>44$e!4N7k9 z7Tz{gj{eD=oi7m$6pOU7%!A^doF*8kgIZ7#o(47<4Kg6RI+4Jy{U1>k!c&v%PCh7e z{|zd}9D-R^kdeaQoVUt#5;ymbBz*U7Sc!h{irM;e4G$Su>TU)0`8p5>b}W<6?bcW&e#R=5v4X*ttA&vC#OX zw-tXluD)HNpoM2wZUJ%mj-TB;Id)K_c(7AD_&Ny{%aK)HcjzPXHtB3N+LB}V5S~*I zJz%9Shg#_-RXE{NbU=WUgg2o33+thK!aycb5aTeazfNQ>am>2tc?>T5!8Dk*e8XiQxgVzK=>Wh<`@f9JORbH z()Pa*OtDH@H?DKS70}LVG3z42N~O38nyxS7#1l~|lPn#F%q_ZhYes9Z6$4PQMBrvG znbWs8>MO)z<;x*uHMxdyx*%Zluql9eru*Se?%+kiq_~3?zHx1y&bQ|&?dP>@Z+vqD zb=SiWigXHbj6wFKQ0@rByJc#E$I=tG$ z({`EV+0T2Y#kzU*?%io#bwyEJCwLQsAA`HT_j_7=T7|#sWaLE_+N~XTSv8bNU6gDw z_RJ{C(k8BKoWke!zSgt>43tZwOHV$8R~62Px!Zi_Y00gJVPhyCA*)e_G!m+sd-PNU zpttX&8rE7kCH=#gPY-pCCsFd`xqmqF-1`qVSo_(@gUMC$41|;+c&OxfNQv2r(ZeCb zz+C-V_$=+CcWC?0j+;EExFy%fqL4wq*>b~g z_d35HuwFaFRkg4c{>Cr}kkPSSFEJ$KuI}qMh>j&*iDuX)_UJaXZw$0Uf!Mf4f?|F;tiUKjrjI$7IYDI}^a)uQh9g;; z*Z@hB!ZwO#7-`h$2AT?-jC50m842A>%gQF zw!Z9O?R+(?UMoybBI{$VP@pgx+HH`gESaFW?C3+>p&~s>lHRQ(aSNQ1Q%$PQi?ZZY z(|4cV1DSSb z@prnyX9RWF?lb{whLC3)USj;3@!%CQxnh-^g~pF%;!KX{P{Ema1y2$Qr~D!ldgfTQ z9JkBYC{)K%TE3`0O^FH0u~GArJxZ#439-sfRt;qdMRb;OV^O7J9V#EHynMLl)nNQj zKIb_jw;Ys^29w~MGj^BW`9sT3kTvusrZ`5 z68yVYlBdIqi?vQu`nHx#@$r@y4NgNM*ltQMth?zt6-LhsTN-Ka0p93XA!ym;9opCHxg* zVB|pNNwaVc&jFg%^oxZgb%<>(O+ymgow5=`nH}4T&%cQ*4RsBuq+G7cv$lk%r$= zUyUaFKlDSAsYC84RqDLT{yD^Q^JS(@bN@PDxz7gr6DMipJRs?!FH$t%Q)WWg7T-34 zi<+MUyQScGl>oEK|9XA(h$&s^tzY+E)8ozJO>fO-z&g04tTJe`gFcYpwka_)D)R6S;1K zXXnkYY%VD>1moU=?VC@!PjFASjTyG!O#`+IfPxWP#CKvg*M#>`tLU54F)onnKU{0w z$KG#{LHCQ9t}j%NSq8fS7kf+SFD~Urtxw6UGT3OidXCCrFTD5b{&e*8+FP@{PM=_* ztXpqX0A7Yj`&#?#Xd_Jnwr3bK%NJxWx9fcjyS5{Oa9g_bvGcquB-n>GL@<;?wU)%`3|Qd06_<;=_Z z`AXpJ>b@$um2TB_FVmJgbFBV>$9wOr=g;fmpD6F=e(x`D=O}MXtB!Np7m0s7b}*LX zao>BP{~fd!mHm2Mv<1}P$?k1`a(=UJIjLLPG-XS(xq4Z9d%2j^w235ooCw~`em%(U zYrma))p&mV^Y-}gG}d^ZvByifYCq0*5ug41(_`&v6=!a4ZY%m_KALairE$TQG%_*W zETg9ZmzEP9d+X=>$YA^LSOJ?g4ZR!4=%MccbSUTBnmbW6As@c?W0ChGe%;~auhZ{{ z#68`?DE;0~Hg6}-wI?ShDMsqgf8K7|`*01Pk4*$V``*99kgu!&GwYpbffBFR^F7Aw z?bQZAyF?3ldx!hu=GE|t$KAg(Xs)dI?;6L2zj|$x5`{7kMG9LG$Y$|!t?lA?ZQvNR zuSFZF^H&ly4BF;JC8k^b*W@|Y|GUXG)IXJ#-?^I^0OrHwHElKxI0i?1Y?IFYHHt>o z1prb2j(NN76&U5VcPq~0Pgk+g9sxT$Ms24@ZPsn0e0R(KvuV*@*Lkuo>30SuCU8D8 zGs++MUoWB+=Wg0wd9PB(x9gUym*%qffcAdjb}(%l4cC1(0QfrD43FILZlH8aLrBjbFF|4}-FOvR;?*fRLZAy)@qs%6hTzpLakp zi&S1|>gYtZU-7hKylpbRl6XDUdq26JJh$Civ~vJLM-=IOE$WT=KHzmRc-rUMZfkAL z%&1>GiJpJ(+HUqdo3Nyg)IYoeJ?^q(Rp0wg>c5bEyO!Mw*SQAYgK=6-UtdRt&NSP0 zG&ld#7(m9zgylx@NhGmacB}+i~_wwc6Yb#&S9(oOME_9cyGf zE)F2^-GJcs4gN0y?i(}=H0Q4QpXu>`Ov$phT&tpU2Cw`>+wW1GbK(+NLwTO6N*znTz4M74qHZZ;qwYpF20MptlpuS~? z-eVIZd;PrxgX;w_^x==1V6a_SfQ7*SeI+_)Anfk@1PH_E0wHi`F8~)pzE)npIwbH? z^p?QcdLTX5;0Qd`^L<6~e?1lbR)cfB5?o62u6q6}pmH@=GrJ6^azL38ah>rSsVgMy zJinnrrl+U>E-%kba9dt#>4@~jCGFmb$rFtR-$WAp)&hP9A>;q(pk=8o=n9YD|Mi+b zEgmH&uP>MTE#0a+ponVDZUlpoZPz^SGM%&EXOi7_-JKn>OaBXFeZJE0iDqUsH;+^9;5*FEMxYR2r^djnypjd@EsSBFEGBV`qeu zfS455b_lsCWXv9+JaaCY>B}}mG#)DXcxqb>zdOAMt>A?)*(*(Qgvx(@Y`(Z9b4w9C zS|7h_75Hbk-Lat0d8+V^&a-ZpCDW|EzN-%#Lq!G1ioXhNkKt zKGxS%pG!3DA1t9imyl0L{Ff9(>irn72BC+@&j}ixX^P~&|BW^MN`bb6DbIOQiq)hb z^jTgf)|yrdA-)LOgD0oO&u2MaQ-?uJZhKe}`BwC2pT5KPaenu&xLAs;!EfENbZUdf zsuX&bUx)Pb#R65y8oOtLRGJ}kT5J%sX-X5nH`IbobCIS+=O^E5Ap9UPIz?)30v3IusOYUCWb!D2QiS0DUb_xo`?Sj5^$FyP&tX z_fH?*KMpOmTXlVY^|t!3`f7!d<#iYQuxQx-uw5>@;QT84yhsFj-g5T%`O4Fze<6I~ z!TM?PjT5EqB$&u{46p5W-ZtuW^DgracaQK4)ZZ}C2*LkUD0`83$A9NH2l@SF2q$#y z#lg$-VC`bOP4{Ab$;)N!b`RLRo}e(gAdT_8Ha1K!n>=a%_Qq*?-OIY-vvKA0e$^yu z{B3L3jgfM5;~2sG-?H|oNG5ahe4~4Bg>smsiq5^~Xm&S6hA4j5G%ti8a14`zb36S9 zA>vR>0y!~zzzFKBMm`T#=Vt?+USwJi+D_+y4l+^{I8`8&Eg@c~Y5g)-ml=hat9)g86gQw#xd zjfnUcF%>$CV1j~bGHoE?WMY`6j)LA}LM`v$XWBu2;L3owNSHbGz{`+uY0A*%_`HI% z#o`Hib&{U+&?OYRV?QbdBBy+UB;p*bwqP6acHSX%O>j-ry%AOO1lNw*q7NPJkdbs7 z)?XFY10cFEjWwur1{E8QAFIkQ%(R^8M{E{^rjVbqDb7Vf*OA!t`m9l|R3N4U*;#VF zcvtG-hw|UXY$F$m`bJh_25c~RvCztcFC50mnXX#;@+Fkwyv(31fBPUO2G0A^%zyY) z$MB0LBy}OU1mbypQeQ%=radLm2@XWW-RZ*3h$jIzXhTw=wZDb0H3Bi4#^WE_z$16S zSb~`O-OD?yBKI36lVTtNZJ6L?+o9>Rd~_C#fh?K|*0A@%0WVvpRndpzFEM8Wqf9dE zL;XX6eS_I=v!eG;Z>NbLQl{hXG_LN(Uf!^5p4RsMKy9~TO9Ve~NWe*%yB@yXAw7Ga z-V^Hp`=48nwffb!>XxT|?{tBO@%HhLuN!L=XSKWUqpWfE$x}5&6TaM?Z?~ z-CE0$U%$(PtS6jJ+g7m4(ThOyAENC0T7isuGbcJ9=eK*CvnQgj;!{_*o{UOa=iA+R*&w&>R-;T?(R;#`7@U07Aj4iPEOWzo(H{OU#_yAmdA0n zpFSjW%2?kEjj&0(zFuXI2lHR&K3EV#0|%4~V9B*Vgp5tfEV)bjT=;39CC&!MgC-V5 z8^*w3f?;4ygPAWu(Yaizs+pQb$N@{do_uptQw5Az{cjp6_99Dd=Ca=Yl9gW0pLur! zNyEGLhm(0k1=J+l-XGGYPxB>|3k+go5lltSa+Dk)-ORSU#Iv=i@e?rxxH)uzIVroO zoFY1RgdQJ=+Iz*L1(5;y9fA=|JXmS2X)*%rQPB5ze z;G~pW=0gq1Uq6ZgX{KvGDnDvLd@2(Dy(0KdE}?h>x|xe&fng$%x5MF}lS=6)p(hFS zb$(ygqKFkzh%)&csfdC65c6FYZO|?^^hDS`R3%-gGR$Wl)!UcGC|l+J!7U$A!Ju~! z?XG}o)k{1?earc5|MhD;ma2Wmy?ocMO7LVQ|G!aeO&)@_=Lv{9nY$Dz79bR9b+~n0 z#wl-zIkbmv;s6Vm_U;#_1a8JLTBd=U8rpBLV`+}}8pld7P10M{?nHJ1ou_);S%$-P zlsniwBmxR6M~kIFYxrktNP|{xO9to9b=LFp-M%$C=!H-cfwF;d(_=CH@Sqkl#B9OJ zieH%_6_|r!zN%Ch@~QnbU&?=jsW1+wSf~}2r_n7&$Nr82&Ofh&<5?(YME1&i4MRIP zv!tRJ_6F19@lR>{ts<>>dsvSFG%T6kg!34iSp>K@2(up|HBAM$s-QaG3 z$G_MU7b%26HGNS;Fs~#yG=OgCc;Emi>7#X*U;&{_s}v(9Q&n!3IW2`O{0lvkMm15Z zUn$q)E1pV9iQv=cRYo(SiaQg;_Lp(D<%7@{}oQLBqb+GB(bv*53$!ZOGK%l;*gBCcwN-|((B9-QDQ zm?ArI;l&v@iJFI-$F$G`ih=*+bLqty`CFVi+%a;<{#ha2^y@-wBHP*|`orW@kb|i8 z0F4NE=3Z&bK9HKN2|1+;LqS@MjRqGS8xnh@7Dty@7mR0%@MKm~d*wB<7^WhpT#UJx3WsQ;Sj z8*~hz{K%}ne$hXJPk9hTKFc+TIYcV$W>MZr+wzZ!0I&(C;CEFC-3yNYkjs}OA1?RH z4O8k?BI(hfn3=KD^BCB)mp&rHJVJ0nmtzJSHvVu zV2*)S}j?DnxDgeo4WGufopXKUke<{{Z z*{~4QA_uR|6=NU)pwUxUP|*WR`E1!JWD1K11AeP@RyZ*kiEvLzA>#)*3wh9fM-P=z z7*Hw*91vy-?296oz`~kGp!zewNjfQUsC`t^B|}<~NA(nDUM}4DQw{>m(75o6y>BSm z`_Kx<;|zqcd?k$a!Rxx4V7&`^b9oNX^d9{!6LqS7tv$OQZ`ml(j&|*L_}XDPTGngE z{TXN+db;^$x9&De<9xU2XZN|`SzG-AHymDvjRJ1!CymtbBhH?4&bGTFcwU>7UVibE zvX|_-SM1NL0QVaZvSgvWw+a3n^Jp9LVqEbcWW{f#1qm_uN+C6}3HBgx8B_K|vkXX# zZBRw}-TxaPgizvRJasH*R>kuJB^GywofyN3=pjUy+R9>TEJ5K?Cqj=Nk*q5R-%9%0 z?h8GwFtdo#$?nq_%=o`o zZ2seEn5Bquxg@w$s-&f`SeTuDM?!JFpaQV_1>UrF=={D!E||m^qJ_jw7#?wtZOjZ* zF0bCR|Gi!DFQ2KRrBPgkvgzauuDIt%vko!{Rg3EZmU19sJL2>b+DHgPNT@=$;DR1^ zZF6uOR|=swtxKk}C~1tEalE4^N0VNC8DCaTLf?R_jBk*sbDEmJKEh@)pl6spZOEQ- zDPgZdmXyZl@=}U5Fs9i~7!9dGM$aQ0>?jeR4UtU?TThYGNf~xX0l+_SRG(5Wr)mvV z8v}9rRzvSr+sAt!C=PMBR}20+zey6DnXfOKPONh1Acrg=Q+mlKX8InI0_wVL!tBbi zkRABMJg%oOkpHbRhinA-`w3aC1vb)z1jVd$fQV6?V0bP1pe>Kt$NNQwUf}*rE<1@>d3gGXLX1-*b$LUKq zoxqnA9)3nI|EnlEBYB=0`?)O<)!Wjf_`*SEUnx!udNB0dE@_CJ(qkgOyY~hB7WCY^ zPJT1mxN^iv%3RIXh)ezmW^-ZOCO_tCySq#s$+2#O8~vneltFji5R=^6-=;xk>?;~v z#w=44tQHyt9TVDWrgECsry7Id1N-eRK2m=e9R}d zUSF}+V`frmmIP17aw=8Git=BL6dHdGM}4gVWw9!({>BG9Z>P-aVx_ocA{p79h`IL2 zSI{cSk#wo*)zR^*{yIt+O#PxLF_aj#zQ|HCK2GyIA@?N-la8G|Km%hbtVMg{D1;fp z0y6Z%VUe7tmN<%zIrN?kofV}vNJHpsNCd=?_SNTtDL7K9=SEzpmbbTw7>~NDI>=J6 z!b)j^|8vTh2}{pF@}-dcB`%8E;sORYi|_NRKOndh#o8)JU*LG1ey0+~C2;Tr8t^F) z#vG+vNi=DT1vKR3nh#ggbHKuR4YD4>s=SU&tcC%=CT6UCM5UXQHkmp4ie1*;wv9{5 zzUskxA#H|8dxUOA?-zmfjoq{1RH1B1ew`=IGsuQx%$jh5v(T;??!CsjO*>omka3-N zt5j(R+{j-twUq{q!ONCXJ~G&q2H!@R&vVkDB53TUIP%q@&LL#}5>u(>vZh7%LWZp2 zY0@o*^O3ms6eJMn(##q-m2yBoq=u1Wh7t3wUNP5 zG%7EX*ArCzh`C7ZCL&{u7T+rK)86)tP=WnlxoLCrN=6FVQyzJB$dHsIYxpWv>r=aV zLh0(b04rD9!V80G;1s7W{=y7UTj`wfZ^vj@)6&oUUA?}-$wP6PBn!CE>%vj!R*sa= zJ{hb+A9U#f%%MT(g*#q1^AH&f8vjhH8l1_NQY@z_OAGvLbR_EqR^H>ul71A0nj?mF4Exf|)#WRwhM;_lNf&~MBmPX{ z*!m7fIcd?6F!S`SwLejAyk_s@s-6@|mpHHXpJaP*-n~6t;hcE@n;rKBv~1d5fT*h?P;pH-`DBdtzmZHdM4qo zcx=No#HbO%bA)^)PXAIsrV1qq`C<%vx zTNssrHG#?QZSwP#`IZL~i^5=AdO?>V7PGXDg>r5550O{%S<$Pw;=NNKdGOsL`n%MB9(O zsl{(!`k4ySi^JEXyVDQU{jyyXIM9j;ZH;A>Oc+C_5iPHD1pSoa222cYQPW^N@Jz*8)aaHY)2fF;TpO@3B^49m_kY3hMdt>~`@mQn^flQgxv* zR-tmbuBl6^!(lN(BVt?1LUUo}2wHOp`tWuhHocGwQUSft05*?^r6z0ik5wK`@3o#E z0i`L<?{ycm)toDI(J^v#u_FP%0(_7O@x)agit&NllS z8#BaS_7n>w-&p|(j)4`q8feb7|D4sDQ1GQ-ZuKOba_CQUYm+abS$SUIoxWT&b`?z( zIsDta3b7GY*DU)$USdxpW=ew9!vi5o`L0WypU2<*2xaHCDK64eH4Ag0#y3(Ns zIp)5Y{27P;(owW}Zt{HC?0ry*+5qFb5MC7|BlHk*MA0K;SpRXd7t?_93x+@SjtC~Y zzpbO;0WGa&kJvQ+4qqiPOkslQj|f`^^!`H;JqEN7Mo5)&#Mhb)I^1)q^P#`B7C zjx-zA%5V|pU(C5x?8@N)Q;|e;IaEbDQ)8YiEpsu3iIJZ`wDH%TuWZPs;v~=_)W`33 z;mC>rss}AFCo#KF*)9tH4rvoI*vb~-V^vepcbLW~;@B^Tv+B_csbiyXA@U?lU(upd ze|d`>-kQq+1V#z4h;3iLF}qcoA(LeCN82o84rlgsVI4hA64vervJ+SO#oqGiG}UW_l3clU8W z54~$s6HVCy99iYU&bE&q2QgnVkN=be)(W*_`~)nW@|4Kbv(fzxBt9zA#Q7RjC$2Bb zRX|TR(Q$=Ek?>g|U@Pf|U)1GK1 zhlNymvgBHfltA`xl3%2RcvFh95Gk3ss*H7;^rPxbeK9WH+G+t$TGtqSVgU%_JG5+Zd3K+lYQtQ{ z`NAcQDn{9R&S?W2izA^(Kj^aV@bNy7>|eJ{emZ!$9biRg3lE~E@3F-$2;JkAGl;=t zjTGv949BcGLW+iS<+{6{OY2z{drU@oXzz4cXK3AsN7K=l5JzAwSho17FRIX5xvFR=ENV$U z2{V($E(WhOEypNI66VGw=9V5=lU%5VK{XU0VUpt8Ddn6eXuNn`6twCO`Z|O~tXV-2 z_^U(fFVW>!4V*Pot3}_5i(tP;wW!rT<~&p*%dzz4#VSz5iYX-| z=^{f|!YkqTS#V2qUnqQOuuPZ}5=6_AKJl}X8SWl96UVL{L}8x)PU>MFWKVj93a3uM>>hy{8gz8b^cf@Q6NnH)jnD_f9o4)Mw&M)n$zHuAAS!>?+d=;0M6hb|WJa!%1xLM9%i&f~-qa?K~=k zx2?%ZHtavDgsTZmf*g$FjnkCbmxKt?rl|{Vcq8d<7aMLEn60J|N__};j(f&KM?SR? za~i9O<@RwOiv+NQ9~CGKr=kW^v~!sU>LzzN*(UMtELXt7lF@9o=7&j>m11HwEX$Se zVg_qqT7+VjT56hYO^2^I5bV0;#;AK3Pbhboq&4MTlz?jw09(7VQuAK8d<7KhRz+`h zOFO02h&$T(_-}A#yc>NRu~y`R4-5W`b?&8-|W`U^6StBk?f!3XCF(Z+wm z8e}pkLeutVC>WDqkt4$h9jTEOZlZ)NAN8T$o(Dx?9@J6r8JYrQ25##Cna^VQk|&?kRq|M5O@+b2KLZ+{IY^XqwGjhPlOvJ&) zWX=@l6hFyFd|X7UKV~A0T!_0$A&_*NjmfG@u~M%`vWm74?Gq*SZ-(5#zj|b-ASIKU zi?IsdDzcN#W_`#w#;vLbYfA*-pLFagT>pzwR{)`8xqqp{ZqR;Msq4*1FD* z<9;U6W%0JF&3j#XB`U=bs2(=2^Su4})UAgj8V-nn;tMfC;1)iMsO&>s9L&hsFBP8~ zLTZYdkDaz<&a;!TGfv>uK$=8Vlw6UWWI)GY%?=RVOTkKvQ1{a{moLvp(l;Vr95ZSKy^YzX+S`uobC=@_@bB5R$>E z8+Msna>I!uce=32cP~x`V@H!8dJI9Ih2gGTHjr%I3d#;e>b^2^;v}p^(gZ_?tT)BF ziL2~8ZuOjLkhqQ4lawx(H?oBP`f#sAf@J@r!EE_Y;Q&Z30x%2kLVpYh$)x(dM6Xn0 z5jx*c0X`KH7nCF^RG^wu`wAr?s${<@hwCT#OGX?*6m_pgS=4P&B3lDJ^A|l=@FnWy z_Zl?T$&_;FwSPa4FhFuK?f{{YHF^?F6+aY}x_Fkig1&BOnPZ~_j+2Y$kZIYvdq4sy zGfC)|(q>4gP}ZSLk8{tMKpH$SI|0&+H{^ItJuMk043Sgyy>^z)w7_>tY&MW!xSE#$ zwBlR-CnkYUTX0WbxDKnhSwc&|g8CXSB0q{c0NU&iywENTH~YQ^T8Y;B;-<%BQvE42 zS&DFKTl2yxC^r7e?AL8!Z0pX6_n_w5uN&?Dv0lH9<6bE^1(lRcfE0=_%q1^5ih;Q= za)nmgC1s&>!tAd=(=|?W@+dYymuoc1AQsC|Ca-~Ef?B)LQI}3rr%4Px{@s70AU;ZiFIu&buU*!M^r_NO!wgjELsyjUr7n@VR+(Qn<30ZPkM}`X~p%S zsK1)gPu~z)MJ#Ml?e2IRlHJg=_so#@IbZM1AqBKF*5#gRT-yaXdB&AfySbCGJC?e& zGf;5g{K5`2BVny*g_qMol*J5nCCOu)BZ;*9p<~TYHMg9eneW|*trTp*O{+LW(ut%X zUUJAShmgah+~b&Y*zf9zg*i>j-gH7nZdoe)6dQWKR?FttOudU+Q1v|0w17F1Iqoon zNqI6JNQ-`K><7?+G{WUagy8*v0>HY)dxK)J0%R|l2Zqbv zw>08{3h=oM;1SD77oi*Mw@^4?pE)?za9?3@*M72n zzhvLQVMdK?T(O!LH3!jv4mBN8-;q9`%YCZa(7?P?)Ibz|XoTCXu2hv?JudcJ;sN*6 zt-Qi81-r2pfIQJs{J>hd$(=-bFC!ww&L3M>27jOunx#}cDRkdM2V$w#fK^|u!cH`q zuK$h3;%_JaWjrEoUl|n&at@a;KuMnPP;ZHPFqGcR|4L5vDYGxFI3>TdR~yvSA$;*O zs)u)$Y9tXgxphw+HS36I0Z&>jQVJ!EH3>1NFR0YYwi|i{70sTbQz|i}v%HHEz4c<4 zy>#asaEm(jxTMKTqsRG%%;cfbi>w62&}fNDK}iwEAO584^2$DIG~t96Q4RYkn%DA0 z62?|Eyacl?qTmOX27HVn`h_VMKvN2g-M;!@OcNV*@I$zbxJ21e^UI7M+NLq0a4WQ< zAZ*Lrw4$J;U=p{19N7zyh^}v0Nh*E$H}=?{H>_R?8pm1tVl=A2U5dGdG{o#XIyp!w z94gHQhM9*+j=rRDTw$r#1aU?v%YjewB8w|qd@=oFlCQa7IkTYPNgB)_^6|@moT-?2 zy$eZn=SWiVkA)L5%M)6(ev#AIW{UbwpW8d6eLtG%GH`5ow~(Um@r*w}-`*k#TsL48 zx9-C1g>P#ik@^o)Fl}9=oB`#Tw^Y4vROKZqo0EZ@55`BPWq>F zEW#S$ThLr(3yZ6|g2XHf0+!K_E4C8H>1nF>K`JNOoV_OanquEPj61b%&^0iE6(puo zYS2$4B?E4$N|M1xKGYe%;fdwbO$)j_+lVE3+N^pPT@FKJww4e&IieW(C3;MvZ>leS z-MC0`g&$)`$Bz9a;mTVoF;_E-$HRC_ON87LKK4w5X)FCXlykJi2V{rCT%L$0YxWg> zXDAZMD=UgsIVlho{ZKPkBsAU9(9kmY4Qdu+K}gURTw$NL6=4~uG=Xg{(QR_o8?%h! zp)YhM`0#aw=C9$(Z!qwn?pUy7Y)b1-!@89n^qBr?y}9How&%(@UmhV*{zhE2jut$HbV8D?wL{bcnqr`4MP7S%TTpYEKS5J0wo3 zGE?)H)s?pDiuO}K`|yb{QoBV{r;}ym3lKh`dn6hZZH^^<%JJl0XX(9;0c%7}d&<^v z2vh&6?Yv?8=N~k2Rije4ZFc4HDNRL#l|d0CC*`Cegzmxcv$vLn7-Q22(M-}*yr(B& zY8BYfC8eRNpijugKFOX3O}hnceNk0^6b-^O0-b1(X-bm~vj-IK$R}cJD?+r*DzLfv zibf`XYKy+R^S(g)qgiQyZL@TC7n_Igo_ay9$p?Ie?LyuG3OMkLVjZp8Y4(sISm ze}O|j^K!N;nBg|P=eooh^$@ss>V4wTl#^<|^xKM+clK51Hm>7H_sxy}wleynx&5gb zQ@FE4vFMxQA*QhWdD~rU^n2`H%j?Y_?`fn)>xqz-twxeF)cm$^g#fLocrDJ(y&yMg z6A#Vc$i1H#UOJ#knni>Y(l(>NiqV8vBXmAH(DDP~r4vRyn9|U>Nt=7?h7qX<(fqZR#(*~)rMFhUId_1JG61uBd#K&b{{(qzd6mVoL z2@z1`tn3d#f{owmf5N5^j+LM=qCIJwrK=RP#lnln$*nYr43ISyNC>ni&De4L2{uGz z#+%^hz$XsObUCamXt2+mKN=xePig#nB7EYcxQ*RF*RpQa?o^)sYxGxR!1nu+Zg}zb z#OA&qhnz9l?akx9^zAzE>Xq*NK1VAwg_`cAK!~I;7_x%2DP+QVenZ=^2O6Y^@fti?md$Cg{6bedRY?Wfp@ji1t!d*hyl{B_6@~dh>->Rfq)Kj} zips6@_o)ez91Y~F5n{9Ud>RaO7X>sTHqCC1JbHC8WetU?!z^BBO_Q|!#3(Y-#`b2F zEveb41PkBoD72$sSh8|_Ba&HIWQJ%pT|BT-{_0=|MmS2EIVojb%eOA9b&N)e(uvJY z*f`&fao0Awb9i3)$xups8vr@hC`XXgk73jLX7VRoxZ~>Prte9#SI^%K3v?VMH~@Qktl=JQ~p_W3HsQ zz>hDy!g+70GN3TVS=J9Wuslu*6f@FfPncQmwW#;jXV8is`vD)PgXL$b%X2*j@9q}7 zJ^exZ8<*G4L_8uN!*0I#*va0URnWvJHFDiAD`^(14CBITHr~n8d9w}~s3A$)k)~uh zqJ4B8dSZOy5H;@t+1iA4Md{j%O?NzEv^!4i;GhD)DQbwm@c+<&WOOXS~66|v_x;;bP6IN9i!fqUz+evkioNt=U$;FRdk zMahQZe2IP5Z2~JQ)?qI8V3aAp6ksT&H5BHS+xP9YR(B{*8<5J^LTb>7F_n&?lKdM7 zD&%db*cVcYDMr@uRo#~WFAmBfS}&G#0lVPBAJU&msx|B%VgBBX1Pnrqo-~ijVN%OLUEFsmMQ48STOE@m8i)(!xg(4W8tJuGR^|X%}eBpXEMNo1AJE zaZl#*FLj|PIG_VMSR+~i4Tp`HrgTV77NeN$pS}#;C$GVcWPssn>Fi8jqh}*#Y|~Vm zE{87yaZKR>%$n@K1XOGESdIDWOa3E8<-9Nr_{eCXvYxhYLdVmwRx@-fy4BZ4vKIfu z%Tu(%k&WF+dLYQsCX`x|H)G=Nw4BSo>E0-K3>zRaYQ%xG+7G=*g!*U>3jz+@NF3E- zKuOh*TFlHnLUh@loV~U5I})HO=7p1Z1rXwO*5^_V&`$%8{EihaaX4Dq>oHuuln?^D z8Len=rKppRn9u5qMlW3f?{dK@yf|}U{!qzR&|3_f(|E;XhUuW{ZDXO90VHDS7x2uC1@4xlX{p1Ra%U^XQ80G;BE5QcabR@=u9{RDi?! z>Lp5{T@*<~^-A+5zayRtk+s{9m?4_N=vd)Ni-CBdc_lF>MHp@PsyiW$#G>?j-HCeB zns@+l$Y^Cn;!m16ggo)6G&KXIgt7C7c({i=#?@Ybe=Ilg&PV#C0J2k3QYV`D*JmlR zCG#)|8S=2$Ph_CYr5|kMJkl#kU%6B5Mz@w?V@@=v;694CcR5*1clyPIcF#!>ZE{Ec zOTvir58KaE4047JgF>tF(X@?-ra7z=fgu)=7f;h<2{T}lvzRPnlSfbt9WFFuqxsOw zjS1(!Z)YjgEV91#E#x7T99kM4UlqU4KclKn?X%bt)`7$iXIBuAi+-33K?@h`fD)PV z1sUuvP8#1#L*YEzfCYC%&T*APdPCNUb!nM37l}u1AMfi?@b!QbqY_@(Y%mFNXy;pf zCG5i|rE+-!%E?N%T;E3AilRj-PMTAfm)7X75XllI&8QU#QW@#oPJr2EMU`jIZp^u0 z&3Bkkp3(C_@&O3q(BTI%B=|R5-*Y5dZfpPSyr+a!>~GHz7_)=?k`rARG1N1X5!~Rf z(ph|L%s_><^t4g>=~(58m zgo+nfBT!5*X|d;~NQNTxia=nkVHU19`HK3G$kr-5u;w6##kC46o(-6^vf}QJ6L!K} zN0WT^reeolkrZ~XmyZs*5nGvFpw=IpV0Ej8A!-5tg8h$OvTjSBe{(U-V005Bk{Sr+ zLGL{1(GSLQQo}%Zy>HS|Bpe7mvGf{gvS9A@0{;eU{n6`z8Ql|+LefILMDH-cpBtu{ zwFmH(u!M8W4Yj8gwO7Y3)ehX=@u-(D44>ypLw0V89o6$w_&Aix0Dsd3uwLmp#~!|q z$<^>1)E76q%=DS{UFM!m7Wv}3h-b~yAkN5Wn@Ai*&y$CZ5}h=^e2V%HUM5UV#gmGq1mNQA0aLuV0Y4bP#3Zh zhu>=M)8)5qsz{g$`51pxg|9# zx*VnqDwZ`usY`ubnC_{xTHePt`q(kiktGojCAv^tJ`J>)rnI+%x*| zTlRhUCD^KU>*ntA(y|LlJ*&tN4hwZ**J9}0Du5_3zjC=odZ zV8~F$n@rL|-A2;VxMdfa0WqKBDoNe-{M8ab;F^V*))5DyrjlWnaNYv&M(SK}s&KS% zim=9V#0Ozwx9b0gqjQRntL>tAY}<`(+qP{x4cpkZZJQIjvCU4C#x@&$^L`iSVy@=m zJimSRv-ev6HK7nU!bw)=fxojgq=`}9qQUYshi*8o%2e)lnTB-|7cHq$qOOEcP`0mi zPHdhLSQwE=n8C{m2_fM8vp10rg$0Pm0%d8~L29 zT;J6belS$8%?lR#9v@ean7XNhW4S)m^@XMdb)vo+qK&(BOU8hh{(ev{|jktXf`F=GiyTEONwgUL6)M^0YnMUFO2>E@BZA*YbHK->GI(^s2lPE zmtJ56!qh?#5Cqha)uL!I*#sgif0_S4@?yMHj1V`MG;PeWNg!8b?8do_#OJXC7oDIe zt)#6fmj&WNf@2?kIuHoO8&bYW0yZ^UaDOYyGjjdc-~ms-ldQNv zjqRNCLlzQ8?=mG2p`Lt{@^D2tafs4}eM+|OxH@vKWSzd+lLH{x_=G0tY7k37#=x1e zED9^G%Ds7T(7Et`QTCqu}HKw$!Ryhh1a zh;yKxgY3IQ*yz*KfHS94|7qR{qSvOE1ql(%G)(?EnfXuNnc4S+y&jw`W$Y{+CP)QC zfxRD34ud*`nG2ygwe3BXMxfUWhhnA-*QTvxXC;F)8zv&D3CiLQaBP1xKC4$$P{jWZ zE17l5F2$c`XUv`*#1P&vGRD4LHB!1$V+}z97hS9`KjK>J2=z(O(yH+=7Nn~c-(K!Y zx^18##nWJG{Hd*tIbE|@d_hOVr-JP8$!)E3asAHBrxCL;eWSqCUigQMGJe8?^wF_I zeWO}Z-jDheS&Ic-NReukMuL9yw;we_?3R?Ff?9)h+m8xc+}s=(H4wdKm!kWwEVsZ^ ze~AnC7L>svZ$_QqcQ(-;mxTgFhk-9@$~Xd^lS4 zs_T8+rh1z)mHK-#A^c^~EsWEC9_oZS_B}u6)O53^K@mPPmMBHB6-hQhMT~68Z5*ozwiI>_l_a|1 zzf1K=0QtMrPA8q9;40|vRG4cDW;f;E_Gf=g?5x*TSiAURZLG%p4n*GesBg|36lSKg z1OpkfcRsfR_ag&eBE1h8OePsjUgZN`A_KEbz8*~~YibzyRvzJzi`Q|6UK}6&xxJr@ zqs4#j*&+#0?AeMF#Zw8@(njyYyYgc%sdD`_uMfi-X{xPO)rV7}OU{{-lVL|W*zS2W zI4dZ=(#y`eUMbsN6=W~13AzimrlZ?Yv?xS6rSmE=CYA&EN^klfFv zwCxr9Q(eIBD{f>aZ@DeSR#6Ml+m5k#Uy%Wmf>x?4BRPSpk)QCV;WnBE5RLsilN3-r zWjI}K%W$IX53;E2O0Q~#Te1h%2pX9RTeyw3>hdwndWuJ9lKj7HCc()Gvr1>@X~Ejs zQW{X6g!x$dhE@;tC8JtNvfh;BiikpZkDekO3GDkoz{#EV8w<^_Tm4OM@+!o zJ24ruX}M?uuN?ol-m9o=->;SjUAcLxRuf zbYB~Bc7sC-LX~U+GYdvp1@4Swy@cRD4e_$u-8d{v$sk{EN z*(=`SNO!E<;dNUPJD)?JlSz%;!jK1HLcBnwUD5`V9sS`gPx@ph>U=!oCpE=EaFTd{ zG9HmY@Q@8es0;;g9J?FKhJ(W{C@y{@`MsXt!AP|&W9CQ!jS%PG-LoXbeP$`A$z_6i3c0f=Y7FWOj#BVY=isRW{hS5~CLLQ$=)n`- z*4!}|yK;@>EGahT@8+DCO52k~QR!o-m}grvB(2#LjO!zeNqO5gCJpV(bBJArwTq+r zF@%c+9;N4#`UhT^LnddB9o^2>u?Ew3ZR4GENHgOipRWC9wf!*~mCCmvxV=FXG6`Vh zyI#W*csiv+T07D^{Jo^3#Ty zepr*g`)Rb%d0nuEQ&2`E*)N$5Dr;fJ;nQV~bdusD?psy_+e$*^IPq#Ctq4i<<)k`d z7qJ^U)2?HrC4#IW0>~WqP(4Oy>;i~4ib)wn1xPV{r{E%pV$3v(&u}Dzkb?lnvpuujHou$MBw8L`9Jr*gJ^uOQZc;W zN2~$mf_t|HIUWiRR9h7I?Ab1keUc{T@>0M|DY8P!J!Ne;(Hayk!4Z5jWA}#w1P0Vg= zzeV5>eHN z8spS{_dcZnEF6GZk8biVr$zR}Pmn?%Jn{7BSAZM9bG|k(B=V2zS<3u1ceROP){X+> zOdat#JJ@a^@V>@qyZs3Rt*1cWgP;cw4q%q418Lgug87IFa`7K1^dBhjx*s832R!$@ zf+!|h0gpO?=|2YEfO&lG5iFm3EJxoyN&`JcVgJOI=Si#kQYV zSwR{OV?yuz!K@`Xqc$0R3yzm z#LwYwnX_q^RdyO&Q`N<+kIIj0;vW2_SKR%~`ZE}sBEV{ z`6*tSYL{Krj@&>TxSUgw2Em{htAgdlNDaF+nq2@pm~cj&I=ashes0@RFWP^#2+&Q4 z&6y|IGBo`P(c;Gmay`#<32#C~9MG8GKB+pl5zj+h& z4a$QmID1(FBUP4P**T4~r+$r=fib==IhwR8@A>AQP$jSvK6f!2Z~$EW`ct$$E*}qUD#JxG%PQ)q=gs7D zwq3T9?<3nS|G}P8F9B!?6xpl~cu+7F$nCryYcrIOTx>TsdVk;B>DffsIa43FS)|d$ zH@WQkpf8a`An=t+glXF^4&N4*Yt44HbET%*e{dd9`-jWk8&Cu{yk?&uV5a z5xM19^z$f*WIHC$Z>iuF9(+XhqO4aRqW6emCqo^cqx?nS?h_|Gu*hqTp9UCFmcBUb z6oZjQuPXrPSA*3Q7UfZ5(VSzhl#wc@1>uwv@H&8;LEwo@7Lxn2)-!@M)RJ(+vej!~ zgWl-ti2Dh2g53|a-)?|dM!q2CG;CePnVlaBH;*}NJyvm7Fg1lr_hA*RoG&zdHMPAG zrw{eWdO3v%;ceHbCvsKPIn5Hg8MZb3u{8pVSf&)RwgRHwvUvoeDHoZYdX4~{kEQ7j zr?rYUqGUr@au=5E>+bfqp1pnl(@>g*pWE}9_F^-_gzniGjN*(|0AZ2FlRQ+V>6(%& zt~lwfwjWAdWTGujxA-rd>V@BTv8*j6zm=dHm>@Twk3@iEW=e|?O0jrqTN5cvLam}} z05RPACqtuXpqr*Ds${7JP0A=nJgaa6jVb*Rc)GVe^rD@|o*F?#d9ZvbjZZ(3zJu#! zOink*o=j?8iLN2Reit^f=Pm_U0ZaB|LPpX~aEPp7`+=@Dz>MvjRm9%Rr!9u=o>)YjZ-8`09PHyAT321L%1z3wfPA8;%G<>w`@NS zOa=%wGpEBZDSLeL8LuWz{nyb4;tgfxjLO|gtS7Ox=-4NRZ!OY4ADwSsPrCRcf_PHi zlgA==639IOls41WKX3;Pf5 z|AVs>{$sY(48X6}+zyz_BP@&IW5)Ti~QBUYJ|mj-8d-vsd1WJ!%0{m!>L6|Cs}Ay& zADD(R{o9u-%X-fqbCOH-5nXno2ndEWdp*hBxMp%8)czt-3dXxK z9sdZR`Hx;Uh5E68dYh8j3u?jmK%e&iI6}YvV|m^F-?!_xE2I|amz|zr)WsdwwiGEaw~y3|ECW}m!CuK+{r!iB zb8SW*y@&7dudo_j$|Z&tpLr>dtC3QG@?bdVbh2X>yp*^{|YjK7s>AunX+QhHF(o-ef~Tm@q_HU3amDNN5y8Rl{#Ag+GKMtD_*3Arh_T; zS;8;3=OdXjPiId-uXGMRK$~`_`#Gl?MjlzC9HtolFpy3`Oh1^WglQXl#9ZuMA<^Kv zNJaD@DO9buEJ>7ORCKxdYMf90S8)9=LyvItvZ2-vvBwzgZm2`#Db38{&qLo=(6#?E zk!1j=t^Dos(Y>l=pHf`$oK-{Stv3BNwzZaUg`6Wvo;c*O?@B^C9}xh;czlwlVP% zMU6jAo>5(%9#6|`y(kSX4xXk%i5YItyiqQ{k=ZY^P5Lxu>sL;OOqoycjWf}O>2KcH zmMBPYFFmNIwj;P z08(zB%Vi{<%Xe0=C-XKh)vSA(3NA8)ESs0-!)Ow~z4q50uC6&_9x-IkT#wBeGM|1F z=zKvH2Hc|>zlq{LxpS>1v+_gQ(2f4z`u)~=e+EzgZM-0e>vs5ZyH6w%koO-nt@k$Gg8l(n?8DCkBooIVbXa&N;!@8tk0Oovq%IcqxIZCmxU zx_<(wTJZ!4YWsAGh|Nz<9G2GO>`68&us*c7%?4CHfr9#d+_d)_l9IpPxW$7GmBgTrb- zaq|*0B^caeG^Y08M4l$j7s9wUE$u7@7iEz4`Y8qYB@7_L=cAkQ1g5w>6q*z(ppLS_ zprMN_MnazxL7*mlb&4@y0Sre#L}rK0eWBeXv#!u@dLHOTJagGVI6A@@68rIwhza_T zOr?u_=SKs@rKXk%)MaX^xfe#gW%o(;gl$plXDDi4p+_b{R7^{YqBOo%GN*M`@@Fu-$l`HUW=&l9xZS?qa^!ZPR z4PN%Pkxn|~|4-Y0yfnYN)WU%M0>f4lW-OFwGRhoNtivIq!%VhHo)NzyfPq&- zv%2xiT|IHuSTiFhE)~pRk-bcdF`A>y)&RTGv0oP7d=*~xoAv`Opbb;9o)w#NS(G&% zbpUr^se!rzQ>9z2ggQJZ>o3$f}naD!Vw%;6{0A<^X>zK4U$%e3@TOG_E)k>6}QVX)D!S!8Yz#-XeL&{hAI z`!nUp%9g@C1gjMC1u-xJ59#Lc4IyKK@CVfyup8Rq`p9O>AVmefpX2`-8RI1@qGtlD zhkE!7**H8?53=O(p9U!IKHrrER-E@jLAL6O+*Kq(t~UmEsd-kncNnOxuN-`}RSLz! zlKcz;J-hBOy=~=NmapBOK>O|L9Fm4ya^y_rPUkqBbGnF}9^_Y+UT5KE3oYLU(%6LyRGH-pW*$tZ)|Pv)U@;6q$$v6! z`ka);)NfvAx4^Uw+~hB$GQbw@w}U)D%2Q4FjXc_~5blj7$ApPFC?r;gGp7T6r zHl^p}9#`^`<1G0`w@!XYpXQK!`gh_%mQn=wG%x<{pLU=wyajNJ>Ri8#ts+j6coEX| zUS30mSIsn&z9b>596{UuWH(QMV$1VoJ5JgZ$-dVqW z-bA{r;kg*mNjd5dt|X97vvwdwbV--__kRdY`@r9i6VAr6>+51?SyjOC+O<2ygZpK* z5|7Q`5n6GstmXlule4HWFshTHe+DgJQWhpaRD_)7nEQ=@(#ajkibOrQP(a~-8j%eU z!mFJP#lrle0MfBHy*UL(E+Ig!0e#0Y?k^-mspF_rI&1&jiv#L>P{@gfV2vD)LmDE8 zQq-erM#JT$n-WKy?~Z+{9ZtOJF{e1Wrf}gEO(*2#9wXEmos+@-lo4IyFq5sc6d%)6 z1dxkJu+-(@u>vpdw#&Tl8e+0aX)d)JtV#8QV!A~3(Vh5wHkk0LzkY3S=>kf;Ek%CJVy$37O5!!m>PPj zXp<>|w^BFsCUnjdgLPc2{RX&E@Hw;}b6v=t8_}idO?J$X4P?H1^3`Tg3U_e(k(v>f&QmXJog5){OS&gNjW)BUZfzoWI+QWvhUWYlm5qTrCc)jg@sO zGW!j`*_G8HNI4JZexDasE@n!7&jZ0u{-k0fIx|-_V@6B|OyJI=Ru*7+L$~w;$g>eW z{)nNuUQ(&-Y{*;$GVelo?wF%6n<=l3aN|nbrP*&CAi1vtv|%lC2dBC5IHdPBB-Bc1 zpxIQQ={k@!Y=aEUqqQw~VzUKuYJ}L>vgC^^((&+kS(t5bb73X*01CpMF#da_hv19k zRHZpp*qhbp&8ZWw5kb=$;QZ3X3}%sV?4Mat)MHpETtt}X2=D!uhsWZ;xTj`9rjr32 zuku;nF8zg;9eFQ@DP^t?&+v1+7>T`;at1s6R8twd`zet1fTEuQ(4B-<^}#6xR5{Iuhr+D>mt$%*;6=X4NSj5p z6sN*DNQ;_PEEdmR5*?RULZAsE3=vHTLLg{DRl;MJLCUC6Vq8^`H?t9Z2Y>`UTuc`o zF6_p=S>PkXC6(RyiR3_5^NSRzyqsLT5lT*`87G?%X{C7HBIproy;zE@8Z315w`E)J zCUh%EHoGe=&W?2H(!Hf9H&CFfCUH^PZ+wBOTfo?{+iW_r=GPDe}FXIVaFui2k8Gj#`ihvf&g$uEr~U3 zYH7N~ioxIEj<-AURVIKR@flin(^XyE5z=jiR4qyj54Zp_Ft$vW<19RL`^9YyaGtrz zS#YKcX}##nW_2agQXDp4nYs`Q^Qa2+9~Chk(;R%}lROZovifBuDW8s*R)a53-S09`OEV8l0jv;8yZ%h<`Qh=Xgig^ta~btC7JUjpN{Qpls{1IS2y^8bhBU zF7#!1c1}Xt3c&fxxm=5h6Y-!o%HWTh?+;cH4*!xI2FH1{QhQE>}Y(72Yd25ttJPiBmw92 zl-d{d#~98k;-{6#Oi*cA4#a^vWx41Yv>r}YCBN|s+OU~;8ANF*(e6lJ4IJXrKPHJd z&|?o56vu$U1RZ5`3Bg}gAiRmD0>Tb>NRz-2!a_A{j3wpZFml_8IXzhTwO!4n;zn$L zXmmE4QXFSLV!52DfEb_D1Z2%Q+!h>~fF@hD`h{$AW2`j|Wf6jeVGTTS_z##v((NeA zZS+jK8f+zCsv_YIc1KGUdG}JuIJ`U&Gei8{FfEk^I7$Oy^;!}eeHoy3znKt+=ccNG z#+HJQ4^0@X@1hQmDRJSgTN_(Q?jiU7u$(`~pNZZ}dJXj%0p)=kZ_Wxorli|6@>laTUUY=;>dh z)mrpSBlkBP*#};p9a~6_6sOG3ap7pEmWg4&nsYJl(^yabo4?mc2nm1ufED~)q6k~< zzwkvT;<~hul#oReY&dfAk)C$f3io-3$X78Y70^Mehw`TXrYfvXJTY4Bbhg;g zZ1J?WfK%62a9A19#N}6FHxzJLWx%xeb@Yr>aN~aK-cedGH3qi6{R!9+emc-1@ihGD zjKx!*90XMuv#-;ZgjDPIHkpQ&~cfKs0iVs16fGB%-%*SmiB&2vbjTSzY&x$0K!)x? z;WG}SIX(^LUuVS_ADdOftlwLGX^CGzC4(=fAf{ciDBrg8>)1d@2 zTKlgXpI0{sf|#S2Tb;s~5sd=_H#s>3r^^vOtXacG7j#7@b*&bg-}bx*XWafvTJcQH z$ZT8Sm{jDOoOF?qgGK!$bCec<1Ru}9&@M~43`jFyZZ)TsaeoXGH~%9VGt@07DXKN^ zI_i8g;L^Cmekp+Oazd!_6aI5ksBy33+sh0S{`Bfve5bU?jYOj1dNc0$cfiGZ=2s&P zYC->2w>cPyul#(IJMfyD>G#PKc+b-XTF$ym6glfil}ANWQEO8#v1jzoFxiix5V6%v7|5$tph`6?iD_FDHkImfZ<|!Avzy}i3B|b$1{g^L0aLUu# zQo$E(^*m#W7-%-ZXu35S;GL6VN;6O?4Z?L9Gf_CI*;4JDwRb5REN+NH4X#vK%4u=o zwf~|rmEJkxWXR=kD#jJWzTh^7=VSWRI1M1~6;!kpoQG`bufTh=C@N&k4NaG%yG}pQ z3c;qy&vQx#wWY_?Y|Q6T@d3CTs$;eP#*>;(%Yk%`Q?W4$ zAfJ@Yf-jUhD0cPyS4jkmJZ;Iw0CZieA)SL8Fr zju;M#&K!7p)f{Y8LlU3n;T#E2#smGA#Vhl{@IhSwh&5$;pUv7U^S8Su8p@WjC?8|J zX~Q-!Bt)OYVf4id;nB_1&2Z}^g(;la-lKdWG$%4EmWGKE&USnQLqTyL z$g_0(-$CB$aagkCHgo9u@)-gF8w5^jKDF~R! z)X0de^Ip+v5Y#q%zT39?exyg$V6f#;b|Kdliit;xDACa0yAYOr8Lqm{iGG;~BxH9| zXG+gYu=W)KjI!mz31p}G+)T$&3hgRj88_Qybi~?7gt@tg2#kEu>pGITm5h-PN|bN2 zhn1xgTRt90YL7dLYl;}v@)Md!Ys_-m#L8y@i}5}BDKnw`7R&bQZNYR7hkVz^yQ6q~ zm4YrC`O;sQg!QUD`P{>CBN3i<+v_-4h3)2XRe$jeRv~12@J~=ihuU1XlAp)YNHlyN z)}R1FIbR}K*<2TmSw=Nm@0q#CrVVLEub>j=tRS$dLHGMk9RMfGTp7O!%dDfbNax4Q zD8rqg>EDd3+yO-@NmbmZh8VQi;0f*k^)H$?xEf-yi!=4vkz=>T`p($)A>2?LUj<5g ziLP+dQ0!EerTQf{@sFH~f?6ZN$|=@%n@l+6o}UG6B19`!$j8$HU35*kkb@kK}j!2oCcvDuM|W*Y0=s*Lc(=ytPgL8X4&lG{@_ zSursH23)?ZtkymX9a##Q*-?SDd>2YH7FoZSn^9=;s-8yGCO28CK_(s6St_4(&3B`& zPfZMdeG;UqB78q;GB`vV$@>@D=KEw0+fg$6em14%)Z6_J4iw{P@D&G4tr(U<4V^UUQv2kcR&>df` zYdU~)VBGF?2!DO}S^iA>zGcx7+ogd&101M>K3*`u93~bz4O~Mwggo_PS{ucT1ZI`k z%itaCQdp}`N)BwAfTpSAbJP!Np~Sw;S_M!w!DGbw!#GrIP~a>|zUlHB;MB$v1+!rK zx>wx0(i`YnyqcG)Qhc~K6i!y;V=nqDTkWkIhWBXEqrXQ)3o5<+^PEDhNgAqWFLu-j z@nUI}kdaTNfS%^Ph8C(YX;FM&)PX~6z3X)77jqUVc2--L=f8qL>%acW)cs4#1F)P!FY|H#`L zRk_lA53{Fv?x0sVLQWK%kx1-)%pkh{Z?!;kD*X30_L28;XZ_w7cyixWLz4Y}5baGk zOK&mchC{ibXndvnhXRs2vV3jNL<>zj4}i3^o_n84>F81wq&Q|GK_y)G$5#*C+s!#L!Tn5vop7&sW1oFwS)C$_A2-jHSv&#aqS)*%cVBK^BI z!7A&g!83vFUHPWg-`ai$sm~0KJrvbll}e)ibq{w#*9cW1MdB>Q%$YPoS#=-o<}rUr zg7uTxDm`l$u2j-353ygB7%y$dtV0px5ShI`R@oo9!}<35z{W2ssK0QkeUojK!j^_2 zZU!f$0?3n9$bjt~ejJRKx@aJ#vkU|5g=By{$@%7pof`zatpqv#9rz+E{u%Dzhw1P z@@_fUgVI#9?v?6ABV3jhE+30a@PbwKem1A)hSZ8S)p|UAIdQ|K)8!>X*1wx$3ey z)FEr(#N6)@9K#NM)snU*X3lyAeNd~8=+=hQCvSd}AI8CQ@|WK&^ygT<&CjbXIqq{5 zGW*ZtQkBv`?ztd^75O+YKT>`g%r&Hqx(2e28lUw`?OE(h8lZX&5z2m7JvB}@v+6(?GCy{2 z&rV#d12UOMhNgcMT}k<=q-;)y7MLQxdS}zpP_;g_WCLBwN5K`uPM{XE%2d4$dK7hH ze9+W{BIO_yHG~BW|N0*ZE9dL|)ztJ5$uL8pZC9r*H?x8Qwia~Td7?;6Ugu zDJ?p7I+se_7TMdaBSe=Fz$J;n8i@5b`z^dQ=C6PxR@lDKmCc;Eb%n)GV&AqlDFuls-RUOKnYn51>kw&dZ*bErQRCKyMc}{|8v^S53?WL5 zgs)dct}SI@}x(O*j#baSN}R|MMPRvD{c?^!8(&#r2kzLk z@8Owkh4}=dVsnlQe#V`WajnO%C=XK@d_Txl#0u&jE7-))NHm9G&UM zFI_07!C$jHRsf0Vx+@v(+=tT7<1Y>B#7p6+kGVqq(2mmi-~uQ>~0zjaDzw4v=4BeDnU7{Ns zhdTYSdU#jrKa!zTpoHvW3#YuFdC->tp!QL!LaNzs2KuAVl%L5zV&QhM0&6lF+W*{4 z{OSb_b6vJRS*#WH#lBMcetx88_8mkd?5mURbb(}}F+2W8tqm4w zJZOWOTBD_j!ak*5KYZ=|Tg{+X6116$nq>bZgthWJP1xNJt@o6YGfgAT${*KhE z0ANdZcE*Iszujm9`pz9#lER&G2iIfu2KdrA1WigGB}MX4G4z0*f)ZZJBGNun**QHk zYyx0J4#8e9sJ$EiK|UmDC^DCDd%6t!^Rzhet|T;2DNo-gkuK$ntH@nijo59a@T&Dr zZK8ejw$7J&!QXJ>pDD#^3K*4<1bf=rUrWXc2;tZ?2ZY0sS4FOjxo(_Vb0e<7A)kas zXV;&0BTHvt0Eum)vp6`hV*7B=n#>iC7_OX*8XaJm>|xIjj8Vlmv})o9Y3I^qdyIGs zlj{sF+ND)EUCpV+sgNNgA+lCeCi9gUvty}Ssl{9B<>v8cP8I9&od)ZFhQuG(#GUvM z1mQ%$15-0RG|-o#&c&~9WsgBfU9eH`(VH+(VdM}htMbV)l^Q7Z-w)zWlj1TV@Hktn zt{mVdJ74)Z5Gc{5DTGh!-C{Z(``oO%j(PQyV`wUUZS*+c_O&hWYslrJaNRR5Hh-7- zu>e#CSpq)YF0F9~j(q+UGB}fg_%m<))53vQzq=erMha?hzPItmX85yJoH{r$>%G03 zlM7u;c-uX%wtttZr(07$6Fcx9_>!s<85m#x_8|d^7w*ez{MUPoIuKQ^f~QEF!#W+I zXX_M^kI81^-s?r~GVi28gr3PHfSlr>E|;6@e5Wj$MY;;slqBmL`k*PnpJI9B*lKrv zH*2qztG%N+qfY$;1+JQW8{vc>t$rAU9!7X+z#h-)o{W}5S}8~(@Y8AInB3Uc7(J03 zyR(INx7N@t*S=rsj-&EIF~(_VRJT6TrZ#QxZtxOtci(zy**yl+JcSv-^Jam?KO|;I ztA*E6LA=+LY>ORP6h0gPO;vaZdM`Rsg+Pjn*er3V=hYZ-8gwg&W=KtfLVaqP(i2gH z@O;`cv81?^4Y>1M$sYhibRCLE$vU6PNYdYGXgunlm#|+yjNcy;qq!{zCchynqR2T% z(?JQ?t)FnV4X2?W4%Scp$ipW9Hvsn|7n`fVqAtv4$ z+uA-F?u=bbZcPOzvu#GxPO3<_ltbYc9~je}FVaB^$ruO2<?Q|hC>g1!ZZ3+LA&OxAd6DwsWcE{WM{xS>S;&-3B zGvoW`p5*gE<;!EeFcB1_r{lLEWWe-mv4!^1C25UmfVJ2ul-NR2k7IeLirZCK0R)9a zW>big_9LG6>pFt{{L`2U6gbepU4ygztP`A@Mt!FavevMe(8qO3HImiX1K*j zRKwki4a(B|B0fQ^H-=iO&+#ag%)GM_60&tA7UF=s$tF9%>DVH(%t*3_2STMpzZa04 zM_2XFrnC9X>4x*dh9EMTb5J`T8LqtxO;@Y6K0D&{!YfIulw!+c4o?N$;*wap@j6Ln z2Yb-kZEn6IXk5jH{*V*>zA>?I ztbU;f?^O3z!qsdc)n0rO$i2i@Y7-o9?KlF%OFK*}b_!;kT(~L;NrU3l;`U5E=JPpD zQ!un7!_*z&KEM3?QK``K5dS<3X-W%JL&^zGs8ytsk+8kCO(Uc^Poy817lW#)QmKJx z)>XzSH*)LIFN*ByEuM>oS?cJBzp@{xloK1~ardmC7I=D;IcM|}X+4$ZtiAnPI`D`K_^kLl*Z&c$I^WdUn zbVhL94lMWJ$lM;sbs^b5HhGc6U6#2Hyvb>}1?h!B;iBKZUcP-AM}l+EsS%{& z;sbJ|>`YnxjB|R5%Q9G$DfU(j8e6u!cAULqjOSq$ibs=$%8K+wo_|n-l@H^1+LC*n zg55Z~)!<{Cu8TgpYEDVB!4vpSbC_hvgl3p&8W=IGr^&t!?8$rrp@BWedRy7#@7MZ1 z7~~1fv6<~5@w8`#74yhCLW}UV?_`n-h}s)!PeOeTqOw@|?pzfQlC^N!3JZsw5%xYD zUmch0%#YJ71jbr~n}E(lApLstJV1WuC2w0OtWxvUN@kJrPfyVxgI@hSg%>U6(cSk! zXZR{GGcZ;1e>%mk00?ulCW8omxgq)K%xhn9O~n|jdWz6zPrer$OvCvS@nMsPE2=W^ z*d~NY-G_vsslFkc7+y`RNTJCL%jn566VOzV7cH)sM3f!t&1@YNWD&zJr_`w8sL~Po zkg(vlV`>R6hmv@&>FIVdkKbHeIxp}!+HNnqM^=bf^w+F3WJ*o2X+`|QC`rfhX$ue z1LUUM> zdMlRM*PoNHYBh_hZI@>H@R028gZdjXR9l(4TI@sI74R)-@cv&M&@zE!$5&r(OB1(C1^I6&@M8#-fSFFUR^a$ku;5_K+>9tya`5thGX=8jNP$%+c?890L2hCfxeRjY zDB6DoVAgTB1TAqcA-(pROXWS-$~)7c8EW-L7aMdrI-I;~nx&od*0=2S2(02*#XU=d z?eezFb44KCg_cUB$L2X4e6s~xXaO`~t5FPaJ#lKKsugY8cMY6&z26@GJXp|~YC0LT~ zeH@0IwjxYG*a-iG`Z$KHIPQ@|ZYWH0)++loxMbqcO>?REKa$QdxX!K%!*RpLNu#E* zt;T3CLkjmEb9J$=7FnPeuDlR0P4e)e8#-Pbk8_xFY+ zIKFir=cAE8*4Onft0CTuWL5H;n20MFM8JMU$w22+M(OLCy}ND|$!709jNSwW%bkG5 zy@x5$ZD8zUHG6AUq;u1+S4O1Itxy|%@< z4t-%@m9A!k-{T`tl^4!u{!i`Jzl-n8;)X2mnD1-o=C7TL%-#`NX1-MJ#q}Ib{7IWd zI}UAW=kt#x=S|(mbQ0C?+m(8H|5cUiI~vjZ9CL2)`v%l0-Uomg%-2m@3u)ua4Z7e74nz3Tqlm ze}xSB8si4MruzasYGiWKA7Y(G5{`kD*a3j3DP?YNDfI-LwtYU@$N&p`dfe)6WwDRP znR=PI=tr1}U}Kt)LXFTvF8KlAd(VhqJj2%y4WTGSnOe278$(4dm1EQBhEe zphs=VC<(&T#Z138DJmebs@Doxf-~{O&OwT_Vlko1w9T8@bJZiaY)i-(IaYp>-D&q< zdJs-m+L0jQm>O@i5N@0NsWIPu6%b5{NeZWOBZ{?5o}G3A^Tg-;=v3li@sK8bKC z(SYlhGmOnlT#f@fUE6YV(}iOH`n$DmL#m4151zn9!)tue?)A|=N%5Z$ZS%@2DxUCti*O(C z-#T#-=seG)Uf0E*ovH#};)DFquLkDk;mOIET|3-efzyY$0}flnFjVZzG-v&8p)jI7 zA@weUJR*eqoK&Je48j-WbJX_N939Cih>r*iC1BYj($WX%#>Vh}8;B{MX}Yq^AG6~Q z(Iz;RW~x{c>simLU~Rp^tjAUxO4_%=rDGELMxo6e1+Enllah$lYonseh~wey&!I#U zuRAO`u5R-zj253&In~F0QE2*w$v2%glL$=tp@DmyST(y@kN4*zP~@jOf5Y)ORc@|c zY`eLc6NP$Z`2p4Wqq}}ML4WLXwVI53zf$$^gKFog zF=jVjnP~ZLwi(Eqsn}x0NkkX*8bH9vgD1=};T~jdeu<;_{F90aEG>YJ$0x2O#B?d1 zg1|i~@F+g(C|~*X-0+VgJ}L!JU%>c;x%yyM5{fw+m;uuN^O$Dx(j{-xy9Bj_sFU*qHJY zCMifh=G=K#Zj*d>8&>6^=Z>U?;!JlyT;uQ>QYqzPW4r&#c`Y7(-ZiZeN2*#vwsZ*z zLGm>BOfBorbF4*uv>zQw_Dzlv=?dAV!V+_WH1UxODNZ;`CKaBXAFPMbl`Q_8G&w^2 z9i_2n;iy@Lf?P3ruM@sKa%G3y7eiM-1uq`JtvCpjBOxZG8HkzICWz8ih?8X)I*fp*we@3>2k(X(R{CnH#aQ78bYN?Z~ z6ZH`iZBAqoniBfOBq`6GkcI<33Xb1hPrQMd7P%d|xr9xNd=xILafl+0`Y>#uJYtg^ zCz=FnR#}Z~0hfum99hQIl+!3O-?aoAN@?&Fu>__ix*vz0pM8$hyKa}LUZ0}u_;yY| z#r}F-jIdH-rKvVFl6Kk=qUwztsK{5Fmqs3zvlrO%fPfhJlXDzb$b(XrN<5H1e4AIG zg&8`6qv^nW@Jg|mX63YBqrto=bJp4h@5i<87G2Mk z-5!ev22mYHGPc{fA2+@eqq^@7U_MvazVQGa;qtzvJKOek&=$~~Kfzvj9dJMW;eY*+ z^YMBBc{$7fHrsJ(%&_xMPR{A`N^N~tAU{m%@)-)N*MC~x{ps39^Ea-hPBL2n?}6zG zCjao#W5DN=56yv_ix*bkMh8NVrrpsCpCn|j>#s3iSBTkiwkeROpOmSd6Ti_Jjht`> zq8Ju7!8we%NLTlC8tZG2_gMm(C{i@N=HRc3oq4~u;&e&B!z3WCPN4(=GDwEjq#uY99-I*`mS79 zUPcbX^>>KhZ%Ykssw&A@8*5y;C|KH$_iY&tnjzO%X?)!HH@l!c+E8D1!t0m}(=bR$ zVoyMvkym~h*`brHd_Ny!3>fBeUb4Jm7K+uux~q!hZu1t=U}lZZ6w}bCgXh&$m6Bq$hHqUlBH1Btwe<4A-a-$~Iza9FADNv2Z z{!6t?B%HDKW8xiQdwdpgeGJ$6sN8D(0gyctVu#rHcz=NW5AKzmoV@%A_HQwRH+S%i>+*aEBs0#^b;*?Dy={Mfr1QY44ULPAX|x)&-6_SOchy?S zoRp4>lRT&dp;1HIw6aE>&VrpK6`%ZDWgIHq)uGHIX{BGf-1#}U%;*A7M+XxksZTg=Rz7e94iZcO}aCzk2RwvDC)z3UT5Zano6nL)n88W{sTl{PGngFDj ztT_zZ4mu-WMY)RN@t*RSIxf1XlIV4{AKk9!CKkN5g~1TIOcvacH~DGQWN{}g>xod! zELeW`q2m?;%9En=A%)vQ7Y4W8Z{+;+~w_p)H9wfu~U*%nR@ zgTTT-BJhDZGNXlQkR^<}gaJ?a)tsObmsG}l!)cn0$}}%~fd9_$v`miUgT(pwMxqdK zcA+737P-0WP96LRWg0Xcb>twydXb_ARNMm&`(cbyc6-uD+=`rn^U<9el5Zv_IP%pn z24BN;>e!A^Ea;Z`R;lnbd5>36ETUaQJh)fm{X0`nRD4x*KG6BOUmgZ3KTR{?fuLOmHw{f(GTK76b&8?u`*21~f^o0D!@)zFt5I zwv*)SU&QDxu_tmw7WRcP4T(|Ju%aEmY}g(Jq6AyXNWU-vvMI%2K%~Jm{X1q*+24vL z&epBMKmVLs`3Rd?8~4|YMI>%u5Kb7&*avTegvz$;0^er6V)a?m>wy592T3Pqi6gzf z2jze(E2#Mk(h?KKCt9_-$+Z*bRX&Q`(z_=Zjf%zBr-LBK<+JCkIq#`t;wv;4HDuzW zl%l0Y@HIuhvZE|bM8&8e|H7#dGsHHCw_;7N^>yDq&CM4y<#SFiw@Chv%2LN$2P)>nCWC&)QZw@s z(`yBa^-@H0_NF8L6mnL>>X>Q3!o+xYi%JI>dmXaKF z7CoX}6&Z9&V8Y!C8ky2eFK~|QkxF}W*^vJka){wv$dJBZfH{3g`owZr*23Fpd42NBu zs#^E^H2=ZRk0HyNit!Urv*y}jwVUldEuWF{f@^khnUHnh45H}CRR;6ga5KVi zQ%paFkyj0ep3?q6#97w1J`hjYt{z~q3DA{A>4)AM56*q3Nax)s^y;yZ2C?@;a2erh zdq^LF770LVP?@=t&dZY^pY@a#*Kezy&gGM!>rx0y!h8J3IErq+rJEYg5r!N^e8fWy z{g&IYKG#dL9_2hKt|T5@pYT`M=v2{{7v@m4fk#}#1PF=+ zBZFKsbhl$5d(t#N8`LH!*94_N`~s`Mlw%@&98_KL=eH~nn47=>)aVRGe?_F2SI*^= zRRkogkBl)twHbD>l$Gm$pLkjd{!wM?%2Wd4y1~uxlgy1!7i=X4BgY|XHTqiN-{;&P zO-CwE4~#ihsWPK=CZtnq>4tozovVyV3sonVp^RQ@>)2f=T7~~f<&>|WL_%+AalsI_ zKGwGK0vb3oQuXe5=|cGJa5j`Y*A!*Q!3+9V1^8k6yuv%1ohqEv;I)*F@vbzH^3>t?9zmu;pmjwbRNyQi+6x8dn}ELJDY+4t#>O#}v$h(M|Qt zZTgBl)G~XUbdFm)RoT+Av;pvdE#=(NF~)2LPqlfg?*d5M?_OO{)8DKQoD5fVTyUE=9==6X~{S5*Q6c}5Ka?MWW)7Yym^ zDU%@U3Owt=4qa81Tm;&&v&XDME}@M>@~lSFbUMgRTu&n*UWxEbtcK!p&$!Q!Ch)X^ z_4?w?n2GI>M8S@DkSZ5n9Zv@+o^FpI=L#`mgvrJ9??~cgiFXX^%`lKqFlsEPM7KOb z$}qF-gKAG&EMOAWvbptyCWk>2MgWf9-wN_dW4p^PJ{k<6EaJ z+w}DNc-k_Z;l`8@-Tq@+@$Kj)eUP&wVtK$>CP&xB)z%RINB@jucTl91dC_i zS|1m?;b#1&LhKst208r^VTvND(8)PkFPeRe$F&;(?mUt&AR5;+!nDdn2y>h7K4zW*Iv;Yfwo+AG^;WdwmmzJCf zsm~vn`3p|`>3Nonm`)44E@)H9je_7wG!YfHm#z990xVqmR5ABGlukr~gHIl$>p|z{ zWYxNck=GGzgyGtp%@=GoiQozOX$W&j=n8bbk8VaDq<{)qo}?R+n$(i?~$&lwrx(#dYl;H$=3U z-W%b$8WmrD+G9N-iShZimvr{)YQTSsm+I*WgF8CvT$$FJI-<$WFf&TAAH}8q^90+% z1VUcMUF)_N}+* z6or1}5Ci^DN+QQOsH2nN-|J+Map4Ra;8TAv$1jBFVeahUObdL}p*3+PEz~SDQcV{>^4!71?GXpD)_qNb4tw$2GXN+eLVBYo!H}hCI zvCFiq^^v_lSyIBwhZv2Jfr80LdEHo2g&y@;4RbkX->tSBe)YSjd(<7G7{SO& zgx*(Jbt8u!{bo8MYz1DO-eK6ljT(sxaXW+BDkotIe>39w400Uvgu35RB87nY&6Id4 zR&-+i4zf-8ux*+R)54@@>e!$oS{PwVxcAL9x9Ad1^OGaBDW|Uun5JiGuvM+Mic6&k z%#L&Ht=l?@92B%C5~)^%b2@KVq|Uy}T&B%O|W zG3W|xs5byy396dS_v7Njd*eE#Wi9TisannNRR;={PP0%$j2X41r78^G|F!`S-!pgn z^u{4%(r!*l!^1q4xAWoCoZHHGE4EQ?q7k3MO>^|Mh|^V28J374~Z5_I`L_ zbv+Z49b3)6Sj&Ye#Y@m>O|7)|V^~tWQf!QA)CT`1e|yDg)R?m}5yRXzVcm`dy6A;I z^vGU{)ux>mAVKAHOj5%$IGLn7N(~F_#Yuh%`<-U#_1S)7V>wDJ2*%ut6J>+=dAzQE zv?BALwcVx7?ON3&Q!U}>RUa*E!O}Y4Ia_m{_pp(2=fY3R`?|d77nSm(fj3-s(A8aS z!RTcC;b(c6Iw@~5%D_6dQbY`tkpW?+8Iu#Vi-nQmy6hwW{6Q^)(=Z2XZ$PJ~aNWk1 zmd%uG&@o*l(qE7I&A4Gw{9^guJRvcm7|3x5^uxBNHtBELi$Qh2kh{={{Aw_3Xn^Tc zaE(ST6I%0ox}{#2r0AeE^tKFhploCS?-voogEAOlRL1!cADE?H$&`LDb&OI-l1Q!3 z1+v=->di+r-~L6DGv^`8-yE@Ak6|t;UBD>JRlptd9W_Oy_-iv7K#p%T=rkF`V3ZulfLe$ln@iXn0ubi&^FOv z0Urmv800V&;S0*(@_|;Ma=F-$V2}%Ng=NI^eW{1By~7@rx41IASQsBKp{KXZL}(+P zoUNWbiphea$i?S0V7u(UBix+yLd3xhd(OADj`z`P%9Hq3hWu32Fbpl;T`P)kT2-Rc zJgyR4p9}E1@anpr!U`%5~jeCf6@{(!B5YK$gJroRbtGXfOMw*CUJJOm3sw zrXnBtS91~R(5#W@Y@|Cq!crx(8k6l2NvfF$hGdqXVCq4>Mi@2w0n&uH;JHjBa;AQd zFZvO3W}(@;w%AejKL13#v#6h3ecDX72O}a)OnH638TL1v`ZuE)$>NSzvt4Jf3RYo? zzYx&NZGACEDC$SUl1Od+}83&oYm2l<2>Q`H7$1GDL2*>%&=gCwU$L_)&FAfctg z+y->(c1%{>493M|u)2!m15$c4FTbpNEf(4H-D`yN}+-Fq4j5X~;+y$Id zvVz%t0<+8>-Uqtwi0SI=(vAcHr*c1IjM|BDpuNNjg?0p*UB7%xM*iFMO!*^Yc`;8! zA!0fqbpBO&&c603Rh*hScu-&_8v1X?;4Wga7wSYjYMq8FATf&LUhyK~DUKd@We*O* z(Iixhd6W__tB?|iUOR*1Jwb!hjey<_&{2-ADG}lIB=rHCUX>&-iVEq3!+@DpNHN=p zDXNkHvtk-~olZ=Cn0fz0zq{h1II%aCJF`iV1bfsWZkC~=D<3IU)Wn)1%@ z;~epoh;v{br4($8q%EY3;53)CI+-~=yca#Y%q`yx<>a+5Rif`V+l1WjyBw@(ftVgN zMmK&!ru}Pr-&=O4V0Rvh;PbfIh0<+YUtf=Z*{QBb!JJbT6E$--LqVO!1N(n1 z>tw2olZ06clQN?9@7qGW6&FU9I)2gig?uqk(3`NC^6uy{jo21|fcM(?Udd)4&Jtbp zN1zK6ms;mJSd~wK`7zS5Ec)z;(-^02lMG)Yzv~5Mk0n-d-4)UILZL5POrdk)6(5be z`(7hIZ@dO)RVkg7)hgNl@|Cmyp z4bN0N>$Gttrbg)cCv@PfA;R%k66xa%^DYUx)&o9hWvLSW$^yv2_ ztDkQtxY|q!I%hGnZ`h6)4NBr{L{s=MkN7K&vXzang9Ig7f_{c+#P}y%{4JL2njRgleu#_%Mgy}F5m}1N(t>86_a?Xz9(wmpsRmS|*KyCke zhB1&q%Oe6Qi7;C%{q1aFX)M14rro;e4UuuSWRD&g10^c*w@_#0r@rYI*4X!=UYx*~ z*(epd$vJX&i7kgRTM@c94GD>k=EKAD7EO$5)YN_5H0-8V;P6a%wSLgynl*3HFp{Y0 zS3k8lR(x4LyDEL?^7Fl}Pt|&0V)&fhvE~xl&G7!Pr{h?BhuQ6W3gT#!)^@Cs9bS0RUcwE51R!oZ0 zP)$$*K3=C`LJ6g8V2XY(0_m?Zwb2|~2d1KTKEsCo$}!obm&e;|kw&-|2v*+)Q5-%I z?{$nQr8$b2+bYC1wNxJUr}UakF33S5QQD}u&T}C?8#lj2RDO{q4|@UTcQSr1j+Sb@ zfizB;C+;Gs+;fU|vDC4Rw3Sg*1|Bq;E`6}5OOqsVFc#J1$hf41ymB&|Befc`0LJlC zC5>*FSU6h>_lD1Jx%Q;W(wd?j!>(0}j_+gP_M_|AP{*7X^On&wKS7^n;uCLt2R5cK zO@Wza`!|#N<612i33^oF+2`NNC{=@4GZSP2qy{767t(3zMPe@8+3zN; zjpmS+-7rdIJLc`htE=h3PLz72xVV?Z^afDo?vYqY*nhwaUfYoZNa6MM2XRwBHLBhi zD>8T_Ey!|`_F+&VyR1uQ*2&rh3S{FPpJBA?*L~9)7=ACbrp*q8Aq>U@R8*7sT;Hl9 z7f{=k^{w=Z`FqQTi&XWTjI@f9M&azap^K{N_H~4)oCP?e6+g4h_YFD~_|*s_nrX=6 zuo$JVMe1bI#|<~8fCeyUUd&09>)9kgkMCXk%` zLFW3p+Bh`Leb0%$FjV4fH7!#)UEIIIt1oSEb$TEjzi@-~EBL-no$V$4O!Fjrk}ah_ zlFp>DH=(-IL7|{|2=VT=8Ng5SdECEQtQbV*4m%O<_bF)QLH~BL?e>Y`ynhMAYMQ$ z{*;a}iwK0*hKJl?`Gsz-dXg1MYG{X~r1(J6g=f4O{gM)7BGgRP8|Ts&l|RK+rntiu z-saz>FVFxF9V5@!BQnrFUQm|_>#q+-0?K6^n{gQ-o4i5I|jk|JjP5&+}cre^u@?9OTAV|u3n&gn1BG5Q?) zd)o&!9ANe9LpDQQsDJlBgDzwcF9Y{o>&$L86iXczFeW@-Z~kF-U$+64K5hTZmp?6l z&Efjrgo0E1Iv(G!rV3GBReHMyok&|E)6pHx0=`Ph_=qed6!H?DRUu z$Wxg=jg7@g38x@v#{jjIKHR2aOncT45L72GvC_6OJ9q3LZidL;-8bn~#dUW-k2rB$ z2ftSokhs|5GPu#Wuj z76ZazOJg>x9|N6QwIAWRofQ(7z^s?M%N4Os{zva;F#AG^89Jq_M^$=lEZD}OxBkc4 z$B&LH*BW#DcJTa6(79H{`}z&xzJ1E~=Zo28L;mZK+`qaV=bzHEc=~F6-el$7nZh{V zA}oe1ZC$j1OC^x6;@h~%dAQVlANAd`eXH(<4*T`-v(^K1^W$xEvil7vii99vt0YTW z?KokklXc@knnR329+OB(#}+B`(s9L7v(tgg)8hpwEY(Z3k>wHNw363t!1k2$jzC|= zrw#Y7IHM~^Jt`NTgr#$x?nAL<6bJ}NSRAC2ThleCvRNCCXn>2~t;KwAeqy9klQ^Ka z99iL1nr_Q6pKhn@)YHyVQ>G}DX~}UpWlB6>DnV(=}nwi=3_-8cfladpr zJwbFiF%g?^r5-JZ$j^m5%w^H=NjlIMdruG&pHfm~ibuIv?foHwAR_Ec5xBp{#@7-- zXD$Hi?`1|15&gNWT_p&k70?eGz~hvZ*vzgZp3o_muVVogrWB1D z5wFrnD$ZD%iXyv*=|Rmt229s*JmV-)DbwkV9Y73^DNDl}5DUsRI_Yi=-u9OL6p8n6G91J4X>u)X=; z@|(?hkdW;<=TEr(7-Eav0_JL;?jPP}$XK+nhFUVe?jLnB{6&iO>ScqhQ02YP?%3;J zqj(neZ=eAeqR@TVd;O#8Md-DjcyYn4bA#5k{SbR~hVY^dML)FBG|ut5Vtdng;GIC& zebH`G>p7~qIqZM&<_tEmc|{y^r3?1`_RnOl|8!+_B@E-o6aRgM?T*u=8Lk{nK zeQIZvZ0Vmx-?v5nVsONj;a$GEyi+ai`sT5PhQ+dWcuj!rAp8`T4dqp1-%3o1wxCvJ zKGXI1n#n8(-5Q?OXMo#GL@oT7L!FfRn&!|1H!*_)DjV`gPBn_HDJ_MMOeTpqy`1r`yjnBg-IM{O;LAXIULxFDM|0SFxO;=qO)|-IeqstAVq5 zetB-jA(a$`M865hyvCMcx@?oi_K2O9^&Md4Y7Qg1v0!1-q!FW_ zjqh%dc^C)dvO~OMb@WpXjkCP=l8HXt!l{rWZ=a%@@XoJ@j9`x5=8>hl9A(k}IuJ{{ zDa?G{Jaeq>x;~N9p1;3%Zn8w+Sv~u{*jC%A)gqa;xiJ5W>Ig5F1(N9w`E73;cSfmA z<3#_g-(=AlFLOJl(9>@0(hE5mDk;D``SJ*a%S7FwO3NU3Si%;Iost)KzhWbk!FgNP zqv1NzsxK#gp`%yE{W}ew#G$I6JO*UQTaXMU>YPWKHOd(57ZE2s!WOJ)KXoW>uw6`7 z2}F8fxCQ$kwDqG4LKrX0B-eU`xIT%yLpO&NEOOSCr|iCtE9Vy!Xhl*|d?UKYpTJe7 z@*8Dv4^VyNkpwGA)wFMPK-8WfSO|y?%3+u$LzFJ+W*#VxamXqFpb|`hxct(LKj;M0r3_%@Z6g}ej>J)< z)is5blah-UsW|VQ%qt18a75yJMCt$9b=S1#ym(CxSQPATT3>SLyl!qi$!IFi`rLlY@YJmIxwSC6{e!W%IJ4SV#ge6`2yTk4<`d5ChN5(`@V(9+qlf@5W^Q_-0 zscCENQF1}{|Aq*r(4(u)U!+$uO%~b())Q~{jL?3G6nRc0T6@BYN%u!~ACE@&&*c@| z3Q`yzQPq61dzWIa;8qQO6IYrm_$rn;h$%h(C6Qp6Vh}cQuDOS-Lqi_~6Ad zyA6%oR8!-!-mPlkx8AfOmz%jKLXO&E8R@cqD1PdTw4C^Ym`{E}N;`Gli9jPROHH^6 zDth#Vsa_LU2UcQhShib2{2y7K6_JXr622~;MKU%+6+lV1+Do9We}Vu5RVf~tV>OzH zNH7AOU>%wb4{1!{f6f^yhmkpXy8Rg`?7rga?Z8@_&dprck&ZtX*_owhbno7su3GQq z%rKP!Q-8?3yLywo2ru!$kzlNTC0b{p4+!1)>_U3$axc9aKl_ z=ifHpsHYPt@xse#zlj8=K}zGH%){OaE`8BvO{Wq0ld=fU%Pvn-FBq;-eyJX`r*TWG z6j+10PeBc6zOyur$Fn@rwh?~RrL%NQ?aZZPg3|;G%FxbAh{8(Zk17lAAd)uT-q&wts^sX>MYQ8w%oOm>`U zGuk{pn$zu?xBVQssQ6Oyqyl^l5}Btb_H{T`9%JCN?#OAR`w{yi;2#Rx!nLJ^nl(y@ zrmO{~WdZo`pF)O``cljYB?f)=^J^{LdD4aJ$G@YS7i4^6`tIqeMk0BFspeFD{&s3_<;$PALm7{~CJ>$R~ z?VX~e^S9I!O^Fv(@#w=a+&+oL93wS_YEtPKV=Eq#-qHxrR?_deKw9gyxu7$9u@s#3 zS&~(>zXjUDsRjhN0GgK9MY&Lm6o+%HUq8}sbn7+MC2gbK#rq@o{v>7o0PR<6`q-$= zOV`(L^~eVF+KHtLgRT;!$n#%d` z$b2AM!}whJbE!FQ_`$=WHzB7b?Jnr5G^L!MDUWB_^yZ3;ox|gBtuWD#FH>I(rlTN- zoc5u_>*(09tUTYbMBQx^@=hb~Tq-h&3iCdI?8Pc#ow=X%uWFW&o3Vb%k%1UMd7asq zZ*CJy+fZ=alG4B7`*ZuNKr31rIUG*VeG2{M>-^nc%x5p+R?5x=@sjaKR1Ov=Vd&P- zN1HgUOsHcvxz2549tlzjo)zH)?m^nx7?DVp>9lfUT5jbbfAoWf+bkmf^tddk{wu51 zKFWBu?ievTRazu+BXv63_{Bqn@oi1CsU|b6<32?hMVO(GLlTi44AU?{R2p+mgk-_Y z;Ue+nET_Xg%!-tRY zIiGx-KXLdVrncFrdS=()_H;ar+x};lYTb$9b^}T2^hxPlqn&r$$ZkAzJzVW`bUy)$ z^+A#fb&< zH5nI0vfLbYKdbPKAQIDrIR*fpd;JJXW0Kle8Me+$L%w0Bvfhu9=b$a*?Gboh?B(f@CsluGzGe_D^_PI;qhij^ZxX+kSZ!eep>`^vycU* za4s7mCE5b22rtU;xtazB@=c$x8I4i6<)NFS=6J_^D-VhX+nv&)Wdya<+NX^!YiFwT2q4_zF=hAkk!0H z#%flIi2JZ_^_k>O%BqH!*z-t1e=C#RdIslKA=QlV(vH`bH#&iDuoe*6?h!-_Q~y@< z_c`8!^RK7iN=r(|7;(T7U}-7Ru;BUvu~cqw2^WZq^F`xyN^c04xACv=M?pZJ={Dnn zO4D(1aTQvfuYHy1o=zieF*#up=^)FY9A^g)aoyKUPA>-eS}1+PjzMWsGtPBICpj@L zQ&K#N^%>F=2*ukJk)vV%jUXQTBH&yGmR#_~WXi(5%4h^IS9B~=VluUoSgU8O6?%Nm z_7Fn3R8xj4cLwBCX-#OSi!mN2slIOj$84d^x!U>KS=UFqwi^T1ymzcn_dbMTeW=dW zngch7V)K0H;-!Y-7e~8xW~6^l6EmNjO5`cXfUcfV6_T&(!qnIK{zB~Ch~k&->&K;$ z^E^wVDgVo|*Qp`l&c7ZE;oG4Y_+yFfGx=AKLn5y1iNua)D*0#^2t(L6*+f=b<9X_N zGiKziVA&5COv)LJD`GV_kX78OI*FvXZkQ-8Kp#Rb~UfE|eF#X{AD zn)YyGv&~hEM(H+I5}Ji5Nsl}>1jB}EG&5PPV6}DPwZNJwzlOP-lU->a5ryhb)2qe4 zQGS(G8RV>UvI!)^c5sC9f=ZGNThID6Q>fLneVicm+>m9OmE8?c!QA;GK9h@TEP^b^ zh;XXsE2@B>0`rV~F{$&1zGNSDR{( zD<@(|KAlSs0)syGqcWQ3&Ak}JmxNw@dAxw4in9*fhNaHy#WfKR@I|uops~LDHHN95 zluOCDH%swA1=@g~^kZdJPz!|~EDL7)M+9cujNw58_Syrtacjym*1@_7?BBJi*BJF3 z%LCbTCg?Cn~-3Cqe=N!tfKWz2e{QWgPl8ZbVW6i%A{=cnkGEXBZC<-z)L?j&QO zs2BZ|_W3`)mzEqzzt={dfhRP==KHXw`@G>M=uKBu%b|U?w#;obd_8;dU$5EsJ>?^t z&~yIc?0Lo3cas6U8|oqLknP*FjMC^_ zMd0zKtm;OhI~Brd+v`sAp=Hcz+hPnvkgLH_vxo?%#>A;R9fgGx;ZP-EtJ3We*HkJf z^zW>QBrOu3Ph!?px*nPa1Uu-FexVgs?nG%e3$C!S#FE7^Q%fsCz2^wSY9EI6cw~O4Z|iFP7*CfaB;Wx)NsTG(xNhI z=ggeb`C2ne%-hW7O*iF~O4>C5L_LmmafTW=avq3k3^l%1YY9M`&)*>Zoo%{xa9x1h zOCUGFsutc+!as*~YlLU1QQ$+%%Gan%8qIJjy8=9ZBf*P&6SQ@e{zb+uevaLI4<`=F zZ{upyZNGCO#zuX3CD_j7&B{iga_8r$nX_GRWLP>>t)ki}F$eNTspf_YDnpQ#z z%?1Qm@g~^xsWA6E@PbOrk?zYmly382(3$X391KXk6#d8X_ZWY0qmE=sT7}5Wn~~q~ z?AGg~oZ>1qKBEU}#+2bFB%@hFsBeFt!%M9G?x4hCPn9VWitx$vw?YJn=Xv@wA2xzf zE{K=ri=Fl_!(b}JdBs_Wwn_P!TkK*9FkRu^W!vqBC%vh#~`KdC*dV>8>=XT;z8G`<{ZXSjo78UEq~^ zoRH=u$)^XRJ@>xy&CAektWV!ohHQ5TH8zwIjCon5>X)4(uY zylKYXaMU_{`0fmRyd8gXMw*x1|2P`@Anek=(f@ac`ggmByyUg@VgK}g;I+Eo(u(<} zYvJ4e_V({jtmY&-(%k`*Xj{S87pm{mnzik`XAxjy|KebmfWvg2RHEc6rTewn#Uz2fun`=%P zke0wHaL~C5jv;|vBZ)D>E5XfTG=&{HW5T94y8o2IO0-CbUz@9#Zv^Mf>x9x#@t$3B zVh0Tm3M8P+3j1k@!8Ig|vekTYG4Urr6IpK|g&hvpK;`PQFvg2<7%!-N!<$elu9*)$ zmGp?R6;@mJ@&1~UaL+_7Ge*=9GseYkA;l>{if6Q*M^HBZ?Y@f~?KbtRMUH4_(_4tK)vwnL-Xec^P zT5GH*r8F(_9X_+>k*p)eUiat++zUkZt2M_Vcdq7rl1$e)E8Irx(S4WK6$!BbD!nKC zDqo2rN3VXP%0S-42n68ONmNXU&yf#U`Xpr*%CBU1oH009kxeSnvEVdBN{SoBhVn>X zjMb%)%2-XRi2QUNNdqI)G`3A5=rP%^9`ou-P>*P)j2*KRzMZ+F#?)FFDt}|kLBYf> z(RPAV35z&a^moi?YYZxfM!!;zX7@k5cO0PqsXE%@b>D4%-YH?&ih8&6;Em1yM);1! z-+m9*rT+|gu?P8IocUmRwBB^>kp5aQFst}J6W%Oe*oN8Z&+_YMx~#o#eZY9#onDz9 z<#v=9>Y)0$U-o|D{C{j_A5dp>?EVihLC?N+N-4a5;-H^0rIgqJN12f8s>w)cvR-r@ zF%w7sG)&hl!6=GDDcQP&EtZQu|vqu z*Vu{Nb=zx^Z3yrQsm7<8>6*nBK`@a~_*9FIC|Bg0p8Rx)&kS+d2$0Oh!c&C+)<9zM znIavEyIFC_;yQ}DBaU&&Sn_9*p{E{Liq(ek^3Xq3qUu00Y_9Qsea_a^2qbSNh}maf zK1WLfr4jH@Yh2JAOiG3(BUXlF!;o&t;!d>+cBLXo9mSa*t`jL&6zLWu6ES+J290<= zkA#6I)FN6}jYh*vG|5mCY@`}QaTzP0Y)JYv(U)U z@g#$a<-wHUBx5@M|Fie!(U#?PeLwvA4tqG`y|-?SUES5)Gz~I{sGx#`7!^ns>Z9@q z@+47F#HA=IiHR{Lari|u$|FXMM1`2dD1>F=gbz3bHQ-VdqllnD(^HLiI`baB!}G^y zpL1>%)z$Y_S9RUS`&sL*s(a2pdwqc+Lo@Rvy)DjAg1a?e6C0)(0E+-RuJ0jtFBPQ_Zgq;eKl8S)DPAd6ELYdxcJi@LC= zBv2lS_#-uWOQ>R7gAQkR`WO>9(HoN)hYwnSih|bKj1&D4K4>1^SS6-`q*aq8j&Ysw zN#4JQwW$4cU=Bh((s*C-ws-RZzVx!ke&OXWT6AF^sZPCX$oX%~AJeg62_p7V@gHB> z^R|y?eaj!bZO_~8X-Oc2!13e97yo~xpC>eU0ZD)_E19f2j~)w;vFd4DCIWU{dGd<| zD<7X>%E;unW^!9fNE&f?h-e=~&oSR^s+*30p*)gM_bug`mF$sqL$NCS;Cw5HfPdgw z`Kt+LW4O?$5GChC<@qug(rBTJDJ7-@?VQ;?N7;CGm*R+8-t-c=NoK=9w&iGTI`WO0 zY~W>uE>qY-oK_|$4HsW* zwURAM@2@OsrqMPsDN_n>iBXaEOI$lru0OpD1!JEDAyE|+Z5wF z1EZ(b_){geQ`0>)CLFJDM{9ad+v4_ToyR?OO1%=G&|o6vdZaocx|-xtf-Xh-A~wTf zmmHGD0gT3REDf+y6W1$R>oaa!A8_Z&7RD?^fo8{&ZHeO-mBxFqgDxt$z;mgyVMhM2yiT{AxPp1`S)_ezf;~Eeqb03&Df*JBth>e} zz#zel464#Zr$nw=DeOd(3^c<_U52AJI`wqcW~_7z#?y?d6wu+?LURkXrYsWbNdhy2 z(s2Q}yjOHmVI@p2b{Ie0=lrn8*v^r+ih54CMKjcopNv+6bPzxJZtBc1bPj~; zoDDqv`wKevjRd@u)sm*wXiVa+OqLj9BNDa5ewXr&RR&K=(KRIF$nc(qe;j4Po^6)s z%A;!u;GDaE*&;5++P)M}4hB!@68qhztI~9VcIUy&!!DJ+yff1nAjDS2>_kr0HTYCx zW*$>Gu}|(;eA}XY#ODT=8(c^J6zh&|3=!nKxsIV&Q{v{X(x|nMi*QO6g~A5{ zWVCAx6b!U4d6G$_T$7xFrHyi=Zi}$rP9wIAjZ2xvwdCK!di1)LA(GbvULH%`Xb^KN zyDx_V{+nBRrtm4Kpa@P;*M_ZGo7L8g+t+tE`s7WLCy%g4XRNP|`TP?f=kMJ8A=XY0 z2yM^GXKrxki$8&T?uhE?Q$iNeQ^VTYn7dAF(n^I=mGw(zWy)ZdljSwB?a`$s<{p2t zM6Z{S266SOp><9c%v1n7)L=#T60*5#iYDt+B$;D&sm+B!k1ALZqED?jd|9YF5#<%h zw!vL!FYKVR)KM0)Z8Xw>@vVq&LAe_7nScYIBLSBoqG}{>rs-ycR2;~rgBHPy#-yq& zlkJvJ+-$_GR641uFA|TGQ%Ow6ltP);4(7>9ZVP8wr5x zM8ea@r0oi~k)sOfnAybRjyTdzMGTrrl~V6yNkV6JhH81bdC9oS z2q=0))eSJyfrTs0VO_Ou=0toybv00MwT{Q5P3~{RIIi~Ce$Uh61@dl1?R$py zs#m>=!C>%7kB>$pUiGS1-H<`u%2M+HNI+FJ$*97V5=2(6XzH#dTFHXR1|D5Pu^yS8 zQWQrNRZlTnGtAa4)8iK3(&$PwEoI+Ou4>9P;V-*PVP}DS$4kiKR*Bu7p$8Li9+E`# zFOAMc840sgX(GXvT7wm^P#^1Z;W-&TSL8c^d`E5ovEfbYIuH{HhSXIv!Pg2~29%FX zk6N^k_@tqi0n;a~p{zmWxj37_60F!J=yErxF=lb@LR&N|KAqF)G_KoR%qsyu+6B3Z z7QWHQ2qjE;F+1?7biQ`+FDH%udozU>aW#A#Ti(@BK0Xg$L9sr*zs-C9q z8M1+AkFhq;%SuipL+))|;4_au%x66H0shYIAL2>fP4cuR&uh#~lU>pb zMr{)9S<7d%^AfEi4%C{MHm+W!7{4eJiE9-h6I0E)7ZxBPDgiK2f$|EK zdv04BV6DflRIGNVY|Yx7JTm02doJ+IJI~U+Yk)gZQQcWmuRCHIP?aKXr3^Pa)WZ~A zYD}RP3sO~2ESQy7*qPWF159p*;xwwZ?f|G4%>_p*Ok+l;;P8}U^`-yFya^^fwIeL-foiW=*n{l1dN^0^>MRwbSey5<< zE{SbV%sr;-sK%+Bzo787W^3361?4d>7SiK{7{qRR_K6;`FkHB>!b2OY+`qlXg=vpr znN!r3%2~YE*D>2Vtm~=AGGYJefBTz2<0!TZDC`$B{6+YO*L?n4e)}EQeE!iWb@TDO z<@tY)mwfCM`=XA0D%HMS$mSZ1E9;?$9%5x><%SIEmR0b(tcoSjQE!iFbrXhXGSZPG zzxy;nJJC^u1oDl>?PVsml*v?9TIQnjs$&U>tVC%SF$K~U+3}ddW2QB_@~BCHs-4ir zLNf*c??u2LqR_hLHSfSAmdWiox`yt)kDW?@WJnE| z2HZ4up2<{b3Uyn?QuV|!Etx<%7O)jkjh%`8a)#)KQ~*`Z!IXR!E*ITPI*GKlJgrUX z@SvczQKPFM0)8c0rC=2OZW#RLnie zwj$qxx>UHn!AHeNwP+m~a=J6%(yYr`cSCV40hp*Lk2VGd5!gu=ftk8i)cr_o3H>VsMOh?tS|vx? zGalMnrT#>hY-c$i@j19vaR-|N2Ui<<-5Kq)=HgD57&NQ>DW7)y0)Xl4O|v-mvV3&SKTrqhhzB@nZ-G84D7(V+wsQsBM!+;`u7{O!N}w;%h6Ze=Mg3HC}8sU-#8IkNjBD{hV1iIk$N@tIn< zl4%dwrgQ+x6)l3yz9QQRXr~(MClCM6;)Kyb#V@~COR*xW-&I8 ziC{ifUhIq0L;!G1sH-= zLf^8AV%3mLL>CjIqO~b{B2xu)6`8GDf}Zp$1D9RiuddZbc?L3u^pg~>g& z1)H1oY5Ve-Zxnhw9A1j0Fi9jANIu??M%^aTlLI|VT+ zYAQ%T#->;T6N7|t z<{q3z4HFUlH&iz5ARTCm+)%U<{3OA2YGPDe7v5GO&1+KYNR6j$YX#Tuh2R&9cLu1Ci|t<#O&~Xa;>_R6tdIrfAb?|uiT2--2uAt|9h#g`K3SP zUw+%)d`x5bwl}?#AN!WS^XMDi!rC){nY)ku$)EfQFL}vJ=ytn{=h8IguDkByWiNYz zqe|}~%Ns#@qhIj>H7iIT+{BK$q{rJ#kBbADijZxGMTy9_m_L!JLB_h+c&HargL)A=WhtAkT=2Wp-PKV8tp~#U{_hfvRQy zRX-y(-3>eS=&q*f$&IA78Bt!+?6ZLYgDTGyu?uCPxLicZs{2rE^}9ZI+lSQ1wNJV=8f~sk`D@W-8IaxR$2sDbnE~ zh3p{IK?5(l>xtHlc~kmzw|WSFy{gHpN-tUwjHi~^@{A^3{_n*uD)V&u1y%=K&{!SV zndNL<>gLw%nu)PjsHqV#d8tWvI=~bn~zS#y&9vPxl z?ER^fJj?L zOcAjYhndyrX_KwuCCf$mu;>;Lm&aO&_G4@={&T>v9GA+|~)u>pM3foa71-b*KF?mXrL z(FBy1v6w0n63Kz7`l3Urx|(3yBojxmp3u4=z{r$=*-#`+Lt*f(v|38 zB-FC8ogNfRAm{`@>4pk7x4|xtW@K9x!764)E$s_|Xv8$Ylo8vwl0~J+w*wqf$o5@x zu<=+sF*h2t96E>{*5h5eRG3QA=XI&b3b}q2Cm^=O8H}BjabYmM8e;;Tp4k4jS7($( zit0r|qX*e4I)o_yPf|x+i~E+UR71fMyj(v8Mrl3@B` z%%fB!)m|uAWkQS!MoH71P%ubHW}>Z(M;)Qo%+7V8U$c7W4%P%V|7v~VG^PS56EJxo zLd_LBW`R-Ajuu3 zv2YGiKuNt`;tC_3r7RFDg`OC8b~{u^+*)57yO@7@a-R5 z{C@Wj{RSH^{^G^sKk#q9`-YBV_ZY6HGgQ3eKRo6!>^>Kdq{%tx*3<6yz7YF@-vZ#z zzWz)3^q=|V8@m5}Yhb?iYrpn}4&Xr59JtJ7CRYiKRAq&(9r<8P*2+XgpBP3@?vqRc z$)F-yjVT;@QZ6ipmGkodCVPdjob(f;9LIaeQdCtFwFu&)^Go|;5b^wcA6gSy39cpj z8Wo`K8OfXp3AzfHGT=H!#PBXMJ(;3>WcA~YXkhy(mZ~37UXu-!03W4DMjF>PO)fx+ z)}j+>?g-5ZYW|&z`Hc~Ml=I{lXH3qtQ67>>AR9!K3rtTW6h{oo3%DqbrRX}5t`ShT zG&*Uh2314_wXizYP5@2a60Hh|AhmO@LTwF}=TXZs%f6;=YtnHf8F|sWScNIXsyU<@ z3XhpObRBSQgDxdI#7MtYjh!J}AhxV0KJVos1+q20Kv{_X=fsmL!bojCNMxgIEj4mPd`O1ZZkm z)bd?Vw_P&5uTQ?AsfU_z;(6xjvs~(|q9;Z`QYj$KwY|`+fRIE~RPuZSkfMo%V-?XU zl#O^G-LU9Nv@o;SlkJ^i)bU)hfeR}=v<}p@#XHT~kuk$05H97!Ng~v^2ve^ysTZA) ziku(xC}t_q=>^40jihT-uLROwMZM7?J#VRw1e}e4!_|gKor|WZ){qA5N+rRXT`?zE zJm*#8mKG?sb4UWZI0P_zsaL)CzruUr1y@YYf8pgXxC2`Q^{x)35RTH{bVqK0pq;JQtq(1;4>naz7uj z_6=aX_q^c^Z{Tfjdm9ft@BmeHd20LC*4BP^d2p(skj1h>8NCD*yPl8p-<5`<6ql|T zSs6~7$JJ8M4olzxBDmLjNxND&c@?tVgU?i>Nl~Z}L~BwDl`I_x%uL=}-4g-6YiY`!rZ;~N^Y^q{|KbDD zIaHQHRm=HFQgr2;?nlFCt^#&i)Af=voenB|tI5Mz(L#UoV4ZYeOc61KCz;4OD%TQp z)6q%Ckz^WhxqzDVp>1Ml0yLFEm3~13YhMZ^<0g>QMeq?Uq$5u^M`a-p|+Ff&En52#9` z%Q@c)LN1gqXx6&g9-0gkGuGIt5{EAbt{+7puYgjz-@1`rgj7I>u4vpKq3T23kKmWgEU>NsZ84DA%vN<^KRVr<|OJ4aBNN9|br ziX*NC0bEVkrk)u>D=<4DIW8(FViqt%gWfUJE1p=3^>kD+Zt0*$l4CPmWk^$xF@eb? zaRwuTo*K6L3CaqkJ3X5ab)-Jh(7y@`0m_+O02{J^cLqN*=pZ4X(MDNkYjiy|(hxeA&y^1A>b0M)!mHl(=QF=ba{D^paX0_{{vY6#5B;MXHlACd&)NN+c8>)v@4);#^(VddbKm@pz+XP5 zo1t(zTc!SEQ4`yna6~1pV8LkW zwv}#-m-lRH5rC#cPw&qzqQ+A>XN?Jhp3Lwm_?Bw4Eddn;IQd*0dhFC=CN;W}oF82^ zp`Q6XBu(S;edGJXx9=PX!31A{23z)uS)u08KsMHhE zNV=m$gzpq~pd~-87pc4AP?l$sd*dpDwF2mfKpKci#B5uV2Qth|HPHbIJgBk3UP`c= z33l6(T{P0!cM3mBz-dArs8>A6jv+qK5e-ZhP)=bcnpRfP>XxE4%02n|j3jmV(h#k5 zUx*M3BS5k5Fj=#3W+K>t&JJD3u2xqD7w!ivTn~lnO@HfU*JV3=t4szSi8{8Q_x|7h z!ygduORnqquY35_m;L_J|MoW@^;}%-{9cPbcI7elTKk@%{kQ-2-}q1e=|Az(m%fzm z`@Zkvm9Kmy_uO+2&wAFg`2FAieO~vv*Im~@4n!HVoS++XIbCWV-gw#eda?bYV={MV zt82(o0R{aIzMoUBXVh&?G7g|c(-E~I8GF*L0<$?18)YEYH3Yq+vl+A8H%6SukbD=S zP^)xveNf6gI+fMChR)^MLK{;)%6n7I z4ap;bE3r+-sW}((3La(!`S~f6GhMlvDDXyMr^0jgxzNb$RKSIuic6SwVr}d?8s#;n z3=#rr8*AiNV+JtxOwL z&dTTAC6(sVu=yYGfZsrv;>2RjxMYB#F3A#LR?-6)o7QX1LiQ?MlGrc-WHH zw>(MasHaxIMx~$fT#wDkp%R>qD~fc+9k6hAp|2`Aq(0a0+>gtTcPo|T8HCWbx`ysyU)|( zIi~sfns-X}V|hIXH2dwaJX-C$19SfTc|QHqh1u5ab{C z7IZeH)Pj14wImx;F;XZaA<-xw$S%&%wHNV!w#?H}wFe_NxMb|m(^||K4udQom)dWa zkmR$=4u?d@G zr6$}p!=EZiS~b2jBts+aS4BcuN_WAGWx{NFHR*{dA&+8Z+>KQIKu81#p}{}cCi`Fu z^>9vf3cGEYJk;Y8J4eu&M@48|Q1m}8T^HqmQe%5HYez?vJ2|7jI6~`TL+?IV`6#q5 zYV5@no%n@bM^6pzLYriyXr0$27ZU8ii0fAnOJ~!o@h2<7Tq|SZB2bwKrcl^R3Dr17 zDM<4gbR} zRyr!kFM_(iMR}o(*-B7bDdkoRKeMQrkMcoEFjkLBKDx5L${u*-uv}trZyFlMAfTOgyl$lEd zdVje?w&MwjqBvr3Elu4si{EF*69)IR7(6LsbcbbnR8w~p`HrW3uB88$LpmS6ME8T| z$^Pm*`qB=ususXfS+fL=05PJ56S|+65VhDOyH4^+f9)|bU^Ou@vRW7+q?&3ymn@w_ z2HAnG{eYN*u1|R^Kw}P6uKd|c9n#2dUb$SHyXu}S4z(^u(j7^sPq*~aVmKgfV$-HG z;WU&>hcVxZq^+9U)(4z9xyA9dk${w`k_mZ)YC9(xi1~`Xl;TT6JFn1dC9GBWEE4*T z(32#2rDJ1P58e9}c!fVvk)534gCaRgcFN=1kz`@>q&=EtLkVkwg5-e1!k#a5I@+NO4i(-gS3N2azW~NbFDPcRs6cS1u(umI@$xw?C zL9@=4?kMa?V+shZAP!|nmn~$GxK^WE4l+;l3SSx2tho_8jkbp^{YR@S!OEkBO5SWr z*Sy2u>k~AJ=L!L}X%amfDjLmygGWPDRs^m`|MN+cwt5)4NuwRxH^th=uQp z!Y2w-2dWj@*a?Hrl>{}Gfo$lp)4=%dF8=5WD$ka>n8g_90VrO=F9AKR=$x;}MsktN zcLH_>CjR2H6hW|E4kQA&kYa~ z0WTpnxVBknY*Y}_fzAVy8~qn{SU0#1N+;$<0Hpnbj~mrtIRr5`r^@3F*NRlPRm_ez zAm&me8Hw;6EBY5qB<3P$S8llw6HO%c9OlFftz#1+spw|~tE&@=Qx08d(uY#Ai-wRw zx$g1Z0HtPovrDg2aN^j2*m0=BEZni8SA-Qu-9;9!rUr(Va*{GU-=qD2CEHf`EHXXg zc;;u^Py3z$(SWWrZkS?+22%({&2^#xfCNxr8@-Ml7_tq6nF^2#StQ$13#uEg>0H#3 zcpsfOtf{%bjYDW~4b9F>HD;_)6NA2(67TDfJd~0QrPE@kifmh`(aE^cS0>WMN`?wM zQzRoreo4_jr^vP>!-aWjfmhUPLd(uJ#Vi3O3x3H^C~A7DMVB&nUijg z5lULLjg54z2!$p3Ll?4Z)s?!AD<{djVt)7RlV$jcn4{6nb2PC>HyTIRw>pE`L=JUQj#d&x>Td8K-JZh zE1LcTj%4gmPI6C7AsUcbo-#etp*xzQs(L{gi<+eaSd$&2oFytnvNc1w$mmW<4@;(j z;;3PEJkq+La8baE@{sR%bR8M?Ex{_P6}b?r2tJVv8(lZx;=+!+&$x>!HV?E6jeT+q zjln?>?@m}`>cl4BMwRlo-P{2nOH(=Db8uEW2tnM$ti9a*4H}Vtz0@UHE5{BI!u+#p z#^@X|M3nbrAH9gKj#Bj#T-#t3m_kA_wTogV&`pGcuE5j*Gp^9n3g6Hp59{*!s~7%v z?){xt-jIFW2mtbqwJ+b3F6Mi_?@dpbJebFu`c-|`|0VsmpK)EUJFG{jJP?VfVL~#J zYq)kz4oe!O%iVcvWelj+WJ8ZmiIH!m3kO&B$FrQ8d}&BWz0@nI9@nsv3w>t4Dr zyC>7HdH{e$hM%hG@qfY^LvLRs7-T2izMS3Gb~V}shBW?TX=Oitea9d1H>G3dfHxV4o3C@WDbGL9!iO} zrFDNo`$D8xmjrt4WmR4|(M+gXqiX47#6$p%N*z%dR3_KP5HuUxZTw~iK@pQcGLcRL z$b_3YVIUQg7?lNLRCuqjD-}vbTxBG+{!-4$Uka_c>M5#YHL8$tge>AcR3~cgY)?7f z8Zq+;gR;f3j&!9@w+9?aC%`Etvy5`1h3k6E*&Kqx24KgcodAm}7Y$JBQpBg?5VpvQ z3A=zq5LZl7G+~(yg=}sGZAyht=PqLcUee*Rldn8feaZWZl>iUrAejnCl=B~{x(c5) zV*jp(G@wd@sua3XxSqJA%`L0715*gFta}1pi1MDw3vJHL5~99FSCv11JK0x1wC{0z;O#kY`KnJI%j9xJ#Tx^%4b$=jVFyjqyY_!?!tURZIa7_CFj-eGCQ*(fnh+orpdMgtqq5r zIHECN6sGWv{>7uJ=JEOd0+>qlHLjbGbXo#X<{g-zVQy<|8w#8As9A~jfz}0!&vJ%$ z=|vVmRH6x$uuHjk+Y;0);uA&HQ_GdEmLghM`^y5oJrq5O*2Jn@f|9vyauf1-*}0k< z8-Q%L2;Ee&pN5(zqWfLKd!>kV0BwYN7W~5HO&LurtINACb6}%1v8qvN(rA`07v9IF zQ>8byNp~#Cg^bwFh+3mdk8%M$t5LIZ*#&a02{Ans@gLT;>r(~1?5;=a#vFo|y_Xru z0!iIbVzQ!SRo_lD^_mwNm6rt=*Y^@&X`+NIu9OWkSF_TYqEuvilAtOLHZ~UbGT}!l z=}>e%`D#H3ir_WnG$GcS)nj8^(1f6IrJ?(MqzzzqjxGeX7~HhJ{QeNGM34+$`V3uiH!i>wHraYk|4>@$uYz6GSt#&C>=4&(Q%{QLr*Kv^5=mTrWXis=c-M`>RQtpC{r`{2ex>$9MV%{vlR zy#y~Y5Ua3sDD%FtS8hOG?G}azk%o#EG^AGc69W;J=XZWQkoT)2G5BToW_S6paAsQ^ zXMU5gW;s@^1UUH$iUK`u+WcBKDRIr`@8DHPH1PoC58b}gAGa|*_7PZd?sK9AQ)jC2zUvY zDpK_{Ar+7lHDcjkBlKpc2#F?Sfoxy|5C)CwNxsV*v?Qb5`Xm{BC>ct3K^#7r(#m;aBs<(?7NN_j;&GuX+EQ_%VKHPupJ2iEKVG z-~Br@AnUX|Hm8t%;O#m5@xF%li1oUMU(GwtJ^FT^%Joej{u+LA*WbgnYEM1Q5W?c; zUGI7q&wlo^dFMOd$1s5zF=HS}7b5oPyiCG_fCW9AlARmUeQ-wmlEcpAMi82}V9JQDB6SC5$28NE zazp8y_Z)x!gtb37k3F|7?`y8>@nLCXurMoF>SB~q%dW_r&NT-cSq5n$;Ac+p0-?n< zVW10R1f|7M%-W?n0LZ?r74WtQ^;FB_?e4nF$7IctViqFQ)q?UCi&BLD)0v3=Ly+^R zRWr`RJI&3mTP?nSEa2mNzVA(+(%|K=ZcM2pP_G1%k+^*Ulxva6U7o?c0oM&sG&vz_ z6}IJ2PKzaPgm$|mTc3efxY9D7=4_AJ3}!iXZ3umbTM771lPebGI%rIw)vBm#xrQd~ zn&Bj8FlrHMjhk9jt*HBv@m-PWZGn&lTvuGYKt%Y-NRe%7vWHWu`@5V!yGHOD1&qrK zA2j`TK`U{Dpb4{G_sJwegk;BvGiD+Hq*@UtGL+E7(qYp9$^s;T&$MmD=i=DA-}@7#Zua@PR_$8@^Bv#u9sI}t_#b(}3tq5z z>?JRG3GH^9*SzL6{Ka4V#SITshT?I@b-53=#KGV34Mb{Fl7@I)L#RW2gnK?}1Dc2>i5y}DslBxLGhXl$avZ}TEQBUuqWAtb$A)1Z$M&Gi{1s6 zv|66?IS86}0OuMQ6_?}HYS~TMT`|gsJO?UsD%_mr=6CI1X%3gn9=Xnc;s4^~Z~eda z{kmHXTz1#>bYgBMaQUj&{Ow14?(J`WVlNK;b*wnE_)fs5n$EdEG@9a=Jg1Kpgj$QZ z-f5y!#8h;Mrq-BE%e1$QC5WY=RwA-5bwss1X|H1C)QqyW4A1xQ!<66^ex;(-uBay| zYG$ajrn93X*ofJ&q}!U=U3KG17HK`0NVncL0g}zVDBBUhp=*twCAhBT;ZY*{X*ufJ zP|p(7RzgyU<#T8S%(fMWvP$$h$ylgZ%1fuj<%n)aOSgtvx=v=Q$uB8JD-ljrlt(p1 zVMw+N`G(jTyNn56p!WNefW@aY)H5Cxm641ovr@62CL^^HCLERPCHB&0l^n^XF7yq@adADVET?u67 zzkkDbebM7St}7?$uY35_{KVZi<`}R3ov*%ZzkBJx%+JMteBisUxt)FIi}>|deCnDJ z?Hj;+>|-Beb#?WV9$#5m;S-J7kU1qv8&vI3wIdCX3@xsk;&ZcbXz8Afq}vtAg@Mqo7L)kKws~R9KX(^X%SpXy z{_k9qQDa1>Vl667sm~l`bS9Towld;cieN-|=~FOe(yYRDFa>0zK)U0|9@s*Sr_Dzp z0BAv1+zl+OT?+npcf-uCJeWD%ZT{FC&-f+CAvSs*W3HeE^2z@{tWT=_f|!E@Ugk9i zB##DUZU%6<7GSy7wufNmiBY;!qjF2#*wcgLkeIQ?C5c$~R$?QpD@Dixq!HhmyD92L z5M;Cw-Envu!7Isei7*(q@UC$)QxR1uqSH*aTj*h9^Q$7d>#(V(8fFXIV^!(qx~Q1l z?!*zyH_l*y&kS~|$#%p6Ohtr2(9zVLhzbcVkI+o==M#D}GH5@icL@W)6w;YM{8dEf zk~SQ$M*Bj5Y(wMPU{)&9)KSI+DvNJNMo;mq-8SHek@Hj3mLsQT9LXnC!BTq5g;AHC zvprO;Nq02GiLemc&jD1hQRsZ3(bRa+%qZW8^PBO6TxehEmL{1rV|S2_1gyARwv9%X zy5d5(ztrl)BvSVrdSr?2Py@4{x)MBG&q}}hJCEJg_>qoVSAF2x)V6OZcK8Y4yVaKh z_dVvZeA2k~q1ZV2pHlb|`Tr~4_HKUR$|>-&-t9s+3)TSR7r;<5>tzsPmp7fKa#n=B8ZSb`hc>A&}~be z$+$*4p)1A22w2bxJMm)IYc(p0Q%WovAd@t7Dx)wnhprlN|FlNc0ai0qWU14b=dLuF zD{)S!R*Gm0%6l1C)13j(wG)T34Mog^dZy-G2j^)B(*hE9iwqYus<7-pEp$MkNsCqs z@Pf63Q%9KG(PnZ&sA>I=M{E)4oUN%=t(;#EE?0miYO!>#dYWQ2MV~&2sUj;M9-ude z(g~{TT_4b{4{P2L^Ua-7=_Lr6n+@!CD4Tzd&`{Dc0XcJUwEO+f-PNk{vHwvW7H}}Z z%kJ6@Q08FfW_4Tk16&^M^@m{Q09OQp!gT_(V+Iu=9SH5nSIxEGM)XX&Akjw9(xnew zN0!&r+7ic>sH1dB)@IB$+QjXYIuGC#y3pdzl}AF?qfG!bF^#BNbQmDI7$UfCkfeD} zGXal_U`DLum=Gb>ve0IyLbLLTXicJqWYpxcRH9e$Ey+Adh8k0fR>gHi`(b919I1jV zV9{6^+li(;;YfNF^(X}snLeo&`{2BB+}_(^P__8jgU2Q4v#Ze~L$;-`O;;#b2$?u^R;ysgN&=oEP5z4(A%1ge zd<#M*&nqwIMD#Q)oYGW4fRSPm-idb_ z$xnVVXU?4A;fEjQr+@mV_q)4;Rn6*sR7$!Vy3w2L609$(nH-09f+>X_1}wz*K9h@f z-8J}JHxx1HM5Nml$yPzSQ<9A8g=<+zjZE@mY@ElyOx-7IP-0yEySo|(u!W0OXq?l^ zia42}#?z(SR#}Puqp>vxmb9(;&s^uS8@%jx`fA1#yKSb=IK{@Z#L6WbM6zvh-iZp5 zQAO)~f%0N4Jw0Zq`igwVH$3G?HVgy{(-WHWe`Af}sV5;zmz}0Lh0c4?vsf#~PwbN7 zHrEKvozUi%%04WunvIdy1iw6|^Yb`=&#<8A9oApJx|tf6#|mB!>xomrYY8-Ld3-J_ z_T#$)A1hF)CrmAjEM~0Hr9#aNVQTS(T*GxK+6 z%uBfEoa(kxquWlL`mH=?Mw;xwlsL24l?t7CLf1>Kj)^3xV_al>e0!bENxNy%H^4AL z-H#*_(ch>jWANR8ZwCQ0O*barj1qh~o!^_Au9027kI+~ttNFT@k?lef8+SM*=YMKY z(bI<_Id%Rl~ik2@f{T7A=pzh=+d?z;o? zLw(khTp8ATFX#AQgt=eiV{ElhF(U9*ohbO0uSwth-+!4ClXxy z6x|PAAdbdOw}mA*X*wng4Ni#5&j>CDou=s$DJ|!2eqQDjvH5$Qn*!91=sj@}ka<{# z_1NnWy!kCfWc=M9m~j5F{G17GHFugn}Et-)MAqFa_K&3C(mmqpr!7KEwTzS`44Gabk)^LMGOix zlu+T&3TPehQKKKssk?z>y`XlQ^Z`qD(ct@#wQ6RyA!*gLT4F;sndD5jWHC*9MKqD_ z{f731$lzXag!5U%XOWnNh8m_Dr_M&(qSeB|Go+vj7Vl#YWK@{HM;2Wf3FQ>+tm{OS zQ;%f71=M@4Z!ZH9gLi<&M1o&Q*Kb-#0u$7v~+1(6xCy z>ZVf2KwPI@{Nfk$;upX8dR~5DOP3C#J<+HoaG8tQjS>1-h$2O4v=hn)bQSQq#aHOfx`iWIGIr?NW5yNHXmsfatwaD!6tTU}4e55Vv{2riwKD&G zx48f;$Ge*jX6=%S6?b(U7M8N4Hyyo^g!nal_hQ$romL zXF}CebRQ0=*jPc^rn6;0Ik{=&TLGUbbkng?9!wEPMm5=%fXVS48JnMfinTx4L7l(U zjBC!@mReXSH{*^mLQ$fO5p9sQ0!U&+HA`hNMyNe%cV^9QikVg@4C*ik=9+aqBL2UQ zbu)p>mHR%VlpUN>Hjs5H%1KHx1mzU8IlfTjl_HviY2LcxP^o6VixoY@d|} zEE0;D1ehIC$R4d8ZF0Vs3H+yGoqqo$ol|&ZUAIPK+qP|^W81dvj?=Mi+vqr{sME1+ z+cr8m_5J6r@;r65vudxk=6vTEIo=0nE6(r#oS?pTvo~ZFr&>WrmoxHy5vP6M9OX`5 zl{mRu9|2>{pqbpgcX7bGU<2ul+xF`)x1rm{O3$?ix4Ch9@%a*hL1QV^lyQ=%@C^4a zNxMe#9UJ1pP}eD0ZJh-Lkj_LqYI^m0vssV9lWcPgSj`fV!Ed2r+k~6aLJW_UXd+8} zrp=z!JnaGtxm&P|g~CN9fYz-X07F_Rx+eX3fRqXHri%~7t!}0}1+@k)4D}X^oNk8p zT4;P)Fx^iMM5~joSY;^^r$=Ma;g(UMZ3{+B4=!4o1Fk^=!?rrIerVEoJ1RPha^o&m zNr$Q1I4FCnpvi!7tXEG0kC zZJeu+%@{dR0mu=V!s^nxkX~@?l}5DQtmi?3bEh{wExetRdlDnr8k{LVCz%c|q?D|* zHdNgBQ5wCJCNMsCWth#ddq1P=cJ4IY_@VxOaohkFQt`KMp}wwn{&gLCPXj-POKmFB zK7~TDh|r^Md`MfLR9?|vo}3$`yj!}~=#w0~;?)2(v&Ipws8hfhT#1$h(K_8mYwX_} zoHVdA(QRix4zbjD)FWThNp;7ff!F`p{ubR}9JBP`fDW~WCmw$W!zI~MCnFv08xp8=q<6GY zsKJuJlY@GA$R))UuWI;64->K1K#qFvXlvU7Y1@tEYXQ%EQrlW+)XkJ(liW8>j@7@l z$6`b)asnk06QjEB4HmEEbAJ1M!{3@Byo$lCnFzK4Fk2eMP~4oW2`pC?8fg^iv{$eB z5X1T_M5sCpS!LK$!D_%$=q&6ie#iV+4^Sfe`nc{&czSvo`X)X*IRIMldXc_>YWe|z zm(H28l?#{8SC`(;iN4$fzeDm22Q>`H2LCHN9V4TPjVqw*q9+y}n@PWI>OY32oYA}L z`W4qm0`W-~@FM7}Ro-?}Bu^;rwGYP1D#vf3t=jI{WxyMepSoxeV}}pSle=xt0kl() z2m$e#vZwlV;+M6J%F~EPNe~zq7qAB#YE%_&`piQ>jxcU&Oer?CYb}RJ8SS{PdS8rf zyUIVJ+NZr&J^~#H4_)AHkTMYm-J*N0E2?iR=xHOAI@d*Y6_9lSh7uxwe&Uma6Gf_= ze_ljD!Co}_rhW=>wwe+T?ulh>0A~%o=1Bs~YZg_wZ8tv`q0$pGk8;xk(`{YSOYMvF zI^+zkuWjb1Acq^jTqRVtJuuR!?uESIpK}C=Vs+fL)U%6Y(_iM@ZByrB3WltBv7aiU zJ~uAaC}HXJj#)Ox`K)(RwmiPzzgP0xx-bcoi3J~8YQ6}TD=Y~+Ze+CQGpaRMX=TD) z734e-wmuL%M?}$GwGHgmw9<=ZJKP(Qt=#0RN`28V>)F&7LYrC^x0QJ(WNVDeG=8t= zxD*TTw|${3dB(&`z(hYF6QNF+lLHdoe=3YpcF(ty9i72B78G@HmS060NJ$r-OIcP3 z9Jw%~KX}s|Fu^q_Pnb8|=%Vh#lbNnCFovs*=`}7$^M%^;Cp$=(P^Shn_>2tCn~WU_ zT!@H%h{(CJ_UkGMj>9OlOJo>xss0@z(6BWnBl9Oy#v7ZYWuSZMsLya~v=g|vf}IH* zAE}J@F-4PEZ^gl)xEB&d?>Tk@b=+?nF2?7qNE{N^Ulzr~PG!Z!x)e(OMb=mPJEe2h z>N`-By989hE4}Ie<;_q2JK1{}{C7gj95ZiPJ^s&^`*vjXWwHJB+zuqkcSkf^&D;YO zkZCa|Jum+W?#rs_wm-IC?hC#j0*~vQ{OP|xfgk-7MlcKk%$@yS$rf7s^wsrL_&)(BgmrS9XNn2{gCryZ zpn|7{_`!Wf6F3J{8ltP&s{d!wwpev?8DFcZez+B}zCh)LU4J53o^UOGKoNY6rOC}n z^0EyZ>}$e4A;tYpXQ)~ikT|6PQ)}SZ3}R*iE4kO?hGiD|2%s?K?nYXFIV@aC+dZ8N z8Yhi>TdW0t5oAT}G2By38)Vq!bD6tiVK4IP{1OP1Jyi=xWWhf^&4al5<005c2}sn& ztK@v*u@JCs?3_FJt6AWdLl5Gf3|9g^N3YMnd(AX@k4Gks&mso9JgFsX-}kpxz48F^ zUkQ4?yJ?73F7L<|HFw9wGva*(Ql%F7RWp>}LWhRb7G{lAL9~NwE1BjPX&O_k6Zee8 zd|o6#rferkc?7`x(&LUXr)6F&FUh+mAtyLqNpziPl;{WpXL$l}7fS#AZX(e}nHOh1 zAF6ol8gLvAt-V)4*;%qgKidPqZ3aoUCL?}(rJYvzsNLqGI3~I|ehGnU;b1bY)(quP zZGbv=)DG3EUWG7Ae~9HilYZ-Vp>GzoTBtwc(@{1|a(||(?OpTO?WI;A3}u=q`ITJp zQ35RA3OAj|e2diogLxumhVJ-E3HWKWabpwy{JwIt)w3rRV17e<+3@{-#1YZn`&9Rz zXjJ&UM0h`p*^e}&Kd9jAtl;=0;QHkCFY~7;$bUA++m;H!xc{yE2cesXpDSJ4LlHuc zq(J>>08j(2czbCjoJ0KCPkc!HeGoVaoVs{PDnH8~IpD)myO6XN@*=j=AHi$vtUbJ( zS00r1G!gBbAMro{rpF&)VvOZDYbXchq7E{hsKE@E5$2*Lsj{L`=36ngpye*hk_f03 zZZ8DKpK`06U@U2A7N?>Uo>4PsH(e$!PvOpfOMMivzW>FV^M=jZypk;!5ADocy>Wd~ zwZtyZgVqX%@nm{L7}N~6`^88$)&lAzHrB|hHdgLZ!+Ru4#`scwW_y%~1lb{8SE*U6 z%{ZeLmsaE$gD=kpA1ZEGfTS-bBUhR5A{}u+SqT>U!nHDBt)9&!%sex1VSio7C5+66 zxt`Zbv*m6UOV#GKshcy0y8BD;`)#x3|6j?<94xFKZ@Uh+&{Wc?8xL=24D}A7T+^ zBYW#_`DYz;{jjxJ=;b9sLJ|AgB<=!ZZ4z3_USY}h zbicuYV#{VT+IqsAPpq(Z)EwUKmB;z)rRi7|W;6Gqm`-bpVKXvpDFfAuQhM}MYs+pC z$fem&vhu{s4BikEqEK2L=BbZ6mpw(Un?aPYq}>F`&1jg{rB$^3e(QdMj+-%}3)zS! z`irx#Q)&;22-(e6v|+AiyJF z|C+e-*tcVD*Y!)t$n!h}5%x>-N$``x*NtpL4f;Pp^q>5IuS2CT^P8JpI!+uI?wiph za*)qC;(w^Xm;8U-v=|4Ws|BGrcB|>z-j^QaAfOM>-|rn*7$j3i-~F%kHn5i{{QV%j zvvTJ_sN4&inOl&>kTQ1bw-k^u_1ji|{Lxv~u4MQqE_2pa)b^0NeQ>hSuVkchNOaAE z!$Z%+Drx%d$4Bu%1<gY2Sg{@Zg3&zRXVItl>za6>8K^WVuBI`;DcVSgg{R4f(o>ja zTO3zem#S@>s#eOsAF#y7CDEWYNV3wr24vD%quMFNCbrW9c^N=XMwW+sHO38xW!Ycv zsS#ph(98F@7NHgjAk zN?7hq(X&sl0>$(a7r#R7#s2)g6#vssenv9C4r9LYYkE!kgjC|9m~1C#S&D6OWc|^X z-A6}4MelyFD3@x((ba%%%00KSXDRK+WR`?Nod9-!I|Vuw-k}h;s;Q7M*_^01g(?vu zn&|pz&^;rtq^=MkbD$}3)+2UbfuQUlwM>7Oi;IR_nQ&kCl`o)cP!-mxk(V8Kw;l1? zAEUJY>Kpi#oj&OcNgDXd+_x`@cm=q)JEbt7*E{y#`PZoAbLqA7&?|W3t3;T&^L4ee z{eaZaE(+r};^hZj@cmXW!(Q+v4>DaKtdw0|TVHS3b`^zA%@g?bX_~WTRQ&eva8j>n zp`)5Uk@~df4D-XsBvwH;v?YWvb#RtPZA#*yi&kzp(pf-7d8riH5&a2ud`WyTfr&|s z)_|l1&CjvFl8U>$5s8Vs941+|PbWoKKpYeETD#z?A}YiGWiQ$q<1Aizu6n8VtQ&$i z9{E+@ou?e8Bi_VQoSi?ZsD?ZG-b6V;JEz~#NNLDYeMz>E0m)Oz?s@}l zg@lfO4J*vRb=6twbcMZkmMt1t5u8h z&S-9D!0yq}$E)Q6R1WkM6lL2c zaE3Vhhs;`k8yK4Z<(N)giZ(B{fwt~Uz|e!ueH<+8aCXE@&F%UOCf$h!ZYu;SZu8zh zlH!BSBSDX{vB)!ncyt`WX*{_AkB-b$Jth}>M0wB%PtZY|Niii_&uZ4Z{Uw%U7`g$1*G5_??qtL z&Csn-RSO>8#sUqr@L^{5x=EWW`;I-n`AJ=_lgOq3{Z|z&$C_g4J{*e|$bV1zzr^&l zPIsV1kNrpBf1&9>`GfVXvCgEe6fu;C(I;^*W@naOYQTKv11@lUj&2DAT{;|$E?K42 z4Tu6Dt@-d_SkWtp{^7?rrfq{sV549|$r;uxKask|P?ok-x}1WSkPv-kf)DvRUO1d? zUV2+6DPI6pj9wCigJD9Q<~Xap=OYVXubQ1zKcA!8r;1CG3%dI)v0N>K2JIC~dm4?d z!-xD!T^UIF`mGiz$q?$#w2q$Yp6AYJlDaj-1OHJ>o9P$v52x`pl`o)grXZ<<|f z1!Vy94^h0JMbFvEO1WOddz1UB6ejK=tE-N}XG&WxKi)1zaa3QHcDlmvQ9Htn8ruCK zSw#S+oTcjm_#la@Jo)vntb+Ye2A{NQRs=t7uRjg~r->g{t9oi)1RxP* z?{iHy+b-8`^|F}0rLN5Dz5|B<@z0yU?~gaB?^EKt|JciZM_K_#7Q!oPJMVQn;|-tV z4YwP8|28%QKCWU$l=1~+G&C+RFZJ90g~4OE3BOSzK!ps= zgdmR-i!SPFs@o=HbJ9Z!Nheak7_a5^fDNw2;sjeOP_Z{fc#d+@%{99-9L*u@V0krG zE(TL!*4CC&nkjws!#>ZWaMDL@VJ+}~P&7-Q>;;=^rx<0L45#swE)j9oz(%1~>*nuj zx}ko*Fw#j&NxcF@>2tQX!!?=ym@D>Wd+BtWmK^Pzp1 z?Z`yxUKSb1snr1+5SFfNCVq6N?QKiB`#f@mKQe%8K;@f3hXnQ6~7;Jgh48 ztGa7-mB8Dg1XTriGkVfK&15{i9~F~vJ>y=EN{l1r`lx$N+_t>5q@3MJCUmNr`UdYp z9+pWmgR3oYPN&?Q^bfQ+lx_bry$|)U`$|P+I`v^PXGpZO&+z4Rw$D@ve4LTX=G$fj zkB{l7tf4ZmSTZ4l-dD(@Ah3^6u%4p)DH%2Pk^|~y@nZ3EGqUsXknjq~p$+)nea03% z_Wy+7M(*f6*gO%S%e%g8??dY#aQ~Wro7sL~1@a&QzD@%3PlUhU{>z&|_PxgRNgDvY z&;{STeNTFQL*wJ)z0a6thkC%j-hkhb06HE6V!Cd6KblU2KbnPeC}duzc0Q+u%!uDc zrGD=Ig8m7tu|WR;R!;=JE@!@CW3ZW-+Pq)7b`<({PR@YlZHieQ<%!V%t!Q$Q-5>4d|R99G>8?hSNT0RMsHd% zr8bR)uR#zuPxNZM*m9n&2$;MGc$afFSsIGhml+bf&Kq{8r=+U!j>DE)0M$Zv11uc z*+to*OYLT!`4B)!W?m!;h9wzj900?_@BR+!N{OQ7My~Surpf;s51XmpSb+p84!>NU z$#b>SDJ~DWPR(9cGgcO?2$MF!+mE|YHjWSe0FxCdfl|v-98rfbT9@zGoEH8sAAZ04MVmz9KXv1r5ck@wGOIULt+UC z&yHTB_EC_M62Y6*F>?_BR+%_5n4W3%MSW~VJ+x$`$(tAAeH0k-V@g;$6tm-EFc|Er7E27gB37dPRN?{}l`7{iA4UB&v^+F9FHZD5cNzjqJ+ z=YOH6Byy?Kmk+;KJkGk_nDV~o0t3l zs+0BwyhKF>CE&l=?P;VQ2r%hE#JI7awm#w-T{=~F$>wy`4F-;p>Z++OT45RGq$LVW zWfSt3Pi>;IvE*)z5tj%rQti^+PhqR5C~%LGLjBZChB23PWw&NnnnO*ulHa^ky7^@!^*Let23nJj3dY3k3eU(v1i2O;{Gpvjb14BC~gYE>i{i2Ybw?tb&Br1xt@aFqyhkm}4Bt zR~!OQZQ=M%rLG1Zz~2OS({bTplC^~vI4?9|hacS{I&8<}#UFnqODMFkF@i>$o(K*$ z!6KJV@i{5-dfj^RVCMp{kKn(P#j{1-v&DSKQR&W)=8^1jO%CFxhSPOlIUsUi)zmA} zobsbw2uChT0rrwGa5or$d5n_SQjHS1PN5NoLO8}p+CML4@TPi5W#ZUi;jYQiID$0i zQRZ1$ZR8kGSJ{8Y0XlzFcdeibWFma)Y317y&VGn8h!wL?W{RTfCL&=rdsutP4wsnk z{S03)A4ctV90orNPtwmO`RlXem1(Fz?=dNf%Zl3AlSQY`oS2`9CL4pN9o(G!&veM1 zgpA~#Mg(u_MKnMWqX$XVez%Os;E_&luGT!?j@jKzq=O5fs^-y-YcNtgAWAQP2?_YJqGgra4mH1lQX(QxqHqOVjSXFfybp! zIN(OHGx^`vz?X+)1XMInAb@ejUCn}kd6Kj*xKeDRFo*PM%(dfc;!Z7jTv(# z_mRS1B`SnAYtf7ek_e96w7_Q+wh0zqw{q2Mv#!FvfE}tHK7muyO^qpb8FLWZfLpDS z3X^7gt^`>_nPe!uAaSpA46X-X`vDNjP-!S^jEbL-`4;#ttIkoD>N#a9x-7mZO8sj{ zAbPp$YV81#>{6)9x=*4BSQcW6nv<>T+=-$C=2lI1jfBBqE7SMHiQ6Jr)=x+P?rCM*@;dfVcz25-Ye2G5_xJE-s7iIZ{1Z8nGBZF~f@BVGlBd z)=<53h%SE?nla!*V`~5&=g%#RnbBXi)}w3A80sPTd}YEi>PHD$J}0C$uYpAq*6X*q z1UJ9u;(y&?6Y&q)7mpu1lM{;nK%E5ssdWv1j*WO9uR9q&b>?XJ&b560B@fC#4m?4= zwQ=h3(VT6__1WkhX>tN-ZfhI1<^bD$JX`R)4Iw`K&v3oAwr0YYcWq~MCp%J8qn>~A z`I_*}Bm8wB{1v&e>3x#-x!&+^y*J*!RhFnj+N$q)lZwx-v(Th>a=LZ#MMfRk6J7ui&xT%!n8&psw1819HW3vzdmx@v;y=B ztnn-wqULvVP!(7;(yKgY?=uW%KjQ%Hi327lvVAC}guNnhPDl=e-f^Wk@-%FuT69Su zm)S!Wqq1x;w;071)7=%s5!gRy0zf>%%xal0jwt_vhc(1^p+3+ZbrfCXNGorn%u1;Z zYG|p-oywDd7aQev%l2(=n#elEm~wJM&I8IUDQ23r**ttJljw-Qjz3RX{Vu7ADhC<> zk_ze*epVIYGQbP$Wcmi4q$PM0uc#@B-`+oSf4?)1g>)LeucKpj|LOn8Uo9dlEp$@? z>Up?|?PRRmHB|^6PIZ4_o@@3lxz|`VHm+u9d~1i;q3uqI9}G>Z)a!L(lc?dDZj?k| zv9r9!LGb;0e}=o@B<2fDe$6mgv<<2kbE4YsEu;LY3Jm=p1KUI=2&|$WMTq>gOLS9Y zNd!g`XE><+(-`$@O23ak4%ys$FW`WvzAiqjjLG7ced9``7=BTN#yB zqUq0CqgN(FaLP(^w`y~=lTE6wpJ1$cmR?J*(3wwJH5mUJ#R;1FSRr{Z{}=3yaawp=F=xp&nVd)LcWqOHm=TZ?q)H>s(Fpbj|6W zQi;JqoY8c00j1rn4_a^Z-k%qR{z|(kT?lUHO97C(2^?$RNm_mTuxn#KyTK?fs*x}C zpE}>HW-0ve!$KSd4t~({aZ1!&t-A3 zo=&6Vsmue0R|i5UNaYq@lK05|xa{Q-h_z-UyXLLjc%~)_m`UBtE^f_zlM8UpVqZIa z2E&fH?lj+RGType3Xx8<_ew@8A1Gah0&>|Yl4+a$o&MfV#{$3T*$6wlXpPOP);?OV zq7!Y4cA~MMqN0!?T1HDJbNE7`quT7bFcC||r{wxgxsDCaggpRugdbzhIBnM-eJsUq z?IevYp*7D5rp&7P!jQ6nyYWJm8>lk1Yd9#QKageXC&HSG3tODKuq(b&lIv$V4v$%9 zh!}c+DUk)EfHGPq=0P~5@)nyGk{M(NizBNk=NNcDRP&WbkS@P?lHUEt;(MC<&iBf8 z(x}V#<6@~;AiqCZi+}m-r7!E`Yr&}dY~<^l`TN~YD6j^Mi@5H2^Vi!hwD9PE_2{pG zz*l69utXgoIqP2qP+sM`^I>QRlvLmK?0ocaI}|4PUO}7?vZ^b%oW*E^U^-U z(Pgba`8Lu2bZLKb%4hBAQes1-A*NkMSdU>}8~5k*R1XP$mJ}&CtW7O-z!A%Jhhcw2~pG(RW<$~57r7G_<5tfe{O0;_)Sw%5X zejXLn){NO=srLAzG2^ao zkEbn7R)524285HvDB!TeSL?B%2piw@mAfYc%FAV>e08 zfOAFmj+~ex>{7!bBQ6v5_4O$I@_FTL=ycpAB@CM|@>QnZOK279_$MLYL2OX1RJQI0 zeXKL%gH`a+SunxBeTU@Jli#gv*Za}cmt*u^X0*Ta{Si2`zK;G04~+UC^D@qLTAFUo zjvRxgPaU|`g=K>$drN_&FE({vXhq8P_pw$AlyrR10F83wQqq{^@uG+|htzmsGj*rB z)ses#9=P0X9z^WlX|jGAnOfw;NwV^2b3M+nRg)N+^eK|}G>TuEiafo;r)$)muYV8h zg?!WMDq3;2vsinle&6BZo)~pZAHypiTnogHv*Ws@b3O7d9M+02J|`|ABf>zHk1!Ou zz~|)7zpCro$ggSR(MM|1zyO{RAxRUBXn3DNrCylTG{0octdjP!5DMs{pF#n3V?>)& z(_+6TH2`KdO*jji9`bE-gPzm&1_${9FqR7<>F?*N{U+d&fn6%;p;}vdfAa5m~1{*1Q$e&u^kv4kk(dbA` zl0PK)NTIAgfbk~Dj?5dkLSZ|L?M(aOB6WHq7o+>QIB#+%|2uQ~=};e!pET6g{L0&E@NQWdD8UEO zS9)s~ct|1g9qF9elbh}#2rBT|n|X+Bc;ERP3ltjKc?}HsMtymZ2D!Z0{uhkTKI>25 z<|X)16ff>}4^f-pW&hHz)MUwL!NQnaj zq(6I~1Xp|{Qsa+C?}nXt;`%>3gl@!(q{CTnJbjfQpT>boeVa$x^&hJLJuK}{O^hdN zgGr?iuXc*mWIQ#i&l`o)pdu|8TXnfikkkCG7L@?CWm;Jz92$@CH0CkHLsEZY0_`)* zKM1pM74uN@F~O}Pd^M4c-49PeJnGgEECNuP%^@y1C@d|h3&zbLJMpvw965ik-8`@O zOdWul=EM9rYmkGa7k##eZz9a9{Lna4ji91d4U^n;6z49==H$qr_bYeqbmT~6;jg}} z`dcA7q?%?3NQ49ei22zqpKx<<(C5P38PEA;-A9Vt2XPvOkwnC*=Ge(ou2hqdFpl-Z zeLLa`C3VlBkFHeEQN(5@&6Q+7s zPrI;ro#iH4uX-o9`$aC9a~3gjCS$j;GBx^}1OF3GD7%!IvvRa32*E}i#Zpw$J39>oV!=hrIv=cB4Nz%Z%< z{$85L>>1FKqW(BohbrKvU1Xg55J${&qZ|o%0n6>9IO(3-VYo~-S;MuXo9-`myYIl> zQUNv!XVAV|b|Cz?xaF9kppUXi@xrReJi2VYsiDON1GN(Zudur>pIW)mje$^*5RG2O zALJWJb{egC${J>y$)tbEuBsFli`!x5aiP2wAwk*7(eC=-ikXx0V1L5OP@JV@wvqb` z>3T&!WSdft5LZPNuokZr6fv385YF)>>L}G1xE{t6-t$W)LXYw5B*}OI(}m2smw!yl zqur(U!hvA87y#FPCYHzy#*^kWII&QFf$-009L#N8pR457Z45K;C6o`dg$m!nkDo=5lB6V`axkl(u+GH`tCGL` zRlS97?gx)%QI4C6V_T*}OH>F(I~`wcBJ}=bp(T(hr%%mr=Io|?mfA7cO1cxNYzykA zqEaWhnH6l72aAlX`FcC-(lpq(ot1nUnbuN|-yGhkZANVd8Ac^Y!povmy1o^*_HWhj zVti%$x#as_c zK44P$u%`FC=Jk&F+hsbJcOb)mEn_Q|Rmc%D&+alVC(2IjXa+ zQ6ByM^QsuVFeAmuf}?1|()F)$EnPHu)z4!)P@18+(Ec74AJxM1s60zM^28emdsGOB z$H`*56vWT{@{CxDIw4yLHrP|$Q!@ZuB}%2^Me|cjsH+B}Au%F_nbd`-1e<53O&qOY zoq|#?uJmw{J<4di;8C^7tqyf0^~w+oiA?%Qef?a9C(m0iXqfvTHhdS~JFY?coZB6g656trREd0tlrO;83q8*yl*llvR;#IC8MCi*@F~Z=JUVr&TzL5JlQh_ze9l386>C&+xHF z+`ze@)NWn|e%K7WgTdy0U)1BR=Mp%11mFBxj0t`65!umDte?Ajh<*+UztjiATXcZz zMQ722%^WqbVsg20z_w|n^Cp71qDm-Z0V=Gw8Gb{OASQ~-_lbHCu)>FGn#~DtV@!b+ zoxsw^XNotr$ItTF-J!FZI5WbO6~TpEda%mEP$^HL zAzd`C#N{#=AI|o3>(E>9W=TdQ#pe+vo3Wvu$uV`@ zKsbvR<9*vYncriv0I5-?Og1bC%32;AWZ_LSrAEE7=0k+L!knYgpGcH1i!m>cH|DI9 z`vq{4@gkUm+s(}7z^JJq_%I9M?L%y&(rnen1wYc()Z6@>IS;|KGf&&h{7Y|3@4G> z=+amP(H^p$#IO>SKk^7dGQaiG{nYsONOe5*gE1T5^)pc8cpT0K(R-+DmdvY4EbRDX zhLV<3+4CIQ;=MXDy?DEpMhYCz@BgF}_{8Vw#NZUwBj#v8n~`1VyN8tgCI9lf#el467LHDp#n>a_*C9pUCe*+$?($*64 zBYP1t2Lx2z0!LvI#@w;y;}rSY(H_0|c&XSb!cgjz?g!T7tcb6h?9Z@o5=9qpihtyR z_%YvTjbA938Z57cur`ApB)Ig+I)fH}t4V-R#_4O{p4Z>m>szoL8a2Rq_kZgJ+j2Lk z`5)y*+k4an&2ZdvNIsAE3fp&W7FfuUVrvaOe(1e-_YR7E-)=-HbARJ1FQ8a}k@>!X zna|0Y+jy^T@H$TBz_*FFaHrRBeBQQ^o?^E|3)8f2J6D1lsq3H6wMHjTQ4 zp&VgRklZJMkAcPpc*&B4TpA-vNy*+0AyShnPQI32Td=k|JhtI1$|yGYkobTeMwTO)=%&veZR%O@x{!5iS zS}|70uS8oaYJ{!k{KPSZ;l*F(?yL9T7wQk!6J|vT26gq2ra}IoSz@#IgH^_Zbla_= z?`3}Im#YlN=?iwTFi(;*fQ;~jJ!4i4O%2jg8#_;~=L30){0kpbv&O;oP zv7@JDA`F70@Ev^~!?FJPW>qS#WhA9@;la0<2R+kV98i~sY6{AVDjx*Snvq$#MKhq+ z#c5G&Me{X=Ixv!qOg?BQUYVJp3aXzb9CvsQo=bk4f(MvNU>_d4bAa-bnELonD<`t@o3qYYCC$3g;5$>(pX*3AmE3t@zb*n3ML%JCum}X55Y7fMmjYB%#w`YfW#3zy^A-i7Uy_)JdLH#@3oHy>#g~&dhCA!Q})}IoLxH_Rn_W2Agn>w z*=&d7Dzsu|$^y3CDoCJ$STw=<-x+{qX5Ct8HBN$$1lUtACn&^E-KY`S&&M zMi|1LUpE7p5;|wqGB`y6%3Ldmg<4YtHt`*?Ci_cg?|rvQ8evnY^zii=UQ5P&1zl3k z+<<-}@`GpA4Pa;NX(SmPiz8Lv63Y`ynzwu$8&FT>g^zHYOHCAHJ^T2(1tx%X(h}2+ zE>}swl6!5NDA}uZaU7YPR(q9c_s7bIap)pnET;LfvzioE#WWEYKEN*o>x8sW#vPR}=Tm-h2)?D+3g=@+(>)FofJ*3a+fg@bdE zhEz}$X{(WEQ_twq;9~mvUO(i<8Kk*zs5wT+4-$OK$BZW+#@wzK`4TkoWEf3x5P=$b z$Vk#!*awLwJ@CeGb^0;gy>(|s+ll>F?3A=Fg~m6l3L$vMlJI2gl*}BRV6P>JWBR^( z`ZuTVt3H?4Ta(`Fi{5yr&ta#-|K>X!4_6(9a`kQz8Ku@&;D;Z}Of8i!_I(OY{-%E5 z36+;_U6?JhwE)ky<{Vct%n)rlExC+7|Vne;p?d) z4lHDuVzF+Kl`oj2c{xABM-Z?{(Fz5aHlS8s-Ec%vg~0xRkrVsZL>zx3cM-d$6;onO(G2doEm}=Q@6aS(+-YpF4ShU$f7*JvIU>46)nMH{G7Y4u?6GvG;!GXU{ zvq;g;S^Y=6o$ao{`JXc{TJztn2p%lc*{<&)@q;9{BCo>%yipnv)ilbqM+K6wRj&;0 zVy`=giiSG{5x2hVaoUz#2JA#n_)p!!9PHdvF6V@$*V2FW00j+`Qj}6R_kJ7V^kp)` z_Zj7|2wfgO^Nf#`nFnbpTZ`Pn+_U z(7I?M{u`>G1C*fJ74hiY(jq*r3BY&cv08noPA9y>S;!okCWki@r;(a*lQjZ$- z_SWyz&&SK0X~~+EO@toawTy1pV*>loZ=ble{k{1*78`qUJ8Z##vz)?DYQjVGMsKp4 zWq_F-##N*Hw2vXzJ{l}kgwuVWM&)hd412`YuTF_5^v8g>*v!}{Sbq4|PA+Q(D%1_i zK^-`h}C?gU~iQf$hjwqEKCT|-R=_~wsL%Y|pJ3I;B?l9?8~JOLsU z=-rcW9@oq53d2NgoAnjZ#xbJokaSNqh4QU%$e&<@nO!YFy6k2O^&NB~=kD2iF&~VyS`FN~llh8OGg5VGIDR+7tW0zV zQf|tlv41?Wf`q^1b)Ub~s%KtAoY$6R!nLW*6yQ*@tl8OM-io-ng1oagd1B6@`yu|z-5Z`Cf zKaFAt#-&?QH3o4^e66IB(#J*IoEn;NoZ00XYoaF}FB6+JBkiJAcP1~EeV6EPUGrFV z5=?NOqGg;uU+RVr!~!oFMvH&^g-4rA?j9r!F`>%jd9Ic5O$%2>$s89xcvw z*g?*FJq4;bpnODDh*pY+Yx8J^=oN?AckTOd?ioe+LCQ#+z?)J=Pz25HWpoZsD{e^i zRaYam0>8kog!TP9fcr80tqW91LbG1nwD;n4q<}5>JxciHz2@t)hKl9CWR=$vevet> z&O!2gSe2<~gS{N~ktef7tx+a(8t%aQ@>W*T;ONsXj0N8uktKN)4?LTiSJ~7|Kt-c}CLrI!!dj(-I$yTNAnk+bZ&5gm& z!k5GX`*)V9U?Ak;(Y)R(ks)9{f!~sb18kk5Cx-jqrN^>o#km z;x``1&|KG;pIl7>t)=g&G{l@Gs3Tn0T+)pQb1+j@YWgAJOMDm$9Ao3jo0KWrQ8Nm3 zWQY?dVbb@@4fP`v*9 z%$6ZJb4r7s*Cuqk1-r&u+LGoMSmY_yUsH??2R&u9(JpvI99xPsn;%;}Tq}(14)lGOP%0>d%&pG7uZ*rr^pD{v*!z!%^^|l`pGglFMZ1 z+@R1tnEbw+abcy$xBgOTcTcLi8^hTo*iv|Lcu~b0xv7vN+45Mwk$w!lTC)p@+L$Ws@Zm=$)y zcJzfNw7ia|lr+_kXad048(fZL)+!65`yUA&$|)1bd9l*#n6azkG?{%D$uVa)qja@Y zEcGuKy^#Z+D_bW1HvMSxu&=y^iE%XIE>J7x=E_yC*CfUXdO{?a7-$U-ku9P?=Gg;? zjbqW;ETgh1ncwEb##(5S$@(5LPi3~OLhde8f7X}p%|S?Y6Z3_Jdk;GWwU4CxoRQ!> zzTdkH${|ONXa_n!<2u)29JBx8RmR`d-cS1Tp}lW&1`rI13N60xbhz2rpCaPx-S>HZ z+X*m0#m<3;&rM_DT>EuyV)fk$)hhFaxjiggs0wc_kNE5jI_!b)2m3-&$8HY9V9;7R z;C+#O$fta3lTZ*a$5X%#yXU_6T2r`;+EzTuqNN|a0#Pqd*lu#|z;+?f^(GW!+kKf1 zf2NMa!3Hk}lRw0=L&@wzF?%3_hNa2po4)EATTDsQ87f?XnrR?z=)N|qkPG;JK+k-) z*h=A?p6)?It{#KGY~rLhc|Pek%N@a;aBiNyk($PbHJsl-7tai)Mo-BicFC`AO<_Ft zWFjcRU9z-9oS6NUq9kGmNBCQg;tb$GzM|gIW4z_?l453D`jzUkr}qYLHEo-nyDdLH z`d^mg4RKeP%szU1eMS}n^G#Z-;h8`F`O`L9ffUosdMFK!>FGXBI37F8S>9~9nvg3K zNc@8UPL`eN-6Aj=#j<2$+G|s+-`fJQsh_{MIHDiORkHB#>;hYzCv))8TxgBT$*fch z9G}Ufg+*4#m7IUKxk_>3)l`0kvnOhR4q_cnE8PJWBVN^l;Frwhk|Wz$Od7V2eVF{C zgKjab<+uhMI16PRt1oW?y{`CgkI{J3&O=DAE4kY5UgbEBIu%`Cq;)50bKT|?6NZsK z1bpAAo1ge}9X8lv4Mp|t^=mhEiel(9i0{LVq;194bNw3SwP8?>0vN_IH&$F20hYO_ zh7^vY*&=F+j-8pJ$%6~LYk6Po^9LtMZK{kxQDT087ISD4ER?bv6and3&G6o(FiVyJ zUY6I{@9jKu-?ox!>Jbxz_T$zIg;?k7`K{GF>4>5Bq51TUE?J^0vj``~W6ha0I+L$% zWSsebo>G)$0}mBr3`pJ}Rp;XN{YYai)~4u=gGapa?tGXH@3HUdss3r=X^8?-BLV+0#;C}bl%t_cEQG`KNQeVPX@nid(hH156y=NsdjXYYar%6?$LC{FVOmSj3r+!Ab^E}vARG*}o zVlYO+Pil!`j%VsB=9DdLLZC`M*dOAt_zN#bI319kVvPL@RWGm?fm9URd_|~z0(|~k zu(XG6mDKR+FPZV_nfQdfdz4Ch_Hn~rN;&*KJ{2@qDgOKP{4D-O8EFj0NU-e9rS4<6_YKj4#7!^9cduqS7

m0%T0x(7wbSzT6zk&y$I3Gj({~0Qd zo|V{Vh3Xe`6zB-^{coOM+TgKNoxhA@Q(Gz9WC9+dJY=UWT>-QNOUD&2quGRxx8wE0l*uj$#lM#jb`^Q!V7|kmZ5iCA z3^`5$fn)&xZY|KAPC}H9CR#aJgHVFNvFAOIV!z1kX#^BLSR2Z?B)Groj;yc7Dt%@u##0;O%GB-frzJNFXG#-j&E!RwI* z)uU=Xb=q^{Bt|_2q&LLef29~9ppp!p^CTst!nyT#G1vD!NCgTD^<=N);a~vcDS3pO zL306t2Dvg=2tcv?hXG9Cr9!qG4kpK|c~qxRw%BBBCf(c7tl|6Tt%kK^_=kUuxTqkF zY`TZphgZSIb$66>otZN;tg$F59X=4vo3sj$W~jlflB)|OvP>6lH@~cW*6_;5TzZN} z?PlvalY1enYe^m6&mus`=g%oDHnV>{$vEfATx8hUM`@m+vd2y>SSGEC-Mdl=L{Qs( zI%z4`&@Ii%5cw+bZ_`i9eS9Bl1v1)Ghqe7Q7Ac`t`}cDCudn%aMBmeslb_~yOwyk| zp20Vq6eY*caLRdKZflEg2Tv&hl47Xw* zI{#b|I_u!i#4aw8F|MG`^+b<6de9O;Q+@DG4D2%2p zl&iqca4=)tN%ZxCUr}?3Y2ZwSIiQWOhK8Dks#u^uaUQ$ZlCB;MOrda#LNQ?>r>4NI zyIPb(Ta{4}V&gOp12;pWNtb9GWEk=nW0Wq`A$F}HpWp)}S+R#$Y+n2^T}~QzrJWuZ zZg?Ej12f8B`6|pr1dd!TX`2Ag9A$K+R9tbN3E)Po@NoM5FbpxQ2t63ToD99MvgMKX z%$SzMAf)3hOcYjps{Cw+zhZKZt4byxI^sf#j)8bF!s1cA#C{i{S~NTBzH#L_lENH3dYp{XU(Q#q z_1YxSv=W(%mDq`TR$}mf7VVcV9E}eGyv#FK?5gl3t14?i7 zRjSGnr3@7VN3I*EY%}P^2#nSWQ+Xpo9PCb(9{JyXFHhU0tQ}}*XL&M32M*FBd=wLI z0HeXp74$;m9Str;gKBk(r&kl9J#@ z)UO+~Qrcy)^vmFR2n6aE=aGRdSK!Lr33-dPyG;}^ELH!+5-EgbQu+g_SF~kUJdgwN zVUy*f#98{xCeeKDzAs=!;EUr4@=ur6@~c}>c?y)=Ye<5diD7&GHs-X#PVtYU%M1*m z3jsaut1uZi=q+8sX>Sdf-=Zk{y;$N8!+zX_fHMy9(GHE>_^^vwaiZTpF#2EjzLDZ3Q zI)Csuj*R+w`eVHrw#Ljkd8+Z+`gOUj6}5F_`XsfyZ0RJF>>`b_wq&pW z-ZVa4Iw3WaB$mKD^ZR4a7GZYLP8?wCjs zj!`hhWT#N5#exEJ4_ndIlC%vT6Q2U2D0+RPJ49n&ef9g~E5uQ-I=u|U6;WlAeX8|WaxOF}b#j9GfyWe{_)|8ZYRgx+Z zE_mDrZfi|(5NiTZu{I9-Hj27fWdezv|5@JxaM_rbAVFoSMNU)EdZ+SM{d=+VvP}5I zFi__$_+CS%au%GTUn-%5hKnDqai^~OGNWcb6Qz8;+3Ov&N^&d-RxEb4G!yMXfXWd z!!XZT0jy^MqRBy_I##715N|rUbShrv9iF2WZbw*f12%xcu=8iM=JJ%yx0B;U$wuTM z7;Lf#5(rTWRz{`$_9@hvOSEK}9lb$SEzK=>9NUjcc{T}u zGeGu017d^>Ht4@+9k8pnb&aNek}8NA4xYdit#1-(IY$#by6E8zTO%LTghZ% zOyO77X={(s%Hhqc(m@EuS&U!P!0BpI&mbx0X;v&lEP-|VcSqXA0H&Ij+93|86$?7Y z`w*pbZNW%Mk&a$@wE7*$#231?kZ0lJ86g1LsH8&f$X|m$KhH}7&=3(znk}$#Eh&(Xz1ruC{o|FC096jEDNXJFqfUj+!AWE`+!liIaUZwFrGmy6sz}mrO&<> zWLV5(y&B)3p}t!~AGCL(Hj66C{OwNPP~22$;j1AcTu_j^cM6}HV4!SIS4#@}lr_-= zhgOF=^r|oZN;q0Sb46(;uFpFx^U_S);zf@;cLDjO=LOTqA#ehJic+iv4!@nW{kDlQ zidJA?sghbgA;bNaVlcEt3AMsiG~j12OP}u-jc(8YEb2*tIil0Q(h=l_%N}r18Jm7) zX2b1qS)QS&x{H4|E?T!@68n}-DG|(b5Z3q;A>cmt2j=CR`X!5U67UC5$aK+IWWl{- zsv@?r;pBA*FbLZ&8qGt-nQHGH_GKh4f8bdr!sCs~1;JiBt}!URY=aVk$HZEag>i{F zAZ#ltN@4^xupf)q8G|P*DKp-rS*QpR?bcBt8!)nIYElg-I*EQ3B%mT>N-HVf*FpfGu?cWz3vO54pWTa zq8PBxrbn(wshFm$P7tH4&p?Yuooo;48;?0-E!zg+>eTX@gBJK_1`8cQ;P8zC72${*YPWaZ_ z7WeWYL?&y93uHqk02+ry!D0B0o8MB7U<_uA{SRi<7HfNIg*qZOR}c5aXgn8b6R2O8$H-(y$?|^jSwC z{VB?d1T@U8_l__pDZ4D{cnK^6hUhj`Kq1)t<9Ku^XFaWE&de(YMn1M+=>{<~3iNXs zN&acTy48^e5|2-{dLz~~5!&c_Gi&p%0t~6Qp^TTUuGDPjT+wL37!RRFfwg zoK~lv8?YST;R5Q^dIS!deUo&dH%A+lW4j+4J%fVar2lq3`8Vrat`3a$ZJc$%>U2E3 z+?|JBqg8)wQ6?LC-*#4SqWf-_Zqy$})`KJt6E9XXcuh6i_+ZD@;H`eWZ*pj(!Rs~i z<>Dmw4r89ci={pHHK%-e9dv&ectv3NN&ry9y3?O(=~nZ4;7=>eHQc&WD4*r{An3`)RxPTezzwX&Z6c{c-w&myfC;Qm*W#+1scob9HNZbY7l|5G zLTzS4ASukY6dA09n;{#gke?fV)n}3mhxAv-|0;*K>}Z~Ez@}go!KgZV;+2(Q1fAqD z8zYg{A&=VHWxf<g+TahBMSjzq(_h zl7W*0jS=Zgk^f=+Pur>Ih0(SH?f5G#iPO%%DoriJhAjrYz>KGp$|yJ~6@@v^9~Oa@ zo{XU!1wt?g2H(IDl;Xi&n`R)YCq$Y8DonM~u@G^WZwyac6OJp+(8zlyqX$VN#oiUp z*;-|00*oLv;8X&?7{%i$k{{9)jqZ~4tF+4G(Y>s*T2qz8%9sTfFO@3cm)57KoMEI* z{wyo$yT1wEZdKft6J>y?&~xQ`&!U8qreV=9213Z*Ub6^S(P>vhu!XY8dF;f(w@=Z3 zgGPgAHYaidbI)QbOsU7Ft(c=9jR?%p?%;3XBA0$Ens-1h1 zM{2rvqJ%ryytzZVuNv#_Fytn!H9m8ikCm|>qt~^;WnblWf~tMzH5t@Xnm%d|y!vNI z5#YA%3x|BS@8s{R==gmPj(~*Op*RfN|UPWWXfm#b_h*d z=lMxEKCU+@x_E9^T9Bi$-GglSXQ{!65`MBoUk6?aUgR6;#6YSXY2L*5OQ>rxeMs?`h9+EWl19E~LqFR0O`^e0tP7+(gq@hc&8c__t4E->ErBb6Pwrqav zEXCkD;}LLs;`p`HI|?^_I9)9eK2p5Dg?3-4Ankyip02;@g`*L2^<80Rb#0%h+=$e2 zA~NTqi43bq*Ps$10IA4O>aZM`3KYir%rJL_#!LXn;wossC}J0(=6I$`(MhsZp#Gmc zE~+4Z(nkC=L5=z_%-1SX%z&tXoWOd24B2Uo7<4oI$BOru-<@g^b&$5R9sCch&Saw` zb!u3?)6CrDGOi&F;-o$t{*ndUJ0=(_wo5Y-36~0ZFnY*WWA4LXf{BdP zQpT3VE>|%45w`r|LZi#bvIpcFF{6@%G{&TC_EqLcQ_N=<#hTG$A*|wuwZpS8sjd|U zm>uaE(RkYb*9c-nZe_=Ihc`lRc=b9GJ4x86d0tLP*et&7K3q;9o$`GwyiYG&=kg;a z+)-R_JHK4LhOSQxU1u&mJ!U>y`W{*OBlW{|rF`7Nedw1GXjPExj(D|Z^ByT)n(&O} zDq=Fa$@1jV`*uHeVt%Z$CsIaVDGcpw4~ZpSfP7Ee5@KnjQ+@W{!P(Heb@PN#Yv+F* zabqCZc;9GWLcCeS7(u9Z+xpn;-siZ{{5W{1x!+7>XukWe7wa2LKASx0ywCIH&mT;6 z8M0olJA?=IAYzT}9g|9n?A4-Sto?@f!aDiAO}|A>g&kMLez*afyh;n+r#NI#(rO{9 zvdF8z!rNVL{`f-Refx`@o!#cjEQia*#iixr{l)#Xc1TTEw|lO?m7xXwg^c9%{M_N9 z^I<({s(lS~fMx-eo89>xn@mc(hl%7l-qt&{iNqDc<`-Ud6s(?msJH0o==SYg8-EZ` zyWPTfbN^yy&B36P0JIkmbh*33iCyy~TFcA+s71~ycf~&F#qEl7PKA~+ZADEV?Em?J zABgU+t{;r9qV~T&&ao=K!T(f7xAnQnEG-)oZ(OHtS-FQkpY(2n znMslkmxGD&A3AH*af%Nf3Y@^_QJ??5HdgyG!|`D9s`=x7!^GP=dtyTNeRAW8M}{IX zvjsDvxnqyMW0#y!-`YAlUp)4jP4|Y)>o%XTbCXSW=CW;}Ge$TR5kL_8Wa)cWZGXKx z0;h9xm>+wc`aZ2|z=`K@d-&`9pTM&?5X*MIir3Pvcs#k?Jg3K^YSkPxIdi<~TciKA z?t^irfKO7iw0g>QQ*);*|LYdg*v5;euRJ>k$KLKpVzY-?Dv)R6N$%;h#NU|j`_zZ} zm!~5TnHMg{7Zj98gNuuM%_4Baa_tF1;a#VGTUohnNnHl5E2_$k(Wini|JPPQ=YXQm3K_jiJI7R#wuNmPz?+Q~C&rh`etiy$gPMssw@5 z_AGs_FnxbT0j?i+VmBIUbzzI;vQY(n?o@r1MVwAWe+~P-#(vm8Wqd;A!G=NXZGM!0 zXpxO7a#@_UUK21IqkvF(-YS(5E=>W^7D|$eUL9VAZpeV?`01-=IIos&laY`>0&Kt4nC3i+1dD? z(y;;jx3Siexj&lCFR#a@YNHBL>`&`s{9miZ$ZH7$DqUqNL9KlW{e{!z6pK5 z<5?~0$>GIu8we9az~|9>v+jvV!0RUcz;!U*?EBJubDi3q#rPP&_{FKhSiP>b)xFn} zaXnZ1>|(nWy$b2PsMUdT3QcVyc?G-Nz3$Vv{ZG39_g>^Z4NJ=lsq@gbaPtH3pC`j?=L4QF1pZN|(uZrUF&f&F0PwNjw+R5@%sOuX^qy)|HBR$UC%#gu&>Pqg; zP^=?}j0Bex3vf7JZPjd=`VW*h_3=7&^BJbN>bl`Q215P|$SpWqSzBvgK1V(rD7>`0 z*#w^iwwqV2mfk?9IPSR&fktG11XgwMzxJ-LKBXtgcqCHimSp{|%9WmQjO(V#wKFoc z^VImiiTlJVae{gRnz;J<{+Er9_r3RyQ)5O$OUpc2pQW89+Be>8K*>M{+Ly1N$B+2aqUX#1{4e$zWDj&|1V9w**H}0?#Lrxz@#kl5 z-);HV@XUJBDX>*p$33}B${LVf!2aLm4A(|OtH(O5x%=%*K{@#o3(^82YQOq_LNAji zCMMt#&}}F|zG9R#mX{=!_d4v$we9;vH%R^5MfmSZ<-@}UpR8?cMyEjZw9!vG_Y^zCtgh~2wSQ@-!?;WsZSwoe#Ki;Hof%iy~PqRG>Bo768|vwfm= z=spd>=f$Ud5@S<7N9?l@gVob3$>;@owOjD(`NezH>ontA0v?xx5xToOxEDERzN51ek83+(+#pQ?&YDkNsr08Pv~EB zZtpS{I>ba+r!PKBJM1pj8iK~bYbn(`{XZkDhif{OldRhPJjYBBYwYc<4FY9#{cv%0 zwSDf=vJm+4R7>~*(whC7*4H->9c!=0ADkHvaj*J)uA4@l_X-HP@&w9;p$0Meb*Te; z1rZ7P={_zA--Tg_S9d$zT{h*?XV(D1k>9lGi49vxfx8hpp&?44&G5<{qR7ATK-$+YIXp>F++ov)=nzMP>aJ zbno$5HQ@CV@c4Ai_;F21E&%e-^`8pX_dhaR(>JHjrmE7C+(IigOyF@ytOEigT?Ps~ z2KrHGtonYu{Raozc*@>zj}&k2gKdTeNz|vtfrec_xV+z@s=|)eeu$Ro|KECn`ud{x z|L!Z!y9&}~`Zma<6eNMH$s%MdA&*NG2(~KFvFo|qRA{}jcfn=)nXj2A9LhAf`uD2J z?m$pvacymH-Sc8#nJ4q48l;IFu>WfyK_lyLnM?b5ZF8F%`y=@BdO3*yk>&X|Zupu# zuxM9_-9R@+42McDR=uB=jUMDG|2HF2o=)k?>(Ax&$TZ0%m&5DcyF)3Tv-^0plj=2< zxqeIW$&aG*-B@4W_lG9foWlQr@?tA+zho+HXkkdC8M|#6GO9s2c0}1A17b047W->) zPWNmTqkI7%4?=F=vgHf#BONpmfhu**`_<~vhv`Lt9VhVOkbuj(U|gkeIxSMQwAyf_ zBGy8Y2B-yc25ul=p*U&we=_5-H@MLOa^{a3$@3H^8X>~ z>J`X&y-36w3TuT7RgCk+Dv^m=KOqh}N6W)OAH^~ZJQSsO3azvO%U?-N?Bj;lgj?94 zPc3q{!ca2`{60o}%Xyrd^u+MGh6vN9b>j;bJ~UK8P1^4jl=7)eI?zI#C6n|9LjmmI zmXq%M@peP@7g7G#B*-viM5Oc>RKi!rkA%j?M$3<(jtM)ygAt$C(dLipDK{(M_m}q@ zw$67p-KYAgM;6RS*X~EvoGbSAXL?;vd@-<%r~Z$vHY?~&(u?;%+OB;_->qjC8J!8V z0fU^?m+J0BVI&9(LTW7oHHeTdQj;+>Fy0NK|#9j?I8}(hw{05O>t6YNLb5(7R9Hu$4OtlegRdI`=K;ZNQ7}2 z08csyD~i8}$ENgF8@4npCXWWYyg58#P@(ry-FJiqmnmsr9x#NHM?-?4PXJ31Tlwo$ zqjQiSYOm^NE5apA^`jTF{z_K>c=~Z8{<>@Gosnw$e&Kb+(e!%0 zLi43-&($Zoy5++8H97wyus+l$T-dZ5%qx=+tj?Pcx`LuhGrbngEmb%5>bcMM(omR(Rk&96V}p?^AckC6u@ zWl?2id5_f>91e}4WVU&1Bcqz+-np1(twAHIsC+X`hoj+SQbL@cpx55Jar)sKXA*${ ztO{U?GN^cbVH?)HBHAK>3wRi^Lp@(ZIkodl{4Z`q4Z2#S1-t8k=-&~GD zsYxE105{2~N%VR>oYtZe}7t!_dOvfYa3d-_DN?`>Q zr-_W~g{cM7GdIC_Y~QCSamwr=gPTw6n5OrMWgS9_g%EfO+R2JJ9EL|8JqQF`NG5#+ z>L)<%+)4d2A{SE@#qp3)0W+=BE6aJs0x#TLZWtPK!5w$W$JDjwGiNzWE);lgovM+5 za^Z=J+{7EON;S}X0X?9;zQ4<&gnOOG{n&TLUa{@Gvb|35y^AULc?)oQ?d*Qt$eBNQ zTgml&9A#{i^4e(j-Em%`O{#UjS^pI0#gkZEp9 z_wTD6D*PBt$(sn;HER>vK++>>OK5}V{2i8abbyF`@x3K(i8EV$g*~X2G#M(9*psii zs4q@R0z42a4602*uWW}!9VWa>>=Fx4Pjgru^8oev0%Mpd4Q6KsW(Bsi3Anr&MT{%V zF6E+t+9xJ98dVFq*J8*jfu%~y0GLWiqF2VZHz-LUhuf`ysJewQP5$f8pkP%lB5&o- zND{c4W~20&K18OrBKbX0JdK8Ywj`#|0MnAX9zSj5A^o|A83NbKa z5w}MHh}cQ73hp>9sj~(k$my1ZE0RiD_3Y?dFrc)HP;0V>D0<~dot@w{hbD`3EYCyS z!4~*cb1ZURM;Ckvbl=w(z?igLXOoRLr9(~-ErbDD#RSPw6+dI8zRX)j;v$xalg}+G za6CWOut#O*5hTA}(>ejVe1CO4K9&3UIE;9E9MBGV%}vRtY*a%W;1AfnQ8zoYJ?^Ql zjcLBTg*vn%o%DOOGVZ(=of&*&yH+4seucTjPen@%uiFs6Gz z$rz}f!4$v&1UmBXljo&mH&AG3HkPTqD$($?1-D@=i%GR#$x7SwGySp~($oW4>A_x< z(4pTBh_RPdU?PMC#<<9NV6+#(ix}dN_0(nv$^dW6I#GG6h>LN<>jr*WYBDugaQ0ep zG@-c=Kus;u|yOryRBaZ|v15)<`~;-Cw9D}zL1 zf0JZ#DwW3ooTAiWZ$U4 zfE_VPD-N?GU-;Nr%!`hPK<;~wVXC)Ju=EaS53_G009)sO0D=b2@`KDilM0lq33w|L z0@yk%*whjJc;Md+3;lJB@s)rqgfRVg!Ohc(&76(Jf!y^US%oyb3Le+LiK5`NGEq#! zNX1WWfdzekZ4O)K#KOSyVWpwF0FT(xY=aCykKzX};12-07-b^jXh~aKXCW@G7ikM+ z5652{tiHD1DCR-aG8*K1aufW}uwJY@=@@pmIxH_=Eva0r@BT^jlj1@jIfYW>P$>N! z^n!YJ3RIKU~fqeQ+r=nfU_E+C#JQf)(eOl&N@&d+sBwB8=^s4oY$4r$tD46 z5sOl`{9-~K^N2)B0z*m+lZaeIB;9I@xEu^zPhpvs^hA1;3_?abkv+ttcX_^C4M$zs zry?eA_1x~Jq|jDiSd)Q!jY1?W( z*c&_5h+W>8z?fveFXH)=7p;%d;s5m9QAHrA}#UUABdvyG`*VM&HWIAX|#+1 zW9q}JtLQkILouk@7za$5>F)gc5T@&(c=F8K+Yf46MXd|VQSprjht0JGYcDB-Dj$C@ zz}MF4KOY7iH_3+U&+7}N(C1dvuTmKj-^w+6hLGD_JE!*pKI+C zMX6WS==G1<7RLlANUo8^@~{jZI+AR5mT{4EG7bfht;zWsV8-udQyGr0 z2dwSGNkmkUl`mDcPmAx?I@Qc|$)ne|_I&%2 zt=4fYfY8o518jl^cNNimZu4@ zw}nD@fAgtrW<*H}c?zP#u2A$1gOlH1VcQh)tLp z*M|P>j@1mLsaVVBnL;X`Ef?Ng<6xEEB&p+PN+k6==^_3S(a#HQw5JU8a)QOi!0rIzYs@5_vy*=#8JM_5~1C8xp zF~|m6bF#wA7zZu5G_=o>q>B64f2MR<&ZoBVQ0tn6(ciD)UQ7XZ^L{YMFNfA@%hR+2Ko}1Rw>_ z+GN3zILqjX5qsDm#V3IC`SE98aAKY%{sJFiU+=| zdhEcqccHYBs8JJ&Q6^!0pl!&^u&gCptQBbex3*FUiEf32~QFYz~nn3%t_^n(J(zCeJY?n~QwIv8D< z?^7-5y@=sXb${!2sOi$}Gpg#i0IE#>RaLw9EAsp1+X1**m7W$0CB_E|jb55vxwMY3 zypH@ic#kgZ+0;VMZD+nW#RxJq z21&=n+ROIkF8gQ0j5CtSjREMCLPdWIPD*sgVOln@Rxx5?Wx*^m7@B^~BCecUOsfSv zR7!aCjf#OSFS+8*&97@qK#fWfsy&@fY_Yfi zn+d%^s7#vGJXG9SJprry5Da*WapvqgvS#`OX69T&7v5kN;1-T(X%3cs+XqG9*?3)o zAaB|q#!TsF4hEOT+exTPG~)S?GibiGuT(BX%5fHl=R!#1XJM{y!T%+ELP_1kGSCBP)f& za9R>p3>1LW>%r5F!MUVpZCg;%f{zc-cTiA~dQ41BF{pRr0QUM(tr=w3SgkUaj(}ny+R*Hc-IRbl$1*wWOvQ;X8dWYh; zT~hf+v%20NGn|a2X60FREO5y{tTkQB_$KA;t$S)hlILW`cq|jE z>b8PT=8oW8@`pWes>H{>Q5!wGpiA--`?ir!dCp;fA%|6CV zE&30_8|wSa#?cVtMa4Z(6RvNYhVV+XH2RSV^Vnr!eXsEDFnLpq=cF@Vpx<+np;4x1 zewkk|aQdNhs#do!#loLh9yNl~SpiWgaK@d#XIjf~4UW}&Z$xS=jSDMew-#k8Ll-tSQ2o|;BhNnX3$ikoa+?E;p1sPx=Y2@^ zzVMhk3WhEJ7Q1at5ka8&=bL+jsA}@lO#`iRTQgfc5BRRz9^A+2hprTp<*T*o$E)(^ zadiKsSoR)?8JX=CLD^~6yybzkX6c!f+8st z_8n&k`(!BC0za!oNu{)>f=HQdCjP8YZ|KZ*5qV3s)#p?i?u;?m+!c+G#~t=K&(e z<~vUtG^B9Hz&Yp-6F`}w+IV)s6AFStc|l1~9sH2v7mAvKLogm4WTbHXO^4<)wt=Fp zS}DfqO95*1$(W0ZMi^>w1>UjYy0Wn=D5}y@Ig{+FBKyl%jt9Dfy8M@2ntV|!NMKmK zFF_CKS+eqKx3k@sJ-b%Q?pNVibhUR9HAyG*B*;9mBFg#>(_{>Pl`6EpESV{!+(yV} zf3pfX0m(N11W|9GZ05+dcXt6j9QHouNUTBDQ_X6fTPaI7oK^T47{pQ zf(e+{>rw(X15<^jY-$qnQ}fT=IFGEF^av`C_-*(!<-8a|6(!ZW{~7k|pIO93X^Rut zS87cmC)S&U@ARkNA6v@=y41CNUs!#R^e52fSt08e5tbc@%sp@}HjgQcZ+JeB3-6D0)vXxlM^d|c9t5$%oqsD3Bc0I5 zIa(Wn*rGM(Av@PRy`f68JXGr#PE#+m$%2vx9P+FpK#|tN%VBP2GM*(AQ5_~v;H3>g zwfUM4L2TlH8NshnzY0Z+(yxu%OOAhH^m$0Om+tC6uL3HfZ*R)#9;R<29Z!_(59dg@ zWmz>@3&+9n>ocL-`i1*U3QIX8hiy<4{(9PBM8L#_n{fAC!cwFJGF9U8aXOEEUqLeq7 zvT|W+x7$1z*AMrHj?MmkHI!?@$Da1lv@sg(Zw_}H@pes=d~J5~??;`C#=zDNGQgnU z4Yn%9D-}}(PvZ}dXwoi0lCRr>eC$oNi}Q5S*{4hjG29U(zrHW0{d5(A>JIPCTF8xI0S*0TC7rFQQXA*;@%=hKkF@394 z#(PkYyPXqWjda#n&)a*l|NKRGDA{r6G&+Tt{UT~KsDi%NXRa&aXWztR0B)LAXSzMjM?sR5c- zzre`Oj(c09*CpM7@@H=JW9!c|va&OoM*7Ee5B*X6=zNT7-O}T+Ck^YOXF<%BxqrSxi~^S#mO5@9FVMPU-M)4ge5oEEXFoNdRK;mN7j67U&Z(Xog*ol( zMmC^KP*S*{unqHBX;572tfzJs=|Ya3;Eb*nYMm-rq6N}=nR@r%v=L(%?8s&HcC7|n z!v>>r-JfI2ac*u=NzVs%+Jo|>K1FvUFYyulWp2&?#G;8WsD+X#tCF2ElTo4L-w`v2 z@#hC!>Zo!f?5DuN%OY;yR90n_$pOfg;;uDCTZ1Q$*3ys~a1#zl)nVQjTpdD&^qDin_QQg(IuBlw%DX_+8 zQ35X*VFDa+VzpAgZaf5*o(TRbsnAM7S$GHt?~UgPtqq`M%~10g82FZ^_Z(F5USHRH z2Q=O)u4T6j*Jz4@!XJp|TKgx#``s)T?Jx%VT7v{XjK(A~4-4XzDo$MTjf2mfW=sNb z9Cnhf^@lbrM|B`R0TQ6WZ>$;E5Ythe8hQ5M>Msg||JT!SI^i%`wBS14UDeLOG+L3z zaMCI|{bGLCDy&k6v`@_p3FhnvIiQxA6`Fpn?VSN}*}4DT5zb^tIwK#w)&&@E{J=l8 z+m%o`RdzU!U&?IJQVnl!WX|z?eNmDORW;F~Vy9h{W)e}liF?=EqQdlR>=2{fj5&^Y z0lQs6@0{ut1k~~sZt`rWWlrr=M5!D@smc5?slvwmLSzls1hkRAnv4$}Ncg>2#kf$0 z&;HHl&;P;EIYmd-tx>eo>Daby+qRvKZQJSCwr$(CQ?Wa?)#0uGj!|dSW4-KgYVZBc zHP>QORBb6E=3eB8Stc zEDp4>MJ$3E-=y?P&LMfAK`p$1l_kH;ipIsC1GL+?rh|(fD$q{0* zY3-{!BUq2B&=1UarsuJ#=Y(;X<#Ou+1Ir~2*O2J2;3sUVchnBrcFX>2_NgV7vq5~v z%{-S@MRUQv7b-KuW@5&)p`87o4yD)U8}Ch5Ig;NAXBLEeBoMwaO@j{Qzx=ps1_Ucv$gNPsaez)I=IABY(;n7PL|)y4 z1QRB{3?^}hA<5Wt*)$76tV_WN0I?{cIgxTa1(+PWmPWEDp@1dL(kA2#&r3=~ zGcvQ|e&9W@S!zA`<<8BL|6(DTt9Ts&dj<1uEzWQ`chY3U!0SnHN#28>GZj@BC_fPSs4`nR$cxVp#l-?H9=)im($&5Z6# zg3Tzs?RyM@Pj>~c8I_b_UEGCkkC_;9CYqm31TX}Wn}1u&FtHLjtl4N&Ps?k|pp%DA6~#r(Nf zdZoN9<@#NA5s@V1UDGb6kSRu`_UBxdxHd&QbNMmCBucD{%@-RJ`@*Ifv^l4xU7aD> z4_gv64zuPP&3?it)f5yn{9?nMaK)>kUg;Jf+OcfZX6}7tlz#xJq_R@Ipv*WAp130d z`QFWBr(dYKxSIo5Y+EFP;7I3h@8z}2Kcs`lGrVlbLSwI0$<8xwBi~RdgTZ(+Di#QU zK`YfT+jk&S)Pv%P8s3t9I&$Y<+Hql+j_ls@y>*84b*bHUEw(tV6#R=~kUB#ZqvW(N zKEv!=MNJ%{Fl=&1e_&&_k~(ZMF<_(}r0V4-;nF}`k_Zzt3V&i_X%2==M;at5ahuU{ zm#rz@3Dz+I&l3GAjIt<*ve>B=vF&;&R9a4=OZ#r(A7~>f68Nw|FcN+$j7RqChuuyU zqo90h?L+aYWJn1uu~t4kF>&Z5MT^Drr{RxMT`3e^B9HAjd8jDTZ2~~rw52~bQA+4U z5ck)4^$<82c`Yc*wl(iMZgVlTQ-xK;qp3s1V&3Ku5=$(scn$eThin=x6ZfLq#2bNE zWQ3x?({2-13f0)0E zW*_K>{;H?VDo&dA{H|=?^vJIRr}k9jdVRk=Hr~6omu}`X6`R_VUOkpTF30^}|KTtH zeg6P*L?;Dd`1?R~VAWQ!4K_+szrPvJ4PufVkt1x1=lw_PI!m(5Uq)R~2W@I~PFln< zvX16g%cWmw`KF4cwDFiJ)73GM5LUxDHf6=5q1~$@rGOpEiq_zSA%&@4iYV+uwsS2| zkl{0S^sgLM?`TLje55icQ{`9R5-q6l`KK9TGV6O8NNGytLS7azX#}ZwrG+d}Htvm6 zwsgB86h}IQJE<-5RR*SnDpMDG{0W4^FOSW@r#MjcwI=8b8Tx{VHwkp`@M>i z=t@)hncXkxoy1%2;W}KhsB*l{;>%UlAio+Ac*jc$_}B*#WFjeMFEEY%%buU8NAs-PWfhfjUYX(8oq5|BeZVGUj4$8fr_$Uw$YncjG=KMVuWe!lAE zi-0C8y*gi$Jy5KnYC5O^qL?A~&|$q{`)9(T@E0s0sQFow0GC*!tqPFdJItyWmL|;V z8P2*B-;0Mv7aDO14w{4vzzU74{)!qIxCk70eDR45PC+`fVNG8`>aQ$T*Qpl8OYGw= zu!%nv$Sal;=}lPXA@py(V^cf)Z3~We=EX(bG4MtVn}cW4Ef{ zO3M?|uHPzP+nuFJXWt;{9VBnda1CXHIR2A#vN3WXF|I z(=OacS-odj9`BpGu}q==5qu8UTU?^S|1n7)<8dF5Lw|2WVINET*Iw}#O$=h9VDu10X0^XQIN-WH3p1Pn8wY(bL&$ttaPVq-Q;ZHXluk2 zkLG@hlxZdH)4HA=fmaNBt^}#}V!bBzmmIR1&$F07Rx(r;+B(*xf`kbY!In7Yl5g>C zZ{}g|L{UbY@0Go{blepy@IOA|Sy0GV`X(Gfpe7f6(<<3H;}_s5hE!zfi<9quH2!%! zp0nNrVI9W?HBze-k7sc0ZyDN%e2hR(lg68=uDkEcF;2u(uz zr-|`hXB8PCN2B2}GzU6+e;@)xC5*nRc`KSQnNW*Um2|4&vU^Ej(SWG#er@ zTFZciG^d$#mWR^lDr-;wRiV6}D2}y>?L>rHB&a0bJq2`ASpLRh6Pw{21c|A+js@<1q{WxOxE^kl#P8_MEI&kDX+$2k_O^9)e% z87s?ud^KkH2gKenep!C`<_)>~9z`>FZ?fOKP2qTNdbmzO`0u}I;BB#!nbi4zUi|Ba z;O}Sn7-YD;9YQ#G<5{I5`;UFRv)z5R?f!bIJK6o(^!FYD_g0zD>TVf0^aJ%6o#nnC z4bb`hl=&!SP~qf~mAn0pyN!+eAtKX))*vMb8kR?KS*#`gBgji|*c#7{X`-Dx;r%#6 z*?YgdpQ}d^R-QFIy~VSXqcVI++b>0?$}i4yFtph0E!(lH;^o$3To}8m&$NQ`F@`nG zab&gvf$aRf0UZDqjtx;$8UNgYb=53m)I=ylI&dZ5LP}fed+hPlIXq;|DgnU?fxB#1 zm~Pb>HKEPZ9c}`iPEc2oQ^0w}$dl9)enfB3UDWlB*wL7L!Y!K>ubom~U)$D=zFDGC zscea4eA^_7>2?1Auj1-X=VZ zWi%fxUczf<9vvgH2eVE~7C6p?0P5)Jm(c6!8KxG5om`ZlWME?(p{ML#W=%KpP4!?7 zsf`Oqrtvx^r^}WbD@s)(7~Pi4pIRK3+EB)YnWTm*H7>+(OpdjUr<9pL=fEw!8k6Dd z3QhHY)G`%oLuNtgS2Us)l~~J+hk7t7M)Ua8VbWz9MPe$itQ{*YGXcGkt8_IeThm4| zBDKF(F+W7dFc3s38}$H11(YOeNK!r0sfi<8bY~YEKf47P6(Ju^z$3K=Zi5YYo2}0! zv>(Hi2;jBPTL(=Y>5k;wv7Z?Z^Q^w<)eXOv8^-=MUfg!*-#s%NlYMXI`G@}Y@@n_c z$2c-wy|DKIQr*C+rtjhZuRb#Udom2(>+Ay{EDC1ty}9XeM5FI{f|4GRftL#70C3yO zabo}E`_>N3)nV-mqk>IL?M#w3wDrDk4s6nCeCZe-*gchJn9tZtKRbkXdHG z)OB#;o2k8WoNie2V-%Ij(n(9&YDFJdGi$-?(x$ao^(dJ)8yawhTpJPm6sf8mZ6Sas z0Mov*h)eGnHuehC%K$qgv1(ups*y{wvG_Y9dwkgU&))RWP4>^?qdwcwmyh0iKXK~L zopU3*Fa57Y>OQw%{Ccr{GTvSNu0N(~&s*l$Wp6+=xK{Y_u=tQ}o#T)s)+*0pNh9H| zsP#ShzQ=&G91G=v2s1o;W+mE}n6}qs+`Y$@bVe#FiclkA`$LXb8zh8>mdIJ_pIVUc zzfGpa$MP2!SwXUqkQLDr47VHAEsL4TGyKq@vGagA-AU1ObYB9@r+~>VI+|bOp>`}y zG^s{~rdlKPQ-~>lCju^bJ;&mugRCDnFv4OvAHz{}Hq+wRHdvh&2vGoGgqq=ULWqQ# zx7ZGQKBbk!C2`FKiu=b&UjA>1b+n;_WGn2)hpr;4o`Yu~t!yq3DBDC!I(;ijsR`L| zw!imu^ni#Bf9e}~(I})JqFO{`suf-RgD21@3#(9xAmNiIe%zuXN1JY8(WcSxp%C&J zIqcs1A@Q$);h%QC2GZ>AWP&b%j@5u)!|J^_Vq4$cMx8+#ipJ9hPRZcqm|xuV)7owo z{p2*4O6rjczkVti*De`MZ?`>2?^+qX0rpjbQKCiKj^Du5Ny530!9h}Bi~=e632{er z@kS+rnRV$fh^pKv&yKaTB%(c}@l_l0iu7XtL1wXDqPR-mpjQFY%nl+u^l=yr*$)d6 znIthBAhpo!bR~6=$obd|0Ug=&&b^6UN$Y{pq|g#y7U(yf}4J(b^m)y*R+6Y<+`W zA+sM?kox1tb|*o%qt4kfimYt=&}pLx7U6UZ#HY~ctC{y& zrMw6@#pP{g{&h@4RvRua2ML*iLj6%JgsJ|~d_z@mD*{TJK^(ds>=eABN@HhMb6zV- z@j$CBV$)D+!^&vOYHF#P)a%G?nXO4MY`?@OUi)_(-&&MPx=(6yZnIS@sBAcJKoxpz zUm7ZeFg7Hn5I5Tu1M+<6L2Bg+4J>wI)$v`3aBy^7l3pZ6-L359V2?BeARIex7Qs-R?{emzB=ep82jBDf-5>)xh8 zp}!6b8JafrOv(As==J9PhWx(~+8kI{38H$LF%GT^!`n1{J)wR$mt(S&GFrjllV-v`M~IZF6)0rL%7H^oFXN*P!*Eujw5@c5nc>> zFQhZU(RMTr2d)m+19jL*bVus*9$10rHbEKFEvl9Y)hz+bAzsx_hd5z+pEx}fqcg

|)EWI>$^8qeGeZs+|+bZsYpQJkps}R!&o|RX@Qo^{}nIgHWnmQ;{ zZrrkejL`48@ccO9qx3fF=&lm9)$;tZ46AihUPNY!h21j$q*~R0v@y|mPQ+8o=u}z2 zueP(RT$1jOBO%1R6y{)TKIl!IE$Rx7YqVQ!T|PE|*-6w*{r^uGB|+=2aCq36v%w2L z9Rs|vOiPOQzF|f-fs+}tku|>oek6=np=?)T(x!EGX0)e|dl1UWis5xVOB9?LLm`*t zMn)d+2*LKCCAFCxJe$;Lx`PI^@HI(^NvBqZSF6!osEHhr5b-2xZXB-L(f}1z%>xWj zfv!>fhCdgGS;DMoM_QM^Sd^CYRWH6m8w}ls6T#t=8pUBSLKzu1lB(nMoVSHt7sdij z=TMWp54_FRVF7T+|5<@nj$x}}9f7aZw&;o=x3753L1g+sYghX}7G zB3xM+`}uv3-&qw=?UyquUQf7a^jF?71~CS4Fm0zT^8gFDsLC~CA~NaT ze>9*wG*d|Rq24hb+hmf)E<(zrPc{g+eA=!ajvQ3b(g}bOk^hns!1i5+{rLis?maLD z;Ku_b3?6TPgu#zVA`bru!v7W`?=HZO3OzD-fuG3xt``cJ(GK6VY{*IF$ylR-P?Bju zmohc1j=`^DfxBKp51y9*xuKB*W!rzjAijIc=wS3M)Esnc;IOpH(8f*Qx$Lvx1hqqV z>?uU5>ZOQoD^?P!#T#K&_C2RvY?dypR@t2@j5sjrGo8DYUr(!`dmAe5=?d=8T|~zC zC7FCmmyCf_Ogj!SDtkllms_pkgV(aVNf4K-Ge$WsX8}A%x!j9*G`>f#cxZkR51&X4 zq=#aHl#Zop4%{bc=^J3#?D`z)HdK+Z`$AB0Rm~g?rE)As>oD&zQob6zyO}Y7K8A z63;4-w)wxs({PD?&m>NSvU`-uNm=l=0#xZ%Pjh^eSS#Dpp_e@iK2*hWQH#wQ_|n^? z&77Jm(I1bDI_f~PLjGt`Lar-!F1dHUOnc46T&YY6P6XT1)`AECmKs#eJK-c-Xs7xH z#~JyqPuXRZ4IPA%CY%a#30DL10`dZ3d;wGQN$3kV?3kbDu%*-0bu*ectd*^z5|gR% zbRjahBHhRf*ug1Or;8)=-INrN-g-|+lvQlGMMsW7Wm1L9HX)jpshFdmd0i&|) z@SCQU+oJT*Zzizq*sZ`1MSY0~C3gdFCr8Tm{PVLk`7)%VTW4kR{ z?q{wZnEq;P(qwLxSvnzcv}mY_w+hP}G40D`1roPUHm4C~NKTe#@NiVsBRQJ`%{hsa z$+;VQ-?U?GzJS$xPyr{;h;J*nPYn^BuSX0u4&I1M^@OyGo*o>ux(_j6MwF)MyG1yk zpXP9I9v}4scT#FJeEA_Aj42n7$Beo9>1(2}SQfV7DY(K*tlkUg5(gJpO{D$hLxSo| zwBq$ZjuGp?d*D-;k#@LZI92S23Hq>S`F?7IWLt_=1OW3uOXmPHEc*#+*hAKg4~5R+ zy209Xp_T;Ot3*H{P7))xqDNh^l4ZA-QZM&dnneYteD-fuTr!C7rd+GI0*$r`MmCfc zxl(DYeQ~3)bW^2L`38$x2PkXoJggUYP{%~YlY%Asoq6i*+-Imt9&3AfFUpQ>f~dQ@ z1weElWnz_Uczsa%C%XEs@5HW2b7+$>E7N&euTB{$ItzY-^5kW(3MHqzZ>CL^0HKv6 zt?_XbshOOpTRD8{^cC&zdg=J%+W#>W{s!yd`(uM(&+%&vP5&iv*WU9&4s)(%boa(D z`-Zmf%Q9)jntoD;lEIzCN!LoHZUQ!2$mvgZd~4i|oSzo6DY>+8bG8)`(+kWeWY#~GyBb9S*|Hf5XG@2icxr(DX)q^aGXzcO zrn60QFG7sP98OtTf2z;z6*PsxaX6Hi} zqdh$>(8F(OC=k(shniY8SVN8T`|ouqloxOlt!fTef$Elfft5R%+$D?|7z57ZC|Q5V zozSz8%s?THYg8vJ3ZP(bEZgYfA8<^ha!;O5w^`S7E*?zyU3R7?R#-_q3faH_=gfZa z4vZefCet=)i9!4Jp)t8M{baf09?kbdTcu%u`Hs2pwg{@T* zPV0GQnS$3*Fc5sP{p-jIRV)vDM{#DIB^FUH)gd>Htjiic;ck<)sir`u0V!xt%G1Q( z)RM%Z>|CQI;5e7fxm#R~bDS86NW!14emZxvLlGe$nk~3T7iJV3cJW==RNK(?o4wU4ZtYcO*) z9E%RID^7#uhdf62`s-Ky0@2%%&MTkZ_%lN>aO|X8y$hx9`fAa zH43LEQnQ3?GdSWuEdge&_ zeOu69=^Dp0lQKD}IuOz|!Wua$G_%5OI52hSNO@|`CyA0ANg!@Y^H|I(HV160ctnmT zCM(u=UCVHZq)Dlw!e0s6y)9UI>xa+S_rdv6P})b8`&R4Wk%GUH>#C=odWlIJ!lGjO zcGXVzT^Y*=s#_k7>~%xCJf+!Q+1?4bkpk=wsnq7*kKpca&ILQ|5eKqeP*f=*`@Lm zQ-}Qur8J}Ra#E^#->@*|+1ycUZl7)N-waV-c4c|yWw+9em2(g#@KvD>IRck?0#+?V z79wxTP#{guBPTYQ+Nof}BJLnQ4l~piUy z>>#f~4|?sQhzGy9$ULo~FOMl4$lFo?2I9ww6)CKF`#EO+=bcR@|L~GQ>HA>aF9q4OqSoxFGLgeEh6dsXxThDbF#|I! z?2rvB2YcpLK5!6LA9hhUQnKFlgweDQ#$?-p$c|nEPdspLwNeg-rxTzGxERGP&<$?u zgsA4teKAaHwclB)U>@3#Mm&4jmo;Y`0Av`*o25o6l7}283-c^mOlG06fKpX1rFZpVrE)m#t*B zkElIqWf5RWz`l3};!x65+R&x4+V$L1RDLBikWCu$SyRbSOk5%@qt?$7rv0~rCIXp| zF^Y2`38m5AiZZVd<;G^)z;G=u4Dw{6*$Th0EtSWolK& z4yTRgc}zkd-kl}Fa|A}s^nEt%`&5OUy$7|{OWODU$H~_a{c&Kj-V+#VANsGqdgm_I z{r11U$|MSf`$3G}_|=|k*HzxzO(=44S;@neKzf550GRjY_W`YH@_a?*Vyk!Xp;4cx zv?NBef^;+nGO=-*l(`GY_pqmUUbcl+dVX-p)SA3x3JF|ugQ+Hsq=>C-#yfN4K+z^@ z9v8x97oQ{3cs?p@B$Q8`Pfh8NWODB)SC!MnN%jJFHd(A`# z<`r{*xi$6#8j%(>tXvD=;1{zqMp!MQB~pi57J0G;9>9SUL!y9>9{&q){*@k2)wWTh zPaZ2%d@b{(4n0lQaNDO-1MS>%D;qx66w$0xJ*Z=UGZ{IogBOW6bjy<@7{-oU= zXXd$-Oet6c@h>&tuL^&cPLobc75B3id#4ePp=zxeVF%}Enp&*ac@#AzL19OkX^?a$ zq??eb4AFd%!%;FNk6wZ>{^eA%Go^|J9D|BUu!a-9z(sra$yBq&u1hkAW2K&t)x&zE zIjBpnKMFy-kL&CzlugBI?P8QZCy<6(Y9J?F$V?H--3C`j*qDg$>NfST05^!TZPvmr zu#^3x7PA|`dl&cMQ;RHNUooe@Gg40@-k%2Q9?ZS(XaZlw z$c0mM$1eirU#lFu$&a-->jb6^yKOuRoeLg!Q+f_FV|$f+j5oeF-v6IDyuH08<^I;! zKgs)S@*n+Am>@^s*CiA^;1cLz5nUr~(X}&{m=@zAR!F}h<$e4tW~r$~S#bsxcjx5+ zcPi{}S*#!f=oWn%Y6lGF!?C{9B8|ZdD5Vg22h9}1+*hB=HUQh;O1+6db}Y-@ghHaN z_O-!g<9l>dwKHJNbPVS(b50Ie`qV6@Zq+e@UcI9jWmHR^L#39yb1 z@`LF~Zu*h-xRTGYTsP;SeZJGi-obgBW0mwuX8zZ$y39C`q%{J!p9mRnBMd_3aYVFR z^51}-`vpVn#5Vd>ModTWmN8cM_RxE3t?s&laiEQ($8SwUm=X~3x1#*m7j!u_mqNF! z;bR>~oPy;jmMFKu1qVILz)OFy6SuwY5?S~(EK&n-VP~I0CyDy0$-7d8o+*O2j zN)oX%we}=8@*lurS;p8Ew-4)~Fkhfw>1Mb{%;!uHtUBci&!n_*NK!e-4yIx6Z;}Or zWB5MnJC<$rwt^WPmA_o|c&DT4%Q$sXnYAdgjFo$jq~!3Anrr0;Kc-yNl@Pc|E%t!- zbp@9}@QIikwLrwE0U?6fQTN&JTASRKyCef`)OR zKa(93@7ZdG7WEJs{6G?iFUeC(8hj$PaWR*XiCfv_(BMvOiMgrM_?%fz$?!PVL<1wa zY_J5qHtj*|(%-I6x(G^70Z+|`ZPTxm)A{w}U!cG{`q$NM&#LbxhtpOY%-50(f0~5f z#kpOgE?eOG*4ANC-Uq4vEttN;#EHPa35EZ3CM{WAe1rse8b*#8hvD+%hRtU$C0;H>BKEYMID z%-(5<7EyD3G|F>)$e-a6W0V_K_A0*K^6uv z8kPTDOg%1PMU0i zXakQgq2@6G1Ol}jHnQmZ{fjkc{}|E`R~|pFK!m_ER4ud%r4S{&?}M!kJ@}K3Lsf-v zv2CiT^!Hm1r{~~+EiO5SI%3w+wzyEJ1GFSjGqq$%AZLXgOYgZlpzPJWDLF|`n*n8E<(VOhPgOI55Qx%-5rJ7o%rF9MXSKP(u|0bjAI4@ExDZN^Gk9A?85p%Z4QkOeiiR&0=r`kbeFyyiUO@=B4p`ea zZ`>7Xw0)%M`@P-tB|<-~0Lki;zI)Uyu!6o-(Eqk>*SnuxKHIClc)L%!yCeS0I zg!0OUKB2JsOo1$F^QWcu}`_2%YQV>L;bb?>SeRA+vS zWFGZ)kQ*hwS?`Y<%E(aH?6_Jdl9!W#fCfESt^>^U{+UXgX#T$Jq?iK&_=GJh%IWD$ z0B{cVKUf^rTRJae!QHYamaFeDax|#sJWoBS@YQ6oFi+jV!53anRA%4`)2Hk-Ph+U~ z&z#%P?+$EClN>Os%IME7<5MFyeJa2hO~NFB*VRd_be|owO|TVC$ehK*zjAT%zA+?{UT7TPi%M53d{SN%`Wbv-p^er2?EvnX9O zN@;`YNi!{7EHk+ksO+kxqF|-VGz>vhL@29ly3*lo0n~--kh}^&j0}7f5+D^L%LmRl zrp>-u)?8q~PjeRebJI%}SzMv{bB2tL0tGNeCc)VIy=9sKIyE1VO&3HQFP5e3mDC^~ zzMlBTu$q)ae(vh3Uu!FzxgMkM671voo!@D@&6}$G zbXns@>ED0Qt==682ESX|%RmQG`}yzb@5j6^m7Uj7j{Bb7_Z}ah-HPdD$D8552N<)} zp9bo%UhYSMC8RfB*EhX^B0YEGC9C)(M8rY8w2EB^a-9~3U|IiYKt=V`mq~xO zS6uXdRNfdiT99g`c$Yc?PR_@E>GogBGXc1!ablih92xLzg<{Vm9V~(){_NT{u<+SR z|81s_MzoP!)0#)E*8^eJa(D>0MlsYujI*u0Z{)@FmZMg)WbzgQuV00AUdTovG{0Oy zT{T-2^u`NLF!qWw_SypAQlG9wemyMQLl;@eQa4v**oQE#NS>)$GiN-SnqpJrFg>K+ zAJVtV98My!TRGMEdfJ@6ll`KTploZwDo-T8;ya)adY@I*i}~F7v%5LQ>fl{$8&WoW zl|Q&;!>fYa+#hqk+BkR>!WqC>%5nX2-nbm@aW?bOF;6~H8~E0(m^bI!B&jCR{GG-g z_sH^zw-EC3*gO6FVCa-b6icMhXhYp030XCZ_2C&O6?!R(W6+8{*G))!CG@lstR!#? z+kx)zhmP5_PFt1V3R~l*$WdNqx>z1IwC34>3iK&IhrU~c!M`^P!$Y!kL;*oY*m>R@3z;XjkUSQHzm0D-7 zJiwX^oM(7arn`a3-BxD4Mx*|*r7LX$y26t|%tPYo0E*0KedxhvE2`&?XWkQ>B&a=i z{zz??KHBUcDb@N>xt27%SaZR^&X0lb2IH_-oVw4*Dq?UBl7`EjzMhwd|E_Ks1YV5L zEX7P}qpil8+pj%wOq7;!X& zW%8|99^5rrSD~m@$qRR_tVbQe2XT~_yHSfcgPKyV0lBit12gs-Av@|ZOV777T1kYj zOR|#i>{ZeagWSh;EH6>D%biFW`dP8!+hkGfK%Y&X#US6hlHMgo z!sHRHQm#EylepCMHEbU9U7(zkEt^@#yqR4s3LTDhu&VYGoNX2KfgARH{Sr@BB4fFYXN`NNi&$%gw$Nn{xdIO zZQ$RG@GNVAYE8?7DV(A?Tj3boHqzo7JQc@JYI$*PRRG z6im9-v>15xY{V57=9a?~)?`-`%{E-z*$N$#MKx7^`elS9xL!%vSo!iu$?YoqCPl_d z9#Pl_v+>JzgTgWL(-l=i<$EJmz6}w#&ovbS9J)`(3{AJT(Bz@mc-+m0OyD^EB9)yB zIxFo+S9>|z@=qC5Z{4dKWPBr;XqbCOIxbQ9dhWI`Ul!E#bfUBZ%c63VA=asv(XWjq zx>c(^FWKC#Zp&vXEqR|lc_*IaKoJ}V@Oe=I?|v*1o|QfGTCM5L zp*D|vj5YFAmuA=t<1J9A%44b~|EGlcBjp>;X6knIUjx7C4wog;#qTyk9%H9bnb+H<1Tis+E5bh@;!`)b zhkfbVM!0Ckmg8`kXitOaW@e-B6H3}E{{?Tpv}+BoAo0xooR&7WDp(e&aGVOyk*Ktt z+xP_O3UALa|1gm2Sl)NTetd>~gT=lHiC9P1jjA9S(VK+~H=#MEjGo$xLLam0EHVc1 z)IuoMM&OsW)+RBK=FnqySqz+eu7{^teKInncY7b(yjFDahm$eSk2m>aqus!_Vmqi2 zYDXMJzuoM99C?bU#H4f`vFy`O7Gd0Q@N|*zY%xr5H>^au-t5$>Y$DE+P|X?UdXeD9 zvS>?c1hu?Ad}`Q&{BN%RisDkoCeF30F~*UYJyB7BihD(8X2EF|&-(Wk^Nw+iO?oQa zifCyOxb@E*jwOhV_Gam5V5oPYknfdgX>7#K(?wm|Hwa}YAlFjbtE7+X=0vz(d{g_} zbf6JQ-Ap}=mPg`>PR@KJXBsC}ZlI99f@f;QW_s3VxSC#T3GAWMpqJ7zEw=rH5r(f` zrxfImQ7fC7zx80DYjFGGdh?E=ySnypp^>VKh?{I)6TlT*pGSC}G9_FH7JgcpRW{63 z6QeRn7FGvS@`>=IUfp$_`Urx+C;mSJ=J9f!-+wMo{h|NFmwFS9x_QddjiSlIIT$8b z8mR;Ii{X!RF9P05zVOj%v7BDbX?RJoxd zRL4bmg|oxS^V7v-VWx^A|51r_)z-HJ{9IV}cx)V^87AdO|Rjbe0Rt6b)aV-X^J%}6Zsde3qI*g=eA(@g0r>7!VOTq zY+chDJN-*`q#m?w%_!G@P1}HQlb;$B-D6(Z3IA{lKjJ3Co8RL2j^DOx>Majaz}+?# zGP$=ZW0at~sx0i9Tig8$3(ZD^%f}=Tn z&b5e?rZnY3Gy9hj+DM|NIgD8ir91JF{NNP@PyncFrnnqvC*&H*C>@_OYGv0utbsR?B^NB7`zo$c9u)Fv;hv5Up5gRL+F zgZ7wg>ND}E+N2}Cf7a{_vW3ibkdTZdO3PO!cbh30fpheR{@3slnXR=Ywxw@vHU>IH zTUpFhs?>tgS^yJL&B2~9`X6%kpLzxs*PPX3Wg4f4e|D z?C*lo1nQ&8t1MYQJzN*`EABj|fgazf2o#FfsJ>U2um9Y#*_@7l;=WGfj{nn<4#WXD z;oFtA-V}`9+Yk-sZjCnl8r=z-a7{@4S28NHg(}LFz}VSKAP-cczBwXF9Dx*o4lW+T z*`Als7^DTxZK+kaGv@68R!KX|R81Lv@UshY-F~-5P~#U5O!TH`mmMTnvx*oG+nQLv z0!Pb*jL6H+VlQg zm(qDJP8In_^(mJd$##O~GM+~vPmD3N=&mSGF08hNTQX~=$_D_af?%ilD)oC`6oq!M)sc&F5TJ*Uz$}v1DSb{lFBh6EoONNNu z(1C4v###fayt!rLqnn-OS%fXv3rx)o5Nj@TJEPAc0D3m^U4?^7nktg3)6mGt&T*D}sBA7XJrU&-g(C&7(EMPj|6S#S zCyZ#Y%F`KA4YTO=!$sP9G0=@y8QDOEa~jmVVnZ%72_@5*Y(!oHn@c!lE^5W)BDEOR z3~M+=R!EbkiGD1h+U&8H&Qggb6eJjb1x_RHeRH4fUB%!3n>+6CZMgucKSp<1D}+jH z+&+zX7Nf1MI?Dq2$ZmLs#O*pl9uQN*$Ovhi7#)6DgcK769WFmlxbGPwdrUG+f;UOJ zIQ>UX(Tm&~j>uwzd441D88V*LF88#Q=GHh9mp$Vu>4JqMGs3vD0Tss&k8GOhq>M7( zB{vx)NNnelXs2Z{SD_Np7Hz?ALNX(wF=?~t!w*Or6l}5P z46(+u=oG9Y zt%WdX+h(LOKU?S-*_Am3Tr|UqEqa7#EV_lB;#yMIuwBgbjWWU^HfInnLd)Izj(UE4 z>{)+jbLF|^NH{+WIPr9~$0P z3q2Z1rJbo0FEv>f7&9bP)$UUujFLb{oafo8!7R*A59QpYvPwZ$Pc?n2#qwmSb`}vB zl{T%r{#^!4zUJAp-A!Tpt2*r&0}BGs2C-+7q;(iWL}24XfYvWnTE>{ef>T5??-Gnk zhy~x%+_H7w>>WLCTxG77|zDwbgbH6R}Iid zD5DY+gF=4i^oZ0nHRf@bL)TwnndrDHo~|`wAAFjg-6ypW@f{g9DFnI-sUci81m64i z#7wWAc*j$vf)%V5 zJlQbQsbo)uf@h?)#*Fm{E8>3=_r@#F!<7KMyrUi=1R{B+fG+W8Sj9SDE=_8lZ5omj zId|#wwA>J;f4w;OYe)c4Lv@3De9c_eLXu2UkRa3G^3azk`X;^rUGYk~Q|u6EXcZjc zinA43U9>%mnex+MPhm~U`;G`D04<)Sp;FBtZBwmepmf+v@>r!cm*uy)z=P$-SY2<} z?pwo)<5*FyOqpMVy~ph5Ndx}pYc1I3ytScSap!!4zKr+zSQYT46!eM^h!&H;suH=>_VBPC_wJ{kFPik5xqRl5{ z8#;CtXITh?%uEPU!p(S>s=9_*X*EDU|b1C!AUPAYq15#?WqXR!()J$4N(FmR9cDm zK{QxAS$5f;MExwWHLaH$D6e|cdTJ{-E6lZ|!aopL(c{D+K zuqsx~*$(H*VVM5);q!MzwRvNQiJn5ZjF|JUOWD8ZgBHQkxRaGEPJG!Iq3!6JRoJOD zNir^O+sf2PP60&?NF^jxRM8PZI9gY>vzACmAMIAm~TZg5c(`HR^oj z;qscq+f)`pXt4P|)cY>va}fR@&ri&q+x&4(WICppueBC8M}3MAr9?6OWqYl}(}|XT z>CP%aXIJ19l{I)pqq;baGqWNkru1uL#h@nqwQF|ow~V&tv`!HY6T~g~5q;#4S9d46 ztw~$=yRSlfoJ3HXOoe^>)%WdP+NV{8|Le!i(S^XX>uNXOg~;ru^WN@f-Li8WTke;u z`}SwIjGc&gqw4}ob29Rr@3pg%G*i~hD*&k9et4w60nRx&ecv9{unyU1%*E0SQN6s$ z1&z~b3DRY|gvqBvk|Nr)OuLGc)vIClXUT*=DPd*N&&mdoM!}{4Xi+Hp;sD&hBbMK} zj$>HQ{?F>ugC{!JJTV$516^p3}52~WBjVOkF+W{1N=B&&quc~+UcWZA;EhOgJZ;Y9c?l?Yd-1- zk6n#SMQWX_c|GN`Pf2a9D%*wbHL;b%!yo!7t5F}Ma47G~qdpNrOhgMfC(@na=wTChAsS%vI6@$cZR7992Jv+MzQsuHYlq}tp8^Pf*pcuk@TXYL>Xu@nE zWt72#*l0%JWDF!vExIz}_|Vwb*ujd8oyNd3YjtC+N7i zKDo>Ob`*1aG1P?+Na8ThnKt&7xA(v3@^~MErg^yGB)IJU$IQx(p@IQt@L#jQes^Eq zL-tAb%gfF8*UiI!4H6n=s;gB__~Fo6-8;wVji?$L8sjKu=}o^yQHq$;&*&28vV2}r zoZ^d>ix=nd={O%2GJyx}>Ee*fhZ`@Nn+*XuA4-Fl^M}nbua~-M&eLtMyXOc<_7>p~ z$%fSk*SkUEwzTqDlvQd-sHX8NM^FC-r{M%V@<*wl9Eb)rJ<$!e7=eb^8XV>5pL$N- zDb&y)Q@u9J8~`$Tt7ct^HTY<)4FjwgquEAZha)|*06UJaUN3F zepPwguR|UFFI$7x?e%1?`{<2X8^g#HK5*(N#qtQ;+R73NCZwKfSzgo~N?=8V*msvb zCAu&t-Eh-Q7xRa}>)+MQrHb#Ob)rBFSKeghC7Gj@+SvB6f3fAK^MpuvZFyu6CK9WfeR`LW7LKe zEaU~7JEoS+j3@_kL6G+FwGdRLiij2PoF{_7_@~>yBZ=~vWXd>HF_6I0=*Xcdb`1-% z5%To8#^f=YZJBGtX)d0XRRY$JB++Jg7%dHKajiGcQIfA@YE zb{d!ofe=?v?Rx^lQD~n@@ev5P@z^td4c+{jOY)l=vxeb;RLr&5%x&n{sBs6bI=zR? zRo?4|{~~*Nj|O(Z%KU}LQz>6$BPoJ?t2W6;VXYh^5_ENsSPUV*TSU-eRW*$aZvlV2 z0P{NwPGdDEr-jEE7r#H2FHvtkO5*k`5w40l1FYbi8!hQ>@+i)zMIGxZV675FzmZXv zyG7=*gyxc(6N~@(7%K}h{|_ud)4qmeG~Lun-*Zgpc6AIYCfqX8oT#vm6f)V@kh+L+ zVkwC=r0JMAE~#%B(@msROq_NkRMOUoWWX*W)tMS|PBc9VhV$2x>jQJuAMZh<0PhD= zfFbbnpzB*qtK~L0U&j&?X|aH|%`A`+OXjWT}YgGItK^L+Wa=FP8&co(%hP zwE<3Fj|W^Xw9WMdGl!t%$yakUG5TPlm`CajO}8#$aS)*5W|6{2x^qFa7%_7S{yaRRFY z`^#z=SF%aKh)FC@C&nKX0Ff;CvFJIvX@V-^mlicQ=qS!-{S`4KC7{MdeAYJ>HV}1W z-V}75rRrU|a*LS)ipmqZ3hl*4nJ6~X0L`&Lsv>UMQjJ<-)QpNQuO}sZkO0jDbe*MZ zEo$WP&Z2@95OV+|gh^nr2C=Z1Mlrolx*vS0&>qS~#C>V(1U=W$j9q5vj?8GsyQIndfsEIy-?JQzRHE23jMMmH@O zBgY5eEaCV%^E)Q!P8@99O!~KV6NsgezHX-oT1jYIF~S@zsUDc2cV_|^v^d(N5LcmW z{TQQ0mG=Aq&$3(vgZA5M!^&h~Wg?)g5d(mJ+Ym@Gp>}5<0yvemBo&ADF=Z{PIK1IJ zR^3S2mx}=}j|Eb$RQuQCu`m|{TpsIn*PD?!tjn)hB!UwLB~-HF?`DZ+LrYFq6LbEF z2=;Xc&AP#KSub-u;Ws@5g_;{;RAM3AYOzW-iM6uj#q0OeCBtdALzfKiZB7xAW~Up| zM9cg3kFnS<(X~Q*MJNF!EJYYanoUEwoikY~0axgRE&_3Gv2%@|M&cx*M;>G48tJ1# z*+@|YoDrtQ8PUyjSqmdBU6w8fJyu1>&JoY(VMjL+Hpp)VaFMlRb0%d=Y2;e|;MO`_ zXNW;#U7+fNBUPf+5o-fVCFW5Prb2mWFWE67;5T#|f%>#ZbqYV$6uU|ou|*;p&?vFA zE){;19XdTEtLREcbUDLCOJ|0P3A6NKvXBzZx}iR*F!|ma3UP}|R(?_iOp!G*d+qi5 zulQk6Pe!})MD_N!zUz|re{N=pweV0ek-3X;RPg*qDzBhYQ_KsKm>i!@iKi~@1r_n1VqVtu z^%v%Ey1LdbWLLAUHuG}1;N{V;KLj#2UsVrl%Du?)xTc$kBUUn^#QG1M^nr7 zd@^phgQ*iX{|lwUR{~0End+@#rq$7LjsW(XA^wC2ebAEnp@d>!bxvDezvC+##d?SaqYgTHQ$1pOY&E zVm|N7|A=>g@e{Yj-%Ou{e&S6ouG+Tc-h1!8QoFl8wY8I30d-!h79g!mX|+NR$d%lC zQkQiUefv`g&~-8~A6S?SW}IgHph2t1*F5uA`GQmb3#}6OZ*B6258ck&-t{b|_a}y6 zOBldU>RE$6ND`oKD7Na%b{Jx5glTaGtT>&KfsAegy7Bn2#ZN5Vn)LLBLa{t<*eF#8R5XNlc!&~=B~ZHZ2? z`h&i%7!>cJ>6@|hdGKDCrT%m2+sY1p9x*`I%IDQI^6%j1*?+!D51Bry zaKzhBu>ZGiZ5kW2p!fnt1G2@xlq0E6}Mee!Tpm3FNbw=*O9;WB&}#R z1-PgvtUC$XHAOcT;1ZnZE|QjDOVcKb{lxSGiOKz%>Z~ReNm!9uqZ>`EBBPTF?pWVu zq8m<_#8K_JvwVo#%WdAV|8#zT=UD*M!4bSccYT;9xOty?FaJU*U`q5LiE>M!_YKJ= z{91y>P%jH{+VY0vHLBB)6fr?%J=3D)XfmMA(ZW1vEy0h4^^A%RQ+ejMLH+cW za;;%BZicW(trBC`acr{S_}ZMcQH?9S03V>P9Zh3FC1TY0sIfY-F{&9KUkI}lrCrN3 z3bRn?g_gXSButq0U^-d2i$=gpw2E>kF?l#(YB5hqUyVuko4@9FX&!maRcApStM0n{d7_8; zFJJkX+q~od`M@RZ^D91hZJoj{RF7^i``Z0Kxvc$MGz0Ux*S+p>pFeZv%w-MWhN~WM z^ejM3D;-Q=Wdqzle=w0AR_#x@rHhn?7Otc<_0fWEE%Cqq*GI8+*Mxs^`VaV`W537Q zcFJ%6!AG(FUW4gk4ztY6LT@wdy|60z{rZW#J+nuBN?f+=G7_y8JxfaHoO=So1gQ+b zqSGV|-B|jci&>(bYRaA5))j)RVD)MBxl&oMc-k7VP?Wn7-9?gB*riy2hOy17Q^FD@ zXP^tj!Vt!?YUbvFP$*`%m2Aw`F%R!ZAZ4$4>0QR0U4fSa=T|8+xRss9+;lmorq?X> z?PW2n0I1R##2EQ3*Gih(H))PI+KJ9$Pq~4m*`aOBVO?HbY4CE`PImK^n|steqP@wJ zY5^{xgji%vgfg^iO0Kgg?2;iHg+8Pbgc`7kSVb5mFp24?;f3oD@b<;Cc*t+@x2t#^*uw7|4g3F6hUcsb8tx1em@)})c zla#2Sh?LWY%6S@Zu{z?dVb+$!q!`(b&IE#0RLOdGfl2+6w z3Vfv~w-7K=miS{+k_A&o+`dOQo^HJ$j10@;7B`Q${g7MIa(mWP&P6P=SVI>YmtD@5 zw@jFx+edj#@^O_f(+l%WKA$~c=>sf507%=df<+G+CV+f)2S3Z+idrdQT{hQPJae6H ztTAoE))CVxOp_?KTRILY|HHa*>P7=G#dp03fK&&%*Z=u-9?gwczA_a1fus$gfO0Dl z9l%P=-)v+H;7%BtA}^XW>zetk3O`8_Mtk{L?4==0 zw3}#I*mH{ULlM)7QH~#LR8+)L<10-&m8_mn%4gReiRhy(acQV^L5z}_V{F8SL-yrb z)LnN!kFWapSMzkRe!u!gVnl{=klTf%yXXe9KPzSzKYNLybD{X z{_!9GF@NiC{jDoDu)HQ+X0N2Wzu?>UKMj4RV0xcobT;zzdzaX=GqD}^tGtwy(y-4I(|Jx=sSc=z zJ>v+=JJv9D7NW;QDy6N=?lzKd$-b9&tP!1Jbf&{JLG(U02VKrP zXqQ*>f7@YQpnmG_?_W|I+2y#8T`SkIr&{%Z<*+WU7N;#Njp$8AD<-+O+4U2|PWYTW zCazavZCoEybnB5Y%8P0?LKLlHGKpA;Me$!OZbhraRy*P6AAAwBrespI7#*p-z1k+?5TUO|C%fqG3sYSyPq)^p3) zqsvE)QHhYRyYseSzATBY5zFD+VwN(y5~I$pWeIORR!1u5>4KqYEY?Qa)}nP}ROS0L z4EyPV!J3HQ48$!f?ac*5m(P8p(aYSuV8o(YcVeti><8Idwm()uvU@_QF-^qHJoPb0 zH_^DIm@KH=3fQiLpC-~+Oa;u?Ga3m()fr&<#)wz-VO_Pl(8TzwKK|A4zVEvZqdBZ= zQ5Owh?z-zP-tmriJSKqYLmY4BN+E)k39(WtyI;jsri-)EuB4T;B@GT(2lml+IfdTK zBzg$444@p-57d-DSwRA~FF7Tq-WTUEA5eV?eOxgK$@|sBJ|Mpz)avB%>2o`bjAH(b zHDN)>t7?&fg+V3k(xY2VyRp)Fv>O&T3)oo{0N@j0oLe6j4Jbv}7-5!?VzNk(o6v6LQgfco^9$wN-gHwZw~apk<$nlfcSZiZdc9Ce=ea5aa;~gJIfp;BLAz#h>xQsH%8Qk>iV59x`0{Yo>_)98 z8(Mh?VlJ)@LCfWr?ig}L>{8f`VlUA}XpZDoGMk9ma^5WxixVb?T!Nh|bZhX_NFpa< zngm5ck37}{e(k=GAOuZe1G~Fp(!z4q^|@gR)o4sDi$!*pjRbPLm^h%xLKm!jYIF-O zKUSU9v|WkPS@fR}`(hW-g-qCYn~Hf?P+9>SAfN)E4Th!@(9v{`uC<~^(TbQ9O=n4c z>zIj@u4CjnN+SS9lc+n39Y;n*$KJAHxhU}=U`-_S*2+oYa){>ob86mS-#P%2WW)eL zbsF6&id{vt(5=Df5g2X9Av{xekzyaZiI^-zCpuE)Bc@42D>lr%VNJUZ%Uc6!>d`h* zR?_0uGeZE*2Ew?bX%1VGuSQ*o75%^WkB@Tydq0uazV-?X=mx1bzwK*)$9BH^*suK_ ze*P!^`?VVo@Q=UvQ@H2P9$PE_=CAo(p8XI16MysvFS)4wT{M9Cp6~e{nqE|WfqK!4 zUPOF!7RpUl%IMYP8ANLV=h+vF3z=HAGUWt%VQg}aiPo}xUg=NH(%!nxx#v~v-5HtO zr#b!BIcC2>#VAY*pnOMfjmb|Qp9lrP(wq17xcm#7CirarQG#yUxh4P<$) z78ex*$|zJDu}PAj(b5iPmeT7RODlOYT_hHk@%;<2mL6C5iNnpLZ7gX`a+)x9s3gov zH&)a~H7aUG=i=b4Zx&vdmyt!a5mQSab+lqJS|2lvkF3L)?G-TV#5qRwOcRLkzA8oQ z66HMif_y@d&u{oJAEis`KQk?PJk8M(?GtVu(Lr=W&2fj@_jK!)qB8jIuxI&N*WQ5Hz;*OvVjbi91-6Ec2#7>que4V4vK0 zY5(dc8cHWr889x289?ggqDe&lPTb5ET|s393`}xB=6+pLFAJhqcyEYN6^IamRlH&Mtt%oe=_fW_q)&AW@~GUSHJqztgo-Lxw*+d`)B{`^7T0JQ5Tq$8GuLY zFklddD{BYlDTMKIJ?dG-CL3~kRX+lZLUkhI4^Cs6AlU}32;h5XvxDc>EIhjQIrBiYGIlB3c1Opn z4`a?LC#6SZPgOMSs98QPpCA_ zksBi>>4y8BT%~%V*0HPMP}Vz>T}yYe!@4?kqkT`J&DW`z2KO;rCq`R=>3xantYZ8~ zW{Q;nh;BX6Zi;rKzdNg-P&zRhHyoWVc+TcoZXNBiVHdn$@&F&P`7oQKn&>sLNcbb3 zxaNsP51fQ`X*QwRRQRzhHZ?~S%~9xbD_grR&xcCvfcrM7q#$JDfFo-QP95E2GM2^6 z5Jmsu543-!q%bOBO`vk(Ahv8AZEFaPIGClR@-0sh57;Enn*tv-F>79|j*MN4Gs3u3 zqZV5Pv`!RGSem|i2eXN5&?7JHVf$iSpu7?=R?D#h*hLzETeJ#O$05vFCGeF-cM;V} z8(%jS9gJ=hIwbs9p<4w}p>?FR0R?oy;DezHh7jdLtcs4J`p`DJ>s2?}cja>HsU)nw z8udx$Yp(YY0Qml|{HIr?Va!QoZqT5hPCdrc#-N`lfo?cKNPprKU>>sRAorC46lKcMQ2HSsQgH*^w zIT(JHz%VO7d|x4;LIv(kc=$eAvBWq3daV@hG?fpRBNZAGfBz~rG0yWdH+ zK2q-?o!^9&!g_Cb6!yl;7e2ihZ? zC}w=b#v^QQ&Phd*>=qX#|D@M-WDRED*_4d@^CNkWSmud*0o_y!FnFy<(?X)K0cQgv z*A1e4A2qv8#r9%^HGxsl;R=tnD}$B71YFkqEIY@-7bu;EHo4wKGbv$~RF*>~E&oEP zCB)K-U2-T5-BjZ%xyNWPi*)To(@ivftO-t0ACvdMCQeM}tXDPDs^RE($$C|vcMc{w zg!4wJ8|}MtId!?<<(KdJ&MQ2Ur&jgZGdDvP%ynI2{?t$XR6g}nKlOsorIh&o@Be=O z)xY{ze8y*d1^{n-;~P13>J)Ez%Uk%I&-onQ^{#jEE5Gt9{J|gm0e9VX7XUx_gFnd2 zUiLD+`@6rJTW`HYdN4(?t#oz;1P+1&qoEC%i_R@v*_Kyj*Reiy5+JOVY=6Xvt-srH z*K^*_+c%$sKGN_pPrsM9z3&;EKCw$-0`+&FV02F-L6lKi$W+iP1|g-awGmy&Fs5GM z-m@^hkw6qRX!0KQKuvY7BAh-#s4St93A=8EMUng%MZ0EDA<-PMOz&G_AJ`(bVr{If zA&jjE8cQSYo{K=YQQ;?sP)aab-%1vpqIjf5FU6tE)B)XkVRuFrLSk{kvU?|-_#?4- z)@{r=FOTZk9PFy|-ythq4}zP16|UC<^`E6Na^AcL0x4xPhDD8=1^h&gS&RqNa2%o3 zS<7={h%Rrq@5xiN9*c!}yp^LzzveLe<@(i)_C3*ULZ?WyhNNM9E>LcF=q{jwC0a!^ ziE=mM76Mv!pDlL0MA4kYX%IHSB%ZZ#j+d;zk2}kU*r_H|y2TNAe|LgYZjX<7?)!Mp z9jEx^`<}EAllP&*K>p*q_n zI};dNxgX3_DW9WCY)+PhDB71v(TeWH)zraquAXpaK9LYk4SteH3RIUJ-J&9ygsJ6v zueXz!%S2(~b!O!49PB(VX2wV|igrWMuE}`-adGR`BdA24-7EdclLaw%-Tgd1 z?;`*%l1Q?y^SbNWm&38PEz3=S# zA)fgH9!f=*b6)&1EHyDAtuUm^^kf^67XdjX}9Pm zdhqkV(d&ACPp(AW49v@g+RP5y&Tg){F5eUJ2Bw%rakXkQFe!!Y77zipNfi4LTMOIa zr-86042oLHg3NPod4x|n_Gdh+c!VxlZnN9mW_DSmlC#|!_qRv*1#e7jRpI0=q5;`s5#fbhzeP9UpE`AFcx&^qr)~As_*!Y@8Da%^;<9eWK4sYKee6w-ud$;%D}39$rZwQ*qm0M z11$Z?bsqft@br&-i0yjBdmcK$+H{FlaPQ6$Hve3+es70*2NdU)q{4{<*@5gAX@PPw zkMrk49Lf6UdseEqy_WwRsH`{AJ99>79Lp00VWe?;Vl-gq zP#?2k)zIQ`BiD8No_v_rhZ|^VzxGd_5>8~-<9iaV0-rOpoQUO@Ckt#HsW&xlF1awF zP`E`Df}$e_TxRV{r-(uG;?4W{+oOB=wfRT#f#w*u6gzau@E5aN*>FpCyAkhr=yp<4 z%=atoo|bHrAmaUK6{eMIxb}H{tU~~mmG(7hW6LS?R*401A;2YRVKSmsj2=mZQV}ad z3`#s!irg+049lejozP_v>)-^c?d^*b$!kIpME^pBvcT2`!|t*YeT?;VQKNvO^we{)Ta)8dL>&7yOikG zoH&o^1LrHRv7taOHO+pBT89u6F%)#(U`!+>Md>!jt&dvKP;EhW$Vs1NctkKV`LqJn$J%>U>Z`|mi8 z`jsP09*NjGP(HjsFFR=;^Fcs{Sy=%Og8dLyI-INz87ziVl<_G&OxBgr1B)`~baJ~{ z>V#oRqf#_6nZZem#p>Aewkm6VOdW7D$w~=hJM>n&{eWo%v@B0p>_Y4&LAnM=8N3)x zQo_`9V+qnk$xXtv3BBLHcUp}(9sqLvIS)Yu`hEM{K@Ct3DpNd9`!X;!-b-dr2&fRT z+e^xAk8TsO)aWK)nn1PXaq}#^{V=Y_{hl1wb*V!KvKy}+>w8jewG`V8ZeO&2?Nrl^ zHS<%JP{Qb3VB>wQI3ackHw&0$Lf1L3B;^TzUPsxFjt{n*%zeo_XSeZ}vs)OMj=3*+ z@9uHDH!S8Q?74y6K?%z;Iv1(7BW{r}ov_V1|1>Q*1BSs+AePd477r|Orre!tn?!Xk zQEY2;E#Z!8ZZSI+d&XgQEPB_Hb_?{(U}py1h}azfov>D%y0ikTBV9B!!4BCm&P0q( ztW^!A_1UFNG%(|`<;Zx+@$sCEvSwO}$UkIT=9m<|GxWJ%%I6kmuLzTfSqi90N`Q+> zD{WA;l2O*T756MuuMZMEk+hD*G7&~uYZUW)0$NAb$2HCb>e^Aa4x7QuhjV?n-B0?- z|D!>`sr$bhfG_@%7vIn<&66G5wK%p*W?(`H{NzvmB)|Uazs@6%Jn|vd$-nU%zi~wd zcKY;b03Lq$VQ#tQmf`V-AAXn@zxc(&Hjg~=$a$~x-m|r}HN5^pRhA`X-Vj>X- z*Rh`2NIi=Is}=uVU!l#44TuQ}3r$P0TMBq- zJIS2s#p`7ObwjF~)daomK9mW{*2>E0%%lWVQONH-a}mqkThZ)5-g=fV(tAkD#7A(iOJ!Zu`~nN>81u>Dn@4mwhlC# z4i#bY!45TF3e(hsmJG~>aU5`)Q89zN9OXnXJOe_*c(i^dRIXM)dv?TRHq_ zL?|@rNI|jP;&y7ZFX%RIoSx;!s_XJSxlVPZZIln|;_9iu!d#EhW~6pXeqqn<+)W6Z1mjp46nCwXAH$ur9{{AIj_v+acKdW=$u`?fb( z&P#0JiM7Erilm^MNE?}H5~%~bAF&HSLnuV&7YhL|Mhk$^UCP4td=LqA14%2A7Qufg z6m|)22JJ>Z)+mgT_MjJvb~BN5LM26XVg;RwC?KZQ__3j~VwvoW=wV`JT#SxPjI@G{ zY)3@(LqP!}*P#)eOl1TdZr3APZ`hxS#h71ORI4zxfRNrrO?8Sejx0-YC9Af@NJh7- zFz1xy%~BTdCnFlB`luX-+wb=&nps_Is5L$msIjLSw~U;OORL0kR$@$~3pf7#1g_q9 zmJyQtlD_w%k9!1|A$@-SS69O;r7nAg7cwY>JVuO)=Q z3tsR7Ui6|Do%iob)ia;@OirIZ&9DFZuMdyy?d|clx4n(K?-o(e-FM&3&dv_+c*i@2 zZGPi7euEezFL}wu1>qd5gF&4A3V-S(17;O$c|h3TyI&12ibHCAv0c;s-Z6gnFP_Wf zL0MfZ&o!7fO8R`MG1--iwma{AQ{9l}ixr#DgPMLK4y&-utjkHA7w}??us8q*!KIe0 znw7g*EA3*vvlpPMY8XE$TRDeFs%!LIQt9hshUSQ6ergqhnT%q2OoaZi(Ah!95KB#{ zH0`Ekc3VNcDIsmKP$-`nm;~j+v(@>`Ow*w4=~<%?Nj(U2c9q$a&qoSTzzdw82cr+1 zySz_f%0wrm8!zn;Ioz#1QqTu^+WN-7;ardJ$@Qq41-u+GBsXSVkMD^}iD)G+tGBK9 zBZVI+x`|?b+Oa%gsgEn>w<>m@Y1n@jgmJ`=6Miia#}Q28{{2n<&-~d;bVI2<_w8@8 zwH))vY|3J&(nbq(LveOq)f+SUK(6z?52BRZo1~FZb)-fM7 zS|v7$B}PYfn~GUm4B*9?fYX6C8qO>xoU12vQ5F}Q&WWY-+==cc<#SOcuxZ6;6_Gd! zv_~R)&r&Q-7(%58Bc0viG_g=LM=ZWFL?aGz$$(ub?BYP1UtF;}s#9ni*_bRTw798l ztSu?Wos7%h91P5jeouKall~w457#HW_(o$|{;%KpQ@$#F%mttOp>Oz>Yde@HQJ2iX z{LIh%3_ts`Kg-Kr_Od7a=Cj$1_q^vl!{7JZa}R&~$A8Sxqer>pjyw3uul!2>^}qht z+Z z*238~8Kp?^01MLVH%!imIoKuz(jpa;j7jP9(&>jWYdrv+;b-25;=skU*UfYX!ZHDz zv|V8>be>|TV|I&`e1HgU7BOw4KISlOqML~8ja`Tn+w! zA9whX!ZZm#aiZzz&%<@D8})l~Sl6}=!O`Q_jrcuLF@YD&NN|7>*20eyv!@G7<7N;F z2w7{QyZ$;2cuJBArv`d#$=~2R*&gcp&J>G zQh7WRF)>IcVQr-GmePt_S1;aA2y5~1Voic6yA{~GSKLRK}tnJk3F$7Bp0Y%f@mps6-H$yDM7PtXx9{D1>IQFttlB@lI)!1 z`Zj4{)KVEiCt@c?18yYlW2Nz|S2cTeMXPTdP34XFUAdH6f7W*ZZ@i?}yx=_z=dR9h zp0ah<-Oq!6{PVp1b%ZM9L1 zb#tT8E%=Ry@)|SKgoj5w*jPquHC54ZbiBmnwy`dV)7Z#$jEj!ade&T%UC9bU)Ku1E zbR;Il)^g0=qQcrhTRQ|}b{CUqmTHxQ;*7}cKmGSiTr@#8&;R`k{={2AG+iN%EefW|A%vXQ)SM!E9yn!G3 zp&wdJATP5%{^LLXytb`Jmr{yv`?hc6+rI7F9&?+cN00JTKlM{jY8=D+8I7`Tr58B} z5PD`J1mHmGyGAD3>QNJat)cBG-+z|dKUmP6nBpgv-Df$}y_(UzTX{k)pkrtk>w!e? zESB4(R8Js;xMBu!TbSxWN>z$WSW1u`)RM#<%XTrprUx|S3IBn%G`YF;mdt$yOMtFJ z#YlDk9^AS{vLbp%DNL8J%ZRB1eqtrXzS7j2npnW}!H5o!qV!Muk*3;-to_9~(cx%C zs_WHxR0j+bbRLJ%*;YAZhqJgk9~=NO5&5ioH@6||vIjNtx5})N(i*$pNX|{6DE0#F zhNT-T(hYLMxzWBSSGxKOt2BOPzywGdo~b z?*qbww;Pf_V;2z}5~hnpr+W;AFU75_m_duQy!A{>w4(datt8unfGu)fj1Is;6Et8W zDQWCXQ|yQq$4`t{8W*BPVaL%`9Y-chx*+$OUK6u9TGDtsuozlpm$G06`{c%3_Ue*) zS%6A}&cJq&0USgPgwi+0 zFTXX0kH6wWy6n31WpCzXfAt&i2lDsz(7$}gnV;h}{=qeW->X%Z3}Alm_kNGx{LSCw zmw)+}dH(aCk8|$4=YQ_!e(s75?wXgesOf~bwIh@Na6nW)v@NCc00c;ae9D@N)VE`` zoruPrLxo6jUqcZhqkAe)3bm-A6YWcCnxT#CJQuXg>|ivhIp8GL+Z#tvg zaPESvp^2p2G9}|{S8PrHx)@QpH7%tB)Ay7zz%bdO(lLA1l;{e~GGu05(XBhWiKf}m zgi2u-36>1@o56vv6r=6P+Pk)3XHSItJ)kfLF7PqRIaNw5s{3{s z$WryJOaHeqtIxLcsMh25TB0clBc1ItRe!1u>l)R;6`mf<+=#0_7gJXf#M~(0+7wd@hzV7~vg5k7V)9%>w0~2>eZ(u(hJ|(t<_{7GWvK$Dv!9 z#M7xk52;&)+BNv~{CC#VL=!kc^lXWJaq05c~w_H2aGRtrAK}=FPlyXnkWa`Zr6x>f7H5 z{Ou>TkMH}fH}T`&dYsRG*=O=&|GRzS7hH!r$izGrD|034Yd`ZRpVaIB^eqqYH9w`; zy6=;K3+sBWH7L7e0JFKd$!C7%)uG(3dvzW0?3Vm~aMDlzkXnhyVZ{RU+LfL)>DiiI zzv4Zq>jcc~&4%ZDLH*F$q*;NEo(bt>QZ9DJW&k+~F%?h)Ta;G9{w!8k`51=k*`6M_ zz%T}7EeXW5z!>?vw`n#mvmu65*O*7P8ILTBTPwP;Lx)7D@`_ZF8?jkRIGYX`ycBYw z-+XUF@xTshe=f&ji~zDxNt%ubV<#CiKA{_r>LO-)pOj4mhH%l`(x-Bp*q~PmX>er2 z7*d-J3VJrJ*C}by9H|&liy9LXWlXe3E862?MBo-TzKH*+S~n|jIapT$#9Roxd};fW z7u@!Ti!XRm?{zVC2x2b2=C>%E7N@V?L03g-yXpZ-sPckS)|?0%o>?05>y)hYn_6Ky zFiX%r(QFE!=oy=&1stg$fI&1ac>&3gLxzpyz}S^01`uaVr{%SF74Tc^$@8I5_zBX6 zWhBHg*(3{4DvR1P@IuSq$w=s9Z&4fyL1D=XqZB)X@(RCGFxQb$)nT+~W0XoviWaRB zv$muShNiQ0-r&6^cq8jpDiLb2ZAL+;B54$H(-x%@S|^JMM>F4@7u>PW&k#@a_Jfb|M@xP?0N4! zuuvgN3s={I(j@P3_dLw{?gsnM-K1U9*rkjk6tX%K*lgL^lyzd}(VFRzTh8-3DZ=_ zahXAln3p!Q zItf_wRFjs%`JvUUumPhIYgIz8&6#f$>@P~1{Sv$alf=C(NT!XcH312|j5b?Js|+9; z0dPs>#k%}CB_m)?w~7=X1;u<>5`xCsfVGhrKg@&09;Y4+41|5Taq7{TF0bV8^7SA4 zAAu{+I$SBBbmzQd>l0tje}2Oc!=rRT@B66#m!JNB?%>z>$P2#qW8d*H{Ij3^w|wW_ z|AxPO(-Xf}Z@GNKGcbLfIdg`;`m4VJ;3GcbBRFy5#1$LVb*r2YqKp|<^wp!=lRy&P z^8`F~9jYpGj*74uDT5BBwXE_Ry_zWZBKiDy@&_i}eftwIq|w95Kp-;>%9szyOgYan zP3u*E>jjvkfwAcKeO~KU8rsQ7s}{4BJ}28N$AsFOv-am5aeaheD@jISmJt;arVeNy zG207aiIz1f14C6+U^M=gBg}6f5nR5(H4(Q6n1!d<$qC345lYr4OWGp^ZsxIj4Q9*9 zKD{S3E#&;36e23-yd0%h?qvt&Ab5<6r&W3VU|_Jy1fpTrRhVG~pk1}M6fw9tq`L?zEqel=c0rl?pxXR zITn3uGlLdgcfw#KL)P{5&*$H}JmI%FJ}h5O#}8`SjYJqHF$GWphU}ifQ{Za>B|VEH zZ6PcbPyhRc_WS17{TukDR}O#Q^Jn++<6rbW@Jp}6KJ9zp&tCZ< zuelcWWX{3v&W{71bjh!~WB@at&-wB%|8m~=#y1Wjmc|%9|MNeeAN;`|WIP^U@*r-Q ziVr7cn>U=q8|NEvn1*$T7-98ClU%J_wW3vjg6v zMx&KoatIu}%B7}VIgA15C`<#aEQ7rt{!aaV4pvI%u`>e;bCA8s6aT)HQgR&WWaIRFaGtY^+t=4FFW{ zE+|u?O9w#TVI9_!tjpE1Tq=0E&}%Oj$UGXPv|sxt=ly;NVjjP$GYRdXo51pOLxCh8<0%8L6J zK)abJw^V*y;dUU56y4G6D%mR3LZdry+lFY306&$1LGO<55si?S`x6$(%m-zpoHhd> z(b*WG3nqKzXcACmW~TLqY1J@x9X@L2qku z>z~g*;9c;6)oU)L`c|@=p}zXfZ{~Ym`Jo``&X>KJcmLA)kAI)~KfHt2p7-~|Kl4-k zyU+gq;ju6Kj&I@U(|(=HsY?bhuY29=`0d~RZGQ0=f02*<*pCH7*#8w@@fCdaSAR7> z@*_WTSp&HdN;#XIt}@dAG9fP3pT4#Bxpq*%;)Z0wA8)!Bp@X9u0id_K}Zsv1h zy%B)Z1(c5v63NNL+K(M7B|@RmUBWCqc4vW_EkzdSJrs78Y0}q0<|Mb3DQg8F^+NZU zgbnK3&d8$wtea8R4vdfL^*cRtk$(~dbg5BApJuc+ls-#!8SK* z2`4vbju+@Q$<4D(#KMrQf;p0i+z5+OZa0L=;^sh-fXq-z$XK^NVbTTkxhSRth07pN zuiC>jsL_ZtD(Q}|(X9)sBdrg)O~NPKexTfH(0faW5xr=s4n_Qjb)Dum6=dzxmC4{KtR%@Yu^<_A*AJ5&z_${F9p+z@Uvx?wysZV6PoHy20)X zj?#_AC*Ca+DkSV85-N?aBm~S?P#@J4QzrnYaj2N^V}+?LCbJE_Ff$Yi6(m2VIU;!} zNtd|UgkyivP~N+RS~e?Y%O4B#atdEcre9A9Vlj49E|iltp9 z+$_q&#%^yZthAFf(Rm@U)&nuM1!$`)0;Dvt)s93tD~&oM~za6 zwMmVdE*TYFW)Kv0X9vb0L}`gSSB}v-u|BHVo{b4Xvp%UgHQlE&9ox;ABjtkkZ69M% z7x?#2G0W^62DIynZUSy!zzIi6%G*BQXrn9bhxSNT6CM zw={kvtc6|5{h{6LTbf~UYa$dtR22J)c0Gztrju)N(h!lwr(}e&Ld!T}6-kpIOjB+h zb5)160UxylT?RQnmGdZ-Fe;I35Ee!y3L_ztTBYH zO&qs zdGaKS#p3ctaU)f4w`-I*ajj2SJadEKWHqYV@+wQ7^< zTeh;Zm$Xpz%T>80tltiD()|IgO|QY}MezOpf?qwa^lG~UZD)XtFNaa4E)MNtDeo(- zPgve2_PEu#7S%?Q72D!uHD=!7H$^cSrX^<43Bc=n#(lyr0=kp;^%F&X#8BM2LGj)O zm1E*k7o;`MS^SB0_MS6A1t|6dDA0|(-p(V*iu;aTM9MZ&AF=E_cg&_z@WJ{@{?B?! z*QJ7&%YDsq&0(WIayg}(0O*1K#S2`Ft~kIm=szi=B*<}CG5yL_#)>}eUlDlF9 zK4?-BFq4v^Z4JqRQVyjoMklmN7#(pY1IeJ7jvKb;1!&MN5^4)xp~^&6br_wfJ9#ft zbR=NjNNab>Y+BFiY>aA3=Q*dRcphcib67WJz3SWF$=80ybNH^GUxAFbzx7?b>f7JR zH~fuFzT``PoaS4f#+Q8QkMrOD@89N;mwg@ZpDy`54g#fD-ti^ZB{$|`t9K)NGWDEO zcccE+SJTxOzi@oXP5yV^eK+6y&EHI2uO@fP<&tmx)^FwRyYIf#-Q8FfGo#RFl30U3 zI>9ai)po!%!j|ZeaPu%^zUWRKcZ)>1lUDu4N^(z>hw5xgwG$|JBa;ty*g9{QipVd}*G?Im$tG)1ZFRyvhOTLMGQf;j*vx^^YL?_0xq=A}0X=oys$U+f=` zD+jN>hU}Fvw4DurX4t1XA0TBQrN$%T(KQy&+@L;Y2$dp~hHj&vK3?D_mTtYEJyyy2 zZKeGy7DjYLnQ+ow!0orRn~udTCEIs8LZMikEJ*7UD2wc-CTx#CwZZHe6UyB{xf=vz zHWJ_#3ytmqcGjVM!p%Hp;jwkZS8(=)BbLuR`sDsU9o99grxF;tn#{|E_WfjZEQcDH z$F99+!|t81|16k2BjAsDnMgN|x^<)sQlM{nN_2Vh+jN#$U1D_P*7ZG3uFo)8*U>XF z0LEk;s*bEz4OT}Mox|pyt251%%5>Z^-edFVoNk(kr7$RBwaj1@+^)<1+arnQcoerZ zM8w{M9lOY^OCEO*K>RqdJela$54fixtcgmwHLO$UR%5mtX<0_7in8dHoJQ{ z0e~t&bxvB~VwI1#3`|E28>5<&(-~9OVogA)gtLK3(Na2(vw>;VP`VClBU&enPWWI3 zurn!ICQdR!Vp6PE4WSAX?aulNA3c_}60 z`l=)qj&{T0_C0RjqoU2iePIJqAjKQOIe``pOA1li z!;BGjM;qvx^X;MsP(ttBxngaGpv(ipoNyoyC)+J6Yf0A79vibfW-*Q2B=>K3m?mZS zF*%O_+DCL7h)xfmN2siXOV%AkaVu-r#JkfrV*j~##s-tWs8>OsF*~6}0ShXwfJ9O`x21p~ho-k=E)%Jc zmNOL;Cbx;jD#={G5i5Na@@w-oJ{r*+7W=R~X=slIVi_?@J+zBOE8E9nWoYI{(5^#! zG>F5RNgUstu~s&8!O#SYRtcvgRpkj$Gj9u0TAf2548{l}(pPCc35J%uLI*~+llHsG zhHbzx+!PPrd3@uj19Oel?@f=!y^U znpf6NU<`3OB9vN|gtR0SYoCaPB56&z-BF$sCPq?{6Uk^uj%GvSmT9oKoZTXUk07i} zxhHxU(+GGWLA`0Pb;8zBv>rjN0?AO%}oT`w9W{!9104J}cwBgkCzk(&ijIheVWiq;W;uoX{Mx;(k*p(ZAFQ zTc_dp?IK9Zb4a3tNr}ARNV_Q@GATzGTiSKGIaFKHnimS#zuhu^Zvo31oFg2Wkc^@_ z+mI9(1+fsn(soT#Zs&Hh43t9tslA;4a!1o0#=u-uJ(bvx>si+Wyc{wpSFh~MpeBmo zQkD${#;${`V^JzGaV<@-EIK!^0x2n4ZwNsTdXB;bLQ+hNmeRZUFU|}TSA(l~cWhzLcfSYu`E%@it#tCsQ!Kh~%u;&JU0Dv0jGSBf;2-+N(Yw9u>>S-FY{)g1_1 zv_>fHTthfzB-=c@EbPyMf1`<;Q<~#r+I5SsgrfIl4k0r#VXw9WE9i}e~B zrKG7j>hm4QltvZBf%9cn=TI9|S;+fuj9J_^qFLA2CgDqIwF`v;628*3Q%!XFTv~;j zc|v8Rbxh0O%16=4Xhq0?Pj}M#FxrYV>zY(rv=Ynf`s66zFcoGlTAJt$?WU#K&=mWc zFfP!IoOm75V2RzXne5baXhZhlQvdc_9=iqLUw+HgPZhoynU}+Q{EB6QNd%pQL{|x` zB5gFpq=->7N3Nk|o>cqbXtQfp@P@9nbe*9rJm2@*t`Te*z5Zly9}*E)()oVTow_^6pwEpB5* zh`Dvj8`_;xGHbNPE>w0f6SEoxL?wWw*i&e)h*liZVgYd+Nj4HoOL}(6NtiTwEqH$@;=dW{*yp^ItzY`FE56^m zj(s-pB>z5QNY56CK-jF8cY+>dD~c6RFD>^ zq7C?|BPpoPbyQnO%6#n^`A94+(P`RE`3Rzw3%jorb}1A5>BAngI~UeODN>9p`{bBN zDV*m#rj!!fWNS%lW9r-2nV)iW6QTe6s*g($n&}dtn4PvPPMl`_-iGqs59eUW1Jw)n z`@EHdh5`M#>cLH~r%8!aIFgpu0TspE0HE3yBLve5)08yWMMSsx=2d9gb&Dx9ZYBVu zJyK-QBddjO9%!eg_b14KY6hGm6;6QKNC~r2$vN)U>|lW%ouZps90GEZR>YC8TIIH< zIcm}EA%MAA>T+Gk9uK%2+~!(m?>l+=>NmJ*^bVxG69l4INYuQr? ztu0!?LOVjx61tdefg5k=f)e(?$OO6dh7dJf)Eudn05}~eOrQ;hy}BYKMKx_{<^`dY z>zb)$At;Ozek7Vq-O9pJ&;G|UqQ{=~wFO1C3N|_pLiNG~tm_8m$7DeB$eDGzoq}>( zV;4xfRZ2rg0l9rGj=*nvloy9E6cCh*F=yo96>4cvm9*Od>@^iWvsfu98gB?zmgY|*Cme6co^!C4M_jt`if6gbI-niuV zlJj-_0LzV17X@Hm@rqaQ&_fS#^5jWg@rqYG=5|UcLb!>)q)LemaFPkRZgWOT&U(>Z z!Yn+~hhTZs5{;rhQBZD4*rKTep>iZ8D_GHq4}K^m<3*)}A6rZl38jFb-l;4aXxBy8 zp*zublxLUp;fi8~ER2f;O=iJ;l%UGg+XiRnt?iGR5-k+7gguu?MiGtd*De)0FlbzQ zTj$wr1?~E6O#gZtwsxTp^XzppkB$=V^)*JX{!Tf((^=BEq&Z%R)@78i`%s4#A$&}U;lEP)@tbRgY8b3_b zL)462%gA=r-V&1pICh;S)keHydQTRYL};Id{9zpBUJ>OvceLi#qkF8EHS?|*67B&i z>j&`AYk6vKS+ox0B7Pj`T9p^>kj{j}pz(}e9z$7SV#Z>bTs@L?Bu66Qs22cJMAoKD ztcmP51+BM(+gRVGRT$A11tnK*1=-O}_SZ8m0BtZ>6)A1bL{kZ;guUwW`L`}$OeAKp zf8#Bk%Fk&z_p`2Kx2e!s&(v#Z7QUeN7MoV@+3RBt>#z>iCw}AG_>F(_lEHrYV(W9? z`N~Uv%~P!|>Khef@tv?76&)2P(HhY83BE!iI`Tz{nFl`X*MNUy4;n0N2gKQz0HpxWLs+G<@sc#Ev=hq z7AGvrV*-9uVsO)`&UUDn2Bv0tJm=OZMKW62|I#6Vxf$wG*_VI&Enj*`;N{@!4(qTk zw#-~%YDJoOl#6uU43@ry4TBa#DbZtWxSCVrJx)$$OpBIj*>H5c96*ZEF|z;yUP|LB zjZB)ywq?DjnK)^A+G{HI+LDl4j_c0SHg*V>Og0g1B8+6;b|GU$L6}DT5s$rf!E;WX z<@V_gr>cD>uEm)kN%q0eWz9|3heYO|DJfjxQDq=(c>E+1DprF2njBgQZV%Sq3zPdb zZrh+bMHpp$XsysiKve-Z>L{InjV>6pN?0T3wDt0Lf1b3GcD0ZcwRgm%7}<`I?U=eI z=f7woiivC4tdrD<1fT3KU~{3??r zr36|_%h>vq=4qSkKC6%$!z{7)Yyl@EnXs4V8gwf;DxuQS>x{4${aD9mBFe+=bEl;B zX=YV23v}SUhpxBK(JK7N2=K|_lqyLJ9|(}qJ{u?)7@rBad7?R@vh!JQqnspY zE`ePnY$K0{QsYPR^RS+{u4jnk<$#wbQ&$?qTu=7pP{4n6OM7weqSYv!s9VRZEh&xX zmdPH^I&zNFoBNE*mZf(rgX3ti;6ycJWIK+O3r>#r2TR^I7#eSf$+XRn&%1&LW*a;- zU+2tX!m@MBn}S(gvTO?W=N0?sCd66J<#N5-mqGLMxIl*ZS(AtXPLDn zTg@1)B9-Ze_Nd<7Yt|If!j>oXR!2^+?{j3jz`B4cBC$-88DpixCc133tVPhTTX6Fv zAZnrMHlqYzCWv!O>NM7dL5H$diG6ZuJ(E)0!IrIKzb*$2N@+b~*9{=C*TYoCvso-z zb2W{(_@pVcw1O?Yqm3)~Fk>UuMkZA|fFqlo-+CZ3wk>NeGi1m<7QQ%dKb7^2od1vp zhQqpf>OvslQozQQsJFlMUHtUxpZ{SESRP%MJVX1!FZ@DwcXvPJ@%{aMzVHjb@QMuT zdX}o*Z7Plzsql$J-u{>f}9xO1i(;N{UhA$O%8L4&x#eSgNYOvc&^zIyd0Ov&il65Z1Xp~Z@!lAU5RxK-F zp*u0<;k!ygrKoly)lNdUY6yYUT_ib;3JKlj3BFd?CZa-OaonOqBDmaM1}vU+1Z54X zs>In0R$#?i0ec5QjWNTyi(}EOgraY!)A*^}Ky@qNNBbz+qB>-ajI@NQAZ7=l5avsF zA~f~Y0ah!sN^X{@cEpWLWu_<=c6e{M5RlX7@c@KE(XMH_HAA@@*m!@-+5;XH63wQi zIqEX2b9l$OQR{#H?5)=oI33nuJyAuAIL^<-xhf^tt4o?-se?nS#ClmXb{!KZlVn3= zVp^UxJ0qGe-L zb9}sD>RQqFP@hQnNg`=sV2a&@t)V%hSe%xS%vcC;2~{GD6MAl- z(-cf=(2)Dzd@lYk9-VEoI@ zp@yJP0VYkbD3xfVVYeOOqah~EZabp(mYwB@t;L9)dL+*$GZ+UXz}iC>vd63IJu&~E z-}X0o*7J+&CP+V67djUQTgCe4U-j+p{IG5zyJQ!#UW4)Iy8r(B+1R*rG13iHF&wZe zmOw|nJ!3R=?A=jP>?hi(CKL|sMMn`GRA*(9ZkI_k77Muu_M-E4Vu?AFOZ$YW5msa; zVCsNbbm%sq<~6GG(l!?J7yv>L0e?)=*40^npNiR+yXWoDtT@DHf*- zOq(!`jN6YC&AP%ag@N&7P*H%D>14a*2}^bQ82Z68`TS(t=Kklw$~v7MY=wLg&_URp zWEIVt!Oa79Apw%HFkmvcDdilxg%l{%~^uK)S7w_X!F=o!*W4r`OMk{$Q$s`fyqX`x0X-5j07!+>O za{9==FcQI0T2JjQ5A1KS(~MXz>!Ee3&p0_=%>meHB}O48#YR;#DOzStDSDsIQjZF# z4Jw+feUSyW`a~MCWs=Q6s>vn-)4=HHk`q&TkH*{KeT_=Yn}RNwd@GDp&JQ{kkao7E zcW4q`X=*R`C8OhDN8NZ!L}65<3(|6Cjp$$6b~QyZI?@G0?N^Vvtc6jK4HYcTL^Nsm zth7ojJ4g2@Z=A!rF>0~?1N`TS;}iL`>o$fD+_i-Nz54s5@BM7}sSn-mRp0*3>kjm8 zq`GJT^U)vu(X#rl6rc1-pM*V-0v|%)o_p@$Q$FQWuF4>X+9VE~#9388G)73EGudzGz|BfgRexeoHW@?3*%Jh~RJqUu&y z7whs4EBs< z=@eTns_9Th0fuOmv~O8Oy=icB(Z!^s7@ZS6k!d5kO)QUDqD5F2ME_Fk1xyoBZ8tc! zX`d+f<(TX|3d_?)pdc@}5h{aOc$8LzBaUWWql1_=P>CMrur9u?CWyJw*p?m)9Riud zdb~0@H?eIrX{69u57CSDHPU*t(~Ma70-cRR-s_JK?Mg8zW?eb7Zvia56E>%FG_@l} zMO<14nQ~7G)o66qwTMwmcJ&xS(>?Rk=RzOW&lN?%GoJAbKI^kS>xvKXnpOx< zR#}jq^(!HwmNmtF=dk-zij!j&C&htGB`CM!pxG$*B7P(n(xepSUJ$WjZrK7Twpw)S z(fhRkm;TD;19Y9NN_h_{l7a~J)4}l>L+Uy)e5^{6vn+3&5Up4xtCaIhJg83g->#RW z%x>64KufFBFPV(TQJualc!s4Th-*hNQuqC$m)T}pqnn+5#H&`mXN-i!AInE0_;fsj(s ztr?2l3;>O2a#U`U5O+1px4FuwXw9RHQrJ>PfR6V8M>q}tZa&V00FS?OA5Wxn$%uexe6=b%LjuG0(^?f6Z1k| zD8#}!775j=p^c5e3UqlzTT7;m$;?ZkJx#ETGMI5X(gZ`@I+l%NT(yjISSUcD18o$m zX>_E@=eQ0IpA3ce11MUyj=FKEEYdf*?W^_-m&cDm`6@p`kG(| zP-S(*nTXPd_mi8o4nf0>Sr-jpzWJNK8GvUz;~9MRXMZ+TRb90~UAL07sllGOw+>EG zq3QjZ^Z4#zV*ty3nJM<#+$3e1OREPsxKw7=m zuuPM(C%)SK=4!vc&<6ImX&;y~7=!NpDcG-zLXP^4SY!$_!QZq?YWS3uAUfYP}YuD8K%j+c~M zEzv5L$1UTBBgu$qfN2soyOJfPsJ0^ZB!9oDrj(;%*1rDF0x z#O*2epJDKuh&CiBmYv3ThI-VB)p4G5_v!6D=^djc<@PA=HErz%dtN~%kZgpY(XAf9 zOP{x*4AAw4CrQ|iB*2FR+DJ&`MpbjHob$o3PRJ8>VSNfhRD;`B?}8ShX0NRn+m@$I zc8E#w7xgJxZ&v`q2CAaN2Wchq69H5@Fj)9UlLIRixlLKduRVm?4i?mlt{7a!#7xT8kpC-<~3Ji95+Vwz@=YYx6e)1?0i-hsJ0_%5yU4SR`$gp;`x3bS`$Z39AvDlu61ih zGH0Sgw-M7s{KSYD-X|8P3sgvKzR!~kY(Ll1t|wH`l)FlRk5agOjUOA5(Zs4iYtf02 z;;L<|KT*Ay-x$$H`9Sr^lKCBDQ~)=Rl)DM#Ba2gx`lvw#0T=a&0^K=bjeu^X(XJ0w zlN)Vsb*#Mrnr51*6!*&YI)CQUDJ&<#Vq0WgXmqX!qj5b919I~z$`qv zi}@Bh9oFU4;{lMz0yj4@)AD$Av#>CS?8~*SZi3`nIVg9*Pn3iGS=QbX2Bp*@8O?6nnpjVxwv6g3-e$wpaA zs=XHxd)--V(CEIMs>)e2-TApNJ@X*~uwuS)^TTT8ODZ z8!ZbjnKg~KgrqW{5>}`OJU$r7(!sFXRP4@10!~WLe0M~O3a=BLH<+>!P??#hCYS-B zEjkCC8_Wa>m2f%avhJ*8<#ZOUyQ}tp?XVuZzVkCbiGTjBjuYSfC-BRcw~s^ca(;cs zpY8Ase`E7{5987SObCJR`@ZkvXMgr*`M?K0K--?LOxxPpx?+R7=9OE>Qq!W0UV(}O z&!_%xrJ-)br7I;i_7?eZwGy<$`Hiny%fG(uYH;w<10bPk#VEmOX(j8~jkL;F89)pW z3zI=YB9zchG{rp991-TlEOG9n`;sNb(+47SMKbeq4cWLuNm+H-8(ki;ihX__4Hng;CDK+0fGd7QlL8U`(Ab zb->ND(DH~wXGW)(CEOz7E4f)0_ivM84$xEz)r6r9Y-QXVO_&gFnf-dwytDkk*SfEU|nls6^HG} zASBfW)o8p;P)6_)RR{$tr924`&7o$MZ?^e94!}wr0J{xg%CALiKbEO z2t_0*g$f38$AXUHfJRcF6R}KauZH$%A2egv(Pak6s>J@XqU#LfN|=|*c4%b=Hf7Ni zSQ8jI&&YMOLE7#5pFO*@^kO^RE*z$aG>t`>h|Us(p7GghDq3$SowTh9U{Q3z5<+Iq zqC#seL7Q186rz?8%XG-VT&a5b7k)Zl%csNdz<00%!1{|P0NlIyO}_8MIv>gRU%vr9 zg)9EQF9iM+fFJ(U4*=KCwe6B^l)v>`zm@O(-tXnJKl`)U-QDGNuX`Q;=pX$fwAOsf zw|vW07~(Z9@5M?v=IoRHX9xmXdKM*$;68O7DJ9ZuL0T+fv4pl0;NipScaVU@(vilM z{9B)jz9hyWYbB*5j88Z)dG32>l@@~m?`6CGX)lgvqJe?kXIl22W<={TwUSrkgtb_n zR21{b{Ip^FxsGm{gT=BIM?xl{*)X|H3$Zp<2gU#bqB0OuMz4TYHh0i_3se+6j-3Z| z8%RcDmL9j;k+c$qN6WaQfpW(){$N9~>&1b_Dx%SJV=HV-$SaLqA{i+50&9Qv2x_*F zbCyjI^n987t5w#vL{t*s6e=U4(M7<_J9H~KKf2AKo|TM0IgPI_8Q&k)6{`PwAgiGGQbRWXa`rXOr-gh(G2DYk@^w&}1!5>&?IrITx6e60o`G z3eGLZoLx)?c0?<28Jjf)^QOQDv(n{6&Dq(6M|P(y<|PD0^onj?5L-j24PowBEW|)z zWQ9RlGzIh4<*`^|4h!|2A$UUwdT3Yc4lp(P&_?;9>oBD8ur8)9d4~3;H@%4;`>`M6 zQMHtld8?MK$g>j$ z?Mew9$Z{?}%$)%t$#YX$&J+d&a1}N)PI+JS69X(7>eF*(caKHOtRNVLohMY11TYm6 zb}rz;&Lt&GdxM^& z$?K*|k<|5oMWrNX0(}IlK`Z<~Qy#<*d#MlS`p=^QmG!^9eD~+B`?frl=1@9zbEa4% zbW98`B-%|yyOTY94yrxS&eA-)k-m}62vyQ+y%Ok7GZj@yDlG1JY6eH%$9wVig-8CXqmZYHC*Jz)Xo)`H!qMUe7x^aOU3u6>UigG6RT^`8w zN4t*V;vBs@CC%qKB+zT85>+{!<0W{6P6t{Qd4t*X4c>=jKhhAJC(iJHHg#YZk{9b`JH$ zD4((83U}0ttgDRjG3qp_kWyh3U=l^;sWzRk9i@{Fl&+x8aweq`J{T(NIWk<}^I89g z&TkQuA{7eVC`_wXQZm3EXuK+66;&Uk$+&9}H zWPmVt66{rUho9gmuyh(-9`eCa*#bknWl6S8?7fS)0yTLiQ4c?91_;CCx0V)7ZJ9x+sY^ zek-C{gEKf`r|#m>^tAZ`yS!%|L@Un;uEg( zHe5A;x%19DdFY{sxclzAdFC^p$y?s?7GC(m7xKHm`@2+Cbv?H6hK(u;@knR|WHv@2 z;AMFwwPIVMz9eoLt(G7r4QrY^HkqF+s1796t2zkSX^_VIfv_*)y9gw$Xm$+U<_;Sl zu$Z&^q^?6%)taZO}Q5OlO8lvr13vSs10oj}ijr+&&u%$KtL{<|i!8 z5komy9YNhl1BOsYKT9$qC(|B==cJU=Oj{}W^kG@@nPLW*A*{+h*Am>+!Hn?-OBSaF zxUrjZy1X7Vp->eoUCP6GU;b<)Z3Wo}^TY7$a=ku=^#C+R7`GH$HiR_7hm?r{M zx^Mp9l>fiK@VIY(IFB+4%6(6$aU6Gsm?7}U(q4@urgcFY z(J@DYW}os{7_RJM2Ya-QrLx}a$>M| z0|7^&R;VaIraF)a-|5rGj3bzf2TN1`Y8%bcFQb}{G^o(?j?w9Y=4e5*ih57VDyO#_ zDcqbVj1y2GT`VFCYmUe^C?BbI9rKeSOY@a5Hf}?4?0?TzUZ8&ZSmzX_z%u1H=nzF> zrj7Vfv_koSn$8(~z%jVj;c4ph{=AAOHWer zVflNCUI2`>*t7eTqk`F~Qqs$|YIL_^(qf@SdR|E4T3=kLqU@8=L$mAgUv@axaIOZ# zT+g`{2L5#*awTBqS}`n#Am;ka!P5%NLzZa8hiAHoT}a_^GgSDY661X&dqCpS%nuo7 zlo37f7#o+sz$ZBt)z-7{1uhuQPR1m_WMt%{rty|>*)c9VKG+t7#*mCK9x7xBS%Uh! zBGj6==}Ad(Ft3^F#IWiZ3}=+UJwplSnfsChS2On|6IbCf>r)xOWPJeIU@vnM8cO*rfod))I?pZE~hfDcmwbJ{jcFOZo;b3gZ*ZrlwYYoKvi8s;zkTbD0aTK-lRml*BU+UXT{YMbV$q23Kk zP4nPFWN^-*Isq5$mS*!_Pcii1t^Mnq&a3-oJb7LD0~v|q5{-=0qqh8n{sgNwyY#-CJ2Re*k~u76LV%y zo@Z|g$sq#*?(_=CD4oCOf2rK5lXAa}YUOf!VGn?+EM~#~j?rxv_@TinFpZRCYM&%bU|dMNr~>06X4;|W9U;pj z59iW(-)H;;&;HFXyC(N_Ee!fs3Sw?`7G`~JwEXMwf|$b~fJdIiQ7D6v&)pmcAF2#o zEcjZO2kRh~(l;iIHUea9!qlG4@q$6=7?&+wFzhu0nj8zP6^yHvs_-<<(sTvE3y_$o zv^0=cwPU`c2{SAH6R)I3Y^Iim{-_haGZHm#rA_`=J*CKLj3OaBpo^9^ScbOaz||~# zK^rXF^Y{@{(C#h9trc4LbuEK4AX%wko*`-r7 z3Y9c%S%FOy!;Z2H6edvG+|kpPge1VrdyQ)?$!q8|YIbO>e4=x?Z0dcZg8%DFevBWx z0gwGy(yePTcfVu61Lm=>*UuC6#C*lOf0u9OXSnd-OF6+GUe#@{wI4@)!Z%&@ZJw}5 z=EX05F)x1ci=XJ-+!7OxZDQR-&iI6IX@v3mq8V5gP3FaY>b)tOBj&f)Xb;V{!Q>Cf z`huspI0vm6J!Bc4RoJP+%sN!(iQ}4BXi}jujl>VT+qNkGye0MEDJD{I^4Qi&zf9*) zF@n*Ug~KjN7RNLx_Yc(Pl*Ac(`CxZrg>5uNh-`nr;fESuX^Od+7VQG&#|)u_W52U2 z&$kCF0I83TNh{!Di~ta=RzR;$a+4d8R9q_xRivhcBw*zdRwX6SS}yA!d%fVZ_uur7 zvmUh2C&k4CDv|;y9K{FEVs{5Op|D z`net;=BW~&+=G!T0Wycc<*}zb=9$}??e`_@BGPW<)Wud#oB+fkEzR^Iqhe{)w?&{V zJyqe^sv4}0oSluCwZfFgsE9erx0f?{Cw(c#M2t$fpataAErki}bz@>Jg_d@z7@kSA zJBl!j;5D%^Lk30GkP zlUa>g7<8j3_BHiIVgE&SAPfC4ic7OTL7`j@i&65scGCBiOd=K8`{@+A(P#%Gh3?kQ zvFRi}nm)83ft?F@(O!Oc<0R6xTypG3i8L0KLUDi`KTAn(qYvPW0{G&2ODw=o4X#Wq zMvkHq_R1{^QBzleu&}7P$=k7tgg%^0=i~py@AC)W_QFTK&b0;&KU4h<|Bg?(qU)}+ zA1`{{dmqvBaXshDzVlrV%fj63ewrs@;{S@j{7rn-yT6~WfB(mGKo+w6()0kvq+Au>2)302L( z)AENq%V_;vcA4nL3fqEOh*7lL5E&al9EkU0=e-Sj_dw)WT9dkV1xos$gIw}?$-e5- z+d!_jEZtOcKe?b&O!sTXd!N>Kv*pRaas;0lGLkfkwnJCRsRd@v?|fpn1Q#IWwL8Hi|=D7EyNgs7K33#AhCwq(&rDppxJ zxlK0q$Efj1F{}br;Za3|g(2xgEER4nY>@H_bJ2>4<@K%ha(d7tFZa zX78fG=tyCM6iSvI!@{t?sF^J)d~2mtvtpT&nT*PQAc=GiDnXf_e+DwjOPq8X1ftdG zg#eZ?NTezX^U_LEn|8v~#3BjMQT^XQ`y33=vn~o@RS?!G8Hg$ob9r*oisrZ?RC2s6 zX4wa$g@r+ZT_{*UQifP2;+~-!$ZKa8a(%y*Pkw2{+e0qHKAgur>u3DmH!67F-+wmO zMhEcdk9n)iBY~JFlum8t-wo)q%H~w>Gw}zSD?@NWju8vOVOf+ z(#riLX`EK;K(K$@?5RmHtk|3N2~oU2O06EJ2UNYWKQlE+8wedV4SL!i!L)Sn^sm3~ zwF)uI&<-j8>p9o5-{oc)`k#v6rJqBP^2EoMKAXTLo;}(uBP*fYPbjaM-V>$wrPIp} zl>Q`4Oo|W{^R6Hy#b(*ERW_75&_#pQD`}TC0h3$f`xz9TE}PAbN+gv~CP}fTlZC$< zL#T2hWbP4*!z6#76ig4c_>-Lhqs@k$p`6&;tQv;4TXv%yt!MbC>7r%YRqW0Obj}ik zrW`n&PNcmO?FAf>0YOs2KvAT8hE1W80-K0hyeUN4R!Kfs?b~QU6#^XdB_PobVkwVh=Na%U*_;gM>YOH)SSpnjnUTq$H0JG5fSKtW z2#}!8&+oD|)8SnC-0=9|FaCL$IZ4?XJ$Vw!Zsc5x_~hUD{!e*Ax4)ty%NXPG>n(42 z3om%V3;5+<{$=*|_SoCoYo#yw z8-S{7!fiXW+XdyGmwuClqNk-8gt?@&H8)@k>nFo^9_^nC`E|nx;B`duoeQ9HN ze6TX^TPr^o<nxo&wBF)^p{)EW1x<@| zDpbN$#0uO-k_CP%i+R&1)WwqNxe=45S~5Rfur#5-s<`yLoSANLdT)b8QxJkM?5?xK zNr9bdLLq?34+JnIlRYjySP6<`BdH2f@TtV4Z)b{PA~FA|h!SjYtR>vm(w=fOw*}lC z9r2C^chn1zNGo4UU-P1($jg!uz|%|jl0pIkGAq=}`OI3;XYZNmy`tLZu$Kg;g<>ip zJw#!J%v}6A%4bPjRM1^@Z}>;d+{`YKYc=Dcjj%B)YC@&)Ba3#Dyp?jH zW$IIi6PSgUc;lm@cV5O8V^(0m7>Rz)069ZcFEIWTPI16j{ zpZjbM=i%q{XZ<|4{rcay>f7CH;IclChl#nKz~zfy@mC-5Z$I_#pWG*hJ`yJeh2HL% z-8o?6gJ8NWGinr*rw8$F_$-%ltG0Hn<1(HXz-VDuK+?rJZ=`P}x4jRnV_p=~H$ZvIp5J7z9%HJ&Xw+a$ zpT4D;wJvB=;^K^*2X%-)N0csO}n(}SD$0neUYT{Q5MWj^pr9amxm zSqCkbGg9CDH=cFL?>!iL->Bfd-~ZG6$@b51@fA;eTW_VgY5?$U!p*XPk zaY?9+oPDy2@q>wSx1%_-FY>G9B0fhJ_h4X|E~ZwCdXsu6qb(o;;&< zq`A$bTT6Wrs{KSUO_)ZDao#D+LKfh0oT$f+x^zp>60%9(8i`E?X}1qa(RjBLK1U)(!J~|QSM8zW3-?ySVAca^vPB! ztV9vPCTKKh`Iyy>#)Pc;3c}=A`B-1F9$}Cd`q`A9OoB2(Q1}y$a@0{2lJGUGI*dw$ zq^PaO<$}s!6kA!&1~43*Q$VF_7=^=BlO}t@WZRrKq&tY>NTYgQ5&VRFtufl<@cHg}EdW=XR(!9m;P8(hSn^|!a+j|;9xi>W6D zZT!uN&F#psv933FnZ7o*r}`?s(E}aNF%-85sPRo*?GKgCtA`Jq%Zj0P-fr&?x{u6a zn|F)OH}}p^HtjJo50ry4&~Y-a9kT1R#rB|&NBj>WGTE#zTjQxr9ye^>Ox{;??*kT{ zzHD{@Kg0`W^PVB>!mdl#Ua0agpMHgqTZHW97Q{>8u7qn+pow(*DKDwTG;5d3Q|Pq{ znKQ;vJPSw!s<}8MPrTU&+aWcUSF~sifakwJxDszCbrWIv!|*p!)iHsrxQdf=Rf#2v zO({-sK2j5CqZ|D(b4X?^Yu3+6;>}5U(Vj2MXPt8O%TRF%kv5d#$`S-7} z@^llVQ`v{qEY#tgm3hJ`v~!nLDtYO7&hs`9T+eT9CHU_%Lyk$mfOo+>72<3#d<9v; zT@{g`xH<_zF_h@ZRF|yE$qL!KtRs7OCA9W}32x4Ex}AIi4YsWrmLmLhqE%V)slIm@7fV1(?++`6*Fq zLLO^GpaLfeK!l8yq;j~@VDUQq_=V6yYwuA5i)(#H-J;-)69#X(9m3~ca6sk@^Xq+E zs5sbg=GZ08c=Bg$7bo!qS7!qJULKlKrp(EaLqj+$=;6m^4Tq;HO_V%%#|;;VX$q}R z=qfx0PH`3Zwdb^vivi6ZLYNY{CZZ(ajVJg9iR0tevf$FuGz8p4;Uq!%}0^WE!a*Upx7b3?YtG%2hg9Q zP554xU)QGI)|70zX;_|4Jr!WIP?s@cNiJ;TuC! zgf)+?#@4@eTo#PRM35?8ivt9%5km@SQ*qsc_dXtS-b&1XI|fqcDxoLD^W9(`Fv|=b zo+-p6QpdtNVhb(OM%vYDTL|q0?ZnFcGx6OY;U;)Sb|yW#Yzk*&0)@YcggFBBXZ5gU z-Rtv~Ssifnhu4}n4KQ|)YNhkmr|Y@W2Ci_U+TF$8-s_MRr!iEEQhEkg?oplYxDzKT z!bWT-I22Ner@Blu;K~>4WhL5PIjVfS`<{l=(n(ObGKv>4acUBWD8e`I1AIlG1WO3! z#7+?{L+Z^LXg8}MR{oeLOrKrmu8JeB z3hXSY!(cJI6alM~OE`qLlF^;x)Eo0zuzO|Xlo$%Tnjf^aW6y2WhT#m4%5~$r2V;5&Qql7^zft?zh@ti!fM!bg%;M7yU@_d$8mspl6mxF>?^)-tt$XAk>v^AQN zQ%ntHNHtUA;=Z+GPc-BMlQb^60FijE-M!n^WIW+bac)20V0*plx_iX9X1UR6w|@9A zy2Aj|d1$s?4aU5E5$oh@*mIbAp13%8%f6yfaZE3Vq@QwIsCxvcg+v?A3r*L>-p|D# z+z%~N{~IpoDC|8LqaNi@YZ@^Pa!zU;B=|>RwKIR!504A$eN9A~-rdvPW2HGO>Otr) z;owf5mf15TmV=W2DIwNRIYc2En?pec`%h8*iKhq+C4tD-R-vFJ!IJ{sN>ZJwMe0O> z;zC}y<~ZJ0aw!SbKV@x^M76`v!t=+byV%b^CUBM!OCOIY&9TNF>Jl7nw)_l8M_RMf zXNn~;{|3{nCH2zk6OxfooY0Be3A!&mdJ&j!;vu|T!mhZcVo2x48>_?2CL=~>{ZZzQ zS^OjwX6aK&6x8pvx^&#=SNIlrQM+9gz7`nqA8dc0M9CJsypCm2CkyLE@gsC1+0Pn` zL|(5U=!}**9B8km7si^V%&iw9dw_pvu!TD_ubCC@tDvHg(yg;L>oD3tcbLgR?Ju#* zRPHriR{N@+l13i>kbs~^8H?rbVL6J26(hEz8j{Orw7?Hh9e#Q!K5Wl){av8LDO(=> zz4h0UNaHF3@kIHBb||YjlvHZrV#@<$&bUtnV;1a0hyauf9BD*&QfYaJ_%HM5#WeA< zrBV!sncudoh8s!!-%Y2fB?fmP6CSl&ck%d8Wo1f`Z3)c5)|b(UjL;}Zk51&n6v42D z17Jd(CozAyf|5%VDqTdxkqA&TS)n009U^uE??2@s5@zEn?ND>E+u!>g!Dcsc^YY|% zL(*kLQroVw>98ounnwgGPM&IOHv5T9WY2(M1nbp< zRVOgyoG^DGz}MJo4Vh-%UH+9$i%>lf2PX`?ONyAP2=5HccqKMMq$!J?{7X0SlMh@& z?wXY{(&&j6)!W6%Hdyt_h9gHx0~Lj`x`B04Y@bs@^987kjtq3mJW~bwqo>2|@9sTU zpnjVEv|ZL=80rDl0VnJV94S$CAUKY~2}q4~VnQbhm<&ol&`TGju$P5{krq2EX+F;X zI(^;7JHBmc*K#9)@K*}3+c-}^W~Ld%yn(ubEK znmJ^!^C6aT0=$u{xmeobC^eL$_8(tj6PF3;%l7SC#DS8d6yl0#bdjHI z*jy@9%c}PSOHapjQ=n`>{WD6fY|gTj;0BPgsd4j+}@K0 zj{Fq&R=;V_(;LHjp!!c?3W;FVF!P`8mn5d;uqU#?DPux=ZjXp<-qhgEHyet08| zF%qHjZ~BI$Zt6_kX*@#eQ;=<%9U`(V3VDW{yMP)`453AE@DU?Nizq@u9*CoH)hD%T z)VesE9GBOR@~{O#o5)|v(xL)K)q*O<7j~h1)yGf?cVPi1ba8i-8ZqxkUi(T(qNp{; z{f6m2RX>jb@w;Kw35zKe?o0V^!LQ)b4OG$ikT7XNjA1!Fk;KD4xuBW;rIskFm34IA zChU(FpZ#841m4ghmt~QJHBd=G=|=C-dca_L@nY4#uXaiEb(OWoY|Ad zccls2@azk5>1FSpc2r*f3L@HvM=Zo*);W|%2;~>f74V_x2r0-d@6ljTG)R1>lFk_m za>RhMs&(j*BV4Crpg8!Ws|eIC)&3s1CXRH5EQ~|dIq3hB_f@E>4xcG_tRUm7vD-l) zNw@$q9~{i9T<612vV<^HWwN!wcoT&n1oj6wLc7K&^Z~;dX{#prANW6h~f+BaRo(!#RyOgo7PolFc}r zx|3gF5>%L9ZX#r)Lt}DJaG%qM?o8U7q!$a|C$xV2{#HSZy-e(IHbWYl7bhT(BSehY zz&(_sdbZWq5_jY~b{7|)s?rYHdDyykx4o9rLI`s6yx5gR_i;^E{KrE3<9U&9=Pp4( z)*J+-Ar9doCZrF$0VrZcTU*KFrL#_qE>L$eV4F?(cIxX7h$Dz>_BToRC1l+( z2el@~AKIskrs%39I{ASpyhD$B^K|=HJosy2(5r>htghOvA-}hz|+E zBoFnG54dv0I&#t4c}Fl9kOX9om4%cJlVrH5uXBui@;LxuPci{YpqNb*)eB_*OX%+f zL^3;FdvIYE@v-YFeQbJIvY)g89=d<$-D8bK>t6iwzq`6irqL)P*LK%>i+~J=sY!G& z;3xegt-Nb1xsyq6c6*n+)Q1ZYgkA=287)|~HNZ$%jJH!zRQwQuFe09Rvh+gG<)p#= z5$PhODc8&|swFnN@D^{SZi9syMT-d;Xplqn!#pC&GMNTehXAc7Y@+N3X<#{=^!lu8 z_+)k{gS%cF%4M9Cx>vGLHF>D6QNY(SmL<;)%cKi%#n+z-)Y4Qrg;4Y$PCvx;M!tfh zJa0{&dLOx~iIwYufM`IlvK?41?A#pX?cYjqvJ4uHIW_23;pB;rdyMp=IjsDiR&v;w zc7Sj^nuZBd8Y=Ol#ViUBLuFZUJ61sbns~)+vHP7Cd&67LCpD#TXsEsyy)@;w0f!S% z+OCMn=NRWU%)f zdcPmuWC5I@xD#gSJ}R9ji6}gtQ5WumPrskZWJb##=fj3O9i98~80NR&40c;ToA(2o zL7j~iF9-uo)XmW7g5HXq1U-^MgK&K8Q8hz{6(;r*as=)b5-Bn}S~L`= zSfT_ALH7a>h>01$qfC-IF7sCr@e-O`M)GX(smZ;XQ81+>atrx%gZbYfD{DTP((JaV zQI`24;Gs&iuoSJQJOt{M9yAPf79miD7MAwW0NC*<1n?@xYbrG38QhTcarZHbX$#^1BWHnGhMI1_vDbkov@9XObY{t$p&+R?vjq)wA zP`?!-*Zs+{N56nK92AWHZeC85X-RRO%Ft@x`?!}7NyG%X3h!1tfP2F{1n!lQ^p1h} z6IoJ^{PkzAx&RH|1F0t(@=6sZ4r&6F+&NWP>7WA)pF{yABWB}TU4vxlKIqEp+Wi4I zsn$TCasTpi%1t;Dtjd<3@rvTOeLy{V+CHX=@qHP+?}T38!C=N!&O|O$kbmQWL*2-g zn}nkwe=SzZl2V+i0wKu>PezTH?dZbv_rqegAyzE`K%$IoC!@Ut?#b>_+t%5ujby0vkYU$V~IBa%7Zf$N{d7OLB z>=aq9MrL^5y?;D4TR(Kl_mp@2`{8wZZnHgf{*K;xFlCJ3-hsdJwza#_n6B>dKVMCy z^E&bM-sXe#lap&Zc@>x39BqT}m=%^NyEC+8bY-?$}xzvAn3<2FkpIF+>eny)_~p}Fyx!jx~w3CiYLhmE0hdfpPy_YlnErm` zOtKYU1vhQ=7v@q~?y)K7k$2NXSQ?1$Qs>lHg2HSIiZ8xbW>Z@k`D^wGZMgfLCJrk# zZ@%4+JyFl6es-Hikq-UT-^D4=Md5FD0puyL2-vLnosQeK`f88LVHN?p92jNGxlVj!`aZ9z6oZ6}h1qnHRvhZozROLNy%ijaL-?yqi z_YwQKSq_!mv&kVAAj?Mc>zUVHVtqi@OEOd;N<#`1QckU#4t6|#hNR6($Qy3@A}_QG zd3*}KSl5K2EuN|1lK&%-P&iD2=*F37lsd>thj#ZYmH`}O6L>T;_ z4$d?dd`%LK{+?f!AD-m@hfrvuWjUl{1mpsul;pUNjO(Sp-Ci^?Y?r z!vHa9ltMfX=d;0L^J~Al2VEJ8nK~tkIl<8KKkG=vF^x0NYg79={_)7H=!8Sp%7ZXv z(@!$ipT}=H53P$@SB~EMDzu3l?MKo!JN=<3uNxO{c-dE2**)*?ynL^HeB;p{kI^@3 z*>`Fnufx%=U#C3J?Vmo&ta+c}`BIzO_i0`M$QJZxA^+$|Jeg|`tai7v*P-)u^!p6o z4$vj+EufZ!@GyhqW0LQh&71UVsCHRXipl~nETLp_+_Z`Hipby0eujuToaS$@ zo_b5>Ihda6SC?f5Vk*2;ecGCMuN=(HMg1x1J=;;g-wyuwrqWGjA;w0O^UJy=g1ss* z-o3T#jl!z2nviXSrSEd0TNx+I+Aw^#_)6Z1BncP;1Ew}Cbtcxn=ZsK zwRQH>&2n6`)$G+tx=kshr*5o58GhdvB)I@>J!v3vewHANu{rm)4>eqjdhdR}b1JSL z%vs<6TDKKU$>-mO8()M-;{Nd+OohVWLU~LBm{!>7qW*G->9DtsO7Y|3e@J zqyOW`K-~W*!K0HhRy`EMc%XS0Wf*xI+Cd{P>z5~G@?w9%SNU*M8Ip)7RTRKhsN@nM z6Ho$F!RDJ^$uo^H%tSH~s!776chD=t;y_RrItIq_rlwGOOk>gz*l5v7k?P%1_o=QAatKdN|s^~2Nwi@lb`Am5y$qpQcG#_6>s^z%c* zGqXO>f4>rX)(&@_IoW`n(CONaeo?&%`*`i(zRc)yA6WdTY2)+Q?AT?Q+WuSRPS^fK zcayI3cJ%t1uI&B7rE@Ft{$c~OdUMRB^LrrLUKnotv*=%QX7SU0sC@;_w|06Fez-Rr zO9b-&y`tKK)BT1dno*vK(x5c(U z$5##EB{8t1FFe1LYBA5JR;mWz$}<#-5Dwrbxjbl^B$ZJliF6uBlpxV+@%zLBYVpn1 z!?{bvjS#m-oLoF zpEV!y>CGlX@EW_pb`^`~FH77FGhH0jd|A^p zh*dXsXxt@>ccF=ZrRJS28=%BtX!yrk#-_spTHAWRW%&YS6HAjmfc)Ui9HZ<8k|!Qh zMHkvhUqXqpqt&%>jbfG*lB(L|D}7d)q_|Z1|7LCcs{X z$Gucwd#z?R=2MC5uO}I6q@3B*Yx#x9lR?7J;ze3|m!`65e&J?jX!5$^mkCy8inwz` z(l<0ViAU^KX+1*)8$SfGA4T!x`e+0AbIv2TNTZ`v^8zS&0_FYHzn9kD^cP`xeksgz zD74P^7TpE{l|RS5zm|MpgWM6E*xB%Nk?0K-4HbuZsUzvtJ5=n>C0QYN+881Qn!+md zHHxB3H(KLRmg>jMl3B&8!XfhrX{ag46N0Wp`goi(4)bmJ`p$O2oys`KSc@&K*VF9s z)8BYoJQjS%_Sfkbapv1?A6q_uqE8yVuOY9jEZ^~UylB{tC>Ww|TkmGu@1COQny&%j zMPK)m+PWKdad{;Z5vu}paC#gUdr^L-W?;LI=87rC;(*PV4TBH(HskDvdn@vkS7HO3{dkIELiZMKX{f^*8-skwkJZ#I{{-nq&0EN&NZinG?Tj zj-2+-Ac?p#G$@GNMqS18NVUSI6jBMQHwe+UZqTx$%OSR9&p$%Tk@)|_MC8vyQ7c#f zFy0{V+X@iR@ANT9_eaBp6QvD|z^vo;ta(Qn$s5g=|J#}rzdC3wIKJMiMEnBcTaBVN zC^z1pLIW4z11f}M!qwjE? zkEG6xNk}nO22psowd=oe8?SFbR+dXhPWm-iFQEbs%4+1x)iUs27wnJ@!xnVlV)*Ez zeUGswVNcaAYn|AF4!A%rI$l~9BST%w#^XWjZ|x=9W#f7|q)}jwbZTlZ1Ka6kz_cBp ztf_n>18fBv($>QbAc1{D*6bJK%#0aU&RB(B(Xe-P?4pb%!H~}98ZTd+nH!$~J&jdl< zAIlGyVLETqEFBl=$G&RWpC{e+o6L(nGVg1$suu&#MQ2Y84GoR4s?QY%$luV{5oSCV z3p;`2VA}kCUT8Q&`Syt0$dYBhV?hiGQeUUGoK?yK%wOWQYPHx+N{E#HI3vNAx@=r=8Xu6TbmM8xQb;$NoyY7y~ejnj&zxOxP$IrSe}>@LfkQ1V}x?*@c8TJFBFH}$^k zEq6T`MZfS?LBQTzuV=RveVUI*4`L5TzG!bPxMY*#h|42oiU_N&CDBLfJ9HKCLiGhB z@6$@^z;&8jqL^7PXTqDdlaLHlBeE8a4t0tG|Pd8&}j2r*e#_{GDo z6p^VN|0~m+wV=J!%=y<}_~obIVY+~MB=7ema=gAXr{N6x^_qm9frE@CPBJczk)#z5 z*PY))nVvnQm;5O7B(d+=mEJy(6W0l)AH-F%GP z+?wRN(A4%?wQ8Di#C3OfPuBbZmc46Et5#ztnpsgZ9~(M{*H6IhO!@xdAz9~Po$SL> z+#(d(3AAC@1V#WA5u6I7df`VLI;=v(4ofOc$@ykJ?`CMWk)c_%Qb2A&I7wj=W2vdI zfSeR~-;42*JyeOXBsN0IW}SGASOlIa`M2+PsSw61;sR-~C4offA_eA-zMFprUc1cX zAn6-#ctB+wxx{ic^_sQ%@us5XcXLVe4!F z#(Na#XPe{%api96$g=;c&+Cz8xwWtCnyrc>w=5M46B>)3B?H)w4KU1((5~_Wv`s^A ztyoZ@d6MFdZyF1(u2a_~2ajiI_T@qBRcJdX>x6}WW3wbro#lP)FQJf>HRFLv8hpt6 zO1>vYPmSAm>WP(ztHBZHx}sRm4?{%9Dp(P<=H-xGzpXciWUlr~79Zd_qLT~BCljEK zydXeRi77dq>Ee^Yq&Ub_#>E;$!_^1DbtjNj9BTOuCu)I7W&wpYEXj5Tn08Gk zMba(*9wTK6k%8)S%thcZAxSXjm}K^g!HiOW-a(CUksVe(YG8!GQtG_(D4eQcjG%~a zBLYTI;LJf$6g^@Po-F$NHtuM>-WI(xD=RC@TdNX~bw2KNrl#Icr>;-B-cPvSj%2&`F0wD7 zvwzB?zOGcgtz6fBvbopXFFM*E2k0QTJ{{>mTaEYla-B)?qU(vq=IFrzDgF%u{!MkX zh7wwOdU~=4XbwwF<3BTi^NF^rOFTj8SeqgfUO{t=F@d#JfGH34YZM{NV3()uy4bg9 zmGV+humm-CVK&(gv4oa02!Cye+l5~hFW>BZDd0;!6t?&=WADe%$}BD}kf8xGfmD6B z=b-CO{7v$|(>psrKtVvnh4>YxzcWxfF^f}4VTi+wf=62s0lGmole#PavyY!PZ{y_f ztrvzW1H%bpMS@&BR(>77A(;AhP}04rc-yaOD-7cNBq&BUxp7&_Z&}bUQ{=xjASn46 zpqElnejX6%$swA@!)JfvxtOj)KO-Czj#CmUFZo7TzaHi(pX~dm!8(~_Yko&bLHNgP z7m-HB$KEdYV`-3`ECY8XW|lPER0skYYM2vLnn4pJ_~-Rx;{l5gl-m~k+R>O3JMN&arN}I-E{WY$%(@4PK3o}Q|8BYY5J5MgvOhQWDqz0X&tZz zlUb{Kw;PZqWCpFLD!}0v149sxb7`*!Rzq_MhbjASvoOCMcH?({y-fjp%%rH+OSp1C zpbG>>7~84Q*wRoZV(N{tW09CxSSoBm{C9Uf4R9}`)v!Dhmyv|KBG?`bRlEgeR?)WQ z`>#T!G?gTXU``||vuarr3#W9@V%Bd<6*%TpvviqVnuvAYQW75g%G@-(<}14NoQ!2$ zvBN-*z|Wq4!|cvu1qGMdbo=H`mBfnr75kFh;6IrUN|#w_*61cUI3p>*VZQ}zRF{tYI$jC%f0Kt-Sv4cdveipebM%Kz7!b! z|0TD_=nr;2fZ;YZI5?=l)zZ)~pi8d{_`-m>ui9s+a)lR-`mSehA8+#*Wb^;zX9J1_ zT(_k5H8Ssk0dG*(Thj;Y<_*tgA8>qrin@6Gru{UkqM&6IExJ}QgS5mooE6q7Isnr> zjWu1dX)_u}RoG1y*Fb)_)r;ppDQ^WA3NA@KkgdPslf`x0E8QtYdx+XxB zl%}Qx*nf8rfvHXoTqM?Yz0@#i`AK%jGnFpd#D68XNg;9Lh8v5%vBf33*qZl0j^j~~ z>M1<$jCu8ReN(JRtU@GVM9z_uY*7x2?KuiMDvc!$j_gN?ceuZ;p9M#W%w1JX5!nOF zXCg#{Z9wvtI}CN?r-ajsp$iX*CKaHhG2fO`{)TQ{vh=K*bfeZ57qS1ICfRCJpZDLK|Ma1YKS7&R}&#tE#=9;&Ha=9Ojo#hfU%JQj5*wGY2k??igJVif0 z+_n7m9s8x1CDmP+4ZO5d48f{Sv0sU7Oq=aXNjjf27~PNYOG>zwnVZIwsOT4U)aog& zVgP^MdZUA&tbycJuuvooH-o9B!3--h4pkD0aGIMTC!ucN`|Gs^ zP%b4YbQU0pIVmd&N2RB%xq+S!Q6ZE71Oeg@8yvP>>W+Ozu3Hm~>~Iq4S$-uZjaWzn zEOhMU983}p>g51yAurs~j3Q%Xfq{_Tsq?Yje#*~U#o@Uox>_aX(>83#tvtOZEM3K3 zVd+>wXx1?Fa%*^y&wux=(Vnqq$1M16`^WOJm^J(y&vo}w7Z;m}mLmv|jqCBL!@H~X zjOOFY_NyC1>g)E{_d?+Lj{n#V^{D_u{!~jEH)cvuXn+1&b?`rfzWC!dTl>oMZ42R@ z03`b{?VOi=69y*FA6F zQ7iwBh9eE^(JszhE1?G%q>o!y(Px6B0a?nrO6Z2(di4Fep~6PBMzk7x4ovhppD;OG zA2p%+aKc4w3{#BK`@p*vAvXx>^~|@tt_$xYOT^@#dO#H2q3aN#Gx!P1`$_`7)Xc}tDwDs;8DNLo@qevEwhkA-)*cto7gp+#6c)gW!{0y5pyRx)-vsMNIsM|EB$9K)Wxyj8!#L z1aS`sNdX2GY>}7uNn$w#Xv29s9Qg_yz}>Sg+l#vs(hdTu=>~*y6$s4+P7?@|G@GeEG?*u*4w#1O0-*LkgnYx7Aa>*MvX zuBmCrgSV^fMIt$U1mF0$^#I<+1>DA^4+rmx^I^>%;p49BeX-o_G&p@{!=5;r+T)kz z6UD+@n|_k+-MBDu zbpiOMakS8dy^CQ5)J}Laym5?F$d$dcghk=x7=XhBB9t;p}1266eu(rBskY|&dV?TDaWM)!kn zP*Xm3i}c)d)bdScKYh(09zmx?mgvW2*RkQ&Y-D`IQE`2DSFErB;>h)T!3 z)(@lkZi6g87;M|L*FjE-g;Pij(VS!;bhrN>XrL1^8C~oZn7Ra-Jk(bW6oTx~9xLKk z`cNnm%D4*@V*bCN21dSkC=n7vvFcGHhiMG3D!=vF`OEwHRrHdOX&CBp5(@z0$)J%W zQ27;CyS#qzXp~Qs&o9YUviG|LMVurKtt#BiaJ%dHVbn}pO{R!T3_@}<6klkzV5_sk zD#}Jm954=t&mdv2{E#rb?dGhP$k4K!hPd|t*w|Nja@WAj-Vr1LSnE5+t@&}Q%AeZ6Ze*>gGhO67f2 zr{w_0g@~+$w}kgkUf^9}xN5^W(h*kpSaEeSSdK8!h$=$`v4J{&M1Q9AeRdNKTe^rq zsacdtfJDvBd(@R+)&SDPYYIO}i8J^3 zp_v}W&asseOV-${81wTOC38oSl~AwUtbY@6C_E>Y_yAb8UVCX<-|Er>*ZE-Qj{!t^5wdBe< zzkX6^3wW`7iE=K^#0GeJ1`nnrLPS(^yH#IrjTRknIJGAMj>?+!mT*8uR58#*m9r5F z*r74ds%ux<;^Vj75y)<~hfL@}X(eSeY*d@V?5yb`66Xa1 zwZvg!EWf!84#8FjzT?9OhCLG3w#V;6i;C_zmrCU@0;-7#})mada&D{eEq?FCKXi2q}jBU_x}1 zLVKvfxJ{LK>%$VcN9I(-B+7aaDK=&ng8ohwi$5%qqi)Lw=c@(oWW4=`$3>U>(pcBO z^QyKUjq88*UsJ4ON5-u;CGaIeL)hYfHdu&>05uO`shXnuU#PFZBu=ZRQ3-7*F+g#d zXH3PC2F|((a;yrzyG4Wos;Y3sr?GCpSWGO8unv?-WhY+S;txhr{tY??3$PcP&!Sat zH8u4w90^RuQ3_WMHB$lhYiT5L!wu^U&E>gPuz757!8G}01{-LAj4KE0zbO_&Vp68` zPsSMtshxh}@`)u0W3qE4-3W4Z2Sd304FLR~EGj^#bDY+wDs^ zA&yaB;8O_y57>!>{wjca0oAwR@ssIl@lEIaxAj}g2l!!2{_D*C#f8`IKT_+7hSc=^ zzb*P8H@5f>wjMiVUWDF<7q7UTw~}3`AeAhiZCQ5ftmi?pm%8CbwMy68==}?Sh$RPy z_fs1P20U`~B9U~hdhiGMkn=M3p+U=FlvJ2y`9#Rk?jS^)tQcB;2|IIuEs-;P(B+w$ zbrdu@Xg~}|O^z=Ql-2N}hv~=CYxPcYbB4T9uXub>l0d%=B(eUM%H!$(#Nh9gr?Q|8 z7Xd7Irzj}MLMsu*YY;Sv9W%uy-F%X=t5$e)Uu3Bdwd*Hdn-e#%%TqFEm#`90814jR za_h0rh*luP(Az?mLU)^k!>vLy{k6V)JO5Mi0NzO{$H3rm0imGdXSA?X)A^@pyh;O= zZh{eA-D0*H(7krE8*<9NKc8uoeC<>~trK%ZEFiase@%o!YHMbha`Pydm@w4AgRbXZ zbHsxmUZbX1{yQG8#_L2S!{~z&YKdtY7aJg!*nhEuVgA(8!5u_S;CnTEdL$5DEc8xQr_6p!OBFT7g<_XG1hcviqjL$(1l3)DfOFq- z3TFZ|thL20jMVZg`I>KGF3=Rhn43655dAU9hk+fT9?fSL%4V!*pk_^>_<1$=G00hJ&D3=DMUlXQcU z7qU_?k&gj@bpcY)63*!dg?YetnS5dE%%IQ#aba7K{Z0XQ!6w`vV#U$0LB6&b)ZdnH z5L&z&Bb7rZTJ>g?A9I!~jPUyl{wWfYzUbXq1lxNSn?SuUq;`47HyN@#3s?C)yhV$? zzJNdHyRc5R+v41QIW$g=(yj?OwX$)?nR4H_c`UMdCY8zL98mGvSGneUA0p~Plsz7) zW%$cP(jqD3LA@P!qRE(?^0LTH|3hbEtOjvYlA6Vz>8uuIaI!X-M4-t^I4N;&YthgXFNEl^w0FNUq?;EcaLUTkUqJK4yE zS57+bpEr2KJ9EwSgosHJSD|cEv)U#)iXe0io>8!zFyYEhu^}CHl4r zU3E~p#?X3=AnUo93UvwM*J=WEi9LPgUs60n-d#p7o|%|h@Q>=dB4L$$%l`gHl)rQA zEg-!*R))rg_oy9zxnW^d@&x!RNUUL(d^7BF!~weuD}4-FlLNX+fd}7wlho9S=;_+= z*8cSg--?y>7bd&m&NYE})q5`zno^Co5n{C56fuzS^V%r^3JMu1JB?v2?UpGjEP%2~ zvs8Lp5)*k82(4PDuk>vtZBPTS_}M#6+Bwjh$gxL#JFrxqsI5TGq1Sh#lh)maaXJLQ zU&Ss&)==te))YnpQh}R;LWq0FDr>5E=NQyhp#QrB{ewqQu~S zXk^OZY>cMiITjOLxeSo-gV}4LKtBx5*jP0@kf?w;brb}Yp>(Cb5>tCdHA7X$?^qKY zjA?ahO{gOJ@k2_YIB+N`GhfDl3QGqxj6-nao3LrKackfEmQ4sb@q43MSn6bRWmfttmUy|Fj2WzRyo=cYu<|^y%Q9=M7fr0#bu);*w|3xRkKX#vPtM>7(Ylf;tCb~tK;qPy;vYk68+E*}Va{#={br)xI zSP+4y|5L|F`V0fU7IxhxyG+_=^>w`_f7oFSJQQT5^!r>WQw!R8G8+hB(QGcRZoZsU zGB6iBUV@04nfc<+k7qYhK-%ShZ9r;Wp-hmKI;Txt(=&}yeeJGhFN0QsR~=1zW-7a0C{6)3PT=tfaJWz z%;^)$8+(mcKeWRePqjrdOgLUK2x+0EL{PY@P5M zumb;YwCSJdD z0&~RsTHL!S6Wvz@+Lr_$f2W~6rUGa-p>8Exi?>caq;XEKEe<5mwWaz4p(Bo? z)@O4D+N}k>4noqL3NvC-J|(SpUT=?c*sIzQ7HSUdHb?)avtW@JwXiT=4v)$ z)>7L#unv`w4|3yWZMoUGUwdaEFbSwOq?IL3B>GrY;xZ_CJKcZVE$qVhGS^AtxY3gE zl4BAI8X@}X%T3#bO9TFv@9uA}HM=sBxx%M+O}^o?d-vf#7-&Deu)Q+iPifv!9L$*Z ze?n7l8k;&IA37g8JgzXj89uMLpA~CQpXD1THIZzVaSt3D>~xxu{C^XL$je!ji-t`e zq-F5tBnpgA3d20v#PN^PF*Zj{cU*=~3v!p0nMFr476?HKIh3nEEK|6NX06Eeb1^fb z=iQN3g+M`Zj7L@!U-T&W$Vq3Fv+Kq3>m`NCr?rFz#GGG9F|swLt;_e%;(hgxu`-Ux zi}0A7Q&{Pn5liTV!p!nkqUYOuomQ(qdgBXLqa+Z2)=2b=P3BIW*{-f4VDgZIr;Nb>h0F`+wI7h+55QhMRv$z+OQknvgH${1n|&iI(fNbl+N*zLg2Dg)Z= zW|mSc;F-OSH$O&yxU@hFvB$oP7@f7(=ia}c;T1i>5-sDv5$*%PKNG+#B!ye|FE#d7Kl*hT`^ejx4MvO48~{Rs zK}a|?v_*%DF1C$0fmcca;94rT##9|DIVE>U7<|!9S}cW?RdT^LNp&Qd`=fs>0X$Ll z71lax#&C!3t3`42DMUWbQ!=>cB74tNGL~1jUNyPFc+COxDq#3l9WtJg!;%$}*O)S1 z1}-Cq=tQ)WP#M`#>|Jd=`szsSq>Yd~4XG`0#PtC_MOmStMuZWB49Oa;H4aNDkmFMM z=s`!CDVcbWp$~(!{F0k>bFO0>9@VEaW^YQtop_Vm)Q8)cQLdh63R{z%=MWhmDqJOP zokwLh?sY$RP~1d$PSmD$Ry)sDn-87&fzY0yL5(q7on``n?LZu|#X9UVqmb_by9dz@d&4^S3&13JM!N%8OVfs!LLo-RtB+d)k<)Ju!KKtgTjA3yy zJqVR!WrR0NOST+}D}xN3vI^F9Ok8cUrOdU(d@r@%!2%lxKjd(<9o@ka6)Ld2A?v3%6^S6w`w&H!=QiDvImv?Y=+_59!lm?h| zJ`)uw-QJb}aYE2F0g}Wr&z4!qlznx7>y~ zGMS0>MdO(7=8RhWMcNscHzr4aRz{KnO7Dsz7$=i}$Z|+V6eK*Pyqpt#VQ0hX$44IM zn;L#KB*U_;+y6A@H>Z^ve@RM#(Uyi-^ApJw_T#bgryd(%5mS8 zre{3U1iD`K+I=AUVV-3gTuwsVdEziTTWzye3UMw{;v?o{NPzTQI)txh0+ADiIe|lE zC`?2U({Y&g+nK*2{?P!#99A%1;OBl0L;~r+S6*EV1~!dwxITy8uc-jhbmFu??^TyT zxmK5+Rzd0;%NV}+TpgXP5byo(8&d+vW=aD4uj)Vq-!lMNKR3{qUxregsl!D>fW%I% z#aBHmMnc4TXoW%4NH!AZhZlVDl{O46jt)IFrw8-DQ)?^?8m)x5L2-@PIOL##F9Ppa zIkw6|V5Is0R)S$rM4bMo6%SygIN~F2h%mPHGit(_7M3jKX|VlXp#E&A7^fhCOCfc9 z16=|`w;wg(6Ir$&HG_xaT>l!%8@gIm4J)XCtQcb)_FGqOW(z9GP`6cyzEmJ-nZyC9 zMwkFn`d@@k;un`lYv$GoGJNU#6_?s#@?>*#g`kQ9HwrRIBVyE?$U!S|NE7B8_W)d& z%p&L{lc*^Mcr-v?WNE?di^8ep%EN$b4a^d~)@{}O^gxU!t(W2>qS<_>7yB6)C zDEyLuI?E8Jut0qHsP_|nWbmihY#~@nih{?F69Um!Ob)Uxa$#dqgaE5Rr6X3jT)E~N zLTvG#<7LcY5P@)65fV_mT=h(vutET!q)ZYKB0rB1N$jDe>T}avgBJh6PoO5;R#;Q% z0sveEJsGy3AkT!#aV4+zfqZh)b@K`dAdT!R+W(H;UV|O_PQyG9JXwj{TY)weYX4g= z`FV%ezij-);S5d@lC<>9P^V`!0HI*A5)AxVs0ptGvxD*0Uo**|@?}x%56Ta7#Y1vB zC%8$C`z)ftr5S%h+h0F?r7hPE#nlBMl0Fb_0QmOrKNH-@A-)<=32TiX?R~_x7VI4! za3Jw~7SA$CYP|fY`?cDnB0qSCvs`7A_qA!B*1`e@t%!SnN-%V=IcOV7f-uZ+G+ZSN z(*0@%w2J;OtZZv+R)I4NY#T#Hek!>{iC3DMa15Na@*{`O+?blvcAey8sc5A1wCWyF zv^11%W9cT7y z&z^JGwz;`PT*M!eFH9)@Uj&*129ll!stqhs>@MhNB^aukZ0z}UC!Ipl9pDAYoQCzk z-VzOc&JbV;QWXBjjB!BpO$1z|asMbEw%IV{F)jEYeavn`O@;9SCPHSukSOKzW664a zoj!+px^j1Vn(&YI9zS{C;sX}6_&Spa@BSBCR^2zQ=pa=shkTdME_VtwqW_WgmSJ%` zQQId@aCdii3nWNz51Qca?(PyGxDW2`?(P!Y-JKBJVVnP6`|k7Xet{Y0>gl4Z>eT7# zbN}wNv{*@(0kDIr*M_das<)FWhqEO%fEeBxQ1zHvwVfw$l2>`yxcZ0Z zs7_x9)4*7{_!XyAi@|H0ZN!a*y59gZ%=kAwcQ>P)Cb4j$_eezPT?tR57LgC?rA zPpwFicT|PpoSM`GeDOya+Wl!*xctCgZ!Qq7fa~cIUoQ-+KW3PtNR6ZX`&2JGG@CK$+@D`^jZ2^IW5JCH3#j@QJk=MMGRMgbgR9j?4 zh67LqNC`hQ&a&79CSUit<0}V`XydB2=<(3t)b$|}V>@xP3{x#nj{@||v{)CZjJYe4 z2bC?rSv~&<1wh2*)<;2UsUfB;$HfQ2(ZFK7EndpO+{>`lx+usFD3DljKf3P7kbNsg z%=x8O@#G*0;UbB8LJ6G;C!3sig;eGT)gVnSLe(oNZ+3eMh9$;T{W*p9p7Wee-{+17 za>M$&1CUis;%1mCbB%iqG@J4Mm|QxAS#D=3^evzqe6+J!yFoZfn^$z`IArm8wY~hZ z`A)~<$-$iReq)QM`<O)K!Js4eZ~hZN8WY96AcXUfZ2te@|3T_8NFoW}bbLGW*y0 z4&BVjtj;j?Xxq^bSF1}Ary}|Y6akzG!{djSNVxhNaY7S!5PX7UkTTRTJRq(czU-qz z3y*WqwZV{yO;&vld&~$k(LAJ;j=T$-4y+KRiH3auUkV1G$njqW5O(Uka!jpqgAYOr z*OQWtY#4F^b3qms1^t@w=)0bWfC>^}KD`*Urd`+36)Dig@LU3mMJCg3Figd28Jtc1 z9Fnx3SuRFyYS(x}BGnpRyPUpxar)LMFnoQcTh_oDEMO+|2OBe3fAIC@JsEwUlHBH=2;7x5Pl`r%wYItAnYAH*d6??-`yd&QeN%q~-* zBmAWQ(BU3`+X*hF7#c!)SegwmiX>)-%-Fx+b-`;ge`5jEH+1bgZ5 z^ju9@#oI3{;!QT2;Vmcm+ha<5kqel&>hbcgW*@`TEsvj#<8cG!uLMQZvNJFP)dag%{DJ9dn2ZB9XUa(*#>k{0)k} zhjI`hkgs45Rl3(1xLVA_7zH#cMEGANgLOFsm)uJN z#fkOLBC}X?1)51}z>}tWhnb>!@XfH2b&%v?1@77xy7+pE*yt2OzTNok9+&X2GJtN( zoN5ey&`!rDt~APB>S8|AL~r1%muI$Ig41kvtcz4!9MzPA|sRd6!i&`Zs z{X4vlOh3ED``S-x-JzA&-yEw@5hM-*nQ?d;lVQfutN#t_w`qx16)?d&PMijRVcl+o zG^sP>Ji^`cR!#NOlMF^7AFAV?0_zdy4ND}&52VO#CwInAe=xqg4|y@ShwzIg&KN8X zl}W|8#l%6f=9JZz(stt`^!0gtTSq>u{f{u?`^5A8%;?$IExx_+ee%#}x?w4wW}sa| zFxi*K*W>N{uerl38&uY+;b3F> zvm+DF8|UR5woUjWjt=!*b}(j)a^r_(lRpO)%&|T1uxTQ-2MV(_n zYjgEdn9LYL_ zmjw4wQYo!i&n#-RQafyq20!6yD1ELT6hKknMQy8!DH}f~fA~wPt;*`gqeV1%4uE5g*?rL#C|WWx?7F_kZ=5f=`gS;)QZOi7|6^2 zFP2*vPc1?02sc|$(1xc=^O9s*J^ed`W;D_3uO%FB4&xo1<+s@emlod$DMWE56ONsZ zoRlBctZ^DYjLlnS&$J0SGJdKgCM!(~&%r>Rx=kFYPc-fB`+P~K8Mr(GuNnE>GE|`4wF(>u5Klh^n7i`IZser&tggnG*{Bce=nwKRcS zixj?vWU>R%+5#SmN*cY28it8@KAP~mH_z2d^tuHQE|<0fG1S^G(CMGGc+O^|553xE z=`=#L`lop!7--ty6la4M*)WSm!$W@$7S`r1HtT#f(O)E~IW!z$sL0^_7Ybz4go!9# zY&^o=@-_Clq=0Csra4w4AbB8ccqiYi>a-(NTeMVLf(=du)_*z#aX@8)(t^cGvd%Cx zPb1S*b|*NDH)^HQ+pUZ%&j$tU+1rwdaM|E4o#G)j2gK(@07$J95CC`pb>>MxpFH8f zT$s}YG%&Q~HJor*E8K$C!r07BF;Je3(wktisbw~hij3{ zgV5YBPncK}0$~Rpp2{`}_xo2Z*s_xt&@9QDi+$_5C`LeZDiR#QtdJbZO=OPSXl6N+ zHW`agkCEaf)@9m#pgLLSRFbt?9d}Duw$c#~{e9eSG9y(BI-$~_)>ARav!S!fwnSJ_ z51T}|sjikWYyqk!HK{8&heC=|>Q&`w;>9}H;R-O~-T%y~erW1at*^Sh!cpX-?K~R8 zqJItI^yeSv0&1W%m!9)L@4-gnCOlL{%KjpZ+=Cl~K*5ak{Mt-_X^|T$#Zk&v93U#b z=&v?fL$~j&#E9-g3q3GWeKSg%O4z%f@qkH;hpHLZp@Xih ztGE7EN2^HBwvj2qlsSQk)f!4mQDWR#C(DB9zU5Ehb<~SoL_?6C68*S!LyNOY#!Sfm z#N*NVqPksEm2eoHcCS0c)Y5q!+4a6@b4R_F!26Y|ntQ~PcNHVgDU1<+N<$5TMq_zj zn4r5zb*>7VDN#v!$G<}tf^5H?mB-u3&Y`$4kB@@}n_^rTH+jH5whD_wj6GEaZ?0XW z0qsk?07f|(vP{mLBbr8*MpAvOg5LWntxD^xIlFBA0nrM!0B=;TnxYqcsdvRA(}%wlcB`2S%(Fl*I?xC2I9lWVBw&F&dGj zP+-jywf~^mAY%Y+Jv3eSnk6jYJg>+-H)yD`lS`mzG3nAGWJ_IGsnIx7rUj;M5j`Ip zSUD&rV*C}*6ger`Q`^iY4~xc6(W)c}rKpXD^~@DT^9p^VrFsMHG6jAUfWze+6ff;% z@lTsaBjGZS^bh-npu9`Q7sw2`BpH#KfEgHxtxMo#30LurDZ*)71)Pg#DP>TX(QL>+ zklw+bGq;qmR9kE4y|K?d|MBW4w9ZW{L)RM#&&8pm;PnWC37{bQJL?lb(slnNFz5|{ zlKN1*F$JFwu3t7c!7hsgkRSGkynRE!Oso^8Y3CRH$hO4jfHLi@c*&M2KHr~|hd;yZ z{4kSeXy>b*loOZ}P{BkTkR31mEY!9nlFTsI3v<6p(q>In=n{`l@h)wc?PL$frs6l{ z)m%#!_jl|5^&Ex0)AOaD%;Bkh7V@s7D2X$`{{;Ex0sMQ*CK`iGZE8=jUlmn>tQcR`Y1KnLlx9T$Z2w`d`#=#O(<89f za{2+1MRC0=p=|ae;y@*rmNTY!I|CaXzHN#t^sIZZCMIphZu@8`GnBqMfmw%k>gBib zf7-0$0XZW>y|tOsFk>Rua>6rfyeo!nYOKzxQMgH+39-jZwD@=Hey=Xw-F#jNhxP`X z#P^eQGFMf@`$#~Un-VrWmqU8-j2P(xX&g(nA|1nzwIH|b| zz!0bV_8Wfl;0uDo8ME|vbq~M+3@)`MHUYv%BbzT+Njff>t2R;hrNBtp zU4{n6Qm7w#FwFc%5T0G7s!8)*l8vvhX}j>F0>I z3i2z63=*eI3!)L&g#*wc5%_7d{lZF^-D_At3g)i7lR?JJ=wT9?=U3SQg$yONd6sVS zBhd;89}Z3u-V$PhKv)U4KphkiejdXfnAcLbCb()+rlp`cRM$8;3)RN?>N;KfNh~RP z-$-s3cR4EevoHZxD^^t@i4;D_9Fs0tu#B`bSs`qEoW%Yt9b~t7AP_(Pphkp;O|&aK z2PTJ#9frucG*-mijR{G;}Ezj-b7&uWWi%M@2Dd8m0McIk-bknOMk;fuCe<;xQgj=Y6Q zgH?Zq?QPKLEAQZg{8iyoe$dvj^E1D)PvpTf2o)yB+{TA9DX-=ls)zVR62Df zhU~3{J42H^S_BovDI%imK)=G}bF98PrN7J8`{<2I#3EmX$~}zB(UNFH6CBM7K8c0d zyw);Mt4C&j=`{(KhI6*}#d2N`fz1cJo=~v=g}|n38dpLiI8t>Nn2Oq9VmNZBfikt- zIZ2&BN-oyoUmgh~E5ujpIscxHliuw2j?fNgu+aP41cJqX;!eh5X1`jCSMRY5zGMfB|#V zRXXwuhshINDUeEE0i3|(%Cg5Of*-3`=h;E+X*5sJ)(GdvTBh{L zPluhZ#8mdlZLf1`#(hdd2=QR1*|WQ|C9$@r)A6}Yp0v_oUJEYCkp zEFYuLfzTmQ{zm zeIp(RkFceG6CBYa2VYau&+Lc|F&|d+TAO9bm6!Vra2&`BzY_+gmx8{@F^Y0Gs-U$= zHW`~YQU;GjcUw!uMb?@`!SC#%KP2wGRBOPhb~2h{}U~s&>9|`sRGRo zqF8>PeOPO4$zoJHlHin3Jqxs)8Xjy~X9E<&P2u(RVo_3J>S;m2EZ9#i5RUhUYF zCZ&{x(iUc7jZ%4)z-fLyQ&;AB{$)r-&E!DY#@)%hAtWK_`-ej2>M7HUJg zd!n;45;BAKFA9)AgtFNx!gva*-Akc@w2I$i+mmW#;w2UDY8savOVGv8%wW)F@h@pg z2t$x$x>Fg;;`2frm4Q93O|{pzH>PHUt<|chPGY!rueHNXdlADR!5IKbTK@gcH6Qh9 z%ctctB(`1!RVOSDgI-;Gxhdz0e0L0Y_Mh54cHX8|pV0h#{hg^reu~BvPgnrBtRz#-wOY1AoO$uMq=hSE9-;eH~WnogQ)f>RGDz~`q~Syd5`K}`T3j^w)6Sq zkVBVX4T8Z(EbD{BM#K|LUr=DBJru5ul0*0x*66Ql`rOZ?q`xvx(<|&aO7Y3KdNW_j zSt4vi-~pUfjxKZ|NTu;5Yr523xF$5cK7DISr{45pdm*|{j^U{UpSB9AY<>tADMC(z zGsK57lT7A9bj6j%2GM;I6L!X54@E2m!52@G~A76Oy8OfBSj#+#Nl3%6b?+IsBsiHy(8g5?f>|5YU7JPA7*c|7S5n8s6 zC!|G#K~MnhQ}SC{XNU2;h$H`@vi5VR@3XGhZE=$~J7jVi8O0YU;YHs#bt0Cy zIF(u>=;7jK4aC5gwP(cVPEij89h2rZBss=zYtbc_C33xRA^sQ_&qJj1T%qrXCDN1` z3KicP$ZLM<#E#O2sZ05VJC#TxvQjfeo`T`(vjxaA%G008vUQ?Z#e=dK%%ZWiUd;5} zOyt6p$Q708w*v+xMKNsekr9s3cXtoaKItiQVp@*=+&J81UGLj>qkD@MonM6MPHOZIl zPTmRH^nC3K^jZyR%c4^7m`C|%*sc3sFm%hBJdPoC+B%Y^hKT*cm_+JU7IAf{k-=Jpp-<%4ATlNo@;PgR>@yVFblJSS}N~A-%#MzhO?aN59lB!q9HprQ`ix7_3 zOY9`=_QLwKj-HGsi)GyU=+&kB=ZGHOFRg~=Taj6KpJ~DDUGGcJ-W@J~{`J9n-{}){ z>p~ogP7(Dn*q=G3jSgcykk{Dy9a@#1fiHjP+ z?BYK-Kv3ar-fqZ-zD6;{#D4A~5iX8qiCFDtuD2$!z=J%?z+?ce@dM#YU)AUo?C8=) zr-_}T%pJaBxe=@qYN!s0T)6D5qMk(yE4xz&DNB9#MnYhCj}Wudd&RkDX-)&@>(`BX zym-WsG-F22T<9lUGlZeax){X522w6IJcoGaZ}$Jp!~(;fA{ryb4tkFX=l&L$Mx*fA zD9Lu{_r@GPy;w;Q@3OaGWrIWhA&*ra#4TP8s!2&FEIA$7w3Ed%K&8!{0Dn3Sod*Lu zk1s@5ZoKt>Cz*87IzMHt%JO;_yrdp$$L{>A`Sg5zI!FCnCKvRAVhU&Wg>5w8qZ zGu_b{f~EG&e23nud{1#lnl<@lqz?$*zi~Wvx%J%pGO<+uTj-cHnr3Ewp5WQ1b8O@5 z%5sZGZY`lys<=Q}MO?~Q9J9RZS`yr&IlO1xOuKq^eXr{8U@_JaeB;0gAN-Sbbzegg z?$Z|j_^xlnpZd@z_#z^(uPm_dK{ANXLrd)S@7v$@>xolu+(n{O``STeeW0iR_ls?V z!4VCA@F+rFh;B%fuibz>l(RspY1I0<_TSc1=8vyvY;3H&-_}CYigrXt13qtly<4ps zxnDn0i;gECIkk6qwJ(drXucgB^+?z9Egu?*j3)3-FNZ@k6D6{|Nycb*;xQUrAy!Zx7M5p{5=ke;RW8xy9WsFDl+ybs68Xyk_wK`C&h+ zC#ScdW*Eu!e}1IFSVBN17>_jhJ~t^ReJ7gtsN4GSg#=KE9Gmo2+%wT&lf<+{rAx4Z}&5K z?}v?qP1`xQcplpQx+_W7`*WACUYg_K#3j$$;N}PHKqLhDvO)K`LAGet(hd9f#oOPD z12Gm4G=Svsfzf4oonhIhAbA}2w+0ls^Hn}v64AuQhK7M3bmzmH<5}27VCNO~0l{~h zg_Ss(*M0}e_u}G}-ymY~N+px4S$%M{f>U0P|A!4X&|x0w<(D@=Z{B`(AB-_&`|u`^ zR>ZtI;OSBqc-cl7`ye!oIhQFy21-_B>76#1et>&~~+E}f5&>3;ZS zlMbMxbTRureSbH12SoRcUV?+PS#QT#%)mv>^4fwViTUuxOEw&e8fo%5ZPK~EZke~| zh)mQpPY*308vPS=`xzK`T$#kcoFJz82{CB_alM1nrKSTAUI8l^rMOkwF73`|z;2e0 zcz$5J29oZOu}D56?&5XhLc7ytyBC^nOv&fK)JI%Y6hLJ9NPxL-K5sOw9RS*yciKVR z$A=+7pFdHrVgH6HqCb&#y^M7+l6#zyK|L-5=$CzNz{a+V!LR*!{Q?`Uqejhge>;Rk z$L88l@XoNdp@B+nR%;cbdBDCdDpAw=zZOSE{C``lfuO$H*#7={aoG9%SF_WkVjuXu zyMEzw@BFoPtdHb%n&k3d9}3Cmtn+hgovXNH#>qqAQ=SlHqMcwCuWg4kpu`=;lIg;I z(zEiB?P6$R0vQYdY=CdQUib=XFA{yuI^@4_U-Q0Shn+a&5ZLAT?0&Te9Cgu^1;mJt z;i21?*VSOp5Sf_fo!;$HzE=F-NK)TDt|6uY=6S)taw=AU1x;4qw1op^2Vm@oeIB+? zom7&ew?SDaUcftjfF*6e<$b{qoVca(Fx~OMxyq9$>zX&K@53Sk(xY5V(e7v}2Xa;5 z&MWiCE98EmnY}r2aP-gD|HiP<{~E(BO8*wm(iYTqrT(4#>`F!PJ`w>u?p{W31rmTc zoKr*0VEKO!cdi9DkF~SiJ@v9~!Y?j}hikiWSO8-0Pl<9-<*cH%z%N6e(raGl6U^wZ zSHu4Ih7svsT>rLaTwCf~$oz|GJPN*p$hi?souy@JV*b_=ua3Qps?fmb%-e1S8H*PCkV;v8GkTb%?uYnf}b^82yiD-96a-2e`z zueJQ1y5C1*t^RAQNzeao>@R@zX$QGeVe4I%U`%K0KBl?%!GzsQtnw-#geEq?1mK}{a|1~#az6Y>p7tQG4}M-e7p92o4lG5L1B6yKfK=O{y-zKxNdqk zwV!HV#C^O={M|W^_*J2-2|FTb$6C%vUErw7d6hY(-2k1#{`TUh612WRX9H=}(a;-U1>%W+`Q z&)2_ywhN1L&Rl#H>F@20#49Bg0A}c3{$6_&B)rwpb*7V}AIiDW!NFfv*485*l9I8F zjSVirWEwscA)hN6Ux$`I1~oAs;F_4e5R@^uuSp+@rrNJJQzEc;*Fylp=|8F&JAUNe zQjOu2>-*o$#LCmk%jK_M?CK)^Pu%+TzoNh-W}#rt|GPB)_lkgcas?mszy7#;(8naA z=d&l_6Xf}~C8V_U!&;=*69`zR-jbH(_I*Hd08E;XSqr?gSBp;Ms>HE@gSf7GzwJ68 z=(;3$1Yp=MAGFHA$*1zkoww%;UoEF~e9NzC{~hz+5(3Py&p>F!U&LqHL^61>; z;#__QMjJF|+(l*E-<^gkZ>Im$tr^iakz6*2AG5;pEC0f-Q6v{L@@Y-&;B8RX2JAms zU_$*@P7G)v7WOR{Gyr_7z{cxeSKT=Q2S6H#k)`M8h+#NB&o{?q!yftxfW58xJfEw1 zI)*2H^zVGHM>=8u$J!u~_sp*&A2FSO z+cdQ>$2@hvOYrS7x++bj;xhk(?TzA8+JX1+KWbT*4}}>3*U6234SpAj*}MFs@yP+< zcr-lx{w;)F_pZJ?o0mkJm(7cU7jr*%$JlQ9ha`gs8d6j=Op3lz2SzGngg@|+4f=r# zo(}iKiX#h#gN6FrP>{+urMyI6+x>;e|D@iH&x&0RjVAj^0c&pr7tg)6F0`q?rcbb1mu~Ibsyiz9DeFW4 z8!Nr}cWVq9;#IiYX}|NJX$mf|MtM*ItJE;Xcjm9WYW?^-!}_BC!bRyB#Yv&Z_E07a zO&lqyBN_m?uT`IY_lXBo)lfQnZNoQWSO>eYYnbjMdp)6m0jE}yny1c@fK6-GYv@`t zQYt(7s=n%-*>_Gd(s(pXaM7cv$P_vB3*RBvnwA##g16Ik6}MXZT9U4tRu<2}&1+Mi zf7Z$MuMD04HU)Ms2>&U+U$XG;dbc0jzW-scqx{Dtc*jyT>;vX=uibTBzxpyV*;N}4 zWQn|?UplWzSl{;g^DW@G6`zJbJGsT1#nBj#J$lHFmd%@@iHx_N;N}fH%VLpF7_ICz z+qneBU)&JBMb5T*tIiM+*L+r-veBpw8DJAZCM}4eCrieQ*y83BMl1O(c}(Gqa}<|n z$;8V$!>NaZeF*{4*q{fsiuW4D z3w`N%FG8?W&oHmh&V#5N4O=@qEEB{;r!IQqa;7zi*Mr-mPKGdN-Q6a;jWPJ?x-i>E zFYtVmC)7WWBz1T44;z~>&h4`Pv#I*T-Z|0^WemN9<8a+Gp@gGo3~4il<0ySx+<*p| z_^UZ$eZ!)m=I6C>eZIglq{?4c0SXyoLF$8CVOnZ0j60LE$5FOZ#Pq1Jw`4;%@*?~x zmzTEBL#OsvP!Bt<-Ut4^zUP}y%3ed(7l#uUC14MUSuclRFS_q1@;+CB-qQ|k(cX@K zXkJU&TAn$&l3{&LFJj*odREeW-ygf26*qaTo<*y488gq?n4y!OUUgqheKRk-=9?}D zN!~XfCVqOaUfs66jXqZ`U26a3axYxm1@1HCzUxI1efi}WHCyzZ#O)PGCe!(xPv8Wv zD}WWj>w|)Owb|Czw&uL3?WVg;t=XL0%NHn%*vQ#Ds+chbLhSi0JR5@`!A$gc6lzdJ zMH3Q%@S-Dw4?QCaCkvwfY!B77=oiKp29qHPiAxF|9${$$y8MLqbFU^uK|g(~E$Z`K zGa@f;KY>;}8${zxvsg$9)meR3ep3cI4r710?hYiWWyZ;;6es(rPl8ldvci+!GNPJ#&ZV> zWIUf{J)>6}=~WFhf0{r$@C=GQclEv=Tm9*fj_9_@)AjP3aP_(Kalie@^X*p5Rxl>2 z>N)QHzP9s%=55_O`L>0o7p3#BW#v()&V8V5C;9WrTJv3e{_ST)#9hi^kU?D`ZLl8E z25)*3E=7JNsqt8Ib^VBbq(ZZ3GLtg_SoMg$^&lW8!pmYL^DOjr7>|u6?h*L+sSr&# zqXZiU&g1M4{e3UMcUHE8M6`sY~>e|AGHaXy3*y<93v5i_Qn=+Y6Ipvx4| zx`O+ECtA54`2$Wz-YG$!MVJ{~v``sjKDI4B2i>{!oy~I0m+;2ND!4^+Mah1{6j3#{ znt85f6CTAjS3fu%BL$F1>1nSvs)o?iJFo0_p8V$NklWYiIn& zogMU?=Htif#r6ZP?++=pjC5mHm$sp##%h)S+NdFuPQ0kGepL@IaZ~i@8^Rb$2AkT~ zDi!2U^hZLh8e6S?FJ#J(r3v!u*U331@2e75`Y~^)Acf6EO}!S(FOEZRq(vSqk=|1n zaV`{BO3?VXdKQMGDz^2TURLQ&_PYS3$SmzQ`y*H0A|sj{49{*A@MAvQpPUj5-s0c} zhy(H==jh9tfHk$IDI4~VIB6oX;5n+TeM99|Y!8cu!?C?HwJPx;qtnd^Jiqy|cNApG zzt?%ZC_yUO(T9W@YpF^nsz2OPiOIAv&({-ptCVLtRYFLm7^KdDaBo|#NQ(^M!6Hfv z7tY8B3@y(lLs&#KKf#lw4Yo+pT5thbX4qI{)E8YZ91_oq!0(T5_|Zd8FfC>m*a z&>dCFZ-e++280@5t!Kjqc0Vp8=rl`nMf#_lGQ}MFjZ|Bj+YIlOd3bN8Lt^>JXYmf! zpvQ}QBk0$7hiIv-IyBBz6d2W=QA`LHn z-5_&Ds>5q6Wz{5zAYmF2(2LXGzHOfUF&E58Ls=BAZ30k!WtP|?CQi66uaVhccx-PU zsUW20VyDDVdoow^mNHJ$b3ZkE1hvFeZoSW)M#~T}EMB=glq?Bu`T9* zn~7GM1)9U98Mymk94^9I~pNn?4~Lng(E zsIXLW)v*8D()5ULs+y`#Ik8C1><+eKh1EtJyi6%#W#ba_u0`UkV>Rduwdl8Ex|^{2 zQO%)$^Io9-#sMdcToTbq@3`^Blq6#;8zyOgEUD|UFIg-_ZJGPmHQ z;cmC_Q8X?jdk_gDSbH||AvOa-G zCs3Q{TjjL#(=r_TV|{cTp-St7?|xn8@hLW0D+!artRDBS3+YJqLBy19+n~|ir3)Yg zko_oq`J6Rupf=~9E9sVe$;}~}^@EJv7T!R~codh+gv!GCW-f!KSr(6c!`PtqbJ^;j z(*84*Y!6PoIMPB*X2c!B87_szC#`73EVx-bm(Fa67b}c3dM!&SDo$-M$Yq2|ZV*%@ zm-OfX{YKG@L4TPuo+JU4&4PgeH4bt5H*si0C>G;<_`R9{Td?YaV?eShemcLrbT4lgy68vs*Wo-#|Rf@eeEDjLgP=!xa}39 zCW6oFz$#6joy933i}nNKhB5TWQkwb&{EEyuZ|DG~W&OyLe5+%lUhJur5FySLe^n>IJj>T!`w)!fC>kj zCpvVo%kX9}E09W6x;f%ry4~T&eqI;zpr>kylK52CXN1?jj093~+4ZgVpS|;oXh?^Y zY_*)qO&w24YDPJtQz}$5T%b~2IQ-7d)cFS2VrW}m>j@@525$KUu*!08t9OB_gh;E3 zS}o$rxzBK(zZ#uMVKklhbmVHpK~ml7J=Pyi4)ux`*VZaC29b6J` z1@^eQ0<6B`qfY`e_)RKyg}YIYBLUMbX#02})(9^YUs|)1p?3+@0-fwjrevh^j}cuL zcExb5-CCtcWqT%7QhpnXfO0G?6;(@Eu|~Bk*#7kFV58Mw!zFRj%`L34_@y#RzfJMU zmJ1+Qds^~;-x~BS)H08=uZu}K4es%At+10p#r6Ad4Wz%+<@6ByR^H=;XNke-!GUi0 z$&+Y@ac6!t6`;>E03mBQpbW!6;TC4jMU^j~USH=l|Fat_3`hB}lf5y;scoypxl-^T z;)eKz>PVQB@l|P1=N5@`n|@p|{B(Wkfm+47dR&tJ`+{Xno`}@AP)s_-59G8UE%y#= zDccEqE4s=0W^sgvHVTXHz=;QfC7Bt|lPJ^zbwyX?8j@0=cBWNZ?88!+l7c3JHX5<> z(5n+X*=uYYEUF>TSe`CMvi3H}QFl+CkSGURGSkCKSq4wwja4fdjj|W1&VDxAyoHX@ z^kLxvH<(ygwZ5A_fA^Q$yEminiXwidajTjPNI-&c8qpshjkD**@K^RElZw)1c8O!r8&xF0 zMlR2!zjEBMf!B{4f$MOr>V27H!+=_d2J7+tTpL!c!FHK178%+qAe}Ta!7DO6ivDJ@ z&l_F_U1V{wWr=Ept$z=6zi6jKpAzSjw(S9({7Ec-6+2Z9zF#P_6|n+}RA)X3 zYZ_yhftTRp?%@hk;aj;{P`=fFm2JVZqY4{{6y34GgK!j!VYjIw^IR>`xGkd%Tx|Ld z86MAOpEpI&0ZjnSA=_Su>Y}Q|txX<{pj7=ZWB4nqX)nvNF6h+*2&b@-Q2yM!0gp~4QhPWyrWD2CF`B}r^To#cs z0VAw@v-+zM8LnH1=5@V;5s@vM)Y}I{)W^=p)U6~0w>=4-Wm?2IOaAGIzenCEYmM#S z1(dkvdeypCY@}p+zcm;ssQgOJ{no+ea%(#)sIR2)HsSRC3=db)v!r?L??`1=0ROP4 zw);aY{gbh6inM`Q9*t>WgT|qLh*FmoirVlfs?;*7LT&tgL4tbOeW?oEZ3&x?BKlC& z09$kwbUYLRkDYTCa-+F94^ro^oi$uflaO59;_wg&P(C=_Vb&=qV-3uobL4cPO9HNX&pi~=9T!Ws^o)>BfO4Ap zx_kc5)Y{MG{V<`l`F#b!zgkeSlHt(qJ8zY?jZ2$I9_ zewz0FmA09jFl-AV`u+Ut(~vODpFvN`hSGf8vLLEEIIWwz%38lIsWih>3<`%Fv6GS+ z)k;jn0h``MIEt8zp2@jdV@-bM0IDd$$0!j@F+YyOpOj!vdo|u&9*1+kjT1SS@X@*n!>slwl zivnRv7Af2Kl8&4ro@?;c2+ZfNO+@qMyHt8DG(Y z>IsKRM2{1ivg$K-tB3K%kEORq{dS4g(6ojG9L8llq|jq_eU@!g3zEehii*Yh+bQNA zJqK!==(*Ra_+}ONREkU&12}{pu2$Xn9gG(i^<4`CQrNzJ@8WRx`7s|nKa%(P$%2PU zoPP^ho*egGw;_*%U5~$w*T*qRu>0PAO$uV$KHkATrr16!|2%cdWUFi#IJGbYhEm?K zUT&G1Jq2mc4vQIDb_JKbTEOY-2q|nxxHif07(29B`9OZqO@235DR$^^tt6rCGlXNu zCH_UsA2@eQ(KW`TxSP?R>71R-Q~$tbjnk*^cSMy(du@tPs;IZyWY<28Uo0D75+3Am zcm(Q};?c4VYy1@cG`8l|HT7C*`!h_bRHb7iSfm{tlfpv1PWwlf)3}>LT884g?b@e3 zyT`s(zK%x5nGdzh1r%{ergosmZo z$}v;GA*ELCQy*^sHKW~d_k*JP1Fn&TY$ZTDg*tbQ5 zq3#4mYGC)Sq38RO28htg_3#m}`{8%vIl!=I(MMo3!s$5DLJsncO8o0s>?7W@^{&5( z)a=$c&+XiS=E3!Hmd32!JB<%T#g?;vPFMswisJ?&|F$tFA~@5}J`H`=k3{t#(7_gA zh@w8}Se9erK6y;@@s~;Wmx7iHDbb8bE6;?rhLk5l5+TYr{~|kzDOYq$pO;;UfcAgN#_KpKpYGcOwq~=ir@Ew{9f!LMcXl%Lt{b1|Veq!7O_~D%#ULkiq zC#-red+K(dq5RBpPYik1ZFg4Rd_?XVt9tL{xkmZ>TobMv5vFGQNI^FniVSPNhGJJg>A*Lw#i-eV)`` zot?4#NK}9TNdu4Sg_fQ9OZ)6WTFp;cc#;y~{J&1EQ%eEOIW}M&n9<(qpoB3CffdN0VrY27Axv)`>Z9o zzb$Tsq401(TXTt1=ED<8`}f3nKVg^R+z_Oy!;w>eNQKY-gE$fIbND^An%Y3DItael zMz%9dfqgKf^2#oCYSt!vryhg|^ zW1ObVtc%Vh7SD?+@TN@bQ;Thfxt!b3m1xE(u@{@jAT|R;b0xEHo%WJ`&8l(qs^4mP z{N!(}lSc|R7(*ULdNirTZKF(@r!6@V;<&_QxyAeY3@LBkwzzi>=rvDICQhi+0t!G9 zva=F|wh7H|o({)S6yK4tYf3+*KrIveUjSY~p}x|wP2A2@$%|xd`ZYur)7!`Tek*R? zkt&ZEh?OIinxxiE9K}u~jXkc-y$YiWjOh|sJ%$|A&K5_GZlZk$M&}ZKuff#4=HwlqKG4FB50g8fE%)G1nKf4@9Qx zn_2?2$tlS(f-AaZnpe~MWzQCjTEJ}7zo$wlw`i@qP#6PEZv~Hi`es%uHCcPUNLlojZP(X*T1{WuFwAcgYy@#a zdo*Q1Fm8Da3e=^Nm^Fdf2Wc9x1$JkKcaA&`cv&y(82 zdh%nNNG{apYg?f>-{R&PZ7hW+2e<59BL*;vS?7 z`x|@8t9a#{F|(Rr4E3q;G8Qs>L)c5WHuv6N(bSvV*9-*<0<+so#G>7bE%-V!dNff! zJk@lxL53ev!mQOEFUEkkT97}eFTHvq)-0nz0kr`HmWBGJDv^yb-ByJZeTrNb+^oay z)yvc~X}f;k=3vsgR~n5%^=O=8yM<<>&6mze=}*VBvxcAP1E zw^UlPs8vk*34F?ix(yg3IG2~?1~huu_Z{j})M#cSV4@NjBdWfnNoG_;yi0wemtCfQ z4ROp>PfF^}HY_0MB!*UueLQ&3s?w|l+;$%9ENVg&`*)mOzc~j8zh5q$UNq98i8bdDV zg9xV{G)rAm^7@$yT0{+A&ot8RFS<-}n^@W{LwiV7F;ImJ(7*$C>%}Oq@zl7{)R!CWc;H~2(wDvW z1$^a3Qt7Sz78U!d2&|WKU z=t(nJsS=cD5^=LorK0W=$%aY0HGLWw8tZHf2C(x6*HmD@&pOh`BgT-O(H<|N4+uRE zh+6?fqmpeBY!v(~QCw)SJM-mn19}`?)RZ-A)WQbZSHOE!PnNYYZeOBU(tkUr*0;hT zN4A;Wv$ec#pyVx%9o>e<9xAbMi*SB{y)f0DI&F8bE=KwbIMmbh54AX6r^Y-Tt`&*7 zmg>v(u#v6F%dLkn%ZyGN+CzrMm((Yel(@28+NB04fmkUMMQ^nl6qzB(tm!2HzZAr{aa&G=&rN}ra207Hsd?n#Mvo+G0~$r% zt>}_tT9+Dh5G~zKN%?S~Jij6c^-;s(gd=-L4#L(SXqs9s0@*<~u~ZiqsE3-unUVjDx_Pmk>!=bty%~2*bspy!__+fSH0|)`Obg;->>+7fdh3#_s7et z7utW$mvjDW0<#}OtS?}i7P|{Y(-9Aimn-|gvI{Rpi~3C)5u94Zf);1Sje=ZQ{48oh zNtaZDE;J3rSc_~<=nhwiH_Ikhw#%y?GOhMTNtLCWIQ*>Wd$MT3qDDQdWG+tkF+@D3 zO6yvliM8Gf42kYwB1PNRtvNEGg)*8-e0{gPpgS>0J55ppXnv%b>mq?=e+L zcjwXGwkMi+=8URWSpx`SA9#=pLvwP19~Xp&&g(J61YLVDX{=Yp)T$;cLb}FN;@Pak zJX00sQi#j`?^zR`8y_YMM?c)~@Jo~ocNZ$Aea#1GeDKg!KDe~(2Lo!Y@-|cXRejOC z3;NmG;c8V~q)*|B8$vo98CRV~F!v-z`V=%^X;q7&wJrPApDczBB~n8oTFiE-{KRCJ zHn>Go^k3fBWJV!X9+yNDy1IxH!3Rrq#cVbXDKtHRAJqem=$rVCUH<1ld(zeuFg633Qq z>`4JqrGW^k65`SNWx^t^bSL} zsm~6R^pTabSt~Ht2~U<7b}eut5wj;tV%twX22%1=gyhKr5iaJlR~na0U}B7X_`@IO z;fEgv;MA#8JpcL6CxlzTZnG=`?~A9Tfzdo_Ui`57?>#coLVJw%OR-(X)sbOwPP{g$Or@nd+t<8|y+#`^A`&fW z9QsZYBy$27;s#E~U?tz8$X(oP?9JQ=b0)Z+jY=WG0|Zysh1-A2&ZYI;v}PkeG|X^xgiag^eLbC|k8 zvRd#otxSLCA{rWCa>lL+%thmBl9(H*_T`E2bR=d!*%-FFSORi28)mL?wPC0pnsV$z zj@hG*=7?c&(lR@0DMwvjW1^O_(AS5IdkfddcT}#UPJy$Fu}-FYQezv7?aL{|>Yp57 zyuHw#D!m=8jb58yx{P-TZ=mSEr}Pn`r|Yd-poGexc__YDOzJi)ZEZOl%Fs{Dt>71{ zMvlgSNl6#1=C$@>iJ9_(5Oy3UI=U@S-q!OLR`oAKQ_H3a#LnSdrmH=O!4^qNR-(bU ztoLjS?N)zZKi*P|Tei!NGDNK}0%qfed0nt~yuh6ej81D3=3eEno$I5f)q2(*hBy*z zrvxT!HdrgY5HHK?6HjQ*nTHMsTpc*{dxtsvdnIn#s1u`3j2}_!akt&qCUpjB49z^? z&ElH=@4MOX*vbCg|3`HlkLJqZdf2wU^=p2I?|$?154^UYczpS<{?>ulhp>Vnq~Ph| zq92R>`yT#2#8E#LhW9U*%CXJ_ZYd)wRFyyi8p;XA(LJFxa9 zx83w{z1m>Xtt>`4W9Kb-dql1@Wo1YLOQoYdrWsc!a^E~tDo>mQoKqq+dbrj`SQ~{#7$-q0wO{4JYQ4uIVY{To^f}}9 zQeVU4Aq#0k>sywJL*Gbqnbb8Tfkpj1)?(TYqQ*h1Dx`gGCcDj&*bHQeB)GkqTEgPK zl&`+lB_7+PJ~5&`>?rpVVJ6yNCToWO5XlU%I8{+OLwM9-cBiX|<+j6kM|;;%a%m~f zwU{O$l`3J~RspcwFTGNg3X2$npC`JpCqL&H<;N~yc4ejVJQiJCS>)EZD6Ey3rzaa% zinv@V5d!$kfBwW)g5P@OpSb9Kta0%ub{fQ3Mh`9Uvw~eInBNA~xW)CW@dJ4&Y(l5r zF!CM8%PE_oW)@3kUBRr? zGIz9SKOET@7AVqB)2xaJRNQ%#o|ifQi{^A=ed{f z_?NunkA+uV!F}#O?|1m!tD?+Y^oaVFZ}}G9@|L&orZ>Hb`|rP>lP6CCaQgIVe(@K7 zk#GC9Z=-EnzUOi-5*8T~(Fkg%5uQ0%{32_=oUF|;yUhS>5K_|QvXrz~e{)Q`t-WR1 zLj^_u9Wq2u3)nW{>PWX$k_w9v?Wg1C9j>v|#|qrB4Sdd+rbF638LjQWSS3n1Gk#z# z`9B+Rx%DptnYbKsu^*SBy8PhlzUHF7=gG*+{`Y?Cm4D*E-!BGV;QlNB?)*zHYTIWU zOcrDmaI+TMCN{mL-3(0a1U4h1%^Ghrqdp>--ddK$aK0U}NP&#u_-IO&O?K;&*{mY$ zS;AZ`T($$ZP<0_jN9)`&dCc0(#;BoiIw8j;x`ChorPDeaZ?t&7%l-4MR~!nDHkCA@ zJz;>h4*HzwEPesa;ecy0VK0&<0b93A_1&MDGVT)P`M~s!f>as&)RRk3w-JbyU~7XU zgKME&Xg#OcRl-_oEODYFO{_o=%s5evTSjF|(UY~Vuh#*V;RW7hx@;&zmNaRrNw`LnOH!#tjk&Oh*BImSp?M!yjH(HJ$9ruK3E~a0 zaD=^%Zd0e^L$*9tFg@8%9Aa9hQ6sAy*7jL;@y(ONLkRF+Mt_Q!n`LKofdss zfmA6;BdG!-J*m<7=mOhr;Lc5zXjFy9P4|b|ZaGX|5xODXI`kcxZJQ9U*Cu;aw@eaT zovBZh6vbhRPweQrXN=mxxxXfojjBIuToRtmD$IauL0lgDxu^Qhry?&;w%up`^Z$O) zBxc>j@`+&<5fge#RaM|;kwbrA5a*dbNAQRGhRD5*3LuJQRu@Z4nK!D?08Hlk{BdbB~)@Tmx}rs207Hn&APRtJNmm z9nRQ=VdIak_5Z+|7k~DFpW+?_bwGiFuu z6mMz=8UtMlq+t(j2cC)t&aeF@|o#FH^<_Xq>3fImpgnJBO>I)&n&OvJxV* zSrP|JUnj(g!yerre4;Pr9|9bP-%(mCFwZtzuO^l^Vy(-isxfOEgak*ff~HW80&d0F55%v}p?XS$3dwv)42$O_jH?f%no8Zi6I9vl}rsTyYmbN$}f*8~HPJ>*C zTI9AO)n>!EY6yMY^I*N(9}zvMFfnOuPvw)=`=9{@M~_T-w9{lU5reT>>m#C8yMe4Y zt0ZpN=MeckpbU|5(J^lWjSqxz%j_AqgLl1j|w;wxYA0Ppyzt8*O(qOzYLU5?G{q6=0&@AE#7H@x8uoH=vmaqpcu zbB1sJ=5OZnKJW7`>C108*wy5l1M$8|ixRtt+ikF|+MP_4{*PLlKYy_B~;|B~1dk za)eo={ODPvZj?k>rzEQPDlgA_e+Mbda@fjDur+u8_Bj5g>Tnu>`rWUpyw-PqC|n;>OSWyfe-wQDlf*$!VP zt^a8?+B$nfv+cB)-}fnPK$u0^ZO{Cqr``70lyP+?jXn9$hLW=W_bw^-wL$9|n9IS7 zzUN0yFg#=PhAZsLm%`1HKl*o-lgEFgrV5)`IxH?@I1f2xCN} zlKVQ5Iw@I6Vp+sMmmEcJDH~As5y#eL=q%=ZAe^_9=L~+P1VdX4_+B+J%ix*3Q9xN> z+77>4Q(R~XbA4_WyWnR~>_V6dw(ZGF-)~GzzbMrwUFLCOpW1&5FAVMdXzbHtwDb;&N9X{P?Q)c4OB2Mq`q65G1| z_fvW$G1W+Gn*8yaz2`<2$JGi~AJwLot}(cUWqRkq={KofbQ7v1iWfWVk0oOLfC*mtZ$* zam|S4kP;i)Nq>`1%f^}F4RPWKGqtJNR+~qZc=agnhB{iEN-iarNMPVx8*U( z6LwnC;fcoL*BwrTLLgU;jgR#TepZWBtTYlij#bsMi9WI);y68*F(WM;8gTHuTrHho++@XY(7qMh$JwYf*rdD9>qo2^ee?rMR$vCE{f13gu2pNf{~lfEp{wEFsBEwgS__)q_L zr-^0~6U4Mqs*FK4OVaj;3(uV_J=$S6_O<|nU#L=&N`uLUb~9)_OslrATo_!d4@TSd zH9jLlbEIUvv%tpQK9|&DhtpIx+a`*0iR?ytYEhIh^??R%9;p_Q^89Kg)V7A)Ia2B9 zj%b0UJHH2uS}k_@G0M{#mxTQ!=0;Fho($K^HnzsCja(Qau3vacNN}Wa!0#*=iIB>Q zZep2_N|us>fN3>p%(s0}y6sc57G}AfTSVMmgFh6=9*SvZ^N$_p4sUYglNUOXH=>FC zy(O$06o%erHS}Uh&~K|T&ElZ$Jay-p%}ZqF2{VI@hGJKhk!j~PqaEvuJyo@H zuzK&U`x(2lh;yoLTeBo6gB?4}^gE}w_o<(Ka+g>^#)<98f|2i*s)sc~6aDg-t;x&t zfj-&IrURBTXEQlDn&g>;maTEk+1Aswp5XT_*onbfS^iysm>k}zqSHoAB@;2s`k(+o z0~DOgs?;1`u*hR34>*qePGok{Q6Dpu=dZ^9vS$x|=BMrkxFw4FFBdn0wd`u(a%*ia zsm#e*%NKs(7xIN)_=T7JMK=X3w@Z=rmc(_L0T8FQ^x1i4(spYWH=* z@3pvd(^cZwa9kpqFlHT)^!SFvwUi)fSO5S+p?(oo=Ow=a zT2jn1?Zi^)s+@)Cw0%LwP>aZ8$w|WBbG~(OBi)K479yOf#vnzt~R*V zV4GDU7l3P&tccfp*XZGz_E15)<*3dJhkncRKy{QuN2ZL5ZdnTh5Nu}A1-whRz8A}& zQVdvGsvK?WNqd3foWr$7>sI>sW^s^=E;9K#<65Kl-@O*oWmUYpgqhb!SzrpU_unjx z>a=VDF!TcJHZ^_I)j}!^IcSs0@!wYfa*==JmVx^{?XnKk(z1 zrBq#VPQ!cO`(EDt?sp$(Wcjj}y^I&V=tYBa82qg||3x1)5rkEOREHQmk z=ArEXJA1119Ni#Sj_eF+OmBx1gGIogiE4cvP|6mpswK4)w5_KrTyIGO=MyO#QeM>$4QdY-3g01O z)P@%I9KBD77`o)}HZ!hTrbjLFQ)8<0x{X^qlAjR{OmJTeZ{zV3-gmrAC)saf>v0p} z;op}V3~;HqTD3Q~5)m74xqV_Tn!r5r$Rm9Dmw!3`?Z5pu?!No(12r(OfBozEoX`0j z{>{JnH=HXaYhmabt?wA@RuYkDb>cqQupV14k2=BH7G5}%7VsVnd^^#e-lja`qVUS z&IxMe8tQof{ItU)ukn(b4zY%EM?(n28dYElwapERlY7rCJDt}rw`w)g6s_58r)8eNeL+(rW1+_joR8OPuwU7vjXa7t-w49 ze)z}#C2#mUUvtqa%$34GJ}!sIJe!EiV^x^_{avmE)+FZQV4~m=W~UrbGWuA=&pK?= zkv2+XT#^gz;YV?PTT@X{shw52_?iD?URrT5XvgA1CY zC4O!h{c*uws2#SkY7eV~R0(;UR1xni zcCHc1YHjP4qE2g8x{=<4%e_nm*m()_TALdKrpp+s=bXL4&ovAu%rj|MYhao~Mti>W z7;IpL%l<<-W;OoA^*(YYMl z`}$Y$T|fN2Px#(`MdMN@?$?@#!L=bxmvcQXdPIH0H+%yrC4TpJf0s}Dv`;(m-bX(2 z5x(YYzJ^!7`qljG&;IO1fBB6DF$U9i#G@P7vVf-T>sa#2qAXD->!ek2`(O<#0yK^O zVHL+~V5zz+C;x-JDQZ28dsG-T9rf*-#0`g^rsYlEW?5RKawbE7JYF?}YTL+S=o6f4DuK9S71RiBtFkX4Z~ zgY_(`HNa%GY`HpN8;zh&;{w~My(^c3cuPC6qzZiHG!EKmEU1k_m?nyy*f+H7A7Djq z`*L7;DqDxDomoPJ>(Mxw$%NJayec-xG$^KO|!YZ^=PpJ!Mp2rw-P! zmp3FXg~&V^arv#E`}jqF-)Da59T&arvjyvj<)?=@B_fMs20yn<<_)wCVjt2Xg6T4T zs@5XEa7tV*ByvzYt?jbjtLhHFQ|mJ-C8Y2a=W5)vK^9)sj+`kj7)ECtDL|Mx=F=_a zMHiuxoemoQ*vZGL$|4l&`?MplVcP* zLZ7DAC8ve?CR5l*(Z?QFzEjmE1&k5xsk2YHF@5hC5kooZ=$sIv)AF0%4wkajM6|?+{YMj%Wo3j_F z+K#+A))?eImN^$nM2hnru8z1zca&TWwzMK3RY^QLAypnfZMDFEyVCj()NUq5Rf$|W z+T#<%Zcv<=VbASpQdtjE6lx_~rj$91?~i}5j9H_{-k+B=ty-_TjB913NEwaU)WS}O zpJ_4}Sy%AFOt2lqk?qNg5*RUPFB*Y3R#nHfg2@@T=!g@wd6_!mXAO2-V5Fou6i9`k zm?m74X}1e(5{;YQ({vswyb?k+fn#S4QU>zziipRg5_{IJVxiY~9KP>|-pm{R&h_nG z@^rScCn7JGLR=pEnKhAF<5JLW8BEgJ5!VV*dQ8l!Mobs_Tqr%_191|_K^IZlU~zQ< zF{;oMPR09K*GKCMX`{sL)tK1=VgW^oSzqcbfdxej5H3i zQAMTJZubB=2x&WFD_umBsFQu~5>4lqO)*o_W@J7@;t`mS9L)t!dDd#f%CRHtHp|{% zsdU7#-c#Ko_trB*yXA3BUbY9Yojw~7O-REf#-W4IEftYq6TzyD44}>WGmE8g@jzYA zB(!8PG|A&k#<@&`CrABES~wW7EZ*;Wb*HhJ%6Ej2mNvFFIjx1UnY_I1-mq1|3vSfGn$=T}O-X3LnliM_chXiigPl~+S z#*FKg6Jz^A^*+^W=-S>zOz_LeKA@_GHLHKizTP5(GP5tbcxf}6EpT1Lor6#Wtz&7m ziQ`b1KUmvL-@8P{72Syq#2CVEgK48SQ7bHQY^fgA6+YW4@o;k`WN8wpZ{MUC7x;(H zBXxh?%b4Y!tQm8#zGqNitR|I-UDeUJI$~1qSDrX*p~d+&3a(C?pqA8^JUXA253NP% zwWolGSXu0rCoeL&(1L!cv=ZOMjG5KA4JDZIP^A_*)SiG*D?_u@dy^X>oNcw}H8`-A zxDmAGrAxTBSD#{L^w6C4P^tAX!NZEvt+5Xm6Qg{sa4FWX%ONk1{rt^BVy?E0Y>lUf zSO|L=|1m=<3~5s0<}HZc*K^^?<3P8e3p^&Ps_X~lI%+(8niQC%i#LGA$crF_M3CZ<5)07MzY2`my?!5;{}t@ zGV2q-oDobR%oD|VY4C`sQZjfYD&Judj#V?V7W`-4C!o1v^S3{a!+#9KIUA)Syg1psv|~A*ExKjZf2bjHxqe(l^`Q%*ao$Vey1%kXyR_N9#Fm7)Tekw)+;VX+5$s`Rg$s_N}meGikNkz`qb_i8sY zMpyk~g0{o#&2)urQERksjH})x139Wnx}y_)@a;5O=Yn>Dj$^f2*)Cz{-LlREG!e`# zBCbhv8-aN8kSZ_Bi?M1_sY;6`sx7a_@_608&t&X{8Lr8sktWP^6UXc}$Ly4+J{oBI z00NWI)xAD8GX-#+5{_;|Bc)SiNu||d&nSJIbjBB+9CVgP~X{QM|r6+CngvGDUF^$}cw5{=^xDiyCYmH}0f(Bfzq_8z^AZQ&q z*`Z2wsrQv-al13bkuEfe*E*Q;Y_0L|gT>feY~A7ZbYTkm=akW!z3%9QG%3g%g*H(h zTjEG%cN?`Ee0fe7KWqqlN>+RgVb9`gRfhnYLqaMbPIPfeI=egv+jqS;Mwo<_vaboR0x4y5E56$b9Reg(PUxc#LIuYwsVF_VHK%CQ}_p(q+ zLEEj=8qm)6SumzoTvA>op8>|Jnvjldkt#=VzE-ca2;v-ZtX3+w$mG&tfmG?aSu|2O z2dB0LXK0R9n6!<1_`F)?tXmP5oDPz*E^4HT+ZRS48E}{`63*3RuYm-qw2aQ=Wz@3~ zq1*6UkJ5o(sDk5K2#ZX1`arWuAHYMTaxqU7=NrttRuZ!}$EQrZ`w+RZ8nYbKbM9JE z+gL56!fM^nj;b(jwVI!o{XsVc5S%EPQlQfkvjkIyEZAF#woHfa@u=)sTHOUcY$e~|g>bb?BW{8FQ zuw{C;HiR@u@N;cCX(Jl;@@OWGH9d?7VHYJi9mElRGhu;4EmAushZjq$)RD=Y&Cn3V zE{Q`Dt@)U>1=}0-l1v!DyUgKZd+dJpnDcuTCw9kJ@A~9NeI|g%wHa3@Ozy7>eUo9) zIOX!3VgA5~N3&sjYfk4f^DYovVk5N6IOVc$xCv@Go9AL#R9~m9<+0Y$<7}pl+T&(1 zFR_mn{qIR&VX1+t==6MoV8t+xUKJagiP=*4v`jN=x>YE`P*;@FK5JPvNbT?ogRE1O zZy4NavC7X@T#|+C$A0X`_@3|i9)A7Tf1T5(PXijGeDA&YvbA+gNYP6&&n7A^;VmgqJ-sj`GU^;oCU5*8Uh%h)7@SzmBD zixlTGM!<9ldwvRSr{5!@O3eA1`qUU#tEaj?qA56T(f7;=mawBqWZ7Brkuh%3E$e|y z8#UHc`nsHv$2AeUZl$=bvBo}JDJ$9Qe(=qg)DPxjw|^>iXH8F8c9p_CRL94F-II37AJ*nQ;;%aqQUR>llem9 zh)q-?Q|<_UA#`I+4Ko?ST&Ry&x-Gy7<+vl2aasIchRDcwY!wTF$z%+R6o}b!ww_S* z%nZ$= zB~zF2Az|&lC}dcYrnawJ5izvUQ3oX*ZPc0-fVvG>D;k@;2-rspsvQswER`SA<&c-yECXd?w-*4MBAMW;P)Y!jF9&t^LBRS}DE zqQ^srJAHwo^mJQ=_F0I6pC$Y}5;p>-?~7v>5xk|{E|8!PPwn3$m@bk-xom!E_i81J zYYW*E;zp{0x!Ez0jVsmI@>*Kc)(K=!jZ_*WL09&5eAZ|ki?!r&=oJtl#6;L_H4Tv= zz05BC-Dcl?NP;$eY_~k~lZH4E#Dkw1r0LTp6Qq&!i!>T0kPEZwdT$JI4CSs+o#|*d z3f#hwDveSu%T8mJag-slh=DV*LFGCs7n!)01%pLvs7JAV@01m>2re}G)cGJ*}`@UVRHqP`@Lw;~f>x5hgQe<|Ej4Kn~CvvjO zW|bm_)H-HG(%v)CVtocNq^9?#H4Znml;`z3K(CW)4dOiQbb@$+J7A+~X!`hL?-GSi zfF_~^n<@H6p-t2Vn9=Jw7KIl6$J!GX{o>dwOqch|480_wuS| z{M}#m9e44LS3GdwwV(N^yPxrXF9%sLV+m@O$;jv^0>gylLpI_VfCQP;HQakE3{jVR6x67Xg3^wo`{ox8GD`7i}qGA zg~hg+Zo}h_ZQ(xAX`h%FHN3#|HaSNhV31aIK)!EyIW)!;L1qc+20O2js?djV-z!EV zm@@>g{S7YE+Uvln@+Cn#Kbu9X0R}N4P5b!p0MXUA@JFYycO0WRs{*qb3;3n@OM|4wV%7`Phtu`6BBf3d`4|8@iE zxm41!R$;CUY*dxQWUcM9eH~t!sD)K*uedZx`*MwfT89C*=rFNwdMVOdT(z%Px9ORm zut-2{VtX1GAVa_6LMQqFc_g$(D9<=dG^D~(Ox0or;O7yW3ME(uOmBtS7-{Ts=qKkX zTe|FMb7US1>g1Ob_W{nXy57g+a5gg;wd~xTn0;IiE(L?w0+XQ|8xTX7s(p8U+)*D> zJF#t*R2Tu9j9PugYC>A2wyaE`DThTxb$Hv_Vg<4fN=iCI8uiz-vE)K)BTdvW15*r( zYTy=do`E&pHeeYTR{aPv>m)j%eVsY#Z=O6dlr4W{@c`e@NK6cS0=AsGA z``-6H?!W(j#^W*f-FF{<;!o)6+v(G%`Jo^BA>Q<+H}Q^lyn`3M@P(Im)Hed!4$84A zF~+Q#Z|$>;E&tvZ^_#&IHYgGUoLSYz&=>8OLAMzS{Y6#;r&52j1cwwJySq?w6Qkb6 zv0B96w3yKdj3I88>XmL2d884Y65P^HoC`y-lbE0MROd6rRO?N|fXN1zb@gsgDr}=^ zDvOgN#)~cN*$Y|&G&Hs}eRT3r6Enm(OaF6FoCcMtk6bphg_5*^z%13RRev2)QernG zx~0A@$l4{LGu9$G^}zx?QEFN!0`B8ysMT6qSd!2+ZaDn)U)}`ZUw!W0bv}~ohjkFZjg9f?gb$f+WO0pX zguF4TE~gA_PhMi~d%GBN=~Xp`K3t?1{;kH!cN?Cadpyliop`%e9}i-o+svBeILf$9 zt>ZYlH78}mg^dX&SH!WwFQD8_xJHm*2{WOa7`5seAtlSaDX=zEM@{UC+0rD(!UU|5 zWn;*pKMUw>x#*ig)}2>1r-+Pin{wu}H!06r`~t$l&`x>+Rj-0&QrRmmHChK5m1vpR zr<7SGSXhmE76WF{FQS?Lvop1!nW%M?0CD6PZCq3MNvprxeYFw8 zb4H=dkDYR#r3U z2}7Tk-zMV7_3DKx2)2n>z|9jT7q~_}#x`Y@v4=wSlr^SP1lxIRoAEmfY%GbB5wlO( zVskpzj`Z~3o#HButv_#RJ55j<`o_y3qQR|$U8^)iIo~#Mm=QHyY7VY7zcE0R;)uk0iXEG)We$hV@r!`w24dkN4 zBuCAddK_^@rYN-+%}{%j`kI^IGEH>E=x7#!JPo*+#kQ*SXe!*b_+Pii#o|HxcvAEK z{_rE*_u3N&Ub~(>TAoUY8D6^*7P6dCTL-3#hvA`q#gn z7rfvFSM=bnHN+TX=zG$3`}(2eRr5+%a+xK0fz<@w`vWyH%lDkvjQ%Q`hf(CLzW^?>}fox7lN3}PO zc>O(vY1DoTNpPYKJqNX_cw~w>w}Yg8Aqj46T7Eiw-w&--fSVNq3At1vvnDSW2eDwY z*5%nw(;#Eza81@`!;OZKXp)#VEjBS@J5|cnI%b!3d;rb1L4w}5P1aTYI2PjJ$l;T_ z93C$yUF29b<<9B?w-r15L4BMP<2{-?9FI(o<7>;ju!t$x{{0!^O5y~}DAF~aJPQ;j z5>?T$SvD*>jSY^;^^GL;R`0B+LJ!OSD&A(sp(VJ$C`6JNoXs5Bnse^<38P00-N+E; zdR_D$uR$)^Y1lw4)LJJ_!w+(y=P7+^+Q4Lt0Af_6@9lHB6vCci>%k7U&|W%5gz`er zeq^1x1-gmDFEXhz_<6=pwatL(G^W4&g9XR-wrP%!**)WFw@cy}lCL=PoWPMoQ>+nY zP0o1SITrMelDk60~$jwF1&`zB?#e3iTUY_^7=RM*3?|tuk zIeGHr6+5u&g5b3-!x`-PsS=IlWO?6YIutr#E`mG@VNe^|LB4eUZKt zfix~yoT``~*9hR|Ff5+aa?jn5viJYoj+@86FO6L_!AxmsyK?guv)MO6i{NLGR9Y5C zJ>{;(Z`xM+hk*tZ=)=)2MU|mn3dX(KynQ-{bF0?H)4Q4b_HO2G=?$%+7 z{@PfhL@k6>qs~5vV6cH1?|UMYR^-JwJ*TQ#rJd0ezy3X-kEBi@X_fLe*xH8QPY)5n z?9K3PhXjv|OR!4rOlH|UQ`M=2-I-%{r>p-5%dm!30?--1YnCz0EZmfY5HKRSc_&iH-U*7lQ4y0N*Xt4kktu*Dw$($iYxN+G>iM zGlVX|cBQpK)==z5Y@2blAzY|2vl#_FsI_t zQ;x9FlA=ShQ3b8B6pwnfy=A?|sYF$yWMEBT*0@OA`}$YG4`0MKmx;>>40t+R4#82GxePD)uASU(2>uql#lgBKd zzz6VI}_caD79qo~VM_*uRk7V3bEo6V|h41Ef_fC-?PWavW zpnWW*1B!#)nUn9F=tI#OOv)6y9VQB49`WZFny|H5X{Y9SZ;$Kum#aV?`Q?OOti~MM zq;bpbrX?QV!q*LwvyzwIUS*0xiAl0hl}mz_x5quX=@p(jV!DW_n^gfngRQJTmKayc zmGsv9s(@LoyRVAbol!Ln+uY2EVgVjaxp0GK^TalRl_MQ`N`n5DAS>A4M|1Ve1K zv+F)EPlDIJ>Th0?@3~m=@^tvjFTLZc_JO%n67v;b`s9gYZ~eLJt7tuuDzhdomj_o1 zq0MR^iy9$}0oPl%@b=&b20=S#%zodPG0aaDoc|M+I9{pVX_R40D7R})Y)|>L&C@(@ z^bnmmj`%5mB0R#`Jm#M24F7$4f)pKjJJMvYsb$8HOULM;IpLly!s$SqWNd3Nz2$e- z6tvNiv!$&)zR(^hF96)uVxKgJqwZ z`3XlVb%Nh+Lvu94v4*nhuwwe=l1aPU_k^kI9Btz;d!Ddk2{R>jIY8VH=Ept7Igd+8 z!(fadWRx^k9zWBbJ3}I;lm*g<>*P_u$_R6Q7n3snbYk-~Yz9wvVuR_qlIG)q=1@UE ziIem;Ha}AmhJkLP>dO%3koWb8UgPTH2VeI!@K3M(_kKnB`BYb6KTlLB|74`)@4xo( zbujz>!=U9!rd_CZV}#0`uxuznWvmj`0IO@B{qlkNzmBpPW1AxcAR%+U3iOAXjk0{ay=fpB1BMGs&WBj9&T}Ty1d0}N>TVNII@Q_<0?T2KMYF zyjPQLb5$7^jTLibNWCjm!T2YYV-}k0G-r+U-QR=7ZxmZ_CR}~x1tLe~{Y-i%-%IQ? z)KyJ-y14)}LtcnBt7QU+b><+aG~;|%ILvd0gA2%_Kw1fSap3IRPbsEXOWT5XquRL< zS=E+fsw1PF#9bC#lCdP9o@2r_MOk$!{o@+O*Pxep?LTGwvIW2=sz(!cWFnNsK!sl# zkLH%u-s*FU8K1gpn-=zRxd&@-LtGAy8KmV?-;{}mG{gMCk;Skp4V{cFpzk5xtvUv} z6Rii6M!{R8f5-B;)MD{>(aoOLg_=UVEs!f4oat!bwF)HjNbRs7@#g<-$CMajot`|6 z%PCTmcRf)V+|L*w!_Y}=fY@Mdy$~55O{bx~`PiQ_U)KXBb4Rlx!0uA7BEeTQ5>kd> zPeT*^L(EK4ECUt$&*Et&vpWos(R+M4e{Si3OlX$9Ue?>&#Lk!P766j@)asj=1^8m;kep`4!6#7az^h@zk}a$#gPlWOYYxv<~%a9OV}W`#+a^yI%4;43RAmT zSA0pM@$8M&ga!w&SL?UZGYJH)@{P2{E;9AG2@``E#+%uU(nRR+IEz{7G=$k}_6!5L z6&1a`!q-!%460Ywl;X&az{OT##bt5{Uq;=Qhs${+}j`iHIi8C%bN)2$k?|(%;(yUk-|zxV36r4 zg>8H}SIcD+o9lb_Fp0c+-+)6I-`-!qXJEAyd-SfNZMTTZ`UU$N`GBX_MeHVd@=y_a z%uMyZOhR{ND#Pd36&2S+y0kQ3&V6PbH~c!_Z|T@mG^IG1 z;~%N^uN7yWqs^qT;G_~kF>XnJM;H*oQV0zAQ7Bvx$gGgN-U9RfvB>=s1hXRi${GZn z=-%VhQxgp6k`wATlkceB{D{m0j*ruk(LVkZc`Qw*WuFIuqh{=E-zKw}mm6=SkARePssDz8WGO^cdDhV*D&+YjXNi zPoo$m{_S$IZD&CQ+q-o(h-!|8jc?l~*_MWkuc@ zypKD?^BlC&p1XVE7WgGTI2^P3)i%d`iK&pR#XkzynmM!w*kI1+u*Qbg{KK!}R`*tJ6m=-OTn?%!^Vb@LdeI_ycgTk+_qBHd_!g_zY zH77cs`U&m4hqpEJWs2vkNxh6H8oiPwd=D$1OEWCKLC-%|^#}7_s|(d1`QzmjQLiv# z<93o8P}a%dJG-rFY3SaNm^4cIZ_S)KwB`lViWmHc12L3+DmOxIqx_|nM#WI3D_0HL zLA`(cum@$(J0@PULeYX|RI&X~jbJza9Wl{gF8`1C4B2BKbNUU|FT*8DacgCSTa6Mc zMTz)kzmE>PP-0;LLs5%0dnWM-uqKt@;L?{%vL=w!Vkv?yG|3g%&+F}`UU|IU- zG^sdV`$N3_%H8yGWF#7A@k(7Yu^~G*8@nYNl@7;Q9PvHiT*cQ+Sb8O90H=E;vaToJ zoRcZlvC@)b9lv|hQ{2DnjxNB8nvG!2EQeYD5YNRmXOUIfX|td|luee6F}_J`MZmqZ zbo8cW5qdFM)@E7}D%=r3OBse15(Vgo6>iNK4&fe=kYdmzK+hu`;R-&}+_L-|VerSh zg6w^Yz2xlMOO^7>l97!GBxP&tZ%S|dvst^^9%%k2!H;SF7x8~@$0J4m@71lXql;eS z%%19cuIa5)We^8`D&OQKG*qeY{5F;hMSvaAhSmH9Uvw^ObV?a`Q(yttr99x{D3(eYLAv7#7VM=fUU06 z6I9;V8k-)rSdNFjFgB40BXKJD2%}7w)p*Ge{!ab7n(qeq^Khy_4Dj1%FY|zY8#G!) zn)+&{d&?l3nH!$rKdV+(SeQ@kP+G2m830^(?kuj{*4?R-w&0ie4n_(_q1p0E<|8W| z?by_A)yB`qSTv{huh|xNlOLOhSFfxt%d>;%{$7Xn4;SqLA)kl6XM9Dud^>94Q#gz8 zYNZ#Tpnr;<#~>?hvv1*^NmSa8%CNaXssnP!<R9ACap`1&#w?|WzI>Q2Aw!B?WgwwZrD!1BGudfuV`FwA^iJFIPL8vF;m z@_8`x1@PaReZYf7^#93vDaqOyx9b>IgM;p2Tx+W>KhZ}m!`|9{f5$sEXfU4B0wQZ@ zHuq_s5Pw}Syej)Ve@^$@4(xO}@%CDu*4vhD?WXU%e71h~?{#jmGhL?sCOr0gPRzXb z5dqEp^N8+VLT35qTLa;es*P>qr6+_38XGV8Xt(8UT@4|IymXLDucGdejSgjrk?oP{ zrtrw0XPvaY9+3OjItj%Nv{|)cwm6%YTN_l7{5?hLu>H$OMX-k^7OwX$I_~@!^WyHS z%`eWmHc+o~ch%5n$Ej7MR$(HZye+UpZd|^OWogtw6Gh(06Lt5_wMAoQ%{}zscXq}d z!l7l=5B<5rJv`+yM|2=tfr=33%}DUP?w+wxcT^J#0&uFTgA$)l1B<3dtxR9L?J zf)Y`x)vjPOoy7teSG{Wh5g1eflF&zzW=S4IB*6)^6P4&Gg?2mY%|kqxPRj}&q@v!7gZ+gEaFk-c;cY`Sv;FiQV+5jq?CV)O0?2#{rP9ttCTL%;Z!0 zENigaNQA+LL``=$Gvi?|r=hgjZPZW~l^#8Lg2=X_YmLS&H}^>k*7vi)H|FwX`%>rQ z6*OQsxk#*w*P(PsSnVWNNTB4`-oHyI!OK+0(=PvqQO9vwM;QHc9R2pcP(|gzwT>1% z++cPtJimd-x~47ls1NBts|jA@cdm(~Aj}rekc1pL4*yyDMz7hV_KX`&&$sDiVq==l z<+TYtt{3pk$73W#0*oG-()7rIQ*3PD&)BxV^RHBELS zqlLtRjt|l^($ZVlRY7;Y+UsjfHS!q_P|f$rZV=`{KwPYX1P{>P?YDE`(lNyZ`x04z ze?Oxf?y?EC02Lmn_p~>!VAD%8yc=oF{HV&_UcQiDt{mCeu$p>h7t$BTOZTcDAB?xj!`3pND5?Ii|l#tQM+tW-K*vVPgyx&ry72hev!t68#zT4QOO^vdVVU2(ezc zdu9e|xg%MOAt$P9>ul&q3)0Q>ocomvB2@MNam{XL z`QK;#7CgLW*}c&~lrM7M{i-*Ne{j5;Tu{^^9CymOA2~`|?=OF#4(YjpVVll;-Os&m z{+7W}Y@S%#VIAW@?hwy|l4Xpj>pv;!FtY1eeo2yl$FR1$%-gtGAS?lD=M4VqY%1ZV*( zX|7nKToU$BsHJ@zWfqyvO=l?L+RLqu79~jBg|3<$9oaO*oEl|GJkadI2 zunW!Gzc;Pqt|}LGFZ0xQ4eh7D6w*l1fdFn>4V@p0pIi%?x*s=5w{joD{4FzsF5`rh z0gJFTjD>QYBW0O%-DNt%I4S}FSoPP3X%}y-m*V&%6XMY?WYyOKGS2|GFFlzLl=k-O+)D1w6+VD=*7${Ho$vyr6@UB;t;opEK!H! z8cHK>Ql6di!i>aV+j2eKEF5Ncj&gK5qr~6v!&U*n{qkUvJNNgQ{{2ma_e-l{EL6_F zrSL}$H~44}*L!T|g-Q{)Gz8|2^RPiST!t+dkdApfDQp$m@yQXrsrA}?ec!Kw4e2eW zy*2}+$_b-r>HDQb}wL%Ufp%{GM8>0&7pRM@4KxX3c61Kp^1ogoff^ zT{fwjzd)0@8C&_Ip))lH&Z(xKH+>M3p%GN+23et>OGO{oFkEH#QyQT^+Q3e`7CLeO zp__DEM52*CcalXSOg#xCj%rbIn64y`HnZvz16y+C6J%G7W3X|NGm>O*= z-XRs|Tojz2TEJ!f>p-3{k&5Rjh_DU}ZjH`5+#M88IDD!8Q~s`QSn$ooLfA@I8}+}; zG5)U8Q3iy}HxvIaF=4RRh(}??(?5ebYSUkpf-j6CTziVoj%KEoG#@#sxMm6qWI>*k z`JVWSBVQ%_>(AC9Z?D}=uYOWW8a3{yGs`mGT`WCM(JRA*q<_ez?ik&*kAEvA(D90` z^G>R>uN|a*ZQWNrg;xoPfc&Sr_BE|Q1A}xOnM^?|+ARUEn!>*+iHRkb0#)HMn}dCt z>m7Q>Nm~|nn>%M&Pj8?vO6hJ(!BYFfmk zVyJgWkP8*ULK}Wn=iAHESDW+7c=s9BnmDN%#oC~+@qoA*H_2>Pk))*%1wHZv&XGuV z-Fb&YHD^GWbpJ&B$MyDMbE1{+KLJ7;p2#2BzW<)shm$s#m z2yQioTqK!rA@UJv{xsLGIMZ|JT*wM%3&em5;WCld;IH+PfyEYoCuUU@ZvB<;Y&-u3 zG1Hg(qX9m2*!22-EWYcyT)ob5d{Bb)LsbR%<^|S##YK);rVt z_muqC*E9)AqqP)fbe`MT?M8sWu>VlR3X<1=CXiY;s3hsN`RGkxHkoO{f^+=`tIhA< zvP+HU@MeFsZ3m+YL<@`uK~Vp5&@NlM$n0WM@fG){IY4)nPxk~L!Y#=!zzzLW8uw_T z%PZKoMi^IWY`!YNh$tcn=RT;{s^v2=+v-Xbi?iHpO)JrDip8t@-JfWy*&gQC zkfI9M+CkiX)E;0_pp!Pa=*VZ;Lm;6|VYEH4f2AF^xb9^0voMQ(l%3 zFDFxxES42{>$Z?aqcBC84F~IRWz*tsG~J$VNJ13HvWEt5O*nKJ94vb*iE?U%68_>H zF&ov_y|iC8=K>6MAc=yhW-}%&^HDa53jK za}7j+Ia!MOO>vqrocYVOHV???d;|iN)nl~h!1-meC%cE}h@BBB>X!D;@MX=e(8B&Y zBZG^ll+Ov|h>nz_;iz-&Qevlf)M}ViZ{lfa>tZIuN(Kh6?}tXTDj}K@8!CUv!rBTK zp+Kua&Nf^LgtMBf;p1m+mB4JJ1roc`2)N5ghl|oG+=z*%PSl#iY0|%-AA^#g+H>j{ z_GI$L;2k`RJ66ycLdO(PU;>ddLDzyv`o*I-$!zK?=E<&Kbp8mwl3h5p&DXk!1R;B z&L~dTlVCTfPEe&{q~sFY-yZhoblOZDR6x?5x7%>++I%@i(z$i9Z5V#7P-X9FKQ9Fz z8`XVa(*1l{?GL1fw+%B&v#S5P|zA;IV1=M%wgFngOnd&hOu z+r{MvUHow1zclXLy`{+;MwQ!F5RbR@IcoC>;o~1Sw(Z~if~uYNS)+`Ko!>?2OdM2y zAsH?R(?oR;6^VSO<RqJMl{y0U0g+u|whm2EdAJ5(36>@_4K{33>%P?N^DXC*j zD|$})(&H)T2wP&G+z>~zVy6kuX_mph@e#G$&0jcEVY6w>ncinUnXUIevcT`owSoC9 zt-v92yR|{3CVEDE_CQ&*JR+#C%pt3c=&z|asLEJq`?fu_BA=*HL<#Tr!W70-B4XS` zmRV~_$sLo~d@MvAb|a9F_-51S6p6o8%M-Zm%(=K>&Jra>z63gTS6jm!cw$5ZpdL6> z)Va)ehuMn~FjFzo;zULVF!(M2a9Q>(SM4#fkEM_4jay>?L{=6r%HV;zwJOt}q4x=dA+G$x0ftz#_NMm?%C z7M^)!A|4pu3D!fotU=?c8RM+@hV@xRuypuT zM~T#!-qlyVu78VIo;@Q_o)TmQkGy=&yxjgrZ$<1%+k7*fNayU;+PJ~&0AZ-pL5OYs z?M0vSMYn%77G@xbHN+Jf|210M9x45H)?2)9&pC)$ZUZT~Q%I_r1S*)p|Ld2`Mz3>^ zUTHmACaIBeB1{h6BQ`uS7}NZwrpb5vonY&+G0UHC;VOy$BH-;pZ*APB=z&5y`-8j) zyS+2^=LiKl6UJR>z+c6Ml~6ik+I4EVlU~am0!K_q#Ti~;RUuFr#g<#Fm?kFDm2JSvejuqH8kbS4|T0mexS!^aTDM7LyAx%LRX{~5FW z&MEC{A>z@3l&hIBAqi#?4M;XC*~CgSTOUZjy~&P$(^t!|3;D3Dhq8S^Khi~-^92kH z+27*B1C>69zEu!s^si>idG_3(?GNLThl1W)2GZgv*nP#>bhs^97 zljMN1&q14YhpNrJu4uRJyY;v3u+}H`M_(vk`;RZ$G&P)0GZQFHj9F0YSr7VL$8C41 z$u6ZS=0V&r2}T(fwy;W816UAT=5*dWjH#VYT@OwYSS(ap)by!B)_-M?*CW_jDhig% zvX!>_dr}mTeD>T&pu|K6T}VyAXGE_95DQ0jQrdh5@-=mcsZQ;=ewU_CbBw-6$ULON zbyh1QET@YBHHJe$weR|-WkG@%aoW9g-7+`=lDg?*;4}GcQ|juu%ufosSK&fQbsAW6 zpt}A%B9n045n>JX2^{m%pbRqu`G zmn@&2T0_2t)890V{37lDu;u>H_#gtbTleqHg$2w>?+ZtFP+SVJYjyL(rLn0ggdVx; zo9-1v{ldS;>V?sUt7WV7A}|hub*iym6Fh8V0!#IwoiaAk)ZVjyUoOh4XK-E4gzMrt z@YU@>>EiI>nsi3Dd&0Lp3aRZfl4Fd;<|4bV+XmhydyG)nJH#MEHIbFw`{s?I1WAyE z`T0wFD&~8~E5*hm*u@&(egV!pRPJ!_S8y>bF18JBqt}eX>POu+raopdMctB9hlz;I z@++g>n`S}|QaU4<+zcu&A6>`NxVHe+^7P&2>{S|2X)hJon)G&=j|$DN#bJyaNb0mb z-P>BknT1w{_e0EDROfXF?tW?kb4$%oN+os&Ff-IE6Py~3m?+?U+FJGkG3dEB9&G`3y zGMk?HGF8)yemV%Tr%xfY)@&&z-(()Zck+IIIoVsHOX@4GVGhcmbZVXHFir`kS)l-D zH?B6uqCA|UIBPTVs>}nPeb2gF^3faJ>t&to;~`FN&0f38tyXUD<77#2;4Qb#LJH_Nk3PM{@T3_Ifg_M)^f_f-6S zIeMnDQk<8ztRCMCg3$5-7@mwyyeeUCD&PCedob$A6u!s8B?4oS9ZgD{k(dCPt(0gJ zpFye;-ONa28wpLlf20Z@YN!|c0QUgE&{+Uu-Kaf+18ktgwS{yrJ5kS7_{g{uoooZ? z-rq01-sNs57C%`&Up)Db!*CaJDqK50itL75kf4V@2~R)+2(|@U>Z+~zf|$_THPHBO zexT%x-gR>W07MT*nshI=Obs@TN^R)uJRm`t{dpi~Lk@zegoiOz=hC+bapAKS%^$MW z@wX3)e^7a?k@JAM;C9-P(hZG(BGgY?7mSUY1`&zYg9g3u0TWbzmbban6y` zs0WoG@&9SD*o=>veo=>{J#YHlj_(OOEA*0E!0d8bmmpg*7Q*Iy>oZJ>TMU|A3V=$F z4T}F@#Xl3;&f7s_zdW2RL%POVm-ujXB_|()FM_zVnP6C;jgY^2ZFL=aO}0aBFVy~Z zm~)xiEDG8W7b$e*H`7A0P0Tpk`1AJ3)!O*ZAm&BHGe z#R_f)AtsutzicJWfd@5ek^m-9@03#bC_2W3=#jq{iG5_uUgM9M*-Hto9JyRxczHq& zTPJds&>BmmoSl^VEGTNgOXsS!q91H4Z6O3@)D#^0Ddw$)xO=~cwRuywxJKKuF#Htd zLfwjSBIcZrXajv9wg5_(Bh@rCu)eLiA7+$6hs?jY^?R$SzYWx%Kp2lGop9xNxg$-~ za%kPm$+cz4@%zxfM!@lLn0~yHbGRK!%vIqTIq(^t3b@<)>xS>b^1%!-P*ZOSRul9{ zhQ!|!2K4_9XW}ae83rG=%s*|cCiXolK*F~a`? zbLaW8281exPNdY$@&3-mx*=sM_ZLH(;d zT-;gdWXS*QYQEQ7PI(>1W-OxJ699{#ja1pQn{k3@=XP?+(Ay;b(+!}yGg3t() z?!=56>$!?{_5|D6`NZ*Y_+~+4*sY6gU%8%-2yl#`^t?r(bp08}@o9(yi?qO5uL$kn z!E@I*QaGGFU@V-3>tl^sb|GJj!yhY}JuHqR+t#}OL?G-wVMwnPE|oeQ!aD28>XK9A z81x`CE(4{EA|N=FO)4T|03rJg+noWyYN}`N=je=w{y%m4aFwJ zcH}7(gyk^nak7>wT+NbNf7#EEm$u9VERsAl*Jjl6yL>sY<5zx3`7ux066Txk~fK74?pu({yt;#Ipgg79DyGs?Nsp~&%zb|<^EwTsiF72 zhhM9uT2p&;E+{jrc;?}PNlaI-H1oN#bH`0&_F=Yl=4-e7=7(i#i#1(W@WrHov!Dg5 z%1lP4bW!BZ#{9}TRqO9T#9OAv6snp|M2F)xq-hmk z%@5b*`?shn76XzVUkv?SNY;yNV)UJ+s@7jL2ssH`)h?quQbB2=XGF+wQQ-_No$=qi zKj2?*Go4@ezypm}Ejd3dMX`SHbyh>LTU{94EFTFD$weLokUj{2nNzTw*Zj%vI$uyu z(pr1Fs!Co@xEz)#J+;a6QdU#@_v9JJ@7b+PbL5T1@R_e_vx+)_SP>6zN33HOZ@{Zz zs3#u`j6%im>~4|nP?*9)e_P&xe|({B983Sp(z+fRF`kfNJ4SHMAH)xI;;w5n-au!O zf>uBg3o}>!Ddq~>bhRWZ;QE|i@)NVR+Bm5;8C^%$y7Z=j)c*m+b4ni*&jp{sMr0AB zc$n-8BNTo7ba-2r*O8B$>_6)wd!}9&%jd>~)ymvswJ^Be&{xhK@yo|*<)+maV=_Zk z6_?yiK|jA*8?QAr=4J^?MxXfNg_^o>VJ*!|U(FnJW6aLF)Vexl{mn{%p11THvS?&X z()9yf#``8VV_R4O;eAB-^U@JnwY{B`y99+t>9i9!hBGx3gehyVo zBIl3$UFWxY8JcL|u9!X|?Xqu(@N;;tRYPV&>5GY4FoacSqGG_fdVwFsvP>yK}WPCOcyB6LgG70yfCyd3_g4}Y19_P0SNoxMXPWVCEPkP;0 z=sKSRT= z;Jxtjurb0!0g5P^3u)?vn7}Y2p9O^roD($5YIZ~woLY?!uS=FreqfrJ%A@_-g!|?W z2_Mcu&Q`}VX6r3V5W-vo@jO(n(AVkaBiX={cAeUhh3iI%z~VktPBIjr6$~+Lyc?+w z&N&(oh5IPeXW=l=f}o}jbN!3h(6f?gu?xgo%h_ZME3_*%pvgjr6ufu65M%2P2jCt& zx!@X|Og<%*SB$0|ts(*ua_IXifK45+VNg4(CLO+_m0Hldre_Ess!obVWg$nUvK%;E zV>njO`D+`lGo2_{Y!vtYhvxd>%$|N>vWDTQq!-T#-80NZ$|-@;95?}gVWjHGR+j3n zh3q(ZtXllzUWZe9F}}l=#rtggMAQdOxAWoAqy1w*p%TA@Z&$1H18~}-&FuHw>ic+k z^H0PBF@NdzmM484ELq>hNzWlyd(7s*QyMryKm90b;m$(mY;Mg4s_Q3(EoX#}Ka$sAPBacv zBnsCp6zgx8Ssk*n*MBtCY538jJ>NUM7>t3MS-!ttwjuPd94?%i0voEO!N}{W%Y!DA z&RoVOG>4%>w?HDE*a;fqtfWVMT7XU{+UiZdpeRb@OZZqf=3>?JIq7iMT?bTy=g+yy z4bJk#%eyS$tbS(sVJ23(=XuX?g=p|{E^)$8&y>35{wR3(C~GAvm@tPyr7WkX*dCTR zjK7g1UWaLVA@`mR%5v6tpdy_X&~22&A_cn)7-T_e&_js=XYX@XSQaK#S7On~LKTWg zkGaQy@{zSS14M zV?jA*o&IwpKStE=BhFsqFyUgjVi-w8QZ430nxAen>vk+zPOD#ZF&BONb(cfgw+&0!=!5|&Z|+=CmD~b-PdEWAn&sh<)*&jf?~Sy6_6-voJW9C~m3er2t4M*!2iSJCVL_h|gs*nIUIJ9N~29#N|WIi$>dAIxs8 zIv=c*Ran~&4t+lkp9}3?$TC0Q4)Yogq(FNX_ud~HSIvV^+2Mw)DM;Ir$kSCz#T&8G zedoezBx2#7t{ktM7>E4rJ6rg2O(l#{L7Q;W8~D&#Vg};c6D*_E1=jwp9Nl6949;|3-rGvqIsE?mleyQ( zvRb~8dL;csZGHwW5b(A1_J~a%C!osMa2nV3NfKqH7hE6l^>Ocdj{a>vK-`(ARRu^d zcL2obdkZ=DL}eEjQOQk{1x_~X*|xMK!N#ER1tQEwAj_lE@xlb$>==olL{C^qj=PG7vLzx__ct}U$VZcvPB2WrGt>d( zaeyT#T4wYSGVhlx&PQ~)r+*=1)fOq%zsAi&ewBJWoFG}xaG;mJ_^Mog#=kDlyyL%6 z%c!$st)FL&&1pb%=Lgl5;-_L*WUXR+Ahn`T5oyhzyJSZNx*t+f&aD~N)@jZ_&?$qp zDhE>4aOA-h6s%1rctW+pEQyluPE1%+k%C7{AOS{J#A{O7pp-o8V?@d*A84s4<76qS zrUmSd`TK9YcnXgcB9R z37-53wxE5spz$9#2V)2h|8ug8x+P3goI<^BQ-cX@roe!!H-!t5t(*v=`BvndQ}F+e z<-VXll9jne8{L@2JqbvihNeG+b=JO3(c`q7=8iDojX3!MLs-cLsW}|j4o#^-NoPPQ z=prwrk)5nKQb}X^)qDu;gB2kxz1dUhfG>blU@^xq|K*BrtwXSu$U~e`I;nazv;@+} zkhH&JW^OfAz3Yxxfo_Zu1ulrdqI7*|fItrwFIqJpsEaq~Gc0eRfkF%&rumK0IHazb z3%?vZCDco`J#7`)WjO$+rNTi?!onU5&WM_F?$zIAbS4TTthdI{WvPRFvDL%Rfm)qP zPi7qkXIbHKfBLlATP~NmPuf*RY^}{OCrox%Jp3TpN&A=nO8UFuzPRV~-)!_6JMc5D ziJI|=ZtQ|=Dz4|6OsQMOh=4fs#Hm4mSZ#}tZY$&RNkaga4V?-xn0cCelwbivC z!WhmSr=JBoz&Aaen14EOS;^$nLe=5et#6>Co%cC0-=(wN6Zi#iovir{l_u?dr?dTp9{sP`ka$cTN`!!XEj+Vfw|N%92j`q z%s{G98c^4uaS40e={&ob>(8vwFuxdvIVRCBO5(`zf=u@+S7^ zY`CTo9$16xXPgLcm`wznrQ#hoE7+h=D2QnVUg9e4%D z48ZA|gs=`65+A?|9OUiD3rVM`QfYg4BFQWmMiXDvoP^dTHO+OV!KJEi(-m?F&n$DP zr|@ti(L969VaFAf@b;`?Msz}OoTxeVB!ug7zVm|Z2c3Df6zAL?4Vz~lu1Gl!NXeDc z3|j&v1RdgZtKzER-&j^D+4)=z3=s`XtH~B@{#r#XaFQr(*x4f|dx=cjQY#l(xJn^f z3q+~?@oHeJsgw?xkJV5^RZu7WSp*AsZ#14p?<-b6Q%jaYT>nEL*qQ+|3r039r;Lp5 zkyG<6NMl3}n-nn9Qn*Z$79)5@ zphR{b51|g0Q^Raau<3a~oYqKt_{zfmdAq54;#Y9x3$Say>U3NG;p4aH4bF3Zi2vLW zlC$ej2g%3}IH@R(zTOa|ROH@BO7PMbir(#QPQ5+EQ6hpUO!-R66% zuj@M0W1!k13cW6%bCLZ0&b5S)7)sq4+~Ztwll8cjwcV%RQ*jYCc{vLqrYOCeNj{B* zdTQEL2w3m1al-vgqc=`SyWne4qNf^xZOM%%cIoBAUDwxOMhYtlffJq)?3VRamLEy2 zgu%*-$+z5*;(-2hjP<1)VIt)o?u)O*rYRJN`M0PQMCi4O4eucAd56wixAsN^BgBvx zsRb8NWX2xC6A9K3ouLcjuXZVotct&s-c+-FQ0!=MryhREArSPNOC86AS+DW^YW$VnIx=|v$z@gh z$BZh7^a+kBf}BxR=;xSAqEM8QCb8|I-71(ihHUmSv#o05aeAN^mHbJM5* zMO04EvoT*vrPje#3@!RI#wmmd1q%5JEt)WfLungCzER9+GjHN;OM{-a-+dJW2*(xH z(_f}v4uF}w01qNTP@(r~86hO#-w-_oPkx?I<9Figq@>9bu5N4`n9zGJJLB~kl%W5S zUNB1Nbi7YR)o&Q-q=UOW5BUaJ?vLf+H#M6?f*X%q;8<%rNyDw_{9`Np9DX~hJx%=r z06$@91qIQb-Ch)9Fa~C=zdyqY^KolrN$VDctg2J|cYTbj#$0w|cf&V&yqy*?vqh#g zr$*|#IECuA#dzVszSH5gyWDf^cMm(V402MI7B?@*P8}4<0D^CaODwUrxz~B&wh+7D zl*Eu&nxz~ySnmYaW?puyFh?{YwO#D0!FI&<7offCMIh=<2_WkHYXJiK!tB0)L>_9RH7B1& zbut}?y6Tv#_>{S_axs~!G1W8ALx!NIJ<@#C)Y%Gc1e_uFx-3h?swIa2#^z3P?%DC%QmV-!#41n?dss!I|go2NQfB#gi;t9_VAK3f}Fwttdx+# zDk}OcA7_jQu8}aZIgrU@JD59&N@rw1ge2kFY(AYCeCprKG3#~=Ng39&o{F;&_FtO~ zlcJ#SM%t~{WtXw-f6m&@CyrqKZbwp)WFez+L7Bqs+Byr*LHoNljYvCKGDUHkMp9;~+Q57k_~Ba|MJYtdDq1 zdz_48d!hhh$G>>kDPo-I) z8diaQ#@Qv|7UhymWpJopMdY7JXw8-ifD4=Mj~;ISddt1XyF%I*gN{oBkIvXhDR1Ie z{HsFD8Hahc2ZowdK#^TTJRfb_ZSWcmnuAy;jSgE#*~uGATHGrkd${5{jwubQeuHVV z%AAtIm1RVjJt!llX(`3Ti*U-?a)maiq+6~lrdw{$5zd{43KsbU+$^1wORw5@i~*-9 zkWc!yIQm3FesLz2lZEJ`17wx#%6ebU0>1(sW3JP=oKJuVCxt4J6jrL0s%p|64bom2 z#Q2-~?ypeOlnGcTNonrapg(Cb-74`Q1)9l%YU7%wYnSJod3~)EqCvqSSV}U;rU1qz zSp=>M==P!gEZCgzC~y*WH9hJnceT6e>!dG8psBBz-dCLcwOCAF@vDxL2J`6sdx0Xg zq`F+hsoKj69C#vS$ax0&5nKB2GGgV!A93?bEnhsy@@gEj)KL0on9;-QO)Q!~)Qg^T zm<*dGacPRx5M7*5@ST%J2b^>?ndxHmvN3C;iWOV1Y!5rZ6jU8eNN;gx<(NABGQhrO z_o#6DLk&aIrW2|wOKpQf% zUj@QJKaG%JK^WS@VEJWfl=y0~bF|VZCIdA|?Y6PhiQe+A$nkGl5|r1*C6I$3ZT+-x zbl$ao^sUNEuQpIVe`x|0ZBMhIdIOAaOWGMBKD3E!J=kJsi_??FFhq{B;)wP(xhUa& zP)Pq288@AmKN1kB!JgNqC~`UvG?Y{SG9uiHaNgJ*BPx~8))j;Hp)Ag5G0ny3pnJ3^ zp+Nub&!TxeOoQMgEss1?7T1h5ZNf`2zT-V!81v*O%Ezu=+Q#4ccU{m>xZ*`mo|&E+ zyu8F7w6ys@A~n4-RzN0vT)OhK?)~8VEPDohFTL?V)$tiZe+|6k=w|o&P;)$Z=I?pt z{~X%Ip9Gz7p1mg6eQ()s57;~1VQN?gt`ha06G18Vw=cWbPxeSBril)0+&cTRkVAoO zzpEPrT}|WnQ~tQbeNDE((R>^S5aI;c44`{LP_2y}_IVJ46`{RK2*m-~RG(^o)Pg%D zF-XO%>tvfs9WQwz1?iZi-ZgA+4%ai8knY(d0|!agv+t2d4fksc%kjAQN{j3sEueV;)cKH#C z7c7AzI|l-Beq-`fsYU=>$DaIeM^XyXuy9F&*}BucEXC8IEL6v`wo^8eYUIb#HA5~r z7eD27ZKqzPLQ&eyOQJEyqEE;ccfskAHYVo%lEooO-gkNbT6Df6*?(Rw$9Q_l4KO)R zU|yrtncGL8Vz3%~IX5L~3FK`s)(+bREW{St&tZu@r3}dBIuU61jYZ{;*oiJ3b&2&5 z>2%{T#*SP5Vi-~x6S7W6>4#a<3+3ZQzOa_p4fHHZtcUc zQx@(bHEnZ8TOeH(5xUi3Fm?09_~jc3IFCE`@tt6cRmOhY^tFDl`V(8G6bI1{5 zNV;JiEukwpLu$*m-ABL<@_I#TvXxDYc(@W*EQ1$GE1imd{ET-Kh9ZJ1$h9`(g%&mQ z?|6ggP|cRCs%Y-7KRH;^HJgRqpWyrz=4L%|a~7D7;j+ybRX(Y^*FuQ+(UZV)9GA@I=bu9ycgHVxhE12{u!Xq?qECVE5+O-RoiKsX=(^zN8k!-g+Wxl%yDgHJznmE1&4}$H>Uvgl5 zoM>uc$f|zb*o~a9Sd-?$_c63+gr6skSq%$}Me8y_pSGZY&nd5tpj#FAw%bJqQKQnQ zxGTQH)zU13+a8*Wa$J}?>>W;&W#-8%N0Cn~EZJww@Jc)Q37={d-Cm>#qzoj=(Gsm4 za{GHN)NzI(;U^k7S8=X^;cj}90yS7IxtEaNf!N<;**Jf_^aC&zBK_#E<&6}IfPfcB=_2B{P&S3Tq z&xk55o_M79x-5gs!4LdT;D_tm+NKBF=SjTK7FUMPRXV91@`93E-H+?>A-n3-Bw)A?_yAMlYM~S`tV@lZB zfI(8X>g4r>SvmIXlxTe+$4fe?CC3qMB0N8phijMctl9W_L>7J>M6n~0oh&|WkBdhC zeuVx%md-Ia4!7^ZahjyDZQHhOcVjzgva#*P*2cCQHfU_KL1Q#_-u*xGep!6k+1c5- z?;p;&&YaasW}PT`bcTGz7|q8V7h++R@57p&O~#_?i=$tMFATA+?A0u)&se^2&*;BZ zDnAski^DcvOOcyt^iNZcjSsK0P*@UHCh7wV_^k}-J3bk{E+is$0IzTKjBgt?c%gm@ zY2f~CR2x_ppH%mErzaIR%+@sjYmJ0*sg=2Lq*RsQI%irHkx4tNBCBvlAD{cnZ_y^L zL4e~5k-(Y0)_RVA-9(K+-KuM`#3l<13Ro7dX0-f^WG3O!d)zB=M_F8HRKI^X?3ChAWwd2hGOFAV=5IOjleQ)ed@nqEym zNsvY~&u@u5oq2kMIZ)a+$s7~5=a0cKa%Z^RHca15-sY$2y>eGJ7MJ1#`6Z22zdZ3t zSO}bp7^A#o3X9q)nYmq+%Nx_S%7xIn4B7i19?jifQ4jk)gzdq`P#PEa+9hakAm_^F z!Z#+I|6&G zLnz7V5Pd;$;00J;uKDX_TG1J8)>G}JV0C8)UcYYXM-K+v`Wl2ygku#Wqz0UZoe%}M zB>lI@e2N*NMlbKT%}}9=^AugW!DOSV<>qHt6gWH>l|Xl&UIghmJMScjW333hbPbbe z9%tk`iTok<32nJbFQf)oIo?lZ}7Yh&gH~&Fj*Z1 zYa)fh_%^)#iCDMI*~7L|dvR9a&wlSle8@Lo7d4!9>`)R`Y%zqrZH8^$K)#nBeycJ2 zbeh^;;DYyLz_A{}X0}ArxT#N|{paMNN9ImZ?bMtH3y|Wn6QP(68)x*X$2#VH`xY7vXbakOplt;$T zDE+5ZMoDwB>!7PRDHHkd6}UVmUDfpKm@g=u#4o}jDK{Bp1kFLVm7h|KuPXdKdhW!~ zFW?SlaSDzVRr@TpqPjNFf2TV*F+emC_}aKU1tlRmFZ5V;-d=Bi*)MeEJ+uGX_xb95 zo3o>&9XW23Q3 zR&3eI>n-EfXqOitNS}xH_cSNHR8b^86|PtB36CYY37u< zV!PWj-&}hTUx;*>X0%oP?oDHvchVD!#9FFu2AG6D?g8&-q1`#YgyAEQ60S&1Hknp#C}OH z4-wxk#mG;WJ*3lEG8-%qn*8Bh@Kp!aY#wWwvr$6vwy~dfDwvfz<6uami>-D#Rw9{r z!GZCd!m}%s!j>`C86CVr__b{tKq3dKg}aZ-wQVbmOb%44kDpNh2J%L10E)LE&6nWGDji0oQAvp z;;$!uJ|*6Qoug5LmmQ(1&sh5YufIg!B&(|SL_d!{{kGtr!gQBaOuo7bP^216FB?2{ zuhW_p$r)%~x~FE8U=|NWgjsM=$u^g|Di(=SBR4l=Jbjr@qkpvY7~_I6l2dagbjWM) zz^av1>&dZbQ!qL!lj=e2JD0wvH%9w5fEHGXT~*OkM;m)?E}@N2=5BNhP{tW}+(3l9 z^T}7}Xky&&2{RJtp8s1zDoLRrINw3xq-v9({|BI(?8J1%iF~!g62i9{MkSD$Iz)qI z(+(>|bNIzvv70`x_n>WCvtd+d0lqC+y+;*+A1pt!_!@xkYQVd z+7^5?p6xxQ!hgWR<9ie9Jp%&f`V+u!zf}7e)d(ILa3S_RhXmj~l9D}DHE{YH^u45n zje*^jnR3H*Hq8vi1d4u5JaR!=S#;O{nDAG;(OLHXpmN*wY~a4;ip_6A)Sq5-#E|5n z6%}~XMPmM}_ut+Stea@|2A@5@WySxgLG!jtE;&M=@$KmOugkbxn>SE@wE*^02D81Ki*~dnrwJ4RWz5iW#XlTv zN6Yrn9BYO*3!I-j;pS2h9|sPdp;#ys$CzDsWi7EU!fE3)eb%zamdDxfaJR`nX;c7< z)WimLvw>C7EToFnE}UT6k=kg>rjAIAjtrv&oL>)^HRD#YwpcO`O4Bo1DVKFCYD472 zWmdk60B+1X*v3FB$1BVB)f%Lchp)!7 z{@`P8k(sP8po6Te*+I6<&9&&mmZ1-bqB^UV1k)D`U!ovOCX8%^P>Qh_EE%m+aMw~L zxFPqy4$xb9N-tU|YJ22nPiL*B^B824X=aLCh%oT0P%@hNTwr8#sr8xt^-Kh-9GZ^* z7MC_{HRK8K`OT|IjjLyzSW_%}(#*ng9@`=AuZ@p(d-8I2E5yeGH)_=?K$bRWjplQcR8y_M*x+s2lYc}5mJ9XLeyk7*<@ zkE=y08#vkWDlo0v^>NCb%x^=H4}GT(O@6nYhQIo6k9V1h1=jeuES%YDP+%vNV9$NQ zF3Pbe&m(4+V5@b{PKN7_I_AMpRA%D3C>zEi;7vgi_pSL|D68{jOK4VQ%0>G}Y%S!G zTsUSSkH)-ys9$zA{=~{WxeL_y^3c zO`1)yX}4ZTgssS*8UKOF46XrCkkbj9{)(wxgNKl0#)4s}xI)!>gbp~~U#0eG$&GwRbV4*iYH6VM? z>vWgTW@3O3vT!y(b4Y9e3w;N_1&1K}IF16q73VOz+Gb-hXKx{BrV*Fx-j|Coxt{#P z)&li|DDiZ;hPSTMLKyF--!|_XL*PH>-t-sEPm${Z+0E(C`*qIT+z$a`(bvN>LCIa6nB3`bJ0<4)PVpX}Pgl_buwl zK~8^&^ik$Hx>HTqLra8f4i7RdmBFr5rQ~Qdg)y(Bl*VB$cHiUbfl4L<8(!&^BEdOe zDsINzpBS@nCSqKK?8%TG0$3+ z-iEhe@NUL)_lD%oG`~m1irE5F@5DaNXiJ6v=YsxxM+v`v^s;4Y1H2mGydn0yB_&b1 zld_){CtJ-1{QcSzLZag+u(F*ffJ@;1!KaWsHKN55Mo!0#T!%e`dzYz53k!bFO{bvg zDG5XvZJwK>_z@@g#hozyB@j6Oa(ht0hhhmrA%AmEb{8ELE zTx5qmG2IAYj$C?OH~d@67dNcYsQ-nzDpn>aI7Vs_0#A%)yhl>MNVjEce0&IBYUrwo z#qAFg$~p!q_r!V;E0){GRX-P_VIVg3)^_^h&Fk@zXXxEc91JO-q@@3*KRdf09C_u zf~HO-VXKqF%(V{hXL(!($BPOM>6k|pO-7PoPt?kgM%B24A9-YE$9>ctd}I2lt4+$70f~=qw9*7bl%LnN$i64z4mX zUs)8y4!WxK3aFtAS8CEse*& z{qO9w(nph_mtXof5j|?RGVCE)Py@EqY5!K#wP}U1;UH!`#H=-iAs5l7$+#&>EdJsc z`|VD|ilYROBxG*IWmpKM?PZ+nBo#}r5gjs}cnv|C!Xo8XZfF^Bc{Y(~*Hq^!B!nx@ zw9>@c*i=H#Rm=RvHAjpZr#jVX?wc47`YXk6T~5q-rXaC6*}XS@8JS=s<*d2d@3qc$ z_BD_DTxg-;-G~l_3PzJv*qy+Vn?Zp{oOd~FpM%&nHVOcve_j2xCohC4z!( z&eDI-CPZsa9XnPH`gSu}bC9oq;d#L>lez|Pkt)Ob|Kz14b?oH_bEn*-kDNlc)=WFs z&&K{+t!$)79@>gf>@q3^BEoO)E~4#RUXWRFgv@ziX#Mb2iX_;WTUzrwzlP8mVoCAW zk(GY~Q++)RtyJmxI*Lp9)1h&1Vf4I)WaeY@qVClZ7fLtz(M&BnaaZ3=rVifWp^UPD z(hK7RDF?b)OyF1>13L2@&1^x~pT{VhOpTxJW0mA!t<}%PLc=k2gfx<&oHmtTdZV}$ zB1S~ zqsK#SNm)yVVGkFIlpWJ3d|PW7&w`R^k>}6Vpf0)&K47&eh&T`W7ao*Dn{Cb@Sa8oX z9__?57|<=ZDszd-Us!u&Pr5|8GW9jd57a+#@ADpdW(71(fO+F>JI8n#^1@hzr@pQ0 zKmEPh=8&OCBP|G{8Bvm%8L>Ycl7t>J4{R)9qfoo@Ad$v7#T78|=$D;x5;SWk{$7;N zai)N>o;)$ZE*OiB3oLJWRIVUt$TUE1yOXzuo@n*RW>avd6>8t{Pbx3?8K#;o@Vjbe zs4X-lgR>_7XV zun=;RV-Llku|pM&2Aqsk(PW>=8Qf?;EVAw+qtc~uHf^3wwS|KXS7_>CVbS$x^`*o% z6raR-C3hF1MFo%2ThM>(pYaw+R>G7Szq>C^Zy^eB309(idZ_lsJmIwHj7@1X=gNB> zY%(yf%c0&5-1mU0jU?^$6T(`}qvUm9d0&WtG+tbEs-<{6R5LN^xnH zYA!t~(}C)hNOnkqJH?D1)|dAGHs?f_KKgY6Gkw@r5zp40F+1IAVb;Mu+Z^=ky0oKF zt2=n_zqLz)pyJ&&ksrj7)Mv5>%eYOdM#W%J3rzab zqbrt*HjirSFG8=*s!Yf@4lS5P7cz0jVe+rVoX%cNn|j)+0g7=Man%r>d*tgVOM-Os zyzi%M`M(9fU|ZNX8&YXQt;m`rbcIYrGawowa|AR1MYdW;Ox~d!wnDpmPo|6`C?TBq z;Q|NB?L~+L&3*$rg7rEtY!{qzo5qmf*S51B>^EY=X6e(YTx2 z4z{1!B{Xs?QTWuS*TB;Cy3!U7e$ovc0W<}Ns5}HdLKiT)8~XmFf0~o2Ta}fsV`1LO zP~V-yEq}>~Zrvh}j(*M&3#`??lNqfzrm7zvcdjnI#R8QfK?&J8!w2_FjmlI@S#}rQ z&Pz*Xa5=Vw{u95FpvlAK$8%((BaU9GpEPoW-lB&y%9}C zBFk83Tqe^+(G95yKM9g-hvcqT&%?Ff2hSVOLcTniV?;LgzM#Z4PhM5b5-VLHY2lWB z*90Wr9qeMoZXhb!IfpO)(=1eC95`@FaJ-gf983oitXP6Jya#)K|Ef*GI1EdeXJk1= z9!G{bZ->%9GxWtipT0Z`&ti(`qq;wg4@LE14oe-x#?(d5!dx-?|(kMGa= z++Q)x%HO=iChkx3iPXmuPVK5T5wN7J+U>iP!`Iu-yAYMx#iMiEWy%O?Rz|mS zQHHdY;ImDdzie9DrIuY<3L_&2*-$u z6VM1g_jz|k-=60c((oem9k9I~9ZU7WJItRNO* zf0KSA{kV=?TVMBy(%qCOZJ}CaR0gGBd0o+qX0G0h>gCf{lxM3|4Wuc-)3M6K7p^6v zjRQ5+FJ)SE*97?Y7_)wyk<~M@avzTr+e0!|IhCI63EL>&Kw2ix4!snP;mJ9oz3vSn zn5f0*>321n`H5%%PNSrq(a>C*qX_Efn$1e`>~O5Hfhdh~71VJo2#4c|I(d<5{Wl2+ z3-FJjuG|n1Nx||`;#w?8e#>z8FB$nPs~fc49*UOAyy%I6uDTN@Gji!FuAS1{#N%}R zXtfwG>Dr4MaJ-4fWYet0it1l6)}x#-!Dp#WQXLXnE@%}slLoZzXXl z57&hb)im)dB|^|;ZBi{_sE)bWu<*HrU@1}V2o|UDJe=e)>|g!SIZx8ALff8FN9F;- z!TG|!ID(p)I>;^G@){L5C>BwXS3Ao#qDm-Ct5pW^Zv(O$+^!9PPKAb9=M~yn3GzT8 z!Ry0ysy+}xItM&3A+M+K#w#(J7Y>mkVB=-bJ} zf_LOUujbeiE3K{}<*>DQ760m{@vKh5Cwo74FJ*8OFwSWVCyEfs-E(bFp-)FiNNlanh(PoDkLMq2?1xEyeqVuBSmOrrTdog_GFZlXG#VsPqE|`O z&&7e~NGsfo{xw{*nfRps;HOIwryCsH1grMVX|7h5bP?*?%aAW=;hDw#n6F$CmQ+Q- z@~HLKN=#>;s^kNvi49sQMx8N+Lm^Dms+5cN9BTR6p(LLwTV65Gn7Pv2I3chuAF>@n zG}$40k1Wzbhq}e_@}~uoWkIDQ;L_({6Tg%=jPE+DIxmP+F>-iWUd)(wmsSgB3+^0L zETUZ`F~}00b72K3%HggVpYyoq4@nbHqeE7rioQzlU`91eSAy)L=D|)U-{^H8>lY1-dhtUBfm3voaE- zz8j{b+#>kt1MH3QKNE&9#w1T_<0P>tp^7O}%oX2C`j@kCgd+4p1R((M8b#^=DrKUr zh;K+{i+I%Qgw>ScI7kQcUL$S8Rdx^tJ(7lf&SDU%a2#}W934^ifK(EQ(h{2%Er^GWX-qYP825qidD-b3=kBy>Fp`yFetUl-qC+=P~bcmO|uTH&SD%stClS$^< zCV-1d=gjf|J%iR(;Y@2B&^nbAe<6SR|7) z4FDF3TQ@n$_@UDfv0O(c^?W?{IHEA4HtghAG&gvf*hk49Dr!-`d=+UxEpfvw7-l%} zAn-pyL2yY*aAZpO9%1x27lLv@DxH?OY$~;x=%du1poLYKZoc-|lxmS_jR2%&{RSh5GO?-3EIiMd#aSTqay5jcGB_Z3)(rN*E>L8n-Sg4~aAFU!TzQGv;2= zs$!oO1(~@7qAe}3VMlI+O*2L<*nnX^*viO$-8}uIq|7~ETK6lkC%*mHP?ynXce593 zosQcHTS;LddxcD~|8f`INn2*Zc^J)6Ahz#Ctox$28WrXo3x`_(TE|%~&y_oxY)eIW zS6a7>IpYYFFF;z#b#tmw;O65QK@37g4;ssWx=}x$=3JrO+85@ok_c5@Gm2`Q>r@gGI_U=IwK zs`ouQ3nXyTDBu4wB;*d@4*Fl-EyVx+F6R@yaaC1LtA$Pm_x+_ASwd1aC3XhxN0kp& zsl^&nchfG{amt%Qdk+T5OPTA%N6NtK7& zyTw?SV*8^J7F>-Cvj*-IB^{vnd-y8cTSCe^3DSyb)~p?F8CaKFxlUT1QSf5@r9&JR z68F9mYK#Ab0CG#NI1d70Ykas3wRF)4LYWt%7E!DTY>Ji!Y#S2GGQT?TfLDT=lNgs` z=fx@7nF5F%3|xzl&DX~)d!uk$a=u*O`^Xl6O>D}^Wprby+VzL zvJqNiC9SKEQq{*a5o?;%XlpHq?ap%W<`0`ud@*V=El5~tv|h?_*>fEOzLFbyo$fHw zc5YG5P{|Uo;Z9iV)dK_UU12w72WA}H%Uo`O_1=)uce6Tc7qAuZJ@IOVHB-d5N^9Bc zRt<>xks!Rw&CE~T$tLSE`~g?tUS^Y=N>|BnRwW5kty_7R?tkRr7$rojWjWl;#I_Ex>KK2 zD?ydmcs4%T#4$~1H;Wvc3NeuYjRcl%^I%Qx%wK>w)ai8c{M`M4-IGL@KDKMQoPN$EgGZdjs-RUaE@?M}R>YPc&T3PPPc$V4CERUt3`$3v zBGck8;L?$vU;jRs6nn$HL>ZiE{quOioA?^J;B)EcKi=&j>yNanJ;G=HM)8lOJ})`J z1JV!Y`mp-X&#hhcom`*k?rcfOru<`YJ&h@`dtVpfp?zR0 z^~R_sRnkN{YaA1(D|aI#hS)%TbtnXMk&DPSU!EM1wfa!2)jRNuQD{uFFRcBg#e&?mSn;-Le?VG8t zo5wHUTBzU$Q)c98Z_Ca{q^v$0Z$nHd%HzONjrQx%afr1$!Z`87Ieo+-G07pfJCs1` z7{#;9k&40~t#Zu`HyM4h^3YVjm%Y3~Ow}=)fVyY;VG|iwL`TD_zi>x9dL&$I95t0v zG2EF2HdZfp@^>?#=DMNNAnssWIA%&pty&trzr7~EmQqJz^^ASZ=DFrLIEV@BOqa*P z>;UcaUZIt(HpI%ydsu^XU}e5t@#@*@?>owb667g)z6!-$95J+%L8}G`#>j@Kg9dl? zZCPAh8JHe(ecLyN0}gn%=?$~OL*|}e##INa-C_CoV7TEav#e#8L)y8Tcb_S9E{6r$ z0(9&4aUp60*Mp7txxtywnW@n|bp4V0zci)ZmwAtkzoT~k)2h8kR;Yj0At%p_9tFU7 zwSb6~-iKDdnMXg=|L_V^@FLfc+c)X$*ZyE=C9heW>Nk8!%)5^(k1j3JZLi_m`|GzN z^LbUDZj^Bev4Ou~4f=DrbSEPOys?GS3rQ`5Q&7W)1m91@98!Z9J<#rBrmZIJHt<|2 zByRw6Zm#FIty*aCjXs8rff>J4O>X{3u`6=XE{f6K>L7R_u!%a(0?5mtv!)M6B?vXi z$9y#j+{ba}sl=2Hk?a${iivGEmHC(qywz16%+h_4F~x;ylAz||=#HvLrSk4fiPddF z6rHOmWLHi_Q_HDMl3n|1f>R;V0S*6Mg9lelA^JpO3(TvK)JOwkt)4gC$x{WeQ&x4# zsp@z|LY4}#14`&0_GSGSWj*%K1_}@VkoY!*WD#o1E;i<9R>dFFfFw(D^!!TM1x!zW zKm9DJyy8sg#_aO=#A z>T#88>6FyOSCtAOWdtj@9c#bUuh)F931i?9!Bumd;W@rFp(sX*c_z;80y2S_Rt|7J zt1@dKEzm4v={(xQ+R?sJE>qpQ5<6#BThCp>h@r&vOr@YAK(MP+@eJ@MAX1S{19Ecp>}E8q8j>F`XgaJtuY(O09x6_G6m87ZMrZs&KF%f zamm0v&cnBD{7nOoalNK_)qvya8Z4}7mM!HDl4qD8}`j%yjFa}E;5^RbkZ^=o}Jy5eH zhJpGazpN=b79yStMT-#XTS8(6AMvVl735Dn>}Z8QO1lT{32S^1yP*sFi^F)>Um56> zcp}y1amtixU1Z!jY;D&zsyeh(;L6#9CN8|BvlOx`ZTa-4S1)9^<}?Uqf?3xbWp8@5 z&Fpf>kxFOHd^aQc*Tb0#EzMcaIW)&=aK7hIZ2>)Z$%8jMnNSs2+R~p(Ow1S6^jTk0 zh>Z0Aruv>dgfX=lBV4SAD{hV1pO)%Tm#>?kd>xjk@GHIrgF5CMC-#h7=iCCCqWQC$ zO*o<&5o`4IIU*gb^GuGRw3nNeP)ebcg}U;EmVLlQxWUKozJdkO>$)7;nn2Lm+#M@# zsLX@StKXJquE__#sK>8|K(LJWKTux^7#j(hsZtI`5kX$Be5@Pq{|8j4zdFv})tHW! zkx&$gR%_Fn8xiBe@o%R-Wjs%xvx8u_{iZHznKFzo+sRsIbQsV-ZIQ+hSMo~H6)QF$ z^O9M#B{VYf%Jlb*q|#B{vQviHaA7=%&!&~Q_`BkI{8%Bvi42rcRbHlev|1&~C7T4T z7z+V}CCY+B0>694HKru5j=On7?2rwum9H74`RrP}(h*9U)nWd!r)esVu)>#2Bwq(6 z!E{fjCO*f?M8cR*ZQtS?n|`!!>?IPilr0_qU=a?vnq?$J{P842G$$cA!?Zh&vO{y$ z3pn4!25!!yoEV&3>kMCsf)BzXGHTLQltT1u2BQ_eVkO{NM0N!{uPW9P4Ee2yK8;CU zNIiIoP3}W7fTeMSx>YE6HwY_qGVdVe{W(XKn0i6mSUhQOaa8jD2~A2+cwzWRb!>l! z9Us3@gZkp)KvK{+5Ii3zCPJ4^p}m`q5?ld{dV2MH<1{^ExheU?=xylj4T1#XPqE6>v3!%G%QVWA3|*Qx)7&sr`@@s-=Atgfl5N+1AQlx; z!*u8ot1}=I!Ds-N!L z-~ey6^maZB9-k$1T_5aCycL=w`i08h#L=mMp}TCG9eo^6=l#)aH_@2ztMow@Y)e|G zS0}1nIxWyGn@7neF4E4LX1Nk&=EQ4gMIg5fr;WYVRcQiZngA0rr0*K>Ik`X+5V;HX`2)27Zr<7|w4cja&A>5c}huICQ zh^8X^v;qTIN;1=twdwKcF*kO#@FW;B2G~(SymJiTqDuO*W2gk2$aE@3OoYU$Vwr(T z^Yq=ktQ&)k2yrZM?L~~!A{|*5pPB}y>mOG0@8jGeky>@)hUzR?Z4StP(JHKBxGOiA5Mc=jk_B=NK3L1Yd z2t}qruTEi%8`r+-ef}gAp1%JlbOb=Y+EwOt4@A`kUzkP@O&R}|+k4ZFL>@c+Zg~Sa z1J9h_nLmd6o^bt+B}w-T`|b^$hwutIn&3`ZG{NNKCfnP0g$eU;L*+8@q1Vo?=8Z+# zuS+Uqj63*%m^c>q3Y~uGW-#0F2ksvbu1G_rG;~u9B95nWCJB?8BkhJtbcsHH(BV1W zA+tRF<{|YsEs97T43-mmr7A&sIcD*9#DbeKez8`& zo+Q_#`H#Xhe%9RJ_0SH7AqL;{9L-(GuPaBA64pRzD$12T$WOwQIqAi70fr_G?m*NB zmwV~}{j2BPz$sy8-)E1t<<|L85+_1kXfqUFT&tdZo0k=HSoZ%IY{+<1DaAPLX&vww zT`4GnQT7%sF`$2-o>=syqu_8UJpQ8V1h7n;&9F91F`an-7}6SP)wWd^JPtxTPHbwwkChMj7bbUFaT zXECDI7Iaux%@-9B?Z}^Bo0c(Ps$CKv(E}Xn45hz!8a@sgVZoegTcvx9gK%9?qS#GL z3d50Yq~bSn%D3rqkotjDrG30^MgU1^ni^GRVoN0m_iJ{HJUGj?O1f>&S$8YlhFUJA zl<8aAYw(_1f`koIqs!tbW}{L^7D!ms3TQaECT98z!pMDjmn+L?+1@@qHhGuZ)^_$) zbun;T9gygAP4zxzG~+c_4y{W&9oSHMdk^7>dPwy6Kl4ju;8SE|U*CTdt?tXN*!I5n zi~n#|esj3~bKI!AY}$OC(HAHdt)gL!%yBEUQw@mOlPRx@_L@AjOiuN)B&Uv&JWfSj z2d){oh1@Bx%=@>9f@f^EI7>czE#uYS2{dEhT|75%hF=LaQ1i_w!dc+;48}5S1v?=K z;`M>6mIF5>G`6;Zy11z|P2T*ro|@sc+$>UUJ1c)i35@MFDU##dt#N3Pi-J-pa5p6pF4=H7JlsO5Oj5I**nSM*Xyn4loSp!t}F9@WAEEaItX*o)yQC2DA2 zvJuuIm=?9t^TFM-

!ODA2->4b+U`Nk{8qPWT^&ETLBi^uvcD=9)tAxA7ui06%l z_8PrOMsW0=8$1YFl;+HLNKU#-!WHehIyHG~j$u#A9T^y#4*j{eiML)p+ zq9M`sVaK2oLbNeZj6*CftY#+a5dW_AO#rd!=e7r>ATnxN_l=YXABpo;l+&Egk0VLQ zuA`sTe>g=x*V|wDMW0Cm{@jY%w{Cg9PgDn7>{~sH{%2PBPaV9!HCa@lW>BG!X&o%5 zN`BUj^d7d}!5B*Yx}Mwg)81as(LTX;Jn#20Xmnb5437;_b0Q|!3A$?P@o^(|4ONup zZSfBcB_y3cJdGXOTHTtJavUl+QU@hzj$e_E@!@J&GFFJ*6d3&&0EQkrK-*<~QPJ7a z!oeF!`nH+y?j66qmVwPyEAQA0Mcp$ej`I9-Pw)QHk!*%gf;Y{97T!JPI6&E}9;-4| zLNr#rUlQo8DU*`@FkYvK>X1s)N?hf_xV~dhx>-4o>q!S>zWgRnkU>>Dr!4jyWdy9S zY(9nZF1V;qlmZ)se&1U_vYy@BY-LhjyLo6A+)w_+UV@FR>^X=zxYg{wa4|5&aTH0U zUpI#Z!}4%c<%b++T23SGUW{huVoww?>EeS@(Wq%*3*AYI7s%{XYwpMws{U;1^b_la zg#OLMKsws?{M$6!rc_*6YpI_44NsY_#oCs*6ve^nUx`}j5U67||H4f^30(pmI==m! z8(Z1B(optmj2%s^Z4;`?clJEUAtTYleRHX!H79JYQDR(C{W(WiSJP(ox6Ro2CasXKjgs+Fq_W);=Tq>3pn z91G!F3E7F1rp(&MidjoW8h5~eKmz2OYQ(@)V(kAx{xcvgR5@Kq@4 zme+RwABC!6%Dz_Q{KjL))vV(R{1~G9e(~u)d`mLXR*%^KHeUZWuI+ps3&y9_d!t2` zCNGo>7G(o7l_Y;4xS?t-hcY2ZdWxk{W(&5R@WjE;(xCsY&SaYivW1#DK`+91Wamv8 zYi1yB1Yc&*PmN=^TnNc=DTvLYhT#ST$nmskrROWY==ZNdQ0L;mo*+XnnYQ#W0Y;AV zXybk%p0n-|P9^`+D6nFN@g+6bdeQj*^&PGHvZ5Fi1k)^gQn`I7?u5%bVxi5Gl3ME) z*58H-dr)Z3fg&i5epCH>&^;4t*l}K7EWy*+%DG2WZxK_deOQ35GFmMV~P70S-PMfN+Pe zKJh9K5|n-{CL+*(>?dOcin=hP%MoH#tiPhv@feUC$*v2Nz>tY5kx?h%@FaQ58gJck zt}xR8X-d}~;krelTSZ*S_{E+`&RS;pEnq&I&lmx~bmBlxe2Dkd$d`D3ILdM9WY!q_ zyHWHC58$>q$`#8Q^Vb4}%&};7E=--mtFtXz=MQp)%07_Ws&duGxMcI{dMXL-uTEv} z#`U1;i+aHOR=u~x!}DZ8XiISQDd{`3xi1?)Do0YkxBFjCQ-q%qTvDTMko`x!hLB~;> zHsayB8LU#F=c&}-zfxex*qdBOU-50Q1$RI-7ING;#5jX{b2eXlxlG(NVG);pciArl z{T33qH3Wdf6)T-#A|TEtAp`8sEK-wP4zjf{-jW(R+mg~L;JHMKyQ+3QdVu@E<2NlX zAfZQ{yVqYekzCMz8gsC}-xE~Z^es5C#Yd<$3zQZr@|ufpiA?|S7vXt=2op;sf5YBI ziv+22e*ro}$v)+x2D0pjAfEz~|CGUXd|V^E$UEPD+UJI>$NQO2NCtR!13x5`6+EF1 z=;L5%@KPx0vdGF!xpi#q?su^xGN_(P^Z-G%SK?hFFsKl%yUNNg)?= ztFDN294^7jN|532D&cS6v}ngi-n;MeaIYN}R%7cmmVXSC989a8Krp0@c@NsEhs}&* z+5(53&$D*}Gz&1M$|`R+%~G!kA;+UQ)Rk-q;*IR~=t7h$!izTN=veRAezQ1{P~mB9 z*WZ{JLUI&gyktJ$ED$I$@_cq-O5$(9fPERAXO%#vTTVF92q(@YrDPS=+95phff0V? z#tgbg*qVfC=EHgG1c=FBOOkV~b$_{et4M4&P-SOcidmm|%2;>2zrFhZoe=_REP|n+ z^(h|(gtYq|1ZWF6BzN~}qm}THeUI7JH@?rkqgCu(RmIpVI-t*qz-QLC_rA}^=K<2U zfnb4$hxWd_|Ak+`gMp%?3uGwD(#JeVcL||g`uYOdOgdK{Z1w;=ORj%IG!xC{jUf)9 zHB=txqK*90B4&0cBNcRv&H-j~J+}%dE$6yFw35@iDxs$kT;T{EV%c?--qOB@a%Rs< z3~R&^U{VxI$5zsUap|@5V6R`saUnko?dHWJ95^mOl9Y)`iql@T4($>gLs4(^9ja-E z!jmgxw)chIl-br?sRnV-O58=_U(@$7vDs!EZQhD!Hx~@WcYdSlC6U*kc>$z$md3(1 zCRzsZy4BjemOUEDsQT5|(vI<-%6c0C)6M)#XqocB%_=O zx}!`ugvrzjAIl&I$+Vl;xgZs(6^DfYT{1wM+Ga&Wg_|c~^JQrV4^-^JVDQYn{ODe) z%xo^ zaM_79x}zA`X9tJ+FoL61o>R^^8gew=OF9aEJmQRJFO>+_Pon~|sw})m;kr`9WFVT4 z4@w-s;HXsGm!R=Z);WeZJ+_VB+KNpH9)FOVR;}1@Y6}($AJ2KMuM|FQK0Am!t(r#%z$qyldAD!s^ zhe;32?6A$ql6Bi` z22~s~NG$fv;LdyEFa@P~F4{&oQTf~ba9gK6ldaWU>&Oz~0)shyPqpCw%RrJlbU@w!n+xe28u!46t_l&+Ymsv>?{ ze!bKoGB~)cdC(&hu#T;jfC4tmD4lAzIb|~M@I;DN`v=!0nLRHq#z0ofvF#>kcpB_u zUWQ8b11jDoSxC(++8b&s-00!<{0%H5M;B&=e?W1@}FduMJ zMd~Gd^s(W5`}uAEVdqi%@wTqdU-Z#<|E%u*dskAy37Amx2!vgu-bVoDN;RH;7k2 zSfJ6!3ywR3rpLCT|6?W3cn6a7KyOpjr#=%j*;b^bv96=)g7l&?S0n%3;pPb^<|%Q= zfs0+qB*i)JN$giA+}gI=)V8&? zyR~iGcDJ@|+jje9|MSfxnaQ2Z+|13%d(U~^2a2G-djWf^`xDo=Ec^wU8^tRhFnLfi zd~>t5FtS46H%TC@k`YBt9eHIfFb~SM{f%K&{F}mhYbkOHEr3zODkxUx0U-_G5QjLI z0awYL_?Sat%%x35Sn^Z+{JO_Y-O4U2;nbj}9}+ltPN0QvY8$IcCX>_9%}A#6Y*CLSr3IHa5gp93pf3!;%<3}^Zu zi5<5V{c~YEhHaorK*!!@g*|dCHSWwDOec^ch1J zK_ox2>z)kqr*W(bY7y?Z4KqxfU#49Byf3@3?_Pd#emM>4aRtbLD z`He(Ys%Or9Q|32+_76QrqoKuf9elg8luzoMTMIjJ@6l&H7xmMy1qfax9Tq?LDW~jy zE8Tl+pQ~e^Xcn`n|Lm_eIJ<#1G+8|#Dc^T41Uo1IOBdwjsYAvgnN>gwTnG;*eW=kN ziy(XmSi=v6@D6F9V?CE)@}5#WDlje7<5aSU2uqgoaAGL}Q&kECfSekvXQ5D^fx%bB z1$k~FGo>4cR?zFSLh`rxzTz3Hk5EaSD<^T;!tlJ2jzE1!RMLK>7OzTTo@u-!XJ-d~ z*qlP?icF{s==xy@ag{r`kbNW~*=1wSQE1b1YY?L|R-ROaG8t0LS*)4OHFV35rQG%0 zS*iQ@BbmyywvHX&O#NDU)ysitwVG3lI^p2+c@w?=jOCI+0>Nk6itwhCuldY$b|Cs} zR26!LJl~nPU4$d~uQmn>mD{l}6j8*SED}}<9e_-VBJ64kOsv_cq4Y)+B8-`w{-O{m4>jE8;Y3Nrv($ z$6Q*|W`Cp^_^E5iPGX-RDQ1I>Lw(Av#c@UF^dHfkyew!?w+l!*KicCKp`n z+QJq*YNB#cra)bupgMCs-uhrX7cdHsB{ohwlO1y{61`Y-d}%b@bCUgW3&J3?w#hlg zo|&E>aBA$FECBC(_0>-EQ`x74)NfGS0VK*%Z_Xp>v>=fuyH|EjJn^8StU`0MXZ4|u zBHwn1=_RV88~SDNyn7Qz^WVPWznJ!vt_zcY2>rjj zlt40YB-2baE&bpXssB{Iz2k8omXHP5gL4`}r-cQ36yy_JBm=241qLm0=_e&28L45~ zWnw{Nt||q}iHb%W-h4SqBAx#!sf1ImHx-<$FaV}a<{Zc&Q=F>0Gu{cel@9;W{v-vh zCcg^E8F|J=jy=W##X))EyJX!IVeu9a;#>#%(id9eKws7&qak0a%-fEhX~{E?kYDh` zR#t9AF_3>qH2m7X*>8~9c8PXo9N$D&V+Sgmn9c1C0p4Qv!P3~|ZefYZM#}^#_>oW7 zsue`@7 z>*zp+UJcc@_oyg^L6M@@w(iH(6%nv4qDE_ZQmQ9b@oey20B5cr`j zu7Id>KEde_^QbzM%FlA$u9iX*?shHN7bZt{S~DnMn1;M%_~*b&fOf_Ovp{_#PI@8R zrbu0@>})0!=x-`({R=LseX7XgT$(zr`om=4*3L?^$bi6qq;5c6Iy9b!2ggZJ`bJhd zD$wnbHX?|Bbw`}+kW987w%WWLMMtK-!d9gtPf@Y4e1LQ!*!q^X+R@k#S*@5^5h~OQ zv>awHF}bF!oEwBOro|Th_iOz3tA*F`_SgQON&Yt7{dVm3MHv25@wNx6j?CY;-^cA2 zPF+49ReIyTt>66@K4&#I@#5}R2Du;q7MdZJ>|TP;S%O=fo?D!c)0{7=|E4{b8h-b} z=-P{7e^zO<-(uoH;9JQrVwXxVF-&7ZTn0fSZHfsML6J=EC6WP3T?borN%?wiYX7IUuTv7J*^zHp)HF3& z>ujc;@Q%Opu$vew%-e4nu&pH?BaZ7eM}=MjH@ro{clAziY|eo?|4s}PWuIhc>(|4? z1e`gNCPHU%tL?F)IQ+yrH2IOxz%5Phy`&la*-L-s596-=7T)}!pO-nDr4-OEh()qS zXaycy$ZFrLEHwkZ;9)w+H7G-a3gMCndLR0zA@V^G;X>j+9@ye7LdDIq7;&RaY$cd4 zvmx7;67I@EG4h=MmU|K)Mm6fNN^42pY*K=y{8K!S7e)_umC;r9V7sKxO%R0Ad!aDV zkv`Hdy*jE|j2SC0X0=G>ViXRnV}jM3WI6&}0VLppcsDuB zwvrMad9f(kQrrmpho}$f&Llm_Bh%zvB01_zCVU|?W7dLoOo}xcoAUCE7|@8jSC^yD zl<>&;@4sCiJ`1n-Xk}m8%-KLSpe#nS0V!YkEOaizDz1AfyqIp~`QK-AekYtWxi?c4{oaMq8-dY#={x7m z&H!w>hS|m?#5L3!CkbsIX9yHyRe^1BiJ0edn%<%bbNnz)l71Iqh302Ep+};Q;+7Dp zn1!@UCKT#nq(bDDrSUq|WNGz;YfnTS%x?Y3U{3}oRW;jXs4-h4aHr^X)%@UBiqTo) zLg-N?zdb5p6G1#*qa>t?_NXjh|L!d9qWPbCgH14f>?L)es$8#*Sy$iJj7-iPayP{(|KtVr~FzEa=n zvkq~qB%ukFCRl6y@O(EF^#voK@jjAE6BeWV(;H5W*DX>gC#fnxK4I{&TdFbR?zuM$ zdsC=|X!@KRx2}1hlxeI$QUgsBA}#X0^oMlH{FNuozNoqapib#Ya{o?*Z-CiNe~u6j zHg8#5ssZqbMXd@!0xwhq;a2aDjgBHoWdK*3pAZc4A)0yZjHbmF86D`%#NKHGg=t2UvC^XBPHU+V6N;l;897d35~de8 zs}9)P`AzqfmIAxSoW1(O?mKBLO`mPUxivFl!jc}l?wAuhpg1tHqNnz}l9+!%Im)QU z?gt=6$t%THLO!cfT);YH&@hfS4fYnao1E|do!6={!0CA=TejW)1_DsCnU{`}4Bpz0 zUEBAxU%UJs=0M5brni3u7^B_qew^QjG%1if z9D>(YJMN%1*9!Tn!k(x(BQHga0JZOqNL0@t?Xo9?-FKJCqVJ)brvg-Y$SWKErL@IQ zeNgyV@v1ALh!MNp>vMsry8C(W+m=O(r})nKk&=GuzIw|?P~YLi$zA}LX;>QdhExHQ zo4G)aqM+zzHWQ#r(kGG$p185l9d=H%nmU*X3j>kGT69u zzQ2Cn7{Ue>pfwbDc)75c8v%EV?H4-f6aYptq^LqsXfW?0%=%`~4GM+5+T)1v`9Rlg zAp3;2t6;{TTw^SgWDaIYdf!Q$cn+d}p!vj_$<(><$@M>08wzg4teNFLNQcDh)O(iIrh8xzdd5jFytYL}X!FY zj@LuS%I!3)66jM<uFOjTrS@t;w9D72>YailrTnoQSOnO5yw z@b8#x4(FCAK|!XNm0*Q26=b3wi-J_+!62RRU`N&v4ayB#g&g~rxI&_s=@#NDD!4I< z@O!6K^<6cgcgZ-NM%Xfp+F{z68XQfeGj0an)Kk$bCX*_0Z3{ley;ca&T*Y9m*mbOx{|;NL+Js4qQre zjzhiK%Oz4HD5KGtAEmCu5z6UDR|$#N?gD^U?}+Y}J67heEq|NbKaX-IfV?G}36IYR zwK-J)zZgIu-9zScG^VP3jea8Ks`C)ajrjexBl|J-`Fj&#vri4^uRpF530N6opNk^# zsk}wWvp*%wf3hXX>k{I~&pN4pbije@!r>{Jj8rGozyQ( zQ3<;He$Ix#{QC#2R>6Ts&{+tTs#&vm7_D;OctZwr8hm)WNITPQjt_FPuRYbySGM8T zYNO}7sqb6QQ4FoPFS!E9*Y zPlP+2?MIz|9saSkGAcMQ_m>;^d81#rcVp_^@hB8>nGKV5M#I1V{YiSZk9T?lKNjRa zQKxiX&f2ItRrDMK2}sAwMLLLkv!1D~NfOW35vPwa`Xa1DrdA z)bY8?f^jt$TXQhS&}8eXsg}?l|0>1MJ_;nr;97cu016?Vl)%8VOoEBYxM%|5l)i zVs4>eF*XH9Rb5jWl5V}u!gFw;s+DGzB8bPlZse_i{1lPbJy=lFY@U3_U+yM_JeW(`r_3gQe+egdTYI*f+xvAYYH^JsN{5O-t0m^>~CGBuq4Lh-G~;ds==?>#zX-=vl~ z_0#ujBU1ij?t2Vo>y_r?)rp1glOWr@_u4@;;f?Ph55eL6vgLj@#wYQ)=lgTPWfB;y zIONQwV}1WG*!pAn`%TaNU)c3OUO)ctogZIc+j`hmp4b1s`2TN0`Im|}is!b`JNkA*gbX~ANDsc7s?0S0bT zDv8OQl1}h*mL-IEFb-h=#VWv={|X%jPPpMFBX=q@H)+wcB^eUVSsMla`C$6%j`=HZ zBfm{kkpsH21@-#^SByJDm0O2=H2^BlBHCXH`E`_KMPrcn5^}$W*Rj`EI0fWiArI-! z{{3r&lJaN$Nhv;!=9J5olkffIY!g?nD`UFG>muHF=~cgG66Lzcd-TL_t?q#0P;46^ zC4$_hBKcgJy9x_u=pMJC&@mSWIZ;cTzf2Naup0rJU@&TegU*DHn!N%)feYpQptQ8J z*IiZDQ`t5& zT1?$Q(MD1CAq!Kq5qeuX{k|s_Pnmjl=~r8^@eMGG1x8WEN>I2opKZxvLTh_su? zgz=AgIN+(V%yQBk?!ePe6^B1!W9#j6^L@?7b_>kfPD7NfFSd!WfR@oOUF`Ds;SpI& zU%&aj4G$_Vh6a6lD)6rP->AQ)TDpU>)IqTd$?o3YAdv3o+sB|CK zn%XAY?Yib|k$;cozS;q8k8OW#a9tc zrp!rC^^S}B5uuye(isb5epzPKNR^Elt8Lo2Ue!<#9wk7AG|ggTwq)A&BkKCJw!tq6 z$tzybN~=VR_JZ}XAmDitiJJv=#BLSjDm0*XMKSFlyHHVA(o#{(Dayv$Z(vf;4+pk; zG}KAC(Q|O(s|;teF;GZ;3oLCOUF~r8 z`sTMgktg@ca4=YbF!gWlDK5(U_bD&r&So%S_JGAm%qRint9a zwxQpelx3!#R;Q?!?l^lPp`hS2%di9TR7ovtN7gew9Ttr`#_Hfku`oD^!cE1fMj+7o zb;E1`<(V8R5^Tdi>F7-bh40-jk1wvn_zpGBQWq=CDL5GihJ;pGBkZiOR#(%_Gjfk6 z!rdnUQa+3YHmc}(>HjhKzK#Pe=r+8c`}NGn>y3HvbM8T7 zvs3k3U}h_m?d1x?eO#`KhO^a#@;wLegcW)oNiTZU`n+h zBeJy5-qdQOFg~Mk;kTDj)P@?;8g$^Sf1^c@qhf;Pv}>G`C9}RRS)z+jWH_tK!+rcj z`(P@yS*j|OD4l;QpZVAty)(OwpRqK3c6+zv_vv~f4pI(q(pgYIKpPAxx{^juPvck? zud)~JzsN0G$r)#=gXXrN#@98FD&1fXbp(_o%ArpJ48fHo)7pZ<63*rr>591Kc?b&n z28&gvaGJ-nLq7`)kCa@?ajQUREQr9UQU`rR@o%A#uzi%9a*nhk@%(0r-*j#4X zAmDKg03%2-)-SR}F7Gd$5dLrg+vSf6-^ZHnJqOiAeJ2Od40OkP`0{>b_&VVf_(PCW*QQnhN`^~KBBprp1dDuh;U9jNB?uZ(NKW6UWUp(RVh~Yy z_rlic2D9WPD$2d)fLWD8iQ*rZ0Jv~W!jm?VLWo%V=~bWpouFYASx)|j)O-O9w!<&{ z&-pp260d0 zI>g$jT7+ZaBd8Re&XxwKE9$KSSSS1m>(ykUfutNV z={C=>8hj_hlwzoIptoe+r|b#_tE?UvtX$URAWIp3CT$T9dPmZ6{~#n{M_+oBlHz4n zp;5R(Fa*zn2>DsU^d%eZ|e1WUamV*?1>gro;u$C)^vqGd!5K_JrK}OVOEzym~z zpVM!BJ+rFpBJ?$NLzh8l3$7L&(t`!_jrtAl*5bC!D^w0>CP8|;*hRV^# zG%(o3c^LeF*!pgOX~|UD0+m^bcQZNf7;(|o=*?6tX?6aT77_`QhnT{L{pt^9wXeHtE_WW#Z5rvD=rO4u%zQWeyMV=^JA`{f&h=3&u-K64Xy6%J3%K zmE_)87xv#iQ$P;N*=;^tZitwKB3`rT2f|dYEWADnU~BZPa$JCrt~I&qL~oQ zrMWdzitr0-ZR3@og&mJ%M_wbJUuO5GRA#nI6E*iQF5<4ghg{@2`&piIjE$w46d0pH zPlFVd^qa&h{1kVQzC)@}pZa**J6qLsy7ssUG7fZXMs(j*zG}Yfuk(AZ_vf6B_ktE#G;)IjAj zfAs?2W2}Fy0z;oTub10R8rOMHHIw5^5c;>8$PdtYslr6-V8vKvb)_zW;T_ZimcQ5? zI%UbFVSlh?$4*Jdvv?ngt2^+*DKaa06&E(qiqtz0VsXc_C@&mgHiir+Y4?C2K|D(r z^*tk(5)-w&WDic@wL1n)Fmh+cU;WNkO0>dGp$fV8qvLs;iH*Xe9KZ0(>){iSH;c+H zLA#~7t=-03X3dC-OWj`m2o z_Xb5XT=>kndb?r~Rc^x5owDOJ&!b*orh2a(T?Xo63Z)ho1)8{6|CWz0)b481A(0x1 zVpc~TDzJ^YSKfG>wtPT%KtJP2G7D;=Z#ihvFHug?1a{lW2q^(S1qJ})~B!(@LlZD8{ za}8{o%DuJJJJ>(GY^~JdK`_{qQ;=~SyiRG`94gIN?tm>0j|gY5qaV7}iMhUOEmK`s z{HuwSM9bmF8B4JI;B5ru+VGo7%;hKV)1h)Wc`FOYqz{Az3`{7xm=GP!5qWQ0V&6EO zj458X9I1Z&>h*u5Yb%m?Covb_Gpt#c#JN3`L3PhvH||87IDzk2PBRNMa^(;ben^_Zb9inCg<+nlj2bo<%kIJ)&6 zK*MO~`@Rm$FwyNZC*K zFppuFGa^)+kXvQC!*UHFb>Z8ImU{t4g(`_2x9e6zd*WEzMZ;u7;&R6z9wKA(ZI)8R zBAp3vNp?9pOWlI<|B%kQiTT$rX7b}vr>c;fjC2uYa%nNP3;64My?s3i%)0sJxQj6H zU|Fi>JtqbzcK&DU3SDHznbtHti>mybqw#=}2z z!f{^`jXtyg-U!OqlO(_W=X%D((jwuk-o%rWojvE9tH0kshV!i)_vI3E*8PKfop;I_ z4ww!waI{La&duB0@}5ZX{xS*MV8VnF2n{_a5YJU#c=T6)>}xB?`!!KfDV8G%vxqqC z2@Ey3WkRPx1$Oi9xMk2!4b=+KcYZ;;3k zhLKIB!cZ?Wn<+E<@dsuKXHg5X$f+pKyqeN~jnE5FnE zc~c$Ft#@B3zHv3R%o7pCfrjz%r4HS)`H^hZJmy?y-;0)-^ZlB0jNyBW(f0YYjs?u{ znPd1w=Gb&b;eQb3ABZEtFy;3A2g3bR(tUhgfAba0n$L2#wYN*vEE~DFB>fYkcV4;F z7#SG_0!#dBmH*xBU-fss3^D-YVb*Q;Ij7y>zi$Y>gugC(K3j14eKK=i({gs7*6n;% zn!oKK#f;>l$p*V*TioF5wBiT{PWqW&kaCfb=mBY+7{~>1*0u#L6y{Z~X+KyEV(W-R z0K(}z&ozu)^!+N1cXUr=s8-lHG%^+$y4nsB3C&ftH%s#5x&ygJjQ4)kfsIyhD9(5z z%|&NUa_4AXqQCcvzl+L)YcabT@zq=v9~GnwHSQ*}d%a_TRqO=t|DAMz|TaR;JotuIfb z$LrWjNGZ}W6>*(^w=yUy^eV9;t%UM1cB4JikQ}A!Y)6}eYlFx)@dm)9sgU|<)ax7> zjE%;ZSYVyz1`i?d%9LRQ*Rn&SvPA@0{jC+~Y}Y)Si|x+Ai8N(lrV>Fby{LiI}Oau*;Ryi-@MEm}0M^`d} z{^e;IEZh&(O@vtm127G8&ZPPYhFazdD=Rs7qPun(3D3%xkt$Z1V=2E&*WYNYRzitp z@h*C%kBNabKZ$>8YJ`b0nEGGgpq8iuafKN4a>_*ZX%y0SL=dh0ez#5ZLo<{j1G9DW z7=8k^6{~PmM*5w#I;Tk!hvVSW8qaFf^QQM#bW6<3+qK`fcML5bpCV+KJ6_ACSCP2m zZtLYyOYYZ>(anqOCO!%VPr=ub-B*Zu=N{UBg%)GZT%uHi^1#5q8z8iH(J2C;^LbSF zMf2-iF(QZXLEQf^WxW9hXBjCic(MTO!J3-`sNc~N`iVqda z+EI?f3V43o{BP@H7`M0o)^j5Qw|yb>#6lbw6`oOxSxZxqD-ju3sxn}) zV%D+|weIG8IG9FKBYi?m#WP0|)a=y;MPiRW-l&vPAz2c~uvun*tj8J(KwH9ny>93m@su(!se zu0RuZEw>QfN@_xD($$!y*hl6rV>F35MG|hK=9uS;5s7FlZrZGuBz+(*^rv-!#i22+ z0?|^9X_Nl7u%2gTX_2FZ&7;yA+Mt=hn}9V8;3|O*>7y_wma_l~7cVuJLY0jq{yrAH z?Xi^pjLHDe6MH-0XyKzEU2$BR6d^+71o9@`>~y2qYOm+th4hh8qLpQYBfu*q1O!*< zQwFM-t*O@#rM~SdVyF5)Sd0_wOQ8U{!uZET)7KaG@Z;sA^QOSo<2 z_x5JZzITUD5BgedH7R~o`J+Uuwo$h}NJDq`)YKIGf6IElyl$H=82?bSm9;fP_6(gF z&%w>L2yubzdn>54Edo)FwA#u9)5HIdn zI}fOCT=k#{1q8aauoJK2kRa#bc$wK!kmPWBazNL(D9}_u7HcNScu>SRxB?KTKXpnp`Eo9G z5tg`BJS2zKo(QcxLMm>06HGTt{yG$yTaGcT)dV*8lk;m0G7J`fF6iwBn?g@Nj2by= zMJ8}1{Y^&ZXCsDLi!;!WI+v=xJw{N7a8b0EI4$LzlRKB!QWzd7ys?$JKY(?-?4GVJ0zB-PKz zfU^A17vVl2d(jysx=fNnsY;LvtHOyngqG~d$&g_Xfkmji?5ElT*RY$yygQ2XY09vX z!yU{(yXiw)gSF2lU-2Kh&jffhq=?bHp+jgb5f3xa(E$`Cy0VETaSPEd!!T@Xq*8U( z-*t7)ZN$nuAxfiAY00i_m!oYI+nXYDo{V8CT5AH*1vr~AhORnt3yvR+%B?(x)T8xf zV#u&-{Fh|+%*zi`U<)gEhtfACi@Rq7*ZA*Ef4n~ka6j|LdE&)~_p7>{TSv^NRLh@~ zRGFX;jgf{YK-rO$F-Fm6DX;UOxS~B?@yEmy5mxfW)U%B(6^UDDqD0tK2N?Vm(oyT&3alu|16?03f%8N2PaB zhE%7F+c_X7640(Y-d#Kc20Aa6`JY?MvGKZ*k7f1$fm{DD*}LoS&z=%W5y;0Oj_x>8 z$(MQlPi5WLG4(qZ{(F`b>)aG@AfYAr$}p!gGI{Z)LGlPmS@dEdud6W!d>xUz=pclzE+~m_K0|EcDI*wBncLxy18BtSS)wyV{Tm0% z#iv=ADjA&_ouJi|x=pm^d*tB)%u*^|Eo}5MSVb!S>mbCqG_Sk& z+brYU*|APzCsvq#F&FE;bV&Qv`uKeYTW1YsW2){_N#|2E`HU_i-B266l)f^Zc0J!( zGJaP0H9}48H;y{W8XMIGW^zUBd-_ZN*s}oS-gr2vvYQ9l!oAf7KWao9PBpcn&D&aD zhzjYrrDs^Il0c*y38~v)KXSK2=#fGHns}m0sC$) zL}y9&PS+fSNQ)ShI0Rvqc0|&1{xaX-Xdr50u*l_(k;8Th zS`BEE&!C=3^b1l}+oIL(7E%E#O6>@0lg3=;v^veqF2fKpJ5m}lky9jF;HK&-J8>%n zA^#o%8)Hi)kQ$_N!XIVN(*{cLWC-O&{xobyuTFV*`8Xn0@LH{E1MUOz>}V>VQjc24 zT3ucAoqsFsowRuUylE5n`nnkV{^50Pf-}9}i?g3m^MHu{%MRq8P4Awq6G)Ib$oWX{ z?R)mA!PT!~`~JxJzL#cir3pD2(r8KoQcg(4>WYD5x)aFQJY)!FpG-;oDkyi<3m=zH1YRMKn*Q49C zVt`Gi)>&w_Dk4Z-ilSc2SlaOcScOL0G*VMOu7!$UFI0>?S}%2Z+};4ppGw@R({1j- zOuX@YO&n+};@O`Mr#4T%QciclG%_(jNYw&O!i~5YGO+?eSyYA!L+8I``NF|T$_Z^C zzvkyxA4*i;bD?P8VS0PbuN$BRpnP%&XgA#chU)2E6?0>qmmD^@&pdJo-iw3O#&s>Y z@jj$tIYV*$6Yui!g7;?YxyXVcR%3rsA8_VIX!#^TN*fn6Y(E>{613K)DNr)htT_nL zWP2rU9__Jg>1Q{*duk`4|DpvdeZY9QAXgo{g`1#VRanka3ZqmVr;Q<6>cVT#^5Sdf~=CL<{#y}L?7GNKro#GP7*iC^S3^ zP_K5D%LG?8Dmy90Wp+7}IbQ*ak6EK|Ay3)tI5#gADiiBBzW3tCa4yk4?L?TdlW)*5 zg{2XnbFJ7qPKP))yGWBkc@Hxt3%GKCQzqWmH6Q)bZyyL=Jw} z7N+lTiv2si@u0q5AkjJTMz%O+tVUCCl^deCM$+h63Bx#^C#42AqS7A^QYbfA7y+`E z#E0!j%&MYid_f|2`dmDm4tWQMUV5HXP-5b`Pv`@KEry3Nw?nXJ(fhyIp%@?(3m#87&pZo8`8j&XgWw}EoPf2 z7qAsc-RAn;q?))Ev7QQpjgeAldKFZtv5)l#qjqnoxQIoLjIYT-I#L>HM;oid8l{{< z#FkxPrRBBQ%L0oaTe?g(xup`tZknIQ`|ChD;~Y5ZCT_)Nq_@eVW2Y|s4v`%FvL3T! z{z`enys3%Ne9iSOHSqq0A|R}DB4C=5ynx4*iNNP< zNig{Q4bAZWC|ow2ejneZm-ZSw(SbiAK?S^jq zj_!Z{TZ=V5Y&9N>75GelPb>wUqs?*f!2N(W(>-(X=tYU<0D#sWC7H*dun<~QT!xud zO0|(SV@s4~MO zT7|sfz}GoWv%gLJ-j#qb^vjjEad;s~Phh}BLMAJe@uv%-6@fcUH*l3G=lxW!-#!fK zJyar7WQwuS^K#o@LuebO6dtn^&v{Y!@73S}=v}qh>#95X~x`C`V zZ~SVNDbUf59G?PtbPvVj*5=X zm7i38Cq(S1%&<1>xL+EO_kdmz0LDjrycA$;P-3l`3#&#=9Y$hN&f8WtJ?q^F^5N>z z_!L4#MSlX$$;@T%?VAy0J%n)|zyDl=A{*dn2vcP_8IA2A^V9VWtDsOD6VeY%2OABe z(3&kx8Q8RhWLD*i@6w9eP>qYgU;iRoWsV4sI3bE#+7_9@e;DSHXtxav+S++AEN_)Ytd*?`I z-^~x-1jZvc@7Pg z8rxt9Fm2n zsJT-nhRFN{ae~0L4B>jv*DWQTBl63JhPTwClzN==_$;?h9P1A!JT4w29woLT!`SG5 z+ceyF^(nKBQDtJlOfEP{B!eDD15HgR)}&OOOT+56A=-*HSa4d0^^1Y>A!{xvMzu30*m28+N9Bi;VHcqjKzeAq#4Nn6ZHLr-`A@F<;`I12eKY7rD!!kBwIKWJ zq2xYIdD=5tecVFAYF zWn$q!_1gR5_*GMXPSHjqY(>m;SD$XOQS{h}IP6nDhLe$6#tm7U#mWu%<@$CG*iI?T zbJkJjl^0JeLlc|0oJ0^1EMg&&5w4Dir_>=G&G7 z%1k{*7`^_YFdH}&!;^Ang?^6){iCt14dcW2cwQ{y*CB&yE3g%l(5fRDl46s=8#QIh z8=b3#shFm+_2sXCcg-~Y_mGfYIH}@bv9F{y&%&l9!Dwo0bvBe& zVZ##95kSEa!AC@Gdtr08C#<)}FcHPGqD3a-aRPk-CR0|{;uPS|QozR)m5H}hnAX2m zq~j18-p;;IL?$Ncj7=Ry&DN}Pf*q=)$&?fur{7CKyD=j}7Hv)hx(ynzL5NlnVhnK~ zILV}TdPxc{%DZl)+w zI#&0|8UJPFyhd%mzKx+p9p!^6al2ac$2{EnH?!`pXHg{ny=^r#QOV|+CQVsX&40y%F`dLMXwu8&MO38M|OUc@lg@< ziit&~`A;WfV6mN3Gvd+17;f3DFEtF%jAaN;V<3#CX52z%qf$W$uQdvKe}aLdpony)fXtV)o%I_k7%+nQYwq=GU|?tdTlXr;e?R zAm&<60-;4dzjUnsz^5R71MNQ`?ZAC(kMnz;g=rZ6ZFxoH`=@D47>8`K zYVr^{*0Dl}iIt``ataC!g*ZVSN=*0+_iiucSvOgs5?h!QU3ZrG->IUmzh>#N<}$OH zQBivr4Ybt=?^jQyA^(vnGuT+D!U2>kv5>0YLvbX?gep^r*5jL5EXY`1vWFXo79??7PSJ?(X+z=g)Xobyrv2byQu~d1D>_969@YsD-ZB;RI8_V!vSG z4pBqPt|a#V+uJ)2wXV?mdM+b{%%VM=iDr>hsZiIvX!W!Ny8TO!Z7%YMnv?xjVR`k2 zf5SK#jMLKNwdTugQtNtUZtZM6e%kB{TrCCEzLa17(`)N%lL{)qwm8tkXfs+1P&oDQ zwk8gl{7_@0O0NQ+T>1bXdn{p^)?2>RiMs2NpS)ldtqiohCT9YQUokQS z;`P@xlJfD{gQa=3Ftn?g30c~=5O#qn%KEC9nT;-~X7aNbA~F!1^_XAGFphpHA(~h1 zq}Kgo`2O}p_idt_{gC^M5-S5}m#&K|*!hpU}ge&^BmxQ|J326(f8oucwG%C80;&`+MOTI6Q3U9=CVdi5zts$ni? zu%&erm(NE}HBjTvcJ(7OlqJo0tohjG;(kt~QLfg}ew!oZbxm$*cE_coQB-W&;->-B z*mfd3UuiVUt?QF&zj}P>dRp)d94rQVc?erW3(6pSzV~{ar*2}bx#Ro~5m~B>s%+GZ zjjRutXL3{NQ-bfWwVGFV_?m&N*cON6qxws4WwKV{H@?S)1^%dYls5K2^-t~l<%#=i zkVAPhDE-g&&BXez+;ZHhY087k1~nIa(;LGh9<4W_Fuw0@YOy48MruxCJ?F0o)rGuM zd1u_8A17%y-m|DzV`kaL3(Br0+-9*i>#g4bYx4Bmb)3ULbRL56ckWUvF7H+c+{HrXIFt#u|ni4e9u1R*QX%@ zDu~9`Khrj3`f4i6shkyt{)Q#l7+K4mufnK*Bx6Mj8bzCl4b zf+5vvMw&A=3#W+eNR}$j-e)rLJ9d`Ao0t(Gx#<J<>INqDyo40t-UE?-_~USUM+S`UW!yuc#E1jRY?aT702K71rLHo z0DabAG{eW~7t|8=3Z2W=#+CHGhx3+IR@fs2-37GVAQPdieyYgtZuHxB zw$bF9qJ$NUHq$5&fz3W2+OL&$(6KuEgx4vu=PDaFL0$=53T(go3g5**RQAuwaa+z( z5uQqp2;4FUXj*wp>W}W5ItOam9wsd0JZ(4(jwl`|H~X%~*feIYsAaCN%N9RHy-n=_ZexW!J$68{%KggkhW`L#&UxDQPPSO%09P9(2qOw;0vz&?bX zN7&CWub=TmbW8m<}IhPpvTix-@$SPRjIaqa&j9o?3HESqUxe zVnnQi?)N+tZS?J67ZqHEe*RYMWb4S3_<*&l>|cG3Jb6(6v3U-owp_+u52kHEr4$*2t*w&Qw#nsv{Cw{6S`tCv+goF zrp0&jt2C!229SjQMW5rk%7B%7nvnibI+1=0Jqo)THrv#;JGUPE3ZYvRT^Qi`a(o)(V& zR3FPfJHRR{L{(eXUQWY@i+hcq=yBW{#8o$9Cr3UqU_Y8aG{Fk&=RI!orO$;wv7q8> z;FbNhKQVs;#od?3=v;ONlsw-f<;;KK4Z5=6o4%RvvitJKwBfa*HLVUh9wAp_che?| z4Wl@nMrO@H4QIxa>Qo|W-};@_6@d?ir+Y^SND2^Ry0lskt6-3r>>LJ-Hp(2lezy?B z-YCQ|?7?LfWobvW9xJ)eQ+encWp`Pk?b9vjmp9zJq)8&rKb!XK% zbLDekqfWyR@sF6be>0h$<@sFVKxm+zi>!>iS6igtpDMuUe?ZRF ztYWR<2S34gXZsUtxf{}PeWK`;7QW$qo=?EPn(ud8y z{{+l#Siem#DleA`k+HM84y{C4L~L2^WF0cGEQvWx#0M;OR^Ir0eu-H?TVu^u$H;CM zWzb)qqDWOpas8OQotc;|yQqzQQoCe(&7) zlK6RG6Qrv)mY{r5NIn)sIikBz!plRKI3lmpN1!de1_(o@YI5K4aL6PYBI<(+CTnDW z+%ivA5ZushnaKOCJ~#7!9S;^lgQBxC%{i}Hg_=fSwZ~jR2S$n|D@ICKmAMDs@XDwl zvtA*xlO3*_n*_*LUvZBp>(u#oBplNUMjiMVs2KLKyNSVdk(0FIkWR3Gg>Ad6nRP%f zISKyIDRDFIhY061_1J#+JuHFJIRbvUdH8IEqrOtN;vl&;v|h-Iv(tx@G%4^V0lJbb zNYr6(5sK-)VXBi!_I|;xjL~)K^rJUip`Vi1^?LbDG&}1hmuqmQ$X=Y<^Nu8A3qlK4 zCOJX|nt8}4m@=EL0)d>=!wQSHC2In@Mm%Cq(}MwaFK zwjO)Jk{NQod2gSE+%AJk)v?CQfaY^G5rIzOoW-W_7>{P!=I{3KB;}jmZ(tDuwMh2Aqj6rs`;l!1IA822>aVj<^e?zRd)eCdKnJAKN4?~94% z)G%upea}ne%GqnkU^gLq;8o-|1#robJYDoxamc|ZcmaZBu!5x&#hk7^e-ab*2P~CN z$qOb!-98tP?d0w+fcI-**aodVc65}6AomMI7!OP46%T6$kH=HBbJ2q`Ei`MeMIy*G z;aJ5)7)JX3a!K4{QgNiM3oLsZ9UjP-B0&6gB-?_p^!a?r zW{UBPoGiSC?s#ct=v-}aWHR#MNOpMuBrs$pljn8I(4}O0q+*Hbj|3Z$c zX;J11Z)A_#Stn#rGEY}C?v=2r-Up|+YJvQ>z-M?V`M`X|4yV9vXyVQk>&iw9RibSwz)XNwaJoh8(^o4d=(@ zfvnN_Ut5P%YLile^oX^3i?8uRA+w)QQZb*-%T}7xu;S6_4B6Y<)~lt=(bi_Ey56cG z>%hjh&*Bv`9=+i~&KaDgM1f7`_Pwno#NJ7D4w6Q?=PILG!ItwSt^#D1b+fSxIGcB@ zpTp6J`AaUzNmLdnuR>kv5cH_pz>4+lx=UbVP06=`hT*L+Z`5sh^7hZX-YM*V1G8%w zLw*%}nnap`m@k^)N}Fv_CAIKF<=;b!i}egMxX1BJy`#gA3{5yO0}7?X00ONct=>+Lr3>8E-}Oz@zeHxH?QqJ8oOs)?EY#W7>JnjG?X~c z6Rl|ICxf>hmf-M;G(W-`kKr_@k0eAD8l~+A(Ne73D^G*;=925oYJL65^!zm-Y+-KX z8XRE;s<5c1hz0g@JPaOXzKhnrF=TOkB)`@ph2vHKqtHVcHu$^DTL>7!GKkplNnN{( za{EdPPqgB1=cP;vS5Cp45UG5|0+D$W902S+RJ^Ed?uxg?G*I&S49c&UkccsD@=ngM z-jLl+jI!(F0}DR;60t1pt1Jmp z^48&eTU2yC9b&h!52>`N@p0(kNZXKkzFW#jHa_rCD)kN1r(YgNLmMuke;&FfsanhF zEvgn-CCEdqPv7v=-CSYstfwy%7d+F+lgZ1ehejAcCw0TtmHtJHy{gfrfy z_2z1ea`GHT9jkssdnIr<$pgt$VLZAcPw{~}sZ`+zjFD1tl!=_t1M9vu0u!bj;RKCE z@w9fyWFq1{&N7+cDnya`9gdOf&wc#>+nUotT}dy8*>$0X2JoZeO)JsWXg1|6y8 zFp!P*%9eoNFjUj?R=Gi3F=5Y^FXc-|6wyc`5<7RW+}@xJ*dwt%NbAJpWJ)_}d7>8Q8@Hc~3w3 znCbgnJX{_+DrZDw7&T0I_HQX- zS9M-aH*R*-wvRz?*W4SkQq6`3PQ=xLRKBAx5P#<_F^^ufhS6`3YI%Qedt3hp^mq8F zv3pz*^=ewBsBiKoBN@jd1#wm7?0SDzoP^*7SjX`xw$eKge2%sfvNYe@T~OKqV;27H zLaA5(S@E@VJ?(5XH0PNt{B(~TedGu2L!ep8EuB=)7dNIDd(!XTe!&5CUZ(+_`7+0SFUz`R1gpS4#XVq zNMCi^?zx4X;}wIfCfj?o*4SlY=K&bz%?Hxcb_G$0i?Mq*Amg{r__F(PGSUD_o5IIo zl|K7APw{9f{6A&WF>oT0QCC>ABAJ90fISZu``miYm$lFOLHGRI7$} zv*Mk`Z5sBJ)wX!^-=%MXS4c~KUw0{G(06|yAx!mg#^34m;k_2TUncQ&z#7R^q*dRAG|$c@16Ro)Usl zDn5lAgzxH#nWei+rm7Ri^lDsn4%2H6xG!F5Wz}e35N*_su4@?SzMt8Bezo`_Uh5h~ zNDh;kY~3_*COO8R3eDR~)l^iw`rHl#a+gy<)jV?6(7FzoGQhMfN!O1l;=6cFTw(+I zn@Inud}YhG;#pS=iF)Si(mU7gu_r)+cmP~khyzly%~IHc^C$t|D zM-ev<)=_e!bhik16Yf`$Yo2*7$Q1z5GKd@}pxHAkin1AvbrABtQtxGKu4qIs+dGVb z*ueHg%FhwGk}SO^_hF+|W5!tfnSIYejc;}}?NUB#Uqe7VHnE{}(7+6Di(q_4L90@2 za4W^2IyhFJJ_B&WHFwChCsHea3yaCfa@;XCKNrZHoG=iWA$LO6eS~z%9-Fu zOte(rKuk!-&36Qs1IcjU*E#V%eWtVVca&B)z*NkbwLu~6_(vL!eK)+K|J+zH7U28q zym+EydGeMw3yx?3YhxO+mFt=g16y>^#RmVt!}5BIKg(})!|cVVYcen1tA&I~ZG04{ zm1jeDh^ic(ZP_kJ4Y)YGLbj@1M64yax ztqiChh5{fA?E!ssks=3HI(VhIAfw zgKlUA7JI-AD0g<}w!?GTW|`T{MMg>N&3BoSm;hhu^G|$|1vLgiaQQD0{0&3JAA(ZY zhJ4}TC#JnH>)a^jBCdjb$x>>QQH{^XgU7A@w{GxrbI#cdbGYv}m%j&i+hrJc`F+4f zXHWg?CZUasTULGRt@k;V9%T5TsY-moHOT%U2zh2XC<}f&VH-PJRJ4J+ZvNuZ#d%p5!rp6!>@ zY3*v|f$Q(eqZ13cm&mL>-Af;w4)V+kfdV3X#UcQkVKOxEzEkdx0-%6^2N}c53s2x2 z*~pO|ayqzqn#nCaS7105|20gbTuKEW$jY@K-DK5ot4Q>*AwWv4!Bo+Md{0fadY#Ln z$U&+y1XqMZgNBZNeX7thp?=&N)SASOdlV5pWix>?5Xgr+S1X(iquwMEImB=3Q|3i7 z3(;=3bL9Pjy5q85a6yOOez&T4SzOhg8akX{MRyP~Vg7MeT8)&=e9J!upcHl6y#vMS zw^s*7hgzQ}s2=E9v9I|g+Klq7R-LAl9}=TeSU}9m;j!O`a&vP;aV8R^i7`czO2d9* z9usuQ#V3VD;xLzx4oJtxev@NDe0xE=keG}~j~`8uwAoLS@?t@}qwlFvR!n}B^A{5c zy`x=9k-O3wh?|wsy%p!kar~@ToLGCK)mp5O2ED@>C2di5v968eDG5cg1InSwc{0rx zQJ$@?9n(81J9=mfqt1((3j3yy9GZC>M#r$OtK^Ic z&sTDZGi2G+$arL$s^Y8Uzk{NjY0x03<@P@{w<46-b7lytF(J{1;-?3kIxhxg1!c+u zRhpIh$_WEVBfvRMg@xFt2uXXIAM8${kdX85_>qMq(A$o9co7lS-Y!>108WS(TBT&K zSRvo)?*89jfVR??j|TF&L%2Ti7e$^+w}RtJpX&AVM^U^+Zup zm9G^7xlhfRHIRp3&TBvThtH1AZA9ev>m9^sq+sDxY--><+g%uiw) zDz(9gF{q|^L)FW%V-`&|80l*5}ns~=Hq|=xMn(1rHyzv-LowX?T7l!_m87LjGJ{14rgAR z?WPo!GPWJhsH2AU-Xt>qd@sdp+jbUVi8}pe?R}TB;IH6^^UrO^5}$4|zrnFD*g6vZ zuq3-gA?0l*;pmPP7$$AxX6;YE_K9Q?5=@6Bi5={;oVhyw#P7VeE${ffv~W6nXCs0C zldR*axB1~BJfOd2eCM->#8r@MM_lmw`+IT7p#?qw9VYf%oX+$p2%a>FUI#E68$kfO zV5+BieRo?iSYAd@9p#7U-ig)jc4&4Q69wgq9bWZT%;(iLHAvq8YNDQ@VS9I;*E$Kn zHuBtvTn3Ed<>lqDy*0p56Z#>HySA>b2LP?V(-(KF%1dMNq52`(^1FF<8w2L!T9C%1 zOZh`|;b#8eET4|+qXWucz+XOxpfU_kNJy}?@%#Dvc)G#Gw4G#kdvNBnLncfJR(6I` z+1@fW8pjq4yce4hC zhm#f1Dk7Ne&C|JUaYOs&*^bY)_I^JXmy60?%&ot3syLc%Xq3>UtL#1g30*2`?~usA z(*MsR|L5^4N!U$1hL{|5clR{-gUs7i76b8JfB`@;_3-N1W8A*Vtoz z6@bZif2j0w5BKzuAklgD?j9SsauiA|zQu&(!EL`2sx}d!_&av40Mg>^X_)TB@s*J03AMz9mPDZIFPC3KacH{3 zu$IJa3^&&;8{npB^_p6%nH-IC$P_g}FmXTfTKf4^Hym&K91&lSJ4EiM{r;+NEG|Mt zo!1cwl#4yER+Nml=iy_2KvI50dG-udHq=6J6PGc=3@5-oQUKkNX0gj12u zGm#Bd!5;)WXMar79B&#O!;NkljL0PZPDb}Vl8vI&{r*mGTmh-&4Y$QYPq#SzyxuP@ ztq>iz9#meJsDEJn$6dWKnJ2#i=h3%2>yfzaIqf5Ji~!&S=m#b5|CV2GJAzvi~uOxt?fa zLjz$QdwA#FQYVF3#3>+|P(fLLbe(fH{&_S6$rnJ{9`0{Am*%Ok0a`+Yr$s^4#yYj&G zaz}sMn@B#IQq0mX6S$bpK-cUQ_g(-wFBNzD9pZDZ1lj3j#{jb<2`@c6%ND@S5|( zp0d|3*DS07z3G3kuBciiUN&_exdJ+{$Kv?^vpBi`Uflffr6M3;MgA}J5MWoh-&A^8 zAQLPW=}_smdouqx5MoD1mVL++wPxeGxjODAIU^jy1i-OBPu6;Ltsv1{e99p&#|7kCPz7Y!C zVOez&8>h+99}dmJ?|`oifD(ZAxJHV{YaijY!qfA#9&qpuh&=BT0kXVIdJW3S92{f8eW}hi3s9Q<& zPamM5Bm)A(_8_>&ybf#rv**pyDkX4_zgu>eza6m@$2U4lokKJ0N!eTaC^F^spPNcYq4bZtr^??Dv{d%$sio zNbhk9INLqjfD5t?YFe)K>}dG?^{8=a{c+g6Ub*TJqWDTxbo9a<_fg0E_kfpW(Xer7st<(dk*K zZaZrqbE2=K_jKAiFv^=Inx8(hA~wW;L3hk2UC5QuclGLn5jl3Sv$;9L{kNC5lFJJV zEr&P1oo`#g&f1v&9IuW?^PAdokb5+X_v$a4+|g;CVXabQnaJIL$bGEiHBz84%bh5CsWntiAV5TEBcXqaS;$~#D`Og;^ z>>SM)N#x*W!62{fB{ZBM5LAPw$FpAo`4$j}`V+1#)Kg5Qlf*ib_s&xbgc67L_*r}d2PZ_d>#j6-HGcn<5} zn3$Lfk3MN?z7A;r^7pSo*H(O7Tvl;0vVnm?;ZfNX80g=)ya0)Sz|zJg1@zn>rUQXG zW_%;`=-t0;eSE;%n=Y%Jvn}}j8*OD}rQ!$!AHTTJ3xf9U-PcTFA7%6?FY9v zAdKB+PJg;oXM3TM<4;G&@t8E@Gl*)bc1U{wA}K#VVOCa_IjoN9;dbd!sBAh#r=wzI zXtvTUYkcS5FwfEQ>4<>%T6Z`)E^a7;PJ@0=1cB*R=z0C4bw4mZF)Qo4 z60O?qWHzhf{*2`0(BU*5QaU>1a6FD~vkdP%cY$;w-#hd)ZWp0A8Wl7Gf^aaAmspIt ztUMHad;~^45u(i==V;&>b#wT`WeeN-s%!X8LHSKyQT5oZ@+J(*I zO4s1L;}4dPl#~>X$m`#;hnqddr{5_mDnh<^9yMcqLm~Ln`f$z&j0wuZf&sQsTvIdo z`10ZYHplf~?rOyMA>h|9s#HGD_X7!x)5XOiKElM%28-3s5dV!Hp$vZS7mz=9*QX^B zjC6EWa~JC|@~?pf2q`K?In0wr@&75Z~SG zm37;&m=6A?!GMsEk%@4+pZs)~Z}GkbV}hkMhOry>qLJ|OYS(=}&UTm&!Jzz_nMqt^ z73#hoCH@sGtkfYRH8uL~L;-1)#kg3V!&;ETtzGLq1q2N&Gs8=NV(nHR9SHH$VnkLN!rI-_Re5u>)@eCrD!EbX3TVFS3wS~=Gc{aKp0FO1`RV$k|>Iiy+&2Ejoy0#YH z!)7t|A^_n{g{L={>me*;a8O1j@k4uY$LVr=z-YE8(%r-D5u{%)|HluspLuz!H|KlV z(}lhN?k?u-sOae@e|m{Lgo4m8t5R#L^Y!ajbsGWaZM4JsEkY47F(?%J9PBc?tJrW~ zU%BT3_;Jd;F8a0vJfvp0gtK)O1}+DybAXdgW-aHIvrfU?8cu_Qu-YxcEcL?P(|^Ae z78X9Pn6Tb%B)#N*YR2pljnu?*T6u7xhf0u*$VQD{aLuorkFE%f%~sE^EC!zKPACd zLkYdl6rFb`LWD;{-aQ4%!lyOboh(uZ?v(Dni34+)){&5tW4AJO%;$F5B?hidDW6_7 zM_D5qj_?K-0s(t$T75KAZq$8`iOXU8eJjJ4aBr%l1H>3bB_)5iCGY9|L@nETcyQa? zPa6b`=KYf^jO9wRQ8Pxh>OWmo*;r17g&h1{0jq|okg@pr`GL!Jhhoy&?~IYJUBpnz zKdoUhEXQeU_}8a=l+BS0yD6_Kk8?|WF2@%Eh^Pn({EP~~7iQ~0>=6Us4d2pf^;w|V zn`rU&gy@gIixR?rEhkcVwmk~RW;xLYJjOpi!v~i;4MjSh?)aB!7VsRyg$9@H*-Fap zNFvl`-N;CR2W*?Us`kZZPZOP-s;YNo%@@g&7a-Uf{`vaq^XU)=lk2|v+0Hm3sdxk{ z3cS3GOsCTbA0mX)=Z+H?%eUL3RwCevLJA6KKGz#q#>U3WAY?%xUgwi)PgAuY;k(Rq zSnKW`80heaM*;@!$8*&5sdD;jFVWNft5{AJ1}^#Bz8MjCo8)RRCnT-UnaR4&Pq+iaEPprudc3s0C|?xa^fZMpboGv zp{uKgPvH~Xyo=j$aPO;`t)O79xi&wz=2`r__6C7ng#UXI9&pza z>V2pGCEd5~IT?MxeljBEGF<}hwBdy=67W5o7as+6bqPTPK}XZ);aGEPAIgi+~v zq7tIUb3022LKEnHS*Qln0iGIM?^jH1_ zs@GWK=z8psV6_8Tzv}Fk5(Nj7CNigvGbc>Xi7av5Tw|qXpE1yi8(Cgnv zkb<&(A0M!}9LZ|zmJU~=F~D8qJ8Ic~0xql5=t{!HRbTPp*|R4Xtg)FF8QB@lK?FI< z1lbfs<#4cnD*z$HHpx3UFgZFo4Ly*8C0*L6;pfoM(D=J|4niH%JRt@~K#q81X!_}L z04kK07O8g8gBC2ih6YZ$$1ZiskW!`DNOw_LOQFSV2taI3?vrFb1qB74*TOme^-*T% zUmh-~w|H^+Jl?zA0pt_MYX;I!Z(kqNgWJQMJ63!mn6>thO;QS2+ZPB3P*TzkYfmvT z1VbYu(UBx}8(c!4D+At#t2M|MFp2EUOo%-1@e5s_Ym-q)Zy{k}fNToy;huI|+)- zAJqF}x=}IP%?%yA82}s=Z@v>H-xvAlo2NDD}CgR|MT7Oldu7p&Wnt822da<`?ZJTy~1w+>-dxFKWq17 zD*vAq1LsGFBtn))x0k;7t%j$ZejT}BZCHDjyI-{|dZ2{WrgxEs)igFzfob}DYY)dr zZPndAgkBM(MT}peqbq`|*mjChPY?9c|9L=~J!C*YN9RHhz$1dbd@jZ~7eU#wxO15O zx!Bh3=kj6X1}C+r^&86Xy0N^PkWX&{~?6T=R9r z2kKt--FpOlX*v1{<@^Alj=3c!{xYO1BC_b8gh%<;5>5G|1CDEYGeW@NzTeI^ElQ{3 zU|f@-cAXELS;gxgdVk>MLV}xK1>m7xv~BsWwOr5tyN_UX!|EzyQXqq#Fd*Be3jUZ^ znHe@fWY~m2eCAx*+uuHwTBrydx?h_4_SYorq0qv%|J^Q91@};XrFtg>2TSn(XNfue zV4dOl5g!<6CfC{m@mqDPQ~Q{q(4(&9Zlt<~bb|9P0qm3G_jh$M!hb`8dvAdy(l!q3 zAVSKLd4Ghw|6i^{`PZi^Hk8?1>&Z#VfL)T67kmp2ZUU>y;kao|MqfH~?E=ghj|mhD z&BVkT5(pJ1VK#*MpQ3~fDr0Rdbw2_7LILv=(lu99wrn%fJLt?reQC5ThgtJ9Wxv0r57@e z)Bg&OSjYgPv_$~eGf&r9-Gqe!y5N%&V_{pxf@8Dt;z6RGvc&ttK~ri^$*gg;lhK3l zcW0iLsG=soDYx|P*NkZ|bsgQ%m7TWqsmHZ=in=TgZ`Q7CTGx)``=ewaZC(3#D0*SR z!T3F<)Qp)F-3s&a#yzuEg~Oj{Xj`#KK0XV6iB#iR%wm{QLRq$YnR4%bXo+=na*Kf; zb^4*s;kn(xVB?0!dqT~t$nm2XE#=VRG8+i-Vg|y85!^TqX^RxG{$BdAGY=4%xOlTQ zEEk*HC1hko)YY*YT=s$v=4+)1=WFfsww<|)9uZLAmyzAK+ubs*n0u7Yva>y#+Qd-X zC;I94Dd{>iBH@%uN;rc#Aex^;7q{ds`ZaYeBF8{HeaCuV43kke^8R8oo}{EC_6L0k zGYgAoq#np3409xNV4w*5ST;>cLD6mPDIok-s*kpiqHEQ4Zz>J zbtaId#f*)A9=8I(^KF3MWHB#By=5zVp*lNOsk$ci5AO9!;MjdC9S-vI^eYca-P?oT zLu;j&u~akxZzH<#Tv<3mRn7FzghkdRVT*Jd!C*SspaR*Rt1en+`jjsxDkm3l+P{wl%2e-{`yfyrfXqg-@U%o!u zU8h5jqOpBkPvLcEeov?VrL5)VH2~)ASI29L3JPC9J^UOZ7D;F`wNm%zPaqPL^~{Hf zLY09@(Ti7hC0wCV8ISZlNI5~KLrSvHkE6z+&)pv*H0T&QFI9>#rot@{ z6In-s5yBvCKP6+xQnHjjeJZJ810`>nX}HU#u}3cZO*+*pY%y=e7VC~R5HdHhY%ASc zD4Sd^l5=@8gF#A-o=?g33K3TcW=6_6?_Zk6M0t$I_{qKIqQW{cpR=eAg;szRiB%u1 z_MONry(j!_v-BZl98(1jDi=xL`uF8Ox(X%@8Kn6jn1_k8N?*S=^X@3?E&YCFjVEV@ zslOCxeQOfsX%n7j& zz@(dJ=yFNuX*-$2H#7PM>6uIM*p6$u)jg@;1R{^J`l`D)Nn2trE4Udej8nnabrS0x z`~)KO+M$8cq<3c5&-%O_D@ZYAxpwN~_H>5konKS3oDTIH?kQO^b3A)39}V!E1;8yz zUy|^!J{v2#Z~l~BkZ`t9|1`xVaL__QvrE8r-r>=-GxBfoP@Z4_z`!Dx< z#TAkZ`QI+S2x=lCx`9b}Z)S_0%T`iJ{lb|wD&ilmSG07rVI!{)rM$^`XLeqn)MQPh zdv^^3Uv;x8BM zK?h~_f@K=NRR9jO=E^`a4D@FWwOxOKwsap8#Ah)rN^3eU%PuZ0`GVgR1Ev8J9OC7; zK#i`J{FGW38Qkj$(l1GFnhmXbdR&qk-ComP;P9T-r*>ve2f0lEFrUx?!@FOKo861q zk(kbZLl6-1X5X{r!Cuu8AdGRs}VY!Vsbv%K;qd%icxD_0Q6m4;7w#1BKtJ};k z;^pbA5*vC4lnXhQ7v*cS-DO;&JU=vmym$?^BTKM)NQuS_J^r%VRE!Mc;-V`RM91>5JOw}PJ)9HyF z1q#L6f%*kho{^4BgR@L_4C5l?(wFqM-cA^h<(w#j4`kGf@NUYRE%LP_2bv@(y8Z1| z9diwhoFXEG;b4Q6=Cfut*=$5UI3CtM*dwIJCL)QUunj4N9<6+z2p8dcd2{%p`(b!eEjr_B|ZYtG_CPpDhB zupmkTMFhZu1nVLUe)&pMwSr=$@-xM_O!Un4Y#=!m4V(JXK=%-gFC>FfFQ%&cK>|Ul zA9==+dEmc(`FkW>+Cr~!HXU2RDw^fz4H{A= zUGypxvqMVE5#?;}v~BCGs}*r@v{ zGi)7Sfw^8V;#0>U_=_q#KZp!DJ~((EYy!GQ5+3AH!$;70Ny{q2;NLebR)#obF6~br zHCxDP4tGx^@3cEp2INH6OR!;eKW;+h=GpNA;*;>gmTX*_=&3P|h>RH-oCnmY<2d+| zk|N7$(nSk&8yMdu(b7?Ocs z|MI(Ym4;6rLPI3pfGNNFaV+H_<@-vUg@b)-p}zj@wbQ`GYQ4$r_j%9Z*z@Tr2DMwQ-gZGWl$#{6#}J&gItuvKB{&Km{t`+lFT&q%xcdBa;w zNk-porx-_8IIPm8-#j6?xcpHltpuF&+4yqB4laLJV3W_g zwq|LfSfs2xWW`M#;#d7jV&&EbA&0)V3~^=$bw9|_soR#tNKb=2h}Guvo(0e@$iQ4be17$st35n5uEQ;@u~gInqCDtC$~>s?5#D)P ze4~;A5n=nEaz=Od<%irFqLLC~$>KVY!9_u3PDP(fW?re`ir1>a%*oV%^U$XX5wsS; zzNw9vJe$iqid-ZnrurM{@u^6Gsc`>PK;EeT%O+?qM%fu|g7vw{|19-hb11=zoIp2D zS1-SEK{=1?@4t0r-xJsn=VwI^IV`UBvK%=bMgC~n5aw__UwOP$d67lXxDZ=^!C_X> zS@~udsxoA*5fZ9HeJd8ytGY4GbofaD#@x(4vU#Oozc93ysJFe7J4O)A$MvDI>kNJJ zZvG@T;zDGd2cQ~suAJOOb(aZv@^bkLG9Q{2)}zKB0p2vGsnxSt>g_K0Z_ug=O(S)O zyFlfcX>?Cjc~Fy_zTOF+K9k#3C823%t38x^is61KExJCMSU(z^3Id00q1{l|9>+U9 ztBpnJx@0}%wx;KQ3*ice_Ne+`pCvXtpe#g@baN3b8Yd}!+M{$E-}~pQU>@PjW+EaH z`XD&TYja|tMIx=sy)?fTVZ5u-n>wHTO)zi1v?V5&CyNx{9$qr$E}@;5XraGL-JZ*# z?}YzUo{k1n2C-}UIv=*q;#^dT=1&|wD6$*<#@2Gl&gSP}2H3|*?C>9gn1W>qG&_K*Bu98=A9TucxrSHzkbSx(AVsWkk3Mz z2M5EO^(Rz+PdeVv&5%-0 zuSoJ;pLZ@fq|o z1~m?5yd+9}sAZ25JoaCwYt^6z@L!Er2mTYi`yd8`B7mAS$8Re8|!BJ9|_H#x;7ST`}yo;~}m z*HwX){4Z-06ZMWowR3(z{wF3#OUDzaar=LihDtYtT@qz|GhBJ`RN7C-V`_b38?fdu zOqIMQq)GA6MQjV3%6Vh5vfp@ODh{zj+0#`WReuiX%1 z69Z-C`$cxg!GX}d%ez%i>}$UNy3}C!)Tf&=SA8?-Hc0Ipl^d@azWjTHOc+*%_0*jNHy_9% znOd~S;3C{^li@p!S=l(d@Y$MKNNKL=U`BS&7e*y4a}w!;{12;f*Z9LLp^2sn~x|s z)8!2YMtroMGg&i@_HPAF5T6>HQH-BhH2W8E@*K{5eHJ6F;K{G{SL8zdzmJC1z(EX2 zJDy^3=zzJ@ZcTpadXB?^W#I@VR4EKlLzGI>S?Ujx(r&3e4IMa~F1dmiT!G{!-5Inu zN9J+fO!S_uZjXOAvqeN+Gu4qeLfM!CnoD^xL-580h5BHe(lu!;5BQnm2IHeLbc-IU zA72eQxL83?SV8wWm8wkQ`ULADxq>D+cfIqSp?5pzBg$UD8DSkMDDy+1@>`&X^#AI2 z&GYi}@Ze!k%00;n039(}tie*OS=}$1ORlt8!q)RHgOme3n_W*yU1`>x^RJlrl~VJ^ zse-*bY2|5@V6ZG5v#aRn zw=jnu0#45hI-i>zN_@}?KzdIn2$)VCZO0Q=O$Mq$w%d==?gz$m_&VPPX}B z#&wq_xupp=tR}VGlW$yqup&fikAgPfqhL~K=73)BPTTNI(4F7^g>wP~e4Xn7?vq#~ zozD}>#DwmBbM{e5DLPDA?q@`Czpg2-J-4(Er6ILaNc>j(0X$^z=HT~&Rif%IOVy8R zhX2I1?DtYqlubafj$Bwf z^`e|PAN2t&8?ZV3-@9TFgnTp}!=SrT?yx5I9hdEOk!r~wz|=hvsuBYVll1+BXN+6K{ zb7O18o<@@X`%}(E_E1!0ap-^`H0}d7@)OI=|9IyF==oQqV&B^a7+b#sLQguK1u*-7 ze8qi~mXNSF2niYNOU_gm(;BXRehSYT*Gc8)mzRVW!c5g$pGa6>DrU+is}|pNcs7SX zHnQ-&swl9ZaZ`BRnQGH|cO4b>9ws6#PWs^k8V(MQ={yTFGa4Qqt%n>iNzg$GYHJf* ztBI%Af`YCRVCS>9WYV}XxwyExABQsp$`*vtxcpKZT4e0JV`0OM;Hm{EU7Ct4!j`svPPb`2@kq)Q+KY`jMH_@IB287 zoissItCLmb1n2{o>$g9DV%a$z*IxoQKhod-`F8@I_mB@BXXaoMlb`RvT&&`$!r1X(`+R#{l73iat9EYmDTU3Uw~INEYn%{#piX3+17&ac)7hq zbuKG|=%ixH{c*I3{NCK4-8u^73B?+f-7|fhKyLKxS=_OjkkIp~Qk}4^bWapO_6Y+| zJsxBkS?0 z*@gs#?tQhF#N8}cfQ}pZ`qG0m7Y9rY4T`#Pq0&w%oBUNWh9cxpT2{7tZmQYS?G7;O zatxSJR=?8L<%&nbVS6dAR4&9~%=JOx?zZ@?O;iOl-8g9`T>GiLx1T4?si8D#mI?wP zI=}nO3p6J?ZwskI>dz?9qbtp*N|%e#1s*>9kT_s*G&Mh=0C7@VVo1S)2_cC(0cpA< zg-&L#hNj(5^%gUs%lR4}?^a|)r9Rc4sFRqz-h=#N!YIj{-{y_aO#5iwIsqt4%%vVp z4;h}j<5a7}!UntMt%k4;Cw2yps4=|~OYvl`gcDW;z5A%+L*a<>yVA30GW$S$- z_!bTVqgD$|iIfjI^PxD58}I5%iA4y394QLPWIbMO4zPyskf!R*#PFP4E~S-ZQ!8fH zUoUM;%+`_Nv5b!B%m%%*6|{rQ>`H^=L>9xr%_q`Oswp;F`lDeU>ena~FTDSXvCffCDkb+M-&)D1vn-Oe2#t$%3Ww}(FH-fgpX7{kg z@UOY*Uc>s(oxPkhqi;xN(EJVa9aV;V^=+cng(H(5Xg^Byhuo9!4m$Ach61VRIfU^}5DWcN5Q)6dQrK;tLw@GxuSM`2wp|>| zAD;{`8ch{zB)|Wg^7+rV?r)?#b&W5LdqM`i8hgB&j=wsnmrcdw7Yya$HzfwtPT`CC zI3(S97JSE^Ftx3ck@|e1U=OX3Rk3&axBSuhU=9-kBr5_>SzxBYg|_AXLW@qfNqyiX zO6X4T;>}SpPlT^`D^*8Ti9W^tq(eUSP-c|4!KhyufTzX70a$1DT4^9ss%#jw= z$?eJ&W-r&5P@+b_>_N1LvQ~K+G{3=PUp{O+LV#46k3LUe)SD`GUhIZb;;^K}IFY$! zG+y&%rZA0>M#Db}^`PtU7~|`^Eol1IJW2jq>g>v^vccd?NxPaM{{5AioN-Fwa-PfH zRHA?{|HIv>d@*2>fZFf{M7zQH70@4!Ref0`W9>aI*eBR%ixyt@b4_hN{Krz8Q~eb-U}@3J&@RAs?y+b2Pf*Tt;a_Ixd)SOk8^&!1$Fw#SD{0VAh4 zf!Ca8SZ4cRNi0_3RkknCvcYu~2-JDPzD6%?U?FW@QwGM(Q3ej!_1 z2Fr8CkrASYby!n#odbk!jD$hpIw={3p)D*80H7>!cMF z_aa~62N)vDmY2AqYzi&c@HlKU>*{8(XHt3GP>xz3`GI;Y2*}FJH3jul_+(VHEfOfb z*2oWHW4Q=nu=``Z?u^!@^t?L8kPY(^V)!JyT#UQ>sy+X8ex{g~`G848n%irxD!RbQ zqx9R_b%{RCS*mL|mG+^(S;EIacMAu3lFpTAaWvf?Ha-ak`R~s@$s%nRRVDVye&6!J zkHO8wHMT|3V?TlvvpyVru;K%}6}GQhbXJuMZMpX+AJ{j5F)JPk?D&1)mu%!?bO^PY z3VhMfXY*+4W`RTph(+NcS3CI`Xh7@&lxZt_Wv$)chY+IgcX#0j#@Dq~$txXg}igpydhpxn%DL8R*(SE$zGN8U&|`sMwGHl*A}jFMkfS zPCawgR->)Hz7RoEQ$T4$pGJF{U~X5qJL~S4P6IHvvo;jc#iRW`JPznPd^e9g8^2{28kZhU&%?peRX;E7%<;e zfBxX;Ptnc(AS>(2xM7}myp^mXY?6_0swkTq^PaFSF=zX;q;Bk)v44CoJJ?L`%Y|=1 z2(u5X#{jA-Hru1=GNMJ#Bfg>6Tj7O4+-C1$wF!2oe|sXU!C%-}?uw4L2(T6P6M5Kp zQq_g}_cr8zp{K0)k(6&8XE&fffbl$d=|b-h;H5+WbABI?)`p=A2W3;9?gTVqaCkUd zDT;2HE?;YU+X%+jZ!faFg<==h0ApllNkiAZy2XaLL0`GLTky)6TmK*nnfH8%;p+>~ zezpoQ&e#jVy#9IAKaF+!c}=p(*=(Sn03|lg_u=6{>Eg{q0bwXHYGT4rk}_XfyM7x; z`2cc-01ag(5HbgchW_z=yw$_zd~BU}wj;CK34@s0N{|fX(bcEPbUhE+gC|#a`mkU@ zYX89L1OLU9bcmN^+=Yd4M?l?+x_8zuC%;c^h}2l)z;!N@fy`7)|;<> z=>yyh!^X7oGn;Q=A#aHQlYDu&Z znrd+Z1YrIECS0Ii=!3ihY$HoF?7ix|R+YIQc)_Jj<@=$+>Unn2ERoAtoh#eybnI=C zNy9&bqPmw}0*CKsFaJt)Y!@=LQpP!bs8MuoDUq7NsU&%+pzEH|tV!illCp97)sz}l zhA=9!A<-KS@_YA7laEWfl!|=}sILGyK4W>?L*)A%u=e0$dK^u{I)k`#2!7AF$)?6^ zvlQzy+T)RkEcuRPBfBqdA7Ic*Uo;DOSy78QCiT8+OH(R}+q#-}Tq(7W?uENfr$85M z@Nc;tFwOxE5h;KnUjbro^=iwwJoq!wgFSJa=`D>*Z6X-eD5=F1_oz{vmqqNn;*8^p za0$;)>%Fh!HkVn>kP+|lz;B{Y4+SoA(8iVCwA85j(UXk01m7BrYc`ch%_q_E-IW6j z$W(iWhs9i7*@IAtB80!881zMxYbK2D4K@qBO2eIK(_yAKLwfaE(73L|UHGR!X)E@^ z?43kX#{PfJ$)hl6Xp6+n=?pI^dYq37Xe?g>6@{%=)$v!Yfvlh%tINMwkDN#R$j80X z1?gK9{QQfS%0P*G``dm+$m`*H3k7R1<;{^gY6s6$2hc}^9jd*RnhE783`}bEb{rqd z8&cp-yBJb(>?gU5Xik~z-b@kpl*B_p~V1sAE>q~ISc)szsQS}y5dVw6VZiyR(!=O7^)s#x9_F=KV zdZ|12Xyf~8duR!|ck0ywtYlP3Et{g3959mp3SQ>OO6z#XNulIR*J87~ z*`y`HBWt|9rm$OxxKZe|j{x*mJ;h48p3AoS((Z3ehoxJqt4MkT5PDfC`qJVA6}qP5 zsST;8#wu`8$HMHso?B88$;K;uYD710>CJV=OKE>&W$vb58T)vWf2pgOk+Rb9Z6219 zmUbYaaVM6KaDi1@tiQLEy}@7qXe&(5%wfg@k}&Llhb3 znM?VFmfk3LhgwdrPduR$H`}ka@&;zUu@+8woZ&~$TVc?xA{(}^u&;HubNe-WnSy!j z!g&zrDX{rGs)XTB$m27%9-Agm6P!YgWv#sBzcsiidJ7!%x1 zd2hs!&`6T@Tf|#xH{#~Ku?^9)lk+YckIT5+9J=Mgg?ZhZtMyS(j-&j%kZSNX^%eO# zOQf_||MAT}uiJw4{FkY6_4>=VC!ziO=|_>;_cnJdF_80`_i*0@JUuoMs4|*43q#Fh zZR`&%pRp6T7+ZSD4~o`L`48ozzx&lOlb&ALl0^GkBb0Tex9R{hOp6AmL_yC~FNT{L zj*g9cA~G6A>Ev148IJ!cY~pS*E-3RwFk zF6x=A;@=9GTaSp`J)D)GEVL>!5|jNp$*9pqQ_wcG-%f7n{3P^xtCO8O5~s!MMv8y) z(cyI<`5>`JboN-ksTCibbq0{pg;ZSy)3fvz#hNWHXijpVmCyol=}o93GY3mhmDo7; z^*w%iYYxtrlLszLnoULvOsr=RY#2KVd{?nPO&yDo;amX>=M+Wm8ihKHtI5F6|y1rGxSB{^C@1et>m1@!#2j?B9mc`-nlzKf=!y ze;G!zXiWz0&}>IB-!jb<1$(lFbU!5BEAp|v9B_?q_2IDfVY$6Hw!H#db((`*(D=UkkEK1gL#?-9A2mexI4rKN4oox+}|F za$L52nZqS~IL$^=N1k$ud?voPOfcgY>N#^NY>j#%>c6-7td!rh|3-09Bqu`~Ss47+ z%a-fQ0vr34rz(0zbvW3$*PMk_4ll09SYjA*RGYsNQs!pq%m!WRUheLQ+g%t}6FER^ zkTbhC(B&w6ZMwLC`_b>&=bhpAbv)FB0rPWu%F2UREo1kgPwQ%HrHfa~R%TOu^f3HN z{ZZR)_A<%Y^AnwSHqU!?I=Nk>b#@o-fLa$Q!zA8s>43qo_jwEgUtGSiz;uwIWkBFc zIhHLez)%s2KpsUAm#vzDfaPgA?#Vl<#m#wr^qYNZ;{$bfsamvRrR7V|NLM?%^F6n+ zthAOjD$H>`SJ3XGt#MB+;L+^r7ZiSXW-HkUP+Kb$Um39(y{l zVhA*1zHNiy-@?L?JH{w&6MmbIeMcn_TSxxU}adWtLjZ98! zkxgWqVgA69?4WJH=WO@cTeO&&jDaO^Xr^^n%!Uwi(H^cow+88tTY zgMtDxx3WttXr)CCoKst$*-ve~A1HryIbm-+d8CAy<8pYUE$_HA*rpHo+3;A1Q z0aPTBd0Q6hZ;!gT(|g^R>W+yQugHbuGD*(0mqJ*r`j}eejlLf)LY4|S^@bGIYY(OW zl*M!gaE^cJj%$~V)4%;_@#Bw1={=}(ah?F5i3j6d0IAYWPuf;Fkf*p|b(nzLQ!KiA zDcUno@OeX7Eplm>Aguk|{B3w?NX=F>dQoT5*B6FUf7!QZMcglh4*uTIkgWQGhD+Rh zQDD98zpNeaTx*{dcC6UWQygS}jnfXJFt_C>(fQ+*ZVX#GOzJ2#<Ts z9`46|R4^(%fV@GDwax~Au`a)4KMzl%J^cHA8xourwy!ErzZB%dL8C)ui#)yH*Shc%b^?}6gXV|X?gX}UVivR%*7?ExE`8JH9h#v?XP zisK~>5K`$_v09F9aAj_cXq`MZy?N}o z`rZ{Ez9y|D)JYAgTsNoh$Y;qHXGm8goXAy^F%H@lvxorno+o@*CPYX3{jJJ&ZU5vS z{#0Qi+7POhBM-@iCrtnAE`^YxQXZcYO9iBW%IEjFKrN{@Std4&0VQC*AO(I#SwSDN z37bc8I;_r!yE0Z5@0uq1OY#1eVVyWD&xw+@SfS97u1?wBh-)rezH;sAd%V>;@{Ib! z6_Lu9ygh=U_M3+uuW=mc!H&snu8h!n2E!4f#tAx4=0AHWV~PZRGgl1?jjKYeQfxs{ zS>s+!3aepfR$KF6dva%kuCM8#NBKc>0*+ijK616}cd@O{T))E7S7RoNK(mElsm3U! zst;FJb6UaS)K%o1BXYzh9Lh((Ty0Ikz%ag+R^9WPXGm09_jAwu=6l@}dCj*#aPGJ_ zgi=wnTjE3Cp8$t8FlBDgXQXr7&1VB1C#|A3zV$@xvO88ayBv^W?;4KobIaiABMVx0 zTYG&7LQM!}n)%ie1t)Wg%2g`cXPT)PA1?1} zYzzR`Xu6blDPkQ@c=1HTcs>3Kp z@kjL#$c**aJIRd-z!dmQc{mpn1#Y}e(ir%?C1Togie&2Q%P243YkHpw%p|iwq*Ye0 zZMi!DsHtI#e;$OwBZ^r>cM}mfS_QmmHG9+$G7ok|lL)ME-9&;AjpirjNnZXyww++b zoY`|47hkEsZRtO2{(${L!#ghax6DFDt7>qi8q(jQg0-?ogmJmQxR_cNCWjK^oq0w{ zkS_}sv%8F|#*2$*LSr*@qCV1nUV?dXhSdu5ORp?d*z63)cbwT%()Y;?WK!zCZy1Ed z(B=8%=&mJOr}Ta`Z(f}H`VGsrXDOfdvcSD)SckrCP4B1}mZ>-z*ZQLP-rG+A!C?^g zW65KqR5g(~lZ!#S)o-u~dUxA%AAR~UarnZ@j`Ny6+;UZ~mg8d#cix_yq?*G8jX*gC zmFFy>z#Uzsv>h6;k)heF7{e9bWpZ(r>y4C2On*d*)6OrKhh(Qs@|9L3CoeuPEO3%V z8WYJU2p%z8GR@LlDL;7#In?5dfn9HlTz<#teTtQm+|J3&;t_q0TPl5P-NaSpSi$>s zPLsEPVGoBy-5CT!Z!OYH3Nz1^0*fAT>bXh!S}~ToOsP+3h39+VAQVfZgO*FewXyO) zrz<7ti@fu^ZIy@NsQPsC`OAIYUfe`bT@U)q2eQyM&Plf_%b_HA3g1rt&7~0^M;Ee0 zkme#qgX0zWl%;YV4`fE(ON(Dmr>oLN6PplOIM&skavtw&Ba>#g2I4#5nL=9#Y$9f{ z>;$h%UE__IBAxBN^tsIppQukc#T=OjrQ+qTBC4h4WG35R*ju8e{MVHi8O03KY4Wk65#&H%T9)F&)`^Hr4trNR_UY9S-SG2~ z?m$GXx-6P32hPXZoUR-sx^YuXv1Rp`?sdFn(R6W(F1p3}*6SCS+TI7CVOiuXa?UVy zQK+;G)>A!u2nLOE86G`JG0CK7lP1GZYx(=+m5N9mu5!wVye&iZ+Xl$~h|?#gTtN|a zG{>;c6r;_>jITg%VR(IrR57q}P>MA-{F$0u#V-Yc&obzSCr3ky?l=02_Iwt%ypM(- z9W>nSjZWrnq!aLb-Q_+33d6V})lZ{fg4$bAK`AK1O{X(tkQX-A+h7+N`|~Rm8Mz3K zZvrUgXFJmLKfJ8VQE|7gbdb_>_OS`rF2{VPG|t_^6P1v=7f61Asw7xAX3u)M`n5Bh z>f`T)?;8g(uq6JJ8PAP_5z2(*t+R{iATYl$vc*)DIp^nsT%Ft{$=&RiE`{GRT;t62 zKyCDQk?iH`N~VkY)qqwTK9h}OQ^NssPN4>k{`OHNhEUu6g|7M52hE~;7<8MiHh-GOJq88_*8i>&DOF_B=Btl8FP_XBQes?~ z9lNUBFsm==hb5$t{){cq#?&n^9G|Rp*?4AI;2*&`j7u;2{)+jQ?*DWIgM0)W@N3%` zNClpuBi-dPgIu*Ft<4Y ziDw1G#shtHl}q_0yulY`r5*J}@D-(d6@%ev#Qhrtp=>C1adNH&94}{LTy+$QrPBKj z+J|8EPE58i&L_qX9KU@!HIGh67y;TtlIc0)JAmS}x?`m1e(;bHS)^d*ohc6Ki?yhX zwSX9DXw3G*s@QN&7OM?pi#-|=3LS4)`cS&wyR32e=4WM!L<$%){I=u+W)4JAGOMP83KXxo}YBQ&c{Sy!wr%H6igdi115F89)>;mtROzQ^yiUM2iXUbv8d zYYdM#AGeEOxc`IM)-usGG&KB?o(|48o^B46n~y?^wd>z5d7ZvNMu77;+xA1k>U?Ax zPUph|ZGrB`w{PFF`l3M98q1vcCdzOkEZnM@_k4{sFq87GTYXpGuZ@uSt@_@)v5Z5N zm;a@~l^_qw-nt^4R7$U*OHL`CcL{ySnsk)UoTqB7J^g+#y51kxe33;eOrIIhqp0PO zrk(`!<99+nTyS(j9JHu@dtEzDl@;1+Ri^XGV|lkw(ozZ^x#m^a?XIVHMc5TW$K!KGaXpo zw)DFr*_WcR^DW$_O`klo>&!@BTB>8K3yFvj)7K|vW@a9&F*7zMW@lHOV)G9O7|jw! zOyzY~a`rVhrveS~!3WY4^35ToDWa*7GpkU<2C_tYE)vWaqJiI*Yc^d5D?km%T@;Zn zJl7>1Zw88XWNZ4PqiJQekl8Fgje0@5Yjq0%V=(k0T}4HD8R(j_I`NJyR8{w_{E|MQ%4F1YaV`GqYyR ze7<+Xq)T|37ODhdb$aVIxv6yt^+5d6$(p`wwGDhT#lzZZBu`+C8)(WNgle)EX1}dl{m={Mw?_3Gfp**sxTPd z$NWBCFuq~Da9CxvF3iBO+wVGVQhN}$!PTBm9P!IL=|IO}+-~4Z_d+(GB*O1{B+~IW z;uiIB;~R5-K6PWWh;)pcG-uK3H+=^ZabmD8NDTxu$A5q_j8wOigV7oXHn=j>TYnP| z?bTgTOxoRm)X;2B){F+-oSDtmp;KK4k~Y>*(g{A}A9tXy=!vbiiAna@7SJH5k*f`oh=6vN z(^Dn9WlXfj8>z_=KUQoj8v-}Nyi-Jf^gMq0fx@M^-_2Xg;A!gsS-@hiw*wug_Rt?V zbE=!4%+$-EJTXXYlwQ5?Kb_-%6Tg&r;L5dyLRWoEQBP5YDD!=Wbh)%DN&U>lUm7mG zzYn@`3HVrPMHrY0jR`cTvnq9sFGKTiMPqro)B%QK>f42fGOs$ATGxl9hh{VzpU$Lj ztvm?xln1^Ss+(FT5^c|l$W4YX^1y6N-J(`o`cs}XYlTvvFCvno{nIsVj z_us*@<^whA=BGyyE(k3apiKXb|HPGUFjI+PApi?5729gtf@D6y7S z?M-q~7>+W0bJbDST<7w*k0Z=HBb|1peo1sYB*K$qx9!+f@Jk;qfs?R{-B6TXHEl!X zwV~z+E+@VoLx&BZSLiB1RVF8Qh8S@w>YI*1(xeWDM`qOp^L+S z^C8aLfo=N1>)-P$lPtH(QT|YuW*sfBI*l{-urOVmRqKjOZqlGK z@u?FzoT-aL%2Wwx>X|(reu};R{b?ti`}J*|PMq#n9+X`S`-M(sk}I-XUz91W`I%@= zSR?S>jZj>=gz2oZQSjZyS+lzpmTbojBI@@zZgI3)2EVb8<6g5l%PQ*Qc{#&D@FQ9g zU$!<|QFt6z-r^6-P8Bn?7MN)7ExVQHUegyt3MIFeZz(9;Qol7@yr`qk6fZ4@HL&if z9rVPaJYy~dzOMd_JRJBv^ikm2Oyolx3t27EtVKyd=z@kBi|?~3vOJ&(UZ>R{yR>Xu znI}m_>1v1Cl)s_<^@Uk4>9bt5Nl^=5gTX6P1FF3$ua6gcLI#HqD?DCl`bKYtYr5|# zH!`I?$=%NXxf3MFJmc1A7@NW9I5Cg()khs|i>_UhJ&PSq@PF57aDVX1Acw^OMfZvN zQRib_)sUxFZ{EqvpoQ4q`+P4zMO5s&-B+!dQ0~N^3&Kz|do$c)lz~Zek+ED$)Pb#V zl^KH8b{*^NvWeJ{qVc-wZQpe8(TLiaF_QbDff&|7U^Dfs0>9Q_?|f)D2T_y(V)xg&OC3 z>3O-7^z%JycJ@hi1ViFNOShel7&M8fEXTh>9wHR(Zgk5%CbDvtr$_BYR@?7Uo&}irM+g0>2vb|L9X)9Jnox#Ynqw zmpa8en!Tv9YF-e=zIwf-dFp2H#3fO!q~MT0sf7zg`O!Zb$gbD(e`C%pW^U#@iyf~^ z{Jd-S@Mcz;euj>w>`V!iMM+Z!zuc}E+k)yg1%n^=Uvk*!-4@Vu?!6_ztd_Eyf<%%H>zUIW1;Q*;6+m=VUxoP<*+%ku&obohC{EIimbpmh;U8|EqDd1ib3 z@vEb&t<7|N09lmF!z^zorppZx+8L*%tc?i7QpJ^TDn#Z3!~_-LI=%$=^`Q zob&=u*BI{H6w675IrQ_~sR=%%)xhbJU^b8RUxQ zkeMnNyd3O2xK}WAnGI<}axL44&vud5w8Dp0&|fLu7n%Ip0iRS`CeUwj%K#R{?;2jY z$4A`v3c{tXj=t5EZ_ltcw?28^=ZO<`r=G!B;gft!sNU8|Y)MKqcVAYUsqCHC;@X+l z_wLrU&^N!{7}RH*1}gX3sL&|8CctUC)pT+4o+L{+frp|}{+h8ZUq*Y;)l5?VyL&gN z0|8p$m}!>NLI!z@YF9 zM`zUetMNoRRx-^Q009A;;V+!d>o1A}KE*_Jl$za_<|NW?dpKxlV~lMnW2aWg+%Tp{ zrL}F?2%VCuu*J9hlX`&|zj3eTQ%=Ay~-_mPXqqo6X$Ed5WGh*!`*wqp?8lP0 zRQ&@ujQLhGb~Us4Q*A|swX~vHnl}5UPs%u9xf3AndqUVmB72heJ zP>w;9+nT5EQB+)ruo|gaQ?pTU(`JCKUvUZdjhQn|HFM1qGfUJDnscniiTbuq;2HS9 z%}*Bph#3@>kSxVD^chbR>StT~=(h0|OL%33?G+p$okLlc_VY>xi-M1*@hhQ@oUY+6 z_occo&D*&C!d%a49M!QbUu!JpsPE2hl(m&I1!3nkJs(^frDRFdIa1Tne=77yG7#hH_!<^@@9 z-x+R)J5@#%`D&s%<=lwPU;u&mlt8fumATBu8;i;3Tvv!M9QOG=|Nf3iU8zE@G;53J zP}TKe@1a$)t3HGLN8l&MN+09a&ON<#%T&(dB6?)bU73AJ)&$oBLa$dCMl7PeF6SLaPRf_ z*y-J_NvILo;9-r1Rm|D33sh}2=VBBZOHXjrEe&}QiTY1I<$u-s=`w7b+KO}D1MT*( z+9YDi4V&9TL0|2UG5cH`@~mz=0@BQTN%R|o*Mdgzmr&tnd2@6UeI@k$7!A7I9{Ryk zddyL*?0F*QcK3Rj7?rizF9Y|3%$IHHi=>&?*$1>q4gpNVrEBHm7JuI)nG1VwRV0xJ z&CsHJ*%sjwaQIOfA-WXRJA27ddWNh_aJw(Suf5EfhiQw36OzWkfn#>L56le)|<@qmTh2$)k--(DiCg;4I)j-xAOE&7~-*Y&>YZY8}( zQgZ^$xxd2*P598Ig;fI@m&1}tbLUzf=12t6b2`0*=g`D<)A_aSp+t^bGyhL6ZXsL? z62r2Y(y`9{rC+p8GzFp@aRs$cVuFQvMiK-$+7qkRLIrH=CsTeA{Wj;P->bGr&QyOo zW>Z4}Yj)QK?9#GAgOB>n@GK9lRo|h$eX*I}cDV;JSP#>CuGnR(9;7+7w$}3ITLirI zR-|yVsQo3=U~WKm%_-yM=K+s44vO6+f2Qd2Iog1yRN4));RA|yFI)1*`fDHXS~f|t z6haUlMx`wNp`Sy(wm>RbLWEGS_}h{nE6(Gmel3tM(x6%1h^+Hdq}ZEuJn1C*O=Y?$ z6cmqhg{5GByJ-XE8I8SU$E*6I_Kov`X#))!%GN^RCJt9K7i%Op0tDqt*0qgDD}=G}LZs#pLVYyU?5%gK%z37xDj$*MEZ(oaMQ#a(x2)Z6yx=*Qnp#~S(V~v zM5B2?yEJn__n_$MpD;|Dy(^l>1X0mr6 zh;L=KNnLf-kBLk6L@jb|cCZG1STcQaEd${%E$F6*zKiCpWznju;WF`;oiij`fBd{e zgr2X}^%!%ppy3B6x-Ealy|0-{p)W80#x1Ve&Uk&|@C-WPBqS`hMO0V3xlSqqM0Kpl zgeUJ!)rxPp7U-W2_;t$OOH`2w>vsqDIB8WtrKGeY5B1wV<4#WU)qHi+fJE<0LE z+!!AUY_YtkCJHuDZPu&cwsr_>zivkrKwmC%P!)FlR>0FP>9jG;92sZj?M|WasEzLz z2d@-eai4wv_YFuYy2M=ojj_QQ>+-5uFQ<6OgDsoXFX~SjE5k-vxd#7C+C?^ZZA6M? zAOEmjgG;(1*FMP(Q%B7bLU3IY)b0BeCrlqSp&4)UtK)oM-rVg3mAf1n>0RLqbf0gu zL93^P0AV1P`YJB^w3Z8DRvSlNIa763x401BG~ziH-pPK5gBlkzYJtP^PMu|IlJz?$ zS7bVK%lWEXKfQ^+WyM0jwbWTh^1yQNe$cVC@Aoo&?Jv8OD3TJ(QI@0(gue*i5qBFf zC5;j1KWt_%#mM^T=7eJ1A2j)^0b3lc#5^Rw=nfy@%ef;@)XIS3XSfTwRsD+1>DkKK zdG*!}xFIz<6A?P!0PX`HJr??N!N@EvT`@o z;^esZyv>aty$K7+t}>{;bD%re)>n6D?Kg?0gGsq9SA)cqkPyG1)iuP^vT>HWy+SR< zP(A?jWu%b9=**K7JZL%Tum5b4jz7LuyNlnT0dGx#);h(|d&y_G?V=w<{B1UNAwLd#c%Gl{9U^o8cF3OnxQz(I`L zUTe`03WGThpR%OA4vbIvh2_s2!UBg-nN1s&k_ZMpWF_b~y~lV^t0y!d$rH(rt805# zypL=$+U4(w(A@_A!{9KP-aGD!XO=%dttzZH7vUnW;z6WNPnsgSI3%)_KG3?MA%AI< zIX%{3#5yCOJD|DICqbA8O4IdboCf8mb}jD}DSpVl7G5zAjU053!Xxm#ou4bSXUZ}2 zGYo(0Eg7*goZy{zPf%hpmi|*nyFe7<;E9X36KwJu&@s`Dnm0=nZdW`$Zm}=tKO~M? zu{vz?$YPv{$wmK}^IXz4NlW*rYWP7YEjCgPR+>fOpD6cbBk7k!H`uJ>7$_~(oz4uw zzH$u-@2))w;4uv_NmAgOky8|lSYOi!sYiFsSeb_?N#SKW&sA(@3_iZEv1teC`tyT7 zUlivTF>F*1m8S{x%22ZYXZRef7i2b)Ln02`p;4-U=qT_wQ4(NCNUM2Y@d7mQ*=^ zPg(uBkP0LeKI!XMZqU)B3x2u8oSzCmxfm~$fj>5Jt^fEk+izN^nHC?pH^>zD^wg>} z!g7Bf($N`X>{UF)yD~whFVTMA&X%&v357Ce*t~!8dWTkQKcza>4%Eu+{{8+K>GqUt z3)EMAddC@C#_m$o>QS!2F*Zw|!(9V-!}j#McG>fvrOLX?gO_7bsO6u@SXvDkEcSJu zf}-Q70v?eK4Xmqa$KoEs@kVCLknE9Qg&Et^&aWyngi&Ek^}>-$K6gX(5O53Onpy)^ zd95SGsuCNX(R*0~f%?HOdPT!F=-dJM0fXG1DYo^YQTSe!(!U={pUL?J+}- zNH{E~1@8dJ8F;wRp4ALJEcyu*wkwKo;STiE?kdbXbacv$!va67)2uu?Cyhi+mMc@Q zp>Iz;GM29@PX&Auvu61=0I#4a3JT#g4~{jst&X#wUp;U2xgDeC#y*vG z7-q6-?O>=^f%U(#ME7lXc-{cz4Jm8~mKN#5lkp@5dyUF;@%j3J4S13 z>!6E-M_YU{#Wx9#Z-02)Lqch!MRmr%qEhSrjH1@X<3=@iuJPnFeGyi+cW2zo2Gv2M z&_u}*l87g7EWWDHIS^H_HXyKb=%0M^Cb};>IxOtnsM=bj>9YiWZ+L9o_K&w(&3)oF z+(bo1dF|Ip0iA4SFArBs&#;3Fk1B zXT_$uFYp}EQQ6*DDJsenNh^CatCvJX`tA-m+OKHk1w5kzYuSRXrfO~aUyw~L>|B8h z`}Ws2wDqZ)k)s&^%mzhZ@k;B(D+m;Rf8Vy$a)#P;IQM})hrEo8ILa^;NS4MB@#r~om%6+x zlzjV>z9=1T{~vr}Waa2SvPm6Z97|!NUU~mjb%amxB}Wm|p2jyAOurkO>QS`7vp~HD zpf+&vKP}h){HYYT1h?vHC+G-THj6?T69T+n`Sw-@6P6LnR!~lTq~9lr@?3P7y?+)r zZzB4@$05^jl34wFwR#Zc;98!XK|>9n)jS!569i!_If*OY2+(m_x7`u&DmK!0AVJV& zkk!8Z+La?aJSX4@57{K;RAC*kEd{l}?bv2&H}jUBqzPyy8w}x}8YDhnIhl3L%%UX{pLXM${0SRoD5E1S?oO(53h1;KkHHaXS)mZ7l{C?o}=NnvlMWw z!R(u?`2+3fRLA~hKJv$qgIU;2j8H8Lik6udbulvLYJcJ)pmLp}U|C>y?i;Z|8!SGt zg7ipJ$}1?qt9;iyEWcSdW7E+iQE|cui97;=s!{NSRt5(NqnvqOvf(&=a=8fXN14ZSWUQ)5wq?h4O$6P zs~Y&ybe%)J<0V6Jo|q?1zHI$kyh~KYKZ@-eq*8SI`|Sh*YDGT1fcTdZh3$n_9@i}H zUKIA_9sYAgcf@O)e*`*X&2*3Y8CY0Y{M8r3%W+$vM8?DK%~4chw*VHD6wJ z$dF>8L{!W3MFQ+0}l=zhj$?ZsRC|$*ES~%|+5G=2@ zn%EBcvpwQrAq_>MsKtb^L-~g0b-^ryEDK!I*$R)T)mrqE2mgMJJm3mmV}pgI?&%aq zx%z`51}(}_^xM^U{J8bP=8v+0(n#5!|*xd4Zc4Ve6rJ&^J`VR0rCV|NLe7 z?Y$#v(&-}BY0_z_-RNYLN^|cwAPTLypZ*g>u7qH;FnFH+$$Vbs%C+l#*HndGN);2eFnP~TW~`Rz-x8n9gnfWqIPOJb z2P(JAjR8GB^q&BT6EDPY^r3b)rw%vfr?wB=HeSA@>ude@&0Stt$|^H(COB&7#j#)x zUizmMvYkS$s$y- zKeJw*Ba;+>z+vk8S|(ygg<1i_0^4qvqoOPm1Lc>i7-O!!|Cr=q_A8HTT6MTtblHOhtFjqFiV7DL||FDyrS z&T$AqnIbMKnMVnW2i33s8-MTClN|&M`q$SA9f>6UY89XYb-NE;r~uKV-#*dodV28eR5wJPX;L${H?>R>{}NPm&VQ@|Zjw5?Bf@ucI8VqZL)jbTV|)+ zoH6?%k=A1WuAzTsZuge?nxyW^&5F@i1y`VFr);xoy1&CnigAzvg`!&1y!;Fjvu~Fb z^LHFR#J%7_jyD9y(a2q>nA}dsU*--RGgPu^b1cd;J4JMq`;Yy+JsLVvrSjr(*|)XB z2s|1GhyNrXB<>imd04c;m7t!l9?B1DT)v^G_OZ~+=Wahwg=+rwK~htT>!J=0zo9S; zjM|fc&}_PKJj08i^UCMh(zxLc2$ypDQv-y9J!TG;nbHfw;uj)ED)(&Vd%_2B7pRf-ku&wsF4Eb zM5v!1wp_smj_cVmYQ{rKIO%ZjkKz8GB@EXKvV=db?`dg4$`k(&dEQ2ysmG?Scs$*{>Qg4x(E6; z096q&GRmw8oFlA1clF$QbUUf<v3h*{r zKQSY5Y!vG&1?ckqnf2l_sGBqc8MZrQ1$wvP^~XG(3H^x}dthvAOe*Ne4pKhPGvujG zPi8Kp)YW5{Xe57h$8hF#&VW?I{P~wJbh7ch1kg4v20w_t2*Sl*Cr>B|^g zVFySGYWncpe7crQ+~=C8tE(U=;sB#Xr(7HVl5CPN6_gkux;vl3!>#68a7y%`jo0US zsuWlsbda-gTrX<-n3QB`-wo0=139W}ATx67)-5#4x<8*wXnNX*IX{2?JO}-s62NA8 zUS^`)($=O2Q2a{Ul}}?_Ez^g5Hov2(=JO3p52-`QI9s#Vq1*kTKx^ELIO>Z>I7DHf z5mLTG`pgY)@#j?yH;eT2^e<4BgpG?U8Gcu;&~ZoCoLY?5m*rKp5;hJF0Wpil9ZG)N z$AD;#$0s792bGP=8Y6pLQg)Fe01J43xQurNqFN%PCMd=I?5~)+d;Jd3H~wP7G3n+% zFflhHb`s5>XCyj5 zef;<_zM`U{7gRM~shG45>`#@(n|FWaQ4hK>C5D;}?sX`U(Ng1ZT5K3^s6>3~c)S?p z4TX?bQC`~a$KTB^;`wa6+S?!Nd=DUMg7!$Snyq?GqtU{Yx1g3W{{RMt5M&^{8ZOQ? zk3f*g`>tFpHlj7M+1JrQ04020FfBNj@u&&wFV0<3o<=e@f$Gxl1H*IA9-66d%J9*xrifzGdQ?+o-C>^EY^ z9!#H7UwQxfzzom^#K-`{!FCoFXRDszAEAgBY(_g(PJj1}ZvhJ+TF|NZ?a{W*Y-*_R z4d60+bD0kFo?Zh=R)3kPst(8(wa)x;uEVFHVe3v5ng~u)WB@J^XcFzT(X^Ta4~PH} zn(43svNk>RwqviXthAaZx&O@qLwXCKIszq?#of^l#2-I>dSfaoA%W%6<;zzA!<=e0 z5q4V|WQO3~pi<{_sbn80DcGR?LVOMD1C03Dxw;BD^kYC*H_^2FiTQl_`nuVzhYyvG zKoSU36yK}a7Z2tE*vO=z>UGX#$%89ifh25K-qT_yx$gQaq)OqIEV=A_C-MH>6DM%& zpX;w2^cnOrSW)I#g&vI#tvYkC&RQZ_orYW6HpS-knu>*#Do!aJU+mf z>Op^arSqR`tE7TDU*HcN0e@y^R4-J0W6$TXzgVk()y4))h`~rEuT)_5;1+T3PYo3n z;(h13F$!!H=&12J?`Ot6O$&j3`jS53KxlRU0?d!r4Lso^T3F+rM@Nq9GYvFs^+$Bb z6T-g3Kml?`GO0l~sRoD}xG>#PQ2%OmysKaPcQt2uD2L=awV)py5D_UTWpel%t;H^X z_hK}PbTI)Y@c=|>=D96BE@YJ>q;qT2w^Ttgr2F79CT5C3Ppm=PL$lHTRdS*efMv`^ z?B+aIQt~3vb|pY|tftpCa3Z8YM(uftft=Y?H4zk8euqbT;IR1;m3S5ed%b0Qwi(gV ziRZVw!dAC`1Ly#VSko6jcCtX{u$ZiT$Ecj0 z$;$JAf+LpKiVk@V7R~Z#bB{THhM-3k<`cwV)t7;t0CGXzt-%yE)zJY^dfa|w1M9CJ zAQ>PZhI(|m{XyJAFwqF)Wk??y;UfxL6SZe&dxmLgX_X*na|;_CfoPPt!I_@>d@}!) z01VVGP-|%ciz(!;adDa2@!JtHYXk6qpxi|YiZ1Y1lPF|ZiCa*n3cd6g)E=i+acxd}C#uh> zH9ahW^3dMh{cu8CMa2hl5l%xc8U+7vB(QvWy2kxhhVv*oJ3HSVtgEA@cY=t>xlFu3 zU#7$(yndS+{TnQOe{e-(XEm1uw}c|HNlO1tM(_hMqiL2c@tOrC;f)*bVSsPZ(|@n* zdCg8sPmeiOymSJ-4G9FUQ45a#wwgXY=Q10` zhu1UMQiTNpE%r1ehfF}2gX!gYWu5cT`pnmg245m#)|Y048!_#UCkI5W5~eQP1{Nt4jh>%RwBq|d4CTix$28YL!9V1hjWXOu`@TSGK2h) zdoAEE?t|J`EUq*&Gc(~OQGA%j`{0#iMyqTx-u~_;(^>3{6oYi77d#6^!Se?T1s)gY zP4ExI!(f9h+d*{74-m$x{TLg|2!2%R2oXoD(ME*!=V&+7Z_fp?#hM?s9R&fD)X6M-)-2Y`Mi0V=bs_{d+Mm2{=%MAFNPg zZ>|F&6ZK9|c_Q*$Anp}V2##SELcJy*TnaC+XIH@15d{PU1dVL}J}eXi83lZ5YF5|3 zD;X+FF1s#91zPx*%!PTFeBNI`tVj$s-gMn@JfY%^LOme)cjsq;wl)$zfqoGqLjFP` zQIy05vaAs22yP?AVQX3pJdk&Pzd{OZ$fkyiGs_YuMVKq-3}CuO{_rt`i2+EABzSSU zCuVG%MUmJ(jyO0_b3|kYK?f7{`+We2=nm3Lql>=3mI9k9dGRMq?av(vEf(|_Uv^Ma_0Z9 zRh0gV|2&n~)uo&ExNt+nMdOh)1K$v+gtCKJ1WIJ4-fah-rFwlD@nzt3hYld1iO%~h zFHuk5K7~n3rX|82m~@!^2p&m-$D);lrozuJ%CYTG*d71nOXgP zON#_>4gYDKXlW(dXg{P=L{wX=T7Vhm3Ec-saet-jF$aX~K_Eu*#?Wvc#OI_zYOW9j zLxHG+1wjPjrFwcV06~Kfwz%Q^?^Tc%xr{>M7GQ$4q=@@&gW#eLg#M1R-XtiLkn{dG zkm*CtmGfumvN5{Ktf2P+ADaVg&Cz`5qeAyH=XhZ^a_B!`7ubXtSPfzU_md4CL_!kz z0J~u?B}1Kt!~!-_G$;eFKnGf4aOZ;Hge)%LBS`ZI!WL{b2NwwHBIqGBk3t||KtsiH zn+Jd{TGx7P`k4c?X6=ld7R+X4BsMW5xxNRn16ZYxT`w?xAsUi{|P@zKRdk7}5(0K5!QjSW` z5u#3siZGO61iEC$>Lk$2lC>M$5!teA)q)TpSdoGzdrg746zQd7ZHon zgXo;x1+CEUU^Tq}ZlwpLoYs)m^uw;cK53Yi;^Jb7xEzSw2g=Pg5jtp%!&WQY2tEMR zB%%!ohr{7hE?T-JiD3^B+C8|Ih#Iyui?@x67w3J~RXkXw(x) Ld5L_n*YE!uK{t^A diff --git a/_images/99d5fdd1d05e74662f078ac6762d4f77eace3ab471f33e8133780fc9a2e6e1bd.png b/_images/99d5fdd1d05e74662f078ac6762d4f77eace3ab471f33e8133780fc9a2e6e1bd.png new file mode 100644 index 0000000000000000000000000000000000000000..6d3b8f61ee291f447c8a10f3d1ff93fcfa7c2087 GIT binary patch literal 437373 zcmc$EWkVc6wOMg1fsr1osd;xI=JvcMk-2cX#*TuEE{yHt+73lA_}7tp57|dK-IF22y#*CEz4* zwvw6-U|`4wA20ACfkJaIa4;|_Q6UxAjFU{46qUcP!5i9zla>r!H8=DmutnfdnAPFp z)vqUbhP2ZfxlGldBr{pd>VBL^JVOq=*6$)pN+>ZDPUfR`?5_>i&pQ)iH4rUS1MKJ5 zC%t3s2U+fCwv%Izt2XfgD1N+dSG&XUlnPlNZyt$AyjLKH{?DKP`TQ&noALiSWj$;yF`&@W%8sWMq5*9C5$Zw|MCi^_gWX5)=|Tl!d9J;L)#t|bUkFlhuE*t#&dXdK z$PP3LS;P<66wh-KHzxe#X9rZM!q&)fgke~x}(hpS);#& z{4btgA6~tJKI0E?9c1+8iiLNaZh8KZ&EjnyZChR6Sa`jZ1fl78-u~rr0#7|?9X;qg zZ`Wh+hyJ|1>M)t#(ebuIq}S+nn4jFifl$c%?#};uqa4M3L{(B+diksU=42_pSh>)C zkkG|rMdUgAo3{4oUv>R)KPZF_dt!lv<^nHZA+ERy}^+TE{7CmWB7LW`~5MN$-LZLzt8yWz~G5(SF9TC*4+*~S43X2m4LejE+&%A z?}@|r>qh-(CzyGmgZR(bbt30Q7vz#v;~E&}P6P`THTBj2zRm9ALAL2Y1n$PwzpIxN zjrLz`gGBDMfB*g+OJfTk85yB}wrRT*KWjOrH+l?@?74K!5G1*fL%PK`Jen)kU3YKS zv+jI#E|AZB3KZUX_8512bMbh4?r3UC>3rE^;JsgUAaGf=)2@FnIHS=_a(RNRd4X&s z=2*~mA&iv_h~|F^@$>Vef5yYZ>&O&(6@26$uWv(GiVl&ArvN|uf!4){SkZPRJrG4G z141K3fn_wG0j+ynkJArE;<5yhMf28-Ht0GpK}p56G`;e^J?u!v_0<@Uc5KlMUwiHp zq+5R>ioWiGM7AW?15;7md%2!0EGhZgNQYlp{pUr_VzNI<~8dY8k`RmV7u!V^kgda+JRn^O=S)wmr1g8 zT0iaY@_5(^CUBe*!ob2pgZ+fVWe;jxbH?9X?{!&sqZGt;X`)?e2^M(VMMvVj5bW7v z?EW4D)Oj*8|HE&Y^fLD~_w)9_O0QcQX&D)~PY?uleW}L zy}v?N;Qii0)+{j=9KCh8{_2*n>YOssAy=&a1iZ}iVNf93mduBT?Sa)u8hPZ zaJpymWm185@aoLY;&Zp3mE&;2oouq(0pq-#Q+BupJ>zq@-&scSKbifyKZ_jP$tfub zLtto&F=9?V-U()1xWY;yMrC7T0|O=mVrqK2d*l7hC5q>abAtC;Hg}rpe#2V;SPH|l z)n=~i-8`xIhx^X=%;UoR{Es;$8D*|Dot$WH8_VKLpP8AVKLY^W=a`@UdlwjmY)X~L zpk`7(0D&o-c3(I)JXpLsiAg^N6FTGAbUacNW_xk}k%-<0z-cc|hTZ_U%&Pq;oxWQJ zi^yjMeH1l})~Cjg+fT@K(AcwBVr zKW40K|N9edvf1UUXLoo2Nno6a5yhfZO8 zJFqti|9q19i_oouuLij!EIi!TYLeWic7i(`hS(!US%EL{dQu>} z-eTcuq4OfipX`QYkdC;EKKH0@v| zr==wgShVc^aBP+zeIcg}tpI90tetxeM&Po1AfB0}S^D)_kQNsynbvtsTtL%|A`6U7))9L=_qq~dHDxP zadEr?EMmWxsD5^l0;Z*{&9&(R$qB4bDw83!0^co0=i6=Nl5w)`2kzo>J5qftXEQKm zk4uwYN$yl1ssZ9+H(nu562$p@QcF!wZvs@?s@))=F&(Zd;p9hV!y{vlXyb zd0>4&rv#!1^S-}a_v~DT^dj-d5;%-8H9M0@L}5q(o&3HDf9;WNW@Cfxlfv)$r1lKl z3veOBGlp2n-MdVWt6>O~WL;;?WW%@X>~~l}9rx3E-3DTyPle+^)j$7!B@IBaSg64C zaozNVY2aocsc1PWS$!_8XpsifJ#!}w;M@)&6ScFmJ9`DV_!EiOWw^ehxeEY?Hh&M2 zV>8u(rr1~8;XG^FY53U*ta^Am@T2q;n1Pz2ii(ML8%xX8GmV<;!*lQVXZjVFH79i@ z=aWV2Xue68U@OlJfxAV++@>at2M_*gyPbj4iTtHnQv|`6WBvD|n%6{iy~CRJoE)Kl zE%ZqI58t;qlHjC({YZC6MKE_B=V=bQyM@^h*?-zBwt%DEdVNotf3L~ z`0~o@`Q(^$+yd~UleM;$RXJ>+@DHGlmXB(efbwj~IPO7UzzE9?X=rG$%3_#w31852 zm!k^%f+2?Leo`IWbTcE<4+yNUh`mGg#l^*_z@f(#trery*=79|CH|4fL2 z%y*+`t<9Z@g^7u|T`2HsZoL9Xk-D{wdOB}`+7C4OSSahYmemI05uMT2m{*^VVN=o3 zU$d?R@bV`M!s3;^KtAg`Ppked#^P4-%%-v=9Z7^K{wWf#>2%Nlg^e&vf z1(x&^L+8ttI??f@_uDo7Ii*~hsDp#U8QzB$@+qJ2?1sYj*mH0;CE!W7(mhCHv*?(1 z*nc!xx_W+FG>j(4LA*Mtoty!{S0{aPG9M@rpnH1eij~cO{v3IYB;-l@&Y0prnZ@Nm z5oBNsh$1IDj>8Gh_hHKHD(6!z`le04avh(BlhW43hH;C^_5q;b0Z!7lb~iRAA0+nX zJqL7|b%)7EkIwJu#8b%iG+51-Yd7{DOkQ`I0(ai_{`O4Zyl6nH(-f0#-4bd(TQFT~ zs*vUV<_4DKwvS6NXaMLb-Lt*0FnDMrf|S-|fwu?4wDfc?Ks&a6D$Ta-f#W()m~@zt zqTHj61w*Hh6@=|JFU*|JUkiXk2f7I+5+7Ctrx*PigY%S)?43=t) zIiunMbJFky10EbDyuV@D<-GkKEmFL=vhw_@KT}NgZ@KK#@q9TzXhh9kwMM$wofFu` z=j-jQZIf@m>l+%-kb*TEtqE&r0j7DUKZQmndP$sYrfbOX=E1LANDq%6{-&YPq&g;& zb&kDs?yjmz&A?!KvDvK~_rubHzFem{?(Xicd>gjL2r{qM;U~ayx_5wHvUZtHCO;mz z6RQy55jHd=3l;s5?qL0IDu*))07QHoeh*jcXYBD~-VNk|Nc=&TNnU>goR2j#≫v zwr&pmD0?UbtSb9G=>Qb%wLh9Q5FmF3WE{rdqh6}24%GqK2iNxsAT;oQXtk+pXPii< zr>7X$*e>p}n!j$3>Jy6?XlYNJLw#?L7aRZ%xB|4Ljgw7dW1~xHG~HvxWPO{@BRGrK z%Y%+u+Tm;=i`}+pl)#%SK(#D>-6YYxSFnW{_VBZX3I~7&$SEsB6jN&23c|M+;MSy& z&loDxtd*pQA4}(mrm1X;LnRXjv}PBuLYfVhxPUg(by>SzX`18RF!&M+o0ynLtJmgQ z>Z$p@Wa%+~aOujcpO$LrZh3xqh7DCp6IL^R`U7TL(HUBsUuyJ=)C~Jz^`GwhmDT~? z4V#9Sjt#7p4^0V(w}B7NvLd>6%X#+PYh|vy_V9GnHC=78i@@iI67q+(19;~Opsa09 zq&U#!)hL6__51TN#>LwD>$UOy->9g=_Lr12b3{>RGjzgv3@havLCGW4-klxfCNkKUsqMvt^a!owBR;? zdYjdQM7<4GcdHHxfEC;B3*`c@1qgH>Tf(hj7?9^a3I>lemh_`C6Rjt`9$fO2!Xk_=3t)qToIdmF%-1+uAeE7qD= zfC$xZMOsL5bdlxhx!WHGW{B_^~6;Q8@kNB~XQUtuNj1oj{ps?Kkn5VyL zutE+FESq6j0F#~p;!dXwzU!l)Gtc(t)|gIVSJEk0v?k$5?TbfRX9o}d)1*-Q5(DJP zIz7`8#Nzw*bVpI}W?$qS_@qBsAi0z<5vcKbOh;T>%6@ zxc>Xo0+<_kylE>U0cQ+Ay9ql{JW<{LFb@AaI0!)b2n&FJU}z>aruJN26a4y@^I^?s zDw_NNcPSo;*Z)C8fDj#o!q%B0=iiH9nb?f>ejx)=1?bk(2K@83Ya|-AvWJlcre8N^ zA139)kT0*SECF9iWwXF4RV#lQ@pMj}mFJ24@ZBFee^x;tGbjie(8xqV$i(a9F*66( zOqPp`MBXoU9~7aa1b|A!qB#?+n-}K^ptwFvY!vFN|Px;+a z104Vs3?DB*hA-%Qw*#^jizr&+1n8V?!0{}8rL#!-6V0y$wtYEBJZZ&(C;|jwfS?2* zeq+~o?-9HT00g_cCDU+lNNCu~1sV_jY#e5zkcY=fZ+a|Rjj8-oK*7*L_;#^Bhl>B% z{*aqMx`UEd5b6sF6DII_sGvK;0l!s{$oqOTD+WSC%~6ybOJNdWWo5PGh_naPeDY4M zgZb%leY4fD(YFlmx5p2~{0Rcw?q5!D7?32L%(0GS6H6ok4JCSWyr2N6Wndxc^Z=)0 zHL<|uupd%wI0&!1&>CUko^5{D=GNiuF@5iu1jG@-u$PUUuX4Zws{s-m6+W)VF~YJN>J4g~@Og@mLecp%SMUw9 z&M5$8S;Ki+H`@nrjwmAzMoY!VbcTGKWo}`?#r*kZRv|nTof43{BoMwn9}~=Zkm1k= zFaRLFfaESq`#FMGK<@*}ew-{;Z~H(Z4b=~?Qvyw3lx*1OqHlHn+{$CP4Af}<#a3@) z%bk^HrvMOg{QzW}ucnJv-LH2mHUg-K&|*?jp`3u|>+cCfXq0Y!5lOZ9X43UP zg5Q^awgka5GvA_kuOvV4%Eq13two3*n&N*&$3Rv*8SSU?wO&jyp z=tR@tVeRk#H)MXH`p9LQE_x8SfO`D!k#8@LtKRRgh=kk;ZrA&J@E!+`*73;Olm8t< zU;p{7kj<~6s%rOq+BiEiBMiU+Wu_yV_sb6P_4b~7AM!xp$pp`N9&nUvyB?5fbgec! zbe@s|(4I*qpa2Bh_E*;+g{-qn&kUN6b_9aN!iox{UdE!*(jDUW2N+{xy=h<|Yb5`3AhFprZXI$R_e_jI28=fAy!3$2 zSY_8t`mj0;no3^UoKYfHR&+UvW`$TxBiFCuutKbO`G9O4y1HM{NX@2n>!7~6&ZBvB zi!;@JiP?wqcx{dYK5gia8jC+~_W@Kl-~~oTM_Vl!0Er5u!7IEJnesqT<#5hnwcJ-_ z(AzO>xBvL|k#0qf1K0&>bj2{7^erSK!6(r55GDvZIe+`nQm9@*o^vt_|{Fn z78T7VrKj;U@?y6SQn%FI^Trsx-FHKMG%6q%BZM|Ote+#|l4z2@2jmFky6>oq>=3|6 zeR1bd!d57%N-(vSyBfMsNn}WdNk&ON#TEFf55hg5@?%QGqLxJLsmIXy#yLJaIYN=j zND7k}!R1I6DWOZj637YF5P~E~aFL`X2xg#rYIr8i)6N3n2l+Z}SMS5%g?-9MsF@|v z9(ZvuQOkV7EaAWPPZTXy*5ArMw<%lXE>vM(UuqTwocJFetgq%aB~exC{n2fJa89Pvv1jGtI`2{( z2LtDoMYick`Q(Y>b3C%gnMF3ssDM8Ii^curVC}mNWyB}?*5}yF8RV`SjwCPh^ql9D z)qWALEXTbiF4eNBrx-`a?S|k33+JsoaALFsWvVz4oBGtEoxMM<0`rvNRROZaM5cBY zP;%2?o?+Vm(9Qb6*+KA{8(KrZ~xd8sr=pevub_jQKA>bPT5;lRtzRMZ$%(O zsu%;pU5GXE&E>qI`f2K*of0E3ep3=?DT%eCiU>dV$to#3pd7uvtxp!YfGoa_l{c(^ z-wdbIWM&Rc^ydY$qvhw`p7dfVjM|#|0RLZf#@{Yj=F`P!rEY$BIbfDc5o04|_2W#6 zYgsW6Mg>=8P>`#fm8=CjSp{aSzKf_)${g-k{75k+n{0^4XV>)6XImsdn4QDwLq%&D z%;hD>A4(TYBv4s0Sugk+5fGKf>FPnz7~$c!rR7(jG=f~dZS zdG}!Wfb(|8Fm^IK{3$xrBj6h>Z1m;QeM#a>*YLtVwFR-&C zTC6j(Py6{jcv7$BvyX*)mQ1G@cCE?oI7XKG0F*-en1KE(hc~|gS!4DE_`yV`h=oFE zkDM+UrPsA{La6C_|2v-<({}?x;`2f!r@Kyv=Xd92x|fPqKCFn=gs2Vni#sVAuH*4w z`)A~r8{0Ro{a+(vTLjgU#BP=4wJ7_mwdW*HLzyb~7Lea>r#tsJRPU?KF%6e)Mb%%{ z-gUqWiPs0FQmZTl9+rZ=AvdG%Gkvty9(9S{);RC@o@k%+d6VvKj(Oh;qdP`RTGw|% zXZbg0wJpI+0)uR~D$jRv4&D&D+@t%!ABL;J!MMFvy7YntBvl`0UmEX&n>)n49hJ{+ z*Ka*jy>)2bABQq$j}^3s#tzhKFMIu)z28Ca6^Gdt&#ia&U>EXy*goD9Jlu^omVcSX zvf83(h~0hD$I+}^h_)z&{Er&_3D(|dMh2Q*Gp0M;EV4Y#p#Y5s7nZB2 zufJjJ4oGq!XIkOi2khU0dgqhsnWuyVjH;??Q3*CViuiQcJk+E4jJ#D>Gx5^8Hf=?`>+LN8Jign0OpqFMl+oWD_XxS1{X3>eyXNGTX{ zLW!$q6fcG-eW>y9JXn?4zN=CyB+j$|Me>9?e~{o^5tS4=wKdrwbGT!#V;};vMwC06 zD&(gg=NM4GZqul}xU4buHFI2rf64b`ag;#4Hn>qt#DXxa+87V709sNDB>Rz1Fh;5a z^BACLznCth;vzU0xdz366L`eVFdZtzZ%92%EInc)I-O8I#YLrj6k{xLL6{(L>Oo9# zBIE{rF?$_wN-l`ucvOM7Pc4E{E14~{X~I7he8ET)BFy5!)XTunIKeF8a-rjX_~!m5 z&o$%cn!UZ>XlrLVkV=a7@*I=LU6JVI53=LnUq8Lm1c<|crE})-%-yTA(s8w+>DF)7 z`KLbi>Qi*)j5^grr#@)!AXLUVi&h1Cnkt!zv?d7Z^2@-D)xafG$`W_RvPR0GYWRhP zc?qu+{Hcjr-)Irb$iq@qv}WSh!p1^eC>UibL?9DBnwAa4$}gKT5n2&E+O4y4Zc(l z&~}CU8$EG0U9j*=-x>ZcjAA>q&uvJa5l&AikE>z3`JOf+m|#+#P&kX}DjPpu3_FT$ zyci`blqk2X$b{x)l%x0!ZID`CSzF&HQ6+R(@$alBO2ZU^WGyBbLRda$4K3_H==NJ2 z!ldW5wz7J^xbHmcig8=9jzuLXB(*&8IN5C%AZJ=jA(Ylmw1`DB=+GQ~)W{*aCiER#>3 zZE8*sjwbmhrF0UBKK*U3FYF(#8JWQ&qcW6an&73j>r0h<>6gv5KJ96P8!9%*5=j z=(G8+aPaz`DNXO95dHN;DSuS)dqat%RkD-((~qc#VNOcCDg#Gq2Rb*W4$yWT!CnLVb&s~&{JOatKD4iy@FIh@iFTY{J1{E|e(cob& zi{NVrChGa_FUiN+zJLClHYT91JC^b&qgkg74u-(-8hp|DT^`stL5D5(#E?o->|xd$ z9OQ|$18bY*Mv@DISWBnea0dsBo#9}V@qC#kuvtoI>q%n@q#S@zZyh(}B|;{OHa#X3 zCgIgOgX@fQ2E(-}^)Ht(lY&{YMM?9s}>6J=T)`hNPw_!A@vIR-2O4eOGLj z7F5NIg*W@O}(IcOLo&iGHA*k!#Nsu!}bI%-&eCC?BA>`J}$5H&hilDKpp zN---$Lsbb?3>R^auj4W%75rHT?k5yF*fz0z*(=dUl)e5CNC>l%OC$F68Yn^Z1 zAEud3aBa!4Fk}N@%=mHn9%vQYLpca3yeBO4cVA7UAK~v1=uC`kAwQd>#P`aiW`4~X zzq@uk#rgGVIdxY*(vRfGtd5gAZFg$R6*qT5*#fg>rijGA-IbC%z~%TEb!IltD$(9M zA+}qNHhI)8KsJ2K)ZvS;$XvZ*UL3cYwAj4WlPdf4_BHAiPKG95dZaiiF;t1>w9W|X z-*DKk)IS=MJF>)&#$iXd6Fru7q-LgK$h)UK1%%=)S(gT=V~X$C(Cga~ujZ#WR=RqE zh-mfoeI-jQt1vM7bB2;hit;s=^ulPlUVaYIg0T*pM3_SUEs>5lRLp0qEot(5^^<{< z!lH|6RV-&ifcr}Q%iR*9Mkoi*)X0vmJ``5(Z=PuMjxr)%Jqdq5s0i<-%z6L|Ehv9; zmKGRMCEMp-ROW-*G^w`LUV)#K&9C^&9JYgA?kE3r4kylspIrz~I;b9CubUd14Bt>~ zSG9GQb!Lx)R*%gIWs1E2dGLF^xw$shjz5U3@Bigd@W1fny>85gXoRpWXC?N@z3*IG zRek@gH%d%@)LUAZC3zIkYQN%=?g=M@BMeo>Hr3ttpqsK6ioR(kaV zxyG1v>*)ZH+cw|MYljZ*Wc)fR=9!P(ZJ``4pyA)GgEBxCPE?FXs-cddg&`|5fHE>t z-n5c63~~aE3Q?goNQe)86$W2Q(s7}X@G05F8js5*L9CsHuYvkvwTm_NjWsI4He2Np z|1bRxDA76EiNGb6K7dBDCJC|k(~3Ck)>lnAsKNR!Fv*6sL-8a#YV?B8-P<1$FR)N` z&MucWFh&bkWUYo%E1whc_F8I+nH%U0-N_RYA}qP7sPQF|bz^s^VEgNFG{G^)|Fjyq z)b#Wprj2QXp&=eB8{?K9;FwtTKw>PysD&z{Pg!g4PrXb zwiHuOW9(-WRK2CVi7>^ShFK8{F@%+fyNW*(U%$&cf&sNo6(<;Pi54{xc8eKOCo5zO zbD1|`aU86;sbD|bMTwgOCu{kgESubUM|pOV{ugAssz5w6Z;(1fXBmo<<#ya=dmotd zeYuHHTN>rjV9p4VYKNMUR7@QkqKvVV49-eiG2Y^c?K_2Z9gfmUIK@(edu|=ntE*A? zQu-6B11JM2(kN7X(iR5lm!DYZSHL`(%R|NZJX)#BQtSCrVzA7 zwihY>l`TcPOf}pnaqAakcwD=tbpp#oEgY1PLj7mmnpnFKZhpLS6my9`%PV7x-#=&f zm6$WV++0%P;#iUt6=;H-OkA&~yc>GGe)N{HV#}+y2HKTFzsrls zw{e+%k-N}+lv_Hj>eX-%TCkd(c!YWP!b$41KYn+lUE7*kw0YdQAWc|x!t^|7I@7N0 zH)wu!e{m#9raiITcv~^fxLMG3tFRiJxNht_pUxucE()x&Rk5XvcqyH}iZ%qt@z&aw zS<$l{kbZNRO=gGmB7xXXF^tNou8#fK0%~dD{s>lqw>7G^OUZGe?=e;|!*$i3cyTCZ zN(kh}2BMAxxA{zQ=bN_*>gwDnYJ4S570gxNcULhHxC5q zs#QgbVrvL;taPj4Xo@1al>I#%c*&8LL%>kq-VljpBeABi{c0IfocUhVINhRgVR%Ta z3LyqAO%Z7!;arOE6b7Q$;MM3q!ir~Y_JKY?;Oh#>EiUrou8{5gW0vj_E;_RSEm(|B z8(CJ;G=Wr|0+V-|lA^~Bz7&^OI_soj=EMy&T=}jkS2g>mz4VwtA&NAR%V?B|a4jFqAsEb1EZEw-y8V0r-h{~SounWZ$wz~Lbxbn@A zvI|OF9cBgBS6O4c0>@t(7Q$6ZnY}c7u^=jUH(}wFsTL*8YQ_V4>ThQ8rQjmH|H^-N zkVx?v6r82Y2qJNqzcDq|rUrW@8$VI1O0zG|43x)w^@was!izBbds#O!mu74^p|M3+ z=??-0EJUj7n3Ra#V6=PEMch=HW-9rqv&W+5Sw?n4eXhgfpLfBCL;D&j9+0_!!ji?W)Ae zell(yo`{$~dEf>`d^5UG;KM-EW`P=6Wk&lg-5N=Gk#En6599}5aT^#;1$SNcE<8LW=uHcmjn(uQe$*0Ln{#HOClicJ%EQ?Ymqt6a zZV(6ffO7&tZllHaIXiB+Uko{DRw&6z62YkV^YTJ2g)k7N`DHXzLE?#PjKbn{p#soP zx}{~)<N4XPTTv9Dzt$c@p7PGfyk@51wIAoJ0l*3GMSCiV$5SE!?-LV|vV5 zzPWVN{f4`o)rIajGjiniYHTP-t)dW7&6;L3DYO%2NA&U_VilOtSS3&}|GJ4q;Yfpmcwzp=mOSZOt?CHohURpjW1eqr!Yjuso&*SZu4O>#`F zo);tHv{RDw2w}%1ljIt$u$xb>rFd@KZ8T6>Ah}_%TRMYnbHeN&Kj2dPidHkK|^%)njvk6+Lk=SQ>e8cw#Y&gXjsjU29@1g!GTAy*aWq-UArRysKO8#**$6r`=hYb+lX4qxZ|c zAH2A&LSytHlCsI|UJirJeBdB*v!A}etMJ+DrB$+nSoZZ}>l+#vO^K=fV^FXU>e|sc z4B2;Q_y&J8xt$_=iqgbqS3PE{DU4lNc1D`bLHHwBG2tN+Z3ybt3+GQ-!CNgXsq9hu zgY!lz(P0U?t_X#*KfasNqHSs^V=S%hU-}e$@yNIdj2X-Ou-{a~^i;Y;tXh?|=7nevbAGc1k%72n1(L|FpK5Y$Dl83tS7!D4XQN`G zO^QiedC3T95o8923cq|yVtwy$joAasU5j*xwVM%O| zV@zIobx|=4Th0#xP+9~SU%M6UanW~O8PbBB?aQ<>bGiXWl_!iwl(`u$1lgX0u#C-8 zq5Z`B0{yB`wrVs2Ql+yhbg@c4Gud?#$^2mBN)9ogzH z8it1+DEM6&173BM?RAZhs7VodupT)W?eNRy3hw67&ktSydYSd145ir_TN{Y2tiVBH zC~)LvR!GxtQgBhwzG|VH;=zu!(F2MKM*~6CSi8yEE8AsK?|U6N{bO85e0iQo>(;Hu ze&sjIKdNo&Z-Q!`!Ch~WmGZK@4_@Ru9(C2J9G&N{`0Y+^|k~AVq)x8 zy8+XO1G}8K>R*SQVrxDx#C;jA_+HJ7+cebV;^sJ|auSp6n2Idn;y-6q83Fp#K#}9J zSVWC4t~BjFZH$TL5C zAI8#DxNG9*P-yCQ(_5KGq0n^gp8F(!XLcVc6)=S9ehep-!2I zP1>XLHVRr?(1mR9bgOZ7X1aXI!*P#w2c>BwHKbX(JJUQNMsa>G<%z=B4fg)5O#s40 zX*23psCkrn&oUNiR~FWgs;nMVw7@;MeM(1Bt(+>)pv8gf9>=;`{U|tN22(_&_kR+>i_EEKm;wey*ci<$E&E`B@K!3x4LPw-E%WJF* zEL4xC_`6M>4<82}87*q_gw4((a72kFjiRj)@z4DCz*=xx98|;pF9z3ik~ec$nv1=+ zcLDLUOi!w-$^DCSw$H1VbKwN{;<#YmxH?0m?xP9%1o?0KC@+oIDNwDVTpix#jU6XyQzX`}*%Out%hPYiQh~(^#4nD2;0S_2vKTj;u zpD(OF5_t2PvwrgcQ_r&HJ;-MD-?3%M79(;GzB9aEE}1+w$%=I8M>O;Ilz+k>eh_?G z<$?C;pwZ9qm_nouG7!^ zeaC%IRL_kt>;3BZnKxO@m5V!`^ZNwpIWr8W%x3T)U>5#*AMX6Ojq{Hd!o2Cj<+Grkzjs*JwyzN(XD$te8DxoRS?xC&p=M%IuS{ z|J4l{4Tt5?HNde6@O6Ycswa3P@?Q&^3Z;z!W_b{VMb${KFA8cw(n(}Q%o zLr#IDHyl?0ujN5h_gl!*Jw%cubaDqin(GwOwb~BbnMPw0bxWZr&M<+7n_@~tYEu=x zEfet@31tXECOc1;J0WDTOc082Eq!;yxu6$9%p0lLw-$3@DWP@i$Dm&X4tVB;8E@liAg;SRR!KpOK4^@qb}*hTI_q ziyBc83T)Gk2$j||sJH$xjGq%7btLZbCDB-=tImBUHNL3~6B%1*&gcz;t7bFT>C;u# ze?B-(1IM}b+AsX2{EZ-AC3;%M#=x-5XFUfitj$iXF~N5B36d-K1%2R`1!v2oz0r5C z79YIY1h?s*PmgISoBDEFo1C9LdoAT9{_R-o7Y*_5=a)RVIqY*>qm#?I;>Grq~-XtMf zI~6z?R=|BV57A_bdN~1A=c;C{-OLpiAMKG+diVKyTR=D8c0CqeebxPo z&AUAb>hIUZb`2Cye=x?jCvG)`^6t`iKN_!Vnu>HccABV8Tw6Lu2JxWyEM|n`-|8uM ztrgUlg@oSx!K-*%ReeTJdQSu{5dxXG>I4yPtJ=Jdx7rzw^~db@Bij~c@W`f|&oghq zzrGLpKiHJW*xic~w!aawQdPCw3`k2(EKH*idS2L<9ZKzsx{gxO(e97=H% z;-MSkR7q8<5J_R5_#1r+G90<-DBvqFN6{9EmLj{s>xvGu$Y``c)YzpnX#^ z=X*NziPe9*2M5(AETtk|@_11XePv?KYHIZ)$_y#+uM(|9cMYcW*Og0i3Tm1BW;)4G z0eNJ77>ghM3D3C^7goR5k!pI1HYxcz{5IQnNq&AKuhaDUMj8oqx!y;IoL!$dO|~dM zmjHWY4t>8Qo8JkU{bR=9my!rlbzX1`gPbs&&%UDS)WA$+VsoWtZJ&7L*F_?@6`HAZ zjIzAweMK;duA-b{9DNOuOjHVMw~!TXAhs+}iIF=+<*@Vl`R8lYGop->Ep6jn%7#Ui z#S#Sph`;DmM2SQw9Q7mNIaVhQAOnrOD2c0BoA~}k7>qNw{(Mzk$>B+Z&s8?~^V*7?D|E3D~MVA=ZTaHbCYo4d48qscvEAl4rjzwPPn}%mQ#k5 z%p%>_W{X3@vgiIUe#pFI2(yM@T$lDEz~roD=r0>Cx61pFM_$S(xGr#7o_R zw+}k?5obJxb<3VQaeF2lwjiJP=3fc$Rh5xRdi|jY?{~C{^?xicytWt#ODlpR|Z}flIEoQu0;(+A`#3bhanv)N9|uXg$NqTCbvHv2qA|BUt14zD6=P5cS$dy0N}~U+m^1Ap ztvXP!rdx^pBo0N|eGHSK2VBOnfRXFe)C!$tXV?!; zT$%_A-&k3EBNxP|{gzryekc|a!(+4#EPS>!acN_nvzmi=WA$C*euX5uwE8&X(uDTuX$JFB!aCaPvb6lc@-B}CI0RAy~pQ^YYN26^SZmx}XFWGfwufu{$m z@ofhmZugx(G?`a_>^ahNiGXGx)Pe+I-v;qdGC9uDpCrCt^Nb3ofr+8hEVO|IqF|#* zn(f62S2NB=QYZ@Mi%g$;E5B)BkgLpzi?B*ctjcJ2(d8vKU?9qn{*yDrhqp)zQzD1y z{Hcf^eNoiTBL?LB<9xQiWX$5m{WNU&t&4=!Eg_`SmW={@ekyK9O)Q5A;xLdM=sptUWoinxI$ED8E3x6(N=M@P7!i% z>p`otP9-2RCiDLb6SG)W=$R{muScDmfh9$~%u_Um0gpIs%_8b>hJHHI#5xyRR=OO* zk`wodDgX<717)+Tqg@rOE#@YHrRNC`d@jq$BN6YJqPoZr!6VwQL*5*Ui$2U*WL-w8 zXW}T*OSW1j3{+o0-lB6NDfyv%6ir5^p{E~YTyjHYZdkw_u-}x;BmRv zJpE|P9-2(#v@E`}v(@9I3r`HEjAqr1@y_-Dbq;ycRR-k@S795Xw}q!l-U-nQXA^>p zSq4joZ|?|?qg{KSqOA>xh#7rqQx-131T??N?fRv={@ApC*b}^)=<{y#K6T*Lbfny~ zvT=B0KSIgoIWTx@IS2(qv@AC<-s0}6U-YrS)vCKS&`)2Jj%#ah$F?-j_uCe&3;{ zD5~2e~PQlg5`=w<2s%(&J!ZTE@E)w3;9jV zaw7IGmDWB=Ff@H=T7~{Nm2pgV zt*pd=REg`cN<@|ajtgTP9)2!V87u2@njaN^xS1|2hA(AYPXmUBFKggB$imQC%u-(| zPAESz;1(1Wqp7X#C$QNPD#j6n8ut6Q1Weiqi3Jj{5oK;(WP!hba0|LG z2P?2$Qeh>L0m}RdlSBE?V$fDa`Ub}klC4ZCIo5ggd|Pi_ElHF{b6!JURh8wnSI$F4 zU5q#1aD_SUNU(Hb(4vHzDrDy`Eqt5QSI^TEJROC^W$`)G6yf~7|KjMJgY)?MC>}Iv zY^$;Dq(NgF4H~<#ZQHhO+qP{twv%^%?;ksp$@9!)GP8H@-Sa)?b1?H4aPyhah2t$H z{cXw7mUUqQ5yr=ZT!;k4;m#UU4;v3T8~G9n2H?adGo?j-HuEOQ`Ivbuj zi(onRc8-fqt~&ULa5Q=9`~IA>T}tas4|hJDos==ya1mjqYt9C{U1`+x=eDpky?KyN z=_jmM^v90V(S;Wuuz`wyw4-vF?m23$Y1h^G-LX`Ez4a2{@jQpWd70l$N>>3nv5WuK zHe*>!Mk~k$x1D#w#WCCDP=uEvC4CHk ziWm8BCD;TCtqFuW^Z7P)T5XIc-B1E^Nh}1n^4%yhrRkyh1UvAP`YQ9j(E?LdyV9UQ zBa?p>E8<0g8RGc`_zMM*#bl9NdbtJocp`nXMzqy&sLoN;@$`=|^p7p2ap)XxDaDI@ z-AukFp5^IvT;W+S8NA$m`9v=rI}a@q@ErupmGrn@#59_QXya<~XoHTPcWya(3C|%g zD4u;-f!xNwM8r{wbjVaLNmS5@cysWIN&OC<+K#v8=IRS+)E_gjVN(yM<)Rr3{*#(q z^D}$C=3Z|t)!c6P4ugY

2LT86~A5B$U`)h zPndl{M+-zI(MIy*+9v9{#D6qSB(;iF{v>PsaRBNj;>PxoTsLtHx8Hmum5q|Ihc%Ur zE!6g@ZYQ5CLl_@?kE|NtH=O%qT9H(@WW={ej7L=#4>s7)9A+jh;SXzkG=b1aVbDep z35~{}fSSxZCsvbUm^2=nvSA{T(lP;hYZ)pQ=^Hw+&utr5usCY4e0YjM8RKIy2n+_< zot{V{;i0W1Cc{S{u_VQUl(5u|rDG){vcpr#5A)rDCow$`;I~ZIj7G&eUr_V0N)SyL zq;@pv!levrQTZ4EAX_QnZ0HvH8XBQ3Y1Kmqxl36Ds*({!DI?`Jzd3v_zR;WyZl)#^ z7R!v5g;UDwxtpgP)IYyp)jIAEu7S^eW1nC5?sMJuXJ3HSE57t5-g(ab0G# zXK>`Xy~p<#yudyHn2&wzW5n^U?e0!FaVlj)|0R`+TL}`X0&h0VYn2m_61|*&rFazUc(+#<)%kATr(4faI%Lwyz}b9z-fBP)9jaKxD# zSObsp#+I{|E=Ob)AHU&fV^&J6FVSTmVGCCmL1#oFjHEQ-gsL*Ls8;4WFC`C=JHY^5 z1A)${qC7kRJEnTTEVZD>uVW9`h$wVg7vrw8bAfYIKT*)l@@>0SIK_#4`@kn236Yt_ zZyKa_x}kWHk6+J72RwpEk)?e>nhSMMYIoh2#|l~=S@Q{E`Yn_Xq>h4mp<QB^diDGqHLq)~xrXOI|M@Imz8oP0S6+GLoae2z zy#M|0XW6o4lu9L@{p@FR-+lMZ*=BNbl9#>gWef}qFf=s8@BQBI?Y|z!JfeeS^A5lx zbr{eUh6~T@cAl*6vrtyjX<(jN?QS%#-}LXH;Iak0}f%{eX))QEVSbS3k!ZD!=FvuO+Apg zJDD3igP9C($Esk;ZXLJi&k|1E!5+?4!7@#m9BGQm9y|IXk$3qi=#WY6Q#Xo^6;7w3 z%hYv=yC=pR8(_eJm*oSqoHDkVs_M|P9@>JBz(=92#n2m%m2mdVzEJomfU2MTZZFIo!T0^HrZa`xu5kbJkvKUtamp z=egp;0~2rHtHGsQ{+#df;GJ)M zOy{oiUvX^n^opoL@2k4SiE-TZs@gu zEK=ym*(#?s*HsDEPeP`#zUL@t`6{9yijD7f=>pr06(qFj`#cIDRQxU_ zHVWJzWE^!at9Zmq%kF(BCw9#uNjz{!zaHH>?7k=ST>t0CwF7FOyimUyb+~;`gay^k z1A1+)NtBS4B*}oppN{dH87el )+w9OURwk(LGVut1kAY9L|Nz!Vpc-NaEIlte&m zQw$b~z(X-COPmo-uwu+Xwp31KCu=hAQF~9 z7zSnR+|Eo$-9&7t4`GcUUS#PEyKrV5D&molEb4(DD@0E1%R!4L+#+76y5ZAaM-xt^ zcr6!0pc3b7raI1{vz_^zRNcZ^mHSxjSw^HJEObdYz%?W#&#c|GUw=mjq7Jw3%6!)J z8~5Ehd4KBSOV98ATujve=Jh)l!@up`Dc*MP)SSnD{+oZv&wukTce?%2qo1YmmGgP? ze_b$7XS?fC*Zn(JtU2(X+l6m_2QUBM_ww@peeb;O^N=nvKks?Z<9W|}-cFyh*7C_u zevLiYu;Q>C&ZKdF7S7^rbK5?z`{is;jQz#v5;B?b@{feEQR$=7I|@ z;G-Y?D9e}cqsu{I3F&)1AkYsEl!Qd*BU4V{%58Z??mAY4P6Fs!$kg#ACZC?L_Lzsb zY3LZ_aLli*Ue68d)-bkshCpdLA6-o8K^H8BaTGG4Wv_!^ZLYO(x{&TU6$1C73sV>g z7!6jq?$M?W(L{tE8%9SSI&u?snYb>B$=m5k%?VB8VUOyDHr}R5Y~rkqg{RPE&jnqE z3JHjoCLN5(DheIC6{&(sW_&@gJwdjeLz(JmWRkgoq2z(K&KC4oSo{mOGAWZhG&D`- zekNVJ>il=@-rF2-Q@D^7dZ6O7RLWhqECV#w=4K474t_(ERor`a#si}JK6EH^Ezi!y zqzAhWyYI;pw06~n*&WU7k*`_EemQh?xP4EA?k(~l=+elv4~-R)a3;c^%}^b8FV=xX zCYr1kFuTg9ek2&*x_=#y7caeu=T$aSmCic3Djpr4SCat)VTTPzE6TMJgL)LzPLa|r z=9qHsT4n_z)nFm3DB7daQH}$Usq4<`P!bP2p?g?|;hTN7Hy3e@H2geRMWiy;4zK6* z(mE8DNMzJxO4xVX>c(VJQsEJ_Gg zsKck@eYkyBc2&Erz1&fQ0NK##6;%(aUS$o_X$58gi4Q?39pr~lQz?G_MBU70d` zk-yXDUVGNlxM$P3bgroIo6FwGw}7)ZznL>W|2jT#+5XrP?78$gzr(kuzQDzt&(}YH z)d4xifvUq}iFqgW;DZmcb?a81{p@FV9~>lqpv>VAO$p8f1+ zBcp_g`~)b4LEbn`a64deNwzj*H^U#SzM zdCp5V5RsJ??Gc6c9aTccmZU1k^6lcqkrS#W&dS-81JZ$jbihX#=eFa#_ysa`0hRcH z`vXf>lOPqkQgcBVX#2JXLGmwfcRzX^E4l{iW zhQqcF<@aPh>haKd*%{4jfp+%zszdQT5t%`UE^n*I#!{_}!3Pt9I!qns(_R`NQ-fDe zx(--rP0?H>NRNogY8n$7PC0r5=an}xD0iLvQsl4vf2*#>o;}0llVJL|GOblr%%VYT zvB;J)1jwB8qR1>VwOApDCM?l*=NPGCgV(Y|QC1 zI)#sIJdclWelB00I+H7=&)_Swr|^+&&*H7?FXHX%ewQCVa4e;p%9I}R5e<(tRRl6) zg*U~B><|f!LLiY{@S^%Oj7rEZg-qt#MM4n?MOi9*Au$-HOq;Dbq$b-8guPCI(C$93 zIyuET&FR$IK zy>s5(U+Cde2kN`BKjX;{?tI%$!z%mhb7vpJ>qN@^e|IeRKYh#Iyv1(4`?mkb+OtmF z<1uztyQ4?F@}YfCxPR?gPviC1+{ULK`0PHvc0TGrf|urK&)nckXaD)U?f38?`R}B* zZruvN(xpr1Jic`4((ZFxw{B(0k|lGV_dJi0k&*5;JF5?W_``hggCE@alg4(%{5DD5 z&uKPiq73xtOMc)w9$ubSp9ffGO9t5d8?gF>txR=F+`n}(wQ3tFVEyzkLw869)~AS@ zA(&`m1K&B2^<}>}3Y70|gINZ;?>q_+MW4{UZ?bN!bzPxC{4a&;s7xfN*#^>D0^je_ z&a5_wD8#ng4k#Gs*k!FnXw$v9I~s&*u?u4fng*}s0FE%0XgW`sHWsYt@`p|6VSPzf zlBmQG&KRO8O;U4I2@&^YwiLz%g|;X+Na%t%MepaXO|o!~WX1DESE{hRc7Gg*TyG?& zo0N9=v=;~HlEj~NMgv|GI-?$V!chbc^EzbTlV8#LRRb-_J8ykLIFTKS?}?5);sHrK zBq(op9glcP2^|THa``aY7l_Q=^NbQ?WsmlVqO&A}j>`@kSuxEYuJ|9Sa_5;Z+8P=* zW@84^CghIxDw-2zJfJfwFuo#~jZm}FbzO3rln7kjm(-Thq$Qlp>Asnd7dzLjXiDOB z490ie>C%M3gc7+qq%#sQy;^a19AGWnYTb83DT7i5ttIV=5|wp6i*AdluL{Vjl5l0l zj!u<(l4YC_Y+*!oNU=zIK&ETl@`!T4z#wr{Gpwd#HIpV|Qu{uG$9pYpAbzl%34>hR(-KFIW|pUv0S`~^Jpr``AZm1XZdVCS{7dj1cN z$R+j%u3qt_H}MBAc?GAR4D36;+i4xP9hd`I?|ILAn31H-{9VS}}ohByl;Mi8H z_ulhuMXvQx9gW{`D|WiP$F{w5Hhn;@xaL|rfqp@s>(>AkpwgN-+LvypCd*uAk9KyN-c*}#DswI~p+v?S z6>Fl&48PgS2l!R3-F{CN>X6ie1KHtMyZWB!NRgF5mz<@$F1zdz)v*lUpE7ix!Efh_ zPn3+6EgsGqOqn(tGx*Q?Q~1QD=knzT z)*_nGsNC8z`#8|qjzOkPvW;M;iRB3UE+oo%X*zGkLg!WQsE)N{*0H=Mi zIdGA>7g^w*be*swi>Ej_QP?XBf#1-`#1b?N!IY%c2^sHHS(gRWO;4+nT1{*-IyR&E zNRyynvD(vk(yuAmmuhb~m%qJv|LA$|x#xJ^bI|*>6jp&cmN~n&xG1`UJQ9 z<#z!GbpGb`$8-VD!LHHQy@AV@UCVP%`uG9Y!aVntub$Wa?Q;i4Yt0wG_(gvB!ymGJ z`}Rj!CtrQ_)$?*YtWy_XzAK$iZ8>gOnYImFM+qchoU6y4`PEK}Tzq1O% zkTBfIYL>Cig+2!gMQ6hnT@2{0_!s&Lse0W2VKDrZ>TPq7C^G=FJ1cCdx=v-*qrIWcg zWuU6YAu^4c>5vT7AP>7Vfh3EhyZN^bLPPDL4#GlfEJWqum?l(R zu#;95StuxtYrKvo9`c>j&6X6=Y`acV0a|ik);$l|`#TdR2X_TvDYQz)<}|XLh#+$H zY?pQ>yFz}9LDt)Nkxy1Cp#zB>4hW_a{OJxd3rGhKe_QZF@;y03HQzSM3$=IkMCigC zitmXqj=p3i7|($dzv=WB)-B+>`;O=Ssl?syR2xLo!ov=zY=L{pYv zHl?*Bz$(|__I3meFPlQ<6stfOBH{JADt)D`>C(wmF*fDp3=G_JY5w?z%;(FS&Lo*~ z^kp4cva$gM^-N)<$H4j+ndZPTccHXWxFBO+cDpeyN2ylk99>g%ql*@od!WOSFMw9p3co00J^RDL^Yf-Z+2ebx@|dPQ|U;OO6Xy1S2+b$18o zUqMsQ`&sPR_k|Vo$m93^&Lh|di{dh*K2!R;ga6euQ}>;ilF+|n$MJpNwFGIRiS>0H z;g194F5}FN4PD3f11O{Kw>5C*Rb60$jo{1-_ulkU?rC>hUGJN1G;8+HQQUW51v{T$ zp(;eNcG!k-PNtg%p&iN8znx_Bmj*PFEGwj+6Etf?#%2qaYq2j@>I%iy%q~h6be<<< zvOZn&P;T2@s`}uAS?sdRU(BIrn*v(|`7kB*vWI6Hzi@& z^#mIOQ88`fIXEX@5gexcV&kw=hlyep#I@zm$j+zBw;1!WhCPN}}1_Xk0e& zDTY8x)=!|ka)yZefu%c9P(B9l_3t9(yPM=#7~xXIS6QR_o-cp1_VKF4P1}sLACepo z@XOk7Wo5f#UcP>D!2@5mAJF}~M9i&B@_s`W`#wP- z#^1GPUmt2qF`lZQ&z4e;pITjABnWEb>sqc0 z**NE%k^BVdRk5}kce&7A!n=`8HAUHxWJkwan_&x{Rg;E>xAF_Nu>vU9E-V+gj6!vq zKpnf;1TBe+Irft*^tw7GMGV;44cbJc!>zOF9BrYOE#mejm88t1`+lg4jL}`3E|kLm zHY2QLwFsb^Ny)fYsC@_L@_iAT-J3ccC;(xeFN?wjb%p}z0=MTj4B&>&tpCW7Hv-WP z$lDWK#9it3o>~gJ_H}*j4@}Sceqg9H;Bk82vI2Qrsq;^%^Sib)a2_yg^R(l@+YShb zYk37OXD(BWZNNm$K~!mi0sXxn;8~2aTy>CIA%!g6#-h{N?r;@k{$fEQ!{hF?c8=4cU8A!O!dKETO&+y9nX|`IK0J^6S2cpNhUSCH zF&``VnJkQDHj^!?-$}Q7y~Cd~?Y9o(iX!We&YN<>Fjt*|JzAmPz=kMKIaTqK>#~R1 zY@0LC2q0qzFgo?=h{ES((QwRLbT1pMh@LIX-bK}KjBLWj9C7Cvc5nZ0lGtAb^Rs_( zU-wh4rp#U#4k6N|d2ozcO7xmRSedQwEn3AgL_u$#5C$8k5QA@3MyU7u5x9rbnFddX z%*H?-PRa06%Ch>9Fj1uArVr1%GHx>t5s?fn;;$=SZleyl z3s#`TGt3BxitgUoD4dS62dxF!+Ap~4QMk1dm*;Ob&l-;2emmS54`_gAWlA8TRhjzOJ2Z)O62~o-M>t` zPo>;H&r8x=-pp)F;i*m1;c0qDHIbA4`7E^$XY8 z#tuZ6K6o9b#@h=KxK6!=l7vF&>S8y*mCv7k-M9?w}x>QS%YYKVnoQOg_86rMJ=I){7iIi99amh?+D zt!#MSoNBMRcE{+JI1uxH|Mcv9ETQ~~oOKPV1bmzIO@SG*=7(+qI#!^Baj(s(Z^J{b zL#)V}gg1LhV`@H2y58Mx#<}Au-H)r{esDh3L)SiJY)6BETeCYV(u=Hmu4d>NcxfoW z=%}(pTuK%q9pOG`y?S;~%T)mSi$D~!Lf+(PwW7Vco>UXlqu1Rxq2k@Xhdl<*);otd z*AHr=y0GG?s`U9X_i31k3sqE{i}~hK0ywFb$SFz$3`c7*t2pl8B2IK_IyYVtLKxZb zL4oYWLbar=FFT3qoSnuJ{^zOTr`_Lx!PpuX!lvRQ_6-KtscAW`%fQqYw`zR!sli27 z{kU?+--Am2Ey%);Sv*9Pp=g2R@g& z8{lfA0)#TyW49$P2d(bwn7^O8iJRKLxW7+y9~*^DuZ_x2-!9CE-*GNiYmV4~$zh;H zafDZyIXM>2&hb`=Jz#V6f1k)cpNb0ERnLqg>BO)fC)!X36>9~tm;aR2n~HR{%W2)G z^G==%r5drvTD!X#MqNcNbv;jiZf25|CkWx``(GV;R&kQSkqsVFxD;SoH8);zmM7Q+|34kY=D=qOI0_^$hoPP)AkPcmmO>ny>8+`5OsP~ z<{A`ax?o*Jwlh>@82hRrM&mDaOG`@}9GvvFzP2$t%)KOV&8|ibe*v)cf29e8NIPkU z=O*^jNxiqRVYjkIBQM8mbNLy;mNbB+xuyt-_k7v37;* zVX~AspbZk{V62JGR}a_I!>CO)Fv_^YD?`g%d`T%LjUh6IYeR37J5`XcG10SRW#Y6B zF{%wx#hGqAgLxMunS_fcA#PIO=7)StHj1cg$?UodOzjQxVLV$FF29*KN(|5Y-2sMc zqx);>)fgPwp|6To&x;0?GEk5)MeJJDxPamW#%}isWZcB?a+ts?wMim}st=jFM7^Pv zYu2xe-p6#CNa5t>(J(HZ*PiY7KJP=Eu1cL~JrTMuUy@Rdx zh7J1kk38}2tzW>yw&&0L1*CrezlTV9?KZ(tgHX)EM+{n@Q|6vs|B4f91TQ5jkqyTW z0eb@>ZFK;ffQPgBg<{SrY$KOpBR}Qm46)~=ypK@g&ogOXph@IWagx&D3xI4l;QJ+D zZ_SWMs6;@bB{(DdM(L}o@Quk~;<;Q>4TMQ_*OJL+1k0_O!W}(ePug0%o|I}nd@&>; zOQel2p6@y;=7=fAJ{BGb{p=j?jQT1427KgC*t(W3YMmaCn!NnZTVMi9U*A*Uis1@oQNL zx=zpmUEL1J(p1t4TJA53*iQQrku=|KOX!tJl%ZZ9!|H?}islX_=|y;<*(S5MxPn>xfcD|D{9(npWgh9(Ol%_e(Q{(Lc+tgQ{&rx}W`$`e|*2 z4b^iPc{(rlRAp5-j521(`1HX+I61T^sU`H5tXeFrhLjHP>9NH^_5Tmv%}vNG z4+p;Yw>;*)#pm~ng4Xx-%EwNfaMN5j}`mmlfG7iHiqJ=RaG%7e&QCf?>dZl61M z%S&B-doLOIyw5RZx2Kps+QL0=@7dmeo7V5>Ufy~8x&8fkndkEM?kZ7x-9o^z_qqXO zde}ly+P>$CasS$H@jk7D-sib-y}z`*@1DnY!#1oy*nuPlcwj8dnD72j<01xoF8SP- ztni3yoHLUZKH* zHDjF2l#rUf8%4bCO$oDTOU_B@GOrh`NGZ#ch(f&$o~l#lOJOp&c?pU>W5HDKRQd!1 z+bl|jsNzb)OsfyFWV^M}Ir`#dN8AZWjkCEpt-Tt8*oXp2K#yA{xhX>7iYTtUHN%9A zM5By{4GO%w^~F7$!JD0s$n$gybRi#!deB<%15$__#6k1*X){C;p#-(-ejx#m z30XF6UbulxFmdfTb$peK;YYZdgneADpkk@(%`0Ni|I6m^kW;)df_!mYoVom!$ z(!SVtOeK{%$x+fiQQ5k(``nzrWDZ&&uQeJ3YajY*%y_xBCl{Ry zFBzc1meSL~jkb@%WpnO{W6=LC4Bsm((~~f$4T#i?SeJ}c4B_KG>q#s!V$|9(QyC-{ zCKz=6qoHa;4#c7;!mB%H?V22t!|8wy&bF-%Au?G?a3zV7_B{kWXJ`~>5oKC+l3COs zh1h28jjm{)uCz$nSDtSW63*g#*#9{Aj9dnyQkcfjj#obRLse4yNjHFh7?-yQ-2@CO zuBtq1WN!_@=_zS`$;@GhLXWvq9$h;ba{|cDCVqcK^Oz*Pk_CzYbgK zq4s+|?)!RDzJEneANxVE{FhQhw1tX%)Tq}r(a9>f19UE=6md%FGsdWOb&$*t6uJ`w zMR8FfH{_w(Y@Y?j;_CS48?}L+UX|hR>a<6k>?GDU=?Eh-U^j1xl_f2Wow`}&Q@=7> zJN0q{)_0haXLqI-Awq{Oalb;gaME#${kKtM6%SjY@Owol1H-)fy}#k%Pp)wfPN7^% z5BQYD0s*E{w&vofd>ZB!)Yh5}q%|^)Y7%-u53zJ5HLPC}OYXI7*V~Jcm&}l2kb)N( zfWIQ9{(_zTC0@*u+*HsmWJ)URD0=m5gRfvsASPHBtgBza>3*P0{61eI!5NS!O`eo3 zk^p#tO4OoCAv)|K`D^|3r9@Ra^bg=k6oJY5J_b%?Ds?LK2_ zH-yH6n+=H3j6Inpbfz+$?=3}%9ru$a>8!B)&ByOCN$tNryl!^7F-~k66%O7ru?c

@G%5Qbo+TH@8)n8&Y5z^cxw{2bp8nT@8Z zsbs?Jm}eOQPkc_yR#j;@YaD@qqDWsKY8E(5RHpv>>h-=+U8|U&I}x4%xw#%xE}oF5 zrf`T1_2)n4%!b#w@Lk^&b6(n~L-!S-uO)G-@M8wxr{&(<|DTiSTrcOHd%)-D>j1+o zUQg28?uX({&(qw$Pi@CQSL4CsHseltzKvYlJWvHyevhmDU7uUX{nw*7tNX)|_pYj; zvIk$30u4_|V}Zn62&M(Wyud9E_syj3T;4cWb zrLzJnl6X(NP_?*8g^Z(gDhurDtLmiXYaNXDT=AVoLq6PAY1T{1UBL4sP?npud?T}C zq66O`m%lk$v+B;l#$H~LdWqJ;zfOP?NdrbXk&3uvpey#SgkAI_WN)!tONzxo)=o%w zWFyKWH57Ow0#d}XVpNlQx2#f4k02gCh^i0=kG*-tp0}rn3arr7f}ea0D>%eKT(HRO zBBaUrT86}j`&8m?>H5cW1E+7wfB1kgcWr)&fc{sO0JKcUM*e*oy-hxsWQZb)37P&Y z)X3(G&b5;3)CZ&-D|=BL&m1g5S%B}#^7wgaQ9#QkN_hGLX((&@ygQ%5L{STa*zZ|H zg_6{ZaHNStI3se=87|f!X+72QSWzmxqb}#e{907J(1h~k#AS+6_&dE=G0bT&p8Ejo zVVG=QQ6<8p8;|Hc8Pv@~_ic_M5T`KxjCrsPHI7pGSJnSy#QW?5QJ4!HcJ#UYm41PBokv6P(r>T`X9iM?C+9zj>!9$tG`iV;4z0)E_kBIWj~(Fp1Q zP#LVN1lQWcW$)bm4WFyp6GhlL>UWPL%t$zb*d%SLF6#;jfry;qWw_ZS=a(2coihz_ z|A&%Z7vM%EDuGvkFv*T%VLDny$vC4+{fk>`{)Qo%`cd@}5ihbk<#WSIIDTW#?@ICW zOt$WrKdmqMoA&^?gf|6%8Bm}8*-E{6c6a)?v+z9?O#8XF*7_LTRcmr&aqBe=a5-h4 z3%Pt&qWf=-EfR9!27ZH_0RQ{G{wKYg_vfDk?;pkwaRC3=I^&K6E81uH?tXuebjzlR ztlcN7+V;ap$3G=%k=nfvDgUuuN)4E9*CGh8ED#3Oc_rlqe=J^ZcZA-WN!d21t+Djl zF_P!VsEy)n$e`Fb#@R<_(H!Yr1EWWh)ZL&P5mf2^UL^v7Dc*j?Y1bS?ki~W-@F#|l zrrwXVAHtuSIB;$OGos1?FQq8&0LoBjt~Wn7Ui>jbZFWy4uq|t`s<3Pa6u5<=P|W6b ze^SBrTBX_yIjxw)RbPOC8ObIQzgb}E5s^OSeWq@%B*}aMyk=7f(M0}l;j`f~+josy zoKZ4?jmvmk#L}0pJIdGIC5#lYYBfWAyM$sx5IQTp(AC6EKdy8A@~};d>$+468SYrMBRb*h=Imx9p!s4!A}v2pB)6|_k@$WtSvp+Fb!rwspn#<~${ z&zLw>yjDKY;y@kwh?maMEM@=$qhfG;b^Gw9V_lyC}O^RXF^*dNLVh>?l zE>W&fRg6SEroIC`)8l2onE^%X#O84xH@PD#ZGbKeiTp!r)z1j$R0nx#*uA-gwOpsj zl0V&LAL9O}koF%$K8=6Rsn%T-G2n|OEJ-QPO{q)Q_rF z*m3Cpog|JZC~L_|an7*D<=-^(t%kIh&XbPWNhoBK+6M*S#({h`lGM0Rl+x(0Ee*x3M>Kmw`n$ zo#|1`f_ZfTUzMMHbKpA(-Xm$d5XQk#%zmizQ7r$CJ8s3k?<2C+jdn|XL0^$~6@DEr z>AV!zfqOpGJa~GI3gpHK0X$z%oxAlN7Px;iA6^pwgA7^QnY8P(d4;V5*>7vjUZ1(? zel1Mt*Z%jGg3o(V8}))ae#IW>y|uMF8W-?k*86$wtV`uMk zr}yTep7y|}7G2E^uU~N-oEXZkSRNWkSCpY!JQqOA+8YM8*V%U=CiH0@l>_cZfd(Vq zz@$?HD~E>OEFCK#S)7s2(?j(d!KpLMx*7F2bvkHmii5VY&sD8G!JFy0f!>XK)ji}* zoB_P=vXM%lZtEU3%)ji+;P_jbf1XlKbq=u_#N-pC%vqT}G)}BtL~$=q-t|%7DN*!L za`u{venMbd%~TL{#sCGci%E_LvxpqI4^{^|zCv77;3@%0qr4c8*EE|}bRR&X@_c5B zCQ%W}2s|p;7K1zXw=D+Ajcv8Qx-0VFl3Q(=AT*|+F#dVPzCc+s17(iep4$yf7X(c_ z{0BUt-gaYti&G1qKKhWQ-b0Go*2|$Fznc`aaF}f2)?XAezGg`C-){)%mk^Zdz<;Uy z-asd-S0S{Uw}w`jgYsgBt77O(W!+JEb&s&+mzJ-C&7qvvO$-V(X%|1UYg9P&4mYnD zOD$KhNa}ZjD3?M^z-=s--bkq!p^>#3=XLca4EdAo(ZEiTK>J_BsXM&&K()TTYv8bI zm4OAIxl11?Dk zsRKlMDs&jQUL{OVG&Q2Vg~N&Hs745CMa2Y{1u2WsqC05Tw5t^rJCLDHjz$}$nS`41 z5WMLyUWBNvseHKmp4z2y1Paa5n3&&#<7U24Ai2f?F3yx?b0kyBEs7%5`9 zQ8~5E)|`1+7H8S5Zu&V4lcNQ~w>4rsDRy1`byzUv{l&<9Xv16!x@UI6C?2=yP=5JE zm?PYJzkJR+=XXq*cO3V9T?6uQgBk$x6#9LjJM?kdR`&W;h};nq@JS2OeYwMY0OZQF z?vWguSpT5Q>kfMt0T7#E-e`N=I2pTpD%u@!NMkg; zZu|Z{x6Ls#svmy(S3v7yit-~_o+iuH``TEr>wVX$%LQHgd+y!K@YBJ-cW1I^b8Q5> zCN!$n>S2rdWax^KSPxWn2^ND#GDA|hpk?^e3`Dq%F5I!+y6TBnQJo?$B2hj#w4rZzVTwgQ^s ziC+!kB5zudgRUTO^`KS_(Fa=OITCtFje5NvlwKHlBh|Oka1E|6#^az!+%5_;KN|5s zY?Hwt!R%VPmz}@v391(900(E#rwaOXW)B%NrH-T#ShW4G*R=?jFyDO`gbF1z$%gxP zza7O{xmCc`j7NW91r!q@?s%n;&B&BCLJm0+7~M-W`NfP8_Qa{1(44pg>8}Nl7|xY! zA4H=qU0=PhA|dlsuki)QkJggrmJse;5l_62m$yE{`krY!<<_)0zxz|a%{}Da)_@=@ ze*W37n@i`~e_+g#*RcIpcHAck8!Yg9=-R-`Ts6QyUhQxJ7gokLaaB#!HRd#w+F}2o z!t^j!dG!evnjb-P3&xb!VS&ol==U$Ip9^<0(cbP~ZSEZ0vqTf6t0dG2jz_B#nD$ve znfzAN6pk&jdAd_T>%`T66R2;_CKW0&Xt_Ju6Hh3Y#!)8Y3LAMMhzm2It}?Ft&Q!=# zksL`~^xACcRkm&9?=4vwwC>*^gNOf*M|^~p<6GvgO31wn$zCDf!t7I?iqE`hMj6el zLMX1~LHoRrEcH7WXjZX0Wit|!bsvA037QUqSA|%5jJ46NC%5__0{Q38v#7owt5)Oz zx}s?eM&c%5@{MFc8i$(dv;5DFxvXB?W#L&1FjVdmid3(I`SmjSWRO5BwEE02^ZxCU@cJ!zyuzqOwcRP51c#hj3fCCHca zJL49oj-fV^D!T_-Eg-?A=(Zl=Df;IRhB_IMq9ys@FFFerGEk-;6QofyEC(S+vEivF zt!eQ~MGs5~7=oD^q8pPrJ)Ie}PZ2Ls*Cfd9S4*21c-dkQ##ePZymXyxBOadx@%yvP zQxDa+OC?bozQ!K;Vm@K`UPTcQ3CA|Gqdx>AY)j3>NlE5cP*z+BE*$w>ED5ps-N$C= zf@kZ=bcAH?M50OBI+a?APX7^Y9D-WLRgg3vd6J8qxIy8}rWwF`dpGcbNba7!$H4uJJq(jEkMO=uvy} zgG^KmdkBna!sNa-x}52xY6yBZTYUn0ks`u4Qtvp=s;3ksw#KbRhww;%4|PM2x;Xws zQmUgxx1oh<#Xv#|EYP07fv}zL0KD!KXL2zNrZRZmP zqjLVbaFoyzgcs2s5UdD@>LrXzEaJJsD|c3GJ98)VH3m9)jjsC<5IRsN(qiI*@0%?I zB9Hr4N1@QzsEF;GC5XlA4HO3vmMTb6R6lPWa2}c1t=c8+D1E_fckG3;@|Gq z8}260DtV*XzZgKwdjscho_ihu+%ETdaSuT5di-3hw7s4WZJS|7#M;+N)4ypaLoTPW zEyEgtUyOHeV-QBqEzcRp0YK)%eGsy5pi&ukhh5v&e+0?n>ZVg_!^ilPiIE3Ms)(|2 zDLOAkMUE2HpZ-7$wXdQpgPF}e?wwJd=lXR31cn*}16Se*cA=Rnn^mK=*el1E|I+dB zzn#tl`d1-rTcxHk?hhye&&|^FZ6xrg>=u%_;B#;cn?>|J?B)7GeKi~ij8l*iVRZq= zUr0uh?oHZmbJqDF96NrI9U!#OYJ~=a(aS*jyo{Ab0eKJ-=DCT8m8yu=y$m#1;sOmZ z4B_V##N_#(>Px)|jiWX6MAAGUNv^`o&yB>I5w;#26DDL^amL-Ju_T0JRRhL~;~-jI zGqpj~HtTnTO}A9!ID;j8h8d3L7Z%*l9>$C@CzSSomo7tSHsAw+s>#P$uC~3+@-$q_5BrffY7OI zqix`Hbde1FgN9EC=1uR-oUNX`Z==c~Cn6meketWMH5A+BqPmUTwiT?&q6;)%ePu)Att2}QuIkkfNyV= z!aao-kZJY_3rsjRV`PL+h$lFw_4nDw7VtKo8u%vn&0a0I>ILy>#t|a8yv*yXtU`So z9m)gWet!+-apJDa?Av_pSA;&{`D~dZOjq{1P|x<<^{zJPNK{w)8M0Q>wkwAr=?g@p z^Ip&e&QjDXB`|(~=b6us)mgp%MKJ9)Xus_Q<#Nu!E`so%3Ifi;Y)P>%b`Kv(3WaFM zbp^7}0t)$eSy-lseDM&7N6&T){_IW%fI>O^x43$-S=t|5fI`_5E+}XLmmTRouN}~) z?Q9V~#Hf`~8>wWM9l{Ed7{I2arzq^rKQaUKttPS??9;Pef$VKZT`!_lb&4X3&7#~X zOpptDKMi}=7gkR~P;;&J!|@w{>g#QnGwWE3lC5Ll(+_#QgyvNQwT`MK_%{aW<}@iU zhomKJ4dy12GMPUb{B7C4f|-1PcaZTy8+j|8d7X|uDnFoo#JeUmS~o%YgRmRh`TNcK zV|d?>6fKBC2J719^#Y6v1p08Rb917oDaG85Ga{f&v(!Cf#3)B|mm*<4T86s=DQr-> zpm<+`mX&Ag^W;J+m%!mTH^JgntZ6dOM1%88C$AJ%wx-Le=6-A=KBk_R&@x7Nf~+qV z5m8ohL02#o$q=PzE!C^x8VV^(;D|B`;y%B~EokYN-bte}3JDvGrJx42hz^WZ4ibm8 zbu@K+#vq)i08LlauY=|S_AC2h)Q(k3lz%!VT^l_6gXB#zq#VOT@d&sdk`9F|CxZ=J zyiHFaW3PC`$i_70{wN`krYbaQm!s6iEYTaiO-$|b|d)&NPv|0z4r^u@>UNX%sLw9=@Mmh(2z z3z>SKe0P1v);dnV{ez}reK_-o)VlZc7Ns3t@OHzlUwglG=+k&hip3rY6pS0~X?Cq3DubO{Ht zP?RgGZv%6U=rf?=tiv#a!L=Z*cWr6t$ygjg>}}m86t@xuxhuY&!KKRU#&7fH{Y7uH z2ErB_C%k3+!+9beJVERAtWlb6AF9`SQT5Rc5N0)+#1X4jAW)(w zodTR}o$1Q5PDEq@-)R|LUkA+;hJS)Ks(z8V3nN(&!re8_i}E_BXhC|wJn1N?$ms%2 z?durz<|a)dMOTiCo!JxSfo>yq;zV-TKs!J3ZdzM5Nx39XsW+^OK+^LDuIyvk0SF<- zls+>=M)(5f+!Q$&3Kohsmt@+HqgO2&U7SeT}Z8V$TsUylQ4Y|JLU%S z6oGO!78u6*f`Ph`*IugDV1^_an~Z3|D+Q7EoiV3iTX7DD?3|{&sF&Xqoe)1KVjPUd z2*=c8l^g^_dBi2Wp86G*D`x+xv1!zf#z%A}B+w(XA4k8fK5ca*5(+a2m~8;E^w za}zhMx#I&$#*$)abi-7k}gY#beM?#G>bi=J585jyl9q3Mk5G z#dWuf?+>({+uB=2Z}@+){#)A}v>5YCj57NCA(i{RBK}M0GvC4~Xq0;IP0#=Bi})eL z)BpF&nh;X|%J&hG=ii@Rmv*LyX5D|2zPANOXF+CqgR}oDUnjc{+_gIfklK&2ZwQ|J z{gQI_Ja3|}fbHoaXdw3Lf7+isWnuKvxi<6CLGX5wmrox-`>t~WHW5AT-7Yten}`Fn zP!e%B_|Xk3Xr68A7q*82b8XNfVL3558@p(?C9pqrF4QPvGR1}rGNnw~X3x+*LUs+W z|AevnxcxBKYTGk2X%dSCbq(OyyH%=yvIWD%KsF0dLnYoyJOXwL6DtiGn zB_>V|vA!MKz89n*BZ2Z{SSQ5Vr}2lyd5oB0Nl%rG$hpc__pIE5&pA7cA(28e1747E z5&bm=fsnUKk$&eEXa!!|G7FlgFz~99$uSI$hW{(}v6>=>k`kIoFvymVF=hf|B3@d6 z2KEBY5GlT)>rQQ}meNB_9Y!46nQ0ll@9UwF`|6=XxZ|n``r|cjY<5cQx;GlR)I1@# z1fvu}&DEeer6}YYVS+14Lr#&-7a|;~VsBFWiV#E&0X8hBtM`> z)TSfo{8UKD&;$;8r=yZjf_(R!Ep9Ef#Wu4jEu{HX7XC>57SjBkR|LUi+lFO-qqSYP1!eJ}O*4uLWWqTbub8Ye&C zwEFez^!?nOy-rFy=c++_7K}^(3tg|yfj|c*naQ-hG8@vOw+2=q)B~fOWWijMn4Tn4 zCW2}QF73iRnJolXFq&C5d|TQ?pbalo60Gi;>UG5d*S7S$lS<4a2519_8`aVY5RgK$ zcG-!jNja}3$nRLDt_hU;<`d%KkiE&i-Yy3GuXzeEI& zw9^dC5>qx~3)dk)2%fuleJ%*nyMQwbV&;t5PZfaX2> z8D!(Ho}{690E{(1N(S2-gX#shr99xHPv{!8nYq+6!8eZA67(e)Z%{LltF6LRvKS^O zV$%g-iA&ow#%|mJP5W{{g8HLdPOYPhk|9Ekri?3RG?^|u^T(Ezf*tGtB$62uElx#8 zZ0pjT|5xJ3KGhgh$moyi5=TV*MpHEm^wOdDD-~4S5H(MCVn;E?j8$CYEZ&@|n_p-t zGiWQ}`2`7jiCPbj%}B!(nzB|B30jadnkIC3Y!eqN{9dDr#x9P3jmQ$zl3>l`&`$$R zN2l57vXU(ZbEZ-YxFmES*~fw}U9{78qqI~Pu!?#c0)gC)bjliz{CJB966;SKz|rp}(NUh8~<-8X8N7hrvkZ1weA z6n55CnBezNQ+E=+(Dpb@jeI{^_2rQl>$;0K(C7b;e`l|+@wRMJu#MaI7KW*pIM;vK zxc{_ocTVuy*zaOB376+@J`viwJc#RpBz6N(M48H6}>1EEe;mg~AQex8eU5_Z98B@E`JEI6DnR^!||6B#7B=` z*C2Yq`63g-1$VmgUNSt7%LO+d6C8b%PUYQSW;UNL;A-uxj9;AMBmfgN{bR5%VD){# zjo#V>RY)ug-XDe;O@lNRBmEQ<_W?H=y(n(glmlcAV!9AA!$r*mYJul)3z$NIf%AGw z$W}6sKFO`CHvFdwyO5)Ue&;OTzW{XyPB8aYj49WnjE7z*$gq`J3^uZfsRcdjh)^?{ zP*6FJfVH@uyfx+?yuei0jRNR-jz1DfgnY-jUc7zQ)t0V4fzx!cI9U?R3HIwea1j)k z@d&bmxCvd3!Pfd8;Xga9z1POiMJPvI3r22;&B5`6C*vobug;KcE5&UY5!HONNW)0B zJ%tM$EjnVC+Y zC^g#^bgS;2X#+N3hTh2Iz~9C!_DUcrE~h2p=`BBCZJijLd5{v&IU zgr!n^x)vtz;gedTZ%WrOD?iU6k)(u-HfuYXwOM|@k;@{C4HP)Ja4@^*AAjA*^A@@e zqp(Xu7Hf*~SjgIvabpG6+uUV#$~!dW=CfZ>y&qIl!Bft#O4?13VSSQGIN*8eGJV$m z&|NLsoDizAFxz2EV`n#G`B6csH9>T4H?GmOr*R%b`k_h2G`g`@C6t6iM+F1 zr$l8vV-_Jn9=*!_u6wWGoxP7QvG`cwTiP(EJ8y!K1gGnZGoak6?Jll zN_DXVPwM^=bDT4^{8P0O2%*IKv*|y+q|-p79Cxz>>s5;oUzZ_Q6Zz2jS%wii+(xy9 z2#>;#W`=P(lsKTh87msP1g=%>uRm)H9jPaDR4Bon5xOJQ^3BpL1y$QiMp88DvpD{L zfF0YjEzNao+U1yTYGO$L^~;ZX&_03zEYu7eBN`;Z(>R)1W~zf#e(P8jT#28&ik2@a zSq^qeo_*O}f_^QVNi9)kI%ia%5x%J`F%CpH0VP|_KRw989ZNHdfY`B=YYbw4;eFNc zVsHCK*^<+upnM|PbYuI{^-Z&S>HA{uRam(8=fRlW?<)eK=RD*6>u$@qEx)6KxrR5V z@93r4Uw8(8Er{rOo!{N}uD?F&jK7ese%pZb&-K0##D4X_6CG^`_}k{CF#Zv?#L%?DP{&f zS^H(GCPt1awp(hdYh@bsxZI>o(u1>{DPb70h&fco2^1XMBtM7$5*qT$wqtfoqkBjx zWSvEhgY~`(YUe)~_?9ugWYR=v`0nYoOJd#Mjqi;l`@;2@vwDTJ*x@uKrd#$gHil9s zIjJhI2$O*>O8Pg(J=$Wk{{ULwfG+@i3jF$x9o$+KEMvPM?os5q@zLi?4=}w`KS;qK zo$c5RjHiCyB?m`(g)LnY)`REZPlK${&yP8;v2|pg0Vg&JK`Dy}PNR$zBN;_FDT-{| z>;0UlfWfXbgQ+NJ{{g4uRo996Ij^ro{fz6-ZPu3P@?;Wpnea%Tb~6H<^U)D6l?9>{ z1!CwK3nmP`cc$9@(A0q-ENMn!z+sX906X-};q+oBaO#C(e%F(GqA}hXLt)Tr3iThg zUM?mxJ0_0?^JvYJ)>6hUqJfX{MldWiPI)W3CEA>LLH;Z4DMx%+_aC?$L);g1c{tfk z{Ef-ng)Wzqr5>zPgUdAF5QhDGX=@lhI&E)?(E7E ziHB?G8us`2sa`6HT7uO8$J&EvsnL1dmgZDgKJwsVDr;o=%_5>2N}^7Rgb022NN9}v zcnTtqDq~%myUlQGJ@jSH1M_I^6{%Sc(xv@(rSHT`gV016Qk0;$_(jzg0cfnn5zW>b z#DxTsOfHEftc*X7FvSWv+WG(VR(d>23EXTzVwI>TDtQBVe(pHl&y$a($nV%PejY`2*E#mAk93UTEwFFTpOi^aLpz8&vo8+YqKGS|e@GhVH7pIF z4}^F3S_OhhAMs#iVS42~j45K7UZMVz#kFiU3TwOC`cYy6mGJdVbTkSh!pLF22eBh% zykzn%4pzM&`>bnDq4kwad`saLgJ{OlZ~V%H-AdWwQy_Ime$e5OGA?op1Z-S)JMUu` zYq^*S$nBV$TeESX$?CpJh^gMZYbOOq#v{nhEKMOhpR)=dT#a1fFu4C`axlr{%QIEc z&6miLMt4XmDsYHZ*xh=WdWq7^JRdZoH*i=!fI7efghPSRFQ~572>^pzzq4MDof|En z;(@Ec29fX*okp=3C{&o!>hOp)91 z0E(>_)@fWGV?W-GTW3bT-|5%RF-+vOUFs9dSoM`r)(HG&?K(hY(P>n8+hKP&pIoW& zq#HttPYISjs2~ubTY)@iju4c#OlpKb?I7wmP2*%`KCqcUJ$@<20iOU2O-vb+$qafd zmnA_ADLka9p&9wcwH(ma`x4q%-(Te_nHb(WqwZz`EXBUyxpa^=CIPDtX=dV2c(bq7 zWl}_Hi9pkXyp|7LS@8AeaBF@V<~KC;k30@oVaK{t{v+js)tV_;bYwFM(R4C=BDx@x z(PzG;MH^6l@^}O>J`)s5#g^5B;gPM^m`TB68UG9>QZ(8nsl^7?s1#{g8nFYx$>4UB z_B7UJg~_F<7xg$I%Y;3XowFak)On$w78CA%oAY`Uh7_W?wCWo)F4}A%n2F6~ES%Kk z#BiG$=7WDOP~g%o)p%+#PeNbcd(S9Pap34OL_uGMrxFGmIjYrBaV?3<z?W-G z$oSos%g5veKMS#cK2!IO+RX`isfF1OZ5<@9?bp2F7<=!@c401B;qM}K$G2s>Kwoto z0|#{AW(&CNd$!JRtm3<^$_wx74YupM?*aEz`)zvtx9y>MNy)Y9TkNjdN)Wz|8PdpZ zCIne%{2$=9v*m9)4XI&pPrQy=8d#o1=p|#w2FrB`XilZX@4`ztD$Y>!T5uHPPLxS= z5fmkSbE*eTCUL9|*pB5J_XCOOXm<0lAj}0>gEh)25jp!()JeWf9aIh*4z7jSUYk z+3}=?!!%n|>_>b=iQt8)KpHcMV+vFH3ey6wY*(xUTT`g}OKx}RPs7}05Kt~*3qo2A zdU2T`qUQ)`3N`*Fs6wOsO|ff3LKzg-c6WU^mSzxhEL-i9HFO1(1WBT=W(j2Z(k;r` z48B;-0iLK63{BkG47XdQzJ^!THX>*{AWMo2dG812Eos+! zQwe|c#IgNTrY62K6U?=%164Q>@&F1$|MOf^td~ z)hKqY@D`Ulf-P`$LROT@o!;k^Y3(yR3&`ObdZm55A&+>g%uOE!k`N>=p7Rhw*Sot8 zS~wc%WNk^*MQsMjn&q32tvLMQ8xyBWVK2PLEiuFrk8{$t#dxPG9Bg*~j=NfgK8XVA zz=5tNS{{U0bw^rj=9x>>WXKuT-CA;1KSSrS>aN=tfUZ(07&e-R-0=6k;8eQ0Pa-lj zGIo(BRM3GP4Wgu*o;S8cDK){)WKxvj=Kbf+8ix-siz>( zNdG0B#I-q2TZL#7U#P#X(83ScN5VoLgi4#Sm@mQr?IkzX+XI)dYXH0* z!+q?cUZ6T~7rM5Hm+T|p=Q!VuC-ziZ78fySVt5Ku;%*oRp%mG{&Z9Pr7N^@Z@ZA(_ zM-U(4v*9}7nc4)O?77-KA)2}7n6zjS7kbcBya4Fh%Y{8?RWXlqEyAq%1}0>S&17B| zui&lU;StRw_mKWW?r%M@W>ld|xJK+lazTHyVd3>y3>?+f34u_WBPZrz?@<;nM`P_q zkRM0;I{W8TOmkL~=zn}v+M(3dK%ZNF)0`)5P_0NNmG9e4z2>k~SdXr_u;9zww$vD9 z!5n12yMEAg<(*$_PP`{byEnu;e)dkZI>i6x@9)N-iTXj_fxg3EU32d#7lT)vf&coU zg+TsaQWNqS+BcJq`A>ZV&4`Im z3V0?xTM@=E)c#{4Q8+ew-vmvv-WJ!9UI1HTeYo6QXksb0h`4iUu)q)z2j#o%KR)!U zF{GBsy76h6Bq`>{PSF8S6+uh{E)`H{M%+)n&P30aE8Ap&OVM!wQ!|*zNoJt+w)?fL zjp0-%(93@REJ*FReo`odhG2)zH&+Uyx352vBt0+>zK6J$%ylJHZ_EnX$Mu}4L6K00 z!lE&MH-KFCs?JIO2gUfv*lP^rgsM;IkUNCi`n)2_+awh_fK8*#DDWRbBj@#llSg@b zO-w=s^saO!S>VpIQWrVs}j z0F~G4p0UYAYe$0*s(KY<%H_I6S-H zX1>aBfF z?{oHA&ytpcf8zCGls~z8XJtD}Uc>%H62+FVrBh=mNotY4%0dlzmKx;;x|D+}U;7?lzvdwGLk9wD zr~kz7`@g~gsb*UP_sQ@Kn25MKGTQvu0g~8HvH~FXfijmP6DdOOOBweegTtNs`rb|V zqdp6;S#iMK;NErqA$sqVHu!zDX77b??%2UkNJpBhem>YZ45wguw&E-(BO2Eq-UdH~ z%t89CZY`T3-146$~!D3v|e%Rh~bbVW6lyV%iTEr&EBhYf1Vjlmw$tvT(B55(R)C*TD-7n;(5)1mZb)5{GRwB~$vHta3x(>pg0aY*ak8mWvJfY20mlXg z1h78pt-(mkp`G)QkfO&h7vsy)ut8fcCXYj#{w7juBafWO+I364%DfFEXOIgHA8Fuw zw*#-XSx&IX}Fj3UQLxZ_e z=SB41kyVxq{`EYb!T_j*^un6u^gTN=Df}YwaNm<4n1?0)~Wb8cwd-& zqFHh|>}e0Q12$@+&xN@(L{efYPWGx@_qYSI?;nh~s-LycT~}u#8gR0Q_DOYGfpqdZ zYV_-Z>L%~XaRv=LAqhq*_`b*W3jJ6W(AMrd3>&zXEI2K#e>h9*5%)Gc(X{`u>^vrj0X|GUADiH=8hi~6J;&D_N2(1%m1CiwAj~>8g11phH?0kR zaS_D+ndDhHn}R$%JPuSI^K=!78{AH~bdZ&2KD$``@UVI7ovzwb`?hoex(^VS^Wa4L z5YH-4mYRCdOdF8of1=oAl^1_b0QHAXhnU6C#vtgG1ms$-FftNo?1;C&0X?3V)30Ar zaD>siDL+s~x$9&uDosU(3paTLicYA(wPn!O$XovkU|d%jd>12fPN5iq$XwJX5R;(i zc?jJNQm}Z|rB=6@nn}GbQY3h;lM$uHf0YkTY5r9kE9S-PKd=AE|BviGUUB~S3xgOI zk21P#?oc+ruquprZ8!UGU={6+gUhf1?kxCWF7N^&Cx&65ZF|h4Z^^%EDKOzd zPK1{aF)RPo6EOjAXp!`12vp5Yn*o19m#|iTYMmF!MRVW4(8B&qM0>-nTRsgZv{7EX zxp%~@qbE_JsiQZPshaJ|l88;!!J*5HBa6x#q|C5IEr&7#+0CfF@&=HA%Z1XWGary=>2>^rWT&^8>;}w#007^Nx2^Q|n-ShBNehTzN76QLv|VVTVX&czS%!Uc;cELrnJjeCYrkvs6bE7-c8VTT1G#?8$f+1jTTs7M%bq^QGN{I2(tMcEOAtUC(p;Q>^ zc=Dpwn+Cred4G7muhHlF9Lw?C|2sFdHr8=-$g$}0@GmZgad;`<*{dgr%V{Z~Cn}+= z8w#tS>(R9D9c;~OLh$$qdF>Vy@APt?jF>ln?uyjoI5J0;zo%{H;*M>f#Eq-X;8{<< z@g!~_A9PxC*8?r!et8M`L*{X1RJ9^%??J@hWEgJW1L>kMW)nyR8ASF^4EPueIJ$HQ z;Jfy__IX_r`cx(IJ|nH~xs%-m=Kc^zy6|_Tna#>-+jyr|`3_w{GkOsXT=cM|c#z{U zU{7l)_rWFpbahJoLwkx7zSsTlhfERrX}!f})Kgqu4j5AyA0%nspzy*ab^a_#9k(W~ zkJ4z6&d!irJ5qVbBp&a~aRNQLRyJ{K-AD^=r$UKQ(Tx+mf)b#nV@DFXSWuX4s_9;Sm zAWKSUTw4s_IcqGY(00Baxc*`ZQKi1k-5dT+h0Vh8lLCJlrKpGl6HS4x_>zV9?#4JS z7SVqPEuL->GzJCB;9ou~l#hezzon@vmZ2N+fN=bt^d%-8F3ySRAJHS+6p4Log$qF? zpK##X#T|aexO{(UnGDMAhIst@UW5}Q{%^}Nv+FnyA$RIXcU&v}qLeyivrkD2!m;XUQzHgAf2mT8OG|SK% zrO417T96{1QO&=@@CUkz?to5Gq*mI0xe%n+DBD%`x!4Cyp*enfa83p)s4_QQ$JcnjOY%^$>h{5}B0{h_ zoWWcY{NWV~-XQaBf>Yzv2@a*Zls6i??T~FXy9Fh&X8mrPIq8#|oGQck;N9;AFy5pE$Y!5)K zc0*=)Dx=E#{2`m2Twi5flUR7|<#N){8{&eo;sFW+{CyS}fYLh?aY{AQ1jaP2so0+c z`1U5lH`GD|{6SkpIze%mw~1wq@=0M7wZWU-8NFs@fPt-pOxaZCzZ}X#C$sw2*bq$u z8EA_NPj&y`F4IuNS!d$xNMcCFIU@9@I*>X?!idJ;8cd?xsm-PQ7C|NW?r{?dMT@GA z4+TKjc7*gWLF$`WuL%&^yfYR3dz81mb@`%;=3Uf&t{vr^v)WfTF}2%I*y@Vg6j(Pt>rvsA$C#nC=)M2 z$IYK2+QDM9GQ?)!mY4*q43?9%%hKvT7I@Ve=`QOPQQj$^B(dL4lI!luN>|8kFN21y zNYh%@GqR}52)qm5l-v<$pm#p~p<0o(P=vnY!w{2O&6goV(J1*WO!V+`8!kKRezASD zuuVY~HTa|&j`!g=*bwfy#*TC1kw0fW9dL|Ot)$~dNT!Dhq0oM9xN2vRC3{QtYrG1o zZDmpcNq4|Pq<8rKX6%=zoS2#|OWzWC*w)s%vXO5X5~luDIHd|A<{nQg2dgO^1wI0H zFg>!$f2qgz?^JM!Jj!~Rko(S-blJ==`2hEJC~}qe%5~h>7q=ZZ$ooy8`hD>fRZ#l~ zE1?z|$5PE#jph(nYHv)Ugv-U7TZEcC$q|Efr}uftm_q9^u9;_j)Yu_C?fCFz}WA) zSQNQbQ>C}-MRc~(Qdz5JZRBDf&!dN#RT;0}8+`YkJk_k%0dqX9kM3*#@Iz-v3Ihw9 zU?SN_LRh0qV#yc}r)!Y*q2Br~&bX1TsTdFyKSR`yP?F%1OLg4JEv@K zm#yi{@>~;FRClAJNlS|cyA=4orTBE$)F`U&)mQI%`NwSFpejfwi-aU0iQ|#Ie3nD< zFXI>;B*W%2uBs*l$ImdYqQN0kz-?v^YQ$p^nN5`_J@;4?T-h=~1d_zF2-@b97R)8iu$xlH+M74M5w_c^mGQ$Vl5cO+|P zcFrWOjN9Cw8F65%kNhRW#pBvj|KXX*&{ySN^O}cX^q{L9kqt1^ej6Xv-RV@a58rLY zcZ>Z+oZD>TSCJ}MBG@U?0;=d8D@Bi|S7ksnyf8W|e3qLSvFeGL?cvmDN z)f0>=v0W&M3tG~`*uf%e|NTocnlZBRIC6FfRL8|{$m;Y0Q_-d;+&$`>C0LwF6cdBepaaB8G&R^6_g zHYe!OJP!r)qUSDiu#{D3=At!J)3DrGRm*-OxeJ||Om$;=lwJ5%P> zU^CmNstb7;eJk;@^o5{dXtqH_tIN!-McFneZrLqHlQW4Tf1+Q7(a}l%BlxKC=Wd~F z*)*r(Mb)*I5)G`NCoV04bi}K;zQ7_`_jV04ZI_BxCh} z7aQ6hotr=D$Cvt8iw8`P@SMyg0DJhnB6rkHsPhYTDs?7`ZzU~@_Z{KuT?#(y^VFjG zHoT_uOX&K9=l1I-mcFz-j_i7Z++E?V zBBxOlOIuEOb#$=0;uUnzr{DaR+_L2NaNvGf*yJ*fpSaI&az|&W%?c>MiI=0sVU@kB z%GU5V4Wd!1=nWjT!VAcWTsmj*e3?S?Y&Zs%fjII=OcPq90Gw*KG`_kyvbw3giFU(j zf}@pO{P(w~pvX)Y0j0P?bNWwthdQXbG_ib?X>KzDx0;-)-Hq;0fBsEu5`umClQfYT zntQlunF~+nSJ9(EfDLs`)yvWa7as63&{DLwc?1oIZ57MYxBaUJ*ARB;kL?sgEd9N# z5S5m7axN0mw9cyfhoX-UPJ=d=dj|x*hgT|%*!Xf$#J}4g7TpGV!o2K{nBaoBMN_eg z95boq44fr&c0q&QWE6M|sm=@-lej=Mk@+w6$di~^2yVkiW!8e(YCKx^HPMFSdKp?L z(otSC9(3V(E%LMJsa)J32o*@E(N)CTors9e>-~*sh7}&KvjhTEL3wRcY9mYBgz`u2 z0>nm^nnqfp+SW9M8)mD<6yldPS)EGW0ZMjZqNBpC_FI62N)#f)~Zk++3 zI_0rxQg`rzV)}lY^)P6wzgT9%&HHBb-+kVmV$uhl3Zgnwd&T~$0Byq=Zo3GzNxy%) z{=y4X-?Mkwv8X>4Kwj(kUUE3*SljMh>SWHd$cs9*EM7W^CS9At_-y}W7SLo{UUJW9TrJI!@L0(#pHGWtI#pox8%nS2l6|6k-@ zaJ*KEh*NF83=;*|i@jJcy*XBne?NN`U&UM{F&9E-1)lVZeXUHQr3pGBp((&?SU)6B zHcuymaI$bWe+t{kgjoYK1611WZFaEV6M^6!P0*%rP5~l( z<7{rW`3_{p&plj%u);VHSDx7WwGGXSK>iz@Nu&1W5`|a(R$HTC^c*d*NxD&-gr$P# z9+W9-jOhRsUH3G|iW6xTs|!}X_KHVyF_@aQava2l>^zTvb9q~>k5X53h=c#Dz4qGd z;#gaIJRvB{yEk@uf4=40+94#%#8yB*wB&uoPgQ8@aL$f;Pq#YB2t}Ow!kR#JN4zNAj0>rkia<_lVs&8%Ep>9@l|jAYfz9(%-V z@@{}*Y+#fulm4_)LBNbXDAT?x3wEnN!b2CaX74GpzW*(p|JTh(?r+PvDT=F?V@ST` zq_9+SUU47)BX2A_f5`VXM~tsniMp4VG_ zo{6O*e;o+s@G)`HzTNb^hj%i!$aFGCeh6C?dc{EUUeX8bR&SaJs1 zS9T82cIg!kzr!I;PGe5M*X4!vQ`BNJ)Xid7&gGi79Q@%|j`Tb%)Ub9pvymo zgjyTLHO36m=lOJPJH$8Iy5upJ5BLn0J5zV4P&Fcne}!5=IrxP+F@U0EB>GWc9I{av zKn2$17N5qtE2OeL7dB)APJCuLrSAzM@>R7_iE&^&9wZBQ|86}k7N@DJu#3`VM=u8O z;GVlw3=5&Z6b20tUc^l<#T2m#qR7cBEJjd4ra@%lJM$nwwJoHCL@P*_NfIrbf1y6@ zGK(u=(T)Mi@=$g#UU;epi!IUkLv9c+d9WH7V9N=^c~w+bm4H<8uLJ@*H1kqBichKttIunmq50xlgsYPrOnEnq#wTUS`Q8a$`T2i1tIJZ<2CL zt+_ljf9mXC6S{(_>|2o@;iXM(bkoi{@7*-wBdLa+#(~i<-h=Gp4}gb5gj@f~j6wfl zRnz63kH5oN!^rOMoS=+8De$Gbtq;qD{&W5Q&+d|ne0g%=8UJO{6F028&uLz|&a>Y3zUSUJ-k=Ub$J(((x0t(Le^72{xsTcNoyNj+U3YEH zq3!upgoF-p@>9M)ycrKQr@nK_8n$nBGx>Vnw~@yN=H}L&@D7kbGp~J5`S^N{hLatKls8ikIM`}c3L&Zw z*_l`uBFO{#vLceDrn zs>ko5+4jB*RHW*|$ZtHye|k2FzQf z(!_PkV6Qm2{&gJ?8(}Pv9o=;66FZMpoit3Ns2!y?`>k>F;AO+p_$DQpI&`!zY;t?w zgKEcs7RBUP?3SBIK!U2cE+_|-(!7Bfz!n6xf@O8tRjs=jexy(BT}-RA*q~ZfceJ@s zTOe%DMn-!?N@^&NMPDgXRH%P;v1P~+zqs5WXh>ss=q7u1#`!anI=vc1iCBiY*&*0k zCao-+3E2e2V-}YbYM){2RfsEM^GfI1VBR3XNj6@=B_e@t^gZpTOD53GZSC!=byI7kI!7^qfgB zZT@{8y0rqF4nXP&YEQkP;lD(3pYO_txO0s|DxV`aiFGW6$1&Ofy|i%jvn%=Hw7w@v&~$I19)SF_$OVcs8yLK1&9h+zg2* zy_Xn))hJJ=d3bb~XAr!EreyuRvasb+;4RuBb8I|_cB67$N~>3e36BkcD6EHXn&6CL zbK%MQ43^+o+Ym2d;Uj8gT6c|`JW>g-l95n2LK$FM6>i{@C}L}>b1F$F#RNZ|_ILt7 zX#_g}WZ$qsL>p@`uBj%#$(DU-MqkEB)CK$n2I+~5m3!UTxhWWl;j(kTl^~5F+Y#%& z3^BPDEpev#&*I%{+*r!=8;4Xx%ChNArE8ODO935x6w5XiveQKGT*WRDX;NidVT*`i z83oY$z%&F3Q;RRBgZYOH4`ciQCxu%6SEn{NU00*6^z&~CbEHC*pbHpRQ6f*p^mS)K(;!zyl7^%nE zgB8i-`S`KF&(bsSL0}iF5*o~!Z|=zIRD z|5Hf)?_KlFoltyetRvSL#~t>S6}w4%ww^W#%KCS(D==DgIh~*Pk1Y;kt2jaJbd*W(`6T%TsBl1DKlqb@D%TpS26NPPd_r%8Fnor zE(~+HA1&QPPY{=RI=X^h2g$3{=`|3o7XjrH*zu;H>KzV2a(U0FiiYv~l{_}T8$~q{ zc^#LHvkt%l(Z#sUa6Lhe!cp>Q>(P=@1?W@(rgmzaLGUPN%^}~a0;O?`^`13igGYL?}KZF2_HJo&jJg6pxovU1R8`(yC*go z6yGxy^?TDc`kt7``ELf@J$3z_o1NRgpIpCg!<4oTo^_pXRlA^|07}FMT?M*xp8?;T z`CmPJo;#Y1hoxnwY_8i zrQz;fdizb3l5a3D1flVL`@Et+u~YZNt-*)TW5;bx5!twa2K-z&F!u&H0p)7xz(1u2 zoEyG%F^kGfpMhMynhix^WLe4=-tl8HDJ5}L#sfxS4mTIHN2Ycxa#zd)==8LdFQ+%~ z6He^e!t7Y8p`lWpSLb*@P!@kSir0iJhO5wtxY4>w3ZRkR{#pg4ApVOQG|%i>Q0{I3 zuI!Q*IqV2o2uy_SepGw!X>0L7GUn)*4%ol z^=sLI?RvC-`~3ORZXc+5t3Yq23YwBLc>cKTdusjmbyh<9RH`jZE))$yBCYFi$%@X~ zDq35%H?{$43f%MVOxaB;36?A+O&g7`wrT!On;3CVd<{y*!<65?pAZmAp9kR>RQAA& zA=wYWi0zo#az@Lb8=*uhi~Z1h9s*zaJm!W@nP<5KBCKx5!PU zadl87lGk+R78t#_>MTY3(tuduwDw1rQ(oiNPk|p*jy7^RGqNot5L3l% ze0YLqY!>hhoi0uJ3h#>u4H!dGzsKm#Za;tYE{kj8meZA>ZAhR#mW369# zP|VMJ0YYM8VhNu9K-hf*P%_|zXk1YBx4ff+l!-o-qBrL$w|Mz-Qk?Wsg2VIz3>Q?5 zZp1sD*4#H}{H|U$|J|5hL?a!C0vOt{oqICmyf&KQ6kh*wHgFpT`_WUfu$FeyL*&`G z>Lvmwo2nMcE>?;g1RAhORs(e=eN1H|;#NnIDSb0mPViangI@3p3)`>|z)0!M^+@~8 zGqvrMIC-wdkBkaYDrf%F0L@M$i+Qs3+zo{GX+k!zvXB>L6>-p1vcsCKcwtfq4mz;Q zb;RHBz)N5-Ab?B$_<`?iVF#F#VH0r`lxy!Er}FD3xYyAf+hgRWHcB&7P)0GF@ST>h zxe`c*6gYiC+dqU%FK0Crb1mFN4F>aOVe|Cbqgfi!(?BDgC8D&J6Kzupij`=cRz!7f zL&x0L1q?F%kd5kHg`A8n62*s*Owky$t=O5-`4*z8G=#{^WZ6NOTF154mLISe>7H6i z2-L2L0C5#L_Hs+aFjrndd`fH2FBN}&S0EsNd!Xpp?H{%+5N}nP6Zv?K^6YW)n~~@! z{V~Q;KE3EX$%?wcgX^oy^tJ-h|JPyb_A6%{jTA0EM`m(&o6a7IN)#eT1(81&6G3kr zS@2`5bW}k>ie6i+@L$T8csR|HIW&vL1`%#-4Z z{hR(&f0JVhhJe*CwZo*^Z@OghH9lsMH=VHCxYN#W{&_~obYLntho8O;+Hv^ZAoKzK z!safMvuyAgZ`R;R@*MyT3Mg4o1ke003kRO5Cvh&|>wY>9pyD<*I_e3WCC&a9`=CcO zze~SH+PFR-hQT$y+L5y-YG9O`xMv-50|aWgYtzMHWbt$*Kc<1hFLq9kPXkd{zv~t3 z_;?a;V}xactS!dLv7g&j#H|gf#kIV7KuIEm`2fh-%^|q3_01@ez^^ zN$o0U$|~$`HfLIEUK^Q+%=I-N);s>|(^+j=d&vmF%*m!OJ>h^^@YJe)0?w z9vI7LoSd|_*7V2bE+qSkIYFn2wJC?{;=f3ZMYtIjf+#l0aXR^CS{cyNI<8XIWEUtB zRtY3*`Xn?FAx0NQT1t5>ve$_3*kw`QJq-nF%qT z93dA>&dqWEV-XnwUdjh~?~Ji{1Q6}QG70)CT#p;Ax8NH@Axgl<=^9=66(+1Bl;4LT?uY-<4=(Wi+=Tv2X8 zO!A~?1B7EBS0;(7L?&z-Lgo!*k2mN>cL3N=!?;N6rP>Zctyj^@Vbe6)pX`nPn;Pcc z`x4U7`q7WlL3Qa?#N4ueNlI2jx0P;M5bZ$*O3Hb$p6sP;rP9{+=?zbgC#)c;0|2eR z+2lm&Ef&aZ&YD?geTcJ_g)qNcD53HF4sUyR{o$Cdt1GwbdD_)RyFQt^7@~JAbhyjx zdguH|9Lv8fR(6Y{W|j*y%yiJC#W)MkW4$ZIe-cd%0CP$6*5s8f;Y4UXh`c9r5mS3Z z$!w5a#9OjKQQ4?D%urobFX7{2+R~S;c{{_LmZbpEp#vG&k2=8d%&jATMs*@&eU34|RFbs>Rs%)mx3FNjFbX?I z9%O!Dnr5i;7LasNmOn+$b>yiM)exFKg>g9<+>ZkuW6>j6pqi-@3cv_%5 zNv5;6au!b0yazj1ZYRj9+e|2EgI!lj3M0V=Lk1F5yjPMiyHVoi-!+cvydsO1w5{4^ zjW2Mn0zaYx?<>9E;1#>zbM?19?Y<$mr^KyeV^0SKGbeS|-jV3~9Tej)!2abfC?#9> zzb5;?3-{{he`9N$c8@2`B)^_S2HdQg%!rTD8n{ym3Y@gAT8>wrwFu*Dc3p5z`>yy$ z*Ln-SUk1Pw|9<^xHd%UGu~VAxnd9GIV%k5_S*<-Ed0&;(E6 zq%>V>O|KG(a{E;%c;ij(#9{`@>C4o(lESEEy-3^r&b_!xw_s;ELlx}OjWR!2Sf|)a z_|BG3wJLhC7k?%tsJ62jl}E-@wyL)m zH>sb$(UK2PiWp?nlM&$5#@x@%Z~!m+`AbKsTs+wlHuXvx`AU!REVjK#9>2~u*iQ*l z>Y>KgcP$`(b(9tX35zHF@9WR*gI+Jo=y_8boHMnVZP-W)Q-l0PPxRY*nR-{oN}}Ca{Dp!b|I}ZF`;^EpJO+DGP}Zu)Xmksj0RlULivBwNntHp+2#y zTac8*k{gwa*J8D4f!s-;vZV_@Trfu<+C^yu0&_zkAIBRk( ziX^9SnpdO&Esvk`Nk1~r9_Ulwn>C{M-e({Sxpw_|Gfy8Ywb~k7mRbp(yt$qs2WW<9 zNRc0xd+|Spc)N6q{nu@ETrh^8DM93~Pg9m5Ryammm+oDy9F2ii8*|AVL|zPOb;lt+ z#b5&^SS~*14J`sz{~_OShaB5X64y2ySgyNSmjBp5dJw(G#k{Rr*s*P zVxi{p0%J-@u&~UDAg^U_{vTi8QLVre;VK}%DD{$$V}YLZhlhR}*wF`4or2jUzTIvS zwrP=Y1Q@y%zfsZ<>pu?de+kX~YlW2LMUK44AyZoCYXc8=25lJ6d|v&-w3taOTRG-- zys^r&xKpWj_K^+~vQR%Ke^Ugl*e4@`T8&ZRy7uGGEd-RzglWuM(WF#&pO5L(g5f@Q zZTRbvwUX9(0yoe>HTyLBTzzsPwLdQGp7!)Er}DR5VO)&^ImXJ?Cvd}sv0Zvp>ztMw ze_ILmsUfNqq+MVE3kT*WRaW6@G0pkUe2ks%uk2SiPA9N{ZQhV_ip|t6Lxtnfi&ne# z5H)7%?NgdA7ca`2-}&Mh7&0^Gk-=T?6VuiHSB$g^Y6O5*T#nl$UDYa1^=L;S4@IJT$Z%O zJ#@zdh@Q+j{XPqfV0*-Mnb&X2n(uN{EC z6o!PZKakwf^$!TwFW+JP-TU)gIa1z{>#Psj&YR{zq7U|ny`(QDk`qM?$n2JI?S@Tk zFK3JS8C+YOSS2Ba)_>)DOu>EI-xjG>LI(;XqVt$bRF3Mg)7#aBVUsK11gdW+hnIR* z;)AWC|4(>gr-SFxz1a2)RnZ#nUSL#_zmoZA;(tv9mmb0I7V=Z-;l%HAaM3ptq?+q*ohw`?{F@Sg*m9-R`;ny;ttik6C zA#y{iT1PgKVxpW{e8n%6-IQX@i&?)u31xQu&l?sEL*KHzDWi8xDV&fv6oufpUj=G&a`7Fw%0EM++n_+aNDIqdKFl3_$~(ZWPE zvkpkljU-x-_{Q|68BZuo&7CRt72AqEu`cO_yn%@Am`#JA3UF z@KM*BE?noIZi9YOw|B$CSJx4FZk!Q~Ntk;bxE;8Gn0pfj`~-roBL|%z0c$n@`)QVp z-Qno#+!=<`+9N^_hCtPVsV)1DTl>1=;gUUPtWI96V!$|)& zS`$SAmH6xCDX9VFuMDDLEQX?O14B6hDP?(^F3Dwg)tu7i54LsRbcQNvHL%?lzMo;L zcv)JdZSguBXQXT)TuH%>vy`h-d?-l~7pCzV$|_oOW+Rd2TML7wXF-{whomvz5=u2o zdlH}?F4xZ+Bo#9L!+Rx>8@UOHfyJlR=Jb&SJsA56Fj7+ZwX9x_!d}yEIyx={6hCrX zAeI!T*KtuzDPS%X$1N!`yTIM7WKdQaMm?~l`wuq%S;ovW=54+tTQ1JyrppuXOpY^| z*f#H!BwBU7vLOXN@XEEJoGiJ-Hv18nE)-aqc)#yKGRX$z7bVUt*RSjr#?1s~`jymT z0{Oy0lA0K8mt@cgK#vwK3WS@S2ACe0XdFtqmJg6pm1x_^2!@vio|dj~t~Heys{8^} zi2n@BG&r_T;|&m)uvqeE>%>Tcvo%Dma$Fq+nf#%0-bFU)KBLmqnRqIV9 zLe#@Uy)$EC{Ycir$ft5807fj6di`A*)G5nK4X)TwzaJroWcK(6qZi8+6mOK5mpfj=Jgj8GC~sJYe}6z(Bixf}aQ(Y9c}jocI(=}* zz!!e%W!yc3j#{^(_ZW1x*GI6StF1+9^#1z!GghhhnVj?MMcG`a9UIYkUE2a&5g+_! z6`ku2axcn25TYCMk1e7;Nd5c7V`P#82=UhOqfow%_e0vY-`cOP{ym@F!Jd!8YnK&2 z3+Efm=c_c9K_n<`L12(=Y<#?X!0zs05H!(xRb0S6IPw0vNkW-M4U5Grf&N1=_U)L^ zms5-xZywTVL4aUMNr_sGy8c~q1~VsT+X!ooM%~|Owz*PWMmFH*cfX$6Q|$6K`@qXo z)}Ao42H&bJDi8!NH2SyH(@Aq!tX9bA=z`0OngmN)NGURBfg2`8{47PR%MX@(k{FEJ zNMtaebS_Q;bS4Z{n?YELh*vFg8qLPbG=R_g;w&s2;vl0Iyoo52FIbl#_yZk2jI7BC|O5U|;k3sbJyT9+<;P#|KdvP;+ zwcj_NOZ!&~-YyAs>>XUC8GkvSaT2pVR{Zw|Q|m5qzS}%*gW$}k#(avZ&K55!ggG}H zNfZw--mEd*fN0PSBeU`sZHr8nJQk~_TqMeFjfqc+B+tq#G7Q0=yS-7N!erWOc#enj zL+6T;COEPvD+oNP%GrB{rVHe)UT!CsT#9b}G!M$*j|^5Ti(1rH^a#>ZM526%k!#bB zKN=}E*GIRwDXVRVsix;{o>!%%pV56fz$QK%=q#+p?d>J;W1k9 zakoJs=VopOHk;g^sY@^I6GWb`&#DF8zuND$+>H4Lnlyb&L%nNn?EhkRfplZ4G+D^N z|4#h>ag9%H4BqiVLPCJ~(2%))Pa7W}r?X=sHZxfk`4c@}_b($%{)1g^0MC^g{jlrz zp6}1=y{g;Fcu8qw^v*0YiqM?lWU#Xm-D6%98-`-S5;QRtRfrT^eLAr=Hf1nO>gQ&v zyaeBqAqEA;?P*#2aLPJ3Q|sFteMK6S)U~n5Dk$kFY6(LI?@C!-f~2%O5n+`yy`QDa zjH)CAHb1EF*A=(H8560t0J|@7Zadk*vT5LWIXL1@CJqX7y)}j9uu(8z7cpQ>O(Zg9 z0CqFQSSHm&Q_lQ94lo~WQrt;@SJ36pP!k{`rwcb}v^fd|E}E=N;aF8+(7WJ8NN#`O z(mK_>I_fZcIgaPLnf+1g%~$|ODtr-X$6vX`dCWnyaH-MP&jQ?bVCdoB`Otol_t(=CheYk*~F;IML{HO?(*F8Y8zX#-EWop zW*Aoc&&W3@eo{OKJwp}hMInR29BRt66@^gt!#iBMbt(|{JQ##Nb(Dh_BNjXY!QsfN zY$Y|UIh1p?X`;-jco8tK1LZ$eRrCiaB2z#*jutJ3^L35TODHT;9#F3w#xv#hr1?XOjYuff+ zHas+~`0{^J`|tUswdYN}=lhZ6p1Ibq9hiRv^yM8p@Yo(7?mQCKkJ-$96g~JeZYpfh ze7a2;(HV{Se|YWf-Jt8?2l!IU6?A{jnORud;BB5uw9P24BJC9Ec^-rTHAHeuy$_Ap zlYmW|_EH|-r{)5)*<7A&VA6T6>!OUjg2L^&Qb0D7-??0__eB+m?+IJM!Mqsqv1b1p z=A8dibLZC^p!0r~@AUvV0LapH;kg?p>wNhe^D6Xx`h7F^{V@k2@_YCYn6gWo);Ztf zNIa!C=G@qcUiV-{T}we=gNBThsIEK78rB~`WJ|M2L+gH>5+#}82dy8Dx$1(4+kdQh zr7feZM|fyg+kFWk=-nd8j|aT#k1h6DNX%yRoDdb^94is9Ni^(|d_912wq@g7Vl-{q zOOro3Iu-rcJH4QY{tT@z|8rc9aUl`H5N1koN5XU{9<#(aCfTaXslbVWiu|Sp%R14m zg9@=kqtUT3W;#z+$6djB3RNOK#YjBrfS(acPntRDESs&wTOrB3Gj8QFf+_KMZbUF} z;jf>aKc)3uTZTabF4cX{Z$VLqK^?^)WjbtjK{ilL_;tTw0(3Sjz1bKn3=EinXIwIL zR}4(=x)S>QurvigYl0}ZBO>MduM+J5TSnk&xJ@m>lw$wH029+_gCV=wOn02zS+7|6 z&_R{6g-vCbH!}nF-~j|k$*^RLQLFI34!#sa2Y)2lvZr^& zdyd}F&StXhw3_FaseqAYvhSNjK`hsq=SS1T$mCclA#(@&)RNe%CuNb> zQOlYra#5qltVu5%gXpQuYR~92MMpT$QwFa320db60xHcl;PCD-iwO?pW<(vpC`d4p zm+{z9U{C8$OFG3HTyKOl5+K-|j?;F@WWlZVA4je7eJy{}6AJ!q4J-ZAdbwppv$2Ir}-AwGX z^^N_HrE`qR^#8hewmI3hJ=w-&+fA5k+jdQ!Y}?jkn|GQtHT7J-|9W23i`J@Dt*_2L z`+T-KAod~`^gXs*C9XdHT>kIP4qOVMEYm%~s0Plw|Gn|83?3^%m#s~Qmbd~EWN+Iy z{%zt3n~q%$huBREnMn8aMK?o18g@$E27Q%+!w?Oak_e#j;dJmz$>i zVW>$Va@3r*C2$Gb`;;z9rmh$ri=LuxGI3aD)R7$95Vo}-geB?O(%$9+M%vBr?{YuY zR(qKprs44Me>ZF^#YP)o+%Bub$e?CMz(KCksWsvT)47P?ya@G^yTrwv9;4WS$Xd&6 zU%$3u1%lNbPs4|T6CDxS8kzV>2QBp$a>)bCw&Vqjs=Ncmkv-YASZC7lOWtjT{aXwr zTXS1k1`GiE(-05kzrC1G@W)~?a_1}Eu|M-DN{3;^s-jqQuHosEx+mZ7YAh4jDsx1s z3KFh@Z&ovw+wj<gx)*NsW_u*^z-r0DEbKTScHh;mW6vm5(%4tfxO4JM#QIYpiDC6=>l5bbiilCdT) zx(h2}WSR9 zIL{8+%0B6g2WD6V`&>|+^#6#@3LUjg8@5KBET)cP$on`-SS?FOBv&7#XbLSxU$`HB zySloI3wG-V!Z+%ixe)7+^xk6A=&p= z)B%sN$G)Jfg8i5X->grLx7A#>`-m|vkdOiJA9R_y`u94U3;FWj$FSY*1P~R>LEQc0 zt=90gtm)-q<~na<6w`nN@bLcUX1Xt8K-sN)c8Cdf2a3NI5g5d3-gsDn{}TKIdaVz6^GN8VbFixx5ZVEUpWJ-GZ2OUV z`JUOIh1D#L<-c_BBNs&~0;S&E3wIPDH_vKB{0%gyTB7CgLx#G|6V#UVBq)vj5W+M> z7kAz9D+rQ1NSWUwu`*%{tL46nHOCcZc}a=Q^sL~tbBQAec-HYk##Fe> z?eUP^p`v);=u9~(Ja6G;jeSpHHxpX%I&*WocNSoVn}3r*Klgh553;%_ODQUvM@Y|hr$b!L^-9yRuLrAZBkSg`8w zA8xVsR^v+1_T?bToG)%?jvpa{kDeEW2;TdQtEH@7XeTSAR8uZOGD^4%E=Kn*dDPp` z{Nxk2IVf)9%f1Rz7^L#9au=yXbGohIREIJ(QIGZj=D z$cR(DloX_z`5-TKpVb6Xz=-}BR7aD}6*s%Tsh;V_f^?{H%b1kP`~=9eX$6ng4I48(W%bZ8~W1@_J^lHSD7K?;l=_eU0HlCk19 zey)0|wRPPyCzqkX_-{zC4r7H++gu{j7(~a^h=G%?I|yxDhw}VQ;`oSIH66iE`XNeG zLqCysT(6#A*OG5sG)UJ-g1(IwXv3%Ig!%&kEhi5m z0s7>=>+#*|zkwd&epiLN4(j#2J^#(meE*%zG}ki4A{g2iunYRVESO)_y$7A})&uS7 zb@AE;@qKOa-Vtx

qhos5iIH|M6F~Zc8-fx>~0D!yBTdQuJ3E041ty{?D`bASGD0=r;T z?%dK)EzWujgjF>|v9#mb#tgRU=plJmyiV=wiIIgepM}jk(8~fxZLwN9e4<1kT36AA#rJri2b!B+6^>h3GJSqM zrQJ-_YJz|LZ~S-c-;U5Xj=W6il@#ReD~{b11=5lx1{7+l9d8;0mWoFHRy`eh7eX+S)rC9P`hys-D9RQg<0Hfg{~gYNp1n5TYG;I*2@`W_8HPk8 z9rG&IUees;*WvUanPNX4HcIxOyNB;)X*63j$>K2F^?iL&jrAqG>!zV12n#bocPa^I z6|`#*^~2nk?u7`^+Rg@R8!j71pPa!_B}cU8I{7n@#-h>?CQ#I?_GQ?zy6&A+L}G%r z`lJ=j8n$dV+U`sNs>Bpn=*c^4;`=7`(^FguZ*tcRyD4>JMn`?he#|^ytYn-4D|Ns7 zRV1SG`=gOTe_eV&phveYjfXeO@)*irqPf|CUfUT2!`|D49|8%Fe|M^X_BwNTJfssD zeq_qu?C;*Z;qB#alHeaP888YOTtKVK}>>;8zf5`^4+eqBiLU-kn5xv>=gX_f7V@sNAKr$f|$ z7f1qb`!iFfcH!o?xU@)c1*TUpCMG@S{w2=&TQ0RIItr zGSNF`Kjiq^A(?iH-p)(e2IPKcNu!)7RMylyQz@i4zgH{c+CNFX7gw)nIjo)fNtqW0 zX>S*gnK0&19p@$7w2G-K4OtO`_5u(s*g=0V8A#a?Lt| zkp8)iC_+eZ@Yj{yB)UJ$^OwVamg=h|mvc0@twY^KEo{~)h>;^B{F2FppFccI(rskt zvl%kKqLrcC%EJ0(z^bgGl$78n;kivnOHW!1E~}d}h;o~m+p1JL>)R>=0Mp16!{<_x z?tYwg=I!_tw?g@s-k%?FNR8*~O*%fo*61xCj-ozDv<%H5c)e{jb}Nm1X)BqhFADV{ zecuN&{ALD@2D-5lEeEoUM{AAK@KD|^f8sahSiR1h8zX1j@SL)1WeaD`{?7Did7h51 z;{`1!9#;ijwl<3{Fv_^~J~DI=w^l$U1-$8ATG2bz_3~Kd#go=|pLmwCKkCv>?K@D| zbjn8gmCLQSz+Vncpq&7SrVs$g8jBo5X;sY zRWMnH6B>~1cQY|2&jPtuHTyfkwy66@&$ENk(F-!l{MMaT3z0w241Y+TbNQW({k|=m zFn4w20GrpIBmL*4>K?GGQTtu}w@0eD7}}rq0}hH^)pp$HqjFpSu+Mg0Y;GC*##c&r zIsCV4ya0W2?!P9}e>$dZ3x0-yJDz+7^YLR{fY8I~+-~KMynv5a-*b7RgU#I!?iSse zsXRhL!V(R7HeTLwAWnJLc|Q!7ot=HKzaPxW_mF@O)PCss)I?M!bltq5qOb_FqyftT-cKF(WhWi{tz4FB*Q1E3}mED+H>M1 zbg{~6a%zLRcCQ;X0DXwT8jXpy5bSgF`O0#pt)l%?AdJG3tiVP9-^XU!ASnXGrY1 z%gf25xAPcggDHG*8^4Ir_h?s?U%ZO3X&q%W?tH9LbjjdB7lEr-8l!~Y6r?BbVp5PW zU$u>jIGxAb<82O{00Z*xUOba9ZrrY^k-)=A@S7R#pwSmvMousUeJY%e=SZaPWD zuL%pk*Ohfh6D_ShJZNLwFM%}D(HT7CIN7-VPw;WK64KT@JsqPM8Q~^TY~IG-r3O7BvXyR)n*9-DxKfSFbD*2E6Tsm%;m>p zP5bTCzp=@EDPdJ8!Cn~&*%IK(392753Axn9@64Hu9A&Q)+v_*x5UpPjw`L^+swXk|&>tz-`QhRKqi1 zb!716OzaJmkR6WYMR(%t}yF!tmc zn<^me&)L1-FT`H<|6XjXd@pJ+QM7q`ZgjERmA2kAb!DNn=bjrsf$rMRmxNESy;OCj z^@Gw4KJQrsy6gbMHbI#|v`>;_fdwyFxJV*R@AKSCj<05EyUwiSjSMuVI)L#}i_XUx z;!Wz(lj@Y-`)P$dua8!Y;W2s{``0a;5Lau2n0$(hISCOR@dBo<6n%7IJ~Ze%zQ!i0 z`r*siHgR2=;iRO-Bj}FtaL`T94P2g8~ z>UB``5zL^IVBN~He!h7b?tbhMjupe{F*Tfz)6a}#4|HLtA>-HC+ydyseap@FX=Aad z`MqljFiYT8=m)ha?<_b@BYCbrJeotX)Zh3iUzv+k?z6cSkZq;%X4^9iIO!x;k!FS) zv%9vwtiW$Fn1x%56^cviK*;*cl3t!@==9m39otkVok;{Wuf;>`7D9;I7*5u&7T3x% zB93O3YJj?_+Qy?6G>>qmMil+_pIS=&DqG9Caxs|us9M6~xu)+gWsJ%I@RsdjO7mq;HBaLh^20-r7@hujMdod8CWGUneH1cvX3-Mppt;6J=BkveiiQ zL8LKInx39aA=5~$-;3`65`Q5^hz#Jo0;22G75v5AHHU(WYsdxbp7F4-8XW5_P#g#A zY4+M?+xu-#XSpv?9Y#?-;+cT_*e~*|=s%~vl5-$cPbOAcct@?eq7E(0nqT~30wZrS z=aLjW<7B4Sgd;E(gzeVgn4xpVXZzicvse0J{}+-c=8oZ*a7=Jc=*EW=mC*7p7#ua$ zv0|-!DpG|Y-iARnSS0c?R?X{MILv=5{VF;#KhfV?#GwgF^a=+hM{HWNy&SEe*uDe$y-dIv1qvyaZk&IE?_JYy z)Oj8;%q06jvyjBzy^@=vz^EAYd=m6rr+Xyyf^+APb&3RRy4$d^S`e*;HWT>F#yL1~ zK9`)m76yW>J%?{@kvw>Rt2^%HYL?p=1JqYr`3)VEVNwr!arL&~n`%FN-P6lOQgt3# z+SrTE$P1OCp9o8D(#<$<2dc;+bTKDNx5*uCE}pEjiEeGGF@hl_%iHm-C}^*=l-d8D z(a}GF6W&I+-OpkEf1_F}xQ0EcW*N4;s!TrNe9bUzUTcVq4gBDBZx{pP9zNv

Fgei5^~VpaSlFDL||EAd6J9tzwQO*2-dJvQ2j z^{pz>1&W9gF#KT~VVh{&X;c5jHR?#Z&y}R)lGVKHEcRi@d&s^coYS*JQ|e-l zR%qrR79p*s!n>7aNIub@_>;u8qb*`1cEAPA?oLFF>3t@n>SerWlhW*bNV~P~i>eAH zXy*v&dsgve znQv(Q+IS$C>I|GbU5pfUmQg-=Dn1?3ubiQ+VBHWg~ z>q1PO-m{ji|52_RnqFr5@AOO5{(Gdnj^rM1jVppF)Be7q&@vp;k?xLt{rqe9 zwc*JG4CMghtItDghVaRv&&$l%-a*XMDa+SC)U*CKDg8BI|9j|PrLY`l2Kb@R^_*Gz z`#x^_xcLYm83QkJ6cpk2?_Zx95*E&R(cgqW4uucizV-pm15W@EKiIYV4vl(EvGxYbECTT_##896ScSjH zs1r-DQR_Hq9~+oW*=ys#?f#Vv&k#@i^^6TQn?A< z!LJe5#&rFoWS37>X&f@8Okfo2XlaH}Ex zowJHTz?4Re(|jso3AF-e&ULIagxWZt164@<%~9y86IZY6yMsXj4$8WdaCK;ZTQJoC zb+{!@MFzzntHs?d@*okoi_!a~SJ>MD0i}>AjK)L4UN>vi zNwigQ$6eNf8)@a!>49BWg|jun%HN@SaW!9*g~O(eJB=;%j`?MKRx{dANNwKWY?4MT z8sQ=N)jW~&B2?uSNUdjJ`2b#kB;3?Q6XWMYi<@L>GY3)cxZ%9atjy@fzaT z8>-G+FjV*#q3-o<_kLZR1&r`G)(P}_=V&1Op5fZ@*56kDGmHB_Pp-I`Z$do0J4CY8VjOFXgy>uWd@3VfPTf@)DX%Rs(sF<*p3! z5 z!h~HcFR|||4LdIoeGaNoBX*WD*JoB?0YYN!1m3$tNU1i=H4E9LE?R_EWR;NR%Bm4i zP(P;j{xNlPJdt=EcBFVwiQ7o@%Lj&MIW!^@<&ilZxM z&sQu&KY?P48BTYf5dsGZq+I0yOv|pq>94oA3IyFx)3NKlDn3nbjY9K{H5SCkrYs*Boj13b^pYl zLo=yim3a-aSYHbtDw8t9D8tsIGr0>i}9aO5t8^gvFOk+7@} zqO6p2J7YdvpZu#{ zT^o1PH)y2)T-F0&2$sI%0$X0)G5hcS3y^+X&}{>GO9tj2@Yi>z>4{I@@BOs>?Om^< zvD@c5vQ29)*Dd==_^rInUzv8phBk%;JvEnvu%a{$Zt=;kiWH2vqW- z_7zw-bX}I6HWH)Nd^b}iHj@>Du zzzmvgQVmq>K)P5m6-6wO@bDkggnMd5Z4b=?F>wn8bw6!PC7s1+dqAq!fv6;VVds`(VD*)m?|v|kP}J^trk~yP zd=LC!XAHod1b)=*tZb&^A0)tMt=!MzGuCdG1t{X7S8505Fy8$Ax zNy`c3ra;AM%ar^ZJoYS~G^@QRhOLGl3p)=IZc>(=EN@Ctf}yx)WgP-m%(B`%FHF*1 zjmd(6yyZK8AuwgCX~xM<4e88)aWwX?%<58z!K7vt%VmzaALJPLQCF@6nA>Bs8UZh6 zcZL~=X4)0_?~i*8-g!zJRFLABKw4kvIk9rkL>*W0WL)zpj6t|cR!j8ePC#Ww{#g;7c_ zHNxY0$IOn0p5Kl{Sv~9>!8IP%cJbGjd^TPzbmO{6$<$kW0Z`R|4uzqX|MgZJ6{~`DEJ1|1n z=(x@Q_3uK$J>Z>kzMr6R9Vd&p{ruSdywtrDs+`iM=~wnKfXO+*V_6|jb^ClS@57yX z{9(Q2Hp9(~Bi4!aq9$SY2~I<*1wqsS#(D`aVOhxnU%{f`CMDRI44gI#CMYiaqYFsB zqCWl-x@i@yQX@Dl?hy0U)n~DPjfs#4oNTS+3B#IE2`#+)A`2bqoH!$=RhIx;ZZn-L zn6;c4Ri+3jW3we4HR`VgL3`p>T@asdR{oQ8oFeAkT6XxKi!a4oZQB?rt%gLy3EHF(YXVqk6Ax!rlieOVeO(Y?}`cA^g&Bx7KxUM!CM(f(|JAaI>`n4zOMiWr$e3 z+eQE_4BBF9hPIoa&(Aqmc0gVGvNZhK83%$yg0MhT5a{FaPv@&+DWI$&Q)_AnKEr`^!~%xmR@i; z-@RGxY``asv&(b5Yx&FWsP77={>VIgn6D!%7lnkC{JAVGm4tC3X(hBGk@TL z>j%+7;{-RInVy|f^xYTIvoiD9WlV!U?>DjDJ*R^eWj>0qO{dGNWAtl%BDV)Bu-qS^ zQ`24!mtEbT8<Y9g5`_s5Ekk7=y3_BsI6ihCf?Dn(O0V@#Da(i)w!dj7^t zm@%k2^H&@@#y)v)5$L+$$eC7IWV>SLk%?MSe#fnSCtuAv=J>(7jLJ&M6?6w(su*s) zxc4I#5}fPz^+u?Ar@YC-C4Lq^S?4Ziyyi*Nmd;2b;}_$HqOW&}XT7`hw*+{l4N!ea zMY?qKD}Wtrp&dvL9o!NmC00`)62cX5!a|3M2l$I!oRW^Y<~uCqmDN9RH^`@_FSWbl zA<^#=P47h#n(0*<2<)tef3ofVXlq-fGI=e;=e&cDMjX~=HWq<^L=foeWe>e+X zC-Q9qKTCeXg)+yGX4g}Gdj@7(^LkuS%r!0o4Q$N9SJ!!h89&QccFuacy?z^XSqLSp z#I0|O9NK+)T?5(`?9{>#A@&!-zy`UeJOTp`?Gfex39Olay|;;jv67ZJeQC!gF*sR& zT3x5d=}{0@*eQ{@&e2o?Kog*f;8v=n)Y4)`D2she1d=FHEaIPy!;Ig6+qdYpB0A9o zZyzx&B$5*~jWc#UFh&0IWwS&0SZK_*K>XP#!%1d7llks4;`z|kY|K^5G?SZ1?N`@Z zs_u4a!UU*~_?y!42{gj$h)((DJM-O($t4(dBf|BtG>@P3W(rPoKNP5Gkt(T)C>2pZ zU+Gpi5Jy5(j!xk=Y-fdRqc|G$&7OmJcH^BaOPXQR$4l>X>GC?jpHlf>LXS|i!7qqm ztjAW05AOu0hhfh^Ofy_w{=XSF`^B!U%D-4TSz(!XIO5GVtMc5*F6%;2_#-`fE)A~Q zcKy2_@@|gac6ZrATkF!{#G%;Rj%Es$|E!~)=4Eo0)9Wn!OvTh|bHgZbU^9Eb_=FrBsZunh@P_PMZp~y!| zSKkVC=~lEjPrC{^vywdUq13wYdaFxr^&A1aE_*BuodahHB=LZG_~TYsE1&WL9=_>Q z4MK}QgnhK4S~(uXa<=01?pC2+Kkd>Rw7G?7^Ez5Hvdy~cU@R)&a?AaxLT65;LR3)` z4^NygGE7%u0|G(}b-H^MvJX7%wtrqw#pka=XUm-!usw^Wk0SG{KrP`AwX=y3_pUo{ zGb9CFSZg?z=R$LUS(dri^!8q)Y%Y&pp(suxS+BRrTds^)?az*^z%@pb$An&f;PVV< zxP>%;2ydF>y^?#-WXue}T&h*&$T?)}5>fCp=*(=|lSI$YG)Ft@WgQ%d)oi*@^#8dJ z3v9%lw|xWID&0HS*RX;AO{MqJ5&smdY)!|Kw^gqiJZ-O^QU3>fi)+p7pt0U<30LO3 zft+B}l78PuZ8%Z%^U~`vx4>0`Rq-2EXSU(XNqXyCJbxSe)QjXB7|3ysrX~8AAcNJg z4($c6#v5+X)DPC!-k5bo^{M$rEaS&sZPb7#Y@dayqU4^9od0CVoqZYov+A}~iDZCQ z+1dMYO#}-&j#Q4vS?1g_=+{D@FY2fJkc02dgR*19)(3sy^!?Q7?Z9Wt+sfMv5VsO= zo&y-I&T$P#`?kLmgs^mHJN2|%k*b6`IvQXe5bm{gIjJP5CJ^**`993(dmX0%t*KoR zxrr&mC-x7}&4;5${53pFj)ju3k(=^;j#5PK(|SLj`AF$V`riMz&GxKs2=N zOyvZQtP7%KFRttd%9h{wX}UCo*l4Si?CRsgrh-wG&`Rbcm%hUK^ChdZx6m(&K;~Vw zfJxwM9~#gS-aZUjQL-*5O9feD*3>TO2+Hv9@m+`?1%|8woMj}q$xE~DD4gQ;QFl|B z#oBG!J+MMGpZV=FG0TaP zu3~Y@v|GoOqiV<+(zDk_x8KaFAxkJ2*HYtKnq>gzOQVLMfbPU4>R-IRd_ORrTJ7*N zT6^mCX7|K`T0HZSU@t;GAEr5c-$2L^Hk8}4TS+NWC?Y!>{D}+uM4uF|tsU**`-Txt zUG(0%b2neNA?ar92CD|DxVCi43u zFC^^qr zC)}a9U5M&x>efbyn$S{wxYfl3kbHrON;DMJki`601{<01zy$4080*3NWmBUIiqWBi z498;Csl>+;{$&Su2d;p(m|$Tfw_RhhSQ$)K$0NQ`p*#lOreIFL+D;-mC*{%`9XGLo z#d5|A1J4uTpx~U1(jwLm z)?@iyD{}H(L}+8gzYfqxo5}7uFW9tS;%BLCHUfS0nn)hL%q)ZIAaM%@B7g-m5evF5 zx_X*4+%*|M%;oE+p(Z{+1_bJ!(-I+%mEO+V4wA!*9A@(s8fA&zWs5z1pGUpdtKtBY zl_8$HCbO^OsD>)XK<8$l_5-c>nBz1N8f=;ms&Iy5=dZWp>uoxwulr*JaYK!V(C4YX zL4x~buj4QGFa5dBqj>MP5yIvx)jHi5-|7y4&NP#<*QEN>(OUkCT6FC|lv-^}azUn~ z5;kV(__qGD4Kn~^?PTmwWY;;dwuWx0wk~}$^w6BOvknbg%!Hu=M#-qZ8(=a>JTEmM zbho+^E)@;GVEmr=6iYLHU{9z<`pLja4lClXF3{ke9GnW^mb++e7u{$XjdcWf&qo?xVkM+%7=PgxTxYUm&&~nh90MYC_K{(&@sK3AETA<{X*l4Nj z&J5kT*yf@6VF{KqV1&8D{Vr!nb~}et6D9TT5Xe7ePWU%CS?r2Q4*F(Z8o43} zkPu6#lXL>*kn%*wyl^&(`D-ClD)G=i6|Q@|Ing-O1G10#8OS{}vA&>oyEAX#dSy`c zHL#@9%`WXx;&1Q9{p@zHQ(aWUzp7`=rR+~MwaLtk=Xw!CgAW@ut(HUx+PHApRrc5* zPE_^lR6>@3DE|6)t#wDe+No<4e5FQO_LTJmFf*!4X^g|&X8de(9vggBh(#vVRq@g$ zCAn{qo5v$8?V&8?ZWASZvzNi5o~hf^48(!E4lI&^-nWd}4P2B8L4o2AY^JX#K7&iv z!S@xn-SV-JKj49?V!F+#jlogE>z*OzcUe6zs1*u~&=c>r*+=CgUFFpu(Ul z^0mJPcHc+m-k|Do0DPT+H_%FuB-%rzhAIyMWr2V&`k z?)od90LDpT?H`ZL(v8~thsVdIEhrC+wfE)$aGvDh0wzYUfGxyu6PojH+;r&@LzHrO?)+Ku>C1vzu`XT} zQ>PomAuNrON#^$2X)Q6_9&@@m>f2H{p)P) z3o1WFvZqXYR)uKHGDII)ROt5&e7nk8TUBCLgNoVQ#J|arMU`YnW$+%k2r5Oc(HRRJ z*)1$+8pnT&9NTI9(#Kz;dVdKcY;AVy=Nb`S9`t0nzv=jD`r&R5T8nUQzVsG9)hlbN zaiS`%IZaTHra)_~is%AM+cuVFK1ss*cgt*UrSQKEgM)u#RWumG&BXbLB3=t?D1BCC zh)r)*Xg30FlCWPxokdE|ipRfLl~#wkVuEr4&~aAJ=NQ>1a#0cq=glGL!<86})paFL zXN`K%UJM$1zy%4v)riBiGq)sM=wjW_mNK@YAtai<^_NzRdCwdvS%T%b<>;m8Fh20G zX?X$ta!=5pPY1V9s-~{!Nbo&%h$?7`Apo;=N1L>qk4KwM+VfhQA7B8Snx$wOq* z6#)5D{j#aHQf*09%RKPOo}ZhSn!gAgW+K_VhvT6S#ew>9dkNtH{I(CAm)Vf-jb5zE zk4|Rk-fmA(ELd+oL`nqRA)gyX6hi92Y$b5dzK*Txj{^A*ha0~>Il-sf=04GI{ocuW zt)N+qJhf5GLHp`M-%tB$_Wx_$Sqa>jyl>(@L`6lsK;0_O@#m9t7k17(61koWG5U;1 zx1Wa`ZoN8}+kMJ@Y`E46r^F#YKb#r$!Uis}@J3vsyd&%dOYeTpoi_Xl$m=_GZ?6N+ zLjaq-yPk5m##3cB4i|c*>r>o9Q9IA$e=jC!i_HfjRg?5nVKcFMIZXXZ6C{)8tnb< zCdGvjJHOeD}@uX3pA$`gH5hJvRn(cDOXn`inA>n_eNZ> z=DRQiZ;YAaoJm|_qGx~})DVHH&d--V67@;HjL|#Q$5K=Dx=D|F~U(^@-U?T1gADmTxQ+;4=sI#c#e_-0f@mk-8* zIW2i)pf$mSy9s*dvy@m`4fW*T>=Hvm-sv+-*v;v_eEu*)5u9GCkA_kfHaTNr@NF4G z><6R)Qp0^b7qbj|8ykAhPpnVYesAxncgIc!>;HO;QW}A2;ytmzy6@9w)u$!TB*XU! zBr|75`4c=-0b?;n&BvD>h7H%xOuc7>V7)pY0!QmKL%g~F9<1v3Q+NhW-Mu~B+ubL^ zu9RzIVX`iDV}C4}gjsK88+wec)oOP$u#fQ>Igs&25L+PR`cuoI^-8m*C9e2N*jmrU zsSt^?=8>z1*p^jD#nQdPQRMYfttP-xiV5_{30A07N}2;X;p$tG3HmSV?wwdfUU1j! z<_F-%_a+zV)r`3eI<|Kk*(Eq=N_vAf@_tEONm@~moTIMi^Am;AIIZywAE>Szg?wDb!5e1%o!mVU_nmllm*%FnD^xq0F6vU@(muCZ>`Y^p2G`V;BLsW`i?GC+Q2D?*t+$ z>zdqK3fBwXL$@Ek0s9WVE3W(rSsVWUMxOCG9fdKziyV*mdYA8fUTZxkP6{y8nPwum z_WH29t|oABJIx&pPJ?CkHf{v6IzIJ*5vl#TO2X#TUVzIY;Wr}@)r0WfhQj-k&*Hdq z2=!aehS_Ce!f-Q8{UUeqm?mD=Laa_8;s|3-Gii=ptth-88aD5-B25HnqN+Ws7)q&t z#vK(wS`%2H6AUkEqj12(l)_QQ#?g|nIt!6;-4kF(%Hedu8knUt&76utWw;tE`6pHf zNt;Y1iY$^NnQTsHkET{YUEdpFQYXRt^2$#UjJmmF2(j7$iJk4pT0!ZOyjA8`LMSjA zULhMNny4K!ctD|YmOI(vfcCRyz*r~ib!%gz0D1rl_6_xG)rW<&-KIA|;vl=0jUoSK z+m;4@q-Sd}-&}b$6nn$V67Z*`BbTw8+scIdYRDgQVW0(9A7G-sDKLElWI0~*r<3;= zZSHdHuN`-k;X^o6wq}A(#?V~r;0$+?qxHK-{TI}+Y10Drvyhk+oYYgS*JPMcs>Gh@ z?U=Ve-|`2EC?5Fi_DOhuJ^4I62#PfvJAA7f;!;;O|L;chH9a8H%ys3`cOBayo+Yju z!Oa`GK=nIz?(1`YOA_S$K$0^0^Rn}q@%fK_QORWJ-BKG)*z<(rWy3%V@;2r?;P54= zO&E0N@XNAS-S1nw;SYncXx8Dar0QQYtp8B7{kGFMho~#NY*;=L4)e`4jcBAeHvkc( z`DFO9D$Rtdge$?kS%Uiu*(P4qwY5U$QP+Hv<-t8fHC68Tt!}opnmYcRO2dE?!6ZY@ zxc8C{oL!tf6`aF)>=Q=r52ytxQHPdM1nUIP66^(NmTSK7C;ih{97X)@R#ir%cF_hMHN=Q@RU(Xa&JP} zQRBV-qjU{eGJYYB1B^x)kPICB6v5_yl4Pei9*0-*SIPucH!^DMJlwq9vAgYiY8`6o zz}Puj9;jkx1ZWB$lp3a8Y_q-_IIMEjcSup=W<&tS%7r2cSPV=VH(6li>$+0isSL*5yo(pOLAd9ukV4pGcRr zUdx1SLg}+58Skm#bBo`Yz1PNuPZ$buM#=4pGFFP2ttMn0fw`P;glj^fy5=Lh z3l#X;d62Ra%9H z{x$H!xLe4x+wvmm5qPqJ@xEZ%b#7?}DUjyB!mp%=CT?{=@ElNg5l&=R5xg zd$$K*WWA95-E^LvC$p9B1_J)V_OH|JzJ-T%b$`^@l|e3PaZlBY1+y{Bmu!R68DxR@OK?arW$aJ@tNyqg&ac8o?jQX$V@A$19f@8{tGztEIYQHN!S=Kg+#6nr z<|JU_4(TzVbS7(z(LbF!Y9cjacIRk@z*(SfE&%Po_S?5WKqvnbLQ__{M~0nN-$yMb zl54OX(STo#nt+i^{;Ta0XY23t;4ej##S3CEUqddbS;fCC?gJ@>6q$|7x*WK2`f_S{@y{IXZ#6fq|!0e%74v}su^HfWdosj|w2K9GoDBhL3jfQ}3 zZ5IVzGI2oH+395!3f6YU+6wXum3uRfnEDpso zZ1ouof)sp{%=_+tH~YguKAESAY_-3Z6+>A#lVnr}jjKsHk{MOkBp$WVk^so3709%3 z9bq8_9JQ9E$;BWre;>)+bB7%}N(MY<-!09L9)2 z9~U#Cq@9S#5>|^>cKub#H^Ep8U{=_e-y<)Ig9bD`20pt!o$6bS^~ER|MZP;-G(xGL zM8N_$e@v?OpNh~Lfnab_$-rHp^eyS6rpT0IEsA)gEOl1I;mcqLymULN*va&f9Vpt8 zm|@6`fKCNe<|5Qni^xH7ZO=k5DqF}4N6#eP}) zW(a>X_rumj##OrNjwqtkw4@DPT~)Vk**)iA=p>2; z<|${IakluCGtL#c#36E*;uxZ%$gDRqR%D`kUPH>T4{at`Arph*%V2Me{rxe_5?Bj$ ziZtfyi4NMwhiwBu?6Y`Ir<3U8xKjMpXjCm78Zb5#?MI}l79H7V5vGA9dN!yQL_N7$ zaujUV6;oP#fZn@$-d@PKi`L1-gIWan6Q>8j%h1lJI_CR@h3=Vu>)NMk9-kHm8=uF1wa+YO=NDw=p65ar9N_X3uJ2q%haDoc z*=5#I_xCsDD)8N-FL?u1{z7s7N+=eG1;E}ori1d6zPQ?JE7Rj>!hSsW=sRx6@2~Ww zQAY4}2`;Ijr!e0j1X&=vPFBYaw9APEE6S>AEi;Dkv-%l`sOWtbH7s5xvt6i?t`ODW z5^^Tn{IsLs1R8!yv+df()uZ=-Fdu52F$*d)Uu&I2#y)I81jI$ydv1socCU9Zh<)ZU zOm9U;U_IAm=1t)_Ow>_OS8LNbRgRzVrJU8gL{>LqexjtF|>0?Zp+ueiawNClCgU-M(tppimv#A*UcBg zsI9MCeB)A3v?o!|OqG?bE;b{rPn6-IZYV**nWrFm-CDw*d0O%i9b~P75<^ZJQ&i%gVYR z9nQkF&R_rpHL&BGJgyoaKQk)9Lo1e3pp=VHLqVX3l%D^KHXmeBuoqaDyv!eC$z^cx z*=AN{p-mWlw|j}U?j(}vDe+a#B-nTIBd2`J5G7VPIIRXKgz~wfsMmeFDcFE?(=rfn z!O?l#VR7#syGg#`RrPwUY%o>*wB0>05$8V(OXZ418%DJSplWA$Qh10=6w8vSoyxQ!f(8E)|Au)RAV!&b-VU`S zqmqQQA}OP03tr}$_g6yhPy*66<(MGOa{RE-zwIsUQvdr$s;D_ct(miR@Tq$^9s;H4 zkhY_a$F-DsfMa8*=)f#I)Z@_4b4bXD$Aefob4e7MBHt0#8!5DBzz#JoBWV+);uJLL z5falTJFe@960AMG5~PIk<~i-k(Hu-di45tiUqE!Dy+-sSMMFv#FUy~d1Yo`98p}-kerdYhEE?kmx9dXepfWwvK`*EImNB zb~2giD|agC*_}l%ZP_sbL_t;@WV7GdNSP@ZQ>sxFF{oL5CxI&X6K{!`Dyx4y zy$tbVPeiMF-l%L5Tm(O`DJV8Ixq?;p@>h%r+3HU!Ty;c&(@9spEDCMy*<3p#uIF5; z35v!F#q$gI>}7Vf4ucWBA9$Kw1tSHkzfVn-+NRtLYJ~Q%xBJhwR)RhZCGKWhh*sQ% zoR8e}5e}IBFXU=;8iVq3AF8e|ZUisSsedEf7X;@G(7QXXWdV<^4Sozwx5Zp3VC_F|El%Og_J3A4^Ir&?li z{$%}XGN~y^hHe50j)edp4Nxr_V7XFiyIRy=*69&m7CPBR7?>n%RpXtx;H=HywaDvQ z5qhfWdTJD!x&P6gg1J(j?z*4AkHpwWQ1n0n!^v;24bP0f(Eg^fl@c3S=%J9`(WROm#ONvj2MnM~0x`5uIq^9skm|ajm z@WSXxBs{ZcU?r_mdpQKw-l00DF<%fl3l*6i)AU9DjXB06ecsm`EKMGmH+;Y&q zS!gY37ovw1lVUR>+GT3ENZvbkb9*y9*%63hW92N$v{v?yc7cS&#Z9vpq1+;dv91!} zcNUa~i5NW1frJ8_co(ncnM$Ni`3ifX30e$xX=;sOlcIT(r%9xlYX%ugI%#R~FC;-) zB6*GkT&)RiN1_Tir0jbGsLnm{N6B$nTypVTkqAU{-uDe(qrBeOt%#6Zb{!;p}nW zrhgrG1@OWn5Anv=_O0tlXvgR?CXaruv*k15>8g0-&ykJ89um9Ej zF;rUoWtWcG+Ao8A=k@eM|2Rm}Js!!q@XaBh1=!rzldZQ`d$F_EdA~hYVEDdSHRBqI z2t;D;2q-7c>$5?zyG4-G`=CyndRY~OV8;mU8Ng*HT%F-C0ylS!yot}UGG6elR-2Pi zRSqkHC~sF}(oa=%aA260Ei)VS4z?7Rz=YwsqQ}^BGUMIDL#TG=)}L&{MOh`x&@H{2 z$4x6J`&%?vNd@@(xYld5mG}*dE51zT1)o~7xf?Y-kpho9{`p)|fGUAE9W^M7JLf#L z4@PKN!5lloC)i9Q%y`LkS5I^d`1;N&`HIv3_LpFFG;7Js+~OoqE|9(^q5n196+>=)AZR@h zn>`srL#-;|kTK>bQo~N&k3Ohiqo{I*L;(_MhqUEzaf13u?zYrk zMA-7$Nk9~B;v7{qnM-0xBZq!}fI1WnLvGcoJzXZb%dC6i&q-Q@zH-Q?h6aCJ4e2ea zJS8}Vq8~rAoOl>n5`f(!R29GH1FYj6EqsV!)RQKyAQIFXSv}U%JLV|`W(|4+>=U%6 zR2EG?)QOv`(Ndx*;8ey{X{n16#N@(Lv27@fl1Yon6*)_)Eg7J<5(hD0GIU*aXMq9a znWJB;vzHTbG%q-%w%1ypZJ15(k1lX|FOD`nUr@kyv_FFybCunPoMU~TEX==2Uw7Sn zBlt1P-3~-S;fWIVodW>>#$tc5dv_qp)QaX=Y_L5r`|+|qz~i&SIAJ-n{Y1l@_PPT+ z7B>7dPv{-1+uuBjfVq@*oJQONI#>NP6cc`MP93Zr+C8U7=)bU|tstI$H zo%OfJwSriV%ru}(gCz=PtTNC+MPoE0#3f>}uyj3Qteu*3d2ij$vL(u7QmY`*xSh%Llj{Cs0Akmyea1!Xc=5YsWDFOl@)af=lbLV_X~7yTYIl1j9>&LSwl zG$r6{&6UEwn;j;##xPsXG_sFPB`p>Qgg2pQ$?7r9WW-G7$83lQ#9{Rx#|f+1SR)qpmG_ zETi4ZQ5aPE$(*VZ2f(Ui!_!A6F7ad3*jXz}!YmbrzC)SQ4FY=dc{42Ik&C0^gY*i= zu}yxc;zGxcKqF zXE3<-#s1})@b1s>Ov-bM$8YyR+G&JseQ$b>(qBn&KPrJfOd(W;pI6sCGc|ru@@>&B zU%U(djw$z(!FU~L?!dic2|Txesbd=`njAEO--Ko$jICpPL&3C%P)=;1((3Kwi@=jQ z_AAOK5kv&Z0I-xWumc3LsMz`gRb~xIb@eDK#dy~K2)&o9XV#wd~;L6n%TGE1Za z<))3udT&bhI+6|r&nCPe~*0hU@#p^;<9(?*cP}w-BwoE z_vs*E(GfXDI%RXyhY+{-4IK*nzRn&D75I2NCYLC~GMu=qW^acwD+8rdEMpQ8oJ})< zHhfp~8B?U;vSOJ6yOM_b`|J8{Jffsxn4BW|uetsPck2KRda@SYj1(cD#25cC0@2fW zDsd|0UzA=qJh(3m_$qd`;P*y;TbrQyl;2?J%VZ?;q;oJeYM=RsN8pSF!|cAE`D2Ep*s+K+Yj zE8rTwT8#mY{cV^3Tl!(l&DLudnS*Y3jlozbb#}Di<<%i4ustVu{&v)&J3{!A|Hu6| z19RW08^1~FYj4K=a_Iqx=Sk7pEBm);;4A;~6)5%|_l*gvcL&5lu)(}`%zAwHMylt) z<@7I*@J}D?&AHJ-UDkdJ^O~>h1sfRXF6y*i zq60A-x!+n6373?VXm$VKMG<^J{rLFk@aDM>(sxpt<^_?&fCyr?Xh$}-=CY_eguU-g zS4B z-XEX$c_#so$Rx2QNAX1t1f1(CWF!%geew*fHYTbqS zyJkTwSBy@tQMG&Bag*CLwYrMqfBVH>)Zbqi#1-DThvblNPc`ctg0Q4Z*wT;b8G(PcsQ1I$bG1@`%fwW3S43V(Um*2u^?_~cHd!nY}mE5 zad+Rw*gHDT#>B>6pBLDn3BT{5Y=QU?Z>0X0Kqv&+IK)4a@SvaoJ(<{xmr4WvOevvl!z&E?>CpS5*&G_kd$X?XPyTkkPWTiRMG^jN<2 zbT8l`P3-$yx869k~#pFqO2g>UPF zgCS9cqrM>WFxP2bkGHE9{@yLe0i-QEzlUGMyrdzzjpkEI_;0CoMguUgt$9EY#XGO? zUlPD(ahk#U)^RNVwPQfXb^ArO%V$4XvFpW3?Tx+5?a-Hw&riQJim_?Iz%BxxbG@~V z<4BjTwg&!R+{)hfMd5b;Nlk_Rgrvk5TaAyW&}-KlOFnVZQvNfX_KTX0P;wvJR^aEG zc8}jj)jci_&hBB7@^$Wv+lv0k?k)*+wxgIw78bn*N%3Jz&&QP#@x20w+7E(7Kmf59 zbi1(z+vS&kM8yBl7>&~>W6FMPAWpw)dza%33pP&9A-k5XW(?^b4-dY@N;Ku}HU z|EC83rzQn`!e-RrxbUs!92gkr zc*w49$_BxV{sa9z{S^oEt~J17>gedW+>9ce$C%@A(nWL(>$3oAu@kt5w?t8{2=m?7JQ{{9YyuLFV}|J76EPtp{=v|EaW7qm9*tlQE2D zh(?e_B&){BXy6bMnt>oq9hT~GggLAZS3go2wEM%5@XfpOPIygBOgb*JcR<<{_aGz8 z%lmvN1rat^y}c$<%F8SyM@B|!ZwSBtXm;(+dGbytzEpHEQ_i8D&7$w%2Q?I^wN|LzkP4j107ye)6m(DXoSDT%Oi+tBbey=H zmzT1!vi5=6qhsTrD7cml@5^D5$GK;YOD8DD2?(Iiw4&#N1WV+(TlEwt{OK7)lI|w- zPiO$dSC{D~cbAkmyR-98X1vWs=@2fU3uOOR_fX!TmlXx|_G4L;4XJ6;# zJy*Lf$+CAw5qi#dnI3roWork%^({>J3Z?`U0VCR}F3s zj>GYz2A{bogTv)&U2Yp;6oEehKG!aJ7jngkx^>?J-!^(abkoe%l!UUVVg4q!HE>U1 zocwDL@&DBz2ca}dW&h8B_it!v8NpbF{Qm|ZuT>ksC)Z33=FKTy| z#6g{63mN3$#Q&>}X9qSx)+u;NcZmgcoG8z<2jVE_{x?{@fG$SrM~Egs`V%h^r|m@E zo@D>r45-I|#%?0-bbN1@;&A=Qu6{_Df5_AQNb0+PG*tm{hq|B%!Hwq#zbA+=v?EG- zMI5CA_Me;jug+Nz-d4b^>AjjV+u;os_r)r+!TCsT8{~}L43ktFjECTBKpv3yYCvaV zy~*b6;zAry|0`^LfC%PzQNxpR2m5B@9VD&F5PFNh6c&3|{l>eD+OBU1iOgzz7%Z5)WuE6(#HL*5`RcKkPr zRsb9&T~oTuyjCF^wkh(hR;)dKHY$k-H=Auf3uUPNAs7$1HfJwwkK$3T6HXRbQm`8d zGyqOD$R&a#fM-x+yftx{E^;BUvnsw#yy@M~uFO%DBzr(MPz^$V0(II5GL!||h>)zQ ztQ>}dmWg{|WRlIlaQgLt{{mRc!2_#GnhZsnkD0)POHylTdTbd7H9GlqeHKQf8L1y9 z#A!8gI1CS8CL8mRGSm@yi!EJ+j38Y^watTI&T`*5I3C@inpoF@faSv%YCUdEOV1xm z7r8F*JeM1+KMoR{DL!KIW<(a)U56}~LXyd-M-OfyLJJgh)%fwVM-p|HjuHUr7;7t< zAvIKY_cLyGWrf?Y$J+;!$S!wsP2f=AUZktf`c}z9;bvfs)>iWARm&AckSbGlR=wi z2Q2md)}lTVY+iu$1k3^gp7`-V$5n;ByZy{k!fAL^Ez0SpEcvQhwqwsLAu?TcOAgE04~8jYUN!#LI1aC(2dV zp78U=h(y3?!NTJ*W~eL-HIm^zRkNdrg|>!2py;tD7+(JiR=%WQ#_CaHfT)o#CH_hT zwiRSKPhwjT(Spk1tj__MI84Ky^YCYNm^(#iyCF1 zi99$uC3nKd-xrD4=e*JLrnWXC?I7o&fcQ2{yl2?TADAJ%b$s;njs@oMF@OIu`*gh< zBM*!u?k^QNcDcqk3!uL(m> zERwu1a<2^&;qe7C{z3W!bZbZV(2m09=mzj4=7%-V6ef^~>=HRbQU97)izB**lEfK^iu5UpCjtgzsjWUQk}Tiq9L;D0Fb;7(Wgus^NruJ;WMh{Nk`au` z{L;ZKG>U)RCl#C$a1s@>{}6Qr{ zs72L~aZ%bJ^O$^!DE*t4qpO!}YC;gnWo>#|{T3+M9gH(%JGtU7I*9T2TQcF>?(uaP zGI`xhb)0MS=dFF?dn&A*oalb7;0KbHb1Mt9-&4?$N=8DI26LavRC@tYuJ ziE+LFbxn13D$$!$jLH7j?>?QtF)TLJRs}M#D0Sp4S!H8}vWg3#$ql`HZdg!!YIV?^ zl(-ieB)wChSkuNT4aH4VKC@VOP&`2a0bNt8%B&vdEDuyasdTQy0}7|M5YJG<9+$Kx z7dy?yV4*0BWSiI-vl#Tm{{N`+#HB0G-`h3w4HC-QTQlIyEqfm2y%a%_TJmJ}Wv*VmzA zh;j;=@N{^bPR&`MO6+tWZQwW}+YB0Ga6GA1TQniEBc2>S(w%{`0f3h@<01m{)B?_?CT5XKPu}|Gxz>N z2Y6&qyEALM^G3~7vffdO2!Gz}HA1Rwx{T6j5#eUn)cuio3{D5U`?Q0J{7)dEME!D5N3#St#ATN5BN%PXF%5 zDT^Mbt3U(L!Oqap%a3n^CS@roY2x{tlGsdH8|G(5#Yj{_nVv`mfY38gw`|CsjvL0k zs3gjvldX&yMY1lGvLYK!A=fK&k|T+cG~bP`wI6j4tD=rD$6rx$WcgK5n9oBrEtcpR zRQP8^bv%hM*uM@|f&jGtH_kdH6HSwQm4h0Rgv-XR#fTPwL_wAWfb-()m4MfuanvbX z_gg|iXiqUFkFnNO0HLbIq`vAGkT4EOT*brb|KQKL#Sdn|wqsz6sdEa5#A0LZzDwk< z8}ibPQb26bP|xT4M%~+lA(3xETzT({OQOzW^5K*cbnM#Zqdd|%okSRLMajyN6)_n) zIZ5rbwpD*wbX3*-Sy0`*GeFL|b5BuKlHEKbn61;6WwbI+2h@LJyai0H}n%J&yjX5>bO-t3k%7 zTXqapj7U$(R7Ybb=maMMIMH>|4aA9|sZCH{*4>}NEuolGytpxg2uU7wchX-@tSV$p z5NQ&{Ik~|_p7)bgO}R_v?KVcGl4e8XKaL%${VZ->BmZb$Rh?Fow z!y!lr2o9n}gt(wc;IOolRj}BbB8@g&RJ$U;ura-^yos9pQN-AIRhrWK@A!Hk7-*36SvF$qlV;I%b>kkfm z5B-I^KuRodjNbj!=llGbXV~Xuq1W$M`awKw@C2WF#jj|fG_G{mrTm8OhykW~{q{WE zc2}bIGK%n-Te_9*G;^@AME+;Xgj@r3aD7x7Gmm@2HFBTPbMWl(fq|dv1{lzMwf>wF zr{_KC34d9aw{UnHVUIoh<)DMo+px36a^mDRDi6CqM4WwZ!M}O{hu8~R(AiJ(o)9SU z>_I8T zWRo+q*#bI-oC1T2T_lKO(5|lFfntQNM>R$3?k81*n6Uc>DU-Wcc*bBFTmCCldK7{N|T2fKx8>Wlm(hz1#V z8OjK$!Upl^QSm_nA$vfBOrb~w?yh@QxRn})8+9+F7Y1U>^|V=>5<5dzfy4?F<%fV| zL@Q3KoIXx>6yS&fdzvgG10j}-igQx88q_M2j4DHc9mueKfsrU4ESoFn$&Z9zU$1|3 zJZ2VA4z?8!h2;M+!sjX|i4(p6p#~4gq}{X3v8J(Nf~Rqq{Q89NN^ksb8L1Oba*)li zM4>dR0lq8~0`_&`VTTddlSRBqK(s+L!rEMaj17Gq!Nm5I(&D!D_DPU*lnyH>IU3i~cDTU)Yfn_;T#vvR5v=_YM@wsqI?SRMf21mVK$OR%H0hBdIk@*qidZ{G)#*}3) zKWIyOd_vQ9+qy2o*d6YRV88nvnXo_c8nQJQq#V^7Z68NELWwF(fDXwMSfIobc^7W$Y zd_DT4Z*}0U6{3KMfoKW@%S_ZzN)gvem0jkp96H3=4M4ar={)TF2mpAHkFKA!U((-0oU?p2g~PhavJ4a31*5Xq(2vdiI}X) z1c2JvmPYmsD-iQkLuvh_*sMQbA$|lxGZr;QBW*S^Kfd~?t>*<-cQeF%b2f@@nPI_S z^fQ|iP%Yqe_QRhL{g=Avbarhw;OxlKiGz_864(XBPOsT9eBYs&C%eUY%DvuJ;u5&1E`Ba5gjbiAkm%my|D4!hnET9=XGq2D?M zwacf|{qeOyWs7Lb?-x{e4Yi(=@rcj6Ng$=?Rq9^2Svy%BtkF#)i^f>f8VS^*D(=H+S-*FoGW%$#(aL$nSy+JA3S=fCTT`J# z(>SoG6I&O|r@zkkVxS@@iOo8m4x%a@8zg3Lh#l>sF7N-QxIl5znb#}oNMXo-^Q~wm z%?#*d7<=U)+u`qIMj81rnex;OcYpg`R2q{B5TF(Kxs3 z6Z^X7(gDY3i=M~t98=>jFzldIY44nJL_iF$i4oENl)>P!hE(X!5P1P#&r%xl=Ldh9 z(^>~n9*><+rP6(9S6J^PLbT)(dR3}qMT#LfMn<3rX%t6Yrz%x#7|)UBZ_{hk99V}7 z5K%6(#W-R!fiXm6EJxw}?$xF1P%kDH+@B>($`6~bP=UiKg*8x9VR&C&z7c1W69VS0 z3PW~#!wmY5Qq{lO1#h!JtGQWDQ7LV)x>g|Ph=AKT4Fz{5^~)bb_mrh^nT;-zW#Q5U zo<$|Jr6E4sMKf381G`MIdh%ki*RWN2b&(SYo#)HbCl$ypGT$uXD`LM$ou6H`4^pJ- zGoGod^HnaEdP)24e%a_GRt-w!38d!KF`59c$UrL%t5Pp)5-|!+_hg{VMCIALIpO*fNvw+h3aF^7Td3 zNNkN;DKr^4J%%P<-EKNqzl!kTkT}=+T!%?w&a-JI-?}aA{wBdyIjny$Em5OH>(8rA zZl$;#G&zRe<^_(}ld>v|7M>fIn0XQkM{!D$Y3~)ENibF7e#^D&HYQb-q%F2Ms$TKxXtjn4$k1 zWIZughg6N6;9HSZHg~m*A5UzCtSh8rvnxI0^nl@$8UNGvvI==af1QJ!6Eip{3<+@CO1Yh! zn3iIw!V#J%E^m9g1;r^|(&Cq^tls%@jWRp^Q=HwVbj@kX-wFE_GI$kdemIC`S+>id<@(`_}f1dIs5ZM9&4YDZrzTmQ&T z=F3+F*M%K0w~goL{n>EXh{?hbf9Bff2Cc2&%U5)B;|*yl>uL1uVCCAf%|-O#$MSo$;ss!5;`3{s=64Ta$?tF{mdyX0m1xH)<=~&Fx3$FT~*ye2M|16o33v=9ppWfFaq76#t$m zO@xNQei^cJ(8m-JIrx`V)GlTQImAUJ)v}L*?e3Qhz0(g`4N-%jzjgUdlOmMTG#78_ zML9O6U-vYIjANX6D2)8Y2+SCWv-5>5)l_jS@j(JE?O+Q4)IiA;wUFPYWQFy4`D}Cv z!^}0IY6fDPxBT#sh1K!mvGqlhp5@W~QzZ5cZ#Rra$4~R5?hA*=T*n^*JiH+aP)1Wv zd8`G4DV;Zq)PXw6#)-y(vswzgA|)_eqcnCt1S89J#(&9HnNJD#*IoZ$v zjD62OoiSKeLr**lpsj*PG0zvbYq(;T=^I^m&<=s_6ZT+p2&{7D{jg!~)YAKRgD0Ok zR*OH~zO^TyO`|_$4K@Fk40$@Y=--na-k*}dp6@J%_t+2KAD0~V&nx3@@s+?X#Z_L{ zxZ-?1FS;ka{IMbbM0T6Bw0*!iXoiNlswSb*vIpu4R`@NAJ zb?3eW+}-{8xUoiWq<%51;ZiPTZF(k%l$PXyi#Z zRnvHEs4cA6OQuE!umtwPfmQ}d;e3<|K zyEKL5pcChLjp>?%qh9Mk?b-0mDxbT3hC_S4hIBC@jR)PYQ-~OEOJxEY z=^)iNGb~A-43lxZl=VXR19}!Rc9IVq+ub8uFWH1|6jYeW!-(yvBH`r*5sWN@JzqClr91A(8$MJV!ekkC)KtkyvpxMSN%By``9%M1UT427`V~F` zqfi%m>Jnv9V@-+(qBj$IDkFr4YrGaA>~Ex_^dDA zdSCZ=-@G&Bu;pwr*5iGl-}(Hz)bX>YJIn@!Agkp-5D&B(Ft5B3o?(Qx-!>cBN%}WE z+f9TrjmWmmPvQPpQ+XNIvLapiiN)q}+J19Tcn(*xA9KOZ9L*Doz^UzjDnA~0N2^1) zmK?ubM+}`Fh<>ILVUNd*LO&X(;B0%UW?^~`7*SJSkjC#&@u{|->llU;p;0)c2UOU> zjkv@Ixss3&0%*g*YqtI#_F~PmlK!w1p*C34k@%%Z0(C{%y-!xvg9^)ez)y$(%v3g| z6%dznsU4mNQ2WL~P>Z%O7RQ8H`fio}8r$c|NoJw-jr&5{dB(=Qu#{HlyBg^}EzG}54J;!yqd^!NwA;UUB*9AYhTvz)1 z-5v8dYw%%oVjFsHw#+El#nI$I1bH?qGV}~@o>qjIc8EmM7*e@=zW7}G$7TWAKMM5Hwn zQPC)&%)+q2pdQ=GFC?2cX~{owb%yG1%V?(0whN1+WlJJUALKaRQ>4S&Ptzb2Dn}qn zm|1SVnfl^e7ah45AIdhs1G~Sc?{NAzn00HhzMq<$VVDB3o+Bxs{QWK=nusX!!~a?y<#DA4 z#_uuGYX>-RWU|w`Pb+Ye74CdB8cWR#7Lzcrsx$e=CDk{AxVAfBt_e7?e{X&7eQEY3 z8~NnJ)ZmF1gSq>YN29B9DoW^G!SAz1yzQ>pL-^XadpFbMdBHn)nV~?=a39#V180HX$}Q#3%Z*>nrV)XdLNqIh_jT8egTK5 z(Q|=92*P8&>PRW`4Dk27(<)t`Jp&p$CWo46Ev?yBgp9}k{(YkfAq1ffmk2I;up3>+ zObI{?XI$-Nm%27r;l$N&ORlq>eACWBZe$<;{fL)mvzPUVEj;WO;&`$Vtp#Tylrjw_ zM5swZ#eH-)|4X$%y4#c=@ezRtAIJCbqA)`@-bTpfCAZP-o@z0wntuP*cnBleu3m;2sGg&q!MX(A!>hHf} zXiJ4|fzFF*GKmTC^WIalTZxWjk3wl8nCCD*eJD(Q!5@7&W6XjMdz;e~aQ0SOAi@bJ zW!|9AARWCr%D-V9%_&7U)xIL=O0e6YTHl=0a~VD#`2EVRhZ%ka z+HF7SdtdJ|piBz;?^$XPJ(6TeBWFFC*dcu}XmZ0{yU4wJ>O6RbcI+dp`kXzWCYWI2 z$w~R>+1p+r9#3geBz_vHWd3djvf^EAzmIvtuYRJ#O*cE;o<|6^-UvG%y)&o47LU7} z4lc)Ibz))vH2<4_=aO%^Pxv)Jxs2N*;J~anv#A--q4lyzn%XfA_8&4VN6S!zg4P+n zpMsp2!9(+JpN++b)b=9tJVE$frBR?5gcs*v82Z+zuYc;~Zq*|a!~JGbMmPMLO7sFm z2KE?3M$R>9((8P4B&D`w0ltyPlA@NTgy5S9Sn0cvsp{st@r{21<4sh86{xlB;W}g9u-~FRow{D3ph*rUShgkG2Sxj2Z7c z%zA0;5O@jto>(N@`)X*gqkt%vnnc&xi$tl|e56iTp;9fHlSH#^QT!Eeo@Yr&t${YN zNc@*TST0P8DEd=pnL7K;I8yHT;>M)mpA}l%H$CDqKC5)Oqbcblx}j@C`)v0-g8hwe z@ zG{0B)%~O{V0@@QvLk=QBe^ueM1yhfppaH}qimy2AaGhm1#_ztf!=6#q$8&5RE4|fe zvrK1QbuG%HlCK%!W0y@;jZ5J~>zwjXD^qxByVKt(!Kw2;_CLf&0DfOWcP_x;&KC7NpOIJ?=S zbqHS?DcY7v5<;E;zJ@*ugEbaW@)}Q7_7>Wd&lELkD!N^Y!>_6)%oE&O@OwZzoP8Wa z5*(mXOhC?o9ErdvyCljaD=osK$YI19nBOcwW~p6R50x#>O(`l436b_!;XN*_l3sZC zrz!4DC%yTzFwq_D3aGan6s9cJDD(U0>i4 zcNao~2@yA_ynSaNYX?#21M#u*G)-YNCrxA9cG9r1 z?VQ-S=e-~HKiGTixyBsh88@!?vo;759i$)jv%uup65X#M86(U>uFXWT(Wy(sFX^RYnw_$Y;$}h zM8ZIFh!p9%-=Y9$?f&rR@^5M`^idOI!M`aK5fAKSw5>OlTM6$FU^)qFwAHZ-fPq&z zh9YSw8*WBc`^{osBW{ws1P@IwhXjSLm5KCK8%vf0%P^HlH+P@sre7NIPg?|9o}Uts z%@d7Y|MGN5YT_R*n!1&A7}y?ypLkc-TKci+-tU~j%#u+$AP(jC3!zLC!^|$S`ZaH7 zlPl<~v|`W&0d_M2y2R*yq}=i}UG0-$J(9a7#R9(pIl!SS*6#Tpx0t9BYD)^HM??*o z5LX(s|Hh0%uE7y)Ld~J?V8e}8R72)E76lJ!{$=Zov_29?#@w0wWGcIY5t%8?!L$B1 zHQ-__3>2%>O5xPnC@5|gOUCYhHW_MtQy}_Pp~2{%v7+;E*wM1-6MTFZ+o zbD|_pD}PY48OeRSgbecGBApKl#;`k53O~*iv*7xgPI+;ZZ%CiAE|){|ET{FIy(s#_oupsJ>CFL;Cvd>1oM25!$~5Z zx*A(mDqfobYxuowaRuNpngi4wzQI&4*jlxfE*4%)3gD;4Zj(f2izYCQ{L`bREJzmI zN7DR9O@T=wNd|f#N96!$5B`S(x1@rNQf6#+CrT)!35Df_O!PrOylXr${hiaIS_(n!O<4yuGbs#daf_}*0Mb)N$@4`Q!s0%$as2ZfiIu%*2(Vu)=Q7; z8BV5_>+=Ta!&_f{l$O7_?A{~@`Vb23e?s+r&Uk#~JoR3H@>>JITWLZ`U*J)z)Abl8 z*7+Bw0z3<%U&@T0TY!DuOBy)hF5GcX*o3!$@ZHucX$$Y}KT5~7aNtpKI>8|2E8?Hm z#oC1)*pjVhZNHIkk_zLPq&FR;>!1t)}@E#_lr-v!JHzg)LWF>-JLVQFR6%ve=|ZavnXDb zKRY7}JQQE*PKjU(-WU~rt4IJkt7gh{43&tcF(Im3qd|>eQ|pH=lk3k)dMighCXiHM z2Zh~zm{u(V+(|OO>&O}zkwbIP45|6@7;*na)=6X_?3YM#pc5y9!hDm_TGHRhi2iUh z0i(F5wd=4Po51nj0V`TWjiBcIb?C{};G;vbJeV_EIb@S9=>3Qix&djOZ1AZ7p^&sr3QXqAR4qN6(h2}aiLV&T ze&G@_(jwINvSy7U=Z`U59908)cJhtd@^hQdmvip|(+@)e}E z5=Bt%3Uo*P?4$=0s=Pu;>EJF4$x-FOLTOGmC3Wp&^6b;FYID7%3yh_SVa3t`@CeG( zq%-78QYIF460=$q&{m%UX3f3fsT^cuW)e!v(7&N6ybGCr4w_PK4k@Fax1VINa=8;c zc^~8+-wqD$`ZuIsN6rvNbKSMxwLP^P{sc52A`-lSapvIEZJY0L57W5QFyv0iQ_fV2 z>V4C@-!-3ZZ@62E?wRI(W7xH>$`?1v8*N?f`|+|ECAc3I-<1zZYiGFFx#q!oo91{> zbl4StzUvR}_qmIc`ouTHD&RE6L2eCR`+1Tx0=q73u=Td}bV~?I0Qg)O6Yfv3&Y0X7 zeW`;oKTenLOPnKG;vP4r1X!D%*6EIE5}9w zNW?w)%$Xg|qV@P;Nr5%Hc^S4m;Uoo0Cs+B47HeI1agnUaSfF#JM-VCH`B=wL==U1D z7a-Y#e9xGZE*4P?C8+;7!o%oitR*8&Vmi6-B#Bf0l2IyE(?7uGZEj3`54YJ8<~MaP zV;`qX=B=u2O$z+$ZqxbxIxSg<<;XlYA`mzA*yIC+;=<$s*M(J-Jn1nAxw#;!1tZa< ztw~BkmKAv(mE4-T_RKOZKf*xn0TaHxVoe==tj+UVHodk9`P~pn-9aWrgtLNfPZVpIy*SLM2>URJdMTYV z7@jRm0Z`D9h2H=oxiWJVhvpnb?GO0B9OcGkm8KcTFWLtzpHL(B|W5PX8YgAogCkEhjrYY zwWsaDYg{|i!AnNt-kBjhHV207st@odFdw_CH*dvl!RsZ$$GacCe1b1~3tYa7%SUo& zEn(cK8DH-+UkB&%N4u9u&U1TU+jNo1tW4vc>tKA1ma^7+yb% ziN1OZw#g)5Ny}VT9FZ8~qlkeklk-@~H`if?q8U?5frbzCb(ZSYNez!GNK1Tpk#t&o z1esm3-x@#rI2->3RiPzl_zu!#^4>;CkdJUCT#zMOMpAoA|6Hmq-(vl3MPbGkdjSDE zhFyHQ3*~Oyhw&@6@iY&q#$t+mE%M8bCl#~0gKR{ccsz+lTO7a!7nG?g5% z)Hs<086Xp800ug%03d8fE~=ai{yUa#IXNZtY=qriDvAbUCZ;joqZ)kQW-fi0wYUH) z*#$B3w_=NwjgSUXq;-R-rX@38?mK5q9xrz z(`&aN8tK@t04cKm5VAV3MW{?s?;*p<=^s@H9A+q=QiDb=U>c5g@VE4#jS%ssZt2`?tn7`o2rH%9y~)ovT!^984X_FlVg{x$oU z-2aV1MhW#_tXnfP+YcH$N(?VY*bXP_SZ}v;3xryZNSJyL7@sfM=}vo_=HKf+uQclp zW@QQPR^nfo@g8DC+aOketjw3mTce!zIUaIvuV$Bo9bcdK6~ca9UjBKF7ozc=HuzJS zegCZ3L0QSyG9a*VMt}|H=k(^5u>k_rudy+-IFb_1rw?Ua>MR9xWdoVdJz$gAGV1{I zg733pn1}rMEGZ6f8SRiUO zB+0~3t~~dphf@R%Vbo_r>&L*0jAlt6P2f}tXY$dKW?~hkSP>%$Q0kRMQcrm-k*0rb zU}_u2;p9C=t`_W0Y_P`4sGZmAS4%6-!k|rYFiHhA3=a1p0<6*jy1236@M~NA!D}3=&^2W4~96sV-3m zR|wN}vHMeaW=4i5r-d7@CI42!igEszV>SRX>5NUtPZFi7EphGr%~ZStfMH_vGyjb# zFe@V@Aky7Y9bbdOh2C=%Wurd%Nk2C6-E$6J1qZqmz9TOI0ip?1H2y(mW*M}U)^&*a zRv{{%cE9ZL+4mO@O|D)jY*Xtjb3a`K06l4x$V!Dvm*S2JOuxC@fw*e3rw+j=_p#66 zn;Y)PCDot~ANmbie&XT9pu%vmt;khtQPD={hz=@)@&dW)FHC~jJ^)VJweU&0xDba+tf!?Zs0WjmMu@Nn1J zv2VP)$9kx}?oA5)tMpM6Zf$2UZs!**NtC_!f!lxD=2ov4Oz-RM<@*j}{>&ZlrGKA< zk=1ebl5wB6QXeLLv!CVBbK|Y^Wduf`^TJ}f)0sM-&*yS~Z8-;lcE;z3l^fV~x6)*} zK)SWwWQpqk_2fUpn*TC2%AWBHk^AHNZpA}{IZ8w7KG`M>{QM~2s~B^zoHJp+?%2QEB&w;;+)$Kf`Yxiwl!|KaX3`vCMsTadBeHJ$(qgyKf@wk*hsRpkUi_WHW@^nQ0@NrEd%lcN zn3Z&vg}2Bd@G`GM=!6;$ZB1QmjjX^uUs2Gm7&1n`t0uvgrmVeLe5(}QqfRaAUV6_z zTl6(8T{K5A@PhSjqBOs@Oq5D$|16Os`-pwK7{1YWp7xP-=oKYE-04?XP{su*QW&*N zilT%;td7D&MGq3WuHT3K3)p6_@@i8MiwAYaUnK-lEhA&w{m1YVf()@6)Tj|*;3r)r z@|)pN{6gH#;+0hjK{n2>I~rV4-4?c(w0<2=NYAbkjnY5bf()tGPapb!u%TD z(mnp~ihSLfX7h0O)?-ON$srj0H+*xjo^zR+-yPW?`nGtnSLZ!q*$s`O*UL`gel+?& z!|t}WFUC&n*G%v6k2}AZbh=I-y(jm(SX9t_gbzw)2-JK`wS(OaGx{YS^8-CEK!-Hn z%eZ3RVc^Rk;b$Kx8$ABh`}OhP%N>{aeMoKo5*BDPr^Nj4)9@Fq7%wp%?R>Au_6KLi zeTf?`jg2&_0;oG8YJ=^HFbt06U$vdZCGQreikb=uHXV+QsX(GEdC5B0f+gr(gg{_a zO)j5F(~Pt)p>~c&ht1R}%F;iam<){fv%w8g&vvL@av8vp``RR?k6QKBF+)z9ey$HC zl(J^5q|LH*^8!Fu7osLtk(m{UUG~9xN-J$;kfH`tgIJ^;o4<1bJ)#Zw^`ji_2d0OW zvP$Rh5U?De3#Yt2X&W&zO>91D0LKqKA>#O+sQU16}?P?_> z)^k@k5SO#0j@XoGO0&f3;n&}5_Ka#;2iCfslye-$W?AH#J@f=`;4tnt-EMA@)gyM% z$ri{F!AE7s~*}O@|T}9GwWUAp>2TDPfR$?a4=lg#B<*A+8 zHD^@cO^G8yBuH9xl+O~f1xDs}gS44=Rk%#((y^;p^9^P4aBid4ooFe7X7#idVD5z|gAY7yKkQ;&Z{5GiD zT-77WnyH?XvhllnUuFtU4Q{8%c3oE#c6>gQK>fE*Z!YH_r3vbwQNES94yfzXmJ)KBapc*Nm-qxXr;D zeO{dYqfXSc?ZJXj5!)`tDT<&#g}`lMyu%2#`Na*42?wI1#!K9d%udyJYX@nRZEH4? zzsTBgW!`|G=3gR2yhyK}ag9q)DfNiVgFkn(WpTFc|D+ZGWP6leu6h!Qs#XW?_71HS zJm!N!Eu7EnF?61PI2hLllHfyk(a}&J7y^pq=?{*m?UgVave`H)OQYyi=HSKW(}&2* z{kuu&ldaaC6>sbhQUB`N5pgc0(hxiNqL>v74Hcr>d}Fz*3{im2hgiBz1)#!&pcnfF zJ`EP@VVH>q%HUJn#+hp+LntNs<$H}z4noxXH>))s`$c@MdRn=SU>ND=%tGE8$tezZ-BEX2L|%N5ua*g-1AVVQXszEo@gZ8b~OxjBfMll2lcw{INHOK@(}g@NWxz^@NQw&u(QyyX;&IC{HE@ zMP|n&&K1aToa1*w$nCvD5%xy{kYos*QPX0BAoCp4I)zP!3^#a_`lHQi$AN-!Qe3Kp z+!~UtF(9%@Y(c_isu08Km1)!C6ib}Wr%Yr}dnqfT`31R^Gd&4g9PeOg&=u!0;YbYT zC%X-g#Dae>Sq{9Tr+1~XFUkJgYe-J-o{^u*J@t2>wWq`0ugx#uTS@B13g<{ zfuqFZ`sSJ^{G2Cq=KS~5xED_!^9OCdWAxTRH;xFOs^>45XTLJQd1Ax)OT}? zp3LiSpKl?a>p)xoC*L>%FM{ipJfs%d3|*OV5UxNs4@4{wC<(rNOfYzxD0AbvL^&0x z-xr#lN6%F*;a-?##nW4`YXf_*!| zdKff#eb0G%;yNz*U=Tm{(!}}*y#>^okdfGE%}0@Cu^gC&+Pzgoq3gk>O9okNB&nwg z+7m|)F>NolEl{Z*#MRj`*AI;lSJ;lpRxn+9k7wE)tSF(YpNW!ZzX-wq3D3KI}65 zQC5P1kPlZ!R)94jm?MZApA>=>20QE!Et%D!V?sHhD8m@q7Z-DUT03GgjYTb3D_D}K zqDHz7E;K&HeWj09j}|V62{|iCI1DZQv%U|x8mrl&)v!nKC`90-erdtre}XkaQL&<1 zAQFrm=VBO#z`jQiSeL}azJ;`AnV9zMfS#xgJf@@B){s`}c_mR*WsAHwk>gO+B`0E( zUW0>>3QtJ`$Fx0Ctf-8Lw)P}KgS{#H%##!)LJL+=aZUpdlE>>Y0Po%OK#oM5T?3`P zrDgqB%q*Fv3#FzMe)JeR&HQ8DweC-Wcg@^JKcYxp0gu%km=SASFP4)3E zj?*QOV5wwce5Q1)TJ8#F<40K;(; zr*8(WrtZ`(;VZ3xw@z$3A9O2&_PF&Lr!yVz5f0yNaJs`@eXH|PcWpt#OAY=~D8UXr zBY)Ua?-AYBYxGm!citl`B)vD3xV?|}-b%`sVQfL7p6A?@t=n_Y^{?vvnIp=#VV}K} zc&Ecw!cFsDavOK^Kj*c*dFM5qb{eFU|M7WpJoX~jJ1aL48}fwo4+uBbFD-B9Jx^ww z6~&6P(n7R3H%;nAb(=t-A2G=&)2aJl|2$G_gd+Lx6g0n8dXaGD+!G{W#LmW}5xRB- zfp-Mxsm~KqUCiS46>n|FB4?o~J?YWSvz9DY@FKLjX5DntE-HifF?sZ?8cjUt*@(=n zB?(37#U(^;n?Pyk+rT7B2*4f;P<}2JZ*jUla3CzH&TNienQg>{?4xH}e)bxjaw)>tN$b*^dd96LQcigbmxN92weEY!L*;2 z4r9wihLGQ;B`?EvA*IBH24Qo5BjMtpzFL>VboDY;QdNPW2D1gN-6nW!DB-XcTeGXm ziuwum#0**KaozJGB2d7LVJ8S|&Kogv*^Gu$<7NI{2Ojo!4cY7ba6T1PG<2yV%$CkU zH-MA~m`^JZ9DX#7NheX01t>s_!SBf@6&&)%Q3==8e`g?}g$sfTUESv7e~e5h)TF`! z=1WA8UPVU1 z9mz*Ssfs4tx1ZmNUG(2RddFor8eS%B9e%2Pe^hzq$eEE-jQ(;zZdM>2Yd7eR61eJs z&MV9tX*Tnt!N}J4g?qyHr1tlIJZ^vSM>;tAdWe=%{P@goFiE7WIpeL zJ*k+8p|Nund`mRZtVdBM4^usEI@nJbtg6=R#C2bdpv+r4jWVycEbpb9^HJgYWFDv(xuWmjNoPk0_2(+~s6=n;Da0SScV5G&{EE&7th z41GtqHld{-_z{zvmgs8Ykb5&@6I8CAm_;#*K>&4r)Vs{u=nY)m%EVjd9x zV#1WFV{;Pw+HlfL+9+aA9}T2nUXenUKS)`o)YG7VI28hAnmzRoXjw*36pAB?RxR}A zR-C?#5X0V5vdD5Jx_q#JtP;ba2eq1kt0X+1>33W0&dH5=PIC7dFk|~K7kOdfn(jy0 z4)<~&&cS_#q=bL+A9&YDKX)}aV-@2e8XAPO7$g6_g3FQlx^gG=%*akEuVpN>Qv7Dg zdhydPC(UsRVV7momU0pm<};(-CU6F3h4Rf}?eZE^-u@lmZ!2jQbT^G#q%a;hlG7Q? zXpYgIT-$K;r+6{-X2!JrRGsbxiu+vVscLmvL9n9l0Yc&F4B5$JSgTO5NbB2&)SYj4 zV~+Z%A4pY3;+^COs6f{QRO)SbE@l&TVcT}3w#3NzhS5FLNvG(sE`K#HrA*Qs2u>6L z)!;zgh;V<2WI~$4gDFEl#6o`JkO%;7P=j_Il41d@wPZ877*JA(Q)g7s%BVR`+jqNc#{~f zjvD{B$bY}k@BJ(zGZS!JmF9F@X&-f}enBU#^oRCfY3zOm9mNH%<1%*7V?VTffw6pd zwfch-pW9PwN6TNw>6`xg9*aMZKHeEVfj^%I?n;ha^M4LR3Xcfa>W`BPz6^B%-;Qu8 zu{sV^%LqROAG>d4*B@57H4V02ms*Wtc0r)Bo$En!-r}pSJB3dW_a~_p1W42MI{mZG z9f;qr?)1lr+(6LBj42|q_dnVwJHSo$MWxW#6>DVL*TXzZI_1GQy)Ucp!q_k zIs{S~0lD4$tX~Ut&SpPrAQ^)gmZ#F;5&|V`0i85TjO9%pls(v5p`cNf7k<+GCcO z#JPNo5680o@Rr?KV2j!OlK0p)pXx-M&K`GKMhWp6f6WnD{xvkY;7VFfk|P`b&02%Y zGz!{Fm?`xQl72r}G33sFziSH1hbVG^2zAz07Q{nOM)9|}8s&$>DEKFQA;>lzjj=sc zIOhdrnmr|r!%%EV>bJ}nV9kj?Ai5uHQcj_W&cI0UPjqtrkMVyvaNm6xFhi|Pf}$eS zDpVV(*Oiru1~;F8rfTNFSv-hc5vZ$Bhq|DJq$;q}g5NFrQm)lhCdNU08f7IwNMo8n zB#ZAw)X_H5#ZB-h6iYCSp3V){`I(XQkf=5=7_vlUriso%Oe2lyo5QB6{z2np^dfSq zs8@bTSmJ%Xw31uL1;~Dip!$OcKAo25DI^^$vT3FDh^;;jBn7OL;ra<{BCu|&y6ucIn7UfOH22_pI#j6 zSqAp`$J5kv6aDpkW#-X)mq#5^Q@WP+{s&oZg{(OtzKc|>%9eAZXAsxlI$u+NVMe1& z+mlEsuDrrEZma!bN=YvXi-rRP<;QI)+>!%I;LySRIe!aH!e&A9*M3P3zmV1uoh?8P!eK@ z)V|M#%U}H*-Lg(vzXOa_DF@|%Us%b%Q7A<0(iZAx`T4-|-!C-XydaNuSJJ9%WDiWe z|J&d!kh1XGAmyM)5hG^`EkoXzh1+3mYjNH$i!1_6KC+e~h$>-=9EJI=-U5gr5x0?K zwZf?mq!r#K2k3c!PD0PO=rl(0^(10hKhAfVDC%m{b86Qk?{nLI9&sqxa0=)0i>_R|uk z(|VTg*w3tyPww#ql4=bYozGVS1=tB(U-50I&mM{xQInD~F6!QZ6z(bj*X8fna|#NO zv_!J>_^j6g5u85NoNGivYpmLPV(J_T?E}7_Un7`Og1~LDI}?#AKA%_v!&8K=Dm8>Y zplKELkK?!XKO3Q+R$zu6yG7fL?doP9CnS6IdKHIh4t<3BlNIjNBQ?BPlRaIRm&d<@ zdF4<;S%INnT~7F)=q8T!3ZUqI9J+iBOY zaDSRFgfF1gHqrZ$YU_;q^FQDhwY}#lccTws{6o%G`_<`&)9{mJm*eR8Sf8fhGjooA zKkdu1e*TF4;d}BlBfOn{sMRzCMHER%2|>4-dgWq75x;H`iUm`_*|2Eh(oU7)Y6D^j zD9Yia1IlGEOriu{30#2pR1go}e{IHWk>pNH#b}9ZW?Wb{DQU;y1QWq`#gjkCcRu2Hx!2Xn zJPE0dYShwOsv4LmP(C$oNf`SdkUO3IHcBLHD~HiJ+zL0pz^n_SgUzmk-&QB_ahwO| zR*U3~y=5^mIWW4LRO0|+&f<4Pp21NtbH(9|q)F(wy6`-(*FBdj=x;ga<&O#L>dL^U zE)%F!jK$Io6`f@={Fp95irHD~oG$SxatTj!LvItq_|PuC_d9RcNYA#+uQX2lrDVTL z8|c1Q@yvp&FE#lD` zyHq46#9Q!&f9J7cEg2YYI>kTU{VcdSFxy&0hM>*@F~PM0wN7e3mY|DNMv{7P%GK#= zBOXxaNBmc__oG{sD_qV8kU0ivS+kO&UcQPvMle_BM8TudP_1qh7zn(?s`M@c=8)7+H(5 zTnbpN{ZmIs&x@~D&YMx-y3_i(a#_C5Rnp%1r^f}-YkU|j;^W8{dGwArp&y0d7ohFQ zH|y#B$oHG>S1ODDJUy5I{8-Y_CDV?3m@o{`@$tzJI}yg2CI`?jeqW@cp-^&daB>+_-Z z7$i||5eIK**A+hUOElnV(!d7eD@LfWs*GH?h(jX(8OWg=b`c%QOaMa}4SlaTF`Ty~ z!wxNQ-IYf1TNLC>FpB`uPAr5gFMs=j3Qstt!|{euR;3^ldGAevY`hxwzz)5OOb|1% zO%~kc+{7WJw8E_p%Z3uv!Ec9ydv51HSW2?hUS&XD!E-;t&70}Aa;@kb3y}Sqdc5Wo zbOSG{7h52Jk&6BXW_ZJ?yIaXj@h#PJAW_}7xGB=K5T^8co{RC=nmpt;yNOj@A_;Cp zeLZlJl=X|KfMxrHKIi_g5I^YV3;%1zXFF5M_!V}bsB~s7?eJVoB`5RmocW#Pt=4)tX+<|&C z{Y~+o4hG7yLkLyuip@yUE2&Ak4#N|FCJ=jvdyrFBhBNh~liF;zmK~gPi0<=`K|hcz zRek=r)j|~c5MCo&3!+?^E_&2c=JY$1smvcD#x2<*tTf_DHo9f`N6<=7X=}>)u{XG< zkb;KeAUNz1EKml|b5VI)(@2z1jFjj07dg|Pf`qr%uqhVjkmN1vJ0af?kS}FC=TfHS zef0gKb-|(Wj?y`73OlB;@ly*AJFLaoL}A|T`~D?>1@(TLG-CPX#0ncL?q^$8VnLu| zP?g2m>gtRf-+cN$KS%KVJSEGk$;7-tj_C~-wBnSP2bsWoiuujo+RIUNuTgLAmaqq0 zn*Y?g8qj_5zvn-*$bZkYz9aK-ZCeKGo!_@<0dw^2=TUp-$r&gDRL@hQ_ib=b`8PQD z-rc1uYkch0$DRA%pHhe0S@E8D&ixH=3dbN5?tXH3?PlTVs@{LAlyXI1SZn%PpF>)Z zySC0_MScOTn%&-G5cm0jQm}mxs)Lniy}Wh?9Mm(3x66}?LGD|ZVWa~^5tY>7yzq%J z9s_N9=u4vV0xOFwhl>2C>y#fB1=8?T!@AGCr4^AlDk{2uVca}mwkOK~{z5UIG)%-YBh|=55P)#D*j})Ph$;ib&AL~|VqY9d6O}7gnkHJSvFJG+ zkCln3JvcDq;65*m-u(00z@NdmS6^x%3sJ5ay81HvFz`jM&e0(yIkeK zG77^)zKzDhSh?qQgc;dr=4sa>w8!$^W$N=`foF%RmjrDS5d*t zR!3We>gaqPpruJX%3zbn?bhK{ivTW;dbmm7wtvQtk?_yf!7x03VGlGbUB<9zXmH@W(NU-b9 z!njMNlw0C++vI1$$b5lR+f8Z)9|nkq#7XZ+-*0J8fIi|Wl8i3#W`#XMQ92`SEf}W& z&@K=@JH5g1hpTpM7nX|5DntDa%1tQ66_|E~$OhVBHB^iYB^4Y6!^)At=wNKtN$o@9 ze0qcI5xZ><5=&D=qvr``pIp-~GE*Mek4Y>QwsZ87-dxweYNJyK74=wv!^!|&U5Vy~ z8bYb!PYN2{-AQUowItCrdCd(Fuomh_R>tj0Tz|F3kI8w{&w4SJAad0cgsPf|I!dm& zemg|Wd>Jn9!bwQy=SIPh(;Yhg(Sww+_}PdLj7IQbHL&a+nxY0K)~_*&HHVXFFJ=!f zd=Eqr!jfhyfyPBd^=jAQKt`5(@s?eqlzJ1EfJ&CdNVftVi*or^&LS@YY3CH+D#{qU zzh&C0oQFi1sZ`P8qz*2&1*gMQ1feX{5gPuKRZ;I1|G8e?AmO55d>Jk^m>`O}6AAcB zCZo;4Iq@!_tw2Ula0x&|hKoc4JI7Oj2AG#?ORiH-kVr=6w4h>9TJZc0ximK3n&BTe z@)K;2>EvV-YeFAv#gxu#X35Ui9l1*X@7NtL6RXCVrBq3|zirO!Hs?7w+*QX4{(VVT za=qG=`-D3#W+c-c^_j->`Jn3dfP8dOS#K>U`4X?Vdur|*udn-=>&g51x76>yQ8xcT zlIanv0?&U|QL_4(_0fOi9W?`l@#dY@Wqy14ELhhc;rR?J^*d$p`zXPjd1F3~y1W8k z0CA@q^B$`3nbUqD5j%(zqRkOAs`kt1UzjBMQBxDT>12`o5N}zJDa&o_?Vvq@(wzJoI2v*P{brpwBTX(W?yulk=*E zP{RuHy!GXih*<)Yz;J0mT2jtPlE47lAp6e+U;P+rm9gU5p0V&;a18Tnzl;q{+mz-p z30%!b06nU8$eld7>tt#23$%Q&Lm?0~0Uc_7>ZvO+lCaXIB*Lq)EJ`ZG$&b&ZYz}5X zD)}LN=N&xA4$Fm=vKFf6DZtsUSy6UA5E)Zy+gMUXjQV(m=!~N`rMZPNnjdBrqn_8( z;L*ipY{ZAXWg~OGNe^swsnB|08w_G=Os`cyP8=@hy2P~rx7>y#k_lt8si)m|4o;5Z z)1DH7<^kocU2V81HC}gG7LfTJBTE*-bJ&o5WmdEB(28&zkIfdPA6Ut$oqzpdIgrCN zwOY$Ik}PA*&9%}evRFh1VI^U5lg3BUQ04(ID=IWG?~r3aWd1N9ycCDH#}bJ^Pch#V z4q+%?sDqRF>Ycp^qE<*QY`dd(Ko%$IQa7|5(IN@N<|E-v_aDaMVcD8^)?o**}_U2Ew*+WxvdWQ+IUB*glJH`f*D-FF1Ou?cz~9`^lgeQT_i z)wpHUf9J>aH~t)H1O*4a6A0@~PrbG8g;8@sets}AX7_>%K-ny(tbsf|`Y#ijEh}TU zuC?CyaF`4mpmEdEqs?9XEjrcTWBXQ;C-*cISsW*mZcIv&mAs_25i$Hu_}jdu0grrF z$6}t4`&)e5l1p*^q%*XL7~1Pl9n(;nsLKKo-U?L)#V-t(O(g|<%ie*I1Pw?_^}_71 zE&$QQn&3Z7Uvn|4#B%aVtA9a$|JLA_PvJ<(M9^5c#Ze3lN_>SnEId{%V@~mE3=49J zvTb$oUR^7SG-KioT97Sr(oP~DoA5|j+k^^L0xkXs^bv9P0H+5B!E;)bp`PMNo_-0j z>~%{C^AAc3H?_pkLVo&GlgEqNP%+C8sS*yxJnXv%J`I(*#g(x;Xv3OG#ODw^YF$9T ztoY!*9?S5V*)0?EugmIqsb}PZ8^YD<8&)A%wb!~x!V-TxNV->?t9+}u4)CC^Rs}PB z{}3gw!IcH32x&#el4*-4YCtHUH&psrFmkl@k+6W0RF~pJRmB}^$~wO&f9+JxR{PTA zahW9i^v{{1rjW~oQ8&|Su79RT2LuE3wmMA#q^HTmfn(e(AQiW!!Eg85GFdn?$RSq$ zr+EcM0UAdZO<1(B6qdX0&KS9b$OeSZ#`981#tkex__v0#y!>Rm*oWM!@q-!f#p4i! zy*M%p^`b4pqtv1uuNIR9;b_?wsZ5zAlE`tgX~bwEIcQ!9<;KHgPK1c(b0*5jKa7Wl z0;3$t{^DQ$;iJNIu(3p^cE#Z^j+~&LG#Js2w(DvbPTC!p4I^`o%2(ivd_esm5@Poz z$k>FW%y}ha=-O?~@jn~)xlB)Yy88Oy`+EP|YOCJkx~p!#`?THTA0B&}mXF|YA?ZI2 zavC3|Fm6vHdA{TbxSMSu0e|#(aB=3m*)jOMRJOmDE3WRf{Fj16&AW5_X7_%xEhyr& zlvtSiaK7E|eDdno;xe_%xiQfgSetVzGyT<~KdaliZESw3uh)R%*youuo_+M5$xV0} zhHJM2^6nSwGBkon>xjHlwLKsU|1C)DN{jcsFxGV(M$d5=fLRy3-GsD+QeM?G3c21w z%OJ--2Z6^PqNi!(N=fDd0SjALunT@@&$c`g{>LRS3Kz}Y3`%WEq@_A}8wcF@D9w}3 zgqpfEfym;65~qJJ$SKHu*uAn|Ou+SpJ*aY1vN zSo>o92H!5fP!W--h#coGn)n}Sj3N1`(Xo<<>Cd9x~jndCh`Qqi9MJ+Q7GFGgL<&sfIEU766KZNt?(+b{>}&u~R?ViJDv< zeTk|HMT^z~&%#lL)xlnfDbpoVlx^2I`e*w9)}Y1wsK74SV1+`y1B6tN?Y)+=I8CXT zGDec9>wpfkusUT<-2rh;9v5D^Y=dxcU6cc?Trn)k5v>x*(|F2&7tlz{T}|U{!uLZc zBZ)i*y^0w?yd%IFq>{!4!_+=>nDkfzXds87By0bcDr7)h8DJ%9IyHGRflJ?!N*XgL z2FRo_naehRR*+O$mczrn`MoIFP^MzuzlW18pBg0>G3-@52A7WzaKD9n%*2JGF;6E$ z52DgNzvPC4Rwfg~SsRJHwjd#p;Js3o`)y3UtWDOlTCh+#i3?9Anj;eSxp#N3#_WGYlkgdNSKbilErs01=nbS8)c(V#h zrC(Jl(q4VvF>(P%d z=cg#kTwh0^cR!fSUU{9`PyNh|%%Zd<|i6R{F`)$BfG2tVyJvE{0K@1_vgGphJmnhL_TS5|N95w%y> zygP%&E~M)xkVf~b2ksAy*Cl2hW`96Km%euwifWh~(N1$I>QrHH@sn!wmi1*Q6=l0E zJ(P7b71wJeKElllOL7=EI@YhGN#j_?AR}v{<~4t9vdN7Rj$+p9A=MieO^o5&4us>B z6~~ORi*VV1m+D$mh#pE74b^awPv4 z-Qeg5Inv6kI)nMCm)1tr2ML?_HleDwl%bUfFLj$l={o=$1S3v?k0qQW9V8Rx3YJWJ zD<({%>?+>XKY1d9`)l`4(?NYPKikKqt5?h)bzo=Y2(Nt3#|$~>4-%gAUK0@O77-c9 zlD@WI4h7@S;Y9fZGFyp*@*5cQCL9HFQVDxZmLCp-i9E+t@77&uo1BQjocyK#53dzd zuH6R4>!MFVhsn3vW6IF4_l*z1nbjvfhybq&f7@MEd((Z~mTfUXLM-mbW8LRlP3L`M z=zIRV;)R!&^y$4c@0s1(Qi4f@%v!Xby{nkXXy?v@*~#|jwV<3SGAT&MRe~7b7Yhc+ zPnkj1_}AWz+d$lx-uzb*d#zrZ&Zp+*K+%kxXINu##hiAdX^5kvZ2Kd@&wWAAxYDPI z`FUjj83rm%vFk+a>FkFIJiq6cZp8jjx^TIZIdRHl@C-ct;ZbewY0~lWi^tMf#T4>P|O*hTtx%? z+CI+dR9DxmUD#}7r5mg%*a<58t_*`i8ihL&5vdGt|9$f&i-sD^94QNJ6d@sxwv5F- zG(=8iV1fz>X{y|Ujb)aRnWtynJ;{CiG}_);;gu1n?S)ZCsCQS?dA8Jjtl_%pEpYro zCymGzr%KsWK+DOjWH_L;h-#b+bn#W1a=!5xeY;d-_GrP5}S1Ohu zB8g4Fh!Gk}vJg?ps>AA?_2;SEYtH2@Q4ca$qAwb+YHLj}KjzX9F%-w2vV7$T)YtsC zl+qqg{*6xy_n;$?l*{y5AWv6EQoLBrRECP~dzw6tfip*6?&YD+%VTN6;>SA{SS_*A zrMPMaxbk3aZ|tDnGwIdaW8?0I{%vmUC(PX9Rl9%J*I!sf{b7J{>Pnt z+LXQ4>H1$KnfcDAxcUf<9VSLfxiB* zQ!=*`Q=07yIX)DUa_^5;xymUjJ9m>ne7`*o*hta|Ui_8b8nmS0BjBlRjnWLImt^FN z^b=8-$AQubPK5}lV0mDJ%B%_e#CMs(VT*3wr@7UCWDoExzM6bor*|`atn&IkP8ygg zzSH2HdJks;QzTugFI~w16r&iS*QE|*29&e&q@47v_C@=M#5Tw2r5?MVIt3u)@HfB+ zA#w3~8$)OpVPRQaH?X%}^M15CW&9|-z6rg%`nCJF-pL`XGngh8J*h{YTx}901(Kx_ z+#>H^b+pl68aFbq68%&Q?GxRFOD$c&1z6{5#x|em;;Mej6e0YbfVZc8#xcC2J&n_m z`c+Awz)y{e^fSpXQckpr(gJ}uy@?Jmg-;;`1;5m)wawM(N4xPA{o;RhW)=%hywqr7 zD$7E2;;pp5%o6e)RcgR1Y8DwuCMfIN#gjXsZlJvj{YfH5oE_C9$MBs+LkbEAn95=? zlaDTMXK7Aj9lsGDsh^V&smx?1C|7@{(H?oCh(BJErybMD+ppFBK2Ri!*hatfS(^^u zn`xR4G=o4W5z8UX(pZm|u zo&MK6XYB3#>(+}O_WZUNge>_^JnykP|Li3k^O67Ll2?C}&;9K0dEXu!cb5UoyWjn8 z-uT8ha`VkMbH*8Gbim4%EnB$q$}9Qwr$7Ce&w(lOK!nc4>q$-_v-yRnD5KqDNt)Xv zTSN|Kih#;_lkcKz9waFQHdG|T0TWM>B*O+(cNDVMo_qs$)|O&6YbSE-rH^Snuj3$R zo0ydqXZtJ#LK}j)6p>l{W`;N2at>S72(-I6BSdF^Ch{>QuQQ>y(%BqK?d+D5sw5lj z$7{z}V;p$N=~W^K95B%mqOb$d%s@E@H+hGrogvZ;(T=+UehOMyK9(%&cCKvxo*V02 z*NXBycLOV^digd;y5X8qb$+%|LBoYRiJBsq4)CKOr}FuTPG>81=T?{!6t>k$F6O}O zq~3b|Yxc`=b``ulT0QaX75g*?W_Ll%tIpoJFG9d%_Efy9m_8q6A65Ph;F;b}i^tEj(q(S{_-Z7#*qcj>E6y z%<@M1WQat}6WeP9k;<^jxsxRW9>GjTIHxh5Aee<#rnqU#DwMR01#`6R29EV-iG-wK zU9L&nN|XSFB__ic615Yppf42V9CeJy28Rw$@yp3FS=A5^NQCxCD}uDo0kYbmpjWmK z(qdDI@(p2_qLjf}K^%J>U60LNASMC`4e=Q0KoQJHRFbnC1X$_i*44S8Lb2YJS)_Kh z{W8}1wr-J9He&o*Kw1fi9?I}qin&@D9YMR_@N=`0Urmlt4pKrdV_UsKJ9c!PH1@Ds zAbjJ_Lkpy5Nd^txz#=Vqf7j?|Z{u6QyvOrxled1GpN+k6 zugAEvy5X8|hmQ}x{x+v+S@&+9@W~VT*AHI-z`p{#$e9eB_R}7V=Ou9RX|vqRkNDn$ zpX9e!{`Ec?Z~xV!%rODHobU3?N9@8B;N`nFeT+Xm{371>a=0q`5&i6*5!fyRm^Z)q z%`926go`e^h)XZM6rE4bl~SB^(n);obD!fCuh=!$goC+6W)O{5SN~#7SD;^LHp1}X z^d_@id$`DW3H&Y{D)6y^hY1u}UqE|Mk*rQwy?m0?NDl3v;@9+~( zjKyym;?W3iYv3mP5^QQ*Mh!UkuD&v+9MWD^CapNCn2JqjHPLHZm;cfW<_Eq;~Pk_tbbYJ#0z$xmHfXj}yIgnsx5wt8o2?%B#CCPZX_NC~CJJT_Y z5=bi%#)V+5cx$*Pr;Jb&4ptPZwuLg>KD_IWLJ z)8>};N;cK|@nvG%XNa5EtI*@=OnF&dPj3n{6tGSe_Y*P`A+m)a?KbI+tW#-q; z-N_PsYk1C*Uvb;|<<3^w7qmtM?NR5R7LQn1;%-pG0}W0d+rSZ}tqgm0B9WqVSFf5b z@lZ0r&!$&#|Ku=9+ry*^lqDO~v`0L2sE{f6EsIeSzitR>xfV2W3y6L#MJC;QgtL_P zky+4j#PnKjK`@v}h^7OYV;;?=l6Kn1Y+#uV4c>rzPjn`c$~w1B1yberHUUCdbTy;3 zbWsDdKkMah{B15s&*8GuYaGrM3%c)1p7pn!cJDXflo#@`Q`Wi;$9|{+yu9}*Pvg{^ zpUSDPx{*`4ahG4e^(SG+K6+nN(J`81g5#g}7H&P|UwPtbv-}_5=U<=xD*oZuZ{Q=} zzlGPY{U#s2@E2S-{zUk*-{o&!@fvQxb(Q9_8Y{0kY?qF=TO|KizVem4@|CY7O;fgQ z+XldrB}?#&3GHLNtPqG+jBV#L{bC~9aTDut-6}wdkR4r+wH6^|7rYc8M@pwx@fEt{ zv*l?OvJ%J))~?#ZiNg;vla?@6a?SmR(YMuhfQyyFX-Kqj+8593=t)GT@#hlap&U>N z$FG*n1k%jud3?`N5WuYhb^S0j1pe0r(zzNk5I% z6=dpezJA@foPtkcqT$DFp>Wgh@tU6GN9(CY?x zf&-6*6IrpXRCG-ix+Vg`Q_cXO*j8(-v549F!vLr7JghJs`k3%MM6kGGwzE2zv@g2? zUUmjj7K;A$NL`p+0WLdx-GT1NEY_ZvilMT_U6-+gjZyseMf7O z`C5vVE|gbTOIne{V{U(@?(?)K-orbVeV?QJIPbbdI|LCL%TH>DGqGuq!G{FpEeUDW zxk0M7qZ+HWN3hi+8&)KZfNM7%%62JT$~_N_Vp<;c!!rC?MR}83JVOYlu}N*7$K#wgWt@QlQ&R3e zmm4g^BOzW>qa&H;>nMWBHeqJ4G6L&S+UkI3(2z7o%d|%=dcc7c6>5Yqm`q}|aKX}m z@D1tkqAmYI)+14@Ub5`Hto!9RIpb;HfNOVezlRL{h^sDn`3`-!`mY}4n)H8dIpNsnIWz0$OkN4VkE;Xx(ZBwRE6;m? zGrsq3KJ$m)!dvw*J_n@jI$X1B$Jis4vhVvWTefUZUV2cMNHc6R&h2{z(BpVjtnPP2 zcBe}1(gq4*UPF%5(UydH#)s3W? z3vd*|?KcmVL<&e#ye+dNgJZ4>lj}!J=p%D0Xq0ei^GcyBz6+D|q!TWBZspJTuHCLf ziAoK!Zm`lvWESfQOkaSU?h);K3O!O~c5NS0<9Nt|jvyW-oF#KxcXC^-6bNHUt3J&& z{RA@+{^nVCekKPFMZ-gNR}klQNIb6#UX;YOglyg|$*o6)%tI&*Hly3U338BaEH+8I zh5)(Uv$Ylx2AGk4bYDo?=g|&Q*!K(bkGXn0g;?(E&dZ*Hm+fD_2xK06Ro-GKZAnN5 zd~_sGZFfDjxy8Or-8D$02Cu0J>XM|-QK}GNe3w_{HM7pblWYs*aE9>>PwL;mQGU#j zDnH^lnnrWw`XlkCbGOCWHY#>{94iIhT${d!e2nkWI6@Ls654H_t+J1{@zDqrhH{Ro zeBqq8B(mdBwzEpDre-V}!PcxwB}mw&1zFi*N(MhlQOcq-$@0EgUNmwGOVum`GG&b z+afZ9?h8or!XEWb`b|&Q&Y(-SxJ(X-2z`}n?YEKRgfwL zQHGQTV901C0^&?DJF`dAt;O1d`ux%F;PBV%ft43<)g>=~#OMFxU%p2;b}sKY z<8A!omG9&aZ}{6iI?kijHJ5*bH81Ms&YZbMkUrsg3$pKX&wF4&_Or9v9$3a(&ja9p z5C3;2zj-Nt^LMxKyTkuUg_C&E6|1>C zFoS)xmQ}D4bl@@wbl$CyvF@BF#-eI5-b@Rx79-m!{%nHr1+zz#NLLJY&#Ta% zhrMn`XtDNNEtKwMNA<+BSL|28{oaC?#d>U4P;^3OougzkMObGFUMbE$5jUJgwdbZkq=JbZ<@xNY&ptw zW+-iL(f>e(cUuL3(ZM=_r0_Qd+j5Culp6F;jWt<^0Lss#qukdIs3D70!T+3pE z-!$}XN(pBzX-Sd{`eYTaV}I?}U3j!gEh@37*y)OFB_jyjy~ztStH-7|b=f+O8QF}l zH0Z^S{zBHyx-WC5Pw=X%ujb119L{^@^LJ~X_kMAl{;NkHQ9QqWop!@_cIz0sTCcgr ziEYkYBY4pjtGRY&;j}Bi|Amh%*uHkB=1!mBwBtU=_=8=&{5#Hg+aB+4m#1h~TyX_Y zed<&B>Q}$Y-~avJbM(4)x0GKA+RM z=)G_k+vSultP^YkSSe`_2c%WY_17KCKRERvOou*5=+vT z2dYVl(9X_N7HRc)*)X8Fs)`8&;jE!Fk>NKD;jE*N>9R*w@^Y(a2c)bJPWMv{F`>e5 zXuOuCz9K{~>F;W4gy?oxjCHPXcDoz26nS1uFPO`JPP1;vsFJy>oLfEX&77I1bs4M@ zAGwsqA$`RC3Kd(tw$uOk^+nsu#oDu4Xz;QKh8}w*w57GgBMXJ=W(yop5rQmoLUWUM zL3HGtAj3I}UkAT#QL(`amkl<1Sc%zVGwc$#I%$pIeUzyn^i zwUVZVipV&*vW`-<4W1z$1RV;}vP1{c(f3S#FE-A7GagW6B}Z?zLO4BA>Vh=AMn>hq z7GB#K4p`;xnOR98j3t({U6J@0uB zzx%tt%lE$by*)noL03hGqv)a(|A#JhtFx``XY_4MP;HGa`(*tQ?a{yq^TC0UQb;z^ zhxI_U4Z&v z+XaFhVZZEl!aB}n`R{>0-&(oox)h(G=XIVJfsYxi(l~kv&9T5`4YUnG&8?_~+Y(f~ zDB@qNgQpHQ5EFdl1cHy8fPdkE34J@*%bA(DMIv&Ft)uQb4SW`L%|>A^IxVQt0$I z#yO!`Pa@+Cl~_t!B(rm_6SHn^grChF!lrD1W}Y^`GwPVOX5K&3(aZ=&WyaCLLktEj zgcb;CQJx{o6qO+12?LuLRL(V0_H=f-|DMGi^+uyz?H z!joN1Oiv(V*Amz|w=c*kXV$rQl_Kz+ubEj4vonq^MXsy-)5Iq#7wCt$q2|wpcr;FaK6;w`gR0;y$*&T*n@7 z6@27`13iStRH=4GY08jA-HCJ&o+vVd_1%I_p}&xs#Y&0abQAw9QfOablymA*p1~N& zSbv@41|Fhj0_vuXFVs9Lm%-As2~DH^7cUTF-J-qukNgbZKcir)^7|7FD4r16o+hfRDmp7?zrsFZn4GaUZu$9YR`` z?tR1Ea}*#_4W4v?%@%^${C!t+0E|@v9XV~JiZxzaA!CiNEw&{vfun1?4jN=*Dbl#{ z9%g@$f6Z89U_th|%K#<}LuO`X<~{c6SHBu5 zC9iztEBV;RKDHnOI*?_x0nbf{g%G*>mFZ@>_?{D*OW`^o9S5wQeI#j~LZ7)wbSKDC zgYfBlpiTI>2rT$Dx8kJQHRl|bX+)7iUvwYHh3v(|UgLi5)#~Kqlan))l%TPuieJko z{X#gmmB?{;5f-nNArnb5(A9Y)10H@|*#y-{Tp*?r zNMn(SM^Jb6$-1Plp2TZp`Hj&aQwMmglFsccZ|?)NmzJq)_PZS}Asyf-oY#u(mXgjS zK`GY}O0&+-g8cI;^g`Cob5#c1d*yiu-zOU%AgL-xk%PQD4%XV+ z(8@&+vum{oTK1x>6Mh#fVYaxA>0**B5f(&Z+;vvFu7OHyhw>E8YOEBfRFGPMNhR7y zmWH!5Y`{HfhQ^|C!tps1aa(&8H_aZxgY`isu3N_FU535~T6mKUH;%yX=7Htim$c6# zNL{zVZyCmJvTXMH*mAU`mHPa=d2)ujCb zzX`%RhJes{=1%0MJ>i^Nh!fW3#1vKJ^dJSYl@ZS5R{ho@w9AkYIU^z~gNibIU$cB@ zmUEW<3}0vt54JL_np8waBr;AMdXR_u4&B2)q{Z5u`tIxB&b$2G*HzTdSq87)z1O^U z{l75$?c0ExdDhwIaLwfl2b$i{Je4OL_kWC>@PEL*0WfQWZ^N!@=J&WRTk}S~`uqpD za=qpEzp!xUvdaMG#1l{C>Z`Bjq?6`z=3e!xS7EK?yz|c6$txc_C6w$=o&izZczW!M zo&H43)5ZuP@{UcOVZk*8sh+F(3Myu`<^Wu*NcL8Qpio*>P|+AsA;-Iu)uE!)>Zf|y=&fPG2z zTC`Svj8!L#3YQO(IZb14jEb<Y+v zjsY2vqS>Z3*R|I0^(`lJ`vc368zX{Q!RQ?seRoa6)=9V67KJWQICaO!s?LJndQPt> zGt zqqYp)@DPDPN<+0AGgxXd>eU#LG3DHv*_i`$J31Y60BevavfQpx<=doaYPrq+u*`UB z`Ccv?d@Au!h4MoVFv`s7eN3S8PP=n>>-`Km-7(|-Z>2z5keMMXxmW<18nQk`QjrJ) zS;Z1XDJutOc-qK%o?g0-vdkEkZhXG*sLG6IRe#M5rKS7gFKn^4s~;@4eC)!H^R5ea z4a5|}{oMsGMNNJ7c)l@oHhus4HLe-nvwiHShIkokZ(q;Yt9Cu-Wl!pn?5G#2-q1Xi zFaO6@W}ml!ZxFkof%%g^`4cv7-0{u++;h+6bD#Sh&wlo^ckAFk`q7Vg(TiTh^5x4B zLU8%zm(P3NTFd+2|9+M&TSlo=;w*Gp65UYIn}Ii>&ivs)>FhQ2ADW8qPfBntZa}BIRj#mVDuC z*8AS7W`=BMuEUWU{F)Q<>p+kWm%HaFmFsqO3=!l!{Yvq;$TdND-aPANaG=u``WIt6 zpIwpDV|)jm+``0p@YNr@}T>k?4x=#>e#+;C@Y-F_NP19V(ptc z7{4c0x_?r;>!R1n+;us#cukE}kd+n27l=HIOQsqXyDXCCs7LJ(L2Gr2){?=Y2Cp2x zktc->mZ%b;@Q8#*S-|1JRwS1G8%nJCZky%Tw&=TK8%#_&>-fAxJ8}03rAYhz-26q7 zRXnm%ZYUrjoY4&2sYs_oZr{9&YbMw7v(_4ZnJi^O2TW+m{h7~wna8HgGHViMO+wSA zG_9s>4Gkl?J6Xzo@fg3@vK%~%@C;HJR#ay>Ztx+hvYlHsiw+%bM^ylsB6$Xw=fc*s zf?1<5NPJ&o0!vn=6VhCm*knVDUGI>8|`f^TrmUB(L;;)~)*ZZ61>wJDnGj`#J_j+FkLp|Y>4LQ~QmCEJy1G#Z?6!U_D-KmF4Vpa1ZOKg`EJ{&7C} z$xm|QjW<%MR5&T@(r&ZTg3GbhROk;h|QP3=Tri;s{DgJtFE<*JhnsCMvO&OvoO=WY6 zS92DivYjDX?j~wNMOJYgEw5z=>J}3!=SEg^NqU9*&=unsU8mgTtRvJfa$Uf6YCO+< z9t998ewPv(1-YH6qt0a&k9fSCX9eKIvymk3KRA4p54!Kk0@thmuewj|lNakZqYlRJ ziA>yLkxY#<1<{t)SU_vk$Dd0PI@crSnOjg?AARBhMSZ29wIajoOHs=3%;op7)^AZ3 z0jbp;T2)yp*7_}8xBNPiLGm1~3{h{o>tVTsC`ay|m3N_SORuc-6PXJ*KNtligX~Ly(GYd`2tvee{n_z476By@;0r}0JVuq_tifCM`0r?;>tOt@>}`#H_BQVQ z;y3_To&V^LxCPi*$oj1{&*qlD+dEgX&rfNd@W}?hJN%yuG^)pM9ndA_v(7q;v(7qe zhtFAS`Nx0!N8b0o_wnKvzZihaF1w8J@o_G{{BmCPs#kI6op4q@o19BiH(QYZGpl}H%>=$8f*PDk<0_bYU z^id_Io|SO&5$m~W@Cf8k%u^4!pBwL6!_v`N0;Oqxbd=J%IJZr96f&V@w}W79uC>W6 zgNrd00{5Z|Qy2*t4OY1B(Z)8>WQ1NigpNFPEK@Hz`wRzX$~w3H+(IkOexyKa2aClMJ$TO?+x zMEwxOFZ|_9#C?o}4W3+mfHmbwd{GGPA<7q$8rF~?`T5K$CTIGPr3^372w^#Da0^c= zt!ITd$FS7&<&%AhcvzkcbjADyxal==_JzO`ihe-T`Gvsx!rj+0_t|-kjG*oo`lPl5Gm1F#cqkpB9X-$iVB6E) z`h?F)Z*I5#e)eS@Y~Pig)vnN+e(=NR^4V)H=2KrB+hg~!g{Wej|IW?a{idsVPU*>{ zU-(z9dD)3P>+84d(mtm7I)}aSgTOm^!Y3Q>s(m-!qAs}Z-TVF^`=}0%CFUK}x^?T= zym>RveeQERj|~hA@U*8rjT>&b0e~BBxPigJ!Oj;5;JMFzE>cQvym8NYgEmRKIV43H z+of$u(FGEPoiB9x&emd;q`5p|>O{lQhde~2Qq~^5k>gi9#G3LXb~a%8nx(A2ciag% z_~g#!J>8k(Cv#;oK?57s%L>^a-+jyLdE0 z7-vUmA`epzNc#iQeji~heqE47IUhOIuIuCn-RzdaCb`hO^n$eBE==*cX-y~Ov#`MK z&G4}n8z*2a;bc1x;uIYrr;42$O|JXj^BW7#e;*V%53O5#-sRNQsAT#fnT(I0ZC7wvF@ z4=%J4AULGX>|xSfoBKjcCF~0K13$O-cXstfH^B<<+Lmy}A~l%MQH*5<)Jjh4O# zEx{(A$!%4BwP~Dd?mdFf-2DvxZqr%(!{+DlrJ1MlU-e`7_u5)MHu*IE^nn-i?z>*W zFV?R>-dn;>h3HHn1S}2bINYCRxw4d{>gZl}c5dK6O!2%gROep-Wek?o!kDU23Q~j- zgwqhzwL7<2?KF>xqgIQ|=JYX}+bp{UxQT8~L_Bl)(_X5s+?mGc^@7X)*GOWd=0lxklKDd7H@AqH=g^xvN%ZiZm8 zg$;b?K-QD};wVtQn@49E=$>&DAc`KLd(ULuTI;$(h4^0z*HM{FP;+&pwFJK3p`BT6 z5K)M2wH#0|&aund;^u2}funWykzpR_)i8KX)5#QwW}J9m7Wp zg|mieT9Z^2X;~m*-IM8(gOx&Clp7>;K%AocbH^rGI7hPL`JyXT*j~Fo4n(duk~0lT z6F#j`m%{ANIimru0qqeFJb`K-{0QcNeNTQv>o*OwB!716I|$J_CvjFQ!_fO=xG}7gycx~stm1S;GN2Ug^Z4frs=Oj?QU(iTH ztO_v|Lwy{69=4s(Ck*Ln+(t9ok?P~FMwXeP_`|5u3tCzl%D=#^X z=->W*w_bPe7sp{A3D{eMBlPD#f8_$#Njg6VG2gu8CdPjMI{<9`!VCCv`ky@U+}pYD zUv8#9>xZl15__Gq_~=1sQaQ zUGY2NzQrPrjwGsW7`!)Q_)fPlWQFMHF|6m3;dNwP!#U6_9iHQ512<6;t~0HzVb-*` zH?6ZSt#fbI;=k&L^Y=HM$**r&O*pA2Z4m@>xn9H*=#q~q`Ix{%R|2w%?`Xk}d4@_r z`+~IOC~j#bx7k+$og1F`4MS^znT4>AP>ud-!X%>~r_6-g?~!y65}M!S}QE3oqcd zmwk|PrY~phrFU~?*57&ls!LuDz;$1J+I}0~zOI{I`X&H2pSW<^qk|T}EM4j>2e)jQ z&uQGUWlQI|rAwExb?er7&u3Z2)YMdGn;q4k|M{OYJ3HI?w_(Eu_k^)sphDi+fO!rs zoyk4qZdpOsqPGAwaY8VYG2JXNk@R7IHo(|V4dXx2EW19Te|_e>=2L^Lx11|XlDf>9 zLcE@9YHYhl#Gj<|MeE>>S9FbZ4uJBp*j~L%LBlHkS%auIv5jVaP6cQ&-L6HkdX#C@ zY}<)UbDppX9Jg4P93NO{sIG70*HX8tsGZZ82^BhYcA&|CM-~eFy1{E|bl|KgD-WfJ zMyvA~6gfP-_Q@R(lG|3h_g{4BVx7-Vcfn1M`ZKJ$cyH?4c-Fl#hu-A1Uz9(tfqqRg54+__P&b5b~>?uVz z0Ul6^%O&yJ2GtV9S`M?Vh+o7j$k1qOxHoHY!RBZ4@>^fe#oJEfvgxPu;a@zT=*|)Y zcL_#s$r$@-gC#$mBHG-@%>s-IU-YHBCI^L%15^q!bz_MKB=LwKtq9VRB#Q*rqa$7y zrrW7eZHTsdFy~`xKDOl{S_<1%$Vs2dgM!LNOL~&capEaS@$=?wm~^ zu%ZiQj4vGc$t+&m5Kc-wUy~WhCM}3<+8JAshcjg|?n?)E`+N^X?W^y~zPg`$?yRG^ zeEr*8j>|4o;XXF;`r{Ym_`6d5SC4XL*3VZiIF8$1_Ca3vfmM8K>Lt8?+2uRket*@L zW1hj>=@a|qSfBgL4Seg0g`<+~Hh|Gu^V!dSmRG;})japP&*eGKdCt6l3sr|6dMHbm zF6GKAuk1WFH#f(PH{Qr8rM~%u!InM3{$3yf^T16o-6p+uglq0NlFBBFU)O|_F)A@GeLj?^+?9(S zfMm77wqpk@if%#yY6|@abi+1tU5-sNtkwvn9EgEVYCYh#ndfenIJ#H?S^yD6U2tY| zD`#!6?KUz880`^7Jmk?B?}lJnC1{N}p})yNiH;N|l;}v340_a81hfZTaHI(YBFj54 z7Q!v{?)#Z{nmXE^qHClLHrMpvd)>^QV&zgBr-6a_c`&l)z03FMI%Q5LB;yPnxahY|7CR&dXB~*|iPzT1G@k@3XEm>4*LCq)8oy~fizLRA zxeKDBbrm7JCRH?=A)mSbS^PTHv~0qlgqIH8%x|x{lf$D49%>KZ|E!M{S2q~HW}3b` zw&C5i0X9z{8g2aPmUBUC#LjUmHFzy&He;o;ZVqd10&fCHE09Hw`j(YICQctCGmA_t ze$yZ`h-MA__gV(-Pz>LqSn?CaiYsBo|4PPhgrR#<`q#Jdr&@R|gG?>aHjB44AWl7M zI--)B5ft5*U7?TlmJ%-X(pXE=TCQ)dWy8i1gm(MODi-58%j2vpNe2S5YS?l91efzd z9$qPo?FLyE_Q|@SndP64=fIFk41UuP%s|}o*<7n~P4ft*O!lx&QQHbO>%rYRw*yuC z>btV9?k9IV{Rh1MLCca0-}I>47A|E6vWjj?0cdtsS6%XQ9=!5Io?V&Ur{fvF^ZI?d z|K1wA@WWib#9y%e?Y0Ky?QefOpZnbBc;O3Q$nnP?-(3yggR0l-+;h)8o!{53TgNT8 z+`{niFsoOu<{j^N2Os?42U)vzEr%X@C>LCC0n3*!=j^l32H==uj^Vd|`?q<+8{WVt zKlw@0H03RCc?++4)vNZ(1*7P~SgkwB?kI)mb-7Xxzt9#P8vr#`XX%Xro4gX!#~EsC z0-|jJUdvKnCFoygowaaon~V_7C8p4J6#5O7XTckc736nNqfRF0enZh!t)@_2xe01%RI8k-C+H?K_!Ovh>uDvX+_~Tiu7qgYl%V_ zM`6e!@S7GdcCKHI5TRgpR6QMu_decPSaDo4+ppo*6+z;?cZ7iM~_?w+xJ8! zhRPO0d(f@gdrj@MgVrM3hA`K@6n4DE6WBnKR3$pFm{>t7(bi+*#30{Vb|SAGyoqrY z^3<@+Q6tx*fjgVa7+7cUW*iMyq?x0og(0S#o4{oGgxXrXxi%*9k%`92z)^seAPXg` zZBgyq)>(mH2bEa-x}ymf4qd8kFoD2t8oW5ae+UPLuyg{Fg~@4Gz5`3qtRb9IB#FmV z)5cn$BK8Q_#$^NTOO!(^n`1r>^zSm;|5JAwL%xgU# zL=@c`Q8<#hn^Dmf5ylW~m}c4af~`-EsIARN`z5L+$Obf(8;qk(rCGOAVyxS*?V&~G z$F|yZC+j(FtkeCG0?0FLq;%W)o`Wboote(~3#wc1DpAp;*a0vra#_4Bv-DRylBz-_ z7L^!etTD=WfTq?p8F1o#<-kh`qA7QiG@i?TX%9+DQwD$2tTRgpgHAWejV~Wdao$39 zK8vDLHXo3w&U2z;q3m@jb0RkfD9#-q3=nCCOf)K1WRaU_#KS&WB+$vh0bmaH@5$cO zmw&7Fs7_>$mF~;qxgHB*{)6p%A~NGbaeX&&b%J@}ER~IOy|TWWC>!4eikLv4LmW_u zCBg`Z9JT2`?t2o`tIGW0$aSpD@7z`1djxmdBYy3cxmKCLKIh9I7R>GOmlw?jJqcfTB=tlDEaj(gi$lN}#7G3r+ zo?9F;zSHJ3W1b7|9BP8=cQ~p<{6CNdHp^IF&8JF zXX}OUVeG<%*`Khzys2HN<;$1z!yo>TBab|CVMcHe)ZE-00|Nt`G5GsZaD@7Oa-)$PXg zP}SxEncQ5!(c3g43LRkSaWU%^yNf)<-lmxYXSw*lw{tX4SJKmM5_#Ia9q6OIyo&WC zUfsE-wZ;RymcgG*$tq5$nnjY z#aQJ0-+SMWqBB!`UcNWa&8@TVo&eC|dCX zXAdZS>R_qjd$O-;XF%q$2w)aE59VO#zU&OZ*tRCU;I_r@NnXYGT6OM{I&flsA-;>?$z`W~S z@8aT%FXj`U_{3h(#}3L;9-^;;nVRWL{yU=j4sFSHsYQ9`L-@X1^-9u?&7w_GH}Us< zgf;{lVghX_t&7|Qy4i-*t;pCo?$F5QxuE5p9hAhzJx*eUy|Doi_}$DCt>=N4P8UZA zm*tXErrh|FZnvg*oiT`nX?ebR~~9+2or z;599@9JRoB0_{6)b!pmAy>kj?=G;9{>n@-u%9wm5(Sg9ud(vxZZQPhU`8x%ODX4x0 z&?&%J@w-yp&o<2vNrpd{U{r|C9fM>hinnU9_EYr&l>*E>7QqWRz_Cyu=3oFX@Yv|W z989G{g`a3t?76N*9+<1z+KIxIbN51k%sbjyNs>jNT9T|}AQOmG5N%bIH(Q$H9y528 z$SUp{C1a?>dGMs58>nn8Ht_Q-6G1W%;5Q9fN#)l!le?ec08(b~Ybhpl_VJzonaa-n zOjx(*RAi%wtb1{kX`vNy8X8foMOhpGvtU)%>C10|+-R8|h?rJ}4ecSeXrCpdC@GL) z=Z<8KGG?S7qhPflD+Opj zU?3Of%S1a{f85xmw#Zl`Qs-JGJc(A4ct8;k3tG!GGSCFbmlpUhY_aaE9KxTUcP)3Ha139%wav>`KZ7R%-~{@kpS_LKZhSZY@h{)wu?QKT z_{YEI51N(ogY_=!(ao+XX1JD@7hl(XA=;D_Mq3QwL_|>Ye8c zL4AkXB2`HRD3jJb@0J)6L+$F~PB2yQhs7u8{jKu~HNcatl*VM?=k!Qt zbf73rxsG-)li@Wp2Z~~ih*NA7 zTvIucXO-__c)Pr{B1@&9j2SEjLu@lPYxwHy)A;ZEkEb!6gM(Be${AjeQLVJ;k76pm zGqq`?0Tn+X)*cT|4brYTeNbyfhAu0b%Sy-;hVMuTW)nna@_Uyg&=wmitg*x+A?-m$ zJS0i_EjF;7H8elSh+~icoj#tK{xZ)h-$PYurcA)KGi!nC7Uqv@u>iRFqEB%`ycW)d zwW}|G*z*&wKc4^C|HE3)`t03b;L7%C{4hHC(KmjSy7tWxf7|?TUf6_h|5F=qrUq~P z+@Ep*u>3mr`vtt4vHVYU{M76D`k!v)>*t-t%T}MiSI2+ztKY*l51q{?cm~(LIpUfB z)ZVN8?KXfJ9312&FL}vc9rR!=tF@b~o35i3(9x6t-BtcxQF!6x6)2zwyifpyLX+Xb zG110#PLl07vAx{}n75x!cw>=ClXpuB!-07;uw2k?ZLX=w>0|S{Gtd?M7qmCun|JI^ z7fKsP;YyuFv&}O6bzA749iVpPAW2o?wQ}G4K%f%9LfkL$n=Ul0yfq`-R7cL%UFS&% z@I1_Lm25CVhl;H1vSL(hoNs?ABCSAqqL0$%7=Nw?1k z{pbLf;#`VuOn&DPae|tK(1Mi_#uu1H0JB(oS$hg%b_clZ==psKW)?xrE|!3-q)@Rz zH504~owavP2^?gAEj_ZK!O{Nct5zl86jSlg0%}#+K^FjLQ9WM3NzDO?R)# z^SrRO171ue!iLIeJOb&gn?)Whtep)$)>$_TW3j%w_IgcCR#Kh38o!Yt5<}YWsLwKW zi&Y3PD%Xn?r=#fTMntFk@9ddnX7kRE?QG-Mq1{%jn;7Arr=G=~hb-gGqgS(BWgRVy z5(1Oow+w~}9dmzH=G(I;@uMwAuxaZcHgo490>hzewsQK|T^t%tu*#pLU&LqxzA#io zM$Pza)B{{Kcr4d%J(M{0s5e8BC?H+o{F7BXVql#!qsb~NKSviviV!4yiuQ=4x!jVD zr3h(Vkf*RDZ4Z-4uD}0Keip9ehoeVv(!l+!YmM^r2UhOaKfm9UT6^i;2YLwmwEC|e zW$9b5=aqblXWjD*t~p}&UBfOs^`l&H-MjhQ=6@s4J(mA|{;mfyUvQlRGuK?`C}5jj zw}lUR_wMrh{*9rt0r>HUKFSwv+sdoL=kQG0opFu-r{s-ef4bY}1bYBr{_WrXZI2H0 zn5aA-L@3o+(HGm(lfWgq=M!+7rcQgJbCI~#jz`|RvViGLlH%wB-yed8Y@d^KhGnG4SrLjni;{2 zC9V4I24bN-7Lp7F_#~ZEV4Q8&g=1TdZD(ROw(X>`ZL_h}*lKLsW@BrT#!edj^M3!~ z9L&i)d+vKbYp;E+MK($$%!5SYx*(}n^-Yo#taHm zr&9V~X)iR3upk?N_}l|80MKf2MJpKtLrH6e_HzyxrN*v~(5gZFFT{WcLhT86{wsa^ z@^jTxd4&iYYNYYC0<#}SCMpfWf3TvEl1gI0gO6>!cLF<5iK-&)HyP5ws)W8jSS z-4@ylClylIN<TOs*%|;rhwV7UbjWSfY8kO}gs5e^;{S>n~mpd{i>} zWUV9iga7(`w)Li3#nkr$pX2!&Nmv7=_JMlK|LU$c!C)#aXEfaMJrVKqa=Si5?d3S1 z0QfBp&dUwV^(wsW{;!;a$qS1i>}??UY6BZD>I;@pT%E}j+uYt7>U4q;?>(p1{e%JG zA#q?aH8u6iV_hI}zls#m$myx69AV240A|0kw(3u}Or0C1(e4>dPOIe;14)FxIl#5w# z{JOdx%-DNVR8vQ2kaf4KmPqyhtH`m((3P|C72Y*rS}|P7v(fSR)_rl>;)`I`3QN~h zm>xrVk~C#&3AbN6)`?$4kztpwDTsdvdVU~CM5X%XuVo4a0k@g4d{r-G?lUDc@g;}A zmC%jfXdQM)nYx2#^edQV<}!=GS`8iANGYfqwoqn*NTj0D(=MfbPR0+^_VaFeB$+=t zV4>%%l;%-D#Ba)k2+2aIX=7u0;D!`poP@TdQ)f=p1?Lv&mVV%o(?mlr%&cnWSA2E4 z`1^8Z^yB0r?z#OwLUC!tOPWsh_pAXIL?Nm_8K)9{KPYFQ>btub9U(PG^>j-`UrdPuUkkOVWt%_>Q zTHLZMWf8Ji0?xo%NP49;92(L=!C}H9VikOcEb%0~wa_caoh^rQw85?Nnqqyj^Om9S_9m0_ zejo=XeO`Xw$*?>5HYTo87=gd^IT}EBjX*}Q^7wco8{j!N*nKE z7q{~&HVH7na^og%^(4Wg?PJ(74}AV?G>9EHQfe2%&pczaVH2!u!RltEtv3ziq(VwL zXGm4;erl;ZPL^XX)MviFVn)rv=mqkTNtAht)NNbO2)IdX} zjm7YC&NN;LM(E2sj(VH~&skQ1p071ez%nx@`N71OIKEt@i?<_>sp7~x^}!h0e{PY5 z^=FfpZfjg%4!oqt8IX#@BH6*!>5j4Ddj#qyhyFhyHctid;`ocM*Lh+VL1#PQ`q zQsO)5HwJapxEzkzRMHz)G}^8QR`??I!F16@DviZ})jti5^_=c>O92Y}-|{*OAdc>U`EbowlAYTt8fO_M_1d_7m74f4#)?|Lj%IA?H15a8wW`2 z$(r4!3^j#QRrp6K)(#H21ujy}cUP$-thQRy`b&_@?8)!l>|W5-TOjt^$;^7E`IoYNV@^ImD#_j4~ycaE@UB zIBT{jQ7;(PV75tjem~YsVexd!n(l-pn5!e&Kn99Qa`3)G<1(3=QhS5Y-xgbfb6`SF zk*h~7V%!Ds9PihmQtT})`OR~S`0mf#L?Af@#G91J;N${8iHuG#aNoS|Z)#sEHEdNC z)>}bkyN5GG#2-rOB^aOUlQ?fO@oiY4_g^S(f0VW8-+uY0un_+<$n(0o1oJ!ao&(ba zYXhsDx_R0Y=s)8Jizf^q0P|FsX>;oZwbSl=JS-n)Q@r~>-M9V)qPMs!9lv!4_q9X! z&JjF~RbD#x*gd}beFQ5xAGYoPQ~LP!-~HhCHB55*CuVnQ?E9Vb&eO`_gr+*zYgkAl-t7=W$sLoaQ2Mb8~0(KM&03YyOva8;l>T`k18m zi@TSuhrJi#<@gO)(->+>I<#TedHVsUf&<>gaE1<)jttteU7nLXa}m~TG~k*`8~iAJ zFuX}l;OI`Z+HGquiQi=KtsJdpE%;Ya^p#}YpN30tJy9Ne1=M!BMjN|y!7YGJq~bTr zJYJE8Ylsr8O)RW-!(xcj#dQSyjB>&XFsY7v|9TwuMI~4F@6>2vYSzTK*0+D*`TlN@ z_`2G&8vlb3cYsZQd@aGQ!(`MnqfrlNnK>rGGN8;}dKExL4?m^)SYCbTDByuMoH}Tc zk7#0ImlHTG^uN(dUp(R3Y31uQ0Kz_hEfrmw8zxxzzP@W+7|MM`*InxDt;feVmA~=* zvMubFQ%Qg^_Grsq+>8Uq>7((+-c7O0d&&r_l+t~ythuvh#%@lxR8Qxc*Cj6{bAa^< z_=$%0f;aUKh|BOtI(AG3@>wm-K7hlY@_8nnl}$&2K1MNhNgr%+Rht1$j!qT7Ih~MK zXh1Du<-X+3XN9JCOI1%n?(N;{1OMG9BZ~URQ7hL>DfmFnsIB#4G_aFq1zH)x4BOH| zRX|hUHQX6Y(rT5CyVs2`y9BOwc%6emWCPfNBEOmV#QRU5BlpK0AzoVh*k&k3-LZ>F zH7TmF$Meur1?gpznLo}t&Z$r+_u?q7OiSH}b8+_THr02_7VZ(3ItfZBAqb;(TA5H0 z)2RD5GjLn-!bIsTt`V?oK*G7Ml+yx}B~PaoIXpGC&V)$@B~jPlloIekF+@Ek9eAD$Q{aIpLcCi~sqA-{0R2xw<$k z;{Gl-|8sry22K%p?L_6DR6lR+o#eEh}O!XO{bHfgg#LzP6w{az@0UJVkk^Mn}{xb=xhL91a4dYhnSeqMit zlL|$ysb8S|`!&dK#wDlmUWVN4r4=S`CLMJVTqiK}d|Wg4w8li1%{f^bc3N-;{BLdd zqpCqvwoK%3^?v{}VlefxXv?bNCi>%9&H~Qpwv8e{Bns0wn=);q4uULbB5zzH56zp# zXenRmg*H0sc28Savvm&lWr1A^f=kP*NCZ(a<)zt1j#>VQh5?_VAy}=bLcyb?G^kL| zw!K35+V1Cr5duZS1h=7egPX?rM=wZLL}bJ04ZO&8HF|B9NS*h*cKTkL^1ROsP)K63 zkc>Yl4Mv{e46md<7Wq%&psH;IE`v5dU?9m~PlrgcaXEkF8=h^qHF=@6b^=Ko$|1-B z1|X2K%f1wYiT4AQ@4`KWv78W<)GH!8wJx2J$3tg)rs+|G1! z2?;vE=wRgrpIJZ5bs6437dwrt0#+-iwkQL{JmXmyD_WNzGKG1KDGWw~9)Z{Z_vZp* zYBEENgKw!Owm@qW1mj}Jg^3jOQ9hbRVH1HHg3)k2+2B|rcOBeshEdM_5=RcdW)-tg z(x#_4$pGxR#tPMPU2U@Drg0j{R-^O8>6DQ3#GGD*7It3on37z#Z$sRy^z7th@Zk|G zA+v9er#b~q7~lI?WIAIUdX-;_stD4^_or|9+XG!9+lk4?Ozh~{G;fZuQCt~_3)rN%njHt^~Hyf#Lk$3`ye<{9V`wLPmgEie7B zLjQSi8uuW#uG7?hi({EU=9~3{b^{&UL3A~zU3eV(Jf-Fi6NoH4)c_7D7+-NX(tH*<#;NS?#v}29C?o4wh?8`6g8Hh%M0KpFZLh*<_Y9%Ip}y1uc%Q{ znCnu2_&MC;8?q$Wn_K?!ZkoGh7Ku?F5B2Z&^GQ?eiI-Th=Q)%bQY7~#AVe0&Dw1+X z@iy{5MycjeithBY_6uz~!nJ9-AaZw^)c_`u3_llS=~D$DxdIC)((W_o<6~~i`(^q?QE(B;w zZ9P`Bus?TD;C)>6Dx$c`h;on7W{LrJojYr))>avU;a=i2Mqd#AC}@yRL?Y0}IDE@$ z(%PB4r}uOUqq&uUj}ksc^y?JER?FS`K6_Oh=x1Gh{5GkE*GV$NAG{=50)-RWp!zgHrgqZ7=G+4(f9 zeJ$T^^WIt7xWwBS`DQeoX_+@Mna04o57p-4d0x|oA%Xt&*7w!*znZkAQASwO5{+0i zXedRbPU%>RPD^&;qsnp1#r?5uYw)&3L!9`+bu1 zT+z$^TLD$eDF=U!M&lX6W!%M2Bb;R>TT=Et*lkjIIy8~xKaaTOj_4`@`-0mCpXMy%QC+NOF0wB`q1bGFFYtgKl7 zsFpa1kb@zLY#x-#5KIp6WREV3#e9NQ);m+_^J&AW{?#rF zGLn4Y?V2G^#ydiF@amgXquKLfqj)P?FYdwfvl?<{>D7$6V}Vo9-td<^BRZ7z=9#d5 z$6`06wZ9c{waZ&j6mcCp8H943WW^lrFZA2P%K0Gt*w>`GOXL@?la9g7bZ8SZ580=t zF%)bk`*u!{Ad{E3%@L5}(2QOA4-8=eWauLE_W_TQuce}4!Tg`XnJ3X0&V9o%Ogg6( z9(-s)R53Zw6}R`#iZ3iTmx^lx~!razddSS zbTh6{Xlb_0=NI{jfnGDzeqIAhtRN333(&&If34!-w$W8`T8T?x*$s>TexxsS$j)g*5=MeEo@t=U)*(7kGBNNCO$A6{E+Je zjN%7BARYJq8j7Id?RE@lDP?*QU1}9t(h0Y1BbxQslZtFhvr5pB-`gKS_~Sx4VT*5O zb83`f>^jDti4SXtL}YKuifJmEP<^m~tJW+vz!;U(FC3Wijkzz*^n=U%?B43pD#-i| zfV&vqK4yYBu^(Y~Xg>7)_@zLy1C~(eZ$tI@`-?Co2SZQgHvW{OZ0<|hcd$KomVXFe zFGJ6F5>NW=eTk3h-#hbSJP#MY9$|$>GFW^Q|Nfl28zdkZ0R##=@9XUh$gT4Vucy?` z?Cvxrrv-jyA0l)}5oWq{OcU%lIc?5ds(9xW%Zk8GYcJ%^`!F5$4+ag>i>v@u)6IKp z;03_yA6YAP(WfJctnLj;UY#^#IFuL+%P; z{rF4np8y=&M*)>yw83?1U*g*$jTtbosv;S25%pHxvYy8L(RL+W@IMq$)-32=?!ai6 zkbkNPC#S0at`p#|camYno>IrptipH7R#^+Y>JXeLBrNp^UgDDravDT*oevrHt<(?r z6f_SU9HIuoW*4YIu99Fka2sI&)=>d$$tWJ}LuGv8GQ2$YixAfhkun4Ps!r6FZ;ob9 zJap@Au2_5mB(Eld{DgZ8$V%w7CPp0tcG95g`#aE^a&NI~<`ax9=JAETs@gW)5`&6K zuA2{16%)QKq)yzk#SlKTZo}3sz~C~M_BncCAZlcDB@se9E&-B0>4x|zYZ?DaI^!n% zQAuoujvjS9zEH;bqj{3a;VfBPD!GI{QwQ`HRtv*Mid*(xT$9XWb3$c!xBjV-i;kz} z0ZOqyOC+lsh$|KAXzjt_Jzg?2S;yf)eD96B`sZNY%UZ&zS)mAo6+RxwpjO5;S|on5 zs-9fBa=t#C4A#lh?9FI=xK*Yl<4 zL2m|ucoOEDUrtPm&3DiCEwx zHM3s?Bty+Wk|6%I+;=bVx`0dB<;etgL09DZYj+k{u}h4gSCCRVqGOpGe*NZmuD9zm zY#;dS8R#hj;~^{yX9;Py9i~t1Eh(G#NUj!RWAR}BbEQ5)CFIFUm?uq7w3UN+ zDfU`3-R%@$7}jEDKIeTCfdYlCXf6rLlXW8kxNpQe=~dZgGK!ZU9)wW44)i#Sq_x%~ z&*rw3C0q`9p)E7*l(6HmPF}9s!k3g4JJZ?ao-;rse_}sub0VuXDTjIE@MT_Vl8MV@#y`WsS4*V*IG zLM-(LVX;^^kur+3fN(f194jm!(OT9ra!a^P8UnU(xiEql}G`HIUXjw2(3P_-&nfF!vNQID{L)f z)islI(;$>j9RNN=FAl^!+5xuK!85(Qe9W1jccROtBnLlcVje`)z7Z*unk9)!CI3SR zM=5L=G|p&7?@wZAyD8JqY8uTS)E3$FfqG@j#<^0IYHx7nIoG4GvwbFmjKllMm~JM= zc=?n3Oe^+Fy=a4ZOO+a?t_Hnw0P5;rwgk$&_FQIbvn1u2Q?!vHnI`n@^<|^^@d)|$(cT4RJS+5O$K|*)y|#vHneYFk*oG-u z;M;T=l1u zYSuyp_-YGp(7=^5$!HvnLZERW8H#yU*sowVM{JpW&sj1nENM_*Ak-U7&X1^w+tg2& ztE}=OQS>Y#vO>?4M370h?5tQTfPk$J^Vnk{ ze&`qFId=ezW-$9Hh-pG+x^3HnRRbNS=^KVW6uszUo1i&)&q+7ZJEy_t{9&x~3%W;m zZYoQB6BZ@F?zJnnFMBUgoYp_xV{(6uZ2Uo>#+H0N4UX02Khml(7pQYVg~Sqdfgd~q z6Za57>Jfb)T1p$wcRxwAF|-6Zob)_N^5#QWW(4B8uJnGgDzBSGwNf#6jm){z^p*$~ zS;fozwdLTdN5l0qa=o~ldH-xA@bcjhp`}zvDU@-YGX4bs&u#)I&vfzf4l#Y>LYJPY zYl}xm%%_sGk+;Jozii@=68y*2dDZKB@211X=eGLUOrC`I(t@;I&IDZz7Z*-jbd;h0h~QjnClT2h1w=d{O3av(oV3L_d8iMg?XxO2|%MB z0^Zdyo--S{)W2aW5Ty4Gv8tq0t%T@xgvL+xV3{FCZPP?3$1@Op4pFV86&@#xz#2*h zckuL84^t|)SI$fDiHjtEq(2+An5GYYNdZZarX}ZIiTo)dV_*a6qPmAFc~2K1bL#wJ zQXtM-2hMmAh19okdW<@AX$AndxRU`35&ec3L>iBO;x4_ueaRBFccYjXYjA{3$T$*U z3Kl1>d zr_M+k&6Tu^B?jWtUvHm7n=&q%at6zDmZ_AhT07myCwIH{)J?~OUVP5h_qRG*A+zCb z>($OYM;0>Q(Ulq9SI;F>fXg-ha*k*j1a?+C&r6u&g!6*yR?1v5xP$ij}iq*6@R|pjqzmbNbFWW{ACd_=Q!(6SP;7 zC|Xo%p-W6JDTuuLRPnaBPLdqW@p8b{-QJZiTl3CCL*l$A{{G+j)J^XeuG+YqjGHE@3UGl6MM+oKHyYj5k)@yI;GK$36_)mK0UgSqRX z5gKnfm~r1bcN#OPI9xECUs!7V z?_=Kj#Q3L%<0CX8_#!+p4iHo96e@XQ+1P&_9y=uybJ(}TtEpo+nEev?04VTYLmO0! zq;;9Kn7X7yUwNKpNU36;LD{vcfCZ-52jwd=D6B{Rg_5s)7R7biFWhO^{^JjeV^z#i5* z97=p!pYQ}ds`rw8Xu>3KaNBa6ki7+B+WMulGAC-cQmr7gax#FH9?>@4c04c|R?${q83-AT$=$2i4sa%AkqQ4_h8W9VyyhLOuev{yUQNK2LpC41Kt{jUFncww|hP zHQrytulL_d1(&J>bp5?fP5yi9`P-g&Dckd3N-m8l@0x8}Us~V|Y+(Pz#l;YD-5;Cx z0h0HD5Tw6BX$!Nz+fTWyLUU@>HquX?;vLc|1TRt^`1y?v#hMk+rg<~imLS30NI~R^ zl}IVoG_xevk2~903ZbkO5Cv&pJln|@lT*htH-lrUQdgokX0)u5K(7vEM0fm=IxYUP#~ zKBuJ=+qFtb$ZGGqPs-J9N*R)HZd9-g8}6RfG?B2b!sSc@b_e=>;{yt`ta*CqsUV8R zws!LGriv#5hafj=JSM|2xB(3<-=4vRa(0G4;|Nkl~k$J#Snvo7SbR01F#ss;JR&yKVkuM%m zbSO*B8J1EDiH6#aHd$hXHj8UU?Q(7=hBL7hJkrCQ6Px7x(~iG@d?V_-(=4+%%pAY4 z8WZ?UBt_B`^YS7FayJ-{j5SG07bmriZ`U6a3kDpf&jIatE3S+jeKhewCTj}H5K`V4 zorzX~Z&E|^uLrRkSWO!CKQ1McCVc|+QzL|WRpqUBLpgI$OTM2nYcQkI80(_LH=rI8 zsTPJ21gY#`t~^hy{(=l^QjMKTom*NiOUP8mdGJF(e-(PZm-N@tEDVPXf4n`QDU8!o z(Xf~SHykV*RYwZp&or89L4@ByK&D=-Ze$LzWrIi06II%U@p&s2sf7w?7QkP%XeN6i zA+DBewq>68?&A>q#Y8d{^UuMw6wONzk19cPQ*9h6eXVROV}NtU^kvJxoVBASI*y7w z#fvj)6%ABMx0SUuv9pYUk^R&C$opfRE7!7tFrwe+_w6B znv}5$YJ^kv5eIYwlQnjbTBxX2G-+Pa10ZB-M194JFg)wTdH#XW*T3y=bn*YpN>}9} zE;loGzup)#9B;{X+R|*hlP(GVD-^68WRow>(HgqmZc{q$KJO=VnQHift~MG0i?6d^9uhHX>R!`?z)z4hIu82r z^S1#EtCG)R3ZcIY+$_%_l0e;?Y7OW4O3mSadx*~yq|bWR$UjnPCV^a&8>G7SA;>9S zEkYp;fEhNRFg0V?Qd#jj91uxo!eFn)Y0#_iOt}>-q!KFAY+QE}JfkQ($y!&h> zjI7CD*n3Houe!FpE{hSay<6PU9dZj&PwTz&WMIhM-<1A|RfF}NIhZsmC98{+flNwE zMJ3p096So+vdr1k6~|=RDsVE%mfc4FeqnjS*tFU>Ty5mOp_fC)ZQ=zC`+Tk~pUuNbD&}4;({D>B=V7~|mu!{VF zwI?d;jBqrj>Lwstt@Vf))o7H|TTW82Yz_)FgG};o(qDQdi9|^5^}!iCKGpDVEXanQ z1rav{Y5`0GAWZFzb-b_H;ZOJM45x{*r4F0Ng>H*=WC6jAaWAFcZ?n|<8~6Y>sgk+| zyQQqhb+CM&Q;w@VLUW5E)c?}s7R90$HRZI~!`Sfv&bi2^Sq0kr({dZ8_~f-f_%L=ZTp4|#rIR` z$44)}0!vSyALXu zCpQQf7{bSfH7o6LGLoZ4KA6PV=ygl}v?(38$g4?KTMpyObpUVmtwv#*;tLL3Fh3*8 zhzz;n$}8e5non|NXV2@J|K|#?EvNr@o8?gCKsBpSV-eZv4TmW6$D1~S9j330NDxs> zHyw_J8#fZ7fULI4x5^!_!5Xg$>`g?Ma^TTs2M?^w%Ye4rJbTYz;}ft{c_QrE`hob2urM|FQOxFa zuUU6_-X$<>Jpt2uY!ML-d*dY0)=iC|xSq>lMh+{T5`WNel36DKT|^d5b`tfK!;geL zi?rmpcLH5VH&Cdr<$~Cd$B9Ae#T7*6KMZgD7#3*7Q^;OyPRBcJ;5`R+jwWsC=uOTM zYlq8Vna%#hgV$M4euAgh<1iE)`8TVh0(Nq(MU2n-yY0fb&2r8R!LmkPjA zTKimroPnFEC;Y3O1G`d-!^q{y9K%-EpjYWPXzAdr*BM=+-IUJ%76NACNRE${{!#S> z-a>bqeE7Z|NFcuTe%yk@OZ&VC?MLRlq(^4{-+f&-w6#8eLr|O|8G&=&p$S^%)nCc5(}lL9ZQ{~96y+dkkliT6EBn}# zHYg70{!B(yc9fEqBbLF+BbBjC9-APaqexlBQ&=+12r|-$>cL!3)gzQ8JV^gz5|ta& z*$+xUd*PJP)YPV8Qwd5X=O$n`*wDU}#5M^iCG25c64%q?(9A%`fB#9AUa>TfR!BX&5+aa7HE;4?nsZF*z3Lsm?-5!5_|Un1#VoSLsG;s9vM zQP~suVHVx0_4H1OA%z-nYF&SUdUM>R8$#Hrpn3=bYb$=lgC`8RP95^5f~5u4JXdne zOfn{4%23iNycLAlqNdK1;Ir#L-GpQV74re9cGrw)B!4Y8}?Aj(7jbx8nYbt z#@H59Dl6Dw^;iP61NNjx*XrH1bH(u|4KSq8QfpO<*nReMC8|p30!CNE;jmh#id74# zJmxM@19n_$H({~wC_wqQf;@Nsw3Iv#A*0x@aIKr@*~8V3ZQtifYA;ZG)b;V4me~cw z)9?N_ZV+I^Q=u4MM1>g)V4lCMbySB4JC4`>byOtHCPvF*f{q)Y1rE2_)ZBzY zdjr@61v(<4HT@9S89q}ixYDG2Lt@##iWUR=}F86kf8 zt0ZU?+(|!bgR{l7e9_~b7pt>ZScvW&6SM1i1TBAz0*qg!{^D(^X z9w~<*KtN~fHO;C5_geGVZTrnpgjle-5X**4D2n<#G6D``Xm(q{K|C1_Yd9bWpuvkN zPM*U$@DvwPm)vZJt{$OB7`(SPQN6T~5##4E<-_*K=&i`-^(VOa-@$zI758CATv+BD z?auHH`9y1p8S&zv0<~%5!^BH7biYS1q`iNm0y}<4QQ>qN-(o+nP`dz)*wsxRF`)YiecK>Mu!0%r- z{QYux?e<@|$QL%>s0A$Iwcc+i-ZUWZJxO}wfp?m{xOEcM&?sR3_HE#?D_Q@=?bZ2T z+6vtCLsH5Bu3sxFE1?Otz$+PDH79kKO689+J-$0-(t>FMb2GasKy*yw(U3chpxC0A zVoFWkG1m91P3B~*jRr^-UH*mMhI_TWQYSGq=HgMD?f8Q;q{V2tU*B*nP#^n+cg4J6 z6m(8n`_U5MV6GRIGw7;SOZ*Eq+?sh-JS`w)G=2z3@i)nmhC5MUFgqd7g;Kg7DmNlF zyV$4Z*pkabC-M6H8YeW6YXOMc=to-W{4meEEh5dDyvf2p7-DQ%X)W75(V&U=}e5$A8 zuBMMvnQe|2eBaI&&I!aU=iWYY&Zbbud7j)2K)ZN-W&;-$Z^`fLH8DD@Z}qxze!#3h z9{8!Ga(MDc3$bHc^5Oz^GMpT+9AQ5@9nluS(X(aeAxb13OMj`Gw1iD7JVcBFwRLM6 zsyU?oIHur9h`}x|CU#LvS#y!Qkz3a^mS~_R!B?w8xr_Y;`B$aV((vub8}hm&HO&!Q zgs%*fZj{>#4ggs#^8e|aB>!+Q*A=MRwJ^%Qx|4A-O_PDqYtu(Eiz5$D(?``$sz%gty0mQq%1fy7XKe3(-UpqeflI-Loq>F3920gxE zc=LGC18#QHC5vo1lgxBtvJmO}Sg#Us> zs*U>crdaxNKq%agHOg;hXbHtXDZe`v!MgQ`g-pY8y$6zHNuZQVUa-SZ4&f^ zuoCkqBkn{!DP6jo^DN`vaaq-5cUQ3rYTvNdf7n)D^{UK9A!S^LxG&RZ8dZgRpqN~W z3~brtS3{)1GKp+sBt)X*GTw(lvf$&JB4olSs%I{BG`c7%%&+8TCz94cs;%&mQoA^n z`Y>-uid88zcgUE!=QmN}6r}ar@+Fp1NKxEp!Tew{T0Sdb6IgRPva9c%wPoIRTI-F z2XegEqui10x>yS+l5U>2AiGBSUTkt%g{Ve4BCa^G>V5cujtIvaK)t|`XPo3A8 zb>QfAwP2iOo*#`-pY<0w?HVN5{eQ#}rNDnn-8bPZM|Gcn>v*2GTzTJbhP)3j^T!hc z-%WR(TH7vToUigR1{H=|&OGp{FST(!PmLR4m#vU9p?5uVvqLPfVYGKC3^+vvFx;R{ zB`Qj8V^AQO1)S>>jAf!0fAWg=M2$ny2G7Vp|I+O;6}Dt7N>k07=SZh(gnK{vn%nUm zn{fZ*`E~6&%cRy;r8^?w(7qRq*h(gBXPPq)FVGAIjzP!=#p;2Pr~EG5za|rO1NQw6 z4Pqb_^Z_@PfXl&HzkbVpBH4q=KHua2)7L#MG&S{P7$(fV2b{H>XYzZ__B6R(zvf&& z-@gj;>~Bm|2OU_*5q70=XC;E*u;N%i{} zN3}bIJO}EnB>NQMkbXwA>s-^caI6d{`))GWuN?Y~(Lad$ad%Ldx><|-*KHnbvG>m} z{uRyZ{Z&ZV`=(FJoAEU?%;2TD=4Mjd+Z)^D!LZRPx)As%9V;2tk-sOZicCTx5*ypB z$X9%@>mSO6aA7AC?IcN^4xp)v)*RzaQ!G0JG+<$NV2SnsU8YCfI5dbve9T4nl`I~< z3~odokZ4w8?k%THah^I4cQ6g3LxC%Yh;(lFGsRFc*^t-~>i?OX8gYc{H0r^Zm%TY~2> zJiS5%*gBodTYK)_5lDFb@$=sLbK=j+5D~V#7rx(o#B6=#KXkxu18RckD&(y|ACbN)~G1xvK9c5dZWmuM|GnNm;8HA(Z_+6SiO4(3iE}@D+ zNp*vte$YN~5tT*|I=wY+rdgQmwzYIeADgI{P{e7oMES=;)D^@Y3MZ}smtfu2DU_Y8 z?XUIEm@`SUrAeVnJg0H4Apc)N(U|>qWSK^+_#r`#OPg?Imv|lKkejrsuOiqOsq5Dx#J}Z~LJwu`qFqf!G zJFIybhx}97tNPB^`}jvZgTR22Z{9>8HO+hueNg={qS~}r?F>&2pu}9J23?r$(^w`~=yFrJjiSt+W-vb*89e1d5whrqf<9?>2N{cc3#mS3*1U_(=y0Q0(a_BOP z+HB|mPC>X?hO}Vi1WI>l({41mrWH%nqa>RYc$=5=XgTr)in+0sCAp zHgw5tBWvFLRums+{`t+C0@*4xAqD;3x3=}fzyHl$9k4VSjJo!JL&9(cmVQkp&t3OO z%&a(*gcx-PmbZN^hlk7=J>vy@z8SH-#{#ccd{Mg(wZH^udeMSh9&L2F1Hz}6Yi8G& zX;SiEuDce-w&Q&6y-z*$JM^vv38sCbTkX~XTy|^y(bx<;M~PxDAi&=!JWWnN2*UOPkQVl?OKC>azTl=XTVqeNgh-VOGkQ`I;bE(B*e?V^Am#vO2ivsvIH7+WKs|vf zlET1=5A_cqOs$rs!$Ubd8l02s56+|KXvM|`{z7!a2->s4yoO!!Z{t%>cP(>(f$6w?ZjEy%Y4*B^ z?V;{;iOZF>DyeE*1t+agvaXZ^Rg!~(s0b`jIg;v!;rrnF{5PQtDsTX%(+ie zY3d0%NhTk%39B{y%G+ruhb{HLm!G_8rYN7p5pNS}^hErjes{HDRw-5K3OdjGxEC2hFSISQ;N3_9Lo7D5SIYd~ZQQUA2`m*qPa1$u zI|;V(jadYS?kB|S`P!cWy*w_rYPyqL-D88kPvd$QSRN87>>e}j?|(6dNU)EqFXN1y z7r)={XxZ(Nkn~O@rEeNeWO4%o+rBzxRt29C9Z%N3_k^mg2m;P;uTU%$j1B)SX57UX zy@#kN@`ii%-sg5-xz`cFQ znh{w(6k{EaSZTp(v=>taahps-JP3%sA6Ce8S%^#{=pr^m-st!UnE096Wj+G2G?Bi7 zZHwk2Z_GoI)U^?Maq{hl%?33l-UX#eMC2(kZ%xGe0%~IxuUzD=v$v8oU~r-Rxz{;4 z?i!kW)CdNwIN8)h2FbvVXD%H1PaShpd9~^WxEgqpoygdTNMFCjv%h2Re?>*i{=N{x@b!Oh65%| zvtc^CZ^;;Ig~kiiyKJcx(mMK!6Oe{mlrT5&l@rsl_ zP>}mQ6mnNTP)Add?wm%7+&PA~>!l#aYM(0xluTG-7ie|{|4J50Xk+aAKaS1_c#9wnIVLPWG?&ObI#gpuP^=xV@U-= zNF%9Cr3xs?nm&m0$1VJ5Quz->$dE;iG6HcMb%?+huZ!%%DwSGOBI8|z|kI>RH|HDI^r z>QI6r(Q8QRYqIFb&-)MB`ZOqyvD$EF1b_47!a~lFzHJ})copzy5iksTau}!x z75R@Wl(2GX-xGv?+9y-IVcoOHLKoFRG4&TNeUki%eX009(TbLiP{s0rO0^h^Hmdm9 z1ThYH3mrQr9;hLs_<)5{k}3_hCsWCwMCVZ;19(E^1sJ*9n$oIMX#FZWx;5K{H2O{% zZcXkv_3JRsMud?co&BKuD<+o|BX9}$y!!V^Qdk>Um^UeXbZNebrF{JDk3Fu(NJavN z znh|^fJ(1n2^N&!|9QMy2{hF?QdNaRIc&P>F%Hd6gND_y<|Co~$RzqcQJPHD}7;(YI zxq+r&X7Pw(ty=lo_5t*U*zfHmiOfz53>GKn!r2r^kJmWU_ro??-uNj0bcm*YLn5(Z z-m*DCAO6bVYO75qD!NvhPWmRHk6Mw&%4Fj5p=%46sJ9i~XP6%>#F>qXTUErn`D+wd20_M5qOjQJWNws_ z+)8{+j4T)V2<5cUR0o!tKkt7puq+&-(B@7{Rp<1Nh^%c^2yn}_r+aW|x7}lH$v`^&Xg(huW;Ay@-kJV z)QoOilpz`Rk1zvdAaW}gv`Swwn2CHos`Go#i%YRTFU4U|(0Bh)TpIpLnCcp-tQiSP zo^(v-t;vgzAASWE?$2uO&+1ZI(#?7PmMd(;BJmssqGT_R@rNP zvWQakOOx0b4AqvyD}Lo_805+wrX6C6{y|DT&C1^0tDb1H)c`2#tFd~wl36FAM6$7H zA?RrCSu_qogp7^(e$#e{;CcAhTmHf;7-|z8VWIJj7TII$DWGh z=@6E$poO#P?MM>LJ5bmROlwallEM48$je{?ygDWp=?ALRpQTbCx@>lM%4+uT&C^jy4}*+HbO^ZL9&- zPqxnmn@Lbxd1Y`NN-EtMj7{w-VT}lZE$keQ_lQe=#WXFcSD%-2tSYLc?TpPTN5KaC9Y8ctt;=zs0#9p~c z8UULw%ILIc(&Ld$xtJH-P$KP#Q+phW%j(2E$~iXv4qF8VA9pIqmpU5-sF&3#2gc+r z2rt%m+f((q+JCZ7t=-8k{$al=;!RmbyD-^!TU`tK6cD`ynq(KAW0Uf&^rOj_(vu(( zHF`q?Ng*tr;1}=@-3JCOg2560qcl?*|Epu|Z0SbghQ@5i8px>Xxa$_~Dg7wb0w9r~ zw>2my{(*Y3t z)JZ&_g~~^0u#A0sCQ{f+i0>g$Vo1Z*INQj1+hU!)Z@D*Cj$Q!r6_SJBxJ$s(OX$s) z|BQy=4Z#IILLNNjlc!H@%r?*)miY;8bJ3e>7%twDl8|WcDoJ0Tea@HKlW(jOA0HrE=qz$x$dpK?Bx=sf$dN#d%ui zWp5+ltg2EpTo|mYHK%ljB2}^hP-J^cql;|Hs!2%K{)?U_uT{x}PihsH8!>7WHjyGu z$zm6efl_(BR97b9$nC_@m0WwtZUrt}Or8yP54}c-6bIJofyQ;)9{L-#^How}mM0(8 z@1-D*rB$#65z@Kjw76hPNFJfehcKc3V%k|HE(_s3QN=%O;NlL4u?&I$Zh)>KIaq{C+y31hUQ0{V;qH zlMrXT6-@!H1zFFP7itBeTEyZnWACC|uU`}0@kP9tbZA!Qp}OZbO7w%O{bAmCjO%&5;XI7ACXu z66pLZtOGY=Qm<`OhbELlSJn=mT$eHl6ezydPIhEA!q*ugaaix2fM&QH_gi7N7vK)I z>Hfjs4JR>$;sy5nB=E)D;&-d!dy-z`z(#P`-}42|kWF2OsU*|(-TjIbQ4w4_} z-vt^vS~5X$8QAk+z!qfhfAvW4dc;w8**l=cwjD@|Cy z6Ut)U?B!nwxF<%=*EV5*$JjAG5d)X}r@+@(Lx49-%Ga|g|NV2u^PZiv7ZF%6Y!*iGEc1tUvhO; zfRXOFul8eHxXWg}R<2pM@)0e$iiHDj>ciAw^H3=^TENbmodqkA9!;`kqvEQf?O>^T z+G4H*Evf&&24fV`>@PvfV;@Zwzt%sQ_N~ZMvOdfrtvP5Vc;yYOX7m4=9E8}(SMbrY zL#vV*L%waG<@zn{9xSMU&{Nt`mSSPv4Hu+~Kjf41@3Or%)gHzT!qqhKMpncZ*-H>Z!BY=vZU-EBsuVSWX$N@ z98?^h`yDZHC?-KxfCKeKF1~plY)$L}goXd0kCJ+p?AJ`@480&|?#w-adL z$hrP*4Jt1f3PPtfEG_EjB*n3;j%B89=~0km%+(`Dprc^f$_Smh5>Pv7Bj@Q=V8D`3 zfVmrqlH9zEjWY3W@(liW3!zn;v@vTz%cVF)FUV#j+GNnQo$nkmv1^GdK*7?L@>Wwi zFqWpehdIkj|hKf+g>>Nq<=zV|TPs z-M#9;zdp|iNWZ!od<=Lv^ns1dOm7&M;rORlQ|J$Hyvk^KeFvT1(hFkWG@$+cA)>oi ztoWTXyJws1v)%)mFK(OI*8N>2KXx)&`JYJ-a2K5q5R&gwVhQ?5Ij;ZvRv?lBc5MmC zd*=C+Z{b(}ahI6m@#uC}|21?W5&FJCR?s0z+We=J?3&LP@fqivj6CY}7~OzR{Rl^` z%@vmo;-t^!9sYlVu%O)dtmSlr)SB)IZQyIa6WO1;I?pVlKOC zx}}0SB<`@jyaUWMFQGi%u%W*728!6t>WX;64`ex~Yoi6(tNQB-^_rC8g~X}a&kGfi0p^A(G0XKvb;j65cuKzx0u~3W{0|aKk1VPEvE#QoiO| znOm@Hm&W-lWg072R;SayRpm=|y}}3ywU`F)Bfw!>`jY?~rzy3$5Q^~%+K{5y3qg*c zRzp9VNtiat8zmmtscK+*SjdqZrop6pk1ONbME+2+lCW`|U!~TO87}!`P z!fW-S{i7zz(f7m&S}nS$Tu3bfyLoU;m?NA?6SYF>Z)5!kYK1Nv1akPi)cA6fJRBHx z9i)olGNl!|uee!Ad}|8KN634nDTM3}SzCNW4 zQLR%-EH|%K33O&&o$imPnpPxt!#0z&MD+ZZBAG8F(@81r3BZ-9bl|+sjn3?Ne&TIt z{Zq6_3NIsN37|v@w@oNbQNtHANn=fRYw!OV{oAXt?bjN6wc%YczAb4P-BY*^Z;(~w z4N+zzq{?cW5_MPwe3Ill)vSG+x}5Icy1M6iDu2Yed|}MO`5Vt%h!wa)+jQCqSr7_T zo%a7@+6(4f5XJ?x%ZSpQtXWLlNp1VNq_x!+FVok=?q_rc zdH9C;0dd9Wm(G*p2C=Q(D=#hK(R#(xDb%g?0vLKa@7z<5N%31hpzA&w!~_MK;*_#%C`+Uir2q-DQGet}%U;dq%^i;60@ZhPsE`KWWTAECTeuw z8!u=1#_Uw3Yu(WMCvZM$UoBL%g~iNvGd-!m4#kceqqO-4<%|!C-EGj3QSx_11O5DN z$vI8hW3PYVA`@q5yZj6?X@45GA&b?yWsX{@tsbC8Apix&GFPWk`^SkDkYsvhPnRJh zoy5g%C2VvQL~SdAEh1WYChIWZscovsBLx%;N()#Y>z zMD#q~AG~QR0Y=K<-)V{6Dy~Cr(9^JFbFZzL*d1xUKpjeAI5Nd?M?t3`vpy_@1y%&r zgmQHB;8WBiho3so)Q9_I^?#TOmJ27|o%b2TNId~G>!5i$A>A<-t@X1=T)OR9YbjV- zZSB)u67RT?kv9}Pv2wDh_A@!aT>o&KqwHMIN0V`{OU)J z6yFH2vh5@E{mmA%E11xLq&<}Z<6vAi2bvBsHd?i0{ac@|+}ukVuWA}5`j>`oqBGdy z`RUq{Yx{bR+WuT`=pzH5gk}bGicPOi%`bY*%@1-RW$7lto1W~&rpF><>=sR__ie22 zhYy6y1p75ft)aPBzo6`)D>c*vqaA-xy}+ukQt-eVxPtTfSpMc&>P+#iXEppn2h<8_ z@v~T1{{ip$peV=VpdzjEa|I2v&}jG*B*l3o_!9WKglIYLd<7Wte6Na#=9j{Isge#j%q34Q%s@UzLZ- z!<9B$p&8x?b$;7Hm#_skx@2m%h@A?X(`jwk8E@F>l%2$368-cVdm@2qR?hbtC7hq| zjoAC+IF~;_E7lJE=^ABSB>J1EieF6E%^ZAzV%~O0db^2MNe%TuCLQ4wyR}DjXD52P zln|-5k(>lqZ||mS+6kVaqP%pnnyW!|xP5P?f-Yj(BAutm&TCSS)Di!yp|)mq@bD%S z$_8?rr4UMFohG~@V$LxFj#L;o*bPl@4G!{1g04Z`CGsT#JUFCo`zK-f_t!FI-hN?VyHGF?#XB*8@sWD(-p zqfFa+^<=|*8zA5e7h5>GUHQ8AS{XrFuKsbj??WR0x(@w39qmKg=&XbF^OdgF1RSCo zwV~^=P--(P?oiP*$WCUY)vD$>^eVq5c6!5W>jlZQIGM@)4+b2Q=<&+6pvuam@HO%uJ z>&HWCm@Uv|0bt~O_)4+PL4Ht0a`ea(&zHsw#Ze?wtH%A4@+++X)_7AQi@=nm6}uAD zL@n@yR>CRwwUjtyvE}MGnY9h-q+-~utNpRwDCSJoY!|wZ@!m6rHhB}wk@!q-5(etiZWNERgSygxOYtn1d zZMG`{w;#C9BBd2qz5_|<3+_o097LL3 zJ?bu1!h;C*`;@t zh=w05`IxhEy*lHW?6-BuEkm*kUXbBIYDI0`>~t|rl~zg`cu0Ik%^;o&J{2D+;d!yE z~E=cwJXdF%#4dyjG8*04IX_yWBl??VOUkw7F3Nr_RF4z5@HgsL4*ednAaDIXK zFhEQY@S0`rI434fDFRr%zClj^GTx(H?Ki2}5|mSQh+wBn;3AYC2^3 za?`G})i@}&<2rXEf8y#J8=xXWc=(qE=WqX0kDA%u?iS`G zKo$UY{WM#012LcR&_0S8iE%zx8#;iS2+zf|zM0qbensZE#|E6KlL|NGyfH{wvu>;&LyS|FIC>{Wg zL1S}QS|@<}U=Zs|sfIAKadcgC4zm%ObXGVTb|d5|ZYaa^s6NM~RX|FO8a*f<)*Kmw zY@dBbvOB9EC2h2r)H3ncJi^&AwryQwZ3N6K!0GJtcNv3=@cXGYQcc-SIsgNA7r#bM z)zr8FKGEsIy*~&Qizu#czE$&pOJb&+_*6|3t|*#{m~FY&X3N2jIY3|qXS3y+ST(P| z$fFJY`DdPPm-i(MRAu{nz(AV8!4*Ar2p_5KmYVMC2AS_^zs8i;ftidhfp2|P+X{AQ zYge=$d_B6b7KhLipXHoX-prjGp$*Hau4)lGD97n49$=|~ z)?4&B{_kPF*zABl3@Ti}jww6AG~yqpkwyOO!M9+-GS5qL#mLo5eLKAfw&`q63I@go zL}}M1AM6dQ6!4T-p!q^_Ch|ehQ#HJ3^}`qqHhT<;>4nB3F+7wu3?h?Ln1s5q|+0shI@`mttWar;%@aj3RGoEyF85eQa^_fWxlf zT5ouJD((OM<;EDfd%m|Z8o=zQ*j+VRA)!~hYFcHDUALkgxyfs8sF5{#2+orMb{86> z(S5P*h1!tQi=Z5Qlt4cB5*wVpD7X#i2%>e*{nl=~+QuLS;Lkr+)w^9ReLq^HMtX7I zm^S%_6Dgh>EJQ+-6qeu6h^fNQjC%adbu5Gf9$^ zW1B_ui?r_>MTiOB<<|JCb$C5@q|H1@AAJ7jbQd9=bh-%Yg0uS!^Y~~eGVEEo+$yG~ zLhCdFoasIto#Y&NunM5&1RyN8P14vGjDOM@d8>X?_N6^|5U>`>f63Dr^QQQCtU@u- zLh#dhcCMn$c`8fSbzba!J1TZ&B{kWeKV*L9of?-wS3m^9d4ng@X3?eR`tb4U|uO3M0Sxst3+g@6mEn^LMD7Jw~$QLnojt-p+h=@@y>4*TgcfRsiA*66( z-??fGTlwc+ZV?evkyb~@d<#tAAkyX0b_fX-UWP2ls%#Jd_RUABYrs?kfktBp! z_hGiSWYOZw zR|e)RxqmcaZ_zvwNnt5JpLsr8-xZL znx5`U(1GKX?0n$iQC57vZfnv7t$ReTuJ=jNe=+7oijAj_coK8jV z^2Ws1dO#jm?UvjE1Su6$K4L9ha4?~bZ8lw*wA#!3V&gs8`Y5*pHwDAQen{}1Vk^Yg zLa{*E+(st%xpYM$WtrN#%T1bV9^p6VxHd~FTY5u|G{GJWBNsVYjZ3Tn3;k`u}F<)YX9FWPfkjKhPyucoD}QFSa?+e5q@Q>tvQKtr^(&9Qyn zoVw`(X7srE4pI!gBib#eOV9UpQ5{I=yr>Q`$>=8VvhUn#mIzjaRz>jGUg*-mIY(he zY?F81D*ZfT87q@0j-MT{zd)DoxAb?ZAwGuhrOR;uGUAYaaw!) zeHww#wKDDt*y^Sqg|(EB@L61KQZYY>H|tN$>22OonlSjSq?kQx&LB(qt>DO2j<}0; zanq(Q3#JW2qYBLsQnP&sk~A$jodT2}ENK=0rNFCx$C5n49Bhtw>iS&reaS@gd_LW( zJx`+XyrN;h9-?a=8=G{yY7L5AS3I1aAUGW4awYD#T8A5d$MC)9uzfzJ(wnIS+x`eh z22s?i#_-R0drIccJ8r@~vc@DBdg5*FXjA-xW4kOcS~9hF$~Cs2&b4-(_fF=2k^F8b zGr#z!wo^BPZ{p}!`|;NN$@h9((13Ga!v8=e&;MdtzCewDN&g?j2M!4|3=?IiT?P1$ zd-@whFrvoL|GZ6MVPs52)T# zxWFJejxV)9LM8LA9g$iYm>A{^2T$ZZhFm2AQ1&@gCYRTqEVf`UeGeugm)9KKmy)r> z@4)lv6&5YqcBKp4njIdc8%FvG1h*45aT#ei_gq^bpsE*?34sMKPJt>Uv*^K=x27JT z8j^$S6BTB}N0Tj13`KjzpH*EPL1$-&BS%{jkHb-A>4O(?QJmGx4Wj`z7E1aE1GD2A zk9Rnf`@_*|j9^P>(L(<$OP7hTw%f&i8L@~v#un!PQX(ZsBidyVDfj1b^Ij$DP0tro-q))X~oOt4gOe9nWrYWZrvY4VEoNrsGNqGUGDNUYx;zixtyRQ4Mp6JZ6y^ux za=cH=3-1e3OHMmd0tfXf-9shv?_dPHpBC>6v!Gaf5se1d6|4g>H=r3)f`pazMCPIj zX69Iw#yn`w#>pk99K=hb37O}U-U0l(Wil(K>lajXNk=`=`f-kZpcsG#mABePPnBLA zEj61)xn=u6z_|Bhmldk`j4t-q-GwIn7pBJLQBmktbX8#^z|xhFGRh`s4810s*hC|c zDO(VxT5i&FT1bU_(Jq0z06hLgy~;V#No9hMJm%M7A5+tB73)wk)*tHv-lLB#S7S%r zPSi*SAGqJLJB<;qz8WraN))oxavppp0hk7^r2oAbnrAW=1ddfBA4xBL7dy1vwoQ1i znzt@*{AQrPu5a43-rt@(x~C~N4|ET@+g}&6{5SZs^7H~e9&{c1p#IZf3a!RNF!e`Q zEOMr<0=|64517CGM^k+nQ}FM{(9jifa9{u(ivy-6^dFi1A83xSs+$hQ7`#y;F&PdI zGaSqZ{vdYlAUgCu`SHJut-xi^)rU%(lC#dxV5Xg=j%%Esa5{o%%5W-EoL&&o(WoXu z@d@)RE3+n4!Yp&eoB*#zWqSI(?b${gIE_rS(N!14Ju`|o-XQtCYo$Rw(@Q0+1IUzb z${kxp&4qb{ddIVPr(~(+%HH*V@URDpS3_joJAiOY>VLDBJ=(nC7KW_uwxvyo&~{A_ zo3Vg^tdXv*(b2WUi8>`j4>XxKc+swIm+Wx4MQfP8L=t*+_+95EO$;y@gDQy&k$Ou(O$K3-Wj#lL~ydY zB5{0Vn2Tuk`kl?UZ>h~}KeD*ZV032q zK>ywFMCd9$<Xo_|8QZX)F-UkFl1E6p8pM!G z2sxkR^CGvUY@e+^#AbtJv6^g2j~-=}V>n(A;5M;wWsOslZJ0C&N&h7~Tl z2s?Ve=DT-9IfY$?MU53>APJpthdSe4$KHVUTz)9M^l4-!hTA_26me7}E8Ef=c&ddw z@{c0&CaI}}h8Ku*l5>Zxgwj{63H_D%?B4F1Ne6qEHADiw5DnV4Bn8LAOl#)ufZ;!S z-Wy694{Zj?(Y78PD~5NkSKm_3>pm`ie4b7{_2N&4v|au**n_B;-X`H#hitv98v61a zk?+yh>@X?1ecJ?CUp9A+_@COcHr-`xR~y4a5HOuT9+q4dwJeypxW8Db<@5%V@^N{MS=E;K$N2CN) zR8;OCADs`i0%UUiT>C_Hs9k#J>1#>l8-Vm+jnb8wJNR??d z@nZS)69qG)>_ubY*wuRQDu1CXlkhe3`~~|NmOx@0SkRK3#*;>3qCZhY((%YF##nT7 zMy1rFP@#eH53#GI+C?q-a;9jFz0K#`Yg$G>JU(lYnW!N{AIosy+lEeITjS{R4t~F2 zp*HVr8A4iSW?@OmQQ46>fssLg0zUVdj%pVwBd9Y`vNn2qI&rD4b{I5xZnL)EM$E|N zG!~DR`f?R6^2x{be1@5CR#Zg;SAlY}%1l$^N;BycE1~SXbg{}T#9DX*VAtYi96CY3 zKREEq!u86D!d9-%2U7e!>Pyx!&nvXlW-lV-EtZ>f$mh2&{n-~k^ni!+y`c7=o!~F? zKNT04ELfyxxVN@-V4NZIds{PQ6n7wKWB*HXGWP4TGE+X+_`XjNXMw{42GJO>i zwBHZ9P{nneAmgvp%-)|l$Dk;-CJZQX`KGYXR1Q2J8qDwO@5Dw3 z^lX#`cx<>WoyQg&^1mlme21G%W^82bVzngA z94u?Y%a0Z?tw#}1K(ddh?D}8PGv&u}r3`C7GX!tEBPI6Ws?k1#JMTlI$#4s$hP@dO~C2YQA4hHemsJ zyqb}!DM*wSES|Dwp{|D|xgJOyq{dlnX0dUH?l_fiJ~)Fhjm$PisK`uaIeCzRhG)h6 zW1sgIO`f9ADK90w&!JG0$`bK~^$+QkSdgpH_qi1#0{2m9ewTiam*qK{mx6wD7%wRA zBEotd3X3-!&_$@f-wD_)DZ!r!b@0T@X;-}7HYoHxANak7chv%uy}dQ#(bLnWy8Hl< zV}j?VM)03ctHFD!`JTmq$LT9I%GczEspH|*p{gS`yQVWTMfYa63YfBDT%tYd|1x24 z`G|V~JB+mnLIz!*TL@$n#PZ|(+SxG*BFwF+aTsm}HKvR`JzKlvo>C|S_yg>1p8u8b z4~_6Y)|K$m??QG4xj+qO7W5R87kfvJ!()>1Xo3_TdXd_lMwH9wEIXo~(>+0uds`{||e6+?eQ8B2yK zyO$aho}8_8x%ol@WLQiaiBCu;wa3MVJuvBTap|OwG$Skf*%Vhdzz1rzTR{Zx0TzJ4 zXvv-cj(=StA3HwI$A~pX&t3xSMK@P)OaU#2W(ugW6Y6+e4A)!G+46%>kFi(bAmh{_ z{(!t@jj~XM!YogAt~FEpae^v5>>l}8@#XwI+p1(W7JsMpz~NUjmEsk|7%99PkJ>2F8CQA40O6o@Ge- zx;X37g4W4SW&;w@5{-44$!L~mXR?_M3v!|YtrF=?Dzf^6u8do*_#YsTjCsO&q5#G9 z_*TC-rGs#~kwFNS@`1za&Zy;j_jH5yPPo^Kh&bbKeX_q=#>4X=&fCD#KK>VgzWqJY z_g&B6XeKrQJf;V?+qvI;ZG%SrA2)d=m+!%K4`aGfXZ4UeOq?he={NV`D@^xK<0R|jibpO2Y6OA`FI zDC86rYhR1idI-Og=D4Csab_n|YuU2^6~0hCG$MoS8JZ@Ui-nt{zRp4Yhs#ycNqqTv z$a?U9p=PWEZjA+->-Uyei<;az_K$jx$YpeuP0A>I4&6pz$zR$?u4`=EvGRs^7W2dl*3C&!7jmuz@`KKpd4>XNXkW# zsF5ty{c)uI+#=8%*hm@v1}P<`Y;dlkvzwsGJJ$_f6+-5!w7bBzb4cz#Rkb`e%4w0^ z-d8~pTtF8DXYqEv;0B-;m)HWv_H>m0qdO0!R|z_ANJ8DAvMn0CzmdV>S3`Ny>P#m* z{ar|WeU@BEDoM@aQ2GY(7A`m^!RM{+ zbN{v3G-eEveC8rzBWQP8-Q4d?A`0>UTEFnNT7hX)^F@RLp;#*g;e}GQNUSpw0Fh&# zGL^+fX#SW_jy8M9!tu_Et>Gc%;>Jdz9@O8|s5C1L+fr)RWv~<@^s)caAl#3Fi=iOH z2mHx$qU4Q%W4{|u>JfSvVgUB zSfi6W9Q0sIH1hc(HC5ruzixCAEq#44vOl^j8XMfx3SY_=QJn%QH<(L%Bdu<0nDmf?pH`g8e^XUxj3l)5%)b-^mo0n|eT zRV2eDg3{M~+A#OOLT_OW z0&4QI7!BGwQx@Y0%e3c!3Ntt@zyk%Iof64)PuE!qOw~u-Altze7buG%Y;PrhCl!Wtw--8WPHLAKNKv&Ya}W;J=RSA-~ptS()@jI+lX zsilT9jz?T0PehFKvigL&LN)HCX!M`33P~d|U7)m}CZ@eDIAh>YaYP3N()Qyip#}Od zRd}vky1RO6&Y3@IhSmdu1paOLWb-|9_(G*Z#X3(XBud*mhht=<@^AIl%b;R$G3bpW z6&^umKhL1@!mxi$Yy=+L+Mm8-HJn|w;pN}MZ0GPrsyE_clfB)waB z2zE{(Vs=lpqP`x!KIQFuX!bX=b&MxF@*MoeVrCq-q z{PmrdHF!@g{Nfp^ddB!XH?sX=wKNR7KQ0_xUQbF~zCNDreiOX^B9&^r>V9i|T(vp5 z$kGd+(4H{(0tKY}_bZ#4uH@f8xGjh8D6&0?yRYs*^O*S`%MeJsz3FT=oEMGr-~M}R zJ<9f3ZmmmD_MT!}`a3^Az><9vr4>DLkDjTtFql{&iN#lN5hg1`++SOOI|jA8*kl2c z*rW_ygLVfp%J^C3H~~9snfyhyT*ZyW@+Uh^K_eVQ#r2!w3MdQ&q^D1D;eC+6Mw~fq ztb7_UX8BntDH|n8R@K68R!2MC_%Yp1NT(W_09*r9S&QZ=t((%e!l>(y>D0TNmtX-T z|4F!*qc*$S@2R{l;;@xW=%G5K7?y~X#Xs)DytBw$b>lV3GJPV0S|xI|74ZOx65sno zgJh%7#D=Mgw@rkR^jw9d(zGog4SS*S^V0~8Q#9fdAw%lUf2}5wvNT91#DVFn*}|~K>}I!U`#pF%biYh^u^Ww z!AVRBiPy?jH${0aikz5HL18;Nh(_Ld0$X!gU!QrF)FJPqLKjpP+@G4)sE=%~yxbld zjUH=UBt zXI`{q8i)=usDoiBCxNM9H&QHnB?;Q^fj*7kt)e8skTH~q(NCR!jXxy+LQ&ey+0PNc z?v^XqQ08{C8hU&6-b?rG=Ou@WkR`y#03%rFYqOzfmKpU90vDC@Cx6lgY-I@2pf9tVd_iHR$!$@m|&(Ey`BszG0?jT)< zV+ibf4KcwBGg%pHYmto}Jag`*PN!uh;QzI{@1iVte=qfX zKKO#P7jsX~)c@kCK!4EiOfC7Mmoj{n^FVq1&h?FzOlCkhj;!0m0A0>KZ%QYv(VbMB z8Y@RselbqjH4V(vD2|;(RGGVCKM(&@Mnv_TzOzawM?FUr6O#HCxy%hGB`BrI4!iSD zN9`+HG$XQnpf!%Ev2KU@kOVns;Z^f9Z`AKo>Bn7rVQ|`ojT|qR`POfv!556|iCfZ} zEQO%BZhLL>r&R+*-jqE}d1px%gPcx?(@05f3B1HHd7&MTGv|X)=i?U2N-AF)pLq6y z9Wo6^b^kk9{|*lO1@f?ak(i{UvTZuIpUj)5Bl}ngc(bzUofF3C1Y1`H#zFLIQ$-W2 zznpPVuL2^uD;?5iOtk7FJgENR&b{9Dv+NKvDCk{cLA4+FaqUyjRLGl$)y_k{zV1rb z<#bv-V}{g|eH7g~M6x1Fg@n*gC1#`>Z>va((RVKdH2u4m(lk)3p357}L{F$v5>bmh zZ(z@?XzOTu#qFEsth)pE<0(TGG>2?IQhzDsXHWNCC+FNlgjh;avbK^oDn9~e<2th~ zf+1D=1SECC3AyCuHjNs><7i3MY9rHqTf6@o7%JPF%qpy@T{lxh@ng4et{@X&E}W3{ zw{ep9M_^sPUDx`BcJqM~HZ3Bqi-Yb#hC*gk=6zgzula@lMP^E|kXSWBAGMH4USSif z*b8)m^bf7}cnzeFbbc#KO&MFeMffAUb!~RAGrXhX=!3(3;y|AA{QV_)Rjmcbg}vS8}d5$oq!YvR&Lu%mNkuJ15~F#;~n zm=h}Q|NO_}BI!Nj!U!alOj*B0GH?Tz1lA`444#I$aAxUM4e`D9QS|TgF~N`_!5+MS z5<&i7H@{8k;jQrVyNNU~b#?~+CpXe+)fawT34GlNtgZdm1kDWieCd2YU^uF5m^QxI z9b#Gim#F;yJR%@YHDpziHGHQ3#Jzd_hvT~E>**`|B5$W=CAeyVrG;rDt@G$oZyQ#! zy5ZL}bpX!_J|=Qo2wU9(G%m&R;Ky0@ajJFN>o~l!PEZ+o0JqaV8M3FFjCP_ZMBs!R zRr@=7yasiB9+pC`HpsvtY79z0qvM95FQ|9+#~)6ElUZZ`>$P13w9`3eZ-X0Nu26;zG?0NCQ3+zQu%T2InMqIlgh30ET601gP>a+}k}?twk)-2J6zz&I z4_K7YgOjWXoL_)VG5slPg?X8lkn-M8mnKhzgy$B3by;%Mws+5W8hX#-R_pRcWykI* zC$e5387V(eKpg!KfZgVQGz|PGfNbdTQ~1%f!{)Q!Y90wH@3b@8WWJAX1&v$qx2>l_ zk0!%w{gML_*vhNw5oMhc1S#f;7eONs7vWq^6kR-BmB2w6e-T}rE+iVB?;?TKcTN(8 z!w-0#BSk88&cwSqq1iAfs%#v{F{QjPx;nXDSnDI4qoLMJ3d=K>A?bW(uDP$!?BEwY z^k=pJs%Zd3RYOz>6?6$7MrWgpwDMjq4z2Rp#@41WPM2Y0{(GznB#n6EpxgDBN)lZG zEtNIv_}nJWd$$dQvKB0K7PcuQHDR*2Q$2Rx>>1(}f)omJmL4@@Y=!FZz|CJLNl?W| zkUcdaY(ZiOe~4gkSG@yJ%#0UbyaT>Xyfe$=qpr7+xm+B@=m zVzb$;vbO2(Iy!{e=JTKn#9SW3OSPxfX^zVIyf49XnPkHAIj{5GCn4BjtMNi?S$9SN zZDs7&fLABM>#^@Iza9F~{57tLSlBR{X^Qy2HlDcGjxO~t)GMQq_d)slyI;J#v)>pT%Py4eE_z0)MVM3~g!i`82(D*6kBnlj%~1Taj5#dIIy%Zj*4EfFPytYkQ? zkQa+!d5nk?*+n63B(nSm&s0^+k?9yn=%py&mfSM{qDm!hGLoWLjBdBgyXA$Avs{H` z$?k)sahK$Fd0d2WCA1+^aDAF+dOvg*hBSBaa|+LcdW&Nsuf@RuTjrT=uBX~lmB7I+ z{sRdL!#&FpN5bjh6Q2ueU^H5Z!gz&+G9f$^5CcKeM?S4_yWZv%-_=)Ry`H7=8tLSXnn#63Swn{G|M^Z!~q3#T}Ow%Z2{65J)Y1b4UK4grF@LvVL@ceez0 zcX!F+?(Xg`ck;dWzV-b9mnv$fsIA#%r>DE8pL2f4sv*p74x0)&jsoW!@`Ed2HjdOO zQ~R^U&W7&5#KLeHbp`GoQe2ND>(X$O7+rgoh4-cE&;S?Lq(f9B+0x-SJ-7fvpdwGaT z|J%#Ct{$K-BMEp(0F26Yk4AT-ZR5?lvg2N(vSlAP`{VWCV%qmXde<*zvZNVCvTc-#Y`!qG z|41jWNt8xibpTu-=Qbj3zAGqpP>}BtAz(6DrAz47fz14inm6Yn^1EN5O*MqttSm-$@E>dH`38nu8M^>s+gnh zxAYo@Z`zG^fGlch*$}pXb?mdjL>#vCN-#4WOnY(xr^%(o@*Xt0*Fio7lw=G@^im@@ zU)&$_Fc(w}3zd(tp)L|K-2jrEPwi=H3(KGX?P=PqSFS0f#60r`gDVZMb~K(N17+Tm zYmj1$rmD?oW?nZ4cMz|H&lXB$(sbt!MiWC90-kOcIr!LtKTe(aKve zpPw@n)PQv6Bh(FnO%d<=LzI45!o-0>REw-6dt93HwfaB{_n1w2>W4a!Cm#HlXlmA# zzKSU2!>dV@O33!$8C?zeTm#iGK^RBDNew-w4yw+B^^4m-;#_o=it#KSkxiCkGxJ1o ztd^rD6;BIM6A~JqXvIt)qFZFA}gm^{8?^EKpuP_;jWfWB|}{=VAEn zG0;2KLi_nI`p!d%;P*otR|WST9o(aN1wK!<4K>FvwhQb{BWyDAyxusbcQ!U4zK|>m z#)owe25~|!){obT51F#P%#z-n!4B#UcO z-b;c5ih4rL^JFKq5nvp4<4#y>VGq3^dkI^#Ge!|~AwZ1z2SQMvmG~T_;-w*X0H$e+79* zj#`D-Q!gsIbOlqLEm8=bW>!t0GqWj6Nh_gG3wMdT$;PHcBLtU_&T3KdjgK=tirGSR zPWdYc3)278fkjSwrgB;$j1I#LQEFOQwwFfOBi8pi(4n%qBQl35E? zK^AV3qBd3UvDGK&Q$QzZdt^0EHZJr&zZ~Q1EPhwdhZHiZ_~{Yd?kGQAfK2-!&UMl) zepyg>+`w7eoUH^GQ}Vg1moQ+e2&e95Y#h0lCpumuNUv;<^hY(tc!gz(aQ z56qc==8S*uV;Xs5wHhhah^v^`c=E;6TB&Kd7_nLrO}WkK3x3Q;nCsgm-|M#SM(@pr zH%@!IO-|(2i>akAi+Asev;E7Ra8s|cmuC(_tY^&2_#5>nKnt>C91*ic*l91I+Nt-n zir@-g-k1Z`NNC`8B`SVB$kH{!VAGyFfvz*Ct;Kt=vuqCTa9T5De?3BZgXMFD)&4wJ z1^r!W1b9~4;=)_y7iMR|d|D$0q1Mck1fE&ek(-3R+=Q`a`ASr*oT(LR3_`|lO9aw? ztKOW8I_YCWMsR(c8TZk_B9~Oy6t&)y6HRU&%B!AgAOZ%+1^;>?Ko`~?EEW>qyx`T& zTr({8Wl%4Icw|~fEJvZ+)jzv|UYWC0D$wsbRO~Z}gBD6;rq&-*JHKf(r`bhxe_Bm) zv=L3K*bGXXR_WTSUEop9Gd}#gXmmS}Lo{3Vqh@S6W$j5?y7OjH6?`u7u^|zvYf6oL zQuN4r5^90FW^>*ywbbd$XGem;CFP@O=!3O1b^e#7W3~NE3Z+RUFz0Ur7J{66)<5j# zDw?0zfJB)m$lg{5iql3-to<67>aK*83ac(Uk~$8FQO`T$4}ZqS9g|e^r%N&&BV;OU z^2~^Qrv<8jGEP!(quph@8@E<^lLy2NW$5A7bohc);TI03SSWHSvxud(nzp06@5vm7 zYNds4C%q@wi6{_?it+sM)mdBdpDl4^l7qJGEcLh+J$yR@@LmfW<5xJUc1Pm8%bh8U z*I` zL}-_Il?`e}Nfi2-RDy;-a-}dyzr5*qwN+ZJ#li?}Is8`LSrU#pHOE?VJB37az5F22 zb%RTJ>)m1CcSfCP1(4D15^a!A^DYh>Eh$$>GM7Ui-iROeYx4IRG)qtuUMNMCI(2JS zmF{=i?RH;ZpVB4*Rv!LVJL~iVLZbzTSq1T{_lGVZfi3xRkfSpW&!*jueyH(5zZ`9o zGK)GuR%>rSBjN`$DU&u7|lYbT)yM98vZMmWKP=Buby5u{V_CrsM6&5GO??4JGu+6FEd^o9!Tj zIa(aD@esbTu~gSaa4u)k7M6JM)`c{p{*7^4Z1bq~m0ywTN-iNkR*jY!nBPNxq(?F# z_+VkuysoXQ%98d6JURCaYD_oJ#F3(ElWCwolbC7PM)4;Y+CjMAKgZ_}iDTuzs3u~Q zOGL!y(@I3>@kPwV2S5+G_T^@9QDB=&P)X&YskPAcyjS)vVG0v{0V(&#Dgyq&kY2sX z`EgtDlVApPzS{1mJxaHsNrcydzj$2Ed)%)=Kv;|kt%yAIYKI-H?pF_Xd83C}I?+eX zzT_cOMiF-60Vqu|cKs~t%ekI;s`k?)frp`k%7w5s;|6YG z#kq>s*O~D91*Ggkk}?G%UU9wDv67pC$J0lK8p8YuAwr5w;~AaA->jW0)u@@VGzD2?Hr&2YphVvgu)SF(zHcBKZ7q|OK z6xmk%;uNsKDB=~q8z_3q%NT~AWgl&XqhBrQzslOPtx1L_Uup14JD_GnqcOPlJC9$~ zFs|$#;E3)-L!+DbC<88B^g)EZ288xI!|@tf&X-@}60PG^=wIpC7r zhPbRYAAG0HqDx`&IK`DNw#0g4Jjw<|MX#Y-EiJC$Oq1_GIZtxNz-e`Yuc4sr9&FUG z$yU`C@FczlD^q4wSB2DSKEC7NeQLf~4Lgkk6?fjPG4iVE3B)*0-#%h{*S z9N*jZ$g}F)-+Ay#4;jzQxUxj3(@CaE0kt2=+H60cR2}quCfxlO>+x~T@X-s<;~r-O z-ey{`cXR?^gjJ14C_ztf{Pi~U^u^4YYZGgOzlC+|zsl$k4` zjyNmpT@y*V(b2YIl%7mSQ+oAP%s#P2EieOf7iacwTzc{DzqEp!&RmQ-!fmiE4aH*q zcNll%U^;8t3zjP8$Y<=8`P&U2xIg=hG0-{41C@e%&BA50lnZLU*Ip&^-)?)0k24=I z)DIR?{aQ0g*6Q$kpNo@@C$I%~!@yAuqk=DL3ZuIV3RmeOIk!8=ZDlvuTp+z&Z$z{i z6SJ&48ox+ZPI|4(b)pnu<(aU`EomJl`+?6Exbp+Iu~L*?Gryjhrz_4bsW>cgdmpK zDyQaE9$WCFb=3^Lm!m4*TJGkTR$;gqDs#^rw*-Gc zuWkU6lF`A4Ma8jzGsNsNhbd&O0E=lpRy;L^+d~oNj3ZK9&@oQ>o?p0TQb5u~9r6js zLS{->G&nzf?+aPsTKxWk;;dtYt6kEwfuvJ~7a^uvK{y+E8Ny<8+*C85;?U#&?Nwrr2NYg~TPr zqs83~;p%D14d9Yqak;fRZSM}>$)SDRb^1R9VBPMFU6zL$ga18!TB#W5Ib(uu0{4y} zPQq}kj0RHC*<0AssZ%*wn5hZothSDuSS&L0Dv?ZaGXF#-=n%4V*XMiQ)V-YP zG;BG4??av;FdsYE8YCg`wnPB{@|^$lwPF{-__&C`QYnv!^-nC>JRt5s`C84b)2n@l zq1C02VVGbnLsCN*6k0dWyGNVzb|piI%d>-v0V|&U^6ZQGnGWC9%%e{3HR_y zBQbEfWtiXkoOhl z14w*)|K=6z(z){r)YTLAaIw69GX8dNr*(JS*1W4~vxC(QU+E6Tz+hMSv0W~*ey|%fHIGQ^fkQkCJnZh zHZ|WNfH4hm&;qx8ih_(vav-n02Zh3Pfa;2*s36Q8J%~v*eGg@L_H5x%?gs`7vVA!6KL+! z)kG1)PH>hOz5uH@>_s1mk?oPZ{jA}8qDaabb+wu#@UP7(DyIG0Djz`&si*0b-D~vd zyan(wFqc0U_#w^wkTD6P&?~QN8{k4MjG1|4IUDcYt>|Xv8LiN91tocvcWU$Ac5TCP z1VM%MmQsSQUrI<05`($8w8V*&yzes%krlkV0^<<8BFk|$3$uk`;9EhSeaCQ zL&6q$$pb-5TtKS9r|{$11?GouwlT68H@#!=YoDGjze> z193HtbxEStunTkLt+Fyvd%xRcySBW-dA87iQ+2dQd#m5{hrko_xq5~31Rlw*j|b8C zhQS6p6I)=YWrIIjJ~DHRlAb36iT{Hr`?KdhR*c`8gM`-?cVu*S9SAmg%(2SojM~gko7OEL$%{rIT5tig1fUGpqPahqF5Oouk9*2 zPfZaH#nGaojkeZ(@l%~S!)O})&tZMCI)ua}U&?J6osKLiExI`CH^KM@tjC7giq*Xv z7bu+>^izo!o-0tz>R zP7-Gu7-PYx+3VdgdRr$%8?>M(ly6Ah-A=hIWBNyTkkGgfNf4${aDcrUC~Dh?pDL5{ z5xZyoM*96ire}Yb8kF*vsyhEPE#}ga{@i~KI;&Tfgrut6lQN`&K^m!42Fu)s@YKgf zPX2-JvV=`EkpRdi_~d-UVW`}a7rw0jwMk(xoLTl3*=jzL)Q6H61t6)oy&YfD|wJaoJe}2cJHIIQdW?4fCEo|d}TU#pn1t&qC zd&tVvwbGo(@MwB<{|Aq2ltEx`(U%rt(A+K`8Bz$X)D7jMvzzT?LVvE4pdWu5$Hs@R z>tn&@laXLTv{vTJ*~;UiSI+)(-}=xr*2jU8&I8(ou5X>|2hVws%PP-K3-9aAhP5YM z*_kQVDGh;X&aGJT#=Ei#1W>2g1`5xfhbuXh(EP5fycg>Xy?wSPIXVbF&p572vJM`b zqyF9h6Tk5fUnVRp{LhcFIcDR{0`$8_t!S%_-)(y|SfQo~1{QSS%TEm7+s3}w3K-vO zt#3nG`&S^SV2hN-ML|{_oie{^6zVIW=Ad&`PKi#0aTJKKDgIQdw=o+;f}vQmkl9=Y z^-4+`rWMRl#sMW<$fLcxxH`E?bjb(+>Ta&i)FFc+qdxtkp@GF*QlA&7PUP}8X<$5P zCPY)7-K6lIVf8<*uh=80i4(PIKnq!KPC z%127cZR>nS(r`Xq3@H}w44qo1>s(Hu>stE@{+gH;Z_p!^k(^b5V*Ns^E)ya})R1XO zK5$U2tuOGULVvl{;=*^;8~0)Scbj`cZW=oi)St^Bg946$vOBU%_P=1gyVCA;ZB&0*|76SN^0lSB?g~$jIOUV=>f3?sLY(T& zNI}Y`l{?CWx-II&$2-oeLA2zk92)kWYYoUtXusiD<> zmG#Rhm)+xfLq*hFdf2mxGH2y9PD=y~hWm?F}%)cu) zF)5c^+KK41yQc=v@uD;Qk)Km9FLdT1a}XOQL!~la;j{WqC0EHiIPrpL+BzS=_+u5D zG%wK~!0`f<^U+Yfp|fczm?BmHXUBP>_N`gMZ`nRTWBC&ejMv!pJFFa`dm=zFtjGAK zzm%w=zJj}X9tN?>e5tgiH9hrjjbJ@$K?-PP z`5z51O1CItfU=~J5Je);**)o>xhO&+i&2My)8CJjIrqqss&$jN9uynquEnUqXeB8P zUS*vHud0Nm3eig?&1sybvrlnN?HoAh+IwW>&NuCENUN##vF}VoSue!oa-10*~Gf|7lJ4A`IQT(>=j89(&$VERg3$z z2`eb41Q$9LdxG<0n1nTFvlAkCCG3}R*^hjosKw4mu2LCoT^zVV0!exMa#jnxERp1- zb0_D2Alu3`XD7Ywtg>j4A2k5A-vIgi#LojL6XLAiIJ_=SB*X;?&aP1gE5^cj7I zhK@E88Qi@LA-ir@f4rQ(+wUEFb3CIr7lq7tWT)eemw;gtP<=g~1w)ucCRfL$sH?&U zenO*SU-~#)c%v1#`_=xf!}lbm-DbY3>uqkPdoJ?h6awETr)>7Mk4_-}smkSM zq)N9vBX5P<85DGigrI_lJXrC5kS`n_%~wl8N`p&Wr(}8xWVrjvu?a$F4c&}*py%Pj z-WiW;Oo7~Uo#v-4b~SVmc9df_p6_*3u17ft32A zLB&n`Lw9$JjZO!o{*5D9O$tv7l<3gw_Z-`A(LC*G*RPmb%^Iv_4PZ)4chF~5e+Awj zx%DdB0MYGqv_I0ziE^=5!nNi^U8vQvZuUww*=0@5!j{imvp;+Bu_B%dn?>kKU!{Xr zW&e&KkQ{Kp;a(OpP>3r3wIeB0JUM{+CHeA~@vI{}6Vn&#PXrd8NhAwnb5}GO!AtVXHT}to^>MOdno%a4owtgY7Gfka1f23UX7wzn z!?h;PiN^7{PhRbzD?=*NhX|Z?kB`*XDfO;p5o34o7Z5Hb(k`Q*=m!e}1dXH%9&<`O~!!0oR4rhk^*(kxk z9zF28rZfp_#2k7MqkhjMdeJTaU`4`byM;@zS&n2Bryw~f5>^>mtf!v0A-fmZzhe2dljCYi_ZrvF)gAWOCQ5j0iAtDpP~I?d_DKp@SS+@9|U78Hk=_LLe|^fvPMyFWZ$)iwX2pZ z4YN~}KWCDvYi3Mk-H^1E(ny9!p>dc`_=qVCF_o2}lKztQ2e#Fnw%z9>YEa`##d+1p z&gh6Ts7jBPQyr&16aTp5Y@^cXy+W`0LnUJto<~K^{3t7Y6vl1edQKbIAjWPG*jNu8 zqzPO98~(>4S#jl@8rT?EOg`=MZb8fBq}Fcc6dW3K)semFtGO&^0hPd?ON;RW*}_WP z>0{MY`<|~wHFEHV%sjuUB4{G$|9H!Nx^XyhW1N(Js|K5{?X4mQ?sR#vP!Uqa2!Slr zXbRUESZ_MJ3PAsp5q()mYE-TeHv>ZsPqX+=(5-A>nJ$z`bRz5Tg!bjt+F!J3?$GDQ z&Vu%^@dO%G1(+Z&r%&I~LaK$;-}UKE%P>BLqb2QYfQ!`F*p)dvY6xV!xHDDSf5DOb z14@!Hdd3C|jh?etyvn3!vW;M-xMdX0DOQb7wilQ23nf>Q^n+C*8wuQ5BYFSv2%rLU z5+8*CL*sPAq)D~rSjg0TtlC(j`BfWsXUCN~FF$v8s|leY#o;3J1PV~=`KA9A{&QjV zU+yihIR}hl`^{0yS_ia;XRGNVVbN7AX17>UhLLT^k}vRoo#Y7I{cFRq1a~fp~RemK5I(5wzCcA+J+lqRhaJe;Kd1}sQFn@_S_p>zD?9~Wzm@PNU>U_d=_U>@C*^bxkK(IwS=}3|WuZOyO0dE;JZd9`pXd4=2 z#K#}8wI$Q_>Jg}W5AlKS*3L=8gNS&t`H5wjZV&`%sFf^H2c_6bEttDT&XZ#Xk>6-| zN2ASm^+mOO3qdj}WVYh|%RS z{RE`EzLcLsUDy{DXDv|q&vA6URxpKAiKLq05$?UH4w>Yv8I>O_B2vtkB0~Cx3C#>- zmC(c3@uj3(|7f5C)ZeP)@vlZ6Rew6s8|n1z;b3pWVlSBOku_7Kj=v&`GF3Eh?lp*KYS4rRN@>NblW|t#A!AJ=c6~Wd2GM_*O zK|Z}sQhS)kF0YSQ!5)SpMe+;5Xmh4bAAd%b_=q9?C$GPxbOY1G#Yb!nxtkkzL(G{Z z(4oAWl%xEf!bi(DjnE{r_99Y88#x$;rTy+!KR}C(Wt-SVE;TTb7nqYGhx&YiS{R4% zg09dRFtN$s?jE%r$Uz+*-$vx5I%agg8}v+ED;k`XBE-oOd#qx?&1moSOftgKSv1#n zhUZxGr*H7qqT)%P-(lVaT!+yTzOn_>E_xFl8jYWp@~9&wIk9|^h;hMpL-zi*SuNv-&UL-xnmdobDe#M`nNE7Vi_4Z$NcTH0?L3C*{KUQPHL?odz)|_ zDhXOvS~Ey$O7C91auEaAf(!sP&Q|IjVfcC8Zl_f^b#YR7+3_ptj$KfRMx2ulgA0ER z_#R(IQov4T-Qfdom8SrC8ncyWXZsabch|*yOWM$>?b%AS-c|#_CNrGR<=R;LErzhe zb9RK!wZh_OlY|WcLx@iW>h1ggdgq4=2Mh1#9k(fjkKVJY?ER(@N=|FPp@wMrYsv|y zt&9(^H9VIWzI|93tiX5}Vjc_WX%y5l*#nmojh0yE7piK><+MNuwHfOu)TiODNoB*h0z$LL{zK<&BA2o(}AT)cqf_5tTmkd3ogT;9OlvjS3B|Nd;w$v6NMv?^Qa)JVM}k^``u1W4?L8H2$Rb|8GFJi zR&ucB@}?}h!pz-h80{HnZAm$VCg)dqO{K(~4G2g+Dm+mlCg%Am%x^E zUrPN+HIf?eEdJ!Rix!2kb`a}d;wFOOA|RPTfHaSFH9U;0%HR%Nk`&1iE)z4Rdiy|8 z>9vBwdjTqI!HT)c@$x0iys}FbzOFs*PweVEy?Dy=X$?VIbLOw|xrfT36HBgIno9_@(H93%HbI7nT75k_FiwnR>pti$Ym}#skON}Vt-I&D>b8b829rJqZq|cfGLc6C%Nl~;m$7W zE6be1zT>^`j$N^mJnLrmEjvVKbz;{Ks(n~dy{yL1!BrYG{;U=PUV_2g2$&A3r$bG) z@5`LTqB9+EvmHs6PaP6!#8ibQy@tcgQ{)rSzEKgetNr;i<(Ts@%PKU!Vf&6;Q?)#J zkG@~}%&a+@ka8wGIJl;N!&WZy5TCrpCQ}$a8#=2Vt4@PbQZ|pR+YCdS^qD?fuC4a) z6b-&&v8cq0y?~GPl^a#^TYICosEe{HS*%flQ&>i`v{tdn81{S-!NUOP@j0QW&bdCu z$Scin1J>xc_bVk5T}=)4&CHddtBEZFgp@H3YyF04BckaFua87<;&zKLlI=q`SpFSy zStcokuTF0zV|KXjJv z5{#FrKC|A4Ni+gG3+w8_O6#SO6dCKqv+$C6KI`!T-}WFo=eqN>kUa7|9|#h#uJpd+ zX~BJ*e0Ydj-ycr-z-uox1TSdw;P;WO{K6wNSjC zgHS2(c>#`QkC;yJOeM#kTBzx;|iarW2eQi&T$@E z9f}|x2wE5$>8$S(%dX7=BvA8_%>=%Sne)&Lx}z>hO!5);YVoYWb{6;U&Ly3p{BcXET?=6}TA(uRHQ>V%N{hG)vg2ZG zk>%%%Fq)H!3#%Jh@Ppin>lup+xZ6g$( z@tYuHgOLM{=d&R~Idl&8=-oC8d0^S4m_bW22<}b@>znO%I4SQV{Z?+Fs0d;w^go2JyFHnB3@z111r;#j*Aeysq8J${}6s4`1TUa}%5TiZi(L=10@l z9MO$|oQU@ty3LPslk5lM$ECWa_t!3l^J`uZzr;=64XAFNJZS$>$3DT}iv%B{olx zrba;q& zuEV+3?er7#}TFU+b?^xf7OLFYh(pzzYF4-h?smF%#eUcmqJ;#XBnKU#lUf^g;_)w5V1! znMvF1BsQTJ9$zfJEic`kJXl;#N?aSblO@{ua{`#B+4=7p_35F!9k0I`3V&o|ydT-P z9nm=3=@b@LG3p z1lX_CeLbgGpR3+eI2^{IbXT^VhkPbl(%1Gk#zEFR*%tyQO?BQ?R{Gi9j-)d#Y87pf zFFb)zhf-k^BeEfj^@JcAT!qu&*q=noJiF5rlBOP3)hfM?{^fJ99KnHpF?U+VxqOvm zEQJbjJr>91x+`lkM!&A`g7Znt>0w|9u~;*(4+HZs)!|f2sHIg~x9Z?Y%pE=9Bw$kSu_y+8`5%BnFp-v;dj@6dg?)E=U7j%Do zoUQrT&N_JyT^$^}tX-T32d=S^k%DHaUho!t(rCk=Z>gBb%llb!webhvmJUL7#MNj8rjRv%g&lW=Sc8f zEGKrt>Hb^l$QProrMLEkcITV*i-Vgd_bog(M&}xmy zA`oPZ{iRyl3Mt1De!|xNxs)#ro*5(b&UI=ngW%vDWrbMVc7 zZ!Q^m7;dGf>trk{WQ^zrPwWLmC1oMxpyintpZlNoaAstt8LeXbFzzVliiK;Y?;{%w z4h^DnpxX`g$C}d}>4931~H0l|AjmXy@X<&8xzxhsc!|q+k;Dzuq z-!B`ObLwmAo`V<7(jLUO`oD2a50+2pY}@$M26}vaeO942J(;Qa?t1q;)TK2%<})LB zR+hEu`8(_&1JQHG>pbTy&dZ%g;51ua^_KTs-Ts))FURJQd;+5DsYQ0~v$U8M-RO<% z=V0yOkNxqkow(qE`mXkXCu#YA(79EJQB#Tsf!37HB#>MA$$%1p&p`6!#d?bT$&{QN zUMgCu1f(H}a8%ExkQcT_vu-MDyV~ zIylJ@{=Tct;w+^9u6- z+=V*ZW1}Fguuq3*{RGMUj{ZTAWmeEtP-&iEvscmA=(+Ky{&u3wdt`}6|5K4?? z#b3&|IJYc1HUkeBh0ni)+^U1gSw$PkMmy@_gP=EHI!)s^P!Mk^4sUvoM(?h4?h6ub z@vHV{x{0!b!oKjwpjt!WV}A>*LQ(FDKt2JZBo%pi^|Q+ELjrw$oAB*m5HXg~4Id4egP(sZJ<+$? za>ZAGaqcX^5>4l#+v3|+qA`t$AiL+y-}8r1ZfKr^&6nVj8s3>)KJm7p=JOK7;oYXuxGx|-L5{GS}W&a%mF&}(`n^U3!>{?k2xjZ`@8tVwdsck zyvxV7yWYBa%+pD|pPxbBwmVnok_3PIr+g-8CT3PP$?h+#sDsgnY_y-Ud1i;P!3>3S zahv`?H$mqPz4Tf%t6_RKD6RSx+6K%1$bp;C!3P;265^%8nFM4Y5gKlO87D$(h!c7b zG?y1@2H52dzj%A=m{iEx&B*+L0Z>~;6^qFO&P!GqQX$|LPp0Yf5d5NdqH7L@b;#+{ zt|F!%-OsPESfdfdo(dQ}70%V=M6Uq?s@=C>C=i9=i=CGP^eOdr?iGH-t@Qa=`-ZfXd`!W>O*i~cxzDa!A-=^}V!?vwrWHkh_sdMT7hlM#C8NCX^p_f$!zMRO@3)VBkAKSlO&>jAE7ZTQ9B=gf1Li8CLR!piU z(Vh{fPH5eUgnzd6=WVY^L_)`9y@UV?oIuzdvVz3yk-I-|BLU)U?8N0G)}KA zxs*<(M<(GO=2*zMJ zx3L60n+3Dv4TWx@G{HR@pypCKq9Nu*=i$3a*eW4iEM^AhRtWDp%`vk5hx(;`X zK%U-rN5bVVQ@U3xgq__x0*F49K5vc~fNep$35L0-3AS%0rDC_%2NXB{dJ;Ozk(t8@ z-_rO7;r$YDR>XU*n!_)$zpZJ@zs`H=^&Z9%gAm6N@sabEJwdqPK%q=G_nPSACuzH$ z8PUSz5eS9ka`i00T3f#5Udh*%O_<;0uz^bWkmt=^TD5Iz^G+_1@vvGQ^JL{M5NVeF z_o(@Mj9s(d1ouuuQp3YV#JJ-o}MnYcQwc}Hu6}+h2xQw zj8@!UZYDRFy>Il2cfmCU4P6b5c}STs68>0#mncC-T}pucmQKAF=0s*D_cvtU==A3= zx!>2dxm-9r=?T|NIu6%s3@K%aic(YsiHdn5c-X)TaQt&=5*j*mz<~F0Goas~XuY&S z>!$|ak2JQV45=5K{~o>qhq6g3@?53;If4aqtm`LJ+Qa|%WX8f1-QWImw!gvbjQ{fi zQYE#25F-EcVWpO45PAQ3FEt)or=J^OC`#jUpty3)Y;ica21L}6cd?yQZ5N%Oh6NpI zB_*^$Y=8=+WZxEg*$sijXtm5*T3TvmVPQCt%||}u=;GoqBg+vdK_*e4xa$3K27ooA z4KV&-(5Ubzoj6}>la3zQv!~T=O{7vP{Gp`O7satY{6{!MD*EX3 zbT{3iQhz#MQYMQ#X%CdL(IW|tc*_BvnA6H;`&)jz3sxI2xUAql)zlO;&1 z*O^3l-cE_z1B^rn=(9N~GwjH=J zTg=m%TUaDSMP7qwr@lxa|mrR zp2=0~cr?BJ;kA)cSV#ec-V9(zAFn*Q$NCe+4i1W`x7ZtBIq>oEp+*es0=i^mlsN4+ zXILUYI;DS=x}fW$9m!Pd^YN~L_cDUd@2U35?I6oVgbcrJhx2+nf&nw;X*WS0GByg2 zBV6LK-#|Ut(a8xT#tndYki|(z@aGV&fm3U>m=sLgljN%7O#JWGEm9c;3HeoMHcijZ ztGs3!tJgO))Y$C|GT|>BJpt!FJU*r_p-huub~#@);KSpvCQFjC8zE0Yj{&}fzFJy# zn|0n}L;k6&oguK|iV7&bllh9~N=?OymV<0*2L}g9zJJVa1O$Wu!~KaIdG0KegYm39 z&gZ`>lIm0snZ72*?bDfNaaEud=d|33u)Y5C5j* z_~`i9;CQx#yh)q{<(GxUQ2jm;3}Di3YuOH`NoBLZM2=>|jf$5lkcxhD=c6ohxnyT! zrlz9V%S4+jk2L*nKVw!T$-9@3@(L)BPN_8@0`U0fbg=h`iom~}kP*w)=o=nCa? zbY49T4M~BoH9I>yey2-kV&wR1yKGdX)L*HVeMnZCoh+cc=LQ#XO=U(V!mf0Sl{80_UN6&**cF0Yi=GM>EoxzofzqC{P_w^ zagw-AU_d3z5&||pfhO$%P1+N3$mLS#n*lC`*l4j879(PXMuU_=O)Brhsza^C0=;^> zYfZjlNqiQ@V1f(<>DRAcr>CZfeR=N}4gVeJdOsC}2Ch66C{nrYC8-(#V{NVNR&Rp! zfyaD|A?@MO z1~AD)H8eE~8X6j0Up7^|Z}!I$tX3LF0M{Dv-Q8X5-rmFS%vwcBE|jVAL|_2f7eSB* z{sA0Vv{pY96u0d#%KVlV_1vlA(KHruc3^Cq7k(DA>9|Y&)b(I@QqdGH(Oj_c_OQVK zbj*ME++Uii#I-h;l+~fBJaOZxTv0_OCDJevA?vm?_7NlIJRQ);@uyvY&rL^=FlJ&r z5>IYFh+{gOFPX3lD7#|=J|iWsPONu$829)?DJmpq%}`#tp5kSdP#m} zsF}*&sQ+GgPgRrOME@Dj6LB9XPI3R=RPi(gE%tBrkfKs%ulG~<&p@AqV5RrpiQs?F fD*xZ!y7K|{raKhUWOQNt3HXr|l@qBH()0g6JSVfY literal 0 HcmV?d00001 diff --git a/_images/a2617a0b50e674893d8d0dc94875b031801dc021d21bbeb63a687c2ae205b309.png b/_images/a2617a0b50e674893d8d0dc94875b031801dc021d21bbeb63a687c2ae205b309.png deleted file mode 100644 index 0db82e2a239aef93e81ab1c4d6c9dbc69e5bb2df..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 22112 zcmb4r1z1#VxAs`C4Hkk(sFbvHgM~OEAl;xK(jc7!m`E!rIVebn)X*SGNH+rvCEZ93 zF~q;N-}ip!JLfVuOUe|}%n4uv9rf_xoFkxDj2p;VjEcWgrdSBEAzFL)29G(f%E@x9J z)*`UEYS+*@>7<-sdrZ+*a`OPg-SDr>SH&VlDy542?*^|*gggvK>$TPy(veTPSFTD7 z$DG1$jW>x52Q}t$$ig+DuDvbIWI=wo!p{h|jk@{zs?Sm6^;2kZ_;%*W{m}y`l-IF4 z=g8sLyHvr>@a@X?_tl5s``NdQbnxxnjX!TSIosFQSF*Fx_^Nf-b01Tz!&Sb&M|wi= zZk*`QbsD6=Enho=c0a6L^!$?!m-_Fs6ck_LB;00K8oBX3nc4(bS5$x7ubisIvn}Ku z&o?*6f*kO=PN|8BiJ8dz(wwvoG1<>AAJ+6v@1FK-U-?+&}RV%=BJ<*O}X zG8XhV9^W*VZ=4;IfpUjsGDmuD<#E2l+aD%>@VzwMFQAq!tww zsYTb#BxAGE(%4+ehu-ULz%`guy*zT7c|}!K)z^2{oz-%R18Z?$#_Y3u}?s&|zX>VdvtK zH;%D+E4e+L@R$U%;)}Lbv2<`~NXYq}?fufF3iBL8l)aiU7K39<{rdG040-XnbLa9+ zJDCG$#ngO!d`i|jWSP(}Zr)s-Z0`K_;t<98^9gHf_HwbJswCnz5~R#i{++}}$}Nongd#%3-M3g_Nl zwt95$-rG3W*;EGkGxs~B_Lj*5F7e&F<4xAx6v;Q?So+HIE{A@Fj*E*6OpeccyGx#P zFv)ukk&DMK4wlLWD=8~$PdKAu>pz{x43;>AFm`u$r^d(MWVq+w=DEM&d6YXRQq&>s zB9~4IdsfkHyuN4oiIXSS+wPE?Hb?y#vcTl1YpkknogQ@!iPpi`!9siP*0YR_t`lr;>wmL#^7jg2jrqcL}Ob~Ym_ zD#|r`u+SPC78hrw>oO5mW!WmR5yMo!y*-!B*_fN5uIEw%OQdIWc`Vb9yF$3vx-I@z z&l^g;-V;(+y`C2n`^_`yy>}WK8W^@IE?m&SY_FvjW;!hmg)^Gh2Q#hXhMk5n@bmI$ zO_e2tkRF~o8bfsMklT_3L}~Uj$24}g*Yi%CIFWJl$|LK25fPCdk*S#T1CFquwSqIg zfB&Aemx3bee3bRor2SgDcA=G;g+<2t?#8gTa?-;bM$N)u54UnWmwv@S@Y7v*ve|{0 zKcBlaP~5rVTHfO_6|26qziI7B(v}StFlq=L!EFq=W$U@8q^IZE+S+CemAh#pi>na( zqt5L5TiR>&Q6hHFes8@#ex4&6Z*JM2&stpuxm3I%@%i;7Ci$l%yrOO{e~cQ4a(nV_I`=u!-345~X{_JZ-uF%wu1 zY3b>mXqMQ-?sWB|bt3kcT5^pV8EM7GJXY#i=3?wx+E*qTnb1s3Oxv({Uttd1&H9mT z%FW5y4b#=3_LA{5!Maivf>(J33>e$>>nVknaMQDWdC9dw^z;K4A#9{)m89ua7MSDB ze!M+hG9E0OZ`?|^FjTHx>a?ULE&b+R0QDE6#&Fg%$MU}^92`AhS5%>wu?w`RLmiRAI|r?GY|B31i^@b(@g^uB+8W~XOi&}mrJ(lRrvbg{%W zqIkf0ETGmUQ#0@0n>TMtmTNBu6-Dm;&WTwe?Yfc{3I(2gKfFHE$x>7<6GVqx(i*IM z7_5vT^Q?;PSyvLZh;8DIN2Q?k5Y5V-_W6iTd(_E`9Bu6~^qCzUN)iyJwQv@Z?vncD zk_zI>uVL;>W@;D8A0?wXX4P6>e|%3&LP8hjQzs0cfWxc`CoFp7Sch zg7tc{(D3y$#~{bkev_fcBu4TXo7MPIAeVtx)6z;CA0HoC{b5*hHCo78&B|)=EPXzP zM9kc9hhYp(WK~Y$7meuX=on%0LVaI)lywFYJw)jBrD1)m4e}}5gwLN}vh0)feSPxk zfvjv;czDmqM=__x(8R~Nglzpv*M-#7)Y^T#H`koVV$s-b(hKSwb3B)-npzq}HJSX= zR5xxy_=g2cE&TlPbC{>)v+H8~Q}p^9!$a?@olp?Ns>E7Y9)65J%W!WxSeC1OdwmWb zMttS&f;ECqkU<`_ZRCVc52+h#A1JnaweLc9iO1k|IG1i37jypl8dAyYJmrJGMn?5>>$3<>fS~!jI&yh3 zZA{ab)`!h<5Hu5-k( zF;~ll`O{UOrN?AUQ^=#CbDh3A=s{X=-P@Y#PFA2VhlIV}^07HaWc3|B2ogII$}Vzh zF;)&|D=SE-S`}(TR6fSMoE+zBmSF9S`tS?#g{quf0IakySL09AC9DNJdh9)03_5d6xjF1+rOKSlEO~1~JflR4g6|&`5d_ zvW|nb{p$F}FHglRt%3*aY8k?#1>RgCTR-Uc;%~kB>qw>5X-&bM5R1pdZ6OfQgM>Y?&FC)0YLOi>Kl`Uy)0u0Mbi-ASc&t z?Xh|pISfI9wSlzh0_Hu_5H(J5Q4pvK37OvX9vWk{0iDNLV&V}vAmO^!1~Xy}=HX0c z;ZX3}9gCv9?KuELSAyyiAgBrmPsWJYt+j|PnN+_!yS<+6nVFJueRoE|QwiqnB7FRB zxN~;8Ve5&>Nv-1IVl`de*!BIr;r%?hTPn8|N|^If4Vk0a&yJ23rkMuI!!$O6%sG#=P>C2KFA9 zgc%<{Qn8DP5w>AYK1QOd499YBsgv~_pmg)+1J;$hJ)(fvGkSY9*aZZ-OSUGXGXV-# z1wYNyDbCd!hVjri&mx}>H~kE*CLOYU56r=*oVq3XdX+E@2}mXa+@)!C&V;#C=hu4( zn;Of@%Kg#xNT(Y?KwpD~mkOUXM;Wb8xBmd>UC;uEW)3Qx zeB{1MtH-a>du)DkXc3vx0IaMA*;T-#?aH4?{KHwggEvE90J}?nWkT6?=k2Kv!%O(e{oN(Om`f;o3!U@iD3e^D^DJrV*?OYCUY}Qi zWsJmOtwJl^1lf)QsPC_!hHQHZi+a0JfA2H$R>*}&y-@&YM%R70#!^B6HQiPegVf{i zZe+k2|E&l*YdHt5^<=ZndXHL}F zBsQz1kXPLym$<;85*iU&t-_cYeKgosG?`%89@Kw({69p4T$Ubk*+z zy>(v8m`gphNgTxbcuqzdBhX)BbfJcz7i02;M;7G~xL!GGV-ipvR_F%D0p{jo57?Ra#+ zouBFkl3ZakbVtW}=_wTgT%r|O!07ea z$K2>wHd~J)o7#`kvF~>eF%r<{E5d+P zA$%_|sPTnK>UIAX&4D(W>NEN33)>HO06k7@kO1oIS-ZKqmH;t?r>Yh8)}(%S5ag#TrY`fx>z4;-(tHdHo%#iKN}j%=2#EByHb4y)htbO%iIKy zcHdYWoLF{N(b3VdcC)d`;pOF}c5kM28u)~Oq=b}|6oI4@@v$ca0?*t*(FE!oUQjKS zA1&9*eoIE1_C+@0uRV0R~g!r7|Yz?q=qX>DV{bbNyLb`W=T^;-=nf z+<&es*c)^e?O-!G@rhR|U;iyH&ZN@De~CGfisannEgvQ^PdI`lgcZaBC zh*jT+c}(#5#)~~F$z0LfJGE|kC;-zD-iI&H#D086lW?O?XNg55t)Vwr9baB6$$aSi zJU%$P=YY)EbLM}eL58iYda*;8t3sl8t=~7TqCKnY6BZLjSf&g8DlHFlA@Htf-dgr`?_$S~g zU|nmHi~si0b6XH7hg#lsYvQJ1-c3YQHO1}pL_`BM_J@kK$iR%B$!uOulX#EEyP zCfU%e*l52SszyxIB>Ua|y`{20Gm1zv#YddUt=FNsI@hd3Ab#dyg=tnV97EQ%<_8N>%4P`{AG=HY%a1 zhQHMH6n5|csSF)VrZFj*69>yG+3|Fq<%Jm>i3~TPItPH>5Z&Kd zEqGdgZenVR9SYE32!GrqpNZP+ zaRkh53Ow&R4yi@~7@u_EP>{Q+_@eeC$EM-Jeq6n?Q>hKT*oqq!>24oh{yk%NO@E=A zQ}juW&~+io*C~trJC(nD6$B}5(|%^b1KFCtXoxMDwr>9=5{s>)l1FNA9d)H z`f;Ayc6Q4Roh4TM#MG7OlSW}(wS71-R-Axn=N?8`+2h--)MVxuA1ur%HufO*^MJif ziSvD*$c*`)kKD8zu8`P7IO`u3)Z09oQ=Va4&&+^SkJv;B_*Zrys1Add%xZS zOf}n?9K=<=rexV?;Mpe)&>UE;SqYTA)u-yS2FJVrXSEFp%a1~GNed0V01^N#X081J z8hub8(P-T0O%~%(d zA3(Cn@fo*-0&4*!;2k>l65jZf>7?ufdOY7e0+i4Xw2NDN>vZ)j=aua|k}Tb>w3Pj2 z8qw+-fSK(GZnB$s=E;23Cf(*(jWu6oGuvAtFL7C=Z-38`-gwXPI*oZfL+)$7K-6^1 zcM6#k>?N#PldZpN-8Ba4dRf?Ws(b75|0-k59PIDJVQM_=Dx55SaX}zC&*zUJW9-A) zWf6?7e`PRLH4V&Zy`;NmIlpS@B19m*>{_qo86tEJLwbJWa@r&HIC^Itub(|IpaZoM zZxMAf6sc>g*nJ&@G}iOnU4P_l(X}z`nOz^kV%{1jfz+Gt&NAfNPCWRM6m{MV^&Uy* zLBcPI*T)(6kg7D|o2*iy)!>@`{<^;CLVo9W(PC-8i*FpnQL*IzTmy7(+~vwzr_7(D zzd%*(QZBdedkmt47vEKuWu%A&cFhdRfd}D6^|>5yT}qYP-P!yeJDcGj8Ia?CAZrLK zr4O|xwWNCyNKqGnK?GVv4ydngxQO0!|HvF4-)H+Qb$s#D^Vl*%77YZM5JrTvg5yq; z#*xrO!wT2^-eY$=Rlm~XSIkM|wWF}?c0DQ){v6_>*;GsHiNmwmgS$XaFj#~jV%zh? z_aU2?t%`1)q~z)X$~GCMvOHHr@#C9rU#EIaT-*aF5AjkQNPECTpEml5wN?_dhimSw zQ?~5GMHol=QCC+-o}^z8Y0)`X(#T928%_MC)JonEfQi|8NOJ4nCmSv7qZg{zxzUhj z?t1G63N^12LsY0?a;3I(YTV;X8TWeC+Hi=cR`NikUE#DzrKQ_|R5NxzjhC{>-}6aW zj>6;dGXx@(JJ@3UeY;yNN}f<@Oy_4?5-P7tH3;9k*YqJ>oGuI3qWPo&ZUmms45$;` zy*Y+=FsyKUUN?@pI8bNf8|5-foiRgS7Bb+m| z>bWyU?+Oxu07N}$8GI%4Yz?LUso{C#Fq$gGbJ&;|ouw^=gufPoq=mb1#n4y=RnwB!?ubC;{`e?*j57Z&S^xb0 zc1!m4JHHN!IZSS!2vj+B-;zkh<2LJ$@oibACNW+VtQ1z-mNNG@yfDQ?MG_XNNP4N0 zWbi0h#XT4Eg55KK3G+A(=E7i0V}J8%0#nd+iW3g|`We(z=JvuueSJ%#zpn#zhM!B&@& zK)mTtkZ2q*_S&7fA~#nFh=brn&%0n|0yf5d3^VWo2LGPrXhV2ziAzfMypf=(e9 zCm#7n=Qeo)cLn7a01g=oAk#nK&Gi^7GrR0<(pw0d-FLcm7qU6hnx0?U_)zYgoui1lO5|D3lrKpXm^5)Cro}H{uW?7MuK#u9eJDaLBP7mP|^w@%N3Z z<;tab`kCuTcfZW~uqn-0@OlI_DOB}x+5_~;ZnGr!?A8|y84J3GVVTNKTGZ*vS99;-99%Apm=wjMJlzBlbxO2;yf}D9&L98LYxzTjt@W66O+P$uN)Clhd`-Yj$5k1?4C}*39y3H5Tf_ zS(jhO3*U>7dwWEWN%hOeVP6S-!ZShzDW9&E$DN6|;BmCl7=?=ZoRlt0r$07Vy(FKn zpS)ArJo)DCy~XkY@gRk!tp|gzPmsulYcACZPc&uwV`13~ZO` zkMWA#OV;+s5M!;dub4ayv)Dtwc6<1j9BN7Hfko*7<0HD>rObrR$;s)j^sHo@p{(3| z6X&r#^S&05dw{`BZfbf6aEnu~tVpjEBydnKT-T;Q0fz{X+Z=$jpkT5lB@f`#%*>js5pyCi?M9<93 ztmBfClaCUpd7Ty!@4``fm5?K%*-3wp?j0aq;si`%H-m%EVL+1XFSaxOow0K@Lf27K zgSkh=X~4!iNdZfTa7MMBbg00ycToJ4Hit8>!h%5L`!5lC2)_>kX8pwW6IR-YMhYCG zBm={pKeZ8^golRc*Pb$X?xYU)h?EFge&J!q4=FCb|vO6UTU?sa3_+GeneT zcBy|&K`6+(ZJjp1(>7}lOF-E_e4>$BamLPO38h-wdzg_VUx1_`&ke0(6Iy?(z@ z;N+!17hUNq(fx@tsP7ERo0wUHW(?WWuKu92h7}uER`1w#e-8Foo~&P+GbGFdh&j)S zUE(7izp#{R88jGeMw5_ao87PA*w$;jyU0%_7|eVARG*k+!>=C$-jj9O61+ucPfxW)O8)g7zH+;ITq^x*WHYz zfKcXj4-)IXGa8M=wM_Q$Zg7V|oa6)|0#emlzj<~yfjAzbzy=Qh*ya-Oi_C>lA)I&{ zFBC4wN2%-YepP9!+*{|~U5Thv0U6J#a@P@YmPCm;S@}IY2M2#6hl3GuCq*&gWh*78 zR^pQ%Z)ZSG$%EONwY54m2kY4K0~!h5n=i&LYeTM2UR#5L37j%F4Qu_6OG<5xhp4Kk zTo~$mqxf)-%VqR3H!)P)(J;X>IGL(T)CX5tpQLZyn*!Qn=$WQZEtl%6qn9QP^u=%4KI%%xZAn)G{<=RO=LMv)l+c{P zyp&zJ{>Rqx#a6-Av9A2vKZqgjp0Fqk3gn zNJX;9mJ=k3Tz!^jNs@Ni=MVgFIj<8}o>nH`8IbV$IkP0>ls9jVdd?IS6d*1Xd69|G z$E3YoQji88f)H4dEsB6Z{Q7THS!`f#Yx{$8H#sqp-;EdEh-ymdMI4I%)quwg`IJGmgWiCGqTBh& z%cxa(9HuEdLFEldb3wDfc|inBQ-O_-v7k!FUbzwG_%;s4fZc=PoP|6Fx6&AYsPx7vE@-!(2k z7MFUO>Lv5f$^EDhq_|Xf{jysOU?fK&C{eSB=6Q~!+*(NGrzf#}yV-KJl5Q+yK)~dN zd)j~5?a$!q0X{MReQ*8)mr?5Mbz6hnt<}M&{UaLzm~(^OwUSHo5mSq2HW97})rkw@~00KJ8H-^$%B}oqvs4UA}o_PE`^I-xQ18pUitIx0NDTBET z0@mxY?2;lAR<@FQyG%d6N?aYuEdZ02doBQDR$52ESx4XK6~2d+X|4%L3zBH)ty5`Y zoiw)-d6{iY6eOZG4fTJbgG)T0=pQ!UxI!9ZMnid6Ik8*NCFRGTc}WIkFP?en&W=aK zxb@D?%=c{h987tm<)w{Zj%~@F{qly`&$&+t#NbPlqv+$T1u)P-8`PxD4mL|dT`aCg zxK>#|#$rBi@6BGVBzm}yGS1cJ-B!_EdVMp(Vm3czM`-`%Lw7LW{6$WeapdGh{{E=} zyVh>VYp;Tmu^uH9#>e8z83IuzWCq8ssYb^+((pa=heFGcP&c*8%D|8i_U!PLj=v*y z+Mxb<@SrXshQwXc23`QKlOW+n%wG?MmGlpg5iener$oU5EJloP;C4d1hP%YV%5JCu z@(pTExQNI7rLU~4oDda7pT)$+&TgJLbI`>5b^rrtJl+g|Cc3jiHbKKavX6lR(;UoS zhz|iQo7sv9_XIYhKpQdx&M{L!8nvMF54!33_%)O4{@n?F?>QjU5Njx~K!W{KU^saM z!Tquq{SBoB$pvC@5g~QZtkBzwT}?7jVduHkQ<%Jxdx`d{<(0m~*_2 z=dSP0hKt+9nYwV0n&127XWf^okRQ8$SNHtz1%R0{;BGrh2ni0pwnBNC_1e}ZGYd=M z`h~VY{)=}Ke|lgGoj$l*_*~uOvHgHMTVIDq)BNH`ill#;uRCXgow2RS;KRyYQ$G1? z^E2NFX2@0;H+{+(TbR*e>n^qvkO^Ue9`8AR#I3^L>~Ng z=hSg}gJYuXqxU!Mw}lNHu7PE!rvR^a*?nRo5PM7(ST@jvXt zhbM#Jv#PQLG#%bLm4{SDf*-G*0RcZ8G*9E(G^Uqgc>?XD_?98vZ$rr$ipA0oOoBlP z?uvq4E&o@OXdF~PFkupga^&UZd%iyTA>8v$qxyZ%om01Dq-jhgVz0sp7(GDD1u2t?DV~+lQZRnU5X<~Wr4sd(52*$Rh%Q}_ z40w{)ag>yl>=3E~o^|ukipJ5H+cW-OpEESKZU&AfsJ=~~YhO9j*6~FaVYdZiH0we_ zLK2{ObFC}M$at8pmN}}yU~u-17CFyhS_+%Qb^Eu%=em2&o5*!0E8s&}mBFLU!V3Hg zFkH$ISF?&neQ|MG)$kG?>c&^CCr_R%a9q&(l9-qR9u35jC;85uKzuNo8-ht;e z{q&wAOlMTv-Pp+}q~Rbw;mZF{@B2trDen%01TK)!j~}l`G?|@jPN_L5afNZI?0#&7#+Gw8umPER2FuY9guterI9nT~f%CG5q zkgEGuHj%rY5NxgaSlxK*+|tNpqsA(H%Yh%Q3pUaF8aD!Lj_Er&ay0uecn_Ua^i>P> zW2F0QpHj`|Dy?jh?T4bnL8Ip`E5s+5&xhza`EN1mJ$xx5??S`494Aa_ZJc(tdr7x& z#mA{G(vvy+moYD`5PF5?hUcE!c^dz`VS61jf5W1KEnEeBH6I)?ReE62l_bsc0b6pk zuz1i4VNJmEYAMWz`tZ-v4Knt6qe#SuSnpsvtC!VNy)&2FBx{py~Wo(phOS?dX5 zamh?CqAxGK8aGILgZuQGpXalnKDIldeyZ4Q&;=(e6gRZ0O~8`^1&6O(URb$I8tAcn z1#teGhh`mHr3-80^+K0Rv)?5q*9rRC4xcSclfPHJVIotj_9%@Ik&#_6!_F1!PEM36 z%$s?-sLHJ!h*T#9c`?EO$VDds$yu<@kGgx~p9rwr6p#OtHHFXpPp~=jweXLpyyw-; zFHlUFAuQ|%$u1mP;T;9nMzcI2z^>^{q05Fs?0cJTx{-7(!eESbAn7y zJELbO^0Kjc6}&%$?*&>%|?yA2_J2C;yHp|ZQcT>ZTLWCqfC74We6{aHE(wiX zr4JEDG2jJl+braS7rsYsnr9W?L#Qw02-N`P@dt{W1&H#R(E4a_XILHs|)C zKVb%lUXg1rBH&QQLCnS=I4CtVSdd=Bk^4ZP08{B#0VK*jLM3TY3|#k2rL$2n2a{0vuxOvsk(&ezd-TGx*_6Dg*I!gS7m&-M) z)d>2m>m+?YsUaQl`n=X#zf#TYZe6dTN@M8SYBqFUILSamle|1i>HX0cdP_h=v>LuT zGBR}l6@OfB=lRD0K`yKTBJ4^kTL6#G{o+PO|~{3@*tHZ=l1OMNeWv==d|`D zf-z^Me@cC#oMv2~uCbRXxeh!}zFMR(Duo3zE}}}?0y}}2wjw(Cn1-pEiP^ezL2%HK zV2LzosOq?X4OWMx3nlCAO9&5mlkc_8JUSRWfC-YA?bmL9BvYE_?uO}%7;qE(F;!o^ z^A<6UBbff}sY{>r_qXv#8=P2MAvomN@6n zh^7szCcpRTpE>isdKlUgN)~VgemCMgLqB+nx!^(QmP~|e|D$d6;^d}nl;=Ka80p%( zY>9=bZ9S7K6ubb^J@4iu zLjsykO^$>0ip&e)pD?ZRu)7bTp6^2V`(ez6DG+wSWLf8>+&7;iy{DkmJ8Q5w{Wqqc z#<33*Jd_q@{*BgL=SF~(W=n6voT`Zv|3XoFHN)19o<)ba9`;oAvgmzVk?X{#OrXjh zJ|&$cPH>9eFucxYbfif-`HbdwgbtDa<;xIf7BOHe(7(u;=ZP7lv!l!NbW6(#YSkfs zP+H2=kE^>FUAM_!5uKy3F*v!ycE)nwPDbQ@CL3RqNWYUqWUZuH=&pOEtPo{(+UedY zmx76cU^VKx;~*~}4IM}y$8~N~+>1j;XF-HMEg8hiScF3SFn>IzZk>z6F9527^lUO` zihB3>@7K>O<*as?P)FWF^j%*Z)CQAB zrN>sIzF=>1Qqn!pAgiVzhJdB0Bc(!!tzpdE-l9`3uOyhnq`tM&OvncL@jE;g==?O?UD*_DHqXu3?D{5A7NzvkK_%*g6`T7yOD-VG+Xh z)I^i2g-dd}D+c=lGAGBB`uHBt8Hez=Jsulann@Fh=j~B;AY^j~v$w*{^`igX;Uchaf1f+$(ZCd6VjY* z$zG$oNFMupi+SaV$IG8mPLK>EXbmg!h5C&=XI#Q2GM)uMf`@dF?u5Yyou(7lIB*pG zZ~^MEW#w>i@9SJ&C*kZ}6%GX$A~*=~c5CuwH;jQ`2Dn zZy)sKrEhs2`Xe{(^qW*h z)|Okp7>*Vk{>BADE%#4fQjWJe$`U8*-{)vLLI>)r)QK=8QAK0BdChUdb zc2ROj3jM!Kb}I#X+3H|@K!WPO!L$G3n6vkjLv)IpW49}q_x$-<-a|XcN$#?E1gr!j z7R3O1DLuNNt?lc`CpDk9Jy&Tnb`SB=f)c3;{y!$P-Bb$@df`Yp3Ee$!F~P`@9%oi; zIT3@Ht(_f+Pe@y+IY^U89D@XC5BaUIn&wabX9iUhX#`fw($TaQska&|nW@~HtF-So zO@8BGi<~R)!b&8uo+{8!!HJ-J&!|^! zhasJ##N%)MNj@4}zv73tgi z>>j+@PHL`s$8pr$zl%At&gPQY4HvWKH!(WlE>er5VEca2#RZ&fg+zd%@CRp=$Q*^O z7eKqyV2gjN7=4pW&PcO+6re08d|t|P&mD%*Z1eXoUmqXEhY$Vb#TNM2!NCK9-s6-X z$e0~d1RF)E{mf_Z-D+MIv_N{b7}1CRI`wF{0`o&s1Q|3LFl0$3f?;hIpRNBdJ9UUN zbk!k7PJnM9fhQk)akHF=c(a~F|8Wa3z{(kZ{^RtY&N#6paZu50Y>S(OIFVBx!-5Ur z-;7||29n6jr*7-T*3PZlo@a+&+TOylgvs+v0-|d!$Le-Ga>)1A_6dHlCuMBx0Q=-U z1Uc?Bjqs!P_Vx6OWl+2Riq@q%;@*D3nL7LHh=?d29uiAUNSPo74Ozfgd~b-6#`rM$ z1G93~b@WQ2qfqOYevgVQvsD|L@A>p-TWJ9oo-g#Z?|gEs$)5)uMa3K4U2>{dCTvdm z8wnR^^|k7}Z_8`l(Y#dJxudDx*Plpbtq;c*Bq zMtQ>`sz^(F070i}3Yu+uz+1is*w5R+0QocZMcZ?pRYxeNq3{Z2gogO*K=Xm62a5oE ziJjj+o?x%QVP4xXguu^bg2VPfaGd9!3*rm_I?xq-3j&^dJ6{#fz+pErpiILjJ$U#q zl(8H*97GR+RvA!6FIWzhiOiozs*6V;4!OguC~#f|&5;7>=IekyK_)bG@Tw>U@8*iZ zL8vJ1@i&FWO&>qWauwf2c7kY;Bw3uMm(=N~%3A@0$Z^u)A2kIwc{*IyW3;Z%ddVM6 z2`&EE9|SXXiod-fJ*~O^S$siyweV{e*7jbO_mB0+yLBgXET!5wtAy|6zcQS9Fk?1v zSkt?+$0$?Dz%sXX2-S8j;|0m6MxcVrb+C|#O>GxzUN`yN&`v{u! z?to>dp|uqc1@`S&UN18Lf3pDuBLxW{aue`~0!1E-^z6)hGz>g$8UtH=AXyJuyG_3C z#I8<;_0y8?dm9*$=4slus(6QQ9G z>FI`M{iM$c&HC#!yw94bpglCHN)Rp(*vj2Sr^-$M`B%`$T!5~ptQtQ`^NvLHCwbbN zNALd2E!0}A59e`(%~u>??*kLW76t_(v}MxmLaQcXAfdQ1FSjc>^!_L#rs;22LH}xnS&4O>W#!Z7 zt?l?awHmqU5yXiDbnL63JNWrSUg!UA%mQa27FvWBD@az|U0sI@;lJsP%KdU6h%VxM zjGofytmFX2F+?049eu2Q2hdw^a4=$ZmzVnkmA&8l#Y>zN`Lk6B(i(#7U;wwS4z3Gi z?-9gxu?>I#JOR}s2_lfAkca)Jn+w*MDLlrif|&!~$PjxnCMtxM4C_LF0Z=fC(CThK79eES5+edp7>gu6;MCdp_>|8xKRo85zxeua z@t|M?iOLtXrCdt2adtu=yJ;-tn^FMgEJ`}^B!`9(shM=Vm(uq6wUVMPaZ2S6%xJaH zttGU2!LE(S`)6FwDa!GCy_$RP_hsV)3jQ|aq^ACEpf%ayYd7EAETnP2tGb@SNAwvo zZeciRS^%`Pz~lpY53JFAp7G<1oS^J34;t&)`dXec(!3`fI(KK%(73yozH~kXQ_HhA zA++Bl|2if|9NJo+^yM%jZXBfJ^kr+Z0+tJnw67s1Xk=>-h%ZPUhTS7RLnprp^a}X; z@UVPGi5~siA6779T8H$Nhj(x4tN(}LM%zXWbq$R9$k3iijS8)n0%xu(H1!u4HD2uQ z>DhNR0POH25=@pTueWd94d?#fPQ!LzaQH#SVFA;R=iZd(8ngn;f-5_rOfTE2d|eIM zMyLeoW!5sQs6Puw-dqK%xHUA(AQTHDtDvA7zzm%u6MtLwez*K#r_RFk=i}wgcUsaz zE5U@ZOR2@c5_Z~u0SxHv?? zHVrB-_Sw%N+)ElDscqOk3E3N{hp$O)BANEUu|pFNvYRWGbJphK7Vd8w*y|sI}qCC#{0&? z2uY~X7g=w`uT|}cOtA?}9jhpZMt~AVl195uXdfPsuh&M+6%6j|Y(3)*#5u!KkX++wU4-5G07JN3fHy5?IASY-U13pBM40CCoyPo<4++(NclG z1Vx1UU&u-`D;^MhbNrOFR|YtK8Gtc-muE&D@#-2%e*5RG_UkM)G5$1V#simeR3wea z8KR*utGKG^a2-VoPv8O6P36O72kP;g#-AzFjY+PBbvln(M+7!}xSSrPu=elei4n!@ z$P{DEhJvJ8Vi+`*i6UB-(ql*R$x<_T^l#~v{&24}9&ik@Bw;1R2EhXpYD;kRGzv&` zLM-2Mi1)?|HzDk!pJVU_B3XeeAr7|3f+m>j;F?g^#}t^E3Hu>Nr+j`eqk*4o9az^R z*nMdD>frX=k_D+`4nPSWHs(o#=#2aMFWRpXbVb-BgKg6tXk?^gdT(b+${cA@mGZ2J zgUS7GuBdE+cEIt^|E%fb$SM$q$i6(kVrh{}WPn<^v$GRgg|4H)E!+)WVTT6R zDEl)qXJM4`0 zkoS{J7qpU5SaA?q^Ay1u363hm9_rodAv#(V?>Cdx?21EF2Gkc9bNMY z-#qla2dCy@S@6^wzfx~tvFl-xc&M9oL7Y&`lF8vy8kf40~CFVN< z8{@ZbOMZ!ti5VCnf)4ad0hxu*9WoM1jT+yb$9!M$>0GSG?jLLAT)O{L$x+{C__1<=H^r*sxK( zJUQx>o-r`M+EVfO1>+GxPiw;B%m=HXAVSr!ulxytNROlP9x@Zex|-akBMfa7|KS2H zCX=Kd>$Bc>(TsTffA-I2>#mu_9H&$Du0-5D{LlERs6l;R__s~^OEf*5`|jnuDGr*h zyX~zt{|s(R)?G8X{VhL6-R#`<_GRYMV}^IylKe^opFLLF3LHvCYFTYL4-B@|z@mX& z9(d45iS{`GhiZ3No5##n*dEeaI<~DJ*s1{TmD4`U;jlyzw)SZEezkwVGnT@EhjRe; zZLJ55h6BeXGC{k)4d9!tm!&`Q1s#0`TrVF8oK6Rw&Q|yP_Wdm27B%2Ne5=j8w)IC> zLAI!Vs042N%Jvm^uolSzH)&*mi+NT9X9xX(CF76x!1LJRn%Q`R^77W*1D>u2%vP%o zg2&%Br=87OtI3q{9C=03JN@OBF~BwOSN2wy=ib?|@uD5P8MJ88qOduN4d2d*fR;nQ z0XAdyW?WByRR0FJV(B_?E7ld@N*cG{KWglL*7WMDaxN$~J__90$6yU?vgzM4>D1TP zU;ll24q|~YaN$4(a0=kpN&mVaF%4QraS3$L+e<^0~s z)K(hG%y&)U`)vN@PmSt-KK#_4IQK_G^Vf6C&vyRM{k=1y?QzwFX8jr_M)uk>`U>hVfGBOjmujLkS^V!x#ix;m29f1W}w!0O$QFy{P z(E6+gb`>8sR09_mZN0Et?%}mdzy(-`7Hje+c|1`Ne|RxYewoFiO>6pUcPRkRvjU!t z1?pCvei{@RITP3v4gro}0Kv9-aqYq{k6%X|Sz*1>q?_;k=!&Az6-A>fiUx8;5x#Ry g;j8J;j!6CdpK)z%aJ2j#aqx~#Pgg&ebxsLQ00alo6aWAK diff --git a/_images/f0b777515a067bf92625a6b5c7fc1d6f53803b2d1d4a45eb577f801db4d909da.png b/_images/f0b777515a067bf92625a6b5c7fc1d6f53803b2d1d4a45eb577f801db4d909da.png new file mode 100644 index 0000000000000000000000000000000000000000..0452a40d60e175ae78504e6eadbbaf2ae6e1c058 GIT binary patch literal 32355 zcmagGbyQVf6fSxI0RfSgZUO0(PDyEy?vRE~4_v-To)rY*^Y^`kn3_k*{=B;f?)og!kvEUf*Vm#H zi17Y@1tdb?uwrGfuwYnNlFBMrk%;GS7`|vhgfgWiRWP1wC}YGcVdY37QZ*<16?p&r zJ3OVGdyB}scxKMuoWH9Cs*-OvyUaKQ)>Bi52CGJ3FTPMbr=X&uLdBFSK@*jbkjSP* z;sL*Kl?moBv9MG`jUB|nKj8w~(Xp_w5OM!+AFjD(Nk>V^%7*E}6jS-}kOIW!;lW)@ z9mLhb311*-KUP*&R_r61galC9QQMp zwSDB6+3RQ-8j7ZtHew?Z00cJjm~*xAm!8?wq!(9-JxTil8q!O%`$8e&&!2Z^`!Ia4T^-=oM}Ci&ep1BYoJ@RBTE1NL>lscJP*G9w z2ZkIlPc15IAu4OWAbL94tgUz0zuor#{0T%;r)O2MYX`=kQ;p%P7>-p_Q(Fqa5dK>z z!~NyUm+whQq2#_-aCwTUl}sWIOAz1tb4~R~$4Pa~Un*HriJTUZ3g@F`tq);B-WNt7 zs6h&Q5W$vK&2Ybci|4vKRb%V^aOW9Z{9(FOAMUgI2MN>)MqaFj9L+L=e9bblgWre3 zf*1cx*$7@d#b;M_W-iwqwY!Jg!>#$>Jlzq*$T59i!K;vy3b=JnmFSx7XH`~Wm$lp! zcAS9t`s8L^U~B(7{9t#erM{KBAS%6o-yWkRi~{*rXHR}}c^D;d*o3nWtCMzcV0$_h zYwPRFrN0m0Axv835b{q)aM0#+jqKdqOc0&YKb@dtW@S09M(`9~q+w1XJvjg~IuTdf zh{)r&yfiOV)|M+O5UqkiIzYa^z3c&}xQ2xcLcz?8-uiIEnC5$9C7&ip*w@$h6rnEm zW~hsJ@Rd^|ehPY4cAQL1s6E9v0wFIh5INXQyI%<2?p5V~$b0#;h`|)T@i7DjK0ZS5 zCT(GOj7Qg->C_;v*uiSMcoshe!0cN|MO_0{&UdFxm;VIz4h)FP%fIlt*b9By(xGG? z&3z%tLUfS+uqOHI=A6);LLOM9jXo~b34Cn>W#(tM?J=6<#mmFRC>pu=48vC6S=^A2 zrpP2>DpbqR(9oxq=~P?#gQUCCfgvK{>B$GY_KQY|j+MUP|9cN^%fA$#?$4)thlV6U z3gh75IJ(&_<1D8{H5&Y%Nj{nQsRnoh%oh^!CS#(Jo5#G05V+C1`9@b`HiGK^@=71Y zb9h-pEjnL9ow|$+ngLz^Q2zXRgRoRT%Am0es|CrSV z19Mqp41Gxs3q!S?twu>oO439%<)Y%`#F?3y$%LKlOrj-o+f_c}41P)a=Le0P1MpN? zvb?4ylCG{U?#CxD!vAIpCKhJm5-PQdrB9z#wZ*tsQFdxI8K3u0noz$>e?(-IPbzkYo-YDcS-_RagS z86Vt;0+R6|PqE(Pn2OA6i?ZqH4_amidvIVNB@>hUJyI%x;}8*rfoNE)Rq>~C z(3ab@D-5r%2yx8L@BOVU}E=d=Af|o>**HeC~IUs;61*jvxWkCVgZ4%6V5B#h%c^4KE0w0^( zoCE(JszT`d&kNhNBY>TwIcciPF?^=j6$LzBuxBtrR`Hd=pKpejD_J5h`SeFVzWT1K zwvnX@)-fsk0;*=hruMkFmuYdor8K>|v&~q3VdRe?oAaV52Y3!9TfIu?v6Blm9xR2a z>6sYj(e%Sk#>VMhRtv*VTk~#iP{u?4ZAj5{4(kgJ{-n+| zV?FH<2`n`{r$x>#Lo-Go3|4E*LQ_Yz3+9AU^d%4R3Nj0Q2iTLM*Jf$r(Fm11ucvc7qfz^$pDa zRL*;D#SsPHxW2N&7)e%9;cv0o?a?TC@ZUle+<1k(qIz3cBtASu`1%y{ z;rC6sv>APq+OMmtCpYi3rjOI&;4x{Bh}r*AOqHHFCj0H~aPi7~HEyS6bWy* zpHJO<(GS-@h=9huv^Ar; zjrZ}&bdgYdw*mEK_76qbo`d68%tf6bhxk1mhI=h;zkOCwE6MYZal_pS^z_atf3YDi z*AgG1_xo`VLSj^om1OY zVbRrdNrXNy2T!ZHwQVf5dFdUW@2ndt-jup6N0hFH)jJJE;eLk6-I>l#u#0`|OHwo@ zS(wvjicXimJ~igcUo=jM$y-U{p~^9qf9$c+tKQ+>xAwa|VOdIR*ky9ooj+dI5xh8m z)l~JV_0JE4kq3JLDZfTI)=#acCoOUg(>*gEklZ+_egKwFd8fNcJ1fBjZ)A)(z!)N?X!hl$4YvYxX(gLAcI?pxFY?^gkl z{#q3Cf89wTA=zxsS=beOgF6U_Z_Yak;QJXA>fI0G$h2xJB2HaGXZvCmq(=}SPT>Q# z7tmMFo;j|8$_4vB<0mEa#BW@+P%xC+pV`!IEBcywzSpLq5)Z&yvo=7^Pq#9@bfKd9 z@dv!A|6Khf|97^GMvJMm@vi#q=1ItB3#8iit6d$hW|ArUiZLsekdXWfqh#W^XAZWj zm@;z$?x{58aG!bns``}?k8S}}^575RLT7ga3hqVw5D0dpQwVie}TJYz*P}gFR2B6A5|H)M3%N?%*JB()Y#=SwBQyLW?B%LIid=ix?1zlMJ-7ty*$IZ)Jrg^URVP$OTM|K}I>7;12)h?OjJ1HbsxC1m zFyXafm9M6q)SFkKP>{Rc#r2&(?^E*oO-h<~7eq>zGV((am?jjM2A;2e^qsL4qVR|? ze8GnBMTG)5Fo;p^!y6{BJaZtJw>v}UQcQP)>s;{X>mhe)+YH)zyqQVDo?o&eJmg|s-$7f0ifW7w z1lHv`b=Pm#)n3IZL9QJsr51+F>IUmgB|}B6d)?!U(2n`^;wmPb-ycovJVC5!1+iwd zlCEsB@wso=7?aWZf?x^@gR_T1dH?i3WXkop;eh0y45cYe*aI9D4za(`v7#S=2V`m- zyVkILF|2&4_5yN{&MI74;ws2_oNT96u_-$lS7c4kZZgAdZvpj%#f9%K_Wv1<@rQi~ z=aZ)zBMKlM!?S1}F7Ak&L`FSo`@$%u92oxe1?iIu7a0t{78Kx9ogExruE2=i|8&E+ zK=mT5@BGXT$F53$_$LeBKw-VLGj*eG1vii4WhR+@6e%d9lG&Zbe_lEJ!R6jJ!E*gs zDMXw)|vsu7Rgr4T`dPt=jsM*%bORNdKfXd+X49DsCKCGP(y#0K_ za?Y7>fJl+n!1qBlvTT~XLo&4BRj0Syd-C0%NkxAjOGK2_bP9^UOGvDJ07zSUa_a`$ zmoJ^G))o~*Jj9W5EgCdqS{qXsQ%jxKa=m!lo`?{sQEU3+t#1Btr^+L26DskP*on6> z+M>XhOsK_$W~0a))t&*HaPq7ekio+`Mzd^dslD zsoE=9bUqqB@mb)@z$n)U3#sk~Up*d850*%ZI^b8zy6U-lk9f zXm@?T7wFVfcLG_^ZZWK+IIK!iiru{|LcB%llr8BcPPEzm{`#Xjtq2b0&aGDQCOCmX;3PXW>Q&dC^wTKl)Lht|3x` zcZ3MbDxy6Cze~bnDl3=UiH=FD@w9sA5agPU4R@Lmor+a*erK#ejrmrai%XC+AfGk; zW=uWp)D?yK74FeR>_rgWwGt+^sm%+lg}hr2`@8;LY7}t`V_-##7=abGOSvvCkkOy3 z&8L$!aMsUL8`{=h3$e~MZ1d%aC>X~ zN*xhTxBn9vBk8f?L?I=iM$A@!oJmpPujW!MB2>uX`5?hF+pHwZ!LyL2E6Ye@M&j`u zG+jtM2H9@o2vsKyl=q6EF;dk|o?{c+4(*b`W*2=aKX)12d?vq%1{Y}u-7ggX<3Ntj$2?wkcYb%$(^y*Dz zY5YpOc#q~I;pG9!cz{W$O|{xl4~&Q*A-oHi^bQx=HqlG|SGVdm1^GAIgKc{F51I3A z7G5}_LOa8hT!X-R$AjR-H>%88uxI_k^?AS7EpCHK(m2@bqq|y`Yv}CK6;oIxM`>W) z^}}BxF+)+r)+=9j-d$MRq&HDz>L}v35ADrVMgREm1z=Cvd3mPyH|IZgFLtLfkOJD5 z7r#@Af6_9sGH%!0U{^iW6@U)19BO_COrwb500L!=% z&Uu((_YzGJQrQzFElkk$sKodz(Se)m4L4dA&1C$W{}?WSKw0>H|1vp5hF&4ye`(j_ z&7`uhK-=CsJRDyW)!@9j0cujWFcoLBk(REP`&5=VxY(oJn_jQChUASJ82I`QhB91G}k3C|Sd=Tgnr zRH#Njk$4;(9iOA3zB5SM7k|ylih+WHqFC1qaD!JYdLhVU9&OuRVCoSP8CiS1X$MXa zmmOw7e@k{tb8rE#ZzLnF$gcG&)HP#H{{0Y)G9JCsK=o5!#C3{bxLwMyl(5Z=@V7_n zs_6jrT31@C643X54GN+H_#LB0aXAxb@{m@A2_gqaC+zdY)dkF6#lRr)Y4!u_nut}? zTP{NC`usR#b$$zlF(@>Q=rpjWXxSQ}coe^kzu0jaG;kH&810J85`6CXN~`I&iHPrv zFA;HMit}%Pl01l>S{Hx;$qIlc+rJ>9m0OIEeIw?1iO*`#naFMmfn-TV{Km309ZN-t}}*g>b!cfR3>!TWGT zQq_p)#XDwX0Y%(p(EayY2bebFTU10$Y|GRzR}Ra1a$UwH_$0bwVzB)CEK8aY9df30 z8p;`rK_1CzF}#$MVDJtKWodNV4+FCW9U?+<0k;=YzmLzHot(vhlG1kvv#VEyE=t>j_&@lsLN=dl%InUbMj(C2u)@k zZ)SS_{(vhbzwz4_38=zn{J1}2RTCS75U1H^=}cX*i*QX-|5WqWpJ#9F=HRJ=9@?B~ ze%tHQ8~YD5p0CyX$f9udiY2vms8rDch)I)OE%4{284>*i$1!k9?YEuoS;^$ANfD{X=RX$kU!ov*fy8B_EPX5yDuz16L%+AXZ?8^n zJ>vR$L3gKrRM5EDVs}-qu-q=d#Lp9rCDz+TZ=PN4k_*8Wru6@`vvd=Q8Dlp|MIXn8 zWdrS?cO^rG?HLES*l#Can;ZrR*!gr`puZXTb`5)5VZnjsv3p7KG|h$k(jKA6n+)qC z+&zXCw{A0{Kx2pf*X*l=i6JQ}>{XQUTPIR@sXuCIOG`splS}GPudj>;-bZ=ggIsCk zkmbL2gLSoQIKAA+jm|s}PGsxG&}gQ_Y{!NHUb9>ZW4%PXP}lGZJ~Y_aCD#5d@NyZ zlg!c&Qg|BKzwVRUue;gAuNn7I4Ng*V)Xu<5+Ru|HDW z)&wt-fZ~pGTN{z&!5}=eCs!wI<^>g19cbL)EKD;!ZUnXj2@VJY5gm`$zE^E?+vuNrdns7mQym^(r|8VrK&XkH`+8qh{G2cMM&_?Y4<6M|L zu@%lNAx~cU<{Fck2tk1A1QI}uZsqgn_KNkR&^*St{qF0VpJQwtMr~j!M z3!`0B#%ksbNkufno^XgesE<%=%Vvv_VK&(XA_}O0lKneqrwNWbF z9*Fww)~RaemX^xL)Sez)@+;DE=-`wvpGJ%q7Qq-Fmdda8=P?9-4|0d!_uAsK&a~AB z{R^1TJ~C$WNYl?~AA-IS-!Y-=A>UCyi z3*B?~{!LD*rU?yMizgFTKpZ#wsLni1Y24CTY7JrgtMb=Ybljxs!rT#bC*cFi1%I9o z%T5H@l4FH}hM3c8C|030194ry-HzwUu~0^r$@Zx+XDsptzkCLchuAaH0FBCA+voGx zpn^WK!Op`NNS!YWOwK;}AVQOxyH`!IpP;wy;L=8tdYK4v1c<_pDn)RyQXj5 zOb5cn6GUcSw$hm<@c<$k26KHYUCSpn($$;yJS~WybJ3}=aF(z0TXYDgS@Bq3T3KAr z860gEF1M5D)W4z>T3;!94ns{Eg6GIB6V=Wk)HP^?18rm4`)t|=$!Kft zmc-CFrE^IW`L9C=!+ z-|XY!IcxgeA4!AozW6+O}BUT;HiQmPkCn-Dpg2(SK`mU*$>+0BKK3zaH2jI+N zk-bMlVE~Ufix-B5ql)XP5kO$b;rGsU8`C{Eb$`C@>SXpaWi<7#xqMM5KrYb6yfay# z=j$X=Na(k8uClgo8E`%0P(4i8jaHzr&1!EN-!%lOgMN^)Qq0ERLS3S5a$`*QwnpXkDs@d8BGTIU3cCfjBikC}@xsnX7 ztk2=8#P3Dm8eA+&EePM>CtK^B8>@5InDZ~XoCz8jRw5@b+*Q>@r@;{ZgZ{HaTv^{( z?EUr))<)zRhVG6m{?l-2sIo4|XM4neYLLG<+QG%KM#OXC4Ic%#P+mVf^wEJ?_~8_D zLASxMkwilzy|s5IS`LqPzPg#}gd2$`J7jL{%kQM*;8KOIkhI7E65075h|lwJAnoW& z+AvDZB#7on^^ZzfTYfLaI*e8THLz`^id39?{2Ds(@x=dV=Qr+M)U3?#=$O4k^)&BV zZCQGqsV2ZyPbs;UJ6@6=EhdHVuB51P&Lb%JJs0n*XA}$&q?22>ag^fkqr30J^7a$K z*+i=IOSB_Y(6X0$a3{Ukh&NiJ^Mf(Dzxt*PPSTbaz}W75a3SR`nx)+|lqX=iksWf5 zuzGQz0D;)y?C=*`-1o8**m{dMcwy?+Z8tQ?VIRoYtgz(-oIAb?xNE(CCmH8X7v~Ze z^%NT*OL--EY9h5i_vKh-Ybx0J(4hZH1M{a&9?P26K1|KmKcyf%rE@&HVAK0ScB0Sa zON>Irh4RDXHB;?Fzo{GHAPaYPWm}ErVoQ4?%4MeCi4JpE15kGtK6aVKg}8BOsM_U@ z^h;448gB&QR`}WGaDT&2m2Gc?v-v*yxjtVRv~E#pL%XnVvP@E=%4c6(X!9lYNUv{E z91gzG?qLijWF;Hcrb}%Ww62ycPNqJFhTP#iIgr)8jP~w~Ika#yUgzrXq}JKrNtP-E z6NH=hW(d#d%4qubX7HZt(dm(75#M$SfPU-nx^8}7rO$hqxMcm;aZh~O?6bYEn(C|^C@`f=SIFs^F)@alG(yUBx4-Xx3U zW~m;Ga%`Q&E6<>Wd6rVnw}TPbl&D0{H7%f>h@t|flfCxN%ZBzpt9H1XtHlesl1K}6 zeE1G9RqQ$k!4W*q@D@WQf0;_u!_O2m8@QA`6mkFcCn>QsBSWx=3ZvYz{me^?<{ZIj zpChJ&yEnwQr?P^xBP&C6e|G{6j|VQs8REW$tQk3o8|0n&Cq>Ufstyk#4apBzo%CrI zKbLshA`)rZS4?=YmEBho^EGIaEy=RPO$ZzgT*+9kS+`Yv8wgQ)=)URLWV@(}fF2@1 zXnm{DA#4wfu=dm9@O`UK=GY20#v9J0DvrW-lXKrcFrt5f7brq)bw|- z6tndgY8ag#X*c+(y*r2)jNn;xtBT>~vF>H1zubA4bU4$apCT7V7HvZPme0Ln2-LKs45y2yt*>igazO0!_!RY%NuS7e`O6TAMTG+zuAcc8qNg{VJkgwDrAmcqO)P%@I^Ejv#eSdn zYwkBjaecp?&H2{preWh(@)*bSz`jz`Rs(_u`cm1ika*VWf-Wt?LXH$Q~l6rD85%D?}zZqhIa!S*M9mY*C=Wyn~P|IWY> zOxu+a1Bg*&_G2<7iEwSy2t+ay>SUnjiCPZMx4|=4S0m#2%9QodyNj*s86B~U_}^4G)Iq8;2A|HqM2ZRE!Gypm=c_ zCS7TQYK@~5{}NC*YGBVp$;7)U7Yx;fh_7SQ-8>t(BF}J@w&?#-t+QyTMa8I%2lb}| z_CV|3Oyk%!n;*a#Ug?Tty^3ts2~_1NvTmb8fOu^8h0nn9buUVrWXG zISH1o`RzZJBJy(OoW|Ql<<(e%=yO#<@H%Wn=mg$&Xw{)*yAQ$yBlRC2UlojsR*!|- z88-R8_i>1t-Vx(ioo;?I6|c+27up`W6I#WT_r8*S0d2o@z--*)K+tU;)?Pmjm40Zy zJIgF281Wz?iBm6h_pz4xmR5Je)^c^5Z+&|n#}GrS%DIw|T0&mjUYvJQ7humyEO?9!iW=R*PP!fjvd^=;@S&&4Za?<1d z?)NFl(UdfiODFdFU!T|iZFHY=XL0=WEZ}-*UuITaCfgjweNl;gd^+x-9ueFl^r#;U zD(`9a4yd2+8{ym5{d_JIk8^xi7-cl~)4pQ;cJ064n5}aahlpC1pY{0KroSSXXO#48 zhY!U6f>_4==3=4L$LodrM{<5N$d!(H2h{NIhga|EUy6E2QmDyQ4544+RSwAbqiE;MXBPS&$u=H%{%3y$9isu&4W2vWE92P}55NA^K!Tn&VC z^jHA`G+t`7-VefU1$})A!i;p})As^s$&ovzQ$~iDKl+6|G`Oxl$POVFq*c<~(4$Pc z`T7#)&UOa*44|^Bd-% z-#0zW+ods_ruxe^VEJ;rNcGzJq$4U^k?McLb(348Z0iyTcMpqjq z?aEH+9Ga5Q1;LV67qWJrS;^&Fo3v6@pqj$-_$8}Zwsnpt%IGJjg#7D+xFrcl-8!Ao z0LHw$7fW^6{Iyqt%va zlz$@I(bLm!0lF_(;mYcdn6wvr-yx8YsM-?YlQr}6kzHMQ$iYtZiwyoY&%wgo`l{f- zRtsqMpngefP>ugAo*oKcy7R4i(=^^(9o8S`M_ABf{Ys85E;-{R0C4 zVuoHf*Vk*!<4~q!|Auq5B?&0byZsgI3goUQvXbC;k5h z2&Grg^PY%=fQR_Rv;~Y%BS2O5*e$6$+9@iNCHr6J2^!~uy>$zXRs3>1Gf<|a*n0ku z7c~)+$kk;Jwr>k}|55zI17YRmd-mtGJ2xLwqbvM!-K)u7O@N^{KDXY8p$~)quh=8orS^UtZb8&_ zKdv1nI0L>NT#WSW#mTA57m@iwq0}uEjAxJp26?UWi|3K)AGqfcDGu8Yl$mp`-kfX+ z?dIj;Y|4#V?Hm$3RCp)^h@gEIVcajw0m2DPT->isO@hhmo}QjyT!cAK%MJi!N=j~Z z<^9e?Igy(KtmJPN<6VY$TpmS(!eJs~F>U(qDuX`!7G>TEIj<_&VVqqk4wO(;8XgWUIz2Hc?r!Ty_B=c@{+R9rvkqjQ zdp_2m<3jGw(>?@{&%?jAif=$cN0-#mA<`(;GS)WdPOdQNLjCyhV+eHox4S)Hi9^hb z{7EnNVZlH+G1?X+^Ac>4LJVhx_bkO%B)P};|J3BPh13zBbC+Fv1KhU1(y-y>!)+QG zeEEhb93-PN6%O82jX6iX^OqD-8Mj%gHG)D>4#?IaO2XIA&|WdMr3rbnLFah&nmn*f zyT8Ffz7f6c&uu@hcU*NinBx=KChHfiLE!cj5tK3}F>i5Rny zscFD^2DAOKs3~_ns<6S1K&h8VL8dTn7~r^nV;wti}aP zIXQ6v)d-K^^;*oFv+aGM!4kldOMIRopxP zNc**=N;69%^}7y1>;!+rEr(sm$L(S>ZfU$m`UnID{t_sybee&5jP_r_fD$VQ1PGW_ zw0%XvkuV(S?|0IQkB;^Sx**s<4wVz`$LS4omonTzL+@uw7?uGH<8g(me&n6@J$+Oq z;S|Xlhc0D=jBpT}wBKYAre%V>H3aTGsSBzL{pD92^^UH^$qTv>VB+DH&d`mq>h0Ym z^24IL%)7#9AB)Me3FBwad;}d3@eEnbbrkaCt$h4Se#m6-= zhk1<#8&s&_H=gu+H?_KKdEZu|e|Blk+AEBj;f3T#Zyf~T52JHYm&}bFvyB(2Q7DQ4 zHN}s<+Pc_%@wW_2S|@K$$eNocr!Zt<27}Wf8LGn*3uF%Y@h2JqU=p@)>patk#mOVV zF{3G`Z9_^P=v@X4s(%w%uqMYJZfDDTYi|EI_KOpLUN|zX@XH;a`)Vr<9XsHVe?)cT zxc>sEw~TczXLkO**dMLq+Eu7ak6g$b!|b>+yVo~w3ABL5<@JZeNr)dF?V$$scR{aY zyt}Igx%hM+b)ka13NwH~iPAiB%OC^lZ67WUmdW+?ULY#E+&iyjreX&jX0w`{y!KE5 zYFPoBy}i((9#r@iHwl>$Tn?d;tUd{u+v{D!tIxcVmb?_zC zeLZX_#)k1RvR9M*?Hufic)MVwUXA28HC9`Js*?sfnsN=}q#h5m)E?K5Zo2#8L)g*3 ztDAtr&S-MsQwmGtnwMEzDgy%oqD1I4002~or2v>Xp005z5|TWv=T8*L%`0{l zA)OaLez2iIOjy2;yJZ&9wED;L@j6W~udGZUyShJQG`jWHPLrj3aPjlEZN|5Z;u$_+ zz)0KQt7iK8gdQK7y*ejC!)r5P)n>fjzvfnb3Xet0N9JBUYR#N+4Bq974~SiBkUuXj z4kbH!DJ#+VLC5%HwgumwFZ9O=!za+FZS6Wg@V@ajJP^d#uk*C)gC67c*$ub}j6@bt z{xy;HITtuf(QO|BN-M{e&N$)@AnrKs#8FxTS~-mpBZ(UAjCsr0N@&bVEV2?o!Ot$j z)&p0+JgAm)TUDBz|HXIL;QJbq+Zm~@+a=%#bEwcKu6wag4Jzb&a&kB^v>pzy{(I0^ zn?75O=N9OQX6h8wO7n1dj+u7DBBHO$&q#${ZH8@oV|HPF;w%Ks-9MaXEGD`j+AS{;xXEf;n{?ItR7u>XJoiLkx-hV7dGN zs{H|!S*jOpPA?0^z z1G0jnX+ys!i6a4*B_?EPqTqw&-wgjk#Mgy(KRcy7s(p&2R2br3m(RFwK5kCyJ`q6+ z_ZKxC6H-?AdhtD;l0>gS_1THD9k$Hm$YSGRxp z(n(vnb-c?VrXsL6d|LB>m?O**jh8fiqG}fBJ|I@;U~>})C>XzhW&wy8fG#M_>{=W{ z=qu2|O`=MxF?tg0Kaj{}jc(!P z4mw7+JCmUMqXK7YuOPhoZ_*l$C*^lcibW8H!+uHC zLJbX24DQV^$ZoyDHwDK1?|yK|-&^5dY+joiu=4>21a)2z$U83}%34|>XJ;-==To{* zin$}88Y~13IGelCJ)5U4&XoR7bF>y9T&t1Qv<7eDgbP6W8<~{zpU{zvrc(?1S(!L7F zXSn@Un(2zxU)~%K{kwH;?;O6LitLJ}%(kbx5Aw?`K|PjO9RnA>Ak{2#tLL^W8e zM&eA`RG-5GBrn-U0u5+*9s^OyGOI6)tM=xMZDdVb-yAJ z|D~kwu4Jmxrv@Ys)`o~5gP$a1Fj>?Mk_y}2n3`rSq`8nCt!WfW)x?rLQ?;kxeN$YW ziAo%mA`Lh^Uqhbl`F`pnc{bLt6{u^ttW#_IpX{tBioD0Z^*#s=0f?kePEUdQu*4cJ z^lmiv*S_P(q=KVs_>GK>2Kh3jSp4+DjkM+y@o249)&!$!USGw)0Y`K+0=ak*u__q@ zUupI(UkX`LIox&XWO;hh3Jn6GvW(s468qEm~3Jff%EAhCv0_a!;Ozzao5 zJ@O8ltp?GR0!I=1(}#qSXu z519z`)hailh56Xzo>K{8VXrDeTJ@ZFM;;7si!Aydb`DK5cXbRo)pHGxminIz@>6BZwDTc|L`{y9$BA5y zH1EM}9eIG2Lird;U8F;SaB@VTuI(+Lj^f?ygM{<>EtJdY`)wl1qO9gb^R+@e* zCfgU;ueuT%PIJa<#VQUXi@5pxQ(N^MnGx(s^<)*S_`1LI)W%a z_azdf*r1sRsDvc7wF#euHR@>ZaYLR`nvG6ZgWh3jnu4SA^lK2W$UZeM)ZY6GpobxB zztV8NIS@>I!A8+q|H4tl8186jktK10g;db#+ z#~cCqGZ07usb9Cp*{C$(9Hyt}UN;dT5mV#bgD>uDYDOFxJE*ndVk+@z`t9)2^`X0w zOrFFbKnJ9IG#@g(CIko1XuKUXM{+I6G^M+m`!_G7Kdd5kWs5-7cc*U!yS~LO^DIl$>ikR*Wn?)Gmb>ks4RuL6j&epW&`Wywx)`^ zd8``}?y^KMjQ`yh2??jMK2y!5{H!R+0|LuahYci=i^kWthpkb=sq?o;5)zYwD8g$W zq3{LJ<_);b?T+Q#%Q^21M$fikP=_9t2xi=fYY!j9l2p{o|JE+c5&o%8%lU9V&;6-& z{p)n(5JX&GXVGk~Fy0Hu$=HBu7i6qCj&21vH||Jskx0-N=0AljsXhftuHF#Tn3)at zx0i>k@Y}jgLSoMcZIgL>aPS~Z3r^TiEKz&zw6>D@!cE1hedhIsw)uiV1vzB>b#JgU@1zerF!t~8rgNod@pj-OP_l+=W+$-?46RFo&7pEsN+eX3*>mm zKy>Y`$Cf!OYfDDzJzZn>b$6EAX-=aXvkMLvrgb$QAZ4X(Bd)PB*M&;LQonRz@gWW? zjK-~Udy7x6@aO=O?g2L?9Gkv%s*bP@R8^|e0Hrbp?A4%4nO8pgg};vN=7~&?<6|J7 zzh~$GyIqaRgBLv``eXI4C#@G)g+3Mc7s+2aFA~P8|NP`OD4HK{;vl}ZDX*dArj%=FsZ6I< zLUo;@VH(RjKqeCxI;px-p2YhhkW(!M<%GiZ<0IWx@!bdCxj>cEsnr7ex&|LXW=qn; zH-+(y`?au?76UDQo_f zK%KSd<%p2-9>03FD^|Hfha;qo6{ci*G2g;x4xmhWR49;g>$M15PrQi&tgn@Wol)F$ zGjhq1*c3c%@nKKnWDx|cpnn*-6ckU5(QzmrF%t!bP)!lb~=}b}_SFJ>_j^D)o z!%OKMnJmHyBmIC(CEpG46*V%00@?vEuZ{i-$=HiMZ0{qX3d^GL>HPxNE<~|5fS&)7 zb9&*G)0j58FylM1R)Snm<>cigpUglZB*E==rb)F98Z1-@NN|;#-+t)qFBBygXi+Wl zdW*rLZRR~$3P!7d2#hg_n9uveuJQTqu-+gb47vMND&`0^DlxqIYh0|%XmyVl){d^i zOg*K$1C!=pduWU&itXm4jX|=%mr{DUn<2~ig(8GI^O9~VL5a0J zQ8DZn5%@1U{zqwV0aRrhwF_?$6;TuvQ5r!Jq(lUyQ$QM|mF{kk?q-8XC?G8=-CY7w zQliq`-JPEG_Y-$|&~xN!ygCit;f3yncEQNwzsnSZVk4*Q4OgzAyAYF|YDMp;xg(wY+kv|0!Yq z_^;mFv#`Y>0_etODKV5QE@>N2>){j=Nz`YC=31R}X`LK=d(TeJ8}a+O!Ju=I>Pp&I zA#^r}$(G|N=fhV!+FG)Zlk`1FB-SFzUmmNjnj+^I8Q!%VLZv<-VQ~#5x15(4`AJKW zI%sn>qff!KRx(3#kyt}@S+kmMiJc=UId^W&fgQ6ngo0Q0U~lhuM%8ncw4aPGTgDp` zus~_*`qOX}-x$&>?Hdr52q7n(C;N+B!x#O&`v3JIjDrjYqwk(e+vtbdQ@$W& zNurPS>jiZy`)YT7d<+R(wgZEFERc1X-wG!qky@J}9>m&ci^8IHT|mBO}#qVN) z9nAODDwc69t-g(TPAATtY__wJxHRng? z#sp;HN}Na6SJ)!5^^S&aBz!weBE}6dnAPR$;0x&~ikR-sj!&_yI2abq>=RI-8|s

rX(}C`v;AmeA|;5zY$dSJTgG)(+H;3nW^} z$~Gb8TSg%h_x$5XT;Xn?>Kj+M)4`kYuHh_i@&_>i|Lzfuy{kc-ao^imfMghJV4=#q zKYm3EZOxpX)<&u^r_m>zjS*f0H^x}8*U`yh-WHSHT@aP2( z`I^Lfh4Bg`semNJJj)PeY6b$|<)-ohj80-_jo+yi4G&7R;;r=?_)Rr%u zqqdy*fq@b-+S<``2kJ@~42QO3zf!_gTv*!47Ur{}k5$Sl-M&~m{D!u)nfE?In)Uf!;)?gBQUwL&#KL0B_Zbg?(BNW$ zbd=S%%Fx^FYr5w158k~gxwib)D>X4{Q>VXS*}}Bn$);E~1iksG;=WJ~#JZQaqJ{%U z(_rEuX3^G(Bww9F(}^wEa6X6s_S#6onl@HjJ^A|6{(c{F=&eUq#__tcL!JTjL*bAo z=4jPx+KwIVEC3L3@bu~pBj#&VNS&G88~wVeil)KkT77(A<{#d_o-sYT(gzqUbKH#|ZCiB;9v%;Iee!UBtn+3d4HLwKt71f1a&ASmm7~j8tU-i7Xwe_UnyNLG+zmr4Lk1xkmJonoSouzv+ zzg#MT67y0bRh9b!P2o6$rhuG*B^`7A#trk`K#2ilJB`pj6B$V6 zbLWB>iQz9WS}5_~pz@rSQL#4LS0mfzl_d{H8ez@vj1N)>?|UcU%ZEfGa%BTMNJly=Z)v8EL5lL73v^F>2qou`$UI=@~&h|EBn3QG|&<#Nd7Os;%qday2W)SE$@-WfM zr(j=sGQEV6i^RjaVfF(SBbS<&#W+IAtB98vqm}e7VmeV^8DgkboYQI^dVJ{#Hz~dm zY}`2Z&8e+Ao0k^7%VTKTMjx5<_eIR54o8E5=ZrDc)X%eD;q)2D|2G|ww&B2b{YK#5 z0$Qs@7XvCxlvG9C?Q^!TxvP8VM`La$r6$HlLtF*UNAuT_NO|AGa(T7hb0bNLV{=<} zS()x4PHj)mY*u0vM;#BX0qdDhqeUrmEp^xbv;Bb+MI&95!*4PC6d9NRek(k7tMM>| zE(R&k0JqN9K03UM_Y;=xC?1<0L3<&XsXku?hh4f3qugHlU1{=2HHUl#kGh;5p?QYA z3S)*ux>jaDi>bac&$vJCildB+xs3&+O)}X}T;u07j!Uvw=L- zD*Mcg$gM)XR_zjE=~ZA6y36gzU~6Y5pRdXLDI-G%x>d##b+ynDA=q?txDe&~5?6sf z<`c#NE5|UFXr6I@it54;F`c_A+Y#^42X8L-W z8;6n0{w&cvI@1vKFTz%5SOqr!qr3Er<}DLTXdqaf)aSbnj$L8(Bm|9TlY8L zoAexSIYxx@%6{hDEWY~n7r=cc>0p(pO9 zm1Fw>7UZJ8a5-`P>)r3CE0$bKx9j6W~k|8|ZZcK6Ttr*!~2WNE}_FmjnO=B*pt4w~?K@loGZH_;P& zSF?_IPKl<()r5{p$fsas&inE4&>b9QN&LvXQ9Fm1?^hrxYXU5#PB*W~;mOf??3@Gz zsYBDzS+`bP?sCSTJkf23)2a3?MUsV<^@FGdW(*XQQoNjrvgXB1hf)G$tzzhexhL1{ z2Qa$3G~PY_s^`;HG~EB8ggwgCF8x5(Ymil|%Us4r?E&EYZhNkCr;p2wrTou-`j(P< zeSL|m0)K{??(eV+xG{m=ULD7ksws43J5YO>_{osynoK;8q(uwFkW}~w2bSST(~jX}e(D-pLfBb6oDu6?OxGF3~J2)_ld|08rOn*yYL_)D=3+HXIaHVmg+zY-L2y~)>I zebS#~SIU>rzn-xR*^=;+lr>SGyJg*>mwE#*o4~nWcErxr zB6+xPPGs#rZj*Ft<>0xG)y0dwh+{Q63wE8)6PB?Ie)!zJy-v#0c=SYq4lxix9oa;E1^?>pMcrTV(w_Ak zn95Rluh$w(^?abDpae6*qw)&I^}}>VS7s9`t5$?N(pK15?(N7( zQJ3^&(RFOVGgfObk6KIh@{J!dUY2y6ojyMzQDS_Bn;BT=&KAyL<`BEigYHevYgN0= z`s&;Z*>rW)prVoJ_T?A&1o{HMk0ViDp17vI09Y=qF?{;1{zQDhRsqBN-Lre;U#0Ai zx}%zZT)mG>gUP8+JsU^66Y-i9Pn&j#)eVN_d}RHwwW3)bF%{uc%7ns?WKDO?m@F<8 zvxY*f+Dbz1GQH2WOKyLSna!WslEi$`*pbVumZg>QcRwT-lh}#jVRbq@5%Ib{f=%BDloCtoZuZa0WQe?$${k`$>-MBM z+l&Q#zdpXU{6YJQ`8l{G)aDyQvol`Y7wqjzckCUdn~Axydtm~tZghnGWKyl>xPyFX zWu;I9&5CT`!S_pxQMzMy6<0lYcJ{m5puM_YTNOwAoEp8zwnX!A(Ar!s=k%F`Fz$)) zM+SR7*9w^l%^`#>5#vFn=6x6T{D{R(ZNH1$?4s<%xZ=Ut>4NRz(xzd#)95X=RVO+} z>{coC!SJZ~R=HG|0z8p6^qS>TydOnb(zZ}=8%gX&`yGw-HNiEHiNu9n z2Tmoa{p=4<#f2+zELOD+%H@!JSOhg*nVr!8JOvp2WD0M1@tDZ1T5h*1O^dEu?mgpT z`3ANdgc;P|qki)3xr`0+GE+vWf^)NhYRwVWqpZ$xy0<^T58-Ea4o!L!49#79J4O%AJ)=sn)*ozi@Cg_9cl z$23;y&I2FHioW?4iYFXwMYh}WsxFZH=dv0oAdjeg+nb8}XH}y6`2H*RmA46lN1(Q&yAM z@e&?RXtO?yAx&+lt1La=IgaJy4Ckk-kehOOz>MFc8`SBYAv!N=yJ1_d^02DcWE$Xs z_SlKF*xu<5&it5Y>(U);eXy=?+2US#w9PVhmFZ(M zdmbj?2s?)*+4#!c{ag4N`yG1jn>+iz?>d*-2YiO8f|U2wqoZROc@z&pzjfd-nn;>c z^e4LD=8+;`K*3{-Pgy~ls+uNs-9ROi$5d}V0QgR4k0bBG5K`~dy>}~ND+$Z?6gmx} zNTZCmwqm5ea-|q&tqI^%ENaP%x#YX)I{X_*WPz2|$1{Rs2pfxtv zlM%L?8Uu9};SNd!GlYMsIVgV$AD9?<7g`_j8|82DWD--6#( zQR-(M&^Yq%l@|C)Kt%nb%lg~cvvws%d5@I&@vT}kVy>8ZS)o`BEY;L(Ln-d_EnI_< zFH7gvX^UsML!W0EbtYYVVV(gTQ%20O)td5t#j@eqmeVj}{>p?+Z2UvKyfO^CIFaETK%q?^=@_l{%I{ zYfXmob_>sG2Ai4e{b!;vN#|T)W+(u$QYp+Hm!TO1fAsvVX|cK3P$-evs4toyYjZeJ zp&4s{%+%pJUb|mM?#gz47QwXmfnaSjzO-9fxAtA7j?(*sr8L39P}vB@l=;V~)Ne>! zQGW-Y*suQFf$Z9)ErFDmQFmJ>=WP=bfP)6_&g}s0bPOPkdrt8f<}pzyfc-3#kSequ z5G=V7R|tqF`b2;H|IMJ#r}I zkVa7Ry|u@}^91<1@qa?~sSR$lCm%X86lmt~~kxxaBvI*1OUvWgcy)BUp zYblS=*M`mDt}z^=HydBf-dqo|4CgKwwi@xPdQ%{KHDZLnpbLG#3CN!GCly&9yBj|P zEWj8Qjd=5`9XOHGAo9 zza857QGUfW===tJsmmqzlI^-%R#2i)o0tg`Z14dTNJOWaBFDDsZHO#4W`;ZBKE!*U ze@Y7cTk(i!EWW?^lzdKK)Q&T{q|({M*fk>jwzWPDx5v1L`gWO+wry?mS z@wfO^qrDfSEX^1CSz`3BzLus^ANd-&Mq6c{5z_j5pQHbz$jG+P%Clz_IWybero~)S z#Uyy$b_!0EKyy{oURK z)H-tZM}@^16;|UeUq);{k^s3$j_Yri!~ICj#nJoyMy;Jm_Pku|;Wm|;6aBcoJbB@1 z?);vdGj=Kw`d?ORd22$`&iXHz`dxVGG3*cEe=!f6xQ^8jdYBClVRB+C4MhFTkJUxE zPx+(n-hxYoW9(Nhi%Y4wR|S`jYQrt_A^i#@{R8?r@HMPYsk z$qy}|*+Ye6Z~Ivv{BPg3U3%3NJN12f8_$h-ON%?$f5I*!RdAoHxARo&eLoh4?LPjQ z^3WcCv@?kpK{sOq>$i&wSAV{f<{edp9~NkJ5y(l+D*-AhwDY#Ki?!GQZ+Q~gALU-Y zjHC#iC&bEuScSRavEhlg^YgOqVF}bm&o^|XJr8|sGcAI!n*#Nx=zAuO$JUbqKM(H>&2lQ9up2W0t zr9KhWzkYS!L&b>kP*SP;nEFQ`_9jRCWsYLQuExPaJ%qit#A<@vZoX4cU;jSvzdWo& zL-7V4wYA;Boc=tNkdJ{87_Xoy0Xub#!EMo0B;e9aRT-K9Ewb9le^TClN>N$d|1KpaMvMuFd{SW~ z>3iN(wX8UzsAgc<&*xOzv9~hZr4~a#KTcNb;HL5Z%;L_qVp14#%I_)Df6;Epz5vMMb6x(&j$Kc$-w# z;K6xWK-q94m`Z7XW~r^sCB?-0ztF+{N*wtQK3J$m`7|9Pq{vX`6BF7H8ZYZg$| zW3VTE+(xLCoyMIn|5t_|B+ z#@5IEN}L-c2`k=k<^bt#Gv7&6v-?XDVO0jY>_Yn`1xe}|ctV5mZuVzE&`fCdC>h=w z$dJfUTkE%!Hup(Dy7G`Ok*|+n0;cECrFOUEdcSuM;8fRd9~M#iVkpU^B_KS63H5Vt z?85{UO%(bEUq`^02ud3$v(ozHP;X;m=IlqH-;k|ENkvukHTZ_%*w95+JIT#mFLs#$ zD?=6ZZ3?pMs1HvoTok&23?VW~1vACPwugT|u`nmwFgLo_*m~H@Pf2_F2mKj;g^q+@ zP>{&j``&9vqDGJUW-*p9c|A6e>?3W39R}6EY zuC3y2*pj7G9mKHezDWEN@WW94hKN=52ewfP#P3tdGv8PVs?EP96nKBmw+Ri6WUs?- zwl50t5wE{%_8Xg~x-;aXxkR!ut^vB>RNv6-OMYlq)mTZL{mhbPChmP#-^jXu@AP8o z-g?&s2d#VpH#T-MEwr>#m1c~FHS1QuveztyiS+&QrJ))=Dq)TCEQl5CzUa*b^{Kw- z)5TrIi(n=fZv}5t!NX)Cdk2XaXbZ52a2I2iT?&+nHJ;kMT)4k0o*5zP&_pWwaC}#n zru#Lm*verQ@*$;84e7%rI<3iw&4EW)VC9e&Qf5tivO-h3Vv!58L2oG`O=)Lw5!XU4 z0;;Y-BTKL4OKrLqR>UIysTM+eUOsSUrXq~;g!O_ku;24KGoltO-h9U-%IsERJGo-G zp;7-W8)$0dS=v9&WciB-Ypq1a=CYZ|)z%e@Nd9$1lg17?xt6yMw(xI00bW1D+3T6x z=h#~qmtD*4bB>GF9~fw$cL(b8ice3Ea}$9HC#R`Qp-{O?vnHm}Bw^A;hUr}d1RD4z z^H~H-<6;!*=#){ub{h|R)CX&KN$ACYGaQ2JS}fU25>+jI_PG7kP{k6~w5i;|)xVkWF?zHWNsFKM!JJ+Dz^whzC9l6H z3v8-o^mm;03lar}xbEV2RQUyB4PkL8#E~@3{gF=msSPdXfOZB-_9r5xlP$)NQy@`l zAJ_Wyj|RDIgDo8WZE?Jd%;(-pCt9^9^Il?pX9&6ZQ}N3j?>X3raSu%z*;KbxDg3Zr z@CyNO<-XRfTl!DGa_xy&{QEGNvDr(cG&fAFjyS3AV>^9Ok>%`d%42-Hr|A=R>F%20 zcwzKiidHmZ{i=zvmozcMyd8?@Qr!;?MmrLjN$R zJEJcjJ@et2tzJUe6^BBOau>o~uri=U3SRBd{=FZ_(}d7?US#lX@Y*HB#k-}(+p4Hu z>~ei9k76ky1S%gj1{_v@N_5Cjs2*I)P!jG3&sIm&N~1pxb>%84$Hi63<3k=xmDQI- zGD?_0GvQ?^Z80(w_Cvg3YKdbyvMw{NA*9%p?qsOj4Eiq*P?PBjh!LKp|ymKaHU$l!A`14Wm9h+C{^QU%5n(_z#z-2j_b%YTpsv*ujrvhgeR_f zdc|@!JMaMjBj^R700{&lz>qJO%L*AJgRZnPN9@^DjfDie+e}JbsnW_Ti?@>{M(7`) zO)hDv_vEU04Nq0kw?)yL{}$*5&)}Dfl#Uo%gMlLO@b} zE>NngEXO#qO9&_Aw^Su5P{|blAT3B-jJOZC6;&-CZN_6QZP(Ewag#$UqIQ_(@pjp~ zjf0yb1Is^>|D`b1h&8~s;1jz&czBPtZR{&&`xkl`#v+CK;Nj{UT_n4~UkbwrZwPYV zpsi)EjB|VGnj88rPo=6Y>>hoZ^=d5pQTp=>2@aoh6MEJ+g4rE;i%m%YEr4*Tb5$I9 zxLKXntP!j)5B)JD%k1nb%_X7YqQWZg)YL1@llje~iKJclk=?4YQ9qxtW8OHBel8^v zG^YLwLvmnN)%?x9mo4$$|BNiMyUpZ$gpIR*X$6;A#c1d+!)HT*1_4C*B1qiGa`_`x zic8%iI;T$$^Z>)UxkgR&Zlx2NQjnQIvYZ&MBL2d|LtihkIM}an$L9Z9a|&;(dRs?|a@Pm><@+X7Ls(X0?OI$?i^0uLqPV z)~x?sDcg2`E3@g-ntZpG7Ri|g$VOQNw@bCtYYMbq*DIpRUJ6_TMzc0K_gSfbyLVKn zqd}rK5{I3=Y?pu7cZ^=$1@ZzGe z(n0QJZx0WF$zjr}_yGR)F1q_w-=C^Zbg!`pbir#} z!WI`7y-vUNWAE-~YTgvxntp&kgKTyWN(f${&M&w0(8qL;jZ)ke3JGz-OsA zpMrwNxuMgy|8EaN zKF+GD0FZWZq&-Oy^fm9_S}?;F*tPlvKB|jjq9iAMz>IdGGNs?06(oqps-47OE0AFf zBt5XZiRo+(MFk;aB0@^+VPgq&~8DEuQOU5$b!>Fwv zOe&bzNL&Xqpt4{5+3@)kWH}0J&fBOXutBY*5u|ba&?ForYSJ z66}D&H4Y`9T51|Yi46-L%b-Su2#qv?ehG+h0dC%E=NJ@O{9vE~R^I~;c93S&ZKq2J za5?@U_Mz5K^wjw6PavS3+Nl3a2s5k9sUUCF7=%yFkPiw}h@=WqneYdMKaQ5?St;Cc z_uOEBAU;`7M<*4KMs%PYBR*K|l>as{kr6aWUcw-A@sJo4JN%%^F!WkwrT!ITPj4Sv z%|_jcpP=uhq3AO}th28i?ywPHHO!C7B=a$LCUD4tg)}z!US?cb+#~+s%=Fb}f(OLX zKtqNOGHm(5TG#T;ao3G2pt#ZqBTl@0mw|SCaj5tUVr(57G*K_W25x?qP0rKF9F0m& zW=7$`H13U#B1Fdw5J(lX?8s_|iKfGdoSE7_EC&vtzl5BfD>*{xJ3#lw4`j81>XcPg zY5n~CuqQlDat(%H-WLlcUhxng%8Wtm9AVl>o z)&La8K;-Vj=H7tTRS+nvcG@6BVUw_%7v$`Kx(p7e`8{*q{zQrGvkCmQ*n7);#hmpp z!=!Bd`!o7|Pg~@mZ|^wF0>ah-9*wahp3RJ==4^lD-N@n`X@*Y%D6qV+ycINHJy@XA z2+y!8?$pXlJ+l+cJ(;gR-(v>Rm+S1U#C&cQNChjRqtle`hLWP9Hi(F|b#|68uo9!; zrwDwVfCqN6^78no6mS6S9UxdH`MtRr(OLTdB)1Zhl8pHVMn>r{m;&m7LuU6G;CG}Sx^WUfSj6|iQU<7nMEl4hk9Nz|3@t}P$IZ( zHQ%ZDdwya;6R>x%qA~-iKcxJnm6|LpEaI}V<&~NsLRYbzmCdjM^{GbVr@Ek-6zh;z zyRQyJwd(yu@NipOTWb*3qDVx$!ALwTO;QotCCg5Pg~=|z*M?ST_cLjwb( zv;`}Q3t~8d#YR2qnpaEAK7c@vmdDY>8$6p{O=joTxNFH*O~*Kji;FGx<%`3Kd%D#* zY(5X;;NWOKi8E)SL;>wEQpqBY`N0dgHCdi5ESH0IG!$UeV<+4X#tF!6^W&hY-;Li}TwoY$X>ySRa$G_i)eAs3wFP3GqBE06;_?^R>dsn<^Wz6o!Lu z10^j)yy-5_o5w}P#rPnSWIbRF486!*h>WNt%)tURCm{=z(ND+3)B*&#aPX%bf%W5U zGdTZ3m>Pu&AE;Zv;G+IfB^Zjhl#~cEz6I|MrLp6x4Oj+)nFZARNeZy4m!B z&%J6raIbzPubP41Y5C6;a7Ut`_y}T{KkGd`aV6);5TGGgBR)B~W$`FQUg{q^!3|Z$ zxzvh^XIK|6a+cie0rfB;As^8U1xu&}9fH(Yp=sZvrzXF?FI6oqfn*ZsU7?WaF_E77 zdA8bMH2V2Ue=ee&1a-iav@}fEAodkiEhv!J!=0iFl7MgE7$@c}^bF*G=IK5kM<&mb zldX1Kl$376tkr_bKnYC&r^_xaX!RLJmEuRiI%H)%LaK>go*(tlz$HS-#MC{{N`yUt zheCWWP=-{TR%7it;b#2j>Vy2({$c1tUy>XC|2Nj=Cr=sTcwj&p`9=W0E3}=H2n0Ez z+*jq8D7a!VP((yTaA^g0b$y*T9IbPA&5s_r1-H{TSpP^+zy#$faCU>Q>!G4a%I(-` zdv-c^%6GQ=61o3{1FqRrCGl(3LyemH-o1u-m)m#l=)q}YAIJuZ6-1aTrx>0H-cVBe zJ+K0R!r?6t8jW>8v?f7qY%z^1ou*)@-jhF;St}eQA}dA>VND+sqhpszYm?JUL2+yn zsMgt&UwGCBupxE<9|*L^n&+xqDg*NVtpV$kC+5fzebgfpk#Ik%zlM7rA zET>Wf$!~(@rG1JzL>QPF_6k&!w>ni~rbvHN&;!oo^7?F^&sTTnyX$~ zv?Tf(t|V|rR}aQr^9$hQ=^$Z=zW%44DtvD4R&cRX^9fdj@lQ>tAPDK3-zfV0zJ0jV z%pXKRUk$=At2La-DNymkgYQNQj1>}h78X}eL5a@qOR|SLFt-z4r{H6N8MxPr=FnJ2jrTw60&%n<M4|;^{LkT7(g{Z^&!zFhWIL(DXTh`ww$+^Yw zBY_~EAGKIGw(sQ|gb*S7!MUBv{E~DNm>z)xPVp8ZPx{KLRtdp$|BFcB60SenPe2KPgDzBCj~KA(%Th{9Zb#%x@%)z8 zCqdYZ5IPtB5Phe5{yo3G;0{u+I^Tovg%lN|L5!0Tq9;+Pwil`y!K_^)+rVpTKY#x# z5RDNUc7B-3erfL#4vgZlr`0(`)o|%Z3%R&d;oZ7L4eEPW0eN~$)AP(BVN#&O&fd`@ zBO{{`u{GFf9Ka3>Awd%0R=M1Wb{EW4XVN41ZX#bD#5V)i_S|qac<*2d)}G8~DP{Ws zX8Yf|h7vNGhfiH;n!AN0J2=?DJqWqY|7UsO{}d*c&y50g1E}ivfSc!bveutD}{-U}HrU6$xOmZNN~{Qc}JZS-_JX z>oj8V0QmtTM+)MS7${g2A&^Cs`yxYj|KY=bnwS1p@1Rg1rHZH-AaQhS0++)hRI6zw z1S~ob3k8LQ2-({|U9Z`Z0kumt&185P;dKWQOH#;5Kq8<)!)eU_-MgC`btWRSz{4jp zd+YB}k0+d3Z`goo7%T^qc?wu`$i{*oR3k@X3UC-mR{{~x?B?Dm8S;QD5*rt{8N#y1 zfa6Db^%{S#-lz-JsCLwWmsBflADr*ydt#tm_LlvTHVVX-u`|49yT7l`JxS=g%Wi%b zu7yDGKNrC6n;=?y>~?6Kuy>uDCkTlE5P?_^P`Cv)APV5e4|qS$NVSaxQgv+)A#cS4 zp+Go^$izS_oU9WBd5#!YM-gZ&BG7&qFAxUrih%;J(MV!dqf;!qvd<0Q|IJ>X$`<4j zh|;Nmu`w;Y8E7t>hZ|Xe*dW{vm*Mz_&Ccqhz9IAU*U7jL?d8SZ^vhn$l*Z?$M@U$J znuOpRew}_3yr%Ph3tr?hQelDeXBlp`axQXO=Ct61U?>_%ngZ&Y)4ba4$aZ&Qf&z|; zD6A&3>C@orX&D(~+)u%6P;zn(-5f*-z{kcXAqj>5qZ*s>>60oZ2?~iNKzTCF?g7<= zHrUluhpEPkNFoWm{q}DdSy+0v?Ld~nT$3B9wk)fbXb@EaMD2BXAU^{9=8X4ca)IZd z;Z04g#AqZg9@Mn~mS|Y4)~AOT$pxjJ$Q}qS8$pAbVP(9Q`y6Dh?>%^Mv7uqx>IK|t zK11d$;6*N`7jj)WgG8}{C#e>cMW-O}c?JrQ4_u4k-XS0)OmjckFX|8$Ic`Aaq~btw zGv`(Lbuf6yQ7~YVyd{Dn0?BK^n}CsCK(-mO3S1Zku_69YVm@>e?#ef?EY_eq>~?;% z5F60a-&$=wg$eXV-XMO_yPO62u|0%4;26KdC0yun<^uj32cFxkq@s~=>?$BKj+Eft z=7E($R89^L(fR=IG7Yp-%SZBy}kj0@2D5gWkm9Xw0-^undro$ literal 0 HcmV?d00001 diff --git a/_images/fa87b4210262a0cea0da17811d74cf359d26fb6dcff2709fc01c3b5f8de02768.png b/_images/fa87b4210262a0cea0da17811d74cf359d26fb6dcff2709fc01c3b5f8de02768.png new file mode 100644 index 0000000000000000000000000000000000000000..54104d3c3132309f4e7b78dce82dac6c2f23a37f GIT binary patch literal 22219 zcmb@u2UJt*wmlwuK~S)ONRgt5G*OTuMMXqFK)Q4lkluR@#{$x&OAWmj>C#n@h*aqi z0Ria*q=gbl{%d>gz3;v<-gv(;{$reTa)6zkov*Al*PL^G{*M%8D38-0N1;%ZvJdX5 zpiui)P^f**M-RhqW{j~6@FL(BeMY_`2^x!$s{?fL`z zvTCNS3R87nVy&e;(Sae_SZhB#)2W-R+M@7^LVZeka|B*KpO6-Vms8KLOzcCUe6C4R zpM)P@oeyw@my2zWnhwD0Q(smlcsY9G42%@&_PalCy&W<8Jr;b{zBCd~I24dxx62`5dqA6~D&uF;+IVz5*Q~Jr8{OaFv6Jyx)=JLyWN( z7AqckzxDl0Yv7qeT&hu$mX_vWJl=JAw@l+rNJ#$*mboZLH7oc1`}Y}*6oVeibpyN< zPPf8%7*X^#gvFt6-@d7+t4C=RXlJ~ppq(%6l;{x}^GutaosFhCd7EMjL*B-ShGNhp zH?Q^YG8=@=g@GcG#_Ky1fqViM{oKgI$SEpX&)NFiocyXij=cZ0l32>-sE5*+=UVVH zL&JEUkkSrO`KYKU`zqZ#;>&fLqdhMUQG{rJ)zr|qdc9;Xstmt;w(?GzOlZGZR^nyZ zog(rMpVNG=>`AfTKBMjnJbK>SQ#=feKGDAe4R%vICe`ya=F&nXax2M?A4g~8=3f2M z)Fj}}jcT9FD!+>jVchu27CPH5G}hbXe|lkqkB?7NS6BDzGVd^X{FwU zfi#(udXC?vcYeM+={Rhb#d-Piee`y#0lO@&!m4Mm*zhbZZ5FRy^=t*sy5|V9r){r} zlSYw#0R``e+p@B<0l~q2LnfGlPD%2QF>hEDb0N2u-m)7T8*h_$$&Du^1%^aW!+C2R zx0J#oV`8!_it030R#t{fj02m4&ZoV4bx_Z#Pd%I+)0ySAHl2eelLA6QG|bI&GatsL zzC3cW|9oc&cYEv&87!kq0!)_EQq{~n&ZeQj<%jQ*zd@aQIdU5+M$s!UDhCdq=rRly zzbso#7`7;X@@c=Ulg-(Dr!tR;fdZYZ?`bkz{QS!B>GUG@>9C;Gvy|`!_hIQ&Wh!9` zI}&ek!98O1-E#;_BNujMt)A=p+q^WF{4MG@dr|f(C+GJu5v-H=V_^_M7|IGiWa>ygz z5cByd2ID_J*3i%#!kG8<>w~&I0&Zuc2+ae-5N}YV{e#TWo7+LmTw9; z%N3cJSg{xrp@=}M6l;L%yhKdOZX7d33m-(NnVl_6cqf{-ro0n zym137N&1csY>(trEwdfJtB@q71zWCkb#--pYckYgq}pj`cdhg6*|V2qlUIZ=q@C^tjIv$%#<*RFJ1)2t4eK6#uQ_eL7 zyStvPCER(Lna!)NVopgOzklB05)|yKUaDT$CF;9PorU*~xQuB*6t$__h(_L0Y>3s? z)U|uvFy^!GK)yU*UDoP zWYt^BmYn0$UmVla(lSf5{d_E%-D0T37;YZjIa9i`K4&;JJ*_Q)De71$Eh))g>y#X8 zSWfX{Dq+`hb92M)sO)1HH!c61Djk>~!gx!YpP#=UUh`!mE^CG7*DTl9bU0|{KYl7( zLRtw$_YO4}wSxiQ1QzzE{>jyi>vip zTU!|wli1@KVVMx8G6oI#a6yOZhvZ4S$!0Cym{w$KqQ?sLYVu)oF65VX8@MH5MU zZ?`-p7=>+b!|D>nm-Uo6y2KBn#<6KKw81L#1NwR0b zQ+g$OL-ZfWRET$+iqbSEllF!yZ7>8pE^BqwKA1s7r8R~xrgO&Ph33)Z{;=}Tua2EQ z!^~VHH0mk^i+XLdYNh$Yg4j%yroOU@N;vXZWHQc+NHF{T^HV@*=q9-jKN%{i;p9{f zAE7aGGe*azu8(e@+Gzm^ZSX_+Xv|P31J@({B28xRt(4~A3t6x_b~at`!|Iy)ZW$89 z#T!wPk-csmltMoq%{+!M{&rxYufhuVLc-f&!a45dlTR-WiITP^)pd3AO_JR1BTtOO z7xv6l%_Q}}!pf(-aC5dRMT)eirKLqeXJuyQDq$qFi=Vwl0_IsRjoBX#oqbv+i5X@+ znPv<91v@0-^3>Y)m5IM@{)BZl06VDMeo77|vDXaZod$eS@=91$YCk+gZ=Pn6J9Al` z$7bQ0Yfq*^csi^&K{|OmyJGUW+o%*x9j<%#?_U)ZREI%Pzt! zg~^}q&S+J}{wOsGW#0}Qk?`8-HCu)axI%WqTZwZdI;z<6W$%OSsV*)3dWV45DJn2% z@Lt{a{MOm23A43FtZ`Y^&oZ!TldM~AC{KA~bD*TObZ<&sOK{M$7Lp+YZlIIbdQs3^r{`dOTvy!lgKLYH25;- z$mG;utkupSYkOq^_ilJ%7nvGZK!vb_b&BeDa@`4wIY=()I9m!)yWfNKhMH}Cv9#0t zd#d!Rdma5v%Xh4-tOA}}wrFZe%fa`D$9|(eH$wK~3B{&Wj=JY{sAs2nah9{h#>Va} z)hrunX(awAfjla@=e{w2NmlORLp4Rk5d1sr>Wl+QAx*PLe+MGC({!xKFo_it8_PNO zJBr9=^K_`jrD(<6*~)usI^M=|O)9x61$H%(+hGYWlv@qHze7z;4ZHlPX?}l*#{@3f zp+iJwXlN)-$R;T_H+T2YW>|xAp?;kNA0Ha!p$O&bsxxB*}Eu-JWT>q6(HA35-CS{sUTbLG%`3kD187sOoO!&k^ahVv>H zSDsKum}*sDhkScL!R^+X-PP8q4RGEaz$>T>L;ioNq zn55d9z^Pm$*+O)7hg|D4;m^@eyp12JsqF6VF0-4wuMmH; zy@3qTvRlt(#S%Voy?}DdkAO< zr=r~rUmqjyjm2Gi`T}yNNp(vpSb*yQ6lVe0^aIFAMV`ZA zpm6y8)0YUu@%sJgNVsFws5l!wylGP9ENO_+qAZd5Y^KEacYijBg7Z*pjPL;rFiC;C|XS!b|J_!%G zsO0box+l^yGCJb!>+g|8xe#lTlq2-T@cHvhCzyRErym76mD;rWt|@0vp9XySW2hPi zwqQWtqdnZHK)XCwam;C0m}QE%TqN%UN8>4z_32Kc9S47;$QUHZJe zq}my84mHAK1oUh`Vel9>bcO1}{vFsOf6#&4g9q;+{pIgFaQHELrw6l(M@Fd3tS28} zs}7Z4nxaIHQs%od?p6eXMa9Qke8FOoA?b&_Vc`XfVqaps?=wp)hUmU;%fm-duc9DK z%psT_fW`bngCnS;j8GAN2`&tH382}KJfy}$!VWMlwg+Sjh5OmQDLm{7KD&7sUi zuznXJRTY&XF(7f+qS2R2(04iGsd7%_F-%0O-lnT+n%>Z7s@m^NT_PW^B2YC%NWLP+6fW(mPENJxgRC~OTQdL#e@CUoJYR9=}p5AxwzF_BE zOY%6of|mb_S;23a8)p|@IQmqqKa-q(ftVmPt7C}y@yo^%$4qLxH%aH=yA|a1%sCFd zE5)}nT(Q^Fj=g~W9d-XaQOtHpzFC6#OrjBv)KX1q=HFpxXsxKrOx5P%MK_b{@8G)L ziK!6v=?eJ+BDd>;2nF~3)?-KEf%#K%rQH=1S+Z)zwb@gfy%}7>yb4%l^<%c>(AeVX zxJ;Q{ZyezUO(h*xnCp2>apxiVOnPFIRb`Q8?vd#8*xBtT<;9&O)mwDLS9k9P?{$9n z$d)r`kifo^(e|PyBW38$LeaplmWWHTN)p@Yqh6bO;%jX;s-aL1?kw6XRlnz0W<|a1 zIE3l?DqOkpn3|t5)S&h3@^ym0g6(j{ExqZH=uE$+! zQ8#>Z$!CrEYo{^|ddbp|K0?NPj3O*RCH*BU(_!+a@?9!3oxAFR!Xw`a(zWAhU21s` z!uMa9IIztv;6=hV#aq02^>~fP_%BcA`1zFMnxPz@= z$F~k@4X=$p&2KF&E6agz-aLYYr%|Xo^dfBEQQBYBsNg$PcP#pHi<*`JNy2i@$;ojd z0BkacH7ny4f}IS*POeDua&nq=)9ov>{xnT(f7FLfIWW20yiao?^b3@1fY^SGUB7-^ zTa+F3^cBPY9zV8hhRjF3z= zN;~Jt+EI~%AH%YxyR^&aSx2Yr5j?3~?U;kcbk6j2XUGdW&UU3qVDZjSpB8r!C(7efqGs&hkiIxpaK?~E9+5Ib#|_RoQ6PJvQX2$kFUh`C-Z-0F%5W5`Jl;{>ifmg`)7YI9s9(UnwTbbK1r5rKr9X@8T25tWRXenDQkChr($GLnwxNq8s>{#8F`4+eU z%U=Oo*vwDb`aabxvBZ+mEWtQdjM*vvz&a}2d~&kg>*|fR@`y%!xs@buyKdkjS8%D- zriPmA^pt}(nwn2mHA}ItH)r|_3YEGchKHwZ&pW78t4kE27~H zc|^FmCgLzXk(>DIj3Fjz2xo=6F?o^>d#&S>f%2s}ok?L7>LAy|+e=ybhjE6-@fMT@ zsMo$dhD)a#TEyP=7>=0?+;-6W#i09iagwV{t7(QD`Fzm8feb4EcfyUc2Hr){lIUiZ(J{7m(K`I7&I%QF)S6c-^9!h7bd-;1+;zgFyx3KWk$ z#}=Nx8+tw1tD02PT(L)xX{X>8-%Z+^P!Ipb#qX?aFGN(lAg&i|_#1|M4&i-6~sK~+pmBoxTfm;Cp$z&y%Pmox(Sd<6ryB(d$R5gr~~2 zQ(V)UF6TU3%Hi`m;Y5s^2dQ)4@4>Un!T-;UJtK8hZ5Z20_7BuQ0 zlPH|K0$2Mq?&qE86q#Z0T5A__2LN4W-gouvnKKW<0YVG7ubb}8Yc{BaGKt4sRYdMi z=J?5~AMUZIO z{#ejI+VeXlpY{7+2Z^yxB{v88XxL@178?ZJ4!@uHT)%gAlAQ1aSHH9_-OS%n|B1n7 zqh*?z97jWZP4BM%yn!x~eQ&44xLM*x!v%}Qw3B#4k;y27SS;PSkLD*$Rqw{ipvsg| zzOf~a1}PhqcJmJHO0;pycs4qgyinAjAs4WRr@}sis$Wh?NwYIa z9B5fhGa>@=; z-is(F>bb0W|GqB*xHjhdxQssSO$#-A|3Yh!4_^gp1Nj>!9g#hAh(hp^iL1gUETNc^ ztl{~|m%<7&wkN*EPdIdad8hJake4VeuG4Q=J|fs~tC_CGwAXAQ$g4g{va7;tA#Mqh zZN5XWS4mCWOg#BLI@QXy|qp2_{JL=Uc`g-rU z_ameircEqFw_lf9=FD6b610yf-s~JpdOzY_xH>U9z3{O^YG2#FhB1a^QUu<>rTh8X z0;gDIGlP7+Thdl=*jxpk1M}8~VX~$!rvg8EJk;*Q99_UxyiL7Uo%=?2u6o{X>G#F4 z27`vJFMN&=4i-jS@U#lYfepVU0M#%a{*-vjr60IxKw(#*CKEBjqPi-=WKaU<+zu8f zcS-L8qunWbsFvMnaZnk()yV7!q=v7+2kF2zu893UjDSg+SwoWrkMAV8R^q&RIisNd z{$(FaK7quMWV;u<6MVo;kJvU+YJ-Tt-5PGJrCn|w<-L(-V753|tU%2M*ZHs=)NAU* zNP^C=(GAP)EF)vV?5t^`+jQ(a)c#B!i^Z95sNuqo)Gz8eBt%5CfWFMUX*HY5au*w>Xz51+ z#&cEn>kCAfdt?CLm8bGYDk6RXv)e1nk;v}XC>Dmc`033itElPt60f5)|Ae^vVc{fw zsB&?SHw%lb+}7t^!B=&(gG#I9Jk{t6*sXP}$(Z_d?6jTEQ9EajGX)pKz6y9Ui4 zbkOU^s~XbcZw=M!`}17m>pr9YeCf2;$J(P2d{-gml%!Qvh?4lG4@I)N;BOK*>D?2o zh?yhe!G>za!`O+u6N_AV5Pt&C@pQNHHRSUf?te^k2EOg>uZP5M1-DL3$mb(JQ5>&+ z(*VWz#-L$nOGz7=^-m6P-#4Oo!+Up2G*oi?*XcSkiHImEsowUOZU|&d)wA$cRPX6W z)R@RfwV4&5Zid-EA-}suk^Ke@I#|3Y74qXgSQ}g4z9CfT7PAemLIJjDj~}x)UH3=i z&kTAn@|R+CQ)e(}{Xf+7;-aPa?(fFxU*YlyCGtw_HgcWQA#tT$C|NfELdb>ddu^y^ zWMr5DA>a=1K)|s1#E9!;Fw4p7XPOlaGH17Z4VEZ$6f3>FWz8NwnE1^ei?*3360hS3 zl1dlM7}zQXYX_yW(DAg7ukm~qSZ$_k=HIX7YToVuJALB*5Vm`Y#(_K5Vi6tEmwPj0 zAL?WA6(yH%bJniopI>q`4M{ZQmJYZE&59E!*yL0`ouAfjQa4(B_Djqtsl^tJjuDAg zA={L0QE1UYmWEYX#IDxd+0YtP;DwrGl9y z^@08qoea8BW`(PG;)g8EQ|ZZpTd=q-RwljxeLDcsV6t)=m4WdHu)j2?+gnGGt4tH% zDujF$YS<1&ayg74C8MZX_jumw%fqoY{>TV+3EvqzO)kakJ#6$liR3mx+n=||q%by_ z>u7`@=sE$r^%5r!kAj(*8GKd@JMgntZr!?-{ui0 zo_OXGkOjNd1LWa~23yrayP%0}37oTyQ&f6P&?Jm_euo9une#)xXS$|k37FR_7uqpV zqfjwD=sq(2I+UGQos}NrcCe`Zvqt&VZoFj7B~J5*z5UU}9&LtO`?Fmm>aP{KM3xPc z1l2bbZiLv``gvJR6;S1iorHY=@L(R4f*2@NpzoR}V2(>hV{Q49P zZ23+JqNQpRGHn-c!>l7#gk)pJo`3>`57+nJHntk8*X!%+a~ke1)VmP=5&n+sM9qnr zP7K0ss>U70~?nO)LnnKQggt9Ebp)~GUR6551#(44co>fqB zXR}Ob>GJzl;a4=L+t!9-mQ7u$$l83CA|n-bqTd#ADFO4Q}mmvwZE$zEg9}y!P&kxLc%FF`=5NYgpXeSYNZm>z8XnumoXf;3gT6ZAj1b(+e_X6!VoEd9g*fCwuGnW71e9=)o(p} zWXJd{GxCaQ8?$@bTc@R3XlHBDa z#>R;O*41;DkyLNsx$+tj%{f&wUva;$trdd`;tB@`wtFzu(k*;@NaN9? zi?VVG3I(N-pbn2Y3xEuw4uJ%1D5#aZCmM~w$VY)d%M9_ipEdxwQqZE`6u>emZ?(Lz zYC7)iLFasMC@?8tBu2;|($im&#Zde2Q~iP50)Fs?K<(Di)N?}6NaVYBh;7EkL70Js zYoe#Sn_U(Z31r^T=%-Ip6h)>Y4`XJWYe0*ZqB-F6+nL)9A)n5bAJr~}h*t%P(P_kK zASXZnA$V#;U4JK|DW=3$Ko>-;0Z@PK5dpTBxo?<5#1$~Y?(1?!0MucTg9Tc!pbw@BK@Xi`W zCF$q98T8HixVyF*hFztZ|JvCp;PUO7(obgf#rIZZ({D#7>HM?a(c0V7#?wmJCO&_)}7dZc@Tjwx}M zJik@9LN^u}Ps=?#DSM5eRhN=w<)JRKHj`5s;l`4ss8ti}C00{2SV5kS3=J~$)ab?i zn30^8p!S%w1hQcTIM==Jq#51G4O2h6NW&`=4h{|*Q!xg)CQ3wR>x=cftMZ8+OI0Ln z`DUm>oIpzhy``I5mGy`5!;lEgpvFha+f*x!TL-%8-~K&_<5y={NeCiibor68Tu)Tw zz<8FVrp}Wt-*jFa^udY(nQuw^28ttuA3%yX%Xg^ZV+b(4=yy>Uz#xRsjc~_aq0+{2 zV9BjK)sSFEe+JS|59cK$L<$ron`9yX(^Uesvu2@g4&spLs7DY9Of#shf$)gFqVgyH z;Wb+u1cQj$?>aERm4#3X+@vmzQEX84csi>;%g(7-@`TFd45*E?!!Dk_LLGS3L zU7MhULf;ujuelCCON`{kxA-9JpofWnvC@~0dxp$0Pv0e)#L^CnM)v-8)GC+rjk7_o zo}a+ix7WI=&l}$g_6kU9xkj+NG*qd1@cmm=40@1HOj%Wxv1>ojItLfJgk)ET+W5!~ zdW*Ejce+jVgT4mb?4+TKx724?`Mi%@VTG>6nNQLk=zl0c*j~adHA`HN6j-ATxk07u z7QQWrwY=83$E@>&IcQ3ND#c1t9*9Nv+;qS8$%CGkBp?7m01QtDD!D+fM#Ch*&bOhi ztgLJ_0imE!clmy@dV{+KVa3azeK|e??O-az!sv6Js{)zB|7zMh26^08-Q7Kd_1T4_Wb}GK zPDN*^1Xr_bkoC#9$!v*M&u=Cp)le8t*IEP{e&`T3U5to(WWJc@NSqFyf6l=AOq14- zdF&ddSZTGA(BP2i{gjm0TlOe=;519Yb*clX+g%ebkL|1J3#COZ-;){E*lz`4g@r%X z4yKvpxsA6N8&FnQNjmfZp2_E4`zB+CYr~KkHI_@PI*DKGn)$2A;y&u{82p0ta#a?w zcJB;AmVR^lYkhW>66>vb*~ z=ZQw_i-H9H_5%hLc@?rFSUE=_B~rUqJOA@52)-(I!X+Us(j5R4B~F=QX2I43YT z^MZo6>kk7K$X7oYM7`e>k1${_8D7}-rD{$9DlY)5AC6#GGa@HnYG6%!n<)KHNTGpN z+J&%{3x>vQo3Z+87`k%s97at{R}E%xTj#qAimfJyzUGCe_LbTHyWX@>*~5@y(wT%9^dK4kc!GhHBm=e@ z5|5;0!+ExYUBj^m|K`JJPF;4c0N}0?Ftt*|&1KC20LzQuM456H5{qK@A+$%zd}To` zJ^~rb^gC-kXu2IXB@pAZ8@%gOR8%6v!&9|NpU;)F@~UcU$AQT-6+y~i{L!$sw*H8H zpWnFVJ>ZJx7|G|&s{jUC?R==Zs&&#}kER(DmQG$BRlK!`eami8<)-MUTB{$r&7-ES z(K9>wK&73fk?yQ7RXBrhV{Z~}c#~4QA+v*x#E>dQV?#mLJ8R3t>h~&iI$zq8iFlI5 zAY*UlUFGm@tVOO171oeco1ar0D)@G?m*G0P!b5yI{w{+=qumLpn(m>TlrK)Y=HXu+ z`?c{-v7u7*qjr<|oz`fcQpYXB;*OhU-Rya(sh{Zu%_IB3eavNmtZfVd~~l9MlH z8~&P^Vcwv#v~>O>4c9GDn=2&3C|P1l!lXVQDL<-XG4jx@>8X|#(f%*c<-h?K`S$Ha zzs8jCa2llGl$12^_xI;v)Q>;CG&4}b9TgpYRa{(;n)>NR6tzGYX8IK8?$}I$)(4CZ zB2sIoyS*lEQwoH>>JwkVf;r$WxRiA3_TU~*w_j4yj(d7XgokU39xP*}oI1r>3vbmE zM&9Zjpq*~~YHgd6J=8W9$pQazWt+K3*W&Q~VBw10$?>=K{?7DU!bUVfr|d{=XS{}o zNP`tAumIk0Tc>BK@K32a9`ZlI2iVO|kC6fGu#( z%JyU_{c)Lr)sK=v_z@zimzpTa`<-(J{ue3jc^<$2nTIW?`sR&pCUzdj1g|lwfbPTj41Z3oDIxI{R%=OztD>t?gfBBEtY;%@zAMnMHnIR zkA#)LbOP)xWpbZoA=js-vbN%#b&wi~;@;6$heguO-b!^Py_Jc(@6pDFpO*6k4<9Ht zTp)RDZGue~N(dRSE?Iv1I-K-(QPC?h0QP43>qbXs=${5MbbErtn)j8hJxlyon6v7C zRg-g*lapVkn#Y@Wa?H?M9TQ34hR@RolZjLE_{xUQ{A0u)4uJQ$fNfkcOBH~=6M^>J zxvM-p1^?UoT&i^G!3q`4t2aM3v$kF4IHv+&zU&a2g+~b(A)});W^`jBBTa!rPOx~z zWB*`{#V@&lHBS~$yo_j`mdN%m;syF&|1i`_xG1nslK(iX$@=-}ih2Rh^*X_E^7AAGqkKqL& zK#WEdFA-X{zAoI3S3>VZ^woK|v`*P;A#(*~<)8IrIdolKrOv85T{ha7F==>i)ML3E za3oJ9&I%lN-Qc${Y&}f*3MIlW03+P_l`ZA_=-Qh`@ai7&c0pFZZP0ML_#Y`y=g$Ay zx?ts<3mw>Czk@ zPIQ4G&l(&>+SZl0Zyg;KU_oO1?Xb4C7Aop@OGzK&FYT2~xl_3(~D-4IevRIvj zVBuhsDb_t-)YP!vEstmoNR3Q+{`x&25mmv{cGLPtHY6E33}j(GOIrX#k=*3+V_ zA~~Nc>gL~8k*@L;7s+@fJvrP(RA7PM4P zw4PkEAX`oa1yt;X8q&;NL%Vt$pc|XB_M|>_-k7Ac=qT73+CO)bd?YyNI_-+0%f+G= zlH`+n`P-7&J&c1MK9VjKJi#q&<;$-hNFRzk($%qNK+oz|#slsbR?6}>b5@g%v65Vj z`_8OncB;w-WEU?_Iv%o3K$*X~9pLJhlJ0-a02j$8>T}?bicHh+fItT-VC#)kN{+Pl z2Bim(NeEH`B4l!m7POm$1cn0Ls**!&2Tt++12@28HSiw;t8lG;5v?B%OMWs8Pf4}L-e@gR3P0WE+4l~di(9!@IqRjCD>NDi$+lHWFF=#tckL9Rx zh$JeWJ$J5u$l&qgY$z$xBxaI4mJs6@Cgjn+GL?VF0DaQ6tyA4UKfNr6txkrZ zmIWp=b8!5ER|SXH07fT~@;33TB@>GuN|*+yfIJN^rCN5RXaiNN8~Rf+fnr6>OwcYs zvUzjB=h)vgO&5Ln4l4;9SY1Hc3IZ(+#K|mpxW0prdfw|(6Z_8XU{y5eV@W)(U0w(5c&NSx*i~a8|^IK=R zF}M_a)o^?f^A&1l2;_S^$D4-_o%(&~lze_w$A{T1n_w@EvxN6nlEn@wRyFK<%l(s9 zI7ap9#~IhIOk6Sppafk2=JI~~E(ZOR+E4($%pX3`>)%_M{#)_zk1nX#_wSxvKSM~E zkM0@yoiG!|k%5ztw626ILcFofOVKs8X)xW9;n=q7WSk`erdudTC2_cVWoJ7Or4l^;Z zf+XD-d72cbXFRfq%{gX7wROdT+2$LIAv0E==$=vSlHnG#H?7S+YNpTi{O+`71)lj# zk|{%Dto~EnQufjObK`%P5C81vI=zk;ICSU`qGEyNhg}w!J;+*bKvciW^oP9N0q&p` zGA}e;@IajpU0hH}hNmAmLiM$T8);`je3@r1SfD%kA>8^jAKP+{)3L6SM%r3{ILHGl zAgo|$(0T;P*&W)W%AU8=BZgIl^IS-PKBU~#0R1-FA8b?pI6z5Tc+;$&9Obn8bBJF6 z$jae=@d(njoih=weZS90f|e^`V45j$5bn_R-Y0M?khl7Q&=1>}U_R9>vI4Rh0q0KO zT=Wz8hkOR2FqRpuix}yVMi*%MK}_G_=|J#iXJieZ8{w>>(xR zl9~RK@mCyFbVLTa!B2x6(>{Cq<-*QRzourrnj7pD9xUEQA&959)))I!_9T)$%0&<} zmPNKtvGQ;%u{$bF-~ZC~-GCbk_48e%aWm)jt6=TOr6LSycuj}OiR}NtnL6yPAS`i1?My(91Of=k-AI&kM#xwD@dV|ARWEL!+&3fM?^@SLg*3Ht$hamWTbuW z&z%8QAo@W@W~N*?nCOs@hqQWu2f?D`Ho|)`oU^5t^dMLweI?+%@5Wb-@%l~vZX!k- zBXSUU17enddA>|hR(w?@(Z2eE{v{Uc%Duaf>}uL5jxCBb*1nA}D`t@mAbJ;Bd3^t= zHc7X#Jw3T7*;0F4D$8b(Hd^$I1PMbusMKV@0zQO@ z^mHQad&z&`YTVU*SjV&);?3eYM z@n;rw%tmTugtJcn1T9%!P?=~XdO^ntl9FG58KNuiYql?~qZ}!>i?A)IM-z-46uQ_k z$l;yk#`0G#6QdO_ZF7JQ``b}~?^o~2h0tOpEuk1Ik6<_a!3=NXh9{9{;-u4ZBigx? zJ_Ia=P6}dZUd29|rbgjavsWKD-F;PC=qu@G{tQnmv&tSHO8u1dRsCU#8+GRF9zmY! zkbOd&=~{_2Ke0_PSZJ73T2tm%<$Ls(phxvP+AQw8_eDjug46uZCKm%Ki_U&*QGdJE zbn?Q@hp5>V@qc%Ydloqyj^zP|wp2JuhWKaMsg z_5YPV*OP^-SRSd-<~WMZy#Q}-pLu%769?6;mX%I;TYhmDgttiR_WqDMKvnzHpQuWfAX#H@Ty z%J#FoDy4~vW^{4+HJq+g6aE_JU1~&o@x4o$Llu6%0t?PES=FurmOZwWw1s8zc$k%7 zFZc2#wEZ3u?d6wORQ%J549H1n5S+NJ_?w+=0AH^EhyMq16hJ4W3$BOHdnGWfqR5~@ zA6itYw4TVQYG`Eg=v2%C(6sKJM48t7)01`aCo2g|yFExR;uGp+Tj4W56GiqB+ikql zfW1O|{)pTCc}D^#q)bql4~uK8|3xo-|K_eq_^NlJ6~iQ5&@Ob)MVWcQ-Z~5W0Z#NgXADjiWtD{1*EiBx{&H2ImGC0Yj=qEuhg1 z64lv%85TJ&TWCdJ@=GJJuOkXJaA9|8)Z}e7hCA(;zdpMc?pB-!Yx2;!hmz4&5p5JA zRVU*Nx5ru6SRWpf93&@ch8r{7Ro6S<*8V(Ai5O!=B#x~Mg($0@vB53n9o=aFG_%jn zl}Chu5-s7OM+n?~yieDCUnl_eCrhAs}um2`M*>O-U$wcICfct z-hBVG@yuD{`m>0JbbI!Y*MZ;A(9HukM_g`@QR>){wru)a&iM(7YkT*RDWT^8tKolf zw1p#vzM!BJh~smxm4~(=2h}D> zwy2*+?*KG_bdv+!^L??3C5G6LoknI-@{LZh8|j~rdClenV~Ta94rt&TgqWzPmMQz! z>{pOap`-vZRGL;V{ety}J8)D%8897}WPw%cFY?~tf)>%6zxMfl`^(!}WMt_u&f?i3 z2DAN*caoowIMg?o1%*u{Go7{-E~%t@w^bzz9Tjiba=j?zr)-6dQrnH9?njB1Bt3rC zcEtOvU9%~SBjg<};199;`F78ukT^zAL}-D~hPipDofp5f$^@ zb`W`vMg`L2Z}MpymDt#(7AyUra;Pn?S=9W&-63}^By9a9XeZe!YX^CbL@b(^a9_F3 z=Q*#4Ga6%IeJ_3eWj&1~n&gQLpOhb!x}#%RYFZl7!I$f@JnFt!jD5j~xS4LheNj(? zm@Z&MRpW13bwjRXm)+ahP=$5?secp#V56}>C>^hz^<&2WfEbR{%Ny?H(B{pfSFPqj zSPbi&$?GAtaA00>{{wdGHH`t-N8mkg?eDvZj@`2M!fgg6$he;pz4Pxbu4aKhI~8@} zMN(q(l>N#j1Y9N`0;zM%n}|mq)<|pGO&poaSNgXrdxDrH>pLc)@#G$$-+H9WEjzn9 zVzhy@vyc+V`|5{uG-!(G6vBJRgLHLg&i?l(J>Di2#N@^{+C81yB7EBq~yfsl2+*Ul-2sxZr z%B+-%#6Af(rzjRTOZ3@ITi`oCyjZFmkJLNbf#4-A%FkDW=tN$D##;ek<-E4W{a7f$bBFr)9TA7^TQ0eS zllGD>jJos|ntUr6{0a2P`^P^-+V zC}gO6&pJ{YC@ZHxJGX2%_}jAKKmabFqY;@CKKtB%Ts2nXV#A|f`xy2qavX#JG%(6` zLjyB773ltXRo9|`4ANdwSi34W;*7IGjwFD{@<`UN=-Wwpfh(}lNkA#n+-n%w%OfNe>dY=^zhgYRz>OJTIE2(qo<2KQqG2hB{>oCa#k`0oR`EI51@|dLil7NSF~>WJaMJlcpOk#yKq!?iS**y*S`+7ab?* zkf+incy}>Hs#zk;3_Pb%X4B<%+*wt;_Hj~Sc}?%5Lpwdac0aG%SmE-%QJH0kME)#l zA}^Xq_CR+yVg#6fc~au{GBX?u!31rK$<5mJo>ja+A7^A`wT|1GLZ#(2%+uNpJ|eL9 zYC^9b!WhFoJATs$WkvTl#R5*4fB4j19;WODnI{T^;gdz??ij~A%{Eb$|4^|Q%J-n8 z>ILh`#;*t^bJ*R`5sUDK&`cY0$r5FC>R-34w@J&)ybpp=H(U)3t(Rq?6@36&{{*0G zUs^gg=3t>9xaWhJ#CNi-{@?sHMNP=L3QFP|kxZVy??7Fm2*qCyj6^nQWZFn<{<-${bQ6XDPv#ol2?N*hLp-`49;s$N{0`PR zfhQkP3bEIvk+7`qI{x}!CYu7Hv2Sm$8XEWg-vOu*0zk3hhIL9Ch_(D(#WWlZ5>bC9W4J^AY!jg18$dA>a#6%g^T?firMGei?wq_7@TwKdj{yH5(~t+0p8Q zPvY6X%*3MuLw*>NCgjvluI;Conj=uqygQc}o*r%lKQ0yFX`_VONRJci`HO;n<_qv8 zmzij16e~$5?REaly#tmqPaP|CLW%h~kK;oBvfJd-#c-Q6Rx)X34xxE(fqC?rZ1~x) zQ(BF86~m3Bhfk`Fe5w7Y;ua_JE<|>E=i61DN-Gzp>u6^Wwl*i_bqNOrLy<+=PwQIK z(it=fgr11|L)=H55rZi7DBK*(5|{-uNiTGwE}+Fgj*taLA_6&CWW;SI5iy*>VF<|} z*-$b|=*mZPD?2(metm{IHTq9g7vdMQ9MT%goi{#qn32j4%rpf6{e%qFP@n%nZ=Na) z$$5i@KEMs=Jg@-A9Gsa`*i+$*AAWlfDX@Rez92nYK&)PFt42ULm;=ECJ5vLWK7lrs z{==GL2>khz&(Neb3|I)2<`78(d>gAH{fq$MZ85Wo^a4!{UUW*XXw<)H45U96`=YW9l)5HLD#EsNEG z-V&Y;_QpTe#r6!Qh^z3!T@cgE{uSvk<-n z6@rWeYwKUwQD+ut#)p2NiYSC=2o~>S-#oww&a7odD*kfr9r>zCobh7nfxSgqnQTR> zC(19GQ-i#|9d8S~)?_lom$`u{;ce!Rv|QScx~=-Vxn}B(rK|UL938QyxKaE%rAn%i+Kkyo0ae6N{n7hV_U$UUMOqK~ZsT~npsTGU z6ScEH&0sHwLWd?C96|e=s^(+9I>N5L3 z9lrnFIX8)w+!JP?`g4p`vj3sIFa5AR^$^?(pcXkv1WL1=%3&=FxIaoD5oQ8f3g+Q_ z0}V?{u%IH-{SoZ<5^#Wz0r*Z;oBqrQ3QVbJXbYbQ9;6G%hb)8=Q&x7$I>~U$+4A2! z`CxbDlLcp&bKOn9MwX%h+*bCV54r-buq;(MUkaBnB`C76OTonrrB}=n-9Dvyy=JI(68yf4pE{hdB|71RB7Z;p|E!+iL;0tXgE;5T6sdi|r`P`|Y$$CF zAZEbgu+edAxp!z2F=qluM@}q&EqXB&d-|U!;BQ*ai-@lzVad<|zR_wxQV|gmK`c@m z1e^_`&MMHb!-)7WL#G{5DYMChtV`;bnT8=$L<4D~2vN-t0XW9MyGr&20%(3C-DWUt zaKcC*8BX@v%>vsf9__g^m&GM1DOvXYPZa=tVgLU+wvsqV|C3{@keLJJ1wb2MQ1<0x z*UwN9oDidZ$J!Dz;_t?35*#Asy6e|G=!up@x9Vc0ZVlo#Zn7bVKSa5|T}&j;jLKE^ z>he>GXjxC~*kUF143W{ncjh>P-X+4?SNZN#72>uj*SE*{Cs17ithEx-+2bO^jJ~1C zkJ|U~twqiS2pf&fJxbUXeJ|83hW0Qjc6%=6H?DZnAaYw+U9bIgtxQy`1rw%~RC`7( z)*_6W@#av4Ce!hJ!vEwe(?Qj*e&Y%VJ^AUx7P3w)57j-h08vYMGb=q^K$H&o-ShlG zS5fD<0|X2jorYtiOA@9JMNc@#OR5&2p5?U6TH^GFKI#5{jhuZ@({&uj zsiY8&IlQ1kfp$7H<{*+es4-I>6pDv%U~L5R6p+DKIiMj37l%Sq+%P1Lry-deY98cQ~qR)5M9bRDmyWQ`$+kU_A_xt&LUhkLB)mLe67(FR! zo&%{~t{bU3f8qFWVHxK^)cCyCbz(O$1AnKbB@#v^{a}W(f6PU6(9+DvUph!^CAM3< z(2)919{ColmoSS!A&953QIHG{9i$_^W^K@udqPXoSG;FIqgM@K z3YVXQUf`1~_k3VWr}=AGT@Yl6f1?ww0Wb50>M{D0SdVVaL-y* z+CG&UhXVh@;@?)6pprw@2nlk(fUgYt?H%7zfJ#2$=eAaW+Py959UJ}tv)M^nZRf7C8NhL^$0VDX6?*J&-bdVyNS}|@ zr~F7!+R1L`s(*`BP-N4sAqy#OF{bVDUtQ$25nI%Wfso>fX|Z#g z!7u%;u|@k?l8H#7>!z0F1~(I<$_{F7-f9v~zPG+`QYXucu48_QvO$onLj(oP9pkma zHng^&@gD&gE0|eALO`ZW`lKlKUhx$`vs@qx0s9Svd5$PHS><4#!bc7_yNpMl*5c7r z9KK>ds*!;^0_PeFSbY=s@;otz@bJBdEORhkJClJ-sRc4cIWw21x_BZkjzJzt{(80k z{-Z_+UPu7}kTYpxA(zndr*|@DPzgk0*XiG{_e1?K-S~(A?X}6=`Ogk_rDk-Uf zJIsz>!>;ibl_fObCxvPs%mIdVJU?&N1-8yi>v##4fTVZ$Mx~>xxopd_A zocn25SQS`UxH21g2d)bcAvvGYmoeny_*J6TtVB7lRg!?xD^DGYM@4Z<+8iw^N(QIi zrsR{y#1LaBC36<{cSA@Rz;s9xSHX_*Xn?^{LCm&a9O49tU4#z-;rt_LsqUXT@KQby zXlpRBzCPuIN7MclZAb(x&ctsNF){F8!Bmxn?kA9Z?Fm?rBZ(d?E-W!pjY8C;5$T0s z3Yjp`o=@E7fqijO*z;y?rS}d&j(_^EJ1~kH*X{Hp=;U$Nokd$aqy!>PI< ah_JdPCo2UrZSBuPTXBG2u&?YOGy89{6H|5o literal 0 HcmV?d00001 diff --git a/_sources/cosem_starter.rst.txt b/_sources/cosem_starter.rst.txt index e7d8da980..e4739dc2c 100644 --- a/_sources/cosem_starter.rst.txt +++ b/_sources/cosem_starter.rst.txt @@ -56,7 +56,7 @@ Example: Full Example ------------ -Here’s how the complete setup looks: +Here's how the complete setup looks: .. code-block:: python @@ -81,19 +81,52 @@ Available COSEM Pretrained Models Below is a table of the COSEM pretrained models available, along with their details: -+-----------+----------------------------+-----------------+--------------------------------------------------------------+-----------+------------+-----------------+ -| Model | Checkpoints | Best Checkpoint| Classes | Input Res | Output Res | Model | -+===========+============================+=================+==============================================================+===========+============+=================+ -| setup04 | 975000, 625000, 1820500 | 1820500 | ecs, pm, mito, mito_mem, ves, ves_mem, endo, endo_mem, er, er_mem, eres, nuc, mt, mt_out | 8 nm | 4 nm | Upsample U-Net | -+-----------+----------------------------+-----------------+--------------------------------------------------------------+-----------+------------+-----------------+ -| setup26.1 | 650000, 2580000 | 2580000 | mito, mito_mem, mito_ribo | 8 nm | 4 nm | Upsample U-Net | -+-----------+----------------------------+-----------------+--------------------------------------------------------------+-----------+------------+-----------------+ -| setup28 | 775000 | 775000 | er, er_mem | 8 nm | 4 nm | Upsample U-Net | -+-----------+----------------------------+-----------------+--------------------------------------------------------------+-----------+------------+-----------------+ -| setup36 | 500000, 1100000 | 1100000 | nuc, nucleo | 8 nm | 4 nm | Upsample U-Net | -+-----------+----------------------------+-----------------+--------------------------------------------------------------+-----------+------------+-----------------+ -| setup45 | 625000, 1634500 | 1634500 | ecs, pm | 4 nm | 4 nm | U-Net | -+-----------+----------------------------+-----------------+--------------------------------------------------------------+-----------+------------+-----------------+ +.. list-table:: Available COSEM Pretrained Models + :header-rows: 1 + + * - Model + - Checkpoints + - Best Checkpoint + - Classes + - Input Res + - Output Res + - Model + * - setup04 + - 975000, 625000, 1820500 + - 1820500 + - ecs, pm, mito, mito_mem, ves, ves_mem, endo, endo_mem, er, er_mem, eres, nuc, mt, mt_out + - 8 nm + - 4 nm + - Upsample U-Net + * - setup26.1 + - 650000, 2580000 + - 2580000 + - mito, mito_mem, mito_ribo + - 8 nm + - 4 nm + - Upsample U-Net + * - setup28 + - 775000 + - 775000 + - er, er_mem + - 8 nm + - 4 nm + - Upsample U-Net + * - setup36 + - 500000, 1100000 + - 1100000 + - nuc, nucleo + - 8 nm + - 4 nm + - Upsample U-Net + * - setup45 + - 625000, 1634500 + - 1634500 + - ecs, pm + - 4 nm + - 4 nm + - U-Net + Notes ----- diff --git a/_sources/notebooks/minimal_tutorial.ipynb.txt b/_sources/notebooks/minimal_tutorial.ipynb.txt index 0c662dc02..b349d315d 100644 --- a/_sources/notebooks/minimal_tutorial.ipynb.txt +++ b/_sources/notebooks/minimal_tutorial.ipynb.txt @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "60a686e2", + "id": "51dfe9a0", "metadata": { "lines_to_next_cell": 2 }, @@ -14,7 +14,7 @@ }, { "cell_type": "markdown", - "id": "cacdf23f", + "id": "4bedda6b", "metadata": {}, "source": [ "## Needed Libraries for this Tutorial\n", @@ -28,7 +28,7 @@ }, { "cell_type": "markdown", - "id": "c6170c8a", + "id": "94dc08a6", "metadata": {}, "source": [ "## Introduction and overview\n", @@ -53,7 +53,7 @@ }, { "cell_type": "markdown", - "id": "2124c691", + "id": "30e87c66", "metadata": {}, "source": [ "## Environment setup\n", @@ -79,7 +79,7 @@ }, { "cell_type": "markdown", - "id": "566a2562", + "id": "aa1a03a3", "metadata": {}, "source": [ "## Config Store\n", @@ -108,13 +108,13 @@ { "cell_type": "code", "execution_count": 1, - "id": "b21279b5", + "id": "35fbc1d8", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:12.643700Z", - "iopub.status.busy": "2024-11-07T15:36:12.643122Z", - "iopub.status.idle": "2024-11-07T15:36:20.907151Z", - "shell.execute_reply": "2024-11-07T15:36:20.906522Z" + "iopub.execute_input": "2024-11-07T15:59:36.334096Z", + "iopub.status.busy": "2024-11-07T15:59:36.333887Z", + "iopub.status.idle": "2024-11-07T15:59:44.196468Z", + "shell.execute_reply": "2024-11-07T15:59:44.195863Z" } }, "outputs": [ @@ -148,7 +148,7 @@ }, { "cell_type": "markdown", - "id": "39f4d67e", + "id": "96503150", "metadata": { "lines_to_next_cell": 0 }, @@ -160,13 +160,13 @@ { "cell_type": "code", "execution_count": 2, - "id": "f702a26d", + "id": "1e2d0892", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:20.909866Z", - "iopub.status.busy": "2024-11-07T15:36:20.908962Z", - "iopub.status.idle": "2024-11-07T15:36:21.636175Z", - "shell.execute_reply": "2024-11-07T15:36:21.635535Z" + "iopub.execute_input": "2024-11-07T15:59:44.198937Z", + "iopub.status.busy": "2024-11-07T15:59:44.198350Z", + "iopub.status.idle": "2024-11-07T15:59:44.980272Z", + "shell.execute_reply": "2024-11-07T15:59:44.979565Z" }, "lines_to_next_cell": 0, "title": "Create some data" @@ -259,7 +259,7 @@ }, { "cell_type": "markdown", - "id": "a280675c", + "id": "f366355b", "metadata": { "lines_to_next_cell": 0 }, @@ -270,13 +270,13 @@ { "cell_type": "code", "execution_count": 3, - "id": "995d8c1e", + "id": "1dc94120", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:21.638729Z", - "iopub.status.busy": "2024-11-07T15:36:21.637955Z", - "iopub.status.idle": "2024-11-07T15:36:21.929130Z", - "shell.execute_reply": "2024-11-07T15:36:21.928427Z" + "iopub.execute_input": "2024-11-07T15:59:44.983400Z", + "iopub.status.busy": "2024-11-07T15:59:44.982544Z", + "iopub.status.idle": "2024-11-07T15:59:45.287186Z", + "shell.execute_reply": "2024-11-07T15:59:45.286437Z" }, "lines_to_next_cell": 2 }, @@ -311,7 +311,7 @@ }, { "cell_type": "markdown", - "id": "4f17bfb0", + "id": "7dfd1825", "metadata": {}, "source": [ "## Datasplit\n", @@ -327,13 +327,13 @@ { "cell_type": "code", "execution_count": 4, - "id": "51c4f703", + "id": "2727e96d", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:21.931640Z", - "iopub.status.busy": "2024-11-07T15:36:21.931387Z", - "iopub.status.idle": "2024-11-07T15:36:21.949615Z", - "shell.execute_reply": "2024-11-07T15:36:21.949111Z" + "iopub.execute_input": "2024-11-07T15:59:45.289506Z", + "iopub.status.busy": "2024-11-07T15:59:45.289265Z", + "iopub.status.idle": "2024-11-07T15:59:45.308606Z", + "shell.execute_reply": "2024-11-07T15:59:45.307907Z" }, "lines_to_next_cell": 2 }, @@ -397,13 +397,13 @@ { "cell_type": "code", "execution_count": 5, - "id": "758bcb9d", + "id": "4e37e880", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:21.951468Z", - "iopub.status.busy": "2024-11-07T15:36:21.951207Z", - "iopub.status.idle": "2024-11-07T15:36:21.959506Z", - "shell.execute_reply": "2024-11-07T15:36:21.958958Z" + "iopub.execute_input": "2024-11-07T15:59:45.311075Z", + "iopub.status.busy": "2024-11-07T15:59:45.310692Z", + "iopub.status.idle": "2024-11-07T15:59:45.322053Z", + "shell.execute_reply": "2024-11-07T15:59:45.321305Z" } }, "outputs": [], @@ -415,13 +415,13 @@ { "cell_type": "code", "execution_count": 6, - "id": "0fa89105", + "id": "f55aca11", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:21.961418Z", - "iopub.status.busy": "2024-11-07T15:36:21.961051Z", - "iopub.status.idle": "2024-11-07T15:36:21.970992Z", - "shell.execute_reply": "2024-11-07T15:36:21.970470Z" + "iopub.execute_input": "2024-11-07T15:59:45.324225Z", + "iopub.status.busy": "2024-11-07T15:59:45.324008Z", + "iopub.status.idle": "2024-11-07T15:59:45.335111Z", + "shell.execute_reply": "2024-11-07T15:59:45.334409Z" } }, "outputs": [], @@ -431,7 +431,7 @@ }, { "cell_type": "markdown", - "id": "d2d0be0d", + "id": "95a1b684", "metadata": {}, "source": [ "## Task\n", @@ -449,13 +449,13 @@ { "cell_type": "code", "execution_count": 7, - "id": "0f6ba119", + "id": "0b312f0c", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:21.973046Z", - "iopub.status.busy": "2024-11-07T15:36:21.972668Z", - "iopub.status.idle": "2024-11-07T15:36:21.980045Z", - "shell.execute_reply": "2024-11-07T15:36:21.979554Z" + "iopub.execute_input": "2024-11-07T15:59:45.337485Z", + "iopub.status.busy": "2024-11-07T15:59:45.337001Z", + "iopub.status.idle": "2024-11-07T15:59:45.345154Z", + "shell.execute_reply": "2024-11-07T15:59:45.344457Z" } }, "outputs": [], @@ -487,7 +487,7 @@ }, { "cell_type": "markdown", - "id": "b7f3046a", + "id": "38b90709", "metadata": {}, "source": [ "## Architecture\n", @@ -501,13 +501,13 @@ { "cell_type": "code", "execution_count": 8, - "id": "dbce17aa", + "id": "160ac1ba", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:21.981992Z", - "iopub.status.busy": "2024-11-07T15:36:21.981620Z", - "iopub.status.idle": "2024-11-07T15:36:21.987863Z", - "shell.execute_reply": "2024-11-07T15:36:21.987334Z" + "iopub.execute_input": "2024-11-07T15:59:45.347487Z", + "iopub.status.busy": "2024-11-07T15:59:45.347278Z", + "iopub.status.idle": "2024-11-07T15:59:45.354057Z", + "shell.execute_reply": "2024-11-07T15:59:45.353532Z" } }, "outputs": [], @@ -535,7 +535,7 @@ }, { "cell_type": "markdown", - "id": "930031b1", + "id": "99d1dcba", "metadata": {}, "source": [ "## Trainer\n", @@ -549,13 +549,13 @@ { "cell_type": "code", "execution_count": 9, - "id": "343b027c", + "id": "9990a15f", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:21.989795Z", - "iopub.status.busy": "2024-11-07T15:36:21.989411Z", - "iopub.status.idle": "2024-11-07T15:36:21.994315Z", - "shell.execute_reply": "2024-11-07T15:36:21.993818Z" + "iopub.execute_input": "2024-11-07T15:59:45.356095Z", + "iopub.status.busy": "2024-11-07T15:59:45.355733Z", + "iopub.status.idle": "2024-11-07T15:59:45.360595Z", + "shell.execute_reply": "2024-11-07T15:59:45.360099Z" } }, "outputs": [], @@ -576,7 +576,7 @@ }, { "cell_type": "markdown", - "id": "fa2d0029", + "id": "24c377eb", "metadata": {}, "source": [ "## Run\n", @@ -588,13 +588,13 @@ { "cell_type": "code", "execution_count": 10, - "id": "46d2c7a9", + "id": "5a12c0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:21.996352Z", - "iopub.status.busy": "2024-11-07T15:36:21.995916Z", - "iopub.status.idle": "2024-11-07T15:36:22.009243Z", - "shell.execute_reply": "2024-11-07T15:36:22.008734Z" + "iopub.execute_input": "2024-11-07T15:59:45.363012Z", + "iopub.status.busy": "2024-11-07T15:59:45.362462Z", + "iopub.status.idle": "2024-11-07T15:59:45.376001Z", + "shell.execute_reply": "2024-11-07T15:59:45.375378Z" } }, "outputs": [], @@ -619,7 +619,7 @@ }, { "cell_type": "markdown", - "id": "0e3ce199", + "id": "5e9a9e36", "metadata": {}, "source": [ "## Retrieve Configurations\n", @@ -653,7 +653,7 @@ }, { "cell_type": "markdown", - "id": "3330d8e9", + "id": "4b93b9d6", "metadata": {}, "source": [ "## Train\n", @@ -667,13 +667,13 @@ { "cell_type": "code", "execution_count": 11, - "id": "6e0fceb0", + "id": "67e9b015", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:36:22.011183Z", - "iopub.status.busy": "2024-11-07T15:36:22.010822Z", - "iopub.status.idle": "2024-11-07T15:49:36.282450Z", - "shell.execute_reply": "2024-11-07T15:49:36.281800Z" + "iopub.execute_input": "2024-11-07T15:59:45.378170Z", + "iopub.status.busy": "2024-11-07T15:59:45.377816Z", + "iopub.status.idle": "2024-11-07T16:12:39.974464Z", + "shell.execute_reply": "2024-11-07T16:12:39.973858Z" } }, "outputs": [ @@ -708,7 +708,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "WARNING:dacapo.experiments.trainers.gunpowder_trainer:Saving Snapshot. Iteration: 0, Loss: 0.6597984433174133!\n" + "WARNING:dacapo.experiments.trainers.gunpowder_trainer:Saving Snapshot. Iteration: 0, Loss: 0.7832373380661011!\n" ] }, { @@ -716,7 +716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 1/2000 [00:00<13:01, 2.56it/s]" + "training until 2000: 0%| | 1/2000 [00:00<12:24, 2.69it/s]" ] }, { @@ -724,7 +724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 1/2000 [00:00<13:01, 2.56it/s, loss=0.66]" + "training until 2000: 0%| | 1/2000 [00:00<12:24, 2.69it/s, loss=0.783]" ] }, { @@ -732,7 +732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 2/2000 [00:00<12:07, 2.75it/s, loss=0.66]" + "training until 2000: 0%| | 2/2000 [00:00<11:23, 2.92it/s, loss=0.783]" ] }, { @@ -740,7 +740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 2/2000 [00:00<12:07, 2.75it/s, loss=0.611]" + "training until 2000: 0%| | 2/2000 [00:00<11:23, 2.92it/s, loss=0.734]" ] }, { @@ -748,7 +748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 3/2000 [00:01<11:29, 2.90it/s, loss=0.611]" + "training until 2000: 0%| | 3/2000 [00:01<10:52, 3.06it/s, loss=0.734]" ] }, { @@ -756,7 +756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 3/2000 [00:01<11:29, 2.90it/s, loss=0.589]" + "training until 2000: 0%| | 3/2000 [00:01<10:52, 3.06it/s, loss=0.759]" ] }, { @@ -764,7 +764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 4/2000 [00:01<11:14, 2.96it/s, loss=0.589]" + "training until 2000: 0%| | 4/2000 [00:01<10:42, 3.11it/s, loss=0.759]" ] }, { @@ -772,7 +772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 4/2000 [00:01<11:14, 2.96it/s, loss=0.609]" + "training until 2000: 0%| | 4/2000 [00:01<10:42, 3.11it/s, loss=0.749]" ] }, { @@ -780,7 +780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 5/2000 [00:01<11:12, 2.97it/s, loss=0.609]" + "training until 2000: 0%| | 5/2000 [00:01<10:42, 3.10it/s, loss=0.749]" ] }, { @@ -788,7 +788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 5/2000 [00:01<11:12, 2.97it/s, loss=0.7] " + "training until 2000: 0%| | 5/2000 [00:01<10:42, 3.10it/s, loss=0.74] " ] }, { @@ -796,7 +796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 6/2000 [00:02<11:01, 3.01it/s, loss=0.7]" + "training until 2000: 0%| | 6/2000 [00:01<10:33, 3.15it/s, loss=0.74]" ] }, { @@ -804,7 +804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 6/2000 [00:02<11:01, 3.01it/s, loss=0.576]" + "training until 2000: 0%| | 6/2000 [00:01<10:33, 3.15it/s, loss=0.745]" ] }, { @@ -812,7 +812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 7/2000 [00:02<10:57, 3.03it/s, loss=0.576]" + "training until 2000: 0%| | 7/2000 [00:02<10:37, 3.12it/s, loss=0.745]" ] }, { @@ -820,7 +820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 7/2000 [00:02<10:57, 3.03it/s, loss=0.57] " + "training until 2000: 0%| | 7/2000 [00:02<10:37, 3.12it/s, loss=0.739]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 8/2000 [00:02<11:04, 3.00it/s, loss=0.57]" + "training until 2000: 0%| | 8/2000 [00:02<10:33, 3.14it/s, loss=0.739]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 8/2000 [00:02<11:04, 3.00it/s, loss=0.68]" + "training until 2000: 0%| | 8/2000 [00:02<10:33, 3.14it/s, loss=0.708]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 9/2000 [00:03<10:56, 3.03it/s, loss=0.68]" + "training until 2000: 0%| | 9/2000 [00:02<10:41, 3.11it/s, loss=0.708]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 9/2000 [00:03<10:56, 3.03it/s, loss=0.592]" + "training until 2000: 0%| | 9/2000 [00:02<10:41, 3.11it/s, loss=0.761]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 10/2000 [00:03<11:00, 3.01it/s, loss=0.592]" + "training until 2000: 0%| | 10/2000 [00:03<10:47, 3.07it/s, loss=0.761]" ] }, { @@ -868,7 +868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 0%| | 10/2000 [00:03<11:00, 3.01it/s, loss=0.565]" + "training until 2000: 0%| | 10/2000 [00:03<10:47, 3.07it/s, loss=0.735]" ] }, { @@ -876,7 +876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 11/2000 [00:03<10:58, 3.02it/s, loss=0.565]" + "training until 2000: 1%| | 11/2000 [00:03<10:37, 3.12it/s, loss=0.735]" ] }, { @@ -884,7 +884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 11/2000 [00:03<10:58, 3.02it/s, loss=0.62] " + "training until 2000: 1%| | 11/2000 [00:03<10:37, 3.12it/s, loss=0.759]" ] }, { @@ -892,7 +892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 12/2000 [00:04<11:03, 2.99it/s, loss=0.62]" + "training until 2000: 1%| | 12/2000 [00:03<10:54, 3.04it/s, loss=0.759]" ] }, { @@ -900,7 +900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 12/2000 [00:04<11:03, 2.99it/s, loss=0.554]" + "training until 2000: 1%| | 12/2000 [00:03<10:54, 3.04it/s, loss=0.7] " ] }, { @@ -908,7 +908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 13/2000 [00:04<10:49, 3.06it/s, loss=0.554]" + "training until 2000: 1%| | 13/2000 [00:04<10:48, 3.06it/s, loss=0.7]" ] }, { @@ -916,7 +916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 13/2000 [00:04<10:49, 3.06it/s, loss=0.639]" + "training until 2000: 1%| | 13/2000 [00:04<10:48, 3.06it/s, loss=0.717]" ] }, { @@ -924,7 +924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 14/2000 [00:04<10:48, 3.06it/s, loss=0.639]" + "training until 2000: 1%| | 14/2000 [00:04<10:48, 3.06it/s, loss=0.717]" ] }, { @@ -932,7 +932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 14/2000 [00:04<10:48, 3.06it/s, loss=0.742]" + "training until 2000: 1%| | 14/2000 [00:04<10:48, 3.06it/s, loss=0.72] " ] }, { @@ -940,7 +940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 15/2000 [00:05<10:51, 3.05it/s, loss=0.742]" + "training until 2000: 1%| | 15/2000 [00:04<10:46, 3.07it/s, loss=0.72]" ] }, { @@ -948,7 +948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 15/2000 [00:05<10:51, 3.05it/s, loss=0.588]" + "training until 2000: 1%| | 15/2000 [00:04<10:46, 3.07it/s, loss=0.748]" ] }, { @@ -956,7 +956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 16/2000 [00:05<10:56, 3.02it/s, loss=0.588]" + "training until 2000: 1%| | 16/2000 [00:05<10:44, 3.08it/s, loss=0.748]" ] }, { @@ -964,7 +964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 16/2000 [00:05<10:56, 3.02it/s, loss=0.592]" + "training until 2000: 1%| | 16/2000 [00:05<10:44, 3.08it/s, loss=0.722]" ] }, { @@ -972,7 +972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 17/2000 [00:05<10:53, 3.03it/s, loss=0.592]" + "training until 2000: 1%| | 17/2000 [00:05<10:37, 3.11it/s, loss=0.722]" ] }, { @@ -980,7 +980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 17/2000 [00:05<10:53, 3.03it/s, loss=0.579]" + "training until 2000: 1%| | 17/2000 [00:05<10:37, 3.11it/s, loss=0.728]" ] }, { @@ -988,7 +988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 18/2000 [00:05<10:53, 3.03it/s, loss=0.579]" + "training until 2000: 1%| | 18/2000 [00:05<10:28, 3.15it/s, loss=0.728]" ] }, { @@ -996,7 +996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 18/2000 [00:05<10:53, 3.03it/s, loss=0.71] " + "training until 2000: 1%| | 18/2000 [00:05<10:28, 3.15it/s, loss=0.75] " ] }, { @@ -1004,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 19/2000 [00:06<10:58, 3.01it/s, loss=0.71]" + "training until 2000: 1%| | 19/2000 [00:06<10:25, 3.17it/s, loss=0.75]" ] }, { @@ -1012,7 +1012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 19/2000 [00:06<10:58, 3.01it/s, loss=0.561]" + "training until 2000: 1%| | 19/2000 [00:06<10:25, 3.17it/s, loss=0.741]" ] }, { @@ -1020,7 +1020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 20/2000 [00:06<10:54, 3.03it/s, loss=0.561]" + "training until 2000: 1%| | 20/2000 [00:06<12:37, 2.61it/s, loss=0.741]" ] }, { @@ -1028,7 +1028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 20/2000 [00:06<10:54, 3.03it/s, loss=0.6] " + "training until 2000: 1%| | 20/2000 [00:06<12:37, 2.61it/s, loss=0.731]" ] }, { @@ -1036,7 +1036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 21/2000 [00:07<13:21, 2.47it/s, loss=0.6]" + "training until 2000: 1%| | 21/2000 [00:06<11:57, 2.76it/s, loss=0.731]" ] }, { @@ -1044,7 +1044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 21/2000 [00:07<13:21, 2.47it/s, loss=0.584]" + "training until 2000: 1%| | 21/2000 [00:06<11:57, 2.76it/s, loss=0.748]" ] }, { @@ -1052,7 +1052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 22/2000 [00:07<12:37, 2.61it/s, loss=0.584]" + "training until 2000: 1%| | 22/2000 [00:07<11:29, 2.87it/s, loss=0.748]" ] }, { @@ -1060,7 +1060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 22/2000 [00:07<12:37, 2.61it/s, loss=0.6] " + "training until 2000: 1%| | 22/2000 [00:07<11:29, 2.87it/s, loss=0.72] " ] }, { @@ -1068,7 +1068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 23/2000 [00:07<12:08, 2.72it/s, loss=0.6]" + "training until 2000: 1%| | 23/2000 [00:07<11:10, 2.95it/s, loss=0.72]" ] }, { @@ -1076,7 +1076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 23/2000 [00:07<12:08, 2.72it/s, loss=0.527]" + "training until 2000: 1%| | 23/2000 [00:07<11:10, 2.95it/s, loss=0.743]" ] }, { @@ -1084,7 +1084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 24/2000 [00:08<11:47, 2.79it/s, loss=0.527]" + "training until 2000: 1%| | 24/2000 [00:07<10:51, 3.03it/s, loss=0.743]" ] }, { @@ -1092,7 +1092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%| | 24/2000 [00:08<11:47, 2.79it/s, loss=0.676]" + "training until 2000: 1%| | 24/2000 [00:07<10:51, 3.03it/s, loss=0.711]" ] }, { @@ -1100,7 +1100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 25/2000 [00:08<11:32, 2.85it/s, loss=0.676]" + "training until 2000: 1%|▏ | 25/2000 [00:08<10:54, 3.02it/s, loss=0.711]" ] }, { @@ -1108,7 +1108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 25/2000 [00:08<11:32, 2.85it/s, loss=0.585]" + "training until 2000: 1%|▏ | 25/2000 [00:08<10:54, 3.02it/s, loss=0.735]" ] }, { @@ -1116,7 +1116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 26/2000 [00:08<11:45, 2.80it/s, loss=0.585]" + "training until 2000: 1%|▏ | 26/2000 [00:08<10:45, 3.06it/s, loss=0.735]" ] }, { @@ -1124,7 +1124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 26/2000 [00:08<11:45, 2.80it/s, loss=0.621]" + "training until 2000: 1%|▏ | 26/2000 [00:08<10:45, 3.06it/s, loss=0.746]" ] }, { @@ -1132,7 +1132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 27/2000 [00:09<11:21, 2.90it/s, loss=0.621]" + "training until 2000: 1%|▏ | 27/2000 [00:08<10:43, 3.07it/s, loss=0.746]" ] }, { @@ -1140,7 +1140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 27/2000 [00:09<11:21, 2.90it/s, loss=0.642]" + "training until 2000: 1%|▏ | 27/2000 [00:08<10:43, 3.07it/s, loss=0.722]" ] }, { @@ -1148,7 +1148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 28/2000 [00:09<11:03, 2.97it/s, loss=0.642]" + "training until 2000: 1%|▏ | 28/2000 [00:09<10:40, 3.08it/s, loss=0.722]" ] }, { @@ -1156,7 +1156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 28/2000 [00:09<11:03, 2.97it/s, loss=0.66] " + "training until 2000: 1%|▏ | 28/2000 [00:09<10:40, 3.08it/s, loss=0.752]" ] }, { @@ -1164,7 +1164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 29/2000 [00:09<11:04, 2.97it/s, loss=0.66]" + "training until 2000: 1%|▏ | 29/2000 [00:09<10:41, 3.07it/s, loss=0.752]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 1%|▏ | 29/2000 [00:09<11:04, 2.97it/s, loss=0.682]" + "training until 2000: 1%|▏ | 29/2000 [00:09<10:41, 3.07it/s, loss=0.715]" ] }, { @@ -1180,7 +1180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 30/2000 [00:10<10:53, 3.02it/s, loss=0.682]" + "training until 2000: 2%|▏ | 30/2000 [00:09<10:46, 3.05it/s, loss=0.715]" ] }, { @@ -1188,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 30/2000 [00:10<10:53, 3.02it/s, loss=0.586]" + "training until 2000: 2%|▏ | 30/2000 [00:09<10:46, 3.05it/s, loss=0.681]" ] }, { @@ -1196,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 31/2000 [00:10<10:50, 3.03it/s, loss=0.586]" + "training until 2000: 2%|▏ | 31/2000 [00:10<10:41, 3.07it/s, loss=0.681]" ] }, { @@ -1204,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 31/2000 [00:10<10:50, 3.03it/s, loss=0.552]" + "training until 2000: 2%|▏ | 31/2000 [00:10<10:41, 3.07it/s, loss=0.779]" ] }, { @@ -1212,7 +1212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 32/2000 [00:10<10:53, 3.01it/s, loss=0.552]" + "training until 2000: 2%|▏ | 32/2000 [00:10<10:51, 3.02it/s, loss=0.779]" ] }, { @@ -1220,7 +1220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 32/2000 [00:10<10:53, 3.01it/s, loss=0.589]" + "training until 2000: 2%|▏ | 32/2000 [00:10<10:51, 3.02it/s, loss=0.731]" ] }, { @@ -1228,7 +1228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 33/2000 [00:11<10:57, 2.99it/s, loss=0.589]" + "training until 2000: 2%|▏ | 33/2000 [00:10<10:46, 3.04it/s, loss=0.731]" ] }, { @@ -1236,7 +1236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 33/2000 [00:11<10:57, 2.99it/s, loss=0.561]" + "training until 2000: 2%|▏ | 33/2000 [00:10<10:46, 3.04it/s, loss=0.732]" ] }, { @@ -1244,7 +1244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 34/2000 [00:11<10:52, 3.01it/s, loss=0.561]" + "training until 2000: 2%|▏ | 34/2000 [00:11<10:47, 3.04it/s, loss=0.732]" ] }, { @@ -1252,7 +1252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 34/2000 [00:11<10:52, 3.01it/s, loss=0.569]" + "training until 2000: 2%|▏ | 34/2000 [00:11<10:47, 3.04it/s, loss=0.762]" ] }, { @@ -1260,7 +1260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 35/2000 [00:11<10:57, 2.99it/s, loss=0.569]" + "training until 2000: 2%|▏ | 35/2000 [00:11<10:53, 3.01it/s, loss=0.762]" ] }, { @@ -1268,7 +1268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 35/2000 [00:11<10:57, 2.99it/s, loss=0.637]" + "training until 2000: 2%|▏ | 35/2000 [00:11<10:53, 3.01it/s, loss=0.72] " ] }, { @@ -1276,7 +1276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 36/2000 [00:12<10:55, 2.99it/s, loss=0.637]" + "training until 2000: 2%|▏ | 36/2000 [00:11<10:49, 3.02it/s, loss=0.72]" ] }, { @@ -1284,7 +1284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 36/2000 [00:12<10:55, 2.99it/s, loss=0.569]" + "training until 2000: 2%|▏ | 36/2000 [00:11<10:49, 3.02it/s, loss=0.757]" ] }, { @@ -1292,7 +1292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 37/2000 [00:12<10:44, 3.05it/s, loss=0.569]" + "training until 2000: 2%|▏ | 37/2000 [00:12<10:41, 3.06it/s, loss=0.757]" ] }, { @@ -1300,7 +1300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 37/2000 [00:12<10:44, 3.05it/s, loss=0.606]" + "training until 2000: 2%|▏ | 37/2000 [00:12<10:41, 3.06it/s, loss=0.757]" ] }, { @@ -1308,7 +1308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 38/2000 [00:12<10:37, 3.08it/s, loss=0.606]" + "training until 2000: 2%|▏ | 38/2000 [00:12<10:32, 3.10it/s, loss=0.757]" ] }, { @@ -1316,7 +1316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 38/2000 [00:12<10:37, 3.08it/s, loss=0.547]" + "training until 2000: 2%|▏ | 38/2000 [00:12<10:32, 3.10it/s, loss=0.739]" ] }, { @@ -1324,7 +1324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 39/2000 [00:13<10:37, 3.08it/s, loss=0.547]" + "training until 2000: 2%|▏ | 39/2000 [00:12<10:29, 3.12it/s, loss=0.739]" ] }, { @@ -1332,7 +1332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 39/2000 [00:13<10:37, 3.08it/s, loss=0.613]" + "training until 2000: 2%|▏ | 39/2000 [00:12<10:29, 3.12it/s, loss=0.666]" ] }, { @@ -1340,7 +1340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 40/2000 [00:13<10:37, 3.08it/s, loss=0.613]" + "training until 2000: 2%|▏ | 40/2000 [00:13<10:30, 3.11it/s, loss=0.666]" ] }, { @@ -1348,7 +1348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 40/2000 [00:13<10:37, 3.08it/s, loss=0.56] " + "training until 2000: 2%|▏ | 40/2000 [00:13<10:30, 3.11it/s, loss=0.748]" ] }, { @@ -1356,7 +1356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 41/2000 [00:13<10:36, 3.08it/s, loss=0.56]" + "training until 2000: 2%|▏ | 41/2000 [00:13<10:29, 3.11it/s, loss=0.748]" ] }, { @@ -1364,7 +1364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 41/2000 [00:13<10:36, 3.08it/s, loss=0.595]" + "training until 2000: 2%|▏ | 41/2000 [00:13<10:29, 3.11it/s, loss=0.712]" ] }, { @@ -1372,7 +1372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 42/2000 [00:14<10:51, 3.01it/s, loss=0.595]" + "training until 2000: 2%|▏ | 42/2000 [00:13<10:35, 3.08it/s, loss=0.712]" ] }, { @@ -1380,7 +1380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 42/2000 [00:14<10:51, 3.01it/s, loss=0.654]" + "training until 2000: 2%|▏ | 42/2000 [00:13<10:35, 3.08it/s, loss=0.759]" ] }, { @@ -1388,7 +1388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 43/2000 [00:14<10:50, 3.01it/s, loss=0.654]" + "training until 2000: 2%|▏ | 43/2000 [00:14<10:36, 3.07it/s, loss=0.759]" ] }, { @@ -1396,7 +1396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 43/2000 [00:14<10:50, 3.01it/s, loss=0.571]" + "training until 2000: 2%|▏ | 43/2000 [00:14<10:36, 3.07it/s, loss=0.782]" ] }, { @@ -1404,7 +1404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 44/2000 [00:14<10:46, 3.03it/s, loss=0.571]" + "training until 2000: 2%|▏ | 44/2000 [00:14<10:39, 3.06it/s, loss=0.782]" ] }, { @@ -1412,7 +1412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 44/2000 [00:14<10:46, 3.03it/s, loss=0.557]" + "training until 2000: 2%|▏ | 44/2000 [00:14<10:39, 3.06it/s, loss=0.732]" ] }, { @@ -1420,7 +1420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 45/2000 [00:15<10:48, 3.02it/s, loss=0.557]" + "training until 2000: 2%|▏ | 45/2000 [00:14<10:32, 3.09it/s, loss=0.732]" ] }, { @@ -1428,7 +1428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 45/2000 [00:15<10:48, 3.02it/s, loss=0.653]" + "training until 2000: 2%|▏ | 45/2000 [00:14<10:32, 3.09it/s, loss=0.767]" ] }, { @@ -1436,7 +1436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 46/2000 [00:15<10:58, 2.97it/s, loss=0.653]" + "training until 2000: 2%|▏ | 46/2000 [00:15<10:32, 3.09it/s, loss=0.767]" ] }, { @@ -1444,7 +1444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 46/2000 [00:15<10:58, 2.97it/s, loss=0.637]" + "training until 2000: 2%|▏ | 46/2000 [00:15<10:32, 3.09it/s, loss=0.742]" ] }, { @@ -1452,7 +1452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 47/2000 [00:15<11:04, 2.94it/s, loss=0.637]" + "training until 2000: 2%|▏ | 47/2000 [00:15<10:25, 3.12it/s, loss=0.742]" ] }, { @@ -1460,7 +1460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 47/2000 [00:15<11:04, 2.94it/s, loss=0.639]" + "training until 2000: 2%|▏ | 47/2000 [00:15<10:25, 3.12it/s, loss=0.769]" ] }, { @@ -1468,7 +1468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 48/2000 [00:16<11:04, 2.94it/s, loss=0.639]" + "training until 2000: 2%|▏ | 48/2000 [00:15<10:23, 3.13it/s, loss=0.769]" ] }, { @@ -1476,7 +1476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 48/2000 [00:16<11:04, 2.94it/s, loss=0.754]" + "training until 2000: 2%|▏ | 48/2000 [00:15<10:23, 3.13it/s, loss=0.684]" ] }, { @@ -1484,7 +1484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 49/2000 [00:16<10:52, 2.99it/s, loss=0.754]" + "training until 2000: 2%|▏ | 49/2000 [00:16<10:17, 3.16it/s, loss=0.684]" ] }, { @@ -1492,7 +1492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▏ | 49/2000 [00:16<10:52, 2.99it/s, loss=0.643]" + "training until 2000: 2%|▏ | 49/2000 [00:16<10:17, 3.16it/s, loss=0.755]" ] }, { @@ -1500,7 +1500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▎ | 50/2000 [00:16<10:51, 2.99it/s, loss=0.643]" + "training until 2000: 2%|▎ | 50/2000 [00:16<10:18, 3.15it/s, loss=0.755]" ] }, { @@ -1508,7 +1508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 2%|▎ | 50/2000 [00:16<10:51, 2.99it/s, loss=0.574]" + "training until 2000: 2%|▎ | 50/2000 [00:16<10:18, 3.15it/s, loss=0.753]" ] }, { @@ -1516,7 +1516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 51/2000 [00:17<11:02, 2.94it/s, loss=0.574]" + "training until 2000: 3%|▎ | 51/2000 [00:16<10:21, 3.14it/s, loss=0.753]" ] }, { @@ -1524,7 +1524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 51/2000 [00:17<11:02, 2.94it/s, loss=0.693]" + "training until 2000: 3%|▎ | 51/2000 [00:16<10:21, 3.14it/s, loss=0.777]" ] }, { @@ -1532,7 +1532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 52/2000 [00:17<11:01, 2.94it/s, loss=0.693]" + "training until 2000: 3%|▎ | 52/2000 [00:17<10:29, 3.09it/s, loss=0.777]" ] }, { @@ -1540,7 +1540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 52/2000 [00:17<11:01, 2.94it/s, loss=0.67] " + "training until 2000: 3%|▎ | 52/2000 [00:17<10:29, 3.09it/s, loss=0.718]" ] }, { @@ -1548,7 +1548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 53/2000 [00:17<10:59, 2.95it/s, loss=0.67]" + "training until 2000: 3%|▎ | 53/2000 [00:17<10:34, 3.07it/s, loss=0.718]" ] }, { @@ -1556,7 +1556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 53/2000 [00:17<10:59, 2.95it/s, loss=0.609]" + "training until 2000: 3%|▎ | 53/2000 [00:17<10:34, 3.07it/s, loss=0.713]" ] }, { @@ -1564,7 +1564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 54/2000 [00:18<11:01, 2.94it/s, loss=0.609]" + "training until 2000: 3%|▎ | 54/2000 [00:17<10:31, 3.08it/s, loss=0.713]" ] }, { @@ -1572,7 +1572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 54/2000 [00:18<11:01, 2.94it/s, loss=0.608]" + "training until 2000: 3%|▎ | 54/2000 [00:17<10:31, 3.08it/s, loss=0.754]" ] }, { @@ -1580,7 +1580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 55/2000 [00:18<11:00, 2.94it/s, loss=0.608]" + "training until 2000: 3%|▎ | 55/2000 [00:17<10:23, 3.12it/s, loss=0.754]" ] }, { @@ -1588,7 +1588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 55/2000 [00:18<11:00, 2.94it/s, loss=0.629]" + "training until 2000: 3%|▎ | 55/2000 [00:17<10:23, 3.12it/s, loss=0.689]" ] }, { @@ -1596,7 +1596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 56/2000 [00:18<10:46, 3.01it/s, loss=0.629]" + "training until 2000: 3%|▎ | 56/2000 [00:18<10:14, 3.17it/s, loss=0.689]" ] }, { @@ -1604,7 +1604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 56/2000 [00:18<10:46, 3.01it/s, loss=0.56] " + "training until 2000: 3%|▎ | 56/2000 [00:18<10:14, 3.17it/s, loss=0.686]" ] }, { @@ -1612,7 +1612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 57/2000 [00:19<10:55, 2.96it/s, loss=0.56]" + "training until 2000: 3%|▎ | 57/2000 [00:18<10:22, 3.12it/s, loss=0.686]" ] }, { @@ -1620,7 +1620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 57/2000 [00:19<10:55, 2.96it/s, loss=0.633]" + "training until 2000: 3%|▎ | 57/2000 [00:18<10:22, 3.12it/s, loss=0.75] " ] }, { @@ -1628,7 +1628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 58/2000 [00:19<10:48, 2.99it/s, loss=0.633]" + "training until 2000: 3%|▎ | 58/2000 [00:18<10:17, 3.15it/s, loss=0.75]" ] }, { @@ -1636,7 +1636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 58/2000 [00:19<10:48, 2.99it/s, loss=0.714]" + "training until 2000: 3%|▎ | 58/2000 [00:18<10:17, 3.15it/s, loss=0.672]" ] }, { @@ -1644,7 +1644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 59/2000 [00:19<10:59, 2.94it/s, loss=0.714]" + "training until 2000: 3%|▎ | 59/2000 [00:19<10:19, 3.13it/s, loss=0.672]" ] }, { @@ -1652,7 +1652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 59/2000 [00:19<10:59, 2.94it/s, loss=0.559]" + "training until 2000: 3%|▎ | 59/2000 [00:19<10:19, 3.13it/s, loss=0.72] " ] }, { @@ -1660,7 +1660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 60/2000 [00:20<10:58, 2.95it/s, loss=0.559]" + "training until 2000: 3%|▎ | 60/2000 [00:19<10:16, 3.15it/s, loss=0.72]" ] }, { @@ -1668,7 +1668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 60/2000 [00:20<10:58, 2.95it/s, loss=0.556]" + "training until 2000: 3%|▎ | 60/2000 [00:19<10:16, 3.15it/s, loss=0.735]" ] }, { @@ -1676,7 +1676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 61/2000 [00:20<10:55, 2.96it/s, loss=0.556]" + "training until 2000: 3%|▎ | 61/2000 [00:19<10:11, 3.17it/s, loss=0.735]" ] }, { @@ -1684,7 +1684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 61/2000 [00:20<10:55, 2.96it/s, loss=0.601]" + "training until 2000: 3%|▎ | 61/2000 [00:19<10:11, 3.17it/s, loss=0.761]" ] }, { @@ -1692,7 +1692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 62/2000 [00:20<10:57, 2.95it/s, loss=0.601]" + "training until 2000: 3%|▎ | 62/2000 [00:20<10:02, 3.22it/s, loss=0.761]" ] }, { @@ -1700,7 +1700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 62/2000 [00:20<10:57, 2.95it/s, loss=0.575]" + "training until 2000: 3%|▎ | 62/2000 [00:20<10:02, 3.22it/s, loss=0.75] " ] }, { @@ -1708,7 +1708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 63/2000 [00:21<10:53, 2.96it/s, loss=0.575]" + "training until 2000: 3%|▎ | 63/2000 [00:20<10:06, 3.19it/s, loss=0.75]" ] }, { @@ -1716,7 +1716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 63/2000 [00:21<10:53, 2.96it/s, loss=0.619]" + "training until 2000: 3%|▎ | 63/2000 [00:20<10:06, 3.19it/s, loss=0.737]" ] }, { @@ -1724,7 +1724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 64/2000 [00:21<10:45, 3.00it/s, loss=0.619]" + "training until 2000: 3%|▎ | 64/2000 [00:20<10:13, 3.16it/s, loss=0.737]" ] }, { @@ -1732,7 +1732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 64/2000 [00:21<10:45, 3.00it/s, loss=0.58] " + "training until 2000: 3%|▎ | 64/2000 [00:20<10:13, 3.16it/s, loss=0.746]" ] }, { @@ -1740,7 +1740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 65/2000 [00:21<10:51, 2.97it/s, loss=0.58]" + "training until 2000: 3%|▎ | 65/2000 [00:21<10:12, 3.16it/s, loss=0.746]" ] }, { @@ -1748,7 +1748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 65/2000 [00:21<10:51, 2.97it/s, loss=0.596]" + "training until 2000: 3%|▎ | 65/2000 [00:21<10:12, 3.16it/s, loss=0.753]" ] }, { @@ -1756,7 +1756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 66/2000 [00:22<10:50, 2.97it/s, loss=0.596]" + "training until 2000: 3%|▎ | 66/2000 [00:21<10:10, 3.17it/s, loss=0.753]" ] }, { @@ -1764,7 +1764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 66/2000 [00:22<10:50, 2.97it/s, loss=0.57] " + "training until 2000: 3%|▎ | 66/2000 [00:21<10:10, 3.17it/s, loss=0.686]" ] }, { @@ -1772,7 +1772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 67/2000 [00:22<10:47, 2.98it/s, loss=0.57]" + "training until 2000: 3%|▎ | 67/2000 [00:21<10:24, 3.09it/s, loss=0.686]" ] }, { @@ -1780,7 +1780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 67/2000 [00:22<10:47, 2.98it/s, loss=0.654]" + "training until 2000: 3%|▎ | 67/2000 [00:21<10:24, 3.09it/s, loss=0.765]" ] }, { @@ -1788,7 +1788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 68/2000 [00:22<10:54, 2.95it/s, loss=0.654]" + "training until 2000: 3%|▎ | 68/2000 [00:22<10:24, 3.09it/s, loss=0.765]" ] }, { @@ -1796,7 +1796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 68/2000 [00:22<10:54, 2.95it/s, loss=0.617]" + "training until 2000: 3%|▎ | 68/2000 [00:22<10:24, 3.09it/s, loss=0.71] " ] }, { @@ -1804,7 +1804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 69/2000 [00:23<10:49, 2.98it/s, loss=0.617]" + "training until 2000: 3%|▎ | 69/2000 [00:22<10:19, 3.12it/s, loss=0.71]" ] }, { @@ -1812,7 +1812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 3%|▎ | 69/2000 [00:23<10:49, 2.98it/s, loss=0.539]" + "training until 2000: 3%|▎ | 69/2000 [00:22<10:19, 3.12it/s, loss=0.75]" ] }, { @@ -1820,7 +1820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 70/2000 [00:23<10:42, 3.00it/s, loss=0.539]" + "training until 2000: 4%|▎ | 70/2000 [00:22<10:20, 3.11it/s, loss=0.75]" ] }, { @@ -1828,7 +1828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 70/2000 [00:23<10:42, 3.00it/s, loss=0.577]" + "training until 2000: 4%|▎ | 70/2000 [00:22<10:20, 3.11it/s, loss=0.747]" ] }, { @@ -1836,7 +1836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 71/2000 [00:23<10:55, 2.94it/s, loss=0.577]" + "training until 2000: 4%|▎ | 71/2000 [00:23<10:22, 3.10it/s, loss=0.747]" ] }, { @@ -1844,7 +1844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 71/2000 [00:23<10:55, 2.94it/s, loss=0.639]" + "training until 2000: 4%|▎ | 71/2000 [00:23<10:22, 3.10it/s, loss=0.742]" ] }, { @@ -1852,7 +1852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 72/2000 [00:24<10:50, 2.96it/s, loss=0.639]" + "training until 2000: 4%|▎ | 72/2000 [00:23<10:18, 3.12it/s, loss=0.742]" ] }, { @@ -1860,7 +1860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 72/2000 [00:24<10:50, 2.96it/s, loss=0.62] " + "training until 2000: 4%|▎ | 72/2000 [00:23<10:18, 3.12it/s, loss=0.683]" ] }, { @@ -1868,7 +1868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 73/2000 [00:24<10:45, 2.98it/s, loss=0.62]" + "training until 2000: 4%|▎ | 73/2000 [00:23<10:22, 3.10it/s, loss=0.683]" ] }, { @@ -1876,7 +1876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 73/2000 [00:24<10:45, 2.98it/s, loss=0.592]" + "training until 2000: 4%|▎ | 73/2000 [00:23<10:22, 3.10it/s, loss=0.738]" ] }, { @@ -1884,7 +1884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 74/2000 [00:24<10:37, 3.02it/s, loss=0.592]" + "training until 2000: 4%|▎ | 74/2000 [00:24<10:19, 3.11it/s, loss=0.738]" ] }, { @@ -1892,7 +1892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▎ | 74/2000 [00:24<10:37, 3.02it/s, loss=0.532]" + "training until 2000: 4%|▎ | 74/2000 [00:24<10:19, 3.11it/s, loss=0.76] " ] }, { @@ -1900,7 +1900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 75/2000 [00:25<10:27, 3.07it/s, loss=0.532]" + "training until 2000: 4%|▍ | 75/2000 [00:24<10:18, 3.11it/s, loss=0.76]" ] }, { @@ -1908,7 +1908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 75/2000 [00:25<10:27, 3.07it/s, loss=0.626]" + "training until 2000: 4%|▍ | 75/2000 [00:24<10:18, 3.11it/s, loss=0.746]" ] }, { @@ -1916,7 +1916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 76/2000 [00:25<10:26, 3.07it/s, loss=0.626]" + "training until 2000: 4%|▍ | 76/2000 [00:24<10:18, 3.11it/s, loss=0.746]" ] }, { @@ -1924,7 +1924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 76/2000 [00:25<10:26, 3.07it/s, loss=0.52] " + "training until 2000: 4%|▍ | 76/2000 [00:24<10:18, 3.11it/s, loss=0.773]" ] }, { @@ -1932,7 +1932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 77/2000 [00:25<10:21, 3.09it/s, loss=0.52]" + "training until 2000: 4%|▍ | 77/2000 [00:24<10:15, 3.12it/s, loss=0.773]" ] }, { @@ -1940,7 +1940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 77/2000 [00:25<10:21, 3.09it/s, loss=0.549]" + "training until 2000: 4%|▍ | 77/2000 [00:24<10:15, 3.12it/s, loss=0.711]" ] }, { @@ -1948,7 +1948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 78/2000 [00:26<10:26, 3.07it/s, loss=0.549]" + "training until 2000: 4%|▍ | 78/2000 [00:25<10:08, 3.16it/s, loss=0.711]" ] }, { @@ -1956,7 +1956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 78/2000 [00:26<10:26, 3.07it/s, loss=0.565]" + "training until 2000: 4%|▍ | 78/2000 [00:25<10:08, 3.16it/s, loss=0.695]" ] }, { @@ -1964,7 +1964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 79/2000 [00:26<10:24, 3.08it/s, loss=0.565]" + "training until 2000: 4%|▍ | 79/2000 [00:25<10:18, 3.11it/s, loss=0.695]" ] }, { @@ -1972,7 +1972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 79/2000 [00:26<10:24, 3.08it/s, loss=0.642]" + "training until 2000: 4%|▍ | 79/2000 [00:25<10:18, 3.11it/s, loss=0.735]" ] }, { @@ -1980,7 +1980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 80/2000 [00:26<10:17, 3.11it/s, loss=0.642]" + "training until 2000: 4%|▍ | 80/2000 [00:25<10:15, 3.12it/s, loss=0.735]" ] }, { @@ -1988,7 +1988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 80/2000 [00:26<10:17, 3.11it/s, loss=0.546]" + "training until 2000: 4%|▍ | 80/2000 [00:25<10:15, 3.12it/s, loss=0.741]" ] }, { @@ -1996,7 +1996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 81/2000 [00:27<10:21, 3.09it/s, loss=0.546]" + "training until 2000: 4%|▍ | 81/2000 [00:26<12:23, 2.58it/s, loss=0.741]" ] }, { @@ -2004,7 +2004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 81/2000 [00:27<10:21, 3.09it/s, loss=0.571]" + "training until 2000: 4%|▍ | 81/2000 [00:26<12:23, 2.58it/s, loss=0.667]" ] }, { @@ -2012,7 +2012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 82/2000 [00:27<10:37, 3.01it/s, loss=0.571]" + "training until 2000: 4%|▍ | 82/2000 [00:26<11:51, 2.70it/s, loss=0.667]" ] }, { @@ -2020,7 +2020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 82/2000 [00:27<10:37, 3.01it/s, loss=0.581]" + "training until 2000: 4%|▍ | 82/2000 [00:26<11:51, 2.70it/s, loss=0.728]" ] }, { @@ -2028,7 +2028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 83/2000 [00:27<10:26, 3.06it/s, loss=0.581]" + "training until 2000: 4%|▍ | 83/2000 [00:27<11:16, 2.83it/s, loss=0.728]" ] }, { @@ -2036,7 +2036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 83/2000 [00:27<10:26, 3.06it/s, loss=0.558]" + "training until 2000: 4%|▍ | 83/2000 [00:27<11:16, 2.83it/s, loss=0.723]" ] }, { @@ -2044,7 +2044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 84/2000 [00:28<12:40, 2.52it/s, loss=0.558]" + "training until 2000: 4%|▍ | 84/2000 [00:27<10:55, 2.92it/s, loss=0.723]" ] }, { @@ -2052,7 +2052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 84/2000 [00:28<12:40, 2.52it/s, loss=0.57] " + "training until 2000: 4%|▍ | 84/2000 [00:27<10:55, 2.92it/s, loss=0.689]" ] }, { @@ -2060,7 +2060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 85/2000 [00:28<11:49, 2.70it/s, loss=0.57]" + "training until 2000: 4%|▍ | 85/2000 [00:27<10:40, 2.99it/s, loss=0.689]" ] }, { @@ -2068,7 +2068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 85/2000 [00:28<11:49, 2.70it/s, loss=0.552]" + "training until 2000: 4%|▍ | 85/2000 [00:27<10:40, 2.99it/s, loss=0.758]" ] }, { @@ -2076,7 +2076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 86/2000 [00:29<11:22, 2.80it/s, loss=0.552]" + "training until 2000: 4%|▍ | 86/2000 [00:28<10:24, 3.06it/s, loss=0.758]" ] }, { @@ -2084,7 +2084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 86/2000 [00:29<11:22, 2.80it/s, loss=0.608]" + "training until 2000: 4%|▍ | 86/2000 [00:28<10:24, 3.06it/s, loss=0.755]" ] }, { @@ -2092,7 +2092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 87/2000 [00:29<11:02, 2.89it/s, loss=0.608]" + "training until 2000: 4%|▍ | 87/2000 [00:28<10:22, 3.07it/s, loss=0.755]" ] }, { @@ -2100,7 +2100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 87/2000 [00:29<11:02, 2.89it/s, loss=0.579]" + "training until 2000: 4%|▍ | 87/2000 [00:28<10:22, 3.07it/s, loss=0.721]" ] }, { @@ -2108,7 +2108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 88/2000 [00:29<10:45, 2.96it/s, loss=0.579]" + "training until 2000: 4%|▍ | 88/2000 [00:28<10:16, 3.10it/s, loss=0.721]" ] }, { @@ -2116,7 +2116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 88/2000 [00:29<10:45, 2.96it/s, loss=0.683]" + "training until 2000: 4%|▍ | 88/2000 [00:28<10:16, 3.10it/s, loss=0.74] " ] }, { @@ -2124,7 +2124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 89/2000 [00:30<10:35, 3.01it/s, loss=0.683]" + "training until 2000: 4%|▍ | 89/2000 [00:29<10:10, 3.13it/s, loss=0.74]" ] }, { @@ -2132,7 +2132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 89/2000 [00:30<10:35, 3.01it/s, loss=0.588]" + "training until 2000: 4%|▍ | 89/2000 [00:29<10:10, 3.13it/s, loss=0.703]" ] }, { @@ -2140,7 +2140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 90/2000 [00:30<10:30, 3.03it/s, loss=0.588]" + "training until 2000: 4%|▍ | 90/2000 [00:29<10:08, 3.14it/s, loss=0.703]" ] }, { @@ -2148,7 +2148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 4%|▍ | 90/2000 [00:30<10:30, 3.03it/s, loss=0.587]" + "training until 2000: 4%|▍ | 90/2000 [00:29<10:08, 3.14it/s, loss=0.702]" ] }, { @@ -2156,7 +2156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 91/2000 [00:30<10:19, 3.08it/s, loss=0.587]" + "training until 2000: 5%|▍ | 91/2000 [00:29<10:08, 3.14it/s, loss=0.702]" ] }, { @@ -2164,7 +2164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 91/2000 [00:30<10:19, 3.08it/s, loss=0.668]" + "training until 2000: 5%|▍ | 91/2000 [00:29<10:08, 3.14it/s, loss=0.735]" ] }, { @@ -2172,7 +2172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 92/2000 [00:30<10:18, 3.08it/s, loss=0.668]" + "training until 2000: 5%|▍ | 92/2000 [00:29<10:08, 3.14it/s, loss=0.735]" ] }, { @@ -2180,7 +2180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 92/2000 [00:30<10:18, 3.08it/s, loss=0.734]" + "training until 2000: 5%|▍ | 92/2000 [00:29<10:08, 3.14it/s, loss=0.733]" ] }, { @@ -2188,7 +2188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 93/2000 [00:31<10:14, 3.10it/s, loss=0.734]" + "training until 2000: 5%|▍ | 93/2000 [00:30<10:04, 3.16it/s, loss=0.733]" ] }, { @@ -2196,7 +2196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 93/2000 [00:31<10:14, 3.10it/s, loss=0.62] " + "training until 2000: 5%|▍ | 93/2000 [00:30<10:04, 3.16it/s, loss=0.757]" ] }, { @@ -2204,7 +2204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 94/2000 [00:31<10:12, 3.11it/s, loss=0.62]" + "training until 2000: 5%|▍ | 94/2000 [00:30<10:03, 3.16it/s, loss=0.757]" ] }, { @@ -2212,7 +2212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 94/2000 [00:31<10:12, 3.11it/s, loss=0.641]" + "training until 2000: 5%|▍ | 94/2000 [00:30<10:03, 3.16it/s, loss=0.721]" ] }, { @@ -2220,7 +2220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 95/2000 [00:31<10:12, 3.11it/s, loss=0.641]" + "training until 2000: 5%|▍ | 95/2000 [00:30<10:02, 3.16it/s, loss=0.721]" ] }, { @@ -2228,7 +2228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 95/2000 [00:31<10:12, 3.11it/s, loss=0.598]" + "training until 2000: 5%|▍ | 95/2000 [00:30<10:02, 3.16it/s, loss=0.741]" ] }, { @@ -2236,7 +2236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 96/2000 [00:32<10:20, 3.07it/s, loss=0.598]" + "training until 2000: 5%|▍ | 96/2000 [00:31<10:02, 3.16it/s, loss=0.741]" ] }, { @@ -2244,7 +2244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 96/2000 [00:32<10:20, 3.07it/s, loss=0.56] " + "training until 2000: 5%|▍ | 96/2000 [00:31<10:02, 3.16it/s, loss=0.772]" ] }, { @@ -2252,7 +2252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 97/2000 [00:32<10:14, 3.10it/s, loss=0.56]" + "training until 2000: 5%|▍ | 97/2000 [00:31<10:06, 3.14it/s, loss=0.772]" ] }, { @@ -2260,7 +2260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 97/2000 [00:32<10:14, 3.10it/s, loss=0.648]" + "training until 2000: 5%|▍ | 97/2000 [00:31<10:06, 3.14it/s, loss=0.689]" ] }, { @@ -2268,7 +2268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 98/2000 [00:32<10:13, 3.10it/s, loss=0.648]" + "training until 2000: 5%|▍ | 98/2000 [00:31<10:14, 3.09it/s, loss=0.689]" ] }, { @@ -2276,7 +2276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 98/2000 [00:32<10:13, 3.10it/s, loss=0.638]" + "training until 2000: 5%|▍ | 98/2000 [00:31<10:14, 3.09it/s, loss=0.69] " ] }, { @@ -2284,7 +2284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 99/2000 [00:33<10:15, 3.09it/s, loss=0.638]" + "training until 2000: 5%|▍ | 99/2000 [00:32<10:13, 3.10it/s, loss=0.69]" ] }, { @@ -2292,7 +2292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▍ | 99/2000 [00:33<10:15, 3.09it/s, loss=0.535]" + "training until 2000: 5%|▍ | 99/2000 [00:32<10:13, 3.10it/s, loss=0.737]" ] }, { @@ -2300,7 +2300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 100/2000 [00:33<10:12, 3.10it/s, loss=0.535]" + "training until 2000: 5%|▌ | 100/2000 [00:32<10:19, 3.07it/s, loss=0.737]" ] }, { @@ -2308,7 +2308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 100/2000 [00:33<10:12, 3.10it/s, loss=0.547]" + "training until 2000: 5%|▌ | 100/2000 [00:32<10:19, 3.07it/s, loss=0.716]" ] }, { @@ -2316,7 +2316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 101/2000 [00:33<10:05, 3.13it/s, loss=0.547]" + "training until 2000: 5%|▌ | 101/2000 [00:32<10:13, 3.09it/s, loss=0.716]" ] }, { @@ -2324,7 +2324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 101/2000 [00:33<10:05, 3.13it/s, loss=0.626]" + "training until 2000: 5%|▌ | 101/2000 [00:32<10:13, 3.09it/s, loss=0.726]" ] }, { @@ -2332,7 +2332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 102/2000 [00:34<10:04, 3.14it/s, loss=0.626]" + "training until 2000: 5%|▌ | 102/2000 [00:33<10:05, 3.14it/s, loss=0.726]" ] }, { @@ -2340,7 +2340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 102/2000 [00:34<10:04, 3.14it/s, loss=0.599]" + "training until 2000: 5%|▌ | 102/2000 [00:33<10:05, 3.14it/s, loss=0.775]" ] }, { @@ -2348,7 +2348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 103/2000 [00:34<10:03, 3.14it/s, loss=0.599]" + "training until 2000: 5%|▌ | 103/2000 [00:33<10:03, 3.14it/s, loss=0.775]" ] }, { @@ -2356,7 +2356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 103/2000 [00:34<10:03, 3.14it/s, loss=0.586]" + "training until 2000: 5%|▌ | 103/2000 [00:33<10:03, 3.14it/s, loss=0.749]" ] }, { @@ -2364,7 +2364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 104/2000 [00:34<10:06, 3.13it/s, loss=0.586]" + "training until 2000: 5%|▌ | 104/2000 [00:33<10:01, 3.15it/s, loss=0.749]" ] }, { @@ -2372,7 +2372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 104/2000 [00:34<10:06, 3.13it/s, loss=0.616]" + "training until 2000: 5%|▌ | 104/2000 [00:33<10:01, 3.15it/s, loss=0.736]" ] }, { @@ -2380,7 +2380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 105/2000 [00:35<10:15, 3.08it/s, loss=0.616]" + "training until 2000: 5%|▌ | 105/2000 [00:34<10:01, 3.15it/s, loss=0.736]" ] }, { @@ -2388,7 +2388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 105/2000 [00:35<10:15, 3.08it/s, loss=0.555]" + "training until 2000: 5%|▌ | 105/2000 [00:34<10:01, 3.15it/s, loss=0.759]" ] }, { @@ -2396,7 +2396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 106/2000 [00:35<10:13, 3.09it/s, loss=0.555]" + "training until 2000: 5%|▌ | 106/2000 [00:34<09:56, 3.17it/s, loss=0.759]" ] }, { @@ -2404,7 +2404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 106/2000 [00:35<10:13, 3.09it/s, loss=0.592]" + "training until 2000: 5%|▌ | 106/2000 [00:34<09:56, 3.17it/s, loss=0.741]" ] }, { @@ -2412,7 +2412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 107/2000 [00:35<10:09, 3.10it/s, loss=0.592]" + "training until 2000: 5%|▌ | 107/2000 [00:34<09:56, 3.17it/s, loss=0.741]" ] }, { @@ -2420,7 +2420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 107/2000 [00:35<10:09, 3.10it/s, loss=0.533]" + "training until 2000: 5%|▌ | 107/2000 [00:34<09:56, 3.17it/s, loss=0.728]" ] }, { @@ -2428,7 +2428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 108/2000 [00:36<10:15, 3.07it/s, loss=0.533]" + "training until 2000: 5%|▌ | 108/2000 [00:35<09:50, 3.20it/s, loss=0.728]" ] }, { @@ -2436,7 +2436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 108/2000 [00:36<10:15, 3.07it/s, loss=0.571]" + "training until 2000: 5%|▌ | 108/2000 [00:35<09:50, 3.20it/s, loss=0.724]" ] }, { @@ -2444,7 +2444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 109/2000 [00:36<10:07, 3.11it/s, loss=0.571]" + "training until 2000: 5%|▌ | 109/2000 [00:35<09:44, 3.23it/s, loss=0.724]" ] }, { @@ -2452,7 +2452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 5%|▌ | 109/2000 [00:36<10:07, 3.11it/s, loss=0.623]" + "training until 2000: 5%|▌ | 109/2000 [00:35<09:44, 3.23it/s, loss=0.769]" ] }, { @@ -2460,7 +2460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 110/2000 [00:36<10:03, 3.13it/s, loss=0.623]" + "training until 2000: 6%|▌ | 110/2000 [00:35<09:45, 3.23it/s, loss=0.769]" ] }, { @@ -2468,7 +2468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 110/2000 [00:36<10:03, 3.13it/s, loss=0.688]" + "training until 2000: 6%|▌ | 110/2000 [00:35<09:45, 3.23it/s, loss=0.734]" ] }, { @@ -2476,7 +2476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 111/2000 [00:37<10:07, 3.11it/s, loss=0.688]" + "training until 2000: 6%|▌ | 111/2000 [00:35<09:50, 3.20it/s, loss=0.734]" ] }, { @@ -2484,7 +2484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 111/2000 [00:37<10:07, 3.11it/s, loss=0.574]" + "training until 2000: 6%|▌ | 111/2000 [00:35<09:50, 3.20it/s, loss=0.706]" ] }, { @@ -2492,7 +2492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 112/2000 [00:37<10:12, 3.08it/s, loss=0.574]" + "training until 2000: 6%|▌ | 112/2000 [00:36<09:52, 3.19it/s, loss=0.706]" ] }, { @@ -2500,7 +2500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 112/2000 [00:37<10:12, 3.08it/s, loss=0.675]" + "training until 2000: 6%|▌ | 112/2000 [00:36<09:52, 3.19it/s, loss=0.719]" ] }, { @@ -2508,7 +2508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 113/2000 [00:37<10:15, 3.07it/s, loss=0.675]" + "training until 2000: 6%|▌ | 113/2000 [00:36<09:55, 3.17it/s, loss=0.719]" ] }, { @@ -2516,7 +2516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 113/2000 [00:37<10:15, 3.07it/s, loss=0.552]" + "training until 2000: 6%|▌ | 113/2000 [00:36<09:55, 3.17it/s, loss=0.76] " ] }, { @@ -2524,7 +2524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 114/2000 [00:38<10:08, 3.10it/s, loss=0.552]" + "training until 2000: 6%|▌ | 114/2000 [00:36<09:55, 3.17it/s, loss=0.76]" ] }, { @@ -2532,7 +2532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 114/2000 [00:38<10:08, 3.10it/s, loss=0.57] " + "training until 2000: 6%|▌ | 114/2000 [00:36<09:55, 3.17it/s, loss=0.691]" ] }, { @@ -2540,7 +2540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 115/2000 [00:38<10:02, 3.13it/s, loss=0.57]" + "training until 2000: 6%|▌ | 115/2000 [00:37<09:55, 3.17it/s, loss=0.691]" ] }, { @@ -2548,7 +2548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 115/2000 [00:38<10:02, 3.13it/s, loss=0.563]" + "training until 2000: 6%|▌ | 115/2000 [00:37<09:55, 3.17it/s, loss=0.7] " ] }, { @@ -2556,7 +2556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 116/2000 [00:38<10:02, 3.13it/s, loss=0.563]" + "training until 2000: 6%|▌ | 116/2000 [00:37<09:57, 3.16it/s, loss=0.7]" ] }, { @@ -2564,7 +2564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 116/2000 [00:38<10:02, 3.13it/s, loss=0.52] " + "training until 2000: 6%|▌ | 116/2000 [00:37<09:57, 3.16it/s, loss=0.709]" ] }, { @@ -2572,7 +2572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 117/2000 [00:39<10:01, 3.13it/s, loss=0.52]" + "training until 2000: 6%|▌ | 117/2000 [00:37<10:09, 3.09it/s, loss=0.709]" ] }, { @@ -2580,7 +2580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 117/2000 [00:39<10:01, 3.13it/s, loss=0.59]" + "training until 2000: 6%|▌ | 117/2000 [00:37<10:09, 3.09it/s, loss=0.755]" ] }, { @@ -2588,7 +2588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 118/2000 [00:39<10:08, 3.09it/s, loss=0.59]" + "training until 2000: 6%|▌ | 118/2000 [00:38<10:00, 3.13it/s, loss=0.755]" ] }, { @@ -2596,7 +2596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 118/2000 [00:39<10:08, 3.09it/s, loss=0.59]" + "training until 2000: 6%|▌ | 118/2000 [00:38<10:00, 3.13it/s, loss=0.764]" ] }, { @@ -2604,7 +2604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 119/2000 [00:39<10:08, 3.09it/s, loss=0.59]" + "training until 2000: 6%|▌ | 119/2000 [00:38<09:58, 3.14it/s, loss=0.764]" ] }, { @@ -2612,7 +2612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 119/2000 [00:39<10:08, 3.09it/s, loss=0.669]" + "training until 2000: 6%|▌ | 119/2000 [00:38<09:58, 3.14it/s, loss=0.744]" ] }, { @@ -2620,7 +2620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 120/2000 [00:40<10:09, 3.08it/s, loss=0.669]" + "training until 2000: 6%|▌ | 120/2000 [00:38<09:56, 3.15it/s, loss=0.744]" ] }, { @@ -2628,7 +2628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 120/2000 [00:40<10:09, 3.08it/s, loss=0.558]" + "training until 2000: 6%|▌ | 120/2000 [00:38<09:56, 3.15it/s, loss=0.754]" ] }, { @@ -2636,7 +2636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 121/2000 [00:40<10:11, 3.07it/s, loss=0.558]" + "training until 2000: 6%|▌ | 121/2000 [00:39<09:52, 3.17it/s, loss=0.754]" ] }, { @@ -2644,7 +2644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 121/2000 [00:40<10:11, 3.07it/s, loss=0.555]" + "training until 2000: 6%|▌ | 121/2000 [00:39<09:52, 3.17it/s, loss=0.73] " ] }, { @@ -2652,7 +2652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 122/2000 [00:40<10:10, 3.08it/s, loss=0.555]" + "training until 2000: 6%|▌ | 122/2000 [00:39<10:05, 3.10it/s, loss=0.73]" ] }, { @@ -2660,7 +2660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 122/2000 [00:40<10:10, 3.08it/s, loss=0.666]" + "training until 2000: 6%|▌ | 122/2000 [00:39<10:05, 3.10it/s, loss=0.741]" ] }, { @@ -2668,7 +2668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 123/2000 [00:40<10:06, 3.10it/s, loss=0.666]" + "training until 2000: 6%|▌ | 123/2000 [00:39<10:08, 3.08it/s, loss=0.741]" ] }, { @@ -2676,7 +2676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 123/2000 [00:40<10:06, 3.10it/s, loss=0.696]" + "training until 2000: 6%|▌ | 123/2000 [00:39<10:08, 3.08it/s, loss=0.753]" ] }, { @@ -2684,7 +2684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 124/2000 [00:41<10:06, 3.09it/s, loss=0.696]" + "training until 2000: 6%|▌ | 124/2000 [00:40<10:08, 3.08it/s, loss=0.753]" ] }, { @@ -2692,7 +2692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▌ | 124/2000 [00:41<10:06, 3.09it/s, loss=0.563]" + "training until 2000: 6%|▌ | 124/2000 [00:40<10:08, 3.08it/s, loss=0.773]" ] }, { @@ -2700,7 +2700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 125/2000 [00:41<10:07, 3.09it/s, loss=0.563]" + "training until 2000: 6%|▋ | 125/2000 [00:40<10:07, 3.09it/s, loss=0.773]" ] }, { @@ -2708,7 +2708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 125/2000 [00:41<10:07, 3.09it/s, loss=0.633]" + "training until 2000: 6%|▋ | 125/2000 [00:40<10:07, 3.09it/s, loss=0.75] " ] }, { @@ -2716,7 +2716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 126/2000 [00:41<10:02, 3.11it/s, loss=0.633]" + "training until 2000: 6%|▋ | 126/2000 [00:40<10:10, 3.07it/s, loss=0.75]" ] }, { @@ -2724,7 +2724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 126/2000 [00:41<10:02, 3.11it/s, loss=0.615]" + "training until 2000: 6%|▋ | 126/2000 [00:40<10:10, 3.07it/s, loss=0.746]" ] }, { @@ -2732,7 +2732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 127/2000 [00:42<10:00, 3.12it/s, loss=0.615]" + "training until 2000: 6%|▋ | 127/2000 [00:41<10:02, 3.11it/s, loss=0.746]" ] }, { @@ -2740,7 +2740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 127/2000 [00:42<10:00, 3.12it/s, loss=0.657]" + "training until 2000: 6%|▋ | 127/2000 [00:41<10:02, 3.11it/s, loss=0.738]" ] }, { @@ -2748,7 +2748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 128/2000 [00:42<09:55, 3.14it/s, loss=0.657]" + "training until 2000: 6%|▋ | 128/2000 [00:41<10:00, 3.12it/s, loss=0.738]" ] }, { @@ -2756,7 +2756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 128/2000 [00:42<09:55, 3.14it/s, loss=0.618]" + "training until 2000: 6%|▋ | 128/2000 [00:41<10:00, 3.12it/s, loss=0.693]" ] }, { @@ -2764,7 +2764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 129/2000 [00:42<09:55, 3.14it/s, loss=0.618]" + "training until 2000: 6%|▋ | 129/2000 [00:41<09:56, 3.14it/s, loss=0.693]" ] }, { @@ -2772,7 +2772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 129/2000 [00:42<09:55, 3.14it/s, loss=0.65] " + "training until 2000: 6%|▋ | 129/2000 [00:41<09:56, 3.14it/s, loss=0.755]" ] }, { @@ -2780,7 +2780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 130/2000 [00:43<09:56, 3.14it/s, loss=0.65]" + "training until 2000: 6%|▋ | 130/2000 [00:42<10:02, 3.11it/s, loss=0.755]" ] }, { @@ -2788,7 +2788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 6%|▋ | 130/2000 [00:43<09:56, 3.14it/s, loss=0.524]" + "training until 2000: 6%|▋ | 130/2000 [00:42<10:02, 3.11it/s, loss=0.76] " ] }, { @@ -2796,7 +2796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 131/2000 [00:43<09:55, 3.14it/s, loss=0.524]" + "training until 2000: 7%|▋ | 131/2000 [00:42<10:01, 3.11it/s, loss=0.76]" ] }, { @@ -2804,7 +2804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 131/2000 [00:43<09:55, 3.14it/s, loss=0.644]" + "training until 2000: 7%|▋ | 131/2000 [00:42<10:01, 3.11it/s, loss=0.747]" ] }, { @@ -2812,7 +2812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 132/2000 [00:43<09:55, 3.14it/s, loss=0.644]" + "training until 2000: 7%|▋ | 132/2000 [00:42<09:58, 3.12it/s, loss=0.747]" ] }, { @@ -2820,7 +2820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 132/2000 [00:43<09:55, 3.14it/s, loss=0.626]" + "training until 2000: 7%|▋ | 132/2000 [00:42<09:58, 3.12it/s, loss=0.706]" ] }, { @@ -2828,7 +2828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 133/2000 [00:44<09:57, 3.13it/s, loss=0.626]" + "training until 2000: 7%|▋ | 133/2000 [00:43<09:53, 3.14it/s, loss=0.706]" ] }, { @@ -2836,7 +2836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 133/2000 [00:44<09:57, 3.13it/s, loss=0.576]" + "training until 2000: 7%|▋ | 133/2000 [00:43<09:53, 3.14it/s, loss=0.734]" ] }, { @@ -2844,7 +2844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 134/2000 [00:44<09:56, 3.13it/s, loss=0.576]" + "training until 2000: 7%|▋ | 134/2000 [00:43<09:50, 3.16it/s, loss=0.734]" ] }, { @@ -2852,7 +2852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 134/2000 [00:44<09:56, 3.13it/s, loss=0.704]" + "training until 2000: 7%|▋ | 134/2000 [00:43<09:50, 3.16it/s, loss=0.683]" ] }, { @@ -2860,7 +2860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 135/2000 [00:44<09:59, 3.11it/s, loss=0.704]" + "training until 2000: 7%|▋ | 135/2000 [00:43<09:50, 3.16it/s, loss=0.683]" ] }, { @@ -2868,7 +2868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 135/2000 [00:44<09:59, 3.11it/s, loss=0.651]" + "training until 2000: 7%|▋ | 135/2000 [00:43<09:50, 3.16it/s, loss=0.737]" ] }, { @@ -2876,7 +2876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 136/2000 [00:45<09:58, 3.11it/s, loss=0.651]" + "training until 2000: 7%|▋ | 136/2000 [00:43<09:52, 3.14it/s, loss=0.737]" ] }, { @@ -2884,7 +2884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 136/2000 [00:45<09:58, 3.11it/s, loss=0.542]" + "training until 2000: 7%|▋ | 136/2000 [00:43<09:52, 3.14it/s, loss=0.752]" ] }, { @@ -2892,7 +2892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 137/2000 [00:45<10:03, 3.09it/s, loss=0.542]" + "training until 2000: 7%|▋ | 137/2000 [00:44<09:45, 3.18it/s, loss=0.752]" ] }, { @@ -2900,7 +2900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 137/2000 [00:45<10:03, 3.09it/s, loss=0.576]" + "training until 2000: 7%|▋ | 137/2000 [00:44<09:45, 3.18it/s, loss=0.732]" ] }, { @@ -2908,7 +2908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 138/2000 [00:45<09:58, 3.11it/s, loss=0.576]" + "training until 2000: 7%|▋ | 138/2000 [00:44<10:04, 3.08it/s, loss=0.732]" ] }, { @@ -2916,7 +2916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 138/2000 [00:45<09:58, 3.11it/s, loss=0.621]" + "training until 2000: 7%|▋ | 138/2000 [00:44<10:04, 3.08it/s, loss=0.693]" ] }, { @@ -2924,7 +2924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 139/2000 [00:46<09:59, 3.11it/s, loss=0.621]" + "training until 2000: 7%|▋ | 139/2000 [00:44<10:07, 3.07it/s, loss=0.693]" ] }, { @@ -2932,7 +2932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 139/2000 [00:46<09:59, 3.11it/s, loss=0.595]" + "training until 2000: 7%|▋ | 139/2000 [00:44<10:07, 3.07it/s, loss=0.723]" ] }, { @@ -2940,7 +2940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 140/2000 [00:46<09:59, 3.10it/s, loss=0.595]" + "training until 2000: 7%|▋ | 140/2000 [00:45<09:59, 3.10it/s, loss=0.723]" ] }, { @@ -2948,7 +2948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 140/2000 [00:46<09:59, 3.10it/s, loss=0.564]" + "training until 2000: 7%|▋ | 140/2000 [00:45<09:59, 3.10it/s, loss=0.754]" ] }, { @@ -2956,7 +2956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 141/2000 [00:46<09:57, 3.11it/s, loss=0.564]" + "training until 2000: 7%|▋ | 141/2000 [00:45<09:58, 3.10it/s, loss=0.754]" ] }, { @@ -2964,7 +2964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 141/2000 [00:46<09:57, 3.11it/s, loss=0.675]" + "training until 2000: 7%|▋ | 141/2000 [00:45<09:58, 3.10it/s, loss=0.729]" ] }, { @@ -2972,7 +2972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 142/2000 [00:47<09:57, 3.11it/s, loss=0.675]" + "training until 2000: 7%|▋ | 142/2000 [00:45<09:55, 3.12it/s, loss=0.729]" ] }, { @@ -2980,7 +2980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 142/2000 [00:47<09:57, 3.11it/s, loss=0.696]" + "training until 2000: 7%|▋ | 142/2000 [00:45<09:55, 3.12it/s, loss=0.7] " ] }, { @@ -2988,7 +2988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 143/2000 [00:47<10:02, 3.08it/s, loss=0.696]" + "training until 2000: 7%|▋ | 143/2000 [00:46<09:53, 3.13it/s, loss=0.7]" ] }, { @@ -2996,7 +2996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 143/2000 [00:47<10:02, 3.08it/s, loss=0.669]" + "training until 2000: 7%|▋ | 143/2000 [00:46<09:53, 3.13it/s, loss=0.69]" ] }, { @@ -3004,7 +3004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 144/2000 [00:47<10:07, 3.06it/s, loss=0.669]" + "training until 2000: 7%|▋ | 144/2000 [00:46<11:50, 2.61it/s, loss=0.69]" ] }, { @@ -3012,7 +3012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 144/2000 [00:47<10:07, 3.06it/s, loss=0.63] " + "training until 2000: 7%|▋ | 144/2000 [00:46<11:50, 2.61it/s, loss=0.707]" ] }, { @@ -3020,7 +3020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 145/2000 [00:48<10:05, 3.07it/s, loss=0.63]" + "training until 2000: 7%|▋ | 145/2000 [00:47<11:14, 2.75it/s, loss=0.707]" ] }, { @@ -3028,7 +3028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 145/2000 [00:48<10:05, 3.07it/s, loss=0.652]" + "training until 2000: 7%|▋ | 145/2000 [00:47<11:14, 2.75it/s, loss=0.725]" ] }, { @@ -3036,7 +3036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 146/2000 [00:48<09:59, 3.09it/s, loss=0.652]" + "training until 2000: 7%|▋ | 146/2000 [00:47<10:44, 2.88it/s, loss=0.725]" ] }, { @@ -3044,7 +3044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 146/2000 [00:48<09:59, 3.09it/s, loss=0.676]" + "training until 2000: 7%|▋ | 146/2000 [00:47<10:44, 2.88it/s, loss=0.706]" ] }, { @@ -3052,7 +3052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 147/2000 [00:48<10:02, 3.08it/s, loss=0.676]" + "training until 2000: 7%|▋ | 147/2000 [00:47<10:30, 2.94it/s, loss=0.706]" ] }, { @@ -3060,7 +3060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 147/2000 [00:48<10:02, 3.08it/s, loss=0.581]" + "training until 2000: 7%|▋ | 147/2000 [00:47<10:30, 2.94it/s, loss=0.752]" ] }, { @@ -3068,7 +3068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 148/2000 [00:49<10:00, 3.08it/s, loss=0.581]" + "training until 2000: 7%|▋ | 148/2000 [00:48<10:17, 3.00it/s, loss=0.752]" ] }, { @@ -3076,7 +3076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 148/2000 [00:49<10:00, 3.08it/s, loss=0.737]" + "training until 2000: 7%|▋ | 148/2000 [00:48<10:17, 3.00it/s, loss=0.679]" ] }, { @@ -3084,7 +3084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 149/2000 [00:49<09:54, 3.11it/s, loss=0.737]" + "training until 2000: 7%|▋ | 149/2000 [00:48<10:04, 3.06it/s, loss=0.679]" ] }, { @@ -3092,7 +3092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 7%|▋ | 149/2000 [00:49<09:54, 3.11it/s, loss=0.595]" + "training until 2000: 7%|▋ | 149/2000 [00:48<10:04, 3.06it/s, loss=0.704]" ] }, { @@ -3100,7 +3100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 150/2000 [00:49<11:55, 2.59it/s, loss=0.595]" + "training until 2000: 8%|▊ | 150/2000 [00:48<09:57, 3.10it/s, loss=0.704]" ] }, { @@ -3108,7 +3108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 150/2000 [00:49<11:55, 2.59it/s, loss=0.609]" + "training until 2000: 8%|▊ | 150/2000 [00:48<09:57, 3.10it/s, loss=0.752]" ] }, { @@ -3116,7 +3116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 151/2000 [00:50<11:18, 2.73it/s, loss=0.609]" + "training until 2000: 8%|▊ | 151/2000 [00:48<09:51, 3.12it/s, loss=0.752]" ] }, { @@ -3124,7 +3124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 151/2000 [00:50<11:18, 2.73it/s, loss=0.608]" + "training until 2000: 8%|▊ | 151/2000 [00:48<09:51, 3.12it/s, loss=0.75] " ] }, { @@ -3132,7 +3132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 152/2000 [00:50<10:58, 2.81it/s, loss=0.608]" + "training until 2000: 8%|▊ | 152/2000 [00:49<09:50, 3.13it/s, loss=0.75]" ] }, { @@ -3140,7 +3140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 152/2000 [00:50<10:58, 2.81it/s, loss=0.645]" + "training until 2000: 8%|▊ | 152/2000 [00:49<09:50, 3.13it/s, loss=0.755]" ] }, { @@ -3148,7 +3148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 153/2000 [00:50<10:30, 2.93it/s, loss=0.645]" + "training until 2000: 8%|▊ | 153/2000 [00:49<09:57, 3.09it/s, loss=0.755]" ] }, { @@ -3156,7 +3156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 153/2000 [00:50<10:30, 2.93it/s, loss=0.678]" + "training until 2000: 8%|▊ | 153/2000 [00:49<09:57, 3.09it/s, loss=0.706]" ] }, { @@ -3164,7 +3164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 154/2000 [00:51<10:18, 2.99it/s, loss=0.678]" + "training until 2000: 8%|▊ | 154/2000 [00:49<09:52, 3.11it/s, loss=0.706]" ] }, { @@ -3172,7 +3172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 154/2000 [00:51<10:18, 2.99it/s, loss=0.528]" + "training until 2000: 8%|▊ | 154/2000 [00:49<09:52, 3.11it/s, loss=0.691]" ] }, { @@ -3180,7 +3180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 155/2000 [00:51<10:02, 3.06it/s, loss=0.528]" + "training until 2000: 8%|▊ | 155/2000 [00:50<09:52, 3.11it/s, loss=0.691]" ] }, { @@ -3188,7 +3188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 155/2000 [00:51<10:02, 3.06it/s, loss=0.599]" + "training until 2000: 8%|▊ | 155/2000 [00:50<09:52, 3.11it/s, loss=0.749]" ] }, { @@ -3196,7 +3196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 156/2000 [00:51<09:51, 3.12it/s, loss=0.599]" + "training until 2000: 8%|▊ | 156/2000 [00:50<09:51, 3.12it/s, loss=0.749]" ] }, { @@ -3204,7 +3204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 156/2000 [00:51<09:51, 3.12it/s, loss=0.526]" + "training until 2000: 8%|▊ | 156/2000 [00:50<09:51, 3.12it/s, loss=0.722]" ] }, { @@ -3212,7 +3212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 157/2000 [00:52<09:49, 3.13it/s, loss=0.526]" + "training until 2000: 8%|▊ | 157/2000 [00:50<09:51, 3.11it/s, loss=0.722]" ] }, { @@ -3220,7 +3220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 157/2000 [00:52<09:49, 3.13it/s, loss=0.622]" + "training until 2000: 8%|▊ | 157/2000 [00:50<09:51, 3.11it/s, loss=0.749]" ] }, { @@ -3228,7 +3228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 158/2000 [00:52<09:48, 3.13it/s, loss=0.622]" + "training until 2000: 8%|▊ | 158/2000 [00:51<09:47, 3.14it/s, loss=0.749]" ] }, { @@ -3236,7 +3236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 158/2000 [00:52<09:48, 3.13it/s, loss=0.525]" + "training until 2000: 8%|▊ | 158/2000 [00:51<09:47, 3.14it/s, loss=0.715]" ] }, { @@ -3244,7 +3244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 159/2000 [00:52<09:49, 3.12it/s, loss=0.525]" + "training until 2000: 8%|▊ | 159/2000 [00:51<09:46, 3.14it/s, loss=0.715]" ] }, { @@ -3252,7 +3252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 159/2000 [00:52<09:49, 3.12it/s, loss=0.562]" + "training until 2000: 8%|▊ | 159/2000 [00:51<09:46, 3.14it/s, loss=0.756]" ] }, { @@ -3260,7 +3260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 160/2000 [00:53<09:51, 3.11it/s, loss=0.562]" + "training until 2000: 8%|▊ | 160/2000 [00:51<09:47, 3.13it/s, loss=0.756]" ] }, { @@ -3268,7 +3268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 160/2000 [00:53<09:51, 3.11it/s, loss=0.576]" + "training until 2000: 8%|▊ | 160/2000 [00:51<09:47, 3.13it/s, loss=0.721]" ] }, { @@ -3276,7 +3276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 161/2000 [00:53<09:50, 3.11it/s, loss=0.576]" + "training until 2000: 8%|▊ | 161/2000 [00:52<09:51, 3.11it/s, loss=0.721]" ] }, { @@ -3284,7 +3284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 161/2000 [00:53<09:50, 3.11it/s, loss=0.527]" + "training until 2000: 8%|▊ | 161/2000 [00:52<09:51, 3.11it/s, loss=0.714]" ] }, { @@ -3292,7 +3292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 162/2000 [00:53<09:47, 3.13it/s, loss=0.527]" + "training until 2000: 8%|▊ | 162/2000 [00:52<09:52, 3.10it/s, loss=0.714]" ] }, { @@ -3300,7 +3300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 162/2000 [00:53<09:47, 3.13it/s, loss=0.594]" + "training until 2000: 8%|▊ | 162/2000 [00:52<09:52, 3.10it/s, loss=0.683]" ] }, { @@ -3308,7 +3308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 163/2000 [00:54<09:46, 3.13it/s, loss=0.594]" + "training until 2000: 8%|▊ | 163/2000 [00:52<09:43, 3.15it/s, loss=0.683]" ] }, { @@ -3316,7 +3316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 163/2000 [00:54<09:46, 3.13it/s, loss=0.615]" + "training until 2000: 8%|▊ | 163/2000 [00:52<09:43, 3.15it/s, loss=0.709]" ] }, { @@ -3324,7 +3324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 164/2000 [00:54<09:47, 3.12it/s, loss=0.615]" + "training until 2000: 8%|▊ | 164/2000 [00:53<09:44, 3.14it/s, loss=0.709]" ] }, { @@ -3332,7 +3332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 164/2000 [00:54<09:47, 3.12it/s, loss=0.578]" + "training until 2000: 8%|▊ | 164/2000 [00:53<09:44, 3.14it/s, loss=0.738]" ] }, { @@ -3340,7 +3340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 165/2000 [00:54<09:54, 3.09it/s, loss=0.578]" + "training until 2000: 8%|▊ | 165/2000 [00:53<09:38, 3.17it/s, loss=0.738]" ] }, { @@ -3348,7 +3348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 165/2000 [00:54<09:54, 3.09it/s, loss=0.535]" + "training until 2000: 8%|▊ | 165/2000 [00:53<09:38, 3.17it/s, loss=0.692]" ] }, { @@ -3356,7 +3356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 166/2000 [00:54<09:49, 3.11it/s, loss=0.535]" + "training until 2000: 8%|▊ | 166/2000 [00:53<09:34, 3.20it/s, loss=0.692]" ] }, { @@ -3364,7 +3364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 166/2000 [00:54<09:49, 3.11it/s, loss=0.573]" + "training until 2000: 8%|▊ | 166/2000 [00:53<09:34, 3.20it/s, loss=0.679]" ] }, { @@ -3372,7 +3372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 167/2000 [00:55<09:45, 3.13it/s, loss=0.573]" + "training until 2000: 8%|▊ | 167/2000 [00:54<09:31, 3.21it/s, loss=0.679]" ] }, { @@ -3380,7 +3380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 167/2000 [00:55<09:45, 3.13it/s, loss=0.579]" + "training until 2000: 8%|▊ | 167/2000 [00:54<09:31, 3.21it/s, loss=0.729]" ] }, { @@ -3388,7 +3388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 168/2000 [00:55<09:48, 3.11it/s, loss=0.579]" + "training until 2000: 8%|▊ | 168/2000 [00:54<09:34, 3.19it/s, loss=0.729]" ] }, { @@ -3396,7 +3396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 168/2000 [00:55<09:48, 3.11it/s, loss=0.567]" + "training until 2000: 8%|▊ | 168/2000 [00:54<09:34, 3.19it/s, loss=0.752]" ] }, { @@ -3404,7 +3404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 169/2000 [00:55<09:47, 3.12it/s, loss=0.567]" + "training until 2000: 8%|▊ | 169/2000 [00:54<09:33, 3.19it/s, loss=0.752]" ] }, { @@ -3412,7 +3412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 169/2000 [00:55<09:47, 3.12it/s, loss=0.594]" + "training until 2000: 8%|▊ | 169/2000 [00:54<09:33, 3.19it/s, loss=0.69] " ] }, { @@ -3420,7 +3420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 170/2000 [00:56<09:48, 3.11it/s, loss=0.594]" + "training until 2000: 8%|▊ | 170/2000 [00:55<09:32, 3.19it/s, loss=0.69]" ] }, { @@ -3428,7 +3428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 8%|▊ | 170/2000 [00:56<09:48, 3.11it/s, loss=0.684]" + "training until 2000: 8%|▊ | 170/2000 [00:55<09:32, 3.19it/s, loss=0.748]" ] }, { @@ -3436,7 +3436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 171/2000 [00:56<09:40, 3.15it/s, loss=0.684]" + "training until 2000: 9%|▊ | 171/2000 [00:55<09:30, 3.21it/s, loss=0.748]" ] }, { @@ -3444,7 +3444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 171/2000 [00:56<09:40, 3.15it/s, loss=0.542]" + "training until 2000: 9%|▊ | 171/2000 [00:55<09:30, 3.21it/s, loss=0.776]" ] }, { @@ -3452,7 +3452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 172/2000 [00:56<09:45, 3.12it/s, loss=0.542]" + "training until 2000: 9%|▊ | 172/2000 [00:55<09:37, 3.17it/s, loss=0.776]" ] }, { @@ -3460,7 +3460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 172/2000 [00:56<09:45, 3.12it/s, loss=0.651]" + "training until 2000: 9%|▊ | 172/2000 [00:55<09:37, 3.17it/s, loss=0.682]" ] }, { @@ -3468,7 +3468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 173/2000 [00:57<09:48, 3.10it/s, loss=0.651]" + "training until 2000: 9%|▊ | 173/2000 [00:55<09:34, 3.18it/s, loss=0.682]" ] }, { @@ -3476,7 +3476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 173/2000 [00:57<09:48, 3.10it/s, loss=0.638]" + "training until 2000: 9%|▊ | 173/2000 [00:55<09:34, 3.18it/s, loss=0.733]" ] }, { @@ -3484,7 +3484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 174/2000 [00:57<09:45, 3.12it/s, loss=0.638]" + "training until 2000: 9%|▊ | 174/2000 [00:56<09:42, 3.14it/s, loss=0.733]" ] }, { @@ -3492,7 +3492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▊ | 174/2000 [00:57<09:45, 3.12it/s, loss=0.54] " + "training until 2000: 9%|▊ | 174/2000 [00:56<09:42, 3.14it/s, loss=0.719]" ] }, { @@ -3500,7 +3500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 175/2000 [00:57<09:47, 3.11it/s, loss=0.54]" + "training until 2000: 9%|▉ | 175/2000 [00:56<09:47, 3.11it/s, loss=0.719]" ] }, { @@ -3508,7 +3508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 175/2000 [00:57<09:47, 3.11it/s, loss=0.58]" + "training until 2000: 9%|▉ | 175/2000 [00:56<09:47, 3.11it/s, loss=0.757]" ] }, { @@ -3516,7 +3516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 176/2000 [00:58<09:39, 3.15it/s, loss=0.58]" + "training until 2000: 9%|▉ | 176/2000 [00:56<09:44, 3.12it/s, loss=0.757]" ] }, { @@ -3524,7 +3524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 176/2000 [00:58<09:39, 3.15it/s, loss=0.555]" + "training until 2000: 9%|▉ | 176/2000 [00:56<09:44, 3.12it/s, loss=0.714]" ] }, { @@ -3532,7 +3532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 177/2000 [00:58<09:37, 3.16it/s, loss=0.555]" + "training until 2000: 9%|▉ | 177/2000 [00:57<09:37, 3.16it/s, loss=0.714]" ] }, { @@ -3540,7 +3540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 177/2000 [00:58<09:37, 3.16it/s, loss=0.622]" + "training until 2000: 9%|▉ | 177/2000 [00:57<09:37, 3.16it/s, loss=0.744]" ] }, { @@ -3548,7 +3548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 178/2000 [00:58<09:43, 3.12it/s, loss=0.622]" + "training until 2000: 9%|▉ | 178/2000 [00:57<09:35, 3.17it/s, loss=0.744]" ] }, { @@ -3556,7 +3556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 178/2000 [00:58<09:43, 3.12it/s, loss=0.58] " + "training until 2000: 9%|▉ | 178/2000 [00:57<09:35, 3.17it/s, loss=0.726]" ] }, { @@ -3564,7 +3564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 179/2000 [00:59<09:45, 3.11it/s, loss=0.58]" + "training until 2000: 9%|▉ | 179/2000 [00:57<09:33, 3.18it/s, loss=0.726]" ] }, { @@ -3572,7 +3572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 179/2000 [00:59<09:45, 3.11it/s, loss=0.547]" + "training until 2000: 9%|▉ | 179/2000 [00:57<09:33, 3.18it/s, loss=0.67] " ] }, { @@ -3580,7 +3580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 180/2000 [00:59<09:42, 3.12it/s, loss=0.547]" + "training until 2000: 9%|▉ | 180/2000 [00:58<09:36, 3.16it/s, loss=0.67]" ] }, { @@ -3588,7 +3588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 180/2000 [00:59<09:42, 3.12it/s, loss=0.683]" + "training until 2000: 9%|▉ | 180/2000 [00:58<09:36, 3.16it/s, loss=0.726]" ] }, { @@ -3596,7 +3596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 181/2000 [00:59<09:43, 3.12it/s, loss=0.683]" + "training until 2000: 9%|▉ | 181/2000 [00:58<09:31, 3.18it/s, loss=0.726]" ] }, { @@ -3604,7 +3604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 181/2000 [00:59<09:43, 3.12it/s, loss=0.679]" + "training until 2000: 9%|▉ | 181/2000 [00:58<09:31, 3.18it/s, loss=0.698]" ] }, { @@ -3612,7 +3612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 182/2000 [01:00<09:34, 3.16it/s, loss=0.679]" + "training until 2000: 9%|▉ | 182/2000 [00:58<09:34, 3.16it/s, loss=0.698]" ] }, { @@ -3620,7 +3620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 182/2000 [01:00<09:34, 3.16it/s, loss=0.6] " + "training until 2000: 9%|▉ | 182/2000 [00:58<09:34, 3.16it/s, loss=0.73] " ] }, { @@ -3628,7 +3628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 183/2000 [01:00<09:27, 3.20it/s, loss=0.6]" + "training until 2000: 9%|▉ | 183/2000 [00:59<09:35, 3.16it/s, loss=0.73]" ] }, { @@ -3636,7 +3636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 183/2000 [01:00<09:27, 3.20it/s, loss=0.569]" + "training until 2000: 9%|▉ | 183/2000 [00:59<09:35, 3.16it/s, loss=0.775]" ] }, { @@ -3644,7 +3644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 184/2000 [01:00<09:29, 3.19it/s, loss=0.569]" + "training until 2000: 9%|▉ | 184/2000 [00:59<09:32, 3.17it/s, loss=0.775]" ] }, { @@ -3652,7 +3652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 184/2000 [01:00<09:29, 3.19it/s, loss=0.607]" + "training until 2000: 9%|▉ | 184/2000 [00:59<09:32, 3.17it/s, loss=0.716]" ] }, { @@ -3660,7 +3660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 185/2000 [01:01<09:33, 3.16it/s, loss=0.607]" + "training until 2000: 9%|▉ | 185/2000 [00:59<09:32, 3.17it/s, loss=0.716]" ] }, { @@ -3668,7 +3668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 185/2000 [01:01<09:33, 3.16it/s, loss=0.634]" + "training until 2000: 9%|▉ | 185/2000 [00:59<09:32, 3.17it/s, loss=0.741]" ] }, { @@ -3676,7 +3676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 186/2000 [01:01<09:36, 3.15it/s, loss=0.634]" + "training until 2000: 9%|▉ | 186/2000 [01:00<09:32, 3.17it/s, loss=0.741]" ] }, { @@ -3684,7 +3684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 186/2000 [01:01<09:36, 3.15it/s, loss=0.61] " + "training until 2000: 9%|▉ | 186/2000 [01:00<09:32, 3.17it/s, loss=0.718]" ] }, { @@ -3692,7 +3692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 187/2000 [01:01<09:47, 3.08it/s, loss=0.61]" + "training until 2000: 9%|▉ | 187/2000 [01:00<09:38, 3.13it/s, loss=0.718]" ] }, { @@ -3700,7 +3700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 187/2000 [01:01<09:47, 3.08it/s, loss=0.61]" + "training until 2000: 9%|▉ | 187/2000 [01:00<09:38, 3.13it/s, loss=0.765]" ] }, { @@ -3708,7 +3708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 188/2000 [01:02<09:45, 3.10it/s, loss=0.61]" + "training until 2000: 9%|▉ | 188/2000 [01:00<09:37, 3.14it/s, loss=0.765]" ] }, { @@ -3716,7 +3716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 188/2000 [01:02<09:45, 3.10it/s, loss=0.599]" + "training until 2000: 9%|▉ | 188/2000 [01:00<09:37, 3.14it/s, loss=0.754]" ] }, { @@ -3724,7 +3724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 189/2000 [01:02<09:46, 3.09it/s, loss=0.599]" + "training until 2000: 9%|▉ | 189/2000 [01:01<09:30, 3.17it/s, loss=0.754]" ] }, { @@ -3732,7 +3732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 9%|▉ | 189/2000 [01:02<09:46, 3.09it/s, loss=0.589]" + "training until 2000: 9%|▉ | 189/2000 [01:01<09:30, 3.17it/s, loss=0.674]" ] }, { @@ -3740,7 +3740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 190/2000 [01:02<09:35, 3.14it/s, loss=0.589]" + "training until 2000: 10%|▉ | 190/2000 [01:01<09:35, 3.14it/s, loss=0.674]" ] }, { @@ -3748,7 +3748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 190/2000 [01:02<09:35, 3.14it/s, loss=0.559]" + "training until 2000: 10%|▉ | 190/2000 [01:01<09:35, 3.14it/s, loss=0.701]" ] }, { @@ -3756,7 +3756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 191/2000 [01:02<09:41, 3.11it/s, loss=0.559]" + "training until 2000: 10%|▉ | 191/2000 [01:01<09:30, 3.17it/s, loss=0.701]" ] }, { @@ -3764,7 +3764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 191/2000 [01:02<09:41, 3.11it/s, loss=0.545]" + "training until 2000: 10%|▉ | 191/2000 [01:01<09:30, 3.17it/s, loss=0.713]" ] }, { @@ -3772,7 +3772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 192/2000 [01:03<09:38, 3.12it/s, loss=0.545]" + "training until 2000: 10%|▉ | 192/2000 [01:01<09:28, 3.18it/s, loss=0.713]" ] }, { @@ -3780,7 +3780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 192/2000 [01:03<09:38, 3.12it/s, loss=0.607]" + "training until 2000: 10%|▉ | 192/2000 [01:01<09:28, 3.18it/s, loss=0.775]" ] }, { @@ -3788,7 +3788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 193/2000 [01:03<09:37, 3.13it/s, loss=0.607]" + "training until 2000: 10%|▉ | 193/2000 [01:02<09:34, 3.15it/s, loss=0.775]" ] }, { @@ -3796,7 +3796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 193/2000 [01:03<09:37, 3.13it/s, loss=0.694]" + "training until 2000: 10%|▉ | 193/2000 [01:02<09:34, 3.15it/s, loss=0.764]" ] }, { @@ -3804,7 +3804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 194/2000 [01:03<09:42, 3.10it/s, loss=0.694]" + "training until 2000: 10%|▉ | 194/2000 [01:02<09:29, 3.17it/s, loss=0.764]" ] }, { @@ -3812,7 +3812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 194/2000 [01:03<09:42, 3.10it/s, loss=0.532]" + "training until 2000: 10%|▉ | 194/2000 [01:02<09:29, 3.17it/s, loss=0.74] " ] }, { @@ -3820,7 +3820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 195/2000 [01:04<09:39, 3.12it/s, loss=0.532]" + "training until 2000: 10%|▉ | 195/2000 [01:02<09:27, 3.18it/s, loss=0.74]" ] }, { @@ -3828,7 +3828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 195/2000 [01:04<09:39, 3.12it/s, loss=0.642]" + "training until 2000: 10%|▉ | 195/2000 [01:02<09:27, 3.18it/s, loss=0.73]" ] }, { @@ -3836,7 +3836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 196/2000 [01:04<09:42, 3.10it/s, loss=0.642]" + "training until 2000: 10%|▉ | 196/2000 [01:03<09:29, 3.17it/s, loss=0.73]" ] }, { @@ -3844,7 +3844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 196/2000 [01:04<09:42, 3.10it/s, loss=0.562]" + "training until 2000: 10%|▉ | 196/2000 [01:03<09:29, 3.17it/s, loss=0.776]" ] }, { @@ -3852,7 +3852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 197/2000 [01:04<09:43, 3.09it/s, loss=0.562]" + "training until 2000: 10%|▉ | 197/2000 [01:03<09:29, 3.16it/s, loss=0.776]" ] }, { @@ -3860,7 +3860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 197/2000 [01:04<09:43, 3.09it/s, loss=0.606]" + "training until 2000: 10%|▉ | 197/2000 [01:03<09:29, 3.16it/s, loss=0.693]" ] }, { @@ -3868,7 +3868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 198/2000 [01:05<09:42, 3.09it/s, loss=0.606]" + "training until 2000: 10%|▉ | 198/2000 [01:03<09:26, 3.18it/s, loss=0.693]" ] }, { @@ -3876,7 +3876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 198/2000 [01:05<09:42, 3.09it/s, loss=0.665]" + "training until 2000: 10%|▉ | 198/2000 [01:03<09:26, 3.18it/s, loss=0.679]" ] }, { @@ -3884,7 +3884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 199/2000 [01:05<09:39, 3.11it/s, loss=0.665]" + "training until 2000: 10%|▉ | 199/2000 [01:04<09:24, 3.19it/s, loss=0.679]" ] }, { @@ -3892,7 +3892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|▉ | 199/2000 [01:05<09:39, 3.11it/s, loss=0.59] " + "training until 2000: 10%|▉ | 199/2000 [01:04<09:24, 3.19it/s, loss=0.744]" ] }, { @@ -3900,7 +3900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 200/2000 [01:05<09:42, 3.09it/s, loss=0.59]" + "training until 2000: 10%|█ | 200/2000 [01:04<09:32, 3.14it/s, loss=0.744]" ] }, { @@ -3908,7 +3908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 200/2000 [01:05<09:42, 3.09it/s, loss=0.64]" + "training until 2000: 10%|█ | 200/2000 [01:04<09:32, 3.14it/s, loss=0.753]" ] }, { @@ -3916,7 +3916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 201/2000 [01:06<09:38, 3.11it/s, loss=0.64]" + "training until 2000: 10%|█ | 201/2000 [01:04<09:34, 3.13it/s, loss=0.753]" ] }, { @@ -3924,7 +3924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 201/2000 [01:06<09:38, 3.11it/s, loss=0.67]" + "training until 2000: 10%|█ | 201/2000 [01:04<09:34, 3.13it/s, loss=0.776]" ] }, { @@ -3932,7 +3932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 202/2000 [01:06<09:34, 3.13it/s, loss=0.67]" + "training until 2000: 10%|█ | 202/2000 [01:05<09:36, 3.12it/s, loss=0.776]" ] }, { @@ -3940,7 +3940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 202/2000 [01:06<09:34, 3.13it/s, loss=0.597]" + "training until 2000: 10%|█ | 202/2000 [01:05<09:36, 3.12it/s, loss=0.717]" ] }, { @@ -3948,7 +3948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 203/2000 [01:06<09:37, 3.11it/s, loss=0.597]" + "training until 2000: 10%|█ | 203/2000 [01:05<09:36, 3.11it/s, loss=0.717]" ] }, { @@ -3956,7 +3956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 203/2000 [01:06<09:37, 3.11it/s, loss=0.565]" + "training until 2000: 10%|█ | 203/2000 [01:05<09:36, 3.11it/s, loss=0.732]" ] }, { @@ -3964,7 +3964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 204/2000 [01:07<09:40, 3.10it/s, loss=0.565]" + "training until 2000: 10%|█ | 204/2000 [01:05<09:38, 3.10it/s, loss=0.732]" ] }, { @@ -3972,7 +3972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 204/2000 [01:07<09:40, 3.10it/s, loss=0.559]" + "training until 2000: 10%|█ | 204/2000 [01:05<09:38, 3.10it/s, loss=0.718]" ] }, { @@ -3980,7 +3980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 205/2000 [01:07<09:36, 3.11it/s, loss=0.559]" + "training until 2000: 10%|█ | 205/2000 [01:06<09:34, 3.13it/s, loss=0.718]" ] }, { @@ -3988,7 +3988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 205/2000 [01:07<09:36, 3.11it/s, loss=0.594]" + "training until 2000: 10%|█ | 205/2000 [01:06<09:34, 3.13it/s, loss=0.702]" ] }, { @@ -3996,7 +3996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 206/2000 [01:07<09:35, 3.12it/s, loss=0.594]" + "training until 2000: 10%|█ | 206/2000 [01:06<09:33, 3.13it/s, loss=0.702]" ] }, { @@ -4004,7 +4004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 206/2000 [01:07<09:35, 3.12it/s, loss=0.59] " + "training until 2000: 10%|█ | 206/2000 [01:06<09:33, 3.13it/s, loss=0.725]" ] }, { @@ -4012,7 +4012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 207/2000 [01:08<09:30, 3.15it/s, loss=0.59]" + "training until 2000: 10%|█ | 207/2000 [01:06<11:27, 2.61it/s, loss=0.725]" ] }, { @@ -4020,7 +4020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 207/2000 [01:08<09:30, 3.15it/s, loss=0.654]" + "training until 2000: 10%|█ | 207/2000 [01:06<11:27, 2.61it/s, loss=0.788]" ] }, { @@ -4028,7 +4028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 208/2000 [01:08<09:29, 3.15it/s, loss=0.654]" + "training until 2000: 10%|█ | 208/2000 [01:07<10:58, 2.72it/s, loss=0.788]" ] }, { @@ -4036,7 +4036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 208/2000 [01:08<09:29, 3.15it/s, loss=0.585]" + "training until 2000: 10%|█ | 208/2000 [01:07<10:58, 2.72it/s, loss=0.752]" ] }, { @@ -4044,7 +4044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 209/2000 [01:08<09:28, 3.15it/s, loss=0.585]" + "training until 2000: 10%|█ | 209/2000 [01:07<10:33, 2.83it/s, loss=0.752]" ] }, { @@ -4052,7 +4052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 209/2000 [01:08<09:28, 3.15it/s, loss=0.561]" + "training until 2000: 10%|█ | 209/2000 [01:07<10:33, 2.83it/s, loss=0.723]" ] }, { @@ -4060,7 +4060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 210/2000 [01:09<09:33, 3.12it/s, loss=0.561]" + "training until 2000: 10%|█ | 210/2000 [01:07<10:18, 2.90it/s, loss=0.723]" ] }, { @@ -4068,7 +4068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 10%|█ | 210/2000 [01:09<09:33, 3.12it/s, loss=0.546]" + "training until 2000: 10%|█ | 210/2000 [01:07<10:18, 2.90it/s, loss=0.709]" ] }, { @@ -4076,7 +4076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 211/2000 [01:09<09:30, 3.13it/s, loss=0.546]" + "training until 2000: 11%|█ | 211/2000 [01:08<10:07, 2.94it/s, loss=0.709]" ] }, { @@ -4084,7 +4084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 211/2000 [01:09<09:30, 3.13it/s, loss=0.635]" + "training until 2000: 11%|█ | 211/2000 [01:08<10:07, 2.94it/s, loss=0.712]" ] }, { @@ -4092,7 +4092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 212/2000 [01:09<09:28, 3.14it/s, loss=0.635]" + "training until 2000: 11%|█ | 212/2000 [01:08<09:51, 3.02it/s, loss=0.712]" ] }, { @@ -4100,7 +4100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 212/2000 [01:09<09:28, 3.14it/s, loss=0.7] " + "training until 2000: 11%|█ | 212/2000 [01:08<09:51, 3.02it/s, loss=0.732]" ] }, { @@ -4108,7 +4108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 213/2000 [01:10<09:30, 3.13it/s, loss=0.7]" + "training until 2000: 11%|█ | 213/2000 [01:08<09:46, 3.05it/s, loss=0.732]" ] }, { @@ -4116,7 +4116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 213/2000 [01:10<09:30, 3.13it/s, loss=0.574]" + "training until 2000: 11%|█ | 213/2000 [01:08<09:46, 3.05it/s, loss=0.743]" ] }, { @@ -4124,7 +4124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 214/2000 [01:10<11:28, 2.59it/s, loss=0.574]" + "training until 2000: 11%|█ | 214/2000 [01:09<09:40, 3.07it/s, loss=0.743]" ] }, { @@ -4132,7 +4132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 214/2000 [01:10<11:28, 2.59it/s, loss=0.555]" + "training until 2000: 11%|█ | 214/2000 [01:09<09:40, 3.07it/s, loss=0.722]" ] }, { @@ -4140,7 +4140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 215/2000 [01:10<10:54, 2.73it/s, loss=0.555]" + "training until 2000: 11%|█ | 215/2000 [01:09<09:36, 3.10it/s, loss=0.722]" ] }, { @@ -4148,7 +4148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 215/2000 [01:10<10:54, 2.73it/s, loss=0.651]" + "training until 2000: 11%|█ | 215/2000 [01:09<09:36, 3.10it/s, loss=0.697]" ] }, { @@ -4156,7 +4156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 216/2000 [01:11<10:28, 2.84it/s, loss=0.651]" + "training until 2000: 11%|█ | 216/2000 [01:09<09:35, 3.10it/s, loss=0.697]" ] }, { @@ -4164,7 +4164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 216/2000 [01:11<10:28, 2.84it/s, loss=0.682]" + "training until 2000: 11%|█ | 216/2000 [01:09<09:35, 3.10it/s, loss=0.757]" ] }, { @@ -4172,7 +4172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 217/2000 [01:11<10:03, 2.95it/s, loss=0.682]" + "training until 2000: 11%|█ | 217/2000 [01:10<09:38, 3.08it/s, loss=0.757]" ] }, { @@ -4180,7 +4180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 217/2000 [01:11<10:03, 2.95it/s, loss=0.579]" + "training until 2000: 11%|█ | 217/2000 [01:10<09:38, 3.08it/s, loss=0.671]" ] }, { @@ -4188,7 +4188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 218/2000 [01:11<09:54, 3.00it/s, loss=0.579]" + "training until 2000: 11%|█ | 218/2000 [01:10<09:42, 3.06it/s, loss=0.671]" ] }, { @@ -4196,7 +4196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 218/2000 [01:11<09:54, 3.00it/s, loss=0.706]" + "training until 2000: 11%|█ | 218/2000 [01:10<09:42, 3.06it/s, loss=0.74] " ] }, { @@ -4204,7 +4204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 219/2000 [01:12<10:01, 2.96it/s, loss=0.706]" + "training until 2000: 11%|█ | 219/2000 [01:10<09:37, 3.09it/s, loss=0.74]" ] }, { @@ -4212,7 +4212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 219/2000 [01:12<10:01, 2.96it/s, loss=0.645]" + "training until 2000: 11%|█ | 219/2000 [01:10<09:37, 3.09it/s, loss=0.7] " ] }, { @@ -4220,7 +4220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 220/2000 [01:12<09:52, 3.01it/s, loss=0.645]" + "training until 2000: 11%|█ | 220/2000 [01:11<09:30, 3.12it/s, loss=0.7]" ] }, { @@ -4228,7 +4228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 220/2000 [01:12<09:52, 3.01it/s, loss=0.569]" + "training until 2000: 11%|█ | 220/2000 [01:11<09:30, 3.12it/s, loss=0.733]" ] }, { @@ -4236,7 +4236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 221/2000 [01:12<09:40, 3.06it/s, loss=0.569]" + "training until 2000: 11%|█ | 221/2000 [01:11<09:27, 3.13it/s, loss=0.733]" ] }, { @@ -4244,7 +4244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 221/2000 [01:12<09:40, 3.06it/s, loss=0.522]" + "training until 2000: 11%|█ | 221/2000 [01:11<09:27, 3.13it/s, loss=0.73] " ] }, { @@ -4252,7 +4252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 222/2000 [01:13<09:35, 3.09it/s, loss=0.522]" + "training until 2000: 11%|█ | 222/2000 [01:11<09:34, 3.10it/s, loss=0.73]" ] }, { @@ -4260,7 +4260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 222/2000 [01:13<09:35, 3.09it/s, loss=0.611]" + "training until 2000: 11%|█ | 222/2000 [01:11<09:34, 3.10it/s, loss=0.726]" ] }, { @@ -4268,7 +4268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 223/2000 [01:13<09:38, 3.07it/s, loss=0.611]" + "training until 2000: 11%|█ | 223/2000 [01:12<09:33, 3.10it/s, loss=0.726]" ] }, { @@ -4276,7 +4276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 223/2000 [01:13<09:38, 3.07it/s, loss=0.591]" + "training until 2000: 11%|█ | 223/2000 [01:12<09:33, 3.10it/s, loss=0.722]" ] }, { @@ -4284,7 +4284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 224/2000 [01:13<09:33, 3.10it/s, loss=0.591]" + "training until 2000: 11%|█ | 224/2000 [01:12<09:29, 3.12it/s, loss=0.722]" ] }, { @@ -4292,7 +4292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█ | 224/2000 [01:13<09:33, 3.10it/s, loss=0.631]" + "training until 2000: 11%|█ | 224/2000 [01:12<09:29, 3.12it/s, loss=0.72] " ] }, { @@ -4300,7 +4300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 225/2000 [01:14<09:29, 3.12it/s, loss=0.631]" + "training until 2000: 11%|█▏ | 225/2000 [01:12<09:30, 3.11it/s, loss=0.72]" ] }, { @@ -4308,7 +4308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 225/2000 [01:14<09:29, 3.12it/s, loss=0.723]" + "training until 2000: 11%|█▏ | 225/2000 [01:12<09:30, 3.11it/s, loss=0.733]" ] }, { @@ -4316,7 +4316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 226/2000 [01:14<09:32, 3.10it/s, loss=0.723]" + "training until 2000: 11%|█▏ | 226/2000 [01:13<09:28, 3.12it/s, loss=0.733]" ] }, { @@ -4324,7 +4324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 226/2000 [01:14<09:32, 3.10it/s, loss=0.556]" + "training until 2000: 11%|█▏ | 226/2000 [01:13<09:28, 3.12it/s, loss=0.677]" ] }, { @@ -4332,7 +4332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 227/2000 [01:14<09:26, 3.13it/s, loss=0.556]" + "training until 2000: 11%|█▏ | 227/2000 [01:13<09:27, 3.13it/s, loss=0.677]" ] }, { @@ -4340,7 +4340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 227/2000 [01:14<09:26, 3.13it/s, loss=0.541]" + "training until 2000: 11%|█▏ | 227/2000 [01:13<09:27, 3.13it/s, loss=0.751]" ] }, { @@ -4348,7 +4348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 228/2000 [01:15<09:31, 3.10it/s, loss=0.541]" + "training until 2000: 11%|█▏ | 228/2000 [01:13<09:21, 3.16it/s, loss=0.751]" ] }, { @@ -4356,7 +4356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 228/2000 [01:15<09:31, 3.10it/s, loss=0.569]" + "training until 2000: 11%|█▏ | 228/2000 [01:13<09:21, 3.16it/s, loss=0.737]" ] }, { @@ -4364,7 +4364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 229/2000 [01:15<09:33, 3.09it/s, loss=0.569]" + "training until 2000: 11%|█▏ | 229/2000 [01:14<09:20, 3.16it/s, loss=0.737]" ] }, { @@ -4372,7 +4372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 11%|█▏ | 229/2000 [01:15<09:33, 3.09it/s, loss=0.554]" + "training until 2000: 11%|█▏ | 229/2000 [01:14<09:20, 3.16it/s, loss=0.748]" ] }, { @@ -4380,7 +4380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 230/2000 [01:15<09:26, 3.13it/s, loss=0.554]" + "training until 2000: 12%|█▏ | 230/2000 [01:14<09:23, 3.14it/s, loss=0.748]" ] }, { @@ -4388,7 +4388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 230/2000 [01:15<09:26, 3.13it/s, loss=0.61] " + "training until 2000: 12%|█▏ | 230/2000 [01:14<09:23, 3.14it/s, loss=0.723]" ] }, { @@ -4396,7 +4396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 231/2000 [01:16<09:26, 3.12it/s, loss=0.61]" + "training until 2000: 12%|█▏ | 231/2000 [01:14<09:33, 3.08it/s, loss=0.723]" ] }, { @@ -4404,7 +4404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 231/2000 [01:16<09:26, 3.12it/s, loss=0.624]" + "training until 2000: 12%|█▏ | 231/2000 [01:14<09:33, 3.08it/s, loss=0.703]" ] }, { @@ -4412,7 +4412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 232/2000 [01:16<09:23, 3.14it/s, loss=0.624]" + "training until 2000: 12%|█▏ | 232/2000 [01:15<09:30, 3.10it/s, loss=0.703]" ] }, { @@ -4420,7 +4420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 232/2000 [01:16<09:23, 3.14it/s, loss=0.6] " + "training until 2000: 12%|█▏ | 232/2000 [01:15<09:30, 3.10it/s, loss=0.755]" ] }, { @@ -4428,7 +4428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 233/2000 [01:16<09:26, 3.12it/s, loss=0.6]" + "training until 2000: 12%|█▏ | 233/2000 [01:15<09:34, 3.08it/s, loss=0.755]" ] }, { @@ -4436,7 +4436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 233/2000 [01:16<09:26, 3.12it/s, loss=0.623]" + "training until 2000: 12%|█▏ | 233/2000 [01:15<09:34, 3.08it/s, loss=0.707]" ] }, { @@ -4444,7 +4444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 234/2000 [01:16<09:27, 3.11it/s, loss=0.623]" + "training until 2000: 12%|█▏ | 234/2000 [01:15<09:29, 3.10it/s, loss=0.707]" ] }, { @@ -4452,7 +4452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 234/2000 [01:16<09:27, 3.11it/s, loss=0.526]" + "training until 2000: 12%|█▏ | 234/2000 [01:15<09:29, 3.10it/s, loss=0.757]" ] }, { @@ -4460,7 +4460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 235/2000 [01:17<09:24, 3.13it/s, loss=0.526]" + "training until 2000: 12%|█▏ | 235/2000 [01:15<09:25, 3.12it/s, loss=0.757]" ] }, { @@ -4468,7 +4468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 235/2000 [01:17<09:24, 3.13it/s, loss=0.608]" + "training until 2000: 12%|█▏ | 235/2000 [01:15<09:25, 3.12it/s, loss=0.715]" ] }, { @@ -4476,7 +4476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 236/2000 [01:17<09:23, 3.13it/s, loss=0.608]" + "training until 2000: 12%|█▏ | 236/2000 [01:16<09:24, 3.13it/s, loss=0.715]" ] }, { @@ -4484,7 +4484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 236/2000 [01:17<09:23, 3.13it/s, loss=0.575]" + "training until 2000: 12%|█▏ | 236/2000 [01:16<09:24, 3.13it/s, loss=0.719]" ] }, { @@ -4492,7 +4492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 237/2000 [01:17<09:20, 3.15it/s, loss=0.575]" + "training until 2000: 12%|█▏ | 237/2000 [01:16<09:25, 3.12it/s, loss=0.719]" ] }, { @@ -4500,7 +4500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 237/2000 [01:17<09:20, 3.15it/s, loss=0.578]" + "training until 2000: 12%|█▏ | 237/2000 [01:16<09:25, 3.12it/s, loss=0.726]" ] }, { @@ -4508,7 +4508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 238/2000 [01:18<09:21, 3.14it/s, loss=0.578]" + "training until 2000: 12%|█▏ | 238/2000 [01:16<09:27, 3.10it/s, loss=0.726]" ] }, { @@ -4516,7 +4516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 238/2000 [01:18<09:21, 3.14it/s, loss=0.641]" + "training until 2000: 12%|█▏ | 238/2000 [01:16<09:27, 3.10it/s, loss=0.712]" ] }, { @@ -4524,7 +4524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 239/2000 [01:18<09:22, 3.13it/s, loss=0.641]" + "training until 2000: 12%|█▏ | 239/2000 [01:17<09:29, 3.09it/s, loss=0.712]" ] }, { @@ -4532,7 +4532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 239/2000 [01:18<09:22, 3.13it/s, loss=0.576]" + "training until 2000: 12%|█▏ | 239/2000 [01:17<09:29, 3.09it/s, loss=0.738]" ] }, { @@ -4540,7 +4540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 240/2000 [01:18<09:22, 3.13it/s, loss=0.576]" + "training until 2000: 12%|█▏ | 240/2000 [01:17<09:26, 3.11it/s, loss=0.738]" ] }, { @@ -4548,7 +4548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 240/2000 [01:18<09:22, 3.13it/s, loss=0.624]" + "training until 2000: 12%|█▏ | 240/2000 [01:17<09:26, 3.11it/s, loss=0.727]" ] }, { @@ -4556,7 +4556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 241/2000 [01:19<09:25, 3.11it/s, loss=0.624]" + "training until 2000: 12%|█▏ | 241/2000 [01:17<09:26, 3.10it/s, loss=0.727]" ] }, { @@ -4564,7 +4564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 241/2000 [01:19<09:25, 3.11it/s, loss=0.623]" + "training until 2000: 12%|█▏ | 241/2000 [01:17<09:26, 3.10it/s, loss=0.706]" ] }, { @@ -4572,7 +4572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 242/2000 [01:19<09:26, 3.11it/s, loss=0.623]" + "training until 2000: 12%|█▏ | 242/2000 [01:18<09:28, 3.09it/s, loss=0.706]" ] }, { @@ -4580,7 +4580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 242/2000 [01:19<09:26, 3.11it/s, loss=0.525]" + "training until 2000: 12%|█▏ | 242/2000 [01:18<09:28, 3.09it/s, loss=0.734]" ] }, { @@ -4588,7 +4588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 243/2000 [01:19<09:25, 3.11it/s, loss=0.525]" + "training until 2000: 12%|█▏ | 243/2000 [01:18<09:16, 3.15it/s, loss=0.734]" ] }, { @@ -4596,7 +4596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 243/2000 [01:19<09:25, 3.11it/s, loss=0.635]" + "training until 2000: 12%|█▏ | 243/2000 [01:18<09:16, 3.15it/s, loss=0.68] " ] }, { @@ -4604,7 +4604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 244/2000 [01:20<09:30, 3.08it/s, loss=0.635]" + "training until 2000: 12%|█▏ | 244/2000 [01:18<09:16, 3.16it/s, loss=0.68]" ] }, { @@ -4612,7 +4612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 244/2000 [01:20<09:30, 3.08it/s, loss=0.525]" + "training until 2000: 12%|█▏ | 244/2000 [01:18<09:16, 3.16it/s, loss=0.685]" ] }, { @@ -4620,7 +4620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 245/2000 [01:20<09:29, 3.08it/s, loss=0.525]" + "training until 2000: 12%|█▏ | 245/2000 [01:19<09:15, 3.16it/s, loss=0.685]" ] }, { @@ -4628,7 +4628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 245/2000 [01:20<09:29, 3.08it/s, loss=0.618]" + "training until 2000: 12%|█▏ | 245/2000 [01:19<09:15, 3.16it/s, loss=0.703]" ] }, { @@ -4636,7 +4636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 246/2000 [01:20<09:31, 3.07it/s, loss=0.618]" + "training until 2000: 12%|█▏ | 246/2000 [01:19<09:13, 3.17it/s, loss=0.703]" ] }, { @@ -4644,7 +4644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 246/2000 [01:20<09:31, 3.07it/s, loss=0.539]" + "training until 2000: 12%|█▏ | 246/2000 [01:19<09:13, 3.17it/s, loss=0.777]" ] }, { @@ -4652,7 +4652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 247/2000 [01:21<09:29, 3.08it/s, loss=0.539]" + "training until 2000: 12%|█▏ | 247/2000 [01:19<09:06, 3.21it/s, loss=0.777]" ] }, { @@ -4660,7 +4660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 247/2000 [01:21<09:29, 3.08it/s, loss=0.565]" + "training until 2000: 12%|█▏ | 247/2000 [01:19<09:06, 3.21it/s, loss=0.646]" ] }, { @@ -4668,7 +4668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 248/2000 [01:21<09:24, 3.10it/s, loss=0.565]" + "training until 2000: 12%|█▏ | 248/2000 [01:20<09:06, 3.21it/s, loss=0.646]" ] }, { @@ -4676,7 +4676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 248/2000 [01:21<09:24, 3.10it/s, loss=0.617]" + "training until 2000: 12%|█▏ | 248/2000 [01:20<09:06, 3.21it/s, loss=0.694]" ] }, { @@ -4684,7 +4684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 249/2000 [01:21<09:22, 3.11it/s, loss=0.617]" + "training until 2000: 12%|█▏ | 249/2000 [01:20<09:07, 3.20it/s, loss=0.694]" ] }, { @@ -4692,7 +4692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▏ | 249/2000 [01:21<09:22, 3.11it/s, loss=0.533]" + "training until 2000: 12%|█▏ | 249/2000 [01:20<09:07, 3.20it/s, loss=0.729]" ] }, { @@ -4700,7 +4700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▎ | 250/2000 [01:22<09:21, 3.12it/s, loss=0.533]" + "training until 2000: 12%|█▎ | 250/2000 [01:20<09:14, 3.16it/s, loss=0.729]" ] }, { @@ -4708,7 +4708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 12%|█▎ | 250/2000 [01:22<09:21, 3.12it/s, loss=0.566]" + "training until 2000: 12%|█▎ | 250/2000 [01:20<09:14, 3.16it/s, loss=0.657]" ] }, { @@ -4716,7 +4716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 251/2000 [01:22<09:14, 3.15it/s, loss=0.566]" + "training until 2000: 13%|█▎ | 251/2000 [01:21<09:23, 3.10it/s, loss=0.657]" ] }, { @@ -4724,7 +4724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 251/2000 [01:22<09:14, 3.15it/s, loss=0.572]" + "training until 2000: 13%|█▎ | 251/2000 [01:21<09:23, 3.10it/s, loss=0.738]" ] }, { @@ -4732,7 +4732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 252/2000 [01:22<09:19, 3.13it/s, loss=0.572]" + "training until 2000: 13%|█▎ | 252/2000 [01:21<09:25, 3.09it/s, loss=0.738]" ] }, { @@ -4740,7 +4740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 252/2000 [01:22<09:19, 3.13it/s, loss=0.593]" + "training until 2000: 13%|█▎ | 252/2000 [01:21<09:25, 3.09it/s, loss=0.74] " ] }, { @@ -4748,7 +4748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 253/2000 [01:23<09:16, 3.14it/s, loss=0.593]" + "training until 2000: 13%|█▎ | 253/2000 [01:21<09:19, 3.12it/s, loss=0.74]" ] }, { @@ -4756,7 +4756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 253/2000 [01:23<09:16, 3.14it/s, loss=0.602]" + "training until 2000: 13%|█▎ | 253/2000 [01:21<09:19, 3.12it/s, loss=0.692]" ] }, { @@ -4764,7 +4764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 254/2000 [01:23<09:15, 3.15it/s, loss=0.602]" + "training until 2000: 13%|█▎ | 254/2000 [01:22<09:11, 3.17it/s, loss=0.692]" ] }, { @@ -4772,7 +4772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 254/2000 [01:23<09:15, 3.15it/s, loss=0.571]" + "training until 2000: 13%|█▎ | 254/2000 [01:22<09:11, 3.17it/s, loss=0.692]" ] }, { @@ -4780,7 +4780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 255/2000 [01:23<09:12, 3.16it/s, loss=0.571]" + "training until 2000: 13%|█▎ | 255/2000 [01:22<09:13, 3.15it/s, loss=0.692]" ] }, { @@ -4788,7 +4788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 255/2000 [01:23<09:12, 3.16it/s, loss=0.591]" + "training until 2000: 13%|█▎ | 255/2000 [01:22<09:13, 3.15it/s, loss=0.723]" ] }, { @@ -4796,7 +4796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 256/2000 [01:24<09:10, 3.17it/s, loss=0.591]" + "training until 2000: 13%|█▎ | 256/2000 [01:22<09:17, 3.13it/s, loss=0.723]" ] }, { @@ -4804,7 +4804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 256/2000 [01:24<09:10, 3.17it/s, loss=0.534]" + "training until 2000: 13%|█▎ | 256/2000 [01:22<09:17, 3.13it/s, loss=0.736]" ] }, { @@ -4812,7 +4812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 257/2000 [01:24<09:10, 3.17it/s, loss=0.534]" + "training until 2000: 13%|█▎ | 257/2000 [01:22<09:17, 3.13it/s, loss=0.736]" ] }, { @@ -4820,7 +4820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 257/2000 [01:24<09:10, 3.17it/s, loss=0.614]" + "training until 2000: 13%|█▎ | 257/2000 [01:22<09:17, 3.13it/s, loss=0.71] " ] }, { @@ -4828,7 +4828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 258/2000 [01:24<09:15, 3.14it/s, loss=0.614]" + "training until 2000: 13%|█▎ | 258/2000 [01:23<09:12, 3.15it/s, loss=0.71]" ] }, { @@ -4836,7 +4836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 258/2000 [01:24<09:15, 3.14it/s, loss=0.58] " + "training until 2000: 13%|█▎ | 258/2000 [01:23<09:12, 3.15it/s, loss=0.725]" ] }, { @@ -4844,7 +4844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 259/2000 [01:24<09:18, 3.12it/s, loss=0.58]" + "training until 2000: 13%|█▎ | 259/2000 [01:23<09:16, 3.13it/s, loss=0.725]" ] }, { @@ -4852,7 +4852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 259/2000 [01:24<09:18, 3.12it/s, loss=0.533]" + "training until 2000: 13%|█▎ | 259/2000 [01:23<09:16, 3.13it/s, loss=0.723]" ] }, { @@ -4860,7 +4860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 260/2000 [01:25<09:23, 3.09it/s, loss=0.533]" + "training until 2000: 13%|█▎ | 260/2000 [01:23<09:13, 3.14it/s, loss=0.723]" ] }, { @@ -4868,7 +4868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 260/2000 [01:25<09:23, 3.09it/s, loss=0.582]" + "training until 2000: 13%|█▎ | 260/2000 [01:23<09:13, 3.14it/s, loss=0.747]" ] }, { @@ -4876,7 +4876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 261/2000 [01:25<09:15, 3.13it/s, loss=0.582]" + "training until 2000: 13%|█▎ | 261/2000 [01:24<09:13, 3.14it/s, loss=0.747]" ] }, { @@ -4884,7 +4884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 261/2000 [01:25<09:15, 3.13it/s, loss=0.632]" + "training until 2000: 13%|█▎ | 261/2000 [01:24<09:13, 3.14it/s, loss=0.696]" ] }, { @@ -4892,7 +4892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 262/2000 [01:25<09:16, 3.12it/s, loss=0.632]" + "training until 2000: 13%|█▎ | 262/2000 [01:24<09:15, 3.13it/s, loss=0.696]" ] }, { @@ -4900,7 +4900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 262/2000 [01:25<09:16, 3.12it/s, loss=0.56] " + "training until 2000: 13%|█▎ | 262/2000 [01:24<09:15, 3.13it/s, loss=0.744]" ] }, { @@ -4908,7 +4908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 263/2000 [01:26<09:19, 3.10it/s, loss=0.56]" + "training until 2000: 13%|█▎ | 263/2000 [01:24<09:14, 3.13it/s, loss=0.744]" ] }, { @@ -4916,7 +4916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 263/2000 [01:26<09:19, 3.10it/s, loss=0.699]" + "training until 2000: 13%|█▎ | 263/2000 [01:24<09:14, 3.13it/s, loss=0.7] " ] }, { @@ -4924,7 +4924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 264/2000 [01:26<09:23, 3.08it/s, loss=0.699]" + "training until 2000: 13%|█▎ | 264/2000 [01:25<09:16, 3.12it/s, loss=0.7]" ] }, { @@ -4932,7 +4932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 264/2000 [01:26<09:23, 3.08it/s, loss=0.58] " + "training until 2000: 13%|█▎ | 264/2000 [01:25<09:16, 3.12it/s, loss=0.696]" ] }, { @@ -4940,7 +4940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 265/2000 [01:26<09:17, 3.11it/s, loss=0.58]" + "training until 2000: 13%|█▎ | 265/2000 [01:25<09:17, 3.11it/s, loss=0.696]" ] }, { @@ -4948,7 +4948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 265/2000 [01:26<09:17, 3.11it/s, loss=0.624]" + "training until 2000: 13%|█▎ | 265/2000 [01:25<09:17, 3.11it/s, loss=0.734]" ] }, { @@ -4956,7 +4956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 266/2000 [01:27<09:18, 3.11it/s, loss=0.624]" + "training until 2000: 13%|█▎ | 266/2000 [01:25<09:24, 3.07it/s, loss=0.734]" ] }, { @@ -4964,7 +4964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 266/2000 [01:27<09:18, 3.11it/s, loss=0.581]" + "training until 2000: 13%|█▎ | 266/2000 [01:25<09:24, 3.07it/s, loss=0.745]" ] }, { @@ -4972,7 +4972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 267/2000 [01:27<09:17, 3.11it/s, loss=0.581]" + "training until 2000: 13%|█▎ | 267/2000 [01:26<09:15, 3.12it/s, loss=0.745]" ] }, { @@ -4980,7 +4980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 267/2000 [01:27<09:17, 3.11it/s, loss=0.605]" + "training until 2000: 13%|█▎ | 267/2000 [01:26<09:15, 3.12it/s, loss=0.749]" ] }, { @@ -4988,7 +4988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 268/2000 [01:27<09:12, 3.13it/s, loss=0.605]" + "training until 2000: 13%|█▎ | 268/2000 [01:26<09:19, 3.09it/s, loss=0.749]" ] }, { @@ -4996,7 +4996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 268/2000 [01:27<09:12, 3.13it/s, loss=0.624]" + "training until 2000: 13%|█▎ | 268/2000 [01:26<09:19, 3.09it/s, loss=0.692]" ] }, { @@ -5004,7 +5004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 269/2000 [01:28<09:12, 3.13it/s, loss=0.624]" + "training until 2000: 13%|█▎ | 269/2000 [01:26<09:08, 3.16it/s, loss=0.692]" ] }, { @@ -5012,7 +5012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 13%|█▎ | 269/2000 [01:28<09:12, 3.13it/s, loss=0.622]" + "training until 2000: 13%|█▎ | 269/2000 [01:26<09:08, 3.16it/s, loss=0.703]" ] }, { @@ -5020,7 +5020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 270/2000 [01:28<09:11, 3.14it/s, loss=0.622]" + "training until 2000: 14%|█▎ | 270/2000 [01:27<09:06, 3.17it/s, loss=0.703]" ] }, { @@ -5028,7 +5028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 270/2000 [01:28<09:11, 3.14it/s, loss=0.533]" + "training until 2000: 14%|█▎ | 270/2000 [01:27<09:06, 3.17it/s, loss=0.748]" ] }, { @@ -5036,7 +5036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 271/2000 [01:28<09:07, 3.16it/s, loss=0.533]" + "training until 2000: 14%|█▎ | 271/2000 [01:27<11:02, 2.61it/s, loss=0.748]" ] }, { @@ -5044,7 +5044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 271/2000 [01:28<09:07, 3.16it/s, loss=0.578]" + "training until 2000: 14%|█▎ | 271/2000 [01:27<11:02, 2.61it/s, loss=0.651]" ] }, { @@ -5052,7 +5052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 272/2000 [01:29<09:07, 3.15it/s, loss=0.578]" + "training until 2000: 14%|█▎ | 272/2000 [01:27<10:30, 2.74it/s, loss=0.651]" ] }, { @@ -5060,7 +5060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 272/2000 [01:29<09:07, 3.15it/s, loss=0.569]" + "training until 2000: 14%|█▎ | 272/2000 [01:27<10:30, 2.74it/s, loss=0.748]" ] }, { @@ -5068,7 +5068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 273/2000 [01:29<09:03, 3.18it/s, loss=0.569]" + "training until 2000: 14%|█▎ | 273/2000 [01:28<10:02, 2.86it/s, loss=0.748]" ] }, { @@ -5076,7 +5076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 273/2000 [01:29<09:03, 3.18it/s, loss=0.551]" + "training until 2000: 14%|█▎ | 273/2000 [01:28<10:02, 2.86it/s, loss=0.713]" ] }, { @@ -5084,7 +5084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 274/2000 [01:29<08:59, 3.20it/s, loss=0.551]" + "training until 2000: 14%|█▎ | 274/2000 [01:28<09:48, 2.93it/s, loss=0.713]" ] }, { @@ -5092,7 +5092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▎ | 274/2000 [01:29<08:59, 3.20it/s, loss=0.531]" + "training until 2000: 14%|█▎ | 274/2000 [01:28<09:48, 2.93it/s, loss=0.692]" ] }, { @@ -5100,7 +5100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 275/2000 [01:30<09:08, 3.15it/s, loss=0.531]" + "training until 2000: 14%|█▍ | 275/2000 [01:28<09:35, 3.00it/s, loss=0.692]" ] }, { @@ -5108,7 +5108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 275/2000 [01:30<09:08, 3.15it/s, loss=0.561]" + "training until 2000: 14%|█▍ | 275/2000 [01:28<09:35, 3.00it/s, loss=0.687]" ] }, { @@ -5116,7 +5116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 276/2000 [01:30<09:04, 3.17it/s, loss=0.561]" + "training until 2000: 14%|█▍ | 276/2000 [01:29<09:17, 3.09it/s, loss=0.687]" ] }, { @@ -5124,7 +5124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 276/2000 [01:30<09:04, 3.17it/s, loss=0.632]" + "training until 2000: 14%|█▍ | 276/2000 [01:29<09:17, 3.09it/s, loss=0.673]" ] }, { @@ -5132,7 +5132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 277/2000 [01:30<08:59, 3.19it/s, loss=0.632]" + "training until 2000: 14%|█▍ | 277/2000 [01:29<09:09, 3.14it/s, loss=0.673]" ] }, { @@ -5140,7 +5140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 277/2000 [01:30<08:59, 3.19it/s, loss=0.522]" + "training until 2000: 14%|█▍ | 277/2000 [01:29<09:09, 3.14it/s, loss=0.74] " ] }, { @@ -5148,7 +5148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 278/2000 [01:31<11:00, 2.61it/s, loss=0.522]" + "training until 2000: 14%|█▍ | 278/2000 [01:29<09:04, 3.16it/s, loss=0.74]" ] }, { @@ -5156,7 +5156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 278/2000 [01:31<11:00, 2.61it/s, loss=0.557]" + "training until 2000: 14%|█▍ | 278/2000 [01:29<09:04, 3.16it/s, loss=0.706]" ] }, { @@ -5164,7 +5164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 279/2000 [01:31<10:30, 2.73it/s, loss=0.557]" + "training until 2000: 14%|█▍ | 279/2000 [01:30<09:11, 3.12it/s, loss=0.706]" ] }, { @@ -5172,7 +5172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 279/2000 [01:31<10:30, 2.73it/s, loss=0.588]" + "training until 2000: 14%|█▍ | 279/2000 [01:30<09:11, 3.12it/s, loss=0.745]" ] }, { @@ -5180,7 +5180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 280/2000 [01:31<10:02, 2.86it/s, loss=0.588]" + "training until 2000: 14%|█▍ | 280/2000 [01:30<09:10, 3.12it/s, loss=0.745]" ] }, { @@ -5188,7 +5188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 280/2000 [01:31<10:02, 2.86it/s, loss=0.549]" + "training until 2000: 14%|█▍ | 280/2000 [01:30<09:10, 3.12it/s, loss=0.68] " ] }, { @@ -5196,7 +5196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 281/2000 [01:32<09:46, 2.93it/s, loss=0.549]" + "training until 2000: 14%|█▍ | 281/2000 [01:30<09:17, 3.09it/s, loss=0.68]" ] }, { @@ -5204,7 +5204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 281/2000 [01:32<09:46, 2.93it/s, loss=0.525]" + "training until 2000: 14%|█▍ | 281/2000 [01:30<09:17, 3.09it/s, loss=0.713]" ] }, { @@ -5212,7 +5212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 282/2000 [01:32<09:43, 2.95it/s, loss=0.525]" + "training until 2000: 14%|█▍ | 282/2000 [01:31<09:20, 3.06it/s, loss=0.713]" ] }, { @@ -5220,7 +5220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 282/2000 [01:32<09:43, 2.95it/s, loss=0.647]" + "training until 2000: 14%|█▍ | 282/2000 [01:31<09:20, 3.06it/s, loss=0.711]" ] }, { @@ -5228,7 +5228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 283/2000 [01:32<09:33, 2.99it/s, loss=0.647]" + "training until 2000: 14%|█▍ | 283/2000 [01:31<09:21, 3.06it/s, loss=0.711]" ] }, { @@ -5236,7 +5236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 283/2000 [01:32<09:33, 2.99it/s, loss=0.693]" + "training until 2000: 14%|█▍ | 283/2000 [01:31<09:21, 3.06it/s, loss=0.726]" ] }, { @@ -5244,7 +5244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 284/2000 [01:33<09:28, 3.02it/s, loss=0.693]" + "training until 2000: 14%|█▍ | 284/2000 [01:31<09:17, 3.08it/s, loss=0.726]" ] }, { @@ -5252,7 +5252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 284/2000 [01:33<09:28, 3.02it/s, loss=0.545]" + "training until 2000: 14%|█▍ | 284/2000 [01:31<09:17, 3.08it/s, loss=0.708]" ] }, { @@ -5260,7 +5260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 285/2000 [01:33<09:23, 3.04it/s, loss=0.545]" + "training until 2000: 14%|█▍ | 285/2000 [01:32<09:13, 3.10it/s, loss=0.708]" ] }, { @@ -5268,7 +5268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 285/2000 [01:33<09:23, 3.04it/s, loss=0.549]" + "training until 2000: 14%|█▍ | 285/2000 [01:32<09:13, 3.10it/s, loss=0.691]" ] }, { @@ -5276,7 +5276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 286/2000 [01:33<09:17, 3.08it/s, loss=0.549]" + "training until 2000: 14%|█▍ | 286/2000 [01:32<09:07, 3.13it/s, loss=0.691]" ] }, { @@ -5284,7 +5284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 286/2000 [01:33<09:17, 3.08it/s, loss=0.565]" + "training until 2000: 14%|█▍ | 286/2000 [01:32<09:07, 3.13it/s, loss=0.663]" ] }, { @@ -5292,7 +5292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 287/2000 [01:34<09:12, 3.10it/s, loss=0.565]" + "training until 2000: 14%|█▍ | 287/2000 [01:32<09:01, 3.16it/s, loss=0.663]" ] }, { @@ -5300,7 +5300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 287/2000 [01:34<09:12, 3.10it/s, loss=0.566]" + "training until 2000: 14%|█▍ | 287/2000 [01:32<09:01, 3.16it/s, loss=0.737]" ] }, { @@ -5308,7 +5308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 288/2000 [01:34<09:10, 3.11it/s, loss=0.566]" + "training until 2000: 14%|█▍ | 288/2000 [01:33<08:57, 3.19it/s, loss=0.737]" ] }, { @@ -5316,7 +5316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 288/2000 [01:34<09:10, 3.11it/s, loss=0.613]" + "training until 2000: 14%|█▍ | 288/2000 [01:33<08:57, 3.19it/s, loss=0.707]" ] }, { @@ -5324,7 +5324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 289/2000 [01:34<09:07, 3.12it/s, loss=0.613]" + "training until 2000: 14%|█▍ | 289/2000 [01:33<08:54, 3.20it/s, loss=0.707]" ] }, { @@ -5332,7 +5332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 289/2000 [01:34<09:07, 3.12it/s, loss=0.584]" + "training until 2000: 14%|█▍ | 289/2000 [01:33<08:54, 3.20it/s, loss=0.737]" ] }, { @@ -5340,7 +5340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 290/2000 [01:35<09:10, 3.11it/s, loss=0.584]" + "training until 2000: 14%|█▍ | 290/2000 [01:33<08:56, 3.19it/s, loss=0.737]" ] }, { @@ -5348,7 +5348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 14%|█▍ | 290/2000 [01:35<09:10, 3.11it/s, loss=0.577]" + "training until 2000: 14%|█▍ | 290/2000 [01:33<08:56, 3.19it/s, loss=0.741]" ] }, { @@ -5356,7 +5356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 291/2000 [01:35<09:09, 3.11it/s, loss=0.577]" + "training until 2000: 15%|█▍ | 291/2000 [01:34<09:04, 3.14it/s, loss=0.741]" ] }, { @@ -5364,7 +5364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 291/2000 [01:35<09:09, 3.11it/s, loss=0.6] " + "training until 2000: 15%|█▍ | 291/2000 [01:34<09:04, 3.14it/s, loss=0.7] " ] }, { @@ -5372,7 +5372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 292/2000 [01:35<09:13, 3.09it/s, loss=0.6]" + "training until 2000: 15%|█▍ | 292/2000 [01:34<09:05, 3.13it/s, loss=0.7]" ] }, { @@ -5380,7 +5380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 292/2000 [01:35<09:13, 3.09it/s, loss=0.637]" + "training until 2000: 15%|█▍ | 292/2000 [01:34<09:05, 3.13it/s, loss=0.692]" ] }, { @@ -5388,7 +5388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 293/2000 [01:36<09:05, 3.13it/s, loss=0.637]" + "training until 2000: 15%|█▍ | 293/2000 [01:34<09:03, 3.14it/s, loss=0.692]" ] }, { @@ -5396,7 +5396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 293/2000 [01:36<09:05, 3.13it/s, loss=0.602]" + "training until 2000: 15%|█▍ | 293/2000 [01:34<09:03, 3.14it/s, loss=0.698]" ] }, { @@ -5404,7 +5404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 294/2000 [01:36<09:09, 3.10it/s, loss=0.602]" + "training until 2000: 15%|█▍ | 294/2000 [01:34<08:57, 3.17it/s, loss=0.698]" ] }, { @@ -5412,7 +5412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 294/2000 [01:36<09:09, 3.10it/s, loss=0.59] " + "training until 2000: 15%|█▍ | 294/2000 [01:34<08:57, 3.17it/s, loss=0.755]" ] }, { @@ -5420,7 +5420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 295/2000 [01:36<09:08, 3.11it/s, loss=0.59]" + "training until 2000: 15%|█▍ | 295/2000 [01:35<09:00, 3.15it/s, loss=0.755]" ] }, { @@ -5428,7 +5428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 295/2000 [01:36<09:08, 3.11it/s, loss=0.578]" + "training until 2000: 15%|█▍ | 295/2000 [01:35<09:00, 3.15it/s, loss=0.708]" ] }, { @@ -5436,7 +5436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 296/2000 [01:37<09:05, 3.12it/s, loss=0.578]" + "training until 2000: 15%|█▍ | 296/2000 [01:35<09:00, 3.15it/s, loss=0.708]" ] }, { @@ -5444,7 +5444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 296/2000 [01:37<09:05, 3.12it/s, loss=0.564]" + "training until 2000: 15%|█▍ | 296/2000 [01:35<09:00, 3.15it/s, loss=0.708]" ] }, { @@ -5452,7 +5452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 297/2000 [01:37<09:00, 3.15it/s, loss=0.564]" + "training until 2000: 15%|█▍ | 297/2000 [01:35<09:02, 3.14it/s, loss=0.708]" ] }, { @@ -5460,7 +5460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 297/2000 [01:37<09:00, 3.15it/s, loss=0.556]" + "training until 2000: 15%|█▍ | 297/2000 [01:35<09:02, 3.14it/s, loss=0.666]" ] }, { @@ -5468,7 +5468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 298/2000 [01:37<08:59, 3.15it/s, loss=0.556]" + "training until 2000: 15%|█▍ | 298/2000 [01:36<09:05, 3.12it/s, loss=0.666]" ] }, { @@ -5476,7 +5476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 298/2000 [01:37<08:59, 3.15it/s, loss=0.649]" + "training until 2000: 15%|█▍ | 298/2000 [01:36<09:05, 3.12it/s, loss=0.707]" ] }, { @@ -5484,7 +5484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 299/2000 [01:37<08:59, 3.15it/s, loss=0.649]" + "training until 2000: 15%|█▍ | 299/2000 [01:36<09:02, 3.14it/s, loss=0.707]" ] }, { @@ -5492,7 +5492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▍ | 299/2000 [01:37<08:59, 3.15it/s, loss=0.533]" + "training until 2000: 15%|█▍ | 299/2000 [01:36<09:02, 3.14it/s, loss=0.685]" ] }, { @@ -5500,7 +5500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 300/2000 [01:38<09:08, 3.10it/s, loss=0.533]" + "training until 2000: 15%|█▌ | 300/2000 [01:36<09:04, 3.12it/s, loss=0.685]" ] }, { @@ -5508,7 +5508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 300/2000 [01:38<09:08, 3.10it/s, loss=0.649]" + "training until 2000: 15%|█▌ | 300/2000 [01:36<09:04, 3.12it/s, loss=0.705]" ] }, { @@ -5516,7 +5516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 301/2000 [01:38<09:10, 3.09it/s, loss=0.649]" + "training until 2000: 15%|█▌ | 301/2000 [01:37<09:03, 3.13it/s, loss=0.705]" ] }, { @@ -5524,7 +5524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 301/2000 [01:38<09:10, 3.09it/s, loss=0.634]" + "training until 2000: 15%|█▌ | 301/2000 [01:37<09:03, 3.13it/s, loss=0.757]" ] }, { @@ -5532,7 +5532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 302/2000 [01:38<09:02, 3.13it/s, loss=0.634]" + "training until 2000: 15%|█▌ | 302/2000 [01:37<08:59, 3.15it/s, loss=0.757]" ] }, { @@ -5540,7 +5540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 302/2000 [01:38<09:02, 3.13it/s, loss=0.565]" + "training until 2000: 15%|█▌ | 302/2000 [01:37<08:59, 3.15it/s, loss=0.684]" ] }, { @@ -5548,7 +5548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 303/2000 [01:39<09:09, 3.09it/s, loss=0.565]" + "training until 2000: 15%|█▌ | 303/2000 [01:37<09:01, 3.13it/s, loss=0.684]" ] }, { @@ -5556,7 +5556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 303/2000 [01:39<09:09, 3.09it/s, loss=0.61] " + "training until 2000: 15%|█▌ | 303/2000 [01:37<09:01, 3.13it/s, loss=0.638]" ] }, { @@ -5564,7 +5564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 304/2000 [01:39<09:05, 3.11it/s, loss=0.61]" + "training until 2000: 15%|█▌ | 304/2000 [01:38<08:59, 3.14it/s, loss=0.638]" ] }, { @@ -5572,7 +5572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 304/2000 [01:39<09:05, 3.11it/s, loss=0.565]" + "training until 2000: 15%|█▌ | 304/2000 [01:38<08:59, 3.14it/s, loss=0.677]" ] }, { @@ -5580,7 +5580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 305/2000 [01:39<09:03, 3.12it/s, loss=0.565]" + "training until 2000: 15%|█▌ | 305/2000 [01:38<08:59, 3.14it/s, loss=0.677]" ] }, { @@ -5588,7 +5588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 305/2000 [01:39<09:03, 3.12it/s, loss=0.521]" + "training until 2000: 15%|█▌ | 305/2000 [01:38<08:59, 3.14it/s, loss=0.703]" ] }, { @@ -5596,7 +5596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 306/2000 [01:40<09:03, 3.12it/s, loss=0.521]" + "training until 2000: 15%|█▌ | 306/2000 [01:38<08:56, 3.16it/s, loss=0.703]" ] }, { @@ -5604,7 +5604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 306/2000 [01:40<09:03, 3.12it/s, loss=0.565]" + "training until 2000: 15%|█▌ | 306/2000 [01:38<08:56, 3.16it/s, loss=0.743]" ] }, { @@ -5612,7 +5612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 307/2000 [01:40<09:06, 3.10it/s, loss=0.565]" + "training until 2000: 15%|█▌ | 307/2000 [01:39<09:02, 3.12it/s, loss=0.743]" ] }, { @@ -5620,7 +5620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 307/2000 [01:40<09:06, 3.10it/s, loss=0.702]" + "training until 2000: 15%|█▌ | 307/2000 [01:39<09:02, 3.12it/s, loss=0.71] " ] }, { @@ -5628,7 +5628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 308/2000 [01:40<09:08, 3.08it/s, loss=0.702]" + "training until 2000: 15%|█▌ | 308/2000 [01:39<09:04, 3.11it/s, loss=0.71]" ] }, { @@ -5636,7 +5636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 308/2000 [01:40<09:08, 3.08it/s, loss=0.606]" + "training until 2000: 15%|█▌ | 308/2000 [01:39<09:04, 3.11it/s, loss=0.715]" ] }, { @@ -5644,7 +5644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 309/2000 [01:41<09:11, 3.06it/s, loss=0.606]" + "training until 2000: 15%|█▌ | 309/2000 [01:39<09:01, 3.12it/s, loss=0.715]" ] }, { @@ -5652,7 +5652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 15%|█▌ | 309/2000 [01:41<09:11, 3.06it/s, loss=0.591]" + "training until 2000: 15%|█▌ | 309/2000 [01:39<09:01, 3.12it/s, loss=0.681]" ] }, { @@ -5660,7 +5660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 310/2000 [01:41<09:12, 3.06it/s, loss=0.591]" + "training until 2000: 16%|█▌ | 310/2000 [01:40<08:58, 3.14it/s, loss=0.681]" ] }, { @@ -5668,7 +5668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 310/2000 [01:41<09:12, 3.06it/s, loss=0.621]" + "training until 2000: 16%|█▌ | 310/2000 [01:40<08:58, 3.14it/s, loss=0.699]" ] }, { @@ -5676,7 +5676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 311/2000 [01:41<09:18, 3.03it/s, loss=0.621]" + "training until 2000: 16%|█▌ | 311/2000 [01:40<09:02, 3.11it/s, loss=0.699]" ] }, { @@ -5684,7 +5684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 311/2000 [01:41<09:18, 3.03it/s, loss=0.65] " + "training until 2000: 16%|█▌ | 311/2000 [01:40<09:02, 3.11it/s, loss=0.724]" ] }, { @@ -5692,7 +5692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 312/2000 [01:42<09:08, 3.08it/s, loss=0.65]" + "training until 2000: 16%|█▌ | 312/2000 [01:40<09:00, 3.12it/s, loss=0.724]" ] }, { @@ -5700,7 +5700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 312/2000 [01:42<09:08, 3.08it/s, loss=0.563]" + "training until 2000: 16%|█▌ | 312/2000 [01:40<09:00, 3.12it/s, loss=0.685]" ] }, { @@ -5708,7 +5708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 313/2000 [01:42<09:07, 3.08it/s, loss=0.563]" + "training until 2000: 16%|█▌ | 313/2000 [01:41<09:00, 3.12it/s, loss=0.685]" ] }, { @@ -5716,7 +5716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 313/2000 [01:42<09:07, 3.08it/s, loss=0.538]" + "training until 2000: 16%|█▌ | 313/2000 [01:41<09:00, 3.12it/s, loss=0.742]" ] }, { @@ -5724,7 +5724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 314/2000 [01:42<09:03, 3.10it/s, loss=0.538]" + "training until 2000: 16%|█▌ | 314/2000 [01:41<09:03, 3.10it/s, loss=0.742]" ] }, { @@ -5732,7 +5732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 314/2000 [01:42<09:03, 3.10it/s, loss=0.634]" + "training until 2000: 16%|█▌ | 314/2000 [01:41<09:03, 3.10it/s, loss=0.738]" ] }, { @@ -5740,7 +5740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 315/2000 [01:43<09:00, 3.12it/s, loss=0.634]" + "training until 2000: 16%|█▌ | 315/2000 [01:41<09:06, 3.09it/s, loss=0.738]" ] }, { @@ -5748,7 +5748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 315/2000 [01:43<09:00, 3.12it/s, loss=0.636]" + "training until 2000: 16%|█▌ | 315/2000 [01:41<09:06, 3.09it/s, loss=0.725]" ] }, { @@ -5756,7 +5756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 316/2000 [01:43<09:03, 3.10it/s, loss=0.636]" + "training until 2000: 16%|█▌ | 316/2000 [01:42<09:06, 3.08it/s, loss=0.725]" ] }, { @@ -5764,7 +5764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 316/2000 [01:43<09:03, 3.10it/s, loss=0.55] " + "training until 2000: 16%|█▌ | 316/2000 [01:42<09:06, 3.08it/s, loss=0.702]" ] }, { @@ -5772,7 +5772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 317/2000 [01:43<08:59, 3.12it/s, loss=0.55]" + "training until 2000: 16%|█▌ | 317/2000 [01:42<09:06, 3.08it/s, loss=0.702]" ] }, { @@ -5780,7 +5780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 317/2000 [01:43<08:59, 3.12it/s, loss=0.617]" + "training until 2000: 16%|█▌ | 317/2000 [01:42<09:06, 3.08it/s, loss=0.734]" ] }, { @@ -5788,7 +5788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 318/2000 [01:44<08:53, 3.15it/s, loss=0.617]" + "training until 2000: 16%|█▌ | 318/2000 [01:42<09:02, 3.10it/s, loss=0.734]" ] }, { @@ -5796,7 +5796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 318/2000 [01:44<08:53, 3.15it/s, loss=0.556]" + "training until 2000: 16%|█▌ | 318/2000 [01:42<09:02, 3.10it/s, loss=0.677]" ] }, { @@ -5804,7 +5804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 319/2000 [01:44<08:51, 3.16it/s, loss=0.556]" + "training until 2000: 16%|█▌ | 319/2000 [01:42<09:00, 3.11it/s, loss=0.677]" ] }, { @@ -5812,7 +5812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 319/2000 [01:44<08:51, 3.16it/s, loss=0.578]" + "training until 2000: 16%|█▌ | 319/2000 [01:42<09:00, 3.11it/s, loss=0.756]" ] }, { @@ -5820,7 +5820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 320/2000 [01:44<08:59, 3.11it/s, loss=0.578]" + "training until 2000: 16%|█▌ | 320/2000 [01:43<08:58, 3.12it/s, loss=0.756]" ] }, { @@ -5828,7 +5828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 320/2000 [01:44<08:59, 3.11it/s, loss=0.651]" + "training until 2000: 16%|█▌ | 320/2000 [01:43<08:58, 3.12it/s, loss=0.657]" ] }, { @@ -5836,7 +5836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 321/2000 [01:45<08:56, 3.13it/s, loss=0.651]" + "training until 2000: 16%|█▌ | 321/2000 [01:43<08:53, 3.14it/s, loss=0.657]" ] }, { @@ -5844,7 +5844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 321/2000 [01:45<08:56, 3.13it/s, loss=0.615]" + "training until 2000: 16%|█▌ | 321/2000 [01:43<08:53, 3.14it/s, loss=0.648]" ] }, { @@ -5852,7 +5852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 322/2000 [01:45<08:51, 3.15it/s, loss=0.615]" + "training until 2000: 16%|█▌ | 322/2000 [01:43<08:52, 3.15it/s, loss=0.648]" ] }, { @@ -5860,7 +5860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 322/2000 [01:45<08:51, 3.15it/s, loss=0.555]" + "training until 2000: 16%|█▌ | 322/2000 [01:43<08:52, 3.15it/s, loss=0.699]" ] }, { @@ -5868,7 +5868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 323/2000 [01:45<09:00, 3.10it/s, loss=0.555]" + "training until 2000: 16%|█▌ | 323/2000 [01:44<08:50, 3.16it/s, loss=0.699]" ] }, { @@ -5876,7 +5876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 323/2000 [01:45<09:00, 3.10it/s, loss=0.585]" + "training until 2000: 16%|█▌ | 323/2000 [01:44<08:50, 3.16it/s, loss=0.724]" ] }, { @@ -5884,7 +5884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 324/2000 [01:46<08:59, 3.11it/s, loss=0.585]" + "training until 2000: 16%|█▌ | 324/2000 [01:44<08:50, 3.16it/s, loss=0.724]" ] }, { @@ -5892,7 +5892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▌ | 324/2000 [01:46<08:59, 3.11it/s, loss=0.597]" + "training until 2000: 16%|█▌ | 324/2000 [01:44<08:50, 3.16it/s, loss=0.696]" ] }, { @@ -5900,7 +5900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 325/2000 [01:46<09:00, 3.10it/s, loss=0.597]" + "training until 2000: 16%|█▋ | 325/2000 [01:44<08:51, 3.15it/s, loss=0.696]" ] }, { @@ -5908,7 +5908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 325/2000 [01:46<09:00, 3.10it/s, loss=0.661]" + "training until 2000: 16%|█▋ | 325/2000 [01:44<08:51, 3.15it/s, loss=0.721]" ] }, { @@ -5916,7 +5916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 326/2000 [01:46<08:59, 3.10it/s, loss=0.661]" + "training until 2000: 16%|█▋ | 326/2000 [01:45<08:59, 3.10it/s, loss=0.721]" ] }, { @@ -5924,7 +5924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 326/2000 [01:46<08:59, 3.10it/s, loss=0.537]" + "training until 2000: 16%|█▋ | 326/2000 [01:45<08:59, 3.10it/s, loss=0.668]" ] }, { @@ -5932,7 +5932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 327/2000 [01:47<08:54, 3.13it/s, loss=0.537]" + "training until 2000: 16%|█▋ | 327/2000 [01:45<08:55, 3.13it/s, loss=0.668]" ] }, { @@ -5940,7 +5940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 327/2000 [01:47<08:54, 3.13it/s, loss=0.539]" + "training until 2000: 16%|█▋ | 327/2000 [01:45<08:55, 3.13it/s, loss=0.697]" ] }, { @@ -5948,7 +5948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 328/2000 [01:47<08:54, 3.13it/s, loss=0.539]" + "training until 2000: 16%|█▋ | 328/2000 [01:45<08:55, 3.12it/s, loss=0.697]" ] }, { @@ -5956,7 +5956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 328/2000 [01:47<08:54, 3.13it/s, loss=0.6] " + "training until 2000: 16%|█▋ | 328/2000 [01:45<08:55, 3.12it/s, loss=0.684]" ] }, { @@ -5964,7 +5964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 329/2000 [01:47<08:55, 3.12it/s, loss=0.6]" + "training until 2000: 16%|█▋ | 329/2000 [01:46<08:50, 3.15it/s, loss=0.684]" ] }, { @@ -5972,7 +5972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 329/2000 [01:47<08:55, 3.12it/s, loss=0.617]" + "training until 2000: 16%|█▋ | 329/2000 [01:46<08:50, 3.15it/s, loss=0.673]" ] }, { @@ -5980,7 +5980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 330/2000 [01:47<08:51, 3.14it/s, loss=0.617]" + "training until 2000: 16%|█▋ | 330/2000 [01:46<08:52, 3.14it/s, loss=0.673]" ] }, { @@ -5988,7 +5988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 16%|█▋ | 330/2000 [01:47<08:51, 3.14it/s, loss=0.64] " + "training until 2000: 16%|█▋ | 330/2000 [01:46<08:52, 3.14it/s, loss=0.719]" ] }, { @@ -5996,7 +5996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 331/2000 [01:48<08:54, 3.12it/s, loss=0.64]" + "training until 2000: 17%|█▋ | 331/2000 [01:46<08:51, 3.14it/s, loss=0.719]" ] }, { @@ -6004,7 +6004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 331/2000 [01:48<08:54, 3.12it/s, loss=0.586]" + "training until 2000: 17%|█▋ | 331/2000 [01:46<08:51, 3.14it/s, loss=0.711]" ] }, { @@ -6012,7 +6012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 332/2000 [01:48<08:51, 3.14it/s, loss=0.586]" + "training until 2000: 17%|█▋ | 332/2000 [01:47<08:49, 3.15it/s, loss=0.711]" ] }, { @@ -6020,7 +6020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 332/2000 [01:48<08:51, 3.14it/s, loss=0.579]" + "training until 2000: 17%|█▋ | 332/2000 [01:47<08:49, 3.15it/s, loss=0.718]" ] }, { @@ -6028,7 +6028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 333/2000 [01:48<08:52, 3.13it/s, loss=0.579]" + "training until 2000: 17%|█▋ | 333/2000 [01:47<08:46, 3.16it/s, loss=0.718]" ] }, { @@ -6036,7 +6036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 333/2000 [01:48<08:52, 3.13it/s, loss=0.589]" + "training until 2000: 17%|█▋ | 333/2000 [01:47<08:46, 3.16it/s, loss=0.711]" ] }, { @@ -6044,7 +6044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 334/2000 [01:49<08:48, 3.15it/s, loss=0.589]" + "training until 2000: 17%|█▋ | 334/2000 [01:47<08:44, 3.18it/s, loss=0.711]" ] }, { @@ -6052,7 +6052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 334/2000 [01:49<08:48, 3.15it/s, loss=0.706]" + "training until 2000: 17%|█▋ | 334/2000 [01:47<08:44, 3.18it/s, loss=0.706]" ] }, { @@ -6060,7 +6060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 335/2000 [01:49<08:47, 3.16it/s, loss=0.706]" + "training until 2000: 17%|█▋ | 335/2000 [01:48<08:38, 3.21it/s, loss=0.706]" ] }, { @@ -6068,7 +6068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 335/2000 [01:49<08:47, 3.16it/s, loss=0.558]" + "training until 2000: 17%|█▋ | 335/2000 [01:48<08:38, 3.21it/s, loss=0.691]" ] }, { @@ -6076,7 +6076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 336/2000 [01:49<08:50, 3.14it/s, loss=0.558]" + "training until 2000: 17%|█▋ | 336/2000 [01:48<10:37, 2.61it/s, loss=0.691]" ] }, { @@ -6084,7 +6084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 336/2000 [01:49<08:50, 3.14it/s, loss=0.592]" + "training until 2000: 17%|█▋ | 336/2000 [01:48<10:37, 2.61it/s, loss=0.672]" ] }, { @@ -6092,7 +6092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 337/2000 [01:50<08:57, 3.09it/s, loss=0.592]" + "training until 2000: 17%|█▋ | 337/2000 [01:48<10:04, 2.75it/s, loss=0.672]" ] }, { @@ -6100,7 +6100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 337/2000 [01:50<08:57, 3.09it/s, loss=0.57] " + "training until 2000: 17%|█▋ | 337/2000 [01:48<10:04, 2.75it/s, loss=0.665]" ] }, { @@ -6108,7 +6108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 338/2000 [01:50<08:56, 3.10it/s, loss=0.57]" + "training until 2000: 17%|█▋ | 338/2000 [01:49<09:39, 2.87it/s, loss=0.665]" ] }, { @@ -6116,7 +6116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 338/2000 [01:50<08:56, 3.10it/s, loss=0.562]" + "training until 2000: 17%|█▋ | 338/2000 [01:49<09:39, 2.87it/s, loss=0.727]" ] }, { @@ -6124,7 +6124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 339/2000 [01:50<08:58, 3.08it/s, loss=0.562]" + "training until 2000: 17%|█▋ | 339/2000 [01:49<09:19, 2.97it/s, loss=0.727]" ] }, { @@ -6132,7 +6132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 339/2000 [01:50<08:58, 3.08it/s, loss=0.657]" + "training until 2000: 17%|█▋ | 339/2000 [01:49<09:19, 2.97it/s, loss=0.678]" ] }, { @@ -6140,7 +6140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 340/2000 [01:51<08:57, 3.09it/s, loss=0.657]" + "training until 2000: 17%|█▋ | 340/2000 [01:49<09:10, 3.02it/s, loss=0.678]" ] }, { @@ -6148,7 +6148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 340/2000 [01:51<08:57, 3.09it/s, loss=0.529]" + "training until 2000: 17%|█▋ | 340/2000 [01:49<09:10, 3.02it/s, loss=0.662]" ] }, { @@ -6156,7 +6156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 341/2000 [01:51<08:55, 3.10it/s, loss=0.529]" + "training until 2000: 17%|█▋ | 341/2000 [01:50<09:07, 3.03it/s, loss=0.662]" ] }, { @@ -6164,7 +6164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 341/2000 [01:51<08:55, 3.10it/s, loss=0.537]" + "training until 2000: 17%|█▋ | 341/2000 [01:50<09:07, 3.03it/s, loss=0.681]" ] }, { @@ -6172,7 +6172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 342/2000 [01:51<09:04, 3.05it/s, loss=0.537]" + "training until 2000: 17%|█▋ | 342/2000 [01:50<08:57, 3.08it/s, loss=0.681]" ] }, { @@ -6180,7 +6180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 342/2000 [01:51<09:04, 3.05it/s, loss=0.562]" + "training until 2000: 17%|█▋ | 342/2000 [01:50<08:57, 3.08it/s, loss=0.692]" ] }, { @@ -6188,7 +6188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 343/2000 [01:52<10:51, 2.54it/s, loss=0.562]" + "training until 2000: 17%|█▋ | 343/2000 [01:50<08:53, 3.11it/s, loss=0.692]" ] }, { @@ -6196,7 +6196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 343/2000 [01:52<10:51, 2.54it/s, loss=0.614]" + "training until 2000: 17%|█▋ | 343/2000 [01:50<08:53, 3.11it/s, loss=0.708]" ] }, { @@ -6204,7 +6204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 344/2000 [01:52<10:14, 2.70it/s, loss=0.614]" + "training until 2000: 17%|█▋ | 344/2000 [01:51<08:51, 3.12it/s, loss=0.708]" ] }, { @@ -6212,7 +6212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 344/2000 [01:52<10:14, 2.70it/s, loss=0.556]" + "training until 2000: 17%|█▋ | 344/2000 [01:51<08:51, 3.12it/s, loss=0.697]" ] }, { @@ -6220,7 +6220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 345/2000 [01:53<09:42, 2.84it/s, loss=0.556]" + "training until 2000: 17%|█▋ | 345/2000 [01:51<08:46, 3.14it/s, loss=0.697]" ] }, { @@ -6228,7 +6228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 345/2000 [01:53<09:42, 2.84it/s, loss=0.624]" + "training until 2000: 17%|█▋ | 345/2000 [01:51<08:46, 3.14it/s, loss=0.676]" ] }, { @@ -6236,7 +6236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 346/2000 [01:53<09:22, 2.94it/s, loss=0.624]" + "training until 2000: 17%|█▋ | 346/2000 [01:51<08:50, 3.12it/s, loss=0.676]" ] }, { @@ -6244,7 +6244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 346/2000 [01:53<09:22, 2.94it/s, loss=0.523]" + "training until 2000: 17%|█▋ | 346/2000 [01:51<08:50, 3.12it/s, loss=0.697]" ] }, { @@ -6252,7 +6252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 347/2000 [01:53<09:10, 3.00it/s, loss=0.523]" + "training until 2000: 17%|█▋ | 347/2000 [01:52<08:45, 3.15it/s, loss=0.697]" ] }, { @@ -6260,7 +6260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 347/2000 [01:53<09:10, 3.00it/s, loss=0.54] " + "training until 2000: 17%|█▋ | 347/2000 [01:52<08:45, 3.15it/s, loss=0.724]" ] }, { @@ -6268,7 +6268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 348/2000 [01:53<09:09, 3.00it/s, loss=0.54]" + "training until 2000: 17%|█▋ | 348/2000 [01:52<08:49, 3.12it/s, loss=0.724]" ] }, { @@ -6276,7 +6276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 348/2000 [01:53<09:09, 3.00it/s, loss=0.616]" + "training until 2000: 17%|█▋ | 348/2000 [01:52<08:49, 3.12it/s, loss=0.662]" ] }, { @@ -6284,7 +6284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 349/2000 [01:54<09:05, 3.03it/s, loss=0.616]" + "training until 2000: 17%|█▋ | 349/2000 [01:52<08:48, 3.12it/s, loss=0.662]" ] }, { @@ -6292,7 +6292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 17%|█▋ | 349/2000 [01:54<09:05, 3.03it/s, loss=0.569]" + "training until 2000: 17%|█▋ | 349/2000 [01:52<08:48, 3.12it/s, loss=0.693]" ] }, { @@ -6300,7 +6300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 350/2000 [01:54<08:59, 3.06it/s, loss=0.569]" + "training until 2000: 18%|█▊ | 350/2000 [01:53<08:44, 3.15it/s, loss=0.693]" ] }, { @@ -6308,7 +6308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 350/2000 [01:54<08:59, 3.06it/s, loss=0.568]" + "training until 2000: 18%|█▊ | 350/2000 [01:53<08:44, 3.15it/s, loss=0.724]" ] }, { @@ -6316,7 +6316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 351/2000 [01:54<08:55, 3.08it/s, loss=0.568]" + "training until 2000: 18%|█▊ | 351/2000 [01:53<08:42, 3.16it/s, loss=0.724]" ] }, { @@ -6324,7 +6324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 351/2000 [01:54<08:55, 3.08it/s, loss=0.536]" + "training until 2000: 18%|█▊ | 351/2000 [01:53<08:42, 3.16it/s, loss=0.741]" ] }, { @@ -6332,7 +6332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 352/2000 [01:55<08:54, 3.08it/s, loss=0.536]" + "training until 2000: 18%|█▊ | 352/2000 [01:53<08:38, 3.18it/s, loss=0.741]" ] }, { @@ -6340,7 +6340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 352/2000 [01:55<08:54, 3.08it/s, loss=0.583]" + "training until 2000: 18%|█▊ | 352/2000 [01:53<08:38, 3.18it/s, loss=0.713]" ] }, { @@ -6348,7 +6348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 353/2000 [01:55<08:46, 3.13it/s, loss=0.583]" + "training until 2000: 18%|█▊ | 353/2000 [01:53<08:38, 3.17it/s, loss=0.713]" ] }, { @@ -6356,7 +6356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 353/2000 [01:55<08:46, 3.13it/s, loss=0.575]" + "training until 2000: 18%|█▊ | 353/2000 [01:53<08:38, 3.17it/s, loss=0.709]" ] }, { @@ -6364,7 +6364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 354/2000 [01:55<08:43, 3.14it/s, loss=0.575]" + "training until 2000: 18%|█▊ | 354/2000 [01:54<08:38, 3.18it/s, loss=0.709]" ] }, { @@ -6372,7 +6372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 354/2000 [01:55<08:43, 3.14it/s, loss=0.576]" + "training until 2000: 18%|█▊ | 354/2000 [01:54<08:38, 3.18it/s, loss=0.735]" ] }, { @@ -6380,7 +6380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 355/2000 [01:56<08:47, 3.12it/s, loss=0.576]" + "training until 2000: 18%|█▊ | 355/2000 [01:54<08:35, 3.19it/s, loss=0.735]" ] }, { @@ -6388,7 +6388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 355/2000 [01:56<08:47, 3.12it/s, loss=0.625]" + "training until 2000: 18%|█▊ | 355/2000 [01:54<08:35, 3.19it/s, loss=0.688]" ] }, { @@ -6396,7 +6396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 356/2000 [01:56<08:43, 3.14it/s, loss=0.625]" + "training until 2000: 18%|█▊ | 356/2000 [01:54<08:31, 3.21it/s, loss=0.688]" ] }, { @@ -6404,7 +6404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 356/2000 [01:56<08:43, 3.14it/s, loss=0.673]" + "training until 2000: 18%|█▊ | 356/2000 [01:54<08:31, 3.21it/s, loss=0.711]" ] }, { @@ -6412,7 +6412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 357/2000 [01:56<08:45, 3.13it/s, loss=0.673]" + "training until 2000: 18%|█▊ | 357/2000 [01:55<08:29, 3.22it/s, loss=0.711]" ] }, { @@ -6420,7 +6420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 357/2000 [01:56<08:45, 3.13it/s, loss=0.636]" + "training until 2000: 18%|█▊ | 357/2000 [01:55<08:29, 3.22it/s, loss=0.682]" ] }, { @@ -6428,7 +6428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 358/2000 [01:57<08:42, 3.14it/s, loss=0.636]" + "training until 2000: 18%|█▊ | 358/2000 [01:55<08:33, 3.20it/s, loss=0.682]" ] }, { @@ -6436,7 +6436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 358/2000 [01:57<08:42, 3.14it/s, loss=0.624]" + "training until 2000: 18%|█▊ | 358/2000 [01:55<08:33, 3.20it/s, loss=0.693]" ] }, { @@ -6444,7 +6444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 359/2000 [01:57<08:39, 3.16it/s, loss=0.624]" + "training until 2000: 18%|█▊ | 359/2000 [01:55<08:34, 3.19it/s, loss=0.693]" ] }, { @@ -6452,7 +6452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 359/2000 [01:57<08:39, 3.16it/s, loss=0.542]" + "training until 2000: 18%|█▊ | 359/2000 [01:55<08:34, 3.19it/s, loss=0.662]" ] }, { @@ -6460,7 +6460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 360/2000 [01:57<08:42, 3.14it/s, loss=0.542]" + "training until 2000: 18%|█▊ | 360/2000 [01:56<08:35, 3.18it/s, loss=0.662]" ] }, { @@ -6468,7 +6468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 360/2000 [01:57<08:42, 3.14it/s, loss=0.607]" + "training until 2000: 18%|█▊ | 360/2000 [01:56<08:35, 3.18it/s, loss=0.691]" ] }, { @@ -6476,7 +6476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 361/2000 [01:58<08:39, 3.15it/s, loss=0.607]" + "training until 2000: 18%|█▊ | 361/2000 [01:56<08:33, 3.19it/s, loss=0.691]" ] }, { @@ -6484,7 +6484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 361/2000 [01:58<08:39, 3.15it/s, loss=0.636]" + "training until 2000: 18%|█▊ | 361/2000 [01:56<08:33, 3.19it/s, loss=0.704]" ] }, { @@ -6492,7 +6492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 362/2000 [01:58<08:44, 3.12it/s, loss=0.636]" + "training until 2000: 18%|█▊ | 362/2000 [01:56<08:31, 3.20it/s, loss=0.704]" ] }, { @@ -6500,7 +6500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 362/2000 [01:58<08:44, 3.12it/s, loss=0.555]" + "training until 2000: 18%|█▊ | 362/2000 [01:56<08:31, 3.20it/s, loss=0.655]" ] }, { @@ -6508,7 +6508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 363/2000 [01:58<08:41, 3.14it/s, loss=0.555]" + "training until 2000: 18%|█▊ | 363/2000 [01:57<08:39, 3.15it/s, loss=0.655]" ] }, { @@ -6516,7 +6516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 363/2000 [01:58<08:41, 3.14it/s, loss=0.552]" + "training until 2000: 18%|█▊ | 363/2000 [01:57<08:39, 3.15it/s, loss=0.684]" ] }, { @@ -6524,7 +6524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 364/2000 [01:59<08:39, 3.15it/s, loss=0.552]" + "training until 2000: 18%|█▊ | 364/2000 [01:57<08:39, 3.15it/s, loss=0.684]" ] }, { @@ -6532,7 +6532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 364/2000 [01:59<08:39, 3.15it/s, loss=0.656]" + "training until 2000: 18%|█▊ | 364/2000 [01:57<08:39, 3.15it/s, loss=0.692]" ] }, { @@ -6540,7 +6540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 365/2000 [01:59<08:37, 3.16it/s, loss=0.656]" + "training until 2000: 18%|█▊ | 365/2000 [01:57<08:37, 3.16it/s, loss=0.692]" ] }, { @@ -6548,7 +6548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 365/2000 [01:59<08:37, 3.16it/s, loss=0.549]" + "training until 2000: 18%|█▊ | 365/2000 [01:57<08:37, 3.16it/s, loss=0.661]" ] }, { @@ -6556,7 +6556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 366/2000 [01:59<08:41, 3.14it/s, loss=0.549]" + "training until 2000: 18%|█▊ | 366/2000 [01:58<08:35, 3.17it/s, loss=0.661]" ] }, { @@ -6564,7 +6564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 366/2000 [01:59<08:41, 3.14it/s, loss=0.546]" + "training until 2000: 18%|█▊ | 366/2000 [01:58<08:35, 3.17it/s, loss=0.731]" ] }, { @@ -6572,7 +6572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 367/2000 [02:00<08:40, 3.14it/s, loss=0.546]" + "training until 2000: 18%|█▊ | 367/2000 [01:58<08:38, 3.15it/s, loss=0.731]" ] }, { @@ -6580,7 +6580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 367/2000 [02:00<08:40, 3.14it/s, loss=0.702]" + "training until 2000: 18%|█▊ | 367/2000 [01:58<08:38, 3.15it/s, loss=0.7] " ] }, { @@ -6588,7 +6588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 368/2000 [02:00<08:35, 3.16it/s, loss=0.702]" + "training until 2000: 18%|█▊ | 368/2000 [01:58<08:35, 3.17it/s, loss=0.7]" ] }, { @@ -6596,7 +6596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 368/2000 [02:00<08:35, 3.16it/s, loss=0.638]" + "training until 2000: 18%|█▊ | 368/2000 [01:58<08:35, 3.17it/s, loss=0.651]" ] }, { @@ -6604,7 +6604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 369/2000 [02:00<08:39, 3.14it/s, loss=0.638]" + "training until 2000: 18%|█▊ | 369/2000 [01:59<08:29, 3.20it/s, loss=0.651]" ] }, { @@ -6612,7 +6612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 369/2000 [02:00<08:39, 3.14it/s, loss=0.611]" + "training until 2000: 18%|█▊ | 369/2000 [01:59<08:29, 3.20it/s, loss=0.642]" ] }, { @@ -6620,7 +6620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 370/2000 [02:01<08:45, 3.10it/s, loss=0.611]" + "training until 2000: 18%|█▊ | 370/2000 [01:59<08:31, 3.19it/s, loss=0.642]" ] }, { @@ -6628,7 +6628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 18%|█▊ | 370/2000 [02:01<08:45, 3.10it/s, loss=0.548]" + "training until 2000: 18%|█▊ | 370/2000 [01:59<08:31, 3.19it/s, loss=0.688]" ] }, { @@ -6636,7 +6636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 371/2000 [02:01<08:40, 3.13it/s, loss=0.548]" + "training until 2000: 19%|█▊ | 371/2000 [01:59<08:31, 3.19it/s, loss=0.688]" ] }, { @@ -6644,7 +6644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 371/2000 [02:01<08:40, 3.13it/s, loss=0.641]" + "training until 2000: 19%|█▊ | 371/2000 [01:59<08:31, 3.19it/s, loss=0.651]" ] }, { @@ -6652,7 +6652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 372/2000 [02:01<08:38, 3.14it/s, loss=0.641]" + "training until 2000: 19%|█▊ | 372/2000 [01:59<08:29, 3.19it/s, loss=0.651]" ] }, { @@ -6660,7 +6660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 372/2000 [02:01<08:38, 3.14it/s, loss=0.633]" + "training until 2000: 19%|█▊ | 372/2000 [01:59<08:29, 3.19it/s, loss=0.737]" ] }, { @@ -6668,7 +6668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 373/2000 [02:01<08:41, 3.12it/s, loss=0.633]" + "training until 2000: 19%|█▊ | 373/2000 [02:00<08:29, 3.19it/s, loss=0.737]" ] }, { @@ -6676,7 +6676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 373/2000 [02:01<08:41, 3.12it/s, loss=0.563]" + "training until 2000: 19%|█▊ | 373/2000 [02:00<08:29, 3.19it/s, loss=0.734]" ] }, { @@ -6684,7 +6684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 374/2000 [02:02<08:38, 3.14it/s, loss=0.563]" + "training until 2000: 19%|█▊ | 374/2000 [02:00<08:28, 3.20it/s, loss=0.734]" ] }, { @@ -6692,7 +6692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▊ | 374/2000 [02:02<08:38, 3.14it/s, loss=0.712]" + "training until 2000: 19%|█▊ | 374/2000 [02:00<08:28, 3.20it/s, loss=0.684]" ] }, { @@ -6700,7 +6700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 375/2000 [02:02<08:34, 3.16it/s, loss=0.712]" + "training until 2000: 19%|█▉ | 375/2000 [02:00<08:26, 3.21it/s, loss=0.684]" ] }, { @@ -6708,7 +6708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 375/2000 [02:02<08:34, 3.16it/s, loss=0.609]" + "training until 2000: 19%|█▉ | 375/2000 [02:00<08:26, 3.21it/s, loss=0.653]" ] }, { @@ -6716,7 +6716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 376/2000 [02:02<08:35, 3.15it/s, loss=0.609]" + "training until 2000: 19%|█▉ | 376/2000 [02:01<08:23, 3.22it/s, loss=0.653]" ] }, { @@ -6724,7 +6724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 376/2000 [02:02<08:35, 3.15it/s, loss=0.554]" + "training until 2000: 19%|█▉ | 376/2000 [02:01<08:23, 3.22it/s, loss=0.725]" ] }, { @@ -6732,7 +6732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 377/2000 [02:03<08:32, 3.17it/s, loss=0.554]" + "training until 2000: 19%|█▉ | 377/2000 [02:01<08:26, 3.21it/s, loss=0.725]" ] }, { @@ -6740,7 +6740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 377/2000 [02:03<08:32, 3.17it/s, loss=0.588]" + "training until 2000: 19%|█▉ | 377/2000 [02:01<08:26, 3.21it/s, loss=0.697]" ] }, { @@ -6748,7 +6748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 378/2000 [02:03<08:32, 3.16it/s, loss=0.588]" + "training until 2000: 19%|█▉ | 378/2000 [02:01<08:40, 3.12it/s, loss=0.697]" ] }, { @@ -6756,7 +6756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 378/2000 [02:03<08:32, 3.16it/s, loss=0.62] " + "training until 2000: 19%|█▉ | 378/2000 [02:01<08:40, 3.12it/s, loss=0.678]" ] }, { @@ -6764,7 +6764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 379/2000 [02:03<08:36, 3.14it/s, loss=0.62]" + "training until 2000: 19%|█▉ | 379/2000 [02:02<08:37, 3.13it/s, loss=0.678]" ] }, { @@ -6772,7 +6772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 379/2000 [02:03<08:36, 3.14it/s, loss=0.617]" + "training until 2000: 19%|█▉ | 379/2000 [02:02<08:37, 3.13it/s, loss=0.651]" ] }, { @@ -6780,7 +6780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 380/2000 [02:04<08:40, 3.11it/s, loss=0.617]" + "training until 2000: 19%|█▉ | 380/2000 [02:02<08:33, 3.15it/s, loss=0.651]" ] }, { @@ -6788,7 +6788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 380/2000 [02:04<08:40, 3.11it/s, loss=0.554]" + "training until 2000: 19%|█▉ | 380/2000 [02:02<08:33, 3.15it/s, loss=0.717]" ] }, { @@ -6796,7 +6796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 381/2000 [02:04<08:35, 3.14it/s, loss=0.554]" + "training until 2000: 19%|█▉ | 381/2000 [02:02<08:35, 3.14it/s, loss=0.717]" ] }, { @@ -6804,7 +6804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 381/2000 [02:04<08:35, 3.14it/s, loss=0.606]" + "training until 2000: 19%|█▉ | 381/2000 [02:02<08:35, 3.14it/s, loss=0.753]" ] }, { @@ -6812,7 +6812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 382/2000 [02:04<08:33, 3.15it/s, loss=0.606]" + "training until 2000: 19%|█▉ | 382/2000 [02:03<08:32, 3.16it/s, loss=0.753]" ] }, { @@ -6820,7 +6820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 382/2000 [02:04<08:33, 3.15it/s, loss=0.526]" + "training until 2000: 19%|█▉ | 382/2000 [02:03<08:32, 3.16it/s, loss=0.718]" ] }, { @@ -6828,7 +6828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 383/2000 [02:05<08:34, 3.14it/s, loss=0.526]" + "training until 2000: 19%|█▉ | 383/2000 [02:03<08:31, 3.16it/s, loss=0.718]" ] }, { @@ -6836,7 +6836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 383/2000 [02:05<08:34, 3.14it/s, loss=0.583]" + "training until 2000: 19%|█▉ | 383/2000 [02:03<08:31, 3.16it/s, loss=0.68] " ] }, { @@ -6844,7 +6844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 384/2000 [02:05<08:30, 3.16it/s, loss=0.583]" + "training until 2000: 19%|█▉ | 384/2000 [02:03<08:29, 3.17it/s, loss=0.68]" ] }, { @@ -6852,7 +6852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 384/2000 [02:05<08:30, 3.16it/s, loss=0.584]" + "training until 2000: 19%|█▉ | 384/2000 [02:03<08:29, 3.17it/s, loss=0.685]" ] }, { @@ -6860,7 +6860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 385/2000 [02:05<08:33, 3.15it/s, loss=0.584]" + "training until 2000: 19%|█▉ | 385/2000 [02:04<08:31, 3.16it/s, loss=0.685]" ] }, { @@ -6868,7 +6868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 385/2000 [02:05<08:33, 3.15it/s, loss=0.546]" + "training until 2000: 19%|█▉ | 385/2000 [02:04<08:31, 3.16it/s, loss=0.72] " ] }, { @@ -6876,7 +6876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 386/2000 [02:06<08:41, 3.09it/s, loss=0.546]" + "training until 2000: 19%|█▉ | 386/2000 [02:04<08:28, 3.17it/s, loss=0.72]" ] }, { @@ -6884,7 +6884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 386/2000 [02:06<08:41, 3.09it/s, loss=0.65] " + "training until 2000: 19%|█▉ | 386/2000 [02:04<08:28, 3.17it/s, loss=0.722]" ] }, { @@ -6892,7 +6892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 387/2000 [02:06<08:46, 3.06it/s, loss=0.65]" + "training until 2000: 19%|█▉ | 387/2000 [02:04<08:30, 3.16it/s, loss=0.722]" ] }, { @@ -6900,7 +6900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 387/2000 [02:06<08:46, 3.06it/s, loss=0.541]" + "training until 2000: 19%|█▉ | 387/2000 [02:04<08:30, 3.16it/s, loss=0.697]" ] }, { @@ -6908,7 +6908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 388/2000 [02:06<08:53, 3.02it/s, loss=0.541]" + "training until 2000: 19%|█▉ | 388/2000 [02:04<08:29, 3.16it/s, loss=0.697]" ] }, { @@ -6916,7 +6916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 388/2000 [02:06<08:53, 3.02it/s, loss=0.576]" + "training until 2000: 19%|█▉ | 388/2000 [02:05<08:29, 3.16it/s, loss=0.694]" ] }, { @@ -6924,7 +6924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 389/2000 [02:07<08:48, 3.05it/s, loss=0.576]" + "training until 2000: 19%|█▉ | 389/2000 [02:05<08:22, 3.21it/s, loss=0.694]" ] }, { @@ -6932,7 +6932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 19%|█▉ | 389/2000 [02:07<08:48, 3.05it/s, loss=0.589]" + "training until 2000: 19%|█▉ | 389/2000 [02:05<08:22, 3.21it/s, loss=0.723]" ] }, { @@ -6940,7 +6940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 390/2000 [02:07<08:38, 3.10it/s, loss=0.589]" + "training until 2000: 20%|█▉ | 390/2000 [02:05<08:23, 3.19it/s, loss=0.723]" ] }, { @@ -6948,7 +6948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 390/2000 [02:07<08:38, 3.10it/s, loss=0.536]" + "training until 2000: 20%|█▉ | 390/2000 [02:05<08:23, 3.19it/s, loss=0.683]" ] }, { @@ -6956,7 +6956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 391/2000 [02:07<08:34, 3.13it/s, loss=0.536]" + "training until 2000: 20%|█▉ | 391/2000 [02:05<08:20, 3.22it/s, loss=0.683]" ] }, { @@ -6964,7 +6964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 391/2000 [02:07<08:34, 3.13it/s, loss=0.551]" + "training until 2000: 20%|█▉ | 391/2000 [02:05<08:20, 3.22it/s, loss=0.625]" ] }, { @@ -6972,7 +6972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 392/2000 [02:08<08:34, 3.13it/s, loss=0.551]" + "training until 2000: 20%|█▉ | 392/2000 [02:06<08:21, 3.21it/s, loss=0.625]" ] }, { @@ -6980,7 +6980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 392/2000 [02:08<08:34, 3.13it/s, loss=0.582]" + "training until 2000: 20%|█▉ | 392/2000 [02:06<08:21, 3.21it/s, loss=0.685]" ] }, { @@ -6988,7 +6988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 393/2000 [02:08<08:31, 3.14it/s, loss=0.582]" + "training until 2000: 20%|█▉ | 393/2000 [02:06<08:24, 3.19it/s, loss=0.685]" ] }, { @@ -6996,7 +6996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 393/2000 [02:08<08:31, 3.14it/s, loss=0.565]" + "training until 2000: 20%|█▉ | 393/2000 [02:06<08:24, 3.19it/s, loss=0.684]" ] }, { @@ -7004,7 +7004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 394/2000 [02:08<08:32, 3.14it/s, loss=0.565]" + "training until 2000: 20%|█▉ | 394/2000 [02:06<08:25, 3.18it/s, loss=0.684]" ] }, { @@ -7012,7 +7012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 394/2000 [02:08<08:32, 3.14it/s, loss=0.627]" + "training until 2000: 20%|█▉ | 394/2000 [02:06<08:25, 3.18it/s, loss=0.708]" ] }, { @@ -7020,7 +7020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 395/2000 [02:08<08:30, 3.14it/s, loss=0.627]" + "training until 2000: 20%|█▉ | 395/2000 [02:07<08:22, 3.20it/s, loss=0.708]" ] }, { @@ -7028,7 +7028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 395/2000 [02:08<08:30, 3.14it/s, loss=0.645]" + "training until 2000: 20%|█▉ | 395/2000 [02:07<08:22, 3.20it/s, loss=0.673]" ] }, { @@ -7036,7 +7036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 396/2000 [02:09<08:34, 3.12it/s, loss=0.645]" + "training until 2000: 20%|█▉ | 396/2000 [02:07<08:20, 3.21it/s, loss=0.673]" ] }, { @@ -7044,7 +7044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 396/2000 [02:09<08:34, 3.12it/s, loss=0.624]" + "training until 2000: 20%|█▉ | 396/2000 [02:07<08:20, 3.21it/s, loss=0.765]" ] }, { @@ -7052,7 +7052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 397/2000 [02:09<08:37, 3.10it/s, loss=0.624]" + "training until 2000: 20%|█▉ | 397/2000 [02:07<08:24, 3.18it/s, loss=0.765]" ] }, { @@ -7060,7 +7060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 397/2000 [02:09<08:37, 3.10it/s, loss=0.549]" + "training until 2000: 20%|█▉ | 397/2000 [02:07<08:24, 3.18it/s, loss=0.702]" ] }, { @@ -7068,7 +7068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 398/2000 [02:09<08:38, 3.09it/s, loss=0.549]" + "training until 2000: 20%|█▉ | 398/2000 [02:08<08:23, 3.18it/s, loss=0.702]" ] }, { @@ -7076,7 +7076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 398/2000 [02:09<08:38, 3.09it/s, loss=0.603]" + "training until 2000: 20%|█▉ | 398/2000 [02:08<08:23, 3.18it/s, loss=0.664]" ] }, { @@ -7084,7 +7084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 399/2000 [02:10<08:41, 3.07it/s, loss=0.603]" + "training until 2000: 20%|█▉ | 399/2000 [02:08<08:16, 3.23it/s, loss=0.664]" ] }, { @@ -7092,7 +7092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|█▉ | 399/2000 [02:10<08:41, 3.07it/s, loss=0.64] " + "training until 2000: 20%|█▉ | 399/2000 [02:08<08:16, 3.23it/s, loss=0.6] " ] }, { @@ -7100,7 +7100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 400/2000 [02:10<08:41, 3.07it/s, loss=0.64]" + "training until 2000: 20%|██ | 400/2000 [02:08<08:24, 3.17it/s, loss=0.6]" ] }, { @@ -7108,7 +7108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 400/2000 [02:10<08:41, 3.07it/s, loss=0.6] " + "training until 2000: 20%|██ | 400/2000 [02:08<08:24, 3.17it/s, loss=0.632]" ] }, { @@ -7116,7 +7116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 401/2000 [02:10<08:38, 3.08it/s, loss=0.6]" + "training until 2000: 20%|██ | 401/2000 [02:09<08:20, 3.19it/s, loss=0.632]" ] }, { @@ -7124,7 +7124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 401/2000 [02:10<08:38, 3.08it/s, loss=0.633]" + "training until 2000: 20%|██ | 401/2000 [02:09<08:20, 3.19it/s, loss=0.697]" ] }, { @@ -7132,7 +7132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 402/2000 [02:11<08:36, 3.09it/s, loss=0.633]" + "training until 2000: 20%|██ | 402/2000 [02:09<08:26, 3.15it/s, loss=0.697]" ] }, { @@ -7140,7 +7140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 402/2000 [02:11<08:36, 3.09it/s, loss=0.592]" + "training until 2000: 20%|██ | 402/2000 [02:09<08:26, 3.15it/s, loss=0.682]" ] }, { @@ -7148,7 +7148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 403/2000 [02:11<08:31, 3.12it/s, loss=0.592]" + "training until 2000: 20%|██ | 403/2000 [02:09<10:12, 2.61it/s, loss=0.682]" ] }, { @@ -7156,7 +7156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 403/2000 [02:11<08:31, 3.12it/s, loss=0.597]" + "training until 2000: 20%|██ | 403/2000 [02:09<10:12, 2.61it/s, loss=0.675]" ] }, { @@ -7164,7 +7164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 404/2000 [02:11<08:30, 3.13it/s, loss=0.597]" + "training until 2000: 20%|██ | 404/2000 [02:10<09:42, 2.74it/s, loss=0.675]" ] }, { @@ -7172,7 +7172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 404/2000 [02:11<08:30, 3.13it/s, loss=0.529]" + "training until 2000: 20%|██ | 404/2000 [02:10<09:42, 2.74it/s, loss=0.73] " ] }, { @@ -7180,7 +7180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 405/2000 [02:12<10:14, 2.59it/s, loss=0.529]" + "training until 2000: 20%|██ | 405/2000 [02:10<09:18, 2.85it/s, loss=0.73]" ] }, { @@ -7188,7 +7188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 405/2000 [02:12<10:14, 2.59it/s, loss=0.609]" + "training until 2000: 20%|██ | 405/2000 [02:10<09:18, 2.85it/s, loss=0.664]" ] }, { @@ -7196,7 +7196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 406/2000 [02:12<09:44, 2.73it/s, loss=0.609]" + "training until 2000: 20%|██ | 406/2000 [02:10<09:01, 2.94it/s, loss=0.664]" ] }, { @@ -7204,7 +7204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 406/2000 [02:12<09:44, 2.73it/s, loss=0.632]" + "training until 2000: 20%|██ | 406/2000 [02:10<09:01, 2.94it/s, loss=0.662]" ] }, { @@ -7212,7 +7212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 407/2000 [02:13<09:22, 2.83it/s, loss=0.632]" + "training until 2000: 20%|██ | 407/2000 [02:11<08:51, 2.99it/s, loss=0.662]" ] }, { @@ -7220,7 +7220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 407/2000 [02:13<09:22, 2.83it/s, loss=0.571]" + "training until 2000: 20%|██ | 407/2000 [02:11<08:51, 2.99it/s, loss=0.635]" ] }, { @@ -7228,7 +7228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 408/2000 [02:13<09:05, 2.92it/s, loss=0.571]" + "training until 2000: 20%|██ | 408/2000 [02:11<08:51, 3.00it/s, loss=0.635]" ] }, { @@ -7236,7 +7236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 408/2000 [02:13<09:05, 2.92it/s, loss=0.712]" + "training until 2000: 20%|██ | 408/2000 [02:11<08:51, 3.00it/s, loss=0.692]" ] }, { @@ -7244,7 +7244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 409/2000 [02:13<08:50, 3.00it/s, loss=0.712]" + "training until 2000: 20%|██ | 409/2000 [02:11<08:49, 3.00it/s, loss=0.692]" ] }, { @@ -7252,7 +7252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 409/2000 [02:13<08:50, 3.00it/s, loss=0.564]" + "training until 2000: 20%|██ | 409/2000 [02:11<08:49, 3.00it/s, loss=0.726]" ] }, { @@ -7260,7 +7260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 410/2000 [02:14<08:41, 3.05it/s, loss=0.564]" + "training until 2000: 20%|██ | 410/2000 [02:12<08:45, 3.03it/s, loss=0.726]" ] }, { @@ -7268,7 +7268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 20%|██ | 410/2000 [02:14<08:41, 3.05it/s, loss=0.599]" + "training until 2000: 20%|██ | 410/2000 [02:12<08:45, 3.03it/s, loss=0.667]" ] }, { @@ -7276,7 +7276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 411/2000 [02:14<08:46, 3.02it/s, loss=0.599]" + "training until 2000: 21%|██ | 411/2000 [02:12<08:34, 3.09it/s, loss=0.667]" ] }, { @@ -7284,7 +7284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 411/2000 [02:14<08:46, 3.02it/s, loss=0.609]" + "training until 2000: 21%|██ | 411/2000 [02:12<08:34, 3.09it/s, loss=0.689]" ] }, { @@ -7292,7 +7292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 412/2000 [02:14<08:41, 3.04it/s, loss=0.609]" + "training until 2000: 21%|██ | 412/2000 [02:12<08:32, 3.10it/s, loss=0.689]" ] }, { @@ -7300,7 +7300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 412/2000 [02:14<08:41, 3.04it/s, loss=0.631]" + "training until 2000: 21%|██ | 412/2000 [02:12<08:32, 3.10it/s, loss=0.715]" ] }, { @@ -7308,7 +7308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 413/2000 [02:15<08:39, 3.06it/s, loss=0.631]" + "training until 2000: 21%|██ | 413/2000 [02:13<08:33, 3.09it/s, loss=0.715]" ] }, { @@ -7316,7 +7316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 413/2000 [02:15<08:39, 3.06it/s, loss=0.551]" + "training until 2000: 21%|██ | 413/2000 [02:13<08:33, 3.09it/s, loss=0.677]" ] }, { @@ -7324,7 +7324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 414/2000 [02:15<08:41, 3.04it/s, loss=0.551]" + "training until 2000: 21%|██ | 414/2000 [02:13<08:32, 3.10it/s, loss=0.677]" ] }, { @@ -7332,7 +7332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 414/2000 [02:15<08:41, 3.04it/s, loss=0.546]" + "training until 2000: 21%|██ | 414/2000 [02:13<08:32, 3.10it/s, loss=0.677]" ] }, { @@ -7340,7 +7340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 415/2000 [02:15<08:38, 3.06it/s, loss=0.546]" + "training until 2000: 21%|██ | 415/2000 [02:13<08:32, 3.09it/s, loss=0.677]" ] }, { @@ -7348,7 +7348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 415/2000 [02:15<08:38, 3.06it/s, loss=0.615]" + "training until 2000: 21%|██ | 415/2000 [02:13<08:32, 3.09it/s, loss=0.675]" ] }, { @@ -7356,7 +7356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 416/2000 [02:15<08:31, 3.10it/s, loss=0.615]" + "training until 2000: 21%|██ | 416/2000 [02:14<08:27, 3.12it/s, loss=0.675]" ] }, { @@ -7364,7 +7364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 416/2000 [02:15<08:31, 3.10it/s, loss=0.786]" + "training until 2000: 21%|██ | 416/2000 [02:14<08:27, 3.12it/s, loss=0.665]" ] }, { @@ -7372,7 +7372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 417/2000 [02:16<08:26, 3.12it/s, loss=0.786]" + "training until 2000: 21%|██ | 417/2000 [02:14<08:28, 3.11it/s, loss=0.665]" ] }, { @@ -7380,7 +7380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 417/2000 [02:16<08:26, 3.12it/s, loss=0.54] " + "training until 2000: 21%|██ | 417/2000 [02:14<08:28, 3.11it/s, loss=0.699]" ] }, { @@ -7388,7 +7388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 418/2000 [02:16<08:34, 3.07it/s, loss=0.54]" + "training until 2000: 21%|██ | 418/2000 [02:14<08:29, 3.11it/s, loss=0.699]" ] }, { @@ -7396,7 +7396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 418/2000 [02:16<08:34, 3.07it/s, loss=0.63]" + "training until 2000: 21%|██ | 418/2000 [02:14<08:29, 3.11it/s, loss=0.695]" ] }, { @@ -7404,7 +7404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 419/2000 [02:16<08:33, 3.08it/s, loss=0.63]" + "training until 2000: 21%|██ | 419/2000 [02:15<08:25, 3.13it/s, loss=0.695]" ] }, { @@ -7412,7 +7412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 419/2000 [02:16<08:33, 3.08it/s, loss=0.622]" + "training until 2000: 21%|██ | 419/2000 [02:15<08:25, 3.13it/s, loss=0.684]" ] }, { @@ -7420,7 +7420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 420/2000 [02:17<08:34, 3.07it/s, loss=0.622]" + "training until 2000: 21%|██ | 420/2000 [02:15<08:24, 3.13it/s, loss=0.684]" ] }, { @@ -7428,7 +7428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 420/2000 [02:17<08:34, 3.07it/s, loss=0.553]" + "training until 2000: 21%|██ | 420/2000 [02:15<08:24, 3.13it/s, loss=0.657]" ] }, { @@ -7436,7 +7436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 421/2000 [02:17<08:29, 3.10it/s, loss=0.553]" + "training until 2000: 21%|██ | 421/2000 [02:15<08:19, 3.16it/s, loss=0.657]" ] }, { @@ -7444,7 +7444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 421/2000 [02:17<08:29, 3.10it/s, loss=0.558]" + "training until 2000: 21%|██ | 421/2000 [02:15<08:19, 3.16it/s, loss=0.651]" ] }, { @@ -7452,7 +7452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 422/2000 [02:17<08:27, 3.11it/s, loss=0.558]" + "training until 2000: 21%|██ | 422/2000 [02:16<08:21, 3.14it/s, loss=0.651]" ] }, { @@ -7460,7 +7460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 422/2000 [02:17<08:27, 3.11it/s, loss=0.571]" + "training until 2000: 21%|██ | 422/2000 [02:16<08:21, 3.14it/s, loss=0.602]" ] }, { @@ -7468,7 +7468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 423/2000 [02:18<08:25, 3.12it/s, loss=0.571]" + "training until 2000: 21%|██ | 423/2000 [02:16<08:21, 3.15it/s, loss=0.602]" ] }, { @@ -7476,7 +7476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 423/2000 [02:18<08:25, 3.12it/s, loss=0.568]" + "training until 2000: 21%|██ | 423/2000 [02:16<08:21, 3.15it/s, loss=0.637]" ] }, { @@ -7484,7 +7484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 424/2000 [02:18<08:24, 3.13it/s, loss=0.568]" + "training until 2000: 21%|██ | 424/2000 [02:16<08:18, 3.16it/s, loss=0.637]" ] }, { @@ -7492,7 +7492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██ | 424/2000 [02:18<08:24, 3.13it/s, loss=0.643]" + "training until 2000: 21%|██ | 424/2000 [02:16<08:18, 3.16it/s, loss=0.72] " ] }, { @@ -7500,7 +7500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 425/2000 [02:18<08:25, 3.11it/s, loss=0.643]" + "training until 2000: 21%|██▏ | 425/2000 [02:16<08:32, 3.07it/s, loss=0.72]" ] }, { @@ -7508,7 +7508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 425/2000 [02:18<08:25, 3.11it/s, loss=0.628]" + "training until 2000: 21%|██▏ | 425/2000 [02:16<08:32, 3.07it/s, loss=0.729]" ] }, { @@ -7516,7 +7516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 426/2000 [02:19<08:23, 3.12it/s, loss=0.628]" + "training until 2000: 21%|██▏ | 426/2000 [02:17<08:27, 3.10it/s, loss=0.729]" ] }, { @@ -7524,7 +7524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 426/2000 [02:19<08:23, 3.12it/s, loss=0.598]" + "training until 2000: 21%|██▏ | 426/2000 [02:17<08:27, 3.10it/s, loss=0.738]" ] }, { @@ -7532,7 +7532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 427/2000 [02:19<08:21, 3.14it/s, loss=0.598]" + "training until 2000: 21%|██▏ | 427/2000 [02:17<08:23, 3.13it/s, loss=0.738]" ] }, { @@ -7540,7 +7540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 427/2000 [02:19<08:21, 3.14it/s, loss=0.543]" + "training until 2000: 21%|██▏ | 427/2000 [02:17<08:23, 3.13it/s, loss=0.669]" ] }, { @@ -7548,7 +7548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 428/2000 [02:19<08:21, 3.14it/s, loss=0.543]" + "training until 2000: 21%|██▏ | 428/2000 [02:17<08:23, 3.12it/s, loss=0.669]" ] }, { @@ -7556,7 +7556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 428/2000 [02:19<08:21, 3.14it/s, loss=0.537]" + "training until 2000: 21%|██▏ | 428/2000 [02:17<08:23, 3.12it/s, loss=0.699]" ] }, { @@ -7564,7 +7564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 429/2000 [02:20<08:22, 3.13it/s, loss=0.537]" + "training until 2000: 21%|██▏ | 429/2000 [02:18<08:19, 3.14it/s, loss=0.699]" ] }, { @@ -7572,7 +7572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 21%|██▏ | 429/2000 [02:20<08:22, 3.13it/s, loss=0.605]" + "training until 2000: 21%|██▏ | 429/2000 [02:18<08:19, 3.14it/s, loss=0.716]" ] }, { @@ -7580,7 +7580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 430/2000 [02:20<08:19, 3.14it/s, loss=0.605]" + "training until 2000: 22%|██▏ | 430/2000 [02:18<08:21, 3.13it/s, loss=0.716]" ] }, { @@ -7588,7 +7588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 430/2000 [02:20<08:19, 3.14it/s, loss=0.582]" + "training until 2000: 22%|██▏ | 430/2000 [02:18<08:21, 3.13it/s, loss=0.606]" ] }, { @@ -7596,7 +7596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 431/2000 [02:20<08:21, 3.13it/s, loss=0.582]" + "training until 2000: 22%|██▏ | 431/2000 [02:18<08:27, 3.09it/s, loss=0.606]" ] }, { @@ -7604,7 +7604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 431/2000 [02:20<08:21, 3.13it/s, loss=0.55] " + "training until 2000: 22%|██▏ | 431/2000 [02:18<08:27, 3.09it/s, loss=0.679]" ] }, { @@ -7612,7 +7612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 432/2000 [02:21<08:17, 3.15it/s, loss=0.55]" + "training until 2000: 22%|██▏ | 432/2000 [02:19<08:22, 3.12it/s, loss=0.679]" ] }, { @@ -7620,7 +7620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 432/2000 [02:21<08:17, 3.15it/s, loss=0.628]" + "training until 2000: 22%|██▏ | 432/2000 [02:19<08:22, 3.12it/s, loss=0.694]" ] }, { @@ -7628,7 +7628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 433/2000 [02:21<08:22, 3.12it/s, loss=0.628]" + "training until 2000: 22%|██▏ | 433/2000 [02:19<08:15, 3.16it/s, loss=0.694]" ] }, { @@ -7636,7 +7636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 433/2000 [02:21<08:22, 3.12it/s, loss=0.618]" + "training until 2000: 22%|██▏ | 433/2000 [02:19<08:15, 3.16it/s, loss=0.649]" ] }, { @@ -7644,7 +7644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 434/2000 [02:21<08:18, 3.14it/s, loss=0.618]" + "training until 2000: 22%|██▏ | 434/2000 [02:19<08:19, 3.14it/s, loss=0.649]" ] }, { @@ -7652,7 +7652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 434/2000 [02:21<08:18, 3.14it/s, loss=0.602]" + "training until 2000: 22%|██▏ | 434/2000 [02:19<08:19, 3.14it/s, loss=0.667]" ] }, { @@ -7660,7 +7660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 435/2000 [02:22<08:13, 3.17it/s, loss=0.602]" + "training until 2000: 22%|██▏ | 435/2000 [02:20<08:13, 3.17it/s, loss=0.667]" ] }, { @@ -7668,7 +7668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 435/2000 [02:22<08:13, 3.17it/s, loss=0.561]" + "training until 2000: 22%|██▏ | 435/2000 [02:20<08:13, 3.17it/s, loss=0.631]" ] }, { @@ -7676,7 +7676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 436/2000 [02:22<08:18, 3.14it/s, loss=0.561]" + "training until 2000: 22%|██▏ | 436/2000 [02:20<08:11, 3.18it/s, loss=0.631]" ] }, { @@ -7684,7 +7684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 436/2000 [02:22<08:18, 3.14it/s, loss=0.612]" + "training until 2000: 22%|██▏ | 436/2000 [02:20<08:11, 3.18it/s, loss=0.678]" ] }, { @@ -7692,7 +7692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 437/2000 [02:22<08:22, 3.11it/s, loss=0.612]" + "training until 2000: 22%|██▏ | 437/2000 [02:20<08:13, 3.17it/s, loss=0.678]" ] }, { @@ -7700,7 +7700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 437/2000 [02:22<08:22, 3.11it/s, loss=0.602]" + "training until 2000: 22%|██▏ | 437/2000 [02:20<08:13, 3.17it/s, loss=0.654]" ] }, { @@ -7708,7 +7708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 438/2000 [02:23<08:19, 3.13it/s, loss=0.602]" + "training until 2000: 22%|██▏ | 438/2000 [02:21<08:14, 3.16it/s, loss=0.654]" ] }, { @@ -7716,7 +7716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 438/2000 [02:23<08:19, 3.13it/s, loss=0.554]" + "training until 2000: 22%|██▏ | 438/2000 [02:21<08:14, 3.16it/s, loss=0.673]" ] }, { @@ -7724,7 +7724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 439/2000 [02:23<08:24, 3.10it/s, loss=0.554]" + "training until 2000: 22%|██▏ | 439/2000 [02:21<08:09, 3.19it/s, loss=0.673]" ] }, { @@ -7732,7 +7732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 439/2000 [02:23<08:24, 3.10it/s, loss=0.585]" + "training until 2000: 22%|██▏ | 439/2000 [02:21<08:09, 3.19it/s, loss=0.69] " ] }, { @@ -7740,7 +7740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 440/2000 [02:23<08:19, 3.12it/s, loss=0.585]" + "training until 2000: 22%|██▏ | 440/2000 [02:21<08:15, 3.15it/s, loss=0.69]" ] }, { @@ -7748,7 +7748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 440/2000 [02:23<08:19, 3.12it/s, loss=0.544]" + "training until 2000: 22%|██▏ | 440/2000 [02:21<08:15, 3.15it/s, loss=0.659]" ] }, { @@ -7756,7 +7756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 441/2000 [02:23<08:15, 3.15it/s, loss=0.544]" + "training until 2000: 22%|██▏ | 441/2000 [02:22<08:14, 3.15it/s, loss=0.659]" ] }, { @@ -7764,7 +7764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 441/2000 [02:23<08:15, 3.15it/s, loss=0.552]" + "training until 2000: 22%|██▏ | 441/2000 [02:22<08:14, 3.15it/s, loss=0.669]" ] }, { @@ -7772,7 +7772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 442/2000 [02:24<08:14, 3.15it/s, loss=0.552]" + "training until 2000: 22%|██▏ | 442/2000 [02:22<08:13, 3.16it/s, loss=0.669]" ] }, { @@ -7780,7 +7780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 442/2000 [02:24<08:14, 3.15it/s, loss=0.601]" + "training until 2000: 22%|██▏ | 442/2000 [02:22<08:13, 3.16it/s, loss=0.672]" ] }, { @@ -7788,7 +7788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 443/2000 [02:24<08:10, 3.17it/s, loss=0.601]" + "training until 2000: 22%|██▏ | 443/2000 [02:22<08:11, 3.17it/s, loss=0.672]" ] }, { @@ -7796,7 +7796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 443/2000 [02:24<08:10, 3.17it/s, loss=0.68] " + "training until 2000: 22%|██▏ | 443/2000 [02:22<08:11, 3.17it/s, loss=0.649]" ] }, { @@ -7804,7 +7804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 444/2000 [02:24<08:13, 3.15it/s, loss=0.68]" + "training until 2000: 22%|██▏ | 444/2000 [02:23<08:26, 3.07it/s, loss=0.649]" ] }, { @@ -7812,7 +7812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 444/2000 [02:24<08:13, 3.15it/s, loss=0.582]" + "training until 2000: 22%|██▏ | 444/2000 [02:23<08:26, 3.07it/s, loss=0.664]" ] }, { @@ -7820,7 +7820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 445/2000 [02:25<08:12, 3.16it/s, loss=0.582]" + "training until 2000: 22%|██▏ | 445/2000 [02:23<08:26, 3.07it/s, loss=0.664]" ] }, { @@ -7828,7 +7828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 445/2000 [02:25<08:12, 3.16it/s, loss=0.638]" + "training until 2000: 22%|██▏ | 445/2000 [02:23<08:26, 3.07it/s, loss=0.668]" ] }, { @@ -7836,7 +7836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 446/2000 [02:25<08:11, 3.16it/s, loss=0.638]" + "training until 2000: 22%|██▏ | 446/2000 [02:23<08:23, 3.09it/s, loss=0.668]" ] }, { @@ -7844,7 +7844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 446/2000 [02:25<08:11, 3.16it/s, loss=0.559]" + "training until 2000: 22%|██▏ | 446/2000 [02:23<08:23, 3.09it/s, loss=0.723]" ] }, { @@ -7852,7 +7852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 447/2000 [02:25<08:14, 3.14it/s, loss=0.559]" + "training until 2000: 22%|██▏ | 447/2000 [02:23<08:17, 3.12it/s, loss=0.723]" ] }, { @@ -7860,7 +7860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 447/2000 [02:25<08:14, 3.14it/s, loss=0.54] " + "training until 2000: 22%|██▏ | 447/2000 [02:23<08:17, 3.12it/s, loss=0.724]" ] }, { @@ -7868,7 +7868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 448/2000 [02:26<08:13, 3.14it/s, loss=0.54]" + "training until 2000: 22%|██▏ | 448/2000 [02:24<08:15, 3.13it/s, loss=0.724]" ] }, { @@ -7876,7 +7876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 448/2000 [02:26<08:13, 3.14it/s, loss=0.626]" + "training until 2000: 22%|██▏ | 448/2000 [02:24<08:15, 3.13it/s, loss=0.6] " ] }, { @@ -7884,7 +7884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 449/2000 [02:26<08:12, 3.15it/s, loss=0.626]" + "training until 2000: 22%|██▏ | 449/2000 [02:24<08:16, 3.13it/s, loss=0.6]" ] }, { @@ -7892,7 +7892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▏ | 449/2000 [02:26<08:12, 3.15it/s, loss=0.571]" + "training until 2000: 22%|██▏ | 449/2000 [02:24<08:16, 3.13it/s, loss=0.656]" ] }, { @@ -7900,7 +7900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▎ | 450/2000 [02:26<08:19, 3.10it/s, loss=0.571]" + "training until 2000: 22%|██▎ | 450/2000 [02:24<08:16, 3.12it/s, loss=0.656]" ] }, { @@ -7908,7 +7908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 22%|██▎ | 450/2000 [02:26<08:19, 3.10it/s, loss=0.585]" + "training until 2000: 22%|██▎ | 450/2000 [02:24<08:16, 3.12it/s, loss=0.637]" ] }, { @@ -7916,7 +7916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 451/2000 [02:27<08:17, 3.11it/s, loss=0.585]" + "training until 2000: 23%|██▎ | 451/2000 [02:25<08:12, 3.14it/s, loss=0.637]" ] }, { @@ -7924,7 +7924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 451/2000 [02:27<08:17, 3.11it/s, loss=0.572]" + "training until 2000: 23%|██▎ | 451/2000 [02:25<08:12, 3.14it/s, loss=0.644]" ] }, { @@ -7932,7 +7932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 452/2000 [02:27<08:20, 3.09it/s, loss=0.572]" + "training until 2000: 23%|██▎ | 452/2000 [02:25<08:17, 3.11it/s, loss=0.644]" ] }, { @@ -7940,7 +7940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 452/2000 [02:27<08:20, 3.09it/s, loss=0.566]" + "training until 2000: 23%|██▎ | 452/2000 [02:25<08:17, 3.11it/s, loss=0.632]" ] }, { @@ -7948,7 +7948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 453/2000 [02:27<08:18, 3.10it/s, loss=0.566]" + "training until 2000: 23%|██▎ | 453/2000 [02:25<08:29, 3.04it/s, loss=0.632]" ] }, { @@ -7956,7 +7956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 453/2000 [02:27<08:18, 3.10it/s, loss=0.644]" + "training until 2000: 23%|██▎ | 453/2000 [02:25<08:29, 3.04it/s, loss=0.678]" ] }, { @@ -7964,7 +7964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 454/2000 [02:28<08:14, 3.12it/s, loss=0.644]" + "training until 2000: 23%|██▎ | 454/2000 [02:26<08:29, 3.04it/s, loss=0.678]" ] }, { @@ -7972,7 +7972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 454/2000 [02:28<08:14, 3.12it/s, loss=0.583]" + "training until 2000: 23%|██▎ | 454/2000 [02:26<08:29, 3.04it/s, loss=0.671]" ] }, { @@ -7980,7 +7980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 455/2000 [02:28<08:12, 3.14it/s, loss=0.583]" + "training until 2000: 23%|██▎ | 455/2000 [02:26<08:23, 3.07it/s, loss=0.671]" ] }, { @@ -7988,7 +7988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 455/2000 [02:28<08:12, 3.14it/s, loss=0.644]" + "training until 2000: 23%|██▎ | 455/2000 [02:26<08:23, 3.07it/s, loss=0.66] " ] }, { @@ -7996,7 +7996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 456/2000 [02:28<08:10, 3.15it/s, loss=0.644]" + "training until 2000: 23%|██▎ | 456/2000 [02:26<08:19, 3.09it/s, loss=0.66]" ] }, { @@ -8004,7 +8004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 456/2000 [02:28<08:10, 3.15it/s, loss=0.544]" + "training until 2000: 23%|██▎ | 456/2000 [02:26<08:19, 3.09it/s, loss=0.665]" ] }, { @@ -8012,7 +8012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 457/2000 [02:29<08:10, 3.14it/s, loss=0.544]" + "training until 2000: 23%|██▎ | 457/2000 [02:27<08:22, 3.07it/s, loss=0.665]" ] }, { @@ -8020,7 +8020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 457/2000 [02:29<08:10, 3.14it/s, loss=0.585]" + "training until 2000: 23%|██▎ | 457/2000 [02:27<08:22, 3.07it/s, loss=0.644]" ] }, { @@ -8028,7 +8028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 458/2000 [02:29<08:09, 3.15it/s, loss=0.585]" + "training until 2000: 23%|██▎ | 458/2000 [02:27<08:14, 3.12it/s, loss=0.644]" ] }, { @@ -8036,7 +8036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 458/2000 [02:29<08:09, 3.15it/s, loss=0.568]" + "training until 2000: 23%|██▎ | 458/2000 [02:27<08:14, 3.12it/s, loss=0.644]" ] }, { @@ -8044,7 +8044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 459/2000 [02:29<08:08, 3.15it/s, loss=0.568]" + "training until 2000: 23%|██▎ | 459/2000 [02:27<08:11, 3.13it/s, loss=0.644]" ] }, { @@ -8052,7 +8052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 459/2000 [02:29<08:08, 3.15it/s, loss=0.641]" + "training until 2000: 23%|██▎ | 459/2000 [02:27<08:11, 3.13it/s, loss=0.666]" ] }, { @@ -8060,7 +8060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 460/2000 [02:30<08:11, 3.14it/s, loss=0.641]" + "training until 2000: 23%|██▎ | 460/2000 [02:28<08:10, 3.14it/s, loss=0.666]" ] }, { @@ -8068,7 +8068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 460/2000 [02:30<08:11, 3.14it/s, loss=0.572]" + "training until 2000: 23%|██▎ | 460/2000 [02:28<08:10, 3.14it/s, loss=0.67] " ] }, { @@ -8076,7 +8076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 461/2000 [02:30<08:09, 3.15it/s, loss=0.572]" + "training until 2000: 23%|██▎ | 461/2000 [02:28<08:10, 3.14it/s, loss=0.67]" ] }, { @@ -8084,7 +8084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 461/2000 [02:30<08:09, 3.15it/s, loss=0.538]" + "training until 2000: 23%|██▎ | 461/2000 [02:28<08:10, 3.14it/s, loss=0.734]" ] }, { @@ -8092,7 +8092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 462/2000 [02:30<08:16, 3.10it/s, loss=0.538]" + "training until 2000: 23%|██▎ | 462/2000 [02:28<08:05, 3.17it/s, loss=0.734]" ] }, { @@ -8100,7 +8100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 462/2000 [02:30<08:16, 3.10it/s, loss=0.543]" + "training until 2000: 23%|██▎ | 462/2000 [02:28<08:05, 3.17it/s, loss=0.682]" ] }, { @@ -8108,7 +8108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 463/2000 [02:30<08:08, 3.15it/s, loss=0.543]" + "training until 2000: 23%|██▎ | 463/2000 [02:29<08:00, 3.20it/s, loss=0.682]" ] }, { @@ -8116,7 +8116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 463/2000 [02:30<08:08, 3.15it/s, loss=0.571]" + "training until 2000: 23%|██▎ | 463/2000 [02:29<08:00, 3.20it/s, loss=0.684]" ] }, { @@ -8124,7 +8124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 464/2000 [02:31<08:09, 3.13it/s, loss=0.571]" + "training until 2000: 23%|██▎ | 464/2000 [02:29<08:01, 3.19it/s, loss=0.684]" ] }, { @@ -8132,7 +8132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 464/2000 [02:31<08:09, 3.13it/s, loss=0.558]" + "training until 2000: 23%|██▎ | 464/2000 [02:29<08:01, 3.19it/s, loss=0.654]" ] }, { @@ -8140,7 +8140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 465/2000 [02:31<08:09, 3.14it/s, loss=0.558]" + "training until 2000: 23%|██▎ | 465/2000 [02:29<07:58, 3.21it/s, loss=0.654]" ] }, { @@ -8148,7 +8148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 465/2000 [02:31<08:09, 3.14it/s, loss=0.589]" + "training until 2000: 23%|██▎ | 465/2000 [02:29<07:58, 3.21it/s, loss=0.648]" ] }, { @@ -8156,7 +8156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 466/2000 [02:31<08:04, 3.16it/s, loss=0.589]" + "training until 2000: 23%|██▎ | 466/2000 [02:30<08:03, 3.17it/s, loss=0.648]" ] }, { @@ -8164,7 +8164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 466/2000 [02:31<08:04, 3.16it/s, loss=0.608]" + "training until 2000: 23%|██▎ | 466/2000 [02:30<08:03, 3.17it/s, loss=0.617]" ] }, { @@ -8172,7 +8172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 467/2000 [02:32<08:07, 3.14it/s, loss=0.608]" + "training until 2000: 23%|██▎ | 467/2000 [02:30<08:04, 3.16it/s, loss=0.617]" ] }, { @@ -8180,7 +8180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 467/2000 [02:32<08:07, 3.14it/s, loss=0.536]" + "training until 2000: 23%|██▎ | 467/2000 [02:30<08:04, 3.16it/s, loss=0.696]" ] }, { @@ -8188,7 +8188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 468/2000 [02:32<10:02, 2.54it/s, loss=0.536]" + "training until 2000: 23%|██▎ | 468/2000 [02:30<09:57, 2.57it/s, loss=0.696]" ] }, { @@ -8196,7 +8196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 468/2000 [02:32<10:02, 2.54it/s, loss=0.738]" + "training until 2000: 23%|██▎ | 468/2000 [02:30<09:57, 2.57it/s, loss=0.704]" ] }, { @@ -8204,7 +8204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 469/2000 [02:33<09:34, 2.67it/s, loss=0.738]" + "training until 2000: 23%|██▎ | 469/2000 [02:31<09:27, 2.70it/s, loss=0.704]" ] }, { @@ -8212,7 +8212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 23%|██▎ | 469/2000 [02:33<09:34, 2.67it/s, loss=0.513]" + "training until 2000: 23%|██▎ | 469/2000 [02:31<09:27, 2.70it/s, loss=0.645]" ] }, { @@ -8220,7 +8220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 470/2000 [02:33<09:12, 2.77it/s, loss=0.513]" + "training until 2000: 24%|██▎ | 470/2000 [02:31<09:03, 2.81it/s, loss=0.645]" ] }, { @@ -8228,7 +8228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 470/2000 [02:33<09:12, 2.77it/s, loss=0.516]" + "training until 2000: 24%|██▎ | 470/2000 [02:31<09:03, 2.81it/s, loss=0.64] " ] }, { @@ -8236,7 +8236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 471/2000 [02:33<08:55, 2.86it/s, loss=0.516]" + "training until 2000: 24%|██▎ | 471/2000 [02:31<08:48, 2.89it/s, loss=0.64]" ] }, { @@ -8244,7 +8244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 471/2000 [02:33<08:55, 2.86it/s, loss=0.531]" + "training until 2000: 24%|██▎ | 471/2000 [02:31<08:48, 2.89it/s, loss=0.662]" ] }, { @@ -8252,7 +8252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 472/2000 [02:34<08:39, 2.94it/s, loss=0.531]" + "training until 2000: 24%|██▎ | 472/2000 [02:32<08:36, 2.96it/s, loss=0.662]" ] }, { @@ -8260,7 +8260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 472/2000 [02:34<08:39, 2.94it/s, loss=0.578]" + "training until 2000: 24%|██▎ | 472/2000 [02:32<08:36, 2.96it/s, loss=0.695]" ] }, { @@ -8268,7 +8268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 473/2000 [02:34<08:30, 2.99it/s, loss=0.578]" + "training until 2000: 24%|██▎ | 473/2000 [02:32<08:23, 3.03it/s, loss=0.695]" ] }, { @@ -8276,7 +8276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 473/2000 [02:34<08:30, 2.99it/s, loss=0.603]" + "training until 2000: 24%|██▎ | 473/2000 [02:32<08:23, 3.03it/s, loss=0.739]" ] }, { @@ -8284,7 +8284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 474/2000 [02:34<08:33, 2.97it/s, loss=0.603]" + "training until 2000: 24%|██▎ | 474/2000 [02:32<08:14, 3.09it/s, loss=0.739]" ] }, { @@ -8292,7 +8292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▎ | 474/2000 [02:34<08:33, 2.97it/s, loss=0.566]" + "training until 2000: 24%|██▎ | 474/2000 [02:32<08:14, 3.09it/s, loss=0.65] " ] }, { @@ -8300,7 +8300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 475/2000 [02:35<08:25, 3.02it/s, loss=0.566]" + "training until 2000: 24%|██▍ | 475/2000 [02:33<08:12, 3.10it/s, loss=0.65]" ] }, { @@ -8308,7 +8308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 475/2000 [02:35<08:25, 3.02it/s, loss=0.551]" + "training until 2000: 24%|██▍ | 475/2000 [02:33<08:12, 3.10it/s, loss=0.648]" ] }, { @@ -8316,7 +8316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 476/2000 [02:35<08:18, 3.06it/s, loss=0.551]" + "training until 2000: 24%|██▍ | 476/2000 [02:33<08:07, 3.13it/s, loss=0.648]" ] }, { @@ -8324,7 +8324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 476/2000 [02:35<08:18, 3.06it/s, loss=0.574]" + "training until 2000: 24%|██▍ | 476/2000 [02:33<08:07, 3.13it/s, loss=0.684]" ] }, { @@ -8332,7 +8332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 477/2000 [02:35<08:15, 3.07it/s, loss=0.574]" + "training until 2000: 24%|██▍ | 477/2000 [02:33<08:01, 3.16it/s, loss=0.684]" ] }, { @@ -8340,7 +8340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 477/2000 [02:35<08:15, 3.07it/s, loss=0.561]" + "training until 2000: 24%|██▍ | 477/2000 [02:33<08:01, 3.16it/s, loss=0.627]" ] }, { @@ -8348,7 +8348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 478/2000 [02:36<08:16, 3.07it/s, loss=0.561]" + "training until 2000: 24%|██▍ | 478/2000 [02:34<07:59, 3.17it/s, loss=0.627]" ] }, { @@ -8356,7 +8356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 478/2000 [02:36<08:16, 3.07it/s, loss=0.541]" + "training until 2000: 24%|██▍ | 478/2000 [02:34<07:59, 3.17it/s, loss=0.654]" ] }, { @@ -8364,7 +8364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 479/2000 [02:36<08:11, 3.09it/s, loss=0.541]" + "training until 2000: 24%|██▍ | 479/2000 [02:34<07:56, 3.19it/s, loss=0.654]" ] }, { @@ -8372,7 +8372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 479/2000 [02:36<08:11, 3.09it/s, loss=0.692]" + "training until 2000: 24%|██▍ | 479/2000 [02:34<07:56, 3.19it/s, loss=0.706]" ] }, { @@ -8380,7 +8380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 480/2000 [02:36<08:14, 3.08it/s, loss=0.692]" + "training until 2000: 24%|██▍ | 480/2000 [02:34<07:55, 3.20it/s, loss=0.706]" ] }, { @@ -8388,7 +8388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 480/2000 [02:36<08:14, 3.08it/s, loss=0.708]" + "training until 2000: 24%|██▍ | 480/2000 [02:34<07:55, 3.20it/s, loss=0.721]" ] }, { @@ -8396,7 +8396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 481/2000 [02:37<08:07, 3.12it/s, loss=0.708]" + "training until 2000: 24%|██▍ | 481/2000 [02:35<07:57, 3.18it/s, loss=0.721]" ] }, { @@ -8404,7 +8404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 481/2000 [02:37<08:07, 3.12it/s, loss=0.568]" + "training until 2000: 24%|██▍ | 481/2000 [02:35<07:57, 3.18it/s, loss=0.665]" ] }, { @@ -8412,7 +8412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 482/2000 [02:37<08:04, 3.14it/s, loss=0.568]" + "training until 2000: 24%|██▍ | 482/2000 [02:35<07:59, 3.16it/s, loss=0.665]" ] }, { @@ -8420,7 +8420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 482/2000 [02:37<08:04, 3.14it/s, loss=0.517]" + "training until 2000: 24%|██▍ | 482/2000 [02:35<07:59, 3.16it/s, loss=0.613]" ] }, { @@ -8428,7 +8428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 483/2000 [02:37<08:06, 3.12it/s, loss=0.517]" + "training until 2000: 24%|██▍ | 483/2000 [02:35<08:04, 3.13it/s, loss=0.613]" ] }, { @@ -8436,7 +8436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 483/2000 [02:37<08:06, 3.12it/s, loss=0.588]" + "training until 2000: 24%|██▍ | 483/2000 [02:35<08:04, 3.13it/s, loss=0.66] " ] }, { @@ -8444,7 +8444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 484/2000 [02:38<08:05, 3.12it/s, loss=0.588]" + "training until 2000: 24%|██▍ | 484/2000 [02:36<08:01, 3.15it/s, loss=0.66]" ] }, { @@ -8452,7 +8452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 484/2000 [02:38<08:05, 3.12it/s, loss=0.556]" + "training until 2000: 24%|██▍ | 484/2000 [02:36<08:01, 3.15it/s, loss=0.72]" ] }, { @@ -8460,7 +8460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 485/2000 [02:38<08:02, 3.14it/s, loss=0.556]" + "training until 2000: 24%|██▍ | 485/2000 [02:36<07:57, 3.17it/s, loss=0.72]" ] }, { @@ -8468,7 +8468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 485/2000 [02:38<08:02, 3.14it/s, loss=0.539]" + "training until 2000: 24%|██▍ | 485/2000 [02:36<07:57, 3.17it/s, loss=0.61]" ] }, { @@ -8476,7 +8476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 486/2000 [02:38<08:03, 3.13it/s, loss=0.539]" + "training until 2000: 24%|██▍ | 486/2000 [02:36<08:02, 3.14it/s, loss=0.61]" ] }, { @@ -8484,7 +8484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 486/2000 [02:38<08:03, 3.13it/s, loss=0.582]" + "training until 2000: 24%|██▍ | 486/2000 [02:36<08:02, 3.14it/s, loss=0.642]" ] }, { @@ -8492,7 +8492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 487/2000 [02:38<07:55, 3.18it/s, loss=0.582]" + "training until 2000: 24%|██▍ | 487/2000 [02:36<08:00, 3.15it/s, loss=0.642]" ] }, { @@ -8500,7 +8500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 487/2000 [02:38<07:55, 3.18it/s, loss=0.601]" + "training until 2000: 24%|██▍ | 487/2000 [02:36<08:00, 3.15it/s, loss=0.646]" ] }, { @@ -8508,7 +8508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 488/2000 [02:39<08:02, 3.13it/s, loss=0.601]" + "training until 2000: 24%|██▍ | 488/2000 [02:37<08:00, 3.15it/s, loss=0.646]" ] }, { @@ -8516,7 +8516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 488/2000 [02:39<08:02, 3.13it/s, loss=0.632]" + "training until 2000: 24%|██▍ | 488/2000 [02:37<08:00, 3.15it/s, loss=0.615]" ] }, { @@ -8524,7 +8524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 489/2000 [02:39<08:08, 3.10it/s, loss=0.632]" + "training until 2000: 24%|██▍ | 489/2000 [02:37<08:01, 3.14it/s, loss=0.615]" ] }, { @@ -8532,7 +8532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 489/2000 [02:39<08:08, 3.10it/s, loss=0.643]" + "training until 2000: 24%|██▍ | 489/2000 [02:37<08:01, 3.14it/s, loss=0.665]" ] }, { @@ -8540,7 +8540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 490/2000 [02:39<08:09, 3.09it/s, loss=0.643]" + "training until 2000: 24%|██▍ | 490/2000 [02:37<08:05, 3.11it/s, loss=0.665]" ] }, { @@ -8548,7 +8548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 24%|██▍ | 490/2000 [02:39<08:09, 3.09it/s, loss=0.516]" + "training until 2000: 24%|██▍ | 490/2000 [02:37<08:05, 3.11it/s, loss=0.631]" ] }, { @@ -8556,7 +8556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 491/2000 [02:40<08:27, 2.97it/s, loss=0.516]" + "training until 2000: 25%|██▍ | 491/2000 [02:38<08:02, 3.13it/s, loss=0.631]" ] }, { @@ -8564,7 +8564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 491/2000 [02:40<08:27, 2.97it/s, loss=0.544]" + "training until 2000: 25%|██▍ | 491/2000 [02:38<08:02, 3.13it/s, loss=0.67] " ] }, { @@ -8572,7 +8572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 492/2000 [02:40<08:20, 3.01it/s, loss=0.544]" + "training until 2000: 25%|██▍ | 492/2000 [02:38<08:02, 3.13it/s, loss=0.67]" ] }, { @@ -8580,7 +8580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 492/2000 [02:40<08:20, 3.01it/s, loss=0.572]" + "training until 2000: 25%|██▍ | 492/2000 [02:38<08:02, 3.13it/s, loss=0.618]" ] }, { @@ -8588,7 +8588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 493/2000 [02:40<08:17, 3.03it/s, loss=0.572]" + "training until 2000: 25%|██▍ | 493/2000 [02:38<07:57, 3.16it/s, loss=0.618]" ] }, { @@ -8596,7 +8596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 493/2000 [02:40<08:17, 3.03it/s, loss=0.565]" + "training until 2000: 25%|██▍ | 493/2000 [02:38<07:57, 3.16it/s, loss=0.673]" ] }, { @@ -8604,7 +8604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 494/2000 [02:41<08:07, 3.09it/s, loss=0.565]" + "training until 2000: 25%|██▍ | 494/2000 [02:39<08:02, 3.12it/s, loss=0.673]" ] }, { @@ -8612,7 +8612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 494/2000 [02:41<08:07, 3.09it/s, loss=0.585]" + "training until 2000: 25%|██▍ | 494/2000 [02:39<08:02, 3.12it/s, loss=0.597]" ] }, { @@ -8620,7 +8620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 495/2000 [02:41<08:06, 3.09it/s, loss=0.585]" + "training until 2000: 25%|██▍ | 495/2000 [02:39<08:04, 3.11it/s, loss=0.597]" ] }, { @@ -8628,7 +8628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 495/2000 [02:41<08:06, 3.09it/s, loss=0.671]" + "training until 2000: 25%|██▍ | 495/2000 [02:39<08:04, 3.11it/s, loss=0.687]" ] }, { @@ -8636,7 +8636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 496/2000 [02:41<08:05, 3.10it/s, loss=0.671]" + "training until 2000: 25%|██▍ | 496/2000 [02:39<08:05, 3.10it/s, loss=0.687]" ] }, { @@ -8644,7 +8644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 496/2000 [02:41<08:05, 3.10it/s, loss=0.607]" + "training until 2000: 25%|██▍ | 496/2000 [02:39<08:05, 3.10it/s, loss=0.683]" ] }, { @@ -8652,7 +8652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 497/2000 [02:42<08:01, 3.12it/s, loss=0.607]" + "training until 2000: 25%|██▍ | 497/2000 [02:40<08:00, 3.13it/s, loss=0.683]" ] }, { @@ -8660,7 +8660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 497/2000 [02:42<08:01, 3.12it/s, loss=0.543]" + "training until 2000: 25%|██▍ | 497/2000 [02:40<08:00, 3.13it/s, loss=0.657]" ] }, { @@ -8668,7 +8668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 498/2000 [02:42<08:03, 3.11it/s, loss=0.543]" + "training until 2000: 25%|██▍ | 498/2000 [02:40<07:59, 3.13it/s, loss=0.657]" ] }, { @@ -8676,7 +8676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 498/2000 [02:42<08:03, 3.11it/s, loss=0.532]" + "training until 2000: 25%|██▍ | 498/2000 [02:40<07:59, 3.13it/s, loss=0.62] " ] }, { @@ -8684,7 +8684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 499/2000 [02:42<08:02, 3.11it/s, loss=0.532]" + "training until 2000: 25%|██▍ | 499/2000 [02:40<07:58, 3.14it/s, loss=0.62]" ] }, { @@ -8692,7 +8692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▍ | 499/2000 [02:42<08:02, 3.11it/s, loss=0.624]" + "training until 2000: 25%|██▍ | 499/2000 [02:40<07:58, 3.14it/s, loss=0.629]" ] }, { @@ -8700,7 +8700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 500/2000 [02:43<08:01, 3.12it/s, loss=0.624]" + "training until 2000: 25%|██▌ | 500/2000 [02:41<08:03, 3.10it/s, loss=0.629]" ] }, { @@ -8708,7 +8708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 500/2000 [02:43<08:01, 3.12it/s, loss=0.57] " + "training until 2000: 25%|██▌ | 500/2000 [02:41<08:03, 3.10it/s, loss=0.624]" ] }, { @@ -8796,7 +8796,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:12, 16.91blocks/s, ⧗=0, ▶=1, ✔=1, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:10, 20.49blocks/s, ⧗=0, ▶=1, ✔=1, ✗=0, ∅=0]" ] }, { @@ -8818,7 +8818,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:23, 9.31blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:20, 10.52blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" ] }, { @@ -8840,7 +8840,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:11, 18.41blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:10, 20.70blocks/s, ⧗=0, ▶=1, ✔=2, ✗=0, ∅=0]" ] }, { @@ -8862,7 +8862,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:11, 18.41blocks/s, ⧗=0, ▶=1, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:15, 13.71blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" ] }, { @@ -8884,7 +8884,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:11, 18.41blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.44blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" ] }, { @@ -8906,7 +8906,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:11, 18.41blocks/s, ⧗=0, ▶=1, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.44blocks/s, ⧗=0, ▶=1, ✔=3, ✗=0, ∅=0]" ] }, { @@ -8928,7 +8928,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:11, 18.41blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.44blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" ] }, { @@ -8950,7 +8950,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 17.87blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.44blocks/s, ⧗=0, ▶=1, ✔=4, ✗=0, ∅=0]" ] }, { @@ -8972,7 +8972,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 17.87blocks/s, ⧗=0, ▶=1, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.44blocks/s, ⧗=0, ▶=0, ✔=5, ✗=0, ∅=0]" ] }, { @@ -8994,7 +8994,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 17.87blocks/s, ⧗=0, ▶=0, ✔=5, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.44blocks/s, ⧗=0, ▶=1, ✔=5, ✗=0, ∅=0]" ] }, { @@ -9016,7 +9016,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:11, 17.87blocks/s, ⧗=0, ▶=1, ✔=5, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.44blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" ] }, { @@ -9038,7 +9038,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:11, 17.87blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 20.45blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" ] }, { @@ -9060,7 +9060,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.30blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 20.45blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" ] }, { @@ -9082,7 +9082,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.30blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 20.45blocks/s, ⧗=0, ▶=0, ✔=7, ✗=0, ∅=0]" ] }, { @@ -9104,7 +9104,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.30blocks/s, ⧗=0, ▶=0, ✔=7, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:10, 20.45blocks/s, ⧗=0, ▶=1, ✔=7, ✗=0, ∅=0]" ] }, { @@ -9126,7 +9126,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:11, 18.30blocks/s, ⧗=0, ▶=1, ✔=7, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:10, 20.45blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" ] }, { @@ -9148,7 +9148,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:11, 18.30blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 20.45blocks/s, ⧗=0, ▶=1, ✔=8, ✗=0, ∅=0]" ] }, { @@ -9170,7 +9170,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 18.74blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 20.45blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" ] }, { @@ -9192,7 +9192,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 18.74blocks/s, ⧗=0, ▶=1, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.90blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" ] }, { @@ -9214,7 +9214,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 18.74blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.90blocks/s, ⧗=0, ▶=1, ✔=9, ✗=0, ∅=0]" ] }, { @@ -9236,7 +9236,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:11, 18.74blocks/s, ⧗=0, ▶=1, ✔=9, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.90blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" ] }, { @@ -9258,7 +9258,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:11, 18.74blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 19.90blocks/s, ⧗=0, ▶=1, ✔=10, ✗=0, ∅=0]" ] }, { @@ -9280,7 +9280,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.48blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 19.90blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" ] }, { @@ -9302,7 +9302,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.48blocks/s, ⧗=0, ▶=1, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 19.63blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" ] }, { @@ -9324,7 +9324,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.48blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 19.63blocks/s, ⧗=0, ▶=1, ✔=11, ✗=0, ∅=0]" ] }, { @@ -9346,7 +9346,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:11, 18.48blocks/s, ⧗=0, ▶=1, ✔=11, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 19.63blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" ] }, { @@ -9368,7 +9368,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:11, 18.48blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 19.63blocks/s, ⧗=0, ▶=1, ✔=12, ✗=0, ∅=0]" ] }, { @@ -9390,7 +9390,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.83blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 19.63blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" ] }, { @@ -9412,7 +9412,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.83blocks/s, ⧗=0, ▶=1, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 19.55blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" ] }, { @@ -9434,7 +9434,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.83blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 19.55blocks/s, ⧗=0, ▶=1, ✔=13, ✗=0, ∅=0]" ] }, { @@ -9456,7 +9456,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 18.83blocks/s, ⧗=0, ▶=1, ✔=13, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 19.55blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" ] }, { @@ -9478,7 +9478,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 18.83blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 19.55blocks/s, ⧗=0, ▶=1, ✔=14, ✗=0, ∅=0]" ] }, { @@ -9500,7 +9500,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 18.69blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 19.55blocks/s, ⧗=0, ▶=0, ✔=15, ✗=0, ∅=0]" ] }, { @@ -9522,7 +9522,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 18.69blocks/s, ⧗=0, ▶=1, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:11, 18.07blocks/s, ⧗=0, ▶=0, ✔=15, ✗=0, ∅=0]" ] }, { @@ -9544,7 +9544,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 18.69blocks/s, ⧗=0, ▶=0, ✔=15, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:11, 18.07blocks/s, ⧗=0, ▶=1, ✔=15, ✗=0, ∅=0]" ] }, { @@ -9566,7 +9566,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:10, 18.69blocks/s, ⧗=0, ▶=1, ✔=15, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:11, 18.07blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" ] }, { @@ -9588,7 +9588,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:10, 18.69blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 18.07blocks/s, ⧗=0, ▶=1, ✔=16, ✗=0, ∅=0]" ] }, { @@ -9610,7 +9610,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.99blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 18.07blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" ] }, { @@ -9632,7 +9632,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.99blocks/s, ⧗=0, ▶=1, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" ] }, { @@ -9654,7 +9654,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.99blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=1, ✔=17, ✗=0, ∅=0]" ] }, { @@ -9676,7 +9676,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.99blocks/s, ⧗=0, ▶=1, ✔=17, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" ] }, { @@ -9698,7 +9698,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.99blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=1, ✔=18, ✗=0, ∅=0]" ] }, { @@ -9720,7 +9720,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:00<00:11, 17.93blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.76blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" ] }, { @@ -9742,7 +9742,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:00<00:11, 17.93blocks/s, ⧗=0, ▶=1, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:10, 18.11blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" ] }, { @@ -9764,7 +9764,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.93blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:10, 18.11blocks/s, ⧗=0, ▶=1, ✔=19, ✗=0, ∅=0]" ] }, { @@ -9786,7 +9786,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=1, ✔=19, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:10, 18.11blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" ] }, { @@ -9808,7 +9808,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:10, 18.11blocks/s, ⧗=0, ▶=1, ✔=20, ✗=0, ∅=0]" ] }, { @@ -9830,7 +9830,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.24blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:10, 18.11blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" ] }, { @@ -9852,7 +9852,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.24blocks/s, ⧗=0, ▶=1, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:10, 18.17blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" ] }, { @@ -9874,7 +9874,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.24blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:10, 18.17blocks/s, ⧗=0, ▶=1, ✔=21, ✗=0, ∅=0]" ] }, { @@ -9896,7 +9896,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 17.24blocks/s, ⧗=0, ▶=1, ✔=21, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:10, 18.17blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" ] }, { @@ -9918,7 +9918,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 17.24blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 18.17blocks/s, ⧗=0, ▶=1, ✔=22, ✗=0, ∅=0]" ] }, { @@ -9940,7 +9940,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:11, 16.99blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 18.17blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" ] }, { @@ -9962,7 +9962,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:11, 16.99blocks/s, ⧗=0, ▶=1, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 18.18blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" ] }, { @@ -9984,7 +9984,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:11, 16.99blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 18.18blocks/s, ⧗=0, ▶=1, ✔=23, ✗=0, ∅=0]" ] }, { @@ -10006,7 +10006,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:11, 16.99blocks/s, ⧗=0, ▶=1, ✔=23, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 18.18blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" ] }, { @@ -10028,7 +10028,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:11, 16.99blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 18.18blocks/s, ⧗=0, ▶=1, ✔=24, ✗=0, ∅=0]" ] }, { @@ -10050,7 +10050,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.53blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 18.18blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" ] }, { @@ -10072,7 +10072,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.53blocks/s, ⧗=0, ▶=1, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 18.64blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" ] }, { @@ -10094,7 +10094,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.53blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 18.64blocks/s, ⧗=0, ▶=1, ✔=25, ✗=0, ∅=0]" ] }, { @@ -10116,7 +10116,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 17.53blocks/s, ⧗=0, ▶=1, ✔=25, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 18.64blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" ] }, { @@ -10138,7 +10138,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 17.53blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.64blocks/s, ⧗=0, ▶=1, ✔=26, ✗=0, ∅=0]" ] }, { @@ -10160,7 +10160,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.08blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.64blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" ] }, { @@ -10182,7 +10182,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.08blocks/s, ⧗=0, ▶=1, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.62blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" ] }, { @@ -10204,7 +10204,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.08blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.62blocks/s, ⧗=0, ▶=1, ✔=27, ✗=0, ∅=0]" ] }, { @@ -10226,7 +10226,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.08blocks/s, ⧗=0, ▶=1, ✔=27, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.62blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" ] }, { @@ -10248,7 +10248,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.08blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 18.62blocks/s, ⧗=0, ▶=1, ✔=28, ✗=0, ∅=0]" ] }, { @@ -10270,7 +10270,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 18.09blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 18.62blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" ] }, { @@ -10292,7 +10292,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 18.09blocks/s, ⧗=0, ▶=1, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.35blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" ] }, { @@ -10314,7 +10314,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 18.09blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.35blocks/s, ⧗=0, ▶=1, ✔=29, ✗=0, ∅=0]" ] }, { @@ -10336,7 +10336,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 18.09blocks/s, ⧗=0, ▶=1, ✔=29, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.35blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" ] }, { @@ -10358,7 +10358,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 18.09blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 17.35blocks/s, ⧗=0, ▶=1, ✔=30, ✗=0, ∅=0]" ] }, { @@ -10380,7 +10380,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.49blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 17.35blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" ] }, { @@ -10402,7 +10402,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.49blocks/s, ⧗=0, ▶=1, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 17.36blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" ] }, { @@ -10424,7 +10424,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.49blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 17.36blocks/s, ⧗=0, ▶=1, ✔=31, ✗=0, ∅=0]" ] }, { @@ -10446,7 +10446,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 18.49blocks/s, ⧗=0, ▶=1, ✔=31, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 17.36blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" ] }, { @@ -10468,7 +10468,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 18.49blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:10, 17.36blocks/s, ⧗=0, ▶=1, ✔=32, ✗=0, ∅=0]" ] }, { @@ -10490,7 +10490,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.76blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:10, 17.36blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" ] }, { @@ -10512,7 +10512,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.76blocks/s, ⧗=0, ▶=1, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 16.84blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" ] }, { @@ -10534,7 +10534,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.76blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 16.84blocks/s, ⧗=0, ▶=1, ✔=33, ✗=0, ∅=0]" ] }, { @@ -10556,7 +10556,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:09, 18.76blocks/s, ⧗=0, ▶=1, ✔=33, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 16.84blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" ] }, { @@ -10578,7 +10578,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:09, 18.76blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 16.84blocks/s, ⧗=0, ▶=1, ✔=34, ✗=0, ∅=0]" ] }, { @@ -10600,7 +10600,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.31blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 16.84blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" ] }, { @@ -10622,7 +10622,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.31blocks/s, ⧗=0, ▶=1, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:10, 17.43blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" ] }, { @@ -10644,7 +10644,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.31blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:10, 17.43blocks/s, ⧗=0, ▶=1, ✔=35, ✗=0, ∅=0]" ] }, { @@ -10666,7 +10666,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:09, 18.31blocks/s, ⧗=0, ▶=1, ✔=35, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:10, 17.43blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" ] }, { @@ -10688,7 +10688,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:09, 18.31blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:10, 17.43blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" ] }, { @@ -10710,7 +10710,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.75blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:10, 17.43blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" ] }, { @@ -10732,7 +10732,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.75blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.03blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" ] }, { @@ -10754,7 +10754,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.75blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.03blocks/s, ⧗=0, ▶=1, ✔=37, ✗=0, ∅=0]" ] }, { @@ -10776,7 +10776,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.75blocks/s, ⧗=0, ▶=1, ✔=37, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.03blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" ] }, { @@ -10798,7 +10798,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.75blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.03blocks/s, ⧗=0, ▶=1, ✔=38, ✗=0, ∅=0]" ] }, { @@ -10820,7 +10820,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 17.99blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.03blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" ] }, { @@ -10842,7 +10842,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 17.99blocks/s, ⧗=0, ▶=1, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" ] }, { @@ -10864,7 +10864,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 17.99blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=1, ✔=39, ✗=0, ∅=0]" ] }, { @@ -10886,7 +10886,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 17.99blocks/s, ⧗=0, ▶=1, ✔=39, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" ] }, { @@ -10908,7 +10908,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 17.99blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=1, ✔=40, ✗=0, ∅=0]" ] }, { @@ -10930,7 +10930,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 17.79blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" ] }, { @@ -10952,7 +10952,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 17.79blocks/s, ⧗=0, ▶=1, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.04blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" ] }, { @@ -10974,7 +10974,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 17.79blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.04blocks/s, ⧗=0, ▶=1, ✔=41, ✗=0, ∅=0]" ] }, { @@ -10996,7 +10996,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 17.79blocks/s, ⧗=0, ▶=1, ✔=41, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.04blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" ] }, { @@ -11018,7 +11018,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 17.79blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.04blocks/s, ⧗=0, ▶=1, ✔=42, ✗=0, ∅=0]" ] }, { @@ -11040,7 +11040,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 17.65blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.04blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" ] }, { @@ -11062,7 +11062,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 17.65blocks/s, ⧗=0, ▶=1, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.28blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" ] }, { @@ -11084,7 +11084,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 17.65blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.28blocks/s, ⧗=0, ▶=1, ✔=43, ✗=0, ∅=0]" ] }, { @@ -11106,7 +11106,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 17.65blocks/s, ⧗=0, ▶=1, ✔=43, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.28blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" ] }, { @@ -11128,7 +11128,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 17.65blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.28blocks/s, ⧗=0, ▶=1, ✔=44, ✗=0, ∅=0]" ] }, { @@ -11150,7 +11150,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.77blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.28blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" ] }, { @@ -11172,7 +11172,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.77blocks/s, ⧗=0, ▶=1, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.55blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" ] }, { @@ -11194,7 +11194,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.77blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.55blocks/s, ⧗=0, ▶=1, ✔=45, ✗=0, ∅=0]" ] }, { @@ -11216,7 +11216,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.77blocks/s, ⧗=0, ▶=1, ✔=45, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.55blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" ] }, { @@ -11238,7 +11238,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.77blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.55blocks/s, ⧗=0, ▶=1, ✔=46, ✗=0, ∅=0]" ] }, { @@ -11260,7 +11260,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.03blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.55blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" ] }, { @@ -11282,7 +11282,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.03blocks/s, ⧗=0, ▶=1, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.57blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" ] }, { @@ -11304,7 +11304,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.03blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.57blocks/s, ⧗=0, ▶=1, ✔=47, ✗=0, ∅=0]" ] }, { @@ -11326,7 +11326,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.03blocks/s, ⧗=0, ▶=1, ✔=47, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.57blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" ] }, { @@ -11348,7 +11348,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.03blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.57blocks/s, ⧗=0, ▶=1, ✔=48, ✗=0, ∅=0]" ] }, { @@ -11370,7 +11370,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 16.98blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.57blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" ] }, { @@ -11392,7 +11392,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 16.98blocks/s, ⧗=0, ▶=1, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.46blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" ] }, { @@ -11414,7 +11414,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 16.98blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.46blocks/s, ⧗=0, ▶=1, ✔=49, ✗=0, ∅=0]" ] }, { @@ -11436,7 +11436,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 16.98blocks/s, ⧗=0, ▶=1, ✔=49, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.46blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" ] }, { @@ -11458,7 +11458,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 16.98blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:09, 17.46blocks/s, ⧗=0, ▶=1, ✔=50, ✗=0, ∅=0]" ] }, { @@ -11480,7 +11480,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:09, 17.46blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" ] }, { @@ -11502,7 +11502,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=1, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" ] }, { @@ -11524,7 +11524,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=1, ✔=51, ✗=0, ∅=0]" ] }, { @@ -11546,7 +11546,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=1, ✔=51, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" ] }, { @@ -11568,7 +11568,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=1, ✔=52, ✗=0, ∅=0]" ] }, { @@ -11590,7 +11590,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:11, 14.77blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" ] }, { @@ -11612,7 +11612,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:11, 14.77blocks/s, ⧗=0, ▶=1, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:02<00:10, 15.92blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" ] }, { @@ -11634,7 +11634,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:03<00:11, 14.77blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:02<00:10, 15.92blocks/s, ⧗=0, ▶=1, ✔=53, ✗=0, ∅=0]" ] }, { @@ -11656,7 +11656,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:11, 14.77blocks/s, ⧗=0, ▶=1, ✔=53, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.92blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" ] }, { @@ -11678,7 +11678,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:11, 14.77blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.92blocks/s, ⧗=0, ▶=1, ✔=54, ✗=0, ∅=0]" ] }, { @@ -11700,7 +11700,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 14.97blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.92blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" ] }, { @@ -11722,7 +11722,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 14.97blocks/s, ⧗=0, ▶=1, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:09, 16.28blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" ] }, { @@ -11744,7 +11744,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 14.97blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:09, 16.28blocks/s, ⧗=0, ▶=1, ✔=55, ✗=0, ∅=0]" ] }, { @@ -11766,7 +11766,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 14.97blocks/s, ⧗=0, ▶=1, ✔=55, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:09, 16.28blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" ] }, { @@ -11788,7 +11788,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 14.97blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:09, 16.28blocks/s, ⧗=0, ▶=1, ✔=56, ✗=0, ∅=0]" ] }, { @@ -11810,7 +11810,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.52blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:09, 16.28blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" ] }, { @@ -11832,7 +11832,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.52blocks/s, ⧗=0, ▶=1, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" ] }, { @@ -11854,7 +11854,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.52blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=1, ✔=57, ✗=0, ∅=0]" ] }, { @@ -11876,7 +11876,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.52blocks/s, ⧗=0, ▶=1, ✔=57, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" ] }, { @@ -11898,7 +11898,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.52blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:09, 15.84blocks/s, ⧗=0, ▶=1, ✔=58, ✗=0, ∅=0]" ] }, { @@ -11920,7 +11920,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.43blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:09, 15.84blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" ] }, { @@ -11942,7 +11942,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.43blocks/s, ⧗=0, ▶=1, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 16.25blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" ] }, { @@ -11964,7 +11964,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.43blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 16.25blocks/s, ⧗=0, ▶=1, ✔=59, ✗=0, ∅=0]" ] }, { @@ -11986,7 +11986,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 15.43blocks/s, ⧗=0, ▶=1, ✔=59, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 16.25blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" ] }, { @@ -12008,7 +12008,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 15.43blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:09, 16.25blocks/s, ⧗=0, ▶=1, ✔=60, ✗=0, ∅=0]" ] }, { @@ -12030,7 +12030,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.52blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:09, 16.25blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" ] }, { @@ -12052,7 +12052,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.52blocks/s, ⧗=0, ▶=1, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 16.86blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" ] }, { @@ -12074,7 +12074,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.52blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 16.86blocks/s, ⧗=0, ▶=1, ✔=61, ✗=0, ∅=0]" ] }, { @@ -12096,7 +12096,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 15.52blocks/s, ⧗=0, ▶=1, ✔=61, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 16.86blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" ] }, { @@ -12118,7 +12118,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 15.52blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.86blocks/s, ⧗=0, ▶=1, ✔=62, ✗=0, ∅=0]" ] }, { @@ -12140,7 +12140,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.78blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.86blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" ] }, { @@ -12162,7 +12162,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.78blocks/s, ⧗=0, ▶=1, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" ] }, { @@ -12184,7 +12184,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.78blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=1, ✔=63, ✗=0, ∅=0]" ] }, { @@ -12206,7 +12206,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 15.78blocks/s, ⧗=0, ▶=1, ✔=63, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" ] }, { @@ -12228,7 +12228,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 15.78blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=1, ✔=64, ✗=0, ∅=0]" ] }, { @@ -12250,7 +12250,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.84blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" ] }, { @@ -12272,7 +12272,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.84blocks/s, ⧗=0, ▶=1, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 16.52blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" ] }, { @@ -12294,7 +12294,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.84blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 16.52blocks/s, ⧗=0, ▶=1, ✔=65, ✗=0, ∅=0]" ] }, { @@ -12316,7 +12316,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 15.84blocks/s, ⧗=0, ▶=1, ✔=65, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 16.52blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" ] }, { @@ -12338,7 +12338,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 15.84blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.52blocks/s, ⧗=0, ▶=1, ✔=66, ✗=0, ∅=0]" ] }, { @@ -12360,7 +12360,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.52blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" ] }, { @@ -12382,7 +12382,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=1, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:08, 16.82blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" ] }, { @@ -12404,7 +12404,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:08, 16.82blocks/s, ⧗=0, ▶=1, ✔=67, ✗=0, ∅=0]" ] }, { @@ -12426,7 +12426,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=1, ✔=67, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:08, 16.82blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" ] }, { @@ -12448,7 +12448,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:09, 16.14blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 16.82blocks/s, ⧗=0, ▶=1, ✔=68, ✗=0, ∅=0]" ] }, { @@ -12470,7 +12470,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 16.69blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 16.82blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" ] }, { @@ -12492,7 +12492,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 16.69blocks/s, ⧗=0, ▶=1, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" ] }, { @@ -12514,7 +12514,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:08, 16.69blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=1, ✔=69, ✗=0, ∅=0]" ] }, { @@ -12536,7 +12536,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:08, 16.69blocks/s, ⧗=0, ▶=1, ✔=69, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" ] }, { @@ -12558,7 +12558,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:08, 16.69blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:09, 16.12blocks/s, ⧗=0, ▶=1, ✔=70, ✗=0, ∅=0]" ] }, { @@ -12580,7 +12580,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.59blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" ] }, { @@ -12602,7 +12602,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.59blocks/s, ⧗=0, ▶=1, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.34blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" ] }, { @@ -12624,7 +12624,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.59blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.34blocks/s, ⧗=0, ▶=1, ✔=71, ✗=0, ∅=0]" ] }, { @@ -12646,7 +12646,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.59blocks/s, ⧗=0, ▶=1, ✔=71, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.34blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" ] }, { @@ -12668,7 +12668,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.59blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.34blocks/s, ⧗=0, ▶=1, ✔=72, ✗=0, ∅=0]" ] }, { @@ -12690,7 +12690,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.07blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.34blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" ] }, { @@ -12712,7 +12712,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.07blocks/s, ⧗=0, ▶=1, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.14blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" ] }, { @@ -12734,7 +12734,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.07blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.14blocks/s, ⧗=0, ▶=1, ✔=73, ✗=0, ∅=0]" ] }, { @@ -12756,7 +12756,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.07blocks/s, ⧗=0, ▶=1, ✔=73, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.14blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" ] }, { @@ -12778,7 +12778,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.07blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.14blocks/s, ⧗=0, ▶=1, ✔=74, ✗=0, ∅=0]" ] }, { @@ -12800,7 +12800,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.14blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" ] }, { @@ -12822,7 +12822,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=1, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.42blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" ] }, { @@ -12844,7 +12844,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.42blocks/s, ⧗=0, ▶=1, ✔=75, ✗=0, ∅=0]" ] }, { @@ -12866,7 +12866,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=1, ✔=75, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.42blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" ] }, { @@ -12888,7 +12888,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 17.42blocks/s, ⧗=0, ▶=1, ✔=76, ✗=0, ∅=0]" ] }, { @@ -12910,7 +12910,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 17.42blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" ] }, { @@ -12932,7 +12932,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=1, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" ] }, { @@ -12954,7 +12954,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=1, ✔=77, ✗=0, ∅=0]" ] }, { @@ -12976,7 +12976,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=1, ✔=77, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" ] }, { @@ -12998,7 +12998,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=1, ✔=78, ✗=0, ∅=0]" ] }, { @@ -13020,7 +13020,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 18.30blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" ] }, { @@ -13042,7 +13042,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 18.30blocks/s, ⧗=0, ▶=1, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" ] }, { @@ -13064,7 +13064,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 18.30blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 18.38blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" ] }, { @@ -13086,7 +13086,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 18.30blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 18.38blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" ] }, { @@ -13108,7 +13108,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 18.30blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.38blocks/s, ⧗=0, ▶=1, ✔=80, ✗=0, ∅=0]" ] }, { @@ -13130,7 +13130,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.52blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.38blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" ] }, { @@ -13152,7 +13152,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.52blocks/s, ⧗=0, ▶=1, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" ] }, { @@ -13174,7 +13174,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.52blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=1, ✔=81, ✗=0, ∅=0]" ] }, { @@ -13196,7 +13196,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.52blocks/s, ⧗=0, ▶=1, ✔=81, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" ] }, { @@ -13218,29 +13218,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.52blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[A" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=1, ✔=82, ✗=0, ∅=0]" ] }, { @@ -13262,7 +13240,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=1, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" ] }, { @@ -13284,7 +13262,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 18.26blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" ] }, { @@ -13306,7 +13284,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=1, ✔=83, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 18.26blocks/s, ⧗=0, ▶=1, ✔=83, ✗=0, ∅=0]" ] }, { @@ -13328,7 +13306,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 18.24blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 18.26blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" ] }, { @@ -13350,7 +13328,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 18.41blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 18.26blocks/s, ⧗=0, ▶=1, ✔=84, ✗=0, ∅=0]" ] }, { @@ -13372,7 +13350,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 18.41blocks/s, ⧗=0, ▶=1, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 18.26blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" ] }, { @@ -13394,7 +13372,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 18.41blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 18.23blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" ] }, { @@ -13416,7 +13394,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 18.41blocks/s, ⧗=0, ▶=1, ✔=85, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 18.23blocks/s, ⧗=0, ▶=1, ✔=85, ✗=0, ∅=0]" ] }, { @@ -13438,7 +13416,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 18.41blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 18.23blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" ] }, { @@ -13460,7 +13438,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:04<00:07, 18.01blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:04<00:07, 18.23blocks/s, ⧗=0, ▶=1, ✔=86, ✗=0, ∅=0]" ] }, { @@ -13482,7 +13460,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:04<00:07, 18.01blocks/s, ⧗=0, ▶=1, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:04<00:07, 18.23blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" ] }, { @@ -13504,7 +13482,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 18.01blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:04<00:07, 17.25blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" ] }, { @@ -13526,7 +13504,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 18.01blocks/s, ⧗=0, ▶=1, ✔=87, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:04<00:07, 17.25blocks/s, ⧗=0, ▶=1, ✔=87, ✗=0, ∅=0]" ] }, { @@ -13548,7 +13526,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 18.01blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.25blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" ] }, { @@ -13570,7 +13548,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.77blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 17.25blocks/s, ⧗=0, ▶=1, ✔=88, ✗=0, ∅=0]" ] }, { @@ -13592,7 +13570,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.77blocks/s, ⧗=0, ▶=1, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 17.25blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" ] }, { @@ -13614,7 +13592,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.77blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" ] }, { @@ -13636,7 +13614,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.77blocks/s, ⧗=0, ▶=1, ✔=89, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=1, ✔=89, ✗=0, ∅=0]" ] }, { @@ -13658,7 +13636,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.77blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" ] }, { @@ -13680,7 +13658,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.91blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=1, ✔=90, ✗=0, ∅=0]" ] }, { @@ -13702,7 +13680,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.91blocks/s, ⧗=0, ▶=1, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" ] }, { @@ -13724,7 +13702,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.91blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" ] }, { @@ -13746,7 +13724,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.91blocks/s, ⧗=0, ▶=1, ✔=91, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=1, ✔=91, ✗=0, ∅=0]" ] }, { @@ -13768,7 +13746,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.91blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" ] }, { @@ -13790,7 +13768,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=1, ✔=92, ✗=0, ∅=0]" ] }, { @@ -13812,7 +13790,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=1, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" ] }, { @@ -13834,7 +13812,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" ] }, { @@ -13856,7 +13834,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=1, ✔=93, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=1, ✔=93, ✗=0, ∅=0]" ] }, { @@ -13878,7 +13856,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" ] }, { @@ -13900,7 +13878,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.07blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=1, ✔=94, ✗=0, ∅=0]" ] }, { @@ -13922,7 +13900,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.07blocks/s, ⧗=0, ▶=1, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" ] }, { @@ -13944,7 +13922,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.07blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" ] }, { @@ -13966,7 +13944,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 17.07blocks/s, ⧗=0, ▶=1, ✔=95, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=1, ✔=95, ✗=0, ∅=0]" ] }, { @@ -13988,7 +13966,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 17.07blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" ] }, { @@ -14010,7 +13988,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.49blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=1, ✔=96, ✗=0, ∅=0]" ] }, { @@ -14032,7 +14010,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.49blocks/s, ⧗=0, ▶=1, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.58blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" ] }, { @@ -14054,7 +14032,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.49blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 18.12blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" ] }, { @@ -14076,7 +14054,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.49blocks/s, ⧗=0, ▶=1, ✔=97, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 18.12blocks/s, ⧗=0, ▶=1, ✔=97, ✗=0, ∅=0]" ] }, { @@ -14098,7 +14076,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.49blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 18.12blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" ] }, { @@ -14120,7 +14098,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.46blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 18.12blocks/s, ⧗=0, ▶=1, ✔=98, ✗=0, ∅=0]" ] }, { @@ -14142,7 +14120,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.46blocks/s, ⧗=0, ▶=1, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 18.12blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" ] }, { @@ -14164,7 +14142,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.46blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.73blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" ] }, { @@ -14186,7 +14164,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.46blocks/s, ⧗=0, ▶=1, ✔=99, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.73blocks/s, ⧗=0, ▶=1, ✔=99, ✗=0, ∅=0]" ] }, { @@ -14208,7 +14186,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.46blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.73blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" ] }, { @@ -14230,7 +14208,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.93blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 17.73blocks/s, ⧗=0, ▶=1, ✔=100, ✗=0, ∅=0]" ] }, { @@ -14252,7 +14230,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.93blocks/s, ⧗=0, ▶=1, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 17.73blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" ] }, { @@ -14274,7 +14252,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.93blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.64blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" ] }, { @@ -14296,7 +14274,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 16.93blocks/s, ⧗=0, ▶=1, ✔=101, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.64blocks/s, ⧗=0, ▶=1, ✔=101, ✗=0, ∅=0]" ] }, { @@ -14318,7 +14296,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 16.93blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.64blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" ] }, { @@ -14340,7 +14318,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.17blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.64blocks/s, ⧗=0, ▶=1, ✔=102, ✗=0, ∅=0]" ] }, { @@ -14362,7 +14340,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.17blocks/s, ⧗=0, ▶=1, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.64blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" ] }, { @@ -14384,7 +14362,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.17blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 17.94blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" ] }, { @@ -14406,7 +14384,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 17.17blocks/s, ⧗=0, ▶=1, ✔=103, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 17.94blocks/s, ⧗=0, ▶=1, ✔=103, ✗=0, ∅=0]" ] }, { @@ -14428,7 +14406,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 17.17blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 17.94blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" ] }, { @@ -14450,7 +14428,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.30blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:05<00:06, 17.94blocks/s, ⧗=0, ▶=1, ✔=104, ✗=0, ∅=0]" ] }, { @@ -14472,7 +14450,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.30blocks/s, ⧗=0, ▶=1, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:05<00:06, 17.94blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" ] }, { @@ -14494,7 +14472,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.30blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:05<00:06, 17.75blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" ] }, { @@ -14516,7 +14494,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.30blocks/s, ⧗=0, ▶=1, ✔=105, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:05<00:06, 17.75blocks/s, ⧗=0, ▶=1, ✔=105, ✗=0, ∅=0]" ] }, { @@ -14538,7 +14516,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.30blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.75blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" ] }, { @@ -14560,7 +14538,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.49blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.75blocks/s, ⧗=0, ▶=1, ✔=106, ✗=0, ∅=0]" ] }, { @@ -14582,7 +14560,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.49blocks/s, ⧗=0, ▶=1, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.75blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" ] }, { @@ -14604,7 +14582,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.49blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.95blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" ] }, { @@ -14626,7 +14604,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.49blocks/s, ⧗=0, ▶=1, ✔=107, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.95blocks/s, ⧗=0, ▶=1, ✔=107, ✗=0, ∅=0]" ] }, { @@ -14648,7 +14626,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.49blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.95blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" ] }, { @@ -14670,7 +14648,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.96blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.95blocks/s, ⧗=0, ▶=1, ✔=108, ✗=0, ∅=0]" ] }, { @@ -14692,7 +14670,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.96blocks/s, ⧗=0, ▶=1, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.95blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" ] }, { @@ -14714,7 +14692,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.96blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 17.87blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" ] }, { @@ -14736,7 +14714,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 17.87blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" ] }, { @@ -14758,7 +14736,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 17.87blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" ] }, { @@ -14780,7 +14758,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=1, ✔=110, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.87blocks/s, ⧗=0, ▶=1, ✔=110, ✗=0, ∅=0]" ] }, { @@ -14802,7 +14780,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.87blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" ] }, { @@ -14824,7 +14802,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.79blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 17.91blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" ] }, { @@ -14846,7 +14824,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.79blocks/s, ⧗=0, ▶=1, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 17.91blocks/s, ⧗=0, ▶=1, ✔=111, ✗=0, ∅=0]" ] }, { @@ -14868,7 +14846,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.79blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 17.91blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" ] }, { @@ -14890,7 +14868,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.79blocks/s, ⧗=0, ▶=1, ✔=112, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 17.91blocks/s, ⧗=0, ▶=1, ✔=112, ✗=0, ∅=0]" ] }, { @@ -14912,7 +14890,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.79blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 17.91blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" ] }, { @@ -14934,7 +14912,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.07blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 17.91blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" ] }, { @@ -14956,7 +14934,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.07blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" ] }, { @@ -14978,7 +14956,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.07blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" ] }, { @@ -15000,7 +14978,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 19.07blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" ] }, { @@ -15022,7 +15000,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 19.07blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" ] }, { @@ -15044,7 +15022,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 19.07blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" ] }, { @@ -15066,7 +15044,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 19.26blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" ] }, { @@ -15088,7 +15066,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 19.26blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 19.11blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" ] }, { @@ -15110,7 +15088,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 19.26blocks/s, ⧗=0, ▶=1, ✔=116, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 19.11blocks/s, ⧗=0, ▶=1, ✔=116, ✗=0, ∅=0]" ] }, { @@ -15132,7 +15110,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 19.26blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 19.11blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" ] }, { @@ -15154,7 +15132,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 19.15blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 19.11blocks/s, ⧗=0, ▶=1, ✔=117, ✗=0, ∅=0]" ] }, { @@ -15176,7 +15154,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 19.15blocks/s, ⧗=0, ▶=1, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 19.11blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" ] }, { @@ -15198,7 +15176,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 19.15blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" ] }, { @@ -15220,7 +15198,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 19.15blocks/s, ⧗=0, ▶=1, ✔=118, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=1, ✔=118, ✗=0, ∅=0]" ] }, { @@ -15242,7 +15220,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 19.15blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" ] }, { @@ -15264,7 +15242,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 19.19blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=1, ✔=119, ✗=0, ∅=0]" ] }, { @@ -15286,7 +15264,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 19.19blocks/s, ⧗=0, ▶=1, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" ] }, { @@ -15308,7 +15286,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 19.19blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 19.04blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" ] }, { @@ -15330,7 +15308,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 19.19blocks/s, ⧗=0, ▶=1, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 19.04blocks/s, ⧗=0, ▶=1, ✔=120, ✗=0, ∅=0]" ] }, { @@ -15352,7 +15330,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 19.19blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 19.04blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" ] }, { @@ -15374,7 +15352,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:04, 19.26blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:04, 19.04blocks/s, ⧗=0, ▶=1, ✔=121, ✗=0, ∅=0]" ] }, { @@ -15396,7 +15374,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:04, 19.26blocks/s, ⧗=0, ▶=1, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:04, 19.04blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" ] }, { @@ -15418,7 +15396,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:04, 19.26blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:06<00:05, 18.68blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" ] }, { @@ -15440,7 +15418,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:06<00:04, 19.26blocks/s, ⧗=0, ▶=1, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:06<00:05, 18.68blocks/s, ⧗=0, ▶=1, ✔=122, ✗=0, ∅=0]" ] }, { @@ -15462,7 +15440,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:04, 19.26blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:06<00:05, 18.68blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" ] }, { @@ -15484,7 +15462,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.45blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:06<00:04, 18.68blocks/s, ⧗=0, ▶=1, ✔=123, ✗=0, ∅=0]" ] }, { @@ -15506,7 +15484,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.45blocks/s, ⧗=0, ▶=1, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:04, 18.68blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" ] }, { @@ -15528,7 +15506,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.45blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.09blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" ] }, { @@ -15550,7 +15528,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:04, 18.45blocks/s, ⧗=0, ▶=1, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.09blocks/s, ⧗=0, ▶=1, ✔=124, ✗=0, ∅=0]" ] }, { @@ -15572,7 +15550,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:04, 18.45blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.09blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" ] }, { @@ -15594,7 +15572,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 18.13blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.09blocks/s, ⧗=0, ▶=1, ✔=125, ✗=0, ∅=0]" ] }, { @@ -15616,7 +15594,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 18.13blocks/s, ⧗=0, ▶=1, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.09blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" ] }, { @@ -15638,7 +15616,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 18.13blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 16.76blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" ] }, { @@ -15660,7 +15638,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:04, 18.13blocks/s, ⧗=0, ▶=1, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 16.76blocks/s, ⧗=0, ▶=1, ✔=126, ✗=0, ∅=0]" ] }, { @@ -15682,7 +15660,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:04, 18.13blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 16.76blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" ] }, { @@ -15704,7 +15682,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 18.43blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 16.76blocks/s, ⧗=0, ▶=1, ✔=127, ✗=0, ∅=0]" ] }, { @@ -15726,7 +15704,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 18.43blocks/s, ⧗=0, ▶=1, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 16.76blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" ] }, { @@ -15748,7 +15726,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 18.43blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:05, 17.42blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" ] }, { @@ -15770,7 +15748,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:04, 18.43blocks/s, ⧗=0, ▶=1, ✔=128, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:05, 17.42blocks/s, ⧗=0, ▶=1, ✔=128, ✗=0, ∅=0]" ] }, { @@ -15792,7 +15770,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:04, 18.43blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:05, 17.42blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" ] }, { @@ -15814,7 +15792,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 18.55blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 17.42blocks/s, ⧗=0, ▶=1, ✔=129, ✗=0, ∅=0]" ] }, { @@ -15836,7 +15814,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 18.55blocks/s, ⧗=0, ▶=1, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 17.42blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" ] }, { @@ -15858,7 +15836,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 18.55blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" ] }, { @@ -15880,7 +15858,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 18.55blocks/s, ⧗=0, ▶=1, ✔=130, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=1, ✔=130, ✗=0, ∅=0]" ] }, { @@ -15902,7 +15880,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 18.55blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" ] }, { @@ -15924,7 +15902,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 18.57blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=1, ✔=131, ✗=0, ∅=0]" ] }, { @@ -15946,7 +15924,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 18.57blocks/s, ⧗=0, ▶=1, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" ] }, { @@ -15968,7 +15946,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 18.57blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.14blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" ] }, { @@ -15990,7 +15968,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.57blocks/s, ⧗=0, ▶=1, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.14blocks/s, ⧗=0, ▶=1, ✔=132, ✗=0, ∅=0]" ] }, { @@ -16012,7 +15990,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.57blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.14blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" ] }, { @@ -16034,7 +16012,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.14blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" ] }, { @@ -16056,7 +16034,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.14blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" ] }, { @@ -16078,7 +16056,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.53blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" ] }, { @@ -16100,7 +16078,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=1, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.53blocks/s, ⧗=0, ▶=1, ✔=134, ✗=0, ∅=0]" ] }, { @@ -16122,7 +16100,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.53blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" ] }, { @@ -16144,7 +16122,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.53blocks/s, ⧗=0, ▶=1, ✔=135, ✗=0, ∅=0]" ] }, { @@ -16166,7 +16144,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=1, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.53blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" ] }, { @@ -16188,7 +16166,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.40blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" ] }, { @@ -16210,7 +16188,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=1, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.40blocks/s, ⧗=0, ▶=1, ✔=136, ✗=0, ∅=0]" ] }, { @@ -16232,7 +16210,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.40blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" ] }, { @@ -16254,7 +16232,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.40blocks/s, ⧗=0, ▶=1, ✔=137, ✗=0, ∅=0]" ] }, { @@ -16276,7 +16254,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=1, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.40blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" ] }, { @@ -16298,7 +16276,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 17.85blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" ] }, { @@ -16320,7 +16298,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=1, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 17.85blocks/s, ⧗=0, ▶=1, ✔=138, ✗=0, ∅=0]" ] }, { @@ -16342,7 +16320,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 17.85blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" ] }, { @@ -16364,7 +16342,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 18.89blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 17.85blocks/s, ⧗=0, ▶=1, ✔=139, ✗=0, ∅=0]" ] }, { @@ -16386,7 +16364,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 18.89blocks/s, ⧗=0, ▶=1, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 17.85blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" ] }, { @@ -16408,7 +16386,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 18.89blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:07<00:04, 17.81blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" ] }, { @@ -16430,7 +16408,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:07<00:04, 18.89blocks/s, ⧗=0, ▶=1, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:07<00:04, 17.81blocks/s, ⧗=0, ▶=1, ✔=140, ✗=0, ∅=0]" ] }, { @@ -16452,7 +16430,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 18.89blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:07<00:04, 17.81blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" ] }, { @@ -16474,7 +16452,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.47blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:07<00:04, 17.81blocks/s, ⧗=0, ▶=1, ✔=141, ✗=0, ∅=0]" ] }, { @@ -16496,7 +16474,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.47blocks/s, ⧗=0, ▶=1, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.81blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" ] }, { @@ -16518,7 +16496,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.47blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 17.15blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" ] }, { @@ -16540,7 +16518,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 17.47blocks/s, ⧗=0, ▶=1, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 17.15blocks/s, ⧗=0, ▶=1, ✔=142, ✗=0, ∅=0]" ] }, { @@ -16562,7 +16540,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 17.47blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 17.15blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" ] }, { @@ -16584,7 +16562,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 17.15blocks/s, ⧗=0, ▶=1, ✔=143, ✗=0, ∅=0]" ] }, { @@ -16606,7 +16584,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=1, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 17.15blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" ] }, { @@ -16628,7 +16606,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:04, 17.60blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" ] }, { @@ -16650,7 +16628,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=1, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:04, 17.60blocks/s, ⧗=0, ▶=1, ✔=144, ✗=0, ∅=0]" ] }, { @@ -16672,7 +16650,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:04, 17.60blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" ] }, { @@ -16694,7 +16672,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.36blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:04, 17.60blocks/s, ⧗=0, ▶=1, ✔=145, ✗=0, ∅=0]" ] }, { @@ -16716,7 +16694,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.36blocks/s, ⧗=0, ▶=1, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:04, 17.60blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" ] }, { @@ -16738,7 +16716,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.36blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 17.81blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" ] }, { @@ -16760,7 +16738,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.36blocks/s, ⧗=0, ▶=1, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 17.81blocks/s, ⧗=0, ▶=1, ✔=146, ✗=0, ∅=0]" ] }, { @@ -16782,7 +16760,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.36blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 17.81blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" ] }, { @@ -16804,7 +16782,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 18.06blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 17.81blocks/s, ⧗=0, ▶=1, ✔=147, ✗=0, ∅=0]" ] }, { @@ -16826,7 +16804,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 18.06blocks/s, ⧗=0, ▶=1, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 17.81blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" ] }, { @@ -16848,7 +16826,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 18.06blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.45blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" ] }, { @@ -16870,7 +16848,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 18.06blocks/s, ⧗=0, ▶=1, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.45blocks/s, ⧗=0, ▶=1, ✔=148, ✗=0, ∅=0]" ] }, { @@ -16892,7 +16870,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 18.06blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.45blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" ] }, { @@ -16914,7 +16892,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.66blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.45blocks/s, ⧗=0, ▶=1, ✔=149, ✗=0, ∅=0]" ] }, { @@ -16936,7 +16914,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.66blocks/s, ⧗=0, ▶=1, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.45blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" ] }, { @@ -16958,7 +16936,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.66blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" ] }, { @@ -16980,7 +16958,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.66blocks/s, ⧗=0, ▶=1, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=1, ✔=150, ✗=0, ∅=0]" ] }, { @@ -17002,7 +16980,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.66blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" ] }, { @@ -17024,7 +17002,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.28blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=1, ✔=151, ✗=0, ∅=0]" ] }, { @@ -17046,7 +17024,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.28blocks/s, ⧗=0, ▶=1, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" ] }, { @@ -17068,7 +17046,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.28blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 16.73blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" ] }, { @@ -17090,7 +17068,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.28blocks/s, ⧗=0, ▶=1, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 16.73blocks/s, ⧗=0, ▶=1, ✔=152, ✗=0, ∅=0]" ] }, { @@ -17112,7 +17090,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.28blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 16.73blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" ] }, { @@ -17134,7 +17112,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.88blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.73blocks/s, ⧗=0, ▶=1, ✔=153, ✗=0, ∅=0]" ] }, { @@ -17156,7 +17134,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.88blocks/s, ⧗=0, ▶=1, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.73blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" ] }, { @@ -17178,7 +17156,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.88blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.23blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" ] }, { @@ -17200,7 +17178,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.88blocks/s, ⧗=0, ▶=1, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.23blocks/s, ⧗=0, ▶=1, ✔=154, ✗=0, ∅=0]" ] }, { @@ -17222,7 +17200,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.88blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.23blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" ] }, { @@ -17244,7 +17222,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.86blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.23blocks/s, ⧗=0, ▶=1, ✔=155, ✗=0, ∅=0]" ] }, { @@ -17266,7 +17244,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.86blocks/s, ⧗=0, ▶=1, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.23blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" ] }, { @@ -17288,7 +17266,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.86blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.56blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" ] }, { @@ -17310,7 +17288,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.86blocks/s, ⧗=0, ▶=1, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.56blocks/s, ⧗=0, ▶=1, ✔=156, ✗=0, ∅=0]" ] }, { @@ -17332,7 +17310,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.86blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.56blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" ] }, { @@ -17354,7 +17332,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:08<00:03, 16.39blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:08<00:03, 16.56blocks/s, ⧗=0, ▶=1, ✔=157, ✗=0, ∅=0]" ] }, { @@ -17376,7 +17354,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:08<00:03, 16.39blocks/s, ⧗=0, ▶=1, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.56blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" ] }, { @@ -17398,7 +17376,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.39blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 15.07blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" ] }, { @@ -17420,7 +17398,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.39blocks/s, ⧗=0, ▶=1, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 15.07blocks/s, ⧗=0, ▶=1, ✔=158, ✗=0, ∅=0]" ] }, { @@ -17442,7 +17420,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.39blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 15.07blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" ] }, { @@ -17464,7 +17442,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.07blocks/s, ⧗=0, ▶=1, ✔=159, ✗=0, ∅=0]" ] }, { @@ -17486,7 +17464,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=1, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.07blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" ] }, { @@ -17508,7 +17486,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" ] }, { @@ -17530,7 +17508,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=1, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=1, ✔=160, ✗=0, ∅=0]" ] }, { @@ -17552,7 +17530,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" ] }, { @@ -17574,7 +17552,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=1, ✔=161, ✗=0, ∅=0]" ] }, { @@ -17596,7 +17574,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=1, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" ] }, { @@ -17618,7 +17596,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" ] }, { @@ -17640,7 +17618,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=1, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=1, ✔=162, ✗=0, ∅=0]" ] }, { @@ -17662,7 +17640,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" ] }, { @@ -17684,7 +17662,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.58blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=1, ✔=163, ✗=0, ∅=0]" ] }, { @@ -17706,7 +17684,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.58blocks/s, ⧗=0, ▶=1, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 14.41blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" ] }, { @@ -17728,7 +17706,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.58blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" ] }, { @@ -17750,7 +17728,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.58blocks/s, ⧗=0, ▶=1, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=1, ✔=164, ✗=0, ∅=0]" ] }, { @@ -17772,7 +17750,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.58blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" ] }, { @@ -17794,7 +17772,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=1, ✔=165, ✗=0, ∅=0]" ] }, { @@ -17816,7 +17794,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=1, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" ] }, { @@ -17838,7 +17816,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.19blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" ] }, { @@ -17860,7 +17838,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=1, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.19blocks/s, ⧗=0, ▶=1, ✔=166, ✗=0, ∅=0]" ] }, { @@ -17882,7 +17860,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.19blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" ] }, { @@ -17904,7 +17882,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 16.25blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.19blocks/s, ⧗=0, ▶=1, ✔=167, ✗=0, ∅=0]" ] }, { @@ -17926,7 +17904,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 16.25blocks/s, ⧗=0, ▶=1, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.19blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" ] }, { @@ -17948,7 +17926,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 16.25blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" ] }, { @@ -17970,7 +17948,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:02, 16.25blocks/s, ⧗=0, ▶=1, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=1, ✔=168, ✗=0, ∅=0]" ] }, { @@ -17992,7 +17970,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:02, 16.25blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" ] }, { @@ -18014,7 +17992,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 16.71blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=1, ✔=169, ✗=0, ∅=0]" ] }, { @@ -18036,7 +18014,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 16.71blocks/s, ⧗=0, ▶=1, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" ] }, { @@ -18058,7 +18036,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 16.71blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.80blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" ] }, { @@ -18080,7 +18058,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 16.71blocks/s, ⧗=0, ▶=1, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.80blocks/s, ⧗=0, ▶=1, ✔=170, ✗=0, ∅=0]" ] }, { @@ -18102,7 +18080,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 16.71blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.80blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" ] }, { @@ -18124,7 +18102,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 16.52blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.80blocks/s, ⧗=0, ▶=1, ✔=171, ✗=0, ∅=0]" ] }, { @@ -18146,7 +18124,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 16.52blocks/s, ⧗=0, ▶=1, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.80blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" ] }, { @@ -18168,7 +18146,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 16.52blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:09<00:02, 14.80blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" ] }, { @@ -18190,7 +18168,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:09<00:02, 16.52blocks/s, ⧗=0, ▶=1, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:09<00:02, 14.80blocks/s, ⧗=0, ▶=1, ✔=172, ✗=0, ∅=0]" ] }, { @@ -18212,7 +18190,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:09<00:02, 16.52blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 14.80blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" ] }, { @@ -18234,7 +18212,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:09<00:02, 16.45blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 14.80blocks/s, ⧗=0, ▶=1, ✔=173, ✗=0, ∅=0]" ] }, { @@ -18256,7 +18234,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:09<00:02, 16.45blocks/s, ⧗=0, ▶=1, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 14.80blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" ] }, { @@ -18278,7 +18256,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 16.45blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 14.92blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" ] }, { @@ -18300,7 +18278,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 16.45blocks/s, ⧗=0, ▶=1, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 14.92blocks/s, ⧗=0, ▶=1, ✔=174, ✗=0, ∅=0]" ] }, { @@ -18322,7 +18300,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 16.45blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 14.92blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" ] }, { @@ -18344,7 +18322,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.66blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 14.92blocks/s, ⧗=0, ▶=1, ✔=175, ✗=0, ∅=0]" ] }, { @@ -18366,7 +18344,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.66blocks/s, ⧗=0, ▶=1, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 14.92blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" ] }, { @@ -18388,7 +18366,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.66blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 15.57blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" ] }, { @@ -18410,7 +18388,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.66blocks/s, ⧗=0, ▶=1, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 15.57blocks/s, ⧗=0, ▶=1, ✔=176, ✗=0, ∅=0]" ] }, { @@ -18432,7 +18410,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.66blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 15.57blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" ] }, { @@ -18454,7 +18432,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 15.57blocks/s, ⧗=0, ▶=1, ✔=177, ✗=0, ∅=0]" ] }, { @@ -18476,7 +18454,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=1, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 15.57blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" ] }, { @@ -18498,7 +18476,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" ] }, { @@ -18520,7 +18498,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=1, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=1, ✔=178, ✗=0, ∅=0]" ] }, { @@ -18542,7 +18520,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" ] }, { @@ -18564,7 +18542,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.34blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=1, ✔=179, ✗=0, ∅=0]" ] }, { @@ -18586,7 +18564,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.34blocks/s, ⧗=0, ▶=1, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" ] }, { @@ -18608,7 +18586,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.34blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.25blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" ] }, { @@ -18630,7 +18608,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.34blocks/s, ⧗=0, ▶=1, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.25blocks/s, ⧗=0, ▶=1, ✔=180, ✗=0, ∅=0]" ] }, { @@ -18652,7 +18630,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.34blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.25blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" ] }, { @@ -18674,7 +18652,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 17.06blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.25blocks/s, ⧗=0, ▶=1, ✔=181, ✗=0, ∅=0]" ] }, { @@ -18696,7 +18674,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 17.06blocks/s, ⧗=0, ▶=1, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.25blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" ] }, { @@ -18718,7 +18696,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 17.06blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.16blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" ] }, { @@ -18740,7 +18718,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.06blocks/s, ⧗=0, ▶=1, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.16blocks/s, ⧗=0, ▶=1, ✔=182, ✗=0, ∅=0]" ] }, { @@ -18762,7 +18740,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.06blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.16blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" ] }, { @@ -18784,7 +18762,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.02blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.16blocks/s, ⧗=0, ▶=1, ✔=183, ✗=0, ∅=0]" ] }, { @@ -18806,7 +18784,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.02blocks/s, ⧗=0, ▶=1, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.16blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" ] }, { @@ -18828,7 +18806,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.02blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 16.86blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" ] }, { @@ -18850,7 +18828,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.02blocks/s, ⧗=0, ▶=1, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 16.86blocks/s, ⧗=0, ▶=1, ✔=184, ✗=0, ∅=0]" ] }, { @@ -18872,7 +18850,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.02blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 16.86blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" ] }, { @@ -18894,7 +18872,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 16.86blocks/s, ⧗=0, ▶=1, ✔=185, ✗=0, ∅=0]" ] }, { @@ -18916,7 +18894,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=1, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 16.86blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" ] }, { @@ -18938,7 +18916,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.37blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" ] }, { @@ -18960,7 +18938,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=1, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.37blocks/s, ⧗=0, ▶=1, ✔=186, ✗=0, ∅=0]" ] }, { @@ -18982,7 +18960,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.37blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" ] }, { @@ -19004,7 +18982,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 16.72blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.37blocks/s, ⧗=0, ▶=1, ✔=187, ✗=0, ∅=0]" ] }, { @@ -19026,7 +19004,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 16.72blocks/s, ⧗=0, ▶=1, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.37blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" ] }, { @@ -19048,7 +19026,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 16.72blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 17.17blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" ] }, { @@ -19070,7 +19048,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 16.72blocks/s, ⧗=0, ▶=1, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 17.17blocks/s, ⧗=0, ▶=1, ✔=188, ✗=0, ∅=0]" ] }, { @@ -19092,7 +19070,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 16.72blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 17.17blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" ] }, { @@ -19114,7 +19092,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:10<00:01, 16.56blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:10<00:01, 17.17blocks/s, ⧗=0, ▶=1, ✔=189, ✗=0, ∅=0]" ] }, { @@ -19136,7 +19114,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:10<00:01, 16.56blocks/s, ⧗=0, ▶=1, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.17blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" ] }, { @@ -19158,7 +19136,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:10<00:01, 16.56blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" ] }, { @@ -19180,7 +19158,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:10<00:01, 16.56blocks/s, ⧗=0, ▶=1, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=1, ✔=190, ✗=0, ∅=0]" ] }, { @@ -19202,7 +19180,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 16.56blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" ] }, { @@ -19224,7 +19202,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.51blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=1, ✔=191, ✗=0, ∅=0]" ] }, { @@ -19246,7 +19224,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.51blocks/s, ⧗=0, ▶=1, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" ] }, { @@ -19268,7 +19246,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.51blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.46blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" ] }, { @@ -19290,7 +19268,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.51blocks/s, ⧗=0, ▶=1, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.46blocks/s, ⧗=0, ▶=1, ✔=192, ✗=0, ∅=0]" ] }, { @@ -19312,7 +19290,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.51blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.46blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" ] }, { @@ -19334,7 +19312,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.04blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.46blocks/s, ⧗=0, ▶=1, ✔=193, ✗=0, ∅=0]" ] }, { @@ -19356,7 +19334,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.04blocks/s, ⧗=0, ▶=1, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.46blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" ] }, { @@ -19378,7 +19356,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.04blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.72blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" ] }, { @@ -19400,7 +19378,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.04blocks/s, ⧗=0, ▶=1, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.72blocks/s, ⧗=0, ▶=1, ✔=194, ✗=0, ∅=0]" ] }, { @@ -19422,7 +19400,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.04blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.72blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" ] }, { @@ -19444,7 +19422,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 14.90blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 16.72blocks/s, ⧗=0, ▶=1, ✔=195, ✗=0, ∅=0]" ] }, { @@ -19466,7 +19444,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 14.90blocks/s, ⧗=0, ▶=1, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 16.72blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" ] }, { @@ -19488,7 +19466,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 14.90blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" ] }, { @@ -19510,7 +19488,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 14.90blocks/s, ⧗=0, ▶=1, ✔=196, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=1, ✔=196, ✗=0, ∅=0]" ] }, { @@ -19532,7 +19510,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 14.90blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" ] }, { @@ -19554,7 +19532,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 14.91blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=1, ✔=197, ✗=0, ∅=0]" ] }, { @@ -19576,7 +19554,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 14.91blocks/s, ⧗=0, ▶=1, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.07blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" ] }, { @@ -19598,7 +19576,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 14.91blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" ] }, { @@ -19620,7 +19598,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 14.91blocks/s, ⧗=0, ▶=1, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=1, ✔=198, ✗=0, ∅=0]" ] }, { @@ -19642,7 +19620,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 14.91blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" ] }, { @@ -19664,7 +19642,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 15.45blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=1, ✔=199, ✗=0, ∅=0]" ] }, { @@ -19686,7 +19664,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 15.45blocks/s, ⧗=0, ▶=1, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" ] }, { @@ -19708,7 +19686,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 15.45blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.14blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" ] }, { @@ -19730,7 +19708,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:01, 15.45blocks/s, ⧗=0, ▶=1, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.14blocks/s, ⧗=0, ▶=1, ✔=200, ✗=0, ∅=0]" ] }, { @@ -19752,7 +19730,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:01, 15.45blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.14blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" ] }, { @@ -19774,7 +19752,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 15.60blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.14blocks/s, ⧗=0, ▶=1, ✔=201, ✗=0, ∅=0]" ] }, { @@ -19796,7 +19774,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 15.60blocks/s, ⧗=0, ▶=1, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.14blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" ] }, { @@ -19818,7 +19796,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 15.60blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" ] }, { @@ -19840,7 +19818,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 15.60blocks/s, ⧗=0, ▶=1, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=1, ✔=202, ✗=0, ∅=0]" ] }, { @@ -19862,7 +19840,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 15.60blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" ] }, { @@ -19884,7 +19862,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.31blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=1, ✔=203, ✗=0, ∅=0]" ] }, { @@ -19906,7 +19884,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.31blocks/s, ⧗=0, ▶=1, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" ] }, { @@ -19928,7 +19906,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.31blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.80blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" ] }, { @@ -19950,7 +19928,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 16.31blocks/s, ⧗=0, ▶=1, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.80blocks/s, ⧗=0, ▶=1, ✔=204, ✗=0, ∅=0]" ] }, { @@ -19972,7 +19950,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 16.31blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.80blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" ] }, { @@ -19994,7 +19972,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.11blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.80blocks/s, ⧗=0, ▶=1, ✔=205, ✗=0, ∅=0]" ] }, { @@ -20016,7 +19994,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.11blocks/s, ⧗=0, ▶=1, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.80blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" ] }, { @@ -20038,7 +20016,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.11blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:11<00:00, 18.02blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" ] }, { @@ -20060,7 +20038,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:11<00:00, 17.11blocks/s, ⧗=0, ▶=1, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:11<00:00, 18.02blocks/s, ⧗=0, ▶=1, ✔=206, ✗=0, ∅=0]" ] }, { @@ -20082,7 +20060,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.11blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 18.02blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" ] }, { @@ -20104,7 +20082,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 16.58blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 18.02blocks/s, ⧗=0, ▶=1, ✔=207, ✗=0, ∅=0]" ] }, { @@ -20126,7 +20104,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 16.58blocks/s, ⧗=0, ▶=1, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 18.02blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" ] }, { @@ -20148,7 +20126,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 16.58blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.62blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" ] }, { @@ -20170,7 +20148,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 16.58blocks/s, ⧗=0, ▶=1, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.62blocks/s, ⧗=0, ▶=1, ✔=208, ✗=0, ∅=0]" ] }, { @@ -20192,7 +20170,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 16.58blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.62blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" ] }, { @@ -20214,7 +20192,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.04blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.62blocks/s, ⧗=0, ▶=1, ✔=209, ✗=0, ∅=0]" ] }, { @@ -20236,7 +20214,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.04blocks/s, ⧗=0, ▶=1, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.62blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" ] }, { @@ -20258,7 +20236,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.04blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.95blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" ] }, { @@ -20280,7 +20258,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.04blocks/s, ⧗=0, ▶=1, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.95blocks/s, ⧗=0, ▶=1, ✔=210, ✗=0, ∅=0]" ] }, { @@ -20302,7 +20280,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.04blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.95blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" ] }, { @@ -20324,7 +20302,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.11blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.95blocks/s, ⧗=0, ▶=1, ✔=211, ✗=0, ∅=0]" ] }, { @@ -20346,7 +20324,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.11blocks/s, ⧗=0, ▶=1, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.95blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" ] }, { @@ -20368,7 +20346,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.11blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 18.21blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" ] }, { @@ -20390,7 +20368,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.11blocks/s, ⧗=0, ▶=1, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 18.21blocks/s, ⧗=0, ▶=1, ✔=212, ✗=0, ∅=0]" ] }, { @@ -20412,7 +20390,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.11blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 18.21blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" ] }, { @@ -20434,7 +20412,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.35blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 18.21blocks/s, ⧗=0, ▶=1, ✔=213, ✗=0, ∅=0]" ] }, { @@ -20456,7 +20434,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.35blocks/s, ⧗=0, ▶=1, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 18.21blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" ] }, { @@ -20478,7 +20456,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.35blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" ] }, { @@ -20500,7 +20478,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.35blocks/s, ⧗=0, ▶=1, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=1, ✔=214, ✗=0, ∅=0]" ] }, { @@ -20522,7 +20500,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.35blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" ] }, { @@ -20544,7 +20522,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.78blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=1, ✔=215, ✗=0, ∅=0]" ] }, { @@ -20566,7 +20544,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.78blocks/s, ⧗=0, ▶=1, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -20588,7 +20566,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.78blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ▶: 100%|██████████| 216/216 [00:12<00:00, 17.15blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -20610,7 +20588,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.78blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.15blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -20625,7 +20603,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.23blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_500/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.24blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -20673,7 +20651,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 501/2000 [03:17<4:21:24, 10.46s/it, loss=0.57]" + "training until 2000: 25%|██▌ | 501/2000 [03:14<4:14:33, 10.19s/it, loss=0.624]" ] }, { @@ -20681,7 +20659,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 501/2000 [03:17<4:21:24, 10.46s/it, loss=0.513]" + "training until 2000: 25%|██▌ | 501/2000 [03:14<4:14:33, 10.19s/it, loss=0.709]" ] }, { @@ -20689,7 +20667,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 502/2000 [03:17<3:05:20, 7.42s/it, loss=0.513]" + "training until 2000: 25%|██▌ | 502/2000 [03:14<3:00:22, 7.22s/it, loss=0.709]" ] }, { @@ -20697,7 +20675,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 502/2000 [03:17<3:05:20, 7.42s/it, loss=0.58] " + "training until 2000: 25%|██▌ | 502/2000 [03:14<3:00:22, 7.22s/it, loss=0.654]" ] }, { @@ -20705,7 +20683,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 503/2000 [03:17<2:12:01, 5.29s/it, loss=0.58]" + "training until 2000: 25%|██▌ | 503/2000 [03:14<2:08:34, 5.15s/it, loss=0.654]" ] }, { @@ -20713,7 +20691,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 503/2000 [03:17<2:12:01, 5.29s/it, loss=0.547]" + "training until 2000: 25%|██▌ | 503/2000 [03:14<2:08:34, 5.15s/it, loss=0.71] " ] }, { @@ -20721,7 +20699,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 504/2000 [03:18<1:34:46, 3.80s/it, loss=0.547]" + "training until 2000: 25%|██▌ | 504/2000 [03:15<1:32:17, 3.70s/it, loss=0.71]" ] }, { @@ -20729,7 +20707,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 504/2000 [03:18<1:34:46, 3.80s/it, loss=0.553]" + "training until 2000: 25%|██▌ | 504/2000 [03:15<1:32:17, 3.70s/it, loss=0.659]" ] }, { @@ -20737,7 +20715,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 505/2000 [03:18<1:08:40, 2.76s/it, loss=0.553]" + "training until 2000: 25%|██▌ | 505/2000 [03:15<1:06:53, 2.68s/it, loss=0.659]" ] }, { @@ -20745,7 +20723,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 505/2000 [03:18<1:08:40, 2.76s/it, loss=0.557]" + "training until 2000: 25%|██▌ | 505/2000 [03:15<1:06:53, 2.68s/it, loss=0.697]" ] }, { @@ -20753,7 +20731,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 506/2000 [03:18<50:25, 2.03s/it, loss=0.557] " + "training until 2000: 25%|██▌ | 506/2000 [03:15<49:11, 1.98s/it, loss=0.697] " ] }, { @@ -20761,7 +20739,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 506/2000 [03:18<50:25, 2.03s/it, loss=0.575]" + "training until 2000: 25%|██▌ | 506/2000 [03:15<49:11, 1.98s/it, loss=0.736]" ] }, { @@ -20769,7 +20747,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 507/2000 [03:19<37:37, 1.51s/it, loss=0.575]" + "training until 2000: 25%|██▌ | 507/2000 [03:16<36:50, 1.48s/it, loss=0.736]" ] }, { @@ -20777,7 +20755,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 507/2000 [03:19<37:37, 1.51s/it, loss=0.601]" + "training until 2000: 25%|██▌ | 507/2000 [03:16<36:50, 1.48s/it, loss=0.618]" ] }, { @@ -20785,7 +20763,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 508/2000 [03:19<28:39, 1.15s/it, loss=0.601]" + "training until 2000: 25%|██▌ | 508/2000 [03:16<28:07, 1.13s/it, loss=0.618]" ] }, { @@ -20793,7 +20771,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 508/2000 [03:19<28:39, 1.15s/it, loss=0.564]" + "training until 2000: 25%|██▌ | 508/2000 [03:16<28:07, 1.13s/it, loss=0.633]" ] }, { @@ -20801,7 +20779,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 509/2000 [03:19<22:24, 1.11it/s, loss=0.564]" + "training until 2000: 25%|██▌ | 509/2000 [03:16<22:03, 1.13it/s, loss=0.633]" ] }, { @@ -20809,7 +20787,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 25%|██▌ | 509/2000 [03:19<22:24, 1.11it/s, loss=0.622]" + "training until 2000: 25%|██▌ | 509/2000 [03:16<22:03, 1.13it/s, loss=0.674]" ] }, { @@ -20817,7 +20795,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 510/2000 [03:20<18:01, 1.38it/s, loss=0.622]" + "training until 2000: 26%|██▌ | 510/2000 [03:17<17:50, 1.39it/s, loss=0.674]" ] }, { @@ -20825,7 +20803,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 510/2000 [03:20<18:01, 1.38it/s, loss=0.542]" + "training until 2000: 26%|██▌ | 510/2000 [03:17<17:50, 1.39it/s, loss=0.621]" ] }, { @@ -20833,7 +20811,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 511/2000 [03:20<14:54, 1.67it/s, loss=0.542]" + "training until 2000: 26%|██▌ | 511/2000 [03:17<14:47, 1.68it/s, loss=0.621]" ] }, { @@ -20841,7 +20819,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 511/2000 [03:20<14:54, 1.67it/s, loss=0.539]" + "training until 2000: 26%|██▌ | 511/2000 [03:17<14:47, 1.68it/s, loss=0.699]" ] }, { @@ -20849,7 +20827,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 512/2000 [03:20<12:45, 1.94it/s, loss=0.539]" + "training until 2000: 26%|██▌ | 512/2000 [03:17<12:47, 1.94it/s, loss=0.699]" ] }, { @@ -20857,7 +20835,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 512/2000 [03:20<12:45, 1.94it/s, loss=0.538]" + "training until 2000: 26%|██▌ | 512/2000 [03:17<12:47, 1.94it/s, loss=0.656]" ] }, { @@ -20865,7 +20843,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 513/2000 [03:21<11:20, 2.18it/s, loss=0.538]" + "training until 2000: 26%|██▌ | 513/2000 [03:18<11:14, 2.20it/s, loss=0.656]" ] }, { @@ -20873,7 +20851,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 513/2000 [03:21<11:20, 2.18it/s, loss=0.542]" + "training until 2000: 26%|██▌ | 513/2000 [03:18<11:14, 2.20it/s, loss=0.631]" ] }, { @@ -20881,7 +20859,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 514/2000 [03:21<10:19, 2.40it/s, loss=0.542]" + "training until 2000: 26%|██▌ | 514/2000 [03:18<10:11, 2.43it/s, loss=0.631]" ] }, { @@ -20889,7 +20867,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 514/2000 [03:21<10:19, 2.40it/s, loss=0.581]" + "training until 2000: 26%|██▌ | 514/2000 [03:18<10:11, 2.43it/s, loss=0.602]" ] }, { @@ -20897,7 +20875,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 515/2000 [03:21<09:31, 2.60it/s, loss=0.581]" + "training until 2000: 26%|██▌ | 515/2000 [03:18<09:29, 2.61it/s, loss=0.602]" ] }, { @@ -20905,7 +20883,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 515/2000 [03:21<09:31, 2.60it/s, loss=0.575]" + "training until 2000: 26%|██▌ | 515/2000 [03:18<09:29, 2.61it/s, loss=0.662]" ] }, { @@ -20913,7 +20891,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 516/2000 [03:22<08:54, 2.77it/s, loss=0.575]" + "training until 2000: 26%|██▌ | 516/2000 [03:19<09:01, 2.74it/s, loss=0.662]" ] }, { @@ -20921,7 +20899,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 516/2000 [03:22<08:54, 2.77it/s, loss=0.736]" + "training until 2000: 26%|██▌ | 516/2000 [03:19<09:01, 2.74it/s, loss=0.671]" ] }, { @@ -20929,7 +20907,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 517/2000 [03:22<08:33, 2.89it/s, loss=0.736]" + "training until 2000: 26%|██▌ | 517/2000 [03:19<08:36, 2.87it/s, loss=0.671]" ] }, { @@ -20937,7 +20915,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 517/2000 [03:22<08:33, 2.89it/s, loss=0.6] " + "training until 2000: 26%|██▌ | 517/2000 [03:19<08:36, 2.87it/s, loss=0.636]" ] }, { @@ -20945,7 +20923,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 518/2000 [03:22<08:29, 2.91it/s, loss=0.6]" + "training until 2000: 26%|██▌ | 518/2000 [03:19<08:21, 2.96it/s, loss=0.636]" ] }, { @@ -20953,7 +20931,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 518/2000 [03:22<08:29, 2.91it/s, loss=0.608]" + "training until 2000: 26%|██▌ | 518/2000 [03:19<08:21, 2.96it/s, loss=0.689]" ] }, { @@ -20961,7 +20939,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 519/2000 [03:23<08:12, 3.01it/s, loss=0.608]" + "training until 2000: 26%|██▌ | 519/2000 [03:20<08:10, 3.02it/s, loss=0.689]" ] }, { @@ -20969,7 +20947,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 519/2000 [03:23<08:12, 3.01it/s, loss=0.619]" + "training until 2000: 26%|██▌ | 519/2000 [03:20<08:10, 3.02it/s, loss=0.647]" ] }, { @@ -20977,7 +20955,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 520/2000 [03:23<08:09, 3.02it/s, loss=0.619]" + "training until 2000: 26%|██▌ | 520/2000 [03:20<08:04, 3.05it/s, loss=0.647]" ] }, { @@ -20985,7 +20963,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 520/2000 [03:23<08:09, 3.02it/s, loss=0.537]" + "training until 2000: 26%|██▌ | 520/2000 [03:20<08:04, 3.05it/s, loss=0.705]" ] }, { @@ -20993,7 +20971,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 521/2000 [03:23<08:02, 3.07it/s, loss=0.537]" + "training until 2000: 26%|██▌ | 521/2000 [03:20<08:03, 3.06it/s, loss=0.705]" ] }, { @@ -21001,7 +20979,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 521/2000 [03:23<08:02, 3.07it/s, loss=0.554]" + "training until 2000: 26%|██▌ | 521/2000 [03:20<08:03, 3.06it/s, loss=0.656]" ] }, { @@ -21009,7 +20987,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 522/2000 [03:23<07:59, 3.08it/s, loss=0.554]" + "training until 2000: 26%|██▌ | 522/2000 [03:21<08:03, 3.06it/s, loss=0.656]" ] }, { @@ -21017,7 +20995,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 522/2000 [03:23<07:59, 3.08it/s, loss=0.669]" + "training until 2000: 26%|██▌ | 522/2000 [03:21<08:03, 3.06it/s, loss=0.658]" ] }, { @@ -21025,7 +21003,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 523/2000 [03:24<08:01, 3.07it/s, loss=0.669]" + "training until 2000: 26%|██▌ | 523/2000 [03:21<07:58, 3.08it/s, loss=0.658]" ] }, { @@ -21033,7 +21011,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 523/2000 [03:24<08:01, 3.07it/s, loss=0.567]" + "training until 2000: 26%|██▌ | 523/2000 [03:21<07:58, 3.08it/s, loss=0.637]" ] }, { @@ -21041,7 +21019,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 524/2000 [03:24<08:03, 3.05it/s, loss=0.567]" + "training until 2000: 26%|██▌ | 524/2000 [03:21<07:54, 3.11it/s, loss=0.637]" ] }, { @@ -21049,7 +21027,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▌ | 524/2000 [03:24<08:03, 3.05it/s, loss=0.583]" + "training until 2000: 26%|██▌ | 524/2000 [03:21<07:54, 3.11it/s, loss=0.673]" ] }, { @@ -21057,7 +21035,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 525/2000 [03:24<08:02, 3.06it/s, loss=0.583]" + "training until 2000: 26%|██▋ | 525/2000 [03:21<07:49, 3.14it/s, loss=0.673]" ] }, { @@ -21065,7 +21043,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 525/2000 [03:24<08:02, 3.06it/s, loss=0.554]" + "training until 2000: 26%|██▋ | 525/2000 [03:21<07:49, 3.14it/s, loss=0.64] " ] }, { @@ -21073,7 +21051,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 526/2000 [03:25<08:01, 3.06it/s, loss=0.554]" + "training until 2000: 26%|██▋ | 526/2000 [03:22<07:53, 3.11it/s, loss=0.64]" ] }, { @@ -21081,7 +21059,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 526/2000 [03:25<08:01, 3.06it/s, loss=0.53] " + "training until 2000: 26%|██▋ | 526/2000 [03:22<07:53, 3.11it/s, loss=0.607]" ] }, { @@ -21089,7 +21067,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 527/2000 [03:25<07:58, 3.08it/s, loss=0.53]" + "training until 2000: 26%|██▋ | 527/2000 [03:22<07:53, 3.11it/s, loss=0.607]" ] }, { @@ -21097,7 +21075,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 527/2000 [03:25<07:58, 3.08it/s, loss=0.575]" + "training until 2000: 26%|██▋ | 527/2000 [03:22<07:53, 3.11it/s, loss=0.678]" ] }, { @@ -21105,7 +21083,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 528/2000 [03:25<07:51, 3.12it/s, loss=0.575]" + "training until 2000: 26%|██▋ | 528/2000 [03:23<09:45, 2.51it/s, loss=0.678]" ] }, { @@ -21113,7 +21091,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 528/2000 [03:25<07:51, 3.12it/s, loss=0.563]" + "training until 2000: 26%|██▋ | 528/2000 [03:23<09:45, 2.51it/s, loss=0.612]" ] }, { @@ -21121,7 +21099,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 529/2000 [03:26<07:54, 3.10it/s, loss=0.563]" + "training until 2000: 26%|██▋ | 529/2000 [03:23<09:11, 2.67it/s, loss=0.612]" ] }, { @@ -21129,7 +21107,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 529/2000 [03:26<07:54, 3.10it/s, loss=0.568]" + "training until 2000: 26%|██▋ | 529/2000 [03:23<09:11, 2.67it/s, loss=0.717]" ] }, { @@ -21137,7 +21115,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 530/2000 [03:26<09:45, 2.51it/s, loss=0.568]" + "training until 2000: 26%|██▋ | 530/2000 [03:23<08:42, 2.81it/s, loss=0.717]" ] }, { @@ -21145,7 +21123,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 26%|██▋ | 530/2000 [03:26<09:45, 2.51it/s, loss=0.551]" + "training until 2000: 26%|██▋ | 530/2000 [03:23<08:42, 2.81it/s, loss=0.714]" ] }, { @@ -21153,7 +21131,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 531/2000 [03:27<09:12, 2.66it/s, loss=0.551]" + "training until 2000: 27%|██▋ | 531/2000 [03:24<08:30, 2.88it/s, loss=0.714]" ] }, { @@ -21161,7 +21139,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 531/2000 [03:27<09:12, 2.66it/s, loss=0.58] " + "training until 2000: 27%|██▋ | 531/2000 [03:24<08:30, 2.88it/s, loss=0.646]" ] }, { @@ -21169,7 +21147,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 532/2000 [03:27<08:56, 2.74it/s, loss=0.58]" + "training until 2000: 27%|██▋ | 532/2000 [03:24<08:24, 2.91it/s, loss=0.646]" ] }, { @@ -21177,7 +21155,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 532/2000 [03:27<08:56, 2.74it/s, loss=0.645]" + "training until 2000: 27%|██▋ | 532/2000 [03:24<08:24, 2.91it/s, loss=0.605]" ] }, { @@ -21185,7 +21163,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 533/2000 [03:27<08:44, 2.80it/s, loss=0.645]" + "training until 2000: 27%|██▋ | 533/2000 [03:24<08:13, 2.97it/s, loss=0.605]" ] }, { @@ -21193,7 +21171,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 533/2000 [03:27<08:44, 2.80it/s, loss=0.533]" + "training until 2000: 27%|██▋ | 533/2000 [03:24<08:13, 2.97it/s, loss=0.687]" ] }, { @@ -21201,7 +21179,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 534/2000 [03:28<08:33, 2.86it/s, loss=0.533]" + "training until 2000: 27%|██▋ | 534/2000 [03:25<08:03, 3.03it/s, loss=0.687]" ] }, { @@ -21209,7 +21187,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 534/2000 [03:28<08:33, 2.86it/s, loss=0.51] " + "training until 2000: 27%|██▋ | 534/2000 [03:25<08:03, 3.03it/s, loss=0.725]" ] }, { @@ -21217,7 +21195,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 535/2000 [03:28<08:19, 2.93it/s, loss=0.51]" + "training until 2000: 27%|██▋ | 535/2000 [03:25<07:57, 3.07it/s, loss=0.725]" ] }, { @@ -21225,7 +21203,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 535/2000 [03:28<08:19, 2.93it/s, loss=0.594]" + "training until 2000: 27%|██▋ | 535/2000 [03:25<07:57, 3.07it/s, loss=0.673]" ] }, { @@ -21233,7 +21211,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 536/2000 [03:28<08:09, 2.99it/s, loss=0.594]" + "training until 2000: 27%|██▋ | 536/2000 [03:25<07:54, 3.09it/s, loss=0.673]" ] }, { @@ -21241,7 +21219,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 536/2000 [03:28<08:09, 2.99it/s, loss=0.549]" + "training until 2000: 27%|██▋ | 536/2000 [03:25<07:54, 3.09it/s, loss=0.633]" ] }, { @@ -21249,7 +21227,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 537/2000 [03:29<08:01, 3.04it/s, loss=0.549]" + "training until 2000: 27%|██▋ | 537/2000 [03:26<07:53, 3.09it/s, loss=0.633]" ] }, { @@ -21257,7 +21235,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 537/2000 [03:29<08:01, 3.04it/s, loss=0.543]" + "training until 2000: 27%|██▋ | 537/2000 [03:26<07:53, 3.09it/s, loss=0.607]" ] }, { @@ -21265,7 +21243,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 538/2000 [03:29<07:55, 3.07it/s, loss=0.543]" + "training until 2000: 27%|██▋ | 538/2000 [03:26<07:57, 3.06it/s, loss=0.607]" ] }, { @@ -21273,7 +21251,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 538/2000 [03:29<07:55, 3.07it/s, loss=0.519]" + "training until 2000: 27%|██▋ | 538/2000 [03:26<07:57, 3.06it/s, loss=0.583]" ] }, { @@ -21281,7 +21259,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 539/2000 [03:29<08:00, 3.04it/s, loss=0.519]" + "training until 2000: 27%|██▋ | 539/2000 [03:26<07:54, 3.08it/s, loss=0.583]" ] }, { @@ -21289,7 +21267,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 539/2000 [03:29<08:00, 3.04it/s, loss=0.543]" + "training until 2000: 27%|██▋ | 539/2000 [03:26<07:54, 3.08it/s, loss=0.58] " ] }, { @@ -21297,7 +21275,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 540/2000 [03:30<08:02, 3.02it/s, loss=0.543]" + "training until 2000: 27%|██▋ | 540/2000 [03:27<07:50, 3.11it/s, loss=0.58]" ] }, { @@ -21305,7 +21283,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 540/2000 [03:30<08:02, 3.02it/s, loss=0.63] " + "training until 2000: 27%|██▋ | 540/2000 [03:27<07:50, 3.11it/s, loss=0.661]" ] }, { @@ -21313,7 +21291,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 541/2000 [03:30<07:59, 3.04it/s, loss=0.63]" + "training until 2000: 27%|██▋ | 541/2000 [03:27<07:58, 3.05it/s, loss=0.661]" ] }, { @@ -21321,7 +21299,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 541/2000 [03:30<07:59, 3.04it/s, loss=0.53]" + "training until 2000: 27%|██▋ | 541/2000 [03:27<07:58, 3.05it/s, loss=0.64] " ] }, { @@ -21329,7 +21307,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 542/2000 [03:30<08:01, 3.03it/s, loss=0.53]" + "training until 2000: 27%|██▋ | 542/2000 [03:27<07:58, 3.05it/s, loss=0.64]" ] }, { @@ -21337,7 +21315,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 542/2000 [03:30<08:01, 3.03it/s, loss=0.529]" + "training until 2000: 27%|██▋ | 542/2000 [03:27<07:58, 3.05it/s, loss=0.642]" ] }, { @@ -21345,7 +21323,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 543/2000 [03:31<08:00, 3.03it/s, loss=0.529]" + "training until 2000: 27%|██▋ | 543/2000 [03:28<07:50, 3.10it/s, loss=0.642]" ] }, { @@ -21353,7 +21331,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 543/2000 [03:31<08:00, 3.03it/s, loss=0.541]" + "training until 2000: 27%|██▋ | 543/2000 [03:28<07:50, 3.10it/s, loss=0.667]" ] }, { @@ -21361,7 +21339,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 544/2000 [03:31<07:54, 3.07it/s, loss=0.541]" + "training until 2000: 27%|██▋ | 544/2000 [03:28<07:47, 3.11it/s, loss=0.667]" ] }, { @@ -21369,7 +21347,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 544/2000 [03:31<07:54, 3.07it/s, loss=0.543]" + "training until 2000: 27%|██▋ | 544/2000 [03:28<07:47, 3.11it/s, loss=0.608]" ] }, { @@ -21377,7 +21355,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 545/2000 [03:31<07:56, 3.05it/s, loss=0.543]" + "training until 2000: 27%|██▋ | 545/2000 [03:28<07:42, 3.14it/s, loss=0.608]" ] }, { @@ -21385,7 +21363,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 545/2000 [03:31<07:56, 3.05it/s, loss=0.52] " + "training until 2000: 27%|██▋ | 545/2000 [03:28<07:42, 3.14it/s, loss=0.68] " ] }, { @@ -21393,7 +21371,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 546/2000 [03:32<07:54, 3.06it/s, loss=0.52]" + "training until 2000: 27%|██▋ | 546/2000 [03:28<07:36, 3.19it/s, loss=0.68]" ] }, { @@ -21401,7 +21379,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 546/2000 [03:32<07:54, 3.06it/s, loss=0.543]" + "training until 2000: 27%|██▋ | 546/2000 [03:28<07:36, 3.19it/s, loss=0.637]" ] }, { @@ -21409,7 +21387,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 547/2000 [03:32<07:54, 3.07it/s, loss=0.543]" + "training until 2000: 27%|██▋ | 547/2000 [03:29<07:35, 3.19it/s, loss=0.637]" ] }, { @@ -21417,7 +21395,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 547/2000 [03:32<07:54, 3.07it/s, loss=0.528]" + "training until 2000: 27%|██▋ | 547/2000 [03:29<07:35, 3.19it/s, loss=0.647]" ] }, { @@ -21425,7 +21403,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 548/2000 [03:32<07:55, 3.05it/s, loss=0.528]" + "training until 2000: 27%|██▋ | 548/2000 [03:29<07:35, 3.19it/s, loss=0.647]" ] }, { @@ -21433,7 +21411,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 548/2000 [03:32<07:55, 3.05it/s, loss=0.548]" + "training until 2000: 27%|██▋ | 548/2000 [03:29<07:35, 3.19it/s, loss=0.614]" ] }, { @@ -21441,7 +21419,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 549/2000 [03:33<07:51, 3.08it/s, loss=0.548]" + "training until 2000: 27%|██▋ | 549/2000 [03:29<07:42, 3.14it/s, loss=0.614]" ] }, { @@ -21449,7 +21427,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 27%|██▋ | 549/2000 [03:33<07:51, 3.08it/s, loss=0.613]" + "training until 2000: 27%|██▋ | 549/2000 [03:29<07:42, 3.14it/s, loss=0.654]" ] }, { @@ -21457,7 +21435,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 550/2000 [03:33<07:46, 3.11it/s, loss=0.613]" + "training until 2000: 28%|██▊ | 550/2000 [03:30<07:43, 3.13it/s, loss=0.654]" ] }, { @@ -21465,7 +21443,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 550/2000 [03:33<07:46, 3.11it/s, loss=0.594]" + "training until 2000: 28%|██▊ | 550/2000 [03:30<07:43, 3.13it/s, loss=0.655]" ] }, { @@ -21473,7 +21451,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 551/2000 [03:33<07:48, 3.09it/s, loss=0.594]" + "training until 2000: 28%|██▊ | 551/2000 [03:30<07:40, 3.15it/s, loss=0.655]" ] }, { @@ -21481,7 +21459,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 551/2000 [03:33<07:48, 3.09it/s, loss=0.565]" + "training until 2000: 28%|██▊ | 551/2000 [03:30<07:40, 3.15it/s, loss=0.645]" ] }, { @@ -21489,7 +21467,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 552/2000 [03:34<07:53, 3.06it/s, loss=0.565]" + "training until 2000: 28%|██▊ | 552/2000 [03:30<07:45, 3.11it/s, loss=0.645]" ] }, { @@ -21497,7 +21475,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 552/2000 [03:34<07:53, 3.06it/s, loss=0.586]" + "training until 2000: 28%|██▊ | 552/2000 [03:30<07:45, 3.11it/s, loss=0.644]" ] }, { @@ -21505,7 +21483,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 553/2000 [03:34<07:52, 3.06it/s, loss=0.586]" + "training until 2000: 28%|██▊ | 553/2000 [03:31<07:48, 3.09it/s, loss=0.644]" ] }, { @@ -21513,7 +21491,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 553/2000 [03:34<07:52, 3.06it/s, loss=0.563]" + "training until 2000: 28%|██▊ | 553/2000 [03:31<07:48, 3.09it/s, loss=0.592]" ] }, { @@ -21521,7 +21499,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 554/2000 [03:34<07:51, 3.07it/s, loss=0.563]" + "training until 2000: 28%|██▊ | 554/2000 [03:31<07:50, 3.07it/s, loss=0.592]" ] }, { @@ -21529,7 +21507,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 554/2000 [03:34<07:51, 3.07it/s, loss=0.632]" + "training until 2000: 28%|██▊ | 554/2000 [03:31<07:50, 3.07it/s, loss=0.717]" ] }, { @@ -21537,7 +21515,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 555/2000 [03:34<07:53, 3.05it/s, loss=0.632]" + "training until 2000: 28%|██▊ | 555/2000 [03:31<07:49, 3.08it/s, loss=0.717]" ] }, { @@ -21545,7 +21523,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 555/2000 [03:34<07:53, 3.05it/s, loss=0.532]" + "training until 2000: 28%|██▊ | 555/2000 [03:31<07:49, 3.08it/s, loss=0.61] " ] }, { @@ -21553,7 +21531,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 556/2000 [03:35<07:46, 3.09it/s, loss=0.532]" + "training until 2000: 28%|██▊ | 556/2000 [03:32<07:47, 3.09it/s, loss=0.61]" ] }, { @@ -21561,7 +21539,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 556/2000 [03:35<07:46, 3.09it/s, loss=0.562]" + "training until 2000: 28%|██▊ | 556/2000 [03:32<07:47, 3.09it/s, loss=0.61]" ] }, { @@ -21569,7 +21547,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 557/2000 [03:35<07:43, 3.11it/s, loss=0.562]" + "training until 2000: 28%|██▊ | 557/2000 [03:32<07:44, 3.10it/s, loss=0.61]" ] }, { @@ -21577,7 +21555,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 557/2000 [03:35<07:43, 3.11it/s, loss=0.568]" + "training until 2000: 28%|██▊ | 557/2000 [03:32<07:44, 3.10it/s, loss=0.699]" ] }, { @@ -21585,7 +21563,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 558/2000 [03:35<07:48, 3.08it/s, loss=0.568]" + "training until 2000: 28%|██▊ | 558/2000 [03:32<07:42, 3.12it/s, loss=0.699]" ] }, { @@ -21593,7 +21571,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 558/2000 [03:35<07:48, 3.08it/s, loss=0.557]" + "training until 2000: 28%|██▊ | 558/2000 [03:32<07:42, 3.12it/s, loss=0.651]" ] }, { @@ -21601,7 +21579,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 559/2000 [03:36<07:44, 3.10it/s, loss=0.557]" + "training until 2000: 28%|██▊ | 559/2000 [03:33<07:37, 3.15it/s, loss=0.651]" ] }, { @@ -21609,7 +21587,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 559/2000 [03:36<07:44, 3.10it/s, loss=0.583]" + "training until 2000: 28%|██▊ | 559/2000 [03:33<07:37, 3.15it/s, loss=0.656]" ] }, { @@ -21617,7 +21595,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 560/2000 [03:36<07:49, 3.06it/s, loss=0.583]" + "training until 2000: 28%|██▊ | 560/2000 [03:33<07:40, 3.13it/s, loss=0.656]" ] }, { @@ -21625,7 +21603,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 560/2000 [03:36<07:49, 3.06it/s, loss=0.52] " + "training until 2000: 28%|██▊ | 560/2000 [03:33<07:40, 3.13it/s, loss=0.661]" ] }, { @@ -21633,7 +21611,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 561/2000 [03:36<07:52, 3.05it/s, loss=0.52]" + "training until 2000: 28%|██▊ | 561/2000 [03:33<07:36, 3.15it/s, loss=0.661]" ] }, { @@ -21641,7 +21619,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 561/2000 [03:36<07:52, 3.05it/s, loss=0.547]" + "training until 2000: 28%|██▊ | 561/2000 [03:33<07:36, 3.15it/s, loss=0.601]" ] }, { @@ -21649,7 +21627,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 562/2000 [03:37<07:49, 3.06it/s, loss=0.547]" + "training until 2000: 28%|██▊ | 562/2000 [03:34<07:36, 3.15it/s, loss=0.601]" ] }, { @@ -21657,7 +21635,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 562/2000 [03:37<07:49, 3.06it/s, loss=0.526]" + "training until 2000: 28%|██▊ | 562/2000 [03:34<07:36, 3.15it/s, loss=0.68] " ] }, { @@ -21665,7 +21643,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 563/2000 [03:37<07:47, 3.07it/s, loss=0.526]" + "training until 2000: 28%|██▊ | 563/2000 [03:34<07:35, 3.16it/s, loss=0.68]" ] }, { @@ -21673,7 +21651,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 563/2000 [03:37<07:47, 3.07it/s, loss=0.557]" + "training until 2000: 28%|██▊ | 563/2000 [03:34<07:35, 3.16it/s, loss=0.672]" ] }, { @@ -21681,7 +21659,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 564/2000 [03:37<07:47, 3.07it/s, loss=0.557]" + "training until 2000: 28%|██▊ | 564/2000 [03:34<07:40, 3.12it/s, loss=0.672]" ] }, { @@ -21689,7 +21667,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 564/2000 [03:37<07:47, 3.07it/s, loss=0.71] " + "training until 2000: 28%|██▊ | 564/2000 [03:34<07:40, 3.12it/s, loss=0.612]" ] }, { @@ -21697,7 +21675,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 565/2000 [03:38<07:53, 3.03it/s, loss=0.71]" + "training until 2000: 28%|██▊ | 565/2000 [03:35<07:38, 3.13it/s, loss=0.612]" ] }, { @@ -21705,7 +21683,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 565/2000 [03:38<07:53, 3.03it/s, loss=0.557]" + "training until 2000: 28%|██▊ | 565/2000 [03:35<07:38, 3.13it/s, loss=0.641]" ] }, { @@ -21713,7 +21691,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 566/2000 [03:38<08:00, 2.98it/s, loss=0.557]" + "training until 2000: 28%|██▊ | 566/2000 [03:35<07:36, 3.14it/s, loss=0.641]" ] }, { @@ -21721,7 +21699,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 566/2000 [03:38<08:00, 2.98it/s, loss=0.548]" + "training until 2000: 28%|██▊ | 566/2000 [03:35<07:36, 3.14it/s, loss=0.624]" ] }, { @@ -21729,7 +21707,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 567/2000 [03:38<08:02, 2.97it/s, loss=0.548]" + "training until 2000: 28%|██▊ | 567/2000 [03:35<07:40, 3.11it/s, loss=0.624]" ] }, { @@ -21737,7 +21715,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 567/2000 [03:38<08:02, 2.97it/s, loss=0.545]" + "training until 2000: 28%|██▊ | 567/2000 [03:35<07:40, 3.11it/s, loss=0.642]" ] }, { @@ -21745,7 +21723,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 568/2000 [03:39<07:50, 3.04it/s, loss=0.545]" + "training until 2000: 28%|██▊ | 568/2000 [03:35<07:37, 3.13it/s, loss=0.642]" ] }, { @@ -21753,7 +21731,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 568/2000 [03:39<07:50, 3.04it/s, loss=0.54] " + "training until 2000: 28%|██▊ | 568/2000 [03:35<07:37, 3.13it/s, loss=0.598]" ] }, { @@ -21761,7 +21739,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 569/2000 [03:39<07:49, 3.05it/s, loss=0.54]" + "training until 2000: 28%|██▊ | 569/2000 [03:36<07:35, 3.14it/s, loss=0.598]" ] }, { @@ -21769,7 +21747,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 569/2000 [03:39<07:49, 3.05it/s, loss=0.551]" + "training until 2000: 28%|██▊ | 569/2000 [03:36<07:35, 3.14it/s, loss=0.587]" ] }, { @@ -21777,7 +21755,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 570/2000 [03:39<07:45, 3.07it/s, loss=0.551]" + "training until 2000: 28%|██▊ | 570/2000 [03:36<07:29, 3.18it/s, loss=0.587]" ] }, { @@ -21785,7 +21763,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 28%|██▊ | 570/2000 [03:39<07:45, 3.07it/s, loss=0.605]" + "training until 2000: 28%|██▊ | 570/2000 [03:36<07:29, 3.18it/s, loss=0.619]" ] }, { @@ -21793,7 +21771,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▊ | 571/2000 [03:40<07:42, 3.09it/s, loss=0.605]" + "training until 2000: 29%|██▊ | 571/2000 [03:36<07:30, 3.17it/s, loss=0.619]" ] }, { @@ -21801,7 +21779,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▊ | 571/2000 [03:40<07:42, 3.09it/s, loss=0.537]" + "training until 2000: 29%|██▊ | 571/2000 [03:36<07:30, 3.17it/s, loss=0.621]" ] }, { @@ -21809,7 +21787,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▊ | 572/2000 [03:40<07:36, 3.13it/s, loss=0.537]" + "training until 2000: 29%|██▊ | 572/2000 [03:37<07:32, 3.15it/s, loss=0.621]" ] }, { @@ -21817,7 +21795,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▊ | 572/2000 [03:40<07:36, 3.13it/s, loss=0.54] " + "training until 2000: 29%|██▊ | 572/2000 [03:37<07:32, 3.15it/s, loss=0.664]" ] }, { @@ -21825,7 +21803,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▊ | 573/2000 [03:40<07:32, 3.15it/s, loss=0.54]" + "training until 2000: 29%|██▊ | 573/2000 [03:37<07:29, 3.17it/s, loss=0.664]" ] }, { @@ -21833,7 +21811,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▊ | 573/2000 [03:40<07:32, 3.15it/s, loss=0.555]" + "training until 2000: 29%|██▊ | 573/2000 [03:37<07:29, 3.17it/s, loss=0.672]" ] }, { @@ -21841,7 +21819,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▊ | 574/2000 [03:41<07:36, 3.12it/s, loss=0.555]" + "training until 2000: 29%|██▊ | 574/2000 [03:37<07:28, 3.18it/s, loss=0.672]" ] }, { @@ -21849,7 +21827,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▊ | 574/2000 [03:41<07:36, 3.12it/s, loss=0.591]" + "training until 2000: 29%|██▊ | 574/2000 [03:37<07:28, 3.18it/s, loss=0.684]" ] }, { @@ -21857,7 +21835,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 575/2000 [03:41<07:38, 3.11it/s, loss=0.591]" + "training until 2000: 29%|██▉ | 575/2000 [03:38<07:28, 3.18it/s, loss=0.684]" ] }, { @@ -21865,7 +21843,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 575/2000 [03:41<07:38, 3.11it/s, loss=0.651]" + "training until 2000: 29%|██▉ | 575/2000 [03:38<07:28, 3.18it/s, loss=0.612]" ] }, { @@ -21873,7 +21851,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 576/2000 [03:41<07:40, 3.09it/s, loss=0.651]" + "training until 2000: 29%|██▉ | 576/2000 [03:38<07:30, 3.16it/s, loss=0.612]" ] }, { @@ -21881,7 +21859,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 576/2000 [03:41<07:40, 3.09it/s, loss=0.523]" + "training until 2000: 29%|██▉ | 576/2000 [03:38<07:30, 3.16it/s, loss=0.715]" ] }, { @@ -21889,7 +21867,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 577/2000 [03:42<07:36, 3.12it/s, loss=0.523]" + "training until 2000: 29%|██▉ | 577/2000 [03:38<07:33, 3.14it/s, loss=0.715]" ] }, { @@ -21897,7 +21875,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 577/2000 [03:42<07:36, 3.12it/s, loss=0.576]" + "training until 2000: 29%|██▉ | 577/2000 [03:38<07:33, 3.14it/s, loss=0.701]" ] }, { @@ -21905,7 +21883,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 578/2000 [03:42<07:32, 3.15it/s, loss=0.576]" + "training until 2000: 29%|██▉ | 578/2000 [03:39<07:33, 3.14it/s, loss=0.701]" ] }, { @@ -21913,7 +21891,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 578/2000 [03:42<07:32, 3.15it/s, loss=0.564]" + "training until 2000: 29%|██▉ | 578/2000 [03:39<07:33, 3.14it/s, loss=0.7] " ] }, { @@ -21921,7 +21899,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 579/2000 [03:42<07:25, 3.19it/s, loss=0.564]" + "training until 2000: 29%|██▉ | 579/2000 [03:39<07:39, 3.09it/s, loss=0.7]" ] }, { @@ -21929,7 +21907,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 579/2000 [03:42<07:25, 3.19it/s, loss=0.557]" + "training until 2000: 29%|██▉ | 579/2000 [03:39<07:39, 3.09it/s, loss=0.639]" ] }, { @@ -21937,7 +21915,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 580/2000 [03:43<07:24, 3.20it/s, loss=0.557]" + "training until 2000: 29%|██▉ | 580/2000 [03:39<07:41, 3.08it/s, loss=0.639]" ] }, { @@ -21945,7 +21923,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 580/2000 [03:43<07:24, 3.20it/s, loss=0.549]" + "training until 2000: 29%|██▉ | 580/2000 [03:39<07:41, 3.08it/s, loss=0.692]" ] }, { @@ -21953,7 +21931,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 581/2000 [03:43<07:23, 3.20it/s, loss=0.549]" + "training until 2000: 29%|██▉ | 581/2000 [03:40<07:41, 3.08it/s, loss=0.692]" ] }, { @@ -21961,7 +21939,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 581/2000 [03:43<07:23, 3.20it/s, loss=0.562]" + "training until 2000: 29%|██▉ | 581/2000 [03:40<07:41, 3.08it/s, loss=0.651]" ] }, { @@ -21969,7 +21947,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 582/2000 [03:43<07:23, 3.20it/s, loss=0.562]" + "training until 2000: 29%|██▉ | 582/2000 [03:40<07:42, 3.06it/s, loss=0.651]" ] }, { @@ -21977,7 +21955,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 582/2000 [03:43<07:23, 3.20it/s, loss=0.516]" + "training until 2000: 29%|██▉ | 582/2000 [03:40<07:42, 3.06it/s, loss=0.685]" ] }, { @@ -21985,7 +21963,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 583/2000 [03:44<07:31, 3.14it/s, loss=0.516]" + "training until 2000: 29%|██▉ | 583/2000 [03:40<07:36, 3.10it/s, loss=0.685]" ] }, { @@ -21993,7 +21971,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 583/2000 [03:44<07:31, 3.14it/s, loss=0.636]" + "training until 2000: 29%|██▉ | 583/2000 [03:40<07:36, 3.10it/s, loss=0.559]" ] }, { @@ -22001,7 +21979,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 584/2000 [03:44<07:27, 3.17it/s, loss=0.636]" + "training until 2000: 29%|██▉ | 584/2000 [03:41<07:28, 3.16it/s, loss=0.559]" ] }, { @@ -22009,7 +21987,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 584/2000 [03:44<07:27, 3.17it/s, loss=0.553]" + "training until 2000: 29%|██▉ | 584/2000 [03:41<07:28, 3.16it/s, loss=0.581]" ] }, { @@ -22017,7 +21995,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 585/2000 [03:44<07:24, 3.18it/s, loss=0.553]" + "training until 2000: 29%|██▉ | 585/2000 [03:41<07:27, 3.16it/s, loss=0.581]" ] }, { @@ -22025,7 +22003,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 585/2000 [03:44<07:24, 3.18it/s, loss=0.523]" + "training until 2000: 29%|██▉ | 585/2000 [03:41<07:27, 3.16it/s, loss=0.695]" ] }, { @@ -22033,7 +22011,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 586/2000 [03:44<07:22, 3.20it/s, loss=0.523]" + "training until 2000: 29%|██▉ | 586/2000 [03:41<07:26, 3.17it/s, loss=0.695]" ] }, { @@ -22041,7 +22019,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 586/2000 [03:44<07:22, 3.20it/s, loss=0.549]" + "training until 2000: 29%|██▉ | 586/2000 [03:41<07:26, 3.17it/s, loss=0.636]" ] }, { @@ -22049,7 +22027,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 587/2000 [03:45<07:26, 3.16it/s, loss=0.549]" + "training until 2000: 29%|██▉ | 587/2000 [03:42<07:25, 3.17it/s, loss=0.636]" ] }, { @@ -22057,7 +22035,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 587/2000 [03:45<07:26, 3.16it/s, loss=0.573]" + "training until 2000: 29%|██▉ | 587/2000 [03:42<07:25, 3.17it/s, loss=0.631]" ] }, { @@ -22065,7 +22043,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 588/2000 [03:45<07:29, 3.14it/s, loss=0.573]" + "training until 2000: 29%|██▉ | 588/2000 [03:42<07:26, 3.17it/s, loss=0.631]" ] }, { @@ -22073,7 +22051,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 588/2000 [03:45<07:29, 3.14it/s, loss=0.532]" + "training until 2000: 29%|██▉ | 588/2000 [03:42<07:26, 3.17it/s, loss=0.661]" ] }, { @@ -22081,7 +22059,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 589/2000 [03:45<07:29, 3.14it/s, loss=0.532]" + "training until 2000: 29%|██▉ | 589/2000 [03:42<07:22, 3.19it/s, loss=0.661]" ] }, { @@ -22089,7 +22067,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 29%|██▉ | 589/2000 [03:45<07:29, 3.14it/s, loss=0.536]" + "training until 2000: 29%|██▉ | 589/2000 [03:42<07:22, 3.19it/s, loss=0.672]" ] }, { @@ -22097,7 +22075,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 590/2000 [03:46<07:33, 3.11it/s, loss=0.536]" + "training until 2000: 30%|██▉ | 590/2000 [03:42<07:27, 3.15it/s, loss=0.672]" ] }, { @@ -22105,7 +22083,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 590/2000 [03:46<07:33, 3.11it/s, loss=0.56] " + "training until 2000: 30%|██▉ | 590/2000 [03:42<07:27, 3.15it/s, loss=0.597]" ] }, { @@ -22113,7 +22091,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 591/2000 [03:46<07:34, 3.10it/s, loss=0.56]" + "training until 2000: 30%|██▉ | 591/2000 [03:43<07:23, 3.18it/s, loss=0.597]" ] }, { @@ -22121,7 +22099,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 591/2000 [03:46<07:34, 3.10it/s, loss=0.573]" + "training until 2000: 30%|██▉ | 591/2000 [03:43<07:23, 3.18it/s, loss=0.603]" ] }, { @@ -22129,7 +22107,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 592/2000 [03:46<07:30, 3.12it/s, loss=0.573]" + "training until 2000: 30%|██▉ | 592/2000 [03:43<07:27, 3.15it/s, loss=0.603]" ] }, { @@ -22137,7 +22115,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 592/2000 [03:46<07:30, 3.12it/s, loss=0.55] " + "training until 2000: 30%|██▉ | 592/2000 [03:43<07:27, 3.15it/s, loss=0.621]" ] }, { @@ -22145,7 +22123,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 593/2000 [03:47<07:31, 3.12it/s, loss=0.55]" + "training until 2000: 30%|██▉ | 593/2000 [03:44<09:13, 2.54it/s, loss=0.621]" ] }, { @@ -22153,7 +22131,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 593/2000 [03:47<07:31, 3.12it/s, loss=0.605]" + "training until 2000: 30%|██▉ | 593/2000 [03:44<09:13, 2.54it/s, loss=0.57] " ] }, { @@ -22161,7 +22139,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 594/2000 [03:47<09:02, 2.59it/s, loss=0.605]" + "training until 2000: 30%|██▉ | 594/2000 [03:44<08:41, 2.70it/s, loss=0.57]" ] }, { @@ -22169,7 +22147,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 594/2000 [03:47<09:02, 2.59it/s, loss=0.555]" + "training until 2000: 30%|██▉ | 594/2000 [03:44<08:41, 2.70it/s, loss=0.561]" ] }, { @@ -22177,7 +22155,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 595/2000 [03:48<08:31, 2.75it/s, loss=0.555]" + "training until 2000: 30%|██▉ | 595/2000 [03:44<08:19, 2.81it/s, loss=0.561]" ] }, { @@ -22185,7 +22163,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 595/2000 [03:48<08:31, 2.75it/s, loss=0.52] " + "training until 2000: 30%|██▉ | 595/2000 [03:44<08:19, 2.81it/s, loss=0.581]" ] }, { @@ -22193,7 +22171,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 596/2000 [03:48<08:19, 2.81it/s, loss=0.52]" + "training until 2000: 30%|██▉ | 596/2000 [03:45<08:02, 2.91it/s, loss=0.581]" ] }, { @@ -22201,7 +22179,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 596/2000 [03:48<08:19, 2.81it/s, loss=0.667]" + "training until 2000: 30%|██▉ | 596/2000 [03:45<08:02, 2.91it/s, loss=0.593]" ] }, { @@ -22209,7 +22187,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 597/2000 [03:48<08:01, 2.91it/s, loss=0.667]" + "training until 2000: 30%|██▉ | 597/2000 [03:45<07:53, 2.96it/s, loss=0.593]" ] }, { @@ -22217,7 +22195,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 597/2000 [03:48<08:01, 2.91it/s, loss=0.535]" + "training until 2000: 30%|██▉ | 597/2000 [03:45<07:53, 2.96it/s, loss=0.693]" ] }, { @@ -22225,7 +22203,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 598/2000 [03:49<07:58, 2.93it/s, loss=0.535]" + "training until 2000: 30%|██▉ | 598/2000 [03:45<07:47, 3.00it/s, loss=0.693]" ] }, { @@ -22233,7 +22211,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 598/2000 [03:49<07:58, 2.93it/s, loss=0.578]" + "training until 2000: 30%|██▉ | 598/2000 [03:45<07:47, 3.00it/s, loss=0.652]" ] }, { @@ -22241,7 +22219,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 599/2000 [03:49<07:50, 2.98it/s, loss=0.578]" + "training until 2000: 30%|██▉ | 599/2000 [03:46<07:42, 3.03it/s, loss=0.652]" ] }, { @@ -22249,7 +22227,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|██▉ | 599/2000 [03:49<07:50, 2.98it/s, loss=0.567]" + "training until 2000: 30%|██▉ | 599/2000 [03:46<07:42, 3.03it/s, loss=0.58] " ] }, { @@ -22257,7 +22235,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 600/2000 [03:49<07:45, 3.00it/s, loss=0.567]" + "training until 2000: 30%|███ | 600/2000 [03:46<07:40, 3.04it/s, loss=0.58]" ] }, { @@ -22265,7 +22243,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 600/2000 [03:49<07:45, 3.00it/s, loss=0.528]" + "training until 2000: 30%|███ | 600/2000 [03:46<07:40, 3.04it/s, loss=0.681]" ] }, { @@ -22273,7 +22251,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 601/2000 [03:50<07:39, 3.05it/s, loss=0.528]" + "training until 2000: 30%|███ | 601/2000 [03:46<07:40, 3.04it/s, loss=0.681]" ] }, { @@ -22281,7 +22259,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 601/2000 [03:50<07:39, 3.05it/s, loss=0.534]" + "training until 2000: 30%|███ | 601/2000 [03:46<07:40, 3.04it/s, loss=0.649]" ] }, { @@ -22289,7 +22267,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 602/2000 [03:50<07:35, 3.07it/s, loss=0.534]" + "training until 2000: 30%|███ | 602/2000 [03:47<07:36, 3.07it/s, loss=0.649]" ] }, { @@ -22297,7 +22275,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 602/2000 [03:50<07:35, 3.07it/s, loss=0.639]" + "training until 2000: 30%|███ | 602/2000 [03:47<07:36, 3.07it/s, loss=0.624]" ] }, { @@ -22305,7 +22283,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 603/2000 [03:50<07:35, 3.06it/s, loss=0.639]" + "training until 2000: 30%|███ | 603/2000 [03:47<07:32, 3.09it/s, loss=0.624]" ] }, { @@ -22313,7 +22291,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 603/2000 [03:50<07:35, 3.06it/s, loss=0.558]" + "training until 2000: 30%|███ | 603/2000 [03:47<07:32, 3.09it/s, loss=0.662]" ] }, { @@ -22321,7 +22299,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 604/2000 [03:50<07:33, 3.08it/s, loss=0.558]" + "training until 2000: 30%|███ | 604/2000 [03:47<07:29, 3.11it/s, loss=0.662]" ] }, { @@ -22329,7 +22307,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 604/2000 [03:50<07:33, 3.08it/s, loss=0.584]" + "training until 2000: 30%|███ | 604/2000 [03:47<07:29, 3.11it/s, loss=0.689]" ] }, { @@ -22337,7 +22315,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 605/2000 [03:51<07:30, 3.10it/s, loss=0.584]" + "training until 2000: 30%|███ | 605/2000 [03:48<07:22, 3.15it/s, loss=0.689]" ] }, { @@ -22345,7 +22323,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 605/2000 [03:51<07:30, 3.10it/s, loss=0.509]" + "training until 2000: 30%|███ | 605/2000 [03:48<07:22, 3.15it/s, loss=0.682]" ] }, { @@ -22353,7 +22331,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 606/2000 [03:51<07:26, 3.12it/s, loss=0.509]" + "training until 2000: 30%|███ | 606/2000 [03:48<07:24, 3.14it/s, loss=0.682]" ] }, { @@ -22361,7 +22339,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 606/2000 [03:51<07:26, 3.12it/s, loss=0.524]" + "training until 2000: 30%|███ | 606/2000 [03:48<07:24, 3.14it/s, loss=0.626]" ] }, { @@ -22369,7 +22347,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 607/2000 [03:51<07:29, 3.10it/s, loss=0.524]" + "training until 2000: 30%|███ | 607/2000 [03:48<07:27, 3.11it/s, loss=0.626]" ] }, { @@ -22377,7 +22355,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 607/2000 [03:51<07:29, 3.10it/s, loss=0.541]" + "training until 2000: 30%|███ | 607/2000 [03:48<07:27, 3.11it/s, loss=0.652]" ] }, { @@ -22385,7 +22363,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 608/2000 [03:52<07:32, 3.08it/s, loss=0.541]" + "training until 2000: 30%|███ | 608/2000 [03:49<07:31, 3.08it/s, loss=0.652]" ] }, { @@ -22393,7 +22371,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 608/2000 [03:52<07:32, 3.08it/s, loss=0.526]" + "training until 2000: 30%|███ | 608/2000 [03:49<07:31, 3.08it/s, loss=0.58] " ] }, { @@ -22401,7 +22379,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 609/2000 [03:52<07:32, 3.07it/s, loss=0.526]" + "training until 2000: 30%|███ | 609/2000 [03:49<07:30, 3.09it/s, loss=0.58]" ] }, { @@ -22409,7 +22387,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 609/2000 [03:52<07:32, 3.07it/s, loss=0.58] " + "training until 2000: 30%|███ | 609/2000 [03:49<07:30, 3.09it/s, loss=0.585]" ] }, { @@ -22417,7 +22395,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 610/2000 [03:52<07:26, 3.11it/s, loss=0.58]" + "training until 2000: 30%|███ | 610/2000 [03:49<07:28, 3.10it/s, loss=0.585]" ] }, { @@ -22425,7 +22403,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 30%|███ | 610/2000 [03:52<07:26, 3.11it/s, loss=0.56]" + "training until 2000: 30%|███ | 610/2000 [03:49<07:28, 3.10it/s, loss=0.592]" ] }, { @@ -22433,7 +22411,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 611/2000 [03:53<07:26, 3.11it/s, loss=0.56]" + "training until 2000: 31%|███ | 611/2000 [03:49<07:28, 3.10it/s, loss=0.592]" ] }, { @@ -22441,7 +22419,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 611/2000 [03:53<07:26, 3.11it/s, loss=0.576]" + "training until 2000: 31%|███ | 611/2000 [03:49<07:28, 3.10it/s, loss=0.73] " ] }, { @@ -22449,7 +22427,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 612/2000 [03:53<07:22, 3.14it/s, loss=0.576]" + "training until 2000: 31%|███ | 612/2000 [03:50<07:24, 3.12it/s, loss=0.73]" ] }, { @@ -22457,7 +22435,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 612/2000 [03:53<07:22, 3.14it/s, loss=0.578]" + "training until 2000: 31%|███ | 612/2000 [03:50<07:24, 3.12it/s, loss=0.635]" ] }, { @@ -22465,7 +22443,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 613/2000 [03:53<07:19, 3.15it/s, loss=0.578]" + "training until 2000: 31%|███ | 613/2000 [03:50<07:26, 3.11it/s, loss=0.635]" ] }, { @@ -22473,7 +22451,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 613/2000 [03:53<07:19, 3.15it/s, loss=0.558]" + "training until 2000: 31%|███ | 613/2000 [03:50<07:26, 3.11it/s, loss=0.622]" ] }, { @@ -22481,7 +22459,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 614/2000 [03:54<07:15, 3.19it/s, loss=0.558]" + "training until 2000: 31%|███ | 614/2000 [03:50<07:25, 3.11it/s, loss=0.622]" ] }, { @@ -22489,7 +22467,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 614/2000 [03:54<07:15, 3.19it/s, loss=0.508]" + "training until 2000: 31%|███ | 614/2000 [03:50<07:25, 3.11it/s, loss=0.706]" ] }, { @@ -22497,7 +22475,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 615/2000 [03:54<07:18, 3.16it/s, loss=0.508]" + "training until 2000: 31%|███ | 615/2000 [03:51<07:24, 3.12it/s, loss=0.706]" ] }, { @@ -22505,7 +22483,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 615/2000 [03:54<07:18, 3.16it/s, loss=0.519]" + "training until 2000: 31%|███ | 615/2000 [03:51<07:24, 3.12it/s, loss=0.645]" ] }, { @@ -22513,7 +22491,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 616/2000 [03:54<07:16, 3.17it/s, loss=0.519]" + "training until 2000: 31%|███ | 616/2000 [03:51<07:26, 3.10it/s, loss=0.645]" ] }, { @@ -22521,7 +22499,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 616/2000 [03:54<07:16, 3.17it/s, loss=0.511]" + "training until 2000: 31%|███ | 616/2000 [03:51<07:26, 3.10it/s, loss=0.56] " ] }, { @@ -22529,7 +22507,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 617/2000 [03:55<07:16, 3.17it/s, loss=0.511]" + "training until 2000: 31%|███ | 617/2000 [03:51<07:34, 3.04it/s, loss=0.56]" ] }, { @@ -22537,7 +22515,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 617/2000 [03:55<07:16, 3.17it/s, loss=0.537]" + "training until 2000: 31%|███ | 617/2000 [03:51<07:34, 3.04it/s, loss=0.643]" ] }, { @@ -22545,7 +22523,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 618/2000 [03:55<07:18, 3.15it/s, loss=0.537]" + "training until 2000: 31%|███ | 618/2000 [03:52<07:29, 3.07it/s, loss=0.643]" ] }, { @@ -22553,7 +22531,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 618/2000 [03:55<07:18, 3.15it/s, loss=0.566]" + "training until 2000: 31%|███ | 618/2000 [03:52<07:29, 3.07it/s, loss=0.625]" ] }, { @@ -22561,7 +22539,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 619/2000 [03:55<07:15, 3.17it/s, loss=0.566]" + "training until 2000: 31%|███ | 619/2000 [03:52<07:22, 3.12it/s, loss=0.625]" ] }, { @@ -22569,7 +22547,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 619/2000 [03:55<07:15, 3.17it/s, loss=0.531]" + "training until 2000: 31%|███ | 619/2000 [03:52<07:22, 3.12it/s, loss=0.722]" ] }, { @@ -22577,7 +22555,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 620/2000 [03:56<07:14, 3.18it/s, loss=0.531]" + "training until 2000: 31%|███ | 620/2000 [03:52<07:21, 3.13it/s, loss=0.722]" ] }, { @@ -22585,7 +22563,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 620/2000 [03:56<07:14, 3.18it/s, loss=0.585]" + "training until 2000: 31%|███ | 620/2000 [03:52<07:21, 3.13it/s, loss=0.599]" ] }, { @@ -22593,7 +22571,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 621/2000 [03:56<07:14, 3.17it/s, loss=0.585]" + "training until 2000: 31%|███ | 621/2000 [03:53<07:17, 3.15it/s, loss=0.599]" ] }, { @@ -22601,7 +22579,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 621/2000 [03:56<07:14, 3.17it/s, loss=0.571]" + "training until 2000: 31%|███ | 621/2000 [03:53<07:17, 3.15it/s, loss=0.679]" ] }, { @@ -22609,7 +22587,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 622/2000 [03:56<07:18, 3.14it/s, loss=0.571]" + "training until 2000: 31%|███ | 622/2000 [03:53<07:17, 3.15it/s, loss=0.679]" ] }, { @@ -22617,7 +22595,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 622/2000 [03:56<07:18, 3.14it/s, loss=0.526]" + "training until 2000: 31%|███ | 622/2000 [03:53<07:17, 3.15it/s, loss=0.674]" ] }, { @@ -22625,7 +22603,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 623/2000 [03:57<07:22, 3.11it/s, loss=0.526]" + "training until 2000: 31%|███ | 623/2000 [03:53<07:15, 3.16it/s, loss=0.674]" ] }, { @@ -22633,7 +22611,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 623/2000 [03:57<07:22, 3.11it/s, loss=0.56] " + "training until 2000: 31%|███ | 623/2000 [03:53<07:15, 3.16it/s, loss=0.663]" ] }, { @@ -22641,7 +22619,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 624/2000 [03:57<07:18, 3.14it/s, loss=0.56]" + "training until 2000: 31%|███ | 624/2000 [03:54<07:14, 3.17it/s, loss=0.663]" ] }, { @@ -22649,7 +22627,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███ | 624/2000 [03:57<07:18, 3.14it/s, loss=0.512]" + "training until 2000: 31%|███ | 624/2000 [03:54<07:14, 3.17it/s, loss=0.554]" ] }, { @@ -22657,7 +22635,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 625/2000 [03:57<07:16, 3.15it/s, loss=0.512]" + "training until 2000: 31%|███▏ | 625/2000 [03:54<07:08, 3.21it/s, loss=0.554]" ] }, { @@ -22665,7 +22643,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 625/2000 [03:57<07:16, 3.15it/s, loss=0.545]" + "training until 2000: 31%|███▏ | 625/2000 [03:54<07:08, 3.21it/s, loss=0.635]" ] }, { @@ -22673,7 +22651,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 626/2000 [03:57<07:10, 3.19it/s, loss=0.545]" + "training until 2000: 31%|███▏ | 626/2000 [03:54<07:09, 3.20it/s, loss=0.635]" ] }, { @@ -22681,7 +22659,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 626/2000 [03:57<07:10, 3.19it/s, loss=0.56] " + "training until 2000: 31%|███▏ | 626/2000 [03:54<07:09, 3.20it/s, loss=0.719]" ] }, { @@ -22689,7 +22667,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 627/2000 [03:58<07:09, 3.19it/s, loss=0.56]" + "training until 2000: 31%|███▏ | 627/2000 [03:55<07:12, 3.17it/s, loss=0.719]" ] }, { @@ -22697,7 +22675,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 627/2000 [03:58<07:09, 3.19it/s, loss=0.529]" + "training until 2000: 31%|███▏ | 627/2000 [03:55<07:12, 3.17it/s, loss=0.572]" ] }, { @@ -22705,7 +22683,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 628/2000 [03:58<07:12, 3.17it/s, loss=0.529]" + "training until 2000: 31%|███▏ | 628/2000 [03:55<07:17, 3.14it/s, loss=0.572]" ] }, { @@ -22713,7 +22691,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 628/2000 [03:58<07:12, 3.17it/s, loss=0.557]" + "training until 2000: 31%|███▏ | 628/2000 [03:55<07:17, 3.14it/s, loss=0.655]" ] }, { @@ -22721,7 +22699,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 629/2000 [03:58<07:12, 3.17it/s, loss=0.557]" + "training until 2000: 31%|███▏ | 629/2000 [03:55<07:18, 3.13it/s, loss=0.655]" ] }, { @@ -22729,7 +22707,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 31%|███▏ | 629/2000 [03:58<07:12, 3.17it/s, loss=0.55] " + "training until 2000: 31%|███▏ | 629/2000 [03:55<07:18, 3.13it/s, loss=0.573]" ] }, { @@ -22737,7 +22715,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 630/2000 [03:59<07:11, 3.17it/s, loss=0.55]" + "training until 2000: 32%|███▏ | 630/2000 [03:56<07:19, 3.12it/s, loss=0.573]" ] }, { @@ -22745,7 +22723,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 630/2000 [03:59<07:11, 3.17it/s, loss=0.525]" + "training until 2000: 32%|███▏ | 630/2000 [03:56<07:19, 3.12it/s, loss=0.634]" ] }, { @@ -22753,7 +22731,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 631/2000 [03:59<07:14, 3.15it/s, loss=0.525]" + "training until 2000: 32%|███▏ | 631/2000 [03:56<07:18, 3.12it/s, loss=0.634]" ] }, { @@ -22761,7 +22739,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 631/2000 [03:59<07:14, 3.15it/s, loss=0.541]" + "training until 2000: 32%|███▏ | 631/2000 [03:56<07:18, 3.12it/s, loss=0.572]" ] }, { @@ -22769,7 +22747,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 632/2000 [03:59<07:14, 3.15it/s, loss=0.541]" + "training until 2000: 32%|███▏ | 632/2000 [03:56<07:22, 3.09it/s, loss=0.572]" ] }, { @@ -22777,7 +22755,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 632/2000 [03:59<07:14, 3.15it/s, loss=0.645]" + "training until 2000: 32%|███▏ | 632/2000 [03:56<07:22, 3.09it/s, loss=0.6] " ] }, { @@ -22785,7 +22763,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 633/2000 [04:00<07:16, 3.13it/s, loss=0.645]" + "training until 2000: 32%|███▏ | 633/2000 [03:57<07:23, 3.09it/s, loss=0.6]" ] }, { @@ -22793,7 +22771,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 633/2000 [04:00<07:16, 3.13it/s, loss=0.62] " + "training until 2000: 32%|███▏ | 633/2000 [03:57<07:23, 3.09it/s, loss=0.622]" ] }, { @@ -22801,7 +22779,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 634/2000 [04:00<07:13, 3.15it/s, loss=0.62]" + "training until 2000: 32%|███▏ | 634/2000 [03:57<07:25, 3.07it/s, loss=0.622]" ] }, { @@ -22809,7 +22787,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 634/2000 [04:00<07:13, 3.15it/s, loss=0.552]" + "training until 2000: 32%|███▏ | 634/2000 [03:57<07:25, 3.07it/s, loss=0.64] " ] }, { @@ -22817,7 +22795,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 635/2000 [04:00<07:12, 3.16it/s, loss=0.552]" + "training until 2000: 32%|███▏ | 635/2000 [03:57<07:21, 3.09it/s, loss=0.64]" ] }, { @@ -22825,7 +22803,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 635/2000 [04:00<07:12, 3.16it/s, loss=0.617]" + "training until 2000: 32%|███▏ | 635/2000 [03:57<07:21, 3.09it/s, loss=0.604]" ] }, { @@ -22833,7 +22811,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 636/2000 [04:01<07:12, 3.16it/s, loss=0.617]" + "training until 2000: 32%|███▏ | 636/2000 [03:58<07:26, 3.06it/s, loss=0.604]" ] }, { @@ -22841,7 +22819,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 636/2000 [04:01<07:12, 3.16it/s, loss=0.602]" + "training until 2000: 32%|███▏ | 636/2000 [03:58<07:26, 3.06it/s, loss=0.63] " ] }, { @@ -22849,7 +22827,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 637/2000 [04:01<07:15, 3.13it/s, loss=0.602]" + "training until 2000: 32%|███▏ | 637/2000 [03:58<07:20, 3.09it/s, loss=0.63]" ] }, { @@ -22857,7 +22835,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 637/2000 [04:01<07:15, 3.13it/s, loss=0.539]" + "training until 2000: 32%|███▏ | 637/2000 [03:58<07:20, 3.09it/s, loss=0.651]" ] }, { @@ -22865,7 +22843,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 638/2000 [04:01<07:15, 3.13it/s, loss=0.539]" + "training until 2000: 32%|███▏ | 638/2000 [03:58<07:19, 3.10it/s, loss=0.651]" ] }, { @@ -22873,7 +22851,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 638/2000 [04:01<07:15, 3.13it/s, loss=0.552]" + "training until 2000: 32%|███▏ | 638/2000 [03:58<07:19, 3.10it/s, loss=0.606]" ] }, { @@ -22881,7 +22859,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 639/2000 [04:02<07:11, 3.15it/s, loss=0.552]" + "training until 2000: 32%|███▏ | 639/2000 [03:58<07:19, 3.10it/s, loss=0.606]" ] }, { @@ -22889,7 +22867,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 639/2000 [04:02<07:11, 3.15it/s, loss=0.524]" + "training until 2000: 32%|███▏ | 639/2000 [03:58<07:19, 3.10it/s, loss=0.596]" ] }, { @@ -22897,7 +22875,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 640/2000 [04:02<07:11, 3.15it/s, loss=0.524]" + "training until 2000: 32%|███▏ | 640/2000 [03:59<07:19, 3.10it/s, loss=0.596]" ] }, { @@ -22905,7 +22883,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 640/2000 [04:02<07:11, 3.15it/s, loss=0.621]" + "training until 2000: 32%|███▏ | 640/2000 [03:59<07:19, 3.10it/s, loss=0.613]" ] }, { @@ -22913,7 +22891,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 641/2000 [04:02<07:12, 3.14it/s, loss=0.621]" + "training until 2000: 32%|███▏ | 641/2000 [03:59<07:14, 3.13it/s, loss=0.613]" ] }, { @@ -22921,7 +22899,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 641/2000 [04:02<07:12, 3.14it/s, loss=0.534]" + "training until 2000: 32%|███▏ | 641/2000 [03:59<07:14, 3.13it/s, loss=0.543]" ] }, { @@ -22929,7 +22907,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 642/2000 [04:03<07:11, 3.15it/s, loss=0.534]" + "training until 2000: 32%|███▏ | 642/2000 [03:59<07:13, 3.13it/s, loss=0.543]" ] }, { @@ -22937,7 +22915,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 642/2000 [04:03<07:11, 3.15it/s, loss=0.626]" + "training until 2000: 32%|███▏ | 642/2000 [03:59<07:13, 3.13it/s, loss=0.584]" ] }, { @@ -22945,7 +22923,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 643/2000 [04:03<07:08, 3.17it/s, loss=0.626]" + "training until 2000: 32%|███▏ | 643/2000 [04:00<07:06, 3.18it/s, loss=0.584]" ] }, { @@ -22953,7 +22931,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 643/2000 [04:03<07:08, 3.17it/s, loss=0.559]" + "training until 2000: 32%|███▏ | 643/2000 [04:00<07:06, 3.18it/s, loss=0.673]" ] }, { @@ -22961,7 +22939,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 644/2000 [04:03<07:05, 3.19it/s, loss=0.559]" + "training until 2000: 32%|███▏ | 644/2000 [04:00<07:06, 3.18it/s, loss=0.673]" ] }, { @@ -22969,7 +22947,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 644/2000 [04:03<07:05, 3.19it/s, loss=0.593]" + "training until 2000: 32%|███▏ | 644/2000 [04:00<07:06, 3.18it/s, loss=0.645]" ] }, { @@ -22977,7 +22955,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 645/2000 [04:03<07:06, 3.18it/s, loss=0.593]" + "training until 2000: 32%|███▏ | 645/2000 [04:00<07:21, 3.07it/s, loss=0.645]" ] }, { @@ -22985,7 +22963,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 645/2000 [04:03<07:06, 3.18it/s, loss=0.536]" + "training until 2000: 32%|███▏ | 645/2000 [04:00<07:21, 3.07it/s, loss=0.571]" ] }, { @@ -22993,7 +22971,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 646/2000 [04:04<07:07, 3.17it/s, loss=0.536]" + "training until 2000: 32%|███▏ | 646/2000 [04:01<07:16, 3.11it/s, loss=0.571]" ] }, { @@ -23001,7 +22979,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 646/2000 [04:04<07:07, 3.17it/s, loss=0.556]" + "training until 2000: 32%|███▏ | 646/2000 [04:01<07:16, 3.11it/s, loss=0.621]" ] }, { @@ -23009,7 +22987,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 647/2000 [04:04<07:10, 3.14it/s, loss=0.556]" + "training until 2000: 32%|███▏ | 647/2000 [04:01<07:21, 3.07it/s, loss=0.621]" ] }, { @@ -23017,7 +22995,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 647/2000 [04:04<07:10, 3.14it/s, loss=0.538]" + "training until 2000: 32%|███▏ | 647/2000 [04:01<07:21, 3.07it/s, loss=0.635]" ] }, { @@ -23025,7 +23003,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 648/2000 [04:04<07:13, 3.12it/s, loss=0.538]" + "training until 2000: 32%|███▏ | 648/2000 [04:01<07:18, 3.08it/s, loss=0.635]" ] }, { @@ -23033,7 +23011,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 648/2000 [04:04<07:13, 3.12it/s, loss=0.526]" + "training until 2000: 32%|███▏ | 648/2000 [04:01<07:18, 3.08it/s, loss=0.599]" ] }, { @@ -23041,7 +23019,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 649/2000 [04:05<07:16, 3.10it/s, loss=0.526]" + "training until 2000: 32%|███▏ | 649/2000 [04:02<07:12, 3.12it/s, loss=0.599]" ] }, { @@ -23049,7 +23027,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▏ | 649/2000 [04:05<07:16, 3.10it/s, loss=0.575]" + "training until 2000: 32%|███▏ | 649/2000 [04:02<07:12, 3.12it/s, loss=0.719]" ] }, { @@ -23057,7 +23035,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▎ | 650/2000 [04:05<07:13, 3.11it/s, loss=0.575]" + "training until 2000: 32%|███▎ | 650/2000 [04:02<07:11, 3.13it/s, loss=0.719]" ] }, { @@ -23065,7 +23043,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 32%|███▎ | 650/2000 [04:05<07:13, 3.11it/s, loss=0.538]" + "training until 2000: 32%|███▎ | 650/2000 [04:02<07:11, 3.13it/s, loss=0.645]" ] }, { @@ -23073,7 +23051,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 651/2000 [04:05<07:12, 3.12it/s, loss=0.538]" + "training until 2000: 33%|███▎ | 651/2000 [04:02<07:08, 3.15it/s, loss=0.645]" ] }, { @@ -23081,7 +23059,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 651/2000 [04:05<07:12, 3.12it/s, loss=0.559]" + "training until 2000: 33%|███▎ | 651/2000 [04:02<07:08, 3.15it/s, loss=0.579]" ] }, { @@ -23089,7 +23067,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 652/2000 [04:06<07:17, 3.08it/s, loss=0.559]" + "training until 2000: 33%|███▎ | 652/2000 [04:03<07:08, 3.15it/s, loss=0.579]" ] }, { @@ -23097,7 +23075,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 652/2000 [04:06<07:17, 3.08it/s, loss=0.534]" + "training until 2000: 33%|███▎ | 652/2000 [04:03<07:08, 3.15it/s, loss=0.597]" ] }, { @@ -23105,7 +23083,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 653/2000 [04:06<07:17, 3.08it/s, loss=0.534]" + "training until 2000: 33%|███▎ | 653/2000 [04:03<07:10, 3.13it/s, loss=0.597]" ] }, { @@ -23113,7 +23091,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 653/2000 [04:06<07:17, 3.08it/s, loss=0.578]" + "training until 2000: 33%|███▎ | 653/2000 [04:03<07:10, 3.13it/s, loss=0.662]" ] }, { @@ -23121,7 +23099,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 654/2000 [04:06<07:14, 3.10it/s, loss=0.578]" + "training until 2000: 33%|███▎ | 654/2000 [04:03<07:18, 3.07it/s, loss=0.662]" ] }, { @@ -23129,7 +23107,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 654/2000 [04:06<07:14, 3.10it/s, loss=0.567]" + "training until 2000: 33%|███▎ | 654/2000 [04:03<07:18, 3.07it/s, loss=0.657]" ] }, { @@ -23137,7 +23115,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 655/2000 [04:07<07:08, 3.14it/s, loss=0.567]" + "training until 2000: 33%|███▎ | 655/2000 [04:04<07:09, 3.13it/s, loss=0.657]" ] }, { @@ -23145,7 +23123,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 655/2000 [04:07<07:08, 3.14it/s, loss=0.53] " + "training until 2000: 33%|███▎ | 655/2000 [04:04<07:09, 3.13it/s, loss=0.637]" ] }, { @@ -23153,7 +23131,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 656/2000 [04:07<07:09, 3.13it/s, loss=0.53]" + "training until 2000: 33%|███▎ | 656/2000 [04:04<08:43, 2.57it/s, loss=0.637]" ] }, { @@ -23161,7 +23139,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 656/2000 [04:07<07:09, 3.13it/s, loss=0.554]" + "training until 2000: 33%|███▎ | 656/2000 [04:04<08:43, 2.57it/s, loss=0.648]" ] }, { @@ -23169,7 +23147,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 657/2000 [04:07<07:08, 3.14it/s, loss=0.554]" + "training until 2000: 33%|███▎ | 657/2000 [04:04<08:15, 2.71it/s, loss=0.648]" ] }, { @@ -23177,7 +23155,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 657/2000 [04:07<07:08, 3.14it/s, loss=0.554]" + "training until 2000: 33%|███▎ | 657/2000 [04:04<08:15, 2.71it/s, loss=0.616]" ] }, { @@ -23185,7 +23163,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 658/2000 [04:08<07:07, 3.14it/s, loss=0.554]" + "training until 2000: 33%|███▎ | 658/2000 [04:05<07:54, 2.83it/s, loss=0.616]" ] }, { @@ -23193,7 +23171,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 658/2000 [04:08<07:07, 3.14it/s, loss=0.548]" + "training until 2000: 33%|███▎ | 658/2000 [04:05<07:54, 2.83it/s, loss=0.607]" ] }, { @@ -23201,7 +23179,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 659/2000 [04:08<08:42, 2.57it/s, loss=0.548]" + "training until 2000: 33%|███▎ | 659/2000 [04:05<07:36, 2.94it/s, loss=0.607]" ] }, { @@ -23209,7 +23187,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 659/2000 [04:08<08:42, 2.57it/s, loss=0.505]" + "training until 2000: 33%|███▎ | 659/2000 [04:05<07:36, 2.94it/s, loss=0.591]" ] }, { @@ -23217,7 +23195,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 660/2000 [04:09<08:14, 2.71it/s, loss=0.505]" + "training until 2000: 33%|███▎ | 660/2000 [04:05<07:22, 3.03it/s, loss=0.591]" ] }, { @@ -23225,7 +23203,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 660/2000 [04:09<08:14, 2.71it/s, loss=0.567]" + "training until 2000: 33%|███▎ | 660/2000 [04:05<07:22, 3.03it/s, loss=0.565]" ] }, { @@ -23233,7 +23211,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 661/2000 [04:09<07:53, 2.83it/s, loss=0.567]" + "training until 2000: 33%|███▎ | 661/2000 [04:06<07:18, 3.05it/s, loss=0.565]" ] }, { @@ -23241,7 +23219,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 661/2000 [04:09<07:53, 2.83it/s, loss=0.518]" + "training until 2000: 33%|███▎ | 661/2000 [04:06<07:18, 3.05it/s, loss=0.599]" ] }, { @@ -23249,7 +23227,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 662/2000 [04:09<07:37, 2.93it/s, loss=0.518]" + "training until 2000: 33%|███▎ | 662/2000 [04:06<07:13, 3.09it/s, loss=0.599]" ] }, { @@ -23257,7 +23235,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 662/2000 [04:09<07:37, 2.93it/s, loss=0.563]" + "training until 2000: 33%|███▎ | 662/2000 [04:06<07:13, 3.09it/s, loss=0.597]" ] }, { @@ -23265,7 +23243,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 663/2000 [04:09<07:23, 3.01it/s, loss=0.563]" + "training until 2000: 33%|███▎ | 663/2000 [04:06<07:11, 3.10it/s, loss=0.597]" ] }, { @@ -23273,7 +23251,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 663/2000 [04:09<07:23, 3.01it/s, loss=0.553]" + "training until 2000: 33%|███▎ | 663/2000 [04:06<07:11, 3.10it/s, loss=0.571]" ] }, { @@ -23281,7 +23259,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 664/2000 [04:10<07:19, 3.04it/s, loss=0.553]" + "training until 2000: 33%|███▎ | 664/2000 [04:07<07:12, 3.09it/s, loss=0.571]" ] }, { @@ -23289,7 +23267,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 664/2000 [04:10<07:19, 3.04it/s, loss=0.56] " + "training until 2000: 33%|███▎ | 664/2000 [04:07<07:12, 3.09it/s, loss=0.604]" ] }, { @@ -23297,7 +23275,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 665/2000 [04:10<07:18, 3.04it/s, loss=0.56]" + "training until 2000: 33%|███▎ | 665/2000 [04:07<07:10, 3.10it/s, loss=0.604]" ] }, { @@ -23305,7 +23283,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 665/2000 [04:10<07:18, 3.04it/s, loss=0.531]" + "training until 2000: 33%|███▎ | 665/2000 [04:07<07:10, 3.10it/s, loss=0.667]" ] }, { @@ -23313,7 +23291,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 666/2000 [04:10<07:12, 3.08it/s, loss=0.531]" + "training until 2000: 33%|███▎ | 666/2000 [04:07<07:06, 3.12it/s, loss=0.667]" ] }, { @@ -23321,7 +23299,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 666/2000 [04:10<07:12, 3.08it/s, loss=0.576]" + "training until 2000: 33%|███▎ | 666/2000 [04:07<07:06, 3.12it/s, loss=0.616]" ] }, { @@ -23329,7 +23307,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 667/2000 [04:11<07:11, 3.09it/s, loss=0.576]" + "training until 2000: 33%|███▎ | 667/2000 [04:08<07:06, 3.12it/s, loss=0.616]" ] }, { @@ -23337,7 +23315,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 667/2000 [04:11<07:11, 3.09it/s, loss=0.542]" + "training until 2000: 33%|███▎ | 667/2000 [04:08<07:06, 3.12it/s, loss=0.628]" ] }, { @@ -23345,7 +23323,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 668/2000 [04:11<07:09, 3.10it/s, loss=0.542]" + "training until 2000: 33%|███▎ | 668/2000 [04:08<07:02, 3.15it/s, loss=0.628]" ] }, { @@ -23353,7 +23331,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 668/2000 [04:11<07:09, 3.10it/s, loss=0.548]" + "training until 2000: 33%|███▎ | 668/2000 [04:08<07:02, 3.15it/s, loss=0.66] " ] }, { @@ -23361,7 +23339,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 669/2000 [04:11<07:05, 3.13it/s, loss=0.548]" + "training until 2000: 33%|███▎ | 669/2000 [04:08<07:03, 3.14it/s, loss=0.66]" ] }, { @@ -23369,7 +23347,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 33%|███▎ | 669/2000 [04:11<07:05, 3.13it/s, loss=0.569]" + "training until 2000: 33%|███▎ | 669/2000 [04:08<07:03, 3.14it/s, loss=0.553]" ] }, { @@ -23377,7 +23355,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 670/2000 [04:12<07:01, 3.15it/s, loss=0.569]" + "training until 2000: 34%|███▎ | 670/2000 [04:09<07:04, 3.13it/s, loss=0.553]" ] }, { @@ -23385,7 +23363,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 670/2000 [04:12<07:01, 3.15it/s, loss=0.578]" + "training until 2000: 34%|███▎ | 670/2000 [04:09<07:04, 3.13it/s, loss=0.59] " ] }, { @@ -23393,7 +23371,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 671/2000 [04:12<06:57, 3.18it/s, loss=0.578]" + "training until 2000: 34%|███▎ | 671/2000 [04:09<07:01, 3.15it/s, loss=0.59]" ] }, { @@ -23401,7 +23379,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 671/2000 [04:12<06:57, 3.18it/s, loss=0.54] " + "training until 2000: 34%|███▎ | 671/2000 [04:09<07:01, 3.15it/s, loss=0.639]" ] }, { @@ -23409,7 +23387,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 672/2000 [04:12<07:01, 3.15it/s, loss=0.54]" + "training until 2000: 34%|███▎ | 672/2000 [04:09<07:00, 3.16it/s, loss=0.639]" ] }, { @@ -23417,7 +23395,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 672/2000 [04:12<07:01, 3.15it/s, loss=0.51]" + "training until 2000: 34%|███▎ | 672/2000 [04:09<07:00, 3.16it/s, loss=0.595]" ] }, { @@ -23425,7 +23403,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 673/2000 [04:13<07:01, 3.15it/s, loss=0.51]" + "training until 2000: 34%|███▎ | 673/2000 [04:10<07:06, 3.11it/s, loss=0.595]" ] }, { @@ -23433,7 +23411,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 673/2000 [04:13<07:01, 3.15it/s, loss=0.671]" + "training until 2000: 34%|███▎ | 673/2000 [04:10<07:06, 3.11it/s, loss=0.58] " ] }, { @@ -23441,7 +23419,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 674/2000 [04:13<06:58, 3.17it/s, loss=0.671]" + "training until 2000: 34%|███▎ | 674/2000 [04:10<07:02, 3.14it/s, loss=0.58]" ] }, { @@ -23449,7 +23427,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▎ | 674/2000 [04:13<06:58, 3.17it/s, loss=0.537]" + "training until 2000: 34%|███▎ | 674/2000 [04:10<07:02, 3.14it/s, loss=0.688]" ] }, { @@ -23457,7 +23435,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 675/2000 [04:13<07:03, 3.13it/s, loss=0.537]" + "training until 2000: 34%|███▍ | 675/2000 [04:10<07:05, 3.11it/s, loss=0.688]" ] }, { @@ -23465,7 +23443,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 675/2000 [04:13<07:03, 3.13it/s, loss=0.573]" + "training until 2000: 34%|███▍ | 675/2000 [04:10<07:05, 3.11it/s, loss=0.61] " ] }, { @@ -23473,7 +23451,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 676/2000 [04:14<07:02, 3.14it/s, loss=0.573]" + "training until 2000: 34%|███▍ | 676/2000 [04:10<07:03, 3.13it/s, loss=0.61]" ] }, { @@ -23481,7 +23459,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 676/2000 [04:14<07:02, 3.14it/s, loss=0.615]" + "training until 2000: 34%|███▍ | 676/2000 [04:10<07:03, 3.13it/s, loss=0.576]" ] }, { @@ -23489,7 +23467,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 677/2000 [04:14<07:03, 3.12it/s, loss=0.615]" + "training until 2000: 34%|███▍ | 677/2000 [04:11<07:01, 3.14it/s, loss=0.576]" ] }, { @@ -23497,7 +23475,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 677/2000 [04:14<07:03, 3.12it/s, loss=0.565]" + "training until 2000: 34%|███▍ | 677/2000 [04:11<07:01, 3.14it/s, loss=0.607]" ] }, { @@ -23505,7 +23483,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 678/2000 [04:14<07:04, 3.12it/s, loss=0.565]" + "training until 2000: 34%|███▍ | 678/2000 [04:11<06:57, 3.16it/s, loss=0.607]" ] }, { @@ -23513,7 +23491,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 678/2000 [04:14<07:04, 3.12it/s, loss=0.511]" + "training until 2000: 34%|███▍ | 678/2000 [04:11<06:57, 3.16it/s, loss=0.603]" ] }, { @@ -23521,7 +23499,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 679/2000 [04:15<07:05, 3.11it/s, loss=0.511]" + "training until 2000: 34%|███▍ | 679/2000 [04:11<06:52, 3.21it/s, loss=0.603]" ] }, { @@ -23529,7 +23507,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 679/2000 [04:15<07:05, 3.11it/s, loss=0.59] " + "training until 2000: 34%|███▍ | 679/2000 [04:11<06:52, 3.21it/s, loss=0.537]" ] }, { @@ -23537,7 +23515,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 680/2000 [04:15<07:08, 3.08it/s, loss=0.59]" + "training until 2000: 34%|███▍ | 680/2000 [04:12<06:54, 3.18it/s, loss=0.537]" ] }, { @@ -23545,7 +23523,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 680/2000 [04:15<07:08, 3.08it/s, loss=0.572]" + "training until 2000: 34%|███▍ | 680/2000 [04:12<06:54, 3.18it/s, loss=0.658]" ] }, { @@ -23553,7 +23531,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 681/2000 [04:15<07:06, 3.09it/s, loss=0.572]" + "training until 2000: 34%|███▍ | 681/2000 [04:12<06:52, 3.20it/s, loss=0.658]" ] }, { @@ -23561,7 +23539,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 681/2000 [04:15<07:06, 3.09it/s, loss=0.601]" + "training until 2000: 34%|███▍ | 681/2000 [04:12<06:52, 3.20it/s, loss=0.585]" ] }, { @@ -23569,7 +23547,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 682/2000 [04:16<07:05, 3.10it/s, loss=0.601]" + "training until 2000: 34%|███▍ | 682/2000 [04:12<06:52, 3.20it/s, loss=0.585]" ] }, { @@ -23577,7 +23555,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 682/2000 [04:16<07:05, 3.10it/s, loss=0.59] " + "training until 2000: 34%|███▍ | 682/2000 [04:12<06:52, 3.20it/s, loss=0.599]" ] }, { @@ -23585,7 +23563,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 683/2000 [04:16<07:03, 3.11it/s, loss=0.59]" + "training until 2000: 34%|███▍ | 683/2000 [04:13<06:56, 3.16it/s, loss=0.599]" ] }, { @@ -23593,7 +23571,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 683/2000 [04:16<07:03, 3.11it/s, loss=0.531]" + "training until 2000: 34%|███▍ | 683/2000 [04:13<06:56, 3.16it/s, loss=0.594]" ] }, { @@ -23601,7 +23579,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 684/2000 [04:16<07:01, 3.12it/s, loss=0.531]" + "training until 2000: 34%|███▍ | 684/2000 [04:13<07:01, 3.13it/s, loss=0.594]" ] }, { @@ -23609,7 +23587,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 684/2000 [04:16<07:01, 3.12it/s, loss=0.574]" + "training until 2000: 34%|███▍ | 684/2000 [04:13<07:01, 3.13it/s, loss=0.625]" ] }, { @@ -23617,7 +23595,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 685/2000 [04:17<06:59, 3.13it/s, loss=0.574]" + "training until 2000: 34%|███▍ | 685/2000 [04:13<06:57, 3.15it/s, loss=0.625]" ] }, { @@ -23625,7 +23603,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 685/2000 [04:17<06:59, 3.13it/s, loss=0.548]" + "training until 2000: 34%|███▍ | 685/2000 [04:13<06:57, 3.15it/s, loss=0.591]" ] }, { @@ -23633,7 +23611,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 686/2000 [04:17<07:00, 3.12it/s, loss=0.548]" + "training until 2000: 34%|███▍ | 686/2000 [04:14<06:55, 3.16it/s, loss=0.591]" ] }, { @@ -23641,7 +23619,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 686/2000 [04:17<07:00, 3.12it/s, loss=0.57] " + "training until 2000: 34%|███▍ | 686/2000 [04:14<06:55, 3.16it/s, loss=0.631]" ] }, { @@ -23649,7 +23627,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 687/2000 [04:17<07:00, 3.13it/s, loss=0.57]" + "training until 2000: 34%|███▍ | 687/2000 [04:14<06:51, 3.19it/s, loss=0.631]" ] }, { @@ -23657,7 +23635,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 687/2000 [04:17<07:00, 3.13it/s, loss=0.553]" + "training until 2000: 34%|███▍ | 687/2000 [04:14<06:51, 3.19it/s, loss=0.657]" ] }, { @@ -23665,7 +23643,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 688/2000 [04:17<07:03, 3.09it/s, loss=0.553]" + "training until 2000: 34%|███▍ | 688/2000 [04:14<06:49, 3.21it/s, loss=0.657]" ] }, { @@ -23673,7 +23651,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 688/2000 [04:17<07:03, 3.09it/s, loss=0.551]" + "training until 2000: 34%|███▍ | 688/2000 [04:14<06:49, 3.21it/s, loss=0.57] " ] }, { @@ -23681,7 +23659,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 689/2000 [04:18<07:04, 3.09it/s, loss=0.551]" + "training until 2000: 34%|███▍ | 689/2000 [04:15<06:49, 3.20it/s, loss=0.57]" ] }, { @@ -23689,7 +23667,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 689/2000 [04:18<07:04, 3.09it/s, loss=0.58] " + "training until 2000: 34%|███▍ | 689/2000 [04:15<06:49, 3.20it/s, loss=0.588]" ] }, { @@ -23697,7 +23675,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 690/2000 [04:18<07:00, 3.12it/s, loss=0.58]" + "training until 2000: 34%|███▍ | 690/2000 [04:15<06:53, 3.17it/s, loss=0.588]" ] }, { @@ -23705,7 +23683,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 34%|███▍ | 690/2000 [04:18<07:00, 3.12it/s, loss=0.539]" + "training until 2000: 34%|███▍ | 690/2000 [04:15<06:53, 3.17it/s, loss=0.591]" ] }, { @@ -23713,7 +23691,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 691/2000 [04:18<06:59, 3.12it/s, loss=0.539]" + "training until 2000: 35%|███▍ | 691/2000 [04:15<06:54, 3.16it/s, loss=0.591]" ] }, { @@ -23721,7 +23699,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 691/2000 [04:18<06:59, 3.12it/s, loss=0.526]" + "training until 2000: 35%|███▍ | 691/2000 [04:15<06:54, 3.16it/s, loss=0.545]" ] }, { @@ -23729,7 +23707,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 692/2000 [04:19<07:01, 3.10it/s, loss=0.526]" + "training until 2000: 35%|███▍ | 692/2000 [04:16<06:50, 3.18it/s, loss=0.545]" ] }, { @@ -23737,7 +23715,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 692/2000 [04:19<07:01, 3.10it/s, loss=0.5] " + "training until 2000: 35%|███▍ | 692/2000 [04:16<06:50, 3.18it/s, loss=0.718]" ] }, { @@ -23745,7 +23723,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 693/2000 [04:19<06:56, 3.14it/s, loss=0.5]" + "training until 2000: 35%|███▍ | 693/2000 [04:16<06:51, 3.18it/s, loss=0.718]" ] }, { @@ -23753,7 +23731,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 693/2000 [04:19<06:56, 3.14it/s, loss=0.501]" + "training until 2000: 35%|███▍ | 693/2000 [04:16<06:51, 3.18it/s, loss=0.579]" ] }, { @@ -23761,7 +23739,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 694/2000 [04:19<06:58, 3.12it/s, loss=0.501]" + "training until 2000: 35%|███▍ | 694/2000 [04:16<06:49, 3.19it/s, loss=0.579]" ] }, { @@ -23769,7 +23747,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 694/2000 [04:19<06:58, 3.12it/s, loss=0.601]" + "training until 2000: 35%|███▍ | 694/2000 [04:16<06:49, 3.19it/s, loss=0.661]" ] }, { @@ -23777,7 +23755,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 695/2000 [04:20<07:00, 3.10it/s, loss=0.601]" + "training until 2000: 35%|███▍ | 695/2000 [04:16<06:47, 3.20it/s, loss=0.661]" ] }, { @@ -23785,7 +23763,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 695/2000 [04:20<07:00, 3.10it/s, loss=0.507]" + "training until 2000: 35%|███▍ | 695/2000 [04:16<06:47, 3.20it/s, loss=0.632]" ] }, { @@ -23793,7 +23771,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 696/2000 [04:20<07:04, 3.08it/s, loss=0.507]" + "training until 2000: 35%|███▍ | 696/2000 [04:17<06:49, 3.19it/s, loss=0.632]" ] }, { @@ -23801,7 +23779,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 696/2000 [04:20<07:04, 3.08it/s, loss=0.532]" + "training until 2000: 35%|███▍ | 696/2000 [04:17<06:49, 3.19it/s, loss=0.627]" ] }, { @@ -23809,7 +23787,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 697/2000 [04:20<07:03, 3.08it/s, loss=0.532]" + "training until 2000: 35%|███▍ | 697/2000 [04:17<06:46, 3.20it/s, loss=0.627]" ] }, { @@ -23817,7 +23795,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 697/2000 [04:20<07:03, 3.08it/s, loss=0.528]" + "training until 2000: 35%|███▍ | 697/2000 [04:17<06:46, 3.20it/s, loss=0.657]" ] }, { @@ -23825,7 +23803,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 698/2000 [04:21<07:09, 3.03it/s, loss=0.528]" + "training until 2000: 35%|███▍ | 698/2000 [04:17<06:45, 3.21it/s, loss=0.657]" ] }, { @@ -23833,7 +23811,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 698/2000 [04:21<07:09, 3.03it/s, loss=0.61] " + "training until 2000: 35%|███▍ | 698/2000 [04:17<06:45, 3.21it/s, loss=0.563]" ] }, { @@ -23841,7 +23819,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 699/2000 [04:21<07:05, 3.05it/s, loss=0.61]" + "training until 2000: 35%|███▍ | 699/2000 [04:18<06:51, 3.16it/s, loss=0.563]" ] }, { @@ -23849,7 +23827,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▍ | 699/2000 [04:21<07:05, 3.05it/s, loss=0.507]" + "training until 2000: 35%|███▍ | 699/2000 [04:18<06:51, 3.16it/s, loss=0.565]" ] }, { @@ -23857,7 +23835,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 700/2000 [04:21<07:12, 3.01it/s, loss=0.507]" + "training until 2000: 35%|███▌ | 700/2000 [04:18<06:56, 3.12it/s, loss=0.565]" ] }, { @@ -23865,7 +23843,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 700/2000 [04:21<07:12, 3.01it/s, loss=0.532]" + "training until 2000: 35%|███▌ | 700/2000 [04:18<06:56, 3.12it/s, loss=0.569]" ] }, { @@ -23873,7 +23851,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 701/2000 [04:22<07:09, 3.02it/s, loss=0.532]" + "training until 2000: 35%|███▌ | 701/2000 [04:18<06:55, 3.13it/s, loss=0.569]" ] }, { @@ -23881,7 +23859,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 701/2000 [04:22<07:09, 3.02it/s, loss=0.54] " + "training until 2000: 35%|███▌ | 701/2000 [04:18<06:55, 3.13it/s, loss=0.636]" ] }, { @@ -23889,7 +23867,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 702/2000 [04:22<07:06, 3.04it/s, loss=0.54]" + "training until 2000: 35%|███▌ | 702/2000 [04:19<07:01, 3.08it/s, loss=0.636]" ] }, { @@ -23897,7 +23875,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 702/2000 [04:22<07:06, 3.04it/s, loss=0.529]" + "training until 2000: 35%|███▌ | 702/2000 [04:19<07:01, 3.08it/s, loss=0.571]" ] }, { @@ -23905,7 +23883,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 703/2000 [04:22<07:06, 3.04it/s, loss=0.529]" + "training until 2000: 35%|███▌ | 703/2000 [04:19<06:55, 3.12it/s, loss=0.571]" ] }, { @@ -23913,7 +23891,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 703/2000 [04:22<07:06, 3.04it/s, loss=0.555]" + "training until 2000: 35%|███▌ | 703/2000 [04:19<06:55, 3.12it/s, loss=0.617]" ] }, { @@ -23921,7 +23899,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 704/2000 [04:23<07:03, 3.06it/s, loss=0.555]" + "training until 2000: 35%|███▌ | 704/2000 [04:19<06:55, 3.12it/s, loss=0.617]" ] }, { @@ -23929,7 +23907,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 704/2000 [04:23<07:03, 3.06it/s, loss=0.564]" + "training until 2000: 35%|███▌ | 704/2000 [04:19<06:55, 3.12it/s, loss=0.543]" ] }, { @@ -23937,7 +23915,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 705/2000 [04:23<07:02, 3.06it/s, loss=0.564]" + "training until 2000: 35%|███▌ | 705/2000 [04:20<06:52, 3.14it/s, loss=0.543]" ] }, { @@ -23945,7 +23923,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 705/2000 [04:23<07:02, 3.06it/s, loss=0.539]" + "training until 2000: 35%|███▌ | 705/2000 [04:20<06:52, 3.14it/s, loss=0.621]" ] }, { @@ -23953,7 +23931,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 706/2000 [04:23<07:00, 3.07it/s, loss=0.539]" + "training until 2000: 35%|███▌ | 706/2000 [04:20<06:54, 3.12it/s, loss=0.621]" ] }, { @@ -23961,7 +23939,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 706/2000 [04:23<07:00, 3.07it/s, loss=0.511]" + "training until 2000: 35%|███▌ | 706/2000 [04:20<06:54, 3.12it/s, loss=0.534]" ] }, { @@ -23969,7 +23947,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 707/2000 [04:24<06:58, 3.09it/s, loss=0.511]" + "training until 2000: 35%|███▌ | 707/2000 [04:20<06:56, 3.11it/s, loss=0.534]" ] }, { @@ -23977,7 +23955,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 707/2000 [04:24<06:58, 3.09it/s, loss=0.493]" + "training until 2000: 35%|███▌ | 707/2000 [04:20<06:56, 3.11it/s, loss=0.548]" ] }, { @@ -23985,7 +23963,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 708/2000 [04:24<07:01, 3.07it/s, loss=0.493]" + "training until 2000: 35%|███▌ | 708/2000 [04:21<06:51, 3.14it/s, loss=0.548]" ] }, { @@ -23993,7 +23971,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 708/2000 [04:24<07:01, 3.07it/s, loss=0.523]" + "training until 2000: 35%|███▌ | 708/2000 [04:21<06:51, 3.14it/s, loss=0.582]" ] }, { @@ -24001,7 +23979,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 709/2000 [04:24<06:59, 3.08it/s, loss=0.523]" + "training until 2000: 35%|███▌ | 709/2000 [04:21<06:51, 3.14it/s, loss=0.582]" ] }, { @@ -24009,7 +23987,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 35%|███▌ | 709/2000 [04:24<06:59, 3.08it/s, loss=0.596]" + "training until 2000: 35%|███▌ | 709/2000 [04:21<06:51, 3.14it/s, loss=0.572]" ] }, { @@ -24017,7 +23995,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 710/2000 [04:25<07:00, 3.07it/s, loss=0.596]" + "training until 2000: 36%|███▌ | 710/2000 [04:21<06:52, 3.13it/s, loss=0.572]" ] }, { @@ -24025,7 +24003,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 710/2000 [04:25<07:00, 3.07it/s, loss=0.581]" + "training until 2000: 36%|███▌ | 710/2000 [04:21<06:52, 3.13it/s, loss=0.688]" ] }, { @@ -24033,7 +24011,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 711/2000 [04:25<07:01, 3.06it/s, loss=0.581]" + "training until 2000: 36%|███▌ | 711/2000 [04:22<06:56, 3.10it/s, loss=0.688]" ] }, { @@ -24041,7 +24019,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 711/2000 [04:25<07:01, 3.06it/s, loss=0.526]" + "training until 2000: 36%|███▌ | 711/2000 [04:22<06:56, 3.10it/s, loss=0.606]" ] }, { @@ -24049,7 +24027,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 712/2000 [04:25<06:58, 3.08it/s, loss=0.526]" + "training until 2000: 36%|███▌ | 712/2000 [04:22<06:59, 3.07it/s, loss=0.606]" ] }, { @@ -24057,7 +24035,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 712/2000 [04:25<06:58, 3.08it/s, loss=0.518]" + "training until 2000: 36%|███▌ | 712/2000 [04:22<06:59, 3.07it/s, loss=0.563]" ] }, { @@ -24065,7 +24043,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 713/2000 [04:26<07:04, 3.03it/s, loss=0.518]" + "training until 2000: 36%|███▌ | 713/2000 [04:22<06:59, 3.06it/s, loss=0.563]" ] }, { @@ -24073,7 +24051,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 713/2000 [04:26<07:04, 3.03it/s, loss=0.511]" + "training until 2000: 36%|███▌ | 713/2000 [04:22<06:59, 3.06it/s, loss=0.59] " ] }, { @@ -24081,7 +24059,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 714/2000 [04:26<07:03, 3.03it/s, loss=0.511]" + "training until 2000: 36%|███▌ | 714/2000 [04:23<06:53, 3.11it/s, loss=0.59]" ] }, { @@ -24089,7 +24067,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 714/2000 [04:26<07:03, 3.03it/s, loss=0.549]" + "training until 2000: 36%|███▌ | 714/2000 [04:23<06:53, 3.11it/s, loss=0.623]" ] }, { @@ -24097,7 +24075,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 715/2000 [04:26<06:58, 3.07it/s, loss=0.549]" + "training until 2000: 36%|███▌ | 715/2000 [04:23<06:48, 3.14it/s, loss=0.623]" ] }, { @@ -24105,7 +24083,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 715/2000 [04:26<06:58, 3.07it/s, loss=0.624]" + "training until 2000: 36%|███▌ | 715/2000 [04:23<06:48, 3.14it/s, loss=0.577]" ] }, { @@ -24113,7 +24091,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 716/2000 [04:27<07:00, 3.05it/s, loss=0.624]" + "training until 2000: 36%|███▌ | 716/2000 [04:23<06:48, 3.14it/s, loss=0.577]" ] }, { @@ -24121,7 +24099,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 716/2000 [04:27<07:00, 3.05it/s, loss=0.536]" + "training until 2000: 36%|███▌ | 716/2000 [04:23<06:48, 3.14it/s, loss=0.608]" ] }, { @@ -24129,7 +24107,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 717/2000 [04:27<06:58, 3.07it/s, loss=0.536]" + "training until 2000: 36%|███▌ | 717/2000 [04:24<06:49, 3.13it/s, loss=0.608]" ] }, { @@ -24137,7 +24115,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 717/2000 [04:27<06:58, 3.07it/s, loss=0.509]" + "training until 2000: 36%|███▌ | 717/2000 [04:24<06:49, 3.13it/s, loss=0.569]" ] }, { @@ -24145,7 +24123,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 718/2000 [04:27<07:00, 3.05it/s, loss=0.509]" + "training until 2000: 36%|███▌ | 718/2000 [04:24<06:46, 3.16it/s, loss=0.569]" ] }, { @@ -24153,7 +24131,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 718/2000 [04:27<07:00, 3.05it/s, loss=0.552]" + "training until 2000: 36%|███▌ | 718/2000 [04:24<06:46, 3.16it/s, loss=0.578]" ] }, { @@ -24161,7 +24139,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 719/2000 [04:28<06:59, 3.05it/s, loss=0.552]" + "training until 2000: 36%|███▌ | 719/2000 [04:24<06:39, 3.21it/s, loss=0.578]" ] }, { @@ -24169,7 +24147,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 719/2000 [04:28<06:59, 3.05it/s, loss=0.543]" + "training until 2000: 36%|███▌ | 719/2000 [04:24<06:39, 3.21it/s, loss=0.698]" ] }, { @@ -24177,7 +24155,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 720/2000 [04:28<06:55, 3.08it/s, loss=0.543]" + "training until 2000: 36%|███▌ | 720/2000 [04:25<08:13, 2.59it/s, loss=0.698]" ] }, { @@ -24185,7 +24163,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 720/2000 [04:28<06:55, 3.08it/s, loss=0.52] " + "training until 2000: 36%|███▌ | 720/2000 [04:25<08:13, 2.59it/s, loss=0.66] " ] }, { @@ -24193,7 +24171,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 721/2000 [04:28<06:53, 3.09it/s, loss=0.52]" + "training until 2000: 36%|███▌ | 721/2000 [04:25<07:53, 2.70it/s, loss=0.66]" ] }, { @@ -24201,7 +24179,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 721/2000 [04:28<06:53, 3.09it/s, loss=0.544]" + "training until 2000: 36%|███▌ | 721/2000 [04:25<07:53, 2.70it/s, loss=0.575]" ] }, { @@ -24209,7 +24187,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 722/2000 [04:29<06:55, 3.07it/s, loss=0.544]" + "training until 2000: 36%|███▌ | 722/2000 [04:25<07:41, 2.77it/s, loss=0.575]" ] }, { @@ -24217,7 +24195,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 722/2000 [04:29<06:55, 3.07it/s, loss=0.537]" + "training until 2000: 36%|███▌ | 722/2000 [04:25<07:41, 2.77it/s, loss=0.613]" ] }, { @@ -24225,7 +24203,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 723/2000 [04:29<06:59, 3.04it/s, loss=0.537]" + "training until 2000: 36%|███▌ | 723/2000 [04:26<07:26, 2.86it/s, loss=0.613]" ] }, { @@ -24233,7 +24211,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 723/2000 [04:29<06:59, 3.04it/s, loss=0.669]" + "training until 2000: 36%|███▌ | 723/2000 [04:26<07:26, 2.86it/s, loss=0.636]" ] }, { @@ -24241,7 +24219,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 724/2000 [04:29<08:31, 2.50it/s, loss=0.669]" + "training until 2000: 36%|███▌ | 724/2000 [04:26<07:15, 2.93it/s, loss=0.636]" ] }, { @@ -24249,7 +24227,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▌ | 724/2000 [04:29<08:31, 2.50it/s, loss=0.534]" + "training until 2000: 36%|███▌ | 724/2000 [04:26<07:15, 2.93it/s, loss=0.709]" ] }, { @@ -24257,7 +24235,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 725/2000 [04:30<08:02, 2.64it/s, loss=0.534]" + "training until 2000: 36%|███▋ | 725/2000 [04:26<07:09, 2.97it/s, loss=0.709]" ] }, { @@ -24265,7 +24243,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 725/2000 [04:30<08:02, 2.64it/s, loss=0.694]" + "training until 2000: 36%|███▋ | 725/2000 [04:26<07:09, 2.97it/s, loss=0.539]" ] }, { @@ -24273,7 +24251,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 726/2000 [04:30<07:40, 2.77it/s, loss=0.694]" + "training until 2000: 36%|███▋ | 726/2000 [04:27<07:04, 3.00it/s, loss=0.539]" ] }, { @@ -24281,7 +24259,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 726/2000 [04:30<07:40, 2.77it/s, loss=0.529]" + "training until 2000: 36%|███▋ | 726/2000 [04:27<07:04, 3.00it/s, loss=0.576]" ] }, { @@ -24289,7 +24267,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 727/2000 [04:30<07:25, 2.86it/s, loss=0.529]" + "training until 2000: 36%|███▋ | 727/2000 [04:27<07:02, 3.02it/s, loss=0.576]" ] }, { @@ -24297,7 +24275,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 727/2000 [04:30<07:25, 2.86it/s, loss=0.589]" + "training until 2000: 36%|███▋ | 727/2000 [04:27<07:02, 3.02it/s, loss=0.569]" ] }, { @@ -24305,7 +24283,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 728/2000 [04:31<07:13, 2.93it/s, loss=0.589]" + "training until 2000: 36%|███▋ | 728/2000 [04:27<07:01, 3.02it/s, loss=0.569]" ] }, { @@ -24313,7 +24291,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 728/2000 [04:31<07:13, 2.93it/s, loss=0.573]" + "training until 2000: 36%|███▋ | 728/2000 [04:27<07:01, 3.02it/s, loss=0.597]" ] }, { @@ -24321,7 +24299,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 729/2000 [04:31<07:07, 2.97it/s, loss=0.573]" + "training until 2000: 36%|███▋ | 729/2000 [04:28<06:58, 3.04it/s, loss=0.597]" ] }, { @@ -24329,7 +24307,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 729/2000 [04:31<07:07, 2.97it/s, loss=0.533]" + "training until 2000: 36%|███▋ | 729/2000 [04:28<06:58, 3.04it/s, loss=0.632]" ] }, { @@ -24337,7 +24315,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 730/2000 [04:31<07:04, 2.99it/s, loss=0.533]" + "training until 2000: 36%|███▋ | 730/2000 [04:28<06:55, 3.06it/s, loss=0.632]" ] }, { @@ -24345,7 +24323,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 36%|███▋ | 730/2000 [04:31<07:04, 2.99it/s, loss=0.529]" + "training until 2000: 36%|███▋ | 730/2000 [04:28<06:55, 3.06it/s, loss=0.669]" ] }, { @@ -24353,7 +24331,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 731/2000 [04:32<06:57, 3.04it/s, loss=0.529]" + "training until 2000: 37%|███▋ | 731/2000 [04:28<06:55, 3.06it/s, loss=0.669]" ] }, { @@ -24361,7 +24339,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 731/2000 [04:32<06:57, 3.04it/s, loss=0.543]" + "training until 2000: 37%|███▋ | 731/2000 [04:28<06:55, 3.06it/s, loss=0.584]" ] }, { @@ -24369,7 +24347,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 732/2000 [04:32<06:48, 3.10it/s, loss=0.543]" + "training until 2000: 37%|███▋ | 732/2000 [04:29<06:50, 3.09it/s, loss=0.584]" ] }, { @@ -24377,7 +24355,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 732/2000 [04:32<06:48, 3.10it/s, loss=0.549]" + "training until 2000: 37%|███▋ | 732/2000 [04:29<06:50, 3.09it/s, loss=0.64] " ] }, { @@ -24385,7 +24363,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 733/2000 [04:32<06:45, 3.12it/s, loss=0.549]" + "training until 2000: 37%|███▋ | 733/2000 [04:29<06:58, 3.03it/s, loss=0.64]" ] }, { @@ -24393,7 +24371,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 733/2000 [04:32<06:45, 3.12it/s, loss=0.571]" + "training until 2000: 37%|███▋ | 733/2000 [04:29<06:58, 3.03it/s, loss=0.585]" ] }, { @@ -24401,7 +24379,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 734/2000 [04:33<06:45, 3.12it/s, loss=0.571]" + "training until 2000: 37%|███▋ | 734/2000 [04:29<06:49, 3.09it/s, loss=0.585]" ] }, { @@ -24409,7 +24387,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 734/2000 [04:33<06:45, 3.12it/s, loss=0.509]" + "training until 2000: 37%|███▋ | 734/2000 [04:29<06:49, 3.09it/s, loss=0.508]" ] }, { @@ -24417,7 +24395,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 735/2000 [04:33<06:42, 3.14it/s, loss=0.509]" + "training until 2000: 37%|███▋ | 735/2000 [04:30<06:45, 3.12it/s, loss=0.508]" ] }, { @@ -24425,7 +24403,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 735/2000 [04:33<06:42, 3.14it/s, loss=0.531]" + "training until 2000: 37%|███▋ | 735/2000 [04:30<06:45, 3.12it/s, loss=0.715]" ] }, { @@ -24433,7 +24411,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 736/2000 [04:33<06:43, 3.13it/s, loss=0.531]" + "training until 2000: 37%|███▋ | 736/2000 [04:30<06:46, 3.11it/s, loss=0.715]" ] }, { @@ -24441,7 +24419,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 736/2000 [04:33<06:43, 3.13it/s, loss=0.551]" + "training until 2000: 37%|███▋ | 736/2000 [04:30<06:46, 3.11it/s, loss=0.563]" ] }, { @@ -24449,7 +24427,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 737/2000 [04:34<06:45, 3.12it/s, loss=0.551]" + "training until 2000: 37%|███▋ | 737/2000 [04:30<06:48, 3.09it/s, loss=0.563]" ] }, { @@ -24457,7 +24435,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 737/2000 [04:34<06:45, 3.12it/s, loss=0.52] " + "training until 2000: 37%|███▋ | 737/2000 [04:30<06:48, 3.09it/s, loss=0.629]" ] }, { @@ -24465,7 +24443,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 738/2000 [04:34<06:47, 3.10it/s, loss=0.52]" + "training until 2000: 37%|███▋ | 738/2000 [04:31<06:52, 3.06it/s, loss=0.629]" ] }, { @@ -24473,7 +24451,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 738/2000 [04:34<06:47, 3.10it/s, loss=0.498]" + "training until 2000: 37%|███▋ | 738/2000 [04:31<06:52, 3.06it/s, loss=0.552]" ] }, { @@ -24481,7 +24459,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 739/2000 [04:34<06:43, 3.12it/s, loss=0.498]" + "training until 2000: 37%|███▋ | 739/2000 [04:31<06:53, 3.05it/s, loss=0.552]" ] }, { @@ -24489,7 +24467,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 739/2000 [04:34<06:43, 3.12it/s, loss=0.538]" + "training until 2000: 37%|███▋ | 739/2000 [04:31<06:53, 3.05it/s, loss=0.611]" ] }, { @@ -24497,7 +24475,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 740/2000 [04:35<06:45, 3.11it/s, loss=0.538]" + "training until 2000: 37%|███▋ | 740/2000 [04:31<06:47, 3.09it/s, loss=0.611]" ] }, { @@ -24505,7 +24483,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 740/2000 [04:35<06:45, 3.11it/s, loss=0.563]" + "training until 2000: 37%|███▋ | 740/2000 [04:31<06:47, 3.09it/s, loss=0.511]" ] }, { @@ -24513,7 +24491,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 741/2000 [04:35<06:50, 3.07it/s, loss=0.563]" + "training until 2000: 37%|███▋ | 741/2000 [04:32<06:44, 3.12it/s, loss=0.511]" ] }, { @@ -24521,7 +24499,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 741/2000 [04:35<06:50, 3.07it/s, loss=0.527]" + "training until 2000: 37%|███▋ | 741/2000 [04:32<06:44, 3.12it/s, loss=0.54] " ] }, { @@ -24529,7 +24507,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 742/2000 [04:35<06:43, 3.12it/s, loss=0.527]" + "training until 2000: 37%|███▋ | 742/2000 [04:32<06:44, 3.11it/s, loss=0.54]" ] }, { @@ -24537,7 +24515,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 742/2000 [04:35<06:43, 3.12it/s, loss=0.543]" + "training until 2000: 37%|███▋ | 742/2000 [04:32<06:44, 3.11it/s, loss=0.626]" ] }, { @@ -24545,7 +24523,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 743/2000 [04:36<06:42, 3.12it/s, loss=0.543]" + "training until 2000: 37%|███▋ | 743/2000 [04:32<06:40, 3.14it/s, loss=0.626]" ] }, { @@ -24553,7 +24531,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 743/2000 [04:36<06:42, 3.12it/s, loss=0.641]" + "training until 2000: 37%|███▋ | 743/2000 [04:32<06:40, 3.14it/s, loss=0.556]" ] }, { @@ -24561,7 +24539,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 744/2000 [04:36<06:45, 3.10it/s, loss=0.641]" + "training until 2000: 37%|███▋ | 744/2000 [04:32<06:35, 3.17it/s, loss=0.556]" ] }, { @@ -24569,7 +24547,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 744/2000 [04:36<06:45, 3.10it/s, loss=0.501]" + "training until 2000: 37%|███▋ | 744/2000 [04:32<06:35, 3.17it/s, loss=0.598]" ] }, { @@ -24577,7 +24555,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 745/2000 [04:36<06:40, 3.14it/s, loss=0.501]" + "training until 2000: 37%|███▋ | 745/2000 [04:33<06:35, 3.17it/s, loss=0.598]" ] }, { @@ -24585,7 +24563,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 745/2000 [04:36<06:40, 3.14it/s, loss=0.571]" + "training until 2000: 37%|███▋ | 745/2000 [04:33<06:35, 3.17it/s, loss=0.572]" ] }, { @@ -24593,7 +24571,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 746/2000 [04:37<06:40, 3.13it/s, loss=0.571]" + "training until 2000: 37%|███▋ | 746/2000 [04:33<06:36, 3.17it/s, loss=0.572]" ] }, { @@ -24601,7 +24579,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 746/2000 [04:37<06:40, 3.13it/s, loss=0.54] " + "training until 2000: 37%|███▋ | 746/2000 [04:33<06:36, 3.17it/s, loss=0.55] " ] }, { @@ -24609,7 +24587,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 747/2000 [04:37<06:37, 3.15it/s, loss=0.54]" + "training until 2000: 37%|███▋ | 747/2000 [04:33<06:37, 3.15it/s, loss=0.55]" ] }, { @@ -24617,7 +24595,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 747/2000 [04:37<06:37, 3.15it/s, loss=0.531]" + "training until 2000: 37%|███▋ | 747/2000 [04:33<06:37, 3.15it/s, loss=0.696]" ] }, { @@ -24625,7 +24603,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 748/2000 [04:37<06:38, 3.14it/s, loss=0.531]" + "training until 2000: 37%|███▋ | 748/2000 [04:34<06:34, 3.17it/s, loss=0.696]" ] }, { @@ -24633,7 +24611,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 748/2000 [04:37<06:38, 3.14it/s, loss=0.528]" + "training until 2000: 37%|███▋ | 748/2000 [04:34<06:34, 3.17it/s, loss=0.525]" ] }, { @@ -24641,7 +24619,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 749/2000 [04:37<06:34, 3.17it/s, loss=0.528]" + "training until 2000: 37%|███▋ | 749/2000 [04:34<06:37, 3.15it/s, loss=0.525]" ] }, { @@ -24649,7 +24627,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 37%|███▋ | 749/2000 [04:37<06:34, 3.17it/s, loss=0.515]" + "training until 2000: 37%|███▋ | 749/2000 [04:34<06:37, 3.15it/s, loss=0.591]" ] }, { @@ -24657,7 +24635,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 750/2000 [04:38<06:34, 3.17it/s, loss=0.515]" + "training until 2000: 38%|███▊ | 750/2000 [04:34<06:39, 3.13it/s, loss=0.591]" ] }, { @@ -24665,7 +24643,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 750/2000 [04:38<06:34, 3.17it/s, loss=0.507]" + "training until 2000: 38%|███▊ | 750/2000 [04:34<06:39, 3.13it/s, loss=0.584]" ] }, { @@ -24673,7 +24651,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 751/2000 [04:38<06:34, 3.16it/s, loss=0.507]" + "training until 2000: 38%|███▊ | 751/2000 [04:35<06:38, 3.13it/s, loss=0.584]" ] }, { @@ -24681,7 +24659,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 751/2000 [04:38<06:34, 3.16it/s, loss=0.518]" + "training until 2000: 38%|███▊ | 751/2000 [04:35<06:38, 3.13it/s, loss=0.628]" ] }, { @@ -24689,7 +24667,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 752/2000 [04:38<06:34, 3.16it/s, loss=0.518]" + "training until 2000: 38%|███▊ | 752/2000 [04:35<06:38, 3.13it/s, loss=0.628]" ] }, { @@ -24697,7 +24675,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 752/2000 [04:38<06:34, 3.16it/s, loss=0.492]" + "training until 2000: 38%|███▊ | 752/2000 [04:35<06:38, 3.13it/s, loss=0.577]" ] }, { @@ -24705,7 +24683,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 753/2000 [04:39<06:36, 3.15it/s, loss=0.492]" + "training until 2000: 38%|███▊ | 753/2000 [04:35<06:36, 3.15it/s, loss=0.577]" ] }, { @@ -24713,7 +24691,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 753/2000 [04:39<06:36, 3.15it/s, loss=0.49] " + "training until 2000: 38%|███▊ | 753/2000 [04:35<06:36, 3.15it/s, loss=0.565]" ] }, { @@ -24721,7 +24699,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 754/2000 [04:39<06:30, 3.19it/s, loss=0.49]" + "training until 2000: 38%|███▊ | 754/2000 [04:36<06:39, 3.12it/s, loss=0.565]" ] }, { @@ -24729,7 +24707,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 754/2000 [04:39<06:30, 3.19it/s, loss=0.49]" + "training until 2000: 38%|███▊ | 754/2000 [04:36<06:39, 3.12it/s, loss=0.667]" ] }, { @@ -24737,7 +24715,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 755/2000 [04:39<06:30, 3.19it/s, loss=0.49]" + "training until 2000: 38%|███▊ | 755/2000 [04:36<06:33, 3.16it/s, loss=0.667]" ] }, { @@ -24745,7 +24723,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 755/2000 [04:39<06:30, 3.19it/s, loss=0.529]" + "training until 2000: 38%|███▊ | 755/2000 [04:36<06:33, 3.16it/s, loss=0.585]" ] }, { @@ -24753,7 +24731,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 756/2000 [04:40<06:33, 3.16it/s, loss=0.529]" + "training until 2000: 38%|███▊ | 756/2000 [04:36<06:35, 3.15it/s, loss=0.585]" ] }, { @@ -24761,7 +24739,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 756/2000 [04:40<06:33, 3.16it/s, loss=0.502]" + "training until 2000: 38%|███▊ | 756/2000 [04:36<06:35, 3.15it/s, loss=0.563]" ] }, { @@ -24769,7 +24747,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 757/2000 [04:40<06:33, 3.16it/s, loss=0.502]" + "training until 2000: 38%|███▊ | 757/2000 [04:37<06:30, 3.18it/s, loss=0.563]" ] }, { @@ -24777,7 +24755,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 757/2000 [04:40<06:33, 3.16it/s, loss=0.519]" + "training until 2000: 38%|███▊ | 757/2000 [04:37<06:30, 3.18it/s, loss=0.595]" ] }, { @@ -24785,7 +24763,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 758/2000 [04:40<06:32, 3.16it/s, loss=0.519]" + "training until 2000: 38%|███▊ | 758/2000 [04:37<06:32, 3.16it/s, loss=0.595]" ] }, { @@ -24793,7 +24771,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 758/2000 [04:40<06:32, 3.16it/s, loss=0.604]" + "training until 2000: 38%|███▊ | 758/2000 [04:37<06:32, 3.16it/s, loss=0.645]" ] }, { @@ -24801,7 +24779,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 759/2000 [04:41<06:29, 3.19it/s, loss=0.604]" + "training until 2000: 38%|███▊ | 759/2000 [04:37<06:35, 3.13it/s, loss=0.645]" ] }, { @@ -24809,7 +24787,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 759/2000 [04:41<06:29, 3.19it/s, loss=0.609]" + "training until 2000: 38%|███▊ | 759/2000 [04:37<06:35, 3.13it/s, loss=0.592]" ] }, { @@ -24817,7 +24795,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 760/2000 [04:41<06:32, 3.16it/s, loss=0.609]" + "training until 2000: 38%|███▊ | 760/2000 [04:38<06:38, 3.11it/s, loss=0.592]" ] }, { @@ -24825,7 +24803,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 760/2000 [04:41<06:32, 3.16it/s, loss=0.591]" + "training until 2000: 38%|███▊ | 760/2000 [04:38<06:38, 3.11it/s, loss=0.497]" ] }, { @@ -24833,7 +24811,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 761/2000 [04:41<06:30, 3.17it/s, loss=0.591]" + "training until 2000: 38%|███▊ | 761/2000 [04:38<06:39, 3.10it/s, loss=0.497]" ] }, { @@ -24841,7 +24819,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 761/2000 [04:41<06:30, 3.17it/s, loss=0.611]" + "training until 2000: 38%|███▊ | 761/2000 [04:38<06:39, 3.10it/s, loss=0.605]" ] }, { @@ -24849,7 +24827,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 762/2000 [04:42<06:29, 3.18it/s, loss=0.611]" + "training until 2000: 38%|███▊ | 762/2000 [04:38<06:39, 3.10it/s, loss=0.605]" ] }, { @@ -24857,7 +24835,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 762/2000 [04:42<06:29, 3.18it/s, loss=0.55] " + "training until 2000: 38%|███▊ | 762/2000 [04:38<06:39, 3.10it/s, loss=0.617]" ] }, { @@ -24865,7 +24843,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 763/2000 [04:42<06:34, 3.13it/s, loss=0.55]" + "training until 2000: 38%|███▊ | 763/2000 [04:39<06:36, 3.12it/s, loss=0.617]" ] }, { @@ -24873,7 +24851,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 763/2000 [04:42<06:34, 3.13it/s, loss=0.511]" + "training until 2000: 38%|███▊ | 763/2000 [04:39<06:36, 3.12it/s, loss=0.562]" ] }, { @@ -24881,7 +24859,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 764/2000 [04:42<06:39, 3.09it/s, loss=0.511]" + "training until 2000: 38%|███▊ | 764/2000 [04:39<06:34, 3.13it/s, loss=0.562]" ] }, { @@ -24889,7 +24867,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 764/2000 [04:42<06:39, 3.09it/s, loss=0.546]" + "training until 2000: 38%|███▊ | 764/2000 [04:39<06:34, 3.13it/s, loss=0.558]" ] }, { @@ -24897,7 +24875,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 765/2000 [04:43<06:46, 3.04it/s, loss=0.546]" + "training until 2000: 38%|███▊ | 765/2000 [04:39<06:34, 3.13it/s, loss=0.558]" ] }, { @@ -24905,7 +24883,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 765/2000 [04:43<06:46, 3.04it/s, loss=0.547]" + "training until 2000: 38%|███▊ | 765/2000 [04:39<06:34, 3.13it/s, loss=0.552]" ] }, { @@ -24913,7 +24891,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 766/2000 [04:43<06:47, 3.03it/s, loss=0.547]" + "training until 2000: 38%|███▊ | 766/2000 [04:39<06:37, 3.10it/s, loss=0.552]" ] }, { @@ -24921,7 +24899,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 766/2000 [04:43<06:47, 3.03it/s, loss=0.531]" + "training until 2000: 38%|███▊ | 766/2000 [04:39<06:37, 3.10it/s, loss=0.583]" ] }, { @@ -24929,7 +24907,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 767/2000 [04:43<06:51, 3.00it/s, loss=0.531]" + "training until 2000: 38%|███▊ | 767/2000 [04:40<06:41, 3.07it/s, loss=0.583]" ] }, { @@ -24937,7 +24915,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 767/2000 [04:43<06:51, 3.00it/s, loss=0.542]" + "training until 2000: 38%|███▊ | 767/2000 [04:40<06:41, 3.07it/s, loss=0.639]" ] }, { @@ -24945,7 +24923,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 768/2000 [04:44<06:43, 3.05it/s, loss=0.542]" + "training until 2000: 38%|███▊ | 768/2000 [04:40<06:44, 3.05it/s, loss=0.639]" ] }, { @@ -24953,7 +24931,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 768/2000 [04:44<06:43, 3.05it/s, loss=0.583]" + "training until 2000: 38%|███▊ | 768/2000 [04:40<06:44, 3.05it/s, loss=0.528]" ] }, { @@ -24961,7 +24939,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 769/2000 [04:44<06:47, 3.02it/s, loss=0.583]" + "training until 2000: 38%|███▊ | 769/2000 [04:40<06:45, 3.04it/s, loss=0.528]" ] }, { @@ -24969,7 +24947,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 769/2000 [04:44<06:47, 3.02it/s, loss=0.533]" + "training until 2000: 38%|███▊ | 769/2000 [04:40<06:45, 3.04it/s, loss=0.567]" ] }, { @@ -24977,7 +24955,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 770/2000 [04:44<06:43, 3.05it/s, loss=0.533]" + "training until 2000: 38%|███▊ | 770/2000 [04:41<06:40, 3.07it/s, loss=0.567]" ] }, { @@ -24985,7 +24963,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 38%|███▊ | 770/2000 [04:44<06:43, 3.05it/s, loss=0.52] " + "training until 2000: 38%|███▊ | 770/2000 [04:41<06:40, 3.07it/s, loss=0.593]" ] }, { @@ -24993,7 +24971,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▊ | 771/2000 [04:45<06:40, 3.07it/s, loss=0.52]" + "training until 2000: 39%|███▊ | 771/2000 [04:41<06:38, 3.08it/s, loss=0.593]" ] }, { @@ -25001,7 +24979,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▊ | 771/2000 [04:45<06:40, 3.07it/s, loss=0.525]" + "training until 2000: 39%|███▊ | 771/2000 [04:41<06:38, 3.08it/s, loss=0.571]" ] }, { @@ -25009,7 +24987,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▊ | 772/2000 [04:45<06:38, 3.08it/s, loss=0.525]" + "training until 2000: 39%|███▊ | 772/2000 [04:41<06:36, 3.09it/s, loss=0.571]" ] }, { @@ -25017,7 +24995,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▊ | 772/2000 [04:45<06:38, 3.08it/s, loss=0.579]" + "training until 2000: 39%|███▊ | 772/2000 [04:41<06:36, 3.09it/s, loss=0.611]" ] }, { @@ -25025,7 +25003,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▊ | 773/2000 [04:45<06:36, 3.09it/s, loss=0.579]" + "training until 2000: 39%|███▊ | 773/2000 [04:42<06:38, 3.08it/s, loss=0.611]" ] }, { @@ -25033,7 +25011,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▊ | 773/2000 [04:45<06:36, 3.09it/s, loss=0.514]" + "training until 2000: 39%|███▊ | 773/2000 [04:42<06:38, 3.08it/s, loss=0.563]" ] }, { @@ -25041,7 +25019,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▊ | 774/2000 [04:45<06:35, 3.10it/s, loss=0.514]" + "training until 2000: 39%|███▊ | 774/2000 [04:42<06:35, 3.10it/s, loss=0.563]" ] }, { @@ -25049,7 +25027,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▊ | 774/2000 [04:45<06:35, 3.10it/s, loss=0.607]" + "training until 2000: 39%|███▊ | 774/2000 [04:42<06:35, 3.10it/s, loss=0.573]" ] }, { @@ -25057,7 +25035,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 775/2000 [04:46<06:40, 3.06it/s, loss=0.607]" + "training until 2000: 39%|███▉ | 775/2000 [04:42<06:33, 3.12it/s, loss=0.573]" ] }, { @@ -25065,7 +25043,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 775/2000 [04:46<06:40, 3.06it/s, loss=0.544]" + "training until 2000: 39%|███▉ | 775/2000 [04:42<06:33, 3.12it/s, loss=0.531]" ] }, { @@ -25073,7 +25051,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 776/2000 [04:46<06:37, 3.08it/s, loss=0.544]" + "training until 2000: 39%|███▉ | 776/2000 [04:43<06:28, 3.15it/s, loss=0.531]" ] }, { @@ -25081,7 +25059,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 776/2000 [04:46<06:37, 3.08it/s, loss=0.529]" + "training until 2000: 39%|███▉ | 776/2000 [04:43<06:28, 3.15it/s, loss=0.581]" ] }, { @@ -25089,7 +25067,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 777/2000 [04:46<06:37, 3.07it/s, loss=0.529]" + "training until 2000: 39%|███▉ | 777/2000 [04:43<06:27, 3.15it/s, loss=0.581]" ] }, { @@ -25097,7 +25075,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 777/2000 [04:46<06:37, 3.07it/s, loss=0.507]" + "training until 2000: 39%|███▉ | 777/2000 [04:43<06:27, 3.15it/s, loss=0.565]" ] }, { @@ -25105,7 +25083,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 778/2000 [04:47<06:40, 3.05it/s, loss=0.507]" + "training until 2000: 39%|███▉ | 778/2000 [04:43<06:27, 3.16it/s, loss=0.565]" ] }, { @@ -25113,7 +25091,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 778/2000 [04:47<06:40, 3.05it/s, loss=0.529]" + "training until 2000: 39%|███▉ | 778/2000 [04:43<06:27, 3.16it/s, loss=0.614]" ] }, { @@ -25121,7 +25099,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 779/2000 [04:47<06:34, 3.10it/s, loss=0.529]" + "training until 2000: 39%|███▉ | 779/2000 [04:44<06:23, 3.18it/s, loss=0.614]" ] }, { @@ -25129,7 +25107,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 779/2000 [04:47<06:34, 3.10it/s, loss=0.504]" + "training until 2000: 39%|███▉ | 779/2000 [04:44<06:23, 3.18it/s, loss=0.651]" ] }, { @@ -25137,7 +25115,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 780/2000 [04:47<06:32, 3.11it/s, loss=0.504]" + "training until 2000: 39%|███▉ | 780/2000 [04:44<06:21, 3.19it/s, loss=0.651]" ] }, { @@ -25145,7 +25123,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 780/2000 [04:47<06:32, 3.11it/s, loss=0.554]" + "training until 2000: 39%|███▉ | 780/2000 [04:44<06:21, 3.19it/s, loss=0.571]" ] }, { @@ -25153,7 +25131,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 781/2000 [04:48<06:29, 3.13it/s, loss=0.554]" + "training until 2000: 39%|███▉ | 781/2000 [04:44<06:28, 3.14it/s, loss=0.571]" ] }, { @@ -25161,7 +25139,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 781/2000 [04:48<06:29, 3.13it/s, loss=0.614]" + "training until 2000: 39%|███▉ | 781/2000 [04:44<06:28, 3.14it/s, loss=0.557]" ] }, { @@ -25169,7 +25147,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 782/2000 [04:48<06:30, 3.12it/s, loss=0.614]" + "training until 2000: 39%|███▉ | 782/2000 [04:45<06:23, 3.18it/s, loss=0.557]" ] }, { @@ -25177,7 +25155,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 782/2000 [04:48<06:30, 3.12it/s, loss=0.536]" + "training until 2000: 39%|███▉ | 782/2000 [04:45<06:23, 3.18it/s, loss=0.609]" ] }, { @@ -25185,7 +25163,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 783/2000 [04:48<06:29, 3.12it/s, loss=0.536]" + "training until 2000: 39%|███▉ | 783/2000 [04:45<07:52, 2.58it/s, loss=0.609]" ] }, { @@ -25193,7 +25171,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 783/2000 [04:48<06:29, 3.12it/s, loss=0.503]" + "training until 2000: 39%|███▉ | 783/2000 [04:45<07:52, 2.58it/s, loss=0.562]" ] }, { @@ -25201,7 +25179,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 784/2000 [04:49<06:29, 3.12it/s, loss=0.503]" + "training until 2000: 39%|███▉ | 784/2000 [04:45<07:29, 2.71it/s, loss=0.562]" ] }, { @@ -25209,7 +25187,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 784/2000 [04:49<06:29, 3.12it/s, loss=0.504]" + "training until 2000: 39%|███▉ | 784/2000 [04:45<07:29, 2.71it/s, loss=0.541]" ] }, { @@ -25217,7 +25195,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 785/2000 [04:49<06:29, 3.12it/s, loss=0.504]" + "training until 2000: 39%|███▉ | 785/2000 [04:46<07:08, 2.84it/s, loss=0.541]" ] }, { @@ -25225,7 +25203,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 785/2000 [04:49<06:29, 3.12it/s, loss=0.567]" + "training until 2000: 39%|███▉ | 785/2000 [04:46<07:08, 2.84it/s, loss=0.56] " ] }, { @@ -25233,7 +25211,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 786/2000 [04:49<06:29, 3.12it/s, loss=0.567]" + "training until 2000: 39%|███▉ | 786/2000 [04:46<06:56, 2.92it/s, loss=0.56]" ] }, { @@ -25241,7 +25219,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 786/2000 [04:49<06:29, 3.12it/s, loss=0.594]" + "training until 2000: 39%|███▉ | 786/2000 [04:46<06:56, 2.92it/s, loss=0.59]" ] }, { @@ -25249,7 +25227,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 787/2000 [04:50<06:26, 3.14it/s, loss=0.594]" + "training until 2000: 39%|███▉ | 787/2000 [04:46<06:45, 2.99it/s, loss=0.59]" ] }, { @@ -25257,7 +25235,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 787/2000 [04:50<06:26, 3.14it/s, loss=0.565]" + "training until 2000: 39%|███▉ | 787/2000 [04:46<06:45, 2.99it/s, loss=0.504]" ] }, { @@ -25265,7 +25243,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 788/2000 [04:50<06:28, 3.12it/s, loss=0.565]" + "training until 2000: 39%|███▉ | 788/2000 [04:47<06:41, 3.02it/s, loss=0.504]" ] }, { @@ -25273,7 +25251,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 788/2000 [04:50<06:28, 3.12it/s, loss=0.499]" + "training until 2000: 39%|███▉ | 788/2000 [04:47<06:41, 3.02it/s, loss=0.533]" ] }, { @@ -25281,7 +25259,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 789/2000 [04:50<06:27, 3.12it/s, loss=0.499]" + "training until 2000: 39%|███▉ | 789/2000 [04:47<06:32, 3.08it/s, loss=0.533]" ] }, { @@ -25289,7 +25267,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 39%|███▉ | 789/2000 [04:50<06:27, 3.12it/s, loss=0.544]" + "training until 2000: 39%|███▉ | 789/2000 [04:47<06:32, 3.08it/s, loss=0.555]" ] }, { @@ -25297,7 +25275,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 790/2000 [04:51<07:57, 2.53it/s, loss=0.544]" + "training until 2000: 40%|███▉ | 790/2000 [04:47<06:31, 3.09it/s, loss=0.555]" ] }, { @@ -25305,7 +25283,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 790/2000 [04:51<07:57, 2.53it/s, loss=0.51] " + "training until 2000: 40%|███▉ | 790/2000 [04:47<06:31, 3.09it/s, loss=0.577]" ] }, { @@ -25313,7 +25291,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 791/2000 [04:51<07:33, 2.67it/s, loss=0.51]" + "training until 2000: 40%|███▉ | 791/2000 [04:48<06:27, 3.12it/s, loss=0.577]" ] }, { @@ -25321,7 +25299,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 791/2000 [04:51<07:33, 2.67it/s, loss=0.516]" + "training until 2000: 40%|███▉ | 791/2000 [04:48<06:27, 3.12it/s, loss=0.584]" ] }, { @@ -25329,7 +25307,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 792/2000 [04:52<07:14, 2.78it/s, loss=0.516]" + "training until 2000: 40%|███▉ | 792/2000 [04:48<06:25, 3.14it/s, loss=0.584]" ] }, { @@ -25337,7 +25315,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 792/2000 [04:52<07:14, 2.78it/s, loss=0.524]" + "training until 2000: 40%|███▉ | 792/2000 [04:48<06:25, 3.14it/s, loss=0.507]" ] }, { @@ -25345,7 +25323,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 793/2000 [04:52<07:02, 2.85it/s, loss=0.524]" + "training until 2000: 40%|███▉ | 793/2000 [04:48<06:26, 3.12it/s, loss=0.507]" ] }, { @@ -25353,7 +25331,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 793/2000 [04:52<07:02, 2.85it/s, loss=0.563]" + "training until 2000: 40%|███▉ | 793/2000 [04:48<06:26, 3.12it/s, loss=0.535]" ] }, { @@ -25361,7 +25339,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 794/2000 [04:52<06:54, 2.91it/s, loss=0.563]" + "training until 2000: 40%|███▉ | 794/2000 [04:49<06:24, 3.14it/s, loss=0.535]" ] }, { @@ -25369,7 +25347,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 794/2000 [04:52<06:54, 2.91it/s, loss=0.587]" + "training until 2000: 40%|███▉ | 794/2000 [04:49<06:24, 3.14it/s, loss=0.606]" ] }, { @@ -25377,7 +25355,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 795/2000 [04:53<06:48, 2.95it/s, loss=0.587]" + "training until 2000: 40%|███▉ | 795/2000 [04:49<06:22, 3.15it/s, loss=0.606]" ] }, { @@ -25385,7 +25363,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 795/2000 [04:53<06:48, 2.95it/s, loss=0.562]" + "training until 2000: 40%|███▉ | 795/2000 [04:49<06:22, 3.15it/s, loss=0.541]" ] }, { @@ -25393,7 +25371,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 796/2000 [04:53<06:41, 3.00it/s, loss=0.562]" + "training until 2000: 40%|███▉ | 796/2000 [04:49<06:23, 3.14it/s, loss=0.541]" ] }, { @@ -25401,7 +25379,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 796/2000 [04:53<06:41, 3.00it/s, loss=0.526]" + "training until 2000: 40%|███▉ | 796/2000 [04:49<06:23, 3.14it/s, loss=0.525]" ] }, { @@ -25409,7 +25387,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 797/2000 [04:53<06:40, 3.00it/s, loss=0.526]" + "training until 2000: 40%|███▉ | 797/2000 [04:50<06:24, 3.13it/s, loss=0.525]" ] }, { @@ -25417,7 +25395,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 797/2000 [04:53<06:40, 3.00it/s, loss=0.536]" + "training until 2000: 40%|███▉ | 797/2000 [04:50<06:24, 3.13it/s, loss=0.625]" ] }, { @@ -25425,7 +25403,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 798/2000 [04:54<06:41, 3.00it/s, loss=0.536]" + "training until 2000: 40%|███▉ | 798/2000 [04:50<06:21, 3.15it/s, loss=0.625]" ] }, { @@ -25433,7 +25411,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 798/2000 [04:54<06:41, 3.00it/s, loss=0.604]" + "training until 2000: 40%|███▉ | 798/2000 [04:50<06:21, 3.15it/s, loss=0.574]" ] }, { @@ -25441,7 +25419,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 799/2000 [04:54<06:41, 2.99it/s, loss=0.604]" + "training until 2000: 40%|███▉ | 799/2000 [04:50<06:16, 3.19it/s, loss=0.574]" ] }, { @@ -25449,7 +25427,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|███▉ | 799/2000 [04:54<06:41, 2.99it/s, loss=0.494]" + "training until 2000: 40%|███▉ | 799/2000 [04:50<06:16, 3.19it/s, loss=0.549]" ] }, { @@ -25457,7 +25435,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 800/2000 [04:54<06:37, 3.02it/s, loss=0.494]" + "training until 2000: 40%|████ | 800/2000 [04:51<06:25, 3.11it/s, loss=0.549]" ] }, { @@ -25465,7 +25443,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 800/2000 [04:54<06:37, 3.02it/s, loss=0.561]" + "training until 2000: 40%|████ | 800/2000 [04:51<06:25, 3.11it/s, loss=0.612]" ] }, { @@ -25473,7 +25451,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 801/2000 [04:55<06:36, 3.03it/s, loss=0.561]" + "training until 2000: 40%|████ | 801/2000 [04:51<06:31, 3.06it/s, loss=0.612]" ] }, { @@ -25481,7 +25459,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 801/2000 [04:55<06:36, 3.03it/s, loss=0.53] " + "training until 2000: 40%|████ | 801/2000 [04:51<06:31, 3.06it/s, loss=0.606]" ] }, { @@ -25489,7 +25467,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 802/2000 [04:55<06:30, 3.06it/s, loss=0.53]" + "training until 2000: 40%|████ | 802/2000 [04:51<06:27, 3.09it/s, loss=0.606]" ] }, { @@ -25497,7 +25475,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 802/2000 [04:55<06:30, 3.06it/s, loss=0.54]" + "training until 2000: 40%|████ | 802/2000 [04:51<06:27, 3.09it/s, loss=0.591]" ] }, { @@ -25505,7 +25483,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 803/2000 [04:55<06:33, 3.04it/s, loss=0.54]" + "training until 2000: 40%|████ | 803/2000 [04:52<06:27, 3.09it/s, loss=0.591]" ] }, { @@ -25513,7 +25491,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 803/2000 [04:55<06:33, 3.04it/s, loss=0.524]" + "training until 2000: 40%|████ | 803/2000 [04:52<06:27, 3.09it/s, loss=0.553]" ] }, { @@ -25521,7 +25499,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 804/2000 [04:55<06:30, 3.06it/s, loss=0.524]" + "training until 2000: 40%|████ | 804/2000 [04:52<06:23, 3.12it/s, loss=0.553]" ] }, { @@ -25529,7 +25507,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 804/2000 [04:55<06:30, 3.06it/s, loss=0.52] " + "training until 2000: 40%|████ | 804/2000 [04:52<06:23, 3.12it/s, loss=0.489]" ] }, { @@ -25537,7 +25515,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 805/2000 [04:56<06:29, 3.07it/s, loss=0.52]" + "training until 2000: 40%|████ | 805/2000 [04:52<06:24, 3.11it/s, loss=0.489]" ] }, { @@ -25545,7 +25523,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 805/2000 [04:56<06:29, 3.07it/s, loss=0.569]" + "training until 2000: 40%|████ | 805/2000 [04:52<06:24, 3.11it/s, loss=0.554]" ] }, { @@ -25553,7 +25531,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 806/2000 [04:56<06:26, 3.09it/s, loss=0.569]" + "training until 2000: 40%|████ | 806/2000 [04:52<06:23, 3.12it/s, loss=0.554]" ] }, { @@ -25561,7 +25539,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 806/2000 [04:56<06:26, 3.09it/s, loss=0.515]" + "training until 2000: 40%|████ | 806/2000 [04:52<06:23, 3.12it/s, loss=0.539]" ] }, { @@ -25569,7 +25547,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 807/2000 [04:56<06:25, 3.09it/s, loss=0.515]" + "training until 2000: 40%|████ | 807/2000 [04:53<06:19, 3.15it/s, loss=0.539]" ] }, { @@ -25577,7 +25555,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 807/2000 [04:56<06:25, 3.09it/s, loss=0.5] " + "training until 2000: 40%|████ | 807/2000 [04:53<06:19, 3.15it/s, loss=0.563]" ] }, { @@ -25585,7 +25563,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 808/2000 [04:57<06:24, 3.10it/s, loss=0.5]" + "training until 2000: 40%|████ | 808/2000 [04:53<06:20, 3.14it/s, loss=0.563]" ] }, { @@ -25593,7 +25571,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 808/2000 [04:57<06:24, 3.10it/s, loss=0.5]" + "training until 2000: 40%|████ | 808/2000 [04:53<06:20, 3.14it/s, loss=0.61] " ] }, { @@ -25601,7 +25579,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 809/2000 [04:57<06:21, 3.12it/s, loss=0.5]" + "training until 2000: 40%|████ | 809/2000 [04:53<06:19, 3.13it/s, loss=0.61]" ] }, { @@ -25609,7 +25587,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 809/2000 [04:57<06:21, 3.12it/s, loss=0.526]" + "training until 2000: 40%|████ | 809/2000 [04:53<06:19, 3.13it/s, loss=0.573]" ] }, { @@ -25617,7 +25595,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 810/2000 [04:57<06:23, 3.11it/s, loss=0.526]" + "training until 2000: 40%|████ | 810/2000 [04:54<06:20, 3.13it/s, loss=0.573]" ] }, { @@ -25625,7 +25603,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 40%|████ | 810/2000 [04:57<06:23, 3.11it/s, loss=0.554]" + "training until 2000: 40%|████ | 810/2000 [04:54<06:20, 3.13it/s, loss=0.567]" ] }, { @@ -25633,7 +25611,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 811/2000 [04:58<06:22, 3.11it/s, loss=0.554]" + "training until 2000: 41%|████ | 811/2000 [04:54<06:16, 3.16it/s, loss=0.567]" ] }, { @@ -25641,7 +25619,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 811/2000 [04:58<06:22, 3.11it/s, loss=0.523]" + "training until 2000: 41%|████ | 811/2000 [04:54<06:16, 3.16it/s, loss=0.513]" ] }, { @@ -25649,7 +25627,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 812/2000 [04:58<06:27, 3.07it/s, loss=0.523]" + "training until 2000: 41%|████ | 812/2000 [04:54<06:18, 3.14it/s, loss=0.513]" ] }, { @@ -25657,7 +25635,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 812/2000 [04:58<06:27, 3.07it/s, loss=0.525]" + "training until 2000: 41%|████ | 812/2000 [04:54<06:18, 3.14it/s, loss=0.545]" ] }, { @@ -25665,7 +25643,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 813/2000 [04:58<06:23, 3.10it/s, loss=0.525]" + "training until 2000: 41%|████ | 813/2000 [04:55<06:16, 3.15it/s, loss=0.545]" ] }, { @@ -25673,7 +25651,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 813/2000 [04:58<06:23, 3.10it/s, loss=0.533]" + "training until 2000: 41%|████ | 813/2000 [04:55<06:16, 3.15it/s, loss=0.547]" ] }, { @@ -25681,7 +25659,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 814/2000 [04:59<06:20, 3.12it/s, loss=0.533]" + "training until 2000: 41%|████ | 814/2000 [04:55<06:16, 3.15it/s, loss=0.547]" ] }, { @@ -25689,7 +25667,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 814/2000 [04:59<06:20, 3.12it/s, loss=0.543]" + "training until 2000: 41%|████ | 814/2000 [04:55<06:16, 3.15it/s, loss=0.526]" ] }, { @@ -25697,7 +25675,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 815/2000 [04:59<06:14, 3.17it/s, loss=0.543]" + "training until 2000: 41%|████ | 815/2000 [04:55<06:15, 3.15it/s, loss=0.526]" ] }, { @@ -25705,7 +25683,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 815/2000 [04:59<06:14, 3.17it/s, loss=0.503]" + "training until 2000: 41%|████ | 815/2000 [04:55<06:15, 3.15it/s, loss=0.595]" ] }, { @@ -25713,7 +25691,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 816/2000 [04:59<06:16, 3.14it/s, loss=0.503]" + "training until 2000: 41%|████ | 816/2000 [04:56<06:15, 3.15it/s, loss=0.595]" ] }, { @@ -25721,7 +25699,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 816/2000 [04:59<06:16, 3.14it/s, loss=0.565]" + "training until 2000: 41%|████ | 816/2000 [04:56<06:15, 3.15it/s, loss=0.562]" ] }, { @@ -25729,7 +25707,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 817/2000 [05:00<06:17, 3.14it/s, loss=0.565]" + "training until 2000: 41%|████ | 817/2000 [04:56<06:13, 3.17it/s, loss=0.562]" ] }, { @@ -25737,7 +25715,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 817/2000 [05:00<06:17, 3.14it/s, loss=0.565]" + "training until 2000: 41%|████ | 817/2000 [04:56<06:13, 3.17it/s, loss=0.541]" ] }, { @@ -25745,7 +25723,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 818/2000 [05:00<06:20, 3.10it/s, loss=0.565]" + "training until 2000: 41%|████ | 818/2000 [04:56<06:09, 3.20it/s, loss=0.541]" ] }, { @@ -25753,7 +25731,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 818/2000 [05:00<06:20, 3.10it/s, loss=0.565]" + "training until 2000: 41%|████ | 818/2000 [04:56<06:09, 3.20it/s, loss=0.557]" ] }, { @@ -25761,7 +25739,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 819/2000 [05:00<06:21, 3.10it/s, loss=0.565]" + "training until 2000: 41%|████ | 819/2000 [04:57<06:09, 3.20it/s, loss=0.557]" ] }, { @@ -25769,7 +25747,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 819/2000 [05:00<06:21, 3.10it/s, loss=0.578]" + "training until 2000: 41%|████ | 819/2000 [04:57<06:09, 3.20it/s, loss=0.603]" ] }, { @@ -25777,7 +25755,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 820/2000 [05:01<06:18, 3.12it/s, loss=0.578]" + "training until 2000: 41%|████ | 820/2000 [04:57<06:11, 3.18it/s, loss=0.603]" ] }, { @@ -25785,7 +25763,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 820/2000 [05:01<06:18, 3.12it/s, loss=0.483]" + "training until 2000: 41%|████ | 820/2000 [04:57<06:11, 3.18it/s, loss=0.546]" ] }, { @@ -25793,7 +25771,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 821/2000 [05:01<06:13, 3.15it/s, loss=0.483]" + "training until 2000: 41%|████ | 821/2000 [04:57<06:14, 3.14it/s, loss=0.546]" ] }, { @@ -25801,7 +25779,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 821/2000 [05:01<06:13, 3.15it/s, loss=0.542]" + "training until 2000: 41%|████ | 821/2000 [04:57<06:14, 3.14it/s, loss=0.555]" ] }, { @@ -25809,7 +25787,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 822/2000 [05:01<06:12, 3.17it/s, loss=0.542]" + "training until 2000: 41%|████ | 822/2000 [04:58<06:17, 3.12it/s, loss=0.555]" ] }, { @@ -25817,7 +25795,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 822/2000 [05:01<06:12, 3.17it/s, loss=0.548]" + "training until 2000: 41%|████ | 822/2000 [04:58<06:17, 3.12it/s, loss=0.522]" ] }, { @@ -25825,7 +25803,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 823/2000 [05:02<06:11, 3.17it/s, loss=0.548]" + "training until 2000: 41%|████ | 823/2000 [04:58<06:16, 3.13it/s, loss=0.522]" ] }, { @@ -25833,7 +25811,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 823/2000 [05:02<06:11, 3.17it/s, loss=0.499]" + "training until 2000: 41%|████ | 823/2000 [04:58<06:16, 3.13it/s, loss=0.518]" ] }, { @@ -25841,7 +25819,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 824/2000 [05:02<06:11, 3.16it/s, loss=0.499]" + "training until 2000: 41%|████ | 824/2000 [04:58<06:15, 3.13it/s, loss=0.518]" ] }, { @@ -25849,7 +25827,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████ | 824/2000 [05:02<06:11, 3.16it/s, loss=0.533]" + "training until 2000: 41%|████ | 824/2000 [04:58<06:15, 3.13it/s, loss=0.607]" ] }, { @@ -25857,7 +25835,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 825/2000 [05:02<06:20, 3.09it/s, loss=0.533]" + "training until 2000: 41%|████▏ | 825/2000 [04:59<06:10, 3.17it/s, loss=0.607]" ] }, { @@ -25865,7 +25843,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 825/2000 [05:02<06:20, 3.09it/s, loss=0.506]" + "training until 2000: 41%|████▏ | 825/2000 [04:59<06:10, 3.17it/s, loss=0.503]" ] }, { @@ -25873,7 +25851,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 826/2000 [05:03<06:21, 3.08it/s, loss=0.506]" + "training until 2000: 41%|████▏ | 826/2000 [04:59<06:10, 3.17it/s, loss=0.503]" ] }, { @@ -25881,7 +25859,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 826/2000 [05:03<06:21, 3.08it/s, loss=0.54] " + "training until 2000: 41%|████▏ | 826/2000 [04:59<06:10, 3.17it/s, loss=0.546]" ] }, { @@ -25889,7 +25867,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 827/2000 [05:03<06:19, 3.09it/s, loss=0.54]" + "training until 2000: 41%|████▏ | 827/2000 [04:59<06:07, 3.19it/s, loss=0.546]" ] }, { @@ -25897,7 +25875,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 827/2000 [05:03<06:19, 3.09it/s, loss=0.547]" + "training until 2000: 41%|████▏ | 827/2000 [04:59<06:07, 3.19it/s, loss=0.521]" ] }, { @@ -25905,7 +25883,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 828/2000 [05:03<06:20, 3.08it/s, loss=0.547]" + "training until 2000: 41%|████▏ | 828/2000 [04:59<06:05, 3.21it/s, loss=0.521]" ] }, { @@ -25913,7 +25891,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 828/2000 [05:03<06:20, 3.08it/s, loss=0.503]" + "training until 2000: 41%|████▏ | 828/2000 [04:59<06:05, 3.21it/s, loss=0.598]" ] }, { @@ -25921,7 +25899,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 829/2000 [05:04<06:21, 3.07it/s, loss=0.503]" + "training until 2000: 41%|████▏ | 829/2000 [05:00<06:07, 3.19it/s, loss=0.598]" ] }, { @@ -25929,7 +25907,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 41%|████▏ | 829/2000 [05:04<06:21, 3.07it/s, loss=0.537]" + "training until 2000: 41%|████▏ | 829/2000 [05:00<06:07, 3.19it/s, loss=0.546]" ] }, { @@ -25937,7 +25915,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 830/2000 [05:04<06:21, 3.07it/s, loss=0.537]" + "training until 2000: 42%|████▏ | 830/2000 [05:00<06:03, 3.22it/s, loss=0.546]" ] }, { @@ -25945,7 +25923,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 830/2000 [05:04<06:21, 3.07it/s, loss=0.502]" + "training until 2000: 42%|████▏ | 830/2000 [05:00<06:03, 3.22it/s, loss=0.576]" ] }, { @@ -25953,7 +25931,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 831/2000 [05:04<06:25, 3.03it/s, loss=0.502]" + "training until 2000: 42%|████▏ | 831/2000 [05:00<06:04, 3.21it/s, loss=0.576]" ] }, { @@ -25961,7 +25939,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 831/2000 [05:04<06:25, 3.03it/s, loss=0.531]" + "training until 2000: 42%|████▏ | 831/2000 [05:00<06:04, 3.21it/s, loss=0.537]" ] }, { @@ -25969,7 +25947,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 832/2000 [05:04<06:22, 3.06it/s, loss=0.531]" + "training until 2000: 42%|████▏ | 832/2000 [05:01<06:06, 3.18it/s, loss=0.537]" ] }, { @@ -25977,7 +25955,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 832/2000 [05:04<06:22, 3.06it/s, loss=0.561]" + "training until 2000: 42%|████▏ | 832/2000 [05:01<06:06, 3.18it/s, loss=0.601]" ] }, { @@ -25985,7 +25963,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 833/2000 [05:05<06:18, 3.08it/s, loss=0.561]" + "training until 2000: 42%|████▏ | 833/2000 [05:01<06:09, 3.16it/s, loss=0.601]" ] }, { @@ -25993,7 +25971,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 833/2000 [05:05<06:18, 3.08it/s, loss=0.499]" + "training until 2000: 42%|████▏ | 833/2000 [05:01<06:09, 3.16it/s, loss=0.528]" ] }, { @@ -26001,7 +25979,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 834/2000 [05:05<06:16, 3.10it/s, loss=0.499]" + "training until 2000: 42%|████▏ | 834/2000 [05:01<06:09, 3.15it/s, loss=0.528]" ] }, { @@ -26009,7 +25987,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 834/2000 [05:05<06:16, 3.10it/s, loss=0.543]" + "training until 2000: 42%|████▏ | 834/2000 [05:01<06:09, 3.15it/s, loss=0.578]" ] }, { @@ -26017,7 +25995,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 835/2000 [05:05<06:19, 3.07it/s, loss=0.543]" + "training until 2000: 42%|████▏ | 835/2000 [05:02<06:09, 3.15it/s, loss=0.578]" ] }, { @@ -26025,7 +26003,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 835/2000 [05:05<06:19, 3.07it/s, loss=0.495]" + "training until 2000: 42%|████▏ | 835/2000 [05:02<06:09, 3.15it/s, loss=0.533]" ] }, { @@ -26033,7 +26011,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 836/2000 [05:06<06:19, 3.06it/s, loss=0.495]" + "training until 2000: 42%|████▏ | 836/2000 [05:02<06:09, 3.15it/s, loss=0.533]" ] }, { @@ -26041,7 +26019,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 836/2000 [05:06<06:19, 3.06it/s, loss=0.595]" + "training until 2000: 42%|████▏ | 836/2000 [05:02<06:09, 3.15it/s, loss=0.624]" ] }, { @@ -26049,7 +26027,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 837/2000 [05:06<06:17, 3.08it/s, loss=0.595]" + "training until 2000: 42%|████▏ | 837/2000 [05:02<06:08, 3.16it/s, loss=0.624]" ] }, { @@ -26057,7 +26035,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 837/2000 [05:06<06:17, 3.08it/s, loss=0.564]" + "training until 2000: 42%|████▏ | 837/2000 [05:02<06:08, 3.16it/s, loss=0.545]" ] }, { @@ -26065,7 +26043,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 838/2000 [05:06<06:19, 3.07it/s, loss=0.564]" + "training until 2000: 42%|████▏ | 838/2000 [05:03<06:09, 3.15it/s, loss=0.545]" ] }, { @@ -26073,7 +26051,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 838/2000 [05:06<06:19, 3.07it/s, loss=0.527]" + "training until 2000: 42%|████▏ | 838/2000 [05:03<06:09, 3.15it/s, loss=0.559]" ] }, { @@ -26081,7 +26059,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 839/2000 [05:07<06:14, 3.10it/s, loss=0.527]" + "training until 2000: 42%|████▏ | 839/2000 [05:03<06:08, 3.15it/s, loss=0.559]" ] }, { @@ -26089,7 +26067,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 839/2000 [05:07<06:14, 3.10it/s, loss=0.503]" + "training until 2000: 42%|████▏ | 839/2000 [05:03<06:08, 3.15it/s, loss=0.68] " ] }, { @@ -26097,7 +26075,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 840/2000 [05:07<06:15, 3.09it/s, loss=0.503]" + "training until 2000: 42%|████▏ | 840/2000 [05:03<06:10, 3.13it/s, loss=0.68]" ] }, { @@ -26105,7 +26083,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 840/2000 [05:07<06:15, 3.09it/s, loss=0.558]" + "training until 2000: 42%|████▏ | 840/2000 [05:03<06:10, 3.13it/s, loss=0.553]" ] }, { @@ -26113,7 +26091,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 841/2000 [05:07<06:16, 3.08it/s, loss=0.558]" + "training until 2000: 42%|████▏ | 841/2000 [05:04<06:11, 3.12it/s, loss=0.553]" ] }, { @@ -26121,7 +26099,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 841/2000 [05:07<06:16, 3.08it/s, loss=0.473]" + "training until 2000: 42%|████▏ | 841/2000 [05:04<06:11, 3.12it/s, loss=0.545]" ] }, { @@ -26129,7 +26107,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 842/2000 [05:08<06:15, 3.08it/s, loss=0.473]" + "training until 2000: 42%|████▏ | 842/2000 [05:04<06:13, 3.10it/s, loss=0.545]" ] }, { @@ -26137,7 +26115,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 842/2000 [05:08<06:15, 3.08it/s, loss=0.525]" + "training until 2000: 42%|████▏ | 842/2000 [05:04<06:13, 3.10it/s, loss=0.52] " ] }, { @@ -26145,7 +26123,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 843/2000 [05:08<06:14, 3.09it/s, loss=0.525]" + "training until 2000: 42%|████▏ | 843/2000 [05:04<06:09, 3.13it/s, loss=0.52]" ] }, { @@ -26153,7 +26131,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 843/2000 [05:08<06:14, 3.09it/s, loss=0.523]" + "training until 2000: 42%|████▏ | 843/2000 [05:04<06:09, 3.13it/s, loss=0.516]" ] }, { @@ -26161,7 +26139,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 844/2000 [05:08<06:14, 3.09it/s, loss=0.523]" + "training until 2000: 42%|████▏ | 844/2000 [05:05<06:06, 3.15it/s, loss=0.516]" ] }, { @@ -26169,7 +26147,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 844/2000 [05:08<06:14, 3.09it/s, loss=0.49] " + "training until 2000: 42%|████▏ | 844/2000 [05:05<06:06, 3.15it/s, loss=0.548]" ] }, { @@ -26177,7 +26155,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 845/2000 [05:09<06:11, 3.11it/s, loss=0.49]" + "training until 2000: 42%|████▏ | 845/2000 [05:05<06:02, 3.18it/s, loss=0.548]" ] }, { @@ -26185,7 +26163,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 845/2000 [05:09<06:11, 3.11it/s, loss=0.572]" + "training until 2000: 42%|████▏ | 845/2000 [05:05<06:02, 3.18it/s, loss=0.675]" ] }, { @@ -26193,7 +26171,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 846/2000 [05:09<06:09, 3.12it/s, loss=0.572]" + "training until 2000: 42%|████▏ | 846/2000 [05:05<06:02, 3.18it/s, loss=0.675]" ] }, { @@ -26201,7 +26179,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 846/2000 [05:09<06:09, 3.12it/s, loss=0.52] " + "training until 2000: 42%|████▏ | 846/2000 [05:05<06:02, 3.18it/s, loss=0.546]" ] }, { @@ -26209,7 +26187,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 847/2000 [05:09<06:10, 3.11it/s, loss=0.52]" + "training until 2000: 42%|████▏ | 847/2000 [05:05<06:01, 3.19it/s, loss=0.546]" ] }, { @@ -26217,7 +26195,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 847/2000 [05:09<06:10, 3.11it/s, loss=0.634]" + "training until 2000: 42%|████▏ | 847/2000 [05:05<06:01, 3.19it/s, loss=0.514]" ] }, { @@ -26225,7 +26203,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 848/2000 [05:10<06:10, 3.11it/s, loss=0.634]" + "training until 2000: 42%|████▏ | 848/2000 [05:06<06:02, 3.18it/s, loss=0.514]" ] }, { @@ -26233,7 +26211,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 848/2000 [05:10<06:10, 3.11it/s, loss=0.649]" + "training until 2000: 42%|████▏ | 848/2000 [05:06<06:02, 3.18it/s, loss=0.634]" ] }, { @@ -26241,7 +26219,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 849/2000 [05:10<06:09, 3.11it/s, loss=0.649]" + "training until 2000: 42%|████▏ | 849/2000 [05:06<07:27, 2.57it/s, loss=0.634]" ] }, { @@ -26249,7 +26227,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▏ | 849/2000 [05:10<06:09, 3.11it/s, loss=0.629]" + "training until 2000: 42%|████▏ | 849/2000 [05:06<07:27, 2.57it/s, loss=0.506]" ] }, { @@ -26257,7 +26235,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▎ | 850/2000 [05:10<06:15, 3.06it/s, loss=0.629]" + "training until 2000: 42%|████▎ | 850/2000 [05:07<07:02, 2.72it/s, loss=0.506]" ] }, { @@ -26265,7 +26243,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 42%|████▎ | 850/2000 [05:10<06:15, 3.06it/s, loss=0.571]" + "training until 2000: 42%|████▎ | 850/2000 [05:07<07:02, 2.72it/s, loss=0.581]" ] }, { @@ -26273,7 +26251,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 851/2000 [05:11<06:11, 3.09it/s, loss=0.571]" + "training until 2000: 43%|████▎ | 851/2000 [05:07<06:47, 2.82it/s, loss=0.581]" ] }, { @@ -26281,7 +26259,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 851/2000 [05:11<06:11, 3.09it/s, loss=0.537]" + "training until 2000: 43%|████▎ | 851/2000 [05:07<06:47, 2.82it/s, loss=0.527]" ] }, { @@ -26289,7 +26267,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 852/2000 [05:11<06:07, 3.12it/s, loss=0.537]" + "training until 2000: 43%|████▎ | 852/2000 [05:07<06:37, 2.89it/s, loss=0.527]" ] }, { @@ -26297,7 +26275,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 852/2000 [05:11<06:07, 3.12it/s, loss=0.528]" + "training until 2000: 43%|████▎ | 852/2000 [05:07<06:37, 2.89it/s, loss=0.561]" ] }, { @@ -26305,7 +26283,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 853/2000 [05:11<06:04, 3.14it/s, loss=0.528]" + "training until 2000: 43%|████▎ | 853/2000 [05:08<06:29, 2.94it/s, loss=0.561]" ] }, { @@ -26313,7 +26291,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 853/2000 [05:11<06:04, 3.14it/s, loss=0.587]" + "training until 2000: 43%|████▎ | 853/2000 [05:08<06:29, 2.94it/s, loss=0.565]" ] }, { @@ -26321,7 +26299,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 854/2000 [05:12<06:10, 3.09it/s, loss=0.587]" + "training until 2000: 43%|████▎ | 854/2000 [05:08<06:23, 2.99it/s, loss=0.565]" ] }, { @@ -26329,7 +26307,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 854/2000 [05:12<06:10, 3.09it/s, loss=0.488]" + "training until 2000: 43%|████▎ | 854/2000 [05:08<06:23, 2.99it/s, loss=0.614]" ] }, { @@ -26337,7 +26315,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 855/2000 [05:12<06:09, 3.10it/s, loss=0.488]" + "training until 2000: 43%|████▎ | 855/2000 [05:08<06:18, 3.03it/s, loss=0.614]" ] }, { @@ -26345,7 +26323,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 855/2000 [05:12<06:09, 3.10it/s, loss=0.555]" + "training until 2000: 43%|████▎ | 855/2000 [05:08<06:18, 3.03it/s, loss=0.518]" ] }, { @@ -26353,7 +26331,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 856/2000 [05:12<07:32, 2.53it/s, loss=0.555]" + "training until 2000: 43%|████▎ | 856/2000 [05:09<06:18, 3.02it/s, loss=0.518]" ] }, { @@ -26361,7 +26339,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 856/2000 [05:12<07:32, 2.53it/s, loss=0.539]" + "training until 2000: 43%|████▎ | 856/2000 [05:09<06:18, 3.02it/s, loss=0.565]" ] }, { @@ -26369,7 +26347,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 857/2000 [05:13<07:11, 2.65it/s, loss=0.539]" + "training until 2000: 43%|████▎ | 857/2000 [05:09<06:14, 3.05it/s, loss=0.565]" ] }, { @@ -26377,7 +26355,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 857/2000 [05:13<07:11, 2.65it/s, loss=0.508]" + "training until 2000: 43%|████▎ | 857/2000 [05:09<06:14, 3.05it/s, loss=0.579]" ] }, { @@ -26385,7 +26363,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 858/2000 [05:13<06:54, 2.76it/s, loss=0.508]" + "training until 2000: 43%|████▎ | 858/2000 [05:09<06:14, 3.05it/s, loss=0.579]" ] }, { @@ -26393,7 +26371,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 858/2000 [05:13<06:54, 2.76it/s, loss=0.512]" + "training until 2000: 43%|████▎ | 858/2000 [05:09<06:14, 3.05it/s, loss=0.537]" ] }, { @@ -26401,7 +26379,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 859/2000 [05:13<06:42, 2.83it/s, loss=0.512]" + "training until 2000: 43%|████▎ | 859/2000 [05:10<06:10, 3.08it/s, loss=0.537]" ] }, { @@ -26409,7 +26387,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 859/2000 [05:13<06:42, 2.83it/s, loss=0.538]" + "training until 2000: 43%|████▎ | 859/2000 [05:10<06:10, 3.08it/s, loss=0.565]" ] }, { @@ -26417,7 +26395,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 860/2000 [05:14<06:34, 2.89it/s, loss=0.538]" + "training until 2000: 43%|████▎ | 860/2000 [05:10<06:11, 3.07it/s, loss=0.565]" ] }, { @@ -26425,7 +26403,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 860/2000 [05:14<06:34, 2.89it/s, loss=0.528]" + "training until 2000: 43%|████▎ | 860/2000 [05:10<06:11, 3.07it/s, loss=0.557]" ] }, { @@ -26433,7 +26411,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 861/2000 [05:14<06:26, 2.95it/s, loss=0.528]" + "training until 2000: 43%|████▎ | 861/2000 [05:10<06:04, 3.13it/s, loss=0.557]" ] }, { @@ -26441,7 +26419,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 861/2000 [05:14<06:26, 2.95it/s, loss=0.626]" + "training until 2000: 43%|████▎ | 861/2000 [05:10<06:04, 3.13it/s, loss=0.502]" ] }, { @@ -26449,7 +26427,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 862/2000 [05:14<06:22, 2.98it/s, loss=0.626]" + "training until 2000: 43%|████▎ | 862/2000 [05:11<06:06, 3.11it/s, loss=0.502]" ] }, { @@ -26457,7 +26435,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 862/2000 [05:14<06:22, 2.98it/s, loss=0.591]" + "training until 2000: 43%|████▎ | 862/2000 [05:11<06:06, 3.11it/s, loss=0.522]" ] }, { @@ -26465,7 +26443,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 863/2000 [05:15<06:17, 3.02it/s, loss=0.591]" + "training until 2000: 43%|████▎ | 863/2000 [05:11<06:05, 3.11it/s, loss=0.522]" ] }, { @@ -26473,7 +26451,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 863/2000 [05:15<06:17, 3.02it/s, loss=0.505]" + "training until 2000: 43%|████▎ | 863/2000 [05:11<06:05, 3.11it/s, loss=0.517]" ] }, { @@ -26481,7 +26459,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 864/2000 [05:15<06:18, 3.00it/s, loss=0.505]" + "training until 2000: 43%|████▎ | 864/2000 [05:11<06:09, 3.08it/s, loss=0.517]" ] }, { @@ -26489,7 +26467,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 864/2000 [05:15<06:18, 3.00it/s, loss=0.5] " + "training until 2000: 43%|████▎ | 864/2000 [05:11<06:09, 3.08it/s, loss=0.49] " ] }, { @@ -26497,7 +26475,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 865/2000 [05:15<06:11, 3.05it/s, loss=0.5]" + "training until 2000: 43%|████▎ | 865/2000 [05:11<06:05, 3.11it/s, loss=0.49]" ] }, { @@ -26505,7 +26483,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 865/2000 [05:15<06:11, 3.05it/s, loss=0.498]" + "training until 2000: 43%|████▎ | 865/2000 [05:12<06:05, 3.11it/s, loss=0.744]" ] }, { @@ -26513,7 +26491,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 866/2000 [05:16<06:13, 3.04it/s, loss=0.498]" + "training until 2000: 43%|████▎ | 866/2000 [05:12<06:05, 3.10it/s, loss=0.744]" ] }, { @@ -26521,7 +26499,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 866/2000 [05:16<06:13, 3.04it/s, loss=0.609]" + "training until 2000: 43%|████▎ | 866/2000 [05:12<06:05, 3.10it/s, loss=0.628]" ] }, { @@ -26529,7 +26507,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 867/2000 [05:16<06:09, 3.06it/s, loss=0.609]" + "training until 2000: 43%|████▎ | 867/2000 [05:12<05:58, 3.16it/s, loss=0.628]" ] }, { @@ -26537,7 +26515,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 867/2000 [05:16<06:09, 3.06it/s, loss=0.555]" + "training until 2000: 43%|████▎ | 867/2000 [05:12<05:58, 3.16it/s, loss=0.481]" ] }, { @@ -26545,7 +26523,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 868/2000 [05:16<06:12, 3.04it/s, loss=0.555]" + "training until 2000: 43%|████▎ | 868/2000 [05:12<06:01, 3.13it/s, loss=0.481]" ] }, { @@ -26553,7 +26531,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 868/2000 [05:16<06:12, 3.04it/s, loss=0.502]" + "training until 2000: 43%|████▎ | 868/2000 [05:12<06:01, 3.13it/s, loss=0.58] " ] }, { @@ -26561,7 +26539,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 869/2000 [05:17<06:14, 3.02it/s, loss=0.502]" + "training until 2000: 43%|████▎ | 869/2000 [05:13<05:56, 3.17it/s, loss=0.58]" ] }, { @@ -26569,7 +26547,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 43%|████▎ | 869/2000 [05:17<06:14, 3.02it/s, loss=0.51] " + "training until 2000: 43%|████▎ | 869/2000 [05:13<05:56, 3.17it/s, loss=0.497]" ] }, { @@ -26577,7 +26555,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 870/2000 [05:17<06:15, 3.01it/s, loss=0.51]" + "training until 2000: 44%|████▎ | 870/2000 [05:13<05:54, 3.18it/s, loss=0.497]" ] }, { @@ -26585,7 +26563,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 870/2000 [05:17<06:15, 3.01it/s, loss=0.49]" + "training until 2000: 44%|████▎ | 870/2000 [05:13<05:54, 3.18it/s, loss=0.632]" ] }, { @@ -26593,7 +26571,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 871/2000 [05:17<06:10, 3.05it/s, loss=0.49]" + "training until 2000: 44%|████▎ | 871/2000 [05:13<05:57, 3.16it/s, loss=0.632]" ] }, { @@ -26601,7 +26579,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 871/2000 [05:17<06:10, 3.05it/s, loss=0.487]" + "training until 2000: 44%|████▎ | 871/2000 [05:13<05:57, 3.16it/s, loss=0.618]" ] }, { @@ -26609,7 +26587,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 872/2000 [05:18<06:10, 3.05it/s, loss=0.487]" + "training until 2000: 44%|████▎ | 872/2000 [05:14<05:54, 3.18it/s, loss=0.618]" ] }, { @@ -26617,7 +26595,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 872/2000 [05:18<06:10, 3.05it/s, loss=0.485]" + "training until 2000: 44%|████▎ | 872/2000 [05:14<05:54, 3.18it/s, loss=0.525]" ] }, { @@ -26625,7 +26603,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 873/2000 [05:18<06:09, 3.05it/s, loss=0.485]" + "training until 2000: 44%|████▎ | 873/2000 [05:14<05:53, 3.18it/s, loss=0.525]" ] }, { @@ -26633,7 +26611,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 873/2000 [05:18<06:09, 3.05it/s, loss=0.545]" + "training until 2000: 44%|████▎ | 873/2000 [05:14<05:53, 3.18it/s, loss=0.482]" ] }, { @@ -26641,7 +26619,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 874/2000 [05:18<06:03, 3.09it/s, loss=0.545]" + "training until 2000: 44%|████▎ | 874/2000 [05:14<05:55, 3.17it/s, loss=0.482]" ] }, { @@ -26649,7 +26627,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▎ | 874/2000 [05:18<06:03, 3.09it/s, loss=0.514]" + "training until 2000: 44%|████▎ | 874/2000 [05:14<05:55, 3.17it/s, loss=0.54] " ] }, { @@ -26657,7 +26635,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 875/2000 [05:19<06:02, 3.10it/s, loss=0.514]" + "training until 2000: 44%|████▍ | 875/2000 [05:15<05:54, 3.18it/s, loss=0.54]" ] }, { @@ -26665,7 +26643,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 875/2000 [05:19<06:02, 3.10it/s, loss=0.483]" + "training until 2000: 44%|████▍ | 875/2000 [05:15<05:54, 3.18it/s, loss=0.562]" ] }, { @@ -26673,7 +26651,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 876/2000 [05:19<05:58, 3.14it/s, loss=0.483]" + "training until 2000: 44%|████▍ | 876/2000 [05:15<05:54, 3.17it/s, loss=0.562]" ] }, { @@ -26681,7 +26659,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 876/2000 [05:19<05:58, 3.14it/s, loss=0.514]" + "training until 2000: 44%|████▍ | 876/2000 [05:15<05:54, 3.17it/s, loss=0.552]" ] }, { @@ -26689,7 +26667,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 877/2000 [05:19<05:59, 3.12it/s, loss=0.514]" + "training until 2000: 44%|████▍ | 877/2000 [05:15<05:55, 3.16it/s, loss=0.552]" ] }, { @@ -26697,7 +26675,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 877/2000 [05:19<05:59, 3.12it/s, loss=0.508]" + "training until 2000: 44%|████▍ | 877/2000 [05:15<05:55, 3.16it/s, loss=0.614]" ] }, { @@ -26705,7 +26683,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 878/2000 [05:20<05:59, 3.12it/s, loss=0.508]" + "training until 2000: 44%|████▍ | 878/2000 [05:16<05:55, 3.16it/s, loss=0.614]" ] }, { @@ -26713,7 +26691,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 878/2000 [05:20<05:59, 3.12it/s, loss=0.506]" + "training until 2000: 44%|████▍ | 878/2000 [05:16<05:55, 3.16it/s, loss=0.545]" ] }, { @@ -26721,7 +26699,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 879/2000 [05:20<06:01, 3.10it/s, loss=0.506]" + "training until 2000: 44%|████▍ | 879/2000 [05:16<05:56, 3.14it/s, loss=0.545]" ] }, { @@ -26729,7 +26707,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 879/2000 [05:20<06:01, 3.10it/s, loss=0.526]" + "training until 2000: 44%|████▍ | 879/2000 [05:16<05:56, 3.14it/s, loss=0.598]" ] }, { @@ -26737,7 +26715,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 880/2000 [05:20<05:59, 3.12it/s, loss=0.526]" + "training until 2000: 44%|████▍ | 880/2000 [05:16<05:54, 3.16it/s, loss=0.598]" ] }, { @@ -26745,7 +26723,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 880/2000 [05:20<05:59, 3.12it/s, loss=0.526]" + "training until 2000: 44%|████▍ | 880/2000 [05:16<05:54, 3.16it/s, loss=0.553]" ] }, { @@ -26753,7 +26731,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 881/2000 [05:21<06:03, 3.08it/s, loss=0.526]" + "training until 2000: 44%|████▍ | 881/2000 [05:17<05:57, 3.13it/s, loss=0.553]" ] }, { @@ -26761,7 +26739,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 881/2000 [05:21<06:03, 3.08it/s, loss=0.533]" + "training until 2000: 44%|████▍ | 881/2000 [05:17<05:57, 3.13it/s, loss=0.537]" ] }, { @@ -26769,7 +26747,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 882/2000 [05:21<05:59, 3.11it/s, loss=0.533]" + "training until 2000: 44%|████▍ | 882/2000 [05:17<05:55, 3.14it/s, loss=0.537]" ] }, { @@ -26777,7 +26755,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 882/2000 [05:21<05:59, 3.11it/s, loss=0.509]" + "training until 2000: 44%|████▍ | 882/2000 [05:17<05:55, 3.14it/s, loss=0.516]" ] }, { @@ -26785,7 +26763,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 883/2000 [05:21<05:58, 3.12it/s, loss=0.509]" + "training until 2000: 44%|████▍ | 883/2000 [05:17<05:58, 3.12it/s, loss=0.516]" ] }, { @@ -26793,7 +26771,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 883/2000 [05:21<05:58, 3.12it/s, loss=0.533]" + "training until 2000: 44%|████▍ | 883/2000 [05:17<05:58, 3.12it/s, loss=0.666]" ] }, { @@ -26801,7 +26779,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 884/2000 [05:22<06:03, 3.07it/s, loss=0.533]" + "training until 2000: 44%|████▍ | 884/2000 [05:18<05:55, 3.14it/s, loss=0.666]" ] }, { @@ -26809,7 +26787,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 884/2000 [05:22<06:03, 3.07it/s, loss=0.544]" + "training until 2000: 44%|████▍ | 884/2000 [05:18<05:55, 3.14it/s, loss=0.559]" ] }, { @@ -26817,7 +26795,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 885/2000 [05:22<06:02, 3.07it/s, loss=0.544]" + "training until 2000: 44%|████▍ | 885/2000 [05:18<05:56, 3.13it/s, loss=0.559]" ] }, { @@ -26825,7 +26803,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 885/2000 [05:22<06:02, 3.07it/s, loss=0.516]" + "training until 2000: 44%|████▍ | 885/2000 [05:18<05:56, 3.13it/s, loss=0.558]" ] }, { @@ -26833,7 +26811,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 886/2000 [05:22<06:02, 3.07it/s, loss=0.516]" + "training until 2000: 44%|████▍ | 886/2000 [05:18<05:57, 3.12it/s, loss=0.558]" ] }, { @@ -26841,7 +26819,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 886/2000 [05:22<06:02, 3.07it/s, loss=0.484]" + "training until 2000: 44%|████▍ | 886/2000 [05:18<05:57, 3.12it/s, loss=0.563]" ] }, { @@ -26849,7 +26827,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 887/2000 [05:23<06:01, 3.08it/s, loss=0.484]" + "training until 2000: 44%|████▍ | 887/2000 [05:18<05:58, 3.10it/s, loss=0.563]" ] }, { @@ -26857,7 +26835,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 887/2000 [05:23<06:01, 3.08it/s, loss=0.499]" + "training until 2000: 44%|████▍ | 887/2000 [05:18<05:58, 3.10it/s, loss=0.566]" ] }, { @@ -26865,7 +26843,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 888/2000 [05:23<06:02, 3.06it/s, loss=0.499]" + "training until 2000: 44%|████▍ | 888/2000 [05:19<05:53, 3.14it/s, loss=0.566]" ] }, { @@ -26873,7 +26851,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 888/2000 [05:23<06:02, 3.06it/s, loss=0.504]" + "training until 2000: 44%|████▍ | 888/2000 [05:19<05:53, 3.14it/s, loss=0.563]" ] }, { @@ -26881,7 +26859,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 889/2000 [05:23<06:05, 3.04it/s, loss=0.504]" + "training until 2000: 44%|████▍ | 889/2000 [05:19<05:53, 3.14it/s, loss=0.563]" ] }, { @@ -26889,7 +26867,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 889/2000 [05:23<06:05, 3.04it/s, loss=0.508]" + "training until 2000: 44%|████▍ | 889/2000 [05:19<05:53, 3.14it/s, loss=0.583]" ] }, { @@ -26897,7 +26875,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 890/2000 [05:24<06:03, 3.05it/s, loss=0.508]" + "training until 2000: 44%|████▍ | 890/2000 [05:19<05:54, 3.13it/s, loss=0.583]" ] }, { @@ -26905,7 +26883,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 44%|████▍ | 890/2000 [05:24<06:03, 3.05it/s, loss=0.533]" + "training until 2000: 44%|████▍ | 890/2000 [05:19<05:54, 3.13it/s, loss=0.531]" ] }, { @@ -26913,7 +26891,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 891/2000 [05:24<05:57, 3.10it/s, loss=0.533]" + "training until 2000: 45%|████▍ | 891/2000 [05:20<05:58, 3.10it/s, loss=0.531]" ] }, { @@ -26921,7 +26899,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 891/2000 [05:24<05:57, 3.10it/s, loss=0.479]" + "training until 2000: 45%|████▍ | 891/2000 [05:20<05:58, 3.10it/s, loss=0.563]" ] }, { @@ -26929,7 +26907,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 892/2000 [05:24<05:58, 3.09it/s, loss=0.479]" + "training until 2000: 45%|████▍ | 892/2000 [05:20<05:55, 3.12it/s, loss=0.563]" ] }, { @@ -26937,7 +26915,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 892/2000 [05:24<05:58, 3.09it/s, loss=0.522]" + "training until 2000: 45%|████▍ | 892/2000 [05:20<05:55, 3.12it/s, loss=0.536]" ] }, { @@ -26945,7 +26923,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 893/2000 [05:25<05:58, 3.09it/s, loss=0.522]" + "training until 2000: 45%|████▍ | 893/2000 [05:20<05:48, 3.17it/s, loss=0.536]" ] }, { @@ -26953,7 +26931,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 893/2000 [05:25<05:58, 3.09it/s, loss=0.48] " + "training until 2000: 45%|████▍ | 893/2000 [05:20<05:48, 3.17it/s, loss=0.654]" ] }, { @@ -26961,7 +26939,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 894/2000 [05:25<05:55, 3.11it/s, loss=0.48]" + "training until 2000: 45%|████▍ | 894/2000 [05:21<05:49, 3.16it/s, loss=0.654]" ] }, { @@ -26969,7 +26947,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 894/2000 [05:25<05:55, 3.11it/s, loss=0.473]" + "training until 2000: 45%|████▍ | 894/2000 [05:21<05:49, 3.16it/s, loss=0.496]" ] }, { @@ -26977,7 +26955,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 895/2000 [05:25<05:53, 3.12it/s, loss=0.473]" + "training until 2000: 45%|████▍ | 895/2000 [05:21<05:51, 3.15it/s, loss=0.496]" ] }, { @@ -26985,7 +26963,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 895/2000 [05:25<05:53, 3.12it/s, loss=0.527]" + "training until 2000: 45%|████▍ | 895/2000 [05:21<05:51, 3.15it/s, loss=0.499]" ] }, { @@ -26993,7 +26971,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 896/2000 [05:25<05:50, 3.15it/s, loss=0.527]" + "training until 2000: 45%|████▍ | 896/2000 [05:21<05:47, 3.18it/s, loss=0.499]" ] }, { @@ -27001,7 +26979,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 896/2000 [05:25<05:50, 3.15it/s, loss=0.512]" + "training until 2000: 45%|████▍ | 896/2000 [05:21<05:47, 3.18it/s, loss=0.66] " ] }, { @@ -27009,7 +26987,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 897/2000 [05:26<05:51, 3.14it/s, loss=0.512]" + "training until 2000: 45%|████▍ | 897/2000 [05:22<05:45, 3.19it/s, loss=0.66]" ] }, { @@ -27017,7 +26995,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 897/2000 [05:26<05:51, 3.14it/s, loss=0.473]" + "training until 2000: 45%|████▍ | 897/2000 [05:22<05:45, 3.19it/s, loss=0.491]" ] }, { @@ -27025,7 +27003,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 898/2000 [05:26<05:50, 3.14it/s, loss=0.473]" + "training until 2000: 45%|████▍ | 898/2000 [05:22<05:48, 3.17it/s, loss=0.491]" ] }, { @@ -27033,7 +27011,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 898/2000 [05:26<05:50, 3.14it/s, loss=0.513]" + "training until 2000: 45%|████▍ | 898/2000 [05:22<05:48, 3.17it/s, loss=0.612]" ] }, { @@ -27041,7 +27019,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 899/2000 [05:26<05:50, 3.14it/s, loss=0.513]" + "training until 2000: 45%|████▍ | 899/2000 [05:22<05:46, 3.18it/s, loss=0.612]" ] }, { @@ -27049,7 +27027,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▍ | 899/2000 [05:26<05:50, 3.14it/s, loss=0.559]" + "training until 2000: 45%|████▍ | 899/2000 [05:22<05:46, 3.18it/s, loss=0.497]" ] }, { @@ -27057,7 +27035,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 900/2000 [05:27<05:53, 3.11it/s, loss=0.559]" + "training until 2000: 45%|████▌ | 900/2000 [05:23<05:48, 3.16it/s, loss=0.497]" ] }, { @@ -27065,7 +27043,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 900/2000 [05:27<05:53, 3.11it/s, loss=0.529]" + "training until 2000: 45%|████▌ | 900/2000 [05:23<05:48, 3.16it/s, loss=0.523]" ] }, { @@ -27073,7 +27051,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 901/2000 [05:27<05:55, 3.09it/s, loss=0.529]" + "training until 2000: 45%|████▌ | 901/2000 [05:23<05:45, 3.18it/s, loss=0.523]" ] }, { @@ -27081,7 +27059,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 901/2000 [05:27<05:55, 3.09it/s, loss=0.523]" + "training until 2000: 45%|████▌ | 901/2000 [05:23<05:45, 3.18it/s, loss=0.509]" ] }, { @@ -27089,7 +27067,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 902/2000 [05:27<05:54, 3.10it/s, loss=0.523]" + "training until 2000: 45%|████▌ | 902/2000 [05:23<05:46, 3.17it/s, loss=0.509]" ] }, { @@ -27097,7 +27075,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 902/2000 [05:27<05:54, 3.10it/s, loss=0.476]" + "training until 2000: 45%|████▌ | 902/2000 [05:23<05:46, 3.17it/s, loss=0.554]" ] }, { @@ -27105,7 +27083,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 903/2000 [05:28<06:00, 3.04it/s, loss=0.476]" + "training until 2000: 45%|████▌ | 903/2000 [05:24<05:49, 3.14it/s, loss=0.554]" ] }, { @@ -27113,7 +27091,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 903/2000 [05:28<06:00, 3.04it/s, loss=0.51] " + "training until 2000: 45%|████▌ | 903/2000 [05:24<05:49, 3.14it/s, loss=0.498]" ] }, { @@ -27121,7 +27099,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 904/2000 [05:28<06:01, 3.03it/s, loss=0.51]" + "training until 2000: 45%|████▌ | 904/2000 [05:24<05:46, 3.17it/s, loss=0.498]" ] }, { @@ -27129,7 +27107,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 904/2000 [05:28<06:01, 3.03it/s, loss=0.5] " + "training until 2000: 45%|████▌ | 904/2000 [05:24<05:46, 3.17it/s, loss=0.546]" ] }, { @@ -27137,7 +27115,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 905/2000 [05:28<06:04, 3.01it/s, loss=0.5]" + "training until 2000: 45%|████▌ | 905/2000 [05:24<05:47, 3.15it/s, loss=0.546]" ] }, { @@ -27145,7 +27123,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 905/2000 [05:28<06:04, 3.01it/s, loss=0.512]" + "training until 2000: 45%|████▌ | 905/2000 [05:24<05:47, 3.15it/s, loss=0.506]" ] }, { @@ -27153,7 +27131,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 906/2000 [05:29<06:03, 3.01it/s, loss=0.512]" + "training until 2000: 45%|████▌ | 906/2000 [05:24<05:47, 3.15it/s, loss=0.506]" ] }, { @@ -27161,7 +27139,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 906/2000 [05:29<06:03, 3.01it/s, loss=0.481]" + "training until 2000: 45%|████▌ | 906/2000 [05:24<05:47, 3.15it/s, loss=0.681]" ] }, { @@ -27169,7 +27147,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 907/2000 [05:29<05:59, 3.04it/s, loss=0.481]" + "training until 2000: 45%|████▌ | 907/2000 [05:25<05:50, 3.12it/s, loss=0.681]" ] }, { @@ -27177,7 +27155,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 907/2000 [05:29<05:59, 3.04it/s, loss=0.501]" + "training until 2000: 45%|████▌ | 907/2000 [05:25<05:50, 3.12it/s, loss=0.566]" ] }, { @@ -27185,7 +27163,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 908/2000 [05:29<05:59, 3.04it/s, loss=0.501]" + "training until 2000: 45%|████▌ | 908/2000 [05:25<05:49, 3.13it/s, loss=0.566]" ] }, { @@ -27193,7 +27171,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 908/2000 [05:29<05:59, 3.04it/s, loss=0.484]" + "training until 2000: 45%|████▌ | 908/2000 [05:25<05:49, 3.13it/s, loss=0.668]" ] }, { @@ -27201,7 +27179,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 909/2000 [05:30<05:59, 3.03it/s, loss=0.484]" + "training until 2000: 45%|████▌ | 909/2000 [05:25<05:54, 3.08it/s, loss=0.668]" ] }, { @@ -27209,7 +27187,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 45%|████▌ | 909/2000 [05:30<05:59, 3.03it/s, loss=0.5] " + "training until 2000: 45%|████▌ | 909/2000 [05:25<05:54, 3.08it/s, loss=0.525]" ] }, { @@ -27217,7 +27195,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 910/2000 [05:30<06:04, 2.99it/s, loss=0.5]" + "training until 2000: 46%|████▌ | 910/2000 [05:26<05:50, 3.11it/s, loss=0.525]" ] }, { @@ -27225,7 +27203,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 910/2000 [05:30<06:04, 2.99it/s, loss=0.513]" + "training until 2000: 46%|████▌ | 910/2000 [05:26<05:50, 3.11it/s, loss=0.525]" ] }, { @@ -27233,7 +27211,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 911/2000 [05:30<06:04, 2.99it/s, loss=0.513]" + "training until 2000: 46%|████▌ | 911/2000 [05:26<05:53, 3.08it/s, loss=0.525]" ] }, { @@ -27241,7 +27219,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 911/2000 [05:30<06:04, 2.99it/s, loss=0.588]" + "training until 2000: 46%|████▌ | 911/2000 [05:26<05:53, 3.08it/s, loss=0.535]" ] }, { @@ -27249,7 +27227,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 912/2000 [05:31<06:02, 3.01it/s, loss=0.588]" + "training until 2000: 46%|████▌ | 912/2000 [05:27<07:11, 2.52it/s, loss=0.535]" ] }, { @@ -27257,7 +27235,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 912/2000 [05:31<06:02, 3.01it/s, loss=0.493]" + "training until 2000: 46%|████▌ | 912/2000 [05:27<07:11, 2.52it/s, loss=0.584]" ] }, { @@ -27265,7 +27243,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 913/2000 [05:31<06:01, 3.00it/s, loss=0.493]" + "training until 2000: 46%|████▌ | 913/2000 [05:27<06:49, 2.66it/s, loss=0.584]" ] }, { @@ -27273,7 +27251,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 913/2000 [05:31<06:01, 3.00it/s, loss=0.521]" + "training until 2000: 46%|████▌ | 913/2000 [05:27<06:49, 2.66it/s, loss=0.671]" ] }, { @@ -27281,7 +27259,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 914/2000 [05:31<05:56, 3.05it/s, loss=0.521]" + "training until 2000: 46%|████▌ | 914/2000 [05:27<06:29, 2.79it/s, loss=0.671]" ] }, { @@ -27289,7 +27267,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 914/2000 [05:31<05:56, 3.05it/s, loss=0.586]" + "training until 2000: 46%|████▌ | 914/2000 [05:27<06:29, 2.79it/s, loss=0.568]" ] }, { @@ -27297,7 +27275,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 915/2000 [05:32<05:52, 3.08it/s, loss=0.586]" + "training until 2000: 46%|████▌ | 915/2000 [05:28<06:12, 2.91it/s, loss=0.568]" ] }, { @@ -27305,7 +27283,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 915/2000 [05:32<05:52, 3.08it/s, loss=0.494]" + "training until 2000: 46%|████▌ | 915/2000 [05:28<06:12, 2.91it/s, loss=0.511]" ] }, { @@ -27313,7 +27291,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 916/2000 [05:32<05:50, 3.09it/s, loss=0.494]" + "training until 2000: 46%|████▌ | 916/2000 [05:28<06:05, 2.97it/s, loss=0.511]" ] }, { @@ -27321,7 +27299,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 916/2000 [05:32<05:50, 3.09it/s, loss=0.503]" + "training until 2000: 46%|████▌ | 916/2000 [05:28<06:05, 2.97it/s, loss=0.531]" ] }, { @@ -27329,7 +27307,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 917/2000 [05:32<05:50, 3.09it/s, loss=0.503]" + "training until 2000: 46%|████▌ | 917/2000 [05:28<05:55, 3.04it/s, loss=0.531]" ] }, { @@ -27337,7 +27315,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 917/2000 [05:32<05:50, 3.09it/s, loss=0.544]" + "training until 2000: 46%|████▌ | 917/2000 [05:28<05:55, 3.04it/s, loss=0.54] " ] }, { @@ -27345,7 +27323,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 918/2000 [05:33<05:49, 3.10it/s, loss=0.544]" + "training until 2000: 46%|████▌ | 918/2000 [05:29<05:50, 3.09it/s, loss=0.54]" ] }, { @@ -27353,7 +27331,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 918/2000 [05:33<05:49, 3.10it/s, loss=0.652]" + "training until 2000: 46%|████▌ | 918/2000 [05:29<05:50, 3.09it/s, loss=0.522]" ] }, { @@ -27361,7 +27339,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 919/2000 [05:33<05:50, 3.08it/s, loss=0.652]" + "training until 2000: 46%|████▌ | 919/2000 [05:29<05:50, 3.08it/s, loss=0.522]" ] }, { @@ -27369,7 +27347,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 919/2000 [05:33<05:50, 3.08it/s, loss=0.509]" + "training until 2000: 46%|████▌ | 919/2000 [05:29<05:50, 3.08it/s, loss=0.598]" ] }, { @@ -27377,7 +27355,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 920/2000 [05:33<05:48, 3.10it/s, loss=0.509]" + "training until 2000: 46%|████▌ | 920/2000 [05:29<05:51, 3.07it/s, loss=0.598]" ] }, { @@ -27385,7 +27363,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 920/2000 [05:33<05:48, 3.10it/s, loss=0.51] " + "training until 2000: 46%|████▌ | 920/2000 [05:29<05:51, 3.07it/s, loss=0.497]" ] }, { @@ -27393,7 +27371,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 921/2000 [05:34<07:10, 2.51it/s, loss=0.51]" + "training until 2000: 46%|████▌ | 921/2000 [05:30<05:48, 3.10it/s, loss=0.497]" ] }, { @@ -27401,7 +27379,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 921/2000 [05:34<07:10, 2.51it/s, loss=0.514]" + "training until 2000: 46%|████▌ | 921/2000 [05:30<05:48, 3.10it/s, loss=0.496]" ] }, { @@ -27409,7 +27387,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 922/2000 [05:34<06:45, 2.66it/s, loss=0.514]" + "training until 2000: 46%|████▌ | 922/2000 [05:30<05:49, 3.08it/s, loss=0.496]" ] }, { @@ -27417,7 +27395,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 922/2000 [05:34<06:45, 2.66it/s, loss=0.561]" + "training until 2000: 46%|████▌ | 922/2000 [05:30<05:49, 3.08it/s, loss=0.585]" ] }, { @@ -27425,7 +27403,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 923/2000 [05:35<06:31, 2.75it/s, loss=0.561]" + "training until 2000: 46%|████▌ | 923/2000 [05:30<05:45, 3.12it/s, loss=0.585]" ] }, { @@ -27433,7 +27411,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 923/2000 [05:35<06:31, 2.75it/s, loss=0.499]" + "training until 2000: 46%|████▌ | 923/2000 [05:30<05:45, 3.12it/s, loss=0.683]" ] }, { @@ -27441,7 +27419,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 924/2000 [05:35<06:18, 2.84it/s, loss=0.499]" + "training until 2000: 46%|████▌ | 924/2000 [05:31<05:44, 3.13it/s, loss=0.683]" ] }, { @@ -27449,7 +27427,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▌ | 924/2000 [05:35<06:18, 2.84it/s, loss=0.57] " + "training until 2000: 46%|████▌ | 924/2000 [05:31<05:44, 3.13it/s, loss=0.563]" ] }, { @@ -27457,7 +27435,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 925/2000 [05:35<06:09, 2.91it/s, loss=0.57]" + "training until 2000: 46%|████▋ | 925/2000 [05:31<05:41, 3.15it/s, loss=0.563]" ] }, { @@ -27465,7 +27443,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 925/2000 [05:35<06:09, 2.91it/s, loss=0.545]" + "training until 2000: 46%|████▋ | 925/2000 [05:31<05:41, 3.15it/s, loss=0.625]" ] }, { @@ -27473,7 +27451,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 926/2000 [05:36<06:01, 2.97it/s, loss=0.545]" + "training until 2000: 46%|████▋ | 926/2000 [05:31<05:42, 3.14it/s, loss=0.625]" ] }, { @@ -27481,7 +27459,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 926/2000 [05:36<06:01, 2.97it/s, loss=0.476]" + "training until 2000: 46%|████▋ | 926/2000 [05:31<05:42, 3.14it/s, loss=0.497]" ] }, { @@ -27489,7 +27467,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 927/2000 [05:36<05:58, 3.00it/s, loss=0.476]" + "training until 2000: 46%|████▋ | 927/2000 [05:31<05:45, 3.10it/s, loss=0.497]" ] }, { @@ -27497,7 +27475,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 927/2000 [05:36<05:58, 3.00it/s, loss=0.493]" + "training until 2000: 46%|████▋ | 927/2000 [05:31<05:45, 3.10it/s, loss=0.552]" ] }, { @@ -27505,7 +27483,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 928/2000 [05:36<05:56, 3.01it/s, loss=0.493]" + "training until 2000: 46%|████▋ | 928/2000 [05:32<05:45, 3.11it/s, loss=0.552]" ] }, { @@ -27513,7 +27491,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 928/2000 [05:36<05:56, 3.01it/s, loss=0.466]" + "training until 2000: 46%|████▋ | 928/2000 [05:32<05:45, 3.11it/s, loss=0.541]" ] }, { @@ -27521,7 +27499,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 929/2000 [05:37<05:57, 3.00it/s, loss=0.466]" + "training until 2000: 46%|████▋ | 929/2000 [05:32<05:44, 3.11it/s, loss=0.541]" ] }, { @@ -27529,7 +27507,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 929/2000 [05:37<05:57, 3.00it/s, loss=0.5] " + "training until 2000: 46%|████▋ | 929/2000 [05:32<05:44, 3.11it/s, loss=0.693]" ] }, { @@ -27537,7 +27515,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 930/2000 [05:37<05:54, 3.02it/s, loss=0.5]" + "training until 2000: 46%|████▋ | 930/2000 [05:32<05:46, 3.09it/s, loss=0.693]" ] }, { @@ -27545,7 +27523,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 46%|████▋ | 930/2000 [05:37<05:54, 3.02it/s, loss=0.489]" + "training until 2000: 46%|████▋ | 930/2000 [05:32<05:46, 3.09it/s, loss=0.548]" ] }, { @@ -27553,7 +27531,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 931/2000 [05:37<05:50, 3.05it/s, loss=0.489]" + "training until 2000: 47%|████▋ | 931/2000 [05:33<05:45, 3.10it/s, loss=0.548]" ] }, { @@ -27561,7 +27539,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 931/2000 [05:37<05:50, 3.05it/s, loss=0.5] " + "training until 2000: 47%|████▋ | 931/2000 [05:33<05:45, 3.10it/s, loss=0.486]" ] }, { @@ -27569,7 +27547,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 932/2000 [05:37<05:50, 3.05it/s, loss=0.5]" + "training until 2000: 47%|████▋ | 932/2000 [05:33<05:41, 3.13it/s, loss=0.486]" ] }, { @@ -27577,7 +27555,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 932/2000 [05:37<05:50, 3.05it/s, loss=0.531]" + "training until 2000: 47%|████▋ | 932/2000 [05:33<05:41, 3.13it/s, loss=0.488]" ] }, { @@ -27585,7 +27563,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 933/2000 [05:38<05:51, 3.03it/s, loss=0.531]" + "training until 2000: 47%|████▋ | 933/2000 [05:33<05:40, 3.14it/s, loss=0.488]" ] }, { @@ -27593,7 +27571,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 933/2000 [05:38<05:51, 3.03it/s, loss=0.521]" + "training until 2000: 47%|████▋ | 933/2000 [05:33<05:40, 3.14it/s, loss=0.512]" ] }, { @@ -27601,7 +27579,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 934/2000 [05:38<05:51, 3.03it/s, loss=0.521]" + "training until 2000: 47%|████▋ | 934/2000 [05:34<05:38, 3.15it/s, loss=0.512]" ] }, { @@ -27609,7 +27587,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 934/2000 [05:38<05:51, 3.03it/s, loss=0.486]" + "training until 2000: 47%|████▋ | 934/2000 [05:34<05:38, 3.15it/s, loss=0.56] " ] }, { @@ -27617,7 +27595,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 935/2000 [05:38<05:50, 3.04it/s, loss=0.486]" + "training until 2000: 47%|████▋ | 935/2000 [05:34<05:40, 3.12it/s, loss=0.56]" ] }, { @@ -27625,7 +27603,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 935/2000 [05:38<05:50, 3.04it/s, loss=0.566]" + "training until 2000: 47%|████▋ | 935/2000 [05:34<05:40, 3.12it/s, loss=0.477]" ] }, { @@ -27633,7 +27611,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 936/2000 [05:39<05:55, 2.99it/s, loss=0.566]" + "training until 2000: 47%|████▋ | 936/2000 [05:34<05:40, 3.12it/s, loss=0.477]" ] }, { @@ -27641,7 +27619,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 936/2000 [05:39<05:55, 2.99it/s, loss=0.521]" + "training until 2000: 47%|████▋ | 936/2000 [05:34<05:40, 3.12it/s, loss=0.507]" ] }, { @@ -27649,7 +27627,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 937/2000 [05:39<05:57, 2.97it/s, loss=0.521]" + "training until 2000: 47%|████▋ | 937/2000 [05:35<05:41, 3.12it/s, loss=0.507]" ] }, { @@ -27657,7 +27635,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 937/2000 [05:39<05:57, 2.97it/s, loss=0.513]" + "training until 2000: 47%|████▋ | 937/2000 [05:35<05:41, 3.12it/s, loss=0.522]" ] }, { @@ -27665,7 +27643,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 938/2000 [05:40<05:59, 2.96it/s, loss=0.513]" + "training until 2000: 47%|████▋ | 938/2000 [05:35<05:40, 3.12it/s, loss=0.522]" ] }, { @@ -27673,7 +27651,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 938/2000 [05:40<05:59, 2.96it/s, loss=0.487]" + "training until 2000: 47%|████▋ | 938/2000 [05:35<05:40, 3.12it/s, loss=0.573]" ] }, { @@ -27681,7 +27659,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 939/2000 [05:40<05:57, 2.97it/s, loss=0.487]" + "training until 2000: 47%|████▋ | 939/2000 [05:35<05:48, 3.05it/s, loss=0.573]" ] }, { @@ -27689,7 +27667,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 939/2000 [05:40<05:57, 2.97it/s, loss=0.559]" + "training until 2000: 47%|████▋ | 939/2000 [05:35<05:48, 3.05it/s, loss=0.483]" ] }, { @@ -27697,7 +27675,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 940/2000 [05:40<05:52, 3.01it/s, loss=0.559]" + "training until 2000: 47%|████▋ | 940/2000 [05:36<05:43, 3.08it/s, loss=0.483]" ] }, { @@ -27705,7 +27683,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 940/2000 [05:40<05:52, 3.01it/s, loss=0.588]" + "training until 2000: 47%|████▋ | 940/2000 [05:36<05:43, 3.08it/s, loss=0.508]" ] }, { @@ -27713,7 +27691,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 941/2000 [05:40<05:49, 3.03it/s, loss=0.588]" + "training until 2000: 47%|████▋ | 941/2000 [05:36<05:43, 3.08it/s, loss=0.508]" ] }, { @@ -27721,7 +27699,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 941/2000 [05:40<05:49, 3.03it/s, loss=0.523]" + "training until 2000: 47%|████▋ | 941/2000 [05:36<05:43, 3.08it/s, loss=0.475]" ] }, { @@ -27729,7 +27707,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 942/2000 [05:41<05:54, 2.99it/s, loss=0.523]" + "training until 2000: 47%|████▋ | 942/2000 [05:36<05:49, 3.03it/s, loss=0.475]" ] }, { @@ -27737,7 +27715,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 942/2000 [05:41<05:54, 2.99it/s, loss=0.54] " + "training until 2000: 47%|████▋ | 942/2000 [05:36<05:49, 3.03it/s, loss=0.495]" ] }, { @@ -27745,7 +27723,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 943/2000 [05:41<05:55, 2.97it/s, loss=0.54]" + "training until 2000: 47%|████▋ | 943/2000 [05:37<05:46, 3.05it/s, loss=0.495]" ] }, { @@ -27753,7 +27731,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 943/2000 [05:41<05:55, 2.97it/s, loss=0.514]" + "training until 2000: 47%|████▋ | 943/2000 [05:37<05:46, 3.05it/s, loss=0.533]" ] }, { @@ -27761,7 +27739,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 944/2000 [05:42<05:54, 2.98it/s, loss=0.514]" + "training until 2000: 47%|████▋ | 944/2000 [05:37<05:42, 3.08it/s, loss=0.533]" ] }, { @@ -27769,7 +27747,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 944/2000 [05:42<05:54, 2.98it/s, loss=0.481]" + "training until 2000: 47%|████▋ | 944/2000 [05:37<05:42, 3.08it/s, loss=0.687]" ] }, { @@ -27777,7 +27755,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 945/2000 [05:42<05:50, 3.01it/s, loss=0.481]" + "training until 2000: 47%|████▋ | 945/2000 [05:37<05:44, 3.06it/s, loss=0.687]" ] }, { @@ -27785,7 +27763,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 945/2000 [05:42<05:50, 3.01it/s, loss=0.563]" + "training until 2000: 47%|████▋ | 945/2000 [05:37<05:44, 3.06it/s, loss=0.478]" ] }, { @@ -27793,7 +27771,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 946/2000 [05:42<05:53, 2.98it/s, loss=0.563]" + "training until 2000: 47%|████▋ | 946/2000 [05:38<05:41, 3.09it/s, loss=0.478]" ] }, { @@ -27801,7 +27779,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 946/2000 [05:42<05:53, 2.98it/s, loss=0.498]" + "training until 2000: 47%|████▋ | 946/2000 [05:38<05:41, 3.09it/s, loss=0.472]" ] }, { @@ -27809,7 +27787,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 947/2000 [05:43<05:57, 2.95it/s, loss=0.498]" + "training until 2000: 47%|████▋ | 947/2000 [05:38<05:44, 3.05it/s, loss=0.472]" ] }, { @@ -27817,7 +27795,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 947/2000 [05:43<05:57, 2.95it/s, loss=0.523]" + "training until 2000: 47%|████▋ | 947/2000 [05:38<05:44, 3.05it/s, loss=0.503]" ] }, { @@ -27825,7 +27803,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 948/2000 [05:43<05:53, 2.98it/s, loss=0.523]" + "training until 2000: 47%|████▋ | 948/2000 [05:38<05:40, 3.09it/s, loss=0.503]" ] }, { @@ -27833,7 +27811,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 948/2000 [05:43<05:53, 2.98it/s, loss=0.486]" + "training until 2000: 47%|████▋ | 948/2000 [05:38<05:40, 3.09it/s, loss=0.504]" ] }, { @@ -27841,7 +27819,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 949/2000 [05:43<05:50, 3.00it/s, loss=0.486]" + "training until 2000: 47%|████▋ | 949/2000 [05:39<05:39, 3.10it/s, loss=0.504]" ] }, { @@ -27849,7 +27827,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 47%|████▋ | 949/2000 [05:43<05:50, 3.00it/s, loss=0.647]" + "training until 2000: 47%|████▋ | 949/2000 [05:39<05:39, 3.10it/s, loss=0.502]" ] }, { @@ -27857,7 +27835,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 950/2000 [05:44<05:47, 3.02it/s, loss=0.647]" + "training until 2000: 48%|████▊ | 950/2000 [05:39<05:36, 3.12it/s, loss=0.502]" ] }, { @@ -27865,7 +27843,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 950/2000 [05:44<05:47, 3.02it/s, loss=0.527]" + "training until 2000: 48%|████▊ | 950/2000 [05:39<05:36, 3.12it/s, loss=0.519]" ] }, { @@ -27873,7 +27851,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 951/2000 [05:44<05:48, 3.01it/s, loss=0.527]" + "training until 2000: 48%|████▊ | 951/2000 [05:39<05:35, 3.13it/s, loss=0.519]" ] }, { @@ -27881,7 +27859,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 951/2000 [05:44<05:48, 3.01it/s, loss=0.497]" + "training until 2000: 48%|████▊ | 951/2000 [05:39<05:35, 3.13it/s, loss=0.532]" ] }, { @@ -27889,7 +27867,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 952/2000 [05:44<05:57, 2.93it/s, loss=0.497]" + "training until 2000: 48%|████▊ | 952/2000 [05:40<05:36, 3.12it/s, loss=0.532]" ] }, { @@ -27897,7 +27875,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 952/2000 [05:44<05:57, 2.93it/s, loss=0.506]" + "training until 2000: 48%|████▊ | 952/2000 [05:40<05:36, 3.12it/s, loss=0.51] " ] }, { @@ -27905,7 +27883,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 953/2000 [05:45<05:54, 2.96it/s, loss=0.506]" + "training until 2000: 48%|████▊ | 953/2000 [05:40<05:39, 3.09it/s, loss=0.51]" ] }, { @@ -27913,7 +27891,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 953/2000 [05:45<05:54, 2.96it/s, loss=0.528]" + "training until 2000: 48%|████▊ | 953/2000 [05:40<05:39, 3.09it/s, loss=0.467]" ] }, { @@ -27921,7 +27899,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 954/2000 [05:45<05:55, 2.94it/s, loss=0.528]" + "training until 2000: 48%|████▊ | 954/2000 [05:40<05:36, 3.11it/s, loss=0.467]" ] }, { @@ -27929,7 +27907,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 954/2000 [05:45<05:55, 2.94it/s, loss=0.599]" + "training until 2000: 48%|████▊ | 954/2000 [05:40<05:36, 3.11it/s, loss=0.457]" ] }, { @@ -27937,7 +27915,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 955/2000 [05:45<05:55, 2.94it/s, loss=0.599]" + "training until 2000: 48%|████▊ | 955/2000 [05:41<05:33, 3.13it/s, loss=0.457]" ] }, { @@ -27945,7 +27923,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 955/2000 [05:45<05:55, 2.94it/s, loss=0.493]" + "training until 2000: 48%|████▊ | 955/2000 [05:41<05:33, 3.13it/s, loss=0.599]" ] }, { @@ -27953,7 +27931,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 956/2000 [05:46<05:55, 2.94it/s, loss=0.493]" + "training until 2000: 48%|████▊ | 956/2000 [05:41<05:28, 3.18it/s, loss=0.599]" ] }, { @@ -27961,7 +27939,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 956/2000 [05:46<05:55, 2.94it/s, loss=0.491]" + "training until 2000: 48%|████▊ | 956/2000 [05:41<05:28, 3.18it/s, loss=0.51] " ] }, { @@ -27969,7 +27947,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 957/2000 [05:46<05:55, 2.93it/s, loss=0.491]" + "training until 2000: 48%|████▊ | 957/2000 [05:41<05:28, 3.17it/s, loss=0.51]" ] }, { @@ -27977,7 +27955,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 957/2000 [05:46<05:55, 2.93it/s, loss=0.49] " + "training until 2000: 48%|████▊ | 957/2000 [05:41<05:28, 3.17it/s, loss=0.652]" ] }, { @@ -27985,7 +27963,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 958/2000 [05:46<05:46, 3.01it/s, loss=0.49]" + "training until 2000: 48%|████▊ | 958/2000 [05:41<05:28, 3.17it/s, loss=0.652]" ] }, { @@ -27993,7 +27971,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 958/2000 [05:46<05:46, 3.01it/s, loss=0.601]" + "training until 2000: 48%|████▊ | 958/2000 [05:41<05:28, 3.17it/s, loss=0.473]" ] }, { @@ -28001,7 +27979,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 959/2000 [05:47<05:43, 3.03it/s, loss=0.601]" + "training until 2000: 48%|████▊ | 959/2000 [05:42<05:29, 3.16it/s, loss=0.473]" ] }, { @@ -28009,7 +27987,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 959/2000 [05:47<05:43, 3.03it/s, loss=0.5] " + "training until 2000: 48%|████▊ | 959/2000 [05:42<05:29, 3.16it/s, loss=0.547]" ] }, { @@ -28017,7 +27995,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 960/2000 [05:47<05:41, 3.05it/s, loss=0.5]" + "training until 2000: 48%|████▊ | 960/2000 [05:42<05:31, 3.14it/s, loss=0.547]" ] }, { @@ -28025,7 +28003,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 960/2000 [05:47<05:41, 3.05it/s, loss=0.563]" + "training until 2000: 48%|████▊ | 960/2000 [05:42<05:31, 3.14it/s, loss=0.589]" ] }, { @@ -28033,7 +28011,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 961/2000 [05:47<05:38, 3.07it/s, loss=0.563]" + "training until 2000: 48%|████▊ | 961/2000 [05:42<05:31, 3.13it/s, loss=0.589]" ] }, { @@ -28041,7 +28019,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 961/2000 [05:47<05:38, 3.07it/s, loss=0.537]" + "training until 2000: 48%|████▊ | 961/2000 [05:42<05:31, 3.13it/s, loss=0.543]" ] }, { @@ -28049,7 +28027,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 962/2000 [05:48<05:40, 3.05it/s, loss=0.537]" + "training until 2000: 48%|████▊ | 962/2000 [05:43<05:29, 3.15it/s, loss=0.543]" ] }, { @@ -28057,7 +28035,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 962/2000 [05:48<05:40, 3.05it/s, loss=0.464]" + "training until 2000: 48%|████▊ | 962/2000 [05:43<05:29, 3.15it/s, loss=0.484]" ] }, { @@ -28065,7 +28043,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 963/2000 [05:48<05:35, 3.09it/s, loss=0.464]" + "training until 2000: 48%|████▊ | 963/2000 [05:43<05:30, 3.14it/s, loss=0.484]" ] }, { @@ -28073,7 +28051,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 963/2000 [05:48<05:35, 3.09it/s, loss=0.558]" + "training until 2000: 48%|████▊ | 963/2000 [05:43<05:30, 3.14it/s, loss=0.508]" ] }, { @@ -28081,7 +28059,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 964/2000 [05:48<05:34, 3.09it/s, loss=0.558]" + "training until 2000: 48%|████▊ | 964/2000 [05:43<05:33, 3.11it/s, loss=0.508]" ] }, { @@ -28089,7 +28067,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 964/2000 [05:48<05:34, 3.09it/s, loss=0.602]" + "training until 2000: 48%|████▊ | 964/2000 [05:43<05:33, 3.11it/s, loss=0.579]" ] }, { @@ -28097,7 +28075,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 965/2000 [05:48<05:30, 3.13it/s, loss=0.602]" + "training until 2000: 48%|████▊ | 965/2000 [05:44<05:32, 3.11it/s, loss=0.579]" ] }, { @@ -28105,7 +28083,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 965/2000 [05:48<05:30, 3.13it/s, loss=0.526]" + "training until 2000: 48%|████▊ | 965/2000 [05:44<05:32, 3.11it/s, loss=0.599]" ] }, { @@ -28113,7 +28091,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 966/2000 [05:49<05:33, 3.10it/s, loss=0.526]" + "training until 2000: 48%|████▊ | 966/2000 [05:44<05:31, 3.12it/s, loss=0.599]" ] }, { @@ -28121,7 +28099,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 966/2000 [05:49<05:33, 3.10it/s, loss=0.495]" + "training until 2000: 48%|████▊ | 966/2000 [05:44<05:31, 3.12it/s, loss=0.516]" ] }, { @@ -28129,7 +28107,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 967/2000 [05:49<05:31, 3.12it/s, loss=0.495]" + "training until 2000: 48%|████▊ | 967/2000 [05:44<05:35, 3.08it/s, loss=0.516]" ] }, { @@ -28137,7 +28115,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 967/2000 [05:49<05:31, 3.12it/s, loss=0.5] " + "training until 2000: 48%|████▊ | 967/2000 [05:44<05:35, 3.08it/s, loss=0.496]" ] }, { @@ -28145,7 +28123,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 968/2000 [05:49<05:31, 3.12it/s, loss=0.5]" + "training until 2000: 48%|████▊ | 968/2000 [05:45<05:36, 3.06it/s, loss=0.496]" ] }, { @@ -28153,7 +28131,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 968/2000 [05:49<05:31, 3.12it/s, loss=0.474]" + "training until 2000: 48%|████▊ | 968/2000 [05:45<05:36, 3.06it/s, loss=0.496]" ] }, { @@ -28161,7 +28139,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 969/2000 [05:50<05:31, 3.11it/s, loss=0.474]" + "training until 2000: 48%|████▊ | 969/2000 [05:45<05:35, 3.07it/s, loss=0.496]" ] }, { @@ -28169,7 +28147,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 969/2000 [05:50<05:31, 3.11it/s, loss=0.489]" + "training until 2000: 48%|████▊ | 969/2000 [05:45<05:35, 3.07it/s, loss=0.499]" ] }, { @@ -28177,7 +28155,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 970/2000 [05:50<05:29, 3.13it/s, loss=0.489]" + "training until 2000: 48%|████▊ | 970/2000 [05:45<05:33, 3.09it/s, loss=0.499]" ] }, { @@ -28185,7 +28163,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 48%|████▊ | 970/2000 [05:50<05:29, 3.13it/s, loss=0.541]" + "training until 2000: 48%|████▊ | 970/2000 [05:45<05:33, 3.09it/s, loss=0.516]" ] }, { @@ -28193,7 +28171,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▊ | 971/2000 [05:50<05:31, 3.10it/s, loss=0.541]" + "training until 2000: 49%|████▊ | 971/2000 [05:46<05:30, 3.11it/s, loss=0.516]" ] }, { @@ -28201,7 +28179,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▊ | 971/2000 [05:50<05:31, 3.10it/s, loss=0.486]" + "training until 2000: 49%|████▊ | 971/2000 [05:46<05:30, 3.11it/s, loss=0.547]" ] }, { @@ -28209,7 +28187,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▊ | 972/2000 [05:51<05:28, 3.13it/s, loss=0.486]" + "training until 2000: 49%|████▊ | 972/2000 [05:46<05:32, 3.10it/s, loss=0.547]" ] }, { @@ -28217,7 +28195,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▊ | 972/2000 [05:51<05:28, 3.13it/s, loss=0.577]" + "training until 2000: 49%|████▊ | 972/2000 [05:46<05:32, 3.10it/s, loss=0.551]" ] }, { @@ -28225,7 +28203,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▊ | 973/2000 [05:51<05:29, 3.12it/s, loss=0.577]" + "training until 2000: 49%|████▊ | 973/2000 [05:46<05:31, 3.10it/s, loss=0.551]" ] }, { @@ -28233,7 +28211,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▊ | 973/2000 [05:51<05:29, 3.12it/s, loss=0.519]" + "training until 2000: 49%|████▊ | 973/2000 [05:46<05:31, 3.10it/s, loss=0.608]" ] }, { @@ -28241,7 +28219,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▊ | 974/2000 [05:51<05:28, 3.12it/s, loss=0.519]" + "training until 2000: 49%|████▊ | 974/2000 [05:47<05:29, 3.11it/s, loss=0.608]" ] }, { @@ -28249,7 +28227,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▊ | 974/2000 [05:51<05:28, 3.12it/s, loss=0.499]" + "training until 2000: 49%|████▊ | 974/2000 [05:47<05:29, 3.11it/s, loss=0.654]" ] }, { @@ -28257,7 +28235,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 975/2000 [05:52<05:28, 3.12it/s, loss=0.499]" + "training until 2000: 49%|████▉ | 975/2000 [05:47<05:25, 3.15it/s, loss=0.654]" ] }, { @@ -28265,7 +28243,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 975/2000 [05:52<05:28, 3.12it/s, loss=0.571]" + "training until 2000: 49%|████▉ | 975/2000 [05:47<05:25, 3.15it/s, loss=0.635]" ] }, { @@ -28273,7 +28251,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 976/2000 [05:52<05:31, 3.09it/s, loss=0.571]" + "training until 2000: 49%|████▉ | 976/2000 [05:47<05:24, 3.16it/s, loss=0.635]" ] }, { @@ -28281,7 +28259,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 976/2000 [05:52<05:31, 3.09it/s, loss=0.483]" + "training until 2000: 49%|████▉ | 976/2000 [05:47<05:24, 3.16it/s, loss=0.494]" ] }, { @@ -28289,7 +28267,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 977/2000 [05:52<05:34, 3.06it/s, loss=0.483]" + "training until 2000: 49%|████▉ | 977/2000 [05:48<05:23, 3.17it/s, loss=0.494]" ] }, { @@ -28297,7 +28275,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 977/2000 [05:52<05:34, 3.06it/s, loss=0.561]" + "training until 2000: 49%|████▉ | 977/2000 [05:48<05:23, 3.17it/s, loss=0.479]" ] }, { @@ -28305,7 +28283,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 978/2000 [05:53<05:32, 3.08it/s, loss=0.561]" + "training until 2000: 49%|████▉ | 978/2000 [05:48<06:39, 2.56it/s, loss=0.479]" ] }, { @@ -28313,7 +28291,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 978/2000 [05:53<05:32, 3.08it/s, loss=0.565]" + "training until 2000: 49%|████▉ | 978/2000 [05:48<06:39, 2.56it/s, loss=0.513]" ] }, { @@ -28321,7 +28299,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 979/2000 [05:53<05:27, 3.12it/s, loss=0.565]" + "training until 2000: 49%|████▉ | 979/2000 [05:48<06:20, 2.68it/s, loss=0.513]" ] }, { @@ -28329,7 +28307,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 979/2000 [05:53<05:27, 3.12it/s, loss=0.56] " + "training until 2000: 49%|████▉ | 979/2000 [05:48<06:20, 2.68it/s, loss=0.503]" ] }, { @@ -28337,7 +28315,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 980/2000 [05:53<05:31, 3.08it/s, loss=0.56]" + "training until 2000: 49%|████▉ | 980/2000 [05:49<06:03, 2.80it/s, loss=0.503]" ] }, { @@ -28345,7 +28323,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 980/2000 [05:53<05:31, 3.08it/s, loss=0.474]" + "training until 2000: 49%|████▉ | 980/2000 [05:49<06:03, 2.80it/s, loss=0.514]" ] }, { @@ -28353,7 +28331,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 981/2000 [05:54<05:31, 3.08it/s, loss=0.474]" + "training until 2000: 49%|████▉ | 981/2000 [05:49<05:53, 2.88it/s, loss=0.514]" ] }, { @@ -28361,7 +28339,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 981/2000 [05:54<05:31, 3.08it/s, loss=0.482]" + "training until 2000: 49%|████▉ | 981/2000 [05:49<05:53, 2.88it/s, loss=0.493]" ] }, { @@ -28369,7 +28347,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 982/2000 [05:54<05:30, 3.08it/s, loss=0.482]" + "training until 2000: 49%|████▉ | 982/2000 [05:49<05:43, 2.97it/s, loss=0.493]" ] }, { @@ -28377,7 +28355,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 982/2000 [05:54<05:30, 3.08it/s, loss=0.564]" + "training until 2000: 49%|████▉ | 982/2000 [05:49<05:43, 2.97it/s, loss=0.485]" ] }, { @@ -28385,7 +28363,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 983/2000 [05:54<05:29, 3.09it/s, loss=0.564]" + "training until 2000: 49%|████▉ | 983/2000 [05:50<05:42, 2.97it/s, loss=0.485]" ] }, { @@ -28393,7 +28371,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 983/2000 [05:54<05:29, 3.09it/s, loss=0.556]" + "training until 2000: 49%|████▉ | 983/2000 [05:50<05:42, 2.97it/s, loss=0.515]" ] }, { @@ -28401,7 +28379,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 984/2000 [05:55<05:29, 3.08it/s, loss=0.556]" + "training until 2000: 49%|████▉ | 984/2000 [05:50<05:36, 3.02it/s, loss=0.515]" ] }, { @@ -28409,7 +28387,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 984/2000 [05:55<05:29, 3.08it/s, loss=0.479]" + "training until 2000: 49%|████▉ | 984/2000 [05:50<05:36, 3.02it/s, loss=0.48] " ] }, { @@ -28417,7 +28395,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 985/2000 [05:55<06:45, 2.50it/s, loss=0.479]" + "training until 2000: 49%|████▉ | 985/2000 [05:50<05:34, 3.03it/s, loss=0.48]" ] }, { @@ -28425,7 +28403,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 985/2000 [05:55<06:45, 2.50it/s, loss=0.49] " + "training until 2000: 49%|████▉ | 985/2000 [05:50<05:34, 3.03it/s, loss=0.516]" ] }, { @@ -28433,7 +28411,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 986/2000 [05:55<06:21, 2.66it/s, loss=0.49]" + "training until 2000: 49%|████▉ | 986/2000 [05:51<05:31, 3.06it/s, loss=0.516]" ] }, { @@ -28441,7 +28419,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 986/2000 [05:55<06:21, 2.66it/s, loss=0.518]" + "training until 2000: 49%|████▉ | 986/2000 [05:51<05:31, 3.06it/s, loss=0.531]" ] }, { @@ -28449,7 +28427,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 987/2000 [05:56<06:03, 2.78it/s, loss=0.518]" + "training until 2000: 49%|████▉ | 987/2000 [05:51<05:24, 3.12it/s, loss=0.531]" ] }, { @@ -28457,7 +28435,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 987/2000 [05:56<06:03, 2.78it/s, loss=0.529]" + "training until 2000: 49%|████▉ | 987/2000 [05:51<05:24, 3.12it/s, loss=0.48] " ] }, { @@ -28465,7 +28443,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 988/2000 [05:56<05:50, 2.88it/s, loss=0.529]" + "training until 2000: 49%|████▉ | 988/2000 [05:51<05:22, 3.14it/s, loss=0.48]" ] }, { @@ -28473,7 +28451,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 988/2000 [05:56<05:50, 2.88it/s, loss=0.466]" + "training until 2000: 49%|████▉ | 988/2000 [05:51<05:22, 3.14it/s, loss=0.527]" ] }, { @@ -28481,7 +28459,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 989/2000 [05:56<05:43, 2.94it/s, loss=0.466]" + "training until 2000: 49%|████▉ | 989/2000 [05:52<05:19, 3.16it/s, loss=0.527]" ] }, { @@ -28489,7 +28467,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 49%|████▉ | 989/2000 [05:56<05:43, 2.94it/s, loss=0.571]" + "training until 2000: 49%|████▉ | 989/2000 [05:52<05:19, 3.16it/s, loss=0.498]" ] }, { @@ -28497,7 +28475,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 990/2000 [05:57<05:39, 2.98it/s, loss=0.571]" + "training until 2000: 50%|████▉ | 990/2000 [05:52<05:19, 3.16it/s, loss=0.498]" ] }, { @@ -28505,7 +28483,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 990/2000 [05:57<05:39, 2.98it/s, loss=0.511]" + "training until 2000: 50%|████▉ | 990/2000 [05:52<05:19, 3.16it/s, loss=0.535]" ] }, { @@ -28513,7 +28491,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 991/2000 [05:57<05:33, 3.03it/s, loss=0.511]" + "training until 2000: 50%|████▉ | 991/2000 [05:52<05:21, 3.14it/s, loss=0.535]" ] }, { @@ -28521,7 +28499,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 991/2000 [05:57<05:33, 3.03it/s, loss=0.599]" + "training until 2000: 50%|████▉ | 991/2000 [05:52<05:21, 3.14it/s, loss=0.47] " ] }, { @@ -28529,7 +28507,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 992/2000 [05:57<05:35, 3.00it/s, loss=0.599]" + "training until 2000: 50%|████▉ | 992/2000 [05:53<05:17, 3.17it/s, loss=0.47]" ] }, { @@ -28537,7 +28515,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 992/2000 [05:57<05:35, 3.00it/s, loss=0.488]" + "training until 2000: 50%|████▉ | 992/2000 [05:53<05:17, 3.17it/s, loss=0.47]" ] }, { @@ -28545,7 +28523,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 993/2000 [05:58<05:30, 3.05it/s, loss=0.488]" + "training until 2000: 50%|████▉ | 993/2000 [05:53<05:20, 3.15it/s, loss=0.47]" ] }, { @@ -28553,7 +28531,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 993/2000 [05:58<05:30, 3.05it/s, loss=0.526]" + "training until 2000: 50%|████▉ | 993/2000 [05:53<05:20, 3.15it/s, loss=0.647]" ] }, { @@ -28561,7 +28539,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 994/2000 [05:58<05:24, 3.10it/s, loss=0.526]" + "training until 2000: 50%|████▉ | 994/2000 [05:53<05:15, 3.19it/s, loss=0.647]" ] }, { @@ -28569,7 +28547,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 994/2000 [05:58<05:24, 3.10it/s, loss=0.514]" + "training until 2000: 50%|████▉ | 994/2000 [05:53<05:15, 3.19it/s, loss=0.494]" ] }, { @@ -28577,7 +28555,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 995/2000 [05:58<05:28, 3.06it/s, loss=0.514]" + "training until 2000: 50%|████▉ | 995/2000 [05:54<05:15, 3.19it/s, loss=0.494]" ] }, { @@ -28585,7 +28563,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 995/2000 [05:58<05:28, 3.06it/s, loss=0.484]" + "training until 2000: 50%|████▉ | 995/2000 [05:54<05:15, 3.19it/s, loss=0.555]" ] }, { @@ -28593,7 +28571,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 996/2000 [05:59<05:28, 3.06it/s, loss=0.484]" + "training until 2000: 50%|████▉ | 996/2000 [05:54<05:15, 3.18it/s, loss=0.555]" ] }, { @@ -28601,7 +28579,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 996/2000 [05:59<05:28, 3.06it/s, loss=0.511]" + "training until 2000: 50%|████▉ | 996/2000 [05:54<05:15, 3.18it/s, loss=0.543]" ] }, { @@ -28609,7 +28587,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 997/2000 [05:59<05:31, 3.03it/s, loss=0.511]" + "training until 2000: 50%|████▉ | 997/2000 [05:54<05:14, 3.19it/s, loss=0.543]" ] }, { @@ -28617,7 +28595,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 997/2000 [05:59<05:31, 3.03it/s, loss=0.5] " + "training until 2000: 50%|████▉ | 997/2000 [05:54<05:14, 3.19it/s, loss=0.563]" ] }, { @@ -28625,7 +28603,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 998/2000 [05:59<05:32, 3.01it/s, loss=0.5]" + "training until 2000: 50%|████▉ | 998/2000 [05:54<05:11, 3.21it/s, loss=0.563]" ] }, { @@ -28633,7 +28611,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 998/2000 [05:59<05:32, 3.01it/s, loss=0.506]" + "training until 2000: 50%|████▉ | 998/2000 [05:54<05:11, 3.21it/s, loss=0.526]" ] }, { @@ -28641,7 +28619,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 999/2000 [06:00<05:30, 3.03it/s, loss=0.506]" + "training until 2000: 50%|████▉ | 999/2000 [05:55<05:13, 3.19it/s, loss=0.526]" ] }, { @@ -28649,7 +28627,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|████▉ | 999/2000 [06:00<05:30, 3.03it/s, loss=0.487]" + "training until 2000: 50%|████▉ | 999/2000 [05:55<05:13, 3.19it/s, loss=0.529]" ] }, { @@ -28657,7 +28635,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1000/2000 [06:00<05:29, 3.04it/s, loss=0.487]" + "training until 2000: 50%|█████ | 1000/2000 [05:55<05:16, 3.16it/s, loss=0.529]" ] }, { @@ -28665,7 +28643,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1000/2000 [06:00<05:29, 3.04it/s, loss=0.539]" + "training until 2000: 50%|█████ | 1000/2000 [05:55<05:16, 3.16it/s, loss=0.538]" ] }, { @@ -28753,7 +28731,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:10, 20.63blocks/s, ⧗=0, ▶=1, ✔=1, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:10, 20.66blocks/s, ⧗=0, ▶=1, ✔=1, ✗=0, ∅=0]" ] }, { @@ -28775,7 +28753,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:20, 10.45blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:20, 10.50blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" ] }, { @@ -28797,7 +28775,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:10, 20.56blocks/s, ⧗=0, ▶=1, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:10, 20.66blocks/s, ⧗=0, ▶=1, ✔=2, ✗=0, ∅=0]" ] }, { @@ -28819,7 +28797,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:15, 13.65blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:15, 13.78blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" ] }, { @@ -28841,7 +28819,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.31blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.54blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" ] }, { @@ -28863,7 +28841,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.31blocks/s, ⧗=0, ▶=1, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.54blocks/s, ⧗=0, ▶=1, ✔=3, ✗=0, ∅=0]" ] }, { @@ -28885,7 +28863,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.31blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.54blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" ] }, { @@ -28907,7 +28885,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.31blocks/s, ⧗=0, ▶=1, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.54blocks/s, ⧗=0, ▶=1, ✔=4, ✗=0, ∅=0]" ] }, { @@ -28929,7 +28907,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.31blocks/s, ⧗=0, ▶=0, ✔=5, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.54blocks/s, ⧗=0, ▶=0, ✔=5, ✗=0, ∅=0]" ] }, { @@ -28951,7 +28929,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.31blocks/s, ⧗=0, ▶=1, ✔=5, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.54blocks/s, ⧗=0, ▶=1, ✔=5, ✗=0, ∅=0]" ] }, { @@ -28973,7 +28951,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.31blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.54blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" ] }, { @@ -28995,7 +28973,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.88blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 20.05blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" ] }, { @@ -29017,7 +28995,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.88blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 20.05blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" ] }, { @@ -29039,7 +29017,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.88blocks/s, ⧗=0, ▶=0, ✔=7, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 20.05blocks/s, ⧗=0, ▶=0, ✔=7, ✗=0, ∅=0]" ] }, { @@ -29061,7 +29039,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:11, 18.88blocks/s, ⧗=0, ▶=1, ✔=7, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:10, 20.05blocks/s, ⧗=0, ▶=1, ✔=7, ✗=0, ∅=0]" ] }, { @@ -29083,7 +29061,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:11, 18.88blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:10, 20.05blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" ] }, { @@ -29105,7 +29083,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 17.97blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 20.05blocks/s, ⧗=0, ▶=1, ✔=8, ✗=0, ∅=0]" ] }, { @@ -29127,7 +29105,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 17.97blocks/s, ⧗=0, ▶=1, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 20.05blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" ] }, { @@ -29149,7 +29127,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 17.97blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" ] }, { @@ -29171,7 +29149,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:11, 17.97blocks/s, ⧗=0, ▶=1, ✔=9, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=1, ✔=9, ✗=0, ∅=0]" ] }, { @@ -29193,7 +29171,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:11, 17.97blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" ] }, { @@ -29215,7 +29193,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.05blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=1, ✔=10, ✗=0, ∅=0]" ] }, { @@ -29237,7 +29215,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.05blocks/s, ⧗=0, ▶=1, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" ] }, { @@ -29259,7 +29237,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.05blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 19.79blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" ] }, { @@ -29281,7 +29259,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:11, 18.05blocks/s, ⧗=0, ▶=1, ✔=11, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 19.79blocks/s, ⧗=0, ▶=1, ✔=11, ✗=0, ∅=0]" ] }, { @@ -29303,7 +29281,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:11, 18.05blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 19.79blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" ] }, { @@ -29325,7 +29303,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 19.79blocks/s, ⧗=0, ▶=1, ✔=12, ✗=0, ∅=0]" ] }, { @@ -29347,7 +29325,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=1, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 19.79blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" ] }, { @@ -29369,7 +29347,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 19.65blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" ] }, { @@ -29391,7 +29369,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=1, ✔=13, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 19.65blocks/s, ⧗=0, ▶=1, ✔=13, ✗=0, ∅=0]" ] }, { @@ -29413,7 +29391,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 19.65blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" ] }, { @@ -29435,7 +29413,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:11, 18.32blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 19.65blocks/s, ⧗=0, ▶=1, ✔=14, ✗=0, ∅=0]" ] }, { @@ -29457,7 +29435,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:11, 18.32blocks/s, ⧗=0, ▶=1, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 19.65blocks/s, ⧗=0, ▶=0, ✔=15, ✗=0, ∅=0]" ] }, { @@ -29479,7 +29457,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:11, 18.32blocks/s, ⧗=0, ▶=0, ✔=15, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:11, 18.23blocks/s, ⧗=0, ▶=0, ✔=15, ✗=0, ∅=0]" ] }, { @@ -29501,7 +29479,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:10, 18.32blocks/s, ⧗=0, ▶=1, ✔=15, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:11, 18.23blocks/s, ⧗=0, ▶=1, ✔=15, ✗=0, ∅=0]" ] }, { @@ -29523,7 +29501,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:10, 18.32blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:11, 18.23blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" ] }, { @@ -29545,7 +29523,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 16.86blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:10, 18.23blocks/s, ⧗=0, ▶=1, ✔=16, ✗=0, ∅=0]" ] }, { @@ -29567,7 +29545,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 16.86blocks/s, ⧗=0, ▶=1, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:10, 18.23blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" ] }, { @@ -29589,7 +29567,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 16.86blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.86blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" ] }, { @@ -29611,7 +29589,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 16.86blocks/s, ⧗=0, ▶=1, ✔=17, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.86blocks/s, ⧗=0, ▶=1, ✔=17, ✗=0, ∅=0]" ] }, { @@ -29633,7 +29611,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:01<00:11, 16.86blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.86blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" ] }, { @@ -29655,7 +29633,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:00<00:11, 17.86blocks/s, ⧗=0, ▶=1, ✔=18, ✗=0, ∅=0]" ] }, { @@ -29677,7 +29655,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=1, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.86blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" ] }, { @@ -29699,7 +29677,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.52blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" ] }, { @@ -29721,7 +29699,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=1, ✔=19, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.52blocks/s, ⧗=0, ▶=1, ✔=19, ✗=0, ∅=0]" ] }, { @@ -29743,7 +29721,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.52blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" ] }, { @@ -29765,7 +29743,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 16.92blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.52blocks/s, ⧗=0, ▶=1, ✔=20, ✗=0, ∅=0]" ] }, { @@ -29787,7 +29765,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 16.92blocks/s, ⧗=0, ▶=1, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.52blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" ] }, { @@ -29809,7 +29787,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 16.92blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 16.51blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" ] }, { @@ -29831,7 +29809,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 16.92blocks/s, ⧗=0, ▶=1, ✔=21, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 16.51blocks/s, ⧗=0, ▶=1, ✔=21, ✗=0, ∅=0]" ] }, { @@ -29853,7 +29831,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 16.92blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 16.51blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" ] }, { @@ -29875,7 +29853,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:11, 17.15blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:11, 16.51blocks/s, ⧗=0, ▶=1, ✔=22, ✗=0, ∅=0]" ] }, { @@ -29897,7 +29875,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:11, 17.15blocks/s, ⧗=0, ▶=1, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:11, 16.51blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" ] }, { @@ -29919,7 +29897,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:11, 17.15blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:11, 16.56blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" ] }, { @@ -29941,7 +29919,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:11, 17.15blocks/s, ⧗=0, ▶=1, ✔=23, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:11, 16.56blocks/s, ⧗=0, ▶=1, ✔=23, ✗=0, ∅=0]" ] }, { @@ -29963,7 +29941,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:11, 17.15blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:11, 16.56blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" ] }, { @@ -29985,7 +29963,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.50blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:11, 16.56blocks/s, ⧗=0, ▶=1, ✔=24, ✗=0, ∅=0]" ] }, { @@ -30007,7 +29985,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.50blocks/s, ⧗=0, ▶=1, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:11, 16.56blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" ] }, { @@ -30029,7 +30007,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.50blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:11, 16.67blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" ] }, { @@ -30051,7 +30029,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 17.50blocks/s, ⧗=0, ▶=1, ✔=25, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:11, 16.67blocks/s, ⧗=0, ▶=1, ✔=25, ✗=0, ∅=0]" ] }, { @@ -30073,7 +30051,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 17.50blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:11, 16.67blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" ] }, { @@ -30095,7 +30073,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:11, 16.67blocks/s, ⧗=0, ▶=1, ✔=26, ✗=0, ∅=0]" ] }, { @@ -30117,7 +30095,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=1, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:11, 16.67blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" ] }, { @@ -30139,7 +30117,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:11, 16.44blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" ] }, { @@ -30161,7 +30139,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=1, ✔=27, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:11, 16.44blocks/s, ⧗=0, ▶=1, ✔=27, ✗=0, ∅=0]" ] }, { @@ -30183,7 +30161,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:11, 16.44blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" ] }, { @@ -30205,7 +30183,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:11, 16.44blocks/s, ⧗=0, ▶=1, ✔=28, ✗=0, ∅=0]" ] }, { @@ -30227,7 +30205,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=1, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:11, 16.44blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" ] }, { @@ -30249,7 +30227,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:11, 16.23blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" ] }, { @@ -30271,7 +30249,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=1, ✔=29, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:11, 16.23blocks/s, ⧗=0, ▶=1, ✔=29, ✗=0, ∅=0]" ] }, { @@ -30293,7 +30271,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.93blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:11, 16.23blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" ] }, { @@ -30315,7 +30293,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.05blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:11, 16.23blocks/s, ⧗=0, ▶=1, ✔=30, ✗=0, ∅=0]" ] }, { @@ -30337,7 +30315,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.05blocks/s, ⧗=0, ▶=1, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:11, 16.23blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" ] }, { @@ -30359,7 +30337,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.05blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:11, 16.70blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" ] }, { @@ -30381,7 +30359,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 18.05blocks/s, ⧗=0, ▶=1, ✔=31, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:11, 16.70blocks/s, ⧗=0, ▶=1, ✔=31, ✗=0, ∅=0]" ] }, { @@ -30403,7 +30381,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 18.05blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:11, 16.70blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" ] }, { @@ -30425,7 +30403,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.47blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:11, 16.70blocks/s, ⧗=0, ▶=1, ✔=32, ✗=0, ∅=0]" ] }, { @@ -30447,7 +30425,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.47blocks/s, ⧗=0, ▶=1, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:11, 16.70blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" ] }, { @@ -30469,7 +30447,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.47blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 17.09blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" ] }, { @@ -30491,7 +30469,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:09, 18.47blocks/s, ⧗=0, ▶=1, ✔=33, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 17.09blocks/s, ⧗=0, ▶=1, ✔=33, ✗=0, ∅=0]" ] }, { @@ -30513,7 +30491,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:09, 18.47blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 17.09blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" ] }, { @@ -30535,7 +30513,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.37blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 17.09blocks/s, ⧗=0, ▶=1, ✔=34, ✗=0, ∅=0]" ] }, { @@ -30557,7 +30535,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.37blocks/s, ⧗=0, ▶=1, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 17.09blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" ] }, { @@ -30579,7 +30557,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.37blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:10, 17.68blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" ] }, { @@ -30601,7 +30579,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:09, 18.37blocks/s, ⧗=0, ▶=1, ✔=35, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:10, 17.68blocks/s, ⧗=0, ▶=1, ✔=35, ✗=0, ∅=0]" ] }, { @@ -30623,7 +30601,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:09, 18.37blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:02<00:10, 17.68blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" ] }, { @@ -30645,7 +30623,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.80blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:10, 17.68blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" ] }, { @@ -30667,7 +30645,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.80blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:10, 17.68blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" ] }, { @@ -30689,7 +30667,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.80blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" ] }, { @@ -30711,7 +30689,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.80blocks/s, ⧗=0, ▶=1, ✔=37, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=1, ✔=37, ✗=0, ∅=0]" ] }, { @@ -30733,7 +30711,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.80blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" ] }, { @@ -30755,7 +30733,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.74blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=1, ✔=38, ✗=0, ∅=0]" ] }, { @@ -30777,7 +30755,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.74blocks/s, ⧗=0, ▶=1, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" ] }, { @@ -30799,7 +30777,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.74blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.09blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" ] }, { @@ -30821,7 +30799,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.74blocks/s, ⧗=0, ▶=1, ✔=39, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.09blocks/s, ⧗=0, ▶=1, ✔=39, ✗=0, ∅=0]" ] }, { @@ -30843,7 +30821,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.74blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.09blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" ] }, { @@ -30865,7 +30843,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.18blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.09blocks/s, ⧗=0, ▶=1, ✔=40, ✗=0, ∅=0]" ] }, { @@ -30887,7 +30865,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.18blocks/s, ⧗=0, ▶=1, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.09blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" ] }, { @@ -30909,7 +30887,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.18blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.21blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" ] }, { @@ -30931,7 +30909,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.18blocks/s, ⧗=0, ▶=1, ✔=41, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.21blocks/s, ⧗=0, ▶=1, ✔=41, ✗=0, ∅=0]" ] }, { @@ -30953,7 +30931,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.18blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.21blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" ] }, { @@ -30975,7 +30953,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.01blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.21blocks/s, ⧗=0, ▶=1, ✔=42, ✗=0, ∅=0]" ] }, { @@ -30997,7 +30975,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.01blocks/s, ⧗=0, ▶=1, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.21blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" ] }, { @@ -31019,7 +30997,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.01blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.33blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" ] }, { @@ -31041,7 +31019,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.01blocks/s, ⧗=0, ▶=1, ✔=43, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.33blocks/s, ⧗=0, ▶=1, ✔=43, ✗=0, ∅=0]" ] }, { @@ -31063,7 +31041,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.01blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.33blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" ] }, { @@ -31085,7 +31063,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.92blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.33blocks/s, ⧗=0, ▶=1, ✔=44, ✗=0, ∅=0]" ] }, { @@ -31107,7 +31085,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.92blocks/s, ⧗=0, ▶=1, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.33blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" ] }, { @@ -31129,7 +31107,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.92blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.62blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" ] }, { @@ -31151,7 +31129,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.92blocks/s, ⧗=0, ▶=1, ✔=45, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.62blocks/s, ⧗=0, ▶=1, ✔=45, ✗=0, ∅=0]" ] }, { @@ -31173,7 +31151,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.92blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.62blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" ] }, { @@ -31195,7 +31173,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.22blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.62blocks/s, ⧗=0, ▶=1, ✔=46, ✗=0, ∅=0]" ] }, { @@ -31217,7 +31195,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.22blocks/s, ⧗=0, ▶=1, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.62blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" ] }, { @@ -31239,7 +31217,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.22blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.48blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" ] }, { @@ -31261,7 +31239,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.22blocks/s, ⧗=0, ▶=1, ✔=47, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.48blocks/s, ⧗=0, ▶=1, ✔=47, ✗=0, ∅=0]" ] }, { @@ -31283,7 +31261,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.22blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.48blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" ] }, { @@ -31305,7 +31283,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.37blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.48blocks/s, ⧗=0, ▶=1, ✔=48, ✗=0, ∅=0]" ] }, { @@ -31327,7 +31305,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.37blocks/s, ⧗=0, ▶=1, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.48blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" ] }, { @@ -31349,7 +31327,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.37blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.32blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" ] }, { @@ -31371,7 +31349,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.37blocks/s, ⧗=0, ▶=1, ✔=49, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.32blocks/s, ⧗=0, ▶=1, ✔=49, ✗=0, ∅=0]" ] }, { @@ -31393,7 +31371,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.37blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.32blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" ] }, { @@ -31415,7 +31393,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:09, 16.88blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:09, 17.32blocks/s, ⧗=0, ▶=1, ✔=50, ✗=0, ∅=0]" ] }, { @@ -31437,7 +31415,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:09, 16.88blocks/s, ⧗=0, ▶=1, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:09, 17.32blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" ] }, { @@ -31459,7 +31437,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:09, 16.88blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 15.87blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" ] }, { @@ -31481,7 +31459,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:09, 16.88blocks/s, ⧗=0, ▶=1, ✔=51, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 15.87blocks/s, ⧗=0, ▶=1, ✔=51, ✗=0, ∅=0]" ] }, { @@ -31503,7 +31481,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:09, 16.88blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 15.87blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" ] }, { @@ -31525,7 +31503,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.84blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.87blocks/s, ⧗=0, ▶=1, ✔=52, ✗=0, ∅=0]" ] }, { @@ -31547,7 +31525,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.84blocks/s, ⧗=0, ▶=1, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:03<00:10, 15.87blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" ] }, { @@ -31569,7 +31547,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.13blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" ] }, { @@ -31591,7 +31569,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=1, ✔=53, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.13blocks/s, ⧗=0, ▶=1, ✔=53, ✗=0, ∅=0]" ] }, { @@ -31613,7 +31591,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.13blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" ] }, { @@ -31635,7 +31613,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.13blocks/s, ⧗=0, ▶=1, ✔=54, ✗=0, ∅=0]" ] }, { @@ -31657,7 +31635,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=1, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.13blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" ] }, { @@ -31679,7 +31657,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:11, 14.60blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" ] }, { @@ -31701,7 +31679,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=1, ✔=55, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:11, 14.60blocks/s, ⧗=0, ▶=1, ✔=55, ✗=0, ∅=0]" ] }, { @@ -31723,7 +31701,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 15.84blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:11, 14.60blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" ] }, { @@ -31745,7 +31723,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:09, 16.44blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 14.60blocks/s, ⧗=0, ▶=1, ✔=56, ✗=0, ∅=0]" ] }, { @@ -31767,7 +31745,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:09, 16.44blocks/s, ⧗=0, ▶=1, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 14.60blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" ] }, { @@ -31789,7 +31767,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:09, 16.44blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 14.93blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" ] }, { @@ -31811,7 +31789,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:09, 16.44blocks/s, ⧗=0, ▶=1, ✔=57, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 14.93blocks/s, ⧗=0, ▶=1, ✔=57, ✗=0, ∅=0]" ] }, { @@ -31833,7 +31811,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:09, 16.44blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 14.93blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" ] }, { @@ -31855,7 +31833,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:09, 16.07blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 14.93blocks/s, ⧗=0, ▶=1, ✔=58, ✗=0, ∅=0]" ] }, { @@ -31877,7 +31855,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:09, 16.07blocks/s, ⧗=0, ▶=1, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 14.93blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" ] }, { @@ -31899,7 +31877,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:09, 16.07blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 15.28blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" ] }, { @@ -31921,7 +31899,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 16.07blocks/s, ⧗=0, ▶=1, ✔=59, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 15.28blocks/s, ⧗=0, ▶=1, ✔=59, ✗=0, ∅=0]" ] }, { @@ -31943,7 +31921,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 16.07blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 15.28blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" ] }, { @@ -31965,7 +31943,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.41blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.28blocks/s, ⧗=0, ▶=1, ✔=60, ✗=0, ∅=0]" ] }, { @@ -31987,7 +31965,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.41blocks/s, ⧗=0, ▶=1, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.28blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" ] }, { @@ -32009,7 +31987,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.41blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" ] }, { @@ -32031,7 +32009,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:10, 15.41blocks/s, ⧗=0, ▶=1, ✔=61, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=1, ✔=61, ✗=0, ∅=0]" ] }, { @@ -32053,7 +32031,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:10, 15.41blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" ] }, { @@ -32075,7 +32053,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.89blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=1, ✔=62, ✗=0, ∅=0]" ] }, { @@ -32097,7 +32075,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.89blocks/s, ⧗=0, ▶=1, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" ] }, { @@ -32119,7 +32097,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.89blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" ] }, { @@ -32141,7 +32119,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 15.89blocks/s, ⧗=0, ▶=1, ✔=63, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=1, ✔=63, ✗=0, ∅=0]" ] }, { @@ -32163,7 +32141,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 15.89blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" ] }, { @@ -32185,7 +32163,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.88blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=1, ✔=64, ✗=0, ∅=0]" ] }, { @@ -32207,7 +32185,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.88blocks/s, ⧗=0, ▶=1, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 16.12blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" ] }, { @@ -32229,7 +32207,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.88blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 16.55blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" ] }, { @@ -32251,7 +32229,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 15.88blocks/s, ⧗=0, ▶=1, ✔=65, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 16.55blocks/s, ⧗=0, ▶=1, ✔=65, ✗=0, ∅=0]" ] }, { @@ -32273,7 +32251,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 15.88blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 16.55blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" ] }, { @@ -32295,7 +32273,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.43blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.55blocks/s, ⧗=0, ▶=1, ✔=66, ✗=0, ∅=0]" ] }, { @@ -32317,7 +32295,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.43blocks/s, ⧗=0, ▶=1, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.55blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" ] }, { @@ -32339,7 +32317,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.43blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:08, 16.66blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" ] }, { @@ -32361,7 +32339,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:09, 16.43blocks/s, ⧗=0, ▶=1, ✔=67, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:08, 16.66blocks/s, ⧗=0, ▶=1, ✔=67, ✗=0, ∅=0]" ] }, { @@ -32383,7 +32361,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:09, 16.43blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:08, 16.66blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" ] }, { @@ -32405,7 +32383,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 16.92blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 16.66blocks/s, ⧗=0, ▶=1, ✔=68, ✗=0, ∅=0]" ] }, { @@ -32427,7 +32405,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 16.92blocks/s, ⧗=0, ▶=1, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:08, 16.66blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" ] }, { @@ -32449,7 +32427,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 16.92blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:08, 16.48blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" ] }, { @@ -32471,7 +32449,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:03<00:08, 16.92blocks/s, ⧗=0, ▶=1, ✔=69, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:08, 16.48blocks/s, ⧗=0, ▶=1, ✔=69, ✗=0, ∅=0]" ] }, { @@ -32493,7 +32471,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:08, 16.92blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:08, 16.48blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" ] }, { @@ -32515,7 +32493,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.85blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.48blocks/s, ⧗=0, ▶=1, ✔=70, ✗=0, ∅=0]" ] }, { @@ -32537,7 +32515,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.85blocks/s, ⧗=0, ▶=1, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.48blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" ] }, { @@ -32559,7 +32537,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.85blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.95blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" ] }, { @@ -32581,7 +32559,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.85blocks/s, ⧗=0, ▶=1, ✔=71, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.95blocks/s, ⧗=0, ▶=1, ✔=71, ✗=0, ∅=0]" ] }, { @@ -32603,7 +32581,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.85blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.95blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" ] }, { @@ -32625,7 +32603,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.23blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.95blocks/s, ⧗=0, ▶=1, ✔=72, ✗=0, ∅=0]" ] }, { @@ -32647,7 +32625,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.23blocks/s, ⧗=0, ▶=1, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.95blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" ] }, { @@ -32669,7 +32647,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.23blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" ] }, { @@ -32691,7 +32669,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.23blocks/s, ⧗=0, ▶=1, ✔=73, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=1, ✔=73, ✗=0, ∅=0]" ] }, { @@ -32713,7 +32691,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.23blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" ] }, { @@ -32735,7 +32713,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.26blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=1, ✔=74, ✗=0, ∅=0]" ] }, { @@ -32757,7 +32735,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.26blocks/s, ⧗=0, ▶=1, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" ] }, { @@ -32779,7 +32757,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.26blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.47blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" ] }, { @@ -32801,7 +32779,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.26blocks/s, ⧗=0, ▶=1, ✔=75, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.47blocks/s, ⧗=0, ▶=1, ✔=75, ✗=0, ∅=0]" ] }, { @@ -32823,7 +32801,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.26blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.47blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" ] }, { @@ -32845,7 +32823,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 17.38blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 17.47blocks/s, ⧗=0, ▶=1, ✔=76, ✗=0, ∅=0]" ] }, { @@ -32867,7 +32845,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 17.38blocks/s, ⧗=0, ▶=1, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 17.47blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" ] }, { @@ -32889,7 +32867,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 17.38blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:08, 16.73blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" ] }, { @@ -32911,7 +32889,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.38blocks/s, ⧗=0, ▶=1, ✔=77, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:08, 16.73blocks/s, ⧗=0, ▶=1, ✔=77, ✗=0, ∅=0]" ] }, { @@ -32933,7 +32911,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.38blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:08, 16.73blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" ] }, { @@ -32955,7 +32933,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.91blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:08, 16.73blocks/s, ⧗=0, ▶=1, ✔=78, ✗=0, ∅=0]" ] }, { @@ -32977,7 +32955,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.91blocks/s, ⧗=0, ▶=1, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:08, 16.73blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" ] }, { @@ -32999,7 +32977,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.91blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.46blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" ] }, { @@ -33021,7 +32999,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.91blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.46blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" ] }, { @@ -33043,7 +33021,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.91blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.46blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" ] }, { @@ -33065,7 +33043,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.18blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.46blocks/s, ⧗=0, ▶=1, ✔=80, ✗=0, ∅=0]" ] }, { @@ -33087,7 +33065,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.18blocks/s, ⧗=0, ▶=1, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.46blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" ] }, { @@ -33109,7 +33087,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.18blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 17.28blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" ] }, { @@ -33131,7 +33109,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.18blocks/s, ⧗=0, ▶=1, ✔=81, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 17.28blocks/s, ⧗=0, ▶=1, ✔=81, ✗=0, ∅=0]" ] }, { @@ -33153,7 +33131,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.18blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 17.28blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" ] }, { @@ -33175,7 +33153,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 18.00blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.28blocks/s, ⧗=0, ▶=1, ✔=82, ✗=0, ∅=0]" ] }, { @@ -33197,7 +33175,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 18.00blocks/s, ⧗=0, ▶=1, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.28blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" ] }, { @@ -33219,7 +33197,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 18.00blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.56blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" ] }, { @@ -33241,7 +33219,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 18.00blocks/s, ⧗=0, ▶=1, ✔=83, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.56blocks/s, ⧗=0, ▶=1, ✔=83, ✗=0, ∅=0]" ] }, { @@ -33263,7 +33241,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 18.00blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.56blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" ] }, { @@ -33285,7 +33263,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 18.27blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.56blocks/s, ⧗=0, ▶=1, ✔=84, ✗=0, ∅=0]" ] }, { @@ -33307,7 +33285,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 18.27blocks/s, ⧗=0, ▶=1, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.56blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" ] }, { @@ -33329,7 +33307,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 18.27blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 17.87blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" ] }, { @@ -33351,7 +33329,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 18.27blocks/s, ⧗=0, ▶=1, ✔=85, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 17.87blocks/s, ⧗=0, ▶=1, ✔=85, ✗=0, ∅=0]" ] }, { @@ -33373,7 +33351,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 18.27blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:05<00:07, 17.87blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" ] }, { @@ -33395,7 +33373,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:04<00:07, 17.98blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.87blocks/s, ⧗=0, ▶=1, ✔=86, ✗=0, ∅=0]" ] }, { @@ -33417,7 +33395,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:04<00:07, 17.98blocks/s, ⧗=0, ▶=1, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.87blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" ] }, { @@ -33439,7 +33417,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.98blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.27blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" ] }, { @@ -33461,7 +33439,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.98blocks/s, ⧗=0, ▶=1, ✔=87, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.27blocks/s, ⧗=0, ▶=1, ✔=87, ✗=0, ∅=0]" ] }, { @@ -33483,7 +33461,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.98blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.27blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" ] }, { @@ -33505,7 +33483,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 17.11blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 17.27blocks/s, ⧗=0, ▶=1, ✔=88, ✗=0, ∅=0]" ] }, { @@ -33527,7 +33505,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 17.11blocks/s, ⧗=0, ▶=1, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 17.27blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" ] }, { @@ -33549,7 +33527,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 17.11blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.57blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" ] }, { @@ -33571,7 +33549,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 17.11blocks/s, ⧗=0, ▶=1, ✔=89, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.57blocks/s, ⧗=0, ▶=1, ✔=89, ✗=0, ∅=0]" ] }, { @@ -33593,7 +33571,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 17.11blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.57blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" ] }, { @@ -33615,7 +33593,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.57blocks/s, ⧗=0, ▶=1, ✔=90, ✗=0, ∅=0]" ] }, { @@ -33637,7 +33615,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=1, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.57blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" ] }, { @@ -33659,7 +33637,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" ] }, { @@ -33681,7 +33659,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=1, ✔=91, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=1, ✔=91, ✗=0, ∅=0]" ] }, { @@ -33703,7 +33681,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" ] }, { @@ -33725,7 +33703,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.46blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=1, ✔=92, ✗=0, ∅=0]" ] }, { @@ -33747,7 +33725,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.46blocks/s, ⧗=0, ▶=1, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" ] }, { @@ -33769,7 +33747,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.46blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 16.25blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" ] }, { @@ -33791,7 +33769,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.46blocks/s, ⧗=0, ▶=1, ✔=93, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 16.25blocks/s, ⧗=0, ▶=1, ✔=93, ✗=0, ∅=0]" ] }, { @@ -33813,7 +33791,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.46blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 16.25blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" ] }, { @@ -33835,7 +33813,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.35blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 16.25blocks/s, ⧗=0, ▶=1, ✔=94, ✗=0, ∅=0]" ] }, { @@ -33857,7 +33835,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.35blocks/s, ⧗=0, ▶=1, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 16.25blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" ] }, { @@ -33879,7 +33857,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.35blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 16.31blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" ] }, { @@ -33901,7 +33879,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.35blocks/s, ⧗=0, ▶=1, ✔=95, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 16.31blocks/s, ⧗=0, ▶=1, ✔=95, ✗=0, ∅=0]" ] }, { @@ -33923,7 +33901,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.35blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 16.31blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" ] }, { @@ -33945,7 +33923,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:07, 16.85blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:07, 16.31blocks/s, ⧗=0, ▶=1, ✔=96, ✗=0, ∅=0]" ] }, { @@ -33967,7 +33945,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:07, 16.85blocks/s, ⧗=0, ▶=1, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:07, 16.31blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" ] }, { @@ -33989,7 +33967,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:07, 16.85blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:07, 16.81blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" ] }, { @@ -34011,7 +33989,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:07, 16.85blocks/s, ⧗=0, ▶=1, ✔=97, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:07, 16.81blocks/s, ⧗=0, ▶=1, ✔=97, ✗=0, ∅=0]" ] }, { @@ -34033,7 +34011,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:07, 16.85blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:07, 16.81blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" ] }, { @@ -34055,7 +34033,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 16.96blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:07, 16.81blocks/s, ⧗=0, ▶=1, ✔=98, ✗=0, ∅=0]" ] }, { @@ -34077,7 +34055,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 16.96blocks/s, ⧗=0, ▶=1, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:07, 16.81blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" ] }, { @@ -34099,7 +34077,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 16.96blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 16.79blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" ] }, { @@ -34121,7 +34099,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 16.96blocks/s, ⧗=0, ▶=1, ✔=99, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 16.79blocks/s, ⧗=0, ▶=1, ✔=99, ✗=0, ∅=0]" ] }, { @@ -34143,7 +34121,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 16.96blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 16.79blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" ] }, { @@ -34165,7 +34143,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.97blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.79blocks/s, ⧗=0, ▶=1, ✔=100, ✗=0, ∅=0]" ] }, { @@ -34187,7 +34165,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.97blocks/s, ⧗=0, ▶=1, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.79blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" ] }, { @@ -34209,7 +34187,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.97blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.20blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" ] }, { @@ -34231,7 +34209,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 16.97blocks/s, ⧗=0, ▶=1, ✔=101, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.20blocks/s, ⧗=0, ▶=1, ✔=101, ✗=0, ∅=0]" ] }, { @@ -34253,7 +34231,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 16.97blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.20blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" ] }, { @@ -34275,7 +34253,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.47blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.20blocks/s, ⧗=0, ▶=1, ✔=102, ✗=0, ∅=0]" ] }, { @@ -34297,7 +34275,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.47blocks/s, ⧗=0, ▶=1, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:06<00:06, 17.20blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" ] }, { @@ -34319,7 +34297,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.47blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 17.75blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" ] }, { @@ -34341,7 +34319,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 17.47blocks/s, ⧗=0, ▶=1, ✔=103, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 17.75blocks/s, ⧗=0, ▶=1, ✔=103, ✗=0, ∅=0]" ] }, { @@ -34363,7 +34341,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 17.47blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 17.75blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" ] }, { @@ -34385,7 +34363,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:05<00:06, 17.72blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.75blocks/s, ⧗=0, ▶=1, ✔=104, ✗=0, ∅=0]" ] }, { @@ -34407,7 +34385,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:05<00:06, 17.72blocks/s, ⧗=0, ▶=1, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.75blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" ] }, { @@ -34429,7 +34407,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.72blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.73blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" ] }, { @@ -34451,7 +34429,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.72blocks/s, ⧗=0, ▶=1, ✔=105, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.73blocks/s, ⧗=0, ▶=1, ✔=105, ✗=0, ∅=0]" ] }, { @@ -34473,7 +34451,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.72blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.73blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" ] }, { @@ -34495,7 +34473,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.27blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.73blocks/s, ⧗=0, ▶=1, ✔=106, ✗=0, ∅=0]" ] }, { @@ -34517,7 +34495,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.27blocks/s, ⧗=0, ▶=1, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.73blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" ] }, { @@ -34539,7 +34517,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.27blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 18.05blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" ] }, { @@ -34561,7 +34539,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.27blocks/s, ⧗=0, ▶=1, ✔=107, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 18.05blocks/s, ⧗=0, ▶=1, ✔=107, ✗=0, ∅=0]" ] }, { @@ -34583,7 +34561,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.27blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 18.05blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" ] }, { @@ -34605,7 +34583,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.71blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:05, 18.05blocks/s, ⧗=0, ▶=1, ✔=108, ✗=0, ∅=0]" ] }, { @@ -34627,7 +34605,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.71blocks/s, ⧗=0, ▶=1, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:05, 18.05blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" ] }, { @@ -34649,7 +34627,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.71blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 18.05blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" ] }, { @@ -34671,7 +34649,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:06, 17.71blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 18.56blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" ] }, { @@ -34693,7 +34671,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:06, 17.71blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 18.56blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" ] }, { @@ -34715,7 +34693,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.71blocks/s, ⧗=0, ▶=1, ✔=110, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 18.56blocks/s, ⧗=0, ▶=1, ✔=110, ✗=0, ∅=0]" ] }, { @@ -34737,7 +34715,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.71blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 18.56blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" ] }, { @@ -34759,7 +34737,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.58blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.90blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" ] }, { @@ -34781,7 +34759,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.58blocks/s, ⧗=0, ▶=1, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.90blocks/s, ⧗=0, ▶=1, ✔=111, ✗=0, ∅=0]" ] }, { @@ -34803,7 +34781,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.58blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.90blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" ] }, { @@ -34825,7 +34803,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.58blocks/s, ⧗=0, ▶=1, ✔=112, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.90blocks/s, ⧗=0, ▶=1, ✔=112, ✗=0, ∅=0]" ] }, { @@ -34847,7 +34825,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.58blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.90blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" ] }, { @@ -34869,7 +34847,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 18.69blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.16blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" ] }, { @@ -34891,7 +34869,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 18.69blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.16blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" ] }, { @@ -34913,7 +34891,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 18.69blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.16blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" ] }, { @@ -34935,7 +34913,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.69blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 19.16blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" ] }, { @@ -34957,7 +34935,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.69blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 19.16blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" ] }, { @@ -34979,7 +34957,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.97blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 19.20blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" ] }, { @@ -35001,7 +34979,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.97blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 19.20blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" ] }, { @@ -35023,7 +35001,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.97blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 19.20blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" ] }, { @@ -35045,7 +35023,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 18.97blocks/s, ⧗=0, ▶=1, ✔=116, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 19.20blocks/s, ⧗=0, ▶=1, ✔=116, ✗=0, ∅=0]" ] }, { @@ -35067,7 +35045,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 18.97blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 19.20blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" ] }, { @@ -35089,7 +35067,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.80blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" ] }, { @@ -35111,7 +35089,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.80blocks/s, ⧗=0, ▶=1, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=1, ✔=117, ✗=0, ∅=0]" ] }, { @@ -35133,7 +35111,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.80blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" ] }, { @@ -35155,7 +35133,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.80blocks/s, ⧗=0, ▶=1, ✔=118, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=1, ✔=118, ✗=0, ∅=0]" ] }, { @@ -35177,7 +35155,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.80blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.92blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" ] }, { @@ -35199,7 +35177,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.14blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.23blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" ] }, { @@ -35221,7 +35199,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.14blocks/s, ⧗=0, ▶=1, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.23blocks/s, ⧗=0, ▶=1, ✔=119, ✗=0, ∅=0]" ] }, { @@ -35243,7 +35221,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.14blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.23blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" ] }, { @@ -35265,7 +35243,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.14blocks/s, ⧗=0, ▶=1, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.23blocks/s, ⧗=0, ▶=1, ✔=120, ✗=0, ∅=0]" ] }, { @@ -35287,7 +35265,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.14blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.23blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" ] }, { @@ -35309,7 +35287,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.08blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" ] }, { @@ -35331,7 +35309,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=1, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.08blocks/s, ⧗=0, ▶=1, ✔=121, ✗=0, ∅=0]" ] }, { @@ -35353,7 +35331,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:07<00:05, 18.08blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" ] }, { @@ -35375,7 +35353,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:06<00:05, 18.43blocks/s, ⧗=0, ▶=1, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.08blocks/s, ⧗=0, ▶=1, ✔=122, ✗=0, ∅=0]" ] }, { @@ -35397,7 +35375,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.43blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.08blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" ] }, { @@ -35419,7 +35397,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 17.95blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 17.52blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" ] }, { @@ -35441,7 +35419,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 17.95blocks/s, ⧗=0, ▶=1, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 17.52blocks/s, ⧗=0, ▶=1, ✔=123, ✗=0, ∅=0]" ] }, { @@ -35463,7 +35441,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 17.95blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 17.52blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" ] }, { @@ -35485,7 +35463,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.95blocks/s, ⧗=0, ▶=1, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.52blocks/s, ⧗=0, ▶=1, ✔=124, ✗=0, ∅=0]" ] }, { @@ -35507,7 +35485,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.95blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.52blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" ] }, { @@ -35529,7 +35507,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.77blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" ] }, { @@ -35551,7 +35529,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.77blocks/s, ⧗=0, ▶=1, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=1, ✔=125, ✗=0, ∅=0]" ] }, { @@ -35573,7 +35551,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.77blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" ] }, { @@ -35595,7 +35573,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.77blocks/s, ⧗=0, ▶=1, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=1, ✔=126, ✗=0, ∅=0]" ] }, { @@ -35617,7 +35595,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.77blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" ] }, { @@ -35639,7 +35617,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 18.18blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" ] }, { @@ -35661,7 +35639,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 18.18blocks/s, ⧗=0, ▶=1, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=1, ✔=127, ✗=0, ∅=0]" ] }, { @@ -35683,7 +35661,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 18.18blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" ] }, { @@ -35705,7 +35683,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:04, 18.18blocks/s, ⧗=0, ▶=1, ✔=128, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=1, ✔=128, ✗=0, ∅=0]" ] }, { @@ -35727,7 +35705,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:04, 18.18blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" ] }, { @@ -35749,7 +35727,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 18.32blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:05, 17.25blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" ] }, { @@ -35771,7 +35749,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 18.32blocks/s, ⧗=0, ▶=1, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:05, 17.25blocks/s, ⧗=0, ▶=1, ✔=129, ✗=0, ∅=0]" ] }, { @@ -35793,7 +35771,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 18.32blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:05, 17.25blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" ] }, { @@ -35815,7 +35793,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 18.32blocks/s, ⧗=0, ▶=1, ✔=130, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.25blocks/s, ⧗=0, ▶=1, ✔=130, ✗=0, ∅=0]" ] }, { @@ -35837,7 +35815,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 18.32blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.25blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" ] }, { @@ -35859,7 +35837,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" ] }, { @@ -35881,7 +35859,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=1, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=1, ✔=131, ✗=0, ∅=0]" ] }, { @@ -35903,7 +35881,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" ] }, { @@ -35925,7 +35903,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=1, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=1, ✔=132, ✗=0, ∅=0]" ] }, { @@ -35947,7 +35925,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 17.69blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" ] }, { @@ -35969,7 +35947,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.33blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.23blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" ] }, { @@ -35991,7 +35969,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.73blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.23blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" ] }, { @@ -36013,7 +35991,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.73blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.23blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" ] }, { @@ -36035,7 +36013,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.73blocks/s, ⧗=0, ▶=1, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.23blocks/s, ⧗=0, ▶=1, ✔=134, ✗=0, ∅=0]" ] }, { @@ -36057,7 +36035,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.73blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.23blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" ] }, { @@ -36079,7 +36057,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.71blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 17.52blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" ] }, { @@ -36101,7 +36079,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.71blocks/s, ⧗=0, ▶=1, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 17.52blocks/s, ⧗=0, ▶=1, ✔=135, ✗=0, ∅=0]" ] }, { @@ -36123,7 +36101,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.71blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 17.52blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" ] }, { @@ -36145,7 +36123,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.71blocks/s, ⧗=0, ▶=1, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 17.52blocks/s, ⧗=0, ▶=1, ✔=136, ✗=0, ∅=0]" ] }, { @@ -36167,7 +36145,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.71blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 17.52blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" ] }, { @@ -36189,7 +36167,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.67blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 17.20blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" ] }, { @@ -36211,7 +36189,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.67blocks/s, ⧗=0, ▶=1, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 17.20blocks/s, ⧗=0, ▶=1, ✔=137, ✗=0, ∅=0]" ] }, { @@ -36233,7 +36211,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.67blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 17.20blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" ] }, { @@ -36255,7 +36233,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 18.67blocks/s, ⧗=0, ▶=1, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 17.20blocks/s, ⧗=0, ▶=1, ✔=138, ✗=0, ∅=0]" ] }, { @@ -36277,7 +36255,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 18.67blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:08<00:04, 17.20blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" ] }, { @@ -36299,7 +36277,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 17.84blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" ] }, { @@ -36321,7 +36299,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=1, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 17.84blocks/s, ⧗=0, ▶=1, ✔=139, ✗=0, ∅=0]" ] }, { @@ -36343,7 +36321,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 17.84blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" ] }, { @@ -36365,7 +36343,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=1, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.84blocks/s, ⧗=0, ▶=1, ✔=140, ✗=0, ∅=0]" ] }, { @@ -36387,7 +36365,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:07<00:04, 18.80blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.84blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" ] }, { @@ -36409,7 +36387,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:07<00:04, 18.66blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.96blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" ] }, { @@ -36431,7 +36409,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:07<00:04, 18.66blocks/s, ⧗=0, ▶=1, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.96blocks/s, ⧗=0, ▶=1, ✔=141, ✗=0, ∅=0]" ] }, { @@ -36453,7 +36431,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 18.66blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.96blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" ] }, { @@ -36475,7 +36453,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:03, 18.66blocks/s, ⧗=0, ▶=1, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 17.96blocks/s, ⧗=0, ▶=1, ✔=142, ✗=0, ∅=0]" ] }, { @@ -36497,7 +36475,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:03, 18.66blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 17.96blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" ] }, { @@ -36519,7 +36497,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.80blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.37blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" ] }, { @@ -36541,7 +36519,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.80blocks/s, ⧗=0, ▶=1, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.37blocks/s, ⧗=0, ▶=1, ✔=143, ✗=0, ∅=0]" ] }, { @@ -36563,7 +36541,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.80blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.37blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" ] }, { @@ -36585,7 +36563,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.80blocks/s, ⧗=0, ▶=1, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.37blocks/s, ⧗=0, ▶=1, ✔=144, ✗=0, ∅=0]" ] }, { @@ -36607,7 +36585,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.80blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.37blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" ] }, { @@ -36629,7 +36607,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.94blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.43blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" ] }, { @@ -36651,7 +36629,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.94blocks/s, ⧗=0, ▶=1, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.43blocks/s, ⧗=0, ▶=1, ✔=145, ✗=0, ∅=0]" ] }, { @@ -36673,7 +36651,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.94blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.43blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" ] }, { @@ -36695,7 +36673,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.94blocks/s, ⧗=0, ▶=1, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.43blocks/s, ⧗=0, ▶=1, ✔=146, ✗=0, ∅=0]" ] }, { @@ -36717,7 +36695,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.94blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.43blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" ] }, { @@ -36739,7 +36717,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 18.26blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" ] }, { @@ -36761,7 +36739,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 18.26blocks/s, ⧗=0, ▶=1, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=1, ✔=147, ✗=0, ∅=0]" ] }, { @@ -36783,7 +36761,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 18.26blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" ] }, { @@ -36805,7 +36783,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 18.26blocks/s, ⧗=0, ▶=1, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=1, ✔=148, ✗=0, ∅=0]" ] }, { @@ -36827,7 +36805,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 18.26blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" ] }, { @@ -36849,7 +36827,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" ] }, { @@ -36871,7 +36849,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=1, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=1, ✔=149, ✗=0, ∅=0]" ] }, { @@ -36893,7 +36871,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" ] }, { @@ -36915,7 +36893,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=1, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=1, ✔=150, ✗=0, ∅=0]" ] }, { @@ -36937,7 +36915,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" ] }, { @@ -36959,7 +36937,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" ] }, { @@ -36981,7 +36959,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=1, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=1, ✔=151, ✗=0, ∅=0]" ] }, { @@ -37003,7 +36981,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" ] }, { @@ -37025,7 +37003,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=1, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=1, ✔=152, ✗=0, ∅=0]" ] }, { @@ -37047,7 +37025,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.87blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.88blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" ] }, { @@ -37069,7 +37047,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 17.08blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.66blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" ] }, { @@ -37091,7 +37069,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 17.08blocks/s, ⧗=0, ▶=1, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.66blocks/s, ⧗=0, ▶=1, ✔=153, ✗=0, ∅=0]" ] }, { @@ -37113,7 +37091,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 17.08blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.66blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" ] }, { @@ -37135,7 +37113,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 17.08blocks/s, ⧗=0, ▶=1, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.66blocks/s, ⧗=0, ▶=1, ✔=154, ✗=0, ∅=0]" ] }, { @@ -37157,7 +37135,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 17.08blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.66blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" ] }, { @@ -37179,7 +37157,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.43blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.85blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" ] }, { @@ -37201,7 +37179,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.43blocks/s, ⧗=0, ▶=1, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.85blocks/s, ⧗=0, ▶=1, ✔=155, ✗=0, ∅=0]" ] }, { @@ -37223,7 +37201,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.43blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.85blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" ] }, { @@ -37245,7 +37223,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.43blocks/s, ⧗=0, ▶=1, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.85blocks/s, ⧗=0, ▶=1, ✔=156, ✗=0, ∅=0]" ] }, { @@ -37267,7 +37245,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.43blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:09<00:03, 16.85blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" ] }, { @@ -37289,7 +37267,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:08<00:03, 16.55blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.69blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" ] }, { @@ -37311,7 +37289,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:08<00:03, 16.55blocks/s, ⧗=0, ▶=1, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.69blocks/s, ⧗=0, ▶=1, ✔=157, ✗=0, ∅=0]" ] }, { @@ -37333,7 +37311,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:08<00:03, 16.55blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.69blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" ] }, { @@ -37355,7 +37333,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:08<00:03, 16.55blocks/s, ⧗=0, ▶=1, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.69blocks/s, ⧗=0, ▶=1, ✔=158, ✗=0, ∅=0]" ] }, { @@ -37377,7 +37355,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.55blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.69blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" ] }, { @@ -37399,7 +37377,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.54blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.05blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" ] }, { @@ -37421,7 +37399,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.54blocks/s, ⧗=0, ▶=1, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.05blocks/s, ⧗=0, ▶=1, ✔=159, ✗=0, ∅=0]" ] }, { @@ -37443,7 +37421,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.54blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.05blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" ] }, { @@ -37465,7 +37443,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.54blocks/s, ⧗=0, ▶=1, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.05blocks/s, ⧗=0, ▶=1, ✔=160, ✗=0, ∅=0]" ] }, { @@ -37487,7 +37465,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.54blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.05blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" ] }, { @@ -37509,7 +37487,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.97blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.62blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" ] }, { @@ -37531,7 +37509,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.97blocks/s, ⧗=0, ▶=1, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.62blocks/s, ⧗=0, ▶=1, ✔=161, ✗=0, ∅=0]" ] }, { @@ -37553,7 +37531,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.97blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.62blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" ] }, { @@ -37575,7 +37553,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.97blocks/s, ⧗=0, ▶=1, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.62blocks/s, ⧗=0, ▶=1, ✔=162, ✗=0, ∅=0]" ] }, { @@ -37597,7 +37575,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.97blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.62blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" ] }, { @@ -37619,7 +37597,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.30blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 14.81blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" ] }, { @@ -37641,7 +37619,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.30blocks/s, ⧗=0, ▶=1, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 14.81blocks/s, ⧗=0, ▶=1, ✔=163, ✗=0, ∅=0]" ] }, { @@ -37663,7 +37641,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.30blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 14.81blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" ] }, { @@ -37685,7 +37663,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.30blocks/s, ⧗=0, ▶=1, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 14.81blocks/s, ⧗=0, ▶=1, ✔=164, ✗=0, ∅=0]" ] }, { @@ -37707,7 +37685,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.30blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 14.81blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" ] }, { @@ -37729,7 +37707,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.56blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.18blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" ] }, { @@ -37751,7 +37729,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.56blocks/s, ⧗=0, ▶=1, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.18blocks/s, ⧗=0, ▶=1, ✔=165, ✗=0, ∅=0]" ] }, { @@ -37773,7 +37751,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.56blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.18blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" ] }, { @@ -37795,7 +37773,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.56blocks/s, ⧗=0, ▶=1, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.18blocks/s, ⧗=0, ▶=1, ✔=166, ✗=0, ∅=0]" ] }, { @@ -37817,7 +37795,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.56blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.18blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" ] }, { @@ -37839,7 +37817,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.50blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" ] }, { @@ -37861,7 +37839,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.50blocks/s, ⧗=0, ▶=1, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=1, ✔=167, ✗=0, ∅=0]" ] }, { @@ -37883,7 +37861,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.50blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" ] }, { @@ -37905,7 +37883,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.50blocks/s, ⧗=0, ▶=1, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=1, ✔=168, ✗=0, ∅=0]" ] }, { @@ -37927,7 +37905,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.50blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.22blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" ] }, { @@ -37949,7 +37927,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 16.12blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.37blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" ] }, { @@ -37971,7 +37949,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 16.12blocks/s, ⧗=0, ▶=1, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.37blocks/s, ⧗=0, ▶=1, ✔=169, ✗=0, ∅=0]" ] }, { @@ -37993,7 +37971,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 16.12blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.37blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" ] }, { @@ -38015,7 +37993,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 16.12blocks/s, ⧗=0, ▶=1, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.37blocks/s, ⧗=0, ▶=1, ✔=170, ✗=0, ∅=0]" ] }, { @@ -38037,7 +38015,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 16.12blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:10<00:02, 15.37blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" ] }, { @@ -38059,7 +38037,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.30blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:10<00:02, 15.05blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" ] }, { @@ -38081,7 +38059,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.30blocks/s, ⧗=0, ▶=1, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:10<00:02, 15.05blocks/s, ⧗=0, ▶=1, ✔=171, ✗=0, ∅=0]" ] }, { @@ -38103,7 +38081,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.30blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:10<00:02, 15.05blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" ] }, { @@ -38125,7 +38103,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:09<00:02, 15.30blocks/s, ⧗=0, ▶=1, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.05blocks/s, ⧗=0, ▶=1, ✔=172, ✗=0, ∅=0]" ] }, { @@ -38147,7 +38125,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:09<00:02, 15.30blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.05blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" ] }, { @@ -38169,7 +38147,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:09<00:02, 15.83blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.50blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" ] }, { @@ -38191,7 +38169,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:09<00:02, 15.83blocks/s, ⧗=0, ▶=1, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.50blocks/s, ⧗=0, ▶=1, ✔=173, ✗=0, ∅=0]" ] }, { @@ -38213,7 +38191,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.83blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.50blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" ] }, { @@ -38235,7 +38213,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.83blocks/s, ⧗=0, ▶=1, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.50blocks/s, ⧗=0, ▶=1, ✔=174, ✗=0, ∅=0]" ] }, { @@ -38257,7 +38235,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.83blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.50blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" ] }, { @@ -38279,7 +38257,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.06blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" ] }, { @@ -38301,7 +38279,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=1, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.06blocks/s, ⧗=0, ▶=1, ✔=175, ✗=0, ∅=0]" ] }, { @@ -38323,7 +38301,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.06blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" ] }, { @@ -38345,7 +38323,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=1, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.06blocks/s, ⧗=0, ▶=1, ✔=176, ✗=0, ∅=0]" ] }, { @@ -38367,7 +38345,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.06blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" ] }, { @@ -38389,7 +38367,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.05blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.09blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" ] }, { @@ -38411,7 +38389,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.05blocks/s, ⧗=0, ▶=1, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.09blocks/s, ⧗=0, ▶=1, ✔=177, ✗=0, ∅=0]" ] }, { @@ -38433,7 +38411,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.05blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.09blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" ] }, { @@ -38455,7 +38433,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.05blocks/s, ⧗=0, ▶=1, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.09blocks/s, ⧗=0, ▶=1, ✔=178, ✗=0, ∅=0]" ] }, { @@ -38477,7 +38455,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.05blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.09blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" ] }, { @@ -38499,7 +38477,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.59blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.46blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" ] }, { @@ -38521,7 +38499,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.59blocks/s, ⧗=0, ▶=1, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.46blocks/s, ⧗=0, ▶=1, ✔=179, ✗=0, ∅=0]" ] }, { @@ -38543,7 +38521,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.59blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.46blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" ] }, { @@ -38565,7 +38543,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.59blocks/s, ⧗=0, ▶=1, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.46blocks/s, ⧗=0, ▶=1, ✔=180, ✗=0, ∅=0]" ] }, { @@ -38587,7 +38565,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.59blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.46blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" ] }, { @@ -38609,7 +38587,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.62blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 17.02blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" ] }, { @@ -38631,7 +38609,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.62blocks/s, ⧗=0, ▶=1, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 17.02blocks/s, ⧗=0, ▶=1, ✔=181, ✗=0, ∅=0]" ] }, { @@ -38653,7 +38631,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.62blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 17.02blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" ] }, { @@ -38675,7 +38653,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:02, 16.62blocks/s, ⧗=0, ▶=1, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.02blocks/s, ⧗=0, ▶=1, ✔=182, ✗=0, ∅=0]" ] }, { @@ -38697,7 +38675,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:02, 16.62blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.02blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" ] }, { @@ -38719,7 +38697,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 16.77blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.43blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" ] }, { @@ -38741,7 +38719,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 16.77blocks/s, ⧗=0, ▶=1, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.43blocks/s, ⧗=0, ▶=1, ✔=183, ✗=0, ∅=0]" ] }, { @@ -38763,7 +38741,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 16.77blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.43blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" ] }, { @@ -38785,7 +38763,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 16.77blocks/s, ⧗=0, ▶=1, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.43blocks/s, ⧗=0, ▶=1, ✔=184, ✗=0, ∅=0]" ] }, { @@ -38807,7 +38785,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 16.77blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.43blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" ] }, { @@ -38829,7 +38807,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.18blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" ] }, { @@ -38851,7 +38829,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.18blocks/s, ⧗=0, ▶=1, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=1, ✔=185, ✗=0, ∅=0]" ] }, { @@ -38873,7 +38851,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.18blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" ] }, { @@ -38895,7 +38873,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.18blocks/s, ⧗=0, ▶=1, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=1, ✔=186, ✗=0, ∅=0]" ] }, { @@ -38917,7 +38895,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.18blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" ] }, { @@ -38939,7 +38917,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 16.37blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.81blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" ] }, { @@ -38961,7 +38939,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 16.37blocks/s, ⧗=0, ▶=1, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.81blocks/s, ⧗=0, ▶=1, ✔=187, ✗=0, ∅=0]" ] }, { @@ -38983,7 +38961,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 16.37blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.81blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" ] }, { @@ -39005,7 +38983,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 16.37blocks/s, ⧗=0, ▶=1, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 17.81blocks/s, ⧗=0, ▶=1, ✔=188, ✗=0, ∅=0]" ] }, { @@ -39027,7 +39005,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 16.37blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:11<00:01, 17.81blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" ] }, { @@ -39049,7 +39027,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:10<00:01, 16.22blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.75blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" ] }, { @@ -39071,7 +39049,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:10<00:01, 16.22blocks/s, ⧗=0, ▶=1, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.75blocks/s, ⧗=0, ▶=1, ✔=189, ✗=0, ∅=0]" ] }, { @@ -39093,7 +39071,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:10<00:01, 16.22blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.75blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" ] }, { @@ -39115,7 +39093,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:10<00:01, 16.22blocks/s, ⧗=0, ▶=1, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.75blocks/s, ⧗=0, ▶=1, ✔=190, ✗=0, ∅=0]" ] }, { @@ -39137,7 +39115,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 16.22blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.75blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" ] }, { @@ -39159,7 +39137,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.85blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.91blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" ] }, { @@ -39181,7 +39159,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.85blocks/s, ⧗=0, ▶=1, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.91blocks/s, ⧗=0, ▶=1, ✔=191, ✗=0, ∅=0]" ] }, { @@ -39203,7 +39181,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.85blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.91blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" ] }, { @@ -39225,7 +39203,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.85blocks/s, ⧗=0, ▶=1, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.91blocks/s, ⧗=0, ▶=1, ✔=192, ✗=0, ∅=0]" ] }, { @@ -39247,7 +39225,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.85blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.91blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" ] }, { @@ -39269,7 +39247,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.04blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.94blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" ] }, { @@ -39291,7 +39269,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.04blocks/s, ⧗=0, ▶=1, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.94blocks/s, ⧗=0, ▶=1, ✔=193, ✗=0, ∅=0]" ] }, { @@ -39313,7 +39291,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.04blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.94blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" ] }, { @@ -39335,7 +39313,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 17.04blocks/s, ⧗=0, ▶=1, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.94blocks/s, ⧗=0, ▶=1, ✔=194, ✗=0, ∅=0]" ] }, { @@ -39357,7 +39335,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 17.04blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.94blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" ] }, { @@ -39489,7 +39467,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.00blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.64blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" ] }, { @@ -39511,7 +39489,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.00blocks/s, ⧗=0, ▶=1, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.64blocks/s, ⧗=0, ▶=1, ✔=197, ✗=0, ∅=0]" ] }, { @@ -39533,7 +39511,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.00blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.64blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" ] }, { @@ -39555,7 +39533,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.00blocks/s, ⧗=0, ▶=1, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.64blocks/s, ⧗=0, ▶=1, ✔=198, ✗=0, ∅=0]" ] }, { @@ -39577,7 +39555,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.00blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.64blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" ] }, { @@ -39599,7 +39577,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.34blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" ] }, { @@ -39621,7 +39599,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.34blocks/s, ⧗=0, ▶=1, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=1, ✔=199, ✗=0, ∅=0]" ] }, { @@ -39643,7 +39621,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.34blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" ] }, { @@ -39665,7 +39643,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 16.34blocks/s, ⧗=0, ▶=1, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=1, ✔=200, ✗=0, ∅=0]" ] }, { @@ -39687,7 +39665,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 16.34blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" ] }, { @@ -39709,7 +39687,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 16.68blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.08blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" ] }, { @@ -39731,7 +39709,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 16.68blocks/s, ⧗=0, ▶=1, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.08blocks/s, ⧗=0, ▶=1, ✔=201, ✗=0, ∅=0]" ] }, { @@ -39753,7 +39731,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 16.68blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.08blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" ] }, { @@ -39775,7 +39753,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.68blocks/s, ⧗=0, ▶=1, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 17.08blocks/s, ⧗=0, ▶=1, ✔=202, ✗=0, ∅=0]" ] }, { @@ -39797,7 +39775,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.68blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 17.08blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" ] }, { @@ -39819,7 +39797,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 17.09blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" ] }, { @@ -39841,7 +39819,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 17.09blocks/s, ⧗=0, ▶=1, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=1, ✔=203, ✗=0, ∅=0]" ] }, { @@ -39863,7 +39841,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 17.09blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" ] }, { @@ -39885,7 +39863,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.09blocks/s, ⧗=0, ▶=1, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=1, ✔=204, ✗=0, ∅=0]" ] }, { @@ -39907,7 +39885,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.09blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" ] }, { @@ -39929,7 +39907,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.48blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" ] }, { @@ -39951,7 +39929,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=1, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.48blocks/s, ⧗=0, ▶=1, ✔=205, ✗=0, ∅=0]" ] }, { @@ -39973,7 +39951,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:12<00:00, 17.48blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" ] }, { @@ -39995,7 +39973,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=1, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.48blocks/s, ⧗=0, ▶=1, ✔=206, ✗=0, ∅=0]" ] }, { @@ -40017,7 +39995,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:11<00:00, 17.02blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.48blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" ] }, { @@ -40039,7 +40017,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:11<00:00, 17.15blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.51blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" ] }, { @@ -40061,7 +40039,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:11<00:00, 17.15blocks/s, ⧗=0, ▶=1, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.51blocks/s, ⧗=0, ▶=1, ✔=207, ✗=0, ∅=0]" ] }, { @@ -40083,7 +40061,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.15blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.51blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" ] }, { @@ -40105,7 +40083,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.15blocks/s, ⧗=0, ▶=1, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.51blocks/s, ⧗=0, ▶=1, ✔=208, ✗=0, ∅=0]" ] }, { @@ -40127,7 +40105,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.15blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.51blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" ] }, { @@ -40149,7 +40127,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 16.79blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.77blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" ] }, { @@ -40171,7 +40149,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 16.79blocks/s, ⧗=0, ▶=1, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.77blocks/s, ⧗=0, ▶=1, ✔=209, ✗=0, ∅=0]" ] }, { @@ -40193,7 +40171,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 16.79blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.77blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" ] }, { @@ -40215,7 +40193,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 16.79blocks/s, ⧗=0, ▶=1, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.77blocks/s, ⧗=0, ▶=1, ✔=210, ✗=0, ∅=0]" ] }, { @@ -40237,7 +40215,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 16.79blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.77blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" ] }, { @@ -40259,7 +40237,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 16.22blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 16.97blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" ] }, { @@ -40281,7 +40259,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 16.22blocks/s, ⧗=0, ▶=1, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 16.97blocks/s, ⧗=0, ▶=1, ✔=211, ✗=0, ∅=0]" ] }, { @@ -40303,7 +40281,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 16.22blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 16.97blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" ] }, { @@ -40325,7 +40303,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 16.22blocks/s, ⧗=0, ▶=1, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 16.97blocks/s, ⧗=0, ▶=1, ✔=212, ✗=0, ∅=0]" ] }, { @@ -40347,7 +40325,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 16.22blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 16.97blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" ] }, { @@ -40369,7 +40347,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 16.68blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.32blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" ] }, { @@ -40391,7 +40369,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 16.68blocks/s, ⧗=0, ▶=1, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.32blocks/s, ⧗=0, ▶=1, ✔=213, ✗=0, ∅=0]" ] }, { @@ -40413,7 +40391,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 16.68blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.32blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" ] }, { @@ -40435,7 +40413,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 16.68blocks/s, ⧗=0, ▶=1, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.32blocks/s, ⧗=0, ▶=1, ✔=214, ✗=0, ∅=0]" ] }, { @@ -40457,7 +40435,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 16.68blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.32blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" ] }, { @@ -40479,7 +40457,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.70blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" ] }, { @@ -40501,7 +40479,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=1, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.70blocks/s, ⧗=0, ▶=1, ✔=215, ✗=0, ∅=0]" ] }, { @@ -40523,7 +40501,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.70blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -40545,7 +40523,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.70blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -40560,7 +40538,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.26blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1000/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.13blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -40614,7 +40592,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "WARNING:dacapo.experiments.trainers.gunpowder_trainer:Saving Snapshot. Iteration: 1000, Loss: 0.49502497911453247!\n" + "WARNING:dacapo.experiments.trainers.gunpowder_trainer:Saving Snapshot. Iteration: 1000, Loss: 0.486723393201828!\n" ] }, { @@ -40622,7 +40600,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1001/2000 [06:35<2:57:00, 10.63s/it, loss=0.539]" + "training until 2000: 50%|█████ | 1001/2000 [06:27<2:41:49, 9.72s/it, loss=0.538]" ] }, { @@ -40630,7 +40608,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1001/2000 [06:35<2:57:00, 10.63s/it, loss=0.495]" + "training until 2000: 50%|█████ | 1001/2000 [06:27<2:41:49, 9.72s/it, loss=0.487]" ] }, { @@ -40638,7 +40616,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1002/2000 [06:35<2:05:22, 7.54s/it, loss=0.495]" + "training until 2000: 50%|█████ | 1002/2000 [06:27<1:54:48, 6.90s/it, loss=0.487]" ] }, { @@ -40646,7 +40624,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1002/2000 [06:35<2:05:22, 7.54s/it, loss=0.469]" + "training until 2000: 50%|█████ | 1002/2000 [06:27<1:54:48, 6.90s/it, loss=0.577]" ] }, { @@ -40654,7 +40632,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1003/2000 [06:35<1:29:16, 5.37s/it, loss=0.469]" + "training until 2000: 50%|█████ | 1003/2000 [06:27<1:21:52, 4.93s/it, loss=0.577]" ] }, { @@ -40662,7 +40640,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1003/2000 [06:35<1:29:16, 5.37s/it, loss=0.533]" + "training until 2000: 50%|█████ | 1003/2000 [06:27<1:21:52, 4.93s/it, loss=0.552]" ] }, { @@ -40670,7 +40648,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1004/2000 [06:36<1:04:02, 3.86s/it, loss=0.533]" + "training until 2000: 50%|█████ | 1004/2000 [06:28<58:54, 3.55s/it, loss=0.552] " ] }, { @@ -40678,7 +40656,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1004/2000 [06:36<1:04:02, 3.86s/it, loss=0.467]" + "training until 2000: 50%|█████ | 1004/2000 [06:28<58:54, 3.55s/it, loss=0.471]" ] }, { @@ -40686,7 +40664,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1005/2000 [06:36<46:27, 2.80s/it, loss=0.467] " + "training until 2000: 50%|█████ | 1005/2000 [06:28<42:55, 2.59s/it, loss=0.471]" ] }, { @@ -40694,7 +40672,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1005/2000 [06:36<46:27, 2.80s/it, loss=0.494]" + "training until 2000: 50%|█████ | 1005/2000 [06:28<42:55, 2.59s/it, loss=0.628]" ] }, { @@ -40702,7 +40680,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1006/2000 [06:36<34:09, 2.06s/it, loss=0.494]" + "training until 2000: 50%|█████ | 1006/2000 [06:28<31:36, 1.91s/it, loss=0.628]" ] }, { @@ -40710,7 +40688,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1006/2000 [06:36<34:09, 2.06s/it, loss=0.505]" + "training until 2000: 50%|█████ | 1006/2000 [06:28<31:36, 1.91s/it, loss=0.562]" ] }, { @@ -40718,7 +40696,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1007/2000 [06:37<25:30, 1.54s/it, loss=0.505]" + "training until 2000: 50%|█████ | 1007/2000 [06:29<23:44, 1.43s/it, loss=0.562]" ] }, { @@ -40726,7 +40704,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1007/2000 [06:37<25:30, 1.54s/it, loss=0.562]" + "training until 2000: 50%|█████ | 1007/2000 [06:29<23:44, 1.43s/it, loss=0.528]" ] }, { @@ -40734,7 +40712,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1008/2000 [06:37<19:23, 1.17s/it, loss=0.562]" + "training until 2000: 50%|█████ | 1008/2000 [06:29<18:13, 1.10s/it, loss=0.528]" ] }, { @@ -40742,7 +40720,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1008/2000 [06:37<19:23, 1.17s/it, loss=0.514]" + "training until 2000: 50%|█████ | 1008/2000 [06:29<18:13, 1.10s/it, loss=0.453]" ] }, { @@ -40750,7 +40728,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1009/2000 [06:37<15:11, 1.09it/s, loss=0.514]" + "training until 2000: 50%|█████ | 1009/2000 [06:29<14:22, 1.15it/s, loss=0.453]" ] }, { @@ -40758,7 +40736,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1009/2000 [06:37<15:11, 1.09it/s, loss=0.497]" + "training until 2000: 50%|█████ | 1009/2000 [06:29<14:22, 1.15it/s, loss=0.475]" ] }, { @@ -40766,7 +40744,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1010/2000 [06:38<12:13, 1.35it/s, loss=0.497]" + "training until 2000: 50%|█████ | 1010/2000 [06:30<11:39, 1.42it/s, loss=0.475]" ] }, { @@ -40774,7 +40752,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 50%|█████ | 1010/2000 [06:38<12:13, 1.35it/s, loss=0.512]" + "training until 2000: 50%|█████ | 1010/2000 [06:30<11:39, 1.42it/s, loss=0.475]" ] }, { @@ -40782,7 +40760,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1011/2000 [06:38<10:16, 1.60it/s, loss=0.512]" + "training until 2000: 51%|█████ | 1011/2000 [06:30<09:47, 1.68it/s, loss=0.475]" ] }, { @@ -40790,7 +40768,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1011/2000 [06:38<10:16, 1.60it/s, loss=0.508]" + "training until 2000: 51%|█████ | 1011/2000 [06:30<09:47, 1.68it/s, loss=0.522]" ] }, { @@ -40798,7 +40776,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1012/2000 [06:38<08:49, 1.87it/s, loss=0.508]" + "training until 2000: 51%|█████ | 1012/2000 [06:30<08:25, 1.95it/s, loss=0.522]" ] }, { @@ -40806,7 +40784,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1012/2000 [06:38<08:49, 1.87it/s, loss=0.488]" + "training until 2000: 51%|█████ | 1012/2000 [06:30<08:25, 1.95it/s, loss=0.53] " ] }, { @@ -40814,7 +40792,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1013/2000 [06:39<07:45, 2.12it/s, loss=0.488]" + "training until 2000: 51%|█████ | 1013/2000 [06:31<07:27, 2.21it/s, loss=0.53]" ] }, { @@ -40822,7 +40800,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1013/2000 [06:39<07:45, 2.12it/s, loss=0.496]" + "training until 2000: 51%|█████ | 1013/2000 [06:31<07:27, 2.21it/s, loss=0.529]" ] }, { @@ -40830,7 +40808,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1014/2000 [06:39<07:07, 2.31it/s, loss=0.496]" + "training until 2000: 51%|█████ | 1014/2000 [06:31<06:46, 2.43it/s, loss=0.529]" ] }, { @@ -40838,7 +40816,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1014/2000 [06:39<07:07, 2.31it/s, loss=0.469]" + "training until 2000: 51%|█████ | 1014/2000 [06:31<06:46, 2.43it/s, loss=0.469]" ] }, { @@ -40846,7 +40824,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1015/2000 [06:39<06:35, 2.49it/s, loss=0.469]" + "training until 2000: 51%|█████ | 1015/2000 [06:31<06:19, 2.60it/s, loss=0.469]" ] }, { @@ -40854,7 +40832,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1015/2000 [06:39<06:35, 2.49it/s, loss=0.494]" + "training until 2000: 51%|█████ | 1015/2000 [06:31<06:19, 2.60it/s, loss=0.671]" ] }, { @@ -40862,7 +40840,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1016/2000 [06:40<06:14, 2.63it/s, loss=0.494]" + "training until 2000: 51%|█████ | 1016/2000 [06:32<05:59, 2.74it/s, loss=0.671]" ] }, { @@ -40870,7 +40848,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1016/2000 [06:40<06:14, 2.63it/s, loss=0.466]" + "training until 2000: 51%|█████ | 1016/2000 [06:32<05:59, 2.74it/s, loss=0.579]" ] }, { @@ -40878,7 +40856,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1017/2000 [06:40<05:56, 2.76it/s, loss=0.466]" + "training until 2000: 51%|█████ | 1017/2000 [06:32<05:44, 2.86it/s, loss=0.579]" ] }, { @@ -40886,7 +40864,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1017/2000 [06:40<05:56, 2.76it/s, loss=0.477]" + "training until 2000: 51%|█████ | 1017/2000 [06:32<05:44, 2.86it/s, loss=0.493]" ] }, { @@ -40894,7 +40872,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1018/2000 [06:40<05:45, 2.85it/s, loss=0.477]" + "training until 2000: 51%|█████ | 1018/2000 [06:32<05:32, 2.95it/s, loss=0.493]" ] }, { @@ -40902,7 +40880,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1018/2000 [06:40<05:45, 2.85it/s, loss=0.482]" + "training until 2000: 51%|█████ | 1018/2000 [06:32<05:32, 2.95it/s, loss=0.511]" ] }, { @@ -40910,7 +40888,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1019/2000 [06:41<05:35, 2.92it/s, loss=0.482]" + "training until 2000: 51%|█████ | 1019/2000 [06:33<05:29, 2.98it/s, loss=0.511]" ] }, { @@ -40918,7 +40896,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1019/2000 [06:41<05:35, 2.92it/s, loss=0.496]" + "training until 2000: 51%|█████ | 1019/2000 [06:33<05:29, 2.98it/s, loss=0.502]" ] }, { @@ -40926,7 +40904,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1020/2000 [06:41<05:24, 3.02it/s, loss=0.496]" + "training until 2000: 51%|█████ | 1020/2000 [06:33<05:23, 3.03it/s, loss=0.502]" ] }, { @@ -40934,7 +40912,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1020/2000 [06:41<05:24, 3.02it/s, loss=0.488]" + "training until 2000: 51%|█████ | 1020/2000 [06:33<05:23, 3.03it/s, loss=0.653]" ] }, { @@ -40942,7 +40920,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1021/2000 [06:41<05:22, 3.04it/s, loss=0.488]" + "training until 2000: 51%|█████ | 1021/2000 [06:33<05:22, 3.04it/s, loss=0.653]" ] }, { @@ -40950,7 +40928,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1021/2000 [06:41<05:22, 3.04it/s, loss=0.525]" + "training until 2000: 51%|█████ | 1021/2000 [06:33<05:22, 3.04it/s, loss=0.487]" ] }, { @@ -40958,7 +40936,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1022/2000 [06:42<05:20, 3.06it/s, loss=0.525]" + "training until 2000: 51%|█████ | 1022/2000 [06:34<05:29, 2.97it/s, loss=0.487]" ] }, { @@ -40966,7 +40944,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1022/2000 [06:42<05:20, 3.06it/s, loss=0.499]" + "training until 2000: 51%|█████ | 1022/2000 [06:34<05:29, 2.97it/s, loss=0.528]" ] }, { @@ -40974,7 +40952,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1023/2000 [06:42<05:16, 3.08it/s, loss=0.499]" + "training until 2000: 51%|█████ | 1023/2000 [06:34<05:23, 3.02it/s, loss=0.528]" ] }, { @@ -40982,7 +40960,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1023/2000 [06:42<05:16, 3.08it/s, loss=0.487]" + "training until 2000: 51%|█████ | 1023/2000 [06:34<05:23, 3.02it/s, loss=0.458]" ] }, { @@ -40990,7 +40968,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1024/2000 [06:42<05:14, 3.10it/s, loss=0.487]" + "training until 2000: 51%|█████ | 1024/2000 [06:34<05:21, 3.03it/s, loss=0.458]" ] }, { @@ -40998,7 +40976,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████ | 1024/2000 [06:42<05:14, 3.10it/s, loss=0.5] " + "training until 2000: 51%|█████ | 1024/2000 [06:34<05:21, 3.03it/s, loss=0.478]" ] }, { @@ -41006,7 +40984,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1025/2000 [06:43<05:13, 3.11it/s, loss=0.5]" + "training until 2000: 51%|█████▏ | 1025/2000 [06:35<05:16, 3.08it/s, loss=0.478]" ] }, { @@ -41014,7 +40992,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1025/2000 [06:43<05:13, 3.11it/s, loss=0.483]" + "training until 2000: 51%|█████▏ | 1025/2000 [06:35<05:16, 3.08it/s, loss=0.577]" ] }, { @@ -41022,7 +41000,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1026/2000 [06:43<05:09, 3.15it/s, loss=0.483]" + "training until 2000: 51%|█████▏ | 1026/2000 [06:35<05:15, 3.08it/s, loss=0.577]" ] }, { @@ -41030,7 +41008,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1026/2000 [06:43<05:09, 3.15it/s, loss=0.511]" + "training until 2000: 51%|█████▏ | 1026/2000 [06:35<05:15, 3.08it/s, loss=0.486]" ] }, { @@ -41038,7 +41016,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1027/2000 [06:43<05:09, 3.15it/s, loss=0.511]" + "training until 2000: 51%|█████▏ | 1027/2000 [06:35<05:15, 3.08it/s, loss=0.486]" ] }, { @@ -41046,7 +41024,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1027/2000 [06:43<05:09, 3.15it/s, loss=0.468]" + "training until 2000: 51%|█████▏ | 1027/2000 [06:35<05:15, 3.08it/s, loss=0.514]" ] }, { @@ -41054,7 +41032,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1028/2000 [06:43<05:07, 3.16it/s, loss=0.468]" + "training until 2000: 51%|█████▏ | 1028/2000 [06:36<05:14, 3.09it/s, loss=0.514]" ] }, { @@ -41062,7 +41040,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1028/2000 [06:43<05:07, 3.16it/s, loss=0.475]" + "training until 2000: 51%|█████▏ | 1028/2000 [06:36<05:14, 3.09it/s, loss=0.525]" ] }, { @@ -41070,7 +41048,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1029/2000 [06:44<05:06, 3.16it/s, loss=0.475]" + "training until 2000: 51%|█████▏ | 1029/2000 [06:36<05:12, 3.10it/s, loss=0.525]" ] }, { @@ -41078,7 +41056,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 51%|█████▏ | 1029/2000 [06:44<05:06, 3.16it/s, loss=0.491]" + "training until 2000: 51%|█████▏ | 1029/2000 [06:36<05:12, 3.10it/s, loss=0.496]" ] }, { @@ -41086,7 +41064,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1030/2000 [06:44<05:09, 3.13it/s, loss=0.491]" + "training until 2000: 52%|█████▏ | 1030/2000 [06:36<05:13, 3.10it/s, loss=0.496]" ] }, { @@ -41094,7 +41072,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1030/2000 [06:44<05:09, 3.13it/s, loss=0.475]" + "training until 2000: 52%|█████▏ | 1030/2000 [06:36<05:13, 3.10it/s, loss=0.507]" ] }, { @@ -41102,7 +41080,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1031/2000 [06:44<05:09, 3.13it/s, loss=0.475]" + "training until 2000: 52%|█████▏ | 1031/2000 [06:36<05:10, 3.12it/s, loss=0.507]" ] }, { @@ -41110,7 +41088,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1031/2000 [06:44<05:09, 3.13it/s, loss=0.503]" + "training until 2000: 52%|█████▏ | 1031/2000 [06:36<05:10, 3.12it/s, loss=0.474]" ] }, { @@ -41118,7 +41096,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1032/2000 [06:45<05:13, 3.09it/s, loss=0.503]" + "training until 2000: 52%|█████▏ | 1032/2000 [06:37<05:14, 3.08it/s, loss=0.474]" ] }, { @@ -41126,7 +41104,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1032/2000 [06:45<05:13, 3.09it/s, loss=0.489]" + "training until 2000: 52%|█████▏ | 1032/2000 [06:37<05:14, 3.08it/s, loss=0.487]" ] }, { @@ -41134,7 +41112,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1033/2000 [06:45<05:13, 3.09it/s, loss=0.489]" + "training until 2000: 52%|█████▏ | 1033/2000 [06:37<05:12, 3.10it/s, loss=0.487]" ] }, { @@ -41142,7 +41120,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1033/2000 [06:45<05:13, 3.09it/s, loss=0.477]" + "training until 2000: 52%|█████▏ | 1033/2000 [06:37<05:12, 3.10it/s, loss=0.46] " ] }, { @@ -41150,7 +41128,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1034/2000 [06:45<05:17, 3.04it/s, loss=0.477]" + "training until 2000: 52%|█████▏ | 1034/2000 [06:37<05:11, 3.10it/s, loss=0.46]" ] }, { @@ -41158,7 +41136,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1034/2000 [06:45<05:17, 3.04it/s, loss=0.482]" + "training until 2000: 52%|█████▏ | 1034/2000 [06:37<05:11, 3.10it/s, loss=0.555]" ] }, { @@ -41166,7 +41144,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1035/2000 [06:46<05:16, 3.05it/s, loss=0.482]" + "training until 2000: 52%|█████▏ | 1035/2000 [06:38<05:11, 3.09it/s, loss=0.555]" ] }, { @@ -41174,7 +41152,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1035/2000 [06:46<05:16, 3.05it/s, loss=0.474]" + "training until 2000: 52%|█████▏ | 1035/2000 [06:38<05:11, 3.09it/s, loss=0.491]" ] }, { @@ -41182,7 +41160,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1036/2000 [06:46<05:13, 3.07it/s, loss=0.474]" + "training until 2000: 52%|█████▏ | 1036/2000 [06:38<05:09, 3.12it/s, loss=0.491]" ] }, { @@ -41190,7 +41168,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1036/2000 [06:46<05:13, 3.07it/s, loss=0.473]" + "training until 2000: 52%|█████▏ | 1036/2000 [06:38<05:09, 3.12it/s, loss=0.512]" ] }, { @@ -41198,7 +41176,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1037/2000 [06:46<05:10, 3.10it/s, loss=0.473]" + "training until 2000: 52%|█████▏ | 1037/2000 [06:38<05:10, 3.10it/s, loss=0.512]" ] }, { @@ -41206,7 +41184,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1037/2000 [06:46<05:10, 3.10it/s, loss=0.495]" + "training until 2000: 52%|█████▏ | 1037/2000 [06:38<05:10, 3.10it/s, loss=0.536]" ] }, { @@ -41214,7 +41192,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1038/2000 [06:47<05:09, 3.11it/s, loss=0.495]" + "training until 2000: 52%|█████▏ | 1038/2000 [06:39<05:12, 3.08it/s, loss=0.536]" ] }, { @@ -41222,7 +41200,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1038/2000 [06:47<05:09, 3.11it/s, loss=0.481]" + "training until 2000: 52%|█████▏ | 1038/2000 [06:39<05:12, 3.08it/s, loss=0.521]" ] }, { @@ -41230,7 +41208,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1039/2000 [06:47<05:14, 3.06it/s, loss=0.481]" + "training until 2000: 52%|█████▏ | 1039/2000 [06:39<06:22, 2.51it/s, loss=0.521]" ] }, { @@ -41238,7 +41216,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1039/2000 [06:47<05:14, 3.06it/s, loss=0.508]" + "training until 2000: 52%|█████▏ | 1039/2000 [06:39<06:22, 2.51it/s, loss=0.523]" ] }, { @@ -41246,7 +41224,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1040/2000 [06:47<05:15, 3.04it/s, loss=0.508]" + "training until 2000: 52%|█████▏ | 1040/2000 [06:40<06:01, 2.65it/s, loss=0.523]" ] }, { @@ -41254,7 +41232,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1040/2000 [06:47<05:15, 3.04it/s, loss=0.491]" + "training until 2000: 52%|█████▏ | 1040/2000 [06:40<06:01, 2.65it/s, loss=0.575]" ] }, { @@ -41262,7 +41240,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1041/2000 [06:48<05:16, 3.03it/s, loss=0.491]" + "training until 2000: 52%|█████▏ | 1041/2000 [06:40<05:51, 2.73it/s, loss=0.575]" ] }, { @@ -41270,7 +41248,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1041/2000 [06:48<05:16, 3.03it/s, loss=0.527]" + "training until 2000: 52%|█████▏ | 1041/2000 [06:40<05:51, 2.73it/s, loss=0.456]" ] }, { @@ -41278,7 +41256,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1042/2000 [06:48<05:14, 3.05it/s, loss=0.527]" + "training until 2000: 52%|█████▏ | 1042/2000 [06:40<05:38, 2.83it/s, loss=0.456]" ] }, { @@ -41286,7 +41264,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1042/2000 [06:48<05:14, 3.05it/s, loss=0.499]" + "training until 2000: 52%|█████▏ | 1042/2000 [06:40<05:38, 2.83it/s, loss=0.481]" ] }, { @@ -41294,7 +41272,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1043/2000 [06:48<05:09, 3.09it/s, loss=0.499]" + "training until 2000: 52%|█████▏ | 1043/2000 [06:41<05:27, 2.92it/s, loss=0.481]" ] }, { @@ -41302,7 +41280,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1043/2000 [06:48<05:09, 3.09it/s, loss=0.514]" + "training until 2000: 52%|█████▏ | 1043/2000 [06:41<05:27, 2.92it/s, loss=0.487]" ] }, { @@ -41310,7 +41288,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1044/2000 [06:49<05:08, 3.10it/s, loss=0.514]" + "training until 2000: 52%|█████▏ | 1044/2000 [06:41<05:19, 2.99it/s, loss=0.487]" ] }, { @@ -41318,7 +41296,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1044/2000 [06:49<05:08, 3.10it/s, loss=0.512]" + "training until 2000: 52%|█████▏ | 1044/2000 [06:41<05:19, 2.99it/s, loss=0.478]" ] }, { @@ -41326,7 +41304,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1045/2000 [06:49<05:09, 3.08it/s, loss=0.512]" + "training until 2000: 52%|█████▏ | 1045/2000 [06:41<05:13, 3.05it/s, loss=0.478]" ] }, { @@ -41334,7 +41312,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1045/2000 [06:49<05:09, 3.08it/s, loss=0.473]" + "training until 2000: 52%|█████▏ | 1045/2000 [06:41<05:13, 3.05it/s, loss=0.517]" ] }, { @@ -41342,7 +41320,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1046/2000 [06:49<05:12, 3.06it/s, loss=0.473]" + "training until 2000: 52%|█████▏ | 1046/2000 [06:42<05:08, 3.09it/s, loss=0.517]" ] }, { @@ -41350,7 +41328,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1046/2000 [06:49<05:12, 3.06it/s, loss=0.483]" + "training until 2000: 52%|█████▏ | 1046/2000 [06:42<05:08, 3.09it/s, loss=0.509]" ] }, { @@ -41358,7 +41336,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1047/2000 [06:50<05:11, 3.06it/s, loss=0.483]" + "training until 2000: 52%|█████▏ | 1047/2000 [06:42<05:09, 3.08it/s, loss=0.509]" ] }, { @@ -41366,7 +41344,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1047/2000 [06:50<05:11, 3.06it/s, loss=0.474]" + "training until 2000: 52%|█████▏ | 1047/2000 [06:42<05:09, 3.08it/s, loss=0.492]" ] }, { @@ -41374,7 +41352,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1048/2000 [06:50<06:19, 2.51it/s, loss=0.474]" + "training until 2000: 52%|█████▏ | 1048/2000 [06:42<05:05, 3.11it/s, loss=0.492]" ] }, { @@ -41382,7 +41360,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1048/2000 [06:50<06:19, 2.51it/s, loss=0.476]" + "training until 2000: 52%|█████▏ | 1048/2000 [06:42<05:05, 3.11it/s, loss=0.502]" ] }, { @@ -41390,7 +41368,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1049/2000 [06:51<05:59, 2.65it/s, loss=0.476]" + "training until 2000: 52%|█████▏ | 1049/2000 [06:43<05:04, 3.12it/s, loss=0.502]" ] }, { @@ -41398,7 +41376,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▏ | 1049/2000 [06:51<05:59, 2.65it/s, loss=0.482]" + "training until 2000: 52%|█████▏ | 1049/2000 [06:43<05:04, 3.12it/s, loss=0.482]" ] }, { @@ -41406,7 +41384,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▎ | 1050/2000 [06:51<05:44, 2.76it/s, loss=0.482]" + "training until 2000: 52%|█████▎ | 1050/2000 [06:43<05:07, 3.09it/s, loss=0.482]" ] }, { @@ -41414,7 +41392,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 52%|█████▎ | 1050/2000 [06:51<05:44, 2.76it/s, loss=0.513]" + "training until 2000: 52%|█████▎ | 1050/2000 [06:43<05:07, 3.09it/s, loss=0.5] " ] }, { @@ -41422,7 +41400,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1051/2000 [06:51<05:30, 2.87it/s, loss=0.513]" + "training until 2000: 53%|█████▎ | 1051/2000 [06:43<05:06, 3.09it/s, loss=0.5]" ] }, { @@ -41430,7 +41408,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1051/2000 [06:51<05:30, 2.87it/s, loss=0.474]" + "training until 2000: 53%|█████▎ | 1051/2000 [06:43<05:06, 3.09it/s, loss=0.549]" ] }, { @@ -41438,7 +41416,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1052/2000 [06:52<05:23, 2.93it/s, loss=0.474]" + "training until 2000: 53%|█████▎ | 1052/2000 [06:43<05:05, 3.10it/s, loss=0.549]" ] }, { @@ -41446,7 +41424,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1052/2000 [06:52<05:23, 2.93it/s, loss=0.552]" + "training until 2000: 53%|█████▎ | 1052/2000 [06:44<05:05, 3.10it/s, loss=0.499]" ] }, { @@ -41454,7 +41432,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1053/2000 [06:52<05:17, 2.98it/s, loss=0.552]" + "training until 2000: 53%|█████▎ | 1053/2000 [06:44<05:03, 3.12it/s, loss=0.499]" ] }, { @@ -41462,7 +41440,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1053/2000 [06:52<05:17, 2.98it/s, loss=0.491]" + "training until 2000: 53%|█████▎ | 1053/2000 [06:44<05:03, 3.12it/s, loss=0.494]" ] }, { @@ -41470,7 +41448,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1054/2000 [06:52<05:13, 3.02it/s, loss=0.491]" + "training until 2000: 53%|█████▎ | 1054/2000 [06:44<05:04, 3.11it/s, loss=0.494]" ] }, { @@ -41478,7 +41456,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1054/2000 [06:52<05:13, 3.02it/s, loss=0.476]" + "training until 2000: 53%|█████▎ | 1054/2000 [06:44<05:04, 3.11it/s, loss=0.507]" ] }, { @@ -41486,7 +41464,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1055/2000 [06:52<05:10, 3.04it/s, loss=0.476]" + "training until 2000: 53%|█████▎ | 1055/2000 [06:44<05:01, 3.14it/s, loss=0.507]" ] }, { @@ -41494,7 +41472,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1055/2000 [06:52<05:10, 3.04it/s, loss=0.473]" + "training until 2000: 53%|█████▎ | 1055/2000 [06:44<05:01, 3.14it/s, loss=0.44] " ] }, { @@ -41502,7 +41480,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1056/2000 [06:53<05:11, 3.03it/s, loss=0.473]" + "training until 2000: 53%|█████▎ | 1056/2000 [06:45<05:01, 3.13it/s, loss=0.44]" ] }, { @@ -41510,7 +41488,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1056/2000 [06:53<05:11, 3.03it/s, loss=0.476]" + "training until 2000: 53%|█████▎ | 1056/2000 [06:45<05:01, 3.13it/s, loss=0.503]" ] }, { @@ -41518,7 +41496,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1057/2000 [06:53<05:09, 3.05it/s, loss=0.476]" + "training until 2000: 53%|█████▎ | 1057/2000 [06:45<04:59, 3.14it/s, loss=0.503]" ] }, { @@ -41526,7 +41504,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1057/2000 [06:53<05:09, 3.05it/s, loss=0.476]" + "training until 2000: 53%|█████▎ | 1057/2000 [06:45<04:59, 3.14it/s, loss=0.502]" ] }, { @@ -41534,7 +41512,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1058/2000 [06:53<05:04, 3.09it/s, loss=0.476]" + "training until 2000: 53%|█████▎ | 1058/2000 [06:45<04:57, 3.17it/s, loss=0.502]" ] }, { @@ -41542,7 +41520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1058/2000 [06:53<05:04, 3.09it/s, loss=0.476]" + "training until 2000: 53%|█████▎ | 1058/2000 [06:45<04:57, 3.17it/s, loss=0.511]" ] }, { @@ -41550,7 +41528,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1059/2000 [06:54<05:06, 3.07it/s, loss=0.476]" + "training until 2000: 53%|█████▎ | 1059/2000 [06:46<04:55, 3.18it/s, loss=0.511]" ] }, { @@ -41558,7 +41536,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1059/2000 [06:54<05:06, 3.07it/s, loss=0.518]" + "training until 2000: 53%|█████▎ | 1059/2000 [06:46<04:55, 3.18it/s, loss=0.465]" ] }, { @@ -41566,7 +41544,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1060/2000 [06:54<05:06, 3.06it/s, loss=0.518]" + "training until 2000: 53%|█████▎ | 1060/2000 [06:46<04:57, 3.16it/s, loss=0.465]" ] }, { @@ -41574,7 +41552,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1060/2000 [06:54<05:06, 3.06it/s, loss=0.46] " + "training until 2000: 53%|█████▎ | 1060/2000 [06:46<04:57, 3.16it/s, loss=0.492]" ] }, { @@ -41582,7 +41560,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1061/2000 [06:54<05:04, 3.08it/s, loss=0.46]" + "training until 2000: 53%|█████▎ | 1061/2000 [06:46<04:54, 3.19it/s, loss=0.492]" ] }, { @@ -41590,7 +41568,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1061/2000 [06:54<05:04, 3.08it/s, loss=0.558]" + "training until 2000: 53%|█████▎ | 1061/2000 [06:46<04:54, 3.19it/s, loss=0.547]" ] }, { @@ -41598,7 +41576,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1062/2000 [06:55<05:07, 3.05it/s, loss=0.558]" + "training until 2000: 53%|█████▎ | 1062/2000 [06:47<04:56, 3.16it/s, loss=0.547]" ] }, { @@ -41606,7 +41584,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1062/2000 [06:55<05:07, 3.05it/s, loss=0.467]" + "training until 2000: 53%|█████▎ | 1062/2000 [06:47<04:56, 3.16it/s, loss=0.452]" ] }, { @@ -41614,7 +41592,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1063/2000 [06:55<05:10, 3.02it/s, loss=0.467]" + "training until 2000: 53%|█████▎ | 1063/2000 [06:47<05:02, 3.10it/s, loss=0.452]" ] }, { @@ -41622,7 +41600,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1063/2000 [06:55<05:10, 3.02it/s, loss=0.45] " + "training until 2000: 53%|█████▎ | 1063/2000 [06:47<05:02, 3.10it/s, loss=0.46] " ] }, { @@ -41630,7 +41608,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1064/2000 [06:55<05:08, 3.04it/s, loss=0.45]" + "training until 2000: 53%|█████▎ | 1064/2000 [06:47<05:00, 3.11it/s, loss=0.46]" ] }, { @@ -41638,7 +41616,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1064/2000 [06:55<05:08, 3.04it/s, loss=0.457]" + "training until 2000: 53%|█████▎ | 1064/2000 [06:47<05:00, 3.11it/s, loss=0.479]" ] }, { @@ -41646,7 +41624,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1065/2000 [06:56<05:06, 3.05it/s, loss=0.457]" + "training until 2000: 53%|█████▎ | 1065/2000 [06:48<05:01, 3.10it/s, loss=0.479]" ] }, { @@ -41654,7 +41632,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1065/2000 [06:56<05:06, 3.05it/s, loss=0.478]" + "training until 2000: 53%|█████▎ | 1065/2000 [06:48<05:01, 3.10it/s, loss=0.5] " ] }, { @@ -41662,7 +41640,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1066/2000 [06:56<05:04, 3.07it/s, loss=0.478]" + "training until 2000: 53%|█████▎ | 1066/2000 [06:48<05:02, 3.09it/s, loss=0.5]" ] }, { @@ -41670,7 +41648,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1066/2000 [06:56<05:04, 3.07it/s, loss=0.486]" + "training until 2000: 53%|█████▎ | 1066/2000 [06:48<05:02, 3.09it/s, loss=0.567]" ] }, { @@ -41678,7 +41656,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1067/2000 [06:56<05:02, 3.09it/s, loss=0.486]" + "training until 2000: 53%|█████▎ | 1067/2000 [06:48<04:56, 3.14it/s, loss=0.567]" ] }, { @@ -41686,7 +41664,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1067/2000 [06:56<05:02, 3.09it/s, loss=0.491]" + "training until 2000: 53%|█████▎ | 1067/2000 [06:48<04:56, 3.14it/s, loss=0.491]" ] }, { @@ -41694,7 +41672,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1068/2000 [06:57<05:01, 3.09it/s, loss=0.491]" + "training until 2000: 53%|█████▎ | 1068/2000 [06:49<04:52, 3.18it/s, loss=0.491]" ] }, { @@ -41702,7 +41680,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1068/2000 [06:57<05:01, 3.09it/s, loss=0.522]" + "training until 2000: 53%|█████▎ | 1068/2000 [06:49<04:52, 3.18it/s, loss=0.481]" ] }, { @@ -41710,7 +41688,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1069/2000 [06:57<04:58, 3.12it/s, loss=0.522]" + "training until 2000: 53%|█████▎ | 1069/2000 [06:49<04:55, 3.15it/s, loss=0.481]" ] }, { @@ -41718,7 +41696,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 53%|█████▎ | 1069/2000 [06:57<04:58, 3.12it/s, loss=0.583]" + "training until 2000: 53%|█████▎ | 1069/2000 [06:49<04:55, 3.15it/s, loss=0.471]" ] }, { @@ -41726,7 +41704,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1070/2000 [06:57<04:59, 3.11it/s, loss=0.583]" + "training until 2000: 54%|█████▎ | 1070/2000 [06:49<04:53, 3.17it/s, loss=0.471]" ] }, { @@ -41734,7 +41712,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1070/2000 [06:57<04:59, 3.11it/s, loss=0.455]" + "training until 2000: 54%|█████▎ | 1070/2000 [06:49<04:53, 3.17it/s, loss=0.495]" ] }, { @@ -41742,7 +41720,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1071/2000 [06:58<04:59, 3.10it/s, loss=0.455]" + "training until 2000: 54%|█████▎ | 1071/2000 [06:50<04:52, 3.17it/s, loss=0.495]" ] }, { @@ -41750,7 +41728,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1071/2000 [06:58<04:59, 3.10it/s, loss=0.477]" + "training until 2000: 54%|█████▎ | 1071/2000 [06:50<04:52, 3.17it/s, loss=0.441]" ] }, { @@ -41758,7 +41736,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1072/2000 [06:58<04:57, 3.12it/s, loss=0.477]" + "training until 2000: 54%|█████▎ | 1072/2000 [06:50<04:51, 3.19it/s, loss=0.441]" ] }, { @@ -41766,7 +41744,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1072/2000 [06:58<04:57, 3.12it/s, loss=0.485]" + "training until 2000: 54%|█████▎ | 1072/2000 [06:50<04:51, 3.19it/s, loss=0.437]" ] }, { @@ -41774,7 +41752,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1073/2000 [06:58<04:55, 3.14it/s, loss=0.485]" + "training until 2000: 54%|█████▎ | 1073/2000 [06:50<04:55, 3.14it/s, loss=0.437]" ] }, { @@ -41782,7 +41760,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1073/2000 [06:58<04:55, 3.14it/s, loss=0.46] " + "training until 2000: 54%|█████▎ | 1073/2000 [06:50<04:55, 3.14it/s, loss=0.485]" ] }, { @@ -41790,7 +41768,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1074/2000 [06:59<04:53, 3.15it/s, loss=0.46]" + "training until 2000: 54%|█████▎ | 1074/2000 [06:50<04:57, 3.11it/s, loss=0.485]" ] }, { @@ -41798,7 +41776,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▎ | 1074/2000 [06:59<04:53, 3.15it/s, loss=0.664]" + "training until 2000: 54%|█████▎ | 1074/2000 [06:50<04:57, 3.11it/s, loss=0.543]" ] }, { @@ -41806,7 +41784,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1075/2000 [06:59<04:51, 3.17it/s, loss=0.664]" + "training until 2000: 54%|█████▍ | 1075/2000 [06:51<04:57, 3.11it/s, loss=0.543]" ] }, { @@ -41814,7 +41792,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1075/2000 [06:59<04:51, 3.17it/s, loss=0.501]" + "training until 2000: 54%|█████▍ | 1075/2000 [06:51<04:57, 3.11it/s, loss=0.462]" ] }, { @@ -41822,7 +41800,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1076/2000 [06:59<04:51, 3.18it/s, loss=0.501]" + "training until 2000: 54%|█████▍ | 1076/2000 [06:51<04:56, 3.12it/s, loss=0.462]" ] }, { @@ -41830,7 +41808,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1076/2000 [06:59<04:51, 3.18it/s, loss=0.531]" + "training until 2000: 54%|█████▍ | 1076/2000 [06:51<04:56, 3.12it/s, loss=0.574]" ] }, { @@ -41838,7 +41816,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1077/2000 [07:00<04:51, 3.17it/s, loss=0.531]" + "training until 2000: 54%|█████▍ | 1077/2000 [06:51<04:52, 3.16it/s, loss=0.574]" ] }, { @@ -41846,7 +41824,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1077/2000 [07:00<04:51, 3.17it/s, loss=0.497]" + "training until 2000: 54%|█████▍ | 1077/2000 [06:51<04:52, 3.16it/s, loss=0.482]" ] }, { @@ -41854,7 +41832,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1078/2000 [07:00<04:53, 3.14it/s, loss=0.497]" + "training until 2000: 54%|█████▍ | 1078/2000 [06:52<04:53, 3.14it/s, loss=0.482]" ] }, { @@ -41862,7 +41840,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1078/2000 [07:00<04:53, 3.14it/s, loss=0.495]" + "training until 2000: 54%|█████▍ | 1078/2000 [06:52<04:53, 3.14it/s, loss=0.495]" ] }, { @@ -41870,7 +41848,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1079/2000 [07:00<04:52, 3.15it/s, loss=0.495]" + "training until 2000: 54%|█████▍ | 1079/2000 [06:52<04:51, 3.16it/s, loss=0.495]" ] }, { @@ -41878,7 +41856,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1079/2000 [07:00<04:52, 3.15it/s, loss=0.476]" + "training until 2000: 54%|█████▍ | 1079/2000 [06:52<04:51, 3.16it/s, loss=0.445]" ] }, { @@ -41886,7 +41864,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1080/2000 [07:01<04:53, 3.14it/s, loss=0.476]" + "training until 2000: 54%|█████▍ | 1080/2000 [06:52<04:50, 3.17it/s, loss=0.445]" ] }, { @@ -41894,7 +41872,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1080/2000 [07:01<04:53, 3.14it/s, loss=0.545]" + "training until 2000: 54%|█████▍ | 1080/2000 [06:52<04:50, 3.17it/s, loss=0.457]" ] }, { @@ -41902,7 +41880,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1081/2000 [07:01<04:58, 3.08it/s, loss=0.545]" + "training until 2000: 54%|█████▍ | 1081/2000 [06:53<04:49, 3.17it/s, loss=0.457]" ] }, { @@ -41910,7 +41888,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1081/2000 [07:01<04:58, 3.08it/s, loss=0.472]" + "training until 2000: 54%|█████▍ | 1081/2000 [06:53<04:49, 3.17it/s, loss=0.641]" ] }, { @@ -41918,7 +41896,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1082/2000 [07:01<04:57, 3.09it/s, loss=0.472]" + "training until 2000: 54%|█████▍ | 1082/2000 [06:53<04:51, 3.15it/s, loss=0.641]" ] }, { @@ -41926,7 +41904,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1082/2000 [07:01<04:57, 3.09it/s, loss=0.526]" + "training until 2000: 54%|█████▍ | 1082/2000 [06:53<04:51, 3.15it/s, loss=0.545]" ] }, { @@ -41934,7 +41912,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1083/2000 [07:02<04:53, 3.13it/s, loss=0.526]" + "training until 2000: 54%|█████▍ | 1083/2000 [06:53<04:49, 3.16it/s, loss=0.545]" ] }, { @@ -41942,7 +41920,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1083/2000 [07:02<04:53, 3.13it/s, loss=0.49] " + "training until 2000: 54%|█████▍ | 1083/2000 [06:53<04:49, 3.16it/s, loss=0.507]" ] }, { @@ -41950,7 +41928,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1084/2000 [07:02<04:53, 3.12it/s, loss=0.49]" + "training until 2000: 54%|█████▍ | 1084/2000 [06:54<04:49, 3.17it/s, loss=0.507]" ] }, { @@ -41958,7 +41936,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1084/2000 [07:02<04:53, 3.12it/s, loss=0.504]" + "training until 2000: 54%|█████▍ | 1084/2000 [06:54<04:49, 3.17it/s, loss=0.494]" ] }, { @@ -41966,7 +41944,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1085/2000 [07:02<04:53, 3.12it/s, loss=0.504]" + "training until 2000: 54%|█████▍ | 1085/2000 [06:54<04:49, 3.16it/s, loss=0.494]" ] }, { @@ -41974,7 +41952,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1085/2000 [07:02<04:53, 3.12it/s, loss=0.511]" + "training until 2000: 54%|█████▍ | 1085/2000 [06:54<04:49, 3.16it/s, loss=0.61] " ] }, { @@ -41982,7 +41960,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1086/2000 [07:02<04:52, 3.12it/s, loss=0.511]" + "training until 2000: 54%|█████▍ | 1086/2000 [06:54<04:48, 3.17it/s, loss=0.61]" ] }, { @@ -41990,7 +41968,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1086/2000 [07:02<04:52, 3.12it/s, loss=0.52] " + "training until 2000: 54%|█████▍ | 1086/2000 [06:54<04:48, 3.17it/s, loss=0.443]" ] }, { @@ -41998,7 +41976,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1087/2000 [07:03<04:55, 3.09it/s, loss=0.52]" + "training until 2000: 54%|█████▍ | 1087/2000 [06:55<04:47, 3.17it/s, loss=0.443]" ] }, { @@ -42006,7 +41984,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1087/2000 [07:03<04:55, 3.09it/s, loss=0.485]" + "training until 2000: 54%|█████▍ | 1087/2000 [06:55<04:47, 3.17it/s, loss=0.457]" ] }, { @@ -42014,7 +41992,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1088/2000 [07:03<04:56, 3.08it/s, loss=0.485]" + "training until 2000: 54%|█████▍ | 1088/2000 [06:55<04:46, 3.18it/s, loss=0.457]" ] }, { @@ -42022,7 +42000,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1088/2000 [07:03<04:56, 3.08it/s, loss=0.489]" + "training until 2000: 54%|█████▍ | 1088/2000 [06:55<04:46, 3.18it/s, loss=0.442]" ] }, { @@ -42030,7 +42008,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1089/2000 [07:03<04:55, 3.08it/s, loss=0.489]" + "training until 2000: 54%|█████▍ | 1089/2000 [06:55<04:48, 3.15it/s, loss=0.442]" ] }, { @@ -42038,7 +42016,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 54%|█████▍ | 1089/2000 [07:03<04:55, 3.08it/s, loss=0.497]" + "training until 2000: 54%|█████▍ | 1089/2000 [06:55<04:48, 3.15it/s, loss=0.555]" ] }, { @@ -42046,7 +42024,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1090/2000 [07:04<04:53, 3.10it/s, loss=0.497]" + "training until 2000: 55%|█████▍ | 1090/2000 [06:56<04:46, 3.18it/s, loss=0.555]" ] }, { @@ -42054,7 +42032,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1090/2000 [07:04<04:53, 3.10it/s, loss=0.534]" + "training until 2000: 55%|█████▍ | 1090/2000 [06:56<04:46, 3.18it/s, loss=0.517]" ] }, { @@ -42062,7 +42040,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1091/2000 [07:04<04:53, 3.10it/s, loss=0.534]" + "training until 2000: 55%|█████▍ | 1091/2000 [06:56<04:46, 3.17it/s, loss=0.517]" ] }, { @@ -42070,7 +42048,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1091/2000 [07:04<04:53, 3.10it/s, loss=0.5] " + "training until 2000: 55%|█████▍ | 1091/2000 [06:56<04:46, 3.17it/s, loss=0.451]" ] }, { @@ -42078,7 +42056,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1092/2000 [07:04<04:51, 3.11it/s, loss=0.5]" + "training until 2000: 55%|█████▍ | 1092/2000 [06:56<04:48, 3.15it/s, loss=0.451]" ] }, { @@ -42086,7 +42064,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1092/2000 [07:04<04:51, 3.11it/s, loss=0.456]" + "training until 2000: 55%|█████▍ | 1092/2000 [06:56<04:48, 3.15it/s, loss=0.495]" ] }, { @@ -42094,7 +42072,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1093/2000 [07:05<04:47, 3.15it/s, loss=0.456]" + "training until 2000: 55%|█████▍ | 1093/2000 [06:57<04:47, 3.16it/s, loss=0.495]" ] }, { @@ -42102,7 +42080,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1093/2000 [07:05<04:47, 3.15it/s, loss=0.461]" + "training until 2000: 55%|█████▍ | 1093/2000 [06:57<04:47, 3.16it/s, loss=0.463]" ] }, { @@ -42110,7 +42088,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1094/2000 [07:05<04:47, 3.15it/s, loss=0.461]" + "training until 2000: 55%|█████▍ | 1094/2000 [06:57<04:45, 3.18it/s, loss=0.463]" ] }, { @@ -42118,7 +42096,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1094/2000 [07:05<04:47, 3.15it/s, loss=0.47] " + "training until 2000: 55%|█████▍ | 1094/2000 [06:57<04:45, 3.18it/s, loss=0.477]" ] }, { @@ -42126,7 +42104,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1095/2000 [07:05<04:48, 3.13it/s, loss=0.47]" + "training until 2000: 55%|█████▍ | 1095/2000 [06:57<04:49, 3.13it/s, loss=0.477]" ] }, { @@ -42134,7 +42112,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1095/2000 [07:05<04:48, 3.13it/s, loss=0.45]" + "training until 2000: 55%|█████▍ | 1095/2000 [06:57<04:49, 3.13it/s, loss=0.447]" ] }, { @@ -42142,7 +42120,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1096/2000 [07:06<04:47, 3.14it/s, loss=0.45]" + "training until 2000: 55%|█████▍ | 1096/2000 [06:57<04:46, 3.15it/s, loss=0.447]" ] }, { @@ -42150,7 +42128,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1096/2000 [07:06<04:47, 3.14it/s, loss=0.594]" + "training until 2000: 55%|█████▍ | 1096/2000 [06:57<04:46, 3.15it/s, loss=0.664]" ] }, { @@ -42158,7 +42136,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1097/2000 [07:06<04:48, 3.13it/s, loss=0.594]" + "training until 2000: 55%|█████▍ | 1097/2000 [06:58<04:44, 3.18it/s, loss=0.664]" ] }, { @@ -42166,7 +42144,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1097/2000 [07:06<04:48, 3.13it/s, loss=0.474]" + "training until 2000: 55%|█████▍ | 1097/2000 [06:58<04:44, 3.18it/s, loss=0.517]" ] }, { @@ -42174,7 +42152,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1098/2000 [07:06<04:50, 3.11it/s, loss=0.474]" + "training until 2000: 55%|█████▍ | 1098/2000 [06:58<04:45, 3.16it/s, loss=0.517]" ] }, { @@ -42182,7 +42160,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1098/2000 [07:06<04:50, 3.11it/s, loss=0.448]" + "training until 2000: 55%|█████▍ | 1098/2000 [06:58<04:45, 3.16it/s, loss=0.5] " ] }, { @@ -42190,7 +42168,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1099/2000 [07:07<04:49, 3.11it/s, loss=0.448]" + "training until 2000: 55%|█████▍ | 1099/2000 [06:58<04:43, 3.18it/s, loss=0.5]" ] }, { @@ -42198,7 +42176,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▍ | 1099/2000 [07:07<04:49, 3.11it/s, loss=0.5] " + "training until 2000: 55%|█████▍ | 1099/2000 [06:58<04:43, 3.18it/s, loss=0.529]" ] }, { @@ -42206,7 +42184,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1100/2000 [07:07<04:50, 3.10it/s, loss=0.5]" + "training until 2000: 55%|█████▌ | 1100/2000 [06:59<04:43, 3.17it/s, loss=0.529]" ] }, { @@ -42214,7 +42192,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1100/2000 [07:07<04:50, 3.10it/s, loss=0.48]" + "training until 2000: 55%|█████▌ | 1100/2000 [06:59<04:43, 3.17it/s, loss=0.462]" ] }, { @@ -42222,7 +42200,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1101/2000 [07:07<04:49, 3.10it/s, loss=0.48]" + "training until 2000: 55%|█████▌ | 1101/2000 [06:59<05:51, 2.56it/s, loss=0.462]" ] }, { @@ -42230,7 +42208,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1101/2000 [07:07<04:49, 3.10it/s, loss=0.47]" + "training until 2000: 55%|█████▌ | 1101/2000 [06:59<05:51, 2.56it/s, loss=0.526]" ] }, { @@ -42238,7 +42216,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1102/2000 [07:08<04:47, 3.12it/s, loss=0.47]" + "training until 2000: 55%|█████▌ | 1102/2000 [07:00<05:30, 2.71it/s, loss=0.526]" ] }, { @@ -42246,7 +42224,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1102/2000 [07:08<04:47, 3.12it/s, loss=0.486]" + "training until 2000: 55%|█████▌ | 1102/2000 [07:00<05:30, 2.71it/s, loss=0.44] " ] }, { @@ -42254,7 +42232,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1103/2000 [07:08<04:47, 3.11it/s, loss=0.486]" + "training until 2000: 55%|█████▌ | 1103/2000 [07:00<05:19, 2.81it/s, loss=0.44]" ] }, { @@ -42262,7 +42240,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1103/2000 [07:08<04:47, 3.11it/s, loss=0.497]" + "training until 2000: 55%|█████▌ | 1103/2000 [07:00<05:19, 2.81it/s, loss=0.592]" ] }, { @@ -42270,7 +42248,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1104/2000 [07:08<04:46, 3.13it/s, loss=0.497]" + "training until 2000: 55%|█████▌ | 1104/2000 [07:00<05:11, 2.87it/s, loss=0.592]" ] }, { @@ -42278,7 +42256,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1104/2000 [07:08<04:46, 3.13it/s, loss=0.512]" + "training until 2000: 55%|█████▌ | 1104/2000 [07:00<05:11, 2.87it/s, loss=0.606]" ] }, { @@ -42286,7 +42264,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1105/2000 [07:09<04:46, 3.12it/s, loss=0.512]" + "training until 2000: 55%|█████▌ | 1105/2000 [07:01<05:03, 2.95it/s, loss=0.606]" ] }, { @@ -42294,7 +42272,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1105/2000 [07:09<04:46, 3.12it/s, loss=0.476]" + "training until 2000: 55%|█████▌ | 1105/2000 [07:01<05:03, 2.95it/s, loss=0.495]" ] }, { @@ -42302,7 +42280,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1106/2000 [07:09<04:50, 3.08it/s, loss=0.476]" + "training until 2000: 55%|█████▌ | 1106/2000 [07:01<04:59, 2.99it/s, loss=0.495]" ] }, { @@ -42310,7 +42288,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1106/2000 [07:09<04:50, 3.08it/s, loss=0.479]" + "training until 2000: 55%|█████▌ | 1106/2000 [07:01<04:59, 2.99it/s, loss=0.524]" ] }, { @@ -42318,7 +42296,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1107/2000 [07:09<04:47, 3.11it/s, loss=0.479]" + "training until 2000: 55%|█████▌ | 1107/2000 [07:01<04:55, 3.02it/s, loss=0.524]" ] }, { @@ -42326,7 +42304,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1107/2000 [07:09<04:47, 3.11it/s, loss=0.458]" + "training until 2000: 55%|█████▌ | 1107/2000 [07:01<04:55, 3.02it/s, loss=0.444]" ] }, { @@ -42334,7 +42312,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1108/2000 [07:10<04:45, 3.13it/s, loss=0.458]" + "training until 2000: 55%|█████▌ | 1108/2000 [07:02<04:47, 3.10it/s, loss=0.444]" ] }, { @@ -42342,7 +42320,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1108/2000 [07:10<04:45, 3.13it/s, loss=0.524]" + "training until 2000: 55%|█████▌ | 1108/2000 [07:02<04:47, 3.10it/s, loss=0.47] " ] }, { @@ -42350,7 +42328,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1109/2000 [07:10<04:46, 3.11it/s, loss=0.524]" + "training until 2000: 55%|█████▌ | 1109/2000 [07:02<04:45, 3.12it/s, loss=0.47]" ] }, { @@ -42358,7 +42336,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 55%|█████▌ | 1109/2000 [07:10<04:46, 3.11it/s, loss=0.471]" + "training until 2000: 55%|█████▌ | 1109/2000 [07:02<04:45, 3.12it/s, loss=0.446]" ] }, { @@ -42366,7 +42344,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1110/2000 [07:10<04:48, 3.09it/s, loss=0.471]" + "training until 2000: 56%|█████▌ | 1110/2000 [07:02<04:45, 3.12it/s, loss=0.446]" ] }, { @@ -42374,7 +42352,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1110/2000 [07:10<04:48, 3.09it/s, loss=0.482]" + "training until 2000: 56%|█████▌ | 1110/2000 [07:02<04:45, 3.12it/s, loss=0.542]" ] }, { @@ -42382,7 +42360,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1111/2000 [07:11<05:53, 2.52it/s, loss=0.482]" + "training until 2000: 56%|█████▌ | 1111/2000 [07:02<04:42, 3.14it/s, loss=0.542]" ] }, { @@ -42390,7 +42368,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1111/2000 [07:11<05:53, 2.52it/s, loss=0.471]" + "training until 2000: 56%|█████▌ | 1111/2000 [07:02<04:42, 3.14it/s, loss=0.437]" ] }, { @@ -42398,7 +42376,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1112/2000 [07:11<05:34, 2.65it/s, loss=0.471]" + "training until 2000: 56%|█████▌ | 1112/2000 [07:03<04:42, 3.14it/s, loss=0.437]" ] }, { @@ -42406,7 +42384,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1112/2000 [07:11<05:34, 2.65it/s, loss=0.465]" + "training until 2000: 56%|█████▌ | 1112/2000 [07:03<04:42, 3.14it/s, loss=0.456]" ] }, { @@ -42414,7 +42392,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1113/2000 [07:11<05:22, 2.75it/s, loss=0.465]" + "training until 2000: 56%|█████▌ | 1113/2000 [07:03<04:41, 3.15it/s, loss=0.456]" ] }, { @@ -42422,7 +42400,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1113/2000 [07:11<05:22, 2.75it/s, loss=0.479]" + "training until 2000: 56%|█████▌ | 1113/2000 [07:03<04:41, 3.15it/s, loss=0.45] " ] }, { @@ -42430,7 +42408,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1114/2000 [07:12<05:08, 2.87it/s, loss=0.479]" + "training until 2000: 56%|█████▌ | 1114/2000 [07:03<04:39, 3.17it/s, loss=0.45]" ] }, { @@ -42438,7 +42416,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1114/2000 [07:12<05:08, 2.87it/s, loss=0.467]" + "training until 2000: 56%|█████▌ | 1114/2000 [07:03<04:39, 3.17it/s, loss=0.427]" ] }, { @@ -42446,7 +42424,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1115/2000 [07:12<05:03, 2.92it/s, loss=0.467]" + "training until 2000: 56%|█████▌ | 1115/2000 [07:04<04:38, 3.18it/s, loss=0.427]" ] }, { @@ -42454,7 +42432,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1115/2000 [07:12<05:03, 2.92it/s, loss=0.515]" + "training until 2000: 56%|█████▌ | 1115/2000 [07:04<04:38, 3.18it/s, loss=0.591]" ] }, { @@ -42462,7 +42440,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1116/2000 [07:12<04:55, 2.99it/s, loss=0.515]" + "training until 2000: 56%|█████▌ | 1116/2000 [07:04<04:36, 3.20it/s, loss=0.591]" ] }, { @@ -42470,7 +42448,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1116/2000 [07:12<04:55, 2.99it/s, loss=0.47] " + "training until 2000: 56%|█████▌ | 1116/2000 [07:04<04:36, 3.20it/s, loss=0.504]" ] }, { @@ -42478,7 +42456,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1117/2000 [07:13<04:54, 3.00it/s, loss=0.47]" + "training until 2000: 56%|█████▌ | 1117/2000 [07:04<04:38, 3.17it/s, loss=0.504]" ] }, { @@ -42486,7 +42464,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1117/2000 [07:13<04:54, 3.00it/s, loss=0.476]" + "training until 2000: 56%|█████▌ | 1117/2000 [07:04<04:38, 3.17it/s, loss=0.466]" ] }, { @@ -42494,7 +42472,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1118/2000 [07:13<04:51, 3.03it/s, loss=0.476]" + "training until 2000: 56%|█████▌ | 1118/2000 [07:05<04:38, 3.17it/s, loss=0.466]" ] }, { @@ -42502,7 +42480,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1118/2000 [07:13<04:51, 3.03it/s, loss=0.465]" + "training until 2000: 56%|█████▌ | 1118/2000 [07:05<04:38, 3.17it/s, loss=0.428]" ] }, { @@ -42510,7 +42488,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1119/2000 [07:13<04:49, 3.04it/s, loss=0.465]" + "training until 2000: 56%|█████▌ | 1119/2000 [07:05<04:39, 3.16it/s, loss=0.428]" ] }, { @@ -42518,7 +42496,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1119/2000 [07:13<04:49, 3.04it/s, loss=0.473]" + "training until 2000: 56%|█████▌ | 1119/2000 [07:05<04:39, 3.16it/s, loss=0.441]" ] }, { @@ -42526,7 +42504,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1120/2000 [07:14<04:46, 3.08it/s, loss=0.473]" + "training until 2000: 56%|█████▌ | 1120/2000 [07:05<04:40, 3.14it/s, loss=0.441]" ] }, { @@ -42534,7 +42512,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1120/2000 [07:14<04:46, 3.08it/s, loss=0.464]" + "training until 2000: 56%|█████▌ | 1120/2000 [07:05<04:40, 3.14it/s, loss=0.528]" ] }, { @@ -42542,7 +42520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1121/2000 [07:14<04:50, 3.03it/s, loss=0.464]" + "training until 2000: 56%|█████▌ | 1121/2000 [07:06<04:38, 3.15it/s, loss=0.528]" ] }, { @@ -42550,7 +42528,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1121/2000 [07:14<04:50, 3.03it/s, loss=0.496]" + "training until 2000: 56%|█████▌ | 1121/2000 [07:06<04:38, 3.15it/s, loss=0.485]" ] }, { @@ -42558,7 +42536,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1122/2000 [07:14<04:47, 3.06it/s, loss=0.496]" + "training until 2000: 56%|█████▌ | 1122/2000 [07:06<04:35, 3.19it/s, loss=0.485]" ] }, { @@ -42566,7 +42544,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1122/2000 [07:14<04:47, 3.06it/s, loss=0.455]" + "training until 2000: 56%|█████▌ | 1122/2000 [07:06<04:35, 3.19it/s, loss=0.511]" ] }, { @@ -42574,7 +42552,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1123/2000 [07:15<04:45, 3.08it/s, loss=0.455]" + "training until 2000: 56%|█████▌ | 1123/2000 [07:06<04:33, 3.21it/s, loss=0.511]" ] }, { @@ -42582,7 +42560,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1123/2000 [07:15<04:45, 3.08it/s, loss=0.49] " + "training until 2000: 56%|█████▌ | 1123/2000 [07:06<04:33, 3.21it/s, loss=0.466]" ] }, { @@ -42590,7 +42568,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1124/2000 [07:15<04:48, 3.04it/s, loss=0.49]" + "training until 2000: 56%|█████▌ | 1124/2000 [07:07<04:31, 3.23it/s, loss=0.466]" ] }, { @@ -42598,7 +42576,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▌ | 1124/2000 [07:15<04:48, 3.04it/s, loss=0.486]" + "training until 2000: 56%|█████▌ | 1124/2000 [07:07<04:31, 3.23it/s, loss=0.491]" ] }, { @@ -42606,7 +42584,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1125/2000 [07:15<04:50, 3.01it/s, loss=0.486]" + "training until 2000: 56%|█████▋ | 1125/2000 [07:07<04:33, 3.20it/s, loss=0.491]" ] }, { @@ -42614,7 +42592,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1125/2000 [07:15<04:50, 3.01it/s, loss=0.475]" + "training until 2000: 56%|█████▋ | 1125/2000 [07:07<04:33, 3.20it/s, loss=0.51] " ] }, { @@ -42622,7 +42600,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1126/2000 [07:16<04:46, 3.05it/s, loss=0.475]" + "training until 2000: 56%|█████▋ | 1126/2000 [07:07<04:32, 3.20it/s, loss=0.51]" ] }, { @@ -42630,7 +42608,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1126/2000 [07:16<04:46, 3.05it/s, loss=0.493]" + "training until 2000: 56%|█████▋ | 1126/2000 [07:07<04:32, 3.20it/s, loss=0.428]" ] }, { @@ -42638,7 +42616,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1127/2000 [07:16<04:45, 3.06it/s, loss=0.493]" + "training until 2000: 56%|█████▋ | 1127/2000 [07:07<04:32, 3.21it/s, loss=0.428]" ] }, { @@ -42646,7 +42624,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1127/2000 [07:16<04:45, 3.06it/s, loss=0.52] " + "training until 2000: 56%|█████▋ | 1127/2000 [07:07<04:32, 3.21it/s, loss=0.455]" ] }, { @@ -42654,7 +42632,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1128/2000 [07:16<04:43, 3.07it/s, loss=0.52]" + "training until 2000: 56%|█████▋ | 1128/2000 [07:08<04:30, 3.22it/s, loss=0.455]" ] }, { @@ -42662,7 +42640,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1128/2000 [07:16<04:43, 3.07it/s, loss=0.469]" + "training until 2000: 56%|█████▋ | 1128/2000 [07:08<04:30, 3.22it/s, loss=0.474]" ] }, { @@ -42670,7 +42648,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1129/2000 [07:17<04:43, 3.08it/s, loss=0.469]" + "training until 2000: 56%|█████▋ | 1129/2000 [07:08<04:30, 3.22it/s, loss=0.474]" ] }, { @@ -42678,7 +42656,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1129/2000 [07:17<04:43, 3.08it/s, loss=0.46] " + "training until 2000: 56%|█████▋ | 1129/2000 [07:08<04:30, 3.22it/s, loss=0.519]" ] }, { @@ -42686,7 +42664,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1130/2000 [07:17<04:43, 3.07it/s, loss=0.46]" + "training until 2000: 56%|█████▋ | 1130/2000 [07:08<04:38, 3.12it/s, loss=0.519]" ] }, { @@ -42694,7 +42672,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 56%|█████▋ | 1130/2000 [07:17<04:43, 3.07it/s, loss=0.502]" + "training until 2000: 56%|█████▋ | 1130/2000 [07:08<04:38, 3.12it/s, loss=0.412]" ] }, { @@ -42702,7 +42680,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1131/2000 [07:17<04:40, 3.09it/s, loss=0.502]" + "training until 2000: 57%|█████▋ | 1131/2000 [07:09<04:38, 3.12it/s, loss=0.412]" ] }, { @@ -42710,7 +42688,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1131/2000 [07:17<04:40, 3.09it/s, loss=0.457]" + "training until 2000: 57%|█████▋ | 1131/2000 [07:09<04:38, 3.12it/s, loss=0.48] " ] }, { @@ -42718,7 +42696,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1132/2000 [07:18<04:40, 3.09it/s, loss=0.457]" + "training until 2000: 57%|█████▋ | 1132/2000 [07:09<04:38, 3.11it/s, loss=0.48]" ] }, { @@ -42726,7 +42704,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1132/2000 [07:18<04:40, 3.09it/s, loss=0.444]" + "training until 2000: 57%|█████▋ | 1132/2000 [07:09<04:38, 3.11it/s, loss=0.529]" ] }, { @@ -42734,7 +42712,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1133/2000 [07:18<04:40, 3.10it/s, loss=0.444]" + "training until 2000: 57%|█████▋ | 1133/2000 [07:09<04:42, 3.06it/s, loss=0.529]" ] }, { @@ -42742,7 +42720,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1133/2000 [07:18<04:40, 3.10it/s, loss=0.48] " + "training until 2000: 57%|█████▋ | 1133/2000 [07:09<04:42, 3.06it/s, loss=0.442]" ] }, { @@ -42750,7 +42728,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1134/2000 [07:18<04:37, 3.12it/s, loss=0.48]" + "training until 2000: 57%|█████▋ | 1134/2000 [07:10<04:38, 3.11it/s, loss=0.442]" ] }, { @@ -42758,7 +42736,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1134/2000 [07:18<04:37, 3.12it/s, loss=0.513]" + "training until 2000: 57%|█████▋ | 1134/2000 [07:10<04:38, 3.11it/s, loss=0.628]" ] }, { @@ -42766,7 +42744,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1135/2000 [07:19<04:36, 3.12it/s, loss=0.513]" + "training until 2000: 57%|█████▋ | 1135/2000 [07:10<04:36, 3.13it/s, loss=0.628]" ] }, { @@ -42774,7 +42752,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1135/2000 [07:19<04:36, 3.12it/s, loss=0.461]" + "training until 2000: 57%|█████▋ | 1135/2000 [07:10<04:36, 3.13it/s, loss=0.446]" ] }, { @@ -42782,7 +42760,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1136/2000 [07:19<04:35, 3.14it/s, loss=0.461]" + "training until 2000: 57%|█████▋ | 1136/2000 [07:10<04:36, 3.13it/s, loss=0.446]" ] }, { @@ -42790,7 +42768,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1136/2000 [07:19<04:35, 3.14it/s, loss=0.46] " + "training until 2000: 57%|█████▋ | 1136/2000 [07:10<04:36, 3.13it/s, loss=0.487]" ] }, { @@ -42798,7 +42776,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1137/2000 [07:19<04:35, 3.13it/s, loss=0.46]" + "training until 2000: 57%|█████▋ | 1137/2000 [07:11<04:34, 3.14it/s, loss=0.487]" ] }, { @@ -42806,7 +42784,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1137/2000 [07:19<04:35, 3.13it/s, loss=0.454]" + "training until 2000: 57%|█████▋ | 1137/2000 [07:11<04:34, 3.14it/s, loss=0.469]" ] }, { @@ -42814,7 +42792,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1138/2000 [07:20<04:37, 3.10it/s, loss=0.454]" + "training until 2000: 57%|█████▋ | 1138/2000 [07:11<04:32, 3.16it/s, loss=0.469]" ] }, { @@ -42822,7 +42800,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1138/2000 [07:20<04:37, 3.10it/s, loss=0.506]" + "training until 2000: 57%|█████▋ | 1138/2000 [07:11<04:32, 3.16it/s, loss=0.425]" ] }, { @@ -42830,7 +42808,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1139/2000 [07:20<04:38, 3.09it/s, loss=0.506]" + "training until 2000: 57%|█████▋ | 1139/2000 [07:11<04:33, 3.14it/s, loss=0.425]" ] }, { @@ -42838,7 +42816,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1139/2000 [07:20<04:38, 3.09it/s, loss=0.494]" + "training until 2000: 57%|█████▋ | 1139/2000 [07:11<04:33, 3.14it/s, loss=0.581]" ] }, { @@ -42846,7 +42824,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1140/2000 [07:20<04:39, 3.07it/s, loss=0.494]" + "training until 2000: 57%|█████▋ | 1140/2000 [07:12<04:37, 3.10it/s, loss=0.581]" ] }, { @@ -42854,7 +42832,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1140/2000 [07:20<04:39, 3.07it/s, loss=0.483]" + "training until 2000: 57%|█████▋ | 1140/2000 [07:12<04:37, 3.10it/s, loss=0.494]" ] }, { @@ -42862,7 +42840,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1141/2000 [07:21<04:41, 3.06it/s, loss=0.483]" + "training until 2000: 57%|█████▋ | 1141/2000 [07:12<04:36, 3.10it/s, loss=0.494]" ] }, { @@ -42870,7 +42848,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1141/2000 [07:21<04:41, 3.06it/s, loss=0.461]" + "training until 2000: 57%|█████▋ | 1141/2000 [07:12<04:36, 3.10it/s, loss=0.527]" ] }, { @@ -42878,7 +42856,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1142/2000 [07:21<04:39, 3.07it/s, loss=0.461]" + "training until 2000: 57%|█████▋ | 1142/2000 [07:12<04:35, 3.11it/s, loss=0.527]" ] }, { @@ -42886,7 +42864,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1142/2000 [07:21<04:39, 3.07it/s, loss=0.516]" + "training until 2000: 57%|█████▋ | 1142/2000 [07:12<04:35, 3.11it/s, loss=0.438]" ] }, { @@ -42894,7 +42872,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1143/2000 [07:21<04:40, 3.05it/s, loss=0.516]" + "training until 2000: 57%|█████▋ | 1143/2000 [07:13<04:38, 3.08it/s, loss=0.438]" ] }, { @@ -42902,7 +42880,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1143/2000 [07:21<04:40, 3.05it/s, loss=0.499]" + "training until 2000: 57%|█████▋ | 1143/2000 [07:13<04:38, 3.08it/s, loss=0.461]" ] }, { @@ -42910,7 +42888,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1144/2000 [07:21<04:37, 3.08it/s, loss=0.499]" + "training until 2000: 57%|█████▋ | 1144/2000 [07:13<04:35, 3.10it/s, loss=0.461]" ] }, { @@ -42918,7 +42896,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1144/2000 [07:21<04:37, 3.08it/s, loss=0.462]" + "training until 2000: 57%|█████▋ | 1144/2000 [07:13<04:35, 3.10it/s, loss=0.475]" ] }, { @@ -42926,7 +42904,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1145/2000 [07:22<04:32, 3.13it/s, loss=0.462]" + "training until 2000: 57%|█████▋ | 1145/2000 [07:13<04:33, 3.12it/s, loss=0.475]" ] }, { @@ -42934,7 +42912,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1145/2000 [07:22<04:32, 3.13it/s, loss=0.48] " + "training until 2000: 57%|█████▋ | 1145/2000 [07:13<04:33, 3.12it/s, loss=0.46] " ] }, { @@ -42942,7 +42920,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1146/2000 [07:22<04:33, 3.13it/s, loss=0.48]" + "training until 2000: 57%|█████▋ | 1146/2000 [07:14<04:33, 3.13it/s, loss=0.46]" ] }, { @@ -42950,7 +42928,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1146/2000 [07:22<04:33, 3.13it/s, loss=0.464]" + "training until 2000: 57%|█████▋ | 1146/2000 [07:14<04:33, 3.13it/s, loss=0.589]" ] }, { @@ -42958,7 +42936,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1147/2000 [07:22<04:34, 3.11it/s, loss=0.464]" + "training until 2000: 57%|█████▋ | 1147/2000 [07:14<04:30, 3.15it/s, loss=0.589]" ] }, { @@ -42966,7 +42944,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1147/2000 [07:22<04:34, 3.11it/s, loss=0.481]" + "training until 2000: 57%|█████▋ | 1147/2000 [07:14<04:30, 3.15it/s, loss=0.478]" ] }, { @@ -42974,7 +42952,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1148/2000 [07:23<04:34, 3.11it/s, loss=0.481]" + "training until 2000: 57%|█████▋ | 1148/2000 [07:14<04:32, 3.13it/s, loss=0.478]" ] }, { @@ -42982,7 +42960,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1148/2000 [07:23<04:34, 3.11it/s, loss=0.457]" + "training until 2000: 57%|█████▋ | 1148/2000 [07:14<04:32, 3.13it/s, loss=0.458]" ] }, { @@ -42990,7 +42968,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1149/2000 [07:23<04:35, 3.09it/s, loss=0.457]" + "training until 2000: 57%|█████▋ | 1149/2000 [07:15<04:39, 3.05it/s, loss=0.458]" ] }, { @@ -42998,7 +42976,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▋ | 1149/2000 [07:23<04:35, 3.09it/s, loss=0.465]" + "training until 2000: 57%|█████▋ | 1149/2000 [07:15<04:39, 3.05it/s, loss=0.478]" ] }, { @@ -43006,7 +42984,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▊ | 1150/2000 [07:23<04:33, 3.11it/s, loss=0.465]" + "training until 2000: 57%|█████▊ | 1150/2000 [07:15<04:34, 3.10it/s, loss=0.478]" ] }, { @@ -43014,7 +42992,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 57%|█████▊ | 1150/2000 [07:23<04:33, 3.11it/s, loss=0.469]" + "training until 2000: 57%|█████▊ | 1150/2000 [07:15<04:34, 3.10it/s, loss=0.479]" ] }, { @@ -43022,7 +43000,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1151/2000 [07:24<04:31, 3.13it/s, loss=0.469]" + "training until 2000: 58%|█████▊ | 1151/2000 [07:15<04:33, 3.10it/s, loss=0.479]" ] }, { @@ -43030,7 +43008,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1151/2000 [07:24<04:31, 3.13it/s, loss=0.476]" + "training until 2000: 58%|█████▊ | 1151/2000 [07:15<04:33, 3.10it/s, loss=0.537]" ] }, { @@ -43038,7 +43016,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1152/2000 [07:24<04:29, 3.14it/s, loss=0.476]" + "training until 2000: 58%|█████▊ | 1152/2000 [07:16<04:31, 3.12it/s, loss=0.537]" ] }, { @@ -43046,7 +43024,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1152/2000 [07:24<04:29, 3.14it/s, loss=0.471]" + "training until 2000: 58%|█████▊ | 1152/2000 [07:16<04:31, 3.12it/s, loss=0.448]" ] }, { @@ -43054,7 +43032,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1153/2000 [07:24<04:33, 3.09it/s, loss=0.471]" + "training until 2000: 58%|█████▊ | 1153/2000 [07:16<04:31, 3.12it/s, loss=0.448]" ] }, { @@ -43062,7 +43040,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1153/2000 [07:24<04:33, 3.09it/s, loss=0.474]" + "training until 2000: 58%|█████▊ | 1153/2000 [07:16<04:31, 3.12it/s, loss=0.45] " ] }, { @@ -43070,7 +43048,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1154/2000 [07:25<04:33, 3.09it/s, loss=0.474]" + "training until 2000: 58%|█████▊ | 1154/2000 [07:16<04:31, 3.11it/s, loss=0.45]" ] }, { @@ -43078,7 +43056,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1154/2000 [07:25<04:33, 3.09it/s, loss=0.504]" + "training until 2000: 58%|█████▊ | 1154/2000 [07:16<04:31, 3.11it/s, loss=0.417]" ] }, { @@ -43086,7 +43064,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1155/2000 [07:25<04:30, 3.12it/s, loss=0.504]" + "training until 2000: 58%|█████▊ | 1155/2000 [07:16<04:33, 3.08it/s, loss=0.417]" ] }, { @@ -43094,7 +43072,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1155/2000 [07:25<04:30, 3.12it/s, loss=0.482]" + "training until 2000: 58%|█████▊ | 1155/2000 [07:16<04:33, 3.08it/s, loss=0.426]" ] }, { @@ -43102,7 +43080,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1156/2000 [07:25<04:32, 3.10it/s, loss=0.482]" + "training until 2000: 58%|█████▊ | 1156/2000 [07:17<04:33, 3.08it/s, loss=0.426]" ] }, { @@ -43110,7 +43088,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1156/2000 [07:25<04:32, 3.10it/s, loss=0.54] " + "training until 2000: 58%|█████▊ | 1156/2000 [07:17<04:33, 3.08it/s, loss=0.511]" ] }, { @@ -43118,7 +43096,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1157/2000 [07:26<04:33, 3.08it/s, loss=0.54]" + "training until 2000: 58%|█████▊ | 1157/2000 [07:17<04:36, 3.05it/s, loss=0.511]" ] }, { @@ -43126,7 +43104,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1157/2000 [07:26<04:33, 3.08it/s, loss=0.467]" + "training until 2000: 58%|█████▊ | 1157/2000 [07:17<04:36, 3.05it/s, loss=0.463]" ] }, { @@ -43134,7 +43112,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1158/2000 [07:26<04:32, 3.10it/s, loss=0.467]" + "training until 2000: 58%|█████▊ | 1158/2000 [07:17<04:33, 3.08it/s, loss=0.463]" ] }, { @@ -43142,7 +43120,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1158/2000 [07:26<04:32, 3.10it/s, loss=0.448]" + "training until 2000: 58%|█████▊ | 1158/2000 [07:17<04:33, 3.08it/s, loss=0.513]" ] }, { @@ -43150,7 +43128,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1159/2000 [07:26<04:29, 3.12it/s, loss=0.448]" + "training until 2000: 58%|█████▊ | 1159/2000 [07:18<04:34, 3.06it/s, loss=0.513]" ] }, { @@ -43158,7 +43136,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1159/2000 [07:26<04:29, 3.12it/s, loss=0.445]" + "training until 2000: 58%|█████▊ | 1159/2000 [07:18<04:34, 3.06it/s, loss=0.435]" ] }, { @@ -43166,7 +43144,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1160/2000 [07:27<04:28, 3.13it/s, loss=0.445]" + "training until 2000: 58%|█████▊ | 1160/2000 [07:18<04:36, 3.03it/s, loss=0.435]" ] }, { @@ -43174,7 +43152,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1160/2000 [07:27<04:28, 3.13it/s, loss=0.447]" + "training until 2000: 58%|█████▊ | 1160/2000 [07:18<04:36, 3.03it/s, loss=0.424]" ] }, { @@ -43182,7 +43160,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1161/2000 [07:27<04:29, 3.11it/s, loss=0.447]" + "training until 2000: 58%|█████▊ | 1161/2000 [07:18<04:33, 3.06it/s, loss=0.424]" ] }, { @@ -43190,7 +43168,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1161/2000 [07:27<04:29, 3.11it/s, loss=0.499]" + "training until 2000: 58%|█████▊ | 1161/2000 [07:18<04:33, 3.06it/s, loss=0.641]" ] }, { @@ -43198,7 +43176,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1162/2000 [07:27<04:29, 3.12it/s, loss=0.499]" + "training until 2000: 58%|█████▊ | 1162/2000 [07:19<04:39, 3.00it/s, loss=0.641]" ] }, { @@ -43206,7 +43184,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1162/2000 [07:27<04:29, 3.12it/s, loss=0.449]" + "training until 2000: 58%|█████▊ | 1162/2000 [07:19<04:39, 3.00it/s, loss=0.446]" ] }, { @@ -43214,7 +43192,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1163/2000 [07:28<04:26, 3.15it/s, loss=0.449]" + "training until 2000: 58%|█████▊ | 1163/2000 [07:19<05:40, 2.46it/s, loss=0.446]" ] }, { @@ -43222,7 +43200,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1163/2000 [07:28<04:26, 3.15it/s, loss=0.457]" + "training until 2000: 58%|█████▊ | 1163/2000 [07:19<05:40, 2.46it/s, loss=0.474]" ] }, { @@ -43230,7 +43208,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1164/2000 [07:28<04:23, 3.18it/s, loss=0.457]" + "training until 2000: 58%|█████▊ | 1164/2000 [07:20<05:19, 2.62it/s, loss=0.474]" ] }, { @@ -43238,7 +43216,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1164/2000 [07:28<04:23, 3.18it/s, loss=0.454]" + "training until 2000: 58%|█████▊ | 1164/2000 [07:20<05:19, 2.62it/s, loss=0.495]" ] }, { @@ -43246,7 +43224,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1165/2000 [07:28<04:23, 3.17it/s, loss=0.454]" + "training until 2000: 58%|█████▊ | 1165/2000 [07:20<05:03, 2.75it/s, loss=0.495]" ] }, { @@ -43254,7 +43232,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1165/2000 [07:28<04:23, 3.17it/s, loss=0.468]" + "training until 2000: 58%|█████▊ | 1165/2000 [07:20<05:03, 2.75it/s, loss=0.44] " ] }, { @@ -43262,7 +43240,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1166/2000 [07:29<04:24, 3.15it/s, loss=0.468]" + "training until 2000: 58%|█████▊ | 1166/2000 [07:20<04:54, 2.83it/s, loss=0.44]" ] }, { @@ -43270,7 +43248,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1166/2000 [07:29<04:24, 3.15it/s, loss=0.465]" + "training until 2000: 58%|█████▊ | 1166/2000 [07:20<04:54, 2.83it/s, loss=0.495]" ] }, { @@ -43278,7 +43256,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1167/2000 [07:29<04:26, 3.13it/s, loss=0.465]" + "training until 2000: 58%|█████▊ | 1167/2000 [07:21<04:48, 2.89it/s, loss=0.495]" ] }, { @@ -43286,7 +43264,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1167/2000 [07:29<04:26, 3.13it/s, loss=0.451]" + "training until 2000: 58%|█████▊ | 1167/2000 [07:21<04:48, 2.89it/s, loss=0.51] " ] }, { @@ -43294,7 +43272,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1168/2000 [07:29<04:25, 3.13it/s, loss=0.451]" + "training until 2000: 58%|█████▊ | 1168/2000 [07:21<04:41, 2.95it/s, loss=0.51]" ] }, { @@ -43302,7 +43280,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1168/2000 [07:29<04:25, 3.13it/s, loss=0.502]" + "training until 2000: 58%|█████▊ | 1168/2000 [07:21<04:41, 2.95it/s, loss=0.463]" ] }, { @@ -43310,7 +43288,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1169/2000 [07:29<04:27, 3.11it/s, loss=0.502]" + "training until 2000: 58%|█████▊ | 1169/2000 [07:21<04:39, 2.97it/s, loss=0.463]" ] }, { @@ -43318,7 +43296,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1169/2000 [07:29<04:27, 3.11it/s, loss=0.503]" + "training until 2000: 58%|█████▊ | 1169/2000 [07:21<04:39, 2.97it/s, loss=0.53] " ] }, { @@ -43326,7 +43304,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1170/2000 [07:30<04:26, 3.12it/s, loss=0.503]" + "training until 2000: 58%|█████▊ | 1170/2000 [07:22<04:36, 3.00it/s, loss=0.53]" ] }, { @@ -43334,7 +43312,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 58%|█████▊ | 1170/2000 [07:30<04:26, 3.12it/s, loss=0.488]" + "training until 2000: 58%|█████▊ | 1170/2000 [07:22<04:36, 3.00it/s, loss=0.434]" ] }, { @@ -43342,7 +43320,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▊ | 1171/2000 [07:30<04:27, 3.10it/s, loss=0.488]" + "training until 2000: 59%|█████▊ | 1171/2000 [07:22<04:34, 3.02it/s, loss=0.434]" ] }, { @@ -43350,7 +43328,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▊ | 1171/2000 [07:30<04:27, 3.10it/s, loss=0.447]" + "training until 2000: 59%|█████▊ | 1171/2000 [07:22<04:34, 3.02it/s, loss=0.471]" ] }, { @@ -43358,7 +43336,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▊ | 1172/2000 [07:31<05:31, 2.50it/s, loss=0.447]" + "training until 2000: 59%|█████▊ | 1172/2000 [07:22<04:32, 3.03it/s, loss=0.471]" ] }, { @@ -43366,7 +43344,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▊ | 1172/2000 [07:31<05:31, 2.50it/s, loss=0.474]" + "training until 2000: 59%|█████▊ | 1172/2000 [07:22<04:32, 3.03it/s, loss=0.548]" ] }, { @@ -43374,7 +43352,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▊ | 1173/2000 [07:31<05:12, 2.65it/s, loss=0.474]" + "training until 2000: 59%|█████▊ | 1173/2000 [07:23<04:35, 3.00it/s, loss=0.548]" ] }, { @@ -43382,7 +43360,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▊ | 1173/2000 [07:31<05:12, 2.65it/s, loss=0.462]" + "training until 2000: 59%|█████▊ | 1173/2000 [07:23<04:35, 3.00it/s, loss=0.449]" ] }, { @@ -43390,7 +43368,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▊ | 1174/2000 [07:31<05:00, 2.75it/s, loss=0.462]" + "training until 2000: 59%|█████▊ | 1174/2000 [07:23<04:33, 3.02it/s, loss=0.449]" ] }, { @@ -43398,7 +43376,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▊ | 1174/2000 [07:31<05:00, 2.75it/s, loss=0.474]" + "training until 2000: 59%|█████▊ | 1174/2000 [07:23<04:33, 3.02it/s, loss=0.429]" ] }, { @@ -43406,7 +43384,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1175/2000 [07:32<04:50, 2.84it/s, loss=0.474]" + "training until 2000: 59%|█████▉ | 1175/2000 [07:23<04:30, 3.05it/s, loss=0.429]" ] }, { @@ -43414,7 +43392,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1175/2000 [07:32<04:50, 2.84it/s, loss=0.458]" + "training until 2000: 59%|█████▉ | 1175/2000 [07:23<04:30, 3.05it/s, loss=0.429]" ] }, { @@ -43422,7 +43400,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1176/2000 [07:32<04:42, 2.92it/s, loss=0.458]" + "training until 2000: 59%|█████▉ | 1176/2000 [07:24<04:28, 3.06it/s, loss=0.429]" ] }, { @@ -43430,7 +43408,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1176/2000 [07:32<04:42, 2.92it/s, loss=0.446]" + "training until 2000: 59%|█████▉ | 1176/2000 [07:24<04:28, 3.06it/s, loss=0.46] " ] }, { @@ -43438,7 +43416,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1177/2000 [07:32<04:37, 2.96it/s, loss=0.446]" + "training until 2000: 59%|█████▉ | 1177/2000 [07:24<04:30, 3.04it/s, loss=0.46]" ] }, { @@ -43446,7 +43424,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1177/2000 [07:32<04:37, 2.96it/s, loss=0.488]" + "training until 2000: 59%|█████▉ | 1177/2000 [07:24<04:30, 3.04it/s, loss=0.462]" ] }, { @@ -43454,7 +43432,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1178/2000 [07:33<04:35, 2.98it/s, loss=0.488]" + "training until 2000: 59%|█████▉ | 1178/2000 [07:24<04:27, 3.07it/s, loss=0.462]" ] }, { @@ -43462,7 +43440,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1178/2000 [07:33<04:35, 2.98it/s, loss=0.48] " + "training until 2000: 59%|█████▉ | 1178/2000 [07:24<04:27, 3.07it/s, loss=0.48] " ] }, { @@ -43470,7 +43448,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1179/2000 [07:33<04:29, 3.04it/s, loss=0.48]" + "training until 2000: 59%|█████▉ | 1179/2000 [07:25<04:29, 3.04it/s, loss=0.48]" ] }, { @@ -43478,7 +43456,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1179/2000 [07:33<04:29, 3.04it/s, loss=0.451]" + "training until 2000: 59%|█████▉ | 1179/2000 [07:25<04:29, 3.04it/s, loss=0.469]" ] }, { @@ -43486,7 +43464,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1180/2000 [07:33<04:28, 3.06it/s, loss=0.451]" + "training until 2000: 59%|█████▉ | 1180/2000 [07:25<04:24, 3.10it/s, loss=0.469]" ] }, { @@ -43494,7 +43472,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1180/2000 [07:33<04:28, 3.06it/s, loss=0.449]" + "training until 2000: 59%|█████▉ | 1180/2000 [07:25<04:24, 3.10it/s, loss=0.482]" ] }, { @@ -43502,7 +43480,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1181/2000 [07:34<04:27, 3.06it/s, loss=0.449]" + "training until 2000: 59%|█████▉ | 1181/2000 [07:25<04:22, 3.12it/s, loss=0.482]" ] }, { @@ -43510,7 +43488,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1181/2000 [07:34<04:27, 3.06it/s, loss=0.468]" + "training until 2000: 59%|█████▉ | 1181/2000 [07:25<04:22, 3.12it/s, loss=0.426]" ] }, { @@ -43518,7 +43496,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1182/2000 [07:34<04:26, 3.07it/s, loss=0.468]" + "training until 2000: 59%|█████▉ | 1182/2000 [07:26<04:23, 3.11it/s, loss=0.426]" ] }, { @@ -43526,7 +43504,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1182/2000 [07:34<04:26, 3.07it/s, loss=0.452]" + "training until 2000: 59%|█████▉ | 1182/2000 [07:26<04:23, 3.11it/s, loss=0.488]" ] }, { @@ -43534,7 +43512,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1183/2000 [07:34<04:23, 3.10it/s, loss=0.452]" + "training until 2000: 59%|█████▉ | 1183/2000 [07:26<04:23, 3.10it/s, loss=0.488]" ] }, { @@ -43542,7 +43520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1183/2000 [07:34<04:23, 3.10it/s, loss=0.642]" + "training until 2000: 59%|█████▉ | 1183/2000 [07:26<04:23, 3.10it/s, loss=0.448]" ] }, { @@ -43550,7 +43528,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1184/2000 [07:35<04:22, 3.11it/s, loss=0.642]" + "training until 2000: 59%|█████▉ | 1184/2000 [07:26<04:22, 3.10it/s, loss=0.448]" ] }, { @@ -43558,7 +43536,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1184/2000 [07:35<04:22, 3.11it/s, loss=0.527]" + "training until 2000: 59%|█████▉ | 1184/2000 [07:26<04:22, 3.10it/s, loss=0.579]" ] }, { @@ -43566,7 +43544,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1185/2000 [07:35<04:20, 3.13it/s, loss=0.527]" + "training until 2000: 59%|█████▉ | 1185/2000 [07:27<04:19, 3.14it/s, loss=0.579]" ] }, { @@ -43574,7 +43552,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1185/2000 [07:35<04:20, 3.13it/s, loss=0.463]" + "training until 2000: 59%|█████▉ | 1185/2000 [07:27<04:19, 3.14it/s, loss=0.43] " ] }, { @@ -43582,7 +43560,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1186/2000 [07:35<04:17, 3.16it/s, loss=0.463]" + "training until 2000: 59%|█████▉ | 1186/2000 [07:27<04:22, 3.11it/s, loss=0.43]" ] }, { @@ -43590,7 +43568,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1186/2000 [07:35<04:17, 3.16it/s, loss=0.469]" + "training until 2000: 59%|█████▉ | 1186/2000 [07:27<04:22, 3.11it/s, loss=0.483]" ] }, { @@ -43598,7 +43576,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1187/2000 [07:36<04:15, 3.18it/s, loss=0.469]" + "training until 2000: 59%|█████▉ | 1187/2000 [07:27<04:24, 3.07it/s, loss=0.483]" ] }, { @@ -43606,7 +43584,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1187/2000 [07:36<04:15, 3.18it/s, loss=0.487]" + "training until 2000: 59%|█████▉ | 1187/2000 [07:27<04:24, 3.07it/s, loss=0.494]" ] }, { @@ -43614,7 +43592,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1188/2000 [07:36<04:16, 3.16it/s, loss=0.487]" + "training until 2000: 59%|█████▉ | 1188/2000 [07:28<04:22, 3.10it/s, loss=0.494]" ] }, { @@ -43622,7 +43600,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1188/2000 [07:36<04:16, 3.16it/s, loss=0.444]" + "training until 2000: 59%|█████▉ | 1188/2000 [07:28<04:22, 3.10it/s, loss=0.452]" ] }, { @@ -43630,7 +43608,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1189/2000 [07:36<04:17, 3.15it/s, loss=0.444]" + "training until 2000: 59%|█████▉ | 1189/2000 [07:28<04:18, 3.14it/s, loss=0.452]" ] }, { @@ -43638,7 +43616,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 59%|█████▉ | 1189/2000 [07:36<04:17, 3.15it/s, loss=0.464]" + "training until 2000: 59%|█████▉ | 1189/2000 [07:28<04:18, 3.14it/s, loss=0.45] " ] }, { @@ -43646,7 +43624,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1190/2000 [07:36<04:20, 3.11it/s, loss=0.464]" + "training until 2000: 60%|█████▉ | 1190/2000 [07:28<04:16, 3.16it/s, loss=0.45]" ] }, { @@ -43654,7 +43632,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1190/2000 [07:36<04:20, 3.11it/s, loss=0.441]" + "training until 2000: 60%|█████▉ | 1190/2000 [07:28<04:16, 3.16it/s, loss=0.662]" ] }, { @@ -43662,7 +43640,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1191/2000 [07:37<04:21, 3.10it/s, loss=0.441]" + "training until 2000: 60%|█████▉ | 1191/2000 [07:28<04:14, 3.18it/s, loss=0.662]" ] }, { @@ -43670,7 +43648,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1191/2000 [07:37<04:21, 3.10it/s, loss=0.474]" + "training until 2000: 60%|█████▉ | 1191/2000 [07:28<04:14, 3.18it/s, loss=0.502]" ] }, { @@ -43678,7 +43656,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1192/2000 [07:37<04:22, 3.08it/s, loss=0.474]" + "training until 2000: 60%|█████▉ | 1192/2000 [07:29<04:16, 3.15it/s, loss=0.502]" ] }, { @@ -43686,7 +43664,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1192/2000 [07:37<04:22, 3.08it/s, loss=0.457]" + "training until 2000: 60%|█████▉ | 1192/2000 [07:29<04:16, 3.15it/s, loss=0.441]" ] }, { @@ -43694,7 +43672,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1193/2000 [07:37<04:20, 3.10it/s, loss=0.457]" + "training until 2000: 60%|█████▉ | 1193/2000 [07:29<04:19, 3.11it/s, loss=0.441]" ] }, { @@ -43702,7 +43680,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1193/2000 [07:37<04:20, 3.10it/s, loss=0.484]" + "training until 2000: 60%|█████▉ | 1193/2000 [07:29<04:19, 3.11it/s, loss=0.452]" ] }, { @@ -43710,7 +43688,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1194/2000 [07:38<04:22, 3.07it/s, loss=0.484]" + "training until 2000: 60%|█████▉ | 1194/2000 [07:29<04:18, 3.11it/s, loss=0.452]" ] }, { @@ -43718,7 +43696,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1194/2000 [07:38<04:22, 3.07it/s, loss=0.472]" + "training until 2000: 60%|█████▉ | 1194/2000 [07:29<04:18, 3.11it/s, loss=0.451]" ] }, { @@ -43726,7 +43704,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1195/2000 [07:38<04:23, 3.06it/s, loss=0.472]" + "training until 2000: 60%|█████▉ | 1195/2000 [07:30<04:19, 3.10it/s, loss=0.451]" ] }, { @@ -43734,7 +43712,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1195/2000 [07:38<04:23, 3.06it/s, loss=0.456]" + "training until 2000: 60%|█████▉ | 1195/2000 [07:30<04:19, 3.10it/s, loss=0.502]" ] }, { @@ -43742,7 +43720,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1196/2000 [07:38<04:18, 3.11it/s, loss=0.456]" + "training until 2000: 60%|█████▉ | 1196/2000 [07:30<04:17, 3.12it/s, loss=0.502]" ] }, { @@ -43750,7 +43728,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1196/2000 [07:38<04:18, 3.11it/s, loss=0.455]" + "training until 2000: 60%|█████▉ | 1196/2000 [07:30<04:17, 3.12it/s, loss=0.573]" ] }, { @@ -43758,7 +43736,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1197/2000 [07:39<04:18, 3.10it/s, loss=0.455]" + "training until 2000: 60%|█████▉ | 1197/2000 [07:30<04:17, 3.12it/s, loss=0.573]" ] }, { @@ -43766,7 +43744,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1197/2000 [07:39<04:18, 3.10it/s, loss=0.486]" + "training until 2000: 60%|█████▉ | 1197/2000 [07:30<04:17, 3.12it/s, loss=0.435]" ] }, { @@ -43774,7 +43752,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1198/2000 [07:39<04:19, 3.09it/s, loss=0.486]" + "training until 2000: 60%|█████▉ | 1198/2000 [07:31<04:18, 3.11it/s, loss=0.435]" ] }, { @@ -43782,7 +43760,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1198/2000 [07:39<04:19, 3.09it/s, loss=0.474]" + "training until 2000: 60%|█████▉ | 1198/2000 [07:31<04:18, 3.11it/s, loss=0.423]" ] }, { @@ -43790,7 +43768,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1199/2000 [07:39<04:18, 3.10it/s, loss=0.474]" + "training until 2000: 60%|█████▉ | 1199/2000 [07:31<04:15, 3.13it/s, loss=0.423]" ] }, { @@ -43798,7 +43776,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|█████▉ | 1199/2000 [07:39<04:18, 3.10it/s, loss=0.455]" + "training until 2000: 60%|█████▉ | 1199/2000 [07:31<04:15, 3.13it/s, loss=0.425]" ] }, { @@ -43806,7 +43784,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1200/2000 [07:40<04:18, 3.09it/s, loss=0.455]" + "training until 2000: 60%|██████ | 1200/2000 [07:31<04:20, 3.08it/s, loss=0.425]" ] }, { @@ -43814,7 +43792,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1200/2000 [07:40<04:18, 3.09it/s, loss=0.455]" + "training until 2000: 60%|██████ | 1200/2000 [07:31<04:20, 3.08it/s, loss=0.478]" ] }, { @@ -43822,7 +43800,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1201/2000 [07:40<04:16, 3.11it/s, loss=0.455]" + "training until 2000: 60%|██████ | 1201/2000 [07:32<04:18, 3.09it/s, loss=0.478]" ] }, { @@ -43830,7 +43808,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1201/2000 [07:40<04:16, 3.11it/s, loss=0.473]" + "training until 2000: 60%|██████ | 1201/2000 [07:32<04:18, 3.09it/s, loss=0.524]" ] }, { @@ -43838,7 +43816,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1202/2000 [07:40<04:15, 3.12it/s, loss=0.473]" + "training until 2000: 60%|██████ | 1202/2000 [07:32<04:18, 3.09it/s, loss=0.524]" ] }, { @@ -43846,7 +43824,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1202/2000 [07:40<04:15, 3.12it/s, loss=0.463]" + "training until 2000: 60%|██████ | 1202/2000 [07:32<04:18, 3.09it/s, loss=0.425]" ] }, { @@ -43854,7 +43832,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1203/2000 [07:41<04:12, 3.15it/s, loss=0.463]" + "training until 2000: 60%|██████ | 1203/2000 [07:32<04:16, 3.10it/s, loss=0.425]" ] }, { @@ -43862,7 +43840,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1203/2000 [07:41<04:12, 3.15it/s, loss=0.444]" + "training until 2000: 60%|██████ | 1203/2000 [07:32<04:16, 3.10it/s, loss=0.434]" ] }, { @@ -43870,7 +43848,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1204/2000 [07:41<04:12, 3.15it/s, loss=0.444]" + "training until 2000: 60%|██████ | 1204/2000 [07:33<04:14, 3.13it/s, loss=0.434]" ] }, { @@ -43878,7 +43856,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1204/2000 [07:41<04:12, 3.15it/s, loss=0.468]" + "training until 2000: 60%|██████ | 1204/2000 [07:33<04:14, 3.13it/s, loss=0.585]" ] }, { @@ -43886,7 +43864,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1205/2000 [07:41<04:14, 3.13it/s, loss=0.468]" + "training until 2000: 60%|██████ | 1205/2000 [07:33<04:15, 3.12it/s, loss=0.585]" ] }, { @@ -43894,7 +43872,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1205/2000 [07:41<04:14, 3.13it/s, loss=0.454]" + "training until 2000: 60%|██████ | 1205/2000 [07:33<04:15, 3.12it/s, loss=0.444]" ] }, { @@ -43902,7 +43880,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1206/2000 [07:42<04:14, 3.12it/s, loss=0.454]" + "training until 2000: 60%|██████ | 1206/2000 [07:33<04:14, 3.13it/s, loss=0.444]" ] }, { @@ -43910,7 +43888,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1206/2000 [07:42<04:14, 3.12it/s, loss=0.445]" + "training until 2000: 60%|██████ | 1206/2000 [07:33<04:14, 3.13it/s, loss=0.597]" ] }, { @@ -43918,7 +43896,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1207/2000 [07:42<04:13, 3.13it/s, loss=0.445]" + "training until 2000: 60%|██████ | 1207/2000 [07:34<04:13, 3.12it/s, loss=0.597]" ] }, { @@ -43926,7 +43904,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1207/2000 [07:42<04:13, 3.13it/s, loss=0.473]" + "training until 2000: 60%|██████ | 1207/2000 [07:34<04:13, 3.12it/s, loss=0.434]" ] }, { @@ -43934,7 +43912,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1208/2000 [07:42<04:13, 3.12it/s, loss=0.473]" + "training until 2000: 60%|██████ | 1208/2000 [07:34<04:15, 3.10it/s, loss=0.434]" ] }, { @@ -43942,7 +43920,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1208/2000 [07:42<04:13, 3.12it/s, loss=0.457]" + "training until 2000: 60%|██████ | 1208/2000 [07:34<04:15, 3.10it/s, loss=0.47] " ] }, { @@ -43950,7 +43928,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1209/2000 [07:43<04:15, 3.09it/s, loss=0.457]" + "training until 2000: 60%|██████ | 1209/2000 [07:34<04:14, 3.11it/s, loss=0.47]" ] }, { @@ -43958,7 +43936,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1209/2000 [07:43<04:15, 3.09it/s, loss=0.438]" + "training until 2000: 60%|██████ | 1209/2000 [07:34<04:14, 3.11it/s, loss=0.46]" ] }, { @@ -43966,7 +43944,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1210/2000 [07:43<04:14, 3.11it/s, loss=0.438]" + "training until 2000: 60%|██████ | 1210/2000 [07:35<04:16, 3.09it/s, loss=0.46]" ] }, { @@ -43974,7 +43952,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 60%|██████ | 1210/2000 [07:43<04:14, 3.11it/s, loss=0.446]" + "training until 2000: 60%|██████ | 1210/2000 [07:35<04:16, 3.09it/s, loss=0.488]" ] }, { @@ -43982,7 +43960,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1211/2000 [07:43<04:16, 3.07it/s, loss=0.446]" + "training until 2000: 61%|██████ | 1211/2000 [07:35<04:16, 3.08it/s, loss=0.488]" ] }, { @@ -43990,7 +43968,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1211/2000 [07:43<04:16, 3.07it/s, loss=0.458]" + "training until 2000: 61%|██████ | 1211/2000 [07:35<04:16, 3.08it/s, loss=0.576]" ] }, { @@ -43998,7 +43976,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1212/2000 [07:44<04:15, 3.08it/s, loss=0.458]" + "training until 2000: 61%|██████ | 1212/2000 [07:35<04:14, 3.09it/s, loss=0.576]" ] }, { @@ -44006,7 +43984,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1212/2000 [07:44<04:15, 3.08it/s, loss=0.442]" + "training until 2000: 61%|██████ | 1212/2000 [07:35<04:14, 3.09it/s, loss=0.459]" ] }, { @@ -44014,7 +43992,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1213/2000 [07:44<04:13, 3.11it/s, loss=0.442]" + "training until 2000: 61%|██████ | 1213/2000 [07:36<04:12, 3.12it/s, loss=0.459]" ] }, { @@ -44022,7 +44000,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1213/2000 [07:44<04:13, 3.11it/s, loss=0.439]" + "training until 2000: 61%|██████ | 1213/2000 [07:36<04:12, 3.12it/s, loss=0.458]" ] }, { @@ -44030,7 +44008,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1214/2000 [07:44<04:13, 3.10it/s, loss=0.439]" + "training until 2000: 61%|██████ | 1214/2000 [07:36<04:12, 3.12it/s, loss=0.458]" ] }, { @@ -44038,7 +44016,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1214/2000 [07:44<04:13, 3.10it/s, loss=0.449]" + "training until 2000: 61%|██████ | 1214/2000 [07:36<04:12, 3.12it/s, loss=0.532]" ] }, { @@ -44046,7 +44024,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1215/2000 [07:45<04:11, 3.12it/s, loss=0.449]" + "training until 2000: 61%|██████ | 1215/2000 [07:36<04:13, 3.10it/s, loss=0.532]" ] }, { @@ -44054,7 +44032,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1215/2000 [07:45<04:11, 3.12it/s, loss=0.46] " + "training until 2000: 61%|██████ | 1215/2000 [07:36<04:13, 3.10it/s, loss=0.522]" ] }, { @@ -44062,7 +44040,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1216/2000 [07:45<04:12, 3.11it/s, loss=0.46]" + "training until 2000: 61%|██████ | 1216/2000 [07:36<04:10, 3.12it/s, loss=0.522]" ] }, { @@ -44070,7 +44048,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1216/2000 [07:45<04:12, 3.11it/s, loss=0.444]" + "training until 2000: 61%|██████ | 1216/2000 [07:36<04:10, 3.12it/s, loss=0.497]" ] }, { @@ -44078,7 +44056,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1217/2000 [07:45<04:13, 3.09it/s, loss=0.444]" + "training until 2000: 61%|██████ | 1217/2000 [07:37<04:08, 3.15it/s, loss=0.497]" ] }, { @@ -44086,7 +44064,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1217/2000 [07:45<04:13, 3.09it/s, loss=0.449]" + "training until 2000: 61%|██████ | 1217/2000 [07:37<04:08, 3.15it/s, loss=0.428]" ] }, { @@ -44094,7 +44072,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1218/2000 [07:46<04:11, 3.10it/s, loss=0.449]" + "training until 2000: 61%|██████ | 1218/2000 [07:37<04:11, 3.11it/s, loss=0.428]" ] }, { @@ -44102,7 +44080,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1218/2000 [07:46<04:11, 3.10it/s, loss=0.468]" + "training until 2000: 61%|██████ | 1218/2000 [07:37<04:11, 3.11it/s, loss=0.508]" ] }, { @@ -44110,7 +44088,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1219/2000 [07:46<04:12, 3.09it/s, loss=0.468]" + "training until 2000: 61%|██████ | 1219/2000 [07:37<04:11, 3.10it/s, loss=0.508]" ] }, { @@ -44118,7 +44096,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1219/2000 [07:46<04:12, 3.09it/s, loss=0.489]" + "training until 2000: 61%|██████ | 1219/2000 [07:37<04:11, 3.10it/s, loss=0.505]" ] }, { @@ -44126,7 +44104,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1220/2000 [07:46<04:15, 3.05it/s, loss=0.489]" + "training until 2000: 61%|██████ | 1220/2000 [07:38<04:11, 3.10it/s, loss=0.505]" ] }, { @@ -44134,7 +44112,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1220/2000 [07:46<04:15, 3.05it/s, loss=0.462]" + "training until 2000: 61%|██████ | 1220/2000 [07:38<04:11, 3.10it/s, loss=0.511]" ] }, { @@ -44142,7 +44120,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1221/2000 [07:47<04:14, 3.06it/s, loss=0.462]" + "training until 2000: 61%|██████ | 1221/2000 [07:38<04:13, 3.07it/s, loss=0.511]" ] }, { @@ -44150,7 +44128,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1221/2000 [07:47<04:14, 3.06it/s, loss=0.442]" + "training until 2000: 61%|██████ | 1221/2000 [07:38<04:13, 3.07it/s, loss=0.469]" ] }, { @@ -44158,7 +44136,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1222/2000 [07:47<04:12, 3.08it/s, loss=0.442]" + "training until 2000: 61%|██████ | 1222/2000 [07:38<04:15, 3.05it/s, loss=0.469]" ] }, { @@ -44166,7 +44144,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1222/2000 [07:47<04:12, 3.08it/s, loss=0.456]" + "training until 2000: 61%|██████ | 1222/2000 [07:38<04:15, 3.05it/s, loss=0.47] " ] }, { @@ -44174,7 +44152,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1223/2000 [07:47<04:10, 3.10it/s, loss=0.456]" + "training until 2000: 61%|██████ | 1223/2000 [07:39<04:11, 3.09it/s, loss=0.47]" ] }, { @@ -44182,7 +44160,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1223/2000 [07:47<04:10, 3.10it/s, loss=0.478]" + "training until 2000: 61%|██████ | 1223/2000 [07:39<04:11, 3.09it/s, loss=0.611]" ] }, { @@ -44190,7 +44168,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1224/2000 [07:47<04:08, 3.12it/s, loss=0.478]" + "training until 2000: 61%|██████ | 1224/2000 [07:39<04:13, 3.06it/s, loss=0.611]" ] }, { @@ -44198,7 +44176,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████ | 1224/2000 [07:47<04:08, 3.12it/s, loss=0.509]" + "training until 2000: 61%|██████ | 1224/2000 [07:39<04:13, 3.06it/s, loss=0.439]" ] }, { @@ -44206,7 +44184,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1225/2000 [07:48<04:10, 3.09it/s, loss=0.509]" + "training until 2000: 61%|██████▏ | 1225/2000 [07:39<04:11, 3.08it/s, loss=0.439]" ] }, { @@ -44214,7 +44192,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1225/2000 [07:48<04:10, 3.09it/s, loss=0.516]" + "training until 2000: 61%|██████▏ | 1225/2000 [07:39<04:11, 3.08it/s, loss=0.574]" ] }, { @@ -44222,7 +44200,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1226/2000 [07:48<04:11, 3.08it/s, loss=0.516]" + "training until 2000: 61%|██████▏ | 1226/2000 [07:40<04:11, 3.08it/s, loss=0.574]" ] }, { @@ -44230,7 +44208,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1226/2000 [07:48<04:11, 3.08it/s, loss=0.44] " + "training until 2000: 61%|██████▏ | 1226/2000 [07:40<04:11, 3.08it/s, loss=0.44] " ] }, { @@ -44238,7 +44216,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1227/2000 [07:48<04:08, 3.11it/s, loss=0.44]" + "training until 2000: 61%|██████▏ | 1227/2000 [07:40<04:12, 3.06it/s, loss=0.44]" ] }, { @@ -44246,7 +44224,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1227/2000 [07:48<04:08, 3.11it/s, loss=0.489]" + "training until 2000: 61%|██████▏ | 1227/2000 [07:40<04:12, 3.06it/s, loss=0.466]" ] }, { @@ -44254,7 +44232,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1228/2000 [07:49<04:10, 3.09it/s, loss=0.489]" + "training until 2000: 61%|██████▏ | 1228/2000 [07:41<05:12, 2.47it/s, loss=0.466]" ] }, { @@ -44262,7 +44240,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1228/2000 [07:49<04:10, 3.09it/s, loss=0.463]" + "training until 2000: 61%|██████▏ | 1228/2000 [07:41<05:12, 2.47it/s, loss=0.444]" ] }, { @@ -44270,7 +44248,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1229/2000 [07:49<04:08, 3.10it/s, loss=0.463]" + "training until 2000: 61%|██████▏ | 1229/2000 [07:41<04:54, 2.62it/s, loss=0.444]" ] }, { @@ -44278,7 +44256,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 61%|██████▏ | 1229/2000 [07:49<04:08, 3.10it/s, loss=0.454]" + "training until 2000: 61%|██████▏ | 1229/2000 [07:41<04:54, 2.62it/s, loss=0.416]" ] }, { @@ -44286,7 +44264,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1230/2000 [07:49<04:05, 3.14it/s, loss=0.454]" + "training until 2000: 62%|██████▏ | 1230/2000 [07:41<04:37, 2.77it/s, loss=0.416]" ] }, { @@ -44294,7 +44272,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1230/2000 [07:49<04:05, 3.14it/s, loss=0.431]" + "training until 2000: 62%|██████▏ | 1230/2000 [07:41<04:37, 2.77it/s, loss=0.477]" ] }, { @@ -44302,7 +44280,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1231/2000 [07:50<04:05, 3.14it/s, loss=0.431]" + "training until 2000: 62%|██████▏ | 1231/2000 [07:42<04:30, 2.85it/s, loss=0.477]" ] }, { @@ -44310,7 +44288,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1231/2000 [07:50<04:05, 3.14it/s, loss=0.563]" + "training until 2000: 62%|██████▏ | 1231/2000 [07:42<04:30, 2.85it/s, loss=0.462]" ] }, { @@ -44318,7 +44296,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1232/2000 [07:50<04:05, 3.13it/s, loss=0.563]" + "training until 2000: 62%|██████▏ | 1232/2000 [07:42<04:20, 2.95it/s, loss=0.462]" ] }, { @@ -44326,7 +44304,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1232/2000 [07:50<04:05, 3.13it/s, loss=0.444]" + "training until 2000: 62%|██████▏ | 1232/2000 [07:42<04:20, 2.95it/s, loss=0.422]" ] }, { @@ -44334,7 +44312,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1233/2000 [07:50<04:08, 3.08it/s, loss=0.444]" + "training until 2000: 62%|██████▏ | 1233/2000 [07:42<04:19, 2.95it/s, loss=0.422]" ] }, { @@ -44342,7 +44320,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1233/2000 [07:50<04:08, 3.08it/s, loss=0.446]" + "training until 2000: 62%|██████▏ | 1233/2000 [07:42<04:19, 2.95it/s, loss=0.501]" ] }, { @@ -44350,7 +44328,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1234/2000 [07:51<04:04, 3.13it/s, loss=0.446]" + "training until 2000: 62%|██████▏ | 1234/2000 [07:43<04:15, 3.00it/s, loss=0.501]" ] }, { @@ -44358,7 +44336,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1234/2000 [07:51<04:04, 3.13it/s, loss=0.459]" + "training until 2000: 62%|██████▏ | 1234/2000 [07:43<04:15, 3.00it/s, loss=0.503]" ] }, { @@ -44366,7 +44344,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1235/2000 [07:51<04:04, 3.13it/s, loss=0.459]" + "training until 2000: 62%|██████▏ | 1235/2000 [07:43<04:09, 3.06it/s, loss=0.503]" ] }, { @@ -44374,7 +44352,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1235/2000 [07:51<04:04, 3.13it/s, loss=0.468]" + "training until 2000: 62%|██████▏ | 1235/2000 [07:43<04:09, 3.06it/s, loss=0.434]" ] }, { @@ -44382,7 +44360,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1236/2000 [07:52<04:59, 2.55it/s, loss=0.468]" + "training until 2000: 62%|██████▏ | 1236/2000 [07:43<04:07, 3.08it/s, loss=0.434]" ] }, { @@ -44390,7 +44368,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1236/2000 [07:52<04:59, 2.55it/s, loss=0.44] " + "training until 2000: 62%|██████▏ | 1236/2000 [07:43<04:07, 3.08it/s, loss=0.45] " ] }, { @@ -44398,7 +44376,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1237/2000 [07:52<04:43, 2.69it/s, loss=0.44]" + "training until 2000: 62%|██████▏ | 1237/2000 [07:44<04:06, 3.09it/s, loss=0.45]" ] }, { @@ -44406,7 +44384,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1237/2000 [07:52<04:43, 2.69it/s, loss=0.437]" + "training until 2000: 62%|██████▏ | 1237/2000 [07:44<04:06, 3.09it/s, loss=0.438]" ] }, { @@ -44414,7 +44392,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1238/2000 [07:52<04:28, 2.84it/s, loss=0.437]" + "training until 2000: 62%|██████▏ | 1238/2000 [07:44<04:04, 3.11it/s, loss=0.438]" ] }, { @@ -44422,7 +44400,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1238/2000 [07:52<04:28, 2.84it/s, loss=0.441]" + "training until 2000: 62%|██████▏ | 1238/2000 [07:44<04:04, 3.11it/s, loss=0.457]" ] }, { @@ -44430,7 +44408,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1239/2000 [07:53<04:20, 2.92it/s, loss=0.441]" + "training until 2000: 62%|██████▏ | 1239/2000 [07:44<04:04, 3.12it/s, loss=0.457]" ] }, { @@ -44438,7 +44416,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1239/2000 [07:53<04:20, 2.92it/s, loss=0.456]" + "training until 2000: 62%|██████▏ | 1239/2000 [07:44<04:04, 3.12it/s, loss=0.487]" ] }, { @@ -44446,7 +44424,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1240/2000 [07:53<04:15, 2.97it/s, loss=0.456]" + "training until 2000: 62%|██████▏ | 1240/2000 [07:44<04:00, 3.16it/s, loss=0.487]" ] }, { @@ -44454,7 +44432,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1240/2000 [07:53<04:15, 2.97it/s, loss=0.472]" + "training until 2000: 62%|██████▏ | 1240/2000 [07:44<04:00, 3.16it/s, loss=0.459]" ] }, { @@ -44462,7 +44440,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1241/2000 [07:53<04:13, 2.99it/s, loss=0.472]" + "training until 2000: 62%|██████▏ | 1241/2000 [07:45<04:00, 3.16it/s, loss=0.459]" ] }, { @@ -44470,7 +44448,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1241/2000 [07:53<04:13, 2.99it/s, loss=0.451]" + "training until 2000: 62%|██████▏ | 1241/2000 [07:45<04:00, 3.16it/s, loss=0.468]" ] }, { @@ -44478,7 +44456,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1242/2000 [07:53<04:08, 3.05it/s, loss=0.451]" + "training until 2000: 62%|██████▏ | 1242/2000 [07:45<04:01, 3.14it/s, loss=0.468]" ] }, { @@ -44486,7 +44464,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1242/2000 [07:53<04:08, 3.05it/s, loss=0.497]" + "training until 2000: 62%|██████▏ | 1242/2000 [07:45<04:01, 3.14it/s, loss=0.427]" ] }, { @@ -44494,7 +44472,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1243/2000 [07:54<04:04, 3.10it/s, loss=0.497]" + "training until 2000: 62%|██████▏ | 1243/2000 [07:45<04:03, 3.11it/s, loss=0.427]" ] }, { @@ -44502,7 +44480,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1243/2000 [07:54<04:04, 3.10it/s, loss=0.433]" + "training until 2000: 62%|██████▏ | 1243/2000 [07:45<04:03, 3.11it/s, loss=0.425]" ] }, { @@ -44510,7 +44488,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1244/2000 [07:54<04:02, 3.12it/s, loss=0.433]" + "training until 2000: 62%|██████▏ | 1244/2000 [07:46<04:04, 3.10it/s, loss=0.425]" ] }, { @@ -44518,7 +44496,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1244/2000 [07:54<04:02, 3.12it/s, loss=0.536]" + "training until 2000: 62%|██████▏ | 1244/2000 [07:46<04:04, 3.10it/s, loss=0.471]" ] }, { @@ -44526,7 +44504,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1245/2000 [07:54<04:01, 3.12it/s, loss=0.536]" + "training until 2000: 62%|██████▏ | 1245/2000 [07:46<04:02, 3.11it/s, loss=0.471]" ] }, { @@ -44534,7 +44512,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1245/2000 [07:54<04:01, 3.12it/s, loss=0.484]" + "training until 2000: 62%|██████▏ | 1245/2000 [07:46<04:02, 3.11it/s, loss=0.423]" ] }, { @@ -44542,7 +44520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1246/2000 [07:55<04:03, 3.10it/s, loss=0.484]" + "training until 2000: 62%|██████▏ | 1246/2000 [07:46<04:02, 3.11it/s, loss=0.423]" ] }, { @@ -44550,7 +44528,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1246/2000 [07:55<04:03, 3.10it/s, loss=0.448]" + "training until 2000: 62%|██████▏ | 1246/2000 [07:46<04:02, 3.11it/s, loss=0.484]" ] }, { @@ -44558,7 +44536,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1247/2000 [07:55<04:03, 3.09it/s, loss=0.448]" + "training until 2000: 62%|██████▏ | 1247/2000 [07:47<04:00, 3.13it/s, loss=0.484]" ] }, { @@ -44566,7 +44544,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1247/2000 [07:55<04:03, 3.09it/s, loss=0.455]" + "training until 2000: 62%|██████▏ | 1247/2000 [07:47<04:00, 3.13it/s, loss=0.402]" ] }, { @@ -44574,7 +44552,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1248/2000 [07:55<04:02, 3.11it/s, loss=0.455]" + "training until 2000: 62%|██████▏ | 1248/2000 [07:47<03:58, 3.15it/s, loss=0.402]" ] }, { @@ -44582,7 +44560,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1248/2000 [07:55<04:02, 3.11it/s, loss=0.431]" + "training until 2000: 62%|██████▏ | 1248/2000 [07:47<03:58, 3.15it/s, loss=0.464]" ] }, { @@ -44590,7 +44568,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1249/2000 [07:56<04:00, 3.12it/s, loss=0.431]" + "training until 2000: 62%|██████▏ | 1249/2000 [07:47<04:00, 3.12it/s, loss=0.464]" ] }, { @@ -44598,7 +44576,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▏ | 1249/2000 [07:56<04:00, 3.12it/s, loss=0.462]" + "training until 2000: 62%|██████▏ | 1249/2000 [07:47<04:00, 3.12it/s, loss=0.436]" ] }, { @@ -44606,7 +44584,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▎ | 1250/2000 [07:56<04:00, 3.12it/s, loss=0.462]" + "training until 2000: 62%|██████▎ | 1250/2000 [07:48<03:59, 3.14it/s, loss=0.436]" ] }, { @@ -44614,7 +44592,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 62%|██████▎ | 1250/2000 [07:56<04:00, 3.12it/s, loss=0.452]" + "training until 2000: 62%|██████▎ | 1250/2000 [07:48<03:59, 3.14it/s, loss=0.496]" ] }, { @@ -44622,7 +44600,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1251/2000 [07:56<03:58, 3.15it/s, loss=0.452]" + "training until 2000: 63%|██████▎ | 1251/2000 [07:48<03:57, 3.16it/s, loss=0.496]" ] }, { @@ -44630,7 +44608,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1251/2000 [07:56<03:58, 3.15it/s, loss=0.443]" + "training until 2000: 63%|██████▎ | 1251/2000 [07:48<03:57, 3.16it/s, loss=0.421]" ] }, { @@ -44638,7 +44616,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1252/2000 [07:57<03:57, 3.14it/s, loss=0.443]" + "training until 2000: 63%|██████▎ | 1252/2000 [07:48<03:56, 3.16it/s, loss=0.421]" ] }, { @@ -44646,7 +44624,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1252/2000 [07:57<03:57, 3.14it/s, loss=0.444]" + "training until 2000: 63%|██████▎ | 1252/2000 [07:48<03:56, 3.16it/s, loss=0.45] " ] }, { @@ -44654,7 +44632,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1253/2000 [07:57<03:59, 3.11it/s, loss=0.444]" + "training until 2000: 63%|██████▎ | 1253/2000 [07:49<03:55, 3.17it/s, loss=0.45]" ] }, { @@ -44662,7 +44640,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1253/2000 [07:57<03:59, 3.11it/s, loss=0.542]" + "training until 2000: 63%|██████▎ | 1253/2000 [07:49<03:55, 3.17it/s, loss=0.412]" ] }, { @@ -44670,7 +44648,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1254/2000 [07:57<03:58, 3.13it/s, loss=0.542]" + "training until 2000: 63%|██████▎ | 1254/2000 [07:49<03:55, 3.17it/s, loss=0.412]" ] }, { @@ -44678,7 +44656,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1254/2000 [07:57<03:58, 3.13it/s, loss=0.442]" + "training until 2000: 63%|██████▎ | 1254/2000 [07:49<03:55, 3.17it/s, loss=0.443]" ] }, { @@ -44686,7 +44664,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1255/2000 [07:58<03:58, 3.12it/s, loss=0.442]" + "training until 2000: 63%|██████▎ | 1255/2000 [07:49<03:56, 3.15it/s, loss=0.443]" ] }, { @@ -44694,7 +44672,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1255/2000 [07:58<03:58, 3.12it/s, loss=0.447]" + "training until 2000: 63%|██████▎ | 1255/2000 [07:49<03:56, 3.15it/s, loss=0.429]" ] }, { @@ -44702,7 +44680,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1256/2000 [07:58<04:01, 3.08it/s, loss=0.447]" + "training until 2000: 63%|██████▎ | 1256/2000 [07:50<03:58, 3.12it/s, loss=0.429]" ] }, { @@ -44710,7 +44688,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1256/2000 [07:58<04:01, 3.08it/s, loss=0.504]" + "training until 2000: 63%|██████▎ | 1256/2000 [07:50<03:58, 3.12it/s, loss=0.445]" ] }, { @@ -44718,7 +44696,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1257/2000 [07:58<04:00, 3.09it/s, loss=0.504]" + "training until 2000: 63%|██████▎ | 1257/2000 [07:50<04:00, 3.10it/s, loss=0.445]" ] }, { @@ -44726,7 +44704,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1257/2000 [07:58<04:00, 3.09it/s, loss=0.446]" + "training until 2000: 63%|██████▎ | 1257/2000 [07:50<04:00, 3.10it/s, loss=0.452]" ] }, { @@ -44734,7 +44712,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1258/2000 [07:59<04:03, 3.04it/s, loss=0.446]" + "training until 2000: 63%|██████▎ | 1258/2000 [07:50<03:58, 3.11it/s, loss=0.452]" ] }, { @@ -44742,7 +44720,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1258/2000 [07:59<04:03, 3.04it/s, loss=0.436]" + "training until 2000: 63%|██████▎ | 1258/2000 [07:50<03:58, 3.11it/s, loss=0.451]" ] }, { @@ -44750,7 +44728,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1259/2000 [07:59<04:01, 3.07it/s, loss=0.436]" + "training until 2000: 63%|██████▎ | 1259/2000 [07:51<03:59, 3.10it/s, loss=0.451]" ] }, { @@ -44758,7 +44736,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1259/2000 [07:59<04:01, 3.07it/s, loss=0.426]" + "training until 2000: 63%|██████▎ | 1259/2000 [07:51<03:59, 3.10it/s, loss=0.532]" ] }, { @@ -44766,7 +44744,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1260/2000 [07:59<04:00, 3.08it/s, loss=0.426]" + "training until 2000: 63%|██████▎ | 1260/2000 [07:51<03:58, 3.10it/s, loss=0.532]" ] }, { @@ -44774,7 +44752,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1260/2000 [07:59<04:00, 3.08it/s, loss=0.469]" + "training until 2000: 63%|██████▎ | 1260/2000 [07:51<03:58, 3.10it/s, loss=0.49] " ] }, { @@ -44782,7 +44760,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1261/2000 [08:00<04:01, 3.06it/s, loss=0.469]" + "training until 2000: 63%|██████▎ | 1261/2000 [07:51<03:57, 3.11it/s, loss=0.49]" ] }, { @@ -44790,7 +44768,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1261/2000 [08:00<04:01, 3.06it/s, loss=0.595]" + "training until 2000: 63%|██████▎ | 1261/2000 [07:51<03:57, 3.11it/s, loss=0.445]" ] }, { @@ -44798,7 +44776,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1262/2000 [08:00<04:02, 3.05it/s, loss=0.595]" + "training until 2000: 63%|██████▎ | 1262/2000 [07:52<03:57, 3.11it/s, loss=0.445]" ] }, { @@ -44806,7 +44784,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1262/2000 [08:00<04:02, 3.05it/s, loss=0.454]" + "training until 2000: 63%|██████▎ | 1262/2000 [07:52<03:57, 3.11it/s, loss=0.618]" ] }, { @@ -44814,7 +44792,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1263/2000 [08:00<04:01, 3.05it/s, loss=0.454]" + "training until 2000: 63%|██████▎ | 1263/2000 [07:52<03:56, 3.11it/s, loss=0.618]" ] }, { @@ -44822,7 +44800,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1263/2000 [08:00<04:01, 3.05it/s, loss=0.457]" + "training until 2000: 63%|██████▎ | 1263/2000 [07:52<03:56, 3.11it/s, loss=0.445]" ] }, { @@ -44830,7 +44808,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1264/2000 [08:01<03:58, 3.09it/s, loss=0.457]" + "training until 2000: 63%|██████▎ | 1264/2000 [07:52<03:54, 3.13it/s, loss=0.445]" ] }, { @@ -44838,7 +44816,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1264/2000 [08:01<03:58, 3.09it/s, loss=0.449]" + "training until 2000: 63%|██████▎ | 1264/2000 [07:52<03:54, 3.13it/s, loss=0.442]" ] }, { @@ -44846,7 +44824,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1265/2000 [08:01<03:56, 3.11it/s, loss=0.449]" + "training until 2000: 63%|██████▎ | 1265/2000 [07:52<03:55, 3.12it/s, loss=0.442]" ] }, { @@ -44854,7 +44832,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1265/2000 [08:01<03:56, 3.11it/s, loss=0.444]" + "training until 2000: 63%|██████▎ | 1265/2000 [07:52<03:55, 3.12it/s, loss=0.479]" ] }, { @@ -44862,7 +44840,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1266/2000 [08:01<03:58, 3.07it/s, loss=0.444]" + "training until 2000: 63%|██████▎ | 1266/2000 [07:53<03:55, 3.11it/s, loss=0.479]" ] }, { @@ -44870,7 +44848,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1266/2000 [08:01<03:58, 3.07it/s, loss=0.552]" + "training until 2000: 63%|██████▎ | 1266/2000 [07:53<03:55, 3.11it/s, loss=0.507]" ] }, { @@ -44878,7 +44856,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1267/2000 [08:02<03:58, 3.07it/s, loss=0.552]" + "training until 2000: 63%|██████▎ | 1267/2000 [07:53<03:54, 3.12it/s, loss=0.507]" ] }, { @@ -44886,7 +44864,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1267/2000 [08:02<03:58, 3.07it/s, loss=0.452]" + "training until 2000: 63%|██████▎ | 1267/2000 [07:53<03:54, 3.12it/s, loss=0.489]" ] }, { @@ -44894,7 +44872,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1268/2000 [08:02<03:57, 3.08it/s, loss=0.452]" + "training until 2000: 63%|██████▎ | 1268/2000 [07:53<03:53, 3.13it/s, loss=0.489]" ] }, { @@ -44902,7 +44880,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1268/2000 [08:02<03:57, 3.08it/s, loss=0.47] " + "training until 2000: 63%|██████▎ | 1268/2000 [07:53<03:53, 3.13it/s, loss=0.444]" ] }, { @@ -44910,7 +44888,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1269/2000 [08:02<03:58, 3.06it/s, loss=0.47]" + "training until 2000: 63%|██████▎ | 1269/2000 [07:54<03:55, 3.10it/s, loss=0.444]" ] }, { @@ -44918,7 +44896,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 63%|██████▎ | 1269/2000 [08:02<03:58, 3.06it/s, loss=0.474]" + "training until 2000: 63%|██████▎ | 1269/2000 [07:54<03:55, 3.10it/s, loss=0.418]" ] }, { @@ -44926,7 +44904,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1270/2000 [08:03<03:59, 3.05it/s, loss=0.474]" + "training until 2000: 64%|██████▎ | 1270/2000 [07:54<03:52, 3.14it/s, loss=0.418]" ] }, { @@ -44934,7 +44912,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1270/2000 [08:03<03:59, 3.05it/s, loss=0.45] " + "training until 2000: 64%|██████▎ | 1270/2000 [07:54<03:52, 3.14it/s, loss=0.479]" ] }, { @@ -44942,7 +44920,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1271/2000 [08:03<03:55, 3.10it/s, loss=0.45]" + "training until 2000: 64%|██████▎ | 1271/2000 [07:54<03:52, 3.14it/s, loss=0.479]" ] }, { @@ -44950,7 +44928,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1271/2000 [08:03<03:55, 3.10it/s, loss=0.446]" + "training until 2000: 64%|██████▎ | 1271/2000 [07:54<03:52, 3.14it/s, loss=0.42] " ] }, { @@ -44958,7 +44936,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1272/2000 [08:03<03:54, 3.11it/s, loss=0.446]" + "training until 2000: 64%|██████▎ | 1272/2000 [07:55<03:52, 3.13it/s, loss=0.42]" ] }, { @@ -44966,7 +44944,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1272/2000 [08:03<03:54, 3.11it/s, loss=0.448]" + "training until 2000: 64%|██████▎ | 1272/2000 [07:55<03:52, 3.13it/s, loss=0.433]" ] }, { @@ -44974,7 +44952,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1273/2000 [08:03<03:56, 3.08it/s, loss=0.448]" + "training until 2000: 64%|██████▎ | 1273/2000 [07:55<03:50, 3.15it/s, loss=0.433]" ] }, { @@ -44982,7 +44960,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1273/2000 [08:03<03:56, 3.08it/s, loss=0.547]" + "training until 2000: 64%|██████▎ | 1273/2000 [07:55<03:50, 3.15it/s, loss=0.58] " ] }, { @@ -44990,7 +44968,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1274/2000 [08:04<03:52, 3.12it/s, loss=0.547]" + "training until 2000: 64%|██████▎ | 1274/2000 [07:55<03:51, 3.14it/s, loss=0.58]" ] }, { @@ -44998,7 +44976,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▎ | 1274/2000 [08:04<03:52, 3.12it/s, loss=0.467]" + "training until 2000: 64%|██████▎ | 1274/2000 [07:55<03:51, 3.14it/s, loss=0.64]" ] }, { @@ -45006,7 +44984,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1275/2000 [08:04<03:55, 3.08it/s, loss=0.467]" + "training until 2000: 64%|██████▍ | 1275/2000 [07:56<03:49, 3.16it/s, loss=0.64]" ] }, { @@ -45014,7 +44992,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1275/2000 [08:04<03:55, 3.08it/s, loss=0.632]" + "training until 2000: 64%|██████▍ | 1275/2000 [07:56<03:49, 3.16it/s, loss=0.551]" ] }, { @@ -45022,7 +45000,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1276/2000 [08:04<03:57, 3.04it/s, loss=0.632]" + "training until 2000: 64%|██████▍ | 1276/2000 [07:56<03:48, 3.17it/s, loss=0.551]" ] }, { @@ -45030,7 +45008,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1276/2000 [08:04<03:57, 3.04it/s, loss=0.435]" + "training until 2000: 64%|██████▍ | 1276/2000 [07:56<03:48, 3.17it/s, loss=0.439]" ] }, { @@ -45038,7 +45016,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1277/2000 [08:05<03:52, 3.11it/s, loss=0.435]" + "training until 2000: 64%|██████▍ | 1277/2000 [07:56<03:49, 3.15it/s, loss=0.439]" ] }, { @@ -45046,7 +45024,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1277/2000 [08:05<03:52, 3.11it/s, loss=0.467]" + "training until 2000: 64%|██████▍ | 1277/2000 [07:56<03:49, 3.15it/s, loss=0.636]" ] }, { @@ -45054,7 +45032,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1278/2000 [08:05<03:53, 3.10it/s, loss=0.467]" + "training until 2000: 64%|██████▍ | 1278/2000 [07:57<03:50, 3.13it/s, loss=0.636]" ] }, { @@ -45062,7 +45040,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1278/2000 [08:05<03:53, 3.10it/s, loss=0.448]" + "training until 2000: 64%|██████▍ | 1278/2000 [07:57<03:50, 3.13it/s, loss=0.432]" ] }, { @@ -45070,7 +45048,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1279/2000 [08:05<03:52, 3.10it/s, loss=0.448]" + "training until 2000: 64%|██████▍ | 1279/2000 [07:57<03:50, 3.12it/s, loss=0.432]" ] }, { @@ -45078,7 +45056,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1279/2000 [08:05<03:52, 3.10it/s, loss=0.587]" + "training until 2000: 64%|██████▍ | 1279/2000 [07:57<03:50, 3.12it/s, loss=0.437]" ] }, { @@ -45086,7 +45064,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1280/2000 [08:06<03:53, 3.09it/s, loss=0.587]" + "training until 2000: 64%|██████▍ | 1280/2000 [07:57<03:48, 3.15it/s, loss=0.437]" ] }, { @@ -45094,7 +45072,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1280/2000 [08:06<03:53, 3.09it/s, loss=0.431]" + "training until 2000: 64%|██████▍ | 1280/2000 [07:57<03:48, 3.15it/s, loss=0.424]" ] }, { @@ -45102,7 +45080,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1281/2000 [08:06<03:54, 3.07it/s, loss=0.431]" + "training until 2000: 64%|██████▍ | 1281/2000 [07:58<03:47, 3.17it/s, loss=0.424]" ] }, { @@ -45110,7 +45088,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1281/2000 [08:06<03:54, 3.07it/s, loss=0.447]" + "training until 2000: 64%|██████▍ | 1281/2000 [07:58<03:47, 3.17it/s, loss=0.424]" ] }, { @@ -45118,7 +45096,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1282/2000 [08:06<03:50, 3.11it/s, loss=0.447]" + "training until 2000: 64%|██████▍ | 1282/2000 [07:58<03:48, 3.14it/s, loss=0.424]" ] }, { @@ -45126,7 +45104,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1282/2000 [08:06<03:50, 3.11it/s, loss=0.453]" + "training until 2000: 64%|██████▍ | 1282/2000 [07:58<03:48, 3.14it/s, loss=0.441]" ] }, { @@ -45134,7 +45112,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1283/2000 [08:07<03:49, 3.12it/s, loss=0.453]" + "training until 2000: 64%|██████▍ | 1283/2000 [07:58<03:44, 3.19it/s, loss=0.441]" ] }, { @@ -45142,7 +45120,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1283/2000 [08:07<03:49, 3.12it/s, loss=0.467]" + "training until 2000: 64%|██████▍ | 1283/2000 [07:58<03:44, 3.19it/s, loss=0.451]" ] }, { @@ -45150,7 +45128,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1284/2000 [08:07<03:49, 3.12it/s, loss=0.467]" + "training until 2000: 64%|██████▍ | 1284/2000 [07:59<03:44, 3.19it/s, loss=0.451]" ] }, { @@ -45158,7 +45136,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1284/2000 [08:07<03:49, 3.12it/s, loss=0.481]" + "training until 2000: 64%|██████▍ | 1284/2000 [07:59<03:44, 3.19it/s, loss=0.432]" ] }, { @@ -45166,7 +45144,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1285/2000 [08:07<03:48, 3.13it/s, loss=0.481]" + "training until 2000: 64%|██████▍ | 1285/2000 [07:59<03:43, 3.19it/s, loss=0.432]" ] }, { @@ -45174,7 +45152,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1285/2000 [08:07<03:48, 3.13it/s, loss=0.453]" + "training until 2000: 64%|██████▍ | 1285/2000 [07:59<03:43, 3.19it/s, loss=0.5] " ] }, { @@ -45182,7 +45160,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1286/2000 [08:08<03:54, 3.05it/s, loss=0.453]" + "training until 2000: 64%|██████▍ | 1286/2000 [07:59<03:43, 3.20it/s, loss=0.5]" ] }, { @@ -45190,7 +45168,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1286/2000 [08:08<03:54, 3.05it/s, loss=0.439]" + "training until 2000: 64%|██████▍ | 1286/2000 [07:59<03:43, 3.20it/s, loss=0.464]" ] }, { @@ -45198,7 +45176,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1287/2000 [08:08<03:53, 3.06it/s, loss=0.439]" + "training until 2000: 64%|██████▍ | 1287/2000 [07:59<03:43, 3.19it/s, loss=0.464]" ] }, { @@ -45206,7 +45184,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1287/2000 [08:08<03:53, 3.06it/s, loss=0.438]" + "training until 2000: 64%|██████▍ | 1287/2000 [07:59<03:43, 3.19it/s, loss=0.494]" ] }, { @@ -45214,7 +45192,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1288/2000 [08:08<03:54, 3.03it/s, loss=0.438]" + "training until 2000: 64%|██████▍ | 1288/2000 [08:00<03:45, 3.16it/s, loss=0.494]" ] }, { @@ -45222,7 +45200,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1288/2000 [08:08<03:54, 3.03it/s, loss=0.449]" + "training until 2000: 64%|██████▍ | 1288/2000 [08:00<03:45, 3.16it/s, loss=0.455]" ] }, { @@ -45230,7 +45208,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1289/2000 [08:09<03:51, 3.06it/s, loss=0.449]" + "training until 2000: 64%|██████▍ | 1289/2000 [08:00<03:46, 3.15it/s, loss=0.455]" ] }, { @@ -45238,7 +45216,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1289/2000 [08:09<03:51, 3.06it/s, loss=0.443]" + "training until 2000: 64%|██████▍ | 1289/2000 [08:00<03:46, 3.15it/s, loss=0.513]" ] }, { @@ -45246,7 +45224,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1290/2000 [08:09<03:52, 3.05it/s, loss=0.443]" + "training until 2000: 64%|██████▍ | 1290/2000 [08:00<03:42, 3.18it/s, loss=0.513]" ] }, { @@ -45254,7 +45232,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 64%|██████▍ | 1290/2000 [08:09<03:52, 3.05it/s, loss=0.438]" + "training until 2000: 64%|██████▍ | 1290/2000 [08:00<03:42, 3.18it/s, loss=0.483]" ] }, { @@ -45262,7 +45240,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1291/2000 [08:09<03:50, 3.07it/s, loss=0.438]" + "training until 2000: 65%|██████▍ | 1291/2000 [08:01<03:43, 3.17it/s, loss=0.483]" ] }, { @@ -45270,7 +45248,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1291/2000 [08:09<03:50, 3.07it/s, loss=0.474]" + "training until 2000: 65%|██████▍ | 1291/2000 [08:01<03:43, 3.17it/s, loss=0.415]" ] }, { @@ -45278,7 +45256,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1292/2000 [08:10<03:49, 3.09it/s, loss=0.474]" + "training until 2000: 65%|██████▍ | 1292/2000 [08:01<03:41, 3.20it/s, loss=0.415]" ] }, { @@ -45286,7 +45264,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1292/2000 [08:10<03:49, 3.09it/s, loss=0.439]" + "training until 2000: 65%|██████▍ | 1292/2000 [08:01<03:41, 3.20it/s, loss=0.421]" ] }, { @@ -45294,7 +45272,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1293/2000 [08:10<03:47, 3.10it/s, loss=0.439]" + "training until 2000: 65%|██████▍ | 1293/2000 [08:02<04:37, 2.55it/s, loss=0.421]" ] }, { @@ -45302,7 +45280,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1293/2000 [08:10<03:47, 3.10it/s, loss=0.429]" + "training until 2000: 65%|██████▍ | 1293/2000 [08:02<04:37, 2.55it/s, loss=0.472]" ] }, { @@ -45310,7 +45288,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1294/2000 [08:10<03:46, 3.11it/s, loss=0.429]" + "training until 2000: 65%|██████▍ | 1294/2000 [08:02<04:25, 2.66it/s, loss=0.472]" ] }, { @@ -45318,7 +45296,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1294/2000 [08:10<03:46, 3.11it/s, loss=0.444]" + "training until 2000: 65%|██████▍ | 1294/2000 [08:02<04:25, 2.66it/s, loss=0.427]" ] }, { @@ -45326,7 +45304,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1295/2000 [08:11<03:46, 3.11it/s, loss=0.444]" + "training until 2000: 65%|██████▍ | 1295/2000 [08:02<04:14, 2.77it/s, loss=0.427]" ] }, { @@ -45334,7 +45312,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1295/2000 [08:11<03:46, 3.11it/s, loss=0.493]" + "training until 2000: 65%|██████▍ | 1295/2000 [08:02<04:14, 2.77it/s, loss=0.488]" ] }, { @@ -45342,7 +45320,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1296/2000 [08:11<03:45, 3.12it/s, loss=0.493]" + "training until 2000: 65%|██████▍ | 1296/2000 [08:03<04:06, 2.86it/s, loss=0.488]" ] }, { @@ -45350,7 +45328,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1296/2000 [08:11<03:45, 3.12it/s, loss=0.461]" + "training until 2000: 65%|██████▍ | 1296/2000 [08:03<04:06, 2.86it/s, loss=0.465]" ] }, { @@ -45358,7 +45336,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1297/2000 [08:11<03:48, 3.07it/s, loss=0.461]" + "training until 2000: 65%|██████▍ | 1297/2000 [08:03<03:58, 2.95it/s, loss=0.465]" ] }, { @@ -45366,7 +45344,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1297/2000 [08:11<03:48, 3.07it/s, loss=0.444]" + "training until 2000: 65%|██████▍ | 1297/2000 [08:03<03:58, 2.95it/s, loss=0.476]" ] }, { @@ -45374,7 +45352,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1298/2000 [08:12<03:49, 3.05it/s, loss=0.444]" + "training until 2000: 65%|██████▍ | 1298/2000 [08:03<03:53, 3.01it/s, loss=0.476]" ] }, { @@ -45382,7 +45360,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1298/2000 [08:12<03:49, 3.05it/s, loss=0.451]" + "training until 2000: 65%|██████▍ | 1298/2000 [08:03<03:53, 3.01it/s, loss=0.431]" ] }, { @@ -45390,7 +45368,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1299/2000 [08:12<03:56, 2.96it/s, loss=0.451]" + "training until 2000: 65%|██████▍ | 1299/2000 [08:04<03:47, 3.09it/s, loss=0.431]" ] }, { @@ -45398,7 +45376,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▍ | 1299/2000 [08:12<03:56, 2.96it/s, loss=0.46] " + "training until 2000: 65%|██████▍ | 1299/2000 [08:04<03:47, 3.09it/s, loss=0.511]" ] }, { @@ -45406,7 +45384,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1300/2000 [08:12<03:53, 2.99it/s, loss=0.46]" + "training until 2000: 65%|██████▌ | 1300/2000 [08:04<03:45, 3.11it/s, loss=0.511]" ] }, { @@ -45414,7 +45392,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1300/2000 [08:12<03:53, 2.99it/s, loss=0.447]" + "training until 2000: 65%|██████▌ | 1300/2000 [08:04<03:45, 3.11it/s, loss=0.413]" ] }, { @@ -45422,7 +45400,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1301/2000 [08:13<04:45, 2.45it/s, loss=0.447]" + "training until 2000: 65%|██████▌ | 1301/2000 [08:04<03:45, 3.11it/s, loss=0.413]" ] }, { @@ -45430,7 +45408,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1301/2000 [08:13<04:45, 2.45it/s, loss=0.438]" + "training until 2000: 65%|██████▌ | 1301/2000 [08:04<03:45, 3.11it/s, loss=0.424]" ] }, { @@ -45438,7 +45416,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1302/2000 [08:13<04:28, 2.60it/s, loss=0.438]" + "training until 2000: 65%|██████▌ | 1302/2000 [08:04<03:45, 3.10it/s, loss=0.424]" ] }, { @@ -45446,7 +45424,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1302/2000 [08:13<04:28, 2.60it/s, loss=0.438]" + "training until 2000: 65%|██████▌ | 1302/2000 [08:04<03:45, 3.10it/s, loss=0.419]" ] }, { @@ -45454,7 +45432,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1303/2000 [08:14<04:14, 2.74it/s, loss=0.438]" + "training until 2000: 65%|██████▌ | 1303/2000 [08:05<03:44, 3.10it/s, loss=0.419]" ] }, { @@ -45462,7 +45440,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1303/2000 [08:14<04:14, 2.74it/s, loss=0.428]" + "training until 2000: 65%|██████▌ | 1303/2000 [08:05<03:44, 3.10it/s, loss=0.436]" ] }, { @@ -45470,7 +45448,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1304/2000 [08:14<04:06, 2.82it/s, loss=0.428]" + "training until 2000: 65%|██████▌ | 1304/2000 [08:05<03:44, 3.10it/s, loss=0.436]" ] }, { @@ -45478,7 +45456,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1304/2000 [08:14<04:06, 2.82it/s, loss=0.47] " + "training until 2000: 65%|██████▌ | 1304/2000 [08:05<03:44, 3.10it/s, loss=0.428]" ] }, { @@ -45486,7 +45464,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1305/2000 [08:14<04:00, 2.89it/s, loss=0.47]" + "training until 2000: 65%|██████▌ | 1305/2000 [08:05<03:44, 3.10it/s, loss=0.428]" ] }, { @@ -45494,7 +45472,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1305/2000 [08:14<04:00, 2.89it/s, loss=0.46]" + "training until 2000: 65%|██████▌ | 1305/2000 [08:05<03:44, 3.10it/s, loss=0.438]" ] }, { @@ -45502,7 +45480,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1306/2000 [08:14<03:55, 2.95it/s, loss=0.46]" + "training until 2000: 65%|██████▌ | 1306/2000 [08:06<03:46, 3.07it/s, loss=0.438]" ] }, { @@ -45510,7 +45488,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1306/2000 [08:14<03:55, 2.95it/s, loss=0.443]" + "training until 2000: 65%|██████▌ | 1306/2000 [08:06<03:46, 3.07it/s, loss=0.459]" ] }, { @@ -45518,7 +45496,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1307/2000 [08:15<03:52, 2.98it/s, loss=0.443]" + "training until 2000: 65%|██████▌ | 1307/2000 [08:06<03:44, 3.08it/s, loss=0.459]" ] }, { @@ -45526,7 +45504,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1307/2000 [08:15<03:52, 2.98it/s, loss=0.452]" + "training until 2000: 65%|██████▌ | 1307/2000 [08:06<03:44, 3.08it/s, loss=0.415]" ] }, { @@ -45534,7 +45512,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1308/2000 [08:15<03:49, 3.02it/s, loss=0.452]" + "training until 2000: 65%|██████▌ | 1308/2000 [08:06<03:45, 3.07it/s, loss=0.415]" ] }, { @@ -45542,7 +45520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1308/2000 [08:15<03:49, 3.02it/s, loss=0.427]" + "training until 2000: 65%|██████▌ | 1308/2000 [08:06<03:45, 3.07it/s, loss=0.423]" ] }, { @@ -45550,7 +45528,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1309/2000 [08:15<03:46, 3.06it/s, loss=0.427]" + "training until 2000: 65%|██████▌ | 1309/2000 [08:07<03:43, 3.09it/s, loss=0.423]" ] }, { @@ -45558,7 +45536,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 65%|██████▌ | 1309/2000 [08:15<03:46, 3.06it/s, loss=0.433]" + "training until 2000: 65%|██████▌ | 1309/2000 [08:07<03:43, 3.09it/s, loss=0.465]" ] }, { @@ -45566,7 +45544,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1310/2000 [08:16<03:45, 3.06it/s, loss=0.433]" + "training until 2000: 66%|██████▌ | 1310/2000 [08:07<03:45, 3.06it/s, loss=0.465]" ] }, { @@ -45574,7 +45552,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1310/2000 [08:16<03:45, 3.06it/s, loss=0.45] " + "training until 2000: 66%|██████▌ | 1310/2000 [08:07<03:45, 3.06it/s, loss=0.445]" ] }, { @@ -45582,7 +45560,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1311/2000 [08:16<03:45, 3.05it/s, loss=0.45]" + "training until 2000: 66%|██████▌ | 1311/2000 [08:07<03:43, 3.08it/s, loss=0.445]" ] }, { @@ -45590,7 +45568,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1311/2000 [08:16<03:45, 3.05it/s, loss=0.445]" + "training until 2000: 66%|██████▌ | 1311/2000 [08:07<03:43, 3.08it/s, loss=0.461]" ] }, { @@ -45598,7 +45576,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1312/2000 [08:16<03:50, 2.99it/s, loss=0.445]" + "training until 2000: 66%|██████▌ | 1312/2000 [08:08<03:44, 3.06it/s, loss=0.461]" ] }, { @@ -45606,7 +45584,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1312/2000 [08:16<03:50, 2.99it/s, loss=0.463]" + "training until 2000: 66%|██████▌ | 1312/2000 [08:08<03:44, 3.06it/s, loss=0.408]" ] }, { @@ -45614,7 +45592,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1313/2000 [08:17<03:51, 2.96it/s, loss=0.463]" + "training until 2000: 66%|██████▌ | 1313/2000 [08:08<03:46, 3.03it/s, loss=0.408]" ] }, { @@ -45622,7 +45600,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1313/2000 [08:17<03:51, 2.96it/s, loss=0.441]" + "training until 2000: 66%|██████▌ | 1313/2000 [08:08<03:46, 3.03it/s, loss=0.652]" ] }, { @@ -45630,7 +45608,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1314/2000 [08:17<03:46, 3.02it/s, loss=0.441]" + "training until 2000: 66%|██████▌ | 1314/2000 [08:08<03:44, 3.05it/s, loss=0.652]" ] }, { @@ -45638,7 +45616,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1314/2000 [08:17<03:46, 3.02it/s, loss=0.441]" + "training until 2000: 66%|██████▌ | 1314/2000 [08:08<03:44, 3.05it/s, loss=0.405]" ] }, { @@ -45646,7 +45624,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1315/2000 [08:17<03:44, 3.05it/s, loss=0.441]" + "training until 2000: 66%|██████▌ | 1315/2000 [08:09<03:42, 3.08it/s, loss=0.405]" ] }, { @@ -45654,7 +45632,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1315/2000 [08:17<03:44, 3.05it/s, loss=0.427]" + "training until 2000: 66%|██████▌ | 1315/2000 [08:09<03:42, 3.08it/s, loss=0.409]" ] }, { @@ -45662,7 +45640,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1316/2000 [08:18<03:42, 3.07it/s, loss=0.427]" + "training until 2000: 66%|██████▌ | 1316/2000 [08:09<03:42, 3.07it/s, loss=0.409]" ] }, { @@ -45670,7 +45648,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1316/2000 [08:18<03:42, 3.07it/s, loss=0.509]" + "training until 2000: 66%|██████▌ | 1316/2000 [08:09<03:42, 3.07it/s, loss=0.494]" ] }, { @@ -45678,7 +45656,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1317/2000 [08:18<03:40, 3.10it/s, loss=0.509]" + "training until 2000: 66%|██████▌ | 1317/2000 [08:09<03:42, 3.07it/s, loss=0.494]" ] }, { @@ -45686,7 +45664,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1317/2000 [08:18<03:40, 3.10it/s, loss=0.435]" + "training until 2000: 66%|██████▌ | 1317/2000 [08:09<03:42, 3.07it/s, loss=0.436]" ] }, { @@ -45694,7 +45672,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1318/2000 [08:18<03:41, 3.08it/s, loss=0.435]" + "training until 2000: 66%|██████▌ | 1318/2000 [08:10<03:42, 3.06it/s, loss=0.436]" ] }, { @@ -45702,7 +45680,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1318/2000 [08:18<03:41, 3.08it/s, loss=0.445]" + "training until 2000: 66%|██████▌ | 1318/2000 [08:10<03:42, 3.06it/s, loss=0.482]" ] }, { @@ -45710,7 +45688,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1319/2000 [08:19<03:38, 3.11it/s, loss=0.445]" + "training until 2000: 66%|██████▌ | 1319/2000 [08:10<03:46, 3.00it/s, loss=0.482]" ] }, { @@ -45718,7 +45696,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1319/2000 [08:19<03:38, 3.11it/s, loss=0.418]" + "training until 2000: 66%|██████▌ | 1319/2000 [08:10<03:46, 3.00it/s, loss=0.418]" ] }, { @@ -45726,7 +45704,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1320/2000 [08:19<03:38, 3.12it/s, loss=0.418]" + "training until 2000: 66%|██████▌ | 1320/2000 [08:10<03:42, 3.05it/s, loss=0.418]" ] }, { @@ -45734,7 +45712,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1320/2000 [08:19<03:38, 3.12it/s, loss=0.431]" + "training until 2000: 66%|██████▌ | 1320/2000 [08:10<03:42, 3.05it/s, loss=0.438]" ] }, { @@ -45742,7 +45720,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1321/2000 [08:19<03:39, 3.10it/s, loss=0.431]" + "training until 2000: 66%|██████▌ | 1321/2000 [08:11<03:40, 3.08it/s, loss=0.438]" ] }, { @@ -45750,7 +45728,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1321/2000 [08:19<03:39, 3.10it/s, loss=0.489]" + "training until 2000: 66%|██████▌ | 1321/2000 [08:11<03:40, 3.08it/s, loss=0.454]" ] }, { @@ -45758,7 +45736,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1322/2000 [08:20<03:38, 3.11it/s, loss=0.489]" + "training until 2000: 66%|██████▌ | 1322/2000 [08:11<03:39, 3.08it/s, loss=0.454]" ] }, { @@ -45766,7 +45744,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1322/2000 [08:20<03:38, 3.11it/s, loss=0.452]" + "training until 2000: 66%|██████▌ | 1322/2000 [08:11<03:39, 3.08it/s, loss=0.407]" ] }, { @@ -45774,7 +45752,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1323/2000 [08:20<03:37, 3.11it/s, loss=0.452]" + "training until 2000: 66%|██████▌ | 1323/2000 [08:11<03:40, 3.07it/s, loss=0.407]" ] }, { @@ -45782,7 +45760,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1323/2000 [08:20<03:37, 3.11it/s, loss=0.524]" + "training until 2000: 66%|██████▌ | 1323/2000 [08:11<03:40, 3.07it/s, loss=0.499]" ] }, { @@ -45790,7 +45768,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1324/2000 [08:20<03:36, 3.12it/s, loss=0.524]" + "training until 2000: 66%|██████▌ | 1324/2000 [08:12<03:37, 3.11it/s, loss=0.499]" ] }, { @@ -45798,7 +45776,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▌ | 1324/2000 [08:20<03:36, 3.12it/s, loss=0.479]" + "training until 2000: 66%|██████▌ | 1324/2000 [08:12<03:37, 3.11it/s, loss=0.499]" ] }, { @@ -45806,7 +45784,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1325/2000 [08:21<03:36, 3.12it/s, loss=0.479]" + "training until 2000: 66%|██████▋ | 1325/2000 [08:12<03:36, 3.12it/s, loss=0.499]" ] }, { @@ -45814,7 +45792,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1325/2000 [08:21<03:36, 3.12it/s, loss=0.438]" + "training until 2000: 66%|██████▋ | 1325/2000 [08:12<03:36, 3.12it/s, loss=0.406]" ] }, { @@ -45822,7 +45800,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1326/2000 [08:21<03:35, 3.12it/s, loss=0.438]" + "training until 2000: 66%|██████▋ | 1326/2000 [08:12<03:37, 3.11it/s, loss=0.406]" ] }, { @@ -45830,7 +45808,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1326/2000 [08:21<03:35, 3.12it/s, loss=0.631]" + "training until 2000: 66%|██████▋ | 1326/2000 [08:12<03:37, 3.11it/s, loss=0.439]" ] }, { @@ -45838,7 +45816,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1327/2000 [08:21<03:38, 3.08it/s, loss=0.631]" + "training until 2000: 66%|██████▋ | 1327/2000 [08:13<03:37, 3.09it/s, loss=0.439]" ] }, { @@ -45846,7 +45824,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1327/2000 [08:21<03:38, 3.08it/s, loss=0.521]" + "training until 2000: 66%|██████▋ | 1327/2000 [08:13<03:37, 3.09it/s, loss=0.407]" ] }, { @@ -45854,7 +45832,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1328/2000 [08:22<03:34, 3.13it/s, loss=0.521]" + "training until 2000: 66%|██████▋ | 1328/2000 [08:13<03:36, 3.10it/s, loss=0.407]" ] }, { @@ -45862,7 +45840,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1328/2000 [08:22<03:34, 3.13it/s, loss=0.421]" + "training until 2000: 66%|██████▋ | 1328/2000 [08:13<03:36, 3.10it/s, loss=0.58] " ] }, { @@ -45870,7 +45848,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1329/2000 [08:22<03:35, 3.12it/s, loss=0.421]" + "training until 2000: 66%|██████▋ | 1329/2000 [08:13<03:34, 3.13it/s, loss=0.58]" ] }, { @@ -45878,7 +45856,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1329/2000 [08:22<03:35, 3.12it/s, loss=0.438]" + "training until 2000: 66%|██████▋ | 1329/2000 [08:13<03:34, 3.13it/s, loss=0.459]" ] }, { @@ -45886,7 +45864,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1330/2000 [08:22<03:32, 3.15it/s, loss=0.438]" + "training until 2000: 66%|██████▋ | 1330/2000 [08:14<03:33, 3.13it/s, loss=0.459]" ] }, { @@ -45894,7 +45872,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 66%|██████▋ | 1330/2000 [08:22<03:32, 3.15it/s, loss=0.449]" + "training until 2000: 66%|██████▋ | 1330/2000 [08:14<03:33, 3.13it/s, loss=0.469]" ] }, { @@ -45902,7 +45880,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1331/2000 [08:23<03:32, 3.15it/s, loss=0.449]" + "training until 2000: 67%|██████▋ | 1331/2000 [08:14<03:31, 3.16it/s, loss=0.469]" ] }, { @@ -45910,7 +45888,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1331/2000 [08:23<03:32, 3.15it/s, loss=0.431]" + "training until 2000: 67%|██████▋ | 1331/2000 [08:14<03:31, 3.16it/s, loss=0.415]" ] }, { @@ -45918,7 +45896,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1332/2000 [08:23<03:31, 3.17it/s, loss=0.431]" + "training until 2000: 67%|██████▋ | 1332/2000 [08:14<03:32, 3.14it/s, loss=0.415]" ] }, { @@ -45926,7 +45904,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1332/2000 [08:23<03:31, 3.17it/s, loss=0.434]" + "training until 2000: 67%|██████▋ | 1332/2000 [08:14<03:32, 3.14it/s, loss=0.623]" ] }, { @@ -45934,7 +45912,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1333/2000 [08:23<03:34, 3.11it/s, loss=0.434]" + "training until 2000: 67%|██████▋ | 1333/2000 [08:15<03:34, 3.11it/s, loss=0.623]" ] }, { @@ -45942,7 +45920,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1333/2000 [08:23<03:34, 3.11it/s, loss=0.469]" + "training until 2000: 67%|██████▋ | 1333/2000 [08:15<03:34, 3.11it/s, loss=0.409]" ] }, { @@ -45950,7 +45928,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1334/2000 [08:24<03:37, 3.07it/s, loss=0.469]" + "training until 2000: 67%|██████▋ | 1334/2000 [08:15<03:33, 3.12it/s, loss=0.409]" ] }, { @@ -45958,7 +45936,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1334/2000 [08:24<03:37, 3.07it/s, loss=0.449]" + "training until 2000: 67%|██████▋ | 1334/2000 [08:15<03:33, 3.12it/s, loss=0.572]" ] }, { @@ -45966,7 +45944,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1335/2000 [08:24<03:36, 3.08it/s, loss=0.449]" + "training until 2000: 67%|██████▋ | 1335/2000 [08:15<03:34, 3.11it/s, loss=0.572]" ] }, { @@ -45974,7 +45952,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1335/2000 [08:24<03:36, 3.08it/s, loss=0.435]" + "training until 2000: 67%|██████▋ | 1335/2000 [08:15<03:34, 3.11it/s, loss=0.397]" ] }, { @@ -45982,7 +45960,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1336/2000 [08:24<03:36, 3.07it/s, loss=0.435]" + "training until 2000: 67%|██████▋ | 1336/2000 [08:15<03:32, 3.12it/s, loss=0.397]" ] }, { @@ -45990,7 +45968,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1336/2000 [08:24<03:36, 3.07it/s, loss=0.474]" + "training until 2000: 67%|██████▋ | 1336/2000 [08:15<03:32, 3.12it/s, loss=0.412]" ] }, { @@ -45998,7 +45976,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1337/2000 [08:25<03:34, 3.10it/s, loss=0.474]" + "training until 2000: 67%|██████▋ | 1337/2000 [08:16<03:30, 3.15it/s, loss=0.412]" ] }, { @@ -46006,7 +45984,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1337/2000 [08:25<03:34, 3.10it/s, loss=0.458]" + "training until 2000: 67%|██████▋ | 1337/2000 [08:16<03:30, 3.15it/s, loss=0.477]" ] }, { @@ -46014,7 +45992,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1338/2000 [08:25<03:34, 3.08it/s, loss=0.458]" + "training until 2000: 67%|██████▋ | 1338/2000 [08:16<03:32, 3.12it/s, loss=0.477]" ] }, { @@ -46022,7 +46000,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1338/2000 [08:25<03:34, 3.08it/s, loss=0.456]" + "training until 2000: 67%|██████▋ | 1338/2000 [08:16<03:32, 3.12it/s, loss=0.459]" ] }, { @@ -46030,7 +46008,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1339/2000 [08:25<03:32, 3.10it/s, loss=0.456]" + "training until 2000: 67%|██████▋ | 1339/2000 [08:16<03:30, 3.13it/s, loss=0.459]" ] }, { @@ -46038,7 +46016,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1339/2000 [08:25<03:32, 3.10it/s, loss=0.493]" + "training until 2000: 67%|██████▋ | 1339/2000 [08:16<03:30, 3.13it/s, loss=0.438]" ] }, { @@ -46046,7 +46024,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1340/2000 [08:25<03:32, 3.10it/s, loss=0.493]" + "training until 2000: 67%|██████▋ | 1340/2000 [08:17<03:32, 3.11it/s, loss=0.438]" ] }, { @@ -46054,7 +46032,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1340/2000 [08:25<03:32, 3.10it/s, loss=0.427]" + "training until 2000: 67%|██████▋ | 1340/2000 [08:17<03:32, 3.11it/s, loss=0.401]" ] }, { @@ -46062,7 +46040,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1341/2000 [08:26<03:33, 3.09it/s, loss=0.427]" + "training until 2000: 67%|██████▋ | 1341/2000 [08:17<03:31, 3.12it/s, loss=0.401]" ] }, { @@ -46070,7 +46048,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1341/2000 [08:26<03:33, 3.09it/s, loss=0.49] " + "training until 2000: 67%|██████▋ | 1341/2000 [08:17<03:31, 3.12it/s, loss=0.464]" ] }, { @@ -46078,7 +46056,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1342/2000 [08:26<03:33, 3.08it/s, loss=0.49]" + "training until 2000: 67%|██████▋ | 1342/2000 [08:17<03:31, 3.11it/s, loss=0.464]" ] }, { @@ -46086,7 +46064,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1342/2000 [08:26<03:33, 3.08it/s, loss=0.422]" + "training until 2000: 67%|██████▋ | 1342/2000 [08:17<03:31, 3.11it/s, loss=0.422]" ] }, { @@ -46094,7 +46072,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1343/2000 [08:26<03:31, 3.11it/s, loss=0.422]" + "training until 2000: 67%|██████▋ | 1343/2000 [08:18<03:31, 3.11it/s, loss=0.422]" ] }, { @@ -46102,7 +46080,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1343/2000 [08:26<03:31, 3.11it/s, loss=0.468]" + "training until 2000: 67%|██████▋ | 1343/2000 [08:18<03:31, 3.11it/s, loss=0.614]" ] }, { @@ -46110,7 +46088,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1344/2000 [08:27<03:33, 3.08it/s, loss=0.468]" + "training until 2000: 67%|██████▋ | 1344/2000 [08:18<03:30, 3.11it/s, loss=0.614]" ] }, { @@ -46118,7 +46096,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1344/2000 [08:27<03:33, 3.08it/s, loss=0.458]" + "training until 2000: 67%|██████▋ | 1344/2000 [08:18<03:30, 3.11it/s, loss=0.408]" ] }, { @@ -46126,7 +46104,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1345/2000 [08:27<03:32, 3.08it/s, loss=0.458]" + "training until 2000: 67%|██████▋ | 1345/2000 [08:18<03:29, 3.12it/s, loss=0.408]" ] }, { @@ -46134,7 +46112,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1345/2000 [08:27<03:32, 3.08it/s, loss=0.438]" + "training until 2000: 67%|██████▋ | 1345/2000 [08:18<03:29, 3.12it/s, loss=0.537]" ] }, { @@ -46142,7 +46120,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1346/2000 [08:27<03:29, 3.12it/s, loss=0.438]" + "training until 2000: 67%|██████▋ | 1346/2000 [08:19<03:28, 3.14it/s, loss=0.537]" ] }, { @@ -46150,7 +46128,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1346/2000 [08:27<03:29, 3.12it/s, loss=0.427]" + "training until 2000: 67%|██████▋ | 1346/2000 [08:19<03:28, 3.14it/s, loss=0.535]" ] }, { @@ -46158,7 +46136,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1347/2000 [08:28<03:31, 3.09it/s, loss=0.427]" + "training until 2000: 67%|██████▋ | 1347/2000 [08:19<03:29, 3.11it/s, loss=0.535]" ] }, { @@ -46166,7 +46144,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1347/2000 [08:28<03:31, 3.09it/s, loss=0.45] " + "training until 2000: 67%|██████▋ | 1347/2000 [08:19<03:29, 3.11it/s, loss=0.475]" ] }, { @@ -46174,7 +46152,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1348/2000 [08:28<03:31, 3.09it/s, loss=0.45]" + "training until 2000: 67%|██████▋ | 1348/2000 [08:19<03:27, 3.14it/s, loss=0.475]" ] }, { @@ -46182,7 +46160,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1348/2000 [08:28<03:31, 3.09it/s, loss=0.431]" + "training until 2000: 67%|██████▋ | 1348/2000 [08:19<03:27, 3.14it/s, loss=0.43] " ] }, { @@ -46190,7 +46168,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1349/2000 [08:28<03:29, 3.11it/s, loss=0.431]" + "training until 2000: 67%|██████▋ | 1349/2000 [08:20<03:27, 3.13it/s, loss=0.43]" ] }, { @@ -46198,7 +46176,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 67%|██████▋ | 1349/2000 [08:28<03:29, 3.11it/s, loss=0.442]" + "training until 2000: 67%|██████▋ | 1349/2000 [08:20<03:27, 3.13it/s, loss=0.425]" ] }, { @@ -46206,7 +46184,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1350/2000 [08:29<03:31, 3.07it/s, loss=0.442]" + "training until 2000: 68%|██████▊ | 1350/2000 [08:20<03:29, 3.11it/s, loss=0.425]" ] }, { @@ -46214,7 +46192,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1350/2000 [08:29<03:31, 3.07it/s, loss=0.436]" + "training until 2000: 68%|██████▊ | 1350/2000 [08:20<03:29, 3.11it/s, loss=0.45] " ] }, { @@ -46222,7 +46200,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1351/2000 [08:29<03:30, 3.08it/s, loss=0.436]" + "training until 2000: 68%|██████▊ | 1351/2000 [08:20<03:27, 3.13it/s, loss=0.45]" ] }, { @@ -46230,7 +46208,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1351/2000 [08:29<03:30, 3.08it/s, loss=0.433]" + "training until 2000: 68%|██████▊ | 1351/2000 [08:20<03:27, 3.13it/s, loss=0.487]" ] }, { @@ -46238,7 +46216,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1352/2000 [08:29<03:28, 3.11it/s, loss=0.433]" + "training until 2000: 68%|██████▊ | 1352/2000 [08:21<03:24, 3.17it/s, loss=0.487]" ] }, { @@ -46246,7 +46224,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1352/2000 [08:29<03:28, 3.11it/s, loss=0.434]" + "training until 2000: 68%|██████▊ | 1352/2000 [08:21<03:24, 3.17it/s, loss=0.549]" ] }, { @@ -46254,7 +46232,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1353/2000 [08:30<03:25, 3.16it/s, loss=0.434]" + "training until 2000: 68%|██████▊ | 1353/2000 [08:21<03:23, 3.19it/s, loss=0.549]" ] }, { @@ -46262,7 +46240,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1353/2000 [08:30<03:25, 3.16it/s, loss=0.459]" + "training until 2000: 68%|██████▊ | 1353/2000 [08:21<03:23, 3.19it/s, loss=0.494]" ] }, { @@ -46270,7 +46248,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1354/2000 [08:30<03:24, 3.16it/s, loss=0.459]" + "training until 2000: 68%|██████▊ | 1354/2000 [08:21<03:23, 3.18it/s, loss=0.494]" ] }, { @@ -46278,7 +46256,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1354/2000 [08:30<03:24, 3.16it/s, loss=0.439]" + "training until 2000: 68%|██████▊ | 1354/2000 [08:21<03:23, 3.18it/s, loss=0.45] " ] }, { @@ -46286,7 +46264,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1355/2000 [08:30<03:27, 3.11it/s, loss=0.439]" + "training until 2000: 68%|██████▊ | 1355/2000 [08:22<03:23, 3.18it/s, loss=0.45]" ] }, { @@ -46294,7 +46272,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1355/2000 [08:30<03:27, 3.11it/s, loss=0.451]" + "training until 2000: 68%|██████▊ | 1355/2000 [08:22<03:23, 3.18it/s, loss=0.437]" ] }, { @@ -46302,7 +46280,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1356/2000 [08:31<03:26, 3.12it/s, loss=0.451]" + "training until 2000: 68%|██████▊ | 1356/2000 [08:22<03:23, 3.17it/s, loss=0.437]" ] }, { @@ -46310,7 +46288,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1356/2000 [08:31<03:26, 3.12it/s, loss=0.446]" + "training until 2000: 68%|██████▊ | 1356/2000 [08:22<03:23, 3.17it/s, loss=0.505]" ] }, { @@ -46318,7 +46296,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1357/2000 [08:31<03:25, 3.14it/s, loss=0.446]" + "training until 2000: 68%|██████▊ | 1357/2000 [08:22<03:23, 3.16it/s, loss=0.505]" ] }, { @@ -46326,7 +46304,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1357/2000 [08:31<03:25, 3.14it/s, loss=0.45] " + "training until 2000: 68%|██████▊ | 1357/2000 [08:22<03:23, 3.16it/s, loss=0.462]" ] }, { @@ -46334,7 +46312,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1358/2000 [08:31<03:25, 3.13it/s, loss=0.45]" + "training until 2000: 68%|██████▊ | 1358/2000 [08:23<03:23, 3.15it/s, loss=0.462]" ] }, { @@ -46342,7 +46320,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1358/2000 [08:31<03:25, 3.13it/s, loss=0.445]" + "training until 2000: 68%|██████▊ | 1358/2000 [08:23<03:23, 3.15it/s, loss=0.43] " ] }, { @@ -46350,7 +46328,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1359/2000 [08:32<03:23, 3.15it/s, loss=0.445]" + "training until 2000: 68%|██████▊ | 1359/2000 [08:23<04:12, 2.54it/s, loss=0.43]" ] }, { @@ -46358,7 +46336,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1359/2000 [08:32<03:23, 3.15it/s, loss=0.428]" + "training until 2000: 68%|██████▊ | 1359/2000 [08:23<04:12, 2.54it/s, loss=0.432]" ] }, { @@ -46366,7 +46344,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1360/2000 [08:32<03:23, 3.14it/s, loss=0.428]" + "training until 2000: 68%|██████▊ | 1360/2000 [08:23<03:56, 2.71it/s, loss=0.432]" ] }, { @@ -46374,7 +46352,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1360/2000 [08:32<03:23, 3.14it/s, loss=0.435]" + "training until 2000: 68%|██████▊ | 1360/2000 [08:23<03:56, 2.71it/s, loss=0.431]" ] }, { @@ -46382,7 +46360,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1361/2000 [08:32<03:23, 3.15it/s, loss=0.435]" + "training until 2000: 68%|██████▊ | 1361/2000 [08:24<03:44, 2.85it/s, loss=0.431]" ] }, { @@ -46390,7 +46368,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1361/2000 [08:32<03:23, 3.15it/s, loss=0.442]" + "training until 2000: 68%|██████▊ | 1361/2000 [08:24<03:44, 2.85it/s, loss=0.41] " ] }, { @@ -46398,7 +46376,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1362/2000 [08:33<03:23, 3.14it/s, loss=0.442]" + "training until 2000: 68%|██████▊ | 1362/2000 [08:24<03:43, 2.85it/s, loss=0.41]" ] }, { @@ -46406,7 +46384,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1362/2000 [08:33<03:23, 3.14it/s, loss=0.44] " + "training until 2000: 68%|██████▊ | 1362/2000 [08:24<03:43, 2.85it/s, loss=0.446]" ] }, { @@ -46414,7 +46392,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1363/2000 [08:33<03:28, 3.05it/s, loss=0.44]" + "training until 2000: 68%|██████▊ | 1363/2000 [08:24<03:39, 2.90it/s, loss=0.446]" ] }, { @@ -46422,7 +46400,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1363/2000 [08:33<03:28, 3.05it/s, loss=0.45]" + "training until 2000: 68%|██████▊ | 1363/2000 [08:24<03:39, 2.90it/s, loss=0.5] " ] }, { @@ -46430,7 +46408,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1364/2000 [08:33<03:26, 3.07it/s, loss=0.45]" + "training until 2000: 68%|██████▊ | 1364/2000 [08:25<03:34, 2.96it/s, loss=0.5]" ] }, { @@ -46438,7 +46416,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1364/2000 [08:33<03:26, 3.07it/s, loss=0.45]" + "training until 2000: 68%|██████▊ | 1364/2000 [08:25<03:34, 2.96it/s, loss=0.414]" ] }, { @@ -46446,7 +46424,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1365/2000 [08:34<03:27, 3.07it/s, loss=0.45]" + "training until 2000: 68%|██████▊ | 1365/2000 [08:25<03:31, 3.00it/s, loss=0.414]" ] }, { @@ -46454,7 +46432,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1365/2000 [08:34<03:27, 3.07it/s, loss=0.437]" + "training until 2000: 68%|██████▊ | 1365/2000 [08:25<03:31, 3.00it/s, loss=0.514]" ] }, { @@ -46462,7 +46440,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1366/2000 [08:34<04:16, 2.47it/s, loss=0.437]" + "training until 2000: 68%|██████▊ | 1366/2000 [08:25<03:31, 3.00it/s, loss=0.514]" ] }, { @@ -46470,7 +46448,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1366/2000 [08:34<04:16, 2.47it/s, loss=0.419]" + "training until 2000: 68%|██████▊ | 1366/2000 [08:25<03:31, 3.00it/s, loss=0.43] " ] }, { @@ -46478,7 +46456,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1367/2000 [08:34<04:00, 2.63it/s, loss=0.419]" + "training until 2000: 68%|██████▊ | 1367/2000 [08:26<03:27, 3.06it/s, loss=0.43]" ] }, { @@ -46486,7 +46464,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1367/2000 [08:34<04:00, 2.63it/s, loss=0.42] " + "training until 2000: 68%|██████▊ | 1367/2000 [08:26<03:27, 3.06it/s, loss=0.425]" ] }, { @@ -46494,7 +46472,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1368/2000 [08:35<03:51, 2.72it/s, loss=0.42]" + "training until 2000: 68%|██████▊ | 1368/2000 [08:26<03:24, 3.09it/s, loss=0.425]" ] }, { @@ -46502,7 +46480,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1368/2000 [08:35<03:51, 2.72it/s, loss=0.473]" + "training until 2000: 68%|██████▊ | 1368/2000 [08:26<03:24, 3.09it/s, loss=0.456]" ] }, { @@ -46510,7 +46488,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1369/2000 [08:35<03:44, 2.81it/s, loss=0.473]" + "training until 2000: 68%|██████▊ | 1369/2000 [08:26<03:23, 3.10it/s, loss=0.456]" ] }, { @@ -46518,7 +46496,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1369/2000 [08:35<03:44, 2.81it/s, loss=0.454]" + "training until 2000: 68%|██████▊ | 1369/2000 [08:26<03:23, 3.10it/s, loss=0.463]" ] }, { @@ -46526,7 +46504,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1370/2000 [08:35<03:40, 2.86it/s, loss=0.454]" + "training until 2000: 68%|██████▊ | 1370/2000 [08:27<03:19, 3.15it/s, loss=0.463]" ] }, { @@ -46534,7 +46512,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 68%|██████▊ | 1370/2000 [08:35<03:40, 2.86it/s, loss=0.443]" + "training until 2000: 68%|██████▊ | 1370/2000 [08:27<03:19, 3.15it/s, loss=0.444]" ] }, { @@ -46542,7 +46520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▊ | 1371/2000 [08:36<03:38, 2.88it/s, loss=0.443]" + "training until 2000: 69%|██████▊ | 1371/2000 [08:27<03:20, 3.14it/s, loss=0.444]" ] }, { @@ -46550,7 +46528,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▊ | 1371/2000 [08:36<03:38, 2.88it/s, loss=0.44] " + "training until 2000: 69%|██████▊ | 1371/2000 [08:27<03:20, 3.14it/s, loss=0.416]" ] }, { @@ -46558,7 +46536,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▊ | 1372/2000 [08:36<03:32, 2.96it/s, loss=0.44]" + "training until 2000: 69%|██████▊ | 1372/2000 [08:27<03:22, 3.10it/s, loss=0.416]" ] }, { @@ -46566,7 +46544,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▊ | 1372/2000 [08:36<03:32, 2.96it/s, loss=0.483]" + "training until 2000: 69%|██████▊ | 1372/2000 [08:27<03:22, 3.10it/s, loss=0.407]" ] }, { @@ -46574,7 +46552,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▊ | 1373/2000 [08:36<03:29, 2.99it/s, loss=0.483]" + "training until 2000: 69%|██████▊ | 1373/2000 [08:28<03:18, 3.15it/s, loss=0.407]" ] }, { @@ -46582,7 +46560,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▊ | 1373/2000 [08:36<03:29, 2.99it/s, loss=0.425]" + "training until 2000: 69%|██████▊ | 1373/2000 [08:28<03:18, 3.15it/s, loss=0.391]" ] }, { @@ -46590,7 +46568,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▊ | 1374/2000 [08:37<03:26, 3.03it/s, loss=0.425]" + "training until 2000: 69%|██████▊ | 1374/2000 [08:28<03:16, 3.18it/s, loss=0.391]" ] }, { @@ -46598,7 +46576,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▊ | 1374/2000 [08:37<03:26, 3.03it/s, loss=0.42] " + "training until 2000: 69%|██████▊ | 1374/2000 [08:28<03:16, 3.18it/s, loss=0.411]" ] }, { @@ -46606,7 +46584,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1375/2000 [08:37<03:21, 3.10it/s, loss=0.42]" + "training until 2000: 69%|██████▉ | 1375/2000 [08:28<03:18, 3.14it/s, loss=0.411]" ] }, { @@ -46614,7 +46592,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1375/2000 [08:37<03:21, 3.10it/s, loss=0.443]" + "training until 2000: 69%|██████▉ | 1375/2000 [08:28<03:18, 3.14it/s, loss=0.399]" ] }, { @@ -46622,7 +46600,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1376/2000 [08:37<03:22, 3.08it/s, loss=0.443]" + "training until 2000: 69%|██████▉ | 1376/2000 [08:29<03:23, 3.06it/s, loss=0.399]" ] }, { @@ -46630,7 +46608,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1376/2000 [08:37<03:22, 3.08it/s, loss=0.567]" + "training until 2000: 69%|██████▉ | 1376/2000 [08:29<03:23, 3.06it/s, loss=0.436]" ] }, { @@ -46638,7 +46616,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1377/2000 [08:38<03:22, 3.08it/s, loss=0.567]" + "training until 2000: 69%|██████▉ | 1377/2000 [08:29<03:24, 3.05it/s, loss=0.436]" ] }, { @@ -46646,7 +46624,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1377/2000 [08:38<03:22, 3.08it/s, loss=0.421]" + "training until 2000: 69%|██████▉ | 1377/2000 [08:29<03:24, 3.05it/s, loss=0.481]" ] }, { @@ -46654,7 +46632,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1378/2000 [08:38<03:22, 3.07it/s, loss=0.421]" + "training until 2000: 69%|██████▉ | 1378/2000 [08:29<03:27, 3.00it/s, loss=0.481]" ] }, { @@ -46662,7 +46640,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1378/2000 [08:38<03:22, 3.07it/s, loss=0.441]" + "training until 2000: 69%|██████▉ | 1378/2000 [08:29<03:27, 3.00it/s, loss=0.402]" ] }, { @@ -46670,7 +46648,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1379/2000 [08:38<03:22, 3.06it/s, loss=0.441]" + "training until 2000: 69%|██████▉ | 1379/2000 [08:30<03:26, 3.01it/s, loss=0.402]" ] }, { @@ -46678,7 +46656,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1379/2000 [08:38<03:22, 3.06it/s, loss=0.433]" + "training until 2000: 69%|██████▉ | 1379/2000 [08:30<03:26, 3.01it/s, loss=0.404]" ] }, { @@ -46686,7 +46664,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1380/2000 [08:39<03:19, 3.11it/s, loss=0.433]" + "training until 2000: 69%|██████▉ | 1380/2000 [08:30<03:25, 3.01it/s, loss=0.404]" ] }, { @@ -46694,7 +46672,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1380/2000 [08:39<03:19, 3.11it/s, loss=0.463]" + "training until 2000: 69%|██████▉ | 1380/2000 [08:30<03:25, 3.01it/s, loss=0.482]" ] }, { @@ -46702,7 +46680,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1381/2000 [08:39<03:20, 3.08it/s, loss=0.463]" + "training until 2000: 69%|██████▉ | 1381/2000 [08:30<03:23, 3.04it/s, loss=0.482]" ] }, { @@ -46710,7 +46688,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1381/2000 [08:39<03:20, 3.08it/s, loss=0.415]" + "training until 2000: 69%|██████▉ | 1381/2000 [08:30<03:23, 3.04it/s, loss=0.408]" ] }, { @@ -46718,7 +46696,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1382/2000 [08:39<03:17, 3.13it/s, loss=0.415]" + "training until 2000: 69%|██████▉ | 1382/2000 [08:31<03:21, 3.07it/s, loss=0.408]" ] }, { @@ -46726,7 +46704,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1382/2000 [08:39<03:17, 3.13it/s, loss=0.441]" + "training until 2000: 69%|██████▉ | 1382/2000 [08:31<03:21, 3.07it/s, loss=0.433]" ] }, { @@ -46734,7 +46712,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1383/2000 [08:40<03:17, 3.12it/s, loss=0.441]" + "training until 2000: 69%|██████▉ | 1383/2000 [08:31<03:21, 3.06it/s, loss=0.433]" ] }, { @@ -46742,7 +46720,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1383/2000 [08:40<03:17, 3.12it/s, loss=0.589]" + "training until 2000: 69%|██████▉ | 1383/2000 [08:31<03:21, 3.06it/s, loss=0.482]" ] }, { @@ -46750,7 +46728,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1384/2000 [08:40<03:18, 3.11it/s, loss=0.589]" + "training until 2000: 69%|██████▉ | 1384/2000 [08:31<03:17, 3.12it/s, loss=0.482]" ] }, { @@ -46758,7 +46736,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1384/2000 [08:40<03:18, 3.11it/s, loss=0.448]" + "training until 2000: 69%|██████▉ | 1384/2000 [08:31<03:17, 3.12it/s, loss=0.407]" ] }, { @@ -46766,7 +46744,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1385/2000 [08:40<03:20, 3.07it/s, loss=0.448]" + "training until 2000: 69%|██████▉ | 1385/2000 [08:31<03:19, 3.09it/s, loss=0.407]" ] }, { @@ -46774,7 +46752,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1385/2000 [08:40<03:20, 3.07it/s, loss=0.419]" + "training until 2000: 69%|██████▉ | 1385/2000 [08:31<03:19, 3.09it/s, loss=0.472]" ] }, { @@ -46782,7 +46760,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1386/2000 [08:41<03:17, 3.11it/s, loss=0.419]" + "training until 2000: 69%|██████▉ | 1386/2000 [08:32<03:17, 3.10it/s, loss=0.472]" ] }, { @@ -46790,7 +46768,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1386/2000 [08:41<03:17, 3.11it/s, loss=0.425]" + "training until 2000: 69%|██████▉ | 1386/2000 [08:32<03:17, 3.10it/s, loss=0.407]" ] }, { @@ -46798,7 +46776,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1387/2000 [08:41<03:18, 3.09it/s, loss=0.425]" + "training until 2000: 69%|██████▉ | 1387/2000 [08:32<03:16, 3.11it/s, loss=0.407]" ] }, { @@ -46806,7 +46784,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1387/2000 [08:41<03:18, 3.09it/s, loss=0.43] " + "training until 2000: 69%|██████▉ | 1387/2000 [08:32<03:16, 3.11it/s, loss=0.402]" ] }, { @@ -46814,7 +46792,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1388/2000 [08:41<03:15, 3.12it/s, loss=0.43]" + "training until 2000: 69%|██████▉ | 1388/2000 [08:32<03:17, 3.10it/s, loss=0.402]" ] }, { @@ -46822,7 +46800,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1388/2000 [08:41<03:15, 3.12it/s, loss=0.434]" + "training until 2000: 69%|██████▉ | 1388/2000 [08:32<03:17, 3.10it/s, loss=0.523]" ] }, { @@ -46830,7 +46808,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1389/2000 [08:42<03:14, 3.13it/s, loss=0.434]" + "training until 2000: 69%|██████▉ | 1389/2000 [08:33<03:15, 3.12it/s, loss=0.523]" ] }, { @@ -46838,7 +46816,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 69%|██████▉ | 1389/2000 [08:42<03:14, 3.13it/s, loss=0.418]" + "training until 2000: 69%|██████▉ | 1389/2000 [08:33<03:15, 3.12it/s, loss=0.424]" ] }, { @@ -46846,7 +46824,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1390/2000 [08:42<03:12, 3.16it/s, loss=0.418]" + "training until 2000: 70%|██████▉ | 1390/2000 [08:33<03:17, 3.10it/s, loss=0.424]" ] }, { @@ -46854,7 +46832,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1390/2000 [08:42<03:12, 3.16it/s, loss=0.43] " + "training until 2000: 70%|██████▉ | 1390/2000 [08:33<03:17, 3.10it/s, loss=0.393]" ] }, { @@ -46862,7 +46840,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1391/2000 [08:42<03:13, 3.14it/s, loss=0.43]" + "training until 2000: 70%|██████▉ | 1391/2000 [08:33<03:14, 3.12it/s, loss=0.393]" ] }, { @@ -46870,7 +46848,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1391/2000 [08:42<03:13, 3.14it/s, loss=0.42]" + "training until 2000: 70%|██████▉ | 1391/2000 [08:33<03:14, 3.12it/s, loss=0.398]" ] }, { @@ -46878,7 +46856,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1392/2000 [08:43<03:11, 3.18it/s, loss=0.42]" + "training until 2000: 70%|██████▉ | 1392/2000 [08:34<03:13, 3.15it/s, loss=0.398]" ] }, { @@ -46886,7 +46864,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1392/2000 [08:43<03:11, 3.18it/s, loss=0.429]" + "training until 2000: 70%|██████▉ | 1392/2000 [08:34<03:13, 3.15it/s, loss=0.394]" ] }, { @@ -46894,7 +46872,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1393/2000 [08:43<03:11, 3.18it/s, loss=0.429]" + "training until 2000: 70%|██████▉ | 1393/2000 [08:34<03:14, 3.13it/s, loss=0.394]" ] }, { @@ -46902,7 +46880,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1393/2000 [08:43<03:11, 3.18it/s, loss=0.492]" + "training until 2000: 70%|██████▉ | 1393/2000 [08:34<03:14, 3.13it/s, loss=0.531]" ] }, { @@ -46910,7 +46888,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1394/2000 [08:43<03:10, 3.18it/s, loss=0.492]" + "training until 2000: 70%|██████▉ | 1394/2000 [08:34<03:12, 3.15it/s, loss=0.531]" ] }, { @@ -46918,7 +46896,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1394/2000 [08:43<03:10, 3.18it/s, loss=0.431]" + "training until 2000: 70%|██████▉ | 1394/2000 [08:34<03:12, 3.15it/s, loss=0.399]" ] }, { @@ -46926,7 +46904,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1395/2000 [08:43<03:12, 3.15it/s, loss=0.431]" + "training until 2000: 70%|██████▉ | 1395/2000 [08:35<03:09, 3.19it/s, loss=0.399]" ] }, { @@ -46934,7 +46912,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1395/2000 [08:43<03:12, 3.15it/s, loss=0.436]" + "training until 2000: 70%|██████▉ | 1395/2000 [08:35<03:09, 3.19it/s, loss=0.48] " ] }, { @@ -46942,7 +46920,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1396/2000 [08:44<03:11, 3.16it/s, loss=0.436]" + "training until 2000: 70%|██████▉ | 1396/2000 [08:35<03:08, 3.20it/s, loss=0.48]" ] }, { @@ -46950,7 +46928,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1396/2000 [08:44<03:11, 3.16it/s, loss=0.419]" + "training until 2000: 70%|██████▉ | 1396/2000 [08:35<03:08, 3.20it/s, loss=0.411]" ] }, { @@ -46958,7 +46936,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1397/2000 [08:44<03:11, 3.15it/s, loss=0.419]" + "training until 2000: 70%|██████▉ | 1397/2000 [08:35<03:10, 3.17it/s, loss=0.411]" ] }, { @@ -46966,7 +46944,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1397/2000 [08:44<03:11, 3.15it/s, loss=0.441]" + "training until 2000: 70%|██████▉ | 1397/2000 [08:35<03:10, 3.17it/s, loss=0.421]" ] }, { @@ -46974,7 +46952,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1398/2000 [08:44<03:09, 3.18it/s, loss=0.441]" + "training until 2000: 70%|██████▉ | 1398/2000 [08:36<03:12, 3.13it/s, loss=0.421]" ] }, { @@ -46982,7 +46960,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1398/2000 [08:44<03:09, 3.18it/s, loss=0.451]" + "training until 2000: 70%|██████▉ | 1398/2000 [08:36<03:12, 3.13it/s, loss=0.434]" ] }, { @@ -46990,7 +46968,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1399/2000 [08:45<03:08, 3.18it/s, loss=0.451]" + "training until 2000: 70%|██████▉ | 1399/2000 [08:36<03:11, 3.14it/s, loss=0.434]" ] }, { @@ -46998,7 +46976,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|██████▉ | 1399/2000 [08:45<03:08, 3.18it/s, loss=0.451]" + "training until 2000: 70%|██████▉ | 1399/2000 [08:36<03:11, 3.14it/s, loss=0.422]" ] }, { @@ -47006,7 +46984,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1400/2000 [08:45<03:09, 3.17it/s, loss=0.451]" + "training until 2000: 70%|███████ | 1400/2000 [08:36<03:14, 3.08it/s, loss=0.422]" ] }, { @@ -47014,7 +46992,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1400/2000 [08:45<03:09, 3.17it/s, loss=0.428]" + "training until 2000: 70%|███████ | 1400/2000 [08:36<03:14, 3.08it/s, loss=0.445]" ] }, { @@ -47022,7 +47000,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1401/2000 [08:45<03:11, 3.12it/s, loss=0.428]" + "training until 2000: 70%|███████ | 1401/2000 [08:37<03:14, 3.08it/s, loss=0.445]" ] }, { @@ -47030,7 +47008,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1401/2000 [08:45<03:11, 3.12it/s, loss=0.446]" + "training until 2000: 70%|███████ | 1401/2000 [08:37<03:14, 3.08it/s, loss=0.423]" ] }, { @@ -47038,7 +47016,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1402/2000 [08:46<03:11, 3.12it/s, loss=0.446]" + "training until 2000: 70%|███████ | 1402/2000 [08:37<03:13, 3.10it/s, loss=0.423]" ] }, { @@ -47046,7 +47024,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1402/2000 [08:46<03:11, 3.12it/s, loss=0.436]" + "training until 2000: 70%|███████ | 1402/2000 [08:37<03:13, 3.10it/s, loss=0.419]" ] }, { @@ -47054,7 +47032,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1403/2000 [08:46<03:10, 3.14it/s, loss=0.436]" + "training until 2000: 70%|███████ | 1403/2000 [08:37<03:11, 3.12it/s, loss=0.419]" ] }, { @@ -47062,7 +47040,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1403/2000 [08:46<03:10, 3.14it/s, loss=0.434]" + "training until 2000: 70%|███████ | 1403/2000 [08:37<03:11, 3.12it/s, loss=0.441]" ] }, { @@ -47070,7 +47048,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1404/2000 [08:46<03:08, 3.17it/s, loss=0.434]" + "training until 2000: 70%|███████ | 1404/2000 [08:38<03:11, 3.12it/s, loss=0.441]" ] }, { @@ -47078,7 +47056,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1404/2000 [08:46<03:08, 3.17it/s, loss=0.441]" + "training until 2000: 70%|███████ | 1404/2000 [08:38<03:11, 3.12it/s, loss=0.458]" ] }, { @@ -47086,7 +47064,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1405/2000 [08:47<03:06, 3.19it/s, loss=0.441]" + "training until 2000: 70%|███████ | 1405/2000 [08:38<03:09, 3.14it/s, loss=0.458]" ] }, { @@ -47094,7 +47072,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1405/2000 [08:47<03:06, 3.19it/s, loss=0.419]" + "training until 2000: 70%|███████ | 1405/2000 [08:38<03:09, 3.14it/s, loss=0.439]" ] }, { @@ -47102,7 +47080,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1406/2000 [08:47<03:09, 3.14it/s, loss=0.419]" + "training until 2000: 70%|███████ | 1406/2000 [08:38<03:08, 3.15it/s, loss=0.439]" ] }, { @@ -47110,7 +47088,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1406/2000 [08:47<03:09, 3.14it/s, loss=0.413]" + "training until 2000: 70%|███████ | 1406/2000 [08:38<03:08, 3.15it/s, loss=0.49] " ] }, { @@ -47118,7 +47096,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1407/2000 [08:47<03:09, 3.13it/s, loss=0.413]" + "training until 2000: 70%|███████ | 1407/2000 [08:39<03:09, 3.13it/s, loss=0.49]" ] }, { @@ -47126,7 +47104,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1407/2000 [08:47<03:09, 3.13it/s, loss=0.422]" + "training until 2000: 70%|███████ | 1407/2000 [08:39<03:09, 3.13it/s, loss=0.418]" ] }, { @@ -47134,7 +47112,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1408/2000 [08:48<03:08, 3.14it/s, loss=0.422]" + "training until 2000: 70%|███████ | 1408/2000 [08:39<03:08, 3.14it/s, loss=0.418]" ] }, { @@ -47142,7 +47120,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1408/2000 [08:48<03:08, 3.14it/s, loss=0.452]" + "training until 2000: 70%|███████ | 1408/2000 [08:39<03:08, 3.14it/s, loss=0.459]" ] }, { @@ -47150,7 +47128,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1409/2000 [08:48<03:06, 3.17it/s, loss=0.452]" + "training until 2000: 70%|███████ | 1409/2000 [08:39<03:07, 3.15it/s, loss=0.459]" ] }, { @@ -47158,7 +47136,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1409/2000 [08:48<03:06, 3.17it/s, loss=0.426]" + "training until 2000: 70%|███████ | 1409/2000 [08:39<03:07, 3.15it/s, loss=0.452]" ] }, { @@ -47166,7 +47144,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1410/2000 [08:48<03:08, 3.13it/s, loss=0.426]" + "training until 2000: 70%|███████ | 1410/2000 [08:39<03:09, 3.12it/s, loss=0.452]" ] }, { @@ -47174,7 +47152,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 70%|███████ | 1410/2000 [08:48<03:08, 3.13it/s, loss=0.421]" + "training until 2000: 70%|███████ | 1410/2000 [08:39<03:09, 3.12it/s, loss=0.426]" ] }, { @@ -47182,7 +47160,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1411/2000 [08:49<03:06, 3.16it/s, loss=0.421]" + "training until 2000: 71%|███████ | 1411/2000 [08:40<03:08, 3.13it/s, loss=0.426]" ] }, { @@ -47190,7 +47168,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1411/2000 [08:49<03:06, 3.16it/s, loss=0.453]" + "training until 2000: 71%|███████ | 1411/2000 [08:40<03:08, 3.13it/s, loss=0.433]" ] }, { @@ -47198,7 +47176,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1412/2000 [08:49<03:06, 3.16it/s, loss=0.453]" + "training until 2000: 71%|███████ | 1412/2000 [08:40<03:07, 3.14it/s, loss=0.433]" ] }, { @@ -47206,7 +47184,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1412/2000 [08:49<03:06, 3.16it/s, loss=0.442]" + "training until 2000: 71%|███████ | 1412/2000 [08:40<03:07, 3.14it/s, loss=0.405]" ] }, { @@ -47214,7 +47192,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1413/2000 [08:49<03:08, 3.11it/s, loss=0.442]" + "training until 2000: 71%|███████ | 1413/2000 [08:40<03:07, 3.13it/s, loss=0.405]" ] }, { @@ -47222,7 +47200,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1413/2000 [08:49<03:08, 3.11it/s, loss=0.439]" + "training until 2000: 71%|███████ | 1413/2000 [08:40<03:07, 3.13it/s, loss=0.407]" ] }, { @@ -47230,7 +47208,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1414/2000 [08:49<03:07, 3.12it/s, loss=0.439]" + "training until 2000: 71%|███████ | 1414/2000 [08:41<03:06, 3.14it/s, loss=0.407]" ] }, { @@ -47238,7 +47216,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1414/2000 [08:49<03:07, 3.12it/s, loss=0.43] " + "training until 2000: 71%|███████ | 1414/2000 [08:41<03:06, 3.14it/s, loss=0.51] " ] }, { @@ -47246,7 +47224,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1415/2000 [08:50<03:07, 3.12it/s, loss=0.43]" + "training until 2000: 71%|███████ | 1415/2000 [08:41<03:05, 3.15it/s, loss=0.51]" ] }, { @@ -47254,7 +47232,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1415/2000 [08:50<03:07, 3.12it/s, loss=0.43]" + "training until 2000: 71%|███████ | 1415/2000 [08:41<03:05, 3.15it/s, loss=0.514]" ] }, { @@ -47262,7 +47240,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1416/2000 [08:50<03:09, 3.08it/s, loss=0.43]" + "training until 2000: 71%|███████ | 1416/2000 [08:41<03:07, 3.12it/s, loss=0.514]" ] }, { @@ -47270,7 +47248,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1416/2000 [08:50<03:09, 3.08it/s, loss=0.418]" + "training until 2000: 71%|███████ | 1416/2000 [08:41<03:07, 3.12it/s, loss=0.465]" ] }, { @@ -47278,7 +47256,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1417/2000 [08:50<03:07, 3.11it/s, loss=0.418]" + "training until 2000: 71%|███████ | 1417/2000 [08:42<03:06, 3.12it/s, loss=0.465]" ] }, { @@ -47286,7 +47264,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1417/2000 [08:50<03:07, 3.11it/s, loss=0.415]" + "training until 2000: 71%|███████ | 1417/2000 [08:42<03:06, 3.12it/s, loss=0.633]" ] }, { @@ -47294,7 +47272,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1418/2000 [08:51<03:12, 3.02it/s, loss=0.415]" + "training until 2000: 71%|███████ | 1418/2000 [08:42<03:04, 3.15it/s, loss=0.633]" ] }, { @@ -47302,7 +47280,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1418/2000 [08:51<03:12, 3.02it/s, loss=0.438]" + "training until 2000: 71%|███████ | 1418/2000 [08:42<03:04, 3.15it/s, loss=0.586]" ] }, { @@ -47310,7 +47288,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1419/2000 [08:51<03:10, 3.05it/s, loss=0.438]" + "training until 2000: 71%|███████ | 1419/2000 [08:42<03:05, 3.13it/s, loss=0.586]" ] }, { @@ -47318,7 +47296,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1419/2000 [08:51<03:10, 3.05it/s, loss=0.435]" + "training until 2000: 71%|███████ | 1419/2000 [08:42<03:05, 3.13it/s, loss=0.434]" ] }, { @@ -47326,7 +47304,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1420/2000 [08:51<03:11, 3.03it/s, loss=0.435]" + "training until 2000: 71%|███████ | 1420/2000 [08:43<03:06, 3.11it/s, loss=0.434]" ] }, { @@ -47334,7 +47312,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1420/2000 [08:51<03:11, 3.03it/s, loss=0.423]" + "training until 2000: 71%|███████ | 1420/2000 [08:43<03:06, 3.11it/s, loss=0.478]" ] }, { @@ -47342,7 +47320,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1421/2000 [08:52<03:10, 3.03it/s, loss=0.423]" + "training until 2000: 71%|███████ | 1421/2000 [08:43<03:07, 3.09it/s, loss=0.478]" ] }, { @@ -47350,7 +47328,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1421/2000 [08:52<03:10, 3.03it/s, loss=0.449]" + "training until 2000: 71%|███████ | 1421/2000 [08:43<03:07, 3.09it/s, loss=0.399]" ] }, { @@ -47358,7 +47336,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1422/2000 [08:52<03:12, 3.01it/s, loss=0.449]" + "training until 2000: 71%|███████ | 1422/2000 [08:43<03:06, 3.11it/s, loss=0.399]" ] }, { @@ -47366,7 +47344,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1422/2000 [08:52<03:12, 3.01it/s, loss=0.444]" + "training until 2000: 71%|███████ | 1422/2000 [08:43<03:06, 3.11it/s, loss=0.479]" ] }, { @@ -47374,7 +47352,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1423/2000 [08:52<03:10, 3.03it/s, loss=0.444]" + "training until 2000: 71%|███████ | 1423/2000 [08:44<03:09, 3.05it/s, loss=0.479]" ] }, { @@ -47382,7 +47360,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1423/2000 [08:52<03:10, 3.03it/s, loss=0.493]" + "training until 2000: 71%|███████ | 1423/2000 [08:44<03:09, 3.05it/s, loss=0.523]" ] }, { @@ -47390,7 +47368,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1424/2000 [08:53<03:08, 3.05it/s, loss=0.493]" + "training until 2000: 71%|███████ | 1424/2000 [08:44<03:47, 2.53it/s, loss=0.523]" ] }, { @@ -47398,7 +47376,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████ | 1424/2000 [08:53<03:08, 3.05it/s, loss=0.477]" + "training until 2000: 71%|███████ | 1424/2000 [08:44<03:47, 2.53it/s, loss=0.581]" ] }, { @@ -47406,7 +47384,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1425/2000 [08:53<03:08, 3.05it/s, loss=0.477]" + "training until 2000: 71%|███████▏ | 1425/2000 [08:45<03:34, 2.68it/s, loss=0.581]" ] }, { @@ -47414,7 +47392,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1425/2000 [08:53<03:08, 3.05it/s, loss=0.446]" + "training until 2000: 71%|███████▏ | 1425/2000 [08:45<03:34, 2.68it/s, loss=0.461]" ] }, { @@ -47422,7 +47400,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1426/2000 [08:53<03:08, 3.04it/s, loss=0.446]" + "training until 2000: 71%|███████▏ | 1426/2000 [08:45<03:23, 2.82it/s, loss=0.461]" ] }, { @@ -47430,7 +47408,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1426/2000 [08:53<03:08, 3.04it/s, loss=0.424]" + "training until 2000: 71%|███████▏ | 1426/2000 [08:45<03:23, 2.82it/s, loss=0.456]" ] }, { @@ -47438,7 +47416,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1427/2000 [08:54<03:06, 3.08it/s, loss=0.424]" + "training until 2000: 71%|███████▏ | 1427/2000 [08:45<03:15, 2.92it/s, loss=0.456]" ] }, { @@ -47446,7 +47424,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1427/2000 [08:54<03:06, 3.08it/s, loss=0.42] " + "training until 2000: 71%|███████▏ | 1427/2000 [08:45<03:15, 2.92it/s, loss=0.442]" ] }, { @@ -47454,7 +47432,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1428/2000 [08:54<03:06, 3.06it/s, loss=0.42]" + "training until 2000: 71%|███████▏ | 1428/2000 [08:45<03:13, 2.96it/s, loss=0.442]" ] }, { @@ -47462,7 +47440,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1428/2000 [08:54<03:06, 3.06it/s, loss=0.419]" + "training until 2000: 71%|███████▏ | 1428/2000 [08:45<03:13, 2.96it/s, loss=0.432]" ] }, { @@ -47470,7 +47448,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1429/2000 [08:54<03:05, 3.07it/s, loss=0.419]" + "training until 2000: 71%|███████▏ | 1429/2000 [08:46<03:09, 3.01it/s, loss=0.432]" ] }, { @@ -47478,7 +47456,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 71%|███████▏ | 1429/2000 [08:54<03:05, 3.07it/s, loss=0.419]" + "training until 2000: 71%|███████▏ | 1429/2000 [08:46<03:09, 3.01it/s, loss=0.429]" ] }, { @@ -47486,7 +47464,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1430/2000 [08:55<03:06, 3.05it/s, loss=0.419]" + "training until 2000: 72%|███████▏ | 1430/2000 [08:46<03:07, 3.03it/s, loss=0.429]" ] }, { @@ -47494,7 +47472,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1430/2000 [08:55<03:06, 3.05it/s, loss=0.418]" + "training until 2000: 72%|███████▏ | 1430/2000 [08:46<03:07, 3.03it/s, loss=0.459]" ] }, { @@ -47502,7 +47480,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1431/2000 [08:55<03:08, 3.01it/s, loss=0.418]" + "training until 2000: 72%|███████▏ | 1431/2000 [08:46<03:05, 3.07it/s, loss=0.459]" ] }, { @@ -47510,7 +47488,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1431/2000 [08:55<03:08, 3.01it/s, loss=0.417]" + "training until 2000: 72%|███████▏ | 1431/2000 [08:46<03:05, 3.07it/s, loss=0.409]" ] }, { @@ -47518,7 +47496,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1432/2000 [08:56<03:58, 2.38it/s, loss=0.417]" + "training until 2000: 72%|███████▏ | 1432/2000 [08:47<03:03, 3.10it/s, loss=0.409]" ] }, { @@ -47526,7 +47504,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1432/2000 [08:56<03:58, 2.38it/s, loss=0.433]" + "training until 2000: 72%|███████▏ | 1432/2000 [08:47<03:03, 3.10it/s, loss=0.418]" ] }, { @@ -47534,7 +47512,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1433/2000 [08:56<03:43, 2.54it/s, loss=0.433]" + "training until 2000: 72%|███████▏ | 1433/2000 [08:47<03:02, 3.10it/s, loss=0.418]" ] }, { @@ -47542,7 +47520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1433/2000 [08:56<03:43, 2.54it/s, loss=0.429]" + "training until 2000: 72%|███████▏ | 1433/2000 [08:47<03:02, 3.10it/s, loss=0.409]" ] }, { @@ -47550,7 +47528,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1434/2000 [08:56<03:32, 2.66it/s, loss=0.429]" + "training until 2000: 72%|███████▏ | 1434/2000 [08:47<03:02, 3.11it/s, loss=0.409]" ] }, { @@ -47558,7 +47536,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1434/2000 [08:56<03:32, 2.66it/s, loss=0.428]" + "training until 2000: 72%|███████▏ | 1434/2000 [08:47<03:02, 3.11it/s, loss=0.396]" ] }, { @@ -47566,7 +47544,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1435/2000 [08:57<03:24, 2.76it/s, loss=0.428]" + "training until 2000: 72%|███████▏ | 1435/2000 [08:48<03:01, 3.11it/s, loss=0.396]" ] }, { @@ -47574,7 +47552,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1435/2000 [08:57<03:24, 2.76it/s, loss=0.442]" + "training until 2000: 72%|███████▏ | 1435/2000 [08:48<03:01, 3.11it/s, loss=0.621]" ] }, { @@ -47582,7 +47560,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1436/2000 [08:57<03:18, 2.85it/s, loss=0.442]" + "training until 2000: 72%|███████▏ | 1436/2000 [08:48<02:59, 3.15it/s, loss=0.621]" ] }, { @@ -47590,7 +47568,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1436/2000 [08:57<03:18, 2.85it/s, loss=0.413]" + "training until 2000: 72%|███████▏ | 1436/2000 [08:48<02:59, 3.15it/s, loss=0.454]" ] }, { @@ -47598,7 +47576,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1437/2000 [08:57<03:16, 2.87it/s, loss=0.413]" + "training until 2000: 72%|███████▏ | 1437/2000 [08:48<02:57, 3.17it/s, loss=0.454]" ] }, { @@ -47606,7 +47584,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1437/2000 [08:57<03:16, 2.87it/s, loss=0.446]" + "training until 2000: 72%|███████▏ | 1437/2000 [08:48<02:57, 3.17it/s, loss=0.544]" ] }, { @@ -47614,7 +47592,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1438/2000 [08:58<03:11, 2.94it/s, loss=0.446]" + "training until 2000: 72%|███████▏ | 1438/2000 [08:49<02:56, 3.18it/s, loss=0.544]" ] }, { @@ -47622,7 +47600,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1438/2000 [08:58<03:11, 2.94it/s, loss=0.473]" + "training until 2000: 72%|███████▏ | 1438/2000 [08:49<02:56, 3.18it/s, loss=0.393]" ] }, { @@ -47630,7 +47608,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1439/2000 [08:58<03:12, 2.92it/s, loss=0.473]" + "training until 2000: 72%|███████▏ | 1439/2000 [08:49<02:58, 3.15it/s, loss=0.393]" ] }, { @@ -47638,7 +47616,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1439/2000 [08:58<03:12, 2.92it/s, loss=0.405]" + "training until 2000: 72%|███████▏ | 1439/2000 [08:49<02:58, 3.15it/s, loss=0.416]" ] }, { @@ -47646,7 +47624,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1440/2000 [08:58<03:07, 2.99it/s, loss=0.405]" + "training until 2000: 72%|███████▏ | 1440/2000 [08:49<02:55, 3.18it/s, loss=0.416]" ] }, { @@ -47654,7 +47632,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1440/2000 [08:58<03:07, 2.99it/s, loss=0.446]" + "training until 2000: 72%|███████▏ | 1440/2000 [08:49<02:55, 3.18it/s, loss=0.405]" ] }, { @@ -47662,7 +47640,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1441/2000 [08:59<03:05, 3.02it/s, loss=0.446]" + "training until 2000: 72%|███████▏ | 1441/2000 [08:50<02:55, 3.19it/s, loss=0.405]" ] }, { @@ -47670,7 +47648,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1441/2000 [08:59<03:05, 3.02it/s, loss=0.442]" + "training until 2000: 72%|███████▏ | 1441/2000 [08:50<02:55, 3.19it/s, loss=0.39] " ] }, { @@ -47678,7 +47656,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1442/2000 [08:59<03:05, 3.00it/s, loss=0.442]" + "training until 2000: 72%|███████▏ | 1442/2000 [08:50<02:56, 3.16it/s, loss=0.39]" ] }, { @@ -47686,7 +47664,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1442/2000 [08:59<03:05, 3.00it/s, loss=0.518]" + "training until 2000: 72%|███████▏ | 1442/2000 [08:50<02:56, 3.16it/s, loss=0.406]" ] }, { @@ -47694,7 +47672,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1443/2000 [08:59<03:06, 2.99it/s, loss=0.518]" + "training until 2000: 72%|███████▏ | 1443/2000 [08:50<02:56, 3.15it/s, loss=0.406]" ] }, { @@ -47702,7 +47680,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1443/2000 [08:59<03:06, 2.99it/s, loss=0.426]" + "training until 2000: 72%|███████▏ | 1443/2000 [08:50<02:56, 3.15it/s, loss=0.421]" ] }, { @@ -47710,7 +47688,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1444/2000 [09:00<03:04, 3.01it/s, loss=0.426]" + "training until 2000: 72%|███████▏ | 1444/2000 [08:51<02:58, 3.11it/s, loss=0.421]" ] }, { @@ -47718,7 +47696,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1444/2000 [09:00<03:04, 3.01it/s, loss=0.444]" + "training until 2000: 72%|███████▏ | 1444/2000 [08:51<02:58, 3.11it/s, loss=0.42] " ] }, { @@ -47726,7 +47704,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1445/2000 [09:00<03:02, 3.04it/s, loss=0.444]" + "training until 2000: 72%|███████▏ | 1445/2000 [08:51<02:57, 3.12it/s, loss=0.42]" ] }, { @@ -47734,7 +47712,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1445/2000 [09:00<03:02, 3.04it/s, loss=0.48] " + "training until 2000: 72%|███████▏ | 1445/2000 [08:51<02:57, 3.12it/s, loss=0.66]" ] }, { @@ -47742,7 +47720,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1446/2000 [09:00<03:04, 3.01it/s, loss=0.48]" + "training until 2000: 72%|███████▏ | 1446/2000 [08:51<02:58, 3.10it/s, loss=0.66]" ] }, { @@ -47750,7 +47728,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1446/2000 [09:00<03:04, 3.01it/s, loss=0.429]" + "training until 2000: 72%|███████▏ | 1446/2000 [08:51<02:58, 3.10it/s, loss=0.409]" ] }, { @@ -47758,7 +47736,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1447/2000 [09:01<03:01, 3.04it/s, loss=0.429]" + "training until 2000: 72%|███████▏ | 1447/2000 [08:52<02:58, 3.10it/s, loss=0.409]" ] }, { @@ -47766,7 +47744,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1447/2000 [09:01<03:01, 3.04it/s, loss=0.425]" + "training until 2000: 72%|███████▏ | 1447/2000 [08:52<02:58, 3.10it/s, loss=0.395]" ] }, { @@ -47774,7 +47752,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1448/2000 [09:01<03:01, 3.04it/s, loss=0.425]" + "training until 2000: 72%|███████▏ | 1448/2000 [08:52<02:59, 3.08it/s, loss=0.395]" ] }, { @@ -47782,7 +47760,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1448/2000 [09:01<03:01, 3.04it/s, loss=0.423]" + "training until 2000: 72%|███████▏ | 1448/2000 [08:52<02:59, 3.08it/s, loss=0.423]" ] }, { @@ -47790,7 +47768,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1449/2000 [09:01<03:04, 2.99it/s, loss=0.423]" + "training until 2000: 72%|███████▏ | 1449/2000 [08:52<02:56, 3.12it/s, loss=0.423]" ] }, { @@ -47798,7 +47776,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▏ | 1449/2000 [09:01<03:04, 2.99it/s, loss=0.427]" + "training until 2000: 72%|███████▏ | 1449/2000 [08:52<02:56, 3.12it/s, loss=0.411]" ] }, { @@ -47806,7 +47784,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▎ | 1450/2000 [09:02<03:03, 3.00it/s, loss=0.427]" + "training until 2000: 72%|███████▎ | 1450/2000 [08:52<02:55, 3.14it/s, loss=0.411]" ] }, { @@ -47814,7 +47792,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 72%|███████▎ | 1450/2000 [09:02<03:03, 3.00it/s, loss=0.472]" + "training until 2000: 72%|███████▎ | 1450/2000 [08:52<02:55, 3.14it/s, loss=0.436]" ] }, { @@ -47822,7 +47800,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1451/2000 [09:02<02:58, 3.07it/s, loss=0.472]" + "training until 2000: 73%|███████▎ | 1451/2000 [08:53<02:54, 3.14it/s, loss=0.436]" ] }, { @@ -47830,7 +47808,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1451/2000 [09:02<02:58, 3.07it/s, loss=0.419]" + "training until 2000: 73%|███████▎ | 1451/2000 [08:53<02:54, 3.14it/s, loss=0.42] " ] }, { @@ -47838,7 +47816,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1452/2000 [09:02<02:56, 3.10it/s, loss=0.419]" + "training until 2000: 73%|███████▎ | 1452/2000 [08:53<02:54, 3.14it/s, loss=0.42]" ] }, { @@ -47846,7 +47824,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1452/2000 [09:02<02:56, 3.10it/s, loss=0.464]" + "training until 2000: 73%|███████▎ | 1452/2000 [08:53<02:54, 3.14it/s, loss=0.486]" ] }, { @@ -47854,7 +47832,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1453/2000 [09:03<02:54, 3.14it/s, loss=0.464]" + "training until 2000: 73%|███████▎ | 1453/2000 [08:53<02:54, 3.13it/s, loss=0.486]" ] }, { @@ -47862,7 +47840,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1453/2000 [09:03<02:54, 3.14it/s, loss=0.435]" + "training until 2000: 73%|███████▎ | 1453/2000 [08:53<02:54, 3.13it/s, loss=0.431]" ] }, { @@ -47870,7 +47848,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1454/2000 [09:03<02:58, 3.06it/s, loss=0.435]" + "training until 2000: 73%|███████▎ | 1454/2000 [08:54<02:55, 3.11it/s, loss=0.431]" ] }, { @@ -47878,7 +47856,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1454/2000 [09:03<02:58, 3.06it/s, loss=0.409]" + "training until 2000: 73%|███████▎ | 1454/2000 [08:54<02:55, 3.11it/s, loss=0.431]" ] }, { @@ -47886,7 +47864,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1455/2000 [09:03<02:58, 3.05it/s, loss=0.409]" + "training until 2000: 73%|███████▎ | 1455/2000 [08:54<02:55, 3.10it/s, loss=0.431]" ] }, { @@ -47894,7 +47872,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1455/2000 [09:03<02:58, 3.05it/s, loss=0.463]" + "training until 2000: 73%|███████▎ | 1455/2000 [08:54<02:55, 3.10it/s, loss=0.429]" ] }, { @@ -47902,7 +47880,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1456/2000 [09:04<02:56, 3.09it/s, loss=0.463]" + "training until 2000: 73%|███████▎ | 1456/2000 [08:54<02:54, 3.12it/s, loss=0.429]" ] }, { @@ -47910,7 +47888,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1456/2000 [09:04<02:56, 3.09it/s, loss=0.418]" + "training until 2000: 73%|███████▎ | 1456/2000 [08:54<02:54, 3.12it/s, loss=0.398]" ] }, { @@ -47918,7 +47896,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1457/2000 [09:04<02:54, 3.11it/s, loss=0.418]" + "training until 2000: 73%|███████▎ | 1457/2000 [08:55<02:54, 3.11it/s, loss=0.398]" ] }, { @@ -47926,7 +47904,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1457/2000 [09:04<02:54, 3.11it/s, loss=0.45] " + "training until 2000: 73%|███████▎ | 1457/2000 [08:55<02:54, 3.11it/s, loss=0.506]" ] }, { @@ -47934,7 +47912,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1458/2000 [09:04<02:53, 3.12it/s, loss=0.45]" + "training until 2000: 73%|███████▎ | 1458/2000 [08:55<02:53, 3.12it/s, loss=0.506]" ] }, { @@ -47942,7 +47920,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1458/2000 [09:04<02:53, 3.12it/s, loss=0.427]" + "training until 2000: 73%|███████▎ | 1458/2000 [08:55<02:53, 3.12it/s, loss=0.428]" ] }, { @@ -47950,7 +47928,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1459/2000 [09:05<02:52, 3.14it/s, loss=0.427]" + "training until 2000: 73%|███████▎ | 1459/2000 [08:55<02:52, 3.14it/s, loss=0.428]" ] }, { @@ -47958,7 +47936,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1459/2000 [09:05<02:52, 3.14it/s, loss=0.413]" + "training until 2000: 73%|███████▎ | 1459/2000 [08:55<02:52, 3.14it/s, loss=0.42] " ] }, { @@ -47966,7 +47944,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1460/2000 [09:05<02:50, 3.17it/s, loss=0.413]" + "training until 2000: 73%|███████▎ | 1460/2000 [08:56<02:54, 3.09it/s, loss=0.42]" ] }, { @@ -47974,7 +47952,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1460/2000 [09:05<02:50, 3.17it/s, loss=0.414]" + "training until 2000: 73%|███████▎ | 1460/2000 [08:56<02:54, 3.09it/s, loss=0.395]" ] }, { @@ -47982,7 +47960,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1461/2000 [09:05<02:51, 3.15it/s, loss=0.414]" + "training until 2000: 73%|███████▎ | 1461/2000 [08:56<02:53, 3.10it/s, loss=0.395]" ] }, { @@ -47990,7 +47968,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1461/2000 [09:05<02:51, 3.15it/s, loss=0.397]" + "training until 2000: 73%|███████▎ | 1461/2000 [08:56<02:53, 3.10it/s, loss=0.409]" ] }, { @@ -47998,7 +47976,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1462/2000 [09:06<02:52, 3.12it/s, loss=0.397]" + "training until 2000: 73%|███████▎ | 1462/2000 [08:56<02:51, 3.14it/s, loss=0.409]" ] }, { @@ -48006,7 +47984,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1462/2000 [09:06<02:52, 3.12it/s, loss=0.425]" + "training until 2000: 73%|███████▎ | 1462/2000 [08:56<02:51, 3.14it/s, loss=0.565]" ] }, { @@ -48014,7 +47992,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1463/2000 [09:06<02:50, 3.14it/s, loss=0.425]" + "training until 2000: 73%|███████▎ | 1463/2000 [08:57<02:51, 3.14it/s, loss=0.565]" ] }, { @@ -48022,7 +48000,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1463/2000 [09:06<02:50, 3.14it/s, loss=0.416]" + "training until 2000: 73%|███████▎ | 1463/2000 [08:57<02:51, 3.14it/s, loss=0.426]" ] }, { @@ -48030,7 +48008,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1464/2000 [09:06<02:48, 3.18it/s, loss=0.416]" + "training until 2000: 73%|███████▎ | 1464/2000 [08:57<02:50, 3.15it/s, loss=0.426]" ] }, { @@ -48038,7 +48016,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1464/2000 [09:06<02:48, 3.18it/s, loss=0.422]" + "training until 2000: 73%|███████▎ | 1464/2000 [08:57<02:50, 3.15it/s, loss=0.411]" ] }, { @@ -48046,7 +48024,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1465/2000 [09:06<02:49, 3.17it/s, loss=0.422]" + "training until 2000: 73%|███████▎ | 1465/2000 [08:57<02:49, 3.16it/s, loss=0.411]" ] }, { @@ -48054,7 +48032,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1465/2000 [09:06<02:49, 3.17it/s, loss=0.442]" + "training until 2000: 73%|███████▎ | 1465/2000 [08:57<02:49, 3.16it/s, loss=0.433]" ] }, { @@ -48062,7 +48040,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1466/2000 [09:07<02:50, 3.13it/s, loss=0.442]" + "training until 2000: 73%|███████▎ | 1466/2000 [08:58<02:48, 3.17it/s, loss=0.433]" ] }, { @@ -48070,7 +48048,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1466/2000 [09:07<02:50, 3.13it/s, loss=0.423]" + "training until 2000: 73%|███████▎ | 1466/2000 [08:58<02:48, 3.17it/s, loss=0.455]" ] }, { @@ -48078,7 +48056,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1467/2000 [09:07<02:50, 3.13it/s, loss=0.423]" + "training until 2000: 73%|███████▎ | 1467/2000 [08:58<02:49, 3.15it/s, loss=0.455]" ] }, { @@ -48086,7 +48064,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1467/2000 [09:07<02:50, 3.13it/s, loss=0.404]" + "training until 2000: 73%|███████▎ | 1467/2000 [08:58<02:49, 3.15it/s, loss=0.409]" ] }, { @@ -48094,7 +48072,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1468/2000 [09:07<02:50, 3.13it/s, loss=0.404]" + "training until 2000: 73%|███████▎ | 1468/2000 [08:58<02:47, 3.17it/s, loss=0.409]" ] }, { @@ -48102,7 +48080,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1468/2000 [09:07<02:50, 3.13it/s, loss=0.422]" + "training until 2000: 73%|███████▎ | 1468/2000 [08:58<02:47, 3.17it/s, loss=0.435]" ] }, { @@ -48110,7 +48088,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1469/2000 [09:08<02:50, 3.11it/s, loss=0.422]" + "training until 2000: 73%|███████▎ | 1469/2000 [08:59<02:47, 3.17it/s, loss=0.435]" ] }, { @@ -48118,7 +48096,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 73%|███████▎ | 1469/2000 [09:08<02:50, 3.11it/s, loss=0.442]" + "training until 2000: 73%|███████▎ | 1469/2000 [08:59<02:47, 3.17it/s, loss=0.431]" ] }, { @@ -48126,7 +48104,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1470/2000 [09:08<02:51, 3.09it/s, loss=0.442]" + "training until 2000: 74%|███████▎ | 1470/2000 [08:59<02:46, 3.18it/s, loss=0.431]" ] }, { @@ -48134,7 +48112,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1470/2000 [09:08<02:51, 3.09it/s, loss=0.452]" + "training until 2000: 74%|███████▎ | 1470/2000 [08:59<02:46, 3.18it/s, loss=0.452]" ] }, { @@ -48142,7 +48120,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1471/2000 [09:08<02:53, 3.06it/s, loss=0.452]" + "training until 2000: 74%|███████▎ | 1471/2000 [08:59<02:45, 3.20it/s, loss=0.452]" ] }, { @@ -48150,7 +48128,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1471/2000 [09:08<02:53, 3.06it/s, loss=0.42] " + "training until 2000: 74%|███████▎ | 1471/2000 [08:59<02:45, 3.20it/s, loss=0.44] " ] }, { @@ -48158,7 +48136,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1472/2000 [09:09<02:54, 3.02it/s, loss=0.42]" + "training until 2000: 74%|███████▎ | 1472/2000 [08:59<02:45, 3.18it/s, loss=0.44]" ] }, { @@ -48166,7 +48144,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1472/2000 [09:09<02:54, 3.02it/s, loss=0.47]" + "training until 2000: 74%|███████▎ | 1472/2000 [08:59<02:45, 3.18it/s, loss=0.392]" ] }, { @@ -48174,7 +48152,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1473/2000 [09:09<02:52, 3.05it/s, loss=0.47]" + "training until 2000: 74%|███████▎ | 1473/2000 [09:00<02:48, 3.12it/s, loss=0.392]" ] }, { @@ -48182,7 +48160,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1473/2000 [09:09<02:52, 3.05it/s, loss=0.411]" + "training until 2000: 74%|███████▎ | 1473/2000 [09:00<02:48, 3.12it/s, loss=0.429]" ] }, { @@ -48190,7 +48168,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1474/2000 [09:09<02:52, 3.06it/s, loss=0.411]" + "training until 2000: 74%|███████▎ | 1474/2000 [09:00<02:47, 3.13it/s, loss=0.429]" ] }, { @@ -48198,7 +48176,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▎ | 1474/2000 [09:09<02:52, 3.06it/s, loss=0.456]" + "training until 2000: 74%|███████▎ | 1474/2000 [09:00<02:47, 3.13it/s, loss=0.396]" ] }, { @@ -48206,7 +48184,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1475/2000 [09:10<02:51, 3.05it/s, loss=0.456]" + "training until 2000: 74%|███████▍ | 1475/2000 [09:00<02:45, 3.17it/s, loss=0.396]" ] }, { @@ -48214,7 +48192,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1475/2000 [09:10<02:51, 3.05it/s, loss=0.425]" + "training until 2000: 74%|███████▍ | 1475/2000 [09:00<02:45, 3.17it/s, loss=0.497]" ] }, { @@ -48222,7 +48200,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1476/2000 [09:10<02:52, 3.04it/s, loss=0.425]" + "training until 2000: 74%|███████▍ | 1476/2000 [09:01<02:46, 3.15it/s, loss=0.497]" ] }, { @@ -48230,7 +48208,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1476/2000 [09:10<02:52, 3.04it/s, loss=0.442]" + "training until 2000: 74%|███████▍ | 1476/2000 [09:01<02:46, 3.15it/s, loss=0.393]" ] }, { @@ -48238,7 +48216,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1477/2000 [09:10<02:49, 3.09it/s, loss=0.442]" + "training until 2000: 74%|███████▍ | 1477/2000 [09:01<02:46, 3.14it/s, loss=0.393]" ] }, { @@ -48246,7 +48224,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1477/2000 [09:10<02:49, 3.09it/s, loss=0.419]" + "training until 2000: 74%|███████▍ | 1477/2000 [09:01<02:46, 3.14it/s, loss=0.435]" ] }, { @@ -48254,7 +48232,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1478/2000 [09:11<02:50, 3.06it/s, loss=0.419]" + "training until 2000: 74%|███████▍ | 1478/2000 [09:01<02:45, 3.16it/s, loss=0.435]" ] }, { @@ -48262,7 +48240,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1478/2000 [09:11<02:50, 3.06it/s, loss=0.445]" + "training until 2000: 74%|███████▍ | 1478/2000 [09:01<02:45, 3.16it/s, loss=0.469]" ] }, { @@ -48270,7 +48248,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1479/2000 [09:11<02:50, 3.05it/s, loss=0.445]" + "training until 2000: 74%|███████▍ | 1479/2000 [09:02<02:44, 3.17it/s, loss=0.469]" ] }, { @@ -48278,7 +48256,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1479/2000 [09:11<02:50, 3.05it/s, loss=0.402]" + "training until 2000: 74%|███████▍ | 1479/2000 [09:02<02:44, 3.17it/s, loss=0.436]" ] }, { @@ -48286,7 +48264,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1480/2000 [09:11<02:50, 3.06it/s, loss=0.402]" + "training until 2000: 74%|███████▍ | 1480/2000 [09:02<02:43, 3.17it/s, loss=0.436]" ] }, { @@ -48294,7 +48272,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1480/2000 [09:11<02:50, 3.06it/s, loss=0.41] " + "training until 2000: 74%|███████▍ | 1480/2000 [09:02<02:43, 3.17it/s, loss=0.433]" ] }, { @@ -48302,7 +48280,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1481/2000 [09:12<02:50, 3.04it/s, loss=0.41]" + "training until 2000: 74%|███████▍ | 1481/2000 [09:02<02:44, 3.15it/s, loss=0.433]" ] }, { @@ -48310,7 +48288,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1481/2000 [09:12<02:50, 3.04it/s, loss=0.435]" + "training until 2000: 74%|███████▍ | 1481/2000 [09:02<02:44, 3.15it/s, loss=0.427]" ] }, { @@ -48318,7 +48296,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1482/2000 [09:12<02:51, 3.02it/s, loss=0.435]" + "training until 2000: 74%|███████▍ | 1482/2000 [09:03<02:42, 3.19it/s, loss=0.427]" ] }, { @@ -48326,7 +48304,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1482/2000 [09:12<02:51, 3.02it/s, loss=0.523]" + "training until 2000: 74%|███████▍ | 1482/2000 [09:03<02:42, 3.19it/s, loss=0.435]" ] }, { @@ -48334,7 +48312,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1483/2000 [09:12<02:46, 3.10it/s, loss=0.523]" + "training until 2000: 74%|███████▍ | 1483/2000 [09:03<02:42, 3.18it/s, loss=0.435]" ] }, { @@ -48342,7 +48320,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1483/2000 [09:12<02:46, 3.10it/s, loss=0.415]" + "training until 2000: 74%|███████▍ | 1483/2000 [09:03<02:42, 3.18it/s, loss=0.462]" ] }, { @@ -48350,7 +48328,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1484/2000 [09:13<02:48, 3.06it/s, loss=0.415]" + "training until 2000: 74%|███████▍ | 1484/2000 [09:03<02:43, 3.16it/s, loss=0.462]" ] }, { @@ -48358,7 +48336,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1484/2000 [09:13<02:48, 3.06it/s, loss=0.409]" + "training until 2000: 74%|███████▍ | 1484/2000 [09:03<02:43, 3.16it/s, loss=0.452]" ] }, { @@ -48366,7 +48344,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1485/2000 [09:13<02:45, 3.10it/s, loss=0.409]" + "training until 2000: 74%|███████▍ | 1485/2000 [09:04<02:43, 3.16it/s, loss=0.452]" ] }, { @@ -48374,7 +48352,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1485/2000 [09:13<02:45, 3.10it/s, loss=0.422]" + "training until 2000: 74%|███████▍ | 1485/2000 [09:04<02:43, 3.16it/s, loss=0.524]" ] }, { @@ -48382,7 +48360,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1486/2000 [09:13<02:43, 3.14it/s, loss=0.422]" + "training until 2000: 74%|███████▍ | 1486/2000 [09:04<02:43, 3.14it/s, loss=0.524]" ] }, { @@ -48390,7 +48368,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1486/2000 [09:13<02:43, 3.14it/s, loss=0.405]" + "training until 2000: 74%|███████▍ | 1486/2000 [09:04<02:43, 3.14it/s, loss=0.381]" ] }, { @@ -48398,7 +48376,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1487/2000 [09:14<02:45, 3.11it/s, loss=0.405]" + "training until 2000: 74%|███████▍ | 1487/2000 [09:04<02:44, 3.11it/s, loss=0.381]" ] }, { @@ -48406,7 +48384,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1487/2000 [09:14<02:45, 3.11it/s, loss=0.403]" + "training until 2000: 74%|███████▍ | 1487/2000 [09:04<02:44, 3.11it/s, loss=0.4] " ] }, { @@ -48414,7 +48392,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1488/2000 [09:14<02:46, 3.08it/s, loss=0.403]" + "training until 2000: 74%|███████▍ | 1488/2000 [09:05<03:21, 2.54it/s, loss=0.4]" ] }, { @@ -48422,7 +48400,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1488/2000 [09:14<02:46, 3.08it/s, loss=0.407]" + "training until 2000: 74%|███████▍ | 1488/2000 [09:05<03:21, 2.54it/s, loss=0.541]" ] }, { @@ -48430,7 +48408,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1489/2000 [09:14<02:46, 3.07it/s, loss=0.407]" + "training until 2000: 74%|███████▍ | 1489/2000 [09:05<03:09, 2.70it/s, loss=0.541]" ] }, { @@ -48438,7 +48416,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1489/2000 [09:14<02:46, 3.07it/s, loss=0.419]" + "training until 2000: 74%|███████▍ | 1489/2000 [09:05<03:09, 2.70it/s, loss=0.455]" ] }, { @@ -48446,7 +48424,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1490/2000 [09:15<02:45, 3.09it/s, loss=0.419]" + "training until 2000: 74%|███████▍ | 1490/2000 [09:05<02:59, 2.84it/s, loss=0.455]" ] }, { @@ -48454,7 +48432,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 74%|███████▍ | 1490/2000 [09:15<02:45, 3.09it/s, loss=0.408]" + "training until 2000: 74%|███████▍ | 1490/2000 [09:05<02:59, 2.84it/s, loss=0.418]" ] }, { @@ -48462,7 +48440,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1491/2000 [09:15<02:45, 3.07it/s, loss=0.408]" + "training until 2000: 75%|███████▍ | 1491/2000 [09:06<02:54, 2.92it/s, loss=0.418]" ] }, { @@ -48470,7 +48448,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1491/2000 [09:15<02:45, 3.07it/s, loss=0.423]" + "training until 2000: 75%|███████▍ | 1491/2000 [09:06<02:54, 2.92it/s, loss=0.456]" ] }, { @@ -48478,7 +48456,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1492/2000 [09:15<02:45, 3.08it/s, loss=0.423]" + "training until 2000: 75%|███████▍ | 1492/2000 [09:06<02:49, 2.99it/s, loss=0.456]" ] }, { @@ -48486,7 +48464,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1492/2000 [09:15<02:45, 3.08it/s, loss=0.458]" + "training until 2000: 75%|███████▍ | 1492/2000 [09:06<02:49, 2.99it/s, loss=0.405]" ] }, { @@ -48494,7 +48472,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1493/2000 [09:16<02:46, 3.05it/s, loss=0.458]" + "training until 2000: 75%|███████▍ | 1493/2000 [09:06<02:46, 3.05it/s, loss=0.405]" ] }, { @@ -48502,7 +48480,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1493/2000 [09:16<02:46, 3.05it/s, loss=0.402]" + "training until 2000: 75%|███████▍ | 1493/2000 [09:06<02:46, 3.05it/s, loss=0.46] " ] }, { @@ -48510,7 +48488,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1494/2000 [09:16<02:44, 3.08it/s, loss=0.402]" + "training until 2000: 75%|███████▍ | 1494/2000 [09:07<02:44, 3.08it/s, loss=0.46]" ] }, { @@ -48518,7 +48496,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1494/2000 [09:16<02:44, 3.08it/s, loss=0.41] " + "training until 2000: 75%|███████▍ | 1494/2000 [09:07<02:44, 3.08it/s, loss=0.424]" ] }, { @@ -48526,7 +48504,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1495/2000 [09:16<03:24, 2.47it/s, loss=0.41]" + "training until 2000: 75%|███████▍ | 1495/2000 [09:07<02:43, 3.09it/s, loss=0.424]" ] }, { @@ -48534,7 +48512,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1495/2000 [09:16<03:24, 2.47it/s, loss=0.396]" + "training until 2000: 75%|███████▍ | 1495/2000 [09:07<02:43, 3.09it/s, loss=0.419]" ] }, { @@ -48542,7 +48520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1496/2000 [09:17<03:12, 2.62it/s, loss=0.396]" + "training until 2000: 75%|███████▍ | 1496/2000 [09:07<02:42, 3.10it/s, loss=0.419]" ] }, { @@ -48550,7 +48528,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1496/2000 [09:17<03:12, 2.62it/s, loss=0.451]" + "training until 2000: 75%|███████▍ | 1496/2000 [09:07<02:42, 3.10it/s, loss=0.406]" ] }, { @@ -48558,7 +48536,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1497/2000 [09:17<03:04, 2.72it/s, loss=0.451]" + "training until 2000: 75%|███████▍ | 1497/2000 [09:08<02:41, 3.11it/s, loss=0.406]" ] }, { @@ -48566,7 +48544,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1497/2000 [09:17<03:04, 2.72it/s, loss=0.42] " + "training until 2000: 75%|███████▍ | 1497/2000 [09:08<02:41, 3.11it/s, loss=0.41] " ] }, { @@ -48574,7 +48552,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1498/2000 [09:17<02:57, 2.84it/s, loss=0.42]" + "training until 2000: 75%|███████▍ | 1498/2000 [09:08<02:39, 3.15it/s, loss=0.41]" ] }, { @@ -48582,7 +48560,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1498/2000 [09:17<02:57, 2.84it/s, loss=0.398]" + "training until 2000: 75%|███████▍ | 1498/2000 [09:08<02:39, 3.15it/s, loss=0.424]" ] }, { @@ -48590,7 +48568,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1499/2000 [09:18<02:53, 2.88it/s, loss=0.398]" + "training until 2000: 75%|███████▍ | 1499/2000 [09:08<02:38, 3.16it/s, loss=0.424]" ] }, { @@ -48598,7 +48576,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▍ | 1499/2000 [09:18<02:53, 2.88it/s, loss=0.52] " + "training until 2000: 75%|███████▍ | 1499/2000 [09:08<02:38, 3.16it/s, loss=0.568]" ] }, { @@ -48606,7 +48584,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1500/2000 [09:18<02:51, 2.92it/s, loss=0.52]" + "training until 2000: 75%|███████▌ | 1500/2000 [09:09<02:39, 3.13it/s, loss=0.568]" ] }, { @@ -48614,7 +48592,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1500/2000 [09:18<02:51, 2.92it/s, loss=0.419]" + "training until 2000: 75%|███████▌ | 1500/2000 [09:09<02:39, 3.13it/s, loss=0.487]" ] }, { @@ -48702,7 +48680,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:10, 20.53blocks/s, ⧗=0, ▶=1, ✔=1, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:10, 20.72blocks/s, ⧗=0, ▶=1, ✔=1, ✗=0, ∅=0]" ] }, { @@ -48724,7 +48702,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:20, 10.42blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:20, 10.51blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" ] }, { @@ -48746,7 +48724,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:10, 20.50blocks/s, ⧗=0, ▶=1, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:10, 20.69blocks/s, ⧗=0, ▶=1, ✔=2, ✗=0, ∅=0]" ] }, { @@ -48768,7 +48746,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:15, 13.70blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:15, 13.69blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" ] }, { @@ -48790,7 +48768,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.42blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.41blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" ] }, { @@ -48812,7 +48790,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.42blocks/s, ⧗=0, ▶=1, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.41blocks/s, ⧗=0, ▶=1, ✔=3, ✗=0, ∅=0]" ] }, { @@ -48834,7 +48812,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.42blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 20.41blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" ] }, { @@ -48856,7 +48834,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.42blocks/s, ⧗=0, ▶=1, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.41blocks/s, ⧗=0, ▶=1, ✔=4, ✗=0, ∅=0]" ] }, { @@ -48878,7 +48856,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.42blocks/s, ⧗=0, ▶=0, ✔=5, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:10, 20.41blocks/s, ⧗=0, ▶=0, ✔=5, ✗=0, ∅=0]" ] }, { @@ -48900,7 +48878,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.42blocks/s, ⧗=0, ▶=1, ✔=5, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.41blocks/s, ⧗=0, ▶=1, ✔=5, ✗=0, ∅=0]" ] }, { @@ -48922,7 +48900,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.42blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:10, 20.41blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" ] }, { @@ -48944,7 +48922,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 19.15blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" ] }, { @@ -48966,7 +48944,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 19.15blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" ] }, { @@ -48988,7 +48966,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 19.15blocks/s, ⧗=0, ▶=0, ✔=7, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=0, ✔=7, ✗=0, ∅=0]" ] }, { @@ -49010,7 +48988,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:10, 19.15blocks/s, ⧗=0, ▶=1, ✔=7, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=1, ✔=7, ✗=0, ∅=0]" ] }, { @@ -49032,7 +49010,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:10, 19.15blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:10, 19.83blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" ] }, { @@ -49054,7 +49032,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.23blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.74blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" ] }, { @@ -49076,7 +49054,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.23blocks/s, ⧗=0, ▶=1, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.74blocks/s, ⧗=0, ▶=1, ✔=8, ✗=0, ∅=0]" ] }, { @@ -49098,7 +49076,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.23blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.74blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" ] }, { @@ -49120,7 +49098,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.23blocks/s, ⧗=0, ▶=1, ✔=9, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.74blocks/s, ⧗=0, ▶=1, ✔=9, ✗=0, ∅=0]" ] }, { @@ -49142,7 +49120,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.23blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.74blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" ] }, { @@ -49164,7 +49142,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 19.08blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" ] }, { @@ -49186,7 +49164,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=1, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 19.08blocks/s, ⧗=0, ▶=1, ✔=10, ✗=0, ∅=0]" ] }, { @@ -49208,7 +49186,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 19.08blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" ] }, { @@ -49230,7 +49208,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=1, ✔=11, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 19.08blocks/s, ⧗=0, ▶=1, ✔=11, ✗=0, ∅=0]" ] }, { @@ -49252,7 +49230,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 19.08blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" ] }, { @@ -49274,7 +49252,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:11, 17.38blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 19.20blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" ] }, { @@ -49296,7 +49274,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:11, 17.38blocks/s, ⧗=0, ▶=1, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 19.20blocks/s, ⧗=0, ▶=1, ✔=12, ✗=0, ∅=0]" ] }, { @@ -49318,7 +49296,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:11, 17.38blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 19.20blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" ] }, { @@ -49340,7 +49318,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:11, 17.38blocks/s, ⧗=0, ▶=1, ✔=13, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 19.20blocks/s, ⧗=0, ▶=1, ✔=13, ✗=0, ∅=0]" ] }, { @@ -49362,7 +49340,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:11, 17.38blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 19.20blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" ] }, { @@ -49494,7 +49472,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.17blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:12, 16.61blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" ] }, { @@ -49516,7 +49494,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.17blocks/s, ⧗=0, ▶=1, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:12, 16.61blocks/s, ⧗=0, ▶=1, ✔=16, ✗=0, ∅=0]" ] }, { @@ -49538,7 +49516,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.17blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:12, 16.61blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" ] }, { @@ -49560,7 +49538,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.17blocks/s, ⧗=0, ▶=1, ✔=17, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 16.61blocks/s, ⧗=0, ▶=1, ✔=17, ✗=0, ∅=0]" ] }, { @@ -49582,7 +49560,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:01<00:11, 17.17blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 16.61blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" ] }, { @@ -49604,7 +49582,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:00<00:11, 17.05blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" ] }, { @@ -49626,7 +49604,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=1, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.05blocks/s, ⧗=0, ▶=1, ✔=18, ✗=0, ∅=0]" ] }, { @@ -49648,7 +49626,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.05blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" ] }, { @@ -49670,7 +49648,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=1, ✔=19, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.05blocks/s, ⧗=0, ▶=1, ✔=19, ✗=0, ∅=0]" ] }, { @@ -49692,7 +49670,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.14blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.05blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" ] }, { @@ -49714,7 +49692,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.66blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.74blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" ] }, { @@ -49736,7 +49714,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.66blocks/s, ⧗=0, ▶=1, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.74blocks/s, ⧗=0, ▶=1, ✔=20, ✗=0, ∅=0]" ] }, { @@ -49758,7 +49736,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.66blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.74blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" ] }, { @@ -49780,7 +49758,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 17.66blocks/s, ⧗=0, ▶=1, ✔=21, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:10, 17.74blocks/s, ⧗=0, ▶=1, ✔=21, ✗=0, ∅=0]" ] }, { @@ -49802,7 +49780,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 17.66blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:10, 17.74blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" ] }, { @@ -49824,7 +49802,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.68blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.86blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" ] }, { @@ -49846,7 +49824,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.68blocks/s, ⧗=0, ▶=1, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.86blocks/s, ⧗=0, ▶=1, ✔=22, ✗=0, ∅=0]" ] }, { @@ -49868,7 +49846,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.68blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.86blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" ] }, { @@ -49890,7 +49868,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 17.68blocks/s, ⧗=0, ▶=1, ✔=23, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 17.86blocks/s, ⧗=0, ▶=1, ✔=23, ✗=0, ∅=0]" ] }, { @@ -49912,7 +49890,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 17.68blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 17.86blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" ] }, { @@ -49934,7 +49912,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:11, 16.97blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.63blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" ] }, { @@ -49956,7 +49934,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:11, 16.97blocks/s, ⧗=0, ▶=1, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.63blocks/s, ⧗=0, ▶=1, ✔=24, ✗=0, ∅=0]" ] }, { @@ -49978,7 +49956,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:11, 16.97blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.63blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" ] }, { @@ -50000,7 +49978,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:11, 16.97blocks/s, ⧗=0, ▶=1, ✔=25, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 17.63blocks/s, ⧗=0, ▶=1, ✔=25, ✗=0, ∅=0]" ] }, { @@ -50022,7 +50000,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:11, 16.97blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 17.63blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" ] }, { @@ -50044,7 +50022,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 17.31blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" ] }, { @@ -50066,7 +50044,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 17.31blocks/s, ⧗=0, ▶=1, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=1, ✔=26, ✗=0, ∅=0]" ] }, { @@ -50088,7 +50066,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 17.31blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" ] }, { @@ -50110,7 +50088,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 17.31blocks/s, ⧗=0, ▶=1, ✔=27, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=1, ✔=27, ✗=0, ∅=0]" ] }, { @@ -50132,7 +50110,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 17.31blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" ] }, { @@ -50154,7 +50132,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.16blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.98blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" ] }, { @@ -50176,7 +50154,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.16blocks/s, ⧗=0, ▶=1, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.98blocks/s, ⧗=0, ▶=1, ✔=28, ✗=0, ∅=0]" ] }, { @@ -50198,7 +50176,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.16blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.98blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" ] }, { @@ -50220,7 +50198,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.16blocks/s, ⧗=0, ▶=1, ✔=29, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.98blocks/s, ⧗=0, ▶=1, ✔=29, ✗=0, ∅=0]" ] }, { @@ -50242,7 +50220,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.16blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.98blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" ] }, { @@ -50264,7 +50242,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 17.51blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.21blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" ] }, { @@ -50286,7 +50264,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 17.51blocks/s, ⧗=0, ▶=1, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.21blocks/s, ⧗=0, ▶=1, ✔=30, ✗=0, ∅=0]" ] }, { @@ -50308,7 +50286,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 17.51blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.21blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" ] }, { @@ -50330,7 +50308,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 17.51blocks/s, ⧗=0, ▶=1, ✔=31, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 18.21blocks/s, ⧗=0, ▶=1, ✔=31, ✗=0, ∅=0]" ] }, { @@ -50352,7 +50330,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 17.51blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 18.21blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" ] }, { @@ -50374,7 +50352,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:10, 17.83blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.61blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" ] }, { @@ -50396,7 +50374,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:10, 17.83blocks/s, ⧗=0, ▶=1, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.61blocks/s, ⧗=0, ▶=1, ✔=32, ✗=0, ∅=0]" ] }, { @@ -50418,7 +50396,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:10, 17.83blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.61blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" ] }, { @@ -50440,7 +50418,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 17.83blocks/s, ⧗=0, ▶=1, ✔=33, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:09, 18.61blocks/s, ⧗=0, ▶=1, ✔=33, ✗=0, ∅=0]" ] }, { @@ -50462,7 +50440,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 17.83blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:09, 18.61blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" ] }, { @@ -50484,7 +50462,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 18.01blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.62blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" ] }, { @@ -50506,7 +50484,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 18.01blocks/s, ⧗=0, ▶=1, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.62blocks/s, ⧗=0, ▶=1, ✔=34, ✗=0, ∅=0]" ] }, { @@ -50528,7 +50506,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 18.01blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.62blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" ] }, { @@ -50550,7 +50528,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:10, 18.01blocks/s, ⧗=0, ▶=1, ✔=35, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:09, 18.62blocks/s, ⧗=0, ▶=1, ✔=35, ✗=0, ∅=0]" ] }, { @@ -50572,7 +50550,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:02<00:10, 18.01blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:09, 18.62blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" ] }, { @@ -50594,7 +50572,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.50blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.95blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" ] }, { @@ -50616,7 +50594,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.50blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.95blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" ] }, { @@ -50638,7 +50616,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.50blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.95blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" ] }, { @@ -50660,7 +50638,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.50blocks/s, ⧗=0, ▶=1, ✔=37, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.95blocks/s, ⧗=0, ▶=1, ✔=37, ✗=0, ∅=0]" ] }, { @@ -50682,7 +50660,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.50blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.95blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" ] }, { @@ -50704,7 +50682,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.63blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.89blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" ] }, { @@ -50726,7 +50704,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.63blocks/s, ⧗=0, ▶=1, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.89blocks/s, ⧗=0, ▶=1, ✔=38, ✗=0, ∅=0]" ] }, { @@ -50748,7 +50726,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.63blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.89blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" ] }, { @@ -50770,7 +50748,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.63blocks/s, ⧗=0, ▶=1, ✔=39, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.89blocks/s, ⧗=0, ▶=1, ✔=39, ✗=0, ∅=0]" ] }, { @@ -50792,7 +50770,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.63blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.89blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" ] }, { @@ -50814,7 +50792,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.36blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.37blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" ] }, { @@ -50836,7 +50814,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.36blocks/s, ⧗=0, ▶=1, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.37blocks/s, ⧗=0, ▶=1, ✔=40, ✗=0, ∅=0]" ] }, { @@ -50858,7 +50836,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.36blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.37blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" ] }, { @@ -50880,7 +50858,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.36blocks/s, ⧗=0, ▶=1, ✔=41, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.37blocks/s, ⧗=0, ▶=1, ✔=41, ✗=0, ∅=0]" ] }, { @@ -50902,7 +50880,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.36blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.37blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" ] }, { @@ -50924,7 +50902,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.16blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" ] }, { @@ -50946,7 +50924,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=1, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.16blocks/s, ⧗=0, ▶=1, ✔=42, ✗=0, ∅=0]" ] }, { @@ -50968,7 +50946,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.16blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" ] }, { @@ -50990,7 +50968,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=1, ✔=43, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.16blocks/s, ⧗=0, ▶=1, ✔=43, ✗=0, ∅=0]" ] }, { @@ -51012,7 +50990,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.27blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.16blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" ] }, { @@ -51034,7 +51012,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:10, 16.81blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.08blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" ] }, { @@ -51056,7 +51034,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:10, 16.81blocks/s, ⧗=0, ▶=1, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.08blocks/s, ⧗=0, ▶=1, ✔=44, ✗=0, ∅=0]" ] }, { @@ -51078,7 +51056,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:10, 16.81blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.08blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" ] }, { @@ -51100,7 +51078,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:10, 16.81blocks/s, ⧗=0, ▶=1, ✔=45, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 18.08blocks/s, ⧗=0, ▶=1, ✔=45, ✗=0, ∅=0]" ] }, { @@ -51122,7 +51100,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:10, 16.81blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 18.08blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" ] }, { @@ -51144,7 +51122,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.49blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" ] }, { @@ -51166,7 +51144,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=1, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.49blocks/s, ⧗=0, ▶=1, ✔=46, ✗=0, ∅=0]" ] }, { @@ -51188,7 +51166,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.49blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" ] }, { @@ -51210,7 +51188,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=1, ✔=47, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.49blocks/s, ⧗=0, ▶=1, ✔=47, ✗=0, ∅=0]" ] }, { @@ -51232,7 +51210,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.49blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" ] }, { @@ -51254,7 +51232,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 16.89blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.60blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" ] }, { @@ -51276,7 +51254,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 16.89blocks/s, ⧗=0, ▶=1, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.60blocks/s, ⧗=0, ▶=1, ✔=48, ✗=0, ∅=0]" ] }, { @@ -51298,7 +51276,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 16.89blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.60blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" ] }, { @@ -51320,7 +51298,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 16.89blocks/s, ⧗=0, ▶=1, ✔=49, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.60blocks/s, ⧗=0, ▶=1, ✔=49, ✗=0, ∅=0]" ] }, { @@ -51342,7 +51320,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 16.89blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.60blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" ] }, { @@ -51364,7 +51342,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.48blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.47blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" ] }, { @@ -51386,7 +51364,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.48blocks/s, ⧗=0, ▶=1, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.47blocks/s, ⧗=0, ▶=1, ✔=50, ✗=0, ∅=0]" ] }, { @@ -51408,7 +51386,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.48blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.47blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" ] }, { @@ -51430,7 +51408,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.48blocks/s, ⧗=0, ▶=1, ✔=51, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.47blocks/s, ⧗=0, ▶=1, ✔=51, ✗=0, ∅=0]" ] }, { @@ -51452,7 +51430,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.48blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.47blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" ] }, { @@ -51474,7 +51452,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.38blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" ] }, { @@ -51496,7 +51474,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.38blocks/s, ⧗=0, ▶=1, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=1, ✔=52, ✗=0, ∅=0]" ] }, { @@ -51518,7 +51496,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:03<00:10, 15.38blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" ] }, { @@ -51540,7 +51518,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.38blocks/s, ⧗=0, ▶=1, ✔=53, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:02<00:10, 15.53blocks/s, ⧗=0, ▶=1, ✔=53, ✗=0, ∅=0]" ] }, { @@ -51562,7 +51540,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.38blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.53blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" ] }, { @@ -51584,7 +51562,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 14.92blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.68blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" ] }, { @@ -51606,7 +51584,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 14.92blocks/s, ⧗=0, ▶=1, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.68blocks/s, ⧗=0, ▶=1, ✔=54, ✗=0, ∅=0]" ] }, { @@ -51628,7 +51606,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 14.92blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.68blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" ] }, { @@ -51650,7 +51628,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 14.92blocks/s, ⧗=0, ▶=1, ✔=55, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 15.68blocks/s, ⧗=0, ▶=1, ✔=55, ✗=0, ∅=0]" ] }, { @@ -51672,7 +51650,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 14.92blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 15.68blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" ] }, { @@ -51694,7 +51672,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.24blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:09, 16.39blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" ] }, { @@ -51716,7 +51694,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.24blocks/s, ⧗=0, ▶=1, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:09, 16.39blocks/s, ⧗=0, ▶=1, ✔=56, ✗=0, ∅=0]" ] }, { @@ -51738,7 +51716,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.24blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:09, 16.39blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" ] }, { @@ -51760,7 +51738,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.24blocks/s, ⧗=0, ▶=1, ✔=57, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:09, 16.39blocks/s, ⧗=0, ▶=1, ✔=57, ✗=0, ∅=0]" ] }, { @@ -51782,7 +51760,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.24blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:09, 16.39blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" ] }, { @@ -51804,7 +51782,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.17blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.79blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" ] }, { @@ -51826,7 +51804,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.17blocks/s, ⧗=0, ▶=1, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.79blocks/s, ⧗=0, ▶=1, ✔=58, ✗=0, ∅=0]" ] }, { @@ -51848,7 +51826,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.17blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 15.79blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" ] }, { @@ -51870,7 +51848,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 15.17blocks/s, ⧗=0, ▶=1, ✔=59, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 15.79blocks/s, ⧗=0, ▶=1, ✔=59, ✗=0, ∅=0]" ] }, { @@ -51892,7 +51870,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 15.17blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 15.79blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" ] }, { @@ -51914,7 +51892,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.48blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.46blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" ] }, { @@ -51936,7 +51914,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.48blocks/s, ⧗=0, ▶=1, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.46blocks/s, ⧗=0, ▶=1, ✔=60, ✗=0, ∅=0]" ] }, { @@ -51958,7 +51936,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.48blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.46blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" ] }, { @@ -51980,7 +51958,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:10, 15.48blocks/s, ⧗=0, ▶=1, ✔=61, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:10, 15.46blocks/s, ⧗=0, ▶=1, ✔=61, ✗=0, ∅=0]" ] }, { @@ -52002,7 +51980,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:10, 15.48blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:10, 15.46blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" ] }, { @@ -52024,7 +52002,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.43blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.73blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" ] }, { @@ -52046,7 +52024,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.43blocks/s, ⧗=0, ▶=1, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.73blocks/s, ⧗=0, ▶=1, ✔=62, ✗=0, ∅=0]" ] }, { @@ -52068,7 +52046,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.43blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 15.73blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" ] }, { @@ -52090,7 +52068,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 15.43blocks/s, ⧗=0, ▶=1, ✔=63, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 15.73blocks/s, ⧗=0, ▶=1, ✔=63, ✗=0, ∅=0]" ] }, { @@ -52112,7 +52090,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 15.43blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 15.73blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" ] }, { @@ -52134,7 +52112,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:10, 15.06blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:10, 14.82blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" ] }, { @@ -52156,7 +52134,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:10, 15.06blocks/s, ⧗=0, ▶=1, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:10, 14.82blocks/s, ⧗=0, ▶=1, ✔=64, ✗=0, ∅=0]" ] }, { @@ -52178,7 +52156,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:10, 15.06blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:10, 14.82blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" ] }, { @@ -52200,7 +52178,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:10, 15.06blocks/s, ⧗=0, ▶=1, ✔=65, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:10, 14.82blocks/s, ⧗=0, ▶=1, ✔=65, ✗=0, ∅=0]" ] }, { @@ -52222,7 +52200,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:10, 15.06blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:10, 14.82blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" ] }, { @@ -52244,7 +52222,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 15.64blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:10, 14.54blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" ] }, { @@ -52266,7 +52244,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 15.64blocks/s, ⧗=0, ▶=1, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:10, 14.54blocks/s, ⧗=0, ▶=1, ✔=66, ✗=0, ∅=0]" ] }, { @@ -52288,7 +52266,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 15.64blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:10, 14.54blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" ] }, { @@ -52310,7 +52288,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:09, 15.64blocks/s, ⧗=0, ▶=1, ✔=67, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:10, 14.54blocks/s, ⧗=0, ▶=1, ✔=67, ✗=0, ∅=0]" ] }, { @@ -52332,7 +52310,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:04<00:09, 15.64blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:10, 14.54blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" ] }, { @@ -52354,7 +52332,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:09, 16.24blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:10, 14.34blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" ] }, { @@ -52376,7 +52354,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:09, 16.24blocks/s, ⧗=0, ▶=1, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:10, 14.34blocks/s, ⧗=0, ▶=1, ✔=68, ✗=0, ∅=0]" ] }, { @@ -52398,7 +52376,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:09, 16.24blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:10, 14.34blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" ] }, { @@ -52420,7 +52398,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:09, 16.24blocks/s, ⧗=0, ▶=1, ✔=69, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:10, 14.34blocks/s, ⧗=0, ▶=1, ✔=69, ✗=0, ∅=0]" ] }, { @@ -52442,7 +52420,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:09, 16.24blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:10, 14.34blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" ] }, { @@ -52464,7 +52442,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.41blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:09, 14.74blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" ] }, { @@ -52486,7 +52464,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.41blocks/s, ⧗=0, ▶=1, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:09, 14.74blocks/s, ⧗=0, ▶=1, ✔=70, ✗=0, ∅=0]" ] }, { @@ -52508,7 +52486,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 16.41blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:09, 14.74blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" ] }, { @@ -52530,7 +52508,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.41blocks/s, ⧗=0, ▶=1, ✔=71, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:09, 14.74blocks/s, ⧗=0, ▶=1, ✔=71, ✗=0, ∅=0]" ] }, { @@ -52552,7 +52530,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.41blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:09, 14.74blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" ] }, { @@ -52574,7 +52552,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.96blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:09, 15.39blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" ] }, { @@ -52596,7 +52574,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.96blocks/s, ⧗=0, ▶=1, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:09, 15.39blocks/s, ⧗=0, ▶=1, ✔=72, ✗=0, ∅=0]" ] }, { @@ -52618,7 +52596,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.96blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:09, 15.39blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" ] }, { @@ -52640,7 +52618,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 16.96blocks/s, ⧗=0, ▶=1, ✔=73, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:09, 15.39blocks/s, ⧗=0, ▶=1, ✔=73, ✗=0, ∅=0]" ] }, { @@ -52662,7 +52640,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 16.96blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:09, 15.39blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" ] }, { @@ -52684,7 +52662,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.53blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 16.21blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" ] }, { @@ -52706,7 +52684,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.53blocks/s, ⧗=0, ▶=1, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 16.21blocks/s, ⧗=0, ▶=1, ✔=74, ✗=0, ∅=0]" ] }, { @@ -52728,7 +52706,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.53blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 16.21blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" ] }, { @@ -52750,7 +52728,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.53blocks/s, ⧗=0, ▶=1, ✔=75, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 16.21blocks/s, ⧗=0, ▶=1, ✔=75, ✗=0, ∅=0]" ] }, { @@ -52772,7 +52750,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.53blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 16.21blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" ] }, { @@ -52794,7 +52772,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:07, 17.73blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 16.30blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" ] }, { @@ -52816,7 +52794,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:07, 17.73blocks/s, ⧗=0, ▶=1, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 16.30blocks/s, ⧗=0, ▶=1, ✔=76, ✗=0, ∅=0]" ] }, { @@ -52838,7 +52816,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:07, 17.73blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 16.30blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" ] }, { @@ -52860,7 +52838,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.73blocks/s, ⧗=0, ▶=1, ✔=77, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:08, 16.30blocks/s, ⧗=0, ▶=1, ✔=77, ✗=0, ∅=0]" ] }, { @@ -52882,7 +52860,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.73blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:08, 16.30blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" ] }, { @@ -52904,7 +52882,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.87blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:08, 17.17blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" ] }, { @@ -52926,7 +52904,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.87blocks/s, ⧗=0, ▶=1, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:08, 17.17blocks/s, ⧗=0, ▶=1, ✔=78, ✗=0, ∅=0]" ] }, { @@ -52948,7 +52926,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.87blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:08, 17.17blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" ] }, { @@ -52970,7 +52948,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.87blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.17blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" ] }, { @@ -52992,7 +52970,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.87blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.17blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" ] }, { @@ -53014,7 +52992,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.15blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.69blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" ] }, { @@ -53036,7 +53014,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.15blocks/s, ⧗=0, ▶=1, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.69blocks/s, ⧗=0, ▶=1, ✔=80, ✗=0, ∅=0]" ] }, { @@ -53058,7 +53036,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 18.15blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.69blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" ] }, { @@ -53080,7 +53058,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.15blocks/s, ⧗=0, ▶=1, ✔=81, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 17.69blocks/s, ⧗=0, ▶=1, ✔=81, ✗=0, ∅=0]" ] }, { @@ -53102,7 +53080,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 18.15blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 17.69blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" ] }, { @@ -53124,7 +53102,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.81blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.50blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" ] }, { @@ -53146,7 +53124,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.81blocks/s, ⧗=0, ▶=1, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.50blocks/s, ⧗=0, ▶=1, ✔=82, ✗=0, ∅=0]" ] }, { @@ -53168,7 +53146,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.81blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.50blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" ] }, { @@ -53190,7 +53168,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.81blocks/s, ⧗=0, ▶=1, ✔=83, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.50blocks/s, ⧗=0, ▶=1, ✔=83, ✗=0, ∅=0]" ] }, { @@ -53212,7 +53190,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.81blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.50blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" ] }, { @@ -53234,7 +53212,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.83blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" ] }, { @@ -53256,7 +53234,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=1, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.83blocks/s, ⧗=0, ▶=1, ✔=84, ✗=0, ∅=0]" ] }, { @@ -53278,7 +53256,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.83blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" ] }, { @@ -53300,7 +53278,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 17.78blocks/s, ⧗=0, ▶=1, ✔=85, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 17.83blocks/s, ⧗=0, ▶=1, ✔=85, ✗=0, ∅=0]" ] }, { @@ -53322,7 +53300,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:05<00:07, 17.78blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:05<00:07, 17.83blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" ] }, { @@ -53344,7 +53322,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.60blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" ] }, { @@ -53366,7 +53344,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=1, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.60blocks/s, ⧗=0, ▶=1, ✔=86, ✗=0, ∅=0]" ] }, { @@ -53388,7 +53366,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.60blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" ] }, { @@ -53410,7 +53388,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=1, ✔=87, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.60blocks/s, ⧗=0, ▶=1, ✔=87, ✗=0, ∅=0]" ] }, { @@ -53432,7 +53410,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.48blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.60blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" ] }, { @@ -53454,7 +53432,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.78blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.92blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" ] }, { @@ -53476,7 +53454,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.78blocks/s, ⧗=0, ▶=1, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.92blocks/s, ⧗=0, ▶=1, ✔=88, ✗=0, ∅=0]" ] }, { @@ -53498,7 +53476,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.78blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.92blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" ] }, { @@ -53520,7 +53498,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.78blocks/s, ⧗=0, ▶=1, ✔=89, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.92blocks/s, ⧗=0, ▶=1, ✔=89, ✗=0, ∅=0]" ] }, { @@ -53542,7 +53520,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.78blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.92blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" ] }, { @@ -53564,7 +53542,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.82blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 17.13blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" ] }, { @@ -53586,7 +53564,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.82blocks/s, ⧗=0, ▶=1, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 17.13blocks/s, ⧗=0, ▶=1, ✔=90, ✗=0, ∅=0]" ] }, { @@ -53608,7 +53586,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.82blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 17.13blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" ] }, { @@ -53630,7 +53608,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.82blocks/s, ⧗=0, ▶=1, ✔=91, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.13blocks/s, ⧗=0, ▶=1, ✔=91, ✗=0, ∅=0]" ] }, { @@ -53652,7 +53630,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.82blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.13blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" ] }, { @@ -53674,7 +53652,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.32blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 16.17blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" ] }, { @@ -53696,7 +53674,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.32blocks/s, ⧗=0, ▶=1, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 16.17blocks/s, ⧗=0, ▶=1, ✔=92, ✗=0, ∅=0]" ] }, { @@ -53718,7 +53696,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.32blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 16.17blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" ] }, { @@ -53740,7 +53718,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.32blocks/s, ⧗=0, ▶=1, ✔=93, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 16.17blocks/s, ⧗=0, ▶=1, ✔=93, ✗=0, ∅=0]" ] }, { @@ -53762,7 +53740,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.32blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 16.17blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" ] }, { @@ -53784,7 +53762,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.43blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:08, 15.25blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" ] }, { @@ -53806,7 +53784,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.43blocks/s, ⧗=0, ▶=1, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:08, 15.25blocks/s, ⧗=0, ▶=1, ✔=94, ✗=0, ∅=0]" ] }, { @@ -53828,7 +53806,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.43blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:08, 15.25blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" ] }, { @@ -53850,7 +53828,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.43blocks/s, ⧗=0, ▶=1, ✔=95, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 15.25blocks/s, ⧗=0, ▶=1, ✔=95, ✗=0, ∅=0]" ] }, { @@ -53872,7 +53850,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.43blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 15.25blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" ] }, { @@ -53894,7 +53872,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.60blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:07, 15.58blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" ] }, { @@ -53916,7 +53894,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.60blocks/s, ⧗=0, ▶=1, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:07, 15.58blocks/s, ⧗=0, ▶=1, ✔=96, ✗=0, ∅=0]" ] }, { @@ -53938,7 +53916,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.60blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:07, 15.58blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" ] }, { @@ -53960,7 +53938,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.60blocks/s, ⧗=0, ▶=1, ✔=97, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:07, 15.58blocks/s, ⧗=0, ▶=1, ✔=97, ✗=0, ∅=0]" ] }, { @@ -53982,7 +53960,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.60blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:07, 15.58blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" ] }, { @@ -54004,7 +53982,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.80blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:07, 15.34blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" ] }, { @@ -54026,7 +54004,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.80blocks/s, ⧗=0, ▶=1, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:07, 15.34blocks/s, ⧗=0, ▶=1, ✔=98, ✗=0, ∅=0]" ] }, { @@ -54048,7 +54026,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.80blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:07, 15.34blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" ] }, { @@ -54070,7 +54048,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.80blocks/s, ⧗=0, ▶=1, ✔=99, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:07, 15.34blocks/s, ⧗=0, ▶=1, ✔=99, ✗=0, ∅=0]" ] }, { @@ -54092,7 +54070,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.80blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:07, 15.34blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" ] }, { @@ -54114,7 +54092,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.99blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:07, 15.32blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" ] }, { @@ -54136,7 +54114,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.99blocks/s, ⧗=0, ▶=1, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:07, 15.32blocks/s, ⧗=0, ▶=1, ✔=100, ✗=0, ∅=0]" ] }, { @@ -54158,7 +54136,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 16.99blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:07, 15.32blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" ] }, { @@ -54180,7 +54158,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 16.99blocks/s, ⧗=0, ▶=1, ✔=101, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:07, 15.32blocks/s, ⧗=0, ▶=1, ✔=101, ✗=0, ∅=0]" ] }, { @@ -54202,7 +54180,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 16.99blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:06<00:07, 15.32blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" ] }, { @@ -54224,7 +54202,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.15blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:06<00:07, 16.15blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" ] }, { @@ -54246,7 +54224,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.15blocks/s, ⧗=0, ▶=1, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:06<00:07, 16.15blocks/s, ⧗=0, ▶=1, ✔=102, ✗=0, ∅=0]" ] }, { @@ -54268,7 +54246,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:06<00:06, 17.15blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:06<00:07, 16.15blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" ] }, { @@ -54290,7 +54268,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 17.15blocks/s, ⧗=0, ▶=1, ✔=103, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 16.15blocks/s, ⧗=0, ▶=1, ✔=103, ✗=0, ∅=0]" ] }, { @@ -54312,7 +54290,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 17.15blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 16.15blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" ] }, { @@ -54334,7 +54312,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.17blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.03blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" ] }, { @@ -54356,7 +54334,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.17blocks/s, ⧗=0, ▶=1, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.03blocks/s, ⧗=0, ▶=1, ✔=104, ✗=0, ∅=0]" ] }, { @@ -54378,7 +54356,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.17blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 17.03blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" ] }, { @@ -54400,7 +54378,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.17blocks/s, ⧗=0, ▶=1, ✔=105, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.03blocks/s, ⧗=0, ▶=1, ✔=105, ✗=0, ∅=0]" ] }, { @@ -54422,7 +54400,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.17blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 17.03blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" ] }, { @@ -54444,7 +54422,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.44blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.21blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" ] }, { @@ -54466,7 +54444,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.44blocks/s, ⧗=0, ▶=1, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.21blocks/s, ⧗=0, ▶=1, ✔=106, ✗=0, ∅=0]" ] }, { @@ -54488,7 +54466,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.44blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 17.21blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" ] }, { @@ -54510,7 +54488,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.44blocks/s, ⧗=0, ▶=1, ✔=107, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.21blocks/s, ⧗=0, ▶=1, ✔=107, ✗=0, ∅=0]" ] }, { @@ -54532,7 +54510,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.44blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 17.21blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" ] }, { @@ -54554,7 +54532,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.92blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.69blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" ] }, { @@ -54576,7 +54554,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.92blocks/s, ⧗=0, ▶=1, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.69blocks/s, ⧗=0, ▶=1, ✔=108, ✗=0, ∅=0]" ] }, { @@ -54598,7 +54576,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.92blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 17.69blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" ] }, { @@ -54620,7 +54598,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 17.92blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:06, 17.69blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" ] }, { @@ -54642,7 +54620,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 17.92blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:06, 17.69blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" ] }, { @@ -54664,7 +54642,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.92blocks/s, ⧗=0, ▶=1, ✔=110, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.70blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" ] }, { @@ -54686,7 +54664,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.92blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.70blocks/s, ⧗=0, ▶=1, ✔=110, ✗=0, ∅=0]" ] }, { @@ -54708,7 +54686,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.88blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 17.70blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" ] }, { @@ -54730,7 +54708,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.88blocks/s, ⧗=0, ▶=1, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 17.70blocks/s, ⧗=0, ▶=1, ✔=111, ✗=0, ∅=0]" ] }, { @@ -54752,7 +54730,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.88blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 17.70blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" ] }, { @@ -54774,7 +54752,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.88blocks/s, ⧗=0, ▶=1, ✔=112, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.09blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" ] }, { @@ -54796,7 +54774,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.88blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.09blocks/s, ⧗=0, ▶=1, ✔=112, ✗=0, ∅=0]" ] }, { @@ -54818,7 +54796,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.02blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 18.09blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" ] }, { @@ -54840,7 +54818,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.02blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 18.09blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" ] }, { @@ -54862,7 +54840,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.02blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 18.09blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" ] }, { @@ -54884,7 +54862,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 19.02blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.09blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" ] }, { @@ -54906,7 +54884,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 19.02blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" ] }, { @@ -54928,7 +54906,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.32blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" ] }, { @@ -54950,7 +54928,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.32blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" ] }, { @@ -54972,7 +54950,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.32blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" ] }, { @@ -54994,7 +54972,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 18.32blocks/s, ⧗=0, ▶=1, ✔=116, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 17.32blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" ] }, { @@ -55016,7 +54994,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 18.32blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 17.32blocks/s, ⧗=0, ▶=1, ✔=116, ✗=0, ∅=0]" ] }, { @@ -55038,7 +55016,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.27blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▎ | 116/216 [00:06<00:05, 17.32blocks/s, ⧗=0, ▶=0, ✔=117, ✗=0, ∅=0]" ] }, { @@ -55060,7 +55038,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.27blocks/s, ⧗=0, ▶=1, ✔=117, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 17.32blocks/s, ⧗=0, ▶=1, ✔=117, ✗=0, ∅=0]" ] }, { @@ -55082,7 +55060,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 18.27blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 54%|█████▍ | 117/216 [00:06<00:05, 17.32blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" ] }, { @@ -55104,7 +55082,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.27blocks/s, ⧗=0, ▶=1, ✔=118, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 17.24blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" ] }, { @@ -55126,7 +55104,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.27blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 17.24blocks/s, ⧗=0, ▶=1, ✔=118, ✗=0, ∅=0]" ] }, { @@ -55148,7 +55126,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:07<00:05, 17.24blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" ] }, { @@ -55170,7 +55148,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=1, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:07<00:05, 17.24blocks/s, ⧗=0, ▶=1, ✔=119, ✗=0, ∅=0]" ] }, { @@ -55192,7 +55170,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:07<00:05, 17.24blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" ] }, { @@ -55214,7 +55192,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=1, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:07<00:05, 16.48blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" ] }, { @@ -55236,7 +55214,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.48blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:07<00:05, 16.48blocks/s, ⧗=0, ▶=1, ✔=120, ✗=0, ∅=0]" ] }, { @@ -55258,7 +55236,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.74blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:07<00:05, 16.48blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" ] }, { @@ -55280,7 +55258,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.74blocks/s, ⧗=0, ▶=1, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:07<00:05, 16.48blocks/s, ⧗=0, ▶=1, ✔=121, ✗=0, ∅=0]" ] }, { @@ -55302,7 +55280,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:07<00:05, 18.74blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:07<00:05, 16.48blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" ] }, { @@ -55324,7 +55302,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.74blocks/s, ⧗=0, ▶=1, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 16.63blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" ] }, { @@ -55346,7 +55324,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.74blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 16.63blocks/s, ⧗=0, ▶=1, ✔=122, ✗=0, ∅=0]" ] }, { @@ -55368,7 +55346,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.23blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 16.63blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" ] }, { @@ -55390,7 +55368,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.23blocks/s, ⧗=0, ▶=1, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 16.63blocks/s, ⧗=0, ▶=1, ✔=123, ✗=0, ∅=0]" ] }, { @@ -55412,7 +55390,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.23blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 16.63blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" ] }, { @@ -55434,7 +55412,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 18.23blocks/s, ⧗=0, ▶=1, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 16.70blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" ] }, { @@ -55456,7 +55434,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 18.23blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 16.70blocks/s, ⧗=0, ▶=1, ✔=124, ✗=0, ∅=0]" ] }, { @@ -55478,7 +55456,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.91blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 16.70blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" ] }, { @@ -55500,7 +55478,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.91blocks/s, ⧗=0, ▶=1, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 16.70blocks/s, ⧗=0, ▶=1, ✔=125, ✗=0, ∅=0]" ] }, { @@ -55522,7 +55500,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.91blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 16.70blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" ] }, { @@ -55544,7 +55522,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.91blocks/s, ⧗=0, ▶=1, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 16.49blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" ] }, { @@ -55566,7 +55544,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.91blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 16.49blocks/s, ⧗=0, ▶=1, ✔=126, ✗=0, ∅=0]" ] }, { @@ -55588,7 +55566,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 17.57blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 16.49blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" ] }, { @@ -55610,7 +55588,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 17.57blocks/s, ⧗=0, ▶=1, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 16.49blocks/s, ⧗=0, ▶=1, ✔=127, ✗=0, ∅=0]" ] }, { @@ -55632,7 +55610,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 17.57blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 16.49blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" ] }, { @@ -55654,7 +55632,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:05, 17.57blocks/s, ⧗=0, ▶=1, ✔=128, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:05, 16.46blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" ] }, { @@ -55676,7 +55654,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:05, 17.57blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:05, 16.46blocks/s, ⧗=0, ▶=1, ✔=128, ✗=0, ∅=0]" ] }, { @@ -55698,7 +55676,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 17.64blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 59%|█████▉ | 128/216 [00:07<00:05, 16.46blocks/s, ⧗=0, ▶=0, ✔=129, ✗=0, ∅=0]" ] }, { @@ -55720,7 +55698,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 17.64blocks/s, ⧗=0, ▶=1, ✔=129, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:05, 16.46blocks/s, ⧗=0, ▶=1, ✔=129, ✗=0, ∅=0]" ] }, { @@ -55742,7 +55720,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:04, 17.64blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|█████▉ | 129/216 [00:07<00:05, 16.46blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" ] }, { @@ -55764,7 +55742,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.64blocks/s, ⧗=0, ▶=1, ✔=130, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:05, 16.91blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" ] }, { @@ -55786,7 +55764,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.64blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:05, 16.91blocks/s, ⧗=0, ▶=1, ✔=130, ✗=0, ∅=0]" ] }, { @@ -55808,7 +55786,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:05, 16.98blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:05, 16.91blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" ] }, { @@ -55830,7 +55808,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:05, 16.98blocks/s, ⧗=0, ▶=1, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:05, 16.91blocks/s, ⧗=0, ▶=1, ✔=131, ✗=0, ∅=0]" ] }, { @@ -55852,7 +55830,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:05, 16.98blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:05, 16.91blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" ] }, { @@ -55874,7 +55852,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 16.98blocks/s, ⧗=0, ▶=1, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:05, 16.70blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" ] }, { @@ -55896,7 +55874,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 16.98blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:05, 16.70blocks/s, ⧗=0, ▶=1, ✔=132, ✗=0, ∅=0]" ] }, { @@ -55918,7 +55896,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 17.66blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:05, 16.70blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" ] }, { @@ -55940,7 +55918,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 17.66blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 16.70blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" ] }, { @@ -55962,7 +55940,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 17.66blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 16.70blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" ] }, { @@ -55984,7 +55962,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 17.66blocks/s, ⧗=0, ▶=1, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 17.44blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" ] }, { @@ -56006,7 +55984,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 17.66blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 17.44blocks/s, ⧗=0, ▶=1, ✔=134, ✗=0, ∅=0]" ] }, { @@ -56028,7 +56006,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 17.44blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" ] }, { @@ -56050,7 +56028,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=1, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 17.44blocks/s, ⧗=0, ▶=1, ✔=135, ✗=0, ∅=0]" ] }, { @@ -56072,7 +56050,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:08<00:04, 17.44blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" ] }, { @@ -56094,7 +56072,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=1, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:08<00:04, 17.64blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" ] }, { @@ -56116,7 +56094,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 17.87blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:08<00:04, 17.64blocks/s, ⧗=0, ▶=1, ✔=136, ✗=0, ∅=0]" ] }, { @@ -56138,7 +56116,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 17.41blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:08<00:04, 17.64blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" ] }, { @@ -56160,7 +56138,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 17.41blocks/s, ⧗=0, ▶=1, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:08<00:04, 17.64blocks/s, ⧗=0, ▶=1, ✔=137, ✗=0, ∅=0]" ] }, { @@ -56182,7 +56160,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 17.41blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:08<00:04, 17.64blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" ] }, { @@ -56204,7 +56182,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 17.41blocks/s, ⧗=0, ▶=1, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" ] }, { @@ -56226,7 +56204,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:08<00:04, 17.41blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=1, ✔=138, ✗=0, ∅=0]" ] }, { @@ -56248,7 +56226,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 17.62blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" ] }, { @@ -56270,7 +56248,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 17.62blocks/s, ⧗=0, ▶=1, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=1, ✔=139, ✗=0, ∅=0]" ] }, { @@ -56292,7 +56270,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 17.62blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 17.75blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" ] }, { @@ -56314,7 +56292,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.62blocks/s, ⧗=0, ▶=1, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.91blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" ] }, { @@ -56336,7 +56314,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.62blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.91blocks/s, ⧗=0, ▶=1, ✔=140, ✗=0, ∅=0]" ] }, { @@ -56358,7 +56336,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 18.06blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.91blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" ] }, { @@ -56380,7 +56358,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 18.06blocks/s, ⧗=0, ▶=1, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.91blocks/s, ⧗=0, ▶=1, ✔=141, ✗=0, ∅=0]" ] }, { @@ -56402,7 +56380,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 18.06blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.91blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" ] }, { @@ -56424,7 +56402,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 18.06blocks/s, ⧗=0, ▶=1, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 18.02blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" ] }, { @@ -56446,7 +56424,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 18.06blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 18.02blocks/s, ⧗=0, ▶=1, ✔=142, ✗=0, ∅=0]" ] }, { @@ -56468,7 +56446,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.35blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 18.02blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" ] }, { @@ -56490,7 +56468,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.35blocks/s, ⧗=0, ▶=1, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 18.02blocks/s, ⧗=0, ▶=1, ✔=143, ✗=0, ∅=0]" ] }, { @@ -56512,7 +56490,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.35blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 18.02blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" ] }, { @@ -56534,7 +56512,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.35blocks/s, ⧗=0, ▶=1, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" ] }, { @@ -56556,7 +56534,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.35blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=1, ✔=144, ✗=0, ∅=0]" ] }, { @@ -56578,7 +56556,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.27blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" ] }, { @@ -56600,7 +56578,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.27blocks/s, ⧗=0, ▶=1, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=1, ✔=145, ✗=0, ∅=0]" ] }, { @@ -56622,7 +56600,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.27blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.08blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" ] }, { @@ -56644,7 +56622,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.27blocks/s, ⧗=0, ▶=1, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:04, 17.05blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" ] }, { @@ -56666,7 +56644,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.27blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:04, 17.05blocks/s, ⧗=0, ▶=1, ✔=146, ✗=0, ∅=0]" ] }, { @@ -56688,7 +56666,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 17.93blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:04, 17.05blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" ] }, { @@ -56710,7 +56688,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 17.93blocks/s, ⧗=0, ▶=1, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:04, 17.05blocks/s, ⧗=0, ▶=1, ✔=147, ✗=0, ∅=0]" ] }, { @@ -56732,7 +56710,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 17.93blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:04, 17.05blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" ] }, { @@ -56754,7 +56732,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.93blocks/s, ⧗=0, ▶=1, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:04, 15.83blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" ] }, { @@ -56776,7 +56754,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.93blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:04, 15.83blocks/s, ⧗=0, ▶=1, ✔=148, ✗=0, ∅=0]" ] }, { @@ -56798,7 +56776,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.90blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:04, 15.83blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" ] }, { @@ -56820,7 +56798,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.90blocks/s, ⧗=0, ▶=1, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:04, 15.83blocks/s, ⧗=0, ▶=1, ✔=149, ✗=0, ∅=0]" ] }, { @@ -56842,7 +56820,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.90blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:04, 15.83blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" ] }, { @@ -56864,7 +56842,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.90blocks/s, ⧗=0, ▶=1, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:04, 16.38blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" ] }, { @@ -56886,7 +56864,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.90blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:04, 16.38blocks/s, ⧗=0, ▶=1, ✔=150, ✗=0, ∅=0]" ] }, { @@ -56908,7 +56886,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.74blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:04, 16.38blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" ] }, { @@ -56930,7 +56908,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.74blocks/s, ⧗=0, ▶=1, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 16.38blocks/s, ⧗=0, ▶=1, ✔=151, ✗=0, ∅=0]" ] }, { @@ -56952,7 +56930,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.74blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 16.38blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" ] }, { @@ -56974,7 +56952,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.74blocks/s, ⧗=0, ▶=1, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 16.83blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" ] }, { @@ -56996,7 +56974,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.74blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 16.83blocks/s, ⧗=0, ▶=1, ✔=152, ✗=0, ∅=0]" ] }, { @@ -57018,7 +56996,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 17.24blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:09<00:03, 16.83blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" ] }, { @@ -57040,7 +57018,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 17.24blocks/s, ⧗=0, ▶=1, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:09<00:03, 16.83blocks/s, ⧗=0, ▶=1, ✔=153, ✗=0, ∅=0]" ] }, { @@ -57062,7 +57040,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 17.24blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:09<00:03, 16.83blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" ] }, { @@ -57084,7 +57062,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 17.24blocks/s, ⧗=0, ▶=1, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:09<00:03, 16.56blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" ] }, { @@ -57106,7 +57084,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 17.24blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:09<00:03, 16.56blocks/s, ⧗=0, ▶=1, ✔=154, ✗=0, ∅=0]" ] }, { @@ -57128,7 +57106,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 17.33blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:09<00:03, 16.56blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" ] }, { @@ -57150,7 +57128,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 17.33blocks/s, ⧗=0, ▶=1, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:09<00:03, 16.56blocks/s, ⧗=0, ▶=1, ✔=155, ✗=0, ∅=0]" ] }, { @@ -57172,7 +57150,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 17.33blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:09<00:03, 16.56blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" ] }, { @@ -57194,7 +57172,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 17.33blocks/s, ⧗=0, ▶=1, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:09<00:03, 16.65blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" ] }, { @@ -57216,7 +57194,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:09<00:03, 17.33blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:09<00:03, 16.65blocks/s, ⧗=0, ▶=1, ✔=156, ✗=0, ∅=0]" ] }, { @@ -57238,7 +57216,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.48blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:09<00:03, 16.65blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" ] }, { @@ -57260,7 +57238,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.48blocks/s, ⧗=0, ▶=1, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.65blocks/s, ⧗=0, ▶=1, ✔=157, ✗=0, ∅=0]" ] }, { @@ -57282,7 +57260,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.48blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.65blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" ] }, { @@ -57304,7 +57282,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.48blocks/s, ⧗=0, ▶=1, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.35blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" ] }, { @@ -57326,7 +57304,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.48blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.35blocks/s, ⧗=0, ▶=1, ✔=158, ✗=0, ∅=0]" ] }, { @@ -57348,7 +57326,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.15blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.35blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" ] }, { @@ -57370,7 +57348,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.15blocks/s, ⧗=0, ▶=1, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 16.35blocks/s, ⧗=0, ▶=1, ✔=159, ✗=0, ∅=0]" ] }, { @@ -57392,7 +57370,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.15blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 16.35blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" ] }, { @@ -57414,7 +57392,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.15blocks/s, ⧗=0, ▶=1, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.26blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" ] }, { @@ -57436,7 +57414,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.15blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.26blocks/s, ⧗=0, ▶=1, ✔=160, ✗=0, ∅=0]" ] }, { @@ -57458,7 +57436,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.92blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.26blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" ] }, { @@ -57480,7 +57458,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.92blocks/s, ⧗=0, ▶=1, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 15.26blocks/s, ⧗=0, ▶=1, ✔=161, ✗=0, ∅=0]" ] }, { @@ -57502,7 +57480,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.92blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 15.26blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" ] }, { @@ -57524,7 +57502,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.92blocks/s, ⧗=0, ▶=1, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 15.35blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" ] }, { @@ -57546,7 +57524,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.92blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 15.35blocks/s, ⧗=0, ▶=1, ✔=162, ✗=0, ∅=0]" ] }, { @@ -57568,7 +57546,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.27blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 15.35blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" ] }, { @@ -57590,7 +57568,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.27blocks/s, ⧗=0, ▶=1, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.35blocks/s, ⧗=0, ▶=1, ✔=163, ✗=0, ∅=0]" ] }, { @@ -57612,7 +57590,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.27blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.35blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" ] }, { @@ -57634,7 +57612,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.27blocks/s, ⧗=0, ▶=1, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 16.05blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" ] }, { @@ -57656,7 +57634,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.27blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 16.05blocks/s, ⧗=0, ▶=1, ✔=164, ✗=0, ∅=0]" ] }, { @@ -57678,7 +57656,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 14.80blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 16.05blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" ] }, { @@ -57700,7 +57678,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 14.80blocks/s, ⧗=0, ▶=1, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 16.05blocks/s, ⧗=0, ▶=1, ✔=165, ✗=0, ∅=0]" ] }, { @@ -57722,7 +57700,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 14.80blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 16.05blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" ] }, { @@ -57744,7 +57722,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 14.80blocks/s, ⧗=0, ▶=1, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.51blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" ] }, { @@ -57766,7 +57744,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 14.80blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.51blocks/s, ⧗=0, ▶=1, ✔=166, ✗=0, ∅=0]" ] }, { @@ -57788,7 +57766,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.20blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.51blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" ] }, { @@ -57810,7 +57788,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.20blocks/s, ⧗=0, ▶=1, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.51blocks/s, ⧗=0, ▶=1, ✔=167, ✗=0, ∅=0]" ] }, { @@ -57832,7 +57810,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.20blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.51blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" ] }, { @@ -57854,7 +57832,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.20blocks/s, ⧗=0, ▶=1, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.57blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" ] }, { @@ -57876,7 +57854,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.20blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.57blocks/s, ⧗=0, ▶=1, ✔=168, ✗=0, ∅=0]" ] }, { @@ -57898,7 +57876,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 15.78blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:10<00:03, 15.57blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" ] }, { @@ -57920,7 +57898,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 15.78blocks/s, ⧗=0, ▶=1, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:10<00:03, 15.57blocks/s, ⧗=0, ▶=1, ✔=169, ✗=0, ∅=0]" ] }, { @@ -57942,7 +57920,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:02, 15.78blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:10<00:03, 15.57blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" ] }, { @@ -57964,7 +57942,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.78blocks/s, ⧗=0, ▶=1, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:10<00:02, 16.10blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" ] }, { @@ -57986,7 +57964,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.78blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:10<00:02, 16.10blocks/s, ⧗=0, ▶=1, ✔=170, ✗=0, ∅=0]" ] }, { @@ -58008,7 +57986,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.57blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:10<00:02, 16.10blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" ] }, { @@ -58030,7 +58008,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.57blocks/s, ⧗=0, ▶=1, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:10<00:02, 16.10blocks/s, ⧗=0, ▶=1, ✔=171, ✗=0, ∅=0]" ] }, { @@ -58052,7 +58030,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:10<00:02, 15.57blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:10<00:02, 16.10blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" ] }, { @@ -58074,7 +58052,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.57blocks/s, ⧗=0, ▶=1, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.82blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" ] }, { @@ -58096,7 +58074,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.57blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.82blocks/s, ⧗=0, ▶=1, ✔=172, ✗=0, ∅=0]" ] }, { @@ -58118,7 +58096,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.68blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.82blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" ] }, { @@ -58140,7 +58118,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.68blocks/s, ⧗=0, ▶=1, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.82blocks/s, ⧗=0, ▶=1, ✔=173, ✗=0, ∅=0]" ] }, { @@ -58162,7 +58140,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.68blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.82blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" ] }, { @@ -58184,7 +58162,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.68blocks/s, ⧗=0, ▶=1, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 16.27blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" ] }, { @@ -58206,7 +58184,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.68blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 16.27blocks/s, ⧗=0, ▶=1, ✔=174, ✗=0, ∅=0]" ] }, { @@ -58228,7 +58206,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.18blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 16.27blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" ] }, { @@ -58250,7 +58228,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.18blocks/s, ⧗=0, ▶=1, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.27blocks/s, ⧗=0, ▶=1, ✔=175, ✗=0, ∅=0]" ] }, { @@ -58272,7 +58250,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.18blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.27blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" ] }, { @@ -58294,7 +58272,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.18blocks/s, ⧗=0, ▶=1, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.77blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" ] }, { @@ -58316,7 +58294,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.18blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.77blocks/s, ⧗=0, ▶=1, ✔=176, ✗=0, ∅=0]" ] }, { @@ -58338,7 +58316,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.77blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" ] }, { @@ -58360,7 +58338,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=1, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.77blocks/s, ⧗=0, ▶=1, ✔=177, ✗=0, ∅=0]" ] }, { @@ -58382,7 +58360,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.77blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" ] }, { @@ -58404,7 +58382,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=1, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.45blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" ] }, { @@ -58426,7 +58404,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.01blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.45blocks/s, ⧗=0, ▶=1, ✔=178, ✗=0, ∅=0]" ] }, { @@ -58448,7 +58426,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 15.77blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.45blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" ] }, { @@ -58470,7 +58448,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 15.77blocks/s, ⧗=0, ▶=1, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.45blocks/s, ⧗=0, ▶=1, ✔=179, ✗=0, ∅=0]" ] }, { @@ -58492,7 +58470,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 15.77blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.45blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" ] }, { @@ -58514,7 +58492,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 15.77blocks/s, ⧗=0, ▶=1, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.79blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" ] }, { @@ -58536,7 +58514,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 15.77blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.79blocks/s, ⧗=0, ▶=1, ✔=180, ✗=0, ∅=0]" ] }, { @@ -58558,7 +58536,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.51blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.79blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" ] }, { @@ -58580,7 +58558,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.51blocks/s, ⧗=0, ▶=1, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.79blocks/s, ⧗=0, ▶=1, ✔=181, ✗=0, ∅=0]" ] }, { @@ -58602,7 +58580,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.51blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.79blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" ] }, { @@ -58624,7 +58602,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:02, 16.51blocks/s, ⧗=0, ▶=1, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" ] }, { @@ -58646,7 +58624,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:02, 16.51blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=1, ✔=182, ✗=0, ∅=0]" ] }, { @@ -58668,7 +58646,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:02, 16.25blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" ] }, { @@ -58690,7 +58668,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:02, 16.25blocks/s, ⧗=0, ▶=1, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=1, ✔=183, ✗=0, ∅=0]" ] }, { @@ -58712,7 +58690,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:02, 16.25blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.27blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" ] }, { @@ -58734,7 +58712,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 16.25blocks/s, ⧗=0, ▶=1, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.10blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" ] }, { @@ -58756,7 +58734,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 16.25blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.10blocks/s, ⧗=0, ▶=1, ✔=184, ✗=0, ∅=0]" ] }, { @@ -58778,7 +58756,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.00blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.10blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" ] }, { @@ -58800,7 +58778,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.00blocks/s, ⧗=0, ▶=1, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.10blocks/s, ⧗=0, ▶=1, ✔=185, ✗=0, ∅=0]" ] }, { @@ -58822,7 +58800,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.00blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:11<00:01, 17.10blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" ] }, { @@ -58844,7 +58822,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.00blocks/s, ⧗=0, ▶=1, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" ] }, { @@ -58866,7 +58844,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.00blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=1, ✔=186, ✗=0, ∅=0]" ] }, { @@ -58888,7 +58866,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.65blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" ] }, { @@ -58910,7 +58888,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.65blocks/s, ⧗=0, ▶=1, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=1, ✔=187, ✗=0, ∅=0]" ] }, { @@ -58932,7 +58910,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.65blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:11<00:01, 16.43blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" ] }, { @@ -58954,7 +58932,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 17.65blocks/s, ⧗=0, ▶=1, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:11<00:01, 16.25blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" ] }, { @@ -58976,7 +58954,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:11<00:01, 17.65blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:11<00:01, 16.25blocks/s, ⧗=0, ▶=1, ✔=188, ✗=0, ∅=0]" ] }, { @@ -58998,7 +58976,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.49blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:11<00:01, 16.25blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" ] }, { @@ -59020,7 +58998,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.49blocks/s, ⧗=0, ▶=1, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 16.25blocks/s, ⧗=0, ▶=1, ✔=189, ✗=0, ∅=0]" ] }, { @@ -59042,7 +59020,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.49blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 16.25blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" ] }, { @@ -59064,7 +59042,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.49blocks/s, ⧗=0, ▶=1, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 16.34blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" ] }, { @@ -59086,7 +59064,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.49blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 16.34blocks/s, ⧗=0, ▶=1, ✔=190, ✗=0, ∅=0]" ] }, { @@ -59108,7 +59086,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.56blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 16.34blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" ] }, { @@ -59130,7 +59108,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.56blocks/s, ⧗=0, ▶=1, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.34blocks/s, ⧗=0, ▶=1, ✔=191, ✗=0, ∅=0]" ] }, { @@ -59152,7 +59130,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.56blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 16.34blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" ] }, { @@ -59174,7 +59152,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.56blocks/s, ⧗=0, ▶=1, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.45blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" ] }, { @@ -59196,7 +59174,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.56blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.45blocks/s, ⧗=0, ▶=1, ✔=192, ✗=0, ∅=0]" ] }, { @@ -59218,7 +59196,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.66blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 16.45blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" ] }, { @@ -59240,7 +59218,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.66blocks/s, ⧗=0, ▶=1, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.45blocks/s, ⧗=0, ▶=1, ✔=193, ✗=0, ∅=0]" ] }, { @@ -59262,7 +59240,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.66blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 16.45blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" ] }, { @@ -59284,7 +59262,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 17.66blocks/s, ⧗=0, ▶=1, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" ] }, { @@ -59306,7 +59284,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 17.66blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=1, ✔=194, ✗=0, ∅=0]" ] }, { @@ -59328,7 +59306,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 17.02blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" ] }, { @@ -59350,7 +59328,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 17.02blocks/s, ⧗=0, ▶=1, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=1, ✔=195, ✗=0, ∅=0]" ] }, { @@ -59372,7 +59350,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 17.02blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" ] }, { @@ -59394,7 +59372,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 17.02blocks/s, ⧗=0, ▶=1, ✔=196, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.37blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" ] }, { @@ -59416,7 +59394,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 17.02blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.37blocks/s, ⧗=0, ▶=1, ✔=196, ✗=0, ∅=0]" ] }, { @@ -59438,7 +59416,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.96blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.37blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" ] }, { @@ -59460,7 +59438,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.96blocks/s, ⧗=0, ▶=1, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.37blocks/s, ⧗=0, ▶=1, ✔=197, ✗=0, ∅=0]" ] }, { @@ -59482,7 +59460,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.96blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.37blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" ] }, { @@ -59504,7 +59482,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.96blocks/s, ⧗=0, ▶=1, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.71blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" ] }, { @@ -59526,7 +59504,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.96blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.71blocks/s, ⧗=0, ▶=1, ✔=198, ✗=0, ∅=0]" ] }, { @@ -59548,7 +59526,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.70blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.71blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" ] }, { @@ -59570,7 +59548,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.70blocks/s, ⧗=0, ▶=1, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.71blocks/s, ⧗=0, ▶=1, ✔=199, ✗=0, ∅=0]" ] }, { @@ -59592,7 +59570,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.70blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.71blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" ] }, { @@ -59614,7 +59592,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 16.70blocks/s, ⧗=0, ▶=1, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.38blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" ] }, { @@ -59636,7 +59614,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 16.70blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.38blocks/s, ⧗=0, ▶=1, ✔=200, ✗=0, ∅=0]" ] }, { @@ -59658,7 +59636,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 16.81blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.38blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" ] }, { @@ -59680,7 +59658,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 16.81blocks/s, ⧗=0, ▶=1, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.38blocks/s, ⧗=0, ▶=1, ✔=201, ✗=0, ∅=0]" ] }, { @@ -59702,7 +59680,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 16.81blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.38blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" ] }, { @@ -59724,7 +59702,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.81blocks/s, ⧗=0, ▶=1, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 17.40blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" ] }, { @@ -59746,7 +59724,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.81blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 17.40blocks/s, ⧗=0, ▶=1, ✔=202, ✗=0, ∅=0]" ] }, { @@ -59768,7 +59746,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.64blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:12<00:00, 17.40blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" ] }, { @@ -59790,7 +59768,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.64blocks/s, ⧗=0, ▶=1, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:12<00:00, 17.40blocks/s, ⧗=0, ▶=1, ✔=203, ✗=0, ∅=0]" ] }, { @@ -59812,7 +59790,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.64blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:12<00:00, 17.40blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" ] }, { @@ -59834,7 +59812,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 16.64blocks/s, ⧗=0, ▶=1, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" ] }, { @@ -59856,7 +59834,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 16.64blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=1, ✔=204, ✗=0, ∅=0]" ] }, { @@ -59878,7 +59856,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.21blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" ] }, { @@ -59900,7 +59878,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.21blocks/s, ⧗=0, ▶=1, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=1, ✔=205, ✗=0, ∅=0]" ] }, { @@ -59922,7 +59900,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:12<00:00, 17.21blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:12<00:00, 17.19blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" ] }, { @@ -59944,7 +59922,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.21blocks/s, ⧗=0, ▶=1, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.60blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" ] }, { @@ -59966,7 +59944,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.21blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.60blocks/s, ⧗=0, ▶=1, ✔=206, ✗=0, ∅=0]" ] }, { @@ -59988,7 +59966,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.28blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.60blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" ] }, { @@ -60010,7 +59988,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.28blocks/s, ⧗=0, ▶=1, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.60blocks/s, ⧗=0, ▶=1, ✔=207, ✗=0, ∅=0]" ] }, { @@ -60032,7 +60010,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.28blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.60blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" ] }, { @@ -60054,7 +60032,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.28blocks/s, ⧗=0, ▶=1, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.13blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" ] }, { @@ -60076,7 +60054,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.28blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.13blocks/s, ⧗=0, ▶=1, ✔=208, ✗=0, ∅=0]" ] }, { @@ -60098,7 +60076,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.50blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 17.13blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" ] }, { @@ -60120,7 +60098,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.50blocks/s, ⧗=0, ▶=1, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.13blocks/s, ⧗=0, ▶=1, ✔=209, ✗=0, ∅=0]" ] }, { @@ -60142,7 +60120,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.50blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 17.13blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" ] }, { @@ -60164,7 +60142,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.50blocks/s, ⧗=0, ▶=1, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" ] }, { @@ -60186,7 +60164,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.50blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=1, ✔=210, ✗=0, ∅=0]" ] }, { @@ -60208,7 +60186,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.97blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" ] }, { @@ -60230,7 +60208,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.97blocks/s, ⧗=0, ▶=1, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=1, ✔=211, ✗=0, ∅=0]" ] }, { @@ -60252,7 +60230,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.97blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.36blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" ] }, { @@ -60274,7 +60252,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.97blocks/s, ⧗=0, ▶=1, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.76blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" ] }, { @@ -60296,7 +60274,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.97blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.76blocks/s, ⧗=0, ▶=1, ✔=212, ✗=0, ∅=0]" ] }, { @@ -60318,7 +60296,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.94blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.76blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" ] }, { @@ -60340,7 +60318,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.94blocks/s, ⧗=0, ▶=1, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.76blocks/s, ⧗=0, ▶=1, ✔=213, ✗=0, ∅=0]" ] }, { @@ -60362,7 +60340,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.94blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.76blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" ] }, { @@ -60384,7 +60362,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.94blocks/s, ⧗=0, ▶=1, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.83blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" ] }, { @@ -60406,7 +60384,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.94blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.83blocks/s, ⧗=0, ▶=1, ✔=214, ✗=0, ∅=0]" ] }, { @@ -60428,7 +60406,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 16.89blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 17.83blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" ] }, { @@ -60450,7 +60428,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 16.89blocks/s, ⧗=0, ▶=1, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.83blocks/s, ⧗=0, ▶=1, ✔=215, ✗=0, ∅=0]" ] }, { @@ -60472,7 +60450,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 16.89blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 17.83blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -60494,7 +60472,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 16.89blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ▶: 100%|██████████| 216/216 [00:12<00:00, 18.27blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -60504,12 +60482,34 @@ "\u001b[A" ] }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.12blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 18.27blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[A" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "predict_/home/runner/dacapo/example_run/validation.zarr_1500/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 16.90blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -60564,7 +60564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1501/2000 [09:55<1:34:11, 11.33s/it, loss=0.419]" + "training until 2000: 75%|███████▌ | 1501/2000 [09:39<1:18:39, 9.46s/it, loss=0.487]" ] }, { @@ -60572,7 +60572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1501/2000 [09:55<1:34:11, 11.33s/it, loss=0.412]" + "training until 2000: 75%|███████▌ | 1501/2000 [09:39<1:18:39, 9.46s/it, loss=0.445]" ] }, { @@ -60580,7 +60580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1502/2000 [09:55<1:06:37, 8.03s/it, loss=0.412]" + "training until 2000: 75%|███████▌ | 1502/2000 [09:40<55:44, 6.72s/it, loss=0.445] " ] }, { @@ -60588,7 +60588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1502/2000 [09:55<1:06:37, 8.03s/it, loss=0.409]" + "training until 2000: 75%|███████▌ | 1502/2000 [09:40<55:44, 6.72s/it, loss=0.412]" ] }, { @@ -60596,7 +60596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1503/2000 [09:56<47:20, 5.71s/it, loss=0.409] " + "training until 2000: 75%|███████▌ | 1503/2000 [09:40<39:43, 4.80s/it, loss=0.412]" ] }, { @@ -60604,7 +60604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1503/2000 [09:56<47:20, 5.71s/it, loss=0.415]" + "training until 2000: 75%|███████▌ | 1503/2000 [09:40<39:43, 4.80s/it, loss=0.388]" ] }, { @@ -60612,7 +60612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1504/2000 [09:56<33:54, 4.10s/it, loss=0.415]" + "training until 2000: 75%|███████▌ | 1504/2000 [09:40<28:32, 3.45s/it, loss=0.388]" ] }, { @@ -60620,7 +60620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1504/2000 [09:56<33:54, 4.10s/it, loss=0.404]" + "training until 2000: 75%|███████▌ | 1504/2000 [09:40<28:32, 3.45s/it, loss=0.442]" ] }, { @@ -60628,7 +60628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1505/2000 [09:56<24:29, 2.97s/it, loss=0.404]" + "training until 2000: 75%|███████▌ | 1505/2000 [09:41<20:46, 2.52s/it, loss=0.442]" ] }, { @@ -60636,7 +60636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1505/2000 [09:56<24:29, 2.97s/it, loss=0.439]" + "training until 2000: 75%|███████▌ | 1505/2000 [09:41<20:46, 2.52s/it, loss=0.417]" ] }, { @@ -60644,7 +60644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1506/2000 [09:57<17:53, 2.17s/it, loss=0.439]" + "training until 2000: 75%|███████▌ | 1506/2000 [09:41<15:17, 1.86s/it, loss=0.417]" ] }, { @@ -60652,7 +60652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1506/2000 [09:57<17:53, 2.17s/it, loss=0.461]" + "training until 2000: 75%|███████▌ | 1506/2000 [09:41<15:17, 1.86s/it, loss=0.432]" ] }, { @@ -60660,7 +60660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1507/2000 [09:57<13:16, 1.62s/it, loss=0.461]" + "training until 2000: 75%|███████▌ | 1507/2000 [09:41<11:26, 1.39s/it, loss=0.432]" ] }, { @@ -60668,7 +60668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1507/2000 [09:57<13:16, 1.62s/it, loss=0.444]" + "training until 2000: 75%|███████▌ | 1507/2000 [09:41<11:26, 1.39s/it, loss=0.426]" ] }, { @@ -60676,7 +60676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1508/2000 [09:57<10:05, 1.23s/it, loss=0.444]" + "training until 2000: 75%|███████▌ | 1508/2000 [09:42<08:46, 1.07s/it, loss=0.426]" ] }, { @@ -60684,7 +60684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1508/2000 [09:57<10:05, 1.23s/it, loss=0.406]" + "training until 2000: 75%|███████▌ | 1508/2000 [09:42<08:46, 1.07s/it, loss=0.414]" ] }, { @@ -60692,7 +60692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1509/2000 [09:58<07:50, 1.04it/s, loss=0.406]" + "training until 2000: 75%|███████▌ | 1509/2000 [09:42<06:53, 1.19it/s, loss=0.414]" ] }, { @@ -60700,7 +60700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 75%|███████▌ | 1509/2000 [09:58<07:50, 1.04it/s, loss=0.437]" + "training until 2000: 75%|███████▌ | 1509/2000 [09:42<06:53, 1.19it/s, loss=0.451]" ] }, { @@ -60708,7 +60708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1510/2000 [09:58<06:14, 1.31it/s, loss=0.437]" + "training until 2000: 76%|███████▌ | 1510/2000 [09:42<05:36, 1.46it/s, loss=0.451]" ] }, { @@ -60716,7 +60716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1510/2000 [09:58<06:14, 1.31it/s, loss=0.399]" + "training until 2000: 76%|███████▌ | 1510/2000 [09:42<05:36, 1.46it/s, loss=0.402]" ] }, { @@ -60724,7 +60724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1511/2000 [09:58<05:09, 1.58it/s, loss=0.399]" + "training until 2000: 76%|███████▌ | 1511/2000 [09:43<04:41, 1.74it/s, loss=0.402]" ] }, { @@ -60732,7 +60732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1511/2000 [09:58<05:09, 1.58it/s, loss=0.421]" + "training until 2000: 76%|███████▌ | 1511/2000 [09:43<04:41, 1.74it/s, loss=0.558]" ] }, { @@ -60740,7 +60740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1512/2000 [09:59<04:23, 1.85it/s, loss=0.421]" + "training until 2000: 76%|███████▌ | 1512/2000 [09:43<04:02, 2.01it/s, loss=0.558]" ] }, { @@ -60748,7 +60748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1512/2000 [09:59<04:23, 1.85it/s, loss=0.457]" + "training until 2000: 76%|███████▌ | 1512/2000 [09:43<04:02, 2.01it/s, loss=0.414]" ] }, { @@ -60756,7 +60756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1513/2000 [09:59<03:49, 2.12it/s, loss=0.457]" + "training until 2000: 76%|███████▌ | 1513/2000 [09:43<03:35, 2.26it/s, loss=0.414]" ] }, { @@ -60764,7 +60764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1513/2000 [09:59<03:49, 2.12it/s, loss=0.401]" + "training until 2000: 76%|███████▌ | 1513/2000 [09:43<03:35, 2.26it/s, loss=0.425]" ] }, { @@ -60772,7 +60772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1514/2000 [09:59<03:27, 2.34it/s, loss=0.401]" + "training until 2000: 76%|███████▌ | 1514/2000 [09:44<03:16, 2.47it/s, loss=0.425]" ] }, { @@ -60780,7 +60780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1514/2000 [09:59<03:27, 2.34it/s, loss=0.467]" + "training until 2000: 76%|███████▌ | 1514/2000 [09:44<03:16, 2.47it/s, loss=0.407]" ] }, { @@ -60788,7 +60788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1515/2000 [10:00<03:11, 2.54it/s, loss=0.467]" + "training until 2000: 76%|███████▌ | 1515/2000 [09:44<03:04, 2.64it/s, loss=0.407]" ] }, { @@ -60796,7 +60796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1515/2000 [10:00<03:11, 2.54it/s, loss=0.419]" + "training until 2000: 76%|███████▌ | 1515/2000 [09:44<03:04, 2.64it/s, loss=0.444]" ] }, { @@ -60804,7 +60804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1516/2000 [10:00<03:00, 2.68it/s, loss=0.419]" + "training until 2000: 76%|███████▌ | 1516/2000 [09:44<02:55, 2.76it/s, loss=0.444]" ] }, { @@ -60812,7 +60812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1516/2000 [10:00<03:00, 2.68it/s, loss=0.42] " + "training until 2000: 76%|███████▌ | 1516/2000 [09:44<02:55, 2.76it/s, loss=0.382]" ] }, { @@ -60820,7 +60820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1517/2000 [10:00<02:52, 2.80it/s, loss=0.42]" + "training until 2000: 76%|███████▌ | 1517/2000 [09:44<02:49, 2.86it/s, loss=0.382]" ] }, { @@ -60828,7 +60828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1517/2000 [10:00<02:52, 2.80it/s, loss=0.418]" + "training until 2000: 76%|███████▌ | 1517/2000 [09:44<02:49, 2.86it/s, loss=0.395]" ] }, { @@ -60836,7 +60836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1518/2000 [10:01<02:49, 2.85it/s, loss=0.418]" + "training until 2000: 76%|███████▌ | 1518/2000 [09:45<02:43, 2.94it/s, loss=0.395]" ] }, { @@ -60844,7 +60844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1518/2000 [10:01<02:49, 2.85it/s, loss=0.401]" + "training until 2000: 76%|███████▌ | 1518/2000 [09:45<02:43, 2.94it/s, loss=0.382]" ] }, { @@ -60852,7 +60852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1519/2000 [10:01<02:44, 2.93it/s, loss=0.401]" + "training until 2000: 76%|███████▌ | 1519/2000 [09:45<02:39, 3.01it/s, loss=0.382]" ] }, { @@ -60860,7 +60860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1519/2000 [10:01<02:44, 2.93it/s, loss=0.409]" + "training until 2000: 76%|███████▌ | 1519/2000 [09:45<02:39, 3.01it/s, loss=0.422]" ] }, { @@ -60868,7 +60868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1520/2000 [10:01<02:40, 3.00it/s, loss=0.409]" + "training until 2000: 76%|███████▌ | 1520/2000 [09:45<02:36, 3.06it/s, loss=0.422]" ] }, { @@ -60876,7 +60876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1520/2000 [10:01<02:40, 3.00it/s, loss=0.422]" + "training until 2000: 76%|███████▌ | 1520/2000 [09:45<02:36, 3.06it/s, loss=0.384]" ] }, { @@ -60884,7 +60884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1521/2000 [10:02<02:38, 3.01it/s, loss=0.422]" + "training until 2000: 76%|███████▌ | 1521/2000 [09:46<02:35, 3.09it/s, loss=0.384]" ] }, { @@ -60892,7 +60892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1521/2000 [10:02<02:38, 3.01it/s, loss=0.431]" + "training until 2000: 76%|███████▌ | 1521/2000 [09:46<02:35, 3.09it/s, loss=0.467]" ] }, { @@ -60900,7 +60900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1522/2000 [10:02<02:36, 3.06it/s, loss=0.431]" + "training until 2000: 76%|███████▌ | 1522/2000 [09:46<02:35, 3.07it/s, loss=0.467]" ] }, { @@ -60908,7 +60908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1522/2000 [10:02<02:36, 3.06it/s, loss=0.425]" + "training until 2000: 76%|███████▌ | 1522/2000 [09:46<02:35, 3.07it/s, loss=0.447]" ] }, { @@ -60916,7 +60916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1523/2000 [10:02<02:34, 3.08it/s, loss=0.425]" + "training until 2000: 76%|███████▌ | 1523/2000 [09:46<02:33, 3.10it/s, loss=0.447]" ] }, { @@ -60924,7 +60924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1523/2000 [10:02<02:34, 3.08it/s, loss=0.525]" + "training until 2000: 76%|███████▌ | 1523/2000 [09:46<02:33, 3.10it/s, loss=0.443]" ] }, { @@ -60932,7 +60932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1524/2000 [10:03<02:37, 3.03it/s, loss=0.525]" + "training until 2000: 76%|███████▌ | 1524/2000 [09:47<02:33, 3.11it/s, loss=0.443]" ] }, { @@ -60940,7 +60940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▌ | 1524/2000 [10:03<02:37, 3.03it/s, loss=0.425]" + "training until 2000: 76%|███████▌ | 1524/2000 [09:47<02:33, 3.11it/s, loss=0.396]" ] }, { @@ -60948,7 +60948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1525/2000 [10:03<02:36, 3.03it/s, loss=0.425]" + "training until 2000: 76%|███████▋ | 1525/2000 [09:47<02:32, 3.12it/s, loss=0.396]" ] }, { @@ -60956,7 +60956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1525/2000 [10:03<02:36, 3.03it/s, loss=0.398]" + "training until 2000: 76%|███████▋ | 1525/2000 [09:47<02:32, 3.12it/s, loss=0.402]" ] }, { @@ -60964,7 +60964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1526/2000 [10:03<02:37, 3.02it/s, loss=0.398]" + "training until 2000: 76%|███████▋ | 1526/2000 [09:47<02:30, 3.15it/s, loss=0.402]" ] }, { @@ -60972,7 +60972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1526/2000 [10:03<02:37, 3.02it/s, loss=0.402]" + "training until 2000: 76%|███████▋ | 1526/2000 [09:47<02:30, 3.15it/s, loss=0.546]" ] }, { @@ -60980,7 +60980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1527/2000 [10:04<02:35, 3.03it/s, loss=0.402]" + "training until 2000: 76%|███████▋ | 1527/2000 [09:48<02:31, 3.13it/s, loss=0.546]" ] }, { @@ -60988,7 +60988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1527/2000 [10:04<02:35, 3.03it/s, loss=0.425]" + "training until 2000: 76%|███████▋ | 1527/2000 [09:48<02:31, 3.13it/s, loss=0.407]" ] }, { @@ -60996,7 +60996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1528/2000 [10:04<02:36, 3.01it/s, loss=0.425]" + "training until 2000: 76%|███████▋ | 1528/2000 [09:48<02:31, 3.12it/s, loss=0.407]" ] }, { @@ -61004,7 +61004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1528/2000 [10:04<02:36, 3.01it/s, loss=0.392]" + "training until 2000: 76%|███████▋ | 1528/2000 [09:48<02:31, 3.12it/s, loss=0.398]" ] }, { @@ -61012,7 +61012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1529/2000 [10:04<02:35, 3.03it/s, loss=0.392]" + "training until 2000: 76%|███████▋ | 1529/2000 [09:48<02:30, 3.13it/s, loss=0.398]" ] }, { @@ -61020,7 +61020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1529/2000 [10:04<02:35, 3.03it/s, loss=0.4] " + "training until 2000: 76%|███████▋ | 1529/2000 [09:48<02:30, 3.13it/s, loss=0.453]" ] }, { @@ -61028,7 +61028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1530/2000 [10:05<02:39, 2.95it/s, loss=0.4]" + "training until 2000: 76%|███████▋ | 1530/2000 [09:49<02:29, 3.14it/s, loss=0.453]" ] }, { @@ -61036,7 +61036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 76%|███████▋ | 1530/2000 [10:05<02:39, 2.95it/s, loss=0.4]" + "training until 2000: 76%|███████▋ | 1530/2000 [09:49<02:29, 3.14it/s, loss=0.48] " ] }, { @@ -61044,7 +61044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1531/2000 [10:05<02:39, 2.95it/s, loss=0.4]" + "training until 2000: 77%|███████▋ | 1531/2000 [09:49<02:28, 3.15it/s, loss=0.48]" ] }, { @@ -61052,7 +61052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1531/2000 [10:05<02:39, 2.95it/s, loss=0.401]" + "training until 2000: 77%|███████▋ | 1531/2000 [09:49<02:28, 3.15it/s, loss=0.416]" ] }, { @@ -61060,7 +61060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1532/2000 [10:05<02:37, 2.98it/s, loss=0.401]" + "training until 2000: 77%|███████▋ | 1532/2000 [09:49<02:28, 3.15it/s, loss=0.416]" ] }, { @@ -61068,7 +61068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1532/2000 [10:05<02:37, 2.98it/s, loss=0.465]" + "training until 2000: 77%|███████▋ | 1532/2000 [09:49<02:28, 3.15it/s, loss=0.388]" ] }, { @@ -61076,7 +61076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1533/2000 [10:06<02:34, 3.03it/s, loss=0.465]" + "training until 2000: 77%|███████▋ | 1533/2000 [09:50<02:29, 3.12it/s, loss=0.388]" ] }, { @@ -61084,7 +61084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1533/2000 [10:06<02:34, 3.03it/s, loss=0.412]" + "training until 2000: 77%|███████▋ | 1533/2000 [09:50<02:29, 3.12it/s, loss=0.465]" ] }, { @@ -61092,7 +61092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1534/2000 [10:06<02:33, 3.03it/s, loss=0.412]" + "training until 2000: 77%|███████▋ | 1534/2000 [09:50<02:29, 3.11it/s, loss=0.465]" ] }, { @@ -61100,7 +61100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1534/2000 [10:06<02:33, 3.03it/s, loss=0.435]" + "training until 2000: 77%|███████▋ | 1534/2000 [09:50<02:29, 3.11it/s, loss=0.418]" ] }, { @@ -61108,7 +61108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1535/2000 [10:06<02:31, 3.07it/s, loss=0.435]" + "training until 2000: 77%|███████▋ | 1535/2000 [09:50<02:29, 3.12it/s, loss=0.418]" ] }, { @@ -61116,7 +61116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1535/2000 [10:06<02:31, 3.07it/s, loss=0.441]" + "training until 2000: 77%|███████▋ | 1535/2000 [09:50<02:29, 3.12it/s, loss=0.436]" ] }, { @@ -61124,7 +61124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1536/2000 [10:06<02:30, 3.08it/s, loss=0.441]" + "training until 2000: 77%|███████▋ | 1536/2000 [09:51<02:28, 3.13it/s, loss=0.436]" ] }, { @@ -61132,7 +61132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1536/2000 [10:06<02:30, 3.08it/s, loss=0.415]" + "training until 2000: 77%|███████▋ | 1536/2000 [09:51<02:28, 3.13it/s, loss=0.527]" ] }, { @@ -61140,7 +61140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1537/2000 [10:07<02:30, 3.08it/s, loss=0.415]" + "training until 2000: 77%|███████▋ | 1537/2000 [09:51<02:28, 3.11it/s, loss=0.527]" ] }, { @@ -61148,7 +61148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1537/2000 [10:07<02:30, 3.08it/s, loss=0.421]" + "training until 2000: 77%|███████▋ | 1537/2000 [09:51<02:28, 3.11it/s, loss=0.459]" ] }, { @@ -61156,7 +61156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1538/2000 [10:07<02:30, 3.06it/s, loss=0.421]" + "training until 2000: 77%|███████▋ | 1538/2000 [09:51<02:31, 3.06it/s, loss=0.459]" ] }, { @@ -61164,7 +61164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1538/2000 [10:07<02:30, 3.06it/s, loss=0.438]" + "training until 2000: 77%|███████▋ | 1538/2000 [09:51<02:31, 3.06it/s, loss=0.422]" ] }, { @@ -61172,7 +61172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1539/2000 [10:07<02:31, 3.04it/s, loss=0.438]" + "training until 2000: 77%|███████▋ | 1539/2000 [09:52<02:30, 3.07it/s, loss=0.422]" ] }, { @@ -61180,7 +61180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1539/2000 [10:07<02:31, 3.04it/s, loss=0.42] " + "training until 2000: 77%|███████▋ | 1539/2000 [09:52<02:30, 3.07it/s, loss=0.402]" ] }, { @@ -61188,7 +61188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1540/2000 [10:08<02:30, 3.05it/s, loss=0.42]" + "training until 2000: 77%|███████▋ | 1540/2000 [09:52<02:29, 3.07it/s, loss=0.402]" ] }, { @@ -61196,7 +61196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1540/2000 [10:08<02:30, 3.05it/s, loss=0.413]" + "training until 2000: 77%|███████▋ | 1540/2000 [09:52<02:29, 3.07it/s, loss=0.431]" ] }, { @@ -61204,7 +61204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1541/2000 [10:08<02:28, 3.09it/s, loss=0.413]" + "training until 2000: 77%|███████▋ | 1541/2000 [09:52<02:27, 3.12it/s, loss=0.431]" ] }, { @@ -61212,7 +61212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1541/2000 [10:08<02:28, 3.09it/s, loss=0.49] " + "training until 2000: 77%|███████▋ | 1541/2000 [09:52<02:27, 3.12it/s, loss=0.429]" ] }, { @@ -61220,7 +61220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1542/2000 [10:08<02:27, 3.11it/s, loss=0.49]" + "training until 2000: 77%|███████▋ | 1542/2000 [09:52<02:26, 3.14it/s, loss=0.429]" ] }, { @@ -61228,7 +61228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1542/2000 [10:08<02:27, 3.11it/s, loss=0.439]" + "training until 2000: 77%|███████▋ | 1542/2000 [09:52<02:26, 3.14it/s, loss=0.392]" ] }, { @@ -61236,7 +61236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1543/2000 [10:09<02:28, 3.09it/s, loss=0.439]" + "training until 2000: 77%|███████▋ | 1543/2000 [09:53<02:24, 3.16it/s, loss=0.392]" ] }, { @@ -61244,7 +61244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1543/2000 [10:09<02:28, 3.09it/s, loss=0.418]" + "training until 2000: 77%|███████▋ | 1543/2000 [09:53<02:24, 3.16it/s, loss=0.421]" ] }, { @@ -61252,7 +61252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1544/2000 [10:09<02:26, 3.10it/s, loss=0.418]" + "training until 2000: 77%|███████▋ | 1544/2000 [09:53<02:25, 3.13it/s, loss=0.421]" ] }, { @@ -61260,7 +61260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1544/2000 [10:09<02:26, 3.10it/s, loss=0.399]" + "training until 2000: 77%|███████▋ | 1544/2000 [09:53<02:25, 3.13it/s, loss=0.425]" ] }, { @@ -61268,7 +61268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1545/2000 [10:09<02:25, 3.12it/s, loss=0.399]" + "training until 2000: 77%|███████▋ | 1545/2000 [09:53<02:25, 3.12it/s, loss=0.425]" ] }, { @@ -61276,7 +61276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1545/2000 [10:09<02:25, 3.12it/s, loss=0.396]" + "training until 2000: 77%|███████▋ | 1545/2000 [09:53<02:25, 3.12it/s, loss=0.395]" ] }, { @@ -61284,7 +61284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1546/2000 [10:10<02:24, 3.14it/s, loss=0.396]" + "training until 2000: 77%|███████▋ | 1546/2000 [09:54<02:24, 3.14it/s, loss=0.395]" ] }, { @@ -61292,7 +61292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1546/2000 [10:10<02:24, 3.14it/s, loss=0.39] " + "training until 2000: 77%|███████▋ | 1546/2000 [09:54<02:24, 3.14it/s, loss=0.45] " ] }, { @@ -61300,7 +61300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1547/2000 [10:10<02:24, 3.14it/s, loss=0.39]" + "training until 2000: 77%|███████▋ | 1547/2000 [09:54<02:23, 3.16it/s, loss=0.45]" ] }, { @@ -61308,7 +61308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1547/2000 [10:10<02:24, 3.14it/s, loss=0.421]" + "training until 2000: 77%|███████▋ | 1547/2000 [09:54<02:23, 3.16it/s, loss=0.387]" ] }, { @@ -61316,7 +61316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1548/2000 [10:10<02:21, 3.18it/s, loss=0.421]" + "training until 2000: 77%|███████▋ | 1548/2000 [09:54<02:22, 3.17it/s, loss=0.387]" ] }, { @@ -61324,7 +61324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1548/2000 [10:10<02:21, 3.18it/s, loss=0.468]" + "training until 2000: 77%|███████▋ | 1548/2000 [09:54<02:22, 3.17it/s, loss=0.45] " ] }, { @@ -61332,7 +61332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1549/2000 [10:11<02:21, 3.18it/s, loss=0.468]" + "training until 2000: 77%|███████▋ | 1549/2000 [09:55<02:21, 3.19it/s, loss=0.45]" ] }, { @@ -61340,7 +61340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 77%|███████▋ | 1549/2000 [10:11<02:21, 3.18it/s, loss=0.413]" + "training until 2000: 77%|███████▋ | 1549/2000 [09:55<02:21, 3.19it/s, loss=0.601]" ] }, { @@ -61348,7 +61348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1550/2000 [10:11<02:23, 3.13it/s, loss=0.413]" + "training until 2000: 78%|███████▊ | 1550/2000 [09:55<02:21, 3.17it/s, loss=0.601]" ] }, { @@ -61356,7 +61356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1550/2000 [10:11<02:23, 3.13it/s, loss=0.411]" + "training until 2000: 78%|███████▊ | 1550/2000 [09:55<02:21, 3.17it/s, loss=0.389]" ] }, { @@ -61364,7 +61364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1551/2000 [10:11<02:22, 3.15it/s, loss=0.411]" + "training until 2000: 78%|███████▊ | 1551/2000 [09:55<02:23, 3.13it/s, loss=0.389]" ] }, { @@ -61372,7 +61372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1551/2000 [10:11<02:22, 3.15it/s, loss=0.435]" + "training until 2000: 78%|███████▊ | 1551/2000 [09:55<02:23, 3.13it/s, loss=0.41] " ] }, { @@ -61380,7 +61380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1552/2000 [10:12<02:23, 3.12it/s, loss=0.435]" + "training until 2000: 78%|███████▊ | 1552/2000 [09:56<02:23, 3.13it/s, loss=0.41]" ] }, { @@ -61388,7 +61388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1552/2000 [10:12<02:23, 3.12it/s, loss=0.398]" + "training until 2000: 78%|███████▊ | 1552/2000 [09:56<02:23, 3.13it/s, loss=0.407]" ] }, { @@ -61396,7 +61396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1553/2000 [10:12<02:21, 3.16it/s, loss=0.398]" + "training until 2000: 78%|███████▊ | 1553/2000 [09:56<02:23, 3.11it/s, loss=0.407]" ] }, { @@ -61404,7 +61404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1553/2000 [10:12<02:21, 3.16it/s, loss=0.414]" + "training until 2000: 78%|███████▊ | 1553/2000 [09:56<02:23, 3.11it/s, loss=0.41] " ] }, { @@ -61412,7 +61412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1554/2000 [10:12<02:20, 3.16it/s, loss=0.414]" + "training until 2000: 78%|███████▊ | 1554/2000 [09:57<02:56, 2.52it/s, loss=0.41]" ] }, { @@ -61420,7 +61420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1554/2000 [10:12<02:20, 3.16it/s, loss=0.41] " + "training until 2000: 78%|███████▊ | 1554/2000 [09:57<02:56, 2.52it/s, loss=0.396]" ] }, { @@ -61428,7 +61428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1555/2000 [10:13<02:21, 3.15it/s, loss=0.41]" + "training until 2000: 78%|███████▊ | 1555/2000 [09:57<02:47, 2.66it/s, loss=0.396]" ] }, { @@ -61436,7 +61436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1555/2000 [10:13<02:21, 3.15it/s, loss=0.482]" + "training until 2000: 78%|███████▊ | 1555/2000 [09:57<02:47, 2.66it/s, loss=0.385]" ] }, { @@ -61444,7 +61444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1556/2000 [10:13<02:21, 3.13it/s, loss=0.482]" + "training until 2000: 78%|███████▊ | 1556/2000 [09:57<02:39, 2.79it/s, loss=0.385]" ] }, { @@ -61452,7 +61452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1556/2000 [10:13<02:21, 3.13it/s, loss=0.395]" + "training until 2000: 78%|███████▊ | 1556/2000 [09:57<02:39, 2.79it/s, loss=0.383]" ] }, { @@ -61460,7 +61460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1557/2000 [10:13<02:23, 3.09it/s, loss=0.395]" + "training until 2000: 78%|███████▊ | 1557/2000 [09:58<02:33, 2.88it/s, loss=0.383]" ] }, { @@ -61468,7 +61468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1557/2000 [10:13<02:23, 3.09it/s, loss=0.4] " + "training until 2000: 78%|███████▊ | 1557/2000 [09:58<02:33, 2.88it/s, loss=0.382]" ] }, { @@ -61476,7 +61476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1558/2000 [10:14<02:22, 3.09it/s, loss=0.4]" + "training until 2000: 78%|███████▊ | 1558/2000 [09:58<02:29, 2.95it/s, loss=0.382]" ] }, { @@ -61484,7 +61484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1558/2000 [10:14<02:22, 3.09it/s, loss=0.463]" + "training until 2000: 78%|███████▊ | 1558/2000 [09:58<02:29, 2.95it/s, loss=0.393]" ] }, { @@ -61492,7 +61492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1559/2000 [10:14<02:23, 3.08it/s, loss=0.463]" + "training until 2000: 78%|███████▊ | 1559/2000 [09:58<02:27, 2.99it/s, loss=0.393]" ] }, { @@ -61500,7 +61500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1559/2000 [10:14<02:23, 3.08it/s, loss=0.412]" + "training until 2000: 78%|███████▊ | 1559/2000 [09:58<02:27, 2.99it/s, loss=0.46] " ] }, { @@ -61508,7 +61508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1560/2000 [10:14<02:22, 3.09it/s, loss=0.412]" + "training until 2000: 78%|███████▊ | 1560/2000 [09:58<02:24, 3.05it/s, loss=0.46]" ] }, { @@ -61516,7 +61516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1560/2000 [10:14<02:22, 3.09it/s, loss=0.392]" + "training until 2000: 78%|███████▊ | 1560/2000 [09:58<02:24, 3.05it/s, loss=0.397]" ] }, { @@ -61524,7 +61524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1561/2000 [10:15<02:22, 3.09it/s, loss=0.392]" + "training until 2000: 78%|███████▊ | 1561/2000 [09:59<02:23, 3.06it/s, loss=0.397]" ] }, { @@ -61532,7 +61532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1561/2000 [10:15<02:22, 3.09it/s, loss=0.435]" + "training until 2000: 78%|███████▊ | 1561/2000 [09:59<02:23, 3.06it/s, loss=0.444]" ] }, { @@ -61540,7 +61540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1562/2000 [10:15<02:54, 2.51it/s, loss=0.435]" + "training until 2000: 78%|███████▊ | 1562/2000 [09:59<02:23, 3.05it/s, loss=0.444]" ] }, { @@ -61548,7 +61548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1562/2000 [10:15<02:54, 2.51it/s, loss=0.425]" + "training until 2000: 78%|███████▊ | 1562/2000 [09:59<02:23, 3.05it/s, loss=0.434]" ] }, { @@ -61556,7 +61556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1563/2000 [10:15<02:43, 2.67it/s, loss=0.425]" + "training until 2000: 78%|███████▊ | 1563/2000 [09:59<02:20, 3.12it/s, loss=0.434]" ] }, { @@ -61564,7 +61564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1563/2000 [10:15<02:43, 2.67it/s, loss=0.418]" + "training until 2000: 78%|███████▊ | 1563/2000 [09:59<02:20, 3.12it/s, loss=0.412]" ] }, { @@ -61572,7 +61572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1564/2000 [10:16<02:38, 2.74it/s, loss=0.418]" + "training until 2000: 78%|███████▊ | 1564/2000 [10:00<02:18, 3.14it/s, loss=0.412]" ] }, { @@ -61580,7 +61580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1564/2000 [10:16<02:38, 2.74it/s, loss=0.389]" + "training until 2000: 78%|███████▊ | 1564/2000 [10:00<02:18, 3.14it/s, loss=0.38] " ] }, { @@ -61588,7 +61588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1565/2000 [10:16<02:33, 2.83it/s, loss=0.389]" + "training until 2000: 78%|███████▊ | 1565/2000 [10:00<02:18, 3.14it/s, loss=0.38]" ] }, { @@ -61596,7 +61596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1565/2000 [10:16<02:33, 2.83it/s, loss=0.403]" + "training until 2000: 78%|███████▊ | 1565/2000 [10:00<02:18, 3.14it/s, loss=0.403]" ] }, { @@ -61604,7 +61604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1566/2000 [10:16<02:29, 2.91it/s, loss=0.403]" + "training until 2000: 78%|███████▊ | 1566/2000 [10:00<02:17, 3.16it/s, loss=0.403]" ] }, { @@ -61612,7 +61612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1566/2000 [10:16<02:29, 2.91it/s, loss=0.472]" + "training until 2000: 78%|███████▊ | 1566/2000 [10:00<02:17, 3.16it/s, loss=0.436]" ] }, { @@ -61620,7 +61620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1567/2000 [10:17<02:25, 2.98it/s, loss=0.472]" + "training until 2000: 78%|███████▊ | 1567/2000 [10:01<02:17, 3.15it/s, loss=0.436]" ] }, { @@ -61628,7 +61628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1567/2000 [10:17<02:25, 2.98it/s, loss=0.41] " + "training until 2000: 78%|███████▊ | 1567/2000 [10:01<02:17, 3.15it/s, loss=0.425]" ] }, { @@ -61636,7 +61636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1568/2000 [10:17<02:23, 3.01it/s, loss=0.41]" + "training until 2000: 78%|███████▊ | 1568/2000 [10:01<02:16, 3.17it/s, loss=0.425]" ] }, { @@ -61644,7 +61644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1568/2000 [10:17<02:23, 3.01it/s, loss=0.496]" + "training until 2000: 78%|███████▊ | 1568/2000 [10:01<02:16, 3.17it/s, loss=0.428]" ] }, { @@ -61652,7 +61652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1569/2000 [10:17<02:21, 3.05it/s, loss=0.496]" + "training until 2000: 78%|███████▊ | 1569/2000 [10:01<02:15, 3.18it/s, loss=0.428]" ] }, { @@ -61660,7 +61660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1569/2000 [10:17<02:21, 3.05it/s, loss=0.501]" + "training until 2000: 78%|███████▊ | 1569/2000 [10:01<02:15, 3.18it/s, loss=0.382]" ] }, { @@ -61668,7 +61668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1570/2000 [10:18<02:19, 3.08it/s, loss=0.501]" + "training until 2000: 78%|███████▊ | 1570/2000 [10:02<02:14, 3.21it/s, loss=0.382]" ] }, { @@ -61676,7 +61676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 78%|███████▊ | 1570/2000 [10:18<02:19, 3.08it/s, loss=0.401]" + "training until 2000: 78%|███████▊ | 1570/2000 [10:02<02:14, 3.21it/s, loss=0.399]" ] }, { @@ -61684,7 +61684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▊ | 1571/2000 [10:18<02:18, 3.10it/s, loss=0.401]" + "training until 2000: 79%|███████▊ | 1571/2000 [10:02<02:14, 3.18it/s, loss=0.399]" ] }, { @@ -61692,7 +61692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▊ | 1571/2000 [10:18<02:18, 3.10it/s, loss=0.398]" + "training until 2000: 79%|███████▊ | 1571/2000 [10:02<02:14, 3.18it/s, loss=0.417]" ] }, { @@ -61700,7 +61700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▊ | 1572/2000 [10:18<02:17, 3.11it/s, loss=0.398]" + "training until 2000: 79%|███████▊ | 1572/2000 [10:02<02:14, 3.19it/s, loss=0.417]" ] }, { @@ -61708,7 +61708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▊ | 1572/2000 [10:18<02:17, 3.11it/s, loss=0.466]" + "training until 2000: 79%|███████▊ | 1572/2000 [10:02<02:14, 3.19it/s, loss=0.438]" ] }, { @@ -61716,7 +61716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▊ | 1573/2000 [10:19<02:16, 3.12it/s, loss=0.466]" + "training until 2000: 79%|███████▊ | 1573/2000 [10:03<02:14, 3.18it/s, loss=0.438]" ] }, { @@ -61724,7 +61724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▊ | 1573/2000 [10:19<02:16, 3.12it/s, loss=0.399]" + "training until 2000: 79%|███████▊ | 1573/2000 [10:03<02:14, 3.18it/s, loss=0.4] " ] }, { @@ -61732,7 +61732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▊ | 1574/2000 [10:19<02:17, 3.10it/s, loss=0.399]" + "training until 2000: 79%|███████▊ | 1574/2000 [10:03<02:15, 3.14it/s, loss=0.4]" ] }, { @@ -61740,7 +61740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▊ | 1574/2000 [10:19<02:17, 3.10it/s, loss=0.425]" + "training until 2000: 79%|███████▊ | 1574/2000 [10:03<02:15, 3.14it/s, loss=0.387]" ] }, { @@ -61748,7 +61748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1575/2000 [10:19<02:17, 3.09it/s, loss=0.425]" + "training until 2000: 79%|███████▉ | 1575/2000 [10:03<02:16, 3.10it/s, loss=0.387]" ] }, { @@ -61756,7 +61756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1575/2000 [10:19<02:17, 3.09it/s, loss=0.401]" + "training until 2000: 79%|███████▉ | 1575/2000 [10:03<02:16, 3.10it/s, loss=0.397]" ] }, { @@ -61764,7 +61764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1576/2000 [10:20<02:17, 3.08it/s, loss=0.401]" + "training until 2000: 79%|███████▉ | 1576/2000 [10:04<02:14, 3.16it/s, loss=0.397]" ] }, { @@ -61772,7 +61772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1576/2000 [10:20<02:17, 3.08it/s, loss=0.464]" + "training until 2000: 79%|███████▉ | 1576/2000 [10:04<02:14, 3.16it/s, loss=0.573]" ] }, { @@ -61780,7 +61780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1577/2000 [10:20<02:18, 3.06it/s, loss=0.464]" + "training until 2000: 79%|███████▉ | 1577/2000 [10:04<02:15, 3.13it/s, loss=0.573]" ] }, { @@ -61788,7 +61788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1577/2000 [10:20<02:18, 3.06it/s, loss=0.512]" + "training until 2000: 79%|███████▉ | 1577/2000 [10:04<02:15, 3.13it/s, loss=0.463]" ] }, { @@ -61796,7 +61796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1578/2000 [10:20<02:16, 3.08it/s, loss=0.512]" + "training until 2000: 79%|███████▉ | 1578/2000 [10:04<02:14, 3.13it/s, loss=0.463]" ] }, { @@ -61804,7 +61804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1578/2000 [10:20<02:16, 3.08it/s, loss=0.398]" + "training until 2000: 79%|███████▉ | 1578/2000 [10:04<02:14, 3.13it/s, loss=0.412]" ] }, { @@ -61812,7 +61812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1579/2000 [10:21<02:15, 3.11it/s, loss=0.398]" + "training until 2000: 79%|███████▉ | 1579/2000 [10:05<02:13, 3.15it/s, loss=0.412]" ] }, { @@ -61820,7 +61820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1579/2000 [10:21<02:15, 3.11it/s, loss=0.414]" + "training until 2000: 79%|███████▉ | 1579/2000 [10:05<02:13, 3.15it/s, loss=0.43] " ] }, { @@ -61828,7 +61828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1580/2000 [10:21<02:14, 3.12it/s, loss=0.414]" + "training until 2000: 79%|███████▉ | 1580/2000 [10:05<02:12, 3.16it/s, loss=0.43]" ] }, { @@ -61836,7 +61836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1580/2000 [10:21<02:14, 3.12it/s, loss=0.409]" + "training until 2000: 79%|███████▉ | 1580/2000 [10:05<02:12, 3.16it/s, loss=0.401]" ] }, { @@ -61844,7 +61844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1581/2000 [10:21<02:14, 3.11it/s, loss=0.409]" + "training until 2000: 79%|███████▉ | 1581/2000 [10:05<02:12, 3.15it/s, loss=0.401]" ] }, { @@ -61852,7 +61852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1581/2000 [10:21<02:14, 3.11it/s, loss=0.474]" + "training until 2000: 79%|███████▉ | 1581/2000 [10:05<02:12, 3.15it/s, loss=0.401]" ] }, { @@ -61860,7 +61860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1582/2000 [10:22<02:15, 3.08it/s, loss=0.474]" + "training until 2000: 79%|███████▉ | 1582/2000 [10:05<02:10, 3.19it/s, loss=0.401]" ] }, { @@ -61868,7 +61868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1582/2000 [10:22<02:15, 3.08it/s, loss=0.418]" + "training until 2000: 79%|███████▉ | 1582/2000 [10:05<02:10, 3.19it/s, loss=0.591]" ] }, { @@ -61876,7 +61876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1583/2000 [10:22<02:13, 3.12it/s, loss=0.418]" + "training until 2000: 79%|███████▉ | 1583/2000 [10:06<02:10, 3.20it/s, loss=0.591]" ] }, { @@ -61884,7 +61884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1583/2000 [10:22<02:13, 3.12it/s, loss=0.409]" + "training until 2000: 79%|███████▉ | 1583/2000 [10:06<02:10, 3.20it/s, loss=0.4] " ] }, { @@ -61892,7 +61892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1584/2000 [10:22<02:13, 3.11it/s, loss=0.409]" + "training until 2000: 79%|███████▉ | 1584/2000 [10:06<02:10, 3.19it/s, loss=0.4]" ] }, { @@ -61900,7 +61900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1584/2000 [10:22<02:13, 3.11it/s, loss=0.449]" + "training until 2000: 79%|███████▉ | 1584/2000 [10:06<02:10, 3.19it/s, loss=0.466]" ] }, { @@ -61908,7 +61908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1585/2000 [10:22<02:13, 3.12it/s, loss=0.449]" + "training until 2000: 79%|███████▉ | 1585/2000 [10:06<02:10, 3.17it/s, loss=0.466]" ] }, { @@ -61916,7 +61916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1585/2000 [10:22<02:13, 3.12it/s, loss=0.405]" + "training until 2000: 79%|███████▉ | 1585/2000 [10:06<02:10, 3.17it/s, loss=0.407]" ] }, { @@ -61924,7 +61924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1586/2000 [10:23<02:11, 3.15it/s, loss=0.405]" + "training until 2000: 79%|███████▉ | 1586/2000 [10:07<02:09, 3.19it/s, loss=0.407]" ] }, { @@ -61932,7 +61932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1586/2000 [10:23<02:11, 3.15it/s, loss=0.402]" + "training until 2000: 79%|███████▉ | 1586/2000 [10:07<02:09, 3.19it/s, loss=0.409]" ] }, { @@ -61940,7 +61940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1587/2000 [10:23<02:11, 3.14it/s, loss=0.402]" + "training until 2000: 79%|███████▉ | 1587/2000 [10:07<02:09, 3.18it/s, loss=0.409]" ] }, { @@ -61948,7 +61948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1587/2000 [10:23<02:11, 3.14it/s, loss=0.442]" + "training until 2000: 79%|███████▉ | 1587/2000 [10:07<02:09, 3.18it/s, loss=0.39] " ] }, { @@ -61956,7 +61956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1588/2000 [10:23<02:12, 3.12it/s, loss=0.442]" + "training until 2000: 79%|███████▉ | 1588/2000 [10:07<02:08, 3.20it/s, loss=0.39]" ] }, { @@ -61964,7 +61964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1588/2000 [10:23<02:12, 3.12it/s, loss=0.402]" + "training until 2000: 79%|███████▉ | 1588/2000 [10:07<02:08, 3.20it/s, loss=0.506]" ] }, { @@ -61972,7 +61972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1589/2000 [10:24<02:11, 3.13it/s, loss=0.402]" + "training until 2000: 79%|███████▉ | 1589/2000 [10:08<02:08, 3.19it/s, loss=0.506]" ] }, { @@ -61980,7 +61980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 79%|███████▉ | 1589/2000 [10:24<02:11, 3.13it/s, loss=0.51] " + "training until 2000: 79%|███████▉ | 1589/2000 [10:08<02:08, 3.19it/s, loss=0.438]" ] }, { @@ -61988,7 +61988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1590/2000 [10:24<02:10, 3.15it/s, loss=0.51]" + "training until 2000: 80%|███████▉ | 1590/2000 [10:08<02:08, 3.18it/s, loss=0.438]" ] }, { @@ -61996,7 +61996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1590/2000 [10:24<02:10, 3.15it/s, loss=0.422]" + "training until 2000: 80%|███████▉ | 1590/2000 [10:08<02:08, 3.18it/s, loss=0.442]" ] }, { @@ -62004,7 +62004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1591/2000 [10:24<02:09, 3.16it/s, loss=0.422]" + "training until 2000: 80%|███████▉ | 1591/2000 [10:08<02:08, 3.19it/s, loss=0.442]" ] }, { @@ -62012,7 +62012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1591/2000 [10:24<02:09, 3.16it/s, loss=0.418]" + "training until 2000: 80%|███████▉ | 1591/2000 [10:08<02:08, 3.19it/s, loss=0.39] " ] }, { @@ -62020,7 +62020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1592/2000 [10:25<02:10, 3.14it/s, loss=0.418]" + "training until 2000: 80%|███████▉ | 1592/2000 [10:09<02:07, 3.19it/s, loss=0.39]" ] }, { @@ -62028,7 +62028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1592/2000 [10:25<02:10, 3.14it/s, loss=0.393]" + "training until 2000: 80%|███████▉ | 1592/2000 [10:09<02:07, 3.19it/s, loss=0.374]" ] }, { @@ -62036,7 +62036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1593/2000 [10:25<02:08, 3.16it/s, loss=0.393]" + "training until 2000: 80%|███████▉ | 1593/2000 [10:09<02:08, 3.18it/s, loss=0.374]" ] }, { @@ -62044,7 +62044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1593/2000 [10:25<02:08, 3.16it/s, loss=0.429]" + "training until 2000: 80%|███████▉ | 1593/2000 [10:09<02:08, 3.18it/s, loss=0.402]" ] }, { @@ -62052,7 +62052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1594/2000 [10:25<02:08, 3.15it/s, loss=0.429]" + "training until 2000: 80%|███████▉ | 1594/2000 [10:09<02:10, 3.11it/s, loss=0.402]" ] }, { @@ -62060,7 +62060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1594/2000 [10:25<02:08, 3.15it/s, loss=0.403]" + "training until 2000: 80%|███████▉ | 1594/2000 [10:09<02:10, 3.11it/s, loss=0.384]" ] }, { @@ -62068,7 +62068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1595/2000 [10:26<02:08, 3.15it/s, loss=0.403]" + "training until 2000: 80%|███████▉ | 1595/2000 [10:10<02:10, 3.11it/s, loss=0.384]" ] }, { @@ -62076,7 +62076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1595/2000 [10:26<02:08, 3.15it/s, loss=0.43] " + "training until 2000: 80%|███████▉ | 1595/2000 [10:10<02:10, 3.11it/s, loss=0.407]" ] }, { @@ -62084,7 +62084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1596/2000 [10:26<02:08, 3.14it/s, loss=0.43]" + "training until 2000: 80%|███████▉ | 1596/2000 [10:10<02:09, 3.12it/s, loss=0.407]" ] }, { @@ -62092,7 +62092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1596/2000 [10:26<02:08, 3.14it/s, loss=0.408]" + "training until 2000: 80%|███████▉ | 1596/2000 [10:10<02:09, 3.12it/s, loss=0.406]" ] }, { @@ -62100,7 +62100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1597/2000 [10:26<02:09, 3.11it/s, loss=0.408]" + "training until 2000: 80%|███████▉ | 1597/2000 [10:10<02:07, 3.17it/s, loss=0.406]" ] }, { @@ -62108,7 +62108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1597/2000 [10:26<02:09, 3.11it/s, loss=0.448]" + "training until 2000: 80%|███████▉ | 1597/2000 [10:10<02:07, 3.17it/s, loss=0.472]" ] }, { @@ -62116,7 +62116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1598/2000 [10:27<02:08, 3.13it/s, loss=0.448]" + "training until 2000: 80%|███████▉ | 1598/2000 [10:11<02:08, 3.14it/s, loss=0.472]" ] }, { @@ -62124,7 +62124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1598/2000 [10:27<02:08, 3.13it/s, loss=0.449]" + "training until 2000: 80%|███████▉ | 1598/2000 [10:11<02:08, 3.14it/s, loss=0.407]" ] }, { @@ -62132,7 +62132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1599/2000 [10:27<02:07, 3.13it/s, loss=0.449]" + "training until 2000: 80%|███████▉ | 1599/2000 [10:11<02:08, 3.12it/s, loss=0.407]" ] }, { @@ -62140,7 +62140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|███████▉ | 1599/2000 [10:27<02:07, 3.13it/s, loss=0.403]" + "training until 2000: 80%|███████▉ | 1599/2000 [10:11<02:08, 3.12it/s, loss=0.51] " ] }, { @@ -62148,7 +62148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1600/2000 [10:27<02:09, 3.09it/s, loss=0.403]" + "training until 2000: 80%|████████ | 1600/2000 [10:11<02:08, 3.11it/s, loss=0.51]" ] }, { @@ -62156,7 +62156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1600/2000 [10:27<02:09, 3.09it/s, loss=0.396]" + "training until 2000: 80%|████████ | 1600/2000 [10:11<02:08, 3.11it/s, loss=0.403]" ] }, { @@ -62164,7 +62164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1601/2000 [10:28<02:11, 3.04it/s, loss=0.396]" + "training until 2000: 80%|████████ | 1601/2000 [10:11<02:08, 3.12it/s, loss=0.403]" ] }, { @@ -62172,7 +62172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1601/2000 [10:28<02:11, 3.04it/s, loss=0.448]" + "training until 2000: 80%|████████ | 1601/2000 [10:11<02:08, 3.12it/s, loss=0.384]" ] }, { @@ -62180,7 +62180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1602/2000 [10:28<02:10, 3.04it/s, loss=0.448]" + "training until 2000: 80%|████████ | 1602/2000 [10:12<02:07, 3.12it/s, loss=0.384]" ] }, { @@ -62188,7 +62188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1602/2000 [10:28<02:10, 3.04it/s, loss=0.404]" + "training until 2000: 80%|████████ | 1602/2000 [10:12<02:07, 3.12it/s, loss=0.39] " ] }, { @@ -62196,7 +62196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1603/2000 [10:28<02:09, 3.06it/s, loss=0.404]" + "training until 2000: 80%|████████ | 1603/2000 [10:12<02:07, 3.11it/s, loss=0.39]" ] }, { @@ -62204,7 +62204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1603/2000 [10:28<02:09, 3.06it/s, loss=0.401]" + "training until 2000: 80%|████████ | 1603/2000 [10:12<02:07, 3.11it/s, loss=0.385]" ] }, { @@ -62212,7 +62212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1604/2000 [10:29<02:07, 3.10it/s, loss=0.401]" + "training until 2000: 80%|████████ | 1604/2000 [10:12<02:06, 3.12it/s, loss=0.385]" ] }, { @@ -62220,7 +62220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1604/2000 [10:29<02:07, 3.10it/s, loss=0.4] " + "training until 2000: 80%|████████ | 1604/2000 [10:12<02:06, 3.12it/s, loss=0.398]" ] }, { @@ -62228,7 +62228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1605/2000 [10:29<02:07, 3.09it/s, loss=0.4]" + "training until 2000: 80%|████████ | 1605/2000 [10:13<02:06, 3.12it/s, loss=0.398]" ] }, { @@ -62236,7 +62236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1605/2000 [10:29<02:07, 3.09it/s, loss=0.421]" + "training until 2000: 80%|████████ | 1605/2000 [10:13<02:06, 3.12it/s, loss=0.418]" ] }, { @@ -62244,7 +62244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1606/2000 [10:29<02:06, 3.12it/s, loss=0.421]" + "training until 2000: 80%|████████ | 1606/2000 [10:13<02:06, 3.13it/s, loss=0.418]" ] }, { @@ -62252,7 +62252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1606/2000 [10:29<02:06, 3.12it/s, loss=0.42] " + "training until 2000: 80%|████████ | 1606/2000 [10:13<02:06, 3.13it/s, loss=0.391]" ] }, { @@ -62260,7 +62260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1607/2000 [10:30<02:08, 3.07it/s, loss=0.42]" + "training until 2000: 80%|████████ | 1607/2000 [10:13<02:07, 3.08it/s, loss=0.391]" ] }, { @@ -62268,7 +62268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1607/2000 [10:30<02:08, 3.07it/s, loss=0.412]" + "training until 2000: 80%|████████ | 1607/2000 [10:13<02:07, 3.08it/s, loss=0.374]" ] }, { @@ -62276,7 +62276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1608/2000 [10:30<02:06, 3.11it/s, loss=0.412]" + "training until 2000: 80%|████████ | 1608/2000 [10:14<02:07, 3.07it/s, loss=0.374]" ] }, { @@ -62284,7 +62284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1608/2000 [10:30<02:06, 3.11it/s, loss=0.438]" + "training until 2000: 80%|████████ | 1608/2000 [10:14<02:07, 3.07it/s, loss=0.397]" ] }, { @@ -62292,7 +62292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1609/2000 [10:30<02:04, 3.14it/s, loss=0.438]" + "training until 2000: 80%|████████ | 1609/2000 [10:14<02:06, 3.09it/s, loss=0.397]" ] }, { @@ -62300,7 +62300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1609/2000 [10:30<02:04, 3.14it/s, loss=0.419]" + "training until 2000: 80%|████████ | 1609/2000 [10:14<02:06, 3.09it/s, loss=0.389]" ] }, { @@ -62308,7 +62308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1610/2000 [10:31<02:04, 3.13it/s, loss=0.419]" + "training until 2000: 80%|████████ | 1610/2000 [10:14<02:08, 3.04it/s, loss=0.389]" ] }, { @@ -62316,7 +62316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 80%|████████ | 1610/2000 [10:31<02:04, 3.13it/s, loss=0.417]" + "training until 2000: 80%|████████ | 1610/2000 [10:14<02:08, 3.04it/s, loss=0.52] " ] }, { @@ -62324,7 +62324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1611/2000 [10:31<02:05, 3.10it/s, loss=0.417]" + "training until 2000: 81%|████████ | 1611/2000 [10:15<02:07, 3.06it/s, loss=0.52]" ] }, { @@ -62332,7 +62332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1611/2000 [10:31<02:05, 3.10it/s, loss=0.543]" + "training until 2000: 81%|████████ | 1611/2000 [10:15<02:07, 3.06it/s, loss=0.408]" ] }, { @@ -62340,7 +62340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1612/2000 [10:31<02:04, 3.13it/s, loss=0.543]" + "training until 2000: 81%|████████ | 1612/2000 [10:15<02:05, 3.08it/s, loss=0.408]" ] }, { @@ -62348,7 +62348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1612/2000 [10:31<02:04, 3.13it/s, loss=0.42] " + "training until 2000: 81%|████████ | 1612/2000 [10:15<02:05, 3.08it/s, loss=0.384]" ] }, { @@ -62356,7 +62356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1613/2000 [10:31<02:03, 3.13it/s, loss=0.42]" + "training until 2000: 81%|████████ | 1613/2000 [10:15<02:04, 3.11it/s, loss=0.384]" ] }, { @@ -62364,7 +62364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1613/2000 [10:31<02:03, 3.13it/s, loss=0.394]" + "training until 2000: 81%|████████ | 1613/2000 [10:15<02:04, 3.11it/s, loss=0.433]" ] }, { @@ -62372,7 +62372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1614/2000 [10:32<02:03, 3.13it/s, loss=0.394]" + "training until 2000: 81%|████████ | 1614/2000 [10:16<02:04, 3.10it/s, loss=0.433]" ] }, { @@ -62380,7 +62380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1614/2000 [10:32<02:03, 3.13it/s, loss=0.418]" + "training until 2000: 81%|████████ | 1614/2000 [10:16<02:04, 3.10it/s, loss=0.403]" ] }, { @@ -62388,7 +62388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1615/2000 [10:32<02:03, 3.13it/s, loss=0.418]" + "training until 2000: 81%|████████ | 1615/2000 [10:16<02:05, 3.07it/s, loss=0.403]" ] }, { @@ -62396,7 +62396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1615/2000 [10:32<02:03, 3.13it/s, loss=0.427]" + "training until 2000: 81%|████████ | 1615/2000 [10:16<02:05, 3.07it/s, loss=0.436]" ] }, { @@ -62404,7 +62404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1616/2000 [10:32<02:03, 3.11it/s, loss=0.427]" + "training until 2000: 81%|████████ | 1616/2000 [10:16<02:05, 3.07it/s, loss=0.436]" ] }, { @@ -62412,7 +62412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1616/2000 [10:32<02:03, 3.11it/s, loss=0.383]" + "training until 2000: 81%|████████ | 1616/2000 [10:16<02:05, 3.07it/s, loss=0.395]" ] }, { @@ -62420,7 +62420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1617/2000 [10:33<02:02, 3.14it/s, loss=0.383]" + "training until 2000: 81%|████████ | 1617/2000 [10:17<02:05, 3.06it/s, loss=0.395]" ] }, { @@ -62428,7 +62428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1617/2000 [10:33<02:02, 3.14it/s, loss=0.394]" + "training until 2000: 81%|████████ | 1617/2000 [10:17<02:05, 3.06it/s, loss=0.44] " ] }, { @@ -62436,7 +62436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1618/2000 [10:33<02:03, 3.10it/s, loss=0.394]" + "training until 2000: 81%|████████ | 1618/2000 [10:17<02:04, 3.07it/s, loss=0.44]" ] }, { @@ -62444,7 +62444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1618/2000 [10:33<02:03, 3.10it/s, loss=0.465]" + "training until 2000: 81%|████████ | 1618/2000 [10:17<02:04, 3.07it/s, loss=0.422]" ] }, { @@ -62452,7 +62452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1619/2000 [10:33<02:03, 3.10it/s, loss=0.465]" + "training until 2000: 81%|████████ | 1619/2000 [10:17<02:03, 3.09it/s, loss=0.422]" ] }, { @@ -62460,7 +62460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1619/2000 [10:33<02:03, 3.10it/s, loss=0.444]" + "training until 2000: 81%|████████ | 1619/2000 [10:17<02:03, 3.09it/s, loss=0.427]" ] }, { @@ -62468,7 +62468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1620/2000 [10:34<02:02, 3.11it/s, loss=0.444]" + "training until 2000: 81%|████████ | 1620/2000 [10:18<02:32, 2.49it/s, loss=0.427]" ] }, { @@ -62476,7 +62476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1620/2000 [10:34<02:02, 3.11it/s, loss=0.385]" + "training until 2000: 81%|████████ | 1620/2000 [10:18<02:32, 2.49it/s, loss=0.43] " ] }, { @@ -62484,7 +62484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1621/2000 [10:34<02:00, 3.13it/s, loss=0.385]" + "training until 2000: 81%|████████ | 1621/2000 [10:18<02:23, 2.63it/s, loss=0.43]" ] }, { @@ -62492,7 +62492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1621/2000 [10:34<02:00, 3.13it/s, loss=0.383]" + "training until 2000: 81%|████████ | 1621/2000 [10:18<02:23, 2.63it/s, loss=0.413]" ] }, { @@ -62500,7 +62500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1622/2000 [10:34<02:01, 3.12it/s, loss=0.383]" + "training until 2000: 81%|████████ | 1622/2000 [10:19<02:17, 2.75it/s, loss=0.413]" ] }, { @@ -62508,7 +62508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1622/2000 [10:34<02:01, 3.12it/s, loss=0.397]" + "training until 2000: 81%|████████ | 1622/2000 [10:19<02:17, 2.75it/s, loss=0.41] " ] }, { @@ -62516,7 +62516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1623/2000 [10:35<01:59, 3.15it/s, loss=0.397]" + "training until 2000: 81%|████████ | 1623/2000 [10:19<02:11, 2.86it/s, loss=0.41]" ] }, { @@ -62524,7 +62524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1623/2000 [10:35<01:59, 3.15it/s, loss=0.389]" + "training until 2000: 81%|████████ | 1623/2000 [10:19<02:11, 2.86it/s, loss=0.46]" ] }, { @@ -62532,7 +62532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1624/2000 [10:35<01:59, 3.13it/s, loss=0.389]" + "training until 2000: 81%|████████ | 1624/2000 [10:19<02:07, 2.95it/s, loss=0.46]" ] }, { @@ -62540,7 +62540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████ | 1624/2000 [10:35<01:59, 3.13it/s, loss=0.398]" + "training until 2000: 81%|████████ | 1624/2000 [10:19<02:07, 2.95it/s, loss=0.401]" ] }, { @@ -62548,7 +62548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1625/2000 [10:35<02:00, 3.12it/s, loss=0.398]" + "training until 2000: 81%|████████▏ | 1625/2000 [10:19<02:04, 3.01it/s, loss=0.401]" ] }, { @@ -62556,7 +62556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1625/2000 [10:35<02:00, 3.12it/s, loss=0.489]" + "training until 2000: 81%|████████▏ | 1625/2000 [10:19<02:04, 3.01it/s, loss=0.392]" ] }, { @@ -62564,7 +62564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1626/2000 [10:36<01:59, 3.13it/s, loss=0.489]" + "training until 2000: 81%|████████▏ | 1626/2000 [10:20<02:02, 3.05it/s, loss=0.392]" ] }, { @@ -62572,7 +62572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1626/2000 [10:36<01:59, 3.13it/s, loss=0.405]" + "training until 2000: 81%|████████▏ | 1626/2000 [10:20<02:02, 3.05it/s, loss=0.381]" ] }, { @@ -62580,7 +62580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1627/2000 [10:36<01:58, 3.15it/s, loss=0.405]" + "training until 2000: 81%|████████▏ | 1627/2000 [10:20<02:02, 3.04it/s, loss=0.381]" ] }, { @@ -62588,7 +62588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1627/2000 [10:36<01:58, 3.15it/s, loss=0.399]" + "training until 2000: 81%|████████▏ | 1627/2000 [10:20<02:02, 3.04it/s, loss=0.377]" ] }, { @@ -62596,7 +62596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1628/2000 [10:37<02:26, 2.54it/s, loss=0.399]" + "training until 2000: 81%|████████▏ | 1628/2000 [10:20<02:01, 3.06it/s, loss=0.377]" ] }, { @@ -62604,7 +62604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1628/2000 [10:37<02:26, 2.54it/s, loss=0.397]" + "training until 2000: 81%|████████▏ | 1628/2000 [10:20<02:01, 3.06it/s, loss=0.447]" ] }, { @@ -62612,7 +62612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1629/2000 [10:37<02:18, 2.69it/s, loss=0.397]" + "training until 2000: 81%|████████▏ | 1629/2000 [10:21<02:00, 3.07it/s, loss=0.447]" ] }, { @@ -62620,7 +62620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 81%|████████▏ | 1629/2000 [10:37<02:18, 2.69it/s, loss=0.399]" + "training until 2000: 81%|████████▏ | 1629/2000 [10:21<02:00, 3.07it/s, loss=0.425]" ] }, { @@ -62628,7 +62628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1630/2000 [10:37<02:13, 2.78it/s, loss=0.399]" + "training until 2000: 82%|████████▏ | 1630/2000 [10:21<01:59, 3.10it/s, loss=0.425]" ] }, { @@ -62636,7 +62636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1630/2000 [10:37<02:13, 2.78it/s, loss=0.429]" + "training until 2000: 82%|████████▏ | 1630/2000 [10:21<01:59, 3.10it/s, loss=0.372]" ] }, { @@ -62644,7 +62644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1631/2000 [10:37<02:08, 2.88it/s, loss=0.429]" + "training until 2000: 82%|████████▏ | 1631/2000 [10:21<01:59, 3.09it/s, loss=0.372]" ] }, { @@ -62652,7 +62652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1631/2000 [10:37<02:08, 2.88it/s, loss=0.389]" + "training until 2000: 82%|████████▏ | 1631/2000 [10:21<01:59, 3.09it/s, loss=0.373]" ] }, { @@ -62660,7 +62660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1632/2000 [10:38<02:04, 2.95it/s, loss=0.389]" + "training until 2000: 82%|████████▏ | 1632/2000 [10:22<02:01, 3.04it/s, loss=0.373]" ] }, { @@ -62668,7 +62668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1632/2000 [10:38<02:04, 2.95it/s, loss=0.438]" + "training until 2000: 82%|████████▏ | 1632/2000 [10:22<02:01, 3.04it/s, loss=0.379]" ] }, { @@ -62676,7 +62676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1633/2000 [10:38<02:03, 2.98it/s, loss=0.438]" + "training until 2000: 82%|████████▏ | 1633/2000 [10:22<02:00, 3.05it/s, loss=0.379]" ] }, { @@ -62684,7 +62684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1633/2000 [10:38<02:03, 2.98it/s, loss=0.391]" + "training until 2000: 82%|████████▏ | 1633/2000 [10:22<02:00, 3.05it/s, loss=0.424]" ] }, { @@ -62692,7 +62692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1634/2000 [10:38<02:00, 3.05it/s, loss=0.391]" + "training until 2000: 82%|████████▏ | 1634/2000 [10:22<02:00, 3.04it/s, loss=0.424]" ] }, { @@ -62700,7 +62700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1634/2000 [10:38<02:00, 3.05it/s, loss=0.405]" + "training until 2000: 82%|████████▏ | 1634/2000 [10:22<02:00, 3.04it/s, loss=0.391]" ] }, { @@ -62708,7 +62708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1635/2000 [10:39<01:58, 3.07it/s, loss=0.405]" + "training until 2000: 82%|████████▏ | 1635/2000 [10:23<01:59, 3.06it/s, loss=0.391]" ] }, { @@ -62716,7 +62716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1635/2000 [10:39<01:58, 3.07it/s, loss=0.478]" + "training until 2000: 82%|████████▏ | 1635/2000 [10:23<01:59, 3.06it/s, loss=0.552]" ] }, { @@ -62724,7 +62724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1636/2000 [10:39<01:56, 3.11it/s, loss=0.478]" + "training until 2000: 82%|████████▏ | 1636/2000 [10:23<01:58, 3.06it/s, loss=0.552]" ] }, { @@ -62732,7 +62732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1636/2000 [10:39<01:56, 3.11it/s, loss=0.393]" + "training until 2000: 82%|████████▏ | 1636/2000 [10:23<01:58, 3.06it/s, loss=0.619]" ] }, { @@ -62740,7 +62740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1637/2000 [10:39<01:58, 3.06it/s, loss=0.393]" + "training until 2000: 82%|████████▏ | 1637/2000 [10:23<01:58, 3.06it/s, loss=0.619]" ] }, { @@ -62748,7 +62748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1637/2000 [10:39<01:58, 3.06it/s, loss=0.409]" + "training until 2000: 82%|████████▏ | 1637/2000 [10:23<01:58, 3.06it/s, loss=0.449]" ] }, { @@ -62756,7 +62756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1638/2000 [10:40<01:57, 3.08it/s, loss=0.409]" + "training until 2000: 82%|████████▏ | 1638/2000 [10:24<02:00, 3.00it/s, loss=0.449]" ] }, { @@ -62764,7 +62764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1638/2000 [10:40<01:57, 3.08it/s, loss=0.404]" + "training until 2000: 82%|████████▏ | 1638/2000 [10:24<02:00, 3.00it/s, loss=0.57] " ] }, { @@ -62772,7 +62772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1639/2000 [10:40<01:58, 3.05it/s, loss=0.404]" + "training until 2000: 82%|████████▏ | 1639/2000 [10:24<01:59, 3.02it/s, loss=0.57]" ] }, { @@ -62780,7 +62780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1639/2000 [10:40<01:58, 3.05it/s, loss=0.39] " + "training until 2000: 82%|████████▏ | 1639/2000 [10:24<01:59, 3.02it/s, loss=0.395]" ] }, { @@ -62788,7 +62788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1640/2000 [10:40<01:57, 3.07it/s, loss=0.39]" + "training until 2000: 82%|████████▏ | 1640/2000 [10:24<01:58, 3.05it/s, loss=0.395]" ] }, { @@ -62796,7 +62796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1640/2000 [10:40<01:57, 3.07it/s, loss=0.502]" + "training until 2000: 82%|████████▏ | 1640/2000 [10:24<01:58, 3.05it/s, loss=0.405]" ] }, { @@ -62804,7 +62804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1641/2000 [10:41<01:55, 3.11it/s, loss=0.502]" + "training until 2000: 82%|████████▏ | 1641/2000 [10:25<01:58, 3.02it/s, loss=0.405]" ] }, { @@ -62812,7 +62812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1641/2000 [10:41<01:55, 3.11it/s, loss=0.422]" + "training until 2000: 82%|████████▏ | 1641/2000 [10:25<01:58, 3.02it/s, loss=0.405]" ] }, { @@ -62820,7 +62820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1642/2000 [10:41<01:54, 3.11it/s, loss=0.422]" + "training until 2000: 82%|████████▏ | 1642/2000 [10:25<01:57, 3.05it/s, loss=0.405]" ] }, { @@ -62828,7 +62828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1642/2000 [10:41<01:54, 3.11it/s, loss=0.421]" + "training until 2000: 82%|████████▏ | 1642/2000 [10:25<01:57, 3.05it/s, loss=0.457]" ] }, { @@ -62836,7 +62836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1643/2000 [10:41<01:54, 3.12it/s, loss=0.421]" + "training until 2000: 82%|████████▏ | 1643/2000 [10:25<01:59, 3.00it/s, loss=0.457]" ] }, { @@ -62844,7 +62844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1643/2000 [10:41<01:54, 3.12it/s, loss=0.408]" + "training until 2000: 82%|████████▏ | 1643/2000 [10:25<01:59, 3.00it/s, loss=0.453]" ] }, { @@ -62852,7 +62852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1644/2000 [10:42<01:54, 3.11it/s, loss=0.408]" + "training until 2000: 82%|████████▏ | 1644/2000 [10:26<01:57, 3.03it/s, loss=0.453]" ] }, { @@ -62860,7 +62860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1644/2000 [10:42<01:54, 3.11it/s, loss=0.387]" + "training until 2000: 82%|████████▏ | 1644/2000 [10:26<01:57, 3.03it/s, loss=0.447]" ] }, { @@ -62868,7 +62868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1645/2000 [10:42<01:55, 3.07it/s, loss=0.387]" + "training until 2000: 82%|████████▏ | 1645/2000 [10:26<01:55, 3.07it/s, loss=0.447]" ] }, { @@ -62876,7 +62876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1645/2000 [10:42<01:55, 3.07it/s, loss=0.393]" + "training until 2000: 82%|████████▏ | 1645/2000 [10:26<01:55, 3.07it/s, loss=0.376]" ] }, { @@ -62884,7 +62884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1646/2000 [10:42<01:53, 3.11it/s, loss=0.393]" + "training until 2000: 82%|████████▏ | 1646/2000 [10:26<01:54, 3.08it/s, loss=0.376]" ] }, { @@ -62892,7 +62892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1646/2000 [10:42<01:53, 3.11it/s, loss=0.45] " + "training until 2000: 82%|████████▏ | 1646/2000 [10:26<01:54, 3.08it/s, loss=0.407]" ] }, { @@ -62900,7 +62900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1647/2000 [10:43<01:53, 3.10it/s, loss=0.45]" + "training until 2000: 82%|████████▏ | 1647/2000 [10:27<01:55, 3.07it/s, loss=0.407]" ] }, { @@ -62908,7 +62908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1647/2000 [10:43<01:53, 3.10it/s, loss=0.404]" + "training until 2000: 82%|████████▏ | 1647/2000 [10:27<01:55, 3.07it/s, loss=0.429]" ] }, { @@ -62916,7 +62916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1648/2000 [10:43<01:54, 3.08it/s, loss=0.404]" + "training until 2000: 82%|████████▏ | 1648/2000 [10:27<01:55, 3.04it/s, loss=0.429]" ] }, { @@ -62924,7 +62924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1648/2000 [10:43<01:54, 3.08it/s, loss=0.39] " + "training until 2000: 82%|████████▏ | 1648/2000 [10:27<01:55, 3.04it/s, loss=0.395]" ] }, { @@ -62932,7 +62932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1649/2000 [10:43<01:53, 3.10it/s, loss=0.39]" + "training until 2000: 82%|████████▏ | 1649/2000 [10:27<01:55, 3.03it/s, loss=0.395]" ] }, { @@ -62940,7 +62940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▏ | 1649/2000 [10:43<01:53, 3.10it/s, loss=0.392]" + "training until 2000: 82%|████████▏ | 1649/2000 [10:27<01:55, 3.03it/s, loss=0.45] " ] }, { @@ -62948,7 +62948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▎ | 1650/2000 [10:44<01:52, 3.11it/s, loss=0.392]" + "training until 2000: 82%|████████▎ | 1650/2000 [10:28<01:55, 3.03it/s, loss=0.45]" ] }, { @@ -62956,7 +62956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 82%|████████▎ | 1650/2000 [10:44<01:52, 3.11it/s, loss=0.383]" + "training until 2000: 82%|████████▎ | 1650/2000 [10:28<01:55, 3.03it/s, loss=0.498]" ] }, { @@ -62964,7 +62964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1651/2000 [10:44<01:51, 3.12it/s, loss=0.383]" + "training until 2000: 83%|████████▎ | 1651/2000 [10:28<01:54, 3.06it/s, loss=0.498]" ] }, { @@ -62972,7 +62972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1651/2000 [10:44<01:51, 3.12it/s, loss=0.387]" + "training until 2000: 83%|████████▎ | 1651/2000 [10:28<01:54, 3.06it/s, loss=0.424]" ] }, { @@ -62980,7 +62980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1652/2000 [10:44<01:51, 3.12it/s, loss=0.387]" + "training until 2000: 83%|████████▎ | 1652/2000 [10:28<01:52, 3.09it/s, loss=0.424]" ] }, { @@ -62988,7 +62988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1652/2000 [10:44<01:51, 3.12it/s, loss=0.381]" + "training until 2000: 83%|████████▎ | 1652/2000 [10:28<01:52, 3.09it/s, loss=0.38] " ] }, { @@ -62996,7 +62996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1653/2000 [10:45<01:51, 3.11it/s, loss=0.381]" + "training until 2000: 83%|████████▎ | 1653/2000 [10:29<01:52, 3.08it/s, loss=0.38]" ] }, { @@ -63004,7 +63004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1653/2000 [10:45<01:51, 3.11it/s, loss=0.389]" + "training until 2000: 83%|████████▎ | 1653/2000 [10:29<01:52, 3.08it/s, loss=0.403]" ] }, { @@ -63012,7 +63012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1654/2000 [10:45<01:51, 3.11it/s, loss=0.389]" + "training until 2000: 83%|████████▎ | 1654/2000 [10:29<01:50, 3.12it/s, loss=0.403]" ] }, { @@ -63020,7 +63020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1654/2000 [10:45<01:51, 3.11it/s, loss=0.432]" + "training until 2000: 83%|████████▎ | 1654/2000 [10:29<01:50, 3.12it/s, loss=0.406]" ] }, { @@ -63028,7 +63028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1655/2000 [10:45<01:50, 3.12it/s, loss=0.432]" + "training until 2000: 83%|████████▎ | 1655/2000 [10:29<01:50, 3.13it/s, loss=0.406]" ] }, { @@ -63036,7 +63036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1655/2000 [10:45<01:50, 3.12it/s, loss=0.39] " + "training until 2000: 83%|████████▎ | 1655/2000 [10:29<01:50, 3.13it/s, loss=0.424]" ] }, { @@ -63044,7 +63044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1656/2000 [10:46<01:50, 3.13it/s, loss=0.39]" + "training until 2000: 83%|████████▎ | 1656/2000 [10:30<01:51, 3.09it/s, loss=0.424]" ] }, { @@ -63052,7 +63052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1656/2000 [10:46<01:50, 3.13it/s, loss=0.396]" + "training until 2000: 83%|████████▎ | 1656/2000 [10:30<01:51, 3.09it/s, loss=0.378]" ] }, { @@ -63060,7 +63060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1657/2000 [10:46<01:49, 3.14it/s, loss=0.396]" + "training until 2000: 83%|████████▎ | 1657/2000 [10:30<01:51, 3.08it/s, loss=0.378]" ] }, { @@ -63068,7 +63068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1657/2000 [10:46<01:49, 3.14it/s, loss=0.402]" + "training until 2000: 83%|████████▎ | 1657/2000 [10:30<01:51, 3.08it/s, loss=0.372]" ] }, { @@ -63076,7 +63076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1658/2000 [10:46<01:48, 3.15it/s, loss=0.402]" + "training until 2000: 83%|████████▎ | 1658/2000 [10:30<01:50, 3.09it/s, loss=0.372]" ] }, { @@ -63084,7 +63084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1658/2000 [10:46<01:48, 3.15it/s, loss=0.424]" + "training until 2000: 83%|████████▎ | 1658/2000 [10:30<01:50, 3.09it/s, loss=0.537]" ] }, { @@ -63092,7 +63092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1659/2000 [10:46<01:48, 3.14it/s, loss=0.424]" + "training until 2000: 83%|████████▎ | 1659/2000 [10:31<01:50, 3.08it/s, loss=0.537]" ] }, { @@ -63100,7 +63100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1659/2000 [10:46<01:48, 3.14it/s, loss=0.418]" + "training until 2000: 83%|████████▎ | 1659/2000 [10:31<01:50, 3.08it/s, loss=0.417]" ] }, { @@ -63108,7 +63108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1660/2000 [10:47<01:48, 3.15it/s, loss=0.418]" + "training until 2000: 83%|████████▎ | 1660/2000 [10:31<01:51, 3.04it/s, loss=0.417]" ] }, { @@ -63116,7 +63116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1660/2000 [10:47<01:48, 3.15it/s, loss=0.391]" + "training until 2000: 83%|████████▎ | 1660/2000 [10:31<01:51, 3.04it/s, loss=0.542]" ] }, { @@ -63124,7 +63124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1661/2000 [10:47<01:48, 3.12it/s, loss=0.391]" + "training until 2000: 83%|████████▎ | 1661/2000 [10:31<01:50, 3.08it/s, loss=0.542]" ] }, { @@ -63132,7 +63132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1661/2000 [10:47<01:48, 3.12it/s, loss=0.407]" + "training until 2000: 83%|████████▎ | 1661/2000 [10:31<01:50, 3.08it/s, loss=0.373]" ] }, { @@ -63140,7 +63140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1662/2000 [10:47<01:47, 3.14it/s, loss=0.407]" + "training until 2000: 83%|████████▎ | 1662/2000 [10:32<01:49, 3.07it/s, loss=0.373]" ] }, { @@ -63148,7 +63148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1662/2000 [10:47<01:47, 3.14it/s, loss=0.42] " + "training until 2000: 83%|████████▎ | 1662/2000 [10:32<01:49, 3.07it/s, loss=0.44] " ] }, { @@ -63156,7 +63156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1663/2000 [10:48<01:46, 3.16it/s, loss=0.42]" + "training until 2000: 83%|████████▎ | 1663/2000 [10:32<01:48, 3.09it/s, loss=0.44]" ] }, { @@ -63164,7 +63164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1663/2000 [10:48<01:46, 3.16it/s, loss=0.412]" + "training until 2000: 83%|████████▎ | 1663/2000 [10:32<01:48, 3.09it/s, loss=0.399]" ] }, { @@ -63172,7 +63172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1664/2000 [10:48<01:46, 3.15it/s, loss=0.412]" + "training until 2000: 83%|████████▎ | 1664/2000 [10:32<01:47, 3.13it/s, loss=0.399]" ] }, { @@ -63180,7 +63180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1664/2000 [10:48<01:46, 3.15it/s, loss=0.411]" + "training until 2000: 83%|████████▎ | 1664/2000 [10:32<01:47, 3.13it/s, loss=0.396]" ] }, { @@ -63188,7 +63188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1665/2000 [10:48<01:46, 3.14it/s, loss=0.411]" + "training until 2000: 83%|████████▎ | 1665/2000 [10:33<01:46, 3.13it/s, loss=0.396]" ] }, { @@ -63196,7 +63196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1665/2000 [10:48<01:46, 3.14it/s, loss=0.391]" + "training until 2000: 83%|████████▎ | 1665/2000 [10:33<01:46, 3.13it/s, loss=0.461]" ] }, { @@ -63204,7 +63204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1666/2000 [10:49<01:46, 3.13it/s, loss=0.391]" + "training until 2000: 83%|████████▎ | 1666/2000 [10:33<01:48, 3.09it/s, loss=0.461]" ] }, { @@ -63212,7 +63212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1666/2000 [10:49<01:46, 3.13it/s, loss=0.414]" + "training until 2000: 83%|████████▎ | 1666/2000 [10:33<01:48, 3.09it/s, loss=0.42] " ] }, { @@ -63220,7 +63220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1667/2000 [10:49<01:45, 3.15it/s, loss=0.414]" + "training until 2000: 83%|████████▎ | 1667/2000 [10:33<01:48, 3.07it/s, loss=0.42]" ] }, { @@ -63228,7 +63228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1667/2000 [10:49<01:45, 3.15it/s, loss=0.418]" + "training until 2000: 83%|████████▎ | 1667/2000 [10:33<01:48, 3.07it/s, loss=0.401]" ] }, { @@ -63236,7 +63236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1668/2000 [10:49<01:46, 3.13it/s, loss=0.418]" + "training until 2000: 83%|████████▎ | 1668/2000 [10:34<01:47, 3.08it/s, loss=0.401]" ] }, { @@ -63244,7 +63244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1668/2000 [10:49<01:46, 3.13it/s, loss=0.407]" + "training until 2000: 83%|████████▎ | 1668/2000 [10:34<01:47, 3.08it/s, loss=0.39] " ] }, { @@ -63252,7 +63252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1669/2000 [10:50<01:45, 3.13it/s, loss=0.407]" + "training until 2000: 83%|████████▎ | 1669/2000 [10:34<01:46, 3.11it/s, loss=0.39]" ] }, { @@ -63260,7 +63260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 83%|████████▎ | 1669/2000 [10:50<01:45, 3.13it/s, loss=0.416]" + "training until 2000: 83%|████████▎ | 1669/2000 [10:34<01:46, 3.11it/s, loss=0.4] " ] }, { @@ -63268,7 +63268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1670/2000 [10:50<01:45, 3.13it/s, loss=0.416]" + "training until 2000: 84%|████████▎ | 1670/2000 [10:34<01:47, 3.07it/s, loss=0.4]" ] }, { @@ -63276,7 +63276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1670/2000 [10:50<01:45, 3.13it/s, loss=0.383]" + "training until 2000: 84%|████████▎ | 1670/2000 [10:34<01:47, 3.07it/s, loss=0.568]" ] }, { @@ -63284,7 +63284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1671/2000 [10:50<01:45, 3.12it/s, loss=0.383]" + "training until 2000: 84%|████████▎ | 1671/2000 [10:34<01:46, 3.08it/s, loss=0.568]" ] }, { @@ -63292,7 +63292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1671/2000 [10:50<01:45, 3.12it/s, loss=0.383]" + "training until 2000: 84%|████████▎ | 1671/2000 [10:34<01:46, 3.08it/s, loss=0.415]" ] }, { @@ -63300,7 +63300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1672/2000 [10:51<01:46, 3.09it/s, loss=0.383]" + "training until 2000: 84%|████████▎ | 1672/2000 [10:35<01:46, 3.07it/s, loss=0.415]" ] }, { @@ -63308,7 +63308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1672/2000 [10:51<01:46, 3.09it/s, loss=0.394]" + "training until 2000: 84%|████████▎ | 1672/2000 [10:35<01:46, 3.07it/s, loss=0.428]" ] }, { @@ -63316,7 +63316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1673/2000 [10:51<01:46, 3.08it/s, loss=0.394]" + "training until 2000: 84%|████████▎ | 1673/2000 [10:35<01:46, 3.07it/s, loss=0.428]" ] }, { @@ -63324,7 +63324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1673/2000 [10:51<01:46, 3.08it/s, loss=0.394]" + "training until 2000: 84%|████████▎ | 1673/2000 [10:35<01:46, 3.07it/s, loss=0.427]" ] }, { @@ -63332,7 +63332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1674/2000 [10:51<01:45, 3.08it/s, loss=0.394]" + "training until 2000: 84%|████████▎ | 1674/2000 [10:35<01:46, 3.07it/s, loss=0.427]" ] }, { @@ -63340,7 +63340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▎ | 1674/2000 [10:51<01:45, 3.08it/s, loss=0.384]" + "training until 2000: 84%|████████▎ | 1674/2000 [10:35<01:46, 3.07it/s, loss=0.443]" ] }, { @@ -63348,7 +63348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1675/2000 [10:52<01:47, 3.02it/s, loss=0.384]" + "training until 2000: 84%|████████▍ | 1675/2000 [10:36<01:46, 3.05it/s, loss=0.443]" ] }, { @@ -63356,7 +63356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1675/2000 [10:52<01:47, 3.02it/s, loss=0.413]" + "training until 2000: 84%|████████▍ | 1675/2000 [10:36<01:46, 3.05it/s, loss=0.4] " ] }, { @@ -63364,7 +63364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1676/2000 [10:52<01:46, 3.04it/s, loss=0.413]" + "training until 2000: 84%|████████▍ | 1676/2000 [10:36<01:45, 3.07it/s, loss=0.4]" ] }, { @@ -63372,7 +63372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1676/2000 [10:52<01:46, 3.04it/s, loss=0.377]" + "training until 2000: 84%|████████▍ | 1676/2000 [10:36<01:45, 3.07it/s, loss=0.45]" ] }, { @@ -63380,7 +63380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1677/2000 [10:52<01:45, 3.07it/s, loss=0.377]" + "training until 2000: 84%|████████▍ | 1677/2000 [10:36<01:44, 3.10it/s, loss=0.45]" ] }, { @@ -63388,7 +63388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1677/2000 [10:52<01:45, 3.07it/s, loss=0.405]" + "training until 2000: 84%|████████▍ | 1677/2000 [10:36<01:44, 3.10it/s, loss=0.414]" ] }, { @@ -63396,7 +63396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1678/2000 [10:53<01:46, 3.03it/s, loss=0.405]" + "training until 2000: 84%|████████▍ | 1678/2000 [10:37<01:44, 3.08it/s, loss=0.414]" ] }, { @@ -63404,7 +63404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1678/2000 [10:53<01:46, 3.03it/s, loss=0.388]" + "training until 2000: 84%|████████▍ | 1678/2000 [10:37<01:44, 3.08it/s, loss=0.39] " ] }, { @@ -63412,7 +63412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1679/2000 [10:53<01:47, 2.99it/s, loss=0.388]" + "training until 2000: 84%|████████▍ | 1679/2000 [10:37<01:43, 3.11it/s, loss=0.39]" ] }, { @@ -63420,7 +63420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1679/2000 [10:53<01:47, 2.99it/s, loss=0.399]" + "training until 2000: 84%|████████▍ | 1679/2000 [10:37<01:43, 3.11it/s, loss=0.401]" ] }, { @@ -63428,7 +63428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1680/2000 [10:53<01:47, 2.97it/s, loss=0.399]" + "training until 2000: 84%|████████▍ | 1680/2000 [10:37<01:42, 3.12it/s, loss=0.401]" ] }, { @@ -63436,7 +63436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1680/2000 [10:53<01:47, 2.97it/s, loss=0.413]" + "training until 2000: 84%|████████▍ | 1680/2000 [10:37<01:42, 3.12it/s, loss=0.41] " ] }, { @@ -63444,7 +63444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1681/2000 [10:54<01:46, 2.99it/s, loss=0.413]" + "training until 2000: 84%|████████▍ | 1681/2000 [10:38<01:41, 3.15it/s, loss=0.41]" ] }, { @@ -63452,7 +63452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1681/2000 [10:54<01:46, 2.99it/s, loss=0.383]" + "training until 2000: 84%|████████▍ | 1681/2000 [10:38<01:41, 3.15it/s, loss=0.401]" ] }, { @@ -63460,7 +63460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1682/2000 [10:54<01:45, 3.00it/s, loss=0.383]" + "training until 2000: 84%|████████▍ | 1682/2000 [10:38<01:40, 3.15it/s, loss=0.401]" ] }, { @@ -63468,7 +63468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1682/2000 [10:54<01:45, 3.00it/s, loss=0.467]" + "training until 2000: 84%|████████▍ | 1682/2000 [10:38<01:40, 3.15it/s, loss=0.379]" ] }, { @@ -63476,7 +63476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1683/2000 [10:54<01:45, 2.99it/s, loss=0.467]" + "training until 2000: 84%|████████▍ | 1683/2000 [10:38<01:41, 3.13it/s, loss=0.379]" ] }, { @@ -63484,7 +63484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1683/2000 [10:54<01:45, 2.99it/s, loss=0.417]" + "training until 2000: 84%|████████▍ | 1683/2000 [10:38<01:41, 3.13it/s, loss=0.381]" ] }, { @@ -63492,7 +63492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1684/2000 [10:55<01:44, 3.02it/s, loss=0.417]" + "training until 2000: 84%|████████▍ | 1684/2000 [10:39<01:40, 3.14it/s, loss=0.381]" ] }, { @@ -63500,7 +63500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1684/2000 [10:55<01:44, 3.02it/s, loss=0.4] " + "training until 2000: 84%|████████▍ | 1684/2000 [10:39<01:40, 3.14it/s, loss=0.501]" ] }, { @@ -63508,7 +63508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1685/2000 [10:55<01:45, 3.00it/s, loss=0.4]" + "training until 2000: 84%|████████▍ | 1685/2000 [10:39<01:39, 3.17it/s, loss=0.501]" ] }, { @@ -63516,7 +63516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1685/2000 [10:55<01:45, 3.00it/s, loss=0.384]" + "training until 2000: 84%|████████▍ | 1685/2000 [10:39<01:39, 3.17it/s, loss=0.426]" ] }, { @@ -63524,7 +63524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1686/2000 [10:55<01:43, 3.02it/s, loss=0.384]" + "training until 2000: 84%|████████▍ | 1686/2000 [10:39<01:39, 3.16it/s, loss=0.426]" ] }, { @@ -63532,7 +63532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1686/2000 [10:55<01:43, 3.02it/s, loss=0.39] " + "training until 2000: 84%|████████▍ | 1686/2000 [10:39<01:39, 3.16it/s, loss=0.399]" ] }, { @@ -63540,7 +63540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1687/2000 [10:56<01:42, 3.04it/s, loss=0.39]" + "training until 2000: 84%|████████▍ | 1687/2000 [10:40<01:38, 3.16it/s, loss=0.399]" ] }, { @@ -63548,7 +63548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1687/2000 [10:56<01:42, 3.04it/s, loss=0.403]" + "training until 2000: 84%|████████▍ | 1687/2000 [10:40<01:38, 3.16it/s, loss=0.387]" ] }, { @@ -63556,7 +63556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1688/2000 [10:56<01:41, 3.06it/s, loss=0.403]" + "training until 2000: 84%|████████▍ | 1688/2000 [10:40<02:03, 2.53it/s, loss=0.387]" ] }, { @@ -63564,7 +63564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1688/2000 [10:56<01:41, 3.06it/s, loss=0.387]" + "training until 2000: 84%|████████▍ | 1688/2000 [10:40<02:03, 2.53it/s, loss=0.439]" ] }, { @@ -63572,7 +63572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1689/2000 [10:56<01:41, 3.05it/s, loss=0.387]" + "training until 2000: 84%|████████▍ | 1689/2000 [10:40<01:54, 2.71it/s, loss=0.439]" ] }, { @@ -63580,7 +63580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1689/2000 [10:56<01:41, 3.05it/s, loss=0.419]" + "training until 2000: 84%|████████▍ | 1689/2000 [10:40<01:54, 2.71it/s, loss=0.462]" ] }, { @@ -63588,7 +63588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1690/2000 [10:57<01:40, 3.08it/s, loss=0.419]" + "training until 2000: 84%|████████▍ | 1690/2000 [10:41<01:48, 2.85it/s, loss=0.462]" ] }, { @@ -63596,7 +63596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 84%|████████▍ | 1690/2000 [10:57<01:40, 3.08it/s, loss=0.391]" + "training until 2000: 84%|████████▍ | 1690/2000 [10:41<01:48, 2.85it/s, loss=0.597]" ] }, { @@ -63604,7 +63604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1691/2000 [10:57<01:40, 3.07it/s, loss=0.391]" + "training until 2000: 85%|████████▍ | 1691/2000 [10:41<01:45, 2.92it/s, loss=0.597]" ] }, { @@ -63612,7 +63612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1691/2000 [10:57<01:40, 3.07it/s, loss=0.401]" + "training until 2000: 85%|████████▍ | 1691/2000 [10:41<01:45, 2.92it/s, loss=0.395]" ] }, { @@ -63620,7 +63620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1692/2000 [10:57<01:40, 3.08it/s, loss=0.401]" + "training until 2000: 85%|████████▍ | 1692/2000 [10:41<01:42, 3.00it/s, loss=0.395]" ] }, { @@ -63628,7 +63628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1692/2000 [10:57<01:40, 3.08it/s, loss=0.384]" + "training until 2000: 85%|████████▍ | 1692/2000 [10:41<01:42, 3.00it/s, loss=0.457]" ] }, { @@ -63636,7 +63636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1693/2000 [10:58<02:03, 2.49it/s, loss=0.384]" + "training until 2000: 85%|████████▍ | 1693/2000 [10:42<01:41, 3.03it/s, loss=0.457]" ] }, { @@ -63644,7 +63644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1693/2000 [10:58<02:03, 2.49it/s, loss=0.383]" + "training until 2000: 85%|████████▍ | 1693/2000 [10:42<01:41, 3.03it/s, loss=0.395]" ] }, { @@ -63652,7 +63652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1694/2000 [10:58<01:55, 2.64it/s, loss=0.383]" + "training until 2000: 85%|████████▍ | 1694/2000 [10:42<01:40, 3.06it/s, loss=0.395]" ] }, { @@ -63660,7 +63660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1694/2000 [10:58<01:55, 2.64it/s, loss=0.451]" + "training until 2000: 85%|████████▍ | 1694/2000 [10:42<01:40, 3.06it/s, loss=0.369]" ] }, { @@ -63668,7 +63668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1695/2000 [10:58<01:49, 2.78it/s, loss=0.451]" + "training until 2000: 85%|████████▍ | 1695/2000 [10:42<01:37, 3.12it/s, loss=0.369]" ] }, { @@ -63676,7 +63676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1695/2000 [10:58<01:49, 2.78it/s, loss=0.402]" + "training until 2000: 85%|████████▍ | 1695/2000 [10:42<01:37, 3.12it/s, loss=0.518]" ] }, { @@ -63684,7 +63684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1696/2000 [10:59<01:45, 2.87it/s, loss=0.402]" + "training until 2000: 85%|████████▍ | 1696/2000 [10:43<01:36, 3.13it/s, loss=0.518]" ] }, { @@ -63692,7 +63692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1696/2000 [10:59<01:45, 2.87it/s, loss=0.436]" + "training until 2000: 85%|████████▍ | 1696/2000 [10:43<01:36, 3.13it/s, loss=0.414]" ] }, { @@ -63700,7 +63700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1697/2000 [10:59<01:43, 2.93it/s, loss=0.436]" + "training until 2000: 85%|████████▍ | 1697/2000 [10:43<01:35, 3.17it/s, loss=0.414]" ] }, { @@ -63708,7 +63708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1697/2000 [10:59<01:43, 2.93it/s, loss=0.377]" + "training until 2000: 85%|████████▍ | 1697/2000 [10:43<01:35, 3.17it/s, loss=0.42] " ] }, { @@ -63716,7 +63716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1698/2000 [10:59<01:39, 3.03it/s, loss=0.377]" + "training until 2000: 85%|████████▍ | 1698/2000 [10:43<01:35, 3.16it/s, loss=0.42]" ] }, { @@ -63724,7 +63724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1698/2000 [10:59<01:39, 3.03it/s, loss=0.434]" + "training until 2000: 85%|████████▍ | 1698/2000 [10:43<01:35, 3.16it/s, loss=0.557]" ] }, { @@ -63732,7 +63732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1699/2000 [11:00<01:38, 3.04it/s, loss=0.434]" + "training until 2000: 85%|████████▍ | 1699/2000 [10:44<01:35, 3.14it/s, loss=0.557]" ] }, { @@ -63740,7 +63740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▍ | 1699/2000 [11:00<01:38, 3.04it/s, loss=0.413]" + "training until 2000: 85%|████████▍ | 1699/2000 [10:44<01:35, 3.14it/s, loss=0.506]" ] }, { @@ -63748,7 +63748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1700/2000 [11:00<01:39, 3.00it/s, loss=0.413]" + "training until 2000: 85%|████████▌ | 1700/2000 [10:44<01:36, 3.10it/s, loss=0.506]" ] }, { @@ -63756,7 +63756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1700/2000 [11:00<01:39, 3.00it/s, loss=0.396]" + "training until 2000: 85%|████████▌ | 1700/2000 [10:44<01:36, 3.10it/s, loss=0.397]" ] }, { @@ -63764,7 +63764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1701/2000 [11:00<01:39, 3.00it/s, loss=0.396]" + "training until 2000: 85%|████████▌ | 1701/2000 [10:44<01:37, 3.08it/s, loss=0.397]" ] }, { @@ -63772,7 +63772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1701/2000 [11:00<01:39, 3.00it/s, loss=0.413]" + "training until 2000: 85%|████████▌ | 1701/2000 [10:44<01:37, 3.08it/s, loss=0.361]" ] }, { @@ -63780,7 +63780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1702/2000 [11:01<01:39, 3.00it/s, loss=0.413]" + "training until 2000: 85%|████████▌ | 1702/2000 [10:45<01:36, 3.10it/s, loss=0.361]" ] }, { @@ -63788,7 +63788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1702/2000 [11:01<01:39, 3.00it/s, loss=0.42] " + "training until 2000: 85%|████████▌ | 1702/2000 [10:45<01:36, 3.10it/s, loss=0.39] " ] }, { @@ -63796,7 +63796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1703/2000 [11:01<01:38, 3.01it/s, loss=0.42]" + "training until 2000: 85%|████████▌ | 1703/2000 [10:45<01:35, 3.11it/s, loss=0.39]" ] }, { @@ -63804,7 +63804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1703/2000 [11:01<01:38, 3.01it/s, loss=0.388]" + "training until 2000: 85%|████████▌ | 1703/2000 [10:45<01:35, 3.11it/s, loss=0.383]" ] }, { @@ -63812,7 +63812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1704/2000 [11:01<01:37, 3.05it/s, loss=0.388]" + "training until 2000: 85%|████████▌ | 1704/2000 [10:45<01:35, 3.11it/s, loss=0.383]" ] }, { @@ -63820,7 +63820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1704/2000 [11:01<01:37, 3.05it/s, loss=0.483]" + "training until 2000: 85%|████████▌ | 1704/2000 [10:45<01:35, 3.11it/s, loss=0.374]" ] }, { @@ -63828,7 +63828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1705/2000 [11:02<01:37, 3.03it/s, loss=0.483]" + "training until 2000: 85%|████████▌ | 1705/2000 [10:46<01:35, 3.10it/s, loss=0.374]" ] }, { @@ -63836,7 +63836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1705/2000 [11:02<01:37, 3.03it/s, loss=0.39] " + "training until 2000: 85%|████████▌ | 1705/2000 [10:46<01:35, 3.10it/s, loss=0.399]" ] }, { @@ -63844,7 +63844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1706/2000 [11:02<01:37, 3.00it/s, loss=0.39]" + "training until 2000: 85%|████████▌ | 1706/2000 [10:46<01:34, 3.10it/s, loss=0.399]" ] }, { @@ -63852,7 +63852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1706/2000 [11:02<01:37, 3.00it/s, loss=0.406]" + "training until 2000: 85%|████████▌ | 1706/2000 [10:46<01:34, 3.10it/s, loss=0.385]" ] }, { @@ -63860,7 +63860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1707/2000 [11:02<01:37, 3.01it/s, loss=0.406]" + "training until 2000: 85%|████████▌ | 1707/2000 [10:46<01:34, 3.10it/s, loss=0.385]" ] }, { @@ -63868,7 +63868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1707/2000 [11:02<01:37, 3.01it/s, loss=0.396]" + "training until 2000: 85%|████████▌ | 1707/2000 [10:46<01:34, 3.10it/s, loss=0.402]" ] }, { @@ -63876,7 +63876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1708/2000 [11:03<01:36, 3.03it/s, loss=0.396]" + "training until 2000: 85%|████████▌ | 1708/2000 [10:47<01:33, 3.12it/s, loss=0.402]" ] }, { @@ -63884,7 +63884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1708/2000 [11:03<01:36, 3.03it/s, loss=0.39] " + "training until 2000: 85%|████████▌ | 1708/2000 [10:47<01:33, 3.12it/s, loss=0.398]" ] }, { @@ -63892,7 +63892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1709/2000 [11:03<01:36, 3.01it/s, loss=0.39]" + "training until 2000: 85%|████████▌ | 1709/2000 [10:47<01:34, 3.08it/s, loss=0.398]" ] }, { @@ -63900,7 +63900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 85%|████████▌ | 1709/2000 [11:03<01:36, 3.01it/s, loss=0.406]" + "training until 2000: 85%|████████▌ | 1709/2000 [10:47<01:34, 3.08it/s, loss=0.396]" ] }, { @@ -63908,7 +63908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1710/2000 [11:03<01:36, 3.00it/s, loss=0.406]" + "training until 2000: 86%|████████▌ | 1710/2000 [10:47<01:33, 3.09it/s, loss=0.396]" ] }, { @@ -63916,7 +63916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1710/2000 [11:03<01:36, 3.00it/s, loss=0.385]" + "training until 2000: 86%|████████▌ | 1710/2000 [10:47<01:33, 3.09it/s, loss=0.381]" ] }, { @@ -63924,7 +63924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1711/2000 [11:04<01:35, 3.02it/s, loss=0.385]" + "training until 2000: 86%|████████▌ | 1711/2000 [10:48<01:32, 3.12it/s, loss=0.381]" ] }, { @@ -63932,7 +63932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1711/2000 [11:04<01:35, 3.02it/s, loss=0.415]" + "training until 2000: 86%|████████▌ | 1711/2000 [10:48<01:32, 3.12it/s, loss=0.365]" ] }, { @@ -63940,7 +63940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1712/2000 [11:04<01:36, 2.99it/s, loss=0.415]" + "training until 2000: 86%|████████▌ | 1712/2000 [10:48<01:31, 3.14it/s, loss=0.365]" ] }, { @@ -63948,7 +63948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1712/2000 [11:04<01:36, 2.99it/s, loss=0.4] " + "training until 2000: 86%|████████▌ | 1712/2000 [10:48<01:31, 3.14it/s, loss=0.374]" ] }, { @@ -63956,7 +63956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1713/2000 [11:04<01:34, 3.02it/s, loss=0.4]" + "training until 2000: 86%|████████▌ | 1713/2000 [10:48<01:30, 3.16it/s, loss=0.374]" ] }, { @@ -63964,7 +63964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1713/2000 [11:04<01:34, 3.02it/s, loss=0.404]" + "training until 2000: 86%|████████▌ | 1713/2000 [10:48<01:30, 3.16it/s, loss=0.369]" ] }, { @@ -63972,7 +63972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1714/2000 [11:05<01:34, 3.04it/s, loss=0.404]" + "training until 2000: 86%|████████▌ | 1714/2000 [10:48<01:30, 3.16it/s, loss=0.369]" ] }, { @@ -63980,7 +63980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1714/2000 [11:05<01:34, 3.04it/s, loss=0.478]" + "training until 2000: 86%|████████▌ | 1714/2000 [10:48<01:30, 3.16it/s, loss=0.442]" ] }, { @@ -63988,7 +63988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1715/2000 [11:05<01:34, 3.01it/s, loss=0.478]" + "training until 2000: 86%|████████▌ | 1715/2000 [10:49<01:30, 3.15it/s, loss=0.442]" ] }, { @@ -63996,7 +63996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1715/2000 [11:05<01:34, 3.01it/s, loss=0.427]" + "training until 2000: 86%|████████▌ | 1715/2000 [10:49<01:30, 3.15it/s, loss=0.378]" ] }, { @@ -64004,7 +64004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1716/2000 [11:05<01:33, 3.04it/s, loss=0.427]" + "training until 2000: 86%|████████▌ | 1716/2000 [10:49<01:30, 3.12it/s, loss=0.378]" ] }, { @@ -64012,7 +64012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1716/2000 [11:05<01:33, 3.04it/s, loss=0.388]" + "training until 2000: 86%|████████▌ | 1716/2000 [10:49<01:30, 3.12it/s, loss=0.391]" ] }, { @@ -64020,7 +64020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1717/2000 [11:06<01:32, 3.08it/s, loss=0.388]" + "training until 2000: 86%|████████▌ | 1717/2000 [10:49<01:29, 3.15it/s, loss=0.391]" ] }, { @@ -64028,7 +64028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1717/2000 [11:06<01:32, 3.08it/s, loss=0.377]" + "training until 2000: 86%|████████▌ | 1717/2000 [10:49<01:29, 3.15it/s, loss=0.433]" ] }, { @@ -64036,7 +64036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1718/2000 [11:06<01:32, 3.04it/s, loss=0.377]" + "training until 2000: 86%|████████▌ | 1718/2000 [10:50<01:29, 3.14it/s, loss=0.433]" ] }, { @@ -64044,7 +64044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1718/2000 [11:06<01:32, 3.04it/s, loss=0.419]" + "training until 2000: 86%|████████▌ | 1718/2000 [10:50<01:29, 3.14it/s, loss=0.467]" ] }, { @@ -64052,7 +64052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1719/2000 [11:06<01:31, 3.08it/s, loss=0.419]" + "training until 2000: 86%|████████▌ | 1719/2000 [10:50<01:30, 3.09it/s, loss=0.467]" ] }, { @@ -64060,7 +64060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1719/2000 [11:06<01:31, 3.08it/s, loss=0.399]" + "training until 2000: 86%|████████▌ | 1719/2000 [10:50<01:30, 3.09it/s, loss=0.394]" ] }, { @@ -64068,7 +64068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1720/2000 [11:07<01:30, 3.09it/s, loss=0.399]" + "training until 2000: 86%|████████▌ | 1720/2000 [10:50<01:30, 3.09it/s, loss=0.394]" ] }, { @@ -64076,7 +64076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1720/2000 [11:07<01:30, 3.09it/s, loss=0.393]" + "training until 2000: 86%|████████▌ | 1720/2000 [10:50<01:30, 3.09it/s, loss=0.394]" ] }, { @@ -64084,7 +64084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1721/2000 [11:07<01:31, 3.06it/s, loss=0.393]" + "training until 2000: 86%|████████▌ | 1721/2000 [10:51<01:30, 3.10it/s, loss=0.394]" ] }, { @@ -64092,7 +64092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1721/2000 [11:07<01:31, 3.06it/s, loss=0.377]" + "training until 2000: 86%|████████▌ | 1721/2000 [10:51<01:30, 3.10it/s, loss=0.42] " ] }, { @@ -64100,7 +64100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1722/2000 [11:07<01:31, 3.04it/s, loss=0.377]" + "training until 2000: 86%|████████▌ | 1722/2000 [10:51<01:29, 3.09it/s, loss=0.42]" ] }, { @@ -64108,7 +64108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1722/2000 [11:07<01:31, 3.04it/s, loss=0.374]" + "training until 2000: 86%|████████▌ | 1722/2000 [10:51<01:29, 3.09it/s, loss=0.396]" ] }, { @@ -64116,7 +64116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1723/2000 [11:08<01:31, 3.01it/s, loss=0.374]" + "training until 2000: 86%|████████▌ | 1723/2000 [10:51<01:29, 3.10it/s, loss=0.396]" ] }, { @@ -64124,7 +64124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1723/2000 [11:08<01:31, 3.01it/s, loss=0.401]" + "training until 2000: 86%|████████▌ | 1723/2000 [10:51<01:29, 3.10it/s, loss=0.457]" ] }, { @@ -64132,7 +64132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1724/2000 [11:08<01:31, 3.03it/s, loss=0.401]" + "training until 2000: 86%|████████▌ | 1724/2000 [10:52<01:28, 3.11it/s, loss=0.457]" ] }, { @@ -64140,7 +64140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▌ | 1724/2000 [11:08<01:31, 3.03it/s, loss=0.449]" + "training until 2000: 86%|████████▌ | 1724/2000 [10:52<01:28, 3.11it/s, loss=0.4] " ] }, { @@ -64148,7 +64148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1725/2000 [11:08<01:30, 3.05it/s, loss=0.449]" + "training until 2000: 86%|████████▋ | 1725/2000 [10:52<01:28, 3.11it/s, loss=0.4]" ] }, { @@ -64156,7 +64156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1725/2000 [11:08<01:30, 3.05it/s, loss=0.395]" + "training until 2000: 86%|████████▋ | 1725/2000 [10:52<01:28, 3.11it/s, loss=0.363]" ] }, { @@ -64164,7 +64164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1726/2000 [11:09<01:28, 3.09it/s, loss=0.395]" + "training until 2000: 86%|████████▋ | 1726/2000 [10:52<01:29, 3.07it/s, loss=0.363]" ] }, { @@ -64172,7 +64172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1726/2000 [11:09<01:28, 3.09it/s, loss=0.379]" + "training until 2000: 86%|████████▋ | 1726/2000 [10:52<01:29, 3.07it/s, loss=0.394]" ] }, { @@ -64180,7 +64180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1727/2000 [11:09<01:29, 3.06it/s, loss=0.379]" + "training until 2000: 86%|████████▋ | 1727/2000 [10:53<01:31, 3.00it/s, loss=0.394]" ] }, { @@ -64188,7 +64188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1727/2000 [11:09<01:29, 3.06it/s, loss=0.446]" + "training until 2000: 86%|████████▋ | 1727/2000 [10:53<01:31, 3.00it/s, loss=0.402]" ] }, { @@ -64196,7 +64196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1728/2000 [11:09<01:29, 3.04it/s, loss=0.446]" + "training until 2000: 86%|████████▋ | 1728/2000 [10:53<01:30, 3.01it/s, loss=0.402]" ] }, { @@ -64204,7 +64204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1728/2000 [11:09<01:29, 3.04it/s, loss=0.372]" + "training until 2000: 86%|████████▋ | 1728/2000 [10:53<01:30, 3.01it/s, loss=0.38] " ] }, { @@ -64212,7 +64212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1729/2000 [11:10<01:28, 3.06it/s, loss=0.372]" + "training until 2000: 86%|████████▋ | 1729/2000 [10:53<01:28, 3.06it/s, loss=0.38]" ] }, { @@ -64220,7 +64220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1729/2000 [11:10<01:28, 3.06it/s, loss=0.396]" + "training until 2000: 86%|████████▋ | 1729/2000 [10:53<01:28, 3.06it/s, loss=0.41]" ] }, { @@ -64228,7 +64228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1730/2000 [11:10<01:28, 3.04it/s, loss=0.396]" + "training until 2000: 86%|████████▋ | 1730/2000 [10:54<01:29, 3.03it/s, loss=0.41]" ] }, { @@ -64236,7 +64236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 86%|████████▋ | 1730/2000 [11:10<01:28, 3.04it/s, loss=0.385]" + "training until 2000: 86%|████████▋ | 1730/2000 [10:54<01:29, 3.03it/s, loss=0.386]" ] }, { @@ -64244,7 +64244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1731/2000 [11:10<01:27, 3.06it/s, loss=0.385]" + "training until 2000: 87%|████████▋ | 1731/2000 [10:54<01:27, 3.08it/s, loss=0.386]" ] }, { @@ -64252,7 +64252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1731/2000 [11:10<01:27, 3.06it/s, loss=0.445]" + "training until 2000: 87%|████████▋ | 1731/2000 [10:54<01:27, 3.08it/s, loss=0.43] " ] }, { @@ -64260,7 +64260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1732/2000 [11:11<01:27, 3.06it/s, loss=0.445]" + "training until 2000: 87%|████████▋ | 1732/2000 [10:54<01:27, 3.07it/s, loss=0.43]" ] }, { @@ -64268,7 +64268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1732/2000 [11:11<01:27, 3.06it/s, loss=0.393]" + "training until 2000: 87%|████████▋ | 1732/2000 [10:54<01:27, 3.07it/s, loss=0.378]" ] }, { @@ -64276,7 +64276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1733/2000 [11:11<01:26, 3.07it/s, loss=0.393]" + "training until 2000: 87%|████████▋ | 1733/2000 [10:55<01:26, 3.08it/s, loss=0.378]" ] }, { @@ -64284,7 +64284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1733/2000 [11:11<01:26, 3.07it/s, loss=0.396]" + "training until 2000: 87%|████████▋ | 1733/2000 [10:55<01:26, 3.08it/s, loss=0.396]" ] }, { @@ -64292,7 +64292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1734/2000 [11:11<01:25, 3.09it/s, loss=0.396]" + "training until 2000: 87%|████████▋ | 1734/2000 [10:55<01:25, 3.09it/s, loss=0.396]" ] }, { @@ -64300,7 +64300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1734/2000 [11:11<01:25, 3.09it/s, loss=0.416]" + "training until 2000: 87%|████████▋ | 1734/2000 [10:55<01:25, 3.09it/s, loss=0.4] " ] }, { @@ -64308,7 +64308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1735/2000 [11:12<01:24, 3.12it/s, loss=0.416]" + "training until 2000: 87%|████████▋ | 1735/2000 [10:55<01:27, 3.05it/s, loss=0.4]" ] }, { @@ -64316,7 +64316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1735/2000 [11:12<01:24, 3.12it/s, loss=0.383]" + "training until 2000: 87%|████████▋ | 1735/2000 [10:55<01:27, 3.05it/s, loss=0.376]" ] }, { @@ -64324,7 +64324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1736/2000 [11:12<01:24, 3.13it/s, loss=0.383]" + "training until 2000: 87%|████████▋ | 1736/2000 [10:56<01:26, 3.05it/s, loss=0.376]" ] }, { @@ -64332,7 +64332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1736/2000 [11:12<01:24, 3.13it/s, loss=0.39] " + "training until 2000: 87%|████████▋ | 1736/2000 [10:56<01:26, 3.05it/s, loss=0.494]" ] }, { @@ -64340,7 +64340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1737/2000 [11:12<01:24, 3.13it/s, loss=0.39]" + "training until 2000: 87%|████████▋ | 1737/2000 [10:56<01:24, 3.13it/s, loss=0.494]" ] }, { @@ -64348,7 +64348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1737/2000 [11:12<01:24, 3.13it/s, loss=0.445]" + "training until 2000: 87%|████████▋ | 1737/2000 [10:56<01:24, 3.13it/s, loss=0.401]" ] }, { @@ -64356,7 +64356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1738/2000 [11:13<01:23, 3.15it/s, loss=0.445]" + "training until 2000: 87%|████████▋ | 1738/2000 [10:56<01:23, 3.13it/s, loss=0.401]" ] }, { @@ -64364,7 +64364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1738/2000 [11:13<01:23, 3.15it/s, loss=0.412]" + "training until 2000: 87%|████████▋ | 1738/2000 [10:56<01:23, 3.13it/s, loss=0.365]" ] }, { @@ -64372,7 +64372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1739/2000 [11:13<01:23, 3.12it/s, loss=0.412]" + "training until 2000: 87%|████████▋ | 1739/2000 [10:57<01:23, 3.14it/s, loss=0.365]" ] }, { @@ -64380,7 +64380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1739/2000 [11:13<01:23, 3.12it/s, loss=0.468]" + "training until 2000: 87%|████████▋ | 1739/2000 [10:57<01:23, 3.14it/s, loss=0.402]" ] }, { @@ -64388,7 +64388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1740/2000 [11:13<01:24, 3.07it/s, loss=0.468]" + "training until 2000: 87%|████████▋ | 1740/2000 [10:57<01:22, 3.14it/s, loss=0.402]" ] }, { @@ -64396,7 +64396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1740/2000 [11:13<01:24, 3.07it/s, loss=0.416]" + "training until 2000: 87%|████████▋ | 1740/2000 [10:57<01:22, 3.14it/s, loss=0.513]" ] }, { @@ -64404,7 +64404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1741/2000 [11:13<01:23, 3.10it/s, loss=0.416]" + "training until 2000: 87%|████████▋ | 1741/2000 [10:57<01:22, 3.13it/s, loss=0.513]" ] }, { @@ -64412,7 +64412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1741/2000 [11:13<01:23, 3.10it/s, loss=0.39] " + "training until 2000: 87%|████████▋ | 1741/2000 [10:57<01:22, 3.13it/s, loss=0.379]" ] }, { @@ -64420,7 +64420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1742/2000 [11:14<01:23, 3.09it/s, loss=0.39]" + "training until 2000: 87%|████████▋ | 1742/2000 [10:58<01:22, 3.13it/s, loss=0.379]" ] }, { @@ -64428,7 +64428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1742/2000 [11:14<01:23, 3.09it/s, loss=0.394]" + "training until 2000: 87%|████████▋ | 1742/2000 [10:58<01:22, 3.13it/s, loss=0.376]" ] }, { @@ -64436,7 +64436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1743/2000 [11:14<01:22, 3.11it/s, loss=0.394]" + "training until 2000: 87%|████████▋ | 1743/2000 [10:58<01:22, 3.10it/s, loss=0.376]" ] }, { @@ -64444,7 +64444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1743/2000 [11:14<01:22, 3.11it/s, loss=0.396]" + "training until 2000: 87%|████████▋ | 1743/2000 [10:58<01:22, 3.10it/s, loss=0.375]" ] }, { @@ -64452,7 +64452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1744/2000 [11:14<01:22, 3.09it/s, loss=0.396]" + "training until 2000: 87%|████████▋ | 1744/2000 [10:58<01:21, 3.13it/s, loss=0.375]" ] }, { @@ -64460,7 +64460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1744/2000 [11:14<01:22, 3.09it/s, loss=0.388]" + "training until 2000: 87%|████████▋ | 1744/2000 [10:58<01:21, 3.13it/s, loss=0.47] " ] }, { @@ -64468,7 +64468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1745/2000 [11:15<01:22, 3.08it/s, loss=0.388]" + "training until 2000: 87%|████████▋ | 1745/2000 [10:58<01:21, 3.12it/s, loss=0.47]" ] }, { @@ -64476,7 +64476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1745/2000 [11:15<01:22, 3.08it/s, loss=0.382]" + "training until 2000: 87%|████████▋ | 1745/2000 [10:58<01:21, 3.12it/s, loss=0.39]" ] }, { @@ -64484,7 +64484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1746/2000 [11:15<01:22, 3.07it/s, loss=0.382]" + "training until 2000: 87%|████████▋ | 1746/2000 [10:59<01:20, 3.14it/s, loss=0.39]" ] }, { @@ -64492,7 +64492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1746/2000 [11:15<01:22, 3.07it/s, loss=0.378]" + "training until 2000: 87%|████████▋ | 1746/2000 [10:59<01:20, 3.14it/s, loss=0.415]" ] }, { @@ -64500,7 +64500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1747/2000 [11:15<01:22, 3.08it/s, loss=0.378]" + "training until 2000: 87%|████████▋ | 1747/2000 [10:59<01:21, 3.10it/s, loss=0.415]" ] }, { @@ -64508,7 +64508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1747/2000 [11:15<01:22, 3.08it/s, loss=0.389]" + "training until 2000: 87%|████████▋ | 1747/2000 [10:59<01:21, 3.10it/s, loss=0.393]" ] }, { @@ -64516,7 +64516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1748/2000 [11:16<01:21, 3.08it/s, loss=0.389]" + "training until 2000: 87%|████████▋ | 1748/2000 [10:59<01:21, 3.11it/s, loss=0.393]" ] }, { @@ -64524,7 +64524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1748/2000 [11:16<01:21, 3.08it/s, loss=0.381]" + "training until 2000: 87%|████████▋ | 1748/2000 [10:59<01:21, 3.11it/s, loss=0.393]" ] }, { @@ -64532,7 +64532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1749/2000 [11:16<01:21, 3.09it/s, loss=0.381]" + "training until 2000: 87%|████████▋ | 1749/2000 [11:00<01:20, 3.12it/s, loss=0.393]" ] }, { @@ -64540,7 +64540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 87%|████████▋ | 1749/2000 [11:16<01:21, 3.09it/s, loss=0.378]" + "training until 2000: 87%|████████▋ | 1749/2000 [11:00<01:20, 3.12it/s, loss=0.397]" ] }, { @@ -64548,7 +64548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1750/2000 [11:16<01:21, 3.08it/s, loss=0.378]" + "training until 2000: 88%|████████▊ | 1750/2000 [11:00<01:20, 3.12it/s, loss=0.397]" ] }, { @@ -64556,7 +64556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1750/2000 [11:16<01:21, 3.08it/s, loss=0.414]" + "training until 2000: 88%|████████▊ | 1750/2000 [11:00<01:20, 3.12it/s, loss=0.401]" ] }, { @@ -64564,7 +64564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1751/2000 [11:17<01:20, 3.07it/s, loss=0.414]" + "training until 2000: 88%|████████▊ | 1751/2000 [11:00<01:18, 3.16it/s, loss=0.401]" ] }, { @@ -64572,7 +64572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1751/2000 [11:17<01:20, 3.07it/s, loss=0.4] " + "training until 2000: 88%|████████▊ | 1751/2000 [11:00<01:18, 3.16it/s, loss=0.37] " ] }, { @@ -64580,7 +64580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1752/2000 [11:17<01:20, 3.09it/s, loss=0.4]" + "training until 2000: 88%|████████▊ | 1752/2000 [11:01<01:36, 2.58it/s, loss=0.37]" ] }, { @@ -64588,7 +64588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1752/2000 [11:17<01:20, 3.09it/s, loss=0.385]" + "training until 2000: 88%|████████▊ | 1752/2000 [11:01<01:36, 2.58it/s, loss=0.397]" ] }, { @@ -64596,7 +64596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1753/2000 [11:17<01:19, 3.09it/s, loss=0.385]" + "training until 2000: 88%|████████▊ | 1753/2000 [11:01<01:30, 2.72it/s, loss=0.397]" ] }, { @@ -64604,7 +64604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1753/2000 [11:17<01:19, 3.09it/s, loss=0.394]" + "training until 2000: 88%|████████▊ | 1753/2000 [11:01<01:30, 2.72it/s, loss=0.398]" ] }, { @@ -64612,7 +64612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1754/2000 [11:18<01:19, 3.10it/s, loss=0.394]" + "training until 2000: 88%|████████▊ | 1754/2000 [11:02<01:26, 2.84it/s, loss=0.398]" ] }, { @@ -64620,7 +64620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1754/2000 [11:18<01:19, 3.10it/s, loss=0.375]" + "training until 2000: 88%|████████▊ | 1754/2000 [11:02<01:26, 2.84it/s, loss=0.378]" ] }, { @@ -64628,7 +64628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1755/2000 [11:18<01:18, 3.13it/s, loss=0.375]" + "training until 2000: 88%|████████▊ | 1755/2000 [11:02<01:24, 2.91it/s, loss=0.378]" ] }, { @@ -64636,7 +64636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1755/2000 [11:18<01:18, 3.13it/s, loss=0.399]" + "training until 2000: 88%|████████▊ | 1755/2000 [11:02<01:24, 2.91it/s, loss=0.4] " ] }, { @@ -64644,7 +64644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1756/2000 [11:18<01:18, 3.11it/s, loss=0.399]" + "training until 2000: 88%|████████▊ | 1756/2000 [11:02<01:21, 2.98it/s, loss=0.4]" ] }, { @@ -64652,7 +64652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1756/2000 [11:18<01:18, 3.11it/s, loss=0.454]" + "training until 2000: 88%|████████▊ | 1756/2000 [11:02<01:21, 2.98it/s, loss=0.377]" ] }, { @@ -64660,7 +64660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1757/2000 [11:19<01:18, 3.09it/s, loss=0.454]" + "training until 2000: 88%|████████▊ | 1757/2000 [11:03<01:20, 3.04it/s, loss=0.377]" ] }, { @@ -64668,7 +64668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1757/2000 [11:19<01:18, 3.09it/s, loss=0.4] " + "training until 2000: 88%|████████▊ | 1757/2000 [11:03<01:20, 3.04it/s, loss=0.564]" ] }, { @@ -64676,7 +64676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1758/2000 [11:19<01:18, 3.09it/s, loss=0.4]" + "training until 2000: 88%|████████▊ | 1758/2000 [11:03<01:18, 3.08it/s, loss=0.564]" ] }, { @@ -64684,7 +64684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1758/2000 [11:19<01:18, 3.09it/s, loss=0.384]" + "training until 2000: 88%|████████▊ | 1758/2000 [11:03<01:18, 3.08it/s, loss=0.395]" ] }, { @@ -64692,7 +64692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1759/2000 [11:20<01:36, 2.50it/s, loss=0.384]" + "training until 2000: 88%|████████▊ | 1759/2000 [11:03<01:18, 3.09it/s, loss=0.395]" ] }, { @@ -64700,7 +64700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1759/2000 [11:20<01:36, 2.50it/s, loss=0.383]" + "training until 2000: 88%|████████▊ | 1759/2000 [11:03<01:18, 3.09it/s, loss=0.43] " ] }, { @@ -64708,7 +64708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1760/2000 [11:20<01:30, 2.64it/s, loss=0.383]" + "training until 2000: 88%|████████▊ | 1760/2000 [11:03<01:17, 3.10it/s, loss=0.43]" ] }, { @@ -64716,7 +64716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1760/2000 [11:20<01:30, 2.64it/s, loss=0.383]" + "training until 2000: 88%|████████▊ | 1760/2000 [11:03<01:17, 3.10it/s, loss=0.421]" ] }, { @@ -64724,7 +64724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1761/2000 [11:20<01:26, 2.75it/s, loss=0.383]" + "training until 2000: 88%|████████▊ | 1761/2000 [11:04<01:15, 3.15it/s, loss=0.421]" ] }, { @@ -64732,7 +64732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1761/2000 [11:20<01:26, 2.75it/s, loss=0.406]" + "training until 2000: 88%|████████▊ | 1761/2000 [11:04<01:15, 3.15it/s, loss=0.434]" ] }, { @@ -64740,7 +64740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1762/2000 [11:21<01:25, 2.80it/s, loss=0.406]" + "training until 2000: 88%|████████▊ | 1762/2000 [11:04<01:15, 3.16it/s, loss=0.434]" ] }, { @@ -64748,7 +64748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1762/2000 [11:21<01:25, 2.80it/s, loss=0.405]" + "training until 2000: 88%|████████▊ | 1762/2000 [11:04<01:15, 3.16it/s, loss=0.509]" ] }, { @@ -64756,7 +64756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1763/2000 [11:21<01:22, 2.88it/s, loss=0.405]" + "training until 2000: 88%|████████▊ | 1763/2000 [11:04<01:14, 3.17it/s, loss=0.509]" ] }, { @@ -64764,7 +64764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1763/2000 [11:21<01:22, 2.88it/s, loss=0.396]" + "training until 2000: 88%|████████▊ | 1763/2000 [11:04<01:14, 3.17it/s, loss=0.362]" ] }, { @@ -64772,7 +64772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1764/2000 [11:21<01:19, 2.97it/s, loss=0.396]" + "training until 2000: 88%|████████▊ | 1764/2000 [11:05<01:14, 3.19it/s, loss=0.362]" ] }, { @@ -64780,7 +64780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1764/2000 [11:21<01:19, 2.97it/s, loss=0.397]" + "training until 2000: 88%|████████▊ | 1764/2000 [11:05<01:14, 3.19it/s, loss=0.41] " ] }, { @@ -64788,7 +64788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1765/2000 [11:22<01:18, 3.01it/s, loss=0.397]" + "training until 2000: 88%|████████▊ | 1765/2000 [11:05<01:13, 3.20it/s, loss=0.41]" ] }, { @@ -64796,7 +64796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1765/2000 [11:22<01:18, 3.01it/s, loss=0.377]" + "training until 2000: 88%|████████▊ | 1765/2000 [11:05<01:13, 3.20it/s, loss=0.419]" ] }, { @@ -64804,7 +64804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1766/2000 [11:22<01:17, 3.03it/s, loss=0.377]" + "training until 2000: 88%|████████▊ | 1766/2000 [11:05<01:13, 3.17it/s, loss=0.419]" ] }, { @@ -64812,7 +64812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1766/2000 [11:22<01:17, 3.03it/s, loss=0.454]" + "training until 2000: 88%|████████▊ | 1766/2000 [11:05<01:13, 3.17it/s, loss=0.373]" ] }, { @@ -64820,7 +64820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1767/2000 [11:22<01:16, 3.06it/s, loss=0.454]" + "training until 2000: 88%|████████▊ | 1767/2000 [11:06<01:13, 3.18it/s, loss=0.373]" ] }, { @@ -64828,7 +64828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1767/2000 [11:22<01:16, 3.06it/s, loss=0.38] " + "training until 2000: 88%|████████▊ | 1767/2000 [11:06<01:13, 3.18it/s, loss=0.366]" ] }, { @@ -64836,7 +64836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1768/2000 [11:22<01:14, 3.11it/s, loss=0.38]" + "training until 2000: 88%|████████▊ | 1768/2000 [11:06<01:12, 3.20it/s, loss=0.366]" ] }, { @@ -64844,7 +64844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1768/2000 [11:22<01:14, 3.11it/s, loss=0.386]" + "training until 2000: 88%|████████▊ | 1768/2000 [11:06<01:12, 3.20it/s, loss=0.394]" ] }, { @@ -64852,7 +64852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1769/2000 [11:23<01:14, 3.10it/s, loss=0.386]" + "training until 2000: 88%|████████▊ | 1769/2000 [11:06<01:12, 3.18it/s, loss=0.394]" ] }, { @@ -64860,7 +64860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1769/2000 [11:23<01:14, 3.10it/s, loss=0.38] " + "training until 2000: 88%|████████▊ | 1769/2000 [11:06<01:12, 3.18it/s, loss=0.384]" ] }, { @@ -64868,7 +64868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1770/2000 [11:23<01:14, 3.08it/s, loss=0.38]" + "training until 2000: 88%|████████▊ | 1770/2000 [11:07<01:12, 3.18it/s, loss=0.384]" ] }, { @@ -64876,7 +64876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 88%|████████▊ | 1770/2000 [11:23<01:14, 3.08it/s, loss=0.382]" + "training until 2000: 88%|████████▊ | 1770/2000 [11:07<01:12, 3.18it/s, loss=0.384]" ] }, { @@ -64884,7 +64884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▊ | 1771/2000 [11:23<01:14, 3.09it/s, loss=0.382]" + "training until 2000: 89%|████████▊ | 1771/2000 [11:07<01:12, 3.15it/s, loss=0.384]" ] }, { @@ -64892,7 +64892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▊ | 1771/2000 [11:23<01:14, 3.09it/s, loss=0.367]" + "training until 2000: 89%|████████▊ | 1771/2000 [11:07<01:12, 3.15it/s, loss=0.434]" ] }, { @@ -64900,7 +64900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▊ | 1772/2000 [11:24<01:13, 3.09it/s, loss=0.367]" + "training until 2000: 89%|████████▊ | 1772/2000 [11:07<01:12, 3.16it/s, loss=0.434]" ] }, { @@ -64908,7 +64908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▊ | 1772/2000 [11:24<01:13, 3.09it/s, loss=0.386]" + "training until 2000: 89%|████████▊ | 1772/2000 [11:07<01:12, 3.16it/s, loss=0.429]" ] }, { @@ -64916,7 +64916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▊ | 1773/2000 [11:24<01:13, 3.09it/s, loss=0.386]" + "training until 2000: 89%|████████▊ | 1773/2000 [11:08<01:11, 3.16it/s, loss=0.429]" ] }, { @@ -64924,7 +64924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▊ | 1773/2000 [11:24<01:13, 3.09it/s, loss=0.373]" + "training until 2000: 89%|████████▊ | 1773/2000 [11:08<01:11, 3.16it/s, loss=0.474]" ] }, { @@ -64932,7 +64932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▊ | 1774/2000 [11:24<01:12, 3.11it/s, loss=0.373]" + "training until 2000: 89%|████████▊ | 1774/2000 [11:08<01:10, 3.19it/s, loss=0.474]" ] }, { @@ -64940,7 +64940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▊ | 1774/2000 [11:24<01:12, 3.11it/s, loss=0.392]" + "training until 2000: 89%|████████▊ | 1774/2000 [11:08<01:10, 3.19it/s, loss=0.577]" ] }, { @@ -64948,7 +64948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1775/2000 [11:25<01:11, 3.15it/s, loss=0.392]" + "training until 2000: 89%|████████▉ | 1775/2000 [11:08<01:10, 3.17it/s, loss=0.577]" ] }, { @@ -64956,7 +64956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1775/2000 [11:25<01:11, 3.15it/s, loss=0.383]" + "training until 2000: 89%|████████▉ | 1775/2000 [11:08<01:10, 3.17it/s, loss=0.416]" ] }, { @@ -64964,7 +64964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1776/2000 [11:25<01:12, 3.11it/s, loss=0.383]" + "training until 2000: 89%|████████▉ | 1776/2000 [11:09<01:10, 3.16it/s, loss=0.416]" ] }, { @@ -64972,7 +64972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1776/2000 [11:25<01:12, 3.11it/s, loss=0.418]" + "training until 2000: 89%|████████▉ | 1776/2000 [11:09<01:10, 3.16it/s, loss=0.411]" ] }, { @@ -64980,7 +64980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1777/2000 [11:25<01:11, 3.10it/s, loss=0.418]" + "training until 2000: 89%|████████▉ | 1777/2000 [11:09<01:10, 3.15it/s, loss=0.411]" ] }, { @@ -64988,7 +64988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1777/2000 [11:25<01:11, 3.10it/s, loss=0.397]" + "training until 2000: 89%|████████▉ | 1777/2000 [11:09<01:10, 3.15it/s, loss=0.395]" ] }, { @@ -64996,7 +64996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1778/2000 [11:26<01:12, 3.05it/s, loss=0.397]" + "training until 2000: 89%|████████▉ | 1778/2000 [11:09<01:11, 3.13it/s, loss=0.395]" ] }, { @@ -65004,7 +65004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1778/2000 [11:26<01:12, 3.05it/s, loss=0.369]" + "training until 2000: 89%|████████▉ | 1778/2000 [11:09<01:11, 3.13it/s, loss=0.406]" ] }, { @@ -65012,7 +65012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1779/2000 [11:26<01:12, 3.07it/s, loss=0.369]" + "training until 2000: 89%|████████▉ | 1779/2000 [11:09<01:10, 3.12it/s, loss=0.406]" ] }, { @@ -65020,7 +65020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1779/2000 [11:26<01:12, 3.07it/s, loss=0.383]" + "training until 2000: 89%|████████▉ | 1779/2000 [11:09<01:10, 3.12it/s, loss=0.381]" ] }, { @@ -65028,7 +65028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1780/2000 [11:26<01:12, 3.04it/s, loss=0.383]" + "training until 2000: 89%|████████▉ | 1780/2000 [11:10<01:10, 3.13it/s, loss=0.381]" ] }, { @@ -65036,7 +65036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1780/2000 [11:26<01:12, 3.04it/s, loss=0.375]" + "training until 2000: 89%|████████▉ | 1780/2000 [11:10<01:10, 3.13it/s, loss=0.387]" ] }, { @@ -65044,7 +65044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1781/2000 [11:27<01:11, 3.05it/s, loss=0.375]" + "training until 2000: 89%|████████▉ | 1781/2000 [11:10<01:09, 3.13it/s, loss=0.387]" ] }, { @@ -65052,7 +65052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1781/2000 [11:27<01:11, 3.05it/s, loss=0.377]" + "training until 2000: 89%|████████▉ | 1781/2000 [11:10<01:09, 3.13it/s, loss=0.366]" ] }, { @@ -65060,7 +65060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1782/2000 [11:27<01:12, 3.02it/s, loss=0.377]" + "training until 2000: 89%|████████▉ | 1782/2000 [11:10<01:09, 3.12it/s, loss=0.366]" ] }, { @@ -65068,7 +65068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1782/2000 [11:27<01:12, 3.02it/s, loss=0.383]" + "training until 2000: 89%|████████▉ | 1782/2000 [11:10<01:09, 3.12it/s, loss=0.362]" ] }, { @@ -65076,7 +65076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1783/2000 [11:27<01:12, 2.97it/s, loss=0.383]" + "training until 2000: 89%|████████▉ | 1783/2000 [11:11<01:09, 3.11it/s, loss=0.362]" ] }, { @@ -65084,7 +65084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1783/2000 [11:27<01:12, 2.97it/s, loss=0.39] " + "training until 2000: 89%|████████▉ | 1783/2000 [11:11<01:09, 3.11it/s, loss=0.37] " ] }, { @@ -65092,7 +65092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1784/2000 [11:28<01:12, 2.97it/s, loss=0.39]" + "training until 2000: 89%|████████▉ | 1784/2000 [11:11<01:09, 3.13it/s, loss=0.37]" ] }, { @@ -65100,7 +65100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1784/2000 [11:28<01:12, 2.97it/s, loss=0.42]" + "training until 2000: 89%|████████▉ | 1784/2000 [11:11<01:09, 3.13it/s, loss=0.376]" ] }, { @@ -65108,7 +65108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1785/2000 [11:28<01:11, 3.00it/s, loss=0.42]" + "training until 2000: 89%|████████▉ | 1785/2000 [11:11<01:08, 3.13it/s, loss=0.376]" ] }, { @@ -65116,7 +65116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1785/2000 [11:28<01:11, 3.00it/s, loss=0.371]" + "training until 2000: 89%|████████▉ | 1785/2000 [11:11<01:08, 3.13it/s, loss=0.409]" ] }, { @@ -65124,7 +65124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1786/2000 [11:28<01:10, 3.03it/s, loss=0.371]" + "training until 2000: 89%|████████▉ | 1786/2000 [11:12<01:07, 3.15it/s, loss=0.409]" ] }, { @@ -65132,7 +65132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1786/2000 [11:28<01:10, 3.03it/s, loss=0.413]" + "training until 2000: 89%|████████▉ | 1786/2000 [11:12<01:07, 3.15it/s, loss=0.384]" ] }, { @@ -65140,7 +65140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1787/2000 [11:29<01:10, 3.01it/s, loss=0.413]" + "training until 2000: 89%|████████▉ | 1787/2000 [11:12<01:07, 3.17it/s, loss=0.384]" ] }, { @@ -65148,7 +65148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1787/2000 [11:29<01:10, 3.01it/s, loss=0.412]" + "training until 2000: 89%|████████▉ | 1787/2000 [11:12<01:07, 3.17it/s, loss=0.388]" ] }, { @@ -65156,7 +65156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1788/2000 [11:29<01:11, 2.95it/s, loss=0.412]" + "training until 2000: 89%|████████▉ | 1788/2000 [11:12<01:06, 3.18it/s, loss=0.388]" ] }, { @@ -65164,7 +65164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1788/2000 [11:29<01:11, 2.95it/s, loss=0.368]" + "training until 2000: 89%|████████▉ | 1788/2000 [11:12<01:06, 3.18it/s, loss=0.387]" ] }, { @@ -65172,7 +65172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1789/2000 [11:29<01:10, 2.98it/s, loss=0.368]" + "training until 2000: 89%|████████▉ | 1789/2000 [11:13<01:06, 3.16it/s, loss=0.387]" ] }, { @@ -65180,7 +65180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 89%|████████▉ | 1789/2000 [11:29<01:10, 2.98it/s, loss=0.389]" + "training until 2000: 89%|████████▉ | 1789/2000 [11:13<01:06, 3.16it/s, loss=0.385]" ] }, { @@ -65188,7 +65188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1790/2000 [11:30<01:09, 3.02it/s, loss=0.389]" + "training until 2000: 90%|████████▉ | 1790/2000 [11:13<01:06, 3.17it/s, loss=0.385]" ] }, { @@ -65196,7 +65196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1790/2000 [11:30<01:09, 3.02it/s, loss=0.396]" + "training until 2000: 90%|████████▉ | 1790/2000 [11:13<01:06, 3.17it/s, loss=0.361]" ] }, { @@ -65204,7 +65204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1791/2000 [11:30<01:08, 3.05it/s, loss=0.396]" + "training until 2000: 90%|████████▉ | 1791/2000 [11:13<01:06, 3.13it/s, loss=0.361]" ] }, { @@ -65212,7 +65212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1791/2000 [11:30<01:08, 3.05it/s, loss=0.388]" + "training until 2000: 90%|████████▉ | 1791/2000 [11:13<01:06, 3.13it/s, loss=0.372]" ] }, { @@ -65220,7 +65220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1792/2000 [11:30<01:07, 3.06it/s, loss=0.388]" + "training until 2000: 90%|████████▉ | 1792/2000 [11:14<01:06, 3.15it/s, loss=0.372]" ] }, { @@ -65228,7 +65228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1792/2000 [11:30<01:07, 3.06it/s, loss=0.37] " + "training until 2000: 90%|████████▉ | 1792/2000 [11:14<01:06, 3.15it/s, loss=0.406]" ] }, { @@ -65236,7 +65236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1793/2000 [11:31<01:06, 3.09it/s, loss=0.37]" + "training until 2000: 90%|████████▉ | 1793/2000 [11:14<01:05, 3.16it/s, loss=0.406]" ] }, { @@ -65244,7 +65244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1793/2000 [11:31<01:06, 3.09it/s, loss=0.429]" + "training until 2000: 90%|████████▉ | 1793/2000 [11:14<01:05, 3.16it/s, loss=0.372]" ] }, { @@ -65252,7 +65252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1794/2000 [11:31<01:07, 3.07it/s, loss=0.429]" + "training until 2000: 90%|████████▉ | 1794/2000 [11:14<01:04, 3.17it/s, loss=0.372]" ] }, { @@ -65260,7 +65260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1794/2000 [11:31<01:07, 3.07it/s, loss=0.446]" + "training until 2000: 90%|████████▉ | 1794/2000 [11:14<01:04, 3.17it/s, loss=0.394]" ] }, { @@ -65268,7 +65268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1795/2000 [11:31<01:06, 3.07it/s, loss=0.446]" + "training until 2000: 90%|████████▉ | 1795/2000 [11:15<01:05, 3.14it/s, loss=0.394]" ] }, { @@ -65276,7 +65276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1795/2000 [11:31<01:06, 3.07it/s, loss=0.38] " + "training until 2000: 90%|████████▉ | 1795/2000 [11:15<01:05, 3.14it/s, loss=0.374]" ] }, { @@ -65284,7 +65284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1796/2000 [11:32<01:07, 3.01it/s, loss=0.38]" + "training until 2000: 90%|████████▉ | 1796/2000 [11:15<01:04, 3.17it/s, loss=0.374]" ] }, { @@ -65292,7 +65292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1796/2000 [11:32<01:07, 3.01it/s, loss=0.369]" + "training until 2000: 90%|████████▉ | 1796/2000 [11:15<01:04, 3.17it/s, loss=0.348]" ] }, { @@ -65300,7 +65300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1797/2000 [11:32<01:08, 2.97it/s, loss=0.369]" + "training until 2000: 90%|████████▉ | 1797/2000 [11:15<01:04, 3.16it/s, loss=0.348]" ] }, { @@ -65308,7 +65308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1797/2000 [11:32<01:08, 2.97it/s, loss=0.373]" + "training until 2000: 90%|████████▉ | 1797/2000 [11:15<01:04, 3.16it/s, loss=0.375]" ] }, { @@ -65316,7 +65316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1798/2000 [11:32<01:06, 3.03it/s, loss=0.373]" + "training until 2000: 90%|████████▉ | 1798/2000 [11:16<01:04, 3.11it/s, loss=0.375]" ] }, { @@ -65324,7 +65324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1798/2000 [11:32<01:06, 3.03it/s, loss=0.378]" + "training until 2000: 90%|████████▉ | 1798/2000 [11:16<01:04, 3.11it/s, loss=0.413]" ] }, { @@ -65332,7 +65332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1799/2000 [11:33<01:05, 3.08it/s, loss=0.378]" + "training until 2000: 90%|████████▉ | 1799/2000 [11:16<01:04, 3.13it/s, loss=0.413]" ] }, { @@ -65340,7 +65340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|████████▉ | 1799/2000 [11:33<01:05, 3.08it/s, loss=0.404]" + "training until 2000: 90%|████████▉ | 1799/2000 [11:16<01:04, 3.13it/s, loss=0.502]" ] }, { @@ -65348,7 +65348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1800/2000 [11:33<01:05, 3.06it/s, loss=0.404]" + "training until 2000: 90%|█████████ | 1800/2000 [11:16<01:04, 3.12it/s, loss=0.502]" ] }, { @@ -65356,7 +65356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1800/2000 [11:33<01:05, 3.06it/s, loss=0.407]" + "training until 2000: 90%|█████████ | 1800/2000 [11:16<01:04, 3.12it/s, loss=0.508]" ] }, { @@ -65364,7 +65364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1801/2000 [11:33<01:05, 3.04it/s, loss=0.407]" + "training until 2000: 90%|█████████ | 1801/2000 [11:16<01:03, 3.12it/s, loss=0.508]" ] }, { @@ -65372,7 +65372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1801/2000 [11:33<01:05, 3.04it/s, loss=0.399]" + "training until 2000: 90%|█████████ | 1801/2000 [11:16<01:03, 3.12it/s, loss=0.418]" ] }, { @@ -65380,7 +65380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1802/2000 [11:34<01:04, 3.05it/s, loss=0.399]" + "training until 2000: 90%|█████████ | 1802/2000 [11:17<01:02, 3.15it/s, loss=0.418]" ] }, { @@ -65388,7 +65388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1802/2000 [11:34<01:04, 3.05it/s, loss=0.368]" + "training until 2000: 90%|█████████ | 1802/2000 [11:17<01:02, 3.15it/s, loss=0.422]" ] }, { @@ -65396,7 +65396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1803/2000 [11:34<01:04, 3.05it/s, loss=0.368]" + "training until 2000: 90%|█████████ | 1803/2000 [11:17<01:02, 3.15it/s, loss=0.422]" ] }, { @@ -65404,7 +65404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1803/2000 [11:34<01:04, 3.05it/s, loss=0.4] " + "training until 2000: 90%|█████████ | 1803/2000 [11:17<01:02, 3.15it/s, loss=0.389]" ] }, { @@ -65412,7 +65412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1804/2000 [11:34<01:04, 3.05it/s, loss=0.4]" + "training until 2000: 90%|█████████ | 1804/2000 [11:17<01:01, 3.17it/s, loss=0.389]" ] }, { @@ -65420,7 +65420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1804/2000 [11:34<01:04, 3.05it/s, loss=0.375]" + "training until 2000: 90%|█████████ | 1804/2000 [11:17<01:01, 3.17it/s, loss=0.539]" ] }, { @@ -65428,7 +65428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1805/2000 [11:35<01:04, 3.01it/s, loss=0.375]" + "training until 2000: 90%|█████████ | 1805/2000 [11:18<01:01, 3.17it/s, loss=0.539]" ] }, { @@ -65436,7 +65436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1805/2000 [11:35<01:04, 3.01it/s, loss=0.391]" + "training until 2000: 90%|█████████ | 1805/2000 [11:18<01:01, 3.17it/s, loss=0.376]" ] }, { @@ -65444,7 +65444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1806/2000 [11:35<01:04, 3.01it/s, loss=0.391]" + "training until 2000: 90%|█████████ | 1806/2000 [11:18<01:00, 3.18it/s, loss=0.376]" ] }, { @@ -65452,7 +65452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1806/2000 [11:35<01:04, 3.01it/s, loss=0.429]" + "training until 2000: 90%|█████████ | 1806/2000 [11:18<01:00, 3.18it/s, loss=0.371]" ] }, { @@ -65460,7 +65460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1807/2000 [11:35<01:03, 3.05it/s, loss=0.429]" + "training until 2000: 90%|█████████ | 1807/2000 [11:18<01:00, 3.19it/s, loss=0.371]" ] }, { @@ -65468,7 +65468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1807/2000 [11:35<01:03, 3.05it/s, loss=0.373]" + "training until 2000: 90%|█████████ | 1807/2000 [11:18<01:00, 3.19it/s, loss=0.363]" ] }, { @@ -65476,7 +65476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1808/2000 [11:36<01:02, 3.06it/s, loss=0.373]" + "training until 2000: 90%|█████████ | 1808/2000 [11:19<01:01, 3.13it/s, loss=0.363]" ] }, { @@ -65484,7 +65484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1808/2000 [11:36<01:02, 3.06it/s, loss=0.37] " + "training until 2000: 90%|█████████ | 1808/2000 [11:19<01:01, 3.13it/s, loss=0.354]" ] }, { @@ -65492,7 +65492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1809/2000 [11:36<01:02, 3.07it/s, loss=0.37]" + "training until 2000: 90%|█████████ | 1809/2000 [11:19<01:00, 3.16it/s, loss=0.354]" ] }, { @@ -65500,7 +65500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1809/2000 [11:36<01:02, 3.07it/s, loss=0.468]" + "training until 2000: 90%|█████████ | 1809/2000 [11:19<01:00, 3.16it/s, loss=0.486]" ] }, { @@ -65508,7 +65508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1810/2000 [11:36<01:01, 3.07it/s, loss=0.468]" + "training until 2000: 90%|█████████ | 1810/2000 [11:19<00:59, 3.18it/s, loss=0.486]" ] }, { @@ -65516,7 +65516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 90%|█████████ | 1810/2000 [11:36<01:01, 3.07it/s, loss=0.376]" + "training until 2000: 90%|█████████ | 1810/2000 [11:19<00:59, 3.18it/s, loss=0.389]" ] }, { @@ -65524,7 +65524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1811/2000 [11:37<01:02, 3.02it/s, loss=0.376]" + "training until 2000: 91%|█████████ | 1811/2000 [11:20<00:59, 3.17it/s, loss=0.389]" ] }, { @@ -65532,7 +65532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1811/2000 [11:37<01:02, 3.02it/s, loss=0.391]" + "training until 2000: 91%|█████████ | 1811/2000 [11:20<00:59, 3.17it/s, loss=0.37] " ] }, { @@ -65540,7 +65540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1812/2000 [11:37<01:02, 3.02it/s, loss=0.391]" + "training until 2000: 91%|█████████ | 1812/2000 [11:20<00:59, 3.16it/s, loss=0.37]" ] }, { @@ -65548,7 +65548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1812/2000 [11:37<01:02, 3.02it/s, loss=0.394]" + "training until 2000: 91%|█████████ | 1812/2000 [11:20<00:59, 3.16it/s, loss=0.359]" ] }, { @@ -65556,7 +65556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1813/2000 [11:37<01:02, 3.01it/s, loss=0.394]" + "training until 2000: 91%|█████████ | 1813/2000 [11:20<00:58, 3.18it/s, loss=0.359]" ] }, { @@ -65564,7 +65564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1813/2000 [11:37<01:02, 3.01it/s, loss=0.384]" + "training until 2000: 91%|█████████ | 1813/2000 [11:20<00:58, 3.18it/s, loss=0.398]" ] }, { @@ -65572,7 +65572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1814/2000 [11:38<01:00, 3.07it/s, loss=0.384]" + "training until 2000: 91%|█████████ | 1814/2000 [11:21<00:58, 3.16it/s, loss=0.398]" ] }, { @@ -65580,7 +65580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1814/2000 [11:38<01:00, 3.07it/s, loss=0.396]" + "training until 2000: 91%|█████████ | 1814/2000 [11:21<00:58, 3.16it/s, loss=0.427]" ] }, { @@ -65588,7 +65588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1815/2000 [11:38<01:00, 3.06it/s, loss=0.396]" + "training until 2000: 91%|█████████ | 1815/2000 [11:21<00:58, 3.16it/s, loss=0.427]" ] }, { @@ -65596,7 +65596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1815/2000 [11:38<01:00, 3.06it/s, loss=0.365]" + "training until 2000: 91%|█████████ | 1815/2000 [11:21<00:58, 3.16it/s, loss=0.411]" ] }, { @@ -65604,7 +65604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1816/2000 [11:38<00:59, 3.08it/s, loss=0.365]" + "training until 2000: 91%|█████████ | 1816/2000 [11:21<00:58, 3.15it/s, loss=0.411]" ] }, { @@ -65612,7 +65612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1816/2000 [11:38<00:59, 3.08it/s, loss=0.37] " + "training until 2000: 91%|█████████ | 1816/2000 [11:21<00:58, 3.15it/s, loss=0.37] " ] }, { @@ -65620,7 +65620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1817/2000 [11:39<00:59, 3.10it/s, loss=0.37]" + "training until 2000: 91%|█████████ | 1817/2000 [11:22<00:58, 3.10it/s, loss=0.37]" ] }, { @@ -65628,7 +65628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1817/2000 [11:39<00:59, 3.10it/s, loss=0.397]" + "training until 2000: 91%|█████████ | 1817/2000 [11:22<00:58, 3.10it/s, loss=0.404]" ] }, { @@ -65636,7 +65636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1818/2000 [11:39<00:59, 3.07it/s, loss=0.397]" + "training until 2000: 91%|█████████ | 1818/2000 [11:22<00:58, 3.12it/s, loss=0.404]" ] }, { @@ -65644,7 +65644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1818/2000 [11:39<00:59, 3.07it/s, loss=0.412]" + "training until 2000: 91%|█████████ | 1818/2000 [11:22<00:58, 3.12it/s, loss=0.386]" ] }, { @@ -65652,7 +65652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1819/2000 [11:39<00:58, 3.08it/s, loss=0.412]" + "training until 2000: 91%|█████████ | 1819/2000 [11:22<01:10, 2.57it/s, loss=0.386]" ] }, { @@ -65660,7 +65660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1819/2000 [11:39<00:58, 3.08it/s, loss=0.371]" + "training until 2000: 91%|█████████ | 1819/2000 [11:22<01:10, 2.57it/s, loss=0.4] " ] }, { @@ -65668,7 +65668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1820/2000 [11:40<00:58, 3.06it/s, loss=0.371]" + "training until 2000: 91%|█████████ | 1820/2000 [11:23<01:06, 2.71it/s, loss=0.4]" ] }, { @@ -65676,7 +65676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1820/2000 [11:40<00:58, 3.06it/s, loss=0.36] " + "training until 2000: 91%|█████████ | 1820/2000 [11:23<01:06, 2.71it/s, loss=0.467]" ] }, { @@ -65684,7 +65684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1821/2000 [11:40<01:00, 2.97it/s, loss=0.36]" + "training until 2000: 91%|█████████ | 1821/2000 [11:23<01:03, 2.82it/s, loss=0.467]" ] }, { @@ -65692,7 +65692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1821/2000 [11:40<01:00, 2.97it/s, loss=0.366]" + "training until 2000: 91%|█████████ | 1821/2000 [11:23<01:03, 2.82it/s, loss=0.367]" ] }, { @@ -65700,7 +65700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1822/2000 [11:40<00:59, 2.97it/s, loss=0.366]" + "training until 2000: 91%|█████████ | 1822/2000 [11:23<01:01, 2.91it/s, loss=0.367]" ] }, { @@ -65708,7 +65708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1822/2000 [11:40<00:59, 2.97it/s, loss=0.364]" + "training until 2000: 91%|█████████ | 1822/2000 [11:23<01:01, 2.91it/s, loss=0.364]" ] }, { @@ -65716,7 +65716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1823/2000 [11:41<00:59, 2.99it/s, loss=0.364]" + "training until 2000: 91%|█████████ | 1823/2000 [11:24<00:59, 2.98it/s, loss=0.364]" ] }, { @@ -65724,7 +65724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1823/2000 [11:41<00:59, 2.99it/s, loss=0.399]" + "training until 2000: 91%|█████████ | 1823/2000 [11:24<00:59, 2.98it/s, loss=0.437]" ] }, { @@ -65732,7 +65732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1824/2000 [11:41<00:58, 2.99it/s, loss=0.399]" + "training until 2000: 91%|█████████ | 1824/2000 [11:24<00:58, 3.02it/s, loss=0.437]" ] }, { @@ -65740,7 +65740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████ | 1824/2000 [11:41<00:58, 2.99it/s, loss=0.384]" + "training until 2000: 91%|█████████ | 1824/2000 [11:24<00:58, 3.02it/s, loss=0.371]" ] }, { @@ -65748,7 +65748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1825/2000 [11:41<01:11, 2.45it/s, loss=0.384]" + "training until 2000: 91%|█████████▏| 1825/2000 [11:24<00:58, 2.99it/s, loss=0.371]" ] }, { @@ -65756,7 +65756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1825/2000 [11:41<01:11, 2.45it/s, loss=0.409]" + "training until 2000: 91%|█████████▏| 1825/2000 [11:24<00:58, 2.99it/s, loss=0.367]" ] }, { @@ -65764,7 +65764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1826/2000 [11:42<01:07, 2.59it/s, loss=0.409]" + "training until 2000: 91%|█████████▏| 1826/2000 [11:25<00:57, 3.02it/s, loss=0.367]" ] }, { @@ -65772,7 +65772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1826/2000 [11:42<01:07, 2.59it/s, loss=0.418]" + "training until 2000: 91%|█████████▏| 1826/2000 [11:25<00:57, 3.02it/s, loss=0.369]" ] }, { @@ -65780,7 +65780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1827/2000 [11:42<01:04, 2.70it/s, loss=0.418]" + "training until 2000: 91%|█████████▏| 1827/2000 [11:25<00:56, 3.07it/s, loss=0.369]" ] }, { @@ -65788,7 +65788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1827/2000 [11:42<01:04, 2.70it/s, loss=0.418]" + "training until 2000: 91%|█████████▏| 1827/2000 [11:25<00:56, 3.07it/s, loss=0.403]" ] }, { @@ -65796,7 +65796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1828/2000 [11:42<01:01, 2.81it/s, loss=0.418]" + "training until 2000: 91%|█████████▏| 1828/2000 [11:25<00:55, 3.10it/s, loss=0.403]" ] }, { @@ -65804,7 +65804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1828/2000 [11:42<01:01, 2.81it/s, loss=0.384]" + "training until 2000: 91%|█████████▏| 1828/2000 [11:25<00:55, 3.10it/s, loss=0.367]" ] }, { @@ -65812,7 +65812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1829/2000 [11:43<00:59, 2.89it/s, loss=0.384]" + "training until 2000: 91%|█████████▏| 1829/2000 [11:26<00:54, 3.11it/s, loss=0.367]" ] }, { @@ -65820,7 +65820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 91%|█████████▏| 1829/2000 [11:43<00:59, 2.89it/s, loss=0.407]" + "training until 2000: 91%|█████████▏| 1829/2000 [11:26<00:54, 3.11it/s, loss=0.428]" ] }, { @@ -65828,7 +65828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1830/2000 [11:43<00:57, 2.96it/s, loss=0.407]" + "training until 2000: 92%|█████████▏| 1830/2000 [11:26<00:55, 3.05it/s, loss=0.428]" ] }, { @@ -65836,7 +65836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1830/2000 [11:43<00:57, 2.96it/s, loss=0.436]" + "training until 2000: 92%|█████████▏| 1830/2000 [11:26<00:55, 3.05it/s, loss=0.386]" ] }, { @@ -65844,7 +65844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1831/2000 [11:43<00:56, 2.99it/s, loss=0.436]" + "training until 2000: 92%|█████████▏| 1831/2000 [11:26<00:55, 3.06it/s, loss=0.386]" ] }, { @@ -65852,7 +65852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1831/2000 [11:43<00:56, 2.99it/s, loss=0.362]" + "training until 2000: 92%|█████████▏| 1831/2000 [11:26<00:55, 3.06it/s, loss=0.373]" ] }, { @@ -65860,7 +65860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1832/2000 [11:44<00:55, 3.03it/s, loss=0.362]" + "training until 2000: 92%|█████████▏| 1832/2000 [11:27<00:54, 3.11it/s, loss=0.373]" ] }, { @@ -65868,7 +65868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1832/2000 [11:44<00:55, 3.03it/s, loss=0.357]" + "training until 2000: 92%|█████████▏| 1832/2000 [11:27<00:54, 3.11it/s, loss=0.425]" ] }, { @@ -65876,7 +65876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1833/2000 [11:44<00:54, 3.07it/s, loss=0.357]" + "training until 2000: 92%|█████████▏| 1833/2000 [11:27<00:53, 3.12it/s, loss=0.425]" ] }, { @@ -65884,7 +65884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1833/2000 [11:44<00:54, 3.07it/s, loss=0.438]" + "training until 2000: 92%|█████████▏| 1833/2000 [11:27<00:53, 3.12it/s, loss=0.429]" ] }, { @@ -65892,7 +65892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1834/2000 [11:44<00:53, 3.09it/s, loss=0.438]" + "training until 2000: 92%|█████████▏| 1834/2000 [11:27<00:52, 3.14it/s, loss=0.429]" ] }, { @@ -65900,7 +65900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1834/2000 [11:44<00:53, 3.09it/s, loss=0.373]" + "training until 2000: 92%|█████████▏| 1834/2000 [11:27<00:52, 3.14it/s, loss=0.376]" ] }, { @@ -65908,7 +65908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1835/2000 [11:45<00:53, 3.07it/s, loss=0.373]" + "training until 2000: 92%|█████████▏| 1835/2000 [11:28<00:52, 3.15it/s, loss=0.376]" ] }, { @@ -65916,7 +65916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1835/2000 [11:45<00:53, 3.07it/s, loss=0.383]" + "training until 2000: 92%|█████████▏| 1835/2000 [11:28<00:52, 3.15it/s, loss=0.394]" ] }, { @@ -65924,7 +65924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1836/2000 [11:45<00:53, 3.07it/s, loss=0.383]" + "training until 2000: 92%|█████████▏| 1836/2000 [11:28<00:52, 3.14it/s, loss=0.394]" ] }, { @@ -65932,7 +65932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1836/2000 [11:45<00:53, 3.07it/s, loss=0.403]" + "training until 2000: 92%|█████████▏| 1836/2000 [11:28<00:52, 3.14it/s, loss=0.35] " ] }, { @@ -65940,7 +65940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1837/2000 [11:45<00:52, 3.10it/s, loss=0.403]" + "training until 2000: 92%|█████████▏| 1837/2000 [11:28<00:51, 3.14it/s, loss=0.35]" ] }, { @@ -65948,7 +65948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1837/2000 [11:45<00:52, 3.10it/s, loss=0.391]" + "training until 2000: 92%|█████████▏| 1837/2000 [11:28<00:51, 3.14it/s, loss=0.377]" ] }, { @@ -65956,7 +65956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1838/2000 [11:46<00:52, 3.11it/s, loss=0.391]" + "training until 2000: 92%|█████████▏| 1838/2000 [11:29<00:51, 3.14it/s, loss=0.377]" ] }, { @@ -65964,7 +65964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1838/2000 [11:46<00:52, 3.11it/s, loss=0.425]" + "training until 2000: 92%|█████████▏| 1838/2000 [11:29<00:51, 3.14it/s, loss=0.385]" ] }, { @@ -65972,7 +65972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1839/2000 [11:46<00:52, 3.06it/s, loss=0.425]" + "training until 2000: 92%|█████████▏| 1839/2000 [11:29<00:51, 3.16it/s, loss=0.385]" ] }, { @@ -65980,7 +65980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1839/2000 [11:46<00:52, 3.06it/s, loss=0.387]" + "training until 2000: 92%|█████████▏| 1839/2000 [11:29<00:51, 3.16it/s, loss=0.377]" ] }, { @@ -65988,7 +65988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1840/2000 [11:46<00:52, 3.06it/s, loss=0.387]" + "training until 2000: 92%|█████████▏| 1840/2000 [11:29<00:50, 3.17it/s, loss=0.377]" ] }, { @@ -65996,7 +65996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1840/2000 [11:46<00:52, 3.06it/s, loss=0.401]" + "training until 2000: 92%|█████████▏| 1840/2000 [11:29<00:50, 3.17it/s, loss=0.364]" ] }, { @@ -66004,7 +66004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1841/2000 [11:47<00:52, 3.05it/s, loss=0.401]" + "training until 2000: 92%|█████████▏| 1841/2000 [11:29<00:50, 3.17it/s, loss=0.364]" ] }, { @@ -66012,7 +66012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1841/2000 [11:47<00:52, 3.05it/s, loss=0.419]" + "training until 2000: 92%|█████████▏| 1841/2000 [11:29<00:50, 3.17it/s, loss=0.369]" ] }, { @@ -66020,7 +66020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1842/2000 [11:47<00:51, 3.04it/s, loss=0.419]" + "training until 2000: 92%|█████████▏| 1842/2000 [11:30<00:49, 3.18it/s, loss=0.369]" ] }, { @@ -66028,7 +66028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1842/2000 [11:47<00:51, 3.04it/s, loss=0.373]" + "training until 2000: 92%|█████████▏| 1842/2000 [11:30<00:49, 3.18it/s, loss=0.526]" ] }, { @@ -66036,7 +66036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1843/2000 [11:47<00:51, 3.03it/s, loss=0.373]" + "training until 2000: 92%|█████████▏| 1843/2000 [11:30<00:50, 3.13it/s, loss=0.526]" ] }, { @@ -66044,7 +66044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1843/2000 [11:47<00:51, 3.03it/s, loss=0.364]" + "training until 2000: 92%|█████████▏| 1843/2000 [11:30<00:50, 3.13it/s, loss=0.403]" ] }, { @@ -66052,7 +66052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1844/2000 [11:48<00:50, 3.06it/s, loss=0.364]" + "training until 2000: 92%|█████████▏| 1844/2000 [11:30<00:49, 3.15it/s, loss=0.403]" ] }, { @@ -66060,7 +66060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1844/2000 [11:48<00:50, 3.06it/s, loss=0.395]" + "training until 2000: 92%|█████████▏| 1844/2000 [11:30<00:49, 3.15it/s, loss=0.513]" ] }, { @@ -66068,7 +66068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1845/2000 [11:48<00:50, 3.08it/s, loss=0.395]" + "training until 2000: 92%|█████████▏| 1845/2000 [11:31<00:49, 3.15it/s, loss=0.513]" ] }, { @@ -66076,7 +66076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1845/2000 [11:48<00:50, 3.08it/s, loss=0.375]" + "training until 2000: 92%|█████████▏| 1845/2000 [11:31<00:49, 3.15it/s, loss=0.386]" ] }, { @@ -66084,7 +66084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1846/2000 [11:48<00:49, 3.13it/s, loss=0.375]" + "training until 2000: 92%|█████████▏| 1846/2000 [11:31<00:48, 3.16it/s, loss=0.386]" ] }, { @@ -66092,7 +66092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1846/2000 [11:48<00:49, 3.13it/s, loss=0.378]" + "training until 2000: 92%|█████████▏| 1846/2000 [11:31<00:48, 3.16it/s, loss=0.345]" ] }, { @@ -66100,7 +66100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1847/2000 [11:49<00:49, 3.09it/s, loss=0.378]" + "training until 2000: 92%|█████████▏| 1847/2000 [11:31<00:49, 3.11it/s, loss=0.345]" ] }, { @@ -66108,7 +66108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1847/2000 [11:49<00:49, 3.09it/s, loss=0.41] " + "training until 2000: 92%|█████████▏| 1847/2000 [11:31<00:49, 3.11it/s, loss=0.361]" ] }, { @@ -66116,7 +66116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1848/2000 [11:49<00:48, 3.10it/s, loss=0.41]" + "training until 2000: 92%|█████████▏| 1848/2000 [11:32<00:49, 3.10it/s, loss=0.361]" ] }, { @@ -66124,7 +66124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1848/2000 [11:49<00:48, 3.10it/s, loss=0.369]" + "training until 2000: 92%|█████████▏| 1848/2000 [11:32<00:49, 3.10it/s, loss=0.342]" ] }, { @@ -66132,7 +66132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1849/2000 [11:49<00:48, 3.11it/s, loss=0.369]" + "training until 2000: 92%|█████████▏| 1849/2000 [11:32<00:48, 3.13it/s, loss=0.342]" ] }, { @@ -66140,7 +66140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▏| 1849/2000 [11:49<00:48, 3.11it/s, loss=0.363]" + "training until 2000: 92%|█████████▏| 1849/2000 [11:32<00:48, 3.13it/s, loss=0.371]" ] }, { @@ -66148,7 +66148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▎| 1850/2000 [11:50<00:48, 3.11it/s, loss=0.363]" + "training until 2000: 92%|█████████▎| 1850/2000 [11:32<00:48, 3.12it/s, loss=0.371]" ] }, { @@ -66156,7 +66156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 92%|█████████▎| 1850/2000 [11:50<00:48, 3.11it/s, loss=0.387]" + "training until 2000: 92%|█████████▎| 1850/2000 [11:32<00:48, 3.12it/s, loss=0.397]" ] }, { @@ -66164,7 +66164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1851/2000 [11:50<00:48, 3.06it/s, loss=0.387]" + "training until 2000: 93%|█████████▎| 1851/2000 [11:33<00:48, 3.07it/s, loss=0.397]" ] }, { @@ -66172,7 +66172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1851/2000 [11:50<00:48, 3.06it/s, loss=0.385]" + "training until 2000: 93%|█████████▎| 1851/2000 [11:33<00:48, 3.07it/s, loss=0.381]" ] }, { @@ -66180,7 +66180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1852/2000 [11:50<00:47, 3.09it/s, loss=0.385]" + "training until 2000: 93%|█████████▎| 1852/2000 [11:33<00:47, 3.09it/s, loss=0.381]" ] }, { @@ -66188,7 +66188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1852/2000 [11:50<00:47, 3.09it/s, loss=0.366]" + "training until 2000: 93%|█████████▎| 1852/2000 [11:33<00:47, 3.09it/s, loss=0.372]" ] }, { @@ -66196,7 +66196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1853/2000 [11:51<00:48, 3.05it/s, loss=0.366]" + "training until 2000: 93%|█████████▎| 1853/2000 [11:33<00:47, 3.13it/s, loss=0.372]" ] }, { @@ -66204,7 +66204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1853/2000 [11:51<00:48, 3.05it/s, loss=0.357]" + "training until 2000: 93%|█████████▎| 1853/2000 [11:33<00:47, 3.13it/s, loss=0.366]" ] }, { @@ -66212,7 +66212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1854/2000 [11:51<00:47, 3.06it/s, loss=0.357]" + "training until 2000: 93%|█████████▎| 1854/2000 [11:34<00:46, 3.14it/s, loss=0.366]" ] }, { @@ -66220,7 +66220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1854/2000 [11:51<00:47, 3.06it/s, loss=0.434]" + "training until 2000: 93%|█████████▎| 1854/2000 [11:34<00:46, 3.14it/s, loss=0.37] " ] }, { @@ -66228,7 +66228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1855/2000 [11:51<00:47, 3.05it/s, loss=0.434]" + "training until 2000: 93%|█████████▎| 1855/2000 [11:34<00:45, 3.16it/s, loss=0.37]" ] }, { @@ -66236,7 +66236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1855/2000 [11:51<00:47, 3.05it/s, loss=0.369]" + "training until 2000: 93%|█████████▎| 1855/2000 [11:34<00:45, 3.16it/s, loss=0.375]" ] }, { @@ -66244,7 +66244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1856/2000 [11:52<00:47, 3.05it/s, loss=0.369]" + "training until 2000: 93%|█████████▎| 1856/2000 [11:34<00:45, 3.19it/s, loss=0.375]" ] }, { @@ -66252,7 +66252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1856/2000 [11:52<00:47, 3.05it/s, loss=0.394]" + "training until 2000: 93%|█████████▎| 1856/2000 [11:34<00:45, 3.19it/s, loss=0.446]" ] }, { @@ -66260,7 +66260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1857/2000 [11:52<00:46, 3.09it/s, loss=0.394]" + "training until 2000: 93%|█████████▎| 1857/2000 [11:35<00:45, 3.16it/s, loss=0.446]" ] }, { @@ -66268,7 +66268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1857/2000 [11:52<00:46, 3.09it/s, loss=0.382]" + "training until 2000: 93%|█████████▎| 1857/2000 [11:35<00:45, 3.16it/s, loss=0.356]" ] }, { @@ -66276,7 +66276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1858/2000 [11:52<00:45, 3.09it/s, loss=0.382]" + "training until 2000: 93%|█████████▎| 1858/2000 [11:35<00:45, 3.13it/s, loss=0.356]" ] }, { @@ -66284,7 +66284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1858/2000 [11:52<00:45, 3.09it/s, loss=0.366]" + "training until 2000: 93%|█████████▎| 1858/2000 [11:35<00:45, 3.13it/s, loss=0.475]" ] }, { @@ -66292,7 +66292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1859/2000 [11:53<00:45, 3.09it/s, loss=0.366]" + "training until 2000: 93%|█████████▎| 1859/2000 [11:35<00:45, 3.11it/s, loss=0.475]" ] }, { @@ -66300,7 +66300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1859/2000 [11:53<00:45, 3.09it/s, loss=0.399]" + "training until 2000: 93%|█████████▎| 1859/2000 [11:35<00:45, 3.11it/s, loss=0.355]" ] }, { @@ -66308,7 +66308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1860/2000 [11:53<00:44, 3.11it/s, loss=0.399]" + "training until 2000: 93%|█████████▎| 1860/2000 [11:36<00:44, 3.14it/s, loss=0.355]" ] }, { @@ -66316,7 +66316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1860/2000 [11:53<00:44, 3.11it/s, loss=0.379]" + "training until 2000: 93%|█████████▎| 1860/2000 [11:36<00:44, 3.14it/s, loss=0.365]" ] }, { @@ -66324,7 +66324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1861/2000 [11:53<00:44, 3.11it/s, loss=0.379]" + "training until 2000: 93%|█████████▎| 1861/2000 [11:36<00:44, 3.14it/s, loss=0.365]" ] }, { @@ -66332,7 +66332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1861/2000 [11:53<00:44, 3.11it/s, loss=0.373]" + "training until 2000: 93%|█████████▎| 1861/2000 [11:36<00:44, 3.14it/s, loss=0.361]" ] }, { @@ -66340,7 +66340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1862/2000 [11:53<00:45, 3.07it/s, loss=0.373]" + "training until 2000: 93%|█████████▎| 1862/2000 [11:36<00:43, 3.15it/s, loss=0.361]" ] }, { @@ -66348,7 +66348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1862/2000 [11:53<00:45, 3.07it/s, loss=0.361]" + "training until 2000: 93%|█████████▎| 1862/2000 [11:36<00:43, 3.15it/s, loss=0.388]" ] }, { @@ -66356,7 +66356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1863/2000 [11:54<00:44, 3.07it/s, loss=0.361]" + "training until 2000: 93%|█████████▎| 1863/2000 [11:36<00:43, 3.16it/s, loss=0.388]" ] }, { @@ -66364,7 +66364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1863/2000 [11:54<00:44, 3.07it/s, loss=0.35] " + "training until 2000: 93%|█████████▎| 1863/2000 [11:36<00:43, 3.16it/s, loss=0.365]" ] }, { @@ -66372,7 +66372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1864/2000 [11:54<00:44, 3.07it/s, loss=0.35]" + "training until 2000: 93%|█████████▎| 1864/2000 [11:37<00:42, 3.17it/s, loss=0.365]" ] }, { @@ -66380,7 +66380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1864/2000 [11:54<00:44, 3.07it/s, loss=0.358]" + "training until 2000: 93%|█████████▎| 1864/2000 [11:37<00:42, 3.17it/s, loss=0.404]" ] }, { @@ -66388,7 +66388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1865/2000 [11:54<00:43, 3.08it/s, loss=0.358]" + "training until 2000: 93%|█████████▎| 1865/2000 [11:37<00:42, 3.15it/s, loss=0.404]" ] }, { @@ -66396,7 +66396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1865/2000 [11:54<00:43, 3.08it/s, loss=0.381]" + "training until 2000: 93%|█████████▎| 1865/2000 [11:37<00:42, 3.15it/s, loss=0.386]" ] }, { @@ -66404,7 +66404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1866/2000 [11:55<00:43, 3.09it/s, loss=0.381]" + "training until 2000: 93%|█████████▎| 1866/2000 [11:37<00:42, 3.17it/s, loss=0.386]" ] }, { @@ -66412,7 +66412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1866/2000 [11:55<00:43, 3.09it/s, loss=0.401]" + "training until 2000: 93%|█████████▎| 1866/2000 [11:37<00:42, 3.17it/s, loss=0.405]" ] }, { @@ -66420,7 +66420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1867/2000 [11:55<00:43, 3.08it/s, loss=0.401]" + "training until 2000: 93%|█████████▎| 1867/2000 [11:38<00:41, 3.18it/s, loss=0.405]" ] }, { @@ -66428,7 +66428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1867/2000 [11:55<00:43, 3.08it/s, loss=0.377]" + "training until 2000: 93%|█████████▎| 1867/2000 [11:38<00:41, 3.18it/s, loss=0.353]" ] }, { @@ -66436,7 +66436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1868/2000 [11:55<00:43, 3.07it/s, loss=0.377]" + "training until 2000: 93%|█████████▎| 1868/2000 [11:38<00:41, 3.20it/s, loss=0.353]" ] }, { @@ -66444,7 +66444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1868/2000 [11:55<00:43, 3.07it/s, loss=0.393]" + "training until 2000: 93%|█████████▎| 1868/2000 [11:38<00:41, 3.20it/s, loss=0.385]" ] }, { @@ -66452,7 +66452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1869/2000 [11:56<00:42, 3.07it/s, loss=0.393]" + "training until 2000: 93%|█████████▎| 1869/2000 [11:38<00:41, 3.18it/s, loss=0.385]" ] }, { @@ -66460,7 +66460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 93%|█████████▎| 1869/2000 [11:56<00:42, 3.07it/s, loss=0.387]" + "training until 2000: 93%|█████████▎| 1869/2000 [11:38<00:41, 3.18it/s, loss=0.408]" ] }, { @@ -66468,7 +66468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1870/2000 [11:56<00:41, 3.10it/s, loss=0.387]" + "training until 2000: 94%|█████████▎| 1870/2000 [11:39<00:40, 3.20it/s, loss=0.408]" ] }, { @@ -66476,7 +66476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1870/2000 [11:56<00:41, 3.10it/s, loss=0.401]" + "training until 2000: 94%|█████████▎| 1870/2000 [11:39<00:40, 3.20it/s, loss=0.383]" ] }, { @@ -66484,7 +66484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1871/2000 [11:56<00:41, 3.11it/s, loss=0.401]" + "training until 2000: 94%|█████████▎| 1871/2000 [11:39<00:40, 3.22it/s, loss=0.383]" ] }, { @@ -66492,7 +66492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1871/2000 [11:56<00:41, 3.11it/s, loss=0.393]" + "training until 2000: 94%|█████████▎| 1871/2000 [11:39<00:40, 3.22it/s, loss=0.411]" ] }, { @@ -66500,7 +66500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1872/2000 [11:57<00:41, 3.11it/s, loss=0.393]" + "training until 2000: 94%|█████████▎| 1872/2000 [11:39<00:40, 3.18it/s, loss=0.411]" ] }, { @@ -66508,7 +66508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1872/2000 [11:57<00:41, 3.11it/s, loss=0.375]" + "training until 2000: 94%|█████████▎| 1872/2000 [11:39<00:40, 3.18it/s, loss=0.41] " ] }, { @@ -66516,7 +66516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1873/2000 [11:57<00:41, 3.06it/s, loss=0.375]" + "training until 2000: 94%|█████████▎| 1873/2000 [11:40<00:39, 3.20it/s, loss=0.41]" ] }, { @@ -66524,7 +66524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1873/2000 [11:57<00:41, 3.06it/s, loss=0.372]" + "training until 2000: 94%|█████████▎| 1873/2000 [11:40<00:39, 3.20it/s, loss=0.349]" ] }, { @@ -66532,7 +66532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1874/2000 [11:57<00:40, 3.09it/s, loss=0.372]" + "training until 2000: 94%|█████████▎| 1874/2000 [11:40<00:39, 3.21it/s, loss=0.349]" ] }, { @@ -66540,7 +66540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▎| 1874/2000 [11:57<00:40, 3.09it/s, loss=0.39] " + "training until 2000: 94%|█████████▎| 1874/2000 [11:40<00:39, 3.21it/s, loss=0.458]" ] }, { @@ -66548,7 +66548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1875/2000 [11:58<00:40, 3.08it/s, loss=0.39]" + "training until 2000: 94%|█████████▍| 1875/2000 [11:40<00:39, 3.19it/s, loss=0.458]" ] }, { @@ -66556,7 +66556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1875/2000 [11:58<00:40, 3.08it/s, loss=0.361]" + "training until 2000: 94%|█████████▍| 1875/2000 [11:40<00:39, 3.19it/s, loss=0.364]" ] }, { @@ -66564,7 +66564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1876/2000 [11:58<00:40, 3.06it/s, loss=0.361]" + "training until 2000: 94%|█████████▍| 1876/2000 [11:41<00:38, 3.20it/s, loss=0.364]" ] }, { @@ -66572,7 +66572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1876/2000 [11:58<00:40, 3.06it/s, loss=0.391]" + "training until 2000: 94%|█████████▍| 1876/2000 [11:41<00:38, 3.20it/s, loss=0.365]" ] }, { @@ -66580,7 +66580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1877/2000 [11:58<00:40, 3.06it/s, loss=0.391]" + "training until 2000: 94%|█████████▍| 1877/2000 [11:41<00:38, 3.20it/s, loss=0.365]" ] }, { @@ -66588,7 +66588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1877/2000 [11:58<00:40, 3.06it/s, loss=0.401]" + "training until 2000: 94%|█████████▍| 1877/2000 [11:41<00:38, 3.20it/s, loss=0.363]" ] }, { @@ -66596,7 +66596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1878/2000 [11:59<00:39, 3.07it/s, loss=0.401]" + "training until 2000: 94%|█████████▍| 1878/2000 [11:41<00:38, 3.19it/s, loss=0.363]" ] }, { @@ -66604,7 +66604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1878/2000 [11:59<00:39, 3.07it/s, loss=0.412]" + "training until 2000: 94%|█████████▍| 1878/2000 [11:41<00:38, 3.19it/s, loss=0.36] " ] }, { @@ -66612,7 +66612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1879/2000 [11:59<00:39, 3.09it/s, loss=0.412]" + "training until 2000: 94%|█████████▍| 1879/2000 [11:41<00:38, 3.18it/s, loss=0.36]" ] }, { @@ -66620,7 +66620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1879/2000 [11:59<00:39, 3.09it/s, loss=0.415]" + "training until 2000: 94%|█████████▍| 1879/2000 [11:41<00:38, 3.18it/s, loss=0.393]" ] }, { @@ -66628,7 +66628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1880/2000 [11:59<00:38, 3.09it/s, loss=0.415]" + "training until 2000: 94%|█████████▍| 1880/2000 [11:42<00:37, 3.18it/s, loss=0.393]" ] }, { @@ -66636,7 +66636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1880/2000 [11:59<00:38, 3.09it/s, loss=0.438]" + "training until 2000: 94%|█████████▍| 1880/2000 [11:42<00:37, 3.18it/s, loss=0.395]" ] }, { @@ -66644,7 +66644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1881/2000 [12:00<00:38, 3.10it/s, loss=0.438]" + "training until 2000: 94%|█████████▍| 1881/2000 [11:42<00:37, 3.19it/s, loss=0.395]" ] }, { @@ -66652,7 +66652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1881/2000 [12:00<00:38, 3.10it/s, loss=0.527]" + "training until 2000: 94%|█████████▍| 1881/2000 [11:42<00:37, 3.19it/s, loss=0.361]" ] }, { @@ -66660,7 +66660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1882/2000 [12:00<00:37, 3.11it/s, loss=0.527]" + "training until 2000: 94%|█████████▍| 1882/2000 [11:42<00:36, 3.21it/s, loss=0.361]" ] }, { @@ -66668,7 +66668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1882/2000 [12:00<00:37, 3.11it/s, loss=0.357]" + "training until 2000: 94%|█████████▍| 1882/2000 [11:42<00:36, 3.21it/s, loss=0.381]" ] }, { @@ -66676,7 +66676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1883/2000 [12:00<00:38, 3.08it/s, loss=0.357]" + "training until 2000: 94%|█████████▍| 1883/2000 [11:43<00:36, 3.18it/s, loss=0.381]" ] }, { @@ -66684,7 +66684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1883/2000 [12:00<00:38, 3.08it/s, loss=0.413]" + "training until 2000: 94%|█████████▍| 1883/2000 [11:43<00:36, 3.18it/s, loss=0.404]" ] }, { @@ -66692,7 +66692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1884/2000 [12:01<00:37, 3.07it/s, loss=0.413]" + "training until 2000: 94%|█████████▍| 1884/2000 [11:43<00:36, 3.14it/s, loss=0.404]" ] }, { @@ -66700,7 +66700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1884/2000 [12:01<00:37, 3.07it/s, loss=0.424]" + "training until 2000: 94%|█████████▍| 1884/2000 [11:43<00:36, 3.14it/s, loss=0.4] " ] }, { @@ -66708,7 +66708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1885/2000 [12:01<00:37, 3.06it/s, loss=0.424]" + "training until 2000: 94%|█████████▍| 1885/2000 [11:43<00:36, 3.14it/s, loss=0.4]" ] }, { @@ -66716,7 +66716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1885/2000 [12:01<00:37, 3.06it/s, loss=0.474]" + "training until 2000: 94%|█████████▍| 1885/2000 [11:43<00:36, 3.14it/s, loss=0.416]" ] }, { @@ -66724,7 +66724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1886/2000 [12:01<00:37, 3.05it/s, loss=0.474]" + "training until 2000: 94%|█████████▍| 1886/2000 [11:44<00:36, 3.15it/s, loss=0.416]" ] }, { @@ -66732,7 +66732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1886/2000 [12:01<00:37, 3.05it/s, loss=0.386]" + "training until 2000: 94%|█████████▍| 1886/2000 [11:44<00:36, 3.15it/s, loss=0.386]" ] }, { @@ -66740,7 +66740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1887/2000 [12:02<00:36, 3.07it/s, loss=0.386]" + "training until 2000: 94%|█████████▍| 1887/2000 [11:44<00:44, 2.53it/s, loss=0.386]" ] }, { @@ -66748,7 +66748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1887/2000 [12:02<00:36, 3.07it/s, loss=0.392]" + "training until 2000: 94%|█████████▍| 1887/2000 [11:44<00:44, 2.53it/s, loss=0.377]" ] }, { @@ -66756,7 +66756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1888/2000 [12:02<00:36, 3.08it/s, loss=0.392]" + "training until 2000: 94%|█████████▍| 1888/2000 [11:45<00:41, 2.68it/s, loss=0.377]" ] }, { @@ -66764,7 +66764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1888/2000 [12:02<00:36, 3.08it/s, loss=0.36] " + "training until 2000: 94%|█████████▍| 1888/2000 [11:45<00:41, 2.68it/s, loss=0.381]" ] }, { @@ -66772,7 +66772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1889/2000 [12:02<00:36, 3.08it/s, loss=0.36]" + "training until 2000: 94%|█████████▍| 1889/2000 [11:45<00:39, 2.80it/s, loss=0.381]" ] }, { @@ -66780,7 +66780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1889/2000 [12:02<00:36, 3.08it/s, loss=0.56]" + "training until 2000: 94%|█████████▍| 1889/2000 [11:45<00:39, 2.80it/s, loss=0.374]" ] }, { @@ -66788,7 +66788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1890/2000 [12:03<00:43, 2.50it/s, loss=0.56]" + "training until 2000: 94%|█████████▍| 1890/2000 [11:45<00:38, 2.87it/s, loss=0.374]" ] }, { @@ -66796,7 +66796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 94%|█████████▍| 1890/2000 [12:03<00:43, 2.50it/s, loss=0.386]" + "training until 2000: 94%|█████████▍| 1890/2000 [11:45<00:38, 2.87it/s, loss=0.372]" ] }, { @@ -66804,7 +66804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1891/2000 [12:03<00:41, 2.64it/s, loss=0.386]" + "training until 2000: 95%|█████████▍| 1891/2000 [11:46<00:36, 2.98it/s, loss=0.372]" ] }, { @@ -66812,7 +66812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1891/2000 [12:03<00:41, 2.64it/s, loss=0.52] " + "training until 2000: 95%|█████████▍| 1891/2000 [11:46<00:36, 2.98it/s, loss=0.37] " ] }, { @@ -66820,7 +66820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1892/2000 [12:03<00:39, 2.75it/s, loss=0.52]" + "training until 2000: 95%|█████████▍| 1892/2000 [11:46<00:36, 2.98it/s, loss=0.37]" ] }, { @@ -66828,7 +66828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1892/2000 [12:03<00:39, 2.75it/s, loss=0.372]" + "training until 2000: 95%|█████████▍| 1892/2000 [11:46<00:36, 2.98it/s, loss=0.393]" ] }, { @@ -66836,7 +66836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1893/2000 [12:04<00:37, 2.84it/s, loss=0.372]" + "training until 2000: 95%|█████████▍| 1893/2000 [11:46<00:35, 2.98it/s, loss=0.393]" ] }, { @@ -66844,7 +66844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1893/2000 [12:04<00:37, 2.84it/s, loss=0.37] " + "training until 2000: 95%|█████████▍| 1893/2000 [11:46<00:35, 2.98it/s, loss=0.384]" ] }, { @@ -66852,7 +66852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1894/2000 [12:04<00:37, 2.86it/s, loss=0.37]" + "training until 2000: 95%|█████████▍| 1894/2000 [11:47<00:34, 3.06it/s, loss=0.384]" ] }, { @@ -66860,7 +66860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1894/2000 [12:04<00:37, 2.86it/s, loss=0.384]" + "training until 2000: 95%|█████████▍| 1894/2000 [11:47<00:34, 3.06it/s, loss=0.37] " ] }, { @@ -66868,7 +66868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1895/2000 [12:04<00:36, 2.90it/s, loss=0.384]" + "training until 2000: 95%|█████████▍| 1895/2000 [11:47<00:33, 3.12it/s, loss=0.37]" ] }, { @@ -66876,7 +66876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1895/2000 [12:04<00:36, 2.90it/s, loss=0.387]" + "training until 2000: 95%|█████████▍| 1895/2000 [11:47<00:33, 3.12it/s, loss=0.404]" ] }, { @@ -66884,7 +66884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1896/2000 [12:05<00:35, 2.95it/s, loss=0.387]" + "training until 2000: 95%|█████████▍| 1896/2000 [11:47<00:32, 3.16it/s, loss=0.404]" ] }, { @@ -66892,7 +66892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1896/2000 [12:05<00:35, 2.95it/s, loss=0.406]" + "training until 2000: 95%|█████████▍| 1896/2000 [11:47<00:32, 3.16it/s, loss=0.342]" ] }, { @@ -66900,7 +66900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1897/2000 [12:05<00:34, 2.98it/s, loss=0.406]" + "training until 2000: 95%|█████████▍| 1897/2000 [11:47<00:33, 3.12it/s, loss=0.342]" ] }, { @@ -66908,7 +66908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1897/2000 [12:05<00:34, 2.98it/s, loss=0.376]" + "training until 2000: 95%|█████████▍| 1897/2000 [11:47<00:33, 3.12it/s, loss=0.358]" ] }, { @@ -66916,7 +66916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1898/2000 [12:05<00:33, 3.04it/s, loss=0.376]" + "training until 2000: 95%|█████████▍| 1898/2000 [11:48<00:32, 3.15it/s, loss=0.358]" ] }, { @@ -66924,7 +66924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1898/2000 [12:05<00:33, 3.04it/s, loss=0.357]" + "training until 2000: 95%|█████████▍| 1898/2000 [11:48<00:32, 3.15it/s, loss=0.411]" ] }, { @@ -66932,7 +66932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1899/2000 [12:06<00:32, 3.08it/s, loss=0.357]" + "training until 2000: 95%|█████████▍| 1899/2000 [11:48<00:32, 3.15it/s, loss=0.411]" ] }, { @@ -66940,7 +66940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▍| 1899/2000 [12:06<00:32, 3.08it/s, loss=0.375]" + "training until 2000: 95%|█████████▍| 1899/2000 [11:48<00:32, 3.15it/s, loss=0.387]" ] }, { @@ -66948,7 +66948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1900/2000 [12:06<00:32, 3.09it/s, loss=0.375]" + "training until 2000: 95%|█████████▌| 1900/2000 [11:48<00:31, 3.13it/s, loss=0.387]" ] }, { @@ -66956,7 +66956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1900/2000 [12:06<00:32, 3.09it/s, loss=0.378]" + "training until 2000: 95%|█████████▌| 1900/2000 [11:48<00:31, 3.13it/s, loss=0.396]" ] }, { @@ -66964,7 +66964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1901/2000 [12:06<00:32, 3.06it/s, loss=0.378]" + "training until 2000: 95%|█████████▌| 1901/2000 [11:49<00:32, 3.09it/s, loss=0.396]" ] }, { @@ -66972,7 +66972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1901/2000 [12:06<00:32, 3.06it/s, loss=0.361]" + "training until 2000: 95%|█████████▌| 1901/2000 [11:49<00:32, 3.09it/s, loss=0.36] " ] }, { @@ -66980,7 +66980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1902/2000 [12:07<00:32, 3.04it/s, loss=0.361]" + "training until 2000: 95%|█████████▌| 1902/2000 [11:49<00:31, 3.10it/s, loss=0.36]" ] }, { @@ -66988,7 +66988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1902/2000 [12:07<00:32, 3.04it/s, loss=0.383]" + "training until 2000: 95%|█████████▌| 1902/2000 [11:49<00:31, 3.10it/s, loss=0.328]" ] }, { @@ -66996,7 +66996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1903/2000 [12:07<00:32, 3.01it/s, loss=0.383]" + "training until 2000: 95%|█████████▌| 1903/2000 [11:49<00:31, 3.08it/s, loss=0.328]" ] }, { @@ -67004,7 +67004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1903/2000 [12:07<00:32, 3.01it/s, loss=0.401]" + "training until 2000: 95%|█████████▌| 1903/2000 [11:49<00:31, 3.08it/s, loss=0.455]" ] }, { @@ -67012,7 +67012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1904/2000 [12:07<00:31, 3.01it/s, loss=0.401]" + "training until 2000: 95%|█████████▌| 1904/2000 [11:50<00:30, 3.10it/s, loss=0.455]" ] }, { @@ -67020,7 +67020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1904/2000 [12:07<00:31, 3.01it/s, loss=0.373]" + "training until 2000: 95%|█████████▌| 1904/2000 [11:50<00:30, 3.10it/s, loss=0.399]" ] }, { @@ -67028,7 +67028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1905/2000 [12:08<00:31, 3.02it/s, loss=0.373]" + "training until 2000: 95%|█████████▌| 1905/2000 [11:50<00:30, 3.10it/s, loss=0.399]" ] }, { @@ -67036,7 +67036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1905/2000 [12:08<00:31, 3.02it/s, loss=0.366]" + "training until 2000: 95%|█████████▌| 1905/2000 [11:50<00:30, 3.10it/s, loss=0.364]" ] }, { @@ -67044,7 +67044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1906/2000 [12:08<00:30, 3.06it/s, loss=0.366]" + "training until 2000: 95%|█████████▌| 1906/2000 [11:50<00:30, 3.09it/s, loss=0.364]" ] }, { @@ -67052,7 +67052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1906/2000 [12:08<00:30, 3.06it/s, loss=0.417]" + "training until 2000: 95%|█████████▌| 1906/2000 [11:50<00:30, 3.09it/s, loss=0.38] " ] }, { @@ -67060,7 +67060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1907/2000 [12:08<00:30, 3.05it/s, loss=0.417]" + "training until 2000: 95%|█████████▌| 1907/2000 [11:51<00:29, 3.10it/s, loss=0.38]" ] }, { @@ -67068,7 +67068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1907/2000 [12:08<00:30, 3.05it/s, loss=0.476]" + "training until 2000: 95%|█████████▌| 1907/2000 [11:51<00:29, 3.10it/s, loss=0.339]" ] }, { @@ -67076,7 +67076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1908/2000 [12:09<00:29, 3.10it/s, loss=0.476]" + "training until 2000: 95%|█████████▌| 1908/2000 [11:51<00:29, 3.08it/s, loss=0.339]" ] }, { @@ -67084,7 +67084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1908/2000 [12:09<00:29, 3.10it/s, loss=0.365]" + "training until 2000: 95%|█████████▌| 1908/2000 [11:51<00:29, 3.08it/s, loss=0.401]" ] }, { @@ -67092,7 +67092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1909/2000 [12:09<00:29, 3.07it/s, loss=0.365]" + "training until 2000: 95%|█████████▌| 1909/2000 [11:51<00:29, 3.05it/s, loss=0.401]" ] }, { @@ -67100,7 +67100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 95%|█████████▌| 1909/2000 [12:09<00:29, 3.07it/s, loss=0.359]" + "training until 2000: 95%|█████████▌| 1909/2000 [11:51<00:29, 3.05it/s, loss=0.364]" ] }, { @@ -67108,7 +67108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1910/2000 [12:09<00:29, 3.03it/s, loss=0.359]" + "training until 2000: 96%|█████████▌| 1910/2000 [11:52<00:29, 3.04it/s, loss=0.364]" ] }, { @@ -67116,7 +67116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1910/2000 [12:09<00:29, 3.03it/s, loss=0.357]" + "training until 2000: 96%|█████████▌| 1910/2000 [11:52<00:29, 3.04it/s, loss=0.58] " ] }, { @@ -67124,7 +67124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1911/2000 [12:10<00:29, 3.04it/s, loss=0.357]" + "training until 2000: 96%|█████████▌| 1911/2000 [11:52<00:29, 3.02it/s, loss=0.58]" ] }, { @@ -67132,7 +67132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1911/2000 [12:10<00:29, 3.04it/s, loss=0.397]" + "training until 2000: 96%|█████████▌| 1911/2000 [11:52<00:29, 3.02it/s, loss=0.397]" ] }, { @@ -67140,7 +67140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1912/2000 [12:10<00:28, 3.04it/s, loss=0.397]" + "training until 2000: 96%|█████████▌| 1912/2000 [11:52<00:29, 3.02it/s, loss=0.397]" ] }, { @@ -67148,7 +67148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1912/2000 [12:10<00:28, 3.04it/s, loss=0.35] " + "training until 2000: 96%|█████████▌| 1912/2000 [11:52<00:29, 3.02it/s, loss=0.397]" ] }, { @@ -67156,7 +67156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1913/2000 [12:10<00:28, 3.02it/s, loss=0.35]" + "training until 2000: 96%|█████████▌| 1913/2000 [11:53<00:28, 3.03it/s, loss=0.397]" ] }, { @@ -67164,7 +67164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1913/2000 [12:10<00:28, 3.02it/s, loss=0.369]" + "training until 2000: 96%|█████████▌| 1913/2000 [11:53<00:28, 3.03it/s, loss=0.43] " ] }, { @@ -67172,7 +67172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1914/2000 [12:11<00:28, 3.03it/s, loss=0.369]" + "training until 2000: 96%|█████████▌| 1914/2000 [11:53<00:28, 3.06it/s, loss=0.43]" ] }, { @@ -67180,7 +67180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1914/2000 [12:11<00:28, 3.03it/s, loss=0.391]" + "training until 2000: 96%|█████████▌| 1914/2000 [11:53<00:28, 3.06it/s, loss=0.388]" ] }, { @@ -67188,7 +67188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1915/2000 [12:11<00:27, 3.08it/s, loss=0.391]" + "training until 2000: 96%|█████████▌| 1915/2000 [11:53<00:27, 3.07it/s, loss=0.388]" ] }, { @@ -67196,7 +67196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1915/2000 [12:11<00:27, 3.08it/s, loss=0.371]" + "training until 2000: 96%|█████████▌| 1915/2000 [11:53<00:27, 3.07it/s, loss=0.35] " ] }, { @@ -67204,7 +67204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1916/2000 [12:11<00:27, 3.08it/s, loss=0.371]" + "training until 2000: 96%|█████████▌| 1916/2000 [11:54<00:27, 3.06it/s, loss=0.35]" ] }, { @@ -67212,7 +67212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1916/2000 [12:11<00:27, 3.08it/s, loss=0.437]" + "training until 2000: 96%|█████████▌| 1916/2000 [11:54<00:27, 3.06it/s, loss=0.38]" ] }, { @@ -67220,7 +67220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1917/2000 [12:12<00:26, 3.08it/s, loss=0.437]" + "training until 2000: 96%|█████████▌| 1917/2000 [11:54<00:26, 3.09it/s, loss=0.38]" ] }, { @@ -67228,7 +67228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1917/2000 [12:12<00:26, 3.08it/s, loss=0.421]" + "training until 2000: 96%|█████████▌| 1917/2000 [11:54<00:26, 3.09it/s, loss=0.379]" ] }, { @@ -67236,7 +67236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1918/2000 [12:12<00:26, 3.06it/s, loss=0.421]" + "training until 2000: 96%|█████████▌| 1918/2000 [11:54<00:26, 3.08it/s, loss=0.379]" ] }, { @@ -67244,7 +67244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1918/2000 [12:12<00:26, 3.06it/s, loss=0.372]" + "training until 2000: 96%|█████████▌| 1918/2000 [11:54<00:26, 3.08it/s, loss=0.359]" ] }, { @@ -67252,7 +67252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1919/2000 [12:12<00:26, 3.07it/s, loss=0.372]" + "training until 2000: 96%|█████████▌| 1919/2000 [11:55<00:26, 3.07it/s, loss=0.359]" ] }, { @@ -67260,7 +67260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1919/2000 [12:12<00:26, 3.07it/s, loss=0.391]" + "training until 2000: 96%|█████████▌| 1919/2000 [11:55<00:26, 3.07it/s, loss=0.42] " ] }, { @@ -67268,7 +67268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1920/2000 [12:13<00:26, 3.07it/s, loss=0.391]" + "training until 2000: 96%|█████████▌| 1920/2000 [11:55<00:26, 3.07it/s, loss=0.42]" ] }, { @@ -67276,7 +67276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1920/2000 [12:13<00:26, 3.07it/s, loss=0.393]" + "training until 2000: 96%|█████████▌| 1920/2000 [11:55<00:26, 3.07it/s, loss=0.373]" ] }, { @@ -67284,7 +67284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1921/2000 [12:13<00:25, 3.08it/s, loss=0.393]" + "training until 2000: 96%|█████████▌| 1921/2000 [11:55<00:25, 3.12it/s, loss=0.373]" ] }, { @@ -67292,7 +67292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1921/2000 [12:13<00:25, 3.08it/s, loss=0.388]" + "training until 2000: 96%|█████████▌| 1921/2000 [11:55<00:25, 3.12it/s, loss=0.357]" ] }, { @@ -67300,7 +67300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1922/2000 [12:13<00:25, 3.10it/s, loss=0.388]" + "training until 2000: 96%|█████████▌| 1922/2000 [11:56<00:25, 3.12it/s, loss=0.357]" ] }, { @@ -67308,7 +67308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1922/2000 [12:13<00:25, 3.10it/s, loss=0.362]" + "training until 2000: 96%|█████████▌| 1922/2000 [11:56<00:25, 3.12it/s, loss=0.628]" ] }, { @@ -67316,7 +67316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1923/2000 [12:14<00:24, 3.11it/s, loss=0.362]" + "training until 2000: 96%|█████████▌| 1923/2000 [11:56<00:24, 3.13it/s, loss=0.628]" ] }, { @@ -67324,7 +67324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1923/2000 [12:14<00:24, 3.11it/s, loss=0.377]" + "training until 2000: 96%|█████████▌| 1923/2000 [11:56<00:24, 3.13it/s, loss=0.398]" ] }, { @@ -67332,7 +67332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1924/2000 [12:14<00:24, 3.13it/s, loss=0.377]" + "training until 2000: 96%|█████████▌| 1924/2000 [11:56<00:24, 3.10it/s, loss=0.398]" ] }, { @@ -67340,7 +67340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▌| 1924/2000 [12:14<00:24, 3.13it/s, loss=0.352]" + "training until 2000: 96%|█████████▌| 1924/2000 [11:56<00:24, 3.10it/s, loss=0.347]" ] }, { @@ -67348,7 +67348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1925/2000 [12:14<00:24, 3.10it/s, loss=0.352]" + "training until 2000: 96%|█████████▋| 1925/2000 [11:57<00:23, 3.13it/s, loss=0.347]" ] }, { @@ -67356,7 +67356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1925/2000 [12:14<00:24, 3.10it/s, loss=0.367]" + "training until 2000: 96%|█████████▋| 1925/2000 [11:57<00:23, 3.13it/s, loss=0.381]" ] }, { @@ -67364,7 +67364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1926/2000 [12:15<00:23, 3.12it/s, loss=0.367]" + "training until 2000: 96%|█████████▋| 1926/2000 [11:57<00:23, 3.13it/s, loss=0.381]" ] }, { @@ -67372,7 +67372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1926/2000 [12:15<00:23, 3.12it/s, loss=0.376]" + "training until 2000: 96%|█████████▋| 1926/2000 [11:57<00:23, 3.13it/s, loss=0.386]" ] }, { @@ -67380,7 +67380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1927/2000 [12:15<00:23, 3.05it/s, loss=0.376]" + "training until 2000: 96%|█████████▋| 1927/2000 [11:57<00:23, 3.12it/s, loss=0.386]" ] }, { @@ -67388,7 +67388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1927/2000 [12:15<00:23, 3.05it/s, loss=0.558]" + "training until 2000: 96%|█████████▋| 1927/2000 [11:57<00:23, 3.12it/s, loss=0.371]" ] }, { @@ -67396,7 +67396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1928/2000 [12:15<00:23, 3.09it/s, loss=0.558]" + "training until 2000: 96%|█████████▋| 1928/2000 [11:58<00:23, 3.12it/s, loss=0.371]" ] }, { @@ -67404,7 +67404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1928/2000 [12:15<00:23, 3.09it/s, loss=0.411]" + "training until 2000: 96%|█████████▋| 1928/2000 [11:58<00:23, 3.12it/s, loss=0.36] " ] }, { @@ -67412,7 +67412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1929/2000 [12:16<00:22, 3.10it/s, loss=0.411]" + "training until 2000: 96%|█████████▋| 1929/2000 [11:58<00:22, 3.11it/s, loss=0.36]" ] }, { @@ -67420,7 +67420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1929/2000 [12:16<00:22, 3.10it/s, loss=0.373]" + "training until 2000: 96%|█████████▋| 1929/2000 [11:58<00:22, 3.11it/s, loss=0.34]" ] }, { @@ -67428,7 +67428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1930/2000 [12:16<00:22, 3.10it/s, loss=0.373]" + "training until 2000: 96%|█████████▋| 1930/2000 [11:58<00:22, 3.16it/s, loss=0.34]" ] }, { @@ -67436,7 +67436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 96%|█████████▋| 1930/2000 [12:16<00:22, 3.10it/s, loss=0.407]" + "training until 2000: 96%|█████████▋| 1930/2000 [11:58<00:22, 3.16it/s, loss=0.39]" ] }, { @@ -67444,7 +67444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1931/2000 [12:16<00:22, 3.09it/s, loss=0.407]" + "training until 2000: 97%|█████████▋| 1931/2000 [11:58<00:21, 3.16it/s, loss=0.39]" ] }, { @@ -67452,7 +67452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1931/2000 [12:16<00:22, 3.09it/s, loss=0.431]" + "training until 2000: 97%|█████████▋| 1931/2000 [11:58<00:21, 3.16it/s, loss=0.365]" ] }, { @@ -67460,7 +67460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1932/2000 [12:17<00:22, 3.05it/s, loss=0.431]" + "training until 2000: 97%|█████████▋| 1932/2000 [11:59<00:21, 3.17it/s, loss=0.365]" ] }, { @@ -67468,7 +67468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1932/2000 [12:17<00:22, 3.05it/s, loss=0.371]" + "training until 2000: 97%|█████████▋| 1932/2000 [11:59<00:21, 3.17it/s, loss=0.359]" ] }, { @@ -67476,7 +67476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1933/2000 [12:17<00:21, 3.07it/s, loss=0.371]" + "training until 2000: 97%|█████████▋| 1933/2000 [11:59<00:21, 3.14it/s, loss=0.359]" ] }, { @@ -67484,7 +67484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1933/2000 [12:17<00:21, 3.07it/s, loss=0.377]" + "training until 2000: 97%|█████████▋| 1933/2000 [11:59<00:21, 3.14it/s, loss=0.366]" ] }, { @@ -67492,7 +67492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1934/2000 [12:17<00:21, 3.08it/s, loss=0.377]" + "training until 2000: 97%|█████████▋| 1934/2000 [11:59<00:21, 3.12it/s, loss=0.366]" ] }, { @@ -67500,7 +67500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1934/2000 [12:17<00:21, 3.08it/s, loss=0.362]" + "training until 2000: 97%|█████████▋| 1934/2000 [11:59<00:21, 3.12it/s, loss=0.386]" ] }, { @@ -67508,7 +67508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1935/2000 [12:18<00:21, 3.08it/s, loss=0.362]" + "training until 2000: 97%|█████████▋| 1935/2000 [12:00<00:20, 3.11it/s, loss=0.386]" ] }, { @@ -67516,7 +67516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1935/2000 [12:18<00:21, 3.08it/s, loss=0.38] " + "training until 2000: 97%|█████████▋| 1935/2000 [12:00<00:20, 3.11it/s, loss=0.398]" ] }, { @@ -67524,7 +67524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1936/2000 [12:18<00:20, 3.11it/s, loss=0.38]" + "training until 2000: 97%|█████████▋| 1936/2000 [12:00<00:20, 3.15it/s, loss=0.398]" ] }, { @@ -67532,7 +67532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1936/2000 [12:18<00:20, 3.11it/s, loss=0.377]" + "training until 2000: 97%|█████████▋| 1936/2000 [12:00<00:20, 3.15it/s, loss=0.357]" ] }, { @@ -67540,7 +67540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1937/2000 [12:18<00:20, 3.09it/s, loss=0.377]" + "training until 2000: 97%|█████████▋| 1937/2000 [12:00<00:20, 3.13it/s, loss=0.357]" ] }, { @@ -67548,7 +67548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1937/2000 [12:18<00:20, 3.09it/s, loss=0.432]" + "training until 2000: 97%|█████████▋| 1937/2000 [12:00<00:20, 3.13it/s, loss=0.402]" ] }, { @@ -67556,7 +67556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1938/2000 [12:18<00:20, 3.06it/s, loss=0.432]" + "training until 2000: 97%|█████████▋| 1938/2000 [12:01<00:19, 3.15it/s, loss=0.402]" ] }, { @@ -67564,7 +67564,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1938/2000 [12:18<00:20, 3.06it/s, loss=0.358]" + "training until 2000: 97%|█████████▋| 1938/2000 [12:01<00:19, 3.15it/s, loss=0.39] " ] }, { @@ -67572,7 +67572,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1939/2000 [12:19<00:20, 3.04it/s, loss=0.358]" + "training until 2000: 97%|█████████▋| 1939/2000 [12:01<00:19, 3.15it/s, loss=0.39]" ] }, { @@ -67580,7 +67580,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1939/2000 [12:19<00:20, 3.04it/s, loss=0.401]" + "training until 2000: 97%|█████████▋| 1939/2000 [12:01<00:19, 3.15it/s, loss=0.478]" ] }, { @@ -67588,7 +67588,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1940/2000 [12:19<00:19, 3.07it/s, loss=0.401]" + "training until 2000: 97%|█████████▋| 1940/2000 [12:01<00:19, 3.14it/s, loss=0.478]" ] }, { @@ -67596,7 +67596,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1940/2000 [12:19<00:19, 3.07it/s, loss=0.374]" + "training until 2000: 97%|█████████▋| 1940/2000 [12:01<00:19, 3.14it/s, loss=0.346]" ] }, { @@ -67604,7 +67604,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1941/2000 [12:19<00:19, 3.07it/s, loss=0.374]" + "training until 2000: 97%|█████████▋| 1941/2000 [12:02<00:18, 3.11it/s, loss=0.346]" ] }, { @@ -67612,7 +67612,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1941/2000 [12:19<00:19, 3.07it/s, loss=0.396]" + "training until 2000: 97%|█████████▋| 1941/2000 [12:02<00:18, 3.11it/s, loss=0.39] " ] }, { @@ -67620,7 +67620,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1942/2000 [12:20<00:18, 3.07it/s, loss=0.396]" + "training until 2000: 97%|█████████▋| 1942/2000 [12:02<00:18, 3.15it/s, loss=0.39]" ] }, { @@ -67628,7 +67628,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1942/2000 [12:20<00:18, 3.07it/s, loss=0.359]" + "training until 2000: 97%|█████████▋| 1942/2000 [12:02<00:18, 3.15it/s, loss=0.385]" ] }, { @@ -67636,7 +67636,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1943/2000 [12:20<00:18, 3.08it/s, loss=0.359]" + "training until 2000: 97%|█████████▋| 1943/2000 [12:02<00:18, 3.12it/s, loss=0.385]" ] }, { @@ -67644,7 +67644,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1943/2000 [12:20<00:18, 3.08it/s, loss=0.355]" + "training until 2000: 97%|█████████▋| 1943/2000 [12:02<00:18, 3.12it/s, loss=0.368]" ] }, { @@ -67652,7 +67652,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1944/2000 [12:20<00:18, 3.08it/s, loss=0.355]" + "training until 2000: 97%|█████████▋| 1944/2000 [12:03<00:17, 3.11it/s, loss=0.368]" ] }, { @@ -67660,7 +67660,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1944/2000 [12:20<00:18, 3.08it/s, loss=0.458]" + "training until 2000: 97%|█████████▋| 1944/2000 [12:03<00:17, 3.11it/s, loss=0.39] " ] }, { @@ -67668,7 +67668,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1945/2000 [12:21<00:18, 3.03it/s, loss=0.458]" + "training until 2000: 97%|█████████▋| 1945/2000 [12:03<00:17, 3.15it/s, loss=0.39]" ] }, { @@ -67676,7 +67676,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1945/2000 [12:21<00:18, 3.03it/s, loss=0.353]" + "training until 2000: 97%|█████████▋| 1945/2000 [12:03<00:17, 3.15it/s, loss=0.469]" ] }, { @@ -67684,7 +67684,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1946/2000 [12:21<00:17, 3.04it/s, loss=0.353]" + "training until 2000: 97%|█████████▋| 1946/2000 [12:03<00:17, 3.16it/s, loss=0.469]" ] }, { @@ -67692,7 +67692,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1946/2000 [12:21<00:17, 3.04it/s, loss=0.431]" + "training until 2000: 97%|█████████▋| 1946/2000 [12:03<00:17, 3.16it/s, loss=0.358]" ] }, { @@ -67700,7 +67700,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1947/2000 [12:21<00:17, 3.08it/s, loss=0.431]" + "training until 2000: 97%|█████████▋| 1947/2000 [12:04<00:16, 3.16it/s, loss=0.358]" ] }, { @@ -67708,7 +67708,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1947/2000 [12:21<00:17, 3.08it/s, loss=0.361]" + "training until 2000: 97%|█████████▋| 1947/2000 [12:04<00:16, 3.16it/s, loss=0.378]" ] }, { @@ -67716,7 +67716,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1948/2000 [12:22<00:16, 3.10it/s, loss=0.361]" + "training until 2000: 97%|█████████▋| 1948/2000 [12:04<00:16, 3.14it/s, loss=0.378]" ] }, { @@ -67724,7 +67724,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1948/2000 [12:22<00:16, 3.10it/s, loss=0.356]" + "training until 2000: 97%|█████████▋| 1948/2000 [12:04<00:16, 3.14it/s, loss=0.379]" ] }, { @@ -67732,7 +67732,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1949/2000 [12:22<00:16, 3.09it/s, loss=0.356]" + "training until 2000: 97%|█████████▋| 1949/2000 [12:04<00:16, 3.15it/s, loss=0.379]" ] }, { @@ -67740,7 +67740,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 97%|█████████▋| 1949/2000 [12:22<00:16, 3.09it/s, loss=0.347]" + "training until 2000: 97%|█████████▋| 1949/2000 [12:04<00:16, 3.15it/s, loss=0.338]" ] }, { @@ -67748,7 +67748,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1950/2000 [12:22<00:16, 3.11it/s, loss=0.347]" + "training until 2000: 98%|█████████▊| 1950/2000 [12:05<00:15, 3.13it/s, loss=0.338]" ] }, { @@ -67756,7 +67756,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1950/2000 [12:22<00:16, 3.11it/s, loss=0.367]" + "training until 2000: 98%|█████████▊| 1950/2000 [12:05<00:15, 3.13it/s, loss=0.38] " ] }, { @@ -67764,7 +67764,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1951/2000 [12:23<00:15, 3.14it/s, loss=0.367]" + "training until 2000: 98%|█████████▊| 1951/2000 [12:05<00:15, 3.15it/s, loss=0.38]" ] }, { @@ -67772,7 +67772,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1951/2000 [12:23<00:15, 3.14it/s, loss=0.358]" + "training until 2000: 98%|█████████▊| 1951/2000 [12:05<00:15, 3.15it/s, loss=0.391]" ] }, { @@ -67780,7 +67780,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1952/2000 [12:23<00:15, 3.13it/s, loss=0.358]" + "training until 2000: 98%|█████████▊| 1952/2000 [12:05<00:15, 3.13it/s, loss=0.391]" ] }, { @@ -67788,7 +67788,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1952/2000 [12:23<00:15, 3.13it/s, loss=0.366]" + "training until 2000: 98%|█████████▊| 1952/2000 [12:05<00:15, 3.13it/s, loss=0.381]" ] }, { @@ -67796,7 +67796,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1953/2000 [12:23<00:15, 3.10it/s, loss=0.366]" + "training until 2000: 98%|█████████▊| 1953/2000 [12:06<00:18, 2.53it/s, loss=0.381]" ] }, { @@ -67804,7 +67804,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1953/2000 [12:23<00:15, 3.10it/s, loss=0.354]" + "training until 2000: 98%|█████████▊| 1953/2000 [12:06<00:18, 2.53it/s, loss=0.377]" ] }, { @@ -67812,7 +67812,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1954/2000 [12:24<00:14, 3.09it/s, loss=0.354]" + "training until 2000: 98%|█████████▊| 1954/2000 [12:06<00:17, 2.70it/s, loss=0.377]" ] }, { @@ -67820,7 +67820,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1954/2000 [12:24<00:14, 3.09it/s, loss=0.354]" + "training until 2000: 98%|█████████▊| 1954/2000 [12:06<00:17, 2.70it/s, loss=0.447]" ] }, { @@ -67828,7 +67828,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1955/2000 [12:24<00:14, 3.10it/s, loss=0.354]" + "training until 2000: 98%|█████████▊| 1955/2000 [12:06<00:15, 2.82it/s, loss=0.447]" ] }, { @@ -67836,7 +67836,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1955/2000 [12:24<00:14, 3.10it/s, loss=0.384]" + "training until 2000: 98%|█████████▊| 1955/2000 [12:06<00:15, 2.82it/s, loss=0.386]" ] }, { @@ -67844,7 +67844,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1956/2000 [12:24<00:14, 3.10it/s, loss=0.384]" + "training until 2000: 98%|█████████▊| 1956/2000 [12:07<00:15, 2.89it/s, loss=0.386]" ] }, { @@ -67852,7 +67852,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1956/2000 [12:24<00:14, 3.10it/s, loss=0.404]" + "training until 2000: 98%|█████████▊| 1956/2000 [12:07<00:15, 2.89it/s, loss=0.369]" ] }, { @@ -67860,7 +67860,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1957/2000 [12:25<00:13, 3.12it/s, loss=0.404]" + "training until 2000: 98%|█████████▊| 1957/2000 [12:07<00:14, 2.98it/s, loss=0.369]" ] }, { @@ -67868,7 +67868,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1957/2000 [12:25<00:13, 3.12it/s, loss=0.493]" + "training until 2000: 98%|█████████▊| 1957/2000 [12:07<00:14, 2.98it/s, loss=0.348]" ] }, { @@ -67876,7 +67876,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1958/2000 [12:25<00:13, 3.15it/s, loss=0.493]" + "training until 2000: 98%|█████████▊| 1958/2000 [12:07<00:13, 3.05it/s, loss=0.348]" ] }, { @@ -67884,7 +67884,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1958/2000 [12:25<00:13, 3.15it/s, loss=0.361]" + "training until 2000: 98%|█████████▊| 1958/2000 [12:07<00:13, 3.05it/s, loss=0.41] " ] }, { @@ -67892,7 +67892,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1959/2000 [12:25<00:13, 3.14it/s, loss=0.361]" + "training until 2000: 98%|█████████▊| 1959/2000 [12:08<00:13, 3.08it/s, loss=0.41]" ] }, { @@ -67900,7 +67900,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1959/2000 [12:25<00:13, 3.14it/s, loss=0.357]" + "training until 2000: 98%|█████████▊| 1959/2000 [12:08<00:13, 3.08it/s, loss=0.368]" ] }, { @@ -67908,7 +67908,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1960/2000 [12:26<00:12, 3.12it/s, loss=0.357]" + "training until 2000: 98%|█████████▊| 1960/2000 [12:08<00:12, 3.10it/s, loss=0.368]" ] }, { @@ -67916,7 +67916,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1960/2000 [12:26<00:12, 3.12it/s, loss=0.393]" + "training until 2000: 98%|█████████▊| 1960/2000 [12:08<00:12, 3.10it/s, loss=0.424]" ] }, { @@ -67924,7 +67924,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1961/2000 [12:26<00:15, 2.54it/s, loss=0.393]" + "training until 2000: 98%|█████████▊| 1961/2000 [12:08<00:12, 3.12it/s, loss=0.424]" ] }, { @@ -67932,7 +67932,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1961/2000 [12:26<00:15, 2.54it/s, loss=0.37] " + "training until 2000: 98%|█████████▊| 1961/2000 [12:08<00:12, 3.12it/s, loss=0.358]" ] }, { @@ -67940,7 +67940,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1962/2000 [12:26<00:14, 2.68it/s, loss=0.37]" + "training until 2000: 98%|█████████▊| 1962/2000 [12:09<00:12, 3.11it/s, loss=0.358]" ] }, { @@ -67948,7 +67948,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1962/2000 [12:26<00:14, 2.68it/s, loss=0.398]" + "training until 2000: 98%|█████████▊| 1962/2000 [12:09<00:12, 3.11it/s, loss=0.327]" ] }, { @@ -67956,7 +67956,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1963/2000 [12:27<00:13, 2.77it/s, loss=0.398]" + "training until 2000: 98%|█████████▊| 1963/2000 [12:09<00:11, 3.13it/s, loss=0.327]" ] }, { @@ -67964,7 +67964,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1963/2000 [12:27<00:13, 2.77it/s, loss=0.36] " + "training until 2000: 98%|█████████▊| 1963/2000 [12:09<00:11, 3.13it/s, loss=0.372]" ] }, { @@ -67972,7 +67972,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1964/2000 [12:27<00:12, 2.87it/s, loss=0.36]" + "training until 2000: 98%|█████████▊| 1964/2000 [12:09<00:11, 3.16it/s, loss=0.372]" ] }, { @@ -67980,7 +67980,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1964/2000 [12:27<00:12, 2.87it/s, loss=0.365]" + "training until 2000: 98%|█████████▊| 1964/2000 [12:09<00:11, 3.16it/s, loss=0.349]" ] }, { @@ -67988,7 +67988,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1965/2000 [12:27<00:11, 2.95it/s, loss=0.365]" + "training until 2000: 98%|█████████▊| 1965/2000 [12:10<00:11, 3.14it/s, loss=0.349]" ] }, { @@ -67996,7 +67996,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1965/2000 [12:27<00:11, 2.95it/s, loss=0.351]" + "training until 2000: 98%|█████████▊| 1965/2000 [12:10<00:11, 3.14it/s, loss=0.343]" ] }, { @@ -68004,7 +68004,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1966/2000 [12:28<00:11, 2.98it/s, loss=0.351]" + "training until 2000: 98%|█████████▊| 1966/2000 [12:10<00:10, 3.11it/s, loss=0.343]" ] }, { @@ -68012,7 +68012,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1966/2000 [12:28<00:11, 2.98it/s, loss=0.445]" + "training until 2000: 98%|█████████▊| 1966/2000 [12:10<00:10, 3.11it/s, loss=0.429]" ] }, { @@ -68020,7 +68020,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1967/2000 [12:28<00:10, 3.01it/s, loss=0.445]" + "training until 2000: 98%|█████████▊| 1967/2000 [12:10<00:10, 3.14it/s, loss=0.429]" ] }, { @@ -68028,7 +68028,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1967/2000 [12:28<00:10, 3.01it/s, loss=0.358]" + "training until 2000: 98%|█████████▊| 1967/2000 [12:10<00:10, 3.14it/s, loss=0.386]" ] }, { @@ -68036,7 +68036,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1968/2000 [12:28<00:10, 3.05it/s, loss=0.358]" + "training until 2000: 98%|█████████▊| 1968/2000 [12:10<00:10, 3.12it/s, loss=0.386]" ] }, { @@ -68044,7 +68044,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1968/2000 [12:28<00:10, 3.05it/s, loss=0.355]" + "training until 2000: 98%|█████████▊| 1968/2000 [12:10<00:10, 3.12it/s, loss=0.391]" ] }, { @@ -68052,7 +68052,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1969/2000 [12:29<00:10, 3.05it/s, loss=0.355]" + "training until 2000: 98%|█████████▊| 1969/2000 [12:11<00:09, 3.13it/s, loss=0.391]" ] }, { @@ -68060,7 +68060,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1969/2000 [12:29<00:10, 3.05it/s, loss=0.383]" + "training until 2000: 98%|█████████▊| 1969/2000 [12:11<00:09, 3.13it/s, loss=0.385]" ] }, { @@ -68068,7 +68068,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1970/2000 [12:29<00:09, 3.06it/s, loss=0.383]" + "training until 2000: 98%|█████████▊| 1970/2000 [12:11<00:09, 3.11it/s, loss=0.385]" ] }, { @@ -68076,7 +68076,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 98%|█████████▊| 1970/2000 [12:29<00:09, 3.06it/s, loss=0.349]" + "training until 2000: 98%|█████████▊| 1970/2000 [12:11<00:09, 3.11it/s, loss=0.445]" ] }, { @@ -68084,7 +68084,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▊| 1971/2000 [12:29<00:09, 3.09it/s, loss=0.349]" + "training until 2000: 99%|█████████▊| 1971/2000 [12:11<00:09, 3.12it/s, loss=0.445]" ] }, { @@ -68092,7 +68092,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▊| 1971/2000 [12:29<00:09, 3.09it/s, loss=0.405]" + "training until 2000: 99%|█████████▊| 1971/2000 [12:11<00:09, 3.12it/s, loss=0.359]" ] }, { @@ -68100,7 +68100,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▊| 1972/2000 [12:30<00:09, 3.08it/s, loss=0.405]" + "training until 2000: 99%|█████████▊| 1972/2000 [12:12<00:08, 3.14it/s, loss=0.359]" ] }, { @@ -68108,7 +68108,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▊| 1972/2000 [12:30<00:09, 3.08it/s, loss=0.394]" + "training until 2000: 99%|█████████▊| 1972/2000 [12:12<00:08, 3.14it/s, loss=0.509]" ] }, { @@ -68116,7 +68116,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▊| 1973/2000 [12:30<00:08, 3.10it/s, loss=0.394]" + "training until 2000: 99%|█████████▊| 1973/2000 [12:12<00:08, 3.16it/s, loss=0.509]" ] }, { @@ -68124,7 +68124,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▊| 1973/2000 [12:30<00:08, 3.10it/s, loss=0.359]" + "training until 2000: 99%|█████████▊| 1973/2000 [12:12<00:08, 3.16it/s, loss=0.386]" ] }, { @@ -68132,7 +68132,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▊| 1974/2000 [12:30<00:08, 3.10it/s, loss=0.359]" + "training until 2000: 99%|█████████▊| 1974/2000 [12:12<00:08, 3.15it/s, loss=0.386]" ] }, { @@ -68140,7 +68140,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▊| 1974/2000 [12:30<00:08, 3.10it/s, loss=0.383]" + "training until 2000: 99%|█████████▊| 1974/2000 [12:12<00:08, 3.15it/s, loss=0.349]" ] }, { @@ -68148,7 +68148,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1975/2000 [12:31<00:07, 3.13it/s, loss=0.383]" + "training until 2000: 99%|█████████▉| 1975/2000 [12:13<00:07, 3.13it/s, loss=0.349]" ] }, { @@ -68156,7 +68156,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1975/2000 [12:31<00:07, 3.13it/s, loss=0.346]" + "training until 2000: 99%|█████████▉| 1975/2000 [12:13<00:07, 3.13it/s, loss=0.352]" ] }, { @@ -68164,7 +68164,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1976/2000 [12:31<00:07, 3.13it/s, loss=0.346]" + "training until 2000: 99%|█████████▉| 1976/2000 [12:13<00:07, 3.17it/s, loss=0.352]" ] }, { @@ -68172,7 +68172,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1976/2000 [12:31<00:07, 3.13it/s, loss=0.395]" + "training until 2000: 99%|█████████▉| 1976/2000 [12:13<00:07, 3.17it/s, loss=0.357]" ] }, { @@ -68180,7 +68180,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1977/2000 [12:31<00:07, 3.12it/s, loss=0.395]" + "training until 2000: 99%|█████████▉| 1977/2000 [12:13<00:07, 3.15it/s, loss=0.357]" ] }, { @@ -68188,7 +68188,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1977/2000 [12:31<00:07, 3.12it/s, loss=0.378]" + "training until 2000: 99%|█████████▉| 1977/2000 [12:13<00:07, 3.15it/s, loss=0.358]" ] }, { @@ -68196,7 +68196,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1978/2000 [12:32<00:06, 3.15it/s, loss=0.378]" + "training until 2000: 99%|█████████▉| 1978/2000 [12:14<00:06, 3.15it/s, loss=0.358]" ] }, { @@ -68204,7 +68204,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1978/2000 [12:32<00:06, 3.15it/s, loss=0.393]" + "training until 2000: 99%|█████████▉| 1978/2000 [12:14<00:06, 3.15it/s, loss=0.369]" ] }, { @@ -68212,7 +68212,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1979/2000 [12:32<00:06, 3.14it/s, loss=0.393]" + "training until 2000: 99%|█████████▉| 1979/2000 [12:14<00:06, 3.10it/s, loss=0.369]" ] }, { @@ -68220,7 +68220,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1979/2000 [12:32<00:06, 3.14it/s, loss=0.372]" + "training until 2000: 99%|█████████▉| 1979/2000 [12:14<00:06, 3.10it/s, loss=0.416]" ] }, { @@ -68228,7 +68228,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1980/2000 [12:32<00:06, 3.15it/s, loss=0.372]" + "training until 2000: 99%|█████████▉| 1980/2000 [12:14<00:06, 3.12it/s, loss=0.416]" ] }, { @@ -68236,7 +68236,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1980/2000 [12:32<00:06, 3.15it/s, loss=0.366]" + "training until 2000: 99%|█████████▉| 1980/2000 [12:14<00:06, 3.12it/s, loss=0.404]" ] }, { @@ -68244,7 +68244,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1981/2000 [12:33<00:06, 3.15it/s, loss=0.366]" + "training until 2000: 99%|█████████▉| 1981/2000 [12:15<00:05, 3.17it/s, loss=0.404]" ] }, { @@ -68252,7 +68252,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1981/2000 [12:33<00:06, 3.15it/s, loss=0.361]" + "training until 2000: 99%|█████████▉| 1981/2000 [12:15<00:05, 3.17it/s, loss=0.363]" ] }, { @@ -68260,7 +68260,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1982/2000 [12:33<00:05, 3.10it/s, loss=0.361]" + "training until 2000: 99%|█████████▉| 1982/2000 [12:15<00:05, 3.15it/s, loss=0.363]" ] }, { @@ -68268,7 +68268,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1982/2000 [12:33<00:05, 3.10it/s, loss=0.379]" + "training until 2000: 99%|█████████▉| 1982/2000 [12:15<00:05, 3.15it/s, loss=0.334]" ] }, { @@ -68276,7 +68276,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1983/2000 [12:33<00:05, 3.10it/s, loss=0.379]" + "training until 2000: 99%|█████████▉| 1983/2000 [12:15<00:05, 3.16it/s, loss=0.334]" ] }, { @@ -68284,7 +68284,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1983/2000 [12:33<00:05, 3.10it/s, loss=0.36] " + "training until 2000: 99%|█████████▉| 1983/2000 [12:15<00:05, 3.16it/s, loss=0.361]" ] }, { @@ -68292,7 +68292,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1984/2000 [12:34<00:05, 3.09it/s, loss=0.36]" + "training until 2000: 99%|█████████▉| 1984/2000 [12:16<00:05, 3.15it/s, loss=0.361]" ] }, { @@ -68300,7 +68300,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1984/2000 [12:34<00:05, 3.09it/s, loss=0.391]" + "training until 2000: 99%|█████████▉| 1984/2000 [12:16<00:05, 3.15it/s, loss=0.361]" ] }, { @@ -68308,7 +68308,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1985/2000 [12:34<00:04, 3.06it/s, loss=0.391]" + "training until 2000: 99%|█████████▉| 1985/2000 [12:16<00:04, 3.11it/s, loss=0.361]" ] }, { @@ -68316,7 +68316,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1985/2000 [12:34<00:04, 3.06it/s, loss=0.357]" + "training until 2000: 99%|█████████▉| 1985/2000 [12:16<00:04, 3.11it/s, loss=0.345]" ] }, { @@ -68324,7 +68324,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1986/2000 [12:34<00:04, 3.09it/s, loss=0.357]" + "training until 2000: 99%|█████████▉| 1986/2000 [12:16<00:04, 3.12it/s, loss=0.345]" ] }, { @@ -68332,7 +68332,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1986/2000 [12:34<00:04, 3.09it/s, loss=0.365]" + "training until 2000: 99%|█████████▉| 1986/2000 [12:16<00:04, 3.12it/s, loss=0.562]" ] }, { @@ -68340,7 +68340,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1987/2000 [12:35<00:04, 3.10it/s, loss=0.365]" + "training until 2000: 99%|█████████▉| 1987/2000 [12:17<00:04, 3.13it/s, loss=0.562]" ] }, { @@ -68348,7 +68348,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1987/2000 [12:35<00:04, 3.10it/s, loss=0.357]" + "training until 2000: 99%|█████████▉| 1987/2000 [12:17<00:04, 3.13it/s, loss=0.363]" ] }, { @@ -68356,7 +68356,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1988/2000 [12:35<00:03, 3.11it/s, loss=0.357]" + "training until 2000: 99%|█████████▉| 1988/2000 [12:17<00:03, 3.12it/s, loss=0.363]" ] }, { @@ -68364,7 +68364,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1988/2000 [12:35<00:03, 3.11it/s, loss=0.355]" + "training until 2000: 99%|█████████▉| 1988/2000 [12:17<00:03, 3.12it/s, loss=0.393]" ] }, { @@ -68372,7 +68372,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1989/2000 [12:35<00:03, 3.11it/s, loss=0.355]" + "training until 2000: 99%|█████████▉| 1989/2000 [12:17<00:03, 3.13it/s, loss=0.393]" ] }, { @@ -68380,7 +68380,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 99%|█████████▉| 1989/2000 [12:35<00:03, 3.11it/s, loss=0.354]" + "training until 2000: 99%|█████████▉| 1989/2000 [12:17<00:03, 3.13it/s, loss=0.465]" ] }, { @@ -68388,7 +68388,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1990/2000 [12:35<00:03, 3.12it/s, loss=0.354]" + "training until 2000: 100%|█████████▉| 1990/2000 [12:17<00:03, 3.14it/s, loss=0.465]" ] }, { @@ -68396,7 +68396,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1990/2000 [12:35<00:03, 3.12it/s, loss=0.348]" + "training until 2000: 100%|█████████▉| 1990/2000 [12:17<00:03, 3.14it/s, loss=0.344]" ] }, { @@ -68404,7 +68404,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1991/2000 [12:36<00:02, 3.11it/s, loss=0.348]" + "training until 2000: 100%|█████████▉| 1991/2000 [12:18<00:02, 3.15it/s, loss=0.344]" ] }, { @@ -68412,7 +68412,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1991/2000 [12:36<00:02, 3.11it/s, loss=0.361]" + "training until 2000: 100%|█████████▉| 1991/2000 [12:18<00:02, 3.15it/s, loss=0.365]" ] }, { @@ -68420,7 +68420,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1992/2000 [12:36<00:02, 3.10it/s, loss=0.361]" + "training until 2000: 100%|█████████▉| 1992/2000 [12:18<00:02, 3.13it/s, loss=0.365]" ] }, { @@ -68428,7 +68428,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1992/2000 [12:36<00:02, 3.10it/s, loss=0.364]" + "training until 2000: 100%|█████████▉| 1992/2000 [12:18<00:02, 3.13it/s, loss=0.362]" ] }, { @@ -68436,7 +68436,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1993/2000 [12:36<00:02, 3.13it/s, loss=0.364]" + "training until 2000: 100%|█████████▉| 1993/2000 [12:18<00:02, 3.08it/s, loss=0.362]" ] }, { @@ -68444,7 +68444,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1993/2000 [12:36<00:02, 3.13it/s, loss=0.368]" + "training until 2000: 100%|█████████▉| 1993/2000 [12:18<00:02, 3.08it/s, loss=0.36] " ] }, { @@ -68452,7 +68452,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1994/2000 [12:37<00:01, 3.15it/s, loss=0.368]" + "training until 2000: 100%|█████████▉| 1994/2000 [12:19<00:01, 3.11it/s, loss=0.36]" ] }, { @@ -68460,7 +68460,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1994/2000 [12:37<00:01, 3.15it/s, loss=0.418]" + "training until 2000: 100%|█████████▉| 1994/2000 [12:19<00:01, 3.11it/s, loss=0.365]" ] }, { @@ -68468,7 +68468,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1995/2000 [12:37<00:01, 3.07it/s, loss=0.418]" + "training until 2000: 100%|█████████▉| 1995/2000 [12:19<00:01, 3.07it/s, loss=0.365]" ] }, { @@ -68476,7 +68476,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1995/2000 [12:37<00:01, 3.07it/s, loss=0.364]" + "training until 2000: 100%|█████████▉| 1995/2000 [12:19<00:01, 3.07it/s, loss=0.446]" ] }, { @@ -68484,7 +68484,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1996/2000 [12:37<00:01, 3.07it/s, loss=0.364]" + "training until 2000: 100%|█████████▉| 1996/2000 [12:19<00:01, 3.07it/s, loss=0.446]" ] }, { @@ -68492,7 +68492,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1996/2000 [12:37<00:01, 3.07it/s, loss=0.419]" + "training until 2000: 100%|█████████▉| 1996/2000 [12:19<00:01, 3.07it/s, loss=0.413]" ] }, { @@ -68500,7 +68500,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1997/2000 [12:38<00:00, 3.06it/s, loss=0.419]" + "training until 2000: 100%|█████████▉| 1997/2000 [12:20<00:00, 3.09it/s, loss=0.413]" ] }, { @@ -68508,7 +68508,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1997/2000 [12:38<00:00, 3.06it/s, loss=0.39] " + "training until 2000: 100%|█████████▉| 1997/2000 [12:20<00:00, 3.09it/s, loss=0.367]" ] }, { @@ -68516,7 +68516,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1998/2000 [12:38<00:00, 3.09it/s, loss=0.39]" + "training until 2000: 100%|█████████▉| 1998/2000 [12:20<00:00, 3.12it/s, loss=0.367]" ] }, { @@ -68524,7 +68524,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1998/2000 [12:38<00:00, 3.09it/s, loss=0.355]" + "training until 2000: 100%|█████████▉| 1998/2000 [12:20<00:00, 3.12it/s, loss=0.59] " ] }, { @@ -68532,7 +68532,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1999/2000 [12:38<00:00, 3.10it/s, loss=0.355]" + "training until 2000: 100%|█████████▉| 1999/2000 [12:20<00:00, 3.08it/s, loss=0.59]" ] }, { @@ -68540,7 +68540,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|█████████▉| 1999/2000 [12:38<00:00, 3.10it/s, loss=0.379]" + "training until 2000: 100%|█████████▉| 1999/2000 [12:20<00:00, 3.08it/s, loss=0.358]" ] }, { @@ -68548,7 +68548,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|██████████| 2000/2000 [12:39<00:00, 3.10it/s, loss=0.379]" + "training until 2000: 100%|██████████| 2000/2000 [12:21<00:00, 3.08it/s, loss=0.358]" ] }, { @@ -68556,7 +68556,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|██████████| 2000/2000 [12:39<00:00, 3.10it/s, loss=0.345]" + "training until 2000: 100%|██████████| 2000/2000 [12:21<00:00, 3.08it/s, loss=0.434]" ] }, { @@ -68644,7 +68644,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:10, 20.63blocks/s, ⧗=0, ▶=1, ✔=1, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:10, 20.66blocks/s, ⧗=0, ▶=1, ✔=1, ✗=0, ∅=0]" ] }, { @@ -68666,7 +68666,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:21, 10.11blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 0%| | 1/216 [00:00<00:23, 9.02blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" ] }, { @@ -68688,7 +68688,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:10, 19.87blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:11, 17.88blocks/s, ⧗=0, ▶=0, ✔=2, ✗=0, ∅=0]" ] }, { @@ -68710,7 +68710,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:10, 19.87blocks/s, ⧗=0, ▶=1, ✔=2, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:11, 17.88blocks/s, ⧗=0, ▶=1, ✔=2, ✗=0, ∅=0]" ] }, { @@ -68732,7 +68732,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:10, 19.87blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%| | 2/216 [00:00<00:11, 17.88blocks/s, ⧗=0, ▶=0, ✔=3, ✗=0, ∅=0]" ] }, { @@ -68754,7 +68754,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 19.87blocks/s, ⧗=0, ▶=1, ✔=3, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:11, 17.88blocks/s, ⧗=0, ▶=1, ✔=3, ✗=0, ∅=0]" ] }, { @@ -68776,7 +68776,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:10, 19.87blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 1%|▏ | 3/216 [00:00<00:11, 17.88blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" ] }, { @@ -68798,7 +68798,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 18.89blocks/s, ⧗=0, ▶=0, ✔=4, ✗=0, ∅=0]" ] }, { @@ -68820,7 +68820,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=1, ✔=4, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 18.89blocks/s, ⧗=0, ▶=1, ✔=4, ✗=0, ∅=0]" ] }, { @@ -68842,7 +68842,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=0, ✔=5, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 4/216 [00:00<00:11, 18.89blocks/s, ⧗=0, ▶=0, ✔=5, ✗=0, ∅=0]" ] }, { @@ -68864,7 +68864,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=1, ✔=5, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:11, 18.89blocks/s, ⧗=0, ▶=1, ✔=5, ✗=0, ∅=0]" ] }, { @@ -68886,7 +68886,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 2%|▏ | 5/216 [00:00<00:11, 18.89blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" ] }, { @@ -68908,7 +68908,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 17.76blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=0, ✔=6, ✗=0, ∅=0]" ] }, { @@ -68930,7 +68930,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.62blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=1, ✔=6, ✗=0, ∅=0]" ] }, { @@ -68952,7 +68952,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.62blocks/s, ⧗=0, ▶=0, ✔=7, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 6/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=0, ✔=7, ✗=0, ∅=0]" ] }, { @@ -68974,7 +68974,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:11, 18.62blocks/s, ⧗=0, ▶=1, ✔=7, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=1, ✔=7, ✗=0, ∅=0]" ] }, { @@ -68996,7 +68996,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:11, 18.62blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 3%|▎ | 7/216 [00:00<00:11, 18.43blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" ] }, { @@ -69018,7 +69018,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.06blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 18.84blocks/s, ⧗=0, ▶=0, ✔=8, ✗=0, ∅=0]" ] }, { @@ -69040,7 +69040,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.06blocks/s, ⧗=0, ▶=1, ✔=8, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 18.84blocks/s, ⧗=0, ▶=1, ✔=8, ✗=0, ∅=0]" ] }, { @@ -69062,7 +69062,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:10, 19.06blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▎ | 8/216 [00:00<00:11, 18.84blocks/s, ⧗=0, ▶=0, ✔=9, ✗=0, ∅=0]" ] }, { @@ -69084,7 +69084,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.06blocks/s, ⧗=0, ▶=1, ✔=9, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 18.84blocks/s, ⧗=0, ▶=1, ✔=9, ✗=0, ∅=0]" ] }, { @@ -69106,7 +69106,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 19.06blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 4%|▍ | 9/216 [00:00<00:10, 18.84blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" ] }, { @@ -69128,7 +69128,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.69blocks/s, ⧗=0, ▶=0, ✔=10, ✗=0, ∅=0]" ] }, { @@ -69150,7 +69150,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=1, ✔=10, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.69blocks/s, ⧗=0, ▶=1, ✔=10, ✗=0, ∅=0]" ] }, { @@ -69172,7 +69172,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▍ | 10/216 [00:00<00:11, 18.69blocks/s, ⧗=0, ▶=0, ✔=11, ✗=0, ∅=0]" ] }, { @@ -69194,7 +69194,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=1, ✔=11, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 18.69blocks/s, ⧗=0, ▶=1, ✔=11, ✗=0, ∅=0]" ] }, { @@ -69216,7 +69216,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 18.86blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 5%|▌ | 11/216 [00:00<00:10, 18.69blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" ] }, { @@ -69238,7 +69238,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.73blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.88blocks/s, ⧗=0, ▶=0, ✔=12, ✗=0, ∅=0]" ] }, { @@ -69260,7 +69260,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.73blocks/s, ⧗=0, ▶=1, ✔=12, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.88blocks/s, ⧗=0, ▶=1, ✔=12, ✗=0, ∅=0]" ] }, { @@ -69282,7 +69282,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.73blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 12/216 [00:00<00:10, 18.88blocks/s, ⧗=0, ▶=0, ✔=13, ✗=0, ∅=0]" ] }, { @@ -69304,7 +69304,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 18.73blocks/s, ⧗=0, ▶=1, ✔=13, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 18.88blocks/s, ⧗=0, ▶=1, ✔=13, ✗=0, ∅=0]" ] }, { @@ -69326,7 +69326,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 18.73blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▌ | 13/216 [00:00<00:10, 18.88blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" ] }, { @@ -69348,7 +69348,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:11, 17.57blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 18.80blocks/s, ⧗=0, ▶=0, ✔=14, ✗=0, ∅=0]" ] }, { @@ -69370,7 +69370,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:11, 17.57blocks/s, ⧗=0, ▶=1, ✔=14, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 18.80blocks/s, ⧗=0, ▶=1, ✔=14, ✗=0, ∅=0]" ] }, { @@ -69392,7 +69392,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:11, 17.57blocks/s, ⧗=0, ▶=0, ✔=15, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 6%|▋ | 14/216 [00:00<00:10, 18.80blocks/s, ⧗=0, ▶=0, ✔=15, ✗=0, ∅=0]" ] }, { @@ -69414,7 +69414,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:11, 17.57blocks/s, ⧗=0, ▶=1, ✔=15, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:10, 18.80blocks/s, ⧗=0, ▶=1, ✔=15, ✗=0, ∅=0]" ] }, { @@ -69436,7 +69436,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:11, 17.57blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 15/216 [00:00<00:10, 18.80blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" ] }, { @@ -69458,7 +69458,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.25blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:10, 18.19blocks/s, ⧗=0, ▶=0, ✔=16, ✗=0, ∅=0]" ] }, { @@ -69480,7 +69480,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.25blocks/s, ⧗=0, ▶=1, ✔=16, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:10, 18.19blocks/s, ⧗=0, ▶=1, ✔=16, ✗=0, ∅=0]" ] }, { @@ -69502,7 +69502,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:11, 17.25blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 7%|▋ | 16/216 [00:00<00:10, 18.19blocks/s, ⧗=0, ▶=0, ✔=17, ✗=0, ∅=0]" ] }, { @@ -69524,7 +69524,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:11, 17.25blocks/s, ⧗=0, ▶=1, ✔=17, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:10, 18.19blocks/s, ⧗=0, ▶=1, ✔=17, ✗=0, ∅=0]" ] }, { @@ -69546,7 +69546,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:01<00:11, 17.25blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 17/216 [00:00<00:10, 18.19blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" ] }, { @@ -69568,7 +69568,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.16blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:00<00:11, 17.86blocks/s, ⧗=0, ▶=0, ✔=18, ✗=0, ∅=0]" ] }, { @@ -69590,7 +69590,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.16blocks/s, ⧗=0, ▶=1, ✔=18, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:00<00:11, 17.86blocks/s, ⧗=0, ▶=1, ✔=18, ✗=0, ∅=0]" ] }, { @@ -69612,7 +69612,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.16blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 8%|▊ | 18/216 [00:01<00:11, 17.86blocks/s, ⧗=0, ▶=0, ✔=19, ✗=0, ∅=0]" ] }, { @@ -69634,7 +69634,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.16blocks/s, ⧗=0, ▶=1, ✔=19, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.86blocks/s, ⧗=0, ▶=1, ✔=19, ✗=0, ∅=0]" ] }, { @@ -69656,7 +69656,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.16blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 19/216 [00:01<00:11, 17.86blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" ] }, { @@ -69678,7 +69678,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.62blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.75blocks/s, ⧗=0, ▶=0, ✔=20, ✗=0, ∅=0]" ] }, { @@ -69700,7 +69700,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.62blocks/s, ⧗=0, ▶=1, ✔=20, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.75blocks/s, ⧗=0, ▶=1, ✔=20, ✗=0, ∅=0]" ] }, { @@ -69722,7 +69722,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.62blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 9%|▉ | 20/216 [00:01<00:11, 17.75blocks/s, ⧗=0, ▶=0, ✔=21, ✗=0, ∅=0]" ] }, { @@ -69744,7 +69744,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 17.62blocks/s, ⧗=0, ▶=1, ✔=21, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:10, 17.75blocks/s, ⧗=0, ▶=1, ✔=21, ✗=0, ∅=0]" ] }, { @@ -69766,7 +69766,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:11, 17.62blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|▉ | 21/216 [00:01<00:10, 17.75blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" ] }, { @@ -69788,7 +69788,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.77blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.92blocks/s, ⧗=0, ▶=0, ✔=22, ✗=0, ∅=0]" ] }, { @@ -69810,7 +69810,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.77blocks/s, ⧗=0, ▶=1, ✔=22, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.92blocks/s, ⧗=0, ▶=1, ✔=22, ✗=0, ∅=0]" ] }, { @@ -69832,7 +69832,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.77blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 10%|█ | 22/216 [00:01<00:10, 17.92blocks/s, ⧗=0, ▶=0, ✔=23, ✗=0, ∅=0]" ] }, { @@ -69854,7 +69854,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 17.77blocks/s, ⧗=0, ▶=1, ✔=23, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 17.92blocks/s, ⧗=0, ▶=1, ✔=23, ✗=0, ∅=0]" ] }, { @@ -69876,7 +69876,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 17.77blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 23/216 [00:01<00:10, 17.92blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" ] }, { @@ -69898,7 +69898,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:11, 16.96blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.62blocks/s, ⧗=0, ▶=0, ✔=24, ✗=0, ∅=0]" ] }, { @@ -69920,7 +69920,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:11, 16.96blocks/s, ⧗=0, ▶=1, ✔=24, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.62blocks/s, ⧗=0, ▶=1, ✔=24, ✗=0, ∅=0]" ] }, { @@ -69942,7 +69942,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:11, 16.96blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 11%|█ | 24/216 [00:01<00:10, 17.62blocks/s, ⧗=0, ▶=0, ✔=25, ✗=0, ∅=0]" ] }, { @@ -69964,7 +69964,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:11, 16.96blocks/s, ⧗=0, ▶=1, ✔=25, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 17.62blocks/s, ⧗=0, ▶=1, ✔=25, ✗=0, ∅=0]" ] }, { @@ -69986,7 +69986,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:11, 16.96blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 25/216 [00:01<00:10, 17.62blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" ] }, { @@ -70008,7 +70008,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:11, 16.84blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=0, ✔=26, ✗=0, ∅=0]" ] }, { @@ -70030,7 +70030,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:11, 16.84blocks/s, ⧗=0, ▶=1, ✔=26, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=1, ✔=26, ✗=0, ∅=0]" ] }, { @@ -70052,7 +70052,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:11, 16.84blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▏ | 26/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=0, ✔=27, ✗=0, ∅=0]" ] }, { @@ -70074,7 +70074,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:11, 16.84blocks/s, ⧗=0, ▶=1, ✔=27, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=1, ✔=27, ✗=0, ∅=0]" ] }, { @@ -70096,7 +70096,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:11, 16.84blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 12%|█▎ | 27/216 [00:01<00:10, 18.07blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" ] }, { @@ -70118,7 +70118,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.18blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 18.12blocks/s, ⧗=0, ▶=0, ✔=28, ✗=0, ∅=0]" ] }, { @@ -70140,7 +70140,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.18blocks/s, ⧗=0, ▶=1, ✔=28, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 18.12blocks/s, ⧗=0, ▶=1, ✔=28, ✗=0, ∅=0]" ] }, { @@ -70162,7 +70162,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 17.18blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 28/216 [00:01<00:10, 18.12blocks/s, ⧗=0, ▶=0, ✔=29, ✗=0, ∅=0]" ] }, { @@ -70184,7 +70184,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.18blocks/s, ⧗=0, ▶=1, ✔=29, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 18.12blocks/s, ⧗=0, ▶=1, ✔=29, ✗=0, ∅=0]" ] }, { @@ -70206,7 +70206,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 17.18blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 13%|█▎ | 29/216 [00:01<00:10, 18.12blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" ] }, { @@ -70228,7 +70228,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 17.67blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.50blocks/s, ⧗=0, ▶=0, ✔=30, ✗=0, ∅=0]" ] }, { @@ -70250,7 +70250,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 17.67blocks/s, ⧗=0, ▶=1, ✔=30, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.50blocks/s, ⧗=0, ▶=1, ✔=30, ✗=0, ∅=0]" ] }, { @@ -70272,7 +70272,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 17.67blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 30/216 [00:01<00:10, 18.50blocks/s, ⧗=0, ▶=0, ✔=31, ✗=0, ∅=0]" ] }, { @@ -70294,7 +70294,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 17.67blocks/s, ⧗=0, ▶=1, ✔=31, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 18.50blocks/s, ⧗=0, ▶=1, ✔=31, ✗=0, ∅=0]" ] }, { @@ -70316,7 +70316,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 17.67blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 14%|█▍ | 31/216 [00:01<00:10, 18.50blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" ] }, { @@ -70338,7 +70338,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:10, 18.28blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.92blocks/s, ⧗=0, ▶=0, ✔=32, ✗=0, ∅=0]" ] }, { @@ -70360,7 +70360,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:10, 18.28blocks/s, ⧗=0, ▶=1, ✔=32, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.92blocks/s, ⧗=0, ▶=1, ✔=32, ✗=0, ∅=0]" ] }, { @@ -70382,7 +70382,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:10, 18.28blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▍ | 32/216 [00:01<00:09, 18.92blocks/s, ⧗=0, ▶=0, ✔=33, ✗=0, ∅=0]" ] }, { @@ -70404,7 +70404,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 18.28blocks/s, ⧗=0, ▶=1, ✔=33, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:09, 18.92blocks/s, ⧗=0, ▶=1, ✔=33, ✗=0, ∅=0]" ] }, { @@ -70426,7 +70426,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:10, 18.28blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 15%|█▌ | 33/216 [00:01<00:09, 18.92blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" ] }, { @@ -70448,7 +70448,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.38blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 17.64blocks/s, ⧗=0, ▶=0, ✔=34, ✗=0, ∅=0]" ] }, { @@ -70470,7 +70470,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.38blocks/s, ⧗=0, ▶=1, ✔=34, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 17.64blocks/s, ⧗=0, ▶=1, ✔=34, ✗=0, ∅=0]" ] }, { @@ -70492,7 +70492,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:09, 18.38blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 34/216 [00:01<00:10, 17.64blocks/s, ⧗=0, ▶=0, ✔=35, ✗=0, ∅=0]" ] }, { @@ -70514,7 +70514,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:09, 18.38blocks/s, ⧗=0, ▶=1, ✔=35, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:10, 17.64blocks/s, ⧗=0, ▶=1, ✔=35, ✗=0, ∅=0]" ] }, { @@ -70536,7 +70536,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:09, 18.38blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 16%|█▌ | 35/216 [00:01<00:10, 17.64blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" ] }, { @@ -70558,7 +70558,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.38blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.10blocks/s, ⧗=0, ▶=0, ✔=36, ✗=0, ∅=0]" ] }, { @@ -70580,7 +70580,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.80blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:01<00:09, 18.10blocks/s, ⧗=0, ▶=1, ✔=36, ✗=0, ∅=0]" ] }, { @@ -70602,7 +70602,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.80blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 36/216 [00:02<00:09, 18.10blocks/s, ⧗=0, ▶=0, ✔=37, ✗=0, ∅=0]" ] }, { @@ -70624,7 +70624,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.80blocks/s, ⧗=0, ▶=1, ✔=37, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.10blocks/s, ⧗=0, ▶=1, ✔=37, ✗=0, ∅=0]" ] }, { @@ -70646,7 +70646,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.80blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 17%|█▋ | 37/216 [00:02<00:09, 18.10blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" ] }, { @@ -70668,7 +70668,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.97blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.25blocks/s, ⧗=0, ▶=0, ✔=38, ✗=0, ∅=0]" ] }, { @@ -70690,7 +70690,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.97blocks/s, ⧗=0, ▶=1, ✔=38, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.25blocks/s, ⧗=0, ▶=1, ✔=38, ✗=0, ∅=0]" ] }, { @@ -70712,7 +70712,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.97blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 38/216 [00:02<00:09, 18.25blocks/s, ⧗=0, ▶=0, ✔=39, ✗=0, ∅=0]" ] }, { @@ -70734,7 +70734,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.97blocks/s, ⧗=0, ▶=1, ✔=39, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.25blocks/s, ⧗=0, ▶=1, ✔=39, ✗=0, ∅=0]" ] }, { @@ -70756,7 +70756,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.97blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 18%|█▊ | 39/216 [00:02<00:09, 18.25blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" ] }, { @@ -70778,7 +70778,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.47blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:10, 17.44blocks/s, ⧗=0, ▶=0, ✔=40, ✗=0, ∅=0]" ] }, { @@ -70800,7 +70800,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.47blocks/s, ⧗=0, ▶=1, ✔=40, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:10, 17.44blocks/s, ⧗=0, ▶=1, ✔=40, ✗=0, ∅=0]" ] }, { @@ -70822,7 +70822,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:09, 18.47blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▊ | 40/216 [00:02<00:10, 17.44blocks/s, ⧗=0, ▶=0, ✔=41, ✗=0, ∅=0]" ] }, { @@ -70844,7 +70844,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.47blocks/s, ⧗=0, ▶=1, ✔=41, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:10, 17.44blocks/s, ⧗=0, ▶=1, ✔=41, ✗=0, ∅=0]" ] }, { @@ -70866,7 +70866,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:09, 18.47blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 41/216 [00:02<00:10, 17.44blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" ] }, { @@ -70888,7 +70888,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.53blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 17.51blocks/s, ⧗=0, ▶=0, ✔=42, ✗=0, ∅=0]" ] }, { @@ -70910,7 +70910,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.53blocks/s, ⧗=0, ▶=1, ✔=42, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 17.51blocks/s, ⧗=0, ▶=1, ✔=42, ✗=0, ∅=0]" ] }, { @@ -70932,7 +70932,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 18.53blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 19%|█▉ | 42/216 [00:02<00:09, 17.51blocks/s, ⧗=0, ▶=0, ✔=43, ✗=0, ∅=0]" ] }, { @@ -70954,7 +70954,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.53blocks/s, ⧗=0, ▶=1, ✔=43, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 17.51blocks/s, ⧗=0, ▶=1, ✔=43, ✗=0, ∅=0]" ] }, { @@ -70976,7 +70976,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 18.53blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|█▉ | 43/216 [00:02<00:09, 17.51blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" ] }, { @@ -70998,7 +70998,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.41blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.68blocks/s, ⧗=0, ▶=0, ✔=44, ✗=0, ∅=0]" ] }, { @@ -71020,7 +71020,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.41blocks/s, ⧗=0, ▶=1, ✔=44, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.68blocks/s, ⧗=0, ▶=1, ✔=44, ✗=0, ∅=0]" ] }, { @@ -71042,7 +71042,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 18.41blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 20%|██ | 44/216 [00:02<00:09, 17.68blocks/s, ⧗=0, ▶=0, ✔=45, ✗=0, ∅=0]" ] }, { @@ -71064,7 +71064,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 18.41blocks/s, ⧗=0, ▶=1, ✔=45, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.68blocks/s, ⧗=0, ▶=1, ✔=45, ✗=0, ∅=0]" ] }, { @@ -71086,7 +71086,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 18.41blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██ | 45/216 [00:02<00:09, 17.68blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" ] }, { @@ -71108,7 +71108,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.84blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=0, ✔=46, ✗=0, ∅=0]" ] }, { @@ -71130,7 +71130,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.84blocks/s, ⧗=0, ▶=1, ✔=46, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=1, ✔=46, ✗=0, ∅=0]" ] }, { @@ -71152,7 +71152,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:09, 17.84blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 21%|██▏ | 46/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=0, ✔=47, ✗=0, ∅=0]" ] }, { @@ -71174,7 +71174,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.84blocks/s, ⧗=0, ▶=1, ✔=47, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=1, ✔=47, ✗=0, ∅=0]" ] }, { @@ -71196,7 +71196,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:09, 17.84blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 47/216 [00:02<00:10, 16.61blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" ] }, { @@ -71218,7 +71218,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=0, ✔=48, ✗=0, ∅=0]" ] }, { @@ -71240,7 +71240,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=1, ✔=48, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=1, ✔=48, ✗=0, ∅=0]" ] }, { @@ -71262,7 +71262,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 22%|██▏ | 48/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=0, ✔=49, ✗=0, ∅=0]" ] }, { @@ -71284,7 +71284,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=1, ✔=49, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=1, ✔=49, ✗=0, ∅=0]" ] }, { @@ -71306,7 +71306,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:09, 17.88blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 49/216 [00:02<00:10, 16.25blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" ] }, { @@ -71328,7 +71328,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.04blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 15.78blocks/s, ⧗=0, ▶=0, ✔=50, ✗=0, ∅=0]" ] }, { @@ -71350,7 +71350,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.04blocks/s, ⧗=0, ▶=1, ✔=50, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 15.78blocks/s, ⧗=0, ▶=1, ✔=50, ✗=0, ∅=0]" ] }, { @@ -71372,7 +71372,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 16.04blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 23%|██▎ | 50/216 [00:02<00:10, 15.78blocks/s, ⧗=0, ▶=0, ✔=51, ✗=0, ∅=0]" ] }, { @@ -71394,7 +71394,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.04blocks/s, ⧗=0, ▶=1, ✔=51, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 15.78blocks/s, ⧗=0, ▶=1, ✔=51, ✗=0, ∅=0]" ] }, { @@ -71416,7 +71416,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 16.04blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▎ | 51/216 [00:02<00:10, 15.78blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" ] }, { @@ -71438,7 +71438,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.24blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:11, 14.60blocks/s, ⧗=0, ▶=0, ✔=52, ✗=0, ∅=0]" ] }, { @@ -71460,7 +71460,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:10, 15.24blocks/s, ⧗=0, ▶=1, ✔=52, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:02<00:11, 14.60blocks/s, ⧗=0, ▶=1, ✔=52, ✗=0, ∅=0]" ] }, { @@ -71482,7 +71482,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:03<00:10, 15.24blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 24%|██▍ | 52/216 [00:03<00:11, 14.60blocks/s, ⧗=0, ▶=0, ✔=53, ✗=0, ∅=0]" ] }, { @@ -71504,7 +71504,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.24blocks/s, ⧗=0, ▶=1, ✔=53, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:11, 14.60blocks/s, ⧗=0, ▶=1, ✔=53, ✗=0, ∅=0]" ] }, { @@ -71526,7 +71526,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:10, 15.24blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▍ | 53/216 [00:03<00:11, 14.60blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" ] }, { @@ -71548,7 +71548,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.22blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:11, 14.41blocks/s, ⧗=0, ▶=0, ✔=54, ✗=0, ∅=0]" ] }, { @@ -71570,7 +71570,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.22blocks/s, ⧗=0, ▶=1, ✔=54, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:11, 14.41blocks/s, ⧗=0, ▶=1, ✔=54, ✗=0, ∅=0]" ] }, { @@ -71592,7 +71592,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:10, 15.22blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 54/216 [00:03<00:11, 14.41blocks/s, ⧗=0, ▶=0, ✔=55, ✗=0, ∅=0]" ] }, { @@ -71614,7 +71614,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 15.22blocks/s, ⧗=0, ▶=1, ✔=55, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:11, 14.41blocks/s, ⧗=0, ▶=1, ✔=55, ✗=0, ∅=0]" ] }, { @@ -71636,7 +71636,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:10, 15.22blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 25%|██▌ | 55/216 [00:03<00:11, 14.41blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" ] }, { @@ -71658,7 +71658,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.80blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 14.89blocks/s, ⧗=0, ▶=0, ✔=56, ✗=0, ∅=0]" ] }, { @@ -71680,7 +71680,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.80blocks/s, ⧗=0, ▶=1, ✔=56, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 14.89blocks/s, ⧗=0, ▶=1, ✔=56, ✗=0, ∅=0]" ] }, { @@ -71702,7 +71702,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 15.80blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▌ | 56/216 [00:03<00:10, 14.89blocks/s, ⧗=0, ▶=0, ✔=57, ✗=0, ∅=0]" ] }, { @@ -71724,7 +71724,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.80blocks/s, ⧗=0, ▶=1, ✔=57, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 14.89blocks/s, ⧗=0, ▶=1, ✔=57, ✗=0, ∅=0]" ] }, { @@ -71746,7 +71746,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 15.80blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 26%|██▋ | 57/216 [00:03<00:10, 14.89blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" ] }, { @@ -71768,7 +71768,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:09, 15.92blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 14.88blocks/s, ⧗=0, ▶=0, ✔=58, ✗=0, ∅=0]" ] }, { @@ -71790,7 +71790,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:09, 15.92blocks/s, ⧗=0, ▶=1, ✔=58, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 14.88blocks/s, ⧗=0, ▶=1, ✔=58, ✗=0, ∅=0]" ] }, { @@ -71812,7 +71812,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:09, 15.92blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 58/216 [00:03<00:10, 14.88blocks/s, ⧗=0, ▶=0, ✔=59, ✗=0, ∅=0]" ] }, { @@ -71834,7 +71834,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 15.92blocks/s, ⧗=0, ▶=1, ✔=59, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 14.88blocks/s, ⧗=0, ▶=1, ✔=59, ✗=0, ∅=0]" ] }, { @@ -71856,7 +71856,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:09, 15.92blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 27%|██▋ | 59/216 [00:03<00:10, 14.88blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" ] }, { @@ -71878,7 +71878,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:09, 16.54blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.54blocks/s, ⧗=0, ▶=0, ✔=60, ✗=0, ∅=0]" ] }, { @@ -71900,7 +71900,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:09, 16.54blocks/s, ⧗=0, ▶=1, ✔=60, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.54blocks/s, ⧗=0, ▶=1, ✔=60, ✗=0, ∅=0]" ] }, { @@ -71922,7 +71922,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:09, 16.54blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 60/216 [00:03<00:10, 15.54blocks/s, ⧗=0, ▶=0, ✔=61, ✗=0, ∅=0]" ] }, { @@ -71944,7 +71944,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 16.54blocks/s, ⧗=0, ▶=1, ✔=61, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 15.54blocks/s, ⧗=0, ▶=1, ✔=61, ✗=0, ∅=0]" ] }, { @@ -71966,7 +71966,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 16.54blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 28%|██▊ | 61/216 [00:03<00:09, 15.54blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" ] }, { @@ -71988,7 +71988,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.89blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.23blocks/s, ⧗=0, ▶=0, ✔=62, ✗=0, ∅=0]" ] }, { @@ -72010,7 +72010,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.89blocks/s, ⧗=0, ▶=1, ✔=62, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.23blocks/s, ⧗=0, ▶=1, ✔=62, ✗=0, ∅=0]" ] }, { @@ -72032,7 +72032,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.89blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▊ | 62/216 [00:03<00:09, 16.23blocks/s, ⧗=0, ▶=0, ✔=63, ✗=0, ∅=0]" ] }, { @@ -72054,7 +72054,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.89blocks/s, ⧗=0, ▶=1, ✔=63, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.23blocks/s, ⧗=0, ▶=1, ✔=63, ✗=0, ∅=0]" ] }, { @@ -72076,7 +72076,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.89blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 29%|██▉ | 63/216 [00:03<00:09, 16.23blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" ] }, { @@ -72098,7 +72098,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.91blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 16.31blocks/s, ⧗=0, ▶=0, ✔=64, ✗=0, ∅=0]" ] }, { @@ -72120,7 +72120,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.91blocks/s, ⧗=0, ▶=1, ✔=64, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 16.31blocks/s, ⧗=0, ▶=1, ✔=64, ✗=0, ∅=0]" ] }, { @@ -72142,7 +72142,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 15.91blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|██▉ | 64/216 [00:03<00:09, 16.31blocks/s, ⧗=0, ▶=0, ✔=65, ✗=0, ∅=0]" ] }, { @@ -72164,7 +72164,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 15.91blocks/s, ⧗=0, ▶=1, ✔=65, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 16.31blocks/s, ⧗=0, ▶=1, ✔=65, ✗=0, ∅=0]" ] }, { @@ -72186,7 +72186,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 15.91blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 30%|███ | 65/216 [00:03<00:09, 16.31blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" ] }, { @@ -72208,7 +72208,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.35blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:08, 16.85blocks/s, ⧗=0, ▶=0, ✔=66, ✗=0, ∅=0]" ] }, { @@ -72230,7 +72230,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.35blocks/s, ⧗=0, ▶=1, ✔=66, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:08, 16.85blocks/s, ⧗=0, ▶=1, ✔=66, ✗=0, ∅=0]" ] }, { @@ -72252,7 +72252,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:09, 16.35blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 66/216 [00:03<00:08, 16.85blocks/s, ⧗=0, ▶=0, ✔=67, ✗=0, ∅=0]" ] }, { @@ -72274,7 +72274,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:09, 16.35blocks/s, ⧗=0, ▶=1, ✔=67, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:08, 16.85blocks/s, ⧗=0, ▶=1, ✔=67, ✗=0, ∅=0]" ] }, { @@ -72296,7 +72296,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:09, 16.35blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███ | 67/216 [00:03<00:08, 16.85blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" ] }, { @@ -72318,7 +72318,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:09, 16.24blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 17.27blocks/s, ⧗=0, ▶=0, ✔=68, ✗=0, ∅=0]" ] }, { @@ -72340,7 +72340,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:09, 16.24blocks/s, ⧗=0, ▶=1, ✔=68, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:03<00:08, 17.27blocks/s, ⧗=0, ▶=1, ✔=68, ✗=0, ∅=0]" ] }, { @@ -72362,7 +72362,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:09, 16.24blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 31%|███▏ | 68/216 [00:04<00:08, 17.27blocks/s, ⧗=0, ▶=0, ✔=69, ✗=0, ∅=0]" ] }, { @@ -72384,7 +72384,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:09, 16.24blocks/s, ⧗=0, ▶=1, ✔=69, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:08, 17.27blocks/s, ⧗=0, ▶=1, ✔=69, ✗=0, ∅=0]" ] }, { @@ -72406,7 +72406,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:09, 16.24blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 69/216 [00:04<00:08, 17.27blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" ] }, { @@ -72428,7 +72428,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:09, 16.13blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 17.21blocks/s, ⧗=0, ▶=0, ✔=70, ✗=0, ∅=0]" ] }, { @@ -72450,7 +72450,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:09, 16.13blocks/s, ⧗=0, ▶=1, ✔=70, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 17.21blocks/s, ⧗=0, ▶=1, ✔=70, ✗=0, ∅=0]" ] }, { @@ -72472,7 +72472,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:09, 16.13blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 32%|███▏ | 70/216 [00:04<00:08, 17.21blocks/s, ⧗=0, ▶=0, ✔=71, ✗=0, ∅=0]" ] }, { @@ -72494,7 +72494,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.13blocks/s, ⧗=0, ▶=1, ✔=71, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 17.21blocks/s, ⧗=0, ▶=1, ✔=71, ✗=0, ∅=0]" ] }, { @@ -72516,7 +72516,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 16.13blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 71/216 [00:04<00:08, 17.21blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" ] }, { @@ -72538,7 +72538,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.54blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=0, ✔=72, ✗=0, ∅=0]" ] }, { @@ -72560,7 +72560,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.54blocks/s, ⧗=0, ▶=1, ✔=72, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=1, ✔=72, ✗=0, ∅=0]" ] }, { @@ -72582,7 +72582,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 16.54blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 33%|███▎ | 72/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=0, ✔=73, ✗=0, ∅=0]" ] }, { @@ -72604,7 +72604,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 16.54blocks/s, ⧗=0, ▶=1, ✔=73, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=1, ✔=73, ✗=0, ∅=0]" ] }, { @@ -72626,7 +72626,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 16.54blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 73/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" ] }, { @@ -72648,7 +72648,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.24blocks/s, ⧗=0, ▶=0, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=1, ✔=74, ✗=0, ∅=0]" ] }, { @@ -72670,7 +72670,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.24blocks/s, ⧗=0, ▶=1, ✔=74, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.59blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" ] }, { @@ -72692,7 +72692,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 34%|███▍ | 74/216 [00:04<00:08, 17.24blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:07, 18.34blocks/s, ⧗=0, ▶=0, ✔=75, ✗=0, ∅=0]" ] }, { @@ -72714,7 +72714,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.24blocks/s, ⧗=0, ▶=1, ✔=75, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:07, 18.34blocks/s, ⧗=0, ▶=1, ✔=75, ✗=0, ∅=0]" ] }, { @@ -72736,7 +72736,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:08, 17.24blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▍ | 75/216 [00:04<00:07, 18.34blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" ] }, { @@ -72758,7 +72758,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 16.99blocks/s, ⧗=0, ▶=0, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:07, 18.34blocks/s, ⧗=0, ▶=1, ✔=76, ✗=0, ∅=0]" ] }, { @@ -72780,7 +72780,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 16.99blocks/s, ⧗=0, ▶=1, ✔=76, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:07, 18.34blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" ] }, { @@ -72802,7 +72802,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 35%|███▌ | 76/216 [00:04<00:08, 16.99blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.68blocks/s, ⧗=0, ▶=0, ✔=77, ✗=0, ∅=0]" ] }, { @@ -72824,7 +72824,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:08, 16.99blocks/s, ⧗=0, ▶=1, ✔=77, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.68blocks/s, ⧗=0, ▶=1, ✔=77, ✗=0, ∅=0]" ] }, { @@ -72846,7 +72846,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:08, 16.99blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 77/216 [00:04<00:07, 17.68blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" ] }, { @@ -72868,7 +72868,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.53blocks/s, ⧗=0, ▶=0, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.68blocks/s, ⧗=0, ▶=1, ✔=78, ✗=0, ∅=0]" ] }, { @@ -72890,7 +72890,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.53blocks/s, ⧗=0, ▶=1, ✔=78, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.68blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" ] }, { @@ -72912,7 +72912,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 36%|███▌ | 78/216 [00:04<00:07, 17.53blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:08, 17.03blocks/s, ⧗=0, ▶=0, ✔=79, ✗=0, ∅=0]" ] }, { @@ -72934,7 +72934,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.53blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:08, 17.03blocks/s, ⧗=0, ▶=1, ✔=79, ✗=0, ∅=0]" ] }, { @@ -72956,7 +72956,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:07, 17.53blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 79/216 [00:04<00:08, 17.03blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" ] }, { @@ -72978,7 +72978,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.84blocks/s, ⧗=0, ▶=0, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.03blocks/s, ⧗=0, ▶=1, ✔=80, ✗=0, ∅=0]" ] }, { @@ -73000,7 +73000,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.84blocks/s, ⧗=0, ▶=1, ✔=80, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.03blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" ] }, { @@ -73022,7 +73022,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 37%|███▋ | 80/216 [00:04<00:07, 17.84blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:08, 16.42blocks/s, ⧗=0, ▶=0, ✔=81, ✗=0, ∅=0]" ] }, { @@ -73044,7 +73044,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 17.84blocks/s, ⧗=0, ▶=1, ✔=81, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:08, 16.42blocks/s, ⧗=0, ▶=1, ✔=81, ✗=0, ∅=0]" ] }, { @@ -73066,7 +73066,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:07, 17.84blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 81/216 [00:04<00:08, 16.42blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" ] }, { @@ -73088,7 +73088,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.54blocks/s, ⧗=0, ▶=0, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:08, 16.42blocks/s, ⧗=0, ▶=1, ✔=82, ✗=0, ∅=0]" ] }, { @@ -73110,7 +73110,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.54blocks/s, ⧗=0, ▶=1, ✔=82, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:08, 16.42blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" ] }, { @@ -73132,7 +73132,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 82/216 [00:04<00:07, 17.54blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 16.85blocks/s, ⧗=0, ▶=0, ✔=83, ✗=0, ∅=0]" ] }, { @@ -73154,7 +73154,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.54blocks/s, ⧗=0, ▶=1, ✔=83, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 16.85blocks/s, ⧗=0, ▶=1, ✔=83, ✗=0, ∅=0]" ] }, { @@ -73176,7 +73176,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 17.54blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 38%|███▊ | 83/216 [00:04<00:07, 16.85blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" ] }, { @@ -73198,7 +73198,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=0, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 16.85blocks/s, ⧗=0, ▶=1, ✔=84, ✗=0, ∅=0]" ] }, { @@ -73220,7 +73220,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=1, ✔=84, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 16.85blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" ] }, { @@ -73242,7 +73242,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 84/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 17.30blocks/s, ⧗=0, ▶=0, ✔=85, ✗=0, ∅=0]" ] }, { @@ -73264,7 +73264,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=1, ✔=85, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 17.30blocks/s, ⧗=0, ▶=1, ✔=85, ✗=0, ∅=0]" ] }, { @@ -73286,7 +73286,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:04<00:07, 17.95blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 39%|███▉ | 85/216 [00:05<00:07, 17.30blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" ] }, { @@ -73308,7 +73308,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:04<00:07, 17.14blocks/s, ⧗=0, ▶=0, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.30blocks/s, ⧗=0, ▶=1, ✔=86, ✗=0, ∅=0]" ] }, { @@ -73330,7 +73330,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:04<00:07, 17.14blocks/s, ⧗=0, ▶=1, ✔=86, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.30blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" ] }, { @@ -73352,7 +73352,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|███▉ | 86/216 [00:05<00:07, 17.14blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 16.37blocks/s, ⧗=0, ▶=0, ✔=87, ✗=0, ∅=0]" ] }, { @@ -73374,7 +73374,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.14blocks/s, ⧗=0, ▶=1, ✔=87, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 16.37blocks/s, ⧗=0, ▶=1, ✔=87, ✗=0, ∅=0]" ] }, { @@ -73396,7 +73396,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 17.14blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 40%|████ | 87/216 [00:05<00:07, 16.37blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" ] }, { @@ -73418,7 +73418,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.59blocks/s, ⧗=0, ▶=0, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.37blocks/s, ⧗=0, ▶=1, ✔=88, ✗=0, ∅=0]" ] }, { @@ -73440,7 +73440,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.59blocks/s, ⧗=0, ▶=1, ✔=88, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.37blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" ] }, { @@ -73462,7 +73462,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 88/216 [00:05<00:07, 16.59blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=0, ✔=89, ✗=0, ∅=0]" ] }, { @@ -73484,7 +73484,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.59blocks/s, ⧗=0, ▶=1, ✔=89, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=1, ✔=89, ✗=0, ∅=0]" ] }, { @@ -73506,7 +73506,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.59blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 41%|████ | 89/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" ] }, { @@ -73528,7 +73528,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.61blocks/s, ⧗=0, ▶=0, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=1, ✔=90, ✗=0, ∅=0]" ] }, { @@ -73550,7 +73550,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.61blocks/s, ⧗=0, ▶=1, ✔=90, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.49blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" ] }, { @@ -73572,7 +73572,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 90/216 [00:05<00:07, 16.61blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=0, ✔=91, ✗=0, ∅=0]" ] }, { @@ -73594,7 +73594,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.61blocks/s, ⧗=0, ▶=1, ✔=91, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=1, ✔=91, ✗=0, ∅=0]" ] }, { @@ -73616,7 +73616,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 16.61blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 42%|████▏ | 91/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" ] }, { @@ -73638,7 +73638,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=0, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=1, ✔=92, ✗=0, ∅=0]" ] }, { @@ -73660,7 +73660,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=1, ✔=92, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.00blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" ] }, { @@ -73682,7 +73682,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 92/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=0, ✔=93, ✗=0, ∅=0]" ] }, { @@ -73704,7 +73704,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=1, ✔=93, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=1, ✔=93, ✗=0, ∅=0]" ] }, { @@ -73726,7 +73726,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.17blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 43%|████▎ | 93/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" ] }, { @@ -73748,7 +73748,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=0, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=1, ✔=94, ✗=0, ∅=0]" ] }, { @@ -73770,7 +73770,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=1, ✔=94, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" ] }, { @@ -73792,7 +73792,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▎ | 94/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.43blocks/s, ⧗=0, ▶=0, ✔=95, ✗=0, ∅=0]" ] }, { @@ -73814,7 +73814,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=1, ✔=95, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.43blocks/s, ⧗=0, ▶=1, ✔=95, ✗=0, ∅=0]" ] }, { @@ -73836,7 +73836,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:07, 17.22blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 95/216 [00:05<00:06, 17.43blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" ] }, { @@ -73858,7 +73858,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.56blocks/s, ⧗=0, ▶=0, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.43blocks/s, ⧗=0, ▶=1, ✔=96, ✗=0, ∅=0]" ] }, { @@ -73880,7 +73880,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.56blocks/s, ⧗=0, ▶=1, ✔=96, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.43blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" ] }, { @@ -73902,7 +73902,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 44%|████▍ | 96/216 [00:05<00:06, 17.56blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.92blocks/s, ⧗=0, ▶=0, ✔=97, ✗=0, ∅=0]" ] }, { @@ -73924,7 +73924,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.56blocks/s, ⧗=0, ▶=1, ✔=97, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.92blocks/s, ⧗=0, ▶=1, ✔=97, ✗=0, ∅=0]" ] }, { @@ -73946,7 +73946,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.56blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▍ | 97/216 [00:05<00:06, 17.92blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" ] }, { @@ -73968,7 +73968,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.54blocks/s, ⧗=0, ▶=0, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.92blocks/s, ⧗=0, ▶=1, ✔=98, ✗=0, ∅=0]" ] }, { @@ -73990,7 +73990,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.54blocks/s, ⧗=0, ▶=1, ✔=98, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.92blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" ] }, { @@ -74012,7 +74012,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 45%|████▌ | 98/216 [00:05<00:06, 17.54blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.88blocks/s, ⧗=0, ▶=0, ✔=99, ✗=0, ∅=0]" ] }, { @@ -74034,7 +74034,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.54blocks/s, ⧗=0, ▶=1, ✔=99, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.88blocks/s, ⧗=0, ▶=1, ✔=99, ✗=0, ∅=0]" ] }, { @@ -74056,7 +74056,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.54blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▌ | 99/216 [00:05<00:06, 17.88blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" ] }, { @@ -74078,7 +74078,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:07, 16.51blocks/s, ⧗=0, ▶=0, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 17.88blocks/s, ⧗=0, ▶=1, ✔=100, ✗=0, ∅=0]" ] }, { @@ -74100,7 +74100,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:07, 16.51blocks/s, ⧗=0, ▶=1, ✔=100, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:06, 17.88blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" ] }, { @@ -74122,7 +74122,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 46%|████▋ | 100/216 [00:05<00:07, 16.51blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.83blocks/s, ⧗=0, ▶=0, ✔=101, ✗=0, ∅=0]" ] }, { @@ -74144,7 +74144,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 16.51blocks/s, ⧗=0, ▶=1, ✔=101, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.83blocks/s, ⧗=0, ▶=1, ✔=101, ✗=0, ∅=0]" ] }, { @@ -74166,7 +74166,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 16.51blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 101/216 [00:05<00:06, 17.83blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" ] }, { @@ -74188,7 +74188,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.09blocks/s, ⧗=0, ▶=0, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.83blocks/s, ⧗=0, ▶=1, ✔=102, ✗=0, ∅=0]" ] }, { @@ -74210,7 +74210,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.09blocks/s, ⧗=0, ▶=1, ✔=102, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.83blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" ] }, { @@ -74232,7 +74232,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 47%|████▋ | 102/216 [00:05<00:06, 17.09blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 18.35blocks/s, ⧗=0, ▶=0, ✔=103, ✗=0, ∅=0]" ] }, { @@ -74254,7 +74254,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 17.09blocks/s, ⧗=0, ▶=1, ✔=103, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:05<00:06, 18.35blocks/s, ⧗=0, ▶=1, ✔=103, ✗=0, ∅=0]" ] }, { @@ -74276,7 +74276,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 17.09blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 103/216 [00:06<00:06, 18.35blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" ] }, { @@ -74298,7 +74298,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 16.84blocks/s, ⧗=0, ▶=0, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 18.35blocks/s, ⧗=0, ▶=1, ✔=104, ✗=0, ∅=0]" ] }, { @@ -74320,7 +74320,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 16.84blocks/s, ⧗=0, ▶=1, ✔=104, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 18.35blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" ] }, { @@ -74342,7 +74342,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 48%|████▊ | 104/216 [00:06<00:06, 16.84blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 18.34blocks/s, ⧗=0, ▶=0, ✔=105, ✗=0, ∅=0]" ] }, { @@ -74364,7 +74364,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 16.84blocks/s, ⧗=0, ▶=1, ✔=105, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 18.34blocks/s, ⧗=0, ▶=1, ✔=105, ✗=0, ∅=0]" ] }, { @@ -74386,7 +74386,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 16.84blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▊ | 105/216 [00:06<00:06, 18.34blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" ] }, { @@ -74408,7 +74408,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 15.99blocks/s, ⧗=0, ▶=0, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:05, 18.34blocks/s, ⧗=0, ▶=1, ✔=106, ✗=0, ∅=0]" ] }, { @@ -74430,7 +74430,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 15.99blocks/s, ⧗=0, ▶=1, ✔=106, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:05, 18.34blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" ] }, { @@ -74452,7 +74452,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 49%|████▉ | 106/216 [00:06<00:06, 15.99blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:05, 18.60blocks/s, ⧗=0, ▶=0, ✔=107, ✗=0, ∅=0]" ] }, { @@ -74474,7 +74474,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 15.99blocks/s, ⧗=0, ▶=1, ✔=107, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:05, 18.60blocks/s, ⧗=0, ▶=1, ✔=107, ✗=0, ∅=0]" ] }, { @@ -74496,7 +74496,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:06, 15.99blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|████▉ | 107/216 [00:06<00:05, 18.60blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" ] }, { @@ -74518,7 +74518,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 15.97blocks/s, ⧗=0, ▶=0, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:05, 18.60blocks/s, ⧗=0, ▶=1, ✔=108, ✗=0, ∅=0]" ] }, { @@ -74540,7 +74540,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 15.97blocks/s, ⧗=0, ▶=1, ✔=108, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:05, 18.60blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" ] }, { @@ -74562,7 +74562,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 108/216 [00:06<00:06, 15.97blocks/s, ⧗=0, ▶=0, ✔=109, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 18.60blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" ] }, { @@ -74584,7 +74584,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:06, 15.97blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 18.98blocks/s, ⧗=0, ▶=1, ✔=109, ✗=0, ∅=0]" ] }, { @@ -74606,7 +74606,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:06, 15.97blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 50%|█████ | 109/216 [00:06<00:05, 18.98blocks/s, ⧗=0, ▶=0, ✔=110, ✗=0, ∅=0]" ] }, { @@ -74628,7 +74628,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:06, 15.97blocks/s, ⧗=0, ▶=1, ✔=110, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 18.98blocks/s, ⧗=0, ▶=1, ✔=110, ✗=0, ∅=0]" ] }, { @@ -74650,7 +74650,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:06, 15.97blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████ | 110/216 [00:06<00:05, 18.98blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" ] }, { @@ -74672,7 +74672,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:06, 17.39blocks/s, ⧗=0, ▶=0, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.98blocks/s, ⧗=0, ▶=1, ✔=111, ✗=0, ∅=0]" ] }, { @@ -74694,7 +74694,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:06, 17.39blocks/s, ⧗=0, ▶=1, ✔=111, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:05, 18.98blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" ] }, { @@ -74716,7 +74716,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 51%|█████▏ | 111/216 [00:06<00:06, 17.39blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 19.61blocks/s, ⧗=0, ▶=0, ✔=112, ✗=0, ∅=0]" ] }, { @@ -74738,7 +74738,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 17.39blocks/s, ⧗=0, ▶=1, ✔=112, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 19.61blocks/s, ⧗=0, ▶=1, ✔=112, ✗=0, ∅=0]" ] }, { @@ -74760,7 +74760,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 17.39blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 112/216 [00:06<00:05, 19.61blocks/s, ⧗=0, ▶=0, ✔=113, ✗=0, ∅=0]" ] }, { @@ -74782,7 +74782,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 17.39blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.61blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" ] }, { @@ -74804,7 +74804,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=1, ✔=113, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 19.61blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" ] }, { @@ -74826,7 +74826,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 52%|█████▏ | 113/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.38blocks/s, ⧗=0, ▶=0, ✔=114, ✗=0, ∅=0]" ] }, { @@ -74848,7 +74848,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.38blocks/s, ⧗=0, ▶=1, ✔=114, ✗=0, ∅=0]" ] }, { @@ -74870,7 +74870,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 114/216 [00:06<00:05, 18.38blocks/s, ⧗=0, ▶=0, ✔=115, ✗=0, ∅=0]" ] }, { @@ -74892,7 +74892,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.38blocks/s, ⧗=0, ▶=1, ✔=115, ✗=0, ∅=0]" ] }, { @@ -74914,7 +74914,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 17.96blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 53%|█████▎ | 115/216 [00:06<00:05, 18.38blocks/s, ⧗=0, ▶=0, ✔=116, ✗=0, ∅=0]" ] }, { @@ -75046,7 +75046,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.57blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.64blocks/s, ⧗=0, ▶=0, ✔=118, ✗=0, ∅=0]" ] }, { @@ -75068,7 +75068,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.57blocks/s, ⧗=0, ▶=1, ✔=118, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.64blocks/s, ⧗=0, ▶=1, ✔=118, ✗=0, ∅=0]" ] }, { @@ -75090,7 +75090,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.57blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▍ | 118/216 [00:06<00:05, 18.64blocks/s, ⧗=0, ▶=0, ✔=119, ✗=0, ∅=0]" ] }, { @@ -75112,7 +75112,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.57blocks/s, ⧗=0, ▶=1, ✔=119, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.64blocks/s, ⧗=0, ▶=1, ✔=119, ✗=0, ∅=0]" ] }, { @@ -75134,7 +75134,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.57blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 55%|█████▌ | 119/216 [00:06<00:05, 18.64blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" ] }, { @@ -75156,7 +75156,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.77blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.29blocks/s, ⧗=0, ▶=0, ✔=120, ✗=0, ∅=0]" ] }, { @@ -75178,7 +75178,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.77blocks/s, ⧗=0, ▶=1, ✔=120, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.29blocks/s, ⧗=0, ▶=1, ✔=120, ✗=0, ∅=0]" ] }, { @@ -75200,7 +75200,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.77blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 120/216 [00:06<00:05, 18.29blocks/s, ⧗=0, ▶=0, ✔=121, ✗=0, ∅=0]" ] }, { @@ -75222,7 +75222,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.77blocks/s, ⧗=0, ▶=1, ✔=121, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.29blocks/s, ⧗=0, ▶=1, ✔=121, ✗=0, ∅=0]" ] }, { @@ -75244,7 +75244,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:07<00:05, 18.77blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▌ | 121/216 [00:06<00:05, 18.29blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" ] }, { @@ -75266,7 +75266,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.19blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:06<00:05, 18.35blocks/s, ⧗=0, ▶=0, ✔=122, ✗=0, ∅=0]" ] }, { @@ -75288,7 +75288,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.19blocks/s, ⧗=0, ▶=1, ✔=122, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:06<00:05, 18.35blocks/s, ⧗=0, ▶=1, ✔=122, ✗=0, ∅=0]" ] }, { @@ -75310,7 +75310,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.19blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 56%|█████▋ | 122/216 [00:07<00:05, 18.35blocks/s, ⧗=0, ▶=0, ✔=123, ✗=0, ∅=0]" ] }, { @@ -75332,7 +75332,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.19blocks/s, ⧗=0, ▶=1, ✔=123, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.35blocks/s, ⧗=0, ▶=1, ✔=123, ✗=0, ∅=0]" ] }, { @@ -75354,7 +75354,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.19blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 123/216 [00:07<00:05, 18.35blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" ] }, { @@ -75376,7 +75376,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.58blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.82blocks/s, ⧗=0, ▶=0, ✔=124, ✗=0, ∅=0]" ] }, { @@ -75398,7 +75398,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.58blocks/s, ⧗=0, ▶=1, ✔=124, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.82blocks/s, ⧗=0, ▶=1, ✔=124, ✗=0, ∅=0]" ] }, { @@ -75420,7 +75420,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.58blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 57%|█████▋ | 124/216 [00:07<00:05, 17.82blocks/s, ⧗=0, ▶=0, ✔=125, ✗=0, ∅=0]" ] }, { @@ -75442,7 +75442,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.58blocks/s, ⧗=0, ▶=1, ✔=125, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.82blocks/s, ⧗=0, ▶=1, ✔=125, ✗=0, ∅=0]" ] }, { @@ -75464,7 +75464,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.58blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 125/216 [00:07<00:05, 17.82blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" ] }, { @@ -75486,7 +75486,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.43blocks/s, ⧗=0, ▶=0, ✔=126, ✗=0, ∅=0]" ] }, { @@ -75508,7 +75508,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=1, ✔=126, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.43blocks/s, ⧗=0, ▶=1, ✔=126, ✗=0, ∅=0]" ] }, { @@ -75530,7 +75530,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 58%|█████▊ | 126/216 [00:07<00:05, 17.43blocks/s, ⧗=0, ▶=0, ✔=127, ✗=0, ∅=0]" ] }, { @@ -75552,7 +75552,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=1, ✔=127, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 17.43blocks/s, ⧗=0, ▶=1, ✔=127, ✗=0, ∅=0]" ] }, { @@ -75574,7 +75574,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 17.33blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 59%|█████▉ | 127/216 [00:07<00:05, 17.43blocks/s, ⧗=0, ▶=0, ✔=128, ✗=0, ∅=0]" ] }, { @@ -75706,7 +75706,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.90blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.35blocks/s, ⧗=0, ▶=0, ✔=130, ✗=0, ∅=0]" ] }, { @@ -75728,7 +75728,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.90blocks/s, ⧗=0, ▶=1, ✔=130, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.35blocks/s, ⧗=0, ▶=1, ✔=130, ✗=0, ∅=0]" ] }, { @@ -75750,7 +75750,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.90blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 60%|██████ | 130/216 [00:07<00:04, 17.35blocks/s, ⧗=0, ▶=0, ✔=131, ✗=0, ∅=0]" ] }, { @@ -75772,7 +75772,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.90blocks/s, ⧗=0, ▶=1, ✔=131, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.35blocks/s, ⧗=0, ▶=1, ✔=131, ✗=0, ∅=0]" ] }, { @@ -75794,7 +75794,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.90blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 131/216 [00:07<00:04, 17.35blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" ] }, { @@ -75816,7 +75816,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.34blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:05, 16.78blocks/s, ⧗=0, ▶=0, ✔=132, ✗=0, ∅=0]" ] }, { @@ -75838,7 +75838,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.34blocks/s, ⧗=0, ▶=1, ✔=132, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:05, 16.78blocks/s, ⧗=0, ▶=1, ✔=132, ✗=0, ∅=0]" ] }, { @@ -75860,7 +75860,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:04, 18.34blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 61%|██████ | 132/216 [00:07<00:05, 16.78blocks/s, ⧗=0, ▶=0, ✔=133, ✗=0, ∅=0]" ] }, { @@ -75882,7 +75882,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.34blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 16.78blocks/s, ⧗=0, ▶=1, ✔=133, ✗=0, ∅=0]" ] }, { @@ -75904,7 +75904,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 18.34blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 133/216 [00:07<00:04, 16.78blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" ] }, { @@ -75926,7 +75926,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.63blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 16.81blocks/s, ⧗=0, ▶=0, ✔=134, ✗=0, ∅=0]" ] }, { @@ -75948,7 +75948,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.63blocks/s, ⧗=0, ▶=1, ✔=134, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 16.81blocks/s, ⧗=0, ▶=1, ✔=134, ✗=0, ∅=0]" ] }, { @@ -75970,7 +75970,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 18.63blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▏ | 134/216 [00:07<00:04, 16.81blocks/s, ⧗=0, ▶=0, ✔=135, ✗=0, ∅=0]" ] }, { @@ -75992,7 +75992,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.63blocks/s, ⧗=0, ▶=1, ✔=135, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 16.81blocks/s, ⧗=0, ▶=1, ✔=135, ✗=0, ∅=0]" ] }, { @@ -76014,7 +76014,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 18.63blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 62%|██████▎ | 135/216 [00:07<00:04, 16.81blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" ] }, { @@ -76036,7 +76036,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=0, ✔=136, ✗=0, ∅=0]" ] }, { @@ -76058,7 +76058,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=1, ✔=136, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=1, ✔=136, ✗=0, ∅=0]" ] }, { @@ -76080,7 +76080,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 136/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=0, ✔=137, ✗=0, ∅=0]" ] }, { @@ -76102,7 +76102,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=1, ✔=137, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=1, ✔=137, ✗=0, ∅=0]" ] }, { @@ -76124,7 +76124,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 18.46blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 63%|██████▎ | 137/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" ] }, { @@ -76146,7 +76146,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 18.69blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=0, ✔=138, ✗=0, ∅=0]" ] }, { @@ -76168,7 +76168,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 18.69blocks/s, ⧗=0, ▶=1, ✔=138, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=1, ✔=138, ✗=0, ∅=0]" ] }, { @@ -76190,7 +76190,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 18.69blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 138/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=0, ✔=139, ✗=0, ∅=0]" ] }, { @@ -76212,7 +76212,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 18.69blocks/s, ⧗=0, ▶=1, ✔=139, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:07<00:04, 16.95blocks/s, ⧗=0, ▶=1, ✔=139, ✗=0, ∅=0]" ] }, { @@ -76234,7 +76234,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 18.69blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 64%|██████▍ | 139/216 [00:08<00:04, 16.95blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" ] }, { @@ -76256,7 +76256,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:03, 19.04blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.09blocks/s, ⧗=0, ▶=0, ✔=140, ✗=0, ∅=0]" ] }, { @@ -76278,7 +76278,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:03, 19.04blocks/s, ⧗=0, ▶=1, ✔=140, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.09blocks/s, ⧗=0, ▶=1, ✔=140, ✗=0, ∅=0]" ] }, { @@ -76300,7 +76300,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:03, 19.04blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▍ | 140/216 [00:08<00:04, 17.09blocks/s, ⧗=0, ▶=0, ✔=141, ✗=0, ∅=0]" ] }, { @@ -76322,7 +76322,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:03, 19.04blocks/s, ⧗=0, ▶=1, ✔=141, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.09blocks/s, ⧗=0, ▶=1, ✔=141, ✗=0, ∅=0]" ] }, { @@ -76344,7 +76344,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:03, 19.04blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 65%|██████▌ | 141/216 [00:08<00:04, 17.09blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" ] }, { @@ -76366,7 +76366,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:03, 18.74blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 16.85blocks/s, ⧗=0, ▶=0, ✔=142, ✗=0, ∅=0]" ] }, { @@ -76388,7 +76388,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:03, 18.74blocks/s, ⧗=0, ▶=1, ✔=142, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 16.85blocks/s, ⧗=0, ▶=1, ✔=142, ✗=0, ∅=0]" ] }, { @@ -76410,7 +76410,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:03, 18.74blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 142/216 [00:08<00:04, 16.85blocks/s, ⧗=0, ▶=0, ✔=143, ✗=0, ∅=0]" ] }, { @@ -76432,7 +76432,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.74blocks/s, ⧗=0, ▶=1, ✔=143, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 16.85blocks/s, ⧗=0, ▶=1, ✔=143, ✗=0, ∅=0]" ] }, { @@ -76454,7 +76454,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:03, 18.74blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 66%|██████▌ | 143/216 [00:08<00:04, 16.85blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" ] }, { @@ -76476,7 +76476,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.99blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:04, 17.17blocks/s, ⧗=0, ▶=0, ✔=144, ✗=0, ∅=0]" ] }, { @@ -76498,7 +76498,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.99blocks/s, ⧗=0, ▶=1, ✔=144, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:04, 17.17blocks/s, ⧗=0, ▶=1, ✔=144, ✗=0, ∅=0]" ] }, { @@ -76520,7 +76520,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:03, 18.99blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 144/216 [00:08<00:04, 17.17blocks/s, ⧗=0, ▶=0, ✔=145, ✗=0, ∅=0]" ] }, { @@ -76542,7 +76542,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.99blocks/s, ⧗=0, ▶=1, ✔=145, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:04, 17.17blocks/s, ⧗=0, ▶=1, ✔=145, ✗=0, ∅=0]" ] }, { @@ -76564,7 +76564,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:03, 18.99blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 67%|██████▋ | 145/216 [00:08<00:04, 17.17blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" ] }, { @@ -76586,7 +76586,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.21blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:04, 17.10blocks/s, ⧗=0, ▶=0, ✔=146, ✗=0, ∅=0]" ] }, { @@ -76608,7 +76608,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.21blocks/s, ⧗=0, ▶=1, ✔=146, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:04, 17.10blocks/s, ⧗=0, ▶=1, ✔=146, ✗=0, ∅=0]" ] }, { @@ -76630,7 +76630,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:03, 18.21blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 146/216 [00:08<00:04, 17.10blocks/s, ⧗=0, ▶=0, ✔=147, ✗=0, ∅=0]" ] }, { @@ -76652,7 +76652,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 18.21blocks/s, ⧗=0, ▶=1, ✔=147, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:04, 17.10blocks/s, ⧗=0, ▶=1, ✔=147, ✗=0, ∅=0]" ] }, { @@ -76674,7 +76674,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:03, 18.21blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 68%|██████▊ | 147/216 [00:08<00:04, 17.10blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" ] }, { @@ -76696,7 +76696,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:04, 16.83blocks/s, ⧗=0, ▶=0, ✔=148, ✗=0, ∅=0]" ] }, { @@ -76718,7 +76718,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=1, ✔=148, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:04, 16.83blocks/s, ⧗=0, ▶=1, ✔=148, ✗=0, ∅=0]" ] }, { @@ -76740,7 +76740,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▊ | 148/216 [00:08<00:04, 16.83blocks/s, ⧗=0, ▶=0, ✔=149, ✗=0, ∅=0]" ] }, { @@ -76762,7 +76762,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=1, ✔=149, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 16.83blocks/s, ⧗=0, ▶=1, ✔=149, ✗=0, ∅=0]" ] }, { @@ -76784,7 +76784,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 149/216 [00:08<00:03, 16.83blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" ] }, { @@ -76806,7 +76806,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.52blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=0, ✔=150, ✗=0, ∅=0]" ] }, { @@ -76828,7 +76828,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.52blocks/s, ⧗=0, ▶=1, ✔=150, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=1, ✔=150, ✗=0, ∅=0]" ] }, { @@ -76850,7 +76850,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.52blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 69%|██████▉ | 150/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=0, ✔=151, ✗=0, ∅=0]" ] }, { @@ -76872,7 +76872,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.52blocks/s, ⧗=0, ▶=1, ✔=151, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=1, ✔=151, ✗=0, ∅=0]" ] }, { @@ -76894,7 +76894,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.52blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|██████▉ | 151/216 [00:08<00:03, 17.23blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" ] }, { @@ -76916,7 +76916,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 16.84blocks/s, ⧗=0, ▶=0, ✔=152, ✗=0, ∅=0]" ] }, { @@ -76938,7 +76938,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=1, ✔=152, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 16.84blocks/s, ⧗=0, ▶=1, ✔=152, ✗=0, ∅=0]" ] }, { @@ -76960,7 +76960,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 70%|███████ | 152/216 [00:08<00:03, 16.84blocks/s, ⧗=0, ▶=0, ✔=153, ✗=0, ∅=0]" ] }, { @@ -76982,7 +76982,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=1, ✔=153, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.84blocks/s, ⧗=0, ▶=1, ✔=153, ✗=0, ∅=0]" ] }, { @@ -77004,7 +77004,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 17.57blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████ | 153/216 [00:08<00:03, 16.84blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" ] }, { @@ -77026,7 +77026,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 17.05blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.68blocks/s, ⧗=0, ▶=0, ✔=154, ✗=0, ∅=0]" ] }, { @@ -77048,7 +77048,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 17.05blocks/s, ⧗=0, ▶=1, ✔=154, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.68blocks/s, ⧗=0, ▶=1, ✔=154, ✗=0, ∅=0]" ] }, { @@ -77070,7 +77070,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 17.05blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 71%|███████▏ | 154/216 [00:08<00:03, 16.68blocks/s, ⧗=0, ▶=0, ✔=155, ✗=0, ∅=0]" ] }, { @@ -77092,7 +77092,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 17.05blocks/s, ⧗=0, ▶=1, ✔=155, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.68blocks/s, ⧗=0, ▶=1, ✔=155, ✗=0, ∅=0]" ] }, { @@ -77114,7 +77114,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 17.05blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 155/216 [00:08<00:03, 16.68blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" ] }, { @@ -77136,7 +77136,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.19blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.99blocks/s, ⧗=0, ▶=0, ✔=156, ✗=0, ∅=0]" ] }, { @@ -77158,7 +77158,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.19blocks/s, ⧗=0, ▶=1, ✔=156, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:08<00:03, 16.99blocks/s, ⧗=0, ▶=1, ✔=156, ✗=0, ∅=0]" ] }, { @@ -77180,7 +77180,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:09<00:03, 16.19blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 72%|███████▏ | 156/216 [00:09<00:03, 16.99blocks/s, ⧗=0, ▶=0, ✔=157, ✗=0, ∅=0]" ] }, { @@ -77202,7 +77202,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.19blocks/s, ⧗=0, ▶=1, ✔=157, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.99blocks/s, ⧗=0, ▶=1, ✔=157, ✗=0, ∅=0]" ] }, { @@ -77224,7 +77224,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.19blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 157/216 [00:09<00:03, 16.99blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" ] }, { @@ -77246,7 +77246,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.61blocks/s, ⧗=0, ▶=0, ✔=158, ✗=0, ∅=0]" ] }, { @@ -77268,7 +77268,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=1, ✔=158, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.61blocks/s, ⧗=0, ▶=1, ✔=158, ✗=0, ∅=0]" ] }, { @@ -77290,7 +77290,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 73%|███████▎ | 158/216 [00:09<00:03, 16.61blocks/s, ⧗=0, ▶=0, ✔=159, ✗=0, ∅=0]" ] }, { @@ -77312,7 +77312,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=1, ✔=159, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 16.61blocks/s, ⧗=0, ▶=1, ✔=159, ✗=0, ∅=0]" ] }, { @@ -77334,7 +77334,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▎ | 159/216 [00:09<00:03, 16.61blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" ] }, { @@ -77356,7 +77356,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=0, ✔=160, ✗=0, ∅=0]" ] }, { @@ -77378,7 +77378,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=1, ✔=160, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=1, ✔=160, ✗=0, ∅=0]" ] }, { @@ -77400,7 +77400,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 74%|███████▍ | 160/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=0, ✔=161, ✗=0, ∅=0]" ] }, { @@ -77422,7 +77422,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=1, ✔=161, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=1, ✔=161, ✗=0, ∅=0]" ] }, { @@ -77444,7 +77444,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 14.87blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▍ | 161/216 [00:09<00:03, 15.34blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" ] }, { @@ -77466,7 +77466,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.40blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 15.03blocks/s, ⧗=0, ▶=0, ✔=162, ✗=0, ∅=0]" ] }, { @@ -77488,7 +77488,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.40blocks/s, ⧗=0, ▶=1, ✔=162, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 15.03blocks/s, ⧗=0, ▶=1, ✔=162, ✗=0, ∅=0]" ] }, { @@ -77510,7 +77510,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 14.40blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 162/216 [00:09<00:03, 15.03blocks/s, ⧗=0, ▶=0, ✔=163, ✗=0, ∅=0]" ] }, { @@ -77532,7 +77532,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 14.40blocks/s, ⧗=0, ▶=1, ✔=163, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.03blocks/s, ⧗=0, ▶=1, ✔=163, ✗=0, ∅=0]" ] }, { @@ -77554,7 +77554,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 14.40blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 75%|███████▌ | 163/216 [00:09<00:03, 15.03blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" ] }, { @@ -77576,7 +77576,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.29blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=0, ✔=164, ✗=0, ∅=0]" ] }, { @@ -77598,7 +77598,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.29blocks/s, ⧗=0, ▶=1, ✔=164, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=1, ✔=164, ✗=0, ∅=0]" ] }, { @@ -77620,7 +77620,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.29blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▌ | 164/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=0, ✔=165, ✗=0, ∅=0]" ] }, { @@ -77642,7 +77642,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.29blocks/s, ⧗=0, ▶=1, ✔=165, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=1, ✔=165, ✗=0, ∅=0]" ] }, { @@ -77664,7 +77664,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.29blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 76%|███████▋ | 165/216 [00:09<00:03, 15.64blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" ] }, { @@ -77686,7 +77686,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.52blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=0, ✔=166, ✗=0, ∅=0]" ] }, { @@ -77708,7 +77708,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.52blocks/s, ⧗=0, ▶=1, ✔=166, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=1, ✔=166, ✗=0, ∅=0]" ] }, { @@ -77730,7 +77730,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.52blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 166/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=0, ✔=167, ✗=0, ∅=0]" ] }, { @@ -77752,7 +77752,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.52blocks/s, ⧗=0, ▶=1, ✔=167, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=1, ✔=167, ✗=0, ∅=0]" ] }, { @@ -77774,7 +77774,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.52blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 77%|███████▋ | 167/216 [00:09<00:03, 15.74blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" ] }, { @@ -77796,7 +77796,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.23blocks/s, ⧗=0, ▶=0, ✔=168, ✗=0, ∅=0]" ] }, { @@ -77818,7 +77818,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=1, ✔=168, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.23blocks/s, ⧗=0, ▶=1, ✔=168, ✗=0, ∅=0]" ] }, { @@ -77840,7 +77840,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 168/216 [00:09<00:03, 15.23blocks/s, ⧗=0, ▶=0, ✔=169, ✗=0, ∅=0]" ] }, { @@ -77862,7 +77862,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=1, ✔=169, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.23blocks/s, ⧗=0, ▶=1, ✔=169, ✗=0, ∅=0]" ] }, { @@ -77884,7 +77884,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.25blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 78%|███████▊ | 169/216 [00:09<00:03, 15.23blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" ] }, { @@ -77906,7 +77906,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.66blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.87blocks/s, ⧗=0, ▶=0, ✔=170, ✗=0, ∅=0]" ] }, { @@ -77928,7 +77928,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.66blocks/s, ⧗=0, ▶=1, ✔=170, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.87blocks/s, ⧗=0, ▶=1, ✔=170, ✗=0, ∅=0]" ] }, { @@ -77950,7 +77950,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.66blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▊ | 170/216 [00:09<00:02, 15.87blocks/s, ⧗=0, ▶=0, ✔=171, ✗=0, ∅=0]" ] }, { @@ -77972,7 +77972,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.66blocks/s, ⧗=0, ▶=1, ✔=171, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:09<00:02, 15.87blocks/s, ⧗=0, ▶=1, ✔=171, ✗=0, ∅=0]" ] }, { @@ -77994,7 +77994,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:10<00:02, 15.66blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 79%|███████▉ | 171/216 [00:10<00:02, 15.87blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" ] }, { @@ -78016,7 +78016,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.93blocks/s, ⧗=0, ▶=0, ✔=172, ✗=0, ∅=0]" ] }, { @@ -78038,7 +78038,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=1, ✔=172, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.93blocks/s, ⧗=0, ▶=1, ✔=172, ✗=0, ∅=0]" ] }, { @@ -78060,7 +78060,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|███████▉ | 172/216 [00:10<00:02, 15.93blocks/s, ⧗=0, ▶=0, ✔=173, ✗=0, ∅=0]" ] }, { @@ -78082,7 +78082,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=1, ✔=173, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.93blocks/s, ⧗=0, ▶=1, ✔=173, ✗=0, ∅=0]" ] }, { @@ -78104,7 +78104,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.75blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 80%|████████ | 173/216 [00:10<00:02, 15.93blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" ] }, { @@ -78126,7 +78126,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.88blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 16.39blocks/s, ⧗=0, ▶=0, ✔=174, ✗=0, ∅=0]" ] }, { @@ -78148,7 +78148,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.88blocks/s, ⧗=0, ▶=1, ✔=174, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 16.39blocks/s, ⧗=0, ▶=1, ✔=174, ✗=0, ∅=0]" ] }, { @@ -78170,7 +78170,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 15.88blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 174/216 [00:10<00:02, 16.39blocks/s, ⧗=0, ▶=0, ✔=175, ✗=0, ∅=0]" ] }, { @@ -78192,7 +78192,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 15.88blocks/s, ⧗=0, ▶=1, ✔=175, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.39blocks/s, ⧗=0, ▶=1, ✔=175, ✗=0, ∅=0]" ] }, { @@ -78214,7 +78214,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 15.88blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████ | 175/216 [00:10<00:02, 16.39blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" ] }, { @@ -78236,7 +78236,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.40blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.53blocks/s, ⧗=0, ▶=0, ✔=176, ✗=0, ∅=0]" ] }, { @@ -78258,7 +78258,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.40blocks/s, ⧗=0, ▶=1, ✔=176, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.53blocks/s, ⧗=0, ▶=1, ✔=176, ✗=0, ∅=0]" ] }, { @@ -78280,7 +78280,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.40blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 81%|████████▏ | 176/216 [00:10<00:02, 16.53blocks/s, ⧗=0, ▶=0, ✔=177, ✗=0, ∅=0]" ] }, { @@ -78302,7 +78302,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.40blocks/s, ⧗=0, ▶=1, ✔=177, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.53blocks/s, ⧗=0, ▶=1, ✔=177, ✗=0, ∅=0]" ] }, { @@ -78324,7 +78324,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.40blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 177/216 [00:10<00:02, 16.53blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" ] }, { @@ -78346,7 +78346,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.32blocks/s, ⧗=0, ▶=0, ✔=178, ✗=0, ∅=0]" ] }, { @@ -78368,7 +78368,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=1, ✔=178, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.32blocks/s, ⧗=0, ▶=1, ✔=178, ✗=0, ∅=0]" ] }, { @@ -78390,7 +78390,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 82%|████████▏ | 178/216 [00:10<00:02, 16.32blocks/s, ⧗=0, ▶=0, ✔=179, ✗=0, ∅=0]" ] }, { @@ -78412,7 +78412,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=1, ✔=179, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.32blocks/s, ⧗=0, ▶=1, ✔=179, ✗=0, ∅=0]" ] }, { @@ -78434,7 +78434,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.23blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 179/216 [00:10<00:02, 16.32blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" ] }, { @@ -78456,7 +78456,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.60blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.85blocks/s, ⧗=0, ▶=0, ✔=180, ✗=0, ∅=0]" ] }, { @@ -78478,7 +78478,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.60blocks/s, ⧗=0, ▶=1, ✔=180, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.85blocks/s, ⧗=0, ▶=1, ✔=180, ✗=0, ∅=0]" ] }, { @@ -78500,7 +78500,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.60blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 83%|████████▎ | 180/216 [00:10<00:02, 16.85blocks/s, ⧗=0, ▶=0, ✔=181, ✗=0, ∅=0]" ] }, { @@ -78522,7 +78522,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.60blocks/s, ⧗=0, ▶=1, ✔=181, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.85blocks/s, ⧗=0, ▶=1, ✔=181, ✗=0, ∅=0]" ] }, { @@ -78544,7 +78544,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.60blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 181/216 [00:10<00:02, 16.85blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" ] }, { @@ -78566,7 +78566,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.39blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=0, ✔=182, ✗=0, ∅=0]" ] }, { @@ -78588,7 +78588,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.39blocks/s, ⧗=0, ▶=1, ✔=182, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=1, ✔=182, ✗=0, ∅=0]" ] }, { @@ -78610,7 +78610,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.39blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 84%|████████▍ | 182/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=0, ✔=183, ✗=0, ∅=0]" ] }, { @@ -78632,7 +78632,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.39blocks/s, ⧗=0, ▶=1, ✔=183, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=1, ✔=183, ✗=0, ∅=0]" ] }, { @@ -78654,7 +78654,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.39blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▍ | 183/216 [00:10<00:01, 17.60blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" ] }, { @@ -78676,7 +78676,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.64blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.89blocks/s, ⧗=0, ▶=0, ✔=184, ✗=0, ∅=0]" ] }, { @@ -78698,7 +78698,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.64blocks/s, ⧗=0, ▶=1, ✔=184, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.89blocks/s, ⧗=0, ▶=1, ✔=184, ✗=0, ∅=0]" ] }, { @@ -78720,7 +78720,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.64blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 85%|████████▌ | 184/216 [00:10<00:01, 17.89blocks/s, ⧗=0, ▶=0, ✔=185, ✗=0, ∅=0]" ] }, { @@ -78742,7 +78742,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.64blocks/s, ⧗=0, ▶=1, ✔=185, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.89blocks/s, ⧗=0, ▶=1, ✔=185, ✗=0, ∅=0]" ] }, { @@ -78764,7 +78764,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.64blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 185/216 [00:10<00:01, 17.89blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" ] }, { @@ -78786,7 +78786,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.55blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 18.20blocks/s, ⧗=0, ▶=0, ✔=186, ✗=0, ∅=0]" ] }, { @@ -78808,7 +78808,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.55blocks/s, ⧗=0, ▶=1, ✔=186, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 18.20blocks/s, ⧗=0, ▶=1, ✔=186, ✗=0, ∅=0]" ] }, { @@ -78830,7 +78830,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 17.55blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 86%|████████▌ | 186/216 [00:10<00:01, 18.20blocks/s, ⧗=0, ▶=0, ✔=187, ✗=0, ∅=0]" ] }, { @@ -78852,7 +78852,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.55blocks/s, ⧗=0, ▶=1, ✔=187, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 18.20blocks/s, ⧗=0, ▶=1, ✔=187, ✗=0, ∅=0]" ] }, { @@ -78874,7 +78874,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 17.55blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 187/216 [00:10<00:01, 18.20blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" ] }, { @@ -78896,7 +78896,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 17.26blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 18.61blocks/s, ⧗=0, ▶=0, ✔=188, ✗=0, ∅=0]" ] }, { @@ -78918,7 +78918,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 17.26blocks/s, ⧗=0, ▶=1, ✔=188, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 18.61blocks/s, ⧗=0, ▶=1, ✔=188, ✗=0, ∅=0]" ] }, { @@ -78940,7 +78940,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:11<00:01, 17.26blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 87%|████████▋ | 188/216 [00:10<00:01, 18.61blocks/s, ⧗=0, ▶=0, ✔=189, ✗=0, ∅=0]" ] }, { @@ -78962,7 +78962,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.26blocks/s, ⧗=0, ▶=1, ✔=189, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:10<00:01, 18.61blocks/s, ⧗=0, ▶=1, ✔=189, ✗=0, ∅=0]" ] }, { @@ -78984,7 +78984,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 17.26blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 189/216 [00:11<00:01, 18.61blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" ] }, { @@ -79006,7 +79006,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.29blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.12blocks/s, ⧗=0, ▶=0, ✔=190, ✗=0, ∅=0]" ] }, { @@ -79028,7 +79028,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.29blocks/s, ⧗=0, ▶=1, ✔=190, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.12blocks/s, ⧗=0, ▶=1, ✔=190, ✗=0, ∅=0]" ] }, { @@ -79050,7 +79050,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.29blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 190/216 [00:11<00:01, 17.12blocks/s, ⧗=0, ▶=0, ✔=191, ✗=0, ∅=0]" ] }, { @@ -79072,7 +79072,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.29blocks/s, ⧗=0, ▶=1, ✔=191, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.12blocks/s, ⧗=0, ▶=1, ✔=191, ✗=0, ∅=0]" ] }, { @@ -79094,7 +79094,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.29blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 88%|████████▊ | 191/216 [00:11<00:01, 17.12blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" ] }, { @@ -79116,7 +79116,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.64blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.33blocks/s, ⧗=0, ▶=0, ✔=192, ✗=0, ∅=0]" ] }, { @@ -79138,7 +79138,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.64blocks/s, ⧗=0, ▶=1, ✔=192, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.33blocks/s, ⧗=0, ▶=1, ✔=192, ✗=0, ∅=0]" ] }, { @@ -79160,7 +79160,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.64blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 192/216 [00:11<00:01, 17.33blocks/s, ⧗=0, ▶=0, ✔=193, ✗=0, ∅=0]" ] }, { @@ -79182,7 +79182,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.64blocks/s, ⧗=0, ▶=1, ✔=193, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.33blocks/s, ⧗=0, ▶=1, ✔=193, ✗=0, ∅=0]" ] }, { @@ -79204,7 +79204,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.64blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 89%|████████▉ | 193/216 [00:11<00:01, 17.33blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" ] }, { @@ -79226,7 +79226,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 17.48blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.78blocks/s, ⧗=0, ▶=0, ✔=194, ✗=0, ∅=0]" ] }, { @@ -79248,7 +79248,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 17.48blocks/s, ⧗=0, ▶=1, ✔=194, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.78blocks/s, ⧗=0, ▶=1, ✔=194, ✗=0, ∅=0]" ] }, { @@ -79270,7 +79270,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 17.48blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|████████▉ | 194/216 [00:11<00:01, 16.78blocks/s, ⧗=0, ▶=0, ✔=195, ✗=0, ∅=0]" ] }, { @@ -79292,7 +79292,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 17.48blocks/s, ⧗=0, ▶=1, ✔=195, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 16.78blocks/s, ⧗=0, ▶=1, ✔=195, ✗=0, ∅=0]" ] }, { @@ -79314,7 +79314,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 17.48blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 90%|█████████ | 195/216 [00:11<00:01, 16.78blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" ] }, { @@ -79336,7 +79336,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.42blocks/s, ⧗=0, ▶=0, ✔=196, ✗=0, ∅=0]" ] }, { @@ -79358,7 +79358,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=1, ✔=196, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.42blocks/s, ⧗=0, ▶=1, ✔=196, ✗=0, ∅=0]" ] }, { @@ -79380,7 +79380,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 196/216 [00:11<00:01, 16.42blocks/s, ⧗=0, ▶=0, ✔=197, ✗=0, ∅=0]" ] }, { @@ -79402,7 +79402,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=1, ✔=197, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.42blocks/s, ⧗=0, ▶=1, ✔=197, ✗=0, ∅=0]" ] }, { @@ -79424,7 +79424,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.63blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 91%|█████████ | 197/216 [00:11<00:01, 16.42blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" ] }, { @@ -79446,7 +79446,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.73blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.74blocks/s, ⧗=0, ▶=0, ✔=198, ✗=0, ∅=0]" ] }, { @@ -79468,7 +79468,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.73blocks/s, ⧗=0, ▶=1, ✔=198, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.74blocks/s, ⧗=0, ▶=1, ✔=198, ✗=0, ∅=0]" ] }, { @@ -79490,7 +79490,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.73blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 198/216 [00:11<00:01, 16.74blocks/s, ⧗=0, ▶=0, ✔=199, ✗=0, ∅=0]" ] }, { @@ -79512,7 +79512,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.73blocks/s, ⧗=0, ▶=1, ✔=199, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.74blocks/s, ⧗=0, ▶=1, ✔=199, ✗=0, ∅=0]" ] }, { @@ -79534,7 +79534,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.73blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 92%|█████████▏| 199/216 [00:11<00:01, 16.74blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" ] }, { @@ -79556,7 +79556,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.27blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 16.80blocks/s, ⧗=0, ▶=0, ✔=200, ✗=0, ∅=0]" ] }, { @@ -79578,7 +79578,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.27blocks/s, ⧗=0, ▶=1, ✔=200, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 16.80blocks/s, ⧗=0, ▶=1, ✔=200, ✗=0, ∅=0]" ] }, { @@ -79600,7 +79600,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 17.27blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 200/216 [00:11<00:00, 16.80blocks/s, ⧗=0, ▶=0, ✔=201, ✗=0, ∅=0]" ] }, { @@ -79622,7 +79622,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.27blocks/s, ⧗=0, ▶=1, ✔=201, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 16.80blocks/s, ⧗=0, ▶=1, ✔=201, ✗=0, ∅=0]" ] }, { @@ -79644,7 +79644,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 17.27blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 93%|█████████▎| 201/216 [00:11<00:00, 16.80blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" ] }, { @@ -79666,7 +79666,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.66blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.83blocks/s, ⧗=0, ▶=0, ✔=202, ✗=0, ∅=0]" ] }, { @@ -79688,7 +79688,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.66blocks/s, ⧗=0, ▶=1, ✔=202, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.83blocks/s, ⧗=0, ▶=1, ✔=202, ✗=0, ∅=0]" ] }, { @@ -79710,7 +79710,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.66blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▎| 202/216 [00:11<00:00, 16.83blocks/s, ⧗=0, ▶=0, ✔=203, ✗=0, ∅=0]" ] }, { @@ -79732,7 +79732,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.66blocks/s, ⧗=0, ▶=1, ✔=203, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.83blocks/s, ⧗=0, ▶=1, ✔=203, ✗=0, ∅=0]" ] }, { @@ -79754,7 +79754,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.66blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 203/216 [00:11<00:00, 16.83blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" ] }, { @@ -79776,7 +79776,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.12blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.03blocks/s, ⧗=0, ▶=0, ✔=204, ✗=0, ∅=0]" ] }, { @@ -79798,7 +79798,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.12blocks/s, ⧗=0, ▶=1, ✔=204, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.03blocks/s, ⧗=0, ▶=1, ✔=204, ✗=0, ∅=0]" ] }, { @@ -79820,7 +79820,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.12blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 94%|█████████▍| 204/216 [00:11<00:00, 17.03blocks/s, ⧗=0, ▶=0, ✔=205, ✗=0, ∅=0]" ] }, { @@ -79842,7 +79842,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.12blocks/s, ⧗=0, ▶=1, ✔=205, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:11<00:00, 17.03blocks/s, ⧗=0, ▶=1, ✔=205, ✗=0, ∅=0]" ] }, { @@ -79864,7 +79864,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:12<00:00, 17.12blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▍| 205/216 [00:12<00:00, 17.03blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" ] }, { @@ -79886,7 +79886,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 16.28blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.17blocks/s, ⧗=0, ▶=0, ✔=206, ✗=0, ∅=0]" ] }, { @@ -79908,7 +79908,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 16.28blocks/s, ⧗=0, ▶=1, ✔=206, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.17blocks/s, ⧗=0, ▶=1, ✔=206, ✗=0, ∅=0]" ] }, { @@ -79930,7 +79930,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 16.28blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 95%|█████████▌| 206/216 [00:12<00:00, 17.17blocks/s, ⧗=0, ▶=0, ✔=207, ✗=0, ∅=0]" ] }, { @@ -79952,7 +79952,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 16.28blocks/s, ⧗=0, ▶=1, ✔=207, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.17blocks/s, ⧗=0, ▶=1, ✔=207, ✗=0, ∅=0]" ] }, { @@ -79974,7 +79974,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 16.28blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▌| 207/216 [00:12<00:00, 17.17blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" ] }, { @@ -79996,7 +79996,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 16.54blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 16.69blocks/s, ⧗=0, ▶=0, ✔=208, ✗=0, ∅=0]" ] }, { @@ -80018,7 +80018,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 16.54blocks/s, ⧗=0, ▶=1, ✔=208, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 16.69blocks/s, ⧗=0, ▶=1, ✔=208, ✗=0, ∅=0]" ] }, { @@ -80040,7 +80040,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 16.54blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 96%|█████████▋| 208/216 [00:12<00:00, 16.69blocks/s, ⧗=0, ▶=0, ✔=209, ✗=0, ∅=0]" ] }, { @@ -80062,7 +80062,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 16.54blocks/s, ⧗=0, ▶=1, ✔=209, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 16.69blocks/s, ⧗=0, ▶=1, ✔=209, ✗=0, ∅=0]" ] }, { @@ -80084,7 +80084,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 16.54blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 209/216 [00:12<00:00, 16.69blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" ] }, { @@ -80106,7 +80106,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 16.81blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.21blocks/s, ⧗=0, ▶=0, ✔=210, ✗=0, ∅=0]" ] }, { @@ -80128,7 +80128,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 16.81blocks/s, ⧗=0, ▶=1, ✔=210, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.21blocks/s, ⧗=0, ▶=1, ✔=210, ✗=0, ∅=0]" ] }, { @@ -80150,7 +80150,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 16.81blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 97%|█████████▋| 210/216 [00:12<00:00, 17.21blocks/s, ⧗=0, ▶=0, ✔=211, ✗=0, ∅=0]" ] }, { @@ -80172,7 +80172,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 16.81blocks/s, ⧗=0, ▶=1, ✔=211, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.21blocks/s, ⧗=0, ▶=1, ✔=211, ✗=0, ∅=0]" ] }, { @@ -80194,7 +80194,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 16.81blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 211/216 [00:12<00:00, 17.21blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" ] }, { @@ -80216,7 +80216,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.25blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 16.73blocks/s, ⧗=0, ▶=0, ✔=212, ✗=0, ∅=0]" ] }, { @@ -80238,7 +80238,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.25blocks/s, ⧗=0, ▶=1, ✔=212, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 16.73blocks/s, ⧗=0, ▶=1, ✔=212, ✗=0, ∅=0]" ] }, { @@ -80260,7 +80260,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 17.25blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 98%|█████████▊| 212/216 [00:12<00:00, 16.73blocks/s, ⧗=0, ▶=0, ✔=213, ✗=0, ∅=0]" ] }, { @@ -80282,7 +80282,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.25blocks/s, ⧗=0, ▶=1, ✔=213, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 16.73blocks/s, ⧗=0, ▶=1, ✔=213, ✗=0, ∅=0]" ] }, { @@ -80304,7 +80304,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 17.25blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▊| 213/216 [00:12<00:00, 16.73blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" ] }, { @@ -80326,7 +80326,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 16.72blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 16.13blocks/s, ⧗=0, ▶=0, ✔=214, ✗=0, ∅=0]" ] }, { @@ -80348,7 +80348,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 16.72blocks/s, ⧗=0, ▶=1, ✔=214, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 16.13blocks/s, ⧗=0, ▶=1, ✔=214, ✗=0, ∅=0]" ] }, { @@ -80370,7 +80370,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 16.72blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 99%|█████████▉| 214/216 [00:12<00:00, 16.13blocks/s, ⧗=0, ▶=0, ✔=215, ✗=0, ∅=0]" ] }, { @@ -80392,7 +80392,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 16.72blocks/s, ⧗=0, ▶=1, ✔=215, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 16.13blocks/s, ⧗=0, ▶=1, ✔=215, ✗=0, ∅=0]" ] }, { @@ -80414,7 +80414,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 16.72blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 100%|█████████▉| 215/216 [00:12<00:00, 16.13blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -80436,7 +80436,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 100%|██████████| 216/216 [00:12<00:00, 17.35blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ▶: 100%|██████████| 216/216 [00:12<00:00, 16.48blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -80458,7 +80458,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.35blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 16.48blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -80473,7 +80473,7 @@ "output_type": "stream", "text": [ "\r", - "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.15blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" + "predict_/home/runner/dacapo/example_run/validation.zarr_2000/ds_example_dataset/prediction ✔: 100%|██████████| 216/216 [00:12<00:00, 17.12blocks/s, ⧗=0, ▶=0, ✔=216, ✗=0, ∅=0]" ] }, { @@ -80520,7 +80520,7 @@ "output_type": "stream", "text": [ "\r", - "training until 2000: 100%|██████████| 2000/2000 [13:12<00:00, 2.52it/s, loss=0.345]" + "training until 2000: 100%|██████████| 2000/2000 [12:52<00:00, 2.59it/s, loss=0.434]" ] }, { @@ -80557,7 +80557,7 @@ }, { "cell_type": "markdown", - "id": "c20f64b7", + "id": "0d3054f4", "metadata": {}, "source": [ "## Visualize\n", @@ -80568,13 +80568,13 @@ { "cell_type": "code", "execution_count": 12, - "id": "eb04b1f8", + "id": "229e4509", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:49:36.285107Z", - "iopub.status.busy": "2024-11-07T15:49:36.284320Z", - "iopub.status.idle": "2024-11-07T15:49:36.427597Z", - "shell.execute_reply": "2024-11-07T15:49:36.426996Z" + "iopub.execute_input": "2024-11-07T16:12:39.976866Z", + "iopub.status.busy": "2024-11-07T16:12:39.976269Z", + "iopub.status.idle": "2024-11-07T16:12:40.093153Z", + "shell.execute_reply": "2024-11-07T16:12:40.092453Z" } }, "outputs": [ @@ -80585,15 +80585,15 @@ "Creating FileStatsStore:\n", "\tpath : /home/runner/dacapo/stats\n", "\n", - "array([0.65979844, 0.61128896, 0.58934087, ..., 0.35486192, 0.37893647,\n", - " 0.34515283])\n", + "array([0.78323734, 0.73412889, 0.75879186, ..., 0.59049326, 0.35759771,\n", + " 0.4338592 ])\n", "Coordinates:\n", " * iterations (iterations) int64 0 1 2 3 4 5 ... 1994 1995 1996 1997 1998 1999\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB540lEQVR4nO3dd3gU5doG8HvTCZAECKRAIPRO6AhIUSJFRBD9REQRVFTKsSBHDypFjgo2rCiKIIoFLAhHpQciIii99xpaEgKkk7Y73x8hmy0zuzOzs/3+XZeXydR3dsm+zz5v0wmCIICIiIjIRwS4uwBEREREWmJwQ0RERD6FwQ0RERH5FAY3RERE5FMY3BAREZFPYXBDREREPoXBDREREfkUBjdERETkUxjcEBERkU9hcENETjdmzBgkJiaqOnfmzJnQ6XTaFoiIfBqDGyI/ptPpZP2Xmprq7qK6xZgxY1CtWjV3F4OIFNJxbSki//XNN9+Y/f71119j/fr1WLJkidn2O+64AzExMarvU1paCoPBgNDQUMXnlpWVoaysDGFhYarvr9aYMWPw008/IT8/3+X3JiL1gtxdACJyn4ceesjs97///hvr16+32m6psLAQ4eHhsu8THBysqnwAEBQUhKAgflQRkXxsliIim/r27Ys2bdpg165d6N27N8LDw/HSSy8BAFauXInBgwcjPj4eoaGhaNy4Mf773/9Cr9ebXcOyz83Zs2eh0+nwzjvv4PPPP0fjxo0RGhqKLl26YMeOHWbnivW50el0mDRpElasWIE2bdogNDQUrVu3xpo1a6zKn5qais6dOyMsLAyNGzfGZ599pnk/nh9//BGdOnVClSpVEB0djYceeggXL140OyY9PR1jx45FvXr1EBoairi4OAwdOhRnz541HrNz504MGDAA0dHRqFKlCho2bIhHH31Us3IS+Qt+HSIiu65evYpBgwbhgQcewEMPPWRsolq8eDGqVauGyZMno1q1ati4cSOmT5+O3NxcvP3223av+9133yEvLw9PPvkkdDod3nrrLQwfPhynT5+2m+3ZsmULli9fjgkTJqB69er48MMPce+99yItLQ21atUCAOzZswcDBw5EXFwcXn31Vej1esyaNQu1a9d2/EW5afHixRg7diy6dOmC2bNnIyMjAx988AH++usv7NmzB1FRUQCAe++9F4cOHcK//vUvJCYmIjMzE+vXr0daWprx9/79+6N27dr4z3/+g6ioKJw9exbLly/XrKxEfkMgIrpp4sSJguXHQp8+fQQAwvz5862OLywstNr25JNPCuHh4UJRUZFx2yOPPCI0aNDA+PuZM2cEAEKtWrWEa9euGbevXLlSACD8+uuvxm0zZsywKhMAISQkRDh58qRx2759+wQAwkcffWTcNmTIECE8PFy4ePGicduJEyeEoKAgq2uKeeSRR4SqVatK7i8pKRHq1KkjtGnTRrhx44Zx+2+//SYAEKZPny4IgiBcv35dACC8/fbbktf65ZdfBADCjh077JaLiGxjsxQR2RUaGoqxY8daba9SpYrx57y8PGRlZaFXr14oLCzE0aNH7V53xIgRqFGjhvH3Xr16AQBOnz5t99zk5GQ0btzY+Hu7du0QERFhPFev12PDhg0YNmwY4uPjjcc1adIEgwYNsnt9OXbu3InMzExMmDDBrMPz4MGD0aJFC/z+++8Ayl+nkJAQpKam4vr166LXqsjw/PbbbygtLdWkfET+isENEdlVt25dhISEWG0/dOgQ7rnnHkRGRiIiIgK1a9c2dkbOycmxe9369eub/V4R6EgFALbOrTi/4tzMzEzcuHEDTZo0sTpObJsa586dAwA0b97cal+LFi2M+0NDQ/Hmm29i9erViImJQe/evfHWW28hPT3deHyfPn1w77334tVXX0V0dDSGDh2KL7/8EsXFxZqUlcifMLghIrtMMzQVsrOz0adPH+zbtw+zZs3Cr7/+ivXr1+PNN98EABgMBrvXDQwMFN0uyJihwpFz3eHZZ5/F8ePHMXv2bISFhWHatGlo2bIl9uzZA6C8k/RPP/2Ebdu2YdKkSbh48SIeffRRdOrUiUPRiRRicENEqqSmpuLq1atYvHgxnnnmGdx1111ITk42a2Zypzp16iAsLAwnT5602ie2TY0GDRoAAI4dO2a179ixY8b9FRo3boznn38e69atw8GDB1FSUoJ3333X7JhbbrkFr7/+Onbu3Ilvv/0Whw4dwtKlSzUpL5G/YHBDRKpUZE5MMyUlJSX45JNP3FUkM4GBgUhOTsaKFStw6dIl4/aTJ09i9erVmtyjc+fOqFOnDubPn2/WfLR69WocOXIEgwcPBlA+L1BRUZHZuY0bN0b16tWN512/ft0q69S+fXsAYNMUkUIcCk5EqvTo0QM1atTAI488gqeffho6nQ5LlizxqGahmTNnYt26dejZsyfGjx8PvV6Pjz/+GG3atMHevXtlXaO0tBSvvfaa1faaNWtiwoQJePPNNzF27Fj06dMHI0eONA4FT0xMxHPPPQcAOH78OPr164f7778frVq1QlBQEH755RdkZGTggQceAAB89dVX+OSTT3DPPfegcePGyMvLw4IFCxAREYE777xTs9eEyB8wuCEiVWrVqoXffvsNzz//PF555RXUqFEDDz30EPr164cBAwa4u3gAgE6dOmH16tWYMmUKpk2bhoSEBMyaNQtHjhyRNZoLKM9GTZs2zWp748aNMWHCBIwZMwbh4eGYM2cOXnzxRVStWhX33HMP3nzzTeMIqISEBIwcORIpKSlYsmQJgoKC0KJFC/zwww+49957AZR3KN6+fTuWLl2KjIwMREZGomvXrvj222/RsGFDzV4TIn/AtaWIyO8MGzYMhw4dwokTJ9xdFCJyAva5ISKfduPGDbPfT5w4gVWrVqFv377uKRAROR0zN0Tk0+Li4jBmzBg0atQI586dw6effori4mLs2bMHTZs2dXfxiMgJ2OeGiHzawIED8f333yM9PR2hoaHo3r073njjDQY2RD6MmRsiIiLyKexzQ0RERD6FwQ0RERH5FL/rc2MwGHDp0iVUr14dOp3O3cUhIiIiGQRBQF5eHuLj4xEQYDs343fBzaVLl5CQkODuYhAREZEK58+fR7169Wwe43fBTfXq1QGUvzgRERFuLg0RERHJkZubi4SEBGM9bovbg5t58+bh7bffRnp6OpKSkvDRRx+ha9eukse///77+PTTT5GWlobo6Gjcd999mD17NsLCwmTdr6IpKiIigsENERGRl5HTpcStHYqXLVuGyZMnY8aMGdi9ezeSkpIwYMAAZGZmih7/3Xff4T//+Q9mzJiBI0eOYOHChVi2bBleeuklF5eciIiIPJVbg5u5c+di3LhxGDt2LFq1aoX58+cjPDwcixYtEj1+69at6NmzJx588EEkJiaif//+GDlyJLZv3+7ikhMREZGncltwU1JSgl27diE5ObmyMAEBSE5OxrZt20TP6dGjB3bt2mUMZk6fPo1Vq1bhzjvvlLxPcXExcnNzzf4jIiIi3+W2PjdZWVnQ6/WIiYkx2x4TE4OjR4+KnvPggw8iKysLt956KwRBQFlZGZ566imbzVKzZ8/Gq6++qmnZiYiIyHN51SR+qampeOONN/DJJ59g9+7dWL58OX7//Xf897//lTxn6tSpyMnJMf53/vx5F5aYiIiIXM1tmZvo6GgEBgYiIyPDbHtGRgZiY2NFz5k2bRoefvhhPP744wCAtm3boqCgAE888QRefvll0Ul9QkNDERoaqv0DEBERkUdyW+YmJCQEnTp1QkpKinGbwWBASkoKunfvLnpOYWGhVQATGBgIoHzmQiIiIiK3znMzefJkPPLII+jcuTO6du2K999/HwUFBRg7diwAYPTo0ahbty5mz54NABgyZAjmzp2LDh06oFu3bjh58iSmTZuGIUOGGIMcIiIi8m9uDW5GjBiBK1euYPr06UhPT0f79u2xZs0aYyfjtLQ0s0zNK6+8Ap1Oh1deeQUXL15E7dq1MWTIELz++uvuegQiIiLyMDrBz9pzcnNzERkZiZycHM5QTERE5CWU1N9eNVqKiIiIyB4GN0RERORTGNyQ17tRond3EYiIyIMwuCGv9vnmU2g5fQ3WHLzs7qIQEZGHYHBDXu2NVeVLdTz/wz43l4SIiDwFgxsiIiLyKQxuiIiIyKcwuCEiIiKfwuCGiIiIfAqDG/IJOp3O3UUgIiIPweCGiIiIfAqDGyIiIvIpDG6IiIjIpzC4ISIiIp/C4IaIiIh8CoMbIiIi8ikMbsgncCA4ERFVYHBDREREPoXBDREREfkUBjdERETkUxjcEBERkU9hcENEREQ+hcEN+QYOlyIiopsY3JBvENxdACIi8hQMboiIiMinMLgh38BmKSIiuonBDREREfkUBjdukHIkAwPe24xDl3LcXRQiIiKfw+DGDR77aieOZeThySW73F0UIiIin8Pgxo3yi8vcXQSfwS43RERUgcGNGwkcvkxERKQ5BjdERETkUxjcEBERkU9hcENEREQ+hcENERER+RQGN0RERORTGNw4QXGZHjP/dwh/HL9i8ziBw6WIiIg0x+DGCb7eeg6Lt57FI4u2u7soREREfofBjROcv17o7iL4HZ2O0/gREVE5BjduxEYp18vILcL+C9nuLgYRETkRgxsfIggCRi/ajie+3unuonisbm+k4O6P/8KRy7l2jy3TG6A3MAQlIvI2Qe4uAGnnUk4RNt/sxFxYUobwEL69UnanXUfLuAjJ/XqDgL7vpCI4MAApk/sgIIDNXkRE3oKZGyfQahBUQXEZdp69BoPM7IHp6CsOxHLMlbxiXLh+A2eyCpBfwgVOiYi8CYMbD/bA53/jvvnb8P2ONHcXxa8xUCQi8i4MbpxAkNtV2M5hBy7mAAB+2nXBwRIRERH5DwY3XoC9PezjSHAiIqrA4IaIiIh8CoMbIiIi8ikMbpxA6w6onH2XiIhIPgY3RERE5FMY3DiB3MSNp44wLirV48CFHL9etZzJMiIi78Xgxgu4up4d9cU/GPLxFvy4k0PQiYjI+zC4ISu7zl0HAK+aPJCJFiIiqsDghoiIiHwKgxsn0H60lIoyaFsEIiIir8HghiSxqYeIiLwRgxs3cuZoJC2uzfl1iIjIGzG4cSO9ICDlSAay8ottHqdTkUNhs5Rtal5TIiLyDgxunEJeaFFUasBjX+3EoA/+dHJ5fJ/SLJPsldvLDyYiIi/C4MYDXMmznblRwxfm3/th53msOnBZdF9RqR7f/nPO+LtTm/gY3RAReZUgdxfAF5nWs4IgON53xU0tKO5suEnPKcILP+0HAJydM9hq/ztrj+GLLWdUX99es5TSZ8/ILUJklWCEBQeqLhMREWmDmRsne3bZXpfdyyyI8vJkQ25RqfFnsazMH8evmP3uzGYpe0mh01fy0e2NFPR79w9FZSAiIudgcONkK/decncRVHPnYCnTWzurxWnu+uP4bb/j70/KkUwAwMXsGw5fi4iIHMdmKS+gJsZQ209kx9lrqs5TKiu/GCFBAYgIC7Z7rDNim60nr+L3m/157moX7/L7ExGR8zC4cQJv7cy75UQWHlr4j9Pvk1tUis6vbQAg3p8GMM8alTdLaZtGysgt0vR6RETkOTyiWWrevHlITExEWFgYunXrhu3bt0se27dvX+h0Oqv/Bg8WryT9wW/7L+Foeq7ZNjUB1uYTV+wfpIFTmfmKjpfzKEpDnzKDkj43XhqtEhH5KbcHN8uWLcPkyZMxY8YM7N69G0lJSRgwYAAyMzNFj1++fDkuX75s/O/gwYMIDAzE//3f/7m45K5jq+/L1lNZmPTdHgx83/G5cixv496J7irv7YzYQq8guCEiIu/i9uBm7ty5GDduHMaOHYtWrVph/vz5CA8Px6JFi0SPr1mzJmJjY43/rV+/HuHh4T4d3Nhy5HKe6HZVVbd1dOMQg0HArF8PY+Xei2bb7ZVtx9lreGbpHpPjtQ9E7GVuBImfiYjI87m1z01JSQl27dqFqVOnGrcFBAQgOTkZ27Ztk3WNhQsX4oEHHkDVqlVF9xcXF6O4uHKSvNzcXNHjtJBfXIbpKw5i84ksp93Dkla5lT9PXMFnf5zW6Grl1h/JwKK/yueiGdq+ruzz/m+++XvvnMyNQfaxbJUiIvIubs3cZGVlQa/XIyYmxmx7TEwM0tPT7Z6/fft2HDx4EI8//rjkMbNnz0ZkZKTxv4SEBIfLLWXeppNYvuei3bWilFK1tpTCGvnhhdL9nCwZDAKe+HonXvvtsM3jrhWUKCqDEo7GG3YzN4pWZ2D0Q0TkSdzeLOWIhQsXom3btujatavkMVOnTkVOTo7xv/PnzzutPOk5rh+BI9Ufx5nV7Z7z2Vh3OMPuDMFaZZXc3eeGwQsRkXdxa7NUdHQ0AgMDkZGRYbY9IyMDsbGxNs8tKCjA0qVLMWvWLJvHhYaGIjQ01OGyyuGsUTViAcze89lYsecialYNMW770oHlCETvK7G9VC+vSUerV8MpfW709vrcMKAhIvJWbg1uQkJC0KlTJ6SkpGDYsGEAAIPBgJSUFEyaNMnmuT/++COKi4vx0EMPuaCk7iUW3Ayb95fVNtNMii/1E3F35sYb4xxBEKA3CAgK9OrkLBGRKm7/5Js8eTIWLFiAr776CkeOHMH48eNRUFCAsWPHAgBGjx5t1uG4wsKFCzFs2DDUqlXL1UX2CW+tOYqRn/8tOwujhmbNUhpdx5SWfW480bivd6LL6xuQX1zm7qIQEbmc22coHjFiBK5cuYLp06cjPT0d7du3x5o1a4ydjNPS0hAQYB6DHTt2DFu2bMG6devcUWSvYK9Z5ZPUUwCAlCMZGNgmzuH7/XUyC++uO4Y597ZDs5jqDl/PlJzmPqXrYJUpGS2l7NIeYcPN9a5SjmQoGqlGROQL3B7cAMCkSZMkm6FSU1OttjVv3tyvZo115mR6pTb6nigJGEZ9Ub5sw+Nf7cTmF26zeb4nvHX2mqU8oIhERKSS25ulfIlHVYgyC6P1yt/XFQ7/lhOkOuN1VTTU26PeWCIisofBjRe5kleMH3eex40SvUvuJ5UxshkPOSHJ5Izgwl5QZbqfI6eIiLyLRzRL+QpnfcOvyK6M+GwbTmcVYN+FbPtlkXttjaMRpVcTBBnZI1kPo+zOOq1TVkRE5DGYufEip7MKAABrD2XYOdJ9TIMGrQInscyJ9ZWdl11hsxQRkXdhcKMhVyUD5NzGtEL+88QV7E67Ln4tGxdT8zxKz5ETN7gjuGBAQ0TkvdgspSEtK8QyjeafycwtMq4bNfG2xlh7KAM/j++hybXFOCO+k/eyOi+yZJxDRORdmLlxgT+OX8EihUsj/Gf5Acl9crIjFU056bmV613N23QKJzPzzcpi61JqMjcBCk+SNVqKaRQiIlKAmRsXeGRReeakTd1IdG1YU9Y5P+26ILnP0b4szlytW15soyxYURPa5BaVYvWByxjQOhZR4SH2T7B1fwZXRERehZkbDdmrAk2zKEqoGdljqz7OuVFqcm01JbJFJ/qjFGf1uZm8bB9e/PkAnliyS3S/3QFajGeIiLwWgxsXCnDh6OOPN52U3Fdgtt6Q8kLZCrac0alazjwzlvfdcKR8RNn2M9ccvz8DHSIir8LgxoWCNIpu5AQQ3/2Thj1p10UrZtNNNkdLSQQ+ZhPcWdxAzTw39g+StUlTnLiPiMh7MbhxIaWdbStYnpWZVyzrvOuFzutbU8EyOHFO5oaIiEg+BjcuFKhR5sbeoo8VdNCJBgam2RY1o6VsNkuZXFHWfDwyQhd3z3PDZikiIu/C0VIasjeqJsCVnW4gL4vi6DIElk8sa5i6yMtUqjfg3k+3onlMdZF7MLogIiL5mLlxoUC1zVIqZxGWCly0DBW06nOz9dRV7L+Qgx9FhsC7InNy4Xoh1hxMNz6P6S09IbjKzCvC0u1pLls0lYjImzFzoyF7VaBWzVJm19TpUCZR+8u53Q87z8OgYfSgNhNkqwyuCC1ufXMTAOCjkR0wJCneBXdU5r5PtyHtWiEOXsrBa8Paurs4REQejZkbF1LbodjmNW1EMHLut/5wBp6UmAtGDjXNUorv4YzUjUQ5/z591eqer/1+BLlFpeInuEjatUIAQMqRTLvHSq0jRkTkLxjcaMheva42c2PrLFuX1OnEAwO5sYKaLIzpKVLni222dSenNEspuOb6wxmYs/qo6lv9sOM8vvxL2fIbjnhv/XGX3YuIyBOxWUpD9pultL+nrX48ji7TIIfVUHAZ9xQbieRox2atnlSw+H+FY+l5qq6nNwh44ef9AIBBbeIQGxmmvnBERCQLMzcu5GgFLsZW01OATjzg0rRDscXV1D6iyzM3EjdUcy9bAZ1pX6KCkjLJ48hzlJQZuJ4YkZdjcKMlJ30e2gyKbOyS6o/j6Ae3yuKIl0XOPDfOeGG9tO5inetcOYWlaDNzLR5euN3dRSEiBzC4cSEX9osF4PhaVrIm4bN4JtNMktj52YUlKCo1WN/Lxs3cPYmfJ1+TtLX+SAZKygzYcjLL3UUhIgewz41LaV+72Z4YUHyflkO/Zd4SQPm34vaz1pttk1MUp5RWYeDHZgoiIu/BzI1G9p7Pxu8HLts8Rm39qDx8KRegE7+n/NFS8o6TW559F7KVXxDuCiwYzBAReSsGNxqRkw1xRnV5o1R6xlrJGYo1LIj1wpnKIqKC4vJOtrY65bo2zBC/m9rO4Ez4EBG5HoMbjbh21ahKYv1XKpS3WInMc+PEcMHmqCeRbV3fSEGhnVFEcgIErQeiWd6TzVJERN6DwY1G5MwGrLpZSmXFLVUm2c1SMo6xNRRcbrlPZOQ7ZWZjT+AJ61IREfkbBjcakbcatoCl29NE932SehKHLuW4pEzObJayFeSpz364LkCoKKKnhiQMloiI7GNwoxFZmRsA/1l+QHTfW2uOYfCHWzQulVQ5XFNBWr4ktu7q8kn8XMSby05E5K0Y3LiQ+opO2zYbg5aZG4vfbXW8LSkT7x9kLy50y1gplTc9mZmPr7aeRaleui8UmSssKcN764/jyOVcdxeFiHwEgxuNOGPFb0cJgtRQcHk1t5wRQpbXkjrjYvYN1auPC0L52k7FZdIjw7TiaKYlee4fmPG/Q1i0xXULZXoCvUFQ3ez47rrj+CDlBAZ98KfGpVLO8/6KiUgNBjcaCZDxSnpKfwlHMzc25925uRL5c8v24rll+4zbe87ZqPqiK/dexID3N+PhL7SbEt/0dqIrpzv4Xu1Jy3bofG9yo0SPPm9vwqTv9qg6/8AFbfuaERExuNGIrBW4VdaXG45kYL/aCfAcKIa80VIW5+iAtYcy8MueizLvYr9Q3/x9DgCw/ew1yWNcsQK6EhVJL3/oc5NyNAMXrt+wO4mlGoIguCxrR0S+g8GNRuSs4+RIPTfis78dONuiHE6scXXQ4dzVAsXn2SqRM0prek1HZnGW4oGtlE7jzADuf/sulWftuJAlESnA4EYj8oaCq7++rZmIld7PuTMUKw9GdNDZnuHZZNddH/2JZTvEh9NLyS4sgd4gr2+QlEOXctHrrY34dd8lRefJad7Kyi/26s60zkxOGbN2Z6SzdkRElhjcaERW51sP6XMjtxyysg8aPJIAwWbAZbrr4MVcvPiz9XD69NwibDyaIZqVaj9rPRq/tEpyBNPVghKzsgDWQVtxmQHnr93Av76X169ESTNZ59c2YNAHf+JERp7sczwJZ28mIk/D4EYjcqoyy+yBmNyiUqw/nOF4gSAdNBg8cJSyrcyN3Mrz0cU7bb5230tMoNjl9Q0m95J1K/tU9Lmx1aeIfEdxmR67zl2X9XlAROowuNGIVssvjP1yB8Z9vVODEtkoh+wjdTh4MQfzNp2UnKNGi2yUDjrZmRt7tp66Krlv+spDCq7kGDVdbpxZ1+1Ou46vt511SpbFNDBlFse+ycv24d5Pt+K99cfdXRQinxXk7gL4CjnBjZyVw3edu65FcQBUzHMjMsxZQQV010flsyYHBujwVJ/GovcwpbYfra0gSay4JzPzRY8t0ygtpSRos1l2G79ZMjgxuhn+yVYAQGxEGPq3jtX02qbvj94gICjQj3pTq1AxquzzP09jyoDmbi4NkW9i5kYjcvqneEoWWs2XayUdXpVeX6ez3VSmJNDw5FR/8tzNOHhRek4XOcGvo05dUT6STYkyjV9/TxviT0TegcGNRuQEN2eyxLMNziJVzWhZiYpdKftGichW5dcx7lNQ3DK9Ns/m+FBw3c3rmF/o6aXSHZI9OTCzxfQR1fzb8pSO9kTkO9gspRE5o6XeWHXUBSWxT/Ykfiq+NO+7kIN9KmactdmhWMF1HA0QtKpmj17OxR/Hr6Bj/Siz7baanuTEBZ7YpcW0SFpnblzNpfMTefdLReTRmLnRiJxJ/FxNqm/Nxes3FF9r5d5LuJpfDMC8AtCqA6nN6yjJ3HhI5XoiMx+PLNqOM1nym4Fc0SzljMrbtNx6jTJnRESOYHCjEU9cOBMQjwvkTgho+UQv/LRf1vXVsB3baN/nRk6mTQuWwY2t0nlIXKaYaWDqKcGlN2BzHJHzMLjRiCeGNlp/dO6/2Rn2tEWn1O/+UTZjsBhbdaKiPjcyR0tJZYoqNsu5Z3GZHhuPZqCgWJt1j1yRuXEGh/vceOdjO0zL5/7j+BXMXXdM9og7DtknX8c+NxpxVSZAKWd8hv3bJIOz/cw1vPSL9YzBSskfTm2bxCTEmrpRokeVkEDMWX0UX/51VrPrOnMouDP5Up8bb/XIovK1txrXqYah7evaPPb8tULc/9k2PHZrQzzeq5ErikfkcszcaMQTYxtXLP6opE+JLbbqRCXZAL3MzI29YNRWsNVy+hpsOpopK2NlWXRbj+KtcYHZPDda97nxwL8rT3ZBRn+62auP4HJOEV77/YgLSkTkHgxuNOKpfW4c4cpn0ipNvunYFUxdbt03SHY5ZOaJXvrlgKwjlfSrcEmHYidfX6tJFMl5tJougciTMbjRiGeGNo59iMlb6dz588oovcX32887VhgV99RCVn4xVuy5iCIbHb49sVoyDeAEAL/sueDVq5y7irveSx/8HkZkhcGNRjw1c+PsERlaBQHe2pnWHiWP9e0/aXh22V7MWe3YfEiufilN75d67AqeW7YPgz7407WF8ELs1EvkPAxuNKLzwFfS0c/OVQfS7R7z58ksx24C4F/f75HVV8AVlu++iOIyvdOGuMsJNivWHlLjZGY+rhYonyFaK4cvMWNDRO7ngVWyd/LEvM25q4VOz31vP3PN4WucySrAXA9aIfnXfTKDCzkzCqu4v9qg9Py1QiTP/cOsSciy47QzEoyO/hPz1/yF25qlPPLTikhbDG404onNUs//uA9FZdrMweJPftp1HsPm/WXzGB3kZWFc2fSwX8WyF5rwoeYVD/wzVsTby0+kFQY3GvHUD5XswlLNruVDdZhNf592PBtVwfIlk7d+lLoX2hNmvPWEMvgzf/kbJbKHwY1GPDFzoz1+cirmBy+ZMx/Rl/+qGIgQOQ+DGx+n5cRwWfnu66jqiWRlYVRU/d42cszLiuv3/OJ7GPk9Bjca8dTMjdZT+q92YCQPyaPlO2bZxOX0zqQMdIjIAzC40UiAZ8Y2eOFn9bP1ihn/7W5Nr+fr1GQ1bJ1zJa9YfWGcxNFO07bO99DvDB6LrxdROQY3GvHUhTNJnKveLnVDwW2fdSlb+zmBcgpLMeSjLViw+bTic5ms8S78qCJ/wOBGI56auSHnuJRT5LQVsO1d1RkTHn62+RQOXMzB66scW0yRgQ4ReQIGNxph5obEKFkVvPIgpxQFQOW39s3Hr2Dm/w4Z17G6YWM9K3vYodi7cBI/8gdB7i4AkS9TM1rK3hmmcfR/ft6PawUl+OzhToqCjNGLtgMAYiPD8FSfxorLaErqtqeu5KNx7WqqzyciUouZGyInUtehWP5JS3ecx7rDGTh1pUD2OYUlZcafK/rvaJV9MS17v3f/0OaiREQKMbghciI1MYO9rjwViRvTQELJ3DhLtp0z/hyg02HT0Uws3npWQQnNcXVrIvI0DG6InCivSPnyF/aasiqapeTEFGJ9wbLyi032A2MX71BUPiIiT+f24GbevHlITExEWFgYunXrhu3bt9s8Pjs7GxMnTkRcXBxCQ0PRrFkzrFq1ykWlJVLmrTXHFJ8jNxGiNl9SWFLZeTjQRkf4Ur1B8bW17ljv6s6v3t7ZVlb5vfsRiWRxa3CzbNkyTJ48GTNmzMDu3buRlJSEAQMGIDMzU/T4kpIS3HHHHTh79ix++uknHDt2DAsWLEDdunVdXHLydlouKKo1+0FLee1k2hykpL4yDW4CJOYw2HbqKpq+vBqLtpyxez3TYMyyiUrrJiuDQUCZiqDLX8jpwM7YhvyBW4ObuXPnYty4cRg7dixatWqF+fPnIzw8HIsWLRI9ftGiRbh27RpWrFiBnj17IjExEX369EFSUpKLS06kjqzKXmY8cDpLfidiKVKJlueW7QUAzPrtsN1rmFaoalZBV2LwR1tw65ubVGWViMh/uC24KSkpwa5du5CcnFxZmIAAJCcnY9u2baLn/O9//0P37t0xceJExMTEoE2bNnjjjTeg16ufo4PI09j79j3x290oKtWj/3ubLc6Tx3QdNGeviaZlbDPh2104cjkX6blFOKNBYEdEvstt89xkZWVBr9cjJibGbHtMTAyOHj0qes7p06exceNGjBo1CqtWrcLJkycxYcIElJaWYsaMGaLnFBcXo7i4sgNlbm6udg9B5AT2Rkul5xbh23/SVF1bp9MhyKQpylafG7lsZWcMgoBAjRpCVh1Il9x3Nb8Y1wtL0KROdU3uRUTeze0dipUwGAyoU6cOPv/8c3Tq1AkjRozAyy+/jPnz50ueM3v2bERGRhr/S0hIcGGJiczJmqBYRlvOtQLzBTSVxCiBgaaZG4kyKMi5mB6pZkZmNU1XlsXu9NoGJM/djLSrhcov5kPkdCjmbOrkD9wW3ERHRyMwMBAZGRlm2zMyMhAbGyt6TlxcHJo1a4bAwEDjtpYtWyI9PR0lJSWi50ydOhU5OTnG/86fP6/dQxA5gZy6vkxvfZTczrummRupDsVaUTNDsxxS9fOe89edcj8i8i5uC25CQkLQqVMnpKSkGLcZDAakpKSge/fuouf07NkTJ0+ehMFQ2Znw+PHjiIuLQ0hIiOg5oaGhiIiIMPuPyJPJiVFKLYKb1GNX8MzSvbKub9rPxpGhz2eyCpB6LNNmeTm/n/PkFZUiu1D8Sx2Rv3Nrs9TkyZOxYMECfPXVVzhy5AjGjx+PgoICjB07FgAwevRoTJ061Xj8+PHjce3aNTzzzDM4fvw4fv/9d7zxxhuYOHGiux6BSBGt8iR6g/loodd+l7eatw5AoEm2Rmxm473ns2UFJbe9k4oxX+7ArnPS2RJHgxvpFhTXNa0IgoAv/zqDHWevueye9giCgLYz16H9rPW4UaJsQAUbpcgfuHXhzBEjRuDKlSuYPn060tPT0b59e6xZs8bYyTgtLQ0BAZXxV0JCAtauXYvnnnsO7dq1Q926dfHMM8/gxRdfdNcjECmiVSKjzF6vYxtMm6XEmrKGzfsLtauHyr7e/gvZkvvkLAuh5klc2W0k5UgmXv21fEj82TmDXXdjG0zf/ks5N9xXECIP5fZVwSdNmoRJkyaJ7ktNTbXa1r17d/z9999OLhWRa6id5E6sz43c65t2KHUgRjK5ho15bhy/vCip2MYZnWU57JzI+3jVaCkiKldqUD+JXbDJaKla1cT7qimJufQmEZKzZyiu4KwRP/4wkEjtM3JmaPImDG6IXEjNUGkxBpkplwvXrZssTOu2KsGBVvsVl8V0+QUb+0TPVbmcgh/EIDa5eiX21GOZaD5tDX7YwdGm5B0Y3GhoSv9m7i4CeRm1VZTczMXba80X7tTpzO8pFXyYrhxuj2mz1MmMfPOddh5w+KdbceiS9cSa568V4sEFf2Prqaui50k9vpZBj6sDCCWkSvbrvkt2z1XzGj3x9S7oDQJe+Hm/irOJXI/BjYaGd6zn7iKQlxAEAeeuFqiuQLVqPtFiHhrTLNKxjDzzfXaeb+/5bNHtL/68XzKwAbx/9W5nOXw5Fycs3gMif8TgRkP+0F5PjqkIJl799TD6vJ2Kz/88reo6jlTupvGGNh2KbdxL5TWv5MnPHGlxP9Fr3byYJ/5d24oZL+UUua4gRB6KwQ2RC2Xkllfai7eeBQC8teaYjaOlOVLhmmZrMjSoCG1lZ+QMBRdj7yxnzHxcUFyGZ2+uhk5E3o3BjYaYKidXUbtqgg7m3/o/3nTS4bLYCmBUd5i2c6LUbkf+Aj/edNLsup7b48Z5y1oQ+QoGNxryxPQ1eR69Bm1BlssvKKF1tWi7WUpl5sbOac6o2rXIYrmK6euj9GOHC2eSP1AV3Jw/fx4XLlww/r59+3Y8++yz+PzzzzUrGJGvGvj+Zoev8cuei6rP1XoQkK1gzXmZG+3DG2/NhSgtN0Mb8geqgpsHH3wQmzZtAgCkp6fjjjvuwPbt2/Hyyy9j1qxZmhbQm3jCh8aHIzu4uwhkx4nMfLvHfLzxhHFYr9aTp6nNphy8mIO31hxFfnGZ/HupjBjUZm60TEp48lBwIrJNVXBz8OBBdO3aFQDwww8/oE2bNti6dSu+/fZbLF68WMvykUL8QPYN76w7jn99vwcAMPmHfZpdV2c50Y0Cd320BZ+knsLcdcdln6O+Q7Ht8+7+aAveWCVvsVDZ9+TfDpHPUBXclJaWIjS0fGG9DRs24O677wYAtGjRApcvX9audN7GA1I3aisT8kz7L2TjfzImZpNLEBzvinosw3rSPcn7qbyHvdUlCkr0+HyzumH0Uly1LpYW+GdOZJuq4KZ169aYP38+/vzzT6xfvx4DBw4EAFy6dAm1atXStIDeJDTI8ansHeXAkkPkgXacve7wNbRe7ykoQP7HhjdlQ7yoqGaZLcXfqTzgSxiRs6kKbt5880189tln6Nu3L0aOHImkpCQAwP/+9z9jc5U/Cg/xgODGmz6hyS65a0jZYjayRoNOKaYLbyq5txKe8O/YA4pARCoFqTmpb9++yMrKQm5uLmrUqGHc/sQTTyA8PFyzwnmb4ED3j6znB7JvKdGgM7FpoHA0PQ9VHQzClWVubO1zfPK/3KJSRIQFyy6Pr+DfOZFtqmrjGzduoLi42BjYnDt3Du+//z6OHTuGOnXqaFpAX1U9TFVcaZcnfOMl7ZSUOR7c3P3xX8afv9+eprgvieVorSAFmRulE/z9tOuC5D4xk77bg9UHKvv5ObQshdXvnvu35EjJONko+QNVwc3QoUPx9ddfAwCys7PRrVs3vPvuuxg2bBg+/fRTTQvoq7SYyE2M534ckxqlGmRuDl827wCsNP7tMGs9rhWUGH9XkqG0dSuxfVN+3IdrBSWy/x1vPn4F321Pk10eW7ypfxAR2aYquNm9ezd69eoFAPjpp58QExODc+fO4euvv8aHH36oaQG9zaA2sbKOK3NScOOsoIncQ4vMjSWlGYm84jIs3105aWeQgrUfbGduxPcVFJcpCjS0mnHXKnPjwX9KrgzE1hy8rEnzKJErqQpuCgsLUb16dQDAunXrMHz4cAQEBOCWW27BuXPnNC2gt+nbvLas45yWufHkT2RS7IstZzS/pqP/RIKDNOpzI7FdbxCQlV8isZccpSQWzC4swVPf7HZeYYicRFVw06RJE6xYsQLnz5/H2rVr0b9/fwBAZmYmIiIiNC2gt5Hbnu3OZqlAtasukt/KvVFq/DlY0b8f5UszzF0vf5JAALhe4H+BkK2/cy3/uvOK5M9GTeRJVAU306dPx5QpU5CYmIiuXbuie/fuAMqzOB06+Pf0/4Pbxbn1/nKCJsY2/k1Ndi/laKbx55pVQ2Wfp2ZRTaWTFh64mKPoeElelPRkgpbINlXBzX333Ye0tDTs3LkTa9euNW7v168f3nvvPc0K542qhjpnFJRcHerXsHsMVwX2b2rqRdO+PzWryh96bXsouIqCyLqngC0nspCZp2yVb8tgyxMCiN/2X8LjX+1EblGp/YOdwBNeAyI1VNfEsbGxiI2NNa4OXq9ePb+ewM8ThIcEon1ClN3jmLnxb2oqLMHi5zUH5S2z4uqpCXQ6YO2hDDz1zS6EBAXg+GuDZJ/riRX5pO/K1xf7eONJvHRny8odDpSVf/7+7VL2DdSpHoogD5iXzZlUPZ3BYMCsWbMQGRmJBg0aoEGDBoiKisJ///tfGDj/v9t0byRv6YsAZm5IIcumLLmdTMUChusFJVhzMN1pI3D+OH4FgHYjzTwh03nND/sVkfY2H7+CHnM2YuziHe4uitOpyty8/PLLWLhwIebMmYOePXsCALZs2YKZM2eiqKgIr7/+uqaF9FV3J8Vruiii3M/gQA/4sCb3UTM5nVnmRsHpYve6/7NtOJGZj3G9Giouh7McuJCDM1kFZtsqyu6JIxA9eYJB8lxfbT0LAPjzRJbkMfnFZTh3tQCt4yNdVCrnUJW5+eqrr/DFF19g/PjxaNeuHdq1a4cJEyZgwYIFWLx4scZF9F0vD25p95j5D3WUfT253zAD2C7l11TV1SbnKKnsxQ49kZkPQHnHYTnU/MvOzC3CkI+34Gh6nublcRZH4i1+tyFbBry3GYM/3ILUY5n2D/ZgqoKba9euoUWLFlbbW7RogWvXrjlcKH8wsmsCoqvZH3XSuHY12deU+5lluvBhq7gIfD/uFtn30ErD6KouvyeVczC2UXS+rUrYGbMhCFBeeZ+9Wih+rZvl84RmKQ9MHpGPuph9AwCw6oC8fnWeSlVwk5SUhI8//thq+8cff4x27do5XChfN7xDXcwa2gaBATok1tJuoVG5n8GWCx9qPe9Nj8b2+/7cIrN/EGlPTUVp2jFYyflqZigm+7i2FDmbt/95qupz89Zbb2Hw4MHYsGGDcY6bbdu24fz581i1apWmBfRF7etHGdfnWfdcH9wo0SNp1jrRY5V8aZTbUdhy4UOtO82//X9J6Dlno81jPODLsB9T/ql1TiK74cidnJG50fKflZd/thP5NVXVWp8+fXD8+HHcc889yM7ORnZ2NoYPH45Dhw5hyZIlWpfR68y9PwmdGtTAXTIm9AsJCkBkuK15Q6Q/rr8Y3dn8SJmf7JYLH2o9eqqGzechd3P0G5mS0z05c2MwCJj03W58tPGEW8uhhulr99AX/zjvPgzxyEupnucmPj7ealTUvn37sHDhQnz++ecOF8ybDe9YD8M71sOsXw+L7lcSStiKO6qFmb99ctPNps1QOp32zVJyyiH3jr2b1cbmm0N7SRsOBzcOdiiu4Kw1XuX+29p2+ip+2y/dr8DdwZctpiW7lGM+WaG97yrMmpI/8O1ZfNzM9EPk3wOaG3+W+5G5aUpfhTeUd5jlqs5aZ260vJwnVzDeyrXfxqXv5YwJ/pT827tRotf8/r6G/XPIWzG4cZGJtzVRfE7D6KrKsjwyj7NslnLVQpr3dqxn/NmZ3x7vbBvrvIv7AEdjitd+PyL7WJtrS7k5brX3b9CTw2p3v3ZEno7BjRNpUX8rGYaqdp4bV81YnJRQOSmU3G+E9WooH02WUFO7EWi+yKV5G5vBDWtod2CzlP/yp/deUZ+b4cOH29yfnZ3tSFn8RqcG9he3rGDr36LlPrn/bkMtMjdhwdrGuFJ/QAaFnSxeGNgcOYXWCwYObR+PlXulJ4ArLWOl6SlOX8lHl8QaooG3s/rcaOXjjSfxn4EtPLJhxlVNi+xQ7Fv86fuEouAmMtL2dMyRkZEYPXq0QwXyJZaf5/+81A+Xc4pkTWt9T4e6do+x/Hcqp3Up5fk+eH+D+eiQ+jXDMaJzAqqFBWHhljP2L6KSaWUm5xvEiM4J+Hzzaavt9k4t0bMvhS2u/ID7z/IDOJNVgHb1ogAAg01GEDqr4pT77dTecZ9vPo0WsdUdL5Az+FElRaSGouDmyy+/dFY5/EJMRBhiIsJkHfvWfeWTISpJI8pplmpcuxqmDW6JX29Ofa/TlZ/35s37ORrcfP1oV8kmJ9MOpPZKun9mf0SE2R9S3rlBDew8d91s24DWsVi59xLyisrsnu+PXP1t/DOTAPW2FgOMP3t65gYon704qopnTW1w7moBNh11ZGp8T8xFudaCzacRFKjD2J6es76ZK7BZijThyLTtFYtbKhmtUF9mX5M6MgMsNTrUj5LcJ3d0TEhggDGwsXeG2P7IKsHY9codaPbKagBAraohaFynGraf4dIgANz6rb/MJKJhnxt1+ryd6u4ieLVrBSV4fVV5p/gHutRHlZBAN5eInIEdij2U0sUtx/RIxFN9GjupNMpI9rkxa5YSP2hsz0T8/vStDt2/VC8gJKjyn7ZeEFBcZnDomr7EU0IK58Q2Oo8Zvnz6Sj7m/3EKhSXMIHqSotLKZms9A2yfxeDGibT4iC0zyKuUZ97dWtU3EK0rAp1O+opyMjczhrRG0xj5/Ryev6MZgPL+ORUq5i9pFRcBABjcNg4FxaxgKrgzY2LaqdwZ89ws3HIaS/4+J+tYZwdBt7/7B+asPop31x136n2InMHbwz42S3mIkV0T8P3281bbyzTqmPD07U3Quq79jswVwkMCUahikjNb1YXpKuiRMvsx2KuIezSJxv6Z/VE9NAjLdpa/fjdufjP79vFu+OP4FQxoHYvb302VdT9/4M4PLdN/zs7oc7Pj7HX7Bymgg+P9FCz7hKmhZT8pf+p3Qf6LmRtnUvAhMnu4+GrqJRo1p0zu3xwDWrtmcjuxJqcxPRIx3GQEWKPaVTW7X0RYsOg9a1QNwbAOdVElJBDP3czwyDWlfzPc0qimVkX0KO7MxOu9oRexBUdfL61iie+3p+GJr3dqdDUi38bgxsOV6t3TV0TtB7pOZ/1hXjeqCmbe3RpBgQF46c4WuDspHoPb2l9UVMz4vtL9ip6/oxlua14btzWvbbXv/s4JWP9cb9n3mXR7Uyx9ojsWWCxO6gvkNnU6g7d1Ii7VG7BLg8yLFqYuP4B1hzPcXQwir8BmKSfSok0/LrKKBiWRJpWiVpsGF3tm03s80Vs6OPnvsDbW5TApxq5XklGzagieW7ZX9Px/9Wtqs2xNY6qjdvVQXMkrtnmcqTtaxcg+NrFWOM5eLZR9vLsUlbovuLG1UKXLyfjz/CT1lPPL4WJslSJ/wMyNh4uNDMPSJ25RNKuxpV2vJGtYokodJYZ9WwZMcr+sP3xLA5v7a1ULdWh4PaD9bMymHC2bqxSXuW+Sw1m/HXbbvUk5L0u0ERkxuHEireq6WxrVwvyHOqmeLbWWSUfeCjWrhgAA+jazbsKx5bvHu2FIUjwGto7FN493s9pfMSng3PuTVJVVDkeCCGe2yHhHaAMUuzFz44+8JOYl8ikMbjxIvxZ1JPfVrh6KNc/2xujutrMbcq16uhfe+b8kTLxdfLVyqW9sPZpE46ORHTD/4U4IDwmSHPU0XKMVwLX+4qh1n49mMdWMP3tLJZbPYfF+zVv+nbqCt/UBI/kY3DiR0s+QJiYVpbPFRobhvk71EBrk2Oycv/3LsQn31HBk1e9SFaN17u9cT3LfzLtbG3921erqANCrabTqc4+m52lYEu/FOp7IdzG48SDe+CVCTqAh9VzfiTRryTG+T2OM7t4A36o4X81Q5LfuS8Kvk8SDONOAxpXBTZVg+0FpkMJZrv1FfnEZ/jh+BWV6L/yDI1Lpx53nsfXUVXcXw2UY3DhRq/gIRcfLqXjlVFeP3+odi8H1aBKNrom255IRq8SrhARi1tA26NlEefZC7dD6KiHifyrBgZXbq4W5bvCh6X2lbH7hNheUxPMZDIJZ88Nji3fgkUXb8eHGE24sFSmRV1SKi9k33F0Mr3XwYg7+/dN+VROzeisGN040uG0c3rinreymG1nBjYzswAsDWxh/VjvKSgAw7a5WCJFRiZqdJ/IItopsb86Vcb0boUP9KMwY0kpROSTvp/LbulRWxrTSrFjJ3RUCZWRl5Bzj64pK9bjt3VQ8sWSXcds/NxdQ3X8hR9U1tZpY010Ki72vguswaz16ztmIC9e1nWrBX3J3/hgYMrhxIp1Ohwe71UcbmcseKF1rp5nEGkwhQQGY92BHDG0fr6rpBgAgAI/d2hCHZw3AA13K121a8lhXm6fUqhqieH0rewFdZJVg/DKhJ8b21CYbpXaGXKlAwfRyjWur7zP1yM2O4rERYfhoZAdsmtLX5vFy4hZ2HAW2nb6Kc1cLsV6jye9+338ZzV5ZjR92Wi+VIsWT3gaDQcDyPRdlH+/syr9Ub8DwT/7CtBUHbR5XsQzNTo2X1/DGrgAkDyfx8yBKg5uaVUOw9T+3I1wkoBjcLg6D26mbBdhUUGAA5tzbDnPutZ+V+GRUR8XXH9AmFvsu5CChpnMnK6xQqnIsuFRwYznaok+z2vjj+BXj7yGBASix0xTWKi4CM+9ujXs71UNidFVEhNlfd0vOqvGesjq2L5n43W4AwAs/7cf9Jou1ehJb73uRwjmOnD2a6M8TV7A7LRu707JFJ/EkbfhjEMfMjQeR0x3E8tt4fFQVRIWHaFaGipW0B7RRvg5V4zrimYu2NjJX43o1wvyHOmHFhJ6K76eG2j9yOZkbAPjggfboYDK54TPJtmdNBirnBmpXL0pWYAO4tvOyN3PFq3SjRO81Q4o9LeC1bCYuLtPjnbXHsDvNRUteeMfb5hZe8k9aEoMbD3LrzQ6ytuqtfi3KlwMQy9ZoYcljXfHGPW3xxj3yv0Vtf7kfNk3pa7bqNwCsfbY3xvVqiNfvaSt5bnBgAAa2iRWdaNCTBIq8KT2b1ELDaPMFQKPCQzCmR6LxdzkxiJo4RU6zVHCgZ1Vk7uDsWaPTc4rQcvoaPPLlDueWwU0VjaO3LSrVw6CgKXjB5tP4eNNJDP9kq4N3JntOZPj2lBBslvIgd7aNxaIxndEqTjrTcWvTaPw8vodVpaqVWtVC8WC3+orOqVM9DBDp/tM8tjpeHqxNR2B3s8zcvD+iPW5rUQeRVYLxv0k9zTIuplmVUV0b4Out55Dcqg6++TtNs/LIydxomdHzVs4O75bvuQAA2GzSFEnlsgtL0H7WenSsH4XlEplZy7DnRGa+8wtmdn8vT0/IZv2c+y7koKlEv01fwODGg+h0Otzewv5CjY6sM0XqmAY3vz99K1rHVwag7epFmR1rGndEhgdj29TbIQiQDG7UNBXY63PTR+GyGr7K9L0wGARZfZWUsEzdn79WiLNXC9CrqeOv/wbTTtAaFVtpZe5I08SmY5kAgN1p2eov4mTe3vRC0tgsRX5LyXxAppVitVDb3wlqVTVvYtPpdDabnuwlYUybuYzlYYuTLKaBo17jmmybyIRovd7ahIcXbsffpyv3qXmrzl0twONf76zcoFHRlb8ErP19gT8GcczckN965a5WmDKgOS5cv4HMvCL8+8f9kvNBmM72a284+S2NauJftzdBkzqm605JV3H2Kj+xJih72R4//CyzS28QIGNiZ9lGLvgb95qsoXb6SmWTyo6bc+modf6ac+Yl4b8Lc3w9fBeDG/JLFQt+hgUHokmdamhSp5rNDIppgGFvyL5Op8Pz/ZtrUk7p8tje7y2jd5wtv7jU+LPSqRbkOGUS0Nz+7h/Gnx3NEmmdZaqg9N+Fq/8ZuTohyb8T38VmKfIrQ9vHAwAm39HMat9Dt5RPpNezSS2rfaZ9blTOAyjJXqc+sX4S9vqOKPnMftuFMyu72ku/VE4Ol3tD+9XQpSpH0xFCagZLOSMQAzw/U6FV+Zb8fQ59396E89e0ndGYvAczN+RX3vm/JDzZuzFaxlkHFON6NULnBjVEZ5Q2HQqudpZjMY90b4DJd9jO8ljWc5PvaIacG6XiB1eco6CacPZwaXe6VlBi/PmW2Sk49tpATa8v9So7mnlRMnzakq23s0jh2kLODoaclTipmPF41m+HMax9XZTo9binQz2r4zw92NOKvzynKQY35FeCAwMkFzQNDNChs8RCnqaZkno1tJlNefbwthjZVdmw+/dGJOGeDvXw+u+HNSnDBw+096vVsdNzijS9nlSGReX6rCbna/+efPHnabz2+xFF5zgSfKg5V+sw+0aJ3jirdJ9mdVCzaohfVvT+iMENkUw7X0lGSZkB1WXOImxP/Zrhso9dObEnjqbnYlj7ugDsz3NTMaVARFgQcovEm2Pm3p+Eoe3rYvnuC7LL4e2uF9rOeCklVYGbBj1qhvo7o1lKLLARBMGnM3emQWJBcVl5cGPy2vpLlxt/eU5TDG6IZLKcgVmp1Cl9UVBShp93XcSJzDzc0si6b4+UpIQoJCVEGX+X6nPz2cOdYDAIuKNVeXCzcUpfdH5tg+ixFQFS0zq+O5GXpeuFJfYPUkCq0nA08+KExI0oQbDdjOXtk9yZPpvYe+XtzyeXmuf09teGwQ2RiyTenFXadAJAOcQ6rZrGNvd1qoefdpVnX2IiwtDeJAgKszH2ueKDv209ZeXxZmLLaDhCulnKwdFSLopu7N3F27/xi73d3v5MJI9HjJaaN28eEhMTERYWhm7dumH79u2Sxy5evPjmpGiV/4WFhbmwtESuUTFcPbmV9azVps1SL93Z0viz5We5rcrcl5sjpJSpXBVeqWLT1bd15QFqqYKOOM4aLUUW+DL7LLcHN8uWLcPkyZMxY8YM7N69G0lJSRgwYAAyMzMlz4mIiMDly5eN/507d86FJSZyjc3/vg0rJvYUncrfNDAxDWAsP6sDbPyFm4Y2PzzZXWUpvcuji3faP0gBqSBky8kss9+nrTyI9q+uw7mrBbKu67LMjZ0gyuUdijUOuJVOdqk3CNiTdl1RIEqeye3Bzdy5czFu3DiMHTsWrVq1wvz58xEeHo5FixZJnqPT6RAbG2v8LybG/npMRN4mMjzYrInJlGmzlGkAY1lZ2crctDUZ8t61YU2serqXqnL6M8kOxRZ14zd/p6GgRI8/ZC6waRnbOCvUcX/iQtsS7Dp3DYM//NP2HW3c8s01R3HPJ1vx0vIDmpbL3cSe2dfztm4NbkpKSrBr1y4kJycbtwUEBCA5ORnbtm2TPC8/Px8NGjRAQkIChg4dikOHDkkeW1xcjNzcXLP/iLydadBiuWK52XEm+6pY9L9JtFhZXmqIfIXqYeyiZ0mqnjTN6Gw3WYqhuFReRsCReW60bNHytk6l9366DYcuyf+Mt3ytPt98GgDw4y7/GUHoq9wa3GRlZUGv11tlXmJiYpCeni56TvPmzbFo0SKsXLkS33zzDQwGA3r06IELF8T/Mc6ePRuRkZHG/xISEjR/DiJXu69zPdSvGY5pd7Uy639jWRWZpvm/f+IW488hgeJ/+g1qlQ9PT6hZOZdPraohuKtdnCd8zfc4SjsUl8kMWiwnAXTWt2x7gZAvdv3xtoBNC6qe2MtfJrc3SynVvXt3jB49Gu3bt0efPn2wfPly1K5dG5999pno8VOnTkVOTo7xv/Pnz7u4xETai4usgs0v3IbHbm1otqinrcrINKCR+oBfObEnvhzbBY90TzRu2/5yMj4a2cHsjCd6N1JbdJ8iNb2/VGugXmaHZsvg6GqB/CHsSipvf6roK57V9G/En57f37g1uImOjkZgYCAyMjLMtmdkZCA2NlbWNYKDg9GhQwecPHlSdH9oaCgiIiLM/iPyJebNUtYf1s/0a4oHuiSYLTkhFQRFhYfgtuZ1zLJBgQE6q46eQ9rFS5ZnbM9EDGwt7+/XVFeJ2aE9WanC2Z3lZm4s+07J7aujlC9mZpTwl+f3xwVC3RrchISEoFOnTkhJSTFuMxgMSElJQffu8kZv6PV6HDhwAHFxcc4qJpFHszfC5Lk7mmHOve3MjnP0o87WLQN1OjzcvYHia4aFSM/J422kRunI7UvjyGipinqspMy9I348tTr11HKRttzeLDV58mQsWLAAX331FY4cOYLx48ejoKAAY8eOBQCMHj0aU6dONR4/a9YsrFu3DqdPn8bu3bvx0EMP4dy5c3j88cfd9QhEHkPuFzR73+SaxlSzeU7TmGqoFirdwdhWJ2cpBcXar9rtaeT3uXHsPicy8tB82mq89pvtNciuFpTghZ/2YXfaddH9Yv9MrheUiA6VLirV49d9l5DtwCzQrh7Bw0BHmU1HM7HqwGV3F0MWtwc3I0aMwDvvvIPp06ejffv22Lt3L9asWWPsZJyWlobLlytfzOvXr2PcuHFo2bIl7rzzTuTm5mLr1q1o1aqVux6ByO061I9C7eqhoiuai7FXx97aJBpv3dsOKyf2NG4zPSU0KBC7piVbn4jyrI7S4GbV072w65x4BetL5K4W7tBoKQBz1x+HIABfbDlj89hXfjmAH3ZewPBPtkpcy7ocHf67HkM+2mK1fc7qo/jX93vw8ELpSVitru+G6MJ8bSmGN3LpDQLGLt6BCd/uxtX8YncXxy6PGNs5adIkTJo0SXRfamqq2e/vvfce3nvvPReUish7/PxUD+gFAcESo6CU0ul0uL+L7ZGFoUHSzUhKgxt7w9B9hV5mSsbRGYrlzoV3IjNf1fWPpudZbfvfvksAgAMXc1RdU4n84jJcyStGQ4vpDOSwfGUFQYBBUJdt9CemTaW5RWWo5eBae87m9swNETkuIEAnK7BpEVveqbhiaQcllNS3wbamRvYDUqNw5DRLXckrxuzVR9XfW8FK36bv6TGRgEXJe+7K4ODWNzfitndScdiBOW0qtk38bje6vr4BeUXarhjvSbROUHlDGOjfn0BEfuaN4W3Ru1lt/PiUtsst1I2qYvZ7TIRnf6tzNqkYZvHWs3bPfW7ZXofvr6bycXTFdDWLkqqtc7MLywORTcekl+mRvKfFTVcdSMfVghKsPZQhfgJ5JQY3RH6kY/0a+PrRrmgWU93+wRZszQnSIrY6+jYvXwPrga71Ea0gZS3nG3/10CDUrBoi+5ruJne007pD6dh59hpulFQutLnz3DUbZ9gnwHxhVVvsNX8pCT4s30el/VkEQfCOlIAX8sf5fDyizw0ReT57ddWXY7ogv7gM1cOUNXkFyQhuujSsib3nsxVd153kBjdPLNkFAOjVNBpLHuum2f3lJlHsBjcKAhQ1zVJmMzQJcNHwJdMOxa64n2/wtgCJmRsicphOV94J2TSwqejfY0/Fkg+mXhvWxuz3d/4vyau+1Csd7fTnicpVxB2ucAX5mRstK3dH+9yoKYqS4KviSGcFNIIg+PToK297NAY3RCRLr6blzU6W/WukmGYilpqsa2Vp3oMdrbbd2dZ8Uk5vapIC5A/5FqNFHSI3zLAXg738y0HZ91QT3FjdXuQScgIGsXl35N1fmxrbYBAwbN5fGL1ou88EOLaeQkX3KpdjsxQRyfLO/7XDd9vTMKx9XZG91p92tauHYv5DHREaFIhbGtVCleBA3CjVWx0nNpxXTRIgJDAAVUMDcb3Q/aNeCkusn9NVFvx5GrERYbKOtVcRH74sfzSSmg7FSsoifg7wYcoJzF1/HMsn9LB5bEXpTO+iVRxyOisf+y6UD4HXGwQEBXpW7a/Fc3pbzMbMDRHJEhUeggl9myBeZuYGAAa2icNtLeoAkP62J/aNPyBAhy/HdEGV4EB8OLKD6Hm337xuBQGCb8xV4mAlsvXUVay8OeeMk29lxqpDscnPaw+lqy6LvUp17vrjAICZ/zuk6vqV99Hm1ZA7DN+VNAluTF5BqeVFPAmDGyJymJzPc7Fv9h+N7CBaGQTodLitRR0cfHUA7k4SX6RTbM4YT6xY3EFuh2bTCt3RV85WYPnkzY7T1ve3f11bh5juk1t+81XBK6VJrPCu1PGMPCzffcFnmqcqeNvjMLghIpf48EHrDEz9mtadiYHKZinTCtMybtEbzPtZ+MpIYleOSnFkgU5LAY52KJYoilZBQsV1pF7fjzae1OQ+gz74E5N/2CcrW+Uqtl5Bdy+w6iwMbojIYXKqtdua17HaJpVokTPap0xkKQO5o4SonIaxDRztZiJAUNzcoSTuETvUmdmV/RecvwyFo9KuFqLZK6vxwk/77B7rZYkbBjdE5Di1MYVp/524yMpOsHKuZzlHiwDfWB/Ilen/fBsrsSut+LVoEhTLqjjycmw5aT3EXqpZSmveEAx8seU0AOCHnRfsHuttzWwMbojILX6Z0MNsJuM597Yz/ixn5E33RrWcUi53uZxzAwXFZR5TKe5ROGmiZVyZe0PZqDXpZikb53jMq+V9lMaiZv2bvOA7BIeCE5FqwYE6lOoF3HpzDhwlOtSvYfZ7iMnCn/aalxJrhWPCbU1Qu3oopq2sHCXjzet1dp+9EdVDPecjefgnWxUdb9qkdKNEj9d+P2K2f9upq+je2HZA6sgoHPuLkt7sc2OauXFibORJiQ6prIuiZj0Peh45vPijgIjcbfMLt+HjBzvgwa71ZR3/9n3l2ZlHeza0eZx4bFO5ccPkPggLDsTD3RON2wRBXp+NjvWjsOSxrpjSvxkOvjrALKiyLMMz/ZravZ6W8mw0E6mlZadhW0zfswvXrUcejVzwt9nvZ7IKUGbSKVwyc2MjO2N6ziE7K4Qbm6XMZ7qxeY4jvCGrpKiMnv84ZjznawIReZ24yCq4q538eW/+r3MC/q9zgug+08rRXv+NIJGARID9dPmQpHh8dHPenIoZl3s0qYXUY1esjj3x2iAcvJSLD1JO2L6oxrTu29B+1jqMlBl8OsL0tbcXT/286wKe/9F+J1bAPIBxpDnEy+pmTWnx7N4QrJli5oaIfEZCDfGh5RXCgqw/8qTqy6DAAFUzJTtK6yokr6gMn28+bfe401kFmt3TXkUoVh45ladl3Kck8BTtUKzyxb5RojdbyV183YjKH4tK9Rj0wZ+YsVL+chamMvOK8OSSndhisgaZFrytqUkJBjdE5BG0iCPeuq+d6PbW8REAIJo1spUlcsfQcndVOFOXH3DofNPXymBn6hTRUVEiz73uUDoWbjnjULls3VONMr0BrWasQasZa1BmXNPK9iiv1Qcv48jlXHy17Zyqe05bcRBrD2XgoYX/qDpfipJXxNsCITZLEZFHiAwPtn+QDYJQPrR8eIe6uHD9Bu7vkoApN5s+fh7fA+k5RUgUWcfKFm8YFeIpTF8rtYGE5ev9hMXMxuuPZOBkZr6qa4tVznNWH1V8nZwbpcZr5dwoRS2TEX9SVK7raXQ5p8ixC6gYiSbzEh6LwQ0ReYQWsRF4ul9Ts/lu5BjftzE+TT2FGUNaAQDmjmgPoLwj7dX8YnRpWBNhwYGKAxuAkwIqYfpaSVWaRaV6hAUHiu6TU3n+vv+yipKZl8m0bClHMxVfxzTTZ3NpCG9LdViwLL/ZUh1e8GfBZiki8hiT72gm2fn1hYHNAQAPdjPf/8KA5vh7aj+MtRiBFRigw5N9GqOjxZBzS7Y+p6WCG7GVzKmSVL1uK1PiLcGA6b8Im3PweNDjSGfS5BfSGaupOxMzN0TkFe7vnIBeTaMRG2Ge2dHpdIhVmO0xP196n1SH4jZ1I5GRW4RCs06l/s0scyNRaS7eehYz724tus/yjJ922Z81V4mKMmk56qfyWl6QyhDBeW6IiDxAXGQVl678LXUrgyCgS2JNl5XDVcoc6Bxi1udGg4pwisyh4nJpVTmL/5uw3aHY3aGPFs/OoeBERF7EVtZHKpAyuGhiPFfr+N/1Do+aAqzX/bIktttVmQFN7+MlzVJS5JRx17nrWHNQfV8nd2FwQ0R+7d/9W1htW/tsbwDSH/4Gwdu+x8qTW1SG77enqTrXbCi4ihfnm7/Pad4UZapyhmLHOLJEhKeR86/43k+34qlvduNUZuU8SN4QuDG4ISK/JjYEvaLD8A2JPjVPu3hZBm9gWuWrWfLh7bXHtCuMCK3CUdPr2BwtpWH46wnh1HmRJTU8GYMbIiILQTd7EocFm39EjupWH0f/OxCt4yMlz/1wZAck1Yu0GtXl60yb8Bzpu+MslUPBHQs6xE+3Dj/s3ab05muUmVuE7MISh8pkj+RYKUWz+Jn+6PmpGwY3REQWAm4GN01jqpttFwDjPC0jJNbIaly7KlZOuhW9VayU7o12nr2Gs1kFZh1tS+1kbtxRNQoW/3f0OoD65pmj6blo9spqvLLiALq+kYL2s9bLvqca0ouSKriGacbK82MbBjdERKZ+Ht/D7PfqYZUzZph+67+zbSzWPNvLuBBnhbjI8oVEg2QuTPWqxNBobzDlx324b/429H0n1WzYvN7O+gtqZxn2BOKZH2W1/dtrjkEQgG/+Vte/SQtKBx16Q0BjisENEdFNdaOqoFMD80n/Ak1qbfMVqnVoERuBaqGVwc+KiT1Rs2pI+XmB8mqPaBnT97tacZn9+XseW7zDrAOwaUfbMr3n1YQVQYncSjpdxpIHRaV6vLf+OPZfyJG8nxYc7XMj1YykdvkFz3t3rXESPyKim4JFAhLTDIzYEOcAk/2t4iJEz7Ml0AO/YjZ/ZY3dYyyXLjCtQG11KM4rKlVfMAesOnAZhy/nokVshP2DAdwyOwVn5wy22m76ZJ9tPoXvt58XPd8gAIcv5aJFbHXR/VbXFQSXzuEEeEffGbU88M+KiMi1ejcr7x8zpkei1b5XBrcy/iz2TTfQpEIyjWcCZVZUvrJ+1dpDGcafy2wEN59vPu2K4lhZ8OcZvPzLQfx1Msuh65j+Gzh8KVfyuCV/n8OdH/6Jd9cfk9UE5OpmH3v3s9xterw3LJXB4IaI/N7nD3fCLxN6YHT3RKt9wzrUNTY9DW4XZ7XftNnK9OfgIHkfr0Eym6+8SZmNPjfXnTwyyJ656487dL7coeAV5m06JfO6bqCoWUrZc7sbgxsi8nthwYHoUL+GWROTqX9e6ofVz/RC3+Z1rPaZBjSmzQp1qlf2pXnGxrw4rm6KcIVSG31uvOBLv21mGQx5p1yW0X/HMhvy54krmLbiIIpKHV+/TJPRUiYHbzqaiV/2OG/CRS2wzw0RkR1VQ4PQMk68r0agREAUY7LA54guCUhKiMSji3daH+jtlb2IUhvz3Hj7yhXmHWvlPYycCQotr/Twwu0AgJgI53U4V9K8ZHrka78fAQB0blATCTXDNS6VNhjcEBE5oGJ0lKWw4EB88EB7FJXqER9VBfFRVfDLhB6oXT0Uk77bg73nswEA4SGBLiyta9gaLeXt63IJKjI35ucrG7l0Mdt+1sfuPUW26XQK42qRAl4rKPHY4IbNUkREDmgYXRXT7mqF90YkWe0b2r4uRnSpnKm4Q/0aqFcjHO+NaG/cVq9mOJ6/o5nq+782rI3qc51l3qaTkvuW7RQfXeQtHJ3MTiq2k8oCaTKaToO2QG8LSRncEBE56LFbG+KeDvVkHx8fVdlkFRYUgH9Z9MmpKjObExigw0O3NJB9X1fJzCt2dxGcxixzo+p8ZZmboIAA5TPuyS6Lg+drUwynYHBDRORioUGBmDO8LV69uzVqiUziZxnsSFGzQCU5xnz5BeWvv9IzAnQ6ySikqFSPXAfmDbK58Kdg+3dPxz43RERu8EBX6YU1+7eKQWFxGT7cKN28Q+7h6BwvYhNBll9X/HhbUwW0n7UORaUGHHp1AKqGOrc6F3tuTx7nx8wNEZEHeG9EEtrVi8Rv/7oVjWpXw2O3NnJ3kcgOdR2KJbZL9rmRDiGKSstHpdlbq0t6VfDKPZOX7cX/9l1SfA1PxcwNEZEHuKdDPbN+OwEqv3oGB+pszjNDjjHvc6OiWUoquJHYLjXT9dx1lcPL7ZVCqvnSdOvyPRexfM9FyWt4W7MUMzdERB7I9Bv7K4Nb2jz27qR448+t4iOdViYyp6bLk+QilhLHBwboRDsUizVZ6g0C3l57FKnHMq22K7qpzEM9Od5hcENE5IFMg5t29aJsHjv3/sph6HIX7CT7CkvKrLY5usaSZJwhcS0l7+fKvRcxb9MpjPlyh8W1ZV+i8hwAF7Nv2C2fp2JwQ0TkgUybI2pWDcGU/tJz4QSZTIZiq48GKdNq+lq8/MsBs22OrrEkORRc4viAAOnRUpYuXL8hul0veU/p6/667xJ6ztlo/D3nhntWc1eLwQ0RkQcyDVKCAnSYdLu84eHxkWH2DyLZvv0nzex3szhBZUZEdLtUnxsZwaq9rIpknxsF5f/Iy0buMbghIvJAOp0O4/s2xsiuCUiMrgoAWP1ML3z9aFfRpopFYzrjjlYxmHZXK9X3TKrH/jr2OBjbQJBadkuiuStQp8O+Czmyri0VBjlryQtPzhFytBQRkYd6cWALs99bxkWgZRwQHBiAMoP5atG3t4jB7S1iAAAtYqvjaHqe3es3jK6KM1kFxt/7Nq8juyL1V6aBh7pJ/Ow3EZleNivf8dmeJZulOEMxERF5imAbE7sBwIqJPfHHv/vi60e72jwuNsK8Cat+zXCsnNgTjWpXdbiMvsrRzI10h2Lx6+YXW3dqtnQ1v0TdPT06PHEMgxsiIi8ztH1dAOWZHDFhwYFoUKsqejerjdNv3IllT9wiOpy8X8s6Zr8P61AXSQlRGHbz+mTNaauCyzhGyuNf78RZkwycJbFmKZ1HNyo5jsENEZGXeXlwS8y9PwnfPGY7MwOUj7bp1qgWHu9lPeNxsMkoq9ua1zZ2XuWIK3NSM/dKLaVgi5yh4AaJLI4taw+lS+5zVrOUJ2NwQ0TkZcKCAzG8Yz3RRTeVMA1idCZDzxncmHv6+z0mv4n3jZFLziR+Uv1v1JLqUOzDsQ2DGyIifxVZJRihQeXVQO+m0cbtWk4E2CymmmbXcqeKzIrDwYadPjf7L2Rj33nTTt3ybyixUoOqDJO342gpIiI/k5QQhXpRVTCoTSw6J9bAzrPXcWfbOON+nVQtaUf1sCDkFZl3gA0P8Y1q5pPUU5h4WxOzUCO3SPnEdrY69xaX6XH3x3+pKt+ZrALUq1FFdJ9eYvi51jGPIAj4fPNptKkbiZ5Nou2f4ETM3BAR+ZlxvRpi3qiOCAoMQFxkFQxJijdrimqfUDnfTVJClOzrWo6+Anyn6ePttcdQXKY3CwgsAzk5pJql9qZl49PUU7KusSftutW2pTvOSx4vnbnR9t2ZuvwAZq8+ilFf/KPpddVgcENE5Gca17bdVNSxfg18N64b9k3vj5UTe1rtH9WtvuiEf4NMsj8Vern5G7yWnl261+Hh01KZmyeW7ML7G05YbReLS6atPKjonpILZ2rMVoDlagxuiIj8xG//uhWfP9xJcgh5BZ1Ohx6NoxEZHmy2/e372uHIrIF4/Z62aBhtPRdOZJVgzBra2mxbaFCA3Xl5vMXqg+kON+UonS1YrIVQag0pKRwtRUREPqtN3Uj0bx2r+vwuiTVRJSQQABAYYF195BWVYnT3RLNtOh0QoLIPjyc6mp7r0PkHL+Yg5WimQ9co0yuLSvxxtJRv9PQiIiKn2TC5N7LyS4xrXAHmI6pGdauP3/Zfxsiu9a3O1el0kqN4vNG8TfL6xUgZ/+1uRceLZVdKJHoIS3UEl+r4rGb5CC3PdyZmboiIyKYmdarjlka1zLaN6JoAAOjUoAZev6ctdr2SjJibHYo/GdXR7Fhfmg33ZGa+S+9nGT88t2wvSsqkVt8Ul5Ervj6V54YmjmPmhoiIFOtYvwa2vHgb6lQvD2iCTGY7vtOiY7HWcwI2iq6K0zaWG/Blv+y5KLlv3/ls0e3XC22vPaWW2ikDXIGZGyIiUqVejXCEBNmuRnQ62D1GqRcGNtf0ep5MyeisdYczRLdLZXo8uFXJYQxuiIjIaXTQ4YtHOqPqzY7IWggN0u5ank5qAj4lxIIbwafXBGdwQ0RETtapQU3smnaHZtcL8pGh5XL8vPuCw9coFgluVh1IZ4diIiIiNSq6ZWi5XlWQyDB0kiaWuVl/OAN/nshy6Lr3froVhSXKZ2l2BY/4FzJv3jwkJiYiLCwM3bp1w/bt22Wdt3TpUuh0OgwbNsy5BSQiIlUq1jvScqVxf8rcaEFq6LijDALw3T9pTrm2o9we3CxbtgyTJ0/GjBkzsHv3biQlJWHAgAHIzLQ9ydHZs2cxZcoU9OrVy0UlJSIiub5+tCueTW6KO9uUj5yyHFnzZJ9Gqq/tS5MCOluZ3uDU5RcKivVOu7Yj3B7czJ07F+PGjcPYsWPRqlUrzJ8/H+Hh4Vi0aJHkOXq9HqNGjcKrr76KRo3U/4EQEZFz9G5WG88mN0OASMZm0m1N8OKAFqqvrWUTl6+6mH0Dj3+1A//6fo9T71NmcE5WyFFuDW5KSkqwa9cuJCcnG7cFBAQgOTkZ27Ztkzxv1qxZqFOnDh577DG79yguLkZubq7Zf0RE5D6NaldFQIAOs4a2Rq+m0Tg8awBua15b9vlaNnH5qlEL/saGI5lYfTDdqfeRavJyd2djtwY3WVlZ0Ov1iImJMdseExOD9HTxN2TLli1YuHAhFixYIOses2fPRmRkpPG/hIQEh8tNRETqVdR7o7snYslj3RAeEoSkhCjRY4d3qGu1TUmfGyVBky85e7XQJfeRWufK3QOp3N4spUReXh4efvhhLFiwANHR0bLOmTp1KnJycoz/nT/vOUuyExH5I4NIzRccaF4d/TrpVrx+Txu8e38SujasadzeJbEGqoXKm1y/V9Noj55F1xeUSWRupFYidxW3Lr8QHR2NwMBAZGSYz6qYkZGB2FjrlWtPnTqFs2fPYsiQIcZthpvtfUFBQTh27BgaN25sdk5oaChCQ0OdUHoiIlJiYOtY/HPmKga0sf58N21qWjC6M9rWi0TbepEAgLfubYe+76QCAKqFBqFWVduf6fMf6gRAQM8m0Xh26V6tik8ipJqlxAJYV3Jr5iYkJASdOnVCSkqKcZvBYEBKSgq6d+9udXyLFi1w4MAB7N271/jf3Xffjdtuuw179+5lkxMRkQf79KGO2PFyMiLCgq32Na1TzfjzHa3MuyqYrkYeEhSAKjZmO65dPRQD28RiYJs4VA8LtlqR/Ol+TVWWnsR8v/286GKi7m6WcvvCmZMnT8YjjzyCzp07o2vXrnj//fdRUFCAsWPHAgBGjx6NunXrYvbs2QgLC0ObNm3Mzo+KigIAq+1ERORZdDqdZH+Z21vUwcwhrdCmbqTNa4RYLL3QoFY4zpn0Lwm0aoaq/H3j833QMLoqtp3Kwo6z15UVniRNXb4fPz7Vw2ybM4efy+H24GbEiBG4cuUKpk+fjvT0dLRv3x5r1qwxdjJOS0tDAGejJCLyaTqdDmN6NrR7XLBFcNQlsaZ5cGMxkiouMsz4c6Pa5dmhLx7pgqRX1zlSXDKx4+x1nL9m3oHZ3c1Sbg9uAGDSpEmYNGmS6L7U1FSb5y5evFj7AhERkUepG1UFF7Nv4K52cWbbb5TocU+Huvhlz0UAgOV34Sn9m+NqQTGGd6hn3BZZxbpZjBzT661NZr+7OXHjGcENERGRLaue6YXTV/LR3mLIeHGZAXNHJBmDG8tmqcjwYHwyqpOrikk3Gdwc3bC9h4iIPF5klWB0qF/DOLT7pTtboGbVEPxnUHOEBgViVLf6AIApA5prfu9Tb9yp+TV9HZuliIiIFHqid2OM69XIGOy8NqwNnunXFHUiwuycKXatRoiLDMPQ9nXR8b/rzfZN6d+MMyKr4O55bpi5ISIir2Q6QZ9Op1MV2ABAo+iqGNuzIWpWDcHMIa3M9pVKzMBLtrl7KDiDGyIi8mumE9GN6dkQk+9oZvxdbvNKQ5O5eMj9zVIMboiIyK9l5RWb/V6rWojx54r5WiyHoFvSAfj8YXZcruDueW4Y3BARkd+ZPbwtACAsOAD/19l8dvt7O1YOG6/oO/LiwBZmx1QPC0KvppVrHAoA+reOxVv3thO933PJzUS3+yo2SxEREbnYyK71cWb2ndgzrT8Saoab7QsLrpwFuWJOnMd7NTJbufzAzAH4ckwXq+uKzcAcExGKZ5L9a9kHNksRERG5gU6nk1yn6p3/S0JyyxiM6ZFYudGiwg4yWclcJ7KtQoAfrky+65x7l7dgcENERGThvk718MUjnREeUjljipxcRLDIsHF/DG4m/7DPrfdncENERCRDu3rSi3oG38zYiGZubm76ZUIPq33kHAxuiIiIZPjPoJZ4+vYmWPtsb+O2ufcnoW5UFbw3oj0AmHUyrlCRuelQvwbOzhls3D60fbzZwp6kHQY3REREMlQLDcLk/s3RPLa6cdvwjvXw139uR6v4CADlnZH3Tr/D7DypZqluDWvht3/d6rwC+zEGN0RERBqKCg/Bv25vYvzdMrZZMbEnXhzYAiO6JIg2Y5Hj+KoSERFp7Pn+lQt4NoquZravfUIUxvdtjMAAnd3JAUkdBjdERERO8PP4HhjesS7eGN5G8pigAFbDzsBVwYmIiJygU4Ma6NSghs1jmLlxDoaMREREbmK6snlMRCie6Vc5k3FEWGX+4ZXBLV1aLm/HzA0REZEHWPNMb0RWCcbBizloGF0VL93ZEmnXCpFfXIYGtcLx2u9H3F1Er8HghoiIyI12T7sDN0r1qFG1fDXyhSZrViVGVwUA5NwodUvZvBWbpYiIiNyoZtUQ1I2qYvOYCItVyE3Z69fjjxjcEBEReTidToclj3UT3fft493w9n3tXFwiz8bghoiIyMuEBlVW32HBgfi/zgluLI3nYXBDRETkZdrWlV7E09QDXeQHPVHhwcafR3Wrr7hMnoTBDRERkZdY+sQtePPetrhVpP9NYID1nDlP92uKDZP7mG1rUCtc9NoRYcGi270RgxsiIiIvcUujWhjRpT6qhlgPdq55c7SVqaBAHZrUqVz+4bd/3Yqh7evavc/E25rYPcaTMbghIiLyMre1qAMAiKxSmW1Z9EgXNKpdFYPaxBq3hQUHAgC+e7wb3rq3HdrUjcT4Po3x0C318c1j3fDQLZXNTwZBMP4cH1UF/x0mvWyEqeEd7AdLrsZ5boiIiLxMkzrVkDqlL2pWq8zWtK0XiY3P98UPO89j9cF0AECVm8FNjyaVzVhVQgLx2rC2AIDiMj2++TsNAKA3VAY3ANBZ5hDzIUnxWL7novqHcQJmboiIiLxQYnRV0X4yBpMgJTjQdjVvGs9YBjct4yKsjk9uGWO1zXTkVoWeTWrZvK+zMbghIiLyIXpBsH/QTaZNUX2a1QYAxEWGGbd99nAn489D28fjVpGgRexuATr3LgjKZikiIiIfYjDID25Mzbi7NVrGRWCgSZ+dAa0rf25cuxpubxGDmb8etnstBfGVUzBzQ0RE5EPaJ8hfjqFPs9poWqcahnesi2qhQXj01oaIl1gKoswgoH6tcCx5rKvZdrFAxrKJy9WYuSEiIvIhbetFYukTt9hdrwooH0217rne0MloRirTGwAAHetbB0+t4yNw6FKu8XeDm1M3zNwQERH5mFsa1UJCTfHJ+izJCWwAoGvDmgCAqqFB2Db1duN2AQK+HNsFUwe1wOv3lA8fd3ezFDM3REREJGnrf27H8Yw8Y4djAIiLrILAAB30BgFt4iNRo2oInuzTGGtuDkF3d+aGwQ0RERFJio+qItoPZ/+M/rhRqkcNk5mRgwJ0CA0KsDsE3dl0guDu5JFr5ebmIjIyEjk5OYiIsB7DT0RERJ5HSf3NPjdERETkUxjcEBERkU9hcENEREQ+hcENERER+RQGN0RERORTGNwQERGRT2FwQ0RERD6FwQ0RERH5FAY3RERE5FMY3BAREZFPYXBDREREPoXBDREREfkUBjdERETkUxjcEBERkU8JcncBXE0QBADlS6cTERGRd6iotyvqcVv8LrjJy8sDACQkJLi5JERERKRUXl4eIiMjbR6jE+SEQD7EYDDg0qVLqF69OnQ6nabXzs3NRUJCAs6fP4+IiAhNr+0JfP35AN9/Rj6f9/P1Z/T15wN8/xmd9XyCICAvLw/x8fEICLDdq8bvMjcBAQGoV6+eU+8RERHhk/9gK/j68wG+/4x8Pu/n68/o688H+P4zOuP57GVsKrBDMREREfkUBjdERETkUxjcaCg0NBQzZsxAaGiou4viFL7+fIDvPyOfz/v5+jP6+vMBvv+MnvB8ftehmIiIiHwbMzdERETkUxjcEBERkU9hcENEREQ+hcENERER+RQGNxqZN28eEhMTERYWhm7dumH79u3uLpIss2fPRpcuXVC9enXUqVMHw4YNw7Fjx8yO6du3L3Q6ndl/Tz31lNkxaWlpGDx4MMLDw1GnTh38+9//RllZmSsfRdLMmTOtyt+iRQvj/qKiIkycOBG1atVCtWrVcO+99yIjI8PsGp78fImJiVbPp9PpMHHiRADe9/5t3rwZQ4YMQXx8PHQ6HVasWGG2XxAETJ8+HXFxcahSpQqSk5Nx4sQJs2OuXbuGUaNGISIiAlFRUXjssceQn59vdsz+/fvRq1cvhIWFISEhAW+99ZazH83I1jOWlpbixRdfRNu2bVG1alXEx8dj9OjRuHTpktk1xN73OXPmmB3jrme09x6OGTPGquwDBw40O8ab30MAon+TOp0Ob7/9tvEYT30P5dQLWn1upqamomPHjggNDUWTJk2wePFibR5CIIctXbpUCAkJERYtWiQcOnRIGDdunBAVFSVkZGS4u2h2DRgwQPjyyy+FgwcPCnv37hXuvPNOoX79+kJ+fr7xmD59+gjjxo0TLl++bPwvJyfHuL+srExo06aNkJycLOzZs0dYtWqVEB0dLUydOtUdj2RlxowZQuvWrc3Kf+XKFeP+p556SkhISBBSUlKEnTt3CrfccovQo0cP435Pf77MzEyzZ1u/fr0AQNi0aZMgCN73/q1atUp4+eWXheXLlwsAhF9++cVs/5w5c4TIyEhhxYoVwr59+4S7775baNiwoXDjxg3jMQMHDhSSkpKEv//+W/jzzz+FJk2aCCNHjjTuz8nJEWJiYoRRo0YJBw8eFL7//nuhSpUqwmeffeb2Z8zOzhaSk5OFZcuWCUePHhW2bdsmdO3aVejUqZPZNRo0aCDMmjXL7H01/bt15zPaew8feeQRYeDAgWZlv3btmtkx3vweCoJg9myXL18WFi1aJOh0OuHUqVPGYzz1PZRTL2jxuXn69GkhPDxcmDx5snD48GHho48+EgIDA4U1a9Y4/AwMbjTQtWtXYeLEicbf9Xq9EB8fL8yePduNpVInMzNTACD88ccfxm19+vQRnnnmGclzVq1aJQQEBAjp6enGbZ9++qkQEREhFBcXO7O4ssyYMUNISkoS3ZednS0EBwcLP/74o3HbkSNHBADCtm3bBEHw/Oez9MwzzwiNGzcWDAaDIAje/f5ZVhoGg0GIjY0V3n77beO27OxsITQ0VPj+++8FQRCEw4cPCwCEHTt2GI9ZvXq1oNPphIsXLwqCIAiffPKJUKNGDbPne/HFF4XmzZs7+YmsiVWMlrZv3y4AEM6dO2fc1qBBA+G9996TPMdTnlEquBk6dKjkOb74Hg4dOlS4/fbbzbZ5y3toWS9o9bn5wgsvCK1btza714gRI4QBAwY4XGY2SzmopKQEu3btQnJysnFbQEAAkpOTsW3bNjeWTJ2cnBwAQM2aNc22f/vtt4iOjkabNm0wdepUFBYWGvdt27YNbdu2RUxMjHHbgAEDkJubi0OHDrmm4HacOHEC8fHxaNSoEUaNGoW0tDQAwK5du1BaWmr2/rVo0QL169c3vn/e8HwVSkpK8M033+DRRx81WxjW29+/CmfOnEF6errZ+xUZGYlu3bqZvV9RUVHo3Lmz8Zjk5GQEBATgn3/+MR7Tu3dvhISEGI8ZMGAAjh07huvXr7voaeTLycmBTqdDVFSU2fY5c+agVq1a6NChA95++22zlL+nP2Nqairq1KmD5s2bY/z48bh69apxn6+9hxkZGfj999/x2GOPWe3zhvfQsl7Q6nNz27ZtZteoOEaLutPvFs7UWlZWFvR6vdkbCAAxMTE4evSom0qljsFgwLPPPouePXuiTZs2xu0PPvggGjRogPj4eOzfvx8vvvgijh07huXLlwMA0tPTRZ+/Yp+7devWDYsXL0bz5s1x+fJlvPrqq+jVqxcOHjyI9PR0hISEWFUaMTExxrJ7+vOZWrFiBbKzszFmzBjjNm9//0xVlEesvKbvV506dcz2BwUFoWbNmmbHNGzY0OoaFftq1KjhlPKrUVRUhBdffBEjR440W4Tw6aefRseOHVGzZk1s3boVU6dOxeXLlzF37lwAnv2MAwcOxPDhw9GwYUOcOnUKL730EgYNGoRt27YhMDDQ597Dr776CtWrV8fw4cPNtnvDeyhWL2j1uSl1TG5uLm7cuIEqVaqoLjeDGzKaOHEiDh48iC1btphtf+KJJ4w/t23bFnFxcejXrx9OnTqFxo0bu7qYig0aNMj4c7t27dCtWzc0aNAAP/zwg0N/PJ5o4cKFGDRoEOLj443bvP3982elpaW4//77IQgCPv30U7N9kydPNv7crl07hISE4Mknn8Ts2bM9flr/Bx54wPhz27Zt0a5dOzRu3Bipqano16+fG0vmHIsWLcKoUaMQFhZmtt0b3kOpesHTsVnKQdHR0QgMDLTqJZ6RkYHY2Fg3lUq5SZMm4bfffsOmTZtQr149m8d269YNAHDy5EkAQGxsrOjzV+zzNFFRUWjWrBlOnjyJ2NhYlJSUIDs72+wY0/fPW57v3Llz2LBhAx5//HGbx3nz+1dRHlt/b7GxscjMzDTbX1ZWhmvXrnnVe1oR2Jw7dw7r1683y9qI6datG8rKynD27FkA3vGMFRo1aoTo6Gizf5O+8B4CwJ9//oljx47Z/bsEPO89lKoXtPrclDomIiLC4S+eDG4cFBISgk6dOiElJcW4zWAwICUlBd27d3djyeQRBAGTJk3CL7/8go0bN1qlQMXs3bsXABAXFwcA6N69Ow4cOGD2YVTxYdyqVSunlNsR+fn5OHXqFOLi4tCpUycEBwebvX/Hjh1DWlqa8f3zluf78ssvUadOHQwePNjmcd78/jVs2BCxsbFm71dubi7++ecfs/crOzsbu3btMh6zceNGGAwGY2DXvXt3bN68GaWlpcZj1q9fj+bNm3tEc0ZFYHPixAls2LABtWrVsnvO3r17ERAQYGzO8fRnNHXhwgVcvXrV7N+kt7+HFRYuXIhOnTohKSnJ7rGe8h7aqxe0+tzs3r272TUqjtGk7nS4SzIJS5cuFUJDQ4XFixcLhw8fFp544gkhKirKrJe4pxo/frwQGRkppKammg1HLCwsFARBEE6ePCnMmjVL2Llzp3DmzBlh5cqVQqNGjYTevXsbr1Ex5K9///7C3r17hTVr1gi1a9f2mKHSzz//vJCamiqcOXNG+Ouvv4Tk5GQhOjpayMzMFAShfEhj/fr1hY0bNwo7d+4UunfvLnTv3t14vqc/nyCUj9CrX7++8OKLL5pt98b3Ly8vT9izZ4+wZ88eAYAwd+5cYc+ePcaRQnPmzBGioqKElStXCvv37xeGDh0qOhS8Q4cOwj///CNs2bJFaNq0qdkw4uzsbCEmJkZ4+OGHhYMHDwpLly4VwsPDXTaM2NYzlpSUCHfffbdQr149Ye/evWZ/lxWjTLZu3Sq89957wt69e4VTp04J33zzjVC7dm1h9OjRHvGMtp4vLy9PmDJlirBt2zbhzJkzwoYNG4SOHTsKTZs2FYqKiozX8Ob3sEJOTo4QHh4ufPrpp1bne/J7aK9eEARtPjcrhoL/+9//Fo4cOSLMmzePQ8E9zUcffSTUr19fCAkJEbp27Sr8/fff7i6SLABE//vyyy8FQRCEtLQ0oXfv3kLNmjWF0NBQoUmTJsK///1vs3lSBEEQzp49KwwaNEioUqWKEB0dLTz//PNCaWmpG57I2ogRI4S4uDghJCREqFu3rjBixAjh5MmTxv03btwQJkyYINSoUUMIDw8X7rnnHuHy5ctm1/Dk5xMEQVi7dq0AQDh27JjZdm98/zZt2iT6b/KRRx4RBKF8OPi0adOEmJgYITQ0VOjXr5/Vc1+9elUYOXKkUK1aNSEiIkIYO3askJeXZ3bMvn37hFtvvVUIDQ0V6tatK8yZM8dVj2jzGc+cOSP5d1kxd9GuXbuEbt26CZGRkUJYWJjQsmVL4Y033jALDtz5jLaer7CwUOjfv79Qu3ZtITg4WGjQoIEwbtw4qy+D3vweVvjss8+EKlWqCNnZ2Vbne/J7aK9eEATtPjc3bdoktG/fXggJCREaNWpkdg9H6G4+CBEREZFPYJ8bIiIi8ikMboiIiMinMLghIiIin8LghoiIiHwKgxsiIiLyKQxuiIiIyKcwuCEiIiKfwuCGiPxOYmIi3n//fXcXg4ichMENETnVmDFjMGzYMABA37598eyzz7rs3osXL0ZUVJTV9h07dpitlk5EviXI3QUgIlKqpKQEISEhqs+vXbu2hqUhIk/DzA0RucSYMWPwxx9/4IMPPoBOp4NOp8PZs2cBAAcPHsSgQYNQrVo1xMTE4OGHH0ZWVpbx3L59+2LSpEl49tlnER0djQEDBgAA5s6di7Zt26Jq1apISEjAhAkTkJ+fDwBITU3F2LFjkZOTY7zfzJkzAVg3S6WlpWHo0KGoVq0aIiIicP/99yMjI8O4f+bMmWjfvj2WLFmCxMREREZG4oEHHkBeXp5zXzQiUoXBDRG5xAcffIDu3btj3LhxuHz5Mi5fvoyEhARkZ2fj9ttvR4cOHbBz506sWbMGGRkZuP/++83O/+qrrxASEoK//voL8+fPBwAEBATgww8/xKFDh/DVV19h48aNeOGFFwAAPXr0wPvvv4+IiAjj/aZMmWJVLoPBgKFDh+LatWv4448/sH79epw+fRojRowwO+7UqVNYsWIFfvvtN/z222/4448/MGfOHCe9WkTkCDZLEZFLREZGIiQkBOHh4YiNjTVu//jjj9GhQwe88cYbxm2LFi1CQkICjh8/jmbNmgEAmjZtirfeesvsmqb9dxITE/Haa6/hqaeewieffIKQkBBERkZCp9OZ3c9SSkoKDhw4gDNnziAhIQEA8PXXX6N169bYsWMHunTpAqA8CFq8eDGqV68OAHj44YeRkpKC119/3bEXhog0x8wNEbnVvn37sGnTJlSrVs34X4sWLQCUZ0sqdOrUyercDRs2oF+/fqhbty6qV6+Ohx9+GFevXkVhYaHs+x85cgQJCQnGwAYAWrVqhaioKBw5csS4LTEx0RjYAEBcXBwyMzMVPSsRuQYzN0TkVvn5+RgyZAjefPNNq31xcXHGn6tWrWq27+zZs7jrrrswfvx4vP7666hZsya2bNmCxx57DCUlJQgPD9e0nMHBwWa/63Q6GAwGTe9BRNpgcENELhMSEgK9Xm+2rWPHjvj555+RmJiIoCD5H0m7du2CwWDAu+++i4CA8iT0Dz/8YPd+llq2bInz58/j/PnzxuzN4cOHkZ2djVatWskuDxF5DjZLEZHLJCYm4p9//sHZs2eRlZUFg8GAiRMn4tq1axg5ciR27NiBU6dOYe3atRg7dqzNwKRJkyYoLS3FRx99hNOnT2PJkiXGjsam98vPz0dKSgqysrJEm6uSk5PRtm1bjBo1Crt378b27dsxevRo9OnTB507d9b8NSAi52NwQ0QuM2XKFAQGBqJVq1aoXbs20tLSEB8fj7/++gt6vR79+/dH27Zt8eyzzyIqKsqYkRGTlJSEuXPn4s0330SbNm3w7bffYvbs2WbH9OjRA0899RRGjBiB2rVrW3VIBsqbl1auXIkaNWqgd+/eSE5ORqNGjbBs2TLNn5+IXEMnCILg7kIQERERaYWZGyIiIvIpDG6IiIjIpzC4ISIiIp/C4IaIiIh8CoMbIiIi8ikMboiIiMinMLghIiIin8LghoiIiHwKgxsiIiLyKQxuiIiIyKcwuCEiIiKfwuCGiIiIfMr/A2G+da4gsvdnAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB90ElEQVR4nO3dd3gU5doG8Hs3PYQkQCAFAoHQO0SIARGUSBER2xERRVBREY4F9SgqglgAPaJHRVEPCFZQD5ZPEaVFBSK9l9A7SQiQAiFtd74/QpYtM7szu7M7s5v758VlMjvlnZ3NzLPP2wyCIAggIiIiChBGrQtAREREpCYGN0RERBRQGNwQERFRQGFwQ0RERAGFwQ0REREFFAY3REREFFAY3BAREVFAYXBDREREAYXBDREREQUUBjdE5HWjR49GSkqKW9tOnToVBoNB3QIRUUBjcENUixkMBln/srKytC6qJkaPHo2oqCiti0FEChk4txRR7fXFF1/Y/P7ZZ59h2bJl+Pzzz22W33DDDYiPj3f7OJWVlTCbzQgLC1O8bVVVFaqqqhAeHu728d01evRofPfdd7hw4YLPj01E7gvWugBEpJ177rnH5ve///4by5Ytc1hur7S0FJGRkbKPExIS4lb5ACA4OBjBwbxVEZF8rJYiIqf69euHjh07YtOmTbj22msRGRmJ559/HgDw448/YsiQIUhKSkJYWBhSU1PxyiuvwGQy2ezDvs3NkSNHYDAY8O9//xsff/wxUlNTERYWhh49emDDhg0224q1uTEYDJgwYQJ++OEHdOzYEWFhYejQoQOWLl3qUP6srCxcddVVCA8PR2pqKj766CPV2/F8++23SEtLQ0REBOLi4nDPPffg5MmTNuvk5uZizJgxaNKkCcLCwpCYmIhhw4bhyJEjlnU2btyIgQMHIi4uDhEREWjevDnuv/9+1cpJVFvw6xARuXT27FkMHjwYd911F+655x5LFdX8+fMRFRWFiRMnIioqCitXrsRLL72E4uJivPnmmy73+9VXX6GkpAQPP/wwDAYD3njjDdx22204dOiQy2zP6tWrsXjxYjz66KOoW7cu3n33Xdx+++04duwYGjRoAADYsmULBg0ahMTERLz88sswmUyYNm0aGjZs6Pmbctn8+fMxZswY9OjRA9OnT0deXh7+85//YM2aNdiyZQtiY2MBALfffjt27dqFf/7zn0hJSUF+fj6WLVuGY8eOWX4fMGAAGjZsiOeeew6xsbE4cuQIFi9erFpZiWoNgYjosvHjxwv2t4W+ffsKAIQ5c+Y4rF9aWuqw7OGHHxYiIyOFsrIyy7L77rtPaNasmeX3w4cPCwCEBg0aCOfOnbMs//HHHwUAwv/93/9Zlk2ZMsWhTACE0NBQ4cCBA5Zl27ZtEwAI7733nmXZ0KFDhcjISOHkyZOWZfv37xeCg4Md9inmvvvuE+rUqSP5ekVFhdCoUSOhY8eOwqVLlyzLf/75ZwGA8NJLLwmCIAjnz58XAAhvvvmm5L6+//57AYCwYcMGl+UiIudYLUVELoWFhWHMmDEOyyMiIiw/l5SUoKCgAH369EFpaSn27t3rcr/Dhw9HvXr1LL/36dMHAHDo0CGX22ZmZiI1NdXye+fOnREdHW3Z1mQyYfny5bjllluQlJRkWa9ly5YYPHiwy/3LsXHjRuTn5+PRRx+1afA8ZMgQtG3bFr/88guA6vcpNDQUWVlZOH/+vOi+ajI8P//8MyorK1UpH1FtxeCGiFxq3LgxQkNDHZbv2rULt956K2JiYhAdHY2GDRtaGiMXFRW53G/Tpk1tfq8JdKQCAGfb1mxfs21+fj4uXbqEli1bOqwntswdR48eBQC0adPG4bW2bdtaXg8LC8PMmTPx66+/Ij4+Htdeey3eeOMN5ObmWtbv27cvbr/9drz88suIi4vDsGHD8Omnn6K8vFyVshLVJgxuiMgl6wxNjcLCQvTt2xfbtm3DtGnT8H//939YtmwZZs6cCQAwm80u9xsUFCS6XJAxQoUn22rhiSeewL59+zB9+nSEh4dj8uTJaNeuHbZs2QKgupH0d999h+zsbEyYMAEnT57E/fffj7S0NHZFJ1KIwQ0RuSUrKwtnz57F/Pnz8fjjj+Omm25CZmamTTWTlho1aoTw8HAcOHDA4TWxZe5o1qwZACAnJ8fhtZycHMvrNVJTU/HUU0/h999/x86dO1FRUYG33nrLZp2rr74ar732GjZu3Igvv/wSu3btwsKFC1UpL1FtweCGiNxSkzmxzpRUVFTggw8+0KpINoKCgpCZmYkffvgBp06dsiw/cOAAfv31V1WOcdVVV6FRo0aYM2eOTfXRr7/+ij179mDIkCEAqscFKisrs9k2NTUVdevWtWx3/vx5h6xT165dAYBVU0QKsSs4EbmlV69eqFevHu677z489thjMBgM+Pzzz3VVLTR16lT8/vvv6N27N8aNGweTyYT3338fHTt2xNatW2Xto7KyEq+++qrD8vr16+PRRx/FzJkzMWbMGPTt2xcjRoywdAVPSUnBk08+CQDYt28f+vfvjzvvvBPt27dHcHAwvv/+e+Tl5eGuu+4CACxYsAAffPABbr31VqSmpqKkpASffPIJoqOjceONN6r2nhDVBgxuiMgtDRo0wM8//4ynnnoKL774IurVq4d77rkH/fv3x8CBA7UuHgAgLS0Nv/76K55++mlMnjwZycnJmDZtGvbs2SOrNxdQnY2aPHmyw/LU1FQ8+uijGD16NCIjIzFjxgw8++yzqFOnDm699VbMnDnT0gMqOTkZI0aMwIoVK/D5558jODgYbdu2xTfffIPbb78dQHWD4vXr12PhwoXIy8tDTEwMevbsiS+//BLNmzdX7T0hqg04txQR1Tq33HILdu3ahf3792tdFCLyAra5IaKAdunSJZvf9+/fjyVLlqBfv37aFIiIvI6ZGyIKaImJiRg9ejRatGiBo0eP4sMPP0R5eTm2bNmCVq1aaV08IvICtrkhooA2aNAgfP3118jNzUVYWBgyMjLw+uuvM7AhCmDM3BAREVFAYZsbIiIiCigMboiIiCig1Lo2N2azGadOnULdunVhMBi0Lg4RERHJIAgCSkpKkJSUBKPReW6m1gU3p06dQnJystbFICIiIjccP34cTZo0cbpOrQtu6tatC6D6zYmOjta4NERERCRHcXExkpOTLc9xZ2pdcFNTFRUdHc3ghoiIyM/IaVLCBsVEREQUUDQPbmbPno2UlBSEh4cjPT0d69evd7r+O++8gzZt2iAiIgLJycl48sknUVZW5qPSEhERkd5pGtwsWrQIEydOxJQpU7B582Z06dIFAwcORH5+vuj6X331FZ577jlMmTIFe/bswdy5c7Fo0SI8//zzPi45ERER6ZWmwc2sWbMwduxYjBkzBu3bt8ecOXMQGRmJefPmia6/du1a9O7dG3fffTdSUlIwYMAAjBgxwmW2h4iIiGoPzYKbiooKbNq0CZmZmVcKYzQiMzMT2dnZotv06tULmzZtsgQzhw4dwpIlS3DjjTdKHqe8vBzFxcU2/4iIiChwadZbqqCgACaTCfHx8TbL4+PjsXfvXtFt7r77bhQUFOCaa66BIAioqqrCI4884rRaavr06Xj55ZdVLTsRERHpl+YNipXIysrC66+/jg8++ACbN2/G4sWL8csvv+CVV16R3GbSpEkoKiqy/Dt+/LgPS0xERES+plnmJi4uDkFBQcjLy7NZnpeXh4SEBNFtJk+ejHvvvRcPPvggAKBTp064ePEiHnroIbzwwguiwzGHhYUhLCxM/RMgIiIiXdIscxMaGoq0tDSsWLHCssxsNmPFihXIyMgQ3aa0tNQhgAkKCgJQPecEERERkaYjFE+cOBH33XcfrrrqKvTs2RPvvPMOLl68iDFjxgAARo0ahcaNG2P69OkAgKFDh2LWrFno1q0b0tPTceDAAUyePBlDhw61BDlERERUu2ka3AwfPhxnzpzBSy+9hNzcXHTt2hVLly61NDI+duyYTabmxRdfhMFgwIsvvoiTJ0+iYcOGGDp0KF577TWtToGIiIh0xiDUsvqc4uJixMTEoKioiHNLERER+Qklz2+/6i1F3iEIAi5VmLQuBhERkSoY3BBe+GEn2r20FLtOFWldFCIiIo8xuCF8te4YAOCDVQc1LgkREZHnGNyQhYBa1fyKiIgClKa9pQJJblEZfth6EnXDgzEyvZnWxXGL2ax1CYiIiDzHzI1KThZewoxf9+KjPw45Xc9kFpBbVOajUhEREdU+DG5UYjBU/9/somf96E/X4+rpK7D2YIEPSqUMq6WIiCgQMLhRifFydCMV25wsvARBEPDX/uqg5vPso74qmmxmxjZERBQA2OZGJcbLmRuxMREXrj+G5xbvwIieyVbrG3xVNNlq13COREQUqJi5UYkB1cGKWPbj37/nAAC+Xn/csuyXHadx2wdrUGXyfitek1nAhfIqh+WVJjOOnyu1WiId3fyw5SQ+yDrghdIRERGpi5kbldQkYsTbrYhnaTYfK8Tag2dxbeuGTvddXmXCst156JUah/p1QhWX7bYP12Lb8UKse74/zpSUo36dUHy9/hjeW2kbrDjL3DyxaCsAoF/rRmifxGkriIhIvxjcqKSmmkksc+OsBkpOTdCsZfvw0R+H0KpRFJZN7Ku4bNuOFwIAPvnzEP67+rBHZSm8VKH4+ERERL7EaimVWDI3YsGNk+2CrCKfotJKjPzv3/hm45Xqq63HCy3dy/fnX7AsP110CZMWb8fe3GLZZdx92vm6rnp6AVeq34iIiPSKwY1KrvSWUtYq1zqrMzvrANYcOIt/fbfdsuyW2WtEt3v86634ev1x3PTuareOJYYNiomIKBAwuFGJ0ck4N856Rlm/VFjqusrn6NmLAICdlye5rFLQf9tV1oWxDRERBQIGNyq50qBY+jUx1oGPnDil75tZ2JdXoqxwMsoByMs66bAHOxERkQ0GNyox1DQoVjgSnm1wI2/brJx8zaqQGNsQEZHeMbhRSc1DX35H8GpGQ3XGZOORcygqrZR1LEFwb6oEg4u0iz+0uSksrcClCpPWxSAiIh1jV3CVOJt+wVlQYTAY8MuO05jw1RbZxzp2rhRllcoH/zO6qpaSETC5CpC8qbisEl2nLUNYsBE5rw7WrBxERKRvzNyo5Mo4N0qrpYAlO04r2ubLdccUrV/DVVhi9v5gyR7Zfaq6K3t5lc4LSkREmmJwoxLrWcH355Wg0mpaBWfJjkqTgF2n5I9V4wmX1VKyMjdqlUY5tvchIiI5GNyopOahX1Zpxg1v/4n7529weE3MAws24OjZUukVZPhj3xlZ67kKDqSSTkrH7vEWLavEiIjIfzC4UYn9WDZ/7S9AaUX1ZJXOxpcpKXOc0BIADuSXoKRMXgPj++atl3zNOjBxnbmR2oesYhAREekCgxuViMUNnlQ3Zc76EwPe/tODElUzWXVN33V54D8phaUVWL2/wNKdveBCOX7adgoV1lVsMo9bVmlCVk4+yirV69nExA0REcnB4EYlYqMQ1/ROcvehfLqoTPa61kFMaUUVCksrsGTHaVy06jbtan/78i7gnrnrLHNb3fHhWjz29Ra8s3y/wpIDz/5vO0Z/ugEvfL/z8r5LcNfH2Vh/+JzifRERESnBruAqEYtfaqqBfJFwuFBehfJKE0KDjeg6bZll+U2dExXv65cdpzG8RzKOXG4L9OvOK7255Ixy/PjCrfhp2ykAwP82n8Bbd3bBmE834GThJdz5UTaOzBiiuExix2EbHCIiEsPgRiViD9qabI4vHsJ931yFwtJKPJnZ2mb5z9uVdTOvsfPklSo1JW1uNh87bwlsrOUVy89CWcsvLsPcNYcxsmczmyBREFhNRURE4lgtpRKxAfJqlh0uuOj14xdeHt347eX7PN6XwWBAedWV6iwlY/e4M7igM+O+3IyP/jiEOz/Ktglm2MaZiIikMHOjErHszOoDBSj1w6kCyipNuHfulR5YtrGN83SJ2smUTUfPAwByi8ts9m4WBARx5BsiIhLB4EYlYpmbN5bm+L4gKrBv9Gu26U5+ZXlJWSUiQ4MR5GpeB6ifaWH3dCIiksLgRiWB3LjVOpAwoLpn1p7TxbjpvdUAgGcGtsH461p6vRzWb7HSaS6IiKj2YJsblQRwbOMQSNw7d50lsAGAN3+zylAF8PtARET+gcGNSsTGuQkU9sHN2oNnHda5/q0s/LVf3jQQ7rLvLUX6dfZCuWUwSCIiX2NwoxIZzU78lvUAgVLVb4fOXLRphGztQrn4FBOeYLWUfm06eg5pry7H2M82al0UIqql2OZGJc7mj/J3Jg+/gXec8psq5bAOrBja6Ne8NUcAACv25mtbECKqtZi5UUkA10rBOrY5etb5mD2bjpxXvP9KkxnT/m83snIcH4bW76v1W8zMDRERSWFwo5JADm6sMzePL9zqdN23likfRPCrdccwb81hjP50g+xtPIltBEHwSlUZVQvgPwUi8hMMblQSyA2KL6k4s7eYk4WXJF+zfldtRigWiW5OFl5Clcn1CMlPf7sdHaf8hh0nnM+STkRE/onBjUoCObjRQmFpBT7PPgKp5j72sU1WTj56z1iJhz7f5HLf/9t8AgDw0Z8HRV8/dOYCyrwc0BERkfewQbFKGNqoa9LiHfh1Z67NMoPd9AvW/vvXYQDASgWNWMV6fq09WIC7P1mH1vFR+P3JvkqKTJcF8oCWROQfmLlRCe/n6qiZ+mHZ7jyn69kndKwn+hRzqcKE7zadwNkL5ZZlYpfsf5tOAgD25V1wWVYiItInBjcq4bdVdYz5tHqsnIZ1w5yuZ18tVV7lvK3Nq7/sxtPfbsPdn6yzLBO7ZGJteYiIyL8wuFHRsiev1boIfq/SLGDl3jycLipzeE2wytfYByHllc6Dm5oqrpy8EssysXCUoQ0Rkf9jcKOiVvF1tS6CX7IOVAwA7p8vPrKtdTwz8ZttWLHnStWVq2opMWLZNm9nbn7blYvr38rCzpOB21OLOUwi0hqDG9IVZ73OrMOO1QcK8MCCK0FQhYtqKTFiR/L2dEgPf74Jh85cxMMyenUREZF72FuKNCEIAj5dcwRtE22zXc6aLjnLqrhqcyO6W7E2N073oh5vjx1ERFSbMXNDmvhzfwGm/bzbpoEvID9zU+PDrOqxatwZl0ZsPjBnAdSJ86U4eEadXlRsuExE5D0MbkgTx86VWn7+5PIYNYDyLvUzl+4FIJ65OVNSjq/XH8NFiakWxHtLSR/rmpmr0P+tP1BUWqmskERE5FOsliKfm7/mMIKCxONqZ7HNNxuOS75WJdJY5tYP1uDE+UvIFel5BQBG0Wop8ejGOtNysvASYiJDnJTUNZNZQGFpBWIjQz3ajx5xVAQi0hozN+Rz037eLRnEOBsvaKGT4EbMifPVc1ZlHzor+sDNLS53mEBTKnOjdi1ScVkVuk5bhgP5HCyQiEhtDG7I55z1SPLGt/46oUGiy//cdwadp/5mk5Wxn9ZBbLmaZayZ54qIiNTD4IY0cdyqzY01b0xAWp0NEt+vWQCeWLTV8rtUhsZbXcTn/HEQfx86a7Psrd9z8M7yfd45oA+wVoqItMbghjTx0Z+HRJdr8WD8cespy89SQUyZxCCBns4eLgjAXR//bfn97IVyvLfyAN5Zvl+yITQAFF2qxL++24Y1Bwo8Oj4RUSBicONFIUH8DqsF+wbESq6CWBft8ioTrn1jlcPypTtPo+3kpfjvX7aBmtmDNE+l6cq2JicNfd76PQffbDyBkf9dJ7mOVjjPGhFpjcGNF8VEeNajpjZyJyxYuvO0ze8vfL/D5nclz1qx4x86cxGFVt2/a/b3+MKtAIBXf9ljeW1VTj46Tf0NP28/BXdYl9VZI2apaj17v+/KxdD3Vqs2Pg8RkT9gcONFwUZ1394eKfVU3Z8euTO43SNfbLb5Pb+k3G4Ng+wAR+z4UWG2IyaIDf5XY8ynG3CxwoQJX22Rd0A7NntWoZ3PQ59vwo6TRXjiciBGRFQbMLjxoiCxgVR0tD89qjJ5/kQ32r1PSjI33p5bSislZRx4kIhqDwY3XqR20wOz8rkh/U6Jk0a0cnnS1OlwwUWHZfbJnJrrKnZ91Yw/pQYUJCIi5zhCsRfFRobgUoUJZy9WqLK/qtoQ3ajAvju5dEdwW4Ig2EwL4Xp9x2XBRiMqTB5cJ5WCo92nilE3/Mqfty/DpMDPLxKR3jFz40UhQUZkT+qv2v5UqLGpFRyCG5lP28//Piq63D6D4qxZULAOesidLrqEG9/9C31EengREdUGDG5U1r9tI8vPQQYDQoPVe4s96WJcm9i343bWANjaxxJj79gHMzWjFYsFTcEq1ku5O+XD/jz2jCKi2o3Bjco+uKe75Wf7hq2eMjG4kcW+4bUnbZ9OnC9F0SXbxrjOgo4QiQlB5bIOxPz2amufvCKiWk4Xwc3s2bORkpKC8PBwpKenY/369ZLr9uvXDwaDweHfkCFDfFhiaWHBV+YxUvNbPABMvqm9qvsLVGJTOMgJcOyDlvziMlwzcxWGzV5js1xq/ilAHz3axEqn9sSfRER6pnlws2jRIkycOBFTpkzB5s2b0aVLFwwcOBD5+fmi6y9evBinT5+2/Nu5cyeCgoLwj3/8w8cld03tB11GagPLz758hsZFhfruYCpwt82Nve0nikSXezVzYzOIn/SBOAowEZE0zYObWbNmYezYsRgzZgzat2+POXPmIDIyEvPmzRNdv379+khISLD8W7ZsGSIjI3UZ3HhjEsga1hkibxqZ3tQnx1GTfeAnt82NXM66aKvZoNjdZIs7AyGqSe33m4hIKU2Dm4qKCmzatAmZmZmWZUajEZmZmcjOzpa1j7lz5+Kuu+5CnTp1RF8vLy9HcXGxzT9f8WYVRXiIepeuVaMofPtIhuhrr93aye/a+ji87x6MTizG2dthP5qxUtZFcDdG8a+rRUSkPk2Dm4KCAphMJsTHx9ssj4+PR25ursvt169fj507d+LBBx+UXGf69OmIiYmx/EtOTva43K6kN68PALj36mYe7yshOlx0uZqZm5HpTdEjpb7k61V+FtyIj3PjOsKxP8uFG46LrifW5ubPfWcAAK3j61qWVXky3g3cH8TPfuJQIqLaRvNqKU/MnTsXnTp1Qs+ePSXXmTRpEoqKiiz/jh8Xf2Cp6YsH0/HnM9fhOqtu4WoLUzFz46r9hr91QXdscyMvdWMfsyzfkyexnuP7sSqnuo2YddbInXfNJqBxYwe7TxVj0uIdrlckIgpgmgY3cXFxCAoKQl6e7UMkLy8PCQkJTre9ePEiFi5ciAceeMDpemFhYYiOjrb5520hQUY0bRCpyr6kvr2HqTh+jismP+tq4251oNxMSc3bIZYNsl5SfMmN+Zw8i22czkY+a9k+jP9qs9eDVbZ1JiKtaRrchIaGIi0tDStWrLAsM5vNWLFiBTIyxNuA1Pj2229RXl6Oe+65x9vF1JRUXOGrBsWA/81p9ftu2ypNuc9auTGcWGxgCXisDpb26nLMXnVA5tHFjqM8CHEWWLy7Yj9+2X4aG46cc7tMRET+QPNqqYkTJ+KTTz7BggULsGfPHowbNw4XL17EmDFjAACjRo3CpEmTHLabO3cubrnlFjRo0MDhtUAi9XjzRuZGalwesczNoddvVP34aqk0CcgvudLuxGCQOc6NzP2LBR1SjZHf/C0HO04U4aM/Dspqg2O9F2exjdTpSLUtss5KeTT3lZd9mHUQDy7YgEodl5GI9E/ziTOHDx+OM2fO4KWXXkJubi66du2KpUuXWhoZHzt2DEa78fRzcnKwevVq/P7771oU2ackMzchRjw3uC1m/LpXhWNUH0TqWSrWW0rt0ZfVVnzpyuzi6mdunIw/I3K0oe+vBgBZU3EIHlZL6eGyeFKEmUurP89Ld+ZiaJckdQpERLWO5sENAEyYMAETJkwQfS0rK8thWZs2bTQfy8N3bM8zLNiI8ioz+rVuhLHXtsDF8iq8t9L9qg9AeW+oET31P/bN3NWHLT/LH/BO5vsgVi0lY7M9p5UNQ+DWZzxAGrxcqjRpXQQi8mO6CG5IWqXdVOArnuqLdYfOYVjX6m+1MREhotvFRoagsFReg1al49g82i8VANC5SYzkKL5a+3r9McXbqN3mxt6PW6Ub+1r2YxUmuRXbKN+EiCjgaN7mhqQN6ZyIJzNbAQCeuqE1AKBJvUjcntYEwSLD/LdNuDLGyq+P95F9nJrMjdxMQc0DvGXDKNnH0JIBrh/6f+0/g7MXK2Ttz2m1lJMDlVfJaHMjsesD+SW4/q0s/Lj1pOjrpRVVmPDVZizd6Xp8KG9TJXkkVH8ejxRcrEVZWiJSC4MbHZt1Zxfc1ysFfzzTDxOub+ly/S8eTLf8rKQ7dJVJ2cOjpprHbx45Mt6Ke+dKT9ZqT3RiSi+8G9bP9Ke/3Y5DZy7i8YVbRdf96I9D+Hn7aeTklaheDq18kHUQ/f6dhVd/2aN1UYjIzzC40bGw4CAYDAY0a1BH8USJQQrWNyns6+1vVR9qz3Uk3lvqytE8Yb1n6+NcqrBtg2J/eQsulHt0XN0xVPc0A2zbTxERycHgRifUmKDS+pmrZNLOSoVtbvytzarBoO4UEjXVJGLvgzttfcT2DSjLjPnbNbFnMgt46/ccrYtBRAGCwY1OOJvbyRnr8W6sv+krCW6UzoHkb7M+GwCcUTGzIZbo8kYVnZK2Jq6uiS+brbjz+fhhy0mPe/0REdVgcKOB5PoR+Otf1+G6Ng0ty4Z0TsSQTonokVJP0b7uSEtGt6axeCKzlU1wYzACD17TXNY+lGY1auImfwpxwlUc0bnKLGDb8UKbtkrHz5V6PFEmID3OjV4zM2WVJrcb/L6/cj/mr6mucjp+vlTNYhFRLcfgxge+fSQDt3ZrbPndAAOS69vOPRUSZMTskd0xKiNF0b4jQoPw/aO98URma5suykEGA54e2Mby+4TrpBskK+0KXvOc9ZcGxWYBuL6depOYzly6F8Nmr7EZ6fev/QX4btMJ1Y4BKMu2aBH8nL9YgbaTl2LEJ38r3vZk4SX8+/d9mPp/u2E2Cz7NLBFR4GNw4wM9Uurj7eFdHZarfT+Piwq1/BweEoRQq+7ivVpKT1ORFBvhtDzvjehmu0Dhg3TufVcp20Bl/9t8Ar9sP63a/g4XXBRdXtMAVj1KqqXkU6tasWYOr78PKZ+r6lJFleuViIjcxEH8NKT2t9Ww4CBse2kADMYrXcGnDm2PkrIqNL4cwFhrE18XGakNMLpXitP9Du2ShH9+vcXyu9KHY91w8YEGlejUOAY7TupzwMAaRe7MAm7HplqK2QwiIrcwc6MBZ2OiePo8i4kMQbRVMDG6d3P8s38r0XWvaRWHqTd3QHiIeHuU4Vcliy5XWgViNAA3ezhPkJJxe7SiRo8s68+Gkt25GirAG4GS9T4fmL8BZZenTFD6+RAtGgM7IvIAgxsNaX3/dhYvZD3dD9Nv6yT6mtIww2AweDwJol4b1HqTNwYG9JYVe/OxUFE3+CsXlCMQE5HaGNxooOZertVN/abOiTAYgPvsqqOsi5MSV0dy5m+lAwqqkXRR0rXdXx0/V4o7P8q2/G59PZS+575gX6QL5fprR8PAiah2YnCjoY6NYzQ57r//0QU5rwxGk3qRrlcWIfaY/degNiJLqwUZPW/C6ge1Uh57/vsdyCu+Mh6P3ntLSZVPaVneXbEfpwoveV4gO38fOosery3HrzvUa0xORP6BwY2GHru+FZ7IbIVfHrvGssxb3zStMx8GAxAa7Hjp37+7ulfUyzd3cLovsYfXuL6pTo/t6cNXj5kLtdnP4m5dLeXq7P1tYEVr7648gG9V7kYPAKPmrkfBhQqM+3Kz6vsmIn1jbykNRYQG4YnM1j45VpN6ERjSORFRocEIkxjQ7qbOSchsFy/ZwLiG2IPUWfBhMHieWagNmRv798h/a1RcXyxfxKpVCudMI6LAwcxNLWEwGDD77u6YeUdnp+u5Cmyqd6bs2NXVUp49zWpDmxuxAHHnySL0eWMldp8utl/b7eNM+WknNh1VPjaNJ/KLy1CpwgjOStSGbB8RiWNwozNpzZRNv6AF5V3BbTfo1DgGCdHhHu0jENlnp8yCgH9+vQXHz7luj6Lk7Tl45iJu/zDb9YoqHXP3qWL0fH0Fbpm9xuNjEhHJweDGh666HLhIjR8DAE3qReLPZ67DtikDfFUs1XVNjrX53WiATaLhw3u646bOiYr2WQtiG4cAThBgGTvGFS3eHrnVZj9sPQkA2HXKPvvkXWq9J2WVJtz5UTZmr+LEnkT+gsGNDy24vye+fDAd4/pJN74FgKYNIhET4fmovloZ1y8VLw5pZ/ndYLCtlDLYzXvliejwwGk2Zp+5OV9aoU1BAoRaAfG3G49j/eFzqk+vUWkyo7xKXvBKRMoEzpPBD9QJC0bvlnFaF8PrOjeJsZnuIchgsGn/YDTIbNtjxSyRJmiXGA1BANYf8W0bEm+wbyMy+tMNSIqRV32nRWZL6phyyuJPibiySvXbCpnNAjKmr0BZpRlbXroBIUH8nkmkJv5FkWo2vpiJlU/1RWJMhM0DzmiXuampfpl4Q2vUi7ySoVo+8VrJfUtVgZRWmGAMkE+xuz3Czl2s0KTxrNxqKeuSmcwCfthyEie9MK6N43H1G0KVVZlQcKECF8qrkFdcpnVxvGbXqSLc8eFarD/s/18+yL8wc0OqiYsKQ1xUGADbB4v9c7fm18f6t8KE61qiyiygvMrkdIJNqQepWRD8Yt4pOcQaTZfKaHOzam++y3X0MlLvl+uO4qUfd2ldDF3RyaXxivvmVY81dOdH2TgyY4jWxaFahMENeYVN5sZoO4ifTRWV0YBQo0F0UEFrUtVSghA4PanEzqNYZKbxwf/5C3usuoavP3wOMZHO22j58vnp7GqsPXDWZ+VQS4B8vDRRcIHtxkgbAZLQJ1+KkNFexvpBHWQwOIyQrBYBQHAAZG4EQRB9X8RmBt9jN+bNoo3HdVwBoyG+KUS1FoMbUqRZg0hZjR9t29zYTvfgTqZFKnUvCAIiQ/0/Abl0Z65nGSgXm2pa9WFVNrVmOt909DxeX7IHlyr8s7eRntsDEQUCBjekiHUvKGfsu36HWQU3zm7rz9/YVnS5s2qpqDD/D25WHyjw6hQTagUVcjiL0X7blafKMW7/cC0+/vMQ3lu5X7ocVj+fv8jqkUsVJt20vSLyNgY3pIjc5IK7mZuHrk3FiJ6OgxxK3ZIFCKgTAMEN4FnbIVeZAFfPtJKySmw6ek63D781Bwow6J0/sfV4oc3yfXkXZG1/03urvVAq/3Gk4CLavbQU477gJKJUOzC4IUXkptOtn5FBRgNCrauy3HiGh0k0OBYEICoABvL7dtMJrJDR60mKp+2Ybpm9Brd/mG0ZTVhvRv53HfbmlmDkJ3/bLHcWjFm/J77oeq5nX/x9FACwdFeuxiUh8g0GN6SI9QPj9u5NAABtE+o6rGf9yDEYbHtDuXoQW7fpublLEu5Ia+IwpYP1cUKD/L/9QkWVdyeVdJWPOXjmIgDgp62nVD+2mu1LLtq1sTE5C27YroWo1vL/r7zkU9bduK9pFYcVT/UVbYdj/cwxGoCw4Cs9rKpMzh+11sHNuyO6AQDe/G2v6LpmQeDsz1CvY5Aa76Uvgwrr3mTFZZWIdjJWUm2mz8pGIu9h5oYUsX9spTaMEp1KwboBa5DRgLioUKQ3r4+ezevbjEosRtFQ9IJ0JqhFXB35+wlw7owm7A/Ml6ObX7afRuepv+Ot39Wd/4mI/BODG1Kkaf1IWevZZm6q55Za+NDVWPTQ1S6zA2ID+kllAwQnryXJ7NkVCFwnXByjG/vGufL2oy81vegm/7gTAPDeSs7cLcbPLiuRxxjckCxfPpiOf6Q1cWs275oHpsFuAk0pUo2HxUgNfgdUj35cW7jTW+qW2Wu8Uxb76Ta8eBlMYqMc+uC4RKRvbHNDsvRuGadoRnP7zI0SIQoaCFdnbsQFQDtj1chvc+Ffb5qz6ja9tEOqNJkdqlp9Oe4QUW3EzA15hfWge0EKHw6dGsc6LJPaheCkzY39hJodG0crKoc/UStL4W/ZDme9pTyRffAs7vwoG/vzSjzaz+LNJ9DqhV/xy/bTKpWMiORgcENep/SBmZHaALPv7o5fH+/jcl0l34Cte2wFGldvsdR4MK/9shs5uVce4EouldQ778v4SGrkasCzjMuIT/7G+sPnMPazjW7vAwAmfrMNADD+K9vB86yL7Wl8ZjYLuPOjbDwwf4NnOyIKIKyWIq9z5yEzpHOirPUEwUljY7uHRi1qgiPbJ38dxid/Hbb87o3MjTffdrOTNjdqyC8p9+r+1XD0XCnWHz4HQLwKjKg24l8BeUVcVJiq+5N6QDr71mv/UkCPh+Pi3LwRAsh9N70ZfjiLbQL4atuwzsqVVfrnRKJEamNwQ16REBOOj+5Nw1dj0716HGe9pewF8sPu8+wjTl+XP86NssbcWnPWW0oN3ppqy1ulvmfuei/tmci/MLghrxnYIQG9UuX3sHJHZvt4yQeQfTsTTyam1LvzpZWq7MeTt2j5nvzL+7DdiVerpXQ60acSnn4srd+BbSJjF/mCySygsJQzr5N+MLgh/yDyBJh5eydMGtxOslGxY7WUF8rlJ+TO9u3JeyQ2KGCVybtzZjnlJ9fb0/hMD/HdiE/+RtdpyzzuXUakFgY35LeG92iKiFB5PaB6t2wQ0JkbV+Q+/9SeF2ro+94ZKLBGTZZIrNRqnIkAwSsxktxgU+beVNyXe2oaNH+36YTGJSGqxuCG/J50tdSVnz+8J61WZ25Kyqrkrajye7TndLFb28nt4l+LL6kuaR9mEVVjcEN+wdlDTOyGuuSxPjbLo8NDAru3lI55820X2/emo+fw+pI9KKvyvEpMSYLlYrnMABKBGwSom5EiXyutqEJecZnWxVAFgxsKSO2TokUaFGtUGD+il7dIbvWYWHBz+4fZ+PjPQ6hQIbiR69+/5aDDlN+wam++z45ZQ0/xhJc7r5GX9Xh1OdJfX4FThZe0LorHGNyQX3D27V/uzd26zU3P5vU9LFFgqsluFZVWYsWePFS60SDYlwkytdsIiR5DxiHeX1U9G/mUn3Z5uTSO9BRP6CnQIuUuVlSPk1TThsqfMbghv9CiYZTka5K9pewWWz+jFo69WoVSBZ6a9+jOj7LxwIKNmJN1UHJdrbodB4JADQI4ISjpBYMb8gs3dUrECze2E31NskGx3Y3Wus2NkXVUomreopzLXXp/3HZKct2FG47L2qc3qyq8nSXyh0e1u4HSnD8O4vUle3RRFtKXQAhSGdyQXzAaDRh7bQu0ia/r/j4Yz7hk/xap0UC00ottX7x+SX1wj9fqQTLj1734+M9DOHTmgibHJ/ImTpxJfkXJg8ChWorBjWLuPHbt28G4025H/sH89KKqGM94GhyVVap3fWpGjJ63+jC++Puoavv1lSqTGcGceNQnbdm8jVeR/IpYIkEqu+A4K7j//8F6mze6y1eYvJeZ8PYV1XN63mQWcKakXFdVQTVlmfbzbhwquKhtYRTadPQ82r20FP/965DWRdGcnj/3cjG4oYDl2ObG9TajMpp5qTT+weEtUuEe584UDLIH8fPTeFWNh8c9/12HHq8t11XDbn9+KD77v+2oNAl49Rd12yGRNhjckF8Ru3XK/ebat3VDAEBosPTHfmyfFhjdK0V5wQKFF4IFrzYo9t6ufXoMd2QfOgsA+Fpmw25f0FMWSSkOQHhFIFRLsc0N+RWxG5DULcl+1X+kJSMmIhRdk2OdHmPqzR0wf+0Rt8rn7+xvakpv92Lta7z5bb6mqtFfMziq8PChLEDAkYKLaNYg0uNqSYYHgcGfM3A1mLkhv6LkT85+XaPRgEEdE5AQE65mkQKa0m+z7SYvxeki29FNF28+qWaRbHi9K7iX7vHW+/V4VnDPNscHWQfR799ZeOVnz6tj/Dn54cdFJxEMbsiviDcollrZq0UJSPbBwpGzpYq2rzIL+HVnrool0paWH6HC0gqfHOeX7acBAPPWHPZ4X6zaIb1gcEN+RbxaSqK3lItH0+P9W6lSpkAilgjZdrzQp/M0KREIbQPEzF51AF2nLcOX61x3p3YnnvBWEOLXsY0/l50cMLghv6Lm/WfstS0c96/CAV66qb3nO9HIt5tOOCwbNnsNrn8ry/eFkcPLsY3JLOCkFyYRdPUxe/O3HADAC9/vVP3Y3uTPbTX8t+QkhsEN+RUl1VKuApWosGB8OLI73ryjs+cFs9K7ZZyq+/O1i+VVDstOnNfnLMG+yNt88pfn1TV644u2RP6GVWqBhcEN+RWxb4aeNLkZ3CkRgzslelQme/4+wKnJyU0+Kycf1/07C5uO6mPWYF/3kso+eFY0+FNKzQepnrIl+ikJ1XZ+fhum2sYbX65cPR/josIcls0bfZXk+v4+EvKhM9Ijy47+dAMOF1zEiE/W+bBE0nzd5mbEJ39j9KfrJV/XItAwy2gO5atS+XPyw4+LTiI0D25mz56NlJQUhIeHIz09HevXS984AKCwsBDjx49HYmIiwsLC0Lp1ayxZssRHpSWtid48rRb2Sm2ALx9Mv7xYnVFuVz7dF63jo2y3cfJQDfLzGTrlzBStlwbGWsSRG46c9/1BnXDnoeytBzmrdkgvNA1uFi1ahIkTJ2LKlCnYvHkzunTpgoEDByI/P190/YqKCtxwww04cuQIvvvuO+Tk5OCTTz5B48aNfVxy0hPr2+lXY6+2tHmRe5t19e0/OjwE343rhfTm9a03kuTvmRspr/y8W+siONDbWy03kyRI/OwOOQGFr94mfw5tGJcFFk2Dm1mzZmHs2LEYM2YM2rdvjzlz5iAyMhLz5s0TXX/evHk4d+4cfvjhB/Tu3RspKSno27cvunTp4uOSk54M7JAAAIiPtq0+8uRm9c/rWwIA7uqRDKA6wHnMquu4s4eFv2dupMxdrb+GtYHaFVwJOZ9z+1W81xXctxHCc//bjuf+t12VfZkZ3QQUzaZfqKiowKZNmzBp0iTLMqPRiMzMTGRnZ4tu89NPPyEjIwPjx4/Hjz/+iIYNG+Luu+/Gs88+i6CgINFtysvLUV5ebvm9uLhY3RMhnxK7AXVsHIOsp/uhkX1w48FxnsxsjUEdE9Amvq5lmXVGxtkw9cF+HtzovWphz+krf8N6y9y4w9P3W08Nir05j5i9wtIKLLw8r9azg9qiXp1Q3x08wOn8FiCLZpmbgoICmEwmxMfH2yyPj49Hbq74CKeHDh3Cd999B5PJhCVLlmDy5Ml466238Oqrr0oeZ/r06YiJibH8S05OVvU8yLfeurM6SzfZbiyZlLg6iAy1jdUHtK/+bDWq69gg2BWj0YAOSTEItur6ZJ2RsX+mdmocY7OtP9P7jW3wf/7SuggeU/M9lrOvQKyWMllFUmpkXdzZRUlZJcy+jOhINs0bFCthNpvRqFEjfPzxx0hLS8Pw4cPxwgsvYM6cOZLbTJo0CUVFRZZ/x4/rZwZdUq5Xahz2vzYYD1zT3OW6D13bArPv7o5fHusje//OvgVbd/G2zhj0Sm2Ah6wGBAzy83SCP92qPZ3oUQ8EAJcqTFiw9giOn1M23QUg78HuUC2l+Cjy6D3rp6YT50vRaervGP6xeE2DPwuAPyvtqqXi4uIQFBSEvLw8m+V5eXlISEgQ3SYxMREhISE2VVDt2rVDbm4uKioqEBrqmJYMCwtDWJjyb+6kXyEyB5IJCTJiSGfXY9iEBRsRFRaM0ooqJMZESK5nUy1l9V1YEGyrovw9c+NPbQ/09k7LrSKyX+/N33Iwb81h/Pu3HOx4eaDCY+qHL8ui9Xn/uPUUAP31nlODH90CJGmWuQkNDUVaWhpWrFhhWWY2m7FixQpkZGSIbtO7d28cOHAAZquBHfbt24fExETRwIZIDqPRgE2TM7F72iCEBkv/SdhUS1k9VQUINq/5e4Nif8qyX7kO/vueCwKw5kABAKDEnQECdVQtpVXEoUYGrzZlnWoDTaulJk6ciE8++QQLFizAnj17MG7cOFy8eBFjxowBAIwaNcqmwfG4ceNw7tw5PP7449i3bx9++eUXvP766xg/frxWp0ABIiw4COEh4o3Sa0i1uREE22yS31dL+dFN3r/faXW4VS3lrekXNM+nuM9/S64+P7+FAdCwWgoAhg8fjjNnzuCll15Cbm4uunbtiqVLl1oaGR87dgxG45WHRnJyMn777Tc8+eST6Ny5Mxo3bozHH38czz77rFanQLWITUbGJnNj+5rRr1qyOfKj2EazNjenCi+h6FIl2iVGu7cDQfIXz3alMT19dvbnleDTtUfwz+tbOq1uJkeeXkeTWdA8g61pcAMAEyZMwIQJE0Rfy8rKcliWkZGBv//+28ulInIUZNfmZnSvFMxfewRPD2iDKtOVqlJ/H8Rvx8kirYsgm1bvdK8ZKwEAa567Ho1jrzw4tRh3x53eUt7KsPgyuHF1rJveW43yKjN2nyrGD+N7e7w/kmfGr3uxYO0RLHm8D5rH1dGsHH7+HZPId4x2bW6m3twBu14eiJ7N69u2ufHz4MafaP1W7z3tOG7WlB93YsTHf9t0VXbG04eqO9VS3qKnxujll6cI2X2KY5v50pw/DuJSpQnvLN+naTk0z9wQ+QvbzE21OmHVf0LW4+Fo/cCtXfT3Zi/IPgqgegZxKWqGADqKJ3RVRaaU0myWP7VNq42YuSGSyba3lO1DNSosWPI18h69vdXWD0iTzIefAKBSztTeHnColvJWg2I/ft77c9nJETM3RDLZV0tZax0fhXuvboa4KI6p5Es6i21sOPtmb//SoTMX3T6OnqqC/Dl3478lJzEMbohkCnYy/YLBYMArt3T0bYHIEmRqlcFRI67wdB+6im00osbl5/sYWFgtRSRTmNUAfxUm71YjkDx6mxX8+LlLlp99VT2pp7Flzl2sQCX/NkgHGNwQyRQTEWL5+eyFCg1LQnrhLKxwWi1ltaWnwYk7I0o7a+zsic3HCjH0vdVe2bf3KW1Q7KVi+NjJwkv4MOsgikortS6KqlgtRSST9TfxaKtAh7TjjwMmVpnMWLozV7X9ufOQHTN/g2rHt7c3t8Rr+7amdsYqUIIVpf7x4VqcKirD9hOFWhdFVX54ayDSzhcPpOOZgW1wbas4xduuerof+rVp6IVS1V5aV0u50x14/tojePn/dlvtQ80Skbu0vAyCIGDV3nycLrrkemWVnSoqAwCs3l/g82N7E4MbIgWuaRWH8de1dKs9RfO4Opg/pqesdT8d3UPx/mslBZfh/ZX7LT9XadguZPmePKevrzuktMqI0ZG/+21XLsbM34CM6Ss1K0OgfYoY3BDpkLPZyck9//69esTUiYu2otu0ZTh7odzjfarxQLDP3Az/WNn0Msz8qEPLQflWHwisrIke8A5KRLpTWmHy2r4XbzmJkvIqfLfphOjrc/44KHtf7jwP7bd5bclu8RXJbct2O8+OqSHQYkp99Tv0nFvBzfHjx3HixJUbw/r16/HEE0/g448/Vq1gRLVZoN1olLJuk+KUB08YqZrFGb/udX+nblhzwLOeS4H2kHWH/bUc+9lGxfvg+xhY3Apu7r77bqxatQoAkJubixtuuAHr16/HCy+8gGnTpqlaQKJaqbZHNzJ50mPG242R+bD0HT0Mpkj64lZws3PnTvTsWd0w8ptvvkHHjh2xdu1afPnll5g/f76a5SOqFd4b0c3m99bxdTUqSe2ht3mp3FVrJ3BU+bSt30dfD0Soh0uogyKoyq3gprKyEmFh1XPoLF++HDfffDMAoG3btjh9+rR6pSOqBTo1jsHQLkmW32/r3phzVMmk/UNBugABEjv5VKXJjLmrD2NvbrHPj219JbceL3R4fdGGY7j5/dXILy7zWZnIfW4FNx06dMCcOXPw119/YdmyZRg0aBAA4NSpU2jQoIGqBSSqbZrERni0fatGUSqVJLDZd+f/59dbcNfH2art31dxl5zjaB4DyrRg7RG88vNuDHrnL0XbqX1+YoHps//bge0nijBzaU71Mf3lTXVDIJybW8HNzJkz8dFHH6Ffv34YMWIEunTpAgD46aefLNVVRCSP2tUjN3VOcr1SgPDkJmz/tv/ftlP4+9A5nx2/Nlp7sABjP9soOVjdjpNFPi6RFZnX8lJllXfLQapwa/qFfv36oaCgAMXFxahXr55l+UMPPYTIyEjVCkdUK3kY7QRKWxJ/56vLICfA0stH4u5P1gEAyqvM+Ox+xy/CSsppfdpqtDvydZz6378OoVF0OG7ukuQ3mTV/4lbm5tKlSygvL7cENkePHsU777yDnJwcNGrUSNUCEtU2NTf4zx/oiZZuVDE1qlt72ut41FvK6knq7sPR6cSZbu3RO/RUFgA4XSieufHVTOpirD8DzoqhRrZuX14JXv1lDx77eovnO9OB/JIyTP1pF/bn+WZeMTncCm6GDRuGzz77DABQWFiI9PR0vPXWW7jlllvw4YcfqlpAotqm5sbap1VDLJ/YV9G2HRtH4460Jl4olT6pVS3lz9VLgdRbSi8ZJm87d7FC6yKo6omFWzF/7RHc+K6ytlLe5FZws3nzZvTp0wcA8N133yE+Ph5Hjx7FZ599hnfffVfVAhL5s67JsQCAAe3jJdexv6F7Mv7K67d2QnCQ8z/rQJzawZ13zDpL4G544C9xhd6CBrXfNlWmwVBhH7XVjhPVbaUqTfp5F91qc1NaWoq6davH4fj9999x2223wWg04uqrr8bRo0dVLSCRP3t2UFuEBhvQISnGsiyzXSMs35MvuY2SzHxESBAuVV6ZqsAoY2Oj3p50HvDkVqpGtZQeBFJvKesorLSiChuPnEdGagOEiATsfnzJHATSueiFW1/hWrZsiR9++AHHjx/Hb7/9hgEDBgAA8vPzER0drWoBifzRlKHtcc/VTXF1i/pIa1Yf4SFBltfe+kdXTL6pveS2SmIPs91dUV5wE0DRjQes3wWzmw8XT9r8qEYHRVCLddby4c83YdS89fj37zk+ObbSAMP62s9atg8Hz1xQuUTkCbeCm5deeglPP/00UlJS0LNnT2RkZACozuJ069bNxdZEgW9M7+Z49ZZOog0kYyJD8MA1zSW3VRJ72N+QjTL+ogMptFH6QKqoEh951pdBihaxiL9cc+vP/l/7q2fK/urvY6LrWl8zVaZf8ODKvLtiPwa+/afnhSDVuFUtdccdd+Caa67B6dOnLWPcAED//v1x6623qlY4olrBLppR0mPE/oYcVEszN3IfSx2n/nblF+s2N36c/QikaiktP5m2nwHlJalyN/2nE/5cNSvGreAGABISEpCQkGCZHbxJkyYcwI/IDYnR4W5va38/khMYBVZsU/0GyL0xW2duAuptqIWsL7kuqgc94u/l1x+3qqXMZjOmTZuGmJgYNGvWDM2aNUNsbCxeeeUVmM2+nXCMyF998UA6BnVIwLRbOjhdb8ZtnSRfs78lymksbAykFsWXufOl07ZBse+OqzY5gZ2/XHEtA28dXEpNaTnGkDe4lbl54YUXMHfuXMyYMQO9e/cGAKxevRpTp05FWVkZXnvtNVULSRSIrmkVh2taxblc766eTXFz1yS88vMefL3etv2BOw2KA+kWVnP67jyYDDAgv7gMcVFhAfDN3zl/OTslwyCofk5WO5TznNdDYKsmVksBWLBgAf773/9aZgMHgM6dO6Nx48Z49NFHGdwQeUDsxhoZGiy63P5+FCQjKxNIbW5qTt+dG/Of+87g+e93YEinRMy8o7NHx1f+onrUPMz0JXtwV8+maB5XR8W9yuf2R1PjBsWkP25VS507dw5t27Z1WN62bVucO6ds4jkisiX17VXOfV/OwyGAYhsLdx5LS3flAgB+2XEaRwouqlsgEVN/2oW33OjWrMY3armX/KM/D2HY+6s9Pp4vBFKmIYBORTfcCm66dOmC999/32H5+++/j86d3fsGRETVPAk+5GRuAqluveYB5+nD4ab33HugK3nAzl97BO+tPKD6Q1nO7pQcsbhMu1mvpT6aVSYz/vXdNny/5YTXjs0AQ11a32XcqpZ64403MGTIECxfvtwyxk12djaOHz+OJUuWqFpAotpGyU0hNMiICpPZ5nc19+8vAulbvD1BCMxsmzjHExUALN5yEt9sPIFvNp7Ard2q506z7S3lucD9BGlD6/fTrcxN3759sW/fPtx6660oLCxEYWEhbrvtNuzatQuff/652mUkqlWkHmTWyz8d3QNN60fiy7HpNuuEyJg3KjDb3GhaDEXULquctiL+fsXP63CiST/6yCmm+Nx0+AFze5ybpKQkh4bD27Ztw9y5c/Hxxx97XDCi2kpsHh1717VthOvaNnLcVsYQxQEU21j404NGaVlrQ1bi3MUKHC644PZnU5URiiV2sunoOVyq8O4QJ/4UnIsSKb/Wtxm3gxsiUtfj/VthVU4+hvdIFn1dqqHxbd0aY/GWkwCAkKBa1luqpiu4Hz0dlJa1en3pa+ZHpy7pmpkrUVphQnL9CNnbqJ8Bc2Q2C7j9w2x1D+QH1LhDaP2xdKtaiojU9+QNrfHThGsQGSr+nUMqJhnUMcHys7wGxW4VT5dqbqB+PvK9R+Scut4veWlF9cz2x89d0rgk1WreLz18rMqrTPhz3xmUVZp8dsxAqJZicEPk50xWT3ZPpl9oUCdUrSL5nFZjlDjLHkiVidVS6rCZOFOFM1ScCfIgdWT/J+is/FN+3IVR89bjqW+3uX08LWgd7yiqlrrtttucvl5YWOhJWYjIDZUiaYt1z/dHwYVyDHnXsYuz5Dg6Wt+N3KBWV3BvePjzTaLLVS+rDs89UOw6VaR1EbBww3EAwC/bT2P23b45ZiBUSykKbmJiYly+PmrUKI8KRETi7urRFJ9lH0XPlPo2y6tMjo0d46PDES8xIad0zZUfRjeXlVdpM6eds2/clSaJzI3iNjeKVhflv1dWmjcD2poM6LgvNnvvIDojSPyseGOdUBTcfPrpp94qBxG50D4pGptezERspG31UZXEQ1RKIDUoBoD8kjKti6ApOVUyOnz2qMpbgc7FCu0GNPR3Wt9l2OaGyI80iApzaDR8Q/t4hAQZ0Cu1gax9yBlHx5/sPV2i2bF9UR0mFrwcP1fq/QPrnNRbr2bPOV9Vd+qhWtUg8bPijS/T+pTYFZzIz9WrE4odUwciTMYAfkBgZW7MgoBR89ZrXQxFlPbsEnvwPbFoq9PX7al1xQVBwJw/DqFLcgx6pbqe0d7ZftTkrQeps3J6ckybKiA9RDZ29Fci5Zi5IQoA4SFBsueMklrt3qubqVgi3zh7QduRa915LqnRs+fo2SuZGzl7U+th9evOXMxcuhd3f7JOpT26Tyoo0GGsUCtp/RWKwQ1RLSPWW+rbRzIw/rqWGpTGMyaNB7iZuXQv8oqVtflRpYGwRk8O66BKK4IgiDai9yfWl08vwZhOiqEaBjdEtYzYg7FHSn1ZAwDqjdbBTX5JOd78LUfTMsjhf1dW2j/mZKPPG6tsJoy1zuKo+Ynw1acr0AILPWBwQ1TLWLe56dY0Fq/e0tGt/Yzo2RRtE+qqVSy3VOlgaOJjCrMZSr+pi61v+81f+/fAlzYePY/TRWXYebJY66KoQo2rN2nxdtw5J1vzYF9PGNwQ1TKdGl8Zr+rdu7rhHjfb2vRu2QChMhsxe4sebuZK29AoH6HYcQul1VJqvUulXugaXVjqXrsp6TY3np+t5e11NgK1ih89T/f19frjWH/kHNYdPqtOgQIAgxuiWmTiDa3xeGYrVfZlFrSv7qjUQdsL5ZkYNR6+V955X4V3m4+dx3srD6i+36e/3e7WdrY9jtQpi6zjah9PSzJr/+egGwxuiGqRx/q3QkRIkOV3ZzfqZg0ine5LD9UhesjcmL38PohWSxmcv+6wvgrl+M/y/SrsxdHqA2fc29AnYwz54Bg6+DsKRAxuiGoZuVUaQS5WjI4I0XzkvwodZG7UGLfG2wLx8enuxKQXy6vwwPwN+G7TCcl1AmgoKLcEQsDF4IaoFnN2Eze66D3Vr3VDhGjcw0rp1BPesPV4oaL11WijE0jPXnefo+5u98lfh7Bibz6eljHLti8e8gK0m9U+kDG4IaplpGYFt+cqbjEYDNXZGw3pIXOjlDrj3CgLb/QcDLn7dkhlzBzeX7uTLyytdPOIdscJ4IBE6edLjxjcENU2MttrBBkdbw/27XBiNA5u9NDmRinFvaVUiIbUeJf09ryzDi6cvkU6/4josQaI1VJE5Hdkt7kRuTt0SIq2+f227o1tfh/SKVFyfy0bRck7cIBT+uAQrZbycqBx9kI55q4+jHMXr3TTliq2x6MFu/kclczcqBjN+NsjPpCzSUoxuCGqZeQ+F8UaFNs/4Pq0aojo8Cvz70r1HJo0uC2+fDBdbhEDmrcfP/vySvDO8n24UH5lTBqlsdAjX2zCKz/vxiNfbHK57pfrjincu0r8LLtwpOAitp8odFguQFDtQ+FJlZv128lqKSLyO/In2LRdb8ZtnUSfJz9OuMbys1Rw83DfVMRHh8svJFm46gpub8Dbf+Kd5fvxxtK9OF10CYKg/Pv8hiPnAQDrD59zecwdJ4sU7t1ujBo3n+xS+3AV88j5+Ne0S1Mzfur37yzc/P4a5BYpm4tMiX9+vUWV/QRCtVSw61WIqDayblC8/vn+aBQdjlU5+Q7rNY+rY/nZD5vA+J4aDYpl5GI+yz6Kz7KP4s6rmqBuuPfaRqnVQFcp2c/fy2+V2Syg6FKlooDFWeDl7vP/yNmLupw4M9Awc0NUS0wa3BaA/CoK6zmoaqZZcHUjducbX59WcYq38WeK3yGFmRt732w84dXeUhfLPZuSwf2u4MoaFD/0+SZ0e2WZaNWQlvbmlmhdBAC2gZyc7O7Rsxfx9rJ9KCyt0GVvPGZuiGqBpwe0xsN9UwHIfzBar2dJ07vYxp3eS58/kI6U535RvJ2/Ut6gWGRuKaXHVLi+P1B6Tsv35AEANh8rVL0snrhl9hpc37aR6GtnSsp9XJpqcj6jN723GiVlVdiXV6LLzxczN0QBLPhy3dKgjld6Mckd5+aqlPpXtrl8p3B102O1lGuB9h7JDZbPXhB/ULv7dsiNEStMZhzIV5YdqTknb1QZib1dUu1w/vWd64EGtVJSVp2xs26XpSfM3BAFsE2Tb8C5ixU27WJs5iWSeLQM6pCAoZ2T8GHWweptatZ3cbNPio3wpLgkQrxBse8H8ZPah9yiXDNzlehydxuvWjdedzWJZuasPxXt25vtYATIvx7uNNbWgh6rpXSRuZk9ezZSUlIQHh6O9PR0rF+/XnLd+fPnw2Aw2PwLD2cvDCIxMREhNoGNXMO6JsF6DL+ah6nUPf9/4zLw4cjuaKHwWNe0rF3tbdzxx74zDt+O9VQtJTcTeKnS5MVSeIfWYwNe8LA9kxKeBHR6TEZqHtwsWrQIEydOxJQpU7B582Z06dIFAwcORH6+Y6+MGtHR0Th9+rTl39GjR31YYqLANaxrEprH1cF1bRvZjntx+f9S37LTmtXH4E6JimfIjo3UdoRjLSjt+vzEoq2486Ns24U6+qrs6ZAoaldLqTGQnTcHw1PydpVV+t/0InqheXAza9YsjB07FmPGjEH79u0xZ84cREZGYt68eZLbGAwGJCQkWP7Fx8f7sMREges/d3XDyqf6IjwkyGZ5Tc+ppwa0AQCM6Z0iun3nJrHeLF5AUGVuKS+v7w9sx7bxbe5g+e48S5WtGgJgzDzd0TS4qaiowKZNm5CZmWlZZjQakZmZiezsbMntLly4gGbNmiE5ORnDhg3Drl27JNctLy9HcXGxzT8ikibWnqNmUcfGMdj7yiBMGdpBdNuM1AYeHyvQaTGuifUh564+7PsCOOHu8AKSmRsV3l/LPiT29eBnGz3avx4/93qsWvKEpsFNQUEBTCaTQ+YlPj4eubm5otu0adMG8+bNw48//ogvvvgCZrMZvXr1wokTJ0TXnz59OmJiYiz/kpOTVT8PIn/iTldwa/ZZHfI9Tx6Or/y8W8WSaPegFiR+VkOlyYxnv9vul7POa0F/oZoOqqWUysjIwKhRo9C1a1f07dsXixcvRsOGDfHRRx+Jrj9p0iQUFRVZ/h0/ftzHJSbSF7HB+Vzx1vPr7p5NvbNjHXO3CqVmu/ziMk2qpaSCGHf3vetUEd5dsd/t8ki3ufHcV+uOYdHG2vusUDxzvVdK4RlNu4LHxcUhKCgIeXl5Nsvz8vKQkJAgax8hISHo1q0bDhw4IPp6WFgYwsLCPC4rUaAICTLi6QGtUVphQmKMdNdt2wbF6kc3ix66GuktlFVjBQJ3HwRmAVi4/ihe+H6nz45psw+JaMLdwHfIu6s9KI30PGZqyCuRnv9JlQbLdmXXRS2VuyNFq1sK1WiauQkNDUVaWhpWrFhhWWY2m7FixQpkZGTI2ofJZMKOHTuQmJjoemUiAgBMuL4V/jWorez1jSrdfPu1aWj52TqwefnmDmhQJ1T2fm7q7L9/755MN/DyT+pWKQUKvc/P5Kqdkze+PChlM/2Cwm21L70jzaulJk6ciE8++QQLFizAnj17MG7cOFy8eBFjxowBAIwaNQqTJk2yrD9t2jT8/vvvOHToEDZv3ox77rkHR48exYMPPqjVKRAFJJvpF1T6avnP61uJLr+vVwo2Tb4Bt3RNkrWf27s3UaU8WlBjFmyldFctpUqjX6mGxmpkVjzehQ3rdk56bExsT8np6/VsNB+hePjw4Thz5gxeeukl5ObmomvXrli6dKmlkfGxY8dgtBpN7Pz58xg7dixyc3NRr149pKWlYe3atWjfvr1Wp0AU8Hx1A5N7Uw1SK5WkAfczN9oERq5o1qBY59kaKb7utu5tej0bzYMbAJgwYQImTJgg+lpWVpbN72+//TbefvttH5SKiGqo9fxKjHE+mrjciTeDg/w3uHGXNweWc4fJLGDB2iPYfUqb4TUEid/UaV+kwk6cUDMg9EawFAh/XboIbohIf6x7VSm5Gc8f0wOjP90g+lpSbAQ+HdMDMRHiIxPLvU+HBGleo+62fDdnevbkGeaNh9XX649hmsrdypXw7vxPXhyh2Mk4UnqhxtlrXf3G4IaIRLVsGIWMFg1QP0p+Q18A6NemkdPXr3PyutxxRfy5WspdC9Yecb9KS92iAKjuyq0lm4kzrU4wwGp9XFLrfNV+37SufmNwQ0SijEYDvn7oap8eM7dIuguutSC9fdX1gem/7tW6CLrizUenXgOk5bvzkNneO9MNWZ9yIPx1+W9ul4gCjtwu3lKZm+vbOs8a1Vaq9Jay+13rAEAyM6BGTyzPd+EVYtM+eKOsgVAtxeCGiHTj/muau1ynWYNIm/ZA1lrE1VG7SAFBlUa2KuxDTTZVUarvXO0dOufPmRJvdsn3BIMbItINOQ2Fv30ko1a2udGKIAgY+d+/sXJvvtZFsSHV6Fdvvcq8Ta0gQutgRG0MbojIq27r1ljV/TWqG67aiMnk2q0frMWaA2cdlms9qaTMUQPc4usAKbDCimpaV0uxQTERqe6N2zsj+9BZ3JHWBFel1FN9/8zc+M7W44WiyxdvPunbgtiR6i2lBm8mMQwGx/178mn2ZmB0qcIEgwEIDwlSvK3WmSAGN0Skujt7JOPOHsle27/1ODkJ0eHILa7uZRWI34BJnGR7Yp1/CPRevhrlVSa0e2kpIkKCsOvlgTD62RcKVksRka7cc3VTl+s0iArDuyO6Yc49afj7+f6W5UofHHXD+f3OX5mt6qXUrkbydfzhyfFUG+fG7veT5y8BAC5VmlBpVl4FqXW1FIMbItKVKUM74O501wHOzV2SMKhjgs2y2taYtDaTanOj90+A2DNfzWxOcVklJn6zFX/uO6PeTt2gdbUUgxsi0pWQICPu7uk6uBHjLyn/2k6Ny2T24sX29YPZk6Dcftu3l+3D4s0nMWreek+L5dcY3BCR7nRsHIMXh7TTuhikY4Lk9AveDUy8sXs191lTnaRmGQxOmjxLbcZqKSIiEff3bo6ezevbLPvm4QyNSkN6492u4N4jVl3kybn4Isnkj9W9DG6ISJeMRgMWPXQ1erdsYFlmH+zYCzYaMLCDd+beIX2RqpZSZTRmLz7L31t5ABVVtg10tW6fIsa6RD9tPYUqjcc1UorBDRHplsFgkJxqwdqgDgmIjw7Dg31a4IUb2/ugZORLVSKpDbNNVZS6x/N0d5UmMy6UVzl93ZqS9kMH8kuwen+B22VzxzPfbcena4749JieYnBDRH5vzr1pWP3s9UiICbfpjdI4NkJyGz8btsMj/nyqFytMePO3HIfl0nMaebtErg14+090nPIbzl+sEH3dvppHSZkzZ/2Je+auQ05uiSdFdMm+TH9o3PtKKQY3RKRroTLmmwLE56X64sF0yfXlZIQCxX9XH9a6CKozeXGcG08jpMMFFwEAfx9ynLZCbPfu9Pzal1ciui+qxuCGiHQtNFjZbcp6JNVgJ+kZfxtxlWz5Q4NiufGzPwQoUuciCNr3jBLD4IaIdC1MYXBjfZt1FsAE6fCGTPJJVkvpqmeP+GdMjcxNzcdXD+erxwbRDG6ISNeUZm6sYxanmRvGNn7NOiAwmQUUXChXbd9qPavlxs/uZKGcjT3jMQXl0et3BAY3RKRrioMbq5u+s3Y1RoNB/2P1kyTrgGDkf9fhqleXY8eJIkXXtLC0Ao9+uQkr9+bZLFcrGyL16bPfuyejLXsvaSJvx6yWIiJyQ2hQkNvbss1N4LIOCErKqrtdL9xwTNE+3vgtB0t25OL++RtVLVsNqYe+fTWON2t1lu48jdGfrsdZFTNb/oDBDRHpWliIstuUyepJERRkQNP6kQCAfw1qgxVP9bW8ZjTAv/tI13JSAYGSOCG3qEx0+c6TxcoLJOLxhVtQWuE43o19GT1ps+Jqy0e+2IysnDOY8etet4/hj4K1LgARkTOje6Xgs7VHcHPXJFnrm63qK4IMBnz/aC9sOHIeme0aIdiqu3iQ0SA6OBx5X01XaU+IVeXo7WqWVpjw8Z+HHJbbBzNutblRGJifsxtzRxAEzHUyRIAO2wgrwswNEelafHQ4tk4ZgOm3dZa1vvVNOchoQIOoMAzqmGAJbP6R1gQA8Hhma/09DUk2yekXdHZNxRo6q9Fb6sq+3Ns2++BZvPrLHtnr67FdjTMMbohI98QG6JNi3RhU7H488/bOyHq6H+69upkaRSON6DXpJifYcGxQrPw4SkMN+0OcLHQ+e7hO317ZWC1FRAEluV4kejavj+jwYIQFOzZGNhoNSImro0HJSE1qjK3ijfFZ7HcpdgjHTI332txI8bdMjFIMbogooBiNBnzzcIbi7W7pmoQftp7yQonIG5bvyRdd7u1B7X7fnef0dTlVTParmDRIQ7kKbexf97dQiNVSREQA3rmrm9ZFoAAgJ06xD4A8aVDsbvLJVeJG7m71ODoxwOCGiIgCiNbPWvvARU5xPGlQ7C6ltVJ5xWVYvPkEKqrM3imQyhjcEBGpzNnggRTY5MQpDsGMW7GNZXIpG66qza5s7fwzal/EvbklmPjNNry/6oDcAmqKwQ0RkQufjLpK0frx0eFeKgk5IwjK4gS18yWCILjV5sYfMjc1snLyUVh6ZcwcrTNlUhjcEBG5kNasnqL1g4OYudHC1+uVTb+gNkEQqZYSefg7BjceHFP2HFC267nbW0oQbMfu0Wlsw+CGiMheu8RoPNa/leX3KpOydgasltKOlg1cBQDL97iuFnJsUKy8zB43KHbxurOgyfqYbFBMROQnGsdG4In+rRBkNCAyNAj164Qq2l7JoIOknaycM6rv88lF21yu4zi3lOrFcGCfqVFrmBt9hjYMboioFruxUyKA6kyNtZKyShiNBuyeNhCbJ99gMyeVHKHBvrm1/vP6lj45jj8puFDheiUvEc9iiMyBpUbmRnLvcrdXJ7rRaeKGwQ0R1V5Tbm6Pf/+jC758MN1meWFpJQAgLDgI4SHVoxy/PbwLRvRsKmu/cjM3T2a2VlBaR1FhHIfV3i2z12h2bNHQRkabG3fiA6UD/zm2uXHjoDX7svlZn9ENgxsiqrUiQ4NxR1oTS7VTdHh1sNBdpAHxrd2aYPptnWTt986rmsg8vuP0EDWSYtjjyt/IzWLYxyXuZG7Gfbn58jHdCy6cxTauAhbbNjduHd7rGPYTEV32y2N98PP20xh5tXSGplmDSBw9Wyr5+pBOiUiKjZB1PGffnuVUhRkDfH6gQGUfPGgRILgcoViiTA5lV6k8amPmhojosuT6kRjXLxXR4SGS64zrm+p0H2HBRlWCjiAZPa4Y2+iLWMZDTrWUZ8d0l/SHxwCD/DJKrPf9lpPKi6QiBjdERAoYXQQdZkFwCDoy2zUSXde+bY51VRTjFv8jNyDQQ/dpZ4GxcPk/Z6+L/awnDG6IiBQIcpEuEUTWyUiNE13XvldV1jPXXfmF0U1AqBQZI0nNcMDdOMlVdlF+oObe8b2NwQ0RkQKuqosEwTG7IzXZoH3mxjrYkVO15e4os+Q7i0WqZ8yeDElspbisEmcvlrteUYSzT46rbuK7TxVbfhagz+pRNigmIlLAVbWUAMB+lYoqM1rHR2Ff3gWb5c7Gw5HzvNDhM6VWk53tUOl4naf+LntdZXNuCU7PZeI3VwYqFATn62qFmRsiIgVcVUuZBcEh61JpMmPq0A5obNWLas1z1yPUSY+o5PqRTo/TvWmsV74xh3BeLLfJbX/iLHHjq/Y4RpWe/jqMawAwuCEiUuT6to0sQcrP/7zGcQXBsUqpwmRGr5Zx+N+4XpZlUaHBCA12DCS+Hns1/v2PLuiYFO3wmrXOTWK9krlhVZf36aJBsYtPj1Sg5jAAocBqKSIivxcRGoS//nUdDAbxQKBTkxjH4OZym5uGdcMQFxWGYKMBdcODRR8wGakNAADvLN/ntBxSx/cU5/x0nw5iFvncHOdml1V7Gz1j5oaISCGj0SAaWLw4pB3u793cIeXfp1V1b6kgowHZk67H6mevg9FowLmLV+ZBmj+mh802cub+EYttGtYNk3EG4lY/ex0HBvSA3NjG2YjEvgqQXM8K7t8Y3BARqeTBPi0QGmy0eUB9MLI7rm97ZZybkCCjZfTh9lZVT/3a2I6FY51BsZ/YE6gOfqwfUE3rR+LFIe0wQ+YUEWKa1ItkI2UPyK1u0kOGx1XWTw9VZ55gcENEpLIqqxajfVs3lHyQtEuMxrePZGDNc9c7vGbdK2ve6Kvw7ohujjuw2m/bhLp4sE8Lj9s/sM2N9zltUOyjMriqfvTv0IZtboiIVGc9rk2Yk+7eANAjpb7L/SXGRCA8uMhmmX0MMvLqZgCA0gqTzFKKY2zjPvkzFmgfOrhsUKx9ET3CzA0Rkcqsgxs5E2CKkdP2pWXDKMvPfVs3BACUlnsW3LDNjfvUGNXXW9VBglD9uZS/f/+ObhjcEBGpLDE23PVKLthXG9g/agyo7ln15h2d8f2jV7qYl1ZUqXpcZ0amS8+eTtLkBhjWc415Kq+4DB2n/oanvq0egE/NGLawtFK9namEwQ0RkcpSG0bhw5Hd8b9xGW7v49rLmZiagf6knof/uCoZ3ZrWs/we5WRGczmUtLl5aWh7j44VcGQmO37eflrytUrTlZ2o2f5pb24JKqrMWLxZ3mzd/l4txTY3REReMLhTokfbt0uMxu9PXov4uuLf3qWee8O6JmH94bM4erYU6w6fU3xcJY9TV6M11zZy29LszS2RfK24rBIRoUFqFUmS86oxf6+UYuaGiEgV4SHq305bx9dFTKSyTExIkBFv3NEFk25s59YxlWQLXE0iWtuoke0ounSlisfT9jfW+7JncrFvf8/cMLghIvLA4kd7oUdKPXzzsPtVUPLYPm2GdW3sdO2uybFYcH9PrHq6n6KjyI1XmtaPZLdxLyi+VGmZNdzTycPn/HFQdPmxs6W4b956p9tynBsiolqse9N6+PaRXujcJNZnx8yedD06No5xuV7f1g3RPK6Oon0/fznjc1ePZKfrvT28i6L91gZqhANTftqFHq8tR35xmcvsiivHz5WKLnc1tYcA/6+WYpsbIiI/kxgT4XolN93SrTF6tWyAuDphWLjhuOR6UWGeNVwORGpkO2rmbvroz0Me70+y4bKMhJufJ26YuSEiCnRypmQY1y/V8nOjuuE2IyQrcX/v5m5tFwjUjAfmrj6MggsVrld0g5yxjPQw0KAndBHczJ49GykpKQgPD0d6ejrWr3deF1hj4cKFMBgMuOWWW7xbQCIijXnyTXpwR9c9t54d1FbRPqWej2EyGlaHBLGtjpaOnRWvrqohBEC9lObBzaJFizBx4kRMmTIFmzdvRpcuXTBw4EDk5+c73e7IkSN4+umn0adPHx+VlIjIP0VHBOOqZvWQ3rw+dk8biE9H98AD16iTYXnqhta4rfuVxs2hMkZkDgv2fldnLfhLVc76I8qHCPA3mgc3s2bNwtixYzFmzBi0b98ec+bMQWRkJObNmye5jclkwsiRI/Hyyy+jRYsWPiwtEZH/MRgM+PaRDCx86GpEhgbjuraNFI1E7Mw/+7fCrDu7Wn4PdTGXlrN15o/pgfjoMHUKpoEPs8R7J/mjgwUXtS6CRzQNbioqKrBp0yZkZmZalhmNRmRmZiI7O1tyu2nTpqFRo0Z44IEHfFFMIiLNdWriuneUMwaDwabrtvVIuG7tT2K5q4lCAensTvdm9VxO6Khn89Yc1vT4nWT0oJNDgIDJP+xUZV9a0bS3VEFBAUwmE+Lj422Wx8fHY+/evaLbrF69GnPnzsXWrVtlHaO8vBzl5eWW34uLi90uLxGRVprUi8TyidciJiJUlf1Vmc2uV7KyY+oAdJr6u8v15AQ3wU7a3FhnlP6R1gTfbjohq3wEtxuBByLNq6WUKCkpwb333otPPvkEcXFxsraZPn06YmJiLP+Sk52P3UBEpFctG9VFw7rqVNtUWWVu1j53vcv169rNWZUUK94dvXV8XZf7ksrcBBtts0sxEexuroi/NPrxAU0zN3FxcQgKCkJeXp7N8ry8PCQkJDisf/DgQRw5cgRDhw61LDNf/vYRHByMnJwcpKam2mwzadIkTJw40fJ7cXExAxwiqvXq17mSAZIKVGq0S4x2WFYnzPbx8cP43jhxvhRpzeo5rAsAkaFBKK0wAZCetsF+OQdAVmbbiSJV9uPpyMh6oGlwExoairS0NKxYscLSndtsNmPFihWYMGGCw/pt27bFjh07bJa9+OKLKCkpwX/+8x/RoCUsLAxhYf7bQI2IyBvG9UvF0bOlGNrFdTfxlAaRLtfpmhyLrsmxkq/Pvrs7xszfAEB6nJVgo5EBjR4EQAZI8xGKJ06ciPvuuw9XXXUVevbsiXfeeQcXL17EmDFjAACjRo1C48aNMX36dISHh6Njx44228fGxgKAw3IiIpJWNzwEs0d2l7Wu0mfd+OtSMXuVbc+huKgrXzKlApggo8Em8FmyI1fZge0YDAHxnPa5Cg8bm+uB5sHN8OHDcebMGbz00kvIzc1F165dsXTpUksj42PHjsFo9KumQUREAcV+tNrx16VKrFnt1m5NbIKbdc/3R3x0OB7u2wKJ0eH4er30tA7Wgc/JwkvuFfiyIIMBVU6im2cGtsGbv+V4dIxAVGlS1thcjzQPbgBgwoQJotVQAJCVleV02/nz56tfICIisqiJD2bd2QV7c0vw9IA2TtdvZleNFR8dDgCYNLh6Us4Ve/ORk1cCoHpyzz/2nbGsq2atlNFocNqAhFVg4sor/T+4YUqEiIhE3ZfRDADweGYrAMBt3Zvg+Rvb2fRoEhMSZESrRlGSr8+8vTP6tm6I+WN64Ib2tkOBuNo3AAzsEO9yHaC695UzYkmd1IbKZlEPRG+7mDXcHzC4ISIiUS8P64i9rwxChyTlg8ON6NkUgPjAckmxEVhwf0/0a9MIJrvMipxsSp9WDWWNsPxkZmunr4vNut20vnTj6V6pDSR7g5G+MLghIiJJ4SHuzQN1X68UfDU2HV+NTXe6XpVdcDPxhuqA5B9pTSS36dm8PiJDXbeqeLBPc6dj5YjVWEnVYg3sEI8vHkjHrDu7uDwuaU8XbW6IiCiwBBkN6JXqerBVs100cVPnJPRIqY9GdcMcRife9GImzlwoR+v4ulhwf09M/GYrjkrMcB0abITBYEDr+ChsOHJedB2xaimzRAPkiJAgGI0GyTF6SF+YuSEiIs3YZ26A6gbIYm1vGkSFoW1C9YCCac3q4Y9nrkNjiQEIlz15LQDnbXjEAhmpzlU1+wlm712/wKtERESaMcmc46qFRENf65GWrTVrUL2+s0RL/3aNHJbZd3u3x9jGP/AyERGRZuQOqfL+CPEBB3u3dKz6su4lZV2N9Ne/rrP8/PqtndC5SazDtlKxVs1evJW5aZvgek4uko/BDRERaeaqFOneRx9ajaDcPslxfisAmHB9S/Ru2cBm2eJHe1l+th7x2HrSUalMkFSbm5roxlttbuy7xJNn2KCYiIg007tlHBbc31N0fJnBnRKxe9pApz2josKC8eWDV6P7K8tw7mIF7stoZpORsQ5uxMa9CQs2orzqSrrG1XQN1ruIjw5DXnG58w1kEpuclNzH4IaIiDTVt3VDydfkdPkGgP/75zVYtisXd/awnUDZOhgRy7qEhwTZBDdSmRvD5dRNndBgdEiKhsksIDYyRLXgxmgwoFmDSMneX6QMq6WIiMjvNY6NwOjezR2CIevMjVjPqSGdr8yKHmw0SAc3lzc1Gg34acI1WPJYH4QEST9C46PDJF8TE2Q0qDr1RG3H4IaIiAKWq+kcJg9pb/k5IiQId6dXTznRw64tkPVegowGGO1mMLfXXmE1k5M4idzAt5OIiALWTZczM03q2Y6HkxRT/XtE6JURmCNCg3B798b45bFr8PkDzkdWBtRtXGwwGFBR5f8TVuoF29wQEVHAGtY1CYkx4ZbB//43rhfOXaxA0waOc0hFhQXDYDCIzqXVr43jmDhyY5u2CXWxN7d6FvSIkCBcqjSJ7Mtg0/aHPMPMDRERBSyDwYD0Fg0QE1k9x1Ras3oO3a4f6ZuK6PBgvGU3b9S0YR0AAM8NbosbOyU47NtZtZSc2c2tVVaZmblREYMbIiKq1Z4b3BabJt+Abk1t29mMykjB4ek34pG+qaLBirNqKfvZzmtMuL4lAODWbo1tlpdXmVEud0RDconBDRER1XpSPZ+cZWAmDW6HBhLTP0RIzKb+aL9ULHmsD968o7PN8gqTySeZm7XPXe/1Y+gBgxsiIiI3NG0QiY0vZoq+JhUTGQwGtE+KRrBdMFVe6ZusTWJMuE+OozUGN0RERG6Syuy4GunYnrMxc6S0jo9SvI3StkD+isENERGRCpLrR6BtQl18/kBPm9nF7dvyiLmpS6LLdeyJTRpK1dgVnIiISAVdmsTi/burJ/tcvPmkZfnzN7ZFo7phljF37N3WrTHCgsXb6EgZ1y8VZSJdyqkaMzdEREQqCLWqWnp2UFt0SIrGjNs6oW54CJ68oTVaxde1WT8uqnqKhgEdqruZy6lm6temIbInXY9/DWyjuOqrNmHmhoiIyAMvDmmHz/8+iqcHtrEsS4gJxy+P9XG63YqJfXHgTAm6X662mnNPGl5fsgfL9+RLbmMyC0i8PLqywOhGEoMbIiIiDzzYpwUe7NNC8XYxkSFIa1bf8nuLhlH47309kF9Shp6vrRDdplfqlXY2SkObr8a6nlIiULBaioiISEca1Q3HALtRlGs8cE1zy89KEjdfj73aJjDytuZxdXx2LDHM3BAREemMWI/tZg0iERp8JSchKMjdqDnJpysPXNMco3ul+Ox4YhjcEBER6YwBjsGIfe8ovTa5mXxTe62LwGopIiIivbHO3DSqW92rKqNFA5t1pGKbz+7viTZ2PbNqG2ZuiIiIdMY6uPl+fG/8vO0U7urZ1GYdqczNta0bIjoiBLfMXmO1rk7TPF7CzA0REZHOWE+T0Dg2Ag/3TUVMRIjdWtIBS9fkWGx4IVPGmoGJwQ0REZHOyGn+2zU51unrDS9XZ9n/LKZmQMFAweCGiIhIZ27qnASger4qKXekJWPGbZ3w7SMZkuvMH9MDb9zRGakNnY9+vOGF/oiLClVUxmtbN1S0vi8xuCEiItKZgR3i8f2jvZyOchxkNOCunk2R0kB6TJl+bRrhzquSXR7PYDDg9u5NFJXxs/t7ok8rfU7eyeCGiIhIZwwGA7o1rYfocPt2No7CQtR5lD81oI3N74/1b4V2idGW38f2aW6/iW4xuCEiIvJj1gFQWLD7j/XQYCMy2zWy/D7xhtb49fErmSOj2MiCdm7ukuT28dXEruBEREQEwMVIxiIvWfcwn313d1zXVh/tcJi5ISIi8nP/uasrosOD8enoHi7XHdwxQfK1YKO8sGBcv1QAtlNADOmciMhQfeRMGNwQERH5uWFdG2PblAHo1dJ1A98PRnZHZGiQ6GsDLwc+rrqGt9B4YkxX9BFiERERkUcMMtrE1KwXGxGC0orquaruy2hmeW1o50TERYWibUK0w3YJ0eGWn2vyNXod+JiZGyIiolrGOhB6eVhHm+W9UuNQv86VMW/+O+oqjExvipHpV4KgmuhGr8ENMzdERES1jMwkDwAgs308MtvHi74m6HRiB2ZuiIiIahk53bqdqQlqejZv4GJNbTBzQ0REVMt4GNtYqqMe7ZeKepEh6NemkfMNfIzBDRERUS3jeeamWnhIEMb01t/IxayWIiIiqmXUytzoFYMbIiKiWsbTzI3eMbghIiKqZZ7IbAUAuCNN2UzgNYJ0Hj2wzQ0REVEtc1PnJFzVrD7io52PRGzv4WtbYPWBAgzr2thLJVMHgxsiIqJaKCEm3PVKdibd2M4LJVGfzhNLRERERMowuCEiIqKAwuCGiIiIAgqDGyIiIgooDG6IiIgooDC4ISIiooDC4IaIiIgCCoMbIiIiCigMboiIiCigMLghIiKigMLghoiIiAIKgxsiIiIKKAxuiIiIKKAwuCEiIqKAEqx1AXxNEAQAQHFxscYlISIiIrlqnts1z3Fnal1wU1JSAgBITk7WuCRERESkVElJCWJiYpyuYxDkhEABxGw249SpU6hbty4MBoOq+y4uLkZycjKOHz+O6OhoVfetB4F+fkDgnyPPz/8F+jkG+vkBgX+O3jo/QRBQUlKCpKQkGI3OW9XUusyN0WhEkyZNvHqM6OjogPzA1gj08wMC/xx5fv4v0M8x0M8PCPxz9Mb5ucrY1GCDYiIiIgooDG6IiIgooDC4UVFYWBimTJmCsLAwrYviFYF+fkDgnyPPz/8F+jkG+vkBgX+Oeji/WtegmIiIiAIbMzdEREQUUBjcEBERUUBhcENEREQBhcENERERBRQGNyqZPXs2UlJSEB4ejvT0dKxfv17rIskyffp09OjRA3Xr1kWjRo1wyy23ICcnx2adfv36wWAw2Px75JFHbNY5duwYhgwZgsjISDRq1AjPPPMMqqqqfHkqkqZOnepQ/rZt21peLysrw/jx49GgQQNERUXh9ttvR15ens0+9Hx+KSkpDudnMBgwfvx4AP53/f78808MHToUSUlJMBgM+OGHH2xeFwQBL730EhITExEREYHMzEzs37/fZp1z585h5MiRiI6ORmxsLB544AFcuHDBZp3t27ejT58+CA8PR3JyMt544w1vn5qFs3OsrKzEs88+i06dOqFOnTpISkrCqFGjcOrUKZt9iF33GTNm2Kyj1Tm6uoajR492KPugQYNs1vHnawhA9G/SYDDgzTfftKyj12so57mg1n0zKysL3bt3R1hYGFq2bIn58+ercxICeWzhwoVCaGioMG/ePGHXrl3C2LFjhdjYWCEvL0/rork0cOBA4dNPPxV27twpbN26VbjxxhuFpk2bChcuXLCs07dvX2Hs2LHC6dOnLf+Kioosr1dVVQkdO3YUMjMzhS1btghLliwR4uLihEmTJmlxSg6mTJkidOjQwab8Z86csbz+yCOPCMnJycKKFSuEjRs3CldffbXQq1cvy+t6P7/8/Hybc1u2bJkAQFi1apUgCP53/ZYsWSK88MILwuLFiwUAwvfff2/z+owZM4SYmBjhhx9+ELZt2ybcfPPNQvPmzYVLly5Z1hk0aJDQpUsX4e+//xb++usvoWXLlsKIESMsrxcVFQnx8fHCyJEjhZ07dwpff/21EBERIXz00Uean2NhYaGQmZkpLFq0SNi7d6+QnZ0t9OzZU0hLS7PZR7NmzYRp06bZXFfrv1stz9HVNbzvvvuEQYMG2ZT93LlzNuv48zUUBMHm3E6fPi3MmzdPMBgMwsGDBy3r6PUaynkuqHHfPHTokBAZGSlMnDhR2L17t/Dee+8JQUFBwtKlSz0+BwY3KujZs6cwfvx4y+8mk0lISkoSpk+frmGp3JOfny8AEP744w/Lsr59+wqPP/645DZLliwRjEajkJuba1n24YcfCtHR0UJ5ebk3iyvLlClThC5duoi+VlhYKISEhAjffvutZdmePXsEAEJ2drYgCPo/P3uPP/64kJqaKpjNZkEQ/Pv62T80zGazkJCQILz55puWZYWFhUJYWJjw9ddfC4IgCLt37xYACBs2bLCs8+uvvwoGg0E4efKkIAiC8MEHHwj16tWzOb9nn31WaNOmjZfPyJHYg9He+vXrBQDC0aNHLcuaNWsmvP3225Lb6OUcpYKbYcOGSW4TiNdw2LBhwvXXX2+zzF+uof1zQa375r/+9S+hQ4cONscaPny4MHDgQI/LzGopD1VUVGDTpk3IzMy0LDMajcjMzER2draGJXNPUVERAKB+/fo2y7/88kvExcWhY8eOmDRpEkpLSy2vZWdno1OnToiPj7csGzhwIIqLi7Fr1y7fFNyF/fv3IykpCS1atMDIkSNx7NgxAMCmTZtQWVlpc/3atm2Lpk2bWq6fP5xfjYqKCnzxxRe4//77bSaG9ffrV+Pw4cPIzc21uV4xMTFIT0+3uV6xsbG46qqrLOtkZmbCaDRi3bp1lnWuvfZahIaGWtYZOHAgcnJycP78eR+djXxFRUUwGAyIjY21WT5jxgw0aNAA3bp1w5tvvmmT8tf7OWZlZaFRo0Zo06YNxo0bh7Nnz1peC7RrmJeXh19++QUPPPCAw2v+cA3tnwtq3Tezs7Nt9lGzjhrPzlo3cabaCgoKYDKZbC4gAMTHx2Pv3r0alco9ZrMZTzzxBHr37o2OHTtalt99991o1qwZkpKSsH37djz77LPIycnB4sWLAQC5ubmi51/zmtbS09Mxf/58tGnTBqdPn8bLL7+MPn36YOfOncjNzUVoaKjDQyM+Pt5Sdr2fn7UffvgBhYWFGD16tGWZv18/azXlESuv9fVq1KiRzevBwcGoX7++zTrNmzd32EfNa/Xq1fNK+d1RVlaGZ599FiNGjLCZhPCxxx5D9+7dUb9+faxduxaTJk3C6dOnMWvWLAD6PsdBgwbhtttuQ/PmzXHw4EE8//zzGDx4MLKzsxEUFBRw13DBggWoW7cubrvtNpvl/nANxZ4Lat03pdYpLi7GpUuXEBER4Xa5GdyQxfjx47Fz506sXr3aZvlDDz1k+blTp05ITExE//79cfDgQaSmpvq6mIoNHjzY8nPnzp2Rnp6OZs2a4ZtvvvHoj0eP5s6di8GDByMpKcmyzN+vX21WWVmJO++8E4Ig4MMPP7R5beLEiZafO3fujNDQUDz88MOYPn267of1v+uuuyw/d+rUCZ07d0ZqaiqysrLQv39/DUvmHfPmzcPIkSMRHh5us9wfrqHUc0HvWC3lobi4OAQFBTm0Es/Ly0NCQoJGpVJuwoQJ+Pnnn7Fq1So0adLE6brp6ekAgAMHDgAAEhISRM+/5jW9iY2NRevWrXHgwAEkJCSgoqIChYWFNutYXz9/Ob+jR49i+fLlePDBB52u58/Xr6Y8zv7eEhISkJ+fb/N6VVUVzp0751fXtCawOXr0KJYtW2aTtRGTnp6OqqoqHDlyBIB/nGONFi1aIC4uzuYzGQjXEAD++usv5OTkuPy7BPR3DaWeC2rdN6XWiY6O9viLJ4MbD4WGhiItLQ0rVqywLDObzVixYgUyMjI0LJk8giBgwoQJ+P7777Fy5UqHFKiYrVu3AgASExMBABkZGdixY4fNzajmZty+fXuvlNsTFy5cwMGDB5GYmIi0tDSEhITYXL+cnBwcO3bMcv385fw+/fRTNGrUCEOGDHG6nj9fv+bNmyMhIcHmehUXF2PdunU216uwsBCbNm2yrLNy5UqYzWZLYJeRkYE///wTlZWVlnWWLVuGNm3a6KI6oyaw2b9/P5YvX44GDRq43Gbr1q0wGo2W6hy9n6O1EydO4OzZszafSX+/hjXmzp2LtLQ0dOnSxeW6ermGrp4Lat03MzIybPZRs44qz06PmySTsHDhQiEsLEyYP3++sHv3buGhhx4SYmNjbVqJ69W4ceOEmJgYISsry6Y7YmlpqSAIgnDgwAFh2rRpwsaNG4XDhw8LP/74o9CiRQvh2muvteyjpsvfgAEDhK1btwpLly4VGjZsqJuu0k899ZSQlZUlHD58WFizZo2QmZkpxMXFCfn5+YIgVHdpbNq0qbBy5Uph48aNQkZGhpCRkWHZXu/nJwjVPfSaNm0qPPvsszbL/fH6lZSUCFu2bBG2bNkiABBmzZolbNmyxdJTaMaMGUJsbKzw448/Ctu3bxeGDRsm2hW8W7duwrp164TVq1cLrVq1sulGXFhYKMTHxwv33nuvsHPnTmHhwoVCZGSkz7oROzvHiooK4eabbxaaNGkibN261ebvsqaXydq1a4W3335b2Lp1q3Dw4EHhiy++EBo2bCiMGjVKF+fo7PxKSkqEp59+WsjOzhYOHz4sLF++XOjevbvQqlUroayszLIPf76GNYqKioTIyEjhww8/dNhez9fQ1XNBENS5b9Z0BX/mmWeEPXv2CLNnz2ZXcL157733hKZNmwqhoaFCz549hb///lvrIskCQPTfp59+KgiCIBw7dky49tprhfr16wthYWFCy5YthWeeecZmnBRBEIQjR44IgwcPFiIiIoS4uDjhqaeeEiorKzU4I0fDhw8XEhMThdDQUKFx48bC8OHDhQMHDlhev3TpkvDoo48K9erVEyIjI4Vbb71VOH36tM0+9Hx+giAIv/32mwBAyMnJsVnuj9dv1apVop/J++67TxCE6u7gkydPFuLj44WwsDChf//+Dud99uxZYcSIEUJUVJQQHR0tjBkzRigpKbFZZ9u2bcI111wjhIWFCY0bNxZmzJjhq1N0eo6HDx+W/LusGbto06ZNQnp6uhATEyOEh4cL7dq1E15//XWb4EDLc3R2fqWlpcKAAQOEhg0bCiEhIUKzZs2EsWPHOnwZ9OdrWOOjjz4SIiIihMLCQoft9XwNXT0XBEG9++aqVauErl27CqGhoUKLFi1sjuEJw+UTISIiIgoIbHNDREREAYXBDREREQUUBjdEREQUUBjcEBERUUBhcENEREQBhcENERERBRQGN0RERBRQGNwQUa2TkpKCd955R+tiEJGXMLghIq8aPXo0brnlFgBAv3798MQTT/js2PPnz0dsbKzD8g0bNtjMlk5EgSVY6wIQESlVUVGB0NBQt7dv2LChiqUhIr1h5oaIfGL06NH4448/8J///AcGgwEGgwFHjhwBAOzcuRODBw9GVFQU4uPjce+996KgoMCybb9+/TBhwgQ88cQTiIuLw8CBAwEAs2bNQqdOnVCnTh0kJyfj0UcfxYULFwAAWVlZGDNmDIqKiizHmzp1KgDHaqljx45h2LBhiIqKQnR0NO68807k5eVZXp86dSq6du2Kzz//HCkpKYiJicFdd92FkpIS775pROQWBjdE5BP/+c9/kJGRgbFjx+L06dM4ffo0kpOTUVhYiOuvvx7dunXDxo0bsXTpUuTl5eHOO++02X7BggUIDQ3FmjVrMGfOHACA0WjEu+++i127dmHBggVYuXIl/vWvfwEAevXqhXfeeQfR0dGW4z399NMO5TKbzRg2bBjOnTuHP/74A8uWLcOhQ4cwfPhwm/UOHjyIH374AT///DN+/vln/PHHH5gxY4aX3i0i8gSrpYjIJ2JiYhAaGorIyEgkJCRYlr///vvo1q0bXn/9dcuyefPmITk5Gfv27UPr1q0BAK1atcIbb7xhs0/r9jspKSl49dVX8cgjj+CDDz5AaGgoYmJiYDAYbI5nb8WKFdixYwcOHz6M5ORkAMBnn32GDh06YMOGDejRoweA6iBo/vz5qFu3LgDg3nvvxYoVK/Daa6959sYQkeqYuSEiTW3btg2rVq1CVFSU5V/btm0BVGdLaqSlpTlsu3z5cvTv3x+NGzdG3bp1ce+99+Ls2bMoLS2Vffw9e/YgOTnZEtgAQPv27REbG4s9e/ZYlqWkpFgCGwBITExEfn6+onMlIt9g5oaINHXhwgUMHToUM2fOdHgtMTHR8nOdOnVsXjty5AhuuukmjBs3Dq+99hrq16+P1atX44EHHkBFRQUiIyNVLWdISIjN7waDAWazWdVjEJE6GNwQkc+EhobCZDLZLOvevTv+97//ISUlBcHB8m9JmzZtgtlsxltvvQWjsToJ/c0337g8nr127drh+PHjOH78uCV7s3v3bhQWFqJ9+/ayy0NE+sFqKSLymZSUFKxbtw5HjhxBQUEBzGYzxo8fj3PnzmHEiBHYsGEDDh48iN9++w1jxoxxGpi0bNkSlZWVeO+993Do0CF8/vnnlobG1se7cOECVqxYgYKCAtHqqszMTHTq1AkjR47E5s2bsX79eowaNQp9+/bFVVddpfp7QETex+CGiHzm6aefRlBQENq3b4+GDRvi2LFjSEpKwpo1a2AymTBgwAB06tQJTzzxBGJjYy0ZGTFdunTBrFmzMHPmTHTs2BFffvklpk+fbrNOr1698Mgjj2D48OFo2LChQ4NkoLp66ccff0S9evVw7bXXIjMzEy1atMCiRYtUP38i8g2DIAiC1oUgIiIiUgszN0RERBRQGNwQERFRQGFwQ0RERAGFwQ0REREFFAY3REREFFAY3BAREVFAYXBDREREAYXBDREREQUUBjdEREQUUBjcEBERUUBhcENEREQBhcENERERBZT/B8HokuFBVVwPAAAAAElFTkSuQmCC", "text/plain": [ "

" ] @@ -80617,13 +80617,13 @@ { "cell_type": "code", "execution_count": 13, - "id": "407bb556", + "id": "49f4728b", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:49:36.429646Z", - "iopub.status.busy": "2024-11-07T15:49:36.429258Z", - "iopub.status.idle": "2024-11-07T15:49:37.420672Z", - "shell.execute_reply": "2024-11-07T15:49:37.419947Z" + "iopub.execute_input": "2024-11-07T16:12:40.095421Z", + "iopub.status.busy": "2024-11-07T16:12:40.095054Z", + "iopub.status.idle": "2024-11-07T16:12:41.043087Z", + "shell.execute_reply": "2024-11-07T16:12:41.042147Z" }, "lines_to_next_cell": 0 }, @@ -80640,7 +80640,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPeCAYAAADj01PlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7jcxNnFj3ZvcS/YuAAGG0zvJYAJLZQASQiEFAIBAgECJKQB+RKS0GtoIYTeQgudhBCKDRgMGBsb3AA33Hvvt99d6ftjr3ZnpBlptKst997zex4/3lWZGY1Guqszr85rOY7jgBBCCCGEEEIIIYQQQgghPhLlbgAhhBBCCCGEEEIIIYQQUqlQRCeEEEIIIYQQQgghhBBCNFBEJ4QQQgghhBBCCCGEEEI0UEQnhBBCCCGEEEIIIYQQQjRQRCeEEEIIIYQQQgghhBBCNFBEJ4QQQgghhBBCCCGEEEI0UEQnhBBCCCGEEEIIIYQQQjRQRCeEEEIIIYQQQgghhBBCNFBEJ4QQQgghhBBCCCGEEEI0UEQnhBBCCCGkA3Puuedi6NChee177bXXwrKseBtECCGEEEJIO4MiOiGEEEIIIWXAsiyjf2PGjCl3UwkhhBBCCOnUWI7jOOVuBCGEEEIIIZ2NZ555Rvr+1FNP4Z133sHTTz8tLT/++OMxcODAvOtpbW2Fbduora2NvG8qlUIqlUKXLl3yrp8QQgghhJD2DkV0QgghhBBCKoBLL70U9913H8J+njc0NKBbt24lahUhhBBCCCGEdi6EEEIIIYRUKEcffTT22msvTJo0CUceeSS6deuGP/3pTwCA//73v/j2t7+NbbbZBrW1tdhpp51www03IJ1OS2V4PdEXLlwIy7Jwxx134OGHH8ZOO+2E2tpafO1rX8Onn34q7avyRLcsC5deeileffVV7LXXXqitrcWee+6JkSNH+to/ZswYHHTQQejSpQt22mknPPTQQ/RZJ4QQQggh7Y6qcjeAEEIIIYQQomfdunU46aST8OMf/xhnnXVW1trliSeeQI8ePXDZZZehR48eeO+993D11Vdj8+bNuP3220PLffbZZ7FlyxZcdNFFsCwLt912G0477TTMnz8f1dXVgfuOHTsW//73v/GLX/wCPXv2xD333IPvf//7WLx4Mfr16wcAmDJlCk488UQMHjwY1113HdLpNK6//npsvfXWhXcKIYQQQgghJYQiOiGEEEIIIRXMypUr8eCDD+Kiiy6Slj/77LPo2rVr9vvFF1+Miy++GPfffz9uvPHGUA/0xYsXY86cOejbty8AYNddd8Upp5yCUaNG4Tvf+U7gvjNnzsSMGTOw0047AQC+8Y1vYN9998Vzzz2HSy+9FABwzTXXIJlM4uOPP8Y222wDAPjRj36E3XffPVoHEEIIIYQQUmZo50IIIYQQQkgFU1tbi/POO8+3XBTQt2zZgrVr1+KII45AQ0MDZs2aFVru6aefnhXQAeCII44AAMyfPz903+OOOy4roAPAPvvsg169emX3TafTePfdd3HqqadmBXQAGD58OE466aTQ8gkhhBBCCKkkGIlOCCGEEEJIBbPtttuipqbGt3z69On4y1/+gvfeew+bN2+W1m3atCm03O2331767grqGzZsiLyvu7+77+rVq9HY2Ijhw4f7tlMtI4QQQgghpJKhiE4IIYQQQkgFI0acu2zcuBFHHXUUevXqheuvvx477bQTunTpgsmTJ+MPf/gDbNsOLTeZTCqXO45T1H0JIYQQQghpb1BEJ4QQQgghpJ0xZswYrFu3Dv/+979x5JFHZpcvWLCgjK3KMWDAAHTp0gVz5871rVMtI4QQQgghpJKhJzohhBBCCCHtDDcSXIz8bmlpwf3331+uJkkkk0kcd9xxePXVV7F8+fLs8rlz5+Ktt94qY8sIIYQQQgiJDiPRCSGEEEIIaWccdthh6Nu3L37605/i17/+NSzLwtNPP11RdirXXnst3n77bXz961/HJZdcgnQ6jXvvvRd77bUXpk6dWu7mEUIIIYQQYgwj0QkhhBBCCGln9OvXD6+//joGDx6Mv/zlL7jjjjtw/PHH47bbbit307IceOCBeOutt9C3b19cddVVeOyxx3D99dfj2GOPRZcuXcrdPEIIIYQQQoyxnEoKVyGEEEIIIYR0aE499VRMnz4dc+bMKXdTCCGEEEIIMYKR6IQQQgghhJCi0NjYKH2fM2cO3nzzTRx99NHlaRAhhBBCCCF5wEh0QgghhBBCSFEYPHgwzj33XOy4445YtGgRHnjgATQ3N2PKlCnYeeedy908QgghhBBCjGBiUUIIIYQQQkhROPHEE/Hcc89h5cqVqK2txYgRI3DzzTdTQCeEEEIIIe0KRqITQgghhBBCCCGEEEIIIRroiU4IIYQQQgghhBBCCCGEaKCITgghhBBCCCGEEEIIIYRo6HSe6LZtY/ny5ejZsycsyyp3cwghhBBCCCGEEEIIIYSUAcdxsGXLFmyzzTZIJPTx5p1ORF++fDmGDBlS7mYQQgghhBBCCCGEEEIIqQCWLFmC7bbbTru+04noPXv2BJDpmF69epW5NYQQQgghhBBCCCGEEELKwebNmzFkyJCsZqyj04noroVLr169KKITQgghhBBCCCGEEEJIJyfM9rvsiUXvu+8+DB06FF26dMEhhxyCiRMnBm5/9913Y9ddd0XXrl0xZMgQ/O53v0NTU1OJWksIIYQQQgghhBBCCCGkM1FWEf2FF17AZZddhmuuuQaTJ0/GvvvuixNOOAGrV69Wbv/ss8/ij3/8I6655hrMnDkTjz32GF544QX86U9/KnHLCSGEEEIIIYQQQgghhHQGyiqi33XXXbjwwgtx3nnnYY899sCDDz6Ibt264fHHH1duP27cOHz961/HmWeeiaFDh+Kb3/wmzjjjjNDodUIIIYQQQgghhBBCCCEkH8rmid7S0oJJkybhyiuvzC5LJBI47rjjMH78eOU+hx12GJ555hlMnDgRBx98MObPn48333wTZ599trae5uZmNDc3Z79v3rw5voMghBBCCCGEEEIIIYSUjXQ6jdbW1nI3g1Qo1dXVSCaTBZdTNhF97dq1SKfTGDhwoLR84MCBmDVrlnKfM888E2vXrsXhhx8Ox3GQSqVw8cUXB9q53HLLLbjuuutibTshhBBCCCGEEEIIIaR8OI6DlStXYuPGjeVuCqlw+vTpg0GDBoUmDw2ibCJ6PowZMwY333wz7r//fhxyyCGYO3cufvOb3+CGG27AVVddpdznyiuvxGWXXZb9vnnzZgwZMqRUTSaEEEIIIYQQQgghhMSMK6APGDAA3bp1K0ggJR0Tx3HQ0NCQzb85ePDgvMsqm4jev39/JJNJrFq1Slq+atUqDBo0SLnPVVddhbPPPhsXXHABAGDvvfdGfX09fv7zn+PPf/4zEgm/xXttbS1qa2vjPwBCCCGEEEIIIYQQQkjJSafTWQG9X79+5W4OqWC6du0KAFi9ejUGDBiQt7VL2RKL1tTU4MADD8To0aOzy2zbxujRozFixAjlPg0NDT6h3D1wx3GK11hCCCGEEEIIIYQQQkhF4Hqgd+vWrcwtIe0Bd5wU4p1fVjuXyy67DD/96U9x0EEH4eCDD8bdd9+N+vp6nHfeeQCAc845B9tuuy1uueUWAMDJJ5+Mu+66C/vvv3/WzuWqq67CySefHItBPCGEEEIIIYQQQgghpH1ACxdiQhzjpKwi+umnn441a9bg6quvxsqVK7Hffvth5MiR2WSjixcvliLP//KXv8CyLPzlL3/BsmXLsPXWW+Pkk0/GTTfdVK5DIIQQQgghhBBCCCGEENKBsZxO5oOyefNm9O7dG5s2bUKvXr3K3RxCCCGEEEIIIYQQQkgEmpqasGDBAgwbNgxdunQpd3M6BWPGjME3vvENbNiwAX369Cl3cyIRNF5MteKyeaITQgghhBBCCCGEEEIIIZUORXRCCCGEEEIIIYQQQgghZaOlpaXcTQiEIjohhBBCCCGEEEIIIYSUANu2ccstt2DYsGHo2rUr9t13X7z88stwHAfHHXccTjjhBLju2+vXr8d2222Hq6++GgCQTqdx/vnnZ/fddddd8fe//10q/9xzz8Wpp56Km2++GQMHDkSfPn1w/fXXI5VK4fe//z222morbLfddvjnP/+Z3WfhwoWwLAvPP/88DjvsMHTp0gV77bUXPvjgg8BjGTt2LI444gh07doVQ4YMwa9//WvU19cb9cPQoUNxww034JxzzkGvXr3w85//HGPGjIFlWdi4cWN2u6lTp8KyLCxcuBAA8MQTT6BPnz4YNWoUdt99d/To0QMnnngiVqxYYVRvvlBEJ4QQQgghhBBCCCGEtFscx0FDS6os/6Kmm7zlllvw1FNP4cEHH8T06dPxu9/9DmeddRY+/PBDPPnkk/j0009xzz33AAAuvvhibLvttlkR3bZtbLfddnjppZcwY8YMXH311fjTn/6EF198Uarjvffew/Lly/Hhhx/irrvuwjXXXIPvfOc76Nu3LyZMmICLL74YF110EZYuXSrt9/vf/x6XX345pkyZghEjRuDkk0/GunXrlMcxb948nHjiifj+97+Pzz//HC+88ALGjh2LSy+91Lgv7rjjDuy7776YMmUKrrrqKuP9GhoacMcdd+Dpp5/Ghx9+iMWLF+OKK64w3j8fqopaOiGEkHbLuLlrcflL03Dz9/bGN3YbUO7mEEIIIYQQQgghShpb09jj6lFlqXvG9SegW42ZxNrc3Iybb74Z7777LkaMGAEA2HHHHTF27Fg89NBDePbZZ/HQQw/hnHPOwcqVK/Hmm29iypQpqKrKlF9dXY3rrrsuW96wYcMwfvx4vPjii/jRj36UXb7VVlvhnnvuQSKRwK677orbbrsNDQ0N+NOf/gQAuPLKK3Hrrbdi7Nix+PGPf5zd79JLL8X3v/99AMADDzyAkSNH4rHHHsP//d//+Y7llltuwU9+8hP89re/BQDsvPPOuOeee3DUUUfhgQceMEr4eswxx+Dyyy/Pfl+yZIlRP7a2tuLBBx/ETjvtlG339ddfb7RvvlBEJ4QQouTMRycAAM574lMsvPXbZW4NIYQQQgghhBDSvpk7dy4aGhpw/PHHS8tbWlqw//77AwB++MMf4j//+Q9uvfVWPPDAA9h5552lbe+77z48/vjjWLx4MRobG9HS0oL99ttP2mbPPfdEIpEzIBk4cCD22muv7PdkMol+/fph9erV0n6usA8AVVVVOOiggzBz5kzlsUybNg2ff/45/vWvf2WXOY4D27axYMEC7L777qH9cdBBB4Vuo6Jbt25ZAR0ABg8e7DuWuKGITgghhBBCCCGEEEIIabd0rU5ixvUnlK1uU+rq6gAAb7zxBrbddltpXW1tLYCMVcmkSZOQTCYxZ84caZvnn38eV1xxBe68806MGDECPXv2xO23344JEyZI21VXV0vfLctSLrNt27jtqmO56KKL8Otf/9q3bvvttzcqo3v37tJ3V/gXLXJaW1t9+6mOJaqtTlQoohNCCCGEEEIIIYQQQtotlmUZW6qUkz322AO1tbVYvHgxjjrqKOU2l19+ORKJBN566y1861vfwre//W0cc8wxAICPP/4Yhx12GH7xi19kt583b15s7fvkk09w5JFHAgBSqRQmTZqk9Tg/4IADMGPGDAwfPjy2+rfeemsAwIoVK9C3b18AmcSilUDljy5CCCGEEEIIIYQQQghp5/Ts2RNXXHEFfve738G2bRx++OHYtGkTPv74Y/Tq1Qv9+/fH448/jvHjx+OAAw7A73//e/z0pz/F559/jr59+2LnnXfGU089hVGjRmHYsGF4+umn8emnn2LYsGGxtO++++7DzjvvjN133x1/+9vfsGHDBvzsZz9TbvuHP/wBhx56KC699FJccMEF6N69O2bMmIF33nkH9957b171Dx8+HEOGDMG1116Lm266CV999RXuvPPOQg4pNhLhmxBCCCGEEEIIIYQQQggplBtuuAFXXXUVbrnlFuy+++448cQT8cYbb2Do0KE4//zzce211+KAAw4AAFx33XUYOHAgLr74YgDARRddhNNOOw2nn346DjnkEKxbt06KSi+UW2+9Fbfeeiv23XdfjB07Fq+99hr69++v3HafffbBBx98gK+++gpHHHEE9t9/f1x99dXYZptt8q6/uroazz33HGbNmoV99tkHf/3rX3HjjTfmXV6cWE6xDWMqjM2bN6N3797YtGkTevXqVe7mEEJIxTL0j29kPzOxKCGEEEIIIYSQSqGpqQkLFizAsGHD0KVLl3I3p92zcOFCDBs2DFOmTPElKe0IBI0XU62YkeiEEEIIIYQQQgghhBBCiAaK6IQQQgghhBBCCCGEEEJi4aOPPkKPHj20/9ojTCxKCCGEEEIIIYQQQgghnZShQ4ciTsfvgw46CFOnTo2tvEqAIjohhBBCCCGEEEIIIYSQWOjatSuGDx9e7mbECu1cCCGEEEIIIYQQQgghhBANFNEJIYQQQgghhBBCCCHtjjgtSEjHJY5xQhGdEEIIIYQQQgghhBDSbqiurgYANDQ0lLklpD3gjhN33OQDPdEJIYQQQgghhBBCCCHthmQyiT59+mD16tUAgG7dusGyrDK3ilQajuOgoaEBq1evRp8+fZBMJvMuiyI6IYQQQgghhBBCCCGkXTFo0CAAyArphOjo06dPdrzkC0V0QgghhBBCCCGEEEJIu8KyLAwePBgDBgxAa2truZtDKpTq6uqCItBdKKITQgghhBBCCCGEEELaJclkMhaRlJAgmFiUEEIIIYQQQgghhBBCCNFAEZ0QQgghhBBCCCGEEEII0UARnRBCCCGEEEIIIYQQQgjRQBGdEEIIIYQQQgghhBBCCNFAEZ0QQgghhBBCCCGEEEII0UARnRBCCCGEEEIIIYQQQgjRQBGdEEIIIYQQQgghhBBCCNFAEZ0QQgghhBBCCCGEEEII0UARnZQUx3HK3QRCCCGEEEIIIYQQQggxhiI6KRm/+NcknHj3R2hJ2eVuCiGEEEIIIYQQQgghhBhBEZ2UjDe/WInZq7bg04Xry90UQgghhBBCCCGEEEIIMYIiOiGEEEIIIYQQQgghhBCigSI6IYQQQgghhBBCCCGEEKKBIjohhBBCCCGEEEIIIYQQooEiOiGEEEIIIYQQQgghhBCigSI6IYQQQgghhBBCCCGEEKKBIjopOY5T7hYQQgghhBBCCCGEEEKIGRTRSUlwqJwTQgghhBBCCCGEEELaIRTRSUmwBQ3dssrXDkIIIYQQQgghhBBCCIkCRXTi49+Tl+La16bDtuOLHreFSHQGpRNCCCGEEEIIIYQQQtoLVeVuAKk8LntxGgDgsJ364Zt7DoqlTArnhBBCCCGEEEIIIYSQ9ggj0YmWjQ2tsZVlU0UnhBBCCCGEEEIIIYS0Qyiik5JADZ0QUghMTkwIIYQQQgghhJByQRGd6IkxAagDCmCbm1pxz+g5WLC2vtxNIaRdcckzk3DyvWORStvlbgohhBBCCCGEEEI6IRTRSUmIMUdpu+Xa/07HXe98hRPu/rDcTSGkXfHWlyvx5bLNmLZ0U8nrfv3z5Xjh08Ulr5cQQgghhBBCCCGVAxOLEi0xBqLTEx3AxIXrAQAtKUbTEtIecBwHlz47BQBw9K4DMLBXlzK3iBBCCCGEEEIIIeWAkeikJJRDQ1+8rgE3vj4Dyzc2lr5yQki7R7xvbW6ML9EyIYQQQgghhBBC2heMRCdaLCu+WPRyJAU845FPsGxjIz5ZsA6v/+qIktdPCGnf8P0ZQgghhBBCCCGEAIxEJwHEa+cSY2GGLGuLQP9y2ebSV04IaffQhooQQgghhBBCCCEARXQSQIyB6BSjEG9/EkKKD29bhBBCCCGEEEIIASiikxIhilFOJzVJoCBHSPuis96rCCGEEEIIIYQQIkMRnWiJM3Ja9EQvh7ULIYRERZ78I4QQQgghhBBCSGeFIjopCaJw3lmtXWjnQkh0xAk4XkOEEEIIIYQQQggpBxTRSUkQbRGcTiqiE0KiU87bRWed8COEEEIIIYQQQogMRXSixUJ8YZ9iJDp1KUKIKeW8XfBeRQghhBBCCCGEEIAiOvFQLOsE26Ynekdh3Ny1+PN/vkB9c6rcTSGdgHK+uSLWTEGdEEIIIYQQQgjpvFSVuwGksiiFwF1qiwT6KMfLmY9OAAD06lqNP5y4W5lbQzo65Y1Ep3JOCCGEEEIIIYQQRqITD8USuMVyS61LVYqGHqc9TiWwZH1DuZtAOgHl1LEpoRNCCCGEEEIIIQSgiE482JKdS7E80UsrTSUqJBTd6WCSXJzjgxAd5bxuHLtsVRNCCCGEEEIIIaSCoIhOJER9O06JVBTOS+2JTq2XkPZLse5JRnV3sIkvQgghhBBCCCGE5AdFdCJRPDuX4teho1JsVCqlHXHRsY6GED/irYqCOiGEEEIIIYQQ0nmhiE4kihUlLkail1qKYiR6cWC/klJAT3RCCCGEEEIIIYSUG4roRMKRPNFjLFdTR9CyuKDYWxwqxWuedGzK6olexoTIhBBCCCGEEEIIqRwoohMJW/IfjjOxqKP8DADj5q3FQTe+i5FfroitPpGOZqNSKbBXSSkop3gtJ0QuXzsIIYQQQgghhBBSXiiiE4liRaLbtvozAJz16ASsq2/Bxc9Mjq9CgQTV3uLAfi0bxXxzo9Io55GKUfD0RCeEEEIIIYQQQjovFNGJRNE80aH3RC9WnS5WhdiOVEgzSDvntWnLcfDNozFp0YZYy33zixU45d6xWLyuIdZyC6WsEwaMRCeEEEIIIYQQQggoohMPXquVt6evxPKNjQWXKxbrraPYVIp23dFEONrklIdfPzcFa7Y046KnP4u13F/8azKmLd2EP7zyeazlFop42ZR6QkzO5VDSqgEAExesx/h560pfMSGEEEIIIYQQQiSqyt0AUlmIAvd/py7DqOmrAAALb/12bOWWPLKUWm9RYGR9eWlNF+c62tLcWpRy86WsgehiJHqJ7VyaWtP40UPjAQDTrzsB3Wv555oQQgghhBBCCCkXjEQnEqJo9OFXa2Mr13bUn0tBokLU3gppRmx0sMNpd3QaX/SQw0ylbVz57y/w36nLYq9aTogce/GBNLfmkkfUN6dKWzkhhBBCCCGEEEIkKKITCSliPMbIS0eKRI+tWCM6mnhdauatqVOKeOxXP3UUO2Mn7D70yuSleG7iYvzm+alFqFv43FkmLQghhBBCCCGEEOKDIjqRcIqUSM+mJ3q7ZMriDTj2zg9w3F0f+NbRE13m/Vmrsdc1o/DXkbNKUl9nkXTDbhfLNhSes0Fftz4hMiGEEEIIIYQQQjoPFNGJhF2kiHGnjJ7opbJzWbOlucNFq478ciUAYMWmJt86RqLLXPe/6QCAB8bMK02FHWuoGaG6vhpa0kWsL7huQgghhBBCCCGEdA4qQkS/7777MHToUHTp0gWHHHIIJk6cqN326KOPhmVZvn/f/nZhiS9JhmIl0hNLKrW3cCnE3lcmLcXXbnoXt7xVmijkUmEFdB5FdBlKrMUhrF8bW4snokvt4AkmhBBCCCGEEEI6LWUX0V944QVcdtlluOaaazB58mTsu+++OOGEE7B69Wrl9v/+97+xYsWK7L8vv/wSyWQSP/zhD0vc8o5JsRLp2Xb5ItFLYehy/eszAAAPfzi/jK2In0Rgo9vjEalpTqWxeos/2r4SWLGpEZsaW33LO4umG3a/KKaIXs7EooQQQgghhBBCCKkcyi6i33XXXbjwwgtx3nnnYY899sCDDz6Ibt264fHHH1duv9VWW2HQoEHZf++88w66detGET0PHMfBliZZnLOLZF8ge6LHVqwRpYiYDhabM7QXDW75xpxoG9R3HSkS/aS7P8LBN43G3NV15W6KxLq6Zoy45T3se93b5W5K2QiNRO+gdi5xvglECCGEEEIIIYSQwiiriN7S0oJJkybhuOOOyy5LJBI47rjjMH78eKMyHnvsMfz4xz9G9+7dleubm5uxefNm6R/JcN3/ZmDva9/GuHlrs8uKFXkpCkIdMbFoqXzXi82aLc047NacaBuUPLSYR7yxoQWptF3EGmTmr60HAIyavjLvMooxrGeu2BJ/oSFUWsJY2WLKTzEj0ctpQ0X7GEIIIYQQQgghpHIoq4i+du1apNNpDBw4UFo+cOBArFwZLmZNnDgRX375JS644ALtNrfccgt69+6d/TdkyJCC291ReGLcQgDAnW9/lV1WrGhLOaKzKFVoKUkkukEoemVJk2q+XLZJ+h50WMXq18XrGrDf9e/gtAfGFaeCdkRQ/xftWq2wCGixPapDLm5iUaHuEveLo/lMCCGEEEIIIYSQ0lN2O5dCeOyxx7D33nvj4IMP1m5z5ZVXYtOmTdl/S5YsKWEL2weiTlesaEu7jGJUKSJrTexc2gO+twSCEosWqV//9/lyAMDnSzeFbBk/pffrDyFIRC9dK8qLo/0CAGgqqid6YNVFpeLGIiGEEEIIIYQQ0okpq4jev39/JJNJrFq1Slq+atUqDBo0KHDf+vp6PP/88zj//PMDt6utrUWvXr2kf0RPsaxWxGJLbYsQl8A9d3Ud/u/laVi0rl5Rh7+SVNrGY2MXYMby9mMh5D39HWVywJRChn8xJoeCbIKKpbFWnJ2L+FlxzMX0RIdkQ1XEahTYZXx7hxBCCCGEEEIIITJlFdFrampw4IEHYvTo0dlltm1j9OjRGDFiROC+L730Epqbm3HWWWcVu5kdHlGnK5ZYI3utlzgSPSbfkR88OA4vfrYUFzz5mW+dSux8buJi3PD6DHzrno9iqb8UeM9NkIhbLDuX9movX4xhLfZ/Z41MDvNEL66di1h3+RKLVprFDiGEEEIIIYQQ0tkou53LZZddhkceeQRPPvkkZs6ciUsuuQT19fU477zzAADnnHMOrrzySt9+jz32GE499VT069ev1E3u0JQiEr29aoEbG1oBAHNW1/nWqYTfqUtKb0fiZW1dM377/BRMmL/OaHvvqQn0RM+/WRVLpQ1Nsf/TnlDoziKshh1nMe1cyplYFB3gntmRSaVtnPHwJ7jx9RnlbgohhBBCCCGEkBJQVe4GnH766VizZg2uvvpqrFy5Evvttx9GjhyZTTa6ePFiJBKy1j979myMHTsWb7/9djma3OEQ7RuKJdaIQtizExajR20VfnrY0OJU5iFRgqkiVcR2JUQOX/3fL/HmFyvx6tTlWHjrt0O391uiB0WiV46M3pxK49GPFuDoXbfGntv0LndzYkPs4rTjSDfsChheJSFsAq6xmCK6VHdpO1wU7Uv99g4J54Ov1mD8/HUYP38d/vKdPcrdHEIIIYQQQgghRabsIjoAXHrppbj00kuV68aMGeNbtuuuu1aEQNlhEIS6Yok1tp37vGxjI655bTpO2nsQBvTsUpT6ROL2eK5O+stLKkK2K0H4WrSuIdL23usqSCevIA0dj360ALePmo3bR802mizQUZAnehFOtzhRIV5DnQnZE93fycUU0aWEyKVOLIry1U3CaU3zpBBCCCGEEEJIZ6Lsdi6ksiiWZYFKUN7c2FqcyjzELfZWKULbVXWU3P5BQVTxzbt50AREJSWg/HzpxnI3oSiIbzikOqmKLgrnquFcTIG5rJ7oFXD/IIQQQgghhBBCSAaK6ESSQosWia4otjlVGlEwKDlmPlQpItFVdXj7shz2J1HPpz+xaJytMSMfcT4d01CqNJ9xsf+9GnpltbR4lDOfQjmjweUI/NLWTQghhBBCCCGEEBmK6ESieDY5/nJbiiii24JqbyrJ3j9mLv7w8uehfVCd9F82KrG5EuxcouJtctAERCXZucTV15V2ysT+T1da48pAOaPBS/1miXgPa4/3EkIIIYQQQgghpCNBEZ1IYmjx7Fz8y4opokuCo6HYe9vI2XjhsyWYvHhj4HZVCsVcGYleAe4bUbU32QPakceG7UgTDBWkoSNVCd45RSbtPcaOf8gAPGO4jMdczjwcneRUtzN4VgghhBBCCCGkM0ERnUjYRRIjVZGULXF5cChI5xGJ7tIckqhQJaKrrFq8gnR7w3bk40o7jjQZUkmR6HH1b6WdJTkSWm5dpVnPFItyHqfY56Wep5FtbDrHuSaEEEIIIYQQQioViuhE8qAumplLiSPRRfErqid6mHd5lcLORbFIEt0KnTB4e/pKzF9TF3m/qAKkV/gX5wvStiOtL5bHez7F+qK0Owji+euoxxiGnNyzfHWXunbx3HfSU1/hVNAsIiGEEEIIIYSQokMRnXjsXEoYiV4kEb2pNY3WlCj2Rts/bHvTxKKi6FbIsX40Zw1+/vQkHHPnB751T45biFPuHYt1dc3KfaOKb14PaPGofCJ6tKKLSmwCc4VF/IrN8R5jhTW1aJQzwWY567bLKOATQgghhBBCCCFEhiI6kYgiFE1atB4rNjXmXW4x7Fy2NLVi96tH4qS/f5hdZhnIvVG8vqsT/stGFZUt+nQXIqJPDfBov+a16Zi2dBNuenOmcn1UGwhRuFu0rh43vpErN+048nmsIBW9EhIvFsNyQ7YT8dq5dA7Efi19YtFy2rmIb4WUtm5CCCGEEEIIIYTIUEQneUWiL17XgO8/MB6XPDPZaHuV+FWMSPRPF66H4wDLNzVll5lEootRvgmF57mIOhLdv11za+74mgs4VpMzohPao2pvonD344c/kSYCbF8keuWo6HFFoleaVim2p1R2LsVw6WlOpZHKc9KsYiLRS27nov5MKgWeFUIIIYQQQgjpTFBEJ5gwfz2u/98MNLakjaMtl7dFoK/ZorYR8WIr9LNChOW4SUeIRFd5oqvsXJpSuQSlhUwYmAiH89fWa3aOWJfweV19i7QuY+eS+15JiUXTHdPNJTCxaHuhqTWN/a57B8fe5bcjMqG8nuiVEYneXs89IYQQQgghhBDSUagqdwNI+UnZDh7/eAF6dKnC/tv3MdqnsTUjEJtaWKhEoGKI6KroaJMmiiJ/mDhcrQg7V0WiNwmR6C1p29eylpSN6qRVtASdQGGR6F7STmk80fMp166AzIvFaYGYWNSzpp0Iq7NXbkFjaxqL1jXkWYKc7LaUSAJ+WesuadXEiAqaRSSEEEIIIYQQUnQYiU6yLFxbbywUNbeJ6KbapWqzZiFSu5iYRHFKkeghorbKzkW1j9tHgD8SfX19C/a+dhQuenpSaNuCbCS61ySD942ovgVtbtuyWF1Rkeix2blUllopHpYvsWiJ25IvhbaznAJyxVjJtJeTTQghhBBCCCGEdFAoohMJle2Ki+M4mL+mDmnbyUaim9oMqMRcMVK7mBiJ6KI4HLJttcLOJamycxFE9GUbGyXLldemLkNzysbbM1aFti2o+WGCf1TtLUiLTtm2bOdSQZGYlWB3UYwmdAQ7F5F8ornL6Q0uW8mULxK9I5z7jgfPCSGEEEIIIYR0JiiikywOgmWB5yYuwTF3foDfvTAVjS0ZAdw0AFi1Xaki0U2aKEZYPz9xiSSAA7L4V6Wyc1FcSU1C9Lk34jwVU+R0mIwdVXsLEgptu3LFvNgi0Svs8MRx54tEr7C26ijUV9yJoKLHbbkillfq/q7Ua40QQgghhBBCCOmMUEQnEkHCzX3vzwUAvDZteVZkNhWtVJs1lygS3aSJop3LC58twe2jZsvrBfXPNLFoc6t+kqA1QibMwC1DVPSo0bNBIqfXE72SrE/SMQmOlXNEGcT2xHWM5SQfYVgcZ2FjLu4uEq+H0icWVX8mlUd7yU9ACCGEEEIIISR/KKKTLI7jGIsBUe1c1IlFZZFZlZwzDkza6E1MOWb2aul7i5DVURWJrrJVCRSkg3xzPASdk7gj0YN2SNtOSYS9fLzW40osWsgx5TupsLmpFUff/j5uemOGb504dsuZPDUu//u8RPQIYy7uHpIE/FInFo0weUDKQe6ioIZOCCGEEEIIIR0fiuhEIkinE4W0yIlFDTzRw/y98yVqJLqK1lRYJLpYX2bbIMEwNjuXME/0iNUENcv2RaJXDnHpy+UQK1+YuAQL1zXgkY8WqBqUJS7Lmnwo5MosNEFmFBE96JqzbQezVm6ONhlRxmhw2RO9tHVXOvXNKUxatKFiIsBpvUMIIYQQQgghHR+K6EQiSAwQ9dpsJLqhuqPayhuJXqw0lVETiwJ+cVqMRE8qGiraubhFBVUbRRANTiwqbmde5pfLNmF9fUukdqXSjiTmVZJuVE6BuVCCxiftXGTC9g4q/qY3Z+LEuz/CX0fNyqu+ciYWrRSxuFL40UPj8f0HxuHFz5aUsRWVOaFICCGEEEIIIaQ4UEQnWRyERKILMndkOxdFwf5IdKOiglGUYdJEnbuK4zi48+3ZeG7i4twyxXaiiJ6y3aSr8USiB4l3Yr0qIVklvk1ZvAHf+cdYHHLzu751gZG8jiOdx1KIiqbiYWwieiF2LnnuGzTupWjk0qQQiJ1CI6qjWKoEjd/HxmYi/R/6YL553Yq2L1nfoJyAihuHIq2W6cs3AwBembysLPUvXteAi5+ZnP3OOQ5CCCGEEEII6fhUlbsBpLII9N8WxD5XADcVxVTbeYXk4tm5GESia7aZsmQj/vHeXGmZ6lhEOxdX0A2qNS7RV+wxVZGqWj74ag0AdXLToHZ5PdFLoew5jtnkSiERzuWO8rUC3sEQj6sjRKLn09flPGzJvsgB1tY144jb3gcALLz120Wtu1j5B9bXt6Bvt+qi3W9LSpnGxq+fn+JpRvu/NgkhhBBCCCGEBMNIdJLDMRcj40gs6k2uWTw7F5NtPIJ+2/8bFBGnKiFQFREe1Det6SiJRfXrRB1MVZ9q3yALniChNu3xRC+WD7AoKhcyvkyRxMq8S8mfwEh04XM5E4sWhjhm4ipJsz7mLvLaucxeuSXeCkzrjunAPvhqDQ644R1c8dLnsZTXWVmxqVH63gHmtwghhBBCCCGEhEARnUgEWUaIWl9TS0ZEL0Q88PuQ519WECYCq06gVO2qWpYQrqRMxLYT2DeRPNED1wYLzt4IydWbm7C5KaUtLUiotW3HF5lbbEy7qZDI/rgmA4rRHaJ4WtbEojFdnIVGoheSWDQfHCe+CYCoFCOJ7z2j5wAAXpm8NKYSOycUzQkhhBBCCCGk80E7F5LFCXkpXRTSmlKFR6J7BfsgWwtTVCWYiF/eCGz3UFW7qnpJbHvKa3uiIJInegFCsrjvyk1NOPSW0SFlBJdfDGEvCFObhCj96a9D+FwGdSxIoBZb0xHsXAr1RA8bdXH3kFSe4xTtbRll3UWycyHxU6y3cgghwazY1IjGljR23LpHuZtCCCGEEEI6AYxEJxLGdi4tUUV0/zKvKJgomkJl4IleoKgtCn22HS79phV+5Nr6AhOL5j6rDkFcNmHButC6Au1cbEcqr1i6kagpm9ZRSFtKHV3vRTqHnpMoRUKXMxK9gH3FZucjNpYzEh1S2+MtOkrlFGnVlMuL3DvvxdNDSHkYcct7OObOD7CxofjJngkhhBBCCKGITrI4TkhiUeFzY8TEoqpi/XYuxVHRjTzRNRHYqv4I8x5PeSK2VbQG+eZEwAoQYPMhzC9djkQvvnJkKh4WYnWSjwC2ZkszWlLyOcxXSBNHvXdciGWWKhI97qtQHFN5ieiaz8ptY+4ieYKltEppKSasSDzw9BBSXpasbwzfiBBCCCGEkAKhiE4kgrRIUbBtbkssCpiJS0o7F00yz0JQCfEmwp3PzqWtNUo7F2XEt+xdHVZnJNHXcFN1ndGirEMj0QWNtxTCnrGVTQkTi85fU4ev3fQuTvr7h3nXKSKO2ZTnDQVJRG+niUXTTrQx6MUJ2N9374k7EL2MkejyuIyn8lLa0ZSCSplcKIcNFCGEEEIIIYSQ0kJP9E7GpEXrcf3/Zmj9I4PEX1HsaxREdNsBkiHqjEpk8AqGcQSiq+oxEo8jKGSqTb1iZ6ye6IbbqYTkqEJcYGJRbyR6CYQjY7uggjzRo+371pcrAQDz1tTnXaeIOO59IrrwuZyWHoVcm7IQXVgkelDZ+ZZvWre3ZMdxivb2jFu+tvJ8y4ynGOKB/UoIIYQQQgghHR+K6J2M+uY0pi3dhFaFJ7fjmEdbNkkiuoNkSIxjWPQ2EI+di0k9KnTbqBeroupzn40SiwZl8PS1IUjYFrdTrY8YiR5k52JHj9oulEImEIzriGiboRfsC++RFs+4EM+fV2BvL6QlO5fo+wdNBPmE7ejFh9StnzRynHgm/rR1C5/b6UsIRaeY/R8FJx53LkJInpQrPwIhhBBCCOlc0M6lk1HVlsVQJZY6cCJ4ossiehjKxKI+T/TQYgzqiTsSXS2Y3/f+XFz72nTldiZ2LlEE0aCiwqJ8oz5WhicWLcyaIyqm4lRciUWN6jLYpjVt4+KnJ+GxsQtCtxXHXirAE73UkehxvWkgtju/NwbM7VzifjtCikR3IN0Ei30+ipF/oEI059go18sZfhchCniElBraKBFCCCGEkFLDSPRORrJNRNclttSJXBnrgtz3plZbWBder0pw8vuQF47aaiV/GxPVro7j4PZRswEAPzlke+w8sKdUr4mI7o04zhfx2MIsaQqLslaI6BWUWLQQZMuO/N9aEHnzixUYOX0lRk5fifMPHxa4rSSit02uOI6Dcx6fiI/nrhW2C602VsTDtAq4OgudeAl6+8E7XOOO2HYCxnvRo8MjviFBygfPDyHlhdcgIYQQQggpBYxE72RUtZmXt2oUOZ0wFPSAEiQqurYlqi28gm0ihlB0dQLT8P18gn5AU0Q/czci3ytmh9Wp638VQUX5ImW96yParwS1O+3Ix1WSSPTiVyFFu5sck24bcfmWppRx/eJ4cidXFq9vwEdz1sqTMyVWCWxZRc+/HKF/C/VE90We++xdYo5El94EkNcVe4JHtnOhQlTJ8OwQUnp4WySEEEIIIaWGInonI5nInPLWlCbyWrNfxslAraTphNc/vvI59rnubazc1ITGFr+omPEOz+3sFa5fnrQUx945BgvWmidwVEWdmwhQuihu1VKVFYvsiW6HqioqT3odwXYuwZHoJolAG1vSuPe9OZi1cnOgUGt7zlcpnl9LE4kev51LFFSR6KrhWEjy1HyIqzbJziUfET1w/Jtvmw9Bk1TFHpqlzj9A8oe2EoSUHl51hBBCCCGk1FBE72S4nuiqSGjH0YsBtsfOxbtOxfOfLkFDSxqH3jIaj3y0wL+fL2JbruCKl6Zh3pp6XPnvz9UVK9viX5av3YxuX7Hv3PXeqNFwT/R4vDnE41XWaXDs97w3B3e8/RVOvPujUDsXUfAtlnBUah/wqNq0yXFHKVKclAl6QyHMridu4up6WUTPpx16O5iii+iSkO1IE4ml9ESnWqSmUrqlUtpBSGei1JP6hBBCCCGEUETvZLie6CpPbgfRxOTsujz14LRHbNaJ9A0tafUKVVuUOrJJJLqmPMW+6gkIOZo43BM9QiS60IaNDS3aesMSi6pqdBwH05ZszH4PEmpLZeci9XkpLGMMD2RdXTMcx9HbueRZf1rwOwkS0UueWDSmzpfHTGF2Lv51RbZzCUhqWko7F9Vx/W/actz73pyitoGYQbudzsHUJRvx6+emYPnGxnI3hYDCOSGEEEIIKT0U0TsZbiR6SyqiJzocWBqVO18BIW3Lom1CI6Kr7FN05O2JHiFEVhTApy7Z6BNWY/dEF8ra7/p3sKG+Rbku9BBUFiGeZUF2LmmvnUuRnmDtKMcUA7Jlh4Om1rRP7P3v1GU48MZ3cevIWWbjPULniJ7o7meV2Gw6RuuaU1iyvsG4fh1xnV+x3flFogufvaK5T9iOXn4QQRMAxR6b0gSZ4nbxq+em4I63v8JUYRIsjBjSTlQUFWOjUiHNaG9UzPkz5NT7PsZr05bjty9MLXdTCOiJTgghhBBCSg9F9E5GMsDOBQiORNfpL/mK6LZHfNZ7rhcqoofv793GnTAIs3O55rXpePGzJT7LirCI2ELsXD5btCH7WaxFJbKGiRTefcLsXOwAQTMugkTTQlmxqRFPjluI5ycuzkYTiudu8foG7HbVSFz24jRpv+v/NwMA8NAH84vqiR5o52J4HRxy07s44rb3MX9NXcFtcylEey3YEz1CNHjcopzjua5FEbrYAqCpm8sGz9sppPRQy4vOnW/PxqG3jMaqzU3lbkpkFkbI00KKR7F+gxBCCCGEEKKDInono6otsag24jxgud4TPb+2pG1HEgajeq6rUNq5OJno3Kte/RLj563TtkVZnmKZV+h86bOlPh/vsCZHSywqb1vfnFKuC4vCVz1wetsa1Cyv13sp7FzijvY95d6Pcc1r0/HHf3+BY+/8wK0wy/uz1wAA/jNlmbRfIhHuhZ2vP2tKEtH1e5omFq1vsz/6WDPWTSmOJ3o+oejCR0e7Srk+Tood9e6rT5o80FeW6Gjh5e0QRsRG5x/vzcWqzc145MP55W5KWWlv0fiVBLuOEEIIIYSUGoronYxkUi+4OI5eqAuK+Mn3ITAT2SyI6JrtUhHUKp1I9/AH8/D0J4twxiOfGO3ntkV1bK0eK5xkwvIJhWFioZycNFr/bRFEdMn6RBHEHBTFm9nfkUXr0Ej0/ITiKEgTEjErlau3NGc/N7ZmxGaTKpJSCHKsTZImcNw3FFTWSTHlojUmLp9ncVwWqKGHiubFTCzqnXAquie6YSQ6JfTyw4jY/ClxvuSK4qXPlmDf697GpEXry92Udg8nIwghhBBCSCmgiN7JqNIZjwMA9F7eXisD77p8SNuOJJJqPdcjiejq5StDXhnP1xMdAKqTCZ/QF8UTPWxb72opEl2K2lbZuejLAfzHHZhY1C6NiFjqh2ETASwRUUOPcggpKbFoQP9H7Bfv1TR65ip8NGeN8f5ibYUEO6ed4DEa2g4pEj04FL2oiUURfL3NX1OH+96fK12fBdUddNwCUc6NzjKLFEZnFoILJdmJf4X+/uXPsbkphYufmVzuprRLqJsTQgghhJBS04kfXzonyUARXS9COY4Ti2e5SNqRRXudGBRFPNS1pWeX6uC2RFBBvHYumQhV2XohTAgWk6WGbetdXdekiURXieiBJfuj18MSi9qm4bEFEHZMcWNShWTnEsH6xwQpEr3thKjGRNSofHHrDfUtOP/Jz3D2YxPDx3o2H0A8fe/1FRf5ctkm/OXVL7B4XYO2Pq+QLeIdH7EnFhWvD69Nk6euY+78ALePmo2/jpwVT90B1kliX1WKnUvadvDzpz7D3e9+VbI6K0VDYxRs/iRCfpNUInFfchw++cE3QAghhBBCSKmhiN7JCI5ED/BKRzye5dJ+tmMkXqtsSnToxIyeXaoCt4lyDF4Rfdy8dfh04YZcWXb4Q3GLaOcSUp/3QbFOjHQNE5xD1vtEyIDzYTtej/XiIEe7F6kSAZNzL04+mUWimzdcnFBxx5byrYEClBYx+WRTm41NGFIkujCBtnpzE8585BO88fkKo3KCJkW+84+xeOaTxTjy9vfx51e/VLcjQLj29ojY75saW3HbyFmYs2qLUTuVdQufM+NfPyHgMklI/FsIAYct3TcrREPHuHlr8faMVbj73TnlbkrJoQgaDfFvaLJSBnAE+EZHZcDrjhBCCCGElBqK6J2MoEh0x9GLf46j997N90Em7Yvg1mynUauen7gYt4+Soz51ZYiR6FsUdgs6v2mVwOoV0VX7RPNED9zUt75e8kQPFvVEAf6a/073rfcKs0FCrT+xaHGeYE0TKsbVDqNIdEHoiTs6Xhzfrp2L0r++gBkFsc3GIrqmuttHzca4eevwy2fNLAjE4ws6V89OWIxU2sbqLbL1UtBRe8sTu+iqV7/E/WPm4Tv/GGvUzrDyHY/dlW4cxKUJBlkniddppUSiR8ldQTo34t+wShm/5YXXTj6w1/TMXb0Ft42chU0NreVuCiGEEEJIh4IieiejKqE/5Q70wpDjOFp1KF9R0XFk4UUnsOnK/+O/v8B978/D50s3Ctuq61ojJJTcUN/iW+8Vj91DVenlQb7VbhvC9KQoliXetXWSJ3oO1WSDWLRK5PIKs0FvBti2Z9JDs93aumac/8SneHfGKm1ZQch9E759IZp2a9o2FNHD68vX6UY8L6msiO4v4Ytlm3D+E59GKDlHY0tuIDelbGxskK8B5bWnOYi6iJ7fQXYuXn7y6AQcfNNoTFmci+b2Ctki/vJyC8bOXQsAaE7ln5HVG4kuH4tGRI8tSlU/wSi+nVMpEmSNYG7d2exNTA539sotuPjpSZi9Mv83IzoK9S25ibzWKK+aVQjU/SsDk98jnZXj7voQ94+Zh6v+q37DixBCCCGE5AdF9E5GmCe61s4l4AmlkADEVgNbE9txMGnReq34sKVJHZkt8uAH87KfNygic3RRvvlNEIR7oheCJKKHiHphrcgIg+J3/R5px5EmFXSb3vzGTIyetRoXPPVZSO0aIka7F9LTDc1pI19V8brx9tErk5bimU8WyW2K0Cg5Et1uq8O/3bh56zB61mrjcsUrvaElN2ae+WQR9rv+HfxjdM52I+wtBpGu1UnjNgDy8YVF009YsB4A8NzExUI7hDZ5dve2UVy/qTGGCDxxYsRzrejOcVwWz0HWSVIkeoEVFvKGg4hoFdYS8rZOXFSKVm9yD/nxw+MxcvpKnP7w+BK0qLIRI9GbW9ufiE4qgwq5/CuaaUKQCSGEEEIIKRyK6J2McE90TSQ69BGPUZJyemmVEmyqt1lb14LvPzAeJ9z9oXK92C4T0XVDgyIS3XMMbqRZPgKTSSS6SGF2LkK9Ci0irD98di4hkei2QeTXaiHqPx8czWcdhdir1LWkjM6VaDkgRfenbVz+0jT85dUvJdE2WiR67sTlPNHjlQcaBAuXB8ZkJpTufCeXAFI1TsRFYuRll5poIrrYvze/OTPUDslbtyRk+zbU11XIfSlXnjyhY4dMWgGILUxVFuw916lw3yxEQ//gqzXY9/q38eYXZv72QVRX5X5OFBL93x4xGWru5O1G2itIE8GNLWb2Uh2ZSpkMam+w38JhHxFCCCGExAtF9E5GImEFajy6H9y242j3cwWelOTzbfbLXRTUTMTQMFHbSMxQ2Lno6s5Hh7OdaJHo4cctr3cFCL8fdB6R6J4DDHqz3p9YsThPZ1HrCJ+E0G9Q35wyOleSiC70alMMYqEo9rrWLnE7HIQJVaoeEPtevPS7RYxEF8uZtnQTnheizE2QPfK9Zeu3jQOvli+/taHeJz4zF/1xi5NfVgGi/U8fn4gtTSn84l9m/vZBiBO0nS26uLPZ1xRKQ3PuftRomKOhkqCbS4XAyy6UuP8mEkIIIYR0diiid0J00eiO42hF6qDEoraTSWK0xzWjcNvITKJP0yhQEzsXEWWEo9AwE9FVVYauvUGJNnVEjkQPW+8V0NoKDxLWdPt6CUpY6CWTCFYsPLjsfDGxzBAJOudj56zFwTePxuiZan/2uuaU9jCeHr8Qh90yGrNXbvHYueS2adYIQFFENdETvTVl49a3ZuFP//nCeH8dYgsaQkT0sAkY8XNXIRLd5Di9ZS/d0Bi6j3bCzmvf4vVIj1m79UaDm0zwxGXnInvsm70xkrYdX2LWctCcan/CaCFQpoqGFIneDkX0uOH4yQ8KxIQQQgghpNRQRO+E6HzRHehFVAeONuLRdhzcNnI2WlI27m+zilCVc8p+2/iWSSK6wfOQ+8CtT0IaXoZK/PIlFm1T5vOJMHQcJ9LDXVgd2kSWEctR4RXjAu1cHK+di1l989fUSYldw4iSdBUIHjdnPTYBa7Y04/wn1f7sQZHoV/13OpZvasK/JiySfKfFzeOORK9rSeHBD+Zh6pKNBZcrEiZUKfOKaiYzugiR6E0GEcf52GPr6vZ5ohtEovfqUhW9AYryvJNjunFTSGS4iGwlE7Qu9/nsxzKJWScLiVnlxsXSNCXS5FKJ7FwqRUJjIHo0REuypnYoosd1jZPCiDrh3hlhvxBCCCGExAtF9E5IVUJ/2rWCbWAkun8nVUTot/ce7FvWkooW2uyKgaJgY0EUOPMTXXUR+Pn4KjtOtIjYfK2bvf0+edFGnPHwJ5i+fFPeZQT1X8YTXdxWvZ0oPK7a3IRj7vwAX7vpXeM2BdlYhG2f2ce8QzMievA22/bpKkUXi+XrItGjkBL8rddu8VsN5Yt4vTYKiUVVKEV0zfVYK3hf14eUC/jHWFQBKuj8+CeS/Nv06lodqT4R/3h3lOtEiiGveesS70viMY+btw4A8K9PolnmxIEtXRedy86lcuT89oGY6Lg9iuikMuBVFw5FdEIIIYSQeKGI3gnRRaIDAYlFnQCLBcUuKYWKXJ30DzdxOxMx2fV21onbRqKrKhLd09xsYtE8HkDEiO0axTH7GxS22uxY731/LsbPX4ezHp1g0kwACnEuSER3gqNjVcxYsdm4LS6iAGdm5xL8PYiGlnTo9l1rkkhqEouaRGKHJncVGrCuvrCkrDp0di6jpq8EAHXke4CdiIsYUarDe/wmGrpuas3bCu/kl1uVuLxXl/xFdPFkZ65rSN9VxBWk6rWSERHHjGr8lsPmQGxjSz6vH7RjYshh26kQ31SgnQs99fOF/UZcUp3sbw4hhBBCygdF9E6I3hM9QJwOEGVMI9Grkv56WyMmI23KRqLntrUieqKrDlEnHoclMtWV7xZXUxV+iYUJXiYR3yIbGlpD63RJ23IpQRH0aVtOmFoMoe7VKcvwxLiFufZoDv6vI2fhuLs+wJamVt+4iepHHnYctu1Idi5im5o03s9RXjMXJ5LW1hVHRNclFr3o6UkAgDMe+URuU9rWvnUg2c8YiOi+CarQPWScCJ3pnss6IdK1Z0F2LjKSJ7rmWokaab9gbT0ufOoz30SGbJ0kI0eiV4aQZJIroKNSIaeg3SDdQzvdWwt+OHzigL3YWVmyvgF7XD0K1742vWxtsG0Hn8xfhy1N5r+/CSGEENI+oYjeCQnyRNdpxrYj26Z413lRidIqG5nWtF4oUtGoENHD2uLfRiX668rLR0TPCbPViokDL2FV+CwrDPczwTtpEnS8/kjcwuv38tsXphq154Ex8zB3dR2en7jE144ozbJtJ7Qf0w7kSHRhXVNIwk4gfAyJ5yBOOxeRoMSi3jHQmrJx1O1j8MOHxmWXNadsTFq0AYB83uubox+/icYsbhIUia7zSBffZjCZyNLhSONdHiu6yRex7c2pND6asybQsuLCpz7DOzNW4dT7PtbW7a1KvL8qr8My6EniPbRUnuiVAhMcRkMcs7oJvkqGluiVgXSL5CWopFImWYvJ/WPmoSVtSwEYpeaZCYvw44c/wekPfRK+MSGEEELaNRTROyG6SHRA/4PbCTBFV4mEKjsXVST6n//zpVCHtllZVHYuYqmxR6Ln8fzhCGKziYAX1uYgi51CcRzIth0BZdqOg5TGi7lYhFWRdhzfmI0y8ZF2nNDtHceRJp7E7U2sCMJaI/ZpoXYuYl+IQk+QiN7iETxnrNiMZRsbsWR9o7T8+w9kRHXx+PPyRDeIRdeJI0EJNsXvURMWa9vhsS8ysTMS+/26/83A2Y9NxBUvTdPWsXBtvbpu4bPvOMXrUDHCyiGblCOxaKUoZxXSjHaDbInV/kR0UhnIk5qElI9XJi8DkJ+FISGEEELaFxTROyHJgOjoQE90zT4q4V1p56IQ70X7ChPxU5VYNKwtJtvEGYkuim21VUmcf/iw4O0NyourbV68kwdBZaZtr+9k8R9bw86nBX00sgmi9Y5+G0cSRsVEoDoRXRQ2o0Sii29m5INOcG5s1YvdUUUs8VpxPdGbWtM49b6PcctbM/3b5xGJLiMK145mjfxdnBgoJEpYsrSBHImu9UQX7pTPTsgk+Hz98xWR65atk2TyncwqZgCtlHBXY3PUUaGIHg3x2vFO4rUHGIleGURNQt4Z6RzdUv6j5C2BEEII6TxQRO+EqGxVXIJy83gfHMXkm96fsKrIblViUQmD38FZT3QxEt0So4TDy1CJX15LC7fE/D3Rnba2AVd9Zw/cctre2u1NRFx5B+m/gvAed1BiUcdxJAG5JJHoIXVYVmGTCSZ2LrYjWyCJoo+JFUG4J3p8Hanri6B2RokabmhJSWPEjXB/Z8YqTF2yEQ99MN+3j/eeMm9NHd6dscq4zqBoQ50fvhiJHuTzH1q38NmbWFd32qIKbLqzHxSBnw4R0cvxCr/siS53+vr6Frw3a5U250a+lF86yUA7l2iI41P3N6clZeO/U5dhzZbi5ImoJCgA54nBpGZnh91SGjixRgghhHQeKKJ3QrSe6AprDBfbcXw2DN2qk5l1CmEkrYioVdm5SPUHrs0wZ1Ud/vyfLzBfY4Fg8iD1yEcLcPTt72PFppxdhe5BPkhU1iF6JyfaflkHOOiECl7e7nWPMQ6hzC9C6rdN2w5abTHCt/iEaW4WrMDkj2GkDRKLpm1H8kQXBVptJHqAAKoqPy50JQUJ9VGihtduaZGud7cvRNsi7/3AO8be/GIlLnjqM3y2cL1RnUG94xfVM/+3pP2R6Pk85HrtXIwi0aOK6Lq3f8QoS8+RymK+f/9y6CZiG70TMyf/Yyx+9sRneGr8whK3qjRQqIqGeIvQ3f/ue38ufvP8VJxy79gStap8dAbf6mIg9hq7UA0n+EoDNXRCCCGk80ARvRMS5IkexX+7W21V2z7+H5CmiUXlOsJ/7N/7/lz8a8JinPFILnmPV+gKY82WZixc14DbR87OLtPbuYSX50X0RHcFNStAWQurwu/7nH/bvERLLApPJHrm83MTF+PyF6d5rF7i4bNF65XtdFFFokezc3FC+9Hx2LmIAq0uwttrA5JK23h2wmLMX1Pn27a1gH4z9YNPBdjENLWa17+mrkk6Njcqv1eX6uyyLc2ydYzu3H25bJNRnUETEjp7F9EWR1X9i58twX3vzzWqX6xL9kTXjMmIj9MmkejeY5Ai0UP2LRWyJ7p8XSzbmJmwfOuLlaVsUmyE/W2igBcNk8mod2dm3lZZvqmpFE2KRNRrnBQHx/N3lnROeP8lhBBCSCmhiN4J0UeiB3iNwx9h2b0m2bafIhJdUVB1SCR6FFFYtNSQBMsIv6bFZIs+0b/tYPO1c3GFgVwkelAy1+DytEJpHCK6I0diB4vojiSUu11z5b+/wCuTl+K/U5e3tTe3z3n//DT7OZ9ou9tGzsaIW0bjxLs/1ArWGrcbI9K2/u0LF+8QEKNsdZHoXtuPpz9ZhD/95wscc+cHyjbki3dX8VDEIRf0RkVdc3hyUJc1W1qkstwJAPHa3tjQEtjGbFsN65Qjsj3rvG9ptFUmTUy0bSNeg//38ue4fdRszFm1Jbhuj4AfJGy7RI9E1ywP2CgsEr0ciO3QWQS1R6Hrf9OW42s3vYtPA96caI/HVU7EsaJ7SyZosp8QwHPd8RJUUiF/Hjo8QYEyhBBCCOlYUETvhOgeTm3H0Ypt3uSKANDFtXNR7KJKJhgkJAP5CxGOR7A0JSVYk+iCgfNLLJqLWHWPOEgPeGfmKpz0948wa+VmdRs8bXMcYOSXK3DWYxMit83fVvm7yoYnu8520BoQAXv5S9Pw5hf6BIr5asUrNjVhzuo6/HfqMuV6n5Aa4Zyp/Pz92zie5J8mdi5yxHKQAFeIJ7r/LQXN9RtQR30UEb2uWZkUUOyfDQ2tRm0KOk266HPTxKKt0iSbfC2KbGqU27qhvgWPjV2Q9WGWIs/hmXDSvh0Rz8O0XLeM9GaBohnl0E0cxbgA/JMq8dZZtKKz/Oq5KVhb14LznxAmBMvQjo6E3ybJ34GJChbRqZdVBk7wbZCA/VIqeEsghBBCOg8U0Tshukh0O8AT3bs4mbCyorhKJPPaRyQsS1uvrg5TRC0rioAqWT5oEovm44n+32nLccPrMwGYRaJf9eqXmLliMy55ZrJyvbcNtuPg4mcm4wtDO4wgvFHQrQFiq1dMdjzfAeC3L0wN3L8QPpyzxrcsYVkF27mERqLbDsThLAqETQbR8bYT3KbCItG9Y0NTR0yR6OvrZE90ty/Eejf4ItH1E3MmBG2lm0SQPdEzqC5Bb9m/eWEqbnh9Bi548lPf+swbJvJ3FXE9TEtjKCABsNITvQyqrjjZJ9q57Hf9O9nP7VlsDrpO2/FhlQVvf6n6NtmJlGqOn/yQ78/sRVI+OtHtihBCCOn0VJW7AaT06LzJP5kflOjPkYTgqoQFtxjVw4t3WcIoEj3DpwvXY1j/7oHb6uqKokeKD+66aOB8nsumLN6Y/ZzzRA/fb0tTq3K5qe91PnjF1SBfc9txfP7d9S2yAFub1M/LFdruLU1+sdeyFAJExDEQ1izbEynZYmTnIrcnqI5CvOR//tQkVCctPHz2QUgk/BMK2fYEXBhRRPSUbcue6G2zC2K9mwwj0U0JynngK7rte4siEl2Ft18+/CozUTNt6SZf+Rm7K3kSSUVcD9OO5jMgC9aVoh1Jdi5tPvthbw60JwLzWlTKSWgneK/JlO2gKilvEzbp3qHg8MmLqPlwCCkWzJNACCGEdB4oondC8nk49WpwVUIkuuOER5ZZVk501+E4DsbOWYuzHpuALtXmL0mYCFsqREE47fFMcfWSQqKEAbNI9DC8TYgjoaiLt7+CElDatjexKFDnEbarq/Tn7auVddh7u955tlT9kGzBL4RGEW3TdnhiUW8Evhjl3KBNLBocKextQ7580Cb6TliwHiN26gdHo8cHRaJHsXNJ256+yEai55Z5I9F1cwT5iB5eyyedH74qsWjmITeaqCvW98rkpXhl8lJfuV4KudalugMEotBIdMM6LCs+8UnsD/fe6vfs75hKV5z35M6A/2+aIhK9gkX0ym1Z54J2LuF00FuuREUcI28KhBBCSKeBdi6dkKqQBJ8qHEeOxEskrOx3pZ2L5yk5YYW/nu04wJjZqwEATa3m0bmydYZc72n7b6vdT2yjTjsuNIrWPeTCRHSvcBhjJLqnm1u9Buzito4j+cg7cHxRzDUBkegn3zsWXyzdhCZN9HZ4W82OO0rvmNi5PPzhfMxfU5/9Ltm5mHiiI9jvvxBPdBf3utHVExTsHkVEF5PmAjmxNMgTXWsRZXimdP7omfaoJ1DkxKJZFd1H2PUdtFq3bzHsXPyTlH67GnlndZnFfOVcPM9Pjl+E1z9f7r93Fa/6MtNxj6wYqCLRvVS0iE7vhoqjo07QkfYB7wiEEEJI54Eieickn4dTr+CVsKxsskzb8f+A9Nu5GHiiIz+RJ8jOZfjAHujfo1a536RFG3DMHWOwsaHFF4meLS+2SPRo+4n1FjMS3StMB0WiO47j8ZH3W6zUBESiAxkhfferR/osP0xQiZaW0hM93kj0lO1g5eam7Peodi4ZoT73/fSHxuPt6SulNgCFCZzz1tT56pXaE2jnYj6pYTuO1N9uX4jH5307QTf5YXqaoiQcdssU3xbIRaIrCw8pL+B60CyPzc4l4A0beY4g/xtCnA/+3lZc+uyUgvIVmNVZGcIZ9buIeP+mtTMRPW44fPKDkegmsGcIIYQQQuKEInonpCofOxdbFlyqQhKLeoWzhGUhEZpYNL8f+2JV3iISloXqgMj7+Wvr8cS4hVrxuFDB2j3kKJFrf3vnKxxw4ztYtC4T/ZyPJ7rXu1yHV+ANiopO247k3+3A8UUxh4noQOYcfTRXThKa8SaPHhWcsBSWEaEtyGE70YU4UUTXCdBpSQCV2zRhwXr8/OlJbeucbJ9XB0Txh+Feb7anXpdUwBsGdc3mExoZO5fcd1UkeoPHJ183pIJ6XTwnQUKJLjK91TNOdfWFnfm8ItHjsnMJaIec4Fe1b+mFE3WC0+LWuamxFZMXbyhJFGrQWaVMFQ3vWFFNtOXzO6VUVG7LOhfy3wlehSrYLaWBL6cQQgghnQeK6J2QfCPRxR+JiUQuEl318OL3RA+3c7Gd/ASoIP/ppGWF2tfYjj5aNshL2gQrj0j0v4+eg40NrfjbO19l2uD1/DZQ9ptTEUR0w3alHaDVI9557VxMhWAxCVNr2sY3//YBznpsQmhbM/UKLbYs5STD7JVbsGR9Q2g7bJWhfwhi3+qsUMRztrauGe/MWKWpP/c5yAonDHcOSJcfIGjI1EeIRPdOdjSn/Z7o3jGhTXZqeG0F2bn4PNLb/m8VE4vanpWaspV1B7ZLI6IHF2mMNDkI/xhXbZfdvgzCiaodxbZzWbK+EafdPw6jZ66OuWQFASe2UoSqu975Cn8dOavczQjFO1ZUf3/jyi3QHqAAnB9BfxsIKSVMLEoIIYR0Hiiid0KqwjJ8KvA+oFRJnujyutc/X45z/zlRWpZMhNu5APkJUEG2B5YFVIccb9KyfBHYbjuCHm7PPWxoaNsK8UR3I/fzsURoNvQdz9iZmIqZ3kh0v3VHTVXCqH1id0xfvhnz1tTj47nrgtvaVrBvUsFT3/r6Fpxw94c44rb3Q9thYufiRbQKMRHRz3zkE21ZYoS4SRS/DndiRRe1HeQn7xW9A+txwhOLNrSkPQK+um5zOxfxc/C5d1eLtkNOdlt/hQV5omvmqUwu9UmLNuDq/36JzU36twCCJkGkSPQCpOk4vZ1V90pfbosiKV0jBXukclBo7ow4aGxJ457Rc/DAmHlYs6W53M0JxPdmhaL/8sndQjoXQW/rkAzsltLQieb8CCGEkE5PVbkbQEpPXpHojvyQInuiyzLOpc9O8e2fsKyi/ciU/af99YY9jFcl/b7a2fI0QtkPD9wOvbtWh7Yt64mehz5alVBPUpgINs0p2yi6zXYcY9/39fUtGD9vS26BA2zxCLC1htHU4hA0fW3fbaYouFhuQwQWrVNHoKuE5LTtFCRC6gTooESbuu2CbIfCUNm5iOc1SESPkljUO+nQmo1Ezy17b9Zq7H/DO3j47INw8LCtCrZEkifJ9Osy7ch8Fyc63G1UQl1Y04LGhq6vTSLSvv/AOACy2B/YjgARvZBI9Dhvyar70hbPJEGxBJ1y6xfFEPDW1TVjS1MKQ/t3N9penJALsm+qBEzsXCo6Er2Cm9aZ8CbwJn46w1sOlZAbo5JvV4QQQgiJF0aid0Ly8Rr1So1JyRM9fP+EgZ1Lpp7oBNq5JCwkQxTshGVpPdF1di6mkwL5eKK7uO32C4Xh+z4xbqHRdrZtblkzfflmKWLfgeOLRK+uMjtOsT9MxRK3H0R9KGFZyokTFSqf+OnLN0ke51ExiUQPIiWJ6IXYubgiem6ZN7mpjigiuu3IZbl95z3ejQ2t2bdRdJM0pg/3QVv5AtEduV3uMsfj/e8SNiEVdBrFdeI1FGXCbMaKzdp18lsFetFR1Y86UcEr8Mf54K/Sbb2Jh4ul50Q9ji1NrXjzixVobDG3MgqiGCLOgTe+i6PvGIOVm5rCN0b7EhH9iXIVkegV7IkeN+3p3FUSciQ6e1EFe6U00M6FEEII6TxQRO+E1FbnZ+ciPqSIIrrJw4tlmdm55PMgFByJHh7hm0yoPNz1SVMB1xPewJ4m64lu8gNb3kYXiW4i2IyeucpIyE07jnYCIQzbARo9tjGmvt7ikZq+GWFnhWIh6tfynyNdaSoR/dOFG3DJM5ON6le3Sb3cdGIiLfR9HHYuthShbBaJ7n2bIKwesdxWhSe6S0ObQKn3RA+oyFF/9t4fdJHo4rn2Js/V1qNcr9/A0fRvlIfpoAkcXZJYwJ+4thJQnecgu5o4iSpg/PLZKfjFvybjL69+GaGOAGI+B3NX12U/zwyYaJGaIAylShd0jDzRhb8LqbSNX/5rMh75cH6xm2ZEZfdu50G85RT6xhMhhcBIdEIIIaTzQBG9E1JblYy8jwOvnUvuR6PtOKEPlZnti/Mr0xWzNtS34LmJi6V1lmWFRrQlLEv7+rsuijaZMHuQdrcxicL316EW8k0eFjc1poxsX7yiaBQcx0Ha02/vz16D8fODvc0BeSyYBmC7VXkFam/zdV2ts85oUYjrhWJqkSNFoufj+dOG0qrEMBI9SjRu2sAT3bePNhI9vL7NTa34v1c+1673JxrN0Orx7s83uWnQWm2kf4RLvSWl7/ugKEtxfKkm1cohrKvq9EWiV0hc5IdfrQEAvDJ5qfE+QX+/4jyqWSs347i7Psh+N31DRfwbVumCTlCiXBfxb+a7M1fjjS9W4KY3Zxa9beWgUibC2jfsRBUcW4QQQggh8UIRvRPSpTq6iJ7xPVdHopvYr5pbdkRuWvYB/OrXpvvWJRMWqkJEiGTC8gl9WesQTXuSliVFyunIeqIbihqiWJaNRNe0LYhNjS1mIrpjbj3ixQF8CVlNyedN/WwkuhT1a+avC0BKilpsTPvFbWtVwmw86chGojtqcTXoHEexs/FOurS0TUwEda2uahNB9dGPFsj7aERz73pxwsR2HO2bAWGnKTCxqDYS3ZygCRzJzsXTDnF8qe6/pldlnBHLqvPpFdGLRQHzT7EQp1D1n8nLpO+6N6k+W7geJ/39I3y6cD0AeSKtEhKdBuG97lT3SzGXiddbv6NRKZNL7Y/KeyOn0qDNDSGEEEJIvFBE74R0ydvOJfc9mUhkhVAT6wqviH70rlvjx18b4tsuH03WFZE+X7pRUW+4nUtVwvI9xKuSWIqYRtW74o7p9qL454r//sSi+v236l6TLUeX9FIk7Th5vwbtOOYR117E7jDVtl1hSBIsrWCBUaQYEec6zCPRM23KTErlX9+0pZtw5b+/0FobxSWipx1HEm1bUmm0pGzfGwkiOkHPKBK9MTgxpW6CSTrXjr6uoHZndtU3Us7FkFseJSFiUN+Ldbufnp2wGGPnrPVMloSTth28OmUZlmzwJN2N0xNdGYnuOX9F03PKG3odp2i9bGOj9F1n8/SDB8dj5orN+OGD4zNtEIZSpVtbmHiii9dRpU0KFOutOhINOW8EIeWD9wRCCCGk80ARvROSTyQ6IEegJhOI6Ikuf7cd4EcKET0f3HapLFMSlkFi0YBIdN2xJQ090YMi0Qf0rPUtaxLsHaq0di76/u7dtTo7abC+viW0fbbtlCUSXYyANRVI3KrEKr2TO4Da+zyzvHSP2cae6GIkeoEPYc9NXKxNsht0jpsjTC6kbTmqe3NTCofc/C7+8MoX2n30Irq+TWmVGA6DSPS2/1tTsie6rg1hhx40vCW7HM/EjimBIrpnnE9bshF/+s8XOOuxCdL5VB2bd9GLny3Bb1+YiqUbZIE2zsd+VTtKlVi03MR5WMs9IropUiS6wX05k2y3PCfEW61qLku0YSvh/KcRlMsqA3EYddR7S6F0hm6phHPPewIhhBDSeSi7iH7fffdh6NCh6NKlCw455BBMnDgxcPuNGzfil7/8JQYPHoza2lrssssuePPNN0vU2o5BlzwSGNreSHTBzsR2wn+oewVCx3GUonc+rzW77VLZYSQsC9UGnug+Eb3tf534mExYkcQyb9tqqxLK/ZuERJ3uLr7EogFdVJWw0LtrJhrdSER38hfRESBOhiEeu7mI7vi2dxT764TJSrRzcbdLFmjn4iKKYmK3BIn6USLRM5MWubLWbGnGhoZgqwW9nYsed0w2t3pEdDiYv6YOz3yyCK1p2y+qt31v8Xmiq+vR5ULwlqdCmqTI8zpoDhTRZaFcjFCWrlll1fLCTxR5CuIWUFV9HPYmQVyUIggwqI44+3Llpibpu+n9Me2xMArCth2c9sA4/PjhT8oipHvbp7oOE5KIXmEqOqkITPN+dGrYLSWBgeiEEEJI56GqnJW/8MILuOyyy/Dggw/ikEMOwd13340TTjgBs2fPxoABA3zbt7S04Pjjj8eAAQPw8ssvY9ttt8WiRYvQp0+f0je+HZNPJLrjEcoTgv2EycOLSh9MxiAaivWrEogmErK3qm5/r5CcE2zV+yQsM/sNXSR699oqZeSxKBq22sHR8Cqqkwn06VaNtXXNRiJ6upDEogBSeUZ3W5aFr1ZtwRufr8CInfqZ1ddWlTcK19uC9mTnko1ETyYKsnPJlZf7LImwMR16OuKbC40taW1fmAjUqkj0Y+7MJF1sTtnYfXBP5X7i2whBE0Xi2FdNsgTbuQifxUSfES4J40h06AWjfK/fuC0/VPcpfyR6cRQd00tnU0MrutTkFzsQVEcxdSrTe6w4kRN2ja7Y3IQpizcCAOpb0uhRW9qfgn6LsuD25vvGU3sh7LL4y6tfYMHaejz1s0Ni+93UEVBZXhFSDnhVEkIIIZ2Hsorod911Fy688EKcd955AIAHH3wQb7zxBh5//HH88Y9/9G3/+OOPY/369Rg3bhyqq6sBAEOHDi1lkzsEtXl4oq/Y1CgJIElLSCxq8PTij0RXewf/8+OFkdvm1q8qL2GFJxa1bcf3kO4eqk4ATCbMkvK5z7tev8TutUkpctBFjER3Rb0oIll10kLXmsy1UexI9KCEjSb7fvNvHwJQR8mqcNspi+iKqEaNWC72bbEx7VNXIDO1BwotzxbFY6E9MYmXUT30NwYkuA0a1+5htKa8keg5Ji1aj90G9VSub0nJEwg68VYUKE9/+BP/BgHHKpYp9m+Ung4SB6VVvsjd4Pq8h6saWY7jxBo9p7pXivZUxcSygI0NLfjf5ytw8j6D0adbjW+b9fUtOOCGd7C1wkarYIqo4EW1hgJMEubmNiiH+OM9JNUtW3qTpoOL6F7mranDjOWb8Z19BsOyLDzzyWIAwKRFG3DwsK3K3LrKQba86lxjxBT2SmmgJzohhBDSeSibnUtLSwsmTZqE4447LteYRALHHXccxo8fr9zntddew4gRI/DLX/4SAwcOxF577YWbb74Z6bT+Qb25uRmbN2+W/nV2ulRFj0T/zfNT8enCDdnvouiXjye6Ayf2SHRVeSZ2LilFdG3Of1t9bAnLzM7F7SPvpt1rqpQ/upuESHRXKIuiH1QlE+jTNSOir6szEdHzj2R1nPwTi4pjZsZys2vSbaf3wdnb/BZN5KY3KraYmIo+oie6yt4oKnJyQfPIVPPyo725kErrJ2mCxEGdJ7qIZVkKOxf1frrDF49l0qINvvVBR6oT+eKyFRCjLDOWWeLEQHB9Ji2IW5dUleeNoi6WzmXBwmUvTsNVr36JXz03RbnNxAXrAWQsiOImTisJX5R2xMTLJu0pt97o/c2gsnPRHU++f3PipBh6Wdp2MG7uWmxpasWxd36AXz03Be/OXC1tQ8sSGXZHOJxcIIQQQgiJl7KJ6GvXrkU6ncbAgQOl5QMHDsTKlSuV+8yfPx8vv/wy0uk03nzzTVx11VW48847ceONN2rrueWWW9C7d+/svyFD4klm2Z7JL7GojOgJbtvhCcrUkegFN6OtrEzdOk/0sMSiKosKt0zdm/QJyyxy2NJGolepPdFTYiR6m4geQTSoSljo3c08Ej2qPYeI4+T/mr2ocXY3tBLI2rl4fL99goxGeN1cQhHd3BM909aoHvs6WhWR6HGKTumIby6oJqiyZQXYVLhtbvZGMgvnOmFZPrsVd3VTS26/oMSiYecpqO9kYU9sQ0wiujhZBMcj2qu307VBNWHnwDF6m8YUVR97k/zmk/PCBMsC3puVERw/mrO2KHUEEadO5e1H00j0VARPdJFySGy+ZNmKW7ZktSRch3G9VVMIcV43QOYc/PPjBTjz0Qn4sfBGzOdLN0rXciFvK325bBPOfOQTfL50YwEtrSwkO5fyDwtSJirh1DMOnRBCCOk8lD2xaBRs28aAAQPw8MMP48ADD8Tpp5+OP//5z3jwwQe1+1x55ZXYtGlT9t+SJUtK2OLKJB87Fy9iJLrthEe6eh/+bMeJJZGiWz+g9kRPJjIWJ8H76+1cdIKYqehp6SLRdSK6aOdi52PnkkDvrhHsXAoR0YW27bh190j7isfUvdZsUsfdxxv1622+V7hz8SY5LCbGyQDFSPQYrgexb3ITQf629O9Rg8OH98+r/CjjMW3bWqE6SMDORqIH2LkkLUXS3bYtGoXrKOiNibAJBnft0H7d/PuKonYR/OfFlnlzUsgTSflFosctOqnKq3Qv6yiaZNDr+nEepV9gNis9ypsnOn/9UuFtnuoeJV1fafNja6+8PGkpAGC6580s8XgL+RNx+kPjMW7eOnz/gXH5F1JhlHsctwfYK6WBbi6EEEJI56FsInr//v2RTCaxatUqafmqVaswaNAg5T6DBw/GLrvsgmQyJ7rtvvvuWLlyJVpa1IJhbW0tevXqJf3r7MQViS4mFg3Lfeazc3EQi32FWz+gLs+yrNDEomk7I/apytQ9mJl6WOc80eXl3WuSymg20c6l1Y1Ej/AUVJW00Kdrxg94XX24bUHKjuZxLeI4Tjb6sTok2t9LfXMuKtw0qZ3qnNiKSHSdncumEoroxp7obdvF5YkuTiBkI/cVbamtSmJAHt7QGUHafPugSHTdZAeQa7NPRBeKSiQs37l329bQkhtfqokWsX1BuMWftPdgX3/pRMu4oq3FY3M838X7Vb61OU68D/6q4w46x3nXo7gnWwC6xvB3Dcicy8mLN/jegghMLFpEOxfTiQh5Ai2sjvJG8Hqr9P79BfQ5BypBRI9dMHP050E8/4X4Lte3vZ3Tmmcy8EqHGroa9kupoIpOCCGEdBbKJqLX1NTgwAMPxOjRo7PLbNvG6NGjMWLECOU+X//61zF37lzYwgPXV199hcGDB6Omxp9IjKjJxxPdi5hY1MQbW2XnEp8nelsditGctCxUhQi8ykj0tv+DHtijeKJ7MYpEzyOxaFUigT5tdi4b6sNF45RtFyRKuG2rrop2LkVfYtNx4OpxsgDkF0i1di4lFNGjCl9ViUQswozKm1t1fpMJC/Ut0e1tokaip9L+a8slSGB1q2j2RaKLUZmWT4xzv4uTUeIbE15CI3bbSrTgH6eiyOed2ImDoChLybpDUaHJKbIdJ9bH/lJ5oqvKsCwL3Wqi/11THf/978/FafePw2UvTjNvU+Sa9fjsXEzvJVEi0cXPRVLZlm9sxC1vzcTyjY2+df5j9O8v6uri8VT62w35opqEchz52BntKiNbXhEVxbLQKhW27WDM7NVYWxd/Los44bVJCCGEdB7Kaudy2WWX4ZFHHsGTTz6JmTNn4pJLLkF9fT3OO+88AMA555yDK6+8Mrv9JZdcgvXr1+M3v/kNvvrqK7zxxhu4+eab8ctf/rJch9Au6RKDnUsiYWWjomwDn2SVjh2XnYsrAigTixrYuaiSH+aintX7ZBKLRvBE98g15x42VCmwiyJ6a1vlUTSO6qSVFdHXGdi5/GvCYsn6Igri5EPYRIUXUUQXBc8gHIUobDuO7yFRJ7KUMhLd1IJBjESPY1JJ9kXO/K+ySkgmLCxa1xC5/LTjRPIkznjuq89vUESkSSR60lJEord9l+1c9Pcn0wSMqhwIkt2E8OWdGatw8dOTsKmhsPEmjWtPM8XEqaoj8C5Tjay4pRVVX3oTRi5a31BwJLFu724htlCmIsejYxcAAN74fIV5myIcUlg7dH+LwvAmm522ZCMe/GCesr/lCSCj4iNz/pOf4aEP5uOcxycG1g+oRX+dJ3olJBYtBtpIdOE+GcfbSh0J2RM92rj4eO5a3PD6DH/eDVJRvDp1Gc7956c45o4x5W5KILwyCSGEkM6DmY9CkTj99NOxZs0aXH311Vi5ciX2228/jBw5MptsdPHixUgI4tyQIUMwatQo/O53v8M+++yDbbfdFr/5zW/whz/8oVyH0C6Jxc7FEu1cwh/0fZHocGK3c1E9YFoGiUWbU2lFYtG2sjUP7AnL7Edz1hNd2PjD338D2/frptxfFMdcH9golghVyQR6ZT3RwyN3NhYg9IlRcmETFV7WCFFFpg+x2YkNT1JF79DT9VchxxqVzxZtCN0mI+5m2lqVjMfORRSbnGx/xSei2xHtf1K2PhK9JcjOpa3t/kj0HImEQnhq+y7auajGiNg+QH+du31oWf6JwCAP6pHTV2LrALucmqqEb4LAX7fw2fNdHONu1VFFJNtxCrKH8KKq3jtR0pKy8dsXpuIfZ+yfdz2qvzWO46B7TZX0Pd9j61qdjDzhFmc0t7eoqNZQQKaPvnd/xvu6d9dqnHHw9nIdwudieUnPXJHx9p67us63zuQYxUXi20UdMRLdPxWcQ5yIiisZe0ehkEj0nzw6AQCwdc9aXHzUTvE1qsJo73Yuo2dmEkaXMjF8PnB+ixBCCOk8lFVEB4BLL70Ul156qXLdmDFjfMtGjBiBTz75pMit6tjE54mei0QPexD3Chq2o45Ozwf3mVoVyZu0rFCB9/4x83zLsgKk5rgsyywqTLXNVj3arIcUu8uvrWcenoPERi/VCQt92kT0YmsNDkQRPdrJFEUq00h0VWS1HUFEL2UkuglpO+cpL+YYKKxMf4Sy0s7FsjC0f/es0GVcvuNEigRNB3miB4jIbh3esS9bG1i+c+8g0z5xTAXdn3T15Mprqwuq5MjiZ3/5Kzc3KcsEMolkw94TEct3PG9ctKb8kyWOZ3sJxdiKW1xRjQtvJDoA/G/a8oJEdFW7U7aDroKdS2NrGt1qwn/eqIR2nS1M0O0+SleGXea+xKJ5RaLnls9euSVw23KIbD47F83EiIs44VQZnujxKmaZiT71caU055V4rrs8+2bx+uiTye2JzjBk2vtEASGEEELaF2W1cyHlIS47F1cED7JLyG7vSyzqxPZqcs5XWmHnYuCJrsI9HF30iwXL0BNdv0x1/KK44UZxhkWsilQlLfTpVpr8AOJ5r4ooojc056LPlyk8c1WoE4v6BVKvD7NLpYnoYtLNqpgSi6psD3R2Lv84Y7/I5dsBori6Pbb2fAQmFnUj0T1WQ6LdUVLhiW47QJPnzQYHeiHS7a9mzUROdjeFnYuc6DNYBPRiYt0jiube4lUJZKNGFMfthW3iiR4Hqpjdf01YjCmLN2a/m751ojoLXbXe6vpzFmdXmt7PvOg80VW3FXHbYnmiB+EdK6oJGLEfpDe0OqhipjoqB/KbPJUwgVBJ6PJSEFJqvJaNhBBCCOm4UETvhNTGkFi0SvBEv+PtrzBZEDBU+O1cEJudi/sgpRIhE1ZGWI5cJhxMmL9O+So64Eaih5fjbiI2LejHtqiXZCPRI4noCfRui0QvFjVVmduGGIleE7GP80lq6QotchSlX0T3Wkj075Gx1QgT0ft1r8Hhw/tHble+pAWrk2RMIroosoyduxavTFoKlSV5VdLC8AE9sePW3SOVb2LdJKLKN+AS5ImuixAXxe6E5W+L4wCNLbKIbgckQ3XraU6rLYXExKLe6907meMru1BNR4osl4Va0eYmLH8DoL7nOE68Pq6qPohiRWWKyfAznTBTXXJd83hTa8Ums4nATJ3Bve69Xk1FY1VSYbNtjYqPFa9wr7JoEReJ94p0ESZmTBDbXEq5TDzeckx4VDKO5jMRYMeUhEq0c5m6ZCN+8a9JWNLB37YghBBCSg1F9E5IMmFhWP9o4pmXhBXNfsIvQMWXWDTIziWRCLdzUZZpA18s26RdbxkmFnWFUVEgdT+qHoi9keii0GpCdcJCry7BNga/OmZ4QR6gvzl258wHJyfwRI32b2iJnswra+ci9Mfc1XX4eO5aaTuvcNe/zT4nTFjbd0gfPHPBIdhtUM/IbcsHORI9EUtiUVFsmrVyCy5/aRpmr/LbObjjMepEVjpAkNZtr/VED7JzcdTbiFHmacfxCarvzlyF+WvrpWUO9EKhaSR6eGJR1TGETxIEIe7vQD5WMSLfEbbxtju0/Bgf/FX3s3L5VxcSsauPRNdz4xszMX+NesLVi6mdy97b9s58NzwWSRgXxqNqAkVcX6wI3kD7m4iR6OKxlSoS3XEc/O2dr/DqlGVt7cm/rJaUjXdnrAr+G6Qpv9WuLCubSkK2sCpfOyoZvdt+x6UcyYcrUUQ/9b6P8eYXK/HLZyeXuymEEEJIh4Iieifl7d8difevODrv/ZMJM09wF5/g7DixiIZAsAiQSjt52bmElWvBUH9q20jVVariRYEglbYjRaEDGW/yqmQiGy2u4rLjd8GQrbpGKlfEtc2xBTuX6oD6VNQ35xGJ3tY3Yh+9OnU5HvlogbSdV0R3EzzWhdTpnqK4bIbC8Eaix1FtWhF2vnaLP8Gsew6jXoMZ+xzz7TMTBeoxHJhY1H3rwFOXKB5nbC7kDd6btRo/fHC8tMwJiJ53x5KuLW79luXvK7HIsMSIunqD8ApE4jGoItHlJHsG5SPeiFpVjcWwczERfQsR700i0VVNGDV9Vd51irjH575BFWck+uiZq/Cdf3yEWSs3h25bKCp7NV2dExasxw8eGIcvhYlrcRPZ0iT+txtUTF68EX8fPQe/fWEqgML66Z7Rc3DBU5/hp49PVK7338lylPutgcpGnmjMqwT2aYfi/jFzse91bytzQRSTSrZzWeAJLCCEEEJIYVBE76RUJxOBYsEFhw8L3D+q/YTPEx3x2bmoIpRdtunTJS87l4xArF+fMEwsqnpAc/dTPbtJEXe2E1lEd73JawM8yi3LipwIVMQVEx0IiUUjirFeyw0T3L4Me+j12oS4InoY7kRPXAlvw0il7awgFJcnusoiRTWh4r4FErXOtB0tseizExahXnOulwd44esEK1E8bk2bCfqO4ygtbYCcVYIuEh2CnYs/OXKwaBlkvWCiA0pWBR7bomYhIl91XZgIQ/mIR2Nmr8ajH81Xv0VTQXYuqr8FqpGuEj7ESHRxrIddKk2tZve04Ajt3Jh279Gm15sUue2o233+k5/hy2Wb8fuXPxfqNCo+MkETdN5DemXyUny2aAPOemyCsI1aOC/V2w3r63Opf3/y6Ce47/252e9Rb9UvT1oKIGOvoMJxHOU15TjyNUTfbxlGoofTGfpFnEC5beRsbGlO4YbXZ5S2EZWroVdy0wghhJB2SbDvA+nQBD0I7tCvW+C+vbvWIBVBIPEn5YtPrHQfPsUHzB9/bQi+s8822HHrHvhk/vrIZaoSVopk7FzCy3Ef+EWxJoqdi86rWYdrXVNTlQD8AchZajwiejJhGb8qnhXRHUFEjyjK5+WJ7kaih7RTF4kehnteogrLvbtW55W0NOWJRI/jzQwxwtRF1VtulGjUazAdcl14eX/2Gu261YoI+Ww9mnMsRaLbdqBAUFOVQEvKDvRxD4tEd3dT5UAISywa1E+RI9Ehi4dNguivuv+Z4L3/rNnSHHqtnPvPTwEAuw/uha978geoTllRRHSDbQoRG8XJZfE+FXZ1ehPa5oPYbPcebSoai10t+miHtbtYIlt1IoEmaK4rzT5iQljxHIpvNJTD0uTjuevw8dx1ee9vcg5NItFp5yLjnWgkftgrpaGShWqOAUIIISReGIneiQnSCnt3q9GuS1jAJUfvlI16NsGfWNSJzTbDfdgWH1QH9e6Cw3fOiDyqSPRkwsLlx++iLVMUiFVYhpHo7kSDnFjUbbd/e8nOxY5u5+Ja1wTZuQB+0bt7BB/gXCS64OkdMdo/Hy3A7ZswATLlCfPt1aXayBc/kaeIvl3f/Kxx7h8zF3/+z5cAMv0Xx+XwzCeLfctaFWPIPYdR3waxbacknsRpRx3xLorHrWk78BX+bm1j2nYcrUjujt9mTRRxTkT3T3JsacoJrKo+CYo2D7q3rNzU1Cb+C1YFjjzBpopE924vorSTghxd/7Wb3tU32IPXd95bv0sx7FxMxLJC6hXvjfXN5sK4/m0GmaDX/sU+zNq52LnJww++WqOdsBPve1EE/WJFNycD7rkm51C8RFJlEJKD2hj1Xm1iQaOrTjx2RqIDDS0pnPT3j3DzmzOl5fn3DPu0kumMnu6EEEIIqWwoondigh7me3et1q577sJD0btrNWoiCKcKS/Si2rmIIopKQE1YwYlN7TARHWYP0rlIdGFfK+cp7qvXcwwmIroYVe4KL2GR4d4+6VFr/lJK1o7GyYmHhdjDmOI4rjVHWCS6vL5LdRI9u+jHs4t7PUQNCB/SN/itDR2i4J1MJIrmxX7fmIwNgfI6iOyJbmZFUiiOIyfUc/HauQRpSt1rMmPagd5qw73GtZHorp2L5bdzeejD+VlLmrDEiNLygPE7a+VmHHrLaHz33rG+slKSiC5aPLht9bc7iEIEuSaFRY+qONU5LBQTDdX42BTDX5wQCcujIGJq5xIUsijW7U6Iusfy6Efz8dPHJ+Inj36i3Fc8ZtEuK+y2Uk5P9KDbjyhil0VEj7Ess0h09TbibxmK6MB/pizDzBWb8fCH82nnYkBnjdAvdaJPX96nCqJyW0YIIYS0Tyiid2KCHmCDRHT3x2IU4dQrENpOdAFPxwNj5uG8f06UHq5F8UaVWDRhWYEP+YDao9QlY+diHokuRoa7e6mKF0WUVtuWxDIdtULZkp1LAN5EoD26mIvoVUo7l9L8TM8kWAzexmsh0aU6gZ4Gx5evnUu/Hvq3NkypSlixTSp5mb8mEzUsTi64xxi1zrQdzc4lX9K2o/R3FyOwU2k7sC1dqjNj3HEcrcA5f009Fq6tV0YRp20HL36W8TK2YEE1xP8zZVl2Wy+6pgVF8rvlzVq5Rbr/OJ46xPa64psjHIIvEl1Rl+PkLzQ0KvpTNTlQjEh0E3WzEAsMsd+jJEA2FtED6859rqlyI9Ez31+ZnBmLXy7zWzaJ23nbEnb4xbqagxJ6u3+eg95mE9ttl0FEj5OwNgetFd8wKFFO1YpGDCyQ7pGdVCwOo7P2SqmHQyUL1Z11DBBCCCHFgiJ6JyZIBO4TKKJn/o9m5yJ/j/uB5/3Za6REhaJ4oxLLEwp7BhHbCRa7LMvsR7MbgbZDv+444+AhuOjIHQMnD0QhJJV2lB7XXkRBPGvnEnJuvOtNIrVdElkR3UG+nuj5Ygt16vAKd7VVSfQyOD5XWI4qosfhZZ5MWIH+5METPtHJThhEjkQP738d39p7kHJ5/x5+H25dUl1RPA6L7qypyti5OA7Q2KJWn8bPX4ej7xiDzU1+i4y3vlyR/ayzb3KvI+VbJTof9oB2i17WUmS5580YcTLBXRx1csN2HOU97OdPfYYfPjguMGJeKaIrNi9GEkiTKHv33j1j+Wbsd93bePjDecrtVMcv9nODJqJbdYtQ9YlpnS7iOXTvqa4ViHh6VflIxPMltiXMl75Y4mPQfdE9h0EJqSVP9DIkFg3qlqC3+FSEtTnzlpVmX9EPnkKxdJ+R374hKjhkSoP4N4ETOoQQQkjHJi/la8mSJVi6dGn2+8SJE/Hb3/4WDz/8cGwNI8UnSD/rFuCR7e4XJfq4WFYVImLkqigyqMT+ZMIKbFNGLNTXZSF4fxdRkLnltH1w5bd2l+pQ1euyYlMTfvfCtNA6RLHC/eyNNPfi80SPYOeSjURH7viiTKhE4dAdt8I7vzsy+/2T+etDxUKvaJRK20aR6MgKy9HaGMfYrgoZj3EI9SJuaflFoudX51G7bK1crjo023GU4l+TRxwMSyzqlhUWJbxqsz/J6YI1Od9vC+rz7N4DVSKZ1s4loNE6/2PHY+ciesO7nRAkKKnO2bMT/P75tu3g7Rmr8OnCDfjLf79UbgPIdiGq9kZhS1Mr3p6+UpoY0JFK25i7ui50O3cy4i+vfoEtzSnc/OYs5Xaq4S8l6NQMdtWhNhl6ogchVudOiLrtEav84UPjffuK40OcNAqzBItyPbekbHw0Z41R1H3Q7wO3TtNIdMnSpAIi0aN7ohvYuejeXLHl+0BnR44+zy2vgGFByoXi3JfczkX4zMuUEEII6djkpXydeeaZeP/99wEAK1euxPHHH4+JEyfiz3/+M66//vpYG0iKR1AkeiJh4bfH7azbE0C06GNvXcX4kdnQknv1/kdfG5L9rEp6aVkhkXJOsCiUsAw90QPsDFTF5yMQyD/eM/vXRvRE76kR0Xcf3MsXQZxU2LlE8cc35f9O3BXPXXgoBvfJJe4867EJoaKQ1996Q0OrkYheSCT6u5cdiT8LEyRRCZvUiT8S3crWq16v3s928rdz0d0vVG3QRqJ7PNGD2uKOSQfhUcKNLX7bjoG9u2Q/1zWnlJMr7mSVqq26SzlIUBMjbr1+v7rEospIdE8VqsSG94+Z52ujGOn67ITF+NN/vlAeWxzWJS6/em4Kfv70JNz6llroFrn8pWn4wYN+AdmLexz5CGuyF7e5MG7aJ0G3F3FsZO1c3EkSoV1TFm/07yusFxOLhovo5p104xszcPZjE/HHVz4P3Tb476v7BpO8jbiLzhO9VJHoccY2m4no6m1kP/jc8kmLNuDv785RvpXQkZFvc4VPMFDwrGzay/kRn3GYu4AQQgjp2OQlon/55Zc4+OCDAQAvvvgi9tprL4wbNw7/+te/8MQTT8TZPlJEgh7mE5aF3x63S+B+0TzR5e8mr+Tr6tXhvnp/+w/2wZ7b9M4ur1aoXxn7jLBIdH0bM/YOIQ1GcGI97w/ttXXNeHTsgvBCPYjiq1tiqCe6LxJd/ebBeYcNxe0/2FdZnwOnqJHoO2zVHZZl+fp5bZ0/aljEO3Gx/VbdDBOLZogqolclLAwf0BMXHrljpP28ZQSNp7gj0V10h6qzA7KFyaWoPvi6Manqb9tRJ/sUBcFUSCS6O8YdJ1zgVInsYq6BZRsa1ZHoCb2IrhN1gnRZKepULAuOJ0o9t27+2jo4juOJypTr1s3leT2/Vfc8t2/E41H1Z1ThoCVlw3EcjJm9BgDwz48Xatt44t0f4raRs/DfqcuNynYnHLy+8l5UthyiGC3eS8IsPJoM8leElSO2N5tY1D2WkHIlOxfhTYHmEJE1is/2U+MXAQBeNTgPQZ7o7mF6t9EJUeLnkiUWrQAdzIH8Vp3YD99/YBz+9u5X+JfmbZGOivTbsQLOESFe+FYEIYQQ0rEx93AQaG1tRW1txsf23XffxXe/+10AwG677YYVK1YE7UoqiNoAoTVIs3PFpELsXPL5kVlblQh8Zd6NUt26p+yxrIpET1ghiRxDItFNE4sGPfDH9Ttb9mLM/B8monvX96hVi8yqiH0pEr2twrgjpYHcw7J37KzZEiaiZ8bBt/YehIN22Aon7TUIny1aH1qfewhRXwOOI0Fu/x61WN/Qol0ft4juFqcrt7YqoUxqKyYWrU4m0Jo2j0jWTbqp+ltn5yIK661pJzBSWKxPZT8i0qBYL9pDLd3YqLxf/mfKMsxfW4/BQtS6izYSPcjORfRE90aia/Z784uVeG7iEhy3+wChbo+Iruknb1Sv6n7V3JoGulZL69Se6OZ3tE2NrTj81vdw8LCtQrd9edJSzFq5BbNWbjEuf8WmprY25ZaZRqpKCaojRPk2hYwxEyQ7l6QciR72B0Nst2R7FCLu5zOhbYLq766LO1a824jfxCEr+YJXgEJVDIFdV6TO4sllzmrz66IjoPVEL/+wIJ0Y6Y1Qzu4QQgghHZq8wkf33HNPPPjgg/joo4/wzjvv4MQTTwQALF++HP369Yu1gaR41FYF+J4HiHbumkiR6J5NgzzXAbUIHNReEW90my6xaJDwaztOoLWKBflH87D+3bH74F6+7YLtXOL5oa2KXg2b4PBGGvfQRKInLL/NSFZER8572Hu+zj1sKG48da+wpgfido+3/lWbmwL3a2lr0wHb98XPDh+GRMIyi0QPsTjREdVXXMWZh2wfGAEff06BtmPVlNulWj0ebDsX8RzNzinapJvOzkVkxorN+MMrX2jXi+1rCIlEr/NEZFuWHAG673a9lZNm4+evw4MfzMPbM1b61unEvmA7F7U9ge0E21jc8fZsSVxKO8DqLU1ZMdVUeFTV4Qrmkue2YjIzirY5avpKbGlOYfSs1Xm1KYzrX5+BFz5d7IlmNttXvC2LkzZhl2CTgad7WDniecolFjWMRHfE8yPYuYQmFg0pOE+C/75m/vfeQxKaSPSyJBYNXBd/G7SJRYVjV13HFTCnUFK8k4vZzxQuSTlRBLMQQgghpGOSl4j+17/+FQ899BCOPvponHHGGdh334zdw2uvvZa1eSHtmyDRLh87F1eA+scZ+2P4gB6484f7arf95Td2wgHb9/Et71JtVp9XsFdZjSSs4IkC2wmOGLU84vKfvrU7LjximG+7oEjZuH5oqxKP1YRMOHgTj/bQeIYnFTYjrvAqR6Lnytt/+z646jt74LjdB5odgAb3qLz1rwmzc2nrc1EM72XgiZ6vnUuhkegPnX0g+vWoDX77I3ZP9OBydW8ypAWboyjXf1VC/+aGMkmlrY5Ej4LrKQ0Az00MtjzY3NgqfbcAtArX1W+O2yXw/IhJSF3ySSwqHrNXIAqa1KtrSkki0rINDTj4ptE4+vYxmLemDqOmr9I3XkAl0rlv/4jtVkVdR5kUjDKa8x351742QxIYVf2uTiwqRqKrj0l1rGFvO5jglpuwcvehfCZAxLa4k1G6cvLx7zX5Wyzef739pZ3s1QhRYdHYxSComuJEoqsLlZKqKjbpbIKdlHAZwX1jQmfrv45IJZxC0aaLnuiEEEJIxyYvO5ejjz4aa9euxebNm9G3b9/s8p///Ofo1q1bbI0j5cPEziXodW3dPifvuw1O3nebwG3PPnQoPl+6ybdcFx3rxSQSPZmw4NUAd+jXDWcfugNufGNmm9+3vg4LsgAjih4iQZHocf3QVomNOk9rF694EcnOxU3Y6OR8msXyjtx5a6X4HpWcoCQXtHqzmSd6lSSim0eiR213oZHoe27Tq61efTlxRLuLuKXpytWJ6KLtiSqZbDJhKcW6ZEJvn7Sl2Z/UM+04qGsuTJQURf6NDa0BWwJbmryR6FY2Ev07+wxGj9qqwHOwIaR8kSBRVH6rRPYtCIrAbUnbkoi0ti5jDbRycxNOuffjgtqmjkRXTXwYVyNNqNRUJQLfOsh36KcdxxfNb7qfi65dqqLcvmtsSaPVtrX3nIaWNP49eSlOO2A73zq3jeLfp2wkesjfC53djnsMumPJR3zsoUlELSJOXqdsJ/s34tkJizFtycbMNl5PdKldwrkrS2JRPaVqgpi8G1AnHp+4YB0e/Wg+zj98mHaicsWmxqK1sdRIeQ40UemElBrx0quAWxQhhBBCikhekeiNjY1obm7OCuiLFi3C3XffjdmzZ2PAgAEhe5NKQvcwbBKNGybUyuUZb4pkwlJGuQZ5uMv7y99VZalsSqoSFk7aezCATPTlonX+6NLs/gm5jxKWpRR7gh744/qdLUeiZ/4Xo3BVeM+dLrFoQuH9no1ER+6hXuxjt19MPOODyNq5eAbP6hBPdNe+ICkIND1NItGznujR2h1lMklFtu8CJ64KqsKHe4g66xqTa9v7NgOgF+WrEgntPUUl7jW0pPHTxyeGtiGwfRHuT5sa/SK4OxnjlhM0LlSicj52Lq2aqFMnZD9ALbABfquaINSR6Glf+YUmFhWHXc8QQTZfK6OWlI0Fa3P3cJUIrSpZPE5xglIn8HqX7XPdKOxz7dtSH3nrvuzFaco2uwK+JeTscMsNtXPRnB/3ftissZsR22Ya9d7dQEQXJ1bFfvzTf75QbgME2bmIbSzsDZU4cPvss4XrccubM0MTF5uVqV4uvhGjGnfz1tTjxjdm4t2ZemukEbe8V3D7KgWtJ3pFxCOTzkrY3wdCCCGEdBzyEtFPOeUUPPXUUwCAjRs34pBDDsGdd96JU089FQ888ECsDSTF5Zt7qi034rZziSKEVCUsHL+Hv12mnug+cVwhcqoirKuTCemH8Lh567R1WLDkX82WWmQLTCwa0+9syUe57UEyPBJdXt9VE+Xv9qXYV+7nuqaUEImeENa7+wa3e9s+XbFtn67a9bqHYpXgKeIKNmIkuoknejbZZlQ7lwInC7J9GzAeCp2Q8JXXNnjFCYodt+6e/RyWmBbQTE5pdksmLO26YqFqny4Xw+YmeUw5jpMVH91xFOF2ByA/OxdRIBQ3swUbnWKisrBqUkSiq7aL0jxxOIcJslGGvvtWh4uYHNdU2BC301kKqYpy2rZ3J0KWbmgQyjSqOiuEi3ZjuUj04H3Fc6KKRNcl5XbbNmr6Sux1zSiM/NLv7++le41BJLpwwbem1I333md00ZxyYtHQqkvGDx4cj4c+nI8HP5hXcFnaRMTCAQdZzC1cq5/070jI0efqqPRI5VF8JzEg3rucCrpHAagMvxtCCCGkA5GXrDF58mQcccQRAICXX34ZAwcOxKJFi/DUU0/hnnvuibWBpLhcf8pe+NUxw33L47ZzifIKdjJp4fSDhuCRcw7CoTtulV1uGoluaufiXV6V9Een67AsfyS6qs+CfJ3jilYR+7ZvtxoA4SKoV2Cs1Yromf9FEd09bjFhnTgWcrYowX05ZKuueOp8fQ6FvB+KHX+bjCLRs8JyeB3iWIwqrnpxx2HQ4caeV7QN8RL+++n7Zz+bTJCptvFee7nl8rW1//Z9AidQ4kBlN9NNI/5tbpSjtW1HsAVqO86okyW68xkkhr8/e42wvywQhd1D47ifpBX2U6rkpKpjiOaJnutLcWJDFS0dpdeDbJtUAczKiU/hMOTEosGet7btSBHJ4rVgem7czZJC4mu3r8PKkOxcWqJHol/09CQ0tqZx8TOTQtupe3NJROza5rS6bu/EuHg2xPFUjkj0IHHVey6+WrWlaO2Q/eD12xXrb0SlIXuik45OewzqLtfEzPTlm7BkfUP4hoQQQggpiLzkn4aGBvTs2RMA8Pbbb+O0005DIpHAoYceikWLFsXaQFJcetRW4fJv7uqLXI47Ej1K0rXqRAKJtmj0Qb26ZJebeqKbJRZV2bkkIj2IiptqPdGDnnpj+p2dth38/cf74UcHbYdT998WgImILrdVN0HhCkdidLZq8qRGYecSKqL37RYY9V3ow5OUWLSriSe6+3/4IBD7K7ZI9AK3iYJ7jYhtF+swsXPprojq1jUz6RHRE5aFbfp0UW8cE1Ei0VV2LO4EmHutRD3POnsVY7HbY1sQlFgUiEdsUCVCdiOYl23M+Sqrcj1EqV7sSvE8uW+Z3PrWLDzUFt0b5S0MlcWQizKxqGo70c4lJQqYGh+JNtK2I0V7i9dT1Cj4hGX5ItHDELcT2+FGojcX6Iku2i6Z2LmIh6xL0Or9OyXbuYhtVAvqxSRKYlHd8UWsUblUEtFptiz3kjhG2DekjMiJRUtf/4pNjfj2PWNxxG3v+1d2kgk2QgghpFTkJaIPHz4cr776KpYsWYJRo0bhm9/8JgBg9erV6NWrV8jepBLxinReH2oR98eiV4gFgJ0H9FDu09Bi7ssrRT0Ln7tU5xeJXq04loTSzkXta64SML0ivAV1JHoqIBI9zt/Zp+y3LW77wb5ZQSpsgsMrTOlEdPeYxGNTiYmisJ61+A45Xdv17RYoDhcaWStOuph5opuLpWLkfqECtztegyJ5CxXqvajsXMRzGDYJ8+tjhqO3YmJC1xdVnkS+CQsYPqBnlCZHRnUMQQksfdtm7VzaItEjnmfdg7SpCCglVhSS+Jpsny+qOhpb01i6oQGn3T9O2M7fj1HqF+8/4jlparExf00dHvxgHm55a1bbtsbFKt8+cDFtns7OxXs+vLR6ItHzSXqY80TPTVy6y6LYuYgR9FkRXWPnYvIGgeM4+OCr3FsSuskoEakfNdedb7JOsnPRnIcKEEu951/1d37U9JU45b6PJV/+INQWQbKNU9A19urUZbh91KxIb4S0RyQLF/FtnbzLK7BBpOxU2pgvhyf6nFV1+pWV1T2EEEJIuycvEf3qq6/GFVdcgaFDh+Lggw/GiBEjAGSi0vfff/+QvUkl8uODhxhvm08ken2ESPQqhXUIYO6J7m1WpEh0RciGyg7Ga9+S+aywBgh44Df9of3O74402k7ExNNaROxbVf+LfaXqD1Vi0TDht3ttMlCALuQ5pH+PWhw+vH/2e5TEoiZaqTjpoOqPKLh9EHS8sb+q79r0SBNBOcLGzyn7b6s8d0mNnUsyKSeoTVgW/u+EXbHvdr1x7cl7ZJfrEh3ng+r+VB9hMq+5TRDNRaLn1u0yUD1ZKKJ7pds0sljazAm/X+g8r6OgmmRoak1j7Jy10jLVMUTyRBc+i28BtNo2GoS/FbbtKO/JOnR2Qpn2KRrYVvSmhlZ8PHctbFsWLWURPbeb6lBTaVuyTBEnGsztXDLbJRNW9voyFY11CVFdQb1JY+diUvxr05bjwqc+y343OSfiIbdoJpNrq80i0cVzUqpI9KBz5l2jatNFT0/CtCUbcfmLU43q09Umnsuge8eXyzbjvvfnYcKC9Xjj8xVYLrw50pGQ7FzymKginYO488iEIf69Z2JRQgghpGOTl4j+gx/8AIsXL8Znn32GUaNGZZcfe+yx+Nvf/hZb40jp+ONJu+HY3QYYbeuKSSqRSve7tTGCeCVGfCYlEd1suHqFPJX9SDJh+USujCe6vzztcYrbWmrxtUeAeGv6Q7tbHsKiiR2HiBjlL0YZul0pnleVeCq+lZAT0UPaWJUIFKAL8ZU8fHg/yXJANQEz3PPWhDvWTBKLSnYuBUeih+8fRyT6f3/59exntzSx7eJDpy7RrEvP2irlONAdS1UiIfVrwrLQt3sN/nvp4Tj368Ny2yWt2KxrVBMB39lnsPH+2Uj0pH9cmEzoqfzFAbU3t3J/T8LgMPFwfX2LWcEBqMTOxta0T2hVtSVf4UCM3m5N29K9ZurSjZHuA8F2Lvr9fvTQePzk0Ql4edJS6TjE/ghLYmg7kCcA2jZasakRf3jlC5PmZ9uYsHLXgTuMwqItxXMiJ+LMfC4kEn3V5iZPO8P3kfrRMBJdvPTFdoX58ReDwEP02bnoL+oNDbmkxcmEBcdx8NjYBRgfkLjcZcGaeulcmlxiD384H798djKOul1h69AB0AnnTBBaOTiOgzVbmsvdjJLCCR1CCCGk85B3SrxBgwZh//33x/Lly7F06VIAwMEHH4zddtsttsaR0lFblcQ39xxouLXezkUXoVbfbB6JLiLq4d6oNR1eEVQl7FmWBe9zb3UyoRQrVaLeLgN7KBKL5r6fM2IH7DaoJx4952vadpr+0Fb1cxgmkeiiECzak4jic9biRPN2QK6NYiS6fjvvPkECdCEPIiaevTd/b28pca0rlpp5ogt2LgUK3G4fBB1uoXV8c4+B2HdIH3+5wjDp3bUaP/v6MJx72FD071EbWF6PLmoRXSeA+zzRNcMzYVl5jXcV3nL+9K3dMGSrbsb7uKKjG90sjgsTa6lWj9jnioKu7ca2fbpi4p+O1e8vCbjhCRXPemxCaJvCUNluNLXaPoFK6Yke4YIVo7RFET2VliPPT7t/HD6eK0fBBxE0doKE39ltiSHf/HKFJLaL4q+JrUZdc26y2D19v3p2Cv43bblvW5UY7C6zRBG9ra/CeleMRG9R2J+0aJJ7mmjS3r+VQX1p2w4cxzHyMff+Tdclby2HiB72Fpn41kHQtuJYTyYsjJm9Bje8PgNnPPKJtJ3q+nl7xirc+/7cXD0G19h7s1YDyN+n3bYdXPvadLymGLOVgO6NkLwTkRfUGqLiipc+x9duehfvzFhVcFntZXJEbCUj0QkhhJCOTV4ium3buP7669G7d2/ssMMO2GGHHdCnTx/ccMMNsE3D7EjFYfravM7OZY/Bej/8KJ7oIuJwMrZzSXpFdP8wTyb8P3SrEmpPdFGEv+67e+LZCw/B8AE9PYlFLUkYPHb3gRj52yOx93a9te00/ZldHWBRoMMkEn1Q71xiR1FQF6OQ3Qd7XQJK1TJXFA7TfauTYZHo+WMioicseWy4bTGagKiOLxLdxdTOZdo138TpB5nbLwH+CF2V/3vCAq4+eQ9c+909fZZIXrpWJyPZ2FQl5OtDN8GSsKy8xrsK7/1pQM8uoZMRrwrR+s1tyqE7HsTDNYpE94no8vJEAhjQqwve+s0RofvbjlMS8VAlvDUpItHrmlNYuqEBTa3pbNLoKH/6JR90IULaG4kOAG9+sdK43KD7nkqk9I6GHrVVedu5APJksVvO50s3KbdVRS/nEovmrhGT827bjiSwih7d7nKdqHrWYxOwri44atQ7gaNrUkvKxgl3f4gLnvxM2kYXqV2TlK8j8XyI+0tR9qUS0QNuyCnbwddufDf7PUiwFsd6VcLConVqj3SzyYziH/vI6SvxxLiF+PVzU4peVz5IPuiO+jMpL69MzgRW/eO9OWVuSekQh18FpG0ghBCiYfy8dZjTFjxDSL7kpVb8+c9/xr333otbb70VU6ZMwZQpU3DzzTfjH//4B6666qq420hKhUJf+nab/cHBQ3MRu+7DvVekeuCsA7RFN0TwRBcRhe4uIRYTLl6hTBWdmLAsn2hZnUwoo5BFO5jhA3rgsJ0yXtuyFYYcRWcSTWv60KeyowlDJwSLlh4De+VEdNnCJVefKwCILdAlWvV+Do9EtwIF6EKieVSJ77x9Ylly37re+Sa2QWGe6Dv0C454jorYl6qEnmF4xUXL87+3jrBzZ1nqc7ezxivcF4muKT+ZCLbkiIL3/lRTlQi1iulek5t8yUWit9m5RExy7E026I5n93/3PrXT1uo+E8XCTCR6KUR0tSe6aobn8L++j92uGomDbnwHqbQd6XptFoRFMWo6ZTsF+f8H3StN+q9nlypPQkt19Lnu3l3XnLPu8J5vLyrrHHdT0RPd3Syoe9OOI0WLi4fq6t+qtwdc7nrnK33hQhty+RvUZU1evAFzVtdh9KzV0jY6Ed00El0kzsSikxdvwCuTlirXBf19Xr25GZubcoEBQXYu4iRRMmFp33QyTfAahcY8fnetDZlQKTeyhYv6MyGlRje5QwghpHJYuLYeZzzyCY7/24flbgpp5+SlVjz55JN49NFHcckll2CfffbBPvvsg1/84hd45JFH8MQTT8TcRFJO7vnx/nj/iqPxw4O2yy5zHwFFofihsw/EDv26S/uKz4rNGk/Uu0/fD8ftrreREaPBzD3R5YdU1UNrwrL8kehJXSR6rl5xtSxAyt9Nkq6a27nkEYmu6Ktv7Lq1ZOmx09a58yVGn4v94p43sQ9NRfQwLaw6mQiMDD5xz0EhJegRxVCX/t1rpO+WZUkCuPvZxDaoRrRzUfTHwUO3wtG7bm3cXiD4tWVvcHbUCYYg7+FcHeKkkP68uAKyavLgW3sPxnXf3RO7DeopLa9KyF7nOi07WUQ7lxqNXZOI+AZDzhPdb+dSazCh542Ydb/mItGD39gQbSAclEZEF4Vd9x7S2OKPRBepb0ljfUNLpOg7nUd2kBhpQlBiUZVobVmWJDT27FId4IkO5WeRuibRziVYRFdZ52THhmVl741hYry7n87ux/0bmgp4VWBTY6t2nViGe83rzrUocIvb/GfyMjz0wTzf9r7JPfFa0NQRZyT6afePw+UvTcNnC9f71gUNRe+5CLo2RbuiQnNbRL08Vm9pCt/IQzx333iwbQfj562TxqdOoKRuWXmU6pyoqin5ODb4+1Ci6gkhhGiYv7au6HW0pm18uWwTJ1Q7OHmJ6OvXr1d6n++2225Yv97/MELaB6ofncmEhWH9u0sCmMrOxb1PiM+IX1x7Qmidp+6/LR796UHKyGGxXCCCJ7pCoRt9+VG49bS9s98TlsrORS2ydRXaJgpp3s/ivkYieugWbruiPw6oRGSvMPr7E3bDvkP64IZT9pTWNQmikhuNKzZB1R5xURRPdNW5OuPgIZh1w4noF+LLHUS3Wv942qqHLKInLEsS3dy2mFh1VId4xO+xTa9YkoFm2+YpK6qOVF2lnliypMkPob6A4euOLdW5cxwHPz1sKPbcRrYxSiYsORmrzs4lYQUKoVGoSiSk+5FJJHqPWjESPXMduGK82CcmE3p+Eb1NDLXlSHRdX7RKCQXDE4vGgSti77R1d/zhxMzf+KaUHfpD8Hv3jYsk2OkmVVvThdnWBJ1fleWGZQHr6nORt9VJOVeGKHSLfy90gvYW0RM9K36bt8ct17IgRKJnlgX1iu2JRBdx9w+yHAmblHPHrPt3Tbd9ylb30UuTluKWt2Zh9kr59Vnf20EGbSrGZNK8Nf6HqiA7F2/bgiZ/vH2i+7NgclRRJ09Xba7sqPIwXvhsCc545BN8776Ps8skWyUpKp0PqyRHqUeDWB890QkhpPPym+en4Dv/GItHPppf7qaQIpKXWrHvvvvi3nvv9S2/9957sc8++xTcKFIegqJPkwrRMMxmpEdtFU7ZbxsAwPf23zZwW9cixYv4wGwqJquElJ227iH5kycTlk/cqE5ayghZ0etdXC92lwV4RPTwtpr+0A4T/lT06KIQ0T3ft+peg//+8us4e8RQaXmjEDnnJk+Tk0L622Mp1od7olvKY6tKJIyte3SoJhH6dZdFeQuyf351BDsX8djEY3jt0q/j/07cFWcfukPkSKhgT3SviB7tIc07qaObMHMJmgDo1zYZoTp3rmDkFV2rEgnpbQfdvSaZsIw86U2oSspZHmqqghPZWlYmyt5tWjYSPeF6oguR6IV4ort2LglXRFfvL/la26XxRHcjxGurktnz0JqyQydtlm1s1Hp/q5i5YrNyeSptR/JW9xJ0r9QJ9+vqWrKfW1K2NkGn2P+67lBFoutQe6Jn/pftXMLPe8p2Au8Jtu347IWk/UOSUGYj0ZPBkeii8Kxq98aGFum7914rXmMmdcSFqq6giSPv9kETXFJuA9vR/10wOKzoInr0SPSC/JRixk3IO39tzkdeZ6uUd2JR6p0kBhxpkrWMDSGEEFJW3FxOj3y0oMwtIcUkL7Xitttuw+OPP4499tgD559/Ps4//3zsscceeOKJJ3DHHXfE3UZSIoIenVSil5wAUP2r8dbT9sEj5xyEm7+3t3K9y8+P3BEAsP1Wspe0+MAclPj0sZ8elP2sE1LEB3TLsvxCX9JS1rH/9n2ynxs0r2YnLFmAN0nsafrwFjS5oUMlIpsi+te7wpMUpay0xxE/+6OcVdRo7FzymTTwonqzYVh/2W4o4bFzyUWiq8/dGQdvn/1sec69yz7b9cEvjh6OKo2/fr54u6RQOxfVpWTqiT58QMbDW3XuXMHIK3QlExa6COdEZz3htXO58Ihh2naE4X2zpKYq2D5o+626SW+UuIKyKxyKZZl4ontFRPeciZYdgP46EUXfjY2tJfVETyZy10aYQJsPr3++Qrl82pKNBYmkQfcOlYWMBTkSvSUle7u3RrVzaTYX0VWivpjIOeER0YO6xQ6ZZEk7DloD1ptGorsTSjqBOZ0W+04V+S+fH++9duXmJny+dGNgm4pxHajqilJP2CREtsyAfi5GJLo4HjsKYheI/UndkoiUeiqo3JHoTLJLCCGVBW/FHZu8RPSjjjoKX331Fb73ve9h48aN2LhxI0477TRMnz4dTz/9dNxtJBVAUhKgM/8HRXW6dK1J4vg9BkqWKCoOHrYV/v2Lw/DiRSOk5WJUYJAmKdow6CLWpehhy8I39xgkiS5e+weXQWICTjGa1lO2nFg0nmjafBH7w8VU021O2di2T1cAwDd2G9C2b25n1bkUBUbTQ6/WRAbnY1/jpbvi+H93/C7SJI1lyR7KOU90//H9+xeH4eKjdsx+D7O3cct3OXW/bdDfYycTBa+oHVVIMhmPxiJ6WyLMpMJ2xRWT+naTj7UqaUmR6LqoYK+dSyFR6ZkkfrnvNclE4Njcq82Cxr3XuW2sVojoJpHoXnyJRZVvzHTPTniIb4Ssq2spkSd6rm1uP6RtO9AKJE7ueW8u/vyfL/LeP2iSROfDLvott6RtSZhrTfntSYIEClG0DEuAqYpEd8+xZeWOJdee4GjnQBE9JBLdu29zKo07Rs3GpEXrpfXV2Uj0cDsX1USZ9/Soru/v3pux7tB1c3FEdLNlOky9/NO2o/1DbCJ8RfVEz0fMq5w4dDW6iF9aaHRM2stplSdZy9tob/XtpAsJIYSQdkPeCsU222yDm266Ca+88gpeeeUV3HjjjdiwYQMee+yxONtHSsghO24FQP1gK4pPcUbYihywfV8M6t1FWmb6YCTaf2j9liXLkYwY/MHvj84uq9YkFk0kLPz7F4fh+lP2xMHDtlKXZ8n7hlndFJvuCk/wKIy+/CiMv/IY7NQmmIrH1t0jol901I7GAqyITthNxtB3qkj03l2r8a8LDsl+z4jo4iSKPhJ9SN9u2KFfd7zx68PxyZXHSm8s6N98yH3uWpMMFV6DHry8fXriXpmkq+IETxB+72G/5Y6pJ/rubfZGqm3c6/U3x+6M/oKnfTJhSedbJ6InLQvVQltrkvmP48z1LArfCaXw77Lntpnjytq5pLx2LrltxWugp8I6SYV7dl0hTD2BlMgmkXXzEQDA+vqWothYeGnNHnPOTiRlO1oBuhhMX662ejEhaGJXJ3SKx9YcYOeSmwTR1y/ZuYScr0A7F8vKXl+2QSR62gkW0W3HCYyW9tqRPD52Ie59fy6+/8D4bPmA4ImuGQ7i32tVfd7TE3RPLGUkuureGzYJImKaryCo7SYlRBXnohyDS7ncXOau3oJ1dbKHu6otknAuGaTnVy+91ItHMfp2xvLNWCjY+wCVIbTLkehla0Zb/RXQIYQQQkgHJn/PB9Lh2K5vN3z8x2PQu2u1b50uAaFLsX6ziTpDkHgvJh01ETWzvu5iJHJSnVg0aVk4YPu+OGD7vtJyyRPdkoVOEzuXQqipSqA6YaFesF4RUXmiR4kx61KdxODeXbPfxWOr8hzblSftjqUbGnK1GIvo6u2CoklNUUWiA7LIlrAsabKjysAT3U2YKWqxOuFOFNprq5Kh4kTQJeTVfr+992Bs/fNa7DqoJzY2tOLoO8YElu3zRA+xc1Gdw6qEhW/uORDH7zEQgCYSve3psW/3Gjx34SE4/m8fZvcV0YmyiYSFGuGcFBKJXpVMSCO+OiQSfbdBPQHk7h9uPoBcYtFcaX275yLte3WpxpamcNsEp+2QXSFNNfyrkrkI8CYhEr2uOYVGzbUeJ66wm0hYgv+1g5Z08euOg6iR6JZlSRM6zR7/91ZJRAeOv+sD3HvmAdo6xEj0V6csx+ZG/bhQieiinYt7fbkCdtD9wbaDRfu07aA1wGzeK+5+tWqLcn2USHR1fcF2LiL6OuKZ0JEimhWqV5RJK9NIdNvR/xU2qS7qBEKhYp7jOEULmhBZvK4Bx92V+Vux8NZvB7dJuBIkf/TiNI1UEOvqmvGtez4CED5OSk0c/vxx4a2+0t8uIYSQUhFkDRw//GXSkSmv5wSpOLbt01VpBSLZuQg3IFd40iUGLRTxISnotrfzgJ7Yd0gfHLXL1loRXeVjLW5b3RYte/FRO0n76csTPkP2WC+2nUvSsnxitogqwq+QZ+EwhxXJzsWwIt1EQxzP7KpIdMA/kWIaie5tkxSJrnvzQSimpkptFSQiPnj95du7e9ot72xZFg7ZsR/6dKvB0P7dsdPWst+7F++Ehep8ipMBqjF/xQm74v6fHJgdd6rTJyUCFjbw2ru4ArWvDR6LHZ2IvmPI8QKZ8+n1RA96S2L7rbq3tUG2c3HbI94/thJEdBN/dMDMzqUqmbM4Eu1cgDyTBBrijo8WVSR6Olok+sn7boOfHLJ9+IZFIOgNoBaDSPSWlC2NYa84Omd1HX713GRtHaKI/srkpfjls/ptVW9juMKtZeWur5wneoBIHhaJbgf7doeJszkR3fVE19UTHIluYueSLUtr5xLQ0AhICT+Vdi4RItEj2B0VYvUQ9W2UfKL2xb9tpbCQAoDJizcYbys2SUr2W27lkhSdpRsay90ELXIkOu1cCCGEkI4MI9GJEaLgIz4Iv/6rw9GSttGtLZFl3FFL4kNSUNHJhIVXf3FYYFmy5Uhuv+yyts9/PGk3WBbwwJh5gfV67WHEB9zqAiJoTRAT/5WCMIsWVd+GETQJUCiqiSBAFggyQpX8JgKgnoDo43k7Q7JB0RyGHIkeLOACcoTdBUdkLHKuf31Gpo7QfYPp5kk0m7Vz0UxNDexV61vmPa+qSPRT9982+1kcnwM85TW1qpWwZMJj56K5ji4/fld0q0nivCc+Va731u+WFZR4cru+mTcv3K527VRyiUVz24qTAlWJBP5xxv6YtGgDnhi3UFu+LrGoSLVwXTd5RPQNDa2+7eMimbDQmnaUiUXTEe1cTthzIL6x6wD8a8LiorQ1CG+f9u5anfU8V4noFmQx259Y1H9lLV7f4FvmUmfwRkJQ2e6fOzES3RVog0VyJ9BSJO0Ee6J7RR+vIOmuF99O2NzUil5d5PuiFImuEtE933XXt207+uSlMUWipyQRvTA7lyhis25TE+uLqNpcoWJeynaQR/qHyET52aiL+M37UKkwdkhKbksk2gyVWUQvd/2EEEJIRyeSiH7aaacFrt+4cWMhbSEVjNe6xKUqmSiqGCr+GAwTEsMEfNnzuS0SXRNBXRUSlZupTyzbkqLRii1wW1b8vutdqhNacTMsiWxCGh+F2bnEgU5ElyPR5TaoItFfvngEdhvcyzfGLWmshEfUm4joXkSf/9BdQ56ZvB75Q/sHR3LvPKCnb5lXcBevl+u+uyd+cOB2ko2OOD4H9JS92/WR6LKdS63m3tK1JpFNequjKmlJ4lZNVSLwLQm3v93r3RVdq7OR9+pIdCATfb3fkD4hIrr7vz4SPSlEgEcJAj1xz0EYOX2ldv039xiI1VuaMXXJRuX66kQCTbDlxKKuiGs72ihuFRkBuDwvkHuHy8NnH4hfPz8FqzY3a+xc4LFzSUt/c1T76O6RALDW4+kcRKuibHFsiJMYQLDvdiaxaLBdS2vA/t6yvZu6bXDvdZ8t2oB9rn0b9565P76zzzaYu7oOQ7bqKgn1KosT7z1Q54nelEoXPRI9ZavFWJdIiUUjCPs6gas4di55RKILp6hUkehRELtaDFyowKaSIlIqqyFTxEmwcmjYQVVWTi8RQgghHYNIInrv3r1D159zzjkFNYhUJlIkegl/kkl2LgVWq/J8FpNYikKxKIxq7Tokixv5gbPodi4JSyve6gjrvq7VSa1AFLav+DBjKqAV0zdeN7FjecaA2FZX9BX99Xt2qVYK8iZJOMW6otq5AMDe2+but8ftPhAfzVmL4QN6qPcNLjqb/PL5nx+K92atxs8OH9rWRvX2bkJZEe+2okieTFg+H3pxfA7oKUei6yKbveO6ukrdwKAEoWL9ovhbI1ilBOFe1znhsM3WRLi++3bPReC6Hs3h5zezvxuhqxqj1Yq8DH27VSuj0GurElkB+LpT9gwU0ffYpheGtqS1Irp7H3SFzyqPiKtLBKsiYZknF44bsd7uNUnst32f7HjSjTm/nUtunW6yR8fmSJHoChE9+5ZCbtzNXrUFP3poPBoCPPHTIYlD7bBI9FA7l8z/3onPK16ahi5VSVzw1Gc4cpetcdzuuYmtoPpcdJHo9c1prQAcWyS6ImmsXE8UixbzenXlmhThttPUuqRQYdk0YWop0XuiV15bSeHozqrjZP7mvjNjFV6btrykbdK1x6XckeC0cyGEkPLDl4I6NpFE9H/+85/FagepcCRP9AB95AcHbocbXp8hCYCFINm5FFiW2G5XwNUJ5FUacV0qTyrbkh44ix2JmbQs/PhrQ3DnO1/hoB36Gu0TpmsN7NVFaxkRbuei/hxEsScaVMg+9tB4oueiI3XHItvX6CZZcp9rq5KRLVl2G5yLBq9rTmHa1d9Et1p15GaYqNKjNiP6HrpjPxy6Y7/AbQGgq8ZTXiQRMnEiCm79esgiuk6UTVoeO5ekuh0mb3p421ST1Eei3/y9vbOfvefJFbtFe5U+XXOR6EH2LCLu7cEtp6vCS12MRHf52tCt8PaMVb5te9RWoTnVkmljSH/UViUDLVnc/d1txGjyVEQ7F+/kVCkRL4OP/nAMaquS2Xu5+hgsSShvSct2Ls0BUeeFoorud8eI5cl5MXHB+sCybDvYEz1tO0p7lex6r52Lr11yJLrL4N5d8dCHGduzD79agyN3zuVGUUW+e8Ul3URqQ0tKK+yLf2dTaTvvN+HEclRe48USwrTFGlSXE9HN6srPE72w/fMhSkSx2CRb8TbBe7NWoXfXahy4w1baMuifXhri7mZxmNiOgwQsXPjUZ/FWkieyiF6+dmTq5/gmhBBCigkTixIzPNYlOs49bCievfAQPHvhIbFUKwWdaerddaDfekKF2O5ebR7XoiYgrjezc5EnFkr56nMiYeGSo3fC0+cfjCd+dnAsZd575v7YY3AvPHjWgb51Yc+4CcNJFpFi+cYfsH0f7Trv2wiiAOMKRKKdi+7hXlyqGx/+pJZBrfZTnUxkE/cetcvW6N2tWjvxEDbyvHYuLkFNeujsA3HGwbkEkd6+EK8R1bHJ9ieyd7JORLc8Fju6SFUTkdbbVwmFQA0AI3bshzOFRJjeTdz2iG9piO1KGYvoTls5GdFWtOsR6/KWM2In9aSHOKES9lZKl+pE4KSV2y/ZSPSkGIluRxLRE5YVeazHhSgeuAlfqzzHJuP4ItHFMpoiRqJHQdWnop1LFLurVIgn+uam1uwbE8r9PQK7V2TMvpXhadOgXl2wrq4l+12cGFBFonubWKtJylvfnNYnL21b8djYBdjj6lGYtGiDb5vmVBqfLVwfGA2flsT40onouuSgJpHU7ik0TTCaj1gsnqOgMVMugsTKZRsb8bMnPsP3HxhvXAZpn5RbqPaie0OihA1QfSSEEEJIEaCITozwWpfoSCYsHLZTf/T0JBzLF/Fh0SvMHLhDX7x3+VH476VfNypL1KZ6dc28hCFGpqo80zPLdSI6pG1KKaIn2wTgI3beWuv/fd139/R5NwcxfEBPvPmbI3DiXoN867x94O2SfOwb4vZE336rbhixYz/ce+YB2m38yTGFyRLXzsUgEt2yDMaH8LnWYMJA9dz1718chvcuPwp7RXiz45wRO/iW9ayNfj2esOcg3HKaGKEtr0+EXCOiSLxd327SOu+1cuiOmajBs0fsgGpBENaJ6PlEonvb7OIVr7z7uQK1N9Gni3ssYZfA7JVbcPe7X+HGN2YCyNgnealKJHzC1deGqiMqxf3D3G1qq5La680S7FdasolFE3IkeiRP9PgTTJsinkm3/e7kgdI+xZHF7OaULY3NoOjtQlGV7YqeGTsX859nrWk78O/PiXd/hCXrG7Xr/YlFc5+/XLYpa5fgnYgZ3LuL5APfmgr2qPaKutWaY6xvSWmFKFfwvuH1GWhJ2/i/l6f5tvnLf77EDx4cjzvf+UpZBiCPB9WERlze6150x2Xy88H9PWQq0uVzDKJdTski0bXLFfdr4djTUiS6g5Wb9GNcKkPzmZQf9WSnn7BroNR/gWJJchsTfNOCxE1Lysa4eWu1v4MJIaSzQRGdGCFbl5SuXskTHV5xy8KOW/dQRnSqkCLR20R+yetdKF4UC8wsPUobtWUSifvTw4Zi0l+Oy34vxMveq3V4xRQrjzuJTkDJ9/f/8XsMxHM/PxTb9Omq3cbbB6Kw6LZHjI40SSqrS/AqCom1Vcm8jqtbTRV2VPiTexHL3n6rbr712kj0CEPCnxQwuJ+qkwmM++Mx+PiPx4Reo0/+7GC887sj8Z19tpF80HV2DyYWDirROCixqIv3OHOR6IWJ6Oc98SnufndO9ruqT5JJ/2Rcvx7qibCuNUIS1xDBtbZKH4nuOLljXrMlI4gmrdy4Tke0cymXHzogXwfu9eweh+rtB9uR/d5bUnaoP3hcqMQid5FlRYtEr29Oh/pXf/DVGu26ILH0O/8Ym/3sbVO32qTkA9+SDn7A9tajGyr1zamAxKLyCtV2L01aCgB4YMw8o7aozkWxhKiwCPsgotq55BMRGxahXwzEcRDW7+Ja8fiiXLYUGSuTd2esws5/fgvPT1wcum2lnUJpYqbMjau0KH3S/rnpjRk485EJuOIl/6Q1Ie2KCL83CAmCIjoxwpuQsVSIgkZQYkMT5Ej06rZl6mhab9JEFeJiCxaO3X0g+veokZKrxYXo2QyER55m25WHzYoKrzDmFTflNxXMKtJ5zef7J80kas4r9osJKt3zLIrDuiKltxYM3lTQRVSL/PrY4diqew1+cfROodt6CXuVuEeXSOkvlHgPc3DvLtnPumtkmz5dsW3ApIZLbVUSO7fZMomC8DZ9uii3zzcSXTWZ4O2uAb1k/3b3rRqdiG5q5+JF5TtfnbB8Eco68bubIMKHTap1qU4GTjy4+380Z23b90T22kilo4noxQwBHBHi5y9eB+79xT0OXSJPv51LHC0NJ9DOxWM1FUZ9c6qghJvz1tRL33XWIt42ebs0bJx4+1b3N6ChJSCxqGd50OR1t4DcDuJ1pppgKVYUtjaxqEF1tu3Ath386KFgu5Ls9o4T+SFR8oovWSR6bhyE1Smu9ycWzZUTdNwUGSuTnz+d8Tf/47+/yC4rZNKplFSSJzpfryBx8+T4RQCA1z9fUeaWEFIY4q/OCvszQtoZFNGJEZJgXNJIdKFez7oor7sD3kh0v6goCs5VIVYVmfbIAnWP2ip8cuWxeOScgyK1y4QzD9keX914UmibgijkvHl3/dnhwwAgO2FQLg9kEZPXgH1JI4WGVyvsXHSikHjudUKQnFg0EfpcM7h3V3z25+PwfyfuFrKlH/GHwAHb9/WtF48pX7b2JAfdtm9OHI8z+tiNhgb8NjAuruj7q2OGA4AykbFKW+vbLdze6OBhOfuUrbrXYGCbqN6kSTLp+i5HFtFVkeiJhE9Eqk4mlNeuKMKHiei1VQnUBEw6enevSuQ80W0nmp2LiXVRPuy5TS/c/xO9VROg/kFc7SZNVRzD5qYURk5fmf3ekrKN/aYLpVnht+4KQ4mE2USRS31LKjQSPQq6Lqj2tEkU7pOKCSB/ufJ63SHWN6e0bfBFogcMzW41+snDsEj0qOPA9A2Gv72rt5gJI+0A89bU4fOlm8za5Dihgp7jONhQn/O1F8XJOMeUKWH9Lq4XT1tmsVlkuon/fLlwHAc/efQTXPLMpILKaI9EaXWliegotye6QCWPb0IIqRSKfafknbhjQxGdGCGKOKXUS3cemLOy0NksmKKycxERS6tSRCj7thcWu0JqVTJRtEj9mqoEjt9jIADggiN2LEodOrzH9OtjhuPZCw7BP87IiFrltHBwMRHRfRMxijcOxKhxXZmiIKcTDUWhvbYqISW50+2jE+TDEJ/ZDhq6Ff51wSH4wYHbhe5nMlbvO/MAXHD4MJywp+yVL0aYm/ok/vPcr6FHbRUeCBBDF69vyH7WXXuuwPi743bBqN8eiWtO3sO3jSr6v68iR4D3R84hgoi+TZ8u2T5q1ByjK9ZEPXNdFEkVq5OWL7K2tiqBPygmVsR8B2HDprY6ERjZ7B13iUQuwWkqop1L9wDhshDOP3yY8vyJqMQj9xo3OYbmEtq5iDYoLlkR3bIivWlV15wyjho2uVXrNCDvGBLtPrrVJLUJg128Aqnu78bcNXXaiRu/nYv+uIMj0W3lZ5eoOph5ss9o5YqYiOIiaTtc0PvdC1Ox/w3v4JP567L75PYvvZ1LWJ22NhJdJqgc2b+6sh5zF6ytx8dz1+GtL1cGJsYNwntI5TrGuKutqGhvD3LbaOdCCCGVTqX9/Sfti+I87ZIOR7nsXK7+zh7oUVuF7x+wHWav2iKtix6JnvussrcQ15vYuZRjYuH+nxyAeWvqsGub9UWp8EWqJhM4bHj/7HdpSJRJTzcRyYIj0TPjSTzfW/eUo69dxs9bl/2ssysRh2dNVUKKZK6tSoQKTlHw/hD4+vD++DDAAzkK395nML69z2DfcjF58MpNTUZlfWO3Afj8mm8GThY0tPjFRS/uOUokLOw6qCemLdmYXXfEzv1x9K4DMKi33wpG9QaKV305fPjW2fNz9C45aya9nUuckeh+T/TqZAIXHrEjDtyhL6569UvMWpm5Dw7r3z27Tdg9OZNYNEBEV1wX+Xqiu5Y53957MN74Ir5Xf00EPdXvYbef65vDJ3qiRNwXynoh+tfFnT+xLCvS37eG5rSxf3XX6iQaWkK8yzUPFt6J6yYhmn5LUwrPhXgZe0+hhczfDm91D30wX1uGNzo6KFo6SEQXx5M6sWi0h6u07cAwPUveRJ3gcRwnVNB7dWomaez9Y+bh0B37SW8XlCrPiziqItm5SIlF5e2CjruSn5vtGIRi7262k8lzUelYCI7ckyZNKuwkiq0pR9PE6PNK6xtCCKlEeKckhcBIdGKE+Pu7lNYdfbrV4PpT9sK+Q/r41kX3RM9t36NWIaILByYKGGaJRUvTKdXJBHYb1CuviYyCEouG1Gd6/L89bue82xBGmJUAoPDV17xx8PqvDsezFx6Cgb3Untzb98vYjGzbp2vAucgtr6lKSJHM+Uac61AduUl0eFytUPl76wg79pu+tze26l6De87YX7uNVxAWz90ZB2+P89vshrzrVefK++pzTVUCY35/NK745i5SOWeP2AEAcOQuW0vbZxOLRvxrqkosWp1M+ETBZMJCMmHha0O3wk5tSWZrqxKRHpS7VCcC39zx+vq7dQIZu5ooEz6uhca9Z+rPXz6YHK5qE3eyp645fHKmlChF9KwnerQ3reqaU8bRj0HCsotu0sQr7DeGiPFevL7tlmVpE0zry/Daucjfxesi6FhFgVj1tyOqnUspdKuoEa5p2zFul9tv5Y5ED9PtdclEHccxjgaubLuLwm1BvH8byh0Z7WV9fQu+e+9YPPHxgkj7yec75kYViOMUft4Kq1/4XPLaCSGk/VHsWzUnNDs2FNGJEVIkeplCjb21BkVWhqES0cXyRVFO64ku2rm0gyifQk5bFBE9aMtiWiWYCH3iYTiOI03EiKLVXtv2xmE79YeOm7+3N35yyPZ4+ZIRRm3r261GEtEHacT5OLnwyB3Rs7YK5x42tGh1PPbTg3D6QUNw5iHbx1bmoTv2w6S/HIfv7rsNAOC2H+zj28b7doh8vfrLjOIvDWT86S89ZmfJPuTMg7fH/y49HA+ffaC0rSt6R728VBMPyYQV+KPuT9/eHT8dsQNG/fbISFGKfbvVBEY2ey/vlG1n+yxtR/NEd+1cTCb6ukeYfFEJE5P+cpz0XdV3PWNIqlsMgkT0RB6JRU39q1WTN150Irr3b64uT4AOb7R8wsol+TbFK+x6xW4xyr674u+8qi2qvx1RH35K4aUf9UUJ28lHeBcj0Uv/ABjqiS4mPpUik/XbAZnJwHlr6tqi83PLK+0RNw5bEO9elfYcf//7c/H50k249n8zIu5pLlSX8o1ZoAIi0QPGDYUcQgjxU9kT6qTSoYhOjChXYlG5DXorDhNqBAGgXw+/t674o7vawM5Fak/MfXLa/tsCAI7yRL0WQiFNDDvnpqeimA/lZp7oevE1GSEicviAHrjpe3tjcG+1lQsAbGrMiWRb96yVhKn7fnIADhmW8S6PA9Uz0nZ9u2Hy1cfj2u/uqd+xwHF77O4D8dcf7BOYwC8fxGvxRwcNwc3f21ta7732wxIB1wQIkqbPl5ZlYe/tevtESHf/qG+jdFEkew17u2bbPl1x3Sl7YWj/7pEElu36dg2ORPf0Z1OrnYtEj2jn0q1WL9KO+u2ROGynftnvKlstHSpxrZ8n2a3qB3FPRf6LSmBDg0pEz/yfsXMxH0/1Leae6EaR6Jp7aZCdiwne+79lWejbrUAR3ZMgdJSQKNa9JlvTNhasrde2RZlYNA87l2LjOE6khz7bMY9EX7OlGR/NWSP1S6ki0cU2inWqbqniPIwoDjpwAiPaf/vCVBx75wd46bOl7UZUzLf/o1jblANdfpEw4rC6KRbl9kR3tF8IIYSoqLA/jaSdQRGdGCGKj+US0X1WHBHtXLrWJPHshYfg+Z8fqhT9RBFMjALURqJr9o2Dy765C/51wSF44Cx9AsZSEnZ4plE/KtHspL0GKbZUs9sgvRe8iYgu6lLVyYQUnRt1UiaMNVuapbpEdtq6B164aAS+Plwf7R4FnbBSyNsalYT3MIIi0VWTXlHvFfkQ2RNdIWZGGYM+f+mAXS3LksaCN7rfL6Kns9dGVE903Zgb2KsWuw7qiUu/MTy7bO9t+xiXayKaqLYpdSS6Lmmwl0A7l0S0a7euOW2chFDlxe+lWSOOe9s0ZfFGozpdvPfohJV5SyIKXiFefLvptpGzcNmL03z1XfT0JHzjjjF4U/DoDxPRo4p0pUhIm44gigNuIlKzHWat3IKzH5uIkcIkhKnPfqHYGhFdhRgpb3si0YOEzNc/z5z7Bz+YV9Eao9i2/D3RvZHI+benGOT7e1kcj5U2EVLuSPSgJLuljsonhBDC+cyOTsdQWEjRkYOuy/ODzPtqdtTEogBw2E79ceiO/aRl+2zXGwBw3B65JIJVIaKcl7h7pKYqga8P7x9rhO9gRaJFU6I89AT9YD/3sKH4xq5b49bTcpHF9//kAEy56ngcu1um/08/aIhvv3cvOxJXnrQbfnWM3lPdROirSiZwydE74axDt8eQrbpJ5zluoXW1IKIXmwp7nowd7z3He+1LOQyUInpu/QHb95HWxdV1UW9HKluNmmQEexOvd7rmutu37f4mCqBH7CxP3niv2abWtBSJrhNVo/DWb44EINt3nLLfNrj+lD0DJ8dcjERKxYWgTCYbA/+79HDlclN7ki1NKd89yz3EhGUZ/d1xqW82j0Q3yV+g9UQv8B7pbaNlWegTMRLdOw7ENxQe+Uj2WHaP471ZqwEA/xQ8mMVJB9XxRhXF3XZ8uWwTfvP8lEj7mmI70aKT07YTWYidvyYXsV+qxKLiOYxi5yIe20uTlkq2PLpyHABO6fIHR0aaCIgpEr3SXlmPFq+gtnCpvEh0c6uZ4tSf+0w7F0IIUSM+71TaW1qkfVGZZqGk4pBE9DIFNRy72wCcuOegbKRUXKLnf37xdTS2piWf9DB7CC9xR3roBLF8+Od5X8P/pi7Hr4/NP6lnXJH23Wqq8M/zDpaWWZaFvt1r8OhPD0J9S1rpVz98QE8MH9ATH361Rlu2SSQ6APzhxN2yn8UxlM+kTBCrN5dQRM9zv3JNiEXG08yk59oXT12Yncs/zz0Y4+atxSX/mhxrE4MsY1SIEcE/P3JHvPnFCpx72FD87d2vjPb3/vhLJCyfsvDHk3bDDw/cDoA81sXzPrh3F3hvpY2taekeWKhgcdAOfbFVm798L8FepTpp4ZwRQzF1yUbMWrklsAyTW9AO/br7lhXLzmWPbXopl/fuWi29hRLEuvpmyRLKFc2i3m/rIniim5Rt6okeFZUnevRIdM/EQ8Bt3/s3QZyYCLVzifhw5V6PP3xwfN52FaF12E4kEd12ChPQSuWJLgmQIXWK59u77T/emxNaTlRLnFIjti0un/1yCc66avP9vSxPoFTuOSxHfzuetzIIIYQEw3slKQRGohMjRNElbusSU6qSCTwoJPWLy6oimbB8wq0oOJloq3H3SJQoxDC+sesA3HX6fgWJSaU45ZblPw9eRuzUD/tv3wf9FZ72LXm8ei4+zMVt51IsIUVFZ/sh4LWkECdAVBNQ4vXcu1s1Ttp7cPZ7viLTfkP6AAAOGbYVgOjCQG11rs1/+tbu+Oj/voHeEaJyvQ/qquO++Kidsr7h4v1S3HRQ7y6+e3pTq+2bqADUSV5NaBUa26tr7hp3u36YQvx2OfewoRjWvztOO2C70HpO3X9bXHb8LnjuwkOzy4pl56K7R5t4jrtMXLA++3nxuga80WY5oXqb4qS9BmlzZExcsN4osTJgloBZTM4pUug9stWjeOcVie4Z90FCo/dYxWsgLLFodDuXzP/FvO+nbSeSsJ22bfzm+an511ciOxcpWWiYnUtAxO8n89cL6/RliLtV2t/OOITiSvdEz/f3ZNC599WRXxV5U0me6JV1tgkhpDIp9r2ywv70kpihiE6MKGIOzbyJW/QUSYaIcl7ivk9WWoRwJDuXIrajOpnAf37xddzkSTQJmEei64jbzuWKb+4CAPjtcfIbAMUYt/kKwd/ddxsAwK4Dw+00yonYY12rk4Ge6KpJr6AJt3yv3UfOOQh/PGk33PeT4LwFOrHVe8qiivDecx42rMSkkGJV2/Tu6hNtG1vSynH6vbaEx1ERrTPEiTJXrL3wyB3xs68Pwz1n7O/b99rv7on3Lj8qdIINyPT1r4/dGSOE5KWmk4dR3yQAgMd+ehBqkgn87fR9s8sG9TK3zfpgdu7NmiNvfx8TF2ZEQG/X9+lWjQfOOhDD+usnG0xp1AjkJttUFSESfbu++uTMyjI8QnyQ6Or3YBcj0XPr6ppTvn3ztXMpJlE8zgFg0qIN+CDg7a0wShWJLnmiR7BzCfqTH1ROpYnKIpKInudPmo7qiS5ek2HHVOpDFvu8HPYpktVNpXndEEJIBUKrK1IIFNGJEeKP3krJUVPoA30QoogRZ1S4yLUn76FdV2mvGxerD/JFJZwULKLHbOfyy28Mx5grjsZvPDY6Jon9SsUe2/TCJ1cei//9Su3vXCmIArM3NwIgT0yoJqCCJi7y/Q21dc9aXHzUTujfFumt49zDhuKuH+2b9SZ32bZPNPHQi8/OJeTGLEWiw8qK6ifuNcg3UdiUSvuuectS9+OUq47HkK2Cj0W8NsX7dkNLRrzsUp3E1Sfvga/v1M+3b6bu/O8/JpHofzxpN+zQr1vkso/dfSBmXH8Cvrf/dnjz10fgn+d9zaicvbfNjIW5a+qU673n0v0Wh7+7ib99gyaaurrAiUaVqP2jrw3BwF7B15CILjq6SdHmFk99VQkLC9fW44InP8OnC/+fvfMOk5u6v/6ZtrO977q3de8VV1zABgMOJST03iG0xCmUH6GlwBsSEggQUiAmBQIkQAIECGBMNRhsDKbYuBv37u27U/T+MauZK+leSVN2d2yfz/PwMCNdXV2VGe+ce3S+CdfytgPNlrElK7R2hHAV1bSkin2qYoXW7JTfd2aSiY5xIhyJ4r7XVhuevtARz7XTPqMu3cj//XSb9Aeyhux27RomCTLlRM8yUTXVvyfDWRzn0tlPN2TZ6SCEkE6ntjmEixd8iH8v3yJdz69Nkg4U0YkrRLdYtlR6b08nuiG+pp0Ki144rR9+LnFUA+6Kv3UkyRxf0N/+XysywdxNYVE7Mu1E93g86FtZYPm8BNtBRFflM7uha0kucjrgmqWDeAYLg9bzJ35GZcJJpqKfUsED4NRxPTFSENE//vExaX/GzbqI0/eU2Yn+2vyZeOiccfjGqG4W9/7YXmWWSaUcnxcej8fikg4GvI6xDyrhr8HkeHYzMZrsPz9OIvrc4V1w5cz+hnidZNDHPKx7MY4aXK28DlOEgtZ6hEl9s9UBDUhE9Lb3bouW2tHdxeSNSshMd6JR5mwO+n1YYKqToXPj8UMsy1TC4t0vrbQsM/+b4PN6cP2Ty/Halzvwt/c3JfqMatiyr8m4n2Sd6B0ioie3n1rF/TXn3jddbW9XWLSx1X0xWyBW+PPXr32F03+/2LIumkyci0sh9Wf//RKvfblTus4oeGbXz+hMOIrNW3WW4Kw6t8l8hasKrTqdms6Nc+ngncN4jbPslj7k0TQNi9fucV0LhRDSMTywcA0WrtypjLXjdyVJh+xWTkjWUBD04/2bZmPpLXM6eyhxMi16iogaRiaLfJo5a2Iv3HVqQkh/9MIJeG3+TAT9WSaiuzgH1xw1AMeP6Ioj+pZL16frvBWR/dBOtkCdmfaclBHJTVGss+NXp4/GeZP74OXvTs9439mAePvl59g70WXYfVe0eyaeZFlZgbt79a+XyMVFwPoZcLp9xYgqr8eDPhUFOGFktzZhPLHxiaO749YTh1n60ydaXrjWeI8FfF6M6V1qaGPGnIVd1PY0wbT+lYblbj6DgSSFXNn9YthnmwieSpyLDNm/FxP7luPvl06Kv9eLq9ZJYkQA9bXMRL779bMH4tvje6b0fZfuv7lmoVu/71RPUcj+zVCJrB9IHM4h0+SN3+fB1v1NlnYAsHFvo+F9ssKjLu4nk4mfLOFItENiY3RU53pfQyuG3foKTnnwXdd9rVM8dQGY4lyEN7K/O5LJDP9oo/We0DR3RRijUa1THNzihGPqmejG7TrynnFDyoVFk8hE70h21jZ3etFTw8QQ/ZUdysKVO3HWH9/HtP+3sLOHQggR2FPfat+AX5UkDdqn4hY5JOla4j7rtSNIVkxJBkPGsuIPflEIS1Xc8Hg8OGtib+QGvNjbEMLRQ7qk1E9740Zv+cHcwZZld586Eo+8sx5HDqzEJUf2y9h4REfj3y6ZhPsXrla6+t3SUU9YtEecS3VRLn5yyoiM95stiJdGlo0tfl5lfxN1phM9HaYPlBeSBKxCidMj8sbIGyPid9xNxw9BSZvj2ef1xMUBfWJvWPdiXDClDx5bvDHe709PGYleZfk4bYKx+Oe8Ud3w4qfbcPmM/oblb99wFLbub7Y8QeFGpA34PHAR6x3H6ckYXTzP1NMYsuvg83oM97BeXLWuOSTtQx3nkr4TvbIwiF+eNhq76lriednidbYjUxMNOvqpUt26su9KVU63NM7F4kT3Kr9/N+5pAJD4vCWrn2pxEd2vLMyaLqGIhkiqQdkpoDrXb62O3Tcrthxw3Zfdv6/JiKNuM9EBtUAuLpbtLxrVcML9b8Pj8eDFa4909TRiphDPRapPN1ic6B13y7gi1dMpno9seYJgyfq9lqcrOqewqHuX/uHCE0s24a+LN+LRC49o19+vi9pqm6T7NCwhJLM4TShywpGkA0V0ctDSUU50lVYf8Hnx6e3HwoP089m/Obanc6NOJNVCUGdO7I0zJ/bO8GiMP6aOHFiJIwdW2rTODioLg9hd34JjhmXnREk2I8YrFUjiXPyGOBfr9rZZzlnyY9yMU/70gOpCw3vzZ/TyGTWG96K4a/44iz/6CwTntlFE9wrtE9t6PB6UF+TgphOGWsZ43xljcP3sgRhoGmtpfg5KJU+OuIkLiX3XuhcpncRx/TznCE//5AV88Hs9Sqe4HbLvSr/PYxARdTG8ORRFKBK1TPKoTkMm4lyqimL54+Jd360kF5v3yR3aIpn+N1c/VyqBNVcieKuERVkxVHMm+vOfbI1PEJnZ12Cc0Eg+ziX2/4KgD7vdRY4nTWskmlQmum1f4ajjZ0N1DlKZcLbbRBREnYqZRjT3QqrKSe6UX72noRUrt9cBAA40hVw/OZQJMuFoNm+WfU701LYz5uFnaDBp8pfFGyzLOuN0ixMl2TLB0Nnc9MwKAMDdL32J35xpLVpOCDm0cSxA3c5flfwuPrShiE4OWtq3sGjir3y7OJdMOAMPBvpVFXT2EAwM6lLo3MgFHZHfrvP8tdPw9le7cfLY7h22z0MRWWFRoxM9uzLRU8XJWX7WxN7Y3xjC1AGxCSTxO+u9G49GN5PzSpxoMAsQLaHEL3Axq93v9UB/GFIU3Ny6N/w+LwZ1KXLVFnDnUEw2hsTvjeW4q0QX/d4Qvwty/F5UFQVR57IAo9P4zPef+ORSfXPYItJZM9Gt26VCfo4v/vkR/7gf1bNEKqKfO7k3epblx2NYMl18WT8u2SX1eT1S0V4poiuc6OYfMQea5O5/s8M76TiXaMKJLmN8nzIs27QvrR9toUg0Y9nrdc0hVDgURVYJ2qk4iWUFn3UMwrFTYdEk8tM1AFv3N6Fc+Hxp0FwXJ9X76EiMInqKnZi2y7bCosmYMsSRZyLqJtPIjqVznOjy1wSungw60BTCul31GNOrNGvqfhFC0kMmYouf7mz5d4QcnBx8ygIhbXQpsv8BmA6iOJ6qC/tQ4tqjB+CCKX3wj8snd/ZQAADj+5TjoXPG4aXr08sAn9i3HCeM7Iprjx6QoZGp6VaSh9OP6JV1efcHA05xLuKPHtnfRHbiX0f9CdW12N3jxHpm/phepbbt/D4vrp09EOP7lAEwiu7dS/MsPwTF9eaCgc3hxI9MUSwXtxGjPNpLk3Hz4zXZCRGPx2PruA1I4lwCPi+6FKf274ss+sEsrPt9iViReonbXfVvTrrfHVWKfzMn9LHWsQj4YjE9FYIA6fR0RLLo11t2vEG/V7o8GREdAFpcPmJvFoyT/XGlt1c5j7qX5mHusK5J9WmmNZy5TPQ6RdFRkYgiL0U0FoSdMlXasBPeVZnoMkIR9yLzqu11mHr3Qpz8QCK7XdOcBUdxrG7vg5c/24br//ExGluTf3pFRNxf6nEupkz0LBPRkxEpVRMeThE1HfVnu+y+7hQnus0TGtl19TseN/fCsb9+E9986D28rihGTAg5+JB994nLpv2/hahVxCoS4gSd6OSg474zx+DTzQcwZ2j7xWJ0LYllTBcGfR2ah5mt5Of4ccfJ2ZW5fcLIbmn34fV68NA54zMwGtJRyJzoIrI/mnL8NoVFM/gLM+DzWIoZ1rQ9xXHJkTVYt6sBxw63F9Kev+ZI/O39jbj6qOQmdpx+KBYKLmbzRIQsTxowCm0GJ3onujdSiRQJ+n1oDslVF10YDgrifNDvRZci9aTHNTbXRiZYWeJaPLHr0RSK4B8fbsIFU/sa1lufQoi9H9SlEKeN74l31+zG1gPNyjGoqBKcx+IlPHtSb7z51a54RjqQmDQRx57Jp79uO3FY/LVMLM/xeyHbnez8RqOaMo/WjVgs6zf5OJdYe3OEjI7Xk37ufmad6M7nReVEF0XQ1kjU1X1h9/1kcJc7fLeI59dJ4H5nzW4AwKoddcr9yb7LnDLTZVz5t2UAgAFVhbh29kBX28gQ3dYpi+jZHueSRFtx6OJHK1schLIJgU4Zm0NEUTaxeV8jHntvAy6c1k9aPLoz2FHbAgB4+fPtmMPIRUIOCWTfheK/+c2hKJ5c8jUuM8VfZmz/7dIryRYoopODjpPH9MDJY3q0+37Om9yn3fdBCHFG/KHqKKJL/mqyd6Jn7s+cHJ8XoUhMkH7qiil4d81unDGhF4BYTMq9Z4xx7GNgl6KUJqyc4l+Cfh9evO5IaJo1ckLl4hUxFnVLengZw1zc0uNxHo8bJ3owIDrRPahWPDmw8ifHSbO6dUISEdV8bTzwoCjXj111LXjwjbX4zydbDevN/eu3v8fjwT2njcaTH27CDf9aoRyDCtGJLt73uQEfHrt4Ikbf8b943Il+zsRJi0AGJ5QvmpYoNC0TWIN+r1Sgkgm74pMUZmROfxlWJ7qrzYT2sQ1k1x+Iube9aTr5W8OZy0R3475SibjibdAajkJS3kCyjRAnFdUM5gSZw/g/n2zFW8Kkjrg/2XapIjtEUWRPtijn7vqWNMeT/vesebNsjnMR7wXZKA3O/Aycm0wj++7qdCe6aV222YDOf2QJ1u1uwFtf7cYr35vR7vuzi5Iyky33FSEkfZyc6ISkA+NcCCGEZDXiT6BCSWFREVnxxY7KRA8IYu3EfuX43jGD2rV2g4hd7Qad4d1LMKJHiWW5yqUtImZJd5TT7sXrjrQsMzvR3fw8tqt9oIvFojif41fHudgJ6IDciWwZswcoEiaDvt5rzCPPzzGJ6Kb+khEFRAwiuuQSGuJ7dBFdmIAKtFMNCdnTXjmKOBfAKgraZd7WuXxU1ywYJys8xkX0sEJ49nrSrsHRGslknEvI8YkSlRNdXOw2Lke8kubPiHhMetTUdU98bGijSSYpUnFqa5q5sKi1j4hCuHWD05OLd7+0Eo++s165PpyEK1+F+fu5vZ3oy7/ej3P+9D4+33rAVXvxn8RkxmaY3MgStTMbM9HN+8+OM5Vg3e4GANYnRAghJJNI/8bJti9EctBCEZ0QQkhWI/5OLVIU8/3Ft0bhO7P6Y6yQJX7VrP4oCvpxvc3j9ZmNc+m8f1JPPyLmeB/XuzTpbZtdFN4SnasdYWw8eUx3DO9uFfx9XrMT3VlQTi0TPeFEN7vf7ZDFigQkY1bdx4BVRLdgc8h2Gl51EiK6nr8u5rknW9TVLbJug36f8ljM4q5dNEm9yzgXc52AZIVHXdu1c6KnH+eiZSzOpbYp7NiXar14rlQxOmbEz+nGPY2GdeKpVgmQ+lDE85vqd7cxZ9u6XjzuSJvzf+v+Jvz8v19i875G6wYCdpOZa3bW4+E31+LOF75QTmAY9p2pOJd2/sI+5cF38e6aPfjO35e5ai/eC05jU2XEZ4sOIvuO6gzjfyaeYCCZfTKRENK5yJ3oHfgZ59fJIQ3jXAghhGQ14o/SkRInNZAQkUVuOG4IfnDsYMeok0yRjNiaaS6bXoNRPUswqmdp0tvaxWHoiEJlRzjtVLvIMbm6vR7AafR210XPRBcFzpgTPSGiB/1eZda1GZmIKnPPF+Wq//wyx+2Ydblym/yMgM+rdAf3KEvkz8quYW7AeA4AU5xLO93f0kx0n40T3TT2n//3SwAxd3+dKb7F/F6FxYme5C3umInuTb8wbMQm+z1ZaptDSqe5jmq9GCnT4uK7w8zc37yFd288Op6HbBSO5dtENQ2eqLGwaOqFN439WvYljEGfMLj0sY/wxbZavPbFDiz8wSxl3+K/NZ9u3o9eZfkoayvOK167lnBU+lSLXYFIt5hFgmQjaVJlf6O7pz7Ej7XTPSiOPZKFTnTZU0GdMTbxNJp3n21xLh1NRxWZJYRkGTIjenb800EOAehEJ4QQktWsFh77HdqtOKltnQT0TP5Bla7TNB18Xg+m9q+0FA11g7kYqhMd8UeoahfmeBw30SZBmwiWeCa6IHDGnOgJ13Yy11UW52EWnz0eY7SKGScn+tFDqnHu5N74xbdGWdbZTRh0L0mI6LLzWyCI97LCou0lostEDrs4F7NQ/eoXOwAYi+fqODnR9eMMRzTsbWjFrrpYpnUkSeXRKRPdmwEnOqAuApwsDS0RRxF6wbvrpREd4jG6jXMx7+vv728EEBOa7331K2U7naimIWS6JqmKlSpxujkUwbJN+wz70ffxxbZaAIkoChX6vzfvr9uDkx54FzPveSO+Tqy70KR4+icThUXNH+6OKixabfOdJuJNwokuTghEMjDBkGlk5VY6ZWyaeoIhO84UIYR0LDLXuWWSkZNsJEUoohNCCMlq5gztAgAY06s0Y67yyTXlAIBzJvfOSH9AwtV8qNOrPL/d96ESIsyRIm7+AA7aOtGtcS5Bv9cgcrspvKpjFvoA60SO1+OxFZzyLJnopu29Hvz0lJHSpy/MrneR7qUJEV2mrIhFexOZ6EKcSzvd30onuuKyhRTCbZ5kssSpsKieU94aiWLcT17FET97Dc2hCBpbkhOr4050xdh8Xo/lKYpUSOZetOOpj77Gul32gnBtcxjz7n/HsjxkcKLHjtdJODR/LpZu3AcAuOKvSw3LVcK4plkn+1IV0UXdVuzjuic+xqkPvYffv7k2vszJKW1G/7y81jaxU6uYxGlolS9XFdJMBvNW7R3nolOtqCNhRvwUOMe5yNs6H1LH/FssixPrDNE6y2rHZhWHk0j21Y46zLv/7fj3DyGHM50dic6v5UMbxrkQQgjJakb3KsWiH8xC15Jc58YuWXDRRHy1o04ZD5MKnZmJ3t70EATYq2b2x/7GVhw3vGu77U+lH5nP8Q+OHYyf/fdLnDXRKijriA5QM7oTOcfkuBad6fk5ftvilSIyV7+ssGh1sfpeNjvRkxGvzZnxIuLnR+bQkYroYpyLTd/pIBPRKwpzlPnSf3x7vXS5LB7DUUQP+FDXEsa/l2+NLzvQFHLczkxUi+WVq8Qsr8eTke8HlYM5Wbbsb8KJD1gFchmt4ahhkknMRG8JRXHlX5diza56/Pe66Uq3vfkJDV0QNT8poC5mqlkmT1IRDmNivzw/+n9twtNTH21OjMfFUzriBIJeWNQpa111HcUHGVI1NJu3a894EfHJiOoi43eam92aaxFYECc8RBE9S1RjaSZ6J4xN0+T3NGl/skmkv/rvy7B6Zz0u/ctH2HD3PMv6A00hfLblAKbUVDgWQSbkYEcqovMLkmSIQ/cXPyGEkEOGvpUFUpEsVXIDPozqWeqqMKVbjhkWc8xXFKgzqw9W/nrJxPjrvBwf7jx5BKYOqGy3/amK//SuMLrgL53eD6/Nn4mfnTJS2ZddxIkuEov3lt7+4XPH4brZAzGlf4XrcbdKMqJlhUXtnOi6iH7v6aNRWRjEA2ePc71/O51WFHFlvyMKBPFed2iLn4/2c6Jblw3uWqT8bD4sOIVFzA5+wL7oKJA4ThFNcxbfzUQ1TRnlAmQuziVTTvRkWLe73vBenChqjUTx8ufbsWZnPT7asFfZx/6mVmMfbUKjWeBVCZBRzRrjk4o4rMFdIdNk9iGeD33iR/b9JYroDUoRPSq8zkwmupuJgFTZWdsSf+02SszwJICDhq5y5neWhv7XxRtwyYIP45MHsgnAziksKr6mSJQyB/mp2+dQl+DUh97FOX/6AH9fsqmDRkRI5yH7LuzIjzinqQ5tKKITQgghGeA7swbgl6eNxgvXHdnZQ0kKPbpElTc/b2Q31FQVduSQlOLKDXOH4KTR3bHgoiMAxETeAdWFtq4qOye6LiwXBIVM9Dax87gR3TD/mEEGF74TR/QttyyzxrlYXZsiemHRU8f1xIf/NxtjepW63r/SvX3+BMN7aSa6IILp4rK3A0R0mVg+pGuRVFy3I8fnRa/y2LXSJyLqW+xFhVzJvdEciiifPPB7PehZZr0fIlF1UVEgNrmRCSe6XSZ6e8VJrdpeZ3gfFjPRhfGoJj3++v5GPLNsi7QPt9EjUc1aVDUVkTlselrAqQs3cS7idY870SXbieNtVMS5GIqsppz5bnzfnqLq3sbE5Ijb/YjtnJzoYo/iueksN+GP//05Xl+5E09++DUAlYjeCU50xWvirm7KoYLTvbe2LcLr+U+22rYj5FClI7+e+V18aMM4F0IIISQD5Pi9+Pb4np09jKR54rLJePTd9fjOrP6G5UO7FePLbbXS7O32RuVEL8kP4P6zxibVl50TXRc28yROdJ1rjh6AbQeacOKo7o77umBqXxQE/RjZowTf+G0sLsN8JB54XBcWTfZJCdVkgv6UhI5MhCqUxLmI3bVfnIt12dQBldhb32pdYcOKLQfw0S1zsK+xFVf+bRk++Xo/9jXYi+hibI/O/ib1No9fNhlH9C3D3N+8ha92JBzakag1bkTE6/HY3odusYsV8nu9CEUy71Tfsr/J8F503IvZ3qp6FT9+7jPLMt0dbb4NVcJxNGp1+qfyYzgUiRq/Wxz6cCPUi+K+TxLnsrehFR9t2IuKQqHOgqqwaAaE4o7MRBevidvdiMflnIkub+u8r/aVL/QnVWRfz51TV7TzJxgOBQ72M+f6s36wHyghLpDf5rz5SWagiE4IIYQcxgyoLsTPv2mNQ/nnlVOwcU8jhnWXO9Tbk0zqPmah9M8XHYHH3tuAz7YcwIxBsUga3f0NADl+ozJSGPTjvjPdCfcBnxdnTextENYiJrelxwNUFuagprIA63ZbizvKYklUPHrhBFy84KP4e7eFd+VOdOtEQkc40cV93HbiMJw6tieKcwM44PBoupmCoA+5AR+6leTFi8ku/3q/7TaypxT2NarF+4DPI53YiMW5qG9ar9eDgD/982fnRDcX3c0UzSHj/Ssep5hpnswcgV5o1DxZpnaiW53+qYjDoXDU8JSLzLnp93riYrabKBTxs653Jx7XmX9YjK921BsmslRxLkbR2HHXUswiaqqOdjeIE0dm971qIlQcjtM1VLV1ctx2lI4sczl3ihM9iacrDjsOHyO663tP9dkk5FBCnone8eMghyZZEefy4IMPom/fvsjNzcWkSZOwZMkSZdsFCxbA4/EY/svNzVyxOUIIIYTE4j06Q0AHMisIilnUfzhvPI4aXI0/X3gEFt80Oy6e50sE5HQQozXMkRAexBzmz35nmnRbUdB34ughXXDymIRDXhXnYkb2Q0Lcr8yh3V6Fc0URvTDoR0l+ILY8iXugZ1ke7hcmOnTB2uyiNpMrOc59DXYieltWvEmZiUic0iK+TBUWtRPR22mSwyzcixEctYKInsxTE0onum1hUc2yLFlCUc0gIMl6EM+jm33IJszEw9CfWHi1rXApADQp4lzMTzekgiXOpR1V1RaDE91tnEvitfJ6R/X7Qy6cO4rorkaSOvq4pIVFOyUTnYEunUU2iXLZNBZCOp/OzUTnU0GHNp0uoj/55JOYP38+brvtNixbtgyjR4/G3LlzsXPnTuU2xcXF2LZtW/y/jRs3duCICSGEENIe3DJvKLqX5OKm44dmrE+xeKQu2HpMoqYYoZIJsVMUFM0ilj4GVVZ7XpIFdGcPjTlci4J+abyADPdxLokOZeflypn9LcuSRRyzeN4qC3NcH89fLp6ISTWJArBuJ0Jk12CvjYiuEqqjmmabie71pHdf6fewKgYkNrb2+ZPevE/RnS0WYI1GY7nla3YaC5HKiGeiu8zvlp3flET0SFRaWFT8PIixRW4y0VuEYsL6EJ1+PMtieV75fDv+uXRz/L2qj5ZwBBskT7CoaNc4F3ECIaVMdPk2o+/4Hxau3GHKRE+8dtpVR4kXsom+znD5iqeRuo2RZKYWD3bRqz0/64QcbNCJTtqTThfR7733Xlx22WW46KKLMGzYMDz88MPIz8/Ho48+qtzG4/Gga9eu8f+6dOmibEsIIYSQg4NLp9fgvZtmo3dFfsb6FJ3oqljv/IBVQM4UFqGo7Ve9Suh1G8mic+Koblhw0RF4/QczMbx7CYBYYU475HEu1nNQ2uYKV41rZI8S24KWXYrV2e86olAu7iLo90mLeMowC9RuBWupE90mzkW/ZmZxPxbnYiOie50z0e3OY1xED6n30V5xLmb3uyhm1zUnIndCEQ2XPPYh5tz7Jv73+XbbPkO609hlnIumwVJYNBW9SNOMn0f9ZYvQtzhRYo5ikiFu++SHm/C9J5cblsmQieh/e99oCJKJ0jvrmjH7V29i1i8X4a2vdkn77sjComK0j1vHuyoTXbx761rCuHjBR6Z4G/eu947SErMmEx3We5ocfriOc+nEe2RXXQveX7fnoJ+wINmP7PPAKCOSKTpVRG9tbcXSpUsxZ86c+DKv14s5c+Zg8eLFyu3q6+vRp08f9OrVCyeffDI+//zzjhguIYQQQg4yxGgSVeSEmEOeaUevWRgszo2J1V6vxyKcphIl4/F4MGtwNaqLcvGzb47AE5dNxgvXHmm7jez3a4FwDnQRvXtpHu46dSQeOFueCe/xAK/Pn4X+VQXS9f+8cqrj+EW3u/ny9K2Q92smaJr4cDsRkitxoj/4xlpl+4oC+aRAfXMY/1m+VbmdmziX8oIc5brctqcTNu1RO5A7LM5FEE7fWb07/joS1fB22/sF722w7VPlRLeNc8lAJjpgEuPbBlDXLC+Q6iaXXJxU2HqgGc9+vAXPLNtiu02jJM7F/N0kO74l6/di875YRJHK8W+dmLAdSlqkUljUTZxLvK0wdnFSwWlf7R/nEvu/NBO9E1Rs8XNkFiepVbrnYDpVr3+5A8f95i18tuVAfNnBcK2n3b0QZ/7hfSxaJZ8EJCRTyD4OHfkZOQg+jiQNOlVE3717NyKRiMVJ3qVLF2zfLnexDB48GI8++ij+/e9/429/+xui0SimTp2KzZs3S9u3tLSgtrbW8B8hhBBCDg9EbapSIYKKRTUzLYLoztc7Tx6OU8f2wDHDusbXiQJ/eUEOlv54jmX7ZCjKDWBK/wrHiQCZG8fgRBe2P2tib3xjVHdLeyDmHO9dkY9XvzcT/7pqisUN3as8H9+ZZR/5YhDRTaJUTWVCRL/rVGvxWx2zQJ2jiOoxk5tkdE5xnjyv/sf//hwPLVKL71HN3mkOAGX5ahFdPz5VQUrAGEOSSewy0TfsaYy/DgnL7QqgxvrQnehG7AqLmkX0VJ2MYvzKJ5sP4Mw/LMaehpb4MruiwDLMDnk3yJzo5ttD04ClG/dhwbvr48cqTmA0tMhz1S0TE+2oGrS2U5yLjirOxbmwaMfIF7L9dIYTXByHho47/oOBZGo1HExc8thHWLm9Drf++7P4svb8rGcKfdLxTcWTNIS0J9n/CSEHC50e55IsU6ZMwfnnn48xY8Zg5syZeOaZZ1BVVYXf//730vZ33XUXSkpK4v/16tWrg0dMCCGEkM5ick0F8gI+XHpkP4zoIS+UKsZ6uMlBToZIm/B1/pS+uPeMMQanq+iY7lmWh6LcgGX7VJnTlpU+skeJZZ1MGxzRoyQenzKmV6mrfRTnJYqAju9TLhWlvQ4ihqi7m5sOF8besywPlYXySRCz81x8P6iLOtrG7GB3Qhdk+iQZNxSKRBFw2JedU31XXYtynU6mnOhmR7w5zkWM8BCJCMud4kx0MdgshqpEoKikcKve9rjhXWWbKDH38/66vXjk7fXx983C2N1loqcgordIRHSv1Yn+rd+9h9uf/wL/aytKKk4y1CuKk5pH3J7OaNGF71a4FYeTjBguHke2iMSySZ/2jM9RYT6n4hAOUQ2ZtCFOmLt9Oic7Pj2EtC9Z8s8EOUTpVBG9srISPp8PO3bsMCzfsWMHunZ190dxIBDA2LFjsWbNGun6m266CQcOHIj/9/XXX6c9bkIIIYQcHEzsV44Vtx+LW74xTOlKEwvEhTOcf2AnxIkibqYzrX912mjccdJw/PmiIyzrZCMqL8jBmz88Cp/dMRdHDam27buyMIgLp/bFFKGYJwBce/QAS1unw7JzCp4wslv8dTiqIS9H/merXSZ6dZE6lz1ZJ7rOT04ZgZNGd0dZvrtJj3BUc4zqEc/TzEFVuGBKn/h7u6Klie0zc/+Umo7JXFhUlf0eVjjRZcPS21ryu23iXMxitb47p8kJM7JJgK0HmuKvjU5051/hqTjRZdfTfP3ECYW1u+ot41E70d3lzGcC8V6IRDVHcXvTnkY8/GbiiY2wYkJGR+wumTiXjhKyZePoDIHfsEvNePyHu5B0KM4hiJ878Wktt2TDJFQ2jIEc2sjjXDruvuMtfmjTqSJ6Tk4Oxo8fj9dffz2+LBqN4vXXX8eUKVNc9RGJRLBixQp069ZNuj4YDKK4uNjwHyGEEEIOH5LJOc+UE/3sSb0BAFfNqlG2ER3Tmc5iL8kP4IKpfZXubRk+rweFQXlkicg5k3rj9pOGWwTwy2fU4OJp/QzLkjmb5v4Kg3789qyxOGtib0wfUCktBApYo1LE86q75WUk60TXqS7Kxf1njcVk0ySCinAk6piJLh57cV4APhfxLGJUTrIFaVWU5AXQqzxR0HXZpv34YN0eADGhdPHaPdLtxM+NKHiLMTO3nTgMQEzIlv2YVc0VxOJcNNOy2Ps8Sa69HbJJgD318mKyKgH67dW7cP6jS/D13saURHTZGMwiunh+9Jgj8RzXN7tzordnxIM5E92YzW1tf/rvjfWuHDPRFUVInR3stqszhmwcnRHnYhDNQafxoc7XexMxWnaTxNkM71HS3nCihrQnnR7nMn/+fPzxj3/EY489hi+//BJXXXUVGhoacNFFFwEAzj//fNx0003x9nfeeSf+97//Yd26dVi2bBnOPfdcbNy4EZdeemlnHQIhhBBCDhFUTttk+fk3R2LlT47DgGp3cSJOmdmZJN0fFyrTs8fjwZBuxuNN1xV64ujuuOvUkfD7vIYCsOb9ioiCdYmdiJ6iE13H61K4Dkc15fUd27sUv/j2KIMT3etxF8PQrSQ3/jpTInppXgCvfm8m/nj+hPiyM/7wPg40hvCHt9ZhpyJaJiyJc3lm2WaD61ocr0xAjWhycV1WWFS/r/Jz/JjQp0w6JlmBWamI3iAX0VUTauc9sgRvfbULN/zrU7RG7PPfZRM1Mge2ec5E9jUkZrTXSyJhAPfu/kwgTiBEo5rjZ317bbPhfdghc96Yie7eid7e2oneveweltWbaG8MsTemOBfinoPlvJk/RwcjB8u5JgcvsnuM9x3JFM52o3bmjDPOwK5du3Drrbdi+/btGDNmDF5++eV4sdFNmzbBK/xluW/fPlx22WXYvn07ysrKMH78eLz33nsYNmxYZx0CIYQQQg4RMhl/4BQXYnCit1NhyPbALjqkS3Gu4X0yP1qcZGCVE92MeF5tRfQknOhdTccFAD6XESohGyf6s9+ZBgB46sNE3KDXYyyx+n8nDMXP/vul7T4yVUCvJC+A3IDPIHgDwOg7/2d7LkVxuqUtzmX+U58Y2oj3jUygjkSjcmFS0yyOb7HdvFHd8NHGfZbtyvNzLIKTLM5lT718YsDpu2B7bbOjEz034LNE0cjEY7s4F12YDbuIczF7PNu1sGjEJN4mub3ZQW233nA+nJzoDiMJRaJ49YsdOKJvOarScPLKzq3qltHH3B6FLg1pLlrn5LJnK4diJrz49dEZTz4QcjAg+3fAvKw9Cw93xoQq6Tiy4hfbNddcg40bN6KlpQUffPABJk2aFF+3aNEiLFiwIP7+17/+dbzt9u3b8eKLL2Ls2LGdMGpCCCGEHGp05OPRQUEU7kgn+i3zYsaDK2aqo2bssBvpjIGVuG72QPzunHEAko1zsV+fq3CimxHF8eJctV/EbSb6vFHd8PfLJlmWu3V/hyOaQdiXXWtxvXntuZP7SIuZiuc2U5H6enFb2bmxE+ciijgXEXFrmSM8EpWL67E4F2N7fSgej7UYqk6ZZLlsvyohyklE98C5sKjsWrfKnOimm1/mIDdkoqsKi3agE92QiZ6CeOuUiS7eMMbCovabOR3yn95ej+/8fRlOfuAdhxHao3pqQtbugj9/iFMeeq9drofTZISZd1bvxlc76jKy79e+2IH/e3ZFSrFGhxodFR8RMT15kCzZIO1RYCSdwcE2v9jQEsbFCz40mCxIdtDpTnRCCCGEkM7mkQsm4MVPt+Hymf2dG2eI3EDnONGPHFiJz++YiwIX+ecy7MRuj8eD+ccMir9P5ke+x8GLnuvSOS4KlyU2xT/tnOg3nzAEO2tbcO7kPuirKN7mtphnKBo1FBaNbWc8LzMGVeE9PW/cFOfi8Ti75jNVWFS/J2XROUG/FyrpTXR8K0V04ZBlAmpU0xQiumYpxqkLSR54kKeYDJEVfg0lIfY5iehejwctIfv+ZM53WfFi84SM7HMjjqdeVVjUZptMI55LLYUYkfbKRHfS5/73xXYAwNYDqcVi6LuXPzVhbR+Oanjrq10AgA17GlBTVZjSfp3GAzjHuazeUYdzH/kgNpa756W970v/8hEAoG9FAS6bkdqkbHuSzLdiKp8U8WtX0zrG+R41iOjJb58NQmI2jIEc2nR2nIvT37NuePSd9Vi4cicWrtyJ04/olYFRkUyRFU50QgghhJDOZPbQLrj3jDGuCmtmijG9SuOv/R3oRAeQsoAOJPcIbFJxLg7dqjLRzYjRKcW5ahHdzoleU1mIW74xTCmgA+7d35GohoDoNJdsd+q4HvHXH2/abzjHXo9Hmu8t4jZaxgl9PzJh2s55/5vXVjv23b00N37sIUmkSWs4KhWYo1FYxGpdSPJ41PeFbOJBJmqrcCoyvHpnPV75fLttm5awNbtcNYEgIhNoXRUWNW2WxOEmjTixEYmmIKI7xrIIbZPJRHeQQzM14STLrZc5zcXrfdMzK3CgMZSR/cf3achzsZ9k+GpHfUb3rbNhT0O79Hsw4WbCuDkUwaeb96flWhe3zabiibLvbkI6C6mI3pH7z8De9jdl9t8KkjkoohNCCCGEdAKzh3aJv+6fYXdie5KMBmX+kT9amDiw9OvQV36OO+FfFNxSzUQvtImB0UkmzkV0x8scStVFuZg3shsAxP+v4/XA4GSXkSkHZI4vJkjLRPRknFVmQWX+MYMwqmcpAm1PXMiE5MbWsFTkjmoatuxvMi6L6mMC8iUi+rBuxdIcerOj3Y6IQ+FLANIsdhGZK182gaAqnGocj3MmuvmHe6bjQ2qbQ/jNa19h3a56w5i/3FaL2ubED343e03KiZ5EhIWTrpiJ6KMXPt2Kfy3bbFkuOyTxen+wfi/uftm+vkGyiNdc66SgjGaHJzIOBtIVpN181C5e8CFOeuBdPL5kU+r7MWSiZ4eI/vbqXRh668t48kN3x5UdoyaHMqporYOJg2y4hxUU0QkhhBBCOoExPUtxzqTeuGBKH1w1q+NiZNIlGTFV/BHw3NXT8IQkWzzer0O3o3qWuNqnKJTaieF2TnQ3TyTIHPl9JdnloUg0Lh7HtpP399uzxuKvl0zElbP6G86w1+Mx5OfriOc2U+5a3Ykum2A4kIQram9jq+H9BVP7Akg8cSET0RtaI1JhNappWL+7wbIMiJ1L2XX8zzXTDO/1SQjHHG6BTBgrZT+CZbnsrWGT+K2IBdFpaI3EBfIt+5tw5/Nf4Ou9jRInemZ/hf/k+S/wm9dWY9797xjGvK8xhFn3LEqqL6drIYqFEUMmunvxXUYqxeQM7l9ouObxj13v23ycm/Y2Jr1/+7EJ+492jlAke+IiG2jPwoFm3AjaemTXXxdvTHk/xgmllLvJKJf/ZSlCEQ03/GuFq/YUB0l7I7vFDrbbjrUDsheK6IQQQgghnYDX68HPvjkSd5w8wnWRy2wgGV1C/JE/pleprZvczqUOAEcOqHS1z5Ag7tllzds50d3E3Zjd1mdM6IWxvcss7fJyfPC6sL96vR5MH1gVE/BNmeiOcS4ZqiyqnxOv14MRPYoN65pC7oWyXXUt0n79beOUubEbWsLKwp+6iK4XEdVFVY/HI72n/D4v1gnCe6/yvNh+M+xETwWZeGzJfJcU0jSPp7lNuPzuPz7Go++ux5l/eN8iTt390kpc+tiH0nGkIra+vz4mAjaFIpZzmcz9ASQn8CeTA+3UayoflXSy5ds75sIo8HeOsJpNTvTOcpsms9t0hqgZPgvJd5Qdslx2jIIcwrhQ0dtzio0TRYc2FNEJIYQQQohrkhGh3DhpPrn1WLz9o6PQrSTPtl2vcqvLW0ZrJCHm2YnL6TrRzVEdx4/sit7CGO/59iiM7FGCG48fYmjnNpZGx6PIRBfFFKeJjbd/dBSeumJK/P0t84ZKj1Hcz+/PmyDt646ThuP2E4fZ7s8soutOcH/b/2UFORtawtIc8n0NrdjbEHO217Rl1OuueA/k0TMAsGZnIv9Zj3ZJRkR3ykRPFbkTPeLYxjwePfrmk80HAMQc6bLP22tf7rT098yyzRj3k1fx4Ya9SY1d1PFbbYq0uhEy26uwqHOcS/LSidtbQTa2ZCKEUkEcm6ZpBqGoo5yM2eREF89HR1YaSUbQTieGxXi9U+iA6h45DJB995mXZfsngR/V7IUiOiGEEEIIcU2qcS4qSvIDrgXyK2bWOLYRc7X97SiiN5uctwGfF1fO7I+zJ/XGYxdPxGkTeuH5a4+0TA5ccmQ/jOtditschGgRs4j+mzPGGN47CYO9yvMxsV95/P2QrsX45LZjbfejymGfPbQaF07rZ7s/s4iuO/H16yFzLde3RKTubz3+oqooiPy26yJOYKgKi47tXQoAGN+nLB4jk0xh0UznievIxHnzuKSOfNN2usO5os2dD6g/b5GohmhUw89e/AIvfLoV85/6BPsaQ7j8Lx8lNXZR/EtmQkKG0ySFOaYkMQb7fp2d6KmI6NYnA5za6SQTIZQKZpe+nXDeXukmskmxziKdpwbSIZm9pjNC4714cKpsB+mwyUEO7zuSKSiiE0IIIYQQ1yQX55LZXy03zB2Ce749CpWFQWWb40d0BRDLJ7eLUckNqP8Mtlun02xy4gZ8XuTl+PDzb47EzEFVyu0Kgj48851puMhGiDZPVIjRM69+bwZOGdvDsN7t0wHVRbHzNqpXidSlL+5HFSFTlKsu1qqzq75FulwX0U97+D3Lulici/V+2XagGQDQtTjXepwetRP9vjPG4juz+uP3542Px/pkhRNd4uA2u7pl58E8Hl0srCjMsbSVbbtw5U788e31hjzv2mZ5gVIVokCZrsM64rC9+N0RFlR0TdNsxUMnYTEVIdnt95g8y759BOa65hCWrN9rmlzRTE5s9cFmcpKoOauc6KkdV7pno6Oc6ManMlLuJqMk+5nKZjGzoSWMZz/ejAON7muAkOxDdo+ZF7VrnEs79k06n+SeJyWEEEIIIYcl80Z2w8KVO/FNk4BrR6Z/LHu9Hpw2oRdG9izBab9bjKuPHmBpM7Z3GV7//kx0K8lFnY1IKCvWCQCf3Hasq4J0LRYnurufZG6cqebdi+K2ntc+vk/CWe42E/2tHx2F1kgUxQohXNyPKjNed+lfPK0fHn13vbTNvf/7Srp8f1sMi0z8aWgJS8/NtgNNAIAuxUGLy9QDedQNAPSuyMePjotF6cSz2JMQfh9atBYXTutrWJYJ4THU5gpvDkfi0T7mccmiUszHHmp7X16QmFBSiXPhSDR+7u36dEJsbhfn4gZHJ7rwWrwtolHN9nulM+NcZAJ+Mk8/JMO3f7cYq3bUIV94EkPTrEVQVUQ0Dd4MyUjZ5EQ3XIIOzHPRkjkFNrfEgaYQPly/FzMGVSlivBKvMz1JTYAbn1mB5z/Ziik1FXji8smdPRySIrLPxsH2cTlYnzQ5HKATnRBCCCGEOPLA2WPx6e3HosLGBW6mvTJ5h3QtxvLbjsWVM/tL1/evKkR+jt9WQ1GJxCV5zk5rwJqJHlDEn5gpK3DXv5HEkegi+sieJXj6yil478ajXbumcwM+pYAOOMe5lOYH4oL9LfOG4qTR3aX9qMZjV3yyoTUsde3qTvQuxbkWAdStHurzJh/nAgC/eW214b2sIGqy7KprwdG/WoRht76C3W2OfbMgLXN5m8+pHudSnp+4nnvasuNl27p5usIJ8Ud9unEuTtfCUEDR5L61Ew81aFi1vQ5n/eF9LFlvzXxvz8Kistsj3fOkYtWOOgBAY2viMxXV7B2Q4mnLZOxJKpno5sinTJGysJzm6Uhmv3Ytz3/kA1z6l49w/+urpeuTKbKb7L47io7K6k+F5z/ZCgBYvG5PJ4+EpIPsDsvm+07GwTXawwuK6IQQQgghxBGPx+NaKNZpz8fN3biv7XYvZqLfePwQFAb9+OHcwa73n6yIft+ZY3DWxF44cZRceBYxH1lYEOIKBOfpEX3L0b00L154M11Ed74sCmdAVaFhfU1VgWOfbjK7AaA5FLWcUwDYLojoZtHcrR6aSmFRANjRtm+dTAmPG/bEct5f/WIHgIRoPqFPGQB55EvEkptuHcvO2mbLMiD29IPqyYtkiBhEdDsh25mww7VQCb5RTbP9XtE04OIFH2Lxuj04/feLLetTcaK7dQTKhFTzeUqmpkSyaDC69JPNb08V2efWiSN+9hqe/ujrjI1BRzyu9jzXQOqucLv7SS8U/OzHW6Trxc9CKk5VmlvJ4YA0zqUj7/0M7Iuf1eyFcS6EEEIIIaRdyObHUUXX9bBuxVh+6zHwJzFJkGycy8ljeuDkMe6icMw6n+hClo1xd4ZcnapoFJ2BXQoN7+0KtwJAeUEOFv1wluv9H5BEjuhxLl2Lc7EibSe6XOwrCvpR12KN/nl95U7D+0xHc/jaDkB3outFUkUnui6aWZzobbbnkLC8oUXuCA5Ho9KirckiOsLtJiTcfOydJjSMjltROLQXLKMasGV/k3K9XZ0Euz7j+7dpJ1vnNFmQSSxxLjaDzaQT3Vxk2S0/ffFLnDahV8bGAcifBmgvRGdrMqcznVN/sMW5PPfxFoQiUcN1PgiGLWXhyh3web22NU9IdiB3ohOSGSiiE0IIIYSQdqGzfyxXFwUxsV+5NNZBdLJ7PZ6kBHQg9TiXVHAq4ri7PuFEP6JvGbweDz6QHLMTsggXkQHVRYb3TudsYHWhq0KkOjIRXReuKwpzLL5St05Tp0z04ryAVEQ3k0pshR26oKtfX90tLo5TF8/NgpmeHy861FX3STiipeQWNuM2E93N5FkoiUz0sMmJbp+Jbt+vqKFrmuaq/oFb969M1GyvArWq/Yt7s81ET3Nc4oRKc4qZ6KkUeXUi9cKiyW9nmFxJKs4l9XOfbpxLR9IciuC7Ty4HAMwZ2iW+PMuHLaW2OYSLF3wEAFj10+My8mQPaUc63YqePgdb/MzhBONcCCGEEEJIu9DZv1k8Hg+evHwyzp/Sx6Fd8n2b3ZeZFNHN4rAs3kNEFE+fumIK/nH5ZFfZz5YCpg652b3L8w3vnZzoYmSOG370z0+V6/JyfJYoDreCmd+XWia6mUfeWZ/W9mb21LfgqF8uwv7G2OSBnlveGk6MU3eQW53oukM9ce1VBR7D0UyJ6Ikx2PXnRtxzuqcNOehJZKI7Id5DboVkTeGKt7azLnOaAMs0dnEu4scnXRE9YrgXUptcao+wFUOci8MO0n1SSktR0HazW9XYxf2k8jnoSGFO/I4Q62F09t8FqdAgTLKmW1SZtD9unOhO3w/vrd2Nmfe8gXdW787UsJLiYPycHC5QRCeEEEIIIe1CNjxu7vF4UOlQDLW6yH2xVJ2jhlQb3jvFuSSD+cddMlneHo8n/p8TZhHcyYlemm90lctE9O/MShR7VRVvTYXcgM9yXnQx4/9OGGq7rd9rn4nuVuj8/ZvrXLVzy2PvbcD63Q3x93kBa5yLLpab41g+2rAXmqYZJgZUYmY4GlUWckxGAI0Y3Mfq7dx87p0c2oZMdJOInayQHVuuIRLVDCK620kVcah2t4p5XOt3N+CjDck/EZIq5qgb83jE95E0v5sj0dQEZJFU8umdMLrD7du6zY9X7ku4F5LLRE9+XzridZP14/UAu+tb8NmWAxnftwo3V7E9njroSMSJ7Wx/AoBY7/NwJJr0vX/2Hz/Axj2NOPeRDzI3sCTgbZa9UEQnhBBCCCHtQrb8CFCJ6I9eOAF3nzoSA7sUSdfbcduJwzBIyAhPNg4mGdxGQgyoTozHjWZhLs7qlIlemmcS0U3H/MO5g3Hs8K7x98k60YFY9rmMXL/Via6LzZfNqLEI/MZx2se5tIQiePyySUmPNV0aWo1CtH6+RJe27sIOmwTfn774Jfrd9F+8+dWu+DKVQ/KpDzfjnldWSdfJInRUiCKEnYieiUx0sQtRsL3nlVVY8O4Gm+3kOz/vkSU45t43Dc59t5MnZhFfhfljetQvF+HBN9a62odb7CY9rHEuRgzCd5pm2kzE1LiZ6EsWYya8/RjTneS1m7CwIx0HvNNTET6vBxN++hq+8dt38PlWuZDeYagmtLLmLwP3iLdqNtd6ITHEe+xX/1uFYbe+gpXb6zpxRORQgiI6IYQQQghpF4pys6P8TkVhjnT50UO64MyJvVPqsyg3gAum9o2/d3JxJ4NZWppcUxHbh0LkfvzSSZhSU4E/nj8h0YcLfSrgNfbnlPNaYhbRBRH+sYsn4uqjBqBfZUF82Wc2Is78Ywbh0iP7oaooiO/NGRRfvuDiI6TtcwNeSwSFKMRGbUQ9Xzx7XN6mJRxFlcPTCjLmHzMIf780dfHdLESXtU0EyJ3ozsKNKmLl0XfVMTR3Pv8FfvHySgCxc3jDPz/FY+9tkLYVRTvzBICIWWRas7Pe0iapwqKmY//Vq1/ZbCdf/s6a3Vi3uwGfb611PQbZ/u3uMzdCajq68aY9jRh+6yu48V/y2COnwqIZdaKbPksqYVHTNPz0hS+wQHIP6l8fO2qbbc9rUuNKQthOd5eGCYtk4lxctJHdJ9Gohi+3Je5f2fjFicb313XcUxAylOf/INegO7LOAUkN8db77cI1aI1E8cSSTR23/wzc5JyryV6y45cNIYQQQgg55Lju6IH4fGstvj2uZ6eOY1zvsnbpVxQsMhnnYlZQLpteg7L8HEwfWCltPnVAJaYOMK6LPX5u/yvM50vOiV5s40TvURpzkJfkBfDNsT3w7Mdb8M0xPQztbztxGO57fTX+evEkjOhRDI/Hg5tPGIpQNIrttc2YXFMej14xkxvwWZzDomg8fWAVXlyxDV2KrWJ4vLCoQmRuCUdT5cqJywABAABJREFUcs1XFwVRli+foHGDWfQOBqyFRXXx3I1wk0o29QufbgMAXHJkP3y+tRZPfvQ1ABgmiOJjcfmr3jzUOfe+aWkjOuudasAlI1qJYq4+eSJOQIiv3YroqmgZa0OXg0yRP72zDuGohn98+LVy9+bhicVTxcNNV7QOm6zs4agm/Q5c/vV+/ElRS8DjAV77Ygcu/ctHOGl0d9x/1ti0xgSYM8Pt26YrdKXuRE9tf3e99CWeWJK49rJ9tkdEjhOqJwoM+fTtkoDfcRgmoCiiZz1uPmPZL1Jn/QAPWyiiE0IIIYSQdqGsIAdPXTGls4eBqqIg3vjBLOTn+NDYGok7ftNFlAXM0SiZJMfvxdmTknPMu9FSzJnmThnmZqFZFG27CDEsvzptNM44ohfG9Co1tL9oWj9cOLWvQXTxej0Ien2469SRAGDICDfv2xxXIr7/+TdHYkSPEpw4uptlW13sX7fb6ojWcSqqKiPg88ajYtLl2qMHxAUw8bh0AdmNSJdO8dC65jAabdzl0ajmWnRwI046RamkLFAKr/WnQ0ISZz8AhIQCrs2hCJZt2ocj+pZbigQ75VDLxtkekQ9OT7tENes10rTEd4EonKfrppU9FSIrrrzfJi7I6/HggTfWAAD+88nWpEX0xz/YhAHVhZjYrzy+TDxGpyNM9xKJ2ydzOl09sSARnf/4tnEyQr/HxGMWv9Jl92B7CIeqe131VMDBKA2qJuJIduLmCmVDzR47snx4hzWMcyGEEEIIIYc8/SoL0KU4F/0qC1CahntYRHT9ZTLfNxM9uRPRjT8Fko2k2VPfGn9dlJuYmPB6PZhcUyF1dzudJ59ifW7Aayuil+QHcNWs/uhZlm/ZVp8saA7JhdsbjhtiGGtBjjtXesDvdXR+Orn7AeD8KX3wvTmD4gKYKDBHIhq+3tuI2uawYz+qTHQ37GtsNTiJza72ZAT6qBYbS9hGKDdnvJsR1yYjWolt9XMfVghg4nm++ZkVOPuPH+D/vbTS0qdbF6re7o2VO/Gb11a7HrNbAk73kmadwFBFuKQrBJpFeHFCwtDO5jp7PZ6UBdX31+3Bzc+uwOm/X2xYbhS2He4xTf7aLZmY6FHh5vtbfxhAvK5eh8ncjtTlVNfiYMwUNzyNkuJnJxLV0Njq/D1O0qez77GD8BYnSUARnRBCCCGEkFTI4ifU3TzWP3VAhXGbJN30extanRsliTliRifo96HFJMq6LQypioipKMjB69+fiStn1iBXyIM/bUIvV/0GvB5n974LEf3iaf3g9XriTzOIzumvdtZh+i/ewCdf73fs54P1qWcg3/XflXj24y3x940tRhHdrpComebWCKbe/Tq+/fBiZcSMY2HRFAXfemGyIS6iC/sKKV4/03bssugRTSFEm9GHedGCD3Hf63IR/e3Vu/HO6t12h6BE5vQW0aBZHNGqyYh0XZjma6L6LEbSrWCqYIPiiZVkxNr0C4smXicj2okO8h8+/QkeUcTdOO8/1k/E4ETPnn+UxHEZJiw6YN/hSBSb9jRmrL9IBp7imHf/2xh26ytJFXPubP76/kbMu/9t7Kpr6eyhZJxsF7qzfXyHMxTRCSGEEEIISYHskSusuBnb7ScNx9T+Fcr1jzsUzbxwal8E/V6c4VJ0doPMiR7wxQTmFpOQ6zbTWhW5EtU09K8qhMfjMbiw3fYb8HlR6VCQ1CnmJzfgRa/ymHteFufy8ab9rsYCpDepsWTD3ng+OgDUtxgdk01JiOh1LWHsrm/F8q/3o6FFIaILQpRM9wtFRMHX9a5RJ4joeretCuHcrXNfvB3sxFK3Quq5j3zgqp0ZpwmbqGYdg8pBm2knukpED9k50b3IuFJkiBBxuLzJiOh/fX8j/r18i2GZ0Ynuuqv4Ib+3dg+eXroZP3nhC/cbC6zeWY97X/0K+xsTomw7poopUT1dlMlJm2S5/K9LMeOeN/DSim3OjV1gfBoltYmhldvrAMSeojhY+PFzn+HzrbW499VVnT2UpHCViX5QBguRbICZ6IQQQgghhKSAk4CaKpkwE7qJlynODeCvl0zChX9egiFdiyzrpw6oxMXT+uHRd+VOyb6VBfjktmMdxb1kkJnGdZe4WahzK4KqhGwxakI8X2YR3eOR/yj3+zzIc4h+8Slc8DqDuxbHx6dHyphd4J2BOR89GRFdZH+jXNi3i3qxtE1CtBLvEf21eJ3FSB+3kyXu41xcDzMlnIoXa5rV5asae7oiullIVBXttduPB6nHuai20zT3wq1meK1uu3lfI3783GcAgJOFYsmqfe1vbMXjSzbh5DE90KM0T7nf+ha1I9nNPwHrdzfg/tdXY83Ouvgy8btOXrA3/Zv0ndW70dAaxtzhXW3bqYoDd4SevnDlTgDAI++sx/EjrXUykkW8vunWEzgYabKpl5GNuBHI2/MyZqJrivzZC53ohBBCCCGEpMCswVW4cGpf/PK00RntV1ZULlmuPmoAAODkMd1t2/m8Hvz1kkn4v3nDpOvnHzsI848ZhNfmz5Cuzw34MpoHL4teCbaJyy2h1ET0gEpEV/yKDkU0XDmzPwBgcJciLL3lGKkQ7yZD3ly81cywbsXx13k5sf7qWtS5uW4y1jOB2YmeTJyLyL5GuVAoCthOoppKQ88NeDHaVLxWRL8/VLncouBul4NvFJ9txtnO6qCbOBc7kTTVDG8Zlkx0xYmxExy9psmpu/77pev9q4ZviFhx6sPl3IwYvyEW8RTvS/H1D//5KX7x8iqc+QdjXnt8v22Dz9Tt8uGGfcK79rein/vIB7jir0uxo7bZtp0qg78jpcFMfSbF29upngPpfFw50bP8Mmb7+A5n6EQnhBBCCCEkBTweD24/aXjG+53YrzztPq6cWYOZg6owqEthWv0UBv24bvbAtMfjFlmcS24gJh6anehui12q3OCqfOvWSBTzjxmEI/qWYWK/chTlBvD0lVNw6kPvGdr5XYjoTnEuNZUF8dd5kkKsZoI+a4HV9sBcAE8moufn+CyOdTP7FBEzesyHG2es6jp5PR6lAxpIiOhuokaK8wJoaLXmwP9r2WZUF+XGl9nHuShXZQSn+21HbQseWrTWsEwV55Kum9YsJKrOsd0TB+bJt9+/tQ7nT+2Lolw/ioVCxcmQTCa66PS0aypOakY0Dd6296pJibe+2gUA+Hpvk2KMtsMCELt3v9xWiyFdixwnKVVu//ZwsoqTCDtrW9ClOFcp2xvut4j765JJMrWnTE5AkfbHzTXKdqd3do/u8IYiOiGEEEIIIVnElP4V+Nslk9CvqsC5sQKPx4Nh3YudG2YZssKiuXEnulHkdF1YVBGDoRKfQuEocvxezB7aJb5sXO8yLL/1GBz3m7exvc2B6RSvATiL6NXFiUigXBciuqrwaqZpMGeit1rPtRsRfa8iziUUieKSBR8iP+j8c1R1nbwej23USziqIRrVlG1EAb4o149tB4zrf/nKKkuhUfvCou5lj3Ak6moSRsRJfLxfUszUEOdiyAtPN87FJKIrJjNCdnEuHquQNe3uhfB6gHV3zbPdv0oAM7jDnZ5wUKzXNM0gXIsadiSqQf+YGguLQtpe1T9gL5JtPdCM4+97G785YwxOGdvDpqW5gGf7Sm/i/dQasf/sp1ocOJNkareZnICiBt/+uDnF7XkdOnKiiHQ8jHMhhBBCCCEkyzhyYKU0T/dQJxknultHtipSRSmiK8T50vwc/POqKfH3TvEaqn2feUSiEGtVUUJEd+NE97qMznn3xqMxc1CVq7YyzAVBZZnoTnnwgDoT/eu9jXh95U48/8nW1AaImFjpFK3QGokiFJa3qW8JY8v+mFtYdD7r+b+vfrnDso2dGKhp7sXC/U3qPGwVqcRIiFtEo5kTNa1xLvL+IjYTXV6PRypkuRmaOs4liUx00bXe9v+9Da2YdvdC/FyIlhE/cmGFYC2K+k5xXPpm4vBUotvjH2yy7QswXtf2lO40TTNMxLQqPlc6Yttk6hpkkkyJmW7rIii3Pwxz1DsVV98h2X1Nsnx4hzUU0QkhhBBCCCFZgUwjjhcWDacmoju5wc2oBEHAKJzrr48cUKlsf6AphJtPGIIepXl48boj8fw1R+LIgYn21aKI7kKUdnskPUrz4pMPqdAgxLl878nluOwvH1naFOQ4u8j3Nqgy0dNXCLweD0IO4lxrJKps890nl2Pa3Qvx5bZaw1MAunteJsLaCRtRTXNdrNQcc/PZlgNYvHaP7TapxEgYxb/EcjtHvRvMQmIqmegeZF4oMoroTm0Tr/XN/rp4I7YeaMYf3loXX2eIc4mI/bvfl4isqdIV70INFM9xWFJrwCD2p3G+Nc3o9Hd6EkhVyLYjtcFM3V/i9UllMivdzxvJPLwkJFUoohNCCCGEEEKyApm7Wxc4zULTT08ZkXKfdtiJQ6Igr8fE3H/WWEwXhHGxWOiehlZcPqM/3r3xaAzvXoKRPUsMP96rhLxtN050MWbC6UkFWZFWt9Q2hbByey0aWsJ49uMt0jZuRH9VJrrM2Z4sXg+ULnOd1nDUUfT6zydbDSJwfXNsAkGmvdu5UJMR0feYzss3fvsOzvrj+9h2QJ6jDaQWI2HIRDfEuSTdlWkspgmtlAqLph5NpHLYG4Vx2SSIwkne9lo2UWF0oieOU9yXuJ37OJfMOLWdXNKZEgs1wOREtx+zuF/DfdCB4mWmcq9VEwKpbE/aHzdnu7MvybtrduOiPy+JPw1lJtsz2w9nKKITQgghhBBCsgKf14NXvzcDZ0/qHV8mc1R/dsdcHDu8q6s+65qTi86wK2oYEIRpXSsrL8jB944ZlGjjkFteK4ynODfh5naTiS4KdPkOIrYqC94Nv/zfVzjuN2/j/728UtnGaf8AsE8R55IJnDLRgZjQ5yRsB3xeg8ilF1WVCar2mejuHfb7GxP3gCjmbt6nFtFTEuJEoVcUAjPsRFdmotsIrbFM9BRRZb3buK531jZj6t0Lce+rX8XWi921/d8s7LeGo/jn0s2JfUVV+3J/JFInuuI0uelWHEdI4vg2jDMNYS6qacZ9pexE7zhxMFMpMprifnOL8fNCcbS9cfN5dHsfpjHXZ8s5f/oAb6zahR/98xN5A94mWQtFdEIIIYQQQkjWMLBLESb0KYu/D0rE5UIXBSl1vt6rFiZFHj53PCb2K8ftJw1TthGFadEVrkfOADFR1s5VLo5d7MONs1tMpinMtT8Hsnz5ZPnL4o3Kdfku4lzaU0T3eDyOorUbET3H5zGIj3omujzORb0/TdMMcRp2tIQjwmtrBIeMlLKY26mwqDUTXX7cLbYiukd5PpMRpX/96lcJd7dNJvqDb6zBtgPN8QKssvx08aEVTdPw+zfXGqJdjJnoibbi6XD61Mky0VWTQW7OgqHopeQ6ZMpxG4tzcS+ii+c33WKcqZJKBJIM44RA8sr8wR7ncrCNPp26CmbSeWLGDdsPNEuXH2zn/HDC/V+fhBBCCCGEENIBiAJtRUFOWn31KndXoPW4EV1x3Ah7d7sY5yL+tC4SBO2Az4uqoiA27W2U9nHCyG74YP1eTO1fYVjuKs5F2KtTJrlZuOpVnud6QsENbpzoexVxLpnA65GLhiKtkaij0B6JGvtpjIvosrZ2IrpzTrROsxBnI25jJ/qlFOcivBYF0HRFzYjpnKoEVbvz4fUAqksTiWqun6R4aNFaTO1fiSMHViojVmJjMb6XieDipFZrJIqFq3ZaxhXfXji74rn1OIhu+riM10be1s1kQlRyHLFtjfsTl6VCVNMMxx+fIFEcrjFmxt1EUbZiKJKaSiZ6KkWBNU16L+2sa0ZVYdDxPjucceMydztRl8pZPghvcZIEdKITQgghhBBCsgpRoO1aEssNn1ITE51nD6lOqq+Lj+yH644ekJFx5QhW1eriRFFQo7vcWDDUTMDnxc+/ORLfGNXdsDzZOBcn57pZ2HzgrHH42TdHYFzvUlx6ZD/HfTlR5OCEB4yxJZnG69KJ7iS01zWHjHEubQK3TGSxE5+jmmYR2Erz5dFAutsdAFpCifHZCXSpOGBVbmA3rnZN07BxT4Or86DKprfLzbbTAJ1EfvPaHbUxN6cxbsW0jek4ZHEsouu0qTVi6UMcl3g5UiksqhmuTYZyR2T7y6ATXRST7Z4yAIyFbMX7uiNF9Ew50Q21BVLJRE+yCO21T3yMEx94x/Ld9dh7GzDxZ6/j16+tTnoMhxNuLrvbq9jeTnQVyTyNQzoWOtEJIYQQQgghWUVBUBDRi2Mi+kPnjMPLn2/HCSO7JdVXfo4f848djIffXOfaKazC6/Xgg5tnIxzVDG55MVqlJRzFvJHd8NHGfShKInbG5/Ugx++1FR5FUajAUUQ3/ggP+Lw4Z1IfnDOpDwDggql98cH6vfjB04pMVgdK8tTZ8Tp72zUTHQg5iI8t4aghqkVGXXNYXlhUspldhEUsE924vkdpHkb3LMWbX+0yLG8WrrEY7dJsU3A1lVtXJf7ZiYtb9zfhtwvXoL4ljOc/2Yr5xwzCdbMHmsZi3L5FGeeiPh5NU4tddiL6/sZWPLBwjWGZfjyG4zJ1YT5moxM99kacqGhsjViErLDiqQGxnXOci3WsKmE2HRlNd+NmKoNcg2Y4Zy0OxYFVx9ehmegZ2pUhMifNwqJuRPjnP9kKAFi6cR8m1SSeWLrtP58DAO5/fTXmC3U4SPK41ajdauiZFr3F3lRPJZDOgU50QgghhBBCSFaRF0iIz7oTvawgB2dN7O1KvJURlBQoTYUuxbnoUWqMiAkIDvXmUAQXTO2Le749Cv+9fnpSfcsiXf5w3vj460bBwZznEOdiFnRz/MYf4b3K83HCSHfFWXXESYHSPOeYnXR0hT4V+ZgztItyfSxT276P5lDEtrglANS1GJ3oNz+7Ass27ZOKXXbOd03TLJM0fp/8nhOd6OKkyWtf7lDmlafiRDdEjphEzX8v34JfvrLKErlzzePL8MSSTXEhTy/EKWJ2TqvOsZ1bORLVlIKqXfzF95/6BDvrWgzLEu7uxDKzaC6e1jU76/C7N9cm1rUNszkkiuhhSx9uMtGd0LcT3dmqzOx0Pj+JOBdhWerdIaoZBWB9wkcl7anigzrSYKsSNmubQ9hZK8+ilqEqXut6e5cTWGY6KUr+oCfZgrx2uHWiG+bvMnDdUv1+Ie0PRXRCCCGEEEJIViHGuXQrcZdp7kTQ7xyXkgmaQxH4vB6cNqEXepXnJ7WtTEQXnYjdhXOhyiR/+NyY6G4WOgMSQTc3yXNSWpCYwEh1MsMtPq8HVUIszqAuhThueEL099r8ku1ZFjtP9S1hx6iMmBPdqFLc+K9PcaDJGkUjTkyYr1VUs8axBLxyAWZnXQu+2lEHwCg0/+PDr3HGHxZjV5tIHIlq+M8nW/HSim2pZaLbONFvfmYFHnhjDS7/y0eGbT7bWuvYr3mCQZmJbiOi2x3P++v3KNe9vnKnZZnM3W0V0RPv59z7Fh7/YJNlnfgkQGNrxJJVrhJDnQQ5UczVX4nHn0rOthO6iG03tlDEOe5IRzNlousTDqreI6ZJm/i42l7e/p/PcfrDix0LlKaDamyjbv8fJv78dex3+aSMIXonlUz0dr7WJHncXgXXTvSUR+LcH6NdsguK6IQQQgghhJCsQnSN63Eu6TKpX3lG+nHCKSvYDlnOeXGuH8t+fAzeu/Fo5AsxNzIRfWzv0nhxVFmcixmvQuRVUZ6fcJ8X57VvMmjA6zWI6JfP6I/+1QXx9x6FBzbH50W/yli7l1ZswyPvrLfdT21TyCK0f7WjXtpWFIX/fNERhnUrthzAb14zurZVxTGfWLIJx/76LXy25YDlfvlwwz5c1iZsL3hvA6574mNc9fdlWK0Ykx0qZ3ZzKIKGNjf81v3GYrNu7ohnP95ieK8SQu0+C9GopnRsXvHXpfhsywEXI2nrS+K6tmaiq7fX14njbWyN2DrRlSK65AQaC35qtn0ZxqUesiO/evUrnPjbdwyZ+wYxX9Nw/iNLMPHnr6Ou2bl2QVSz3kNO7XVCkhicBe9twJINe/H26l3mTTOGk/b45bY6V/2It7d5AunTzftx9ePLsGmPvJC0eRunOBdjkVpXwyMm3LjM3erS7p3o7Sd004meXVBEJ4QQQgghhGQV3UrycMmR/fC9OYMcC2i65WffHIErZ/bPSF92iJEQySIrLurxeFBekIPupXmGH9PieelfFRONJwuudbPDVCaiJ0t5QUJEL8p170T/3Tnjkt6X2Ynu9QD9KgsN72X0KMtDcdvYnlu+VSmI69Q1h10XCxTFwBy/9Xy+scooCDqd89e/3CnNll7+9X4AwIbdDfFlm/epRToVqlzqPUKEi+w47NhV14K3V+82LGtVuGudnOh2Z/3DDXtdjymeiR41isQidtdY5kRvao1YhDYxUscojNuPT+bEjgj3ktKVn6Ywt2LLAbz1lVykfnv1bixetwd7G1px+u/fxxm/X2x7jjRNMxxzs03ePWC8FnZxJk7FgdPBSdh0m8+uKtALACc98C5e/HQbrvr7UuX2EZvtzaTyxAkx4qqwqMvPVqc50Q1Pr/CeyCYoohNCCCGEEEKyjh9/YxiunzPQuaFLSvNzcOPxQ/DCtUdiTK9SPHHZ5Iz1LeJUcM+OakE0rizMwSvfnWFYny+I7AVCJvqTV0zBnScPx1WzEpMEZnEqJwMi+tBuxfHXRbnuneipRL8EfB70rUjE4Xg9HgzpWhR/r2flm+lRmmcoTOtEbXPItZAntnNzPv0OTn8N1hx1neZQxFCYdb8kXsYJQ+62sJs99Yl+9zS0Yp8gqjuJRo2tYcsylVhuV1g0EtVshSy3ExuA6ES3xqYk2rgQ0YXjaJBlogvnU1M40WWnT7bvcBLu5HRQ5a2/uyYxEfLltlp8sH4vPt60L77MfG00zZyJHjtXqtvF4L62KaLankkVjqfV5b6NEwLye/3zrbV4+bNt0qcyVOdCui9Gd6SNG9HZ7VlOJRM9ExjjXDLbN0kPiuiEEEIIIYSQw4YRPUrw3NXTMKV/hXPjFHByaNpx5IDK+OurjxqAwYJoDMTc9AOqC3Hv6aMNTvTKwiDOn9I37sAGrBEbAX/62QCjepbGXyfjRBfb3nj8EFfb+LweDKhOOM/DUc3wfmSPEul2lYU5KAy6H9v+xpDrXGa9ndcTG58TPrvgdsTEkRbFkwsb9jQYxO39jcmL6K2SGA0AhmKidc1hjP3Jq3FxXBWToyM7VyoR3d6Jbn/OkxGOEpnoiWVmMdKuP307Sya6jZtdFR3jkYhuMmHUTcRHRrQzTfpSGrUTMTj5jeuimmY4jibHOBf58VlPRXvGYFj7Njyt4LIft07yK/+2DA+9sRb1LWHDvWS41g7fNR1RhHXNznqc/MA7eP3LHa7aH2wibuc40dtPRReHumV/E7735PKk4q5IZqGITgghhBBCCCEZIp14gtlDq+OvvzW+p2V9TVUhXps/E6eO64mjBsfa6lEu1nFkPs6lLD8hTifjRBfz0/Win074fV5DHv6mvY3IDfgwc1AVioJ+XDC1r3S7gqAfhUmMLRzV0NjqbuJj24FmADEB3cllHsMhTkLTlLnh63c1GMTuVBBFbFWci86G3bG4GJloJG4rG29rRH7+7D4LEYc4l2QcuTtrW3DCfW/jL4s3JLY3DdOuP32NeGyyOBdXmegSZCK5Gyd6JsRLwziF/cgmQ8TdWSYhYLoPkhDRQxH1sbanQCvrO5nrlmiXeO301MAzH2/GiNtewbifvAog9uTGvPvfjq93imtpz6cSdK55fBk+2XwAlzz2kXPjgxA3ZzDzmeju+ksF8Zvyuic+xrMfb8E3fvtO++2Q2NK+1WAIIYQQQggh5DCgpqoA63Y1YGLf1AuY1lQV4vFLJ6E0P8fgKpdRVRTE8luPUWbGj+5VirW7EpnaTqLvBVP64JhhXXHuIx9I188YVGUQeOxE9NPG98TTSzcLbRPH4jZWxu/1GFy9RcHY/v5w/ng0t0ZRki8/PwVBf7ytEzl+r61bWoXP63FVlLUlHLUVYaKaNfJk2oAKvLtmD+pawim5z0VEJ7ropt1T32Jpqz9BIRttbVMIZW15+DIRXVUHwM7hH45qtmqXTEuMKgTGB95YI9les30vortSzU508xYqJ7roapVdbtmwwzbCcrzfDLhbVY75sGSCQzxF5rVmJ3o8zkVxfxuFZ+MTEca85/ZD5jYWPwduhU9VvruMjW0FRhtbI4hGNTz78ZakRPiOENH1ycBDFTcuc7enOcna2xlD/OyLY129w10xXNJ+0IlOCCGEEEIIIWny10sm4ZqjBuC3Z49Nq5+pAyoxrHuxc0PEct6DfrmIfts3hhsyxFVi1z8un4wLp/bFDccPwYS+ZdI2//veDPzhvPGGPlT7ff+m2egiOMgDPg9yA4mfneZCliqN2d8mtj95+WRcNK0vzp7UO75flYAOAPk5Pkcn+uwh1Th3cm90V+Sq6xQoJih8HndO9GYHt+4Db6zBy59tNywrzY+J1et3N2B7bXpilyhii0KgzOFe25a5LrtP9gnZ7OKkww+OHQTAepyapuGHT3+CldvVgk8yTvR/LNmEo3+1CF9sq7XZwog1jsR5X6K7OhSJWjPRFYVLnQQ5s/gfjWoGYVnlTs6Eu/XmZ1ck9ptEgUvLpINmdPc7xfEY42qM/XaEUAzIBXpx2K7jXKLuz5thO02zTFY4ZaJHFPdYJnH6XjrYcXOJ3E5Qqf7dtO6z/e7p9roPSGpQRCeEEEIIIYSQNOlRmocfzB1sEJA7k5L8AG47cbhju8k1Fbj9pOHIz/Ej6Jf/PBzUpQi5AR+O6FuGSf3Kce7k3sr+upbkGoTygqDf4MYWnejzRnbDqp8cjxmDqgAAw4TCpbpIPammAredOBwFLt3lBTl+FNq0zQv48MiFR+Cnp4xEeZu7WiffJJo3KGJevF6Pq8f8VVEtIv/7wphLrBeP/d2itY7bOiEK3qL4JxYW1fnFy6uw4N31Uif6mp318df6MQ3rVoyKwlghXLMTffO+JsOTCDKchFRReL7xmRVYt6sB859abruNiFkksxOidGFVPA6ZiG52VMtei+fvvEc+wGdbDlj70TRLNExHCGXiLmQiuHjOZJMQogCsb64atzETXTxvHZP7bR5DfCxa8iK1Kt/diUhUszyxEnGI+0qmCGmquPleOphxI2i7j3Nx1y7jhUUVT5CQzociOiGEEEIIIYQcgkzqV455o7rhutkDXbV3ct35fV48ecUU/PSUkbbt8gIJMbpnWZ6xCKfwMhLVkOP34pELJmDZj48xOOHdZY5byQ/aO9FFMb68IGhY93/zhhreD1c8EeD3euD3pe9EdxpfuogiuihKt0piVr7YVovbn/8CIYm4uvzr/ZY+c/ze+BMG5kiahrYipXaEo/bCsUxA3C0R/1WYhSdXTvSw6ETXLLnqRuFb3rf4GXp79W5c+bellmOJRI1u7HBEk44v08KcwYkuE3MNETXWbZMReFWud3MsTHsi243B6e2yn2Qc/B7T95v5a8xp+7CLJxSIParYJxG3EyiuM9FdtXKPYXiK7xfSOVBEJ4QQQgghhJBDEK/XgwfPHof5xwxKetvStsgUu9/sY3qVAgCKTaJ1/+pEsdP+VYXwiZ0YxMfYm4DPi/KCnHiUCQBXIrWMghz7TPTCYELgryzMMa1LbBf0e/HwueOlffi8HuMxKWgJR5MWV8xueDOXz6hx3ZcqE90OmUtVF9Gf/2QrnlkWc5gH/V7ktkX6mCcLWhQZ6SKRqFw41pEJYY0uxPn49hLhWoXeVHSihyNRi9AWMYnBie3Vfe+sa7E4/0ORqKXYZkdEnIj7sMurbw5F8K9lxicJNBiPUxd4ZaJeSziC2qbEtTKcN9OxZiL3XYVjrr7LXRsmTByukyi6hqOaRYR1mkAQJ27ciMHZSnMogh/98xNLXFVH4Oarzu2ZdV9YNLPXypiJfvDeB4ciFNEJIYQQQgghhABIuMgfv3Qyfjh3MJ79zjRl22eumoqVPzkOVUVGR/eI7iXx191L8wyRBgqDHQCgXMg693tT+6man+PDICEL3ozo9O5Vnm/a1m9o16M0T9qHz+tBwEWB1GSd6M98Z6pBRA/4PPjj+RMMbQZ3KcK/rprqqj/Rie5WpJXpNV/va0RLOIJrn/gYL7WJYjEnui6iGwXZRkUMjkgkqiFsI+QmU8BUhsxJrUJfJ046/Omd9dhqKsAourcNRThFp6ip79ZwFMff97ZlmRhxElG4szMtnRkKi0ruB33RPa+swi3PfWZcZxK/7QTeqXctxG3/+Vy6r6imLtCaaRwLi7o8wylnokc1y2Tb4eJE/8viDXjqo8248m9LO3zfbiYMU9WlNU3DgSZrwef2vFIH711waEIRnRBCCCGEEEIIAODtG47Cf6+bjmHdi3H1UQPibnMZXq8HuQEfckxFRquFXPjSPGMRUKP4aJQHyoSM8lTjXAqCfhTnBvD4ZZMwbUAFHjpnHGYNrkqsF4Ty86f0MWwrCtj5OT5LnrGOz+NBWUEOThzdHX0q8qVtgORE3ytm1GBc7zKDkN+3ogBFJpe/3+euqClginNJw824p74Vza3GYwn6fQi2xbmYJwsaWtw5xltt8qHTzW0231t2h6+fm5DDPlVFHw2Z6C4uTVMoYhBII9GodJJD0zTUNlsFu1QRxyxzousC7n9XbJNuL4qTqvECwB5T4VpxssTsum/PLHhZz+K1embZFksUkQxVvrtT23A0arkfHGsBpJi/3p4kO4qFK3dg8do97TIWN0ijiky4/T40z+Xe/OwKjL7jf/hww17D8lRvY1U8izETPTvuAxKDIjohhBBCCCGEEABAZWEQwxRZ4CpyJAVJf3LycMwYVIVzJhuFauNj6sZtylKMcykwid8AMLV/Jf5+6WScMLIbfnrKiERbIc6lKDeAmspE9IxYWNUuVkUX13971lg8ePY4ZbtknOj6ORT32700zyD6A21RMi5F9FAkeSe6jMbWCPY1GoXRoOhENwmR9S5F9Bab85NKnryINRPdOc5Flgcv4iYT3Q3NoYjhevzfs5/h38u3Wtqt3F6HUbf/D59vPZDcDhQ4ZaLrY5JFWEQ1Y0a83lZsqjoP5kx0o4juaugpIbvm4jG88Ok2PLhwjXM/STjRDeJnFJbPqpPAa5xcyQ7xNJmJjo827MXFCz7CG6t2teOI1ESimrTmgxm7IxKvt/mz8MSSrwEAv371K/cdpoDhiS3xSRdGonc6FNEJIYQQQgghhKRMjkTwPm9KX/zl4omGnHHA3mFXLjjRfS7iXH512mh0KQ7iwXMSQrasMKeYtW4WtUSnd9AvivHqXHXRCW6XmXvi6O7KdWZ0AT9fGH/30lzkmcR8n8e9iH6gKYR7X/0Kq7bXWYpkJsuW/U2W8SYy0Y1ivSzuQIad2zxdJ7r53nIT5xJyEDhFF3JU4US3BrpYaQ5FDWLptgPNuPnZFcr2v1u01rFPNxhjSaznVz9+2Ucvqplc0jKBWtOkMS9Rs4ieRKHOdJAWFjUtvH/hGqzYbD9JId4WyQjb4Wg06Uz0SAeK6Hph4EwiFiFOhVe/2IFLFnyIPfUtKW3f6vJ7w+4yhG1EdB3zJF+q2f6qCYqo4mkNmtI7n8yV/iaEEEIIIYQQctghc6KrqCxM5KebNaJSQya6sxj5rfE98a3xPbFbEFz0THcR0alujhApFEX0QHJOdEDuDLzmqAHoW1mA40d0dZ0JPLxHiWWs3UvyLONIxol+10srAQCPf7ARfSoKHFrbYxbRY5noxjgXTdPw7Yffw8eb9rvq084xKvaZCtZMdHXbqGbN/JYRVjiokx1jUyhimwdvxq2z3wlxmDLxWj9+WdFczSR+y8TySFST2jTtMtHN8Sgt4YhhMisdZNdFNu4TH3gHG+6ep+wnmqKwHYlqlu8H2eSFeZtU9pUKuZLvynRJd8yX/eUjAMDdL63EPaeNTnp7t0+w2H1mDfFMijZNpqguc3eaphmiWvY2tKIg6HN9bxsKF7vagnQUdKITQgghhBBCCEmZHBdFNv90/gTcefJwQ1SMWcgQnehuHYWAUXCQid+imGEWL0WnvBjn0kXIdTcjiowyp+Lc4V3x7fE9pa54MwOqC3Hh1L44anA1ABic590kcS5+n3sRXWd3fautuFVRkINe5fIiqvqkx1aZE71NhGtpE5RawlHXAroTuhM9VUe6xYluc/waNMcoFyAhENa3hA2TCmLXrjLRWyNJObDrmzMjojvFuegCr6wWgD7RkGgry0SXi6jivsyTFWI/tzy3AoNveRlrdtY5HYorpE70FETeVHPKw5KJGaftO1REz9BkhUimnizYlaIT3e33hVsnuurzbHWiW/vX/33bWduMcT95FTN/scjSz9pdDdInd4xxUZTRswmK6IQQQgghhBBCUqYoN+DYZs6wLjh/Sl/DsiP6lhveiy7yuhb3BRXFGA67GJZYW7OInhi76BLsVSYXlQHAL0wayPTsZDLlX5s/E7efNDz+XhTNZXEuXo9H6hR2wi5mwef1oKIgKF3XrSQ2mbB04z7D8hxBRG+NxApjui0o6ga94GOq2ehm3SlkI+5Fo85RLkCizU3PGKNX3DhXRZpMmehOZMqJru8yFIliR22zZb0udssjLDRHgTeqaVIR1S4TXRTY//b+JgDAQ29kJr5GJj7KYmicSDV+Jhq1ng+nTHTVBEOmECcn7eJcUn0CxE1RTzekqhu7dqLb+LvFa6CKc2lqNYnopgF/6+H3cMbv34emaXh37W4AwHbJZw4AvvnQu5ZlBic6NfSsgnEuhBBCCCGEEEJS5qYThuCzLQdw3pQ+rtq/8YNZeOurXThzYi/DctExXpeE+7Z7SS6OG94VBUG/RXQ2YxZLjZnoCVGph42ILm4jjnnO0GpcfGQ/107xK2bWWJaJTvoepXnI8Xvh93rigprf603aie6E1+NRCmq9y/OxYssBvL16t2F50O8zbNMSjqCxNb1ioCJ6znpTiiK6WUAN2ThUNU1zFa+iR488/4mxCGgqhUWTcqJnSESPaBp+9M9P8NRHm+XrbeJcYpno4nu54/ye/62UbGuMc4mmKEoni6xnuycSlP2knIluzYh3EvENExXtoJ6K4q8qzqWuOYRPHXLiVbTHmJPBrRPd7jK6EdHNxZTN3elP5NQ2hx1F8HW7GizLVLVDWFi086GITgghhBBCCCEkZbqV5GHhD2a5bt+vsgD9Ku0zupMR0T0eDx4+b7xtm/wcHxpbI5jSv8KwXBTExWz3aps4lyIhpkXUsy+a1g9T+1e6HTZuOn6oZZkokHdtc4Hn5fji5yOZTHQZNVUFFtHG61ELat87ZiBeXLHNslyDZoiDaA5FMyb2AqITPdU4F+N78xMI5rZ2+ew6KsFXS1Lkau4kJ3prOKoU0IHE8cnjXDRH8fvppV/H3eQi4rmPmNzZ5kz0dNEMgr3MLZ98n6m6w83Hau7LaV+RJHLz3dIiiL8qgfi0hxdj5fbUInWSyfpvD9xnoqvXuflsWp3o8nZeT2pOcnEMdKJnF4xzIYQQQgghhBCSVdQ1u49zccNL10/HLfOG4rqjBxqWz2rLIvd4jE50uzgXUXgXhSi7YqRu6VdZgDMm9MI1Rw2Ix8uIES/piui9y/Pjr/VJg2OHd5UWZAWAPhUF6FORb1neEorC6/XE8/CbQxE0tmZORI870VN0t5vjFezEz6imuYqhUIlrybqbm1ojtqK+mUxlojuhZ6LLShw89eFm/OzFL+Pv9WMW78T1u62OWsAsCKoz0TOB0S1vPxa32BVCtSMc1SxCvtPxGiYY2kE8jThMMgCwCOjJDCNTOe6p9uI6E91lnIvqHJn3o+ovGk3tWBjnkr1QRCeEEEIIIYQQklVkuqhen4oCXDq9xhL3Mr5PGZ6+cgoW3zgbfp8XP5w7GFfN6o8B1UUAgGuPHgAAmDYg4WAvVIro1ge9vzvHKNr/+ozRCPq9uOfbo6Tj9Hg8+H/fHoUfzB0s9JsYs8/rUTpIdeyyjruXJiYH/nPNNNx16kjccNwQpRPd7/WgJM+aea+LSMFAQkSvb4kJ3kO7FaO6SJ6xDkBZxFSkqTWC1TvqcPvznzu2lWEWv+wK1UY1e6e6jkoA/XpfE578cBNaw1F4XKSiN4ejSceCdAT6RIIszuXRd9cbiqnqYqw4MpXgaBSGNYg6dCTDSrFhDJKuUynSKE7IJJP5HYlaJ2ecjlcUuTPt0tfHJHvdHv2L/HPpZjz7sfopiEzREs6AE10UsF3uV9VfRNNSypc33sZU0bMJxrkQQgghhBBCCMkKfnPGGPz0xS/wq9NHd9g+xQKnVx81wLDuu3MGYfbQLuhanIvJd70OwFiMVNQbZU708X3K8dL103H8fW8DAI4e0gWf3dEdAZndV4Eo/Pu9HvgdnOi5AZ8yBqUsPzH23uX5GNK1uG0b+Xg8HpWIHonvq645jOZQFI1tsSMFOT7USo7vlnlDsWLLAcwaXIXvPfmJ7THUt4Rx6kPvoS7FKBOz7BS2ESQ1TXNVWDQmilr7eeSd9QCA3fWtrsbW1JpcJnpHoQugHheZNLoYLIp9KoE5anD2Gq+F6jxs2d+E4ly/q6LFhn0ZBFBr3yk50VPMcI9InOiOmeiR1PblFsMERjtYnGVjPtAYwg+ejn3ejxvezbFuBZB6YVO38U92/YvXwO2ki6qZ3feOHeY6AjqMRO98KKITQgghhBBCCMkKThnbAyeP6e5KyOsIfF4PxvQqRa0QLyPGvojiiSrOpVDIUA/4PEkJ6OZ+fV6PwQkvIy/gw37I43B83sS+xUzzoF8tbBVLRHRdrCrK9WNXXQv2NbbGs7sLgvLxXTo9VkjVTVRPfUs4LaesOWLFTiSPapo7J3pEw75G9djfXbPbleiWbCZ6RxFqE/zcHIMuwEYNzmn5diFRRDcJy7Jtttc2Y9rdC1GWH8DHtx7rbvBtGAsyqsdt3c4u3iPxOpkYnnA0mnwmumY8V5lGFHXbu3+dxlBiIqw1EkUe0o+9UuHaiW6zzuBEd3mK2jfOJfu+Kw5nGOdCCCGEEEIIISRryBYBXSRHEL7FAqSiaKMSj0UNxCmKRUa+KRPdSYS3c3qKUR1iAUlVnAsAlEpE9BE9Yg72mspCAMCanfVobMsvLwz6bQtsFuUGcMdJw1FZqI58SVdkrm0OY+Y9b2B3fQuAzMS5RKJR7GmI9VdRkINzJ/c2rPd6PK5F9Kx0ordNNLS4cPPq18fgRFcckxhL0hqJGiY0QhLR9eNN+wEA+xpDSReqdMqzVgnHdlna6cS5mO9jp+vennnxgGnSox3EWdnlMkxstPN979aJbjcM8X5N14meapyLeJtl4VfFYQ1FdEIIIYQQQgghxAbRfS6+Fot8istFKgpz4q+TdaEDRie6U5QLYC9UqTa3y1EX41zG9S7FzScMwQVT+wIABlQnRHTdiZ6f47MV0QHggql98dEtc+wbpcnGPY149J310DQNDTZFT6Mu41xWbDmAfQ0xJ3ppfgA5PuPEg9frcSX+N4UiSYvDHUFdSxgPvrEGq3bUObbVj9NNxrYoPNc1h/HMskQ2tiwjvDgvMWm0o64FexvcxeQAzgUZVWM0F7DVFG75ZOI5ZCK6k4hsmARIUz3duKcBi9fuMfUvjiWt7qXI7mvxmGSTJpnEfSa6uycPzM3E71+xD1VvqWb+G8dHFT2bYJwLIYQQQgghhBBig+iOF8XymqpCXDGjBlVFQaWDviDox8Lvz0TA5zWI7m7JE1ziunu8prIA63Y3AABOGt0dl8+owTd++w4AYGddi7Ivr2L/ohPd64m5H/XioKKIPqpnKS6f0T/+XhfRv9hWi6K2mJmCoN9Vgc2OIKJpaGyN2MYyaC6d6Ms27cdbq3cBiEXc5JgmTbwedw76plA0KUdzR/Hip9sMxUPtkMW5qARm8zlZvC4h7Mrc1uKExo+f+wwLV+7EfWeOwcljejiOy+n0q9a/sGKb4b2mJeodiNvsrm/FAwtX45SxPdCzLN92X5GoZjk+JxE+k070mfcsAgC8dP10DO1WbOm/owqLisfx9d5G+L1elBfkWNqJpGqSd52JbrMubONE9/s88eOJaoCv7R5RifIxJ7qwX01z9aSVKhM907z2xQ6U5AcMdUGIPRTRCSGEEEIIIYQQl5jF05tOGOq4TU1VYcr7qypOxJ50Lc4FADx83nh85+/LcP3sgThxdHdD+wHVhfh08wFLP/+8cgq+2lEv3UeB4Haf2K8cPz1lJCrahC5RRDfHvozsUQIAWLpxH5Zu3BfrK+jsRE+HU8f2wDMfb3HVNhTWcNID79i20TTNtai94N0NAGKRNOb7wOfxuBK8mkORpLK1Owo9qsYNmhZzSosCodKJblq+X8iVl23THEq4iReu3AkAmP/UJzh5TA9HEVLm3m4ORXDKg+9iUr9yHDu8q3S7Hz/3mbEfTYO3bSJIFDTX727AL//3Ff72/ia8d+PRynEAseM2j8cxE10UuZNQkjfsboDX40HvCquw//nWWrmI7j7w25GPNuzF3z/YhOeWWz+Xojv9W79bHBvv3fPc7TtJ3DrR7Y4pauNEFycHw9EofF6ftJ1OJGpMS49ENfh9bp4mko8hU1Fn+xpa8f2nP4l/vtrrehyKMM6FEEIIIYQQQghxSZc2IbujuGJGf/z8myPx4f/NieeuD+pShNfmz7QI6ABwxhG9cMu8oXjp+ulxN/k93x6FCX3L8a3xPXDssC74ySkjDNuIx1RREMSA6kKUtYnoFUJ2uTmyZnDXIlw5s79hWcyJ7o4Zg6pctkxw9dEDDO+vNb0X+c8nW7B2V4Ntf42hCBrb4l7MwriZpjaBtyjXbzkXbuNcmkMRtGahiO7WxasT0TSTE12ViW5cXteciNaRbdMUsgqhkaiGL7fVYsydr+KPb61TjsnsHI5GNbz82Xas3F6HxxZvdO2+jjpMDmyvbXYUoeVO9CREdJcTO82hCGb9chFm3POGNPtffPgklcKlbnLB5z/1CZ79eItUTLbLm1ehKtTphPtMdHX/dk50w7l0cf6iJie624kLoxM981b0O1/4Ii6gAyxemgwU0QkhhBBCCCGEEAfuPX00Lp9Rg5kpCL/pUF6Qg7Mn9UZVkboQp0iu34dLp9dgaLdivHDdkXjkggn41rieAICg34c/nD8B503uY9ime2le/HVZgbGQ6NBuRbb7u/H4IfjLxRNR3BbnorvT3fDoBROw+CZ7R6+ZPJMb/vvHDkZloTwewo2opmnA1/tiMSb5iqKs/SoLDO+Lc/2GYrNAzInuRiRrao3YFjo9WIhEjSK6SlS0ExsjkngT1Sn8/lOf4EBTCD/775f4SpHbbt5VKBpNyX2tH1dzKBLP+jfjJKK+sXInPt9qfCLESbgWRXa3cS4HmhLO/gbJWMUIqXTOhR2b9jYq18nc4e0l2rrPRFevs8vVF53g4vVR9ReOaIYJAbeH7ZTtny7mz4+bmhAkBuNcCCGEEEIIIYQQB05tE6KznYJgQgiuLsrF7KHOzvmeZQkRvSDHKBP0EAT2DXvkru4Zg6rwwc1z0NAaRmWhOh/ejN/nRbeSRP/fP2YQlmzYi7dX7za0EzPgzSI6APi9cn+gW8f3T174AgCQH/BhP0KW9dVFQazfnTh2WZyL1+s2Ez0741zM/O2SSbj52RVKgTSqaQbRWhWJY5cDHs+XdnHe1uxKRBEd++u3pBEUZsG3udW4b7fua72baXcvxB5FYVMnkfvppZsty1RiZTgShd/nNTrFXaqn4idNv69EkVr8LKaSiZ5uJrdsIkvME5eRqnDc4joT3caJHlFfA3HI4pMCqv4sTvQUznl7ONHNhCJRx6dwSAyeJUIIIYQQQggh5CBn/jGDcPSQaswZ2iXpbcXcc3P8gijC9akwOrJF8nJ8qGyLfkk1uTeiaSgMGkX8566ehiJhfHkSt7iqYGuyju9chRO9wDSmoqDfIjp5PPI4l2rTEwSxTPTsd36O7FmCPpKMbR3zMThlopvjb4CEYOnGdW2+lrL9mQXHhtawIZ/frYgZ0TREoppSQAeMWd9ukU3q/N+zKzD+p69hZ20zIsJ6t070kNBOF6zF41RFkLifULBv19Rq7/6WucPbaxLJ7nqJ2B26cSLDuE5868aJbs5EdyuId4RwLnIoPBnTUVBEJ4QQQgghhBBCDnKumz0Qj154BPy+5H/mi0K5TKR+9XszcP3sgbhsej9X/Q3skloh1WhUMxSeBGJFT/MC3rZxysXYgItifW5QxbnkBoz7lGWim0dw6ZH9sOzHx+DoIdWG5c2haFZmopsJ+r3Sc61jFpFVjnNduBUnaszr7NzqKkKRKEKRKL77j4/xjyWbAAA3P7PC0KbRJKK7Pe9RTXMUet2K3CIyQfnvH2zCgaYQFry3AeK8hFuROyQIoM1t/YvHec3jH+OnL3wBzZRh73b4Tu32NtoL1zInutNkRioasqZpeH/dHpdt1esiBnFcPVFkaKfoKxzVDDtze5uLu20PPd3c58HwfZQtUEQnhBBCCCGEEEIOc35y8nCM6VWKS4+0CuUDuxThe8cMQlGuVQiV8dNTRuK08cnH30Q0DccMMzrpc/zeeIRLXsAnjYpROdGTRSVyeeAxCOyyOBez1pUf9KO8IAc3HT8UswZXxQugHixxLjk+L4J++aQCYHWiqwpI2onounieiiDdGoniuY+34LnlW3HjMysQikTxxqpdhjYNLRF4hOkNJ9e0jhZ1Lojp1tVuGLNNny3hqCEj3rUTXbiXmtuKsobCxm3/9M56bD3QnJFM9B/98xN8+3fvxSdR9jm4v2UTB6lcbyfW7mrArroWBP1e6b1mxC6nXy2Oi+dMnPhRufXN5y5bCouaoRPdPRTRCSGEEEIIIYSQw5zzpvTFc1dPQ0WhuwKmdlQVBXHPaaNRlJtcGbZwVMNF0/oaIl1y/N64O14X0yf2KwcATBtQAUCdiZ4sKkemBg35QlZ8kaSwaMQkKuuTCCX5ASy4aCJOG98LAFDfEm4Xd2kmOfOIXvB6PbY5yeaJAF3ANbOrrgUAUGznRE8h3iYUjmKf4IKub7YW1WxsjRic6M0uxcL2c6LbiegRiLt0K9KLkxm667slYr0WLaGIY5yLTAwWm2mahqc+2oyPNu7D8q/3AwD2Oojodk7099bsxtb9TdZx2IjcKr5uy+7vX1Xo+GSKbZxLVC1gR5N0oseK74r7TV5Eb4+vCnOfdKK7hyI6IYQQQgghhBBCMk+SCpDP44HH40G/ykT2eo7Pi7xATMDWxfSHzx2P208chgfOGgcgc25NlSNT04wFW2VO9GbBcbvk5tnoVW7ME8/N8Vr28cO5g9Mec6a59/TRuPtbowDIo3N0zCKzSiDWl/u8HkvefTitOBdj0cb6FpmIHjaInc0unehuRHTzpIkd50zqDcDe8dtqcqK7F9ET2zTpTnTJ2CJRzdGJLpsYEIV18RrrsVH7HONcZE70KN5ftwdn/+kDTL17oe32btnfFBtHeUGOYwSNXc673USD0YnunIkejWqGdm4jesSPQ0cVFiXuoIhOCCGEEEIIIYSQjONWAJp/zCD0qyzApdNrAAB+wUkac6LHpAvdiV5ekIMLp/VDWUEOAOBAUyJH/ZELJiQ1xlPH9oi/lkVP6Oj7BoDSfImILoiFMte1uL3OZdNrUN52DG54/LJJrtumijhOOye6WXCVOY5FvB5YnkxIy4keiRrmaOokTvSG1ohUZHYiqjlHXCQj/OtRQHZO9OZQNEUnujXORTb2UEQziMCaZhWTZddBHIc4UaE/ieHkRJcdczjiPr/cLfsaYt8BpfkB58x1m3Uqh7mmGSdt7LLTdcJRzTgxkooTXdgkM6FV1n4Y5+IeiuiEEEIIIYQQQgjJOG4TL66bPRBv/GBWXFAOCPEshkx0ReFP0Q07e2gX/PF890L6L08bHX+tEoI1zejKrioKWlza4rayjPZciYge8HlcC1hFuX5M7lfh2G7F7cfix98Y5qpPGeI47Zzo5nG3OAjUXo/Hcv100TalfPFI1NmJ3hI2jNOtiK5pGrbub7Ztk8yY9SigSFSzFGTVicW5GJ3omqY5Zo4b41x0J7o8QsXirI5q+GzLAZz3yAdYs7MeIcnEgCjoNgjnWF/udE5lTvTYsam3ScV8vb/tO6AsP8dx8i7aNoEgO7cqh7n5eosTDso4F00zTIy4L+bqLNCngyXOhSK6ayiiE0IIIYQQQgghJOOkkm0MAAG/4ET3GQuLyjDHV1QWGt3dj144Aarao15hRYNEiNURRfKy/Bzk+Hym9Qmx0CcpfhrweeEX9hXwxaJr3ApYPq8Hkm4N9K8qQFFuAD3L8hz7++1ZY6XLc1N1otu4+IGYiJ5rKlSqu7nt4iRUYwhFogaxsb4lZGnT2BpBq3BvuC0s+o3fvoOz/vi+bRsn572IWJRWlT/dGo4azmk4quEnL3yJiT9/DS9/tl3Zt3juWtrGJLunwtGo5ZpFNA3f+O07eHv1btz0zKdSJ3pUMVGh99XicB6kTvS2CYJMsq8x4UR3ik3RNA33vLIKY3/yKv67Ypthnaqop9lFHlGI7Ya+TE5013EuYg69oo2maXjknfVYunGvqz7tYCa6e7JCRH/wwQfRt29f5ObmYtKkSViyZImr7f7xj3/A4/HglFNOad8BEkIIIYQQQgghpEMQC4V6PB7k5tg70c2IsSFFQT+OGlztygUajmp44GyruKxBQ0NrQkD0SYpuimKhV6HYi5MAgbY4DLcClp4Xb4d+fvyqGQMBMeNdJDeQOK6gX32+zY5qWQ63iMdj7BtICLF2ru4KIe5mSNei+ARJKGzc5uIFH1m2bWwNS+NOnNjZVgzVjjqJaK/CIKLbZMdHTALuo++uRyii4cq/LTW0FQVoMVZGn8iQ3VPhqGZxaIsTAfsaQ1KXvLgvsXir3tbp/pU70aO2n8dU5HX9aZTSfOdMdAB4aNFaAMDt//ncsFycSDAI6qbDFM+7arIwFueSeO/26QXNsF/5Nq99uRM/eeELfOt3i131qeofoBM9GTpdRH/yyScxf/583HbbbVi2bBlGjx6NuXPnYufOnbbbbdiwAT/4wQ8wffr0DhopIYQQQgghhBBC3PLnCyeiJC+A+84ck9R2AZ9RBC5qK0hZYCpMaUYXtvtVFsaX1bWEHcXnmYOqAAAnjOyKb4zqLm3TaHIxW0T0NrFQFuWiE3Tp8pbhdAwAkN9WgLVbibMT3eeV71+cqLAbY7LuVU2zToLogqWdAF8hPFUQ9Hvj0SixOBd7UfL9dXtx90sr4+/dxrm4oaHFfV85fm/8SQhxskUUVVvDUUOx0nBUQ01VosCuiHE7SZyLIofcLOJ+sbU2/rqyMAchiWArLhInkvRr5uRE//O7GyzLQhEt5adUVOh1EcryAy7iXBLrzRNO5tx42XIgRSe65s6Bb4iUEZaLXwGb9zU69uMWpwkwkqDTRfR7770Xl112GS666CIMGzYMDz/8MPLz8/Hoo48qt4lEIjjnnHNwxx13oKampgNHSwghhBBCCCGEEDdM6V+B5bceg5PH9HBuLOA3CbzHjeiGb4/viUuO7Ge7XXl+THD1eT341rieAOC4DQDcf9ZY3PPtUbj7W6Ok6zXNGvViKSzaJlzKolx09AKpQMKJ7hY37nLdsT+ka5Ftu9L8AAKK/sTIlRybMSZbDLQpFLHEueiir51Dt7IwmHjj8cQnWEKmTHQZ76zZLd1fJpDFx6jweb1xV7/o+jW45MMRg1AbiUYNtQFExNNlKJzaqnaHR6JWEb2uOXEMu+tbpU50Y2RO4vzpTmy7YrwqnDLRU9HX9wmZ6E73hbjeZ5qwU4njlkx0FyJ6RDMWc61vCbvKexcnJlQTAoXChGK60Th0orunU0X01tZWLF26FHPmzIkv83q9mDNnDhYvVj+ScOedd6K6uhqXXHJJRwyTEEIIIYQQQgghKeDGQW3GbxK2qoqC+OVpozGud5m0fY/SmPP6xNHd4svuOnUkHjh7LOYfMwgAcNJoucMcAEryAjhtQi8U5waUbcw6lVlg3ttWpNDOiS7GudgJ1DIKc+1d+ACQ39a/OU5m+sBKw/tnrpqKclNufHyMglvcTre3yzGX0dgasRRXrWuLB5EVtNQpF+JcoGnxyYdYJnpSQ8Arn+9IbgMb6pNwovu8iUkXUXQ255mLQm0kqikF6qhDnIvs2oSjUYsQLDrztx9oNjjTE/tKvG6QZaKnIMCGo1Yfuhsh+IdPf4ILHl2C9bsbcPID7+DFTxN55vsaYhMCJfkBi2vcjLhanLD79atf4a+LN8bfR21iVQxiu0L1j0Q1g9h+0gPvYle9fVSQpmnGJyYUhyKK6OanZJIl2c/y4Yzzt3A7snv3bkQiEXTp0sWwvEuXLli5cqV0m3feeQePPPIIli9f7mofLS0taGlJ3KS1tdYvBUIIIYQQQgghhGQHybq0n7pyChau3InTxveML8vxew3RLL88bTT+88nWlMZz5az+OHNiL1zz+Mdxt7oq6mRyTbmyH2MmenKTC4UOUTaAUQB/4wez8OzHW3Dc8K4Y1KUQA/7vJQDARdP6oqaqMB5/AcQyu3UhTuzDTopMXkQPI2jKRNcLVdo50UvyEhMbGhLnPRSJZjwSxI6Az2OIvahtStaJrovoifMmuvlbI1YRXVW8VBR3Q5I4F2lh0YhmEZdFZ359SxhX/X2ZZTt1JnpseSoRObFMdONYxLcaNESjGj7fWouh3Yrg93kRjWp4eulmAMA5f3wfWw804+rHl2HeqHkAgP2CEz2ZOBd90mvV9jrc9/pqZbtU4lwiUc0ivr/yubpILGCdlFB9NMTvn/1NIceoKzvoRHdPp8e5JENdXR3OO+88/PGPf0RlZaXzBgDuuusulJSUxP/r1atXO4+SEEIIIYQQQgghqeImukSkR2kezpvcx+J0Fsnxe9FfkTFtZmSPEgDAzScMwae3H4txvctw9JAuWHH73LijPagQ0W88fqiy31xJYVG36EU5DfEmAN784az4a1EA71dZgPnHDMKw7sXwC/vSBb9iwdk+c1AVLp9Rg+/M6m/rxhdJNke5ocXqRK9vCSMa1WwF+YIcMbZCKMgatt/OjkqFC1/Ff66ZZnnCQBdt3eAXCtGKIqnowG9sjRhE9ZZwVOlEN2SiGwqn6nEu1msTlgi6bhzM4r7qW4yFRR98Y43BDe6WUMQY5xKNWgX++15fjRMfeAc//vdnAIznbV+jcQKjNRxFQ9uxlOUHnONchNf6d80+yfUU29k50VWYneiA/HMj9t1kuiYaNPzp7XX409vrlPs/0Oh+Qgewiv4tdKK7plOd6JWVlfD5fNixw/hIzY4dO9C1a1dL+7Vr12LDhg048cQT48uibV86fr8fq1atQv/+/Q3b3HTTTZg/f378fW1tLYV0QgghhBBCCCEkS/EnKTC7xVzYUsXfLp2ET77ej2kDKg3iqfhaFsdy/eyBGGyTR963ogAfrN8LICEGD+9ejM+31mJKTQUWr9uj3DanLVP78hn98PP/xp7c//k3R6JPRQFK8gI40BTC3OFWHcWMLr6JMTs761rwu3PHW9raiZHXPvGx475EGlvDlkx0IFas0ixIdivJxbYDzQCMkxUaNEMmeqoO2mSidCb0KcOonqUIeL1oRmJ/X+9tct2H1+OJH4cxEz1x3A0tYYMg3tASVjvRhcVhQySM2okuy0R34yJXxbmEohrueWWV4/YyYpnoxiKq4lMFmoa4K/yJJV/jrlNHGVzzeTk+w9j3N8UEcK8H7iaBxEz0ts+0WSTXx9HYGo5F7Zg+DG4y0aOa9ZxLr42mwYvYOMzXZF9jCD998UsAxidZDCJ6Ek9FyJAVoiVyOtWJnpOTg/Hjx+P111+PL4tGo3j99dcxZcoUS/shQ4ZgxYoVWL58efy/k046CUcddRSWL18uFceDwSCKi4sN/xFCCCGEEEIIISQ7+c6s/sgNeHHh1L4Z7VcUoQpyfLjjpOHSdiV5AcwYVGWbb+71enDd0QMwbUBFfFllUVDZHgDG9SmNvw60iaqPXngEbjhuCO4/a6zttroIe+mRNfjFt0bhjR/MwtmTegMAFn5/Jv555RTMHFRl2wcgL1S4o7ZZ2taN17yqKIgbjx/i2C6WiW6VoOqaw5Yipf0qE08MiIUfRSd6OiJ6MpM0unhqzunfsKfB/f68nvgkyK3//gwfbohNpIgCeGNrxOBCbmiJxDPOzRjiXIRzpwuwMof+n99djz+8ZXQzN7twomuahvW7G/DDpz/BZ1sPxJfLipC6JWwqLBqORmGOxTc/jSKeCzEKKRLVsL/NiV2SF7DUA5Ahnj99Pypj+dg7X8XYn7war3mQ2G9iwKpYobBk4uL/vWyNrhbbmEX0ptawtJ0o6icropvLVMgK0RI5nepEB4D58+fjggsuwIQJEzBx4kT85je/QUNDAy666CIAwPnnn48ePXrgrrvuQm5uLkaMGGHYvrS0FAAsywkhhBBCCCGEEHLw0as8H5/eNleZO54qA6oL8eGGfQCAT2+fayuSu2H+sYOxYXcDZv1yEQCgyiEmRCyMGmjbd5fiXFw1q79jYUVdRPd6PTj9CKOBsKIwiIpCewFfR9T0pvavwHtr9+DUsT2kbd0Ue6wsDOLKmf1x+oReGPeTV23byuJ26lvClsiLfpUFeG9tzJWfY4qiyRFF9CQjZXSSyaPXHcpm4X39bvcius+bcKJ/taMeV/51KZb++BhLtMdeIVJkf1OrOmtbFNEFMVefVJBNLny0cZ9lmRsneiSq4du/ew97TCKy+ZolwwWPLjG8D0U0iB912VhFV7646z0NLdjXNrbSfHcxPeLI9e+AsKK4rR4j8+nmA4blrpzoEhFdOh6hiTnORdyPOEajE70Vv/rfKjS1RnDLN4YltT+ATvRk6HQR/YwzzsCuXbtw6623Yvv27RgzZgxefvnleLHRTZs2wes9qKLbCSGEEEIIIYQQkgaZFtAB4MbjhqKxNYJTx/VMW0DXCQjjNOeVmxEd1vtN7lExXiXo91oKDAYlUSipIMZW/OH8Cfhg3R5MHyh3sFcX5zr2p+eLlxc4C5hqJ7rxWHuX58dfi45kDQkn+g3/WuG4PxU5wrk8d3Jv7KprwSuf75C21QXrgOl+MV8fO3xej0G41wVps2N8SVvUD2AUjWuqCrBuV0K0VxUW1R3FbrPi3WSir95ZL11ufnogHcKRKDwe+8+7GOeyq67F8FrPSC/Nd5fnL04y+L3WrHoZ5ic4dta2oL4ljMKgX/nEhixCR9pO6Nucgy+OVexK7HdPQyt+u3ANAOCCqX3RS/j8uIFOdPd0uogOANdccw2uueYa6bpFixbZbrtgwYLMD4gQQgghhBBCCCGHFCX5Adx3pn1sSrKI4qiTiC66mXccsEaovPGDWWgJR3DFX5di455Gw7pMTSqIYmBh0I/ZQ7so284b2Q3LNu7Dii0HsFTiDgbciec6Mif6olU7MaiLMUe+R1le/LXP4ETXDJMWqZIjXLN5I7tj094GtYjepi+mk9Pv83qwUxB+c3xeaJrmSoj2eID+VYVGET2q/1/D/77YHl+uC8FuRVE3TnQVKud2KkSiGvwO3TUrxrqzriVe5LXMpRO9QYhI0SfTVP3rmLXwO1/4As8t34L/XHOk8okNWZyLDEOcS6vxRNzx/BfKvnXEOJdvP/weXrxuuu13kTl+hiK6e2jxJoQQQgghhBBCCEkBr+AgL3eIcxGpE4o06vSrLMCQrsXoKnGAB9MUjyf2KwcAnDnRWktOhc/rwe0nDcfJY7rbtlExqW2fOrLCor9duMaSN92jNCGimx3gyUSxqAgIgrjf54HPJv1AU2SiO1EgFLH1eT2GSZHWSBT1pkKiKoJ+r+Xa687lf3+yBZ9vrU30axPnIqNFUbjUDeYomnQIRTVL4U4zqiKrtU2h+FMdbp3ojS0JwVyfVDLHqJj5WDKJ9OnmAzjQFFLmqUc15+MCjE+HuJ3YECdgxOu4o7YFv2jLXX/x02247d+fOQr5qdYWOByhiE4IIYQQQgghhBCSApWFQZwzqTcuPbIfinPdiXhO/PK00ZjYrxyPXjghvixdEf3vl07C4puOxvg+5c6NTdhG39joc09eMcUgJgclcS4A8PVeo+u+R1levPjhpJpE4da+FQWGjPRUEUV0r8djKWIpoguQgSRihu84aThmDamOv5f1v6O2xVVxzqDfZzlmXXR97cudhuW6GOo+zsU6keOWSAad6OFI1FHoVRVZve+11bj7pZhoXJLn7vMnOtH1c+XkRH/m4y3S5Wt21kP1IYhE3WXHi0K7axFdOP/mse+pj01KXf34Mjy2eCP+vVw+dh2K6O7JijgXQgghhBBCCCGEkIORn31zpOu24/uUYenGfbaieK/yfDx1xRTDsmKXAqGKgM+LbiV5zg1l2woCcmHQj/oWaxyGmYfPHQ8AmNK/Eq99uQMFOT5DnEtVUTCebb1DiDoBgMqCID76vznY09CKfpUF+OeVU/C39zfi5nlD8dvX16R0DCJiNI7f67GdJIik4ERvbI0YhO/cgA8T+5UbMs9veW4F3l+3V7a5gdyA1xLlo7unC3OMkp7ubG9ocSfEphPnklEnekRzLGLbohjrOqHAqywuSIboOtfPWVOKrvy1O+tRU1UgXRfVNIPLXIUYsdTsIqceMArf5uvoNd3Pu0yfL/OppojuHjrRCSGEEEIIIYQQQjqAB88eh1PH9rCI5CpuPH4IxvYuxQVT+7bvwGwQReYKU2TN1UcNiL8+dVwPAMCPjhuM40Z0BQD84tujcMXMGvz7mmkQpb2/XjIx/nrb/qb46wUXHQGv14OKwmA8K31C33L85syxqC7KNbjIk6FSGLcYCePzGp3oD587Du/fNDv+Xhcck8lEr2s2Fo3tWpKLB88eh7tPHYmxvUsBwJWADrQ50c1xLm3CbH7QKBrrYujOOmvevoxUhWMgs4VF1+9uQIODeOymkKvbe0N0h+uFWVOdUFi7q175MEY4orlyooumfrfjECcxzE5085MPHof5HzdjJDHoRCeEEEIIIYQQQgjpALqW5OLeM8a4bn/lzP64cmb/9huQC8R4kPKCnHi+9z8un4y+lQkX7i++NQqXHlmDod2KDO1vOn4oAODjTfvjywd3KcI3RnXDC59uw0dtedNnT+qNWYMTMSgyAv7UMtGDQh67KLb6vB4M7FIYf3/ciG6G7XTBOpiUiB425LyX5+fA6/XgzIm9sWT9XsN5kBHweeIiaW7Aa4lz2bq/GTVVhcgLyEX0HbVG57GKpjTiXDJZWPSyv3yEqiL7orxOcStAapFHrS7jXFTUNocszm6diEsneipxLuJn0jwZYhu/BGv4jNv4H0InOiGEEEIIIYQQQghRIMa3FAm57+ZCjn6fF8O6F8OjsL4eO6wrqouCOG18T3g8HlQWGoXTagchFYBtJvogQQwXqSoK4tLp/RJ9+I0i+oDqIiy46Ai8eN2Rlm11ET2ZOJ36ljD2NCSEbDFeo0eZc6ROWX7CNS9zop/7yAd4Y9VOPLRorWG5Lgi7d6J3TJzLL749SlosV8QcOSKiaZqlsKiswGwqRWf1iYdURfSWcFQZRRONunWiq13lKsQ8fXMEjJOIboYiunsoohNCCCGEEEIIIYQQKXXNooieCDQoyEku3KAkP4D3b5qNe04bDQDIzzE6qauL7IVWwD6yQ7b9lJoKfHDTbPQsy5f24W0T/GcNrsbw7iWW7QvaIlPEopVOxU37VRZgd12rdF33UmcRvbwgIaLLMtEB4KI/f2hZ1tom6Lp3oqcuniZTWHRsr1K8f/NsnDKme0r7aglHLeLy+VP6WtrJrsuQrkWWZSLxTHSXWeSysSnjXKKaY8FUAIY2bic2WsU4l7C9iO6BvaieyXz7Qx2K6IQQQgghhBBCCCFEilj4cGr/ivhrUVB3i+jKbjQJl26c6HYiusyBO6pXCbxej2GsjUKMiTk/Wuehc8ahpqoAvzljLADjsdq50rsUB3HZ9Bq0hOViaA8XIno/ISInN2B1oquobwnjxn+tcF0oMp04F7Pwet+ZY5Rt9YKfPm9qEmRLKGpxopufYgCAgOQ83XTC0PjrU8f2sKwPxQuLpiaixyYu5OuimjsRXfx8tbjMqf/7+xvjrz/dfMDap7Bf84MhUdOA6UR3D0V0QgghhBBCCCGEECLlgql9UVNZgO8fMwjHDOsSX14YTK/M3vlT+hjeVxc7i+i9y2OO8tL8AH78jWGGdWdN7AUAGNWzBH++6AicPqEnrp89EADiBT1jfSREalX0xQkju2Hh92dhWPdiAMZjLclTH/dNxw9FXo4P9505FkW5fvz2rLGG9bI4lzlDq3HRtL7x91fN6g99WAOrixyd7yJPfvS167a6cFyUwnUUndt/On8CTh7TA5/fMReT+pVb2upPHKgmLNyM0+y2Lsu3TmTIJljEiBdZzFAiziU1Ibk1HIWm8KJHXDrRDSK6ywmQuhb1BEhLOIqQzZMC5jFRRHcPC4sSQgghhBBCCCGEECmVhUEs/MGs+PtXvjsDPm8sAz0daqoK8dL103H8fW8DALo45GYDwAkju+KV785An4p85AZ8+MkLX8TXzR3eFS9/dzr6VhQgN+DDUUKR0qDfh3duOAr/Xr4Vx4/oioffjOWJe10KuwUGEV3tRNeLW84YVIVPbzvWItzKnOh+rxc+od3QbsV4/LLJ2NfQimOGdcHjSzbZjm3+MYNw76tfuToOEV1LzQ/6bEXZ/zthKH723y8NyxoF5/bUAbGnEwqC/ng8joh+vnwpZJYDbSK6ySmeZ4oCAuSFRXMM0T3WvkNpFhZtCUeslTrbaGgJY8mGvY59iBp2JgTt5taIbURL2LTO/J6ooYhOCCGEEEIIIYQQQlwx2CFnOhn6ViRc4RVCFrgKj8ej3L/H48GQrsXKbXuW5ePqowZgf2Mir9ytrKtnowMOInogIdrKnM96tInIrvoW9K5IZLb7vR5MrknE5jg50Z2KdjrhFBdjLiALGJ3oogNc5uzXJ1sCqTrRWyMWp3i+JI9f7kS3H1sooiEa1dKLc1Gs+8eH7p4KEJ3hbqN47GgOR9BiczxmJ/qW/U1obA1LzykxwjgXQgghhBBCCCGEENLh5OX48O6NR2PxTUen7Wx3iyimuvXgikVURRE9zySKB/1WkdyMWRRftmmfIbfaLL6LIrfMyV5sEy/jBqcxl+VbJzdE57YY02Ln7E81E72hNWwRhc1FaQFnEV02qQEAH6zfi6Ub96U0thabTHS3iHEumXCi1zaFMfOeRfH3ZtE8bHq/7UAzpt69MO39Hg5QRCeEEEIIIYQQQgghnUKP0jx0K3EuuJkpVGKqHWKcS6FQZPTmeUMN7ewKn+qI+ecAMLhLkTQGRUcU0d+98WhL7rjMQeymSGu8f4cxlxVInOhtonbA5zGcTzuzuT/FOJet+5ssmeiyOBeZoz7HLx9bufDUw1l/fD+lcQHA51trseC99SlvDxhF9Ew40VdsOYB6IZ7HLMxHJHnp+xtDae/3cIAiOiGEEEIIIYQQQgg56JgzNFbo9IwJvVxvI+aPu40YESNNygVndv+qAiy9ZU6iPxdC8fePHYy7Tx2Jf189DedM6o37zxprKz5XFhoF8QJTIVCZoNyrPN+yTEVFoX2MTkmedX1jW5yL3+Qu99lMBqiKuDqxcU+jJM5F5kQ39u/xqONcZIVJU+W1L3emtb0hzqUdinya89HNTnTiHgbeEEIIIYQQQgghhJCDjvvOHIN31+zGjEFVrrfJy/Hhipk1aA1HUe0yT3xi33LMHlKNXuX5mNA34QQP+r2GGBo3TvQcvxdnTuwNABjdqxSAvfg8qV85LpveDzVVhQAkIrokZ318nzJXESU5Pi/6VOTj7dXqNrkB6zE1C050Ebs4l1Qz0TftbTTEx/zqtNGGeB0dc2FRr8djuB6i278oN4CAz2NbgLOjyHScixmrE73zj/lghSI6IYQQQgghhBBCCDnoKAj6cezwrklvd9PxQ50bCXi9Hjxy4REAjEU1I1Gjw9mNiC6jf3Whcp3H48H/zRsWf28Wi80xJjMGVaEw6E7u619daHGT63QtzsXTV06Rxr00toal+zbr5GJeujkTPT/HF3e027FpbyPCbULw788bj7nDu0rFZvO595lEdHGeoijXj9yAD6FIGJ2NeCjpxLmoJgXM50rlRNc0LaWoo8MJxrkQQgghhBBCCCGEEOKCvBwfbjhuCOYO74KxvUsNwnGqud8njuqOHx03GE9ePtmxrVmoNjuL/3j+eNfFLgd3MYr3/7lmWvz1wC6F6FWeL80ab1LFuZgGN2twdfy1eG5umTcUswa7e3pgy76meJxLbpvr3qmIKBATzcUJAPGcFAb9Ugd/ZyBeP10EdxMLZEY1cWIW1qMKEZ0OdWfoRCeEEEIIIYQQQgghxCVXzeoffx0WREqnIp0qvF4PvjNrgLu2glu4IMeHfpUF8fezBlch6PdBgztBdFDXIuyqa4m/H9qtOP566/4mAHLBWhe1A35TnIswthE9ivHL00bF3xcLBVkDPq/Fma6itimEYFukTK4g6E/oU4aPhMgaqyveYxifKPAH/V5prno6nDe5Dxpawnjm4y1JbadJCosG/cm75AuCfuyTFAgVneiapimd6KGIBn92zCtkLXSiE0IIIYQQQgghhBCSArkBL2YOqsLkmnL0LMtr9/2JueMf3XJM3J0NJATv4lx14UxRbB7cpciwThTM1+5qsCzT0QtgBrxW4VrnR3OHoFQowioWSM3xe11npNe1hNHYEnO+i8f68HnjDdE25gkMr6mwaE1VYrLh080HDH25pXtJLu48eTheuPZIy7q+lQW494wx+Nslk5LqMyLJRDdH9rihojAIWRqLKKLbmc1D0cznsR9qUEQnhBBCCCGEEEIIISQFPB4PHrt4Ip64bHKHZEqLRUjzTG5qXSA/e1JvzB5SbYl+AYDxvcvirweZRPTYMmPEi120iCWHXNih13QuKgQRPeDzJhV9s7s+5pYXhe/KwiDuPHm4cixer8eQyR6NapjavwIAcPKYHpZz58T0gZX47/XTcf6UvuhTkW9ZX1EQmzA4cmAlLp7Wz3W/YoxKSzh1ET3X70U3SaFcMc4lbCOUh9LIYz9coIhOCCGEEEIIIYQQQkgadFRRRpkwPrZ3KQDgrCN6A4iJzY9ceAROn9Ar3uaFa4/EdbMH4qYThsSX9SjNs8SaPHLBEZjYrxyPXDABgPG4iky522YhXBTOzWktlYUJV3rA50GBi+Knem65HkFiFpfFSBhZnIs49nBUw6MXHoEHzx6Hy2fUJB3ncuywLnFnvSwnvrwgcXz9qwss61VEZU70FFzyGoDeEnFfdKLbFS6VFSUlRpiJTgghhBBCCCGEEELIQUC+RHx+4rLJ2LK/Cf2rjC7yUT1L8Y8PvwYAjOhRghE9SgAAd586Ej3K8uD1enDZ9BosWrULJ4/pDgDoVZ6Pp66YIt330G7FWLJhb/y9xf3tEV+rnegA0KvMKvgCwBUza/D7N9cBAEryAmgKReLrzBEs4h7MjnlzkdNwRENuwId5o7oBQNKFRfNyEuddln0viuiqIp8y/vzuBtz+ny8wa3AVdrbl0wdNkTurdtQ5d6TFImXeX7fXsFgU0TfuaVRuLrYjciiiE0IIIYQQQgghhBByEHD59Bq8sXInTh7TI74sN+CzCOgAcPqEnohqGibXlBuWnzmxd/x1aX4OXrxuuqt9D+lWZBDRzfEgonBtFrHFwqK1TSH0LreK6AOqC3HssC5xEb04z4/ttYn1uQF1oIbViW5c32oSif0uC5vqiKK77KmDkrxEDn0yIvrbq3cDAP6yeGN8mSii57p0zGvQpE70/32xA82hCHIDPqzeqRbjKaI7wzgXQgghhBBCCCGEEEIOAsoKcvDyd2fgqln9Hdv6fV6cO7kPBlRbs89TYVi3YsP7z7bUGt6L4rJZxBbXHWgKoZdERK9vDmNc7zJ8d85A/OaMMQZhGrA60UXMRU7NQnfYFFciS985ZUx3pQCel2MvoYrxNMm63M0E/Ynt8132pWlAn3JrjIymAXe/tBIA8NWOeuX2jHNxhiI6IYQQQgghhBBCCCFEyg/nDsbsIdU4dVxP23ZiyonMra074k8a3QO9yvMs6/c2tsLj8eC7cwbhlLE9UJxrFNHtCm56veZ8duN6s2tek2jGvz5jDD66ZQ76V1nF6LyAvbu8IJgQu80u/GQRXfVuC6BGNU1a8BQAFry3AQDwxdZa6XqATnQ3MM6FEEIIIYQQQgghhBAi5eqjBkiXP3zueMN7nyCc+yQi+t8vnYy65lC8QOcRfcuweV8Tth1oBmAtfCk60YN+b1LFW837d+O09ng8yA340Ls8H2t3NRjWOYnZons8lcKgxr6S9zxrgFJEB2Ln9sO2KJ4Xrj0S1UVBTPz564n1FNEdoROdEEIIIYQQQgghhBDimpK8AI4b0dWwrEhwjpsLiwIxh7YuoAPAk5dPwaIfzlLuo1gQ0e2iXGRY41xMTnSoRfU+FVYner5LRzgAjOpRglmDq3DOpN7OjSWIOei72oqNOqFpxvNv5tPN+9HYGkF5QQ6GdStGdXGuYb057oZYoYhOCCGEEEIIIYQQQghxjTkfHYChWKgb07jX60HQ70PAJ29sFNGtEubALtZiqjrmSJVw1CgSm+NcJvVLFF+V5bWbc87fueEo5b69Xg8WXDQRP/vmSGUbO8QisTvrml1to7UdkFjAVWTjnkYAwPDuxZboG4BxLm6giE4IIYQQQgghhBBCCHFkwUVH4MgBlfjFt0dZ1oniczK54GWCO11EFIRlTvRRPUvx0Dnj8Pw1R1rW6bsfWB0TpE8c3U25/39dNQV/vuiI+Ps+MhHd5ETvWaaOTkkHn9eD4d0TExSXTa9xtZ0+J/D692dh/jGDLOv3NbYCME5MiDDOxRlmohNCCCGEEEIIIYQQQhyZNbgaswZXS9eJmdyywp0qygtysFMSWyJmouf65XEqJ4yUi+O62/r5a4/EjtpmS0SLOLzxfcoN68b1KbP0Z3aiu2XW4CosWrULU/tX4L21exzbez3AkK5F8ffHDuuKz7fW4tmPt1ja9ijNw5b9TQAS57uqKIjrZg9E99I8/ODpT+JtN+yJZbyrnOqhMEV0J+hEJ4QQQgghhBBCCCGEpEUXIWe7sTXsejtdCK8sNDrSRdd0icJBbea2E4ch6Pfinm+PBhBzsMsyzi+a1hdATOQ2U16Qg/5Vxm2SzWTXue+Msfj5N0fioXPGoaJA7rgXCUU09BJc7uWFOdLoHAC46YQh8dfmjPep/SsM799dExPwixW56ea4G2KFTnRCCCGEEEIIIYQQQkha+LweXD97IL7YVouxva1ubhVXzeqPrsW5mDaw0rBcFHyrioOu+rpoWj+cN7kP/D573/DU/pV478ajUV0k7/f5a4/EvPvfwfrdMQd3MvE0IiX5AZzdVmB0cNciqRs94PMgJBT29Ho9+ODm2WgJRVEY9CM/KBfwRd07ajKSdy/Nw5KbZ+PXr63GE0s2xY+jSOVEZ5yLI3SiE0IIIYQQQgghhBBC0uZ7xwzCH8+fkJToHPB5cfoRvdCjNM+wXHSfq8RuGU4Cuk730jxl2/wcP+YO7+p6n264+YSh0uWigK7TpTgXvdvicQpyEsL3OW2CPJAoJgoAMh95dXEuTp/Q07CsSJiY6Co8OdDKOBdHKKITQgghhBBCCCGEEEKyiuK8hHhcXZRr07J9yLQ7e0SPEiy9ZY503Umju8PjAS6fYS0kmi8UNf3ZN0fGX0cEK7qmCKEf27sM84TceNGJ/tr3Z6JfZSy2RibkEyMU0QkhhBBCCCGEEEIIIVlFSQqZ6Jkk7CCiTxsQyx0/dlgX131WFAZx+4nDcMNxQwzL7ztzDD6/Y67UrV4QlEewiHEudoVcxUKpYkROYdAfz1sPm/NgiAVmohNCCCGEEEIIIYQQQrIKMcYkN9DxPuBWBxH9gbPG4eXPt2PeqG627cxcOK0fAOD/vbwyvszj8SA/Ry7TqgqLRg1xLmoVvXd5olCpORPd74vF7jDOxRmK6IQQQgghhBBCCCGEkKzCK+Sq968q7PD9XzytH55Y8jVOGt1dur6sIAdnTewtXecGc0FRFWUFOXj3xqORFzAWGDVkott0YxTRjY7+QFsmPONcnKGITgghhBBCCCGEEEIIyToev3QSvt7XiNG9Sjt83wO7FOGzO+aiIMfn3DgF8gI+hCJhV23NRVcBoHd5Qfy1nQQuiuhBk6M/IaLTie4ERXRCCCGEEEIIIYQQQkjWMXVAZafuv1CRR54JBnUpwkcb9yW93T+vnILVO+sxpX9FfFnUxoqel+PD5TNqsKO2GTWVBYZ1OW1xLk7574QiOiGEEEIIIYQQQgghhHQovz5jDG557jNcMaMmqe0m9C3HhL7lhmVOcTeygqUA4G9zorcyzsURiuiEEEIIIYQQQgghhBDSgfQqz8djF09Mq4/nrp6Gv7+/ET86bkhK2zPOxT0U0QkhhBBCCCGEEEIIIeQgY0yvUoxJIy9+Ur9yRDUNE03OdmKFIjohhBBCCCGEEEIIIYQcZhw1pBpHDanu7GEcFHidmxBCCCGEEEIIIYQQQgghhycU0QkhhBBCCCGEEEIIIYQQBRTRCSGEEEIIIYQQQgghhBAFFNEJIYQQQgghhBBCCCGEEAUU0QkhhBBCCCGEEEIIIYQQBRTRCSGEEEIIIYQQQgghhBAFFNEJIYQQQgghhBBCCCGEEAUU0QkhhBBCCCGEEEIIIYQQBRTRCSGEEEIIIYQQQgghhBAFFNEJIYQQQgghhBBCCCGEEAUU0QkhhBBCCCGEEEIIIYQQBRTRCSGEEEIIIYQQQgghhBAFFNEJIYQQQgghhBBCCCGEEAUU0QkhhBBCCCGEEEIIIYQQBRTRCSGEEEIIIYQQQgghhBAF/s4eQEejaRoAoLa2tpNHQgghhBBCCCGEEEIIIaSz0DViXTNWcdiJ6HV1dQCAXr16dfJICCGEEEIIIYQQQgghhHQ2dXV1KCkpUa73aE4y+yFGNBrF1q1bUVRUBI/H09nD6RRqa2vRq1cvfP311yguLu7s4ZDDEN6DpLPhPUiyAd6HpLPhPUg6G96DJBvgfUg6G96DpLM53O9BTdNQV1eH7t27w+tVJ58fdk50r9eLnj17dvYwsoLi4uLD8sNBsgfeg6Sz4T1IsgHeh6Sz4T1IOhvegyQb4H1IOhveg6SzOZzvQTsHug4LixJCCCGEEEIIIYQQQgghCiiiE0IIIYQQQgghhBBCCCEKKKIfhgSDQdx2220IBoOdPRRymMJ7kHQ2vAdJNsD7kHQ2vAdJZ8N7kGQDvA9JZ8N7kHQ2vAfdcdgVFiWEEEIIIYQQQgghhBBC3EInOiGEEEIIIYQQQgghhBCigCI6IYQQQgghhBBCCCGEEKKAIjohhBBCCCGEEEIIIYQQooAiOiGEEEIIIYQQQgghhBCigCL6YcaDDz6Ivn37Ijc3F5MmTcKSJUs6e0jkEOGuu+7CEUccgaKiIlRXV+OUU07BqlWrDG1mzZoFj8dj+O/KK680tNm0aRPmzZuH/Px8VFdX44c//CHC4XBHHgo5SLn99tst99eQIUPi65ubm3H11VejoqIChYWF+Na3voUdO3YY+uD9R9Klb9++lvvQ4/Hg6quvBsDvQZJ53nrrLZx44ono3r07PB4PnnvuOcN6TdNw6623olu3bsjLy8OcOXOwevVqQ5u9e/finHPOQXFxMUpLS3HJJZegvr7e0ObTTz/F9OnTkZubi169euEXv/hFex8aOUiwuwdDoRBuuOEGjBw5EgUFBejevTvOP/98bN261dCH7Lvz7rvvNrThPUjscPouvPDCCy332HHHHWdow+9Ckg5O96Ds70OPx4N77rkn3obfhSQd3GgymfpNvGjRIowbNw7BYBADBgzAggUL2vvwsgKK6IcRTz75JObPn4/bbrsNy5Ytw+jRozF37lzs3Lmzs4dGDgHefPNNXH311Xj//ffx6quvIhQK4dhjj0VDQ4Oh3WWXXYZt27bF/xP/0Y9EIpg3bx5aW1vx3nvv4bHHHsOCBQtw6623dvThkIOU4cOHG+6vd955J77ue9/7Hp5//nk8/fTTePPNN7F161aceuqp8fW8/0gm+PDDDw334KuvvgoAOO200+Jt+D1IMklDQwNGjx6NBx98ULr+F7/4Be6//348/PDD+OCDD1BQUIC5c+eiubk53uacc87B559/jldffRUvvPAC3nrrLVx++eXx9bW1tTj22GPRp08fLF26FPfccw9uv/12/OEPf2j34yPZj9092NjYiGXLluHHP/4xli1bhmeeeQarVq3CSSedZGl75513Gr4br7322vg63oPECafvQgA47rjjDPfYE088YVjP70KSDk73oHjvbdu2DY8++ig8Hg++9a1vGdrxu5CkihtNJhO/idevX4958+bhqKOOwvLly/Hd734Xl156KV555ZUOPd5OQSOHDRMnTtSuvvrq+PtIJKJ1795du+uuuzpxVORQZefOnRoA7c0334wvmzlzpnb99dcrt/nvf/+reb1ebfv27fFlv/vd77Ti4mKtpaWlPYdLDgFuu+02bfTo0dJ1+/fv1wKBgPb000/Hl3355ZcaAG3x4sWapvH+I+3D9ddfr/Xv31+LRqOapvF7kLQvALRnn302/j4ajWpdu3bV7rnnnviy/fv3a8FgUHviiSc0TdO0L774QgOgffjhh/E2L730kubxeLQtW7ZomqZpDz30kFZWVma4B2+44QZt8ODB7XxE5GDDfA/KWLJkiQZA27hxY3xZnz59tF//+tfKbXgPkmSQ3YcXXHCBdvLJJyu34XchySRuvgtPPvlk7eijjzYs43chySRmTSZTv4l/9KMfacOHDzfs64wzztDmzp3b3ofU6dCJfpjQ2tqKpUuXYs6cOfFlXq8Xc+bMweLFiztxZORQ5cCBAwCA8vJyw/K///3vqKysxIgRI3DTTTehsbExvm7x4sUYOXIkunTpEl82d+5c1NbW4vPPP++YgZODmtWrV6N79+6oqanBOeecg02bNgEAli5dilAoZPgOHDJkCHr37h3/DuT9RzJNa2sr/va3v+Hiiy+Gx+OJL+f3IOko1q9fj+3btxu++0pKSjBp0iTDd19paSkmTJgQbzNnzhx4vV588MEH8TYzZsxATk5OvM3cuXOxatUq7Nu3r4OOhhwqHDhwAB6PB6WlpYbld999NyoqKjB27Fjcc889hkfHeQ+STLBo0SJUV1dj8ODBuOqqq7Bnz574On4Xko5kx44dePHFF3HJJZdY1vG7kGQKsyaTqd/EixcvNvShtzkctEV/Zw+AdAy7d+9GJBIxfBAAoEuXLli5cmUnjYocqkSjUXz3u9/FtGnTMGLEiPjys88+G3369EH37t3x6aef4oYbbsCqVavwzDPPAAC2b98uvUf1dYTYMWnSJCxYsACDBw/Gtm3bcMcdd2D69On47LPPsH37duTk5Fh+sHfp0iV+b/H+I5nmueeew/79+3HhhRfGl/F7kHQk+j0ju6fE777q6mrDer/fj/LyckObfv36WfrQ15WVlbXL+MmhR3NzM2644QacddZZKC4uji+/7rrrMG7cOJSXl+O9997DTTfdhG3btuHee+8FwHuQpM9xxx2HU089Ff369cPatWtx88034/jjj8fixYvh8/n4XUg6lMceewxFRUWGGA2A34Ukc8g0mUz9Jla1qa2tRVNTE/Ly8trjkLICiuiEkIxz9dVX47PPPjPkUQMwZAqOHDkS3bp1w+zZs7F27Vr079+/o4dJDjGOP/74+OtRo0Zh0qRJ6NOnD5566qlD+h9ykr088sgjOP7449G9e/f4Mn4PEkIOV0KhEE4//XRomobf/e53hnXz58+Pvx41ahRycnJwxRVX4K677kIwGOzooZJDkDPPPDP+euTIkRg1ahT69++PRYsWYfbs2Z04MnI48uijj+Kcc85Bbm6uYTm/C0mmUGkyJD0Y53KYUFlZCZ/PZ6m6u2PHDnTt2rWTRkUORa655hq88MILeOONN9CzZ0/btpMmTQIArFmzBgDQtWtX6T2qryMkGUpLSzFo0CCsWbMGXbt2RWtrK/bv329oI34H8v4jmWTjxo147bXXcOmll9q24/cgaU/0e8bu77+uXbtaisyHw2Hs3buX348kY+gC+saNG/Hqq68aXOgyJk2ahHA4jA0bNgDgPUgyT01NDSorKw3//vK7kHQEb7/9NlatWuX4NyLA70KSGipNJlO/iVVtiouLD3nzGkX0w4ScnByMHz8er7/+enxZNBrF66+/jilTpnTiyMihgqZpuOaaa/Dss89i4cKFlsfMZCxfvhwA0K1bNwDAlClTsGLFCsMfsPoPrWHDhrXLuMmhS319PdauXYtu3bph/PjxCAQChu/AVatWYdOmTfHvQN5/JJP8+c9/RnV1NebNm2fbjt+DpD3p168funbtavjuq62txQcffGD47tu/fz+WLl0ab7Nw4UJEo9H4JM+UKVPw1ltvIRQKxdu8+uqrGDx4MB8dJ47oAvrq1avx2muvoaKiwnGb5cuXw+v1xuM1eA+STLN582bs2bPH8O8vvwtJR/DII49g/PjxGD16tGNbfheSZHDSZDL1m3jKlCmGPvQ2h4W22MmFTUkH8o9//EMLBoPaggULtC+++EK7/PLLtdLSUkPVXUJS5aqrrtJKSkq0RYsWadu2bYv/19jYqGmapq1Zs0a78847tY8++khbv3699u9//1urqanRZsyYEe8jHA5rI0aM0I499lht+fLl2ssvv6xVVVVpN910U2cdFjmI+P73v68tWrRIW79+vfbuu+9qc+bM0SorK7WdO3dqmqZp/5+9+wyPsszfPv6dnjKTSgigCChdQXrRxcoKdnHXgggCggVZF11W/quLgo/iunZdwbIqiri4upZdsaNYaALSFARFioUESJ+Uqffz4k6GDMkgIMmknJ/jmAO5Zib3lYiSOfOb87ruuuuMY445xvjoo4+MVatWGYMHDzYGDx4ceb7+/MmREgqFjGOOOcaYNm1a1Lr+Pyh1oaSkxFizZo2xZs0aAzAefPBBY82aNcaOHTsMwzCMv/3tb0ZaWprx5ptvGuvXrzcuvPBCo0OHDkZ5eXnkYwwfPtzo3bu3sWLFCuPzzz83OnXqZIwcOTJyf2FhoZGdnW2MHj3a+Oqrr4wFCxYYSUlJxpNPPlnvn680PAf6M+j3+40LLrjAOProo421a9dGfY/o8/kMwzCMpUuXGg899JCxdu1aY+vWrcaLL75oZGVlGWPGjIlcQ38G5Zcc6M9hSUmJMXXqVGPZsmXGtm3bjA8//NDo06eP0alTJ6OioiLyMfT/Qvk1funvY8MwjKKiIiMpKcmYM2dOjefr/4Xya/1SJmMYR+Y18ffff28kJSUZf/7zn41NmzYZjz/+uGGz2Yx33323Xj/feFCI3sw89thjxjHHHGM4nU5jwIABxvLly+O9JWkigFpvzz33nGEYhrFz507jlFNOMTIyMgyXy2V07NjR+POf/2wUFRVFfZzt27cbZ599tpGYmGi0aNHC+NOf/mQEAoE4fEbS2Fx22WVG69atDafTaRx11FHGZZddZnz33XeR+8vLy41JkyYZ6enpRlJSkjFixAhj165dUR9Df/7kSHjvvfcMwNi8eXPUuv4/KHXh448/rvXv36uuusowDMMIh8PG9OnTjezsbMPlchlnnnlmjT+beXl5xsiRIw23222kpKQY48aNM0pKSqIes27dOuM3v/mN4XK5jKOOOsr429/+Vl+fojRwB/ozuG3btpjfI3788ceGYRjG6tWrjYEDBxqpqalGQkKC0a1bN2PWrFlR4aZh6M+gHNiB/hyWlZUZZ511lpGVlWU4HA6jXbt2xsSJE2sMk+n/hfJr/NLfx4ZhGE8++aSRmJhoFBYW1ni+/l8ov9YvZTKGceReE3/88cdGr169DKfTaRx77LFR12jKLIZhGHU05C4iIiIiIiIiIiIi0qipE11EREREREREREREJAaF6CIiIiIiIiIiIiIiMShEFxERERERERERERGJQSG6iIiIiIiIiIiIiEgMCtFFRERERERERERERGJQiC4iIiIiIiIiIiIiEoNCdBERERERERERERGRGBSii4iIiIhIRPv27Xn44YfjvQ0RERERkQZDIbqIiIiISJyMHTuWiy66CIDTTjuNKVOm1Nu1586dS1paWo31lStXcs0119TbPkREREREGjp7vDcgIiIiIiJHjt/vx+l0Hvbzs7KyjuBuREREREQaP02ii4iIiIjE2dixY/nkk0945JFHsFgsWCwWtm/fDsBXX33F2WefjdvtJjs7m9GjR7N3797Ic0877TQmT57MlClTaNGiBcOGDQPgwQcfpEePHiQnJ9O2bVsmTZqE1+sFYPHixYwbN46ioqLI9WbMmAHUrHPZuXMnF154IW63m5SUFC699FJyc3Mj98+YMYNevXoxb9482rdvT2pqKpdffjklJSWRx7z66qv06NGDxMREMjMzGTp0KKWlpXX01RQRERERObIUoouIiIiIxNkjjzzC4MGDmThxIrt27WLXrl20bduWwsJCzjjjDHr37s2qVat49913yc3N5dJLL416/vPPP4/T6WTJkiU88cQTAFitVh599FG+/vprnn/+eT766CNuueUWAE466SQefvhhUlJSItebOnVqjX2Fw2EuvPBC8vPz+eSTT/jggw/4/vvvueyyy6Iet3XrVt544w3eeust3nrrLT755BP+9re/AbBr1y5GjhzJ+PHj2bRpE4sXL+biiy/GMIy6+FKKiIiIiBxxqnMREREREYmz1NRUnE4nSUlJtGrVKrL+j3/8g969ezNr1qzI2rPPPkvbtm3ZsmULnTt3BqBTp078/e9/j/qY1fvV27dvz1133cV1113H7NmzcTqdpKamYrFYoq63v0WLFrFhwwa2bdtG27ZtAXjhhRc4/vjjWblyJf379wfMsH3u3Ll4PB4ARo8ezaJFi7j77rvZtWsXwWCQiy++mHbt2gHQo0ePX/HVEhERERGpX5pEFxERERFpoNatW8fHH3+M2+2O3Lp27QqY099V+vbtW+O5H374IWeeeSZHHXUUHo+H0aNHk5eXR1lZ2UFff9OmTbRt2zYSoAN0796dtLQ0Nm3aFFlr3759JEAHaN26Nbt37wbgxBNP5Mwzz6RHjx5ccsklPP300xQUFBz8F0FEREREJM4UoouIiIiINFBer5fzzz+ftWvXRt2+/fZbTjnllMjjkpOTo563fft2zjvvPHr27Ml//vMfVq9ezeOPPw6YB48eaQ6HI+r3FouFcDgMgM1m44MPPuCdd96he/fuPPbYY3Tp0oVt27Yd8X2IiIiIiNQFhegiIiIiIg2A0+kkFApFrfXp04evv/6a9u3b07Fjx6jb/sF5datXryYcDvPAAw8waNAgOnfuzM8///yL19tft27d+OGHH/jhhx8iaxs3bqSwsJDu3bsf9OdmsVg4+eSTmTlzJmvWrMHpdPL6668f9PNFREREROJJIbqIiIiISAPQvn17VqxYwfbt29m7dy/hcJgbbriB/Px8Ro4cycqVK9m6dSvvvfce48aNO2AA3rFjRwKBAI899hjff/898+bNixw4Wv16Xq+XRYsWsXfv3lprXoYOHUqPHj0YNWoUX375JV988QVjxozh1FNPpV+/fgf1ea1YsYJZs2axatUqdu7cyWuvvcaePXvo1q3boX2BRERERETiRCG6iIiIiEgDMHXqVGw2G927dycrK4udO3fSpk0blixZQigU4qyzzqJHjx5MmTKFtLQ0rNbY38qfeOKJPPjgg9x7772ccMIJzJ8/n3vuuSfqMSeddBLXXXcdl112GVlZWTUOJgVzgvzNN98kPT2dU045haFDh3Lsscfy8ssvH/TnlZKSwqeffso555xD586d+etf/8oDDzzA2WefffBfHBERERGROLIYhmHEexMiIiIiIiIiIiIiIg2RJtFFRERERERERERERGJQiC4iIiIiIiIiIiIiEoNCdBERERERERERERGRGBSii4iIiIiIiIiIiIjEoBBdRERERERERERERCQGhegiIiIiIiIiIiIiIjEoRBcRERERERERERERiUEhuoiIiIiIiIiIiIhIDArRRURERERERERERERiUIguIiIiIiIiIiIiIhKDQnQRERERERERERERkRgUoouIiIiIiIiIiIiIxKAQXUREREREREREREQkBoXoIiIiIiIiIiIiIiIxKEQXEREREREREREREYlBIbqIiIiIiIiIiIiISAwK0UVEREREREREREREYlCILiIiIiLSCGzfvh2LxcLcuXMjazNmzMBisRzU8y0WCzNmzDiiezrttNM47bTTjujHFBERERFpaBSii4iIiIjUgQsuuICkpCRKSkpiPmbUqFE4nU7y8vLqcWeHZuPGjcyYMYPt27fHeysiIiIiInGhEF1EREREpA6MGjWK8vJyXn/99VrvLysr480332T48OFkZmYe1jX++te/Ul5e/mu2+Ys2btzIzJkzaw3R33//fd5///06vb6IiIiISLwpRBcRERERqQMXXHABHo+Hl156qdb733zzTUpLSxk1atRhX8Nut5OQkHDYz/+1nE4nTqczbtcXEREREakPCtFFREREROpAYmIiF198MYsWLWL37t017n/ppZfweDz85je/YerUqfTo0QO3201KSgpnn30269at+8Vr1NaJ7vP5uOmmm8jKysLj8XDBBRfw448/1njujh07mDRpEl26dCExMZHMzEwuueSSqInzuXPncskllwBw+umnY7FYsFgsLF68GKi9E3337t1cffXVZGdnk5CQwIknnsjzzz8f9Ziqfvf777+fp556iuOOOw6Xy0X//v1ZuXLlL37eIiIiIiL1yR7vDYiIiIiINFWjRo3i+eef59///jeTJ0+OrOfn5/Pee+8xcuRIdu3axRtvvMEll1xChw4dyM3N5cknn+TUU09l48aNtGnT5pCuOWHCBF588UWuuOIKTjrpJD766CPOPffcGo9buXIlS5cu5fLLL+foo49m+/btzJkzh9NOO42NGzeSlJTEKaecwo033sijjz7KrbfeSrdu3QAiv+6vvLyc0047je+++47JkyfToUMHXnnlFcaOHUthYSF//OMfox7/0ksvUVJSwrXXXovFYuHvf/87F198Md9//z0Oh+OQPm8RERERkbqiEF1EREREpI6cccYZtG7dmpdeeikqRH/llVcIBAKMGjWKHj16sGXLFqzWfW8SHT16NF27duWZZ55h+vTpB329devW8eKLLzJp0iQef/xxAG644QZGjRrF+vXrox577rnn8vvf/z5q7fzzz2fw4MH85z//YfTo0Rx77LEMGTKERx99lN/+9rc1ps7399RTT7Fp0yZefPHFSE3Nddddx6mnnspf//pXxo8fj8fjiTx+586dfPvtt6SnpwPQpUsXLrzwQt577z3OO++8g/68RURERETqkupcRERERETqiM1m4/LLL2fZsmVRNSkvvfQS2dnZnHnmmbhcrkiAHgqFyMvLw+1206VLF7788stDut7bb78NwI033hi1PmXKlBqPTUxMjPxzIBAgLy+Pjh07kpaWdsjXrX79Vq1aMXLkyMiaw+HgxhtvxOv18sknn0Q9/rLLLosE6ABDhgwB4Pvvvz+s64uIiIiI1AWF6CIiIiIidahqIrvqgNEff/yRzz77jMsvvxybzUY4HOahhx6iU6dOuFwuWrRoQVZWFuvXr6eoqOiQrrVjxw6sVivHHXdc1HqXLl1qPLa8vJzbb7+dtm3bRl23sLDwkK9b/fqdOnWKmqqHffUvO3bsiFo/5phjon5fFagXFBQc1vVFREREROqCQnQRERERkTrUt29funbtyr/+9S8A/vWvf2EYRiRcnzVrFjfffDOnnHIKL774Iu+99x4ffPABxx9/POFwuM729Yc//IG7776bSy+9lH//+9+8//77fPDBB2RmZtbpdauz2Wy1rhuGUS/XFxERERE5GOpEFxERERGpY6NGjWL69OmsX7+el156iU6dOtG/f38AXn31VU4//XSeeeaZqOcUFhbSokWLQ7pOu3btCIfDbN26NWr6fPPmzTUe++qrr3LVVVfxwAMPRNYqKiooLCyMepzFYjmk669fv55wOBw1jf7NN99E7hcRERERaWw0iS4iIiIiUseqps5vv/121q5dG/k9mNPY+09ev/LKK/z000+HfJ2zzz4bgEcffTRq/eGHH67x2Nqu+9hjjxEKhaLWkpOTAWqE67U555xzyMnJ4eWXX46sBYNBHnvsMdxuN6eeeurBfBoiIiIiIg2KJtFFREREROpYhw4dOOmkk3jzzTcBokL08847jzvvvJNx48Zx0kknsWHDBubPn8+xxx57yNfp1asXI0eOZPbs2RQVFXHSSSexaNEivvvuuxqPPe+885g3bx6pqal0796dZcuW8eGHH5KZmVnjY9psNu69916KiopwuVycccYZtGzZssbHvOaaa3jyyScZO3Ysq1evpn379rz66qssWbKEhx9+GI/Hc8ifk4iIiIhIvClEFxERERGpB6NGjWLp0qUMGDCAjh07RtZvvfVWSktLeemll3j55Zfp06cPCxcu5P/+7/8O6zrPPvssWVlZzJ8/nzfeeIMzzjiDhQsX0rZt26jHPfLII9hsNubPn09FRQUnn3wyH374IcOGDYt6XKtWrXjiiSe45557uPrqqwmFQnz88ce1huiJiYksXryY//u//+P555+nuLiYLl268NxzzzF27NjD+nxEREREROLNYujUHhERERERERERERGRWqkTXUREREREREREREQkBoXoIiIiIiIiIiIiIiIxKEQXEREREREREREREYlBIbqIiIiIiIiIiIiISAwK0UVEREREREREREREYlCILiIiIiIiIiIiIiISg0J0EREREREREREREZEY7PHeQH0Lh8P8/PPPeDweLBZLvLcjIiIiIiIiIiIiInFgGAYlJSW0adMGqzX2vHmzC9F//vln2rZtG+9tiIiIiIiIiIiIiEgD8MMPP3D00UfHvL/ZhegejwcwvzApKSlx3o2IiIiIiIiIiIiIxENxcTFt27aNZMaxNLsQvarCJSUlRSG6iIiIiIiIiIiISDP3S7XfOlhURERERERERERERCQGhegiIiIiIiIiIiIiIjEoRBcRERERERERERERiUEhuoiIiIiIiIiIiIhIDArRRURERERERERERERiUIguIiIiIiIiIiIiIhKDQnQRERERERERERERkRgUoouIiIiIiIiIiIiIxKAQXUREREREREREREQkBoXoIiIiIiIiIiIiIiIxKEQXEREREREREREREYlBIbqIiIiIiIiIiIiISAwK0UVEREREREREREREYlCILiIiIiIiIiIiIiISg0L05iboh9evg+8Xg2HEezciIiIiIiIiIiIiDZpC9OZm45uw7l/wwoUw52T4ch4EKuK9KxEREREREREREZEGSSF6c3N0X+g/ERxJsPtr+O9kePgE+Pge8O6O9+5EREREREREREREGhSLYTSvTo/i4mJSU1MpKioiJSUl3tuJn/IC+PIFWPEUFP9ortmc0OMSGHQ9tOoR3/2JiIiIiIiIiIiI1KGDzYoVojd3oQBs+h8snw0/rty33n4IDL4BOg0Dq96wICIiIiIiIiIiIk2LQvQYFKIfwA8rzTB945tghMy1jGNh4PXQ6wpwueO7PxEREREREREREZEjRCF6DArRD0LhD7DyaVg9FyqKzDVXKvQdAwOuhbS2cd2eiIiIiIiIiIiIyK+lED0GheiHwOeFdf+C5XMgf6u5ZrFBt/PNqpe2A+K7PxEREREREREREZHDpBA9BoXohyEchu8+gGWPw7ZP9q0f1c88hLT7hWBzxG9/IiIiIiIiIiIiIodIIXoMCtF/pZyvYMUcWP8KhHzmWspRMGAi9B0Lielx3Z6IiIiIiIiIiIjIwVCIHoNC9CPEuwdWPWt2p5fuMdccSeYBpAOvgxad4rs/ERERERERERERkQNQiB6DQvQjLOiDDa/C8tmQ+9W+9U7DzKqXY08DiyVu2xMRERERERERERGpjUL0GBSi1xHDgO2fwbLZsOVdoPKPVcvjzTC9xyXgSIjrFkVERERERERERESqKESPQSF6PcjbCiuegDXzIVBqriW1gP5XQ7+rwZMd3/2JiIiIiIiIiIhIs6cQPQaF6PWovBC+fAG+eAqKfjDXbE444ffmdHrrnnHdnoiIiIiIiIiIiDRfCtFjUIgeB6EgfPM/s+rlxy/2rbcfYobpnYeD1Ra//YmIiIiIiIiIiEizoxA9BoXocfbjKvMQ0q/fACNkrqV3MMP0XleAyxPX7YmIiIiIiIiIiEjzoBA9BoXoDUTRj/DF07B6LlQUmmuuVOgzGgZcA+nt4rk7ERERERERERERaeIUosegEL2B8ZfCun/B8jmQ9525ZrFCt/Nh0A3QdgBYLPHdo4iIiIiIiIiIiDQ5CtFjUIjeQIXD8N0HZtXL94v3rbfpA4NvgO4Xgs0Rt+2JiIiIiIiIiIhI06IQPQaF6I1A7tfmZPr6f0PIZ6552sCAidB3LCRlxHV7IiIiIiIiIiIi0vgpRI9BIXoj4t0Dq56Flf+E0t3mmj0Reo2EgddDVuf47k9EREREREREREQaLYXoMShEb4SCPvjqP2bVS86GfesdfwuDJ8Gxp6s3XURERERERERERA6JQvQYFKI3YoYB2z83q142vw1U/tHN6gaDroeel4IjMa5bFBERERERERERkcZBIXoMCtGbiLyt8MVTsOZF8HvNtaRM6Dce+k8AT6v47k9EREREREREREQaNIXoMShEb2LKC2HNPFjxFBTtNNesDujxe3M6vfWJcd2eiIiIiIg0fWW+ELmFPnIKfeSXBEh22cjwOMn0OMjwOEh02uK9RREREamFQvQYFKI3UaEgfPOWWfXyw/J96+1+Y4bpXc4Gq75xFRERERGRXy8cNsgrCZBT6CO30EdJeeiAj09yWcn0OMlwO8j0OEhJsmPRuU4iIiJxpxA9BoXozcCPq81DSDe+AeGguZbeAQZeB71HgcsT1+2JiIiIiEjjU+4PkVvoJ7fQx+4iP8HQvpfSFiDD4yA7zUWLFAdlvhD5JQHySgIUlQVrfCy7zRIJ1DM8DjLcDuw2az1+NiIiIgIK0WNSiN6MFP0EK5+GVc9BRaG55kqBPmNgwDWQ3i6u2xMRERERkYYrbBjklwQiwfn+YbjLYSU71Ul2uouWqU6c9tpD8EAwTIHXDNTzveategBfJTXJTqbHYU6sexwkufROWhERkbqmED0GhejNkL8U1i0wq17yvjXXLFboeh4MmgTHDAK9lVJEREREpNnzBcKRbvPdhX4C+4Xd6W4HrdKcZKe5SEs+vEoWwzAoKgtGJtXzS/yU+cM1HpfotJJRGapXVcBY9bpFRETkiFKIHoNC9GYsHIati2DZ4/D9x/vW2/Q2w/TuF4HdGbftiYiIiIhI/TIMgwJvkNzKbvOC0uhpc4fdQnaqi1bpTlqmunA56qZypdwXIs9rBup5JQGKSoPs/0LdZjUrYMxg3ayAccSYfhcREZGDoxA9BoXoAkDuRlgxB9a9DCGfueZpDQMmQt9xkJQR3/2JiIiIiEid8AXC7C7yRWpa/MHol8RpyXay01xkp5kHgcbjANBgyKisgPGTX1kDs/9UPEBKZQWM2a/uJMll1YGlIiIih0AhegwK0SVK6V6zM33l0+DNNdfsiXDi5TDoesjqEt/9iYiIiIjIr1JVn5Jb6COnwE++NxB1v8NmoWWqMxKcJzgbXhe5YRiUlIfIq5xUzy8JUOoL1XhcgsO6b1Ld4yQtyY7VqlBdREQkFoXoMShEl1oFffD162bVS876fesdh5pVL8edod50EREREZFGIhAMs7vIT06hOXHuC0R3jqck2clOc9IqzUWG29Eog+YKfyhyWGleSYDC0gD7v7q3WSE92QzUzWDdEfMAVBERkeZIIXoMCtHlgAwDdiwxDyH9ZiFUNRFmdTUn03teBo7EuG5RRERERESiVU1q5xT6yC3wkeeNDpRt1qppc3PiPMnV8KbNf61QuKoCprJb3RsgEKz5ct+TaCPT44xMrCe7bKqAERGRZkshegwK0eWg5X8PK56ENS+C32uuJWZAv/Fmd7qnVXz3JyIiIiLSjAVD5rR5Vbd5uT962tydYKNVulnRkulxYmuE0+a/hmEYlFSEIoeV5pcE8FbUrIBxOayVnermpHpasqPZfa1ERKT5Uogeg0J0OWQVRfDlPDNQL9pprlkdcMLFZtVLm15x3Z6IiIiISHNgGAbeipDZbV7oJ6/YTzhq2hxapJgVLdlpLpITmt60+a/lC4Qjh5VWVcCE90sErBZIdzuqBetOXA5VwIiISNOkED0Ghehy2EJB2LwQls2GH5bvW293sln10uUcsOobdRERERGRIyUYMthbbE6a5xb6axymmeyykZ1uBuctUprftPmvFQobFJYGIpPqeSV+/LVUwLgTbJFAPdPjwJ2gChgREWkaFKLHoBBdjoifVpu96V+/DuGguZbWDgZeB72vhAT92RIRERERORylFUFyKita9hRFT5tbLea0eVW3ucLcI6tq2j+/JECe1+xWLymvWQHjtFvMTnW32a2e7lYFjIiINE4K0WNQiC5HVPHP8MXTsPo5KC8w15we6DMGBl4D6e3juj0RERERkYYuFDbIK/ZHgvP9e7sTnVazoiXdRVaKA7tN1SL1yRcIk18ZqOeVBCjw1qyAsVggLdmsf8n0mFUwCU69S1dERBo+hegxKESXOuEvg/ULzOn0vVvMNYsVup5r9qYfM9j8zlJERERERCjz7es231PkJ1QtlbVYINPjIDvNRas0F55ETZs3JOGwQWFpkDzvvm51XyBc43HJLps5re5xkOlx6t+jiIg0SArRY1CILnUqHIatH8Hyx81fq7TuBYNvgO4Xgd0Zr92JiIiIiMRFOGyQVxKIdJsXlwej7k9wWM2KlnQXLVOcOOyaNm8sDMOgzBcirzJQz/cGKC4L1nicw2aJhOoZbifpbgd2m0J1ERGJL4XoMShEl3qze5M5mb7+ZQhWmGue1tB/AvQdB8mZ8d2fiIiIiEgdKveHyK2saNld5CcYin7pmeFxmDUtaU5Sk+yaUm5C/MEwBd5AZbDup8AbILTfsLrFAmlJ9shhpRkeB4mqgBERkXqmED0GhehS70rzYPWz8MU/wZtjrtkT4MTLYeD10LJrfPcnIiIiInIEhA2DAm+A3EI/OQU+ivabRnbaLZGKlpZpTpyaNm82wmGDorJgZf2LnzxvgAp/zQqYJJeVTI+TDLc5sZ6iH66IiEgdU4geg0J0iZugH75+3ax62bVu3/pxZ5q96R3PVG+6iIiIiDQqvkC4sqLFrGkJ7Ddtnp5sJzvdDM7TkhWIiskwDMr9YfJK9vWq7/9DFwC7zRIJ1DM8DtLdDhw6WFZERI4ghegxKESXuDMM2LkMlj0O3ywEKv8TbNEFBl0PPS8DZ1JctygiIiIiUhvDMCgoDZqheYGPgtLo4NNhM6fNs9OcZKe5cDkUeMrBCVRVwHgD5Fd2q+9fAQSQmmSPHFaa4XGQ5FIFjIiIHD6F6DEoRJcGJX8bfPEUfDkP/CXmWmIG9BtndqentInv/kRERESk2fMHw+wu9JNTOXHuD0a/hExNstMq3QzO090OrJo2lyPAMKpXwATIL/FTVksFTKLTWnlgqTNSAaM/gyIicrAUosegEF0apIpiWPMirHgCCneYa1Y7HH8xDJ4EbXrHd38iIiIi0mxUhZe5lcF5fkkg6n67zULLVGfkUNAEHQYp9aTcH4oE6nklAYpKg+wfaNisZgWMGaw7yHA7cKh/X0REYlCIHoNCdGnQwiGz4mX5HNi5dN/6MYPN3vSu54JVL1JERERE5MgKBMPsLvJHus0rAtETvymJdrLTnLRKd5HhdmC1atJX4i8YMg+zrepWz/cGavTyA6Qk2cmMBOtOklxW9fOLiAjQhEP0GTNmMHPmzKi1Ll268M033xzU8xWiS6Px8xozTP/qPxCu7JpMOwYGXge9R0OC/vyKiIiIyOExDIOS8lCkoiWvJED1V4Y2qzltXtVtrt5paQyq/lznVU6q55cEKPWFajwuwWHdN6nucZKWZNcPhkREmqkmHaK/+uqrfPjhh5E1u91OixYtDur5CtGl0SneBSufhlXPQnmBueb0QO8rYeC1kNEhvvsTERERkUYhGAqzp8hPTqE5cV6+X7+0O8FGdpqLVulOMj1ObAoVpQmo8Icih5XmlQQoLI3+gRGAzQrpyWagbgbrDpyqgBERaRYONiu21+Oejhi73U6rVq3ivQ2R+pHSGs68HYZMhfUvm9PpezfDijlmh3rXc82ql3Yngd6SKCIiIiKVDMPAWxGKVLTsLfYTrhYeWi2QVa3bPDmhUb48FDmgBKeNozJsHJWRAEAoXFUBU9mt7g0QCBrsLQmwt1r/vyfRRqbHGZlYT3bZVAEjItKMNcrvkr799lvatGlDQkICgwcP5p577uGYY46p9bE+nw+fzxf5fXFxcX1tU+TIciZBv3HQdyxsXQTLZpu/fvOWeWt9ohmmH38x2J3x3q2IiIiIxEEobLCnWrf5/lUWSS4brSorWrJSNW0uzY/NaqFFipMWKU4g2ayAqQhFDivNLwngrQhRUh6ipLyc7bvLAXA5rGS4HZFJ9bRkh/77ERFpRhpdncs777yD1+ulS5cu7Nq1i5kzZ/LTTz/x1Vdf4fF4ajy+tg51QHUu0jTs/sacSF+3AIIV5po7G/pPhH7jITkzvvsTERERkTpXWjltnlPoY09RzWnzzBRnJDh3J2iaVuSX+ALhyGGled4Ahd5A1H9XYP63leZ2kOne163ucqgCRkSksWmynej7KywspF27djz44INcffXVNe6vbRK9bdu2CtGlaSnNg9XPwRdPgzfHXLMnQM/LYND10LJbfPcnIiIiIkdMKGyQV+Inp8CcOPdWRE+bJzqtZrd5mpOsVCd2m4I9kV8jFDYoLA1EJtXzSvz4gzWjFHeCLRKoZ3oc+qGViEgj0GxCdID+/fszdOhQ7rnnnl98rA4WlSYt6IeNb8Cyx2HX2n3rx50Bg24wf7XqRZSIiIhIY1Pm29dtvrvIT6jaWKzFApluB9npLlqlufAkKrgTqUuGYVBaESKvclI9v8RPSXmoxuOcdovZqe42u9XT3aqAERFpaJr0waLVeb1etm7dyujRo+O9FZH4szuh56XQ4xLYuRyWPw7fLIStH5m3Fp3NyfSel5sd6yIiIiLSIIXDBvneADmVwXlxWTDqfpfDGqloaZnqxGHXoIRIfbFYLLgT7bgT7bRrmQiAPxiOTKnnlQQo8AbwBw1yCsx3jZjPg7Rks/4l0+Mgw+0gwWmL56ciIiIHqdFNok+dOpXzzz+fdu3a8fPPP3PHHXewdu1aNm7cSFZW1i8+X5Po0uwUbIcVT8GXL4C/xFxLTIe+42DAREhpE9ftiYiIiIipwh8it9BPTqGP3UV+gqHol2oZbget0s3gPDXJrmlzkQYsHDYoLA2S7zVD9bySAL5AuMbjkl02c1rd4yDT49Q7SURE6lmTrXO5/PLL+fTTT8nLyyMrK4vf/OY33H333Rx33HEH9XyF6NJsVRTD2vmwfA4U7jDXrHY4fgQMmgRH9Ynv/kRERESaGcMwp81zC81u88LS6Glzp91S2W3uomWaE6emzUUaLcMwKPOF9vWqewM13mEC4LBZIqF6httJutuB3aZQXUSkrjTZEP3XUoguzV44BJvfgeWzYceSfettB8HgSdDlXLA1+qYnERERkQbJFwhHus1zi3wE9jucMD3ZTnaai+x0F+nJmjYXacr8wTAF3kDlpLqfAm+A0H7D6hYLpCXZI4eVZngcJKoCRkTkiFGIHoNCdJFqfl5rTqZ/9R8IB8y11GNg4LXQZzQkpMZ1eyIiIiKNnWGYlQ65hT5yCs2QrDqHzUJ2tW5z9SOLNF9hw6CoNLivW90boMJfswImyWUl0+Mkw21OrKeo3klE5LApRI9BIbpILYp3wapnYOUzUJ5vrjnd0PtKM1DPODa++xMRERFpRPzBMLurdZvv34OcmmROm7dKN6sarAq/RKQWhmFQ7g+TV+KvDNYDFNVSAWO3WSKBeobHQbrbgcOm+icRkYOhED0GhegiBxAoh/Uvm9Ppe76pXLRAl3PMqpd2J5vvJxQRERGRCMMwKCoLRrrN80qip83tNgstU81p8+w0p6oYROSwBUL7KmDySwLkewM1DiEG84d1VYeVZngcJLn0/x0RkdooRI9BIbrIQTAM2PqRGaZ/98G+9VY9zUNIT7gY7K747U9EREQkzgLBMLuL/eQWmP3mFftNm3sSbbRKc5Gd5iLT48Bq1SCCiBx5VT/Eq5pUzy/xU1ZLBUyi01p5YKkzUgGjd8GIiChEj0khusgh2rPZDNPXLYBgubnmzob+E6DfeEhuEd/9iYiIiNQDwzAoKQ9Vdpub0+bVX0nZrJCV6owE55r6FJF4KfeHIpPqeSV+ikqD7B/82KxmBYwZrDvIcDtw2FUBIyLNj0L0GBSiixymsnxY/Rx88TSU7DLXbC7oeak5nZ7dPb77ExERETnCgiGDPZXT5jmFPsr3m+50J9jMbvM0J5kpTmyaNheRBigYMiorYPyRCphALRUwKUl2MiPBupMkl1UHlopIk6cQPQaF6CK/UigAX78Byx+Hn9fsWz/2dDNM7zgUrJpgEBERkcbJWx4kp7LbfG+xn3C1V0tWC2SlOMlON7vN3Qn2+G1UROQwVb2zJq/EH5lYL/WFajwuwWHdN6nucZKWZFc1lYg0OQrRY1CILnKEGAb8sAKWPQ7fvAVG5WRWZicYdB2cOBKcyfHdo4iIiMgvCIUN9hb7ySn0kVvgrxEkJbmskYqWFilO7DYFSCLS9FT4Q+R5A5Fu9cLS6MoqMGur0pPNQN0M1h04VQEjIo2cQvQYFKKL1IGCHfDFU/DlC+ArNtcS0qDfOOg/EVKPiuv2RERERKorrdjXbb632E+oWkuLxQItPE6y081+c3eCTXUGItLshMJVFTDmYaV53gCBYM34yJNoI9PjjEysJ7v0/0wRaVwUosegEF2kDvlKYM18WDEHCraba1Y7dL/IrHo5um88dyciIiLNVDhssLfET25lTUtJefS0eaLTSnaaWdGSlerEYdNkpYhIdYZhUFIRihxWml8SwFtRswLG5bCS4XZEJtXTkh06L0JEGjSF6DEoRBepB+EQbHkXls2GHZ/vW2870AzTu54HNnWIioiISN0p94XMipZCP3uK/ASrlZtbgAyPw6xpSXeSkmjX5KSIyCHyBcKRQD3PG6DQG4g6RwLMsyTS3A4y3fu61V0O/aBSRBoOhegxKEQXqWe71sHyObDhVQgHzLXUY2DgNdB7NCSmxXV7IiIi0jSEwwb53kAkOC8uC0bd73JYyU4zK1qyUp3q8RUROcJCYYPC0kDksNK8Ej/+Wipg3Am2yvoXs1tdtVkiEk8K0WNQiC4SJyW5sPKfsOoZKMsz15xu6DUKBl4LmcfFd38iIiLS6FT4Q5GKlt1FfgKh6Jc2GW6HGZynu0hN0rS5iEh9MgyD0ooQeZWT6vkl/hp1WgBOu8UM1d1mt3q6WxUwIlJ/FKLHoBBdJM4C5bDhFbPqZc+mykULdDnbrHpp/xvzRC8RERGR/RiGOW1eFZwXlkZPmzvtlki3ectUlyoDREQaGH8wHJlSzysJUFBLBYzFAmnJZv1LpsdBhttBgtMWnw2LSJOnED0GhegiDYRhwPeLYfls+Pb9feutephh+gm/A7srbtsTERGRhsEXCLO7yEdOgZ/dRb4a1QBpyXaz2zzNRbpb0+YiIo1JOGxQWBYkvzJUzysJ4AuEazwu2VVVAWPWwHgSVQEjIkeGQvQYFKKLNEB7tsCKJ2DtSxAsN9eSW0L/CdBvPLiz4rs/ERERqTeGYVBYGiS30EdOoZ8CbyDqfofNQstUJ9npLrJTnZpOFBFpQgzDoMwX2ter7g3UOOMCzL8LMiKT6k7S3Q7sNoXqInLoFKLHoBBdpAEry4cvn4cVT0HJz+aazQU9LzGn07OPj+/+REREpE74g2F2F/nJLfCRW+SvMYWYmmQnO81JdpqLDI8Dq6YPRUSaDX8wTIF334Gl+d4Aof06YCwWSEuyk1F5WGmGx0GifsgqIgdBIXoMCtFFGoFQADa+Ccseh5+/3Lfe4VQYfAN0/C1Y1XEqIiLSWBmGQXFZkJzKbvP8kgDVX5TYbRayUpy0SjeDcwUhIiJSJWwYFJUG93WrewNU+GtWwCS5rGS4nZFu9RQdMC0itVCIHoNCdJFGxDDghy/M3vRN/wWj8hujzI4w8DrodQU4k+O7RxERETkogVCYPUX+SHC+f+DhSbSRneaiVZqLTI8Dq1VBh4iIHByzAsZfGawHKKqlAsZus5DhdkQm1dPdDhw2DWeJNHcK0WNQiC7SSBXuhBVPwpcvgK/YXEtIhb5jYcA1kHp0XLcnIiIi0QzDoKQ8RG6hj9xCP3tL/FR/5WGzQlaKOWmeneYiOUHT5iIicmQEQjUrYIKhmvFXapI9clhphsdBkkt/F4k0NwrRY1CILtLI+UrMA0iXz4GCbeaaxQbdLzSrXo7uF9/9iYiINGPBkMGeYnPSPLfAR9l+0+bJCTZapbnITnPSIsWJTdPmIiJSD6pqxPJKqoJ1f42/owASndbKA0udkQoYncMh0rQpRI9BIbpIExEOwZb3zKqX7Z/tWz96AAy6HrpdADZ7/PYnIiLSTHgrguQW+Mkp9LG32E/1s96sFmiR4owE5+5E/d0sIiINQ7k/FJlUzyvxU1QaZP+AzGY1K2AyKnvVM9wOHHZVwIg0JQrRY1CILtIE7VpvTqZ/9SqE/OZaaluz5qXPGEhMi+v2REREmpJQ2GBv5bR5TqGf0opQ1P1JTivZ6Wa3eYsUJ3abJvhERKThC4aMygoYP/leM1wP1FIBk5JkJzMSrDtJcll1YKlII6YQPQaF6CJNWEkurHoGVj4DZXvNNUcy9B5lHkSaeVx89yciItJIlVZUdZv72FPsJ1TtHfAWC7TwOMlOc5Kd7sKTYFOYICIijV7V2R55Jf7IxHqpL1TjcQkO675JdY+TtCS7DscWaUQUosegEF2kGQhUwIZXzKqX3RsrFy3QeTgMngTth5iv+EVERKRW4bBBXkmAnMrgvKQ8OjRIcFrJTnPRKs1JVopTb20XEZFmocIfIs9bVQEToLA0wP6pms0K6clmoG4G6w6c+ntSpMFSiB6DQnSRZsQw4PvFZtXLt+/tW8/uYfam9/g92F1x256IiEhDUu43p81zCvzsKfITrFZubgEyPI5IcJ6SZNe0uYiINHuhcFUFjHlYaZ43QCBYM2bzJNrI9DjNiXW3g2S9a0ukwVCIHoNCdJFmau+3sOIJWPsSBMrMteQs6D8B+l0N7qz47k9ERKSehQ2D/JJAZU2Ln6KyYNT9LofVrGhJc9Ey1akpOhERkV9gGAYlFaHIYaX5JQG8FTUrYFwOKxluR2RSPS3ZgU0VMCJxoRA9BoXoIs1cWT58+QJ88RQU/2Su2ZzQ41JzOr3VCfHdn4iISB2q8IfILfKTW+Bjd5G/xoFp6W4HrSqD87RkTZuLiIj8Wr5AOBKo53kDFHoDhPdL4qwWSHObU+pV3eouh354LVIfFKLHoBBdRAAIBWDTf2HZbPhp1b71DqfAoBug01lg1TctIiLSuBmG+TbznEI/uYU+Ckujp80ddgvZqS5apTtpmerSC3YREZE6FgobFJYGIoeV5pX48ddSAeNOsFUeWGp2q7tVASNSJxSix6AQXURq+OEL8xDSjf8Fo/KtdhnHmZPpJ44Elzu++xMRETkEvkCY3UVmRUtuoa/GC/O0ZHuk2zzd7dALchERkTgyDIPSihB5lZPq+SX+Ggd6AzjtFjI8DjLcZqie7lYFjMiRoBA9BoXoIhJT4Q9mzcvq58FXZK4lpEKfq2DANZDWNr77ExERqYVhGBSVBckpMIPzfG8g6n6HzULLVLOiJTvNSYLTFqedioiIyMHwB8ORKfW8kgAFtVTAWCyQlryvVz3T7dDf8SKHQSF6DArRReQX+bzmAaQr5kD+9+aaxQbdLzCrXtr2j+/+RESk2fMHw+wp8pNTeSioLxCOuj8lyR7pNs9wO7BqUk1ERKTRCocNCsuC5FeG6nklgRp/9wMku6oqYMwaGE+iKmBEfolC9BgUoovIQQuH4dv3zKqXbZ/uWz+qHwyeBN0uBJs9fvsTEZFmwzAMisuC5BaawXl+SYDq38TbrRayUp1kpzlpleYi0aVJNBERkabKMAzKfNEHlhaXBWs8zmGzREL1DLdZ42a3KVQXqU4hegwK0UXksORsgOVzYMMrEPKbaylHw4CJ0PcqSEyP7/5ERKTJCYTMafOq4LzCHz1x5km0RSpaMj1O9aKKiIg0Y/5gmALvvgNL870BQvt1wFgskJpkjxxWmuFxkKgKGGnmFKLHoBBdRH4V725Y+Qys/CeU7TXXHEnQ6woYeD206Bjf/YmISKNlGAbeipBZ0VLgZ2+Jn+rfqdus0CLFnDTPTnORnKAXvSIiIlK7sGFQVBqsnFQ3J9bL/TUrYJJc1shhpZkeBylJdlXASLOiED0GhegickQEKuCrV2HZbNj99b71zsNh0PXQ4VTzx/wiIiIHEAwZ7C2u6jb3UeaLfnGb7LLRKt3sNm+RomlzEREROXxlvtC+CpiSAEW1VMDYbRYy3I5IDUy624HDZo3DbkXqh0L0GBSii8gRZRhmX/ry2bDl3X3rLY83w/Qel4AjIX77ExGRBsdbYXab5xb42FPsp/o7ra0Wc9o8O81FqzQn7kSdvSEiIiJ1IxCqWQETDNWMCc0KGPOw0gyPgySdvSJNiEL0GBSii0id2fsdrHgC1s6HQJm5lpwF/a6G/leDu2V89yciInERCpvT5lXd5qUVoaj7E51Ws6Il3UVWilMHfomIiEhcVB1knldSFaz7KaulAibRaa2cVHdGKmCseie2NFIK0WNQiC4ida68AL58AVY8BcU/mms2pzmVPuh6aNUjvvsTEZE6V+YLkVvoI6fQx54iP6Fqrz8tFsj0OCLd5p5Em7pHRUREpEEq94ci9S95JX6KSoPsHyTarNEVMBluBw67KmCkcVCIHoNCdBGpN6EAbPqfWfXy48p96+2HwOAboNMwsOobCxGRpiAcNsgrCUS6zUvKo6fNExxWstOcZKe7aJni1AtLERERaZSCIYMCb4B8rz9SAxOopQImJclOZiRYd5LksmpoQBokhegxKEQXkbj4YaUZpm98E4zKYCXjWBh4PfS6Alzu+O5PREQOWbk/ZHabF/rYXeSv0SGa6XFEus1Tkux64SgiIiJNjmEYlJSbB5ZWheqlvlCNxyU4rPsm1T1O0pLsWHVgujQACtFjUIguInFV+AOsfBpWz4WKInPNlQp9x8CAayGtbVy3JyIisYUNg/ySALmFPnIL/RSVBaPudzmstEx10irNRcs0J05Nm4uIiEgzVOEPkecNRGpgCksD7J8+2qyQnrxvUj3D49D3ThIXCtFjUIguIg2Czwvr/gXL50D+VnPNYoNu55tVL20HxHd/IiICgC8QjnSb7y7013i7crrbQas0J9lpLtKSNW0uIiIisr9Q2KyAqTqsNM8bIBCsGUd6Em2RQD3T7SA5QefGSN1TiB6DQnQRaVDCYfj2fbPqZdsn+9aP6mceQtr9QrA54rc/EZFmxjAMCrzBymlzHwWl0dPmDpuF7DSX2W+e5sLl0MSUiIiIyKEwDANvRShyWGl+SQBvRc0KGJfDSoa7qgLGQVqyA5sqYOQIU4geg0J0EWmwcr6CFXNg/SsQ8plrKUfBgInQdywkpsd1eyIiTZUvEGZ3kS/Sb+7fbzIqLdkeCc4z3A5NRImIiIgcYb5A2JxSLwmQ5w1Q6A0Q3i+xtFogzW1OqVd1q2ugQX4thegxKEQXkQbPuwdWPWt2p5fuMdccSXDiSHM6vUWn+O5PRKSRMwyDorIgOQVmcJ7vDUTdb7dZIt3m2WlOEpy2OO1UREREpHkKhQ0KS/f1queV+GsMOgC4E2yRXvVMjwO3KmDkEClEj0Ehuog0GkEfbHjVrHrJ/WrfeqezYNAkOPY00DcHIiIHJRAMs7vIT07loaC+QDjq/pQkO9lpZnCe4XZg1VuFRURERBoMwzAorayAyfeaoXpJec0KGIfdQqbbnFLP9DhId6sCRg5MIXoMCtFFpNExDNj+GSybDVveBSr/t92yuzmZ3uNScCTEdYsiIg2NYRiUlIfM0LzAR543QPXvem1Wc9q8qts8yaVpcxEREZHGxB8MV06qm73qBaUBQtFzElgskJa8r1c90+3QuwwlikL0GBSii0ijlrcVVjwBa+ZDoNRcS2oB/cZD/wngyY7v/kRE4igYMqfNq7rNy/3Rr6LcCTay01y0SneS6XFqKklERESkCQmHDQrLgvu61UsCNd59CJDsqqqAMWtgPImqgGnOFKLHoBBdRJqE8kL48gX44iko+sFcsznhhN+b0+mte8Z1eyIi9cEwDLwVIXILfeQU+skr9kcdQGW1QFa1bvPkBHv8NisiIiIi9cowDMp84cikep43QHFZsMbjHDZLJFTPcDtJdzuw2xSqNxcK0WNQiC4iTUooCN/8z6x6+fGLfevth5hheufhYNVb1USk6QiGDPYW+yPBeZkvugsz2WWLVLRkpWraXERERET28QfDFHjNKfX8yn71UDg6GrVYIDXJHjmsNMPjIFEVME2WQvQYFKKLSJP14yrzENKv3wCjMlRK72CG6b2uAJcnrtsTETlcpRVBciorWvYU1Zw2b5Gyr9vcnaC344qIiIjIwQkbBkWlwchhpfklgRqVgABJTmvksNJMj4OUJLu+52wiFKLHoBBdRJq8oh/hi6dh9VyoKDTXXKnQZzQMuAbS28VzdyIivygUNsgr9keCc29F9LR5otNqdpunOclKdWK3WeO0UxERERFpasp8oX0VMCUBimqpgLHbLGS4HZEamHS3A4e+J22UFKLHoBBdRJoNfyms+xcsnwN535lrFit0Ox8G3QBtB5jvUxMRaQDKfPu6zfcU+aPeVmuxQKbHURmcu3T4k4iIiIjUm0CoZgVMMFQzTjUrYKqCdSdJLlXANAYK0WNQiC4izU44DN99YFa9fL9433qbPjD4Buh+IdgccdueiDRP4bBBXkmgMjj3UVIePW3uclhpVVnR0jLVicOuyR4RERERiT/DMCguC5JXUhWs+ymrpQIm0WmNBOoZbgepyXasGgRpcBSix6AQXUSatdyvzcn09f+GkM9c87SBAROh71hIyojr9kSkaSv3h8itrGjZXeSvMcGT4XHQKs1FdpqTVPVMioiIiEgjUe4PRepf8kr8FJUG2T9wtVmjK2Ay3A4NijQACtFjUIguIgJ498CqZ2HlP6F0t7lmT4ReI2Hg9ZDVOb77E5EmIWwYFHgD5Bb6ySnw1eiTdNotkYqWlmlOnHoRISIiIiJNQDBkfh+c7/VHamACtVTApCTZyXRXr4CxapCknilEj0EhuohINUEffPUfWDYbcjfsW+/4Wxg8CY49Xb3pInJIfIEwuYW+ypu/xouF9GQ72ekustNcpCdr2lxEREREmj7DMCgpNw8srQrVS32hGo9LcFj3Tap7nKQl2bFa9f1yXVKIHoNCdBGRWhgGbP/c7E3f/A5UvfEsqxsMuh56XgqOxLhuUUQaJsMwKCgNkltgBucFpdHT5g6bhezKbvPsNBcuh6bNRUREREQq/CHyvIFIDUxhaYD9U1qbFdKT902qZ3gcevfmEaYQPQaF6CIivyBvK3zxFKx5Efxecy0pE/qNh/4TwNMqvvsTkbjzB8PsLvSTUzlx7g9GfzuZmmQ3a1rSnaS7HTpASURERETkF4TCZgVM1WGled4AgWDN2NaTaIscVprpcZCcYNO7O38FhegxKEQXETlI5YWwZh6seAqKdpprVgf0+L05nd76xLhuT0Tqj2EYFJUFzW7zQh/5JYGo++02Cy1Tq6bNnSQ6bXHaqYiIiIhI02AYBt6KUOSw0vySAN6KmhUwLoc1EqhneBykJTuwqQLmoClEj0EhuojIIQoF4Zu3YPkc+GH5vvV2J8OgSdDlbLAqMBNpagLBMLuL/JFu84pAOOr+lER7pKYl0+NQV6OIiIiISB3zBcLmlHpJgDxvgEJvgPB+ya7VAmluB5nufd3qqlSMTSF6DArRRUR+hR9Xm73pG9+AcGXvcXp7GHgd9L4SXJ547k5EfoWqw46qKlrySqI7GW1WyEp10aoyOE9y6YdnIiIiIiLxFAobFJbu61XPK/HXqFoEcCfYIr3qmR4HblXARChEj0EhuojIEVD0E6x8GlY9BxWF5porBXqPhoHXQnq7uG5PRA5OMBRmT5GfnEJz4rzcHz1t7k6wmd3maU4yU5x6W6iIiIiISANmGAallRUw+V4zVC8pr1kB47BbyHSbU+qZHgfp7uZbAdMsQvS//e1v/OUvf+GPf/wjDz/88EE9RyG6iMgR5C+FdQvMqpe8b801ixW6nmdWvRwzCPTTbZEGo6pXsaqiZW+xP+rtn1YLZFXrNncn2OO3WRERERER+dX8wXDlpLrZq15QGiAUPTvD0Zku+ndKi8v+4u1gs+JG+8po5cqVPPnkk/Ts2TPeWxERab6cydD/aug7DrYugmWPw/cfw6b/mrc2vc0wvftFYHfGe7cizVIobLCnWrd5qS96EiXJZYtUtLRIcWK36QdfIiIiIiJNhdNupVW6i1bpLgDCYYPCsuC+bvWSABkevV7/JY1yEt3r9dKnTx9mz57NXXfdRa9evTSJLiLSUORuhBVzYN3LEPKZa57WMGCiGbYnZcR3fyLNQGlFkNxCPzmFPvYURU+bWyzQIsUZCc7VhygiIiIi0nwZhoEBWJvpa4ImXedy1VVXkZGRwUMPPcRpp512wBDd5/Ph8/kivy8uLqZt27YK0UVE6lrpXrMzfeXT4M011+yJcOLlMOh6yOoS3/2JNCGhsEFeiZ+cAnPi3FsRPW2e6LRGKlqyUp04bNY47VRERERERKThaLJ1LgsWLODLL79k5cqVB/X4e+65h5kzZ9bxrkREpIbkFnDqn+HkG+Hr182ql5z1sPo589ZxqFn1ctwZ6k0XOQxlvn3d5ruL/ISqjZtbgEyPg+x0MzhPSbRr2lxEREREROQwNapJ9B9++IF+/frxwQcfRLrQNYkuItJIGAbsWGIeQvrNQqDyr5+sruZkes/LwJEY1y2KNGThsEG+N0BOZXBeXBaMut/lsJKd5qRVmousVCdOu6bNRUREREREDqRJ1rm88cYbjBgxApvNFlkLhUJYLBasVis+ny/qvtqoE11EpAHI/x5WPAlrXgS/11xLzIB+483udE+r+O5PpIGo8Ici3ea7i/wEQ9HftmW4HWZwnu4iNUnT5iIiIiIiIoeiSYboJSUl7NixI2pt3LhxdO3alWnTpnHCCSf84sdQiC4i0oBUFMGX88xAvWinuWZ1wAkXm1UvbXrFdXsi9c0wzGnz3EKz27ywNHra3Gm3RLrNW6a6cDk0bS4iIiIiInK4mmQnusfjqRGUJycnk5mZeVABuoiINDAJqXDSZBh4HWxeCMtmww/LYf3L5q3dyWbVS5dzwHrgdxqJNFa+QDjSbZ5b5CMQjJ5vSE+2VwbnLtLdmjYXERERERGpb40qRBcRkSbKZofuF5q3n1abvelfv252qO9YAmntzKC995WQoHcRSeNmGAaFpUFyC33kFPop8Aai7nfYLLSs7DZvmeokwakfIImIiIhI3QuHw/j9/nhvQ+SIcjgcv1j/fTDqrc4lGAyyePFitm7dyhVXXIHH4+Hnn38mJSUFt9tdH1sAVOciItJoFP8MXzwNq5+D8gJzzemBPmNg4DWQ3j6u2xM5FP5gmN3Vus19gXDU/alJdrLTnGSnucjwOLBq2lxERERE6pHf72fbtm2Ew+FffrBII5OWlkarVq1qfVdvg+pE37FjB8OHD2fnzp34fD62bNnCscceyx//+Ed8Ph9PPPFEXW8hQiG6iEgj4y+D9QvM6fS9W8w1ixW6nmv2ph8zGBQ4SgNjGAZFZcFIt3leSfS0ud1moWWqM9JvnqhpcxERERGJE8Mw2LlzJ4FAgDZt2mC16twdaRoMw6CsrIzdu3eTlpZG69atazymQXWi//GPf6Rfv36sW7eOzMzMyPqIESOYOHFifWxBREQaK2cS9BsPfcbC1o9g+ePmr5v+Z95a9zLD9ONHgN0Z791KMxYIhtld7Ce3wOw3r9hv2tyTaCM7zUWrNBeZHgdWq374IyIiIiLxFwwGKSsro02bNiQlJcV7OyJHVGJiIgC7d++mZcuWh13tUi8h+meffcbSpUtxOqPDjfbt2/PTTz/VxxZERKSxs1qh01DztnuTOZm+/mXYtRZevwY+uB0GTIC+4yE58xc/nMivZRgGJeWhym5zc9q8+vv7bFbISjW7zbPTXCS5NG0uIiIiIg1PKBQCqJHbiTQVVT8cCgQCDTtED4fDkf8gq/vxxx/xeDz1sQUREWlKWnaDCx6FM++A1c/CF/8Ebw58dBd8ej+ceDkMvB5ado33TqWJCYYM9lROm+cU+ij3R0+bJyfYKkNzJy1SnNg0bS4iIiIijURtfdEiTcGR+LNdLyH6WWedxcMPP8xTTz0FmBv3er3ccccdnHPOOfWxBRERaYqSM+GUP8NJf4SvXzerXnatg9VzzdtxZ5pVLx3PVG+6HDZveZCcym7zvcV+wtWmza0WyErZ123uTqyXb61ERERERESkHtXLwaI//PADw4cPxzAMvv32W/r168e3335LixYt+PTTT2nZsmVdbyFCB4uKiDRhhgE7l8Gyx+GbhUDlX3EtusCg66HnZWbHusgBhMIGe4v95BT6yC3wU+qLfjddkssa6TZvkeLEbtMPaERERESk8aqoqGDbtm106NCBhISEeG9HDsKMGTN44403WLt2bZ18/O3bt9OhQwfWrFlDr1696uQa9elAf8Yb1MGibdu2Zd26dbz88susW7cOr9fL1VdfzahRoyLl7iIiIr+axQLtTjJv+dvgi6fgy3mwdzO8NQUW3Qn9xkH/CZDSJt67lQaktGJft/neYj+hai0tFgu08DjJTjcnzj0JNr3VVURERESkgXj88ce57777yMnJ4cQTT+Sxxx5jwIAB8d5WszN27FgKCwt544036vW67du3Z8qUKUyZMqVOr1PnIXogEKBr16689dZbjBo1ilGjRtX1JUVERCCjAwy/B077C6x5EVY8AYU74LMHYMkjcPzFMHgStOkd751KHITDBntL/OQW+skp8OGtiJ42T3BaI93mWalOHDZrnHYqIiIiIiKxvPzyy9x888088cQTDBw4kIcffphhw4axefPmem2+kKavzl8ROhwOKioq6voyIiIitUtIMcPyG9fApfPgmJMgHIQN/4anToNnh8PG/0K45gHY0rSU+0Jsyy1j+eZCFq7aw5JNhXy3qwxvRQgLkOlx0L2tmzN6ZDC8dwt6H5tCm4wEBegiIiIiIg3Ugw8+yMSJExk3bhzdu3fniSeeICkpiWefffYXn1tYWMiECRPIysoiJSWFM844g3Xr1gGwZ88eWrVqxaxZsyKPX7p0KU6nk0WLFgGwdetWLrzwQrKzs3G73fTv358PP/ww6hrt27fnrrvuYsyYMbjdbtq1a8d///tf9uzZw4UXXojb7aZnz56sWrUq8py5c+eSlpbGG2+8QadOnUhISGDYsGH88MMPB/x8/vnPf9KtWzcSEhLo2rUrs2fPPuiv4xdffEHv3r1JSEigX79+rFmzJur+UCjE1VdfTYcOHUhMTKRLly488sgjkftnzJjB888/z5tvvonFYsFisbB48WIApk2bRufOnUlKSuLYY49l+vTpBAKByHPXrVvH6aefjsfjISUlhb59+0Z9PT7//HOGDBlCYmIibdu25cYbb6S0tBSA0047jR07dnDTTTdFrltX6uVV4Q033MC9995LMBisj8uJiIjUZLVB9wtg/DtwzWKzH91qNzvU/z0aHu1ldqlXFMd7p3KEhCu7zb/aWcKi9Xm8u2Yva7eVsKvARzBs4HJYOSYrgQGdUjmnXxanHJ9Bl6OSSU12qK5FRERERJotwzAo8wfjcjuUoxv9fj+rV69m6NChkTWr1crQoUNZtmzZLz7/kksuYffu3bzzzjusXr2aPn36cOaZZ5Kfn09WVhbPPvssM2bMYNWqVZSUlDB69GgmT57MmWeeCYDX6+Wcc85h0aJFrFmzhuHDh3P++eezc+fOqOs89NBDnHzyyaxZs4Zzzz2X0aNHM2bMGK688kq+/PJLjjvuOMaMGRP1uZeVlXH33XfzwgsvsGTJEgoLC7n88stjfi7z58/n9ttv5+6772bTpk3MmjWL6dOn8/zzz//i18Hr9XLeeefRvXt3Vq9ezYwZM5g6dWrUY8LhMEcffTSvvPIKGzdu5Pbbb+fWW2/l3//+NwBTp07l0ksvZfjw4ezatYtdu3Zx0kknAeDxeJg7dy4bN27kkUce4emnn+ahhx6KfOxRo0Zx9NFHs3LlSlavXs3//d//4XA4APMHFcOHD+d3v/sd69ev5+WXX+bzzz9n8uTJALz22mscffTR3HnnnZHr1pV6OVh0xIgRLFq0CLfbTY8ePUhOTo66/7XXXqvrLUToYFEREYko3gUrn4ZVz0J5gbnm9EDvK2HgtWYljDQqFf4QuYV+cgt97C7yEwhFf5uT7nbQKs3sNk9LtissFxEREZFmb/9DF8v8Qbrf/l5c9rLxzmEkOQ+uffrnn3/mqKOOYunSpQwePDiyfsstt/DJJ5+wYsWKmM/9/PPPOffcc9m9ezculyuy3rFjR2655RauueYawBwM/vDDD+nXrx8bNmxg5cqVUY/f3wknnMB1110XCXnbt2/PkCFDmDdvHgA5OTm0bt2a6dOnc+eddwKwfPlyBg8ezK5du2jVqhVz585l3LhxLF++nIEDBwLwzTff0K1bN1asWMGAAQNqHCzasWNH/t//+3+MHDkyspe77rqLt99+m6VLlx7w6/jUU09x66238uOPP0YO3XziiSe4/vrrD3iw6OTJk8nJyeHVV18FDr4T/f7772fBggWRafOUlBQee+wxrrrqqhqPnTBhAjabjSeffDKy9vnnn3PqqadSWlpKQkLCQXWiN5qDRdPS0vjd735XH5cSERE5eCmt4czbYchUWP8yLJ9jHkK6Yo7Zod71XBg0yTyoVGFrg2QYBvneQCQ4LyyNfteb024hu7LbvGWqC5dD1SwiIiIiIs3dunXr8Hq9ZGZmRq2Xl5ezdevWyO/vv/9+TjjhBF555RVWr14dFaB7vV5mzJjBwoUL2bVrF8FgkPLy8hqT6D179oz8c3Z2NgA9evSosbZ7925atWoFgN1up3///pHHdO3albS0NDZt2lTj0NTS0lK2bt3K1VdfzcSJEyPrwWCQ1NTUX/xabNq0iZ49e0aFy9V/KFHl8ccf59lnn2Xnzp2Ul5fj9/tjBuzVvfzyyzz66KNs3boVr9dLMBiMCqtvvvlmJkyYwLx58xg6dCiXXHIJxx13HGD+e1q/fj3z58+PPN4wDMLhMNu2baNbt26/eP0jpV5C9Oeee64+LiMiInJ4nEnQbxz0HQtbF8Gy2eav37xl3lqfaIbpx18Mdme8d9vs+QJhdhf5yCnws7vIhz8YPW2elmwnO81FqzQn6W5Vs4iIiIiIHIpEh42Ndw6L27UPVosWLbDZbOTm5kat5+bmRsLoWLxeL61bt470dleXlpYW+eetW7fy888/Ew6H2b59e1T4PXXqVD744APuv/9+OnbsSGJiIr///e/x+/1RH6+qmgSIvDapbS0cDh/4Ez7A5wLw9NNPRybXq9hsB//1PJAFCxYwdepUHnjgAQYPHozH4+G+++474LQ/wLJlyxg1ahQzZ85k2LBhpKamsmDBAh544IHIY2bMmMEVV1zBwoULeeedd7jjjjtYsGABI0aMwOv1cu2113LjjTfW+NjHHHPMEfncDla9hOhV9uzZw+bNmwHo0qULWVlZ9Xl5ERGRA7NYoONQ87b7G3Mifd0C2LUOXr8WPrgd+k+EfuMhOfOXP54cEYZhUFgaJLfQR06hnwJvIOp+h81Cy1Qn2ekuslOdJDiPzDeKIiIiIiLNkcViOehKlXhyOp307duXRYsWcdFFFwFmEL1o0aJInUosffr0IScnB7vdTvv27Wt9jN/v58orr+Syyy6jS5cuTJgwgQ0bNtCyZUsAlixZwtixYxkxYgRghtnbt28/Ip9bMBhk1apVkanzzZs3U1hYWOvkdXZ2Nm3atOH7779n1KhRh3ytbt26MW/ePCoqKiLT6MuXL496zJIlSzjppJOYNGlSZK36xD6Y/z5CoVDU2tKlS2nXrh233XZbZG3Hjh019tC5c2c6d+7MTTfdxMiRI3nuuecYMWIEffr0YePGjXTs2DHm/mu7bl2ol/c0l5aWMn78eFq3bs0pp5zCKaecQps2bbj66qspKyurjy2IiIgcmpZd4fxH4KaNcMZ0cLcCby58fBc81B3+eyPs3hTvXTY5obBBYWmAHXvK2bCjhCWbCnh79R4Wf5XPph9LIwF6SpKdzm2SGNI9nXP6ZTGgcxrtshIVoIuIiIiINCM333wzTz/9NM8//zybNm3i+uuvp7S0lHHjxh3weUOHDmXw4MFcdNFFvP/++2zfvp2lS5dy2223Rbq6b7vtNoqKinj00UeZNm0anTt3Zvz48ZGP0alTJ1577TXWrl3LunXruOKKKw57mnx/DoeDP/zhD6xYsYLVq1czduxYBg0aVKPKpcrMmTO55557ePTRR9myZQsbNmzgueee48EHH/zFa11xxRVYLBYmTpzIxo0befvtt7n//vujHtOpUydWrVrFe++9x5YtW5g+fTorV66Mekz79u1Zv349mzdvZu/evQQCATp16sTOnTtZsGABW7du5dFHH+X111+PPKe8vJzJkyezePFiduzYwZIlS1i5cmXkhwXTpk1j6dKlTJ48mbVr1/Ltt9/y5ptvRv2QpH379nz66af89NNP7N2796C/xoeqXkL0m2++mU8++YT//e9/FBYWUlhYyJtvvsknn3zCn/70p/rYgoiIyOFJzoRTpsKUDXDx09C6FwQr4MvnYfYgmDcCvv0AjtA3S82FYRiU+ULsKvCx+adSVn5byIfr9vK/L3bz8YZ8vtxazHe7ythd5McfNLBbLbROd9Grg4fhvVtwZs9Mjj/GQ4sUJ1bVtYiIiIiINEuXXXYZ999/P7fffju9evVi7dq1vPvuu5Ge8VgsFgtvv/02p5xyCuPGjaNz585cfvnl7Nixg+zsbBYvXszDDz/MvHnzSElJwWq1Mm/ePD777DPmzJkDwIMPPkh6ejonnXQS559/PsOGDaNPnz5H5PNKSkpi2rRpXHHFFZx88sm43W5efvnlmI+fMGEC//znP3nuuefo0aMHp556KnPnzqVDhw6/eC23283//vc/NmzYQO/evbntttu49957ox5z7bXXcvHFF3PZZZcxcOBA8vLyoqbSASZOnEiXLl3o168fWVlZLFmyhAsuuICbbrqJyZMn06tXL5YuXcr06dMjz7HZbOTl5TFmzBg6d+7MpZdeytlnn83MmTMBs0/+k08+YcuWLQwZMoTevXtz++2306ZNm8jHuPPOO9m+fTvHHXdcnbaeWAzDMH75Yb9OixYtePXVVznttNOi1j/++GMuvfRS9uzZU9dbiDjYE1dFRERqZRiwcxksnw3fLASjMjxv0RkGXgcnjjQ71iUiEApTXBakuCxIUeWvxWVBAqHavwVx2CykJtlJSbabvyY6SEu2Y7UqLBcREREROdIqKirYtm0bHTp0iDpcUuJj7ty5TJkyhcLCwnhvpck40J/xg82K66XgqKysrNafALVs2VJ1LiIi0rhYLNDuJPNWsB1WPAVfvgB7t8DCm+Gj/2ceUDrgGkhp80sfrUkxDANvRahGWF7qq72fzmIBT6KdlMTKsDzJTmqynQSHVYeBioiIiIiISINRLyH64MGDueOOO3jhhRciaX95eTkzZ85k8ODB9bEFERGRIy+9PQyfBaf9H6ydD8vnQOEO+PwhWPoYHD8CBl0PR/WN906POF8gXC0sD5iBeXmQUIxWmwSH1QzJq8LyJDueRE2Xi4iIiIjIkTd//nyuvfbaWu9r164dX3/9dT3vKH5mzZrFrFmzar1vyJAhvPPOO/W8o8apXupcvvrqK4YNG4bP5+PEE08EYN26dSQkJPDee+9x/PHH1/UWIlTnIiIidSYcgs3vmFUvO5bsW287CAZPgi7ngq3hn3JfXThsUFK+b7K86teKQO1puc0KKYlmUJ6S5IiE5i5HvRzDIiIiIiIih6gp1rmUlJSQm5tb630Oh4N27drV847iJz8/n/z8/FrvS0xM5KijjqrnHdW/I1HnUi8hOpiVLvPnz+ebb74BoFu3bowaNYrExMT6uHyEQnQREakXP681J9O/+g+EA+Za6jEw8FroMxoSUuO6vf0ZhkFFIExRabWwvDxISXmQWN8pJLtslWH5vglzd4JNVSwiIiIiIo1IUwzRRaprVCF6Q6EQXURE6lXxLlj1DKx8Bsorf/rvdEPvK81APePYet9SMGRQXG7WsFSfMA8EYx/0uX9YnpJkx2HTdLmIiIiISGOnEF2aukZzsOg999xDdnY248ePj1p/9tln2bNnD9OmTauPbYiIiNS/lNZwxl9hyJ9g/cvmdPqeb2DFE7DiSehyjln10u5k86TNI8gwDEp90Qd9FpUFKa2IcdAn4E60VYbljkhonujUQZ8iIiIiIiLSfNVLiP7kk0/y0ksv1Vg//vjjufzyyxWii4hI0+dIhL5joc9VsPUjM0z/7gPYvNC8teoJgybBCReD3XXIH94fDNcIy4vLgoTCtU+XuxzWqKnyqoM+bTroU0RERERERCRKvYToOTk5tG7dusZ6VlYWu3btqo8tiIiINAwWC3Q807zt2WyG6esWQM56eOM6+PAO6D8B+o2H5BY1nh4OG3grQhSVBaLC8nJ/7Qd9Wi1EgvJIHUuinQSnra4/UxEREREREZEmoV5C9LZt27JkyRI6dOgQtb5kyRLatGlTH1sQERFpeLK6wPkPw5m3w+rn4IunoWQXfHw3xqf3EzrhEgp7TKQgqVMkLC8pDxJjuJwkp5WUZDspiQ4zLE82D/q0qopFRERERERE5LDVS4g+ceJEpkyZQiAQ4IwzzgBg0aJF3HLLLfzpT3+qjy2IiIg0WKGEdIp730hxx4lYNr1B+oan8RSsx77uRVqse5FQ5snsaX8VRS1OAYsVu9VS45DPlCQ7TrsO+hQREREREWnq5s6dy5QpUygsLKyza1gsFl5//XUuuuiiOrtGY1IvIfqf//xn8vLymDRpEn6/H4CEhASmTZvGX/7yl/rYgoiISNwZhkGZL0xxWSCqu9xb/aDPpGEw4CwyCr+k4/a5tMn9gOy8JWTnLSGQ3pFw/+tw9h6JxeWO3yciIiIiIiLSAHz66afcd999rF69ml27din0jaMZM2bwxhtvsHbt2nq97mmnnUavXr14+OGH6/Q69RKiWywW7r33XqZPn86mTZtITEykU6dOuFyHfnCaiIhIYxAIhikuD1JUWu2gz/IgwVDtXSxOu4XUJEe17vLf4jnrbCzFO+GLp+DLF3AUfAfvT4VP74J+46D/REg9qp4/MxERERERkYahtLSUE088kfHjx3PxxRfHezvShNXr+77dbjf9+/fH4/GwdetWwuHaD0ETERFpLMKGQUl5kB/zKtj4g5dlmwt478s9vLVqD59+XcC67SVs211OvjdAMGRgsUBqkp22LRI44Rg3J3VN4+w+LTinbxa/6Z5Oz/Ye2rdMJN3twG6zQHo7GHY33LwRht8L6e2hohA+fwge6QmvXg0/ro73l0FERERERKTenX322dx1112MGDHikJ/r8/mYOnUqRx11FMnJyQwcOJDFixcDUFFRwfHHH88111wTefzWrVvxeDw8++yzAOTl5TFy5EiOOuookpKS6NGjB//617+irnHaaafxhz/8gSlTppCenk52djZPP/00paWljBs3Do/HQ8eOHXnnnXciz1m8eDEWi4WFCxfSs2dPEhISGDRoEF999dUBP58333yTPn36kJCQwLHHHsvMmTMJBoMH9bX49ttvOeWUU0hISKB79+588MEHNR4zbdo0OnfuTFJSEsceeyzTp08nEAgAZr3MzJkzWbduHRaLBYvFwty5cwF48MEH6dGjB8nJybRt25ZJkybh9XojH3fHjh2cf/75pKenk5yczPHHH8/bb78duf+rr77i7LPPxu12k52dzejRo9m7dy8AY8eO5ZNPPuGRRx6JXHf79u0H9TkfqjqdRH/22WcpLCzk5ptvjqxdc801PPPMMwB06dKF9957j7Zt29blNkRERI4IXyBMUVlg32R55S3WQZ+JTmtUd3lqksM86NN6GAd9ujww6DoYMBG2vAvLZsOOz+GrV81b24EwaBJ0PQ9s9fJGMxERERERaYIMwyAUp7lXm9VstKgPkydPZuPGjSxYsIA2bdrw+uuvM3z4cDZs2ECnTp2YP38+AwcO5Nxzz+W8887jyiuv5Le//S3jx48HzKC9b9++TJs2jZSUFBYuXMjo0aM57rjjGDBgQOQ6zz//PLfccgtffPEFL7/8Mtdffz2vv/46I0aM4NZbb+Whhx5i9OjR7Ny5k6SkpMjz/vznP/PII4/QqlUrbr31Vs4//3y2bNmCw+Go8bl89tlnjBkzhkcffZQhQ4awdevWyA8A7rjjjgN+HcLhMBdffDHZ2dmsWLGCoqIipkyZUuNxHo+HuXPn0qZNGzZs2MDEiRPxeDzccsstXHbZZXz11Ve8++67fPjhhwCkpqYCYLVaefTRR+nQoQPff/89kyZN4pZbbmH27NkA3HDDDfj9fj799FOSk5PZuHEjbrdZX1pYWMgZZ5zBhAkTeOihhygvL2fatGlceumlfPTRRzzyyCNs2bKFE044gTvvvBOArKysg/r3f6gshmHEeOn/6w0aNIhrr72WcePGAfDuu+9y/vnnM3fuXLp168bkyZPp3r07//znP+tqCzUUFxeTmppKUVERKSkp9XZdERFpPEJhc7q8elheVBbEF6j9O0mbFVKSHNXC8no66PPntbDiCdjwKoTNCQBSj4GB10Dv0ZCYVrfXFxERERGRRq+iooJt27bRoUMHEhISCIYM/rdyd1z2cn7/luY7cg/DoRyEuXPnTo499lh27txJmzZtIutDhw5lwIABzJo1C4D77ruPv//971x++eX85z//YcOGDWRmZsb8uOeddx5du3bl/vvvB8xJ9FAoxGeffQZAKBQiNTWViy++mBdeeAGAnJwcWrduzbJlyxg0aBCLFy/m9NNPZ8GCBVx22WUA5Ofnc/TRRzN37lwuvfTSGgeLDh06lDPPPDPq7MkXX3yRW265hZ9//vmAX4v333+fc889lx07dkS+Fu+++y5nn332Ab+e999/PwsWLGDVqlXAwXeiv/rqq1x33XWRafKePXvyu9/9rtaw/6677uKzzz7jvffei6z9+OOPtG3bls2bN9O5c+eD6kTf/894dQebFdfpqNq3335Lv379Ir9/8803ufDCCxk1ahQAs2bNigTsIiIi9c0wDMr94WphuXngp7c8RKyfMCcn2CIheVVgnuyy1du0RJQ2vWDEEzB0Bqx8BlY9A0U74f2/wsf3QO8rYeC1kHlc/e9NRERERESkgdqwYQOhUIjOnTtHrft8vqiQ/E9/+hNvvPEG//jHP3jnnXei7guFQsyaNYt///vf/PTTT/j9fnw+X9Q0OZghcRWbzUZmZiY9evSIrGVnZwOwe3f0Dy4GDx4c+eeMjAy6dOnCpk2bav181q1bx5IlS7j77ruj9ldRUUFZWVmNPVW3adMm2rZtG/XDhOrXrvLyyy/z6KOPsnXrVrxeL8Fg8KAGlD/88EPuuecevvnmG4qLiwkGg1H7uvHGG7n++ut5//33GTp0KL/73e8iX7N169bx8ccfRybTq9u6dWuNf391qU5D9PLy8qgv5tKlS7n66qsjvz/22GPJycmpyy2IiIgAEAyFa0yWF5cFCcQ46NNhs5hheXLlZHmig5QkG3ZbvR4ncnA8reCM22DIzbDhFbPqZc8m+OJJ81DSLmfDoOuh/RCIR9gvIiIiIiKNhs1qToTH69r1wev1YrPZWL16NTabLeq+6oHt7t272bJlCzabjW+//Zbhw4dH7rvvvvt45JFHePjhhyOd31OmTMHv90d9vP3rVywWS9Ra1UDWrzk70uv1MnPmzFoPV91/8vpwLFu2jFGjRjFz5kyGDRtGamoqCxYs4IEHHjjg87Zv3855553H9ddfz913301GRgaff/45V199NX6/n6SkJCZMmMCwYcNYuHAh77//Pvfccw8PPPAAf/jDH/B6vZx//vnce++9NT5269atf/XndSjqNERv164dq1evpl27duzdu5evv/6ak08+OXJ/Tk5OpB9HRETkSDAMg9KKUI2wvNQXqvXxFgt4Euz7dZfbSXBa4zNd/ms4EqHPGLPK5fvFsHw2fPs+bH7bvLXqYfamn/A7sLvivVsREREREWmALBYLdtsvP64x6927N6FQiN27dzNkyJCYjxs/fjw9evTg6quvZuLEiQwdOpRu3boBsGTJEi688EKuvPJKwAzBt2zZQvfu3Y/IHpcvX84xxxwDQEFBAVu2bIlce399+vRh8+bNdOzY8ZCv061bN3744Qd27doVCaaXL18e9ZilS5fSrl07brvttsjajh07oh7jdDoJhaJfd69evZpwOMwDDzyA1Wr+hOTf//53jT20bduW6667juuuu46//OUvPP300/zhD3+gT58+/Oc//6F9+/bY7bXH2LVdty7UaYh+1VVXccMNN/D111/z0Ucf0bVrV/r27Ru5f+nSpZxwwgl1uQUREWnCfIFw5HDPqgM/i8uDMQ/BSXDsf9CnHXeiHdvhHPTZkFkscNzp5m3PFrM3fe1LkLMB3rgePrgD+k+AfuPBXTeHroiIiIiIiNQ1r9fLd999F/n9tm3bWLt2LRkZGZEAujadO3dm1KhRjBkzhgceeIDevXuzZ88eFi1aRM+ePTn33HN5/PHHWbZsGevXr6dt27YsXLiQUaNGsXz5cpxOJ506deLVV19l6dKlpKen8+CDD5Kbm3vEQvQ777yTzMxMsrOzue2222jRokXMfvLbb7+d8847j2OOOYbf//73WK1W1q1bx1dffcVdd911wOsMHTqUzp07c9VVV3HfffdRXFwcFZYDdOrUiZ07d7JgwQL69+/PwoULef3116Me0759+8jX/+ijj8bj8dCxY0cCgQCPPfYY559/PkuWLOGJJ56Iet6UKVM4++yz6dy5MwUFBXz88ceRHxbccMMNPP3004wcOZJbbrmFjIwMvvvuOxYsWMA///lPbDYb7du3Z8WKFWzfvh23201GRkYksD+S6vRNErfccgsTJ07ktddeIyEhgVdeeSXq/iVLljBy5Mi63IKIiDQB4bBBUWmAH/aW89WOEpZuKuCd1Xt4e/UePt9UwPodJezYU0FBqRmgWy2QlmynXVYCPdp5+E23dM7pm8XZfbM4uVs6J7TzcExWIqnJjqYXoO8vqzOc9yDcvNHsTve0gdLdsHgWPHQ8vHkD5H4d712KiIiIiIgcslWrVtG7d2969+4NwM0330zv3r25/fbbf/G5zz33HGPGjOFPf/oTXbp04aKLLmLlypUcc8wxfPPNN/z5z39m9uzZtG3bFoDZs2ezd+9epk+fDsBf//pX+vTpw7BhwzjttNNo1arVQR1qerD+9re/8cc//pG+ffuSk5PD//73P5xOZ62PHTZsGG+99Rbvv/8+/fv3Z9CgQTz00EO0a9fuF69jtVp5/fXXKS8vZ8CAAUyYMCGqWx3gggsu4KabbmLy5Mn06tWLpUuXRr4OVX73u98xfPhwTj/9dLKysvjXv/7FiSeeyIMPPsi9997LCSecwPz587nnnnuinhcKhbjhhhvo1q0bw4cPp3PnzsyePRuANm3asGTJEkKhEGeddRY9evRgypQppKWlRYLyqVOnYrPZ6N69O1lZWezcufOgv8aHwmIYRqyz05qkgz1xVURE6p9hGFQEanaXl5QHifW3VZLLFjVZnpJkx50Qp4M+G4NQADa+Ccseh5+/3Lfe4VQYfAN0/C3UwU/tRURERESkYaqoqGDbtm106NDhiPRny6+zePFiTj/9dAoKCkhLS4v3dpqEA/0ZP9isuE7rXERERGIJhgyKy4OVdSwBiioD80Cw9rTcXnXQZ7WwPCXRjsOuwPeQ2BzQ4/dmL/oPX5i96Zv+C9s+MW+ZHWHgddDrCnAmx3u3IiIiIiIiInGnEF1EROqUYRiU+kLVusvNW2lF7IM/PIm2yrDcEQnNExvjQZ8NmcUCxww0b4U7YcWT8OULkPcdvD0VPvp/0HcsDLgGUo+O925FREREREQO2meffcbZZ58d836v11uPu4mv+fPnc+2119Z6X7t27fj6a9V7HgzVuYiIyBHjD4ZrhOXFZUFC4dr/qnHVctCnpyke9NlY+ErMA0iXz4GCbeaaxQbdLzSrXo7uF9/9iYiIiIjIEdcU61zKy8v56aefYt7fsWPHetxNfJWUlJCbm1vrfQ6H46B60xs71bmIiEhchMMG3opQZVgeiITl5f5wrY+3WsCTWBmWJ1f+mmgnwWmr553LAbk8MPBa6D8BtrxnVr1s/wy+fs28HT0ABl0P3S4Am76FEBERERGRhikxMbFZBeUH4vF48Hg88d5Go6dXwCIiEpNhGPgC4ahDPosrD/qMMVxOotNaOVnuiITm7gQbVlWxNB5WG3Q9x7ztWm9Opn/1Kvz4Bbz6BaS2NWte+oyBxLR471ZERERERESkTtVLiB4KhZg7dy6LFi1i9+7dhMPRk4offfRRfWxDREQOIBQ2oqpYqqbM/bEO+rRazMM9qx/0mWTHqYM+m5bWPWHEHBg6A1Y9AyufgaIf4IPpsPhv0HuUeRBp5nHx3qmIiIiIiIhInaiXEP2Pf/wjc+fO5dxzz+WEE07QwXAiInFkGAZlvjDFZQGKy4MUlZqhufcAB326E2z7dZc7SHLpoM9mxZMNp98Kv7kZNrxiVr3s3ghfPAVfPA2dh8PgSdB+iHloqYiIiIiIiEgTUS8h+oIFC/j3v//NOeecUx+XExGRSoFgmOLymgd9BkO1T5c77ZZISF79oE+7TaGoVHIkQJ/R0PtK+H6xWfXy7Xuw5R3zlt3D7E3v8Xuwu+K9WxEREREREZFfrV5CdKfTqTJ/EZE6FDYMSitC+3WXByjz1X7Qp6X6QZ+VYXlqkh2XQ9PlcpAsFjjudPO291tY8QSsfQlyN8Cbk+DDO8wDSvuNB3fLeO9WRERERERE5LBZDMOIcTTckfPAAw/w/fff849//CPu4UxxcTGpqakUFRWRkpIS172IiBwO86DPQFR3eXFZ7IM+EyIHfVaF5Q7zoE+rwnI5wsry4cvnzXqX4p/MNZsTelxqTqe3OiG++xMRERERkRoqKirYtm0bHTp0ICEhId7bkYMwY8YM3njjDdauXVsnH3/79u106NCBNWvW0KtXrzq5Rn060J/xg82K62US/fPPP+fjjz/mnXfe4fjjj8fhcETd/9prr9XHNkREGpVQ2KCkfP+DPoP4ArVPl9uskJJoJyXZEZks10GfUq+SMuA3N8HgybDxTbM3/afVsPZF89bhFBh0A3Q6C6z6cykiIiIiIofvnnvu4bXXXuObb74hMTGRk046iXvvvZcuXbrEe2vN0tixYyksLOSNN96o1+u2b9+eKVOmMGXKlDq9Tr2E6GlpaYwYMaI+LiUi0ugYhkG5P7xfWB7AWx4i1luFkl3VDvpMNn9Ndtni/m4fEQBsDrMTvcfv4YcvzDB9439h26fmLeM4czL9xJHgcsd7tyIiIiIi0gh98skn3HDDDfTv359gMMitt97KWWedxcaNG0lOTo739qSJqZcxsOeee+6ANxGR5iIYCpNf4mdbbhnrthXz6df5LFy1h/fW7GXZ5kI2/uDlx7wKSioDdIfNQqbHwbHZifTq4OHU4zM4v38WZ/VuwaAuaXRr6+aojATcCXYF6NIwtR0Al8yFP66Dk24EVyrkb4W3p8JD3eH96VD4Q7x3KSIiIiIijcy7777L2LFjOf744znxxBOZO3cuO3fuZPXq1Qf1/MLCQiZMmEBWVhYpKSmcccYZrFu3DoA9e/bQqlUrZs2aFXn80qVLcTqdLFq0CICtW7dy4YUXkp2djdvtpn///nz44YdR12jfvj133XUXY8aMwe12065dO/773/+yZ88eLrzwQtxuNz179mTVqlWR58ydO5e0tDTeeOMNOnXqREJCAsOGDeOHHw78uumf//wn3bp1IyEhga5duzJ79uyD+joAfPHFF/Tu3ZuEhAT69evHmjVrou4PhUJcffXVdOjQgcTERLp06cIjjzwSuX/GjBk8//zzvPnmm1gsFiwWC4sXLwZg2rRpdO7cmaSkJI499limT59OIBCIPHfdunWcfvrpeDweUlJS6Nu3b9TX4/PPP2fIkCEkJibStm1bbrzxRkpLSwE47bTT2LFjBzfddFPkunWlXibRq+zZs4fNmzcD0KVLF7Kysurz8iIi9cao9aDPIKW+UK2Pt1jAnWAjNckRddBnglMHfUoTkdYWzvp/cOo08wDSFXMg/3tY+igsexy6X2BWvbTtH++dioiIiIg0b4YBgbL4XNuRZL5APgxFRUUAZGRkHNTjL7nkEhITE3nnnXdITU3lySef5Mwzz2TLli1kZWXx7LPPctFFF3HWWWfRpUsXRo8ezeTJkznzzDMB8Hq9nHPOOdx99924XC5eeOEFzj//fDZv3swxxxwTuc5DDz3ErFmzmD59Og899BCjR4/mpJNOYvz48dx3331MmzaNMWPG8PXXX0de/5eVlXH33Xfzwgsv4HQ6mTRpEpdffjlLliyp9XOZP38+t99+O//4xz/o3bs3a9asYeLEiSQnJ3PVVVcd8Ovg9Xo577zz+O1vf8uLL77Itm3b+OMf/xj1mHA4zNFHH80rr7xCZmYmS5cu5ZprrqF169ZceumlTJ06lU2bNlFcXBwZmK769+DxeJg7dy5t2rRhw4YNTJw4EY/Hwy233ALAqFGj6N27N3PmzMFms7F27dpIFfjWrVsZPnw4d911F88++yx79uxh8uTJTJ48meeee47XXnuNE088kWuuuYaJEyce1L/3w1UvB4uWlpbyhz/8gRdeeIFw2OzytdlsjBkzhscee4ykpKS63kKEDhYVkSPNFwhHDvcsKg9SXBqguDxIqPbqchIcVlKiDvq04060Y9NBn9KchMPw7Xtm1cu2T/etH9UPBk+CbheCrV5/1i8iIiIi0izVOHTRXwqz2sRnM7f+DM5Dr2IJh8NccMEFFBYW8vnnn//i4z///HPOPfdcdu/ejcvliqx37NiRW265hWuuuQaAG264gQ8//JB+/fqxYcMGVq5cGfX4/Z1wwglcd911TJ48GTAn0YcMGcK8efMAyMnJoXXr1kyfPp0777wTgOXLlzN48GB27dpFq1atmDt3LuPGjWP58uUMHDgQgG+++YZu3bqxYsUKBgwYUONg0Y4dO/L//t//Y+TIkZG93HXXXbz99tssXbr0gF+Lp556iltvvZUff/wxcujmE088wfXXX3/Ag0UnT55MTk4Or776KnDwnej3338/CxYsiEybp6Sk8Nhjj9Ua9k+YMAGbzcaTTz4ZWfv888859dRTKS0tJSEh4aA60RvNwaI333wzn3zyCf/73/84+eSTAfMTvvHGG/nTn/7EnDlz6mMbIiK/SjhsUFJR86DPCn/tabnVwn5huTll7nLoQEURrFbocrZ5y9kAy+fAhlfgp1Xw6nhIORoGTIS+V0Fierx3KyIiIiIiDdgNN9zAV199dVABOpgVIl6vl8zMzKj18vJytm7dGvn9/fffzwknnMArr7zC6tWrowJ0r9fLjBkzWLhwIbt27SIYDFJeXs7OnTujPmbPnj0j/5ydnQ1Ajx49aqzt3r2bVq1aAWC32+nff9+7dLt27UpaWhqbNm1iwIABUR+/tLSUrVu3cvXVV0dNYweDQVJTU3/xa7Fp0yZ69uwZFS4PHjy4xuMef/xxnn32WXbu3El5eTl+vz9mwF7dyy+/zKOPPsrWrVvxer0Eg8GosPrmm29mwoQJzJs3j6FDh3LJJZdw3HHHAea/p/Xr1zN//vzI4w3DIBwOs23bNrp16/aL1z9S6iVE/89//sOrr77KaaedFlk755xzSExM5NJLL1WILiINimEYVAT2P+gzSEl5kFjv3UmqdtBnamVw7k7QQZ8iB6VVD7hoNgydASufgZX/hOIf4cM74JN7odcV0OEU8LQBTyvzZnPEe9ciIiIiIk2TI8mcCI/XtQ/R5MmTeeutt/j00085+uijD+o5Xq+X1q1bR3q7q0tLS4v889atW/n5558Jh8Ns3749KvyeOnUqH3zwAffffz8dO3YkMTGR3//+9/j9/uhPybHvtUtVRlDbWlV7x6Hyer0APP3005HJ9So2m+2wPub+FixYwNSpU3nggQcYPHgwHo+H++67jxUrVhzwecuWLWPUqFHMnDmTYcOGkZqayoIFC3jggQcij5kxYwZXXHEFCxcu5J133uGOO+5gwYIFjBgxAq/Xy7XXXsuNN95Y42NXr8ypD/USopeVlUV+qlJdy5YtKSuLU8eSiAgQDBmUlFeF5YFIaO4P1p6W222WSEhe9WtKoh2HXdPlIr+auyWc/hf4zU3w1auwbDbs/toM1Vf+s9oDLZCcBSmtzWA9pTV4Km/V1xLSDrtPUURERESk2bJYDqtSpb4ZhsEf/vAHXn/9dRYvXkyHDh0O+rl9+vQhJycHu91O+/bta32M3+/nyiuv5LLLLqNLly5MmDCBDRs20LJlSwCWLFnC2LFjGTFiBGCG2du3b/+1nxZgTpGvWrUqMnW+efNmCgsLa528zs7Opk2bNnz//feMGjXqkK/VrVs35s2bR0VFRWQaffny5VGPWbJkCSeddBKTJk2KrFWf2AdwOp2EQtHnwC1dupR27dpx2223RdZ27NhRYw+dO3emc+fO3HTTTYwcOZLnnnuOESNG0KdPHzZu3EjHjh1j7r+269aFegnRBw8ezB133MELL7wQ+ZdRXl7OzJkza317gIjIkWYYBmW+mgd9eiti/4/Wk2gjJdFOarKdlCQHqUl2EnXQp0jdcyRA7yuh1yizL33tfMjfBiW7zFs4CKW7zduudbE/jj0xdsAemWpvDXZn/X1uIiIiIiJyRNxwww289NJLvPnmm3g8HnJycgBITU0lMTHxgM8dOnQogwcP5qKLLuLvf/87nTt35ueff2bhwoWMGDGCfv36cdttt1FUVMSjjz6K2+3m7bffZvz48bz11lsAdOrUiddee43zzz8fi8XC9OnTD3uafH8Oh4M//OEPPProo9jtdiZPnsygQYNqVLlUmTlzJjfeeCOpqakMHz4cn8/HqlWrKCgo4Oabbz7gta644gpuu+02Jk6cyF/+8he2b9/O/fffH/WYTp068cILL/Dee+/RoUMH5s2bx8qVK6N+cNG+fXvee+89Nm/eTGZmJqmpqXTq1ImdO3eyYMEC+vfvz8KFC3n99dcjzykvL+fPf/4zv//97+nQoQM//vgjK1eu5He/+x0A06ZNY9CgQUyePJkJEyaQnJzMxo0b+eCDD/jHP/4Rue6nn37K5ZdfjsvlokWLFof1Nf8l9RKiP/LIIwwbNoyjjz6aE088ETA7bRISEnjvvffqYwsi0oz4g9UO+qz8tbgsSDBc+3S5024hNdlhBuZJZmju0UGfIvFnscCxp5q3KuEwlOVByc9QvCv615Kcff9cXgDBcsj/3rwdSFKLGFPtbfb9mpiuqXYRERERkQakqh66en00wHPPPcfYsWMP+FyLxcLbb7/Nbbfdxrhx49izZw+tWrXilFNOITs7m8WLF/Pwww/z8ccfR/q7582bx4knnsicOXO4/vrrefDBBxk/fjwnnXQSLVq0YNq0aRQXFx+Rzy0pKYlp06ZxxRVX8NNPPzFkyBCeeeaZmI+fMGECSUlJ3Hffffz5z38mOTmZHj16HPCwzSput5v//e9/XHfddfTu3Zvu3btz7733RoJsgGuvvZY1a9Zw2WWXYbFYGDlyJJMmTeKdd96JPGbixIksXryYfv364fV6+fjjj7ngggu46aabmDx5Mj6fj3PPPZfp06czY8YMwKybycvLY8yYMeTm5tKiRQsuvvhiZs6cCZh98p988gm33XYbQ4YMwTAMjjvuOC677LLIde+8806uvfZajjvuOHw+H0asHt5fyWLU1UfeT1lZGfPnz+ebb74BzLcKjBo16hd/MnSkHeyJqyLS8IUNA295qDIsD0RC8/IDHPTpSbTX6C5PcB6ZjjARaUAC5ebUevGufRPsUaF75S3k/+WPBWBzmZPr1YP1yHR7tZsj4Zc/loiIiIhIA1JRUcG2bdvo0KFD1OGSEh9z585lypQpFBYWxnsrTcaB/owfbFZcL5PoYP4EpfoJsSIih6LCH4qE5FXT5SXlQWIMl5PotFbrLndEDvq0arpcpHlwJELGseYtFsOAsvxaptl/jg7dy/Ig5IPCHebtQBIz9gXstYbubczHWHWOgoiIiIiISGNRZyH6f//7X84++2wcDgf//e9/D/jYCy64oK62ISKNTChcedBnaWVYXm4G5r5A7dPldqvFPNyz+kGfSXacOuhTRH6JxQLJmeatVY/Yjwv6KifXqwfsP9ecdA9WQHm+ecv9KvbHsznB3WrfFHskdG8dveao33friYiIiIg0FfPnz+faa6+t9b527drx9ddf1/OO4mfWrFnMmjWr1vuGDBkSVckisdVZnYvVaiUnJ4eWLVtiPcC0lcViqZcTVKuozkWkYTAMg3J/uHKqPEBRqRmYe8tDxPqfkjvBFhWWpybZSXLZdNCniMSfYZg97NUn2GsL3Uv3HPzHTEiLHbBX/ZrUQlPtIiIiIvKrNMU6l5KSEnJzc2u9z+Fw0K5du3reUfzk5+eTn59f632JiYkcddRR9byj+teg61yqn0Z7pE6mFZHGKRAMRybKq9exBEO1x+UOu6VaZ7mD1CTzoE+7TWG5iDRQFgskZZi37ONjPy7oB2/uftPsP9ecdA+UQUWhedu9MfbHs9p/Yaq98rBUZ/KR/oxFRERERBosj8eDx+OJ9zYahIyMDDIyMuK9jUavXjrRX3jhBS677DJcLlfUut/vZ8GCBYwZM6Y+tiEidcwwDLwVNbvLy3y1v9vEUnnQZ+p+dSwJDqumy0WkabI7Ia2teYvFMKCiqFrAnhN9IGpV0O7dDeEgFP9o3g7ElVoZqrfaF6zvH7q7W4JVBy2LiIiIiIjsr87qXKqz2Wzs2rWLli1bRq3n5eXRsmXLQ6pzmTNnDnPmzGH79u0AHH/88dx+++2cffbZB/V81bmIHBm+QLgyLA9EwvListgHfSZEHfRp/upJsOugTxGRwxUKHmCqvVpfu997cB/PYgN39n4Be/XQvfJXlyZ6RERERJqSpljnIlJdg65zqc4wjFqnSn/88UdSU1MP6WMdffTR/O1vf6NTp04YhsHzzz/PhRdeyJo1azj++AO8fVpEDksobOAtj54sLy4LUhHjoE+bFVIS7aQkO0hN3HfQp8uhzl4RkSPKZofUo8zbgVQUH8RUey4Yocou958P/PGcHjNcrx6sV59u97Q2w3hbvXybKSIiIiIiUufq9NVN7969sVgsWCwWzjzzTOz2fZcLhUJs27aN4cOHH9LHPP/886N+f/fddzNnzhyWL1+uEF3kVzAMg4rKgz6rwvKisgDeihCx3q+S7Kp50Gdygg76FBFpUBJSzFtWl9iPCYfMepgaAft+obuvGPwlkFcCed/G/ngWKyS33BewxwrdXSlmt5eIiIiIiEgDVqch+kUXXQTA2rVrGTZsGG63O3Kf0+mkffv2/O53vzvsjx8KhXjllVcoLS1l8ODBtT7G5/Ph8/kivy8uLj7s64k0FcFQmOKyEEVlgUh/eXFZkECsgz5tlhpheUqSHbtN0+UiIk2C1WaG2imt4UCD7T7vfsH6/r/m/P/27jw+qupw//gz2feENYtskR1ZBEEFxaVSFikiWkVEcANcSBGoyFcpClZxww1UXFpAKf5otYhWpBQpSxFBQFZFVAigkgAC2ffM/f1xk2EmmTuZQDLZPu++7ivJnTPnnjs5UHzOuedIWanmWu1ZJd9rp3V9geElAXuC62aozuci4yT/wKq+YwAAAADwWrWG6E888YQkqU2bNho5cmSVrau0d+9e9e3bV3l5eYqIiNBHH32kLl26uC37zDPPaPbs2VVyXaCuMQxD2fnFZkiefTYsz7ba6FNSRKi/osMCXcLy0CA2+gQASAqOkILbSU3bWZex26Xsk64Be2Zq+dA9L10qzJZOHzQPSzYpvJnrcjFlQ/eoeCkkhlntAAAAqPdmzZqlFStWaNeuXdVS/+HDh5WYmKidO3fq4osvrpZr1EU+WazyzjvvrNL6OnbsqF27dik9PV0ffvih7rzzTm3YsMFtkP7oo49q6tSpjp8zMjLUsmXLKm0PUBsUFNkds8rN0LxQGblFKna/dLmCA91s9BkaIH82+gQAnA8/Pyky1jwSelqXK8gpswmqu9A9RbIXStknzCNlt3V9AaFezGqPlwKCqv6eAQAA4HMLFizQggULdPjwYUnSRRddpMcff1xDhgyp2YY1QHfddZfS0tK0YsUKn163TZs2mjx5siZPnlzt1/JJiF5cXKyXX35Z//jHP3T06FEVFBS4vH769OlK1RcUFKR27cwZUJdccom2bdumV199VW+99Va5ssHBwQoODj73xgO1jN1uKCvPXIrl7NrlRcorcJ+W+9nk2NzzbGgeyEafAICaFRQmNWlrHlbsdinnlOu67M4bopaG7rlnpKJc6UyyeXgS1tRiVrtT0B7WmFntAAAAtVyLFi307LPPqn379jIMQ++++66GDx+unTt3sm8iqpxPUrTZs2frpZde0siRI5Wenq6pU6fqpptukp+fn2bNmnXe9dvtdpd1z4H6wNzos1jH0/L1/bFsbf8xXWv3nNIn205o7Z5T2v5jhn44lqPjaQWOAD0s2E9xjYLV8YJwXdo+WgN6NNGwS5vr2m5NdEnbaLWLD1fz6GACdABA3eDnJ0U0k+J7SB0HS73vlq59TBr+mnTHP6UHN0vTD0szjkuTdkl3r5Ju/qs08Cnp8onSRTdJrfpKMa0l/5IZ6Dm/Sql7pR/+I339rrT+Gelfk6Slv5fevEJ64ULpqVjple7SwsHSB3dLq2dIm+dLez+UjmyWTidLhXk1+ckAAAA0eMOGDdP111+v9u3bq0OHDnr66acVERGhLVu2VPjetLQ0jRs3Ts2aNVNUVJR+85vfaPdu86nHkydPKi4uTnPmzHGU37x5s4KCgrR27VpJ0sGDBzV8+HDFxsYqIiJCffr00eeff+5yjTZt2uipp57S2LFjFRERodatW+uTTz7RyZMnNXz4cEVERKh79+7avn274z2LFy9WTEyMVqxYofbt2yskJESDBg3STz/95PF+/vKXv6hz584KCQlRp06d9MYbb3j9OX711Vfq2bOnQkJC1Lt3b+3c6bqnUXFxse69914lJiYqNDRUHTt21Kuvvup4fdasWXr33Xf18ccfy2azyWazaf369ZKk6dOnq0OHDgoLC9OFF16omTNnqrCw0PHe3bt369prr1VkZKSioqJ0ySWXuHwemzZtUv/+/RUaGqqWLVtq0qRJys7OliRdc801OnLkiKZMmeK4bnXyyUz0pUuX6p133tHQoUM1a9YsjRo1Sm3btlX37t21ZcsWTZo0yeu6Hn30UQ0ZMkStWrVSZmam3n//fa1fv16rV6+uxjsAqldRsaHM3CKnmeXmhp8FRe43+gxw2uizdHZ5VGiAAgMIxwEADVBgiNQ40TysGIaUc7riWe05p6TifCntiHl4EtrYaemYsrPa48zlZMKamIMBAAAAdYVhmEvq1QS/wHN6IrC4uFgffPCBsrOz1bdv3wrL33LLLQoNDdWqVasUHR2tt956S9ddd52+//57NWvWTAsXLtSNN96ogQMHqmPHjhozZoySkpJ03XXXSZKysrJ0/fXX6+mnn1ZwcLDee+89DRs2TAcOHFCrVq0c13n55Zc1Z84czZw5Uy+//LLGjBmjfv366Z577tELL7yg6dOna+zYsfrmm28cIXBOTo6efvppvffeewoKCtKDDz6o2267TV988YXbe1m6dKkef/xxvfbaa+rZs6d27typ8ePHKzw8vMIltrOysvS73/1Ov/3tb/W3v/1NycnJeuihh1zK2O12tWjRQh988IGaNGmizZs3a8KECYqPj9ett96qhx9+WPv371dGRoYWLVokSWrcuLEkKTIyUosXL1ZCQoL27t2r8ePHKzIyUo888ogkafTo0erZs6cWLFggf39/7dq1S4GBgZLMgYrBgwfrqaee0sKFC3Xy5EklJSUpKSlJixYt0vLly9WjRw9NmDBB48ePr/B3fr5shmG4T+mqUHh4uPbv369WrVopPj5eK1euVK9evXTo0CH17NlT6enpXtd17733au3atUpJSVF0dLS6d++u6dOn67e//a1X78/IyFB0dLTS09MVFRV1rrcEnBPDMJSTb3eE5KWheVae+40+JSkixN8My8MDFBUWqKjQAIUFs9EnAADVoijfXJPdJWA/Vv5ckZcz0f0C3QTtcWc3RC09FxhavfcFAABgIS8vT8nJyUpMTFRISIhUXCCte6JmGnPt7LNPEHph79696tu3r/Ly8hQREaH3339f119/vcf3bNq0SUOHDtWJEydcloBu166dHnnkEU2YMEGSNHHiRH3++efq3bu39u7dq23btnlcMrpr1666//77lZSUJMmcid6/f38tWbJEkpSamqr4+HjNnDlTTz75pCRpy5Yt6tu3r1JSUhQXF6fFixfr7rvv1pYtW3TZZZdJkr777jt17txZW7du1aWXXlpuY9F27drpz3/+s0aNGuVoy1NPPaXPPvtMmzdv9vhZvP3223rsscf0888/m797SW+++aYeeOABjxuLJiUlKTU1VR9++KEk73M9rNsAAEqSSURBVNdEnzt3rpYtW+aYbR4VFaX58+e7DfvHjRsnf39/l+W7N23apKuvvlrZ2dkKCQnxek30cn3cibdZsU9mordo0UIpKSlq1aqV2rZtq//85z/q1atXhZ3Pnb/+9a/V1EqgahUW2V3WLM8oOYrs7setggJsig4LdFm7PCqMjT4BAPCpgGCpUWvzsGIY5jrsLhujugnds0+as7jSj5qHJyExrhuiugvdw5sxqx0AAMBJx44dtWvXLqWnp+vDDz/UnXfeqQ0bNqhLly6W79m9e7eysrLUpEkTl/O5ubk6ePCg4+e5c+eqa9eu+uCDD7Rjxw6XDDMrK0uzZs3SypUrlZKSoqKiIuXm5uroUdd/83Xv3t3xfWxsrCSpW7du5c6dOHFCcXFxkqSAgAD16dPHUaZTp06KiYnR/v37demll7rUn52drYMHD+ree+91mY1dVFSk6Ohoy8+g1P79+9W9e3eXYNndTP7XX39dCxcu1NGjR5Wbm6uCggLLgN3Z3//+d82bN08HDx5UVlaWioqKXILqqVOnaty4cVqyZIkGDBigW265RW3bmnsm7d69W3v27NHSpUsd5Q3DkN1uV3Jysjp37lzh9auST0L0ESNGaO3atbrsssv0hz/8QXfccYf++te/6ujRo5oyZYovmgBUG7thbvSZkV0alpsbfuZ62OgzMjSg3HIswYHMLgcAoE6w2czNR8MaS7EeNq0qLiw/g91d6F6YI+WlmcfJ/db1+QVIEXFlNkZ1Dt1LvgaFV/UdAwCAhsQv0JwRXlPXroSgoCC1a9dOknTJJZdo27ZtevXVV11mL5eVlZWl+Ph4x7rdzmJiYhzfHzx4UMeOHZPdbtfhw4ddwu+HH35Ya9as0dy5c9WuXTuFhobq97//vQoKClzqK12aRJIj83F3zm53nyFVJCsrS5L0zjvvOGaul/L39z+nOstatmyZHn74Yb344ovq27evIiMj9cILL2jr1q0e3/fll19q9OjRmj17tgYNGqTo6GgtW7ZML774oqPMrFmzdPvtt2vlypVatWqVnnjiCS1btkwjRoxQVlaW7rvvPrfLgDsvmeMrPgnRn332Wcf3I0eOVKtWrfTll1+qffv2GjZsmC+aAFSJ/EJzKZb0nCJHaJ6ZWySLyeUKDfJzCsvNWeYRIf7yY3Y5AAD1n3+gFNPSPKwYhpSXXhK2Hzu7NrvLuu0pUtZxyV4kZfxsHp4ER7mf1e58LqK55Fc1/2EFAADqGZutUkuq1CZ2u135+fkey/Tq1UupqakKCAhQmzZt3JYpKCjQHXfcoZEjR6pjx44aN26c9u7dq+bNm0uSvvjiC911110aMWKEJDPMPnz4cJXcQ1FRkbZv3+6YdX7gwAGlpaW5nXkdGxurhIQEHTp0SKNHj670tTp37qwlS5YoLy/PMRu97MasX3zxhfr166cHH3zQcc55xr5kDmYUF7suVbx582a1bt1aM2bMcJw7cqT8nkMdOnRQhw4dNGXKFI0aNUqLFi3SiBEj1KtXL3377beOQRJ33F23uvgkRC+rb9++Xi3yD9SUYnvZjT7Nr/mF7kcG/f3cbPQZFqAgNvoEAACe2GxSaIx5NO9kXa64yAzSXdZodxO6F2RJ+Rnm8esBD9f1lyJiK57VHhxZ1XcMAABQJR599FENGTJErVq1UmZmpt5//32tX79eq1ev9vi+AQMGqG/fvrrxxhv1/PPPq0OHDjp27JhWrlypESNGqHfv3poxY4bS09M1b948RURE6LPPPtM999yjTz/9VJLUvn17LV++XMOGDZPNZtPMmTPPeTZ5WYGBgfrDH/6gefPmKSAgQElJSbr88svLLeVSavbs2Zo0aZKio6M1ePBg5efna/v27Tpz5oymTp3q8Vq33367ZsyYofHjx+vRRx/V4cOHNXfuXJcy7du313vvvafVq1crMTFRS5Ys0bZt25SYmOgo06ZNG61evVoHDhxQkyZNFB0drfbt2+vo0aNatmyZ+vTpo5UrV+qjjz5yvCc3N1fTpk3T73//eyUmJurnn3/Wtm3bdPPNN0uSpk+frssvv1xJSUkaN26cwsPD9e2332rNmjV67bXXHNfduHGjbrvtNgUHB6tp06bn9Jl7o9pC9E8++cTrsjfccEN1NQPwyDAM5RY4r11ubviZlVssqx13w0s3+gw7uyRLWLA/S7EAAIDq4x8gRV9gHp7kZ5YJ1i1mtRvF5muZxzzXFxThPmCPjCtZrz3eDOP9a2RuDgAAaMBOnDihsWPHKiUlRdHR0erevbtWr16t3/72tx7fZ7PZ9Nlnn2nGjBm6++67dfLkScXFxemqq65SbGys1q9fr1deeUXr1q1zrN+9ZMkS9ejRQwsWLNADDzygl156Sffcc4/69eunpk2bavr06crIyKiS+woLC9P06dN1++2365dfflH//v097hE5btw4hYWF6YUXXtC0adMUHh6ubt26VbjZpiRFREToX//6l+6//3717NlTXbp00XPPPecIsiXpvvvu086dOzVy5EjZbDaNGjVKDz74oFatWuUoM378eK1fv169e/dWVlaW1q1bpxtuuEFTpkxRUlKS8vPzNXToUM2cOVOzZs2SZC43c+rUKY0dO1bHjx9X06ZNddNNN2n2bHMpoe7du2vDhg2aMWOG+vfvL8Mw1LZtW40cOdJx3SeffFL33Xef2rZtq/z8fBmGVZp3/mxGNdXuV2bTI5vNVu5GSkNHX027l7zfcRX1T2Gx3bG5p/NGn4XF7v8IBAbYnMLyQEWHBSgyNEAB/oTlAACgDrMXS1knSkL0VKcNUcuE7vle/oegzU8Kb+55VntknBQSbc68BwAAtUpeXp6Sk5OVmJjossEkfG/x4sWaPHmy0tLSarop9YqnPu5tVlxtU0acH2H4/PPPNX36dM2ZM8exjMuXX36pP/3pT5ozZ051NQENlFG60WeO63IsOfnuB2tsJRt9Os8sjwoLUAgbfQIAgPrIz98Mt6PiPZfLz/JirfZUc632rFTz0E7r+gLDSgL2BKegPd71XGScuZY8AAAAUIv45LnLyZMn680339SVV17pODdo0CCFhYVpwoQJ2r9/vy+agXoov9DuFJYXOjb6LLZYhiok0O9sWB5ufo0MCWCjTwAAgLKCI6TgdlJT682cZLdL2SetZ7WXnstLkwpzpNMHzcOSTQpv5rpcjLvQPbQRs9oBAIBbS5cu1X333ef2tdatW+ubb77xcYtqzpw5cywnMPfv399lSRZ4Vm3LuTgLDQ3Vtm3b1LVrV5fze/bs0WWXXabc3NzqboIDy7nUTcV2Q1luNvrMs9zoU4oKLZ1ZHujY6DM4kI0+AQAAfK4gx3UGu+P7Y67n7IXe1RcQ6hq0uwvdI+OkgODqvS8AAOqB+racS2Zmpo4fP+72tcDAQLVu3drHLao5p0+f1unTp92+FhoaqgsuqGC/nXqiVi/n4qxPnz6aOnWqlixZotjYWEnS8ePHNW3aNMudZdEwGYahPJeNPs2vmXlFshruCQ/2d1mGJTosQOEhbPQJAABQawSFSU3amocVu13KOeUmYC/5WjqrPfe0VJQrnUk2D0/Cmjitze4csDut2x7WmFntAADUI5GRkYqMjKzpZtQKjRs3VuPGjWu6GfWCT0L0hQsXasSIEWrVqpVatmwpSfrpp5/Uvn17rVixwhdNQC1UVGyYm3vmmsuwZGSbobnlRp/+tnJheWRYgAL9mV0OAABQ5/n5SRHNzCO+u3W5wrwyQXuqm9A9VSrON0P5nFPS8b3W9fkHO81kj7MO3QPr/sw8AAAAnBufhOjt2rXTnj17tGbNGn333XeSpM6dO2vAgAHMFm4ADMNQdn6xY1Z56Qzz7DyLjT4lRYT6l4TlgY7QPDSIjT4BAAAavMAQqXGieVgxDCn3TPnZ7I7QvWST1JxfzbA97Yh5eBLayE3A7hy6J5gz3/2Y4AEAAFDf+CRElySbzaaBAwdq4MCBvrokakBBkd1lGZbSr8V297PLg503+iz5GhkaIH82+gQAAMC5stnMZVrCGktxXa3LFeWfncnuvCFqRpklZYryzFA+94x0wsNmZH6BTkvFlAnYnTdGDQqr+nsGAABAtam2EH3evHmaMGGCQkJCNG/ePI9lJ02aVF3NQDWx2w1l5RUrPafQJSzPLXC/0aefTY7NPc+G5oFs9AkAAICaExAsNWptHlYMQ8pLswjYnWa1Z580N0ZNP2oenoREuwnYy4Tu4c2Y1Q4AAFBL2AzDarvG85OYmKjt27erSZMmSky0ftTSZrPp0KFD1dEEt7zdcRUmwzCUX1h+o8+MXOuNPsOC/RwhufNGn34sxQIAAID6qrjQu1nthTne1ecXIEXElazXHm89qz04onrvCwBQ7+Xl5Sk5OVmJiYkKCWEPENQ/nvq4t1lxtc1ET05Odvs9aq9iu+EalOcUKT2nUAVF7tPyAH+bokKdZpaHBygqNECBAcyYAQAAQAPjHyjFtDQPK4Yh5WeUCdhLZrQ7n8s+IdmLpIyfzeMXD9cNjnJaQibBaZNUp3MRzSU//yq/ZQAAUDNmzZqlFStWaNeuXdVS/+HDh5WYmKidO3fq4osvrpZr1DU+WxMdtYdhGMrJtzuWYikNzrMsNvqUpIgQ/zJrlwcqLJiNPgEAAACv2WzmUi4h0VLzTtbliovMIL1s2F42dC/INEP5/Azp1wMerusnRcQ6bYga735WewhP6gIA6q5nn31Wjz76qB566CG98sorNd2cBueuu+5SWlqaVqxY4dPrtmnTRpMnT9bkyZOr9TrVFqJPnTrV67IvvfRSdTUDZRw7nacdBzNUVOx+dnlQgM1lGZbSdczZ6BMAAADwEf8AM+yOSpB0iXW5/Mzyy8Y4Lx2TkSJlHZeM4rOvHfvaur6gCA+z2ku+RsSa7QMAoBbZtm2b3nrrLXXv3r2mm4J6qtrW3di5c6dXR3U9dgD3QgL9VFRsyM8mRYcFqGXTEHVtFaF+nWI0pFdTXX9JM13ZpZG6t4lU6+ahahQRSIAOAAAA1EbBkVKzDtKF10gXj5L6T5Wuf0G6bak0/r/SH/dLM09KfzwgjV8n3fa+dP1cqf8fpR63SxdeKzXrJAVHm/UVZEmnfpCSN0p7lklfvCKtekT6xxjpL9dJL3eR/txUmttBeutq6f+Nkj6dKm18Qdq5VPpxrXRiv5SbJssNlAAAqGJZWVkaPXq03nnnHTVq1Mjr96WlpWncuHFq1qyZoqKi9Jvf/Ea7d++WJJ08eVJxcXGaM2eOo/zmzZsVFBSktWvXSpIOHjyo4cOHKzY2VhEREerTp48+//xzl2u0adNGTz31lMaOHauIiAi1bt1an3zyiU6ePKnhw4crIiJC3bt31/bt2x3vWbx4sWJiYrRixQq1b99eISEhGjRokH766SeP9/OXv/xFnTt3VkhIiDp16qQ33njD68/iq6++Us+ePRUSEqLevXtr586dLq8XFxfr3nvvVWJiokJDQ9WxY0e9+uqrjtdnzZqld999Vx9//LFsNptsNpvWr18vSZo+fbo6dOigsLAwXXjhhZo5c6YKCwsd7929e7euvfZaRUZGKioqSpdcconL57Fp0yb1799foaGhatmypSZNmqTs7GxJ0jXXXKMjR45oypQpjutWl2qbQrBu3brqqhrnITo8UNd1b6KIEH/5EY4DAAAA9ZufvzmjPDLOc7mC7DLLxRxzM6s91VyrPeu4eaTssq4vMMxpBntcmaVknGa1BwRV6e0CAM6fYRjKLcqtkWuHBoRWOgidOHGihg4dqgEDBuipp57y+n233HKLQkNDtWrVKkVHR+utt97Sddddp++//17NmjXTwoULdeONN2rgwIHq2LGjxowZo6SkJF133XWSzPD++uuv19NPP63g4GC99957GjZsmA4cOKBWrVo5rvPyyy9rzpw5mjlzpl5++WWNGTNG/fr10z333KMXXnhB06dP19ixY/XNN9847j0nJ0dPP/203nvvPQUFBenBBx/Ubbfdpi+++MLtvSxdulSPP/64XnvtNfXs2VM7d+7U+PHjFR4erjvvvNPj55CVlaXf/e53+u1vf6u//e1vSk5O1kMPPeRSxm63q0WLFvrggw/UpEkTbd68WRMmTFB8fLxuvfVWPfzww9q/f78yMjK0aNEiSVLjxo0lSZGRkVq8eLESEhK0d+9ejR8/XpGRkXrkkUckSaNHj1bPnj21YMEC+fv7a9euXQoMDJRkDlQMHjxYTz31lBYuXKiTJ08qKSlJSUlJWrRokZYvX64ePXpowoQJGj9+vNe/+3NhM4yGNUXA2x1XAQAAAABO7HYp59fyAXtpyF56Li/NywptUnhTNwF7nOt67aGNzPXkAQDVIi8vT8nJyUpMTFRISIhyCnN02fuX1Uhbtt6+VWGBYV6XX7ZsmZ5++mlt27ZNISEhuuaaa3TxxRdXuCb6pk2bNHToUJ04cULBwcGO8+3atdMjjzyiCRMmSDID+s8//1y9e/fW3r17tW3bNpfyZXXt2lX333+/kpKSJJkz0fv3768lS5ZIklJTUxUfH6+ZM2fqySeflCRt2bJFffv2VUpKiuLi4rR48WLdfffd2rJliy67zPw9fPfdd+rcubO2bt2qSy+9tNzGou3atdOf//xnjRo1ytGWp556Sp999pk2b97s8bN4++239dhjj+nnn39WSEiIJOnNN9/UAw884HFj0aSkJKWmpurDDz+U5P2a6HPnztWyZcscs82joqI0f/58t2H/uHHj5O/vr7feestxbtOmTbr66quVnZ2tkJAQr9ZEL9vHnXmbFftsMbvt27frH//4h44ePaqCggKX15YvX+6rZgAAAAAAzoWfnxTR3Dx0sXW5gpyz4brVrPbMFMleKGWfNI/UPdb1BYSc3fy0NFgvF7rHSwHWoQYAoP756aef9NBDD2nNmjXlgtGK7N69W1lZWWrSpInL+dzcXB08eNDx89y5c9W1a1d98MEH2rFjh0uAnpWVpVmzZmnlypVKSUlRUVGRcnNzdfToUZc6nddpj42NlSR169at3LkTJ04oLs58ciwgIEB9+vRxlOnUqZNiYmK0f/9+XXrppS71Z2dn6+DBg7r33ntdZmMXFRUpOjq6ws9i//796t69u8tn2Ldv33LlXn/9dS1cuFBHjx5Vbm6uCgoKLAN2Z3//+981b948HTx4UFlZWSoqKnIJq6dOnapx48ZpyZIlGjBggG655Ra1bdtWkvl72rNnj5YuXeoobxiG7Ha7kpOT1blz5wqvX1V8EqIvW7ZMY8eO1aBBg/Sf//xHAwcO1Pfff6/jx49rxIgRvmgCAAAAAMAXgsKkJm3Nw4rdLuWernhWe+5pqShPOpNsHp6ENXGdwe68SWrp17DGzGoHgAqEBoRq6+1ba+za3tqxY4dOnDihXr16Oc4VFxdr48aNeu2115Sfny9/f3+3783KylJ8fLxj3W5nMTExju8PHjyoY8eOyW636/Dhwy7h98MPP6w1a9Zo7ty5ateunUJDQ/X73/++3OTh0qVJJDmWa3F3zm63e33vZe9Fkt555x3HzPVSVvdfWcuWLdPDDz+sF198UX379lVkZKReeOEFbd3quZ98+eWXGj16tGbPnq1BgwYpOjpay5Yt04svvugoM2vWLN1+++1auXKlVq1apSeeeELLli3TiBEjlJWVpfvuu0+TJk0qV7fzkjm+4JMQfc6cOXr55Zc1ceJERUZG6tVXX1ViYqLuu+8+xcfH+6IJAAAAAIDaws/PXMolvKkU3926XGHe2RntmcdcA3bn0L04X8o5ZR7H91rX5x9UZrkYi9A9sHIzGgGgPrHZbJVaUqWmXHfdddq71/Xv/LvvvludOnXS9OnTPQbIvXr1UmpqqgICAtSmTRu3ZQoKCnTHHXdo5MiR6tixo8aNG6e9e/eqefPmkqQvvvhCd911l2OCcFZWlg4fPlwl91ZUVKTt27c7Zp0fOHBAaWlpbmdex8bGKiEhQYcOHdLo0aMrfa3OnTtryZIlysvLc8xG37Jli0uZL774Qv369dODDz7oOOc8Y1+SgoKCVFxc7HJu8+bNat26tWbMmOE4d+TIkXJt6NChgzp06KApU6Zo1KhRWrRokUaMGKFevXrp22+/Vbt27Szb7+661cEnIfrBgwc1dOhQSeaNZWdny2azacqUKfrNb36j2bNn+6IZAAAAAIC6JDBEapxoHlYMQ8o9U2ZWu3PoXvI151epuEBKO2oenoQ28mJWexNzMAAAUCMiIyPVtWtXl3Ph4eFq0qRJufNlDRgwQH379tWNN96o559/Xh06dNCxY8e0cuVKjRgxQr1799aMGTOUnp6uefPmKSIiQp999pnuueceffrpp5Kk9u3ba/ny5Ro2bJhsNptmzpx5zrPJywoMDNQf/vAHzZs3TwEBAUpKStLll19ebimXUrNnz9akSZMUHR2twYMHKz8/X9u3b9eZM2c0depUj9e6/fbbNWPGDI0fP16PPvqoDh8+rLlz57qUad++vd577z2tXr1aiYmJWrJkibZt26bExLP//9ymTRutXr1aBw4cUJMmTRQdHa327dvr6NGjWrZsmfr06aOVK1fqo48+crwnNzdX06ZN0+9//3slJibq559/1rZt23TzzTdLkqZPn67LL79cSUlJGjdunMLDw/Xtt99qzZo1eu211xzX3bhxo2677TYFBweradOm5/SZV8QnIXqjRo2UmZkpSbrgggu0b98+devWTWlpacrJyfFFEwAAAAAA9ZHNZi7TEtZYivMQmhTlS1nHXYN1x1en0L0o1wzlc89IJ76xrs8v8Ox67GUD9si4s+u2B9X+2ZwA0NDYbDZ99tlnmjFjhu6++26dPHlScXFxuuqqqxQbG6v169frlVde0bp16xzrdy9ZskQ9evTQggUL9MADD+ill17SPffco379+qlp06aaPn26MjIyqqR9YWFhmj59um6//Xb98ssv6t+/v/76179alh83bpzCwsL0wgsvaNq0aQoPD1e3bt08brZZKiIiQv/61790//33q2fPnurSpYuee+45R5AtSffdd5927typkSNHymazadSoUXrwwQe1atUqR5nx48dr/fr16t27t7KysrRu3TrdcMMNmjJlipKSkpSfn6+hQ4dq5syZmjVrliRzuZlTp05p7NixOn78uJo2baqbbrrJMeG6e/fu2rBhg2bMmKH+/fvLMAy1bdtWI0eOdFz3ySef1H333ae2bdsqPz9fhmFU8tP2js2orpqd3H777erdu7emTp2qP//5z5o/f76GDx+uNWvWqFevXj7dWNTbHVcBAAAAAA2MYUh5aWcD9sxU96F79klJXv6ndEh0+WDdZYZ7ghTeTPKrmnVrAaCy8vLylJycrMTExEpv0Imqt3jxYk2ePFlpaWk13ZR6w1Mf9zYrrtaZ6Pv27VPXrl312muvKS8vT5I0Y8YMBQYGavPmzbr55pv1pz/9qTqbAAAAAACAd2w2cymX0EZSbBfrcsWF7me1Z6Y6LSuTIhVmS3np5nFyv4fr+pfMao87G6y7W0YmOLLq7xkAAFSoWkP07t27q0+fPho3bpxuu+02SZKfn5/+7//+rzovCwAAAABA9fEPlKJbmIcVw5DyM8oE68fObpRa+n3WcckoljJ+MQ9PgiJLZrS72xS1JHiPiJX8fbJyKwDUWkuXLtV9993n9rXWrVvrm288LNdVz8yZM0dz5sxx+1r//v1dlmSBtWpdzuV///ufFi1apA8//FB2u10333yzxo0bp/79+1fXJSvEci4AAAAAgFqjuMhcHsYxo93d5qgpZiDvFZsU0dxiRrvTuZBoc+Y9gAavPi7nkpmZqePHj7t9LTAwUK1bt/Zxi2rO6dOndfr0abevhYaG6oILLvBxi3yvKpZz8cma6NnZ2frHP/6hxYsX63//+5/atWune++9V3feeafi4uKq+/IuCNEBAAAAAHVOflaZYN3N8jFZqZK9yLv6AsNKlo8pO6PdaZZ7RJwUEFS99wWgxtXHEB1wVmdCdGc//vijFi1apCVLlig1NVWDBw/WJ5984rPrE6IDAAAAAOolu13K+bXM8jGp5We556V5X2dYU8/Lx0TGS2GNmdUO1GGE6Kjvav3Gou60a9dOjz32mFq3bq1HH31UK1eu9HUTAAAAAACof/z8zKVcIppLuti6XGHu2dnrmSlO35eZ5V5cYIbyOb9KqXut6/MPLlmr3Wr5mJIZ74GEc0Bt5uN5toDPVEXf9mmIvnHjRi1cuFD//Oc/5efnp1tvvVX33nuvL5sAAAAAAEDDFhgqNb7QPKwYhpRz2vPyMZkpZsBenC+lHTEPT0IbOc1od15KJuFsCB/W1BwMAOAz/v7+kqSCggKFhobWcGuAqpeTkyPJXA//XFV7iH7s2DEtXrxYixcv1o8//qh+/fpp3rx5uvXWWxUeHl7dlwcAAAAAAJVls0nhTcwjrpt1uaL8kiVjLJaPKQ3ci3Kl3DPmceIb6/r8AksC9njX2e1lZ7kHkScAVSUgIEBhYWE6efKkAgMD5cdAFuoJwzCUk5OjEydOKCYmxjFgdC6qNUQfMmSIPv/8czVt2lRjx47VPffco44dO1bnJQEAAAAAgK8EBEuNWpuHFcMw12F3mdHuZvmYrBOSvVBK/8k8PAmOdjOjvczyMRHNJb9zD0yAhsJmsyk+Pl7Jyck6cqSCJ0qAOigmJkZxcXHnVUe1huiBgYH68MMP9bvf/e68kn4AAAAAAFBH2WzmUi6hjaTYLtbligulrONlZrGX3SQ1RSrIkvLTpZPp0snvPFzXX4qILTOjvczyMZHxUoj1RnJAQxEUFKT27duroKCgppsCVKnAwMAqyaVtRgPbNcDbHVcBAAAAAEAtlJdhsSGq07ms45JR7F19QRFnl5BxWT7GaZZ7RKzkf+5r6QIAaidvs2KfbiwKAAAAAABwXkKizKOZh+Vi7cXm8jBWG6KWfp+fbs5sP/WjeViymcvDuN0QNf7suZAYc+Y9AKBeIUQHAAAAAAD1i5+/GWpHxXsuV5DtfvmYsoG7vcic3Z51XErZbV1fQKib5WPiy2yOGmeuJQ8AqDMI0QEAAAAAQMMUFC41bWceVux2KedXN8vHlNkkNfeMVJQrnUk2D0/CmrhuiOq8Xnvp17DGzGoHgFqCEB0AAAAAAMCKn5+5lEtEcym+h3W5wtyzm5+6XT6mJHQvzpdyTpnH8b3W9fkHlVk+psyM9tJzgaFVf88AABeE6AAAAAAAAOcrMFRqnGgeVgzDnLHuCNnLLh9TMss951epuEBKO2oenoTEOC0V4xSuO58Lb2YOBgAAzgkhOgAAAAAAgC/YbOYyLWGNpbiu1uWKCqSs1DLLx7gJ24typbw08zjxrXV9fgFSRJyH5WNKjuCIqr5jAKgXCNEBAAAAAABqk4AgKaaVeVgxDCkv3XpD1NJzWSfMjVEzfjYPT4KjPGyIWnI+vLnkT5wEoGHhbz0AAAAAAIC6xmaTQmPMo3ln63LFRVLWcdd12Z03R81IMc8VZEr5Gebx6wEP1/WTImItlo9xWsM9OIqNUQHUG4ToAAAAAAAA9ZV/gBR9gXl4kp9psXxM6Sz3VPMwis++5klguPvlYyLjnGa3x0n+gVV3rwBQTQjRAQAAAAAAGrrgSKlZpNSsg3UZe7GUfdLD8jEls9zz0qXCbOnUj+ZhyWZueuocrLvbJDW0EbPaAdQoQnQAAAAAAABUzM+/ZMmWOM/lCrLNQN3T8jGZKZK9UMo+YR6pe6zrCwhxXSrG3fIxkfFSQHDV3i8AlCBEBwAAAAAAQNUJCpeatDUPK3a7lHPKDNYdgXuZ5WMyjkm5p6WiPOnMYfPwJLSx04x2N8vHRCWYZfz8qvJuATQAhOgAAAAAAADwLT8/KaKZecT3sC5XmOe0Jvsx98vHZKRIxflm4J57Wjq+z7o+/yApIs7zjPbIeCkorOrvGUCdRYgOAAAAAACA2ikwRGqcaB5WDEPKPeN++RjnWe7ZJ6XiAin9qHl4EhLtFKyXzmiPdw3bw5uZS9wAqPcI0QEAAAAAAFB32WxSWGPziOtqXa6oQMpKdbN8TKrrUjKFOebmqHnp0sn9Hq5bukZ8vOssdpdNUuPMTVsB1GmE6AAAAAAAAKj/AoKkmFbmYcUwzPDc7Yx2p81Rs09IRrGU8Yt5/OLhukGRZUL2+PKz3CNiJX9iOqC24k8nAAAAAAAAIJmz2kNjzKN5J+tyxUVmkO4crJfbJDVFKsg0j18zpV+/93BdPym8uYewveQIiTbbCMCnCNEBAAAAAACAyvAPMJdriUqQdIl1ufxMi+VjnDZJzUw1Z7VnpZqHdlrXFxhWJmR3Wj6m9FxEnDnrHkCVIUQHAAAAAAAAqkNwpHk0bW9dxl4sZf/qefmYzGPmMjOFOdLpg+bhSXgzzzPaoxKk0EbMage8RIgOAAAAAAAA1BQ/fyky1jwSelqXK8gpmbme4jSLPcV1+ZjMFMleKGWfNI/UPdb1BYSc3RjVZUZ7nOvs9sCQqr9noI4hRAcAAAAAAABqu6AwqUlb87Bit0u5pytYPiZFyjklFeVJZw6bhyehjd0sHxPnujlqWBPJz68q7xaoVQjRAQAAAAAAgPrAz08Kb2oe8d2tyxXmmeuvW22IWnquKM8M5XNPSye+8XDdwLOz2kuDdecZ7aVfg8Kq/p4BHyBEBwAAAAAAABqSwBCpURvzsGIYUu4ZD8vHlATt2SfNJWTSfzIPT4Kj3cxoj3cN28ObmUvcALUIIToAAAAAAAAAVzabFNbYPGIvsi5XXFiyZEyK60x2l+A9RSrMlvLTpZPp0snvPFzXX4qI9bx8TGScFBJV9fcMWCBEBwAAAAAAAHBu/AOlmJbmYcUwpPwMD8vHlBxZxyWjuKTMMc/XDYqoYPmYOCkiTvIn/sT5oxcBAAAAAAAAqD42mxQSbR7NO1mXKy6Ssk+4Xz7GOXDPz5AKsqRTP5iH9YWliOYWM9rjz4bwITFmGwELhOgAAAAAAAAAap5/gBl2RyV4LpefZbF8TOks9xRz41R7kTm7Peu4lLLLur6A0DIz2uPLh+2R8VJAUJXeLuqOOheiP/PMM1q+fLm+++47hYaGql+/fnruuefUsWPHmm4aAAAAAAAAgOoWHCEFt5eatrcuY7ebm56W2xC1zCz3vDSpKFc6fcg8PAlrWmYWe0L5We5hjZnVXg/ZDMMwaroRlTF48GDddttt6tOnj4qKivTYY49p3759+vbbbxUeHl7h+zMyMhQdHa309HRFRbEBAQAAAAAAANBgFeSYs9YzrJaPKZndXlzgXX3+wSWBerz7Ge2l3weGVu99wSveZsV1LkQv6+TJk2revLk2bNigq666qsLyhOgAAAAAAAAAvGYYUs4pN8vHlAnbc055X2doozLBetmwPcGc+e7nV333Ba+z4jq3nEtZ6enpkqTGjRvXcEsAAAAAAAAA1Ds2mxTe1DziulmXK8o3Z61bbYhaeq4oT8o9Yx4nvrWuzy9Aiog7G66XLh9TNngPqnh1DpyfOj0T3W6364YbblBaWpo2bdrktkx+fr7y8/MdP2dkZKhly5bMRAcAAAAAAADgW4ZhrsPuMqM91XVz1IwUcz13eRnbBkdbb4haei6iueTnX513Vic1iJnoEydO1L59+ywDdMnciHT27Nk+bBUAAAAAAAAAuGGzmUu5hDaSYrtYlysulLKOWywf47RJamG2lJ9uHr8e8HBdPykitsyM9jjz+7hunmfYo+7ORE9KStLHH3+sjRs3KjEx0bIcM9EBAAAAAAAA1Et5GRUsH5Nqbpxq2K3r6DNeGjrXd22uRertTHTDMPSHP/xBH330kdavX+8xQJek4OBgBQcH+6h1AAAAAAAAAOAjIVHm0ayjdRl7sZR1wnpDVGahV6jOhegTJ07U+++/r48//liRkZFKTU2VJEVHRys0NLSGWwcAAAAAAAAAtYifv7k2elS8dEFNN6ZuqnPLudhsNrfnFy1apLvuuqvC93s7RR8AAAAAAAAAUH/V6+VcAAAAAAAAAADwBb+abgAAAAAAAAAAALUVIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFiocyH6xo0bNWzYMCUkJMhms2nFihU13SQAAAAAAAAAQD1V50L07Oxs9ejRQ6+//npNNwUAAAAAAAAAUM8F1HQDKmvIkCEaMmRITTcDAAAAAAAAANAA1LmZ6AAAAAAAAAAA+Eqdm4leWfn5+crPz3f8nJGRUYOtAQAAAAAAAADUJfV+Jvozzzyj6Ohox9GyZcuablLNKsqXslKl7BNSzq9S7hkpL13Kz5QKsqWiPKm4QLIXSYa9plsLAAAAAAAAADWq3s9Ef/TRRzV16lTHzxkZGQ07SE8/Iu1cVIk32CSb39nDz0+y+buec/7Zz80555/9LN5n85P8PNTrbZkK6/D33Aabn2SzVdvHDwAAAAAAAKBuqfchenBwsIKDg2u6GbWHzU8KDDdnmRt2ySg++71bRkmZYvPHYp+1tOaUC9XPZZDAXThfUYBf9vVzGCQo97qXZQAAAAAAAAC4VedC9KysLP3444+On5OTk7Vr1y41btxYrVq1qsGW1RGN20lX/6n8ecOQZEh2p1C9bMheelRUptzrTmXsVvVW9Pp5XtddGRnuPyOPgwr1UdmnDSoI4r16GqEqBhGq40kEnjYAAAAAAABA5dS5EH379u269tprHT+XLtVy5513avHixTXUqnrAZpNkk/wb0KzkcoH7uYb1ZV8/x0ECo9jpdYs67G7eU5m2uf8gGvjTBpWd7X8egwgVPc1QbYMIDBoAAAAAAACcqzoXol9zzTUyDIsZxEBlNLSlTAzDYuCgkkF8RWXcDiJ4+TTC+Q4SlH2dpw1K2KogiPeyzPnsm1CpPRM8lJGNgQMAAAAAAFBl6lyIDuAc2Wxm6Cj/mm6J75zLkwbnu3TQ+SxZVBVPI7j/IM4+bWAv9OmvoMZU55JA51NHtQ0iMGgAAAAAAEB1IUQHUH/xtEHVDxJYPm3g5dMIVb1kEU8blLBV08bDlVzOqLoGEZwHC5yfNmhIf74BAAAAADWGEB0A6gueNjjHQQIfLlnk8ro3AwluruP+g5DsRT796GsNR6heOiPf5hq6O79WtmzZQN5mk+Rn8XPp92V/tqi3orZY1lVan1Ub3bS5ovsqV7eH91b4+QEAAABAw0OIDgCou3jaoOoHCc73aYTzGiRw8zSC1dMGjs+kZGChdHNkVK9yAb27gN9i4MFXAxpuf65ocMCbAY2y7XbX5jLXqWgQpMIBDZZqAgAAAGoDQnQAAOqKBv20gXE2VLf82ZDkVN5jWbtTecP9e5zrclu2bN1OgxwuP7u5vpzqNexufvamjV7ep7y9jhcbtzsGLarm14uKuAvovXz6we2ghLu6yg5KVHJAw3IQws17yw4oVHZwxdOAhtunPSpTN4MWAAAAsEaIDgAAaq+G9rRBTSo3iFB20MHN4EC5gYSqHODwMFhgOaBRdvCjgjZXeqChKgc0vBmJKN0Yuqp+yfDM6imBSj5VUSMDGlZPbFTmvd4MOlQ0wOHt0x8MWgAAgLqFEB0AAACuQReqnyN092IQomxY783TD5YDHBU8ZXFOAxru6io7KFELBjQq/qU4lUf1c/MkgOUTDOc4oFHRnhLnvGyUF8s5lR0QKbvUk2PwoaIyNpkbbtvcv+5SrvTaAACgqhGiAwAAAL7mCN2kBrVEU03ydhDCYyBf0dMO7gYLytbn5YBGRctGVfT0g6dlozxdx2297gY0yt5zmfdW/Ath0KJalH0yovR7f6fX3ATxskl+zsH+OdTh8mSCN2XcDAZUxyCDKroOAAAVI0QHAAAAUP/Z/Bi08KVzWeaoKp+qqOyARmUGGrwa0LCXL+Nol93cSNulPe7aXuy+Do9PVpS+rzp+qfWUZdjuJpj3NEDgMhDhIdyv1CCDhwGCGhuI4GkHAA0TIToAAAAAoGo5Bi1Q5dw+BeAmiDdKAnV3S0KVC+at6ig76ODhOu6e1LAaRKiojgoHGazqcCrv/H6Pn6cXZeCkGp928DjAUF1PO1RU5jyfdmAPCKDeIEQHAAAAAKCucASWPFXhNU8DBDUyEFHZAYJKPKnA0w61jzfLClXV0w7ydA2edgDOByE6AAAAAACovxxBHbzido+I6hxkqKhMVT3tUJlBhip+2kEq+axQsfr8tIObAQWedqgzCNEbmNTsVG0+tlm2kmcrbTabbLI5vrqccz5vk8s56ezPZV8rV8apPkfZMtcoV7aS7als2cq2pfScu2tYXtfN51vR5wUAAAAAQI1yBJbwGk87VK4OnnaoWu5m81d2X4bY7lKrK2r6Tmo1QvQG5se0H/XE5idquhmwUJnA/ZwHBc5xMEM6xwGEygx+VHDvFQ6IVOXn5M3gicVnVR33bnU/FbX9XH5nVt/X5O/ivD5bL9vtq8+XQTUAAACgnuFph8px+7SDVehe1U87eLhOVT7tYDXQUVufdohude7vbSAI0RuYRsGNdGXCVTJK/1eyk7xhyHFOhuM7GYbjO8f3pefl+Km0nMqUM+ste05O1zpbv8q8z1GbmzbIqczZ61id89T2Cttdpo3VzfneS04AaKBcQ3ibOUnAJbAvecWljOM7pzJn3yuXsP7sIJHL+ZI65XQtq4GJsu10NzBw/m0/e778h+R+wMFdWbfn3L7dok43hc/vOu6v5f793pWzvMp5tN3q/W7Ledn2Sl3fbdu9q8/6+uf3e/P+PivzGXt5nfP+c+Du7d613bLO8/wduf8dn/ufDavru/19VOLPVs3+OTiP91pc39u/Q6rnz7D3vzfv216Zez+f67ivwdvrVFy3PP2fhsf3eXzN0+UqaKl1nefaTg9X8/jnzPu+6E19lfn/0aqos1a15Rzb6bEt1XLvVdunz/2+ffvnrlr+fqjHfwdUeL2S/64w/4PEdZCjMv9/5FThubWjKv7cucziN2QzDEfo7/i+5HWbI3wvLVvmKQBDOhviSzbZFRXZQi0Mg0ldHhCiNzCJUR21au31Nd2MOszQ2WTb6atNHs6Xfa3ke5tR8nKZ99nc1OOoz+K1kvM2j3V50V7Luiq6R0/ny9RX7h68ra/8OZvb+iq4d4v3WNd1DvcuyVbZz77Sv5PK1lf+3l36n8d+5+Y+zqUum8WfHzfvse4v7n4nVu11/Xr2d3w+n6Pz77Z6MagGAAAAAPCFglNXamfSfIUFERVb4ZMBKqVkFLMsq3CrgtCrqjMxMjbAl843kD87UFDtA2rl6jufAZxzGAzyelCtorq84aas1wMf53cdt3M2KjXoUg3tPO97r41t8q7c+f0+zvf35q4fnu+1zvfPQTXUeV7lKjMo6eVnXJn31/TncV7X983fibYG83lUQ53n+q/ycx6ot36f5/mEtaedVf8+D+/x+KF4upaP75v+UHXv89jGOtB+yeefc+X+P8D5jbXp8zyXvwdqUfvP+e+qc3ufYQSdY50NByF6AxMa6K9vnxxU080AAAAAAAAAUEuEBrKhsCeE6A2MzWbj0QwAAAAAAAAA8BJbBwMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgIWAmm6ArxmGIUnKyMio4ZYAAAAAAAAAAGpKaUZcmhlbaXAhemZmpiSpZcuWNdwSAAAAAAAAAEBNy8zMVHR0tOXrNqOimL2esdvtOnbsmCIjI2Wz2Wq6OahHMjIy1LJlS/3000+Kioqq6eYAHtFfUZfQX1GX0F9Rl9BfUZfQX1GX0F9RlzT0/moYhjIzM5WQkCA/P+uVzxvcTHQ/Pz+1aNGippuBeiwqKqpB/qWDuon+irqE/oq6hP6KuoT+irqE/oq6hP6KuqQh91dPM9BLsbEoAAAAAAAAAAAWCNEBAAAAAAAAALBAiA5UkeDgYD3xxBMKDg6u6aYAFaK/oi6hv6Iuob+iLqG/oi6hv6Iuob+iLqG/eqfBbSwKAAAAAAAAAIC3mIkOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHajAL7/8ojvuuENNmjRRaGiounXrpu3btzteNwxDjz/+uOLj4xUaGqoBAwbohx9+cKnj9OnTGj16tKKiohQTE6N7771XWVlZvr4V1HPFxcWaOXOmEhMTFRoaqrZt2+rPf/6znLe+oL+ipmzcuFHDhg1TQkKCbDabVqxY4fJ6VfXNPXv2qH///goJCVHLli31/PPPV/etoR7y1F8LCws1ffp0devWTeHh4UpISNDYsWN17Ngxlzror/CViv5+dXb//ffLZrPplVdecTlPf4WveNNf9+/frxtuuEHR0dEKDw9Xnz59dPToUcfreXl5mjhxopo0aaKIiAjdfPPNOn78uEsdR48e1dChQxUWFqbmzZtr2rRpKioqqu7bQz1SUV/NyspSUlKSWrRoodDQUHXp0kVvvvmmSxn6KnzlmWeeUZ8+fRQZGanmzZvrxhtv1IEDB1zKVFV/XL9+vXr16qXg4GC1a9dOixcvru7bqzUI0QEPzpw5oyuuuEKBgYFatWqVvv32W7344otq1KiRo8zzzz+vefPm6c0339TWrVsVHh6uQYMGKS8vz1Fm9OjR+uabb7RmzRp9+umn2rhxoyZMmFATt4R67LnnntOCBQv02muvaf/+/Xruuef0/PPPa/78+Y4y9FfUlOzsbPXo0UOvv/6629erom9mZGRo4MCBat26tXbs2KEXXnhBs2bN0ttvv13t94f6xVN/zcnJ0ddff62ZM2fq66+/1vLly3XgwAHdcMMNLuXor/CViv5+LfXRRx9py5YtSkhIKPca/RW+UlF/PXjwoK688kp16tRJ69ev1549ezRz5kyFhIQ4ykyZMkX/+te/9MEHH2jDhg06duyYbrrpJsfrxcXFGjp0qAoKCrR582a9++67Wrx4sR5//PFqvz/UHxX11alTp+rf//63/va3v2n//v2aPHmykpKS9MknnzjK0FfhKxs2bNDEiRO1ZcsWrVmzRoWFhRo4cKCys7MdZaqiPyYnJ2vo0KG69tprtWvXLk2ePFnjxo3T6tWrfXq/NcYAYGn69OnGlVdeafm63W434uLijBdeeMFxLi0tzQgODjb+3//7f4ZhGMa3335rSDK2bdvmKLNq1SrDZrMZv/zyS/U1Hg3O0KFDjXvuucfl3E033WSMHj3aMAz6K2oPScZHH33k+Lmq+uYbb7xhNGrUyMjPz3eUmT59utGxY8dqviPUZ2X7qztfffWVIck4cuSIYRj0V9Qcq/76888/GxdccIGxb98+o3Xr1sbLL7/seI3+iprirr+OHDnSuOOOOyzfk5aWZgQGBhoffPCB49z+/fsNScaXX35pGIZhfPbZZ4afn5+RmprqKLNgwQIjKirKpQ8D3nLXVy+66CLjySefdDnXq1cvY8aMGYZh0FdRs06cOGFIMjZs2GAYRtX1x0ceecS46KKLXK41cuRIY9CgQdV9S7UCM9EBDz755BP17t1bt9xyi5o3b66ePXvqnXfecbyenJys1NRUDRgwwHEuOjpal112mb788ktJ0pdffqmYmBj17t3bUWbAgAHy8/PT1q1bfXczqPf69euntWvX6vvvv5ck7d69W5s2bdKQIUMk0V9Re1VV3/zyyy911VVXKSgoyFFm0KBBOnDggM6cOeOju0FDlJ6eLpvNppiYGEn0V9QudrtdY8aM0bRp03TRRReVe53+itrCbrdr5cqV6tChgwYNGqTmzZvrsssuc1lGY8eOHSosLHT5N0OnTp3UqlUrl38zdOvWTbGxsY4ygwYNUkZGhr755huf3Q/qt379+umTTz7RL7/8IsMwtG7dOn3//fcaOHCgJPoqalZ6erokqXHjxpKqrj9++eWXLnWUlimto74jRAc8OHTokBYsWKD27dtr9erVeuCBBzRp0iS9++67kqTU1FRJcvlLpvTn0tdSU1PVvHlzl9cDAgLUuHFjRxmgKvzf//2fbrvtNnXq1EmBgYHq2bOnJk+erNGjR0uiv6L2qqq+mZqa6rYO52sAVS0vL0/Tp0/XqFGjFBUVJYn+itrlueeeU0BAgCZNmuT2dforaosTJ04oKytLzz77rAYPHqz//Oc/GjFihG666SZt2LBBktnfgoKCHIOWpcr+m4H+iuo2f/58denSRS1atFBQUJAGDx6s119/XVdddZUk+ipqjt1u1+TJk3XFFVeoa9eukqquP1qVycjIUG5ubnXcTq0SUNMNAGozu92u3r17a86cOZKknj17at++fXrzzTd155131nDrAFf/+Mc/tHTpUr3//vu66KKLHGuUJSQk0F8BoBoUFhbq1ltvlWEYWrBgQU03Byhnx44devXVV/X111/LZrPVdHMAj+x2uyRp+PDhmjJliiTp4osv1ubNm/Xmm2/q6quvrsnmAS7mz5+vLVu26JNPPlHr1q21ceNGTZw4UQkJCeVm6gK+NHHiRO3bt0+bNm2q6abUO8xEBzyIj49Xly5dXM517tzZsTt8XFycJJXb0fj48eOO1+Li4nTixAmX14uKinT69GlHGaAqTJs2zTEbvVu3bhozZoymTJmiZ555RhL9FbVXVfXNuLg4t3U4XwOoKqUB+pEjR7RmzRrHLHSJ/ora43//+59OnDihVq1aKSAgQAEBATpy5Ij++Mc/qk2bNpLor6g9mjZtqoCAgAr/+6ugoEBpaWkuZcr+m4H+iuqUm5urxx57TC+99JKGDRum7t27KykpSSNHjtTcuXMl0VdRM5KSkvTpp59q3bp1atGiheN8VfVHqzJRUVEKDQ2t6tupdQjRAQ+uuOIKHThwwOXc999/r9atW0uSEhMTFRcXp7Vr1zpez8jI0NatW9W3b19JUt++fZWWlqYdO3Y4yvz3v/+V3W7XZZdd5oO7QEORk5MjPz/Xv9b9/f0ds3ror6itqqpv9u3bVxs3blRhYaGjzJo1a9SxY0c1atTIR3eDhqA0QP/hhx/0+eefq0mTJi6v019RW4wZM0Z79uzRrl27HEdCQoKmTZum1atXS6K/ovYICgpSnz59PP731yWXXKLAwECXfzMcOHBAR48edfk3w969e10Gh0oHO8sG9MC5KCwsVGFhocf/9qKvwpcMw1BSUpI++ugj/fe//1ViYqLL61XVH/v27etSR2mZ0jrqvRre2BSo1b766isjICDAePrpp40ffvjBWLp0qREWFmb87W9/c5R59tlnjZiYGOPjjz829uzZYwwfPtxITEw0cnNzHWUGDx5s9OzZ09i6dauxadMmo3379saoUaNq4pZQj915553GBRdcYHz66adGcnKysXz5cqNp06bGI4884ihDf0VNyczMNHbu3Gns3LnTkGS89NJLxs6dO40jR44YhlE1fTMtLc2IjY01xowZY+zbt89YtmyZERYWZrz11ls+v1/UbZ76a0FBgXHDDTcYLVq0MHbt2mWkpKQ4jvz8fEcd9Ff4SkV/v5bVunVr4+WXX3Y5R3+Fr1TUX5cvX24EBgYab7/9tvHDDz8Y8+fPN/z9/Y3//e9/jjruv/9+o1WrVsZ///tfY/v27Ubfvn2Nvn37Ol4vKioyunbtagwcONDYtWuX8e9//9to1qyZ8eijj/r8flF3VdRXr776auOiiy4y1q1bZxw6dMhYtGiRERISYrzxxhuOOuir8JUHHnjAiI6ONtavX+/yb9OcnBxHmaroj4cOHTLCwsKMadOmGfv37zdef/11w9/f3/j3v//t0/utKYToQAX+9a9/GV27djWCg4ONTp06GW+//bbL63a73Zg5c6YRGxtrBAcHG9ddd51x4MABlzKnTp0yRo0aZURERBhRUVHG3XffbWRmZvryNtAAZGRkGA899JDRqlUrIyQkxLjwwguNGTNmuIQ69FfUlHXr1hmSyh133nmnYRhV1zd3795tXHnllUZwcLBxwQUXGM8++6yvbhH1iKf+mpyc7PY1Sca6descddBf4SsV/f1alrsQnf4KX/Gmv/71r3812rVrZ4SEhBg9evQwVqxY4VJHbm6u8eCDDxqNGjUywsLCjBEjRhgpKSkuZQ4fPmwMGTLECA0NNZo2bWr88Y9/NAoLC31xi6gnKuqrKSkpxl133WUkJCQYISEhRseOHY0XX3zRsNvtjjroq/AVq3+bLlq0yFGmqvrjunXrjIsvvtgICgoyLrzwQpdr1Hc2wzCM6prlDgAAAAAAAABAXcaa6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAHNq0aaNXXnmlppsBAAAA1BqE6AAAAEANueuuu3TjjTdKkq655hpNnjzZZ9devHixYmJiyp3ftm2bJkyY4LN2AAAAALVdQE03AAAAAEDVKSgoUFBQ0Dm/v1mzZlXYGgAAAKDuYyY6AAAAUMPuuusubdiwQa+++qpsNptsNpsOHz4sSdq3b5+GDBmiiIgIxcbGasyYMfr1118d773mmmuUlJSkyZMnq2nTpho0aJAk6aWXXlK3bt0UHh6uli1b6sEHH1RWVpYkaf369br77ruVnp7uuN6sWbMklV/O5ejRoxo+fLgiIiIUFRWlW2+9VcePH3e8PmvWLF188cVasmSJ2rRpo+joaN12223KzMx0lPnwww/VrVs3hYaGqkmTJhowYICys7Or6dMEAAAAqhYhOgAAAFDDXn31VfXt21fjx49XSkqKUlJS1LJlS6Wlpek3v/mNevbsqe3bt+vf//63jh8/rltvvdXl/e+++66CgoL0xRdf6M0335Qk+fn5ad68efrmm2/07rvv6r///a8eeeQRSVK/fv30yiuvKCoqynG9hx9+uFy77Ha7hg8frtOnT2vDhg1as2aNDh06pJEjR7qUO3jwoFasWKFPP/1Un376qTZs2KBnn31WkpSSkqJRo0bpnnvu0f79+7V+/XrddNNNMgyjOj5KAAAAoMqxnAsAAABQw6KjoxUUFKSwsDDFxcU5zr/22mvq2bOn5syZ4zi3cOFCtWzZUt9//706dOggSWrfvr2ef/55lzqd11dv06aNnnrqKd1///164403FBQUpOjoaNlsNpfrlbV27Vrt3btXycnJatmypSTpvffe00UXXaRt27apT58+ksywffHixYqMjJQkjRkzRmvXrtXTTz+tlJQUFRUV6aabblLr1q0lSd26dTuPTwsAAADwLWaiAwAAALXU7t27tW7dOkVERDiOTp06STJnf5e65JJLyr33888/13XXXacLLrhAkZGRGjNmjE6dOqWcnByvr79//361bNnSEaBLUpcuXRQTE6P9+/c7zrVp08YRoEtSfHy8Tpw4IUnq0aOHrrvuOnXr1k233HKL3nnnHZ05c8b7DwEAAACoYYToAAAAQC2VlZWlYcOGadeuXS7HDz/8oKuuuspRLjw83OV9hw8f1u9+9zt1795d//znP7Vjxw69/vrrksyNR6taYGCgy882m012u12S5O/vrzVr1mjVqlXq0qWL5s+fr44dOyo5ObnK2wEAAABUB0J0AAAAoBYICgpScXGxy7levXrpm2++UZs2bdSuXTuXo2xw7mzHjh2y2+168cUXdfnll6tDhw46duxYhdcrq3Pnzvrpp5/0008/Oc59++23SktLU5cuXby+N5vNpiuuuEKzZ8/Wzp07FRQUpI8++sjr9wMAAAA1iRAdAAAAqAXatGmjrVu36vDhw/r1119lt9s1ceJEnT59WqNGjdK2bdt08OBBrV69WnfffbfHALxdu3YqLCzU/PnzdejQIS1ZssSx4ajz9bKysrR27Vr9+uuvbpd5GTBggLp166bRo0fr66+/1ldffaWxY8fq6quvVu/evb26r61bt2rOnDnavn27jh49quXLl+vkyZPq3Llz5T4gAAAAoIYQogMAAAC1wMMPPyx/f3916dJFzZo109GjR5WQkKAvvvhCxcXFGjhwoLp166bJkycrJiZGfn7W/5Tv0aOHXnrpJT333HPq2rWrli5dqmeeecalTL9+/XT//fdr5MiRatasWbmNSSVzBvnHH3+sRo0a6aqrrtKAAQN04YUX6u9//7vX9xUVFaWNGzfq+uuvV4cOHfSnP/1JL774ooYMGeL9hwMAAADUIJthGEZNNwIAAAAAAAAAgNqImegAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsPD/AUKn3hTbq9jDAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPeCAYAAADj01PlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gb1dnFz0irbbbXvWPHxqYYDAaMbWw6MYGEkBBIAiTUNCCQfAFCEhJaIAFCCyH0BELvIYHQjcGAwcZgGxtw772X7buSZr4/dke6M7p35s5IWml3z+95eJBm7ty5U6S1zj1zXsOyLAuEEEIIIYQQQgghhBBCCMkgUugBEEIIIYQQQgghhBBCCCHFCkV0QgghhBBCCCGEEEIIIUQBRXRCCCGEEEIIIYQQQgghRAFFdEIIIYQQQgghhBBCCCFEAUV0QgghhBBCCCGEEEIIIUQBRXRCCCGEEEIIIYQQQgghRAFFdEIIIYQQQgghhBBCCCFEAUV0QgghhBBCCCGEEEIIIUQBRXRCCCGEEEIIIYQQQgghRAFFdEIIIYQQQjow5513HoYNGxZq2+uuuw6GYeR2QIQQQgghhLQzKKITQgghhBBSAAzD0Ppv2rRphR4qIYQQQgghnRrDsiyr0IMghBBCCCGks/HEE0843j/22GOYMmUKHn/8ccfy448/Hv379w+9n3g8DtM0UVZWFnjbRCKBRCKB8vLy0PsnhBBCCCGkvUMRnRBCCCGEkCLgkksuwT333AO/f57X19ejsrKyjUZFCCGEEEIIYZwLIYQQQgghRcoxxxyD0aNHY/bs2TjqqKNQWVmJ3//+9wCAl156CSeddBIGDRqEsrIyjBgxAjfccAOSyaSjD3cm+qpVq2AYBm677TY8+OCDGDFiBMrKyjBu3Dh88sknjm1lmeiGYeCSSy7Bf//7X4wePRplZWXYf//98cYbb2SMf9q0aTj00ENRXl6OESNG4IEHHmDOOiGEEEIIaXeUFHoAhBBCCCGEEDXbt2/H17/+dZxxxhk466yzUtEujzzyCLp27YrLLrsMXbt2xTvvvINrrrkG1dXVuPXWW337feqpp1BTU4MLLrgAhmHglltuwamnnooVK1YgFot5bjt9+nS8+OKL+PnPf45u3brhrrvuwmmnnYY1a9agd+/eAIC5c+fixBNPxMCBA/HHP/4RyWQS119/Pfr27Zv9SSGEEEIIIaQNoYhOCCGEEEJIEbNp0ybcf//9uOCCCxzLn3rqKVRUVKTeX3jhhbjwwgtx77334k9/+pNvBvqaNWuwdOlS9OzZEwCwzz774Nvf/jbefPNNfPOb3/TcduHChViwYAFGjBgBADj22GMxZswYPP3007jkkksAANdeey2i0Sg+/PBDDBo0CADw/e9/H6NGjQp2AgghhBBCCCkwjHMhhBBCCCGkiCkrK8P555+fsVwU0GtqarBt2zYceeSRqK+vx6JFi3z7Pf3001MCOgAceeSRAIAVK1b4bjt58uSUgA4ABx54IKqqqlLbJpNJvP322zjllFNSAjoAjBw5El//+td9+yeEEEIIIaSYoBOdEEIIIYSQImbw4MEoLS3NWP7ll1/iqquuwjvvvIPq6mrHut27d/v2O3ToUMd7W1DfuXNn4G3t7e1tt2zZgoaGBowcOTKjnWwZIYQQQgghxQxFdEIIIYQQQooY0XFus2vXLhx99NGoqqrC9ddfjxEjRqC8vBxz5szBb3/7W5im6dtvNBqVLrcsK6/bEkIIIYQQ0t6giE4IIYQQQkg7Y9q0adi+fTtefPFFHHXUUanlK1euLOCo0vTr1w/l5eVYtmxZxjrZMkIIIYQQQooZZqITQgghhBDSzrCd4KLzu7m5Gffee2+hhuQgGo1i8uTJ+O9//4sNGzakli9btgyvv/56AUdGCCGEEEJIcOhEJ4QQQgghpJ0xadIk9OzZE+eeey5++ctfwjAMPP7440UVp3LdddfhrbfewuGHH46LLroIyWQSd999N0aPHo3PPvus0MMjhBBCCCFEGzrRCSGEEEIIaWf07t0br7zyCgYOHIirrroKt912G44//njccssthR5airFjx+L1119Hz549cfXVV+Ohhx7C9ddfj69+9asoLy8v9PAIIYQQQgjRxrCKya5CCCGEEEII6dCccsop+PLLL7F06dJCD4UQQgghhBAt6EQnhBBCCCGE5IWGhgbH+6VLl+K1117DMcccU5gBEUIIIYQQEgI60QkhhBBCCCF5YeDAgTjvvPOw5557YvXq1bjvvvvQ1NSEuXPnYq+99ir08AghhBBCCNGChUUJIYQQQggheeHEE0/E008/jU2bNqGsrAwTJ07EjTfeSAGdEEIIIYS0K+hEJ4QQQgghhBBCCCGEEEIUMBOdEEIIIYQQQgghhBBCCFFAEZ0QQgghhBBCCCGEEEIIUdDpMtFN08SGDRvQrVs3GIZR6OEQQgghhBBCCCGEEEIIKQCWZaGmpgaDBg1CJKL2m3c6EX3Dhg0YMmRIoYdBCCGEEEIIIYQQQgghpAhYu3Yt9thjD+X6Tieid+vWDUDLiamqqirwaAghhBBCCCGEEEIIIYQUgurqagwZMiSlGavodCK6HeFSVVVFEZ0QQgghhBBCCCGEEEI6OX6x3ywsSgghhBBCCCGEEEIIIYQooIhOCCGEEEIIIYQQQgghhCgouIh+zz33YNiwYSgvL8eECRMwa9Ysz/Z33nkn9tlnH1RUVGDIkCG49NJL0djY2EajJYQQQgghhBBCCCGEENKZKGgm+rPPPovLLrsM999/PyZMmIA777wTJ5xwAhYvXox+/fpltH/qqafwu9/9Dg8//DAmTZqEJUuW4LzzzoNhGLjjjjsKcASEEEIIIYQQQgghhJBCkUwmEY/HCz0MUqTEYjFEo9Gs+zEsy7JyMJ5QTJgwAePGjcPdd98NADBNE0OGDMEvfvEL/O53v8tof8kll2DhwoWYOnVqatnll1+Ojz/+GNOnT9faZ3V1Nbp3747du3ezsCghhBBCCCGEEEIIIe0Qy7KwadMm7Nq1q9BDIUVOjx49MGDAAGnxUF2tuGBO9ObmZsyePRtXXnllalkkEsHkyZMxY8YM6TaTJk3CE088gVmzZmH8+PFYsWIFXnvtNZx99tltNWxCCCGEEEIIIYQQQkiBsQX0fv36obKyUiqQks6NZVmor6/Hli1bAAADBw4M3VfBRPRt27YhmUyif//+juX9+/fHokWLpNv84Ac/wLZt23DEEUfAsiwkEglceOGF+P3vf6/cT1NTE5qamlLvq6urc3MAhBBCCCGEEEIIIYSQNieZTKYE9N69exd6OKSIqaioAABs2bIF/fr1Cx3tUvDCokGYNm0abrzxRtx7772YM2cOXnzxRbz66qu44YYblNvcdNNN6N69e+q/IUOGtOGICSGEEEIIIYQQQgghucTOQK+srCzwSEh7wL5PssnOL5gTvU+fPohGo9i8ebNj+ebNmzFgwADpNldffTXOPvts/OQnPwEAHHDAAairq8PPfvYz/OEPf0AkkjkncOWVV+Kyyy5Lva+urqaQTgghhBBCCCGEEEJIO4cRLkSHXNwnBXOil5aWYuzYsY4ioaZpYurUqZg4caJ0m/r6+gyh3Lbgq+qjlpWVoaqqyvEfIYQQQgghhBBCCCGEEKJDQeNcLrvsMvzjH//Ao48+ioULF+Kiiy5CXV0dzj//fADAOeec4yg8evLJJ+O+++7DM888g5UrV2LKlCm4+uqrcfLJJ4fOsyGEEEIIIYQQQgghhBCiZtq0aTAMA7t27Sr0UApCweJcAOD000/H1q1bcc0112DTpk046KCD8MYbb6SKja5Zs8bhPL/qqqtgGAauuuoqrF+/Hn379sXJJ5+MP//5z4U6BEIIIYQQQgghhBBCCCEdGMNS5aB0UKqrq9G9e3fs3r2b0S6EEEIIIYQQQgghhLQzGhsbsXLlSgwfPhzl5eWFHk6nYNq0aTj22GOxc+dO9OjRI+f9Nzc3o7S0NOf9At73i65WXNA4F0IIIYQQQgghhBBCCOksmKaJm266CcOHD0dFRQXGjBmDF154AZZlYfLkyTjhhBNStR937NiBPfbYA9dccw0AIJlM4sc//nFq23322Qd/+9vfHP2fd955OOWUU3DjjTeif//+6NGjB66//nokEglcccUV6NWrF/bYYw/861//Sm2zatUqGIaBZ555BpMmTUJ5eTlGjx6N9957z/NYpk+fjiOPPBIVFRUYMmQIfvnLX6Kurk7rPAwbNgw33HADzjnnHFRVVeFnP/uZNDLms88+g2EYWLVqFQDgkUceQY8ePfDmm29i1KhR6Nq1K0488URs3LhRa79hoYhOCCGEEEIIIYQQQghpt1iWhfrmREH+CxrycdNNN+Gxxx7D/fffjy+//BKXXnopzjrrLLz//vt49NFH8cknn+Cuu+4CAFx44YUYPHhwSkQ3TRN77LEHnn/+eSxYsADXXHMNfv/73+O5555z7OOdd97Bhg0b8P777+OOO+7Atddei29+85vo2bMnPv74Y1x44YW44IILsG7dOsd2V1xxBS6//HLMnTsXEydOxMknn4zt27dLj2P58uU48cQTcdppp2H+/Pl49tlnMX36dFxyySXa5+K2227DmDFjMHfuXFx99dXa29XX1+O2227D448/jvfffx9r1qzBr3/9a+3tw1DQTHRCSOFZua0OZ/3zY1xw9J44Z+KwQg+HEEIIIYQQQgghJBAN8ST2u+bNgux7wfUnoLJUT2JtamrCjTfeiLfffhsTJ04EAOy5556YPn06HnjgATz11FN44IEHcM4552DTpk147bXXMHfuXJSUtPQfi8Xwxz/+MdXf8OHDMWPGDDz33HP4/ve/n1req1cv3HXXXYhEIthnn31wyy23oL6+Hr///e8BAFdeeSVuvvlmTJ8+HWeccUZqu0suuQSnnXYaAOC+++7DG2+8gYceegi/+c1vMo7lpptuwg9/+EP86le/AgDstddeuOuuu3D00Ufjvvvu04rZOe6443D55Zen3q9du1brPMbjcdx///0YMWJEatzXX3+91rZhoYhOSCfn+v99ifW7GnDNS19SRCeEEEIIIYQQQgjJE8uWLUN9fT2OP/54x/Lm5mYcfPDBAIDvfe97+M9//oObb74Z9913H/baay9H23vuuQcPP/ww1qxZg4aGBjQ3N+Oggw5ytNl///0RiaQDSPr374/Ro0en3kejUfTu3RtbtmxxbGcL+wBQUlKCQw89FAsXLpQey7x58zB//nw8+eSTqWWWZcE0TaxcuRKjRo3yPR+HHnqobxsZlZWVKQEdAAYOHJhxLLmGIjohnZyE2alqCxNCCCGEEEIIIaSDURGLYsH1JxRs37rU1tYCAF599VUMHjzYsa6srAxAS1TJ7NmzEY1GsXTpUkebZ555Br/+9a9x++23Y+LEiejWrRtuvfVWfPzxx452sVjM8d4wDOky0zS1xy47lgsuuAC//OUvM9YNHTpUq48uXbo43tvCvxiRE4/HM7aTHUvQWJ2gUEQnpJNjGEahh0AIIYQQQgghhBASGsMwtCNVCsl+++2HsrIyrFmzBkcffbS0zeWXX45IJILXX38d3/jGN3DSSSfhuOOOAwB8+OGHmDRpEn7+85+n2i9fvjxn45s5cyaOOuooAEAikcDs2bOVGeeHHHIIFixYgJEjR+Zs/3379gUAbNy4ET179gTQUli0GCj+u4vklI+WbcMvn/kM+wzoiid/clihh0OKgCg1dEIIIYQQQgghhJC8061bN/z617/GpZdeCtM0ccQRR2D37t348MMPUVVVhT59+uDhhx/GjBkzcMghh+CKK67Aueeei/nz56Nnz57Ya6+98Nhjj+HNN9/E8OHD8fjjj+OTTz7B8OHDczK+e+65B3vttRdGjRqFv/71r9i5cyd+9KMfSdv+9re/xWGHHYZLLrkEP/nJT9ClSxcsWLAAU6ZMwd133x1q/yNHjsSQIUNw3XXX4c9//jOWLFmC22+/PZtDyhkR/yakI5EwLWyrbcKOusxHIfLBS5+tx5w1O9tkXyQcETrRCSGEEEIIIYQQQtqEG264AVdffTVuuukmjBo1CieeeCJeffVVDBs2DD/+8Y9x3XXX4ZBDDgEA/PGPf0T//v1x4YUXAgAuuOACnHrqqTj99NMxYcIEbN++3eFKz5abb74ZN998M8aMGYPp06fj5ZdfRp8+faRtDzzwQLz33ntYsmQJjjzySBx88MG45pprMGjQoND7j8ViePrpp7Fo0SIceOCB+Mtf/oI//elPofvLJYaV78CYIqO6uhrdu3fH7t27UVVVVejhtDkfLduGH/zzY+zdvyveulT+2EiumLtmJ75z70cAgFU3n5TXfZHw/PSxTzFlwWYAvE6EEEIIIYQQQggpfhobG7Fy5UoMHz4c5eXlhR5Ou2fVqlUYPnw45s6dm1GktCPgdb/oasV0oncyopEW13GuiknuqGvGym110nVLt9TmZB8kv0RoRCeEEEIIIYQQQgghRAlF9E5GSbTlkidzJKIfcsMUHHvbNKzbWZ+xLpHsVA85tFsY50IIIYQQQgghhBBCcsUHH3yArl27Kv9rj7CwaCejxHai51jgnrd2N/boWelYFk+a0ra/fWE+6poT+PuZB8OggFsQapsSqIxFEYkYiLSBFd2yLDwxczX2GVCF8cN75X1/hBBCCCGEEEIIIUSPYcOGIZeJ34ceeig+++yznPVXDFBE72TYcS65cqLbmJIPmkxEb2hO4tlP1wIAfv+NURjUoyKn49Bld30cpSURVJRGC7L/oLzxxUZc+/KXuPsHh2DcsEwR2rIsNCdNlJU4j+eL9bthGC1u88uem4crTtgbe/XrhiNveReHj+yNJ39yWJs40acv24arX/oSAHPXCSGEEEIIIYQQQjoyFRUVGDlyZKGHkVMooncySqK5zUS3kYnosn00J9LCeqFiRGqbEhhz/Vsoj0Ww6IavF2QMQbnwiTkAgB8/8gnmX3eCZP1svL1wC2ZceRz6dWspkNAYT+Kbf58OAOjTtQzbapvwo0c+xa8m7wUA+HDZdgBAtA0ugyo3nxBCCCGEEEIIIYSQYoeZ6J2MVJyLKY9aCYtURBec6PYjIU2JZGpZ2BSRZVtqMW3xlkDbxJMmGuMt+16yuQYA0Bg3Az+qUt0Yx/pdDYG2ySWqJwje/HIzkqaFF+esTy1rEiYsttU2pV67nxBoi8mMHD4RRAghhBBCCCGEEAIAOY0gIR2XXNwnFNE7GdFIa2HRHGeiyzT5uLAPW/wVhd1kyBt48h3v4bx/fYLP1+3W3uaoW97Fgde9hcZ4ElFBNI4HPA/j/vQ2Dr/5HWza3Rhou1wRK/H+yIpyuOoLwp2H3xa59PyjRgghhBBCCCGEkFwRi8UAAPX19QUeCWkP2PeJfd+EgXEunYy0Ez23oqasN9HtnjAtlESdTvRsi5su2lSNA/bo7tvONC1sbBW9l22pTeXCAy3jKfURpkXsSYC5a3bi6wcMDDji7CmJ+Ijogh6ucq27Jw6iQpdJ03Kcn1xBCZ0QQgghhBBCCCG5IhqNokePHtiypSWpoLKysk1MgqR9YVkW6uvrsWXLFvTo0QPRaPjaiBTROxl5Kywq6U8Uyb/cUI3nP12Lr47qn94mS3dyLKonfjcL8SUlUcMRLdKUMNENwKbdjXjps/U4Y9xQdK+Uz0qJbupCfS/HfALMDcGLrnL6u6N8RNE8njQRjeS+2CqN6IQQQgghhBBCCMklAwYMAICUkE6Iih49eqTul7BQRO9kpAuL5j8TXXQ8n3bfRwCAZz5Zm1qWrRte1zEtZoCXRAw0xtPv7UKnP/jnTKzYWodPV+/EP845VNqPGEVTqNlNv4kDPSe689obhlNEL4/lQUTPeY+EEEIIIYQQQgjpzBiGgYEDB6Jfv36Ix+OFHg4pUmKxWFYOdBuK6J0MOw7EtFrc45EcRXfI9Fq3WJuxTQgRXdymRHPszYL4HY1EkDTTkTK2ML5iax0A4N1F6tnLhub0doV6QKjEz4kuCOK6cS7iacw2YkcFM9EJIYQQQgghhBCSD6LRaE5EUkK8YGHRTobo3s7WCS4KozInuph/LsOvsGhjPIkFG6od+3FGs+jdvm7RWDxu9xi9RtQQT7cNWpA0V/hNHIhrVQ8buCc3xMvgN/ERFmroxUFdU6LQQyCEEEIIIYQQQghpd1BE72SIImy2ueji5jIRXYxNkeHnej734Vn4xl0f4N9z1qeWNcWd0Sw6iE5007KQEITiprhbUHaOqb45geVba1tfp0X0xrj3BEG+8CssmjBNXPPSF5i6cLM6E9113k3FJEUusRjoUnCmLd6C/a99E7e8sajQQyGEEEIIIYQQQghpV1BE72Q4nejZCaai+CqLZvETmv0Ki368cgcA4ImZq1PLmpJCn5qZKqIwbJqWY/JAzDlvGZNz21Pv/Qhfvf09zF6903E87u3ailhJ5kdWPPf/nr0ej81YjR8/+imSiuvrFsrF85G/OJe8dEsCcN3LXwIA7p22vMAjIYQQQgghhBBCCGlfUETvZOTWiZ7e/o+vLMAlT81xOLkbfER03TgZsZXoHNfNVHc60b3jXNws2lQDAHh1/saicKLHJO77uCCW76hvTr1WmcoTGSK60FfenOik0BSqGC4hhBBCCCGEEEJIe4cieidDloluWRZ+8fRc3Px6sJgH0V1sWcAr8zdiyeba1DJ3VIobtwg+c8V2fPPvH2Dump2u/aTbbalpTL3WnQQQheGky4nerOko71IWdUwKNLaK725ne76RFRYV919Vnq4VrHrSQJxEsCzL4VjPV9a731MHJP9QQyeEEEIIIYQQQggJR4l/E9KRMAwDJREDCdNKictfbqjG/+ZtAAB0r4jhgqP2REQjb1wmjIqCbqOPy9vtRD/jwZkAgDP/MROLbvh6arm9m601TTjtvhme+5fhiHOxLMd+n/1kLXpUljraPz5jFRriSZw7aVhqWUVpFA0OJ7qJpGnhpLs+QDRi4H+XHKF1zrJFlokuCt/dymOp1zWN8iKS4sRB0rQg6uYsLNpxoYZOCCGEEEIIIYQQEg6K6J2QaKuI/tXb38Nn13zNIZz+5Y1FGNSjHN8+aLBvPzIDtqjxBnWi27gLktpFKT9avs2x3C3CPzR9JbqVl+D7hw5xLPcqLPrWgs14a8FmR/urX2rJjj5sz96pZbFIBA3xtCjdFE9i2ZbaVNzL7oY4enZxivH5IObjRC8VMtN31DVntAWc5y1hWo7rkG1OPiGEEEIIIYQQQgghHQ3GuXRCIq25DvXNSXy+fleGu3nVtnqtfmQxJvdNW44NuxoAOLO6pdtr2pPtZrGoc5zi/nfXx3HDKwvwmxfmY5eQC75pdyPmrduVeu/ORPfCPg6gJTu9oTl9PI3xJFZsTUfXqFzfuUAUuUuiETz/6Vo8LhRbFScFxAmR7bVN0v7iLme+M94m/Xrtjnrc+NpCbNzdAB2enrUGt7yxyBG/YyNbVkjmr9uFm15fiLomvetmmlbRHUNQmIlOCCGEEEIIIYQQEg460Tshonhd25REv27O20CWuy1DJiq+9NkGvPTZBiy/8Ru+WeHahUVbm5W44lLEOJemZDpqZdbKHfja/gMAAIfdNDVjG90M85318dTrhngS9c1pwbUxbjry36sb4whCTWMc22ubMaxPl5bxJ5J4aPpKHLN3P+w3qMrRVoyjMQBc8cJ8AMCJ+w9A325lzkKpgot/W63ciS7GvyRMy3E/iAL7D//5MdbsqMdHy7fhlV8c6XtMV774OQDga/sPwEFDejjWFZv+/K27PwQAJJIWrv7mfp5tE0kTJ901HQO6l+PRH41vi+HlhTZIGyKEEEIIIYQQQgjpkNCJ3gkRncsyJ65brFbhpUXXNiWQ8ClS+eHSbZgjFBEtj8lvR8v1fxuxf9H0PmvlDuU+TdPSFu/FOJSGZhONrsKiS7fUpN67RXTTtLByW53SvXzc7e/hmNumYeW2OgDAPz9YiVveWIxv3PVBRtsmIY5G7M3OaBfPQ5OQQ7+9TsOJ7iqMKsa5rNnR8kTCF+urpf3Y1DUl8K27p6fe727InFBow9qrGdQ1JXDy36fjb28vzVi3ZHONZAsnn6/fjcWba/Dekq35GF6bYTAVnRBCCCGEEEIIISQUFNE7IaKguas+nuHMLonq3RZehT3rmxO++dr/nL4Sp977UUporixNO+JFcd1eL4rY7v2LbuqN1Y0eYwaSmrnfYizMwx+uxH/mrk+9b4wnUS8UGnXHuVz/ygIce9s0PDR9ZeYYTAtba1oE7k9XtQj+X6zfrRyHKIzLRHkxNqfZEeeiyEQX2iRMdZyLLk/PWoP569TjB9K59oXg6Vlr8Pn63fjr20tCbV9kJnopz3+6FlNc2f5umOZCCCGEEEIIIYQQEg7GuXRyttc2ZTizZcUr3SzeVJNR6FOkvjmpHZuSNC2URA1UxKKpZafe+1Hqta0buwuVClqwIzc83urcFsVicV+6TnR3gdPlW+sc68Reqlvd1y/P24AhPSvwyEerAAA3v74IPzlyTwDAVf/9HN3KYw6nf/+qcgBqgdOyLCwTYmNEV7p4TKn1wphVETMNwmSEaVqOyYgwhUXdY5JnogfuNmc0S+4Dm6A54ZZlFV22+Nod9amIn1U3n1Tg0RBCCCGEEEIIIYR0PCiid3K21zVnOLPFQqOJpCl1pp9w5/ue/dY3JbXF6prGBLqWlyjjXGyXeYPLiS6O2xlJ0upclwjOlmX5xszYiA5wN43xpKPQaXVjAvPW7sIvn57raGcL1Ku31+GJmWuU/amiNu6auszhoBYFa/u8iPEs4vq44jjFmJpMJ7qeiL6jrhkPTV+B744dkrFOttdCurm9Ykx0kovECQDLKj5H93bhenqJ/MUm/hNCCCGEEEIIIYS0Fyiid3K21zVniMp2YdE12+tx0l0f4MwJQ/H7b4wK1G9ds38mus3BN0zBsN6VDlFaZNmWWtw3bXmG4CmKv7LimO74F7udrrjvJSg3JkxEBFGypjGOZVtqM9rZe5I5yAFg7ppd2N0Qx2drd0nXuyNIxDHZTnuVCB5XOLBFcT3pEtFV27i5+r9f4NXPN+KRD1fh4uNGOldKTq/oTi8mN3fQUZiWhUgRZ4vHkxZKSxQiehuPhRBCCCGEEEIIIaSjwEz0Ts722qaM2JWoYWBrTRPunbYMNU0JPPj+Cuysa1YWyZQxc8V21EqKlqpYtb3eM3bjL28syohXETV6UyIky4TrIJnoKuEbALbVNDmE++qGhDS+xm6iyo//69tL8Iun52L9robAY7LF8LiisKiOIO4W0XWd6LboX9esduuLiIcfpMjo3DU7ccXz87BhVwNWb6/THp+Il16vJ+YLBWyLPCDd65oXybwFIYQQQgghhBBCSLuDTvROzo665gxn9tIttbj8+XmOZQffMAVnjh+Cm049UKvfO99eGngs7sxzN0u21DjemyGc6GaATHQvwXb9rgaUlohxLnHHGDL3q7VLjTGlj8nOLxdFcPHQdJ4ESFqWY9xeEwciFaXp/Ppb3ljsWCcrImo5hGgLUYUv+p8frMCefbvguH37AwC+05qN//zsdak2v/v6vrjw6BFa4wSyd2A7JwCKW0XXffqDEEIIIYQQQgghhOhDJ3onZ1ttc4b4+795G6Rtn561FgCwaFN1XsbilUEOAB8tcxYyFcVwZyRJaya6TES3LCQ1hUYvZzwArNyWLjRa0xj3LKQqE5bDIIrc9vHLCqgCeq7ypGk5XfyacS5dBBHdjUxndueKy/h4xXb86dWF+NEjnwJQ3w83v74o9bquKYEt1Y3+A1agk4kuUowauijse12/CK3ohBBCCCGEEEIIIaGgiN7J2VbbhLcXbHYs8xKD1+2sx4l3fpCXsfi5oHfWxx3vRfFQdHrbTnRVnIuuE13ljB8/rFfGsnjS8hx/rsRXh4jeOhmgOh4dQTxpOp3ounEplaXqh1iksTbCa5Wbe93OdKSNZVn4fN1u33GM//PbGH/jVGz2ENK9tWN/YVln7IVEdJ8nPB55oIZOCGmPbNzdgA9dk+iEEEIIIYQQ0tZQRCd48uM1jvdesSS3vblYuS5bdKNEbFSFRZu9CoualqfQ6BiPQoQeNbBbxrJ40kSdRwZ8rsRXUeT+/gMzsGJrrfJ4tOJcTAviYTYnTFiWhXU76z2361KmdqLLRH2dwxev59G3TsOSzZmFWt3YmeyfrNqhbGN4COWG0eJmf/7TtdhZ1+y7v+IU0YWc/IR6fNTQCSHtkYk3vYMf/vNjTF9KIZ0QQgghhBBSOCiikwxMD6f2fz+TR73kAi8HvAx1nEurE13iJLcs/Uz0JokIXxIxMKxPl8yxJC0fEV1rl/5jckWcXP/KAkdhURH9wqLpds0JE4/NWI0j/vKu53YVHk502X7dmejS7YRxrNlRj8dmrPIcg0jUw2YtrnLf2waAq//7Ba54YT5+/OgnqeW3v7UYv31hPkzTCl0Uta0QnziIe00Q0YpOCGnHzFyxvdBDIIQQQgghhHRiKKKTDLyc6MVA17IWATeeNHHvtGX4fN1uhzBru3FlmdrJEJnoX923X2pZ94oY+leVZ/ZrWqj1ENGDTBBYHuffHbfSGE8q+9aKc7Esx/bNSRPXvvyl73ZemegyB7wsE72hOek4Vvdx7Kz3d4bbyPThLTWN+NTlUHdPoBgG8N/P1gMA5qzZlVr+93eW4dlP12LmSqdo43VtgrCzrhm3vbnYkasfFvF8e02cUEInhLRnclVbhBBCCCGEEELCQBGdZBDUEd7WVLYKuA++vwK3vLEYJ9893THmTdWNWLalBo0SJ3qYTPQ+XctSy7pXxtCvW1lG27jpHeeiKv4pQ+UsBzKd0EnTUgqnuk50sU9VJvpvXpjneF/hIaJLM9EtpxP983W7ceAf38SfXl2YWu4W33e5MvBF6poS+Ort01LvDYmKfsRf3sV375+B+UK2ujv6JmIYGduKY12wodo1duWQAvG7F+fj7neX4dR7P8y6L/E6e0X40IhOCGnPFPn8PiGEEEIIIaSDQxGdZFDsP1RtJ7oo1rpjOibf8b40E900Le1JAtvJ3aUsHV3SoyKGft0yneiJZO6c6PGkiXcWbc5wUcvbqo9HPxPdv7Doc5+u8+0rNabWCYW5a3amBGiHEx3Azx7/FPGkhYemr0yP1yVwe2Xk/2/eBizfmnZxR1wKcUNzMnUsCzZWC/vIdKK7tWWxybIttXkpLPrRshaHu7tYbhjEJw68nj7oKBr6C7PX4dR7P8SWGnUxWUJIx6PI/2lCCCGEEEII6eBQRO/ElEYj+PkxIzKW6xbeLBSVkqKWsggamQj74Psr8PjM1Vr7sUXYrsL+qipi6FclcaInTU8RPR5ARF+1vQ4/euRTfPf+Gb5tE6apFMt1HPduEV1VTNWNV25+ImnhnIdn4Tv3foSX57Vk6IutLRPYuDtTANV9QsDdHwBEBIW4KZHEK/PT2f3ikwPuKB8DRoYAL56PZVtqHcJ5rkR0z+xyDywrc9LEEefiMfHgPs5ssCwLlz83D1f/94uc9anLr5+fhzlrduW1yDEhpPgo9gl+QgghhBBCSMeGInonpqwkgpH9umYsV7mRi4WykkwRXaa/ypzooivZDztTXXSiV8SiKI9FURp1fnQSpoW6psz92SQDiKart9drt00k9QulytB1orvx2mU8aWL26p0AgCdaJyxE8VnMte3XrQz/+nAljrt9GtbtbNAet7uQqCgQ/+AfH+OKF+Y7xpN67b4OBjIs2uL52FHfDHGTXIk4Ok8JyLjoiTmYdPNU7BLy4h1xLh4XJpdxLiu21eHfc9bh8ZmrtWKD8oHX5y0oa7bX40ePfIJZK/2f/iCEFAZmohNCCCGEEEIKCUX0Tkw0aiAWzbwFChmJHosaGNg9My5FxC1gA3Jn9E2vL8pqLLagLIro5bEWAT8acSqS63bWY1O1Ol7CK+fcjUz8V5EwrayeHEialsPFryuiexWfFYXcmsYEttY0Oda7L9Uf/7cAK7bW4amP12jtGwAirvMvvrcFfBvxiQS3iztiGBkxJ+Kx1TYmMEuI1cmVE108R+8s2oyGZr1r/saXm7C5uskRgyM+5aBTTDYXbKlOX9NC1VDI5aTAJU/PwTuLtuD7D/g//UEIKRDU0AkhhBBCCCEFhCJ6JyYWjaC0pLhugSG9KvHR747DqIFVyjbuMceiRigh7/RDh+C7Y/dQrre7tIXzltct+y6JOhW8xriZIRbbyCI4vGgIIqInzUACvZukaTkmILwEfDuj3bIszyKq4rEu2lSDcX9+G58LxT0dWfYhhx4JIKCKx5RIWo5CoQYyxVgx8mVLTRPumro09T4fevGPHvkUv3YVbvVj5ortqddihItnYdEcpqLvFJzwuZpYsFmxtRY/euQTzFmz07OdeyIrG4I8/UEIKQzU0AkhhBBCCCGFpLgUVNIm3PrdA9G9Iob7zzpE6uouJN3KSmAYBryG5RbRS6MRT2e0iv0HV+FHhw/3bRcTBHNbUC8JIODFA0auNMX13cQthUXDu4931jc7zt32umZl2zP/MRNbahrxh/9+gZc+26BsJ4v3+FRwhzsnFMLJIm4B1SujXXSiJ0zLIYS3FBZ1ZaJ73Ete+8mGV+dvDNT+i/XpWCJHXI1XYdEcOrd3CPdJrp3oP33sU7yzaAtOvfcjz3a5zHjP13UlhOQOi6HohBBCCCGEkAJSXAoqaRO+d+gQfHbN8Rj7lV5F50S3o1Pcmdci7jFHDCOUCBaNGOhWXqLVziYlogeYfGhKJJEIELPRmNB3oidNy9eJ3rVMfYxXvDAfu+rjqfdbfCJp5qze6Ru74pf3LcbPhHeiq4uBuhGd6EnTdOxf5kT3isfJtevajze/3IT/e2ZuhvNfHKM4QVMIET3XdYjX7tDLxs/l8WRTV4AQ0jZQQyeEEEIIIYQUkuJSUEmbYbQqULJM9Fzzl9MOwC3fPVCrrS2iuzOvRcpcY45EjFBO9JKIgaqKmEa79P7KS4I70ZsSZiCRrjGAEz1hmr5O4B6V/sdoU92ojmkBgLlrdvn2kVG800WYQqZu3E50r+svOtFbnPtCnIssE93jfLa11nrB47Px0mcbcP97y5XjaHYdnw72pFNjPIlLn/0M/5unfrJAhsOJnmtlS/OjlUsnes6PoZ3zxMzVOPzmd7ByW12hh0IIIYQQQgghhBQFFNE7OTpO9H9fNNG3zZ59uijXnT5uKHpWlmqNp2sIJ/ruhjg27VY7qFVEIxFPl7aNKJgfOqxny7KovoDXGE/6urNFGpq9hWyRhGl5uo8BYM++XbX782Pu2l2+bfyOVSyKWeuRre5FeCe6M1qnxYmu31dbO9FtNuxy3t/iOByudC8nuqBO2+fgyY/X4D9z1+MXT88NNJ7teYxz0f1keX1HBKVQxVGLlav++wXW72rANS99UeihEJKCn1JCCCGEEEJIIaGI3smJaYjB3Su8BfC9+3fFvgO7ebbRNbynRHQPp7dM+P/Tqwv1diBQEjG0ihNGowbevuwo3PfDQ3D4yD6t2+p/dJoTZqDc8tqmIIVFLTT7iOgj+3bFb07cR7tPL+av2+Xbxk+QfGzG6qzH4Y5c8RbRndEnYuFQGJLCoh596WbybqluxOzVO7Ta6uC+f8RhiO5zrwkV8Za1RXhVMVw/ttakRf1cTyzoauMBPoK+UESX0xTySRFC8kGhJjEJIYQQQgghBKCI3ukp03CiV/nkhkcMwzer1O32VZGKc/FyoucogkbXTR6LRDCyXzd8/YCB6W0DxLk0J03tmA0AGfnXfn03NHuL7tEI8L2xQ7T79EInauYzDbd6triLryZNC29+uQmbPTLdgRantjtaJx9xLuNvnIrT7puB2UJBVZswxfG8bh/dOBfRiW4fo+Xydr69YDOmLNjsO55ttflzouui+51CCOkYUEMnhBBCCCGEFBKK6J0cnUz0vt3KPNfriFli9IKXAN21LOrbV66KodrHPqCq3LOdzK2u42C3qW9O4vnZ67TbBxLRE6avszsaiQQabxDKY5nXoi1EdHfx1ednr8UFj8/GCXe+77ldwnRmopumldc4l5krtjve1zYlHAK0LrInGb7/wAz8e/Y6hytft7CoLAO8vjmBnzz2KX762Ke+MTvbatMO9qAiut8kQmZKvZxcxrnkihVba3HsbdPw3CdrCz2U3EDRkhBCCCGEEEIIAUARvdMjCtIqcdtPJI8Y/g4x0VnuJYJ30cgoz5WI3qO1qOh+g6o828kib4KI0g+8txwLN1Zrtw+bE64iGmm5RvlAJ1M+H7gd8R8uaxGrd9XHPbdLJC2H6Jy0nOKyZVl4atYa5farttXhNy/Mw/KttVrjFAXjRNLE6GvfxLg/v621rUjStDLE51krd+Dy5+chnhDz0fVUz1SkjdC8XniioSmufrqhOWE6znOQiYVX52/EuD+/jakL1W537TiX4tPQ8Yf/fIGV2+rwm3/PL/RQCCGEEEIIIYQQkkMoondyRCd6WHHaK3ol3Ua+Tze2KOvVZa5E9J5dWrLeT9x/gGc7mWAexAT75pf+8RgidQEKi+oQNQxE8qQ4VpT6PzmQDxo9RF4vEqbpdKJblsP3/Mr8jfjXh6uU21/4xBw89+k6/OAfM7X2J+rLO+qDO9BtkqY6SiYuTAqI0S43vLIAZz/0sdQpbjvRxTWmWHDV4wbfXufMUdd1otc1JXDxU3OwrbYZT3tMVOjeqcUY51If8r4sVsS4n601TXjgveWOpxAIaUvCRGERQgghhBBCSK4ojI2UFA2iIK0jhsuIRIyMbGVZGxsdEd2LXGWi20707x26B6ob47j73WVSJ7NsvLqREyrKSiLKon21jbkV0SMRI/S19aNLaWG+Qryc0l4kTcvh1nbHuczTjKLZXK0nJIqfCi+x2W+OI2maSse3u7DoX6cswefrd+OdRVsAtETK2AVxbWzBXBSlxIgXL3e5uxiprhN97c761OsB3b0jlHSwJ7csy8Lzn67DqIFVOGCP7ln3mw0dWeT76WOf4rO1uzBlwWa8cNGkQg+HdEJY/5cQQgghhBBSSOhE7+T4CdK3fPdA3z4Cx7l4FPTsouFE1ymGarNn3y7KdT0qS1v3ZeAnR+6Jw0f0kbbL1okuw+sYtteFdyzLKIkYvvnRssgaNzKht7JQTnTFBIQf8aQzEz1pOp3oqokNGVe+6B/ZIX4uEh5FP0si3vd00lKL1XFhzO8t2Yq/TV2aEtCBdMSLqRDMZePzEvzdTmSPGHZXu3SfYSd1TEcfLf9/d/EW/Obf83Hy3dORNC2s3FZXMDG7o2no4vHYtQ4+lRTLJYQQQgghhBBCOjoU0Ts5osvaLWs9cv44fP/QIQCAqnKn4/j+sw5JvY4YBs4YP8RzP444Fw8BWUeUDRLncsTIPnj5ksPxrTGDfPtR9SvLis82SqI8lj5O97mtyYMT3W+4FbEoumic+7vOPNjxXifDPh+EjXNJmpZDLDYty3FugvT79KyW4pHLttRi0aZqqXArPqHhVfTTR0NvcaIrNhcz3r/ckJm9b9++oohtnwNxyM3C+LxE9N0Nzqc1dJ3oYp9em3h9thISIX7+ut2pZb969jMce9s0PFOgwp5+T+S0N/yO5pEPV+KfH6wI3G88aeK8f83C3e8sDTcw0inpaJ8vQgghhBBCSPuCInonR1UgszQawbhhvVLv37r0aMf67hWlqdcRAzhu3/54+7Kj8dRPJkj7E+NcvNzvtqjvFZfiFQfznYMH46AhPRxtD9yjB3p1KVVu4zeuEmmcS3aUxdJ9diuPZdmbN1HDP86lPBb1HUfEMPCtMYNwzD59U8sqYu0vE910xJY4RdugDnfTtDD5jvdw4p0fYPiVr2HJ5hpl22YPEd3XiW5aSrG62cPhDqTFZlEXNyWZ6HFNEd3tqNfNRE+4suhVeN2p4oSBfd3EIrP/m7cBAHDvtGVaY8oV9gSKaqJDd/tiw2tc9c0JXPe/BfjTqwuxM+DTM298sQnTFm/FbW8tyXaIWmyubsRvXpiHz4UJF9L+KNKPCSGEEEIIIaSTQBGdpBHUq4kjejtcxgO6l2Nkv66p96Ul6ca2mDWyX1eUK9zMoohb6eFeVon6ImUlauE2YhiOaBJbcNeJjwjmRPftzhPxGMpj+f0YRiOG73ltEdG9XeX2MQ/tVZlaVjgneji1MpF0ZqInTcshzDQ0BxPn4y7V9ObXFzneO5zeHgK93/XxEtETPnkq9nVz5J9LhO94Qi/OxT2Mv01din/PXuc5BsAZxeKpu3ucCvHa2XNbsgmVbGsWBOHFOetw4HVv4aNl20L5ZGcs346Db5iCl1snANoL4v3iNUEkI+wkWFh+/fw8PPfpOpx89/Q23S/JLdTQCSGEEEIIIYWEIjpJIcpO+w+qylgviniic1bU/1TZ22KbvQUx3k2JRja3V5xLNOJ0qtv56xravDKnXDambAt1isJ5eY7d3H/4xijH+2jEyDj+m049AMcKjvLyWARd/UT01jtEFHy7lLUvJ3rStJAUhG/Tshzu5mVb1E5yVX8idU3OKB5xrVfeup+InjAtdZyLjxPdRupEV8S5/Obf83HHW4ul/bjz1Kcs2IzLn5/nu/+E41yFdKILxxpJOdEz7wWdz3uu+N2Ln6OmKYEf/PPjUI7y8/41C7vq4/jl03MDbVfdGMfZD32M5/IYXeN1NGK0RtDTna9Cxyq8nhDJB5+t3YXrXv4S1Y2ZhapJeOhEJ4QQQgghhBQSiuhEisxhLP6AFYVqURBRiYFim737d1Pu1xbnvTQWmTNc3L84Nvu1e1xXnLBPxrYqcV5aWFQ9PC3KBSd6iYZTXIfBPSpw2/fGYIjgFAdaxm8Yzlz0PXpW4HdfT4vtOnEu9kGLEyVdSgvkRA9bWNQ0MwpoioU5V22vD9RfwiWiZ2g8wocmGye66eFElxUJdaxvHaMjE92041zkme2zVu7AXe/II1F0M9BV4wC8Y088M9Eljme5iN52Iu3gHhWp11659yrCCoOPfLgKHyzdht/827/AbT5wjDvg6W5jDb3NOeWeD/HIR6tw02uL/BuTAFBFJ4QQQgghhBQOiugkheEQRzMdxqIIJsa5iIKVSrwSl1d4FLD0EshtvARHd5yLLYyLxzZpRG9cfOzIjG1VInpMkleddZyL4ESPRgzMv/Zr+Oh3x2ltq8p3v/V7B+K7Y/fIOD/2uXdPdohFXMtLNOJc7G2jetcyn2TnRHeJ6JqZ3jLcLnC3UG55rBPxu+8TpqUUy5sS3uciXUTUJ85FIgCbknZhT1dSMxPdC1muujTapw1F2gP36J56vWl3Y5vt1++65wKvy+TU0IOd8I4uotssbWMHfEeHTnRCCCGEEEJIIaGITlKIwoYst1wUvkS3t7idqj6iKOxGIwYuOHpP33YqvNqonOjiJpUK4VdVsDQqiXPJNnNZzESPRgx0KStBv25lWtuePm4InvnZYRnnoVRyrOJy0UEeNQx0Fa5xSdRAN+G9rGCovbmXE70kYuC7Y/fQOo5sCJpdbuPORLcs/0xxz/5clurN1Y0OsVoUfbziXPyc016Z6H7nwhbHHXEukqHIRHR35nvLttk70T0j0b0y0R1PEbT8v1EiJrelE13ck/vJhMAdBKAt6hF4xdOI64Ke7rbMrC/E/gghhBBCCCGEdDwoopMUoswgi+nYd0A6J71EFefiUlPs3G13bvqVXx+F4/frn7EPnUx0Pye6OLZYSWaci2p7lTiYn8KiTic60HJOdVJdYtEIDtuzN3pWxjKWA0DE1UlVRUs7ccy2cG+TNC1UCtd8UI/yjP3aQpR4Piolmei//8YofOOAAf4HooHqWtU1J6TL/UiYpkPMjZtmaGc1kOlE31zd6BDLxbgUL+fw+l0NuOq/nyvXuwugivgVWY23jlEU4ZOyTHSJyC/LW8+li1yG10dAFPVtEVc2iaD78dxe24RLn/0s9V7nSRg34v3jVZA114jf0WGy2LMlm0PtLE50klvoRCeEEEIIIYQUEoroRIpMHL3p1APwwwlD8covjnBEpohCpyjgVpWX4J4fHgLAGadit5G5ndOZ6E6VRXRJexXibHGiC3Eura/F/koUdvlmhSNZ1j5bEUg8BvH8qdzwzvFkFvgUt3W7cHu0iu3u6yTG1yRNC6u216XeHzK0Z8Z+U0504XzIXP29upTi3h+ORf8qPWe9F+WKiB13AU9dEqbTie4VsaKDWzQ1LWD51lppW799PTFzjXo/lqUUaOt9JhRst7xT7JVli0uc6JLPRFihOOl6AiDbPlJxLpLzqvP5XLujHmP/9Db+M3d9almY2gTihEAoJ3pIxM+e11MO2eBZWNTSmxQpBvIh2s9evQN3TV3q+SRLcZ+V9ofFM0oIIYQQQggpIBTRSQrDI6YDAPp2K8Ofv3MARg/unooIAZxiiuhEP3Lvvil3s9MJjoxlNjIn6OyrJjsc6l0lAn+6b8ORYR6TRJmo3O4qIUrqRM86zkXu5FflsouknOsucd/e1v00QM/K0oz9uNskLQuH7dkLQEuhRNlERSoTXdhtpUdh0SCRGt8/dA+8+aujMparJkzqm8LFucxYvh0rt6VF7mzFR1tk7lZWgjGt2diLN6VzkC0L2FbbhOc+XYvdDXHHtrK6Ayo841x88uHjSQvLttRg4cZqob/MdrKc+bjEiZ4LAdzLOe1VWFQU9e2XTSELi55w5/sZy8KI6Nnqx2G/ScR6BNWNcY+W+cGR0R/wHHhd4/bCaffNwB1TluCZT9YWeiidhjacoyKEEEIIIYSQDPIfqkqKnjPHD8XTs9bgkmNH4vpXFgBQ54bbiI5p0X2pKjIqalOyQpc2svzx3l3LHBqNl3ALADGh6KksE10llMmcwt0rYhnxKICeszEaMZSuXVEcFkX60gBOdLdBPpWJ7lpuO9G9zoFpWjhn4jD0qCjFMfv0xb3Tlmfs1xa+RCd6V1cuc0wR8+PHYXv2xj4DumUsV4notSHjXD5Yug0fLN2Weu8VseJ1/WxskbkkamCv/t0wb91uLBJFdAA/fvRTzFu7K2Pbr+0/AAaAFwUntIi7EGjYOJdE0sTkO5yCsX1c4j5kIro78x2AssCpZVme4qjYl9dp9bprpE70kEVm6yUxMNk60dsScbe1jQn0y/z45HQfbhwZ+wFPgXia/e6bYmfF1jr/RoQQQgghhBBC2j10ohPcdOoBWHTDidh3YFqF8StaJ7q5RWFLFHCjEuFcfC3Ti22B2EtSkbnkxbGUSJzoohCuyj2WCap9FcU+dQRit8AsUhbLzEQHgjnR3W54e/LAPbburZno4jlwt0mYFspjUXx/3BD0qyp3ROLY2EtKPMb7yPnjUq9H9OvqeyyqfmzE8yQiE/e6hSi06BWxojOhYQu40UgEI1uPd+lmpxNdJqDb/f9q8t7Kvh2CsamOc/EjLtnOFn7FNbJYlHhCPxPdT0sWtwsrO4vO+FQmekgnugy/TPTttU0ZLvpsRfSw+rG439qQ8UZ+fL5+N753/0fYWdecuX9Hodhg50D87mrv7mKv61eIrPqODE8nIYQQQgghpJAUhYh+zz33YNiwYSgvL8eECRMwa9YsZdtjjjkGhmFk/HfSSSe14Yg7HuWxqCPiwy9qQoxMEZ3oUYVQG3HEucgzvQF1XrmILK/dxrQshyBrx6Y4okwU+/jxEcMzlvXpWiptKwonZ4wbIm3jJaJXlaeLgobNRHeTiq4R1pfHIik3d9TIvAY2boFWeo5aN1GJ8bd9bwwm7Nk79f6W0w70Ogzp2N2UlehHnnR3FVq9rzWP3wuvOBedCQ17+1jUQK/W2Jyd9eloDS9xMVZiSJ+8uOfdZfjLG4scju+ER5yLH7LM5rQTPb1MGucicaKrhuE3OrFIqWdhUcntfe1LX+Anj37iiHOxb1lZ5IzG14gULyf6m19uwtg/vY1rXvrSsbxQIrB4Cmsa8yOiA8Anq3bib1OXZix3TIoEjnNJv26LYqz59Lm3Xw99+4OZ6IQQQgghhJBCUnAR/dlnn8Vll12Ga6+9FnPmzMGYMWNwwgknYMuWLdL2L774IjZu3Jj674svvkA0GsX3vve9Nh55x0MUwyt9XL2ikCqKIKJQa4SIc0k50T2UCS+h2TQth4s6LSyL28s7H9mvG7744wm4VHAH9+1Wrh5IKzedegBk2pvooq4sjeLkMYNS76sq5CK6lhNdcfylqQmD9LIeFelJAMMhoju3dQtZuk50cV9usXZA93Jce/J+0rG6UR13ucKJLsPOfrep0Mgcb2qNQpHtx8+VDKSfXohGjNTTG9VC9rmXuFgajWbsozGexK1vLsZ905Zj467G1HKvTHQ/EhKRWSZcymJhdLcF/B3ZupnoblkynjTx6IzVeHvhFiwSc929hPiQ0qaXg/2WNxYBAB6fudqxvFBuY/F851NEV/Uvi9bRRbzti70oqR+yuC+SJ9r3rUIIIYQQQghp5xRcRL/jjjvw05/+FOeffz72228/3H///aisrMTDDz8sbd+rVy8MGDAg9d+UKVNQWVlJET0HiHEmFYosahnOOBe5UBuRuKBlrk+VIKGrsyQtC/2r0sK3LQbL9i+ja1mJY9wqJ3rENVkgy2kXXdSVpSUO4ahPl3S/otk3Gyd6KhNdGFsPwZ3tzER37qe36zhlTwTYIrzsqQIAOGhoD+2xuilTHHd5ECd6hdOJruNib2y952ORSEZ8i861sEX4WDSCLq1PSIhFHmUidKr/EiPj/GwXYjMynei+w5Eic5Pbn1lRwJQXFs3cViV6+omhCVPPuezWsbfWNKVeRyUFjWUidlhdU/d+FcnWSB1W8Bf3m684FxvZORb3H1wHl0/C5ot8Zq57xrnkba+dE55PQgghhBBCSCEpqIje3NyM2bNnY/LkyallkUgEkydPxowZM7T6eOihh3DGGWegS5cu+Rpmp0F0ogYpsOcQ0UVxWRBKIhIXtJfrM6zkkTSB7x86BIft2QtV5SWpnGpxX35CmSgSqzLRdTSZshKnE1106fcSRHQx07lU4ZIXiSp2HpOI6CrHu93Hw+cdivHDeuEvruiVEpkTvXWR04luYMaVx+E/P5+EfQdUZY5VM1cjpnCi+7nJxWNyx7mo8tRFbPGvLBbJcN9XVZTgJ5KIH5FGwYneNeVETwuaSYmAnRpfNJIxWbG9Ni0YO+JPcuxEt4t8in3KagJIRXSF6BkkE90zzsXRp4UtgoguZtjbp1Y6nJCiqSxeJ92lfF22TuqwERXifpcIOfz5QDbCbI7bEefS3p3o7bgoanuDGfOEEEIIIYSQQlJQEX3btm1IJpPo37+/Y3n//v2xadMm3+1nzZqFL774Aj/5yU+UbZqamlBdXe34j8jxKyaqIqGIcxHFIVG3tsWoIEK9LmZrgcynf3oYPrlqMnp3LcvYf4mPw1g8hr5dFSK6xljcIroozovnWhTRddzPKre+zOFfLjxR4Myob/n/cfv2x3MXTsRXejsnoWQTDXZcStTlRB/YvQIHD+2pGJPXkaRRFfH0i3MRhe8eGU50/a+3spJohpBvWsCV3xjluZ3tRC8R4lyaBeE54eGyjUUjGZMV22vTTnRRME5kUVhUlolu54iLArs0zsW0cPtbi3HqvR+irtXtrBqGrxPdkYnuO+xUu83V6VgbUei3xVeZqB/2q8X+7Nc0xjPOt6pL5fkIcb3OfXgWFmzQ+xslCoqPfLQKDc2ZkyC5Qu5EDx/nIp7LMOepmKCE3na07zuFEEIIIYQQ0t4peJxLNjz00EM44IADMH78eGWbm266Cd27d0/9N2SIvAgkAY4c2QfnTRqGW7+rXxAScIogKuOxvIiovvyg60CzhTXDMBxxHqLw7Ldfcax9lE50Zx+yHrsJxUO7lJU4xHlR4G0SRHQdV6Nfi4hiP+K18ZvAkE003HdWS6FO8Tj8xqvrRFdlojdJhF0RcdKhh8uJ7s5I96KsJJIxgWFalq8YazvRS6KGtJCsd5xLJOM6bBWc6M3J9H1hWlaIyIwW4hKR0naiJ/3iXBIm/v7OMsxZswuPzliVsY2Inxaa1IxzcY9TdKKL94Mt3MomKsIKm5GIgQ27GnDAdW/h9AecT0OpbnXVd5Ouw1p8Yue9JVtx+oN6T2GJh92cMFHTFFc3zgNhrqeN+P3ZFnEuueKtLzfh9c83OpZ5xrm0n0NrF/B8EkIIIYQQQgpJQUX0Pn36IBqNYvPmzY7lmzdvxoABAzy3raurwzPPPIMf//jHnu2uvPJK7N69O/Xf2rVrsx53RyUSMXDdt/bH9w4NNtEgikUqcVYWheBVkC1shq3K1aibie5uq3Ki6+j/Yp6624kuOsRFJ7pOtIOfLi2uF8VpxznwOb/uiYYbvr1/Kq5FdE/7Oc11J0pUDvwV2+o8txMd7M4iqplRPF5DKS3JzES3LP/78A//+QJAS4a87EmOumZ1VnVpNJJxfrYJInqT4ES3rPDxGTInenPCxJ9eWYD/zl2fWiYV0YXP05frWxzSYTPRxe8Jr0kx8ZSbJrBFcKI3Ck50uwuZCBs2YsMA8Mr8DQCAT1fv1NpGddxhxWHdIqHu/eZTjJb1LO4+m2iX9qKhNyWS+Nnjs3HRk3Owqz79xEjYe43RJMHhGSOEEEIIIYQUkoKK6KWlpRg7diymTp2aWmaaJqZOnYqJEyd6bvv888+jqakJZ511lme7srIyVFVVOf4juUWViS7iiHNp/b+XkBs6E10hTATJRBeHpc5E9x+hmHteEYs6zoHoEHeI6Boqgewcv3P50anXKse7M87Fe/wnHTjQuU9FMVF/J7pmYdHWcfZxTVr4CU3iJIGYiR41DMSiEYc7fGivSs/9u8caRORqiXPJzG/f3aB2B8uc6Oo4FzO0SFovifmYsmAz/jl9pUPAlMa5CAK8nbutOi1+p0scv3cmevqcJEzTObEgjNHuLyHJnQ8vbKq3VRUAVcXee0X5OPoN+WXn7t4+H5ZlYdW2upzGpMgul8OJHrC/bKJgCoV4vOJER5gJ3wsfn42v/+0Dac0BooYTD4QQQgghhJBCUvA4l8suuwz/+Mc/8Oijj2LhwoW46KKLUFdXh/PPPx8AcM455+DKK6/M2O6hhx7CKaecgt69e7f1kIkLUcQSBSjx965MTPV2oocbi0poFE3GfpnoYmFIUQgX0RmeuK1pOUUvMWqmoVlwHGv0KxNt9uzbVbpeFNHFrfyc6H26luGD3xwrbR8N4OrXFdFtJ/qTP5mAr+7bD1ecsA/26d8Nf/7OAVrbAc5MdPveEvPJVRMiQMv1cN87QTTIkmhLfJC7OKmXiF4WjWRcS1EwdhTRtMI7je0sc5Eddc0ZyxqlhUXT+1y1veWpANU4npi5GrNW7lCOQ4y28ToSR9FJ00JzIt1avJ4tETeWorCoxw48MC0rsCiqenok6RHlkwvcgqL9Nfzwh6twzG3TcO3LX+ZuX5JlpuPJgoD9CRu0pzgXm4Rj4ljdTnVkb3y5CYs21WC25tMOpIX2d6cQQgghhBBCOhLhKknmkNNPPx1bt27FNddcg02bNuGggw7CG2+8kSo2umbNGkRc+RWLFy/G9OnT8dZbbxViyMSFKBapRFNRXE8VFg2rlAP45XEjcdc7yzKWq1yNRgAn+o66tJCpihnRGXplafrj1ZRIOlyHZTF5JrqO085v1+I1EMV6sWc/JzoAVJTKM+Xz4US3HeX7DOiGh84bBwC4+NiRvsUSxWiZ7qKI3rpYFKJLPHJwymKRDFeo6l7as08X7Khvxq76tEBu992lrMSx3NuJnnluRBHaHQXTHNK1WisR0WX3tcyJLp4TW1BXnZdb31wMAFh180nS9UmH+1g9XrH7hGk59tfoempDJcCGLSxqWuptVbe66lhkDvlc4naa2/u79c1FAIDHZ67GDaeMzthuzfZ6zFy5HacePNh3QtHGr7BoUIew2Ly9iOimYsyqJxRIHijiW2Xhxmrc+uZiXP61vbH/oO6FHg4hhBBCCCEkDxTciQ4Al1xyCVavXo2mpiZ8/PHHmDBhQmrdtGnT8Mgjjzja77PPPrAsC8cff3wbj5TIEMUxUYASf+/KBChv/cZbmLj0+L3x6VWTM8eicqIHcE9vl7h03Zw3aTgA4Jh9+rYsELo89Cs9AQDH79c/tawxnnREYyjjXHz37C9ci4enKtipI2474l/ESQhBuPYT43Uz0cOOUxxXD6GQqGyCpiSq7qusJJIRv6HSBaMRI0PAtPvuUuqcl/QS0UujmfEvG3en878vfXaeY504IeDH/WeNTb2WZWzLRPQmWSa6S7hPmlbomJCkKWa8q/tIulzKKhHdtCxlZEpYYdOCpT3xk9omy0z0sBKsu/uT7pqOdTvrfb8fjrr1Xfzmhfl4dMZq7X3Jneje670Qt20vcS4q93wWc8GkA3H6AzPwzqIt+O59eoWBCSGEEEIIIe2PohDRSfvGKSjIFQWZqKnjhrZxyyyGYWTkZ7eMRb59JECcy+AeFb7jmTiiNz7+/Vfx0LnjMtY9e8FEfPnHExzxIU0J01GkUTxPutnJ6W2914simlgsUyxmqiNuq5oEKVDqd427V8Rw0oED0aU0U1AG9EV4AOgpZKLb5/QbB7QUKJ40orfyqQKgxbHvFoxV4mg0YmQImPY4u5U7RXTRle7GHf3iRzxAPMgx+/TFVSeNAiB3ossiSJokIn2DS1ivaYxrx9wkkiZWb08XhhXvcy/dVBTpE6bl+H4Rn0xIutaJhM4ZN4OL2monep7jXFzvG+JJXPfyAu3xf7RsW/idwXmdggrhZhvHueRC6BaH6Yww89jI57xQfw+GTuHtQlHdOlnp/s4khBBCCCGEdBwoopOs0RGLHHEurf/PJs5FhTLORZArYj7C7MXHjcR5k4bh3xdN8mzXv6pc6lqNRgx0KXOKqY3xJOIukfL339gXAHDTqencb73Coj7rHXEu6Y94pRjPonHuVQK4GIvikZDS2la9n4HdyzHv2q/hnh8copx8iUQM3H/WWIerX0VXQcC2BfEbv3MArj15P/z9zIM9x1JWEnFkdgNqcbQkamQIf/Y5qVRMBshQue9VBHGix6KR1PHKRPQmSXSLTESvb3IKQjvr48rivW5++cxcHH3rNLw6fyMAfdHV4URPWo7PRIPDia7+7glfWFSeib5sSy0WbaqRbqM6lnyLw7JJnurGuPaxux3/nvuSiJdJR5yL1i6F/tK0Rye6mNQTprAoCUeeE5IIIYQQQgghxBOK6CRrVAX0RG1EFGRtzcHLER5WlxjYvVy6XBS1Dx/Zx7OPqvIYrvvW/hjbGsuSDd8aMwgAcOHRIzKczj87agQ+u+Z4nDl+aGqZTBj71phBuPbk/VLv/UQbcXKiVCGiB41zEVuLwnmuMtG9OHH0AJxy0GDpOvF8VQhOe1sT7FFZivMPH47eXcs8neilJfqZ6NFIJENIjra6yitL9ctMlGrmUdu89sVG7bbRiIFY67WXFRaVCebu4wcyXZW76pu1869f+3wTAOCB95cD0HeiJx1OdNPxXsxtt6zgTnSveB2g5b4R71n7WCff8Z7nNjJ0nehhRVjp/WlB295sD29XfTMm3DgVv35+nrKtdFeW93ovnNEowba1+XTVDny2dpdW26CnuKE5ibU76h3L1E50iuhtRTE70QkhhBBCCCEdH4roJGt0nalu9h3QLafjOOWgQbjihH2k647cqw9++dW98OLPJ2FIr8qc7teL278/Bm9fdjS+c/Bgqagm5nirOGJkH5x/+PDUe99MdOFTrXai++7W0Ubcpejq93uawKuYZxDEsQyokk+U+ImRgTPRVf1IMtHtpxvEyBw/gjrRbUe3LrHWcy/LRG+URA7InO71zW4RPR7YDWo74pOaTnTx3CZNy/H9Io47aVnK4p2yz8gLs9dhzB/fwuMzVin3bcFy3Gs6bnJ1JnqeC4tKNXRLW9S1z/PrX2zCttomvDB7nbKt7BB1r6d031nGudQ0xvHd+2fglHs+DPSEhi6T73gPR97yLr7csDu1LEwmOiVf4ubdxVtwx1uLQ9eWIIQQQgghhBQOiugka4KKILYI6+X07uqKQ/FTIwb3qMCdZxysFKXLY1FcdvzeOGRo9u7yIMSiEYzs1xWGYUidvm5kh+l2c/vGuQiqTswhoqfPqY77VSXGiYv9Ms+9zNZBdDdxvMP6hJsE8RL0yyTit1cmeoYTPUSci+2Mf+vSo7S3CYI9aSBznTcmJCK65P6sb3YK8LsamgNPmtlPnOg60cV2SctyXIdGV5xLECe67bS++qUvlfs2reD1CtRxLr6bZoVsv6alN0EGpM9d94p0LQH39baROYCziWER5xfC9FMtTAzpfK8GZf2uBgDAW19uTi1zOtEFET1g37pPcpBMOsKpO/9fn+Cud5YFerKIEEIIIYQQUhxQRCdZEzb7tzwWxejBVdJ1v/v6vhg9uMqRF97e0SkMKRMJ3A5qP/1bdIeLESZBBF7AFeficKIL+/IV0XPvRO8pTJQEicLwy0QP0o/7OsVScS7Bneh798/tExk2XnFJskx02efY7UTfWRf3FT3d/djnRnReesUyiP2/u2irs7CoIKIv31KLF+esl/Yhu9LDevtPvliW08mtJaIrNFyVSz5XyC7D7NU7sdOjmK2IPRkixgpt2NWovS/xOgUVwsXW2WbH51NXFfsWxW9xYiponIt4uMxTD0YH0NBTbFR81gghhBBCCCHFC0V0kjUqoUknv/T5C+TFO/tXleOVXxzpyAv3oj1oEXpO9Mxz5hZa/IQXhxNdEOCDi+jy5eL+/VyvXsJ1kHxb8ZhE52wQRNf84B4VjnVuEb1bWQnu/eFYaT+qYrIAUBHCiZ4vvAroytzpMhpcIvruhrhvDIFbPLafAEg44j/U24ui6l/eWORoK45n/a4G3PrmYmkfMmFzZL/0ZIUqAsRyObkTGp/ZQhQWfWfRZuWx62JfR/Fe2NDqwHYjOxLxMgd1CGcjwAPOSRIdZ7cR2C+e6jz9UljcJEzmeMa5SLPkO5IU3LYU07nbUt2Ii5+cgxnLt4favj38m4UQQgghhBDihCI6aTPGDeuJ3l1KceiwdKRKRWkUXTSExxH9unquL/QP0n7dynzb6DjRZXnfTa786iCZ6KITPEjRy5ZtxcKicld6WxQWBZzHVCWI6GFFlecunOh4784nn3ft1zB+eC/ptrKJAVsQr1BkosuWB3G/B2FQa3FdLye6LBNdRp0r3qM5aXoK4ACQcN3n9kSOToa2ZVkZ/YttGzXFf9lt2b8q/Rlds6NOup1pWY5twz49AgQoLKrVysmPHvk0xFZObCd6kxDtoxTRZZnoCoFZBytLEV2kraKlzRw50YtHBibZ8If/foFXP9+IM/8xs9BDIYQQQgghhLQRFNFJaOwYgKGahTqfu2AiZv7+qxnFF3VEhbt/cDC+NWYQXr7k8KDDbBPuO2ssDv1KTzz5kwnKNjqu1htOGY2j9+6Lf50/LrWswSV4+hVkdTjRI+Gd6EZO4lxyJKLnwIku4ha1y0qc772y3mURNfZxqs5xj8rMMYtO9L+ePkY9WA3E6zO4Z4vL3uspAF0nujvOpSlu+maiJ0xnjrntRE9qZKLLBFFxO90ikrKnNcSu65rkkwgtOevp9zqRLEGc6NWN/k7+1L7zHKo+d80u3PTaQtQ1pSdKNlWrIiYyx5yNEC42D3OY4uXNZ4FGsWdxN+LnJ+gEbraTBp2ZfJ+6+uYE7piyBAs2VPu2XbujPr+DIYQQQgghhBQdFNFJaP5z8SScuP8APHzeOP/GaBG2ZBEWOqLCHj0rcdeZB+PAPXoEHWabsHf/bnjhokk4fGQfZRudOJeB3Svw6I/G49h9+qWW2ULmzCu/iimXHoX+Ere6iChcl2SRia4iiBNddDzLXPa6qET03l38nwCQUR5z3odlJRFcdvzeAIDfnLiP57YycdoWTCsUbv+q8kwRXXS/f+fgPXDcvv0y2ugi5uAPao2qycUEhjvOpTmZ9HX/J5Kmo0hpicSJrurDLTxHjHCio+zQVZnWIqZlOfbndtWrtpHh3nbJ5hoceN1b+Olj/i7yVdvqcPD1U3Dz64t822bDA++vwMMfrkq9Vx2v1ImeVZyL2E+2TvQ8iuhC16JYL7r3vT5lssiqzqahT124GcfdPg3z1u7Kuq98n7rb31qCu6YuxTfu+iDPeyKEEEIIIYS0Ryiik9DsP6g77j97LEaqolY0f/HmwkgYOvO2DTl5zCAA/k5yN7bINKB7OfbSKEIp6tpiUdKqHDi4W/eQeuWn047s1xW9upRi7/5d0aUsvIgviujicZx3+DB8bb/+uO17wZzcpa7JnLJYBL84biSm//ZYXHT0CM9to9HMg7bFZmWci2QCI+bqR7WtDhHDwAGDuwMAzjrsKy3jzIGIXu+Kc2mKm8pCmjY1jQm8+eXm1Ht70kF0dduf+Vkrd+DCx2enYkTcgqoFdeFOL2TfB1qOdssplirrPbQqoa/O34jlW+XRMO5jeWLmagDA1EVb3IPN4KHpK1HTlMD97y2XjzOHrNyWHr9uBM1vX5jvEq+DfYlnm4nucLIXQJUWC/N6PbUiQxxuoWPI2oIfP/opVmytw48f/STrvvKdif7F+t3abTvbZAghhBBCCCEECBaSTEgeyMUP4/YgRvziuL2w/6AqHLZnb632v/zqXnhl/gb8cIJecVWbqCPOJS0Wnzh6AA4e2gOHDO0p28wTVTFTvyKnlaUlmP7bY1EajeBrf33fsS7IZRd1KtGJXhGL4sFzDtXvqBW3wFxWEoVhGNijp380kcyJXtsqNqvc/rLl7hx29/sgxE0Tz/zsMGzY1ZCaaMmFiO4WiJuT/nEuP3v8UyzZXJt6b5ubHc7lVtH1+w/MAABsr2vC8xdOyujbsoCmEHkfMgewM45DFediOcagilQxLSBqABc/NUc5BncUTJCrIYv/aQuSihkL99l89tO1mDQy/T0WdCJU/M4P40R3iPAat0fYvw/ifaTKRPf7DvTqszOhilAKQjGduc56HQkhhBBCCOnMUEQnBaezOLpKSyI4cfRA7faXHb93KmIkCM44l/TrspIo/vPz7DPlgwp8dkHTbByjhiLOxZ0Xbxh691NLtJCRKhzpdqaLHDC4Oz4XHIoycbq+NVda5jgHFJnormx1rzH4YVlAl7ISx5MKucqjF2lOmL6TXqKADgDxVsFRFGjdwudnrVEPMkHVXVhXB5kuqxJB3duJ26oKiyZME9GI95MD7mNRTkRJlvXpmo4pakokMzL784VqvkLmFl+3M12ENOhHW2we5nvBEbPSRn9AVJMwnnEukqF1lr93KhrjSazaXod9+nfTmoAQv2860rkLOvlCCCGEEEIIKTyMcyEFJxe/i/lzNI3449wdGRK6T+H1iL5d8dsT98Wt3z0wUB+yqA5dRD1YzDMXiyICmcK0F6rJBjfPXzgRk0akXbcyJ7rtspRFshgG8PtvjMLg1qxyG3cMRKwkt3dxtiL6uGGZTyw0JczAzmE7H12MCnH3YIvVsiKR7okSHWRCv6UQQd37euvLTan3qmPVyUp3R6MEuR7dytPz21uqmxzrGkOcD11UTnQZCzemiy8GFbLF6xymMKizMKn/9mE/CeJ+VJn6QUff2QuLfv+BGTjxzg/wxheb/BvDdQ3yNCYb6tqEEEIIIYQQLyiik7yh+4O3s4sK+URW0DIXXHTMCHzv0CGBtgkjltmIgrOYj17vKnzpJYa7EQV3Lxd4eSyKvYTc/6hEqK/ziHOJtMbEfPi743DSAfpPImRLNEtF6M4zDs5Y1pwwA0d32AV1TYejVFFYVFhuX/IworF7jO8t2Yr/zF2feq/MRAfwwdJtqddxhaj86eqdeOTDlZ5jkBVJ1UU8PVtqGh3rqhvi+h0FRJ0Bn7ls8aYaz/UZfSfTEzDZFhY128idLHYtDlO8J4PGkXX2v3bz17U81fPC7HUFHkkm7aG2CiGEEEIIIaRwMM6F5A1dcSEXIggfjXZy9Tf3w/baJq1CpDrk4vRmU0BWFCDF1253dxC3r1ggtMQnSkW8v2RO9FEDqwDI41xEwS+MYBgWnXNx8phBqGmMY9rirRnrekoiaJoSSZQHLID6wdJtuPLFz7GrPi3+2uekW1kJaoSnCeyJlojREn/UGDdTRVuD4J6YO/fhWY73qjgXNyrHubs/6ba6cS6S5eJkwmaXE313ABF9yoLNWLypGhcfO1LrO1I1oSlburW2SVjvfV8nTQtf++v7KIkaePNXR7nE6exE9HwWFtVyonvsXhrnItx6/Kvlj6N8bRFNuGc7lPZ27ZsSSRgwsqrdQQghhBBCSHuHIjopON8buween70OR4zsE7qP9vaDNN/8+IjhOe0vW1czkLtMdMMw8MKFEzFv3W58dVQ/RzuZwK2iRHCU+znYRUHaLU5fcPSeuOjoEQCALqWZX6mO6AmPc5BrfUg8pqryEtx/9lh8vGIH/jZ1abpNxFBeW1k0TXPCDCWiPD1rjeO9fay9u5amRHTTtFLCczRioDTaIqI3agreIn5zFU1xXRHdxKyVOwLv395WJMhHSHxqY0dds2Od+70XP33sUwDAuGG9MEGjoLFq0kAmXoqTIn737ubqRqzY1lKktrYp4Sos6jusDLJ1sodB3It4/wR3ohePENweaMtMdNln9J1Fm/Hpqp349df2cTwR1ZmuYiJpYuwNb8MwgM+u+Vpe6m0QQgghhBDSHqCITgrO9d8ejWP26Ycj9w4vondGenUpxZod9Xndx5njh+KztbtwnEusDoM7ziWIICJGuEQMA4cO64VDh/XKaCeLWlEhCu5+WeqiZuAW6q/8+qjU635VZfCiTZ3ohlP4nzSi9fM1Nd0mYhgZ2ew2MudyU8JEZQjR043tJO7ZpRSrtrfcwzvqm1PnJxoxUFoSBZDwjF5RYQtvpmnh4qfmZKxXZaJntjPxg39+HHj/QKYgHQmgonuJxJtrmhCUmsaEfyPJvnTx+yyLEzqJpOVwkodxojuFVY1M9JCTgKLg7SxMK8S5BO2zM6mvOcDhRM+zdC27TX70SMtE1KiBVTh5zKC87r9Y2VHXjNrWyc6axjh6VJYWeESEEEIIIYQUBj6XSQpORWkUJx04MLv87k5ojPrr6Qdh7Fd64uHzDs3bPm469QC8/n9HoqwkWISHjGyc6Ko4FzfehVTVhR79nOiiABr1aFspcaKLFCrOxZ5ciLlia6KRYE8ZNCfMnMRnyLrYVd+M7a0u665lJSjNoiiu3f/sNTvxuqSAoa4w784jD0Kzy2IdxLyZdDi1nSdrS3XwMYmFSnX3K+J3yf2EcPHzE0+ajv7CxbmkX+czzkX8yhDj8WVxLne/sxQXPzXHMVkoGxlrgASjUKfLXfNg027n566YomXyjvDd1ZkOmxBCCCGEEDcU0UneaMvfWp1QQ8fwPl3w74sm4bh9+xd6KFpkFhbVv0PcTnQVQR4zFwV3t7jsRpWJHvSp9rYU0Jwiesv/3S76aMQIdM6aEmZKPLrihH2w74Bwmfv2WRAF4p31ccxZvRMAcOAePbLK3rXPs6ooqW4m+sbd4UV0Mc7lo2XbcM+7y7W3tTxE9M0hRHTdc6ksLOrzWfW7q50ubjNQHMuLc9bhyhfnO9oFrTMQ9u+DKrtdvH/s5be9tQSvzt+Ij5Zv1+4z3V8Sr8zfgJ0Bono6I20p4F73vwV57b89lXER/+ZSQyeEEEIIIZ0ZiuikXdO7S8tjxUft3bfAIyF+ZCOAOER0D9HXWwzPFJDT2/k50cXtIrj7BwejR2UMj/94gud2brwEv1yLEw4RvfX8uc+PKs6lvyKWpilhpo5hZL+ueONXR2HPPl0Cj80WHuNC5Mn0pdswZ02LiH7I0NyI6Kp7TiWuu3G7T4MgCtJekTAyMU28T9xOa3ehUR10J2+SSUvqsPXb3M+VK65uEdH1RfDLnpuHp2etxf/mbUgtE7fXObRcf7aaPO6f5qT3veUYe+v/b3tzMS55ai7O/MfMXAyvKAkrGosTODrXujGexPcfmIG/C7UfdDFcfyPE+7o9id65Rjx0PklBCCGEEEI6M8xEJ3ljcI+KvO/jf784AlMXbcF3D9kj7/si2eEWAwNlogt6qpdx2stVvUdP5/0oCsolPk70iMuJ/s0DB+GkAwZKs5Z7VsawUyi6KKJy+uYDh4gelYvo0YgB9/zBVSeNwrcOkmf/NieSKRexLcyHEZdsISYpZGSIBU/3GVCFmCSGRb9/YFttE6588XPp+kbNwqLZONHjiiKdQMtTGV6TQZ6Z6CGc6LrFO5OWJS3K6i+i++0/3aBZeJoB0Bfltgsubcvj/OQS1ThlcS42Dteu7NiERfbql1snCBZtqslitB2ToNE/L85Zj1krd2DWyh34xVf3CrQv93eZ163VmaRkw3FPF3AgOWTdznp8sX43Tth/QOiaCYQQQgghpPNBJzrJOY/9aDzOGDcEFx87Mu/7GtSjAmcf9hVUlGaf2U3ySzZil26cizuuROTHRwzHDycMxSPnjwPgcqL7RJo4nei2eCzf5qmfHoYJwzOLngKySJs0uRYnZE50d/a7zIn+7YMGo1+3cgDAqQcPBgAcPLQHAKeL2J7YCFIwc0BVS7/2sbqLb9p0KY1m5US3LAtX//cLrN/VIF3f0BZOdA/lOm56q9ri5IL7c7M1RGFRbSe6KXei+23vF/cibt/sykTXFfgthftc59hCx7k49pN+7RDRYTk+137xSI5Cma07cDugSXh0nzLRwfMJiyy/r9vTFRfHmu/irm3FEX95Fxc+MQf/m7+x0EMhhBBCCCHtCIroJOcctXdf3HzagehSxgcdSBq32BXE/CXqUl7b9e5aqlxXHoviz985AMfs06+1T7GwaLhMdBmjBlbh2QsmStd5F0HMrThRItj37WONRSKuNkbGEyOiCPjn7xyA+886BHeefhCAFgHUFnXtcxJERO/f3SWiKyYVykujKPW5Jl6YFrBks9rVqyuib9wtF+F1iHtMmIiTB7Kz1xRXi+i6YxfxmrxxjMuUO9H9JsCCONWb4knHPpZvrcVNry3E9lr9yQEzhJM9DDLBG2jJME8vd06K+InosjgXoka8vDrnKxtTsXtitA0fHCpqLOWb9s/HK7xrGHQk3l20BZ+v213oYRBCCCGEtGsoohNC2gS3IBFM+9Jzot986oEYM6QH7vnBIb49io46/0x0sUinnkpj54qP6JvODO9VqRb5TzpAHqESlqjkPLk0dEQjBn444SsZy2wqSqM4cfRA9Ggdt2UB8VbrcJg4l6ryktZ+7DgXhYhekr0T3es+0XWrVjcmQo8hkTTx0bJtmHDj25nrfNS526csSb12nyOvmBgV3pM3aUzTkjpN/bb3ExsdcS5JZyb6Q9NX4oH3V+CiJ+Z49mFZaXe/M1Pde98AHDMV63bWa2yQicOJHjcdy8VrIvvcichc9EyT0ETjNs7lqfRyXXcwLdkTZ6xRAQeSBzrY4ShZua0O5z/yCU6+e3qhh0JIinzGsRFCCCH5giI6IaRNyOYfy6LI5CWODulViZcuPhwnHTgwUP/eBUmdTng/J7rNUz89DN8/dA88dO641LLrTxmNCcN74YGzx2a0P2KvPnjlF0fgyL366A3ah6hkYsA9ARCJGBjQvdxxTLLjKxMEbdsJHcSBbtOtVUS3b4W4QgEtj0WydqJ7ja+hOXeRDyoSpoVzHp4lLQTqFfXixi1gJ32iYKR9aDvRTenklr8TPUCcS8KUClezVu3w7OPPry3EEX95Fw3NTid7UCf6EX95V7utwwWtykSHhXhC7kT3iUTvPApeFjgKi+bohM1csR13TV2a9RMW2dCecrgdT2Twpm2XrNkRbvKQkHzx7CdrMOqaN/Dhsm2FHgohhBASCIrohJCCEPanuKaG7b9/YQB+wnjEUaRT72tzRN+uuOW7YzCsT9qJPrhHBZ69YCJO2H+AdJvRg7ujIpbO93/vimNw+qFDtPbnRuaIdYvodhtHfrrkXIiCdkNzi2DodrXr0K0sBkAsLKpwoseyd6J7aVRhIlGCEk+aSse5uNxPTHNHsahy5L3QFQNbMtHly73w0+jdeeJ+oruKTdWNmLFim9MZm8/Cog4BN01TXB3n4qeNiuO1X7UfObXtcU5k+LfXEafPeHAm7piyBP+Zu965rce+25PonWvaqpBvIegohVIJaW/89t+fozlh4qInZhd6KIQQQkggKKITQtoVuRIzxB/PfhEtRggnelhEZ+1XencJLSbLjsktrNuTAyU+InokYqQibxpdTnQvEcJ9rmwnur2J7UQ/Yf/+jnYVWYrovk70NhLRVcegcuDLcAvxfkVJZegKX0nTkjq7/bfXd6o3J0yle1zHoV8SiThE+aRloaE5iRP++j6ueemL1PJlW2rw1ylLUNMYz+jjxTnr8MV6/2xgR/SKsFP3NRDjXMSx+bl2KeD5Yyleqwjy52H19jrPbT3jXLK8eO1Jk3dMJvGebZe0o9uNEEIIIaSooYhOCCkIZ00YGmq7nDnRhdd+wrwoPvtlHmeLW7DUzWB3IxXRdZzoiuMrL2lxyNc2JRzbeAlNj/94Au77YTqfvlt5ixN9a00TZq3ckTrWXl2cWfHlsWwLi1qeTnl3nMt7VxwTel8qEkkLZYpjSJoWdjfEUd+c8BU33PdDGCeobiZ60pRfTb99btrdqL3/FhFd0U+1dz9Ay8SMs7Ao8NrnG7F4cw0em7E6tXzyHe/jb1OX4ubXF2Wc48uem4dv/l2eDawSR8Uxi08DWJYzzsXPGe8sLGpnolPiUiFej2yF66B4XcpsR9KurngW8UnFT0c7HkIIIYQQkk9KCj0AQkjn46mfTsD4Yb1CbRsmiztbegoFQcOK2rq40zrCOt/FzewuI24RPWL/Xyjcqthfv6oy1GxNF9q0m3lpKtGIgXIhnsZ2ogPA9x+YkXJqdyl1/ikqK4kglqUTPeZx3sRMa8A/Ez8M8aTVcnyZkejYtLsRp977EbqVl/gK3KKAbVlWqMKiuuJjQuVE99n+uv8twN79u2HSSHmev2jcbkoklfeMTlZ9NGI4xmMqxmwzf52/41xEJZyK5zDhuCYtWfI2Scu5LrMf/30ROVpO9Cz6z4xzsZTrioHmhImZK7Zj3LBeqCiN+m8QEvG8d7R7tsPNCRBCCCGEkLxCJzohpM2ZNKIPSkIKl7kS0YO4Gvt0S4voJZKCnbnkoqNHAAC+NWYQAHmBUB1k7la3yzzaateOagScf6V3F8d7HfdsVUWJoyipKKIDaYG4q7C8tCSCSMRQOtHLY/5jbclE9xDRXXEu+ZiXSZimUpz/+zvLsL2uGau216O6ITNuREQUZcPmEeumx6gy0XVyxx/5aJVynShye2Wiu2N2ZO1KooZLiLY8vxNKokYgp7epcD6rzoBpAc0J/bgLRzxJJ1Lwwn7EcnmGZizfjute/lK53n2feDrRi+DS3fz6Ipzz8Cxc+uxned1PR85EJ4QQQgghJAgU0Qkh7YowBS2zpU/XstTrfDvRJ47ojdlXTcbfzjgIQG4z2DPiXFrPpc4+hvaqdG5rZ6Ir2n/n4MHYd0AVyhxO9JijTUpEL0uL6HZhVXfEi01laeYDVO7jsizv2B+3E717RUzRMjwJ24kuYdGm6tRr36KcQgNVoVI/dONcGuNJqbAbxv0uIgrTzUl1JrrbiS473JJIJEPU89LIgz5l4Chk6RiLfMwWLEfGvV/chakhzHdEwh5r0MKiXpz5j5mekz2ZO89uf54obtrGeBKvzt+I3fXek2sA8MhHKwEAb3y5KadDc+PMRLfw96lLceKd72O3zwQgKR6YGJUdM5Zvx42vLURTIv/1VAghhBBS3FBEJ4S0K4wCPFjvENHb4Ndo765lKVdkiWTW4DsHD8b4Yb2w38CqQP26xeaIJBNdhVtEt7dViYZXnLAPAKdzvKpCniAmOtTt9oN7VEjbVkpiC9zL/NzJohj91qVHSYX5bPEqLKoTW2KTyIGIbgvxfs7nVdvrceWLn0vGELyY6c66ZqzZXt+yf2G3TXFTHeficqLLXK+GAVcmuvcxxQI+yaHqTx3z4opzMb1Fckf3ra+z/UqpaYzj50/Oxuufb8yuo2LEIaJr3P8BTqZfS1E8zsXXvs74b3xtIS5+ag7Of2SWb9t8xFDJcEcQ3T5lCRZtqsHD01e2yf7zSTE8UUCKnzP/MRMPvr8CD3WAe54QQggh2UERnRBS9IhO6Vxp2EEKpPXumnZF24U12wp31u2Ivl3w19MPwnMXTsR3x+4BANh3QDetvjLjXFqFeg2hcXBPp6id0vYVp9G+ZqKYXVUud3x3KRNF9Kh0f6m2EsHbvaxFRJePS6SsJIK9+3drHad/+yAkTEsZSeMWi71wONF1c1ncfbTe6zoa/OtfZLpawzjRD75hCo669V1srm6UONHl2zTGnccn+4xalltE9/5OkE1CeaFyPqsEUAsB41wkhUWz5e53luG1zzfhoifn5KS/fBA+ziV/zn13f+4x5jq6ROdPzn/mrAcAzFmzy7dtNsWXgyAOO+mY1Av3fURIe8WeGCaEEEJI54WFRQkhRc/QXpX4zsGD0bWspM3cdyJlJWkhe5fGY/a5RIw16VZegn+dNz71/txJwzCyX1eMGdJDq6/MwqL6TnSxQCiQFsdVupCdeS8KnKJYLiLGuZS3nmuVE71fVRkWb65xLHM70S1L74kFUeA3DCOntkQvJ7qXNnfYnr0wc8WO1HsxiiVsrIotfAWZOBKJhxTvAWDBxmp0E65vU1wd59Ko4UQ3LSsjzsXrqYOg3xemQuRWnjrLGefiJ7w6ImJaN8t2YnBTdWN2HXQgsios6tpYvJYZRUdDSPrivaUaZ5Be812fw8ZyTFp1LOt2riayCCGEEEJI54AiOiGk6DEMA389/aCc9hlWC8h3JrqbPoIL/i+nHYihvdOxKtGIgaP27uvbhyiCRCNGShyKpCJj/I/J3cbvPNjr9+7XDV/dtx/6VZUro3AccS6tgvjA7uWQ6dqyrPTKssw4Fx1hUjyGiAHkMu3US0T3on9VueN9IgfOz7QTPdxNnwgo3ovu+Vgk4pg0aE4mle7wXz37GSaN6I1+redAFl9jZjjRvcdWWhIsAMpZ+FPcrzrmRbwuqsKksj5zJd915GKPQTPRs5uQcG4s3n/uoqNhPkq5vkphJpQ37m5Az8rSjElRL3KZS08KQyFi8AghhBBCOiKMcyGEEA3+ctoBOG7ffjhj/JA23W+vLrktaioK2SUpJ7r/n4LMPPWW/4tC4Q8mDM3oOxIx8NB543DTqQcoBS4xk7y8VXguiUbQQ1Lws7wkitf/70jn9jHnfHB9cxLLt9b6HJFTcHOLZNmSSFooCyGiu4UxZ5xLyEz01s3CCmBBneiNQvG1WNRwxrkk1E50ALjh1YWp16ZEHLYsyyHKt0yYqK9d0DgXZQFRVSY6LEeci2+hWInInq3A1R7dwbofN2eEfG6P028IhYhz0cp9byWoiL5kcw0m3vQOjv/re4G2E2mP9xpxEuQeI4QQQgghTiiiE0LahB6VLYLoHoqs67Ym6M/I08cNxcPnjctLEUovegvOax3HuB8O93UkvBPdkMS5iC1kUQPuOBm73wrBFSk6JEskIlF5LIJRA6twy3cPTC1z58ZvqWnCttpm6XGIiOdC58xeePQIjVYtxD0y0b1wF8LMRWHRbONcdPYrthALp5ZEDYcY3uQjom/a3ZB6nZQ5ueE8jqTpfe2CRl5YwnyBI3rFQ1wXJxn8zrGfE/3NLzfhptcWSicQVLRHJ7rureiIEtGYy8ml49brvg/zUXLEueRgmEGfdHmjtd7B2h0NPi2dOOKTOpgA28EOR4l4v3WWYybtg1wbGAghhJB8QxGdENImPHfBRJxy0CA89qPx/o3bgPbixhKLmjYnsi/kJgrHtitdx+HubmNvqxKGZA5g1V7KHSJ6ejuZuG/HvYjrupTpRxOIiFnaXrnaNr/7+r7afSdCxrl4O9HzX1g0F4iFU1viV9Lr4h6FRQHnUwkyIdk0rYyMZvHSubcJOpHhdIqLy+XtLXjEuWj2L47/gsdn44H3V0gLvKrIIrK+6Al6ywbRY9x9e2aiF6HO455wyxfO2gDt4+8mcSLeKXyagBBCCCEkPMxEJ4S0CXv374Y7zzi40MNI0V5+Roqi4u6G7Iuairp0kMKibnFXJjqLLlBZl7JtEqaFqooSxKIG4kkLx+3bL2N8InaRV3FdRSzcnzKx+1yJZKXRCJqTJhJJS+q898N9npOWhd0NccSiRsGc6DqIRyoWCG0RzUXnuOXphBQnRGSuV7cob5qW475LWpbDTV4SNQJdW+c58hcPLQuIJ5zHp4+67eYAxUI7iygW9Cgtn6gfN+6WhYhzCUJbFdlWTSYxZ7t90jm+LUh7gRNzhBBC2hsU0QkhnZN2+O/2sJno4qHK4lzCONFto7n4+8cvY1y1m8rSEjx07jgYBnDkXulCqTIn+vbapozx5MKJnivBrLSkRUSPm6bvj8NuZSWoaUo4lrnjRz5buwtj/vgWKmJRPHfBxFBjSmWit5FjuaE5vaNE0nKI4UnT+0ezOGkkuyaWZWXES4i3SdK0kBAaBM1Ed0joGkVALctCs2AF99MDZIJktlJke4xz0cVZ1NL/OJ2OW8DLrO1e5f7KClvIV4XjqZ0cCNBBRfSwexTPerHfa43xJN78chOO2qsvekqKULsp7qNpieD5eOV2XHXSfjkrak7NkhBCCCEkPBTRCSGkyLn51APw/tKt+NZBg7LuSxbnohML4Ba0bQFa/EHuG4nisfqovftmLJNloq/d2ZLnKxZIdWei6yKON1du3rKSCGqbWsVjH8GpLBbNENHd8SO76luePmiIJxEPKeqZbeBEt9lV34z563el3idNyxEHYVqW5zi6CNdSdv5anOjOQp7uvN8mobBpaUkkkGDpds3LlotYcMbsTFm42bnSo/8gl8Peh+wz0R6d6PqFRf2vgQrTshDNQqx2xLm4xxXinOtsEaRX8bsikTSl90YucMcnFTN/fnUhHp+5GgcM7o7//eKIQg8nay58YjYAYPSg7jht7B456TPXBXoLzdw1O7G1pglf239AoYdCCCGEkE4ARXRCSKekPf2MPGP8UJwxfmhO+nKI6K2ai04eeEYmeghXnM5+HPsQ2p912FA8MXMNLmot7ulwoocs9ir2ETYqxY2dg57wyf4GnPnvNl7uUjEmxaayNIr65szlIrYTvC0EsAk3TkWTkN0fT5oZkxVewzB8ng644ZUFWLGtNt2fq03Sshy1A4LeparoCmUmumUhnkyvfHX+Ru/+Ha9b3vlFjiRNC0f85V2UlkQw7dfHZMQEFbs7GMiieJzGNVAR9H53T7aI3wm5OMO5ji0Qn1ppTJjomi8RXXxd5LfaS5+tBwB8vn63VvtiPx6bLTVN2XXQgQuLfufejwAAUy8/GiP6di3waAghhBDS0WFhUUJIp6Sz5jCKwnS0NepCFpvixh2LYXcjnkc/nSywiC6M64Zvj8acq4/HxBG9M9ZVhnSiux3MQbeRUdYqosdNKyXwqopbigVVbdxxLiJN8Uwn+u+/MQoThvfCRceMUG7XloVFm1zFb5OmO87F8hyHGI0iE0EXb65xiNZJ08oQ3sUxhHEvy157ZaI3B6jsqetEF++zTdWN2FTdiDU76h1FW23ag4geFqeAqxHnkkOxUJygcU/WhOnakSeu+JgHGbP4HVjfnPBomR3OiaXivtfC1KHobBT5JQzNutan1Ej7IvQEKyGEEFIgKKITQjolvz1xXwDA2Yd9pcAjaVsiEid6VCM3OuoSd1NxLpJlKoL+VBJjZgzDQC8h49YpooctLBr8x9v4Yb0819uFT8WCmt8cM1DaVuZEVwnuQNqJLk569K8qx7MXTMS3xqijfmwBsBATR3HTyoiD8BpHXBDAdbRp07KcOdim5Yhz8euj2SX6qwRD1ZBb4lzUUS8ZyyQ56353oSjgym7ZYhc2ZYQZss42ops8sBM9IxPdGRuUNTm+TOLkSWNzPgseyCOOilH7CvzkSbt6Ji03dNRj/njFdry7aEuhh0EIIYSQDg5FdEJIp+TrBwzEJ3+YjOu/vX+hh9KmOAqLtqogOk70mDvORZKJ7tdLNk50N6IzPqwTPUwkzd/PPBgn7N9fub4sZse5WLC1VaUTvSRz3F5xLrYL2Xa7A+lirV7n1haS82lYTgrOe+dyZ6xNU9zE+0u3KfsRXd06Dmu3UJq0LDTGnU501an5x/srsPdVr+PDZdsc7WX7VwmypmUhHsCJLgqSupMafs06tBM9Cxd00NPivk+8rn+oSYAci5fi5I3sCYVc4SzuKn9dLAR2tRbhMeSbYrxuueDeactx/iOfpIqPk/ZBZ30qlBBCSPuFIjohpNPSt1tZp3uU1Bnn0vL6xNEtBbl6C07vjO1cgrOd/S0KQ76nMuCpdkfIiIirchHn4sfV39wPANCvqhzXf3u0sp0tmMeTZurHoUoYDxrnkhLRhe1s8dxrPqAtMtGnLtqCf05fkbE87iqw+unqndgmETkmj2qZmGhOBBXRnTqYaVkOId7rB/qfX1sIAPj18/OE9vB9LWJZCCSim7I+JdfO4a53FVJ1ozDCFzWz1+zEnW8vcRRlleEsLKrRsXDisr3fxfvP3VUYQTzXH7+EUGhYJ84lB7H0Rf/UQ+f6a65PNk9oFDOy7/ddDfECjKRz0eBTh4UQQgjpyLCwKCGEdCIchUVbVZVvHzQIvbuWYr+BVcrt3IK2LQw7nOg+Kk1Q47euUzxsnEtUU1V6/4pjMbR3Zeq9l1s85UQ30+Kxqr3oKNfp23ZYi852+xC8DsUWGvLtWL7xtUUZy1oy0P33O7B7OQCnIJ3U2C5pOguVmqYzO16nD5GgTnQAjox2EZnA44xz0XSiK8aXWtYOnei76uO48+2l6NWlFOdMHKZsF/R8iR8DK2DCibuwqO7110XsIxdirxg3k8/PtnjoRR/nQiO6Lx3pmNvhV1+759Y3F+Ged5fjqZ9OwKQRfQo9HEIIIaTNoROdEEI6EY44l9bXhmHgyL36onfXMvV2Loe0nVcu/obNdWFRL1e2KOZUluk70cWcdd3xqI5dRkWrSzxppmM+YiXy9jInulffjSknuhjnkr6GKuxzVQgDYiJpau3XzodvCupEd2WuJy1nJnpQkSVwJnrAOBdZn76Z6OI2kl215ziX5VtqPdc7JhBM4LXPN2L8n9/GJ6t2+PYd2C2e50x0S/Ha2UZ/R2KcSz7vgMBPA5CipgMZ0dv1d1975Z53lwMArv/fgpz019meBiWEENL+oROdEEI6EaJw7CXYunHnphuSTPReleo4mJZt0q9PO2QPHLhHd4wfri7U6eVEFwWuIHEuZSVRxJOJjPF44Xasl0oc5DaiMG7Hr6gy0cskhUW9nOhNkv7ScS4eInobxLmocMe5qLDPmyhI64zXtJzCnmlajkiYoHmrzugUfyeyBXWci+yww2RKuwuzZu6ncwhJlmXh50/OAQCc/dDHWHTD1zPaiIJMtvpa0gx2L/qR6zxxh1O+jZzoxZ9f3DEFuWzz9MU/D8V/DfWhiF44OsvfHUIIIcQNneiEENLBEX/riMJ0aVRffFYXH013fu6kYfjafv1xy3cPlLYUhd6SiIFzJw3DKM8IGbUgIopGKpFahhihohsX424X88hqFwV2Ozc0V3EuKVFeUljUfST79O+GHpUxAOnrX4gfvbpxLraIHjQTPWlZLqesFbg4qYhDkHdEiajaO/cnsmZHPR6bscqxzD1WQO7EU4nBsnF0ZDHDOYGQXi4Wj1WRfSa6fBwt74P3J/ahEkWD9BsXRP5c3QGbqxs9j7XYNcvAcS4d+LOjoiMdctC4LpI7EsX+ZUAIIYTkCYrohBDSiYgIgrAqZkSGSnAWf8OWx6J48JxD8f1Dh0jbigKHhw6dwquwqJhD7dXOjShAb9zdqLWN+9gjHuK7ASMl/vuJ6LJz6h3n0iKaieK7oXCi33jqaJwxbiiAtJBciN+8cVM3zsV2ogfLeTZNy3FcSdNyxFzoHLPKaavlRLecsRpurnnpS+W+ttc14+In52CZT6SJ3zg6shszaCa6zjVL4frMuD95CYcT3TUu35Fk4ohzybUTPQcdPvrRKky4cSpue2uxY7l43otdtCwWH3rStPD3qUu1Yod0yOVpL+4rGIxke6yq3EHI1dMvnXEiixDSsXh53gb84T+fIxEg3pG0byiiE0JIJ0J0d3u5nt2ociuD/PwRC/fp5GC6s8hFbJe1Xzs3YvTGjrpmrW10C5ACLT8IbZHbdo6rhHGZ+O9dWLQ1E70k8wkC9xANw4DdVToTvQBO9KSlJbxVhHSim5aVIXy7I2GCZK6Ke3SKlOr2QTLRxVNx8+uL8OrnG6XtRFHUOSkgi3PR3n3ByIW4qXWcQSJTXA3c90muRWrnhED2OCZvNDr0+xxc+3LLhI+deZzquh3FuQStu5Evnv90LW6fsgTfu39GoYeSQbFfwyAU+6ROR6Y9/N0hhJC24JdPz8WTH6/Bfz/bUOihkDaCmeiEENKJEAXhIDEoKoL8IBeN1zpJKl5xLhOG98LFx47AXv26BRK5qxsT2m1tgoj0SctCWSyKuuYk6psz41cc/Uqd6P5xLmKWuu0SzRDRkRaUbAGwME50vTiXitKWYxIFaR2BJGlZDpFv3c4G3PPustT7oG45ZTFRDye6n4jenDBx7sOzMG5YT4zzqAEgIgq44mvZMII60eeu2Yn/zF2Py7+2D7pXxPw3yAGqEfoJu+4c8dKSiGOixU0gJ7p7LK73XoVFxa51J1FM98FkSSLHcS6G4T8s8RiKQ652EjjOJT/DwIptdXnqORztKZInCB35KZxih+eeEEKcbK9tKvQQSBtBJzohhHRQJo/qBwD40eHDUstE87NXgUwvwpr9RMFMxzHolVluGAauOGFfnHLwYO1scwCeApxyHAEO2LTScStNrfsKEufiNXFgx7k4Jj9af8e6z2fEMCQiuvpH7y+/updyXTYkTVNLtLGd6E3C9dERwC3LeVzn/esTrNpen+7D1cXRe/f17E/QJbWc6IDliKCR8foXGzFjxXbc9c4ybQFLFHCTPsJwUDHjO/d+hMdmrMbNry8MtF0QVmytxeXPzfNtF2QSzrIsdCvz9n6IvWVfWFScvFB3dsyt07T6sxSvw5Jrp7yy6oUowIo58VnvMfcUo7BfDIiRPNkWKS0mKOQWjlyd+yBPihFCCCHFAEV0QgjpoNz7w7F49ZdH4NxJw1LLxEiVIHEuIqJgG+RnlNOJ7v/DyUtQDtMuLEFEelOIc7EJIqJ77aspkelst8+/+3RGDCPVl22UVQlt3zl4MC48ek/lfrMhkbS0hNKyVCZ6wMKirkx0N+5j9ruUYvukZeHxGaswf90u5bkzTX8nsjgxoCsaB3GihxVQl2z2zmLPhh/+82P8e8661Puwn1Cn+Ad08RPRHYJvsEx0N7oi9fpdDd77SY3N+zoCwb5PxcmbXKRaqL6T21UmekBBrsgPJ3fkeganSCjW+/Hzdbvx3fs+wuzVucnEL0aK9dwTQkih4Ldi54FxLoQQ0kEpLYlg/0HdHcvEHz5hneiiEBkkLkMUOHS0jqhmwdAgcSsiD593qF7/AUR0y7JSRTJt1JnowUR0u1CpmIluX063AGYY6b7sayT7zfvUTyfgkKE9lfvMloRpaYnhqUz0ECK6lzBtWpZDwDVaJxfcfc9auQMlUcPh8p+1cgdmrWwRQa755n7S/i1YviK6uH9d3UElovs50a0AGfC5cC+rkBXtlV2nIHEupmWhq4+Irozj0cA9FO8nEYKfu1xni+faid7yHZLZj2rc9I+2Hzqohl60hUV/8I+ZqGlK4LT7ZmDVzScVejh5IVeFRQkhhJD2Bp3ohBDSiRB/+KjEXT+MkE50kVw60YPErYgct29/rXZBjO5JM9OJrsqelwnmXudlV0McgCIT3dXWMNKi4LOfrsWp934oFXsnjeiD8lhUOpa+3cqUY9ElkdSLc7EnHuKJYJnolisT3Y3pOuSWrHjnsprGOL7/wAyceu9HDte4ox/PTHTvcTo/L3qfmERIJ3oQLbWtNZAwOq9D/LPgENFlQrQzzsVnh+7Coq7VCQ+ROtSxiGK0spF+f/nIRJeRy4gcUhjck1EdhWJ1Q9c0Ba+90t7QPfe/+/d8XNdatJgQQgjpCFBEJ4SQToTDiR4yziUXDkQdYVrXAR7EKW6z74Bu0uWDupfjD98YhX36p9cHiQhoyUR3OtFLFOdZNklQ4jGxsWxLS/zGQUN6pJbZl9M9xohhOCYX5qzZhfnrdiv7dk9EfKV3JWb9/qvoUhpVbKFH3McpbhPaiW55Fy41Lads3TK54DzWulaHP5COzHHjFb+hW1jSqx83SVN+Hvyc6EFEpVy4oYMQZm/OCBQLXcvTInp9s+Raie0D7st9X4jXIBenyhFNk4P+EknnuckWZZyLGHFU5Cp6sRQWLTZyfe8VC8V+P3ZkdM79+l0NeOaTtXjko1VojMv/tpKOz8bdDTj9gRl444uNhR4KIYTkBIrohBDSiRCd6GELOjnElpC/YQuVif7kTybga/v1x4Nny6NcJu/XHz89ak9PMdsL07QcTnFA7fiXxdXIXPWis72sJIKTDhiYem+ffvcpEDPRU8s8zpN7nYHcFPxKJvXiXMpbz1lcyFDXcUwmTW93rGm5RXzDcwJHtUtvJ7p+nEuowqI+BU7Dxnq0tSM12/1ZVvo+AYDqxrhkHwH253N/O5zorhMf5kjELrI985ZlOcaXm0x0xb5c+y1mWKNQjtZTEEXKa59vxCn3fIi1O+oz1lFELxw6cS7JHNdtIO2Ta176Eh+v3IELn5hT6KEQQkhOoIhOCCGdiEQOfnRGstfQtQTaPppxIl5O9L+ePsbxfuxXeuLBcw7F0N6VjuXfG7sHAOAnR7QU2AxbrFRWWFTl+NfNRBeLKXaviDne26JWphM9c1nM55iCFn7VIW7qxblUCDnythtdx+BtWZZnRIppOX+8G4b3salEGdUeLMtyOIJlOOacNJWEpriJm19fhI+Wb/OMFWlZJrzWN8UHapsLso5zcfURT0jiXFzO9SC47wrTZ/IiKNmMzY37Ps3F+NRO9NzuJ58E/d4q9kmBXOGI5Cn2i+ji50/OwWdrd+HKFz/PWEcRvXDk4t+SpHOwvbap0EMghJCcwsKihBDSicjFj05RqAgrQuho1OdNGobP1uzCV0f182znJch/ffRAbKtpxp9fW9i6X3nbW757IG44ZXQqmztMRAwAJC2g0hXnElMUcJU5w2X7FQVmdzFYlRPdMAy4DfB+UR/RiAHTFoQNZ/9hSZrecSs2FUJsTFPCRFlJ1BGn4d2/93pRZG/JRA8uoiud6HBG0Pih+/F75KNVAID731uO+88am95fJ3Oiu7Oc/bKdHWJhlofnN3kRlFyebbeAlRMxWPmxyO15yCdBv7WL+2hyR0eYLJA9eUIRvXB0gFuKtBG8VQghHQ060QkhpBORCxEkB2kuWo7B8lgU9589Ft87dEjIvbS4vcV4FZU2bhhGSkAH1DnmflgSJ3pM0ZdsLLLzIkZYqFzt7okEw8gU5OOKopmyfefKiZ5IWlrOx8rSktR5213fIpboaNMtTnMvJ7qV4UT3OjSVu06ZiW5Z/nEujv0F/8Q4C4tmbi9OjgTLRA88lKzw2t+yLTWYsXy7bCvH9uL3l/26KZFMXYNAcS5u3JNOHuc9jCjpdKIr2mjeH4Vyohe7aJmLCKqOiDOSp2DDyDnFWljUi5rGOO6auhQrttYWeihZ0R7PPSkMRf5ngxBCAkMRnRBCOhG5EEEMhxM9XB8hjd7a/Ojw4Xjg7LEZYriuOBw2ziUpyUQX+xILlsrGIstiFwuVZgjytnFckonudrrHfWJHRNE9V5dn6ZYaLNhY7dsuYgC9u5QCALbXNQNI/0g/cf8BOHnMIOl2bpHcjWU5BSQDmVnxIgmFIK4STS3AN85FJIBpPb2NQziWjEEUZ4PEubR5YVH1/ibf8T7O/MdMLHcJS84sZytDJG9KJHHI9VNw9C3vtrYXzlWWcTVeWfRhzlwuT3fmPZeLJ4zky9uTABv4e6vIjydnuD5HHQWdp5WKjRteWYA7pizB1/76fqGHkhVB/y3Zke47EoyO8CQMITrwVu88UEQnhJBORG4ci+nXoX8Y5dkx+J2DB+OE/QdkLPcqrikSNs6lJRPdGeci9vXLr+6Fnx45HP/5+SSpaCUrLOpwomfEubScf7cgH5Fkf/vFjkTz4ERfsrkWr3+xybONnd/eq2uLiL6jriU/03awRyPqYqB+cTFJ01lY1C8TXeVEV31uLMv/vNY0JoT+g4s+olBkWhYSSdORMSqOLYg7cOmWWpz/r1kp53++0fnuWb5F7c5s2d4pbK/cVoe65iQ27G7MeOLBb5LgrqlLFe73FsLG5KhwiNGK703d3bjvI53t/D7SKhe3MkKnGF3fRTikYsByfW5yRW1TAiu31eWuw4CEmZQsNJ+u2gmgc2SKi18RneBwiYJijwEjhJCgUEQnhJBORBgRz00xOtH/+K39cfZhX0m9Fx3dYXYVxIk+fniv1GvTRIYTXRRtK0uj+MNJ++HgoT2lopVb5B/cowIDu1ek3sdaj8t2bR88pCeAzGOMGEaGIO8XOyLuuy31MXuSoVeXlkKy22tbneitv7ojEUMpfJuWdya6aTnlyhYR3bt90OV+5/Wal75MvQ7zJIjoOjYtC6fdPwNj//Q2lm+thWVZWYm97y7eipteX5h6b1kWtlQ3Bh6jL4aeG839mbBcb7ziWpKWc0JF51Sc+Y+Zip25M9H9+/Ij6Ni8yE+ci3y5eN2KPcKhWDT0YhmHjeOJjhxew8NvfgfH3jYNCzb4P22UD2Tfp0V+i3Za6EbuvLTDB0YIIcQTiuiEENKJyMU/Zp1O9HDIHNfZcO6kYbj+2/un3vdudTWHJRrR//P49E8PS72WO9FV+3Ceg15dSh3i/b8vmoT3rjjGkbFux7l8+LvjMO+ar6Fnq5guE5kz41z8MtE9V+cNe+z2xMCOOqeIXhIxlKKU22nuxrKcoooBwzM3WRV5o8p1DxrnEsZ96BZf563dBQB46bMNGeLpb1+Yj09W7QjU//x1u1Ovb3lzMcbfOBXPzFoTeJx+6By6+x50x7m441rced0q17SOgONu4Z2J7ttdZv+OY8mOuLuwaA6iEpROdOG1Tn2DQiIewz3vLsM5D89Cs0ctiM4YMZHLI97d0PIUy7uLt+SwV33kk5Kd75q2B3hVOi+89oSQjkZJoQdACCGk7ch1JnoxpbkYhoHHfzwe9c1J9OtWnlVfQZzoohielBQWdTj3hRMm7uKciV/BifsPcAjf0YiBkmjE4aq341zKY1FHIdSMTPSIkSHeB8lEz1Wciw5pJ7pLRLfkUTUi8aR3JnrSconsPk50VcbuUwpR2bKsQMJ4KCe6Q8xNLzeQ+WTJ1EVbMHXRFqy6+STt/tftrE+9vm/acgDAdf/7EmeMHxp4rF7oCNnua+2OoXA70cXJOPdTB0Gd3xnO9lzHuVjy12FIuj7LOreVeiqqBbUTPf26PUVQ3PrmYgDAq59vwHcO3qNN911sZymX914xIXsyoiMdX0eC16XzwqcQCCEdDYrohBDSicjF4/i5yET3cgNnw5F79ZXtLHA/sgKfOpgWMkT0qGHgmwcOxIKN1Th8ZJ/UclEwvPLro1BRGkVdUzo/2/7hIbriSxW29szCopJMdA9Hpns8hYlzcRUWTWWiq3+Av71wM95euFnZd0acC8Jlom9rjZhx05wIdv+rCpd6YXqIubmYFKsWMttt/L4mmhJJ3PTaIhyzT18cs08/rf2o+hSPz31p3DEUlmIdkJmPrxLUdceX1ziXLGXWzEx0Hae901nv/g5WieyOiYwiF9FlR9AY1//Myc5LR8D5ucn9NSzUKZNNehb3Hdq5cPgtKKR2WpiJTgjpaDDOhRBCOhG5EEFEsSV8Jnrb/erORyb6fgOrAAAHD+3hWG6aFspizjiXiGHg7h8cgqmXHe2IepGJ1qIb3D61MUHQjylE9MzCopk54n5xLsXiRN/ZKqI7C4uGn9Rw1kL07iuoKO1XVNRNGCdvQiGiG0aw/r7csBtXvvi5Vlu/Xh+fsRqPfLQK5/3rE+39q35Ii8fgVdC35Vo687kd8S1mpugubutHZpyLs6CrcyzZfY+qNtft1X2fBh2O7HwoT307cqLLPtte3xzieXth9jocfMMUzF4dLA6pPWApJpfaO7KvX+p1xQmvS+elyP9sEEJIYAouot9zzz0YNmwYysvLMWHCBMyaNcuz/a5du3DxxRdj4MCBKCsrw957743XXnutjUZLCCHtm1yIIKLY8ufvjAYA/PK4kaH7KEb8MtH/df44XDp5bzxw1ljH8kjEyHCi2125HY7iLmQiuk2J0DBWoieiG5K+itaJ3rqzbuUtD8fVtLrxxTiXABH1DkzTcjhpDcCzryD55gDQFE8Gah+0f8AdK5JebsDIiPXw4qS7puNpRSyNe3LNzzW4bmeD9n5TfSqWi8eXEefi2kiVeQ5kPmUjHpKO89t9zKoYHdl7HXIpIrm/x3WOzzn5mdleJxNdvFbF+BWezffWr5+fh131cVz67LzcDahI8HqCoz0jd6Ln7wA74EMKbYbqqvCcdnzoRCeEdDQKGufy7LPP4rLLLsP999+PCRMm4M4778QJJ5yAxYsXo1+/zMeDm5ubcfzxx6Nfv3544YUXMHjwYKxevRo9evRo+8ETQkg7JCdOdOFXz+njhmLyqP7o3bUsUB9t6XQOQ8wnzqV/VTn+b/Jeqfc3nXoA7nx7Cf5y2gFYvKnG0VZ1rOJy+7WY8Wz/7nBkoqviXNzvDSNjoiKIE70tIw3sHPguZS3/JLEjbUQnuhWyIK5pWY5iuoYk5kYkqBPd75y6CTOJpSpwGdSJ7kVdcwLdymPCfjLb7Kpvxguz1+FbBw0KtQ+1Ez19DjPiXFzSi/tciOuTpuWMvvEQwWVkOtHVMTphRAGdQqe6kQfu+zRowWjZXlSTS+7irV59FCNeX2Wy0+333d8ecRfo7Si0tRM9F313nLMfDPV3XhsPhLQ9vMakk9CR/r4Sbwoqot9xxx346U9/ivPPPx8AcP/99+PVV1/Fww8/jN/97ncZ7R9++GHs2LEDH330EWKxlh97w4YNa8shE0JIuyYXmei9u5a63gcT0IG2dR+F2VdVRcy/kcCZ44fijHFDYBgGVm2rd6xTRVQYEhE94mjbcq3EaJnSElVfzveyTPQghUXtV7LbJWJ4P5775q+OQjQCTL7jfc/9pfbbOs6uLhE93rqTWDQC0wrm+LZxjzNsJrqKoHEuqsKlXiQUwqWssGhY6pqSThFd0ubSZz/Du4u34sU56zF+eK/A+1B99QRxoovfX6blFI/dmenuIqT+A3S+9cpEDyOi59INnBHnEnB72fhVnwvxrBZ7nIts8s+voKob+3uomMg+T1qcXMqyKwlBz3GuYGHR9gMvize7G+LoHvDfne0FOtEJIR2NgsW5NDc3Y/bs2Zg8eXJ6MJEIJk+ejBkzZki3efnllzFx4kRcfPHF6N+/P0aPHo0bb7wRyWS4H9eEENLZyKYQ4T/PORRjhvTAX08/KOtxFLsT/efHjMBBQ3rgj9/aX3sbW8Apj0Vcy+XtRb3c62yUCO5zVSZ6RlSMYWSI900+cS5iF15xO1651SURA/sM6Iav9O7iuS9Zf7Z4VdvU8jc93jreWDQSPhPdtFzubcNzUiWoyO0XkePGbyJDhspdDYSLh5FR2xR3vJeJdu8u3goAWLCxWtqHZVm48sXPcc+7yxTr5ftOBIgIcZ8LUURLWpbS7a3zGz4jHiZpKdeF+RrVyaXW7dYtHuqIrM4if5nrlSK6wolejN/guRhTZWn2InqxnZuO60Rv2zgXEgyv+C2S5ulZazDmj2/hgfeWF3ooeaHI514JISQwBbNbbNu2DclkEv3793cs79+/PxYtWiTdZsWKFXjnnXfwwx/+EK+99hqWLVuGn//854jH47j22mul2zQ1NaGpqSn1vrpa/uOPEEI6Az0qY9hc3eTfUMLk/fpj8n79/Rtq4CXE5powLrkelaX478WHh9qfWDwUcEa0qJbLmuzRsxKAy4muENHdtOSIByws6hiP+py1iG3yX0XlrUVVVWK/tL/WpraIXtMYx7IttSnRvzRqoDF0YVErw72dUyd6QBE9zCSWOKakY0Igu0kxkZrGhOO9X68y0faL9dXKzHVALaKoMt+lbV1OdFFES5quQqMBBRwv17v7eMM4g/2c6JarUKq4/L0lW7HfwCr0qypvGVuWhUVlqD4WYte5eJIpn0iPwSvORXKndylCJ3q25PIpiGKChUXbEbwuSuyC3ze9vggXHD2iwKPJPZxAIYR0NNrVvxRN00S/fv3w4IMPIhqNYuzYsVi/fj1uvfVWpYh+00034Y9//GMbj5QQQoqTh84dh9/+ez5+9/V9C7L/aMRA0rQwaUTvguy/LShzOdFVoq2hEK3fvuxo1DTG0b9VMBMz0VWFRTM7zxR4g2Sie81x9O1Wpiws6S6qqoMt3tviVVPCxOQ73kutj0UjoeN/TLcwaXgfW1Bnd1AR/W6FS9sLMbJF3J9hGDmL16htconoAbptjCexYmsd6psTnu1kXbpz3TPFamd7tzCeNNMXc1ttsyvORV+cbxmfy4nucL23/P+DpVtR05gINXnhdKJnbv/r5+dLt3v184245Km56FpWgi/+eELG2FT9eSETNVQfC3HcuaipkU+Cfk/I7vOuZdHMhe0chxO9uC9hIMLEY5G2w/kEhJwifyiR5IBi+85paE6iorTjfc8TQtqOgonoffr0QTQaxebNmx3LN2/ejAEDBki3GThwIGKxGKLR9BffqFGjsGnTJjQ3N6O0tDRjmyuvvBKXXXZZ6n11dTWGDBmSo6MghJD2xejB3fHqL48s2P7nXHU8ttY2YmS/bgUbQ75xC8luR7iNyo0/sl9Xx/tSjTgXNxED2LDLKXT7ieii2C9z7//tjIOwYEM16poTeGKm3HGsM75u5SW48OgRuPXNxS37Sono8h81sZJI6Mxd03IKjBHDKGgmehjECBh3HEyunOi1jd4CuBtxr+c8PAuzVu7AGeO8/22lEmATwjl0N3GLw444F8tyHP8p93yIyaP6Odan+gnhRE+49gUAZz80y7cfnf5lw/n3nHXS7aYsaPl3sjjRkVFYNOBtECjORXhd7JnoMry+OeyjEe+rjulE957AEVm3sx5LNtfg2H36tWmB6TC0tRO9yE9H0eG479rfVwfJEdnXdMgdz36yBr/99+e4+dQDcMb4oYUeDiGknVKwTPTS0lKMHTsWU6dOTS0zTRNTp07FxIkTpdscfvjhWLZsGUzBebBkyRIMHDhQKqADQFlZGaqqqhz/EUIIKQzdK2NtLqAfvU9fAED/quAFUMPgjnNROZ91f4+LRU51nd4Rw8CkEX0cy5qDFBaVDO7bBw3Gld8Y5SlC68T0jNmjB8467CsZy8tKotK4mtJoxNM97oVpWQ6B0S/OJehjx34587lAdJ87nei5Kyxa06QW0TftbsT2WnUE1KyVOwAAz3yyVtnGgF4muvv8Z0SsuKJf3GLy2wu3SLcNUVfUJdhnLwRYitd+NMUzr7FbzA46NFlz5edCkYlejISdbKsVnqIoxsKi2RLks3DEX97Fjx75FO8u3uLdUKBQ4nJbZ6IXkRbY7lD9beU57fgU05+N3/67JTrnd60ROoQQEoaCiegAcNlll+Ef//gHHn30USxcuBAXXXQR6urqcP755wMAzjnnHFx55ZWp9hdddBF27NiB//u//8OSJUvw6quv4sYbb8TFF19cqEMghBBS5AzuUYFP/jAZ711xbJvszy10q4TliOZf4B6CiB6L6qkVEaOlwOfUy4/Gcfu2uHPjPoJvxEdEF/tWIR7rmePlzmTDcLYTz5fMjR4riSjd/H64c7INw/u8+7n13bSFiN6USBdPb3YVUs+3E722KYHDbpqKsX9627E8jGirEreSXiK6q60zosXyzOgW9xcmE12coFDllQfB4cQP0Jl4/aV9IfjkjzTORamhp9sWu4gu+5rQcVOLNQGC1HNQUWxnKcwEzsetk2PFjOx+pChbPOjEuZCODzPRCSEdjYLaLU4//XRs3boV11xzDTZt2oSDDjoIb7zxRqrY6Jo1axARfu0OGTIEb775Ji699FIceOCBGDx4MP7v//4Pv/3tbwt1CIQQQtoBfbu1jQsd0M9E9xKjRXpUpp+00hV47K5H9O2aEuH941yCj82NWAT1z6ccgP/MXY9GiZNWLGLqFNFLsLM+7mhbGjVCOx1bfrulf8AZ8I5zCSoSBs1ED4PoRF6xtS712rIy413CUqdworsjgbJBdWrFHHq/39ri9bFcTxlk7E+4NFqZ6K6du8X9bItqhnWiyyKDMpzoGv2Id73sUFRis9hWPCdFGW0RcFD2sYmTSB1R8LFck0+5plC3guzrr+NdveKiJKJfi8PxndcBP1dEjyKfeyUkZ/BrrvNQ8GcWL7nkElxyySXSddOmTctYNnHiRMycOTPPoyKEEELCkRnnkq2ILjrRg4noQNr13RDPdLSKiMJ2WIFMLIIaiRgY1rsLFm2qcY3NcLjBy2Lp8yWLUohFI6FFfXdhUcPwdqYWY+ZzkyCi/v2ddGHSRNLKnRNdIaKHPe9uWuJcQjjR3cK2o8gl4CWZOTLRNaQ1dwu/6JighC3uKItzySgsmoM8F9XDHmLXTnd+sF22BbJDcC+TnauaxvTEXRF+BeSUYrxuYZHGuXSkAyxCIhFD+0PiKKbMy9Lm1DYlUBmLhn6SL1fwM0kI6WgUNM6FEEII6WiUZzjR5e36dNVzx3cPGediYwvbu1wO74xthIGGjTSIRvxd+BHDKdiXa4nooYaDjbsbsb2uOfXeMNTXAwCSOXJ25xKV2z1pmspM9OrGOBZsqNbeR7UizkUVRRQmd1jpRBeOIUMcdvchrE9aluekR9D0FD8nerY6gBVQ1LeROdEzRfRgYwkW5yLuN9h+2hrZMejMA4kTjDLBZ9mWGlz85Bws2qT/mSomnIdUfN9xYZEWFs3j/ory6Ys2JhrgJGg9IcNzmhc27m7A6GvfxPcemFHooXTIp3sI6Wis3l6HN77YxEkvTSiiE0IIITnEXRxTJUTuN6gKf/jGKNz9g4M9+xNFdN34EFG8tvevchun2gnbDKgqV7bz+geWW3uXHXvEMBzLy4U4l4pSSSZ6QCf6qYcMRhdJPy14x7kUoxNddc3jptqJPvn29/CNuz7AzBXbs9pHLg1sek509zautg5no+X54zxohIW7RcIRHQPtOBfVcTqjDfz7WbWtDpZlyZ3org6CihSy1qrPhXg8ovO3+D4perEiMkFZvO9k5/Ksf87Cq59vxPfu0xOkdMaxtUZdrNdN1hM4cN7LHQW5E70AA+lEBPmbYPl8rkj+eGXeRgDA7NU7CzySjv90DyEdgaNvnYYLn5iNqQv1i4p3ZiiiE0IIITnEHRfiFR/y06P2xDcPHOTZn+jUrmv2jmSxEX/olmhWMBWF7YHdKwAEdxxnONElv7gNOM+JeHzuoqz2Mp3igDZ3fP8gvPjzw6XrDMPbSScTZQqNrLAk0CI+q0T/La0C3ZQFm7X2oXK05+rHrwW16OoUq92tXGKxK+fcK2LFKYxqjNEt2Lsz0TVPhqpZ0CJ7x9w2DXdMWaJwojuXBU5zkWygFNGF14mg9v42Rud7QjZqR/SPpMGm6kYAQI3PRKQu//xgBcb9+W3c8+4yZZtcusGsgJ8FoKV+RDEhOx3yJyPyd18W4S3f5oj/TnAXOM6kY07ekGBwAoWQ9sPsNYWfeGsPUEQnhBBC2gn1miK6IXGi+xFxiOgeTnSPPmKufcnSZ9w6lxh/486TB8LFuajaG5L9i7QnJ3oiafnGz5RonriEop9cZa5blvqHtJcT3Y3Yh+njRHcKo9k50U3L0hCMvPflJ9TK+Ps7y9AkqWXgvl463YltZIeik4nuKOyqsc+2RpqJ7loozWkOITJnw59eXQgAuPXNxco2udSdnHn8mvdxgCtcqEgOOtHbHvHfE35P5+hMHPJ6dXx4jQkhHQ2K6IQQQkg7oadQZFQXXSFVFLwH9mgR0WVuRK8fRG7BXuZudbtFRSd6qcSJHot6R7DIUBXSaslE93KiF9+vPZkTGbAz0X1EdM0MfdU+VCJ1GOezbBsDRoZY7bUft+CuEv/dfWWfia7vplOKRY7X+idQdm38CrBK9+8QtDLbq13cYpyL+loVK+7vMNmoxfNRLMeVy1FYitduGn2KTxcS2e0pE3GL4+p1XBwius/fH8d9VySfK9L2FMt3KiGE5IrMCl6EEEIIyYqIkVtH4wNnj8XUhZtx5vihgbfVdqIbmU50mdjmJQBmiOiKOBcRvziXWEkkcLCASig3YMAr3aZdOdE9MtFt3PE6KhJKoT4358NLhBb3nSEOZ/TjdJd7OSGD5vF6CfZ++1KN0dl/wDyXVmSZ6O77VGuSAN77Fz+qlmWlRHWlE734PipajmjZuEVDc7GIfbmNc/GfJGiMJ7H/tW+m3hdbnIsMaWHR4rh8HRZxsi2eNB1/v93oxAixsGjHhyI6Ie0HfiXrQRGdEEIIyTEl0Yh2EVAdTth/AE7Yf0C4sWiK6NWN8dTrQT0qQu3LLaLL8scz4lxKxDiXTNG3NBpROsvdnH3YVwB4xLn4ONFVYnIh8YpzUWWZ25REDMxZsxO3v6WOjQDUkwc5i3OB3Inu3re7jZewnTS9I1YsWGhOmHjy49UY0rNSa4yqfZmWU2j17EcxpJAaOppkTnTXcQedJJCdNlEcS5pW6ikGsWmi2ONctDLRM4/BL+qmEOTLia7qeOHG6qJ8EscLeZxL/o6Bgq+TYGe6fd1bJHdQQyek/cCPqx4U0QkhhJAcU1kazamIng26buRV2+tTrytL1f888PpBFIs69yVzwbtF7DKfOJfSkoiWeHHkXn1wzcn7Sfdh4y5q6ubz9dX+O5LwwwlDsWl3I6Yuyn1V+yYPJ7pXnAnQEudy6r0f+e4jHjTOxbdHdz/q+8YrIsQvYsXryQHTBP45fQVuecN7AiG9L+f7uMshrx3nohLRHUX2AsS5SK5/hhNdu7fMsdiIn4qkZaV+IKgc/cUojOhlome2cWftZ0suTk1Oz2/ICRxdCuValzrR234YgSiWJx3CIl5pv0NxfuflZzyk+OG1J4R0NJiJTgghhOSY0YO6F3oIKXRzsbfWNGW9L604F9eishKdwqL+xzBuWK+UiK/ORDc8i5Ruqw13DnpWluKh88aF2tYPVU5xfXMClz8/z3Nb3acQ4nkvLCoXoR/+cCUWbarR3l91YyL1Wqew6McrdgQYo/O9U0TXPxequCNncUftYUlxj0VH+DV9oljEz5gj3kSRiR4k172tCOsU1omdyIZLnpqDXz49N9A2uTy/HUHMlI27rQuL+vXdnDDbnZs/K6yW75Urnp+Hh6evzFyd58kb0j5gnAvpCBSLMYoUBxTRCSGEkBwzblivQg8hhVvYHtIrXFSLjdfPIXd8i0y/d7sW9QqL+o9LbOLVXhYxky2yGJpc0aAQ0V//YpPvtkEy0WUOyVz9+LUs9X1z19Slqdcbdzdi9fa69HaefXpnwluW2mEvbe/amzixoJoEUO1XhplDQcl93HqZ6OJYMjcQbxUx/71dZaJrOKKdkxmyQJfsD0wcxfbaJrwyfyNenrcBO+uatfvI5fkNWh8gKIWKOZEXFi3MjdmUSOLQP03BCXe+X5D9txXitTYtC9OXbcPzs9fh+lcWZLTVmTgsxu8RklsoopP2zpMfr8beV72OKQs2F3oopEigiE4IIYTkmHMmfgV9upbi6L37FnooGW7kh88dh/HDe+HxH493LD95zCAAwOXH7x16X1GXai4taupa9JXe6bxqZSa68Mv94mNH4JSDBmW0E93nKqHcMPRyk4MiE/9zRaOksKQuMc2nEOJJKyMixDQtaVwCEFz40I1DuWPKEhx967RUPr/XJn7ucNOyAono7q4y41x0+1E50XMnQGcWFvXv0E/Qirgy0VNtFfstxlgKrcKikkx08XTqZt/r4jd5kS9ufn0Rrv7vFxljyMcI2uKwZNdW+pks0G25aGMNqhsTWLaltjADaCPc7nKxlkpGW+FiUEjtvHSmhzNIx+QP/2n5W/rzJ2d7tivGfxeR/MBMdEIIISTH9OxSihlXflUrhiTfiEJ2aTSCvfp3w3MXTMxod8tpB+IH44di/HBvF71nJro7zkVy/Payf55zKBZvrsERI/uk1slE9Fg04hC+j967H8YP74X/frbB0U7clUooP2fiMNz02kL1AYQknyJ6NtQ2JfwbAUiYmTEEccmysFgI9uNiS3Ujqspjnq5S08eJblpAs09mfMYgBUTB2DSDxLn4L8/WLesuLKrnRJc32lnXjPveW46lm9Pin6kQy2WRMNWNcVSVx3SGnXdkH3v3d4FsMiGfTm1HhnSA7bIZRiJp4v73lgMAfnbUngr3fXYUg1ggG0LhR9V5sHwmF3Wc6EXwTyRC2j21TQnc8sYinHTAQEzYs3ehh0NIh6c4f/URQggh7ZxYNCJ3YrcxohO9ojQzc1xcN3FEb40xq381u+NDZH3ZSybv1x8XHzvSIXKVyjLRSyKOeBZVxrsY5SDb7zuXH43hfbrkZWJDluVeDGyp1st4TyQzXduJpH6EiR+WFcyNVhptPZ9eTnTTksY5pNZbFuIBMizdIrO74Kl2nIvSvZ8/J7rOuVUJxde8/CUefH8FNlU3ppapzmvC5VC/591lOPC6t/Cfues8992USGJXvX6USVhkcS7uJXLzsnitczwm4fsmyHXPZqLF/fSAzH2vw+zVO3D2Qx9jyeaajHXisRRKCJUJ+fnU9r2OszOKwS0Fo3UnFzm9QUi++NvbS/DYjNU4/cGZhR4KIZ0CiuiEEEJIB0YUtiti2Yu9Xr+Zo65/VegUFhXRiXMpbd3JuGE9nfsy5K9tKktLWsek3r+MfQd0820T1omuG7cSluoG9aP2Is1JiRNdsiwb3O5pL7zE8VR/lnefVsA4F69dWj7RMY62GoVFs8Ut6OsIVA4nvPDmy/W7M/tXZJ+7JxZufXMxAOC3L3zuue8j//IuDrp+SujCvX7YQp7ciS5vK+LIq8+rE12/72yG4d5Wx4kue3rntPtm4IOl23D+vz7J3Ef44eUMuRO9MCPTyePvCLifqPH73pS9JvmHkxadi5Xb6vwbkbyTj7jItqb9H0HbQBGdEEII6cCITvRKDyd6Lshwokv+Qen1D7SymH9h0ViriP7UTw/D/WeNTS0XhXbZP2TtRUH/kfvDw76Sen38fv0BAFecsI9z3CFF9O4VpaG206WuWTPORZKJHvd0ogf/ga4jjKfHY/ruxbQyx+xc3zI5oIvfvsIUFrUsK+XAdorY2QkcmZnowQYmNo+5Z77gKiwqtA5bWHRLTYt4/umqHfobafLIhytxyA1TsHBjtVZ7S/LaEVmTT7UvfLpQIDInWYTXrRNCd01dilkr1ddD/JrcuLvBcx9/enUhZq/eGXq8OugK5nm9fNQlnefA8v68OJ6A4LnLOy99th5TF7LwYWeEn6/ioBhizkjbQBGdEEII6UC43c1itEl5DpzoXriLmMoc4V5xKqUSQc9oqQaa3kfr8cWiEezRs0Jol97GK0ZGVXRUhfiP4tu+NwZL/vR17DewyjnukCJ6z8r8ZknXNye12iVMEwlXfng8aeZUUAziao+3jsWvsKiXEz1wnItPNIxuwUnxnP3q2c9w0PVT8PGK7Y7l2Z7VzEx0Pee+bIyyeCTxXhC79pq00CEfUUrX/W8BdtbH8bsXP5dOkHm5smXk+idw2Otu5fB+cfYLvDB7Le6YsgTff2CGZzsbnfN6ukdf+UJ2OxZKwlDd2h1N1HROOHnHHzmLkFJcyicbdjXg/575DD9+9FMAnefJCNICP12EtC2hfvWtXbsW69al8w9nzZqFX/3qV3jwwQdzNjBCCCGEBMedzy2KZLlwonuJUH27lTney+JcvH7blSlEfrEbUWgXxXJR6JHGuhse6zzYXZ+ORKkqL2kRzF19hBfR8+tE1xXR40kLCZdKvKs+jgBGbl+CiOj2WLyEF8vyzkS3rGCFRf3EIF0nvdjqpdbitw+8vyKn0QYZTnStccmFcZkT3SH8KsR3p8ird0B5LbRsWdKvloyRSYZquoTBXJJ09B2u86CbifsxXB1YAJZvDfbov+y8uo8l2wkW3zFIBiF1pxeZE9AWNTsKmXEuXk504XVxXZYOx466/NecIMVLsX3vEdLRCfWr7wc/+AHeffddAMCmTZtw/PHHY9asWfjDH/6A66+/PqcDJIQQQog+7miRqGZh0TC8++tjMO/ar+Evpx2Ar+3XHz85crhz3xLl4+ChPTOW2ahiUSISJzrgPDY/cdzuI6iQt0vIFbeFencP9U16YrWbHnl2otc16cW5yPLP1+6sVwrfYX6vBREQdZzoSdPyFPnNoJnoHuvCxrnYRIxM8Skb3NdFZ2zOJuk3sqc/HLEtwvKEcD7DaKZB6xHkAk+Rz8q8z2TnMnB9aKF92MmT7OJc1H2ZlrfwadMeol2lhUXzuL/2cE7yjbtAsu49TYkvvxiO75ziPduPz1xd6CEQQkjWhPrn7BdffIHx48cDAJ577jmMHj0aH330EZ588kk88sgjuRwfIYQQQgLgFqLLBWd60DgXvxza4X26oHtFDKePG4oHzzk0VbzTRhS5Hzh7LG44ZTR+MH6ocn+iK/aciV/BXWceDMApWottHDnoQpuKWBRHjOzj6NteLzrWu5U5xwsgYztZMVa3EB9WFC0WJ3oiaaWEa5u1O+pzHOei3zah0di0gKRHxoplAc0B4ly81CAL+oVR5QKGkRNhw+7DLaLrdO0UUtOvYyWZyqDKce4U14MfT76LbgV15KeWOYTuzPWBx60Q5YM8jZFdYVH1/WH5RHDI0HWBtzXSIRTBuDoy7gkZz0x0xfdIMRKk8HUxIsa3FPOhXP3fL3LWV2M8iZfnbaALH/zaayt84+A6wIXoAIfQJoQS0ePxOMrKWh7Zfvvtt/Gtb30LALDvvvti48aNuRsdIYQQQgLhjkTp3TUt1OY7zsWNGOcyakAVzj7sK9K8chtx3eVf2wffGjMIgEv0i8jjXCKuaJfHfzwe1528n2MZ4HSVjhveK2MM7kz5nx65J47bt19K0G/py7nN1/YboDwmL3p0Ce5EP2PcEO222nEupsSJvkPtRA9DkL7stn7u8LZyore43oPHudhEjPCOZPc4gMzoDJ2hqfZfIrGHi6dN7NpRcFTzGERxKps4l9mrd2D51lrlegtyoS6jyKZfnIvklslG+g9bjDWbX7Li/WAY7vNi5eSHfl4LsGoid6Lndly64m9ncakHmZBRTdwVG7e9uRgH3zAFa3fUF3ooOaEYPpttwa1vLsYvn56LMx+cWeihFJxOcskJKRpCiej7778/7r//fnzwwQeYMmUKTjzxRADAhg0b0Lt375wOkBBCCCH6uJ3ofbqmc8plruqgBPm3elQRw6LC6ThPvxMdx6JzVuzf7RY1DMOZmd76f1HI27t/t4wxuDOiu1fG8PB541KCfktf6T6u//b+bZqJHiSSp75ZL85F5tpe4+FED/ODLVBhUVtE93E5eokFdU2JQDnNnkVMTe/8dUdbaRyI4cwk1x6Vu+/0eER0hEPn/tOvZZnojmtlyZc7ZFmP3SccIrrvMKWs3VGP0+6bga/e/p6yjWoMGYVFZW2E17Lrl41A6hcVo9wuGzHY45hNK3jfsiKFxaDZSAuL5nhguaxlABTHecsG9z3s7UR3vMtqv0EmRINy97vLsLshjjvfXpq3feQb8Tuq2EX0XD2V8Mr8lpojizfX5KS/9kxxX/GOTbE/ZUPyQ6hffX/5y1/wwAMP4JhjjsGZZ56JMWPGAABefvnlVMwLIYQQQtoet4guFvt0R3bkG1HE1hHRRYFbFPdE8c4R5yIcqqz3qNDA7lrcZu/+XTO2iWkI4uIPVpkIqUvPEJnoQSJ5dJ3oANAQd7bd1RBXZ6KH+MmmK0IDwHn/moUtNY0+TnRkFEMVueudZQFG531MCVPfvSvNRI/kRoyzxZGMwqIBnejiaSv1i3MRzksihKta7CusE33ZFrUDXUReaNL9XtYo/VJ2y8tEZF0ccS5BRPSsnOjq+yNIjnWQfRQC6YRIrkV0zXbZ3CPtCtekkHdkS8inMFz884MV2OsPr+Oj5dvCd6JBrp9iaEucmeiFG4cOxT4+QoIg3s8d4YmkDnAIbUKoX37HHHMMtm3bhm3btuHhhx9OLf/Zz36G+++/P2eDI4QQQkgwykqcIqsouuo6k70I+wMoplFVsFt5OqO8RBDgRfFOXC5GUcgEuqhDZG9ZL04kyJzoskKLbsQ9lYS11wIYM6QHRvbLFPK9iAfJ+Q5Ao0tENz0iTMKYAoNkzlpWa3aqlzvcJ84lKB56fOu+9MYva2XAcImz4T5EtnBp/9+epNJxQlkKYVwe5yIXv/yyw2UkchTnooM079zjvX0ITkE4t05057kM4kQPj+cxQ15Y1PMQizUTvY0Li5LMz4/XEymO74ss9vmnVxcCAH7zwvwsetGgHd884iROMXw2vSjy4RUN1Y1x/OTRT/C/eRsKPRRCiItQInpDQwOamprQs2dPAMDq1atx5513YvHixejXr19OB0gIIYQQfcpi6j/ttU3Zi+hBEMUpHSf6sD5dcOnkvfHHb+3viGcR+xGXi/qfTMt2FB5tbTtt8dbUslEDqzK2iUUNHLhHdwDAAYO7S8cpjiFslAvQMuHx1q+OwlM/maC9TX08011+2/fGhB6DjduJnjDVcSlhXKhB89UXb/J+RNs0LWyvbQo8DhX26AZ2L89YlwgS5yI5Tncuda4y0UtSIrr/tmKbl+dtwOQ73sPSzTXyOBeH4O7fn+eYhUmrLOabtJBNhHi5su11lqN9Zh/ZiOiOvPUA1z2bR8RN173mvveC9iw7/GJ4hF3+5EFux2U5/vbktOt2ieX6bhC/7zI+a8Lr9lC4s/hHqEcxPCXiRTF8d7QH/j51Kd5euAW/eHqub1ue08LhNZFYTCzbUotfPz8Pq7fXFXooHYJQv/y+/e1v47HHHgMA7Nq1CxMmTMDtt9+OU045Bffdd19OB0gIIYQQfdxxLiK5ENGDPPIs/pjTjT35v8l74dxJwxzLVNnWUR9VQ5aJ/rOjhgOAsshpLBrBP845FP/31b3wz3MPlfYr7tbphvccTub4DAORiIGJI3rj7MO+gqu/uZ/vNsfs3dfx/ocThmJAVabwq4t9LA2u6JeWYprybcLk0waJsgCA3Q1xz3ttxorteGvB5sDjUGH/CJW5pZOm3L3r15dNSya6uD7UEFMirF0jwP5MaRUWFV4/8N4KLNtSi9/8e740zkWnGKZuxrsYueOuW6CLbua7tJ3bHSuJmAibW66DeG2CTCS53ePB9qm+NqZPLQFdikEs0HnyIPt96NFZBHbnhJPluL8znoDIkRNd1l8+aM9CZLvKRC/0ANoJ2+uaCz0EokF7+d747v0f4YXZ63Duw7MKPZQOQSgRfc6cOTjyyCMBAC+88AL69++P1atX47HHHsNdd92V0wESQgghRB93nAsAjB7c4rj+tlAcMzQB/r0o/sDOJvYkqchyF0VwWQuHiN76K/PcScPwn59PwvXf3l/aZywaQf+qclx6/N7orxCnVQVQg8ZV2Pq7YRi44ZTROM81eSCjb7cy3HDK6NT7kojhiMEJii3E1rgmWLzc10Fd5WG22d0Q9xRNPlm107ePkw4cGGifgPPpBhvZhMKefbtgj54VGW3X7WzAuD9PxV+nLEn36Xaih41zaT2H/8/eecfLUdXv/5ntt9/0ctMJpJBKAknoHUSRpgJSFAUrdvSrqNg7AiooihSxID8LWFB67wgk1CQECEkIpN/c3L67M78/9s7uOWdOm9m99+5NPu/vyy+7U845c2Zmb+Y5zzzH70v/7Q4rkVmySVdvXjq4xQ6SqMq2dqJHjDOJgjzuPKCiB9aZ3OLlxNDwZYcZiJF/ttuZ3TeY52+IhQ8gO/yBFupk1cnePOjPiUV12F4iQ0RvUSK+5aC7vivx9s1AMgSaqIS9/Krd9F+pa2GPmYeAqGqq/HYr0tqZBQCs3dY5yC3ZPYgkond2dqKhoZAjeuedd+LUU09FLBbD0qVL8cYbb1S0gQRBEARB2FOTCorof/zwUtxw3v44e+nkUGXNGFv4W89NWhVif/YhWub6tkXlRI+xIrpkE5kTPZ2IY+GkYUpXrE08C7svK0KG1drEPrHpomQ8huaa0oSk8VisPBG9r9L27hzXhrzrKV/BjzJBbVgR3fXKf9ieNTaYea/Cr0v2dkNekg+fiDkYUZcKbHv5Xauxtb0HP7vnleIyx3EqOrFoUUTvU/yt4lwkd24yHpMKxOz5VZXNdofusuUmIzW20oxKiFfFlAQEZOaz3zT+LYFgKaF/uZgdbFz9Mmyd/jLYc+N6Qfe97FYUj9t0zNUgHMgHeCrbMtmbC9LtqqFDBgD+OD3t71o5b1MMBqo/UZ4X7k2kwaba2zoUroWhRpWfcoLY7Ygkok+fPh233nor1q9fjzvuuAPHHnssAGDz5s1obAzmixIEQRAE0b988bgZaGmuwUXHzgisa6pN4vAZo5GwjFTx+eVZ++HU/Vpw26cOidQm1ikYNcoBUAuwrOApezBLcE50u7qSFtntbFm8iB7uGEXB1mb/RNzh2piMO6hLRxfR/WuivafgUqlLFcqSCcc+UeJcojhXy30ulGXeq+sq1GYb5xJzHOlFlZXYYx1HFJSikRdEdP86sJtYNLhMNU8BO3mtqmRbIYS9hqK6l/m4Fd2G5kXSOUQNbvFyfrvY4kINJPHKfrg6RflScN/LrhexaexXmeNzoEUb2SmQZ6JXtl7b8qo9QqNSiINQeie6YkeGavISSyeq9Tyc/uvHccovH63qXHc+zmXw2mFDNd4qW3b1VP3ggw4amBg8Kh1bRQwNIonol1xyCS666CJMmTIFBxxwAJYtWwag4EpfuHBhRRtIEARBEISZTx4xHY98+UiMlUyMGJUJw2px2fsWYPb4khgZ5kGjUsKCKlYkbnCis4KobSSDTXY7W1KCi3OxqqK0vWaHlKIdiViMy2GPxxw0ZpLSbW3whVjfie4L8nnNxKKRMtEjPNmXc/1MHVmHRZOHhair8F/ZZZL3gtE2MceRnm+Z0BJznEAMQhT8/YoTi/adO6tMdEmlyVhM2sfc+VWHoss+BshFdGKrUF1HnicXEoKTHQZFPy7XWVJ8OUJf5DgXxWe7Opl9BYe+66rOg7oWuYA9+HKB1FE/8M0o1Dv43TEwaK4tXR9Uu7ALyK+dtq4cnly7HcvXt2LTru4Bb5M9/ETs1SyqVtu9cv+qzdj/e3fjszcvH+ymRKba+nR3Rf7uE3X+nkgkEf0973kP1q1bh//973+44447isuPOuooXH755RVrHEEQBEEQQ5dKPTirhDNWGJeJOlGyjK1EdFWcS0i5TTsxqmJVKh5DnBHuEzEHNak4fnbGAjRGiHURM9Hr0oU4oJzrKvt9xfrW0PVEEdF7cuHFegD43ilzcN9Fh4caXPCvH1nskOcBOSHCJhZTuNal16HoVop2Y/h96IuxST/OxWrizSCJuCMVdnvzNk50NWs278LNT62D63rFSVCByjzo64RolTP5hTd3oq07G9imZEQ3CN1hf0YU7vNQRnSDsK/fl69TPGb5YAP/fSjEucha0Z9i0p4yeagOPmbI0zvRhW3l5VURhsZUdwZ3ZQcr+5NqEx1/ed+rAIB/LN84yC0hqh352yqD0JB+hP7O2RH5/d+xY8di7Nix2LBhAwBgwoQJOOCAAyrWMIIgCIIghjaVciuKAqaPcWJRRmy2/YehygHOwse52DnRzzxgEm56ch23TOdEB4B0IhYQkhNxpyieAoVMdAA4aUELVr29C7+8/1VT8wPlAcDfn3kTAO9EV70B0NGbD1WHX15YchEc70BJ3Db1LwCsensXWjt7i9ePauClV2hLzJFLKrJr1YHDX58RbwtfpPLrCOdEDy6Lx5zAhKmAbSa6utKjL3uwr/wY5rY0We2jg49z0YjokmUPrt6Cr936AsY2ZvD4xUdJ8885p3bVONHNAqRyX2HAhs/1Dk40Ku4jIjv+aogvkR5HpTPRLYurgu4YELi8fVe8N4WNyxgIGgxM1061ib8s/KCbVzWC/1AQHWWTiVcDYc5htfXpnkp13HXlQdeSHZF+NlzXxbe//W00NTVh8uTJmDx5Mpqbm/Gd73wHrmyqdIIgCIIgdguW7TXCettK/VtMNXEmq5FKRUJGELV9ILHKROe2L/1TSud8XzJ1eLB9OpHXA8ZJonkScYeLkGE/1ySDk8qaSApPkLUp34munlg0CipBXodq8MREmAeZ4654EKf/5nG8uaMLgPqciBE2juNIz7dMXIzFeDEhaq/6RVRyYlGZyMEeq24iTxPL1+9AjnkuqITwqhuMkbX1zpc2AQDebusObOMX5QoClEg5mei86Fj+IIJdnfwgiOhqt5lYlEV2/AP9oC2rT3Y9VTwT3fJurWaBtZLwv2PC3wihCzzF52plKItHpoHAwaI/I5cq5ZiN8sZitbGn/P5UO3QW9hwiOdG/+tWv4tprr8UPf/hDHHTQQQCAhx9+GN/85jfR3d2N733vexVtJEEQBEEQ1cF7F01EJhnHfpPMedOVciuef8hUPLu+Fe+aO45bzoo7sroiTSyaCBvnYleHbJ0uzsWDhzktTVi7rZNvXyzG1cmKvjWp8CK6OLlkve9Ez3tSl3JUurPhC8tFVAOiPBT7jn/Vvtmc6ESHVK2XibyO4wScglHwy/YHJMqeWDQmj3PJhoxz0QntbH9UJM5FcRl5sHuANce5BPcpR2OpSJxLyDp1zn3RmR6lbbJyBwNZCyrdKttYnSrojgGBv++FQSLxWrN4g6Sa5MuhfA6jvvHS38j+HlbqDcVKHabWzDBEqKJTvsdBfb9nEklE/93vfoff/va3ePe7311cNm/ePLS0tOATn/gEiegEQRAEsZsSizk4aUGL1baVckQ1ZJK48UP6yDjZP2TZOA/bx6SwE4tyTnSmvkP2HomHXtla/C57UDM9vH3z3ftiR2cvVr61C9s6egH0OdEZ9zg7UJCO4EQXReNinIunjnOJwqad4Sdly0d9u7GMZ2JVBIwY5xJXTSwqE2FRGSe6L4509cXp+NeenRM9SDIek7a3N2fOMbcRQlxPmFhUJt66Hnb15NBUo86v512WKsHeC/17IzsGWfmDPrFo2U50tTO9VF+4SgZaOJANZIR11EfBtrRqEi77k+BbDerrm7umhkD3SO+BIaKv2kZeDTSytlSTUx4o700jgqC3APZMIsW5bN++HTNnzgwsnzlzJrZv3152owiCIAiCGPpUMg7EhKwmVqS2dSfbZKKzZSW4iUVL3HDeAZgxpoHbZ8qIWmX7ZIysT+OP5y/F8XPGFpcl4zHOPc450SOI6GIbalMFEb3ScS4bd3aF3icbMc6lnNezVadEbEtMEecic97FHEeIDInWNtfz0J3NY83mdgDA3n3Xl9XEotKYGUd6jrlMdFV5Fu0FPN6JLRkTOfvaJzD/W3fitS3t6lKYtmsHdiTrdPeYv7koOouEvZ5UAngoEV2IzSinftHVLhWaNVXIjr4adLpKC+YmdJdBuS15a2cXfvvQa8UJcKsRsb/FiUXFPhCz+asd6eVU/c0GoH9jYqDvE75u2cLKlF0p7dsiwa/qGSKXKUHsNkQS0efPn48rr7wysPzKK6/EvHnzym4UQRAEQRBDn4F0RElFQjYT3TbOpayJRXlxe3Rjmlt380eXobk2ySyzaxMrRCZiaid6WBG9pbkmIDLWpwtl9OZc3PjY2lDl6djYGl5EjzIZKVCeeVAVsdObEzPR5deUXESvTD6w6wEvbtyJnOthZH0KE4fXFJebkGZKu570HrXLRLcR7vlce1ldj766DQDwt2c2BNb5fcm5XXWZ6JJl4j0mE/ZMUTthxRo+Hob9HKYM9ktw/XMbWnH5XavRnQ1O8isK8KKTX9YMbdskx1+tomjFM9EtCyy33vde/Ri+e9vL+NotL5RXUD8SFGfFuCJRZFfvK9tmsJHfF9XUQjX85MHCukE8BNnvRLX9dlRrJnqoZlVXl+5R2EZ+EbsXkeJcfvzjH+Od73wn7r77bixbtgwA8Nhjj2H9+vX4z3/+U9EGEgRBEAQxNBlYET24jM9Et3siSVtkorPHxU7MKdbBPpzFHGBMYwbnLpuCn9/zSqg2sUJFPOYITvRS/ZmknTeiIZ3AN969Lw7deyQ++oenuXV+nAsAtHXnrMqzYcOOCE70iHEu5TwTq+JcxIlFVU70nKTNhUx0VuSIdl/kXQ8vbWwDAMyb0Fys3yrORbJNb95FPBYceBGP1VSe0q0uiGxhjnrl22047ZeP4pNHTsfk4XXF5TonumxV4R6Tu7r9U8WLzLKSQzrRmTJ4J3608y7b691XPgKg8Bv3qaP2VtYfcKJ78n6q9jgXGdKJRSusJoV4d6Csevzfx/tWbS6rnP5EPELX87RzHogxQtWO7HfZttm5vIvbX3wbiycPx1jJhOD9jX4ehMFD+ltTZdeC6m/+YFNt/UTIodO0ZxLJiX7YYYdh9erVOOWUU9Da2orW1laceuqpePHFF/H73/++0m0kCIIgCGIIMpDZlzLxJMqEUQ0Zs7+AzXlmJyIVNVW2+qLgGuHJiBUqHMfhhPsoTvRE3MF7Fk3A6MZMwHldl4rkr1AybVRBAO3JRZhYtIriXEQnekzxL2j5xKJ60dlWVHc9D+09BefxsNpUsa1WrnDJ/ZHLu1Ihsjdvk4lubq8HjxtUCDN48K1/voSO3jx+fPsqTjjX/abIjlHvRPfL1LvlQzvRFfWFi3NhP6v3W7lpV2CZONkj51JVtEPXNNnhD7RD11aMq7wT3a7sPUHwCsa56CcOFt+AqHT9lUZ+PdnV+YfH38CFf3oWR/70/so2KgLBCV4H7+KU1Vxtt0qVauihqDZ3/+6K9HrezX78q/TFjKoj8pPS+PHjAxOIrlixAtdeey1+85vflN0wgiAIgiCGNgP5b0uZuDZhWE3ochoy6gkOfVhxNxHj3eYsYrwLEG1gQXTfqjLRMyk7EZ0tTXRh1abVZUweUYs3tnVa1eFzyPSReG1LR6h9fHIWnTVxeA3Wb+dd7uU8BKgGXmyd6LIcdweOdpI92/vEdUvtSCVicPrkTZvdZXXkFHEuOS4TXV66XQ67GPdg0VBJ+a6Fm1vlsBYHiXiB2yvuq2tj2MtJ6USPePzlCNyeuL8yzoVfynab7I2ZapANBsTlallexaqtho5VEBz843+jdUL5TU+uw1GzxgR+X6tJr5HfF8x6zbl5YPUWAEBnbzBeaSDQ/YYN5iUlH7Crros8itmi2qiyLiWI3Z5ITnSCIAiCIAgTA/mwJKuquTaFOz93KB784hHW5dg50UuCKpuhLoqqrPjkf7R15KmEOIAX0dnPmYSliM4UF8aJvmzaCKvyfb5z0r44ctaYUPuw5C3iXH7ynvn4xOF7oanGPPhhg3gO/efrXsnEojKxPieJQvHgaSfZs71LXM8rOuJTcSfUNSXbojfnSif7zFo40a1y2MGLbGF+DlzF9c9+vv6R1/n6JOWLg0SmiAluEtO+usI70ZkyJOVZlaEecwm3rxeMq7GJrTCdq2qY1FMe51JZbB2eAzmJ9mAhi2vRvsXBfL1v1Rbc/NT6fmxd+cjvC35AqlrhJ0cWnegD3Rp93dV2q9jG6lUzVdalexTU93smJKITBEEQBNEvLJzUPGB1qYTEfcY0YNKIWutybER0MaPcR3wUk8W52D5A8sIXv1NSkSWiihjRIbqwdPmg8ZjDTaRq4pxlU6wy5lXYxLmMbczgS8fPxLwJTcVl5cW58Pum+wYmgk50eT0yJ7rn6R2NtgMrec8rRq2kErHiw3/UTHSVE50T0UOUJ9vGtXSqOlCL3XmFUPetf73E7yMpVzxHnCm775usjT+9cxXmf+tOvL61I9A2E6ooljDCs+7+Z5EJQAFBTfguHZsKqQRUg/NR1oT+FPd1PytV0B39jixrWzdIJg5ArFjf2k8tM3Pfys24/K7V2utDukZxL1cb4kAZv24wVXTZonDt+f3jb+Civ6wIDEJWSvpWTSY+2FRpswiBKv5ZIPqRygZfEgRBEARB9HHBodNQm0rg0H1G9XtdUR9w7/rcoTjm8geL3+vT4TLRWXQTi/pidZR2imJyQiFk2z4MuopBAEDfvoKIHkM2b//Kuo2Inow7UvFZtkykpi/ChnXQVzLOJZ2MoSubR0cPP8mq0okuUSjzrpBLHXB02rXNY53oiVhRRLByoivEctml3JuzcY/buN8967iHgDuf+SoTuaWuUcky9nS6Lv9GgF8sJ6z3ffnFvWsAAJfdtTq8E50T/YP1hS0jbJwLVw7EgQO5iKWPcwmWWw1u0nImgrSvo7LbGcupTDEDgjhIZvpdG0xR8LwbngIAzBrXiOPnjJVuI30zxbC+WuB+LzS/pQON9Dc/ZHu+fusLAIBjZo/BcfuWzl2lDms3SHOp6gGe3R7q+j2SUCL6qaeeql3f2tpaTlsIgiAIgtiNSCfi+NDBUwekrqjPEHuPacCZB0zCTU+uAwAk4mbRV+WQFp3g7PewcS4s4j4JheV8+uh6HDVzNO5ZuVlbXneuJIKLorEqcqIhncBHD9sL/1i+EUAYEd0cMROPyUV0mzgXX6SvYwY/wjqHWcQH6lTf9fDfF97mlqteAZd1n+vp41ysnehuadLPZDxWmljUYl/ZNtm8jRNdXrqtE1038aAOtl05Ls7FXy/UBQ/wgueEHcjKui7ADWb4gry8XqAgUod9s4EtgYuiiehED4srCPDiwEHYLHHZ0VfDRHbSNle4WbbF2fZHNfRbVGRv0OgGyapR13trZ5dynay54r1UrXBO9PBzePcblbxFd3XnzBtZwv6k696+GypU+tJ8fsNOdPTmsDRkhB8x9Knm37lqIpSI3tTUZFx/7rnnltUggiAIgiCIsJTz777O3nAPZ35MTSbJi9mieMsKrb7YG+UfqLpMdLG+az+4P37/2Fp8/R8vAgBqU/HAZGesYC0KhAdNHxko90vHz8AFh0xDMh5DKmQ8Szpp3r4wKBB88reZWNQf9KhnJkQt55lYfHsgoShMXDyyPo2t7T3SbcUc6qgPKa7nIZuTxblEc6Kv2bwLL7/VFlhul4luVycX9xDiLuUd3EGhTnT8ex4AR+JEZ05UNi8OZgTLr8QDpEqUDxXnwrZTG+dirt8TBg4qIWwN9IO2raG10iK19X1bKSd6FSsYMoezLq5JPJJyneiV6Bld98rfbil9jjIAPlDo7/lBaFCxbn2flkOlpO9y4t+qhUqf4xOvfBgA8NRXj8aohnRlC9/N4OdNqN7fCKKyhBLRr7/++v5qB0EQBEEQRGTKecDt6LF3VgMFwfTJrx4ViH4RhVX24SwVL4i8YdyoPqJJmxV2ZcWx4n1tKhEQ0VlY4/2X3zETYxozwfLgFCdQTVk49VkySbMTXfUIa5OJ7vdFbboycS6iiB5XRefEHO6a08XWeAEnurjerm2ux2Sis050G1e4ZJkqLkfMf7ctT6S9J4dXt7QXv4dxSCrd3H2fZWXJ+oG9J3N5VxrPwLk4K6BGqAQsWdnd2Ty+8++XcMzsMTh8xmiulOCnILKr0zQoIBO2ysldHyykE4sOmhM9PB+58X/4zbmLI+w5OMje/uAHyYT1gZMx+GJl6MGiMvYdWNT3/GAKe+UMdOXyLj7+x2eK3yt59bBlVWsmejWwqa2bRHQDVfCnkBgEaGJRgiAIgiCGLMPrUgCAo2aOiVyGmHdtw+iGDGpTvIgezEQvfU6FdKJzEysKiiFbj+yBlBWC69J6EZuNcxlVL39Y8nO4ASgnFv35mQuly8NOLDqFmQQ2a6G6+sday4n10R+K2f5IxBzlA7boXtM59AuZ6CVksQg2uG5J4E4lYsXRAtPuoohvojfPCjLyHXmntLycu1/ejF/d/2rxezDuQWsLLX7MS9yusux50yEGnOhFFZ0tP7hf2Al7VcK5bGzimgdfwx+fWIcPXv+UsoywD+mucIxiWWHjXGQMtHBgctwXl1W43jADXGG586VNWL1pV+j9BgvxfvU8flA4sF7Yvxq0Su3EopJVthMjDzbimzvsW3GD2WxZn9nOp3D7i2/jrpc2Fb/31/UTZUL2gSDM4VbyFFfz2zDVyO7WW9XwOz0UqNKfDYIgCIIgCDMPfPFw3P35wzB3QlPkMsLGuagQ//HJOdH7RNYoD+I6R7asONYsLgr9IrLJT0VYZ3JS4UR/9/zxaK5NBpaHFdH/+5lDMaelEYA6n53Fd6L7E4wC5cW5sOcwEXOUfeI4vBigc+i7nnje9WKTupzSxKJsJrrumurqzePInz6Af67YaFkLipExgFqAifLgKO6jO73qOJe+/0qd6MECWeE6m3eFV6/1dfmEzdhXuehlZa/f0WksQ+fclGfz88coOu3l14umDtnWVaAcSI+iH9tlOeYTiv8+z8+1UAXdqiToNAfy+eC9ya5nqXZtxuSQroZrXoXujZdBbbblmzAydG/QlQv7u7k7xLlU8uKs5ut8sKG+IXxIRCcIgiAIYsjSkEli+uj6sso4dt+xAICpI+vKKkd8GGO/liOi6/Yxx7nonehsNIxqgq1eCxFd1RabiUW59sQdxPusYTZxLn6b04wTXTXppw2saN5Yk1SK6DHH4cQAnRNd5gZmsZ5Y1POKLvFUPFYUd3V73/Hi23h9a4dV+T78xKJyorjVxH1kbnIflYPbF6UDmeiQt5WboFRwovvrTPnBYS8nlaAVNR+4PCe64GqHqp/0ZbZ29vJt6mdprieXx9Nv7NBuI+3PSmeiW+bdRq1VN9FltSGLCeGd6IE9uG/VoFXq7iVzRFT1Kmhcdr9m3UBTzkDXQF0u7L/bhqoLu6JO9AqWtScwVK8ZojxCZaITBEEQBEHsbnzk0GmYNrIOB0wdXlY54kMf62D1ncrWcS7MZxtHNksshIjOCueq6BI2zsUkFosk4w4cx/64E8xknjqR1d/WJ8O0q5yHb7YPhtellLnhMdGJrukX1/OkIkdHTw4/+O/LOGTvUVZt8zwPvbl8sT5/cEPW769v7cCTr28L7aIG7CYWjfLcKF7G7HUttlMlRPufpXMLSBaxdfTmXelghjTihSF8D8rdubI4F/UghXkbwOwSl00yKMa9OI4TFEiZ79s6erHg23fh6rMX4fg5Y/vK1TSqAnz6pmdxx4ulKAfbCJqK6xmawS++3mgVi7/tA6HH+Oc8/I78V9fTv2kRdKIPvoquHwgJrpO9BVONsE0zxeoMJNWqL3KZ6My/I1wPUCTW7TGw13w1DHxVO1V6iRP9DInoBEEQBEHs0STjMbxj7riyyxGd6OzDiC+iR3kQ1xmykxLxlo9zMWSic3Eu8m1YJ7outoRt5s0fWQqg4ApPJ2LoztrNKuk4pRxykxOdHQDg4lwkTYzHHKvBCFZcaq5NYXtHj7xuhy9P1y95D8iyE/D1XRc/u+cV/OHxdfjD4+uM7QIKIqwszkUmVBxx6f0AgIWTmq3KZvHd7n97egN+/eCr0m2iOH5FkS2nOR+8Ez34OSg+ylvEZhrnXDcgKBfqYusNlhFWcGQP0xTnonoLQeWO39WdxYsb27T1c+734v8rlesJwmDcCZ5PWasu+ccLRRG9v913rICuQjqxaIXb4Sk+h6lXJ1qHHSAtl+5sHif8/CEsmNCMy05fEGpf2ZwGpuubpRoEubCRPJ5hfbXgaX7DvBATOleacib/Fe8Z8fop540zFvbfbTnXRTwW7u253Q3dW3NEEOqvPROKcyEIgiAIgqgA4jMd6+gtTSwaQXyUCC2fOnI6lk4bjuP7omhY2IfCTNJ+YlFVNig3sWhC/eDKHtqSaSOKn42RLkKR8aITXd9XvBOdiXNhCrzi9AWYPa4R3zt5jr4NxbpLn4fXJovRMiKxmMMJBLLBDB/X8/ic8b7/rnw73KSCrucVnfHpRCnORSdePbuuNVQdQOG6zeVdfOEvK5S5tFEeFsV98pZZ/zKhTiY+SjPRNXEubd1ZvLalnROQxb50HP7ylN2LLOu3d+LPT62Xtkl67yuKU8VInPGbx3HGbx7XtkF01uuEQL9NpjxrANjZlS1+rgZXrvQarLCKYV2cZjtdX0nfqOhH7l25Ga9t6cDfn30z9L5iSz3w92Ew7oWnXMmzEl0VdiCEH3BS710pQTcq3G+YOMA4iF5ZaZ9GbE8l32RgTxf7N3+gB7UqRSV/RgbzehnqUM/tOZATnSAIgiAIogKID9Ksk7qcTHTZg90Xjp1h1Y4ag4jOxbmoMtFztpno8mMzTi4q7JaI28W5sC561onOPmufvLAFJy9swaNrturb0Ac7kDCsLoV12+UTP4pdldTMZup5Hjcg4HcTK6zb4Lr8xKJ+Uyv94JbNu9je0avd5tFXt4UuN5iJrhaoVMK2f0lIRXRJnWKcC/vGwK7uHI786QM4fEYpTkfuRC99bu3K4jN/fhYnLWjBexZNCGx75jW8wM3Hudg7p1XutoALXXLZ8cJ9UMiXuVaDERDBlvVw1+vAygUyjVIu0FUWU16+j37eCg8qCTnwRkU/92s5YlvgGhGc6LpIIGDwhWYjkr4R5xeIQk8uj46ePIbXpaIVYIPOiT6Iyp7s3wTVplOz/wYyDdxXK5X83WBPWbXfstUA1/dkRd9jICc6QRAEQRBEBRB1VFYE9gVq22c09t/is8Y1hmpHPIQT3WZi0azlxKLf6XN7f+rI6dzydDLcPzd9IVuVR+4Tj7PHWapD5qi3FXDYPhhWm1KeLzHORdV3QEEok03WmZWFZGtwvdI+qUSseEyVfu7P5T1s3iWPsSkHXSa6Lhua265vhSh2eDDHpajigR5YvYWpN7gNe+1cee8aPPTKVlz0lxXSsjbs4CeKZNt+w6NrA+dcNfBkK97K3Jmc8IfgpLZ83IuifsM1VQ1aQdSJWiPXp8vT1tSra9JQcr4GnOieIRO9Cn2Z+vOkH5aJejxH/OR+7Pedu7CprTvS/jaI8xywDOZZkM9bYNeiwBwzFRR02d9N9t8Lurej9hSq4bd9SOFJPw4paHLU8JCIThAEQRAEUQFE8VYmAkdxol/yrtk4/+CpuO3TB1u2o/TZJKKzbU4ohOAZYxuKn3UTaJ663wQ88/VjAi75jCHOZfGUYdx3vx0mgYkdLEhzcS5BbB/A44ITvVfhFnccPs5F1XcAL34DpQeWsCJ63vOKbuBUgs1Er+wDkOt52BJSRP/tQ6+hoyen3UZsJ3v8oijOZaJLIhVksSqybmCvoZwwsahsP9n9yZ7Z1i69Q1+ELW/ttk7c+Ngbwnr5fpzwHfLRXBTgPW6dIKJ7wXYWluvrrAbttxyBLlIdEYVyXZMGY2LRqIhtcz35vanavhoIOxBim3esu+427iyI5w+/Yvc2VBS4e15cN4gnIkSCVYCBckGz1QxZJ3oFmz0Qg1/PbWjFEZfejztffLvf6+pvuD8RQ/PyGbLtHkxIRCcIgiAIgqgA4kOfLI5k6oi60OU21SbxtXfNxr7jm6y25ybcDJGJHpc8tX7u6H3wscP2Kn7XTaAJQPrKus6J/quz9sOcFv64bDPR46qJRWVOdG1J8jKH16aUQnfM4YVEnRPd8zypC7o3pOvN80qO9mTcUYoMKuHflrzrYfOucK7J7972Mn5652rtNlGd6Kxg7n8OXBue/EGQ3aw37xoFgh2dWWxr5wcQyhFzRGFxxfpW7rvNFaB1okvaJk6UKg4SiMLgXS9twt0vbbaus7B+YJ+65WKcZCCl0vValq3rD901N6Sc6JKBFi6mStxe+F7OG0KF8sL31cbWLty3snRth31joJICWX+ead1A4KA60WX3aDVc8sxlZ4rcGizC/N2pZJ8ORBdccOP/8PrWDnzk90/3f2UDSDW+fWPD0Gz14EKZ6ARBEARBEBVAFARkTvQLDp2GXT05HDVzdL+1gxUrahlx+ZSFLdjU1o0zD5hUXBbXxLmMqEvhM0fvzS1LxsMrirqJRRdPGY4XNu7klhUz0Q1ObbbtrONe9vCpE7lZDpsxCveu3IyubB6LpwxDr1JEdzhRSTYA4eN6QFbyZBraie56xfakE7HieRZFE5MjHADu+Oyh+Na/XpRmm7ueh81t4eNcnly7TSsmiu1kBThxwIlzojOrfJEjitghTiyq4rgrHuK+s6/+h53cTjzFCeH+Uca5cE50NbLWBDLQRWc6U2B7Tw4X3Pi/YBmaOoHqcKLL2lBpgc44May/TluGet1ATCz6xrYOfOwPz+Bjh01DQjFRsg0ykZwd4JKJ7CzSXPt+Pv4Df3ivdX2mOKgob5ENFGzLXM8+Dqq/kdddXf3I9pVpHpZqpZI9OhADpJ098gnLhyJV/LNgDcW5hIdEdIIgCIIgiAogagQyETiTjOPiE2b1azv4OJeSaDK6MY3LT18gbKueWFQmPOsy0VXoJhaNx5yAGOa3KTCJomRfH9ZxL3sesJU+p4+qxwNfPLywj+MoXd1iu3VxLnnX4yYR9dsX1jHueqXJSNnzIB5vu4WIPmNsA+a2NElF9LzrYUt7eBG9NpUI9UDJR62o3ZO8kBXc19/e9CCYzbtWYsNWjRM9rNNMFN7EwRZVaeWIYLwrNSjIs2WrBlxUgmEu7yIRjw24485WgK24E92yQH3Uh3qd7DquNBff8jxefqsNn/nzclz1/v0ilyMeh+hE7++BlbADWGExxrmUXX7/dZAniP3lxEFVEtnviG039GecC1s0255qcqIPFgPSA7vRhKXVMmBVDkO02YMKxbkQBEEQBEFUAFFHHawHspjCoZ2UuBC5iUWFp1aZu3pYbTCuxYRWRBeyxcU26eCd6KU6evNBl5PtA7njFMRz/60CdSY6LxDonO6u53EON/+hK/zEoiUnOj+xqOBE7zWL6EBw0KRUD9DWlQ3VNgCoS8W1bs2gE90yE10yeaHMwWu627KuNwgxJMK1HcmJrm6zVFzWhJB4gsCmckKruqmtO6ddP5AMRCY6V7a2LTqXunrdQPyNaK+Q61M8Ds/jB4qDIjv/3fJn3br+SGXoBjsM2+vOsU0sTX+eae6O94SeKrPilza2YWNrl3lDCbKqbS95cdAkTPRPGNjzaprMvFqp5O+eNzTN+INGJQfaBotq+Hs+1CARnSAIgiAIogLYTCw60O1gs8JFAQ/gxV9RVJWJrPMmNAWWnbH/RG17dHEusVjwH/Bxy8gBTkRn6ujJyp4C7R7AxXPIxrl87uh9uO1YMUAX5+J5/LUQ1Ymed71iOck4O7Eov117t52IrhqscF0v0gRrtemEViCJmomelwjqMvHR9CCYs3Sii7DijcoNm3c9LBfyzoHgMYtxGqo224pgsvawiQSF+Bb+2mOLCyvi9uTyxXIGm4FuQlgB1ma/QP9XQb+qCIjkkA9wldbz3/tLBA2DtnuNcS79WXmZRbPtdCsn7K3f3okTfv5QIBbHvl2SZVVwkbOXYrVmog8W1XB+hirV8HcxCnTOw0NxLgRBEARBEBVA1AgGzYnOtIONOZGJpqz4KwrBMs1jwaTmwLIfnDpX256Jw2uU62KOE+gnayc600B2MKA7F3Re2rogxWNmhW62jJjDCxcmJ7orEdF3WcSusPRkS8eVSsSKAmqUOBdAPViR97xI167Mib5gYjP2Hl2Pvzy9wZCJrhbRXZkTXSaiGx4Es3k39EOueFZVdVx21ypcdd+rgeViO8WBKaWIzgrf5mYKbSzhCqK5B0/p8mdRLfcHqKohH1oa51LhZtmKkVEF9oH4G1Ep6Vo8567nIcuM2ES5JgZaWI96nmy30O/dj29JCNcpey7KuSdMkWpm+v8ejcrmtm68/7dPYM3m9uKyIZuJXsE+ZcvqrwilwR9Oqxzi39ehSLXck0MJcqITBEEQBEFUgMDEooP0QMaKy2yci0w0ZSPOxdWiKxsARjdk0NLMi+ImIWROS9C9XqrfwQlzxwEAJg2v7WtH+DgXFpkT3VasER8aWSd6TIi+YYUKUyY6m/ntwUNvzg3tRO9mtk+xTnThwa3DMr5B9mYC0CeORXiLIhmPBYQ0dgJUzwP+31PrceiP78Oaze2CE53vC08h9KpEdDGmREbhmMIfl82r8jIBXbaveJ2oHrq5B3NtjERwGSegQchH9uwygFVvIvgDVNXgApdOLFrhlvF5t+qydfWKbwKwiHE61SzCyOJauLkMJOtZqkE4C0bS6MVmcX6BaoVvZ/VcU+VM/iv+tlXy+nHg4PK7X+EEdICc6EB1DJAOJbi/C7tB1/X33BO7CySiEwRBEARBVABRRxUnSxwoHIWInjTEuYhREyqR+p4vHBaqPbPGNSrXxRwHiyYPw71fOAx3fPbQvnaUJ6L3SrLGbR8LxAd3zpXFOtFjDthqVG3xy+gVsoM7LXPLWbp6S+J4Mh4rtod97n9rZxd+9+haq/KUmehuUNS2IZt3A6JJOhkvttPzPHzpb89h3fZOfPGvK7hMePFe4V6x5wR1/7+iUGQWuXJRnOiOU5YzTxRJ44FMdPl+ts/lpgk3C/Et7CCEmAEsP8+uwYk+0NnyMmTiYH860aNuN+hO9H7SRDxAO7FooE8sJ4dV1leBrtLltsuup0o5uiuxv7Zsrh7PODgwUFRrnAtQiqZiiRJjVg1Usk8HwlldDdFOlWI309AJSyjOhSAIgiAIogKIAlsu5MSRlYLVRtlJPY1xLoK1QvWcwwrzNuw1qh4tzTWIxYBd3Tm0dpYmrfSbNG1UPdOO8kR0mfNd5qqXoduKLSMQ56IpPzixKNDRG36yv519k32mEjHEY6XJTz3PQ1dvHis2tOKC3/3POiZGNViR96Jlovfm3ICLLcNNgFpavrG1S5uJzmURW8a5mB5h8160h9xyhATxJ0Dsc5tuDiuCia5UUShk61S9caA6/z05X0QP16ZykQ8WSJZVuF5P8VlE594MlYmuLMPDjY+9gTktjVg0ebjVPj5s15WjXd305LpAm9i/cUEHtNiO0u9VtcCLz/r15Tp0+/OouUx0r3qEvYEY6IqC48gHRIeqE72SfVrJgaM9jWr6bQvDEG32oEIiOkEQBEEQRAUQ41Cyg/RAxk24mSw1Ki6q5MK2ohCsmywzbHvuu+hwuJ6H4694kBPRbQVzVbksD33pCLyxrRP7TRoW2Nb2UHQOKT4TnXcoq6JRgD4RXYg96AyZhw4AW9t7ABSyx4GSOPbMulbMuuT20OWp+l6Mn7GlN+/CE0TjdDIunQB1R0dWn4nOtocVhcuYWNR1zZEvMkxuVf2+ghM9cH0Fy3tuQyuufqAUD6MX7yQTi4puW+EL23dKJ7qizuLEolXguTPFb5SWebjpyfVYMLEZs8er34qR11G+GqkTVnQT6rLc9dImfOOfLwIA1v7wndEaImmXrSO0qzePX97PRxaJcS5i08XjdiS/AwONro2qa0e3PlTdA+REdz1PGByIXnG5/wSo5DEPhHl5IN4efHVLO8Y1ZVCbqlIZboDvz/XbOzGxL8pvqDNUxehq+Hs+1KA4F4IgCIIgiAogitCD5URnhZFUnIlzkTnRmWX+508dOR0A8I0T9zXWZauBpxIxZJJxXHXWfsq2+sjiWGSIguTE4bU4eO+Rdg1SoHtQZ8+v4zhcVIfOiZ73hDgXeJGc6Ns7egGg+PBd7ivRuticKBOsyZzo6QQbO1Na15t3kWcEC1nGuQ/rRPf7XOaUNj0G5lwvkqDE7sG6F1WRJyxif4jzEgTjJTy8+8pHcNdLm6T128DneAddqeJ5kKHMRPcnFq2C+fekE4tKeus/z7+Ni295Hif8/KHwdRjKLrVFU0YFnOivbumw2i4MYW6Fl97aGdwfnhDnYnKiy5cPJOI14wr3RmB77nOE344BUtXE7HZxHoTBQjYYZ+voF/++ic7xcv78OYr9+9uJ/tTa7Tjqpw/gmMseNG4bJjqskq02vZ1RCdi+P+TH9/VPJQPEUBXOWXaHYxhoSEQnCIIgCILoBwYrE53VRlNMnIvMeSxzon/h2Bl48VvHWQnSYZ3k+45vwg3n7a/dxnbCzTB1WzvRtWXwcS6sGCAx+RfxBCe65wEdEZzo29p9ET1ebEM5yCaa9Qk76SlQiPrQTyzKr+Od6IX68q6HGx9bi619x8quA0rCtUyIMQlWokPTFpXoc9vzbwXyh0UCcS7CGwtibM3JVz0SLKRvE1mGr7y9Yvl8HWydqt8oZSZ6Lo8HV28puqIHE9tJC19+q01ZxhV3r8aRl95fHKDSoc891wjsmjLzhuunEqgG28LEkzy/ISiiuy5/bwaOQ/jKzo1gattAYZo4tlwnOi/S99955tvpVayucs+O7dsig4Hs2KIMHofhtufeAgC82dpV0XIr+RsiTkxN6OF+QwaxHeVQ7mDhngiJ6ARBEARBEBVAdCOfvLAFALBocjBepD/hnOiMiJ6UKL1sm1lRui5t96pxFBHE9E90VcSESBgR3ToTXdjuE4fvBQD44nEztHEuOkHaFbKDPYQT0f0JYbd18CJ6ufqTzoneE0FELzjR+WW1qXix712Pr1OWif7HJ97AJf/gBVr2cvB3CcS/eObrKh8xzgUKIexTNz2LIy69Hx+4/inlrqJQKfY5exxrt3VghUSs9Os86If3BtZZTSwquG1t4lxUYlJP1sW51z1ZcRHIRDkTFMY01/kVd7+C17Z24JqHXjPWG9VtbopzYc+Hasv+0JrD3AqrN7dL92cz9cVLRjw/xUz0EPVWmuCbH+p1NutNDFS+tOgeFudF0NGdzeMjN/4PNz+1TrtdpbDthv4cXlH9u2XIZqKzn8vN7hfeaiDsGcwBom19cX9RGKpZ7oMJiegEQRAEQRAVQHwu++o7Z+EXZy7EdR/QO68rDSvYsiK6LLdbFucShii56aZ/sNu6oG2FccBehBIFhy8eNwMPfPFwfOLwvQIDDpwTXVPBC2+2oTNbchF7nofOEHEu/oDGto7CQ1Kl4lx059s2Uoclmw860WuYSWg9eBhWlyp+72L6xBeTH1i1JVAuW6YvcohOaQ9mgTzvRnNo6vZYu60TD64Otrm4r4U73kd1PReyp13Ona9DFNBEIZCfWFR+nlWn/09PDozQJiJ/8yC4nay/bX6j1OKZ3fWid6nr640yiW8lCONEl/0m5wXVXCxNLL7cTPRK9JJ4/5vmO2CXRJlY1GaApBIE7nnFOhl/ePwN3PnSJvzf357v13aVllWHYCf7WRise9GE53m44Mb/4ct/e85i2+h1bGrrrqggr2Jw3z+pLKbfkIHgsjtXYdF378afI/59rs6rvrohEZ0gCIIgCKICjG3McN8zyThOnD8eTbXJAW0H6w5MMe7zhMQtHeciSiKI6OVmikiwdaKHwTZfVBTTHMfB5BF1cByHc6I7IeJcAHCTqXoAOnrtnej1fSK6X12tMLFoVHSToUaJc3lmXSv++vQGbllGcKL7bQeA1s6SKPzsulZc+KdnipOnsrDnxO9zaSZ6CMHaFkcsN2QRYjPF7+yxqW6/QvyP/aAL/zo+/2DverzzWRXnIgqkPk+/scO6HZUk73o4+7dP4KK/rCgus41zMd2bOmwFEt21pbvsxHid/hCtVHd5mKpkx9crXDu2meh8GwZWvhGrMznF3TJF8IE6PP4e5ys2NWFnV9awRXSkg18Ry6rk2xgO5P8mqFYn+prN7bjrpU3481Pr5RuEePNAxRV3v4Il378H/4+pozp7o7oIM2DVX/z83jUAEHiLzxa23WGy+PdkSEQnCIIgCIKoAP93/EwcO3sMrjl38aC2g41iSMYdnLbfBMwY04AjZo4KbMs+mOriPVRE0dBNDxqiOKMizMOibTt1D9GOMODA6oy6yAgRVSb6yPq0dPtmYRCmtk9UjzLowaJ1okcQ0QHgJ3es4r7XJOPFvnc9XjBs6+b74N/PvSWNM+Fywz25Ex2wi3OJogoEM8btyQvbi/uz15Dq4dWDh3bFoIsxc9gLbmMX51Jd8snKt3fh4TVb8denNzDn3u4asLk3lUIz+zmi21wnFOeEOBcV/SFrhLmUZdtmhd8I8TgD+/hzI1jchLe/8DZ+8N+Xufu8En0QcMtr1gXWR1DIogqaYdE70T1sa+/Bh294Cne8+Haoctm/eeVOylwqx7Zu4Xvo2sPTHwP4LGH6kD3+LDeniv53L+oV97N7XuH+W6grYmF7ENXyZgVQhhO+eg5hyGAXeEkQBEEQBEFoGVaXwm8GWUAHeAHMcRz89H3z4XmeMf4jjBBczj6LpwwHAEwaXitdL4ozKsI8u9jozcumjcC4poxyfYwT0fmHpzADEK7n4aYng44yVRHDalPc99pk/2eiR4lzkVGTjJeuEY93PrdZOiD57PTCf0WR13VhfBDMe9EeMdm9siHFZVHsF7+LIru0fsWgS2FdcH9x0EEU1Nj1quMZKPEvCt25PGpTCetJC60ipzRvARQ/6/aPKLCLbwZ4AH55/xp4HvDJI6braiybMHeD7HoQBUfbS4ZzPSrOzcf+8DQAYOHE5tJ+dsVb1134bhAnPflnW9xyC7BEvMfF6/ZHt6/EPSs3456Vm7H2h++MVocX/m+OabJWHSZHbFl//xzVfBJllFlhxIERdrnY9nInwGWpTcWLcXP9FucyyBMK9xfVJKiHgSYTDU9VONGvuuoqTJkyBZlMBkuWLMGTTz6p3PaGG26A4zjc/zIZ9QMPQRAEQRDEnkRSEtti89AyUJnoTTVJvPCt43DPFw6TrrcVcMP9w9/czps+slTbT+LEoqz+GMYV/tyGnXh9a0ewhYoimmpEJ3o8dJ0ydJOhRnWii9Sk4sWedz2PE97auu1E9JwkzkUUn0VxWIYbcWJRdh/bAZ5inQEnOn+euQECReM8ALu65SK6KS7BQ1AI5kR0xfGUG2vw/Iad+MU9r6A7ax9DY4sv8MiPPbiM/V2TvcFgi96Jrl6p2090onse8OPbV+End6zi4o7KudVV+4bpCtm2oogubhOcWDQ8m9qiT5YnQ2yTK9wbge25WJQITnSmi/pTpgpMJgz+u+18CjqiDKxJI5ci1h94i6DMDpXdF/09eFiJ0k1tjDTvB1NmS3MNUxZhohJvAQw2Q1T7H1QG3Yl+88034/Of/zyuvvpqLFmyBFdccQWOO+44rFq1CqNHj5bu09jYiFWrSq+L7q6jWQRBEARBEGFZttcIHL/vWMwY2xBqvyiCeBQnOlDK+ZZhK+BW2olughWtHUeYWLQC2fAqUTwQ51KpTPR+iHMRySTjxX+nux7/Wvo/l2+0KoOdKNcXQfMSAc90OeTdqAJD6XNYh764eVBUL33PKcrWOdHlueBqQa3gfC5tq55YtLyn6hOvfBgAMGF4DU5ZOKGsskS6fJekZJ08E710nffmXWRi8cA2uigd9puKqAJ73vWUgyeVugdVhHFNRspEF3aJMrFoxZ2dASVWs05YpJgmQMvgxLmIfexFil0TifaToHf3h6u/cn2p6o4qS7EqIs5zIcK/iRC+/G0dpUGWcc01eGVze+Sy9jSqqY+itqWKDmHIMOhO9MsuuwwXXHABzjvvPMyePRtXX301amtrcd111yn3cRwHY8eOLf5vzJgxA9higiAIgiCI6iUec3D1OYvwuWP2CbWfxpgc4IenzkV9OoFfnrVfyNaZOW5fu3/XhfmHf7mubYAX4uPCxKJR8uQBYHhdKapFVUIgziWV0O9giU74r1QmtpiJzgrFtnXkJG5tMTbf9cwuc5ttZLBCXlhhUxQBXc/jThufT65qnKcR0fUilcwJzznR+yETfc3mXcXPYSZEtaWrz91um4sviuhhsI4oiVhG3vWU4qx/eD25PB5es82uISEIc4plYrZ4L+j0aaA0UBFmIKucXyGb68MoThqc6sY2VDBmQ4c4UMY57D2gEoniUURseeSSXTnByBL9ehmvb+3AO3/+EP7z/FuyGiK3baAR31YRKTc16M0dXcXP7Hzj/Rbn0i+lDhYDc48T1cWgiui9vb14+umncfTRRxeXxWIxHH300XjssceU+7W3t2Py5MmYOHEiTjrpJLz4onom2p6eHrS1tXH/IwiCIAiCIPi3+cI40c84YBJWfONY7N+Xb15JPnrYXnbifBgnevTmFOEy0WNCnEsEEf1nZyzASQvGF7+r3qwMxLmkKhPnElX4D0NtKs45UMNmigO8uFx0orsyJ7q+7LwbNRO9RE/ZcS78dz7vXd46zwPalZnosjqZ9cX/52/PD2SohPtyYk+efmNH8bPujZOodGqc6GyH/PGJN/CRG//H5fCr4mtUt5JOnMrlXfzh8Tdw3cOvF93x0jKUawrnPKdQ0f1r5Zv/fAkPrt6iKSUaoZzokiYGM9GF8izKN7WhHHFQPsAkuOUN2/MiuLoBNs7mct/u0OEJ9zgX5wK94Kzr13L/Qphc09p9xcspQv1f+usKvLixDZ/44zPc+VP9ra0mEZRtomlya/58hz8I9jcoz9UVuqg9mqGaLV6tg0fVzKDGuWzduhX5fD7gJB8zZgxWrlwp3WfGjBm47rrrMG/ePOzcuROXXnopDjzwQLz44ouYMCH4uuAPfvADfOtb3+qX9hMEQRAEQewuhI0kqUSEiYxkPIYT5o4zbhfGGVeROBfGeuI4DvfgESUK5+DpI/HSWyVzh6qIoBO9MnEu/XX+WDLJeFHsFwVcW3pzJYHSf6iXxaSYLoe850V6WGR36cmFc1YHHfPid0bgVYipHnRxLnrhDx7/WJ/Le4L7vfJOdDbmoz+Ew87evr6QOTKZz1+95QUAwGvM/AOhneiCGMny6Kvb8LVbC3UcMFU9mKgbkHA9tRPd77ubnlxn11gFyqiaEKdGdp2J93IgzkWsr2/JQOk1spicoM5vcPgyn6NcyuIkv/2FGOfCD5xVZhA5Uia67G0ASTF518PdL2/CwonNGN1YmOtOFCSj/Hazc0nYONmrdULlMO2Kcgj8YE/pvh6qovBAUu5bANXAEG32oDLocS5hWbZsGc4991wsWLAAhx12GP7+979j1KhR+PWvfy3d/itf+Qp27txZ/N/69esHuMUEQRAEQRDViY07q1oJ8w9/lWt7TktjpDJiDi8QRnGipxIxzg2uFNHreCf6uKaayHWyDISIXpMqZaLnXC+SENXJuHyLcS4BJ7r5cd9lnOgzxzbYnXuHFxLCxrmEcaLnFK5wz/OUTnTTxH2FfGRG1PY8TiBXieXliN9ifZWmSzexqKS67Uzer+r8qe4E0eHLsrOrNDFuW5fdJLkiOU0meqUilVSEEeZkTREHJExGdL8MdrHpb45tC3d1ZwOCrU2GudHhyy2LICKz90J/OtGFOvlWe5HfWlK5oaO0q7hM0s83PbkOH/390zj6sgfKqk+Hy/1bR7VNZesUiZwHL5lcW7lthEqUf4f6qT+G2D81tZT3C1FZotbPx1YN9lEMDQZVRB85ciTi8Tg2bdrELd+0aRPGjh1rVUYymcTChQuxZs0a6fp0Oo3GxkbufwRBEARBENXIJe+aDQC49L3zB7kl1U8lXkH91VmL8J2T5+Cuzx1q3DadKE1ImMt7GNPnmAOiRaMk4zEkGHu7Suhoqik50RMxB0umFVyv7NZh6verkQlYlRbWa5LxYjujTpTIurBLcS78Nq7FzKJ5ZptE3MHSqSOs6ued6CFF9ICw5yndrapYDw9AuyJb3CT8eYKg5rq8E111TsoR/Nh9TbEwW9t78JW/P4/nN+y0Ll8X5yITANgIl3Im6xRLthVIdU5Fz1NPKBvlrY0whDnD8kx0cYDIsI/nyZeHrFdk7dYOzP3mnTjnuie45VIneuB7fzvR9e2pFIHJhIXvlRAtK5aJLtnu3pWbAQBtnHNcPwBpA/s3zmbvanWi5z3DdVqm7q16Y6I6e6O62D2c6PrriwgyqCJ6KpXCokWLcM899xSXua6Le+65B8uWLbMqI5/P4/nnn8e4cebXfgmCIAiCIKqZDx08FS9+6zi8Z1Ewoo4o5Ij7hPm3fk0qHlj25FePwsThtThn6WTsPabBWMYhe48sfh7TmMavzl6EZdNG4KYLlkYSn1PxGJLMLF6qEpprk5g3oQkAcPbSyUUxnxUIGoXcdBaxbb5YL2uy6TjCHmYNE+cSNkrDp4Nxom9q68Y1D76Gre093DZt3Tlj+X95egP+/VxhgjkHjvU5Y4Wwnmy5TnT+IdXGiX7/qi24+oFXpetkIiO76OW3duHVLe2lOlzRia4Q0ct4kg4jHF789+dx05PrcOKVD1uXH9aJvosZhFFdI1FERs/yOE3OPlWbKuZE5yYKLH0O50QPbiteO+Y4F/nycvnL04W3zB8RJl+VDWzo3PLy7csTl9wQA0rlIJ5XUdirhIjuRfj5ll37sn60uRaj9D972JwTHfK/t/2VDd2bc7G1vSeyy9ckkpcr5LL75EK43gmRIdpf/f/ywW7HoGaiA8DnP/95fOADH8DixYtxwAEH4IorrkBHRwfOO+88AMC5556LlpYW/OAHPwAAfPvb38bSpUsxffp0tLa24ic/+QneeOMNnH/++YN5GARBEARBEBWhrh8m49tdOGlBCz7z5+UAwjkDR9ancfXZi/DA6i3FjOHRDRnDXjx16QSeuPgoPPTKVhw5cwxSiRhu+shSAMC/VmwMVVYy7iAWcxBXONHjMaco6mSScfz94wdiW0cvRjeki9uwwkhDJsHFVrCkEzEuEiWdiAXq80nEHMhL6Vsfj0ndvKfu14K/P/NmYHlNKl4U3qO6gFlx69blG3Hr8nB9zfK3ZzYAKPSdfRwO49wOORAgbi4KdazbWCVo68sP3gSs8HHz//gYSzEDPZuT30TlONHDCIerNu2SLo856vvbz0S3dbmyqONczLnh96/agqN+ej9u+eRBaMwkefempRNdhmpyV9Wgiut6kaOcXJMap9wvuCzQlxqBmq17oHQ56QBTIGe79Nk0KBMpE5x7WyH07taITlJPWKe6vsNQOSe6nbBuigeywVEMIInrfPprnOP4Kx7Ea1s7cOg+o6z3YduXDyNsR3pjgr1OB8KVvPvkuVSTizvqIBD3e0EquhWDnol++umn49JLL8Ull1yCBQsWYPny5bj99tuLk42uW7cOb731VnH7HTt24IILLsCsWbNwwgknoK2tDY8++ihmz549WIdAEARBEAQxJBlqOegcIf+1f/ycsThg6rCyqhzTmMF7Fk1AKsH/EzpsnEsyHuv7L7Mf85F1SWcSMSTiMYxpzHDnK8kI8A0Z9cBLWmjr7z50QKE6SZNNx1GvGOCZOqJOWbdjENFP26+yb11c/8H9jds4CE4G+4Vj9pFuy8W5ZMNNLCo+1IriNDsJp0o01SHNRNcUI54D5cSiEdrik1cIMjJUbdVlOHdmNXEuhmaHHcgRBb9Xt3TgT08Uns6ctwABAABJREFUBuG4twh0IrqhDlWbVBPNhhUz2Z5k9wwjGMrqFK8dU7vKdciGRTrAJMYrKWIsZPVHacrAxbmwdfaTEz3KPpa/T9J7WRzwENbbDAyoRHTVv3v6y4nuT2784OotkfY3xbmwlJuJzonooUuKRn/1+0CwW8S5cL9zQ/QgBpiqsDpdeOGFuPDCC6Xr7r//fu775Zdfjssvv3wAWkUQBEEQBEEMFjo3KlC5h/pKENYZ6ovwrGjNCofsQ2U6GYyiAYC6dGk5m9euqgsAbvzQAdh/yvBAfT66iJPpo+vxwQOn4Gu3vhBYJ4vLAQpihWOIczly5mhsbO3CY69tk64Py74tjfjGibPxrX+9pN7IcQLnLBGXeIsEV2foTHThghPFVtZ9HiW+QyY+6EQU8RxkFXWW8xo/52o0miblGxSuTfk6P84livASNs5FVoX/9gAnXGrOnakvVSK60oke8rB5IZEVyOwLkh2C6KAPZKKLZahW2Lci1NYy0VrXRlm/cvnQZTrR+zXOhaszeG4rMVgeyYkuc53LtpOdK/FFh0BckLk9rNAe6BOJCN/fE4uGgRdn9aM5/H1dXl28E71/OkS8HCs10DMYDFXhnIW7N3aD4xkIBt2JThAEQRAEQRAiw2pT2vVRHl7mtDRFbI0e0dVswneis8ItWwIrqIpOcp96xn2uc5CzAjvbTFmT2XgZlvctnoC7P38YRtanpetrU0FfzskLxgMoifW+AJ1KxHDw9JHMvvGKTmjqWHgUZU50WR+6nseJR2GFblEHzQvKECuUqlzhOsI60cVM92w/TCxaiRxo3e1UnFhU6mjV1xe2j3Vud9vrwuiOz8vfblBNLFrOAAfvWJZvs3rTLvz+sbXGCAlR/A9kogvfi3EuYcT7MhQdmZFf10ZpJjq3bfg2cOUPphM9YrmuUG457dKVY+NOLzfOhT0WVX9UawY4ey1L+4/9XHbskL3rvVJUZ6+HZ7Bd3FFrL/eNmz2RqnCiEwRBEARBEATL9eftj8/evByvbemQro/ywLLPmAb89WPLMKYxXB66iXg8pBM9HnSiq149T8oc0uCjVXKup3Tus050Vl6WOdGTiuPwy1WJDLWCE33qyDpcccbCvnoKy3wBM5OI4ZSFLXh4zdbC92Q8csazDMcxOy8dBxC7VdYGcSLQsIiChii2sqJuFOE6MHGp6+HW5cFseh/Ria2cWLQcEZ11NfZDxEeXJs7F9JPgC7+e50V25/pV2AuMJie6fL1KmK/UWwIqse3Yyx8EULiHzl46WVmnOCBhbJXn12vXVtttVdvIneiiiK5eJ66P8veG7aL+daKry3Y9L7LLt+yJVS2zW+Q56XrnuVWci6Y8WZ9UqYbOx7lI1pcrgqrjXAamQ1zPQ3yI5qRXUyZ6VIZoswcVcqITBEEQBEHsobxjzli0NNfglIUtg92UAPMmNOPeLxyuXB/1gWXxlOGYOLw22s4KwjrRfXc560TX5UDLqGFiXnpyeaVzP8W63Q1OdLYNMc7FV+hslbAnxrnEJPU8u6610J5EjNu+NhVHyDEILQ7Mr4Y7CIrmKid6Oa+0rxYmzhTFaVaIrEQm+q3L38SLG9uU24vu4V7VpJZlCH6iINOdzeP+VZvRLcmTV3Wtrsv9ckyOTBk9ORer3t6F/b93D258bK1ha7nQLHOi6wYdzE50RZxLhQY4uEgLwaGs47kNrcXPsirFKKCA6Cns4wn/taEccUcmWgcjQvTbs8cUYd5f62ukXFzhOMR4j7B/W6TlRopzkS0bOCc6+4eAc6I7cjd6NTnRORe94a0QU7a/CdXAZ391h9j3VdTtodndXNxDOZ9+ICERnSAIgiAIYg+lLp3AQ186ApefvmCwmxKaasovtdEoWJe3dGLR0HWW9u3NuRhWpxDRE/LImJTE4Z5g2pNgol38h/iFE5uldYiRMw4nxvPHuLW9lxsAqHicC5PDrtsmEOciOReeV96D8aa2Hu67KKSxX1UTSeoQH3ifWrtDu72Y6a6KDFEtt0HMgf7Wv17EB69/Cl/663PWZegc7P5gg1R4s8gf//o/XsDW9h5c8o8Xi8tVV4tOBDRFgejKENskQ8wc9ynndy+M2MaL78FtA3EuoqguHLm/Xj4w4eGLf1mBH9++UliubaIWk9gofpddc57isw5P0cfS8islWHF1BuM9ov+68uWWsTvTHttl4vUUHu64LQqopn9TsLCDmvKIHOZLhGNg+5odzPU84PWtHfh/T63v50GgKu34kAz2YUStv9w3TvZESEQnCIIgCILYg6lklMZAUk2OGRsXMStK+8J2XDGxaFh6ci6GK5zorMDNistTR9bh1P1aMLK+tB8rLLNt85+fJw6vxW/PXRyoo6W5hvvOPnDLBO0MI6LXpOLGYw9ziTowZwA7CE6iKnubQMwXLhedEBHNic7vY+onUfhUZYR3h5xAVdWmvOfhpifXAwD+uWJjpDJE8q767QDTuVIJ0yp0gp8qAiFsm3pyqkx01TFGvyB5cVW/LTs9gtSJbohzCeNEX72pHX95egN+ef+r+kaFQHZORCGb/Sbrb965b9fvKre/3OluVaS5TuZzIBMdiByK7kY4fr5ddsdsk5Mepa/4THS2APlAa7WKuaaIlXInFmXvC3EuhCMuvR9f+ttzuOnJdRFKtqNKuz00g52JHpXdzU0/EJCIThAEQRAEQRBlcOD0ETh98UT87IwFym0SnBO98JkV1svQ0NGTdfGu+eOk69JJ1cSiDi573wJ8/V2zi8vYARW2vay4sPeYeq78n753PvYe08AtY8Va2WGlk6Xjrk0ljE70lmE12vUshUx08zaicC9rQ7lxLiK6mJQoESqied103KITXSUql+M6tMmB/uQfn8E51z6hdCXrujybd9UxMIa29eby8rc/lB2ndifbZr+bhLnubD/HuXBzLdg70dk7V7at+LaC2CyTqM62h/29cBWCYdjb0E6YZRy4ksEZPkM+fL3cQEuE+CFbRLFf7DddfrhO+AsT/yNDdgnLirFZFkXg5jLRQ+9dPZgm+6xknAvneme2+d/a7aHLVSH+3A5V8RkQzsfQPYwiu8uARn9DIjpBEARBEAQx5Kgm11g6EceP3jMPJy1QZ8uzE4T6TnRW0GNF3dP2m4Dpo+tx4RHTrervzbs4e8lkfPkdMwPruEx0yb5svawbOxGTi2js9i3NNTht0YRAmawAKNPH2VNXmzJPLDq6IWMd+eL0/Z9pG7E8WZyLGI1QLnonenj3N3teNrV14w+P692CoutZ5UQvBy7mRHKPZvMubnv+LTz0ylZs3NkdWG/SiPOuWnLxq1MNfPTmXW7gyoSsmLauLIDKZaLLsuIBtRPdRkPvzubx5OvbA9dUGMch7+INrhffajBlovv9JWsDWxcba1TOT7zs0tbFKcnW8/qYpROdK5+9RiTbVuhvGD84Ih6XF+pNHpZyxVnZHtaTjRoGZWxg3eY27e/PyV/LIWe4J/g3BsKXrxpcGyiHcpV2uxXcgNUgtqMc+PM8VI9iYEkMdgMIgiAIgiAIYndjZH0aR8wYhb88vQEA73ROJQru8IRi0s+mmiTu/vxh1nX1ZPOIxRycsrAFP/wvnyusinOR1ct+jnOZ6OxyRvhX6JGsACgTyFmBPp2ISSf1ZKlNxTGsNoWt7T3a7QDAidnFv4jbyCJlTK7osFTaic627f3XPG7c3jbOpRz4mBP9etP+MrKupxTEfAFAVUY273GDWT5hNMYbHl2LvcfUc32vz0TXH0+PSkRXONHlDmsP67Z34vWtHbj478+jtSuLzt48PnPU3sK+/D46OBevZFtxUtqg6Kk/R7J9gPCROypk5yTYd/z3nOshwcyRLIrTNriKfaQTnTKLynkTSRT7RQd51LL5AYEI+1u8DVCox+JcCd/FNyykf9uUu3vSPqkuMbfUQPZvgynrP8ohqAcEB6ZDqimaLyxRIp+qjXLe+NlTISc6QRAEQRAEUbUcPH0kAGDptOEAgO+cPAeNmQQufe/8wWyWkWTcwU+YNrJCcaoY51JaxooAYUWPXo0YGo/py2Vd2+y2Kie6TY47K87KtpjT0oSDpo/A+xZPkE7yKVKbimN4XVK7DVufsf8kG8UcJyCsF1ydlXuqzGsmDy0nE/25Da14dUuHcXvbOJdy4IRDg+Aj398ksmviXPqWq+JVXNeTxrmorhdVS756ywtKsVTVJhWq/Hn1xKLB5dc+/DoO+8n9+OD1T2Hjzm509haE+RseXcuLjcwRXfSX57RvP6jzpAuIIr+4jTI6RSI6cU70MvL4de2RtUk8b7pBJdufgb8+vQHvv+ZxtHb2Gt/KqJTr0+PuuULJpTr0cS58OeI5LM+JLr8vbIV1w3cL97Uqyki1fTW93cYeMZ+JLtmyTCGXvez5THR5HeUiXo/VNXix51FVl/0QgZzoBEEQBEEQRNVy5fsX4l8rNuJd88YDAM5ZOhlnHTCp6idE1cWF+HEunIjObBv2yHzBrSET/Kd9XFFHcZkj31aVic4K56p2ss45mUMwHnPwx/OXlso0nMuaZMGJboPj2MS5yPYrHJsYYVDJ50udUK5yHuvw2/ruKx+J1J7+cKKbYk5MTnOTkPXImm1Y9oN79GUoDivvyZ3oKnRN0eWgh0Ed52Kfif6j21dKtgwODrC7Ll/fituef0sZQcXeQ7L+bO3MKsuW4a839Rof5xK9j2XXUSCuxdOv5x2+6raw/fzVW14AAFx57xocM3tMqSzDxKLl/DUL/GZFdKK7HhBXDJ5EOxfRBHPZhrrqVavYa1j0V8v+RlSTk1j1pousjVGy+1X7m6Jj+oNq6vewhPXtZ/MuOnvzaKqxMwUMBEO39wcPEtEJgiAIgiCIqqW5NoVzlk3hllW7gA4gINYlmewTf50qzsX2+BZMbMby9a1FsaY2lcDfPr4MjuPg8de2YXRDBo+9uk1aR3EZ+1mZiV7axiabnBVnVW51FpMTvSYVt37odIr/T7ONwpEfizncwboeKvqEqROQo7jCy3XwVVJE78nlce3Dr+P5N3cWl9kImSI2x7Sto1e63BdjdE50Wfa9atBFJ+7Y6j5/+d96ZJJxTB9dL12vFNEVHSGrV9WngaMSdhaFcJaYQkxVYRpu8tdLM9HZ6Iq8cP9FxCbORfwu3oNBh7ccWfd09OaMk89yIno5eS5CmaIz2bZs1/MQZ4XnMp3ItoK5NPZF0jaWoMtc/8dNHBCo9jgXtYge3LZcEZ1744D5kzBQed9DWEO3esOB5R0/ewhrNrfjiYuPwpjGTD+2zB5PuDcIMySiEwRBEARBEESFWDR5GJ5+YwfO2H8it7yREYH9yT4TimgUWz3ltx9YjNueewsnLRjP1F+Ivdlv0jAAwJOvsyK6PsqC1RdZsZx9iOcmH1W4elkxihXjhtUmcc25iwPbm53oCdSl7QRfxzG7Oh04gSfemBMU8z3Pq+hEWzr3si7qRUW5D7xRImRU/O7Rtfjx7au4ZTL3bbmZ6Dr8PVVl5D2PG8wq7acQrDV12U5C+LvH3sDvHnsDa3/4Tun56s7Kz7tKRJdH5MjrjglvZYjb6a4f9rfC5jJTxrfoyii600sr2YGdcuI1bPpJ3ER8G4RbH7ItiViMj3OROdH7I87F9QLiJxfN43rK39vgIIP8s3W7DG3VbSfeX7ruV7VNlYmuKqqa4lzYtrB/T+UieulzlGuKHUsdCCd68A2Z6un3sIR1oq/Z3A4AuHflZpx5wKR+aVNYwh4DQSI6QRAEQRAEQVSM333oADy3vhVLpo3glk8bVYfl61sBALu6cwD4yBT2udLGvQ0UJi/9wIFTtNuwE4TKY0zkmeisk56Lc2E0SHbSUhXsoXz35LlYPGW4pI36MmpSMfTk4vqN/PrgGPtPJmgV4lz4Za7nVcSd6PRp9s+ua1VuE8WJnvc8ba61CV2WflhWvd0eWCYbNDDFoJQzMODvqhK48y6QTMhiHPTlyaiUqFiJOBcV5YhVpkx0EZPoWYpzCbpb2WPKKpzoYbtb1n2B3HZxYlHhHrTNvZcRjznG+QEqpR2yx+EGnOj8737e8xBTvnkhfmfLDd9Y2zkRZH0rLtLVrhKOVdew2Cc2dQw0bFvYAVbVxMKlz+HrUk6GO0AOZV3Jd7+0CaMb05g3obnf6q8UYfqomt6lLPeNkz0REtEJgiAIgiAIokLUpxM4sG8yVJa9RpXiHDa0dgLghWqbrPEosAK11InOfI4pBHX2wYpdnrIS0Uvbq0R3Y5xLMo7eVAgnuqEDs1LXtxNwaLpuZcSDRMwxiuSRMtFdoFMhwtoQxYmeiDlSl3QmGTy3UiHTcJjlOdEL+yrjXDx5JnqUcxxFVJTt0qU4f+qJRe3rE+/3QCa4bl/OwW4hoosCbGCLwhIxakRsF+tEL+fes4lzEYsX4414I3pYJ7rDXYem9pTzm8/HzniCs5SPLsm7HpKK8Uhd/1TqepeWYjHAECVayVFG06jiXKpHQeTjXJjlkm1NgzXmugb3uFVtXrN5F86/8X8AgLU/fOdANskamzccZFQovaniVHYWmN0X+5lVCIIgCIIgCIIIxTXnLsZ7F03Ahw+eWly2YUcXAD7OhVVRbJ3oNsQN4jwrtLH1/ui0ecXPrADEbpOymKSR3T4tEVoBc5xLJhlHTcre+2MU0SXqbswJ9nulJha1OZ9RxGPX89DZE11Ej5KJrhoIyUiUOZkj3DRYUI7z3+xE9/h7zl+uEHF0Z79Szlx1Jrq8n8LUu2VXD1dOVCe6VZyL0FdBEdTfLggfXTF4cS6Be5ATJ9V1yW7vRDwmTLIb3KZSclXAtc2r6Nzvj+gufnVzB7NOLLc8h7NsF5v8c9myKPWrrmFVUVWkoXN9nzdMtstPgBse1d+eqAKxCfF2UfX72q2dFay1v4jWSabJzweW8u7zPRES0QmCIAiCIAiinzhm9hj85L3zkUnGsXRaIcrkhLnjABRyc31iDvCueYXlZy6pXFYmK1DLxB5Ox2c+j2sqTXrFxbmwIjojqN77hcOk9bNVphNyC6TJiV6bSqAuZRnn4pgfULM5L9AZjuMEJk31vMo8VMqE20CbIrjCPQ/o7M1FaRIAde62DtXbBzJxXRSnO3tz+PRNz2rLL0c49fdUieL/XLER1zz0uqROQ4ESIjk+JctUTnTVWwJh6338te2lMg3nmxXouDxpi3p0Amxhve9EDwp+rMDMi+gWFSvbIxEbXXmbSnWr14dtSiLmGONQKiVYuUI9gUx0ZltWMP3xHatw+4tvK9vIxelEEdEtd5I61g3ROyyqe4IT0S3ETtt5DgYEpinsfSs2Me96ZcdxqA7bps8qwVAWbvmBhqF5IP01WLI7QyI6QRAEQRAEQQwAvz57MX763vm4+IRZAMRMdAe/OHMhVn7neLQ011SsTvYBSSYuszEzrIDFOotVcS6sKD6NKYfFJkNdFK9FalIxHDlztHYbHweOnRNdeHJ3IHeiVwKT0x5QZ2DrcD0Pnb3RnehRUA2E2DjRf/Pga3hGkwsPlCmi9+2qclZu2dUTqk5dS8LqbaLY5dOlOH/KiUXLiLE3iYTcGycxuXtZhWki0aITXSL4qTPRedd0GKziXIT1gYlF2c9h41ziDneupBOLsoMWZRhTA7ErQh+zbxuxbfrV/a8qy5GWW0a7dMtsBhjE76pJQ/lt5JPqqo5kIDX0f63YiJOvegQbdsjd1mxT+GtHHPgRfxDCH4Tq3JbzW1OJ+ocaoQ6jiozo/O/coDVjSEEiOkEQBEEQBEEMAE21SZy2aALq04VoEk5Edwpih0yMLAfWOdwyLCjOTxlZh5suWIq7PncoehkBi20H6+xl9WCbiUUrEedSk4xj7zEN+MaJsy3qk2e/s8gm1IzFgLauLLfMNAmmLVZO9KhxLgMsopfjRH9jm/n1/HIy0X05IKz4ozrNutMfVvgpvDEQ3Kc7K2+salClHMFJFObFotj17BVrJ6IL34X18skjvUD5rCiYD/l2xmV3rcaz63YEyiy1QTx+vRPd1uErW5eMx7jrvz+d6Cwur6EH6tX9pon9ITrcwyJz5kqXaa6N0nddPXL4OBd+QEb2N2IgxdxP3fQslq9vxSX/eFG6nm2vyYnOEmnCY6UTnf1cub4R+34o67ZR2+73wA2PvB4YzBpoSDgPD4noBEEQBEEQBDEIsHEu/fUgc/KCFhw+YxRu/NABGF6Xkm6zbK8R2HtMA3pzJQGLdYfPbWkqfnYUcS42RI1z8fPQZ45tNNbhOOa0UVkWuAMnGGdQIWuizmnvH3oUJ3q5cS5RaMjYZ9OLAs8tz75p3Kec+6DobA5ZiOo864SjsO3s7M2Hm1hU5UQvJyc8hBOdvYlsBiUC7bKI45A70UuVhY0b+vk9r+CUXz7aV6akjcIykyDJx6IE27Kjo7dvXZC4TZyLZL8oiAKxGJnD/rzqrh/d5LCVEmdl15KsaJMTnSvT4p4QneiyX2T7+BkPazbvshrwM5UpDtwW92M+s/UEBr40Az+2KOeEMBT2xrYO/PqBV9HRU97foKqK0QlJOVE6vTkX3/zXS/jR7Suxqa27sg0LgTgVMWHG/l9BBEEQBEEQBEFUjCTjRC/Pgatm9vhG3HDeAVbbiuLyHZ89FLc9/xY+cug06fahJxZViO42TnTAHPsCFMQRc5yLpK+doGhXKSe6rt11qQTae3KRJxZVxYH0Fy3NNThtvwm4f/UWPLh6S3G5P1kuSxTBt5z7wBTnoiJKlWHr6OzNyzPRVXEuikGVcvon4ETXrGeHomzERWOzPL+sYP3sfaaKcwmLTZyL2ANin7NFiMX96v5X8aPbV+L7p8yV9k8i5nD72LUnGlzsissf1cq32oT1OhFdFGQ96eco7Souk24XdImL2+n6Shnnwv0hUAvRpTqUVXBc89Br+P5/VuKM/Sfih8wE3GHaZoLdj40ZEgdzghFE0f6OSNugaI/PcVc8iO6si/U7OvHdk+eGrldXtlh/tcIPWNm32HEc7jdBNcH0QFDOQMCeCjnRCYIgCIIgCGIQqEuV/Cxt3XJH2kDCOtEBYMbYBnz+mH2K8TMiYjyLKbZEFVVjdKKHEdGdYLa5SDYniXOR7KMyhx8xY5SxHSzsGwciNX0TpkaZWNT1gI4BFtEdB/jQwVPxrr7JcX1+//gbgW2jDgxERRYPEqXOja1deNcvHsJfn95gvY+Jjp6cVIgMP7FoqGo5TINC7Pni3cvmsk3xG8WJRSVCEyvssscdZeJbsT7dMrH4gPufE3f5VT+6fSUA4OJbnpdKZ0+t3Y5fP/haqS6ZA7tC4hXvI+Wz93/w35Vc7rbuGtC9iRPlVMgjbGTL2H3U+ypRiehcW9jN5XKnrQh62V2rAQB/fmq9cduov2e8E50pT7iOTBFNVnWpRGxDYX4U1RPM5MVRGKoTcoqE6XsH/HGb35+rHM9v2Mnd2ySih4dEdIIgCIIgCIIYBFgH9o7O3kFsSQFZzIkO0YnOZrz7sE459cSipc9HzxoTWO8LzTbZ4jZxLrJMdNk+eUWOxen7T8Sfzl+C+ROajO0B+MlVRer6jk10FNpQcKIPbJxLmIdslRCsI4zoJI57RHWii2LR9//zMl54sw3/WL5Rs0+oKrBmczt2dKoHysRrWzmxaDnubMP54ByvnLBprtMUv+HJlkvOVzmZ6CyyNovFBaMxNBOLaoQ+2am648VNWLG+lalbIh5zcTHREUVo8dhf3NhWaofm3tDl2kdyolsvKy312xe8nuzFfx8+E53/LCvP9mcjzE+1qUzVai4TPa92oot/syv59o+tuBp2Ulxxe1UfVdHcm0okP2dWOA5/3OVMLByWE698GL95qDTAZ4qtIoKQiE4QBEEQBEEQg4xOYBsoRCe6CTETPSlRi9kyVSI6+9r9D0+biycuPgr7ji/ln/siuo0TvVCefn1v3g08Ksr2UYkLiVgMB04fieZaeca8bHsVdX0u/yiCcyETffBeAzfRnQvftjD6t/j2gL9ruXEupoicggASro7P3rxcu75GeEtDNahy38rNOOM3j2Ht1o5Q9QNBIVcUEvns5aALeb9JzVgwsVlathgTEnCme/7y4DaqiUXLcaLLrgHxeMXvYn0qt6apXPv2hCtDhTgBqFgSt17zE69z6kc6FZYqus2AjbiY/ZuhappqclwPioluLc9BmJivqKIkW4UuEz2Q4x+hOps4Fx3luqjLufYHm6gubsfpvwg/G37LiujkRA8NiegEQRAEQRAEMciEFbCroQ2iiC5zorNlJhQZ6qwWmog5GNOY4db7AqOsfDn67WQPirI4F9Uzrq+J24r6uu38Y4siGLqeV5zUTRRhKwnb/qKj2EJiiZLXHkZYEHvVP6/lxrkkDVn/MSc4CW25ZFL8+VPF+/zy/lfx+Gvbcck/Xwxdh2kCP3YgRyao//C0eThk75HSfcWSxe4pxrlIIlJYM22Wa0O030TX9fCZPy8PLjfEuQQmaWQ/R8jk1tUt7leWE52tx/UChXGCrNbRLe4nH1SxRT6ZqmwZ0z43eJ3427y6pR1X3vsK2oVoJFXbWKHdFTpbtovt5RbmN8rUbaq2s/2U04joUWLARFSHw3eZup5yXdRWcVFVqu6GmZSTPQYH/MTDA+lEL9Qnr7A6e7n6IBGdIAiCIAiCIAhpzImOgBNdIj72hnzI9yNuWPG9mIkuefD76gmzAstsHkgP2duca64SS/wHUEsNXZv57h+vaiJJlus+uJj7nnM93PHiJgDA1JF1do2JgO1ggYifmRuGsuJc+iQA/7y1NNdY1sl/Nw3WOFDn5UelNiCi6yvY2RX+zRXTQA17vbNiq39OYo56eCrgiBXW60zJ/MSi5TvRX9vaLl2ed4FNbd344xNvoKs3b56k0dKJbTOgZJpYVHbZX3XfGs4xqm4Ae96C7TFNcFrcTuNqVu3Wnc3jdcVbEbJdZOWITnrZdq7n4bjLH8Sld67G9//zMj9woGgbe62yv0UePKvM/EpgKlO1VjXwIZ7bSjjRVQK16fqMSjCGy1x4lWroHKY2itfpYDrRVb/jQ6GfqwES0QmCIAiCIAhikIioT/YLYTPR0wle+Js+uj6wTVh3uy84+w5rAMj0TWAqirkP/98RuODQaYEyTBOLAgXR+bZPH1z8Ls1QVjzkxosievlOdL8s31Eo5syziIMUW3b1YNWmXUgnYnj/kklWbYmE5HVvm4ftbsWkmTrCmI8DbjrBiW775oIv4rR29uK0Xz2Kfz/3lvU+lUJ8kyCbd7V1NNUkQ9dhEvRY0fqfyzdiZ1/ElL/YcZyA6De6IQ0A2LCjEz25PL75zxfx4OotwevD4/7DwTrOuUx01oGrbTlPXBGf5HkeTvvVo/jqLS8UhFiDq1cnInITr1pcs9I4F832W3b14Cd3rMJ3b3vZeB/xTm5X+RaA+DlQjuhEh3m/U3/5KI649H48umarsTzVMvYA/L4MZqKXrs+nXt9u5ZJmzxH7VoyqC/pD04z6M8Huxw6wBibD7c9MdMVnEZWr2RabFht/u/Iutrb3lNWOSITobvYYxEz0gUY1XwBhB4noBEEQBEEQBDFIDLPM1R4Iwj7UiRnnP33ffLxz7jj89WPListshHn2Ic4XnLe2lyZa9R/SxWxxVeyG7SP9xOG12vUqcSFWhoh+4vzx+NSR00tlxfi6khrhV3W8w+tSGF5X2evofYsnFD+PqI9WdlcUET2ME134XnQ2911yujcAZHVeee8aPP3GDuP2/RLnIojovTlXez82RxDRA3El3OCIh4/+/n/F79s6enH+jU8BYJ3oTsAdPqelCQDw8lu7cMMja3HDo2tx7nVPStzQnrROQB3noouxKC6XLFP95uRdDxt2dAEA7n55kyRfWv1bJR4P+9sX1Ymuy2hnhXOjm5kTXD2tiK51omsz0eX7vfRWYdLSvz6zIdguSb/kXRdPvr6dOz5uEMC/TsRMfaGd3HrlIZXu/w5mAuac62GLRHCNOjAWZdLT0r6K5ZLJVmV1ifdjlCNQXhKW/VGuD8Amk930b5NTfvkoFn/3bryyaVeZrQmH7UADELz3+svpbwObY08Ti4aHRHSCIAiCIAiCGCRmjWs0b1RlnLxgPEbWp3Hi/PHc8nFNNbjqrP2weMrw4rKw7nZfcJZFy8QFgVnl8LY1xrEiuOwh9u22bsV++vpF2O3GN2dw5MzRgTZk+wQ8VW48oBbYU4lY5MgVFYfsPQq/Oms/TB5Ri3OWTY5URhQRXZXZLEYHAepYAF+siFn2ia9ttNpGpPSDi1B0ovfmPeXkooC8P0zoBNQNO7rw6hY+luOptYUBBf+UxJxg5Ic/AfCbrV14bsPO0gqJk1hc4X9iy1Q60UOoTD2KGCHRkS2Kd6ITXRdnwr6FY9M0WTSNzG0tw3StiYJrYADD5dery1G3p1Li7NUPvIb3/foxfPlvzzHbBdsXfJOBFxxtombY34dORkQHgNskb5tEOcbtHb1Y9oN78e1/vSRdH/V3ghsYcdnrlt9OHPiJMhCgzmW3o9w8b5smm8Td598s/Pb8c8XG8hoTEtmgoM22juNoJ4ztb5ROdNLQrSARnSAIgiAIgiAGiUvfOx9HzRyN33/4gMFuijWXn74Aj3/lSKtIiahxLjISgigqfvexfahn6wrjLPbFWet6mHZmEnEsnDQMf/v4gXjy4qOKIrrvEo7iRE/GY8q+iEoy7uAdc8fhgS8egU8cPp1ZY99PfiRPmOgRlRCRTsQC/S2+CVAUZfvKCOtEt8mlL9Rb+fzkGjETPedqBc8ok7YGXaty8VqEdaKLbWqqSWJcU2Ei4DWbS1nkAQ0UMid64b/swElOkYnuecCvH3gVNzzyurKdPqrBG3aQQDL/ZuD8u7LG9sEOYthcCrL+DcanyDFlJ4uCq06c1123QSe6/SCGI/MjS/Z5s7XwJsCty0tiJ/uGhF+PbGJR9rNVnAvzudPifolyT//u0bV4u60b1ymuy8juduYzf/4NAz8R6lJdX66lyBtWRBevFVW/s1sNpMj8kztW4sbH1obez9RE3f3VH3n8Ori+VXwm1CQGuwEEQRAEQRAEsacytimDaz+4/2A3IxSO41jnTX/gwCm4/pG1Ade6CtE93JApPa6IoqnKtW2b0RrVQee3I4oT3Y/tWDR5WF9ZheW+kCFG1qjKYUnFY9aua1tUgr2PzcO2L/A01iSME2G6rodYzFFO2OkPFLCiUSDOxRdlGSd6IhaMIJHVDQBZS9tod9bF359502pbW4JOdL2ILjprbVC5/AGgRzHY5TGObccJCvExx0FzbQpv7exGa1cvtx+Lv5usBexxsueAFfF29eTwg/+uBAC8f8lkrROfnU9Bhed5oaIxgk70cHEuUhFdjCzxPMjCMUT3f2A9s7rgROdhz7vWia6JlzHlvst+S0294nkeHCEaqRTnwiMKjh4n8JvbZDPoFMU1bj7G8GWK++kcy8GJRcNXqDpuayd6mYEuNk22FZnL1aJXvb0LV933KgDg3GVTzPXBfB36sPehA/6eGnARnXsLz36wjChATnSCIAiCIAiCIPqF8c01eOFbx+Gn75sfaf9R9eniZ2snumXZXJxLiDb51dpmoic4EZ1//CrGufSJbDphXlVfKtEfTnTV5Izhy2pIm53ovoigckTHY05ggEHlRPfFingMeOaSY/B/x8801F34r60TvT8IONGNInqEqBxNXIlKlN/W0VvsH1kWfDzmoCFdGOhq7VQPlPi7BV3SfKxKlhHzddnmJcdycP0uCxHd9YL76uJcRGmaFfFtxFcxj162n6oY0yAQ27ZcGROLBtpj6WAH5L+5pt8KP5+ePT5VnIvYFn6AQ+VkZjLRe/rHiV5umZohjeIn9toxTSwa5RCUmeTcYnXBAxLnYnlc5WZ6t1v8dnD1cb8Rhm2ZU+U44n0Zqtqy4eJcIP9MqCERnSAIgiAIgiAI/PKs/VCfTuC6Dy6uaLlR8pt9WobVFD+bMtF9d6itE53dP4wDy3d9R5lYVJxA0m+rLyTp+koposdj1tEltpjeNAgj1tSnE0ahxRe+z/rtE/L29LnKORSZ6C/25ePGHQeNmSQmGSaQLcW5DJ6EUJsKTiyqE08rkTfPfleJjBt2dBX7VRbnEnNKb4uwbna/6NKbJOpj4Zzoikx0lkdf3YpF370b/1qxUXrftnfbiOjB7PBAvjTUIhefiW6+bmRzPASd32xb7ITvvoYK+/Hb8051dTH6iUX1TbApD+DFu9e2dvS1Keh4104s6spjgXTYvLnRHy7cymSis/eVeM2q+8kWm4k9dYT9yyP+LbAZvBgopzb7J8bmeuAEaMP24jGwv78D7QBXZaKTEd0OEtEJgiAIgiAIgsAJc8fhuW8ciyNnjhnspuD7p8zFtJF1+P4pc4vLTE70uj5HrL0TvfQ5zMOjL2ZHMX+LTnTf8L29oxCFoXOUq1b1x8SiKUOcSxhqUnEkNTE1APDixjat8zoeC0YIBeJcAGxs7cKld64GUBrsMB2Kf+5t41z6AzHOpV+c6EJ5bEyISmTs6MkxTvSgEBSLOajPBBNi/a3866gU5xIUjlVxLqr4mQtu/B+2d/TiUzc9KxXX2nvME8S6rheIKGGd6K2dvfjx7au4drKwcS6mzHIgOECzszOLy+9+Rbm9bQQLwAt58kx0u7LE/uCjKgxOdLtIdG7Z+u2dAPg3QPzzqXOie5IBkO5sHg+/spWbg4PdxioTPcKLKKZfXaM4aiFgs5dO0ImuvqdtUTvR2fOvKaDMAVybFg/UTzM7UF3pOtl+duDw/VvZqow4ylR0wgYS0QmCIAiCIAiCABDMJB8s3r9kEu696HBMZFzEolAsOs59N6/qmT4tuLz5XFB9e1hR2W9GFOE6k+DF0je2dXLftXEuinXJuH1GPQAsmTrcuI0pEz0Mtam4sX2n/vJRbGvv0bZHzMAP9IcHvNDnQgdKE4ua3hgIO7FofyDGufT0w8SiYnns4aqc6D25PJOJLnOiO9y8BT7+/eTfY6r4FQ+8uMTGuajeDDA5pG2c6J4XlI5Yx+8VgsAtirbsb4mNQCvGblx86/P414qN3DLO+S6JOFEhiuTB47Jzteuc6FFkNtM+fpxLXjJwEoy64d8KEONdvvCXFTj72ifw3dte4rbz6bBwoveH2zlqifw5lQ8MAPw1G7U+ZSa65fkv918MNk74gXJqs38rxL6VYT3QAMF5Do/7/R34TPTS5zCRNEQBEtEJgiAIgiAIgqh6dJNuAkBdynei84/1N12wFE999Wg01qizuU0Pj6wI7D9o28bGsIhxLlt28cKxTrzWZaKr1j32lSNx9dmLit+njKhFQ8acUa4SvaM8ZNck41aZ7Rt3dgMAxjVlcPiMUdy6uCTOJehE99DNiLClbHRbEX3wJIQRTPY/YONEjzCxqCiiM+pJpyIepidbytiOSSYWjTsO6iWZ977Y53e9v5fMJc2KSazYbMoCB+Tik10mumRiUeb8b+vo5daJ1aRCiug5l6/vide2B7bh4lzCONGZ1bl88LhUMTG6csQF5kz0wolu6y69BWASPtfv6HOiSyaTlb2xwLaFE/g94Lbn3gIA3PjYG9L6bQad+uPuj5qJ7grnVLVDcGLREI0r7qMSse3eRAj7ZzA4IbS50QOlMbPHYvOGSZhmibEpshijgULlQ6eJRe0gEZ0gCIIgCIIgiKrHpMPWpgsCtej6HFGfwqiGNDdJqYjp4ZEVcH3B2taszQopaSHO5XunzOHr0Ti2VcefjMeUAwzjmmpw/Jyxxe8NmaRVDI0pziXMBG41qbiVs/2t1oIzdVxTRhrdE4hzEScW9QqxDj492cJ1YHq7wtcysgOtZDCMqk9x37N5TysiVzzORSE8d+dK9cQcJxAX4TjQOtH9AQxlnAsEJzo7iaKNiCXZpMNyYlGxeJ1jWydM27icgWD0hg6ZO1sFn3nuKZ3FprLKzUT/4xNvYN4378TvH1sLwCx8buiLc5Eeq2SwhW8L6+qVw9Zvc79EERBNAnLkTHTmM5+Pz28XmAw3wlCASiy27Q7buUFUyOrJ5l3ct2pz8fvAZaKXjsVGRGe729T34gS/qgl/e3J5nPXbx3HVfWssWhwN/2/nprZu3P3SpuJyktDtIBGdIAiCIAiCIIiqx+T89p3orBsSKInPPz9zIea2NOGac4MTp5oeHlnnqa9X24oH7PO/6EQ/fs44NKRLImRkJzqzm5i7ztKQMU/yqWuHKpZDh02cCwC86YvozTUB93jBiS7EuQQmFgV2MVEe/mSOpklX/WOyEk36iZHCAE/e9QKDQSymuBcZMif6y2+14Zv/fLHoChbp6i21wXH4fGagcF4aJSK6T8wQ5yK2i3eiy4+fvTbkmei20R2iE52pzxO3l+1foLXTnMEOiIN7wXZzbms26sGYiV5an3Nd7W+ZrqzAwEHITPSv3vICAODr/3iR2/+UhS04ZWFLYJ/tnb3wPE9wovt18/DV87nvKoGVXW7z5kZ/3P5Rnb2qHHvjZLgRqlMdt22cT/lxLsFlv7jnFfzpiXXabWSUq7Wzf2LC/r4a41zEQUxFFMw/lm/EI2u24Sd3rIKJfyx/M1Qbffw/iUdeej9+/eBrpRWkoluh/otHEARBEARBEAQxRKjrc6IHRbTCE+P00fX416cOlu5regBmBdx4URi0axcnoguZ6ACQTMSAvlSXpCA2Txxeg/XbC+KySgtOCU50nWhcn04E4m5khMlYN1GIczF7t/yM5LGNGby1s4tb5ziySVcFJzo8tHaWYjh6+lzU5jiXwn/DOIUrjSiiA2b3bFc2j9pk8HpSIbqQXdfDO372kHYf1tlfyETnRbuYo5hYtJijrm+TGGvACs0qESvuOMhDPfCxyyYTHRJXr0asbO/O4bcPvYYT5o7D+OaaSAMuprggtk72XK3e1I69xzSo9xOc6DrhVjuxqGbgIIoTuJSLD6k457rqwQlR7Pe4beT1BMpn3xZQZP7L6q4kEecV5eDfkODXBZzokUR0hRPdUlENHecSeIMoWM9fn94QqS3lnkE+E11/LxXqkwvh0m2F+0l1f3UrorVkfObPy623ZfGPskP4GxPlTYY9EXKiEwRBEARBEAQxZPnYYXshlYjhomNnACjFePjYPZR6OGfpZADAV0+YFVjLisq+CKBzCv/qrP2YkksPpjKXOCucxxmx+d3zx+Mdc8YVv+uc6KxQrHPsN2SSsNCzlXEuUR6xa1KJwOCAjBseXQsAaK5J4ovHzUQ949B/4c224MSiEif6dibLuhjnMgQmFh3VEBTRTbEkXb15q9xwH3FbGyG4K8vGuQT3icUcNEgz0QuU4lzUQh1bZk7xma9T3j4fGye653kB0Ys9/+K6m/+3Ht+97WWc9qtHpett6NWULy5j++STf3oGD7+y1aoO0/XAzhkQrF8tyJqOV3aL+U1x4EjtynnXC7xt4B+3zoku5tn7eejB+kvbyK4TVXtticcc44BkVGFedS0Ec/zFiUXD16d6O8H2/NsMymrrt2jyQEV182+DBH8jdNuHiXMRBw/ZPQdianfVvxEoEt0OEtEJgiAIgiAIghiyfPkdM/HCN48rujVPWzQBk0fUFtfbZCR7HvDtk/bF8kuOwVGzRgfWs6KyL97qnMvixHc+YpwLwEenJDkxnN9OJQYn44KIrmxVX5yLYos5LY3SNpVLIc/cvrzadAJTR9ZhxTeO5fqAjdQBgv3jAdjBOdH74lwsnehhBOlKEo85qEsH3dym67bXMPmoiCiWmbK2AaAny2eii+MMMQcKJ3ppH/a7WKXn8e2wcaKz7JREqfj9psv1L2Si8+WvWL8T513/JF7a2KYUP9/qm/zWpu9EVPE0Przbmi//D4+/ARVi9IeuaZ++6VnNRJLqcqPcGr6o6DhyoTXvedKIoULd/LZcfrSQ+3753auNbbGJczG5jn/70Gv4Xd9AHxB840e2v6nfVMKrGNFTWs4j/mZVMs7FmjJVX1m/iUsGKhOdrSfnmockwgw0idn2qkz0gUD1J5FEdDtIRCcIgiAIgiAIYtCImhvLwgqsTTVJPPDFIzB9dD0yyRjmTmgytwEFd1ZzbUoqVic4t3jhs04Um8fUyT4gy0R0VuzjHO/CdqoH31QixkedaEQNXSb63JZmaTtYFPP+acm6riSKRU19XyxPPObgT+cvheMAnzlqb6RFEV2McxGc6L1FEV1fn3/96d4s6E/E4/Ixxbn05txQk6GKgpvNxJ1dgoguij1xx0FzbdCJ7t8b/rVWum4kQiMX52J2onczb5qwgyY+fpyLOIkvV6cXbMmqTbtw36otOOM3jxnFpCiiVzYnd54WlylysAFgZ5c6d53dsiD86dvWo3Cji9eDTOTryeWxYn1rQcjmtncCb5sU41wgd6qLeej+MiB4nfjzJfjl2vzN4DLRy4xz2d7Ri+/e9jK+8c8Xi8vEwTnZ5Ro9E730WetE15wzW5SZ8pbqelgNXdxefi/ov/cXrnAPhjl/pi35gXX+/qnEv4HCUO7bA3s6JKITBEEQBEEQBDFoTB5R1y/l3v6ZQ/Ds149Fbco8DZRJ5GVjVmpSBZFXlnF88oLxuOcLh2Hi8JITnhX9ZHEu7AAA6wB3HAdjGjPF77FYUMj394kZ2j9zbMGlf9KC8cpXudmH+ko60XtzbqjyWFf2sr1G4IVvHofPHbNPQGwOHrKHtq6S49TPRLePcxkcG55sYAUAOgzu2d6cG6rNQZHUvE8Xl4keFO0cx8Gw2lRgP79dft/7fSx1oofMRGeRTerZ3ieiq/rVr1clXLV154x9YyswspgGPDgnulB+q0JEF53nJie6v40MXda431efvulZnHTVI7jukdcDbnzVPR5z5JJd3vWQF65f//SLx3DXS5uYdtqFlrDdbbqXZHWy+L8lLKKILutXoxNdsZ5dnuPEVn47sc4ov2DqqCW7csNmoosXg43wP1BO7cC9ZNpe+UVWNn8e2fuHH48aPIGbMtHtoIlFCYIgCIIgCIIYNN45dxzW7+jEfpOGGbfdZ0w9Vm9qtyo3EY9BMo8nx0cPm4bn1u/EETNLES4yR3IvI6I0ZpLK7YbXpbHXqHpuGStESicWjctFdAA4e+kkrNm8C4fPGM2JwfXpRNGdmhac6LJH8Fs/eRBaO7MY25RROtrZh3qVIOZvcdBeI4rLpo+ux5rN6nOSzbuhJiqtEwY9fFE9LfRdcII6PrbBFyaMcS59p9EUt1FJYk6pfUonusE925tzQ7U5kD9tIUyxA0AxxwmIu/GYyonui+iF7/5eshrZdvQyLmmbjHppJnqvL6LrB270h6/vmygRGFkuEz1YACfgCevbJCL6dQ+/jsvuWo1po0qDkLm8axTRVQ5/sU38xIeF/97xYkHMvvqB13DWksnF9Y7j/2aUzod/rTgOEJPFubhBJ3oxE11zEK4HxCz6nxUEbc5XWKE25vB6p0xEj+xEZyeZzauPI/A3KEJ1qp8Q2SCKjHJdzdL5AYQDse3GcrV21eCFentGGA/xm1HI9We+D3CUmEqnpzgXO8iJThAEQRAEQRDEoBGLOfjE4dOxdNoI47Y2QnsYvvKOWbjpI0s50bg7G1QV2GW+6Cl7yJY9nA6vKzl1ZY7xpCQqBiiI4elEHD84dR6O23csJ36zk24m445xYtFMMo6xTZliuTLYB3mT8DxtVD0e+OLheO6bx+Kk+eO12544fzySNrOZ9iHLBweC8Rye5+HaDywufr9n5WZsbQ/Ge5ic6HnPw8tvtUn3DYOpz1jYjHiViG5yz/bk8uGc6MKm4eNcJBOLOoVrtDbFD3D4k2gW+75vt8DklfCwjel39p6ycaLLBrL8KmQDVmLdynUmJ3qUTHTTuRJcsCytnb3wPA9rt3YU+/Db/34J7T05PLdhJ7efScyzdqJzIrSHbe09xe/ZPD+A4yA48Obv7Tjy30XXC7al+MaCpv2u51m6l42blLV9wIkeIRNdhdqJzhcoXlORJhZVOtHtynrstW248E/PoFUSrRS1fl0mfn8iXvOmasO0SpxIVMxI9xnUiUUHoO7dARLRCYIgCIIgCIIYEnzxuBmYObYBXzxuRr/VMWFYTWBZNxdrUXgAlQl4skfTUfVp/On8JfjXhQdL61M60YXCWMdfXbokEKbiMW6SO5PgoBKVw06WOHlEHRozycCEnyz/+fQhmDm2MZwTPS0XP0Wx2fWAo2aNwY/fM6+4rF0yGadJ3H55Yxve8bOHrNunIoyIzk4g6zvspzCT4QJ2mehhRPSAE12i8F1wyFTue3evMLGocI34g0JipEtOENFV1+TDr2zFP1dsLH5n7ykbJ2ivIt8b0Me5AGoHLmAWk8JM6OrTa3DWiwIeS0dvHlfdtwaHX3o/rrj7FWUZOYs4F9XbC2Kd4qSJi757d/F7by44qa14f5b2d6QiesGJzrdFFfvDlQs7sS+sCzzs9nFhYFCMpgGix2Owe7H3nFhacJ6D8HWpLuUw7uh/P/cWfnT7KqttbTLRRayd6GXKwOwh5/LmASmu7hADb+JAEFvPQKS5qKogJ7odJKITBEEQBEEQBDEkGFGfxu2fPRSfPGJ6v9UxrC6Fe75wGN45b1xxmUzQlIrokqfTnOviwOkjlROc8pnorBNd7XTknOiJGOLMfkbxQxXnEvL1dR+diD59dCHaJhEmE12RYR8U0fviIgzlmcTtXRLhPQrJqE70Pof93z9xEH5zzqLiII5sQIClJx9uYlFxU5lILc4f0J3jM9EDcS59F/ywOj7SpZiJ3neY/l5ijZfdtZr7nmVEcTsnunobY5yLZp1pICqK2MQOeMh25/OYg+svvbPQVz+7Ry2i2+Q4qy6ZoIiudkD35l3u+inEuQjxSn0tKdwWkjgXzwucY/+7rv89C4dwYTvzNiy6y01WlviTJhucMN2e6kz00oqcIgbI8zz85/m3+P301UlRTiwqDKKYeGtnl3kjBNsYdpLY/iQ4sah+e26gyVC2OCjFiegW10GYdSZUL4bd/fImrN60K3K5ewokohMEQRAEQRAEQTDsNaqecwbLspdlLmDZa9KmaGfWfe7nrQNBVx3r5madv0Enur6+lELQVi03oRPR/XVhBGZVnIvYPv84t3foYwRMcS6VwjS5K0tSEucyvC6FY/cdW4xG6TSI6OU60W959s3ANuJbAI+/th2AH8nh4EQhusfvW9GJnu07OXHBiS7qPuIAR5a5eG3ejJANZPk01QSz2ll8EUo2yGK6h8K+tQGImeiS9rDlR8wBybmeUc1TOdGDERqlz398Yh23Lu/yAnjeDca5+KuVcS6STHSbOBfPs3MchxVeddvL884F0VUa52IYjFEtZ1aoxOyH12zFuu2dwn7hrxtVG6Nc4zYErjPJ5SjWPFCR4bp5CRR7MPvqt+feKPA87t8F7DlgB891x11On+hy7P/85ProBe8h0MSiBEEQBEEQBEEQAqm4Pg4iK3mKlWf/6p92WQfnMCY/fVc3L6I2ZpL45omzAQCrmMlVU4kYJwSaHv5V4uKJ88ejtSuLeQrHvAqZ+P7DU+di9vjG4vdKxLmIbnZftDBNNBsmZkWHaVLbRCgRvbStGDviC9O3Lt8IHT05Vysii9hsKg5g+OKh36azl07Gs+t2FNvmOxqbFXEu/qBS6ZIUBoaEPssZhGYRXeTLmMaMdl+//FQ8hi6XHyR7cPUW7b5RnLHGOBch7kEknYihRxNf42OabFadiS440ZlztfLtoDuV7XvX9YKTERffFHHgSORiV+pE53ZVttPzzPdaJTPRZefD9TzuzQyV0B4F1W5sFbLfomhOdMVyLsNb/ZZCWILzIsi2CSyxLDxKi9h62fMZnKTX8zxuoDyME52PbxHjXeT75F1P+fcr6kCbiYhj6XsU1EUEQRAEQRAEQRAC4kSWIjlpJrrMiW4S0eWTTO7syga2/eBBU/HBg6aiJslnorNipCnOpVEhoo9uTOO6D+6Pzx69j3Z/kbQke/rgvUdi3oTm4vcwcS41iixrUYj3xef3Lp4g3f5r75wFAJxLvxwShslRxYxkbVnMsYgxNTLBUkZvaBHdvK0qSse/vOIxB4fsPYpZXlgxtjHNbV+Mc+HnFTU60Xd0Bq/5qBhF9L5Wme5zGWHyon3Ou/4p/GN50P1fak8J2W+G7Zsir27p0K5XDTwEJp41ufGZtyByrockcx17Xkl2dRz52yCuF3yToCQsqit3PTtxupKZ6LLz4Xr8gCW7TWdvDt3ZvNExr6pTuZwpr6U5eH1HcqIrTrTu71Y5+m3QZS6V0StWXxjYamSZ6NqsfkMbuUEylx+AUUfq6M5B9E7R/UkM80bVngqJ6ARBEARBEARBEAIm0Uoe5xLcziSis3EorNjUJhHRfWpS/GSkYZzoKhF9VH1aupxFVrSsn0RxNEyciywSBwi6lv1c+KXTRnATYo5pTOP5bx6L8w+ZBkCe//q9U+ZYt8cnqYmtkbVPR4obOOEHDaaOrNPu6x93QUS3F1JsnIt+lIwIe07Yc+t/PmLGaG57P6vdX+8LSGILKvWWgA/b/pGG69nvDnEQw4aoot5n/rwcubwrFTv5CI/g+rjl2xyywTcWaye64RgP/cl93L5p5pruyZVcvDFHPrEoANz8FB8d4QuLRkHSwnIc9hSZ3O8ieSGOxu/X7mwesy+5A/t/7+7I14lqNzFXW7feliiZ6Lau+46eXECkD3ud6dpYabg3CyTZ++de9yQ27ChF6LCrTS1kx4sKTnTmOxvnwtwrsgGvXN7Fo69uDbypFgbV31hg4OLPhjIkohMEQRAEQRAEQQiYHKrSiUUl2xlFdEZ8YvXoVo0rl3OiJ2LcQ/FZSyYBAA6YMly6ryrOhY2SCYNMhBQfxMM40VWITvBaJvZl3/FNxc91qQQamGx5mVB7/L5j8cuz9gtVf8ogYoYRhFuGlfL2xfiNX5y5sDi5qIySiJ6Xvg2hwkZEV+XRs4fGnlp/+QFT+WvNH2AKxrnwsH02t6VJvlEI2Al3TRFCxTiXCCJ6OVEKT7y+XR5hwSyVlc8O0qzZrI8w0qHK0ZdFV1iX6XpcP/ZkXSHnWc6Nj73BffcHACsxsWslM9Flp1t0E/uC5+tbC28C7OrORb5OVE1h2yiLE4tSWxgXdE/fRMO6vurNudjW3oM1m3dh/rfuxP/97Tm+jRbXWXAbZXVlRcuIsF0qm6T34TVbuePhqja0Q4xv4TPS5fvIrp+f3fMK3n/NE/jo7/+nrU+H7pexUm9u7c6QiE4QBEEQBEEQBCHAOoQbMwVxbk5LKef7XX2TLM4c21BcJnWiGzPRS49krBiuc5Qets9otDTXYP6EJiyY1MytO37fcbj784fiD+cvke6rEtEDmcYSJg6vDSyTiZCiiJ60dNH+7IwFynViGaxg2lhT+lwrZKrLRAEPQEMm3PRgpjiXMLnvw2pL5+DN1i5u3ZyWJlx07AzlvvV97e7JuVIhTYUuPxwoXLsZxcBRTOFE95cn4jE8/pWjAnWV4lzkDmO2TxcK17EO9p5jqWfOqels+IMX4psANoQR7sQ+VQrggoAnwvb7e65+1Lp+EZWwKx5TGBHadT3ut687l+fiXHTOV1nbzE50mzZZVVnaXlOorM/y4uSQCtdwFGyOj41nWjx5WGG/SE50Vfm8yPuvFRsx42u345ZnN2gHB078xcNY9N278bE/PIOc6+EvT2/g1usmsFW3Ub1RmFxyE+JAluw+39TWI93eBJeJ7olxLop9JCt+/3hh4OmZda3WdYtQnEt5kIhOEARBEARBEAQhsKTPXes4wF8+diDeu2gCrj57UXH9hUdMx9VnL8KfP7K0uKzcTHRWrOzK5mWbAwDmTmjCI18+Ev+48GA0ZnhR3IOH6aMblA5blYiu408XLMF7F03Al4+fGVgnq0d0ZY9u0OdT+5y0oEW5TswcZ6M7WOd5rZDrLRMFapJx6WvrOleySSQP40Rnt9ywoyuwXpxslKWOjXOxmGjSx3QdqvoEEER0JyiiA8DYpgxamgsOel889Ne7xQkj+Taw58Yk8rOoYmcO7ctrV+Vws/T29Z1t1jhLGIOxeL+t3dYhjWJgi5RPZFn6rHtLxYRq4lHxmMIIsjmXd553Z/NcnIstfhmmqm0GMcLHuaj3kIrorscJ2TnJAECYuCWhMdLFbB/7bxQcPmNU8bcpSuyJMhOdmwjTw6duehYA8LmbV2gHhldtKszpYPu2hEyIFpdonehWtdjB1iNzogPqwTlTO9jbzvNEZ7rclS77TaxE3IquDNLQzYQbficIgiAIgiAIgtgDmDi8FvdfdDiaa5Nork3hJ++dz61PJWI4fs5Ybpns2dTkwk4mSuujREuITBwWdIuzRBHRD9xrJA7ca6R0nTzOhf9+0oLx+Nk9r4Sul0XMHGcnwWQHEuqFSBLRiX7jhw5AXToROFdffsdM/HP5Rrz0Vpu0fpN4ESYTHQDqUnF09OYxSeLur1GIxCy9eVcpiMqweSNC5RhmF6vy0YHSQEPJid4X59K3XmwB69QN4+5Wxc5cdNwMZJJxnDh/HFYZJmjt7as7ysSipr5kacwkOffq9Y+slW7HC3jB9bu6KzPpqsphKwqwYQYK8i4vNHdl88XsaAd65ytXp1uIQ9nU1q3fzqJtYWM+wk7i6AmRHEUXPXOVh5n4lytbtVzytkIi5hQHbysa56KbWLSMKJko15ntuSk32kUUsGXFsdeyKaOexRUGJXinP3MdScT19p4c6lJxOI5TEZGb4lzKg5zoBEEQBEEQBEEQEqaMrENzrX1WOPv4+ePT5mHyiFp875S52n1YJ+zIuhSaa8OL3ADwzwsPwnUfXIwphokpWRF9nzH1AIAPHjglUp2AXPgXHfnTRtXj00ftHbkOIOgEZ2Nb2GiWkfX8+WLdzrPGNeLQfQpuZVEUr03FtQMeJvEijEPQcRzc8smDcOL88bjsfQsC62sUTvR5E5qwcGIzgEKcS28Ip2vYHOkFffUA6jgX8ZD9db546K8vTiwqtOHRV7cVP4fJj1Y50evTCXz5HTOx7/gmo3Db2VN40yPTz3EutoNWXJSEpPzubEmQDTtgw5JzPWlfByZ8DCHJ5l2Xc9o+umYb/v3cWwDs3grw2bSrG0dcej8eemWrdd0qwmeiq9fZxLnItuk1iOiqJtos9weq4jEncJ+FQRklosnslk8sale3XSa6cC1qiq7kpKOcO9z1pCMD7N82drXpfhEz0dlms90p5uyvWN+KOd+4Axf9pZDF3t8Tf1KcixkS0QmCIAiCIAiCICoB84D7vv0n4oEvHoG9RtVrd2HjXEbUp/HH85dg4aRm3HTBUs1eQeZNaMaRM8cYt2tkBOdPHjEdz33zWHzjxNmh6mKRxWHIhI3PH7NP5DoAiROdcSOPbkhj6sg6TBxeg08cPp3bjhN9meVBEV3/krZJvLDNffbZZ0wDfnHmQkwfHbw+ZNnk3zl5Dv554cHMxKJu5MxlGV3ZPCdefeDAycXPbNeznwNOdEFE99f7xeqEpjCHUmc4V4V26s/Hyj6n+rC6cINWD72yBVvbe623txbRFUKajDDRNyKu60lF+jCTOYrkBVf2H54oTRjqOLKQKzkvvil/CyQMqgEbE2Gd6DZxLqpJXE2o7hO2HUUnejxWlrCqOm7d/RjmTQwR8dhkRYmLbDPRy4WLy3E96XngnejqgQYRXjT3lBOLikL+L+9fAwD42zOFbPn+j3MhEd0ExbkQBEEQBEEQBEFUgCiPn6wOObI+hRH1adzyiYMq1iaRRDyGUxe24M3WLhy371ht/rYNMie6Km7jitMX4LM3L49UT0IQ61khNRGP4Y7PHoqYE9yOfT3dUYjBQMHdvEOTNW1y6IVxgZquE5UTHSj1d0/OjRwXIaM353KOSHZQgRVW2H4QBRd/olBfPCzFuRS+f/ffLyvrz4eIpokSwSKyYkMrAGBYiDdNAOCca58MtX2U+KQwrvyw5FxPOulmwIke4nrOuy7XZnYQoDCxqF05Hb3BrPiw5FwPybgT3qGsdTvLl9/50iZmG69Yv4/p/lSK5Yrd2K39ehKMEz1SJrpF/rqHwmCp76wPO2krX665/jCTj1bSic6WlFfGucgvZlMzxIlauftFMjgifvYJM/eGEk0REaaI2OOgLiIIgiAIgiAIgqgAUUxc7CSDYQW9qFx2+gLc/NFlZQvoAC+i33TBUjz11aOV2e4nL2zBsbNLbvkGhdguQ+dE99shCugAwM5HygqaohhSk4xjR0fJYSxGu5i0i0qKOdLz0le+n0Hfm3OjT1zYxwcPnMJlyLOiDRuZwvZVTPEZKEXuZIsTi3JNV+bNA+qBFxmJmFnGMDkqt+wq5JT39z3XaB3nUqKS15JIXuFED4qb6jImj+Bz/POuF4ir8HHgWL+l0dmrnkzZFv/aq6QTXTWowU7w6g8csYNBkeNcFNv/Y/mbePL17Vw9rKga5bJRCeLcMXt8nFZZTvRIbzzo3hKI3JRgLYKYLSva74VH1mzFd28rDQqamiFmt3vc/SL/LMtlr4RRXFcEOdHNkIhOEARBEARBEARRAaI8gLYxEwYOxTzSNJMpPbwuhVENae32rCZw70WHW9fDijgj6lI4bb8Wq/1YJ/r45priZ7GrW7t6sasnx6znNzA5AEO5hw2nWTe4UXKi58t2os8c24BjmEENVsBhzysX4cKJ6Hx5fh+19Q0M+X3oevLJLFk+e7R93I+Yjy/D9lZsqklWZLI+Far8dhFRwOsvdJno3dk8rnv4dazd2qEVBc9eMpn7HhTRBSe6Zds6esp3ovsDS5XMRDfF67D1sQNbkeNchLYfPWs0AOCRNdvwvl8/Viibc6LzsUlhUMa5CBNhsrFjNv2hht/X5jwNmBOdKUp1D/q/K2f99oniQFxhX307uDEJL+hML9XL7hMsk+JcBh+KcyEIgiAIgiAIgqgAUR4/d3apI0SGAmnGdZ6zeM+f1QVGNaSRSsTQmzPvN31UQ/HzExcfJXWdy2DF7/FNGelyADho+kjuuygmOI6DeMxRiithtBxTSnSNRnhNMU70qCKdz/C6FL757n3heR5OWzSBE+/ZtwliCuFc7EPxqEpxLoX4GRV//dgy4+ALi83EmrZiUH0mgWQ8pm1fOeiieVg4Ia1fneiuVAT1PA+/uPcVXHXfq/j+f17GcXPGKssQI2oK+eBsWaXPTvH/memqpBM95H5aJ7rF+fBFbfb3web30I5gB+b77v14LFa8Jysa58LFjfBv5pQzyCPuKitJFKR1or2nuO6iwFZTcIEHC4yqMYtvanCTiSoGoGRu+ErEueiOoSJxMbs5JKITBEEQBEEQBEFUgCgP2DPGNOI/z79d+cYMECnOoRihAEvhY+6EJvzizIWYMKzGWkAH+CgS3oleWv6Xjy3D6IYMt58oJsQcB09/7Wi8tLEN7//tE4F6KhrnIonD8Uv3HeI9OdcYF2FiRH0KTTVJXHHGwkIdnofTF0/E5JG13OAIN7GoJhOdjSYqbFv472tbOvDchp3KdoSNFYpbxLmwLUsn1CJ5fTqBlGZ9OVz63vlo7bSfhNSnPKevHH8AKKeJc3n01W0A1AKiT2MNLyPlXU8QXUufY45jLWhXMs5FvB8TMUc7Iavu9rURjf14FfbtEJvBQZu2yP6ucE50f78IdfmHNml4LdZt72SW82Iu60QvL87F034Hgsehq42VmWXb/emJdbj+kddx/Xn7Y8KwWskWJbhj9lRxLtFEZj5jXh1/JGaii91jo3H/5I6VaMgk8bHD9pKu1/07ZSi+DTfQUJwLQRAEQRAEQRBEBbDN/mX5yKHT8IVj9sF/P3NIP7So/2Efukc22ORLCyJKCOnnxPnjsXDSMOvtRVqGlUR0VsSYOrKO2254XSoYVeIAzbUpTB9dH7l+H9NlohskaMgUBMxd3dkKONF597fjOPjRe+bhE4dP55zo7HXNDi6Igos4MSsrsvsxFDXJeKBv04oMfRU2TnS2j98xZyzOPGCSdLv6TIIbCDpy5uhQbVGx9+h6vEdw9+tQRTpUCt9JLArePq7HL9fppGLOe97jhfnIcS4VmFg0m+uLcxH60OSw1Q2C2WjG/jlj70nTnAWvbG7HHS8GB1DF30RZ032xNR5zigJ3dzb8IIR/3B8/nBdc+TcLeBE96uAAEBS6bcaLdOfGtP/FtzyPVza340e3rzK3jb0H8670vKsuI9M1wjvPgxnpxXoNE4ua3rB5e2c3rrrvVfzwvyvRm3Plbno4ykEy0tDNkIhOEARBEARBEAQxSNSk4vjUUXtj1rjGwW5KZP728WW4/oP7Y1xTjXHbaBPLlce75o3DwknNWDptRHFZO+Oabu4TBb/2zlkAgCtOXxAQsn3xQiVwH7bPKMwc2xBYXqmIWb+YkfWFgYqt7b1lZ6IPr1MPenBOdOaQOVe6mCsvuK5lg0p16XhgOZu/boNN5ABbh+M4yvPQkE5wAuGnjpxu3Q6bWATrOBdGXuyPOJdk30nM5T2pI9vzoBTCRRozvIiey/MCPHtZOgj2U0pxD7ULmej7jDEPWM0Yw99zqrczVAMvw2oLxxJlYlF+m0K9bN/mLO7Pj/7+6cCygBNdGIbwPI9zok/pGwR8bUuHsT4R/7yJA1miU5qNcxHfOPHbbMoF97fTfS8stNhG0k7ddr058wAD2/6c68kHeBU3vWkwmBu48tTxR6IbXsQkorP7q6LiHEfdV/FK/cHajSERnSAIgiAIgiAIogLsqc+fiyYPxxGWDt4wr+pXiivfvx9u+cRBykgCXxg//5BpWPmd43HoPqMCYoXvulYJuI7j4PbPHhpYnpREj4S9TCaPqMUp+00AAIzoc49va+8JiI5hacyo011ZYZsV8dh+EQUXUZyVdVVdOhE4/nQynCyRtJlYlP2scUPXZxJIJkprU4kYjmUmW9WhEoOBkkily7eXbQ/0T5xLgnGiy0RhTyPsiQwTBl9cwYnOiamOExCBU4o3D4LRFfrz/P1T5uLdC8Zzy3r6xFJRFJfdt+lEjIkyUtdjM6hRdKIzFviog1xibeJPSM71igJ9PO5g7763Y1Zv2hW6Lv/YxDcm2GukMDFwaZ1KnLUZbBDPi2zwIuhWV5fLOv9126UsBurYvV3Pk/5xUl2RZic6Pyihy0HnP/MFm/6NwW7d1p2VtkscMGOhOBczJKITBEEQBEEQBEGUgf9ge7AwOSVhZp8+J+lAT2h24F4jcdy+Y3DRsftwy30xSWyO/13laFVNIpiwEHx1fPzwvXD/RYejPl0QvEf0OdE7evO44dG1ZZWtix9ihU5W2OEmGTWcM5mrsS4VFO7DnnubTHS2nboc43rBiZ6IxfCbcxdbtUMnovvXg70TvUS/ONH72ppzPanY6ApOYp0eOkIQ0XOCMM/uKnWiW8b3mK6LUxa2BMru7M2jJ5cPZqJLztUvzlyIMY2FQSnd8doMavjnm+2H3ohxS6KjW7x+/Wx7oPB7tHffb+jqTe2h6/JF6FphsEcUfdk5A9oUIroqc553YfPrpEb0QG66tFhcescqLP3BPcr9WJKKaynvevjXio3Y2NrFHXNOMqknoBaxTWea7wJxDgGmPQpB3cd0T7BvP+zsykrb5Xry3wDAfkLmPRmaWJQgCIIgCIIgCKIMnv7aMdjY2oU5LU2D3ZSqRxQ6fn32Ivz0rlX4yKHTBrQd8ZiDX5+jFktlE4vKlvuo8snr0onAhIlhdIrGTJITu/2JMMvJJQaA8w6aol3Pxjuwjlq27SbBRSbS16cTgeNvFjK2WWpTcaQSMbQyeethM9ED+fZ9k2z67WFd96LWGnPUAmsqEQN65Ot8QdE2E/1TNz2DY2aNxWeO3juSE/2UhS245dk3let9ET3vulJxzvVEh7q6DeI94LpinAv/Wex/mzcJAJvrKygwv/fqxzBhWE3g/pDdt47jFOvQCbB2TnQP7T05fOffLxeXVcqJLo4BZfMuk4keK87psLW9B93ZPHfNvfDmToxvrlFGN2WLIjovDYqZ3WxMTqciu14lzOZcD6m+/g+8iWTRt6pyr7xvDfddd56SigGvPz+1Dl+95QUk4w4ue9+CUp2SST0B9TVpOg5xUEIVncTeR2u3duDulzdb1e+3gR3I2NmVlU/c6qknAQ8xZ/ceC3URQRAEQRAEQRBEGQyvS5GAbon4SD9pRC1+dsZC7Du+uvpPFeeiEmNUkwjKIlN0zmifS987H8fMHoMPHDiZ39dxMFKTZW7LN07cV7uedVmrHKam/Fx5nAufif7Ql47QTqS616h6PPO1Y4qRFYCdc51zoju8qM6KvPXpBDJMnIzocteJVjpHtT+oYhvn8sKbbbj87tV4ZdMuZX/rWDJ1OI6epY5U4iYWVTjR85ZO9ETMwfkHTy1+100smnVd7nwnYo517rLNCwqyojbs6ApMciurM+aU6ihn8kqg0K+X3rEKW9tLoyo2mehSDLE2ohO9IV36jWEjnpavb8W7fvEwDvrhvcqqfKFfdKKLcS7soESPZADPgzwmSFYWi82AkTySRH4Nq8pW3auPrNkKoPD7HXSiB+tQxrkolsvaUnCCM/ty7vPS8i///flAObp7wvP4vm4jJ3q/QCI6QRAEQRAEQRAEMSAMxESilaA+zYvfk4fXAlCLGH6cg6hB1GeCLut6TRa5z3sWTcA15y4OOEQBYGRD2rh/ubBRLVmF690R1IQ/f2Qp910mdtelE5zLXZykUiQZdxCLOfj0UXsDAE7dr8XOyWzpmE/EY8gwTnTR5R5VRPfFSds4F5+27qw2W1qdya9vDxvn8r+1OwLrPSH3WuesdRwH//eOmcW3GfJ5Pk+dFQyzOY+7J+Ixxzp32bSdLuteRO5EL70tUW6cS9718PJbbdyyqHEuosAptrwQn9OXid7Xn74I3tlTeuvlwdVbAABdWfWkmjmFiM46lV2Pd9VLRXRPnYnORl0FJhaVbB9wqyMovJ/6q0clbeC362SOWxWrlWAGzdjd8wonuvKMGk61+JIHe0153Hb6gnT3hOt53BtRBSe6pKmeJhOdRHQjJKITBEEQBEEQBEEQA8IQ0dDxszMXcOKf75RX5Yj7kSTPfv0YNDHxJKwo+6PT5mLJ1OH49JF7l9W2YbVqJ/rvPnRAWWWHQXT3Lp02gqtfFefCutxN+dgNfSL7ifPH49EvH4lL3zPfKhNdnFhUhn+e0pwTnd/Yz6CXoc9El2dNm2jryimFtGTcUUbZOI6jbU8pzsXD1259IbBejHMx6cbJeAyn9U12m/c8TsDMcnEuLvfmRSLmWGfgm990sBf8ZCIqG+eiEy9tJszMe16gPRWbWFRoei7PO9GBUhzLd257qTi5qqx3nnx9O75+6wtFx7p/rtLixKLCmwUmJzqg7ic+L18QxBUiL7eNUN2mXd14dl1rYD9xu07Gla+6ltj7iW1bXpGJrnq7wOhEF/qT61+NU19Ed0944AcsdnZmpW561/PgKeNcSEQ3QSI6QRAEQRAEQRAEMSDYZOBWAzPHNuL2zxxa/L7v+Mbi54tPmIlzlpZiVg6aPgKfPbowQWlzbQrjmjLFdawmcfr+k3DzR5ehqVbvvjahc7Ifts8oPPLlI3Hs7DFl1cFy0sLxxc+sICoTMdkBBHmcC+9EN4vopWMd31yDWEwtJLPwbXOkETqH7TMKALRO9LFNGXz9XbOldaiifYCS2Gabie6jc6In4zFlnQ5MTvTCceVcPjd59rjCde16+tgNGQkmIoYVBVnBNevyTvRYzLEWv42Z6FalFJA60ZkydIdrm4kuNjeyiM5Ux7rlfXIum4leWFefLlxnd720CTc++gYAuWv5fb9+DL9//A1ccddqro3i2x1ctEmev2Z8kV5E1U85zeBMmEz0nV1Z3PbcW7jpyfXa7XyeYt64kJ2Lt3Z28S5wZpOCEz3YNlVslwk+Yz6Ykc7Wq0N3T7jSTPTgdh7IiV4OVSGiX3XVVZgyZQoymQyWLFmCJ5980mq/P//5z3AcByeffHL/NpAgCIIgCIIgCILYo5g8ohYtzTVYMnU4hjE55B85dC985+Q5uPNzh+KOzx6KP56/lFvP5hKrnOvlUGdwN7c01+DYfceWXc+X3zETJ8wdi4tPmCVdLzOEsxnwqjgXVuw1OR8bJAMGNm5JcWLRxVOGFb/fdMFSnLpfC75z0hwAvBNdFB5d18MZ+0+U1qHNRHfDZaL7tHVlNU70mCbOxbGKc8m7HkbWF+KAbvv0wZjT4ovofE6yym3M4rti8646DzuXdzmxe+rIOqusc8A8Aa/jONaT9MoGXmyd6DZxLrl80ImummzYBOseTsSCwz86JzoAvLa1A4C+/17b2sFFliSFm5k95m4hDubXD7wmLfOVTe3S5dy1ERDRg9uL7mkPwKtb2jH/W3fik396Bj+/5xV5PVy2uIdP/umZ4vdeQUR/4c2dWPaDe7nJeNlac4o4l5xiRk7jxKLCQILKfW6Oc1GvEyN1dnZlpdvpM9G11RMAzGFs/czNN9+Mz3/+87j66quxZMkSXHHFFTjuuOOwatUqjB6tnhhj7dq1uOiii3DIIYcMYGsJgiAIgiAIgiCIqAwRIzqAgov4/i8ernQ+7zOmQbqcFdH7Q5SoS8sf48c0lrLSp4yoLbuejx22l3a9zLXYWKN32den41oHd3D74LGq8o1VbXMc4N3zx8PzgPkTmzF1ZB2W7TWiuJ5tj3iu856nFK5tJhbNGJz2Im3dOa0TXRUc4QBIxdWCvX+MV923piiQ16YSxWPLCxMr9mhytH38fXOupxSac3neof3DU+fh039+1lg2YOdEt5mkt9DW4HmIMRPOinnw67Z3YtLwWjiOYzWxqOt56OjNcctE4VZF3uWvMbYt8ZgjcaJ7yPddX/G+88reJ/5EuWz/eZ4XKId1Z4v3FCtIiyK6jLd2duOs3z4hXce6o4NxLsHODeSmex5ufkruPlftJ+bA9+b4Qv/2zIbA/q4gwstQDYyYLpGHXtnKbOvB9eTnuxwnuufx57Qzm5f+vRVFfBaKczEz6E70yy67DBdccAHOO+88zJ49G1dffTVqa2tx3XXXKffJ5/M466yz8K1vfQvTpk0bwNYSBEEQBEEQBEEQUZk5Vi48VyvJeCy0m7yDzeLtB1FCJiwDwPGM+3zv0f3fz7J8XtY53tETFN9EJ7qJ+nS06Bu2ZTGnIESevLAFU0fWBbZloyz88zWyLwv9iBmjledQd2qzfY7VRIgBA6DgRFdpr+mEzoluiHPpW8c6zNOJGNJ9UTbduTwn4HVnLZzofW1xhTgXlqwg1o2oT1k5u9nyVTiO2a3uI3WiozTJKSugXvvw6zjsJ/fjmocKjmubOJfv/+flQE63Kj9b5MnXt+OGR14v9gtbXTIWCxxj3g060dk3HvzJbNlDzkn6nF0mDmyxTe+2eCvh9T73uwxuEk1RIDeWXBB9bSYTdjXCvzigIZ9wkxfR//XcxsA2WaUTXd2u1Zt24Z6Vm7ltVdFJpkvGFOfClpvLu9JMdHiecmDIdtLfPZlBdaL39vbi6aefxle+8pXislgshqOPPhqPPfaYcr9vf/vbGD16ND784Q/joYce0tbR09ODnp6e4ve2tjbN1gRBEARBEARBEER/8blj9kEiHsMJc8uPG6lW2NzcMY0ZzZbRkDnRl04bji8cN6P4vak2ievP2x8Prt6C6x9ZW/E2AHIBM83ki7f3BOME6oVMdBOy/HebtxnYgQ+TLJSIxQKfb/v0IXjola04cf445WR+m9p6pMvFNl763vm4b+Vm3Pb8W8Z2t3Wr41zSyRggT2iA4wALJzUry01KxLFMMl6c+LSzN88J592K3GuuPUUB3lUOKOTyLtq6S4NKw2pTUkFXhknQcxyHizHRIc1Ed0pCM9vl373tZQDA9/+zEh85dC8r0V+2yX2rtli17cxrHgcATBlZh8aaJN5s7SquS8SdQN9m8y7y/iCN5LhKInppXU/ODQjlWUYcF9exgnKvhYiuIycRjA+fMQr3r9pilb3vep7V2yvsOejqFZ3o/HeZ45v93c65Hn58+6rANmonuvo4XtvCDzCI0S9cLrsxzsU+Ez2Xl0fSuB5lopfDoDrRt27dinw+jzFj+ElPxowZg7ffflu6z8MPP4xrr70W11xzjVUdP/jBD9DU1FT838SJ8jwzgiAIgiAIgiAIon+pSyfw5XfMxLwJzYPdlAHhqyfMwtGzRuOacxdXrExRRD932WT8+SPL0JjhXdtHzBiNd8wZV7F6RUwOfTbWxqcuFc6JXivJFNcJVqW2lT7LojxYEhIn+pjGDN6zaALSibhSuGLFTh3vWTQBnz5qb6ttd3apJxZNJ+LKKJuY4+C4fcfiP5+Wx93K9sskY0XBtas3z0Vg2ER4DO+bByDvesoJF7N5D9s7eovfU4mYMbLCR6eh++tO3a8Fh+w90liWPBMdgUz0X93/KreN56nz3itNa2cWp/7yUW5ZIh4LRNZwTvS+82qaxFQWz+O7qh0nOMhQyWPOM+5tv1S/31UTX3LfPfMExACETH9RROf7RyYis9d8XuE4z+bl0UU67bsuzf+GiSK2TYyMj+6e8MCL/FlX/kvpeur4JdWAIVFi0ONcwrBr1y6cc845uOaaazBypPmHEgC+8pWvYOfOncX/rV9vzlIiCIIgCIIgCIIgiHIZUZ/Gbz+wP46ZPca8sSXixKIXHKKOOJWJT//45EGR654xtgHjmzKYP7HZuG27Is5F5SpdNLkw+efE4TXFZbJtrZzozGeZEM/CCqyqCBGZCBvGoWuT4w4AbV05pUs0k4wZXfWzxzfiiYuPwv8dPxOXvW9+cbmsHzOJeDEGRBTvRZe9rF9SiRiaDBn4OddFa2cvt8xWoNUda3NtQcDPJOP4/YeX4NNHTteWJRsIcVCamNQXMn90+0pumze2dVq5pSvBt/71YmBZMhacPDXnukWx1B8gYsVTP7KH7WdxoliH2UecVBSwi7CxJSeJc/GvJ9+VvWVXT6m9QtWu5yFl4URnHd5iHJE4yCMTkTsZ97rqbYls3pX2jaq7ntvQinOufZLfFh4X28Jlopuc6LpMdJcX/3N5VzrhqeepHe+G8UYCgxznMnLkSMTjcWzatIlbvmnTJowdG3y979VXX8XatWtx4oknFpe5/mssiQRWrVqFvfbiJz9Jp9NIp9MgCIIgCIIgCIIgiP5mv0nNeGZdK46toHDOwjrRb/nEgZg4XD2JqJglfP15+1sJ4CpSiRge/NIRVq/9t3UFs0fq0nFlnMuvzt4Pf3h8Hd63eAIO/tF9AORZyDL9RxR5WdG0xiCiswKzyukZiznyzI4+poyoRUMmieff3CldbxIBa1NxdPbm0dad5XLlR9ansbW9IGhnEnFODGyuTaK1M9vX7lLDxzRm8PHD98Ljr23T1h+LleJQNu9SR9MAhf6Vid8j61PYKTnPPrm8F7gObONcdFv5LnifdFJ/jmUDHrwTPRizAQB3vChPSOgPdnQG+zEel0wsmi+54/3BHTbz23dhZ7llweP318vuMdvceht8sZ7t3zjT789taMW7r3wEh+4zCjd+6IDAmyaeJx8EEmGvz+DEovzxy0Tk3z26tvhZ9WZFLu9K7wPZtQMAH/7d/wLLxGuN7Wtdv7uup6ynUK4kzkWxnTITnZzoRgZ1nCGVSmHRokW45557istc18U999yDZcuWBbafOXMmnn/+eSxfvrz4v3e/+9044ogjsHz5copqIQiCIAiCIAiCIAaV35y7GN85aV9cyjiBKwk7sahqklEfUbDusZgw0kQiHtNm8/qi3LwJTYF1uolFRzdk8Plj9sGEYaVBAZn4K9N/xBiCUE50pg5VRI0s5uDkBeMBAF95x0zc84XDccsnDlTWYRIBRzcUjH9tjCP8rCWTcMN5+xe3ySRjXEzFyPqSWbBBkh1fwwjLKid8TarQrrd3dmvb16C4ztg2yMjm3YA4rIrKEBH1wqXThhc/NwsOeFPOvixaKOY4nAtbJu7f8/Jm3dhJv5OQTCyacz3k+vrQHzzKuUHBvJdzp0viXPJ+JEyw7yp5zBv7Yo/Y8+l3u+cBf3j8DQDAg6vlGfIePKsJZP02v9nahRXrW7l1PULcjSz9ZhsTO5QVRHf/+s+6nlSAVw0MbZEMTgUnFmXbpe74vEb8BmRxLupJUFX19MdE2Lsbg27W//znP49rrrkGv/vd7/Dyyy/j4x//ODo6OnDeeecBAM4999zixKOZTAZz5szh/tfc3IyGhgbMmTMHqVRKVxVBEARBEARBEARB9Csj69M4Z9mUQEZ5pWCd6BmDAzcV59f3GrKTK8G9XzgcPzptLs5aMjmwrj6dwEcPLbw9/s555rz20Y1BkVYmYokxBKwYHibORYXobAWAH542D3/7+IE4/5BpiMccqRhZrIMRsSePCL45MLqhMAFtW3eueHxzWpq4QZJMMs45ilnhXHRmA/xxq0T8mqTvRNeL6BceOR0zxzbg4hNmcstNInrO9fC1d84CAHz0sGnFZSxnL50k3Zfd6p8XHsTNKyAOCphE9I6eHM48gK/HcYBkolSObNLIrR092jiX8U2VnziY5bT9WgKxNmf99gk8s64VQOnanT2usbjeHyjjnOjC4Nk9KzcX31SQOdErmYn+kd8/jV3dWe58sln04n0jdrfrqp3h/H4eNrZ24aAf3lucHNaHFcX/9vQGrNjQqi0rJwjQ93zhsMLyvCsVzMP0lyeI4axfXHet5RUCPruvzcSiHtSOdnKimxnUOBcAOP3007FlyxZccsklePvtt7FgwQLcfvvtxclG161bhxgF8xAEQRAEQRAEQRAEJ46aokrijED27vnj+y1ihmXi8FqcPnwSnmDiRHzq0gnMn9iMZ75+TMBNzHLZ++Zj7bZO7DdpWHClLM5FdKIzX2tSetnDNq9cJJOMF3PcTbCO5z9dsBQH/fBebv2oxqATPe44SDLicCYZ52IpGphBmmG1QRGdHWBRiej+tWQSKUfWp3H7Zw+VLNcbGXN5F0fNGoMVlxyLptpCe9nIihXfOBYvvrkTf3h8nbacGWMbkE6Ujkd0zMriSljae3L4walzkU7EcENfbEfMKTi9S2UEB0rau3NKgbSluQan7z8Rl921Wlt3VL50/Ax85JBp+Po/glnpPn4/XHzCLPy//20AAHT7cS45fZzL1259AQDfBz6Vnkz1zdYu7DWqvvi9mIkOc9SR63nIWQz+uR6K51bEHzx84rVt+MJfVhjL6hXuB1/odz35YIttRFGhDF4MZ3fVFSPuJ1vPvuWRzbvS30pxYlMWMqKbGXQRHQAuvPBCXHjhhdJ1999/v3bfG264ofINIgiCIAiCIAiCIIgqhBUQawxO9JbmGnzooKkY2ZDCJw7XT75YaWYy7lif2r72ypzTLKfuN0G5jhXIv/bOWfjubS/jstMX8NtI6lQhm1ix0jhMFTKhyo9zybketrYXYiVqUnHOJZxOxLg3CVLMuuba4IAEO8CictubBmF8VDEP5jiXgljXxLSPFRybapJKB78sQ9tHdMyyk0LK6OiLc0kn2bocrn9lkS8dPUER/evvmo1U3MHiKcNx/yp5BEklOHLmaCTiMW1Oti+AN9em8J2T5+Drt74gdaJ3Z/NK9zHrxvep9GSqqXiMc0X759PzvMC1KdbswU6kdj0P2zv4SWwbMwm0deeKg09rt3VYtVeMc2EH2mSDLWEGHVwhTsU/L1fdtwb3rtys3C/vetAmIXl8P+VcL5AvX6hfXQ7FuZghizdBEARBEARBEARBDBHGNpYiJExxLgBwyYmzB1xABwoC6TNfPwaXvGt2cZkuS92Wd84bh2mj6nD20kk4/5BpePnbx+O4fcdy28TCxLlEdKKHoSGdwOxxjdhnTH0xuoVleG2qKCa+0Sf0NdcmkY7z7mtWiGTd47JsfPa4VSKkaRDGtH+zYTDkyJmjA8tEgZYV7lRpEqK4J37v6A0K4Hydhf+ybnbHKcT++EL6j29fFdivozcfiPZoac7gnGVTMGtcozQKJQw3XbAUJ84fL13n9A0FqVzDAN8PfqSNL/L2ChOLqs6hbBCp0iK64zicoOv/DohxLrIBA8/zuAEBFa6HwHb+4I2/vNbwVoqPeM7ZPpLNK8Fu//Qb2/F/f30OOwRB3+evT2/Aw2u2Mu328NyGVvzkjuD1x2KOc+Fd8rm8K41zgac+vxTnYqYqnOgEQRAEQRAEQRAEQZipSydw30WHIxFzqt45OLwuhUnDgxng5VCbSuCezx9WzD2XualZLSgTYmLRcnGcYKZzYbmDf3/qYHiQuz0zyTgaa5LY3tGLtu6CIDysNsW5hMX9WDerbELUDCMYNyqic2yd6KrJQJs0kTynLGzBp44KDt6IYi4rRNenE9jVHRTE/eMbXpfC9o5eHD2LjyU6ZtYY/PqB1zC6IY3NkskcfdjsdF8wTMRiyObz+OeKjdJ92oX21KdLx2yTp6/i8BmjsHTacGW9/inVOtHjMhG9b2LRHD+xqEqIlg0iVTrORRR0S050/vx3ShzzrmeO6wEK/SQeY0M6CaCr6ES3HfQQ62P7qNvgRD/tV48BCAr6LKxj3vWAre3qa5atI0wmejYv86HrY2FIRDdDTnSCIAiCIAiCIAiCGEJMHVmHiRUWp/uLI2eOxgcPnILLT59fsTJlojFLGCf6hOaairQJAJf7HGiTZtDjnfPGoTHDexyba5NcXrQocIluWVl9V75/IX5w6lzsNapOuo2pb4p1KTLTdbn27108gXN++4j6HZvJLXPUs/z7UwfjZ2csCEwSunjKcPz3M4fg7r4JIFWwIrrfmyZhtU0Q0dkJXZOGCU1V7DOmHjecdwAcx1FOiuq3ytaJ7r+Vsnx9K3J5lxNxL/zTs9jWLndG+3n5v/vQAcVlFRfRXX6Sy5ITnY9e6ujJBYTff63YiF/d/6qxDtfzuIEDAGisKZwrX0S3EeOBQvwNCztY0i11ogf765XN7VZ1FbLMzdvlhQlJRTzwg10515VG+IhxMizVPihbDZCIThAEQRAEQRAEQRBEvxCLOfjmu/fFKQvVOef9SW1SL8wePmMUPnPU3vjNOYvKruuacxfj6FmjccsnDrTa/rL3zcfz3zwW45trAm7x5toUJ2oFRHTDZKAA8K5543HmAZNQp4ix0PXNp44suchVopssi91HNmGldDtGxK5jRHSZdjy+uQYnLWiRin2zxjWiMZPUiuKciN63WUohYvsu+51dWW45e56i5umz51JVv7+JTtBOSOJcOnvz+O5tLwec0J+7ebm8jD4R/bB9RuGHp84FIO/7csjl+Xxuv9kePPQw7ezoyQXqfvTV4ATFMlxJ7It/Dv1oG1EcVyEK5WzsT4+kDM8Dvv+fl/HwK6WYlk5DxFBp5+A1JsN19TE7BSc+G+eic6LLy6jgSzm7LdRFBEEQBEEQBEEQBEHslpgiSxzHweeO2QfHCrnqUZg6sg6//cD+WDhpmHa7uz53KH78nnk4ZWELGjIFoY+NRknGHdSl4pzjXhS4vnjcDADABw+cYmxXncLhnUmpJaGZY0sTw2YVqpsuzsU2a54VglknulwCNMO6368/b3+MrE/jF2cuDKxj41xk+G1pE0V0zokezbnLnle16F/KDVfBZ6KXju2GR9cGBOX/vbFDWkZSkkmvc79H4eE1W/HEa9uL3/1z7rpe0SUOAB09diK3DFkmun9v9eYLrmyZi1yGTGz3r5NuhZv9Nw++hrOvfaL4fUenWRgvtNtDa6f8LQGWvOdpo30KjnY2zkWeie5pMtFNb/gQlIlOEARBEARBEARBEMRuBDupom1kyUCy95gG7D2mgVvWmCkJ0s21qYCgJTrRl0wbgRWXHFuMrNChiklJCcr8YfuMwgOrtwAAMsnSurwib6K5Rj2xqG1eeJg4FxtSiRjQFzG9ZOpwPPXVo4p9mU4GBXOVEF4U0bt5MbQhw2aiR3WiM+2Ny6/PUia6uhy2fvHYei3eVAD4wY7iZKaGOJePHjYNv37gNavyAeBHt68U6oz11cNHrLT3WLq3JRQmIOXbPaYx3bcOaOvKhXCiS0T0uANk5U50GTbucqAg/rdaCO6uq49zybl8JnrO9aQDUZ5GjI+TiG6EnOgEQRAEQRAEQRAEQew2dPeWhK6aZPWJ6DKOnDm6+FmczBIo5UgDJYG6qTZp5R6tS/N98NUTZgEoOE9PWjAeCyY2Y+V3jsdB00cUt8kk4zh+37GoTcXx7gUt0nIbMmrRO0qcS0VE9Dibe+5w/SOLc0lKMix+dsYC1Gd8Jzp/Ltj4FZmLfFRD2thGqziXvv+qXOHxmIOR9aVBDPbYMskYsow4retX9viLwr3BiX7s7DHa9Sb8OnOuyznRyxHRXS84cNBUk0RD37Fv7eixz0SXbOe3WeVEF7HNlXc9DztsnOhuyWn+vVPmBNZn8y5yzGBXLu9B9jKH6+mvKUIPiegEQRAEQRAEQRAEQew2dOdKInqsH4Sh/3z6kIqXeep+LUUBWOaYZg9jmmKiUBVsnMtHDp2GCw6dVvz+szMW4tZPHoRMMo5aJjs9k4zhV2fvh2cvOQbD6+SOc13fRolzMWWi28D2nTi+IItzEXPN57Q04qQFLcW2iE50FpkAb9NutttUcS6++C8TYw+aPgJ3fPYQjKgvCfZsW0Y3ZIrRJlecvgAnzh+nbAsvopcm/NQhmzA2DKm+Y87m+TiXXZq+NpF3PW7gACgMBI3sG9S45+VN1k70XolQ7l+ntk50WzwPaLVwrRcmFi2cmEnDa/Ghg6Zy63N5Ic7FdaWBSB485TVKRnQzJKITBEEQBEEQBEEQBLHbMHFYbUXLe+e8ggiZSsTwp/OXYPb4RsMe4XEcB3d//jAcPH0kvnNS0Gkacxz89WPLcMSMUbj67HCToLLidEbjzGcd6+lEIZM9qmBqG+fCumLZ6J2oIvq29pKrVxS5ZU50Uez3J2z1HcydvWrRNCER0cVcbhkqdzyLL5jKXOF7jarH9NF8HBDbd001yWI7GjIJ7Tlkz1PR/W5Q0VVttqXoRM+76GEGvMT8eR3iRMCeZGLRTDKOEX0DQN//z0o8smYrouK3uZwyZPTmXatMdNctid9xxwkI3r15l4tz8Txw34vleOrzS050M5SJThAEQRAEQRAEQRDEbsPeYxpw3QcXY0xjpiLlXXnmQvzotHkViRvRMWlELf5w/hLpuvHNNVg8ZTiuP++A0OXWMsK5TuTlneh24nlLcw3ebO0KLLeNc2Gz4Nl4mKgTi7KRIKIoyLrUfSe6KEbu6ovSESNwZMhc5DJ3ugjbLlWci++GlgmeYpY9AEwYVotTFrbglmffRG/OLb4lkErEtKJ3UjKwYKJsJ3rCj3PhnejbO8xisliGj2xi0UwyjmHMWxQrNuyM0lwApcGWW5dvjFyGjD89sc5qu7znFQecHMeBeKpyeY+LcwEQcOYDfZnoqjgXsqIbISc6QRAEQRAEQRAEQRC7FUfOHIN9xzdVpCzHcfpdQFfx63MW4QPLJuO9iyZELoONXZEJaz71aT7OxYa5LfI+thGhC9sl8O9PHYz/fuaQikwCe9aSSQDkudGs+Ov3iDhxpy/C16eTMMEK5kfMGIUbP3QARltlosvLYPHzu2WCp0p4P3vpZABAVzZfFJST8RjSmgGRJNMYcfJaFar6bfGPOZt3uZzyt9u6rcsQBxJczwvEsGQSMen8AlGwGRzR71+eQJ3Ll8TveCzoRM8KTnR/mYjnqTPvbeZX2NMhJzpBEARBEARBEARBEEQVcty+Y3HcvmMrVp4s4sGHdZ/bOtEXTxmG2198WygnpsxRlzGnT4h/bkOr9T4qLj5hFs48YFKxTBZZnIsoKJZE9ODxv2seny3ORqEcus8oHLrPKIxuTOPTNz2L1ZvalW1kxUpVhIbfVpkTXeUE9wc+urJ5buJUnRM9IZlY1ES5sR+++z0nZKK/3dYTugwf2cSiNak4OnsrI6LbxhOpSMZjyOaj56m7XinOJeYEBe9s3g1cK70SEd31vMDAkQ/FuZghJzpBEARBEARBEARBEMQegExY82GFQlsR/eylk3HQ9BGYNa6UE9/SXKN0tfpCXUtzTWDdBCbLPmomel06IRXQAcGJrmifL0TWZ3jP6QcPnIKfnbGQW8a6k3139syxjbjzc4dx0TQiW3aVxGL2OP/28WX4v+Nn4sIjphf7UyZ4qpzgNX3nrDubL4rTybijPZesQ9rWbV2u1uq733Mu70TfbHCisyKv2FbXlWei/987ZpbXWEV9/bH/mQdMwr6K+RbybmniUGWcS8CJrshEpziXyJCIThAEQRAEQRAEQRAEsQegE8pYkTJjGdmRScbxx/OX4kvHzSguGy8RyH1u/cRBOHrWaPzuQ/sH1k2sgIiug81E949UVU+dEN8zaXhtwKnLCqOiSPqn85di/sRmadnjm0tZ/Wz2+4KJw/Dxw/fCRUxfygRPlYjui+WdvfniBKvDalN6JzqTXT9puN2EvOU4lh2n5H7PCk70dds7tfuy16QsziUgoifiOHCvkbj2A4u15dZYDBiJE9CGxUZEf9/iCbjq/ftJ17meGOcSdKKLmejid6CQie6p4lxIITZCXUQQBEEQBEEQBEEQBLEb8+V3zMTkEbX45BHTldvsPaYew+tSmD66nov5sIEVVicMU4vocyc04bcf2B/TRzcE1o1tKonLW9vtoz1sYcVkX5AU41wOmDocAAIZ+DLhmHVxi0L13AlN+McnD+KWPfLlI/HeRRPw8cNK54CtXlaHdGJRgxM973rozbuIxxyMa8poRXR23dSRdcrt2LbZZmcfPWtMYFnMcYr9lnNd7s2Izl593EkNk5mfSvBtkInoNanCse01qt66XBVJy4lyVaQsRPhkPIZaxVwCeRdCnAu/PusGneiyt048r1CWDHKim6FMdIIgCIIgCIIgCIIgiN2Yjx22Fz522F7abdKJOB77ypGRxDQ2CsYkWqpgxeF3zR+Pn9/zCg7bZ1SksmSwcS69uYLgyMqOl7xrNk6cPx5AUESXma91TnQZLc01+Ml753PLTI572SSQaUVdohg8vjmDRDymjXNh3fl16QTGNKaxSZJNHo85RUHfxoj+ySP2wmtbOgLLHZTc79mch56sfU44e/4CcS5eML7E337yiFosmNiM5etbpeXavHVRrhM9brF/Iu6gLiWXad/368eKn2UTwGZzwUx0eZyLp5xYlDLRzZCIThAEQRAEQRAEQRAEQSgnrTQxZ0IT9pvUjMkj6nD20smR6//OyXNwz8ub8PHD9sLHDptmFbVhCyvS+y5dVlD80MFTi59FEV0mLLPCqhgvYosptSaME110nPvxOHonOt+/U0fWSY81GXPQ2/dZJuKy3PrJgzC3pQmf+fOzgXWFOJfC/lnBiW6CFfzFPmBjYXz8wQPHcQqDSH94WlpuxsKJHvbNDJFgirmkjphjdb3HHCcwkJFz3YBonpX0iQf5wAxgP7HsngyJ6ARBEARBEARBEARBEERkGjNJ/P0TB5k3NHDO0sk4pwwRXgfrtC2KrpaZ6Bt2BPO6OSe6ZYa8yIF7jQAADK9LSdeHEdEdx0EmGUN3tnBsvojOOtHPXjoJb+/swd0vb5KWNb5JHsUzpilTdJabRPQFfVnwMne+55VicHJ5Dz19bU0lYlIhnIWNVBHL7skFHe0ZRnQ/dvYYNNcm0daVhdilNsJ1skyXto1AnYjFELOoJxYLivK9eQ95YRZaMd4GMDjRSUU3QiI6QRAEQRAEQRAEQRAEsdtz0PQRWL+9qyj0qpzgDRleLvvwwdMC27CiblSNdXxzDZ64+KhAfT4yvVPnLM8k40URfVzfBKbs9s01KezozCrLGtmQlpb7/gMmYdXbu3Dw3iOtHcuyeBDHYeJc8i56+oTeqSPqsGrTLm15WUYkFkV0/5hZ2MGDWMzBA188Ats7etHRk8O7fvFwcZ2ViF6mE90G36FvGlCQDWLk8kEnuszl7+oy0SnOxQiJ6ARBEARBEARBEARBEMRuzx8+vASuVxIMVa5c1ol+3QcXY+6EpsA2SWZyS5u4DhVjGjPKdXlJ+2QOY5+aZBytyHLlphmRuKkmyQnnYpzLyHq5I742lSjmuesEXtb9nZTkgDfXpkpxLnm3WJaNMM8etxifI3Oii8J3U00STTVJAMDohjQ27yrE1thMLFpuJrrN3n5703GziC7q3dm8i7burLAseO14Gie67YSxezIkohMEQRAEQRAEQRAEQRC7PY7jgNVDVYIim4neXCsXlhOME72/9EdZnMv2jqxkywKsq3p0n6ucFbYLInppGzHOZZTCic6KyKI4fvSs0Thm9hg8+uo2bvJambN5WG2yKBaz7vGFk4Zh5dt6J3qOEYXFdssEYx1s23QTr1YKVqA+/+CpWLutsxip4+NPzptMxIBgLH2RmIPABZfNe9jR2SssCwrx2bxXFOhbmmvwZmtXmMPY4+n/9xEIgiAIgiAIgiAIgiAIospQaOicW3v66HrpNqyY3F8eXlbknzayDgBwyN4jlduzrvaiE50RzRsDTnQhzqW+JKI31yaLn7ljFQTc335gf5y+/yT87IyFmDWusbicHWQolZkqisXtPbni8s8fsw/OXTYZf/v4gcpjYx3j5UaPsJEoNnEuquvEFrbLPnjQFEweURvYxp+8lO3r/acMC2wni3PJ5l209sX0+AMMqjcWvnbrCwCA2eMb8etzFlkeAQGQE50gCIIgCIIgCIIgCILYA1GJo47j4MmvHoXenIvGTFK5TemLvJwr378Q//fX53DlWftFah/rRP/PZw7Bzq6sNv5lxtgGPPbaNgAlJzorlAfjXNQi+vC6VFGYFQXxY2aPwV0v8U5qEZnYu9eouqITvbO3JKKPrE/h2yfNUZb1oYOmorM3V5zctFxYZ72NiK56Y8EWtieSirgWXzxnY2hkfRiPBeNcurMudnUX+nNUfRpvtnYZJ2odWZ+CV+7owB4GOdEJgiAIgiAIgiAIgiCIPQ6diDi6IYMJw4KOYRnjm2qky981bzye++ZxOGLG6EjtYwXVTDKuFdABPo5lRL0f51ISiRsyCU4418W5sIMHOZcXZC99z3yctt8E/PkjS5VtYYXnb544GwdMHY6Ljp1RPCY/giUVjxnzuC85cXbZbnCWOOtEZxzuc1v47Ptvn7QvgPJFdJZEzJFmuPsDFWzeu2pyVjGDf2t7Kf/Fz7Vv7VTH/gDAXqPqIUkLIjSQiE4QBEEQBEEQBEEQBEHscbDxI1G4+SNL8auz9sOUvqgVGeVEj/z8jIUY25jB5afPt9p+6bQRgXpZ0bwmFecmGhUnFh3G5L/3ME7m9u4ct11TbRI/fd98rj4RVnh+/5LJ+H8fXYYR9enAJJ2iG96mPJGpmv6XEWPOSZrJjD961pji50TMwbnLpgAoP86FfaMgEYtxfcvWB/ADJ7JrR7ZsS98kqY2ZRHHQ5Mr71hTX//g98wL77DW6vqKDA3sCFOdCEARBEARBEARBEARB7HH84LS5uOLuV/D+AyZF2n+JRkSuBHMnNOHxi4+y3n7R5GG46v37YdLwkoOejStpaa7h41ySvIDNCrTbGHfzrh5eRLeBFY7ZnO+kEA0juuFFrj67EIWTFwRfxymJ24fsPRKvby1FvRy6zyhtmXFFJjqrT7O1levYZtueiDvozgad6L6wz/aHLM4l5jiBiWx9EX1YXUran8fOHoMvCcumj6rH8vWtlkdAACSiEwRBEARBEARBEARBEHsgoxsy+P4pcwe7GRXlnfPGcd9jMQcrLjkWec9DJhnn41ziagF7e0dv8fOiScEJLk2wwjMb1yI60U0i+vFzCsfjCkq2g5LQ/YVjZmDFhp04ZtZonHHAJM5RL4MdLGBFdFacZl3aUbLD37NoAv769AYAQD5f2j8ec6ROdB92wEEV5zKaid0BgLfbugEAzULmfWkfvpyl04ajpbkGz6zbYXEkhA+J6ARBEARBEARBEARBEASxm/L/2bvz+Jju/Y/jr8meyGaJxJ6QxRrE1nBt5dZeqhcltRXdpEqr1daloUV7a++qeokqjeqvuK2qog0laMSWllIhiVaIpUEI2c7vj9TUkBAamZD38/GYx81853vO93OOc6eZ93zzPR4uf61vfvUSLk72BQfY2bkGW1++nyOnLtzWjPtrQ+8rbn85F8vnpqumonu42LNqZKtC13b1ZHgXh6tD9L9quzo3v3ror0e1puvcH264/3Vj2lCjfJm/QnTj6ln5NhZ/KXCtq5dzsctvOReTiYebVGXPb2nE/36Wn34/Z/7Cw9vd6brzC5Yz7If9w48J3esCljeSlZvTmugiIiIiIiIiIiKlwNUzv69dE/1alTycaVmrwm2Nc+3yK1fc6nIuV1y7fvffWGqey1l/zQT3vGrWekH3N7167LqV3Xmyba3r+lw9azzA2w0HOxtz29Xn0NbGxPMPBNG/gCWErj4f9vmcGxuTCXtbG6b1DuahxlUtXhvZ3j/fvy64+suBq7+0aFmrPM/c78+7A0LyrUUsKUQXEREREREREREpBSyWc8knpHVzLJpFKwo7E/1a/+5Wx/zz1UutXBuim7j9FP1S9l9rkrs5/XW8+a1Bnje25fMXOgWx4umWFm32+RzXtpc7sPzJUJr6Wi6H4+Fsz7TeDaji6XzdNleH4I75BOJX13j1mFU8nWlYzTPfL0au/sLByd5y5v3zDwRdtwSQ5E/LuYiIiIiIiIiIiJQCV8+Yzm8pFd8KZYj//ezfHqfAmejXBMM51yTUw1vXpHN9H979PoFh//A1t+des4x4QbPGC+PSVTPRLW/kmX//a9dEt7Ux0fiadeLtbW0s9gvg5eaIl5sjv6ScK3RtV5+fa88VWC5Fc/XrNb3KAPl/MWJTwEx0uTU6cyIiIiIiIiIiIqWA5dIe189anvNII2r7uPF2/8Z/a5xrw/Errl3nO79uVcu6MK13A/wrupnbgnzcLPoUNGu8MC5l/TUT/eqZ3wXNbr92Fnx+8gu8ryjoXOS7n5v8pcDVx331uaxZoeAQ/WoK0W+fZqKLiIiIiIiIiIiUMvkFrjW9XPlmdJu/ve+Cgmfba0L0wgbMT7WrRa5h8M+63sDfnYn+V4h+dfhd4Jroufm3Xy2/5VyuyCl8hm6xn3xnol9V5NX/fv4VXa9ry28bR/sbr4MvBdPXDyIiIiIiIiIiIqXMtYF2USooeDaZbi9Ed7K35fkHggiu6gn8vZnoWVel2pYhev77rFPJ/ab7vNFM9ILWh8/Pzdasv3o5l6u/DPhHgFfeNvkG7/nvX26NzpyIiIiIiIiIiEgpcOdic0tDWvkC0D7I64b9sgszzTsfz9zvD0DvxlVua/srHOz+OiMFfafw3AOBPNG2Jl+G/6Pg/dxoOZdCLAdzxdVhvEM+s9uv/vLg6puE+t1gORebmyzhI4Wj5VxERERERERERERKgftqlcfZ3va6NcaLfJya5dn+SgcquDresF/O7WXoPN6mJm2DvPD3cr29HfzJYiZ6AX1cHe14uUudQu/nWreyJnr9yh7mn28WiHeu78Oo+/1pE/jXFxX5zTQ3aSZ6kVCILiIiIiIiIiIiUgq4Otqxa+I/bzhzuqh4uzvdtE9hbtqZH5PJRG2fmy+zcjNXh982t7i8Tb+m1Vi24yjD/uHH9iOnC+x3K+f6X02qcjYji+Z+5dh2+Pp9Wi7NYstzDwRZjpVviJ7/7HW5NQrRRURERERERERESomSFKTeyiztO6EwM9EL8lqv+vRtVpWGVT3pM29rgf36t6jOV3uPmW+KeiM2NiZGtKkJwM7kP657vaB126+4WWDvaK+Z6LdLIbqIiIiIiIiIiIgUiw8ebcKTn8QB1g3R7W1NFqHzrZbiYGdDkxrl/txXweG0q6Mdq26wnnrB9d164H31TPSOdSrSt2k1i9d9CvHXAZI/hegiIiIiIiIiIiJSLDrX9zH/bM0Q3cnOFvurbiya/TdquRPL4+S3NMutbPNK1zrU/HPN+P8ObsrZjCyqlXMpsvpKG4XoIiIiIiIiIiIiUmz+WdebdftOMLilb7GPHVDRlV9T0+kWXMlitnf27d7llLxZ7bfqJiuzWATzLWuVp3tw5Zvu8+ptrg7UO9S5+VIycmMK0UVERERERERERKTYzH2kMXFJf9CiZrliH3vJ8Bas23+ChxpXwc6maGaiV3Qr+mVSrg7Bn/tnIE19b36u7K/axtGu5Kx9fy9QiC4iIiIiIiIiIiLFxtnBln8EVLDK2BXdnQhrUeO69pxcgzqV3Nmfcg7/iq63tM8XOgdx9I+L9GtW7eadC+nqWfJ2hVwuxuaq6e26iWjRUoguIiIiIiIiIiIipVp2Ti7/HdyURVsTGRTqe0vbVnB1ZOmI+25pmwEtqvOfbw4QWrN8vq9fPRP96hnzN2IYf82mvxPrtJdmCtFFRERERERERESkVMvONajs6czLXeoUy3hPtKlF42plCa7qke/rV6+zblfINdevXpDG8TZuTCoFU4guIiIiIiIiIiIipdrfWRP9dtjamAitlf8sdLAMwQs7E/1qppvduVRuib6SEBERERERERERkVItO6d4Q/SbsVgT3aZwEW61si53qpxSTzPRRUREREREREREpFTLyc21dgkWrl4T3baQM9H9K7rywaNNqOjueKfKKrUUoouIiIiIiIiIiEipllXMy7nczNUz0e1v4Sahnev73IlySj0t5yIiIiIiIiIiIiKlWk4JW87FwfbWZ6LLnaMQXUREREREREREREq1rBK2nMvVwbm9rUJ0a1OILiIiIiIiIiIiIqVa1RJ2U04b01/BucmkEN3atCa6iIiIiIiIiIiIlEpLh7fgm5+P82TbmtYuxUIZR1vzz452mgdtbQrRRUREREREREREpFRq6V+Blv4VrF3Gddyc7Jk/qCkmwMne9qb95c5SiC4iIiIiIiIiIiJSwvyzrre1S5A/6W8BREREREREREREREQKoBBdRERERERERERERKQACtFFRERERERERERERAqgEF1EREREREREREREpAAK0UVERERERERERERECqAQXURERERERERERESkAArRRUREREREREREREQKoBBdRERERERERERERKQACtFFRERERERERERERAqgEF1EREREREREREREpAAK0UVERERERERERERECqAQXURERERERERERESkAArRRUREREREREREREQKoBBdRERERERERERERKQACtFFRERERERERERERApgZ+0CipthGACcO3fOypWIiIiIiIiIiIiIiLVcyYivZMYFKXUh+vnz5wGoVq2alSsREREREREREREREWs7f/48Hh4eBb5uMm4Ws99jcnNzOXbsGG5ubphMJmuXYxXnzp2jWrVqHD16FHd3d2uXI6WQrkGxNl2DUhLoOhRr0zUo1qZrUEoCXYdibboGxdpK+zVoGAbnz5+ncuXK2NgUvPJ5qZuJbmNjQ9WqVa1dRong7u5eKv/PISWHrkGxNl2DUhLoOhRr0zUo1qZrUEoCXYdibboGxdpK8zV4oxnoV+jGoiIiIiIiIiIiIiIiBVCILiIiIiIiIiIiIiJSAIXopZCjoyOvvvoqjo6O1i5FSildg2JtugalJNB1KNama1CsTdeglAS6DsXadA2KtekaLJxSd2NREREREREREREREZHC0kx0EREREREREREREZECKEQXERERERERERERESmAQnQRERERERERERERkQIoRBcRERERERERERERKYBC9FLm3XffxdfXFycnJ1q0aMGPP/5o7ZLkHjFt2jSaNWuGm5sbFStWpFevXhw4cMCiT7t27TCZTBaPJ5980qJPcnIy3bp1w8XFhYoVK/LCCy+QnZ1dnIcid6mIiIjrrq/atWubX7906RIjR46kfPnyuLq68vDDD3PixAmLfej6k7/L19f3uuvQZDIxcuRIQO+DUvQ2bdpEjx49qFy5MiaTiZUrV1q8bhgGEydOpFKlSjg7O9OxY0d+/fVXiz5nzpwhLCwMd3d3PD09GTZsGOnp6RZ99u7dS+vWrXFycqJatWr85z//udOHJneJG12DWVlZjBs3jgYNGlCmTBkqV67MoEGDOHbsmMU+8nvvfOONNyz66BqUG7nZe+GQIUOuu8Y6d+5s0UfvhfJ33OwazO/3Q5PJxFtvvWXuo/dC+TsKk8kU1Wfi6OhoQkJCcHR0xN/fn8jIyDt9eCWCQvRSZNmyZTz33HO8+uqr7Ny5k4YNG9KpUydSU1OtXZrcAzZu3MjIkSPZtm0b69atIysriwceeIALFy5Y9BsxYgQpKSnmx9X/0c/JyaFbt25kZmYSExPDokWLiIyMZOLEicV9OHKXqlevnsX1tXnzZvNrY8aM4csvv2T58uVs3LiRY8eO0bt3b/Pruv6kKMTGxlpcg+vWrQOgT58+5j56H5SidOHCBRo2bMi7776b7+v/+c9/mDt3Lh988AHbt2+nTJkydOrUiUuXLpn7hIWF8fPPP7Nu3Tq++uorNm3axOOPP25+/dy5czzwwAPUqFGDuLg43nrrLSIiIvjwww/v+PFJyXeja/DixYvs3LmTCRMmsHPnTr744gsOHDjAgw8+eF3fyZMnW7w3PvPMM+bXdA3KzdzsvRCgc+fOFtfYp59+avG63gvl77jZNXj1tZeSksKCBQswmUw8/PDDFv30Xii3qzCZTFF8Jj5y5AjdunWjffv27N69m9GjRzN8+HDWrl1brMdrFYaUGs2bNzdGjhxpfp6Tk2NUrlzZmDZtmhWrkntVamqqARgbN240t7Vt29Z49tlnC9zm66+/NmxsbIzjx4+b295//33D3d3duHz58p0sV+4Br776qtGwYcN8X0tLSzPs7e2N5cuXm9v2799vAMbWrVsNw9D1J3fGs88+a9SqVcvIzc01DEPvg3JnAcaKFSvMz3Nzcw0fHx/jrbfeMrelpaUZjo6OxqeffmoYhmHs27fPAIzY2FhznzVr1hgmk8n4/fffDcMwjPfee88oW7asxTU4btw4Iygo6A4fkdxtrr0G8/Pjjz8agJGUlGRuq1GjhjFr1qwCt9E1KLciv+tw8ODBRs+ePQvcRu+FUpQK817Ys2dP4/7777do03uhFKVrM5mi+kz84osvGvXq1bMYq1+/fkanTp3u9CFZnWailxKZmZnExcXRsWNHc5uNjQ0dO3Zk69atVqxM7lVnz54FoFy5chbtS5YsoUKFCtSvX5+XX36Zixcvml/bunUrDRo0wNvb29zWqVMnzp07x88//1w8hctd7ddff6Vy5crUrFmTsLAwkpOTAYiLiyMrK8viPbB27dpUr17d/B6o60+KWmZmJp988gmPPfYYJpPJ3K73QSkuR44c4fjx4xbvfR4eHrRo0cLivc/T05OmTZua+3Ts2BEbGxu2b99u7tOmTRscHBzMfTp16sSBAwf4448/iulo5F5x9uxZTCYTnp6eFu1vvPEG5cuXp3Hjxrz11lsWfzqua1CKQnR0NBUrViQoKIinnnqK06dPm1/Te6EUpxMnTrB69WqGDRt23Wt6L5Sicm0mU1Sfibdu3Wqxjyt9SkO2aGftAqR4nDp1ipycHIv/IwB4e3vzyy+/WKkquVfl5uYyevRoWrVqRf369c3tAwYMoEaNGlSuXJm9e/cybtw4Dhw4wBdffAHA8ePH871Gr7wmciMtWrQgMjKSoKAgUlJSmDRpEq1bt+ann37i+PHjODg4XPeB3dvb23xt6fqTorZy5UrS0tIYMmSIuU3vg1Kcrlwz+V1TV7/3VaxY0eJ1Ozs7ypUrZ9HHz8/vun1cea1s2bJ3pH6591y6dIlx48bRv39/3N3dze2jRo0iJCSEcuXKERMTw8svv0xKSgozZ84EdA3K39e5c2d69+6Nn58fCQkJvPLKK3Tp0oWtW7dia2ur90IpVosWLcLNzc1iGQ3Qe6EUnfwymaL6TFxQn3PnzpGRkYGzs/OdOKQSQSG6iBS5kSNH8tNPP1msRw1YrCnYoEEDKlWqRIcOHUhISKBWrVrFXabcY7p06WL+OTg4mBYtWlCjRg0+++yze/o/5FJy/fe//6VLly5UrlzZ3Kb3QREprbKysujbty+GYfD+++9bvPbcc8+Zfw4ODsbBwYEnnniCadOm4ejoWNylyj3okUceMf/coEEDgoODqVWrFtHR0XTo0MGKlUlptGDBAsLCwnBycrJo13uhFJWCMhn5e7ScSylRoUIFbG1tr7vr7okTJ/Dx8bFSVXIvCg8P56uvvuL777+natWqN+zbokULAA4dOgSAj49PvtfolddEboWnpyeBgYEcOnQIHx8fMjMzSUtLs+hz9Xugrj8pSklJSaxfv57hw4ffsJ/eB+VOunLN3Oj3Px8fn+tuMp+dnc2ZM2f0/ihF5kqAnpSUxLp16yxmoeenRYsWZGdnk5iYCOgalKJXs2ZNKlSoYPHfX70XSnH44YcfOHDgwE1/RwS9F8rtKSiTKarPxAX1cXd3v+cnrylELyUcHBxo0qQJGzZsMLfl5uayYcMGQkNDrViZ3CsMwyA8PJwVK1bw3XffXfdnZvnZvXs3AJUqVQIgNDSU+Ph4i19gr3zQqlu37h2pW+5d6enpJCQkUKlSJZo0aYK9vb3Fe+CBAwdITk42vwfq+pOitHDhQipWrEi3bt1u2E/vg3In+fn54ePjY/Hed+7cObZv327x3peWlkZcXJy5z3fffUdubq75S57Q0FA2bdpEVlaWuc+6desICgrSn47LTV0J0H/99VfWr19P+fLlb7rN7t27sbGxMS+voWtQitpvv/3G6dOnLf77q/dCKQ7//e9/adKkCQ0bNrxpX70Xyq24WSZTVJ+JQ0NDLfZxpU+pyBatfGNTKUZRUVGGo6OjERkZaezbt894/PHHDU9PT4u77orcrqeeesrw8PAwoqOjjZSUFPPj4sWLhmEYxqFDh4zJkycbO3bsMI4cOWKsWrXKqFmzptGmTRvzPrKzs4369esbDzzwgLF7927jm2++Mby8vIyXX37ZWocld5Hnn3/eiI6ONo4cOWJs2bLF6Nixo1GhQgUjNTXVMAzDePLJJ43q1asb3333nbFjxw4jNDTUCA0NNW+v60+KSk5OjlG9enVj3LhxFu16H5Q74fz588auXbuMXbt2GYAxc+ZMY9euXUZSUpJhGIbxxhtvGJ6ensaqVauMvXv3Gj179jT8/PyMjIwM8z46d+5sNG7c2Ni+fbuxefNmIyAgwOjfv7/59bS0NMPb29sYOHCg8dNPPxlRUVGGi4uLMW/evGI/Xil5bnQNZmZmGg8++KBRtWpVY/fu3Ra/I16+fNkwDMOIiYkxZs2aZezevdtISEgwPvnkE8PLy8sYNGiQeQxdg3IzN7oOz58/b4wdO9bYunWrceTIEWP9+vVGSEiIERAQYFy6dMm8D70Xyt9xs/8eG4ZhnD171nBxcTHef//967bXe6H8XTfLZAyjaD4THz582HBxcTFeeOEFY//+/ca7775r2NraGt98802xHq81KEQvZd5++22jevXqhoODg9G8eXNj27Zt1i5J7hFAvo+FCxcahmEYycnJRps2bYxy5coZjo6Ohr+/v/HCCy8YZ8+etdhPYmKi0aVLF8PZ2dmoUKGC8fzzzxtZWVlWOCK52/Tr18+oVKmS4eDgYFSpUsXo16+fcejQIfPrGRkZxtNPP22ULVvWcHFxMR566CEjJSXFYh+6/qQorF271gCMAwcOWLTrfVDuhO+//z7f//4OHjzYMAzDyM3NNSZMmGB4e3sbjo6ORocOHa67Nk+fPm3079/fcHV1Ndzd3Y2hQ4ca58+ft+izZ88e4x//+Ifh6OhoVKlSxXjjjTeK6xClhLvRNXjkyJECf0f8/vvvDcMwjLi4OKNFixaGh4eH4eTkZNSpU8eYOnWqRbhpGLoG5cZudB1evHjReOCBBwwvLy/D3t7eqFGjhjFixIjrJpPpvVD+jpv999gwDGPevHmGs7OzkZaWdt32ei+Uv+tmmYxhFN1n4u+//95o1KiR4eDgYNSsWdNijHuZyTAM4w5NchcRERERERERERERuatpTXQRERERERERERERkQIoRBcRERERERERERERKYBCdBERERERERERERGRAihEFxEREREREREREREpgEJ0EREREREREREREZECKEQXERERERERERERESmAQnQRERERERERERERkQIoRBcRERERETNfX19mz55t7TJEREREREoMhegiIiIiIlYyZMgQevXqBUC7du0YPXp0sY0dGRmJp6fnde2xsbE8/vjjxVaHiIiIiEhJZ2ftAkREREREpOhkZmbi4OBw29t7eXkVYTUiIiIiInc/zUQXEREREbGyIUOGsHHjRubMmYPJZMJkMpGYmAjATz/9RJcuXXB1dcXb25uBAwdy6tQp87bt2rUjPDyc0aNHU6FCBTp16gTAzJkzadCgAWXKlKFatWo8/fTTpKenAxAdHc3QoUM5e/asebyIiAjg+uVckpOT6dmzJ66urri7u9O3b19OnDhhfj0iIoJGjRqxePFifH198fDw4JFHHuH8+fPmPp9//jkNGjTA2dmZ8uXL07FjRy5cuHCHzqaIiIiISNFSiC4iIiIiYmVz5swhNDSUESNGkJKSQkpKCtWqVSMtLY3777+fxo0bs2PHDr755htOnDhB3759LbZftGgRDg4ObNmyhQ8++AAAGxsb5s6dy88//8yiRYv47rvvePHFFwFo2bIls2fPxt3d3Tze2LFjr6srNzeXnj17cubMGTZu3Mi6des4fPgw/fr1s+iXkJDAypUr+eqrr/jqq6/YuHEjb7zxBgApKSn079+fxx57jP379xMdHU3v3r0xDONOnEoRERERkSKn5VxERERERKzMw8MDBwcHXFxc8PHxMbe/8847NG7cmKlTp5rbFixYQLVq1Th48CCBgYEABAQE8J///Mdin1evr+7r68vrr7/Ok08+yXvvvYeDgwMeHh6YTCaL8a61YcMG4uPjOXLkCNWqVQPg448/pl69esTGxtKsWTMgL2yPjIzEzc0NgIEDB7JhwwamTJlCSkoK2dnZ9O7dmxo1agDQoEGDv3G2RERERESKl2aii4iIiIiUUHv27OH777/H1dXV/KhduzaQN/v7iiZNmly37fr16+nQoQNVqlTBzc2NgQMHcvr0aS5evFjo8ffv30+1atXMATpA3bp18fT0ZP/+/eY2X19fc4AOUKlSJVJTUwFo2LAhHTp0oEGDBvTp04f58+fzxx9/FP4kiIiIiIhYmUJ0EREREZESKj09nR49erB7926Lx6+//kqbNm3M/cqUKWOxXWJiIt27dyc4OJj/+7//Iy4ujnfffRfIu/FoUbO3t7d4bjKZyM3NBcDW1pZ169axZs0a6taty9tvv01QUBBHjhwp8jpERERERO4EhegiIiIiIiWAg4MDOTk5Fm0hISH8/PPP+Pr64u/vb/G4Nji/WlxcHLm5ucyYMYP77ruPwMBAjh07dtPxrlWnTh2OHj3K0aNHzW379u0jLS2NunXrFvrYTCYTrVq1YtKkSezatQsHBwdWrFhR6O1FRERERKxJIbqIiIiISAng6+vL9u3bSUxM5NSpU+Tm5jJy5EjOnDlD//79iY2NJSEhgbVr1zJ06NAbBuD+/v5kZWXx9ttvc/jwYRYvXmy+4ejV46Wnp7NhwwZOnTqV7zIvHTt2pEGDBoSFhbFz505+/PFHBg0aRNu2bWnatGmhjmv79u1MnTqVHTt2kJyczBdffMHJkyepU6fOrZ0gERERERErUYguIiIiIlICjB07FltbW+rWrYuXlxfJyclUrlyZLVu2kJOTwwMPPECDBg0YPXo0np6e2NgU/Kt8w4YNmTlzJm+++Sb169dnyZIlTJs2zaJPy5YtefLJJ+nXrx9eXl7X3ZgU8maQr1q1irJly9KmTRs6duxIzZo1WbZsWaGPy93dnU2bNtG1a1cCAwP597//zYwZM+jSpUvhT46IiIiIiBWZDMMwrF2EiIiIiIiIiIiIiEhJpJnoIiIiIiIiIiIiIiIFUIguIiIiIiIiIiIiIlIAhegiIiIiIiIiIiIiIgVQiC4iIiIiIiIiIiIiUgCF6CIiIiIiIiIiIiIiBVCILiIiIiIiIiIiIiJSAIXoIiIiIiIiIiIiIiIFUIguIiIiIiIiIiIiIlIAhegiIiIiIiIiIiIiIgVQiC4iIiIiIiIiIiIiUgCF6CIiIiIiIiIiIiIiBVCILiIiIiIiIiIiIiJSAIXoIiIiIiIiIiIiIiIFUIguIiIiIiIiIiIiIlIAhegiIiIiIiIiIiIiIgVQiC4iIiIiIiIiIiIiUgCF6CIiIiIiIiIiIiIiBVCILiIiIiJyF0hMTMRkMhEZGWlui4iIwGQyFWp7k8lEREREkdbUrl072rVrV6T7FBEREREpaRSii4iIiIjcAQ8++CAuLi6cP3++wD5hYWE4ODhw+vTpYqzs1uzbt4+IiAgSExOtXYqIiIiIiFUoRBcRERERuQPCwsLIyMhgxYoV+b5+8eJFVq1aRefOnSlfvvxtjfHvf/+bjIyMv1PmTe3bt49JkyblG6J/++23fPvtt3d0fBERERERa1OILiIiIiJyBzz44IO4ubmxdOnSfF9ftWoVFy5cICws7LbHsLOzw8nJ6ba3/7scHBxwcHCw2vgiIiIiIsVBIbqIiIiIyB3g7OxM79692bBhA6mpqde9vnTpUtzc3PjHP/7B2LFjadCgAa6urri7u9OlSxf27Nlz0zHyWxP98uXLjBkzBi8vL9zc3HjwwQf57bffrts2KSmJp59+mqCgIJydnSlfvjx9+vSxmHEeGRlJnz59AGjfvj0mkwmTyUR0dDSQ/5roqampDBs2DG9vb5ycnGjYsCGLFi2y6HNlfffp06fz4YcfUqtWLRwdHWnWrBmxsbE3PW4RERERkeJkZ+0CRERERETuVWFhYSxatIjPPvuM8PBwc/uZM2dYu3Yt/fv3JyUlhZUrV9KnTx/8/Pw4ceIE8+bNo23btuzbt4/KlSvf0pjDhw/nk08+YcCAAbRs2ZLvvvuObt26XdcvNjaWmJgYHnnkEapWrUpiYiLvv/8+7dq1Y9++fbi4uNCmTRtGjRrF3LlzeeWVV6hTpw6A+X+vlZGRQbt27Th06BDh4eH4+fmxfPlyhgwZQlpaGs8++6xF/6VLl3L+/HmeeOIJTCYT//nPf+jduzeHDx/G3t7+lo5bREREROROUYguIiIiInKH3H///VSqVImlS5dahOjLly8nKyuLsLAwGjRowMGDB7Gx+euPRAcOHEjt2rX573//y4QJEwo93p49e/jkk094+umneffddwEYOXIkYWFh7N2716Jvt27d+Ne//mXR1qNHD0JDQ/m///s/Bg4cSM2aNWndujVz587ln//853Wzzq/14Ycfsn//fj755BPzMjVPPvkkbdu25d///jePPfYYbm5u5v7Jycn8+uuvlC1bFoCgoCB69uzJ2rVr6d69e6GPW0RERETkTtJyLiIiIiIid4itrS2PPPIIW7dutVgmZenSpXh7e9OhQwccHR3NAXpOTg6nT5/G1dWVoKAgdu7ceUvjff311wCMGjXKon306NHX9XV2djb/nJWVxenTp/H398fT0/OWx716fB8fH/r3729us7e3Z9SoUaSnp7Nx40aL/v369TMH6ACtW7cG4PDhw7c1voiIiIjInaAQXURERETkDroyI/vKDUZ/++03fvjhBx555BFsbW3Jzc1l1qxZBAQE4OjoSIUKFfDy8mLv3r2cPXv2lsZKSkrCxsaGWrVqWbQHBQVd1zcjI4OJEydSrVo1i3HT0tJuedyrxw8ICLCYVQ9/Lf+SlJRk0V69enWL51cC9T/++OO2xhcRERERuRMUoouIiIiI3EFNmjShdu3afPrppwB8+umnGIZhDtenTp3Kc889R5s2bfjkk09Yu3Yt69ato169euTm5t6xup555hmmTJlC3759+eyzz/j2229Zt24d5cuXv6PjXs3W1jbfdsMwimV8EREREZHC0JroIiIiIiJ3WFhYGBMmTGDv3r0sXbqUgIAAmjVrBsDnn39O+/bt+e9//2uxTVpaGhUqVLilcWrUqEFubi4JCQkWs88PHDhwXd/PP/+cwYMHM2PGDHPbpUuXSEtLs+hnMpluafy9e/eSm5trMRv9l19+Mb8uIiIiInK30Ux0EREREZE77Mqs84kTJ7J7927zc8ibjX3tzOvly5fz+++/3/I4Xbp0AWDu3LkW7bNnz76ub37jvv322+Tk5Fi0lSlTBuC6cD0/Xbt25fjx4yxbtszclp2dzdtvv42rqytt27YtzGGIiIiIiJQomokuIiIiInKH+fn50bJlS1atWgVgEaJ3796dyZMnM3ToUFq2bEl8fDxLliyhZs2atzxOo0aN6N+/P++99x5nz56lZcuWbNiwgUOHDl3Xt3v37ixevBgPDw/q1q3L1q1bWb9+PeXLl79un7a2trz55pucPXsWR0dH7r//fipWrHjdPh9//HHmzZvHkCFDiIuLw9fXl88//5wtW7Ywe/Zs3NzcbvmYRERERESsTSG6iIiIiEgxCAsLIyYmhubNm+Pv729uf+WVV7hw4QJLly5l2bJlhISEsHr1al566aXbGmfBggV4eXmxZMkSVq5cyf3338/q1aupVq2aRb85c+Zga2vLkiVLuHTpEq1atWL9+vV06tTJop+Pjw8ffPAB06ZNY9iwYeTk5PD999/nG6I7OzsTHR3NSy+9xKJFizh37hxBQUEsXLiQIUOG3NbxiIiIiIhYm8nQXXtERERERERERERERPKlNdFFRERERERERERERAqgEF1EREREREREREREpAAK0UVERERERERERERECqAQXURERERERERERESkAArRRUREREREREREREQKoBBdRERERERERERERKQACtFFRERERERERERERApgZ+0Ciltubi7Hjh3Dzc0Nk8lk7XJERERERERERERExAoMw+D8+fNUrlwZG5uC55uXuhD92LFjVKtWzdpliIiIiIiIiIiIiEgJcPToUapWrVrg66UuRHdzcwPyToy7u7uVqxERERERERERERERazh37hzVqlUzZ8YFKXUh+pUlXNzd3RWii4iIiIiIiIiIiJRyN1v2WzcWFREREREREREREREpgEJ0EREREREREREREZECKEQXERERERERERERESlAqVsTXURERERKtpycHLKysqxdhkiRcnBwwMZGc5hERERE7kYK0UVERESkRDAMg+PHj5OWlmbtUkSKnI2NDX5+fjg4OFi7FBERERG5RQrRRURERKREuBKgV6xYERcXF0wmk7VLEikSubm5HDt2jJSUFKpXr65rW0REROQuoxBdRERERKwuJyfHHKCXL1/e2uWIFDkvLy+OHTtGdnY29vb21i5HRERERG6BFuUTEREREau7sga6i4uLlSsRuTOuLOOSk5Nj5UpERERE5FYpRBcRERGREkPLXMi9Ste2iIiIyN1LIbqIiIiIiNyyiIgIGjVqdMf2n5iYiMlkYvfu3XdsDBERERGRwlCILiIiIiLyN7377rv4+vri5OREixYt+PHHH61dUqk0ZMgQevXqVezj+vr6Mnv27GIfV0RERESKh0J0EREREZG/YdmyZTz33HO8+uqr7Ny5k4YNG9KpUydSU1OtXZqIiIiIiBQBhegiIiIiIn/DzJkzGTFiBEOHDqVu3bp88MEHuLi4sGDBgptum5aWxvDhw/Hy8sLd3Z3777+fPXv2AHDy5El8fHyYOnWquX9MTAwODg5s2LABgISEBHr27Im3tzeurq40a9aM9evXW4zh6+vL66+/zqBBg3B1daVGjRr873//4+TJk/Ts2RNXV1eCg4PZsWOHeZvIyEg8PT1ZuXIlAQEBODk50alTJ44ePXrD4/noo4+oU6cOTk5O1K5dm/fee6/Q5/HHH3+kcePGODk50bRpU3bt2mXxek5ODsOGDcPPzw9nZ2eCgoKYM2eO+fWIiAgWLVrEqlWrMJlMmEwmoqOjARg3bhyBgYG4uLhQs2ZNJkyYYL6ZLcCePXto3749bm5uuLu706RJE4vzsXnzZlq3bo2zszPVqlVj1KhRXLhwAYB27dqRlJTEmDFjzOOKiIiIyL1FIbqIiIiIlDiGYXAxM9sqD8MwCl1nZmYmcXFxdOzY0dxmY2NDx44d2bp1602379OnD6mpqaxZs4a4uDhCQkLo0KEDZ86cwcvLiwULFhAREcGOHTs4f/48AwcOJDw8nA4dOgCQnp5O165d2bBhA7t27aJz58706NGD5ORki3FmzZpFq1at2LVrF926dWPgwIEMGjSIRx99lJ07d1KrVi0GDRpkcewXL15kypQpfPzxx2zZsoW0tDQeeeSRAo9lyZIlTJw4kSlTprB//36mTp3KhAkTWLRo0U3PQ3p6Ot27d6du3brExcURERHB2LFjLfrk5uZStWpVli9fzr59+5g4cSKvvPIKn332GQBjx46lb9++dO7cmZSUFFJSUmjZsiUAbm5uREZGsm/fPubMmcP8+fOZNWuWed9hYWFUrVqV2NhY4uLieOmll7C3twfyvqjo3LkzDz/8MHv37mXZsmVs3ryZ8PBwAL744guqVq3K5MmTzeOKiIiIyL3FztoFSDHLyYZVI6HJYKjR0trViIiIiOQrIyuHuhPXWmXsfZM74eJQuF+TT506RU5ODt7e3hbt3t7e/PLLLzfcdvPmzfz444+kpqbi6OgIwPTp01m5ciWff/45jz/+OF27dmXEiBGEhYXRtGlTypQpw7Rp08z7aNiwIQ0bNjQ/f+2111ixYgX/+9//zCEvQNeuXXniiScAmDhxIu+//z7NmjWjT58+QN5M7dDQUE6cOIGPjw8AWVlZvPPOO7Ro0QKARYsWUadOHX788UeaN29+3fG8+uqrzJgxg969ewPg5+fHvn37mDdvHoMHD77huVi6dCm5ubn897//xcnJiXr16vHbb7/x1FNPmfvY29szadIk83M/Pz+2bt3KZ599Rt++fXF1dcXZ2ZnLly+bj+GKf//73+affX19GTt2LFFRUbz44osAJCcn88ILL1C7dm0AAgICzP2nTZtGWFgYo0ePNr82d+5c2rZty/vvv0+5cuWwtbXFzc3tunFFRERE5N6gEL202Rv116NmO2g/Hqpd/yFIRERERO6sPXv2kJ6eTvny5S3aMzIySEhIMD+fPn069evXZ/ny5cTFxZkDd8ibwR0REcHq1atJSUkhOzubjIyM62aiBwcHm3++Evg3aNDgurbU1FRzEGxnZ0ezZs3MfWrXro2npyf79++/LkS/cOECCQkJDBs2jBEjRpjbs7Oz8fDwuOm52L9/P8HBwTg5OZnbQkNDr+v37rvvsmDBApKTk8nIyCAzM5NGjRrddP/Lli1j7ty5JCQkkJ6eTnZ2Nu7u7ubXn3vuOYYPH87ixYvp2LEjffr0oVatWkDev9PevXtZsmSJub9hGOTm5nLkyBHq1Klz0/FFRERE5O6mEL20qdkOmj4GOxfD4ei8h39HaPcKVG1i5eJERERE8jjb27JvcierjV1YFSpUwNbWlhMnTli0Xz2juyDp6elUqlTJvG731Tw9Pc0/JyQkcOzYMXJzc0lMTLQIv8eOHcu6deuYPn06/v7+ODs7869//YvMzEyL/V1ZmgQwr9mdX1tubu6ND/gGxwIwf/5888z1K2xtC38+byQqKoqxY8cyY8YMQkNDcXNz46233mL79u033G7r1q2EhYUxadIkOnXqhIeHB1FRUcyYMcPcJyIiggEDBrB69WrWrFnDq6++SlRUFA899BDp6ek88cQTjBo16rp9V69evUiOTURERERKNoXopY1HVeg+C1qNhh+mw64lcGh93iOwC7R/GSo1vOluRERERO4kk8lU6CVVrMnBwYEmTZqwYcMGevXqBeQF0Rs2bLBYTiU/ISEhHD9+HDs7O3x9ffPtk5mZyaOPPkq/fv0ICgpi+PDhxMfHU7FiRQC2bNnCkCFDeOihh4C8MDsxMbFIji07O5sdO3aYZ50fOHCAtLS0fGdee3t7U7lyZQ4fPkxYWNgtj1WnTh0WL17MpUuXzLPRt23bZtFny5YttGzZkqefftrcdvWMfcj798jJybFoi4mJoUaNGowfP97clpSUdF0NgYGBBAYGMmbMGPr378/ChQt56KGHCAkJYd++ffj7+xdYf37jioiIiMi9QzcWLa3K1oAH34ZndkCjMDDZwME1MK8NRIXB8Z+sXaGIiIjIXeG5555j/vz5LFq0iP379/PUU09x4cIFhg4desPtOnbsSGhoKL169eLbb78lMTGRmJgYxo8fz44dOwAYP348Z8+eZe7cuYwbN47AwEAee+wx8z4CAgL44osv2L17N3v27GHAgAG3PZv8Wvb29jzzzDNs376duLg4hgwZwn333ZfveugAkyZNYtq0acydO5eDBw8SHx/PwoULmTlz5k3HGjBgACaTiREjRrBv3z6+/vprpk+fbtEnICCAHTt2sHbtWg4ePMiECROIjY216OPr68vevXs5cOAAp06dIisri4CAAJKTk4mKiiIhIYG5c+eyYsUK8zYZGRmEh4cTHR1NUlISW7ZsITY21vxlwbhx44iJiSE8PJzdu3fz66+/smrVKosvSXx9fdm0aRO///47p06dKvQ5FhEREZG7g0L00q5cTej1HoyMhQZ9ARP88hV80Ao+Gwyp+61doYiIiEiJ1q9fP6ZPn87EiRNp1KgRu3fv5ptvvrnuZqPXMplMfP3117Rp04ahQ4cSGBjII488QlJSEt7e3kRHRzN79mwWL16Mu7s7NjY2LF68mB9++IH3338fgJkzZ1K2bFlatmxJjx496NSpEyEhIUVyXC4uLowbN44BAwbQqlUrXF1dWbZsWYH9hw8fzkcffcTChQtp0KABbdu2JTIyEj8/v5uO5erqypdffkl8fDyNGzdm/PjxvPnmmxZ9nnjiCXr37k2/fv1o0aIFp0+ftpiVDjBixAiCgoJo2rQpXl5ebNmyhQcffJAxY8YQHh5Oo0aNiImJYcKECeZtbG1tOX36NIMGDSIwMJC+ffvSpUsX801Mg4OD2bhxIwcPHqR169Y0btyYiRMnUrlyZfM+Jk+eTGJiIrVq1cLLy6tQ51dERERE7h4mwzAMaxdRnM6dO4eHhwdnz561uJmQ/OnkAYh+A37+4s8GE9R/GNq9BBUCrFqaiIiI3LsuXbrEkSNH8PPzs7i5pFhHZGQko0ePJi0tzdql3DN0jYuIiIiUPIXNijUTXSx5BUGfhfBUDNTpARjw0+fwbnNY8SScTrjpLkRERERERERERETuFQrRJX/e9aDfJ/DEJgjqCkYu7PkU3mkGq0bCH4nWrlBERESkRFuyZAmurq75PurVq2ft8orV1KlTCzwXXbp0sXZ5IiIiIiI3pOVcpHB+3wnR0+DXb/Oe29hB44HQ+nnwrGbd2kREROSudy8udXH+/HlOnDiR72v29vbUqFGjmCuynjNnznDmzJl8X3N2dqZKlSrFXFHxuxevcREREZG7XWGzYrtirEnuZlVCIGw5HI2F6KmQ8B3ELYTdSyBkMLR+Dtwr33w/IiIiIqWEm5sbbm5u1i6jRChXrhzlypWzdhkiIiIiIrdFy7nIranWDAaugKFrwLc15GRC7HyY0wjWvATn859tJSIiIiIiIiIiInI3Uogut6dGSxjyFQz+EqqHQs5l2P4+zGkIa8fDhVPWrlBERERERERERETkb1OILn+PX5u8WekDV0LVZpCdAVvfgdnBsD4CLua/9qWIiIiIiIiIiIjI3UAhuvx9JhPUag/D1kHY51C5MWRdgM2zYHYD+O51yPjD2lWKiIiIiIiIiIiI3DKF6FJ0TCYI+CeM+B76R4FPA8hMh01vweyGEP0mXDpr7SpFRERERERERERECk0huhQ9kwmCusDjm6DfJ1CxHlw+C9FT85Z52TQdLp+3dpUiIiIiIiIiIiIiN6UQXe4cGxuo0wOe3Az/WggVguBSGnz3Wl6Yvnk2ZF6wdpUiIiIichsiIyPx9PS8o2OYTCZWrlx5R8cQEREREbkZhehy59nYQP3e8PRW6P0RlPeHjDOw/lWY0xBi3oGsDGtXKSIiInJbNm3aRI8ePahcubJCXyuLiIigUaNGxT5uu3btGD16dLGPKyIiIiLFo8SE6G+88QYmk+mGv3xGRkZiMpksHk5OTsVXpPw9NrYQ3Aee3g69PoCyvnDhJHw7Pi9M3z4Psi5Zu0oRERGRW3LhwgUaNmzIu+++a+1SRERERETkDigRIXpsbCzz5s0jODj4pn3d3d1JSUkxP5KSkoqhQilStnbQqD+E74AH3waP6pB+Ata8CHMbQ+xHkH3Z2lWKiIiIFEqXLl14/fXXeeihh25528uXLzN27FiqVKlCmTJlaNGiBdHR0QBcunSJevXq8fjjj5v7JyQk4ObmxoIFCwA4ffo0/fv3p0qVKri4uNCgQQM+/fRTizHatWvHM888w+jRoylbtize3t7Mnz+fCxcuMHToUNzc3PD392fNmjXmbaKjozGZTKxevZrg4GCcnJy47777+Omnn254PKtWrSIkJAQnJydq1qzJpEmTyM7OLtS5+PXXX2nTpg1OTk7UrVuXdevWXddn3LhxBAYG4uLiQs2aNZkwYQJZWVlA3oSbSZMmsWfPHvOEm8jISABmzpxJgwYNKFOmDNWqVePpp58mPT3dvN+kpCR69OhB2bJlKVOmDPXq1ePrr782v/7TTz/RpUsXXF1d8fb2ZuDAgZw6dQqAIUOGsHHjRubMmWMeNzExsVDHLCIiIiJ3B6uH6Onp6YSFhTF//nzKli170/4mkwkfHx/zw9vbuxiqlDvC1h5CBsEzcdB9FrhXgfPHYPXz8HYTiIuEnCxrVykiIiJWYBgG2TnWeRiGUWzHGR4eztatW4mKimLv3r306dOHzp078+uvv+Lk5MSSJUtYtGgRq1atIicnh0cffZR//vOfPPbYY0Be0N6kSRNWr17NTz/9xOOPP87AgQP58ccfLcZZtGgRFSpU4Mcff+SZZ57hqaeeok+fPrRs2ZKdO3fywAMPMHDgQC5evGix3QsvvMCMGTOIjY3Fy8uLHj16mEPra/3www8MGjSIZ599ln379jFv3jwiIyOZMmXKTc9Dbm4uvXv3xsHBge3bt/PBBx8wbty46/q5ubkRGRnJvn37mDNnDvPnz2fWrFkA9OvXj+eff5569eqZJ9z069cPABsbG+bOncvPP//MokWL+O6773jxxRfN+x05ciSXL19m06ZNxMfH8+abb+Lq6gpAWloa999/P40bN2bHjh188803nDhxgr59+wIwZ84cQkNDGTFihHncatWq3fSYRUREROTuYTKK81NCPgYPHky5cuWYNWsW7dq1o1GjRsyePTvfvpGRkQwfPpwqVaqQm5tLSEgIU6dOpV69eoUe79y5c3h4eHD27Fnc3d2L6CikSGRfhp0fw6bpkH48r82zBrQdB8H98mawi4iIyD3p0qVLHDlyBD8/P5ycnMjOMfgyNtUqtfRoVhE7W9NtbWsymVixYgW9evW6ad/k5GRq1qxJcnIylStXNrd37NiR5s2bM3XqVADeeust/vOf//DII4/wf//3f8THx1O+fPkC99u9e3dq167N9OnTgbyZ6Dk5Ofzwww8A5OTk4OHhQe/evfn4448BOH78OJUqVWLr1q3cd999REdH0759e6KiosxB9JkzZ6hatSqRkZH07duXyMhIRo8eTVpamrnuDh068PLLL5tr+eSTT3jxxRc5duzYDc/Ft99+S7du3UhKSjKfi2+++YYuXbrc8HxOnz6dqKgoduzYAeStib5y5Up27959w/E+//xznnzySfNs8uDgYB5++GFeffXV6/q+/vrr/PDDD6xdu9bc9ttvv1GtWjUOHDhAYGDgTT/HwPXXuIiIiIhYX2GzYqumklFRUezcuZPY2NhC9Q8KCmLBggUEBwdz9uxZpk+fTsuWLfn555+pWrVqvttcvnyZy5f/Whrk3LlzRVK73AF2jtB8BDR+FHYshM0zIS0JVj0NP0yHti9Bg3/lra0uIiIicpeLj48nJyeHwMBAi/bLly9bhOTPP/88K1eu5J133mHNmjUWr+Xk5DB16lQ+++wzfv/9dzIzM7l8+TIuLi4W+7x62URbW1vKly9PgwYNzG1X/rozNdXyi4vQ0FDzz+XKlSMoKIj9+/fnezx79uxhy5YtFjPPc3JyuHTpEhcvXryupqvt37+fatWqWXyZcPXYVyxbtoy5c+eSkJBAeno62dnZhZoYs379eqZNm8Yvv/zCuXPnyM7Otqhr1KhRPPXUU3z77bd07NiRhx9+2HzO9uzZw/fff2+emX61hISE6/79REREROTeY7UQ/ejRozz77LOsW7eu0DMxQkNDLX6ZbtmyJXXq1GHevHm89tpr+W4zbdo0Jk2aVCQ1SzGxd4bQp6HJYIj9L2yZDWcOw4rH/wzTx0G93mBj9dWIRERE5A6xtcmbEW6tsYtDeno6tra2xMXFYWtrOUng6sA2NTWVgwcPYmtry6+//krnzp3Nr7311lvMmTOH2bNnm9f8Hj16NJmZmRb7s7e3t3huMpks2kymvJn3ubm5f+t4Jk2aRO/eva97rShmXm/dupWwsDAmTZpEp06d8PDwICoqihkzZtxwu8TERLp3785TTz3FlClTKFeuHJs3b2bYsGFkZmbi4uLC8OHD6dSpE6tXr+bbb79l2rRpzJgxg2eeeYb09HR69OjBm2++ed2+K1Wq9LePS0RERERKPquF6HFxcaSmphISEmJuy8nJYdOmTbzzzjtcvnz5ug8T17K3t6dx48YcOnSowD4vv/wyzz33nPn5uXPntEbh3cKhDLQaBU0fgx8/hJi5cOog/N+wvCVf2r8MtXsoTBcREbkHmUwm7O7xPz5r3LgxOTk5pKam0rp16wL7PfbYYzRo0IBhw4YxYsQIOnbsSJ06dQDYsmULPXv25NFHHwXyQvCDBw9St27dIqlx27ZtVK9eHYA//viDgwcPmse+VkhICAcOHMDf3/+Wx6lTpw5Hjx4lJSXFHExv27bNok9MTAw1atRg/Pjx5rakpCSLPg4ODuTk5Fi0xcXFkZuby4wZM7D58/fGzz777LoaqlWrxpNPPsmTTz7Jyy+/zPz583nmmWcICQnh//7v//D19cXOLv+PT/mNKyIiIiL3DquF6B06dCA+Pt6ibejQodSuXZtx48bdNECHvNA9Pj6erl27FtjH0dERR0fHv12vWJGjK7R+DpoNh+3zYOvbcHI/fDYIvBvkhelBXcF0e2uXioiIiPwd6enpFpM6jhw5wu7duylXrpw5gM5PYGAgYWFhDBo0iBkzZtC4cWNOnjzJhg0bCA4Oplu3brz77rts3bqVvXv3Uq1aNVavXk1YWBjbtm3DwcGBgIAAPv/8c2JiYihbtiwzZ87kxIkTRRaiT548mfLly+Pt7c348eOpUKFCgeuTT5w4ke7du1O9enX+9a9/YWNjw549e/jpp594/fXXbzhOx44dCQwMZPDgwbz11lucO3fOIiwHCAgIIDk5maioKJo1a8bq1atZsWKFRR9fX1/z+a9atSpubm74+/uTlZXF22+/TY8ePdiyZQsffPCBxXajR4+mS5cuBAYG8scff/D999+bvywYOXIk8+fPp3///rz44ouUK1eOQ4cOERUVxUcffYStrS2+vr5s376dxMREXF1dKVeunDmwFxEREZG7n9V+s3Nzc6N+/foWjzJlylC+fHnq168PwKBBgyxuTDR58mS+/fZbDh8+zM6dO3n00UdJSkpi+PDh1joMKU5O7tD2BXh2b96SLg5ucCIeogbAh+3g4Fqw7n1yRUREpBTasWMHjRs3pnHjxgA899xzNG7cmIkTJ95024ULFzJo0CCef/55goKC6NWrF7GxsVSvXp1ffvmFF154gffee8/8l5Tvvfcep06dYsKECQD8+9//JiQkhE6dOtGuXTt8fHwKdVPTwnrjjTd49tlnadKkCcePH+fLL7/EwcEh376dOnXiq6++4ttvv6VZs2bcd999zJo1ixo1atx0HBsbG1asWEFGRgbNmzdn+PDhFmurAzz44IOMGTOG8PBwGjVqRExMjPk8XPHwww/TuXNn2rdvj5eXF59++ikNGzZk5syZvPnmm9SvX58lS5Ywbdo0i+1ycnIYOXIkderUoXPnzgQGBvLee+8BULlyZbZs2UJOTg4PPPAADRo0YPTo0Xh6epqD8rFjx2Jra0vdunXx8vIiOTm50OdYREREREo+k2GUnNTx2rvat2vXDl9fXyIjIwEYM2YMX3zxBcePH6ds2bI0adKE119/3fyBpTAKe8dVuQtcPANb34FtH0DWhby2Kk2h/StQ637NTBcREbmLXLp0iSNHjuDn51ck62fL3xMdHU379u35448/8PT0tHY59wRd4yIiIiIlT2Gz4hIVohcHhej3oAunYMsc+HE+ZGfktVW7Ly9Mr9nWurWJiIhIoShgLFkUohc9XeMiIiIiJU9hs2It1Cd3vzIV4IHXYPReuG8k2DnB0W3w8YMQ2R0St1i7QhERESmFfvjhB1xdXQt8lCZLliwp8DzUq1fP2uWJiIiIiNyQZqLLvedcCmyeBXELISczr61mO2g/Hqo1t2ppIiIikr97cZZuRkYGv//+e4Gv+/v7F2M11nX+/HlOnDiR72v29vaFWjf9bncvXuMiIiIid7vCZsV2xViTSPFwrwRd/wOtRsEPM2Hnx3A4Ou/h3xHavQJVm1i7ShEREbnHOTs7l6qg/Ebc3Nxwc3OzdhkiIiIiIrdFy7nIvcujKnSfCc/EQcggMNnCofXw0f2wtB+k7LF2hSIiIiIiIiIiIlLCKUSXe1/ZGvDg2/DMDmgUBiYbOPgNzGsDUWFw/CdrVygiIiIiIiIiIiIllEJ0KT3K1YRe78HIWGjQFzDBL1/BB63gs8GQut/aFYqIiIiIiIiIiEgJoxBdSp8K/vDwfBi5Her1zmvbtxLeC4XPh8GpX61anoiIiIiIiIiIiJQcCtGl9PIKgj4L4akYqPMgYMBPn8O7zWHFk3A6wdoVioiIiIiIiIiIiJUpRBfxrgf9FsMTP0BQVzByYc+n8E4zWDUS/ki0doUiIiIiJU5ERASNGjW6Y/tPTEzEZDKxe/fuOzaGiIiIiEhhKEQXuaJSMPT/FEZ8DwEPgJEDuz6Bt5vAl89C2lFrVygiIiIlzLRp02jWrBlubm5UrFiRXr16ceDAAWuXVWoNGTKEXr16Ffu4vr6+zJ49u9jHFREREZHioRBd5FpVQiBsOQxbD7Xuh9xsiIuEt0Ng9Vg4d8zaFYqIiEgJsXHjRkaOHMm2bdtYt24dWVlZPPDAA1y4cMHapYmIiIiISBFRiC5SkGrNYOAKGPoN+LWBnEyInQ9zGsGal+D8CWtXKCIiIlb2zTffMGTIEOrVq0fDhg2JjIwkOTmZuLi4Qm2flpbG8OHD8fLywt3dnfvvv589e/YAcPLkSXx8fJg6daq5f0xMDA4ODmzYsAGAhIQEevbsibe3N66urjRr1oz169dbjOHr68vrr7/OoEGDcHV1pUaNGvzvf//j5MmT9OzZE1dXV4KDg9mxY4d5m8jISDw9PVm5ciUBAQE4OTnRqVMnjh698V/mffTRR9SpUwcnJydq167Ne++9V6jzAPDjjz/SuHFjnJycaNq0Kbt27bJ4PScnh2HDhuHn54ezszNBQUHMmTPH/HpERASLFi1i1apVmEwmTCYT0dHRAIwbN47AwEBcXFyoWbMmEyZMICsry7ztnj17aN++PW5ubri7u9OkSROL87F582Zat26Ns7Mz1apVY9SoUeYvStq1a0dSUhJjxowxjysiIiIi9xaF6CI3UyMUBn8Jg7+C6qGQcxm2vw9zGsLa8ZB+0toVioiI3HsMAzIvWOdhGLdd9tmzZwEoV65cofr36dOH1NRU1qxZQ1xcHCEhIXTo0IEzZ87g5eXFggULiIiIYMeOHZw/f56BAwcSHh5Ohw4dAEhPT6dr165s2LCBXbt20blzZ3r06EFycrLFOLNmzaJVq1bs2rWLbt26MXDgQAYNGsSjjz7Kzp07qVWrFoMGDcK46tgvXrzIlClT+Pjjj9myZQtpaWk88sgjBR7LkiVLmDhxIlOmTGH//v1MnTqVCRMmsGjRopueh/T0dLp3707dunWJi4sjIiKCsWPHWvTJzc2latWqLF++nH379jFx4kReeeUVPvvsMwDGjh1L37596dy5MykpKaSkpNCyZUsA3NzciIyMZN++fcyZM4f58+cza9Ys877DwsKoWrUqsbGxxMXF8dJLL2Fvbw/kfVHRuXNnHn74Yfbu3cuyZcvYvHkz4eHhAHzxxRdUrVqVyZMnm8cVERERkXuLyTD+xqeEu9C5c+fw8PDg7NmzuLu7W7scudsYBhyOhu+nwG+xeW32LtD8cWj1LLgU7gOziIiIWLp06RJHjhzBz88PJyenvDB7amXrFPPKMXAoc8ub5ebm8uCDD5KWlsbmzZtv2n/z5s1069aN1NRUHB0dze3+/v68+OKLPP744wCMHDmS9evX07RpU+Lj44mNjbXof6369evz5JNPmkNeX19fWrduzeLFiwE4fvw4lSpVYsKECUyePBmAbdu2ERoaSkpKCj4+PkRGRjJ06FC2bdtGixYtAPjll1+oU6cO27dvp3nz5kRERLBy5UrzjT/9/f157bXX6N+/v7mW119/na+//pqYmJgbnosPP/yQV155hd9++y3v3x/44IMPeOqpp9i1a1eBNzANDw/n+PHjfP7550DemuhpaWmsXLnyhuNNnz6dqKgo82xzd3d33n77bQYPHnxd3+HDh2Nra8u8efPMbZs3b6Zt27ZcuHABJycnfH19GT16NKNHjy5wzOuucRERERGxusJmxXbFWJPI3c9kglrtoWY7OLQBvn8dju2CLbMh9iO47ykIHQnOZa1dqYiIiBSzkSNH8tNPPxUqQIe8JUTS09MpX768RXtGRgYJCQnm59OnT6d+/fosX76cuLg4iwA9PT2diIgIVq9eTUpKCtnZ2WRkZFw3Ez04ONj8s7e3NwANGjS4ri01NRUfHx8A7OzsaNasmblP7dq18fT0ZP/+/TRv3txi/xcuXCAhIYFhw4YxYsQIc3t2djYeHh43PRf79+8nODjYIlwODQ29rt+7777LggULSE5OJiMjg8zMzAID9qstW7aMuXPnkpCQQHp6OtnZ2RYfkp577jmGDx/O4sWL6dixI3369KFWrVpA3r/T3r17WbJkibm/YRjk5uZy5MgR6tSpc9PxRUREROTuphBd5HaYTBDQEfw7wMFv8mamH4+HTW/B9nl5Qfp9T4HTzT80ioiISD7sXfJmhFtr7FsUHh7OV199xaZNm6hatWqhtklPT6dSpUrmdbuv5unpaf45ISGBY8eOkZubS2JiokX4PXbsWNatW8f06dPx9/fH2dmZf/3rX2RmZloe0p9LkwDmNbvza8vNzS1U7fkdC8D8+fPNM9evsLW1va19XisqKoqxY8cyY8YMQkNDcXNz46233mL79u033G7r1q2EhYUxadIkOnXqhIeHB1FRUcyYMcPcJyIiggEDBrB69WrWrFnDq6++SlRUFA899BDp6ek88cQTjBo16rp9V69evUiOTURERERKNoXoIn+HyQRBXSCwM/zyFXw/DVJ/huhpsO19aPkMtHgCHN2sXamIiMjdxWS6rSVVipthGDzzzDOsWLGC6Oho/Pz8Cr1tSEgIx48fx87ODl9f33z7ZGZm8uijj9KvXz+CgoIYPnw48fHxVKxYEYAtW7YwZMgQHnroISAvzE5MTPy7hwXkzSLfsWOHedb5gQMHSEtLy3fmtbe3N5UrV+bw4cOEhYXd8lh16tRh8eLFXLp0yTwbfdu2bRZ9tmzZQsuWLXn66afNbVfP2AdwcHAgJyfHoi0mJoYaNWowfvx4c1tSUtJ1NQQGBhIYGMiYMWPo378/Cxcu5KGHHiIkJIR9+/bh7+9fYP35jSsiIiIi9w7dWFSkKJhMUKcHPLkZ+kRChSC4lAbfvQazg2Hz7Ly1XUVEROSeMnLkSD755BOWLl2Km5sbx48f5/jx42RkZNx0244dOxIaGkqvXr349ttvSUxMJCYmhvHjx5vX6h4/fjxnz55l7ty5jBs3jsDAQB577DHzPgICAvjiiy/YvXs3e/bsYcCAAbc9m/xa9vb2PPPMM2zfvp24uDiGDBnCfffdd91SLldMmjSJadOmMXfuXA4ePEh8fDwLFy5k5syZNx1rwIABmEwmRowYwb59+/j666+ZPn26RZ+AgAB27NjB2rVrOXjwIBMmTCA2Ntaij6+vL3v37uXAgQOcOnWKrKwsAgICSE5OJioqioSEBObOncuKFSvM22RkZBAeHk50dDRJSUls2bKF2NhY85cF48aNIyYmhvDwcHbv3s2vv/7KqlWrzGvOXxl306ZN/P7775w6darQ51hERERE7g4K0UWKko0N1HsInt4KvT+C8v6QcQbWvwpzGkLMO5B50dpVioiISBF5//33OXv2LO3ataNSpUrmx7Jly266rclk4uuvv6ZNmzYMHTqUwMBAHnnkEZKSkvD29iY6OprZs2ezePFi3N3dsbGxYfHixfzwww+8//77AMycOZOyZcvSsmVLevToQadOnQgJCSmSY3NxcWHcuHEMGDCAVq1a4erqesPjGj58OB999BELFy6kQYMGtG3blsjIyELNznd1deXLL78kPj6exo0bM378eN58802LPk888QS9e/emX79+tGjRgtOnT1vMSgcYMWIEQUFBNG3aFC8vL7Zs2cKDDz7ImDFjCA8Pp1GjRsTExDBhwgTzNra2tpw+fZpBgwYRGBhI37596dKlC5MmTQLy1pPfuHEjBw8epHXr1jRu3JiJEydSufJfN76dPHkyiYmJ1KpVCy8vr0KdXxERERG5e5gMwzCsXURxKuwdV0WKRE42xC+HjW/AH4l5ba7e8I/noMkQsHe60dYiIiKlxqVLlzhy5Ah+fn4WN5cU64iMjGT06NGkpaVZu5R7hq5xERERkZKnsFmxZqKL3Em2dtCoP4TvgAffAY/qkH4CvhkHcxtD7EeQfdnaVYqIiIiIiIiIiEgBFKKLFAdbewgZCM/EQfdZ4F4Fzh+D1c/D200gLhJysqxdpYiIiBShJUuW4Orqmu+jXr161i6vWE2dOrXAc9GlSxdrlyciIiIickNazkXEGrIvw86PYdN0SD+e1+ZZA9q+CMGP5M1gFxERKUXuxaUuzp8/z4kTJ/J9zd7enho1ahRzRdZz5swZzpw5k+9rzs7OVKlSpZgrKn734jUuIiIicrcrbFaspE7EGuwcofkIaPxo3iz0H2ZCWhKsGgk/zIC2L0GDf4GNrbUrFRERkdvk5uaGm5ubtcsoEcqVK0e5cuWsXYaIiIiIyG3Rci4i1mTvDPc9Bc/ugX++Bi7l4cxhWPE4vHcfxH8OubnWrlJERERERERERKTUUoguUhI4uECrUfDsXujwKjiXhVMH4f+Gwfst4eeVCtNFRERERERERESsQCG6SEni6Aqtn8sL09v/G5w84OR+WD4Y5rWBX1ZD6bqNgYiIiIiIiIiIiFUpRBcpiZzcoe0LeWF623Hg4AYn4iFqAHzYFg6uVZguIiIiIiIiIiJSDBSii5Rkzp7Q/hUYvRdaPw/2ZSBlDyztCx91gEPrFaaLiIiIiIiIiIjcQQrRRe4GLuWgw8S8ML3Vs2DvAr/HwScPw4LOcHijwnQREREpNhERETRq1OiO7T8xMRGTycTu3bvv2BgiIiIiIoWlEF3kblKmAvxzMjy7B+4bCXZOcHQbfPwgRHaHxC3WrlBERKRUef/99wkODsbd3R13d3dCQ0NZs2aNtcsqlYYMGUKvXr2KfVxfX19mz55d7OOKiIiISPFRiC5yN3KtCJ2nwqjd0PwJsHWApM0Q2RUWPQjJ261doYiISKlQtWpV3njjDeLi4tixYwf3338/PXv25Oeff7Z2aSIiIiIiUkQUoovczdwrQdf/5IXpTYeBjT0c2QgLHshb6uW3OGtXKCIick/r0aMHXbt2JSAggMDAQKZMmYKrqyvbtm276bZpaWkMHz4cLy8v3N3duf/++9mzZw8AJ0+exMfHh6lTp5r7x8TE4ODgwIYNGwBISEigZ8+eeHt74+rqSrNmzVi/fr3FGL6+vrz++usMGjQIV1dXatSowf/+9z9OnjxJz549cXV1JTg4mB07dpi3iYyMxNPTk5UrVxIQEICTkxOdOnXi6NGjNzyejz76iDp16uDk5ETt2rV57733Cn0ef/zxRxo3boyTkxNNmzZl165dFq/n5OQwbNgw/Pz8cHZ2JigoiDlz5phfj4iIYNGiRaxatQqTyYTJZCI6OhqAcePGERgYiIuLCzVr1mTChAlkZWWZt92zZw/t27fHzc0Nd3d3mjRpYnE+Nm/eTOvWrXF2dqZatWqMGjWKCxcuANCuXTuSkpIYM2aMeVwRERERufcoRBe5F3hUge4z4Zk4CBkEJtu8m45+dD8s7QfHdlu7QhERkVtjGJCTaZ3Hbd5nJCcnh6ioKC5cuEBoaOhN+/fp04fU1FTWrFlDXFwcISEhdOjQgTNnzuDl5cWCBQuIiIhgx44dnD9/noEDBxIeHk6HDh0ASE9Pp2vXrmzYsIFdu3bRuXNnevToQXJyssU4s2bNolWrVuzatYtu3boxcOBABg0axKOPPsrOnTupVasWgwYNwrjquC9evMiUKVP4+OOP2bJlC2lpaTzyyCMFHsuSJUuYOHEiU6ZMYf/+/UydOpUJEyawaNGim56H9PR0unfvTt26dYmLiyMiIoKxY8da9MnNzaVq1aosX76cffv2MXHiRF555RU+++wzAMaOHUvfvn3p3LkzKSkppKSk0LJlSwDc3NyIjIxk3759zJkzh/nz5zNr1izzvsPCwqhatSqxsbHExcXx0ksvYW9vD+R9UdG5c2cefvhh9u7dy7Jly9i8eTPh4eEAfPHFF1StWpXJkyebxxURERGRe4/JMErX3QjPnTuHh4cHZ8+exd3d3drliNwZZw7Dpumw51MwcvPaaneHdi+BTwPr1iYiIpKPS5cuceTIEfz8/HBycsoLs79/1TrFtJ+Ut1RaIcXHxxMaGsqlS5dwdXVl6dKldO3a9YbbbN68mW7dupGamoqjo6O53d/fnxdffJHHH38cgJEjR7J+/XqaNm1KfHw8sbGxFv2vVb9+fZ588klzyOvr60vr1q1ZvHgxAMePH6dSpUpMmDCByZMnA7Bt2zZCQ0NJSUnBx8eHyMhIhg4dyrZt22jRogUAv/zyC3Xq1GH79u00b96ciIgIVq5cab7xp7+/P6+99hr9+/c31/L666/z9ddfExMTc8Nz8eGHH/LKK6/w22+/5f3bAx988AFPPfUUu3btKvAGpuHh4Rw/fpzPP/8cyFsTPS0tjZUrV95wvOnTpxMVFWWebe7u7s7bb7/N4MGDr+s7fPhwbG1tmTdvnrlt8+bNtG3blgsXLuDk5ISvry+jR49m9OjRNxz3umtcRERERKyusFmxXTHWJCLFpVxN6PUe/OM52PgmxC+HX77Ke9TtCe1ehop1rF2liIjIPSEoKIjdu3dz9uxZPv/8cwYPHszGjRupW7dugdvs2bOH9PR0ypcvb9GekZFBQkKC+fn06dOpX78+y5cvJy4uziJAT09PJyIigtWrV5OSkkJ2djYZGRnXzUQPDg42/+zt7Q1AgwYNrmtLTU3Fx8cHADs7O5o1a2buU7t2bTw9Pdm/fz/Nmze32P+FCxdISEhg2LBhjBgxwtyenZ2Nh4dHgefgiv379xMcHGwRLOc3k//dd99lwYIFJCcnk5GRQWZmZoEB+9WWLVvG3LlzSUhIID09nezsbIsPSM899xzDhw9n8eLFdOzYkT59+lCrVi0g799p7969LFmyxNzfMAxyc3M5cuQIdero9ykRERGR0qDEhOhvvPEGL7/8Ms8+++wN726/fPlyJkyYQGJiIgEBAbz55ps3nekjUmpV8IeH50ObsRD9Bvy8Avatgn3/g/oPQ9tx4BVo7SpFRESuZ2OfNyPcWmPfAgcHB/z9/QFo0qQJsbGxzJkzx2L28rXS09OpVKmSed3uq3l6epp/TkhI4NixY+Tm5pKYmGgRfo8dO5Z169Yxffp0/P39cXZ25l//+heZmZkW+7uyNAlgXrM7v7bc3NzCH/Q1xwIwf/5888z1K2xtbW9rn9eKiopi7NixzJgxg9DQUNzc3HjrrbfYvv3GN1PfunUrYWFhTJo0iU6dOuHh4UFUVBQzZsww94mIiGDAgAGsXr2aNWvW8OqrrxIVFcVDDz1Eeno6TzzxBKNGjbpu39WrVy+SYxMRERGRkq9EhOixsbHMmzfPYpZMfmJiYujfvz/Tpk2je/fuLF26lF69erFz507q169fTNWK3IW8gqDPwr/C9P3/g58+h5+/gAZ9oe2LUL6WtasUERH5i8l0S0uqlCS5ublcvnz5hn1CQkI4fvw4dnZ2+Pr65tsnMzOTRx99lH79+hEUFMTw4cOJj4+nYsWKAGzZsoUhQ4bw0EMPAXlhdmJiYpEcQ3Z2Njt27DDPOj9w4ABpaWn5zrz29vamcuXKHD58mLCwsFseq06dOixevJhLly6ZZ6Nfe2PWLVu20LJlS55++mlz29Uz9iHvy4ycnByLtpiYGGrUqMH48ePNbUlJSdfVEBgYSGBgIGPGjKF///4sXLiQhx56iJCQEPbt22f+kiQ/+Y0rIiIiIvcWq99YND09nbCwMObPn0/ZsmVv2HfOnDl07tyZF154gTp16vDaa68REhLCO++8U0zVitzlvOtBv8XwxA8Q1C1vvfS9UfBOM1g1Ev5ItHaFIiIid5WXX36ZTZs2kZiYSHx8PC+//DLR0dE3DZM7duxIaGgovXr14ttvvyUxMZGYmBjGjx9vXqt7/PjxnD17lrlz5zJu3DgCAwN57LHHzPsICAjgiy++YPfu3ezZs4cBAwbc9mzya9nb2/PMM8+wfft24uLiGDJkCPfdd991S7lcMWnSJKZNm8bcuXM5ePAg8fHxLFy4kJkzZ950rAEDBmAymRgxYgT79u3j66+/Zvr06RZ9AgIC2LFjB2vXruXgwYNMmDCB2NhYiz6+vr7s3buXAwcOcOrUKbKysggICCA5OZmoqCgSEhKYO3cuK1asMG+TkZFBeHg40dHRJCUlsWXLFmJjY81fFowbN46YmBjCw8PZvXs3v/76K6tWrTKvOX9l3E2bNvH7779z6tSpQp9jEREREbl7WD1EHzlyJN26daNjx4437bt169br+nXq1ImtW7cWuM3ly5c5d+6cxUOk1KsUDP2XwojvIeABMHJg1yfwdhP48llIO2rtCkVERO4KqampDBo0iKCgIDp06EBsbCxr167ln//85w23M5lMfP3117Rp04ahQ4cSGBjII488QlJSEt7e3kRHRzN79mwWL16Mu7s7NjY2LF68mB9++IH3338fgJkzZ1K2bFlatmxJjx496NSpEyEhIUVyXC4uLowbN44BAwbQqlUrXF1dWbZsWYH9hw8fzkcffcTChQtp0KABbdu2JTIyEj8/v5uO5erqypdffkl8fDyNGzdm/PjxvPnmmxZ9nnjiCXr37k2/fv1o0aIFp0+ftpiVDjBixAiCgoJo2rQpXl5ebNmyhQcffJAxY8YQHh5Oo0aNiImJYcKECeZtbG1tOX36NIMGDSIwMJC+ffvSpUsXJk3KW0ooODiYjRs3cvDgQVq3bk3jxo2ZOHEilStXNu9j8uTJJCYmUqtWLby8vAp1fkVERETk7mIyDMOw1uBRUVFMmTKF2NhYnJycaNeuHY0aNSpwTXQHBwcWLVpE//79zW3vvfcekyZN4sSJE/luExERYf4l+Go3u+OqSKlyNBaip0LCd3nPbeyhyWBo/Ty4V77xtiIiIkXg0qVLHDlyBD8/P4sbTErxi4yMZPTo0aSlpVm7lHuKrnERERGRkufcuXN4eHjcNCu22kz0o0eP8uyzz7JkyZI7+kvkyy+/zNmzZ82Po0c1w1bkOtWawcAVMPQb8GsDuVkQ+xHMaQRrxsH5/L+kEhERERERERERuddZLUSPi4sjNTWVkJAQ7OzssLOzY+PGjcydOxc7O7t8b87j4+Nz3YzzEydO4OPjU+A4jo6OuLu7WzxEpAA1QmHwlzD4K6jeEnIuw/YPYE5DWDse0k9au0IREZG7wpIlS3B1dc33Ua9ePWuXV6ymTp1a4Lno0qWLtcsTEREREbkpqy3ncv78eZKSkizahg4dSu3atRk3bhz169e/bpt+/fpx8eJFvvzyS3Nby5YtCQ4O5oMPPijUuIWdoi9S6hkGHI6G76fAb3/euMveBZo/Di1HQZnyVi1PRETuLffaUhfnz58vcLlBe3t7atSoUcwVWc+ZM2c4c+ZMvq85OztTpUqVYq7IOu61a1xERETkXlDYrNiuGGuy4Obmdl1QXqZMGcqXL29uHzRoEFWqVGHatGkAPPvss7Rt25YZM2bQrVs3oqKi2LFjBx9++GGx1y9yzzOZoFZ7qNkODm3IC9OP7YQts/OWernvKQgdCc5lrV2piIhIiePm5oabm5u1yygRypUrR7ly5axdhoiIiIjIbbPaci6FkZycTEpKivl5y5YtWbp0KR9++CENGzbk888/Z+XKlfnOWheRImIyQUBHGPEd9F8GPsGQmQ6b3oLZwRD9Blw6a+0qRURERERERERE7girLediLVrOReRvMgz45Sv4fhqk/pzX5uQBLZ+BFk+Co2bdiYjIrdNSF3Kv0zUuIiIiUvIUNisu0TPRRaQEMpmgTg94cjP0iYQKQXkz0b97PW9m+ubZkHnB2lWKiIiIiIiIiIgUCYXoInJ7bGyg3kPw9FZ4+L9Q3h8yzsD6V/PC9Jh3IPOitasUERERERERERH5WxSii8jfY2MLDf4FT2+HXh9AWV+4eAq+HQ9zG8G2DyDrkrWrFBERERERERERuS0K0UWkaNjaQaP+EL4DHnwHPKtD+gn4ZhzMbQyxH0H2ZWtXKSIiIkUkIiKCRo0a3bH9JyYmYjKZ2L179x0bQ0RERESkMBSii0jRsrWHkIEQHgfdZ4N7VTh/DFY/D283gbhIyMmydpUiIiJ3xBtvvIHJZGL06NHWLqVUGjJkCL169Sr2cX19fZk9e3axjysiIiIixUMhuojcGXYO0HQojNoJXaeDWyU4exS+fDYvTN/1CeRkW7tKERGRIhMbG8u8efMIDg62dikiIiIiIlKEFKKLyJ1l5wjNR8CoXdD5DShTEdKSYNVIeLcZ7FkGuTnWrlJERORvSU9PJywsjPnz51O2bNlCb5eWlsbw4cPx8vLC3d2d+++/nz179gBw8uRJfHx8mDp1qrl/TEwMDg4ObNiwAYCEhAR69uyJt7c3rq6uNGvWjPXr11uM4evry+uvv86gQYNwdXWlRo0a/O9//+PkyZP07NkTV1dXgoOD2bFjh3mbyMhIPD09WblyJQEBATg5OdGpUyeOHj16w+P56KOPqFOnDk5OTtSuXZv33nuv0Ofixx9/pHHjxjg5OdG0aVN27dpl8XpOTg7Dhg3Dz88PZ2dngoKCmDNnjvn1iIgIFi1axKpVqzCZTJhMJqKjowEYN24cgYGBuLi4ULNmTSZMmEBW1l9/Gbdnzx7at2+Pm5sb7u7uNGnSxOJ8bN68mdatW+Ps7Ey1atUYNWoUFy5cAKBdu3YkJSUxZswY87giIiIicm9RiC4ixcPeGe57Cp7dAw+8Di7l4cxhWPE4vNsC4j+H3FxrVykiIiWEYRhczLpolYdhGLdc78iRI+nWrRsdO3a8pe369OlDamoqa9asIS4ujpCQEDp06MCZM2fw8vJiwYIFREREsGPHDs6fP8/AgQMJDw+nQ4cOQF5437VrVzZs2MCuXbvo3LkzPXr0IDk52WKcWbNm0apVK3bt2kW3bt0YOHAggwYN4tFHH2Xnzp3UqlWLQYMGWRz7xYsXmTJlCh9//DFbtmwhLS2NRx55pMBjWbJkCRMnTmTKlCns37+fqVOnMmHCBBYtWnTT85Cenk737t2pW7cucXFxREREMHbsWIs+ubm5VK1aleXLl7Nv3z4mTpzIK6+8wmeffQbA2LFj6du3L507dyYlJYWUlBRatmwJgJubG5GRkezbt485c+Ywf/58Zs2aZd53WFgYVatWJTY2lri4OF566SXs7e2BvC8qOnfuzMMPP8zevXtZtmwZmzdvJjw8HIAvvviCqlWrMnnyZPO4IiIiInJvMRm38ynhLnbu3Dk8PDw4e/Ys7u7u1i5HpPS6nA4/fggxcyHjj7w2rzrQ7iWo8yDY6Ds+EZHS5NKlSxw5cgQ/Pz+cnJy4mHWRFktbWKWW7QO242LvUuj+UVFRTJkyhdjYWJycnGjXrh2NGjW66RrZmzdvplu3bqSmpuLo6Ghu9/f358UXX+Txxx8H8gL69evX07RpU+Lj44mNjbXof6369evz5JNPmkNeX19fWrduzeLFiwE4fvw4lSpVYsKECUyePBmAbdu2ERoaSkpKCj4+PkRGRjJ06FC2bdtGixZ5/w6//PILderUYfv27TRv3pyIiAhWrlxpvvGnv78/r732Gv379zfX8vrrr/P1118TExNzw3Px4Ycf8sorr/Dbb7/h5OQEwAcffMBTTz3Frl27CryBaXh4OMePH+fzzz8H8tZET0tLY+XKlTccb/r06URFRZlnm7u7u/P2228zePDg6/oOHz4cW1tb5s2bZ27bvHkzbdu25cKFCzg5OeHr68vo0aNvuBb+tde4iIiIiFhfYbNiu2KsSUTkL46u0Po5aDYcts+DrW/Dyf2wfDB414d2L0PtbqA/iRYRkRLs6NGjPPvss6xbt+6Wg9E9e/aQnp5O+fLlLdozMjJISEgwP58+fTr169dn+fLlxMXFWQTo6enpREREsHr1alJSUsjOziYjI+O6mehXr9Pu7e0NQIMGDa5rS01NxcfHBwA7OzuaNWtm7lO7dm08PT3Zv38/zZs3t9j/hQsXSEhIYNiwYYwYMcLcnp2djYeHx03Pxf79+wkODrY4h6Ghodf1e/fdd1mwYAHJyclkZGSQmZlZYMB+tWXLljF37lwSEhJIT08nOzvb4kPSc889x/Dhw1m8eDEdO3akT58+1KpVC8j7d9q7dy9Lliwx9zcMg9zcXI4cOUKdOnVuOr6IiIiI3N0UoouIdTm5Q9sX8tZN3/Y+bHsPTvwEy8KgUkNoPx4CHlCYLiJSyjjbObN9wHarjV1YcXFxpKamEhISYm7Lyclh06ZNvPPOO1y+fBlbW9t8t01PT6dSpUrmdbuv5unpaf45ISGBY8eOkZubS2JiokX4PXbsWNatW8f06dPx9/fH2dmZf/3rX2RmZlrs78rSJIB5ze782nJvc2m19PR0AObPn2+euX5FQcd/q6Kiohg7diwzZswgNDQUNzc33nrrLbZvv/F1snXrVsLCwpg0aRKdOnXCw8ODqKgoZsyYYe4TERHBgAEDWL16NWvWrOHVV18lKiqKhx56iPT0dJ544glGjRp13b6rV69eJMcmIiIiIiWbQnQRKRmcPaH9y9DiCdj6Dmz7AFL2wNK+UKUJtH8FanVQmC4iUkqYTKZbWlLFWjp06EB8fLxF29ChQ6lduzbjxo27YYAcEhLC8ePHsbOzw9fXN98+mZmZPProo/Tr14+goCCGDx9OfHw8FStWBGDLli0MGTKEhx56CMgLsxMTE4vk2LKzs9mxY4d51vmBAwdIS0vLd+a1t7c3lStX5vDhw4SFhd3yWHXq1GHx4sVcunTJPBt927ZtFn22bNlCy5Ytefrpp81tV8/YB3BwcCAnx/KG5TExMdSoUYPx48eb25KSkq6rITAwkMDAQMaMGUP//v1ZuHAhDz30ECEhIezbtw9/f/8C689vXBERERG5d2jRYREpWVzKQYeJMDoeWj0L9i7wexx88jAs6ASHo6F03cpBRERKMDc3N+rXr2/xKFOmDOXLl6d+/fo33LZjx46EhobSq1cvvv32WxITE4mJiWH8+PHmtbrHjx/P2bNnmTt3LuPGjSMwMJDHHnvMvI+AgAC++OILdu/ezZ49exgwYMBtzya/lr29Pc888wzbt28nLi6OIUOGcN999123lMsVkyZNYtq0acydO5eDBw8SHx/PwoULmTlz5k3HGjBgACaTiREjRrBv3z6+/vprpk+fbtEnICCAHTt2sHbtWg4ePMiECROIjY216OPr68vevXs5cOAAp06dIisri4CAAJKTk4mKiiIhIYG5c+eyYsUK8zYZGRmEh4cTHR1NUlISW7ZsITY21vxlwbhx44iJiSE8PJzdu3fz66+/smrVKvOa81fG3bRpE7///junTp0q9DkWERERkbuDQnQRKZnKlId/ToZn90BoONg5wdHt8HFPiOwGiVusXaGIiMjfYjKZ+Prrr2nTpg1Dhw4lMDCQRx55hKSkJLy9vYmOjmb27NksXrwYd3d3bGxsWLx4MT/88APvv/8+ADNnzqRs2bK0bNmSHj160KlTJ4ulZf4OFxcXxo0bx4ABA2jVqhWurq4sW7aswP7Dhw/no48+YuHChTRo0IC2bdsSGRmJn5/fTcdydXXlyy+/JD4+nsaNGzN+/HjefPNNiz5PPPEEvXv3pl+/frRo0YLTp09bzEoHGDFiBEFBQTRt2hQvLy+2bNnCgw8+yJgxYwgPD6dRo0bExMQwYcIE8za2tracPn2aQYMGERgYSN++fenSpQuTJk0C8taT37hxIwcPHqR169Y0btyYiRMnUrlyZfM+Jk+eTGJiIrVq1cLLy6tQ51dERERE7h4mwyhdUzoLe8dVESlhzh+HH2ZC3ELI+XOdV7+2eWumV29x421FRKTEu3TpEkeOHMHPz++Wb9ApRS8yMpLRo0eTlpZm7VLuGbrGRUREREqewmbFmokuIncHNx/o+h8YtRuaDgMbeziyERY8AIt7w29x1q5QREREREREROSukZNrkJiawcXLurfLzShEF5G7i0cV6D4TRu2EkMFgYwcJG+Cj+2FpPzi229oVioiIALBkyRJcXV3zfdSrV8/a5RWrqVOnFnguunTpYu3yREREREqVy1m5/PJbOmt3nWLX4XMcPn7R2iWVeFrORUTubmeOwKa3YM+nYPx5I7Xa3aHdS+DTwLq1iYhIod2LS12cP3+eEydO5Puavb09NWrUKOaKrOfMmTOcOXMm39ecnZ2pUqVKMVdU/O7Fa1xERETuLuczsjmUcpHkkxnk/pkIOzvYEFi5DDV9XKxbnJUUNiu2K8aaRESKXjk/6PUe/OM52PQf2PsZ/PJV3qNuT2j3MlSsY+0qRUSkFHJzc8PNzc3aZZQI5cqVo1y5ctYuQ0RERKTUMQyDU+eyOHT8Asf/yDS3e5axw7+SC1XKOWFjY7JihXcHhegicm+o4A+9P4TWz0P0G/DzCti3Cvb9D+r3hrYvgVegtasUEREREREREbnjcnMNfj9ziUMpF0m7kG1u9ynrSEAlF8q72WMyKTwvLIXoInJv8QqCPguhzdi8MH3//+Cn/8sL1Rv0hbYvQvla1q5SREQKkJuba+0SRO6IUraKpoiIiFhJZnYuiakZHD5+kYzMvN+tbUxQw8uZWpVccHNWHHw7dNZE5N7kXQ/6LYaUvXlh+oHVsDcK4pdDw/7Q9gUo62vtKkVE5E8ODg7Y2Nhw7NgxvLy8cHBw0MwYuWcYhsHJkycxmUzY29tbuxwRERG5B124lEPC8YskpWaQ/eeC5472NtT0dsbP2wVHexsrV3h3041FRaR0+H1nXpj+69q85zZ20PhRaD0WPKtZtzYREQEgMzOTlJQULl68aO1SRIqcyWSiatWquLq6WrsUERERuYecOZ/JoZSL/H7msrnNzdkW/0plqFbBCVutd35Dhc2KFaKLSOlyNBaip0LCd3nPbeyhyeC8tdTdK1u3NhERwTAMsrOzycnJsXYpIkXK3t4eW1tba5chIiIi9wDDMDj2x2UOHbvImfQsc3tFDwf8K7lQ0UN/1VlYCtELoBBdRABI2poXph/ZlPfc1hGaDoV/jAE3H+vWJiIiIiIiIiJyjeycXJJOXiIh5SIXLudNOjGZoFoFJ/wrueDhomXjbpVC9AIoRBcRC0d+gO+nQnJM3nM7J2g2HFqNBlcvq5YmIiIiIiIiIpKRmbfeeeKJDLJy8qJcezsTNb1dqOntjJOD/trtdilEL4BCdBG5jmHA4ei8MP23H/Pa7F2g+ePQchSUKW/V8kRERERERESk9Em7kMWhlIv8dvoSVxLcMk62+Pu4UN3LGTtbLdnydylEL4BCdBEpkGHAoQ3w/RQ4tjOvzcEVWjwJoSPBpZx16xMRERERERGRe5phGJxIy7tZ6Mlzmeb28m72+FdyoVJZR613XoQUohdAIbqI3JRhwMG1eWH68b15bY7ueUH6fU+Bk4d16xMRERERERGRe0pOrkHyyQwOpVwk/dKf650DVco74l+pDGVdtd75naAQvQAK0UWk0AwDfvkKvp8GqT/ntTl5QMtn8manO7pZtz4RERERERERuatdzsrl8PGLHD5xkczsvJjWztaEb0Vnavm44OKo9c7vJIXoBVCILiK3LDcX9q+C6Dfg5C95bc7loNUoaDYCHF2tW5+IiIiIiIiI3FXOZWRzKOUiR09mkPtnOuvsYIN/JRdqeDljb2dj3QJLCYXoBVCILiK3LTcHfl4B0dPg9KG8NpcK8I/R0HQYOLhYtTwRERERERERKbkMw+Dkubz1zk+k/bXeedkydvhXKkPl8o7YaL3zYqUQvQAK0UXkb8vJhp8+z5uZ/seRvDZXb/jHc9BkCNg7WbU8ERERERERESk5cnMNfjt9iUMpFzl7MdvcXqmsI/6VXCjvZq+bhVqJQvQCKEQXkSKTkwV7omDTfyAtOa/NrRK0fh5CBoGdo3XrExERERERERGryczO5ciJDA4fv8ilrFwAbG2ghpcztSq54OpkZ+UKRSF6ARSii0iRy86E3Utg03Q491tem3tVaDMWGoWBnYN16xMRERERERGRYpN+KZuElIskncwgJy87x8nehpo+Lvh5O+Og9c5LjMJmxVb9F3v//fcJDg7G3d0dd3d3QkNDWbNmTYH9IyMjMZlMFg8nJy2bICJWZucATYfCqJ3QdXrebPRzv8FXo+GdJrDrk7wlYERERERERETknmQYBqfPZ7LtQBrrdp/m8Im8AN3dxY4mtdzp1LgCQVXKKEC/S1n1bwaqVq3KG2+8QUBAAIZhsGjRInr27MmuXbuoV69evtu4u7tz4MAB83OtFyQiJYadIzQfAY0fhbhI+GFm3jIvq0bCDzOg7Tho0AdsbK1dqYiIiIiIiIgUgVzD4NiZyxxKucgf6Vnmdm9PB/wrueDl7qD88h5Q4pZzKVeuHG+99RbDhg277rXIyEhGjx5NWlrabe9fy7mISLHJvAg7/gubZ8HF03lt5QOg3UtQ7yGF6SIiIiIiIiJ3qaycXJJSM0g4fpGLl/PWbLExQbUKTvhXKoO7i9Y7vxvcFcu5XC0nJ4eoqCguXLhAaGhogf3S09OpUaMG1apVo2fPnvz888/FWKWIyC1wcIGWz8Cze6FjBDiXhdO/wv8Ng/dbwc8rITfX2lWKiIiIiIiISCFdvJxDfNJ5vtl5ivikdC5ezsXBzkTtKmXo1LgCIbU8FKDfg6w+Ez0+Pp7Q0FAuXbqEq6srS5cupWvXrvn23bp1K7/++ivBwcGcPXuW6dOns2nTJn7++WeqVq2a7zaXL1/m8uXL5ufnzp2jWrVqmokuIsXv0jnYPg+2vg2Xzua1edeHdi9D7W6gP+8SERERERERKZH+SM/iUMpFfj99iSthqquTLf6VXKju5YytjT7T340KOxPd6iF6ZmYmycnJnD17ls8//5yPPvqIjRs3Urdu3Ztum5WVRZ06dejfvz+vvfZavn0iIiKYNGnSde0K0UXEajLSYNv7sO09uHwur61SQ2j3CgR2UpguIiIiIiIiUgIYhsHxP/LWOz91/q/1ziu42+NfqQw+nlrv/G5314To1+rYsSO1atVi3rx5herfp08f7Ozs+PTTT/N9XTPRRaTEungGtr4L2z+AzPS8tipNoP0rUKuDwnQRERERERERK8jOMTh6KoNDKRdJv5QD5H1Er1reCf9KLniWsbdyhVJUChuil7gFenJzcy1C7xvJyckhPj6+wOVfABwdHXF0dCyq8kREio5LOegwAe57GmLmwI/z4fc4+ORhqNYiL0z3a6swXURERERERKQYXMrM4fCJDI6cuEhmdt68Y3tbE74Vnanl44Kzo62VKxRrsWqI/vLLL9OlSxeqV6/O+fPnWbp0KdHR0axduxaAQYMGUaVKFaZNmwbA5MmTue+++/D39yctLY233nqLpKQkhg8fbs3DEBH5e8qUh39OhtBw2DIHYj+Co9vh455Qo1VemO77D2tXKSIiIiIiInJPOncxm19TLvDbqUvk/rlmh4ujLf4+LlSv6IS9rY11CxSrs2qInpqayqBBg0hJScHDw4Pg4GDWrl3LP//5TwCSk5OxsfnrIv3jjz8YMWIEx48fp2zZsjRp0oSYmJhCrZ8uIlLiuVaETlOg5TPww0yIWwhJWyCyW96M9PbjoXoLa1cpIiIiIiIictczDIPUs5kcSrlI6tlMc3s5V3v8K7lQuZyj1jsXsxK3JvqdVth1bkRErO7s7/DDDNj5MeT+eQOTWh3yZqZXbWrd2kRERERERETuQjm5Br+dusShlIucy8g2t1cu54h/JRfKuzlYsTopbnftjUXvNIXoInLXSUuGTdNh9xLI/fM/8AGdoP3LULmxdWsTERERERERuQtczsolMfUiCcczuJyVC4CtjQnfik7U8nGhjFOJu3WkFAOF6AVQiC4id60zR2DTW7DnUzDy/oNP7e7Q7iXwaWDd2kRERERERERKoPSMbA4dv0jyyQxy/vwo7eRgQy0fF3wrOuNgp/XOSzOF6AVQiC4id73TCbDxTdj7GfDnW3jdntDuZahYx6qliYiIiIiIiFibYRicPp/FrykXOf7HZXO7h4sdAZVdqFLOCRsbrXcuCtELpBBdRO4ZJw/khek/fUFemG6C+r2h7UvgFWjt6kRERERERESKVW6uwe9n8tY7T7vw13rnPp4O+FcqQwV3e90sVCwoRC+AQnQRueec2AfR02D///Kem2ygQV9o+yKUr2Xd2kRERERERETusKzsXBJTM0g4fpGMzLw1W2xMUN3LGf9KLrg5a71zyZ9C9AIoRBeRe1bKXoh+Aw6szntusoWG/aHNWCjnZ93aRERERERERIrYxcs5HEq5SNLJDLJz8iJOR3sbano74+ftgqO91juXG1OIXgCF6CJyzzu2C76fBr+uzXtuYweNwvLCdM/q1q1NRERERERE5G86k57FoWMXOHbm8pU7hRNxfTEAAIVcSURBVOHmbIt/pTJUq+CErdY7l0JSiF4AhegiUmr8tgO+nwoJG/Ke29hDk8Hwj+fAo4p1axMRERERERG5BYZhkPLHZQ6lXOT0+Sxzu5eHA/4+Lnh7Omi9c7llCtELoBBdREqdpK0QPRWObMp7busITYfCP8aAm491axMRERERERG5gewcg6STGSSkXOTC5RwATCaoVt4J/0oueJSxt3KFcjdTiF4AhegiUmod+SFvZnpyTN5zOydoNhxajQZXL6uWJiIiIiIiInK1jMwcDh+/yJETGWT9ud65va0JP29navq44Oxga+UK5V6gEL0ACtFFpFQzDDiyEb6bwv+3d+fxcZb1/v/fs2/Z22Zpmy40pUBb1oK0IItwKIiyeQT5IaDi8aigICiIR89XzzlSFuGIuHA8KhWF4xEPm6ggW8vSsrRQoOzplrRN0rTNOjOZ9f79cc+azGRrksnyej4e9yOZe66555r0bpb3/ZnPpZ2vmPscXum4f5JWXC35phV2fgAAAACAKa3DH9GHTQHt3NejZGrpc9lUV+PVnBke2W20bMHIGdUQPRqNas2aNdqyZYv+v//v/1NxcbF2796tkpISFRUVHdDERxshOgDIDNPrn5ae/aG0+zVzn7NI+siXpeVXSt6Kws4PAAAAADBlGIahlvaw6psCau0Mp/ZPK3aorsarmnIX/c4xKkYtRN+xY4fOPPNMNTQ0KBQK6YMPPtBBBx2kq6++WqFQSHffffcBT340EaIDQAbDkD54wgzTm98097lKpOO/Kh3/FclTVtDpAQAAAAAmr1jcUOPeoOqbAuoKJvqdS5o5zaW6Gp8qiuh3jtE12KzYOtQDX3311Vq2bJna2trk8XhS+88//3w9/fTTw5stAKAwLBZp0ZnSPz8nXXSfVLVECnVKa2+W7jxceu42KdRV6FkCAAAAACaRUCSu93Z264nX9+r1rV3qCsZkt1m0oNqrfzhyuo5bWEaAjnHFPtQHPP/881q3bp2cTmfW/nnz5mnXrl0jNjEAwBiyWKRDPyEt+rj07iPSmpul1vekZ/5DWv8z6YSrpWP/SXKN75ZdAAAAAIDxqysYVX1TQA2tQcUTvTE8TqsWVHs1r9Ijh33I9b7AmBhyiB6PxxWLxfrs37lzp4qLi0dkUgCAArFapcXnS4eeI739kLRmlbSvXnrq+9K6n0onXiMtu0Jyegs9UwAAAADABGAYhvZ2RvRhk18t7el+52U+uxbW+DSzwiWrlX7nGN+G3BP9oosuUmlpqX75y1+quLhYb775pmbMmKFzzz1Xc+bM0T333DNacx0R9EQHgCGIRaXNfzIr09u2mft8ldJHr5WO+bzkcBd2fgAAAACAcSkeN7RzX4/qmwLqCERT+2vKXaqr8WpasYPFQlFwo7awaGNjo84880wZhqEPP/xQy5Yt04cffqjp06frueeeU2Vl5QFPfjQRogPAMMQi0ht/kJ67VWpvMPcV10gfvU46+jLJ7irs/AAAAAAA40I4Gtf2PUFtaQ6oJxyXJNms0pwZHi2o9qrYM+TGGMCoGbUQXZKi0aj+93//V2+88Ya6u7t19NFH65JLLslaaHS8IkQHgAMQDUub7pOe+5HUudPcVzJbOumb0pGXSHZn/48HAAAAAExK/p6YtjT7tX1Pj2KJhucuh1ULqj2aV+mVy0G/c4w/oxKiRyIRHXLIIXrsscd06KGHjshExxohOgCMgGhIeu1e6fnbpa4mc1/ZHOmk66UjLpZsVBYAAAAAwFSwryus+qaAdu8PpfaVeOyqq/Fq9nS3bPQ7xzg22Kx4SCmHw+FQT0/PAU8OADDB2V3Scf8kHXWptPEe6fk7zDYvj15lBuunfFta+mnJaiv0TAEAAAAAI8wwDO3eH9KHTQG1dUdS+ytLnaqr8aqy1Em/c0wqQ27nctNNN+mDDz7Qr371K9ntE6/SkEp0ABgF4YC04dfSCz+WAnvNfdMWmmH64vMJ0wEAAABgEojE4tqxp0dbmgMKhGKSJKtFqp3uVl2NTyXeiZcVYmobtZ7o559/vp5++mkVFRVp6dKl8vl8Wfc/+OCDw5vxGCFEB4BRFOqWXv1v6cU7pWCbuW/GIWaYfui5kpUeeAAAAAAw0QRDMW1pDmj7nqAiMTNKdNotml/l1UFVHrmdFE5hYhqVdi6SVFZWpk996lMHNDkAwCTlKpJO/Ia07Arp5f+S1t8ltb4nPfA5qWqJdMqN0iFnS7ytDwAAAADGvXZ/RPVNAe3c16NkGW6R26a6Gq9qp3tkt/G3HaaGIVeiT3RUogPAGAq2Sy/9Qnrp51Ko09xXfbh06r9IB68kTAcAAACAccYwDDW3h1Xf5NfeznS/8+nFDtXN9Km6jH7nmDxGrZ1LUmtrq95//31J0qJFizRjxozhzXSMEaIDQAEE9kvrfya9fLcU7jb3zTzaDNPrTiNMBwAAAIACi8UNNbQGVd8UUHeP2e/cImnWNLfqarwqL3IUdoLAKBi1EN3v9+trX/ua7r33XsXjcUmSzWbTZZddprvuukter/fAZj7KCNEBoID8+6R1d0qv/LcUCZj7aj8infodaf7JhOkAAAAAMMZ6wjFtbQlqW0tA4agZE9ptFs2r9GhBtVdeF/3OMXkNNise8gpv1157rdauXas///nPam9vV3t7ux555BGtXbtW11133QFNGgAwyfmmSf/wb9LVb0jLr5LsbqnxZenec6XVZ0vbXyj0DAEAAABgSugMRPXalg498fpevb/Lr3DUkNdp1dK5RTrz6OlaOreYAB1IGHIl+vTp0/WnP/1Jp5xyStb+Z599VhdeeKFaW1tHcn4jjkp0ABhHupqlF/5T2vAbKRY2980/yWzzMuf4ws4NAAAAACYZwzDU2hlW/e6AWjrCqf3lRQ4trPGqpsIlK+8QxhQy2KzYPtQDBwIBVVVV9dlfWVmpQCAw1MMBAKay4mrprFukFV+Xnr9deu1eadtz5rbgNLPNy+xlhZ4lAAAAAExo8bihxn09qm8KqDMQTe2fWeFSXY1XFUUOFgsF+jHkSvTTTjtN06ZN07333iu32y1JCgaDuvzyy7V//3499dRTozLRkUIlOgCMY+0N0nM/kjbdJ8UTv9gtXCmdeqM086jCzg0AAAAAJphwNK5tLUFtbQ6oJ5JY29AqzZ3h0YIar4rcQ66vBSaVUVtYdPPmzVq5cqVCoZCOOOIISdIbb7wht9utJ554QosXLz6wmY8yQnQAmAD2bzPD9Df+RzLMVeG16GzplG9LNYcXdm4AAAAAMM5190S1pSmgHa1BxczsXG6HVQdVezW/yiOnfcjLJAKT0qiF6JLZ0uW+++7Te++9J0k69NBDdckll8jj8Qx/xmOEEB0AJpB9W6S1t0hvPSAZid/8Dj1HOuVGqeqwws4NAAAAAMYRwzC0ryui+qaAmtpCqf2lXrvqaryaPc0tq5WWLUCmUQ3RJzJCdACYgFrfN8P0zQ9KMiRZpCUXSCd/W5pxcKFnBwAAAAAFEzcM7d4XUn2TX23+dL/zqjKnFtb4NL2EfudAPqMWoq9atUpVVVX6whe+kLX/N7/5jVpbW3XDDTcMb8ZjhBAdACawlnektTdL7zxi3rZYpaWflk6+QZq2oLBzAwAAAIAxFInGtb01qC1NAQXD5jt3rRapdoZHddVelXjpdw4MZNRC9Hnz5un+++/XihUrsva//PLL+sxnPqNt27YNb8ZjhBAdACaB5rekZ1dJ7//FvG2xSUdcLJ30TalifmHnBgAAAACjKBCKaUtzQNv3BBWNmbGe027RQVVeHVTtlctBv3NgsAabFQ/5f1Vzc7Nqamr67J8xY4aampqGdKxf/OIXOvzww1VSUqKSkhItX75cf/vb3/p9zAMPPKBDDjlEbrdbS5cu1V//+tchPScAYBKoXipdfL/0pTXSwpXm4qObfi/9dJn06Nel9oZCzxAAAAAARlRbd0Svftiuv7++V/VNAUVjhorcNh05v1hnHj1Dh9YWEaADo2TI/7Nqa2v14osv9tn/4osvaubMmUM61uzZs3XzzTdr48aN2rBhgz72sY/p3HPP1dtvv51z/Lp163TxxRfriiuu0Ouvv67zzjtP5513njZv3jzUlwEAmAxmHiVd8kfpi09LC06T4lHptd9KPzlaeuxaqWNXoWcIAAAAAMNmGIZ27+/Rc2/v15rN+7VzX0iGpBklTi1fVKbTj5im+VVe2VgwFBhVQ27ncuutt+rWW2/Vbbfdpo997GOSpKefflrXX3+9rrvuOt14440HNKGKigrddtttuuKKK/rcd9FFF8nv9+uxxx5L7Tv++ON15JFH6u677x7U8WnnAgCTWMNL0rM3SdvWmrdtTumYz0sfvVYqri7s3AAAAABgkKIxQw2tQdU3B+TviUmSLBZp9jS36mq8KvM5CjxDYHIYbFY85BUGvvWtb2nfvn366le/qnA4LElyu9264YYbDihAj8VieuCBB+T3+7V8+fKcY9avX69rr702a9/KlSv18MMP5z1uKBRSKBRK3e7s7Bz2HAEA49yc46XLH5W2vyA980OpYZ30yn+Z1enHflE64WqpqLLQswQAAACAnHrCMW1pDmrbnoAiUbPu1WGzaH6VRwdVe+Vx2go8Q2BqGnKIbrFYdMstt+h73/ue3n33XXk8Hi1cuFAul2tYE3jrrbe0fPly9fT0qKioSA899JAOO+ywnGObm5tVVVWVta+qqkrNzc15j79q1Sr94Ac/GNbcAAAT1LwTpc//1axIf+aH0s5XpPU/lTb8Rjrun6QVV0u+aYWeJQAAAABIkjr8EdU3B7Rzb4/iiZ4RPpdNC2q8mjvDLbuNXudAIQ37f2BRUZGOPfZYFRcXa8uWLYrH48M6zqJFi7Rp0ya9/PLL+spXvqLLL79c77zzznCn1ceNN96ojo6O1NbY2DhixwYAjGMWi3TQKdIVf5c++3/SzKOlSEB68U7pzsOlp/9dCuwv9CwBAAAATFGGYailPaQX323TM2/tV0OrGaBXFDl03MGl+ocjp2lBtZcAHRgHBl2J/pvf/Ebt7e1Z7VS+9KUv6de//rUkMwx/4oknVFtbO6QJOJ1O1dXVSZKOOeYYvfrqq7rzzjv1X//1X33GVldXq6WlJWtfS0uLqqvz97l1uVzDrpIHAEwCFotUd7q58OgHT0jP/lBqflN6/kfSK7+Ujv+qdPxXJE9ZoWcKAAAAYAqIxQ017u1RfZNfXcFYav+sCpfqaryqKHYWcHYAchn0paxf/vKXKi8vT91+/PHHdc899+jee+/Vq6++qrKyshFpmxKPx7N6mGdavny5nn766ax9Tz75ZN4e6gAApFgs0qIzpX9+TrroPqlqiRTqlNbebFamr71N6mHdDAAAAACjIxSJ672d3Xri9b16fWunuoIx2a0WLaj26owjp+u4g8sI0IFxatCV6B9++KGWLVuWuv3II4/o3HPP1SWXXCJJuummm/T5z39+SE9+44036qyzztKcOXPU1dWl+++/X2vWrNETTzwhSbrssss0a9YsrVq1SpJ09dVX6+STT9btt9+us88+W3/4wx+0YcMG/fKXvxzS8wIApjCLRTr0E9Kij0vvPiqtWSW1vic9+x/SSz8zFx899p8kV1GhZwoAAABgEugKRlXfFFBDazDV79zjtOqgaq/mVXrktNOuBRjvBh2iB4NBlZSUpG6vW7dOV1xxRer2QQcd1O8Cn7ns2bNHl112mZqamlRaWqrDDz9cTzzxhP7hH/5BktTQ0CCrNf2NZMWKFbr//vv13e9+V9/5zne0cOFCPfzww1qyZMmQnhcAAFmt0uLzpEM/Kb39kBmm76uXnvq+tO6n0onXSMuukJzeAk8UAAAAwERjGIb2dUX0YZNfzW3h1P4yn111NV7NqnDLarUUcIYAhsJiGIYxmIGHHnqofvjDH+qCCy7Q3r17VV1drZdfflnHHHOMJOmVV17ROeecM+Qgfax1dnaqtLRUHR0dWRcFAABTXCwqbf6TtOZmqW2buc9XKX30WumYz0sOd2HnBwAAAGDci8cN7drfo/qmgNr90dT+6nKnFtb4NK3YIYuF8BwYLwabFQ+6Ev3yyy/XlVdeqbffflvPPPOMDjnkkFSALpmV6VSEAwAmLJtdOuIz0pJ/lN78g7T2Fqm9QXr829KLd0ofvU46+jLJzmLVAAAAALKFo3Ft3xPU1uaAguG4JMlqkebO8GhBjVfFnkFHcADGoUH/D77++usVCAT04IMPqrq6Wg888EDW/S+++KIuvvjiEZ8gAABjymaXjvqstPRCadN90nM/kjp3Sn/9pvTCj6WTvikdeYlkZ8EfAAAAYKrz98S0pTmgHXuCiiYanrscVh1U5dH8Kq9cDvqdA5PBoNu5TBa0cwEADEk0JL12r/T87VJXk7mvbI500vVm5brNUdj5AQAAABhz+7vCqm8KaNf+UGpfscemuhqfaqe7ZaPfOTAhDDYrJkQHAGAwIj3SxtVmmO7fY+4rny+d8m2zBYyNt2cCAAAAk5lhGNrdFlL97oD2d0dS+ytLnaqr8aqy1Em/c2CCIUTPgxAdAHBAwgFpw6/N1i6Bvea+aQvNMH3x+ZLVVtDpAQAAABhZ0VhcO1p7tKUpIH8oJkmyWKTa6W7VVXtV6uPdqcBERYieByE6AGBEhLqlV//bXHQ02Gbum3GIGaYfeq5kpfchAAAAMJEFw2a/8+0tQUViZnzmsFk0v8qrBdUeuZ0U0AATHSF6HoToAIAR1dMpvfJf0rq7pJ4Oc1/lYunUG6VDPmGWqAAAAACYMNr9EdU3BbRzX4+SqZnPbVNdtVdzZnhkt/E7PjBZEKLnQYgOABgVwXbppV9IL/1cCnWa+6oPl079F+nglYTpAAAAwDhmGIZa2s3FQls7w6n904odqqvxqqbcRb9zYBIatRA9Fotp9erVevrpp7Vnzx7F4/Gs+5955pnhzXiMEKIDAEZVYL+0/mfSy3dL4W5z38yjzTC97jTCdAAAAGAcicUNNbQGtaU5oK5got+5pFnTXKqr8am8iH7nwGQ22KzYPtQDX3311Vq9erXOPvtsLVmyhKtwAABk8lZIp31POv6r0ro7pVf+W9r9mnTfp6TZx0mnfkc66BTCdAAAAKCAQpG4tjYHtLUloHDUrC+12yyaV+nRgmqvvC76nQNIG3Il+vTp03Xvvffq4x//+GjNaVRRiQ4AGFPde8zFR1/9lRTtMffNPcEM0+edWNi5AQAAAFNMZzCq+qaAGluDiicSMY/TqgU1Xs2b4ZHDbi3sBAGMqVFr5zJz5kytWbNGBx988AFPshAI0QEABdHVLL3wn9KG30ixRI/F+SeZbV7mHF/YuQEAAACTmGEYau00+523tKf7nZf77Kqr8WnmNJesvFMUmJJGLUS//fbbtXXrVv30pz+dkK1cCNEBAAXVsUt64Q5p42+leMTct+BjZpg+e1lh5wYAAABMIvG4oZ37elTfFFBHIJraX1PuUl2NV9OKHRMy2wIwckYtRD///PP17LPPqqKiQosXL5bDkb3AwoMPPji8GY8RQnQAwLjQ3iA99yNp031SPPEL/cKV0qk3SjOPKuzcAAAAgAksHI1rW0tQW5sD6onEJUk2qzR3htnvvMgz5CUCAUxSo7awaFlZmc4///wDmhwAAFNe2RzpnJ9IJ37DDNPf+B/pwyfMbdHZ0inflmoOL/QsAQAAgAmjuyeqLU0B7WgNKmZm53I5rFpQ7dX8Ko+c9DsHMExDrkSf6KhEBwCMS/u2SGtvkd56QDISv/Efeo50yo1S1WGFnRsAAAAwThmGof3dEdU3BbR7fyi1v8RrV12NV7OnuWWz0rIFQG6j1s4lqbW1Ve+//74kadGiRZoxY8bwZjrGCNEBAONa6/tmmL75QUmGJIu0+HwzTJ8xMRf1BgAAAEZa3DDUtD+kD5sCauuOpPZXlTpVN9OrGSVO+p0DGNCoheh+v19f+9rXdO+99yoeT/SVstl02WWX6a677pLX6z2wmY8yQnQAwITQ8o609mbpnUfM2xartPTT0sk3SNMWFHZuAAAAQIFEYnHt2BPUluaAAiEzl7JapNrpbtXV+FTipd85gMEbbFY85GZQ1157rdauXas///nPam9vV3t7ux555BGtXbtW11133QFNGgAAJFQdJl14r/TlF6RDPmG2eHnzf6WfHis9/FVp/7ZCzxAAAAAYM4FQTG/t6NLjr+3VWzu6FQjF5bRbdMgsn1YeNV1HLyglQAcwaoZciT59+nT96U9/0imnnJK1/9lnn9WFF16o1tbWkZzfiKMSHQAwIe1+XXp2lbnwqCRZ7dKRl0gnfdNcpBQAAACYhNoS/c537e9RMsEqcttUV+PVnBke+p0DOCCDzYqHfIkuEAioqqqqz/7KykoFAoGhHg4AAAzGzKOkS/4o7dwgPXuTtOVp6bXfSpvul46+TProdVLprELPEgAAADhghmGouS2k+qaA9nal+51PL3Gorsan6jL6nQMYW0OuRD/ttNM0bdo03XvvvXK73ZKkYDCoyy+/XPv379dTTz01KhMdKVSiAwAmhYaXzDB921rzts0pHfN56aPXSsXVhZ0bAAAAMAzRmKHGvUHVNwXU3ROTJFks0uxpbtXVeFXmcxR4hgAmm1FbWHTz5s1auXKlQqGQjjjiCEnSG2+8IbfbrSeeeEKLFy8+sJmPMkJ0AMCksv0FM0zf8aJ52+6Wll0hnXiNVFRZ0KkBAAAAg9ETjmlrS1DbWgIKR82YymGzaF6lRwuqvfK4bAWeIYDJatRCdMls6XLffffpvffekyQdeuihuuSSS+TxeIY/4zFCiA4AmHQMw6xIf+aH0s5XzH0Or3TcP0krrpZ80wo7PwAAACCHzkBU9U1+Ne7tUTyRTnldVi2o9mlupVsOm7WwEwQw6Y1qiD6REaIDACYtwzB7pT97k7Rro7nPWSR95J+l5VdJ3orCzg8AAABTnmEY2tMRVn1TQHs6wqn95UUOLazxqqbCJSv9zgGMkREN0R999FGdddZZcjgcevTRR/sde8455wx9tmOIEB0AMOkZhvTh36Vnfyg1vWHuc5VIx39FOv6rkqesoNMDAADA1BOLG9q5t0f1zQF1BqKp/TMrXKqr8WpasbOAswMwVY1oiG61WtXc3KzKykpZrfnfSmOxWBSLxYY34zFCiA4AmDIMQ3rvL9KaVVLLZnOfu1Ra/jWzOt3Nz0EAAACMrlAkru17AtrSHFQoEpck2awWzat0a0G1Vz63vcAzBDCV0c4lD0J0AMCUE49L7z5qhumt5nom8pRLK74uHfclyVVU2PkBAABg0ukORlXfHFBDa1AxMzuX22nVgmqv5lV65LTT7xxA4Q02Kx7yd6x7771XoVCoz/5wOKx77713qIcDAACjzWqVFp8nfWWd9KlfS9MWSsE26ekfSHceLr34EykcKPQsAQAAMMEZhqG9nWGtf79dT76xT9tazAC91GvXMQtKtPLI6Tp4po8AHcCEM+RKdJvNpqamJlVWVmbt37dvnyorK2nnAgDAeBePSW89IK25WWrbZu7zVUofvVY65nOSw1PQ6QEAAGBiiccN7drfo/qmgNr96X7nVWVOLazxaXqJQxYWCwUwDg02Kx5y4ynDMHJ+49u5c6dKS0uHejgAADDWrDbpiM9IS/5RevMP0tpbpPYG6fFvSy/eKX30OunoyyS7q9AzBQAAwDgWica1fU9QW5oDCobNni1WizRnhkd1NV4Ve+h3DmByGPR3s6OOOkoWi0UWi0WnnXaa7Pb0Q2OxmLZt26YzzzxzVCYJAABGgc0uHfVZaemF0hv3S2tvkzp3Sn/9pvTCj6WTrpOO/KxkdxZ6pgAAABhHAqGY6psC2tEaVDRmNjhw2i1aUO3V/CqvXA7atQCYXAYdop933nmSpE2bNmnlypUqKkovQuZ0OjVv3jx96lOfGvEJAgCAUWZ3mm1cjrhYeu1e6fnbzTD9sW9IL/yndNL1ZuW6zVHomQIAAKCA9ndHVL/br937Q0r2Bi722FRX41XtdI9sVlq2AJichtwT/be//a0uuugiud3u0ZrTqKInOgAAA4j0SBtXm2G6f4+5r3y+dPIN0tJPmxXsAAAAmBIMw1BTW0j1TQHt64qk9s8ocaquxquqMif9zgFMWIPNioccok90hOgAAAxSOCBt+LXZ2iWw19w3rU46+dvSkgvM3uoAAACYlKIxQw2tQdU3B+TviUmSLBZp9jS3FtZ4VerjXYoAJr7BZsVDblIVi8X0ox/9SMcdd5yqq6tVUVGRtQ3FqlWrdOyxx6q4uFiVlZU677zz9P777/f7mNWrV6d6sye3iVoVDwDAuOb0Siu+Jl39hnT69yVPubSvXnrwi9IvVkhvPyTF44WeJQAAAEZQMBzT2w1devy1Vr2xvUv+npgcNosOnunVyqOma1ldKQE6gClnyCH6D37wA91xxx266KKL1NHRoWuvvVYXXHCBrFarvv/97w/pWGvXrtWVV16pl156SU8++aQikYjOOOMM+f3+fh9XUlKipqam1LZjx46hvgwAADBYriLpxG9IV78pfey7krtUan1PeuBz0t0nSu/+WZpab2wDAACYdDr8EW2o79ATr+/VB7sDisQM+Vw2HTGvWGcePUOL5xTL4+SdiACmpiG3c1mwYIF+8pOf6Oyzz1ZxcbE2bdqU2vfSSy/p/vvvH/ZkWltbVVlZqbVr1+qkk07KOWb16tW65ppr1N7ePqznoJ0LAAAHKNguvfQL6aWfS6FOc1/14dKp35EOPtN8ny8AAADGPcMw1NIeVn1zQK0d4dT+acUO1dV4VVPuot85gElt1Nq5NDc3a+nSpZKkoqIidXR0SJI+8YlP6C9/+cswp2tKHmugtjDd3d2aO3euamtrde655+rtt9/OOzYUCqmzszNrAwAAB8BTJp16o9nm5aPflJxFUvOb0v98Rvrvj0kfPkVlOgAAwDgWixvaviegp9/cp/Xvt6cC9FkVLp28pEInLa7QzAo3AToAJAw5RJ89e7aampokmVXpf//73yVJr776qlwu17AnEo/Hdc011+iEE07QkiVL8o5btGiRfvOb3+iRRx7R73//e8Xjca1YsUI7d+7MOX7VqlUqLS1NbbW1tcOeIwAAyOCtkE77ntnm5YRrJIdX2v2adN+npF+fIW15ljAdAABgHAlF4npvZ7eeeH2vXt/apa5gTHabRQuqvTrjyOk67uAyVRTR7xwAehtyO5dvf/vbKikp0Xe+8x397//+rz772c9q3rx5amho0De+8Q3dfPPNw5rIV77yFf3tb3/TCy+8oNmzZw/6cZFIRIceeqguvvhi/fu//3uf+0OhkEKhUOp2Z2enamtraecCAMBI626VXvyx9OqvpGiPuW/uCWabl3knFnRqAAAAU1lXMKr6poAaWoOKJ1Igj9OqBdVezav0yGEfco0lAEwKg23nMuQQvbf169dr/fr1WrhwoT75yU8O6xhXXXWVHnnkET333HOaP3/+kB//6U9/Wna7Xf/zP/8z4Fh6ogMAMMq6mqUX/lPacI8US1zInn+SdOq/SHOOL+zcAAAApgjDMLS3M6L6Jr+a29P9zst8dtXVeDWrwi2rlXYtAKa2MQvRD4RhGPra176mhx56SGvWrNHChQuHfIxYLKbFixfr4x//uO64444BxxOiAwAwRjp2SS/cIW38rRSPmPsWfEw65TtS7bGFnRsAAMAkFY8b2rmvR/VNAXUEoqn91eUuLazxalqxg17nAJAwoiH6o48+OugnPueccwY99qtf/aruv/9+PfLII1q0aFFqf2lpqTwejyTpsssu06xZs7Rq1SpJ0r/927/p+OOPV11dndrb23Xbbbfp4Ycf1saNG3XYYYcN+JyE6AAAjLH2Bun526XXfy/FE3/ILTxDOuVGadbRhZ0bAADAJBGOxrV9T1BbmgPqCcclSTarNGeGRwuqvSr22As8QwAYf0Y0RLdas3tjWSwW9X5Y8ipmLBYb9CTzXfm855579LnPfU6SdMopp2jevHlavXq1JOkb3/iGHnzwQTU3N6u8vFzHHHOM/uM//kNHHXXUoJ6TEB0AgALZv0167kfSG/8jGYnfFxadLZ3ybanm8MLODQAAYILy98S0pdmv7Xt6FEs0PHc5rFpQ7dG8Sq9cDvqdA0A+o9bO5amnntINN9ygm266ScuXL5dk9kX/7ne/q5tuukn/8A//cGAzH2WE6AAAFNi+LdLaW6W3/igZZpWUDj3HrEyvGvhdZQAAAJD2dYVV3xTQ7v2h1L4Sj9nvfPZ0t2z0OweAAY1aiL5kyRLdfffdOvHEE7P2P//88/rSl76kd999d3gzHiOE6AAAjBOtH0hrb5Y2PyjJkGSRFp9vVqbPWDTQowEAAKYcwzC0e39IHzYF1NYdSe2vLHWqrsarylIn/c4BYAgGmxUPuSHWli1bVFZW1md/aWmptm/fPtTDAQCAqWrGwdI//kb66DfNMP2dR6S3H5Tefkha+mkzTJ+2oNCzBAAAKLhILK6GPT2qbw4oEDLb4lkt0uzpbi2s8anES79zABhNQ65EP+mkk+R2u/W73/1OVVVVkqSWlhZddtll6unp0dq1a0dloiOFSnQAAMap5rekNTdL7z1m3rbYpCM+I530LalifmHnBgAAUADBUExbmgPavieoSMyMbxx2iw6q8uqgKo/cTluBZwgAE9uotXOpr6/X+eefrw8++EC1tbWSpMbGRi1cuFAPP/yw6urqDmzmo4wQHQCAcW7362aY/sHj5m2rXZp3ojRnhTTneGn2sZLTW9g5AgAAjKJ2f0T1TQHt3NejZGrjc9tUV+3VnBke2W20bAGAkTBqIbpk9uB68skn9d5770mSDj30UJ1++ukTou/WlA/RA3ul134tldRKpYmteKZkcxZ6ZgAAZNu5QXr2JmnL09n7rXap5kgzUJ+7QpqzXPJWFGSKAAAAI8UwDDW3h1Xf5NfeznS/8+nFDtXVeFVd7poQuQsATCSjGqJPZFM+RG96XXr7j9n7LFbJV5UO1UtqJd8Mcz8AAIW25z1p+/NSw3ppx3qpa3ffMdMXSXOXp6vVy+ZI/JEJAAAmgFjcUENrUPVNAXX3mP3OLZJmTXOrrsar8iJHYScIAJPYiIboP/nJT/SlL31JbrdbP/nJT/od+/Wvf33osx1DUz5Ej4akzp1SR6PU2Wh+DHf1HWdzSSWzE6F64qNrCn69AADji2FI7Q1moJ4M1fe+33dcySyzQj1ZrT7jUMnKxWEAADB+9IRj2tYS1NaWgMJRM5qx2yyaV+nRgmqvvC76nQPAaBvREH3+/PnasGGDpk2bpvnz8y/sZbFYtHXr1uHNeIxM+RC9N8OQQh0ZofpOM2SPR/qOdZWmK9VLa82AgjYwAIBC8++TGl+Sdqwzg/WmN6R4NHuMu1SqPT5drT7zSMnuKsh0AQDA1NYZiKq+ya/GvT2KJxIZr9OqBTVezZ3hkcPOhX8AGCu0c8mDEH0Q4jHJvyddqd7RaN5W71PFIhVVZQfrvkrawAAACivsN/upJ6vVG1+VIv7sMXa3NOuYRLX6cqn2OMnN7wUAAGB0GIah1s6w6psCamkPp/aX++yqm+nTzAqXrLSiA4AxR4ieByH6MEVDUueudLDe2SiFOvuOsznN9i8ltVJp4qO7dOznCwBAUiwiNb8pNSSr1V8yF9rOZLFKVYvNKvW5iWC9uLow8wUAAJNGPG6ocV+P6psC6gyk3yk3s8KluhqvKoocLBYKAAU0oiH6tddeO+gnvuOOOwY9thAI0UdQT0d2tXrXLikW7jvOVZLRAibRBoa30AMACsUwpH316fYvDeultu19x5XPN/upJ6vVpy1gsVIAADAo4Wjc7HfeHFBPJC5JslmluTM8WlDjVZHbXuAZAgCkEQ7RTz311EE9qcVi0TPPPDP4WRYAIfooMuJm25fMRUu7W5S3DUxq4dJa8zZtYAAAhdK5OxGov2QuVtqyWX1+fvlmmAuVJqvVq5ZKNv4ABgAAad09UW1pCmhHa1AxMzuX22HVQdVeza/yyEm/cwAYV2jnkgch+hiLhqSu3dnBeqij7zibUyqeldFffba5kCkVfwCAQgi2SztfTVer79rY991WziJp9rGJavXjpVnLJKe3INMFAACFYxiG9nVFVN8UUFNbKLW/xGvXwhqvZk9zy2rlb1sAGI8I0fMgRB8HQp3ZoXrnztxtYJzFZqieagMzmzYwAIDCiPRIu1+XGhI91Rte7ntR2OqQZh6Zrlafc7zkrSjIdAEAwOiLG4Z27wupvsmvNn+633lVmVN1NV7NKHHS7xwAxrlRDdE3bNigP/7xj2poaFA4nB1+Pvjgg0Of7RgiRB+HjLjkb80O1v0t5v4sFslXmQjVE61gfFWS1VaQaQMAprB4TNrzTsZipeulrqa+42YcYvZTT1arl80Z+7kCAIARFYnGtb01qC1NAQXD5t+tVotUO8OjumqvSry0ewOAiWLUQvQ//OEPuuyyy7Ry5Ur9/e9/1xlnnKEPPvhALS0tOv/883XPPfcc8ORHEyH6BBELS527zCr1ZLje0953nNVhLlSaXLi0tJY2MACAsWcYUvsOs596slp97wd9x5XMNvupJ6vVZxwiWemNCgDARBAIxbSlOaDte4KKxswoxWm36KAqrw6q9srl4Gc6AEw0oxaiH3744frnf/5nXXnllSouLtYbb7yh+fPn65//+Z9VU1OjH/zgBwc8+dFEiD6BhboyWsA0Sh07pVio7zhnUTpUT/ZXt7vHfr4AgKnNvzdjsdJ1UtMbkhHLHuMuSwTqiWr1miMlu7MQswUAAHm0dUdU3+TXrn2h1LLjRW6b6mq8mjPDIxv9zgFgwhq1EN3n8+ntt9/WvHnzNG3aNK1Zs0ZLly7Vu+++q4997GNqasrxVuZxhBB9EjHiUmCvGaong/Xu5jxtYGakA/WSWqmomjYwAICxFfYnFitNVKvv3CBFAtlj7G5zgdJktfrs4yQ3v68AADDWDMNQU1tI9U0B7euKpPbPKDH7nVeV0e8cACaDwWbFQ27UVV5erq6uLknSrFmztHnzZi1dulTt7e0KBAIDPBoYQRar2SPdVynNPMbcF4tIXbvSC5Z2NEo9bZJ/j7k1bTTHWe1S8axEqD7HrFp3l9EGBgAwepw+6aBTzE0yf2Y1vZmxWOl6KbBP2vGCuUnmz7rqpWalenIrrirUKwAAYNKLxgw1tAZV3xyQv8d8B5nFIs2e5lZdjVdlPkeBZwgAKIQhh+gnnXSSnnzySS1dulSf/vSndfXVV+uZZ57Rk08+qdNOO2005ggMns0hlc0zt6RQlxmop1rB7JSiPVLHDnPTi+Y4Z5HZqzbVCma25PAU4EUAAKYEm0OafYy5rfia2Vd97wdmmL5jvfmxfYfZBqbpDenlu83HVRxk9lOfmwjVKw7iIjAAAAeoJxzT1pagtrYEFImab9h32CyaV+XRgmqvPE7eyQwAU9mg27ls3rxZS5Ys0f79+9XT06OZM2cqHo/r1ltv1bp167Rw4UJ997vfVXl5+WjP+YDQzgVmG5h96RYwnY1SV1OONjCSvDPSLWBKk21gWGkdADBGOnal+6o3rJda3pbU61c3X6XZ+mXuCjNUr15KyzIAAAapIxBRfVNAO/f2KJ74Eet1mf3O585wy25jsVAAmMxGvCe61WrVscceqy9+8Yv6zGc+o+Li4hGb7FgiREdOsYjUtTu9YGlnoxTc33ec1S4VzzSr1EtrzVYwnnIqAAEAYyPYJjW+kq5W3/2aFAtnj3EWS7XHmtXqc46XZi/jnVUAAGQwDEN7OsKqbwpoT0f652hFkUN1NV7NrHDR7xwApogRD9Gff/553XPPPfrTn/6keDyuT33qU/riF7+oj370oyM26bFAiI5BC3en+6onw/VosO84hy8dqpfWmlXrhBUAgLEQ6TGD9B2JvuqNL0uhzuwxVoc086h0tXrtRyRvRWHmCwBAAcXihhr39qi+ya+uYCy1f1aFS3U1XlUUOws4OwBAIYx4iJ7k9/v1xz/+UatXr9bzzz+vuro6XXHFFbr88stVXV19wBMfbYToGDbDkIKJNjAdmW1gYn3Heqdl9FavlYpraAMDABh98ZjZ8qXhJXPB0h3rpe7mvuNmHJroqZ6oVi+rHfu5AgAwRkKRuLa1BLS1JahQxGzjabdaNLfS7Hfuc9MGDQCmqlEL0TPV19frnnvu0e9+9zs1NzfrzDPP1KOPPjrcw40JQnSMqHjUbAOTWa0e3Nd3nMVmtoFJLlhaWit5ptEGBgAwugxDatueaP+SqFbf92HfcaW1Zj/1ZLX69EWSlR6wAICJrSsY1ZamgBr2BhVLLIHlcVp1ULVX8yo9ctr5WQcAU92YhOiSWZl+33336cYbb1R7e7tisRxVueMIITpGXdhvtoHpzKhYj+RqA+M1A/VUxfpsyekb+/kCAKaW7taMxUrXSU1v9n1Xladcqj0+Xa1ec4Rk5y3uAIDxzzAM7euK6MMmv5rb0v3Oy3x21dV4NavCLauVYiYAgGnUQ/TnnntOv/nNb/R///d/slqtuvDCC3XFFVfo+OOPH/akxwIhOsZcsg1Msr96R6NZvZ6rDYxnmlSaEawXz6QNDABgdIW6pZ2vpqvVd27ouwaI3WMuUJqsVq89TnJNzEXmAQCTUzxuaNf+HtU3BdTuj6b2V5c7VVft0/QSB4uFAgD6GJUQfffu3Vq9erVWr16t+vp6rVixQldccYUuvPBC+XwTo4KWEB3jQjxq9lNPVavvlAJ7+46z2Mx+6pnV6t7ptIEBAIyeWERqeiPd/qVhvRTcnz3GYpOql5qh+tzl5seiysLMFwAwpYWjcW3fE9TW5oCCYbNni9UizZnhUV2NV8UeipIAAPmNeIh+1lln6amnntL06dN12WWX6Qtf+IIWLVo0YhMeK4ToGLcigXS1erK/esTfd5zdk12tXlJLGxgAwOiJx6W9HyRawKw3FyvtaOg7rmJB9mKlFQdx0RcAMGr8PTFtaQ5ox56gonEz1nA5rDqoyqP5VV65HPQ7BwAMbMRD9HPOOUdXXHGFPvGJT8hmm7grVxOiY8IwDCnYJnU2mIF6Z6INTDzad6ynIhGqJ8L14pmSzTH2cwYATA0dO80q9WS1+p53JPX6lbKoKtH+JVGtXrVEsk7c3yEBAOPD/q6I6pv82rU/lNpX7LGprsan2ulu2eh3DgAYgjFbWHSiIUTHhBaPSt0tZgVgslo90Np3nMUqFdWkK9VLayXvNHM/AAAjLdgmNbycrlbf9ZoUj2SPcRabvdST1eqzjpYcnsLMFwAwoRiGod1tIdXvDmh/d/rnS2WpU3U1XlWWOul3DgAYFkL0PAjRMelEghltYBIV6+HuvuPsbrOnemaw7iwa+/kCACa/SNAM0hvWme1fGl+Rwl3ZY2xOaeZR6Wr1OR+RPOWFmS8AYFyKxuLa0dqjLU0B+UMxSWansNppbtXVeFXq4923AIADQ4ieByE6Jj3DkHraM3qrN0pdu3K3gXGXpxcsLa2VimfRBgYAMPLiMallsxmoJ6vVu1t6DbJIlYeZ/dTnJvqql84uyHQBAIUVDMe0tTmgbS1BRWJmZOGwWTS/yqsF1R65nbQHAwCMDEL0PAjRMSXFY2ZYkQzVOxslf6v69K+1WKWi6nSlemmt5J1OGxgAwMgyDGn/VrOfekOir/q++r7jSuck2r8cb7aAmbGIxUoBYBJr90dU3xTQzn09SiYVPrdNddVezZnhkd3GzwAAwMgiRM+DEB1IiPak28Akg/VcbWBsrvSCpclWMK7isZ8vAGBy696TqFJPLFja/KZkxLPHeCoSgfpys1q95gjeQQUAE5xhGGppD6u+KaDWznBq/7Rih+pqvKopd9HvHAAwaiZEiL5q1So9+OCDeu+99+TxeLRixQrdcsstWrRoUb+Pe+CBB/S9731P27dv18KFC3XLLbfo4x//+KCekxAdyMMwpFBHdqjeuavvwnCS5C7LCNVnSyWzzN62AACMlFCXtPPVdAuYnRukaDB7jN0jzV6Wbv8y+zjJxXofADARxOKGGlqD2tIcUFcw0e9c0sxpLi2s8am8iIukAIDRNyFC9DPPPFOf+cxndOyxxyoajeo73/mONm/erHfeeUc+ny/nY9atW6eTTjpJq1at0ic+8Qndf//9uuWWW/Taa69pyZIlAz4nITowBPGY5G+ROnamW8H49yhnGxhfVfaipb4ZtIEBAIycaFhqeiPd/qVhvRRsyx5jsUk1h2csVrpcKppRmPkCAHIKReLa2hLQ1uaAwlHz7wq7zaJ5lR4tqPbK66LfOQBg7EyIEL231tZWVVZWau3atTrppJNyjrnooovk9/v12GOPpfYdf/zxOvLII3X33XcP+ByE6MABivaYFerJUL2jUQp39R1nc5kV6pnBuov/cwCAERKPS3vfN8P0ZLV6R2PfcdPq0u1f5hwvlc+nrzoAFEBnMKotTQE1tAYVT6QQHqdVC2q8mjfDI4edAhwAwNgbbFZsH8M5Daijo0OSVFFRkXfM+vXrde2112btW7lypR5++OHRnBqAJLtbqlhgblKiDUxnugVMR6PUtUuKhaS2reaW5CrNDtVpAwMAGC6rVao81NyWfcHc196YvVjpnnfMBUv31Uuv/84cU1SdWKw0sVUtlqxUPQLAaDAMQ3s7I/qwya+W9nS/83KfXXU1Ps2c5pKVC5sAgAlg3ITo8Xhc11xzjU444YR+27I0Nzerqqoqa19VVZWam5tzjg+FQgqFQqnbnZ2dIzNhACaLRXKXmltV4v9uPGa2felsTLeC6W4xe67v6ZD2bE4+WCrq3QamkjYwAIDhKas1t8M/bd4O7JcaX05Xq+9+Xepult5+yNwk811Stcelq9VnHi053IV7DQAwCcTjhnbu61F9U0AdgWhqf025S3U1Xk0rdrBYKABgQhk3IfqVV16pzZs364UXXhjR465atUo/+MEPRvSYAAZgtUnFNeY26zhzXzRkVqhnLlwa6jTDjO5mader5jibM7FY6ex0uO4uLdxrAQBMXN4KadFZ5iZJ4YC0+7VE+5d1UuMr5s+i+qfMTTJ/Ds08Ol2tXvsRyVNWsJcAABNJOBrXtpagtjYH1BOJS5JsVmnODI/qqr0q8oybCAIAgCEZFz/BrrrqKj322GN67rnnNHv27H7HVldXq6WlJWtfS0uLqqurc46/8cYbs9q/dHZ2qra29sAnDWBo7C6p/CBzS+rpkDp3pkP1zp1SLJyjDUxJRguYRBsYu2vsXwMAYGJzeqV5J5qbJMWiUstms1I9Wa3u3yM1vmRu+k9JFrPly5zj09XqJTML+SoAYNzp7jH7ne9oDSpmZudyOaxaUO3VvEqPXA7eaQoAmNgKurCoYRj62te+poceekhr1qzRwoULB3zMRRddpEAgoD//+c+pfStWrNDhhx/OwqLARGfEzfCiozEdrnc3S+r9bcpitn0pzQjWfZX0tAUAHBjDkPZvzVisdJ15u7eyOdKcFelq9ekHs1gpgCnHMAzt746ovimg3fvTLVRLvHbV1Xg1e5pbNivfGwEA49tgs+KChuhf/epXdf/99+uRRx7RokWLUvtLS0vl8XgkSZdddplmzZqlVatWSZLWrVunk08+WTfffLPOPvts/eEPf9BNN92k1157rd9e6kmE6MAEEwtLnbvSi5Z2NJq91XuzOjJawCQ+ukoJNQAAB6arJV2p3rBean7LvOibyVORqFJfbobrNYdLNkdh5gsAoyxuGGraH9KHTQG1dUdS+6tKnaqb6dWMEif9zgEAE8aECNHz/WC955579LnPfU6SdMopp2jevHlavXp16v4HHnhA3/3ud7V9+3YtXLhQt956qz7+8Y8P6jkJ0YFJINSZXrA0WbUeC/Ud5yzOXrS0ZJZkZ7E4AMAB6OmUdr6arlbftUGK9mSPcXil2cvS1eqzlkmuosLMFwBGSCQW1449QW1pDigQMi8mWi1S7XS36mp8KvGOi26xAAAMyYQI0QuBEB2YhIy45G/NDtW7m/tWCsoi+WZk91cvqqINDABg+KIhqekNace6RLX6S1JPe/YYi02qOcLsp57sre6bXpDpAsBQBUIxbWkOaPueoKIxMz5w2i2aX+XVQVUeuZ38Lg0AmLgI0fMgRAemiFhY6tqdXrS0o7FvqCEl2sDMSgTrs82P7jLawAAAhicel1rfy16stHNn33HTFqbbv8w5Xiqfx88eAONKW6Lf+a79PUqmBkVum+pqvKqd7pHdxvcsAMDER4ieByE6MIWFutILliaD9ZxtYIqyq9VLZ9MGBgAwfO2NiUB9nVmp3vpu3zHFNWaFerK3euVhvFMKwJgzDEPN7WHV7/Zrb1e63/n0EofqanyqLqPfOQBgciFEz4MQHUCKEZcCezNC9Z1Sd1OONjCSvDPMUD3VBqaacAMAMDyB/WaY3pAI1Xe/LsWj2WNcpVLtcelq9ZlHSQ4u6AIYHdGYoca9QdU3BdTdE5Nkvjlm9jS36mq8KvOxWDIAYHIiRM+DEB1Av2KR7DYwnY1SsK3vOKtdKp6VaAEzx/zoLuet+ACAoQsHpF0b09XqO1+Vwt3ZY2wuadbR6Wr12uMkT1lBpgtg8ugJx7S1JahtLQGFo2Y04LBZNK/So4OqvfK6KBoBAExuhOh5EKIDGLJwd7oNTDJcj/b0HecskkpmZ/dXd3jGfr4AgIktFpVa3jL7qSd7q/tbew2ySFVLzH7qyWr1kpqCTBfAxNMZiKq+ya/GvT2KJxIBr8uqBdU+za10y2GzFnaCAACMEUL0PAjRARwwIy4F9qX7qnc2Sl3NkhHrO9Y7Ix2olybbwNjHfs4AgInLMKR9WzIWK10ntW3rO65srjR3RbpaffpC3iEFIMUwDLV2hPVhU0B7OsKp/eVFDi2s8aqmwiUr3zMAAFMMIXoehOgARkUsYvZTz1y0NLi/7zir3Vw8LrVw6RzJQxsYAMAQdTUnAvVEsN6yue+aHt7pZqV6crHS6iMkGxdygakmFje0c2+P6psD6gyk11+YWeFSXY1X04qdBZwdAACFRYieByE6gDET9qcXLE32V48E+45z+Mw2MKmFS2dLDu/YzxcAMHH1dEiNr6ar1XdukGKh7DEOnzR7WbpaffYyyekrzHwBjLpQJK7tewLa0hxUKGJeZLNZLZpb6VZdtVc+NxfVAAAgRM+DEB1AwRiGFNyXXa3e1ZSnDcw0s1o9WbFeXEMbGADA4EVD0u5NUsM6s1q98SUzaM9ktUs1R6Tbv8xZLvmmFWS6AEZOdzCq+uaAGlqDiiXeoOJ2WLWg2qt5VR457fQ7BwAgiRA9D0J0AONKPGoG6clgvbPR7Lfem8UmFc/M7q/umUYbGADA4MTjUuu7Zj/1hpfMavXOXX3HTV+UWKx0hfmxbC4/a4AJwDAM7euKqL4poKa29LtQSr121dV4NXuaW1Yr/5cBAOiNED0PQnQA414kkFGtnmgFEwn0HefwZFerl8zmbfkAgMExDKm9IRGoJ6rV977fd1zxTLOferJSvfIwyUoVKzBexOOGdu8P6cMmv9r96X7nVWVOLazxaXqJQxYuhAEAkBcheh6E6AAmHMMwFylNtoDpTLSBiUf7jvVUJAL1ZBuYmbSBAQAMjn+f2fYlWa3etKnvzxp3qVT7kcRipSukmUdJdldBpgtMZZFoXNv3BLWlOaBg2OzZYrVIc2Z4tKDGqxIPv/8BADAYhOh5EKIDmBTiUam72QzVk8F6YG/fcRab2U+9pDbdCsY7nbfmAwAGFvabC5Qmq9UbX5Ui/uwxNpc065h0tXrtcWbQDmBUBEIx1TcFtKM1qGjM/FPeabfooGqvDqryyuXgnSIAAAwFIXoehOgAJq1IMKNafaf5sXfYIUl2j9n6pTSzDUzR2M8XADCxxKJS85tmP/VktXrvC7gWq1S1ON3+Ze4Kqbi6MPMFJpH93RHVN/m1e19IyT/giz021dV4VTvdIxv9zgEAGBZC9DwI0QFMGYYh9bRl91fv2pWnDUx5Rm/1RBsYm2Ps5wwAmDgMQ9pXn7FY6TqpbXvfceXzpDkr0tXq0+p4RxQwCIZhqKktpPqmgPZ1RVL7Z5Q4VVfjVVWZk37nAAAcIEL0PAjRAUxp8ZjZBiZZsd7RKAVa+46zWKWimnSlemmyDQxvEQYA9KOzyaxUT27NmyX1+nPDN0Oac3y6Wr36cMlG/2YgKRoz1NAaVH1zQP6emCTzutPsaW7V1XhV5qPQAQCAkUKIngchOgD0Eu0xq9QzFy4Nd/cdZ3ebgXqyYr20ljYwAID+9XRIja+kq9V3bZRioewxDp9Ue2y6Wn3WMsnpLcx8gQIKhmPa2hzQtpagIol+5w6bRfOrPDqo2iuP01bgGQIAMPkQoudBiA4AAzAMqac93QKms1Hq3CXFI33HusvSLWBKk21gnGM9YwDARBHpkZo2JUL19VLDy1KoI3uM1S7VHJlu/zJnueStKMRsgTHR4Y/ow6aAdu7rUfKvc5/LpgU1Xs2d4ZbdxjsBAQAYLYToeRCiA8AwxGNSd0t2tbq/VX3eom+xSkXVGf3VZ5tv26cNDAAgl3hc2vNOuv3LjvVS1+6+42YckmgBk6hWL62lrzomNMMw1NIeVn1zQK0d4dT+imKHFtZ4VVPuot85AABjgBA9D0J0ABgh0R6zQj21cGmjFO7qO87mkkoTbWCS4bqreOznCwAY/wxDat9htn5JVqvv/aDvuJJZZoV6slp9xqGSlQu2GP9icUONe3tU3+RXVzCW2j+rwqW6Gp8qiul3DgDAWCJEz4MQHQBGiWGYb8lPheo7pc6d+dvAJBcsLak1wxDawAAAcvHvNUP1ZLX67k2SEcse4y5LVKonqtVnHinZXQWYLJBbKBLXtpaAtrYEFYrEJUl2q0VzKz1aUO2Vz02/cwAACoEQPQ9CdAAYQ/GY5N+TXa3u36OcbWB8Vdn91WkDAwDIJeyXdr6arlbf+aoUCWSPsbulWcekq9VnHye5+d0fY68rGFV9U0ANrUHFE7/+eJxWLaj2al6lRw47v+sAAFBIhOh5EKIDQIFFQ2YbmMz+6qHOvuNsLrNCPTNYd/F9GwDQSywiNb9p9lNPVqsH9mWPsVilqiUZLWBWSMVVhZkvJj3DMLS3M6L6Jr+a29P9zst8dtXVeDWrwi2rlX7nAACMB4ToeRCiA8A41NORDtU7GqWuXVIs3HecqzS9YGlprVQ8i7frAwCyGYa090OpYV26Wr19R99x5fOluSvMYH3OcmnaAhYrxbAYhqFAKK42f0Rt3RG1doTVEYim7q8ud2lhjVfTih0sFgoAwDhDiJ4HIToATABGvG8bmO4W9WkDI4tUVJWuVC+tlXyVtIEBAGTr3G1WqCer1VveVp+fKb7KRE/1RLV61VLJZi/IdDG+hSJxtXWbgXkyOA9Hs88nm1WaM8Psd17s4TwCAGC8IkTPgxAdACaoaMisUO/YmQ7WQx19x9mcZoV6MlQvqZXcpWM/XwDA+BVslxpfSVer79rY9x1QziJp9rHpavVZx0hOb0Gmi8KJRONq90dTYXlbd0TBcLzPOItFKvXaVe5zqLzIoepyl1wOLuoDADDeEaLnQYgOAJNIqDO7Wr1zZ542MCXpavWS2eZGGxgAQFKkR9r9WrpavfHlvut1WB3SzCPT7V/mHC95KwoyXYyOWNxQR6/AvLsnlnNsscemMp9DFUUOlRU5VOq1y0afcwAAJhxC9DwI0QFgEjPikr81O1j3t5j7s1jMt+1nLlrqq5SstoJMGwAwzsRj0p53Eu1f1pkfu5v7jptxqBmmJ6vVy2rHfq4YFsMw1BmMqq07qvZEW5aOQFS5/jr2Oq0qKzIrzMt9DpX57HLYqTIHAGAyIETPgxAdAKaYWFjq3GVWqSfD9Z72vuOsDqlkVnaw7iplkTkAgLlYadt2s1I9Wa2+78O+40pmm/3Uk9XqMw6RrISthWYu/BlTW3e6yrzdH1Us3vdPYafdkgrLyxPBOW1ZAACYvAjR8yBEBwAo1JXRAqbR7LMeC/Ud5yzODtVLZkl299jPFwAw/vj3ZixWuk5qelMyerX+8JRLtcenq9VrjpTszoJMdyrpCcfU5o+mWrK0+/su/ClJdqtFZUXpPuZlPoe8LqssXEAHAGDKIETPgxAdANCHEZcCe81QPRmsdzfnaQMzIyNUr5WKqmgDAwCQQt3SzlfNhUob1kk7N0iRQPYYu1uatSxdrV57nOQqLsx8J4lINJ6oLo+mAvNcC39akwt/JnqYl/scKvbYCMwBAJjiCNHzIEQHAAxKLCJ17UovWNrRKPW09R2XbANTMjsdrLvLaAMDAFNdLGJWpyd7qjesl4L7s8dYrFL1UmnOinS1elFlYeY7AcTihtr9EbVntGXpb+HPzLYsJSz8CQAAciBEz4MQHQAwbKEuM1BPtYLZKUV7+o5zFmVXq5fOpg0MAEx1hiHt/UDasS5drd7e0HdcxQKzSj1ZrV5x0JS8MBs3DHUFollV5p3BPAt/umwq99lTPczLfHbZbfQxBwAAAyNEz4MQHQAwYoy4FNiXbgHT2Sh1NeVoAyPJO8MM1VNtYKppAwMAU13HruzFSve8I6nXn2dFVWaVerJavXrppPv5YRiG/KFYooe5GZx3+COK5fhx6nJYU4F5mY+FPwEAwIEhRM+DEB0AMKpiEalrd3rB0s7Gvm/flySrXSqeZVapJ6vW3eVTstoQAJAQbJMaX0lXq+9+TYqFs8c4i6XaY81Qfe5yadYxksNTmPkOUzCcDszbE21ZIrEcC3/aLCr3ObIW//Q4WfgTAACMHEL0PAjRAQBjLtyd7queDNejwb7jHL5EpXpGf/UJFowAAEZQJCjtei1drd74ihTqzB5jdUgzj8pYrPQjkreiMPPNIRyNq707ojZ/NBGcR9QTybPwp8+h8ozAvMjNwp8AAGB0TYgQ/bnnntNtt92mjRs3qqmpSQ899JDOO++8vOPXrFmjU089tc/+pqYmVVdXD+o5CdEBAAVnGFJgb3aw3tUkGTkWR/NOT1eqlybbwNjHfs4AgMKLx6SWtxPtX9aZH7tb+o6rPCzdAmbucvNdT2MgGjPUEYhktWXx51n4s8Rrz+pjXuKxy8rCnwAAYIwNNisu6F/hfr9fRxxxhL7whS/oggsuGPTj3n///awXVVnJCvYAgAnEYpF8M8yt5ihzXzxqtoHJrFYP7jPD9sBeqfl1c5zVLhXXZC9c6qmgDQwATAVWm1RzuLl95J/Ni7Jt28x+6slq9X31Zm/1Pe9IG35jPq60Nnux0umLJOuB9RGPxw11BhPV5f6o2rsj6gxEe3d0lyT5XDaVF9lVVuQw27P4HLLb+LkFAAAmjoKG6GeddZbOOuusIT+usrJSZWVlIz8hAAAKxWqXSueYW1LYn12t3tlovrW/o9HcGhPjHL5EC5iM/uoOb0FeBgBgDFksUsVB5nbUJea+7j1mP/VktXrzm+bPjLcapbf+aI7xlJtherJaveYIye7M+zSGYai7x+xjbvYwN3uZx3Mk5i6H1awuz1j8k4U/AQDARDch3w9+5JFHKhQKacmSJfr+97+vE044Ie/YUCikUCiUut3Z2Zl3LAAA44rTZ1YLTl9k3jYMszo9Gax3NJrV6xG/tO99c0vyTjMD9WSoXlxDGxgAmAqKKqXDzjE3SQp1STtfTVer79xgLmD6/l/NTZLsHmn2MmnOchlzlqun8mi1Rd1Zi3/mWvjTYbMkqssTbVl8DrlZ+BMAAExCE+qv6ZqaGt19991atmyZQqGQfvWrX+mUU07Ryy+/rKOPPjrnY1atWqUf/OAHYzxTAABGgcVi9kj3TpeqjzT3xaNmP/XORKjeuTPRAmafuTVvSjzWZgbppRnBumcabWAAYLJzFUsLPmZukhQNS01vpNq/GA3rZQm2Sdufl7Y/L4skl8UmT/GhCpQvk6P8GFnLj5HVPV1liQU/y4vsKvOx8CcAAJg6CrqwaCaLxTLgwqK5nHzyyZozZ45+97vf5bw/VyV6bW0tC4sCACavSCC7DUzHTrNavTeHJ6NaPdEKxukb+/kCAMZENGaY7Vj8EbUnqsz9PREV+7dq2v4Nmta+QdP2b5SvZ1efxxrT6mTJXKy0fD4XYgEAwIQ3IRYWHQnHHXecXnjhhbz3u1wuuVyuMZwRAAAF5vBK0w42NynRBqZN6mwwA/XOZBuYoLTvA3NL8lSkK9VLa6WiGsnmKMzrAAAMWzxuqCMQTfQwNxf/7AxE+w60WBWfvkjRuUsULvqieoocckVaZN/1stlTvWG9tOcdWfbVm4uWvv5783FF1WZP9bkrzI9VS8yFTwEAACahCR+ib9q0STU1NYWeBgAA45fFInkrzC2zDUx3i9TRkK5WD7RKwf3m1vJG4rE2qbg6HayX1Jr91i0sEgcA40Xmwp/JwLwjz8KfbqdV5cm2LD67yoocctp7f0+vlSpqpaX/aN4M7JcaX5Ea1pm91Xe/LnU3S+88bG6S5CqRao9LL1Y662jzHU8AAACTQEFD9O7ubtXX16dub9u2TZs2bVJFRYXmzJmjG2+8Ubt27dK9994rSfrxj3+s+fPna/Hixerp6dGvfvUrPfPMM/r73/9eqJcAAMDEZLVLJbPMTcvNfZFgRhuYRMV6uFvq3GVuO18yx9ndGaH6bPOjs6hgLwUAphLDMBQMxzMC84ja/VFF8yz8afYwd6gssfinxzmManFvhbToTHOTzJ8XuzaaVeo71psBe6hTqn/K3CTJ5pRmHiXNWZ7YPiJ5yg/glQMAABROQUP0DRs26NRTT03dvvbaayVJl19+uVavXq2mpiY1NDSk7g+Hw7ruuuu0a9cueb1eHX744XrqqaeyjgEAAIbJ4ZGmLTQ3yWwD09Oe0Vu9UeraJUV7pP0fmluSpzyjv3qtVDyTNjAAMAJCETMwb/dHtL/bDMxDkXifcTarVOpzJKrMzcDc5xqlhT8dHmneieYmSbGotOdtM1BPVqv790iNL5vbiz+WZJEqDzP7qSeD9dJZIz83AACAUTBuFhYdK4NtFg8AAHKIx8y38GcuXOpvldTr1wmL1eynnlywtLRW8k6nDQwA9CMai6vdH82qMg+E+gbmFotU4rGnqszLfXYVe+2yjpeFPg1D2r/VrFRPVqvv39J3XNmcjEr15dKMRSxWCgAAxtRgs2JCdAAAcGCiPelQPRmsh7v7jrO7zfYvma1gXMVjP18AGAdicUOdgWgqLG/rjqgrGMs5tshtywrMS30O2awTLGzuapEaX0pXqze/JRm9LhB4KhKBemLB0pojeFcTAAAYVYToeRCiAwAwygxDCnVkh+qdu6R4pO9Yd1l6wdJUGxjnmE8ZAEaTYRjqCsbSPcy7I+oIRHMu/OlxWhM9zB2qSPQyd/RZ+HMSCHUlFitdLzW8JO181bwom8nukWYvMwP1Ocul2cdKLtbgAAAAI4cQPQ9CdAAACiAek/wtUsfOdH91/x7lbgNTnQjVE1Xrvhm0gQEwYRiGoUAonqoub0/0MY/mSMwddosqfA6VZVSZu4ez8OdkEA1LTZvS7V8a1pvrcmSy2KSaw6U5K8xq9TnLpaIZhZgtAACYJAjR8yBEBwBgnIj2mBXqyVC9o1EKd/UdZ3NJrhKzHYzDbX60exIfMzZH730es6qd/roARlFy4c/MtizhaN8/sWxWi8p8iT7micU/vaO18OdkEI9Le9+XdqxLV6t3NPYdN21huv3LnOVS+Ty+7wMAgEEjRM+DEB0AgHHKMKRQZ7oFTEej1LVLioUP4KCWQYTtGaG8o/d+t2S1j9hLBDCxRaKJhT8TYXlbd0TBcO6FP0u9mYG5Q8UeAvMD1t6YvVhp67t9xxTXJKrUE9XqVYsl6xSt7gcAAAMiRM+DEB0AgAkkHpMCe6WIX4r0SNGgWcHeZ0vsj2TsM3Iv0DdkVkdGAJ+rCt4j2V25K+HtbqrhgQkqFjfUkRGYt/vzL/xZ7LGle5gXOVTqtU+8hT8nosB+qfHldLX67k19199wlUi1H0lXq8882vxeDgAAIEL0vAjRAQCYAgxDikezQ/dIUIqGcgTxOQL4aI8UC43MXCxWM2TP14YmZyV8IphP7qeKEhhVhmGoMxhVW3dU7Ym2LB2BqHL9peR1WjN6mE/ihT8nonBA2rUxXa3e+IoU7s4eY3OaQfrc5Wa1eu1xkqesINMFAACFR4ieByE6AAAYlHjMDNKzAvZcAXzIDOhjvYP4oGT0bfMwLFZHnjY0/bWiyRhPNTyQYi78GVNbd2aVeVSxHAt/Ou2WrJYs5UUOuRwE5hNGLCq1vGX2U09Wq/tbew2ymC1f5ixPV6uXzCzIdAEAwNgjRM+DEB0AAIwJwzDbCmRVwg+yFU1y3wH1g8+QqobP04omZyV8797wVMNjYuoJx9Tmj6Z6mLf7cy/8abdaVFZkTwXmZT6HvC4rfcwnE8OQ9m9NBOovSQ3rzNu9lc01Q/Vktfr0hVyIBABgkiJEz4MQHQAATBjJavh+K+HzBPCp3vAjVA1vcw6hEr5XCO/wmNX0hFAYZZFoPFFdHlW7P//Cn9aMhT/LEpXmLPw5RXU1JwL19Wa43rK57/dN77REpXpiqzlcsjkKM18AADCiCNHzIEQHAABTRmY1fM5K+N4hfI6+8SNaDd9Py5mBFm6lGh69xOKG2v0RtWe0Zenuyb/wZ2ZblhIW/kQ+PZ3SzlekHYm+6js39F0jw+GVZi8zq9TnLpdmHys5fYWZLwAAOCCE6HkQogMAAAxBPJYI1HsvyppnQdY+1fKjVQ2f0YqmvzY0yUp4u5tq+AksbhjqCkRTVeZt3RF1BvMs/OmyqdxnT/UwL/PZZbfRxxzDFA1JuzelFyttWC/1dGSPsdikmiPMfupzjjer1X3TCzJdAAAwNIToeRCiAwAAjKFkNXwkRwCf6hffTwA/qtXwnl5V8Pkq4RP321xUw48BwzDkD8USPczN4LzDH1Esx7UYl8OaCszLfCz8iTEQj0ut75n91JPV6p27+o6zuSR3afbmKeu1r6zv554yyVUi2Z1j+7oAAJiiCNHzIEQHAACYYFLV8ENsRZPcH+mRNEK/8qaq4QcTwPeqhKcaPqdgOB2YJ/uYR2I5Fv60WVTuc2Qt/ulxsvAnxoH2hnSg3rDeDNkPlMObI2gfTBif2LjgBwDAoBCi50GIDgAAMMUYhlnNPpxK+GQFfTwyMnOxWPsG8LZk0O7qvxI+uc8ycSutw9G42rsjavNHE8F5RD2RPAt/+hwqzwjMi9ws/IkJItQtBduknnaz9UvmFuy9r9ftUOfIzMFVMnDQni+MdxZJ1on7fQYAgKEYbFZsH8M5AQAAAGPPYkkE1C5JpcM7RqoavlfF+0ABfCxjjAyzP3zEb27DZXPlWJC1n0VZMyvh7R7Jah+TavhozFBHIJLVlsWfZ+HPEq89q495iccuKwt/YqJyFZmbaof+2Hisb/A+qDA+MS4SMI8T6jS3jsahz8FiTYfwOYP2sv7DeIeXd9wAACYdQnQAAABgIFab5PSZ23BkVcP3roTP1Yomx8KtyWr4WMjcQh39P2c+FtvgW9HkXLjV1acaPh431BlMVJf7o2rvjqgzEM3ZRMfnsqm8yK6yIofZnsXnkN1G4AZIMr/XeCvMbTiiYTM8TwXt7f0H8llhfLv5fcqIJ8a1S+07hvEaHIOoes8RyCfH2F3De+0AAIwiQnQAAABgtI1INXw0R7V7rir4RCgfyVEdL0MyYulq+ODwpmLYXIpZXYpYXAobTgXjToUtLhkWp3xyyWlxqdzikmF3y+3xyuvzqajIp+KSYrnc3jGrhgemHLtTsk+XfNOH9/hIT56gvX1wYbwRMy/4Bfaa27Begzt/G5q8YXzyY4lkcwzveQEA6AchOgAAADARWO1mr2Jn0fAen6qGD6pPz/c8C7cakeQWlCXWI6sRlSRZYiHZYyHZJXnUz2WBkCS/pN5ZWrIavt9K+N794DPH9K2GBzACHG7JUS0VVw/9sYYhhf2Dr3rvM6ZTkmF+D+rukbpbhvcanEX9BO0DhPGuEvrBAwByIkQHAAAApoKsavjcwtF4asHPNr/ZyzwUj0u2xCGMmBwKyaWQKtwxlbliKnFGVGSPyqWQLLFc/eJ7Vcj3roYfrmRveMdgAvgcQTzVqsDIsljS/eBLZw398fF4uhXNkHvCt0vhbvM44W5z69w1nBeR0Q8+14KsZf2H8c4i3mUDAJMUIToAAAAwBUVjhtr9Zljenlj80x/qu/CnRebCn2YPc/uBLfxpxDN6ww9cCZ8dxCf2xc1q+BHpDe9ILL5q9+QO2vutlqcaHhhRVqsZSnvKhvf4WDQRwrfnD9r7C+OjQUmG+T0l1CEN51uLxZajwr132F6WI5xPjLG7CeEBYJwiRAcAAAAmuXjcUEcgaobmicU/OwPRnGN9bpvKfQ6VF5mBeal3BBf+tFjTIfRwJXvDDyeAj/ZkV8MnK1aH92Ikm7NXJXyvUN6RZz/V8MDIs9kPcFHWUO7QfbBhfDxifl8J7je3Yb0GZ/6q95xtaMqzb9udw3teAMCACNEBAACAScQwDHX3xDLaskTV4Y8obvQd63ZaE4G5WWVeVuSQ0z7Oq6sPuDd8RjV8nyA+0XImGswI4XOE9fGoJCNdDX8gr6W/VjS2firhHR4zcKMaHhgZdpdUVGluQ2UY5veTvGF7e44wvteY5Pcmf6u5Des1eHIE7b1v5wrjE7ettuE9LwBMAYToAAAAwARlGIaC4ew+5u3+qKKxvom5w2Yxw/Iih8oSbVk8zikYmGRWw7vLhneMWCRPFXxPjgA+lDuIl8ww/kCr4e2uYbSiyeglb+VPQuCAWSyS02tuJTVDf7xhmN8HBgrac1bGd6TbWkWDUldQ6moa3utwFg8ctOcL453FLMoKYFLjN6Yp5r397+nuN+6W1WKVzWLL/mhN37bIknW7v/FWWfs8PvNjvs9Tjx/sY6y552KxWPp9LVaqcwAAwCQRipiBebs/ov3dZmAeisT7jLNZpVKfI6sti89l/t6EEWBzmJureHiPT1ac5qqEz7kga699kaDZNkJGdig/HKlq+CG0oslsYUM1PHDgLBbz+4mrWFLt0B8fj2UvyjrUMD65yHO4y9w6dw7jNVjTi7L2CdrLBg7jHV76wQMY1wjRp5i9wb16uuHpQk9jzGUG8nkvDFgHEc5nBvvWwY3NDPYtsuQN+nM9R38XBgZ8TSNwkWKgY3ORAgCA0RONxdXuj2ZVmQdCfQNzi0Uq8dhTVeblPruKvXZZCSPGr5HoDZ9VDd8raO+vFU0yhE+2oRnRavjBVMInQvnMIJ5qeODAWG2Sp9zchiMWkXqSi7K2D1D53vt2h/l9xYinHz+s12AfZNV774+JzXEA308BYBAshmHk6I44eXV2dqq0tFQdHR0qKSkp9HTGXFN3k57f9bxiRkxxI65YPPHRyP6Y3Hrv7z0+77jMj/HEOKUf3+9j4jEZMlKP7ffYiWOhsPq9ONErpB/MuxxSQX3iXQ753oUwnIsOg333woAXR3JcpOj3goU197jBvCuEqkEAmPxicUOdgWgqLG/rjqgrGMs5tshtywrMS30O2az8rMAQGfFEq5l8C7Lma0WTUS1v5D5Hh8xqH14rGqrhgfEh0pMnaG8fXBgfz73Q9ZDYXDla0OQI27PGZHzOQs/AlDXYrJgQHZNCf0F/v4F/PPv+XJ9n7Rvtiw4Z4w0ZeZ+vz0UKZc8v31jDMPK+/v5eEwprsBcpBmqtlO+CQ38XKQb7boTBXnQY1LtCel2kGPCCS+ZFClnzXrDIOrbSx+YiBYCxZhiGuoKxdA/z7og6AtGcC396nNZED3OHKhK9zB3jfeFPTA2GYQZfQ62Ez2xhcyCLsmZJVsMPthI+8z6q4YGCMgwpEhhE1Xt7/lY1GoFYy+Hrpx/8AGG8q4RFWYEJbLBZMb8pYFJIhmGSJH52jbiBLlL0CedH6CLFQI8Z8kWHzHc59HNRJO9Fj34uUgx0kaa/r9dgvv5xI66oRqBCA30MJqg/kHc5DGk9hwO96KD+L4rkbC81wEWUwb6rIt9juEiBqc4wDAVC8XQP80Qf82iOxNxht6jC51BZRpW5eyou/ImJwWIZmd7wqWr4XJXwefrDZ/aNH7He8I7hV8LbPYlqeH7mAUNmsUhOn7mVzBz64+Nxs4/7QIuv5mtTE+4yjxPxm1vX7uG9DlfJAFXv/YTxziK+fwATACE6gAFxkWJ0DfvdC5kXKRQf8J0FqYsA6v8ix0hfdBjUuyLyXKTo90JKfBDH5CJFwfV3AWCorZUsFkvqXQQWiyV14SD1eXLrtc8iS7+PSd7f5/Pk82W802MoxxjM2D7PlevzgZ4v13jL4Oc8nOdAfsmFPzPbsoSjfQNzm9WiMl+ij3li8U8vC39iqrFYzUDa4ZE0jF7OqWr4wVTC5wjgM6vh4xEpHEkHakN/MX1bzNgc5kerI33BIfm51Zmxz9nrfmevsQ6zUp7vD0BfVms6kB6OWDRjUdb2oYfxkYB5nFCnuXUMYw4W6yCq3svyj3F4+P4AjAFCdAAoMC5SjK6cQf0AFx0yQ/rBrNGQOrbiOUP+A7noMJh3Ygz4rpADvEjR39drMF9/LlJMLlnh+wgG9YO+QJBxjMFcfEheBBnShZOMY/R7McGwKhQ21BMx1BM2FAzFFY1ZEutZmI+1yCqrxSKvy64it0NFLoeKPXa5nXYFrVaFZNUev1WWwOAuBg1nnpkXVbhwgkklqxp+mK06U9Xw/VXCJ/rDR4JSrHcQHzSPISMxLjiiLzHNkh2s9wnnewfxuQJ5Z/5jJD9abIRxmFpsdslbYW7DEQ0lFmXNDNnb+4bvuVrVBNvNC3hGXAq2mdtwWB1DbEFTlj3G7hze8wJTDCE6AGBS4yLF6Mob+A9wkWKoazQYhpEK9Ht/njxeaqyM7Mcp+xhZ9/czNuu4mc87hGPkuz/z2Lke0+/zJcbnuj/ruAPMK/MYxhB6iSYvLI1E+1FMHANdJEm+e+RA3uGQ68JAch2LoVw4Gej5kvfne4fLUC7k5BqfXBh8OMfo7/7U13iE5pk5PtfXYsrIqoYfBsMwQ7Defd/jESmW2OLhXp9He+2LSLFwxueJ28lwzXyixJiwFBmxV9+XxZo7nO8veB8w0M9RjU//aEwWdpdUNMPchspItKLKGbS3Dy6MN2Lm9wp/q7kN6zV4BmhD0/t2RnW8q8S8EAFMAZzpAABg2LIuUmDCMgwjFbrnCtxT4fwgLhAMdNEj14WBAz1GrvvzXlAYxJzj8bhC0ZgC4ah6wjH1RKLqicRkJB+veOpzm9WQ3W72M3fYJLtNkmUIX5d8X4tBXjjJ+Rw5/p2S75YZzoUTSal5c/Fk6hhy2J8r+LcOcEHhAC9gDPXCyaCeI+OdG8NtqWW+G8W8EJF4b4r5uc0ii80uOeySxZ3en2e8LJLFMKR4TBYjJks8JsWjic/jiZA9uT8mS+K+5OdmuBaVJZ752Gj683g0db9kyJJ4/sRTK30pxZIqTs/cnzHT1O0+YyyZR8ncb5Ml0abGYrObwbvVLovNYd62mB8tGfvNcD4xxmqG8ebnZmhvsdpT1faWxH3q9e+RNU+LJee/Qea8s/79LNmvOGtMvn+/fP/GU+lCFfKzWNIX8Yqrh/54w5DC3YOoes9sQ5P4GOyQQoneM9Gg1B2UupuH9zqcRf0E7QOE8a4SsyUPMAEQogMAAExxyWBgKl4QMRf+jKmtO5rqYd7ujypmMSSXzC3Babdk9DA3N5djYn7NBrpwMtjQfjDvFhnuuzZiRizvMYb7HJnzPtB3fvT7tRjk13OwX7fkOiVDuXCSa+xQcOEEGBv5Qv10Fp87yO99YWDAIL+/iwaDmUOeCwt555DxeWrMSF64yDWmnwsXOecwxK958vjj9t+s99fLZZFcLllKq2RRdY45SJbEO18ssbAs0bAUC8kSC0vRsBQNJfaHzDHRUOLz5MdI4jiGLOqSIl2yRHbKkrG0hMXIeK7M5039cLHIYndJdrcsdpcsdo+U+GhJLvDs8MiSWG/C4vDIkljc2eLwyGJzpVpQDfdr3vs8HO45lHms4ZyjQ70AN9L/byu9laotrhXyI0QHAADAlNETjqnNH00t/tnuz73wp91qUVmRPRWYl/kc8romT5uLqXzhZCrrtx3WMC5I9HdhILmuyFAunAzmOYbawmtY72A5kK9F4t0sktn+KvWuD0Opzw0ZMoy+nydvJ/+tMsenD9PrsRnjM4/Re0zW/UN9fMbnmcfI93qy5prj9Sj5uZE5t97zHGAOhvlZ9hyyv4aJL3vGmPF5TSjXv0HiDmB8sUpyJj/xJLaRFDK3mMwtNMKHR78uPexSXX/s9YWexrhW0BD9ueee02233aaNGzeqqalJDz30kM4777x+H7NmzRpde+21evvtt1VbW6vvfve7+tznPjcm8wUAAMDEEYnGE9XlUbUnqsyD4b7VuFaLVOq1m2F5otK82GObNIE5kJTsf25jkRBMZkZcikfz9JtPf25EzR7zRjwiI9GD3oiFZUQjkhGWor32Jx8Xi8iIR8znUDrrzrhMkBXeS8oI+POF+rkfa2Q8gSHJsJktcAyr3fzcYpdhs0sWu2RL7E+0yTFsdhkWm2RzyrDaEmMcMqw2GVa7OcZiMx9vdZhjrTbJYpNhyX2xJetiUJ4LKZmvJmtM5oUU5b+YM5gLT5nHGNSFpwO8OJXv9WS+3gEvTvV34WmA1zOor1fvMQP9++W5UJX39Q7h69Xf8bPmG4vKiJlV7kY0ZH6e/H+Z2h82/x/Gwon/h+HUuhGpY1oy/x9mX3/Ktd/I+P3OsFjN/zM2h/l/Jvm51Z5Yw8HcZ/4/Sf4fS/xfyliIeVx+zYdwHkpShXuYi+tOIQUN0f1+v4444gh94Qtf0AUXXDDg+G3btunss8/Wl7/8Zd133316+umn9cUvflE1NTVauXLlGMwYAAAA41EsbqjdH1F7RluW7p5YzrHFHltWW5YSr102K4E5AEwKFmuiN7qz/2G9Pg6ZEc+9GGzvz/tdZLafxWWTH41eP8sMmYvTxqLDnXn/BlpcNueCsrkWl7X3WmTWyeKyGDmGYS7i3O/iq70/9tqG2OYsJ4c3d793T3nf/u+5esLz/2BCsRh93jNUGBaLZcBK9BtuuEF/+ctftHnz5tS+z3zmM2pvb9fjjz8+qOfp7OxUaWmpOjo6VFJScqDTBgAAwBiLG4a6AtFUlXlbd0Sdwahy/VbrddlU7rOnepiX+eyy22hhAgCYIOKxgYP4rPvzV9+nHxPNPk4srDHvH2Ox5Qjl7XkC+TxBfOZjMvdlHpe2ZcglHu+1KGv7IBZozbgd6hyZebhK+g/a+yzOmjHGVZyqhMeBGWxWPKF6oq9fv16nn3561r6VK1fqmmuuKcyEAAAAMKoMw5A/FEv0MDeD8w5/RLEcxUMuhzUVmJf5JvbCnwAASDIrVa02c4HF0WIYZsV7vuA9Fk60yMlTbZ+vsj75mMxjpfpTxKRoTFLP6L0uyQzZs0L5wYbzOR6Tr/reaiesn2isVsldYm4axmKa8ZgZpPcJ2nME8rnGRPzmcUKd5tbROPQ5WKxmCJ83aC/rP4x3eAnhh2hChejNzc2qqqrK2ldVVaXOzk4Fg0F5PH0XNQiFQgqF0qsRdHaO0NUiAAAAjLhgOJZY8DO9+Gck1rc6zm6zqNznyFr80+OcPAt/AgAwZiwWs2e61a6RXywyg2GYwXreIP4A2t70bqGTFI+aWzQ4eq9L6tvuJldVfL9V9v0E+qkWOHZCz/HCajNbtnjKh/f4aNgMz5Oh+5DC+HbzfDfiiTHtw3wNjuxQfek/SsuvHN6xpogJFaIPx6pVq/SDH/yg0NMAAABAL+FoXO3dEbVlBOY9kTwLf/ocKs8IzIvcLPwJAMCEYrGkA2LHKD5Pv4vL9lc5n+P+/h4Tz+hLH+8V3o8KyyD60w+z7U3mMTIWzMQosTsl+3TJN314j4/05Ana2wYXxhuJNlGBveYmSfNOHKEXN3lNqBC9urpaLS0tWftaWlpUUlKSswpdkm688UZde+21qdudnZ2qrR3GWzUAAAAwbNGYoY5AJKstiz/Pwp8lXntWH/MSj11WFv4EAACDMcjFZQ9Yf4vLDqrtzWB62mcuLmsk7gtLo5nXZy4u298is33a2wyxpz2Lag6fw21uxVUDj+3NMKSwv2/QXjZnxKc52UyoEH358uX661//mrXvySef1PLly/M+xuVyyeVyjfbUAAAAkBCPG+oMJqrL/VG1d0fUGYjmXLLM57KZFeaJPuZlPofsNgJzAAAwzlmskt0laZQzp3yLyw5UWT9Qf/p8i8sacSkWMrfRZLHlqJAfqLLeKdns/be9YXHZ/lkskqvI3EpnFXo2E0pBQ/Tu7m7V19enbm/btk2bNm1SRUWF5syZoxtvvFG7du3SvffeK0n68pe/rJ/+9Ke6/vrr9YUvfEHPPPOM/vjHP+ovf/lLoV4CAADAlGYYhrp7Ymr3p6vM2/0RxXMk5i6H1awuz1j8k4U/AQAA+lGQxWX7W2R2KD3tcxwjc3HZWGxswvpBhfND7WvP4rJTTUFD9A0bNujUU09N3U62Xbn88su1evVqNTU1qaGhIXX//Pnz9Ze//EXf+MY3dOedd2r27Nn61a9+pZUrV4753AEAAKYawzDUE46rrVdgnmvhT4fNorKMwLzc55CbhT8BAADGn0ItLjuUtjdDCfgz+9MbMSkak6I9o/e6pERVfe+2N/2E8IMO9FlcdrywGIaR6521k1ZnZ6dKS0vV0dGhkpKSQk8HAABg3ApH46kFP5OLf4byLPxZlljws7zIrjIfC38CAACgQPosLjuYcH4wlfX9LC47JixDa4GTtW+AtjcOn+QYxQso49hgs+IJ1RMdAAAAoyMaM8yWLP6I2hNV5v5Q34U/LTIX/sysMmfhTwAAAIwbY7m4bK5+8/22vQlLsejAgX6+xWXjif0jvbhs7XJp0TkjfNDJhRAdAABgisla+DNRZd4ZyF1J43PbVO5zpBb/LPWy8CcAAAAwZmF9PJYO6wfVAmeQ4Xzm/bZR7Lk/SRCiAwAATGLJhT8zA/OOPAt/up3WRGBuVpmXFTnktLNIEgAAAFAwqcVlXYWeyZRGiA4AADBJGIahYDjRxzyx+Ge7P6ponoU/zR7mDpUl2rJ4nLYCzBoAAAAAxjdCdAAAgAkqFIkngvJ0lXmuhT9tVqnU58hqy+JzsfAnAAAAAAwGIToAAMAEEI3F1e7P7mMeyLXwp0Uq8dhTVeblPruKvXZZCcwBAAAAYFgI0QEAAMaZeNxQRyCa1ZalK9g3MJekIrctKzAv9TlksxKYAwAAAMBIIUQHAAAoIMMw1BWMpQLz9u6IOgLRnAt/epzWRA9zhyoSvcwdLPwJAAAAAKOKEB0AAGCMGIahQCie7mGeXPgzR2LutFtU7nOoLKPK3M3CnwAAAAAw5gjRAQAARkly4c/MtizhaN/A3Ga1qMyX6GOeWPzTy8KfAAAAADAuEKIDAACMgEg0sfBnIixv744oEI73GWexSKXezMDcoWIPgTkAAAAAjFeE6AAAAEMUixvqyAzM/fkX/iz22NI9zIscKvXaWfgTAAAAACYQQnQAAIB+ZC38mWjL0hGIysix8KfXac3oYc7CnwAAAAAwGRCiAwAAJJgLf8bU1p1ZZR5VLN/CnxktWcqLHHI5CMwBAAAAYLIhRAcAAFNWTzimNn801cO8zZ974U+71aKyInsqMC/zOeR1WeljDgAAAABTACE6AACYEiLReKK6PKr2RJV5MMfCn9aMhT/LEpXmLPwJAAAAAFMXIToAAJh0zIU/I1ltWbp78i/8mdmWpYSFPwEAAAAAGQjRAQDAhBY3DHUFoqm2LG3dEXUG8yz86bKp3GdP9TAv89llt9HHHAAAAACQHyE6AACYMAzDkD8US4TlZpV5hz+iWN+uLHI5rL0Ccxb+BAAAAAAMHSH6FBOJxtUeiAw4LkfxXp6Bgx45Ykb8GQd5wLF/pYM3+H+vkXzOAnxFJsO/VYEmN6JPO8InXCG+JIX6dxisQU1vXJ9LI/ufNW5I3T0xdfij6ghEFY3lXvizxGdTqdeuEq9dpT673I7shT9jRlyBHD3QAQAAAGCq8zhYB6o/hOhTTFN7jzbWdxV6GgAADFskFteujoAa2vxqbPeroS2g1u6ecX0BDQAAAADGs3f+baW8TqLifPjKTDEWWeQPR0f0mMYIlnSOdEX14Gc2yNrKQQwb6RBn8F/esa/6Helq3sFWt4/k8478OTeC/x9G/Os72OctwP/pwR5vBP/BCvX9ZiTf6VO4r+8gjzeYGQ5ySKu/xwzN2wJq6gwqNt7fTgAAAAAAmDQI0aeY2dPcuuD4qkJPAwAAAAAAAMA44XHYCj2FcY0QfYqxWCy8NQMAAAAAAAAABsla6AkAAAAAAAAAADBeEaIDAAAAAAAAAJAHIToAAAAAAAAAAHkQogMAAAAAAAAAkAchOgAAAAAAAAAAeRCiAwAAAAAAAACQByE6AAAAAAAAAAB5EKIDAAAAAAAAAJAHIToAAAAAAAAAAHkQogMAAAAAAAAAkAchOgAAAAAAAAAAeRCiAwAAAAAAAACQByE6AAAAAAAAAAB5EKIDAAAAAAAAAJAHIToAAAAAAAAAAHnYCz2BsWYYhiSps7OzwDMBAAAAAAAAABRKMiNOZsb5TLkQvaurS5JUW1tb4JkAAAAAAAAAAAqtq6tLpaWlee+3GAPF7JNMPB7X7t27VVxcLIvFUujpYBLp7OxUbW2tGhsbVVJSUujpAP3ifMVEwvmKiYTzFRMJ5ysmEs5XTCScr5hIpvr5ahiGurq6NHPmTFmt+TufT7lKdKvVqtmzZxd6GpjESkpKpuQ3HUxMnK+YSDhfMZFwvmIi4XzFRML5iomE8xUTyVQ+X/urQE9iYVEAAAAAAAAAAPIgRAcAAAAAAAAAIA9CdGCEuFwu/b//9//kcrkKPRVgQJyvmEg4XzGRcL5iIuF8xUTC+YqJhPMVEwnn6+BMuYVFAQAAAAAAAAAYLCrRAQAAAAAAAADIgxAdAAAAAAAAAIA8CNEBAAAAAAAAAMiDEB0YwK5du/TZz35W06ZNk8fj0dKlS7Vhw4bU/YZh6F//9V9VU1Mjj8ej008/XR9++GHWMfbv369LLrlEJSUlKisr0xVXXKHu7u6xfimY5GKxmL73ve9p/vz58ng8WrBggf793/9dmUtfcL6iUJ577jl98pOf1MyZM2WxWPTwww9n3T9S5+abb76pj370o3K73aqtrdWtt9462i8Nk1B/52skEtENN9ygpUuXyufzaebMmbrsssu0e/furGNwvmKsDPT9NdOXv/xlWSwW/fjHP87az/mKsTKY8/Xdd9/VOeeco9LSUvl8Ph177LFqaGhI3d/T06Mrr7xS06ZNU1FRkT71qU+ppaUl6xgNDQ06++yz5fV6VVlZqW9961uKRqOj/fIwiQx0rnZ3d+uqq67S7Nmz5fF4dNhhh+nuu+/OGsO5irGyatUqHXvssSouLlZlZaXOO+88vf/++1ljRup8XLNmjY4++mi5XC7V1dVp9erVo/3yxg1CdKAfbW1tOuGEE+RwOPS3v/1N77zzjm6//XaVl5enxtx66636yU9+orvvvlsvv/yyfD6fVq5cqZ6entSYSy65RG+//baefPJJPfbYY3ruuef0pS99qRAvCZPYLbfcol/84hf66U9/qnfffVe33HKLbr31Vt11112pMZyvKBS/368jjjhCP/vZz3LePxLnZmdnp8444wzNnTtXGzdu1G233abvf//7+uUvfznqrw+TS3/nayAQ0Guvvabvfe97eu211/Tggw/q/fff1znnnJM1jvMVY2Wg769JDz30kF566SXNnDmzz32crxgrA52vW7Zs0YknnqhDDjlEa9as0Ztvvqnvfe97crvdqTHf+MY39Oc//1kPPPCA1q5dq927d+uCCy5I3R+LxXT22WcrHA5r3bp1+u1vf6vVq1frX//1X0f99WHyGOhcvfbaa/X444/r97//vd59911dc801uuqqq/Too4+mxnCuYqysXbtWV155pV566SU9+eSTikQiOuOMM+T3+1NjRuJ83LZtm84++2ydeuqp2rRpk6655hp98Ytf1BNPPDGmr7dgDAB53XDDDcaJJ56Y9/54PG5UV1cbt912W2pfe3u74XK5jP/5n/8xDMMw3nnnHUOS8eqrr6bG/O1vfzMsFouxa9eu0Zs8ppyzzz7b+MIXvpC174ILLjAuueQSwzA4XzF+SDIeeuih1O2ROjd//vOfG+Xl5UYoFEqNueGGG4xFixaN8ivCZNb7fM3llVdeMSQZO3bsMAyD8xWFk+983blzpzFr1ixj8+bNxty5c43//M//TN3H+YpCyXW+XnTRRcZnP/vZvI9pb283HA6H8cADD6T2vfvuu4YkY/369YZhGMZf//pXw2q1Gs3Nzakxv/jFL4ySkpKscxgYrFzn6uLFi41/+7d/y9p39NFHG//yL/9iGAbnKgprz549hiRj7dq1hmGM3Pl4/fXXG4sXL856rosuushYuXLlaL+kcYFKdKAfjz76qJYtW6ZPf/rTqqys1FFHHaX//u//Tt2/bds2NTc36/TTT0/tKy0t1Uc+8hGtX79ekrR+/XqVlZVp2bJlqTGnn366rFarXn755bF7MZj0VqxYoaeffloffPCBJOmNN97QCy+8oLPOOksS5yvGr5E6N9evX6+TTjpJTqczNWblypV6//331dbWNkavBlNRR0eHLBaLysrKJHG+YnyJx+O69NJL9a1vfUuLFy/ucz/nK8aLeDyuv/zlLzr44IO1cuVKVVZW6iMf+UhWG42NGzcqEolk/c5wyCGHaM6cOVm/MyxdulRVVVWpMStXrlRnZ6fefvvtMXs9mNxWrFihRx99VLt27ZJhGHr22Wf1wQcf6IwzzpDEuYrC6ujokCRVVFRIGrnzcf369VnHSI5JHmOyI0QH+rF161b94he/0MKFC/XEE0/oK1/5ir7+9a/rt7/9rSSpublZkrK+ySRvJ+9rbm5WZWVl1v12u10VFRWpMcBI+Pa3v63PfOYzOuSQQ+RwOHTUUUfpmmuu0SWXXCKJ8xXj10idm83NzTmPkfkcwEjr6enRDTfcoIsvvlglJSWSOF8xvtxyyy2y2+36+te/nvN+zleMF3v27FF3d7duvvlmnXnmmfr73/+u888/XxdccIHWrl0ryTzfnE5n6qJlUu/fGThfMdruuusuHXbYYZo9e7acTqfOPPNM/exnP9NJJ50kiXMVhROPx3XNNdfohBNO0JIlSySN3PmYb0xnZ6eCweBovJxxxV7oCQDjWTwe17Jly3TTTTdJko466iht3rxZd999ty6//PICzw7I9sc//lH33Xef7r//fi1evDjVo2zmzJmcrwAwCiKRiC688EIZhqFf/OIXhZ4O0MfGjRt155136rXXXpPFYin0dIB+xeNxSdK5556rb3zjG5KkI488UuvWrdPdd9+tk08+uZDTA7Lcddddeumll/Too49q7ty5eu6553TllVdq5syZfSp1gbF05ZVXavPmzXrhhRcKPZVJh0p0oB81NTU67LDDsvYdeuihqdXhq6urJanPisYtLS2p+6qrq7Vnz56s+6PRqPbv358aA4yEb33rW6lq9KVLl+rSSy/VN77xDa1atUoS5yvGr5E6N6urq3MeI/M5gJGSDNB37NihJ598MlWFLnG+Yvx4/vnntWfPHs2ZM0d2u112u107duzQddddp3nz5knifMX4MX36dNnt9gH//gqHw2pvb88a0/t3Bs5XjKZgMKjvfOc7uuOOO/TJT35Shx9+uK666ipddNFF+tGPfiSJcxWFcdVVV+mxxx7Ts88+q9mzZ6f2j9T5mG9MSUmJPB7PSL+ccYcQHejHCSecoPfffz9r3wcffKC5c+dKkubPn6/q6mo9/fTTqfs7Ozv18ssva/ny5ZKk5cuXq729XRs3bkyNeeaZZxSPx/WRj3xkDF4FpopAICCrNfvbus1mS1X1cL5ivBqpc3P58uV67rnnFIlEUmOefPJJLVq0SOXl5WP0ajAVJAP0Dz/8UE899ZSmTZuWdT/nK8aLSy+9VG+++aY2bdqU2mbOnKlvfetbeuKJJyRxvmL8cDqdOvbYY/v9++uYY46Rw+HI+p3h/fffV0NDQ9bvDG+99VbWxaHkxc7eAT0wHJFIRJFIpN+/vThXMZYMw9BVV12lhx56SM8884zmz5+fdf9InY/Lly/POkZyTPIYk16BFzYFxrVXXnnFsNvtxg9/+EPjww8/NO677z7D6/Uav//971Njbr75ZqOsrMx45JFHjDfffNM499xzjfnz5xvBYDA15swzzzSOOuoo4+WXXzZeeOEFY+HChcbFF19ciJeESezyyy83Zs2aZTz22GPGtm3bjAcffNCYPn26cf3116fGcL6iULq6uozXX3/deP311w1Jxh133GG8/vrrxo4dOwzDGJlzs7293aiqqjIuvfRSY/PmzcYf/vAHw+v1Gv/1X/815q8XE1t/52s4HDbOOeccY/bs2camTZuMpqam1BYKhVLH4HzFWBno+2tvc+fONf7zP/8zax/nK8bKQOfrgw8+aDgcDuOXv/yl8eGHHxp33XWXYbPZjOeffz51jC9/+cvGnDlzjGeeecbYsGGDsXz5cmP58uWp+6PRqLFkyRLjjDPOMDZt2mQ8/vjjxowZM4wbb7xxzF8vJq6BztWTTz7ZWLx4sfHss88aW7duNe655x7D7XYbP//5z1PH4FzFWPnKV75ilJaWGmvWrMn63TQQCKTGjMT5uHXrVsPr9Rrf+ta3jHfffdf42c9+ZthsNuPxxx8f09dbKITowAD+/Oc/G0uWLDFcLpdxyCGHGL/85S+z7o/H48b3vvc9o6qqynC5XMZpp51mvP/++1lj9u3bZ1x88cVGUVGRUVJSYnz+8583urq6xvJlYAro7Ow0rr76amPOnDmG2+02DjroIONf/uVfskIdzlcUyrPPPmtI6rNdfvnlhmGM3Ln5xhtvGCeeeKLhcrmMWbNmGTfffPNYvURMIv2dr9u2bct5nyTj2WefTR2D8xVjZaDvr73lCtE5XzFWBnO+/vrXvzbq6uoMt9ttHHHEEcbDDz+cdYxgMGh89atfNcrLyw2v12ucf/75RlNTU9aY7du3G2eddZbh8XiM6dOnG9ddd50RiUTG4iVikhjoXG1qajI+97nPGTNnzjTcbrexaNEi4/bbbzfi8XjqGJyrGCv5fje95557UmNG6nx89tlnjSOPPNJwOp3GQQcdlPUck53FMAxjtKrcAQAAAAAAAACYyOiJDgAAAAAAAABAHoToAAAAAAAAAADkQYgOAAAAAAAAAEAehOgAAAAAAAAAAORBiA4AAAAAAAAAQB6E6AAAAAAAAAAA5EGIDgAAAAAAAABAHoToAAAAAAAAAADkQYgOAAAAIGXevHn68Y9/XOhpAAAAAOMGIToAAABQIJ/73Od03nnnSZJOOeUUXXPNNWP23KtXr1ZZWVmf/a+++qq+9KUvjdk8AAAAgPHOXugJAAAAABg54XBYTqdz2I+fMWPGCM4GAAAAmPioRAcAAAAK7HOf+5zWrl2rO++8UxaLRRaLRdu3b5ckbd68WWeddZaKiopUVVWlSy+9VHv37k099pRTTtFVV12la665RtOnT9fKlSslSXfccYeWLl0qn8+n2tpaffWrX1V3d7ckac2aNfr85z+vjo6O1PN9//vfl9S3nUtDQ4POPfdcFRUVqaSkRBdeeKFaWlpS93//+9/XkUceqd/97neaN2+eSktL9ZnPfEZdXV2pMX/605+0dOlSeTweTZs2Taeffrr8fv8ofTUBAACAkUWIDgAAABTYnXfeqeXLl+uf/umf1NTUpKamJtXW1qq9vV0f+9jHdNRRR2nDhg16/PHH1dLSogsvvDDr8b/97W/ldDr14osv6u6775YkWa1W/eQnP9Hbb7+t3/72t3rmmWd0/fXXS5JWrFihH//4xyopKUk93ze/+c0+84rH4zr33HO1f/9+rV27Vk8++aS2bt2qiy66KGvcli1b9PDDD+uxxx7TY489prVr1+rmm2+WJDU1Neniiy/WF77wBb377rtas2aNLrjgAhmGMRpfSgAAAGDE0c4FAAAAKLDS0lI5nU55vV5VV1en9v/0pz/VUUcdpZtuuim17ze/+Y1qa2v1wQcf6OCDD5YkLVy4ULfeemvWMTP7q8+bN0//8R//oS9/+cv6+c9/LqfTqdLSUlkslqzn6+3pp5/WW2+9pW3btqm2tlaSdO+992rx4sV69dVXdeyxx0oyw/bVq1eruLhYknTppZfq6aef1g9/+EM1NTUpGo3qggsu0Ny5cyVJS5cuPYCvFgAAADC2qEQHAAAAxqk33nhDzz77rIqKilLbIYccIsms/k465phj+jz2qaee0mmnnaZZs2apuLhYl156qfbt26dAIDDo53/33XdVW1ubCtAl6bDDDlNZWZnefffd1L558+alAnRJqqmp0Z49eyRJRxxxhE477TQtXbpUn/70p/Xf//3famtrG/wXAQAAACgwQnQAAABgnOru7tYnP/lJbdq0KWv78MMPddJJJ6XG+Xy+rMdt375dn/jEJ3T44Yfr//7v/7Rx40b97Gc/k2QuPDrSHA5H1m2LxaJ4PC5JstlsevLJJ/W3v/1Nhx12mO666y4tWrRI27ZtG/F5AAAAAKOBEB0AAAAYB5xOp2KxWNa+o48+Wm+//bbmzZunurq6rK13cJ5p48aNisfjuv3223X88cfr4IMP1u7duwd8vt4OPfRQNTY2qrGxMbXvnXfeUXt7uw477LBBvzaLxaITTjhBP/jBD/T666/L6XTqoYceGvTjAQAAgEIiRAcAAADGgXnz5unll1/W9u3btXfvXsXjcV155ZXav3+/Lr74Yr366qvasmWLnnjiCX3+85/vNwCvq6tTJBLRXXfdpa1bt+p3v/tdasHRzOfr7u7W008/rb179+Zs83L66adr6dKluuSSS/Taa6/plVde0WWXXaaTTz5Zy5YtG9Trevnll3XTTTdpw4YNamho0IMPPqjW1lYdeuihQ/sCAQAAAAVCiA4AAACMA9/85jdls9l02GGHacaMGWpoaNDMmTP14osvKhaL6YwzztDSpUt1zTXXqKysTFZr/l/ljzjiCN1xxx265ZZbtGTJEt13331atWpV1pgVK1boy1/+si666CLNmDGjz8KkkllB/sgjj6i8vFwnnXSSTj/9dB100EH63//930G/rpKSEj333HP6+Mc/roMPPljf/e53dfvtt+uss84a/BcHAAAAKCCLYRhGoScBAAAAAAAAAMB4RCU6AAAAAAAAAAB5EKIDAAAAAAAAAJAHIToAAAAAAAAAAHkQogMAAAAAAAAAkAchOgAAAAAAAAAAeRCiAwAAAAAAAACQByE6AAAAAAAAAAB5EKIDAAAAAAAAAJAHIToAAAAAAAAAAHkQogMAAAAAAAAAkAchOgAAAAAAAAAAeRCiAwAAAAAAAACQx/8PddlbFJktbmMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -80672,19 +80672,19 @@ { "cell_type": "code", "execution_count": 14, - "id": "eee04c1c", + "id": "5878397a", "metadata": { "execution": { - "iopub.execute_input": "2024-11-07T15:49:37.423076Z", - "iopub.status.busy": "2024-11-07T15:49:37.422632Z", - "iopub.status.idle": "2024-11-07T15:49:38.710105Z", - "shell.execute_reply": "2024-11-07T15:49:38.709442Z" + "iopub.execute_input": "2024-11-07T16:12:41.045700Z", + "iopub.status.busy": "2024-11-07T16:12:41.045277Z", + "iopub.status.idle": "2024-11-07T16:12:42.360858Z", + "shell.execute_reply": "2024-11-07T16:12:42.360124Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAF2CAYAAADnZcccAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVzUlEQVR4nO3deXxU9b3/8ffMJDPZA4EsBAMJARFRENEgCm5EIiiItFXQVtRepVbcsG69FQTpj1u9KlK5WtsqelvFHXdcqAoqYBXQukABI0SWsCYhO5k5vz+4jESS8z2TTJZJXs/HYx4P5ny/8z3fnAyf+eTMOd+Py7IsSwAAAAAihrutJwAAAAAgNCTxAAAAQIQhiQcAAAAiDEk8AAAAEGFI4gEAAIAIQxIPAAAARBiSeAAAACDCkMQDAAAAEYYkHgAAAIgwJPEAAABoEdnZ2br88suDz99//325XC69//77YduHy+XSXXfdFbbxIgVJfARbuHChXC5X8BEVFaWePXvq8ssv19atW9t6egDa0OGxwe4Rzg/ScPj444911113qaSkpK2nAnQIP84VYmJidPTRR2vatGkqLi5u6+k59sYbb3TKRN1OVFtPAM03e/Zs5eTkqLq6WitXrtTChQv14Ycf6ssvv1RMTExbTw9AG/jf//3fes+ffPJJvfPOO0dsHzBgQGtOy+jjjz/WrFmzdPnll6tLly5tPR2gwzg8V/jwww/18MMP64033tCXX36puLi4VpvH6aefrqqqKnm93pBe98Ybb2jBggUNJvJVVVWKiup8KW3n+4k7oDFjxuikk06SJP3Hf/yHunfvrj/84Q965ZVXdNFFF7Xx7AC0hZ///Of1nq9cuVLvvPPOEdubwrIsVVdXKzY2ttljAWgdP84VunXrpvvvv18vv/yyJk+efET/iooKxcfHh30ebrc77CcYO+sJSy6n6YBGjhwpSdq0aZMkqba2VjNmzNDQoUOVnJys+Ph4jRw5Uu+9916915144omaOHFivW3HH3+8XC6Xvvjii+C2Z555Ri6XS998800L/yQAWtLjjz+us88+W2lpafL5fDr22GP18MMPH9EvOztb559/vt566y2ddNJJio2N1Z/+9CdJ0ubNmzV+/HjFx8crLS1NN910k956660GL9VZtWqVzj33XCUnJysuLk5nnHGGPvroo2D7XXfdpVtuuUWSlJOTE/z6/7vvvmuxYwB0VmeffbYkqbCwUJdffrkSEhK0adMmjR07VomJibr00kslSYFAQPPmzdPAgQMVExOj9PR0TZ06Vfv27as3nmVZmjNnjo466ijFxcXprLPO0ldffXXEfhu7Jn7VqlUaO3asunbtqvj4eA0aNEgPPvigJOnyyy/XggULJNW/VPCQhq6JX7NmjcaMGaOkpCQlJCRo1KhRWrlyZb0+hy41+uijjzR9+nSlpqYqPj5eF154oXbt2hX6QW1lnInvgA594HXt2lWSVFZWpr/85S+aPHmyrrrqKu3fv19//etfVVBQoE8++UQnnHCCpIPJ/9NPPx0cZ+/evfrqq6/kdru1fPlyDRo0SJK0fPlypaamtruv4QGE5uGHH9bAgQM1fvx4RUVF6dVXX9Wvf/1rBQIBXXvttfX6rl+/XpMnT9bUqVN11VVXqX///qqoqNDZZ5+t7du364YbblBGRoaeeuqpI04QSNI//vEPjRkzRkOHDtXMmTPldruDf0QsX75ceXl5mjhxov7973/r6aef1gMPPKDu3btLklJTU1vleACdyaETfd26dZMk1dXVqaCgQCNGjNB///d/By+xmTp1qhYuXKgrrrhC119/vQoLC/XQQw9pzZo1+uijjxQdHS1JmjFjhubMmaOxY8dq7NixWr16tUaPHq3a2lrjXN555x2df/756tGjRzCWfPPNN3rttdd0ww03aOrUqdq2bVuDlwQ25KuvvtLIkSOVlJSkW2+9VdHR0frTn/6kM888Ux988IGGDRtWr/91112nrl27aubMmfruu+80b948TZs2Tc8880xIx7TVWYhYjz/+uCXJevfdd61du3ZZRUVF1vPPP2+lpqZaPp/PKioqsizLsurq6qyampp6r923b5+Vnp5uXXnllcFtzz33nCXJ+vrrry3LsqxXXnnF8vl81vjx462LL7442G/QoEHWhRde2Ao/IYBwufbaa60fh/zKysoj+hUUFFh9+vSpt613796WJGvJkiX1tt93332WJGvx4sXBbVVVVdYxxxxjSbLee+89y7IsKxAIWP369bMKCgqsQCBQb/85OTnWOeecE9x27733WpKswsLCpv6oAA7TUK6waNEiq1u3blZsbKz1/fffW1OmTLEkWbfffnu91y5fvtySZP3973+vt33JkiX1tu/cudPyer3WeeedV+//+G9/+1tLkjVlypTgtvfee69efKirq7NycnKs3r17W/v27au3n8PHaiiGHSLJmjlzZvD5hAkTLK/Xa23atCm4bdu2bVZiYqJ1+umnH3Fs8vPz6+3rpptusjwej1VSUtLg/toLLqfpAPLz85WamqqsrCz99Kc/VXx8vF555RUdddRRkiSPxxO8gSQQCGjv3r2qq6vTSSedpNWrVwfHOXQZzrJlyyQdPON+8skn65xzztHy5cslSSUlJfryyy+DfQFErsOvaS8tLdXu3bt1xhln6Ntvv1VpaWm9vjk5OSooKKi3bcmSJerZs6fGjx8f3BYTE6OrrrqqXr+1a9dqw4YNuuSSS7Rnzx7t3r1bu3fvVkVFhUaNGqVly5YpEAi0wE8I4JDDc4VJkyYpISFBL730knr27Bnsc80119R7zXPPPafk5GSdc845wf+3u3fv1tChQ5WQkBD81u3dd99VbW2trrvuunqXudx4443Gea1Zs0aFhYW68cYbj7iZ/fCxnPL7/Xr77bc1YcIE9enTJ7i9R48euuSSS/Thhx+qrKys3muuvvrqevsaOXKk/H6/Nm/eHPL+WxOX03QACxYs0NFHH63S0lI99thjWrZsmXw+X70+TzzxhO677z6tW7dOBw4cCG7PyckJ/js9PV39+vXT8uXLNXXqVC1fvlxnnXWWTj/9dF133XX69ttv9c033ygQCJDEAx3ARx99pJkzZ2rFihWqrKys11ZaWqrk5OTg88NjxSGbN29Wbm7uER+0ffv2rfd8w4YNkqQpU6Y0OpfS0tLgJYAAwu9QrhAVFaX09HT1799fbvcP53KjoqKCJ/8O2bBhg0pLS5WWltbgmDt37pSkYLLbr1+/eu2pqanG/9eHLus57rjjQvuBGrFr1y5VVlaqf//+R7QNGDBAgUBARUVFGjhwYHB7r1696vU7NOcfX/ff3pDEdwB5eXnBO84nTJigESNG6JJLLtH69euVkJCgv/3tb7r88ss1YcIE3XLLLUpLS5PH49HcuXOD/3kOGTFihJYuXaqqqip99tlnmjFjho477jh16dJFy5cv1zfffKOEhAQNGTKkLX5UAGGyadMmjRo1Ssccc4zuv/9+ZWVlyev16o033tADDzxwxJnx5qxEc2ise++9N3gPzo8lJCQ0eXwAZofnCg3x+Xz1knrp4P/dtLQ0/f3vf2/wNR3lfhWPx9PgdsuyWnkmoSGJ72AOJednnXWWHnroId1+++16/vnn1adPH7344ov1zpjNnDnziNePHDlSjz/+uBYtWiS/369TTz1VbrdbI0aMCCbxp556aqNveACR4dVXX1VNTY1eeeWVemehGroptTG9e/fW119/Lcuy6sWWjRs31uuXm5srSUpKSlJ+fr7tmE35+hxAy8jNzdW7776r0047zfYP+d69e0s6eOb+8EtYdu3aZTybfSg+fPnll7bxwWlsSE1NVVxcnNavX39E27p16+R2u5WVleVorPaOa+I7oDPPPFN5eXmaN2+eqqurgwn34X9Rrlq1SitWrDjitYcuk/nDH/6gQYMGBb9OHzlypJYuXapPP/2US2mADqChuFBaWqrHH3/c8RgFBQXaunWrXnnlleC26upq/fnPf67Xb+jQocrNzdV///d/q7y8/IhxDl/K7dC61FRsBdreRRddJL/fr7vvvvuItrq6uuD/0/z8fEVHR+uPf/xjvZgyb9484z5OPPFE5eTkaN68eUf8vz98LKexwePxaPTo0Xr55ZfrLU9bXFysp556SiNGjFBSUpJxXpGAM/Ed1C233KKf/exnWrhwoc4//3y9+OKLuvDCC3XeeeepsLBQjzzyiI499tgjPlD79u2rjIwMrV+/Xtddd11w++mnn67bbrtNkkjigQ5g9OjR8nq9GjdunKZOnary8nL9+c9/VlpamrZv3+5ojKlTp+qhhx7S5MmTdcMNN6hHjx76+9//Hiy8cujMmdvt1l/+8heNGTNGAwcO1BVXXKGePXtq69ateu+995SUlKRXX31V0sGEX5L+8z//U5MmTVJ0dLTGjRvXIkVnANg744wzNHXqVM2dO1dr167V6NGjFR0drQ0bNui5557Tgw8+qJ/+9KdKTU3Vb37zG82dO1fnn3++xo4dqzVr1ujNN98MLhXbGLfbrYcffljjxo3TCSecoCuuuEI9evTQunXr9NVXX+mtt96S9ENsuP7661VQUCCPx6NJkyY1OOacOXP0zjvvaMSIEfr1r3+tqKgo/elPf1JNTY3uueee8B6kttSWS+OgeQ4tjfTPf/7ziDa/32/l5uZaubm5Vl1dnfX//t//s3r37m35fD5ryJAh1muvvWZNmTLF6t279xGv/dnPfmZJsp555pngttraWisuLs7yer1WVVVVS/5YAFpAQ8uzvfLKK9agQYOsmJgYKzs72/rDH/5gPfbYY0cs8di7d2/rvPPOa3Dcb7/91jrvvPOs2NhYKzU11br55putF154wZJkrVy5sl7fNWvWWBMnTrS6detm+Xw+q3fv3tZFF11kLV26tF6/u+++2+rZs6fldrtZbhJoJrtc4ZApU6ZY8fHxjbY/+uij1tChQ63Y2FgrMTHROv74461bb73V2rZtW7CP3++3Zs2aZfXo0cOKjY21zjzzTOvLL7+0evfubbvE5CEffvihdc4551iJiYlWfHy8NWjQIOuPf/xjsL2urs667rrrrNTUVMvlctWLZ/rREpOWZVmrV6+2CgoKrISEBCsuLs4666yzrI8//tjRsWlsju2Ny7La+VX7AICIMm/ePN100036/vvv6y1fBwAIH5J4AECTVVVV1bvhrbq6WkOGDJHf79e///3vNpwZAHRsXBMPAGiyiRMnqlevXjrhhBNUWlqqv/3tb1q3bl2jS9IBAMKDJB4A0GQFBQX6y1/+or///e/y+/069thjtWjRIl188cVtPTUA6NC4nAYAAACIMKwTDwAAAEQYkngAAAAgwnT4a+IDgYC2bdumxMREynnDyLIs7d+/X5mZmXK7+RsXxBCEhhiChhBHEArHcaTNVqgPwUMPPRQsVJSXl2etWrXK8WuLioosSTx4hPQoKipqwXc02kJT4wgxhEdTHsSQjodchEdrP0xxpN2fiX/mmWc0ffp0PfLIIxo2bJjmzZungoICrV+/XmlpacbXJyYmSpIG/eROeaJjGu0Xs6/OdpwDceYzKtGVAWOfPcdGG/vEb7ds25MXfWIco3RSnrGP6WeWpB3D7d8iCZuNQ8hXYj4ulekeB+PYHxdPjXk/fp/979F/oFpfvHB38H2DjqE5ceTQe2GExipK5v+/6NzqdEAf6g1iSAcTrlxk6ltj5Y1vPI4MiN1qO86ykv6hTbwZSmrjbNtzE3YZx4h2+Y19Xtl0nLHPgWr72GtVmdNZl9/8DYh3lzkXCfjsc5G6RHMuIsNUAtXV2vqfvzfGkXafxN9///266qqrdMUVV0iSHnnkEb3++ut67LHHdPvttxtff+hrK090jDzexpP4qGj7hNaKNifxUdHmX5zHZ04CPF77N0iUy8kYjf+swXEMP7MkuWPs3yIer3EIh8fF/B/HeFwCDv7jeJ19vc3XnR1Lc+LIofdClKId/d9DJ/d/YYoY0rGEKxfxxkfLl9B4HImNtf/M9dY5+NANk+ga+33Z/RzBMVzmz1xPnDlf8Rtir+UgnXWSxDvJRRRjn4u4Y5ufxAe7GeJIu75gr7a2Vp999pny8/OD29xut/Lz87VixYo2nBmASEEcAdAcxBC0V+36TPzu3bvl9/uVnp5eb3t6errWrVvX4GtqampUU1MTfF5WVtaicwTQvoUaR4ghAA5HLoL2ql2fiW+KuXPnKjk5OfjIyspq6ykBiCDEEADNRRxBa2jXSXz37t3l8XhUXFxcb3txcbEyMjIafM0dd9yh0tLS4KOoqKg1pgqgnQo1jhBDAByOXATtVbtO4r1er4YOHaqlS5cGtwUCAS1dulTDhw9v8DU+n09JSUn1HgA6r1DjCDEEwOHIRdBetetr4iVp+vTpmjJlik466STl5eVp3rx5qqioCN4hDgAmxBEAzUEMQXvU7pP4iy++WLt27dKMGTO0Y8cOnXDCCVqyZMkRN5iYdHvvO0W5bZZLiou1fX3FgFTjPnx7aox90v9pXnrIu7vCtn3vLxr+y/9wXTbYjyFJdXHm5aEyP7RfhjK2aL9xjO8mpBj7eMyHTpU97NsTC81fLKWt3GfbXud3MBFEnHDFEQCdU7hiyDdlGYr2N56L/DLlI9vXf1V1lHEf/yrJNPaJcptzkR3lhjXK3eY14OOiao19BmVuM/b557oc2/bjB2wxjnFB2lpjn39Vmo/v95VdbNsHJm03jlFY2c22/UBFrZxcgNXuk3hJmjZtmqZNm9bW0wAQwYgjAJqDGIL2pl1fEw8AAADgSCTxAAAAQIQhiQcAAAAiDEk8AAAAEGFI4gEAAIAIQxIPAAAARJiIWGKyNdR9+51tuyfbfk1PSYraWWbsUz7UvKZsdbdk23Yna8DXdPMZ+8R/Zl5XtWJoL9v22u7xxjGSCi1jn6hq85q1pX08tu37c8z7kbratvprq6UvHQwDAECIav0eBfyNp15Tvr7M9vXRDtZ39zjoc0P2UmOfV/ecYNt+wDKfBz4mvtjY5/VtA4190pbZ17VZn5hmHKMw2VzvJzmqytinV9e9xj4mAxPs15Kv1gFH43AmHgAAAIgwJPEAAABAhCGJBwAAACIMSTwAAAAQYUjiAQAAgAhDEg8AAABEGJJ4AAAAIMKQxAMAAAARptMUe6rrlSpFxTTaXnxRru3rffucFBIyF4RKKDIXEqiLsy9qYGqXpKoU86/2wMhsY59dJ9r/nZf79D7jGF0qzUULyrNijX1MMj+sa/YYdQeaPwYAAA1JiK5RdHTj+cTJKZttXx/t9hv3UVhpzkVSPOXGPjUB+zyiZ2yJcYxot/kztWxphrFP/KSdtu3Dutq3S1Iv3x5jny/Ks4x9hnfdaNse4zLnPFvr7AtPVnmd5SKciQcAAAAiDEk8AAAAEGFI4gEAAIAIQxIPAAAARBiSeAAAACDCNDmJr6mpUU1NTTjnAgAAAMCBkJL4d955R2PHjlXXrl0VFxenuLg4de3aVWPHjtW7777bUnMEAAAAcBjHSfwTTzyhsWPHKjk5WQ888IBee+01vfbaa3rggQfUpUsXjR07Vv/7v//bknMFAAAAoBCKPf3+97/XvHnzdO211x7Rdvnll2vEiBGaPXu2fvGLX4R1guFSmhsvj7fxYk/dvrS/NKikr9e4j+puDg6ngz4VPTz2QxjmKkkpn5uLMFVlJRr7dP3a/u+82u7xxjH2HOcz9umyyVwcIevNUtv2ojEpxjGSv7UvlFF3gNtEAAAtIym6Wl5voNH2o2N32L6++ECycR+VdeZ85bva7sY+XaLti1OmRFUYx3jqkQJjn5qjzMU0u3oMn90B+7xJkg5Y5j6xnlpjn6d2DbNt7xFTZhxj2Q77AqP+ihpJnxnHcZyxbNmyRfn5+Y22jxo1St9//73T4QAAAAA0keMkfuDAgfrrX//aaPtjjz2mY489NiyTAgAAANA4x5fT3HfffTr//PO1ZMkS5efnKz09XZJUXFyspUuX6ttvv9Xrr7/eYhMFAAAAcJDjJP7MM8/Ul19+qYcfflgrV67Ujh0Hr9vKyMjQmDFj9Ktf/UrZ2dktNU8AAAAA/8dxEi9J2dnZ+sMf/tBScwEAAADgAEtxAAAAABGGJB4AAACIMCTxAAAAQIQJ6Zr41nbXXXdp1qxZ9bb1799f69atC3ksT01AUYHGCyz4Y+3/nsl4d7txHzvyexj7RNnXTpAk1cXat3t3mwsslPU3F4So7tr8v+GKTzYXcqrIrjP26fnsFmOfuux02/buX5oLRpm4DjT+HkFkCmccAdA5hSuOpPrK5fNFN3keyZ5KYx+v274wkiS9vfc4Y5+A5bJtd1IYKeVrc3HKxO/NRZhcH6batn/6c3PxytO6bjT2qfKbC2WV1MbZtjsptjU60/59U1N+wEGppyaciZ89e7YqK498E1VVVWn27NmhDmc0cOBAbd++Pfj48MMPw74PAB0bcQRAcxFH0N6EnMTPmjVL5eXlR2yvrKw84q/UcIiKilJGRkbw0b27uVQwAByOOAKguYgjaG9CTuIty5LLdeRXLJ9//rlSUlLCMqnDbdiwQZmZmerTp48uvfRSbdlif9lFTU2NysrK6j0AdG6hxBFiCICGEEfQ3jhO4rt27aqUlBS5XC4dffTRSklJCT6Sk5N1zjnn6KKLLgrr5IYNG6aFCxdqyZIlevjhh1VYWKiRI0dq//79jb5m7ty5Sk5ODj6ysrLCOicAkSXUOEIMAfBjxBG0R45vbJ03b54sy9KVV16pWbNmKTn5hxsnvV6vsrOzNXz48LBObsyYMcF/Dxo0SMOGDVPv3r317LPP6pe//GWDr7njjjs0ffr04POysjL+8wCdWKhxhBgC4MeII2iPHCfxU6ZMkSTl5OTo1FNPVXR00++ubqouXbro6KOP1saNjd9h7PP55POZV0wB0DmZ4ggxBIAJcQTtQcjXxJ9xxhlyu9164YUXNGfOHM2ZM0cvvfSS/H7zkkbNVV5erk2bNqlHD/NSjgDQEOIIgOYijqA9CHmd+I0bN2rs2LHaunWr+vfvL+ngtV9ZWVl6/fXXlZubG7bJ/eY3v9G4cePUu3dvbdu2TTNnzpTH49HkyZNDHiu6MqCo6KavAV4xwH6NUklKW7nP2MddXm3sU3N+pm17IM68BmmXz4qNferSksxz6WZ/JiFxq3EIxW8zv80qhvYy9vFU2f/+dh9n/nYoHGvJI7KEM44A6JzCFUcKK7opWubP8MZ8WNzH2CcrscTYx7QGvCSt3drTtn3FfnO+d2zhLmOfmhMzjH0OJNmfc67bZSiwI2lVaY6xzxld/m3s8215N9v2gtT1xjHe29Pftv1AhXkNfqkJSfz111+v3NxcrVy5MrgazZ49e/Tzn/9c119/vV5//fVQh2zU999/r8mTJ2vPnj1KTU3ViBEjtHLlSqWmmhNqAJCIIwCajziC9ijkJP6DDz6ol8BLUrdu3fRf//VfOu2008I6uUWLFoV1PACdD3EEQHMRR9AehXxNvM/na3BJpfLycnm9Tf+KCAAAAIAzISfx559/vq6++mqtWrVKlmXJsiytXLlSv/rVrzR+/PiWmCMAAACAw4ScxM+fP1+5ubkaPny4YmJiFBMTo9NOO019+/bVgw8+2BJzBAAAAHCYkK+J79Kli15++WVt2LBB69atkyQNGDBAffv2DfvkAAAAABwp5CT+kH79+qlfv37hnAsAAAAAB0JO4v1+vxYuXKilS5dq586dCgTqr939j3/8I2yTAwAAAHCkkJP4G264QQsXLtR5552n4447Ti6XuWBAe7Dn2Gh5fI0XAzIVAapKMR+q4qEpxj59/rbN2MdTbdm2l2eZixrExJkLH+05zlwSussm++PipMBSzw/KjX2c/Ez7e9r/DuK32R83yVwwyqprekEwAADsXJz2T8Ulehptd8v+M6jkgIPPygMxxj4BmXO36Gi/bXvcP82f/6oyF7iMf2GVsU9g5BDb9gNx5p+510hzQc5Sf5yxz+i0r23bvyg/yjhGRsyRqzwerrbOWWHKkJP4RYsW6dlnn9XYsWNDfSkAAACAMAh5dRqv18tNrAAAAEAbCjmJv/nmm/Xggw/KssyXLgAAAAAIP0eX00ycOLHe83/84x968803NXDgQEVH178m6sUXXwzf7AAAAAAcwVESn5ycXO/5hRde2CKTAQAAAGDmKIl//PHHW3oeAAAAABwK+Zr4qqoqVVZWBp9v3rxZ8+bN09tvvx3WiQEAAABoWMhJ/AUXXKAnn3xSklRSUqK8vDzdd999uuCCC/Twww+HfYIAAAAA6gt5nfjVq1frgQcekCQ9//zzysjI0Jo1a/TCCy9oxowZuuaaa8I+yXBI+s6vKEPhAjt15voKjlQMSG32GDF76ox9is7xGvskFja/OFL6P2uMYxTnJRj7ODm+poJcpmJQklR8sn2BK3+NJX1gngsAAKH6z7cvljum8cJE2cfZF4SMj6417iM7fo+xz2/S3jP2uWD3f9i291iy1TiG1TXJ2GffuX2MffyG2pQlx5oLNV6bssLYJ9ltzp3iDH0GbxhuHKNyXRfb9kB1taRnjeOEfCa+srJSiYmJkqS3335bEydOlNvt1imnnKLNmzeHOhwAAACAEIWcxPft21eLFy9WUVGR3nrrLY0ePVqStHPnTiUlmf/iAgAAANA8ISfxM2bM0G9+8xtlZ2crLy9Pw4cf/Nrg7bff1pAhQ8I+QQAAAAD1hXxN/E9/+lONGDFC27dv1+DBg4PbR40axfrxAAAAQCsIOYmXpIyMDGVkZKioqEiSlJWVpby8vLBODAAAAEDDQr6cpq6uTnfeeaeSk5OVnZ2t7OxsJScn63e/+50OHLBfPQQAAABA84V8Jv66667Tiy++qHvuuSd4PfyKFSt01113ac+ePawVDwAAALSwkJP4p556SosWLdKYMWOC2wYNGqSsrCxNnjyZJB4AAABoYSEn8T6fT9nZ2Udsz8nJkddrXiS/rdR0cavO2/jVQ9Vd7a8sqsxwGfeRvXivsU9VVqKxT9rKfbbt301IMY7hLTF2UdpK83y3n2m/r/jt5gJanmpzUan47eZCDSW50bbtvn3m/VRm2Lc3vRwYAAD2unztksdrk0+8Yl8Q0jvLXI/n/2UsN/a5aMNFxj6xT3Wxbd8+pqtxjIqexi6yHGSiLsPV2kf132kc45L1lxr7lFUbqkpJ8v3NPi/q+aV9DidJxSPs2/3mml6SmnBN/LRp03T33XerpuaHSp01NTX6/e9/r2nTpoU6HAAAAIAQhXwmfs2aNVq6dKmOOuqo4BKTn3/+uWprazVq1ChNnDgx2PfFF18M30wBAAAASGpCEt+lSxf95Cc/qbctKysrbBMCAAAAYC/kJP7xxx9viXkAAAAAcCjka+IBAAAAtK0mVWx9/vnn9eyzz2rLli2qra1/C+3q1avDMjEAAAAADQv5TPz8+fN1xRVXKD09XWvWrFFeXp66deumb7/9tt7a8QAAAABaRshn4v/nf/5Hjz76qCZPnqyFCxfq1ltvVZ8+fTRjxgzt3Wted7ytJH9bq6ioxv9mKe9pv8a9p8a2WZJUNMa8fntUlXmcbSPs115NXW1ezXzvAI+xTyDOvK5/z2c32bZvvSjXOEaXTYYFXiVVpZjfij1f22bbvvu0HsYxfCX27X4Hv2cAAJqipqtLHl/j68TvTrRfp/y7zeaFREbuvdw8j0/M+UrdhAr7Dt/FGcc45cyvjH0+XD3A2OfEQfa5yE093zaO0T/anICd/qdbjH32nW6fgyV/Y64rlLDVfoy6A86q1oR8Jn7Lli069dRTJUmxsbHav3+/JOkXv/iFnn766ZDGWrZsmcaNG6fMzEy5XC4tXry4XrtlWZoxY4Z69Oih2NhY5efna8OGDaFOGUAHRhwB0BzEEESqkJP4jIyM4Bn3Xr16aeXKlZKkwsJCWZa5YubhKioqNHjwYC1YsKDB9nvuuUfz58/XI488olWrVik+Pl4FBQWqrq4OddoAOijiCIDmIIYgUoV8Oc3ZZ5+tV155RUOGDNEVV1yhm266Sc8//7w+/fTTeoWenBgzZkyj19FblqV58+bpd7/7nS644AJJ0pNPPqn09HQtXrxYkyZNCnXqADog4giA5iCGIFKFnMQ/+uijCgQCkqRrr71W3bp108cff6zx48dr6tSpYZtYYWGhduzYofz8/OC25ORkDRs2TCtWrGj0P05NTY1qan64sLmsrCxscwIQWZoSR4ghAA4hF0F7FvLlNG63W1FRP+T+kyZN0vz583XdddfJ6zXfKOnUjh07JEnp6en1tqenpwfbGjJ37lwlJycHH1STBTqvpsQRYgiAQ8hF0J41aZ34kpISffLJJ9q5c2fwrPwhl112WVgm1lR33HGHpk+fHnxeVlbGfx4AjhFDADQXcQStIeQk/tVXX9Wll16q8vJyJSUlyeX6YSkdl8sVtiQ+IyNDklRcXKwePX5YOrC4uFgnnHBCo6/z+Xzy+eyXaALQOTQljhBDABxCLoL2LOTLaW6++WZdeeWVKi8vV0lJifbt2xd8hHOd+JycHGVkZGjp0qXBbWVlZVq1apWGDx8etv0A6LiIIwCagxiC9izkM/Fbt27V9ddfr7g48yL/JuXl5dq4cWPweWFhodauXauUlBT16tVLN954o+bMmaN+/fopJydHd955pzIzMzVhwoSQ97V3gE8em7+KPdWhLY/ZECeFnOpizX0OZNTajxFjvvcg80Nz1aKSfvHmyfTrY9vspJCTEymf7zP2CRTvsm2P3ZtqHKOma7TjOSEytGYcAdDxtGYMcddKbptaQAFDVmaVmj//Sx30SR9RbOzz0DH2tX8u8psXMylIMRd7Wlk20Nhn/e402/bn4vKMY/Twlhr7HHfuemOfM1L+bdv+31HnGsfwJNrneYHKWmmJcZjQk/iCggJ9+umn6tPHPrlz4tNPP9VZZ50VfH7o+rEpU6YEq8FWVFTo6quvVklJiUaMGKElS5YoJiam2fsG0DEQRwA0BzEEkSrkJP68887TLbfcoq+//lrHH3+8oqPrn9kcP36847HOPPNM2wJRLpdLs2fP1uzZs0OdJoBOgjgCoDmIIYhUISfxV111lSQ1+GZ2uVzy+/3NnxUAAACARoWcxP94SUkAAAAArSvk1WkAAAAAtC3HSfyKFSv02muv1dv25JNPKicnR2lpabr66qvrlRgGAAAA0DIcJ/GzZ8/WV1/9sFTQv/71L/3yl79Ufn6+br/9dr366quaO3dui0wSAAAAwA8cJ/Fr167VqFGjgs8XLVqkYcOG6c9//rOmT5+u+fPn69lnn22RSQIAAAD4geMbW/ft26f09PTg8w8++EBjxowJPj/55JNVVFQU3tmFUUz+LnniGy/2lDx2Y6NtkrT7anNlNifFnipOMXcqPHOhbfsJa35tHCNhq3kuTgpP1XS1qUohKWGr+Ubn6m4O3mZZicYuVYMHGeZiXzxBclDUq7b5Rb8AAGhI7J6APN7GPzfrYuw/c71fmM+97s82z+PUtEJjn4s+tC/m1PUD8zr5f1hzsbFPwhl7jH1ivfaFJX3uOuMYg2O3GPtsr0029jkhZrNt+0V5/zSOkRuz07a9qrxO042jhHAmPj09XYWFB3/ptbW1Wr16tU455ZRg+/79+49YMx4AAABA+DlO4seOHavbb79dy5cv1x133KG4uDiNHDky2P7FF18oNze3RSYJAAAA4AeOL6e5++67NXHiRJ1xxhlKSEjQE088Ia/XG2x/7LHHNHr06BaZJAAAAIAfOE7iu3fvrmXLlqm0tFQJCQnyeDz12p977jklJCSEfYIAAAAA6gu5YmtycsMX/aekpDR7MgAAAADMqNgKAAAARBiSeAAAACDCkMQDAAAAESbka+IjVdIfYhUV1XhhgprzTrZ9vZNCTl02VBj7VGSab/7NqfmlbXvmdr9xDCcFljLe3W7ss/u0Hrbt5T29tu2SVJFpX7xCktL/aS7UYCrmVNLXPJeYffbFqeoOmItXAQDQFDuHBeSObfxzZujx39q+Pjdht3EfL3xzgrFPmne/sc+vhiyzbX/1hVHGMRIusi9qJElFX2cY+5RX2ecRXw03J2kxbvuCUZL0bXl3Y5+3o463bX92ZZ5xDEXb5xqBqmpJHxuH4Uw8AAAAEGFI4gEAAIAIQxIPAAAARBiSeAAAACDCkMQDAAAAEYYkHgAAAIgwJPEAAABAhOk068SbHIiz/3vGyRrwxXnmNeC7f2lepzTrTcO+NhUZxygbe5yxT3V2N2Ofmq72a7N2+7LGOEaXDeaf2f2vTcY+eycOsm13spZ/dKX92qwu1okHALSQ2LRKeeIar/VyYrL5891k2uD3jX0S3dXGPu/sPda2/eQ7PzWO8eG8YcY+3j7mWjI1afb1cYpeyjGO8fWJ9nVvJOmk3M3GPh8U97Ntn3zKSuMYq/dl2bbXVdToe+MonIkHAAAAIg5JPAAAABBhSOIBAACACEMSDwAAAEQYkngAAAAgwpDEAwAAABGGJB4AAACIMCTxAAAAQIRp02JPy5Yt07333qvPPvtM27dv10svvaQJEyYE2y+//HI98cQT9V5TUFCgJUuWhLyvurhoKSq6yXOtizO/tsf7e419qrISjX1qu8fbtm+bMNg4Rp9HzcWTqo89ytjHVMwp5mtzOYKvZ/Y29klZY1/ISZK6f2FfBGv3IPvjJkn7e9q/5f211D+LNK0ZRwB0PK0ZQ/x+l+Rv/Pzpwq9OsX29y20Z9+F20Kd/2k5jn6KyZNv2khnm4kkJKbXGPnuP9xr7+NIqbdvHnbbWOMZTX5xs7LP+hf7GPknf2ReeenGI+bhEH19q2+6vNBfSlNr4THxFRYUGDx6sBQsWNNrn3HPP1fbt24OPp59+uhVnCKC9I44AaA5iCCJVm552HDNmjMaMGWPbx+fzKSMjo5VmBCDSEEcANAcxBJGq3V8T//777ystLU39+/fXNddcoz179rT1lABEGOIIgOYghqA9atcXAJ977rmaOHGicnJytGnTJv32t7/VmDFjtGLFCnk8ngZfU1NTo5qaH64lKisra63pAmiHQo0jxBAAhyMXQXvVrpP4SZMmBf99/PHHa9CgQcrNzdX777+vUaNGNfiauXPnatasWa01RQDtXKhxhBgC4HDkImiv2v3lNIfr06ePunfvro0bNzba54477lBpaWnwUVRU1IozBNDemeIIMQSAHXIRtBft+kz8j33//ffas2ePevRofPken88nn8/XirMCEElMcYQYAsAOuQjaizZN4svLy+v9JVtYWKi1a9cqJSVFKSkpmjVrln7yk58oIyNDmzZt0q233qq+ffuqoKDA8T4s6+B6qXV19mtu1h2wPxR1dXXGfbn95nU96w6Y15u36gK27f4a8xqwdQHz2qx1ddXGPuHYT6DKvB9/bcPXFdbbl2G+TsYwz+PgPg69b9D+tXQcCcYQHZB4W8CgTgckEUMiSWvmIoEq+zzBsllDXnK2TrzloM+BCvNnt2mt8jq/fa4iSQ5SJwWqzeP4K+0//2vKD5j34yQXcbA8e90B+3Xi/dXmi1zchmN76Ngb44jVht577z1LBz8W6z2mTJliVVZWWqNHj7ZSU1Ot6Ohoq3fv3tZVV11l7dixI6R9FBUVNbgPHjzsHkVFRS30rke4tXQcIYbwaMqDGBI5yEV4tNeHKY64LKtjny4IBALatm2bEhMT5XK5VFZWpqysLBUVFSkpKamtp9fhRPrxtSxL+/fvV2ZmptzuiLplBC3kxzFEivz3eXsW6ceWGIKGkIu0rkg/vk7jSERdE98UbrdbRx111BHbk5KSIvIXGyki+fgmJye39RTQjjQWQ6TIfp+3d5F8bIkh+DFykbYRycfXSRzhNAEAAAAQYUjiAQAAgAjT6ZJ4n8+nmTNnsvRTC+H4ojPgfd5yOLboDHift6zOcnw7/I2tAAAAQEfT6c7EAwAAAJGOJB4AAACIMCTxAAAAQIQhiQcAAAAiTKdL4hcsWKDs7GzFxMRo2LBh+uSTT9p6ShFp2bJlGjdunDIzM+VyubR48eJ67ZZlacaMGerRo4diY2OVn5+vDRs2tM1kgTAihoQHMQSdGXEkPDp7HOlUSfwzzzyj6dOna+bMmVq9erUGDx6sgoIC7dy5s62nFnEqKio0ePBgLViwoMH2e+65R/Pnz9cjjzyiVatWKT4+XgUFBaqurm7lmQLhQwwJH2IIOiviSPh0+jhidSJ5eXnWtddeG3zu9/utzMxMa+7cuW04q8gnyXrppZeCzwOBgJWRkWHde++9wW0lJSWWz+eznn766TaYIRAexJCWQQxBZ0IcaRmdMY50mjPxtbW1+uyzz5Sfnx/c5na7lZ+frxUrVrThzDqewsJC7dixo96xTk5O1rBhwzjWiFjEkNZDDEFHRRxpPZ0hjnSaJH737t3y+/1KT0+vtz09PV07duxoo1l1TIeOJ8caHQkxpPUQQ9BREUdaT2eII50miQcAAAA6ik6TxHfv3l0ej0fFxcX1thcXFysjI6ONZtUxHTqeHGt0JMSQ1kMMQUdFHGk9nSGOdJok3uv1aujQoVq6dGlwWyAQ0NKlSzV8+PA2nFnHk5OTo4yMjHrHuqysTKtWreJYI2IRQ1oPMQQdFXGk9XSGOBLV1hNoTdOnT9eUKVN00kknKS8vT/PmzVNFRYWuuOKKtp5axCkvL9fGjRuDzwsLC7V27VqlpKSoV69euvHGGzVnzhz169dPOTk5uvPOO5WZmakJEya03aSBZiKGhA8xBJ0VcSR8On0caevlcVrbH//4R6tXr16W1+u18vLyrJUrV7b1lCLSe++9Z0k64jFlyhTLsg4u7XTnnXda6enpls/ns0aNGmWtX7++bScNhAExJDyIIejMiCPh0dnjiMuyLKsN/nYAAAAA0ESd5pp4AAAAoKMgiQcAAAAiDEk8AAAAEGFI4gEAAIAIQxIPAAAARJgOv058IBDQtm3blJiYKJfL1dbTQTtnWZb279+vzMxMud38jQtiCEJDDEFDiCMIheM40qYLXDr00EMPWb1797Z8Pp+Vl5dnrVq1yvFri4qKGlxDlAcPu0dRUVELvqPRFpoaR4ghPJryIIZ0POQiPFr7YYoj7f5M/DPPPKPp06frkUce0bBhwzRv3jwVFBRo/fr1SktLM74+MTFRkrR5dbaSEhr/a+b0//ql7TjdPy83T7bOMnZxV1Qb+7gOHLBtt2JjzHNxwFVlnotMZ5ICAfMY1bXGLlZdnbFP4Kh023ZPyX7zGIlxtu11/hot+2Z+8H2DjqE5ceTQe2GExipK0a0xXUSwOh3Qh3qDGNLBhCsX+fPyYxSX4Gm038t7h9iO88mHA4z7uqzgPWOfA1bjczjkza0Dbdt7Je0zjlFZ5zX22bg91djnnL7rbNt31SYYx/iuNMXYZ0j37419/lncy7Y9I9Gci/gD9t/G1FXWavlFjxnjSLtP4u+//35dddVVwXLEjzzyiF5//XU99thjuv32242vP/S1VVKCW0mJjSekHq99YhzlMSeZsswJrdtjTvRdfvvE2fL4zHNxwOU2z8WYxMtBEu/gG2XLwdfOAcPP7XGb/1gwjXEIX3d2LM2JI4feC1GKVpSLJB4G/xdWiSEdS7hykbgEj+ISG0+go2vsk153jPkkXkyCOU55HCTxnjj7z8voeHOCHu0giXfHmX8mr+FnMh03SfIcMH/+exMcjLPfdFxqjGO4As4utTPFkXZ9wV5tba0+++wz5efnB7e53W7l5+drxYoVbTgzAJGCOAKgOYghaK/a9Zn43bt3y+/3Kz29/mUU6enpWreu4a9WampqVFPzw19BZWVlLTpHAO1bqHGEGALgcOQiaK/a9Zn4ppg7d66Sk5ODj6ysrLaeEoAIQgwB0FzEEbSGdp3Ed+/eXR6PR8XFxfW2FxcXKyMjo8HX3HHHHSotLQ0+ioqKWmOqANqpUOMIMQTA4chF0F616yTe6/Vq6NChWrp0aXBbIBDQ0qVLNXz48AZf4/P5lJSUVO8BoPMKNY4QQwAcjlwE7VW7viZekqZPn64pU6bopJNOUl5enubNm6eKiorgHeIAYEIcAdAcxBC0R+0+ib/44ou1a9cuzZgxQzt27NAJJ5ygJUuWHHGDicngl660XZqp//I9tq+vS4417iN6j4O1QZPjjX3cUfZLP7kqzeu7H+jR1djHyS/ftbfUtt1KMq/N6nKwfKSrssrYx1NaYdvu72pel9mzq8S23R0wLw2FyBOuOAKgcwpXDLl73Xm2Szee3vNb29f7jjbfIBvt8hv73NZtg7FPdcB+Wccqv3kpyyi3eRnqwj3m9dtfW3WibbunwsGFJQ5WxH67lzlHS+1qn+u5Xeblu0/san95VU30AZlX+4+AJF6Spk2bpmnTprX1NABEMOIIgOYghqC9adfXxAMAAAA4Ekk8AAAAEGFI4gEAAIAIQxIPAAAARBiSeAAAACDCkMQDAAAAESYilpgMh+xXaxQV5Wq0PRDf+LqtkhS9fZ95Jw7WQzetU+6I17w2q7vOvCCqFeXgb7i6Oiczsld7wDwXB+vNa2+JbbN7r/l3ZEXZv+WtQK15HgAANMFpPb6TN6Hxz/CAGs9TJOlnuWuM+1i2p5+xj2kNeEnq5bOvn7O+MsM4Ro5vl7FP1Xbz5390qqGWzD7z+u6WfQkeSZIvxpyvlFU2XnNIkipqvMYxesTa1+CpPeAsF+FMPAAAABBhSOIBAACACBPy5TQ7duzQqlWrtGPHDklSRkaGhg0bpowM89cqAAAAAJrPcRJfUVGhqVOnatGiRXK5XEpJSZEk7d27V5ZlafLkyfrTn/6kuLi4FpssAAAAgBAup7nhhhv0ySef6PXXX1d1dbWKi4tVXFys6upqvfHGG/rkk090ww03tORcAQAAACiEJP6FF17QwoULVVBQII/nh1t8PR6PRo8erccee0zPP/98i0wSAAAAwA8cJ/GBQEBeb+PL5ni9XgUC5mUNAQAAADSP4yT+/PPP19VXX601a45co3TNmjW65pprNG7cuLBODgAAAMCRHN/Y+tBDD+mSSy7R0KFD1bVrV6WlpUmSdu7cqZKSEhUUFOihhx5qsYk2V8DjVsDT+N8sUTX2C/z7U5ON+/Ds2W+eSJS52oBVXmHfIc6+0IAkuStqjH1cldXGPoox7MtJIScH83UyFyulS7PHMM4jYF9oAwCApkqMqpIvqvEiii9/e7zt60896jvjPjLj7AsJSdI7xccY+wzoUmzb/vU+86qEqwLZxj6eCvP55FqPfR6RuM/82e23r+kpSaqqMBdqCpTbF8o6+fhNxjGWb8m1bfc7zGccJ/Fdu3bVm2++qW+++UYrV66st8Tk8OHDdcwx5jcEAAAAgOYLeZ34AQMGaMCAAS0xFwAAAAAOhJTE19bWavHixVqxYkW9M/GnnnqqLrjgAtsbXwEAAACEh+MbWzdu3KgBAwZoypQpWrNmjQKBgAKBgNasWaPLLrtMAwcO1MaNG1tyrgAAAAAUwpn4a665Rscff7zWrFmjpKSkem1lZWW67LLLdO211+qtt94K+yQBAAAA/MBxEv/RRx/pk08+OSKBl6SkpCTdfffdGjZsWFgnBwAAAOBIji+n6dKli7777rtG27/77jt16dIlDFMCAAAAYMfxmfj/+I//0GWXXaY777xTo0aNUnp6uiSpuLhYS5cu1Zw5c3Tddde12EQBAAAAHOQ4iZ89e7bi4+N177336uabb5bLdXBhfcuylJGRodtuu0233npri020uWK27FWUu/GV/v3J8bav9/vMRZo8gYB5Im7zlx+uKPtfiz/eXDzJs89B4alqc0EoxRiqI9T5zWN47QsjHByn8eIXh5iKOTkqKlVWbt8h4ODnAQCgCV78cJjcNkUUY3ba5wjv7hpo3Edq1j5jn/2V5s/LA377vKey1vzZPjhtm7HP1qTuxj7y2udX5b0c5F8ey9glp8ceY5+KWvuVGE/tai72VNDtK9v2qvI63WAcJcQlJm+77Tbddttt+vbbb1VcfLCSV0ZGhnJyckIZBgAAAEAzhFzsSZL69OmjPn36hHsuAAAAABxwfGOrJH399df69a9/rSFDhqhHjx7q0aOHhgwZol//+tf6+uuvW2qOAAAAAA7j+Ez8m2++qQkTJujEE0/UBRdcUO/G1nfeeUcnnniiXn75ZRUUFLTYZAEAAACEkMTffvvtuu222zR79uwj2u666y7ddddduuWWW0jiAQAAgBbm+HKaf//737r00ksbbZ88ebI2bNgQlkkBAAAAaJzjJD47O1uvv/56o+2vv/66evfuHZZJAQAAAGhcSOvEX3LJJXr//feVn59/RLGnJUuW6KmnnmqxiQIAAAA4yHES/7Of/Uw9e/bU/Pnzdd9992nHjh2SDq4TP3z4cL3//vsaPnx4WCd31113adasWfW29e/fX+vWrQt5LMvjkeUxF2xqjMtvLhLgpJCTKqvMfQzFnjylFcYhrHJzHydc9vWVZFUbOkhyOSj2ZCUlGPsEDEWuPNt3m/djKCplBcxFpxBZwhlHAHRO4YojnmqX3HI12u4ts3993R5zHrN/e6qxj89cD0q7uyXatscWm8f4NL6bsU/33eb8KhBt/3NHOUitKjPMOdp3dZnGPlaU/Xy/SzcXr6oN2Od5teW1klYaxwlpnfhTTz1Vp556aigvabaBAwfq3XffDT6PMiS4APBjxBEAzUUcQXvT7t+BUVFRysjIaOtpAIhgxBEAzUUcQXsTUrEnO998802LVHHdsGGDMjMz1adPH1166aXasmWLbf+amhqVlZXVewDo3EKJI8QQAA0hjqC9CVsSX1tbq82bN4drOEnSsGHDtHDhQi1ZskQPP/ywCgsLNXLkSO3fv7/R18ydO1fJycnBR1ZWVljnBCCyhBpHiCEAfow4gvbIZVmWgzs2penTp9u279q1S0899ZT8fn9YJtaQkpIS9e7dW/fff79++ctfNtinpqZGNTU1wedlZWXKysrSqL43Ksrja3Rs002TgRjzlUfRxaXGPuG4sVVObhQta/wPnVC4DHNxdGNrSldjHyvKfLNOa9zYWheo1dI9j6u0tFRJSUnG8RB5THGksRhypi5QlMv8fw+dW511QO/rZWJIB9fUOJJz1+/ljmn8syz++8ZvepWkykxzyuautR9DcnZja7XhnlQnN7bWxZv7xDi6sdW+3dmNrebjUtkzYOxjurF1/PDPjGM4ubH18TOfNcYRx9fEP/jggzrhhBMaHay8vNzpUE3WpUsXHX300dq4cWOjfXw+n3y+xpN1AJ2bKY4QQwCYEEfQHjhO4vv27aubbrpJP//5zxtsX7t2rYYOHRq2iTWkvLxcmzZt0i9+8YsW3Q+Ajos4AqC5iCNoDxwn8SeddJI+++yzRpN4l8slh1fmOPab3/xG48aNU+/evbVt2zbNnDlTHo9HkydPDnmsQHyMAjaX07grDJeFRMUZ9+HoEpaULsYurrLmf6vhSrJf31WSFDB/bVT3nf2NxFHZvcz7qT1g7uPgchp30Q77DjZfUR7iiou1bw/USHuMwyCChDOOAOicwhVHPBUueeoav6yj5Hj7Sz6jS8yflbVdzZ/tUZXmWyJNa9YnbzZ/tu89xnwJYspX5pyn9Gj763K6/st8ObMrkGzsU+Vg8aGoCvtjlx1jvrQ32mV/6XmV5axmjeMk/r777qt3fdePDR48WAEHSWEovv/+e02ePFl79uxRamqqRowYoZUrVyo11VzIAAAk4giA5iOOoD1ynMS3xdqoixYtavV9AuhYiCMAmos4gvYobEtMAgAAAGgdJPEAAABAhCGJBwAAACIMSTwAAAAQYUJO4mfPnq3KysojtldVVWn27NlhmRQAAACAxoWcxM+aNavB6qyVlZWaNWtWWCYFAAAAoHGOl5g8xLIsuVxHFir4/PPPlZKSEpZJtYgol+Rp+tVDnl3mQgKKMh/OcJTDsqoNhakkKc5B4SMHtQSiMtIdzKh1uAzFnAL7SoxjuLt2se8QcFCYCgCAJvDHWbJibDIBQ7mdugRzPR7fTnNBqNhd5mykpmvjRakkqTbBvJ/o/eb9uGvtCx9JUpd19gWhXFt3GsfwZZmLYAZ89j+zJMXsss8lS+vMxUHL/Y0XH5WkmmpnuYjjJL5r165yuVxyuVw6+uij6yXyfr9f5eXl+tWvfuV0OAAAAABN5DiJnzdvnizL0pVXXqlZs2YpOfmH8rVer1fZ2dkaPnx4i0wSAAAAwA8cJ/FTpkyRJOXk5OjUU09VdHR0i00KAAAAQONCvib+jDPOkN/v1wsvvKBvvvlGkjRw4ECNHz9eHo/5+igAAAAAzRNyEr9x40aNHTtWW7duVf/+/SVJc+fOVVZWll5//XXl5uaGfZIAAAAAfhDyci3XX3+9cnNzVVRUpNWrV2v16tXasmWLcnJydP3117fEHAEAAAAcJuQz8R988IFWrlxZbznJbt266b/+67902mmnhXVyAAAAAI4U8pl4n8+n/fv3H7G9vLxcXq83LJMCAAAA0LiQz8Sff/75uvrqq/XXv/5VeXl5kqRVq1bpV7/6lcaPHx/2CYaLu6JWbk/ji/j7/73J9vUun/3C/JLkMRUSkuSqNBdqCuy3L2rgTu1mHEO15kIBVnmFeRzTGEldjX3ce4/8o+/HXGX2P/PBfSXY78ebah6jzH4uVqDWOAYAAE0RiJZks7hfdIn9AiHR+83FiCwHa4zUJpnHcRlqMHlqzYWcXJZ5P+7ivcY+gdQutu3+vj2NYziReFSZsU/5gWTb9hyfufBUZcA+p6yqc1CNU004Ez9//nzl5uZq+PDhiomJUUxMjE477TT17dtXDz74YKjDAQAAAAhRyGfiu3TpopdfflkbNmzQunXrJEkDBgxQ3759wz45AAAAAEcKOYk/pF+/furXr1845wIAAADAgZCTeL/fr4ULF2rp0qXauXOnAoFAvfZ//OMfYZscAAAAgCOFnMTfcMMNWrhwoc477zwdd9xxcrnMNy0AAAAACJ+Qk/hFixbp2Wef1dixY1tiPgAAAAAMQl6dxuv1chMrAAAA0IZCTuJvvvlmPfjgg7Is8/qgAAAAAMLP0eU0EydOrPf8H//4h958800NHDhQ0dH1qxa8+OKL4ZtdGAV80Qp4Gq+w4Dk61/b1LifFk7w2FRwOjeOg2JNlWOTfSZEmU8EoSfKkdjfPpdp+vq5q83FxwrQfSXJFNXkxpR/GiImxbw9wjwcAoGVE73fJU9v454xlOLVa2c9ckNCzz/xZGbvT/FlX09W+T8DBR7LbQYpgHTB3cm3ZbtseFRtrHCO+MGDsE3WjfY4gSfu9SbbtR3uLjWOsq+1h2265nRV7cpQVJSfXr0514YUXOhocAAAAQPg5SuIff/zxlp4HAAAAAIdCvia+qqpKlZWVweebN2/WvHnz9Pbbb4d1YgAAAAAaFnISf8EFF+jJJ5+UJJWUlCgvL0/33XefLrjgAj388MNhnyAAAACA+kJO4levXq2RI0dKkp5//nllZGRo8+bNevLJJzV//vywTxAAAABAfSEn8ZWVlUpMTJQkvf3225o4caLcbrdOOeUUbd68OewTBAAAAFBfyEl83759tXjxYhUVFemtt97S6NGjJUk7d+5UUpL9sjsAAAAAmi/khbdnzJihSy65RDfddJPOPvtsDR8+XNLBs/JDhgwJ+wTDxbVxs1wub+MdembYD1DnN+7D/90WY5+ojHRjHx1rXxHXtavEOIQnKdHYJ5BgXg/VXeaxbT/QLcE4RrSDY+dK6WrsY8XY/P4kR78jJ+v0AwDQEqyB+2XFNb4uet239p+p0TvN9Wiiys1rwNc6OOdanWq/rrrlsc8PJMnvM++nS/8sYx93rf3nu/XPfxnH8PTNMfaJjXKQIyTYr2u/JxBvHCLGZT9GwGXOZ6QmnIn/6U9/qi1btujTTz/VW2+9Fdw+atQoPfDAAyGNtWzZMo0bN06ZmZlyuVxavHhxvXbLsjRjxgz16NFDsbGxys/P14YNG0KdMoAOjDgCoDmIIYhUISfxkpSRkaEhQ4Zo69atKioqkiTl5eXpmGOOCWmciooKDR48WAsWLGiw/Z577tH8+fP1yCOPaNWqVYqPj1dBQYGqHVT3BNA5EEcANAcxBJEq5Mtp6urqNGvWLM2fP1/l5eWSpISEBF133XWaOXOmoqPNX/UcMmbMGI0ZM6bBNsuyNG/ePP3ud7/TBRdcIEl68sknlZ6ersWLF2vSpEmhTh1AB0QcAdAcxBBEqpDPxF933XV69NFHdc8992jNmjVas2aN7rnnHv31r3/V9ddfH7aJFRYWaseOHcrPzw9uS05O1rBhw7RixYpGX1dTU6OysrJ6DwCdU1PiCDEEwCHkImjPQk7in3rqKS1cuFBTp07VoEGDNGjQIE2dOlV//etf9dRTT4VtYjt27JAkpafXvxE0PT092NaQuXPnKjk5OfjIyjLfMAGgY2pKHCGGADiEXATtWchJvM/nU3Z29hHbc3Jy5PUaVg9pBXfccYdKS0uDj0PX7AOAE8QQAM1FHEFrCDmJnzZtmu6++27V1NQEt9XU1Oj3v/+9pk2bFraJZWQcXPKxuLi43vbi4uJgW0N8Pp+SkpLqPQB0Tk2JI8QQAIeQi6A9CzmJX7NmjV577TUdddRRys/PV35+vo466ii9+uqr+vzzzzVx4sTgozlycnKUkZGhpUuXBreVlZVp1apVwbXpAcAOcQRAcxBD0J6FvDpNly5d9JOf/KTetqZe61VeXq6NGzcGnxcWFmrt2rVKSUlRr169dOONN2rOnDnq16+fcnJydOeddyozM1MTJkwIeV/uhAS53TaX+xiKAPlTuxj3EeU1r8zjqMBSjX0RAEWZCyxYZfvN+wnYF3JwIrq41DwXU5EmSVaU+e9JV7X9cTmQZi5wFb3X/thZ/pD/S6CNtWYcAdDxtGYMqanwyh1o/DPRa/j4txx8RFX1rDP2id5nziMCabW27XU15kpOfp9l7LNnYKyxj6/Ufhxv6snGMbz77H8eSbL85mNn1dgfu+yofcYx/uU3/8xOhJyxPP7442HZsSR9+umnOuuss4LPp0+fLkmaMmWKFi5cqFtvvVUVFRW6+uqrVVJSohEjRmjJkiWKiTEnwgA6B+IIgOYghiBStelpxzPPPFOW1fhfVy6XS7Nnz9bs2bNbcVYAIglxBEBzEEMQqZqUxD///PN69tlntWXLFtXW1v96YvXq1WGZGAAAAICGhXxj6/z583XFFVcoPT1da9asUV5enrp166Zvv/220YpnAAAAAMIn5CT+f/7nf/Too4/qj3/8o7xer2699Va98847uv7661Vaar7JEQAAAEDzhJzEb9myRaeeeqokKTY2Vvv3H1wF5Re/+IWefvrp8M4OAAAAwBFCTuIzMjK0d+9eSVKvXr20cuVKSQeXZLK7MQQAAABAeIScxJ999tl65ZVXJElXXHGFbrrpJp1zzjm6+OKLdeGFF4Z9ggAAAADqC3l1mkcffVSB/ysSdO2116pbt276+OOPNX78eE2dOjXsEwwXq2uSLI+5MEFjjAWYJMlB8SRTwSInLAdFpazMVPNc9poLQpmKXLkr7ItkSZKr2lxgIdDNXKjJXVZp2+6pcHBs6/z27X5DOwAATeTZ45XbpgDiga6GPCLB/DnnKjXnCL69LmOfuiT7cZwUcnJSnKos19zHctvPN36r+WdOLDKft969p4t5MnX2c3lt/yDzGAbVtc5yxZCTeLfbLbf7hwMxadIkTZo0KdRhAAAAADRRk9aJLykp0SeffKKdO3cGz8ofctlll4VlYgAAAAAaFnIS/+qrr+rSSy9VeXm5kpKS5HL98LWCy+UiiQcAAABaWMg3tt5888268sorVV5erpKSEu3bty/4OLRqDQAAAICWE3ISv3XrVl1//fWKi4trifkAAAAAMAg5iS8oKNCnn37aEnMBAAAA4EDI18Sfd955uuWWW/T111/r+OOPV3R0/WV9xo8fH7bJAQAAADhSyEn8VVddJUmaPXv2EW0ul0t+1tkGAAAAWlTISfyPl5SMFK6qarncNoUJDEWArGpzUSMrpUuIs2oal4MiAE76yEHRKCfFnIwcvGfcG7YY+1iZ6fZjOCk8VWnfxxWoMY4BAEBTBLwBydf4Z6IVV2f7erfHXGAp4DX3iS53UKgp2v6zO/Y7cw5RnWrejz/OnCNY8fY5Wm1F4wW0DqmsMV9BXrvDfL9n3HaPbfufPjvdOEaXlHLbdn9ljaR3jeOEfE08AAAAgLblOIlfsWKFXnvttXrbnnzySeXk5CgtLU1XX321amo4iwkAAAC0NMdJ/OzZs/XVV18Fn//rX//SL3/5S+Xn5+v222/Xq6++qrlz57bIJAEAAAD8wHESv3btWo0aNSr4fNGiRRo2bJj+/Oc/a/r06Zo/f76effbZFpkkAAAAgB84TuL37dun9PQfbiz84IMPNGbMmODzk08+WUVFReGdHQAAAIAjOE7i09PTVVhYKEmqra3V6tWrdcoppwTb9+/ff8Sa8QAAAADCz3ESP3bsWN1+++1avny57rjjDsXFxWnkyJHB9i+++EK5ubktMkkAAAAAP3C8Tvzdd9+tiRMn6owzzlBCQoKeeOIJeb0/rMv52GOPafTo0S0yybCorrX9k8Wqs1+b1ZUQb96HYa15SVJllbmPSVTIy/s3rM7BakJJCbbNVoyDb1+i7NdUlSSXk2NXVtHs/QAA0FZcXWvlirNJRkoM650n1xr34akwn5/1lZnXb48tsv9895WYx3AFXMY++481f/537b7ftj2hp/m47NiXaOzjOmDOI7zrYm3bq1wOjouhj6n9EMfZYPfu3bVs2TKVlpYqISFBHk/9H/S5555TQoJ9wgcAAACg+UI+pZucnNzg9pSUlGZPBgAAAIAZFVsBAACACEMSDwAAAEQYkngAAAAgwpDEAwAAABGGJB4AAACIMCTxAAAAQIQJU9Wgplm2bJnuvfdeffbZZ9q+fbteeuklTZgwIdh++eWX64knnqj3moKCAi1ZsiTkfVmJ8bI8vkbbXbUH7AdwUIzISoox90kw93FVG+bigKus3Nwpzr5ggSQFNn9v2+7pkW7ej9vB34pOCjWZfgdOfkfl9sfFsswFI9C+tGYcAdDxtGYMcbkOPhrj2W//eVmXYP48tbqZcwjLZS7UWN3D/jPVFTB/blf2si+kKUlDjt5s7HNSly227TsPmAs5BbqZC0858VrZibbt6WmlxjHchmJOdVHm4ya18Zn4iooKDR48WAsWLGi0z7nnnqvt27cHH08//XQrzhBAe0ccAdAcxBBEqjY9Ez9mzBiNGTPGto/P51NGRkYrzQhApCGOAGgOYggiVbu/Jv79999XWlqa+vfvr2uuuUZ79uxp6ykBiDDEEQDNQQxBe9SmZ+JNzj33XE2cOFE5OTnatGmTfvvb32rMmDFasWKFPJ6Gr8WqqalRTU1N8HlZWVlrTRdAOxRqHCGGADgcuQjaq3adxE+aNCn47+OPP16DBg1Sbm6u3n//fY0aNarB18ydO1ezZs1qrSkCaOdCjSPEEACHIxdBe9XuL6c5XJ8+fdS9e3dt3Lix0T533HGHSktLg4+ioqJWnCGA9s4UR4ghAOyQi6C9aNdn4n/s+++/1549e9SjR49G+/h8Pvl8jS8lCaBzM8URYggAO+QiaC/aNIkvLy+v95dsYWGh1q5dq5SUFKWkpGjWrFn6yU9+ooyMDG3atEm33nqr+vbtq4KCAsf7sKyDa3HWBWps+7kChnVVAw7WIPebD6flMn/54fKHYZ34gIP1zgPmufgt+7lYhuN6kIMvfAIBB33MvwMT0zrwdf/Xfuh9g/avpeNIMIbogMTbAgZ1OhgziSGRozVzkUCV4TOz2r45UBWeWib+WvPnaaDK/j3srzGvEx+oMq93fqDC/DNVR9nnIrUHzHlTwArPOvGBKvtfkr/CnBcFDOvE+ysPjmGMI1Ybeu+99ywd/Fis95gyZYpVWVlpjR492kpNTbWio6Ot3r17W1dddZW1Y8eOkPZRVFTU4D548LB7FBUVtdC7HuHW0nGEGMKjKQ9iSOQgF+HRXh+mOOKyrI59uiAQCGjbtm1KTEyUy+VSWVmZsrKyVFRUpKSkpLaeXocT6cfXsizt379fmZmZcjupNIsO78cxRIr893l7FunHlhiChpCLtK5IP75O40hEXRPfFG63W0cdddQR25OSkiLyFxspIvn4Jicnt/UU0I40FkOkyH6ft3eRfGyJIfgxcpG2EcnH10kc4TQBAAAAEGFI4gEAAIAI0+mSeJ/Pp5kzZ7L0Uwvh+KIz4H3ecji26Ax4n7esznJ8O/yNrQAAAEBH0+nOxAMAAACRjiQeAAAAiDAk8QAAAECEIYkHAAAAIkynS+IXLFig7OxsxcTEaNiwYfrkk0/aekoRadmyZRo3bpwyMzPlcrm0ePHieu2WZWnGjBnq0aOHYmNjlZ+frw0bNrTNZIEwIoaEBzEEnRlxJDw6exzpVEn8M888o+nTp2vmzJlavXq1Bg8erIKCAu3cubOtpxZxKioqNHjwYC1YsKDB9nvuuUfz58/XI488olWrVik+Pl4FBQWqrq5u5ZkC4UMMCR9iCDor4kj4dPo4YnUieXl51rXXXht87vf7rczMTGvu3LltOKvIJ8l66aWXgs8DgYCVkZFh3XvvvcFtJSUlls/ns55++uk2mCEQHsSQlkEMQWdCHGkZnTGOdJoz8bW1tfrss8+Un58f3OZ2u5Wfn68VK1a04cw6nsLCQu3YsaPesU5OTtawYcM41ohYxJDWQwxBR0UcaT2dIY50miR+9+7d8vv9Sk9Pr7c9PT1dO3bsaKNZdUyHjifHGh0JMaT1EEPQURFHWk9niCOdJokHAAAAOopOk8R3795dHo9HxcXF9bYXFxcrIyOjjWbVMR06nhxrdCTEkNZDDEFHRRxpPZ0hjnSaJN7r9Wro0KFaunRpcFsgENDSpUs1fPjwNpxZx5OTk6OMjIx6x7qsrEyrVq3iWCNiEUNaDzEEHRVxpPV0hjgS1dYTaE3Tp0/XlClTdNJJJykvL0/z5s1TRUWFrrjiiraeWsQpLy/Xxo0bg88LCwu1du1apaSkqFevXrrxxhs1Z84c9evXTzk5ObrzzjuVmZmpCRMmtN2kgWYihoQPMQSdFXEkfDp9HGnr5XFa2x//+EerV69eltfrtfLy8qyVK1e29ZQi0nvvvWdJOuIxZcoUy7IOLu105513Wunp6ZbP57NGjRplrV+/vm0nDYQBMSQ8iCHozIgj4dHZ44jLsiyrDf52AAAAANBEneaaeAAAAKCjIIkHAAAAIgxJPAAAABBhSOIBAACACEMSDwAAAEQYkngAAAAgwpDEAwAAABGGJB4AAACIMCTxAAAAQIQhiQcAAAAiDEk8AAAAEGFI4gEAAIAI8/8BrX1TWx/cFwsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvEAAAF2CAYAAADnZcccAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWOElEQVR4nO3deXxU1f3/8fdkkpnsCWFJCIYQFhFRENEgCG5EIqiI2CpoFbFfpVZwwbr1W0GQ/qhaFalUa6ui31Zxxx0XxILK8lXA1gXKEiEsCWv2ZEJm7u8PvhmJIffMkMkyyev5eNzHg7nnzLmfuRk+88nNnXMclmVZAgAAABA2Ilo6AAAAAADBoYgHAAAAwgxFPAAAABBmKOIBAACAMEMRDwAAAIQZingAAAAgzFDEAwAAAGGGIh4AAAAIMxTxAAAAQJihiAcAAECT6NGjh6699lr/408//VQOh0OffvppyI7hcDh03333hWy8cEERH8YWLlwoh8Ph3yIjI9WtWzdde+212rlzZ0uHB6AFHZkb7LZQfpCGwhdffKH77rtPRUVFLR0K0Cb8tFaIjo7W8ccfr6lTp6qwsLClwwvYe++91y4LdTuRLR0AGm/27NnKyspSVVWVVq1apYULF+qzzz7TN998o+jo6JYOD0AL+J//+Z86j59//nl99NFH9fb369evOcMy+uKLLzRr1ixde+21Sk5ObulwgDbjyFrhs88+0xNPPKH33ntP33zzjWJjY5stjrPOOkuVlZVyuVxBPe+9997TggULjlrIV1ZWKjKy/ZW07e8Vt0GjR4/WaaedJkn6r//6L3Xq1EkPPPCA3nrrLV1++eUtHB2AlvCLX/yizuNVq1bpo48+qrf/WFiWpaqqKsXExDR6LADN46e1QseOHfXII4/ozTff1MSJE+v1Ly8vV1xcXMjjiIiICPkFxvZ6wZLbadqgESNGSJK2bNkiSaqurtaMGTM0ePBgJSUlKS4uTiNGjNCyZcvqPO/UU0/V+PHj6+w7+eST5XA49K9//cu/76WXXpLD4dD333/fxK8EQFN69tlndd5556lLly5yu9068cQT9cQTT9Tr16NHD1100UX64IMPdNpppykmJkZ/+ctfJEnbtm3T2LFjFRcXpy5duui2227TBx98cNRbdVavXq0LLrhASUlJio2N1dlnn63PP//c337ffffpjjvukCRlZWX5//z/ww8/NNk5ANqr8847T5KUl5ena6+9VvHx8dqyZYvGjBmjhIQEXXXVVZIkn8+nefPmqX///oqOjlZqaqqmTJmigwcP1hnPsizNmTNHxx13nGJjY3Xuuefq22+/rXfchu6JX716tcaMGaMOHTooLi5OAwYM0GOPPSZJuvbaa7VgwQJJdW8VrHW0e+LXrVun0aNHKzExUfHx8Ro5cqRWrVpVp0/trUaff/65pk+frs6dOysuLk6XXnqp9u7dG/xJbWZciW+Daj/wOnToIEkqKSnR3/72N02cOFHXX3+9SktL9fTTTys3N1dr1qzRKaecIulw8f/iiy/6xzlw4IC+/fZbRUREaMWKFRowYIAkacWKFercuXOr+zM8gOA88cQT6t+/v8aOHavIyEi9/fbb+vWvfy2fz6ebbrqpTt+NGzdq4sSJmjJliq6//nr17dtX5eXlOu+887R7927dcsstSktL0wsvvFDvAoEkffLJJxo9erQGDx6smTNnKiIiwv9LxIoVK5Sdna3x48frP//5j1588UU9+uij6tSpkySpc+fOzXI+gPak9kJfx44dJUk1NTXKzc3V8OHD9cc//tF/i82UKVO0cOFCTZ48WTfffLPy8vL0+OOPa926dfr8888VFRUlSZoxY4bmzJmjMWPGaMyYMVq7dq1GjRql6upqYywfffSRLrroInXt2tWfS77//nu98847uuWWWzRlyhTt2rXrqLcEHs23336rESNGKDExUXfeeaeioqL0l7/8Reecc47++c9/asiQIXX6T5s2TR06dNDMmTP1ww8/aN68eZo6dapeeumloM5ps7MQtp599llLkvXxxx9be/futfLz861XX33V6ty5s+V2u638/HzLsiyrpqbG8ng8dZ578OBBKzU11bruuuv8+1555RVLkvXdd99ZlmVZb731luV2u62xY8daV1xxhb/fgAEDrEsvvbQZXiGAULnpppusn6b8ioqKev1yc3Otnj171tmXmZlpSbKWLFlSZ//DDz9sSbIWL17s31dZWWmdcMIJliRr2bJllmVZls/ns/r06WPl5uZaPp+vzvGzsrKs888/37/voYcesiRZeXl5x/pSARzhaLXCokWLrI4dO1oxMTHWjh07rEmTJlmSrLvvvrvOc1esWGFJsv7xj3/U2b9kyZI6+/fs2WO5XC7rwgsvrPN//Le//a0lyZo0aZJ/37Jly+rkh5qaGisrK8vKzMy0Dh48WOc4R451tBxWS5I1c+ZM/+Nx48ZZLpfL2rJli3/frl27rISEBOuss86qd25ycnLqHOu2226znE6nVVRUdNTjtRbcTtMG5OTkqHPnzsrIyNDPfvYzxcXF6a233tJxxx0nSXI6nf4vkPh8Ph04cEA1NTU67bTTtHbtWv84tbfhLF++XNLhK+6nn366zj//fK1YsUKSVFRUpG+++cbfF0D4OvKe9uLiYu3bt09nn322tm7dquLi4jp9s7KylJubW2ffkiVL1K1bN40dO9a/Lzo6Wtdff32dfuvXr9emTZt05ZVXav/+/dq3b5/27dun8vJyjRw5UsuXL5fP52uCVwig1pG1woQJExQfH6833nhD3bp18/e58cYb6zznlVdeUVJSks4//3z//9t9+/Zp8ODBio+P9//V7eOPP1Z1dbWmTZtW5zaXW2+91RjXunXrlJeXp1tvvbXel9mPHCtQXq9XH374ocaNG6eePXv693ft2lVXXnmlPvvsM5WUlNR5zg033FDnWCNGjJDX69W2bduCPn5z4naaNmDBggU6/vjjVVxcrGeeeUbLly+X2+2u0+e5557Tww8/rA0bNujQoUP+/VlZWf5/p6amqk+fPlqxYoWmTJmiFStW6Nxzz9VZZ52ladOmaevWrfr+++/l8/ko4oE24PPPP9fMmTO1cuVKVVRU1GkrLi5WUlKS//GRuaLWtm3b1KtXr3oftL17967zeNOmTZKkSZMmNRhLcXGx/xZAAKFXWytERkYqNTVVffv2VUTEj9dyIyMj/Rf/am3atEnFxcXq0qXLUcfcs2ePJPmL3T59+tRp79y5s/H/de1tPSeddFJwL6gBe/fuVUVFhfr27VuvrV+/fvL5fMrPz1f//v39+7t3716nX23MP73vv7WhiG8DsrOz/d84HzdunIYPH64rr7xSGzduVHx8vP7+97/r2muv1bhx43THHXeoS5cucjqdmjt3rv8/T63hw4dr6dKlqqys1FdffaUZM2bopJNOUnJyslasWKHvv/9e8fHxGjRoUEu8VAAhsmXLFo0cOVInnHCCHnnkEWVkZMjlcum9997To48+Wu/KeGNmoqkd66GHHvJ/B+en4uPjj3l8AGZH1gpH43a76xT10uH/u126dNE//vGPoz6nrXxfxel0HnW/ZVnNHElwKOLbmNri/Nxzz9Xjjz+uu+++W6+++qp69uyp119/vc4Vs5kzZ9Z7/ogRI/Tss89q0aJF8nq9GjZsmCIiIjR8+HB/ET9s2LAG3/AAwsPbb78tj8ejt956q85VqKN9KbUhmZmZ+u6772RZVp3csnnz5jr9evXqJUlKTExUTk6O7ZjH8udzAE2jV69e+vjjj3XmmWfa/iKfmZkp6fCV+yNvYdm7d6/xanZtfvjmm29s80OguaFz586KjY3Vxo0b67Vt2LBBERERysjICGis1o574tugc845R9nZ2Zo3b56qqqr8BfeRv1GuXr1aK1eurPfc2ttkHnjgAQ0YMMD/5/QRI0Zo6dKl+vLLL7mVBmgDjpYXiouL9eyzzwY8Rm5urnbu3Km33nrLv6+qqkp//etf6/QbPHiwevXqpT/+8Y8qKyurN86RU7nVzkvNiq1Ay7v88svl9Xp1//3312urqanx/z/NyclRVFSU/vSnP9XJKfPmzTMe49RTT1VWVpbmzZtX7//9kWMFmhucTqdGjRqlN998s870tIWFhXrhhRc0fPhwJSYmGuMKB1yJb6PuuOMO/fznP9fChQt10UUX6fXXX9ell16qCy+8UHl5eXryySd14okn1vtA7d27t9LS0rRx40ZNmzbNv/+ss87SXXfdJUkU8UAbMGrUKLlcLl188cWaMmWKysrK9Ne//lVdunTR7t27AxpjypQpevzxxzVx4kTdcsst6tq1q/7xj3/4F16pvXIWERGhv/3tbxo9erT69++vyZMnq1u3btq5c6eWLVumxMREvf3225IOF/yS9N///d+aMGGCoqKidPHFFzfJojMA7J199tmaMmWK5s6dq/Xr12vUqFGKiorSpk2b9Morr+ixxx7Tz372M3Xu3Fm/+c1vNHfuXF100UUaM2aM1q1bp/fff98/VWxDIiIi9MQTT+jiiy/WKaecosmTJ6tr167asGGDvv32W33wwQeSfswNN998s3Jzc+V0OjVhwoSjjjlnzhx99NFHGj58uH79618rMjJSf/nLX+TxePTggw+G9iS1pJacGgeNUzs10v/+7//Wa/N6vVavXr2sXr16WTU1Ndb/+3//z8rMzLTcbrc1aNAg65133rEmTZpkZWZm1nvuz3/+c0uS9dJLL/n3VVdXW7GxsZbL5bIqKyub8mUBaAJHm57trbfesgYMGGBFR0dbPXr0sB544AHrmWeeqTfFY2ZmpnXhhRceddytW7daF154oRUTE2N17tzZuv32263XXnvNkmStWrWqTt9169ZZ48ePtzp27Gi53W4rMzPTuvzyy62lS5fW6Xf//fdb3bp1syIiIphuEmgku1qh1qRJk6y4uLgG25966ilr8ODBVkxMjJWQkGCdfPLJ1p133mnt2rXL38fr9VqzZs2yunbtasXExFjnnHOO9c0331iZmZm2U0zW+uyzz6zzzz/fSkhIsOLi4qwBAwZYf/rTn/ztNTU11rRp06zOnTtbDoejTj7TT6aYtCzLWrt2rZWbm2vFx8dbsbGx1rnnnmt98cUXAZ2bhmJsbRyW1crv2gcAhJV58+bptttu044dO+pMXwcACB2KeADAMausrKzzhbeqqioNGjRIXq9X//nPf1owMgBo27gnHgBwzMaPH6/u3bvrlFNOUXFxsf7+979rw4YNDU5JBwAIDYp4AMAxy83N1d/+9jf94x//kNfr1YknnqhFixbpiiuuaOnQAKBN43YaAAAAIMwwTzwAAAAQZijiAQAAgDDT5u+J9/l82rVrlxISEljOG0aWZam0tFTp6emKiOB3XJBDEBxyCI6GPIJgBJxHWmyG+iA8/vjj/oWKsrOzrdWrVwf83Pz8fEsSG1tQW35+fhO+o9ESjjWPkEPYjmUjh7Q91CJszb2Z8kirvxL/0ksvafr06XryySc1ZMgQzZs3T7m5udq4caO6dOlifH5CQoIkKfOeexXxf0uBH02H7yzbcZKu3mE81qb/pBv7nDfoW2Of3ORvbNsf/sNE4xh7hviMfWJ2mn/8Qy/62rb9083HG8fwlUYZ+zxw7kvGPh8UnWTb/sm6/sYx+hy/y7a9pqJaKy5/xv++QdvQmDxS+14YrjGKlPm9jPatRof0md4jh7QxoapFek6dIae74VokosZ+HHeRfa0iSV6X+Up/x7HmmqZH/H7b9jMStxjHOCtmu7HPBUumGvvEbbevV6oHlhnH6PlgtbHP/lM7GPuEQkSN/c/Re6hKX78+x5hHWn0R/8gjj+j666/X5MmTJUlPPvmk3n33XT3zzDO6++67jc+v/bNVRHS0bRHvdNmf0Mg4t/FYETENj1/LFe8y9olNcNq2O13m40TEmIt4p9v84zfFGxFrjkU15sLH9JolyVVjiCWA8x/Iz1ESf+5sYxqTR2rfC5GKUqSDIh4G//dRQg5pW0JVizjd0fZFvOGj0FSrSJICKOID+Sw0ff7HxJtriIRY8y1lgXx2m+qViFjDbz+SIp3m8xJIfRUKEREB/BxlziOt+oa96upqffXVV8rJyfHvi4iIUE5OjlauXNmCkQEIF+QRAI1BDkFr1aqvxO/bt09er1epqal19qempmrDhg1HfY7H45HH4/E/LikpadIYAbRuweYRcgiAI1GLoLVq1Vfij8XcuXOVlJTk3zIyMlo6JABhhBwCoLHII2gOrbqI79Spk5xOpwoLC+vsLywsVFpa2lGfc88996i4uNi/5efnN0eoAFqpYPMIOQTAkahF0Fq16iLe5XJp8ODBWrp0qX+fz+fT0qVLNXTo0KM+x+12KzExsc4GoP0KNo+QQwAciVoErVWrvidekqZPn65JkybptNNOU3Z2tubNm6fy8nL/N8QBwIQ8AqAxyCFojVp9EX/FFVdo7969mjFjhgoKCnTKKadoyZIl9b5gYuJNr5IV23D7by+zn6d85ndjgzpeQy7sYD/vuiTdtvoK23bfMPP0kRGJh4x9XGeYv2jTO3aPbfu29BTjGIUrM419flMyydjHJLnfQWOfX2css22vKPXKvgfCUajyCID2KVQ5JHG7T86ohj/D95xu/3xnlfkGCiuAeyw2bzn6bUBHyovrZNv+TceuxjH++NHlxj7uIaXGPh3fsZ/6sbgi3jjGD+PNfSozzLWTw+21bT8uzVyL7CuNs233VlRJ5uVzWn8RL0lTp07V1KnmxQAAoCHkEQCNQQ5Ba9Oq74kHAAAAUB9FPAAAABBmKOIBAACAMEMRDwAAAIQZingAAAAgzFDEAwAAAGEmLKaYDIWe1/9LkY6oBttv+fMvbJ8fVeI0HqPh0X8UyHzzzh3286H6Eu3nKJWkvr8vM/bZ+N/mOVP/vHykbftj5//dOMa7kwYa+yz75BRjn57Z223bM+MPGMcwzsFfUSXpW+M4AAAEK+KQJaesBttjCu1rDV8AhYbTY+4Tv8k8kNNj32fXQHNd5BxcYezjK7RZxOf/lGbYX3P2mUORe7+5j+k1S5Inxb50LnCZV+dNSqi0bff6zPPVS1yJBwAAAMIORTwAAAAQZijiAQAAgDBDEQ8AAACEGYp4AAAAIMxQxAMAAABhhiIeAAAACDMU8QAAAECYaTeLPTn79pLT6W6wPSLRMLF+AIs9mRYjkqT8jzKNfbr+u8a2/fZHzQssPfye/eJVkuQrMXZRcjf7Ths9XY1j3J76sbHPh4knm4Mx+CHbfvEESdqy61nb9pJSnzo0OhIAAOrzJEaoxtXw9dPyTPvP/8RN5rLN4Wt4MalavkiHsc+hBPM4Jonx5s/lsm0xxj5JW6pt251V5kUw959kPk5sgbGLEs8rtG3PSCgyjrG30n6xzRpvACt2iSvxAAAAQNihiAcAAADCDEU8AAAAEGYo4gEAAIAwQxEPAAAAhJljLuI9Ho88nsC+PQsAAAAgdIIq4j/66CONGTNGHTp0UGxsrGJjY9WhQweNGTNGH39snkYQAAAAQOMFXMQ/99xzGjNmjJKSkvToo4/qnXfe0TvvvKNHH31UycnJGjNmjP7nf/6nKWMFAAAAoCAWe/r973+vefPm6aabbqrXdu2112r48OGaPXu2rr766pAGGCrbL+okpzu6wfY+6dtsn5//rXmRpk27upgD6W9e+KDkDPs+f84/1zjGCTP+bT7ObvNryu5qf17++s4o4xjvfDbS2GdUAPGuMcS7btd64xhZi2+wbfdVVkmaYRwHAIBglZ5brohYm4WJShpelFKSokrNCzBZ5rUpFbMngIWcDJd5e/7PAeMQVVkp5sN0N4dS1THKtr0m2mUcw+EzH2d/bpWxj7Uvybb9kNf8A+idvM9+DJ/94la1Ar4Sv337duXk5DTYPnLkSO3YsSPQ4QAAAAAco4CL+P79++vpp59usP2ZZ57RiSeeGJKgAAAAADQs4NtpHn74YV100UVasmSJcnJylJqaKkkqLCzU0qVLtXXrVr377rtNFigAAACAwwIu4s855xx98803euKJJ7Rq1SoVFBRIktLS0jR69Gj96le/Uo8ePZoqTgAAAAD/J+AiXpJ69OihBx54oKliAQAAABAAVmwFAAAAwgxFPAAAABBmKOIBAACAMBPUPfHN7b777tOsWbPq7Ovbt682bNgQ9Fg1iZZ80Q0vbrDkBPuZdbI22C8SJEkqsV+MQJJGnWZe1Ojj/5xg277u9EXGMc6+wRxv9cnmH/+aEvuFGnpeZr8YlCT9+rJlxj4zvxtr7KMP7WM545VfmccYFsBqD2hTQplHALRPocojnd6MUWRUwwtPlmbYLxRUlmE+RsQhcx+HzXpTtVzF9u27z08zjhFdZP7MreroMI9z0H6c8nTzNelI81qb8hWZF406vp/9mkj/2W4+Lz2T99vHIfM5kY7hSvzs2bNVUVFRb39lZaVmz54d7HBG/fv31+7du/3bZ599FvJjAGjbyCMAGos8gtYm6CJ+1qxZKisrq7e/oqKi3m+poRAZGam0tDT/1qlTp5AfA0DbRh4B0FjkEbQ2QRfxlmXJ4ah/mf/rr79WSor97Q7HYtOmTUpPT1fPnj111VVXafv27bb9PR6PSkpK6mwA2rdg8gg5BMDRkEfQ2gRcxHfo0EEpKSlyOBw6/vjjlZKS4t+SkpJ0/vnn6/LLLw9pcEOGDNHChQu1ZMkSPfHEE8rLy9OIESNUWlra4HPmzp2rpKQk/5aREcANZADarGDzCDkEwE+RR9AaBfzF1nnz5smyLF133XWaNWuWkpKS/G0ul0s9evTQ0KFDQxrc6NGj/f8eMGCAhgwZoszMTL388sv65S9/edTn3HPPPZo+fbr/cUlJCf95gHYs2DxCDgHwU+QRtEYBF/GTJk2SJGVlZWnYsGGKijLPxBJqycnJOv7447V58+YG+7jdbrnd7maMCkA4MeURcggAE/IIWoOg74k/++yzFRERoddee01z5szRnDlz9MYbb8jrDWC+okYqKyvTli1b1LVr1yY/FoC2iTwCoLHII2gNgp4nfvPmzRozZox27typvn37Sjp871dGRobeffdd9erVK2TB/eY3v9HFF1+szMxM7dq1SzNnzpTT6dTEiRODHiu2b5GcsQ3/VnzBhgttn9/9PfMx9gUy7/q3g4x9Ohfbz4faS5ONY/jGGLto1GnrjH2+nj/Qtn3rmu7GMf6sc419srua55v/sH+ibXtyN/MXh7r/1X6MmkOS/QywCDehzCMA2qdQ5ZFDcRHyuRq+fpqw3f6CaMQh+3nkJcnpaXhNnFoHTjbP356w3X6u8uLe5uvAzkMBzAG/3xzv/pPtX3fSZvPrKTy3xhxLvnme+I2R6bbtJ5+Qbxzju72ptu3eCo9xDOkYivibb75ZvXr10qpVq/yz0ezfv1+/+MUvdPPNN+vdd+0XTQrGjh07NHHiRO3fv1+dO3fW8OHDtWrVKnXu3DlkxwDQtpFHADQWeQStUdBF/D//+c86BbwkdezYUX/4wx905plnhjS4RYvMK5MCgB3yCIDGIo+gNQr6nni3233UKZXKysrkcpn/DAEAAACgcYIu4i+66CLdcMMNWr16tSzLkmVZWrVqlX71q19p7NixTREjAAAAgCMEXcTPnz9fvXr10tChQxUdHa3o6GideeaZ6t27tx577LGmiBEAAADAEYK+Jz45OVlvvvmmNm3apA0bNkiS+vXrp969e4c8OAAAAAD1BV3E1+rTp4/69OkTylgAAAAABCDoIt7r9WrhwoVaunSp9uzZI5+v7tycn3zySciCAwAAAFBf0EX8LbfcooULF+rCCy/USSedJIfDPJF/a+B+I0lOV3SD7VtP6mD7/LjrDxqPUbHTfiEhSUr4wvw1hL0X2E/y/6tTlhvH+Os7o4x9ln1yirFPz+u227Z7Xss0jrFV5gWhMs87YOwTVWK/2EORzOc/dfpO2/aaco+0xDgMAABBi6zwKfJQwwsTxe6qsn2+JynWeIzqBHNd1u1TYxftO9m+XoktMC/SFFVm7hN9wLwIky8qyra9sqO5tjr+L+YFlCJ37Tb2KRp6nG37pt09jWNUZdrH4qsM7CurQRfxixYt0ssvv6wxYwJYEhQAAABAyAU9O43L5eJLrAAAAEALCrqIv/322/XYY4/Jssx/IgEAAAAQegHdTjN+/Pg6jz/55BO9//776t+/v6J+cp/S66+/HrroAAAAANQTUBGflJRU5/Gll17aJMEAAAAAMAuoiH/22WebOg4AAAAAAQr6nvjKykpVVFT4H2/btk3z5s3Thx9+GNLAAAAAABxd0EX8JZdcoueff16SVFRUpOzsbD388MO65JJL9MQTT4Q8QAAAAAB1BT1P/Nq1a/Xoo49Kkl599VWlpaVp3bp1eu211zRjxgzdeOONIQ8yFMZOX6bo+IZf7gtbTrd9fklpTEji8CSZf2/q+/sy2/Y/TxtpHCO22LzYQ6d/mxdYMC3CNPLGDcYxAll4as1zg4x94kbZx9LlEnMsmWvsf47VqjaOAQDAsShPd8rpbnjhwoMnxNk+v6qz13iM6D32CyNKUsEZ5lrEVWTsYuQ8ZJ7JcH9/lzmWUvtxIgI4zp7TEox94grNi2kdPMH+/PoizbG44+xrDa8jsFok6CvxFRUVSkg4fCI+/PBDjR8/XhERETrjjDO0bdu2YIcDAAAAEKSgi/jevXtr8eLFys/P1wcffKBRow5fZd2zZ48SE83L3gMAAABonKCL+BkzZug3v/mNevTooezsbA0dOlTS4avygwaZb4kAAAAA0DhB3xP/s5/9TMOHD9fu3bs1cOBA//6RI0cyfzwAAADQDIIu4iUpLS1NaWlpys/PlyRlZGQoOzs7pIEBAAAAOLqgb6epqanRvffeq6SkJPXo0UM9evRQUlKSfve73+nQoUNNESMAAACAIwR9JX7atGl6/fXX9eCDD/rvh1+5cqXuu+8+7d+/n7niAQAAgCYWdBH/wgsvaNGiRRo9erR/34ABA5SRkaGJEydSxAMAAABNLOgi3u12q0ePHvX2Z2VlyeUyT9jfUl55eqScrugG20uGVto+v9cT5sn7995ZYg6km7nLtsTOtu0RifaxSlJFhvk4O/qbb3+KuzDetn3bSynGMbzHVRn7FCVGGfv8utf/2ra/cFOucYzi+T7bdm91laSXjOMAABCszmsrFBnZ8OfQ5kn2n4XxG82fld4zzLVI0gfmhY8k+7qnpJd5BK/Nwla1KtLtP5clKWqT/QKWsXvMY/gCqHiTvjCvd5S02v41VfVNM45xcId9beWtDqw8D/qe+KlTp+r++++Xx+Px7/N4PPr973+vqVOnBjscAAAAgCAFfSV+3bp1Wrp0qY477jj/FJNff/21qqurNXLkSI0fP97f9/XXXw9dpAAAAAAkHUMRn5ycrMsuu6zOvoyMAO7dAAAAABASQRfxzz77bFPEAQAAACBAQd8TDwAAAKBlHdOKra+++qpefvllbd++XdXV1XXa1q5dG5LAAAAAABxd0Ffi58+fr8mTJys1NVXr1q1Tdna2OnbsqK1bt9aZOx4AAABA0wj6Svyf//xnPfXUU5o4caIWLlyoO++8Uz179tSMGTN04MCBpoixWfzqlOW27UvvP8E4Rna8+fV/+OXJxj5RSfZzs5pilaQn159l7BP9bYyxz8ZHj7PvsMs4hBITzPPal+9oeA7/Wi9sOd22vTrRHEtRf/u5ZH2VPqaJBwA0iR0jYxQR3fDnXefP7Z9/oL95zZroL80fhuXpxi5yeuzbO/7LPDe75TDH2+nf1cY+hYPta4SKNPN89MmbzPFW9jcv5hNVYh+ve5d5nv6Dlyfbtvsqa4xjSMdwJX779u0aNmyYJCkmJkalpaWSpKuvvlovvvhiUGMtX75cF198sdLT0+VwOLR48eI67ZZlacaMGeratatiYmKUk5OjTZs2BRsygDaMPAKgMcghCFdBF/FpaWn+K+7du3fXqlWrJEl5eXmyLPNvXEcqLy/XwIEDtWDBgqO2P/jgg5o/f76efPJJrV69WnFxccrNzVVVlXkFUADtA3kEQGOQQxCugr6d5rzzztNbb72lQYMGafLkybrtttv06quv6ssvv6yz0FMgRo8e3eB99JZlad68efrd736nSy65RJL0/PPPKzU1VYsXL9aECROCDR1AG0QeAdAY5BCEq6CL+Keeeko+3+H7im666SZ17NhRX3zxhcaOHaspU6aELLC8vDwVFBQoJyfHvy8pKUlDhgzRypUrG/yP4/F45PH8eCNXSYn53iQAbdOx5BFyCIBa1CJozYK+nSYiIkKRkT/W/hMmTND8+fM1bdo0uVyukAVWUFAgSUpNTa2zPzU11d92NHPnzlVSUpJ/YzVZoP06ljxCDgFQi1oErdkxzRNfVFSkNWvWaM+ePf6r8rWuueaakAR2rO655x5Nnz7d/7ikpIT/PAACRg4B0FjkETSHoIv4t99+W1dddZXKysqUmJgoh8Phb3M4HCEr4tPS0iRJhYWF6tq1q39/YWGhTjnllAaf53a75Xa7QxIDgPB2LHmEHAKgFrUIWrOgb6e5/fbbdd1116msrExFRUU6ePCgfwvlPPFZWVlKS0vT0qVL/ftKSkq0evVqDR06NGTHAdB2kUcANAY5BK1Z0Ffid+7cqZtvvlmxsbGNPnhZWZk2b97sf5yXl6f169crJSVF3bt316233qo5c+aoT58+ysrK0r333qv09HSNGzcu6GOVnl6piNiGp8D88/KRx/IS6sjPzzR3yjBP4B9V7LBt/2jKCOMYiaeYF3JyF5sXPnCdYVio6cMU4xhF/aOMffpmbzf2yf/I/vxW9TcvKqUScywIL82ZRwC0Pc2ZQ6JOLJEztuFVlHqcW2j7/P/q+L3xGN+Umxcs2uNJMPZZvaGnbXtVR/PnqbeTeSGnTlm7jX08u7vYtv/mlI+MY3xW1Nvc5z/mPhF742zbnVXxxjH6/dH+51zj9WiHcZRjKOJzc3P15ZdfqmdP+x9uIL788kude+65/se1949NmjTJvxpseXm5brjhBhUVFWn48OFasmSJom1WOwPQvpBHADQGOQThKugi/sILL9Qdd9yh7777TieffLKiour+JjZ27NiAxzrnnHNsF4hyOByaPXu2Zs+eHWyYANoJ8giAxiCHIFwFXcRff/31knTUN7PD4ZDX6218VAAAAAAaFHQR/9MpJQEAAAA0r6BnpwEAAADQsgIu4leuXKl33nmnzr7nn39eWVlZ6tKli2644YY6SwwDAAAAaBoBF/GzZ8/Wt99+63/873//W7/85S+Vk5Oju+++W2+//bbmzp3bJEECAAAA+FHARfz69es1cuSPc6kvWrRIQ4YM0V//+ldNnz5d8+fP18svv9wkQQIAAAD4UcBfbD148KBSU1P9j//5z39q9OjR/senn3668vPzQxtdCCX8b4ycrobndH3pzodsnz/1ypuMx9h7Z4mxT8XORGMfl2GYnWeZF9o6lNTwdFm1Soaab3/yGeLtvs28eFXqZTuNfYqeyTD2cSXZt1cEsJBTn3/YLzxRU1Md0AILAAAE69A3SfLZzC//v13sFwr60mdejMiKNs8SGJtsXhzxwgH/tm1/vNtq4xgD1kw09vnu2+7GPjKUNPMXjjMOUXmS+TXHbDDP/R9bYB+M5TQOoW0/S7Nt93qqpIfN4wR8JT41NVV5eXmSpOrqaq1du1ZnnHGGv720tLTenPEAAAAAQi/gIn7MmDG6++67tWLFCt1zzz2KjY3ViBEj/O3/+te/1KtXryYJEgAAAMCPAr6d5v7779f48eN19tlnKz4+Xs8995xcLpe//ZlnntGoUaOaJEgAAAAAPwq4iO/UqZOWL1+u4uJixcfHy+mse9PPK6+8ovh4+3u5AAAAADRe0Cu2JiUd/duFKSkpjQ4GAAAAgBkrtgIAAABhhiIeAAAACDMU8QAAAECYCfqe+HBVenqlImIbnqB/9Iqpts+PPivGeIxuD5rjqD7LfMpn3brQtn3mvGuNY7jOOGjsk5pQauyjdPvmjepmHCJiVxdjH98wn7FP8rf2v3OmfmH+ndS0UJbXEyGtMg4DAEDQ4ndYcroarkU6bLD/HPMkO4zHODjAvNijZ6t54cllXw22bT9z0ynGMaws88pHadvMn/8dVu+ybc/7xXHGMbr/PYBVmByHjF2qUuzHcZhfjkp72Lf7nOafocSVeAAAACDsUMQDAAAAYYYiHgAAAAgzFPEAAABAmKGIBwAAAMIMRTwAAAAQZijiAQAAgDDTbuaJd+6KVkR0dIPtPbO32z5/Y4l5PvS9d1YZ+2Qk7DX2Mc0DX55hnj805ZVkY5/8jBRjn6r+lbbtj53/d+MYv3ltkrFPALO3qqh/jW17v5l5xjE8l/exbfdWBxAIAADHIKrSkrOm4c/wg5eW2z7f5zVfe420zHPJu7bbr5kiSfE77WuNsnTzJ7fTXBapspP5NUWdlGbb3uOlAuMY+4emGvv4AihGOv6rxLZ957lJxjGcHkOHavPPUOJKPAAAABB2KOIBAACAMEMRDwAAAIQZingAAAAgzFDEAwAAAGGGIh4AAAAIMxTxAAAAQJihiAcAAADCTIsu9rR8+XI99NBD+uqrr7R792698cYbGjdunL/92muv1XPPPVfnObm5uVqyZEnQx+r5wn5FOt0Ntmecd8D2+ZsSuxiPkZpQauyzcYN50ahRk9bZti/75BTjGCkfbDH2SX7JZexjiveeZ641jnH9VR8Y+/x5+Uhjn+7v2bdvfPQ44xjOHfaLV/iqzAtpoXVpzjwCoO1pzhxS3DNCTnfD1089BxtelFKSUtaay7bOa+wXI5Ika90Xxj6HcgbbtndcedA4RtGp5tqpqI/5evK+JPvX7So2L7DU6cOtxj6efuYarahfgm27FUBlHVlh3+4wLQb1f1r0Snx5ebkGDhyoBQsWNNjnggsu0O7du/3biy++2IwRAmjtyCMAGoMcgnDVolfiR48erdGjR9v2cbvdSkuzX24XQPtFHgHQGOQQhKtWf0/8p59+qi5duqhv37668cYbtX///pYOCUCYIY8AaAxyCFqjFr0Sb3LBBRdo/PjxysrK0pYtW/Tb3/5Wo0eP1sqVK+V0Oo/6HI/HI4/nx5uJSkrM94YBaLuCzSPkEABHohZBa9Wqi/gJEyb4/33yySdrwIAB6tWrlz799FONHHn0L0LOnTtXs2bNaq4QAbRyweYRcgiAI1GLoLVq9bfTHKlnz57q1KmTNm/e3GCfe+65R8XFxf4tPz+/GSME0NqZ8gg5BIAdahG0Fq36SvxP7dixQ/v371fXrl0b7ON2u+V2NzyVJID2zZRHyCEA7FCLoLVo0SK+rKyszm+yeXl5Wr9+vVJSUpSSkqJZs2bpsssuU1pamrZs2aI777xTvXv3Vm5ubsDHsKzD837XeO0n3awuq7Zt91VUGY9VU26e2NNXaR7HGEtVALH47MeQJF+5eU50U7xej/ktVFVW0+jjSFLNIcMYFYYOkhyGw9Se29r3DVq/ps4j/hyiQxJvCxjU6HAeIoeEj+asRXwe+w8hX6X955i32vyZa6p3Dsdj/rysqbGPNZDj1Bwyf7Z7PeabQhw+w3EMsUpSRAB1USDjeKvtgwnk9ZhOv7c6wFrEakHLli2zdPhjsc42adIkq6Kiwho1apTVuXNnKyoqysrMzLSuv/56q6CgIKhj5OfnH/UYbGx2W35+fhO96xFqTZ1HyCFsx7KRQ8IHtQhba91MecRhWW37coHP59OuXbuUkJAgh8OhkpISZWRkKD8/X4mJiS0dXpsT7ufXsiyVlpYqPT1dERFh9ZURNJGf5hAp/N/nrVm4n1tyCI6GWqR5hfv5DTSPhNU98cciIiJCxx13XL39iYmJYfmDDRfhfH6TkpJaOgS0Ig3lECm83+etXTifW3IIfopapGWE8/kNJI9wmQAAAAAIMxTxAAAAQJhpd0W82+3WzJkzmfqpiXB+0R7wPm86nFu0B7zPm1Z7Ob9t/outAAAAQFvT7q7EAwAAAOGOIh4AAAAIMxTxAAAAQJihiAcAAADCTLsr4hcsWKAePXooOjpaQ4YM0Zo1a1o6pLC0fPlyXXzxxUpPT5fD4dDixYvrtFuWpRkzZqhr166KiYlRTk6ONm3a1DLBAiFEDgkNcgjaM/JIaLT3PNKuiviXXnpJ06dP18yZM7V27VoNHDhQubm52rNnT0uHFnbKy8s1cOBALViw4KjtDz74oObPn68nn3xSq1evVlxcnHJzc1VVVdXMkQKhQw4JHXII2ivySOi0+zxitSPZ2dnWTTfd5H/s9Xqt9PR0a+7cuS0YVfiTZL3xxhv+xz6fz0pLS7Meeugh/76ioiLL7XZbL774YgtECIQGOaRpkEPQnpBHmkZ7zCPt5kp8dXW1vvrqK+Xk5Pj3RUREKCcnRytXrmzByNqevLw8FRQU1DnXSUlJGjJkCOcaYYsc0nzIIWiryCPNpz3kkXZTxO/bt09er1epqal19qempqqgoKCFomqbas8n5xptCTmk+ZBD0FaRR5pPe8gj7aaIBwAAANqKdlPEd+rUSU6nU4WFhXX2FxYWKi0trYWiaptqzyfnGm0JOaT5kEPQVpFHmk97yCPtpoh3uVwaPHiwli5d6t/n8/m0dOlSDR06tAUja3uysrKUlpZW51yXlJRo9erVnGuELXJI8yGHoK0ijzSf9pBHIls6gOY0ffp0TZo0Saeddpqys7M1b948lZeXa/LkyS0dWtgpKyvT5s2b/Y/z8vK0fv16paSkqHv37rr11ls1Z84c9enTR1lZWbr33nuVnp6ucePGtVzQQCORQ0KHHIL2ijwSOu0+j7T09DjN7U9/+pPVvXt3y+VyWdnZ2daqVataOqSwtGzZMktSvW3SpEmWZR2e2unee++1UlNTLbfbbY0cOdLauHFjywYNhAA5JDTIIWjPyCOh0d7ziMOyLKsFfncAAAAAcIzazT3xAAAAQFtBEQ8AAACEGYp4AAAAIMxQxAMAAABhhiIeAAAACDNtfp54n8+nXbt2KSEhQQ6Ho6XDQStnWZZKS0uVnp6uiAh+xwU5BMEhh+BoyCMIRsB5pEUnuAzQ448/bmVmZlput9vKzs62Vq9eHfBz8/PzjzqHKBub3Zafn9+E72i0hGPNI+QQtmPZyCFtD7UIW3NvpjzS6q/Ev/TSS5o+fbqefPJJDRkyRPPmzVNubq42btyoLl26GJ+fkJAgSRp00X/LGRV9zHHEv/GlsY8n91Rjn/0nRh1zDLU6fnfI2KeqQ/P8aMu7mq8oJP7gNfapSHUa+7iLLNv2g+dXGsdwfRNr2+71VGnLn2f73zdoGxqTR2rfC8M1RpFq/P9ftG01OqTP9B45pI0JVS0yOPe3irSpRRw19uOUp5s/K32R5s9lV4n956kkRXjt+3gSzcep7Gzu4zCHIp/hZUcYzpsk1cQHcKBu5joiOanCtr3qkLn+Ki+xr0d9lR7tvPUBYx5p9UX8I488ouuvv96/HPGTTz6pd999V88884zuvvtu4/Nr/2zljIq2/Y9jEukwf3h7Axjf6W58ERAZZf5P7HQ1z4/W6Tb/B42MMhfxTncgr8n+P2BErPk/qNMd2HuAP3e2LY3JI7XvhUhFBZQH0M79Xxoih7QtoapFIg21iOlt43SZPysdARTxps9TSYqose/jdAVwnABqhECKeIehpIkwX9uULzqAAwVSR8Ta1zTOAIr4iEOhqUVa9Q171dXV+uqrr5STk+PfFxERoZycHK1cubIFIwMQLsgjABqDHILWqlVfid+3b5+8Xq9SU1Pr7E9NTdWGDRuO+hyPxyOPx+N/XFJS0qQxAmjdgs0j5BAAR6IWQWvVqq/EH4u5c+cqKSnJv2VkZLR0SADCCDkEQGORR9AcWnUR36lTJzmdThUWFtbZX1hYqLS0tKM+55577lFxcbF/y8/Pb45QAbRSweYRcgiAI1GLoLVq1UW8y+XS4MGDtXTpUv8+n8+npUuXaujQoUd9jtvtVmJiYp0NQPsVbB4hhwA4ErUIWqtWfU+8JE2fPl2TJk3SaaedpuzsbM2bN0/l5eX+b4gDgAl5BEBjkEPQGrX6Iv6KK67Q3r17NWPGDBUUFOiUU07RkiVL6n3BxCT6QI0iIxueSDT6h/32A6SZj1eUYj6dSVvN0y3WRNv/gaS0m/k4CTvNk6Y6K33GPruGu23bU75v/OuRpNIe5liK+9n3CeTN7DijyL69wmPbjvAUqjwCoH0KVQ7xRjnkiGp42sCqLvaflxWp5ikbawKYJjFup3kcd7F9uyfFPIY3xhyLL5DpLqvtj+XwBRBLrLnOuOj4b419VhX2sG0/sXOhbbsk/e/W423bHVXmWKUwKOIlaerUqZo6dWpLhwEgjJFHADQGOQStTau+Jx4AAABAfRTxAAAAQJihiAcAAADCDEU8AAAAEGYo4gEAAIAwQxEPAAAAhJmwmGIyFPac6pbT3fCc55Enpds+P263eT70PcPMfU54osTYpzIjwbY9kPndA1HU22XsE1tgP39r9H7zfPSFp9vPNS9JaSvNr2nCfR/Ytj+yPNc4hvV1rH27p8o4BgAAxyLhh3JFOm0+N3vG2z6/Js5pPIbTY54z3WGeml1l3ezHqQlkDvgocx9vyiFjH8de+3qluneleYz95lok3mleK2ZC5le27R8Unmgcw5leYdvuqAisFuFKPAAAABBmKOIBAACAMBP07TQFBQVavXq1CgoKJElpaWkaMmSI0tLSQh4cAAAAgPoCLuLLy8s1ZcoULVq0SA6HQykpKZKkAwcOyLIsTZw4UX/5y18UG2t/zzEAAACAxgn4dppbbrlFa9as0bvvvquqqioVFhaqsLBQVVVVeu+997RmzRrdcsstTRkrAAAAAAVRxL/22mtauHChcnNz5XT++O1op9OpUaNG6ZlnntGrr77aJEECAAAA+FHARbzP55PL1fAUPy6XSz5faKY+BAAAANCwgIv4iy66SDfccIPWrVtXr23dunW68cYbdfHFF4c0OAAAAAD1BfzF1scff1xXXnmlBg8erA4dOqhLly6SpD179qioqEi5ubl6/PHHmyzQxkr8wavIKPNiTA0p7mleYOGEJw4Y+xwY2MHYJ+aA/QJKkRXmhREiKqqNfZKNPcwLNe0abl48wbRglCSVdzWf36f/cqFte3SycQhFGtaDcJjXeQAA4JiUZcYpMiq6wfaqDvbXVn3mj0o5Argpotp+TUlJUqRhvSEr0ryolM9cIsi1w7zwZGSF/bGqjzPXGcm9zTXasoI+xj5Zifbj5O1NMY5h+ex/zqb2WgEX8R06dND777+v77//XqtWraozxeTQoUN1wgknBDoUAAAAgEYIep74fv36qV+/fk0RCwAAAIAABFXEV1dXa/HixVq5cmWdK/HDhg3TJZdcYvvFVwAAAAChEfAXWzdv3qx+/fpp0qRJWrdunXw+n3w+n9atW6drrrlG/fv31+bNm5syVgAAAAAK4kr8jTfeqJNPPlnr1q1TYmJinbaSkhJdc801uummm/TBBx+EPEgAAAAAPwq4iP/888+1Zs2aegW8JCUmJur+++/XkCFDQhocAAAAgPoCvp0mOTlZP/zwQ4PtP/zwg5KTk0MQEgAAAAA7AV+J/6//+i9dc801uvfeezVy5EilpqZKkgoLC7V06VLNmTNH06ZNa7JAAQAAABwWcBE/e/ZsxcXF6aGHHtLtt98uh+PwxPuWZSktLU133XWX7rzzziYLtLEqUp1yuhteJSFut/1CUHG7zAsJ7DnDvJCTabEhSYr7fq9te9HgVOMY8fnm4+w/ybwKQ6dv7BeWOhRr/mPOgX7m1Sm8MebzG7vbfrEHd5FxCAAAWq2ocvvPQiuA+ycq0s19DiWYP3OdVfafuYEsKuUqMi8IFZ9vjqUm1r5P9Y4Y4xilVeY+1d3NC2V6DtmXzknxhlWyJB0sibVtN5+Rw4KaYvKuu+7SXXfdpa1bt6qwsFDS4Skms7KyghkGAAAAQCMEvdiTJPXs2VM9e/YMdSwAAAAAAhDwF1sl6bvvvtOvf/1rDRo0SF27dlXXrl01aNAg/frXv9Z3333XVDECAAAAOELAV+Lff/99jRs3TqeeeqouueSSOl9s/eijj3TqqafqzTffVG5ubpMFCwAAACCIIv7uu+/WXXfdpdmzZ9dru++++3TffffpjjvuoIgHAAAAmljAt9P85z//0VVXXdVg+8SJE7Vp06aQBAUAAACgYQEX8T169NC7777bYPu7776rzMzMkAQFAAAAoGFBzRN/5ZVX6tNPP1VOTk69xZ6WLFmiF154ockCBQAAAHBYwEX8z3/+c3Xr1k3z58/Xww8/rIKCAkmH54kfOnSoPv30Uw0dOjSkwd13332aNWtWnX19+/bVhg0bgh4rttCryKiGF3RK/qrQ9vk1XRKNx9g3IM7YJ36neSGBqh4dbduj99cYx/B0NC/k1PEbj7FPWTeXbXuNee0EpX5lv2CUFJpFo6qTzStPuIrsj+M1nxKEmVDmEQDtU6jySHVChLyuhj+HamLtF0fyJJuPEWH+yFVMoXkRpuj99ksOBXKcmmjzskUx+8w1jTfa/rO7tIe5hgjkNXu6mBenLKuwr6+8NeYxYuPsiw2vFcDJVZDzxA8bNkzDhg0L5imN1r9/f3388cf+x5GRxzS1PYB2jDwCoLHII2htWv07MDIyUmlpaS0dBoAwRh4B0FjkEbQ2QS32ZOf7779vklVcN23apPT0dPXs2VNXXXWVtm/fbtvf4/GopKSkzgagfQsmj5BDABwNeQStTciK+Orqam3bti1Uw0mShgwZooULF2rJkiV64oknlJeXpxEjRqi0tLTB58ydO1dJSUn+LSMjI6QxAQgvweYRcgiAnyKPoDVyWJZl/taBpOnTp9u27927Vy+88IK83oa/PNpYRUVFyszM1COPPKJf/vKXR+3j8Xjk8fz4hYGSkhJlZGTotEvvV2RUdINjN9cXW5M3m7/YGgreGPPvZ85K8xdBQ/HF1oSd5i+ttJ4vtlZpyx9+q+LiYiUmmn/mCD+mPNJQDjlHlyjSEdWcoSIM1ViH9KneJIe0cceaRwZe/Xs5XQ3XIqH4YqvM398M6Eupofliq7lP4rbGf7G1MNtcQ8TtMJ+YopPNsUQlV9m2h+SLrRUebbzyAWMeCfie+Mcee0ynnHJKg4OVlZUFOtQxS05O1vHHH6/Nmzc32MftdsvtNs/MAqB9MuURcggAE/IIWoOAi/jevXvrtttu0y9+8Yujtq9fv16DBw8OWWBHU1ZWpi1btujqq69u0uMAaLvIIwAaizyC1iDgIv60007TV1991WAR73A4FOCdOQH7zW9+o4svvliZmZnatWuXZs6cKafTqYkTJwY9VvSBGkVGNvxnkvJ+nW2fX9rNfKq80QH8qaa3/e0pklSRZj9Oz6e2GMfYeXkvY59A5onfN8j+Z9ppnfk17zvJfAtCZKWxi2ILTO8v85/Tks7YY9vuLWei+LYmlHkEQPsUqjwSu6dGkVEN1yLV8fa3YsTsMx8jqsx8a2lUWQC3ucbb1z2B1Dyuhr/C+GMspeb7cpzVhvNSYP6rR1yh+XZv02uWpPKe9sdyxJiP4/Uabu31BnBPlIIo4h9++OE693f91MCBA+Xzmd84wdixY4cmTpyo/fv3q3Pnzho+fLhWrVqlzp3tC24AqEUeAdBY5BG0RgEX8S0xN+qiRYua/ZgA2hbyCIDGIo+gNQrZFJMAAAAAmgdFPAAAABBmKOIBAACAMEMRDwAAAISZoIv42bNnq6Kiot7+yspKzZ49OyRBAQAAAGhY0EX8rFmzjro6a0VFhWbNmhWSoAAAAAA0LOApJmtZliWHo/4k9F9//bVSUlJCElRLcFbaz3EfyGJEknmxq4Sd5gUWTD+WbZPMCzm5D5pj+eEi8yJMCT/Y/55XkmUcQlVdA3nNZqNP+5dt+/vf9DeOUVMUb9vuqwj6vwQAAAFxeC05HA1/Pntd9ov8WAFcevVG2S+MJEkVXcx9agyLOTmrzXWGu8Tcx+Z0+B0yLIJVE2ceoyQzgPPSzbxQU3RKlW17cnz9u1V+aliXPNt2T9khbTaOEkQR36FDBzkcDjkcDh1//PF1Cnmv16uysjL96le/CnQ4AAAAAMco4CJ+3rx5sixL1113nWbNmqWkpCR/m8vlUo8ePTR06NAmCRIAAADAjwIu4idNmiRJysrK0rBhwxQVZb4VAwAAAEDoBX0D8Nlnny2v16vXXntN33//vSSpf//+Gjt2rJxO8/1GAAAAABon6CJ+8+bNGjNmjHbu3Km+fftKkubOnauMjAy9++676tXL/KVLAAAAAMcu6Ckmb775ZvXq1Uv5+flau3at1q5dq+3btysrK0s333xzU8QIAAAA4AhBX4n/5z//qVWrVtWZTrJjx476wx/+oDPPPDOkwQEAAACoL+gr8W63W6WlpfX2l5WVyeVyhSQoAAAAAA0L+kr8RRddpBtuuEFPP/20srOzJUmrV6/Wr371K40dOzbkAYbKgX5uOd3uBttrYuyfn/nKLuMx9p3Z1dintJv5lB8YWm3bnrLS/MtSp3+Vm2PJMq+O4Em2b0/MM6/SUJ1s/l0xIs1+8QRJWrv3ONv2qwatMY5x4JD9a64uq9azxlEAAAheZJVXkZENLyjkrLavEWpi7BdgOjyG+XM5Zn8AixrtNi9aZLJvcKKxT9wOc7yxu+xX3CzOSjCOkfSDeeHJqFLzBC0Hk+xnZywoMi986k7bZN8hIrBFMoO+Ej9//nz16tVLQ4cOVXR0tKKjo3XmmWeqd+/eeuyxx4IdDgAAAECQgr4Sn5ycrDfffFObNm3Shg0bJEn9+vVT7969Qx4cAAAAgPqCLuJr9enTR3369AllLAAAAAACEHQR7/V6tXDhQi1dulR79uyRz+er0/7JJ5+ELDgAAAAA9QVdxN9yyy1auHChLrzwQp100klyOMxfsgAAAAAQOkEX8YsWLdLLL7+sMWPGNEU8AAAAAAyCnp3G5XLxJVYAAACgBQVdxN9+++167LHHZFnmeT0BAAAAhF5At9OMHz++zuNPPvlE77//vvr376+oqLqT3r/++uuhiy6E3EWWnK6Gf/FwHzQMUGG/0IAklaebvx+QtNW8wELmq/a/Wx2K9dm2S1JRH/NCTs5Kc7zeGPtf1jwdzGO4igI4jsew2pak/Yb2fxRmG8d459zHbdvLon0s9gQAaBIRHq8ivA3XAXG7PLbPr062X2hIktwH7BeMlKSoHaZPVMmqso/FSutoHCN+VwALLG0tMPapKSi0bU+vPME4xqFOscY+1XHma9uO/fYLbnY/yfx6vtjb07a9ptz+3NcKqIhPSkqq8/jSSy8NaHAAAAAAoRdQEf/ss1ybBAAAAFqLoO+Jr6ysVEVFhf/xtm3bNG/ePH344YchDQwAAADA0QVdxF9yySV6/vnnJUlFRUXKzs7Www8/rEsuuURPPPFEyAMEAAAAUFfQRfzatWs1YsQISdKrr76qtLQ0bdu2Tc8//7zmz58f8gABAAAA1BV0EV9RUaGEhARJ0ocffqjx48crIiJCZ5xxhrZt2xbyAAEAAADUFXQR37t3by1evFj5+fn64IMPNGrUKEnSnj17lJiYGPIAAQAAANQV0Ow0R5oxY4auvPJK3XbbbTrvvPM0dOhQSYevyg8aNCjkAYZKeVeHnO6G5ys3zd++9YZexmO4i8xxRFWY53ivTAn6x1JPIPO315xQYezT5Q23bXtxT2fAMTVW5Ab7OV5rsszzqvZ32c9HX+Iy/3wAADgWzgPlcjobnjvdkWT/OedNtZ+jXJI8KeY+knmOd/ns14lxlpo/c6tSzDVC7KFDxj6Raam27ZVp5rVxLKe5LnKaQ5GrxLCWj898ffzC9G9t26vKDmmlOZTgr8T/7Gc/0/bt2/Xll1/qgw8+8O8fOXKkHn300aDGWr58uS6++GKlp6fL4XBo8eLFddoty9KMGTPUtWtXxcTEKCcnR5s2bQo2ZABtGHkEQGOQQxCugi7iJSktLU2DBg3Szp07lZ+fL0nKzs7WCSeYV8w6Unl5uQYOHKgFCxYctf3BBx/U/Pnz9eSTT2r16tWKi4tTbm6uqqqqjiVsAG0QeQRAY5BDEK6Cvm+jpqZGs2bN0vz581VWViZJio+P17Rp0zRz5kxFRZmXBK41evRojR49+qhtlmVp3rx5+t3vfqdLLrlEkvT8888rNTVVixcv1oQJE4INHUAbRB4B0BjkEISroK/ET5s2TU899ZQefPBBrVu3TuvWrdODDz6op59+WjfffHPIAsvLy1NBQYFycnL8+5KSkjRkyBCtXNnwnUIej0clJSV1NgDt07HkEXIIgFrUImjNgi7iX3jhBS1cuFBTpkzRgAEDNGDAAE2ZMkVPP/20XnjhhZAFVlBQIElKTa37ZYbU1FR/29HMnTtXSUlJ/i0jIyNkMQEIL8eSR8ghAGpRi6A1C7qId7vd6tGjR739WVlZcrkC+UZ007rnnntUXFzs32rv2QeAQJBDADQWeQTNIegifurUqbr//vvl8fw4tZDH49Hvf/97TZ06NWSBpaWlSZIKCwvr7C8sLPS3HY3b7VZiYmKdDUD7dCx5hBwCoBa1CFqzoIv4devW6Z133tFxxx2nnJwc5eTk6LjjjtPbb7+tr7/+WuPHj/dvjZGVlaW0tDQtXbrUv6+kpESrV6/2z00PAHbIIwAagxyC1izo2WmSk5N12WWX1dl3rPd6lZWVafPmzf7HeXl5Wr9+vVJSUtS9e3fdeuutmjNnjvr06aOsrCzde++9Sk9P17hx44I+VtxuS05XwwsXJH9V2GCbJMXnm3+Ljtxj/uJKVQ/zAgvl6fYLEpgWppKkkmTzAgvur+0XlTjM/lidvjGvjOCsNC+gtGdapbFPRZ79z+CqQWuMY3xbbX+csmoWewo3zZlHALQ9zZlDrBiXLGfDtx5Xptl/Ljs99gswSZIVyOVZw0JOkmRF2g9U3cW8wFJ5mjmYjknm+soqLbdtdx4yf3Z7I8x1UfQ+c01jOewXwfRZ5kWlEpz205NG2SwIdqSgi/hnn3022Kc06Msvv9S5557rfzx9+nRJ0qRJk7Rw4ULdeeedKi8v1w033KCioiINHz5cS5YsUXR0dMhiABDeyCMAGoMcgnAVdBEfSuecc44sq+HfBh0Oh2bPnq3Zs2c3Y1QAwgl5BEBjkEMQro6piH/11Vf18ssva/v27aqurq7Ttnbt2pAEBgAAAODogv5i6/z58zV58mSlpqZq3bp1ys7OVseOHbV169YGVzwDAAAAEDpBF/F//vOf9dRTT+lPf/qTXC6X7rzzTn300Ue6+eabVVxc3BQxAgAAADhC0EX89u3bNWzYMElSTEyMSktLJUlXX321XnzxxdBGBwAAAKCeoIv4tLQ0HThwQJLUvXt3rVq1StLhKZnsvhgCAAAAIDSCLuLPO+88vfXWW5KkyZMn67bbbtP555+vK664QpdeemnIAwQAAABQV9Cz0zz11FPy+Q5Pqn/TTTepY8eO+uKLLzR27FhNmTIl5AGGSk2MZDW8voJxEaatV5uP0eWTrsY+kVXmBQnKe9hP8h9Zaf6xxRaY/ypSmmXsogP97BdHqE4OYFGDH6KMfcoKzIswxGfZL6b1n7IuxjGUbO4CAEBT8Ma75YhseH75mhj7z9T4bRXGY/hizDWCL9r8mVuRalM0SYoqN9czsYWhuUPDEWkfb00Arye6wH7BqEC5SuwXexrSZZtxjCrL/mdUFeBpC7qIj4iIUETEjxfwJ0yYoAkTJgQ7DAAAAIBjdEzzxBcVFWnNmjXas2eP/6p8rWuuuSYkgQEAAAA4uqCL+LfffltXXXWVysrKlJiYKIfjxz/9OBwOingAAACgiQX9xdbbb79d1113ncrKylRUVKSDBw/6t9pZawAAAAA0naCL+J07d+rmm29WbGxsU8QDAAAAwCDoIj43N1dffvllU8QCAAAAIABB3xN/4YUX6o477tB3332nk08+WVFRdacPHDt2bMiCAwAAAFBf0EX89ddfL0maPXt2vTaHwyGv19v4qAAAAAA0KOgi/qdTSoYLd5FPkVENx+6Nsb+zKGmdecGifYPM5+aExwuNfWqi7ReN8nQwDiFvtHkRps5rzb9wFfe0X0Ah4QfzHVk1McYuivvB/FasqEy0bS9OtF8MSpL6u+yDKXGF5/sbABAGfNbhrQHOavtVfmoS7BdgkiRPsvnzNLLS/FkXUWMfi9dlrjO85nBVnWEuaqK+3W7bbkWaY5FlXkGpJrHhhbhqHYo3H8pk36EE23bPoUMBjRP0PfEAAAAAWlbARfzKlSv1zjvv1Nn3/PPPKysrS126dNENN9wgj8cT8gABAAAA1BVwET979mx9++23/sf//ve/9ctf/lI5OTm6++679fbbb2vu3LlNEiQAAACAHwVcxK9fv14jR470P160aJGGDBmiv/71r5o+fbrmz5+vl19+uUmCBAAAAPCjgIv4gwcPKjU11f/4n//8p0aPHu1/fPrppys/Pz+00QEAAACoJ+AiPjU1VXl5eZKk6upqrV27VmeccYa/vbS0tN6c8QAAAABCL+AifsyYMbr77ru1YsUK3XPPPYqNjdWIESP87f/617/Uq1evJgkSAAAAwI8Cnif+/vvv1/jx43X22WcrPj5ezz33nFyuHycAfeaZZzRq1KgmCTIUDvZ1yulueM7z7h9W2j6/21f2c5RK0r7zexr7bPt5urFP0lb7+dvjv6kxjlHWzTw5q2kOeEkq72E+lkl8WpmxT1WlOd7YmGrb9l0l9vPIS9KiUvv5aCvKWKwMANA0Irw+RajhOdodho+gUM0BL/OU6Yo4ZN/pUJz5OrA3xjx/e2SxeWZDh+FOD1+U+ThVXc0TvEeVmWsen8v+vBRUmWuRER022bZXHgqs9gq4iO/UqZOWL1+u4uJixcfHy+msWwC+8sorio8PwQz4AAAAAGwFvWJrUlLSUfenpKQ0OhgAAAAAZqzYCgAAAIQZingAAAAgzFDEAwAAAGGGIh4AAAAIMxTxAAAAQJihiAcAAADCTNBTTIbS8uXL9dBDD+mrr77S7t279cYbb2jcuHH+9muvvVbPPfdcnefk5uZqyZIlQR+r60qPIiMbXgwgosJ+IaGaHqnGY8QcME/OH7/TvAiDaaGm/Se5jWMkbzlk7FMTY/7xd/rGflGDol72CzBIUnmSeSGnGo954akbBn5u277iYG/jGGmRxbbt5U4Wewo3zZlHALQ9zZlDfFFO+SIb/rzzuewXLQpkIaeo8gAWLIo0X8N12pdFspzmBZbidps/U60AYqnJ6GzbXtnBXEOkFFQZ+zg85ngdNbG27d2ii4xj3JScb9te4vTpLuMoLXwlvry8XAMHDtSCBQsa7HPBBRdo9+7d/u3FF19sxggBtHbkEQCNQQ5BuGrRK/GjR4/W6NGjbfu43W6lpaU1U0QAwg15BEBjkEMQrlr9PfGffvqpunTpor59++rGG2/U/v37WzokAGGGPAKgMcghaI1a9Eq8yQUXXKDx48crKytLW7Zs0W9/+1uNHj1aK1eulNN59PufPB6PPB6P/3FJSUlzhQugFQo2j5BDAByJWgStVasu4idMmOD/98knn6wBAwaoV69e+vTTTzVy5MijPmfu3LmaNWtWc4UIoJULNo+QQwAciVoErVWrv53mSD179lSnTp20efPmBvvcc889Ki4u9m/5+fbfAAbQvpjyCDkEgB1qEbQWrfpK/E/t2LFD+/fvV9euXRvs43a75Xabp2AE0D6Z8gg5BIAdahG0Fi1axJeVldX5TTYvL0/r169XSkqKUlJSNGvWLF122WVKS0vTli1bdOedd6p3797Kzc0N+BiWdXie85oaj22/CK99u6/GPDdrzSH7OdUlyQpgHG+1fR+vxzw3a80h8zzx3mrzj7/mkP18s94A5lT1VZjnZvVVm+d4rSqzj+VQuWFSW0nlpfbxVpQdPve17xu0fk2dR/w5RIck3hYwqNHh3EsOCR+tqRYx1RHWIXMN4agJYJ74ENyIUXPIXENY5nJFNV5zjWD57AcKqJ6pCWCeeG8ANVqV/TieMnP9VVJqf5ySQGsRqwUtW7bM0uGPxTrbpEmTrIqKCmvUqFFW586draioKCszM9O6/vrrrYKCgqCOkZ+ff9RjsLHZbfn5+U30rkeoNXUeIYewHctGDgkf1CJsrXUz5RGHZbXtywU+n0+7du1SQkKCHA6HSkpKlJGRofz8fCUmJrZ0eG1OuJ9fy7JUWlqq9PR0RUSE1VdG0ER+mkOk8H+ft2bhfm7JITgaapHmFe7nN9A8Elb3xB+LiIgIHXfccfX2JyYmhuUPNlyE8/lNSkpq6RDQijSUQ6Twfp+3duF8bskh+ClqkZYRzuc3kDzCZQIAAAAgzFDEAwAAAGGm3RXxbrdbM2fOZOqnJsL5RXvA+7zpcG7RHvA+b1rt5fy2+S+2AgAAAG1Nu7sSDwAAAIQ7ingAAAAgzFDEAwAAAGGGIh4AAAAIM+2uiF+wYIF69Oih6OhoDRkyRGvWrGnpkMLS8uXLdfHFFys9PV0Oh0OLFy+u025ZlmbMmKGuXbsqJiZGOTk52rRpU8sEC4QQOSQ0yCFoz8gjodHe80i7KuJfeuklTZ8+XTNnztTatWs1cOBA5ebmas+ePS0dWtgpLy/XwIEDtWDBgqO2P/jgg5o/f76efPJJrV69WnFxccrNzVVVVVUzRwqEDjkkdMghaK/II6HT7vOI1Y5kZ2dbN910k/+x1+u10tPTrblz57ZgVOFPkvXGG2/4H/t8PistLc166KGH/PuKioost9ttvfjiiy0QIRAa5JCmQQ5Be0IeaRrtMY+0myvx1dXV+uqrr5STk+PfFxERoZycHK1cubIFI2t78vLyVFBQUOdcJyUlaciQIZxrhC1ySPMhh6CtIo80n/aQR9pNEb9v3z55vV6lpqbW2Z+amqqCgoIWiqptqj2fnGu0JeSQ5kMOQVtFHmk+7SGPtJsiHgAAAGgr2k0R36lTJzmdThUWFtbZX1hYqLS0tBaKqm2qPZ+ca7Ql5JDmQw5BW0UeaT7tIY+0myLe5XJp8ODBWrp0qX+fz+fT0qVLNXTo0BaMrO3JyspSWlpanXNdUlKi1atXc64RtsghzYccgraKPNJ82kMeiWzpAJrT9OnTNWnSJJ122mnKzs7WvHnzVF5ersmTJ7d0aGGnrKxMmzdv9j/Oy8vT+vXrlZKSou7du+vWW2/VnDlz1KdPH2VlZenee+9Venq6xo0b13JBA41EDgkdcgjaK/JI6LT7PNLS0+M0tz/96U9W9+7dLZfLZWVnZ1urVq1q6ZDC0rJlyyxJ9bZJkyZZlnV4aqd7773XSk1NtdxutzVy5Ehr48aNLRs0EALkkNAgh6A9I4+ERnvPIw7LsqwW+N0BAAAAwDFqN/fEAwAAAG0FRTwAAAAQZijiAQAAgDBDEQ8AAACEGYp4AAAAIMxQxAMAAABhhiIeAAAACDMU8QAAAECYoYgHAAAAwgxFPAAAABBmKOIBAACAMEMRDwAAAISZ/w+Ef3UO6g1GeAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -80694,7 +80694,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAKqCAYAAADlgruKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhlVXn2j3/WWns6c43d1RPdzYwoqMhkACGCBDG84IsgmjcMCsYoBoxTkl8cEifURIJTEhPFvCavhEQjP4eooIk4IEQGRQEZuqHnmuuMe1zr+8c651RVd3VT3TR0N5z7uuqqOvvsvdbau/Y6Z937ee77EcYYQw899NBDDz300EMPPfTQwwEAua8H0EMPPfTQQw899NBDDz30sFj0CEwPPfTQQw899NBDDz30cMCgR2B66KGHHnrooYceeuihhwMGPQLTQw899NBDDz300EMPPRww6BGYHnrooYceeuihhx566OGAQY/A9NBDDz300EMPPfTQQw8HDHoEpoceeuihhx566KGHHno4YNAjMD300EMPPfTQQw899NDDAYMegemhhx566KGHHnrooYceDhj0CEwPPfTQw16AEIL3v//9+3oYu8Rll11GsVjc18Po4VmENWvWcNlll3Vf/9d//RdCCP7rv/5rr/VxIMytHnp4NuBAmms9AvMsxI033ogQovvjOA4rVqzgsssuY9OmTft6eD08h7Fu3Tre+ta3cvjhh5PP58nn8zzvec/jLW95C7/4xS/29fCeVpx++unz5uXOfp7ql0ez2eT973//Xl1A9rD/YvvP+yAIOPzww3nrW9/Ktm3b9vXwFo1vfetbB8zCqYdnHr/85S+58MILWb16NUEQsGLFCs466yw+9alP7euhPaPYvHkz73//+7n33nv3uI1ny1xz9vUAenj68Bd/8ResXbuWMAy54447uPHGG/nRj37E/fffTxAE+3p4PTzH8I1vfIOLL74Yx3F4/etfz7HHHouUkgcffJCvfvWrfO5zn2PdunWsXr16Xw/1acGf/dmf8cY3vrH7+q677uKGG27gT//0TznqqKO624855pin1E+z2eQDH/gAYElTD88NzP28/9GPfsTnPvc5vvWtb3H//feTz+efsXGcdtpptFotPM/breO+9a1v8ZnPfGbBhVWr1cJxesuV5yp+8pOfcMYZZ3DQQQdx5ZVXMjIywoYNG7jjjjv4m7/5G66++up9PcRnDJs3b+YDH/gAa9as4YUvfOEetfFsmWsHxih72COcc845vOQlLwHgjW98I0NDQ1x33XXccsstXHTRRft4dD08l/Doo4/y2te+ltWrV3PbbbexbNmyee9fd911fPazn0XKXQeFG40GhULh6Rzq04azzjpr3usgCLjhhhs466yzdkk0DuRz7uGZw/af94ODg/z1X/81X//617nkkkt22P/puq+klHv9AVnvgdtzGx/60IeoVCrcdddd9PX1zXtvdHR03wzqWYoDaa71UsieQzj11FMBu5gEiOOY9773vRx33HFUKhUKhQKnnnoqP/jBD+Yd9+IXv5hXv/rV87a94AUvQAgxL+3npptuQgjBAw888DSfSQ8HGj72sY/RaDT44he/uAN5AXAch7e97W2sWrWqu62j13j00Ud55StfSalU4vWvfz1gF19//Md/zKpVq/B9nyOOOIJPfOITGGO6x69fvx4hBDfeeOMO/W2fqvX+978fIQSPPPIIl112GX19fVQqFS6//HKazea8Y6Mo4tprr2V4eJhSqcR5553Hxo0bn+IVmj+OX//617zuda+jv7+fU045BbDRlIWIzmWXXcaaNWu65zw8PAzABz7wgZ2mpW3atInzzz+fYrHI8PAw73jHO8iybK+cQw/7B377t38bsGmbu5pLWmuuv/56jj76aIIgYOnSpbzpTW9iampqXnvGGD74wQ+ycuVK8vk8Z5xxBr/61a926HdnGpif/exnvPKVr6S/v59CocAxxxzD3/zN3wD2Hv7MZz4DMC8droOF7uF77rmHc845h3K5TLFY5OUvfzl33HHHvH066XU//vGPefvb387w8DCFQoELLriAsbGx3b+oPewTPProoxx99NE7kBeAJUuWzHv95S9/meOOO45cLsfAwACvfe1r2bBhww7HfeYzn+Hggw8ml8txwgkncPvtt+/wGdu5l//1X/+VD3zgA6xYsYJSqcSFF17IzMwMURRxzTXXsGTJEorFIpdffjlRFO3Q12LGdPrpp/P85z+fX//615xxxhnk83lWrFjBxz72sXnjOf744wG4/PLLu/Ok8x13++2385rXvIaDDjoI3/dZtWoV1157La1Wq9vGs2mu9SIwzyGsX78egP7+fgCq1Sr/8A//wCWXXMKVV15JrVbjH//xHzn77LO58847u+HJU089lf/3//5ft53JyUl+9atfIaXk9ttv76a83H777QwPD89Lh+mhB7DpY4ceeignnnjibh2Xpilnn302p5xyCp/4xCfI5/MYYzjvvPP4wQ9+wBve8AZe+MIX8p3vfId3vvOdbNq0iU9+8pN7PM6LLrqItWvX8pGPfIS7776bf/iHf2DJkiVcd9113X3e+MY38uUvf5nXve51vPSlL+X73/8+55577h73uRBe85rXcNhhh/HhD394Hil7MgwPD/O5z32ON7/5zVxwwQXdBw9z09KyLOPss8/mxBNP5BOf+AS33norf/VXf8UhhxzCm9/85r16Hj3sO3QeVA0ODgILzyWAN73pTdx4441cfvnlvO1tb2PdunV8+tOf5p577uHHP/4xrusC8N73vpcPfvCDvPKVr+SVr3wld999N694xSuI4/hJx/K9732PV73qVSxbtow/+qM/YmRkhAceeIBvfOMb/NEf/RFvetOb2Lx5M9/73vf4v//3/z5pe7/61a849dRTKZfLvOtd78J1Xf7u7/6O008/nf/+7//e4XPm6quvpr+/n/e9732sX7+e66+/nre+9a3cdNNNu3VNe9g3WL16NT/96U+5//77ef7zn7/T/T70oQ/x53/+51x00UW88Y1vZGxsjE996lOcdtpp3HPPPV0C9LnPfY63vvWtnHrqqVx77bWsX7+e888/n/7+flauXLlDux/5yEfI5XK85z3v4ZFHHuFTn/oUrusipWRqaor3v//93TT9tWvX8t73vne3xwQwNTXF7/zO7/DqV7+aiy66iH/7t3/j3e9+Ny94wQs455xzOOqoo/iLv/gL3vve93LVVVd1H0q/9KUvBeDmm2+m2Wzy5je/mcHBQe68804+9alPsXHjRm6++WaAZ9dcMz086/DFL37RAObWW281Y2NjZsOGDebf/u3fzPDwsPF932zYsMEYY0yapiaKonnHTk1NmaVLl5orrriiu+3mm282gPn1r39tjDHmlltuMb7vm/POO89cfPHF3f2OOeYYc8EFFzwDZ9jDgYSZmRkDmPPPP3+H96ampszY2Fj3p9lsdt+79NJLDWDe8573zDvmP/7jPwxgPvjBD87bfuGFFxohhHnkkUeMMcasW7fOAOaLX/ziDv0C5n3ve1/39fve9z4DzLvvjTHmggsuMIODg93X9957rwHMH/7hH87b73Wve90ObT4ZOvPqBz/4wQ7juOSSS3bY/2Uve5l52ctetsP2Sy+91Kxevbr7emxsbKdj6VzTv/iLv5i3/UUvepE57rjjFj32HvYfLPR5/5WvfMUMDg6aXC5nNm7cuNO5dPvttxvA/PM///O87f/5n/85b/vo6KjxPM+ce+65Rmvd3e9P//RPDWAuvfTS7rYf/OAH8+7rNE3N2rVrzerVq83U1NS8fua29Za3vMXsbEmy/f18/vnnG8/zzKOPPtrdtnnzZlMqlcxpp522w7U588wz5/V17bXXGqWUmZ6eXrC/HvYvfPe73zVKKaOUMieffLJ517veZb7zne+YOI67+6xfv94opcyHPvShecf+8pe/NI7jdLdHUWQGBwfN8ccfb5Ik6e534403GmDeZ2znXn7+858/r69LLrnECCHMOeecM6+vk08+ed5n8WLHZIz9fAfMP/3TP3W3RVFkRkZGzP/+3/+7u+2uu+7a6ffa3O/PDj7ykY8YIYR5/PHHu9ueLXOtl0L2LMaZZ57J8PAwq1at4sILL6RQKHDLLbd0nzAopbpCS601k5OTpGnKS17yEu6+++5uOx2W/8Mf/hCwkZbjjz+es846i9tvvx2A6elp7r///u6+PfTQQbVaBVjQvvf0009neHi4+9MJbc/F9lGBb33rWyileNvb3jZv+x//8R9jjOHb3/72Ho/1D/7gD+a9PvXUU5mYmOiew7e+9S2AHfq+5ppr9rjPxYxjb2Oh83zsscee1j57eHox9/P+ta99LcVika997WusWLGiu8/2c+nmm2+mUqlw1llnMT4+3v057rjjKBaL3XTiW2+9lTiOufrqq+elmyzmvr/nnntYt24d11xzzQ4pQHPbWiyyLOO73/0u559/PgcffHB3+7Jly3jd617Hj370o+587eCqq66a19epp55KlmU8/vjju91/D888zjrrLH76059y3nnncd999/Gxj32Ms88+mxUrVnDLLbcA8NWvfhWtNRdddNG8e3lkZITDDjusey//z//8DxMTE1x55ZXzxOqvf/3ru9kp2+P3f//3u5FIgBNPPBFjDFdcccW8/U488UQ2bNhAmqa7NaYOisUiv/d7v9d97XkeJ5xwwqI/m3O5XPfvRqPB+Pg4L33pSzHGcM899yyqjbnY3+daL4XsWYzPfOYzHH744czMzPCFL3yBH/7wh/i+P2+fL33pS/zVX/0VDz74IEmSdLevXbu2+/fSpUs57LDDuP3223nTm97E7bffzhlnnMFpp53G1VdfzWOPPcYDDzyA1rpHYHrYAaVSCYB6vb7De3/3d39HrVZj27Zt8z64O3AcZ4eQ/uOPP87y5cu77XbQSV18Kh+UBx100LzXnS+0qakpyuUyjz/+OFJKDjnkkHn7HXHEEXvc50KYO//2NoIg6OpkOujv799B89DDgYXO573jOCxdupQjjjhininGQnPp4YcfZmZmZgcdQQcdgXRnTh122GHz3h8eHt7poq+DTirbrlJ/dgdjY2M0m80F59xRRx2F1poNGzZw9NFHd7fval73cGDg+OOP56tf/SpxHHPffffxta99jU9+8pNceOGF3HvvvTz88MMYY3a4RzvoEJDOvXzooYfOe99xnK6WcHtsf/9UKhWAeZrNznatNTMzMwwODi56TB2sXLlyB1Lf39+/6BIDTzzxBO9973u55ZZbdri3Z2ZmFtXGXOzvc61HYJ7FOOGEE7quNOeffz6nnHIKr3vd63jooYcoFot8+ctf5rLLLuP888/nne98J0uWLEEpxUc+8pHul04Hp5xyCrfddhutVouf//znvPe97+X5z38+fX193H777TzwwAMUi0Ve9KIX7YtT7WE/RqVSYdmyZdx///07vNfJn+3os7aH7/tP6ky2M+zs6e6uxOpKqQW3m93QoewNzH2S1oEQYsFx7K74fmfn2MOBjbmf9wthobmktWbJkiX88z//84LHbE90D1TsL/O6h6cOz/M4/vjjOf744zn88MO5/PLLufnmm9FaI4Tg29/+9oL/76dSwHdn98+T3Ve7O6ancp9mWcZZZ53F5OQk7373uznyyCMpFAps2rSJyy67DK31k7axN/BMzrUegXmOoENMzjjjDD796U/znve8h3/7t3/j4IMP5qtf/eq8xd773ve+HY4/9dRT+eIXv8hXvvIVsizjpS99KVJKTjnllC6BeelLX9pbHPWwIM4991z+4R/+gTvvvJMTTjjhKbW1evVqbr31Vmq12rwozIMPPth9H2af/ExPT887/qlEaFavXo3WmkcffXTeU6mHHnpoj9tcLPr7+xdMJdj+fPYkLaeH5yYOOeQQbr31Vn7rt35rQdLcQWdOPfzww/NSScbGxp70yWonWnn//fdz5pln7nS/xd63w8PD5PP5Befcgw8+iJRyhyfjPTw70SHsW7Zs4ZBDDsEYw9q1azn88MN3ekznXn7kkUc444wzutvTNGX9+vVPuQ7XXCx2TLuDnc2TX/7yl/zmN7/hS1/6Er//+7/f3f69731v0W1sj/19rvU0MM8hnH766Zxwwglcf/31hGHYJRtzmfHPfvYzfvrTn+5wbCc17LrrruOYY47phlBPPfVUbrvtNv7nf/6nlz7Ww07xrne9i3w+zxVXXLFgdfDdeTrzyle+kizL+PSnPz1v+yc/+UmEEJxzzjkAlMtlhoaGutqtDj772c/uwRlYdNq+4YYb5m2//vrr97jNxeKQQw7hwQcfnGdJed999/HjH/943n4dd6ntiVsPPWyPiy66iCzL+Mu//Msd3kvTtHsPnXnmmbiuy6c+9al5c3Ux9/2LX/xi1q5dy/XXX7/DPTm3rU5Nmie7b5VSvOIVr+DrX//6vMjttm3b+Jd/+RdOOeUUyuXyk46rhwMHP/jBDxb8juhoEo844ghe/epXo5TiAx/4wA77GmOYmJgALOkZHBzk85//fFerAvDP//zPez3NabFj2h3sbJ4stJ4zxnStyhfTxvbY3+daLwLzHMM73/lOXvOa13DjjTfyqle9iq9+9atccMEFnHvuuaxbt46//du/5XnPe94OeoVDDz2UkZERHnrooXlVb0877TTe/e53A/QITA87xWGHHca//Mu/cMkll3DEEUfw+te/nmOPPRZjDOvWreNf/uVfkFIuaGG5PX73d3+XM844gz/7sz9j/fr1HHvssXz3u9/l61//Otdcc808fcob3/hGPvrRj/LGN76Rl7zkJfzwhz/kN7/5zR6fxwtf+EIuueQSPvvZzzIzM8NLX/pSbrvtNh555JE9bnOxuOKKK/jrv/5rzj77bN7whjcwOjrK3/7t33L00UfPE1Lmcjme97zncdNNN3H44YczMDDA85///L2mQejh2YOXvexlvOlNb+IjH/kI9957L694xStwXZeHH36Ym2++mb/5m7/hwgsv7NYK+shHPsKrXvUqXvnKV3LPPffw7W9/m6GhoV32IaXkc5/7HL/7u7/LC1/4Qi6//HKWLVvGgw8+yK9+9Su+853vAHDccccB1iDj7LPPRinFa1/72gXb/OAHP8j3vvc9TjnlFP7wD/8Qx3H4u7/7O6Iomlc3o4dnB66++mqazSYXXHABRx55JHEc85Of/ISbbrqJNWvWcPnll9PX18cHP/hB/uRP/qRri1wqlVi3bh1f+9rXuOqqq3jHO96B53m8//3v5+qrr+a3f/u3ueiii1i/fj033ngjhxxyyF6NYB9yyCGLGtPuttnX18ff/u3fUiqVKBQKnHjiiRx55JEccsghvOMd72DTpk2Uy2X+/d//fUFS9qyZa3vd16yHfY6Ond1dd921w3tZlplDDjnEHHLIISZNU/PhD3/YrF692vi+b170oheZb3zjGzvYsnbwmte8xgDmpptu6m6L49jk83njeZ5ptVpP52n18CzAI488Yt785jebQw891ARBYHK5nDnyyCPNH/zBH5h777133r6XXnqpKRQKC7ZTq9XMtddea5YvX25c1zWHHXaY+fjHPz7PvtEYayv5hje8wVQqFVMqlcxFF11kRkdHd2qjPDY2Nu/4zlxat25dd1ur1TJve9vbzODgoCkUCuZ3f/d3zYYNG/aqjfL24+jgy1/+sjn44ION53nmhS98ofnOd76z4Hz9yU9+Yo477jjjed68ce3smnb67eHAw64+7zvY1Vwyxpi///u/N8cdd5zJ5XKmVCqZF7zgBeZd73qX2bx5c3efLMvMBz7wAbNs2TKTy+XM6aefbu6//36zevXqXdood/CjH/3InHXWWaZUKplCoWCOOeYY86lPfar7fpqm5uqrrzbDw8NGCDHvflxobt19993m7LPPNsVi0eTzeXPGGWeYn/zkJ4u6NjsbYw/7J7797W+bK664whx55JGmWCwaz/PMoYceaq6++mqzbdu2efv++7//uznllFNMoVAwhULBHHnkkeYtb3mLeeihh+btd8MNN3TXPieccIL58Y9/bI477jjzO7/zO919OvfJzTffPO/Ynd1XO/v8XsyYXvayl5mjjz56h3Nf6PP961//unne855nHMeZZ6n861//2px55pmmWCyaoaEhc+WVV5r77rtvB9vlZ8tcE+0B99BDDz300EMPPfTQw3MOWmuGh4d59atfzec///l9PZweFoGeBqaHHnrooYceeuihh+cEwjDcQZPyT//0T0xOTnL66afvm0H1sNvoRWB66KGHHnrooYceenhO4L/+67+49tprec1rXsPg4CB33303//iP/8hRRx3Fz3/+826B7x72b/RE/D300EMPPfTQQw89PCewZs0aVq1axQ033MDk5CQDAwP8/u//Ph/96Ed75OUAwrMmhewzn/kMa9asIQgCTjzxRO688859PaQeetjv0JsnPfTw5OjNkx56WBwOxLmyZs0abrnlFrZu3Uocx2zdupUvfOELLFmyZF8PrYfdwLOCwNx00028/e1v533vex933303xx57LGeffTajo6P7emg99LDfoDdPeujhydGbJz30sDj05koP+xLPCg3MiSeeyPHHH98tbKe1ZtWqVVx99dW85z3v2cej66GH/QO9edJDD0+O3jzpoYfFoTdXetiXOOA1MHEc8/Of/5w/+ZM/6W6TUnLmmWcuWFF+IWit2bx5M6VSaa8WMerhwIYxhlqtxvLly5HywA5W9uZJD08XevNkPnrzpIeF8GyaJ/DU50pvnvSwEHZnnhzwBGZ8fJwsy1i6dOm87UuXLuXBBx9c8JgoioiiqPt606ZNPO95z3tax9nDgYsNGzYsqkL8/ozePOnh6UZvnlj05kkPu8KzYZ7A7s+V3jzpYXewmHlywBOYPcFHPvIRPvCBD+yw/fSRy3H8POGaITJPomJN5ksaIw5Cg0whmExxwgwjBAhwGgnaVWQ5hdNIATACkqKLUXafwiNTMDkNWQragBQgJEgJxiBcFwIPXchjcg5aSYwjSfMKmRpUy7arPYWRAmEMRgqMEji1BGEM2lWITCO0QcQaVW1AFGPSbLbPJLEnarTt32j7WjlgDEiFUBKEgJxPPFIhLTjIxBAOusjEkBsNAZBhhsgyRGbQOQftOWhXYqQgzSmEMTitjMyTCAOZKyk8OoVoNDFphpASo7UdW2ccMHs9XMeOOdOYchGdd9Gu6p43AMKOAwHGlYjEtmOkfV9og1ONEM0WphVBloFS9jp0nvi0fwvXxRRy4LlgDMlQnkYh4+ff+TClUmlv3XoHFHY2T+biB9e8+in3c8b1X92t/S895+tPuc8OvvTt//WU2/jom39vL4wE3vO5L++VdgAe+P6vn3Sfo3577y4eevNkPlb9//6cXDNHYbOh9HgLFaZkBZfMlTSWecRlgRMaRAZCg1fTRGVJXBGIDNI8tEYyjK9BQv/SKqvK02yuVyh6EWUvZGu9zORMAT0e4E5LvCp4VYNMQCYGlRhyW0NUPUbO1DDNFiIXoAfKxEN50kAxfoxDuDIBZXAmXbRnMADCYAINBnAMpAKvL6RciCj7IZPNPJ7KmGkGrOqfZijXQBuBFAZHZEzGBQAOK44yFecJtcs9G1aSJgp3g0/pcXveQoPIDEnRfhangUBmoJW9BkbYfXTbHCqpaIxjUC1JNhyzdsUYZS9kY62PyakCxgjQAhNJ/C1u+1qAcSC/zeDWNdoVJEWBWzeo2JDmBEYKWoOCzLf7OyFgoLnSkAwlOEHKQKWB76REqYMQxv4ArcTFd1K2bRig9JBDXIHyepudnxTAbUCWhPzi3/+yN0+2wy1f+CyTNx3Oqss37PL4DV9c1d1nwxdXAbDq8g3d7Z1tO8NC+9wzEXDeOx6e18f2+2/f52Jx2XfOBODGs29d8P3/v3Mjv5te1u3rn740wFcfuJv/+OiaHfrd2fktdP7/cdcI5x+/dafn/HRjV30+2XhWXb6B33x+gDff9r8WNU8OeAIzNDSEUopt27bN275t2zZGRkYWPOZP/uRPePvb3959Xa1WWbVqFY4ToApllBcglcAUBNIXqEARTGqEBlco3ChCewrtK/RgDm8mRmcKk/dwajFZziUrWALj1jNYMoBTi0CkdhENdiENIIAMaGlU1EDkc5h8gM474AYIZXCShDTvoDRoV2AcgYo0woD0HVQrQTQyZL29SI8TS1yQkGrbieMCBpNphFB24S5lm0x1FvMS4XngKLLhCqY/IGimljAkDm49ReTyGCmQrkaGCWiQjiRzFcJXGAFZycFpalyZooy0BCPvIPsNKtQYnbSJi2iffwpOm0QJwChEJkE4IAyE2hIj3yfLOwhtCZzQBuG3yY8Q4BlUlM3yslqImAnBgDGqTdoEYMkaYMcBkAmoxQiVglK4zRpuTrabPvDD23tznnRw17sv3itju+vdF3P8dTctev8O6bjyvIW/GJ4Mn7/lzD06biFcf80Ve7Wta67/wl5pq1R85hdJvXli0ZknS15UY6xawHE9PHy0C43lkjQP8aEtPD8herRI6TGoPBbjNDUUfbwZ0I6gVRK4GEQLkv6Mcl+d/rLBLbTIOwnTcZ6iIxmfKUKfJFuZ0Ki6RDWFUQaZCvwJgZ95yGKGwkEYBzwX7QQ0RkrIzFCckThOgHHASDBRmyS4BmdGkvRlqEqClJq1S1rMRAGPjw9hmg4in2K0IAsS+ip1tBEsD2aYiIu0WorUKNyCx4wZ4JGxISpLYsJY0MoLplY4+OOKYEzgNgzKwX5XBAIZg/DA+CBjQEHmWBIitEEbSJdkCOUwng3x+NYcCIPMGZjw7We+a+BFLdJM4T6cQzsGd9QQZBlxTqFdQeMIQfOQGNFUuFWJTCx5cprgpIakIKBgkI4LNclEow9TTsAIpJvh5xIqhRYm8ogAd6kkSnzMyhZZI0/lsQQxY8ccui7w7JgnsPtzZWfzpJDPEboFCvn8LvvLz9kn71pyXMjnu9s72zr4nmxwlrbbDrrqCWDHfXwnN6/fue/PbXv79xaDf33VbBrdRd84ed5rANfx+LGCs7Tt41y1hK/JYMF+Fzq/nZ2/K0vk3dq8959JdPo86KoneOLvDwI61x8W+h9sf2zOse8vZp4c8ImYnudx3HHHcdttt3W3aa257bbbOPnkkxc8xvd9yuXyvB8AjMH4bvcJv4o0MjIEU5rMs5EPGWuMq5Cptn9LQWtpQFJ07CK76CG0QcYGb9pGXLKcY6MKbZikTWSyDBMn9u80tT+tEFFtoDZPkHt0An9bA5lojGr3nxhkpHFaGe50iDtWR43OILZMYGoNTKOJSRJLTHSbLBkNUWQJimr/y5Wy27MMMg2ZRjgKkyQYzyUaDBDttb0RAm8mQYUpZMZ+gbgSoyQ4krTokhZdZJTZiFFo7FM7DU49RsYaFWqywIFO/+0oiSUt7W3azEaLwF6PLIMwQtSaOJMN3OkQGVuGIqMMlEAYutEntEY2E5xt04ipKiaO7fUwBhNGts25fRndvg4apMBkGhNFmDiGiZk9uyn3Q+zVefI0YE/I0OdvObP7szv7Pxew8oRdP3V7svefq9ib82Tb1j7cURfVgvoKSWtI4jRBRiA3BSTri+Q3CfwZg9NIEanGbWpkCghQEXjTAqcuwNNMtwJ+8tgh/GLjCtZVB5gOc/zW8GO4BRtZ14lEGEHal5JVMpKBlPralI1nOGx+acDYSUOER62gedQIzVUlG8FO7UMj7UM4khENZ6RFjS5kiEqMXh3i9kcYDa6X8sRkP83YxbQUGBDCUOxr0Uxc7tp6ED/bchB3jK9lY7OP1Cgkhl/NLOPxqX5yfkwz9GltLsKMizehcGv28zscshGRNCcs+ZCQ+ZDmDdGAIRw0aBe0Y9AKRAYIQ3m4TjkXIr0Mx8swRmAGYoxjMMqQpQqdCjLf4E3b7xUjBCo2eHVDfqsh2OCR36TsdTaQ+YakAElJkOVAe8aSo0QgExA1B1FX6KZDq+ZTawVEkUslF+K6GWklZbi/RnOZISlIZKLxpiI75mcRdneuPJPfJwBveOPE09r+9rjoGwt/PgA7kJd9jV2N9Znoe2/1f8BHYADe/va3c+mll/KSl7yEE044geuvv55Go8Hll1++ew0Jm54kE/skX0YplH2MI3BaGpkYRKqJyy5pQSITQzAWkZQ9RGpJRuZLjHQwCmRmw9JoA47qPu0XSlni0omCzIGJYrvIVgpRayCaNmUrP+bMGydhZI/VurtAJ8tmIxltYmSMsUzWdUDbCAyAyLLZNLJ2SplJEkQQkFXyGAXujP1izArSRn6kHYM3E6NaqU1lcySZJ8kCgQrth7UKM7Qn0a5EaIVRNmKUFhxc37Nj1x3ioufTaMfpnkdnrEgBcYwwBhXFyHyAzLkYJW0UJsoQWiNSjag3bQQqju2xnfMEhNu+htoA7XQybezvLIMYS7AyPY9wPluw1+bJfojnCjHp4enH3ponhf4WoS4QDkvcF8zQbHnIJ3J2cT4SYSJFPOOiXUlzaQGRQVy2qcpZANGgTZUSqcArxAzkW4Qtj2TaZ9rPcezIZkoq5IWrNvJwfpi8HxM4KRWvxcZaHxNTRY5auZVluSq3/c/zEUYRV3z6H05sNN0o0JDmBMnhTXw3I/AS6o2AwM0o5iJyboIUhkbs0Qg94g0FwqJN28XXeEFKORciAFdlCCA1klbq0h80aaYeE80CnpNxyZr/YTItcFvxcMYmy7grYhyVUa3m0C3HPvTyNLQUTl2RDsd4+QTfs31M1groVJJO+7hTCnfSoebnyS1JWDU8xYbRAaQylEtN8ksSNj86jJn22g/SBLkxg0whqkjSQKBi8OqGvocMUZ9g5giDGmniOJosk0QGlDIM5iLSTDIT5DEtB/wMIQ1EClJJsxpQ6W9wzMBmRgtFqoMBUeYQD6VMHu0iMkXfb1xCN9r1DXMA4kD7TpkbFdjbuPK8W/keNurzVefzvDq9svteZ8E+l8i8Or2S78nG0zKW7dE577lRqX2FbuaE3vV+i8GzgsBcfPHFjI2N8d73vpetW7fywhe+kP/8z//cQVz2pGjrP2SmEUlGlnMRxuDWUlSYElc8tKcQ2pDfEnUJiYx1d0GfFuwXkjuVYKQga4eq6bhVKwU6RXju7AJdG4yx2yyZcOaRDxNGdmzttDMhhH3PGHAcBNgIg2hra0xm25ECoa2rg0jS7rHdBbvU80iMcDxQsh1N0Tj1GOMqYuWR5iVe1T5C6mhMtKfQnsJpZmQ5SeZLtCdRzRTj2L8RNmtLu5IssIRLOI4lXlrb9Ln2dRGOg0lTq3vB/kZJ0G2G045UiTBCOY4lXG0dUeecTJq2ozrCkjgAT2JalgiKwMckESLw2222+5di9torbAqe2QszbD/CXpsnPQB7N31sbpt7K42sF2XZM+yteTKQb7J5yv7dbPjoWGECg1MTZFWXwvI6DZVD1BxkLPCqAu1AJgxJ0aCLKUhw8jFGCzaO9zEyUGVT1aM5VuCRYIiCEzMV5UkyxdbxCrl8DGWoNQPMjMe2vhKplpCBdqB2aEZ+m8Ktp2hHkHmC1oihVAhpNH20K3C9FGMEaSZJlCTTsptpazwD0iAiBV6KMeBKjZKakhtRS3wyLRnMNxjyGjyRejQjF6U0j7SW0Oc0WVGcYaaRI+/HlPwIIQwz5FFuhudlUIGw5VEqhBgjKAYRa8uTFN2YyVaeiVjBjCVfYsqFJbCiMIMZFozVCjRaPlFiCZHJZ2A631UQO23NowHtgonBCQ2xFmhPc/DwFP1+kyV+nekkx33bljNTs+lpQhr7NZ4JjBGoGQenZSNFVaVpLPU4vm899SzgnulVuJWIOJ9iZjxmUkX8rFhtzceB+p1y0FVPcNJ5F/Ouk+5d8P2LvnEyd1z15GnN20cSXnv+FaCvXHDfhaIwn7/lTM56itGZH1T/D5fyoUXt+/lbzuTzwB233MQTf7/nfV70jZPnpXB//pYzueOWxaWB1+S/dMnbUyVTB3wKWQdvfetbefzxx4miiJ/97GeceOKJu99IO6JgpEAkGplkqEaCOx0iogy3liCTtvYkSjGeJBqyH/oAaIMKM0SqkVGKaiW41Ri3nmIC30YXOtEQx0F4riUtYFO7OtGATgpVO0IjfA/h2DQ0kQvssYGPqZQw5QJ6uA891I9ZPgxLBhDFAiII2kYBYpa0wGz77YiM7UfasSkFSpEGdh8dWGG+yAxGQJq35ERFVsCfljySkhW9e9MpwkBcVqRFF6dlvyCToiILFNoXpIHA5H3QukvohOva80zTLnmxZGJOeaL29TBa2xSvNLWRKm0s0RDCbsv07HmaOdfSGITrWH1Pllny0kkhg1lxf1eX9KyZFjtgr8yTHp4W8vJMtN3D4rA35slhlVFMIUWkAkZ9nDGXYJskv0Xg1CTNmk+hr4UYiGy6rrapUTIRGN/glWKCUsTygSpSabKmQ5wpnFKCKiXM1HP8bMtBPPKbZaT3lynelcP7XpnR/1yJuK+Ev00xff8gDz28HBRESzKWHjJOc6kkyTs4jYz8lgi3KpgeK2KMYFm5StJeabtORt61D4EaLZ9Dh8cprqwysLSKO9TCy8f4XkrgJFTDgFbqEqYOk80cD43biuZFJyLLJLWtJb738JH8cNuh/GLjCpLYIUocNoz3AdDX1+DQpeOsGZikL99ieKCK79iUsGbkcecTB7FudJDJ6QIISEuapD9DLIloxi5jrSK+SinlIirFFq1agHE1A8NVCv0tolUxk8doamsgKQuSgiAcFGS+QMUaFUJxncO6e1Zw168P5pv3HsMd69ZS31YkSyVJw4MxH9WQkEpk1cFt2KdzQoMOHR6dGeKeGft0P1AJKwZnyBcjnMGQ1sqMuO9ZlkPWxv70nbJQatKs/mI+drXgXohs/N7L/oDfe9kfzOtnex3mV/5j4YdPO0she/Nph+50DE+GzhjOKP9fYOfnuf04OmN5Kqlc//qqn/KlU/+YN7xxgrN0YbdS5F6dXtnt96JvnPyUolDPwmcCTwGZRtUitCPbrlb2A0ckGbgK2XYDSwt50qKHUQIjbR6x6Cy8tcGtxjadKcnQeY/MlTi+g+hoLYyejRhk7YgEWGKipN3m++A6mJzfTUHTnoPxldWeGENc8XDCjs4FtGdTuMxIERVmOKNVqNahFdo+3TaB6oyhE3XoLNy1xrTTrIwUNjUuMwgNufEEGVt9CUqQlQKrA0p1e58M1UwQmb0uScG2I1NLEnQ7VU7nPaSZJQ4mTec7kXXF/XI26tTRrUhndj+ju45l86Ilne+IjpamE71pkzl022WNdspdJ8UPZoX9YImffPalke0t7C0Bfw89PFuhhIFMWPfKMYnTArdmME7bFStWhKGL66ekbactlUCaA+NpPC8l5yWEqUMcugjHkGn79F9PeWSuRg1qm2I2I/CnDTIzuHXIPMgCQUsJdD5lZHiGzVv62TZWoRLT3i9BRBneDDQzgR8kHFyawJGalw48xta4zKDbYH1rkHXuIA9uWUKpEDJcaBAlLmlqP1tnooBG6CGEYWVpmulGjiRR/GJyOUpq0lShGpLyiiaplmSpxM8lNBoB2YxLvq9OnCnqsU9mBK7UOO3rl3MT4kyRZhJHaapbSshIYhxDbriJUpr6dJ5Hmz6+n5AkCiHAhIrcUJMjBsb46UOHoKYc9GBC7Em055DfItAu1FcIMtchKQniskFogb/Fxa1Dc5mCnEaH1kzGOMY6nAE60Na5zDHowGpx+oIWzdRjKslTcGIKpUmkMDw2uQTVH5FNPbsi+vsbFhLKPx34QfX/zOunQ2LmRhO+8h9f4CtYMvOvr/rpTsfWIR97Atvek5OWuZg7jrlE5srzbuXzt5z5jFy/zhi+R8Nem1tO3uMoVI/AzIWjwJiu05UME0TatuZVs3oVkVq9hQo1brWttdAarRxkkiGb8Wwak9btVCphU6SyuB2JsVEPkbYduGind/keuA5ZKU+0JIf2JCI1ZIFEGEPmCrxqhhNmNgyuBE7DpmzJ2I4LV5LmFHpFH57nwvjULAmAtvPYnH+9UjYVS1rSIBPruGakFcrLWCMyjapb3U3mu8R9LiI11g1NzGmXdoqZAaeZYRxBVFGkgbRkphNlEu3IkJSYKLLEQ82JfBhjf/QCjmFCWsOBNJtNw+voWXTWdiRra2k6lstqTlRnLomUApz2e20SJFx3NiLVw4I4/rqbDggSc/cvFpd3/uJj/Kd5JD081/CTzWspPOyR32Y/d9ym/R0XBW5VILRLXFbEjsFrWatdjLUPlnVFXeURAw0cqWHKQ2QwrQroROE0JelwShy5GNeQ5myKmEzBKOvWlRZA+wbHyxjMNUmWKJJUUT3UIxrwcBse5fUZKjTIlkJJzWO1QTZM9bFuYoAl5TqDgbVGPqJvG1FmPw+bifUz1lpQrwcAJLHDVOxQCWzal++nbNg0CKHEqSpkAtVaHtdL0ZEimvCRkcBLYJM3QL6/RQOPLJOkiUMWS6SrEdKQ1VycaYc0hVxTWHPNgiFquXhB2wWt5pI5Gem2PDiGYEmTFy/fyIDXwAlSMk9hYsnIQZNkKyVTDOHWrbh/6miDcbR9cKYMMpJkvkAHGllK0GEnewFEAkYZRChxa8KmpXmGTEsClaDbBOfIwlZm0hwbG30UB5q4KmO6+exwH9tf8VTTouZiV9GMf/zdAmf8t/37LF3YIZ0KZknL3NedNrfX4CwmcrKr8e3O8TbqNH//K8+7lZ//1cNwy24PY49w5Xm3ctEt9pq1LvxzXnPH41z0jdV2fItI25uLHoGZiyiBgkFkhrToYlyJMx1aXUxo7YSNq1CRXehqV6HSpG3pi9WkGIOREpFlmDYpUJGNFhhjuiJxHNkWmNsIgHAUplRAl3OkJa+rM3GaNqTghJm1L/aseYBINKpta5IWHGvZXE1AgIgynESTFl2aa8rkXIXYMm4X+N1oBpYY6LYDmutaAiMETsu2qz2JjC1RygIbvdGewjiWoFj3L4NMtNW2pPbJmVGy7d1vr6N2bW53bjxDzbS65gMYYyMwYCMeHeF+h9TN1aB0HNWEjRqZDh/r1LRpt4FmlszMNQHoHMuctDk55wulQ5LmbDNOb3rsj1gsKdmTNntEZvdxy9TJnNe/f7ns7A9ojBZY8bgmN5bYz0ttaA27hEMSkYE3AzKWJCWDjG39EaMgqRiMaxAtRZI4KC9hyWHjTFbzpKGLClKyvOou7v1tDl4VVAwyg6QI4YAg7jekgwklP2FZbgZHZDw0ZlO74j77hKo1IAmHBEYYatN5+vMtpDQUg4jJRp7BoMFos8SGaj8ztRxCGgbKDQYKTSZMnmxLnuamwKZ1lTMel/0M99XJtKRu8shI4jSt01i2KUeaQr4m8KrWsKC1PKMw0CKOFY6jSRMHPeEhjEDnM4SXIUJl29CQ5a0bWOYblJsRNTyEo8lVIsKWZw0QXEPgJeRUwqpgktMOfoSHB4cZytU5ZeBRxpMi/5lJpqcLmKYDroZEImJAW21MlteIYmq/MmJpoz6uQQcatxiTZNYWW6QCtyppuAU25PpYmq+zuVXhgZkRRmtF0kyyvK/K1moJp52O18PTh6dTpL8zdKIJC+HPX1EHfvmMjmdPcNwfH8bd7b+vff8v+eT7X/C09fWGN07w+Vva5O+yW4HVcyI/u0fmnr3J/nsCKRBRYu15mRWrg43AiMySG+1JkpK1W7YLejm7vwbjK6td0XZh3z224xDmud2FsnBdhO9hSgXSwSLRYEBScNBtsWHmSZKiIi47JCWF27SGAgjR1uOYrsuXjK0Vp9CGpOwR9Vny0FhdhFLbW9v3LDnoLM6lmtWhaG2F78Z0i1LqnB2zaiXEQ3mSPt9aKWcGrTomBdISh07EBMjyDlngkPkS0eYRbi2xfaSp/d0J3Sg13/XLc9uRlLaGx3OtfqWj5VG24KbopJh17KA7upZOSpozx7a5Y3DgtAtkqgVufaNnozyuQ1YOnsrd1MPTgKeDvDyT7S8Ge0vE/0zgtuzUfT2E/RbepCIqC7JAWmOY1H7mpQE0RwzNEUNSMhiFzWgNIO4zJIMp/aunKCyvkSSKWiOg2gwoFUL6BuroWOFOS9wNPsFWh9w2KGzJcFua5hLJ1NGa1ogmLdvvsdpokVt/cyS/3LiC1uYi3rS0RKlsaC0RJOW2GY2X4Svr+OWrjHotYCbOcVjfGL5jrYFPWf0Yq8tTTDVz5P0EndM4jba9cCzQG/NMVAu0YheVS2EoIj6sRXhYSFbIUKElL8GEJpgweBM2ja5UCHGdzAbJjU27E7HEtBzEQMTyUzcSHD9BPJIQ9WsYisgFCQjD4ECdNLUPoGQsUJWEgh+zqVkh0i4H5SY5cXg9L+6bLZTYn2/h+imqlJCrhKhyjPEMYiAm7cvQgcFxM5YOzoCnkYmwWiZP2yd3riYaScgCg1sTeGOKrRsGeHRyEEdqq8cJIvoLLXyVkqaKpZXaM30LPmfxTNkE70q/8aUbz+QF3sLk5aJvnLzbkZfOOe3ucV91Pr/L9z9/y5lEH23ypRvP5BsfG+Pl+RFaF/45rQv/fNHXcXd1LHfcctNO2+4UAF0Meo+Y50IbSFKcaohx8xghyAqetVMWCuNCWvbtF1Ji2iTDVoeXiUb7ygr442w2hQwbmTZOm9B0UqeEwGjrImaKOdL+PMa1i2oVa1TTkhTr7DWbypS5Eq+ZIqK2xXHRR7X70b5DlnPa5MNGhERmi6JlQyXUTN1GOIyG1MxaFtNOH8symyrWTMgCxwr3A0XmWye1pKDwZlKyvIOKdTsKYyMwIslA2jFo16azpTlFUpBkniA3meHUIkTYTrnr9CelFefPIT/2/TlpY21Htq5VtDGYzvtpagkP7RQ8L2fbThJ7DKp7DGaOiLLjcAbt1LI5jmzKQ5dyZPleyH9/wv5ALjq45vovPC1i+wOJvPSwa6QFQ20NCONQ3AhOKyMNBNozZAMJwtFQdW1F+cAgDKRFTd+SGmv7JhlvFdnY9MlaiigTpKnEcTRiyiW3TVjL5QxyExp/Jpt9WCRARgJVV2jH1lrxqi5pDuJ+Q7g8xR+wkZbW5gKqJTFBRrnYopW6eCqjlbgIZVi3dYjRQpGBQpOckzCTBIwENQYLNi0qXOrQbJbRgUYUUsr9DVZWZmilLuPCUGsEHL5slFbqsn79Epwm9iGfbOuAHEM+H5FkioF8izhxiPBBC2Roa7ZoX1INAxylUbkUrxKypGyLZh4xNEqgEu5JVmK0QLsGnQmGcg3CzOGbm45mfKpEudTkt5atQxvJaFQkSh2yTJLFEnyQUltNkdKUl1VJMoWUGgGUhho0p/rQlYQ1K8eZaQU0pWHV4DSP5oZhs492DaqmqDt5JsoFXGm/azZtHqA1XGWg1MBP0l3cLT3sTSzWEWt7/N7L/oAfHvGni95/T13E9nR8exMdInTHVTfBIy0YuJJLn3ceV553K5fesusi0Rd942S8lx07284/DD7lsexJ5KxHYObARBFIDznTwFEKnXfRniILHEtKsAt6mRicuq3jouoRWcEK1zvZScaRYBTGc0jKHjI1GFdZ2+BO2lS7qKTxXbJKjrjfw2lmNj2sTX5klKI9z34hxQZvKkY1rbWx8Ry0q7q1a4wAhCLzJEhQocabSkEK4opLXPHIey4mDC05MO3UMWGLN3adyrRGNEJcIQhH8jZ6pC1Zc2sZKtYYYbd1ilpmeQfhSjDQWO5jJKjYYCQ4oSY3luFvrdsaLbLdT9clTNoaL0KAI60gP03bY2xfL9m2RO5EjeIIXLpCfRH4mGKepBxgvLaLnDaoRoKshYhGy7YTJ+22xXyns050BuzvthVzUuiJ+HeFA0UH83Rhb5OYHnl5dqG8ZppQaBpREaepyE1AkrfEBmkwqbQGjIMJxBJvQqGakmo1x/3RMnTWSY0F5WhyQULej9ka5AmHJNGqGDXlUNgkyDxJdZVD/SAD5QQtXISWqMgShbhiNTIiBZEJcr7Va4QK3LpAZA7TuQLlkcjqOZyUQj6iP98C4IltA+i6S3mkRtjn4quU0XqR5eUqraNbTDbyeE6KozTrJgdYUZmhFbmIJ3JsKxV5ydINbCpViCsOrRFDIxJkgUGXMlSqMEYghCEfRCTDljwApBM5q4URhjBxCIKEgwcniDNFn9/i/m3LiGPFcF+dqUzS6k8JcgkzcUDOsQ/50mmPyYbLL/wVPK9/KxU3ZMIpIIUhSyStmo90NEIZskwyvbWESCWqLqkNpOQHmuilEWLKY/0jSxG5DC8fc0zfJs5Z+iu+ufz5jNcLNJo+IpFsmSmjtX341T9Uw3My6qFPn/fsdCF7LmJu9KDz96w98exCfG+mtN1xy02cdN7i7J3BRl6u4WyuueLs3ezjTK4871ZOefVHOWLgygV1RXfcchOnPfThRbX50U/ey2cfGFiwjbnYEy1Qj8DMRUcHEsWomQbC5NF9AUZaH3mEdW+RicZIgWoliCRDVSNbET7riMSNjUTkHGSq7RMnR9poQ2dhDpY8FHNE/Tbv3nRSqjqV5RONN94E8gCoRtSN6mRB+1/XJk4CW2tFdWrSdFKpMvDHreUxngth25Gss2iXou0GBkJZ4iQA2YxQkc1tdhoJWc6xT8OUsDVejC34ac8D0rILBtJA2GuUGpxGhjcdIWeas+liYMeRpNZlTQqbCga2gKTj2OhJVxuj5jiKZfa1Ujb1zVOYgQqNNeXudQNL3tK8Iik6yD4fmZZxp1rI6bqtqRMn83Uxpn0BO3qadoQszfcyLJ8MzxSJeSajL3f/InrGtTA98vLsw6ED42xIXKZzBZKiwCiH6edplh8+hhSGTaN9aAMrVkziqowNlX50WwuS8xMCzxaRLLoxGkGUOowUqoyWykQGDj5olMfMEuorPcIBh/oaTXCQTTtLtCDTDk5DoR1ICqZrzCJiQd6PGc41+FXTJ0wD3LpAbvN5PBliaGmVnJtQDCKqoU+9aWvYyGLC0cNbeXBiCcYISkHE0nwVX2b8uLaWqW1lhpdPc8jABM+vbGaylWdSFanVcwyubHDwkgkeqvqIIEP5KX35ECUN9Zada+P1Aq2WNQgo5GKEMEw1PYSBKHFYXq5Si31++ehKBoarNBOPxmgBHE0z55HzY3JLYhotn2ros2Z4kj6vxWipjJnxePyxJYwNF1jeV6Xgxhy8dJxNQYVGLSBfjIhjhyRyyA81OWRogqVBjWGvRl7FuCLjrunVxNph/VQ/eS9hOslTdCJKbkSSU/huSq0ZEIUuysnoK7aYmC4ykwlcP2Uiy+/L2/E5gz1ZCO8MO6sH82QRlF/GL2DPDZJ3jifr96CrnoA7lgMsmrh889Pncu5bv7ldHxOcdN6tgI3EPJk72RveOLHjONpYiLzsCrd95Yu8/LWLK4TaW6HNRdvW1xgDUYysNvG21XAaqc1h1lb7IcPMkhVhRf0iy6BdK0V7ChxJWvRIc47VhkhrxWy0tnVflOqK9pP+AOMIRNtuWCY2hcumoqWQWQeycNBF5z2M53QjDChbrwZhNTqyk3rWFt3rXNsSWdmULuM6lgAIOeu61Sn2aGwal0mSbqqWN97AnYkQUdbVA3WsowEQEPc53b6dZkZ+NKW4MSa3pUWwpY6caSLSDJGkGNfB+B66GJCsHCRe1U+4ZoDmEUtoHb6EbKQfUy5Au+5N1yVMZztoW0Tgk6xZSjxcQKQGt5riNDPcRtqt1WOjUQLtSaKlBZLlA4hcYOvAyDmpZR20o2L2/M0sIe1hlzj+un0fDt9XeKrE45rrv7DoNq6/5oruTw/7P56Y6acZeWSeISkI4qLAFDLiTDHTsg+H/HLETCtgopHHde2T/WIhxHdTDqlMsKxQJeckDAYNplsBD4wtxWiByGdsq5ZQky5ZztBaamAownM6tvoCGUnr1jWsrc5GWqG/WxNsfnyQ+369mmwswGkIVEvYGjRVh6mZAo3YppINFpoM99UZXjrDYctH8ZV9sJT3Y5TU/GZqCdvCEkvKdUZWTlJrBhTdiLyMWVmatsJ3I/jvbYfSTDy8SoTj2TaWlWqsqUziOBnFXIQUxkZFGi4z6/uYfrwPQomuuVQnCzw+MUAz8igPNJgcLzHZyFMaqSE8TaPlMTleolbP4bqzkY6SG9LX18DkMkQ+pZwP8VVKoBI8lVHOheQK1gDAGPCCBM/JGG0Ueaw2yF2Tq7llwwv48iPH8+jkENUooC8X0oxdHq0Ocd/0SjSC5cUZ+oMWlUKL/kqDciGkL2ixcniKZcMzGCOQovd9sjMsRmuxWGJy0nl774HaYlK9tu9v7rmcdN7F88a9/eu9SbbmolOoc1fb5v79zU+fu0Mbd9xyU/fnqY6z09eXPvFne/X/04vAzIWQ8614my1EFONog8l5trCjM+t4lQUOwneQoX1qnxY9Ml/ihLYCfceCOS655JopQgibxiSF1b7kPOKyYyM7qY3sqDDFdAIxjsQ4tsJ9MNHWvOQda23cSjGpJMu7XcG/yIyN+MyxfhaZJunz0UrgbUwxHfvgKIVc0LYUnv1g7RR5FC0b7RGpxngOMrZ20CrWRP0uwah9Ip7faDUtMrJWzl5mELFNwSJJbX2cNnQlTzScJ81JtGO1OTI1uE1NVFQkRYXT8HGrAc5YdTb1SypLtTs2x4UcrUOHAfCmQpyGdT1DCpKia22rwUaI2roa7UuiQR/jDeI9MYkII4xWs3VxaBfENNYNTWiN7BGYRePpjMTsT9qXhfBkqWRzCUpnv90hLT0cmJhuBKStAn2HTNNY5sPjeYSjmZwuIoTB9VIKuYicm1L2Q1YVpoi1Q6IVG+t9/PSxtSgnY0lfnSh1GMi3GKsVMKkkVw4pBhHNvEYnVkMzPFhjup7DaInyM7Jyp8CyQBqJRpAOaERs9TFO3dZTMQLSorGif0/juymBm9JKXJYXZ6hFPlIYEq34zfQwzdBjTd8kAOsfXcvMYI6RvirjUyX01oCfNA7BPzJlea7K44dM0gx9Nm8cYMXKSQbKDcamSuhU0kpdBvwGeS9h29Y+iCX4GaKpCMatMUzcZ9C+xgClfEjJt+5obpAShS5ZrFDt1KxCJWS4VGdFYYYnav3cvXUla/tt/2iB42aWFAYzPFAdoZW6NCOP5kyOvsE6Ump0u25YPfRJMkmSWZMBjMDJR5T9EE+m5N2YyVYeX6U0Eo+qDPBVijYCJTWZljQTj4GgSSP1SBNFpRTug7vwwMD+oAnZU2w/dvv6mzw0ubP3ZvFXV5zEH3/hjmdkXNtv6/x97lu/uSCBgVnisTv/n5POu7i7/w+q/4dL+RB33HITf3XFScBt3HHL/PP90if+jM/98JF2+trF3PaVLy66rx6B2R5tu15bYFLNphhpjWzG6EoOHUj7dL/tBJb5irjPobZSEZdg4EGJP50iM0OWUzitDFkPuxbAYDUgxrECd7euUWFmq94nGSZwSAsuSlkilNsaIlJti2c6wkZ7AhuJ0Z60eo9WhkwyK6bXGlXL2hoeB7QhK1p9S7e2SbuQZteuWCmrQ0nt8UiJiBNIrR20jFLA1rkpVKMusemQJTKDqjVsdCjNZq9bW+uSDpUIl+QI+xV+LcNtGFtfRoN2RdeSGaA1EhAogTumENX6rMVynCAcRbxqEO1LvMnYRocCGwlLyjb9oNMubSvnzJMYIXCaGUneQa8dwt84jai2ra0XQpLOpsj1sCg8lzUxi9XD7C3isrtECOCYv//Ngtt/cdXhi26jh8WjkIuJCi3qjYAXrNzExnIfYeLQbPo4boZSmji1X8ErSyHbWmU0gjWFCdy2g1gzcYlSh/HNFZqDTcr5EM/JkFJz0tL1/CbX5PHJfnTo4amM/lKTTEuU1DQLHnHiIIShNR1AW5dhcgYSiXbt55sppagJFxxDvt9Wsff6qxipqXgho7JEI/IInJRMS5LYYSbO2ZonniZquqyfGUbNOOicxg0S7h1bztFDW1lWqhHlWyQVxfLCDL5KybsJzcSlmbhsqPdT8iMqq7fy8KYlmLoDjiHNG0QK2VDMquWT5JyEzdUyjdCjVfcxiUT6GcrLUE5GPrApZ2HqsK46QLUVELgpYeYQeAmmAsnGAj+eOZwVa8YZyDUZrRVxVcbw0hkAKkGIxLCyMI0UhvsnRwhjl8FKgyP7R8mMYH11kJXFaY7t34Q7kDGZFBiPCvxq2wjGCNYMTjLZypNmklyQ0Eg9JJasjjaK++AufO6gs3Ceu9juLKDnYmdpYXvaH8wSkbnbnuxYgDefdihsN759gbkpZHOx0Lk8WTRm7jFDwb2AbfuPv3AHV219EbAjMZr7u9FsLnrcPQKzPTpiduguwEUUg6Mwrt2eFJ1uypdNqepEQMAJIclLm1OcYos9tlJEtWFF/F2xuC3i6NY1bt2G1GWirUBfCNKcIs0phDFW3G/AaSakebfbb1JSYCAYT9CexGSiW48FYdPLjCORmcGfSiCKZ9OmuiJ23RWum7ZDmkkzW+cysgRHztSRdYnxXEzet9ekbdlMkmI816bR6TZx2I4U6GJAuCRHmpe4LY1IrSOPVgKE1e44LW3r5WhbHDMpuUARN8usc1mWWbF+KU9csfbQcZ+H1+7DuLYAJwZknKHClKTsk3kS0S6q6TQTVCQJhzzUUBFHa0SUYOK2M1qcgJCWKGlN/ole5eTnIvZU/9IhE3tCLuZid6Iu119zxaL62Rl5mfveL646fN7fi8HL1e3cMvXMWJYeaIgSl1QqsgmfR/NDDBUbTFfzZDMe/pIGYegihaERB9zdCPC8jIP6p2ikPhLDYZUxCo6NPn6rdjTN0QJNN4cMMhw3o5YEtFKXUi4i7yckWlIPfbQWCAGVfAuVC5luBQhXQ92FQopJBbIpkbHAKNA4qFAgE4eoYD9Rp5s58n7MzzauphDEpFoy1czRbPoUiiElNyLvxCw9osb6mQHGJkpoT+EOhGAE09MF7mytpq/YYrqeI4kdokHFS5eswyunbGr28fhUPxNRAd9P0VrYmiwC8iN1cqsTWrFL2UuoRx4T9TxR5KJTaVPoXG0LZgYxnpMyXGgw2cozMV0kabmQCRpexuRUAd1ykPmU/NoqraZPZgTLcjNUC9YmP9WSZuyytVqykafUJUxtKh3AjBGsdwaoRz5RqshMP5sbFVYWp4m1ItWS/kKLbZNlttZKVOs5MIKD+ydItcKRGYcvHWP95ty+uRGfI3jN0OPA/Kf7l75jR3KwN6M92xOWzt8nnXcxX7rxzK6+ZPv0re3HcNJ5F/Pa868ADttrY3uqWIiM7U4q2UnnXdyugzOLvx+5p/t3p+2h4F5OOq/IHbfcxDc/fS6nX3HzovvoaWAWwlw7X91exMYJIrT6EJEZjCO6C26nleJPJVTWJ1TWZeQmU7QnyQKJ9iTOdLNtV4yNJrQr3tvikGAcQVK09VaSkkeWc1BhhtPKUKF1/UrKLtq3RSSTiktryLUEAFvIUmhjC0i6lmjpwCEreqR5h6jfxZ2Yw2qFsHVXOlbEMF8bs73APU1tOlgUI2cayGrTkop2zRgRtu2R08ymY8nZ28r4HtFIkaTQJilh23ZZW6G/dqW1e07bmhNpSU0WSKJBj2ygiAls7RoTeNZuuj3suKxIyq79KTjEFYe00K7LI0S3CKeKMhuNSbI2udGES3zilf2YnI/wPISUtkYOWD2Q1jb608Nu4bmsh+lgd3Qtc7Gn+pYnO2ZX5GVn+y32GKBXxHInaE4HOL/J448papvKbJ0p4fkpeLpbtySXiylVWu0yXIIN0308Wh3izi0H8ZONa/hNdQnaCFYMTYOrcQuJbQPoc5uUvIh66FNtBEzMFPCclCyThC2PkhfhOylaS0wqMbmsu/jXeW3Tx1xrYKI9SPoy8oWQlcsmGSg0iVMH300ZyDXxnBTPycjnI9b0TzHWKrCtVUJiGMo3GBmewRlugRHozTl0okhTxUwjR5oqPD9ldLzMT0bXsqVV4YnpPtJUUchZAiIEoKw7W5pKHJVRybeIUkWSKZJE4TgZUhk6OdaFUoiUmmo9x1jDnrvrpaggRRUSXnLI4xy39gn6ltaolJusqMzg+Qn10Ofx+gCHVcYAaCUORT/GGEEj9JhuBdSaAQYQwo5nrNZO+1MZrtSEqcO9W1ewodbHeKvIQK6JHyQIYSjkIzw/YSbOEWYOqVYEKmG40Ps+eTZh+2jP9u898i//wV9+d+Go20JalGuuOJvqY3+yVzUiTwVPlejt6vi573WiP53zftu2Yxfdx25HYO68805++tOfsnXrVgBGRkY4+eSTOeGEE3a3qf0POgPltNPIFIa2TW9q66OYnG+F/NpWTM5y7QKWjsSpJ3iTWXfxH/V7YMCfCBH1lk1V6lSY70DahXqnSnOad2zEJNFWExNlGE+SuZKkpIj67LEyM+06L+C0LIlKcw5xWeHNKPwJm2srUo0uOfiTCXKq/eHZjo6YpC3eF2JW86OUrROTphglbdpWmlpBfYeAidn6KSKeE6HomAF0oldCYJREl3O0Bh2CqQwjISkqtCPJjRrceoKMM5Kyh9NKra5HScKl1oo58yTRcEAuTGzdG2GJXsdlrANhbKQrUaCVQCYKFaZWDxRloLE1Eko+aSelLzGkBYUcLOJuju24285novM/ynoRmOcanmn3sQ72R63L7kZjepgPvxSRDjRx3AxaLoUgpuDFLC3XGK8X0EYwUGhyVN82osyxTmOZQzP1aMQejdAjyhxckeFIzcDSKgP5FtOtHBOTRR6tD5NqSRS6pKFDsb/JinKVRs5jvF5gw1Qf5XxoLX0FKN+mW7luRuRqsrbLomk6yBnAgKsyBoImm2oVak2fvmKLRuKRZvbzthhETLTybH5siNySJtoIGrFHf9BiDEiaLl5TAA7uQRFHLd3KlkaZmUaOIB8zVcuTZgoBDJQabN44AMpw6EGjbBWGNFXEkUOUOBw6MM6Mm0MjKDgxD48PoTNNFrsUljYJ3JTJqQJSGYQwDOcaLCtUGW8VSbSkGgesyM+wrFwl0daqOU0l6cMlHj9UUXQjtBGU/JiBoMFA0EQjmGzlqQFJopBKk6UKIVLSTDJSqjEV5lhenGEzFZQwvHzkIQKZUHQiJqM8nsrIOzFbG2Va2iVSDsYIWp3v3B72CjrpYXsrJWxPcNpDH+aHR/zpgjqWc9/6Tc5962xEBujqPBbC3IjHQtbF+xp7IuSfm5r2V1ecxJEvHpxHWN582qFc+o4PzSE03+T0ZpOXL7L9RUdgRkdHOfXUUznppJP45Cc/yfe//32+//3v88lPfpKTTjqJU089ldHR0cU2t39Czi6+mWfvm4GSiCRFVSPr9hVpGzVIjdWDOLJbgyQp2kKP/niIGp2GJGlbAc9JTQO7YJd0ozBIgXZF29Ursy5kejZNLc2Jtti/U3AGVDNFtSMaqd+uCeNIsoKLDhRuI8V/fAITRpZESWVJVNsquHvecwtJtgtDduvDZLOuLsBspCVtb9fGpsd1Ii/GYDwX3V+ksaqAim2Uymll1j3NQFpQxBXPXjthC3Qa10ZPjBBox7qdJXlJPFTA+C60NUkis2lmwUSCE2ZW/xNba2vtCKKKsmJ+R1qXNsBtpMQVh+ZSG6mRmUaFmizvoPuKlpS1/+8m021tUE8DsyfYkyjM/hC52RfkZW+5ij2dBGh3ojE9zMJ1M/rKTYbLdfr76xxUnsJXKVIYhooNq9FIHTY2+5iKc6yrDrK5USHMHHJuQppK1m8Z5Path7C1WmJpsc5g0EBJjeOlPDIxxNZaiWzKR047RJHD1rp150rbNWSixEZRygMN8oUQnUmyTCLadVZoZxEbBbiGJFOsm7K2p1oLqs2AWmjnhe+mBE5KtRVQXl6jnA+peCGTMwW21EpkqeIFh25k+UmbGThygjhyGG2WKHsRgZd0HdJasUspiAicFDKBaDo0ExetBWuHJjhq5VYOHRjnl1uWE2tFzkn4zdgwrYaPMYJg0NammanlEBKyRBK4KRpBLQ4IU4c4dXjooRX892OHsq1eZPN0mShzWD5QxTuiilLaEqtWQDNxGW2WmIkDttTKtBLH6nuMIE0Vuby1WG60fLbVixgj0EbiSI3Tvo6/aSylntrxRanD5noFX6WsKU8ynKsjeg5kO0XHMvfpiDwsts2X/9Zdu9XuYmugnHTexXzpE382b1sncvMt2ZpHWvaFkcFC12dnTmVPBV/6xJ/x0Ifnm/HccctNfO6Hj3T72JmRwK6waALzh3/4h2RZxgMPPMD69ev52c9+xs9+9jPWr1/PAw88gNaat7zlLbs9gP0Kg5VZ+17dthTW7YKLadZNl/ImWzj1BBXZSIk3HeFOh8hWChK8mRh/cx3niVFMM8QYM0uGOjbNmUY1YlRkiPoUUcX+CG1QUdYtnGkcQVpQuI2MYCrDadqFdzCVEYxF3TozMtb4tQztCtK8XbzLWOM9NoaptaMvHYLS+d0eR7cuTAdzCIvJ2vbKmba1WdqGBqSp/d12MROOA64DnotxHbJKjurBBaKKxAk1MrJtysQgMzDSki2dc0CC9iTalSQlx0aXtHUnExqqazyyoRJGSrQjyAJlzQIMaGULd8o4I5hKcVsar5qRBfZadur1gNUoCW3H0ElZM0oQD+bJBsrguZawdWrj9AjMgrj6Tb/3pPsslpAcf91NT7rvM0Es9hV52Z/bm4seidl9+E5Gzk0IU4eCl1CLAzbNVHjk8aWM1oqkmWS6nmf9VD8PTwzTiG0Ka5Q5+E7KisEZHC+j4MUsL1d5ZOswWxtlkkwipaGUs3VU3Om2zs/RRImD62QUAqvrSzKFozQ5L2G42CCXj4gaHknLxSQSEypEKshyBjTUxgtUx4qMbyuTxjZy0GjaudER3+e8pEtmUiPRqaT+eAUz6bGmMMEL+jdTCULUxoBUW7cxYwSNlodSdsE/Wc8z3QpQdYVxNc3II/AS8k7MmsIkS/w6KwemybRk3eSAjSJ16nwpSxySGR8hDMrVTFQLjDaKjDfzRInD84e2sObQbWQNl2otT95PWJKvsbY8QTGIyHkJq0tTKKmpNgK2jFfYNGGjTq3II44ddCrQsaI+kyNpucQND1dpRgo1NtfLTDdzVEOf/xo9jHvHllOLfXwn5bDyGGvKE5S8kDBzGPIb9PtNxI63SA9zMHcBv5iF8+d++Mi81wtFQXYV8ejgqx8+YpEjnI+dkZi5hOWOW26ap8M56byLOem8i/nmp8/llTrX3dY5984ifiGr5c55PJM20XtKqrYf46Xv+NA8/cvc9v/8FfW2Q9nuY9EpZN/5znf44Q9/yBFH7PjPPuKII7jhhhs4/fTT92gQ+wt04GG0shXjlcDoDHSGidr2vZmDiBNEkiLqjrUI1rpLCKQU9u80xej2gl8bhO/Zp/qmvW+WQZIgWhEq0qTDCqEh9QVeraN5selqRghkbL9c/IkYYejWjRGZRruKuOLatKionR4mwR9vISeqVqAuZNdpjPaY7IDbrmgZbacviYnitg5lTuHIbr2U9t/KOpqZNIM0myVnQmBKPlklx/RhBbRrq0C7VWsQYITAadlISeYLhBbEJdfqYWKbFqY9gYoNmW8LZcrUkOYE0YBPfqaFTNvpc5lNsUNZVzYZZ3iTGVrZDwWZGrJOIVEhUM2UoJXiTylEkrX7FOhEkfmKZMAKOtVUDVphm7z2Kic/Fcx1JdsfIiw7w75KG+vh2Y1G6JK4HpVciBSGauyT8xKiXIKrMvJtItCKXQzQl2uRcxJaqYsrM+qxtd+dbuasFmM0x0YjKBdbKKVxpSbvJkzmDMYxhHUfv7/BwX0TbK5XqOkA0DQjlyRRNHwPY4T9KG8phBGI2NZ/MQpEbF0vEWA8jWkptJ/iOBlpJgnbjmlR4uA5GUpqW9BYGYJVNXw3oZV5DHs1fJWS5gxjEyUKpZA4dkhjhzRyMIkEIyivCNGeAWVohh6umzHaLDERFhgMGkSpw3TLfi5LaXD8lGI+QknD+BN9qIayD6ocTVr1GYscdKIQSrM+P0CYOshcalPHMskjk0MsL1dpxS5h5PLzxiqEMCSRg264UAAcTZYKhDCYWEFq0+9ELoVYMTlToOKHLCnU2aJLFLyEFYUZxmorWD9eQjqaXyYrGVk2xfP6t/GTDWt5UGkO6p/qXr8enhwd4rGzBfRBVz0B35i/bSHL32daT3LaQx8m/uEjXPqO+du3J1J/+d0i4m03Pm3jWKwb2kLYG5GgnbVx7lu/+ZTGtj0WHYHxfZ9qtbrT92u1Gr5/gC8EJOhS3grGO0/fO4v3TLejEBmm3oCZOqbexNQbNj0rjDCNJqbVsqShowmRwpICo2c1FUJaQhPZSE1ha4rb0ATTs/VbkpIiKTl2YT6T4E3H3ciMiLXV5ChJWnC6onYnzAjGWuQem0COTdvUNbB9G9OOLqj5In2l2mOzRTwBSNK2I1dHHzNb+8YYg4kTS17adVmMMbPRGSGIBn28hkYm4Fcz0rzCtO2ejYA0J0hywqZw+TZtTvu23g20bZUz2rV0DF5dW0OEwEOFGRh7jbJA2WKhQqA9m37mhBluPcVppV1b5k5dHdlMUPUI1Yit3XTaTjtzBZkvSSu+1Tl1UuE6Bg497IB3vG1xT/sXE2HZV3jxMf6zTvPSi8LsP0hih4If4zspjdhDCkPgpPhBQpw6rCxNc2jfOP35FpVcSJIparHPoxuHeei+g9i6pR9dd6k3Anw3xRRT8vmIcmALVm4a7aMaBqw4ehveSBM5YffdWOujEbsopUkSRdjySJqWvCip8fIJbn8ExQQdaGQsUJGAUooJrGZQFRL6l1XJBzGOo1lStmlQk9U8UexQ8GIKbowjNYcv38aJyx/nhcObeaw2yK2bj2DAb3D4CzYQ5GOOHBqlkIug5iKmPHLrPHJPuGx7fADjGIJyRNJyaUzk2TJRIdOS8VaRsh9SCiKiyCGJHQbKTQYLTdb2TRAMt8gKGUiD56f0L6mxYsk0uXKI42XtNDpFoRhSKITk/Zgwdkkyhe+mSGkwBvJBzNEHbeGIwzexZKiK69n/j3I0Kp9SHKkj8vZ7UZUScrmYzdUyj4wOMZBv4TspvxobobG1YB9qbvMhFZS9iMRIzljzMM9bspUt1TKe6j0QWwi3feWLCxKNziK3Y727M8wlOzuLuDyTROaOW26aF53pRF0673Wcuf7iVZft0UJ+rtPZk+2zu9g+3W1vYfuoVAcnnXcx5771m6w/57KdGh7sCosmMBdffDGXXnopX/va1+YRmWq1yte+9jUuv/xyLrnkkt0ewP4EWW/n6HmuJS6daENn0Z+mdtEu1WzUoZuOpWdTsuaShA4yPRvx6Cz80xRZa+CPh8gUVGzb0K5EJsYSE2WLScpUo12JdiRpySUpt2vCGEMwFuFvmMZ/bAy1bdqSDynBdW1RxiBA5HJWP9KpbdPWuSBsUU1LZIzVgig1+9M5N7DXo1PoE2bf71wnIUgrOavjkRBMW8cvp5GiGgkysq5gXs2SNVsY0xAXJWG/bcsIgWppK7IP7HVwmtYeOekPcGoRTpvERAMuSUHSWuoR93sYZQ0RnKpN59OetHVfcg5p0SUr+RgpuwVCUcLWtxEC2TYksFobx6bEyUVPjx6eZuwtotEhLb2oy56hR2IWDyk1capoJi5TMwXi1CHRVjvRrPs8Xu1nqV+l7IcU3Jh8mxCAfejiBCkiyPD8hIofsnTZNIOFJoGTsKRYZ3CgjudYTU1/qYlZGtlIjZY0Q9/WOOmbdb6KI4dMSzzPunWZ2H7mOi2BCgU0HEhtSq7rZghh0EYQRw6PbxlkqpYHI1DKRl5SLYkzxYDfRArD+voAjmgXb24X5MwyyaNTgxS8BFKBPyHxqjYyL7RAVWJK+XaBR0fjBwlTzRxFLyJQ1jEsDV3KpSZKarbVivx6dATHycAxSGUo5UMGC03GawWS2EY5fDdlWcmaHuS8BE9luE7GVJhDCkPOjynmLREc9uscXh6l4oecteYhfmvlYyyt1CgVWwhhcLwU6WqMhjSTDBUblAt2zPXYoxREiFSgWhKzNGJ4xTS+kzIeFvnPXz+POHNwlKbgxc/UrXfAYVcL7oVSj3ZGUrZPs5pbTX6xWKy+pYP3vGnX+pntNS7nvvWb88jW3LEtxrVs+3a33+/m8dWLHvvTjZPOu5irtr6om0a30P+ngz0hXYteof31X/8155xzDq997Wvp7+8nl8uRy+Xo7+/nta99Leeccw6f+MQndnsA+xNEmiKSDF3KzdPCELWJTSeKksQ2qhJFs4Rke71ElmHixNZJSdP5hEhISwK0gTjB2TJFYX3dpoUZ6x4mY42MDZmvyHK2sGVScsnytjClbqeR5Z6Ywd08BTO1NnERmJyPHiiRLe0jXruEbGkf2bIBzEAFU8ghcu3za9d/6aKd/gZYshW3NUCZno1EddLgOuOfWwTTUW3XNIHTsCYHMjVdPQ+AU0/aNVkyMl+Q5iT+jCaYtM5gKtZozwr1ZbvWjkw0TtO6mInU6mm0L/CnU/JbI5tWJgRxxbVRmZKP9hQiM3jTMaJdbDQtOOi8C5lBRG1NU6LxpiOcZmqNEooeJmin/PUiMAviU3/3ZWDxUZi9hadCPJ5LpGX7KMzedhHrkZjFIan6zFTzAAz01RnINVmatxXflaPZ9sgQX73nxdy/fjmbZipEmUOSKQ5aNknf2imCXEy+HLJ2cJJ67DM2WaIa+vbvRoFqIyBMHKqhz/hUCd204vOZRg7HyZjeVGbzxgGUk+EEKUEuJucl3aiM8DOKI3VaK1LCJSnG0YjUPnhTShPGLlHsoByNqTukiYOQ1imsFvo8OjrEQw+t4Mf3H8Z/f/8Y1m0aouSFDOSajLWKPPbICOLXJSa3Vij7oX14NQ1ezRq5yKYkq7k0Iw/HTyn1N+nLt8gyyYbpPu7fsoxWy+qCXKXxVEY5iIhjRWNjCVlXOG5KwYs5rDzG0koNnQmWD86QdxO21MpUQx9PWRe3FyzZwkHlKTyVcXD/BL6bMj5d5I5Nq/nl1HLC1OXHWw7mFxPLKfshqZYoMWvbbKo2ilXxQtJMMhMGNCOPRuyCgnQ4ZtXSKQZyTX69aYRHtg0hJjx++cRyMt1TwOwMHRH/7mBn0Za5hOXJtC17qn3ZXSxEiDoC/sViMVGXzn67IgKLEcrviZh+V+NZzPfPp17zB92/d+d+2K0Uss997nOMjY3xve99jy984Qt84Qtf4NZbb2VsbIzPfvazB3wKmRECESdkeQ98zwr50xSTZTatqv26q2PpaF6y9qK+U9U+iqz2pU2C7NN80SYuZta2GGxKWquFGpsmt6FqLZGLncgHXTeuLFBWtO5KnFZG7oka7qNbYHwaothaHhdy6L4iydIyaV9AUvHJ8g5xf0BS8oiXFEiW9RGvGcb0lRDFPPh+N/UL2bZSjuO2a9psxMh00t86dWLmkB3RMQBIMyuu1x2L5wzVTBGZJsu5CDNbA8Y4grggCfsF4YAiKUjSvCQqKzJPoGJNMBbZ9C6vnVrmSRtBUbIrxJdRSjAatQmOLcyWFi3ZS/OqndMtunV1ZJiA0649k5l2DRo7Ju12KlV7NlLVw36J3SEjO9v3F/+xadE/PeyIY/7+Nz0i8yRQhRRdtcUqlxer5JwER2ZMzxRIqx4yEoiGg1CGxkSeDeN9BE7Clqky1XqOwE1ZMzBJktliiUKAkoY4UyhpUMoWc6w3AtKGC9rqY1w3pTGTQ/XFNg0qH+G4GVrb+ipJ7KDrLsrRNGoBOBqnL8bri6wrWCJoTObwXVufJefHlJbXGB6o0l9qsqy/SuAllAshpWU1cHU35TfVCikMmZaIICPu0wSbXJ6Y7kO1BG7DkBQESdGg85rCcJNjlm5mZKDK0lId30kp5qy9sRDYmir5mHroM1YrknMTgsCmRqvlTTzPRqBGwyJh6qBc+7Bsqmmtpo0RlP2QpbkaRxa3EmuHOFM8OjmEEoaBSoO+QovJRp5aZMlS4NhillJYbY7np3heyrJDxnCcjLFWAc/JqAQhRw1vY2mxjnE0GKudyYxET/koZRBLIyoVW4NNmx6J2Rk6KUadxfM3P33uLhfrT/UJ/kKuY083oZkbIQJ47zdu7G5fzLFPN0467+IFC38+1ZS8hf4vu/pf3faVLy667d3OkSmXy/z2b/82l1xyCZdccglnnHEG5XJ5d5vZPyFlu1ClxrSLGgrPnU0lkrbSPbK92O+mXrUjFB1y4zqWGMg5FsRzdCRddFKzlLKi8YlpgvWT5B9vWK2HsG5d1qHLCtH98Rbuxgnk+JQlFdKmg5linnRJmXgwb4s11mOrFWl3p6IMkWhrW6wE8XCBcO0QZumATS+bE0ESntet9YI2IORsbRRtLJnrjL19Xiay4XGRaFRsZtsToD3HOoyVPatVkcJad0pwGwYVGdKcJC5YG2Sw4zbKuutkOUlcVlYbozWqlVhHMWMQYYoz1cSdCXEbqa0dU1EgQUWauOLZQp+pRtVCRJK1baY9a9ssBLIRIUObcpYWHLKCb//nvRSyneITN+xZlfm9iScjMbsiLruDHpHpYU9w8MgYqw8dJXBSpNC0UpfxVhEdKzCQDaSoUGC0QBUSjlw2yoDf5OhlW3jeiq2sKM2Qd2JcZZ3IKuUGUhjCxMFzUvoLLRxl066Gls0QDLaYqeZprK9AwyFr2c/sRsu6dTXG82zdOGD7B7KxAG+9j7fFRW8NiGd8EAa3KnAmXabGSlb83/IRwNhUiYnpItXQZ9tYhcmpAo7UrF4xQf+Lx1gyVKWRegwFdQ4qTXL4QVtZ8/zNHPXbD3PWqofwjqjSXGrdxNyGINiiaEzmSI1NRat41sSgEoSsqMwwWGqwum8Kz0utdsdJ8ZV9aBYsa/DiVRtZWqqTZIonqv2MTZVYOzzJKUsepRREFMstlhTrNhUt8dkQ9hOltsZMtZZjdKrE2BP9bN40gJKa6ZkC42Mltk6X2VYrUq8HJKFDq+mRxA5j00XSVNGMPGotn4lGng21PiZbeXKDLfxiRM5JqMceRhrCiRxBLubwwTEquZDNk5V9dSvu99h+4dxJs4IdF8vf/PS5O1R4//NX1LvuXnOxtx3GFsJP3v69Jz1mbhrZaQ99mI8+8Mnu6zefdugO+20/lneddC9//op6t1r9k2F3tSy7EtYvZIqwWLL4ZNfxqVo279YKbXx8nI997GNccMEFnHzyyZx88slccMEFfPzjH2dsbGy3O9/v4NoPfNXRwrTrpcy6bElEJwUMuhbEJklnoxIdXUgnFWuujqTTzpzIjFCyG8EQQiAaLdRkFW/DBPmHJyg8PEnhgVGKvxrFWzeK2jhmDQMybY+VEpMPSEZKaE/hViMbZYD2glyh2i5qtjK9QTUTVDNBGEO4vES6chBRLNhxdX465+g6dtyd8+vYJYvOtrbdcLtuigpnxfNpQZEWXaJBH+1ZW2fj2PQwBOSmrDW0V29bRkvQDqSBJCk7JEWHNCfbLjltN5hUI6cbXTF/2heg822ymWhL+hREZUVr0CHLSVRkSYtxFcZ3SUsd8oKttSMEpJrclqa1VnZk917oYUcsxkb5mcJcTcv2P9vjqZKQA4nEPN1pZD08OdaPDbBtpsTGiT4mwwKNxKPoRRT6WviDLfoG62jfUCq3cN2MyVaehyaHeWDbCBum+2ikHmHmEmUOFa9FmimasUttKs/mzQM0Y5ehfIMjhkZJM8ny/hkG+hpoXyObEllzYFMOHikQNjyEp1HTDkQSkU/xpiXFJ6D0BBQ2SdSMgwqlrcuV14hQkVWtE1qr5aFjRVr1mHmsH2ezDxO+TTPLFCXf1nXRRlCNczw4uZQocwhTh4fGlnDrhiN48bINNA+LSfMgUnBaQCoZbZYInJSSG+EIjcQwWi8yOlWi6Eb05UKqo0UcpUnaBTWV0vx6bClR6iCFYaRYIwsdUiN5sLaUiVqBchDhOykPjC5lvFXgsdoQUVuPUiyGNsqTCVSQ0Qw9dMNBTbqEUwFpqlBOhpAGowVBbtbMoJILSVMbFdNG4KmMgWKTciFkVWGKZYUqbn+IqtminBXX1q0pFaJd3C09nHTexV0NSCdasdCi9i+/W5xXIBHmE57O8R2c9tCHOem8i3fbqverHz5i0QRooYX63G2nPfThnS76F4p6LISOg9dixrLYSEpn+2IJyWL321lfC6X9dV6/ZujxRbU9F4smMHfddReHH344N9xwA5VKhdNOO43TTjuNSqXCDTfcwJFHHsn//M//7PYA9idoz7HFEpMUk7OL4nlEpBN1MHp2gQ+InLV6tClYcn5NlfZ2EQTt9Cv7ASw6hSR9b1Y0LoR96p9mECeIWgPRaEErtNa+nRoy3b4UBD7JYAGRGpyZCNm0kRDjKtK8TbWSSYZsJt26KGDrrKhWiooykqJLurTPRl66F2O2SCVitshj93p0xzsn1Uq3yUWkyXK2ZktSUDSWKRojDuGgS1xy2/3TjhDZaEzmgkrAiQxJ0VpKZ4F1JjOKtpbG1qARrQhvWw0ZZ2hfkVQCdOCiPWWLfBpQiUFo8GZsMVBLmmztGaee2KiW71hhvyPBmT3HLNc2OujVgdklPnHDF55xHcy+xt4iMddcv+8jWD08vcgSheem9JeaLMnXGMo1CFRCKRfiOJqBQhPTl1AMIobLdaQw7aC9oC/fIskUrdRly0yZLY0yjspIUwWZgEgyPVlk40yF8VaRSs6KypcWawC4dUFuiyS/ReDUBdRcTCqsrf20ghkXGYPbNARTGhXZtN+0lJEWDRRTRCUGR6NjRZZKhNK4fSG6mJL0ZZj+GGMEvspwZWZdw9yIMHNIUsWG0QFqoU8hiMm05H8N3stRazcT9xu0C96MwZlWJFpS9kNm4oDxVoFW6lL0Yxw3YzLKU/ZDRlZNMlKs0R80ed7wNo4a3sbzh7fiqozHHx/mN9uGKQ80aMQe929ZRtRyqYY+gUoQAjIjqEU+k80c41sqOCqjkI8QfTFZ1RbRXL56gkNeuJFjj3iCVf3TrBqaplxuUSq3WFGZYaDYRLed3I4YGeX4kQ0c1jfWNV9YUqijhCHvJLhuhs5bs4OZJIcjNROjpX15O+7X2H5Ru32EZft9tic4najEuW/9Jl/98BG866R75x3rffzYbp2YZ9pauYPtCdkrdW6nxGdnUZY3n3Yo4+EL98gtbC75mNvv01FAc7Fteh8/tktqbh5f/aSGCNtj0QTm6quv5jWveQ0bNmzgxhtv5LrrruO6667jxhtv5IknnuDCCy/k6quv3q3O9zfIMO5WlzdSIgJ/NhqhZPt3252rQ1Y6Fds7+pauE9mcxb1Utpil686mkCllU798zzqCdSyN28TG6LbupF1Q0aSZJT3aWH1NO8UpGyqTBQoZJtYa2BiMUqR5l8yzQn/tK4yvSIte125YpLbejHZtAcloKCBbUplNFZPKnls7yjIPSTpLZOaK+QGRpLiTIaqlcVq20GduXOPV2+8bQ1K010wmBreRomKNirGFKzOswDOjK+IXGXjVjGAsRDRDS2JqTZzxun1amJPEFZek1NHPWAMAt6HJ2mlhItUYR6KqIRhrjmBUOxokJUZZcqOiDKee2PtA9nQwC6Ej4j+QcCBFT/YGFiJIvSjMMws/b6vPx6liIiyQGsmWRpnR8TKNqRxJplBexmCuSdm3BKToR4z018g5SddRrDGZI80UgZuSpnI2L7jmUJssEKYOrsrItGQ6zCFiiUwgmDTkxg2lDZq+X0lKD3i4dUto/HFFFhjikiDJS7QCNCANRhn8Qky+EKHyKaS2XpZOlH02l9mHTtRdopbL5okK68YHKToRqZFMtvK4TsbwQJVW06cZeayozLAhGcCRGiNt9MUJDW5NEKcOgUoY9JsM5JoMBE3ybszSSo2xRpGJVp6tW/v45QMHcfcTq9hQ6+Oh8SU8ML6UFw9s4PCDt7CkUqc/32KkUCMaz1EohQjg16MjVPItXKmZnCkQxw7C1ZT8mCWlOoViiMinJE2PLaN9bK2VGG8VGG/mrY5HGA4ZGCfKHHJuQqNtxRxnil9NjvBEbQBjBNoIRhtFHppZwi9Gl9GqBYhYEAQJEsN4vYCbS/bNjXiAYKGUsc4Ct/P+3PfmLpI7EZldkZOX/9Zde7UGye7C+/ixeB8/doftC5GY6876rQXb+NwPH+HSd3xotyIsc7F95OrJ9tm+zV2lhO2MdG1/zELayc7/5L+2fGK3RPyLzpO57777uPHGG2cF23MghODaa6/lRS/atV/3gQCR2dogHTLQfQrf/m3S1KaUdeyTO2QGLKHJ9OxvMvu3zgBlxePdjsR8jYWY00aaWbLTqa3S7ss6Y81ZWLvWncxpZe2FOKAFWdmjsdwlyQuEtpGYNBA4obUkDmqRJTFtIbvEOn1leQ9ZzMPkzOw5OY4dR8eJzHVAOrPj7aS/OY4lWVKipuv4WNtjoQxuq53CpcBpZCRFhyyQuDWbBpb5ErelcRoamRnchr0ubiPFm9LWmS3JkFN1aNegEcbYSMxUSDiSt3bNLUM44CI0qJYlTNqVuDOJ1eIoiR7Io1oJRtiojIhT60pm2rqcnIOKUltDpxNx66GHOfjFf2zimPNXPOV2rrn+C7tVt2Wx++8quvOLqw7vie+fIQReQs6VJFoihWE6zLF50wDeZpd4JKUW+jhuhsTgSFsYMskUOTdhrFEkzSSr+6Y4dO02Ui2ZaORJQ9eSB2XrmJAIqs2AwEkZytmn1pMr8jTzOYxwKW40uC37/ZEf04R9kurBNl1XGFuTS7v2b39aYFyFSATRljxhTltRf5BhDATFGMfJSOIcJpfhVyI8N6U6UUBPujxR6seAtTserSBdjRSGSr5FI/G4c3otv940gjQ2VTguCrLAjq3gxKRGUnZDCk7ETJJjrFWkL9diopHH3eqR5g0rhqYJU4e8HxMlDr+cXk498Si6MY3E44GtSxGJpD5WQMTSkrGVCYcNjFMLfaa3lLt1XTZM9FHKR9SNQLQUsi+jFbooqWmGHpOb+uhfPkPRjYi1QzUKyLkp9cijFlpdkSM1ibb9F72IeuxTGy0im1bntKIyQ5g5VHIhfcNN1u2D+/BAgPfxY+fpK0576Lfwzpq/2D/pvIs5fdk7upqTuZa83sePJX7nfZYg/Puu+zrtoQ/j/tZZe/8k5rS/p8f88Ig/3ek+J513MX/+ijqnPTRLbuJ33gfMJ3/ex4/dYQyddk976MPz+ugQutMe+nC3LaB7PXc11u3b+8vvFrnurGN5z1HXYm64cB4J6+x32kMf5t3f+zHv+eXf2zfeTrfvDrm75tvf5mPfX77T6zAXi47AjIyMcOedd+70/TvvvJOlS5cutrn9E0LYWiJCIOYVstTzogxd8tJ5v/O7E3npLPbBEpC21sV0bHnVnBQlrWcdzTrHitkoTSdlTCgJyVx3MGP1HHmr5RCxTZXSBZv779VtVKM1IGgsVcRlgRNq3HoKUiLiFNlKUK0UGbcjFXlFMtJ2J+ucU9txzaRtnU+Szloqd86v41Km7X6maXU8/sZpclsa1qa4nuBNJ4hU47Qy/IkYp5ng1CLcRkpuLMabiXHqCbltLfzJCKca2YjIdAtn2zSiFdmxq3Yh0CRBbZvGm4rRniTzpI281FLcWmKJTzsqJtvpclmgSMs+2hP27jcGkaQYaesfGCGQtdC230shWxD7kwbmQMc1139hr6aTPZOpab2Izq5Rb/jk3RglDAWnXeNF2vQp2VBMjxVx3RRPpXYhnKluHZicmzBUbCCFTUOaaORpNn2oOqiaQjYUom3N26l9MhXleaLaT5oohKttHTFhCwPLBJtaG4FMrFujWxUkJYgqVjeoWlhTAdfgzki8rQ5ocIKE/sE6WWpr2AyuncLJp0hpCQqJxLiGTVv60UZQ9GKEausgY8WWR4aJM8Wq/BS6XWcmCyCuCLRna6tkRuDJtH2+0kaeYo9W4qKkIVsZEqyo04g9pmp5wtilP9+iFvsETkrBjZDCkMbKGryEEuMYCDKMEUyFedb2T1BcWqdYbtGIPaKaz0w9wKQCk8vIai5pNPtMtzRSY7jQQBvZdSUrehH1RkCtEVDJhZT9kExLoszBkxlxpgj6Q7Sn0cWMeuJx/6blbJkqd/U7PeyIzgJ2LpGZi2/J1g7b5kY0drbYXuiY/QVPppvZHt7Hj0W87d94z1HX7vDe3Gv2ZNdioT52dcxJ513Me95ko1fxO+9bcN/toy87iyDNfa9DRGH+/+WTZ7xi54PfDouOwLzjHe/gqquu4uc//zkvf/nLu2Rl27Zt3HbbbXz+858/4OvA7KBdaVvpWsH8wocYY2u5CNG2HNZtcTtqXpumHUkxGGsEIG0ERmS6636GaTuYtYmOaYWz/aQpuB7C9zCtFngeOu/hNG1xSO27s6RLg1PPyMeGuKzIPPu0Ky4qnGZGWnAReQfZSqFdd0a0RfZJ0UENlVGbE0zHKlnYULpNoWPWda2jA3JUO0qTdYmZaWQQRshmiAk8y5TbtWJsGpwG18E4Emc67LqjiSTDuAoVC0QrRsQ2nctE8ayRQNc8QCMAd9025IohokGrRXLrCUYK/M11TM6156s1aeBZoqMEMrY2zGg7fuNaTYwKU0StgUliyObUyOnhgMXTkT62t6IwHSyWeMzdrxON2V3S0ovCPDMwWlL2Qmuri7AOWpm1mdellPJgg0outAtfrSi4MQU36j7xD1OXRuLTTFziNkkx+Qxt7N+yJcl8jeulbBrvQ67LkR4UYiZ9ctskKoS4LAgHBU7DEA5KssCgIlAxJBWDkSAjCCbsmGUkSFeHxHXXFmfsizFaUm/aB2PVWg5dd8HPyFJJKAx4GlWJcJUmzRSPbR5CN1xELkUog/Y1Q/kGS90qjpeiHY8sAOMItG9oNH1SrYiFYVuzzFSYY6RYY3lxhtFmCSEMq5ZO0ee3mAzzyGKLNZVJwtTFEZqK3+KBsaUMFprkixGV4Rk2b+2HUJEvhywvV7sOcEcNb7NaIwwDuSYawbagiACSVKG1wHMylgxNsq1WopW6PDI9BEDJj3hk6zCrhqd4fNMQ9cinEXuMbatQ7G+yebKMUgbHySgvr1HJhah2zZ+w6rNN7X6l8ecC3L98PiJYeIEVv/M+TuLiLlk57ajnw5U7X/wuqr8rnr7oy1PFe466tutQthA++sAnuwRiZylpO0OHuHTIYuf1aQ99eH4Eq71PJ9oVv/M+e73fSbffue2AJSXbR8x21j/M//89FSyawLzlLW9haGiIT37yk3z2s58la0cYlFIcd9xx3HjjjVx00UV7ZVD7DHECft5GYoRAtPUwc1PGun+3Rf2C2WjJPAKkxKw2hrZo3+9oXeRsBKZDcAIroDeuwngOstqy5CZNbXwfaaMbUWxtj4X4/9j782jLsru+E/zs4Ux3fvOLISMiM5WaQQnFIAYBBmExmEY2doENtgS0qMVga0BS47INQqYwLamRgZKh20VZogSLxqYbA6oS5ZYYjSQzpURmSiKVyiHmN9/xjHvv/mPfc+99kRGREZFDRErxW+ut9969Z9jn3OHs7/n+vt/vNLBRejF7MtV5BF7bAWBDQdg3TDY08b4lHE2zUsQ0Bdk6nPa5KcI6ZG5QUpBuJDTSDnL3AFcbFsip6UAdwinEnHFyteZHz4+pDgE1xhsRSDkHMDN2y85b6ozxwK6sEIH2YKgo/XpTQCekxNWamxoo5QWEAersDnHRI19vkq9EhAclLgkw8fS8SO9s5oRA1S1tAkw7mupyApyWJJ/dw1XTwFFu3zG7Vesf/aEXxP7a1w5v8khuXt02Ari1q8o1jw+WiHVFaRQXDtrIocZp0ElFXmh2qibbgxZrnRGBMpwbddnea3PP0S1i5fNIKqNQylKVGqwA4ZCFwGmHCA1JVFB9pk3VcJw6sstnh5uoXOI05G2I9uHgpRbaJTKwFIMQNVTYxOK0I9xVyBJMJAhGkFcS1S4xhcSWXnMj9mN/s2szQzZLwtjntRwMGoAhiksCZcgrhTMSpINhgFgqiHsepP3H01/EybV9Hi40JlOovsYph3UCi0DiWInHPHzRA4ZunHHuYg+coNlNKa2kNIpxFnJ/doR0HHLHxj6F0Yz2GkjhyLOApDPEWQGBZTKIscuCrNIUlWZURpRWkZbeTGa9MWQSe12LVobRJMY64R3UigCt7IwhGqYRzUbOzqhJ0s5oRd42edt1GT/ewTUMx05tzV7/bphxetClEecUmSaQt1uSr6cWJ+p1/cwn3w1vemrbvJUBzNXACxwGDU9Wly57rSxVXVcCGV/5s9/IH5x/13ybv31t27vS2C99vPxX91/zGK/LRvk7v/M7+ehHP8pkMuHs2bOcPXuWyWTCRz/60ec+eAGEtYis8D/O+WwWOOQ4NpvML/4/m6zbOZOy2PoFHhTF4XxdIXCNGBeH2HaCjT2jUqw1efT/0ub8KzewS625aUANjqbtYzifcG+VQFTWh15G2mtFSkswKAgGhnBQ0n68oHUuJxh4i2M9rtCjYppqXyFLi0oNup8SDAsQML674x3SahBlPdM0Y1qm4MUV5eG2NyG8EcBCm52rpq1lZQlZDnnh1ynKucNa/XhZzsHLtMXOWT8GV03b+cpi3qanpH+uKBDnd0k+u0u0nfm7e9ozXMI4ipXYO7WlBllNwyuNd2iz2reexeeG0B8eChq9XU+sZ1vE/4/+sP2En0ufuxn1XDYGeKrtX7fbx568ZOAT4K0TlFZ6Z6rYUrUMYeSdqqR0ZMOI0kq0sCRByXJvTG4048q3UOWVIs8DTOGvJXosEVZgeyVhUlIZRdW2nHjpeV7Q3UK0Km9TPPF2xc3zhmhbkbRy7J5nUkzL6w9lq6RqOEwssJFvJXOpwow0pAqhHN2lMXIjQ2z6joBmO6MR5zTDgkYjp9NJyXONko504rNkZKNCr2QobYjDkn7h2fHKStqdFNmosLEHUFFUYp3gYtZmVEW8+NgFNltD1uIRQVzhcsnoQouLu13KSvlsmr2EF91xgc3mgL2sgVAOrQw6MJzZ60HmQZQMLI/vL9EOc5aTCaMiIi0DAmVm7XrHWn02W0P2d9uIT7XY2W3TT2OW22OUtAzHMcPdJtljbYb9hMkoosgDDiYJUjhWNwas3L1H0Cp4/OIyaekd0B7ZX569F1aWR9y9vPMsvvs+N+pyE/BLf3+u1ZWOq3jLx/nx333v7Pmv/NlvvOo5WGRK6ha8mrWpW8Eu1bpcChovPdc1K7PI/lyr5udK7X6Xgpr/22/84jVtD24gyBIgCAKOHDnCkSNHCILgRjZxS5YTAhdoXKD9BLqehDvf7uQF7JeAl0UBfx1uKdXsxzk3ZV9Cz+gohdP1j8S0IkwrYnRXi/2XdOjfGZKvG0YnHflmC9eIZ61sQmuEEL6dDB/06LRAOJ9nYhLF5FiDouezTlRuEMYS9DNvsZxX0wyYwrM7UxF/lShMoqi6CWUn9M5lWmDWut6JbRqWSTh1Uatd2RZLTB3Z6n/r9js7z6uZ6YLqWtQJGeOZliicg5dFK+Oa6RFyDiiFnGmMAN9WNp6gH98iONeftdQ57V+bYOQBnDAOVVpspDCxXzfcGiG39qd6pGnWj7qdBfNkdSsEWt6uG6tP/MDzbwiI3AYv11ZHVvtsHbRQ0rKSTGjFOaeedxFCS5aGlKUiHYeQSQaTmMIqSqMwViCFozSKlcYYayVmor37l3bT/CpI2jmrnTGVkbjI0A5zPr57FJcpbAij4w4XQDi0CAuT/YT2Q4re/Ro1lr4dLVeI9Zx8Ccpph5NMJbJRIdslcVIQaEOrmXF0pc/RlT6RNkgBuVGEev6dvnfQ9H84AQ7KNKCYBFjn2+eW4pRHP7vOZntInBS42Od2KWW5MO6wNW4xLkMkc1ammeQEHR/KzPmI4ThGKYdqVAzymEERs94Ycu9dj3OsM2C5NaHINIQWKkmcFEhpOdvvepZHOMx0POuNIccbB6xGY6wTXgujHUzbyKwTpEWAMwI50DTOS6KHY+w4wGzHjD61xKfObmKsQCvD2tIQO9EI4RiOEqKgohmWbLRGNMOCtPrcmSs9nXXpHffwnS+b6Twunewu3q2/mtD86a5rmaRfbiw3Iui/0nGF73zZjKEp3vLxwyzIk2zv7X/ntU8ALovn8XL7Xtzuj//ue/nx333vbJ+Ldb2vQQ3CFrU8i9qa//t//4PXvK1rBjBbW1uH/r/vvvt4zWtew1d91Vfx9//+3+cP/uAPrnmnt2xNQYqLNCIr5pP1Ogdlttw0L6W2P66DKadgTtRgRop5vouxHhiBZ1/CANMImRxrsPuShPGmYnhCsPsVJafuvkj3M6AmlQcvUi4ETIqZE5wHIg4bSJyS6HGFrBzpiqZs+8T7esLubYLlNAtGeu0H87wYE0nKbkjZUsjp8oO7mxBPAwHzfGoDrTx4mWbaiDCYgTchhF8mCGbGBUJr/7+c/j07H9ML35RdmuXkmKn+x7nDLm1y2npmzRw81W1t03O6qDcSwzH6/D56a4Dup6jckK2GlG1N1dRUifYXz9wQbA0Re/35vpyd6pkuAVy3a1Zv/mff96xkwFwru3KbhbnxqoHMkwGTGwU8n69VGkWvnSKFI62CWQtR1MnZXO17RmYUIHNJOoxJywDjBFkRMCkDSitxTtCIClDeZVIeaJpnBcFQkB7EFEaRTULkQPPXn7qDrU9ssPSXmu5nDb2/gfW/qBic0FSJo3N/SDBxVA0wHUNreQIC7tzcgXsHZHfnmAhULuh0Ur7gxDlOLu9TGa+B7Kd+f1oZWlGOElN3s6hgc2lItzOh0ciJW7lvI3OAEVTGu7D18xhRSi4M26y1x/6YHKSTiF6ccrx9QF75MMpWkNMNUo52Bjz/yBan7rmIXS1pNnKOLvVpNnL6acyFYZsL4w4XJ16vkgQlJzb3eP6dFzh5chutLONhzGi/wdbQg8mNxojSKgZFTCAMPT2hE2QsrQ9pfeEuMrCkRUCsK5S0HFnrk5wcMr7DZ+ToA4UsvJbJbUcMho3ZuTh2YpdYV3TbKbGuSHRJQxesxGOcE1d6q3ze16Xi8MVWqkvdsRbrWtup3vCb77uu5RfrehmGZ7J+7EVvfALgWGRlrlSXalzg8kxI/VgNLurtX/p6XImpebIq3vLxK7bJ/fjvvveatrFY13yL+ciRI5w/f5719XX+9E//lK/7uq/jK7/yK/mqr/oq7rvvPr7xG7+RD33oQ3zN13zNdQ/ilqlpHogwU/F6MW0hc3buvQ9+YuumLVBTTYwIA6/jmE6khVJPZBzcNEhSCFykKJZDtr9IUixb1Mi7s/yTL/kInxxuYi8Y9DSzpNaAzNy/ptbGsj/BHm96oCIFwljCQYmoHMGkQu+niLLCtmMwDjUp/CR/uj0bB9hE+/BHvLWmHhuk8XbLRVtSrXXQWe5zaSoza68SYegBhpEe5Bjr2+G6jSm48SBHZBWirBBZPhfw49vKvBh/2qJWt5256Tm3DpfNTQz880zXd7NlkMwzaaSa/e2kgvEEADFUhPshQRxOW/kCRFYi8sLbMluLq00JattqJW/nwFyhni0XsqcLlHzhq489o0DjegX93/XqKwO/X/+tm8to1QBlUeR/G7TcWB2MY473fLCwxBEofz143rrPFZnkIbJVYkVA3CywThArw3rH2yFbJ9hLG+SVIogrykyTbEnCgZvpHHd226gLkW8H62tajwtW7p8grCMYh8TnhlRxl/FxSbbqGD7P4mJDe3VMHFSMleV8v8NLN88TSsOfDl+AHkkmWTh1BNOE2tAfJ2SjkDQpWe5MKI0i0v67Vkvr3bnykMFuk6W1IZkMkQcBtlURhyVn+l2qSiG6BautMVpY5EAjC0GlAi6M2hxvH9CLU0JZEcqKQFjSKuCLl0/zQP8IjU7GYLfJcJCQNHNWWj4/5yBLOPfoKlgIljPWeyNCabi7s8N21OJC0CYvvZWxdYK9rEFaBlRGckfzgF4wYS/3uS9JWKK0IU1DTm2eQXcsj46WCdqGwZ0l/WGD6P4GNgQsJBcEYxMxbEYc6QzIqoBiypzVwPVT2xtEQUliPn/1elery4n463apt/+d1152nevRgtTgpf77Pd936+eYXenYFs/HIlMFvqXscrqV2hjgUsZlEXys/fL99Pe++7ItZW/ntYfYn0uXeQIo+t0nP67F7V3teJ+srhnAzBLggbe97W3843/8j/nlX/7l2WNveMMb+Mmf/Ek+9KEP3dBAbpUSlUWM07n+xdm5BqXWXUTRE9ubapBRV80ehMG8HSoMcKHGhj5UMuspihMFJ47uUlrJnZ09Pj3a4IH//QXccWGIKA0iX2hlq9uwppN0YXxYpIkVYuK8nsU64nGJHOeeRRLCgyYtIZ8eI+CUwilJ2dI+E8A6ZDE/BmEdQWrJ12L0Vugn+xJcaWdME1rhWg1sIyI70qBseqZK5RYTCqz22TNO4fNntjPU7tADG5hn69T7VHLm1uYfWDAKqHU4phbYc9j1zToQC6/Boo7FOtxkAkUxZYGUt2Quy1k7HjAHQlrfZmCuoZ6p9rEbAS5PRcz/TAOcuq4GXC63zM0EM7dBy1OvKtc4VzKpNI2gnLWF7aYNulFGHJZ0NzJyo/xd+zBjJRoTqYqdvMl26nu6Im0YVxIx1pgY+veAiRzxmRCVQbztvy/HdwjvQDnIfMhxor2usi2pnpeCE8hzMUY5xqOYzmqfqOEDM8+OurQCD7ZE5du/Hj1YZrM95K7uLttRi1ErJNYVUjjPEBnvnFZY5dmPsKRcnqCVRYcVZVsiI0McVGRFQLqXzL/sAduqsJWkuTphd6/FwTBhrTeiqHwbVqwrenGKdYI7mvtsJEOSO0r+7OIJJrm/BvXClNMHPQgtYqyoMm93LIQjNX4ZKRx5odmzDYpcowPDSzfPc3bUZb9ICKRha9RicKFNvpxS9CNEJvmD8QtQjYp2M0NKy0Hft8hNTlTIiUSngqohMMslUVCRG01uFGqa+XNXd5f9LEFKi5KOvLrdkny1urQ9rJ6sX66l6tm0Q75WsPRkDmLXu91LM1vg8sddg5M/ZQ5eFsFM3T52pf17huW7D+2jXufHXvTGJ4Cmqx3LU3ldrufc1XVDGpj777+f173udYcee93rXscnPvGJG9ncLVNOCESae0E5zNu2YK67qLUYNSgRctbS5erHavBSgxwpveYlUJgk4MJXtrnw5RHjo5J77rjIl689ykuXz5OokvvOHiPZcjPg4qSYtUy5qvKTd639vipDMCiwgZy1UAkHclJAWXk9TxL5LBTrQAlcIHFqGqrp3KyVDAsq973SVcO3lVklsIHA1rkwSiGiyB9fFGLWugxfskJ6vEnVkAQjS7xbEu0WxHsV8b4XzOOgbEomxxIm96xie+15K1ndemfdHCTXmThCIqLwMBMSRYd1SFJM9UYLJgLTVjcRBHOwAz7PpigR/dEcrExr1t42PddCa0QS39D76POhbiXty7WAlysxJE+XFfLVANB3vfr7rgm8XG692/XcLVsq1htDupG/81/ngEjhkMKx1hgT65KDkb/7//DeCg/ub/CJ3aM8tLuGc779qjLSt2QZgQkdYV/Q+zQsP2hZ+6uC5QcnrN43YOmTluVP54jTFxFntxHWsfuSJpMNgd2JkI/FJFuCcFdhM58mb4zAWp8k/9juElgfbCm3Q/r9BhdHLc6Nu0gckTI0g4K1ZESkDKWVNIOc53e3iFRFqAyBMgwn/nvz2LE9pHQYK9HKIjKJyBR5pRmXIe3VMcnqxDNT0w7gQFpCXVFWinERcH7Y4c92TvLxnWP8zcEa9+8d4Vi7z9eeeJjleMKn99YZ9hOSToZeSzl+ZI9ElxxkCWdGPV7UucDzl7YQAo50B9y5vksr8df3/iTh46eP8+dbd/iYAMA5QdAucC1D0CyxpeTgfIei0nQ7E5qtDN0pCI6PKZYN6QtyOksTmmHhz01jTCfK2GwO6YUpS3GKACZ5SDd+YpbJ7ZpX+M6XHWJLLn3uZmW4PNl+6zFfaQJ+pfaq6z2eS5mkep9P1r711pffd8X9f+XPfiM/88l382MveiPd5V899Fzxlo8fAi9PZqJwPVqYKy37ht98Hz/+rT9+zdu5LgAzHA4ZDAbEcUwURYeei+OYyWRyPZu75UqUPoRxJiJ3Cw5cdYjlpZqYBR2GEGIeVukfALzYfg5qYHiX4Yu+7UFW//ZZluIJlZV8drhK5ST3HjtLuiZm9sGirHx4pHMzIbzL/Z0yyhJ9sY9wYGI1TbsX2CiAKMSF3hpYFBWitJhY4wKFTTRmKmAX1mEDAQJMJJHGh12q3LeRCQO2Fc6zagC0wqy06d/TwmrPtDjBrK0BJZC5IRiWRDs5jQs5jQsF8bZnhCanOhQnV3HNxLeV1Rk6xjyh7c5V1fzca+1ZkbrFqwaXddDo9PXxIZTTljeYt6hNwYwrSlxZ+uWUF+w753zGzrF1qucfY/KyOxj8d09fzsfnUj3bLmTPZH3it84+o+zLUwUhNwp+btfNL6G9A1k/j8kqTVb5O/QCyI2mMIphEVHkmnERoKWlqHyYpZSWuzs7bLSHxGGJjipcp0SWguVPVazeN6T7V1s0HtpBOIdMS3r37RA/cMbvOwyQmSEcOWQJS/dLOo+ATvF2yIGlGRas90ako4j+OCHvx+iJ/w43bQ8qAEor2Zk0GGQRgzzmswcrNIKCRlBSWM2wjAmlYVyEjCaRD9IU0AwK2q2UURZRlBrXrnDNisIoXrR0kXacY4y3Rm40c0ylGBee5YmCijt7e9yztE2iS0JlUFPgl1YBnx2uIIXlWLtPEFcUhabVyNkbN0grr19ZTUZs5W0mVUieBiS65AXdizSCko+fPcb4YpNqHJAWAV+4dp7n33OOIDCs9Ea87O7TdNspQjlEoyLPNcNRwoneAUob8kGEKCQ6qmjHOe0w5yXd85xq7tILU0JV8Yndo5zpdxlstUgnIYkub84b8TlYl5vgXutjz8ZYrqeeCvC6Fv3N5bQj15KzUhsB1EBl+/tfOnt8UQOzWLUG53KA8mrHeSUG7XKhnMvb1z6/uC5O8/nP920Fzjn+/M//nC/6oi+aPffAAw9w9OjR69ncrVd7ByCmTltPcMyy84l0Xc5rZVydewLzNqe61anOPZkyBC6QNM4ppLC8+c7fQ+H40ODFnNnrsTVsMdhpsn7msBVzDR6ctfPATIOflGc54V5GsRxjAwUS1DQPBjyoEJX1oKIwCOsoepEHOqH0bmOhIF3VBGNLODREF0aoQYHphKSrITZS8zwWrbC9FumRJk6CUYADEwp06rNkaqZHZAY1zL0l9TSfJrCOdDOm/7yErhKEj+540Ffny8A0/0V44Fa34MHMwtk5h1DhLGSTGjg5B87MQzbNdDu1HqluTwsDsNK3rBmLCAPM5hKT402GxzVR3wM3N7l9wXm265kU49dsy7MlvL8NPD6/SweGx/rL9IcJzUZOM/I3npLA2wYPi4hhFqGUZZxGOCdY7ozZmyQUhebR0TLtIEcnE75w5Ryb0YBfyb4Kp0AUFQxG2OEIpSTVegf96dPYSYoIA1xVETx6kd6gS3TQxgaSsimpEpCrApd6QBUpgwosUnpnL5xGOBClwE40wbJlKU7ZdQ2ywus7ts/14Cic6u4hheNI3GdkIionGWchoS4QwrGWeC3PQ2fWcZki6BTESUFeaiJZcazV98cvvOtY0sh5wfIW5ycd9gYNhHB0wpztcRNjJWWlkNKx3JwwLgLyskegDGWmcRPNSFrK/Zi0FbKyPGKQLRMFFc4JlpZGSBw7eYvtYZNyOyEYSsqNkpNL+ywHYz6ZbzDue/ZICcfuZ5dwDUPSy8izADsKeKB/B72jAzZPDDmz06MqFWfPLZOvazbiIakJ+MTFo2SZdy8DL+wHGOS3Gf3rqau5jF2u/ep6dDHXW9e77WdyLJfWjbReweUBx5Xczy5dZtEU4FI75lozc6VtPNm5ecu3NeC/XdsxXDMD8/u///t8+MMf5sMf/jC///u/z9d+7dceev6RRx7hB37gB651c7du1czKLH9FzoMaYX7Xf9rKNQt3rGuhlaluIRO1cF1KsuWQsu340//6Yn7xzN9iq2rzupU/4eV3PMrwdIfO/SGqdLhQe6tj6+Y2w1XlGYkpC1Rnq+jtATYQZKshVaIpuxFVO6JqhR7ILDJB079tIHESyobAhKAKR9GS3sBASoQxYPEtYAu4zUUhkzva2FAQ9S3JdkUwsUR9iyospuEdvty0DcwFCieE1/20I2ykCMYGnTpGxyLMameuqRFizq5Y513hFrRX9fkVWs/cyjyYm/5dVvOQUSWnrnJTx7havwSHtS69NvnzNxmfbJF3lGeeMq//CUa3g8du143V0w1eboOh514J5RmVMPJBlv00prKSpWjCidY+3ShDAN12SlUpWg1vWrLRHvG89R3GRUjlJPtZwn89cxf/n8++DJlKymT6Pb7cRZw8hphk6K3BzPHSZTl278DnbynhmfDdHJ1b/30fOe8ABsS65J4jW2x0hv4ykzhkKZCZt1IOlSGUFY2gnNoCF4hU0gwLpHDsZw0eGq3z2Mhnnqy0JgTasN4asRyOaQY5YVIiYh92GQcV6+0RH7t4kqYuWGlOkNISakMnydhOW2yPmgSB4WDU4MxBd9ZKl6cBWRqyP0kYDBtkaUiaBySt3OfZFBqkQ0jfslVUmsEkJglKjrSHSGEprGKy28BpR9WxrK4PWI7GjExEMyyImgWtOOeu7g6rd+8hcn8jUGmDbJWgHAe73s2s3cxImjkyNFRG8umDdf7b4ydwDjqtlFY7I2l60LqcTOhFt1vIrrVq/cUiu1C3Qi1OgOvni7d8nObum58RRuatL7/vCYL5S+tqjl5PZz2d27xSC1jtOnapw9jlQMil2TRPNs6rgZcbObZrBjBf+7Vfe+inZmPqev3rX89b3vKW6x7ALVV1+1fNotS/wd/5NwsT2jrY0TmEVjMdjKgT56PQi9y1wkWB151IuPhlkrf+vf8v0Z1DHtldxiK5Lz/Kt6/8FS986WmyFUcwtl4Ds2gUsJBwL9SUrXDOg5mipPHYAFn5kEqZG2zgLZNFbrCxv7DJyvpWr6n+JRgar1MpIdqvaJ0tUJnBNAKqTky2FnphPngwkkRUKy2cBpVZwn5JuJ8jc+/nn65qqkTOzABMpLCxplpKsJHGhtKzQUAw8b/TI00vqq+tkWcWzbUwX8yBjT/Bc5vjmXPZ9P9ZTo2YvWaz4E2YZvRMtUJhgO21Gb9wlcl6CA50ZgmHDpU7op0Cld8W8d+uW6duNRBTtxEE//qlN3sot2Q14pJWnNNrpIz7MeNBjLGSSRUyrkLODzrcubRHMyywpaQ/bHDh8WX6WcxBlrC92+bcoENpFK04pywVtuFBiEgLql6DarmJXepge83DNvJhgLlzk62XL7H3kgajkwmjTUXR826TKMfWToe/Ob3B6YMeB2mMlA7brsjXK0zLYMea3VGDBy9sEikvqO+GKS6xZJXmk9sbnN7v8cmzm+xOmowK31ael5q/ObNBakKGZUwzyVlZGdGKcyoj2ZskTPKAB3Y32R62yIoANbWYtgiUcJSlQkpLO8mJw5I4LGm2M9qtFOcEnfaEpJHTa6U0opJud0Krk6LaJY1mRlkqlLQc7Q1ohzlHkgHdMEMKB5XwOTjSsdIYczw+8OOuNCudMVpaEjVtWxtK0u0GUnotp4gMQjrOH3RYbY052htwYmOPg6025+7foBz4c7DSnJCE/vUfZhEPnt3k4b3VZ/st+JyuRf3FlcDD2//Oa3nDb75vBm6eKdaj1pxcj57lStqTS+srf/Ybr7rPJ9vPjdalrWf193l93i8XcHkp21Nv40bZnKfqRHZDIv7P2aqtkWuwMm0Zc8a3OImpffGlAnBXmbl7lpzqXYyFyiDGKSIvvZVwaVj5a8c7//obmewn2L/u8vaPfhv/43/+R7ztF/4J+//+BCc/mNL8mz1kf+yT6af7c3VGSlV5DYycMivW4LIMcXGPxiMDyrZ3OQPvJOYihY0UovRBkTL3Y7da+BBM4whSnxUjpjbFMq8wDY0eG1ThvKuN8WGe6ZHY2y47/Lakdx1zEi/61wInQeYGWVqEsdhAUjUUonII55erEomsoGxJzFLbM0tFOWdKysqDGbPwmlQVrihwNdNSVTOg46bLuSz352fRAnsGchbAYBiQnmhjA0GyXZJs5TS2CpKdkmBYocYlwf7tO2bPdl2vm9iNuI89XcL9z7da7H2+WYLa51K1oxxjJbvDJhQSIR2RrmgFXkQ+nkScHXYRwnH38W3CsKK3OWSzNZwJ28dpxCQP2d5r87z1HV75RQ8wuBvSO5fo39MgXw4x7QgbSOz+ATbNZjds9FafpYdygrFjcFJSNQThAagcKAU2VzgjuWdlm9EkJk4KMAJRSNREEl3UpGdb5DsJn7mwBsBKNOHUqS2UcKRZQLeZ0ut47WusSyJdsdRIWV8dIIVlLR5xz/KOz5EZJ4zGMXkZ8AWb572eZRJSVYqiUuwOmjy2tcwkC9HaUlWK/aFvXSuNmrXgFVM9irWCo60+SVDOMlZMrhid7VBMPKvf1AWVlVgnpvbMBmEFpmkJejknW3tMbEhqfIZM7ax2Pu1inMAcySE2NOKCtZUhcbMA6cizgDN7PSSOg0mCCA3q+ISgk7PWHhNIg7GS/jhhtTVGKUue33Yhu5567x8/EbQsTuq7y796Q9kht1I9W0Gcl6vsp+499P+PveiNM43LImBc1KtcCiR/5pPvvqLVNVz9+K7GaF1r3f5ELZQzFrSfEAsh/P/WzjNdAu21J9IDh5kD1uI2ihKhFa6qPCujtWd2jAER0Ho8I3pvDA6Cof/iV9nQO4dVBlEbCNTsAwvuY7X2Ran55L3W2hiD3D0gUYLxqTbB0F/EnPDWmjbWvj1MOHRaIQtJ0fUWygBFVxOMDHpkfQtZ5TANhbAgJjkIgekmqNQS9gvUuPCBmEogrUMWmnDk7ZNN4g0F9LjCRhppLLL0gMcpicotNhKUDb/zbLNB80IwZ7iEBOlbw2bnkanNcv16SIErq9nfgunrNTVLcM4dclUG/LnSGhEEVBtdirbyLXIwZYe8lbSwDpmXVNHtHJhbtZ6KbTI8e9bJz/W6DVRuvEorGWdepI9ysB1xdrjK/kaCVhZjJDtnevR7Gb12SjqMsE3B/Y8dhX6AKAVl5CjbJW6ieeBTd7B7cpfle7d5rLNCck7QOmswDU3R1bS7HeTQ605EGOLSjOihiwS7bdqPRpSdkGxJka9Mv/SdQPYVj/WXWGpPGOchaqhQuSDsC2TujV2qlZJeZ8KRxoDT4x6hNJRGYaeWwd3GGOMk/TzGOQ8q7mlvc2e0zcPZOp8cbBLrinKqywx1xelhz4OKqEIIxziNKAYRlALZKQnDCmsFVakpKkU7yVmKU84XAWUaIA80Zi3ngfNHOLG6j0wcu+MGYqQRlddgKmlZicY81F/jvtFRvnj9LPddOAYClo72eenaeVaCMWeyHpnxICktAl62eg7rBBLH0omUVpCjhWVQxqRFwNL6AY2gpB1kNHTJoIgw3ZSy1Ny9tsPOpMljn11n6WiffBxSdhTWSE6s7PPZm/VmfI7VG37zfbz2LffOvn8WJ9tzt7KKjHsvu/5T2S/Av/2O1zzhucU0+6f6vfiG33wf7/jo9Ph+9ilt6lA92dje8Jvve8Kx1Tkwi1bKcDj88qdf/dNkPNGS+cde9Eb43TmTcqXsnsuN60ranS//n/8Wf8L9VzvMWd0GMAsllJxPngEhpkL4qpr1F88cyBa0MUKIqbBczhLkhdazO/0u0BRHO+y+KGZwj6V5WrL5kbEXuFvP1ACIynjGQck5+7PQJjYTowvhheszFy3faubSFHG2pFVZJqc6OBlgA0m0m2FDhVAglEAUFu0MJvLhmSqzqLSiamgPOPIKWVpsqGmcmXhr6UZM1QwIRpUHIlLiAolpBAjnmZWyIciWJcJKkl3PysjKoSaVZ14SjSgsKpuzQCYUZCuKxlIHtvfnwKx0oKb2xgsOcCKO5loXKWd2yxgzb0ObLjuruq1MTJcPA/LlCFn5dj1pLFZL8tWAYFhRdjRhrKjKhSDN2/Ws1NVE/E8VtFxaTyeIWWR1nslWr+969ffd9LDL23VtNco9M6KUJehU5FPdSTqK4CAk2vXfv0XaYN9KwkaJNRKxFxJvSfQEyiakdziQDr2v2dlv45xAjyRVwzE4GRIfWFRqve17ms2dG/McOxojsgy93MPJNrFzjMchMlXYxCBzwcFBkxObe+wPG9jYYVoWNfE3t+obXKuNMcvBmDQK+MT5o7SSnG5nDMBBlrBz0KLdzBDCsZO2eGR/hdXWHQzzyLuqCcdqyxsUdOKcUR6xs9VBRYakkVOVCt0sCcKK5daE9caQ/bzBo6fXSKuItfYYYyW9RkpealIXIwWsdUcsRRPOjTyT5RoGERok0IoK+qUXzldG8RcXjzPeTwhWUl62fo7VcMTj6TKdIOP0aIn9SUJZKj6+c5RT3b0ZU3ZQJFwctZnkAXkeEGpDI/AM/6iMaAQlSjh0I6U0ivXmCHXKIoDG5j6FUQShb8G7XddeV9VKvPxZHgxPDIB8urb3dNZbX34f/5Yngq+rAZvwnS+bOZDV/9dApWa43sa7+THeONtWXW/ntYe2tQhwLs31uVIdAnPAx37k9+FfPcmBTuumtpD90R/9Ed/2bd/G0aNHEULwW7/1W4eed87x4z/+4xw5coQkSXjlK1/JQw89dGiZvb09vvu7v5tOp0Ov1+P7v//7GY1GNzagWmcxG8CUAagnxoc0MB5siDqTBc/giNoueSoid1qRH+uyfW/M5JgjPD6m6Hp3MBf5bJiZU5lzuCSat4qVpZ/A11kw1nlRet3GVjMwQs4za5yDnX0aD+35XBcHNpqyL875oE5jcdJnxgSjimBQ4AKJDac2zKF3DAv7FXp74J3HmjFWC2Re+W04hygtsrSYQKJyQziyqMIhKzdzNls8t2pSIbPKMxylJRh6Mb8JBeVyY36cUnm2a2aIIA/pV+rHRe3+tmCRPHvpasODmZZpCkqnLX428ODJnxNHsJf5AM5YER5UmFiSL90a+P6W+5w8Q/VkDmTPhEPZF7762Ozndj2361b7nLSinBPL+yRJQZEFUEnaSxN0aNATQXQArcccvU8J4vsayAda6PubNE9Lwj50H61Y/rSh9RmNapVUvQrxWEL8iYSVTzi6D+Ft7hVkywqz1EY0EkQjmRrMSIRSiDjGxQFVU1O2FMKBUw7ZrKiWKjqdlEhVtBoZ0caEoJuTHq8Y31Uij09or47ZSIaMTEQ3SPny44+x2Rqy0RrNHNW0NjSjgiQsubDfZrnp4wG6UUZzGpBpnUBJxxcsnaMV5WAEzsF6e8Ta0pBjqwckUUFhFJ/eXictA4S2JK2c1WTE9rjJIIsItKHRS3nR8QusJmO20xYO6MQ5qxsDmu2M5aUxx1sHPHKwTKQrTi7tM04jdFLx4iMXSU3A2bTHpAr4q51jpKUHJgB7By3+4pETDMqYyknOD9sMJxFSOp5/ZIskKDmz1+P0YAk5pfm3+y0CZdgeN3l4Z4WLex0mReBd1qTlhesXKcytw+jfap+V66lr1ZY823U5LUvdJrWooXmytrFnyojgShk78ESBfl0/88l38zOffDdv+6/feVnGZHG9y7UWP9mx1GNaXO9NL/jhq66zWDcVwIzHY172spfxnve857LPv+Md7+Dnf/7n+aVf+iU+9rGP0Ww2edWrXkWWze+Mf/d3fzcPPPAA/+W//Bd+93d/lz/6oz+6cTe0uk1rAcgIJeeuVnA4xFLJQ0nuQkkvJJ+GWdpmQrneZnAyJFt1tD8L+s/axLuQbkSc/ttd9r+giwv9RNkp6XNf3DTU0Rhcns/HV4do1pP1egJfT/RrtzLroD8kfGSL+PwIG0qK5dBrY4TAaX8sOq1wUlC2Q6pYYWJvq1y2PasSPbYHlcEF2regOT8GV1sq16dECZwQ6LEhOnDEe5Z4z9C8UKKHpQ/XzCpE6u9a2UhRNT2jpVNLOHJepxMEc5ZkUbgPczF+zTrVYZe1UN/ZOesy1SuJ2olM+lY+Mc3jcXGI1QJhfetc1dTkGw1/HAqcFlSxJO/cGhKxW+5z8jTXP/rD9jNqn3y7Pj/qVvuclEbz0Nl10iwgiCqibkYnztlcHtB6yR79l5Q4CSqD8MDRPOvoPGrpPGboPlIS7ZY0zucsf7oifKBBcjog2hXEO472Yxmt8yXdh1M6n+7T+/QIdTBtH9Ma0Wwgmg2IIuxKh/R4m3RVM1mXVDEwbSSQzcpnzaiK4TgmnwSUo5CNk3usHu2DcJSl5v6dI/xNf51P7B7FOMHxxgF3NPfZSIbs7LbJD2Iu7HVYilOaSUE3TFlLRiS6ZFz6DJRmUBDrioMy8bqRTGJTjRSObpRxvHXAWnNMoAyTQczWVpeV5RHHe326QcYLV7ZIAh9y2U5yHt5e5fF+j/P7Hc49ssrZs8uzHJ1WlPORB5/H/qNLjIoQLQxVqYjiknEVcm7U5czIt46tJBO0tCwnE7742BmazQypHIVRjMqIve0O+UFMMyp8rk8as9YZUVSKR/ZXuDhoo5Rld9zAOUFZKkw/ZDBKWG5O6E8Szo26VO7WATC32mfl6aqrTdKfav3Yi9541Qn5l538niuuV9e16AefDKAtHuONgJ0rrb/IuFxab/uq//ehZReXC9/5Ml4fPrEtrXZvu5YxFm/5+GxcP/vpy78nL1fXfYvZGMN73/tePvShD7G1tYW1h4UGH/7wh695W9/8zd/MN3/zN1/2Oecc//bf/lv+5b/8l3z7t387AL/yK7/CxsYGv/Vbv8V3fdd38clPfpIPfvCD/Nmf/Rlf8iVfAsAv/MIv8C3f8i28613vuv5cGufdtLzWZQoEFsGBklAYEG7ewiUkVJVPjAffDjbVbJh2xP4LEvZeUfAlz3uUP+89D7mU82UnH+Njnz3F5lqfUBmyd62RPJJPbZN9C5kwcs4gODfV2kwtg+sx1YL3moWpnbusASc8e3Q2I96NMZtLmFhjYj9hl4VnUWzg2YiirRDGkS9pWqdT9Nk9XOGDJ4VWmIbGRBIVKSQgJoayG1M1FSYSCMOslcwGgnCrQKYVZSdEZQZZVJ7dSTQYx2RN078H1v7KIozXnlBVUBaHX5MarNWGYMYf2yFwM235m+mB6tdSKX/eqgowOOcZMzHJCEaGqumP2RsPiNlxmEhOtTzi+t4/z1Ddcp+Tz9G6EgtztTazS9e51ZzCPp/qVvucDEYRQbMiCIwPbCw0u8Mm+TjEVYLVY32Kzip64r+DlHNIAzqdujgmChsIZOnY/LMpizE1XpFZSTQuECNvEuMaMWa1Q7a+DhZUYYke30doRb7aIO8qytbUZEWBzARm7C//Ujge7/eoCo0rFDjfMtYJMh7XSwyyiN3dFpNWgDGSUTPiC9pn2SnbPLB3xBu6JBXNRs7pgx5ZHrCTtliOJ+xlDbS0fOb8GkdW+/TilK20TZoHiF6B1n7if6q3R2Y0p/d79Jopa+sDdnbbvulAGc6Me+ylDYaTiC+74zFGZURRKUbjmCrXBAcKE0miTX9DcS0Z8Xi8jCtCpHDsZU2kdERBSSANO1mTwTBBacNyZ0JpJKvJmHaQ0U0y0jRES0soK2RocKOQ7d02F6suZIpxJyZp5Ky3RwTSYJ3g4rDNeBL5NriTe2ztdOinMUI49vpNjixfvP439TNUt9pn5XJ1aWvRrVBPh/bl0vqyk9/Dn/JfnnS5K1XdqvX/evnX8+BvHt7G5bQ817v9a9n/z/FxQubn5nIgrB7P5V7XxeX/+Uf/Hm+/Rg3Mdd9ifv3rX8/rX/96jDG89KUv5WUve9mhn6erHnnkES5cuMArX/nK2WPdbpcv//Iv5yMf+QgAH/nIR+j1erMPEMArX/lKpJR87GMfu+F9u6Kc55DUteh6JcUcSNR2vjC373UOpySTozF791peePI8sSq554Vneemx85xq7OL6Ift/vMmjD2/44LC8mDIoU5BSg5Yomm7TzkEKTAMcveZm5phWT+qN8ZqZ0n+Zu7xAPnyW8OELBBcHRLsZsjBYNTUsMJBsl7Q/M6L3FxfRp3cOO61Zi1N+gl82fMZL1YmpGop0WWEC4S+0uaNoCarpcvlajLD4fcUa2wgpOyFlJ0BYRzASVLG/qMpy6uQWhPPsltomuda8LIK0RRamft2MmRodLFhgL2b4OOcdyqwj2s18EGcovD2m8/bJTkHZlLhpQOetXjfzc/J01HOBeblcm9nttrPnVt2Mz4mQjkZc8PzVLe5e2yFOCrL9GLEf0Phs6DUVPSi6gnwZyqagaArKpm/hrRKJHhviM0PiR/e9RX7liPZyRGmQO33Y2cONxnAwwCnB3gsDdl8SsPuSiPzEEmatS97TZEuSbFmQrjvKjsM0rf9+M4JJGbLUSImSEqQj6mU0dMG5cZdAGbIsQEcVSlnajZzMBPzaw1/KBx97EXmlcbnCjgKyPGA08hP2XpzSL7z+5Px+Bx0YxnnIYCr0j8IKqRwn1/d44coWK9GEUBrWO55FaoYFcaOgGZaEsmJchhSVotPMGBQJS2HKXUu7fPGJ0xzZ3IdTE4LjY56/tI2SllAalpfGNI8OaYc5F/tthHCsNibEqqQd5zgrKNOAi48uk5cB4ypkN29yor3PyfU9cqPZSVt02ilqNcc5gRhqD/CWhiw1UraGLT71+CZ7aYPKSn9sQcWkCOj1xkyyECEcSlt6weTG38DPYt2sa8rl7tS/9eX3XdFm+Nmut/+d1x5iCq5W18qMLLIz17LdxWVq++h68v/aV1xeFH+1euvL75u1tb3hN9/H2//Oaw/l7fzgv7iXN/zm+/jBf3HvbPm3vvy+K1otX9oiV7zl47z3j5/IXF2NZcpfc+Sax3/dDMyv//qv8xu/8Rt8y7d8y/Wuel114cIFADY2Ng49vrGxMXvuwoULrK+vH3pea83y8vJsmctVnufkC61Zg8Fg/qR1MzG/K0r/d1kdmigD8/alIPSMh56m1U9zS6r1Due+Fk6+8AL7mbehbLdSpIDHDpbo3S/pPFYi/gLC3RQXBt6BbCH7xbdABX4eXVVgFsZRgygWhO4Lk3XnnGeFavG/FJ5R2S1QgxHSOcIgmLWdOWMRcYRLUw8UrHfscs4hjJ1qaKbWzFL4li/rCMcWPfEAR1hHfODF+8I673JTelcvG2lcIKkS6e8O9i3xvqFoK59rkJvDdsdCzs5DbZAwA3GK+d81cJPCO5LVz9esVB386d8ciKneSB6MSbYD0rUQk0iCgTca0GPIVjRogcpufQRz0z4nn6f1+QZans1E6Weybsbn5IUbWxRhm1aQcyTeJjeaz1xsEu1JcJBNQtzJnGLsJ8X5iqBxTiIsWCVnzDA0cFKQL2mi/QqrJdIq3HiCy3LkyjJ2pUO+FBHv+u9pnTtk7tl7WTnifYsqBOmaoAj895pqVTgHwzxkueEF5iJVBMuGs6Mue8MmvdaEle6YvNQ4J9jda7FztkvQKRDSkYQ+3BErKDONDCxFGjAsIppBQW40a90RgyxiMEhoRAVpFXDn0h7xWkk3SDka9QF4eLJKMyhYiioe6y9hraAwimEZs5xMcMBOv0VlJCeO7tHUOX+xcwexrljujjnV3cM6QSAtkax4wfIWe3mDs/2uv8xVkofOrpM0c9Y7I5S2BI2K1MSMtxukjZR2kHFm1KMXpVROInE02gV3L+/wya0NJkYQtwqOtvo8vLfKZBLhUs0ojVhtjxkpw3DkmR0RVnSa2bStTHMh6974G/hZrGfqs3K168kP/ot7iV5++Qn8lVqznu1668vv4x0fvReYs0MAvPyJbVmXm6AXb/k47+DeQ89damV8o8zIpfusjQ6uZXuXG2v92Ds+ei989InbWDwXV3q8/v3aV7x7tr1LAdjlKnvHFzzpmOu6bgYmDEOe97znXe9qt1T9m3/zb+h2u7OfO+64Y/7k7G69PfTYIYtf6+YswLTlyZWlb/mqKgg0kyMRd774PF+8fJrBJIbHGoz/aoXhX6wiPrhEc8uiM0N0cYJMS98+VhkPMtTcCngm2DdmrsOZ6kNmFsPOzrJq6sm6UHLGosx0OtN2M1d6hsklkdfETBkcN5nMj326rJhqfVRmCEYGpwWm4S+4CAiGZpYDk65p9MSi8inwEICbghclccIzNWXDB2kiPNBRhUMO6327+ZjtApCrz3mdB1O3zy1qgGpQ6ewh7cuMqakqXDU9LmPR+ynRfoUsHDaSyNygckO8VxGMHfJw3M/nXV31c3K7bkrddiC79epKn5O/fvQ4j+4sY53k9GSJx3eWEKXAashXLEI5NjYOWL9zF9EtsE1D1YCqIUjXJIO7BAf3KIZ3RGSrAXlHEl0cTVuNAWcRYei/66bsfzBxJLuGYGR9EK/xJikAOnWEQwj7AjVUSGVotjLaUYHEURYa2iWdJOPOzh6mkoyyyDMPwnkQM9agHVJZwtB/QQptkanEFYpOK0Uox+mtZc4NOqRlgJbeMjqMK5bilEAZtDScG3X5yLlT/OnOXTyeLnN23GNURJwZ9ugPG2ht0dK3mG1PmjSCEq0N+7stzkx67OQtzp1d5vRODyEc50ZdHh8uAfD42P9Oq4AoqFhqT5DK4YzAWklhFDow3nxgOQXlSEt/P3c5HiOFd06rnCSrAiZV6E/x1HggVhXtOKfKNASWbBJyYb/NYJTgnCDfS8gLzcGgQV4pirNNws/zC8qVPic/9J9/ieiL3/gka9869Y6P3ss7PnrvFdukLvf4pZP9d3z03kMg6HqBy6Xbu3Sf12J0kP/lExmbGoDU27/SsVxt/4sgZpEhutLYL60faZx+kpHP67oBzI/+6I/ycz/3czPnrWeqNjc3Abh48XDf6MWLF2fPbW5usrW1dej5qqrY29ubLXO5+uf//J/T7/dnP6dPT09YHYg4LTFtDXN1KCLMJ/cwdcsK5xa9NajJC8KDiv1JwnbRwv1ll/U/s2z8N8ORPy3oPFr54MjSIkcpIpsGL1rrAYN1MNXUuGxBxD8NdJyJ1sHvr2aNzBQATcfiFvUydRtW/eMsYjTBjSfTY6pBi52zFjVzURlUP8Np4S+c1mFDSRVLTCKnfdnQfjQjGJaYcNqnXVpspDCR8kYCXU0VCYKRRU8MJvR3G5vnS8Q4nb0GdQ7Pon3yDIRMbav9+RfzdrHZ62fm4GbBfcy/NnIm5Mda5DBFDz0ANaGkWApxAoKDjHivIBhfGiRz69VN+ZzcpHq6bZRv17XVzQxbe7rqZnxOkk9HmMebPDpYRksfhuhCR368QB5LiaKSYy2vg3RWIHKfDp8v4X/WDKPnlRw8H4bHJdmqoFxtULVCTDOAKPJCfenZaht6cFQ2JWVTki9HZEcbDE8oxkcl2bL0328j714GXvLZi1IiXfHCYxc4vrnPnZ09VqMRYVQx7ifsDxuURmGMRHVKequjGbjIS41QDrdc8AXPP80LV7YQ0nHn5o5Pog9zSiuZ7DZIogIpHFpYHh8ssTNskqUhf/PwEf5q65i3SY5SlLQEgeFId8ALelveHtkJ+lnMSmvC0sqIT21t8FfnjoMRVFsJFx5Z4cyFJQqjaAQFB2nCQZFgrGQpTllrjOl1JmxuHtBtpmw0hiRRwXgYY60gaJaM04hPXtzETr2j0yogqzRZpWkFOcvNCVHHt5JNqpCzj6wiJgqdVIRxSTMpaDRyzDAA6TCVAuHIssCDU3vriPivVs/UZ+WpXE9e/M738eJ3PnMC/WupS0FL/pfv5r1//MYnMA6Ly9cMSz2Rr9evQzovBQzXWoshn//tsfcfeq54y8evaXuXgsZLx3Hp/5eyLovn4tL16qpfs6tt59L6//2Pf/ykY6/rugHMn/zJn/Crv/qr3H333Xzbt30bf+/v/b1DP09X3XnnnWxubvKhD31o9thgMOBjH/sYX/EVXwHAV3zFV3BwcMBf/MVfzJb58Ic/jLWWL//yL7/itqMootPpHPoBDoGyehLsSp8BMw+2XBD2LwIJOARuwv2M8k9W+OMHn0/znCMYGaLdHFVYnz4fSdTUlYsFgOSM9Wny48mcTahBTa3/gHnY5lSX48oKZwxCKQ9iwBsC1CV9Vs3c3azw7WI1aAFEHM/BmZtaORuLyzLkFGBkK4p8STPemIdgOiVIV7zQ305BiYkVNpKYWFL0NKNjIVnPB0faUCCqKQPjILo4mp/PKdM00/bUrJGxuKmmh0DPM3vs3MLaTcd+KA9GLpy76TY9U+Z1QjKvMJG/8DsJxVI4C/LU2a0PYG7G5+Rm1HMFvNxmSG7Nuhmfk6rl0BPBdr/FAzublEaxdLTPxpEDlrtjVloTvqBzjnu62+jQ4AJLvmZITxVkRypoVYjYUDUdJoKyBelqSHR+QHh2f8pGG5ikiLTAhAKrBGVT0L9LMjgZMDqqSdccw3sqRiccJvHfcyr3+o+i1BRW8fDOClpYrBPe7hhLr5HS7k3oNDNOLe3TamR02hO0suRZwEZ7yHprRLczQUjHsIi4mLYJAi9qb4c5oTKcO7OM3teMJhGDPGZr1GKchRzpDei2U0RkcE6wmow42ugjhWO5PUYJS7+M2WiN6EYZsa5ohTmnensE2lCWCpFJZClQE4lQjnaUMylDtDLsTJrsTxIuDNtcGLVpRTndKGOzOSRUhuPdPnGjoJXk6MCQj0OyfkRhFbGqqKxkmEWURjIqI3pxipSOYi/m3KiDqASiW7DUHdNpeneuxkJLXTXROCtpNzNkUqGlueJ76FaqZ+qzcqPXk3qyW33DzdfCLDILP1e8j2/6ia879PgiyKon6rVeZBHovPYV774iGHiy/ed/+W4efMtcnH9pi93lWI9L6y1f+kTwuAiy3vry+w6BpMXx18teDlBeCvIefMtrrthqdqX6wW/6d1cd+2Jdtwam1+vxd//u373e1S5bo9GIz3zmM7P/H3nkEe677z6Wl5c5ceIEb3jDG/ipn/op7rnnHu68807+1b/6Vxw9epRXv/rVALzoRS/im77pm3jd617HL/3SL1GWJT/yIz/Cd33Xdz0lF4yahXHGzJLdUQqx6HKlnoj9asYGQO2N2PxYyDmdsP8Sy/BUSLwTolPH6A5B5xHnrYWntskIgbN2ru2o9RtqmhGz2CYFvm3AOj+mqd9/DWRmY5ZyzmbUv6fbECxoemrdTLkQlgkQ+LYrtIayIjwoGR3RVLG3IA5GFlVYspUAVTjKpiIYg554J7Z0Vfl+bi2oYt/eoHPvuDM+GuEUtM7miIOhvxDXzmG1fqd+Heosnlkr2bQ1zlXzY7LWnwOYM0fGePeyQE9d3JgCTuW3KSUYR7Rfka0GVIlA5Y6qGXhNj7k1Lji36ufkdj27dRscXb1utc9JsVoR5g57voF8XsZGZ8jeuEFaBCw3J6wlIz6yeyeTcmpaIoHQIAYBLrS89M6zPLS1hikidArJttezOKUQTG84BXoalNwlXZXIAkwiKDsOpwXhAUjjvIFlt2KiFfGWxEaOIK4QwnG232Wy1+Bv3BqBNti2YGQiOlFGWmo6cYbEsXe+S9DJ6bYyNpYHHGQJSlrWmmPWWyOGRcQkD+m1Jkjh6IQZD++vIFKFaViakQcFlZWk44j9oMJYSaubervhImE/b7A/anCkNyA3mlhVhNKwk8c0g4ILwzahNt50IKg4EA4hHeV2wlLX59VsZy16uqSykmZYUBpFaSUbjSFaWAqrSJQ3B7hzRXD6oEdR6GnPM5RWUVhFN8w4u9MjaqcYKymtoioVsuVvOK7fvUsSlFPWxz9WWcnz7rpAokse3V9ipenNCfZ22sTq1mkhu5U+Kz/3518NcFmdBHi2wQvU3w0fvXk5MNey30VgcaX1DulLgAtf/5/52QV/hyu1p12urmfZxXrnn125HXwGOF5xZbbkHR+9F15x5e1fbr1rHesvfvCHrhnEXDeA+Q//4T9c7ypXrD//8z/nb/2tvzX7/01vehMAr3nNa3jve9/LW9/6VsbjMT/wAz/AwcEBX/3VX80HP/hB4jierfOrv/qr/MiP/Ajf8A3fgJSS7/iO7+Dnf/7nn5bxiTCcT+aNOQwiarZG1I5kXtxesyLCWsLT+xz5U8HWF8cM76koOxKVCqquofkR69umymrOlFg3DbRcaIua7tsZO5+sT9vGZuyPFMA0w0ZKv1ygPURZYGZm469b3RbZo5qluAwwq3NZ9MU+naamaCtU4VCFReYGqwIPaIZzkwEv3lcevCQQ73mhv9U++yXrSZI9S3Cu780SonDGJvnxTcdSH7eQs9eiZsoOAzI1e07MLJT1vGVOTM0B6mMHiEJEWSELg8oVVewtpfPlgCoWmOLWADC3+ufkqdSvfe3wSZ3Inivsy+dyPRfE/Lfa52TpyIBRpbEjTVEppHCMxjHWCCojGeURw0lE3o8RuUS0KpZWhgzjhGor4ZNnNzH7EfFQEA4c0cD67KqNJiqNcEpiA8n+C0IOXmJxytA4PdcnVg2HqARV0xEsZ1RZgGhWTOIAYQRyOmF3gIwr8ixgedXPpAqrMVbSjgq0sISqorU2Jg4qKiOppw55qRmkMUlYoqQlDksiZQikobKSteaY/XYbHVVsdoZEqiKvNHlgmGQhjbhASUeiS84P2+yd7SGSiuZawUo0nulGTg+6nLuwBNKxsdYnUIauMjTDgn4a0+8peknGA9ubDM63OXbnDsfbB2ynLRJdMho3uf/iEaS0NCOfRwPgnCAJS693SbyLmBKWYeFDLIOwItIV/Txmb9CgHPtA0lESoZRlMImJwxIBJEFJpCqGhXcO7cQ5d7V3GZsQMdGcG988BvvSutU+K1eb2D74ltfw3j++PDi4GbXIwmx+eP73pc8t/r707/r/d3z0Xt5xHfu+mtblagDheoHOjYLES4/3LV96mvd84M388Ld+zzWP45U//QrgGQIwdW1vb/PpT38agBe84AWsra1d9za+7uu+7qpaGiEEb3/723n7299+xWWWl5f5tV/7teve92X3pyRCBzP74UMAoWYmjAEWelklfqItLpn4SwlFSfToDsfPh5RrLaqmpn9XgHhMkjy2N51Qe9AxaxergUTtLDZtkxI1gWDsnBmYtoWJGqTEkXcJcw6mDmrOuVkwprDTdWpAw3TCv9CWhmTBkrnOYDFQlghric8M4Ggbp73oHSFQpUOnFpUZqqb2KfaxJOtJbAitcxZpwFkvKK0SSXxgaT+463U4UuCybH4exaL2ZToOJae2ymbqcGbn54MFIGPxr1Xt5jYLu1wIwDTGs2WlZ2H0MPc5N6EgHBiKrqZsCNwiS3UT61b7nDzdVQOU54Kl8rXUr//W//q058HcZl+evG61z8mLVi6SBhmP93sMhg0ezwPAT5qldBgrfLtVq6CUAVJb0jxkuTtmxwmqg5BoR5FsexexsF+BABtIcBo3dSlL1wROOtCOoutbc03kvA4jETjtKIcRMq5Y6o4RPcf22Z7Xo2jfvuWsIGqURLpiVEbsZk0kDiEc+1mCEI5ukjHMIrpJRqJLCqtIy4Ayi2aAoLT+OhirksJqHjq3jisl3dWUtXjEX5zxd37jxLc5d+KcrUGLLdFitTFhvBzRiAs6Qcb5SYdhEaGEI81DhLY4K9jtNwmWLMMsor/fRIWGzdU+26MmzgmWjvW5q7vDfRePUVWKje7Q61ZGHliUiabdyAiUoRUU9KJ09pplxgdrIhxFpWhEJcfbBwwKbw+9VSqsgDwLZiYAo0mEko5WmHOQJewetFhdGnKys8/j4yVvrxxYLuzfOgDmVvuswBNblG5m1S5el6tF3crVHLyut55MG3K5/b34ne+bAbur7fdKYvxrGf/i/29qPMbmh7/9svt47x+/kQffcsUhXHP9z5NrNwu6bg3MeDzm+77v+zhy5Ahf8zVfw9d8zddw9OhRvv/7v5/J5Lnhc37FUhrRavoP9qLz2EIWSa0hmQEO8AnyAEXp27CqCjdJ/aQ8LxCTjPD0Lo0HzrP5oS02/mAbMUphmv3i8tyvB4dd0Iz1dsZKTjUe9jALYR0iDBbCHs2cnajbrWCqobFzXQngimLO6tTOXkUxE78f+nJzDpdluCxD9EeEuxll04veTeQtQZ0QlJ2AoqOYrCnSNYnOHGHf+dxJ7TNfyoZAVo7Og3s+u8DaGaAQUYQIA/+7PqdiCuZqy+RyQXdkpwDwEACrncjmrmWzDJlZNsz0PFi/PVFUBIOCYGQxiUTYqQPZre+i/DlVv/a1w9nP4mPPxXo6AcetAl4+F8T8z2b9+Zk7ODvsctfSLo1mxlJ7wvG1fY6uH9CMCkJt6CYZYVQRtgqCsCIdxGxtdzCZRpSSZBvi/anpSSQpW4qq4bWFToCJBeEA1EQSbGtUJrChw4UWFzhsYpCZQO9rnJEMxjFSOHobQ1pTi18tLY12Tq81YVIGnO132R03OL3f48z2EgfDhMf3lsgrTRKWdKKMezrbnGrvESqDtYLSSowTGCsZZBHDMqayEpv7a1NlJE1d0GlmrHZHLDdSrJXsjhsI4aiMJDeadiNnpTnh/KTD43tLpEXA+d0u1grCqEKHFVWuGWYRkyz09siFYphFDC+2cE6w0pxwd2PH77eSrMRjVltjTmzucWJzj+X2mME4Zm/YZGvUYi9rMK5CxlVIqAyd0OfgAIS6Yj9rIIVjozFCBcYDKeM1RJN+QrWTsHO6x2fOr7O918aUksoo9rMGF4ctdkZNNo7v00iKK75XbtdhDcb1itqf7mruvnn296KY/VLnriu5cdXrvPid77tsK9XV6vXha2brL7bTXcrywI1lvyzu53Lju1r97OTkFUFPrXe52vaebmB63QzMm970Jv7wD/+Q3/md3+GrvuqrAC/s/2f/7J/xoz/6o/ziL/7i0zrAZ7XKEruz5/+uJ/1yjvGEEHPxOMxZgFq7UrMmNVtT61eqCleWiCBADEaz52dgqJ5sS+aT8ZoJKd3ceatmFqYaFmes19DAbBtCiBlQEdNjmFXN9tRtZjAbg9AaB960QCn/f23TrIIpG6JwWYba2qeRaCZHY8pGgDQOEwtk5UX5ToJKHeHQMy9WC0wIsoTewznh2QPEcOyPRSmfN5NEuFaCaQQ+Y6ZyyLxClBa1P8TVLmV1uOi0pU9M28RmeiUzd2RDKVwxBZk16Kl1StJrjoS1iEmGso7IOorlmGLVGxEEk1tfxP+5Ws9V4LJYTwcTcznw8kPFey+77L8LX/uU9nUt9VxoJbtVqtPMyasmD17cJB1GsDRBCMexVn/mxlVYRWEUIxuRZ4F3eUwDZC7QqUCWDhsIbFDfWHGI3KFyQ9XwIcKNLYswEie9zjCbSIqeQKViyth4EwCkIwwrYl2xtd1BKMfK0ohYVxykMYNJTJEHnNrYJdEl25MmQxljjKQoNEUeEIReN1O3lQE04wIl/HWrMpKi0qRlQKQr71AmoNdIiWTFPUvbZEZzftyhERUYKxhNYtpJTm4UkfY6mZV4zLZuMslC4qQg1BV7O56hlYE3G/iCo+e4MO6QVxolLcPAMT5ICJb2OZd3WW6kiKa/qZpXmjPnl3G55I5TO+TjkOXVIXFQUVpJWYS0wgItfOvbpAq9fTTejWxUhp6Pn7JVVBKMQBgxu9FlhoF3kosseaXo5zG9JCOrNNYJRqOY23X5uhwbUD9Wi8Xf84H3z1qRnu1xHZqYT3NRroXx+MC7X8BbX/6ayz53o1Wv/+J3vo/3cmOshz+Xft16fItsztXqam1gzzZzdt0MzG/+5m/yy7/8y3zzN3/zzEniW77lW/j3//7f85/+0396Jsb4rNWiaL92tIIpcAmDqd++nLd41RbKtZPXYqvZQouWq+q8kimTUodL2ktu8ddsg14Qnc/CGWuNi5g5ctUtYs65QwYCtR1z3T6GrEX+Cxkx01ayer/OOUSgEXV+ijHzFjRjfQtXWczyZ4JHLtL55IEX7zdkrX/EhAJVgKwg70iqSOAkNLYqug8cED28NQcvQYBd7VI8b4PsrhXGp1qkGzFVophshhy8sMXWyzv0v+QI5QuOwdoyotX04tVFm2cpEGHoWwDrVrPF82sXjBEWWbWaSasMIi9Q/ZRoNyPeM0R9g74NYG7XU6wbZU9+/bf+1yes+0PFe68IXhafv9oyT0fdZmKurTabfoJcVZK19QHNqKA/TthJW+znDR4fLvHw3iplpQi0wZnpxBhwCoolw/gYDE5KxkcUk3Xv/li2JFWiyHoKE/kbR53TFUsPlTS2DcEQVCrQEwgHviPXRhYdVjSjghPtPZJWji0l+33v1FVVijwPiJOCRJc+wDEoWW2NaUxT602qMJXXicipY1mkK5LAa0gmRUBpFNX0GEqjcKlChoZQGsYmJJum22dFQCMoCZSlmeTsDxuM85B+GrMzavLZ/RWqSiEEFIUP0Wz1UqikF+1Xio+fPo6WlkhXDCYxYuT3dX7Q4RO7R9kZNRnlEe0g50VLFzh5bIdjJ3cpreSuO7aZZBHGSiZ5yFKcYp2Yuo8pz8IEBZ0oYzmeEEhLWmqqUkGq5uAFcJFFtkpEo8JF/poRaUM7yhnlIeMsZJKHdDvp5d8on+f1+i/5k6u2LT34ltfcVP3L5Sbsl2NDLrfenec+fUWL4cttr3Y3W9zfD/6Le2frLjqZPd3n5XLbuhxDcylDdjPZsutmYCaTyRMSWgHW19ef+y1k03wQodQMzMxdrhacwKa2ymjtmZU48hPj2qJ4Cl6ElP4uv5KzoLGZxe/0cVctMAN1+xPM0+hhbiAwZRqEUv6mTx30KMRhxzQp5y1gl2GSZoxFvW2lDj9Xa3OcnLWYzfU5U3tl6xCDMe37S2wnoWpHOCVQqUUYh8oMsrKo/YlnidIMZ+1UqxODklRHlhgfTzCBQBpQuSWYGNSkIjxwlO2Aqql8avV6RLEUEowq9CBH7QV+m1WFywtgej6NRdhyajwg5+5li3bKSnkHMhnMWamyQgByALFz5CsxWfu54dt/u27tqoHIk7ExVwM71wtK6uWfKVbmNhPz5NXQBc9r7pC1va5iVEaM85CdUZMTS/vkQrPaGpOWAcYJ6MJIxdiJhobl6JF9LrS7lAImuULvBMgCkm1FMJT0n+/Z7uZZQeMiKOFwimkYpvMT7BJsCC50U92NZCdroZVleXVIqA2xrnj09BqUgtFE88k0nDEtx3t94qYHGnnpmYRJEXBx0iaQlv2Jz1qpKompFFJ5ncowi1hqpOhuwcbygO5UZ7IUpkyqcHaOkqD0QZdWst4ecWHQJlCGotJEQcV4EqEDf63S0hK0CnodP8/YHnhdSivMOTfpkRwbEQUVRaXp6ZS9UrHRGXIxbXP6oEc3ydhsDtDSMqlCXrRxgYf3Vhlst2jHOS9ZPo8Sjt2sycVJCwApHLGuCJShMgqpLSZwoByu8NdU1SqJopKlZkphFJM8pKjUrOVOK8vBMKETltyua6+brYMB30r2ngfNlKl4Ymvb1UT016ovuTRHZsY6veIwA1RX/dyT1eWA1+/9t5fwqi974MlXnlZtoPDaV/j9vz58zSw/ZnG8H/jgN/Ot3/R/XPN2n666bgDzFV/xFfzET/wEv/IrvzJzpEjTlJ/8yZ+ceYQ/Z8tahFZzV6tDk17PgoggwC63SY+2scE0z0RCMKqQuUGOCkQ5tUe21k+UwTuUVcazOHXLWFUhkmRul2zMDOgAfmJeO4wBSItQ/st/ZhlcVbP/Xb2dxbqEnZlpZAI908PUE/+6hBDeyGahXc7luWeh6pICNxrDZIIcjIiEmLeE1W1xtZC+LmNm2pbijhXKdoAsvblAvJXjtESPfaCnUxI9rrzAXwlMJDChwHU1RVcTdGOCfd/ONtuHdQhdh14qrx+y8/9FICEIvKYoibwd6dTGWhTlDIDK/oTIOUq3APpu1+16inWjbMxTYVSeKpC5FKQssi+3QczVq6EKPt0/wsXHlxG5pHliwGivAaXkk1tNouXUJ8QLx1Kc8kWrZ/nYhRPQhTio6E8SOp2UwSAB6aiWK8ILGlk6iq6g3CiIWjmTE5LR2QQ9VjjpKFb8NSHs++99YUANFUXVYEcn7JoldF9S9gzJ+oTWUp8gKXGxwBr/E2jDF6yfZztt0QkztLTsZwmhMozyiP1Rg6LQ2Ckj4qy/blW5QoWWNAuojOTE+h7P62yTmoDUBEgcUjg2mwOaumA7a9FICrZVi34WU5aKPAtot7xGxlpJEqW0owIhHKVRBMqwO2hCJUh0yWcuriKmLWx5qdHKcna3C4Cxku2sRVkqzg16mHXBsVafQR6z2RzwkrULRJsVu3mTfpmghWVchgwmMVkacmpzl0AalqMJ/SxmWCaI0NDqpmRZgFKOMPDn++zj3jJab0yoiojBuTaqW/ItL7ifvw6PsrcbXvoWuV3AC3/q1/i773gVPzs5CVx+4v2eD7x/9pwXi7/m0AT6HR+9lyZv5pmompm4HOtwNVF9fRxPBsQWAYrPXnmi7qVexmtNmLqyXX3c1+pQ9mT14FteM2sze8dH7+WtvHG2fX+882Vf/M738dpXvJu3vvw+rxf60r//hO3lf/nuJ4Ro3mhdN4D5uZ/7OV71qldx/PhxXvYyf/H6+Mc/ThzH/N7v/d7TMqibVSKYtm/VTAP4CXkYQLdNudEh3Qgpmr7fWBV+8u0U5F2FVQKdN7xbDB7U+MR65QFOaRCVBeNwgZ9YV40A4RwmlMjSodIKfTBBjFIEPgOFUM8zTepaZE6mbWVCaw+QyrkdsavzYWqwEs5d1oTWM8ZH1PqdmrmQC9bFgUYk8SzNfm5HvABw6ha6qeZGCIErCkQQzPc9bY8z613y1RBZeOtKVThsqHBawBiEcYjcsyjRfo6JNcEYcD4g00SCfElTdpo0S4Pctd6AIAymIFDOA0AliCTBJRHlapuy41kdJz2odBJk5QiGhmgvRw5SsBY5KYhvi/hv102up6sd7IeK914TiHkyQFI/XwOZ4i0fJ/jXL33K4/tcrM8OV9jPGySrE6wVjAcxlBI5kbjQkY9DTDPjxSvnsQiMExxpDzk/bGOs5Fi3z5mDLkmzoKok+SjCRpD3fM5LcDGgs9EnLQJGywF6EqBTgTqvCYYQjJy/TmWCdMMB0usULTPdhnOCcwcdTCXpdr1GpxPnXOy3eWB7k7zUXNBtlho+vd46r08ZJjH7WcIojSjyADvypgM6E1S9CqMUJXAQluzHDT65vcGxbp9QGdIqoBNmrIYjSquwUyOBbpzRCErO73emTm2WzZU+ka4IpGFYRBSFYt82WOmM2di8gJaWcuSBgYkkR5YGjIuQNAuwRjHMQ5phSWspZ9wMyUvNmWGPzeaQbpByerzEzqQ50+JYI9GB4eTKHp/eO0ppPJMiheNUd8+zK4UinURYI8BZooa3lt44vo+WFikcpx9bReYSM9E8cHCEU+09Rge9m/ROvLXrlT/9Cjb/6NsPTdKvVM3dN/PgVAfz1pffx3s+8H7ew/ufFLw8HQBnEWi89eX38abGY4fyW2pwUR/D9bhy1duugdnkzAYPTh+rc3Cutr3LMUPv+cD7Ga+8i/f+8RufVCvzng+8n+/503/J//Pbeoe2cWk1d98M3zof73unYKZmX+pxvvYV9ev4xMDMy4GX+jgB/uqN33HlgV5S1w1gXvrSl/LQQw/xq7/6q3zqU58C4B/+w3/Id3/3d5MkyfVu7tYqqfzkPtAgvI5CCIFb7tJ/6TJlQ6AzR5A6hHHoicXEkioW2MCHNWbLkrAVTNOOA4R1VA2ByjRqyjY4gbe6DAXC+PyYfMnnpTgZEYyarDyYEz22h0jzObOyyG64BTtgN21Tq0X+MNXNMAUiAiGmCfSLOShyKtCvqrllM8zbxRQeFNShmnUJMQdVcs4YebvnKZujp8CmLH3LXRCAc9ilFumRJk4K9KRC5b7lTI8KTKwxsYZIoQcZclRgW6FnZYCqFWC1QBYOlVlsIJnc2aGZF4jh1FmsBi/O+f3GEWa1w+hUC6sFToFOHcHI4hTgPIDJe5p0VROkDZILGXpnhNoZPaNvt8+1+tv//bnrWv7//I0bC9G83H5udFu3cj3TWpZL63rYlPCdL5uBmPJf3f9MDek5Xf00oUhDVtcHnOzucf/5I/TWBuwNGijlKEuFc4JPH6yztd/GOUGcFGhpWW6NuDhqMdluQmiRoWF1fUC+rLBW0g1L9vtNVhtjtl2Lqp1TNjSyFJjIX1OKntfBJFuOdA30RCALqFqOcskgGhVJVKCVZbLToLVeEOmKtAxwTtDfb9JbHqGVpZ/GLMdjlqIJZ8Y9zvc7LDcn3HVkl4uTNo9VK3AQoscC0FTLFSKV7G13SPOQIg/IW5rH95ZYak1mNs0WwaCIWYomtHXu/88ijnYGtIKcykr6RYJxkkEaY60EvIVyVmrfAtfNicMS6wSPnlnl5LFdRjoiHUb0RYN4ecBymCGFz5sBL8w/n3bZzxLGWYi1kmaSM04jNrpD7mrvkp0MONrs89D+Gp85WOXo8oDV1hiAnVGTQBmEcF7jcpAgQ0OzndGOc172gse5OGkxmPhje3y0xG1F5ZXrrQuT9afDivfSql3FaibnemqxjWsRxNR2wlfSx9Rg5EaYj7f9/d+b7ad2GjuUav8KAP/4Sw6OQI/LAsBFwHctVZ+nazFL8PvxbNHuK36UlT/+f8xAXD22a623vvw+vuknHuODP/kH17XeDeXANBoNXve6193Iqrd+1eJvJbwTV6fJ5M4uJvCMS7xXYZWgbCuQ+NamyFsDy8pP5sumoLFtkaW/zRWOrddxLKm5q4wGlYMqwYT+sZplKLqw8wURa3aJ6JEd34ZW+VYnB9P2qClLJMW8Tapu2Zo6e/kWKkd9u60W789AjpneilsQw2PM1E1toQXMVPPnaxOD2rhgsZybhVG60s7axdx0W67TJD3mnWTi3QJRWJz27jpOS9S4pOpFgMC0ItSk9ABPeHczUTn0xCBLv9+qKciWFOHRLuHDOYJpOFlpfGteoKnWOgye10QYCIcGBMjcr6/HFqe9w4+eWKLCki1pDp7foCcEnM+eznfW53RdL3i50XU+X+qZAC9XY2FupBVsEcTcrieWlJawWWAdfGp7g3wcslsp7t7cxjnBqAzZ6bd8a1Q/gsBCUpDmAReGbdI8RKYSVwmctvRHMeU4RCVekyGnbV2tKCfSFed1k3zFIioQRlC2LTKf5rLsCZwAVYBwgtJ3WHFwukf72ICgmzPMIogh0hUvO3qWv3z8DrSynOruMSp9hsonto+Q5iHZJKTINSfa+9zV3uVc3MVNIm8LJEANFHosqHJJ1Sg4ubHLUjRhlEc0gnKWI2OdoKELMhPQzxO6UcrRzoBYlVRWer1KGbCWjNnsDHlkskpZaKR05FYyGDaIk4K7l3cYFjHjccwwD72jm3I44/U4xkqs8y1n+5m/0SqEb2czRpLvJeRJwPHNfWJd8vh4CesEFkFWaqrthMcmIZ3lMVHgz3//oEGzk9FOcspSYSqFMZKLu10uuC4vueM8S3HKhXEH4wSt8PYNscvVPX/0D2d/+/ajmyfYv1zVrMOFr//PbH74MIh5MsB1LazS4n7esTIHcc3dN88YlNe+4t1PyMmZbfeb4FunmTVXG8/z//Ic79l+P6+6hlDJxecW28IuXYZXeBez/+kv/hk/e8lxP2HZyzy+WD87OQlveQ1w7Z+Ta2ry/+3f/m3KaU7Jb//2b1/15zld1swdxpQCraiWm+iJId43qNzf2ZLGEYwNbpY67x8PJo7owAeJAT4NORaICuKdgvjAEPUtzfMlOpsu5xzC+LtkjS0PeuJdh8ocw+MRttMAPJMx06lcagkMU1etBUBRFnPxfd0aVjMvtUFAzaDUP3VeilnIVqmrZlqsmbWdzQDNbJviMECaAinRSLDLbSZ3dslWFCYWmEhRdkOy1ZCqqSk7IcVK7M9v4du/bKi8jmhKOMnSEAwLil7A5EjE/j0BJhRM1kNcpwlROHVT82xPtdFldKpJ1PeuYrJyyNwijcOGElka9KhEVI5gVKEmFTqzVDHsfGFCeufyU3s/3a5nrT6XwNAzybxcbttPRcdyWwNz5VptjHnJkfMsN1KUtDQ6GVFc4pzgBd2LfOna496iOA08EzzQFPd3Kc802T/bJT/XxE0BgdgJCT7RInkkhLMJB+c7VNsxFy70yCrNIIuwTYPrldj1AvHiIbZXUfQcwxOC4Z2GZNvR/WxJ44IjvqhxRhBvjFlqpKz1RpRGcW6nx/aoSVYFLHfHpEXAIwcrPLKzwn2fuIv9x5fIxqEXs1eSzGi0NHzR8TO0X7pLvmx8LpiEsuMwnYoo8jeWrBNYB6MinFoTRzzWX2JYxAzymEd3lrkw7tAJPFsSq4pH+8ucO7vMZ3ZXaeqCpe4YHRjGF5tIaVnqjjm5tM9+7q+TUVywd7qHzRRCWZS25HnAxQs9ts/0+JsLazP2ZlREHGv1ObW6R9DNcUayO2pw5qDH4wc9tgctjsUHTMYR8QUFhSQvNKEy3Lm0iwos4zNt9j6xhjUKOwrI0pCl7pi15aG3xy4iKutzYb5k+fGb+G587tR7PvD+2c+NrHu1/2+03vHRew8FOL715ffR3H0z3/QTX3dN2Sd1Jsy11GK2y8tkeej/SzU1l+73enJh/offObjic4s5OMCsveta69Jjbe6++UlBXH0eX/hT1x6Oek0MzKtf/WouXLjA+vo6r371q6+4nBACY8wVn39OlBBeXB9HuDCg6AYEw4pgWCGsngr3PRvgQs+8WCUIJh58BGOQlaRsCISd5p9UElVo9MhQdjQ2VARjh3AWE0rCkfXbtY5g7DNIhMWnwUfBjFXx1sgCinIKTKZi9Tq53sx1H4vidQ/MpuYEUs6DHOsQzKqats/l85wV6xZACf75OlyTqf7FOg4Jc8xCHo6QPkdGa5xWFCsN0hWNyj0wGh4PULmbuo/58wggK4ssjE+bnr4eJtY+AyErwXq3sqItQYDOHWVTMjnVpflgNmOQXCMm3YjRqUVllqqhPDgqne+WMw5RGrAQDAtMQ2Mjz5DFB45sSTA6fkME5e26XTdcz3bb2NNRwb9+6e02sstUbjSZkShhacc5AJMi4PywzYVhGyUtZhggJwqdCWQhkCX+ulH4HBiTOGwAwUBi9TTTpeW/t3ACtRuw1V/Dxt7K11lB3CiwVqB3AsIDgYk9I+MUjDc1ZdNfwygleRqwRYtsEnpXLSsY25jPssxGe0Qv9u5hK40xp+X8BplWliioyEzAZwZrSOF40coWH680owstZCZx0qFGihFN0olncBrNjFAbEl2SV5pekiGEQwjHcmfM0VYfLQ0P7a6xnHiBwerGgGZYUFjFPUvbfGz/FMnahGZUcLKzT2EUa60RwzKincSYVUkQ+PauLA0pM42YKGQuqMqEYRSBEWDhrFz1DQqRZW2jD8D2+S4yNujAEMkKpSxOA9Kx2fP5VOfHHdaXB+wFTcpSsbk8YEu2EdLRDAtKKznb7+KcoMg1cVLw4PDIs/K+e67V67/kT4h0y+tULpk43yrV3H0zP/yt3zPT3NQtVh/8yT+AD/tlLmVIFuvC1/9n+Al48Br2A8C3zh+71LJ5kf25FLDUy/rAzbXL7uNaQd18uemN70vWu9xYn0rVup2Pb5695nWuaYZmF8IQF//+nKypdgKlsK1kmjSvfbtYKD1gCQVOSqL9kmjXMzHC+XWdkuAC8q4kSH37k5MwOuIDH8GzMtHA62FU7sELDrKeQmcOnVmv9TBilq/irZIX2BQr5+GXtajeWaisz6epgzClQITxVNcjZsn1Ip4ChLLy7V35VAS/mGAvFxzTMIdZmaryWTSBnmtzFs8hFiEDXCPG9prkSxon/bE7KabH6WbHrycGpwQY53UwziGnuyt6HkQ6EWAamqLjP1Dxnm/NMyEMj2saD4eQZhAEmKUmTgnindy3TgiwofQtem1JtD9tN5sCJTP9LSt//qMDSfk5/lZ/uupzif24mXUzwMttBuWZq3EREVtLZSW9ac5IZSXHm31OH/TIigDZrBAjRdgXmAiyTYMLLSJVyBL//da0OAnxtiQ7VnHHqR22B771LM8C7DCgsTYmz0JsJYnDklAbtoMmNhSUXYseC8ZHBJPn55Ar1FD5dlrl0NoQJSWqZQmUYbk5IdElO5OmF/WHOd0o5QVrW96NLG+ghKWhC/pFwtm9LmWu+cz4CKpTsHFyD2MlRaUYTyLU2QQGGmEgO2XIsgApHN0oIy0CdkZNWnGOc4KDPCFWFbuPLrHXbbKyPKIZFhxvHbCXN/hsfwVbKtLCt2vt7LdZXRpSOUUvnPCS5Qs8KDaY5CGtOPfjTduze3xyqfDi+4MABDjpfJteo+Joa8BjB0tQSqyEYhjwHz/5xUhlyTYqVMvrbA7SmKpSKGWR0mKLkF6ccnayjNoLsL0hxkqfjZOGmEKhmxnDPLqp78dbtX7uz78aeOJd/7qeLhblmap64v3D3/o9h8I3FzUwtcNafSzXE8j5psZjM/bnSjbOtWC//v9/OT8HLzUw/LkjX3+DR3j1es8H3s+b/sFhX+cffrGCD7yf91xh+UuPvz6uJm/mZb+zBN90bfu+7lvMv/Irv8J3fud3EkWHP4xFUfDrv/7r/JN/8k+ud5O3Ti1O0JXENgKcwrccSX8HyyhB1vN3w4KhQGU+Md5GGplXuEARjATCeFctUTmqhkQ4Lx6XlUMYr/uoYoFr1AnL0yFoyNv+4iKsQ5R2niGj1cyuEpiHVVqmNs/BVNg/Ffwrie21yFcbFB1NFQvf1jYNP3PKT9jjfUPj0zveMKAoPaNTa2iEADe1I150IBMSES7YQtbtadZ5y+Io9PvvNpgcS8g7Ep07qsi32plQAI4qlhQtiQ2m51ILglGFiZVvHZP+f1FZr5WRAjMFfLIEG0CyZ8k7EhdppPCW19l64sGjFqix19LYSlH0NHlXEg4lphEic3/ipXEzS+yirRCWGeC8XZ/79dNv+6ErPvc/vu3fPeP7fy4yL7fr6mUdJLrk9EGPHevBQFnOL7laGyotsXir46JroVVBIdET4a8jDlSmsaG/4RVua84kS34DgwBRCGgbjJEobbCVwFhJaRxOO6x22Nj6VrUVQ295TL/f8Ly5EYRRSZ4HSOnY6AyxTtANU2JVcd54HU5RKbbHTYyVKGnpxDmnuns0dc4wTGkGBeMy5PT2EmFUsb3Xxk40ulWitaEIHcFA4DRobUmHEefSJcxGn2ZYoKRlf9RgozukoQvGZUS4PiEf+xBIJS0fv3h0BhpaSxNGuw2KcQgOhnHMl649zmY4YL+atpIFFa2gIC0ColZOZyOjMnJmszxWznvhlBIx9kHM4yqkm2QMWonvpAZOrO8BsB01acdeazSZRNhSkrRy36AQWHYmTXRS0Xr+iNJKkqBkb9DA7Ea4wOGc4M72Lh95Vt+Bz526VZmXK9UiqKr/fs8HvBvaO1bupfniN/Oed76P9/JGfvjFTwRgi5qQy03o6/rM9j+Hf/CKy56f1668C3j37LlaQ3Mp+3O1c1sDn+txaLvaeJ+s3tR4bAZqFhm3G3WIu+6gi+/93u+l3+8/4fHhcMj3fu/33tAgbpnS2rdKwQzMOOEntCaU6NSip4J8pwRVS2ED5VkXwIbeglkWhrBfeIct64h3S9qnc6L9ing7p/PwmORiQfNcSTiyBBN/cRJmqpmxDqsg2a5Q/fE0SV7grJ0zHXYqmIc5wKlzWKbmA+kLNtj7wh7794RkS5IqEVSxIFsTFG2BDcBqwWhTs/PVm+TP3/TAQ1zytqiF+3XeSp2Lc0g7I+bPTZd1YYCTAquEb4lr+otYvF+R7FSE/YpgZAgmFj2xqMx4UX0oKTqaojPPnSmWQiZHYsqmRBqIBnXg53SIBm8ZHQS40N9dqxKBCSQm1jglKNt6ZoFtA0HZ0thIY5p+nCZRmMCzM9I4ZHEbwDxX6kZdyH76bT90VfBSL3O7btf1lrWSvNIE2rDaGnO0M6DbTKdaEEGWhphS+batOwzqSEq7NyFoF5RLhmzNMrqzIjtSeSa+tj4upM89cRAOJOEFTT6MKDONKyVlpRgMG/5mzEaFiA12reDU3RfZaA9ptjPCpQwiQ5aGnFjdB2B/kqCnbWJS+Em3UpaDfpP98x0mk4jRJGJchDw6WubR0QoP9dd4ZG+ZQRbTbqVUlWRlaYSI/fdzfhCjU0EwFoQHgmwS0lseoyKfVH+itU83yTxrJA2TKmRchqx0xiyvDllqprTCgvEwZqU95nkrO0jhoJJErZy1zT6tOPdBoSbirw+OEkjL8fYB7TDjZevnOLI04GDQYDSOWe+MPBCJC2yh0NshKhW4VHF61+uJhHLooAIH26Mm26Mm41HMTr9FWgY0GjlCOqqpaP95Rzwztb48QErL1m6Hszs9krhk6dQ+ulPQiAp2itbNeBs+Z2u88q6bmvJ+aV1uLJfTnPwPv3PA9/zpv+SHX6z44ReryzIfzd03+5DMK7BLi/u6+z/+8aHnxivv4j0Pmtnkfzv932bPTc5s8Lb/9KonbG+88q7L7qce7/XW5cbd/xennpQtq4/lPR94/yFgNV5512yM1bddO1N03QDGOTdPp1+oM2fO0O12r3dzt1YJMXfqUhJZTDNSplkvsnQEw5LWhYpw4LUv2VqIaQSYRIMUmGbg7YATr5dxUmAiiRMC4RxVYzppjjzrIEvn3cqco+gITCywWqBzR7STzsIV/fA8MJidfyGn4Y36kGC+OrLEzpetMDgRoEpHsutBksod0cDSOm1p7FiiA/94OPLtXKNjIcP/7his9ub6mToHZ3p+Zj8wB3tKzv8XU51NoHGNiHw1nmpdHOHQ0XmkQI9Kwn7hW7ty6wFD5YX1JpTevEAD0gNFE0rKpqRoS6RxNM9mqNTbIDvlQZnOHMJa0AoCjYkE4dC7nGVrEaMTMeN1Rd6VqByqxI+5bGtGR0PGRwKv0SktKqsIhmam17ldn5t1PcDkmQQxt9mXz80KtOGx3SUCZbhw0GFShjTDgt39FsN+gg4MNvXsSvOOISu9EVkeoANDa2NEcHKM6hY01saUPUPZmn4fVZIgqnDaTZ3FBMHFALEXEl4MyM+0CMIK0S0gsARJyVc+77Pc1d4lNxoxdd6SgQcrj+8skfUj+oMGoyJkL2syqQJGk4jRdhM71t72v1DEsTfz6Wcx9585ypmH1sk+3WW/30RJh7WCnd02bqKpRgF6X2MiR9n0mTRCOE729mk3My4OWzw6XPZASToqJ8mqgMIo0sJfc4wTNHUBDsZ5yEGeoKYgy1SKu3q7fNn6Y5xLu5zPu5wbdLh40Ob8uMPDe6usR0OWognWCe5Y2+dFvYs4QCnvEBcMBNG+QEzd2nYOWjgjCMOKoFnw0rULrDQnKGVpxAU7g6ZvgVNueh4FW6MWka740rXH6SUZSlnKTPOC1S2+eP0sQjh2+j6o83Y9sRqP/NPLPl5P8p+put7WtEsn3Ndarz//4eseS3P3zXzXz/zVFZd/7SvePRtD4/jF2eON4xdZS/7xE5Z/NhmuywEouPL5Hq+869Br/U/LJ4ZfXqmuuYXsi77oixBCIITgG77hG9ALDljGGB555BG+6ZuusXHtVi1rvRZECqgMcpQBDYq2RBhHOGVX4i1DeKDIl0KGxxVVHBLvefcVaSwCh4nUfLOhRFaGKlaULUUwNpQNiZOCKhHe4ndsife8HiQaGBpnU9TOYC7MnwrvRRz7Ni+mtsgL7ItrxGQnevTvCilbgmjfUbTF1FgAorFFj82stc1pQbbkJ/vRwFBFkvGmYrK+yupfRaizOz4gctFVrM6SAZALVst1boyxEODF983Qt8I5R9T3+1a58boT47w+pzJIIakCL8pXuUWFAmk8q2IiSd7T4CDq+wuXDSRi6t5WtUEWU2BX+eed9m1pqnDkHd9bLqy3YrZTLBbvlB5gav8alC1B46LFTVvQnBaI8jaAeS7U9bIvNwpGfvptP/SstJPdrs+N2jndQ7YjTCulyDXnd7ssdcd02imrrTHDPPITaV2x1vT5IruuiTESYyTOCrQ29Jop5ZLGLTuSuERVCikddikjdzGiEqjVHNsPcam/7gjh6LRTikohBDywvUlWBGz2BjTCkrLUZHsxul1iKoXIFVZAZRQryYQ7m7v81eQkwZ6malhcZJHbIaOhZqgduq9QBuTUJU1qQ6wr2s2MoUtYP3XAuQtLvu1tX1IsW2wItlQc5AnjNKQcRAxtm2R1wmrbH38rzOlFKeMqZG+SsJJMaOiCIxsHDNKY/UnCaBj760FcklUBD6RH2Bs3kNKihKMqFFkRkJea/+OxFxEow9GVPi/obvHQYI3zF5Y4eWyHLNJcXGsgS3CBI99LwHoThZHzrEx2VHOs2acbZvzN9hrFJIShn/tUgSNaThHCYZ1gK/MBpElSIJXFOkEgDUI6rJFESXXZ98nturGatT/dhPazxbatZ6p+4fX388srH3rCPmp7ZYD/Jfzf+b8W38Kjb/taTr3tD5/28VzL+R2vvAu+/hVXXeZqden2G4/8UyZ3/sI1rXvNAKZ2H7vvvvt41ateRas1p0PDMOTUqVN8x3dce4LmLVnTyevMYrgyxLsV46MBZUuQF3qmlTCRZwRMIhg3BXnHAwVhHeHYIgvPrFjltTNly+taTACmp1AlqNJbKVvlW9WiviEYV+iDDDmYQF7MtSVKgbHztjHp9S9CKZAS14jJj3fp3xUiS5/CPLgbGhcEwcgR75SorPLp805SJXOApbMpCxRBY9uSdSX957dYGmaw1z9snTzdN2aqi9GKqSXOdGOeDXJJRLoRY0KBKhzBsEJl1TSsUk61QA4TK2wgqZq+Ra9syqkhgme9TKTIlgSq8PqgIPVtbzb0bIzVHlwK51v41AREZZHV1EBBQWPbUMWS0XGJHru5jXJhyToKHOiJQ+f+cayjSiRGXjdB+XlZ/+dvHL1pQv5nC7wsrv90gpibyb7cFvA/8yXjilhX6MBQlYpmWNBtZfSLGCEcK80JkaqQwtEKctZ6I86dWYZSIpoVvaYXuodR5Z3FlOGelW3OjzvsmSbNYwPSPPDZwutjzIqkGZU0o4KjrT6DIsY5wfa4SZFrskozKQKyUYgaaCrtiNo5udaopGKtOWI5GvP7Z+9B7wQEfR/SbLQgGApsJik7DpULoj2oGmBDyHZjLgJlGuAcnLvYwxmBDRx6JJC5wCmHmIZiln2voZWtkjwNMC1B3TBcWIXEsdxIWYu9u9jBOEEri7ESZ/zNriLX7GUNRnmIVpbB2J9TBGy0h5ztdykKTSUVcVDx2eEKaRkglCUtA9IiwLUr2isjDnZbqD0Nzo/TjjXEhsf6SzTDksIosnNN4osKGznyVe8EV5WaTFkq46+nWaUx1rugWSf47HCFTjPDWMHd7R3+6Oa8DW/pmtz5Czc88V5cbzv93w6xD4t3/K80EX/PB97Pzx35ej8Jf/mN6TqeqVpL/jHN3SeOfbzyLsKj91Cce+iK617ueK+FCbqRau6+Gf7B07e9awUvcB0A5id+4icAOHXqFN/5nd9JHH9u0qFCay+MB0RREgwLVO4ZgLwr0ZkmGHmNRNQ3ZEuS8XGH7PgvdJWDCRWy8sxDMPGp8WVTUiWSou2F9MmOnQra/WRblo5gUCAnhQcvxkLw/2fvz6MlO+/6XvjzDHuq+Yw9SN0aLBt5wIDBXIwDJA6YMJiX4DcMbxxm8MoVYFAwgWDymgzAdXzNaxOR2LmAszJcSOIQEIEsG8wy3NhOmAI2tmzN3eruc/pMNe/pGd4/nqo61a1uqVtSSy27f2vVOnWqdu397L1reL77+/t+v1FgPGYgRsxbtWIddDEAWuGTmHqjxfYXJeg8TNhdJJgelYsQSFk7fCQRlUN4h4xCu5YuHU4JpuuaeOKwUWA/AKa3r9AcjkFGgfVZiPr9YQaNMYd6GLXEOjVibCwCgKl9ACmtCGF8yHkhWCY7JdGFxWaSuqnwMrTqSeOxsQyGAzXYBLwQRHk4N8F2OgC1+bjFDGS5WAeTAA/xxOO0WOTxANhYULUlqhIkA0u6b7CpxGkR2B4CqHT28a2SN+r6qKeqeblRN+rZqvUTfbK2RklHktQ4K8nriGGRkJcxaVyzkubE0nK8McB6wf3lBihP3C64ea1PaTQHkxC8WExDQOOfbHVJugXOCSZ5jJRBkD7th+WS2NCfZmztd1jpTPnyYw+w02jxULxOKy6JpMMYRe4EMra0GyVZUnNTd4AUnu1ph/EkRY8FpuXxmyVqO8HFHnNLQbeTM3y4RzSWwaLZgR4pqjRGTBTprqI4XtPanDB2TfKWQxiBTxxHNwek2tCPWsTNim4rx3vBseaQWxr75C7m/mFwUHJeLFrMimlMp5ODdNxy0y7jMuFg2OD8oIX3Au8EplYo7fBWsJ83iJTFe4GctZydHQYdDwIqo3jpxhan0hV2h00a3Zypy6CWNI9MmPQzGp2CTlqyOw420D7yVD2PrEFNJS72uP2YaaJZPz5gb9IgjQzGSOLY8OndTRpJxVpjwrhKmNj40m+UG3VVdTkR+Ry8XOr5JwNI87DKt/6nr+ZrX/n4Fqznoi4GZEDQ08Sv4U0f+yAR8CY+CGtw61s/dMFyT7S/b/jwWy773ODVm3T/+/kL1vPOY6+5ZuBnuZ4Km3bVl5i/4zu+4zMWvOBssCqesw3WIQ/GZLs1TgvikadqSYrVaCYyV7gI0l1BPAwuY24JANhYUDcE+ZqmaktMGly/olEQYKYHlnhgSHYKkvNT1N44gJfazFq15vku9jDIcll/5H3g8CPN5OYUWUPrjCXdrWicLTj+30ta5yxewPRoTNmLqLsx+WZCvq4Z3awouipM8BtQZxKThkwWVXryDY09unbI+syzYeZ//VKLlV1iaUTQAkFw8pJ1aFcrexqbBeYkHlTB9YvQEmYSgdOgixA0WTfCWKp2cOKJJpAduOAmNjNUUKUjGbkA0hyIcs5OhXMBUGczwLhv6T1oSA8CqMx2a9LdClVahA1Obk4LTCJQlZuBvhstZFdazxageP9/OP60BPvPRN0Q9d+oK6mXrGyRRTVS+EW2cV5FRMqhtcU6yX2nj3L/7jpjE9NSJUUV0ewW3Lq+z1o64cxjq0z3GhijkMrjnaC5NqWRVqRpTTOrMLWm7KdQSzCCqtYkUY0AVrMpHV2QSMuwSNjPG7x4ZYs7N7dRmWFzfchGc8wLVndxXjCpg+uX9+F7s9owuFGEKkMmTatdhLa0WixyaRDQOCvo/q+YxmMKm3hEZhnvNxCVRKQWnzh6myMi6difNMAK6lIjhaeX5QyqjH7d4I/Pn6A0mv1pxtagTV5HlFaRNatF9sxGNqaVlAignMTUWw3M+Yz4kQS3neKtxFiJcZJ8EjPabnH23Ar5NMEWGh1Zbu3t044KrBfUZ5uhla9dwcydrLc2pp2VTKoAOmwlQz5Px2AbIVnZRx5ZSKJdze6pHpNRSm0Uzkomo5TJfoZ1Ibttb9Rkv2w+V2/F511djcbkmao3v/I0jZu3+aNZpNWL/vTsBeNYFss/k3UxoHjDh9/CZO3t/Pvbf+Vxk/rvrb4WuFD0fi3b2J6t87C8nV+I/tMVv+6qAYy1lre//e188Rd/MUePHmV1dfWC2/O6hJwl2LsAGOoaMZ6SPLpP96FiNrEOV+/LrkLYEMTYOO9obIXsFuGg6gTBvjRhIp0MLdEkiNjTA0+2b2mdzkl2psQ7E9SoQA4miKIKbWOANwEQeOeCDsX5ALCqKgCbOII0CYn1qaZuCBrnHeleHcTwjRD+GI0dehYYWTeDcUDVCu1UXglcHBiabM+jqllLmxbYJIRw5jc3gyjf2UPHMTgELHL20xwtuZcpSd0M2/cihEbaWODULEunsIiyRtiZpmVmWiBNyMIJLFAYc7bniMfhGKrCUXYUkyOauhmc4WwkiMaObKdGVPXCsU0aTzJyweFs4ojGhrhfEU0cOp+JQFOFqByydthUUnZCa8IcuKjyRhDM1dS1BDFPB7hci7oS97Ib9dldnx5sMChSpnVEI6lQ2jKZpFRG0UyCM9VXvOh+Tqz0+fPtm/iDc3eglONYd8iwShhWKetHh6A9VT8hTmo214fE2qBkaLFK4xpbKkQdMq5EanFO4Jyk055SOcWpfJWJidHS0YhqnA8ZJUdWh4yLhEf3V7hv5wiDMkXPAlOStKY4XrN6bIDs1KHNWcJkkjLdbqJKZuGOICtI+p7GeUdy4MnOC+JHEqLzEaIWeBvY8EE/tHt5YP3YgG53yq3dfT5/5TG6cc5DozVG05ST7QPWG1PqSrPbb3F+r0M+jUm0YSXN2SuanN3vkjVKGp0CehXtWwZUt5a4pgUrONhrUeQxqysTVLuGUmGmGhx4J5DCczQZcqQxDnbTbpYD1jBM9xo4L2jGFUUdTA9U7PDaIUpJNJDYlmX9RB+7VmPaDiTEqSGJDEKG31GhPWlkODPo0mtNeWHr/OXfLDfqgno2dS1zduE33n3YQbIMDuYuYpcSx1+rmmtblscyrzed+yDNvR/l/4p/+xnb3uWAyrU6D5dzZoOrE/FfNYD56Z/+ad7xjnfwLd/yLQwGA+6++26+6Zu+CSklb33rW692dddXzVLcgQW74K2DvCA+vUf7gRGd0/VCXyE8JAcuXP13kAwdqgrshRdBGK+q0EIWjy3J0NI8nZOdnaB3x8jBFJGXAbgYC3UQ53tjwLsg2l9mXGYMh69rqOpgrRxp8uPN4NoFM+DkUKVFlhadmwBIIjGzK7ZI46naHhdDPApalODk5cj2bAiYrDzN7dCKRjrL/HH+0EIZQstYbcJYZmMWUoKdhXMSWCYzY1NU5dG5Q9ZhP2yqkZUl2S+RdQi1zPbCMUsODHo6C7nMHcKGtrHgVsbMgQxsIqjbClWYcAxnLmnzcyIcjG/SAVBZj6rCOutmsFZGQN0KRgaq8kRTt2j1m+/DjXpu63oCLhfX8w3E/GL8nc/1ED5rajXLWc2mFLVmJc1ZaU9pNAtG44zKKIbTlE/3N0hVYI73D5pUleLcoMPOfoeHttfZPdNFjBVyqqjKiMooaqtmICaAjdbKNDiOeWAYUe9mjD+5wvAv13j000f5fx69nb2iyZ1r51nPxpye9BhVKdMypplUgW0BBEH8vzttUhYRvaMjlPT4gzgEQXqwowhZSmQtMJlHTQVxP7xY545s3xEPPHoiULlAFiKYvXjwuWY4zsinCYNxilaOvaLJxCZI4dkdNymGCcM6pR0XbK6MiCJLnBharQItHS/s7FAaTTVM2GhN+MLjp7nz5BZaWfxUh21pB7miHsaMpglaW4gcolSIXOGcZK9o8icHJ7m1tUe8OaWuFXWhiWJDZ3PMZnscrK6LiEZcB1vlyKPWS6o1i2gYsqim2ctRayUIz2p7wh29XY70RmHMvSmRDBk8/XGD0/nKc/E2fF7XM8EAXKnb2HKb1BwcPBdMEBwyLW+8t78Q7def+xsXLPOmcx+85Pgu9dgjb/2KZ3R8821ci+NzNQzMVQdZ/rt/9+/4V//qX/F1X/d1vPWtb+Xbvu3beMELXsDLX/5yPvrRj/JDP/RDV7vK66ekCBPxmT1xuB/6a0VRIrcrsv6Y5GyDanOWLq8ETkLdEuiJR8wCInXpUYVHTwwqr5HTwKwwa1ET1i3YAvzhthZtWd7Pf1HCbWlcIo0Pl9GKfE1h0+Bm5nQAF9GwAu8p2xF66mapw4ENiUeOdFcjPEGTgwiWyiMb2rNw1A2J0DODgTSGsQLsjIHxh0YHcRT2abZvXjmEDGNRVWipc0pQdYIOpWpJnG4QTQzFWkS2HdglVTrydY2amR94FX5UpQngClgAClmFvJwQahkCLfWgmB1HC8YtLKpV6Rc22OV6QrJf4bQgX9fBdUwF0wBVerQLx9wLQXrg4EYL2VXXHGw8XVH/Mw1anm9A40Y9/0sLy22d85xoxoxMgpaOVBvyuCbVhtE449ykR7WqWW9NyOIaLR1aOs5WiiiyyBWHqTW2khxfC/lra9GUbpwzqlL2Bk1srdCxpUoUvpIBYMx+h9REUqmUSTfm1vYeSnimJibVFUfansJE5NrylSc+hUXy2LRHYSJ2xhGuUbLzWI/GOUWx7pBHC/xOSrInQ6dB16MKsbjgNd1Us9+YYLgibHC/FFONV6FN1+aa9toELYP7mvOC3EakqmazPUYKT2UV953bXHRLN7OSVx49hXHhCvnR5pD+Wsbt7T0+vn8U7wWRckTdElPNrqI3LL6UlKMEGVtUaiG12Ek4loXR7Ixa9OKgwXFW4nONTw2ttOTh7TUEQQepZbBQjiJLpCxTbVlpT8P9cYI3MrjwAP/jkVvZXB0CEClL7eTCtrqwETfq0vXOY69ZTNrhQpevZ9NpbJlxedO5D4aAxWMX6jMu1oRci/EtO43N/3/krV/Bb7xb8SY++ITtY5d67Na3fog3fPgt/Nsv/SeX3R4fvvRYLqd/ear7/chbv4LfuOix5fX8/U9/CG67snVdNYDZ2tricz/3cwFotVqLUMuv//qv56d+6qeudnXXV82By5xJtDawDM7jfbgvygpZG9LBmCRLgog+Uozu6BBNHNGgwmuJKgxyUs5yXBzC2EPdiBBL+hYXHlMqbC+JEVWNlyo4jZnZGObARuvDdUiJyyJMNvvBcFC3FbL2CBchq6ATMU0VxPDGMz0aI6yn95DBKzh4kabqeISVJAMRgI8QRCOJaYSQTpfGSClmZmNuSay/lAMzMxsQIlhQp+dzJicbCAvRxJEMgs3x9EhEsRra71TpKTZiZB0t9DB1JpGzvmpZeYQTi1BKaQKgqbOgVYHQxtA8VyH2B4fHUYZtlh1J3ZDEY080CvbRXgtUEZgyF0soLGpqkLXDNBSyDNkxJpOI+kYL2VOtJwIglwM31zPT8kT1fLFXvsG+PLs1rWM+NWhjvCSSFik81knaSYnzArMb7IB38y7FpqabFVRWMchTWo0SJT2lUdyxucuDO+ucO9+j3cmJleX8tM3pM2vo3QifOsxKFdgHNXNfnNkb29SB9GztdzBOsppN+fTZI9xyZI9jjSG7RZPRY0f40+YJvBekuiZSFlFIRo910FOJyWYX0wCf2RDcPPu/seVJD1wwRukELWXcB2kh7s80obWi7szahWvJWGcc2RwQq6ADGtUJDV3xOd3zwCanD3rU0xidGqyR9AvNA42NEDIJZFFNI6n46NlbMEYhRMhkObFxwMNn1xG7Ma5pEUbifcimiTslcWzIZ+emqCKOdYf0q4xjK0PO7PYQJuyUdRI7Chk2rmcZthPSyFBbhVaOo70R0zoKYZ+1BOlpbk5IteHmjQP2Jo2ZwUJCM64xtaLbzhmVybP47nt+1Ry8LETjHE6an22b5AWQWrsyu+RrNb55wOQcKNz61g/BW5eE/E9BWP9EAv6rrSvd74sB38YvvC68nh+97DJXWlcNYG6++WbOnTvHyZMnecELXsD73/9+XvGKV/BHf/RHJMnz/ANqLSQpvqyC49ccVCw97xdCdQlFidAK4T3d4XT2+MxieH75aFnoLmW41TOx+cISWS4ACWU1s0eWoZVszm54d7j+OYgBXKxmIMFjE6iaknjiKFcC86Lz0IplUoVNQkimsALhHNHEIWuQtSAeO1Qe9q1uhytFJpOUbUl7vg/zfZofgyVrODYfHwABAABJREFUZ5HEUNXh+EQxsrIz9iO8VlYOPa1pWY9pKOJBhc005YoO4ZJVuGKnZ45sqvCoIthKA5QrEXLG6MTjWatXGkBN/NgB3s3a14RAlHbRBtbYcUTjWRCo8SF/RkM8skSDGjWpcZnGiQBs9KTGaUk09NTiBoC5FvV8BSpPVM8XEHOjnr0yXnKyOeCgbCCFYyMd0+qUbJcdTo1WwAlUIUhPjDjaGVEajXWCZlKhpGNv2CSKLGeHHTY6Y8ZJjHGSvUmDqtKIXAXGP/as9CZIAaVRjB/rILzAJB6fOURssYVmfxBE5I1mQTMKHQE3NQbcb04E0JRUTOs4JN0rSLcULvLIWqD2BabIkJnHJjPmZRKMbWTtqZvB5VGVwVpZT0KLtWkQRP0zHYwywVr6WHPIftHEeUHlNOeHbWonGUwyqjJCJRZrZGA3hKc0mkZUY5wk0zWl1hwMmphcgxGgPQ/1M8RUIWuBPJhltawaRGKxRjEeJqA8eqZVOXPQpRgntHpTWs2CkRdsdMdsNkaIk54tt4awgqrSVJWm3ShZSXPGdczefotd30YdaOxacHBrRiUfe+wmbC1ptEsaScXZvS7tmY3y0WzynL0Xr+dqPPyDvOtzvuZxE9hL2QfP6569C5e5FBvwRIzDE9Uy+zFnY+YMUXPvR8Nfnj1QdfExeNMeF/x/rQHepbZxNdu8+Lxe6rXLy/wfL/oKfpArs1K+ag3M3/ybf5Pf+73fA+AHf/AH+amf+ile+MIX8u3f/u1893d/99Wu7vorY0KyvfOzrBN/KFgX8pBFcRaMCWJ/7/HjKX6awzQPmhDrQjvT/D7glcQnEb6RhlunFfQlbsbCWBssnF0IrVzUXCgvQkaNN2Zh9QyBpg95K+FHY3CbZnhCUXUUdSs4oNkosBb5piCeOCZHFQcviqhboIqQX4P3+EjiJZRdNWvTCmn3Cy3OXKiv9QKICSUPgdZMQySHU4QLmTl6YpFVuHKnckM0qEOIZ0Ph5SzjRUHSNzTOlcQDg5+ZCTglqRs6sDF2Jq6vPV5BPLS0P3YeMZ6GY2bCOZGTHBuDzcRM2+IQPgAnmyq8AD21qEmNrAxiFlDqRdDlAPhIYtKrxvc36hmq96184wW3z9R6tliRS22nevOfPyvb/myuv9g5xifOHmVQZTgv6dcNgCBm79SYzYq15pS9SYPaSZpxzWo2pRVV3LQ6YLzd4mC3zZnzPfr9AEDuXD/Pi47sEK3niBdM6BwdUc5yTQRwy+ds0Xr5Hq5rgmg911ALnBfUVhIpy6QObcgjk+BahrXmlE5SMKkidsdNMAJZBSanXHGYzJNtCVqPSJKDkG2W7ocLXwiCZf3IYyPIjwSGW09n9veSALS0x6zVrHfHPDpYoXYS6wUNXbGejamMIokMUWywlUTHBpVYdGIZ5ClNXfHS3haVVUyqCDOK0HsRyVaE6mv0TkTzlCIaCXQe7PcBfKlwuwlqoBDSY0qFdZKqjJCxpSgiIm1Z7Y05c26Fj585jnUhh8drhxCw1plgXbBnflFvh1fe/iib60Ns2yJ1+O3bnrbx51Ki1PCi9fM0ohqtLUlk0MrxaP95bnJ0DWt5Aju/f3Eb1fyx+QR4WYdxNWzAldR8fc+GffDV1FPR5gxevfmkyzwRM3PxsX2ybf/In33qgmUuXv6JXv+GD78ltJBdYV31DO3nfu7nFve/5Vu+hZMnT/KRj3yEF77whbzuda+72tVdX6XUkpOWurBdSopDFmSxvFwsv2BM5iYAdQ1JHEBBp4ntpJRrCXVDEo2Da4mLgo4jGlvi/QK1N0LMQIGv6xAUuejWUofrRiHi8AMkawc+tFbJGaEjLNgYip5geDLCNKH5mCcee8o1sWgnM1oE8GJhsqmQdTzrWw5AwTRC25iwPuybCHQ5lgC4Ij1jnDgU9kMAd3lBujVlcrIVLIkFWCXQ0xA6adPQRqanAVzoqUXUDmkcXgtMUyKsRJWOuqWCxXLuMVnoudZjS/roAYwm+Jm5gBAiGB8UJe3TJV6kQVMzz52JQ0vdHLAIH8wWhHGgQ5aNySTx0D3uVN+oa19PBFSWn3v9wX+55mP5TKobrWPPTUXS0klL0mjGIjtFYUPr0fHOECU9sTbB7reMQwijhjODLjd1B7R1wfrNfUqjmIxTcFDkMR/fOoaYJc57K1HKYWqF2UvxyjNMmujUsLI+ojKasoiwlSJJatpJxc6oyVRbCqupnOboTQfsjptM8pgkMcGdvxJEo7kjJagiXMAyWWgPU2XYRxsLkgODsJ66KbGJRDjJItgYwm+d9kRDSfuOMQKoraKTllgn0cKhtWO9MWVn0qTbzAP74iQ6MjTSiqKK+PNP3oK5UzKqEg4OWohSYpNZZlsd7PbnrdSm6XGRR1QSr3wwFDDghA/XAYWn2SwAWG1OyXTNQztr4ARSOawTpI2KvMwoJzG2GZrPOmnBqfEKUnhSbdi4uY/3gtxEtOOSc7HHjmJ2ey2UdJxY6zOtI/rDJtrfYGCeqC5Ol78YrFyKBVhuPXqm2Iid/N/wg+98Gb80+/9N5z7IO4+9hjfe2+ff8k+e9Za2eb3z2Gv4yJv+TyZrgUB4NrVBy9u6El3S/xX/9qINcH7c5vVMjvlpR42/6lWv4u67737+gxcIk/H5RNy7ABikeJwzGVKF2xzkzFrBhNaHbVZJjI801W2bjF/YY3JzFnQVs1DJee4IQNnTjG5vMf2cTXy3BUoihDgMrpxv09rw+JLYX+Q1jR2LNGDScLUr6XuSQXg+2/UkB+FHR1pP45xncjyst/2YpX3a0TrriKZB7B60IBKbiIV4Xh6Mwrbm4xFL41q0uPnD54TAO4fa7tM8PaFuKqZHYvKNiKoXY5p68fsmjUeWDlEH7UnVSyjWImwkKDsS0wisVzx0yNrTPFvRemBA9qlt2O8v2tmEEIvWO7Qm2p0GI4UyhGgK60jO58jaBvF/cmiZKGoLSuAFIaR0WgdzBn3DhezZqKtlWT7TWJlrBTB+Mf7OG+DlOaxEWY41hghge9jmzKTHsEp5qL8GwJHWiLVsSi/NuWVtn15W0IorykqzPW5xftomryKqSnNi84DeygRTK8oiYjpMcZMIJpp8lFAXGj0OAv4oq7FG0koqeo2cW4/s0V2Z0GmECft0mNKIagobcd+5TVJtkNJRT+OQNyM9LvYgw+9H8zGBzgEByUHIMYuHEI080diipzXJbkE8tHgRctCqbtDDAOG3LvUIC/3dFud2uhRFhJYO5wXnph0KqzE+ADktHb3OFCEdzgm0cnSbOapT8fDeKkp4NteHREdy1EaBWasxqwabePLjlnIlmOkgwEczy/ymo9o0rK+POLIxwFjJcLdJPMvjOTPoUk5ihHZYo9hoTnjZ0XNE7RK5E7Oz3+Zgt81Dj2zy0OkNzo9aFEaHvBkr6ecpgzJFroYsmYNpCBXdGrY59+AG5X5GJy2e3Tfg86TmyetzwPJErWQXX9mfL/uGD7/lshPjy7EL88ffeew1F6x3I/s7/OqPf8El81euVRbMxXUpBuNN5z7Iq9759wAuOB5Xw3Bcbc2P0dW2kC2fl+W/F9+/VD1U/OoVj++KGJjf/M3fvOIVfsM3fMMVL3u9lYiioJGQApixMcGKZGkhcci2OHmh3bIUCxDjGynFTR2mRyKSYXD1SoYWPbZI67FZYF+C7iJMqosVRdVZof2gRp0f4KsKkSRLrWVLWhlCS5qoarLtnKrdXGhC6iyYoqQzi2dZh1aq0c0KOTND0zM1Y9K3qMIGjUntMU1F3RDUDdBTT3Ywa4VTKoxBztzI5Ay8SQ7d05YATrBTtqidAe28Jj/RYbqpKVYV8eiQ3qibElDYKF5YIzsV2uIaOyGUU41LxKQIRgh1CPj0bgYwrUXoGRhZcnATwwmtR2LyYxl1K7jFRfXSeQR8pEL3g5aBifGEDJ21NBgo3Oggu67rfSvfeMVszD946y9e105kvxh/J/979d6n/NqnWtWb/5z4n33eU379jbp8HRQZRawZFQlSOs71O7zkyBZSeCZ1TDcu2J62SLUhnqUfN3XFZnfMdr+NkkGcrnWY6OdlTJQERqK/1Ub3w/eX6MeoPICMqiOo1yXdbmAVSqvJdE0a13zh+mMA9JIc4yUNXeGs4pHTG9xxyzZyE4wNbV16KhDWh/XNLPezLUE0hbIrqDoQC4HNJAzCd6hNJeUKmLYnGoaLP6oE2wjtY+WqQyiP2Eqpe4ZxNybVJjAw0hFJi1KOLAptdOuzBHspfGiva5SUlebsbg9XS44c6dOJSx7rd8nPBabfe7Bti20T7JSdgMQhO5asUbLZHGOcxMaSjdsmbI3aDEYBbEjtUNoRxYZRldAvMppZxSBu4AuFbhjMMIYKxjqlTDTOSnqdKQ0Vzl+aVaimo6w0e5MGWVxTruVo7TDuaV8v/qyoi6/uN/d+dJFKv/z497z5r3PlU93L15vOhTT75aqO/UPqqnPJNrZnuy4Ab/FrDu9z2FL2vWtfG5iOL/0nC8Zj+TgOXr3JXf/sqW3/Yje0+WNPh0m5GJQur+voi3eueD1XNEX7xm/8xgv+n1/tvvgxCEGXz9tSMjhtwaxdahbc6JYm594vkumFkng/06/MdSqz1qrprT1MQ5IMXbDw7Ya+3KQOAvs6kzOXGIFwAcgkw2DhO76tRcuB2h8uRP2HY1QLvYwoKnyWIKcVza2IYi3CaUHadyGs8rhCuABEVB1AgS48Og9tYcVqGIMwjuSgZnoktKWZJFxFq9uC9T+fHGqB5jW3dfYuBFj6mR20DY43SBX0KFIgjEWMp2QP1mSnNKab4VK1AEw6n+tZ5q1dDmk8Ub9A9scBsMwB3KxFLBxnt9AkeWMX/3tnAoDRGn1+QNyMmByLg3tZN0VW9tAAIZLI2V/TUIvgSuHCMWmeu0H5X+91NSDmWtYzIeBfBiJXAmaeKXblBoi5NpXpmpuaY7RwRMrylw/dxP16g/XWhGERbJW3z3dpd3NO9Po4O7OL9wJrJTe3+wD8+ambyeOabjNnvTFhWKaM2ymuaRDbCe3TMnyfrwmqWwu67RzrBedGbW5f2cd4SScu+cjWLXzRkdM0dMVe0aQSGldL1IFmfyNjtZGT1xG7w+ZMDxhYlGrFER+ZUpZtWmccNpHoadBbArhIUXWjcDFKhJZkfHCOtLOLaXIqcZlDTDSqAGvFLFQz7PNB0WBcx6w2pzR1RW4iJnVMXmvyMqYsIpS2AVAUEd4JhtOU83sdXKmQlUDUAqJZZ0Jm8FXIz/GRx9aCSS05JTzGhEwdZwWtTs7GSmi1cx6MVXSzgnEZc7DdQSQWn81yy4yE2CGkRypPXWpUZImVxQOjIiGLa5R0TCYpptb01vu0mwW1VYcWzzfqsvXOY6/he3n74x5rVG8HLhTs/+qPf8FlJ9Jv++jn80b6V7zdK7UjfrbCLOcOZMvV3PtRvnftay94bM50mFe/jbueoW0HsPP93PPm93DXP2MBjC6u5WP///2Rq8uZeeO9ffgwl1xv4+EfXLByT1ZXBGCcO7xi/ru/+7v8/b//9/mZn/kZXvWqVwHwkY98hLe85S38zM/8zBVt9LotraCoZ4INc+Fz1exxIcNzcXSB0H45cLI+1qNYU6QHdtYqJcj25mnxAVyUXUnnlCEaG4QJuSeqCBqQPI2ZnmzSGk0RVb1oGfOSQwewWXaMMBovBNF+jjCe0S0JEEIri3VFvunJtgXGB/AiLKR9i6w9w47GaUHV1UFo6cFGIcNG1kFzorb7YT/9UqvYPNDSyUMgI+Ts7+wtNcvU8bN8G1GGx/VeH4AkjsPxnoOzJWZFzJiVC8p5vKkPdUlah207D25+rmZjNAbvPMJakgfOI6t1qk6EaSi0AFVYTKZCIKkUmFYUsmIEqNqhxhVyWmFnFuE36sK6/8v/b174B9/2jKzrmWgFu1IQc72zMMv1bLd+PVUQc8MI4PK1lzcoBm2ONEZUTpN1CoYHDabThKxRMq0jdGLI4uCuNa2D++OZU2voVmjxOjfssLYyppsWlEbz6MEKbq7TMBppBeUKqFKQnzBEsaW2YaLcbeSsJRMOqoxYGtq9gtOTFTpxQaQsDx2s0upNUSueymjUjAkxRuGOVkxUjG1bSGxoLUs8+ZoM2kgB06Oe8pwm7SrKFYGLoeo5VBFE/pObfNDLFALTtiA9ahRcwogczaji3KiDko52UrKWTUlVzbhOyE3EtIpQ0qOUQ0qPKSJK7Wi0SryHdlYipWdcZ8FJcyiohMTENtjwpwZnBTKXqLFG1jDph2PsBfimwRhFUetgWV3FRMrSz1OslUStClMrULMgzkIRdYL4px7HyKGmbllsd8JKmlMZzWia0G6UHFkb0J9k5HVEZTRSeKbljRyYJ6uL2ZCF69bSY8sgZvrYETZmj7/hw2/h3a/rhcnxvU/PLriuOtRrF5oG8OFDNuK50sHMtz3f/znYgPdcsMy1Yo3m233jvX3e/breVb32493v42WDf3XJ9T3VuuommR/+4R/mX/7Lf8lf+St/ZfHYV3/1V9NoNPj+7/9+PvnJTz7lwTzXZdc76HoUrvZbe6GF8fKkGQ6DJmeTez/XyXSaTI+nSANFT6FmTijpniHan4KUNM9pGucFelyjJhWiMrhWioskPpKoItgP10e7xA+X+Dl4ch5v61mApQ75MlWNcA6UROU1Oo/J1yVeClwE6Y4IdsYmAJS6JdCFJLKO3oM1piExiSSaOrwK7Mx0XWFjWP+fB2F/52AFwM+AhfOHwEWpAECkOAR6cye38CK8cEtBoQJflOADWLmAVfEepAyPzbe9HPA519/Mt7NstDB3inMehMNbENREj5xHrXQwvZRqJQ5gsbSYTONlYKmE80TjGjUsEKNpMGFwz2M28UZdsq4FiPlMsU+eg5ErATI3gMuTVzct2JuuAyFbZL09YW9GW7TTkryKuG1jH4C9aZPKKM5t98AITm7uszNpMZ6kxElNf9ig7ifIQoaMk9Qi9mKEg2LD4Ts1aaui3ShoJyVnD7q0ooo/O38T3gteurFFJC0rcc5qPOFc0eETj94CwMrt+/y1mx7kofE6qa5pNEpcKlG9KS/e2OaTO0cYP9wl7gvyTbCpR79oxHqjYM9vUHdCcLEwEI0lJvX4RjBr8SIw/9FKSV3oRagwRvDYoIt1ktrExMpinETGntxEnB+0Znoch3MS7wRyL8I/kjBdt4huRV2r0FEdOeKBIN316Fww9QpDuHYoKoHKxQJUxQfBXc20PLVSFOOENK5pxiXdtCCf5busplOMl+xOm+wetLGVRCbh92C1M2WnDvlvcqrYemyV6cYYgM3umK39DjqydJs5lVFo6aitYuka541aqofe+Gt8Ln8EHE6852DklT/563yC//64dqP5JP5H7u3zhqV1XcxcXG3uydx6ubn3o+H+Ra1Y88cvxx5ci7pgH+6dbXtvdqzufNsFy85bxczs8bs+/Hhw83TG8G5mmpt73xLMFta+9qoAyMXn42KB/9XWVTdlPvjgg/R6vcc93u12eeSRR57yQK6Hsome2RrPFeZL1sF+aUIdL11J0Tq0UQF0WuQnu/jZ68oViY0gHhj0xOCVmoVcWlQerIVFFR5fTNAdqMohK4dpRfhmFrJmhDhkgLQOYn6tZu1cFpGXyFFBtl0SjzzlilgI5b1gyaHFU7WCvkNYj40EVTsI9m0kqFoSr6H3YIE8GIZ2LCkPgdtyO51aosTn7XbLj6lZG97sr5ByYX4wz9mZC+8XOhapgr7F2dnr1KGt9RwkzhkgEY6Hr+rD8yTF4XmDYHFtDHL3gPiRHZr37ZJsT1DDirhfkp7PyU4PyR7YRZ/ZRwzG+KpaMEc36kY9UX2mgJflejJwcgO8XFn1kpyq1ORVRDpLnW+mFSdW+mxkE5LIkGhDN8nJopp2WnLL8T3u+Jxz7E8ajKYJtg52v0o7RGYDC+/mIb4eGwfzlaRZ0WtNuXN1m0zXVKXmwa0NDh7r0t9psVs02SlaQWeCY79s4hsW37AcHLT4i/2bONXvMaoSjneGHOsOqWrNTt4KuTAeylWPaXpsw5MlFak22MxR9Rx1y2NTkGW4rme6DmHAxZ7i6OxCUKmQpQgXjErJeJIymSYYI9k6aDPIU86MuuR1hLMSWypsrXB7CfEDGa1HJHoMeiiR51Lqfkq9m6EfTmdt0RAPPOmeID2nyc5omo8pmmcF0ZjwIyhC+DEeZCHwuWIwbDCpQsaOcZLtfpuPnzlGv8gY5QlJWhE3arJmxWZvzNHmiLXVcTh+2iMKyXC/iQfyOiJODFJ6WnHFRnNCNytQ0pFE9XPzRrzO6/Z3fwvw+Mltc+9H+cTd/33x/7Jt8tNlGJ7MTvkl73j1Bf8/WzqYK93OMxlI+VTrj973pbzx3v4lx3w15+jifbnS9jF4CgzMK1/5Su6++27+zb/5Nxw5cgSA7e1t3vzmN/PFX/zFV7u666p8JPFxhCgrfO0WgnVf1WESDYetTUICdsEOiCSjvLlH3VYhONEHgbxwHpVbVGkpNzNsKnE6WCcL4xBJhEt1SDcGTGMGSkQIknTNFDUcH4ZaKgmlwSdJ2K4xQdRvLALQo5LGlkLWmrohcVG44uUl2CSs10VQ1oo6kwG4xILpkZCP0thxrH1sgj69u9D6LNrE5oxEVQegMmNhfOUOHcqsndkrz0BfbRb21J5ZK5qTEOuwHu/ClTK99Facb3emqfHOHrI3y2XdwpltsZ05+JwDohlT46UCW0FRIMczACplyOCZn38zb89zsza0G17K17KeSSex50LQ/5kIXuZ1A6Q8/brv/CatXoH3gsJotHSspDmDMuVMkZBPk0XbVC/NiaWhcpqtcRvjJFUR4Y1EJIZ2o+DFR7aY1AnGS3bGTUa5wmeeqFXxlbd9mqPJgAenG0zqGO8EzU7OaBChGkGUvpLmjE3MkXjIS7vn2L2pyf6wQd1PmVQxo/0m9SMrnD1u2DhxQK81ZVpHNJKK8dECpS3lOEGlhtEkZTxNiTZznJWYfoxpQzQIvyOiEpiuI96Y0mvl7Oy3UWM5yyzzCCOCc1piZ3bJFj2zLza1ZnNlxMEkI99qkZ1VxANwMUxvdrhujRhr1CiAE5WHEGebBSdJ4SAezvJnLOCC/bMXwVQgtAsHICWNwlSSaaMiVpbaSkytUNpya2efo03NqEqZ1DGTMsYDhdU044rpSs7EZwFQeqgqTSOu6TZy8ipib9JgMGzQ606QwmNviPgvWd/1a6eIP9wBLmRQ5izMvHZ+8F42fuF1l9SHPNVanjy/+3U9uPctPPLWr+A33q34o/fB3/3pfUYXjeni17/7db1nrKXsifbtROOHOD1914XLvvnpsytXU5dqHfvRH/puRk9zvcuho9/1a6f4lW85eUWvu+pP1C//8i9z7tw5Tp48yR133MEdd9zByZMnOXPmDL/0S7/05Cu4jks4j+s2wpX+JavgCybXQl7wHIBIU+zRFcpeRNwPnvg6D+5esnZ4JSjXUkxDUTdlyDKZWryWmG4SAi5FcMDyOuSSzEMbq43sULivdbgfxQthvTc2TMJdAAtyOCU5N6R1OqexY9C5R1aBfQFQpUdWnroJ+YZkejS0mjW3LJt/PGHlf26hzx2E/ZozENbN2rKW2A1/qIsRQhyyInMGZg42kiQwVm4pDBQCazILA10YI4gZE6P1DDzOas6+zBmdsNHD7S0xLosxaXXYYuY81NWh0L8o8cbip3kIInVuYToQxnkDuFzreq5tkJ8O+PgHb/3Fz2jwcqOembJG0ohrGkmwfmxGFd0kpxVXtNISZwXb4zbGKXrxFC0dEk9Za4o8JmuWfM5t52hmFc24YlBlTOqY2iqaScWREwf0NsY0s4pHJqv88cEtnJ10qazC15LxmTApzLKKtWzKpI4ZVhkPTtfpqsD6bPTG3H7HFrd091GpwbQ8qlMRKUsnLmnFFXkVYY3EGIVQQSxoighTKxppRaNRgvYIJ6g3aziRE900oXvzgJX2lHGREMUGl3mKDUt1c4WPPGKssTtpsHzOSqTwZJGhMopWXOKcRI0k8RCSgUNWoU2NSkKnRhpI94LOJj/mGd3mGJ/0mAxUEeyeo0kwiRGOwMzs+5BhM/8ZA2QNUjp6aU47qZDSk6Y1q/GEdlTSjEoSbWYAS1KYiNoquo2cuF2B9iA9zobfNucFldEUVYSUnrKOaCYVUt74XXmimk+M3/263uL+8oT+La/9sqcNXv4/D33XZZ+br/str/0y/uh9X3rZMc7HNmdp5q97OqzIGz78lscBtierq9WgXKu66x1/fzGWOevyxnv7zyjQvFxdNQNzxx138Bd/8Rd84AMf4L777gPgxS9+MV/5lV95gZD9eVkO6k6MPIigKGcTWsLE2ZhDHcwSCyOUxK11yI81SA5qZGVxsQp5Kk2NTSSycqgisDHChbAv09TIOjhv+VmgpZ+7EHtQuQn2xmuz9rS5bTHqEAwoFayfZwBAyGCzLKYFyjqyaYUqmhRrmkpIoqkPQCmCcjX0LfcesLQfGCNH0xCiOdOeXCDcn+fhzGupTcwbg5i31NnQ9jUfE1rj2w1cGmM7MTYKAERPDMI65LhCFCViki+cxPycZFluBZPi8JjPQdDCMnmmgRH+cLxSHLIpy+V9OMlzoKLkTMPkDwM55+sXkkNLuht1cW295jc4+sH/11W/7rkGLsv1VJiYawlc/tb3/43LPvcf3/Pfrtl2b9S1KVNrKusZTlLqUiPWPc2o5Eg24kgGx5pDzo67OASJtDgv2Zq0GQ0ydGyZ7jc45QUnVvrsTJpsNCdMnGRSxjSTihevblM7xW7RpLaKs5MOjbimP8nQuxFeeVwkGG+3+NhOE5FYbjm+x+lhlz/8+OewcbxPqg2ZrvnU7iZ2GBOdmHLT2oDHdnvsR+E7NEsqjmwMkMLTn2RYK3FSkmYhYLIYJsTngxFMnYbXlJOY8iAl7pXU5Sz3q1XjJ2HK4ZsWColwAm8FpVEca085KDKm+w0aG+f58lse4OPtY2wlmzTOSYSBxllJsS5wsUIYGJ0UmMYs90UJookg2YeyJ6g7fsbCePQ0aGDKFUGx4bDN8N0edUuUcqSR4dGDFYTwKB26GVqqZGRSChvhvECIYGttnEQKT6QsN6/1Oe17mEojpKe2kl5WIIWnHZeMqoTKaM7tdFlvnH8O3oXPj7p4Mv6w+RQ/9zvh/vJV//YH7mb0Ve94ytv5kT/71Ewz8+HHbf/iCffyY5cCC3/0T/8mr3iGJ+lXM+m/EgbmnmvA0Fw8xnvu/j8WLMwTHcMnqne/rhfW8VVXN5anlHQhhOC1r30tr33ta5/Ky6/fmk+K5xPyuYWy5HDSPmtRWrAyaUJ+cxtZ+5DoDqhpjdehVcxFAmFmrMos98VpgWlInJKoypPs1zNheUiKl6XBNiNsLBFuNh5jgCVWQutD8OL9TCMza4mSClEbRG2IHURDjWnF2FSFnBUtaJ31xAcV0fYgtF8tJvEzy+I5GFi4i4nDSb2a3TcmHAcZNC1ea0QcU59cZ3QyBREYH5MJnAo5KzYGVUaYDBBNVAHJyBH3DcmpfcR4OjsVfqH1WZgqzIGF1oeC/2U2TKlD3cq83W3+2BzP2EOQs8iuUeqi1kAef/9GPa6uFsRcT+BlXnNA8mRA5loAlycCLE+07A0w8/yorFnRTUv2Dlr4YcywkVIZhbGK4Vab1Zv6jMYZ26dWWb2pTzOu2eu3UJEjTgymUiSR4eywE9zBvCRWllIGJuBPt26mkVR0k4K1NFi+5yaiyGMkIQ9FJA4VOZw5vAC1v9NBToL71qSIqayikxWIo552WrKejdmO2lSFRiiPNSlVYpiOkiCm1w4dW8oyml0TEtTdWSaYF5hJFK79eEE1jqGW4EE4gawFTnmytZx0vWY4ztDakmjLWjrhgbMbiMRyUDZoRSXDPEVWgrIXfodN26FWSqLIUpUaldac6A2xTrKaTnj4YI3+uQ7xriLbFoxeYFFrJdW5FJsKpBHYpkO2alyhaDZKjrRHlFazmk3pxAXnp+1gZqAqSqsprWZ33MQYhbUCrR1ZUhEpRS/N2eyNQ9aP8MTaUpqge9rptxbARscWNfedvlGPq4snubfpz7ng8fnfpwNeLleXAicXT7wvB2SudIL+TNV8e8vbfeijbwWOL5a5FqBleftw4fEIwOPS5+VKwcsb7+0v2tCutH0MrhDAvOtd7+L7v//7SdOUd73rXU+47A/90A9d8cavtwoMicfHGjGfIHsXJr9zfYULQn5vHUIrXKsRslbGNdKEdiUfqQAWpEBPbLDr1RLhPary+GIGZKJ5IKVA5QZZhUBLOa0RtYNeErz251oMYwITM8tc8dQL4OGVQlgbxjVjZwBkbYJD2a7AJ6H1TMxZB2MXmTJ+bo88r0UblTtkoBY6oHnei1iAF7TGHVtlcqLB5EhoTes85NGFp3m2purpcHwtmFQAEi+DpXPVlhS9GHnTUVTl6d43QO4NAxNULwkflwm+OSNm7cylQB6CkLnof9mhbH4eYdaSlgSQMwdHy/s/d1eryqf/prpRwPUJXpZrGaDMwcy1YluuBrg82etvgJnrt1pJSaIMJzYP2E7aGKPY32mC9ES9AiU9aVZh9lIOHl1hX3uS1RxjFFlcQxvyMrQhRSokxldWsdkac37coqo1Sjp2THMRWLkzbCEE6NvHJMrRa+T00pxH9leZ7DQAWN0Ysl93GQ8ydGIQDY8SnrVmCL+cmpibV/uMq5jzux3qaYRJNEI70maFtRJrDi+mNVanJJGhtopxP4NKIlJLu5ujpKOsNdNBBiMdRO+Jo640kbbcsrmPFo5JHXPf3ibd7pThqMEjpzd4xG0gSoVUHheBqgTpOUU9yigbjmRfEfUzzjU7FEcsp3o1jVbJ0Vv26Lyw5JHdVXw/odOeMhKeahijRgpRC1yuEZUkLyOKLCJRBu8F56dtEmXoxAWfnmzyPx66lc31IbE2RMoiZiBllKfEuqB2Ck8gmCJtGc+AzEoj52ArtPCtHR9gnWCa37BRfrK6eIJ+MQtyNRPi5bqa9q4nas16NsHK5eqeN78H7u0vgMrvvO/4k7ziyevdr+vxVT/5wywDoUvV09n/n/udI5d8/Pu+4XcXY3jjvf2r0sBcEYD5+Z//ef723/7bpGnKz//8z192OSHE8xrAzK/eeyGQUTTTRcxatpZtg2E2OY5xjQhVhvYwYCHGt0kI9apbCl04VO6CA4qA+KBC5gafKLyS2CT8GLhYBWcy7wNo8aCm5vEaFOMPGYTlUmqWveLCXH9uP2wIwKY2h/tp7UKkLqS8MIwTLmzbMu4QvAgZwMt8PVLgWw3yF6wxujkiO3AkA49NBHVTEI8hGlWowlCuJRQ9RdUOZgLtxww6DxohXXjKtqRckeQbK6x+skH6wPlgVDAPsPRuBjaWxhPpw/0UesaqqJld88xSGR/2f862KA7PqVpqR7u4VW3ZUe1GfdbUc9UmdqM+syqNanITWoCLUYLejYhOTkhm2S9FrWmnJSPlIXJQS3qtHOskeRUxOchorU7pZgXDImF33OSm7oDjzQFnhx3iyLDWnHJrK1gxn8s7OCfIGiXOCZwTlEZjnGTSzxCpJVGG8bSLMBJvPCRQGQU6aDd2x83FRN1YFUIicxUCJzNPMYnxRoIVQbyuHbLhSSJDrC11U1FWKb5SGCtZaeSkrTH9rGQnbtNsFRR5jPcCDyTKcCwb8oeP3I4popB4P1DIyOM6BtGt8GVCsi+JRpAeeFTpqRsS4TzxJHQ0TKaKYlUyOS4p8phovU+3ldP3sH+uG8abWtLbp5iPdbGZxEUh1HJSxdRaEknHsEjwPoj2V7MprlJE0rG1vUJvY8xKI0cKT6oNsbQYLxfgrxsXOAT7eYNU16QrBUJ4rBMo6W80JF+mfuVbTj6OaXkqOSPzmr/2iZiBi5ef1zJwuprXXWkti9Wvpt79uh7/5Pe+/ZoJ99+4BIiu9nV84O4nBZeXAqLzYzwHME/leF5Rj8zDDz/M2tra4v7lbg899NBVD+B6qqBDEbh0JpZ384T3JTH4/O/MActHCpsobKpxUbBJrnoRZVcx3Qhfqi4SeC2CA1ksQzuZ9wjr8VoE0OJ8+FuHCbSPdVjO+UMmaBZeSb1k8Ttv7SpLfDljDHyYsHsTmBVf16HFq6rxM1YjiP/9oRFAWYZ1W3t4W2SqyMV6D1vLZgL6dpPBF2wyORbR2jLoiQ0uayOPqkMPcrWSYDNN1ZJUXYGqAhOlyrB9PbHo3JH2Hd2HDY3zjumRiPHLjyEaWRD4z8HVglEJ58BX9SF7Mj82c3YGwnilCOBFyPB8bS4MypwZIizW7zze2kMXtht1o56BugFePrtqkGdkuqYwOjhhdSzdVsFac0qkLJNxSlFrso3QNqu6wZo40YbpMAVgvNWiP81oJoH5mNRxEOp/vEsrLXlhZwcpHJG0Ib+kMwnsDWBqxd5+i7PDDs1ezpHNAQ1d8YLNXdRKSdyqyNKaoorYGzQ5u7XCuJ8xLQLoOtYZcuLEHn61AuHxVuILhRxq1EAji5CNksU1rbhiMMmoK41qGURikdJTGM3etEkzrjh5ZJ9bVw6QyuG9oK411klGJqHXzhHKEe8qorHANRxCe9wwIu7LkB0joHWmovupISv3TUkHlrIjKXqCqgvVhkVlBmcEp8+ssXO+Qz1IwAna92vW/yCmvL+DcOC0x7Usq90Jyczi2nmB94K8jBjkKcMy5cW3n2WzMULvRown4Zwo4YilZVLHWCdxXgQN0rjDXt4IgaN7q0jpSKLA7IymCe6GC9kl67t+7dQF4niAP/3o7z8OWFxNPdlk+HIi/WeDYXkie+Flrc+zUZdjpi4FZi4+R/MafdU7eOO9/Scc88Xg5Z43vwdz59sWeTXL9Yy3kH22lCwNSlq8mmeMiEVQZZjYzpLfFQvthLAhs8WmEptJphsapyHtu6B/qTxOC+qWIhqahSNZNDbI2qLGFV5JZGlwWRQAjA9ie5sq4oPi0EJ5OWtl/v+yuQAcjne5HUzrw1Ysv8TcLCyH9eHkfhkozBmbOaCZu37NraMbGaOXbjDdVKzcH5x2hrdEVG1B64xD+JkVtJ4xWwqECV786b7DJgI5Y6yEBVU4olFNsh/A5PhEwt6rj7Hyv/qIrZ3ZuORhKxgcWijPxu29h6JEzDNmtIbazHRC/nCZ2iKUOgRkyy1mUiBQCPU8N6W4xvVURPyfjXUtgcvF677RUnb9lJlNWPXMfSpZzWklJYXRJMpy8sg+WjryyOBbU1JtkMIzyFPWN4YcbY34xGPHSKKaE+3+Yr270wY+gnMPbDAqElYbOZ2kQAvLtIxRs/DHehCCL4soTNSPNMakKnyn9zpTilozGmQwipCFQNcCYcAmMQdZg36vSdqo8BNN1Fczp8wQFiksGALLk1cR3bSg2E/BCVS3QioCu0GMFJ5mVLGRjBmZBK0ddQVVqTkz6HLz8T7DSYofxNg0XPSKuiU82iA9PxPfr3nUNtRthZ5ovBI4LYhHjqotiYYAmrIS+MwRtSq8F1jl8UXQfkZTz/qfw3RDUHcA7WhENZMqHLNGVKGko52W7AxbDIskME+E/Y60ZVpHtGKP8wIpPPUMwETSUdSawTij6ifIicI1HG4tJ41rnBMU1Y3p1uVqmS1ZsCf8tcX/V1IXswCXY1+uxAjglT/561e0zXk9k7ksC53J0hjfeG+f/m/cDVcpcn+mx3TxY1cL+K5k+We8hezuu68cDb7jHc+8yOrZqrqXICvCBD3SkHOYQj/PN4HZ1fvDqynSOiihXNGYlGCFPNeQVyCNxymBaSpk7bGpJBp5nJZICOJ/6xG1xTZjEIK6pYMeZlwu3L0WuhTvgj3xBUzDUhuUWGr3cvawXQpCPoqpDu2HnT8UvM8BSm0WWp8FI1FVCGbtV94j0pTitnX6L9Ck+wFwlb3gRCN8ACtWC+oG2EySHITt20xA4fFKYCXUzWBkIOtgZiBcMEPwiSbpW8bHNNt/ZYWjH7Kw278wUNMvgbr5/uIQUdDALIwWZvqg+bJizh4tlbdu1qo2AzaXatG7URfUU3UiuxZ1pRkwn+n1t77/b9wAMddJTfoZ9+smG90xWa/AOcFNzQGPjXsAtOMSiSeSlunsar5Whs3WGCWDLqTZLLipMwRgWsaMxyluHCGaDto1Sng6SQHAX5y+mZXuhNt6e5we9djOI5yWrHWmqBmImpqYj506zokjB+RVFMBLLvE6tBqrSqAKSM8rynFK3oqRVlBv1Ig4tDVXtURoj9CO9ZUx3bSgtooTt+4G9qiOmJYx/f0maavCGsk53eH8pMXN7T5CeNw4CuvSlu2iTTkIYn2vgNum1HlE5KHugIvC74tXAhtLivU0dDesCaKxxzQFdROqrsM3LTK2KO0wtSJtVNRak29qnJY0tgPzn21LqmnMTqeJVo5GYtnMRjwyXGN/0kCpcLxaccmxbMinNkvi2CyyXJwXIZxSBvbr9tYeu1WTg6LB2bjDdJzQbhcc7wzpFxkA4/zGBbHL1eir3sE9b34Pd/2z7+eN9/Z5++t6vHF2ZX+5/vSjv88rvuSvPen6nq64/kq28VTrjff2effapbNjnqh97efefyd3PUcAZrmWhfx/+tHf53///ffx0Z/451f8mmeyrgjA/Nmf/dkVrez5bqPspAhie+txjRRxMLhwgXppUj+b3Arj8Gk4jFVToirQw9kVt4FFVh5pPcJ4qq5GGoc+qEEIXCTxesZApBpVGITz2EzhdciKEZM86D/mifbWHWo85PyvONTqLLMoECb30ZINcl3NJvx2IXz3xh+eO8Whq5nzoXWgqgIogGDTHEX4bov+C2Ma24FpmW5GCOdJ+p546BEeilWBySAehatfXoIbBVBXZ4JkFMSZwkI0tqi8DkDOWoQHF0nSvqNYkRx8/hqrHynxk/ywnc6yyJ8JAOSQWfJzYT6HjnF+Kd9FLGfauMP9X4AXpcDeaCG7UU+vnou2sRsg5vooocJFkYNJRhIZiioKlsdOIoBYGowL+pLCaGJliZQlloaDssH2oE0+Sri/1jgXbHy9kaAdlJqTx/aZVDEP769yoten3QrZLg/319DK0u1OaSYVR5tDHu6vMlApjzx4BNGYgYxRgppI9FRgmlCvGExLEg0kqhQ0zgmmxyT10QoZOZRy6Ci0hkkZdJbNuCJRJgRvGo3zgpU0J5KOvmkHsOIku4/1iFcKsqhmOk6I91RgcTqKh/dWwQpc6lC9inqQkG5p0t3QMBAAisdpqBuCyVFNuRIAi56K8JsZg1eepF3SbpRURmGNpMwjvJWQOKquxMWCuuNQOeChrtXi3Pz59k0Md5u01qbk04RKak5bxaBMcZUijYKQv59nZFGNFJ5EGbRwfGq4SV5HVFaR5zF+P2E0inh4ZsJQjBLcQfUcvyOfP3UpAf+8LmddfCnXsOu13nhvHz58GJ558XPXS8bLvObHc7m17C6ClfQv/uSv84orfP0zXVcEYH7/93//mmz8eitVO4QNIZI+UiHfpJq1Xs1bt+BQ4G0MclJSH22AgHji0NPQUiZ8EPKrys3SgT06D4JDpxQuFkRjS7EWYTKBrKFxvgIPNlEI44nPT8K24uhQaN+MZy5aCj8XsLuZQL8o8XNNzDKYmYvc53oWOTMjkAJQwXENFoBGxNFh+5h3YVI/t1P2Hu8c5bE2wkCUe6qWxEaQDD3R1C0ybbIdmByXJAeOaBxYnmgsyLam2CwCCVU7AgFVJ7wVo36BVxrbCBk6AOmBY7ohKW9dJ7l/C5xbGBAwAy1ChfHPHdgW7WFzpzIpEMs2ZnNdjxSBVVo+RjKANHGD8X/SulIW5vUH/+VZdyJ758kXX/LxN5365LM6jhv12VlSeZpZyXiaUlcahGc/byCFZ1pFnO8f52XHzyGFR0uHko5xlWBcxqSMyYcpuGAAQBlMYdChPcomQZC/2pkwqlOsk3zDrR/j4eka/2v7JjppwUqaM61jzk/bNOOa0zsrtI+OePnmOfbLBn5NcBA5ylriK4VMDa5SmEoE6+J1T/dle6w1JpzaXyEfptSFRs5sngG2+h16raDhaSclZ/sd7Kztav3YgMoous0c01UMJymntleRZ1P0WOASsFPNtFTIqQQJSVKTlyl6CknfISxM1SySIA42/HUTdA7xQFKugE09Lgo2y1UekXXHTMuIjZUR4yJhOk2wUuMVmKanfUc/hIWea9KIg2FBUUXkOw1kIak7CldLbB5hGor11oQTN+3hvCDRhlZU0Y4LRlVKQ1eM64RHd1ZwThJFFrefkO5IhJXY3SZ1wyNij/DP7wu8z3Zdq0nvcvvYxUzNj3/N9gVuWU8nd+Ziwf7f/el93v6ux9szX8px7eJ9d//qjy/4/92v63HPJfQjV1NXu2+X0sU8kUNc+wN386H26y5gs979ut4ldS9PtZ5TVdnP/uzP8spXvpJ2u83m5ibf+I3fyKc+9akLlimKgrvuuou1tTVarRavf/3r2d7evmCZU6dO8XVf93U0Gg02Nzd585vfjHkKAmxV2MC+pArbjA5ZiYsT32c6EO89Ii9RlcPGgrhviPsV8V5BNCiJ+xXRfkE8qJCVRY/rhXBfODCZCiLEFUmxIqibmrqtqZuSaGwQgzFIiWg2IE2wx9YpXrDJ+POO0/+io+y8epODV6zTf8Umgy86Rv7yE/ibNhGNNOha4uhQGyMvGj8cghRYABo/dzyb7e+C/ZFiFmipEHHM6OYY0xBULUkysLS2DNlOTdyviQ8q4oGhuVXTe9DSOluRns+JBzWIwFqpvMYLQb4WzA6qlsQ0FKaTUHcSTKaJpoakb9BTRzL09F+Y4FuNQ6CxbHscxYtz5avq0DFuDja1Plxm2UluWcy/dMy89xBfHwjmevucXG91cfvYO0+++LLgZf78jfrMq+vtcyKEZzgK1sX1JEII2O+32N7uUtzXo+6nGK9o6AopPJUNjljGSUaTFKxAphadmiCYb9Z01ido7ZDKM65jKqfJ6wiH4OHpGoWN8F6wlk44ko2C3kYbBnkKZ1O0dHSigoau6KQFx9cGdHtTXnzHGb7g1tO86s4HefErHiX7wj3qnqX6vXU+feoorzj+GF9wx6PoxNJolnzB8cf4vONneOnRc7ygu0d31sZW5DHb2z3GRUJeRdhZ6GMvy1lpB1ev5ECgqsCuYAQ4EFaQbUmqBzs0T0vSXU809dTNwOJHI0h3w/e9KiHuh1awaALShNcnOwq5E3P67Cr5OARIxtpico0sZjlkTcdkmlCME3zkmY4TpkVCMY1RE4lLAtOUNANbkjYrKqvY7rcZFQmJMrTjsK+JNozrhFhasrRGANbOzXVC50GyJ9BTARJ6J/pX/R66FnW9fU6ey/rRH/ruxf13v653Wavf5brnze/hTz/6zF7UnzMulxPKX1xz566nU29/1y9fsfPYE43piZ77o3/6Ny94/pkEL/AUAcwf//Ef82M/9mN867d+K9/0Td90we1q6kMf+hB33XUXH/3oR/nABz5AXde89rWvZTKZLJb5kR/5Ee69917+43/8j3zoQx/i7NmzF2zHWsvXfd3XUVUVH/7wh/nX//pf8973vpd/+A//4VXvl2nq0EJm/KGIfy6IV/LQxnhZQ+E9yfYEL8E0gy0yM/H3PNhS5DVqXKJHJfFBSTQyoaWsI/E6aGSiKbhIULUl2fkKvTMK20li7Fqb6edsMnphm+mRiLopgz7GgnAgrcckgummpv/SLuPPPYY/th6CLoU81ILA4fjhcGKv9aE+RF0iyHFu4QzgHT5LMBnoIjAuNg7tbrKyqEmFHpUIH1rmvCQwUiYwUfEwABcvBVVXUzeD3XKxKihWFNPNmOmRCJsKqk4UbKhzS7pvgzXzZvvwPMxvc7ZFBvZJxHHYp7nzmLWh9W75y1WKAGhmx0BEUbilCax2MS84xvDzjl31e+ha1PX2OVmu60UDA08OXC617LUEM8+l69izse2t7l+y1f1L7u/8j2u+rSup6+1zkjYq2q0cZyUicqx2JsRJDUaiJwI5DbkuUxOzmk5pRDXTMmJ/0AQvkJlBKceR1SHHXnyeE0cOONoesdkZc+uRPVpRmGQn2rA9avHn2zdxetTjpu6Ar1j9NBMTrIBf3jvDTd0Btms5ON/m/uEGB2UDLRytuKSbFZRWY5yicopzozabrTGf9+JHabx2m97qmL/cORqASGdKKy3J1GE+lxQOKTznBh3wkLULYm1YbQZmZlQk7E0aQT9SSZwKTIqwBMvk1GKblrrpsc3QvVB1BLsvV+y9wmIzTzQJ4MVFQffS3LZ0HjWku55sW9A6JUh3IdmTRFvB6jmvImJteOkLzgRAcSAQpcBaia9nYs1BhFKO9bUR/miJbNcYo0I7soCq0uwOWlSjoFHaHrd4bNTjsVGPfpGxnzc4O+4wmSaYUlFPYrz2VD3H9Khn9CJL3faoseTFa9uPf5M8B3W9fU7gyYX6FwONK60nAxrLDMTFwv0nYii+YnQv8HhWYlnM/+7X9ZisvZ3J2tt5w4ffsnDrWq756994bx9z59sWz1/MuFyLmoOJe978nic9ppdjw+bMy/Lz8316qsxV64P/4IqXvWoA86u/+qt86Zd+KZ/85Cf59V//deq65i//8i/54Ac/SLfbvap1/bf/9t/4zu/8Tl760pfyeZ/3ebz3ve/l1KlT/Mmf/AkAg8GAX/qlX+Id73gHr3nNa/jCL/xCfuVXfoUPf/jDfPSjHwXg/e9/P5/4xCf4t//23/L5n//5fM3XfA3/+B//Y+655x6q6up6TuWshcxF8vDIJMnhRBgOJ/LWBobGOuRwSrZbY9LwOq8lLlbhlmp8ohB21upUBwtl05TUDYHOPc0tR+O8CUCg8OhBHtqkOk2Gn3+E0W1NvASdO5KBRdUhcDPbMcRjiypCYKRwoEqPyQSDz+lQ334UkcSBKVLyMARTyLBPcXQIWMRMYzOf+M9uQs8spWdtZCKK8FkMAvQ0mBMIBzYOacs+UqH9znhsJJiuS+qWplrLUHmNHpSgZVjGBRCki6CbmTPsSd8ia0/dlMjaI7zHpsGaOT8SL2XSiMN9Uircn48dZnoheSHAieLFfgod2CSRpfhOC3N8ldEXHOPUN2xw7tVN9l52feTAXG+fk6da10JoP1/n0wEiNxiZq6s5cLne6nr7nIx3mhzstDGlQkjP9k6X9fYEmZnQIrUveWR3la1RG0ew4jVGUQ9jnBEobdGRxc4cr4ZFQm4ijJM8sr1G5RTnJy0SZXjZxtZCy3H/mU3e/em/wtakw6BM+YNzdzAsU0QuaazkTOuIfp5SWs0je6uc2lrl0fOrPHSwyp+fvpn9nQ6fuv84f37/CTYaEz5v8yybrTGV0xS1pqw1DsHWpMNe0eSjj9zGY4Muq80pQnmaaUWkHOcHLfJpjDGKRlwHwlx6XOLxCmQN0UQg5QwsHDE0jo0ZvaRi+PKK4uaK7KwmGgrKnqBcDW1k6YEj6dfEg5rmtqFzytB9xNA6a2k95okHgpWNEa00xArc3trFxZ50z6NKQZLWpL0CNVLE+4rpuRaDcUaaVTRa4TWtrAzt3LmmOkiRSWg1y8uY/UGT/WGD2kkORg0OBk3EqYz04YRoJyJeKei88AB7WxFyoAuBbTo+tf/kV/efjbrePifw+CyWiyfUl5r8X0l95H33P+6xy03WL1727e/65cctszw5vxx7MV//j/7Qdy+A17LF8Pz5+evNnW+7ALA8F/qdp8OMXEnw50MffesVr2/8mp+54mWvGsD8zM/8DD//8z/PvffeSxzHvPOd7+S+++7jm7/5mzl58sr9my9Vg0EQza+urgLwJ3/yJ9R1zVd+5Vculrnzzjs5efIkH/nIRwD4yEc+wud+7udy5Mjhl8NXf/VXMxwO+cu/vPSPbFmWDIfDC24A8fYYPSiCXmVQ4p07dKxys6v48yv5s6wVhICqJj59QLZbU/YibKbxSiI8Ie/FOFwWYdoJthNjk2BJKWwAHKpwIZV+r6b9yX3kKMeuttj9olXKtgzuXNaT7JWk53OioSHdM0RTQ9yvSXcL0r2apG9JDgy68JhUkB9JsMdWg34GFgzFwjp4lguDWAJo3l94m+ehVHVgX2bak2gShPmqDj8+wnpccshKuViiC0c89tQtRd1SC/Dn4mBSkK8qoomncd7SPG9IRo5o6jANSd2QAdAIqJsaGwkQ4NQhgAwrs+F8VPXhORIyPDYHX3PQOc+KmbuLKQVZSn1shb3/bYPzX9xm/05NsRl6r/XhBanrqp7rz8n1Us8EeJnXDRDz5HW9ApfL1XP+OYkcInKo2OFqBaOIrYM2jWaJScP3v6k1tVVIPEo6mlmJbtdEqeGOI7vcsbHLSppjvWBtxmhEyrK5GrbRTQusk+yXDW7t7nNL74BWu6CZVPTSnO2PHWHv0RXOnF0lOTbleG/IWjbFWMXezG1LSI/NNaPtFqYfg/BkazkrmyPOjTps521yEzEsQw5KUUXc39/AeUFeRzQbJTd3B0jhiSLLcJIyLhLqSuMqRV1phkVCrC0itchShLYvF75jzTAmWikQqWWy20BEjtbKFGqJKsG0YPySCi+g9Zgl261Rwwo1KKibiumawmQS4f3M0RIOtjsMJhk7B21++1MvI91WSAPRSFCME6wVCCNmjpkeU6vQdlZpkqTmeGtI1CuhlmTrU5KsxtrwG3nn8W2+5JZHUMKz0p7SbuX4KOhw9FjgH2rSf3gFqSzZ8TH6hSNaJ4akun78m+c6qOf8c3JRXXxFHy4EBU+3rjRfxtz5Nu5583suuF3p+u9583sYfdU7Hqe3uRL26HoT8F9pXW7cz3Tb2HJdNYB58MEH+bqv+zoA4jhmMpkghOBHfuRHeM97nnpCqHOOH/7hH+bVr341L3vZywDY2toijmN6vd4Fyx45coStra3FMssfovnz8+cuVT/7sz9Lt9td3E6cOAGAmIUiqsIgJsWFk3c4dAKDMIFeWPo6xCQneXSfaGQpexFVNwpidhGczbyW1N0ImyjqZpjoZwc2uJElgmS3ID3VR4xzXDvj4MUtdOFpbtW4RIYWrdIgaks8qIiGJTI3yKJG5gHgyMphE4mXwVAAYHBHE3vT+kzsf9EEfl7GzPQg85BOe4E2JDBNdgFyRGWIJg5pgv2xKjyqdqhpPWOdwn5O1xVJ3xGPQlClSzQYhyxqTKpo7M40LhNL3K9RpaPsyllOjCHdN+BDi520oCqPjZeEkH6ptW1+TrwLTmszI4MFAJ2bFsRR0PHMmKbxSzc59+omBy8GLyE58KEHe98Tj64/G+Xr4XPywj/4tqc8/meChXn9wX95RsHLvG6AmMvX8wm4wPXxORHKI5VHaYvQDtmr2OiNgzNX4tEF+O0kuHKpEKZYVBGd9pROs0AKz7FswCtWTvOF66fZSMcA1FaxkU0Ylwn9PGNYJYyrhL2iifGSbhZeuzVu47XHxw6VGlpZyblBhwd21plME8bnWoz3GriJRhQKnCBeK1hdH1FXmqKKcB7ODLrsjRscTDOcExgj2R022e63GRcJQnhqp0h1Ta81JUtqYm2CY1kcWKTxMONg1KDRKjFNj55CuufJdj16qKgPUuR2ElrQmiXTSQLA9JijuKmmtzam2PSYVAaTG+/xiWK6LpncLJAzxr/sidCeVkqKUYI5n8G5BJ2HtjUXgXcCvMCsGUwjOG26YYTcjakGCeNBsD2+4+gOsllTVZr19oQvuukUt67tMyxTTo1WqWz4HX/l0VOom6d4HUBZti1oPyzRH2sxPd9ktTULLq3ip/u2fsbrevicXKoungzPQcelWJF5LbMclwIbl2qVmk+uryVoeOO9/QWDdClwdnFdywn/M11X6vz2O+87/qTH+EoB4nJdNYBZWVlhNBoBcNNNN/Hxj38cgH6/z3Q6veoBzOuuu+7i4x//OL/6q7/6lNdxpfUTP/ETDAaDxe306dMAeBl0LqK2iHyWam/dYSL7HAAsZYj4PMe7kHovJjnJY33S3QoXCUxTU64n2EaMTXUAM3MyQAvwwT64cXqC3hki8hLfypje0iHKPc0zBdGwJt3OUeMKYdxsbDUuUqFVLY0wvTSI/zsa4QKjI1xgRYSD6c0NyNIwuZ+3X81BjDFL9sxL7My85vu6YKECy5GvSfK10BoXj4L9sW0G0OYiickkVU9QtySToxHjYxF1S2N6KcVmA5tJ9MSS7OZE4xpZGmTpiEcOPXHoSU2yVxD3g+2znoS2MhtzCCLn419mlZaF/bBkSjA7t1IitMK3Goy+4BhbX6KoeuHKWdmDuiWIJp66Iahb159rzPXwOXm6tQxAnsprr2XdADGPr+cbeIHr43OiI4OUjiiytDs5aVbhvKCqNHXHU6yFViqhPE09C160kjQyHGmNyE3EQ6N1/nj/JJ8cHOXctEMvzTneGvDwwSqtpKQZVwynKfvjBs4L9vIGR5tDIhlCGju398lWcla7E5pxRV0ryiLC1RJihxpoRCXxyiNqQZ1HlHVE1gi/f72s4KbugEZSE2tLEhmiyLLemdDMymD7rC15HTGqErwPds9CeKT0xIkhigyNVkkUWRpJxdoXnGf4gmDMku5b0vOC7DFN65RA9zXTYYqfMSReAcrTSCrMWo3T4UJTvZKSH2sGG34HZSew9i4Kjp7xvkRMFMmeJNuW6KknHs9+G4oQ8ilyiYs9wkiEFzgNInb4UmG8pHaKZrsAL5hUEZmqeVHnPKmuGZUxo2nK9tke7/9fL8M90iTZCxk60SREBhQvLIl6JVJ4yjri8zfOXPP34tXW9fA5uVRdbjL8oz/03VfcYnWpCfPlwME/+b1vX9y/kon0xctcbnL+ROn0nwn1RHk7FwPGJwJmJxo/tLh/TTUwX/7lX84HPvABAP7W3/pbvOlNb+L7vu/7+LZv+zb++l//61e7OgB+4Ad+gN/6rd/i93//97n55psXjx89epSqquj3+xcsv729zdGjRxfLXOyOMf9/vszFlSQJnU7nghsAUuJSjRyX+KI4ZBzULC+lCpNpnwcXksWkeQZwvHOI4Zj4kR3anzoIT2WSqhvsGG0isKkMeSlDS7Jf03hkgDq7F1geJSluCkLI5pkiOHWpYO/rUk211sB0M3yicIlifDKj6kVU7YhiVZGvBHH/3Lo5Hhp06ZhuKOxK81ALMjcomGt7lhmZud4FDpkYKQ4ZGe8RownN8xZhwUtB3dCUazHlSkTVi/Aq/PB4FfJepkcEwxfA4PaIuhshPEQji57UAZAZh80ibBqyAaJRjZxWyEmJrB2qdngdkpeToYOyOmRfxEWgaynbZQE4ZdAqiSgCpfCrXXa/ZIOzr1bEfUFjS9A472lsBx2OjQTlChTr1xcDc718Tu7/8v87vO5pCvivFoxcym3seq7nexbL861lbF7Xy+fEmvA9mkQ1660JN/f6vKC7RxIbXNuEyfdaSZLUHJQNWnGJlJ69YZNPnT3CpIopjaZ2iv1pRn+aEUvDXtGkqjWDPGVUxkyHKVUZURjN9vkuxkle2N1hZ9Rkksc4J2hENa24pM4j5JkUdS5BjjWyFEQDiSxCmKXoR0zPtTBGcdPKgFPnV9mdNoPFc54wGDSItaWX5hxtj7htZY9mXNFJCmJlyauILK4p64gyjzC1wjmJtZLJKMU6wUtWtmmcGFFnApsI4pEn6QeGvfsApI8kqO2EqC8DG/5IzNlH18AKxieCWY3JFPsv0eRHPMJAsSbIjwiqDlQrnmrFoSaSpB/a1HQe8sd0DrIKAn49lXjp8Q2DTyy+UxNlNSK11FYFdzcnsaVi/7Ee//2x23lgtMGoSth/rIf7VIv2J2PW/oemez90TjnWPlHTOmtQBfhastYb8zm981Sl5mN7x5+Bd/czV9fL5+Rq6okYmItrecK8DDguBhvLzz0VFuCJrIHf/q5fZv3jZ5+R7VzPteyitlxPhU26JhqYOdPyz//5P+dbv/VbAfjJn/xJ7r77bra3t3n961/PL/3SL13VQL33/MAP/AC//uu/zgc/+EFuu+22C57/wi/8QqIo4vd+7/cWj33qU5/i1KlTvOpVrwLgVa96FR/72Mc4f/78YpkPfOADdDodXvKSl1zVeFwn+O7TH87aqeyhfbDzMNOSiCQ51I3MdCL4oI3x3kNdw16f7IFd2vePSPZL9DToU9LdisapCY0HDogf2UEMZ0ILrahOrFGuaGTtcLHEtBOKzQTbipGVwaaS4khCuZ4xOR6HNq7SBbAgBVVXULcVLpKhbWtcI2bkUX6suXAlC5P/2V+5pCmZ74uY7bOQh+1X88wZIfDOkW0V1C0oVhXDWzVlN1hCVy2JVyK0jKngJqMKyLYEzW1H3K+DWYLziMrg0giXaGymEM6HdjHjwIGPNSKvEVVIgK4bIrSVwRKT5C5kieZjjqNDYFOWi/Noj61y+mvX2PsCT7YjaJ9ytM5adO5p7Djapx1p36FK4DohYK63z8kzWU/GxsyfX17mWruH3ajnJ+tyvX1OXB3CFIsqohvnxMryqf1NlHREjTq0dxlJWUYMqpRYGm5b38MYhbOCLKoXyfahnSsI58+PWpTbDQ72WgyGTYSAZrMgkg6pPYWN+J/nTjLdbWB2MspRwqOPbPCJR4Oros4F0VigCkE8FGTbAj0RRANFNJCkW4piq8kD9x/DjCL2+y1iZTm+MmB1ZUJtFWeHHaZ1zLlJh0haWlFJogzTacK5BzeYnmkhtxPcVspkkFKMY+R2wv6ZHvf1NynymOHtgvFNCheJmVtlEOirEpz2yDqwKaoENdRE+zo8p2ByRIODbEcQD6Dqesa3Gqqux2Qe37DBDawLVRfyDcHgNonTwaksOx0hy6CrTJoVKrOoOFgop42K3EQcbQ4xRnLLzbvcdNsuSVQzrhL6k4zWg5p0R5AceOKJD4L/GPCeaGzQuSc5p9l6ZI3f/fiL4ZEGw79cfYrv7Ge2rrfPyXK1P3A37Q/cfUmQcc+b38NP/uwnuOfN73kcs/Hu1/X4ufffuVj24tcul7nzbbz7db0FsHi6tezmdfF2v+8bfpef/te/9RkJXubnqP2Buxd6oXk9nX38P9/y3ite9oqDLl7+8pfzyle+ku/93u9dABgpJT/+4z9+1QOc11133cW///f/nt/4jd+g3W4veie73S5ZltHtdvme7/ke7r77blZXV+l0OvzgD/4gr3rVq/iSL/kSAF772tfykpe8hL/zd/4Ob3vb29ja2uItb3kLd911F0mSXNV4nJKo88OQ4j5PtzeGIMQIQYjeusPgRwA3w4DzViZrA4iRCg4GyMEYKcWSGcAsDNLPAJEMbmB2vcPkeIKqwlX/Yi2i6ElsKlClRpiZxiXVs7Yth55ahPNEY4twkAxB5Q5Zu9Cu1YqQtSMZBNbngtYreFx44yL/paoDYFHyUOcj9IL1EEKgzw/BNzEpZLuOaOyouio4iFUOLxXROLAwpgFJ36Py0AKnCJbVthmDBxfL4NIWCUxDogqNqG2wpAakcagyGAIkW2O8OQSMweJ5Bshqgzcm6FsW+0NwHEtTfCtj9/NbTE5YuvcpmudtaFcrLNE4sFeRcbhEBhH/ddKyfL19TuCZt0++UjbmBnC59vV8BC9w/X1OVGLodEIbWSsqMU6hlUVJQa8zZafQqNjiasmwSOjGBeMqwTtBp5OT6ZrHBl0EsNGe8NjOCsPzLVSrxjcsUVajtaOoE4bbLYZRk6xTcOpghenZFtFI4iJPfKwIifT94B4p6pCdokcBINStYCgwn4B7CWos8ZHHNlwIdfQCZzSVUUzON5kkFr8qcF7QiivOT9sM8hRTKvRYEg2DO6WLBLaKMU2HrEEMFPujJmlWIT+vYPxAl2gYWrlsKkhGkOx7XBRMXKoe1G2HrATpbmBrpAGThX2Qdfh9MRmgggOZlwI3jnAayjWHaxvirYhoFMCOi8CmYDOPzyzVNHzR+1Ii0oo0rqmsYlBllAcpu9oFB7JpwkA0sKUibYFTHtMQ6FwwPulQleD4HwpsNAtg3hEk+xqbgp4C14kHyvX2OfmVbzm5aEP683aHD/zT/x/mzrdx1yWW/el//VtAYDbM++9E3/djAZBc5TEwd76Nv/uRywOYpzoBv+fN7+Guf/b9T+m113Jd16IW7Mr7L/HYs1RXzMB86EMf4qUvfSl/7+/9PY4dO8Z3fMd38Id/+IdPa+P/4l/8CwaDAX/1r/5Vjh07trj92q/92mKZn//5n+frv/7ref3rX8+Xf/mXc/ToUf7zf/7Pi+eVUvzWb/0WSile9apX8YY3vIFv//Zv5x/9o3901eOJTu3gx5OZ29iSSH/u3gUBgLil1qLlFPs5m1GbCzNHCFoMX9X4OtyWGR3XbjK5pYW0nnhoiEZ1AC+xQE88JpOUq3HITclCfoqYMxWzoTgtgpi+cojaYROByYIDl1NBCL8I45SBsRDzDJh54OXcRnnOtngfbKTnbAwElqmsIC9Y/1geWAohiMaG5MAQ74f2OmEcnVOGlU/XxAN/6B5GYIsCyxRa4YTx2ERSdkMbnGkqbCvGtOOgqwmaS+KhDeGec/AyPzd+plOaZ8KEN0b4q3XYz0gzecEKw9shPlA0dh06d1QdhcmClkeVFmk9snQgYHrs+qBgrrfPydMR8T+dej6Cl+eqjeypbvf5Cl7g+vuc2DJM+NtJxbDK0NKy0ZiwP2hSG4VOLK5S6NjiveDsuMPWQRsA5wXnhh20dNSzVrQXHd9m5eiQTitHpQalPK2sJG5Uwd0rtuSjhOmZVghljDy2a8n7KX4Y0zytSLcU0gYXSeGgXPGYpsdk4BoOe6LA3zHFbNTIWqAmEiaawTQLQZuTlKivEMqTxjVSeJwXlFYhpYNy5vY1De1awgU2BSdwscd0LMU4Dm1mZYS8Kac4Hr7L803PuVcLxifAxp7iloriiEFWgmRfoKc+2BJXnvTA0zpjg/2+Dk5ieIFNg64oGocAyc97xYMcPX6ATT1udrk2Goe2M5N5ROTwVoRcGKAqIyZ5mIDXViESx2SQMn20g3o4hTMZ6SMJcZ8FQz/83Ao2S5JdQb6qGd4WU6wFAJf0g31zPAzA8Hqo6+1zAmGyru/7MX7nfcefUuaLufNt6Pt+7Lpw8HqiDJerHd+7X9d7VhibH3/tfdd8G9eirpiB+bIv+zK+7Mu+jF/4hV/gP/yH/8B73/tevuIrvoI77riD7/me7+E7vuM7Ltv7eLnyF7thXaLSNOWee+7hnnvuuewyt9xyC7/92799Vdu+5HjqGkR0mOIOh6BkVmKuEZkHXEb6wjR3OHzMzfJk8uLCyfV8vc7h1noMXtpD1Z5o7LCxpG4l2ESwcn+Fl4LhSY2sIR040gMbgi+HFS5R1C2NNEF0Pro5Ih5pkkFwCAvUfHBoUVNzmF2TRIdsillqydKHbWKLY7JsWlDbReuWN5bo0R0amzdTtSWmqYNddKyC+5qWOC3wKlhmJsPAosjKhqwYRAi77IRgzskRyfDzS/R2THYwC3orA8PkEo1NFc2H+kGbZGdmBHN3uEgj5gDSunD8pQLlQxtgHFEf7XH+izRe+GCbmQpAhatxSTAdkNbjpSDuG6YbkuL49WF7eb19Tp6Lej6Cl3n9x/f8t+c01PKzpa67z4nwxNoyKmOMkwyqlCONEaZWJJFhdXOf2ioiZVlLJ/zpqRPYqUZllryIqAcJ2VrOydUDpnXMp84cYW1lTG0UnVaOcZJUG7prfbaGbcY7zZBsL8EdL2i2CxpxTTOuOL3boxw0gXkLWfiuc7HARR6XOOJdhTybURy1EB9eHBOlYHqmxaRpoZD41HNss08rqlhJc2qnKGuN9wLZqqmA6sjswl4tiXol7UbJYNAAK8BIdrc7UErIbGDQfWCBOF5iNkCeTUPjQ6dGbWma5xy6DIHNiBmzn0rqlsA0QruZLyVVz+G1Dxepzgo+uX2UYhwTT8PvULEG0giqnse1LMxCRpV2eAiOcQKqWZjlkSN9th5bJT0v0ZOgi/TKo3NI94IpT+uTMeWax8UweGEAT7KGYiO0UCPAJlCk7lLvkme9rrvPyazmV+9/7v138jWvP8vtl1hmzrgsv2b+2BNd/b/4dc9VXe0Ynq0xz9vvnm91xQBmXs1mk+/6ru/iu77ru3jggQf4lV/5Fe655x5+6qd+ir/xN/4Gv/mbv3ktxvns1zKImTMuQgJ2cd97g6iD7kXoi1rJlhgLoqXgxWXr3zRheluHaOoQ1lOszK6OjS3dh2v0qAYBjd1ZK1U1C6vM7czuOIRWCi8oexIXEVqydBifzoMtcTx2ga0RIozVmDCGJMY3UnwWY1sJLpbUTR30OlsjxCRHCHHYsnWB4N/h65r2ffscfP4ak6OaxnmD8FC3FVVLYtIQzJntO6KxxcUSm0VBuC8FdUeHgM7CUXckWIHNArhIBJhWFEDRzEZaDMYXfvkuA0lrQc2COZ0Pl/6UnOl+BNPjKV6G4yeNwKQeVYUsm6od0qEbuzaI+FNJtucQQ81j1+CtdaOen/WfTl26UeH/ffKNz/JInrie7+YBnynV6uX0GpbKqiDQFx7jQuBvf5wRdy2RsjSjiqaucJUCI7FTQXOjoB7HFGdanFEuWCM/lrLrBFFiWGlPyWTQyBgXBPKikAgngrbGSkb7Tca5Ags+9kS3TXFOYh5Ng+OWJYQPz65PVasW37AhtBGoCdqTuB++l9nIibqWulZE0nFm0CXWhrLWlEV8+JOpHUhIWiXmdBObZ/TTBLRn5eiQoorIdxvokcLnEttw1CsONZUBwA1UADS5wklwsccrQdkJ5jA2EUGrKkP7mIvAtC2iDhb8RJ5qzRIPNNXpJmKtQtaCaAjmCEyPGtrHRxR5jI7C77nWFi0dWjkiZRkVCQnQTQq2mDFJMYHtETA9KohGYdvSQHIgSHc806MBvOCh6oS2MhsHsBRF+bP/Jnye1BxgzP+GNrLj3HPn2+AiBkLf92OXvP9E9ZM/+wmYtZ9dz/WZoo95tuqqAcxy3XHHHfyDf/APuOWWW/iJn/gJ/ut//a/P1Liem7IG9FzoHtqSxLytas5UKBUeFyK0JvlgWQwcOl8plib8LuhHbPhSx1pIEkSaUNy2jo0F6V5N1dOoWaaKrGYWwErgYoXK3YzJCPR41Y2IJiIEbuaHifUuEkR5CPPSE4O0of3M6RlgEiJM6CON6zSY3NZmuq6Q9eEXsY2DPkW9KCYeeboPTtFn9vFVhdD6MPhytr/iYEjvE5qdL+ox3dAht0YLJsfCFat45FHlbH8EeC2RxiFrC16jc4ce1WwY2C9j9BR0bhmeTEgHFpNECOdpfHoPX86srdUSOzYnv+LZeXNBS7OwhZYS30jJ1yTmjpwkqZEf6SIcmEQQTRzJ0IagzCXwFw8dOr8+GJjP9nou2ZfLgZZLLfNEQOb5wMI8n9vHrsdqJyUv6u5zUDWIpaWwGucF6+shhuBk+4BhndKJCgZVGtqYPETt8D2X9Qr8qQ553SG902CPlRzb7HNTa0BhI+SMIumXGQyiEPQbu2A/XEnUQNM8E9LrJzdb6jyi0c2Z9iLKFU08CJoRUwtkLak7nvbahEZSsTdo4uuYaDKbkCMwjzYpksDWPJpHCOnxLZhuN2k/oBEzIbuwUK56yjWBWKvRicENEtLHIg6iFv/bix7mYKXB/Z+4iexsMJ0p1y028ciRQhoRQj6jsH9z6+Ro6il6gfWwzSD61xMCOBmFqYxNoDzmUO2ayS0Cn1iixJD0w2/R5CS89CXBvvc0PZwXTCcJ6xsTnBck2qCF40hjxKQOttCt9QmTvE12TtF8TGAaUL9yxOSxJjoXtB8JRgMArTMeG4FpCtIdGcBhE4RT+OtDw39d1lf95A/D+y5kHObg5GLG5cnqUq/76ecYvPzdF72Cf/HpP73g/3nNH794meuBNbqcDmcZOD6XY3zKAOYP/uAP+OVf/mXe9773IaXkm7/5m/me7/meZ3Jsz13NJsZizpTMskS8D/72i2UurgvE/fOJ9Oz1MGMJwuUu127iYkm2XWLTcMVJTxxylt1SrmqiUbBEtpmkzgS6DFS7Kj1VR5OeLxHWE00dugiUejww6KnFJpKqG06vrD1yWoFz+CyhPt5l7yUpTgs6pw1eCsq2RDhobltsHCyLq7Zg+5UtOkdTGo9OUPtDBLNslZlI3luH3B2w/r8k51/ZYXIsom4JVBl+MHThKLsKVXlU6YOZAGAaUWhxUwKVS6KxYeNPLV4JbCYPWwQago3/cQDD8aHhgDWHuqQ5mLIOcIeWz9FMgT9riZMG7DDGrxt0AcnQgw/si6pC+55phCwB4cMxE9dL0/JncV3v4OVSy18OyDwbIOYG+3L9lBSevbKJlm7xv/OCSFlW0pxEhotilVOM6jQwF05ST2J67TxMrl+U02oVJNqwvj6iHZc0dcXZcZdBnmKtxM1YFzWVuDWDnypEOdNXRjA9Ort4VgumgywsF0G5IqhWQoJ8vC+DhmPaY7hmQIIqBHoaQEm1EnSBrmmRYxV0I6kl32qB8uSbnngYRPJ66olHUIwiqp5H3V5hMoPXCnkQ8RfnjlOcbS6OU7bj0YUKwvwqCPOrnkdYAWNFPBTUTZgcE7iZPjwagc3A16AnPmSsycCSYAWuHyNqAU5Rq4hoHH4n8ZJzozaxthRlRJLUbKyOqKzCeRHayIRHScf5cYs0DhexfOYQThGPPC4W1KXGqwCeGucNqvSUXUU8tthY4oaQr0nqtsBm4NZrYnV9tJBdj/U77zv+uEnxpSbwTwRq5s991U/+8GJ9zzUAeL6Xvu/HMG9+/OPz87NY5hk8zqv3/8MrXvaqAMzZs2d573vfy3vf+14eeOABvvRLv5R3vetdfPM3fzPNZvPJV3C9l/NBgA8zoGHxtUHEcQAvSgYXsuX091lb2YKtmbc1XQrgCBlS4LOUya0dTEOic4NNg5WkcCBKx+hkTNkVNM4LkoElX5u5YhUBEOBDm1N+LMUpSA4MXksQIS/FNBRlT6MLF4TvLogffZqQ37bCdFPP3FyCmFHgiSezAMk8tHpNNzQuFggP03VF1WqT7jdofHoXRpMZ22QXhgBqu8+Rj3rOfVmPfNPTegySoaVuygUgEtZRdSK8jpluKJJhENKbhprpcQJYm66HdTbPlURnB7DfR0QRXi/pjaw9ZLoW5yGAKzF3T5vl98yddZoPa+zZzizg87DvWhpPuRLEp6rylF1BNBUBgN6oz8q6WvBy8WufCxBzA7xcX7WS5sQSTo1W2GyMiJVlamK6SUFDV5ROI/Gcn7ZDa5kTQXtSS/qjDK1dSLF/qMswC99zB90mHIVemtNLcw6KjK2dLgB2teamowds/8UR4r4gv8lSfmGOGyTEOxrTEshBYJqnt9TcctsOL189w/9z9nb6j/aQlSA+kESjCNPw+CgwHNl5T2NbUKwKpsdDO5oeSaIziua58DviBdQtP2udEngdwJMqoX6khTaBHdETgfiTDt0RwXSm9FRdgU0g7gfw4jUBvDQNCI/bVdgEXHLoSGYas7axzJI8kmBjT71qUZ0KhjFqPIs88AI/iTl4MehcYjqO/z97fx5ta1bXd6Of2TzNand7WqqFAkHABoQKmuRNtJQQEVHyxsE1gZhcVMQImhvEQZTXGGKROHKJ0WEM4yq8iTcaO+Qi+IZGE32DoIBKV4BCVZ06ddrdrfZpZnP/+D1r7b1PnbbqVJ2m1neMPfbeaz3NnM9a83nmd/5+3+9vWqZ00jF5VpMljsoZullF4SzDIpMsNCNFN3cmLbzXqNQDiUR4ViJxOyU/rRuTAsVk3dA77rBTB21LUgeilsU85SE6Ra9TXpsv4g2AvcTk3p//NDMLsre8+qWPiJ7snTzvJS+zv1/CwzcFebke2n+xNpxLHK8WNp/+Ly+bxFw2gXnJS17CBz/4QdbX13nVq17FP/7H/5iv+IqveNSNvB4RnSPaRkcBYAyq0a/MSItSSjQtM1viKO4ninOKKhojk2fb2A9rITbKaEK3zfiQaVZwUlQQQSUxUqwn7Dwd6m4QseVE0Torq1+mDASrcLlu/o9kO2KhHJHikNEogpHUKBUiwarGZjlQHe2z+awE5SEdSJQhGkh3HOmOREZ06VDR0toQQuWbNKtkEiiXDfXzDtH//A56YyCOZE10KdY1+sw2hz+iOf2CHiFREmFRQryULH5RLhsmh+TG3z4j/S5XDS6XKImKkXwr0Dk2wT682RgriH01MexGs2aOajMba6PPeW+PYYLRTe60PFDzrUjV1aTDQLYjBMdlWghd0y47CdSXIXZc4PHDtYi+vP7Bz12V41wsGnO1ScyCuFyfGNUpVZGyNW4RgV5akhvH1CUAZNoxIJdISlQoE1lZG2J05Lb+FltlGx80D3nNam9CWSesd8csZ1NS7TAqslW0MIknqASTeaa1RO47D0cmT/MkiadWQgrSbU26BcXBSO/QiK1Ji2E/52h/wFarR1AGU0G2FSmXFa4Fk6OR9sNN2lQ3YgqF6wfqZU/EsHqf3HPrNnROyX01anAZoCRCkdbgcyE3dqJIB0BEHCF3FME2qbta7v8+USQj4IGM8qDDdSK2iQYFo6hvKzl4YMDBzohUOz4xehoxCXQOTPBe49OAbyvUckWYWDAR03a4qGjlFQd6Y75q9ThTn/K/HrqDTi6FONuJZlu15lkWPmiMDoSg0EkgWHC5EiOYJJIO5JkyeopkUFQ9DdGgvaRNpwNPvilGCWh2szcWuCDsfW/EvW530tx64b3c+0J40+ue84ht9xKZ2b4AvFWiMPatj4zWLHD59sxvefVL+dhINDnv/83dIqznM1K4VrhsApMkCb/xG7/BS1/6UsxeN62bCCrLUDRRllkXPbuTZcTBQ9VNClPcU6F+Rl7mgv/m96ymSphtp/D9jLqrSMaRuqPQTknKUojs3KnpHItkA8h2HCGR92RyHTHFLOIA6bZDOfnf56J1MWUAq1AlUr0+ATOpiYlhfCTFjuM80lC3FdpLGpdrGZKJRJ/MxBGspnUmUPct6bYjWoUpI+PDhmJ5mQOfMJiTWxBrYlWLZggwx89yZHPE9KlrDG5PcW1FvhlIp4G6rak70qZkGBkfNJhaPPxNAb1jJelDW6iyhpndtGr0LHZPTZrZ9fZ+t4ZNJel5c6JptOh1kA+ytRHwqSEdRIkIyRxCah4UEVsGlANTeEwt19SliwfOAo8NF4rGXA0SsyAu1zcmVcqRfAzLYFQgN44qGI52djhTdPnixgGmZUJ1pk1MA9hAJ63pZwW5cYSoODvqEGpN5Szr3TG3dLdZTqZsVm2McdzaE03M57JDFNOUZ62d5o+XVvGnFO2/TKmWE1Q74A5XqOMpkyPge4EwyTiytsODoxWOtAd8xVNPMKoyjrdXmexYQsujvEL1K4Z3QNhKsSONnSpUNNR9j29Ftp5hKNYj3WOKuBUZHxGHr2iQIspK7rEhEfKjnZgGpINI+4QQo3QA2U6k6il8JoWPURLBsTsGhRSvTMbQnigKl3NqYjnd7hNrjV6uSFPHamfCxqhNd2XCqO7ATgo6Yns1bpSgMs9KZ0rpDWfLLgBHlwfzwpyjcU49TsBpOgfHHOiNWG1NyE3NSjrlj8xTGR1rE5rnQrUE5WogtAPZKcvSl0V7ilHo2uPzFJ9Kf03maSULTeWFcC4ZASEhb3rd0Qtud+72s4n0W179UnnhzfCBt7798WnwTYqZDsfe90bcu8De93ZAiMLs+p6PsFyriNdlE5ibxl3sIojOicB+Fj1pJsexsevdlzoG83SzefFEdi0K1bmRmFlUQGt05ck3I8lUVmmKVUvVkyr22kHnVCDbrlEu4tqGaJr0qrxJ1yolsoICXXlCy2LKQN2TVCxdB4l+WKnPYoYF1eEe48Oa3jGPqZucYQVlT6OdQVeRYDWhl4rIvvRNP6TQpJ06EgXJWFP1FCe+oc+R/6UwD2/Mrw/ei9C+rml9ekp+rEdx6xJ13xIShcuFONgJpCMxIGifLLFbE9R4SixKqGqJRs1Q1XLtZuRlVmzTaHBhVwujpXZP9B7VGC2gNDEEcB47DdRd0xgVKEzVFGwrAyHVjA8Zug97QiYRHVMHkuHigfNkwiz68ljSx86Hi5EY4IqIzIK03DgYFhnbZUATeWh7mcR4RuOcrZUWMSq2T/XorE8wh0dMhzk6Cfio2CpahKjYHLcZb7YwLc9Ke8ot3W36ScFm1Waj6NCyNZ8/fRClIp28IjGeQZ2Dgro7E99DbHlo6pxEAzH3hKAYFhl5WlN4SzcpGVUZK+tDin5CjIoYwZhAVSbYkSbdUtS9SN33UjTyjAj/dZMeVneFdAQrrl3pTiPG78rp7UQq15sKknFA1wo3VeRb4lJZLqeMbg90jmnsVJzHfCeI7X1bUU80dqiwU+jcb/GZxeeR+khkeVUKfx7ojcmM4/7KUo1TKDRuYjFDgzcRqwMnTq1wZqtHq1XRySpy66icxZUWPbDELFIWCdM8oZeWHG4N+ejJ2/iKw6c5li8z/MtlzEDjupH8jEZ7cbF0bQ2khFRhiiDP9CXR5vjSUOSPyTPpSYO9kRQeRZrSLGpwpThXRH+zYW/k5Re/bVkc3i6Ac00V7H1vvCRJeckrHt4XqXkisBhRe6CUElLSpIjFKClFqrEfBmSSbAz4iEpny/i7lez3kpw4E5YDKkl3U9OUCPK1i1Q9g08UdVcKTgbLPBoDDYHQCp8bVBTi4TM1dz4LqaHqJeh6VyAYGh2MnQbsxhRqR90VL/104IlWUS5pbCnOZWXfkG96XMug64B2ctyQiKBel3JeXUfapx3pSDO43XDmeV3WEk3ywJldh7AmZS7WNWxskW/u0MrS5pruETE2xCSWlVwrEJIyi3RV9ZwUzh3dZkRllro3i3bpMLe1nn1Gso2IYlVVk25WtM5atp8Bykc6D0uKm/IRbKTXmBn4bFe4ryaLCMwCVweX0sVcDzi88+yFE9lVRDFJeXAzJ09rjiwNGFUp0zJhUqYMTvRAQTcvsToQgiZGaCc1a/mYlqlZzSZsL7cYVRmZcZwtOozqDN3c/Id1hve72oqlVsHGtI1yoilx3YhbcRAUemxwnUhcrukuTYlR0ckqHj61TG4dmXGMy5SytkzPtlFesXzrNn/3ts/y6Z2j/MXWHYREcejZp/mnd/4+/+XEX+O+wR2icVnyJAOLCrI4lW2LzsZUYvNfmSgPMiVZB7aIoKBc0tQ9sIUi3REHzmilMKV2kJ+NUhftthKiok4NdR/MVKNLKVQZDdjMkxpPJym5pbPN8cmSpGsVs1IGGt/1qKnh2GcOE00ktD0Tr6gqSzuvCEGRtGqqnibplVgb2BxICp9VnsQE2rbiSH/AdruPmRhUDaYSjZBrQdVVlEuGuq2whZbnSxQDhFa/IMaFpvJC2Ds5vpBQ/3yvz7afTbjtfW/E/ea/2dXOXMAM4GrjWkzeHwtm1+tCOLcvl3P9PvDWt2PZNVF4IrCwWdqLvalxxuyK8vemJrVy+W32THRnRGa2f5aB0iijUdbKtrOITGKJSibRduTJth39L09Z/9SUlS/UrN7nSEZOIiSN/XE0YKqAKcJcLzOzWsYoNp9pOXl3SjBqbpmcjD26DqiqBq0plg1Ry3l9JpEesV4GOw2ybYjUXUO5klCsWUZHE0ZHDK6jUTGiK48pQnN+Of3Gc9vUdxwUe+YZ9B4NinPEsiJOpsTxhDgay++qEpIT/O612ZOCp6x9ZPHPmaX17BxpshuBsVaudWJ3DRSMkeOXFXZQsPzFku4xIX91B3bu1EwPpmIccMBSrBrqVvPwrcW6eoEFrhaudmRngesb/f6ULHGk1tOyNbf3t1jpTRic7mKHUmh3c6fDyc0+xU6G1hHTkBNN5My0SzcpRYeBYlRluKipgiWgONQastQtcN5gdGB70uL0Zh9dieDdp6BKTXrakp3VhCxgM4dWkV6rYFhk2MyxlBZsFy2G45xOXqE7NapU3LV6lhPFEp89cQicRBLO7nT5i8mtbBetuXVwumWo+5HhnRKJAbBTqeflM6Q2jRGHMVPJotn4oBQO1jXUbUW5mjA9oIhJxBSyfzKSopCxNOgkkCyVmKUa3/coL2nHdqJww4RpnXBi3OeLOwcYVhlp6qDlscsVK0d3SJZKYsehK4WZaKkxM7XUhWU4zinGKcFrbKeGqCgmKe5si437V/j08aM8Y+U0gyrnSGuA6Ut9tmQk/SrWFdkg0jnlmK4rpkcixaqiWIdiNRJXK7LEsTPJr9E38frHuRPk89kpn4u9r7+w+737/v/Jd72Xl7ziYaDRw1xlofmNil/8tmXsfW+86ql1s0Kisxo+TxQWEZhzsTflayYQbybYMUYUzOu/ALsaDJDfunlvluIEjV4jEFVAOY+e1NipFGhMRk6q0xtNgkNveXzLigBfa8zEYaaqcc2KhCQl3ZF9QirpZdlOZHJLpFjWaA+mFEF65+FSrJO7LVxLKjC7jmF4i2hBXCakZhaxCRaKVU25LKH/aimivSIZaXKlRFsTI90HJ7RPSRSqOJgxvC1neWcZfXZLrtOsVszcbtk3RWD2FAQ1jX5oXtyTPZbIM6ex5vPQYomsrNlDYNTuvs5LP2ef1R4zhRmxUuMpSWLoPZTgWobx0ytuv+0sG9VRuseh7ijaZzzBKnyuUd4Q/YLfP1lwtcT7l8LFIjFXG5OHDgHQvuXUZe+ziMJcPfiomIxabI8t1WHDcw6ckMKIOhJsRI/F4pcAeEW3VbJdtGjbikHVZ6fMKb0lMw6lIt1UGEPpLZuTFpM6Ya09pnAJO9Oc5fZUzvlURb2dokqFHYlhSkzATDRxSQnZGbVpZRUHlkcU3jKcZgSn6WYld965wSf0bdza2mItGXP/+ioPBk2vO2WtM2ESUo6fWMHkkcPPOc3B9pAvbhxg/HCPdNsweKrYNofGRczsWFqnNPnZSDLyTA7OMhcg25aITFSicXHbZp5dUC0pfA5oKV9wcEXq52zlLSa0qVc0Mff01se0kppxleC1xnmNc4a0XZNnNf28xOjIVtC4JY9qOVrdktR6rAmUztBOa0ZFRlkk2MRjbMCnjm67RKnIxKV8zfJDfHzzNuKZjHSgSAaRaBWTI5HhnREzsbhlR7IlqcquHaWOzgMZ06+oydPiif8S3mA4V5Q/mxTPcCHnq7f+2Ffuex92owjv/82j+ya6N4ND2aPF4+UcNsMsGmbf+uiu8S9+2zJXssy3IDB7sVfj4v1+VzG9m7Y1d7/a6zJGk/a0t/Cl0rtFF2dpZkpJVCRKNAQgtKykpNWBup9CiCTjGhPBZwblxWZMu0C6XRKNJiSaaNVcL5KfaqIkTvQx2Y4XbUnt8LmVFaNJwKdCToKFya1SnbhzUla06raev4cFU0nF45A0OphR024XIDFgJAVLRcX4aX16w7HoWNQ5E/+m6OcsXQzbkJcZwfGNHfOegqHRByGK1qJaOX69T7Wa41ONa0loPh2ITskUHjOu0cMJajSR1L1Z5Gb2mdYOPZjQeUChQgdUyrHBYXIL03WNz8EPpACn60B+1pA+tNDAXEu8/sHPXdM6MI8XHi8SMyMsl/P6xUjNgsRcHcSoWFkas2NyDnTGuGBYzSZk/ZISoNJQasgCB45sY5p6MQ/srFDWCePtFs+4/SQr+YTKG7SKaBWxKjCyKYNpzrCQkEcImhNbfawNHFgdMMhzimM9koEiGYuQvu4obOKJUVFstCiyFHNgyJHlM9zVO8sXBweogiHVnlsPbnKm6vKJzVtp2RpfGbZO9bFHA5/bPgxTQ1ivqbzh2GAFADPW4lR2dELwBoYJdtsSsohPwdRQrlh5vkDzTIroWuyU7URhh+JKVqxoqj5UywHTdmR5PRfUbww79A+M6OUl01oOtj3NGW50MC1Hp10SgqLfKTA6UDiL85ql3gTXLpkWiXjDRMWzV0+TacdyMmEaUr40XGOnzPFBc3ajR505XnjkQR4aL/O7Dzyb8TgnP61JdyLJOBIsJANFdciT3zqkrg3pF3qYAqaH5fmejBTj7RzdmTyRX78bCudOqGck43yvf/Ob3yD6mD345je/Qd5/6xvPm272rnfeA/ey77WbFbNrdLE0rvOl4V3Odbn35z/Nm173HF77jOfxjvfcw5t/+rNzm+u3vPqluHchqWmP8hqf7zO/GBYEZi+CB92sDoUo2oqZaDyG3ehMiHOx+FxkDrspZ3vdsmLcnUR7LxXtE0u6U1H3ElQdmB7KMUUgHdToOmDGNWZUEloJKmjRtzT6EYVGedGrlEsGU0stFzsRD32i1HXRLqKmsmLnc9vUkQmUfbF8TIcijLRjeYDYqafqpWSDSDaIDG+RibypaGwulehtliwu1wxv16x9up67zEzXDO2Dy5hjp5nXfzSNbiV4IS8z7Yr3u9fIM98GaKJZRtLB8hx3yxrFek7VF2FnSOQBZ6pIMFKrRYwGDGo5Qxd9zKRCTUrUSB4YMQSU1lBWmLOejgtE1Ud5Q7EW5ap6eWi6DpTrnmzTMDl0c7rtLbAfe6MvN2qa14XIy6W2v5LozAJXjsw67jp0ltVsglaBB4erhKBQY0tMA3qqiU6xudNhqTdhOM6pRyl4eWa4qBlUOd2kZKtsUzpLYrwIz61BK5iUCVniWG7XDIqMyhmsCYS+I2yllJnc0zpPGbLWmZAYjz+suG15m+2ixcPjJW7pbFN6Sz8rOFt0uLW7xXbV5tROD4BYGAjgvGYln0AaiFPDmZNLmNxjE4cuoTrkWO0UDMc5aicnGSmmB2qqdc9WO6de9dhtS/thRTKMuExJhQEN1bI4mGmvUE6sl0MrYIGqMozrFKs8t69tUnpLy9astgKnx10GwzYqCUSvqGqL1hHnNdZ4htMcowNVlVAWKa12yVpnglKRT50+Qi8v0SqynE+Z1CmVM2JlfXiTo50dMuM40BqhVOR4VHjTakoCaDEibYEaWyajPiEP6Lak0s0Ka46fUaEzTzFNLvJNWQDO7zJ2qUmte+a/2dVzXMQp63y4WYX7/+DpnwYurkN57TOeB/Co+++e+W/gXe/lLa9+Kc848kO89R+9kZ985r95zHqgK6kDs8iR2YNZrZFZbROgsUveY4/cWCrv01rM0pb2YpZmtrceyWzyXlaYSU21ZKl7iWhQfMRnhmAUupLUqpDZRt0u0RpVe0KiUXVT+8XMLJYh34zYUkwH0lEge3gERQk+YAqHzxTjQ8JXbSEWypMjEdeRlClxO4PxIU3ZU4QUWqci/Qek9kxIFOWK3IB9phjf7tl8VtIUqBRCURzMif0uKpdVwbkIf3YdQa7jzCFs73WevTe7dmsrTJ59hLqbkIwc7VM17RNTWmcq0mFAuyg51GVo0uwcykVCZqjW2pS3ruBuPUBc7gl5CQ0JdB49mND94g6H/qRg9bOSuhCMFLRMt2D5M5psO1L1HtXXaIEFnjBMHjp0xeTlcvY/vPNsDu88+7E07UmPcppwdtDhxKDPnz50K/cP1njw4TXq7Rw7VeipFm37SoXWUmDRVRZVNm6TvZrSyT00RMWpYZczgy7b0xytIs4bxkWK95qtE32sDmTWM5rkVLUlaVcUR2uKQw67VrDSngLw0OYyw602oyrjlt424zrlrwbrDIqM0lkmdUrLSHSlONWhur9LfsKSnTVsPbzEqUkPnKZ9zKJ3LEfXt3nK6o7oXCaGylm8M6goJMTkHqUh+4oddMuJM1lLUsTqjqJc1kwOmPki3MwMIKSAiQSvcEXC5rjNpx8+wkPby/TSkmcvneCOzoZEZloVNvGE0lBstJgOcsbTlLNbPYoiEYt/E1BNFMs1EavxXy1x/KFVHjq1wl+dXeOhE6tsPbjCmWMrnNrpcWLS53Pbh3BR8/LDf8btK1tSUywXjcvotkhxe4k+UBCTiGo5iiOeeilKwc+pPPfC1KIXdWDOi82n/8sL1hXZa907+/tcjcVewjO3UObqp0ntPfYMM53NE4kZ8bgYvvvebwHkGrzoFU8/b9v34jUv++AF39t7Hc9Xj+cn3/Vevvveb7lqka3LJS+wIDD7MJtwz13HrG2iA+JINtdmhL0OWHuiK7UjVrVMzGe/y3LXMWtPJEaNpqQDT90zUt9l4iTM37NUay3cUo6eOsxU0ph8KwGlMOMKYkTFSLblsBNPvu1pbThMGUimgfYDY/RwLBbC3qMnFcpHijURYhLB55CfUfSOeaKC6aqVFINJJKQwPRiYHhJntHw7YKeBbKsmGXqygafzgCEZCWHSTqIhxYohdHLpZ4iihQmNHfVeMqO0kEDbFASNYffaWgurS4yfsYrrGJJRjS49yU4pxM1FkqEj26ixw5pkVEvqXO2xwxI7LMVsoBSNUH2wS1zpAxKJic5BVaPHU9Lj26z++TaHPjZi5QueZCxFLvsPOIpVRbV2DsFa4AnH461NeaK0L+fiakR6HgtxOd+xLkRkFnh0WF6a8JwjJ7h1eZsYFcf+6gCMLXbHoEsl1eaDIgwTlntTiklKrGeFeSMr/QmHOwNyU+OCwahIK6sk6lIn+Eaj2e8UEBWDIqOTVmgdObQ0pNcpSPoVrQMTDq4MyaxEvdt5SXdZyEzhElZbE27rbdLNKqYuoZ8VfGm4zolBH9WvUEcLfCaGL2akeXhzCV1oss1IOtAs51O+fHydbFORn9YUn18i/csWrZMKO1b4kSWeyRid6opwfs2JQ1obinUhM7PCzK1T4kgmmkgwbcfB9QG3HNkkT2u67ZKl9pS2rfjMzhES5bmrd4Zvuu0LPOPIaQ4c2aFzcEx3ZUK3XZJmNWnqyBPHLUs7fMXRU7z8zr/g6ctnWO5OOfzs06wcHNJqnNyiU6hafspxSsvW1N6wUXQYhpy7emeonzFh8Mya8oAnHCwxaeAZR06TrE8lI8EGooZkU+NakaRdk/RKnn7kzBP9FbwhsPrFn+Alr3h4n9h+L2GZWfheCK5Z9b/c7S+Fc/d9y6tfyq+86b8/anvmK8XlEJRz8aJXPH3+914i8R8ffBPL/I/5/5dDuM49/+WkdV3u9b6c7f5h9vHLOhYsCMw+xKayfPReSMy0kAmvViIS955YlPLbe6l/MiMzWoHWqJneI8ZdItTUi6GqRcxf16iiIjs1wZQRM5WIy/RAIpV+jSIaTcwMhIAqa+zOFDWtULUnJoaopWhlVE2tlyKgvBS31MMJlJWQKufRO2M6p4NYQkeJ0OgaVu+r6Rwbk+64uUuM64hNczJSuJYUJGufbPrZ8K+yZ9BVk7ZWCYkxlRSIdMsZMbH7XNpkp1IcyZxrUunq5nr73W20gl6HyZ3L2Imn/fAUPa0xw5JoNSGzmMJhd0pJE/MB5SN6WqMKBy6gC4fdLrBbE+ygICqFW2rhj65JZKghVnE0QQ3H6NNb2BNbLP3pw6z++Ta9B0uilodo78uL4XEz41zyciOlj11N8nKp486iMQsyc2VwXqNVpJ8U5FkNJkK3Jn/GDtWdBaEd8B2P7tb4oIhjqUOip0JsNrc7PLCzyqceegoBxZH+gMO9IWdP9zl1ZomqtBgTaCc1+doUoyNP65/lWYdOEqIiRsWBlSGdvKKTVNTeUAdNCJqDvRHL2ZRjgyVKZyl8QuUNZwZdjm0vszlpoVWk3S3p9ya4W0rC7VN839NtF+S3DinWFa4dGZTirhUttM5E2qcUnWOR9qlAth1pHUtQtcLuGMzAoOpGa5mIw2ZI5fmhPCSjiJ1KxkGwkdXlEXf2N3ne+jG+/uCXOdgdkRrPRtFhq2jx8Y3b+MCXn8mfbdzCiWGP9faYp65t8NyDJ5g00aluq6STViynU0pv+e0vfxV/euJWUuPJrONAZ0y/XWBNACdpYdFETOopvWW1NeGB06v8l798IZ/aOso33fV5dMcRWx61maKO53zuy0fRTdqZbjuiiQ2ZiSSpY7U/YVhm1/gbef3i/b959IKRlfPZK89+zp0Q/+S73ss3v/kN540GvPYZz8Pe90Ze+4znXXQi/+af/uy+SfxPvuu9tH7jp857vOsJP//P/xNv+pb79r32//yWVYC5TuXROoRdKrpyudqV17zsg7z2Gc+76LX797f97mW3azFD2wNlxPoY3VyWhpBEH+RvY/a9h1JS6HLvJBwghuY4av6bGKQWyszRrK4xmwOyzQrfMtRdS9VvrJpdRJduLvKfn9NoQishakVINMV6gs815XJC3TckY0d6fBt2RrtCdq3AefIzFf37PfmGw9SR7nFHul0RMku0mtaGJx2FJqICrZOK1mlF1VVMDiVMDySS4pY0BTQdlMsK19YEK2lppoxMD6SEbqu5oLrREM3av2tNPSN6ao9Nsspz6qcso6uAmTrMoBDntW6Kzy2+ZaU+TW6JzTGjQiIzez6DmBm5TonBjip07QmZJSx3xcnMe/ncnCPWNXFSEMcT9Oktsgc26H7mFAf+1xkO/a/tq/K9WuCx4YmKkjxR7mAzXK+E6WLk6Fwyc3jn2Tx9cPcT1bQbCrU3uKDZrlqMRjlJv6K7NGU6TVE6glOYsSEUls3jyyRb4sDll2XBKwwSzj64jBsnDKuMUfNDpYlTw4GVIUf7A0pvSBLHzrBFQJEb2d+awHNWT7DcmnJi2GPQCP6XWgVnRx2OD5dYbU+5pbNNbmqWsgLvNJNJhmvanlrHantKp1fQ707JlgsGwzbTE92GhEQy43j6LacZ31UxOSQW+9pBsSaOlskIWVzbUXSOa1oPGexYYQpARepupFySwpshge2nw84zI52n7rA9bHFi0ucvhwewOlB6y0o2oWMrnr58htIbimHGsdMrbB5f5stn13BBU3iJ+LfzivX2mAOtEX9z5QtkxrHWmXC4P0SryJlRh4cHfZYySbFLlkpi26PaHqUDtTdMXUIImtEo58R2ny/sHOQpB7ZZPTBAedAl6G1LVVjqoNEm4juBkIDyCu81qfEcaI+uyffwesfm0//lIwjF+dzIXvOyD15+PZILTKYvtP/e1KjZZP9c3PGpi6dhXUt8zack3/3e//5M/rdPvR5gTtY+8Na3z6/vxa7f3jSzc0nG7FgXwvnMFq4UM4J5JViI+PdiNuEODdloCIRqiMpu2lhDbGD3Nc6xVzZmNz1qhnNT0JzHntoh3LqCa1t6xxzERvzXsuipI3QydOHE9StGQmpxHUvVF9tjoiYZeZJBjT0zgOG4OYcHGnIQRAdT9XJsETBTqXGiQkT5QLrp8e2Eup2SDCXVrPeQ1IVxuWJ6QFbMZs5f2cAzOWipe5BvIi5jMWKqSLms0Xd06Z/ZhljvaoGsFdex5jrMLKlnRUOxFn94hZ07cmwZ6R7zxFQc3lxHrI99ptDeoKtIMqgxpUdNJaqF93I8Jc5pWFlJm31uuvL4bgZ+Gb09lGiQ2SUzVIGoPEym8nkPhii9SCG7GXGt0sauFh6v6MuVYhGRuTiWW1MOt4Z88uxTCJUhTlLcYY/WgYAmJLLiL46UCtcNoEAlct952tPO0EsKCp+wmk3YLNvcv7HK8pEBLmhqb0hyz0o+ZWfcwnvNZzYOs5JPmdaiVzw17aOJHOkNOTtpMywynrqyydakRekMISoeGi8zdQntpGJteUSMitR4tIocO7XC5rFlnvLUs2LRXKS47RQz1ZRrsuD10PYS7aymvTJlWhhMaXYNZSLUPdG1+AzZp1bkm4r2icjoKYrq9oKoM+xEETJwd0659eAWy9mUL22tcv+DB1g/NECrSMvW7FQtVrIJIWrGZYretuS3T1k7sM3pnS4hKlw0rPXH+KBJtefkuM9vl18LwDOWTnNiusTGuE1dW6rScpwlOlnF6tKYSauiqixKwdZErmsMEEpDzBw705wscdy+tMXkeWMe2l6m2mphTSRExbOfcoKzqx2O379OesZQH+9wbDvngaJ7rb6K1zVWv/gTfDNv4DUv+yDveM892PveONdkvBbgvt1ox+z3O95zj2xzn0yWX/OpD/KSV7xXSMZ97Nt/r0h9tv+R7/5GeNP52zPbZq8z1wf0eP7+uY5dsv0Tr4U5FzNnsNe8QsjHa56xq2v5wFvfzmv36Fze8Z579r0PcPojj+zD7FrMtj0fidl7rtcCd3zqecDb55/jhUwCzud89pqXfZAfrsfwxUv3FxYRmP3wXlKcYpRClLMUsD3kRSnVRGUaFzKtUGm6K+IPUdLQinLXuSzE3UryM2vmGIhliRpPSU+PyTZqcdhKJbriE01MDL5t559SvdqmWk2ZHkhQPtI9VtL90oj2F86QPLQhrlszQrXX6Utr9NYIIowPWlzHENImTW02yUfC+ckk0D4VsBP5yXYC6U4kahg9RTM6YpmsG6KVh5N28uMThS0kjWx4qyGsie5k7swGj7iOM0c30gSVpVRrLbQX0jQ+muGWMqZHu0wPJNRdTd3RYhvdPBjndWVsU9QyRFRRoStHVKBLhy4cupTPVE9qfD8jLnWF6MyssmcpgLHRLs2u2143uQWuKa4G6Xj9g5+75HH+3m3f94RGYq5FFKZ9y6lLuo89VnOABWB72uIjD9+B84a8VxKTwPRsm3qY4XdSiWRXCjMwmLHc5O16QfSatFXjgmZcZ9TBcGba5fPHD1FVlsoZimlKbh3L6ZQjrQFHlgfcenCLGBXHd5Y4e6bHzihn6oTIPLi5wnia0c9LqiCWzDEqITLeijlA0eJAe4xSkcobVvMxS0sTdKUZFhmJDmJNvFTj+470jhF+2eGcYXOrw+RMBz0VJ0efNzVcIpgpZFsSmTEThe8GirXIdF3hepGl5QluvWZyNDI9EAljy8ntHl/aWmUyztGZZ3Orw4lhn62iReEswypnUOfctrwNB0rytCazjmceOg1A6SxGSf2YgOJge8gtnW0y69iq2kJygsaYwFJ/glaRyhlqr/FNHRkA5wzeS1TFtGQBcjTJ2Bx02Cw6dJOS5x05xu23nmVtecSh9ogqGB4+vUxrfUK15gkdDzaiUv+I78gCgvNFN97xnnuAiwvMZ+/f/9z38r994+a+fWf7713Vn712Iezddk6CGmKw9/XfuutvAEIMbn/9//mEFm+8GF5zDkmZEb1zX38i2rH3+p0PM+vrx4JFBGYPJBVMzyMp89Sw2SR8nv7lQGshMZj9dstaoVAScTBNMcfE7k6WvZf/G8ITnUdtbJOOp5hRD7eUNQRDU1uNzxQhaWPHjmrZkm47WsfHYhM8i7ZEIU3M9Tpxl1DFQCwKlFJ0j1dsPSODbahbGtO12EKhS7FlDlbhUzWvUZOMHNEq7NgzOZwwukVTLYk+JD8TSSaRdORFZ9LWKBdJBxLBqVdbZDs5cVo8ggjEGPcTG+eIvQ4+1WTbgZBKfZmo1VzcWXfktbKv6Y48uvIoF4i5JWiFLupdwuk8ZmdKzJqvt48oAviI1lCvtEjKCrYq8K6xe95TaNPPIkYL15jrCTPycSW1YR4t8fl7t33fdZvi9VgxeejQnMRciqTMtl3gylEVlsK1yTsVd65vcDLrsb0pq/BqnGDHiroXiK0gtslpwNhArSKdVkmMirJJhVpvjbjj8AZr+ZiHR0t0lndIjOdQNuCOfIND2YAHp6uM6ow//+KtmG2LOyAT+G5ScvvaJsMqIzGenTInsZ6eLWknFcvZlHGVymQ/KooqYfvhPq27alLrUbVicLLHwHa44/YzTFoVPnV08ooYFXVtCE5jxlqIihSzx7VBOcg3ItlOoG5rylVFSDW+E6hqTb3sJVWtV1GPLdmGxj6UUBSGaqUiTg0EhS40G1HR6pQ4ZzhZGdLc8fW3fpnBQbFJ1kTOTjuMy5SlVsGwyAhR8dmtHp12idGBw70hn986iFaR0aAFQbF8eIvKy7NoXKSk1nOgJ0RuZ5pTVAkHlkast8YcHy4xnGRoHXng2Dobq23+2tEHyG1NbsVwZzWbsL42ZFykfMPXfIE//vKd2MSxZHY4dm2+itc9zp1o751k7yUy53v9He+5h9fwQR74FPz177yXz/5myYO/e4ZjL79lftz/9N1/g+/lW/nr33kPr/5H9/Cqe9+z7/z2vjfymmd88BFkaTb5/m8v/QgfYMxrn/E8vjl0+PvvfdG8Tf/im3aJ0vVUY+bcvrzjPffw3176EbgEIXw88NpnPI+//p338o5/tBtde82ffxf2vhc9IhL0rvd/+2Ufd0Fg9qKpCB+9Z7eYyS5hAfZUiZ+Rm11iM39tFtEoKyFD2oA28yKXsa53t/eBGDUMa/RoTHY6I0sT4iyqMGtX7UiPB5gWc3exGPdMsGdpbrOoxqxdnibaU5E/uE3ylIOACPnrriEkGpMZqTWDOIpFpfAtTbbloYxEq8k3tURaUkjGEVMG7FRsnSGia7E2TiaBuquZHkjJ7lf7yUvj5qb2uLHNr6HW2KlHhUiNbWyjAzrR1B3ItgPZVkXUCt8yuE5CcrZGhSDHCxBSi5mWcu0AVTqwhqgUygXcUk5MGuLYbaF2RhDc/jbOSOYC1y3OR0pmpOZGTw+7FBZRkRsHSkeIim6rJNUeHzRJq5bbeW6olSamETXV0Hf0lie00ppeu6CTVoyrlMR4bu1tczgfkBvHqM7wUTGoRM/yf20+ixhhcqZDa33CoaUhreWCctglFoaNSYd2v6L0lhAVdTNRX8oLDuQj1rMR23WLyhl2hi2G0xytA93DI1LtOVN0CQdLCGIscHbUoZuXWB0YFhlKRdLUMR0lJDt6bvvvc0hGkAwi2TA2lenFcSxkkZgEotUQoJimhKCIWcC3FXYkbmaVSwlZxIw10UTUmZTJxEIawClqE9koO4SoGE1zrAloFam94fSgi1IR77UUtoyKqkw5pbr08pJJlRAnlmx1ymprwua0zbQWU4QQFUYH1vIxm+M2t65IkVGtAk9bOcsXwgEGoxYm94Sg+MvBOofaQ5aS6bw9z107wf/80l38359/GmpiWXnqAFMsUpIvhnMjA3sJy8WiMLP3vjl0eO8Lf4ivfMUf8pWwb6L+la/4Q/6oyRl7zcvexDu+8p59xzz3XDPi84733MO73nkPU+Ad/0gIzgf0+IL72vveCPfBLzwOROa1z3jeY06Z2ku8Zn2cp55dIbG50ho6f/Rbb+I1L9vN2/uAHvOudwqh5D3wmpe96orODwsCsw/KWpSyu8RgVj8E5PdMuN+8N0uDijHu6l9m0Q+jUTpBdTv4g8u4boJyUaIlVqNiRFUBOyhQOyMhNSESiwKKojnHnhoye80CfJCowSxdbFaHZg8hiM7tOoElqfw9GLH6Fzmjp3XxRhG1YnJAk4412bYTEf66RvlIayMQMkMw0lZTeDLXOJmFKATDiQuamTp824p7mm488pchpmL9jHP7i33ONECzCIy1hE5O1bckQ0c6rAlWaiTYsZuTK2LEDkpUyAiJuLTpSQXOy2djNTFLRDvjo6Tead1ohxKi0ag6oFwg5BbbbRO3B7sFSo0hVvVueptRV/X7tcDF8Q11ecH3/u/k4g4+NzJx+Y0Hf/EJNxBYEKHHH+1WRdodspKLZXE3L6mdoaosvcNDyjKZV4tfyuT3cjoloKi8oWVrpi5hu2zhgub0pMfmuM10krK8NKasE2KETl5x4KljHjqzwoOnVgnDBOMUtldT1JZjgxWGk4xylKFTj9KRLKt5mD4haLxr0tcSz3J7SiepUCry4OYK5bEu9vCUOw9ucHxniRgVBzsjjg/6VLXl8PJA2uQUKgBN5GVGXmwZqVuK4hbN5CmBkAR0pUjPWpRTpJsGP80JnYBqOWodsaME7SSKE3UkmkjIIrpS5A9biiOO7uERVgdOTbqcaSIs/bxkvTVilGecHnWxJnDmwRXU+pQQFNZ6xtNMBPnjHOUV5SBjs9+mm5YkxjOuUiZlyua4TSep0CrywMYK5Sgj65ZN5rEieoXSUFeWs6OObDdYYXvU5lmHTmK15/m3P8hDw2Ue/uIBTm/0yRaPkwvicgjKhcjMX//OewH4wG+9iexN7Ud9vnNJyez3H/3W7LXzi2bKeye8hv3RoevNoQweeR3P996V4tH2cxYN+sBvvYl3vVPIzaPBgsDAnLDUroDMEMty7pQV1R475AhKz/Qv6f4Cl67eJTIqgjLQ71Af6lJ3Id0ZSw0XrfGdBNXsV60YwoFliV5sTVGnt5pUMAN1uVsMcw+ZUakhVuWetCepJo+eVbmnsXW2ED0QUVGLffPJk2RmjfHRluhgJgq16WCnwviUfKxxLYVznmJZE0ykdVYE81EhxCBG6k6C1kEm/EWFGgNWgWqRHdP4VFEsGZKRbppYC5lwUsdGUt1qMBaFwpmaOhQQA7WFdKvAJRIh0mNPNJqia/FrKcmwFgvp6DC+FIvrPANXoGIg6Ijrp/hUkwxqotVE47GjKdQBnxpiYggdg9pu8h2ik2qWZldD5Hy97/vxZMfjdR3u3pD6CG4weFyO/2jx9277Pv7Pz7z9WjdjHwbDJ34V9+TnDnD4WZeuYbEYJ4LZdWj5IUsKlsMUXQdataeT73BoeQhA1ZGoiNWeEDTBK4aFFJJczSf0VCQLhhODPvdPlpkOM7QJREoK7TCqZjjIGVUZreUI1QQ3SiF4Qh5QD1qqrmb9tm2q0KaoPW7bgo7USoNTkAVQQmqW1gd0/IRbsy3apiK2Cr68uspKOsFPSsqdNjEoHnIZg6HCplM2zmqGA8i/4Mg2a6IWLaUpGov9Ioq8MDfkfyVCfuVlGyWPJnm85eBbER0c7Hi8gTiOqGkkOaPJNyM+U9RdCKs147ORJHOE1NPR29zVPivXfgqjccLGsZSlAyPioCR8KcH1IkUPMJGpT9EFmLLCDhUnH1qC28a0WzXTEuoi0uo6jlcpo7HH1wqtatww4mqDtoFQG2Jh0O2aJTtCTaccTCqi7jEeBryBvh3xtGTI5qqik1aEabHv+/Fkx97rMJtU/8df+Ft8/2v/YN925064q1pS5//7j97Pib/1et7xHtlv9vqV4F3v/3beAbz6zt+Zpy69+iW/c9F9/nboULz8X83//4PR96PqON/vXe//9n1tsfe9kVff+TsMfPGIPgAMfDH//9y/z91eTwaEi7x/sX7+x1/4WwC84z370+8u1d+9x7ga2/7t0KF6ye/wu/40eJhOHc9/yb/i+1/7B/v2uZxxouJiNPGlL32Jpz3tade6GQtcpzh27Bi33HLLtW7GNcdinCxwMSzGiWAxTha4GBbjRLAYJwtcDJczThYRGGB1VYr9PPjggywtLV3j1jx2DAYDbr31Vo4dO0a/37/WzbkquBZ9ijEyHA45evToE3K+6x2LcXL9YzFOrj1utnECN99YWYyTa4/FOLn+cb2PkwWBAXQj0F9aWropvnQz9Pv9m6o/8MT36Wa5sV4NLMbJjYPFOLl2uFnHCdx8Y2UxTq4dFuPkxsH1Ok4WdWAWWGCBBRZYYIEFFlhggRsGCwKzwAILLLDAAgsssMACC9wwWBAYIMsy3vKWt5BlF7dqvVFws/UHbs4+3Wi42T6Dm60/cHP26UbDzfgZ3Gx9utn6cyPiZvwMbrY+Xe/9WbiQLbDAAgsssMACCyywwAI3DBYRmAUWWGCBBRZYYIEFFljghsGCwCywwAILLLDAAgsssMACNwwWBGaBBRZYYIEFFlhggQUWuGGwIDALLLDAAgsssMACCyywwA2DJz2B+fmf/3nuuOMO8jzn7rvv5mMf+9i1btIF8T//5//k277t2zh69ChKKd797nfvez/GyE/8xE9w5MgRWq0W99xzD1/84hf3bbO5ucl3f/d30+/3WV5e5p/8k3/CaDR6Ansh+Omf/mle8IIX0Ov1OHjwIC9/+cv5/Oc/v2+boih43etex9raGt1ul1e84hWcOnVq3zYPPvgg3/qt30q73ebgwYP883/+z3HOPZFdedLgRhkrN9M4gcVYudGwGCeLcbLApbEYJ4tx8pgRn8T41V/91ZimafylX/ql+JnPfCa+5jWvicvLy/HUqVPXumnnxfve97745je/Of7Wb/1WBOJv//Zv73v/3nvvjUtLS/Hd7353/PM///P4spe9LN55551xOp3Ot/k7f+fvxK/+6q+Of/zHfxz/8A//MN51113xla985RPckxhf/OIXx1/+5V+On/70p+Of/dmfxb/7d/9uvO222+JoNJpv8/3f//3x1ltvjR/60Ifin/7pn8a/9tf+Wvz6r//6+fvOufic5zwn3nPPPfGTn/xkfN/73hfX19fjj/3Yjz3h/bnZcSONlZtpnMS4GCs3EhbjZDFOFrg0FuNkMU6uBp7UBOaFL3xhfN3rXjf/33sfjx49Gn/6p3/6Grbq8nDuQAohxMOHD8d/+2//7fy17e3tmGVZ/K//9b/GGGP87Gc/G4H4J3/yJ/Nt3v/+90elVDx+/PgT1vbz4fTp0xGI/+N//I8Yo7Q9SZL467/+6/NtPve5z0UgfuQjH4kxyo1Fax1Pnjw53+YXfuEXYr/fj2VZPrEduMlxo46Vm22cxLgYK9czFuNkMU4WuDQW42QxTq4GnrQpZFVV8fGPf5x77rln/prWmnvuuYePfOQj17Bljw5f/vKXOXny5L7+LC0tcffdd8/785GPfITl5WW+7uu+br7NPffcg9aaj370o094m/diZ2cHgNXVVQA+/vGPU9f1vv4885nP5LbbbtvXn+c+97kcOnRovs2LX/xiBoMBn/nMZ57A1t/cuJnGyo0+TmAxVq5XLMbJYpwscGksxslinFwtPGkJzNmzZ/He7/sAAA4dOsTJkyevUasePWZtvlh/Tp48ycGDB/e9b61ldXX1mvY5hMAb3vAGvuEbvoHnPOc5gLQ1TVOWl5f3bXtuf87X39l7C1wd3Exj5UYeJ7AYK9czFuNkMU4WuDQW42QxTq4W7BN2pgUWuABe97rX8elPf5o/+qM/utZNWWCB6xqLsbLAApfGYpwssMClcaOPkydtBGZ9fR1jzCOcFU6dOsXhw4evUasePWZtvlh/Dh8+zOnTp/e975xjc3PzmvX5B3/wB3nve9/L7//+73PLLbfMXz98+DBVVbG9vb1v+3P7c77+zt5b4OrgZhorN+o4gcVYud6xGCeLcbLApbEYJ4txcrXwpCUwaZry/Oc/nw996EPz10IIfOhDH+JFL3rRNWzZo8Odd97J4cOH9/VnMBjw0Y9+dN6fF73oRWxvb/Pxj398vs2HP/xhQgjcfffdT2h7Y4z84A/+IL/927/Nhz/8Ye6888597z//+c8nSZJ9/fn85z/Pgw8+uK8/n/rUp/bdHD7wgQ/Q7/f5yq/8yiemI08C3Exj5UYbJ7AYKzcKFuNkMU4WuDQW42QxTq4anjC7gOsQv/qrvxqzLIvvfOc742c/+9n4vd/7vXF5eXmfs8L1hOFwGD/5yU/GT37ykxGI/+7f/bv4yU9+Mj7wwAMxRrHzW15ejr/zO78T/+Iv/iJ++7d/+3nt/L72a782fvSjH41/9Ed/FJ/+9KdfEzu/1772tXFpaSn+wR/8QTxx4sT8ZzKZzLf5/u///njbbbfFD3/4w/FP//RP44te9KL4ohe9aP7+zMrvW77lW+Kf/dmfxd/7vd+LBw4cWFhePg64kcbKzTROYlyMlRsJi3GyGCcLXBqLcbIYJ1cDT2oCE2OM/+E//Id42223xTRN4wtf+ML4x3/8x9e6SRfE7//+70fgET+vfvWrY4xi6ffjP/7j8dChQzHLsvhN3/RN8fOf//y+Y2xsbMRXvvKVsdvtxn6/H7/ne74nDofDJ7wv5+sHEH/5l395vs10Oo0/8AM/EFdWVmK73Y7f8R3fEU+cOLHvOPfff398yUteElutVlxfX4//7J/9s1jX9RPcmycHbpSxcjONkxgXY+VGw2KcLMbJApfGYpwsxsljhWo6tMACCyywwAILLLDAAgsscN3jSauBWWCBBRZYYIEFFlhggQVuPNw0BObnf/7nueOOO8jznLvvvpuPfexj17pJCyxw3WExThZY4NJYjJMFFrg8LMbKAtcKNwWB+bVf+zV+5Ed+hLe85S184hOf4Ku/+qt58Ytf/AjrugUWeDJjMU4WWODSWIyTBRa4PCzGygLXEjeFBubuu+/mBS94AT/3cz8HiCXfrbfeyj/9p/+UN73pTde4dQsscH1gMU4WWODSWIyTBRa4PCzGygLXEvZaN+CxoqoqPv7xj/NjP/Zj89e01txzzz185CMfOe8+ZVlSluX8/xACm5ubrK2toZR63Nu8wI2BGCPD4ZCjR4+i9Y0drFyMkwUeLyzGyWKcLHBp3EzjBK58rCzGyQKXgysZJzc8gTl79izeew4dOrTv9UOHDnHfffedd5+f/umf5id/8iefiOYtcBPg2LFj+yrV3ohYjJMFHm8sxskCC1waN8M4gSsfK4txssCV4HLGyQ1PYB4NfuzHfowf+ZEfmf+/s7PDbbfdxt86/D3YrE1xxzo+1Zgq4DPN+LBFBdAO8k2HLTxRKVBgxzUhMfiWwY4dAFFB3U2IRrbp/OUWbG6DdxAiaAVKg9YQIypJIE8JnTaxZQlGE63GtQ3aRcxUjhtSQ9QKFSNRK6JR2GGNipGQGJQPqBBRVcAMxlBWROd3z1nX0uEY5PwxyP/GQoygDcpoUApaGdXhJVzHoutIsZag60jrdAGALjzKe5SPhJYlpJaQaKJWuJZBxYidenyqURF8oun81RZqPCE6j9KaGIK0bdYO2L0eiZU2+0DsdwnthJCYeb8BUNIOFMREo2o5TtTyvgoROyhRkylxWoL3YIxch9mKT/NbJQmx04I0gRip19uMO56P/1//ml6vd7W/gjcELjRO9uL33/Cdj/k8f/vtv3VF27/6Jb/zmM85w7ve/+2P+Rj3vvYfXIWWwJt+4b9cleMAfO7Dn73kNs/6xqtbMXkxTgSzcXL0Z96E6aUkeU01SaHW5CtTlJLbTmodw1GO1gFXWRgmRBNBgco9rV6J1oEYFamVZ8DWQ0ss3WflPu/B5YpyPeLakWgiKiqy0xoVIJmA8hFdQTKJZNsO7SKD21NGt4IuFckEyiXwHbl3KqdQQLCRaCAmEeUUUTftqhW6UkQbUV6RbitMCZOnBHw7oLyCgNyTW14uSFDky1MO9kdkxmF05Oykw3CSkSaeyTjDTyxYyWZXJmBsIMphpEiFVyS5w9WGVrsCoLxvCV0qqpVAuq3JNyHfCORbjqgUVU8TjSIdeKJWTA8YooKQgM/kvh81VEsR141op/DtQLQBggITwUa09YTagI4oLW2MTqMmhphECLD0ecv0gLy3/MVIuaxRLpJtR8plRUgURVrwpZ/9l4tx0mA2Tr76O1/Ey37y5QD87r96L9/6L1463+ZC///uv3ovAN/6L17K279twhv+f20A3v5tE55+94f52mPH+eStT9l3/k/82h8C8Lzv+hvzfWfH2YvZ+W770f83D77thx9xzhm+9thxjv7i9533GOce70LHuNC5AT77pk/xlfc+94LXAkD9yheJ3/10fn3p3/HPvl/x4Nt+eN/258Mnfu0PL3gNzj3+ubjQMWf7Xax/F7r+557zPW95N3/+Wx+5rHFywxOY9fV1jDGcOnVq3+unTp3i8OHD590nyzKyLHvE69bmmE4fk+Zoo4gdhc4UJjfkm0EeCsqQlCUhNYTMENZapDsVwRtiO8UOK3wrwXeEwCQjDwdXscMSlJNJNMhEGuQO7YFpwJRjVLtFbOeEtoUkR5mIrWtc22IChEQRrcKUARVBZxYzrVFjjx41k/SqFuKCBtc8TWwCRKIPKGXkCap1Q6Zmk3mNSlOwBn9gibiSk0+cEIbakowcqtUmaoVOArqoIYC2Gp8YVCYPCN+z2Ekg0Q4TtTzM2ha9EjFFIIa6IS6q6b8D25AoBUSD8hqUBRWhCEKMsgzflod31Eoe4llDfpSCNGJKv8vLhgVqp4AIMZqGtDWPRN1c/9BIwLyCYYUyDowhmQxJWro59I0f3r6a42SGP/nR77oqbfuTH/0uXvC2X7vs7Wek4zUv++CjOt873nPPo9rvfHj7G/7xVT3WG97+S1flWL3uEz9JWoyT/UhWLGuHHaWzJF1Ft1XQyyq2Ji180Fij6WSa6aSF3chJRopqKcj9ykWqmMriz9hSd2va7RKzlmBNyvIDNXXHECYKN1GUSwrXBl1DviHko+optIe0jvhlKLvQOeVY2oAsGMplTb4VsFYz6UWSoZozhqrVEBYHPhWygoporTBBkZ4BW0SCVWgX8aXC60jU4NZloUyFFHQk75ekScKZ6gCtrGY0zPGVYWVtSGI0BRmRBFXJ/TZmDp15XGFRqSdJPDFCnoNzhnYuN/iqndMaKOwI2mcitogYHUmjxkwcibLUfUsSHelGSXssi2kh0UwPJLiWpm6Da4FuCSE0WvqvK4Xre2h5CAqdQH5/iq6hOBQwU4UdK4pD8r7qaPxRj54qYk8RVhXLf+npPDTBbacA7ByQ78jNME7gysfKhcbJn//WR/j7/+6VAJjUkvda8/fO/f8Vb/vf568D5L0WSof5NkoHTGp56v/3Dfx/7vghXvAP//Z837fe/7O8+8d/mz/5z7/PC/7h3ybvtebH2YvZsdqJnm8z+/3yn/oOAN58xw9x99+864LHePlPfQdvvuOHeOv9P7uvH5/4tT+ct2l2LIB3//hv7/sfIEnS8/Z9L1SeEnstTF/TTtQjrt3sPO/+8d/et9/e6/eKt/3v8/f37n8+nNvX2bFn++3t3178yX/+/fOe+9zPF+T7AJc3Tm74RMw0TXn+85/Phz70oflrIQQ+9KEP8aIXvejKDhYjMUvmK/ymDOgykm8FfCqRD10FYmLQLsjfWjE9lFN3rUyyuykqRHQVSbcl4uJbVqIKs9PUDZHxnljV8rdz8jMtUIMx5uENWn+1QXZqjK4D0TTnryO6DNipJ9kuSM6MMKd3UCc2iMMxcTwh1rUQk9CQpRigLIWgmOYjN0Ze9x58AB9Q1hDrmpgmlGs5qpnbR6VId2pM4cBHVIgSbTEarMZ1E1w3QZdeIkZFlGWzAHZUoauAKQI+t80TAmlfc81RzWsh7kaLQK6H91CUqOEEuzkm2S7QlTzAdOnBKFRkHn0iBPSkxp7aRm0NiFUl1yNGYlHKMfeeK4bmOgTQiugDsSyJVQUbO1f2/bmOcVXHyeOAR0OG3vGee+Y/V7L9kwG3vPDWx/T+kxVXc5z4UcLmVofRsT7TzRZbOx2+/NABtk73mEwyBsM23su9z052o8oxicQs0OkVGCv3cDdKGJzsEZ1ielgRrKJ1qqB/3zbdhyqW/7Lm0J+ULH1Ztu+cdPSOe6JqiIwDFaBcMrhcy2S9iLhcobycN2TgM/Ct5sbfLATZiSI/q8jPaOxIYYuGvCQKn0OxrnCdiK4UyUiBVygTUZnHtBytrKIoE+rSMilS3NQSa83OsM3ZrR5+lOzWA3cKNbH4WmNyBxGMCRgTmUwypsOMs2d6bJztyYLiKJKfFbLlciFswShCYtA+YqaBkGpU7Ukf2iR58CzJ5oR805HteEwJyVhhRwqiPEuiiYQsyuzI6fmzrFz3lGsBVStUkEhOsq1pndRMDkVwEp0qV5Vcx1ShfCAZVpipQ/sb3i9pH673Zwrsnzjv/X/v79nPlRxrRkxmePlPfQcv/6nv4E/+8+/Pici521yoTbP9z8Vf9b58yTZdCfb280LX5UqPB+dv+973zneui+17JbjhIzAAP/IjP8KrX/1qvu7rvo4XvvCFvP3tb2c8HvM93/M9V3YgJelJupaVfF066GdEq7DTgK4jygWqfoLraHQdyc+U1P0U5YRk+EwTtSUa0F5JOlOIYM18tV8ZI8RlFgXZg1hWMsk2BjUcoyaSstU+Y/e1k6KUfUOYT9DxfjeS0RCjGKMw2cRCkAgMgPJ+N42sSSmLdY3Kc/xSm2gg2ZGVNN/REvnR0oZ0R27IKkai1fhU43OFKTS6DpjCE1JNSDQqGKKRiJHrWJIslbaHGXEJ+2m0tfN+zNqKVlBVqBgxZYVu5+hWQjRaojClR4WAcgE1mkgEqpI0A2b9BFTSXMMQgSadLET57T1UCMHyYR/hvFlw1cbJdYgnCzFZ4PHH1Ron6YYl1jnJFMojTXprrcErvNMoHZkOM5gawrJE+EPPQVCkSyXLrYKhilTDVCLEWibV1XJgfMjic03rJBTrCXYSUDGiYqTuKfxQkw48WVtjp4He/ROiUUyOtkh3HMmgYnR7m9ERg58tgAbw7Yj20D6pCEkTJI9gxxBSsFPQVUQ5UFoi4XVXnmvlAYcKCpyCFIwNJKnDB433mqxVk1iPUpEQFMZEXG0kXSsgaWo2QhIkMF809+tWzWpvzM6kxaQy8+vo25FyVWOmQrxQCFk5kGJKaJ9ymDIQEoWqPXE0Jk6mqMmErFjBrnYwZUY60kwOGoZ3RHwrQBKJTlLIVKWFyEUwhcaOJUoVFdgJKK/INyPRSupd67TCTiOuoyj7imqtRblkUAGiLrnZcDXGyo9/6m0XfO9CE9zzRRUAfvTDHeDCBOLc1879/3zHvNC2V4K9xOZ8/58Pj3Vyv/caXYqgXG7fZsecETZgX6Rp9ntv28899pvv+KGLnuPHP/U2fuq5P3pZ7bkpCMx3fdd3cebMGX7iJ36CkydP8jVf8zX83u/93iPEZZdEo//QPqBqj28lqBhJhg5TOKqllJAaVIi0T5RzQqKrMJ/Qu05CSDTJVk3UCt8yhEQJqYBm0uxQabI7QQ+RGOU1IRN2H/mIRSlta9LOlFLyXoxgLQokwqAabU30chwtK0UxRlTt5vvOJ+w67CMxyqZgdBNNCdhRRUwMlUlxbXkgwq7GJKSGkBrsxONbGp9pQirh+2jl79nNPiQanwvhUtYK8QpB0uea66KsJTonuhfkN0ZDaBhOE6lSRYmxVghXoyOa9Sk610R1lJA4gFQTp0IEVZ4R6xKVN6Hs2fm12r32BknB26vNuQlw1cbJAsDVTR/be8yrlUa2iLI8OlytcZJsy4JYMoRyXeGmFrNjUF7hnSJkAT0y2LEiWnDtgJoYdKWobMpD5QrRK3mtVvhWwHQcvq2YHpLnzM6dHUICutYob6l7EJJIsWpon9LkWxEVoVzLyTYKggEiqMqRjAKdk7DzNIPPmhSqCpKhIhgoVyOqBhUUwYLrRJKBQqWie/EZ1F2J2OhKoaIiZgG8InpFCArnNM5pQq1RWcToQL9TsD1oU2xlkq5VaNHVGEl9C2nAJAFXa/TIMq3aFKOM7vIEZUQTRESuX6XxLRjf4snPGEwJxZrCTsGnls4pL8/AxKBbLVncGk9QSmFiJKs9yTDB1Ck+t4xv0YTEyzWaynMn25Tnrk8jKoDy8kwzhZC7ckURDbhOYHyLonVKk58BnysGtyagwSeK6iZwHjsXV/uZ8tK1Y1e5hRfG3on33r/Pxfkm6hc63qWwd/9LHe9q4Nxo0N42Xg6JutAxL6evl8LsGI/lGtwUBAbgB3/wB/nBH/zBx3aQJqIQtULVAa09lBFdiWg/GdZEo4nWoEuH7yRU/aQhMECImELC9roUwqBrT8gMMc9gUsikOLGgJMwOQO0ktWsWDdBKJtZNhEZlkkOLtRLJcR5ltByzEfwTAC2iTTWaiIC/rEDLyt6ctMyOry3UDgxCYmYEyRhcLuH3kEtanPJCjlxbk52tMKUI+OvVHJ9qkmFNuu0IqabqGxKtsFNH1UvwmZEbvpUQf2xnqPF0TuhUkkgEyYnwcpbKNSd80KTDxf2i/4b8xeAl9c253es3IzGzNLkYJfqiNHgv5CXsOb738pnMoG6+B80MV2WcLPC4kJe9x75aJGaBR4erMU60h1iJjgSQib1pVu6jxleKmEbqnmhXUGCmupk8G2Ii0QzlZcKuao2fGky3ZnrYkAw0xYFIvewxI00ylH11rShXAq6tcLkmWrBjzYFthU8Vrm2wk4T85JjWXxWYep0NZXHtSHnEUa4rVFAiwldgtiw+V3DrlMmZHFNKypWK4Noyqc/PKvzQUByWFCw1NYRaE9uKvF3h64gxAWsCifF02iU7tSGOLDGJ+CQSMw+1hlpE78pGQi6aIIDxMIeNTMT1SUS1PMW6IRkpsrOGbEOubVTQPhuYHNBsfYUl24ik2zkmtailLnprQNjeQQE6lUi+riP9Bzx2rJkekpQ2O4ViPVIekOubbUq6XUiEuKChasuzLTYGB37JM+oGVv7M0N6K7NypMRXoClT1mL5O1y2u5jPFvuHyJ8azybdEXS6NcwnDL3/9P+Dh5u/LmUSfSz5e+zfvArjsFLSLHe+JwtU657nX4nJxNYjPXtw0BOaqwAfMsCRY3bhayfK8qj0kBt24gblOG9dNiUYRNWgXUbOJd4gkg0rSmWpPaKf4RGMzi5pNvGPYjRj4JiIBEk0xWl7LMkgssZXNU9BCaomZEe1JjFRLKbaY6VwkfK7rQDzcxRQee3oAgxFM9xOneRtmUYeZoUAIxGYiH7WS1DgvD6jW2Rpdib4Eo/C9XHRALjTbeMykRnm5LnVHjqOdPH1Cs/oU2il6Rk5mEZO9TmRzcf8eUjXTrWi7u92cmCT7oyWziMpMSzOL3ii9+79qlKrezz8zOb7Z/S5ohdI3XxrZ1cLVEvAvsMDNirrbZKTmYMam0epJKpZrB4n0ps0EvTaYicZOFaaAEk3IFMrJBNn3PHpqiE4TKoOdKLQX0byqFXbSbGsanxINbtkzPOzRqccPUrTrSAQhxmYhTkvamQdbgOtC2i/xzqBUxCaeJHEU7YQk8XivcbnHW01IFWaiCGkkJgHXFvI0d1FzCj3VBKcIeY1N5cY8GOe42pKkjlgazNjg12phBEFBGsApQmVQNpAsS+TcFQmhNigTiUnE9its4qm6CfkZiQiFFKYdSX1zHc30YCQ/K1kI5VpCuqOgk5AYJc6UZYXeGaFNDztJiEoiN8lICOXkqGhhoo74bmCaSOaBdor8jMLlUK2I81rIIiENqFJjxppqWVGuKMoDgagj2YYhjK/RF3GBy452XCwiMTvG37/7J+H+n+WhV+2mTal33sftn3w39//78xfvfOv9P3vZEZ8rxR2vvxfedXnbnnveRxsFuZz2n9vf853nzXf80GO6FgsCsxfWQIxzpytd1CjXrPSbXb2KcqK3MEUgGTTLKiEQjEXXHj2pdtOYQmhSqZSkSPlKIilKC2FxjQMXTXpXlkJi8b025cGW5PS6iM/lYeMTsYW0hZd7vlHYsaRs6UraRaJxLUN4yjJpmsDZrV0SAI3z2J6P3hhJxdJCGnQdmpxdEcrrKqB8wIxEd+OzhGo5Qbkobmhqz3FpUswi2IknWjUXjmoXd6MkSkl/tSaWpRCPmcAf5PrFmaj/HMcwpZuoi99Nw5vpWYKfeZQ2EaemcWZPVGcvidQKbPNeQ4JUkshnYvYQmgX24QVv+7UbgsR84i8uL+/8eV91Ybe1BRZ4NChuq0hHGelAkW2KwNzlEFJZpFE1cpMFTKEwhUy2iZBtiVBfeZnbV8uKkETMSONVRNeKaglc1wlhCHJ8b8UC2UyExQQTWVkfMrSeza9toyrF9GCCHSdoF+k/2KJYMdRdqHsB9XCbdFvjOpFaQbFSo3PJmXKlRY8lxQ0kEmGnCmekbbpSmIlGOSE2yoMZaUrbAhOpTAqVBh0lkrRtMRWEiSHaiJ5Fn6KkwYGhTi2q1GIOgESX6l7AmQSfabCRkMo1q/uRbFORbUeKNYWuoVoRd7XTd1i6DxpMBfZgSnagLe6htZfyBDM7/Qh2HPG5wqfSp3TT4vOIb0dZW6sAJalzKkhqH0s1lIbufZaQwORZJdEp9FAiTOW6J+Y3V0ry9Yi3feP4siMyAEf/Hx8jPfDhRxCPn3v36/kZjux7bTbJfvqpDd76GNt5uRP2O15/73lJ0YVev9LzXi1CdaH9Z6/PCBzAp97wZ/zqu3/pqhC4BYHZi7KGTkT5iOsmxERjtwvRxRRiJxwTgynlRhQSg3F1Y+krK1vESNQa5T2xIQWmlGhBjHEuEsfqRmAuEQBlDbHXIfRbuF4615nYiaxc2UK87HUq4W5VB4xqHGo6VnKtB7U8zEqPrQOumzC5o08rMagTZ2WCP49mIMQgNA5oSSIERinsVI4bUo2uhCj5XKI3ITVEq+YPGuUjug6ibXEBC7K6p0AFuY4hkRzq1lmP2ZnOzQeIUSIwIBGPmXB/Rur2alBmjmpKokZxxsdmNW2aYzBLlwtxnmY2dzWbRV5gNyIzw4wk7Xkt2sXwuB5xuaTk0RxzQWSuHO/ZehEvWzl/lfonNSKETCa5yUhcv3RPUXcUupbo/SxikYxkm6gaTqP3C+ijEsLiWxFVa6KNsng1NOgakgHYqdga+5aiXIlyLwywPWijVCRZnxKDYkoLUyqSgWKzleDaUK4E0bosOYqOIj1tCRZUYYgTQ50FiArj1DzdLUZIBgo7kjRh7cXmH7Wrk1QRku3m/VqhS7Ehjss1vu/wTSf12GBK2VfVYIPGtSO+XaPHIp6PRtoZ2hKlibHRBqWQjIX06Ur0JsE29V76jp2eBqcYakmN8xnYIiMZZPQfEOdMnwoBVEGiUyhondbiNDaA5DhMDmuKQ17E/JPG9ayO+LwxZwiKcjUSEmBgScZCyEI3yvpYcnO5kN1IuBqT5Tff8UP8yrcf5Ve+/SjffRkT/jtefy/f/TsPP0LgPjvWtUghuxj2pnddqm3nI0LnpofNXjv39V999y/t2+axYDFD2wutUGWNLj2+bec3YZAIjPIRdCSk4rxlp7J6A6DqMCcyMTOoIqIaofps37lIPW1Sk3yz2m8MsZ3j1rrUfRFn6qYoo08lXC8ngWyrloKNSkm6mFVEIyRJV05uvk36V9W3qBgZ396lO5rCzgiVpUISZqlTe4tXhiDC95jPi2aGlsWMa8y0plpvi6PYxEkBS6OgJQU09TTsRkwMEsVyEZ9JUTWAZFjLOWakRam5VmWf53eayDbazIkNQSye9xoZACLo9L7RDOn99sgzEjSLhiktxHEWpYnnPFBikBQzjUTB+osUsusNjwd5Off415rE3Ej6lw/5v8F44C694ZMRXmFKSQkzpdxrZGFHUr20gxhkMSgZgKkjrqUIqaSduVYk32gm9XGmqZFJuJmoRtuiSHfETjikM2G9RD/QckI33lNjRUdsJdEF1Z41SAhU1FAvRyKKejlIepuNtJemWBMoyoRKZ5iBwUx3o0Nm2vSnht6DQiDKFSFbrh2FcMBcsB/yIFoX32ht2oHQ8ahg0E6uma5BRYXvK3zXM7UQs4BqOyjM3JEtaqhWAyFTmKkim0bKFUXdi/ieB9ssHCaBKhVnMZSUR6uWDD4zJGPm6Xchkd/pjhTwrJbEMtpUYGrREqXbDclUUC81lv4DiymUFMPMA8rJdXWdgM4dwTdFShe4bnEpUvEr3350/ve//j9+YLYUinrnfRfc50LHu57Iy8XSuy63nRfStpzPPOBq9v3mVSs/GoQItcMOCiEHSuE7jdbFGEJuqVdyfK5F5G4lIuFzC1aLWD/RQnRmk2aaVTXbRB2a1Cml9TyNLPbauPUuMW3SCaqAHTvsxM+JzAy+ITdmWEihxjrsRoQyi+ulVMuZEIcmvzlqhV+XwnZxlj7l3K4GBiQq4r2kik0kqhQVuNxQreYUh1oUa4kUqmxbaePUi910HeZ6oZBZfGbQVcBnmrqj8amitemxwxJVVLvni1GuAxDjrsWzvL8nbcx7EfDPrKKdk3otviFcjfmAMhrVbqHyTEiPVvN0NSFXfjeS4wPzktiz9LGZI5sxhF4L314QmOsJjzd5uRI8XiTjRiIvC1wCUSbVdtrch40QjJBKilSwQmaSsZAX5Rqio0QrkwwVyTBipxFdgy6lzkoyUCQTicy0T0W6JwKtzYAp5NhCjhTptiY9Y2g9mNA6bshOG5IdI7qVLFKteqrliOs07l8WYmHEyrhfk/RLdOqpK0vtDFlWozJPaEWiRWSEufw2IlWhXFKUq1AtS/90rcAGdKfGLlWEnkM5hd202IEh5h6bSxqcbweUEyF+OhAHNNIARurikHni1GCGsyLQkgaQndWooKj7UYwL2hG37DAjjdmS85gdS3rWkJ62mG1Ztw1tj2tHxkcjg7sC5Rrz+i6uIyRM15Bti+Onck2fM/mc7Biys6JdSoYa7cDnUvTTjlVTa0cTt1NU1bDQBa5bXGhifcfr773gPhd770bCa//mXTz0qvNHTC6FWYrYXvzkG+56xDaPBxYRmD2IZQk6Re+MscYQ2smcoOiqSdfKDbqO2JHUcTGjck5yZpQ8Wg3REFNL3U/RLhITM5+ER+eYFZWMWYJfalGtpA1haeyRlUKXjpCmoMR7P92qMBOxNo6pJSQyOY9GyAbK4FOJIJgikG4JSamWEqqllHaaEItCyEFsUseUFG+c2yuHgBoXJEpRHJaIiwpC1pKhx1RC7FSI86KWvm1RiYTLx0czogZTicDUFoHWGU92ciTuaDNSMXMJ01pqvCgFVosgfxZ9aaInUTeWyLOUrqqEhLlQX+UZsdum7ufEtHGRCxEzrtHDYu56Fqt6l7jtdTqbRWdAfjcuZnVnQWAuhhtFB/N44Q1v/6Wr6ka2IC83F5TfjSqHBIjgupF6SVbodePE71oies+3Iqrcrbkyi3AA+FQiDXNBuGncr6bIQlCM1F2JPAQLhIidKKzbLVSpa4nYuK6i7kRJQ0siplIo11ggA0pHVHPiUBiCS3BOSQFHEOe0VUd62kqfWhKdcC05h/IQ8kC0ETPRmK0E39Nk6xNCUJB7XMugM4/REVcaiRApqNY8ri22ytw24akHNzk76jDcbsPISg2dlkRwVOKIiUSe6k7Ed8TOP5oIXsT86bYmGcp19CnUS5JFAaCyQLXWLGilgdJI1oUdy7M8HULdga2vkJQ9XUPnYUW2Fai7Slw/ayn0GYykjimEBGmvCETmBTo16HwRqVzg2uJ80Za37jEkmEWZvrvZ7kKRk/NpcPamkb3l7X/JW99w9V3HzsWCwOzFTAdSVpidMSq2Ccs5UUvNExToRvMRtcJMa1TtMYNSKsLPKu36SMgsoWXRLkiRLqtRWhNnE3MQ8tBtUa5IyspMSEhEKsvXgfTsBGgDYMblPKrj8+aja4iTQmqtmFlNmlkqlYfsrMf1UknNKhpHstmkXavGDQyxdVbykNKTElPmoMCOa3zLEpUiGCU1XqLk/0o/wPXFelKqIUe0i9ixJ90u0TuTebsBaUftxGVNK0lhAykgaS3U9R5tjNnjKOblf2Mk9S01xNUlxnf059cNhLy5tqHuWvRyhnZ9kq0penskNXWqer8uJjYXcBaFaSIzrr0IUF4KTxSJeSKjL9cijWxBXm4+KNfcm52kf7kWVIdrOitTyiLBDVJJqeo6UAmgMFXEdaDqx3l9FRTUKzW67SQlbKpF+5GJ+N+1NHW7KeYYpbL8zLrZFMydz3TVECIlhKrOI7rQjT4FkpEWg4F2JEaFKxLsZoIuoTpai1HMRAiCqjR1X2bnyUiRPyT9nelj3EDjWpKGpRo5YggKrSPaBHTmSBKHAkYhJyRhLvqJiURQEhW5/+QaoTCixck9OvPgNbHSMEjINqVIpLiyGeolL6RpoqmXhEQlI0hHsgg3CYpqBRjYOUEU1zYzj67U/UDoO/qrY0Jl0TqSWI9zhu3tHD2w6ApZbAxNpMWJkYFqSo/5NBJSIZFETbilQJcLEf8Cu7gadVCuFDOS4d7+sxe1rL4UWdmLve//yrcf5f5//ybR/zQpaOf282r2+4oJzMmTJ/noRz/KyZMnATh8+DB33303hw8ffsyNueaY2foCqqzQA0jLGrfcnq/sA+iZdbESUb+qHBEjqWKJQQOumxJSjR27ZqVG0qBUmhCdEzLT61Cv5ESr0FWTS1uH3RoyldRG8bmm7hjsOG1qsjRiw0SLHsZqopFj6FLa5nPRv+ip6GJ01Vgkz1OzPBCgCmIsEJsCYXUthMJ70rNjYmrBR2JHCMrMOnq2qlctWZKROJXpOtL2UVLLJjVmXEFVo1xTADOx4jqWJ/hORkw1PpG2qwjpVomeVKjRRPjELEIys1oGWd6yFpVn1LesETKDclEcz4yS6FUQAwLXGB6EVFEe6mDbKcmJLWmD81BX+53GmqiYpKrFXUK6wEXxZI7EPNYozJUQl73nWRCe6x/ZGU1YjUwPijOWCqDGhqptccME3RARczbBTJWIwa3CJxK98cs1quXwlWFldcR4mlFNEpKBiNWjES1G3YaQKlxHTANMIZPqZCzCfp/vuWc3BEZXimRHo7wcSwVxR4upFL6MpUEVWgiQUxLxaDlColGFkeTzAGYqkY7pQUW+IalVdVsc1YIR4mYKRb0EdUMGvNfUU0NsQ5Y6YlAk/QrvNWFssSNN8rCR7IM8irdMBBd3XfHNjqV7TDG8I4hpQBIlQlSLA5pvBTE7MFAtqabPUtvFZwrVRJ50PUvxnjmfSdqbC5aBakOtMUND7ZoFryXP8tM3mRQZxdmWLPANTJP6ptBO3NBcK4KN1BZpU2F2G7/ATYELaV8uNuF/vCMS5zvP+QT29g0/9LgTqL3mBeeL5FwNI4PLJjDj8Zjv+77v41d/9VdRSrG6ugrA5uYmMUZe+cpX8ou/+Iu02+3H1KBrirkIvBF5T6aossKGSGylhNwS7K7jlc8tKrPoQlbtXTfFZxpbSDh8ZsFc9RJaE4dSStKYtBLtS0uE9iipl6LrgCmcrAghUZtopcJ9viFLO75txdp46ohO49sJwTaOLz5KxGeP9bPygXo5IxhF+pAjzuyDSwetvLEU3p2oz4o8qqlEe5QLxNSiK7GDNlWgXEnIT8uKePsh0bToUqycUx9RVVNIsnZSH6dBWGpTHmjjWlpcYqxCu0gyCZRdQ9012HFGMsixZwa7qV+6eWDObI47LaZ3HQAg3SqwY92soinqbiK21cgK2Yz4hExTrmXEdI30wU1UURJDo4/xAXFUUMQopgEqBPSCwFw2Hk8Scz1pX86HS5GYvWRjtt3lEpDHs2DmAo8v7BTUjqJYjVRL4pKV7GhqnYsLmY24tlgU1wcCabdqMmsj1gRWWgXDac54YqmcJc9q6mmCdmAaAqO8TMjrHhRHHNiAmSSgFaGx+w22SVOb6W+sWAKbqdRPkYUpSbHSHXnOSDFmsULzuSwKxamkjBGAnkOfTVj7dMTlInZXTtLY8rOxcVlTc9JkxhofE5nDR5nUl05RpQkMEnyVYqfizpYMoH064DLF9JCiWo7UfU+2NkUpcLXB9TTTg4bQ87RWpuRp83wMmlZaMy5TQlBMdlpEEnwuZMW1IiET4mUKaUtoScTElNLecjUSlpoQVhLQT5H7T/CG1HqG4xxXWfpHhhRlQu1aJFtNJMs1hKjlUZUWXVMBvtZSNHqBR42XDL6P9/d/8RGvX6l18hOBiwn7Yf8k/vGoD/PW+392TqRm5OFf/x8/wO2ffDcAD7zzPj7xFyXV/e/mQ5x61Od52zeO+YXn7n/tfLqgmXPbrG0zPNb+XvaSwOtf/3o+9rGP8bu/+7sURcGpU6c4deoURVHwvve9j4997GO8/vWvf9QNuW7QiLzjuSLvEKS+i1KEXNKTXDfB54Z6KWd8W4eN52Scfl5CsSraCe0jvmWwU48eFcwsgOUEUchJqtBlxBRNBKGW4oqul+LbKSGztE4W2GGFa0tl+2A1bikTwpRLgTTRz3hU7VHeY4YluvKE1EKI+FZjIjCLODSFNKUmjRAqpRTMNCiAqmohMk6iQrpJT+s8MMIOS0zpUbWkuuEjZmuMGk1RkwJVVBJ5aYwL3IE+0yMdJgckMpSMA60zNfmGQ7k4t2QGmB7OqQ8vEftdaZtWqDSRCEmSUN26RsgkuqVKP7+W1XI2r4djCjEZ0D42GiGFnXjqtqW4c53Y68wd4Ji5sO1F7XZT5Ba4LLzgbb92rZtwzXC5hOQNb/+ly9r27W/4xxclL5d6/3z4qv/0hfP+LPD4oFyJmCks/aVEIqaHAq4juojQd+jVivWn7HD0jrM8+2nHObIyYG1pzO1rm3zjbV/gO2/9M+4++gAqDYzPtBlPMuLUSKSmeXJXS1ItvlqKIngPqnHTitRdmB5QTA9GXLex+zVyr5UojaShVcsi4o8GQmkIlYG6qSuTiduXHRjsQJ4dse2JflbEGbrHHd3jAddRVH1QMZIOI6aQyIYKkAy02CmXuhGKgJoY1GaKGYsIPt1S2MlupMjUDbE6XHLo9k1A0tAioFoO88whab+kKhNZeFIRHzRbwzajLVlIVVpS0uqePHdbZ5rolY4kI7m/u1bjTNaOlGuB5I4R64cGJK0aZSLWBg4uj1hfGaJUpN7JiBOLD5pqIye2vDjCFeATuSaq0OLiBpKB4c95vizwCDxR0YknGm/eoye5UB2WxxNvvf9nr4tFwPP19bH2/7IJzG/+5m/yzne+kxe/+MWYPWk3xhi+5Vu+hV/6pV/iN37jNx5TY64LNJP5ucg7RlRZSTSlmeTWXTt36YpGzVf8ZxWN67Ym2GYFykWxHR6MRcQ/F4sr0JpkFEhGTcpYHUSgrxSuZSjXMqqVVNzNjMZOalRT2T4aRd03+GxWyFLON6vHomJs7JaFSGVbNZTV3MVrt39hLlyPzkEIkl4VgmxfO/TOCHt6h+TUAF04OX7l0JMKPS7mpEnO7efXbYbQzSkOtnBtTTJtnGamszQ80e7YacBOA8pLccy6l1Af6BI7LSEaIYhYf6VPtZTgU021nOJ7GSER9zddh4a8eJJBKTnNqZ4TPDupSQc1dc+I61u3jUrTuYuZJGqL2F+NJrQfHD5BX7oFric8Wv3LueTkcsnKubgSYnK5216MqOwlMldKar7J/OFlb/tkg2+J+1hrI7D6mUj3AU1+RtP9siF9OCGeypiUCbl1nBj2eOD4GhvbXTYmHe4fr/Gp4VPYqXOe9pQzEBXqoRbJjmg+TBF3tStjRTpQ6IHFbll0rZrITKRcDbhekGhNkChLsJJCpjy4ruhEVJCoDl6BV+hKotrJUApu2qnCjhTppkFNGyKzWnP6BbD1zITJAc3wLie1WxJFNvCsfMHTfSDSPR7pHI+0T6pG0yNOXclAk21osk1F64y4fSVDeW6Uy5rxETEbUBspZ+5bpzrRoT7bwg9SdBJwtcFaj1IRFzQxKqrKUE8TqDTTYU4sDH7J4Zcdk9scPhcyUS8FymU1t0123Uh9pMJ3A95ptgdt6lFKLA3TzRanNvucPtOn3BFdKDoyGWWooMj7JfW6IxokogWkW3KdfN9TrXgxTCgXIZhL4bGQmB/9O8VVbMnVgXrnfRdMoTrf/+dL93q8cL5o1tXGuX25FJG60r5fNoEJIZCm6QXfT9OUEG4SkVrYs/I+61NVo4paCI2PRKvEvjhE7NSRbdUs3V+z9GVPa9NJrZhciw5meyLEASSa0FS8l+KQkvdcd604X/VSfMtiCi9akkJcv+p+IkTGKuqlhOl6InVYkEKWswJcMTHERCyffTfFtS3lSkKyMdntk1JCCvSeG6o2QmRifKTA3TlJBysr9M4YPZiIHXLVXI+isUd2XkiA3v1axSylPNyl7ghJMYWkyqkgQv+QNHbPrtGcaMlX9rmmXEvxq11inkrKXZ7iVtrEptlV31D3E/npWKoli+sYcYFTal6E05ReVvxqj67kmhYHM6pbVoitDJWmKK1RWfP9jlK/Rw1GV/Nb9aTAkzkKM8NjIS6PJmXsUvtcLiHZu92VkJhFEcvzw5SSImuqQLbtWbrfSYQhiM2xrpVkKtcJo0mOmlhiVJTO8PmTB/mjL97Fg4MVeknB+i3bhCTuIyN2KpP+/Ewk22qKSk4lipEMJELi20E0JTtN3ZYgOplyzePbkZDtWigHC0m/wnZr1MGCkInD10wf4jqN05YTkoOK6KNThncEigMRsoBbcYyPKuq2RgUhRlFJmlsyimIwUGvRqzRRCVOJy6ZpNCoAxToUB4PocmxEu0bg3ziI+YklBE0IGlcaxoOcsrZYG0jbFelKQXd5Qmt9wuqhASsHh3QPjZgcDqJ7SSOTuyomd9a4FQfrJTbzoCP1JMEV8mye140ZJXOTgXylIOk3E7EIVWnJlgrK5Ti3sQb5DFStUR0n0bF6oYG5GK6n2ig3Ku54/b2PIAGXSme7EK6UTJybOnbH6+/dVzvncs53pd+Byx5RL33pS/ne7/1ePvnJTz7ivU9+8pO89rWv5du+7duu6OTXHWY1QoKXlXgvE1mclwl6CPObMoBvaUKmcS0rjmGbFa1TJel2PbdPzDYK1GgqgvSZs9YMWibqLpc7nmtbieY0mhgzcWgXRKjZM4wPZxQrFtfSIsqMYKdColzLMjmSUa63iI29snKiW8k2a/RWMxlvoiOxrvf3NwbQal5bJdb1ruVzUyMG58U9LAS5FlUtP7WDopRt9lgTR2sI/RbTNUu241E+4tqaYs3iE40pHMmgEsHpxGGHFXZYExJ5+LpcUx7Iie1sfsy6azHFfqKsolyvYMQFzedGTA1cEPISwGca18so1nNMGUgGHtcxuLXurrXz7HizdDp/kxDyBS4b16qI5fWodVmkmD02VKueza/xnH5ewvAWy/iQoVqCyWFJafKdgNaB3DrWl0YcedoZbju4SS8vcZUhji07oxYPj5bY3O4Q0whOilBWfTUnMulY0qGSoeg6krHUUbGFFIpMhorW2UgyFoF6yCLZkQnh1gK1VBFymdTrCtzpFsErfCmmNCGL+FwKUkYbCVYiP3bTEicWVxuSQaPBHBl02zG91VH1FC7XTA8oJkfUvAaOqpECllEiRD6PzTVRTNeVFKHsQ7UU8H0v9sOlWCfHnsMsVZAGWssF/Z4sypnMS6pYbFzOGhvoEDRaRzppTTut0SqiDpXU/Uh2ymJbTsha5ufuaCSShkcAZQM4JT8AOmLajjytSRJP1qpRyxXGepa7U3jqmMlTq7kDWUwg2dTEsW3c6BZpZJfCoyEx15v+5WK4nDorj5XI/ev/4wfmf79k8H2P+jif+Ivyom294/X38gvP/Q+XPM6M2Li3P7Jf54tM/dRzf/Sy23jZBObnfu7nOHToEM9//vNZW1vjWc96Fs961rNYW1vj677u6zh48CA/93M/d9knvi4xi0jMdBdze18PRqNqhxmUkqZUBokauChCd6vnTmV1Vwo9ZmcLzOltqOt51XtgPsnXUzev6ButnDMkqnEU8+jKiXjSSHqYa6lG7D8rOANm4jBNRMNlTU0Yq/GdhJAbkrEje2CDWJRCorTZ1b3MdB+6qcsyizylouGZ14eZRY9mmEVa3IwARSF6s8hLjMQ0Iax0Gd/awVQSpbJTL/bOEVzHUC2lcu2UFOiMiURPolJNCp6k41XrHWKWgG2IWZNmlm/U2MJjpuKCFrXsVy4ZEfPbxqUNSMaOaskyOSSRGu1FJ+PblrDc3dXBzEictfvS4Ba4fDyaKMz1ELm5FuTl0UZdznecxwsLEvPooFoO1fZM76zY+qrA5tc5fC5icV0p0k3N8HSXaZ3QTmraSc24ShkWmWQa5x5XGTZ3OoTSSH0TE3HdQLkaqTuNEUotxS6TUaOvSaDqS0HH+aR5ditT4tYVgpJb/iiRgpIG6pVA7DpCYaHe1XDMKszHRrtixwpbKLFgVhId8RlSf8wEVMsxeKpEXSRiI/uVy4qQSmRKBSFfRNGe1EvSp8mhSLUcCO2AmooIPhpgqSZt1yKf0ZHV7gRrQmN6EDi4PqDbkqhIXVnKQUZRJGLd3KSY+aDpdadwy5RqxWNs8/yKCjdKqEsrNXBSj0oDOpEUbNVxqNyL7mWQsn22S1UmJIkjyRwxaE6dWiJ4qW0T2rLo6NqBeik0BjRAv35ivng3GH7quT+Ke/v+1KmbVQ+zFxfq781SHPNc3PXlyb60tXNtlR8NLpvArKys8P73v5/PfOYz/MzP/AyvetWreNWrXsXP/MzP8JnPfIb3ve99LC8vP+qGXBdYW5I6JEZqj8QZ8TBGJutNulS6OcWOakwZ0C6Sbpck2wV6KpbJ6U5F9vAI++Bp4qQgxrhLhpwTIuEDZlxhyki5bCiX5EeFKNXtm8KZ0Spcx5CMPfmWx05k4p1vefIz5bzOjK4C2dATEoVry+RdV4H0S2eIwyb6MiMos99NO+Z1YWbYQ1iiD8TYRKOaAo+E0Fgbh7mLmbIWEgtpQkwsfqnF4KkdyiWNLXbtnXUd0R7REBlFaFnQYnscEk3dsxJdCuJOpgIM7kjx6z2iFm2Rz43oiyIEo2WVrvLkW45kGkgHXswNQpzX6wHmKRS63k1Zi0ZRrbXxq31IEyFss9o4CwJzXvzT7/sHl9zmcgnJC972a5fc9okgFteKvFzPx9uLBYm5csTCoGxApx5VK/qfTWidVqQDSEaKdFuRnbScemiFvzp+gC+fWmNz0GYyyQiNFiUOUurtDEpN6yEp5AgSda57EdeSYsHaxbk7mWtBuRbxmVSP97lYORdrUlw43dL4BzuEUYIKCjtRDVGIKBMxO4Zkw2J3DHYs7UyGQmJEYK+aZ44iTCy6Fu2HGTdpAUDII6OnKKqlSN0XAwEV5f5rGj2NXCT5NU9RayrZm6FUuDeluLXZVLIX3E5KLDWnNvuc3egBkGU1G9tdzm70mAwzvNMk3QqtIsUk5dROj8EkZzLKSKznqYfOotcqqXUztUSv9hA8cVuLIyErNJbScWLRE0l9o9L4zYzhVptynEq6WaUJTpG3Kw7dtom+Y0xMIrEVSJYLSUcbLAojXwjn1iQ5nxbkUpoNe98br3q7rhbOV63+YrheSMyVpIA9Gsyuyd7ozI9/6m2Xvf8V14GZRV5uRoQ8JQYjFeONIgYPwRObAlTK23nKlBpZsQgOYU4ItFZNaWVHDM2EP0RUlsqqfmy29V7qrUxLTBlwB0SY6TJFOpxpXjKZgCuFrsTGMtuoxKPfqmYCHgiJoVpKxHGrbAT+GrKzU/TGgFhVjbalcSDbW1NFN65oXv5WVhPLqtGh7CkcOU8Na/42Zlfs7/wuOVOK2MvwSy22n94hJI3IdCD1bKJS2KlESnwm6Q1VLxE9TCXFJ0Mqxdx8JiuL2kVcS1GuZrR3pmgXm5oGUUiRUeAjuvKkm55gWtI1F/GzQqJKYSaOfOrItoyYDgQpEhdqg88M9WoOgNkawrTYn2K3wKPCXmvl6yHCciFcq7SxBW5+hKlF5w5TSJ0X14L8LLi2/PgUcErcxYzGa1AmEAuDGRnRr4zFacznYn2MkmiIdqJP8aksEmU7QkSqpUZbUsjkv+7LYo2ZKsxUkYzAFoqqlMjLLEKS7Bh8oedERZwh5bfPhRCJ1XHzjNlStE4lUvyxGwntgPEGbeOcD8hiFfM6NMrLsVRs3NKyiC4VdqIlepRKFClpSJXrRpKDU/qdgq2dDqrjaHdLxlst8ArbLQlBU+9kQi406OWK2w9ssVPkjKYZISiqUuyaN3SXg7eMSFJHsZVjNy1uzYlWpS01aYhiIR01xCygSk3MZA6gi6aQZ4CgLDGRtDPVCmgjaWunHliF3KNaHrWd4CZt6LiFE9kFcCUT1kth8KUf4813yN/Xq6Zmb30U2NWK3H8N23StsZfAPi4pZABVVfHf/tt/44d/+Id55StfyStf+Up++Id/mF//9V+nqqorOdT1CQ2h1xbB+Gz1fTZ596GJQnjiaAw7I+JoQhyNJT2rKInjCXE6FdJQNeFirYQUxLCrqVBaCE0pkZrOSUcyDuTbu/Vb6p6h7lmZmO/UpNvVPDKjqoDygWg0rmPnokFbePIzU1pf2kCf2ZbUNZBzx9hEF8x+kb4xTdt2i3hSO2n/jMTMnNO0kmhMVQt5aSyh40wrEyMoRbmWkY4lrzobeFzbEFPdEDJwLUXdUpLClUnaXMik3g1ASNS8UKZykXQUxBAhTzGFZ1ZQ0+cG15J0uJBK+pktPMnIYadubss8q6ujJzVmVGLGldhVuybtLFGikVnKRNQ/S4W7WUwpHgf8v37o8lb7LyfCcq3wvK/KbjrNyyIKcx0hDWClQLAdKfIzoiUp1iVioWtZmEfJtqow6IElji358YTWKU22KeJ6gpAAt+xxK456xcu9tB2ZrmuKFUO648iGAV1KdMTn/3/2/jzatrSu74U/TzOb1e3u9OdUCwWKolBIJEW8F3LhamQMQ5kM2/LqNQqOVBSMBjEkagUN+gYdL2BCvImvGoc41CSvYGLkxWjAIAR7URqlLTh16rS7W91snub94zfnWmuf2ufU6c8u2L8x9thnrzXXnM+c66w1n+/z/X2/34jvBUIubbqt7bF2jWPmWMala/nbTBWdM1o0LVEyY1w3CshCnk+2RGcTMhH0+5xG6N+I68eWeCYj5IGQQn5OGBw7gcFnAoNHI93HFboUZzMzaYCMjdiR/K0a/Wg0EAxUWxnrm6JzWF0dkRiPMhE9MozP9nBOkyyXxJ4nPTTh4OqQC+MuRW3J0xqtI0nqiCYSJpYzowGDboHK5FqarkMtV2gTBcDoOLObxgZppVORmEUxLnBiNBNN28mgiJXGDxPq2swes5kjLNfELJCc22dfrrYuzgu5XKvRxVqKG9GedKPryVrkdhPBX+r1t7puZotby/K0x7gpDMzHP/5xvuqrvopTp07xghe8gCNHjgAi4P+Zn/kZ7rjjDn7rt36L++6772rGvqdKj0oYZKIBKYo526AN0NgPGw3aoEwDQkKchyy2OhJrZfvF8mHWmtRaF0fn0MMx2fkEn3UxlewjJPMEeYxCVQHtAiGRVSo3kC9D02Sg5Ocq7PkRqqzk+DGKHkVrVAiQNF+e3qOsIdYBUitjaW2jW+tjs4BpW8amza7xDZhpmZmm1W52nZTCLXdmIvx8U7QpduwwhSMkhpBq0mHATlUTjBkpl8S4IBkL42SmgWhEBJptOFQM1D1DvZqTbBWgMlxuKNcSlI/U/RQ7DTPzBLtdEDI7C/BMkJY1bTW6cGCZO5WVDnoS1AkQs0RE/DHuJyfvoXrel2Y3xMt+n225vvrSf/fXfPCVz7zdw3hqVGEgbSfEUK6qhhkWwX33vPxWwbD5RYo4cMRmtaU84vFbmnRL9CXaIxkymW9svURfYkpF3ZdFIZ8k4k5WCECqDkR0vyaMEnHSGgSi1o3BCzMzGlMJCxNSEfIDMikv5m1fsVSYIAYBIREwUw/iTBNjJppYNYBpxUGtCImw3MkwUi8pqiVh3tsFt2Cktcyv1lBrQgNmdNXkzygBRnbD4oJCdRybW41ge2xFR1Mpys0cVWrsVBO6FbXXjCYZwRs63ZIscdTe4JYrfGnEujoV9KhKTexBmjuq0qJtEPAyNsQkzpd4vQLf5NIcqMRRLMrjuuMkOwcItSZZKcnymrJI6Hw8I1oBj+l4/35ytXXPq3+Ch95x6pLP7zapX0yY30sszKwd6zIA4J/d86pd27b2EhC7nlp0GrsYCLVhl1cDYK74E/UP/+E/5Eu+5Es4c+YM7373u/nVX/1VfvVXf5V3v/vdnDlzhi/+4i/mH/2jf3TFB96LpZxD1Z4w6OzQwlC2lokNi1JXwqqUZQNcwhMF394TqxrqJl/F+4WJvp45nVHV2Mc36H16NA90dJJnoquIzwy+Y3G9hHqQ4LsSTBmaNrLOZ7ZITm3A1lBYE62InYywNsAfWaG69zD+yAr+2BpxbVlyVTrN+TX5L7MKC05pWsn+QqOTaZmotg2uHX/TmqaUAitMi08UdiwmB9rFmZ4HwI7qJpPF4zOF62iyrUC+7tG1WI6GVIT6usm80XXATry0ITjR04RMkW06uqdLaStTSvJhcoMbZITUoHwk3axQdcBnBtezhG4CPs4CMFUdSDdL7MSJUUI/JeZNy98+A7Nr/fT/80vAlbMwN6quhzG5nWzLra6LWZgbDTj2mZgrq3TdsPQXKURFcdxRLUc6pxWdM5Iu7zqQbwZMCd3HDGpsZ/bE0URMJSAFxMFKOaBq2fCIHwR0JYGZ00ORclVRrilcLiAj2dTEjRTlFTGNxDQQcmFUWt2KbuO4mvauaKT9trV7DrZhYZoWsmpZtonN0mcylHHZQskYq0YHk0SqQw7XF5e01pUzGUby8xFTggoNO7OekGyYmRGArsVi2k5UYzkNqlaYJKB0JBSGqCK+G0iPTkiWypnhgD/dZf38gE5eszSYEIJi81yfyWcHhFqT9ysR+ddN2HSt0Cdzigsd4kaKOZmjz2TEJM70Lsopkk1Ddt6g28dKjd2wpBcMYZigt604lzVuaNNpSr0h4KV3MpKtQ7Wyfz/ZrX70S147m7jvxrRcSofRtl5d/Pzi37vZCt/qUr/w0SdYGV/tud5sLcrFtRu4uBHXsT2PS7FNb3v58atqIbtiBub3f//3+YM/+AOWlpae8NzS0hI/+qM/ygte8IIrPvBerKgUqqpxB/roLIWymoU7tt2rMTqZrONlkt9O8EGYm7KcAR5l5fIqmLEuoj/xM9F8dKKHMecinbKmOD7A9Q12JK1SwSp0iDIhD8LOJMMac3qMPr/ROGYZlLXETkbs5bhBBkYRrJ61WqkAqp+gnCQUJ+sT1KQgTpSAFqUaOGuIRSkBjy1jRONIZsw8JyZECMJIqdYAwHkR1wvjjik8uvQoH/DdFF17lGuyB6ym6ml8DjY3YgetFKG5gSYjT7rlqAdJewUJqSZqTTR6JsTXpSM/G/G5xXUNqIjrJ9IyYRVmKudmCi9Bl0UNVksLWdNihgtgNSFpUpo7KXpkYN80Zk9WC0SuhJG5FGj54Nsfu+LjfemDJ65428+XakHMPhtzmRIsQixltT4/r+icD03LqqLuNYxG2rR3TTUhQLJt8Rn4NFKfcOAUZmREH6IRW18NsevEhr8nbU3RAk2LGFHayJItPbNA1rVBF/P2XF2J3XJUUA9Eo2MnksUSjTA+ridgKuYBlXlqBdFpdOJRGqalgUqjJ3q+HFprce2KmroHPhUgZqcRU0My8oTE4nNFtdQAkXUtDQxWjmuHqjF3EVG/LhVumKAysTlWQRFzj6stSerIDo8ZpR2UjqyujjnQm7A57ZAlDlanTFwPFRWDbsH2OKeYpsSRlVDPY1PUhYzOKUMyhtGdkdjxxB5k/ZJymMFQU94nQYlqO8FMNLoWoEgaCKmMK0ZFJIob20pF2fXU/RRTRcKy2/W/yX49sS6VCdJOdB96x6kdk/q3vfz4E5iaxUnxQ9eQMbJXapGF2tEq9+br2+/Jb30L/JN/ecnnP/JD9+74+20vP35J9uirt7+Lj/DkrWUPveMUvOOJLNPF7+eV1hUzMCsrK3z605++5POf/vSnn/ouZFqCHJUPxCbUUKXJ3B64SbpHN05VLUvTaEhmAvnEQpbtAACLOpJZta1Zxoho/MIm+afX6T46Fq2HktYncegSIXp2fkpy8sIcvGglzl/9Lu7wEtWBroQ1jirpI24OZ0qPqoPYFhtFdahHce9B4pE1VKezg0GSdPpWBxJB6RkYI0TRyLRjb84rltJ7oOqAqeJCHgyE1IrD2FIqWhWtZj3dyThiyojraKqe2CCDjDsaLQLSjqZaMqKNCQEzrRtxaUQVDrsxIdkqSMYOn2rKZSOWnmWgWk4l6NMFzLBA1b6xmU7Ftlkp9LhEFxI+6noW38tmLXj7tXv95Ft+7nYP4UkZld2e/+DbH7sq8HKtr9mv/aqO1IzuEiteXcqEVwXItgKDRwP5esRUrVOYPKecpMSHTqA+0Ex4I4QsEG1EVRq7aVFTLfa//TjTY9Q9AS/5hUi2GWdi+2SkMIUmP6PJLyiSSQOYfJw5M5oykgwFZKgAhEYjM1HYsZYFnc0U+1iGPZdgTuaokzlqYkT8njR6wyyAjRgrE3rXC5z93xzF/RNcR77b7dTTWfd0zkTSrYa5aUAKClwn4ruRuhdhSYImfT+IK1th5Hx7DtPx+MJQDDMS47nvrrM8884zPPPAOTLjGE4ytra7pNazenyLvF/STWo6WY0vDHZoyNY16jMdyX5BrktbygR6nVLuoxbYSmAzIdnUmFIeC3lsWDPARNHCbKfU04QI6NQTjpRUhxxqshAcvV876mrapi412d2NjXn0/gd3bUE7/s1/cI0jvXG12zk860c/dcXb3o66XDvfldSVMEz//mVHr3h/V8zAfOd3fiff+q3fyg/90A/xkpe8ZKaBOXPmDL/zO7/Dj/3Yj/E93/M9V3zgPVmJBQ9m1KzsWgsxiMtWO5FvW8DadrIYiLVDJXZuuQwCZhYDEuNCtkjLzCxYF8dWZD+eYmqHWYekAU+qFdSX1dzeNzTWzEoRuzn14T5RKZLtElU5YqM3cV1Nfk7Aha6ENTIToRZ8L6E4PiDtptjHN4hFc94zm2Uv10SpnfqeloHRIvKPLZiLEVM4lBd63vUMOtX4VEswZ+HFQc3LTbez4WeZNtNM7JODlQBLvWQJ07adDGIuy5nKBdS4wPQFYLqVfG6TXIfmZg7lklx3W0aSC5XkyyQGtMb1E9G81B5TNeyTC3Qen1CtZKKPSSxMb/D/r8+R+p7v+pZZG9ntrqtpC7teEPLBtz/2lGFj3vS9/4DvfdMcZH7wlc/cb/261VVqkqGm95imGsiEt1pSMxt5EOfJclURTURXYKea8qDHTMQy3pSKdEuE9q2Y3k7AdwyTY4rQCeiJJjuvCSlMD8eZCYrPmb12fEfAdSG/IMetB9LCla97VABfCiOUDqXdy2SQbkvwi+tGwkGP6dXEkx2iifiGDYpJgNLI5D0PmF5NqIy4kEXw/UD/rxLsJCHYyPiIJhnLIpappZWNKC5m0UYBQgGUVyQThVux2KVK2Je+R9sg9sZofKUhDSSdGh80j28t4ZzG2kAIinI7I+nVuKA5sbxF6S3jKkWpiEokSNSUGgXYiSJkUFvwfU86qMizmpVOwWQ5o8o9cTtBRYXrSZaP60q4pjKROLHSqtd1YDzRK4LTYqWdBlQaCPm+q+XV1m4T5iuZzO/Gzlwu6f2eV/8En37zD177QBf2czXVjrM9zz/50d23u1rgULzyH0BnPpZ3/n//8VW9/lJ1I4DUk+3jFf/t9BXv64qXmF//+tfz2te+lje+8Y0897nP5fjx4xw/fpznPve5vPGNb+S1r30tjzzyyBUfeC9WSK2EJdaO2GnuFq0mpGVaYN4O1pTqiAWvABa9M1OleVzledN+JRNr1QZJZilY22hSlKz6Ow9VjRqOUeMpTAux9m0zZGbHMpBn1Ad6KBexWyV6ImAlJgbXlVYrXXv0pJ7looDkrJipw5Seup/gjqwI8zK7GPOQStQ85HF2PWbjXVhVCgG9OcaUAd+RG3DdM4yPGcZHLcWBhKoxIGhDzKISNsYnYGoBHHVfbuw+F2eyti9b7KQDalqSnhmiK0/IDPVyTsgTQmoEEEUwtawkpluuuSGKQ1o0CjuqhdXKLH7QABY7P0ffMXPQtl+XrJ98y8/dch3M7a4bxcQsgov9+hwtBeUhT7ki33euI+1UVV8E7ZOjYnYSrWS6+I7oTDqn5DvVFIrQCMBdR/ZnC9Gt6Fr0JwBhSfQ1rhPFOazTiMa3pR1MRWFT2sUd1by+FfGjoO4q6q6iXGpE9o3+RXsBOuhIcBq35PGdIBknWXOPaFraVBLQOmBSj1ZxlmBfHpAFq9E9ApyiUiQjyTXTtQj1WxczvLAxPpex2k2Dm1pIIr1BwZ2HNrjvGY/zrPse48idG3SXCoiKsrJMRhlVkTRmmJH+gQlfePwMhwcjrA5oFfFBUTkJrIxdT7UWcP0mTDmNTE847nvm4xxb3aabVYyrFN9m7/QdDGpCJq+xh6csrU7oL8lF1hONyTxJp0a310YhOTMwb4fYryfUlU7QH3rHqR0/V1qX0l7cyHr0/gev+TV/8sHyshP7xef+xffet2cYmdtdV5UD89rXvpbXvva1fPKTn+TMmTMAHD16lHvvvfdJXvnUKF1UM3Vi1BqdZ8SWaTFajMUMO22I0Y19sJ47krXshDaiE9FGGJYkmQMQY0T0nqWoBrDM2BqQZPsQUcrPgi9nzmeAssIm+INL+NyQbkh7FDESjcF1E3wqjl4hM2jA53JuGrEUDokhJJpgFOXBHOWXMac3xHygtVt2rrFSXvjyrR2YxrEsNBclBsCgakeyXhBsR9q/Mk3nfJg5z6gYqftW9Ci1tBNErTAVJNNAMI0PvxfQ0q4mphNPulGiJoWAmOEE6wPurhVCrsVmOZEWNFNFtI+YIuKbgMxkS1gYs10Quik+M5joUYU4tkUj4KZttcP5neBsv2a1V9iXq6nPtxaw3QDSPgtza0sFWZzJL0C5BsVqID+rRaOiRD8REgEKMRMb5WxdzcIeTQGTux1VNNiJEv8UI6/xqYASXVmq1SB6kcb1qwVFupJto4Zss7ErTsRxzFSyj2AVppZ2M1tIxpYpI9MDmnINysMOs1STGE98tIdb9qI/0RE1MQI80oDOPMvLE5SKDMc5eV5TTxPyR1Oq1cDWswKx6wkmkQywKN/VIRW2JdqIPlASphYKg9fCimgHOIXKPWWR8FixgjYBYwLOGY6sDCmc5fyFAUpHsrwmRkVdWSLw2PYSMSrWY5faG4wO1LURUOGlfS2aSEijCPSBT585gCss3eUpzhlcA4qAGcBSKxWutIy9Ic2kA0A7cOsZ3sTGOCGgKi0ArQT0/oLY5epSgGQ3fcu1TOD38qR/puu8BAOzWD/ypo8D16+BuVF1qba3W1HX1OT/tKc9jQceeIAHHnjgcwa8tKXaZPm6dd1q26maHt/WUazNSmkF/NBM6OP8d/DzSX4QBkA1PzO2ZXbg5jHbMDRJIi1ibesWNM5YCzR0Iu5kduqFYdCyH7+UMj6eUC5Jnsz0YMrW07sUBxJcx6BLR7RaNCReJvt26vHdlNgXkf8MpLXaFx/knLWS9qqF8EoQw4I22NJsjsjOTsVVzUWSoSMZBWwRsGMZv881pgjSZpBpkmnAjgP5hmNw0mMngWTk6J4qyNYrks0SvTGCNoPGOWFiNkRYaYpAui3skEwAAroWvY8dO5kwWE291hWQp4SVUZUDJ9ogVQqY0qWTDJ248N7u1341dbtYmCvd/nLb7Yvub13FZiI7PRKp+wEzVaTbkc6FKI6LBUyPKKYnHCr3M0YkJNImhgIyj8+kvUwFec515y5gKjQ2x012STSiHynXIuUqlGuR6eHI9EgkPxfpnI3y+lZ/WAlj3dol61q0MaaMRB3RA3HzSlNPOFFglyqijpilClZq6HixQB4nlLVlUmTUk5RimmJzR3GiJt1obPI7NdFIMHHVN1R9Lccsmsk+gI7YLQ02Uh70uL7ofuLE4mpDPU2oJinTcUY1ShkWGZMylUWvBiBUZYIrLL6wbG722B512N7uMD7fZXu9R7WRE31jgwzC2Jdqdv3dVooaGZwzeGfQqae3XMgtujSYqSYME2Jh8NsJzml018n7NNXYbSMOZqEBZlONLrRoZfbrqmsRvHzsyAE+duTA7PGrZWL2an3x5rEn3ebitrjLsUmdF/4A8EQh/tXUU+HaXhWA+fCHP8zDDz/M/fffz7Fjxzh27Bj3338/Dz/8MB/+8Idv1hhvXSlFbFrA1I4gyzC3DIa5RqR9vv09y3oJ88cbzYsyWlgVmGWmCDhptm2NAXyYsx3GzBgbZTTU1ZzdiZGYJRISqZCJeIDQEySfjgKmgumaYnzEUC0pbCGgQHQ1Dj2tMVOHrgI+1biuoT46QLUgxvtZzktsNT21m1sqt+cXwwxcReeIkylmfZvs5Cadx8diUzyqSTdrlAvYqSe7UGEnNXZYkowdnXMV6VaFHdV0zkzJ1kvsdokpPXZzij2ziZqWMvaWiaprzJlN0o2KsKC1SYaOZFg3N2UBobppl/O5wS1lkrGjacCqk3wELe0NeljI/vdbyHat7/mub7ndQ/icqe9908/d0HayW9matg+GLl+qUjNRvh94sSPOVGMHP89f6Txm6fxVRueMAJxsI1IvRcq1AFERk0CwYAp5TboF2QWa9itmjItq2AFdgesFfC6sgvJyHO1g8JmKwWcDnXOR7tmAihIcTGxay7ywMq3tZlxP2fzsCpNRRnSavFNx6O4NOp2KWBqoZcJuhobJRoeqtCSdmjSTxSTddVQrotPRRvK/lJfcmnJFiaWzB1VrgldQGgnVHGtp/XWgy4YpKcTxjJElTsRyenO9x2QoY/PrGdPtXPYDkpUzTvBTS6hFpyPK+tZ9UjULWfKeECE9Z8jPWHqfNbjHuvhhItkxI7mvquUK5aB7UtraVk9ssdwvWFqaElYcIY24gSceqEBLW5lk/SDH369L1pUwJM84c4FnnLnwhIn1Xp9oX0m94ZGHL6vpXDzHG3W+v/sn73nSbfbytb3iFrLf+q3f4sEHH+R5z3seL3/5y3eI+H/7t3+b5z3vebzjHe/gq77qq27aYG96XaxdadgQsRDe/SUxSpaLUqoBOrphL9qeKTXfLkQiUYwAtDAwyoeZ+xmxcTBrgE6cFvPjOAdJispS4nQKaUroptiJl5tQlsxBVwA78nSrSLVk8CnSd9032InH9RJU16KnTm5cLqBSja4Cdd9iDi5hTtXENhdGaZRq2uQMc9e1Vgdkm8DLNhgzRuLYQ1GiJwUxTwUptwxTaIBbYolWYzeLmTuaqj0xMZhKoaaVGBg4Ly5nF5sHRFm1Sz51Bn3iIOUB0SIlo5qoFdmpEbGTyPmGgMtTATpGoSthhwgy/piIJsYUDjUcE+sK/L7t5edC3Yz2sRst6L8WdqXNe7la0LLfSnZryk41/XWF6xiKQ+LopStpGZNgR2nzyjbBTCO+IxNdlytcJxB6HmqFqoXBQINvbiumokmqj43L2Rx0EBV2JN/NwUR0E1K5/TRF3U/pnQkEE6n6mmBlv3Yi2SwomBzSjE80wCgPmKFBjTKiiYycohpUVMNUHMg8AgpUBKcJFaQDR1EkEu6oIrExGnC1hRSKNS3st28yXryYAcTCoqe6GY8i3TBi7JJFnJqbGMQkNC3MbWeCRk2NOKAFxGZZiyOYqhQREfvTaHmwEWUDMWnuVTS3lUaj4tKIcgo7VlQdoJTcGTuo8bXG53LNlQ1UzuK9RmsxEwi5I00dzmnq9n2Lsq9QXlXH/udV7dYmdqWvu5p66B2n9kzr1aXqci5r7TW61Hlfiw6nra9YnTzheO14LjcuuD6m5+L69y87esVC/iv+RP3gD/4gr33ta3n961//hOceeeQRHnnkEV7zmtc8tQFMVUPWFSZGKdGmwNyFbPHfjahftXeNllVpy6i5NoZGtJ8lsk0r9Be1IQAxl2/nmBhiatHbUwE3zsnNAS3sRlmJ7bFSTWCjFjF7R6yCY2KIphF3pop0yzM5Ysk3AulIWqSikv5sEyLRgusnqBDRpcdoxfRIh+50CX1hUzRAqgFlSjEL4VRqzjjF1lrazs+pDQH1XowImgRorJkzG36er4P3AuxaRzff6IK0ngE6pTVxoR2PGAXYpAnmsfPk1Qrl4R7lgYx0syZ2EnzeXBetqZcsUSnMVKyUowI/yBpdTkK0ms4n16VFzRhmIHS/9lx983sGAPzyi4a3eSS3r/aNAPZ26aki3ZKQ3c5ZTbbRWsYr6qaNy04hXw8oL+RC3VekmxFTKHRtZaLcGJ60FS04K0AoJBDyIPlba42V/ckcMxGL5dBMxt2BGrekKY6B/6gl24hUSwrfAYKwO8EK0KkHimQkwMINtOhiKgCF72mq7UzYi76DiZkxTYw0vgulSWA7QTlFyAOq6wjaCBA7VDGpUuxIka+LZickoApDXKoJHYV3BuUg24hk2xGXKaoVTd2TTBvfFbeyqCK60qLHCUocLiuN8sIoJVMBDq4bqdaQMSqktavjsRsWN/CoridoIzk5tUJP53bKejpvUgkTQ+x5WKuJqaffLcmsZ2O7i1YS4Lk6mDKtElyRSH5P2dyLk0hI9hmY/bp8XSuQux31ZM5p11o3xYXsr//6r3nooYcu+fw3fdM38bGPfeyKD7wXS4WAKir5iVGyWWCH49hsMr/492yyHuZMymLrFwgoytMdBgCxmxPzlDDoEHJhVKpDPT79dwc8/tIjhNW+7HsRHDXtY0RJuA9GoZxoSUJmUbUENibbFcm2J92uGXymon+qJNl2KB+xY4cdVU2qvUPXATP12K0pybACBeOnL4lDWguigjBNM6alAS+x1QGp+Xkpa3e02UXXtJbVNRRlYwcdZH+tw1r7eF3PwUvTYheDjCG6pp2vruZtekbLc1WFevwCnU9eIDtXEK0EeSofUD5SHcjFqW3q0a6xY/bi0BastJ7lp4awNXyiacF+7ahbLeL/5vcMnvBz8XO3o57KxgDX2/613z725FUedVx4bhQ3rZGABJ+K41e0kAyhcz6QjAOmjgTbCOvTRpMShaEh0KzkN45iE2mtCqnsGxNJj044fGCbtZUx9aFa2mFNZPUL1uHOqbhiZZ78tKVahnJNiUmKnbehFYcUozvB5TSBwmDHWvQhEXQjescGVMfLBH2sZSyNi5iqNXFqxWHSiH4FBSr3sJWgzyf4POJzAWs+bw0LFOZCQv54a6ITiVbhcjl2uhVJt5pMm6mSLJaJFgYIycnBCFgzhcJUqjEpgO4pRe9Ri5209+IIXrbDRkzqUV1h2zvnID8fSUagXWtjrckuiFW1HhkYW1xpmE6k3SfPpWXOVZbz5waMz3eJE4NympCIs5zviOvZfu1et2rSfjntyD2v/gn+2T2v4rcf+MwtGcvV1o24Rj/wQ49c17EXx3C17NeX/68nD56+2rpiAHPPPffwm7/5m5d8/jd/8ze5++67b8igbldFpYiJJSZWJtCzPBRpdyKxTwQv7d9Gz8MttZn9zPJdWrcxY4i2/dH4fobvZ4ye1mfji5fYujelPOwZ3R0pj/aJ3Xwu7LcWpZS0kwHRaFl1iqArJ9kAJ7pUKwlukIqjlg8kW4VYLJcOM6kxk2puVuAjrmPwHYNb7lAvpSgXCVbhDy2j8mwWlkmaNEyMnov4F6+FnRN6qm2/C+KeprSe64LaWtQJeS9MS5bOwcuilXHL9Cg9B5RKzzRGgLSVjSfYz5wlObU1a6mLVt6bZOSa1oWIqcWdrXVmS8+O0Gc3Gj1Sk/Vj9in/J6u9EGi5X9dWH3zlM68JiOyDlysrlXvSLU06jNipgI3pYYXrQvd0pHM+ilaxFFF/uh1JtyLJSJgJn0XqpSAMhZeWsajAlJCMAQV+xaE7jmqakBnPkf6QQ0e38F8w5ugXn+XYYBv16Q7RaWzmG8E6lCtQrAn74TOYHFVUyxE7EfbFlPK46wv7nZ9T2AnoSqGGFrYSVNmEGNumnS2LxFzAQMzkdXaq5NipAx3pnBbmOySN3X3TQqedABlogFutKFdg85kwvEfhuqqJBGgsoJ0S17DYaH+Cgloea8X4dgr1cmByXNroki2FHWp0pdCDmpBGCdss5cK6FUe5IvMAU8jrk22FHYtOJ9uEpY9rknWNuZDAZzucP7nCdJIyHafSsja0mC1Lsm0w44bl70kI6SKLtl87a7cQysttezPH8ZXfNeENv7Zzsf5SoZrXU5dy73rDIw9fEqwcPTy+7vO/VJvZtdpTX00W242uK56hvf71r+ebv/mbefe7381LX/rSJwRZvvOd7+SXf/mXb9pAb0k1ICUahd4YSWaKmjMos8l0kgoTkSYNCzDPdolRAiZn4nvbaFp8IOapAAeliGmC76ZMj+ZMDokFcLkK03sr7rnrHMNfO46ZuCaXRs9DML2ftV2ZSYUaSMq9cmDHDp9ppgcs2bZHV0G0Hj42NsEaXXsRrLeRNk1eDAqiTvGZwk5Fj7L99B6r57ehqqAsUZ2OsCCqYZq0QaXNtdGNu1qSzIM6Y9Nq17SBKWvlOe/n4MUYOac8b9idRv8TG61Qu502wozEhnVp29cWmJ+2Yoyo4Rhb1QJIuxnoDsXBtHHakffGlB5TevTWBLU9mv8/mJk17K+YXara/JebDWCulF355vcMbks72VMp3PJStQhILqeN2QcuV1fRKXwuLEc2jlR9sQ1OtwQgRCWhvVELgNGudQFrBPqJOIGpAtG5NJP3bDPgsmbyXmj0hVxCGU8EVtIpn9lcQelIL6n4i4/eSW9LUa8a1OkU27RHhSTiO5BuNC1WRwRg5WfFSKA4pKhWIrHnUJupsChOrJvFBlkm+grwWSSmoic0fcfRA1s8fm4Zxs3EprEnZuColoXRibZhmTxNvhei8ekISEFBtRIInUhIVeMOKSGSIWHmnmZKuQ6xFCG+dnJdg5HVWVOo2TYhk1uXKRTqkzlmqnBduf5UEjpaHgyooBl8JhAyja6E/YkG6p6Ao8FnoBpofAa6NsRNgxuEGfCCBqsE+dtnkWgD1Lf6f+BTq64mC2bx31cyoX/0/ge5+0/fDsC//4Nv5tvuvfI2pb1Sb3v5cb7//Td3/xczLZe6tovX/UoB1R/8zeyK3q+booH5uq/7Ok6cOMFb3vIWfuqnforTp+UAR48e5YEHHuDd7343DzzwwJXubm9WkweifCNer5pvnChuMLMKTStTVc8sk1UDZlqL5B2T77ZiEySpFDEzVGsp5+7XVGsBMxLx4rc+//18ZHiUcNpjt4u5UxnM3b+sBefQWxPCHT3pf9YK5QPpdi3WxROH3ZiiakcY5OAjZlLJRL/ZX8gTQsfOJvRRgx17sVWeBKqBxh1awhYlMQQBL017lUpTASZeQ57NAFpY7jbgRtgRVThU7VBFORfwI21lIsZvWtTatrPYXPMQicXcxECep3l9nG2DZh6uqc3s31EbGIsoTQ0N6UZKkqdNK1+CKmpUWYktcwjE1pSgta02ej8H5hJ1q1zIblRr2Jc+eOKmtntdLYj5xgcvHf75K2+/vYxWC1IWgcw+cLm2UlNJpA9WclOKA4riqEOXlsQycyTLgkziVRSGZnsA9YqTJ2otrWLNAo2dRhHwa0i3FCpoXC8S+47VbMKJziZ/wTG816xPu3Q+k1AcFI1IuqEIBqZHAzH36LEhvwBV3QRHpgEVJEw4GNlWDS12rLBjAQ4CJoQhUs1XcdQQDpYYG+h0Ki4Me4SpxUSoVzxmUNPvllSpZ3xUi/ZkyeM2LOlQWslMJWGebuBRHU9swzFNIDQBmzg9y1fxzS1AlWJRnG7KeFw3EnLJs6mW5ZzslpHWN5rsnCaHJyqIPYfpOuKZnGSo8J1IPYiUS5riYAPqLoAu5vRJ74yn9zgUawZTRaYHNcO7NX7ZEZ1BBfCDQGxdz6wANFXs308uVbeqheyhd5zixU/uWPyEaif3typL5g2PPMxDj7z1lhzvnlf/BCfpPuHxi/U47d/X817d6PO5qh6ZF77whbzwhS+8oQPYa6VcQI2nc/1LDHMNSqu7yLIntje1IKOtNuMlTebtUGlCTC0hNbh+SrFiqO6quOv4BeqguXdpnb8aHeFD/+0LuPP0EFV7VLnQyta2YTWTdOUDdhrwuUFNouhZQiQf1+hxiSoEsEStJGm+aUFUQDSGaDR134qtZ4joan4OKkSSaaA8lGPPpjLZ1xDrgEoS2cgaYr9L6GYUx7rUPRHqmzLgUwkqs0XTAz4J5OcKzIWhABuYXb/21jBjrtrzXTQKaHU4C4zXDte3EJlHS7NTxxIicTKBqmpYICOWzHU9a8cD5kFQUTsAAQAASURBVEDI2mbf+wzM5epmsS/XAlyuh3252QCnrcsBl922uZ1gZh+03IBSzMDG9KCs7qNED+FzhXIRU4NPIAw0oxOayV0O1XPCujdi9JAHfEfao+quwqdNWKWCatVDx6O2E6wOPDM/ze/nT+PE8hYf+fQxOkA8WtDpVvCZZZIxlA5CYQg9T7WcSEuWB7zC9cCNReyuHSRjg500bWJWDGAWLZejln+HiUUP5J5ZjlP0yBCyiF2qSFJH5SyJ8fQPjikHFnWug8+hSMD1xAHNd0THEiPo3NPpVvTzksoZrAk4rzE6UtSW6TTFTy0xD4TQdABUzNgdEF2OzyO+H6iDJttUJEMxL5jc5bFbGrsuNsnaCbuiakXnjIQhL32i1elE8tOBdCRgVKz5JfhThUgwCJ0UG9ZMIaHXtllgi3JtCbv8H9mvq1pxv7iudkL84mP/5JqOczuE9U92bm0rmPz+9ctu82T1FauTy1pT72YucD16mN3qDf8h8rpvuzrt8X6T/0JFpVDTUgTlMJ/IztzEFly3WlCitLAuNK1LWs/BSwtytBa9SmLwnYQzL+jhOnKDeMadZ3ju2kk26w4hav7no0+jfzbOgEvUSowAfCA6JxNwpYh1jXKeZLuiXG0AlWr0MJMKaidansSiglhFYhowA9AEWc6+VAOYMhASyYNxnXnQV+h30WUFxsj5ASQWf3CJ8V09dC35BskoYKqALj0hM4REWuO8VtQ9TUg7mLWM/LERemskgEFrAVQ+zJxfZrqioFGZ3RngmWXzYNB2W22QOwYzE4HoA8oaMQBot/WeGCJqa/QEwKmsJaowax9T1qLSfSH/pWovaV+uBLxcCqTcqPavy7EwVwJcLvW6283I7Ne1ly7Ewct3oO5FfE+S2cuDnmAN+XmZKCcls/aymd1vpcUBS0HoBNGYpFB25LtMV4p6EFE9h0kCTFM+O1zhfeY+Tp1Z4VRUdD+WYQootlImpWFlBN2znrpncN2I84biQMQWAljSTdFsuG6jRfGgamnXComiGgiQQQlbooLoXkISUbknSR2DvGSapbjEkh8dk1hPVVvKwjIuc1bWxkyDxg419VIgJhG9WlFOLLojFsTWBqrSMj7XZdLJiFMj18TIcdJ8oRerViTbki3Tgjo7agBev9lmqaZODCpYioMQTYBBTfJYjilhclTjVxxT29g2J9ImF6yEhhYHoVy1rHxcAqNdPu/UKJc0rtc4nGlQSxXqTIbvR1THS/wAAvBivo9grreuxtr3euvR+x98gvalPe4b7r9xx3nDf7i0OOpKzq9tjbueuhic7HadgVmI6DPOXNix7ZO1nO12rBvxvl1VkOXl6iMf+QhPe9rTbtTubkupWkIYZyLyuODA1eoiWhH5oitYm0av1DysUh4ARGw/BzUwfJrn/q/5MAe/8jFW8wkuaD45PIiLmueeeIzpITXXjdROwiNbcOSbTBSAusae2RJTlVxMAaJRhCyBLCWmYg2sKoeqAz63xMQQOhbfCNhVkJsTCnym0V7CLk0pbWTKQ+in86waAGvwBwZsPaNPsMK0RMXMvhmj0KUnGdZk50u6p0u6pyvyc8IITe5Zorr7ILHXkbayNkNnURvTVHRufu2tnYMXs2AaEBdAimpCLmPT8gbzFrWGuYlVTaxr2c6IYD/GKBk7Jw7jnnmCyXPuZPvLntrahptVt9qF7GbWB9/+2E1lX64VvCy+/nr3sV+3p+xIkZ8XoFEd8JilCr1WoXoO3424HrOMrpAgC0aVJtZa0udTaYXCBoIVwDATrEfonFV0P5Jz1+F1nvGCR1nNp/yPv3om5nRG1qukFepAJDsywa4n2Im0qZmycTrzomHRlTyWbkE6FM2HruT5aGVcPhPLZoKAJ+3bc9SYQqOTQIyKjXGHurDEnufI8pAQFcWFDm6cYNKANYEYlFghp6KxiRFMr8YmniTxhKCoJwlEhbbNgpJXAmIilMOMcC7HbFpUUNRr4sKpAtii0Qo5cTJrW79V7qkO+pkuha2EdFuc4dAR3XGELDTmCeB6UPcFsJmpoliLjA/L/dXl8qN9xJZNnk0NemgITuOX5L2OtSZ6TagMquOx3X0RzKXqSvUUF7cw3aqWrrbe8MjDvOGRh2/a/i9mTFpB/5M5eP2Tl73kho7jUiDjGWcu8Ad/88rCNp/suYfecYrffeazrmOUNxDAVFXFo48+eqN2d3tqfbNhBdSOVi2gsUier9ADMqFv7IFjCPP2J+/FDjiEBRamATOJpnvKoFXgn9z7/+P/PvL7aBU5ub7Cn5y+gw985Gn0TzY2zLMWtcbtpQVH7WQfoChJ14uG7TCEzAjTkhiwWhy4lBJQUXl06XBdi+tZ6oHFdQ0+VUwPWqplATZ2Y0rn5Jhk4qQVLDNzAGYNYaXP9FhPVhcbq0rfsBW69LPzJETMsMRuTrHDEl3UJFsVIVFs3dehPrEyP69WfxIX7JrLcn6dQR6r3bztqwWXi+9H8HOb5bKUn8X3s31/lZ5l+qg0IdxxiOGXneD0V6yyfW9OsWbnjNB+3bK6mZbIX/rgiVsquN8HHp/fpWtx51KuCaOMClQkek1MIsVBEX67nqI4JKAgvWBIzllhFRrdhpoa4oGK4qjHdyLBRFw/zo7x6dMHeOmhj/Kig39NnFp6jymS/zWgc0ZRHXLUn+6z8lHItsXxrHsm0H1c2PpgI9WSACVdQzKU1uFkLKYCPouUawrlxPlMNZbOuharYl01wMF6jq9ucXhpxNLqhLVD2xzqjAhBoWqFKjQ2cRgdCKUhJhG1XJF0ajrdilAZXGWwOpAlDpVIu104n5GsW+y2Rk80cWIlxyUNAkQCmNWSyZ1OLJmLJrMmQrKtSc8ZzOlMrJ1twK14go3kZ4zoehqAFoYJ3ZOWdFMR0ojrQu/xSOdsaxoAxQHF8IRhclQzPaSoeppgRb+jfeOANpRFNV8adOrRqae/NiHr1Hi/f0O5VD0ZKHmyYMeL97FY1xPueDPBypXWxed+8fm0f//Bb/2f13WMi53gLvWe7HadL37+cu1mF7/met6fK24h+77v+77LPn/u3LlrHsSeqhZwtDqLln0xpulrbS5Z+/xiIj3syHlp99W2cEWtKdZS6kHkfb//Raw/v8fXH/1DXnHgvZyv+rznD7+IpU8YTB2aMMuGWWhthp0TMWdzvHYib89tUxwRly07DZJrUkmbm27yTkCYINUAsJBIe4P0VEM6kmTmbLNp6/LNalWbVt9UzFImdw4IqSLbCug6EK3CThWmCviuFceYusmJSQzUnpAafFe0M8nY41PF6ETG8mgJc2ZTWKVW89K6jCV2Dl4Wrq9SZuZWJmCuea52O3Nz2vay4OcAVOkGxBh5LwcZ5R0rlKsJVU8L81REtIvE0T7lv1/XVjcavOy3kz0Fq9GLmEIE99WKQicRZQKxA1Qan1omR6PoQAqFnSjqQZCMktgI65tEd7VcEVcj9USseqeHINxREDdS/u0H/3de/PSPiTZjGskfC0wOSW6JKQQ7adfoNLTClBHlwK3Jd5wZGgFbAXwiQc6mFCaiWhLRvp1IS5WI05W0jiXg04grEkpnOdrb5sK4i9GRs5MBIWixEFaQpo7tSQ46Qr/GWM+gVxCClscAFzRVZen0SqYhx65bVJPlPFurqhXKK3zaBFgCvaNj/CFN8ZE+2boi3ZZNXU9RmthYngkTk5y2JCMkULQPoROFbTLNYlwGbrXGjhPyC8Kw+FwYKtdrtEfL4l7QOx2aMM6IHSuIGtf3whwp8IVlNJL7nlIj9uuJtah/uRQIuZKV/VvNxtyOOvDX98Gbvvam7b9tWbtSANKCld2u/W5OZZd7rz608ji8/PjNCbJ885vfzHve8x7+9E//dNefj370o1d80D1bLcPRsijtb5DWLb8woW2DHWNEWTPTwag2cT5LReRuDTFLiEZ8Hc98ueYH/t6vk9075FMX1gho/qw8zssP/Clf+OzPUhyIJOMgGphFo4CFhHthDvxcm1PVdB/dRjsJqdSlF2vlEFGlJ+Sim9EuSKtXo39Jhp58w4s154aj/1iFKTy+m+CWcopDqQjzQcBIJ8Md6AutXgTSrZp0o0SX8mU9PWhxHT0zA/CZIeQWt9ohZJaQagndBJKJ/J4e64movs2VMXrOWIU4B4ILLWIzJmzmXNb8PcupUbP3bBa8CU1GT6MVShPCyoDxFx5kcjhtRJmBdChp2dn5ClPui/j3a+/UXmN00jc+h/SNzyH50Wff7qHsyarWAtlmpFqOVHdJQHDYyNDnUuxZCW2s+6I1sWNFtqHofzbSOaNngY1mbMQGOCjCKEHpAF6Rn9VEAycObbJy9ybGev7HJ57B0kctuoZzz9Pc9U2fZOUZ64QMylXF8ISlGugmT0aRDBV222CGRjToRvQu0YCpJZMm3RBmqF6S8EnXifhMMlKyddGfmFIRC8OZ9SVOj5ewOrC+1WNj0sHVRlrVuo4YFVVloZLveq0j0zJl83yf6DTaROra4L3GOUMsNXYi+1dOQIvyojWZZQlE8Nspdd20Bxu5nmaHwF42VUmQtcA0ElJxKSsPBaKKqJndcSTdFL3N9LDcC3qPC7h0HbFnjlrMAsrVyOSQpu5Lu2C1EnAHa3CKUBlCaVBWNE120xK30lv+f/CpUpfLgblUe9m1AJev/K7JEx77/vdfPoD9ZreNXap2ivRvTV3qGu+23aV0M5fbxxdvHuPnX/hEF9NH73/wmq7xFTMw9913H//4H/9jvuVbdrdQ/bM/+zO+7Mu+7KoHsKeqtUamEeS3ZldeMkyUbVbvLwptnFsCR3H7gmbFP4p7VyeHRBxJDvxF5I1P/z8ptzPykymvH34N+lxK/7OKzvnA3Y9OsedHYjvs5pqQGONsnzHEHU5ZsfCoM45ugOldA0zR9A2HSMykrcxulZJv0wCIYBXaihAxmUpWjGpsinXlqA50sGNP1EbsnH2ArmV6LMeU0nOsS2nHMmXA9YxYb1oRUJqisVv2Ad+xhESCyFSEYJQAHQd1X+NXB+jPjhtbajPXtKTJ3PmtvQYNyFTGzNvBQpT3K9Rih6wbY4XWcCFE0AtW2FH2Pb1rQEgUnXM1pvREqwhWS9DluIZqejP/t+3XLvXLLxpeVRvZtbiP3SrXsc+1St/4nNs9hKdU+WVH0STeu6DAK1mtzyN2KBPm8nDAbgmoAGEAUCL6V6FxtQJiYbBbhjpJwUrLl+97QlRMihStI4P3dTn4ZxNcz6JCwl/07iWkAYuwCslY9I7Byr3BFoo4VBSHPcmWZInJpF9LO9k4EIyhHkAyFPth1w/EnicZpSRTqDOoVz39Q2M6aS2uwSbQ7Zasdqcsdwq2ujkhKkYbXcmE8fI9HIKimjQZMzbgNlPi2BDSiD48hdjeS+SaxAKU1zNAElXjXGYDrjbSBjZS2Inca+u+6I9cV/6OToNT1CtyXzMVhDSgnIDFdFM0P64D2UnJzJkeUpgiYidQHpBFtGRb3rtkpBjfEfFrNZSNH7ZX6I4j71YUkwaw5B5nA3Gyz+jfzFrMevlcrMuJ/W/K8R55mNc98tares2VAqBL1dVuf8UMzPOf/3z++I//+JLPtyGOT+WKrWUvzfl4yQdRqtFQtO1hWgkDMnPAWthHJdqXWFUywTamCbKUCX3/MwVHfyHn7v+suOO/T3j6z3ru+9Uhx//7eVb/6BzJY+sCXlr2gXmr2Ez70toKt61lAN6jL2zSeWxEPZiPKSrpEw65FR2LUtipIxmKG03dl22rZQEZygcBAC42LA6oSQlK4Zc7mGkg3ajonBqh6oByQeybK0mVDlbhOwbXF9o8ZBbtA3bisaNKdDGluJUFK6tZxdGuWDO3bXmqsUZunNfaalkaZYwwQnWjgWmc2mKbPwNzPdKiRsbPM2zckWWqgZlhmpDqRqAqbXG6rInpvm//Xq1fftHwuq2T9+vJq2VZ9sHLNVQtYYchBZzCbFgGn9R0HjPicLUc5Ls5jfgjFdVKZHyHMAjRgHaKdFOjSyWOZCDi/eWC6bMKyAJnPngE/ecDpue7RA2un5BuVaTDwNJfa7on7UzUPjjp6VxwmAp8rjDTSH4ukp0zJCNFMo4NUy9dAKYWBiIZNe1VCcQ0YjqO4pBneiRSHPOgI95ritpyYbvHtEo4vrTN4e6QflqSJcK+4BRmZEi2DWymuCIhOoXJHTbxKC8tdKgof3ed5N1sizVxecgTtQAIO5IWO+UVSb9iZXkMSaBajmzfJ4zT9HCkXvPEXnMPaayOsRG35CmPOsgDNAGY2Uakd0qAo+tKi100ML4DyrUm+8aJAxtIG1k4UqIzj16qUYVBpYEwtUzOdwlOE4PC5jWYiNkX8V+ydhOvt3WxE9bF2y2u3j96/4NXPQl+1cOv4dH7H3zS195OPcx//IffsOPvm8HKLDI+lzvX3Z5bHM9u13A3XUx17v/Ydd9f+JkjVzjiq2BgfuqnfoqyvLQTwnOe8xzCxVkoT7FSpnEY080qf0PBLNoXzxzI2lamJoFeGJv5JFpZO1vpj4mlOr7EhWflbD8j0Pus5uj7x5hhiQpBmBZAOT/XgDRalbjQJtam1reifGYuWtJqFqdT1GM1fReY3LNE1Akh0WQXCkJqUAaUUagqYKPHZxKeaYqAmYq4P2RWAEkdCKmle3Ii1tLdHNdLSEYOXTqi1sRE47sJKgqzUncVxZpGBU3nQmiSkSNm4oR56VhUFTCF3FCClUyD4oChu7oE5zbmrEodwdBcx7kDnMoz0bqEBqw0gny8n7ehNdvOqm0ra4FRmlCuZbMbtfaiGyoPJiRDR71kSXODqxeCNPfrltTl2JfrASy71Y1kYhYB0c1s9drXwjx1KtkypEOIVkG0mEJRrkL3tDiQaa9JtqUVKenU1McjcWSp+7oJUJRskpBAyBAgoRPqrmN5eUKWOOpDmo3PrJKeN5hS9JJma0rHaEyREDKFyzS29GQXSmKiqbuadFsTLDMRetQ0f4tGps06SaYRP5Rxl6sRMk+oNWq1Ih6MklcztUzPdaEJbvSDmnO2x2Nby0xGGTEoYlCYoREQEKQFy28lKB2JmUdnHrVSUQ00Wa9CawExPo/UA0W5FjETTbrVaHE6sg+34klNZHOrB07ju4HY90SV4HseMi/rgErczwBw4uSmh1p0PE7ROauwhbRCr304MD5q0HWUjBwnQZ/JSMCl64p2ploJxEpj+xVKQdXxaBOwSzWdvCa1nq1hhzyvqccpwe2L+C9XixPcduV/cbJ8NWzAo/c/yFve+kZedf9rrmoMl5u4v+6Rt+4JUf/NqKtpV1t8H9rrsfh+tRbTu233tiav5tH7H+TYu7Z33f9H7zpzxeO+4k/U0aNHufvuu694x1dSv/d7v8fXfM3XcPz4cZRSvP3tb9/xfIyRH/7hH+bYsWN0Oh1e+tKX8rGP7exXXF9f56GHHmJpaYmVlRW+4zu+g9HoGsVy4SIGKTbZK+3EeIcGRsCGsnbGPEUf5jkpRkNiidZQnljm3HNzJici6R1jSQg2ipiZxi3MzBy4YkdS7Vt3M9XqNhrHLJJ0p5tWayJgbdNWFuH8Bt2PrWNKcbkJmRUhf4wS1OmD3KQiJCNHsl0RE01IGxvm1BCNIt1y2HPb4jzWy6XtrHSyjxhRtbAVPtGY0pOOAqYSAXzrbLZ4bc3EoQsnoZl1IBl67FS2rde68/PURgT8M0MEvUO/ssiSYcwOi+TZW+cat7KZlqkBpU1OT0gEPMk1iSTrhQRw5oZ00+FzTbm6N2KS9tzn5CbVk7WO3QyHstaZbJ+ReerXXvuc1EueyVEJU3TLnvJYTXnEU63I91e97GUVvxuoRqnknWjJfTGlatp0RV8R8kC5GlABktQxGuec3xiQJw5VKTEAmIItPH6Qt4Zn2JEnHXmUg+mRnOmhVOzuY8NSHBEnSdeLFAcV2/dopocV04OayWHD+Jhm+75A9awp8Y6CQ4e36fRLlIbgFTb1mEGN6jl012H6TnQ6QIwKbSIME5LTKclQcmYEJMmiFwq0iSSJF4Cho7SWVQaUhFCO7nXkT98m5OIIVvfA9SOuJ+1fxUha6PIDU5bv3uLE8XXckQrVd5i0GUutSU6n2A0LSuyf7Vicw/qParKNgC0jnfOeZCTaJd9R2DKSTCLpdiQZiTObKRtPgAh6ZPFOHNRMJguR9Shle6PLaJpRT6UTwXQccQ+5kO21z8qNrFen38aZN4yf8PhuK/5XUzcKvDyZJfJerUud/27AcjfwcqX1wz/4nVe87W39RI3HY57znOfwb/7Nv9n1+X/1r/4Vb3nLW/iZn/kZPvCBD9Dr9fiqr/oqimK+Mv7QQw/xoQ99iN/+7d/mv/7X/8rv/d7v8cpXvvLaBrSov2hKGd04W7UU/kKIpdFPbHFKk2aSrQm9DvXhAdt3pxQHI4NPgv3DAfkFmB7J+OxXLrPxJcvEVCbK0WjJfYmx0bx44iLr1Wo6Zq1WzQS+nei3LWUhwtaQ9FNnyR8fEVJNtZYSUmFrYqPTsVNH1Ip6kOJyg8/FFrIeCKuSPboOzhMTS8it3HC0IjYZNe3/nmjEtcaOPdlmJF8P5Oue3ukaO6zli75wqKlQ6CEzuJ5t2tkC6SgSMiNtZC1Lsijch7kYv2WdtNppj9w6jIEwNdbK+9ECofZvrYl52iQqS+uc61nKI105DyMrpi7XlEt744az5z4nN7i++T2Dm2qfvF+fH7XXPid225AMRXNhBjXJoCJmnnQrkm00TlqdQHbOkJ5OMNuW7Iwlf9ySbihMAdpHkjHYLUPoew5+6Vm+9Ngp/PmMcD7j7AePsPzXimxTNCutY2RMdONCKcGLxaqhWNVMD8hPcUDhegICysOe6pCjPBColyLFocj0oKJcFYfKGVtyMuf8J9eYbHTmrl464rcSotN0eyVrKyMGvYJO4kiMJ8trYiJsfLnmhSFpfWFKhRlpXCnC/eWVCYcPbpNlNfVEQIlarlAdj9aBlTs3KU7UuEGkXgn4gceONGpocVsp9af7bG30cEGjTCQWBl8acTjzYpKQn1fkpy1mKu1qphBTgGpJUXc05YrcB9sx+lRa66KRfJhgxeigcyZiJgpdiLlC3q0w1qM0mI6HqKhrgzKBurasLk0wmdv1/8ntqL30Wbl4wroomr94Inzxz1O5/q+77rmm103f96+u6XW7gbrd6nWPvPWyLMvF27bbXOo9u1odzdXUbV1i/uqv/mq++qu/etfnYoy86U1v4p//83/Oy1/+cgB+8Rd/kSNHjvD2t7+db/zGb+QjH/kI73znO/nDP/xDnv/85wPw0z/907zsZS/jJ3/yJzl+/Cpt9aJQyCR2DgQWwYHRUHn58m5buBpbXpU1gj3nZ9oVP8jY+IIO6/9bxfPv+zR/tHIferXky+9+lA988h6OHtoiNZ7iJw/R+VQp+pMgLWTK6zmDEGOjtQlyzHZMrcC9ZWFaI4EgX6DROdRjBfmFHH90FZ9bfC4Tdl0JiyL5MYpqYCRZeNXS/+wU+9i66HiUQlmD71p8pjGZEROYiadeznE9g88kCbltJQuJIj1boaeOeinFFB5dOWF3OhZ8ZHLIsvUMOPSnYvOsqyY0tK52viczu+rmby/ntgPcNCt+eD/fvgV6uhH744mxMWOYFCQjj+vJOYvxgJqdh880PlX4jmIv1J77nHyO1qVYmMu1mV38mr3mFPb5VHvtc5JtKAYXAtWKIQxq6q2M9LzBdUVIH9NAetZK2n2tyM/D9EjEjqRlKUwgpArXhfy8YpIZjnRHPK17njPPGmB14BN/eWImdj/zAo1btqz+aU6+GemdLFA+4tOUYEXnYaqIy6RNLBQCUKIJkjWTRlmXKhX1csQFSLYU6YYi3bSkW5FoDKM7NPreitWVCbXXTBoL5Lo2LHUKtNKc3RiQpI6qTFClJqRRsl+8uJop31wDK+AisZ67VzZwUXMmDCi6FZ2sZqknE+ZuUuOCZrvnYKlktVfgvGHolgS0ZYHYrzEmcu7CgFgYaRWrNURDtq4xUzEziEb0LKYQ9zc7kfEXB6U9rXM+YuqILhXVkiIdRUwh7I/PFGoqon4VwfcCul/TyysubPQJpcF0HAcPbwsDExUxwtYoh7h3NDB77bOyW8tYO/l9KrVutS1Yr3vkrXvW1vlt3/vr/OEo8P2/u3PR8FJA42YCkOutvbHEvEt96lOf4vTp07z0pS+dPba8vMwLXvAC3v/+9wPw/ve/n5WVldkHCOClL30pWms+8IEPXPOxRYgfBci0FeK8basRmM8YkdaRTM3BTjSayfGc9ecGvvDux8lNzTO+8DGefeJx7uleIG6lbPzPo3z6E0dkMausGgYlzNzG0AayJvW0ZRgW26oazU2bPD+b1HsvmplaVnxiWaE/8RjpJ06TnNkmu1CgK08wAgSUh865msHHR6z88RnsZ8/vDPEMoVmBUtRNzotbynFdw3TN4BMlLmNlpOorXLNdeShHBeRYuSV0U+qllHopQQURh7pcnMt07YV1SlL5gblNcqt5WQRpiyxM+755Pzc6aC2wY9gBQmMpRgLZhaIJ4mzEoFEEq9FA3WtcgZ4CnhS383NyI+qpwLzs1ma233b21Krb8TkJBqaHtLQcnckkVLGQlfy6H1GVbsT6kiAfEiRIMYF6OVAP5Ll0W/JXDjzjAl1b8Scbd7KaTbirt4Gu5bXdsxJOaQY14xMwPqqpVlLq5VTMWRoTRlNG8q2ALeR73xYKXWpixxNNnAnpfSbsjM+lvSw060Ku0wChv+hz4S8PsbHexzuN94pqmvD4mRXObwyoRynTUYYrG2DUCeKe1jiohQTcoZrO07c5emKDo4MhAcXUJWTW0clrBnlJYjyp8dRBUzpLmtWz7JhuVtE9NoKB48jRTZ5z90nuOLQhhgE2QscTM0/U8r1eHIpUKxJeWQ+EQbJFpLMRGuc3ccgUpzZxJIsaqp6i7svjriMgZusZUK0GYh6IXrE16hBqLdk+2ykbWz3q2hBqjXeGejvbkYG9l+tWf1Ze/xM/O/v3xav/l3r8dk6qr/TYlzIEuFiQ/6GVx697TNdTD73j1K4gcbfzvFwb2eJ7tMjIvOGRhy+pd7ne2htN/rvU6dMSZnPkyE5HgiNHjsyeO336NIcPH97xvLWWtbW12Ta7VVmWOwwJtrcXLm6IMzF/rGr5d+12TJSBeftSkgrjYc3M5QulcIeXOPUiuPsLT7NRdPj46UMM+lO0gkc3V1n5S83SozXqjyG9MCWmCaramf0iLVCJzKOdA78wjhZEsSB0X5isxxiFFWrF/1oJo3KhwmyP0DGSJsms7Sz6gMoz4nRK0+AMjb5H+SYMMzbWzFpJy1eIpOOAnQjAUSGSb0qLgIhAJdBShUjILDHRuI7GVIFsK5BveKqBoe4qVOkXMl0asNJqixqDhBmIM8z/PbNJVuJO1j7fslKt7bX850A1eiO9OaZzLmF6KMV3NMm2GA3YMRQHLFixz9zrdds+J5+n9fkGWqrX/PnnhAPZ7fqc1H3QlSLxEnZYDyLplqTY1wHcUoCo6ZxbDFKMhIGj0IZoDLoC/aVbfN3df8Jb3/sSVO45fHiLP/+rp3P0D6BYgeKAWB+nH+mSrUsOinYRO3Xk60om6xMPEXGpDI1w34jDVyvAjzqSjJvFqtWIz4RVjyoyPSIuXINHwSeNOcGZDFVCdVgWvNKzFhUU/niNTT2utMQ0QKVRZRNqiTAXSacmMZ5+WtFLSsZ1Ruks20XGdJIxGuWEytBbmaJ1kMBLmP123lBVhugUdaMvmdZiDNBZnuK9phxlpBvSyqeCfL+HBOpB4/amoO7I9RFAF7HTgMsNygMJbD8d6oGY77R5OSFFFricInqL01HWL4MiPW8I6wa3FIi2sdA2TUzBU6Bu1mflau4nFzMylwIvt5qdufh4D73j1Ey0vliXGtNu27/hkYfhTTdwkFdYv/7RP+dV/8drrqrN68m2W9zXrXhv9iwDczPrx3/8x1leXp793HnnnfMnZ6v1YcdjsxBLpef2vMbMWp5iXUvLl3OQWCbHMu79osd53tpnJX340S7jPz3A8I8Pot65Su9swBae7MwEPa2lfcx5ARlmwQq43af3cx1Oow+JzomQPQYZn9KzyboyesaizHQ6TbtZrIVhip1MNDENgxMnk/m5N9uqRutjCk8ykqwU37Xy5a0gGXpMKaBleshiJ0HccJCbA7EBL0YTlaxi1V0J0kQJ0DFVRA/bY8f5mMMCkGuvufci0G/b5xY1QC2ojGGH9mXG1DgnmT3eo3zAbkzJNsQCOmQaXXpM6cnXHclYBJufz3XZz8l+3ZbadyDbe3Wpz8nypwJrH/Yc+JAnv4DY8645yi+eUhwM6Fpht/TMwnfwaMBUoD1Qa1RQFMccrhtZ6U0JUdM5aYlesb7Vo/+ophwoYWDOyP3JlGI7bMuIKT3KiWFKtl6RXphipm6mO9QetBczl/b7nCggxXcjejoHHNo1LVcT2dbUEV21LViKzskEMxSaJluH5LzFnc9noZ3JukFPtQRRIvsIUTGeZkzqhK2qw7hOGRYZzhnc1BIvZOBFSzLa7lCVVkBJbellFQe6Y7wzqKlhOM752IVDrG93MabJOvMamoBKn4pZQbkiACYZIblkHqqBwnXEjS0kUC4ZfCasVzISvZKZKlxfhh4s1KuOmIdZJk0ojdy6vOTWpNsKVSl0oVFTIy5rau8viN3Mutr7ycXtZFd9vPu+C7hy7ceV1LWMYzc9yaP3P8hDb/raPdOedb1alasR+N/IumoGxnvPL/zCL/A7v/M7nD179gnWyb/7u797QwZ29OhRAM6cOcOxY8dmj585c4bnPve5s23Onj2743XOOdbX12ev363+6T/9p3zf933f7O/t7W35MIVIJMzzRhpmI7YsBsxX/Ft9hTZzNiBESC2UFemmY2PS4VyvT/yTZQ5/1GNKuZlErQipEhev0VTAS5Mfo1rxepZCURKLcj5Br+onMkGNtbIyumFSPCpN5d8tc+HjrJ1MTiyCCqjRRPZvdNO2tsBqLIAhnMdsFVQrA+k3DpGQalyu0T7CNKA8DD5doCJMjmaYJhwzZGZ2c6z7BpcpOuc9tvCUKwkqQO/xGjWeCtPUgpYGmM3Goef/z1RowF0LWFqtUohNG5mW+4rSiJVP23amZ0J+QkAPp9g8wXU6+FQTV1PSjYpks0C7lHp57y+Z3ZbPyW2qG22jvF9XVp8LLMzt+JzoOkLe6CactGeZLQO9GntkQj1JiZsWs6Wpe5AOA2YKLEGyYUi2FZO7AyGFcxsDVu8ec+zFJ/n06QPUoxSORCZHYfUjkE4i42OyaBQNEBSua9BG4XqGqBWdcYUZygq4XhIWhgiqVtA4gEUTRaOTRaIO2JF8f7uetGEZJZN95cFOQY2YJ9Q3WTE+R+yJfbNPFDGJ+G4z4Q+Agl63xBrPxqiLUhFrAiEqrPXYjsMngbuPrjOpE84XA7zXpNZhrWdrmjOpEkJhMIUmPNZloiDkAdX11IWVi+EVvh8IeZyBMTPS6FqRDBX5hdi0OUc5HyftxOm2XBs7nYeLVisBOxIzAFVpYhpQtcJMGwdPHbFjjakay2kFyZY8XllLcHu24WVH3azPypXeT57MOvl6gc2Nrrd976/z0Ju+9gmP76brubhux/gfetPXwnf+Z1718NVZTF+uLgVU9hwD8+pXv5pXv/rVeO959rOfzXOe85wdPzeq7r33Xo4ePcrv/M7vzB7b3t7mAx/4AA888AAADzzwAJubmzsCNn/3d3+XEAIveMELLrnvLMtYWlra8QPsCOJsV/hjLRkwbbDlDmF/6341e9E8NT7dKKjfe4D/+eFn0jsVSUbiw2+qIOnzmcY0rlxU9Y7jxqIkjidzNqEFNe1EHKTVTYlQvw11jN6jjBEWB2ap9YBss8PdrJJ2sdbZC1B5Pg/GjI2Vsw/EokCPJZW+OGAoVy3jI3bm1BKNYnpAhP4hlfBLnxtCpvG5plqxjE6kFCsG7aKAN9cwMBGyM6P59WyYppm2p2WNfJDgSoDEzjN7wtzCOjZj35EHoxeuXbNPYcpEJ6RLh8/ULFSzWk1nQZ622PsA5nZ8Tm5HPVXAyz5DsjfrdnxO2ol+1Ve4njAbybYmbGT42pB0auLBivKAx+cwvNMwvDdQHXLUh2qmxzykgZBE3HrO+7eezksO/xWh1nQ/maBrMBV01j12EtCVtEEBlCuKqm/wuWF6QDM6YSmO9sAodCFBxvl6JN2E7mklrV9ji/KKuh+JXTm27zVukwGSoZgL1A0TUS3B+HhkeiTgc9G5uCXP9JgAFV2JvhAd0bVCOWEkkrHCDjWDvGStO6WXy/2qdoa8cS87vLZNt19ydrvP+lavMaXR5GnNSqdgOk3ZOLVMcjYhW28CPys5BlsJ6amU9FSCHRrM0BBtRPdqdL8mHimpj1ZM7nJMD0rrnory/e8zGpc2TbkmeiRpnZZz1pVCV8i9y2l0obEjRbquyc9J29n0UKQ6VsOhkmol4LtRzASqp0bDy836rDzZ/WSxXeziCfHRw+NdJ8OX0szcimqP+6GVx3cdx14AV1dTt8vh7XoYsqteEviVX/kVfu3Xfo2Xvexl13zQtkajER//+Mdnf3/qU5/iz/7sz1hbW+Ouu+7ie7/3e/mxH/sxnvGMZ3DvvffyQz/0Qxw/fpwHH3wQgGc961n8nb/zd3jFK17Bz/zMz1DXNd/93d/NN37jN16Xs1LbLha9nyW7Ywxq0eXKPPHLSNn55TTrI45+IOWU7bDxxYHhPSn5+RQ7jYzuVCx9Koq1cGObjFLEEHayDs411s4LoKn9ndhGgC9ajx3p9O2YtZ4BndnvZh+q5b4X9hnrhbBMgETarrAWake6WTM6ZnG59BMno4CpAsWBBFNF6p4Ry8+JOLFNDxoJYrMKl0MykdaGYBXj4xnRQP+xErU5lNau1jms1e+070ObxTNrJWta46Kbn1MIcg1gzhx5L+5liW1c3GgAp5F9amGnsg1HcTCRNoIy4nqJaHra63Cba69+Tvbr1tY+OLp87bXPyeSwJjkvLlbTQ4riuGhQYscTSyMBj5VBB0W1LIGKyUihNhOigWrVo8byHUqt+F+fvYdTa8vorQTtoexAMpaW3GQSSIeRckUE564LxaoiGo3rKKKC8RGLzwZ0T01JhjW2sFQDaQ1Lt5QADi16D0oNShy76lUHCtwkEX1O014VEnAr8h0ZcoRZ0RCygC41qobe45pyBVARlTb3GS0MjQuaEBU+KPK0pqwTjA5YFdme5nivqQrbOHt5jPUMRx3K2opgHghZZHLAYbYtIRdRPV7ByAiD3q5JqkhwYq+sdEQngWgi1ZomGWmSsbiMRaMwVcRnItiPRs7V9QO6VOi60TUVambA0OpivI1EC+FEwf13n6TwCVsHcypnOX9uAFt7p4Vsr31WdqtFBuN1j/R43SNPBAV7DSRcinWZPb6LXuZ21Jt+9u/v+viNsEBeFO/f7LpqAJOmKffdd98NOfgf/dEf8bf/9t+e/d3Si9/2bd/GL/zCL/ADP/ADjMdjXvnKV7K5uclXfMVX8M53vpM8z2evedvb3sZ3f/d385KXvAStNX//7/993vKWt9yQ8bWtWID8XgQRLVujWkcyEbe3rIgKgfSzGxx7n+Ls83KGz3DUS1p6aZc9vfcH1HjaOGw1yzshyn6j32kT3Irs28m6MXPBezsemlY2rWW7xApEWWBmZuNvW+AW2aOWpdgFmLW5LPbMFks9SzUwmCpiqoAuPcFIK1gynJsMiHjfCHjpQL4uQv9gJfulWNF01gPJqS0xS8jSGZsk41Oz1jallICS5r1ombKdgMzMnlMzC2U7186oxhygPXeALEXVDl15TGlwuVhKl2sJLlf4am8AmL3+Obme+uUXDZ/Uieypwr58LtdToY1sr31Oxnd5WNZk6833VamIWSQ9lRDF3RdTio4EZGIfvWgxdAV2amRS3U74P9Xnry90yDc0wYK9e0Sx3uFcbtBOhOotqw3gerLfkMgkHKVQwaBCR0KOA80CE+i6+bpMIF3XhLGwD74TIYCuFa4rbWTKAVq0OmYsafYt2MEGlI2E3BO6mmm0pFtiCoCKhDwQxopkqDn/kYOcWasxmefQ6hCjI5MqYTrJcOOEwaERaeKwK57Uek4/torZshRpSkyiMEQ6ojuOOBGWRaUethLqlUC0Yr1mxho9khwzn0X8spftAN8JVCvSUqZdJNsKTA9oXLexSU7FjSzZ0phCiXbGRWyhCUauQVTgegLiooFQWDbKLplxGBU51Btx/tRyIwrdG7XXPiu72Se3jx171zbf8ZqX8NOv/kve9LOX2sOtryuZoF9uMn+prJVrnfgfeV1vx9+v/Llv5p/99ORJX7d4zBsNOo69a5vHv/LmdW5cNYD5/u//ft785jfzr//1v55PIK+xXvziF+9o27q4lFK8/vWv5/Wvf/0lt1lbW+OXf/mXr2scs+MZjbLJXC+yCBBaZsJ7YCH1XSMTbXXRxF9rqGqyT5/njsdT6kN9XM+y9bQE9aim8+h6M6EW0DFrF2uBROss1rRJqZZA8GHODDRtYaoFKXkmLmExQuOgFqOAohgbFxSt5oCGZsK/0JaGZj6O9jy9h7pGhUB+chuOD4hWRO8ohanFucUUHtezkmKfa4oVTUihfyrIF32I+FThOpp8MzD48AXR4WhFLIr5dWz5eqUlhIwmSNRaCL5xOAvz68ECkAnIe9W6uc3CLltQI3+rhlVSWmOHpeTcpIp021MtW+quIrI3bjh77XNyo6sFKE8FS+UrqV95+8/d8DyYffblyWuvfU7USkUdu6ggYMBOFHUmbl+6VlCL4FvXDehotCHtyr+ZimtWm60VNfgNS7YhBiPTPx3Q91CuRBGd9wNmIqL6qEWL0rLlPo34A9LWtn2vpXNO9qHrSL2kxCZZ0WhfwBSKmEdU3ea2CLgJWSBk0kqlvPxo5HUAqjREJ+ACBdm6wo5Bdxrnr1rJ6yeSN+NLw9rhbfppxdlhn8kkg6jorE6xOmB0RKlIWVtwWjQntcItedTEoEtFmBoUoIKStPtU2CzJCwOCQteNCcFIUQWFW1KorkMPaqpC43qiiWkDPn0GoRtINw2uA9VBT3rO4HNFrKWNzLT3zdjonJD3UE0Mj51f4fDqEB/FGhoTUeXeaSHbS5+Vwwcf53WPzLU2N8K96rnP3xuLj5erSzl2Xer8/+a//CL+1z/78E0Zx5M9t1fMBi6uq/5Evfe97+Vtb3sbT3/60/mar/ka/t7f+3s7fp7SZSyq35sJxGfOYwtZJK2GZAY4QBLkAapa2rCcI06mMikvK9SkIP3sBbofepyjv3OWI+8+hxpNocl+iWUpr4OdLmg+iJ2x0Y3GI+xkIUJEpclC2KOfsxNtuxU0Gpow15UAsarmrE7r7FVVM1H8ji+3GIlFQSwK1NaI9EJB3dNUqyk+09IWoRT1UkK1ZJgcMkwPaWwRJfxMtW1kirorK11LH16HzW1pm2sAhcoyVJrI7/aaqgbMteYC9YLuKDQAcAcAa53I5q5lswyZWTZMcx2C7E9VjmS7IhkFfEejQuNAtncY/8+L+uUXDWc/i489FetGAo69Al6q1/z57R7CU6rsZ3J6JxWTY4HijhrXFTajXor4XOyJUQ0wSBrxPQ0bUsvqvp3Gxgkrkq1Heqci2VYkHUbydQEb+QUBLcrJ/mITEOnyKAwKYEphEnwurEo9EFYkznLFaGyGpTXKZxFTQDJSmCaxXo6hiGnE98R5UtdIIn0peTJmpEk2jOg9nIAnU4rbF1EE7z6L1P0gIvrTlnNnlvnshRWqWtZTs7zC2vkEdDTN2Dg7wIw0aAF0upBjtdeMCIOPG/JPp/J4z8niVx7wByuqu0smT6+Y3OkISSRZN6j1lFAZQicQjheUBwK+I21gfsVBEDApCBJiQpPhI4wLiCtbZz3SPxnpPqZINxXplqLeypjWlsoZtqa5dGh09/6k+nbU2fPHnqC72KsT5rZuhvbmdufcXMkx91rL3lUDmJWVFb72a7+WF73oRRw8eHCHLd7y8vLNGOOtq7omnF+fT4rbSX+MO4GBMXPQAHPtirXzCXe7XWOF3Iry1fYINZpAXct+nZtPttvfs1ayZsLe2CUra4U50GrOrtRux4S9ZcXm4GuxTaxllEQzo5SajWH2uoZ9UtbK2LywLMKGGGJRYM5u0H28wGeK4kACCnzeOKs1YkgzjaTDQL4VGipe+oVXPlEy+ItzqI3t+TllGbHfJRxaob77EOUzj1Lddwx/71HCnUdRvc78HBI7v/ZaoZqw0diAt9l5Ny1/0YeGhbroPdKN5igE1KTAbEzILhSYIs41PpO9L+L/XK2LgcxTsW4E8NhtHw9Xv7Drz62ofRBz5eVzmQCbUhLhda3IzjealgiqFtAS9YJ7GDIpToaxcS4T9iPbDvTOOrpnHb3TFZ3zNekwYqaQbkaWPhXpP6rpnVRkF4RBSbeEVYhajoGS7+ClT8LSpzz5hSAukjQsUIBkCLoUkBMsjQhfXq88JEON3RJLZF0jgMbIb12LRkRXSpzNTKRciZSriuJQxK/V4kRmIiGXTByfR8yFhHIzp9jOiF4xHWcU05TaG7ZGOdPNHBrNS8suaadwq464WhG7Hu0UxZosPEUDSgvTpUwg7dbYzKGmBrttpP0MMNOm5S4owighpIFqWTQ/KvPERFrmfCrXzhTS3qdC857peXaPqQRo2kL2Z4aGjY0+Gxt9RpOMtFtf/N9jvy5RN3uS/G33XjrTabdaZEmuxFnsaupS+9nt8af3voB/8rKXXPcxLw6dvNx2i78v/vflXnOl9RW/f+zJN7pMXXUL2c///M9f1wH3ckXvwSQCXBYE3K2mBJiv8i+Kwlsnr9QAZp5PQsOU+LZ9ScIx8UGYk+qiLzWlJBCzrR2mAc2xWmYoBFRiZxP2RQOBVtDeto+xAFZg7tI1E/w3z7VgoD22apgf5YMAsroCpYnOkXzqDEtbywyfuUI10NipjMOn8iVPhHJJk0xkpbF71pGdGqG3RlDXM6AX1ga4lRyfGVxXsmJMGah7GtfJqXvQPdenc7okuTBGTQrJy5lM59dfK5RJ58yMtXMw2FwP2uvTnkvbhtYAN1VWmC3IIkSdSxrzPoDZr+usa20nuxRwuVwtPv/W9P++6mNeaT0V9DB7oZJhK84HPZG8FxVEK6JoW7sgZrLqr1wzSS4RRNP6uFQQrMYW0s4lQCRiykjvTJiZqZQrlmJFyWJSIjoa0zhmubRpA2u/BlMl42m7pdvbmYV0KGAkGhrwIi5iBGl5ixaUF8MBovy7DYIkCmFhxhqXB7RX82VSL3qU1k45JMIUKQ923UqbsU5wg0CdGertFLthsSBgxcj+o20snYcGH4UV8p2Az6E6IKyL1hG7VGFsYKU/wajIpFdgdGRcpJTLCXE7BaStLeZeQil1QDmNUg411cLGdKKArkQMaFpQGTVimNCYv4Bcc11CXI5Ep1ETQ20tyXKJSj/Pg8UuUT/8g985+/etFIBfSV0qob5ljG5mWOPN2vfPv/BbAFD/r0PE156baVSSdJsfeQP8i9f9IKdfUZG8YZtj77q641/LeC/W7lxNXXNT5rlz53jve9/Le9/7Xs6dO3fNA9hT1eSDzNysWkE87BTVW7HxVVkq4KDXlZ/GbrkFHUrPQyV3/Nu0x9E79jkT1semdWzRTavRpcTaPWFMYvHs50yR1vMWsIX2sVk1+5ntW+udzzWWxIstZrTBkq29clGitscM/vIcqx/apnOuFmvOC47+yYrlT0w58KExq39yntU/OE3nL06izq2LdbO1kCa4E2sMn7HE6HhGuSLhmMnYk2zX9B4r6J6p6Z2RjJnicMb4vlXKpx3CH11FrSzJ9bd2bo1MwzxV9azVThktwGzRgMEYlDWoLGvYGC2tZGWF3p6Sn51iikA1WACT+7Vf11i/8vafuyI2pt3uWsDLbtvfTFZmn4l58nI9YRhCGhvHK09xxNNK66KRyXhIpGWrXglUq4FqKVItR4qDkenhyOjOyNYXwPoXKbbv0YyPWopVS92V721dB8zUo7wwEG0OC40MJC6AC9cLDO8C11VMjmiKgwpdCgPjM7ATaVfrnIskY3ANU1L3I74bZd+N+5aEZkK2KcGQdsKModA1qFLjOpG6nZ9ECKlkpaQbAuhiGiEqbCFhkUTRxpgtQ3LBYqdKGKyiyaPpRkIWCUsO3w9iMFBICxsGSCJqZAjjhHozoxynbI66PH5uma3tLhvbXarK0ulV2ANTlA3ElZqkV2EGNarriGkgTC3Kg88bRBZEJ+QaZqrNu3Gd1k5aMbpTMT0M9XIkDJywQAA64ioz/3u/nrQ+Mf4rjr1r+7aOYTfm5eLnrjcAst3Hbse+EeDlycZ2JQL7xfa+3TJ4bifYvGoGZjwe8z3f8z384i/+4izE0hjDt37rt/LTP/3TdLvdGz7IW1YhoKyZu1otZog0LWEqSQhrA6bHB4SkyTPRkIwcuvToUYWqG3vkEGbAJWqFcl6YnJYdcA7V6cztktt2raZiWc0dxgB0EKYB5iCrmbgrI9bAi61tspO4g52ZsTCL7E3DtLSllJLsyQVzgliWwhq1pRVxNIbJBL09IlPiVDY7j8YamkXg5P1M21LdeYB6kEgacoD8bEm0GjuWQM9oNHbsGppe+rV9qojLlmrZkiznJBvSzjY7Rogoq+cMWfAQ5n+rREOSiKaokxGNmdlYq6qW/XiP3pqQxUgdrxnf79d+PaGutaXseoBI+9prZWQuZloWgcs+E3P58p1AWil6jyl0HRneYxqhvcYOFfWyfG9FE4lpJD00oa4s1cSiCo0daXweSbdENxINktGiFMVBRTWIaK+xoxQ7bVLmU2FMghWA0YZLhkyYDlMofCdSHNCS89gRViGZyGR9ckSeN6XCpwKCwkotgZFjTezIWM16syDnBYCYht2Jugm2TMAONSGNlMccyXmLqjUxjbLuFhX1sgcTxbK+btqzvKKGxmBAERIR1LdWxUFFsUl2CpV7YqXRTmyiVQlmaGXsWcQPAtErilEKlUZlgVBrVKGZqIzsyISVA0Oc15S1pSo10WnsBTszM3C90LBETbinaUI5MwGlZqqFEdICRs1Y/laFwY40ykN9R02cWtjMbtv/xb1cr/+Jn72qSfCZN4x5dvEiXqH/wQ4AcaMn0i1T8fhXLl0WCLTH/cT4r/j/vPF3rmkcuwGhm8nuXKr+3fMf5nGWOPrv09ljP/KGn+BfvO4HmZw8wq9+/U5QeTGIOf2Kasdrb3ZdNYD5vu/7Pt7znvfwX/7Lf+Fv/a2/BYiw/1WvehXf//3fz7/9t//2hg/yVpVKbON0FZklvxsDaQLLA+ojS0yPpFQ9LTqPKjYtAVAuG4JR2LJLuiWgIhm5JrHeCMCpPcoF8JGYyMTadRNUjPhUo+uImTrs5gQ1mqJAQElq55kmbS22lzVtZcpaAUj13I44tvkwLVhJ5y5ryto5U9G6nmnRuyi9YF2cWFQnp02zn9sRLwAc37y2AbVKKWJVoZJkZ5ubtfjDy5QHU3QVcR2NqSIhNUSrYCw3RVXWoBXZRonPLckYcXvJDT5TlKuWeqlHr/boC0EMCNKkAYF63h6mQXU6xE5GfXBAvZQ0ydRND7OWdoxk6MnWS/T2FEJATyry/QWz/brNdaNYlIerX7giEPNkgKR9vgUy1Wv+nORHn33d4/tcrOycIfONRqSSwMjRXY1IvhuJOuKXPN0DEwadkrXOhK0yZ33Yoyos5pij3s4ocg2NbgOncB1DyAKm0PgTU8paozYTbNP6ZUqF3hZtjOvKgtj4gIASCWWUQMrO6chwGcojNeGMFXYjFe2I70TSDZmARyu5NKETUWWjlWzc0pSTtjZTSJK9T6FeagCIU40RipFWtCRIMKeXEE7lFXoqNsz1csQ3+hlTKVQtYMznAsjMVEwKYiJAK0aIpcZsW0yhqPuB0A2ELsS2Tc1EbMfhaw1ZQKce75TYPWtIE7kPlrUlBE2MCrwSg4IkoqeamIgTG0HuFSQRb4Q5iibiujWm61jqFfSyimGREYHRY0sEA8aDOZ3hlr2wRPu1a+1mKbxbbb7zlcD/G2gAxru2mZw8wtOe90lOvu4/kvT/xzWP4di7tvn29/3SJTNcFse3mx7m6b0v4A2PfME1A6pXPfadvOXE3Cf6RoGzKwFCJ1/35fzDV3wffN2T7+87XvMSvuL3j/HtC/tdBC7H3rXNN/zab/O0532SH7/vu2ave8tb38iB7/11AM7f8SKO8V8AOPTDz5+B0autqwYw//k//2f+03/6T7z4xS+ePfayl72MTqfD13/91z+lAQzayOQ+saDsXDuytszWs9eouwpbRJJpRPmInQR8rnG5IiQS1lisadK++PybMkEFuYmYwmIatiEqRPieKpSX/JhytQnO0hnJqMeBD5dkj66jpuWcWVlkN+KCHXAMc3OBlsFRGgwNEFEo1bRZLeagaCWaH9c4e7Uta62NskFAQRuq2ZZSc1ClF76UQ5yzObbV2dTScpckECNhtc/0WI+oFXbiJI/AR+yowucWn1vIDHa7QI8qQj8VVgZw/YRgFbqKmCIQEs3k3iV6ZYUaNgL+FrzEKMfNM/zBJUb39AlWJg/i7BNmPdXaRcoVy/SgJZl26ZwusOdHmPOjm/rf7XOtvvLrT13V9u/6tWsLPNvtONe6r71ct0qY39bVsCnpG58zAzH1D/3lzRrSU7pa62HtxGbXdRub4o6je3DM8HwPlQSUgmmV8OnJGjEqvFcsL0/opjWPF5agkPbabk2aOfSxwFp3yrlhT0jvXmCoO7iYCiNyrMQmjsljPaKVAEZ1oCScyzCFgIqQRMo1hVtx0OhIYuKlLavUJFsGO0HE911hjaKGMPCoStzAQjoHSHkFtoii1zmvqZbk/M1UoaKiXIsoJyAh9hzOGlQpgMsveYJX+DxKAKaXW3G0cgxdzh3Wgo2EnjA3RAh5wDtNSIAkoEwklBpdaELXo5pQHJvXcs/seJLlkiRxDPKS89s9yu0MTKS/MsWljnKconQkYDGDGj9MMEMtQZlLYghQb4qzmOlIEExZW0JUlJWl1yk59nRpqx8WGUWRwEYu4HC/rrue+3zPxWqi5N9t8Dde/N/h+U1bVNN+9onxX9Hnjtl2p19RcexdO1+7mFXyHa95Ca975K0z9uVSdTn9y8+/8Ft4/CuXrikD5VJObNfKxrTn8ZEF4Her60paAX/gb/4Zr3vkuVd9jlfdIzOZTDhy5MgTHj98+DCTyZOH5uz5akMiaZy4VpeY3LuMT4RxydcdydATjazu+0zam2bWu0Ddk/TlZBKwRaR7zpNtewlHTMSLv+rLjcTUoKL0QSdj6SmuB3D+SzKqO1eF/UhT1KIeR5vGFUzNGJMd2SfGCJPUtsAttIrN2+H0/Dml5/trnboSO2dbWvCyeKzWuGDRUjp4aXsLnljXqCTZYYccl/tMT0jWR36hkpa7KqDrQLQaM66JVhETje9nYLUAvBaTuYideJKRw0482kWqvqY+vjzXJTVjVp0OqtvBHVlh6wsGBKtIh55sy5MMHcoFkm2HnQoDZSeB7jmHTxSbz+ziDg2I9qrx/edtXS14aV9zLT+fD3UzwMvl9nktrWD77WOXLxVbPYg4VPVORZItTTqosDrQWSmIQVEUCT5oDg7GrPQnrAymWBMYl6nkmlTyU49Sxue6DDe6rE86xKgIQaFVZGVlTBg4wsGa4BTl+Q5h4LAHC9J7Rtx37Bxh2c3E+iERPUf3MxblFNVqEJZHCzvhlgLTw7EBEJqQR/IzhvSsRVVy74oGyoOB6XHP9IhqDFgidiJsjC0EvLkOuG4gKtGTKBuJqSwgRYWYA0wbENUI9EHYGF00mStFw5bXCj02UCuyQYlaqfBZhOVa9CxTg64R5icq6lFKnFrqzZx6mOILQ7GZM7zQ49SZFQErhUFNLNNJRghKHMtUROWepBHet5bXNvXoxuFMjw1+arCJoxinDDe7VKe7bG72OH1umUmZcqA3wdowA1v7dfPrerUzF4OX9u/FTJRFkLObW1c7hmPv2r4mjcxb3vpGjh4e73jsZlgrt+O05947e0xA3s5r+Ja3vvEJr/35F37LVY1pkY05ePI9u+4PpKXwSuuqAcwDDzzAj/zIj1AUxeyx6XTKv/gX/4IHHnjgane3tyo0jEIrqLcGt9bDTjz5hseUwpZoH0nGfuahr2t5PJlEss04E2mimiAxB/n5inzTk20Feo/X2KLZLkpvcudspHs2oOtIfiFiisjwjoywJJqiWNdzncqi29Zs7HOgAohjWAss2tawlnmJcd4e1oKgFuwo3eTPXLRa1DItwc/azmaAZrbPFlA12zZASnU7hLUBk3uXKQ5IGJjPDPVySnEwxfUs9VJKdSCX61tJ+1dIjeiIGsJJ155kWFGtJEyOZWw8I8GnisnhlLjUgyxt3NSE7XFHlhnd0yPbEuCiXUSXYh0aUo2uPXZUo1wkGTnMxGGLgMvh/Jd2mN67dn3/n/brltXnErC5mczLbvu+HiCyD2IuXZOnVYyeWbPxHM/55wfOPuCpDnqqzYztYZc8raHW+O2UqrSMq4QzZ5c59/gy506uMPqrVdi2kMj3enLBkp63mPWE8aeWqT8xoDzZZ/PxJTY3eujco5OAPpthRwa8op4mLPemfOnqY6ipoXOmWXjLA/VaoO5Li5QpFfaCJftsit0yxCTgV5xkeGVhluliRwo7VtLe1ba6R5jeUXPhS2HzPsP0sKJcjUwPiQlBedAT+x7V9eAV+nwiuSi91kimzYsRNzN0RAW5h/hukFybBOo1T73iZTxJJEk82kSSO8Ysr45FizPRmKkiLDtUx4ET57P0nCE/mZCcS8TxbNvCKJE1v45HLVcsDSZkWS0skdfoC83iWxLQtWhc6sJSTVIGx4boI0XjFGeIQREraTkLlUGbyKRI2Zx06OUVqt+MZ7+etG6keP96bXovrp9/4bfMfuDKQMXPv/BbrumcXvXwa26JBuZffs/ldev/7vk3fgyXum5Xe52uGsC8+c1v5vd///e54447eMlLXsJLXvIS7rzzTt73vvfx5je/+Wp3t/dKKRHXa01ME6rlRCa4Q0cyDmKvaxrxPtJ+BJIZYqeBzrr469ddJexAT4klcM9iR56QKlzPkIwj2baI9tNRIB2LFWYyjqTbkXxDhJgxS+ZWyG2bmA/zNilt5oxKO/5FpiRJGwvnBkyk6ZwVSZM5CNJmJ6CBnaBENwzPIlAKUQBNK6JfCNps7ZaJkWgN1YEu0wNWVseA4R0J0wOiZwl23oamXUBXC/tUCp9bYmJQtQcXMGUQO1AFtozUPc3knmUZXxv02c2ZHsmx09C0mylcRxNSjc+M6Gya/SXDSliwzAiA3JRjj+7YZ2D269bWrW4buxG1r4G5RJmG0UgCyaEpS8eGLB0d0jkwxSaO0SQDKxa9rrRsbfewqSfp1U16PJhCk/QqyMLMqSweKYmrdTO5l4T3GBSdbiWu/gOPW6tFSH424cJmn89OV4mmcTxLBSCoSuH6ATtWJFuKfF2RXVBk6wqzbUBF4sBBEohZIKTg+pF6OeB7Qdq3lrzMIoLYC7tepFpqOhgC2Kli8AmDGhkYWuzQYMcaPbTgRP+igsJn4jDWVrXqpaWsErF/caxG5V60LKUmH5QkxjPoTzm8PCKxHps5fC9QrwRhY7zGTCRoOd1SdE9HOmckGyfd0iTrAlL0lkXpyIHehDxxpFkt5gCVohhm0Gp5rGTKdJcKvNcoFTG5I21Zmtyjeg6dekIQ8FhUCal1rK6OmLUS7NeOeuuXf/3s30/WunWtdfJ1X35dr78UCGnBzKNf9oYn3cexd203Gp4n3+7H7/uuJ7A3u12bi4HAtTI+T1aL7MliLbIwVwM+vu9nf3X270f+ZCewX/z/8GR11TO0Zz/72XzsYx/jbW97Gx/96EcB+KZv+iYeeughOp3Ok7z6KVCNdgJjCP1OkzRvZdUq1WgXCakiak22UZNdECZGRXltNBpiQrmsSabS/hQ1jI4ls9Awlyuy7disOsnkmgjFisEWEVsE0Xp4NW+fUo0Qv2VTQtMCppmL6mMAFwS0aGbbqjRvdD1qFtKp8gbw1E7au8pGBL+YYK8X81T8TlbGObF0boMlF3JzBHwElE6I3Zyw0qNcteLqkkv6s5xnnJ2/nTRteT6KDiZGWtfJaiUhGTqiSvBdS7UkTFK+LtS8T2F4h6X7iRSmBSQJfrVHNIr8fElUYBSEVG5m1UCTbTS2y4lcB9/81k6uf7apqfcZ/yuqzyX243bW7QAv+wzKTaxCsr+wAWs9nbQmNZ6OrVmfdpmUCYeOrzMqMoaPLcnXbsdDUNgtIwn3CRSbOQToPq4pVyL2SI0xgYnJxO53arCZp5imxPUM+o58qaRwGjU2uNLyZ4+dQNWKailipwpdtQ5fwnqErLmdtLFjU0W0VtqekoDu1RRHgdzTXSpIrWdaJlSTFEr57kzGirofcctNW+62wRQi8B98wqA91D0BObEBbjOxfPt3kxtjJpo2PBI0/oC0iFnrqUtNebZLPASDbsn5YY9OVhGjQvdrotPEykDTumUKycVxXcX0kNxU0m2FX5I2OF0q3DBhc6mDNV7OLRX7fnMhwR+oqVcku8Z7TWjAS5bX9POScxsDlIkkmcNVRhicUoPTVMayqTuUZUKM+2GWu9XDf/BrNw243Mr6+Rd+C9/+yFt51WPfyf1fV1xyu9OvqHjLid2d1469a5t//pb/nR971e/t+tpvf98vAb8E75KWttbIoH0tiBkA//76z+dK6+df+C386a073I66piXmbrfLK17xihs9lttfixN0owldcV/RPhKa1F1vFMWKJlgJKjNFRJeOkFl06YiJIRkplBdXLeUirqtRUcTj2kWU1yLuzxWxq3foZ4KFcmAkGCxEVL0QtmiFqm5rFk4ZaFiYpBH2N4J/owkrfcqDXaoli8vlZuUyNUss1i6Sb3i6f3VeDAOqJpLZ2iaLRkFs7IgXHciURqULdnlte1pzF5SMHE1Y7jI50aFc0tgy4jJptfOpKFNdrqn6mpA019IqkpHD50Zax7T8rVxABWnV8w3g07X0cnfWA+WSJmYWrUTjUxzuCHi0CjOuUT4SnKFasZTLmnSo8d0UXcqF1z7OLLGrgaRlt4Bzvz7363JU/c1Y0bq4norMy349STXtUGioygSf1dQqMp12GU0zvFdsjLooFcWhyynUyKKrhg3ZkAWwdNOCgmw9km7CVjLA9z3JpmkN9qk3U/SgBhMxG5ZyYiR8UoHNHOUwQzsRyptKbIZN1Wgm9Tzksl6W7BpTtPoTg1uOqBySlRJtAlniONQbk604clMzcSmbRYcLB3u4UYrJPPrRDj4XC2SfyT0rGHBdsGOFKQzVUtNylQdx+WpaymKtUcGgS9G9hCzKPlUkBo1ZrvDbKeVWTjnMUFNDcofn2IEtQlRMqoTN9b4cMxEXs+p4jZoadCGLgtM8EpaFLfFbKXZQ44PC+YTxNCU6hXYKU8B0DdRKJe1vKhKCAJg8cZS1xZcGpaAurLSxpZ5oAzEolI4YE9Aqosz+/eRS9e3v+6UrBjHv/VuP8zevcv9/48X//eoHdQ3VTub/6cf/H75h82Ge+3zPN/zabwPwPW9+Ngf+53zb1na5Ff1fan+7/f3t7/ul256Tcy31oZXH4YXy71f+0Vuvuz3tigDMb/zGb/DVX/3VJEnCb/zGb1x227/7d//udQ3otpa18yWoBsxENZ/Q2qkEZ7GsiUbh+gZTBnSzbUgtyksLVFp5XD8hKsgv1OTriMixcHRcIGSWkGiqFXkL2oRflyvsVCb4/TMOszUW1kQpYghz++QQidHvcB5TSoltsrXEQZfijiXGRxLqXpPI3FRxUGFHYGpRJo6OWiaHjrL0aEn2sTPCxizWTODffAG3OpeF/JUZuGlb0GIkpglRNy13QcwNAPINRzAKUwnTFLWI6HUVCJm0eVVLFpNqkpHc1KrVtAE9oL0EXlZ909h0NsnIxkCSENNEgFpHCbOSyzWuB3ZmgR0SRd23JAjIiVoROsJqZRuOcs2iq/0bzlOlrtWF7Ep6jG9EWNl+fR6WkvYxKk3MIbOOzDo2aks5SSQbZN2gHajVIPa+JhLyiOsakqGsJUnaPbKoFcFOFNHoxgJeDmVHBkdDsicQ04AdWzGrXM9lv32PKvXMjV952V/dkdayaMRxDAUELTksbRaMU5hcJuM+aLbKnOkwwXmN9xrvDDbx3HPHeTq25iObd5BsGrQXy+Z2/NpJR4IpYPkcrH9JpHN8xGSrgz2TigsakqEjVmci7g/nM8JKTdap8U7jdRQ3NA9mqpkWCVpFpqW0R8egJPtlWUwNqDRmrCGAX3Mkg4pYWuJmii4VNvH4oLGmEekr0GVznZIg7XkRjq9sY1QgNZ4QFRemXXQDVoiK7lKBc5q6tISpBRPxWY02gej2c8UuVVfLwHz2v2nuvUljuRH14/d9Fz/9H/4WP7v2Cb5h+sTn/8Y/+3U+CDxc/V9wDeBqLzJWf/of89nvb4hwYdM/YZt23P7h/wZ89ezxZ+mfvKZjXhGAefDBBzl9+jSHDx/mwQcfvOR2Sim8f+KgnzKllNgAR5mQ66rJSGmyXnQdMRNH/zRM1yzBKIpDKdm6hC2awuPzhKgaWj5R8oWZScaLihHXtZgy4DMBQbpuwI+Bakloc12LtiM7P6UNVxQrZGFcJGiyEdwHCaqMrW1wYnGHltj4oj7BQjqK2AsSwBWM7NdOxbu/1bi0ts6jEynV0gn6f70B61vQhnkaI05kCyGbwDwsstXfaCOWzlpDYondjPJgjikjuhOxQ8jP19iJ3HXba5FtCPAJqcanmumaxRZBMJFR+FSLjihX5Jue/HSJzwxx2QiQzMXCU4UA1kBi8ZkiHYq7WXHI4jqKuiOOcclY8meSoaceWIrVhvHy0D9VoupAMmyu8X59ztbVCCRvJojZZ18+R0sDpRHwUGtc0BxMSoYmI1aGZMOQbsniTrUKdqUiSR3FmR6uEylXFOkWJBMxeqkGjXg+j4SBJ9QiWleNRsNMNMlQE2ykGkRxGTulcaWhPFqLOL6WdmflFCFrQExofjsBRiEPs9DI0PEkg4rlwZThJGM6/v+z9+fRluV1fT/8+g57OOO9t26NXd3V3TQNMoiooIKEGBVIFuqj8gjyJFFRxKUoKomJMSZx+EUzyiNGjESFmMQohGXihA84BDXgUhSjiKBA01ONdzrzHr7D88dnn3NuFdXV91ZXdd3G+1nrrqp7zj57f88+9+z9fX8/7yEjOs0wgB5ZVAC/5sh7JcYEdqYtzpV9VBTalq6ls5NOlyCm6kV8rkgm0H7YMOnl4BWu7yGJqEI3dsrymHICYnRDISunjYbTKVipcamBUcagSEgeaoKe+wLEeienGB3YvtTDrQeSTsVau6RyFlcZ8gsCIItTFms9o3GLurCoJFAeifgjNXlLqGJbgw5nd/oYEzjRG5MZhw9agIqC1tqME/0RPmge3lglpoGkVZMljnGd8Unev4e1qP10YA5CPdJ4X/G2d/MBvvSyx37h5S9adGEeqU69a8j5b8wf07FhCSL2UvEfX9rzto9nfcsfvG3P2+5pSSCEwPHjxxf/f6SfJzR4AUmALyuZrDuPHguPseppXCYCdl158osFKx+fYcrI5LhmcltKSBpxeIhoH0TPMd9tqpuOgKE8klD3LeWaleyRdUOxKvzgfCuIgH/gWfmrCWZjuNCoECXnROX5MhjSaKGLKSWmA+2c2T1H2Xh2l+KIWt70ErlJZsNAtuVobTryjZps4GWFLlPYQpxWJicNF19wlHDHcdm3c0t9izENoAqNU5lfjG1hLDAX+CuF76TNqmEkGwRaF2vszBMTLQ5uWqFc4wpmBPSZMmCqiPZyw/OZply1ECEbyL5DolGNe5trgU8UwSIhoUC0ujFQ0EyPWWbrAn5UlNVJECClQlx0amZHm9wa1axuWoWKhwDmiVD77b780Pd9y3WnJR/WYe21ki1L768saqbRNjIpUwpviVGR9ktcO1KuRSZ3esx6yYkjQgmJOhKyKIL4FSjXFJPbFOM7A6On1vhTJbZT0z01JhyvcEdrek/b4vZnncc9dUq9EqDQYCLleqQ6Irqa5FKCLkX7IjbDYpccksYBjMZxLA2wUhPXK1rrM25bH3DnyhbGLEWBZseSbYnjF5XGe7GDLiq5wHZuGxGOl9S9gG9HyjVZBFQece5qRyanBeCs/mFG/rC8TrecuIJ58FmkfWyCPTqDoyWtdin6kqmsu8YkwCDBjAyq0kSnRK5aKexEkww0w0tdhqM2OvV01masdAvG04yqFNDh2kJzC7WmLBLqSQIzg9JxAbi8V3RSYSVML3YYP9zn/LDH2WGf7UFHjBgCaB1p2ZrVbMZdJza5/dQWJ1ZHIvY/pI9dV11LfP+H//uL+b3PP/e4jEO0J8vay6LTC9p/9KjbXA+1bTeNbP5zs+o177/2ot0jnf9fePmLuO+ZX3Rdx9yPiH/fPc2f/dmfpSzLT3q8qip+9md/dr+7O1jV6CcWjlzOk286VIjUXUl/950En1tcy1D1NL6lmJzSDO6yjE+njG7PKNeawMWmuxIN1F1DSCUHplgV0GHq2HQOhOucDTz9+ws6940EvJTVkqbVaEzirkyWGGMjErXEfpfyjlUGT0rRNSTjyPCehn8cZcKebZboyqNrCeCcu3/ZIi7G2r4UUA4GT+kS+92mq9J0gXbnwczDLpW+vDPTGCDEVsbsRE7VNfhUY2YeUzixT+5YfNuifMTnBpcbXEf+FOuObgwR5Ly5jqFYU+Lm1m6oXlbSqLWPi3BKFYXCBwJktGsMFAy0L3mSSaRck5yCpY1ypG6LsN9OI7aMjUuZxrXk38N69LqVIZLXA14eS91oEHMruy+HAv6bW3qm8CmooAhOUdeGrVmb1daM29d3OPrkTZInj7BHZ6yvjvn8Ex/n79z9IdZODwhtz8pnbnDniz+Be+6I6ulTQhbRU8Pa2pi7TmzSSoVSlfVLZmXKYJaT5TWx7dGlJuYef7JEr5eQBnH1qqF1ThbMVAA71GBF9xKyuWuKJutUJJljdqnNhUGPKlgRok+tOHxZqDsR5RXJtsFdaC/soLPUURaybTTSgfGtiG9BuRrxmYADnyMBlyGiaiRvpulmhFQcyKaDFsGLxqSqLJPtllDcbMSsVrTvGBFOlJixxgysBF5qqI863F0FKvOEWtPqVLSzinvWNnjW6bMcXxsJgOtEwtPHpO0Kt5GjCumY2cTjjjjSTkUMmkmVUu9k5BcsZqyZTjJ2trq4SUJndYZqebp5ybjKCCh6SUE/K5jVDTDTgYUrzWFdtW7mRHw/dTVQcLWOx6NN7m/EOK722H7P0+MF8m5F7XuG9qpXvYrBYPBJj49GI171qlfdkEHdylLzAEhAVTXJqMKUEkRWrmjqriVayYLJBh5dQrEemZ5SFEcUVU8xWzPM1i3T4xbf0uhKNC1l31Cuaso14S+7TGFngXzHS8jiVondnqEHE3AekkT0L43ORRkJs1RpIsGWWoMVsFAf63LhORk+V+Q7gXxHbgCx4U3rOhATCYbUVTPB1wpbBpSPTI9atI/4pKGXAdMnraGsQeW5OJvBEqzYJuhyN6gxZnHuQls0Kz6d0+k0rttczCsBP9oFuYkWvtHICCVMeTE78Kl0vnSN2Gzmu7paTVcpGUfyndDwxGXgIbWLYydTATnzPB4AnyqqnqbuGbKBZ+UTFb2HHcpHylVLeSRpujqHtpcHtd71tttuKXA6rMN6tKqOeopjgXRLYy5klJOUrZ0um5M20zqhk1Yc74+xNtDLSk4kQ+5tXeAzjz/MZzz1Af7O7R/iSd1N8rQmz2vMTJNd0gxGbRLtWctntPMSrSPlLGHnXJ/JhQ7Umpg2rl6lGL8oE4lrFSETU826FxYgISoBMFGB8gqVe25bG2Ctx65UrHanbM3anDwy5K57LvDMO8/SvWuAO1FR3VlSrztiGlCVIm6lDDc71MMUXWpMoRYLUlVPLJiVV9iZ2BkDTG6H4jZPXKvRTXaL8vKc2baEbQmgdM6gU0+6VnDk2JBep0DrgNJigpNtaOxE4VqRtRNDTh0dcPuJbZ5y5jxPOXqR450x20WbcZ3RSmryTkV224R+p6DXLoltT8w9puuoxqmcv6DwtWZr2AYF5TEvFtLjhBjEbnr2iR6xMFy4sMJDG6vcv73GhWmPYZlT1JbKWbzX1zHbOqzrqccyYf/pf/ubQOMotgso7Bc0/EX4h9d8/lt++x3XfP7RKHXz8bzl+X+Pl3zsFfuijn0q1b5dyOYajCvroYceYmVl5YYM6pZV8LusiiXQUW+PaXUThmcy0pEkv/s0QTvRUYQE8o3G7WUmtpTJVFZa5qLzqmMJiaxEaRcxBdIV2fGYwmOmNbryqEmBqp3QxkIzBgDvRcAfotC65jXvwCSWye05uobuw558Qzo3+aaRrlGimJ5MMVXElDJu11KUfdUkJkdcG1QQYGVq2W52zJKfXEefbbiSc9vm+b+7q9HpzMGW7zRgxUt3J1pF2TMkE4+dSoBkSA2YBtw0dp7JVGgKdVvGUvXEMS2ZQDoWsBVSjZ2J/XKG6IdUAFXOwZR8Fi4X3Us6ibS2PK1N6fCgoLVRo6sgAn4lWqVgFS5TZCNPzPWiK3VYj17vetttj4ud8mMBLTeqe3Io6j+svVTMPcm2It+CulS4vsFHxUi1aB0Zcroz4NKsy1p3Si8p+OjsOA9NV0m14wuOfoQyJPx50eP0ygCtIuXKgO2ixW3dIbmtuX+4Ru0NdSU5JqpbE70iFkbAyNQSTRTx+MgSbcT1Pa4LZAG1mQjdrOUJaZBAySxw28ltWramLFKOHRlSOcPOoINNPKfWhlTesNIq6OYlRW3RCja3uiQPZLh2RLccWgfCsEMyVNQ9uV/4diSmkeAEOAGYqCiPNgYGEdhJF4GZulbU/UhsCf0rBEVZJHRaJUfaMx7aWqX+RJdsZzkf8Tm4VXEHmwMHVxt63RnttObiTpcYNKv9KZ92/AKFT3hge00oZbVGzzS6U0MOxnqxRa41DovKvbiWDVPSDUO0RmhmAYKz+DzgC8MkKqbTjOAlELOzMhO3tNGhCOZaNQcNt0ILM7+e76ZnXU/9wstfBG9/9O3e9Ldedl37/1SpZz/Hw/sf+372DGA+8zM/U1b/leKLvuiLsLtS4L333Hffffztv/23H/uIbmUpLQn2ShOpJQXeObL7IytujdmJlKKr8ZlauJJpD9mmdADKFS2CzL4i2wlopxrr5IDLG9cYL6/LNkt06dCFgBVVVNJ1cQ60Jjovq2YxNo+JYD5WXuyL00QAg1KE3FK3Fe2LgXyzJqRzg4BAMg6o9i56VghUXc30lMJOpFWvZtDalBU411p2HnwKs9s7dM9vEl3V5M/MQyt36WJg2aEBMJq6Y1EhNu5qDdgzkqWTblWoskYZBRiCVULfsopi1ZBMRBcTo6K1KXoiUwV0FZmtW4JFui6I/iUdekwZUFW9cGzTLpKN5D3ZSZAuTx2AlNgM2ecGM3UorfBrCWVfo72YNZCLHuew9l43E8QctG7LHAwdApnDeqRShUF5Rd2FyT215MFknhgVoyJj3Mo40R5yAhhWLT4xPkLpLTb1/PHwDEZFrA7MyoTaG463R5xoD5m6lLPjFTYHHepZgpo0mpB2YysWFarUMrm2ELWWxrlikQYfK4PriUAeLzoWkojNHK2kZlKntDsFMSpqL26PdWHZnrYIsU1VWfKsppXWrGQFwyzHtVPCWk1qAvX5Nq1t6Ya4YzXUWsamWAITg4Rx5h6cRg0TEf03VDbtIB1oitxQtBL8JMF0amJUXBh1KbZzrBeacHnMLzJlVKmZXupI8GVzPgbDNmPrcZUlzWtS60iNp21rBu2cS1V34fbmtnIZUw5hkoCKqCxiEkee14x20sY0QWyp6xNOQkuDQmWeLK/QOjIdZyStJvul1sTs8H5yrbqVFLLT73/zI2av3Ira3QG68v97qa/5pT/kX37b33xMY/i2N72TH/uWv/PoG97C2jOAmbuP/cmf/AkveclL6Ha7i+fSNOWuu+7iZS97gqNK7yHLG0F6o1/xATUrSB/cxI66pMfbTI+LA5mKkG2HRYs8GwZcSyb/USmyoYgR55QtgHSrQlcOPSoEuIQox3Ie6lpcwZyDGIhehPpx9/iMIdY1CiDPiIlldluHYMUqWcUmz8SBqmX/VT8jNt0NO/XorqbqyY2ktRlRXtLss4EnmYJrSTZNOmpCNvMMqqrpvDQWyq6httXNqlKTO6N0Ar55HZBve1xbOiy2iAL6agE/PrfoymOnNcWxHOUjdiY2m8nY41qGuqtJJnPxvgAT11ZLEJIp6p4hHTQA0IgmRwW5d4m7mqVzXpFtlpgqUPVFh2Mqcaqpu+JaZirRwbiWpuop0uEhhewg1EEDL7vridaNeVP6dbd6CH+9qsmrSi9aEYynltjyjCZd/u/FLirzdPoFVgdc0Fgd2JnlbF3sC5WqlJBH3as5eueYC9M+92+u4erm1u2aibFXqKkRMXmpSXfkGigBjpqQRaKOxJnFTDQhjcSuI1Ya03boTkSbQK9dkmjPoMhxzlCqyHjYgmFCNJFRbBO95NVULc8oDYx6GXlWM0oELNSlbUT4iF5FASYu3ospFKaEci0K9SwJEjfwoARGF8c8MQHXCOlVpcS+2QZOHhmiVeThi6uQBOIdBaVTmCTgNzOyDY1vRVw7SjxaryZJa4qtnFilxCzQXp3QS0uGVU6Iitw2WWCldOejjqLzaSysycQm2VWWrFswXa2o63zBpFCFxkw1bs2xtjYGkKwYDdZ6lIqQeQ6TkR+9rpygP175LQexbqUr2wfenmPf+ejbveD/nLqhx/3D//3FPPMFv7bn7fcMYP7Fv/gXANx111284hWvIM8/BTl3WjV2wU3KfWMdHINCFSX6QkVrZ0x2tk11vEmXN4qgoe4q7CSimoBIW0ZMEbETh5nV6GmTreIly0X5sOgWEJfHWoj2Y2wu/nPAsByXytPlNtYwWzf4XDVhZE0q8lBoZGUvwU5Dc2EG5QWY5BsWFYWiBdIxSkZe6FkE6rZGWaFnxTyFsQF804FpxPveSydo7jzmA9EElJaxmCoSEsmBqfqiQ6m6mmDbJBNHsZ7QuiDAyJSB2VErDmR1XLi4aRcX2pc5KNKV6GEk1LKxnR4USyDoBEDphgo3t8Euj2ZkWxXBKmZHLe0LgWjENMCUEdu4kkWlyLcDHFLI9l1zsPFYOzE3GrQcOogd1uNdulSYStLndanICrl+FScgtsQZjJ2UcWEwvRpjAp2e2P62V2eURYrqRUKjB9kqOoQo/09SR12L+5aqVEPBEr1gMlLYQjroMM8AUygvLICoIdqI0o3GY5Jg+mLMo1Qk1V4oWGVCjApGSdOdUDBISGairYxHHaHWzM51oV+zeucO1gQ2/2p94TSmAigTMHkg5OIg5vMlhQynIJeslWo1SsMkC4SqiQ1I5dqdJJ501TEsMvLEcdepTe7qbnFu1mdr1mZWJYxqjR8IgFEnC7RXxADGBJKVUrovmWOtPSNGxaVphxChcpZ6lpBOmrDqJBBLI25sSSDJHaaxcA5RQEm9XuIKI52lLBArhZ4YdnY6cg/xiug0M5+RtWqUjnCYA/Oo9UgUshf8n1Pw7R9c/H73D/0GGy/+4sXjP/BvvvuGjmP3GK6nM1S84z885jHsPhePpMk56NbT7ve+EPuC3wLgz77+S/n0n/nlG7r/fWtgvvZrv/aGDuBA1Ry4zGUmVwmNVGWFrh35YEzWykREnxhGT+6TTALJoCJajSkcelIuLIaV8/L/JnuFsJz0E6Mcx3vIUlRVE7UI4qPzS/tiEPH8fB9aE1oJriX6GhWg7hnJnAkJugqYMuA6RsTwLjI9maJ8ZPXjjmhg+ymWqh9RXpMNlAAfpUhGGtc2TS5AitaiE2nuCM0Jav6di/mNEX2U8+QXZ0zOtFEekkkgG0SUC0xPJBRHDMoLuCiOpeg6ka4RULc0OmmoBlVEBbWwOtZOAE3dEq0KiCC1c65CbQ2W51HLMcu+pm5r0nEkGXnRu1iFKcSqOaQaCo+ZOnQdcG2DLiU7xrV0Qzk7rOupawGQRwI3B7nTcq16onRhDrsvj2+FNFIcE3px1BDWagEtEcxWIp2VWsHM4hSESnNhMxdb3saaFw068cTtlPtnx1C5J9YaKk26ZchHkrfi80gwQruyBSiHLEA1dKxkIgs+KMi2YHZMUZ2MJDsGO1EU9wpleZYkjOqMdlbhg1gLx5ZHjawEaGpZ1PJdT7ddMr2vT76hqYeaceJ55umzXOqsoidGQFIpIM21vdCsgJBEVFTyfAOQoomEYxXRKZSNeCDdsOhKtDCz2JPtnWLU8VyygQsrPbQO1LXFO83akTHDJBAu5cRJItS4CFOvMakXnZCKnB/0KGYp0ekFxUuNpGtUrwTSXkW90SI9b6mOBJyNgMPVhkmdi6ao1pAG7EolwZpdMSdYPOdV45YWKLZzSAK6OAQwe6lXvfe/wnvhBVdMzn/h5S+6RSPaW/n3/38wz/m5fb3me9/4wkekrl0JTq4EMSDn6iW8Yn8DvQG1F63Sv/nlz+DTr/H8N9/3ej5ADrs8F577Bb/BVXI/H7H2DWC897zhDW/gbW97Gw888ABVdXlq+9bW1n53eXCqoZDFskIZvQQVu56P89+VhqIUl64YWRlOm8fVUtAOS+ABIrjXekm7Wjh46QUgoazEKMFooZLNuxtxma+yADFASE0DEsTPvupo0kmgXJPOi5057DTgcoPPVKNJUagQRGtSC5UsHQfMTN5b3RMBvmtpyp6mN38P8/e0W//iA9E5VJZCVcv5SVJ05ZvuR8NnrgJ2WtP1kjKdDip8q8nDWdFCf/NgnXRgTBExhSeZyDkq1xJ009FJx5FkGnC5gJr0oW1iaAI0lUKVfkEDa18KJOMmkNRF8BEspCNPMqgxk5rQsgQlwMZOaoLVJMNIrQ4BzM2oJypQuVY9UUDMYT1+FZNIcvuEYidHzTQ28ygdqLdyobd6MDNF3Q+oSqPLOd8KQi6UL2jWutoemgwUM9bYqRKHLweuH0Ugr4BSut+6kV6EVECHrmjcIKHqQ92P4KVjIw31iDEBpSI+aIbTvDEHCNjcETcT0oGi6otjmeo4ZtMM7RTVSkSdmWJs4BM7R1CZR+1Y/IojrgUBXE3Ypp4ZQiswOyE5LiooYhYwQ4PeMdQrnliL9XRUMm7poEeSYzNcZUhTjzGBySVxBiOCnhq2+gnKCqU7PZsQdaQ+0tC/CgsBypldABuygHcGPzPoICGh0UZZZ2x5qhWFLhTeGGy3pJikxKAEoAAm80LvHiXiWGaarpZX6EITVusFfY7SEDqXz5UO6+q1n67Cq977X+Hlf48PvD3nM79Kcvs633E3//3+H+CVD/2jGzaeW6HP2f2edo8FLu/A/Dz1J732c9/8jcBfPqbj/8KzB3zzfa/nVacFrOwGkHv9jObdl0erV733v/K6h1/9Se/30WrfSwLf//3fz4/8yI/wile8gsFgwOtf/3q+8iu/Eq013/d937ff3R28ck6slEOTfTL/13sBLfMuShDBfaxrYozE8ZQ4ncF0BlUtwMP55f9BAhKzhNjO5affFX1JCIuslRijdHz8rslzY00smSsCbOIuYKSdOJ6JBgYGd1uGdxjRenSt5NUk0rWYHVekk8DkpGH7KQl1F0zBQosjIZNQrpiGpoVYG6tdYwABUQ0QU0YvgVZj7qCHU/H3dxE78ejKE43GzBzJoCZqJR0eLeMOBrIdR/tcSTpwRCWuYMFo6raVboyX92xqEYCmQ0/vzy6ixlM5Z40Jgp7M8Cn4lmq0LQEVBTj5XBx67NRjJjW6kpwfXTWhnvk8JE3j8n3j+8O6QfWOtS+/7OdTtR6vrsjVjlN91/99XI7917WSgUH93x6t+xNUUPhLOfojXdItg8+ky1ytBuksVGqRmRLSpvuikAT6oUWPrUzyp5rQilR3lUzvqpneHqiPOkLXEdset+oY3esYPSlQ92UcpmxAgJbuR7keRPBvA64TKY+Fhq4cOdKesZrNmE0yvNfEoFE64Lse15brbjIUIKVUJJ4uCKcLVnozvFcMxy16/Rm+51GFluwTHSEJYCIhC5i+ZNWgBZio1BPSSLqjRITvFHagJT+tF6m74lCWZ5J74yqDtQLoiEAaiEnEbFuSBzLMTDXRAQo8qLHBXkqwmwl225JdNNLZdwo/SsBpQh6oVzzJjiE+0BENTBZQTmEmmlZW0eqWojXKPfn6jCR1+NIQrXRfiBALI0Cx7zBZs3BmItiAzg5dyK5WVwYX7gcsXA+F6k1/62XXZTt8q0wGHok6tp/3/t/+wx8Q70uu6/ive/jVl/3+0//2Nx/1XFzt/F6LPnblMfZa+56h/bf/9t/4T//pP/HSl76U7/u+7+OVr3wl99xzD8961rP4/d//fV73utdd10AORBmznKAbczldah7eeNn2erH9omMyd2era8hSAQX9Dr6fU65n1G1NMg6gRdMRtSIZe9KtArM5EhtlINY1BL2ksxmz3DdGnMiQfBeiUKt0c31UXvjPxapieCbBdaDzUCQdR8p1taCTOasEvHiYHDfoOpXVu4bO5dpCG1M+yntTzQ3JI4ArsU3HqTkX8woeZgX5+SmTM125mSjwRmGnwnP2udDI7FTAhZ2KS5h2Ym3sOhrlNaYMEgJqG2vkVmMGMPbk92/DaEJszAWUUmK6UJT0HiyJKhdNTSWfm06FUjcHLCpGolIoF8Bq0ArX0qTD8Ekf9WHd/LoWUNn93Mu2/+dNH8unUh1Sx25N6UI0HLqGdFtL5yLSdD4avV0zSZ4DDFQUUb6JTddCJuNBR8xUJvVu1WFMxDtFSANJvxR3rEvipEUS8F0osrigYJmpEivjTEADKpL2KnzLo5Ak+npq2czaHMknIu7fbFzBLCSxMQQ4Wsu4koixnnZesfPAKjsP54vxD9dFPxKVkn6SUyQrJfGBDtFEfGpkH0inBaRbVa425ySJuE7EzISGFS3YqWa42SHtSsDmeNiS17c8Seaop1bARqWgEqDmOmAnurmnqWaBSrRCZqJxR30TTSBaIDWy6EreZxzLvdZUItIfjtrYxC+AnshWjYCoBoiRBPTAok4WdNolsyIhBCNdIQvaHQKYR6pbofG4WofjWnVQ9Ca7z9PjOab5+Zp3SvZjeT0HNPvtsDxa7bsDc/78eT7904XZ1u12F6GWX/IlX8Kv/uqv3tDBPe6l1HIiHoMABq2WwGHe9dBGfuYgp7kwKWuXNKssJSaW6u7jjO9dZXJ7S3QVsQEdTe4IQLlqGT2py/Spx4krXXHzaoIrF6WFzja3sp6PRc1q2pc82oHL5SaY7USygTzf2ohk22LfrH2kfS4yuU3223vI03sw0D0bSKYiuBQtiFhFz8Xzenskx5qPR+0a14LiFpfPKUUMAXNhh86DE+qOYXoiZXYsoVpNcR3L3FpNu4guA6oW7Um1mlGsS5Bk2de4tnS90mFA15HO2YruRwe0PnIBtnYWdDal1IJ6h7UkG1MxUigjIdEoH8guztC1F/F/tszTUbUHIze4ZOzQ01rMGQ6DLB+X2m+X5VOtK3OzAMab0q87BC+3sOysEctHSAdgJ4qqH3CdQMijdClq0YL4npcuSh6WXQsFsQmbZKUm3DXDnypJWjW+NCRDI+5XRUJZSnfBjGXCbHo16YkpIY9iZdyNVP1ASAQIocE/2Cb7YAv1cE50CrttmTzU4xM7R9CZR0VoXVD0Py5dF+WAUmN7NWtHR5Q7OaO/OELrYUPvPlj5KLQuauzFFJ34hV5HTw3uQptkpGid1yQXEuzAiOtXEEtn06vxJyvCXCtj4iJQmQimUNhLCdU4RSlI8xp0JE4t9UYL3Rgk1B1xINOluEiaUklHxguoCZlQvQjSmVFJQCcBNTYkQ9ET2anCzMRWOirIL4K6v0V5oY3ZSlBbKeVWCz+zqJmRzthMQ1CEdiA4zXSaUU9SGFpCYQQgFte3Av6pXt/yB28Drj4Zv3Kl/2n63y3+v1eHsmt1Hr73jS+85msfCUjdbHe03R2MeXfiSuDyluf/Pcqfv33P+7nRtRfwcrMDNvcNYG6//XbOnRPVzT333MO73vUuAP7wD/+QLMtu7Oge51JJ0oRDqmU3pslfWW7UAIsowZK77ZbjXERuLbGdU9x1hNGduYjr2xrtIumOk4wTK90XXUXSgSMZeYo1w+AZa/ijfUgSmZBnmQAjrRbgYN4VikajqprWhRnJOIqexTXOYQry7SCOY5uBqGF0u2lcx+TmCpDteNrnK7KBAATXMdRtRd0GO420thsqnDHy/hpzAbRpdDu7QN8ugKO0uJSZSwN6f7lDtuMJiaI4YnAtTd0zi99nxxMG97QYPCljdIdlelRTdxT5jqd9rqT/l0M6H75E94Pnyf7qPPrSDrGqFsBSWbMEjgAxooYTup+YELXYJLtO8kl/7TExYDUxMbJaGCGkmmo9lyydQwbZga79gJiDrk95LEBjDlSu/NlLHdLIbl65XJy76p4sDrUuRtIdSadPt/TSYjggbmLTpjPhNJRLhzHfiqStmtvWB5w5ucXxtZGAlKmSCXmEajsnGYj5ir6U4ktDO6/QayWsVfgsEvqO0JMkeaVjY1cP3fsVeIU/UZGdnOKDJkwSVA2zk5HiqGJ2yuPbkWRgcDspo3ELgmhoXDtSrsmCl0+FrhbGCXEm4ZDRNuyACK4lz6Mh5IHYdWCXHe95dotqOibByjkKDRBUE0Ox2aIcZ6jck64V0BFDmpBHfCsSLFSrkXIt4PImbyaLYohQCi1aAWamUVspYTvFFBJKHdKIzyLJUIsRQbPOle4o7EhjCgitIA5lSJctZJG4VqNbDjJP9ApfGdSsuRE7jbaHLf1HqyvByqOFSt5sSte8w/Cq9/7XW5pRM68rndFu5Ziu1i27FbVvAPMVX/EV/OZv/iYA3/Zt38Y/+2f/jHvvvZev+Zqv4eu//utv+AAf12oyRGRibpbakxCXj8eGTkXTkZhPnOfbNtbG07tWqVYs2TCIhe+KwicKUweqFdvYCYPPlQQ1loFs6LHTwPjuLv7oCirPlrqYxRjnAShewi8BPa3onK/IRnKRzHcCdgbj2wzj28xC7C4ONZFsS/QkxRFN3dUEq8i2a8oVs9DKaA91T9F5YLLUAs1DLOe2zvOAzfljPizAXnSeGAT8qPGU1sc2WX//Jv2PzUiHTnQ1QWhhpoq0Nj2d847+fRVHPlxy7P0Dev/3PMknLqIvbMFoAkVJrGrRuszHFEX7IpS7KJqkWgIt7cUB6dBR9TUh0dQrudhMzw0QEgEvITW4tllobFQQ04HOA5Mb/Rd2WDe4Dkon5kYApP2CjxvVYTkEMTenyuMO14pUt1XMjjcg5lIkGYnwHSv6F0wk5iJoV265EBNNJPYc5sQMrWMTIqnoZwWrqxOKUw5daNKHUrKLhpBCue7x3QClZnuzS69TcOLYgNhxqMIs3LGiV4QVR91FFq+mBoaWcpIyPN+j/YAl21b4LDI943jmZ9xP+54B0YCuNG6YYocGUwhFzXWiAIAEUGAbvY4dGLINg5kKkAtZJNtSC6obrulc1JJ4H504rKm5v41DaHANzc5MNWasURODvpgS7+uQPJSSDKXTYqeKbFuo0cm40Vcm0sVKhgo7UyQjRX5J0T6nyLYkw4V5aoFX1GtCy842xSwBJQt+yVAoanqqRZc0sEKb69f0VqekmZNujhFKWrSNjXStCIUl+kMXsmvVlbqOKyfJ16O72G9duY/9Ts5f8bZ3P+YxPFrttla+nvqzr//SxzyG3ZqV/YzjA2/Pec373/SIn9V+z/e+15j/1b/6V4v/v+IVr+DMmTO8733v49577+VLv/Sxn5hbWtZAUTeCjSv4qlW97IJ4B2lymdBe7eoA1KdWKdYN+bZvqFKSKN+6VKOqQNXVlCua/gOOZOxQTnJPTCEakFmeMj3ToTuaoqp6QRmLmqUDWJMdo5wlKkWyNUO5yOhOSQ9LpoHiqGF2PNK6oHBRwIvykO94dB0Z9i3BKqoVuRCrCD6RDBtdN+Diwo68z7iLKjYPtAyNfXIMjcFBEO9OWGTqxCbfRpXyuN3cASBLUznfc3BWOwhB3MSsvdz9DRqRfr3UJVkrxw4RwvyzasboHDFElPdkH72Iro5S9RNc22AVmEJCMrWLYibQTYSDrsDUATOu0NMK39AjD+vy+qsX/nfu/Z1X3pB93QgA8o61L9+TLuZ7vu9NT5g8mMeb+lV91/8l/befcV2vO6xHqDwQiahhQjKSa7h2TQ5LGqTL4hUxaUT7QShj8/R4VWmijrTWKqzxpNZTOMvWpM10mEtg5UDAgy6FngagC3ld1JqyttRe8kpi0uSBtQPKBLEvtpIFZqfg2hAnFjsSrU21AitP3eJYZ8KZ9ja5qfmY8SQm4IPmWGfMhXGXrQt98IqQWrh9htIBN8hQLU/YStE7SsBZjNjJLpc0p4Qu1uhKMEClsWODLuWhuUYmWOmshCQS0yhuYU6hp+LkpmvRq0RFY4agCMly4c9OIR3KPVQF+fH5rq69AlUjXZqiOaeOhnqmmvuhnKNsW6MrOU61GjF5TTcvGQRNGDV0pdwLxc3E5TLxYRPmmnW1yeteujC7J9Ovef+b+GZef8PGsnty/oG357zx9E8tfk/SvS1aveb9b+IV3Htd49g90f/A23Nex6v5ACz+fbp/xJfe9NqPBmav9bqHXw1fMdzz9o+ZJPO85z2P5z3veY91Nwei/NE+th5Jx8P7yy2Md0+agUXQZDO5j3OdTL/D9LYc7aBYNZjG4S7fdCRbU9CazjlL+6LCjmvMpEJVjtDNm46AxhRiP1yfXCG9T7oOAhgi0ddNl8dKvkxVo0IAozGzGjtLmR3VRC183vySEjtjJzeEuquwhSbxgdWP1bi2xmWaZBqIJmJnMD1q8Ckc/YPtpsvSgBWA2HxjQlwCF2MEgGi1BHpzJzd5EVGFXUGhiliUEAWsxN3nOUbQWh6bH3t3wOdcfzM/zm6jhblTXIigAtGDoib5xEXMWh+3mlOtpU3Hy+NalqhNc0OLJOMaMyxQo6mYMIRbeHU4rJtSNwPEHHR62l5rDkb2AmQOgcseSom2pXV/QvtCpFiXBHrtZVVeOdFMqFqjaulkxEQAjUodURlUJtfGEDQb2238ZgZBEZNAMpFOA8iEmzlhIBWTGJUFYlR4r7ArFUpFXGUktf5SzspfCq256imqYzWqkHGELOI9VCdq7mxPOd4aMfMJg7LFsY50pU+3BxxJJ8ApJrOMcqOF63rM2RyCwgZgx6KdAIsqFw1Q61LEp+IQtsiKCbuARBBXTFM0YZkNhWxuBW1KhU/nLmMCXtLhspOvPFR9yfuKlQAP5SCZCkiU8x+pugqfNWL/roc0oEqDqhS6UrieuKTNLau1A1MIsKx7Al6I8p7KC23OzRKi05iJRnnFopEWFaoCvJafw3rEuhpYmU+S3/J8sUr+AMD/d/maa7lXlT9/O9lXP7TvcXzg7Tlv+apPHsvreDVvef7f4w//9xfz3C/4DV7z/n3v+lHrVe/9r5zm2rqcg1Kve/jVvOr0T91wEDPXRO2l9gRgfumXfmnPO/yyL/uyPW970MpnVmyNJ41ApAENi+7CfEJtksuDJefV7zI7syKBYUC5psm2A60Nh504ojFgFKbwjf7Fo6rm8fn+AphK9DWum5B0WgJQ5h2YoGFua2wbCpvzqFmJ9oHWBYvPcoZ36UUWQFSiCZWwS7l42xLULOITRdVTy5WuliJaWPvLAr09FD2J1sSqXIKSuW1yE/J52bmaGxuAbLcI3VSyn4aaJ6L7XcJ7pYh1AG2Eehb8wuVNGU0sq8u7LnNgozSxqlFp0miWLhfex6ZTpTe2SXcsyYWM2M6IWqNLj3IBPatRs3LZBXKuCTE9FPEf1rXrUwW87K5H68Ycgpe9lxnJAkndUWKyomRV30409ZoXGpWXBRjX9xJgaaKELK6UDTNXs9KZolRke5KgKg02Nhb3MuFHKelQdD35akEIiuA15TQh1prVY2Nc0ISgcaWh+7Am3w6LQGBVarItGUd5zFN1PFSa+y6u445peknJSib3xUHZ4lLZ5aHJKmeHfbxrUusV+CxA3VghD7XQy3LRlqiJLKpFLcBLtxRUjVNZYxu9CP1MBHj4XO4vtgFr0TQdlEbvaSoBFrqW8zovO0XyxEoBNyjkvSrpzkQrpgS6VtixwXWXr1UR0eCkUbJ2guiZtJf34lsChuxUoSvILxr8jmgm7aS5ZygjgZ2+AWGaXQt6h3W12g99aN6NeKR65UP/iJLbG7rU/mld1+ou2Eu/t+/9farWHMRc67O4sr75vsfeIZvXngDMl3/5l1/2+9zx6crHQIIun6gVE01ME1RZLSbT4GWCPAcqu4Ms8YvugMpalLevUveMBCdGEcirEDEzjyk95fEWPhfNSTKWybPKEkJuiY0A3rUbQbqSIMnQyTHD8TLU0mgoHTHL5LjOSQCmEztMOyppnzfo2lK3RZgYjdwU/PwCnkBZG+qWboSXiukJyUdpXwqs/9kE++DGQuuzoInNOxJVvQQvMRCrsHQo876xV25AX+0WhgiRhooWNKRW9hMDEZbnd348kPerIzH4Zfdmd/mwcGZbHGd+k7BmOVatBDj5CooCPW7a/Fo3KXHN5+/m9LzQ0NAOe/43s26kfmWvNDK4cV2YT0XwMq9DkHIDyiuSgSZkEh4ZE6BpoHceVkyioT7liS0vzitpWIr4TSQGTT1IqdJAVRl6nYKTt29hVGRn2mI27lGtNNf2dsAeK9CNxa/3miyrKUJKdGBNwJrATKXYzDM5I8e0UxralCZYoXjhZHHIjgy+aPHxSUJrtWClM2Nr2OHoypgqGLYmbUJQ9HtTiiyhmKaEiVxbYxJwK1CbiBkZdM0y22t++a3B5+BbQehtUfQldqrESawJsVROaGe+JYYBUYMNSiLZlNzXfCZgBiAYYR0IeAmYKlL1NCEVkBM1YuFfI/RmpwiJJmSBbGAEEAaN60m+yxy0JKPd+iQZuymkM6RrRWjAFSAUuKCIiBPd3PnssD65vunDX8OrPu1nF7+/7uFX88bTP7X493qoSq95/5v4MX5oT9tezYlsPjHf/Ts0IOu0PDankH3g7Tn88b6G94j1uodfzTvOPfp2n8r1TR/+Gn5y19/DtWpPPc0QwuLnXe96F89+9rN55zvfyc7ODjs7O7zzne/ksz7rs/j1X//1xzTwW10qRMJKW1b6d1kFXza5Vvqy5wBUnuNPrlGuJqQ7Ti6OM48pPLoORKMo13Nc21B3tGSZTD3RatxKJgGXisb5SnJJ5oLy6lir6Wo0tDFjIEkXIvbovEzCg4AFPZySnRvSfXBG+5LDzuRGEJq3YMqIriJ1B2bHNNOTckPpnPccf/+EtT84jz23Le9rruvxYWlksDArWOpilFLLrsiczjUHG1kGaSLgZ07xAqHFNWGgC2MEpcVRzNqlOQDIvq0V8LYI9VTL4+3uuszHZM2SYhYi1NWC8haLUoT/05mI/kOQ86hVM87DO83Nrlstvn8s4ON7vu9Nn9Lg5bBuTKkkUK8EkpG4fQGUa5HJXZ7BvQHXDVA0OSFrFbblUE6LJW+EdrskW5+BV7jSMp7mbI/aDGY5dW0IfYdbCfhOkysW5TpoTKDVqqhruYYm7ZrhJGcwahFqjZtaVK2o+5HxXZHpbYGQBVxXXLxARPjJSJFtarKHU6r7u5w/u0bwGgWMywwfNP12QStxhKAJs133ySRChGTHiDNmIgCkWhEnMpTQxNJh0wHKAiSB0ApEC74b8C0R36dDyLcidiKgJySR8pinXA/UXSjXYHpbZHJaMT2l8C2kQzILJNMgnZmGcha15Ju5lizcRd1EDNQKXeqmcyPdnQWdrhUXi4AgIGje7YlWQIspIGnGZ0pIBwo7Vguam6o07DJoOKxHrjc+EnDYQz2W1f0rheXzY19vyOJe67UX/ufi2Lvf+xOlbvb5uVbtWwPzHd/xHfzH//gfecELXrB47CUveQntdpvXvOY1/MVf/MUNHeDjWgHqforeTqAomwktMnF2bqmD2dWFUUYT1vvMTrXJtmt05QmpkTyVjsVnGl0FTCHdGBU0PtO4jkXXEqoYm0DLxQUygpk5TOEp1yWwEj2nZpklGDBmYf0cnRPrYqVQ0wLjA61phSk6FOuWSmmSqfjahwTKI7KqtfpRT++jY/RoKiGajfbkMuH+3MZ5XmYJLqJzQt+CZkx6aUdtLbHXJuQpvp/iEwEgduJQPqDHFaooUZOZAIgYiPMmi94FlrRanvM5CJp3AOcaGBWX49Vq2U3ZXTHKhzwHKnMq3Jzm5nftX2kOl8weuc5/4f/i5G/9v/b9ulsNXHbX9XRibiZw+arX/O1HfO7tb35iLw79daw4s/hOwKeazrlANJrimDynjxWEWou43mmiU8RUdIim1phNy7S3jCWIpaFWIrIvdUS1PGmvYuXUjLK2DM/38MOU4BV+paLVrqgnKWpmqLOms6Mj2IjZsaTbmtlddeNKFmk9mEi33jYBks29KNsRwKFrjZ8luK7l4VEi+2k56tpQzxLUVkJSiOVzaAXMthWHskr0OclYqFjKS6fE5YhuR0u3hlq6TmaqyS8pRisRTlWURzVFYUi2DPmG2Bm7jrizBRUpOhblFapunMeG8u/0lGJ23GBncq8SUBIJiaLqLzsxriOAyMzUIusmmobCFpcOZmYm+zUVENUS0MTmp7mv+kQ6bcpB3RXXNVMq0fSEPa0X/7Wsebdld10JZOa/f8N3fdHjPq4rJ+mve/jV/MTdN+YYr/6dr75sv3vpwMzPxX984LuvuZ1954v49Vd86poR7RvAfOxjH2N1dfWTHl9ZWeETn/jEDRjSLaz5pHg+IZ9bB2uWk/aGorToyuQZs9t76DpKojtgpjXR6qZdLi1q5QJKi9NYsArX1gSjMVUk26oXVsqmDOjS4TsJPtXSkk6TpqOxqyth7RK8xChdkDklShtU7VC1Iw2QDC2um+Jzs3Bo6Z6NpNsVyYWB0K8Wk/jGtnlhzD93F1PLSb1p/u9ck1FjRKdiLSpNqc8cZXQml1W2MuJaimBEeOlTMGXSrMJ1MAVko0C648ge2EKNp81HIQBoQVfcDSysXQr+d3fDzK48mDndbf7YHM/4JcghNnoeY66gBvLJ/z+sT6r9gpiDBF7mNQckjwZkbgZwuRZguda2h2DmiVG6U6NyS93Y04PkkJixxiWJWPdWYiOsK0XIAqQR35q7KepFEGS0Ed1xeBvBK8lxiTAYt/CucTNTEVUpotNMtlvoYWPzqyK667CppxpmC9tjVenmuqiY3e7EEcw3zmCAzwx2qsl2xAFMRYRB0NHUnYgKCS6P0Ezy5xN6MzJoP6d3CQPAFNKZQPxVROeSNhywRvtCgGxD49pgVirS1FHGBCqLb0dGT/Gs3TbgiJHzU9SWI6dmHMknVMFSesuFUZedsz1UrUl3NMWJsBDbzwFUsFHofKHR1HjRzCjfiPOb8YRcaF/pliaZNGN3kI4ErLhcto1GlrriQri/1OrEJFL3HHpkie5QA7OfuhI8XM9Kv/s7j93W+JGOW1d94NrUtm8odvgJ4LvVlwL3PeaxfNK49qHYOPmfUvgS+f8r3vZufuHlL7qh43msNf+s90ofg+sAMM997nN5/etfz3/5L/+FEydOAHDhwgW+67u+i8/5nM/Z7+4OVEmHJBJTi5pPkGOQP5K5viKIkD/6gLKG0G1Lnsm4RjuhK8XECFjQCjvxYtdrNSqKU0osGiCTNHQqozAzh64acf+0RtUBVjNUZKnTmOeuNJkrcU6oVopoDMp7GVfTnQHQtROHsg1FzIR6puZdB+dpCNMCEnaLDBc0qrDsQC10QKFJi1YL8IK1hFNHmNzRZnJCqGn9j0dsEemcralWrZxfDy5XgCZqsXSueppiNUWfPompIisfHqA3h9IJqutdH9CuD2veEfPNnVLpJQiZmw3sdiibf47QUNIyATlzcLT7/c/d1arysf9RHRZwMMHL7toNUOZg5mZ1W/YDXB7t9Ydg5gBXBILCdQKzYwYVIR0I7chXzbXfRvRMuiDRRtDSpQ9dR5bX1NoSx5aoo3RK1mbMNtrE7ZQ6D+AVutDizpVHQtejTQA0MY2oWnQYILoYIrhukKR5TzMBj4tgRqzkmBAh1rLQZqdCs/KJaE2ihmTU5LJUolfxLck8SYYaU4pWxXVF+2Fmkhypgixg0VgZ24mmPOFIehX1KAUTmT6pFvvonZQZ8pheq2QtaZSw8+AqseVRJhCnllHS4cHhSWIiWTpJt+LEXVvc3tthULX42IPHJeizq9EjQ7alsE1XKFgImTh0Vqtgx0oCniNN/osWIX5zanwLQibPKy/nRPQ0LJzSVECAkWIR3omC0HPEyWFHfz91EOlUV4KZm500f2XNJ/mdzX8Ixc6jbu/+zrvh3NXn5epfH+O1TzdXfe5W1Df98g7wD/f1mn0vMf/Mz/wM586d48yZMzz5yU/myU9+MmfOnOHhhx/mp3/6p/e7u4NVzep9VEq6G7rRm+wSrC+qmRyHdoIphR4GLMT4PpOLdt01+Fw3FDHpRKTbFclWQbpTkozqhWtZSI1M8mNsnMfATN0na1BiXP67uxoHsIWLVmic08qKOJmhxtOl21ZZif6jsTUGlrSt+c9c57IbvOx2+mrGE7ttps84xcazxMolG0SybXHeiQqSUUXrfIHyYi09PWao+op8xzc85Ug2DAQL0xOa839jjeKpJyFLl52mOYXOe9GzWCvHT+yS4jbXCM2d0OaWyj4srZqNkdcEvzyn8/M4f8+woOgd1l+/upkal8cKXg7riVPBawk0bHl8Liv247sD5SlHtJFsw0jQ45YmtCK6X5OtFoSWB6cpt3PCxBJzj+7XdNol1npMrya2m8R6rwgtT7itQB8rUKknTC2MLGas0aVCzQxhavGFXMN1KdoMmjwaXWnUTJLj1dQSy+a6Z5oU+5aiXFW4LtgCsm1obUTaFyKt85H2OUXrvCbdlqT6dAj5hpLOxUAyU0IiOszYhNOjWAA27zWq0pjMS7jnnOq2UqPbTpz6rTxnRprswZQ4s9iVCp15QtdLro6JJKljXGR8fHudzUm7adI3wDBC3Y8kE9HfqChj8N2AbwcBM003Jt+MEnw5nd+bm66RXb6P0Fgpq/m6l5HtQhIbdzgl539qUNMmRPSwHrWuBAlzIHPQAM3jqf2Ya4AeyzF//Euefc3nyz/+d487ILtafdOHv2bP2+67A/PkJz+ZP/3TP+Xd7343H/7whwF42tOexhd/8RdfFub4RKwFyMgtxhioqoY6pSA2E17duGjRdC4Sg88MUSl0LZPfum8p+wbXEq5s+1IUl5JEyQVvGFAxgo+ErLFTDkJBU3WTZJ9a+b1Jm19QppwTAJImS9qX0lCWxF0hl3E3Vco5VJIs82Tgsm5LDA0o2E3BmlO2dk/k5xoSkO2MgV6HwWcep+5ouucllLPqJiSjht+soVrLUD5SdTXVihI//YZeRojYiRfzAg/tjYhraaYnElz7FN0PXiCOxk23hSU4aTomCw1OiMvPCC4HnabpEikt525+XuYUsfl7nZsC1I7oPXERkHlYh/XY6xC8/DWroBptnixm+VYkdGQirlsBsIQ0Mrvdo6daJtoASUTNJEwSQOWe1ZUJR9ozXNBk1rOt2vhxQmw7cJowTqDJjFGFIRlKrgwKQibOZtF4oavVjZ2xEQqXcqBLvaR2JdLRJwtUqwFTNiYzGdgxpJNIMmlS5puAymDUYpLvcuk+aCfPayegpe6JLbIKMvkPaVx01dVKRQwKNZRQ4dAKaB3wUaMfzKm7gWS9oHaa9AFLdtHg+5C1ama1IWnVtFpiQzaZ5Ey3ZDFNe0U0ke79hvaFyOBecYTzWcRnkZiFhhqmG6fORtui1cLBM6SgChbvYw5kVJi/RxZdGQnlFO2s60SUU5ggYzjEL9euK3Uwu39/rODlNe9/0w21771VdTU9zpXljr0AzlV72t83PEIX5x2P0LV5POqmUshAXKde/OIX8+IXv/h6Xn5gS5cOoz3RqCVwmYvZjRH6WIgiRWm0E8oHdBXwuca3NNNjlmAh3wmif6kiwSrqriEZuoUjWTJ26NpjxhXRaHTpCK1EAEwUsb3PDel2sbRQ3p21Mv99t7kALMe7mw5m7ZKKFXd1HBaWw3Y5uZ8DnHk4JTShnn45wZ9bR7dbjJ5xjOlxw9pfyRdmeGdC1VN0Hw6o2FhB26azZUA5uWnlWwGfKXTTsVIeTBFIRjXZloDJ8R0Zm59/irU/2UGdv9SMa87bllpYKDfjjjFCUaKMEW2QtQJIYkQ1S2UxRqg9andmzW6KmVYoDOowB+aadT0i/r+OdTOBy5X7PqSUHZxSNpB1KspJSjIE5RT1ihZKlw0UJx0qbyhfXWi1KsnG6lTkR2qyxBGjopuVWB0onWVj1KGTVwvBhcm8MMEqi23VTTcjwU7FvavuSsdFFQpGmvqIk/yZCCQBs52QDubOkg0tSkkWmM+lg24KmbRHO++kiEhEKGSxcRlT+GbxNiQidk9Gcs3XzW2k6jXdi0ZPY0qF8hY/b2EEBW3Jn2kfm0iDXweKkJNuafykjTFyPDVRuHM5vlDklSKahGnexmfNNT4LkHlibDogsbE9nilCxiIgc677CS1PyBVRid6IqEgmatGtmtPITC00uLkV9Nx4Z26OE9KIbmyflQcsEoqZBJgdUsgerR5tcr6XCfynYp1+/5t54+nXcPr9bwb+4JrbSk7NtQHI1pedgR+V/+/lnM7to290aOVjrT0BmDe+8Y285jWvIc9z3vjGN15z29e97nU3ZGC3ourVDF2xpCbNYJFCP883gUZrsWTfaR+ghHLNSlhZ000AuZBrJytUrmPQdcTnmmQUCVajQcT/PqJqj++koBR114oeZlwu3L3YnVifZUvwApfToNQuulfwS7oUSD6Kq5b2wyEuBe+7OhBzrc+8kxGrCoUR8BYjKs8p7j7Kzj2WfEsAV7kqolHViBi9VdRt8C1Ntt0IQ1sKikg0Cq9FFGqqiK7FzGDeiYqZJdvxjE9ZLrxgjZPv8bCxs7RnnndX5u9h/n4JqEQ0MAujhUYfNN9WzbtHuyr6IIYBvgE2V6PoHdZldb1OZDej9poB86leX/Wav30IYg5IzalY2gbqnkxolVPEViSUBtV2aBMXayipddTe0G3X9POSGBVb0xarrUDtDRd2elSTFO81rXaJ7hTUzqCymrplsDZgE8/siMEVCSooiqORcKKEUQIedNsRB+JsOb+6hVSu36aS1HhTy5O6ki5ESMC1ZTs7Ubg2oDXKy3Xc5QIOJKRSFqi0E9cuaCSKDdVKOyXs3jif9Ad07gkjQQTKKbKTU3qtkkmZUhSJ2E03pAc70gQD0zscZrWi3shIBlq6/SaKoxmIlkdHYq2INlKtROqudJuCkUwXM1MUmW46VwqaNb5krKU7oyBmjYilKRWkI+NasdGnSpfH51G6Sx5iCVopcSHrNOGkh7Xv2p0FAzeWsvXT+eojdh8Oal3pUPaRYsTTk6PXta+n73wlX/ekjy32u5djzzN59hNaud+y73wRsPdu254AzBve8Ab+7t/9u+R5zhve8IZH3E4p9YQGMEErEdv7SGjnqO0r7OfqXZP6ZnKrXCDmchqrjsZUYIdyEc0GHl1FtI9CrVqxaBew2zUoCc+KtulA5BZTOFSI+JYhWsmKUZOZ0MG0WoIYY5aCfucWYnqCv7yLAjK5T3bZINdVM+FfUsSii0v6n2HpahbkrhOrSkABQKMPiitddu5NaV+QTsv0eIIKkWwnkg7l4l4cUbiWuLYkUwkgCyMBdXVLkY2i2FV6SMYeM6sFyHnfWFhq8p1AsabZfvY6R95XEiezJYXMN+9vbqqwWMmLQqebf0YNkIm78l3U7kybsHz/C/BiDPhDCtlhPba6FbSxQxBzcKocZthNsShOKljY7joNhcGnQSa4XjFJM5QCqwOTKmVrp0vYyBivtohBkeSOtCPuXKl15IljOMvRKlLXBq2bLnMt9LO6F1GnZ5xYG3G+PAK1Irk/l+5+O6Jq2wjNFSGPVEcd2IgqNMmOJh3KQlzdiwt6WN0TW2DpsiiCFdpVSCKmUqIfbVhzrr0UttupBD4G07g5z4RqVveb89GcA/qCIi5cWIGZ0NjSEzNhDHuD95l0T1oS3BxbAeeUWCk7JY+biE089SDDDo24jjVmZ64TWXnWJpsbPZIHU3QlAZZzMwTJiokLepuqWXRgYkOJ1jWodGkDrcvGyWyiFuL9ucGBdlboY50gHabDetS6GmD569h1uVn1C88ePPpGTV0J9K6mT7qRn82PvPoV+9p+TyL+++67j/X19cX/H+nn4x//+L4O/sM//MM897nPpdfrcfz4cb78y7+cj3zkI5dtUxQFr33ta1lfX6fb7fKyl72MCxcuXLbNAw88wEtf+lLa7TbHjx/nu77ru3BXprbvoUwdRHfiAjExSztlWFK3drtdOYeelNRdi2sb0kmgc97RuliTDh26jphK6FwqROyssVDODeWRBBQU6wnj21Mmp3NcL8XnFp8ZlIukFydyrDRBpSnKWlS/i2q3Uf0erPXh+DocWUV1WiJ2T5PLjQe0WupaQlxqPXZpPpTRuybtfpnrAhCDTOrnepEYiSFQnuqhHCQzocj5VOgE6diTjgN2FmhdCmgH2XYgGXvSoadz3rP2oRErHy/INyvSYUC7SNW31CtZIyy1+LZk6ADk24FyRVHedRSVJvI+dwv2mzwejFl0V1SaooyW99J0apTRi5/FZzkX9aeJ/NvsUyUJKlvmMNzKOmjfk911/gv/1562uxUdkh8987Sr/hzWp2YduO9JWNKXqlUxKUmGck1Ldgzd+wx2x0ITclhdbFNXlqJKuHSxD2dzTKmkexIVrjJU04SytNTeUDnLSqtgpVWw2ptxoj/itv4Q1XaLjkUIivMPHhHLZCO6j/p4TcglvNK3IuXpCm6fobs1pu2IXUdIoOpHZqc85XEvE/N5KOMuCq9Qy2Sy71oR344iYtcsLYZTyVux00g6hGw7km1FYSeUgix6x8bSYcnkPOtBQvtBS3IxwVpPPcoITbdFl2A2UsLFHFVqYiIifSJQGsnMKSwq97iul3Oxazzr7QnPf8rHqI56YhJJ2rUYFiTyPkITveZzAW7issaiGzWnkMVEXNZCGheUMRUW7D6SgSK/pLCTudBn/39CN6MO3PekqWt1Wq5HA/Mhs3HdY9lLPd1fX/fjRtaNeI8/cfeP7Gm7q30uNwNY7kfEf0uDLt7znvfw2te+lt///d/n3e9+N3Vd8+IXv5jJZLLY5ju/8zv55V/+Zd7+9rfznve8h7Nnz/KVX/mVi+e997z0pS+lqire+9738p//83/mrW99K//8n//zfY/HFF66L7nBd5JlV+LKxPdGBxJjRM1KTBXwqSLdcaQ7FelmQTIoSXcat7FBha48dlxL292KBaVrGcq+pljTFGuKumOpe5a6o0nGDjUYS6u+04Y8w586SnHPccafcRs7zznJpc8/zvZnHWXns44zeM4pZs+6g3j6OKqdywQ/TZbaGH3F+GGpcYEFoIlzx7Pm/S66P3OXLy3gYHR7imsrqq4mG3i65x2tSzXpTk26XZEOHJ3zNasf83TPVuQXZ6SDWla1XMDMaqJSzNYbV7KuxrUNrp9R9zNcy5JMHdmOw04D2TCyc29G7LYXAv7LbI+TdPFZxapaupDNTQisXW6zAGNhCUbhsnMWY4T0uiRiN7wO2vfkoNWV4OjRgMohiPnUrAP3PTERvV7hTpXELOA6cdHxMDOhd7n+PH9K6FN+kDAb5uidBO3AdT2xJbqQWBqoNfU4ZTxosbnR48JWn3ObKwB0kgqjA9ErXDvg7i7I8hoiRBswQwnWzFdKbL/CrFSo4wX9oxOedGKDZ5w5x90nN7jr9g3ypw6oVwPtswY907hVR90Vq2efim1ytSJWySGVLoxvN89l0p2Iukml35FQx7ov9710FNFXZKJMRjnZRUs9yqge7pBfkG4ICmbnunQ+lrD6YUW2JZ2NZNKETuZyfuaGB1jhpyW5o9Ur0L26GbMAkmgiH/n4Kc5N+6zeNiTmHu/m94MGtDQuYqpWhDRSrwbqbliEV6rYBGOW84w36Uj5vHErs0Jn067pOllQXpF09iasvtl14L4nTR2ELsujgZKn+6P8xN0/sudJ/0Gu/Qj1Hy8HuP6Tfnhf2+9phvb61+/dveFHfmTvH+yv//rlNIe3vvWtHD9+nD/6oz/ihS98IYPBgJ/+6Z/m537u5/jCL/xCAN7ylrfwtKc9jd///d/n8z7v83jXu97Fhz70IX7jN36DEydO8OxnP5sf/MEf5B//43/M933f95Gm6Z7H4zoWU+tGaD53H2tcxxqxuazk7NJQxEh2YUK50sd1DKYMEvQIi2BLNaslxEuJ45hvJwJe1gzRikYmmYoQ0rUU3QdL7KWRHCdN8Os9yvWcqm8IZiko1M2Kj/YRlyncccvs6ArpsEf7oTH6whbReQmZ3O1KpkSEuZjY73L1UmYXpp0HV4YIdi70DMRWhmuBLSLJtAFvQ8mxMVPJpnGrOeVKIi33qulq5ZAOBbhErahWrFgtz1ONlaFuixtMMguERF6fDlxDSUuoj/dIh+MlqAKE9zbXw2hUmi4/L8/SZWzuoDY/DzoV2p21KN10Y4wmtnPcWpvREeCBPf/53LQ6aN+T3XVQNDCwP2Cye9tvf+AvbsZwbqnr2ONBIzu/8ucAjOKYe4efe1OPtZc6cN8Tr0izmqTjGc56RA3lWkBNDfkm+FRRr8jklpWamCvU0GI2Enw7UOcBVSvsERHtJ6ksOM1GOdpGYojEqNA6EKNiWOZcGPSgMPTODDnanfDAxSPojiPMrHQbtg1FntJbm9JOa6wOaBU5O+xTlhaiIstrunlJ/96C8R0ZYbsNhQEVcR0W3RXlm0l8DaEVsTO1sEz2WRNc6eT3dCAif+XEJEARl3QrE3C1wbUj3aMTpqM+PofiWCB0PMm2RVdQd4WSbCqwA8g3NLNjKa4dm/wWhbcRmzm81/TSmtXOjFEvY3Shi7loZcZjIhdHXVLrpCsTlGhmvEEF1dD8IqaQ7Jc5g2EehClZL8378XHhTjbvxBCFkeCPRtyKCPjV2BLiwWjBHLjvyR7rSoeyK+vp/ugndSTmk/Rve9M7ebTe0DvOfQ5PP/7JLKI5WPkJfg/30d+56nNf/44bY9Bwq9y/fuLuH7nme7jR4HL+Pl926pMNCf5W9T38JHtzIttTB+YDH/jAnn7+5E/+ZO/v4Co1GAg378iRIwD80R/9EXVd88Vf/MWLbT7t0z6NM2fO8L73vQ+A973vfXz6p3/6IlQT4CUveQnD4ZA///M/39fxdR1QvgmYnJ+ZLJPJ8HzVfpfNsGpcyvRwSmujxuWNmNBqQmrkJ7fEzKB8o8eoxULZdTR1W2Fnkc75QPuiw6cKW0TsYAYhEPsdhs8+wejuDlGDnQWygcfUQklrXXKkY48pJDBSBbEmdi3F4Kl96iedRGWpdIqMZhGCqRpAliZLwKIajY21jcOa/KgrqVpJQmyloIQSEIxqAsq0rPQlhpgIBc4niulRTd21VOstzKzGDkqwWrYJAoJsIbqZ+fU92/HoOlJ3NLqWXByfK5JRZHYi3ZVJo5bvyRj5/3zs0OiF9NJ6WauGXifvU9mGatbKif0u7rYjjD7zFA982THOfX6HzWcezByYW/09ud66GTSy+T4fS1flsCOzvzq/8ucL8HKQ61Z/T8xEU1XLNUKxHRYaVjoQvaCZaqKNqK2UWGqUU6Q74n7VOjZFr1fEINez2SRjOmgRa02MkLcret0Zq/0pmXVMqhTvNGalwnnNxx88hisbbUwSIEC9KhqRYpaysd3j4naPBx9aZ3p/H3epRb2TMb7Y4eJGnwtbfYwOfPqTHqZ3agQG7FhjxyKMD3nEdSL1WiC2Pa4dUEGCLeeULl3PHceQgEcjFCyXi7uXnShcadE2EE8WdLKK0PX4PKIrReuBhGxDwMLsRMC3I+kg0toIZNuBztlI5yFF66Ii34DWRzLUx9r0ezN6WUVRW/LEoZwm225yXSrNdJyxvdWVQMyZRU2tPBfBtyQTJhrkPjdSYj5gItFCeSRSHg0SQtrogPItRfthTX5J41Y86b1D8qcMUG1H1ivpnBkSD6iP8q3+njxaXamFuVWdmn/x3of4wYtP4vh7f/6alsx7BSF/+C+/4kYN7brr8egkXStb5n3f/bFPeux33/O+Pe97Tx2Y3/7t397zDq+3Qgh8x3d8B5//+Z/PM5/5TADOnz9Pmqasrq5etu2JEyc4f/78YpvdX6L58/PnrlZlWVKWy5T14XAIQHphjE1ahLSDHZTE0DhTzUXzuylLxohwPFFQ1aQPbhP1EcrVRMSPLi5DKV0gtBJ8bsGoJjemsQ4uI6YIkkq/WZM/PEQVFe5Yn+2niZd99+GKaBTpjlDRqtWs6bwEOY4P+Fx0OKYIuI5hdkQzO5GhqyOYhy6xCL8MemkdXNUSvLmbUnWl85b3AoBAuhONEDGZiDB/kUDsIyEzaCf7CKnGFoF0rKm7RrpMA+n8hFRMCmZHDMkkYgvRwfhMAItrujDzwLO6Y/GJcKWDWQJI+cNpLJ5320xbK2YFSSqPLbaNS3c1EGCTJtQnVhjc26bqK+qurPy1H9bY4qp/Pre0DsL35KDUjQAv8/rRM0+7aZ2YT5V6IoCWeR2E74lvB3CW8ShHVUom/ka0Iq4lWpJ0W8O2pjwWGv2fgALlFcYEbj+2TeEsW4OOiMAjQpFKHVnisCaQW8esTjA60GpVDDc7TIcpqlKineko8IrY8agsoE2kHqUi2M8jykRCGlBR6FCxLdsoFdm+2MMFjQLyExPKqkt+UeNbTU5KtssYxTXBxWO1sF1eZMI0zpTVimSiaQdouY8UWwmc9MSguHBuFZScu/yCId+K+FRRHJNz0nlAkY6CZIgB5ZoWI5iAOFluAyh2Nrr0bi+pvWHr4R6dBwymQHJrai3vzza5bYWka+pKLSjeUTeWyLVCe0XQAmhiQGh/qXTSULKAZwrQVcS1FapSzEY53dUp95y+ROksW5P24t55kOogfE+uVo8EUm6GI9mj1fH3/jwvO/UHVwUmP/bRH+Lbnvw9e9rPT//b3wSezelzb+Zl3/KrnP2KN9/gkT7+9Y5zn8PDz3nNLQOVB4PkD7z2ta/lgx/8IL/3e79304/1wz/8w3z/93//Jz2uqhpsLm5gk0Im77CcHM/pV67RToQIZBACajIju38LzgiI0XUUzUcQZ7NoNfVK0nQWZGW/te3xqSZkitbZGWZnipqVhLUu20/rYotItuMImSYZOnTpUC6QDioR02uF8kLPComRPJpMJv/pRC7Ogyd3WIkR8/CGvI+5a9nu0FHnPtmmGRY0Oek0+UXnQ1WOZBKWPOYoBgh65gipASTcc3rU0LngxcgACJnFFAW6qCmPtmhvuAaARezMU60mFGsGW0TyLUewimgU2kW0F5MAn+4a9zzIc15zoFJXCwtpZRIBoPPP0O6yWDaa8TOOs/VUS7keaZ8TgakpNNlOpOIKMHcA6iB8T+79nVfuWbx/Zb1s+3/yjrUvf0zj2t3JuZHdk0MQ88j1RAIvcDC+J7rSmPMZbtVhKtUAE0iGAiqSUaRzLjI9Iav7eizXW5+KQHw6yVhpFRxpTWklNYWzTMuU2SylldWk1pMaj4+K7WEbBfjKoMaWZKTwrUZMnwaiE6OAGBRhJ5Vu0Fjhekq6M6nQ0FTq0SbiJo2RS4DxsEXWqkkSB3eMKeiKE1k6D4FUUGpMobBTiEYshH0u2hOUdJ10LWGW1Spkm9LBt1OYnlTidrmdivtkFhqKVqRcbTo6d8yIUeE2W6A0ZV+o08W6LKDNbfpdRwCFHlo2x21mo5xky2CnUB6Bct0TdUSbgLWeYpqiZwZdCP0NRJ+0W3BvZ1CuQXncN+2kCI3zmbutJHrNWEuejmuLTshcSinOp3z0WIdjJwd085JRPBimMLvrIHxPHql2O1ztZ4J8EMT1V6vXPfxq7vvjf84f89ipvav3PQXWHrwBo7p27cVq+tGyad5x7nOuShV7pHIv2nvD5LpE/O9///v5R//oH/HVX/3VfOVXfuVlP9dT3/qt38qv/Mqv8Nu//dvcfvvti8dPnjxJVVXs7Oxctv2FCxc4efLkYpsr3THmv8+3ubL+yT/5JwwGg8XPgw/KH0LUWlZUao+aNSsFPkiQJAhg2Z29AsTZjBiCaE0mM7KHdsg3KtGzdCzl0QzfFnexqNSCJhWsrKYlY0/7wQn20hA1K4ndFtM7+ySzSOfhgmRYk1+YYcaVOKTVHjWrCYkRqlqe4FZzEf/3LSpIR0f4ukIrm97ehlYuwGROv5p3WnaDF7OrOzOv+Xs15rJux2xdM1sXalw6Evtj30mIWuyhXUtTrSrqrmZyMmF8KhG3ttWc4ngb39LYiSfbmJGMa3Tp0GUgHQXsJGAnNdlmQbojts92IrQyn7KkiM3Hr3aNe3eXDHaZEjSfrdYoa4jdNqPPPMX5zzNUqxE7VpSrwrNOJpG6rai7B2vF7KB8Tx5rvWz7f143nexmu5kd0sk+uZ5o4OUgfU98u5mMdwP1aiDfUBz9s8ZSPoGqryiPSvfFThXpQChlrJeEieXhB9f5xOYRhoVMfp0XFfl4kjMuMsZlSuUsSeLxtSZ6AQrayf0ldDxxLE5nuu3E8cwDPUdYq1EzDWOLKg16YmCcECqDSpoOQ1R0egXFOGV0vkdiPXG9EirakUoyVAR/CPhIxWrZt6O4krUirisGBtHIeyzXAuW66GFMJdfrtHEfU03EWuw6XLcxCuhF1lYmPPnURSanA7MTkeIozI4rfCYuYK4t4ZtRi24l2sh0q43eTEhGS2vnmAeUU1TbOdOdFmGSLHJq5kYApmQhwAdEBmrB9it6J8Z016eolifkkjWDinB6xuzOmnrNowuNX3Hc+dyHOHpiyEpeUDlDkh0sW/6D9D154+mf2pNQ/EaJyfebAXNl92X378ff+/OP+LqbKX7/4PYXPeZ9/AQ3D7i+49znPCqd7uy3vxK4HHT+0vnP3vMx9g1gfv7nf57nP//5/MVf/AW/+Iu/SF3X/Pmf/zm/9Vu/xcrKyr72FWPkW7/1W/nFX/xFfuu3fou77777suc/+7M/myRJ+M3f/M3FYx/5yEd44IEHeN7zngfA8573PP7sz/6MixcvLrZ597vfTb/f5+lPf/pVj5tlGf1+/7IfALQm5BY9LolFsaBWKSNuVrGSyXSczRO6mklzA3BiCKjhmPQTl+h9ZFueammqlQTXNvhM4XMteSlDT7ZV0/7EAHN2E6oajKY43YcInYcLceoySihZuaVab+NWWsTMEDLD+EyLajWh6iUURwyzNU3UClMFooJ06LBlYHrM4Nc6Sy3I3KBgTh/bTRub612gASv+chpWjKjRhM5FL6FdWlG3LeV6SrmWUK0mRNMI843kvUxPKIb3wOBJCfVKgoqQjDx2UgsgcwHfSvC5kRXKUY2eVuhJia4Dpg5EqwhWkQ0DlNWy+6KuAF27sl0WgFOLVkkliVD/jqyw8XnHOPv5hnRH0T6vaF+MtC+IDscninINiqMHowNz0L4nf/XC/w48dgH/fsHI1dzGDnI90bNYnihal3kdtO9J6NfE3EPmSVZK1ErF7FizONKDuqOYnYgQFGYiAY26FGF88vEW7U8ktO9LqO7vsn3/GhcurmBNIAaNG6ZMLnbYuW+NnQ+tU2xKVoxKAqEVKY95fDegSo0dGwjIZDsV7UbWqWj3C1RQZBum0adE9Exhtiyxbu59TjGdZNDQy6raYqx0bIwJ6MSLE5iOKNeAp8Zu2RRKrIYbu2EQqhU6Uq0GqlVF1Vfkm4rZJ3pNR0dBGtBZY3E8VuQXNJcu9ilcQnpqQnVXSUgjs9OOek0snoujMLlNMT4TKO6oiF2HHhvSbXEzq7tihywdFIQCNjFCe2vspF07LoM7cyjXBYTVfTEh4IEWo0tdxhe6mHOZAJuZJX0oRT3YIn84ofWQFfAI7MxadNKKtWzK8e6YrFXfkL/zx1oH7Xvyk58mgu3doZVX1l4Azl4thZ/3Lb+6p+2up+49/4OL/7/j3Oc03YmDXTcTxNzs2jeF7Id+6Id4wxvewGtf+1p6vR4/+qM/yt133803fdM3cerUqX3t67WvfS0/93M/x//6X/+LXq+34E6urKzQarVYWVnhG77hG3j961/PkSNH6Pf7fNu3fRvPe97z+LzP+zwAXvziF/P0pz+dv//3/z7/5t/8G86fP8/3fu/38trXvpZsnzkeoZ+jA7AzbChH8xwVKwBDNxf13fuNsXG5UuAi0VpUXcPmDq2qJuu1CS1LSEWfYkqPntboaYmaFkvwYA3VHeuUa5Z06AmpJiQZ5ZGEfFNhxhXVWkrdzzCzhGLdko4CuhTNi7h6KeqRQftIOhLb5rojH/HsVIfuhR1iiNJJmQdfzif8u4GKtfLjg1zsAZIl7SyGQOt8wfhUR5zDOsJlFtvMiCklByYYQ9WXRGY7UXQueNKdWoBKiKjKEfKEmBh8q3ksIDqaIHkwalajrBgE1G3Fyieam4C1MtZGj7SwS55n31i17M6U5cJxzZ9c4+Ev6DE9HWif1fQeCJhaJhXJNJLtNDz1toYbb6RyXXXQvic3suag5JFoZVcDOQcduHwq1BMJuMzrwH1PZgYShckcsWm9hzQyPaFxuUTRRyOuWq4jgnCfQ/uCwsyi0KG80KI6D4mWcPRkiDNLsm1E6F7Orf6bAEsCqifXSDVMyDYM5XFPfmxGCArvFLrSFKOMpFWjS7k+xyygCi30KcD3pQtiWw6lRBcChnKSihg9KOqJZJmZtiMUBu2awMq6WcBS4GcGn0mHe64pTLcM6UBCLEOiMCWYQhFakA4Vs3Vod0rGo2TheIbTZMYRvG7GA+mGkVyaIMJ633eYXk0rdcxGGTERsb2ZKlwvkJ6YEkqLGliCs5L9YsVsIPQdURtUFE0NCqHgKYgTUJl0ZQjyk28qymioj9VUx2RxLySabFuTDBUhMWx+fI2NPHC/PYrJPGE2u74/7BtcB+570tScMvZIQGX+3NV0MLvpZj948UmPehyAr966E7j5rl/H3/vzi07EZ+3jdbdC73Ojyr7zRbCPwMzrPs5+X/Cxj32Ml770pQCkacpkMkEpxXd+53fyhV/4hfviOP7ET/wEAF/wBV9w2eNvectb+Lqv+zoA3vCGN6C15mUvexllWfKSl7yEN73pTYttjTH8yq/8Ct/8zd/M8573PDqdDl/7tV/LD/zAD+z3rRGMxlwcSor7PN3eOcRORaFoEt93r/g3DjGLyXIjekcb2B6gB2O0VouARYKI3GUbLT9pgj/aZ3JbtmipF+sJxarG5wpTWpSLonHJbUPbCtipR4VIMvaoANkQzCyg6yB0rW6CrgPZQLo+l1GvoLGJjstJ/zz/paqbUEe96C6h7KLroZTCXhxC7OByaG0EknGgWjHiIFYFojYkYxowgDjuzIQCZxDLat9J5eaRanFpSxSurTGFRdVeDAYQQGPKQDqOZOfHRNcAl7mxgmoCOmtHdE70LYv3gziO5Tmx22Lj2V0md3hWPmzoXPRCVys8yVi6V4kLhExLsvIBATAH7XsCN94+ea/dmEPwcvPriQhe4OB9T5KRQdUWpyJZvwQMPoFqLRKyiNPIwkw3ShJ9oaST4RUhESvebDuSX2qAzgwYJtDyuL4iZp7QB2oNJqKmhugUMQ9k3ZJqJyEkkd7pIfcc2eBD509CUI3GRDoy9dEaXScSInmsoMpT1EzoZMop4m1e7JtVxMUERnbhyKW86EXqdaFogYAW5RqL5Vo6LiFVC7MXn0O15kkHBtcSgJHsaOpVT7JW4Dc7mG1L2UogDZRHvRgFeMVffuwUqtRCfzPQ2lIQxLJZeYSqN04oco3NPKpVUw8yQi6grK4s6mJGMtKEJFKth0UnJiqNnWjJf4lCwdMV+CzKe1PSmVFOo2cKl0N9vKa7NmW80SFbKShDi3xDXqeCxnUiDLWEW+oEu30wKMkH7Xsyr9c9/Opmoi8T993aiqvpLK4EOntJhZeuyBy0/MtH3O593/0x7vnRj3N89qL9vIXLjvNY6/T738zLTv0Bbzz9U7vG/MnHeebab171uZtVe9G0/MIjgJcPf+cP8GlvuHpW0K+cetu+x7JvALO2tsZoNALg9OnTfPCDH+TTP/3T2dnZYTqd7mtf8UrHq6tUnuf8+I//OD/+4z/+iNvceeed/Nqv/dq+jn21Sh64RHTIxDeGpZ5it3tXaChY887FHMzMk+1BAiJN3JVT0mgxfFg6fWkDVibooddhcmdXOidDh5k5RnckYqs8ibiWJuoUnypcrojKYqcB7QKx6YoEq7CzgKkCqg74TDW+9gg1wS3DKedtFTUPbIQlRWxOH5uDmyxb5qhED84JiFOKo382Y/OZLVBKgjdDJN0u8e0E5QL9Bxy6jgzP2KV7GEI703VoBP+gXMT1DOWKoW4pTGlQMSVYAV5mUjeUOI8ajIlz8DL/bGKQMc0tk+fvIzgBL0ZDYpncs8bwSZBuG9ob0iWq+kZWEUsBfgCUAXqG6amDccM5aN+Te3/nlY95H9dTT0Tw8vY3//otyYO5XvraExW8wMH7ntihIqSgc085zFA2omtJaLdWURzz6FqBFepWvtV0q2exsdiXVf9Yg2sS4M1E48XMUa5buRcgUxpi26OHFjMw+I0EOoH69grrNR86f5L4l13UaoCuQ28m4r6lJXhStTxp5sjyGucMMUJ1oQ07KdUqzSKRHF9F6RgRwc4UrtlPsLJgJW5fEZ8p0bMYmfzrqnGsdEpoWTuKWQeq0xVmK8HawMpnX6SoElzQaBOokgQ1Skg3tVg0tyLMUtrnFNl2pO5I1ypkzWevYP3IGIDN+9cg82T9gnKUEUYJrS2NnYnWkSAZNKwE1E7SuJCJo9lcWyMOYxKa6VsR5WVxq+4H+kcmDLfbtI9MWe3MOLvRWugmQwoE6Si5NpTHHDHzV/krefzroH1P4JO7DHPq1X4F4I802f+RV7/iCdnJeLwCJOuqD+xc9bn5Z9D72dfz1hcdLLrZvjUwL3zhC3n3u98NwFd91Vfx7d/+7XzjN34jr3zlK/miL3rsoqJbWbFu6EnzFHe4DIQAqN0akXnH4spK7OUAaFaIM1bwS8qYVhACYa3P4Bmr8rJxwKea4liGzxRrH63onnPMjmimRw0qQr7tSUeebFtMBuquJSSSKbN9b8LwzoziWIZ2sQnG1GgXMVO3yK5RWYpqEudV01FRTZdCpSkqSeT3JFlSs3bTy4wmOk9y/yXaFwMuF8MC5RuLZC3Oa8GK5kc7aG9IF0VX0jUCUDFS9yyT0xnb9yacf1HN4F7ESU0pdOnRpSdkFp8b2vcPRJvkw8JNbP4ZLPJq5udfm6XxgDHUJ1e5+BwrlAATcbmi7pgmdE1TrlqqFUu5lojxwTFNcdvB4Cwf1hMTvMzria6FOazrq2xHKKlhYtFjK05bRlytXDvCak08XkLHoStx8JobH5pS8k5UANeRn865iCnFElnVCiqNn1rC1EKtpQNjImamSEaKaAM2r+nkFVpHXDeiVhvti1OYqcaOjNCoAK0DSkW6rZLjK2PoOez6jLxVEWpNbPQzphBgoisBFDELQmVTcdFlKY8opqci4zsC09Oe2Zma8oiAIF0p6k7ElJDsaNQwgaAoH+oynOb4qJgMWlRFgjYRM5YMF91QzdJtMSioemK8Uq3KuEgD3aMTulnJs46eJT02pb02I00dykTsyIjWpQUhiZiZxp7LMOczTCH3KQminNPgRNejnHxmygsVrV4NhOMVRZkITRDIrUN1HcVR+YyVg5iAawkYSlZLbn/yxav+nRyWTNTnlrzAZf/OJ/F77WrMX7t7++vVojyewZJXO9bp97+Z5/7TX7zpx/7qL//6az5/qwI2H6323IH54Ac/yDOf+Uz+w3/4DxSFkFn/6T/9pyRJwnvf+15e9rKX8b3f+703baCPe+0GMXMgojRi4SL/j9Ghaic5KfYKKpna9XuyK3hxt/VvnjG9u08yDSgfKdYM2osz2cp9NXZUg4L2RkOlqpoVoVlj4eybPIGoKFcb7m4UxxSUxs4C5YomHUu3BqVkrM7JGLKU2M6JrRTfzQippu5Y7NSTnR+hJjPJwZlTti4T/AdiXdP78Bbbz15nctLSvuhQEeqeoepqXC7BnK2tQDIWXY9vJSLc14q6byWgswjUfQ1erD9drsgUuK50ckKmhS43GF++ejQ3JQiNDsk0wZwhNolxEryJUkxvy4WeEYQe4PKIqSTLpuqJgLa9IYJQn2tamwE1tDx0E/60DuuJWf/jgZ+86uP/7zPf9DiP5Np1CJgOSClIRhG7bUVTAYRWoO5o0oGiXrNEE0nPWwmE7CiSsdgLu3aTlQLYCRAgmURal0TDElJwUUIXF05ghZauQkNL01NDGHbYyFqwWpPfPqaTVxgdmJ4smVtixlKjtlNGtaa3PiFtcmWiU9Q7OTVgdwy+LQGPYSbdl5hEgqGhvEF1REKgTamoVgKh7yAokg1LnAptq1ivBYAVhukp2QdAaAfsUFM80COsOEzm8ZVQ40Iq9vnRNIGYCC3ZZ7IYFdIIPYdJAtNJxsB4jqxP+Jt3fZQqWEZ1xgfGdxAbGlhIIq7vMWMjgCuLTRgzC6pbMhKb5JAFXFdLpwxQtSK0PSeODrnwiSO0zlrKVbGc1heyRs8DNoi+x+diDOAnCQ8N1h6/v71PgXr4Oa+5buAhHYXLX3tQJ+GPtT64/UU8dR9dqk+l2nMH5lnPehaf+7mfyzve8Q56vZ68WGu++7u/m1/6pV/i3//7f8/a2hP8C+rneg85LdG5ZmLc0MfmAZbN43OthZoDknlHAJbUsrnrV4hLwb8xqDyjuPsoPlUkI0dIFaaOQg2r5Ccahc+t6FqqiHaxCQNL8J0EjMLOIsEoSawPkMwipopkWzXJ2GGLKJbNIPqVJIFWTji+xujZJ7n4wuNsPnuVrae1GN6ZMb7NsPEZGedfuM7mC07j7jyOyjMZc5Y29DnT5KxE1PaQ1Q8NCAamxyyhcQubnNL4VFxpTNlYGiuIVigIuvYNBSGQXyg59gFH9y9TVv5KY2eR4ZkMnyuK9YS6rcke3CbOQ7DMVbpjabIY09x1TLbRxHbObF3jnjwjeeoQOxZ84zI5b9nQk47DAvz5XJMOA92HDjswB6FuZfflfzzwk4ufR9vmWvVEABVPZPrYQay6I50CW0hHJHkww4wMdT+KTqRWUKtFVyJqySpxbbmuaxdpbTl6DznyLVmsMkUEDeXtFb7nUUEE9ZhIyJtgxm5E3TkhppFsS5GMNHFmmI0yxrOM0SzDpp7oFbHUEEQIby8ljIctNgZdyZWZGZItQ7JtGuqbxo5F06FLRUgjca2Cbr3QwNQrnurJM47cu8Vtp7e4666L3Pk5D3HXcx4iuX0i4ZX9itjy+K6HAKZURNUAEQAV6XQKTp7cod+bElYcwUI6kBDQaiUSUgEzZqZonTfY8ynq4RzzUM72Qyv8/x74NC4VXUZ1xkOjVbiUkUzkHPuTJarjCHkgmoidymcQMumMuZVAcULuB7rUVMcd4yc5XDuSbWmyCxajA3fcc4nyqTOiV9ReOllmJscgNuGWjgZRaqK/rtSKvzY175zM6/T733xZJ+bK56+sq4Gd3a95tNfDoxsAXE/5tzzzkx57x7nP4UvOvRyAn3rhz/OMr/rf/Ml/PsXf+H9+/xH380gA7Ove/YIbM9B9HHN3Pfyc1+xpu5uRz7Pnb9R73vMenvGMZ/AP/sE/4NSpU3zt134tv/u7v3vDB3QgqpkYL4BJkyUiOhZ/2TaX1WXi/l0amPlkek7HQnQvIdW0LpSLTBg7aTQsAapVK7SsGPEtTbmiqbsal8tHVvUtqpLOTTINdC54OucC6cCRbcnEu1qRzo+uI3paQQjEVkZ15ggXnr/K8A5Le8OTjQK6lvZ554Kn+5AnG8iK4IXndhl99m2E245Blgpo2/X+ow/ojQFH/2SIa8HkVMLkpMGUkI4itgiUK4aqb4hWLehjrp3IClUmIZ/J2HHsj0tW/6pCRQFqLtfUHcXKh3ZgOF4aDlT1LgG/Xp7jhWVyQ3VTemEZrR34YUqM4oaTDeW8VT2huiVj0Q3VbU3V1VQ9jc8Pbzi3um41eNnv9td6zeMBYp4IQOmvSwUrQvZsC7Idmaj7VelShyYnUoVG4G5EN6GaNTSXK3ymcLluNJAwO6rwqcKnQsVSlV66kAVQuSc7M2b1GZsYE9GFdC3qO0p0x6F0xBixPw5BQ6nRMyOT7VKRDhTmXIZ7uI2fJMQ0yFgthHtmtJ+1TfbUAeVRj/JCI7OZ48ypLZ7xmZ+ge/uQ7OiMJHUMJznnLq5ydmuF0lnWsil3rm9z8tQ2SeowQyMuYHPJpVMLzYkaW0Y7bQAqZ7EXE2wBkzsi8d4J/mSFa0XpWjVgJlixag4GsJHJOOdD50/yoQsnubTVQ5cKVTcdn6iIpcFMpLPi+gJkop7rQQWgtc9q0qECHUnWSgE7E/msZlVCNy357LsfIGvV7MxyQkvu87qWbpkpWeT9kAXR2xzWnmsvgONa21/ZwdlPN+cb/uXn7mm7mwF4oHHxukrt95w81rpRxyv/+N/dkP1cWXueof2Nv/E3+Jmf+RnOnTvHj/3Yj/GJT3yCv/k3/yZPecpT+Nf/+l8vrPie0BWiCPBrt+zC1E3GS4woo+Xf3envu7s1sKQ1XQ3gKA3aoFo507v6IiA3Cp8bQqJkgu8iozMpo9OG4ojFtQyzdS2CyCh0KxVE3zI7lVN3NWbmMWXElpKX4tqGYl2cZdKhJ5nISlfMM2b3rDO8MycdRdqXAsoJNS2dBFobTgDQwMuFNxV3melRw84zekyecZLYbS8dvsJSlGgu7HDi9wdUPcX0RMSU0tmoO9KJqdsCFKp+wuxki+FdKSERQOPaBp83KdQt0ftEDZ1zJcd+9wKcvyTnvNHfLOySYdkZayrOwaJz8rgX3VHU0LnPEv+03wR8NjdLLwYH5ZohGoWpInW7af8nB0PEf1iPf+0XvOz1tTcTYByCl4NVvi1AI9uRa1W1GlBVY9ySIcCl7alO1KK3CNIZBnlOBQEyphLxvwqiL5GdCXgJSSTplZi2I3rFWneK85piJ8cfqYmfMaLXn6EuZCgd0TqQWU+rXXLkjh3yO0aQB8k7WZFJd7qjSS9a7MBipop0R+GGKaNxi7o24pgWQc8U9VbOAx8+wZ8/eIoYFd4Zeu2Std4UYwPVMOPsxioPDNdwUROjoq4N6V1jWkdmjS5I3CJ1pdC1onXWYM+mXPjYUSYbbXw7MD0lIKOeJcSZwR2tcXcWqDum+FS0KtFAOFahm3NRbraYbbSJgxS3KjqckAfizKBmmpBHXCcs6XBzUOmUuMS1Id+IUGoBfFFRrUbcmYJjnQkPD1b48MZxssSx3pmS7IiVtK4bs4axWGMnYwWFJj0gOTBPpNrdhdn92F7rytfe9qP//YaM60bW2i/8yJ63vRm5Mn/4jucDV3cB2+vxHm9gNa99LzF3Oh1e9apX8Z73vIe//Mu/5Ku+6qv48R//cc6cOcOXfdmX3YwxPm4VnWvsjZuJa0P12k0TU0qJpkVpmUxrcSRTi1DIsHjtohOgl5NvZTSh22ZywlCsKoojqXjmawEoxdGEwb0welKg6omdZmsjkO8EbBEEBPTMomuTDfzippeMJK0+akUyCeha6GO6CqgQqG7rs/W0hHJVLV4fDSRjR+tCRTJ2mGmNKT2tTU++GUjGkWwQyLc95aph8FkniCfXxQggSZbnrq7Rl3Y4+b4hnbMCAEKiiApsEbGFgIhy1bBzj6XuKkwpYy2OWManLJNTKVVXk28H1v90TPqxi9J5UWrZ/fK7zq9WS73RbovoJvNl0Z0xYo/pM6Ed5NuRqivPZQMv9s4NkDG1ALvWJaHfHdatq1vRffn2B/7ihuznWt2YGw003v7mXz8ELwewkkFDWUqg7iCdjrEmGagmBDhicofOPclIAhdDKnlX88WT6QnN9r2G0V0Sejm5PVAdd5B5wnpNenLK6fUBR1fHtFYKTrRHDEctqBV3nt7ktrUBRgeyu0b0+zPKMpHuQV6SmECvVbK6PpYcGCfaj2ybRSilqSHbbjQwM0O5nQvd6raCladuQR6IaSR6xXijgysNG5d6bA3bGOslWLPWbA3b3H/xCBc3+tRbOa42POf0A9z+1IuE9XpB31VOrtHt84r2g4bsXAIa1G0FvhMwWwmYyF1nLnHvbRdptSp5HgjtJo+lMMTKQN4ssAUgDZBETL9CdRwxC4RWY9E8NxTNAqHnCSuOmESxt47QOmvxEzFhcC0IpaEKhqPdCXetbfO0oxconCUy77iIBbapoHUxSggmUM0SDuux142cLF8N0NwKrcxP3XMHz/7ac9fc5lrv+7GO+Xe/9/Mu28+csnct6t7cXGEOch4vx7TdtW8b5d315Cc/me/5nu/hzjvv5J/8k3/Cr/7qzUs4fTxKZRkK3VjyNg96dtkPN52YuqEqRbWklM3By0Lw3/w7z1SZdyuUwvcz6q4imQhNS7u5hiUyuFvTeTCSDSEbOEIiz2knz5tibtsM6Y5DOfnd59LhMGUAq1Alkl6fgJnWxMQwOZViJxHtaDoNCu0V0Shcy5BMpYtkpo5gNa1LgbpvSXcc0QrgmJw0FKurHPtjgzm/DbEmVrVYGQPm4Q1ObY2ZPWmd4Z0prq3ItwLpLFC3hRIWEhG3To4bTC1OLaaA3oMl6UPbqLKGuhZXONXoWeyuTJr5+fZ+SdWrGm3RHGga3XTF5INsbQZ8akiHIgidr7ZFDaaQ7pVyYAqPaeyUXXoIYA7rsdX/eOAnryryvxH2yoeg5WCXb0HwiqSMTUK9It+QhaMQwEwMPkmwW5Z8UzrhIVl2XIIVsfpclxGNOG3pxBO9JmnVZKmjZWs6ScWR1pQznW22jne4mHc5u9XHn20T8sCTn3qOnVmLGKGuDZtVB2Mi7Vx0haZfUdcZRI3JFOWpuqE1J/gWaA92M5ExnCq55+QlXNRwDL7gto/ykdEJLk66dNKKS6MuVWVQCtJ2RV1aXJHA2KILEcfHUZv/4+8hy6UrEXWElqfWBlOaxopZ7gvZhiEMWuS1WB+bQnF/vo5NPPUgw9hIaEVMx+GHSeMcJrw85YVFYDeMZMoknliKdb6eGpQXUT8GVCV042gjMQ343DP2CflFoev5TsBMNaqQe4pVgRAVVTD4oAlpxHUgGSuSWcRlwqoggK40zu57vfiwmtrdCbhVq/2PR/3an95L7xGe+6Zf3uEnn7MKN9EOevTyTd7xtmUWD4hD2a+9fBO+8fJtTr//cx6T0cKNqOsGML/zO7/Dz/zMz/COd7wDrTUvf/nL+YZv+IYbObbHvaJzkGVilbxrchyrJtl4N3UMhGrWvG6uDZm7ZKkrOzHGiPhda3TlybciySyQDj3FEUvVE+2FdtC5EMh2aslHaQu1SbmwoFmZshHmK9CVJ7QspgzUPSN6jzosKGnJ2GFGBdXJHpOTmt6DHlNHopLuSNnTaGfk5mk1oZeiXUCXvnkfEjRpZ45EQTLRVD3Fuc/vc+q9CnN2c3F+8F6E9nVN64Mz8gd7FHesUPetWDrnAhzsFNJxxM4i7fMldnuKmsyIRQlVLd2oeVW1nLs5eJlbVxsNLiy7MFo6NNF71NxoQWliCOA8dhaou9Li96lMEqIWg4GQaiYnDN2znpDJTcbUgWR02PL/61Tz7stjoY9dra4FYoB9AZlD0PLEqWDEKt61hPqlfBPs2Cye2BmEtsbO1EL7YmeRdCR0pmAkF6ZajcQkoFsOm8p1uZ5pqkGGG7d56EmQJw6tIufTPsMio5wlhNLAWg1B8bGHjqGMaGCUDnhnCR52SkuoNUqLOUC9EnBBYbq1dDXSBOWlMxOVmAzEAJM65fzmCjHA/zFPoqwtISpxOBtl0gHpVtTDVEwGsoCZiabE51G6ImdziiwTrY1XJN2KOrGEbS0gx8zzWJDtY2MRPVToj+a4dsTqRv9iA35iRRfk5nQ0ATsgYnp9zlCPctrbaqFPqfpQrks2m65kMdFnkdBzKBtwJyvqWUayo/F3F/jUoMaWYZHxjKPnOTdd4f7tNcrSEtZqyo5GlwmmkAygqiedGDtW+OQqkQuHtafaC2i5Gt1s/tpbOcneb41evgnfs3LV506//8083X+c3rtfcFMzWS47X9cwFrjynO8lTPR93/0x+PYb0+XaF4A5e/Ysb33rW3nrW9/KRz/6UZ7//Ofzxje+kZe//OV0Op0bMqBbWUopASWJZIzE2PCSG/thQCbJxoCPkqUCTTCl6EJ2gxzRYwiQUUkqNDM5ELaUrkrVM/hEUXcVwcyFn3FXVgoELToZFQV4+EwtaGMhNVS9ZBnCiIRaurbBzgJ2cwa1o+5aEfkPPdEqyhWNLWXFr+wb8i2Paxl0HdBO9hsShW9pdCnH1XWkfdGRjjXDOw2XPqvLeqJJ7r+0dAizVjQndQ2b2+RbA1pZ2pzTXSLGBpjEspJzBUsRPhCremkYMLdwngMVo5eCfpDHGlvr+We0cI4LGlXV/P/Z+/No3dK7rhf9PM1s3mY1u99VqapUgAAxgGiaMuTKUSlDY1A8arxRDgHUAAZuMOINOQ4M2CVevA44wOCC4wb0eA8JojQDAooJoYkhgVAQCSEE01SlUrvfq3mbOefT/O4fv/m+a+1du3ZTtft6v2OssdZ6m/k+c671zPl85/f3/f7Kcx2DM56tzwWThNFntMTNJAEvrD0WEauhAsv/h9lKgVnh+uCpSAzcPqTk+PYLV0lk1xNGS2RdK8uI+zjQc7prYHZfRoqMGEeutIw4jCGd1uaMfq4mdxsM5pwnHoBo0PSwtAh+McxmFXMqnE88ZjfZ3h6Sd7XUyg8jKVjYLuBA1/tghNQ6jBVk5nBTRx5miAZZ1+h+++kB8VAgPa+B7QI/tbjGkDYiDx4/B6i6dODAhIODGZ+aH6BtC5q2wD9RIRaCEexIz8nDUcvEDGCrotw2dOu998UKJhhcY4mfGSLrsVdPNHUsVYbmUG/270vsbNIyMxv6Jpbraswno/6caPb66qDE0YheJganldiI6c32E0gDQ1xcd0BLyixINhgnNMcj4497pslgywTJc+7UOo9WGkktYhgNOrbmBYghrAnzRbJbA7GGVCvJWuHacC1qy+K1F5OVu02x+WenPgtuo4aSF5OYm1mCd9UE5iu/8iv5b//tv3H48GG+7uu+jm/8xm/k8z7v827k2G4+nFvwDS1H2tcLxvSlYmZQ6+J6n+fClPsaPqak3etj1DK0RWmZZDRDUpspmiT4ScIIDE4mcIYw9ORSVRMxZvnX0eZnmjiWKqtZ+01fkuYM5z7fE4dw6MMJ0xOgYprUrN4FsJZm06lxPQlxtGc2zAVUW9qFXpwhjB1pYEmFoRtbUg3D05liFjHdIqbTYZV3cPYLhxwyRyk+fmKvEajt7zSJJoMJQAhLQ/2yH47vS+uM2VeCp76iRUQ1uH2+IsvStmUdlGav7473Wsq8Pwluody0HX6nYfNjjjiomR0Xwgi6NYuNJa7LNBvaKNQkwTWqwES3MvGvcP1wORKzwt2HOBZi0Lv/xUTjkXOhd+TDGsgoQVKVJZX0TSCF2HeXN6J38W2nr/FNQXO/msoptJwsF5B2C/xaoJsXnOg2cI/V+KT9rrpNVWGkEKRzdMFpH5bWIl76z1CFh1o4fGSX+9fP80h8Lq5OHDu0zelqTHpiqKv7pOfEgQ8cOjjh0HDKpKvI2TIYdEx3a+hLrezEk/tI4WI9MVhrEVeR0K72uRDEC+U5ve6Wn73LkbUpj5+5h/GjqpKbbPR4jYU02CMuw5N6nm/XLUYseWpwjen7fClBNBHiWMvwXKvH3UQ9zuLA9MEIxY7Bht4nWfZ/vM5iOqMpcVYN/cWnKrqjEWuhOFnwKQ7z4AOn+QsP/BHnuhHvPfM5uPWO6AqKSUEuII56Na2U5bFb4drxVOrKpXApIrNQYT7z+ldf8NqLf78T8PU3WH15OrjUsb4ZuGoCUxQFP/VTP8UrX/lK3KW6z98t2F/ylfvFcr8oFhEM6OJ6sVDeH5dsDdj+uUWJE/R+jYyYjIkJOwv4uTZoLCYR2yXEWQoi9nwiDbwmjVmLm0XcvI8fFiEXJeW2vieXWl5WbQuz+4Rm0/Z3pyw2CqPPtBqdPB4QB+Dnhjhy7N6nXpBYadrXQrHJHpqDlnZTTabdhmCToZhYamPUWyPC+NEZw5OqQjVHK3YfqNnc3sSeOa/HaUEqUl/ilVPfBGZfQ1DX+4eWzT3ZF4nck7Ol/0ivKsb35vzFsV68Nybdz8Xfal+YwiJowEznFIVj7dMFceCYPr/juQ+c4Wx3L+PHtWfD8HQie0OqLSa5VW7/swjXy7x/JdxMEjP79DEAhvedvOr3rFSY64fqrKWYCrZTz58YJTDZa2kUnaU87Sim+vo4gPqM0UbEmf5GFxinC/5UslwEm84iwZCf0+CcYIxgrGAMhMNRn68yBIPZ9ep1jEZjhPuIZZMtcZxglDCtQyQzKAIPHfgk8fmOJ3bXOTbcxRnhsWmJFA47DogYTk7GOCscrqcUwx026zkfO3UE/+mKeF+LHMpItJRVxBhhe2dIDpbKQXNvr7IYcDNLsauKy/TskLNWiGuJ2N/M69Z71SoZcp0xWY9hGPWKSW/8963G40N/7CzIokDCCxLMkrzEIYQ1LZlLpWCS0Z40ZdZytwwUgnjACxKNcsZtS3nakwaifqbHSj4pRzg23OXPHvgYL3vZ/+TR9hA/80dfRBx5JUk9QRJr98jRCleNxUL4WlWUpxuffKMx+v9+N/SG+bsBT0VWrkRivuvox58ygvqJP/f6q/78qyYwP/dzP3fVG71jsd/jktKFqWJ2r2xLF+V2L2WsX5gvlRnv95SBhVKzKDMzRlWR/m4/QB54LUkLmbBeQhaKacAJpMphUt9UK2bKrRZxqsKIN0u/SH3SYkTL0rI3VNtJvSUhkmrtBF3MMqlUcpI9zO43FDswOpEwCcLQLp/Dg+v0ZK53kCx+0o87Zig0AtokvYs3/ex11nan6mMxFy38jSoqi3IxvNlLFFv0bbFu77ih5XfGe1VWBjXp8DrdwZpUWuJAjZnljvqUXJNw04DdnWEmMy3dW5Dsxd80ROzOjNGnDCaPwJQ8tnOc2sP8sCpNaUcbcMYR1Gcc5aqR5S3F6x/9yC3tA3OjcKNIzIKwXM3jlyM1KxJzfSBOy5PEqx9GvJ5L/VxTtkafUSUchG7dUOyqvzHVi67zQhwawjiTxhmcYIoMlWDOluAhRwtzC6NIDloWNj4yZT4vyZ2DWcHghMV10B4QwqaSmmJiEQNxHYpxR/QFZMO0K/jD6XG65NTPEksqH5fqS555Tu2MqcvArC345M5BNus560XDoOrYdWj5VxmZ7w4IOwWHn3eOUDm2P7mp/pcqITioEsk58jlLtQ3VCc9sWGGGidk9Ftc3y8yV4CeW4ozTUiyrBMYk7TVWbu/LzBkbbUhZ6/G2nZIf6P0uRzJ5PTLcmANwcNBijFD7SJcc27MB062Bbixa7LZFjra4USDkmuqsIw4Fk9TLWT9a8n73PJrPKnjpgU9SmMSw7th+jmc4bpmeHeInBdJHT69wbXi65V9PVU72bMCNLOH6+l/+v/ED/CzQe3X24d7v/4mlovVMjvs97/n+qyYxzyiF7K5DTmD72za5L5pdmMYl76kzWZZm8aXJHE2+usBwDnslU6D+ma7DFJ5yuyOsFZiQmR+rcU2m3AnYkHHTgJu05EGByVb9Lb1/xGAxSf0q7YbDBe3q7Gda04uAoU8tm6svJdVeT7hNpl3XxmXlrl4c/VSwQfDzRLdWUu0I1Y6we58u5F3XNzLzRv02G55YW3afazn0+1ovLRbmhxzDo5u4x05pJ2JQ8mYs5KTkZeFdSWnvGCWWrwGWZWPGe0xdE+87RHO4plu3+Ll6drLXFLXsDBSmDxpwmM0K26zjZh1m1mImWgQtOWOshbbDnUmMYkbMOiY5mkOiRzVBc0D3uT2cqM45ZsfuYqVxhSX2qy/X28B/s/BU5OVKr78WdWaFa0PYyNhWfRC2pTeVa+phtS3LG2JxoDfHxIOdgZnL8rHF+dVEQ3nK0R3MsB7Us7KwAM4cMoi4KpEah12s5o0sTeyp1DQzBNy8Jy/D/sZbttTjlq4tiMnxmekGpyZjdicDdusK5zJ0Fjc35OTwxxL3bWzz6e0NdpsKAeaxoA2eeDAyGHXE4CAbii3L7qzmgYPn2T084MDmBIDz2yNSsEiZaY4lwrrV83jnMHOnCWTz/hiIlnthVG1JlZZmmQQmG+rzWUNprEb2p4x6Rfu/g4n9Tbii99vUkboMNF2Bt5k2eh7fHpGiw7mMr/XalLzFbqiBRvo+MGkgy9jlXGq5mj9V8nv5fk7eO2ajarA244ukSWxlYn6voTzUEM/vWxescENwLaVmKzxz7Ccqr/gTP8SP8xs3lTSuamT2QZJ6VZbNEKGPS94Xj9xHKpvC75WO7fPKLLEoM7P7FsGLxXvb4WaBbsMT1gr8PGOTkCpHdgbbaWlVrvzyImWSYEIiFxYTtPeLuEXEMtTnBN/qRbGcZKrPTKBpIWVcE0mVYXpM+apvNEJ5ds+i3tr2aWcwPWZp17T2enBSWP+U9p7JhaE9oOQuVYbpcxPnXlCQvd4Jc53QHK2R9bH2zoE9E/7iOIIex0VC2P7jvHhucewOHWD2wnsI44JiEhmeDAyfmDM43VHuZmwUbBJsm/syu4iJQq4c3aEh7f0HiPcfQTbXlLzkngTGhN2ZMf7YNsd+q+HgH0Ax1TukNgrledj8sKXaErqnyjNcYYXbBLNPH7tm8nI17z++/UKOb7/wmQztWQ83NQxOCaPHM+MnMn4m1OdEExhbPX+Z3HePpycqvYdDrBKbYkdjed3UUp8xFOctMvXYuSZ1mZl6KiVZjh3aZnRgzu7OgNQ6ijqS7mmZ35eYPRjIo7QskTICWC0nM0bwPmFtJmXL+WZASDqo2dkhk50BJqiK4xpDCJ5T0zHnT6yzc3rMuOjwJtPMS/wo8MDB8xzcmOI2OrqjkY3RnHPzIb6ITOYVu7OanA0y85i5Y+2BHe754hOkSjDT3ocqGmfs5hqJHDYz7aHUq1hCdzDRHcyEMXRrvZm/RAlap00ky13dzzQUuoMZKfoUuHMV506tMzs75MS5dc6eHRN2K2SrJGxXpHP6JY1DRNslVHWgundKOBywrQELcSC0B4Q0yJip48SnDvGxzxxlMqtJyeKcMFpv+MIXPsrGeI40qxtiNxrXqrzc+/0/wXcd/fiNHNJ1xw/8259d/nyrGnNerL4AS1/OK5941VOSyA//P3/+Kbf5PV9y3zWPY0Vg9mGx4F6mji2aIfaJZEtvRt6fgLVPXQkR6YIuzBff23YvMWufEmMmc8qdRFhTc72bRZXG1zzdoQFxo8bOI26uZUxpUIAxuGkHIhgRqvMRP0vUW4nB2YhrM8U8M/zUFLs71QjhlLCzDpOE5pDepUI01rM+bVh7LCEG5gc9YWTwM42tnB/NzI9pMlq9lfHzTHU+UOwmqp3E6FOOYiL9BVfVkOaAI49q3c8s6oXJfRz1fjJj9hn1syjRWxxb7+HgBtPPPUgcOYpJwLaJYrtV4haFYjdSnQ343UAxCVo6FxJ+t8Xvttgu4Vr1CIWjY+TAOqBKjMQIXcBO55SPb3Hw97Y49oEJB/4oUUy1yeX6pyLNQUN3aJUac6txo70pN8v7cjGuh9LzTIjLpbb1VERmhacHKSCMDd2aoetLnhaNfV2jjYZdEMqpYFsoploetSAyJutj1VntH+P6xrqms5RblmLLIj4jaxFpHGd3RnSdQ2YeVyXGw4Z62FEcnkOZMZ2WZRlREmCDwQ0jRRlp20K7zQPWCIVLel+uSsjcUUzM0tORkqH2Ea1xNsxjwSdOHcI9VhN3Sj72maOcPrtGPl9hyszBwYxx1TKoAvPditB5ZKvEtjr+pi147NOHcHODlFkbSh5r6TaEVAtplGEjIONIHOXlqkXKTHs4025qMqf0l1dtEqqqS7cmhPWMFEIcZcJGxh1sWTs0BS+kaaE9ddZazEYHPi/7yJjWkoIlRUvTFFibGR2ck8aZVApSqL/GRCU0dm7hTEV8fIj9dE38xJj5rGIaSuZdgVk01lzhhuN6qzC3iig8HdwoBepywQH7P/Pn7/nJyxLIz7z+1U/pf7lWrAjMPkiMSMpaHmYMMm90wWuNmsRTQppWv6ek/U8WZMYasBaz8HuI7BGhvl8MXVAzfwiYpqM6OcO1gpur4jI/UhBrbSwpziKVg5wxbcBvzzHzDhMSUrg+nlOl82IScY12ky+3InZ3Bm2npCom7PaU0amsF0VRhcYGOPiHgdFjU8rtqHGdHarIVIZiYogDja8cnuj3s79AtGuaQuZn2nzNZFVgUmmImxVS+AtS2vRNrSaSxdiX0oX+eO87qVsDayNmz9vEzxLDz8yx84DbbRFvyZXHNRG/3WqZWNJkNjsPmCZCzNgm4rca/PkZfqdBjCFuDEj3HlJlqCdWMplhdqfYU+fxT5xn47c/w8Hf22Lt0RaxhnJbWPvEanrczbiYvNxJ5WPXk7xcabsLNWZFZq4Nbm4odwXX0YeUqC9mftDSHHTEgSVWmvhospYCL24IuU5wcy2TKiZKbLoNbTxcnbUUk8WHCMZlTDB0TcHm2pzxsQkbazMODuesDxtC6yFYbGOXin72fbRvBhFDVQWqusPaTBcdu9Ma2Sphq8RNnKoOov1gwm5F5SK2SlAlzk2HqlzUgpvoIl52SsQK1ajjsa1NtmYDhlXHcF1LrMRrApkbR6oq4AeRcDyAF0ydqIcd9khDd0T9NzL1GCu4xuInhuqUpzzlMdH0ahV064ZU6c25ODSEEYQDGdZ6D48ATuOfm3mJcVlVqAw5WyRpcpptlWyaYGCnIHeOHCzNrGQ2qbAHW+JGJnvtHVNuW4rzVtPi5ob6jKXcNtgW8pmKjz96lOlOjXUrE8ytxtUu7i+3wP6zl+mLckPw6P9xVS/7hv/+H4AL1af/9MRLb0pJ3fpnveWSqsyNxsoDsw/GWYyxe167npBIyns/S99GeVGWZA0SIsbuO5SSlwt4w74ys8L3SoNDQsCd26EaFsSRJztDt24odwQTBdvGpTERa9EWxJY8KBBryIUlHLD4WSZVauAvtyPl41uwPdF9WBjZY6I+3SGmpJgk0sAyfjxSbnfkyiPeMjibiLWmlJkMgxN9I64xmGNaOlafX8Qga5lDu2nwrfpafKMX2fmREr81wO1O+ySyuJfI5pweDaM+nqWnaHH865ruOZvYLuPmEbfTKHEZl6TaI66P5fFWgw1Y5PnruKTfX6mcmkQBP9HggFx5zOYY2wWNe140u+yPD5KxXaDamVEBo7IgFJmVlfnW42aZ+f/6A990U0nM7RqrPPv0saf0xuwnMSc2PrwiNZeBn6lhX8vEDHlgEKupZNpIWMvIfAsu9Eb/XtF3Db2yDO1G7++Y6U2mZZJ8XEgOaLrYxMMhGJSBnWlN0xUcGM2xTjS6eF3Pd3am5/g8jtS1lnjVPhKS4+zuiGnryZMCP7Okgcbrx7Goob4EM7f80aPHoHHax8UIo6NT5tOSvKWNK6VOrB2acmg045N/fAzbWHaOtDiXCecrim0HBtIGrNct63XL9lxLr8aDliZ4jBFmMyUpJhuy8dhOE9xMVkI1OGWIA2gPKplItcYux4FGL0ulXiF3sCXNPaMDczaGauDvomfalMx3K9LMQ7T4xmACZKPbAUMwIAMQq0lvkgwyjGTxVKes9psxOg6senSg98gEyFMHxpHalQfmVuF6mPovl5x1I/F0op4X+zvd9/sz9absvuos/L1ntInL4s3//dPwqmt7z4rA7EdfLkZekI1esjdm2agS2CMzsPcYF8UrO7dXHrXAxSVoMeFPbpPvP0AcetYe6+82WU0ms/NIHlXYJmrqlwi59MSRp1vX2GPEUkwSxU7An96B3f5fNitR0p/VB9Ot1fgm4+Z6UdK+MJnyXCINC8KwpNjVUrO1T2dMFmJtmB+xy2Zg5Y6WkM2OesIa1OfQlDHRu4btpsU+OGb99BZI2PMCea+pY/1xWERSL5qG4j3p+AG2H6zxrTB+LCGlJrzFkUYfp8pgk8N2QrETcG3CzFXVIqWeHC0amqlRdfF3s10ijStIm9itXVWDFgTKGugyYhLM5vr33tnF2FUJ2d2IW1U2dr1wo9SXa8WKvFwexVT9La5XVYqpLqzF6Xff7DXTFacNL21Sz6HJQjc2dGt6owig2tJwlt3nWl2cezCNg8YtDf+nH9/EjQNpUmCHkXNi8EWEsV6n0tyTB3peq9ZbtWVmy7npkLbztJNKPTLJaGKYA9OngZmEBsBsWfK0XJa7TRhhqgw7Hj+z2NYQxDPxA1U6kqHYseS2Jo4zrtFGkyZDTJbDgynbXU3behCDHQqVT4xHM8JozhN/cBTXGIodRxxAPtKpsT5ZbCh7P6j2WkkDaEYZe6BlOGwZloGQLJuDhiyGgQ8crGbMYsGp2Rq7uYLW4SaqoNiogQk26r4agTyz5KgxzuK1cSVGkDIT1qw2GhUlK2FNb+QtfrczS240qrn+hOPTt+Zf8VmLKxGXj773FcD209r2rSAzT4VXPvEqfuKzzvLjfxbWfvLa33/v9/8Ef/pVP81P8MPXZTwLNWbtJw9d83uvJUZ5VSOzHynpXXkRVQkWiss+8mKM6VWZPoXMGkxZ7pn4s2gZWtPuJZdl3d7yq29sKW2Lmc4pT02pzgZN2CpVXUmFRQpHGvrlXykcHNIdLJkfKTBJGD/WMv74hOEfnab49FlN3VoQqv1JX9Ziz080a/+oJ44cuezL1BaLfPQiUMwyw5MZP9OvajtTbutJefIcy+Qez+yw04unqBJjI6TCaAJMadi935EPqe9kmcwGTzqOi0Q3ygJTlXSHBtikpGl6b0XcqJjfO2Z+pCCMLWFk9Q5lf2FZ9pXxDsoCsmCaDttFVWbaiG0ittW/qZ0F0nqFbIyV6CyishclgNJ7l5bKzOqO2e2C60E6Xv/oR664nb/+wDfdVFXkVpStDe87ecX0sWcaDrCCEhjf6MLfpr40TIMhddFt9DEbNTLZBY3AX0TslxPBz6HcgcEZoZxmPUdPtJTLdlCe04aLUvWlUk5IWyX+vKoo1gre64dJMhifGRyeMTg8w/tM1xRs7QzZOT+k3a0wXuOapU7IMCFOqM4ZbGuWJCEO1EMTDwXSSI090jhsa7UcqxI41HLf8fPkrITGyF6aWi6gPRZpntsx3pwxjSVdcuRsqQedppklS5ccm/Ucc1wbvIiFtBkxLmO9UI1b2s9uCOvqk0m1EMcJGSSKIjGqOqZtyagMpGwZ+MAslPzP7UOcmq1x4uwG7XaNSapwLWKusSr0A5A1Qc5PNUiBaDGdxbQOikw6GGiOZsKakGq0OiH07zeqmNmgBHD3ebfgn/BZjkv1kbmakqp7v/8n+J+v3yMol1NBHn/xa/mRr958+oO8Ctz0srVngItLya61tOye93z/Vb92pcDsg/ox7FJJWfozFovwRUPLEMFaJTG4C+OWrdGyMe/1fWlf6Zjpe8cUfkl4JCbM2S3K6Rw3WSNuVD3BsARvSZUhF0P8NNJtesqtyODxqcYEL9QWUdLE0q8je4RKMtI0GGMYP95x/nMr2IIwsLixxzcG22osc/aGVO5dQItJRLzBTxOz4wWT+yzdhvpD6tNCMRPKSVKfydBiolDuqIITDg6otmtk3jyJCIjIhcQmRmRtRCot1VYml/1dSds3O2ulz/0X2nXLeJKwXcLEjNSebA22CXuEMybc9hyp+n/vJBgyJMFaCAcGFG0H57u9ErdFU0zQv5nfU+BWuD2wIB/XUk72dInPzS4nu5lYlIgN7zt5RZJyuXKyFa4AgVQaXFCfRSrN8u68a6GYZ7qRReq95DGjqe6k0hCGCz+ippZtP+gI67qgbo5kjVIuM65K2uskGwiWYsfhJwbbOabFgGLULaOAjRVitMSmwJYJ6Sxh8V5AOgudxXZWy9L6MjUbwHba0yau9ZH+ZabebDBGCJ0nSIU754i1UA2C9o9BF/DVWfAzVZTEQcRCZ9hlRNd5vM+sj7W06/zZMcYKu0WNOyQ4l3F9iADJkKPF+kyKev0odg1xXZC1hJmq3ycNO2ZtSTMv2TKCiOGMjEjJEoPDGCF1FjuIlJuRZrdCpg4T9HNSnTHJ4GdmrzGm6436QB4maB2mTuS1SHAOKQQ3s7is4TdYmD8nYTqDSYa4vuordrOxICv/96/5RjaeeBU/f89Psv5Zb7ni+z7z+ldf0rj/+Itfy9sBfuZtgHo/1j/rLao0fMnlt7n7qrO8k+fzdMJN3/mh53O1hWS7rzq7HNP1KJ1754ee/7Tf+3RwQxpZPivQ+zsk9TEmi4d7wgLs6xK/IDd7xGb52ELRaDslQ9aBdcsmlxLC3utTRsTCbsBOplSnKqqyQBaqwmJcIVI+nmHeLNPFRPYtsBdlbgtVYzGuRK/2dNSPblE85yigRv4wduTC4iqnvWbQO4JiDGlgqc4naAXxlvqcVaWl1DuLrs34ucY6g2CDRhsXs0wYW+ZHSqpPmgvJS5/mZvalsS2PobX4ecJkIeD72OiMLSxhBNVWpjrfIdaQBo44KijOBEzOur0MufS4eavHDjBtBO8QYzAxEzdqpOiJ43iA2Z5AjheOcUEyV7htcSlSsiA1d3p52JWwUkXuIBgop5lYGaRgWeqkKWNCGFjoU8kW5v1UmKXH0AWwSZWZhVG9Oa5d7GWQMI3DnvOYVFDNDe0RrfONw4yb9efAxhFypQb2rL6bXGjDS4BiFMjZkmYeM7dLbwkGLWcuM80R1Ki+2y/iO23mmGqLDIwSDJ8JVogjQZzQtQWfOHEYPlNTnza4Tpg+B+J6UqXG9Y0dgyEGT+7Li2O0mKn6XlKZ+YxsIqcqqrn2cwnrluQzWRySM8VjFW6uxEIKo+qRFQZ1YFy3OJvxLi89NYVLtEZoJhXuTEk+0jHebOlaDzt+r1m1GPIgE8retzS35FIJI31jTHxGosHWCSmzRjZ7RzqghNWdLyjO6984bOx73wo3FAuCsljAP+e3f5RfB+DKtVWPv/i1e4SEC0vQvvmBt17w3MXKwt/tvgpevPf79e6H8hOv/+EnlWR99L2v4BV/4qnfs+iLs/uqsxccj1uF3VedZefjb2L9s97CzsfftHz8m/vv65/1FtYefDO7n/yeq9reisDsg/EeY/weMVgY9WHPuL9YfPc+mKWfY+H1WKgfzmJsgRmPSEc3ieMCE0XVEq+me9Nl/E6D2Z4oqcmCNA00Tf8Z+3LjrdlThJIa+pflYos+NPsIgcS4lwRWlPrzzoSDH6qZfPaY5AxiDbMjlnJqqbYirhXmhy0mCYOzmVw5stOxuiZRxT7JLIsSjKgpaG4eSUM12YuFVBuaTZBSo5+J8cJmnwsP0EKB8Z48qunWPcVupNwNZK+Nzfw0LskVIvidFpMrcqEpbXbWqQnfWvW9VIV6Z5Jo6Z21vXeoQJzFhIyJmVx7/HiIbO3shQk4h3Rhr7zNrS44NxMvD+1TPvfeorrse+9k4nIrzPwrInTj0a5bXGO04S5gg5r5662MC0pWUtV7QWqDa3svhzekQgkNYggDDVSRAvy20wSvzUS2gqxnXJkYDhva82PsuZLqrO0TJcHOjcYji0b+Uu41uUzTgmQFWgtWgwBkkRxTJegspsrkIsNWuUyhLPveNG0oqI9MaIOn2alUHamzllbtFpjOUKqowvbzheK5U+JORS4ErGB3Pf6cJwZLKjNhp8QETfTyM0OuLF2vBDWHNU56448Mu88tCAcTDDJpIHQCeZwwpZazGSus1S3eZk5Pa0LTJ5gVmRRVhTIuk8YJs+s5a8YYJ6qqRIObqeeTZFSRGWhqGlYJoVgNEdBAH8idhUoTzczMIesBxJLGiTw0kNRTZOKqYv9mYefjb4JXveVJ6Vhf9UUf4508n8df/FreeQklZrmwftVb+K2P/8rysYWqAU9ehK9/1lsuWZa2/7HnfMPTIw0L4nGlx3/i9U/2riw+f/+4F49fjQp1LWO8FiyO20v+tz/fe5C4gMxcLXmBFYEBWBKWEBuoHNK2mpjVJ8UsS5MEjF34X0ouaHAZwx6RMQLGwfqIcGxMGEO5PdUeLtaSRgWmf193wJGPbKp6cX6OOXW+LwVzEHofTa/gLGBKh3TtvrKn/paZ7XvVRPpYZw+izksjVuObT5ygcoeY3jtQH8zMYM5F2O5wqaSeWuLAEGOi2bRkJwzOqGFeDEoMRAgjzcWXTiOhzRTwBsyA6jFLKg3NhqOY2H6IQclE1D42WuoWwHkMhugCITcgmeChPN8QC1WI7DQhztKMPelQSbEbNEJaIi61GnFdVxAbjGSyFeJ6SSotxU5AvEVcwk/mEDKpdEjhyCOH2QpajC5RY4AWUZcpEVO44P/j2Y4bdRweOnsagLizc0O2/3Tx1x/4Jv79h7/vVg/jAuzs3vxgiRMfOcLxF5y+4utW80SxOA4ynxNEyFZLsBIgDcQoJBGyGHIwpFLLwmgX5ELLZjEQR1YTxIwhdkK3kTCtRc4k3MRhoqE5KISBI7UdmEBas4gX/K4jF4KMgp6Ds4EWTdJajhVoHfis/o6gvViKsgVv1Lw+9zR1JMoislgYf9IyOiVMd4a0RyN+N4FJpDrjZhbbJTXFB2gLyHMh/L7H+KQEzAp2krAzQ30CwhCNhI4GP9HjhQc/VeXK982GYxA6K7AriAkkIrGwEAPGJKwR4qmakx/ZpDsWwCXcjvaICYUgZViWy9lG8NsWPg3hgJCHjaokncVPtReMlEJay0pu5lbVI5Zp1NhGtxWPBGyRyF2JnBco8lLFMnMtLxM7u+D/49mOG3UcFovhnY+/ibUH33zBcyF0SG5Ye/DNSG7Y/eT38M0P7D3/1/7S1/KfPg6S9Sby4nX78fyH3s3H8pvZ+fib+Gt/6WuBD8MLvpb/9Av/YakeXKwi5Ml8uZ086VPwZjvLn1MXL3hNO58tf7/4vRf/3DaTJ43xUsfj4sdGk+9nLjO62Q6pi3SzneXn7cf+bbfNZLm9tQfffMF4Lh7f/t+72Q7z3RbJDa944f/kv+Y381v/5/ew9uCXLrf1/Ifezcfe3zB+4DuZPPrWq/r/MLKaTXz84x/nsz/7s2/1MFa4TfHYY49x333X3iX2bsNqnqxwOazmiWI1T1a4HFbzRLGaJytcDlczT1YKDHDw4EEAHn30UTY2Nm7xaJ45dnZ2uP/++3nsscdYX1+/1cO5LrgV+yQi7O7ucu+9996Uz7vdsZontz9W8+TW426bJ3D3zZXVPLn1WM2T2x+3+zxZERjA9gb9jY2Nu+KfboH19fW7an/g5u/T3XJivR5YzZM7B6t5cutwt84TuPvmymqe3Dqs5smdg9t1nqxcZSussMIKK6ywwgorrLDCHYMVgVlhhRVWWGGFFVZYYYUV7hisCAxQVRVvfvObqarLR7XeKbjb9gfuzn2603C3/Q3utv2Bu3Of7jTcjX+Du22f7rb9uRNxN/4N7rZ9ut33Z5VCtsIKK6ywwgorrLDCCivcMVgpMCussMIKK6ywwgorrLDCHYMVgVlhhRVWWGGFFVZYYYUV7hisCMwKK6ywwgorrLDCCiuscMdgRWBWWGGFFVZYYYUVVlhhhTsGz3oC80M/9EM8+OCD1HXNQw89xAc+8IFbPaSnxK/92q/x1V/91dx7770YY/iZn/mZC54XEf7JP/kn3HPPPQwGAx5++GE+9rGPXfCac+fO8bf/9t9mfX2dzc1N/s7f+TtMJpObuBeKt7zlLbzkJS9hbW2No0eP8jVf8zV89KMfveA1TdPwute9jkOHDjEej/lrf+2vcfLkyQte8+ijj/KX/tJfYjgccvToUf7RP/pHxBhv5q48a3CnzJW7aZ7Aaq7caVjNk9U8WeHKWM2T1Tx5xpBnMd7+9rdLWZbytre9TT784Q/L3/t7f082Nzfl5MmTt3pol8Q73/lO+cf/+B/Lf/7P/1kA+emf/ukLnn/rW98qGxsb8jM/8zPye7/3e/KX//Jfluc973kyn8+Xr/mKr/gK+ZN/8k/Kb/7mb8qv//qvy+d8zufIq1/96pu8JyJf/uVfLj/2Yz8mv//7vy+/+7u/K1/1VV8lDzzwgEwmk+Vrvvmbv1nuv/9+ede73iW//du/LX/mz/wZ+ZIv+ZLl8zFG+YIv+AJ5+OGH5ZFHHpF3vvOdcvjwYXnTm9500/fnbsedNFfupnkispordxJW82Q1T1a4MlbzZDVPrgee1QTmpS99qbzuda9b/p5SknvvvVfe8pa33MJRXR0unkg5Zzl+/Lh87/d+7/Kxra0tqapKfuInfkJERP7gD/5AAPmt3/qt5Wt+8Rd/UYwx8vjjj9+0sV8Kp06dEkB+9Vd/VUR07EVRyH/8j/9x+ZqPfOQjAsj73vc+EdETi7VWTpw4sXzND//wD8v6+rq0bXtzd+Aux506V+62eSKymiu3M1bzZDVPVrgyVvNkNU+uB561JWRd1/HBD36Qhx9+ePmYtZaHH36Y973vfbdwZE8Pn/jEJzhx4sQF+7OxscFDDz203J/3ve99bG5u8uIXv3j5mocffhhrLe9///tv+pj3Y3t7G4CDBw8C8MEPfpAQwgX78/mf//k88MADF+zPF37hF3Ls2LHla778y7+cnZ0dPvzhD9/E0d/duJvmyp0+T2A1V25XrObJap6scGWs5slqnlwvPGsJzJkzZ0gpXfAHADh27BgnTpy4RaN6+liM+XL7c+LECY4ePXrB8957Dh48eEv3OefMt3/7t/Pyl7+cL/iCLwB0rGVZsrm5ecFrL96fS+3v4rkVrg/uprlyJ88TWM2V2xmrebKaJytcGat5spon1wv+pn3SCis8BV73utfx+7//+/zGb/zGrR7KCivc1ljNlRVWuDJW82SFFa6MO32ePGsVmMOHD+Oce1KywsmTJzl+/PgtGtXTx2LMl9uf48ePc+rUqQuejzFy7ty5W7bP3/qt38rP//zP8yu/8ivcd999y8ePHz9O13VsbW1d8PqL9+dS+7t4boXrg7tprtyp8wRWc+V2x2qerObJClfGap6s5sn1wrOWwJRlyYte9CLe9a53LR/LOfOud72Ll73sZbdwZE8Pz3ve8zh+/PgF+7Ozs8P73//+5f687GUvY2triw9+8IPL17z73e8m58xDDz10U8crInzrt34rP/3TP8273/1unve8513w/Ite9CKKorhgfz760Y/y6KOPXrA//+N//I8LTg6//Mu/zPr6On/iT/yJm7MjzwLcTXPlTpsnsJordwpW82Q1T1a4MlbzZDVPrhtuWlzAbYi3v/3tUlWV/PiP/7j8wR/8gbz2ta+Vzc3NC5IVbifs7u7KI488Io888ogA8m/+zb+RRx55RD71qU+JiMb5bW5uys/+7M/Khz70Ifkrf+WvXDLO70/9qT8l73//++U3fuM35PnPf/4tifP7lm/5FtnY2JD3vOc98sQTTyy/ZrPZ8jXf/M3fLA888IC8+93vlt/+7d+Wl73sZfKyl71s+fwiyu8Vr3iF/O7v/q780i/9khw5cmQVeXkDcCfNlbtpnois5sqdhNU8Wc2TFa6M1TxZzZPrgWc1gRER+YEf+AF54IEHpCxLeelLXyq/+Zu/eauH9JT4lV/5FQGe9PWa17xGRDTS77u+67vk2LFjUlWVfNmXfZl89KMfvWAbZ8+elVe/+tUyHo9lfX1dvuEbvkF2d3dv+r5caj8A+bEf+7Hla+bzufz9v//35cCBAzIcDuWv/tW/Kk888cQF2/nkJz8pX/mVXymDwUAOHz4s//Af/kMJIdzkvXl24E6ZK3fTPBFZzZU7Dat5sponK1wZq3mymifPFKbfoRVWWGGFFVZYYYUVVlhhhdsed40H5od+6Id48MEHqeuahx56iA984AO3ekgrrHDbYTVPVljhyljNkxVWuDqs5soKtwp3BYF5xzvewRve8Abe/OY38zu/8zv8yT/5J/nyL//yJyU/rLDCsxmrebLCClfGap6ssMLVYTVXVriVuCtKyB566CFe8pKX8IM/+IOAJlrcf//9fNu3fRvf+Z3feYtHt8IKtwdW82SFFa6M1TxZYYWrw2qurHArcccrMF3X8cEPfpCHH354+Zi1locffpj3ve99t3BkK6xw+2A1T1ZY4cpYzZMVVrg6rObKCrca/lYP4JnizJkzpJQ4duzYBY8fO3aMP/zDP7zke9q2pW3b5e85Z86dO8ehQ4cwxtzQ8a5w50BE2N3d5d5778XaO5vrr+bJCjcKq3mymicrXBl30zyBa58rq3mywtXgWubJHU9gng7e8pa38D3f8z23ehgr3CF47LHHLuhU+2zBap6scC1YzZMVVrgyVvNkhRWujKuZJ3c8gTl8+DDOOU6ePHnB4ydPnuT48eOXfM+b3vQm3vCGNyx/397e5oEHHuDPHf8GfDWkefAwqbS4LpMqy/S4x2SwEepzEd8kxBgw4KeBXDjSwOGnEQAxEMYF4vQ1oz8+D+e2IEXIAtaAsWAtiGCKAuqSPBoiA092FvGWOHTYKLi5bjeXDrEGI4JYgziD3w0YEXLhMCljsmC6jNuZQtshMe19Zgi6w5L18yXr786DCFiHcRaMgUFFd3yDOPLYIDSHCmwQBqcaAGyTMClhkpAHnlx6cmERa4gDhxHBzxOptBiBVFhG//M8ZjpDYsJYi+SsY1uMA/aOR+F1zCkj62PysCAXbrnfABgdBwaksJig2xGrz5ss+J0WM5sj8xZSAuf0OCzu+PTfTVEgowGUBYgQDg+ZjhIf/C//krW1tWv/x7zNcD3nyX78yrf/r894bH/++/7zNb3+NV/5s8/4Mxf4d7/4V57xNt76LV97HUYC3/nD/+G6bAfgI+/+gyu+5gV/4fp2TF7NE8Vintz7r7+TQw8Eah8pXGJYBIa+I2bLJFTMQ8GsK7E2k7MlJIcxQs4G5zIpWbzLDIqAMULMjrOn1zj6q56NP5wQ10tmR0uaQ5ZYgzgoZpA95AKy0+/iBRMNaSjEAxFTJf2cSYFtLGLBZPBTg+0MYvU90r/fRkBALBS7hnIH6E+f5baQSmgPGNqDaqfsK+qUAAEAAElEQVTNpSAW8IIMI8YKRR3YHDVU/bGI2dJGTxMK2uDIyWKsYPuvwukYC5tJYmmCxxqhKiIWYR4KJo+tUexavcY+BuWuUJ8NlDvd8pongG0jeVDQbZTkwpIqw/SYI4x1H7pDmTTIUGRslbBWMDZjnSDZkJIlb1UU5yzSr5iM6PEVBzYBGWxrGD0hrD3a0W14ELBRaDcczSFDM5jzyf/XP7sr5glc+1x5qnny53/8o/wv974FgOe/9Df5/Td13P/BF7PxXz/E7P/zR/zkZ32al2/+73zxN7b87tsqAL7ld36Nr7jvdfyVo/+Ds4d+iUNnvwKA5/zOv+dz/p3nV7//b/HerX/JL7/qXv7iT34G4IKfrxfOfO+f4/A/es9lX/PLr7r3ss/vH9PLN//35T786X/8D/mdf/H/5le//2/xv7z+/wLgV7//bwHws//4v/Oe1/81AF7z336Lr/9vR/ieez64HMtiO4//6a/jvVv/8knj+Ys/+ZlLHo+Lx3q9j9fFuNQY4myXX/n6z7uqeXLHE5iyLHnRi17Eu971Lr7ma74GUGnyXe96F9/6rd96yfdUVUVVVU963PsaN1rHlTXWGWRksJXB1Y76XMZkKIyjaFty6ciVIx8aUG535OSQYYnf7UiDgjRSAlNMEhw9iN9twURdRIMupEEvBAmYZ1w7xQwHyLAmDz0UNcYJPgTi0OMy5MIg3uDajBGwlcfNA2aasJN+kd4FJS5YiFk/xBeAICljjNOFu7U9mVos5i2mLME70pEN5EBNPYtKGIKnmETMYIhYgy0ytgl64vaWVDhM5RADac3jZ5nCRpzoBUaGHntAcE1GcuiJi+n3P4LvSZQBxGGSBeP1StFkJUZVRRp6TFYCZ7Jgqp78GAOl4Nq0x8t2G8x2oxdfcT1pM+iVpT/+uc+wSAZ2O4yL4BzFbJdiYPtN3/ny9vWcJwv81hv/5nUZ22+98W/ykn/1jqt+/YJ0/L2//N+e1uf92597+Movukp837d/43Xd1rd/39uuy7bWxjd/kbSaJxfCmRFuOMd4jxghF4HWVmQxJFviS8PmWOhSQcqWoc2E5Gi6Qt8PYCC6kroMOKCInunnDhnvFLiQ2TidWds2hLEjlQaTIXs9r6bCkEpIA4MYiAa6UmCq4zNZCYm+RvAYHGBbyFkX5xL67xbIMJgJ49MJ2wqptsTa4IwhG0M2SnZSEsJGRsqMsQXluGM0SBhXIy4xz5aULVUdcWKokiUL5KwErvQJZ5XQgS5SbKtET2yBLyKD5JhuVPiZxyRY20kUk0TRZIyU2FkDCDgL0WAmc+pzHVJ4ZFDiqgGzwirBy4KxQi4yGCG7jDEgNiMYpPU4aymcxQQlLNlDrJSouWBwLbgWBl2mErCdxybBTyN1dAxbx86mXmvuhnkC1z5Xnmqe/MrXfx5f/t7XAjBcd9SVZeBLhusOakMxXKcelYysUI9KANZrixsOqEcl1dhSN/r4sDaMnaEelfzyK3Qxvn9Rvvj5q35+csl9eucrx3zVz0+W368E5x3FcP0pt3U1+OVX3ctb+/2HcrkP68N6uS/j/qbtYv+dd6wPawCK0jOy5QVjqUe6nXpU8mWj7+bXzv+bC/ZpcRz2H5vFc/v3f7EPV3MsrvUYLLZZDNcv+bqrmSd3PIEBeMMb3sBrXvMaXvziF/PSl76U7/u+72M6nfIN3/AN17YhEaQqlnf4XZsBS30+k0pDMc/YLiOFw8YMxpBKz/xYrUpJk4njEhsytusX0xbSwFMUBRJ7hSbExQ0sJRTO7qkk8wYTE25rl8FWjQwrpPSIM9iUsQEkqbphm4CdtJhZgzQtAvtUFQf95yEZ2lYJikM/yzklOwld2AOmLpAQYFjTHqox/dpejKHcDtiQyN5igFxYTLAYC3FckCqHnwTEW1wj2ts1g5935MrjmkyqPc5ZCPTqCj1p6escF2TC90dnMf6UMCnjU8Z2FbkuSLXDtkmVlyh6xQXIGdsm7G6vQC1UJ0CaFlP4Cz9rcbwSUDokZf1c52C2V697N+C6zZMbgGslMXAhEbkaMnM9icvtjvteej+f/sBjl31+hUvjus2TaAjJMW910TEetDir55vCZqwRnM0MbGYeCrIYCpfJPpHE0N9qYd4WzNuCnA2IYf5A4Oys4J7f2MWf3kGcpSo8UnryoCCMC1ybEWeII0fsb8SkwtBu6LnVRogDowpLB74x+BlLNcYuxHqn93zEQTEVRieTDsqoupC9pRsbfCO4J8A30G4YwrrBjDLGZ6oqELMlZh2HiMEYoUuONniyGHx/XEqfGBSBlC3OR0L/nqVKJQYRw7wtQGBwUigngkn6JcZgF8GqOWNCf81tWr0GOocdjxicqhFb0mwaym2Daw3z52QIBsTqPmcDGUw0YCEXgs2GDPg5uNZQbgnFLJO9wbdCuaPVGa7N2JQxIeGnegwre8cHvj4Jt/M15a3vfS3f+fIfvWAhvsDlFtZPRV6uRGr2P3+15GUxzpuBSx2H/Vg8d/H3xc/XQmiuZf+v5bUX464gMH/zb/5NTp8+zT/5J/+EEydO8MVf/MX80i/90pPMZVeE0fIkG5R82DbCeoV4g59nbBBMzHTrBXFksUGoT7eE9RIT9YKRKotY30vLRsuZsoB3y0WzcQ7pwp4Ksg/SdssFtNmdYmZasjU87S8YJ02r781ZF+kiSkgWSkYXICVERJls4SGrAgNgUtorI+tLyiQETF2TNoZ6wdrWq1gaWVV+rI6h3O5w86ilbN6SSkuqDa6x2JBxTSKXVklOdojTE3oceYqq1LHnBXHJF2bheb/cj8VYsQa6DiOCazvssMYOCsRZVWHahMkZEzNmMlMFquv0vYv9hIvIS19Otp/Mdegdu5S1jO0uw3WbJ7chnk3kZIUbi+s1T4pdw+75IYihGHakbAixICTHuNabIykUWh6WLM4KGchiyNnibNaFfRmXZCbGTDBCc9TTHq71GpUE07R6LrQW2Sj1mjUJmJgpJga302HbQDgyIhWWYhKYPmfA9JiWKafaYDvp1RaDSYLrtIQMVPlPpSHWVslChlSq0iN+7z5Qt27oNkDKjHUZ55R4NE1BVQUoYFTqublNjqqITJuSIKq++GzpeuWli54meAZlYFgGshhC1NcVRaIbJJrDvlfj9fPFGUzKWCkxs1avNSIwb8jzBiRj5g0V4LfX8c8dMT3mkCnkwpMrIdWiBKbMmGCwweDmhmLSE5rFZSno8fGNkCroRgaxjnIXTNK/o7OGMPKEkSWb9PT/KW9TXO9rykff93Lg3ddtfEpirn6BfDEBudKi/2K885Vj3vre1/KlPXm6XXClfbiU6vRUpO9q1JiLX3Opz38mxGWBu4LAAHzrt37rU0r8V43e/7G4c5IGBUaEYjfimqg1tKXDZGH4RLskJLbLywV9HBXkwlKcD4g1pIEjF0ZPotAvmiOmLPYW6FkQ0ceUTPgLyIc0rY6tLzszxuhzIuC9qjkivS/HgiTdTn9iF5HlnShjzN6C3eYLSIzxJThLHBfYNuMnHVI4OlcSh5ZyR0/AC49JLh25dPhZIg0sqbLk0uJmEfH6M3rTUGuPayVcxnslXjmr8tEfF+O9qlQpI+h3nIX+LhwpQYyYpsV5r4Sr9xEt9kli7FUdoyQOoLTIXImgqSsktJi6l7IXn2/N3rF3aAnefm/OXYLrMk9WAK5v+dj+bV6vMrKVyvL0cT3mSbltkDMl4gS3poRl3hY4l5m25VKJEDFqQbTqfwlBZQ8Rg/N6grL93XvnMtWoYdfXpNrSHhniQoY8oD1Y4JqMSUJ7QBUK2ybCyAMl9vEZbqfDOYPpIvU5rxW6mxZaodwVjKh3MAzUC4NAqg3tJnoud5ZyR0iVYBL4ecYkvfHXbhhSBViwrcWsA0b607OSmZQNoff7xGR1H93eeXbWFsRkGVYdbXTM5yVd51kfNXiXCDicFUrfkdeM7qexmGzI3lHsJmyX9Pxf+GUlwqLdnWRRJf78Ni5lBoUFGeixbRyz4wYTwGRDqvT6aTK4xmB7Qd51uu82qjI1P6Q38EwS4kDVm2o7kQtLt+6UvDiIdx9/Ae7ea8q1kpdrff31xJue84HLPr9Qo956CWJ1KbLxVT8/edL+PN0ysv3vvd7H564hMNcFvaIg1mBCxtoErWA7lYWL3YA4i3iHbSNpVNCtFz2BAbLgmoQYNQ4CWnZVOaSuYKZ3gCg8GINxPakJca+MzLm98qpeoTGVliDgvSo5MWGc1W32hn+02k3vjk1mWj7VdmDVu7MkLYvtWw8haqG1sXsEyTli7bBJyLVf3o0TY4hDS3Wmw7Vq4A8Ha1JpKXYD5VYkl3rCLqzBzyPdmpaWmaR36WJtkGGFmc6XhM4UfdlajErAUu7JxD65vVexLjD99+RPcsJ4p8RlcfwWJMa5npyJqi/GajlaXe2VkIEel2K/wnXnR1yucGNxI8jL/m1fLxKzwq2DnvcEcbqID8mRs0HELe+xlKWa2kNySK+85GyxRsjJAA7rMl3nSK2jqCPUgVwLsTLkgwVhYOg2DKkGPwU/E7pNAw84qi0hDsA1BUfOlOAMufJYEYrTM8rHA8WDBzj3eSVhDKky+JmQC+jWzNLEH9azEhpjiQODbww2gGt1Me9aoZiqUrNAjgZrDVURWevL55qgqgqAMULKFrP/mBk9TvPeB1SWeh1NWY/F4n2lS1RFZLYRSfMC1+m1z6aMGIMUFhmVOGux0zlmNgdn9boZI3k2w3QdPiXG0w26I6PeX2qZ3qMlY/QFAmLpS8HpCY3Bd6IKDNBtGBDwHeCEMDIUM8PssNMABCCMDam7O7wvdzL2l2stfCEL7F+gX7xYXyzmL1dedjGuZtGur3nDUz5/o3AxOblU+dilSMzFpWT7t3c5XOkYfOmBNzzp73E1WBGY/UgZt9uSve1TrfSWiQkJCoft08DiaEgcl4jTu1Q2Cmax8M5CsdNpOVNI5GFJKiy+8pjFwlvynmKQekUCVE1xVh+rKig8MqiWJWi59EjlEKeqQ7dR4pv+to5ALrWES46PcU3Cn9qBnQnMLyROyzEsVIdFoEDOSL+QF2u0NK4vFxicCdguY2cBnCGt1diYsTH3r0m4WcAkPS5610+PDUDuS+XysNyrUV4oJvuTyJbm/n2kauGFsftqFZbEpLhQLVnc5Vp4ihbqjbF7v5u+ICOl5d9Mt+/2/heswdi7r4zseuF6GfhXWOFuRS5Q8jLIdE1BDB7rEt4nPQ2nvRslOevidqFWQH+/pXMkqwldxgoYISWLWKFbt7QHDN2mkMoMplcLZnp+i2vCziBhgqU866i3NqnPdbooLzTIxaSEDVkJS2EIY5AjakrPHsKGKixpLYEXQiqwpZZq+Tm4pi+p6g38pvc+igFJliyZQRkwwDx4uugpXMK7TIi9Sb8ncGEfsWn7n0d1t/zd2cRarUQo5V69GUaQgm7NYMYGmyrcoRIb1GA/bKOGFgxqzDKdsiS3LZIyMp9jdjyFM8ThGkWpnhhxuv8mg+3MspJAPJiiL5tL+jcudrX0zgbwEyHWhu0HPd0BKHYgVZBq6O5CD8ztiHf9yGuu+rWLxTPA33n7r3DkB776ggX6W9/7Wn7t/L+54D2n/sVL+Ov/+s8C8FP97y9+2QuWj12MS6ketwL7ydulyAtcSGwuJjGX8sbs38bVlI1db6wIzH54ByLLpCvbaA0x6Al74VcxUf0WrskUO73XImey89iQsLNur4wp576UymiJVOpUSTFWCUvsE7joy7uqEgpPWhvSHh2QSzWpp9piREiFodxJ+Cb1UY4GP9WSLdvpuCgsceDIz9mkLAs4c36PBECfPLbvT++clmJZJQ02qGojVksQbJcxKeMm6rtJVUG3WWCiaBqa2bdd+hIzAT9LiDe0G45YWyUzC5XEGN1fa5G2VeLh9ikfIvqVL5EYZmyvuqS9MryFnyX35QNl76VZRC67farOfhJpjYYGyB6JMkWhfxO3j9CscAFe8q/ecUeQmN/50NUFMfzpL3rqtLUVVng6COtKXtxIS1lztFirpWExWo0ONqJKRNLfF+VkEi2S+ugw1PiOz9iBxgxjYX7UkCohHIyQ9ykf3uJnhjxIuLWAJEM7cJwYFKx9vGb9U5E4LGnXLeV0TCpVLTL71tdidEFe7Fiy188zPpOrjMkavawErT/tOqPlZ7E38gMYwfZkI2VLGwpCcNhKP2g6L/E+U/qEgWWEdIqqRoGWztleqWljT3ayZdJUNPMSxGCyoZioaqQBBKLBLs7QbVaUAAfH2HnQqgMRXBZoO71WeIdJQrHTl30XhlyiaZ8N+KmQKiU1JkO1nTFJKwpsgFRCHPXk6CyEkSpXrlHiAiBWlt6ZFS6P6m/8BfjA7Lptb3/51H4siMvFr/2180821n/pgTfwTuDFL3vBVX/uwg+zfwwX41JjuNHYv29nDv88//rz9mKMryXs4GJcq29obxx6DL70wBv40ve+lmba8d2v+PGr+swVgdmPNsBI00ziuEAKi99q1BfTaJywFK5PJ4NcOFwMSxOh6RfdYi0mJaQnBa5VtUBEliZxvO0N5qoAGO+QtRF5fUBcK5c+Ez9TScE3SeOLSw0PMCHjelNgHGlKWbET9C5cm/AhE8cFswfXGRQO88QZvdIs1QyUGGT1lVAUSmCMwc91u7m02E6JUqpVvcmlQ7wSFCO9bB+yeltixqN10mK0ljqOC3JhyB4GZxJue74MH0BkmcyGXRC8PgXM71NbQMcJerwkIws+tuhp02+DRblclmWZ2YJYLZUX2FNkFliQpH2PiV9Nj9sRV0tKns42V0Tm2vFz51/GXz7wvls9jNsPAhjB+4T3mZxNT1j01L/wwORsVXnxiZwssfVIsJTrLSIQO49EVWFy0iQu0FSsXADZaFKW9IpPnQhrQjnq9D6aA1NF8jBw/mBBt1liMsQaTNLFehpoKVg4HMEJ/lSh15KkN7J0fwwyyCQDrrVIMMShwXaoAtMJrhNVZ2aGUFui9cw7TVhLyRI7R/SJ0ifWRg2uJyjege0Z1KLUDthLautN/ClbQnQ085IULewU+LmqP75ZXH/7NH4PYc0T1jQFs9gN2nIgaXoaSbBt6K9rXoMLmoTrLC5oLHIxzbhOxxVro9cyZ8AKuYQ4NMRayVy5q2V3oCllqWbZayYXEIu71ARzB+Bakr72kwolHT/KO5/m516KON1u+JYv/Rx++Nf++LKvuRYV6Urk5Xoej1Wx/35Yg2kDtr3QrA6LdBMlN7m0hDWNW9YFvd17fQapnHpXsi7sl+9dJISVxXKhbIoCU5XI2oh4aEx7qCaMvGb5A6m0hLGjW/eENUcx00ABjFGlRGSZ8mW7qOpQFsJ6Sbup5GH63DGsjfTzqrL30vSLc+tUcejVIjpNNFs0pcwDHbObB7rDQ8Jmpak3SchuEVLQe3AWigmQhp5Ue1Jll3eeit2gnxGjfl9IN85dmPpVFr2SoiTDlIX2p1kEEDhtuGkWJWaSdUWQZe9Lcq+iLErIzFL1wpoL1Z7lHznvqTyFJ63Xz+S/aYUbgBtBXm7m9q8Gd5L/5V3p0mUTK6A3eRpHu1sRo102aRTpvS9lxLm8JDHGgPMZVyb8KDCsO7VBeo0jvkAiAeJAPTa2sdjWLEud7DBSjjqKIlEU2pjR+0xRRopxx+y+RLchxLGQK/XoZC/kUrB1pBh2xGMd8WAkDYV0T0u92VAOO9woIMNE9oDRZo4YVT0A6nOZ4alMfcZgOrs4DFgj1GVgfX3OqO5wNlO4vFRXYnJKXBbqVFalqvSJQRlYq1qGRcAaoYsO5xPOZ0gaHDA/Yoi1xjnHgSWMLWGg6Znd2NIecISNgrhWkYbap605PmT24AbtsTFxsyJslLQHPGGkZHBwOuJawXaZcidQn434uVDtJKrtTLUt+Jl6YcodjaMWr1+p6sv5Wm3smWuBeiXB3Cn4qe/4dUAX29XRf8cvP/Caa154//sHX8u/f3DvPZd6/+1QWgZXRyre+t7XPul1l3vfpZ673mRuRWD2IwuEiN9p1EtiDGnUe12cI9eecEDTX2wSslcCk2oP3qpZv9CYyWUJGYvaWbtctBtjtGSrX1DL2pB4eIyU+udwXcZPI36m9cn7kYo+qni30UaNIe8pQpUnrpV0m5USB5H+DpohHdbGdrIon4pxzwMDqor0/VbcTFUlMRBrR3ewpjk2oDlUaKPKodcxzpPGTYe89AvlypMqh+0yqbKEkSWVhsG5hN9tMU2393misZ+gSWnLcjC4sGwsJTXwL6KiY9T65dQTrv2kZjjA1JWSRWuW5WpKrtKekpN6ArV4bqHk9KVleW1AGq48MLcTbgdyscCNIhl3EnlZ4fIodwwmGMzUEYPvLwmCcxqPXJcB3/eDqetAUaisXJQR1/eCicGRO4exgis0mlh6xcUImGD6hKz+s7LB9cRl4aexNmuJWraMBh3FkTnd0Ug8FGifE+iOB/JaIh2IKmaLoRgE/CiQR0n9Nz15KstIMeqI65lcoiuInlfFkZIFMVo+ZVuDtI68r5eL7fd3gUUJHdB7Y9KS6JVFpPKReVdwYmeNUztjzmyNme/W5GyIrV4jwlhoDwntQSUxsTI0By3duv4uDtp1w/ZzC2bHS5qjFbF2xJFl9z7P5L6Src+q6NYdqTJquK8McWRpN/ry76iVBq7NuFZwXaaYZoqp4Bv1wbhWMFHL6Ba7aDKQIdcZu1Jg7ij83rtff0O2e7srMpfCUxGtyxGwm0HOVjUy+yBtC7bEbk/xzpGHxZKg2K4v16odNgh+otKzm7RLkrM4kYu3IA4pPWG9xEZBCrdchEuM6uNwFqkK0saA7kDZE5Y+HtkYbBvJZbmU58vzHW6m0cZSenJvxBSnZAPjSKUFC67JlOeVpHQbBd1GybAskKZRciB96ZgxGhqwUDdyxkwbCmNojg9VPcpK1ordhOuU2JksqsTk3jNUWBCY3ltpd+JOpXzfZAanE9WJiaajLUjFIiXMWu3xYgx4q4b8GPsx9sfL9pHIC9Woa6FgadQ3dYWMh4T1Gin7FLksuGnA7jbL1DPpwh5x2590tlBnQL/3KWZhtCIwl8Od4oO5Ufj273vbdU0jW5GXuwua2gU2GNLM0xphbdTg+zjhmC30yWNNU5AaD50FJ5gik6IjB32Ns8JwqAR+Oq3BQKozJmoTRhshrAkyjNR16L00hhA8XeORZDE9mTFGcMNIjupMl2ggGexAidMiRCBnIVKQJwVNNkjQsRWDAOuBtGPxEy1By0WfWJb0q9wVBqcsMw9NU+B9Qkr6lDU18Q+Kvs9YtlptZ4TSJ0o/p/aRtbIli0GA1FimsxKZeewoEGYlZubAqbphZpawJuze79R/0qIldUavHzapMt+uG8SoOpPKvs2A0VKwNNAecIiqW+0BR6xhdtxS7Hp8o0qTb/pI5r5njmu1lC8Xqga5tu8R01+uTFb/UlkGVnj24ae+49eXBv/bmbzsH9uLXt3yFx/9d096zVOVxF0c0bx4zY0mMSsCsx8LH0jb4banGBmSN2s1LJZOL0a950Os0XrakHA7LfRlYgAkIVeePPDYmLWszFttMrZYmIOSh/GA9oDW3cuipErApIwJmfLMDBgC4KbtUtVJdf+n64mTQXutuEVPmkUpVYLqTCKulVqa1fSJZItFuzV9Ghga62y0A7SdtbhWL5R+GkgDjxit/xVvyWKWZQMYiOvadyDWerGwUfDTRLnVYrdne+VioOMIUVPWrNFSMNAGkt5DCPu8MW5foljS353T0rfSIQc3mD64vjxuoOQtDh1h7LGbFTauU5yfY7cm2lOnCxf6YqQ/gAsVpldm4nAlUF4JN4vE3Ez15Xc+1N50L8yKvNx98HMIfXSu3XWkaOiqQOETYJbNKY1RcuJGzTJ9qyoihU/EZPEu42xm1pbEZMnBYlqDVHp+R3SxLKWSC4PGDudsaWcFEi0kg0RH8Jm18ZxYRroFuckOM4z4QhPSQBPSulmJ3XXkQaaoI10s+2R/gWxIQ4Hz2h/FiOhCHSUEAG7eqzBATpau86ToSIWlLCJZoC4iIobKJ7Vo9v1hAKZdSRM8IXjdj04JiyTdH9OXzGl/GiGVhsmDOv7qrMMGJSauAzPdazzZHLSkCnKpaon0ZXCp0p/bwxEzjgxGrSbFuUyXLDE60nbJ+h96iolQb2eqnUQYWmJletnF9AlofZKZU38OBtyibcIKF+C7/+vXX/N7vv8lfwFOwhtPPod/dFi/A/xf13ls1xuXWtDfTJ/MxQTjcriWErBffuA1PPG397wyl1Nsrue+XjOBOXHiBO9///s5ceIEAMePH+ehhx7i+PHj121QtwyLWF/AtB12B8o2EDeHyzv7ALbZM5RL4TBdRHBaKlY4LBDHJbm0+GnUBJegZVCmLJAYlcysjQgHasQbbKekxoa810Om094oqbaEkcNPy74nixrkNepZAwHE6TYW/p1Ue4wIdh4RpwllUvh9pVkJyND1zSIla/JLCEooUqI8M0VKD0mQUdGbRDU62ug1mG7DU0w0qcwGYZhES8tmATftoAuYvoOXfr5F6oI0qpDSkgoduxEoz7fYWYeZzPTivlBIFlHLoJq895i6Itx3iFw5TBRNPHNG1ausAQSxDzzIpaE9NsIPS4onzusYYoLQXZg01qtiWqome4R0hcvi2azEPFMV5lqIy/7PWRGe2x8mCfUZw+wejTh2M0sIjill73nZ88RUhXo9rNXrgLNqXq99ZOADGcOsLQnBIY3Dd4bEXsRv9iDDiPcZQQnQzmSAdI5i3KkBvvEYq40zsxiszTiv533r87J0K0ZHNyuRmdPWK3Vf1lUlBkMNBpCk52wboZgKYa2/kZYEmzR1y7VQ7BrmuwXJgqkS1mnJmLMZZ4Uu+r7Hy94+t9Fxbmek5XONNvU0rQUrMEj63QrFxNAdzIgT2EiQjDbRLBNNWWAbi58aZK5K00KVyaUqLFiQSh8TL8tUNcqMJLP0JS3ULAAzjMzvcTQRwhnH8FQGUdXJzHX/UwXduqaT6f8BmLkj+tUNsafCnWB2f6a4UrnV3bL///7B1/KZ/9+Fj90oJeaqCcx0OuWbvumbePvb344xhoMHDwJw7tw5RIRXv/rV/MiP/AjD4fCGDPSmwNgLo3hnc0zb4bMgg5Jce00vAbBGSULlsY3etY/jklRZfKMxKIsI5m6tYDCLGGO0jMka9b4MSrp1r8rOosa2ics7WOK1SWWqLPXZXm4feo02nkckWtKwWBr+TRJVfPZFP5uUCZsV2RnKT0dkER/cRhjUfaTwvprkvsmjmbd97W9GSo/tNA7adZn2QEF9Su+IDz+tnhbbapRzmQTT9Y0kQ9T+OD3yxpD2yJA4sGQP2RtsFIpZph07wtjhpxXFTo0/vbNX+mVdX2vdxxyPBsw/5wgA5fkGP9W6a6whjAuNraY3lvbEJ1eW9lCFlIcoHz2HaVok9/6YlAH9m4toGprJWcsOVrgq3EgSczt5Xy6FK5GY/WRj8bqrJSA3smHmCjcWNsCBDweGJzzTe7XRZLNTkQaxvyOfGQw6vNNULmeEURlwNlO5iDXCPBacmw/xfePGEB1pbjX5iz40xkGuMvW4w7lMjA5xhtQ6XdSj3hUpEsO6pXAaXdwGj3OZznnioieLzQRxSxOHEZDO0kzKPoVMy8AwqvjAwqyuN45MhnInEYd9w8sZFGe9NoJcs6Q60bHXAycnLR9DDGnu9kjI1CFWoBTMIOJGAV8krM3Mdmr82UJJyFqgqCKDOuBdoujVqmbDI2LYmQwIZyvKc04JV7unuJgEqVLikkYZ2xpyIRSjQFFGvMt0wWtpWxk1Rc04wgGNre6OaJnx2qNaSp2doWj7kmfT98Xpj4ltDKzdzP++OwdPFZn70fe9nPv5w5s7mJuE69kb5kWveYBPfMennvT4Yy/5O8ufFwRp/n2fw3d95Ywve9s27/rLG3vbeHXLB3/i+lcd3DYlZK9//ev5wAc+wC/8wi/w8MMP4/o71ykl3vWud/Ft3/ZtvP71r+ff/tt/e8MGe1PQm7y1weR+A3jGzjryxoBcW/Wa9ElgqXJ0m57d+xzdGhz8Q0u1FbFJSAOHnyfspFlGAIN6QMRrHW4xybgmkfvmmVJ74qjAOb1QDE40mJi1eaY3qojUWn6VS6t+j3nChqRm+pxxu6n38HjIQhqrv2WpOPSNNJdxxc6pDyXq+7EW0wWIGgetqpD2uRnttEtisyBLJMHtTrUkLKZ95nj1usTDazRHBzQHHNVuophquovJWju8iGQGmB+vqZ2hOO0wO5O9iOUuYLyju/8QubKU5zpMm5BalbCwrre8FtulV6pSaRFj8LNEGHry8w5TfXoLsyN7Ks/FCHGvRG6Fq8JKibky2bhexOVaiRDAF/3oH13y8Q+99nOvehsrXD20GaJheCoi1jO9R5UEM1JDu7FCVURqHymcXnesEQ5UM+4dbFPZyFYY8JHzx5m05dLsDlqa5eYQNoQ0zEihcc2F068uLtQWsC4vy9FCcnRRCUsMjrIKy273zmXaoGVeC+QqY6LFzB25ysyn1bKpplSJMHbUZ/W1cdS3E8hCMUnEqlfrRRtk5lpjy1Iy/c8GaXqylA1uomVfAK4xpFoImwlfqbIUo6VrS8iGeDBQjDt8rxgtmmKKGFLW2OZR1TEYdEzXLa0T3MxiS0OuBNcY/ETHFw9EKLJe06OhKCNVEUm9SpaSxTkt6evaArxAMFAI8+cGilnB8IRgPLRr6kda9IdRHw5a6rbCZXEt5U13GvYv5J9q/y5WYf7Vscf5suvwuV/x9i/mJf/bn3+GW3p6uHhfF+Vl1+tvfNUE5j/9p//EL/zCL/AlX/IlFzzunOMVr3gFb3vb23jlK1955xOYhZkdlgtw03bgnXYvBsLYa6MsFiVVCwVEm3iFoaWY6InMRFFPys5UTfxLs7gBaykmmWLSl4yFrAZ9Y4gDRxw4jGh5lBXws0Dsk7HEGcKaA4H6TCCXfeOzvh8LxmBC1gaXSajOB23cpQ0I9pnY89K4Ln1CmsSkfS5bJTh2e4KdWKQskGGlx6SPbCZEpCwwSYmPWcQp70Me1zRHB8ShpZhnbXY2T5qnb9S74+d9mlrW5phhrQDGFClpcllKatZfG9JtaDx0t1nSq/RIn86GgO0SromE9YpUWoxoPx0/C7jW0hwucYfH+JwxbUC6PhmtC2CsEqWcGT66ir18NuLp+l8WZOLpkIv9uBbV5fu+/Ruv6nOeirzsf+5Dr/3cC36+GnyZ+3V+7vzLruq1zzZM7wNXOdY+HRk9EfBzjxFH2KrpjiSKDe0qX3k9/8dssUZoUsGJZh1vMlEs9423+JQc4PTWmDApKSeGYkJv5Df4bBEP87WKzmsCWQgOW2TMRseg0tI0AZwRElAWkWHdslZppDGomX4WChqfSMkSykSYFn0fGPWAytwtKwTIhm4zsyuWYqJlWcUuyxCV4cmA6zx5x5BKg2v02heHjjj0iBNc25ePNdo0ctEgE9OHIFiITUEQIFjwGnDgfKaqIqWPtKFQ4uaTen/6kq8shsIl1jbm5HVD13nC6QG2NXQHE90h1Fy/1lGWkZwNbVvgXF6+f1E+lvomo8YIfhBViYqWai2w83mGMPQMT6oPR3yfRua1XE0smGhot1ex/E+F/YrEd778R/mxL/laoFcRzt/KkV0fXGrBfrHX8kYQt7/x2q9glxNX9dobpcLsx36PzPXY36suysw5U5blUz5fliU53yULvrxvAb7Ypy5gGu2RYpJol95+we3nkep8YOOTgY1PJAbnIrm0pNqqD2ZrpsQBVE3oO95rc0gQbwhj7bcS1krSwOOapF6SRlO/wnqhMc3eEDYK5ocLJQBoI0uTRRtIFkq0cu1J45I49LQHCoqz+zrbGqN9V+zenTas62OE5ckG9xi1HKztsNtT7M5MSUXfM8Y0fTxyTFqOZff+raQqaY+PCaOepDRaKmeyGv1z0cc9x95z0svvqba0h0rSwTFSa+8aqUvigaGWAADduiOsF/o18nQbnjjq+/IYs2zC6dqkakxIPbnJNEcruvsOIIMKU5YYa7VHDqgfKGdVf1a4JrzkX73jVg/hluPbv+9tT4u8fN+3f+PTKhm70nsuR16e6nVX+x5g1cTyKWAbTYfMhSrl1XaimEC5qwb0qg5Ubi9aV8QQkmOrGXBius6nJ5ucb4bMYokzQpgXEPWGjO3N+65Rn4kNUNXdMj7ZGGE0bDl6cEdLoaJfxhkPy8DGoGFUBmofKGzCGy29GpUdo6pjczRnPGooRoFq3CJlhiphqoxprCpJrZbuit1L3MoFGn6S9Txv+xt9rhOqLf0qJjpm12oJnA0G06sWrr+XFAdCGggYQTo17S8S0IbjlqrWCOoFqQhJLwp1ERmUgaoIyz4yB0czjq5N2BjPkUpLxfBCfWjO+NCMsox4m3EuU1XhAvJTFJGijz82RqgHnX62T1QDJYZ+vaN5fsvkfkMcQ7vZe2WDhgTkoi+z215lJj0VLl7QfsN//w+3cDTXH4u+MhfjepOW0c/9dU79i5c85efdDlj0k7ke5WVXTWBe+cpX8trXvpZHHnnkSc898sgjfMu3fAtf/dVf/YwHdEux6BGStSmiJF3IEnsVIOvCe9GYMQ0subLEgdfEsHMdg5Mt5VbQeBmB6myDmcy1VGmRrLWA1YV6rPXkG4de/Ru9J8bNIjZmxEJYc0yPVzQHPHFge2ke/FxJVBx4ZvdUtIcHqhT1/pVcWqpzAXu+X4z3qpKEcOH+SgZrlr1VJIS9yOe+RwwxaXpY36DTdEG/QoSm3VN3QP0k3pHXB8wPearthElCHFqaQ55UWFwTKXY6TIJiFvG7HX43kIte2q8t7ZFaVZ9+m2GsXZX3Q82kQnaagpZqrQG3MSt5yZAqS1yraA7XuDZT7CTiyBEPjfeinRfb817L6dJdQshXuGrc7PSxBW5Hr8sX/egfXRORWeFCiIfpc2D3Pi0vDmNLtZV74mGZnB9yZjJiaz5gHooLeqJMu5KT22ucmox5fHeDE+fWYe6wM4sNZi+iOWnamZ8a5rs181lJ25SEzpOyZd4VTOYVs0lFSpaqiKxVLetVQ+UjITuSWNrk2W0rzk2HtMEvCYF1iz5hAtEiM4drLMW21f4zUdWgVOv+hrFhdsSSBg6TskYLF4YwMNqTrI9ec91CddHHgWXPFJN743tm2QzTDRKjA3M21uYMq45x3bJWt4yrjkEZKJyqL130xKSNMVM2+N5P5E2mcIl6syEcTEtv0OJ4W5upi7jszVN69RwVLu17jWCNYG2mKiPjgXrzBBhtzGmf09EcFFKtx0NLmHuCVwq5WJUkXwn7F/S3S5PH64WnSufaHzl8t+3z5XBTFZgf/MEf5NixY7zoRS/i0KFDvOAFL+AFL3gBhw4d4sUvfjFHjx7lB3/wB5/xgG4pFoqE0T4he/G+CZzFhIjbabGdljuZ2CsHUUu1FkllYayNHqszDe7UFoTQRwHvK00DNeL3FyLx+pm5MH2iWMJ2sTdpaplaHJje7L9oOANuFnG9ohGrvieMt6RRQa4dxTRSfeos0rRKoqxT38uiieNiv2XP8E7Zl6kt+sOkvbuEwJ7SEhcESJToLZQXEaQsyAfGTO8f4TpVqfw8abyzQBw5uo1Sj53RBp1SqHoixpC9XqTD0NIdHiFVAb0nySQtM6vPBnyT1P/TabR19oZ2w6mZ3/cpbUAxjXQbntkxVWpsyrgmk4aevDnWJLb+7y4p996g1QXn6eDpqDC3g3JzK8jL01VdLrWdG4UViXl6kEK9FnEI86OG6TGHSVBuC8WuYfCJkumpEd0+/0aXHCFbzZLJhjZ4pk1JaDy201Qt1+idfZM0qriYCtV5ofxURZ4UpGaxPZi3SmZytKoW9OViua8Dm4WCWSgI2VK61He698x6z43tU8tAyYRtLK4BP9PUsVRnug1ItSzLv8LIMD3u6DZLUmFwQZPJcqGeINeAn4CfgQt908vQkxbR7zYY/eoMpsysr81YGzSqtkRHypaQLYVLHKjnHFvbZb1u8T3hsEbwTptmtskzCSVd9GyOZwwOz6BKfV9kjUduQ0GITrsKiKGLDun774yqTj0xyWr0dOexRii9Gv2dy+RsqDda8nMaus1MWIfZcW2wmQZ9uXm5uiF2OdzNHhjQdK6rwd/+9tuj4akce+cN3f5PfcevP2PCdtWa5oEDB/jFX/xFPvKRj/Cbv/mbF8Qov+xlL+PzP//zn9FAbgsc2sDs9Av9LEjuGyqWXhfr3mGalvJcn/5V6p3+Yrvt1Q5HHnjK7Q476bBnzutiuCdDkrJ6TbzXjvfTDtcOaDf7u11BE7lcm5aNM8Ub4shRTJM2LOs08cS12kzTxkw2Dttlqt1ELoz6ZAy4JlE8egaZz/cS1mDv+4K0OPbIDFxAWBbjJ/d+IO9VgembbS7vZHkPi5hkZ0kbA3afNyIODMPTEdsm0sDvZeRbJVt54MFq7HGOQhw6VZeyNgzL3rDzYMnB2Rp20mnimtfjZQSys1gytkvU5yNxaLGtkGqHn8Vlv540KpZ39WzoiacRcmnpDg0prMWd28G0nZLKlJ7a4P8sx7d909fyAz9yeYn/ag39V0Nc/vQXVTc8iexWkZfrvb0bFa/8RT/6Ryuz/7VCoD4r5MLQHhT8HMpJxojV85gFMZ4dO2YyrPX+yaKkTAyx9YSpekWweuPHtQY/15IsBHwjFHMh1nrzJheOcDzjfKKZl+TWYcukfhgD8+Bp++hiEW2mGaPTBXgVmDcFYacCA2G9JbQeCRYzddo0s+tVkwy+UR8nRiONTdZeKqnWm27glbBN9KabKQ1S6fnXRkiDPe+oWaSpFSyrC0yGNBKqUce40tqypttTqlLvGSpcYhpKuuSwRnBWGBQdSQwhW5roe3O/YVQmjm3s8kQ2GmQQXd/c0xBwJDE0TbH481H5RNf7X3I2WCvkbJnOS7rosFYoikTOBu8T9Xpg1wlNXeJmWimRB1mTSlf85YpYlJJdqsTocv6Mf3XscQDuf/SGDu8Z4//82h/gcf7HFV/3kt9veetNGM+txt/vfpzvLL/+aZPWay7KXCgvdyNyXWpTr8kMnEFygpyQto/vTX5ZMmUmSkK0nGohMfcL/RiRnLX8KgumKpUISP/alLTfyrzFtZl4xGEyxMpQ7i48L5X6WoySFjJUZzuNtfSm94xkcuHoNgpNOmv7Oz0WqjNz7NkdNagbu0wau6Cniu1T0RJ90pdF2q73oexrHLksDet/dppoJlHLypZKlTHIWkXaGLD1/JF2Zg5Q7GhAgBiDn6tSkiqDyYZurVA/TKfNJ3NpcJ2QKtNf6IQ4MLQHK4bbc2yUvg+NaM8bp6lstkuU5xLZDXTXoihh6gMN3CxSzyPVeYcJqf9MQw6OVDnCQTVYuvO7MG8uLLFb4WlhP4m5HRSWp8KtKhtb4e6GCXqjxghUZw2pFHae6xmeypS7QhiBjQY7cUiw5DqRvdGULydKHGKvQkTTJzayp9q7PsFxkil3lNCYbNlec6TCkVun6V5FoqoixgixLw1zNuP78rAgjpQss1lFCn2/FTF0swIz8TrGoH4V1ysvC/+N630+Ynr/ikC3oedvMv1rRdXwDK5RQpe99jPLDlxPYED3beFxNAmkTmyOZzib6ZKjKtSvErPF2Uxh9RzdJbdUlQqXGBSBeSjoklsqSCKGNjnGpQYb7LSe3DmyzzgXEBFC8LozfdlY6lUw7zLeZ1KypL6ZaE4O5/dKzBYFLd4n8jBidirWPwHNYU+3qWluK1wbvvPlP8pX/fy/ueRzf/3Y70LfwHKFOxtP19R/TTOq6zp+8id/kn/wD/4Br371q3n1q1/NP/gH/4D/+B//I90iyelOhoW8NlTD+OLu+2LxnrJ6YmJCJlPYniCTGTKZanlW0yLTGTKfK2no+jxIa5QUSN7zVJhejWk7qs9MGJ2IFNNMvbXXvyWsOcKa14X5dqDc6pbKjOkyJmXEWeLIL0/4vknUp+cMPn4We3pLS9dAP1tEy8Gsu9Ck71w/tr0mnoTYJ3L1JGaRnGYNIoJ0QclL35dFFl6ZXpVpD1WU06zG0p2kqkof9ywG4kBrol2TSZWWzeVK+91Af1HuG2WaKJSTrIEIdYlrEouGmql2xIGWw+VSy898kygmET+Py1jmRWqOnQXcpMVNO42bjn3ZWWHUI7NRqal/UQp3t4RS3AB8x//j6tSDl/yrd9y25OVPf1F113leVqVktw/SUJjdq9688aczxRR2nytM7rG4Tihm4Kfg5wZiTwwASZa0W/QGd/pzod64ieNMuwnthiHWhjAyxFqDUAanA+ufigw/7ZDtElNm3DgsyYuIYTqtaVpVMdromDUlofWkxhMbj0w9xF4C6exS9TG5b9YoSjBS1ZOWVr/EQhjpz+W2nr9thOGZRH02Uk4y1Xam2tbqATEG10G5TR900B80WRAzIXsohoGULTtNRcqWuk9sM0ZwRsgLw73NOCNsVA1rZUsbPQKUPZkp+/ftzmsmXcla3eJLbYpZjzo2RnOqIi6be/q+wWfXqzfQkz6f1PRf9hUS2ZD7njYLZci5zGDcIvfPaQ8Y6jNCfcZS7KyylK8GF5eSvfOV48u+7mq3dztjoTrtx3e+/Ed5ye+3y+93K37z53R98HT+TldNYP74j/+YF7zgBbzmNa/hkUceIedMzplHHnmEr/u6r+OFL3whf/zHf3zNA7idYCf9P0lZKHFZqA2LRX+Mvdnd7akOy3KsvCQ6F5CEBRalWJL3Fv4xYnenVGcabATX6TZyoR3kxQFOzfg2ZnJhyd4S1wrCet8TRoT6dEv12BbVx0/jTm4p+bAWikIN6XWNGQzUP7LobdP7XDDaVFOJjKgXxLm9r8W+gR6PRaNP2Ht+cZyMIW4Mlib8eksTv/w04qYB22oqWLmrZE0bYwrd2NIc6Ou2jcHNMzYIsdbj4GdqfA0Havxui+9JTHuwIIws82Ml3YEScXrB9TsNdq5JcGHoyQNPHBektQqxdtkgFGe0v40x2K7/m1QFeK8lcXZ1x+x2wfUiGgvSslJdnh5WJOYaIBDHQlij704PxbRPWSwNg9ORjU9Fjv52Zu3jFrvrkcYhsZc0kqHcthQ7aty3Ech71xXXamlWKg3dmiOONeq42hLqkw7pLMNhS0qWZl4yrlsOH9jlwNqMwu1TE6LFzBw0FpN7tWfq8dseP7WYwLJh5qLMK5fq7YgDtFy5Y6kQYaCY9mOcJ73xFlRJ79Y1UjmOoDmsxyYXEOteXfIL0zukYWY8apb9a1K27LYlbfQUvZeniQWTrlqqLyKGJJYshtSnrtme6BQ+URUB2ysmzmVIhhgcIVlitv2lMeL647MfS4XHJ+pBR1HGvqmneoVSsrRtgYhZemPiqG9sKVzj7eJnD777vz51CdHFBvdL9VM5fOaVy9dcbhu3K/bHR18OdzOJecULVWX7zpf/6FM2Nr0UrnpKfcu3fAtf+IVfyMmTJ3nPe97DO97xDt7xjnfwnve8h5MnT/LCF76Q173uddc88NsJJkZMSOS1gS5gndMFe9v/4yxUlNCpqtK2e4TkYr9ESkgXtE9KjBcSImOXSWd0Af/EeUafnGhZmKCEpcvYTkiVIw20sWVYK0hDbUyZ+zKywaPbFJ85D9u7PXExyKAiH1wjHduke95R0rFN0j0HkYMbyGiAGfT71/d/WSLvS0qzRreXe1K2UKIWZXCL8e9vgulVaUmFwU815MBGWfp5APwk9D1ZEqkyxIGl2s7U5/Qi57pMLtWov4jgtCHjZ6nP08/YNpErQ7UVGZ5otazMGLqNQlWZtYpcOkwSyq0O0zcbjSNPHhaQBNPq/piQKbfapV8mjkuk7kv+VgrMJbHwv1ytCnO98EyIx7OJtFyswlxv78qKxFwdih3D8DOW9mBmco/GH48eF0ZPZOZHDLOjnlQYxMHa44nxJy314wV2Ryu7i223v5qJXAjihLAmuBaaQ4bmkOkDAizdyDI77EiVodgBf6ZgPquI+0qXSpeWRn5rRfsrRo0ptq3FNgY3s8vSsFz0RGUjEzYTzbFIdyAtyUuqhVj3TRtRZSaM1AdjBHKl3stUGWJlekVHNIgg9w2Me79LrDWO2UgvRhmW6sewDHiXcFZI2fRBB/vIXN9Pp8uOWd8XpvaRJIZpVxKT60vLIk3whKyJbGRDPF2zvTOimZdMt2tCdAzKwMZoztqgYVR3hOhom0J9RXLhzUn1xahHJkVH6Dxt58nJEg5kmqN7/WBWeDK++xU//qQSosst5vc/Z/7XN9+U9K4b2R9lsd+3O9G60Xjxy15wzcfgqj0w733ve/nABz7A+vr6k55bX1/nn/2zf8ZDDz10TR9+u0GMwXSBeGiMrUpou97HkpeNdEWiLtZJe+b2RWlYWSip6QmP8Xp4DehCf2mkT0vTvET1w7jTwqANNPeuEccOP1GVIXuDzaIL8qzqTLEbcCemeyEB3mmn+kGFjGriWgXOkL1dllqZDGZcYOIQgOLcDDNrkFmvLBnT01mHNC2mLHX/ekO/pIxZqDSL/c5R09kWAQAx9U3M9CLkmqSqS8qkYYkNCROFXAni9YKbavC10zhoY8hO/SvFJFFux76hpW4/l1YVFGeXRnzbRupTQqo9cahdneO40Lpsb3Bz3TfXJO1L0ATwVkvI+hIzYgZvyYXBdiCDEjtxEG7Uf9oKzwQLInI1xv6nIi0f+pnHr/rzvuhrVnXWF+NaG14+ayEglYCF4amo5n0D1ZaeJ12nsfzZG0YnM+WOIZ6xdBsWm2B6X8K2Fj9XUlCet9gAfiaAlmqlQZ/+NTZ9I2Et3yp2De2JWpWTInMqWso6EoLT0qeZx+06fDTkQj2BfqbbiEON/c2DDFYo1jvKSmOFk6gB3hhhvlsj0WDmDr9r8TPdVrehzRtT4TmwHejGVtUbr0marhNMMKrg9CQmDvRY2KjjAMt0VlEPOiRo4MDGoKHsgw6SGNqupPKRsQ+UNhHFMiq0KWgTCy0585Gu9/54mylcpg2emC1+HMgDQ2odqSswwcCaNhgd9mrNLBTkCgbjSBs9k3lFSgbJlrLSnjAxOlJ05GDxVdQys7pj6jJNUWHmjmRXF5SnwqUWrpfzRex/br9KowleTx1VfDXbfqY4c/jn+YE/+xb+7fC9133bN3Lctwv+1Es+l0d+6+pukl01gdnc3OSTn/wkX/AFX3DJ5z/5yU+yubl5tZu7PWG1kaNJGembGpqyUCUFdOEekqZtgZZe7Tfnx35hX3gtI8t935SF6rLYxgILUuOcmsbPblF3gbw21BjkPpY5l0pEyvMB10Tc6W0lV4uytLJA6op4aESqPX7SqcF/o9Y7eGgzRzFqfs+VozsyQuyY8swUe25Xk8p6mLLUUrJlSpnD+H0lc6knb8Yu90vaTsvVQu4Tchb9YCCXnlxobwA/VaWDvCipEGyAOLA9eaFXVECc3rWMQ1V19GKfcfOgzTtFME3ET1vssMRIRbtZkEpDOUm4NtNtlNikPXXcbqNjLb0SQgFixk5bpCrIR2oiHpMq7Fm7KiG7DP71//G2m67AXIwrpZNdirxcC3G5+D0rIrPCtaA7INhGG1rarveGZ42AHz+uN2xMFuLA0q3p+S+XENb0/e0BQQaZVGhaokkQR3vyhGtheD6T5oZUQRwabKspX+K15MzPDXGgN53kXEVrSm0cCRTBLCOLza7pQwD2jPQmg221LDf4AtuXVYmw5/tw/TWocarGrOWllwcsNmoTZt8KxUz3dYFyB+KoV296r00uZN/7ASNUPimh6FWWZWmYmKVC0yZPaTUG2ptEaSFkNfaXVlWnNnptRtlvY9Y44txDa8EJpk/UTMnSBo1KHhcdwyJQ2EwT/TLy2vtMzlo6Bhp5vTDzx87ROQ+lEpk8tkQvMFl5YK4VV6PE7E8u24/ffcF/4e0HP3XBa2+02vGiV7f8l19++u+/kgr11ve+lue/8hTcBaG/1wNXTWD+7t/9u3zd130d3/Vd38WXfdmXcezYMQBOnjzJu971Lv75P//nfNu3fdsNG+hNQeEhgVt4YbwHyep3yQLGqgqxSPXqyYuEiCn8crEPqKqxv0Gi7OstslBm9kUXy8JkP53jQsSdg6IswFrMwlDfdnvxvll0XMYgw5pwdIwYQ7HTYrqIFI5cWuLQUp/WgAXbKfFwMyVkaVTQ3LtGOSzxT5xHmn6/l76enqwZs0dmvN9TYKya/MWa5b65JmKS+mviyGFLSyqt3nVrkiaoJQEDg/Np2dNmXvllR+dYW+y6J88X5WQgtdZSmJgx0wY3VoIZN2vcXPfHhLxM52nX+wtNKxRnO/W9FA6sJY4L9byEhOt69SlmBk/M6DYr9ccUHvY43Qr7cDUxyjcL11IW9nTIy8Xvv1NIzMWRyh967eeuSr9uMmyEahuq85ZuA+ZHNEa+2tFwEoDmoKfdMH10vL6vPqfPmWxIldOGj50mdy3QbQppkAFHua19VoKD7rAqGKCqjGu0RC2ME6axVOe0LC2OMiZqA0zXaVBAqnTMCx+LiYY0TJhR5PChCet1w05T00UlBsYI00mNTD0GMMdaNtentKFgPivpigLbekwSRk+0/c0lLScT08clRzC+/9xlmQPL0ICcLYMikEWbUnqTsU6I2ZL6L9eTkybqdXVcdFQ+Yo1wZDAhi2G7HeBsXpIfgKJItIBJRsPSyowpMkWRliEBABahclF75fiEd4nYp57lftDGgLHCYK1Rb1F0dHu7o0Rvlcp/WdyIMrAXv+wF/Pb7PnLdt3spvOjVV+9R+anv+HVe8SMXPna398G5EbjqW8z/9J/+U974xjfyvd/7vXzxF38x9957L/feey9f/MVfzPd+7/fyxje+ke/+7u++gUO98cil1x4jISKDvqh34QlZpHXBnnLSwww0glcJi72wp0r/uKnrvvyq72GyaCRZlXumcdPn6scEXcDsTjHTOcwbjfaNcS8dbUGO6opwaISJgt9usTM9bUrhtCdKEGxI2FnQFLBeATJZcPOIaxNhXBCPbarysjwYe00qVWkxe0EGsNcMc9GcEyBn7NYU12bSQHsdhJFjeo9jetzTHCro1or+89HyCqNqTCq0qZlvhTDWSOlUazKZ9GVlGiedMfOW8uQutkvkyhE2anKtfXls6PslBC1HKLe1GaiSJu094ydB+85UXo393oLf28c0cHukbYWnxO2gwtxsPFMStMCN6teywu2FOIA4pjfu9+qy1Yh46c38udAmxa6B+rxQn899s0hVR7T/lzaP9DP9HdGF9/S+zPbzYXKfIY4hV7JsKrlICKvOGfx5j0mG7EQbYLYaz7wgLO1B9daEUT/wDLkWcIItMmWvWlQ+ahpX76NxTkvMpE4Mhq32YCkD9aCDOtHcEzn7BSXdWkG3ZunW+0Sv0IcQLC4zrveILIT7DLYzxJ2S7XnNrCuIPfkobOJANWNcdHiX6KKWgzXBM+8KJqFkt6uWr29SwTSUTLuSeSiYdgVN8Kqa+IwUgm0tprMYnxmUAWeFkC3TUDLpvxaEZtZU6nHpe8k4IxS98X8Rt+x8WjYBlaxfi55pKzwZz4S8XGnB/7Fjh/gbr/2KqyIGNyOx7N6/vffzT33Hry8/92IVaUVkroxr6gPzxje+kTe+8Y184hOfuKCR5fOe97wbMribDdt0GoMCiLXYukIWSouz2i/FcWEMMX2p1cLfYtlTJ6xTn4h1qrAUxR4BcU5N71WJ6QnLUq0B7WyfBWN6xSXlvWaYoGli1pIOr5NqR3m+UV+HCOIccailVG6eyZXDAqnWfbNopHAunCabOUN7uMakDdyJ81oytz95LacLSVmI4PrEstwfFNG7gSZEinMN2Q8wAqmyDM7kvWx/EcLYqx8lgJ+rguM6KOaZ7PTibJNe7BeRyuUsUZ5vMbNGSczuDJ8y8YFNcm01ZrnQZm6uEy0ba4RUWvUNbasK43Ya8rDUO5uSMI30zTeV3Lg2qZIT04XkbIUlbhf15VpwvYjHnYJLEaSVCnNzIQa6daE+q+e0BVnJSc+D4vY8IK6B4ZmIm2s/rFhp48tc6A2dhX3CRiVCuVLPihFIpZBLQQq9/phWy8ts15OFBsotg/je6xKVGC22l40OVpwQ1jMyteTnNJR1ZFi3HBzOqVxk0lVUPi7VD5MNvkgMjk6oikjdqx6zUDCqO0QM82bI7Lhgoscm6NZUYVLyYjQ92kN2/dhTHxst/XGZWHa3hpTDjpAc2/OawiXW65Y2OQqbl+VdWtWcaYKnCb6v+HYIkLIlRId3mZgcIajZnt1CPZsJzMySSk8z0lKzYRnoemIE2tQSoCiiNriMez1mnBGSEbrgScnsFS0kS24cZu60b9kK1x3X0xdyK0jDT33Hry8bd+738+wnNHdCFPStwNMq8n/e8/7/7P13tCXZXd6Nf3aqqhNu6NwTNIojEJIlYc8PeQy2SbZA+gHCyAYhFgLbwHpZgEAEg7GItvEiCzBg8y7glS3AvDIWYBPMj4wtZCSyEKAwGk3QzHT3jSdU2OH3x3dXndujnpnuno6j+12r1733nDp1dtXpU7Wf/Xyf53kmd999N3ffffdTBrz0pULOTOl6162+nSpnivSOYn1WSi/ghzyhT6ufMawm+VEYAJX/DWzL8Mb5sT5l3jlpEetbtyA7Yx24CDpxJ7PLIAyDlv2E9YL5rY5mXfJklscLdp89pj7m8CODbjzJSnaACjLZt8tAGBekqYj8B5CW293EfS23xTkrx9WPGzEs6IMtzc6M8pGluKr5hNv3uFnE1hE7zwLMSmNqodVDqXHLiJ1Hqm3P2v0Bu4i4mWf8YE251eJ2GvT2DPoMGu+FidkWXYupI8VezgiIZCvmKIzL3IsWx2q6o2MBeVkPpFoPPkprWiNgSjdeMnTSgc/2sA4r1/ViYS52+8fb7lB0fw1LZ6CQZIJsWrE91m3CV4ZuIosu3bR35oroEFExUe6J1Xyxp4ljseP165H2aMQf8cRRJNm0crZSZEY7kaw4h3XrkXYz0m0kYgnV2cToYbUS+c/A7SfsXGyPdauyjXEiNpJQPyk61lzN0XLOHWtb3DLeY61smJYN1kSmowZrAp031AfauLRKjMoWs9GiPfgx1MfFbnl0Vlp9gxPDgJ5pSnqlvznv50LARtta6mXBshFWZlaXLDtH7S1NZ8WdzBuWTcGiLqk7y9ZszM58xKwuWdQF87pgvihpl4645zALPbBcpgGCYrY1Zn9rwqJ1hLjS2bTeUHdWWsSiYlR0Q3ZMn7PTdQZfO0LQKJWIQQwOzFI0TId1WBeqg0wMXBhI9SDnsFZ12SrlBx98kG/+5m/m1a9+NV/zNV/DX/7lX17JcV2fUkqyRJRCnRdkGVeWwbDSiPTP9z97UX1vOwyD5kUZLawKDJkpAk7iShTfv7ZnO4wZGBtlNHTtit1JiVQ6CYlUyEQ8QpyIJqCYRUwLy6OK+SlDu66wtYAC0dV49LLDLD26jYRC48eG7vQaqgcxfe5LH3KplYCY3lK5P74UB3CVvCctlpitPcr7dxh9cC42xbOOYqdD+YhdBspzLXbRYfcb3NwzOtNS7LbYWcfo4SXlVoPdazBNwO4ssQ/voJaNjL1noroO8/AOxXZLPKC1cfset99le04BoTq3y4XK4NdLYpFd11JCdZ6ktZBpSqH3a9n/YQvZBevLv+TzrvcQnjL1ld//41e0nexatqYdgqGLKC1C9WRF36cz+9IcMbRThWkS5XZitCX28HKdilnsnxg/mBjdbyQDJt8W9NJgd41oN7SIz3WjJCumletYnARiFcWSWGcLZq0odyLlTsLtJ8qdhF1mUNWBbkF1ijBKkJ3Gam95ZLHGB/aP8sHFBgvvOFIusJnpCFHRBUPdOuZ1QdNJ8KNSicIGJuMGP8mZLbe3NJuJPgen3RBgE4pVy5jOxgKQnSxbhZkbOFPSPTwinC1pHh6z89Aas7MTzp1d4+zZNfZ3xmyfm7K7M2a5NaKZFyzmJcv9kuWsZLmQwM5m6Qi1JXXCICUji1l9S57dMZQPOMbvLgTE1CVta2kaaX2unBcWJ7enjcuWSdFR2IAxEa3j4EIWgiY2Al5gaO44rMeoJ8N+PBUm9m98xmM7rh38eSn16+G7AXhv8YOXP7CLqKtpM/14ddFfqfF4zL333suJEyf4i7/4C/7O3/k7nDhxgo/+6I/mf/yP/8GP/MiP8Na3vpUXvvCFV3O8V7cerV3JbIhYCF/4JSkl0asolYGOzuxF3zOlVtvFRCKJEYAWBkaFOLifkbKDWQY6aVmv3sd7cAWqLMQxrCiI4wK7CNlv361AVwQ7C4zbRLtuCAW0U0U7NdhFwE8camzRSy8Xbh9RhUa3kW5qMcfXMQ92pD4XRslqkjimkQ0MwkoHZI1sF8IAzNI8QN2gFzWpKgQp9wxTzMDNWZLV2J0a5YUtUV0gOYNpFWrZioGBD5K782jzgCT21u6eh9G3Hac5JlokN+vkZv3gjDRycrwx4qtCgI5R6FbYIaKMPznRxJjao/bnpK6FcCAj57Bu2roa7WNXWtB/OexKn/dyqaDlsJXs2pRuQGdLeeWF9TCNLBZ1Ewl0NG2i3EvYZZSMLyPOZHYeCKWm3NWYRvJUmiJAVJhaoTy5LVc0hKpvFkgCQsTOXhHHgThN2HOOZlOs6IsdYW4EOKihTVdFsEvoplBt1kxHDYUJtMHQBoPJwnWtErt1JaRPFten3F4lAZIKH5xM5k1AH2vpZhUo0EHRTsQKevxQksDKIrNQQY5DVO95fc8CvTNZ37Ht4gDmUlDSqxfzP6/AJpJXpNoJyCvl4FJj5BwFseZMWtr4eic23YHLTmF2Cd0jjrYQYBKjJpUddSftZc4EMRbIx6yUaH8Oiv/36hF4YV4O6nsO60PrSrALTxWL4YPH8eav+V3uuvt5w3N3vuzN8L3f+KT2/1tfsMFv8ae88tP/LgBP/45P5Bu+5nd55Xf/3cse5/WqiwYwdV0PbMC//Jf/kr/39/4eP/dzP4e1lhgjr371q/nGb/xGfvEXf/GqDfaqV9tBORYmRinRpsDKhezg71nUr1ixJecBIKNW2hiyaL90sk0v9E9pBXAqEdAnZ0iFRe8tBdx4n6/qWtiNpkWNRqBUDmzUImYfWQEBzpBMdqEpFMVuYHHKUm1Hipm0SImdp8LERLLgpw4VE7oJGK1YnhoxXq6jz+2IBkhlUCZWKytNTM84pfxT29Ux9SGgIYgRgdYrADOwW6t8HUIQYNc7uoWsC9J6AHRKa9KBdjxSEmBTOMwDZ6naTZqTE5pjJcVORxo5QpXPi9Z065akFGYZxJVMQVgrsy7Hkaxm9L4taVEzhgGEHtYNV5/72+I1+1N/f/86j+T61aERwI1d1VmFKUXIb5cizhe3r6ybaBLlbsTNI3buiU7Tja0wMAhjkoyI7KMRjYsKiE7QIOJ5jUzmI8QjHcok0syCTVB6JmsNIWjaMtDakvYIkDRunuimK/Bjmhw2me2T6zMjmoljurEUG34dJcwx56cooHSelAGLVomUtwNYNo4YNGXVUVYty1s12kS6aaQ5olER3CyhWyAlYiHHSmaM5PwIKxMaRbSZRbKSh5OcMDn4npYSkKNruU/p1ohGKEAYa/wkYup8L44SwJmKOAA+3Yqtc7UdUREWJzTFtqILFd1mJI0CtS4wNlI4P3RYh6RovUEraLxB9Y+1ltgadGZfYpmIB9vND+uGqHe/5b0A/OBr/5w5n3adR3PztIk92sIa4ME3XftxXBap+Yd/+Ie86U1vwmZ9hNaar/u6r+PlL3/5FR3ctS4VI6puZXI8KiWbBTIICavf9YELUT+5j3np6GDOCwJ4Up7Up6pAdXlVXynSqJRJuDNDC1O3WfHA3y8YPbTO6d/bQm/tr1rNYGgfA7FF9iOT2QthEHTj0YBZBFQsMI3koegQJXulF6oH0X3olNCdRbcRu7tE+xI/GTF/9jprswXUDUJTIIxE78aWjzu1nTio9XodpUQPc+BinXwYzpk66GJ2oNUuxSj76dvp2m447hQFyCXZcGCFBmvq/Jz64DlGsxp/fI04ssSYGa4E7bEK5RPGR8nCQX7qLhAqK61nj+zD7v6HmhYc1nl1rUX8PVh5vOeuB5C5mWyVH11PloU5bB974vJj8OuiNbFL0cB0Uy2sQoTRluj2+nyYZMV5EeTvvo0MwC40nRfAgRLgkmySNiibSCZhikg1avFVh7WRjfGSZ65vEZPinr2jPNQdQe9Y2k1Z3NKdjNHNgCRAS6yNFZhE6lYd5sumQKk0aDucC8yWJfWiQOkkrmMwsA/WRoKS4Miq6ohR0zw8xniFH0OfZdO7RvYMUK99OVgqO90rI+dNd0qYl56FMfm+G/LYEdMDYVZg8h5YnjSiI5okAYNlhKiG94susz2AXUaqLegahQoKUxtCqenWLF0V4GjNqOiEeUJYKPK5iVHTLB1pYVGtwiyzrkiBSof3lMeqazlp/2c/82n8x6++h9/6sfdxx6OeS6d+iW94zv3nsR79+K4F29BrYW6kutCxX0t76seriwYwg/gcASwbGxvnPb+5ucn29vaVHd01rqQUqc89absDeShxFV4JA5YZwAusJvDWnqeRGfJdercxY8TKWGuSFdCRnGFxuqSbaEIBzclAKA3Ne6ZUdYdqWmjzBB9pJ1POkYyWXJUkGph2bUR9vMC0EVMbTC1Axe12Mmkv5M7Qi/gltBP8yGCMQm2MCGOL8okw1oQTG5imJbVtBhy9qYBeHS8HzoVRAyBR1pB8EGDS59V03coUAM7XCYUgbEtZrMDLQSvjnuk5EJ4pICYNIIYYSPMFdrEkrU0IxyQbJ1n5nNxMVjlVSJgkgZ49W1U8MkNt7ZLCAfcxc9i0/ET13T9wyALcrNWDkEsFMofg5SIrQbELdiFAxFeK+qhGeah2Ii4bmqCVuEFaJdfurElUSZLrSaKf6BmDFIxM9g1EG8El9MhzdHPGkUrCq45Vc24b7XDELvjz/VuprGeyuWReT4hLRXME7EzhFsJohEocyqozcj2cF4a4FlirGpatk0t0dt1SKhFygKOxEaUjKSmMiYMbWe1tzmkREfy4aqjtCOXBjxJ2mdmlHsRABmcMrVY9qIhOWCLdKWhBFQygAFa/606dD4IS0MnP6myCc5Ix5ifQrmtGZxT1iUQoE2EEbe5RO7oVmOx3NEctbqFyi5vC7StU0swbzdZJRVEE2tZgrYj4u87gW0taWMxcoxsxB/Am5S6Kw3q8uhZtZLe8+31PuI9Hg5dLqW+47f/w8Zf9aql/+Pzv5es/9nXXvD3rQ879c+Df/a/Vc481nv51d939vEtuQ3uyddEztJQSz33uc1FKMZvN+NM//dPz9C7vec97OH369FUZ5DUrZ0WXYRR6eyZAY5gsH5hMu0ImzIWTibdZZbuklFasC+LOJUL9KAxMFumnwhHGBcvTFYsT4kbTHIHlM1uecccZ9n/2VszC51wavQrBDGFouzKLFrUmKfcSSuYJpWZ5zFLuBXQbResRUrYJ1uguCNvTR9rkvBjpCS4IpcIuRY+y9+wJR87uQdtC06BGI2FTVBa4a4Mq8rnRGeA6twrqTLnVLreBKWszEAor8GKMHFNVZR1N1v+krBXqt9NGmJGUnd369rWeKXl0KOj+HNt2JGdJ4xK0gDsVGW6Ywk4F9O4CtTdb/T8YzBoObWMeq/r8l6sNYB6PfXn0docszOXVQUDyeGDmELhcWiUtaz0qiXjfV5pQKlyb0F5S6f1IWlmrbdG82EXWkuQAX5XXi/wkDRP71SQ9a/h0whWe09N97hhvs9WOedp4mxeO7+OMX6MOlr26ZLFXoeusyTCyz3Inh0ra3FbcyvXRzRSt0yyaQqyIkyLmg+nzTbSOFGWHNSu2vTCB9bIGKrYXI2HGQ0IrmJycswhT7L6GJZhlOg9w9ICkB2fdRNzT5GQyaElimTsQsm4lhWzIkoehUmY88r5A2tFCmdvWfM7TqRNmoii2FW4u4+ymilAqyjM1SVfYUu6VsVAsjxqiA90amu0pi+NBrKfLgCkDKSjUuUJyeh79ObEa32F9aN119/OuGAvz9R/7H7nr7ufxnP9xRXb3YV0HP5M3Z53MY31Ob3/ru3j7xwor8+84H+y8+TI0NhdTFw1gfuInfuK8v5/znOec9/fv//7v85mf+ZlXZlTXq3IeiApZvN7mFrIUV1dXyBPpmLNbRBOjMpjpLZLPm3z3lXKQpFKk0tAeLTjz0Zr2aMTMpIXs8+96K+/aP018KGD36vPbx3r3r8w46N0F8faJCDa1QoVIsdeJdfHCY7eXqM4T1yoICbPI7XF5f7FyxJEdJvRJg50HsVVeRNo1jT+xjq0bUowCXnJ7lSoKASZBQ1UOAC1ujDO4yQxP7VGdR9XNSsBP31aWx+L9irlK+ZzHRKpXJgbyPKtWvbwNmlW4pjbD70kbmC8AUPuGYrvAVUVu5XOogdnq5Nh6U4LettrowxyYx6hr5UJ2seDlieqFr7jtqubAXCqI+ZxXPHb458+85foyWhdiZQ6By+WVaeUGa2ppCQuFsCnVTkR3CT/WQyJ93zaVjKKdmGHbdl0YAD/O9xKbCOOYgxdFC6OKwNq44c7pI3zE+CG2/YTjdp+nuXPsh4o7187wwfk6zKwAg2kaxPKhFPvgoGScuk1iJ4xMvGfzitAaUm1QjSaNA3ra0rYGFCidSIXH2cCokGv3mcWE1ssBlTZgdGTkOgrrWa4XxLrEj6DKwvxQqZxtA9Em0ZyMA6aScMiY29Z8kxfGbCQFhfcaOo2uNWYhnQjRQCzk+KIDU6shNNP2n0MPMIK8f7mTKPYjy2OGUIEfaWLlcLOO2BkIsgjo9q1k9Iw11TnFcs+QNDRHDH4jkmzExBWAihbiOJKKhOpWLW+HdfXq8diTHyzv4t/yxAzMY+23B0ZPVL/1BRtPuM2VfD+A73jgY/iG2/7Pk37Px2sLOwhQnmjbnrG52q13Fw1gXvOa1zzu869//euf9GBuhFI+oubLlf4lxZVAv9dslOWHtjfFRy2v9BkvhVu1QxWOVFhiYfDTgnrT0N7Rcset5+ii5pnrW/zV7BTv/KWP4GkP7aO6gGoOtLJpLe+fJ+kqRHGvqQxqkUT/EhPVvEPPm0HPk7SSpPl8Y1JAMoZkNN3USt9zTOh2dQwqJtwy0pyosI8UMtnXkLqIcmIpiTWk6Zg4LqlvGdNNpFVMnHYkVNLWiWTALiLVmRpzTjQ9Cobz15PrA3PVH+9BowDvB1OAIfDzoOtbTKvlNjhfxxITabGAts0skBFL5q4Td7e+Dupz0qMydw7rQ+pqsS+XA1yeDPtytQFOX48HXC60zfUEM4eg5clXczQx+mCimEfqDU23LmJxEKDiZpHCR7p1mzUgmZWpFDrA4pRmflsi2UiaBHQRMDbS4WQx3yaOnt7l2UfOUZmOjxo/yJ3lQ7xfHWeiW35v9hG8d3ECqwP7y2oYV7JJwIhJLE8nxh8UAJEs+LHoObppgirilxY1N+gozmf9FTElJaDGRXzWNxY2EHVk3hR0naXqXblyi5kCisoTugrtxUaZKDbTAM2xQKoibtpSjVpi1IyKLq8nJXyQAM0EdJ2lay1q5PHOooIVEHMAJIRJYLEGsbCYRjG9T7offKnQHspFxH0wYmrRFGmfsAuwdZRFwSBt5bHSFDsNuvXYmcZPC4kvMIZQgp8o0kwTszlD7ziWDJkGytqicIhgHqtuBD3FE9XltJb9wC3XX9PyKb//N3k8aHM5zNfFfF7XQtd02OR/oJJSqGVDqvNMv5/IDm5iB1y3elCi9KANSimhtF6Blx7kaC16FWcII8fDL5ngR2KreefTHubFR+9npxsRk+Z3730W00fSAFySVqIhCVG0L9YOehLlA26vpTmSAZWSVSi9aKHzoudxVgSiACaDGYAcZDnQ2lEsPqOTPBg/0iuiYzpGNy0YI8cH4Czh+DrzOyboThxs3Ez6t3UTiKWRvm6nCFpJaFsxwhwtqR6YoXdnAhi0ONqkEFehbP0Yo0aV9vwAz7JcBYP222rDymRhZSKgrBEDgH7bEEgxoXZnHwI4lbUkFYf2MWUtqji84TxW3Ujal4sBL48FUq5U+9fjsTAXA1we63XXm5E5rMuvWCSCEwYlVLLi72aJZkNLTlcTc/6JCPZ1B826wXRZL3M84Tc9BIWaG2JUYiHcarFKNom1suXF6/fTJcNpt0OXDO9tThGSZqcb00TL+/aPsdgv0bVCe0UoASUsRRhFmk1DuZ0zWSoBV+iELgJxbrFzjZ9G4iSiRx5j5Rrpo0LZSFEEnBGmxRnRzXRZCyMuXZYuBz1WRcfOEc/oYUc3ETbIbwZwkbVjcyZlS2nkWv7g1jpdZ4hBY12g6oMjVaLVEWsDSiXmURGmQnloL9kxIuA3dBuB+rRHdQo/1hS7ShixRSIa0CixtC4VfpQdOj0kq+hKR3Q5w0VLZ4aKCbP0YrKQEs26oT6qMPneGwpxi0tWflIFTJE1Mnvt9fqv+GFRT0a78kT19re+65L3fyXAy+W876XWS3/mBzn3hh/+kPe8UqCyBzI9ewNPLvPnYF0xAPOud72Ll7/85bzvfZdH0d0IpTpPWjTZvjd7U/aOV/3q/iAiP+AK1qfRKyWi9YMABiQcc3gM9p8V+Dt3/RUPzDc4Ui3wUfO+/ePcPtnhxbc9wJ+d+MiVbqTz4HPbVmZgUs9KdB324V3azZPCwmT9SCwdOltBY5SEXBpDmDiht60Wi06rUTERndDbodSYLqJnkaQdyoszTpwW6O0Don1rCMfW2L1zig7IapNiEMRjlFgy12HIbZFcgkS35lg8Y51ip8I9tCvHFzNw6Jf3zKp16zyGxNoVeDEaoYQSQ9CoEUApIZSR5FmxN0VmjWIitd3KECDbPaeUUGVBPLZOmJZ0U0tddHD1F+ZvurrWLmRXs64283K54OXRrz8EMjdfVQ9ryr3I8rimm4gjVjKixQBpH7O1sC5DC5mWXBQ/ApJCz01eyU8QlAj4O8l4SV5Re8sLRvdxpztLh+a35x/BmXaNF08/wHG3z/vr42gV+eBondYVoiXxMsGPRWbAjbiZ2XkvlpeWp7C0qE70lWnqGa/Xw5pcGyyp1aQEo0Law2ISwb7TcXAja71l0Tgx9syMDC5hlol2TeFPdNiRpyg7nAmEqFlEjQ8aayNaJ9qo8r4MIb9HU8v1fDJuuOPUFlvzMXtMYc8OuTtE0I0WIGGg3Yy4fYOpEzb/C6XCVwJiyKc5WaiPOnQQ3ZHuxABHJYkAiKUY8egu4RaRclvRrSs6JW1rYS1gJh7rpAVOKfBek9who/9YdaO4Wt1I1Z+TKwViPu/L/4h3f/ETt8XfTJ+FfuJNLq7atuXee++9Uru7PrW1k1kBdV6rFiCtTGm1Qg/Ildx7Upd1FH37UwjQdTIxH1iYDGacZvygQavI1zzzV/mCU/8LrRL3b23yhw/dztve9Sym9yeGYEsYwE/qWYM+SBKgbii26sx2GGJphGlxBqw4nZGBjG4DuvH4scVPLN2a9PSGQrE8bmk3LKE02O0lo/vnuIWXVrDSrACYNcTNKctbJkMYWrRy0wXQTRiOk5gw+w12Z4ndb9B1h9ttiU6x+5wR3W2bq+Pq9Sc5GBTvoembsfN58F6Ypf5z6dvKDn4eMUDXyufVNPLv4OfZf75KD5k+qnDE20+w/7du46GPO8LeMyvqo3bFCB3WNasrpXu5UL3wFbddU8H9kwUvh3Vz15G/9iStaDYFuKgorDsJ2jVFNxbgEpzoLpKWYEvTJor9xPQDicn9muqsJhVJWJFaoxtNrCKjkwvuWN9mohtOmMRR7bmzfIjby23esf90fn/nWQDUwRG8QXd9mCa4eZ96L/9CKWBK9CCJckuh9w3JJvxagsZQLwtx2vKG5DWq05AUMUFlPdOi5Wg1Z1o0jGyH0cI8aC3Bj4X1jIoOU3nmt0H99JZyrWE0boawSK0SY9dxbLLg+NqctVGNK7wAH6CuHU1jQSVi1PiosTqyMaoZH18IsxSlXcs0CrNQ6IWWvJgkTJj2YDpZuItGwEu0inInMXk4YGoxWTDLiMntZKEyNEcLmqPlsBgX84Kd5NVkYNgp9NgzGjesjRs2J8sM3MD7Q03lY9WVmDBfjUn3m7/md2keec1VZ0Eeq+66+3mih/kvX/mY27zj//nAJe3zKz54bZ3CLlSPbi/72v0/uaz9XDQD87rXve5xnz9z5sxlDeCGqx5w9CxATCsdTGBlA9w/fzCRHlbtT7mli5SGFq6kNfXRgm4t8b//10exddeEf3L6D/iiY7/H2XbKb//BR7H+XoPpYg6zzMxCbzPsvbAq+f36ibw9s0d9Sly27DISrRY9S0ronHsCwgSpDMCi0yQN3Vj6n4tZop1qyp3c1hWCrGD1afW5UlmweNoasVCUuxHdRZJV2KVYgIaxzatTwhIlZ6ALxMIQxrJq5uaBUChmt5VszNYxD+9IIGWveeldxpxdgZcD51cpM7iVncfcdDmnptcs9e1lMawAqNIZxBj5LNdKmts3aY442onOYk+5gaXZoW3MYV1eXWnwcthOdvOVm3vUPKK9yZNqAS6hhFhkTYQytGtKrrMo7JIhG4U+pBKEGrCJWEUYJTCJ6ajhhesP8PbFs3jIb/G3q3s5bfZ4enmWv5yf4sHZBrOu5NxyTAwKm1vIkhb7fFOrVZuwXWk3gsuLUV7BpEOtSYxX8hpdZpOUqKCIlNOGynkab7E64q1h1pbEpBjZjs4EglVUzuN0ZN4WRK8JxwN25BllF7PWG2I2yjE6slEsqY1jpx6xNmqIOTBzXAqLo1Wi6ay0ZgXDtGhYP1bzrmWBuqfCLrJIH0UsolhQ28Ty9kC57YhWU8zk3uzmWfO5iNJ1kLUrukuYWhb8QmWEmfLSIt13L7hZpBtrmqN9Ho+cw5SB3db+RHJhgiKFA6Y0h3VVqgcxVwpw3PmyNwOvvCatXNeyfuTvvZBfv96DuAJ10QDmDW94Ay9+8YtZX1+/4POz2eyCj99UFWO2Y0yryW4frJhbt1R/xmIaVvOVE2p50MCA5JkAyZpszWxAw8Mfo/kXr/hvfO9ffBL3nDtKPK354+ZWPuPYH/HwC9Z4787T2XxvFA3MQaOAAwn3qs9UAZmItx3je/dYPH0dO/dCcxcGU3tUE4iVFStLH7Nlpuhf7L644Syspdz2VCFh6kAYO5JW1CcKfKUotxAwUpb4Y1OSBVNH3L5HN55uvSCMDMvjFjePuP2QW9Jye9ZUzkUstFhDFxqXXc6Wt0yYnttHeU3ycZUv0wvzTT6fPWDpAyxBAEjbrYJFDxomgHx2Bz/L3opaKWFdNtdYPHOdbqwxbcLWEdMqTJMotls6Din/w7px6kYDMcV3vQiAVAe61//5dR7NjVe+MhT7gaQNoYByKxEdwErM32xkC+BOGJoiL5o065r5rQo/SRLk6DXJBLARVRv0vqI+brnF7bBpFtzXHeX9foP7umPc05zguZNHuKXa4937J2g6SYXngIFjMsIcmFqsiMU5SwT8sRCWwu0p6nFBnHhx+5oZWhPRJqF3LMkl/MQMrWMhKeZdgTOB/aYU8T4M4AWy14pOmI2WshLw0ifYa5VovcFoy76qaKNh2dnBxlkrWQh0JoAGa+LAzAjA0ayvLZm5ClMjHca5PQ4toI+kmN+aKHYlh0Z7+VnspSFMtJtoWdhzivFDEdOJUY4fa1RUxFLjK007layeUMpn1x6J6KMtcWmodUGMkpljbMSHQ/blWtRddz+Pr/r4V/N9v3VlY+GvJ3h5PPblalV/vFeD1bqS5/KiAcxznvMcvuqrvorP+7wLW6j+8R//MX/rb/2tKzaw61K9NTJZkN/3JQfJMFFWrzQxBwIZV5bASdy+IK/4J3HvGlXgxPL32J8lvuvZ/4Bmr6S6v+Db9j8NfaZgep9idDby9HuX2LMzsR32q7yUlNKwzxTTeU5ZqQ6ohz3jCMs71jB1FqLHRCqlrczuNpJv4/ONxCq0FWGiW6YsUARiQree9tgIO5ebr92r5b3HluUtFaaJ0hvcCIAzTZQbmREqPmlE/6LE2jmMLNFJz7BYXSr8SKM9dFNNOLKGvm+ebanNStNSuJXzW38OchudMmbVDtZrWGKXgyizsUJvuBBTXkLMwCbJvpd3rBGdYnSmwzRB9D42B13OO2iXV/N/22FdoH7q7+9fUhvZ5biPXSvXsada9YDlsC6uFqctLI3oTUYrJrm32fUTxE74nDwmrldibVwfU3TrkTDKi2o2QhStYjKJWIlF8V8sbkWrxFY74ecffBGzpmRStBgdqb3l7O6Udq9ENRodxElMrPRFk6Nz0KNpE7oVxl1FATW6hfqEwhSRuC9OXkGBdYF6TUJq1qdL1nPL2KPLR41RiZCvu/O2YL4sia0Ry+HcYpYyuxKjzq5lCW89Vkcq5+mCoWks1kba1qJ1ZFTl+zQM++mCwZqI3wzELSvtzQVEl899o9HL3L1gxKJad2KsUOwH2Vm2P1ZBsntCqTFNxM089TFHN9G4pZgsqNwK2K6DnybSWEwFzNgzGglC1Rlg+caIV/VhXbW60MT4qz7+1fC+77sOozmsa1EXDWDuuusu3vGOdzwmgOlDHG/mSiGClQmxUiq7X8VVpouz0q6klbQlDQ5YB/bRdjmF3sskegiyDKAc0w/UlD9ZQQK3Lzklpt4X5zAfUH0KfVwxCcn71cQ+IL8f1Ork8elzO4yMYv6MNWFByKtqkYGFQSXs0qNbTbux0nm0GxY3C9hZFADgE2GcWx8WDShF2BhhlpFit8XMWwnENAodE7q1FDOxTw4jQ7IaO/fE0qJDlBti40lGbgixlB5wgPr0mMlDTs43CEDUceW81pskGC0mCcYII9T54XdF/rx6vVBK57kqA3KurEU5hz+1QbtmcuuGsEPKi5W0ignddPjycNXsRq0nG1p5CGIurg5By+WX7hhyRuxS2I1iL9FFaI7kVjKbiNly3i0SixMmh1yCnSt0a/DTSCInYpoERUKPPNYEfu2+jyAETWEDu7tj0sJy1vW5YQrVaEwti0V2lo0EcruYOKDJQhesfGp0Cy4/Vp3VtF2J0ln0nxD7YhfRhUzYd5uKeVdQWgEbIKACoA2GphPQ0XSOrrWiR9GKmBRNZ0l965iJlK5j5DpKIwBGk6g7ix1HRkXH3rJiuSjxIWBNJPTWyknhcojm+nNq3l/fOgCSZMQAQXUa3SqKXUW00K3B6BEYbcchPFN3kWIfuomYLEQnOlLlI6ZJRCs2zL1hTbsOy1sDaerRNlJW0uLWM0MAzgbCuKNpDluSr0ZdiRX9v/ePj3L/ez+R1772CgzoBqk3v+1rgMd2vvvYr/0efv4n/vu1GxDwj7/4U7jnzx5bK//mr/ldnv0P/xN/9Acvuaj9XTSA+Z7v+R6aXlR9gXrRi15EfHQWyk1WyujV5BlEawHn2ReLC5latTLlBHphbHKOidayfV7pT87S3rrOuedV7N0ZmdynOf3WOWa/QcUoTAugfFhpQHKbVOotnHt2IoRBlC/bmqHVLC2XqAc6pj6yeMY6SYsNZHmuFhcVA8ooVBuxSZKf0dIOZpbS6xtLK3kyXSQWlvH9C7GWHlf4icPNpG0saU1ymjB2qCTMSjdW1Ec1KmpG5+LgrW8WXpiXkUW1EVNLH3W0YjFaHzOMj6zDme0VMOvEOUb1TBOI8L4qResS5Tz3gnxCkM9v+DAfpUvqPzMteTzN0RLtE24e0UF0Q81xh9v3dOuWojL47rBn+VrX47EvTxa0PLquJIg5aA5wNcX7N1ob2WE9dtk6oowAmGgTySiiExvfPqG92JUFJj8mAxn5GUYp55qIJa8aebRNFGXHdNTwjI0tnr/2Qc51E/506zb2mwJtI8w0KhhimdC16F5UNg6wy8zKd0pE7EacI2OhhjDNPuBSB9GAuD2FacRFrTndURSBEDS29EzGDVqJO1iTLPOmQOtIYcNgn9x4af/qJxpKJ1QZMC6KGUDq5aJJRP5O3MwWXUFlBQxMckDmfl1SLwuiV3hviFHjnNxLmmAwKtEGw9S1xEnAbuWMMw+xyvivkeBOlcAtYHQuotu8iGUVOkGx59GtGXJd7NKLDjRbKYeRprWKbgrN8UgaBSYbNTrPG8SwIDAtWmattE/7oOnMzb3AezPVV338q/lFfuyCz33q278OXiW/3/Fxt17DUR3Wla6L9lk6ffo0T3/606/om//O7/wOn/Zpn8att96KUoq3vOUt5z2fUuKbvumbuOWWWxiNRnzyJ38y7373u8/bZmtri1e/+tWsr6+zubnJP/tn/+zy9TjxUReYlBmAR+swYBCGK2sH5imFAxbKRov2xRqa2zY48+KKxW2J4vY57YbcOFJpsluYGRy40khS7Xt3M2WtTLqzYxauON9NqzcRsHal8Ti7zfjdW5IzkCCWmX1JIkJUIQd1JXAzj9trSU4TC51vaIZkFMWux57ZE+exSSUX+MbLPlJCdSLiD05jmiDZBq0I4Htns4Pn1iw8uvY580C0MnYp23ZHx6vj1KIbWhki5OPrgYhe2VZjshjfPIoJ89mtrNfB5M+uz+mJOZ9BzknCbdUSwFkZih1PqDTNkRsjJumG+55cpXqi1rGr4VDWO5NdS3eyw7o6daN9T6LN16mYBvcxWydGW4HpfYnqrGL8SGaKlQCIbj3Rbop2pL87q6BQOjEaNxydLnjO5lluHe2yYRe8YPIAH7H5MJujmug1sUj4I5645olFD5yEdWk2odlU+LEsNjVHFM1R6HIrW7suz4dK7ID7NqmkIGTjgCNrC04d3WMylsXMEEX/4g+0f6WkMCphTaBy4iC2bBxtawiNOJilpPItTxEP2CTPmwIfNTFrXqyOjF2LM8K4VKMWWwS0ThROWJq+egeziWvQIy/tYftiXKC8EjBWy7EC2EUagFu0ClPHIcxZJfCVRncR1UobXzcVHYxuEzok/FihWwVRoXWktAEFdMHgg6ELhhDlQ6yKjqL60Da761U32nflcuupJKy/GvVJ5muu9xAA+P6v/KdXpePhuhrFzudzXvSiF/Hv//2/v+Dz3/md38kP/MAP8KM/+qO87W1vYzKZ8NKXvpS6Xq2Mv/rVr+ad73wnv/Zrv8Z//+//nd/5nd/hi7/4MkNyDuovcimTs0J6EHMwxNLo83JKlNGi21BKJsmTEd3JNfaeXlAfT6y9D+wfrFGdg+Wpkvv+4Qbbf2ODVMhEORktuSjZEIAQSAdZr17T0U/W+wl8P9Hv3cpigt19inseofrgjFho2qMFsRC2JmWdjl2KzWe3VuArQ6g00Sq6NWFVynu3wAeSs9KClsiZLnpleEAGY0ph54FyJ1FtRaqtwOShDrvfSbZA7VFLuYDH0uAnwmjZZaSYibe+cm7Fkih1PqDswUjPOml1vj1yL9QHYWqslc+jB0L931qTqoJolQgvN8RSujk1luMwkKzCV5pm/cbwUb7hvidXuD73t9euqn3yYX141I32PbF1xCyzDW8pbo8qQrHTUe2IXS9k7YsW0KA7MEu5NoUqCXBIEDvDpGy5c/MMH7X2QXw0vG95ggfaI5woZnzExiNsbs5JRZLsFhcl/6TXdWQNZt/ZlIz88yN5j1jmiXwB3VQWd6KTkE03h2JbUT7oePjeo5zZXhNA4mWCvj+vaGpHYQOV9RQ51BIEoNS1o60dvrXQGJnwmzB4rUjTQqKwAWcDI9cNonwfNbtNxfZihDWBUdHhCo+1K4OVwgRc1vwsO8fCFyidhja53kUzKWGWVJZDJi3/QqklxNKKXXIoDd1U4yu5x2gvi3TtRNNNNH6sCU5RH5P3wCZOTOesVzXTquHoeMl6VZ93DiY5hPNGqRvtu3I5dbng5Zfv+s4rPJKnVvXZMzdDFsx1XWL+1E/9VD71Uz/1gs+llPj+7/9+/tW/+ld8xmd8BgBvfOMbOXXqFG95y1v4nM/5HN71rnfxK7/yK/zBH/wBd911FwA/+IM/yMte9jK++7u/m1tvvUR6MEWxrXR2BQQOggOjoQ2Zi84tXNmWV2XXsT50EiCslWx/xIitv9ty13Pez9s3n4M+0vAxT7+Xt73vGZw+sUthAvV3n2B0TyNBlFFayFTQKwYhpay1EV3IMKZe4N6zML2RQBQ1aPIe9UBNda4inD5CqCyhkgm7boVFkfwYRbtmUCHRHLFM71tiH9gitWJtrKwhjK0IGksj7p6LQLdR4SeGUEowWt9KFp2ieKRFL8WhzNQB3Xphd0YWQmJxwrJ7J5z4I7F51m3MOS+P6tkc7Krz3yErXQ+Cm34VrtcD9Z+lMXLevAcCKWUzhkWNmwX8RI5ZjAfUcByh1FnLc2OILm+478lTtB6LhXm8laNHv+Yw++X61Y32PdFtQqdItIakYXwuUG536C6ggiVaRTSJcjfiFgJadp8tdrxE0ZzEaRA2wSSetXGOl6y/jzvLh9ipJlS6xRF4f3eCU26Pj3nu+3jPHaf45fuex9Z9m0zuN7i5MA7dmrRSmSWYJsl9TilAFm1UkH9mmSf4/eQ/X2ZNC8WeYvKAYf+ZY8IdS9YntQjws+5j0TqC1RgdaWqxUm5aSzcr8jUb0AlVBNwQ6iiLROOy5ehINKE62yQ7ExhbuR/MVCmfo0psTpaEKNqXSdGK7sXV1MFyrp5wZj6REE4NfpJIClSXHd2iIpmEqeV6r7eTmMtEYeJ1ZuTtHOw8L2bGSDKKdkPRrsl5AHFx69YjqETjLSGDLqMSY+MJUQu4ygGd1tw4LfY32nflStVXndy9qO0+86f/L37rx94H7Z9d5RHdXPVv/uBtfOPdK/3JkwUxd939PD7vJXc/2WE9Zt0YS8wXqHvuuYeHHnqIT/7kTx4e29jY4CUveQlvfetbAXjrW9/K5ubm8AUC+ORP/mS01rztbW97zH03TcPe3t55/w5WarvcrnV+C9TQtqXVCkikuHIkO7CklIxmcWvF1osjH/n0D1KZjjs/8gFecNsHecb4HGm3YPt3T/P+954SB5qmzQxKHNzG0AbKMu8zrkAKyO9Zc9Mnzw+T+hBEM9Nlz/6mRb/3AYr3PoR7eI/yXI1ugwRxRckEGJ3pWHvPjM13PIy97+z5IZ75Ah5KRZdzXvx6hR8blkcNwUlvt24S7VREjt3Y0pyoslBUrJzjuKBbL+jWXfbQlxTkaBW6C8I6uUL+QTZASCvNy0GQdpCF6T+3EBhCPvtA0RTPA6GpaSEmynP1kHpNEvBlGmm36CZ68PO/0et6fk+uRN0MzMuF2swO285urrou3xPxBqaYRXG1ajMwKYXtFhABtkkU+xFbC9vhp4GwJgyKWsqCzHNveYRPOfZnPKt4hC5ZbrPb3GZ2WaSSs90a97dH+OP5HTTRsl41g5NYNOKqpRuFaVfOYyrKP9NkBsgyZJ/YRcIuhb0RNloAjR+Lg2R1RsEHRpx5cJNz56YsFwWLeclsZ8zWzoS9RcV8UTKfVzSzEjot4MWI/kXlNrOqED3PxmTJkWpJZfzg2hWiZukds64cWsl81LTeiLams4P72NI79rqKmBSFDnTBoMuA3wz4SSRMIrGMxFGkW4+0pzyhlPteND0blRmYUhNKjQ4JWwe5743cYHjjp4lQSTteKBPKK6gNZ/cmzJuCRVOwu6zYayqW3g2gpg0GH27Y6dZ5dbW+K9fifnKjVPPIa24KBuOJ6nJZrj6A82rXjdHkf4F66KGHADh16tR5j586dWp47qGHHuLkyZPnPW+t5ejRo8M2F6rv+I7v4Fu/9Vsv/GRMg5g/tZ383vnzJsrAqn3JFcJ42JxWnwMs/cl1Hvz78PSPfIjtesR7HjrB2nSJVnDvzhE2/1yzfm+HegcU55akwokD2YHsF2mBcjKP9h7CgXH0IIoDQvcDk/WUkrBCvfhfK2FUzrWYvRk6JQrnhrazFCKqKknLpQCFKI5dKSVUyGGYKYtAtZKWr5go5hG7EICjYqLaiXn1TpqndSeuXrG0JKfxI41pI+VupNoOtGuGbqxQzYHMlt64oNcWZYOEAcQZVr8PNslKHMn653tWqre9lv8cqKw30jtzRmccyxMFYaRxe2I0YOdQH7Ng1dDicSPXdfuefJjWhxtoab/2T54STmTX43sSrQKfM7OciOWXJwtsHak3NW4uuTChULhFFIKiIwdcZu1Lp4hB8+LN+/nbo3v5tflH8oHmGLcUO3TJ8BezW9lwS3a7Ee946HZSUsz3K+yelmyTIOL9aBWmlWu49nl9rEMAlZX2NWljyynzVokFcSHAJWlhMqJVjB5JhFIRK0MMSjxWitwuFQzLpQWd0GUQ6+AEqu3tixPJa0IRRP9CwiCuZT5pumhYdI46u5OlpMQaOeihrQygsLLA1gbD7rISfYz1dFGjgKL01HOxW5PjVEQd0Z0iLTWm7S2pFcGxOjeZjYFeu5To1pw4j+kD5yuvsaFALzXNfolahxAUMRR03mBMJCVF6Tpi1MCN00L2eHW1visfTveTgzkqByfyb3jvD/MV/N3rNaxLrssFYZ/3krv5z29764c8/ngOZJdTN8eSwBWub/iGb2B3d3f4d999962eHFbr43mPnWfxG9OKBcgtT6nrpOXLe3CWxS0lz/yoD/I3j97H3qKCe8fM/+gY++84jvqVI0weidg6UD68QC87aR/zQUCGWVkBD4L9EFY6nKwPGSyGU5TxKT1M1pXRA4sy6HRyu1nqhGFKo1I0MZnBSYvF6tjztiprfUwdcDPJSgljO/RWu/2AaQS0LE9Y7ELsJkG6BkgZvBhNUsLUdGMJ0kTJTcK0Cb3fv3dajTkeAHL9OQ9BBPp9+9xBDVAPKlM8T/syMDXeS2ZPCKgQsdtLym2PbhOx1OgmYJpAteVx8yy8/TCux/2eHNZ1qUMHshuvHut7Um61FNsNbl+0f+1U040181OWUMLoXGDjfa04IXYJNwuYZULXOa8k5Ql/XkfZj44PtpvMfck7Z7fxl7NbGJmOuS957+5xvDcs5iXsuYHdQQnLMjoXqbYjbpEwnbDNOv80LTkDhsFQIJbSehYPLHGm3J1rm0R1LlFsa3Qt4Y5qbjE7FnvGYXYseteSdgv0zGBnBt2I2B0AnbBWnLq0AqsjXTQ0wQ7ZMc5EjE6sVQ2l9dmlTDQw47LlyHjJ8fGcjbJmWorIP2Rb5pgUvjP0uV/K5xZnrwiTiFkKqElKgItKK21QtJJR1rcV9yxUrw8SPZG0jsUyEUZZaxTzewJaR9bHNc4E6tpRtw6bwcyHc3243U/6yf+jQcCp+78bgC/+khff0CzNkx3btTi2S2ZgQgj85E/+JL/+67/OI4888iHWyb/xG79xRQZ2+vRpAB5++GFuueWW4fGHH36YF7/4xcM2jzzyyHmv896ztbU1vP5CVZYlZd+adbBiIhEH17Ge2Ug9iwGrFf9eX6HNig2ICQoLTUux49lejDgzmZL+cIOTfxnyTUNEnbFQ4uI1Wwp4aTvJnOnF62UBdUOqm9UEve0+lAnK1srK6MykBFRRyO89cxHS0E4mB5ZARdRsIfs3OretHWA1DoAhfMDs1rSba9IKEBOxkDRiHRIspUVi7f01KsHidInJ4ZixNAPY6aYGXypGZwO2DjSbDhVh8sEONV8K09SDlgzMhnEccJtRMYO7HrD0WqWYchuZrMLJ+FfPYfQg5CdG9P4SWzn8aEQoNOlIQbHd4nZqtC/oNm6cnuXHquvyPblOdaVtlA/r4uqpwMJcj++JCmKdnLTCLiLRGMl9caJ3sYtAKDSL4wYUjLYyo55DFGPMq/6N4a9nJ3lguskzyzP8ZbyFs+2E7XqMUon7tjdZzkts4Ym1wTSKpKCbSBuZaRKpA7sfsQtAQyhE5xcLAS9GC4DRXcrC9nwQCXQDSSuSFsF/KBR2CW4G7UY+1iiMkfagF4p2M5F0QiVFdGIFnYooIKbV+LGhsmKZ7IzoYWJmXIyOTIy0go1sR0T1Q0EBI9ehEZ1MZQQcbtcjWm/Yn4nFmF9aVKswtYCQ3kVNdYowjixLcSWrtsVIRrerMOeU5M1SFvAnIxqm+qgch9vv9ymaWV1rqDU+FKixpxq3jJyMS6vEclZiTKQLN/79BK7ed+VK3E9e+jM/yK9+zpc/qX3cSHUju6jddffzrhnA+o+f8jBchhzpkhmY1772tbz2ta8lhMALXvACXvSiF53370rVM5/5TE6fPs2v//qvD4/t7e3xtre9jbvvFlHQ3Xffzc7ODu94xzuGbX7jN36DGCMvecnFBeEcrINBnP0Kf+okA2YVbHlA2N+7Xw0vikNqfLFd0/3eMX73L57L5EFZXSvPNZg2Svp8qTHZlYu2O+99U92Q5osVm9CDmn4iDquwzazLSZ0X8GKMsDgAB8GllqyalbtZK+1ivbMXoKpqGD8pWzmHSKpr9FxS6etjhuaIZX5qFYKZjGJ5TIT+sdDZQccQS02oNO2mZXZbQb0pIW2xUCifGZgE5cOz1fnMTNOg7elZoxBJPQhzdpXZk89HClHAC5yfB6MPnLu8T2HKRCekGy/tEDncrT1S0Ad52vrGv+Fcj+/J9aibBbwcMiQ3Zl2P74lKiWglL6u3rfcjhR8puoliftqxPGGpjyvmtyp2n2nYfxaEccSPE34tEMcRTOL+/U3+z/zZTHRDqT337W+ytRzzyGzKYq+CHUcMZmjZikUiFgJE/FjRjWXRzDTijGaXkWKesDkLpTqbsPM0aGRMDbYW8T4AOjuUrSdmd2RdjAK3rym2NH1gZLIQxpnV8Aqy0xdRgiRVbdC1xrcGoyNlBjFdkNYxHzVaJTaKJUZHdpuKWVsM4MWZgNOBNhrOLCacqyd0URYXm86JpfPcie4m5XNRJrBpxWgVkTgKtEcie89SLE4YQqUII53d4jSxUDRHLL4yRCMOcsmAXSjs4kCbX1yxO6pTaBvZmCwptLipbawtKcedjMvfHAzMjX5PeTKT/h/8D9cnvPhGY1r+r9/5U74qfcwFn/uhb/iWazuYJ1GXzMD8zM/8DD/7sz/Ly172sif95rPZjPe85z3D3/fccw9//Md/zNGjR7njjjv4yq/8Sv71v/7X3HnnnTzzmc/k9a9/PbfeeiuveMUrAHje857Hp3zKp/BFX/RF/OiP/ihd1/FlX/ZlfM7nfM6TcsHo28VSCDDkuhjUQZcr86HYT9nV6TRbM06/reBBO2L7+ZH9ZxRUZwvsMjF7mmL9niTWwtk2GaVI8QAL0us3TM6IOdgmBdIiFZOMSenz0umHMWs9AJ3hZ96H4sDFtNfNdAfCMgGctF1hLXSeYqdjdouVfIAIbhYxbaQ+5jBtopuI641diBPb8rhBxUzLV+AWCZvTjOe3liQD0wca1M6+tHb1zmG9fqf/HPosnqGVLLfGJb86phjlHMCKOQpB3MuczS5uZMBpZJ9a2Kly21Mfd/iRwjQJP3Gi6enPw3WuG/V7cljXtg7B0ePXjfg9UTGBF81IcIAS1sKPE7OnC0vjZhAKCFlrorv+Og14UI3mkTPr/Ka+k51jY9btkmeub9FGw7l6wt5sRDRJLm1JEQtx2woOVBapmwaSUuIU6VM2LVEi9vfye3SZWSgUPls7p/6WlsTFTCdFKBPz2yEUOWPGZKcvVo/pVqEbGY9SeTwTMTFIJmFtpPGW0opbVy/eTwhr8fBiTYIpvVy316uGygoQ6Lcfu44QNSPbMWsL6tqBSqgmt2AXkaAy0OiEQUpFQo89sTMkF6hdgmgpdxVGZSYpQbNuaNcUYwXdWNOtKRldkuyc5Po2aWHUUhlBJ2InRgNuJO5jpfGsVzV7dUWrbxxN5Y34XbmUWn/WdwBvvKTXvOA9DeeuznCesnXX3c+Df/zzvP11z72013Bt2KVLBjBFUfCc5zznirz529/+dj7hEz5h+Pt1r3sdAK95zWv4yZ/8Sb7u676O+XzOF3/xF7Ozs8PHfdzH8Su/8itUVTW85k1vehNf9mVfxid90iehteazPuuz+IEf+IErMr6+FQuQnwdBRM/WqN6RTMTtPSuiYqS4b5tb/rfikb9ZsX+np1vXmKXCbwQmb42o+TI7bOWV/phkvymcbxPci+z7yboxK8F7Px5yK5vWsp2zAlEOMDPD+PsWuIPsUc9SXACY9bks9uFd1ieWds1g2oRpI7oJRCOtYG5/ZTIg4n2Te4qh2hKhf7RC2debmtFWxD24K2YJZTGwSTI+NbS2KaUElOTPomfKzgdkZnhODRbKdqWd6XsD+mMHKAtU59FtwDQGX4mldHPU4StFaG8MAHOjf0+eTP3U399/Qieym4V9eSrXzdBGdqN9T+rjFc4UA/tiupWMO5kkeS/QiwUJRWYuOoUOZASh5N7SFTxYH2O/Ljk2WVDowK2TXfQo0R0zbC9GzM6NUY1Gt2pgQwiAF/ewaMkIQX6aJknrVBQhfe/CBQJ4QiWTfx0g9BkykUE/omBoD9ONEvBUBagiodWoTol1c6PQLfiNiPIaM9OEh0c82FhGazVV0XF0vMTltrEuiNPYyHWMi47SetZck13JCkLUVNZjdCQmxdZyzN6iwtpAWzsBKybJLbFI6KXG1Era+dpEbAtUf15doluP+LE8b+tE1FAfU9THkyDArHvRAQFIQWH3FcykPTo5cU1LNkGr2TET1quG0sinPXEtiy6j1xukbrTvyuPVXXc/jy/7zk/hV3/rn7PF40sUvu+RDb7qox77+S//kttgRRrxxjf8Nz7/tZ95hUZ6fh2cwP/z//IZ/MBn//x5zz9a4N/X1vqPXZXx9PWnv/rf4Qs2Luk1n/vbazfkffiSAcxXf/VX84Y3vIEf+qEfWk0gL7M+/uM//ry2rUeXUopv+7Zv49u+7dsec5ujR4/yUz/1U09qHMP7GY2ybqUXOQgQemYiBOBA6rtGJtrqURN/raHtKN9/lts/WNCdmOInlt1nOdS9mtG9W3lCLaBjaBfrgUTvLJbbpFRPIIS4YgZyW5jqQUpViktYSpAd1JLEHct2Mb+mBzTkCf+BtjS5ufWWzH0GS4CuQ8VIdf8e3LpGsiJ6RylMl7DLiKkDfmIlxb7S1JuaWMD0wYgOkKL0T/uRptqJrP3FOdHhaEWq69V5VAcME3Qeh9HZVjlkh7O4Oh8cADIR+ax6N7ch7LIHNfK3yqyS0hq730jOTaEo9gLthqUbK9INcsO50b4nV7r6C+PNYKl8MfUzb/nxK54Hc8i+PHHdaN+T+qjBG4sOwlCEQjG7XTQhJDVYGSfdu15l57GUAYJXxFJYg6QTqjbM7l9n3m2gIvz15mlx+3KRuO/QS52DeDM7YFbvA8KEtxuSP2MXER0SpotEp3sMhS/FrayYQYu0vPVMTLSi+9CtJNuDgC1yXowOwEITNGAjKWnsTFPsiBbHT4xYGheiRWHH0VUdRyZLuiD3ml4Tszla0ng7sBhaZZeyYAb75MZb9uqSelmASoTOwHaRARxEDYTVWHULptGEKom9dCnnKIwjO8819CfezZW08B3x2IUjKahP5fbkSpglU4veR3mE4RlDKAUUhcYwbwvo0wB0xOmIUgfmDde5brTvymPV5/72Gn/99Zf2mu/7rTfJL781ho+/4kO67LrzZW/mZX/1G/AH8vf10L98x5mf4zb+wTV/36tVlwxgfu/3fo/f/M3f5Jd/+Zd5/vOfj3PuvOd/7ud+7ooN7pqXsajphLi1I5P/cEBUP7QtpfMABEiCfMqaitS3Y7WdiMadQ4VIcV9DESKjeypQCrWooRPtS2qaoY3sPBe0zOxgNKk54CTW2xtHUIVbZZ5k4T4ccO6CrKGJpNwyJeNrV2xN/7oYUbk1LaUD0/eUMsAw2aLSMXvWlOgKzDJkZl3RrTu6iabZ0IRKYRcJlgz2m8GBrxSj7cjau7ZgZ0+E+z2gMAcu8DHKOVVKLKr7c3LQ0jqHjA35O/EAYDnIUvWsS/+3MavPtvOo1uP2WqIpCSOd7TNVf6oO6xrVwRWeHszciKs+F1NXEsTcKODlZmBhbqRSQVbn27GSFX4l2hRTC4gJVcK0Ct0obJ21IilrKmIGDQFSFqKrJM/rVjJdwm4hYCiDDxUlBDOU8lgS4lzyXro0uJKFQgkrUsu1249k8c3NAuWeCPxNm7C1ovPSgkYLFmEpyMehW5nE06lBD6lbhdo1+PX8d9bTRAe6U8RGD+1XdqYID4x5KGrWJjVai1PXuOiGlrKRlXvkI4s1QlKD8H/eFsyWJW0rU5jYWJhbMTAwibARUKUcX+ylo0nR1gbVKcxCC2uEloyYcRRQlRLNiUiyUcBPEP8YFRRxHMRqulSQjJgWZEaq/xD8BOg0+4sKrRJKSebNvHVofWMw+jdLverb3wn87Se1j+/7rTfx4996nM9+2WfyY/+7feIXXIc6yMQ8FitzJeprP/Mnn9Tr//QtD/A1P6XYuu+TgAvreq41KLtkALO5uclnfubVodyue3Ud8eyW/H5w0k//kFqJx2HFAvTalZ416dmaXr/iPanrBMzszYbne0H90NqkWYGOngnpZFIudsZmADkKMRVQA1uUVsL+LFZX+RiG6tmeHrjAMAZlLQnEtMAY+bu3aTYusyGGVNeYR7YZjyyLWyu6sUOHRKjyilSSG7FZSjibDhm8FHKh33xvQ/HADmp/LsdijACyUUmajghjJxkzPqEbj+oiZnuflE0EhnDR3NKncpvYoFcKaXBkwxhSmw0Kejat1ylp0RypGFGLGhMTZUy0Ryva42JE4BY3voj/qVo3K3A5WFcCxFwIvHxp+5MX3PaHiy94Uu91MXUIYi6+5rconBanr95BV0Vpu+oBSqjyglPWnAgbnlka8uuUrPSbWmE6MEvQPtFsCqDoGZukBRypIIBBNC55AcmQQ4aN5MDYlSYGEGdMp+W1dhXwW+zJ86FQ+AnShmUkxDHZJAtQKovaM/BCy9/JSOhjb1EcCkFhyQqjFDuD8gq/UzDXkVHVYbRoY5RKTIoWrRKztqQNhqazdN7gvSZ4I+tWKhFqsW1GQagiaRRx0xalE1onnPODnqZxBWHfkWxa2SsHNbTV6UYRTL7nepU/L2Fq9NzkbdNwTL1jW3T5nOZjbxtLWxoR7xtDjJqUDu8nT1QHJ/I3Wl0NcHHny97M29/6fN7+1nfx+Vy/Yz722i/lIz//7Zf0mrvufh53vuzNAPz0658PyDn62F9+O/zqD1/xMV6oLhnA/MRP/MTVGMcNUSkEmazHlaMVMGhKgNUq/0FReO/kVRjgAHihBwh9+5KEYxKiMCcH3MfyG63YBjhvP0N4Y59Jk9mS3nDgoIFAL2jv28cwZgA2sHLpGgT/+Tnl7HnvPbBQIUoLV9eC0iTvcfc8zPruBvvP3aRd09iljCMUsjpIgmZd4xZysR8/4ikfnKF3Z8I8KWmTi0fX8JsVoTT4sWTFmCbSTTR+VNFNYHxmyuihBnduLsyVD6TFcnX+tUKZYtXyZ+0KFObzMQCX/lh6NiYDOdW0mF0oEyRdEZ0iHgKYw3qSdbkg5lKAy4Wev5pg5hDEXFzZJfgT8rsI2xFGoJCfuhWQkMhOWUm0L0llcXy/dqYTCjUIzMW5X2GavPqvBXR0a+CdtKslm4itaE+SznqWfnctqKjRTeod9YFENxFbfGlrE1ZFt0gLnBYAFa2im8rkX/ss09GZ3AmZNepvYTYJ01TIcZlWYc9p6pNxAAAqQbFliHsT9jYDdr2lrDpSgrqzPBKmeG9QKtE1lui1dAdHhXZBmJc2szoJWPNUk5bC+aHVrLABoxJrVUKvzZlvFOwvSpr9ErwCk8S9LUimjak1AQm9jDZbSqsMIBsBcEnlxbr8OSUjYE63ihQgBcV8WRKCxtqAtZEYP8yDxR6nHg0MhH25cerRmS6v5O/y9R/7H4ErzzpcKaB057xj6xNfzn9+ww/Do3RB7/uo/5ef/n/u4Nf4yAu+9mPf8TH8s5/9t3zn3f+Gv3zTE79Xb7l8wzMwfZ05c4a/+qu/AuAjPuIjOHHixBUb1HWrnA+ijBlW9NWj25NAEt3zBDx1Haoqc46KsBkpgw6ltazyG72aKPci+fx48gcm3X37EzCk0cPKQCAzDcqYD8lMOc8xTetVf+sFmKSBsej3fV7rVhrayUirFrOVPifbK8eE2puz9ucdcX2EXytJRmGWERUSpg5oHzHbC2GJljUpA0NVVWA0/pYjzG8fEVy+wTURtwiYhafYyQnIExFK1idL2iMFbuaxew1my8k+vSc1LeT8nhQiKua8HKVX7mUH7ZSNEQcy7VasVOdRgN6DKiWaYxX12o3Ts3xYN2/1YOSJgMzjtYo9EXh5rO2vFpA5BDFPXCqKDXHS4J2s0ke3mvyqfo1My9xb2ACy4FxYDj+JpCqiOk1yijASO2Q7Y7AoFvaFnBCfxBELYRNUEAYoupW00I8QETtGhOtLARS+VJgu56KEIO5b2fY5Fn1rM4MWXXfCYCRD1vX0z+ffuzzhtzk+LF9Oxw9q2o1EGCcxBVAChuyewVPgawElPYsjb5ZQrRZQUUUBR8lAp/OxQJoEJus1IKL6ELWESbaamBTWBFLOmikLjz0S0TrivaGpHVFZUq2JVlzTVNefuxVb07fqocV0oQePMTNSyqsMphRdY0kLSygiaq0ZOp0P6+aqx2KDepD1069//pOauL/q29/Ju3/plee9T//7hfb75tf9G/ilVw5/3/Nn9/LjX/Q98EuvxD7te+DPXvkhr7kW9WTOwe7OjwOfdMmvu2QAM5/P+fIv/3Le+MY3DiGWxhg+//M/nx/8wR9kPB5f8iBumIoRZc3K1eq8Sa+Wia9zxKNrLG9dk0AyLxcxN/PoJqBnLarL9sgxykQZWdFSPgiT07MD3qNGo5VdcggcvMqlpl05jAHoKEwDrCyDvR/+Tv1+DlZK57EzAwtzkL3JE/++lFJyHzrQLpeaRlijvrQizeawWKD3ZpRKrVrC+ra4XkjfVwiorJlqn3aMbs2hO1nxqx5pSFZj5xLomYzGzr2sBBqV/fkVacPSbljcRoXblna24T1iQlm9YshiECVn/ls5Dc6JpmhUkowZbKxV2w0AVO8uKFOiSwdA32Ed1pOsy9WyXCp4udBrLxfIPBqktF/7J+f9fghiHr+qMwntoZvA8qRoVIi5Rawk/w3JJdTY4xuDXohOQ0COInlpz0oawjjg10G1Ct0J0OmF5OGIR5kISyvalmlERT1klvSVtIjz3RzaNTFVMQ3YOlEfUeipwS0SwSlCpYgO7EKsoAHMUqyaYQW6VBDGJuokIMqK+xdAu5kot1R+XOF2IIwU3dHsKtkq1EKjO3DbhmiNAD+VgUHvju8RjZCX+xMWyMwHZaScNgMg0dkYoQsme+VoElBlZqb1hmnVMHYdPmrmo4IdOyLMJbRSZc2RH4tWaWCXtGiMwkbATDq0jkxHLSEpQtBiKBAV2iRizuRRC0MdS9F0HtYF61JW79/STPmoS3zNk6mD7MKFwMyrvv2d/PTrn88/4F3wgdVrLqX6VrKbob76zW/me175oSDpzpe9mXf/0vmPf5/6P7yD157398M/81P8u8/+/uGxL/uOb+Ho036dy6lLBjCve93r+O3f/m1+8Rd/kY/92I8FRNj/FV/xFXz1V381P/IjP3JZA7kRSjmbna4y0wAyIS8cbKzRnVpneaqgnWih1NtMtxtoNiTwyjZjil0BFW7mc2K9EYDTBZSPEBLJycTajx0qJUKh0V3CLD12Z4GaLUUW6D0UdpVp0tdB5iS3lSlrBSD1QveYhA3q287Iov+sm1HWDoyP6vU7PXORfxIEdKlRRZ9mv7IjPgBwQn5tBrVKKVLbisHBwTY3awknN2iOF+g2yc2zTcTCkKyCOZKI3AiLUm43hMri5kCSgMxQSshYtz5h0gX0uSimBIXLIFCv2sM0qNGINCrpjq/RrQurI60PuU3CJ9x+oNxq0HtLiBG9aKkORfyHdZ3ryYCXR+/nYkDMEwGS/vkeyLRf+ye4b3/Bkx7fU7GK/UQRIt1Y4xbQLaE9AphEXPMok6imDVUheSbjsqXpLHuzEWG3EAOXoKAUBj2RsOst2kRi0BLYaBJKJ1KnBQh5YaxVp9CNlvanJJbKplFi1RxBByUhlxO5Dtq5sDTdVGHnWVSjVvc47ZH7UwPtpiLmrBrJ+ZLjVSGL+EN+LmSHMgTADX1jIE5ec3FNU50agJDupO1Ne9HMqCCuXz17JMfDwPCopEhlYLQudswAyoI1YWiYaLxoUAB8kJ+FDVTW03hLm53Njq4v2NGJZreS20cwhLUgn0NtCDoDzvWOatRhjDA4WkcqG3A6siw7YoJlU9DUjlRE+Wy8hv3zDY8O6/w6CA7uPBAzeP973w78qw/Z/v6/+f/h6/7dX/L1238JwL83E/7Dp21elZYuGdMKZHz9x/5HXvXtq4n5o7U7lwOueiB0ofe+GevzXnI3/J8LP/f1/+UrAZ7AFPuJ65IBzH/9r/+VN7/5zXz8x3/88NjLXvYyRqMR/+Sf/JObGsCgjUzunZWrYK8dObrB7guO0o3FJ94tEyok7CISKo2vJATMV1Af1RRTJwCncaiY8GOFqS0msw29MDMUChUkP6Y5InkpSZe42YRjf9FQ3ruFWjYrZuUgu5HUyr0r5Ta1XuQPMok3ZCCiUCon0B/MQdFZoO89g2UzrNrFDAIK+lDNvpRagSp9YGkvphWbY3udTSctd85BSsQjU5a3TOSmufCYRlrO7KwlVJZQWSgNdq9Gz1ritBBWBvBTR7QK3SZMLfafi2euM2la1L4YFwzgJSV536okHF9n9owp0cqKpV0m3CzKyl7qBbGW5XGLW44ZPVRjz84wZ2dX9b/bU63+4T958JK2/58/e3mBZxd6n8vd141cVwq8XGxdCptSfNeLBhDTvf7Pr9aQbu5KEoIIIqBf3BrhRIOxgdObM5ato7ABq6Os4EeNUom1SY2aLhkVXWYQFHVnB8YgRGmJOleO0TqxPqrZno0JQbM+qTk13acyHdvNmCPlgvdtH2NRF/j3TzHL7BwGtOuKbgJuX8AJUQI1Vcw6DwOhktav6lyimCXqiSY4CCMxDNAdYDPASKBaKLc0fiSshV3K/aHd7FuaYXFrIhRAVBT7inY9ik6mk2tx0hCRxadkhLFCyzhiFUmTIExTbh1zVYe1AR+1BF0GOT+V8yiVMCqRbBAWRiUKIyGTWqXhvJfWMy1r1sqGe+MRuqUjFhpVBpRORAW4iC28OKYpAUkuZ9GEpOiiZlK0+Kg5Ol4Sk+LsbML+7og0t+JydlhPWE9G//Kmz7iV//G6+3n5r/wLvu+33sSx134p7PzQh2z3Pd/+ifztz/yn9Aj7815yN//uvfBd3/ErPIt//JjjuRDIePS2P/3655+33aUAmVd9+zt5wHwGv/MvVyGjr7zjS3jzB/7DRe/j0fX1/+Ur+acf/4vwhZ9+2ft4dP34v/j/AfAdf7bzpPf1Q9/wLXzTf768114ygFksFpw6depDHj958iSLxeLyRnEjVW+3a5Q4ca1PWDxzg+BkNara8kSj6NYMaPF+D6WkGevsN99NFOMzUW4KQDGPouM4YtCdJPdGK2FhppOVpujUwDK0G3D2b5SciEco7zkrbWheWp0S5PaozBJptWqT6lu2srOXtFD1y1W5JazfDnLS/QGtTa/B6UXw/f6CXz2v9Gq7A21ngIwvh1GmLg7tYinvK61PWN4m9rjVuRbVRpIV2+JkNWbe4TdFMRmmJWbRCcDre8Z9wi4CupP39RNFfcRQ3LpB8d4GlWPiUhekNc9Z/Il19p4zQQUo9gMo0I283s4jyYr7jl1EyjZSH7HsPHfMplLwwfpK/s96StelgpfLfc2HS10N8PJ4LMzltIIdBDGH9aGVTNZHOAgj0aSgJYW+7uTWu2wdCShtYOTEPthHTUiKmBRaJeatI0Yl7MyiQuvEqOjQOhGjTMDXxzWtN5TW0wTL0jvWXMOGqzm9tk+cKv5qXqAfLCSU0ktrGEhrlAQ5CmBREbpxbt9SworUx+SfH2d9SBQHtV5f4/bFVAAgBQYHL5XAVxBzNk190kMZUSahdhyhWBkcrFrRRPw/MDoetFekUULXWmJnpolquhLrj4qO1ltCVJK7YgM+aFISMJOSom0NyYFSDqUsRie0ShgdcSYDyaCZjhu25wVo0C4SagteocpEVXUYnag7eS9TdCRg3khrd8psWs/qbIxqSuc5p6d4HmXac1g3Zb3q29/J137Gc/iun1+BjLe/9V286tvfyTf8jU2+5Et/nOZbn8aXfOmP89/+79/mkZd9HfCfLvk9DgKlV97xJdclN+Ziq3cjezL1nFN3o/7WV9PVF79wfMlN/nfffTff/M3fTF2vJnfL5ZJv/dZv5e67777U3d1YFTOj0GeSWIM/OsEuAtV2wDTCluiQcPMwZL7oTh53i0S5k1b9xkpyT5SH6mxLtRModyOTD3bYOm+X5EI9eiQxfkRAT3UuYerE/u0lcV00RanrVjqVR1sCQ86COQAounYlvu9bw3rmpTcI6BmU/l/sH48rB6++huyVMLSdDYBm2Kc6HyBlIKXGI+LRNRbP3KA+ZgiVIpSGbqOgPl7gJ5ZuvaA9Vsn5baX9KxZGdESZcNJdwO23tJuOxS0l23c6QqFYnCxI6xMoi+ymJmyPP7XB7BkTyt1AuRsEZDYS4BYLje4CdtahfMLNPGbhsXXEV3D2hSOWzzz65P4/HdY1q6cSGLqazMuF9v1kdCyHGpjHrr1nw+6dsP8smD0j4I95mUg3jrp1pAxSoG95SnR58tt0llldYnTk1vU9Tq7PMFnX0TMyAMZkHaqOrFcNVkcWncPmnqszzZTKdNwy3mPz6JxumoilMChitcxgFdyuy/7bI4nmeBS3NETE3oMdu8isSx53D0D8OLE8mejWD7inIayJSrk1rFPoVmO2HGlhSCaPoe7ZF2lbSza7ezkBgCpBdU5a4GKVj7cMTEcNG6Oak9MZU9diTUCphLOBSdFSOo+zgWnVULoOayNaJ4xO+GAGsDMpWiZOMkJiUqxXDaYKqEaRohKnMg3jScO46IasGmuiOMj15yJo9pclPmhMbkF3JnByMuNpp7YZrzdX+H/YU696tuOzXvN7T3pfH/mWT7is1x3d+6JLfs3nPfyll/Vej1c3mhPbhepLf/mO4ffHY6auVl0yA/OGN7yBl770pdx+++286EVy8/qTP/kTqqriV3/1V6/4AK95KSXi+qokFY52w+H2PW7fo6LNwn1hA1IhzEs0CrcQ8OHmoL2mGytUzPknXmNai50FunVLLAxunlApEgpNMYuy35hwcz0kNHdjRSrdwKqIFbIS++WUKXRtDjQIr3QfB8XrAsyyOYEWDUsKUdrDjBF2RxvomvPtogdQQu/duWJthqDMA8KccCAPJ9stK2tJ1tAeG7M8ZjGN3CT3b3eYJmX3MTmPANpHdBuITg+fR6ishEvWHURxK2vXxLvTNmL/uXjGBpO/qFdBn+OK5akKu4yYOuLHRsBRl3J/c0J1ASK4/ZYwtsRSGLJqR8Sss9sv26TvsA7rsupat41diXLf/oLDNrILVLsZMEUkuYTbrFmb1BQ24A+kyVfWo1WSNqSoMSoRdSREhVJpcNJSSkT/61WNzin0RkcKHWiCXKecCXTBsFY0TF1DHRw79YjNakkXDc4G2Gzxc/E6VjE7oUUBCyqugERSObelgCGHprdkLhOpkJYzFRQmt4nFKslcvxErfRXya/M1PhrRHBb7sDxpaI8GYhkxSz20i0Ur28diZWjmR9CuQ3s0iMOaSRzfnLFWNnTB0ASLVgmnI1XlCVEzbwtSWp1DHwzGCCPSV2k9CYaWvEIHRraT9rvJiHkqiUGhx55q1DKtmiGcEhBDgbwvoxKYOGhtWi+LhTIuuUeOikMG5rAur3qnsieqy2lbu1J11/f+NV//yt/k+64h7rrkGdoLXvAC3v3ud/OmN72Jv/xLEU+96lWv4tWvfjWj0eiKD/CaV9ZOYAxxOiKUWpaEtCQUa5+IhSJpTbndUZ4TJkZSkhPJaEiOZkPjlmmwuJzdIoGPIKxMuSd6GNMIeCFBvWmwdcLWUbQeQa0C0FQW4vdsStSr8MteVJ8i+AiuYAjC1ApVVFnXk0X2MaGqDBA6L+1dTRbB9/sKAfTBPJVwPivjvYReOrvS5hw8h0SUdqRxRdyc0Byx4n5TKdG/1Albp+H47SJIynNIooNJibzgSLspIDIpRxhb2nW5OVRb0poXCti/3TJ+bwHLGpwjHJmQjKI625AUGAWxEL/Sdk1Tbud2swyUQv6pvZz/ckfTHcbAXFQ9ldiP61nXA7wcMihXr+zMoCaK4FKWDQbGroOsY1EqMXEtTbAsOjewAikpWm8IQQ96jsIEQlJMi5bSyLXL58lyP6H2eSKuVRrAy7KzTAvN2XrCzv6I1BjsLLt86ST3mQ7Jn+my9XMjLWBhJOAhllFyZSpIo4CbdLjC472hXTiStehaQjC1z/qYRrQ20ZCdJlXOpwGfjUp1ow+EScp7oRNmoSh2VQ6GTHTTxOKOgBp7qlFH4TxrZcPICiBovKWwHc5JG9jSO2ZNgVKJlHUxRkeskpYxZ+Re1beNxaRogqWLBk2iMh1Hxkv27QZpYSmPL1kf1xKGmTVJJjM3pfGcW0xovaGwgQiEJOYCvSYn5s9z2R7eUB6vbgbG4UL1mw/t8smP8/z/9+3/gP3XfP5l7/+u7/1rmF8Y/H7uO1/JnS9bAZs//NOG7/r59/CBu5ZwabmUl13vnjjufIzxXe26rCXm8XjMF33RpdNsN3wdnKAbTRw76c8Niahzj7BR1JuaaHPfby2J8bG06MaTnMHNFCqIq5byCT/WqCTice0TKojuw1eKNJbfe2FltNCsGVm5ignVHQhbtEYo7VxDOGUk2zy7LOzPgn+jiZtTmuNj2nWLr4Si92UOITMyYa+2A+O/OiuGAW2+i/UaGqWkqTnq8x3IlEYVxYHzZVbnUBtUWcj7b4xZ3DaiWdfYJuFLabULhQISvtK0U010+VxahZt5QmWkdUzL38pH0cpoRciAT3fS+jDaijTrmlRatBLL6/rkKN8wFWYuWproDe2mpdnQFPuaMC7QjZx4HdJgid2umezUc2hD9uFS//ZbHrsF4F9+y9VPFb4ZmZfDevyKZYJJBJ2ERFcJqyJtNMSkiFEzR66hZZ5U++Bos2tW8IautXSdoSw9zgSaTrQbSiW6vMpfOk9hAmPXYt1qQu6jprCBLhq25mO6pZM8lShsS68zCWW2CLYJEkSbW7mMuG6lMmLXOopSnLesjviomVQtbmNGiLl1yhvanVIya7TGLlR2MBOzGgVEJYCl2FNor4hWHNJiAXEcSTYSS01c6CF3JZUJioi2EWsDR8ZLnA40XoAfgE8aTSJlB7RR0Q2tXWUW7fucDQPCvlglLFgXHJWV1rA2GrabMbW3pKnHTdrBCEBnA4BlZ7EqUWgBQNNSWsN61szqKOYMSZg0eS14fyjivxnq2Oe8lK1f+rErvt+7jn028CUAlN/0n/hfn3rXeW5rF3zN9/71BR+/kDvZldChXG69e3J9HPYuCsD8wi/8Ap/6qZ+Kc45f+IVfeNxtP/3Tr5zTwTUva6VVCgYwk9RqQmuXUcDChiYZhZ8aTBPRedtYWFSQFqiiDfipIymoznVUW0jKfO0Z+UgsLdFp2k35CKKVC7uvFHYpE/zpwx6zOxfWRClSjCv75JhIKZznPKaUEttka0lrY+rb15mfcnQTof/7qo9LEJrpEqCYnbYsTpxm/d6G8t0P52DIA9UL9/u8lYOGAf256sFNr6dJiVQ4kpbWARXF3ACg2hYjBNMK05Q02EVEt/nmVWjadYspNG4mAKM9UmTQI6uFbh5op6b3J8iBagacIxVOgNpICbNSyTnu1uxggR2doptaHAJyklbEkbBa5banOWrR7SGAuVnqcl3IHg+4HNzmWoCYw3qKVRQmg07hCxHrGx3RSVPnyXRIMsEduY6xa9lTCa0tWsFCO0LQErqYbYEbb+iCEvbAyAS59YYQNV3UHKmWADgdKEygDYa9uiIkRTVtaeYFoZTrmqllISiMEn4kmkzdysJSz/7HMqLHnvW1BUW2CjY6DkL1wgSs6wbmx2RA88iZdbqdgnJbYxdIu1VKQ0cBuX0tjsBvepQXhzAUEJSMMWfk4BVqaVCVtNsB7DUVPrNYKSkabwc9islAI0TNelnjox7azLQJlMZjdWTeFewtKwrrKZMS57O8j5gUymXNTNYZldbjdGDiNCPbURhPzEwLJdTesl41+KjRKrFfl/l3OeSiOMyBeay6WdmXg/WBu5bQbF709r9q93jNQ3/OJ5zeuOT3kvN1/QDLjVIXBWBe8YpX8NBDD3Hy5Ele8YpXPOZ2SilCuIm/pEqJDXCSCbluc0ZKznrRXcIsPNOHYHnUEo2iPlFQbknYoqkDoXIkJStY0YkPfigl40WlhB9bTBMJpYCg3qksGmjXRdehO9F2lGeX9OGKYoUsjIsETWbBfZSgytTbBmfnre2PmhItFLOEPZdIRhGN7NcuFTowaFx6W+fZbQXt+m1M/3obtnahD/PsdTKPjhLu9TVGr/5OObzTWdK4pDleidZllLD7UJ3tsIvcApHPRbktwCcWmlBolkctto6CiYwiFJpuInbV1U6geqghlIa0IUnSvpIQNhUjWAPOEkpFsS8uZ/UJix8pupE4xrm55M+4/UC3ZqmPmKFXe/pgg+oibj+f48N6ytbFgJeD214tEHPIvjw1S3sFGQgkr+iCyS1OAjpaL+yKMZHJZsvYtuc5WI1LASwbo3rQyZTWE5LCZeesfkJfGj9M1EPUjF3LyHbU3hKTBDh2nSXVRrxjek8Wl0Ron4X8YRzlXhHlOXe05taje6yXNfOuGBLuASrrB/DQa3lqb1m0DuMifhzoWpUX7pDOhMSg8YxeHkNZYWLGYplcPZJ1JEci4agXAFNE1qZLrInsNwWtt4PbWN+mVRjRFwUlV24F2dFN9tczLgBtMFgVKW3ORFMJp4S96vL5ty5gTCRmsX/jLZ3Kz2k597OuZLep0FnP1GtoFr6g9habVu/Z62MO67AO1id+49v4jX/zksF++WLrc9/5ykt+zVOtLuobFWPk5MmTw++P9e+mBi8gCfBNK5N1H9AzEfy1axpfikuXbgPVIzUb71timsT8pGZ+a0F0mlAaaQcLchMYdlvozAgYmqOObt3SHLGSPXLMUG8adBBNR7GXqHYDG++eY87uDRqVXnivqmoVDGm0tIspEeenccXy2cc5++Ip9VFhdNo1lQ0CoNyLlFue0TlPdbaj3A0i1iwVto7oDuanDY983HHi007Kvr1f6VuMyYAqi/mHFrO0EvD3TmhKESaFAIOUKHcjo0c67DKQnBYHN61QPruCGQF9pomYVsT90t6gaTYlWbrclX1Hp1HZvc2PIGRbauXl+WSlLa2baBYnLMtjAn5UYnDTqc52qJgGpmZ5POfWKEUyWtr/0iGAuRnqUtmXf/stX3pJ4OXg6w7rsC62zFxhakWaeJSLdN4Mlr6FDYMWQynRY2y4mlPjPU5OZkyLlmnZcHS8HECK0TGzAAJeSuMpjUyax7ZlvaiZOGl52msq9tqSkFuO687SNnYIlkw2EW0ijGTfdiFjRUGYRvwRj711wXNOneX26Q6nqn0mrsWZIEn2wdBlzU3Xh0TmnykpXOFRZSBsePwkEipWgv6aHFoJbg/W3wuT+zVu26A6RRhlfWit0EVAVQE36iidgI0uGLRKWCPntPXyd3+etJJ2tZAUtXfEpBjZjpHtmLom579oIoqJa9mslhT5s7AqCpOkEsFruk46MnpAeFBn1DM106KlMGFoKbM6crRccPvaDutVnRkrddhC9jj1WA5W6Xd+/xqP5NrViT8sz/v77a//n8LiXGT15+x6uH/dKHXJSwJvfOMbaZoPtQNs25Y3vvGNV2RQ162yfgKdRek+UJ3zqJjoppL+HiaOUFn8yNCuacJIMb9Fs/sMy+y2gv3bS5ojOXAxsyvJQDc1xEIRnIj1UQrTpcwcCLVe7gbW762Z3LMv4KVpV21aWWOS/CqTJaUEWkvL2PqU5mmb7D6rkBvDLLH3bAEnJJmwl+cadCs5KqHS0uuMsBf9WMdnIsrD7nOnpPVpZlUyC3TgvYewS6XPZ2ayAUIalSxPVbRTQyg0ZhkwtRf75IkljC0qJEJl8JXBT+S/YjfR2RAh23NODPURRTdR4sqmFdEq/MgI8MnhlCpJCx8IkNE+GygYGJ8JuHmiOaKy81lvo5wkaC6BXSRsI4+HUuNH8vOwnriuZ4jk5YCXJ1NXGsRcT/blUMB/dUt7ce+i1SidqFvHrC0pjeeWyR7POnKO05v7jMuWpXcsg+NoseBENWNkO46UC06O9wdL3jYYGm+HybTNj8+7ggdmGzw0X+fMYsKyc8ybglldsmwK9ucV++cmxFnO5XK925dCBUVYi1msn0g2oUaeU7dt8+yTZ5m1JVvNGK0ilemG9qje3WvWFNLClif1VkdOr+9zZLrAuoAqIrFMkhljpcMmumy1rEXQr1tw8yQgaqHpNqMEXyaIc0vqNNaGQYeyVol9cmk9k1LcwZatY78uBw1KaT1j1w0gsdfDVMazWSxZczWNt/ikKbS0gi29o40r9zBjI9ZGJlU7gCObnd96IDO2LWsuM2TIPha+OG8/lfWMnP+QBobDunnqQiDhUsDGlai3v/Vd/PTrn/9hDVgeXZc8Q/vCL/xCdnd3P+Tx/f19vvALv/CKDOp6lrJ2yDxRbYfbbzFNws0SzYamm1qSlSyYcjegG6iPJRa3KOqjinZNsTxiWB6zLE5awkijW9G0NOuGZlPTHBEdhi8VdhmpdgLFfqDcarDbS/TuHHwA50T/knUuymiUUqjCobSWVi0rYKE7MeXhu0pCpah2ItVOQrdqCIHUXSQ5jQoJ3eYJvlbYJqJCYnHcokMiuNxeBiyedQRlDaqqxNkMVmDFWgF7B0GNMcO5i2PRrISib6fT+KncQHUr4Ef7KNqiOmSNjLSEqSBmB6EQ5kt3IjT11QFWK7NKbpaodsSNTGWmKBZ2eG+3EJDT5/EAhELRrmm6NUO5G9h4f8vaAx4VEs2mpTnqMqtzeMe5Uet//uyt1xU4HdZhPVFFizjOz8W5KiXYq0uaYKmDQ6vEelkzdh0TJ5NkQ2RiWp41PcszJ+c4Uiw4MZpxfDRjoxSGZWxbpq5hahsKvdKFLDvHoilYtk6S4TtDs3R0uyV636Ky6xd9wORY2omTTsRC9qGCQtvEycmMQgdiUiy6goeX66zZhmetneOW8R5HqiWTomVjVHN8vGDqWtH35LF0waBNNjAoIn4tUJ9I+EkiaWFgit2EraE5oliclpDMWAhwCVUijBN6bqDTGCOsk2iFuqGVLmT76RA1desIUdrsRrbLTEpk4toB7M26koV3xCT21BPX4pOADXtg/MvOoYagUAEmTbAolWijYbcd4aMhJs1uO6L2lp3liK3FiJ16JM8nMxgHJMDaQxeyx6vrPTH/n9/2N3nW84vrJkg/WBc6FwdbxfrnX/Xt7/ywbiG7ZBeyXoPx6Lr//vvZ2Lh0MdINVTEcsCqWQEe9PWM0dezdUVLsJ9qpJhQO7UVHER1UZ2WSbpdJNBYLuQj2ovN2Yok5lEv7hKkRVmQnYOqAWXToNqDmNarz0jYW8xgAQhABf0zS1tVXz8A4y/z2Ct3B9IFAdVaYm+qcEdbIKRanC0ybMI2M248UzbrCLoWB8WNQUYCV6WS75QlLdfoY+sEz+fxk2+b+58HKOp0ebIV8EdBB2J1kFc2awc0DdiEBkrEwYDK4KeUcuoVc5LuxjKVdE8c0N4diJmArFhq7FPvlEoYebtX0YEo+C1+J7qWYJ0ZbgdE5YXhQMDrbodsoAn4lN/VoFb5UlPuBVOmBlTqsJ67/+bO3XhM75ScDWq4Ue3Io6j+siyndgZ3JQkuzNHQ6sVRgTVy5VWnPZrmksh0j07HVTeii4ZZql3ko2e8qNGloS+qZBJ80O+2IJliWnTiXLZuCrssaFyDsFehaY7wESUYreS/JJBHnowkV6GlHCpoYFG7ScvrIvjASwVFaT+0tD+xvsNOMWC/roXWqzzg5Xs0B2GklRiEmxUZVMylaZk0pep/OUo8KqA0qmqx9kQW2+kQasmWSzUCqySYC08Do6JITU3mPxtvhfY1KzJuCLph8K4xUzg86FpB2tqV3aBJeaWov9yWj42BH3XhLRGFUpAvScmaN6F/adjVFMjrSBUPtV4+5rIVRkA0VLM5ENGn4rLRKLDtH9yhvnMO6MWqx/gP854njE/m06zaGD9y1hP+9+vul7/1s+KkP3e5V3/7O6w70bqS6aADz0R/90bL6rxSf9EmfhD2QAh9C4J577uFTPuVTrsogr1kpLQn2SpPoJAXee8p7Exv+CMtTBfVUE0o1uJLpAOU5YQCaDQmhbNcV5U5Ee5WtkyO+kgm5DvK68lyDbjy6FrCi6lZYF+9Ba5IPKJOkTawPmoyB1AaxLy6cAAaliJWlGyvGj0Sqcx2x6A0CIm4WUeMD7Vkx0k41i1sUdg6xSKgljM5Jy5UfrZiHUMDy9gnTh86RfJvzZ/Kk/qAuBlYMDYDRdBMJnxR3tQz2jGTpFFstqulQRgGGaJW0b1lFvWlwc9HFpKQYnRM9kWkjuk0sj1miRVgXRP9S7AVME1FtNzi2aZ8o9+WY7DwKy9NFoCAvuBEqg1l4lFaEI45mXaODmDVQiR7nsC6+riaIudHYlh4MHQKZw3q8Mjk3sW00aaTQWQ/Ri/U10nq004xY+AKdjUPe648P7UoxKWZdObRvASy9EzanczS1I0ZFXFoImXJPCtVodNa1iFFLdvXSCCteRHRt5HUALmKM5KQsvSNETRPMYOu8V5d0UaNglaViA6X2RMSNq89V2VmOBvOA0noaG3DOM9+v4KwhGugmObBSgV0qYqvwG2EI1FRRkTrJUtEqseicsC/GDwBlXLYsmmIAC4umoM42xi4zKj1Y7ANEXdaqFNpTGY9Vgf2uImU9z6wu6bzBd4YUsl5Ji1kARtzGFo3c7woTxOnMaKwxWCNsj8lW0z3z0+dCH9bj17UUpW/80b2c/vJvA77pmrzfpdZjMUEfzozLo+uiAUzvPvbHf/zHvPSlL2U6nQ7PFUXBM57xDD7rsz7rig/wmlYIUFZZkJ71KyGiljXFfeew+1OKk2MWJ8WBTCUot+Og2Sj3In4kF9KkFOVeELFibtkCKLZadOvR+7UAl/7K5gN0naxKeQ8pkoII9dPB8RlD6joxfKxKkrMsb50QrVglq5TzTDyoTvbfrpekzG7YRUBPNe2arMqNziVUkDT7cjfgFuBHkk1T7OeQzaqEts3MS7ZQ9rm1rcusR86dUdpByK8Dqu2AHwvDYuskoK+Tm1+oLLoN2EVHfaJChYRdSn+0mwX8yNBNNW7ei/cFmPixWoGQUtGtGYrdDACNaHJUbpMQdzXL5CFFea7BtJF2XXQ4po2goJuKa5lpRQfjR5p2TVHsHbaQ3Qh1o4GXg3WzsTE/XHzB9R7Ch01pD8V+Is1AJUNdaxbrlmUV2AaUjZRVx3TUMHYdtXeURsBAk1f5tUrZSUucx7qo2V9WeK/lMtwZcblKCtVqVJuzVzqFbnrjEnEak2wxwCthOmzCH/XosUfrhDaRtbG0qTXeUjpPTCVeGbqkMKxsinsAAbDvSwq90prUXlq5CivgyweDDwJ8isoT80JeKMTCORYJ1aqhjY3ACnR5RVtLpo3JzEuhPU2wjDKYcTrSBEPdOpaNY1y1jHNYKEChA20Uq2l0pMrnuA4OnwyF9gMoWraOunGoLNI3ue2r9g4fNaWVEM3KeroMQpfesezkmEdOWvqaYAdQZXXEmYjSh/eTm7UOQcONWRcNYL75m78ZgGc84xl89md/NlVVXbVBXbeStKnBnri3Dk5RoeoG/XDLaGdG+eCY9mROlzeKqKGbKuw8oXJApG0Spk7YuccsO/Qi88dBslxUiANbQFq917BMk7InvuoBw2pcqipW21jD8pghVOI6Fq1ctN2etJE1aw67kIm69B4LMKnOWlSSFi0QxsjtB2nPItKNNcpKe1aqCpgZIGQGJov3QxAmqHceC5GUL9QqgGkT0UkOTLsuOpR2qol2jJt76mOO0cMCjEwTWR634kDWpcHFTfs0aF96UKRb0cNIqGVu1ditV0DQC4DSuRWut8FujpeUWy3RKpbHLeOHI8mIaYBpEja7kiWlqLYjHLaQXXL1YOPJMjFXGrQcOogd1rUu0yCuXqVi8kDE7Sn2n2Hwm4g2JCiWncZ3hnrUitVxnnT36e096R2jJuX2KO81be0Ge15BJpBshKDRrR7AS5+3ogzQ9YYnSdiNJMCHBNpISORGVXOsnPPBsE7IE3ZhfQpCVIPbV++CFqJmr60Y25anTXaISfEX9Slab1cAwgaqosMHaSXzEwFUOjBY+EeTAysVuU1Zxq89hNoOFtSLrhhcxca2xUdNZ8QRbVy2OBsYOzFAiEmx31X4JCxOr9Fpo6EJlsYLCIpGWuK26xF7s5GwZEFCo3UheTKYQGn94IBWWk/oHD67yq2VDefmY+ZNgdYRo2Vq5XIeTesN4dCF7KJKWqRWgOETvvz9120sfX242xXfqHXJGpjXvOY1V2McN0b1wKVfXLpAaKRqWnTnqXZnlKNSRPTOsP+cddw84nZbktWY2qPnzWAxrHyQ33P2CnE16ZeY5ux8VhaotiNpEcQnH1b2xSDi+X4fWhNHThxkrKyudWtGMmeiQ7cR00T8xIgY3icWpwtUSGy+z5MMbD/X0q4nVNCUu0qAj1K4fY0fG5LRxKpAa9GJkOKqbaw/Ub2Y3xjRR/lA9ciS+R1jVAA3j5S7CeUji1OO+qhBBQEX9YkC3TlhjYBupNGuD1WTG21vday9AJpuJFoVkATpyQdb1Nbu6jxqec9mXdONNcUs4faD6F2swtRi1RwLDXXALDy6i/ixQTeSHeNHOrecHdbl1OMBkMcCNzcy0/J4dbOwMIfsy7WtboLkWzkod8FPlIQ2VoHUaejEAbFbGrqdkn2TUKUwGcZFYd6zJXHXGXa9uJmlqEgLC40sviSdbZZbhfJynUwmsy65EgwMTEKhWvKKFsSlJeQc4llbcMZMpV0KAVIuT95DUkPWSaE9hQnstRV7jSxmbhQ1G27JRllLqr0XEXvdWWzQ6L6dqspZM935uTA98yIhLgnd9OjG0t5qSEDrLfO2yNnJKWtZpF1sWoipQRstCy+ZNY23hKQyoBJWqAc8PhjJ0sGw21TszkYCTkrPfHdEigqvE503mLIRUJmZpyaYAaAtOgedG8wECpVwOeSy7qxk5XQWrbur9n/tsB67vvMzP4l//q2OE9/8J/DLl7ePQ/Byfn3Hn+3wDX9j83oP49IBTAiB7/u+7+Nnf/Zn+cAHPkDbnq9M29raumKDu+aVW8hS06KMXoGKA8+n/m+loW7EpSslNvYW+XG1ErTD+Y2vWsu/vu1qcPDSAyChacUowWhpJevZjbTKVxlADBALk0FCIpTQTjTFPNIcEebFLj12EfGVIZQqa1IUKkbRmnTSblDMImYpx9atSe+lH2maNc1afwz9MR3Uv4RI8h5VFtB2cn5cgW5DZj+yN38bsYuOaUj4sbR8hVHOw9nQ0v4WwHphYEydMHXAzbPQ8ohDZ0anmCXcIuIruVkX92+TYg7QVArVhKENbHwm4mY5b8EnCAksFPsBt9th5h1xZIlKgI2dd0SrcXuJTh0CmKtRNytQeby6WUDMYV3DUjB7jpe2rmRkkamRlmBda2IVh+3IICTVBtVovE1QRvAS5KtMIrXCJKhaY+qcuWJXrEUsE8qCWq4cF1EMoY59BgxJ9CVR5ddr0YkYk7LuRVq2Ch0Y2U7CMXubZLVy6lr4Aq0SJ8f7VMbTRcPclxwtF4Sk6awAhRA1SommUesIRSQphQoGcseCjuKARlKgE7FMaK+G9mkfNGPX0WUGyKrE/rKi6wzjSpiXynZoZQY2ZdEUWBMYOc/IdbRB2u36nz27tPRiO90uHKaINI1FmYjOEoSe8dlrKlpvKJ20rQlgUXTBEkJmzqJCay1Bm1knFKKWEMt0yMBcqXr5F346X8unw+/Ad7ADwPqLJwDcu/hNvu/EOh/J91+/AT6FK/6/LwT+FIAf/tQPANfPte2SbZS/9Vu/le/93u/lsz/7s9nd3eV1r3sd/+gf/SO01nzLt3zLVRjiNS7vxUo55uyT/mcIAlp6FiWK4D51HSkl0mxBWixhsYS2E+Dhw+p3kIDE0pHGlfxbn4q+JMYhayWlJIxPODB57ntnlRaDAe9lu/5pL45nooGB3Wda9p5mROsxtZJX44S1WJ5UFPPI/LRh+7mObpqDxbIWR0ImodkwuU0LsTZWB8YAAqIyEFNGr4BWNnfQewtUFD2OnQd0G0hGY5Yet9uRtBKGR8u4o4FyxzP+YEOx68WBxiqi0XRjK2xMyCuNXSIZKPYCa3/2CGq2kHOWTRD0fJn7q1XWtkRUEuAUKiOi0UXAzDt0Kzk/us2hnpWMPzmNry4Z3x/WFar/euQV5/17qta1YkUu9D7t1/7JNXnvD9caPZI48ieG6fsNoZQFmukHNJN7LG5XC6AoZULft02RRJ+igkItjYjyo1q1iyVIRSSeaFG3LUlHW+zxmtHpGWqzJU4C3ZFAty52xSmzLjovEClPNiohMxyARjQfUQ3uXMvO4ZNm6hpuGe9yajzjlskea4Xkp+y2IzSJsRXR+sh0xKSY+2II2Ozb4SZFy3rRYHQkRo2yEYK0GYMwMmEkDmTJ5XZnk/CTiD/mCWuBRV3QZC1N683AEDkXmJQSsLnoCs4tx5xdTAZ2RCtxGZs1BfOmwAez0uVEzdnZhEd2pyzmJQRF9IpuXhBbQ6gNYe5YLMRAYWSFQVk0BfPW5bFYYg4L9Z0heEMIemhX6w4wNfrQRvmi6zCk8bAupi55hvamN72JH/uxH+PlL3853/It38KrXvUqnv3sZ/PCF76Q3//93+crvuIrrsY4r00Zs5qgG3N+u1Qf3nje9nrYfmBMene2roOyEFCwPiGsVzTHSrqxxs3khhWd6DjcLFBs1fz/2fvvcNvWu64b/txllFlW2/XsU9MhhGAIQQhNRN5EDSAQQLhQqoZHA5KEB6XFV+VRkFcTQQLoIyE8IuBF6CiYUAwq4YFQhISQBsmpu68y2xjjbu8fv3vMOffOKXufs9s5Wb/rWtdaa65ZxhxzzTnu7/g2c2EiMcpAcg6iXsnZjFndN0aSyJB+F5JIq3Q+66ayQbLZVhzcXeBHMLo/UU4T7VG1lJN5q5atyLMTBu1KCR3Ici4/zJ0BIclzU1rOFAYEcBU2M055X/QTAywa6tNzZnePRcusIBiFnSdUkgQwFRJ2LuDCziUlTHuJNvYjjQoa00YpAbU5GnmQwwCmgfpDuzCZkXK4gFJKQhealo37WpKqxVPTyeumS5HU9YBFpSRnAn0Eq0Er/EBTHsQPe6kP5/rPowGV9b+9fPfnrvu2PJXmUDp2c6ZYJHRMDC4k2k1Fu5M9fA6qPdDO0jy7kb6RzghV0mu9EuhO5GepZLlgxyR0FShKjzERPUiU1lPagDWRtAHzeUXsDH4T6DR6bki9J6Yn05MwHygwlSRshU5kVaX21NYzdwVTW3G8lgb7mBSjDFgaX1AaT6kDZxYbnFuMGRWixrBePjwVYmC3Sool99uadlFAlMLK/vmRBMRQRHCapDKr5IHsG2knFdMisDloUAgoGZSOzbqhMmLqByAYMAEFbNWNeGSCYeEkfjkmiEGKNxUCLpb7Nok0r9gz+M1IMvk4OLdcmI8YlR0qM0BNV2QluHhglEoie9OJunSMyo7GW2LUS4Cj9aGn8mrm4cDLkfd9FvAkL0x/AnOzvTgXP3l6ye8/8drn8aLXvfcmbc3jADCnT5/m+c9/PgDj8XhZavk5n/M5vPa1r722W3ejRylZiPddML1UK0cYL+Vgeg3UhAA+QVEIc9MzFVVJKizurqO0R8ulAb0vlYyFFjlXRMoTt8eUxwYM7jtATedSOGYUKR8M0CJnUz2IyduiFo7hucDslMHXUMyh2hM5WVIwOJ/oOimn1CExfCgxu11TTBMb94fldvm6T68Rz0yoxHRv5wm9OxEZgtGkGFYgD9Ykbv2RUQORFCPmzB4jpZjdNSJUlqSg2tdon5aeF/k5opx4T7pxgRsLYxRGinIm910eyPVHu47i4hy9OyXN5znkQAo+e+kd1lKcn2NPVpg2EQvxJFVnF6TKEAtDqAw2p6EpF2BUSFLb1KPnDr9VHRZZ3qC5Woalv/5TBcj8QPlV/P3uTdflfg/n5k25H9CjmDu/FNprFscVdg71xSifseMKd9SLrKuM8jHqNKmQUmEUYBJF5ak2nbAdpZMOlK6gznImpRI+GCrrOTJc4PNZ/4fObxGTIhUK3ShMq1ZSMsAeaLwqYeRJrWY2KNmvB8LEIHHND8626KKY108OJuJzKRbcN9shZIAwdxLrbLQY/MdFJ76ZqCXyuatwIUvJpgVmoYR10gnlFalMwkBFUE4LWxQUKWQws9DMmg0WOyWDQceglKLK89MRJscmr0INkO6Z7Fdx3ixZm85ZQvYShezL8Z0lzSyq09i5orooiTd+K6JahV0Yzsct9jdbUtRoE4lBU5QelWOaRdkd8V5A4Kwr6XxOiEPl1+fwePJ45ide+zxe+j9efd3u/94XLeDdN7+88kpnvcTy4eZ9o4KKxXXfju/64z2+7Dvfxfse4e//79Fv4hOu8zZcNYC58847eeihh7j77rt55jOfyVve8hZe+MIX8ru/+7tUVXU9tvGGjSoK8UhoBWQ2RiHgZXkltWJbor4kbhmtliAmDWuaOzaZnyyoDiTVqzoI2GmQxvuBsC/iuwgkrWh2DN3mDhsfsJiz+6SuQ1XVmrRszSuDSNJU5xicWdBtjJaeEDcQ8FLvxmWkZqgUkzsNOluWbP7/rnKZZrtToF3CjwxuqHBDsPPEYDdL4YyRbdA5jUxnhkqzSk/rWRilxY8SAubcPhsLx+KuTeYnLM0RQzlZHUHdSAOGUEg/SzIiJ9MehueklNNMWyn59GFZ8pliBpghrMo91xLc1MGM8QdLFqcGuLGkxRVu7XUEUpFL36wWJiZBLDXhaC0BCocKslt6fnrn868YxHzbP/mBWzqJ7ImAmCcCVLpv/t+U/7+/8LhvfziPMgrKfU+ocrBKQMqCVY54B8xcEY0FlYgDLSxEPmOvopLI42zcH1Udx4czxrYVk3oasVMvqI1jvxPQMWvLZf/IkdGcE0cPOBjUzM8PSd5IdswaC4MWEOOMMEAxKmZdSW1lcW5VpIuGo/WMUodlWeXAOGrj6JRlYB1H6hln5xv4qCmyWb/QAavi0mPSNAVF5fFNhekUbiMRBnIMUV6tmBcr8rdYRzAJ1WoUAsDS2ZrpoKDbbimKQIyKNlo6Gymtx+hE49YiqIOmawtCl4stvQKv5QShgqASutUU0/z5b/PrdqCIlZRpJgN21+IS6JFnc6PJ5ZmKkEGZ0TFbWeVn6L0vK/blYfq/D+cq5yde+zw4NNQ/5rTv3gSuLjTifd3L+PbXneb7gf/13d/O11729z/+4N3Au6/RFl6bueol2hd8wRfwa7/2a3zSJ30S3/AN38Df+lt/ix/+4R/m3nvv5dWvvn4o+YaM0auzU0qvihvj2uI8ZTkVmZFI2b/S+1SytGr+tG38UFMdRInw3VLYhaJyYrB3AwFHoVaoKECmOpAI3+nTx4wjmIsHS1P/ahvN0i+jmo40qNDzjtHpguZoQbSKek/KKqe3GyncnCeME1AgXSwiC2uOyDYoH6l2HfOTIkvzlTA2bkNx7H/PVl6gfvpY5xSlwDLlOOgQRWKmjfhRtEL5gJrOGXzAMbjX4rcGxNosAZNd9H6WXtolnTnFXoPemwpg6QFclojJfo5LT1LyYfl7il4AjLXYs/uUo4LZqVLSy7ZqdLdi0mKhRXpeSOJaX1ypouyT0UOz6/FfdjjXcK4GxFzPuRYG/nUgciVg5loxLIcg5vrMwdMKzEOWaMWHZ7qIXUjhcTNU+KES430ke0Di0swPGWeUET3wGBuXwMAnORbV1rPwBS4Yzk7GJMBkZOSjpvGWcdkxLjs+2BaExpCMMB4qZAlZgvq8ItSauOlJSXEwr5nqxLDqGAxnlMA9QwnnmfuSA1cz9yUTV+Ey61MZv2R9ANpgMToyaSsm85p2XpByYeYg+3+iTaik0FNhhkKpCRuBVAfxyfSeoJRkLRYFxOjW0gVFpyUMQTlFOw40mw5tAsEZisovz6splVAmEucWPTcoL75LIoRhWoYamDZn7IwT5Z7CzDNLlMB4he4sbkczLcKSdUkJyjJQ2kDIYKVPYAtR47MnJnpNOOwVe9zzVZ/+euD1l1y2Lqcyr3gD7/z9r+EzbsK23Yh5vF6gt3/blCNf/Xm87Kuv7fZ8zsbH8UuTP3rYvwl4ujFz1QDmu7/7u5c//82/+Te5++67efvb386zn/1sPvdzP/eabtwNH2ugcVka5i/9W5cvV1r+VhaXGO3V2ukVd2qb5qih3g1LTfPgQmRwzqE6ARftlmbzXk8x9SgvvSemEQ/Ioi6Z3z1iPJmjOif3neSs1DIBLHfHKG9JSlFcXKB8YnJPBSiKeaQ5ZlicSAzOKHwS8KIC1HsB7RIHm3Jw7basJGomCIV02GgnnhNzZk+eZ28KySEDAu70Csgonb/nf6ncqZNyv41q5XJ7YQ+Aqixlf/fgbI1ZUZlZuWRiInm38iVZK48dE8T+tcrb6D0pJlQIVO8/i+6O0W0W+KHBKjCNlGRqnyRMYFxIvKgC4yJm2qHnHSHLIw/n0nnfZ/wEz/7NL7sm93UtDPpXCmJudRZmfW60/OvxgpjDIIBHnsVRKIORz90cBx+qDFws+FqYB+sgltI3Jow2AmRswtSezfGCQekYly1dMOw1A5ocC6wVjKuWqvA0ztJ0BcELkJiotDSQV7VjvqMJMyv+E6+kRmymlob+qBO+MxI1b6VN/lg9pchpjCIhO6CLljZYhrbjwNUsfEEbLNv1YumVaUKBVolJW9FMKmg0utEUE025D91mjnTuE9HMinGh1aQun1wL2WOJAK6QJXkAyil0Jz5OlCa1FSEXGLeD4pKIIj3XlLMsocuxbMlAzCepVWamTAfVrsJtgGkUqWDZpVM0CpU0bVmBTRTDjrIMFCZQ2tzR05aEJMDLe41rLclr6DRqdmisfKJzuWzqfaOC/+tLfowfuwGP/VjSrWsxd79jwAPmsa/XzxP1xHzFu3+Xb+ZnuPDgSznBH17Vba+1H0d9wjdd9W2esEjmxS9+MS9+8Yuf6N3cEhOObWLdRM74hHBphPH6ohlYFk3mxX3qvSmbI+a312gPzbbB5A/I+oKnuDgHrRk9ZBmeVdipw8w6VOeJ45pYaFKhMY3ED7vbtij/vCX14CkmUnDy2NZKv0znUDGC0ZiFwy5KFsc0KfcP1OeUxBl7+WB3Y4VtNEWIbH/A4YcaX2mKuZgW7QLmxwyhhGO/syvPtwcrAKmPjkkr4GKMABCtVkCvT3KTG5FUXCsKVaSmhSRg5RJWJSXQWi7rH3u94LP33/SPsx600CfFxQQqkgIoHMUHz2J2NvHbNd1OKWCxDfiBJWmTewgSxdRhDhrUZC4hDPEyEHU4T/q5HiDmqRKf3IORKwEyh8Dlsac75pnbmu33Jewi0m7l1MVWTpwAxCItzfQio2Jp1LdFoCw9VeHZqhqsjpydjZm1wpTHqIg5yreXM3knfSnGRIxKuKAF5NQthQnsdWNiLYWWdqoYnkm0O4owjOA1sTFEBU4lLgTFsHAcH0zRKjHzJVYHjEpslwsWocC3mllX0jpLXTouLoZLCVdhApNZjVoYdKMo9jX1RWH/RXUgC/0wikuzPkGhXA6LUfK7dtL3lUwiFdn76RS60WgHJIXu1s6x6SQ+mj60IIGdC3jRXn534yTStVxy7EeJNBaVQnGAHD9LSW+jD+CMAvjieUsswE8NrkwsRo6iEvbKLQpRU1eBsLCoucnbsYqEPpxL5+P/xe/zB9/2wke9zrUGDT9T/Q7/jk+6ouuusx8vet17H9HzcT3ny77zXQ/LwtzsfponYuL/ir/8TXzVu7+fr3//x3PkcT7+FQGYX/iFX7jiO/y8z/u8x7kpN39CZSXWeJYNIr2ErGcX+gW1KVYLaru2CzfHLO7eWh6c2h1NtRsZnPfYmScZA0ZhGvG86C6gunx5f38RTBchJvy4oBgNBKD0DEzU0Mca2+yJ8QG1aNEhMjhjCVXNwdPyhzvLaP1cdpnoxgrbglqIUbTbEBkbQByI92PnvQ1690DkWFqTunYFSvqgg1zyecm+6tPbQK63LN1Ucj+5oFNM92vGe6VILor8LEYBDznlTRlNartLWZce2ChN6hyqLFayv7VJmanS53cp9yzFmYo0rEhao9uA8hG9cKhFu2KBvM8lpoeU/+E8+jxVwMv6PBYbcwhermzUMBBnUigZC+ngCoWkkKUxdDuRWEt8MCZ/gXSQ6MSw7rAZiGiVKLX0mYSolz4LpRLztmTRSCpWWTm5TTb2x6jxSTGsAlXhUUWEhSHpRCwVbixskPIKc9GKD8RA2Ai4ecn56YiBdcvUsSoXzLjcZu+iwehIYYMUSpYdw8Kwv6iZLSp8a6VUs2KZkpmMyn4giXQOKkGZn38GMspLnHQaBKLV6IUAljBIpCoK89JKUpt2wtTEIgnQUf3fQPscDNCzLgphVRDWKRmIKhFzeXLSiua4IlRyvC1m2QejhYVBgV0oWEBShlgm4p6hG8hrZxdyfb+VT35pxNtDLsM+nMc962f83zcqeN/ffzbXRgfw6I95q8wjgZgn4/z0j37aNbmfKwIwn//5n3/J733i0+WXgRRdPlknFZpUFqi2Wy6mIcgCuQcq60WWhCU7oKoB7Z3buA0jxYlJDPIqJswiYNpAe2IgWmMr0cnKR1RVEGtLyh4bPzR5YS5FknFUYw6mq1JLo6H1pKqSx/VehLteoiPtpGV42qCdxQ21xHAa+QAOldxvLKB1BjfQ+FoRSsX8pPSjDM9Fjv7xDHvf+aXXZykT6xmJzq3AS4qkLgoI6fdPYVegz/llPHUiS9GihtLK/SRpnFbrQLB/3OypSTGs2Jv1CVG8QEqtHqcHVL2xPzM1SRsIHTQNetofwbR08PSvv++1CjHL0A4p/+s517Lf5WYY+p+K4KWfQ5DyxMeWPpvAJZ492iwjK6HcTyivmd4Tpfel08sOlP4kTEyKEBXzriAkxWbZslU2lDrQRYPVK2mXNQGTW+P7GRSeLpvNjUoklVAmSbGmk4W/G0OociJk7hGLwyR/nxRMD7b4k50Bo82GnaGc2NusGoa2W3ajHK1n+KjpomXaVezOB3TOEoOmHDicTqS9Eu0FHJEBQVLCQFGkfIZNoZICm4havClE2VZJPljt22hBFQIqUpISz2hyaFsnAEh38nMyEHK+UKwhlgndqSUg0Q5iKY9l5xnwLNmcDOjqnCaWWCqVFZmRyaA05u1RgJnpHAiQoM7P77I10+Fc+dzw+OAv/nmYOUnZGj15Espu5FyL+OTf+f5PeUK3v6Iiyxjj8ustb3kLL3jBC/jlX/5l9vb22Nvb45d/+Zd54QtfyK/8yq88oY252aNiIm4N5Uz/WlTwJYtrpS/5G4Cqa8JtO7TbBeWel36ThaR7aRdJRtEerfFDgxtp6TKZB5LV+K1KCi6VJGAlK70kfWljd3ywMu5bKz8X5dJYn3yQRXgUsKAP5lQPHTC+b8HwnMcuErrL6SqAaRO6S7gRLI5r5rfJB/DodODEO2bs/M5p7EO78rx6X0+ImYlSa2EFK1+MUmrFivRyrh5sVBWUhYCfXuIFIovLZaDLYASlJVHM2lVUNch9WyvgbVnqqVaPt8669NtkzUpiFhO4bmX0b1qSD6T5QopIY1yGDsh2HgKX6z03u5zyiYCPb/snP/CUBi+Hc21G24g7EgmlBKNECyRotxWL41nGlRfMjDx64MFGdBGXfSPWZON+MOy3NecXI6aupMtFjEZFaivypZALL5VKlDbQekvrLJ03tN7igqGs/CoFTYt0KlTCVMQK3EaSBX4ri3nTKNTFkum5EZOmWjI/XbA0ocCquPS8nJlucHpvg0VTEIIw7K6zxEmBnWlCIYDJDwQwJJM9Lj1YCYpkI6kKUvCpxKRvZ4piIjH/qYgSbHCsJdzW0p5yNLcF3B0d8Y4Gd9QLkEgrX0tf86KiyMuSEcDTS/eSQgICMivUy/nMWtFn75npvaLa57CXBKaFYiohPURhhcxc/DnKZ0lcVNBddW/4R8zczC6RazXXwrz+WGBpHcQ9HjbmW49/4VXf5kbO+0YFb/7nVybtg8fhgXnVq17FD/3QD/Fpn7aigF760pcyHA55xStewbvffWvFrF3VRHCbJXq3gKbNC1pk4ez9ygezxsIoo4lHN1mcGlLtOnQXiKXJfSqWUGl0FzGNsDEqakKl8SOLdpK8lXKhZepTiBOYhZd446Oid17GFmNWYMAYiX7OAEBJjiNq3mBCZDDvMM2I5qilU5pinvJZL2iPyBmo7fcHNt4/RU/mUqKZvSeXGPetvRQkmBW4SN6LfAvyNunlNmEtaWNIrEvCZkkoBIDYmUeFiJ52qKZFzRbLJLHUkyx6DSz1fTv9Y6hVfPXSA6PSanu1WrEp65Py6bMeqCw7fzI4C2v3n/tsDufh5/Rn/Ty3/frfuOrb3Wzgsj6Ph4m5nsDli1/xVx/xbz/175/cJ4c+EicGhd7umN05YOODYLosM2oUk6cH8W74LJdyq7Z2reMynhfAaGFYQNLFOm+kbyW3vQ+sY14UNF1B502O7E20rsA5Q0rQGYsxkRCERTCNwm1GWZBHJK6595j0qmCPLOI3QHnLnt9krx5jqsBo1GBNn76lmbcl80mFtglUIjRW5GBeUV4wcj9rH6mxyFHJmX1Rc5GakRT2vMXveCgiaeRJJwPJRJI3jAcdo6oTw3yQEkqf44qdM0RnCHXEjxNmodFOvCemQ46NUaG7hPZqxbwokYopt2JegKV/RncIE7TGyvSnfntGqX9OscjgSEEc5jLM3otzeDh5XNODm/cBz55dXTTwk2U+8EsdV2IEWQctlzNS3/w3nnXJ7z0Yet+o4L3f/9P8yfbPcPEVT3xbb6W5agDzgQ98gO3t7Q+7fGtriw9+8IPXYJNu4vSL4n5B3kcoa1aL9ixRWrIydcXizg3J+c+lk2buSFYkA7HIZ2F8ROXel2gVfqiJRmO6RHXRZWO5NMXr1hNGBaHU8qFZFpnRWGMlrF2Bl5SEBeklUdqgnEc5TxmhOLD4cUmojZx9sorxg4lyt6M4sy/yq+UiPkcW92BgmS6mVot6k3/2XvaDNuJTsRZVlri7jzG5uwYljI8fKKKRA2cowbQFfgCoEaaBahIp9zzVvRdR03l+KQQALeWK68DC2pXhf50NM1l+Byu5W39Zj2fCCuQsu2uMuUwayIf/fDgfNlcLYm4l8NJPD0geC8hcD+DyaIDl0a57CGaePKN1pLnNo1tLfRGq/UQxTZhGi3HeKcxCFuBxnKjHjrp0S9ASsknfGolNBmm3D0nReMukLZdN8lpHrFFolXDB4L2AoKIQT0wCYihlUa9ZghcVxG9CEnN80r3sKlHuS7FjtKAuWEIpC/TJVimsRBHBJmg0aPmY1Y3GhKz6CsLkWPlYX7IeYZAX+tmUn0yCMkJQ+BOOctRRFJLwNaw6jEqEpKitx+WCymAUW1nOBjDpaqauZG82oG0L2FKSSqahnVpUKylouhN5We8RVb4vcc7nwRTgV4yLALkcJKBWz6PfT32pj/yelicil6DFpGW3z+E8sXnfqLhuIOa7zv0MjK7d/f2H/+87+GvP+TFeH9/N3+GNy8u//XtOw7s3+bSvP8rmX33LE3qMB8zfYF7/V77x9/8b8KzHvD7Af/8v/52nb/5rvv17vok3XssnfBPmqgHMJ37iJ/Ka17yG//gf/yMnT54E4MyZM3zzN38zf/Ev/sVrvoE3coQhSaTSovoFcoryqdz7K6IY+VOIKGuI46Gkk0wd2otcKRVGwIJW2FmQuF6rUSlhukRqMpAp+kJKhVl4dJfN/XOHchG2q6y5XcUDo/sFeSThlsAjGYMKQbYrszMA2nlJKDuvSJVIz1TPOvgsIF4WZa5pdJcyqrhioJY+oJj7XtQSvGAt8dQRZncNmZ0UadrmnyVskxg96Oi2rezfAL5WgCZpiXTuNjTNdom+4zZMl9j60330hQNhgtzah9X6MaBnxEJ/pNQrENKHDawnlPWvI2RJWiUgpwdH68+/T1fr2if+T3U4wK0JXtZnHaD0YOZ6sS1XA1we6/aHYObWHTkfpKEKdNt9AhlLKVnS/Wd3QjeKWGrMUjK2YmCUShiVqIxIxRovsjAfDG1ncV1O/So9w7rL4SgKrRMxSjpZfz8py6pQacUoZHkUIAS1z4txK3Kv9YV9MvLdTjQk6dCKVZRzawH0QjRZKkEqE7GI+LFGB4XOIABEZlVMoDuaCx69gkFEFYmy9hSFp7KBynqODWaUxvPAdIvT+xsA1KWjtIG5Kzk3G9M4S2k9o9Jx184eQ9vRhIL797eYz2ooEomIOWswDcvSZMjPrWdVfD7MZNYkLaVu6y+sfMXsHVJBXtNeEqdC9hIFRSoSsYyolP09h/MROf/0Z/4ld8T38I38tyd8Xy963Xt5x2uew+d9Dfzgjz7xbfvdt/5lnnGTswEufvKUi1y91+iqAcwb3/hGvuALvoC7776bu+66C4D77ruPZz/72fzcz/3cVW/ALTX57H1SCl0U2ReRJVvrscGQF8clcVhgWpGHAUszfqgkx96NDbaJmEVc6m3L3Q698KTKkIwmVPJJGksjyWQpCWhJYOb+wz0oPq0YhPUxJnevRPkQ7uOHPQJsnF89zxCWJnWlsyRrXSa2LtvycQVelF6VreXtSeMhi2ceZXJnwWA3Uu0nQqVwI0U5hWLSYRpPe7Si2TZ0G2LI3LjfYxfiEbJNot3QtDuaxfEdjrx7SP3+sxJU0BdYppjBxtr2FHb1PJXNrIrJcc05Upkkz79nWwyr17RPSrv8Oa+BwMP5yJqbJRM7nKfWGBuxlccpi9/2hIFGB0OoINRRGItBNuJ3Gr3hGJQuMyrymVSYwEbl2SjkZMrCy0He6IQLoHWirDzWBqyOWU6lCUHL+bek0DrivcitYmuwucQyVkliijskZj8XPIofMz+J3vORzyPZBmHTY164VxCtIdQim9LZPK+SJK+FvqizFzVk8EYCs1CU5w1tTmDTOmHLgNZy/DI6SseK8dTGcXI4obZeCjqLjp16ztyXOXGtwnkj/ThJMe0qChOoC8/G0X3O7W4Q9gaEOmFa8X36UVpK2UyrUAcK24FpkqSjVUrOcWXPUFSZhTGZaVk7PPRyOJVkPwJLZqbvAEr6suP14Vwy6z6Yd7zmOTf88b/1+BfyNfNfvG73/2X1FwJf97hu24cY9PtIvj+15HTP+s3v5v2f8S1XdZurBjDPetaz+KM/+iPe+ta38qd/+qcAPPe5z+WzP/uzLylzfDKO+FAUsbYYY6DrsnRKQcoLXp1TtMjMRWEIlRHQ4+Rg5DYt7abBD8SoOTyX0E7kZCRQB1FASkjEKscpR5GgKScL6FRa+T2mFROUI4FxUqS5lH0pDW1LWiu5TOtSKe9RRbHqk4FL2JYUg5jc1yVYvWRrfSHfe0hArmcMbIzY//gTuJFmfFpKObtxQTER6V3S0O1UqJDoxppuS2GatJSXERN2FiS8IMDwfMIPNPOTBX54ivE7z5Am08y2sIppzozJ0oMT0+o1gktS0jCZJVJa9l2/X3ow2j/XPhTAeVIIpGVB5uEczhOfQ/DykTVaJ4rCE4IidiXlnsaNEt2xIL6PTufFvLAwRRnQKqG0RCf3Dfe1cQztarHSRcOsKylMYLNuab1l3hZ00aAUxKhynVbCZtlZCFqYmiiL95QPYSqRGYN8bMoeGZBI4liIoT9l1kEFsIvs50nIczPyHEK9dp9RFv66U9hGttsPJM2r716JNkkHTJml17n3BqDMgKwyngvNiEIHTgwmjIuWqauISVNqj9eaSarYqRd00XBxNmTelsQcaNAsSsbjBpT4XrrjHj8UT06oEnEgagLd2RUjZRUpJunrUYpUAhnIhAqJd84YU3kBKEqlVe+MkiVCLDNtFRF25xDAHM4TmPeNCt7xmudc18CDf/4Pb+OV3/Dr/N7r/yb83APX7XGu1TyuIkulFC95yUt4yUtecq2356aObj1GB5JRK+DSn/k3RuRjMckZ/Hw2X4WI7iKh1oSBZn7cEi3Ue1H8L10iWoUbG4oDv0wkK6Ye7QJm2pGMRreeOCgEwCT5gAy1odxtVhHK610r/e/r4QKw2t51OZi1KylWWmNulpHDdrW47wFOX04JudQzrBb4fXT0cMDkeceZnzDsvE90yAf3FHQbivEDEZVYxYeSKXYv4KW+GAmVQmfGSgUwTaSYOKqLAiand1Vc+NRT7PzhHur0ubxdeiUFg1WEct7ulBI0LcoY8QZZK4AkpaUkI6UELqDWO2vWJWZaoTCowx6YR53HY+L/SJzrCVwuv+9DSdmtM1ZHrAlYawhBMTirmDw9RyUb6X9RUZFKid1PUS0N+nXVslUuKE1gtxkycTVGReZOGIfSBEkx05Eup45ZE+m8IQSRldkiMKrlc7lJipgUmCSsjxZGQDcaO1cr2Vj2xdj56rPPzleeDxUFvNi5sBTe9T4RRQcCcrz0u/RBkrrjErYilCzLHXs5my4ig9oxrluGhWOrXNBFy3Y556H5FlolumjRyPeFF8A2dyVzV2DrhhA1zhtcZylKT2kDDOT5WxtRzzzgxGjB+f0x3YVaQEUpSodYimpAe/AlaKsopmnZVwP5+JXEuB97+ZkClXKymUWAaYBYxmWS2lJ/N71u/2pPqenZl14qdb0X7a99/i/wHe/+W9ft/q/F9M//Jx54F//6P1//xxs+c3z9H+QazBUBmO/7vu/jFa94BXVd833f932Pet1/8A/+wTXZsJsxbrvKzbtKpEkLWLbQ9/0mkGVGK4O3DhFaaHcsvmbJJoCkn2ifiEbhRwbtEqHWFJMkBV0g5v+QUC4QRiUohRtb8cNM22W619KXkqLEE/fgBS6VQak1uVcMK7kUSD+K71bxwzGtDO9rDETv9emZjNR1KLL8KiVUXdM8/Rh7z7TUFwVwtdt2GTOZDASrcEMIA021K48fBgqaRDKKoMGNJMhAOwkz6JmoVFmqvcD0lOXMp+1w29sCnN9bxTP37Er/HPrnS0QV4oFZBi1kf1B/XdWzR2uTQsxStQxsHk6idziXzONNIrsec6UdME/1+eJX/NVDEHOLjNaRGLN0q4xEo6XTpD8TX0RSUNnkLRcptUocK02gy4Z1FwxtsnTBUCLdLzEp5q5gVHbYOrJwxfIkjXcGpZIUX+bErqIIRK+zHzOHy6ScCGZ65oUli0ISPwwK/FC+90AnlIoUVgyOaRN2LlHMaMDJsa+P7+/BUeqZCKek+sVp0iCQosKaQExKgJuWn300bJWLpVF/7ktmrqTUgVIH2hzrPHcFMSkp61RJEteSJJNJohvsjOcMC8czT5znz/VR2jNDUtTZtyIyLxUze5R702IJvpbkzjBIhEEibvgc/awkGtkkdO3RJpGikkJRG0QkELU8x6BY7eDDuZLpgcv1kpOZV7wBvue63PXh3KC5IgDz+te/ni//8i+nrmte//rXP+L1lFJPagATtZIP95CIwxq1u3/pFdzaoj4vbpWPpFp2YzfSmA7sgXyoVvtBIhtDEmnVlkX7iN11oBSxkIMJgKotpvGomAgDQ7LSFaNmC5GDabUCMb3HQ/ff1cqrs86igCzui7UYZNflBf9KIpZ8Wsn/DKtUsyhHstR1AgoAlBI52taYvWeXDM8I0zI/UaBiotpLlAdCpzdHFH4A5QSJcNYQJ3JgcwNFNUnL8q9iGjALJ0AuhHxg1dR7kWZHs/uCoxx5e0uaLVYSssCyf0YAyIpZSr0xH5ZAJq31u6j1Tpu4ev5L8GIMhEMJ2eE8sbkZsrFDEHNrzLwpKawhRgVlJNT5bH4PYDotHSGNeExcULhBR11I0tb9k21abxkUji4YBoVjoCMhaoyObJctC18gFcGKzaohJoWrDE3d0nmLzp+JMXthkhPwkkxafpdEsCiJYGWECKo12H29bJbvA1T8QFIsTSugpQcwAHYhSWHJCAMT+uDO7H/pe1lIq2AAAFsFNjfmbNbi8+mi5fRMOjXGZct2tWCvG6JJzHzJwhV02nDQVXTe0HQFdenQCoZVx6iCLhimi4oUNdp66lIUCJXxPGvjHC4a3n9hgJmYpcfHtMIWqZhwYzl2Jdt31iSRnOWktF76pxdawgqWJh+gjKRK/EepzTvBpEtDaA7niuZ6sy+HI/NDux/kH9/sjcjz8f/i9/mDb3vhFV33inJi//zP/5yjR48uf36krz/7sz+7qg39ru/6Lj7xEz+RjY0NTpw4wed//ufznve855LrNE3DK1/5So4ePcp4POblL385Z86cueQ69957Ly972csYDoecOHGCb/7mb8Zf3tp+BWNcFN+Jj6TCrOKUYSXdWk+78h49a3Fjix8ayllkdNozOOsoDzzaJUwnci4VE3aRI5RrQ3ukAAXN0YLpnSWzO2r8RkmoLaEyKJ8oz87kscoCVZYoa1GbY9RwiNrcgJ1NOHEUjmyjRgOJVS4LKbrsPSBarXwtMa28HmueD2X02qI9rHpdAFKURf0yvCCRYqQ9tYHyUCxEIhdKkRaU00A5jdhFZHAuoj1Uu5FiGigPAqPTgZ0/mbD1Zw31hY7yIKJ9otu0uK1KpA2lJQylQweg3o20W4r2acdQZSHPsy/1zNvWG/R7dkWVJcpoeS6ZqVFGL7+Wr6UxAvDKQr7n+1RFgaqqq/4fuh5zq71P1uf0Z/38FV3vZjAk33v3cx/263CemnOrvU96E31KiHSryoxGVKjWUF6QxTM2n8hpDG1bUOTI40Uuodxb1LTOMutKpm3FrCskiSwYRrajMIGBdWyXC+4Y7nN8MGWjbBkUDqUSs66gcxbvDWTGQ48caqsjnWwp7pkxunPC+OSUjSMzBtsNeqfFHfM0xwN+nJb+FxBAEkthKPxAwlpCLT/3Jn0VEtqvGBsUlAdQ7iuKqcZ0Cj9KpCoyGLbcs7VLqeUB2vzc9uYDJl3FhWbE2dmY84sRC1fggmbaVMxzhLQomuUYV2b2qjCBzWHD5sac8aDNoQeGg7bmdLPJ8XpKdWRBshmY2FWSWFIiJes9nLFIS++L8grVaFRrJDktgZlp7J7BHhjMzKAnljgtSHOLWmgICmUjunyYbrKbMLfa++TyudSofnMM/SCek5/7htsA+Ka/KQD4XV9zlHTfvwbg397xfO590eKmbNuNnH/1/v/5uG73vlHBq7/oIX7s7m/hx+7+Fr7mz2YPe70f2v3g4962m1p08ba3vY1XvvKV/PZv/zZvfetbcc7xkpe8hNls9URf/epX84u/+Iv81E/9FG9729t48MEH+cIvXLWJhhB42cteRtd1/NZv/RY/+qM/ypve9Cb+8T++ejxpmiDsS20Io2LFSlze+J59ICkl1KLFdJFQKso9T7nXUV5oKPZbyr2O4mJDud+hu4CdOlRIIjGL4AeGdlPT7GiaHYUbWdyGxY00xdSj9qegNWo0hLoinDpG88wTTP/C7ey96DbOfeoJdl94jL0XnmD/RadYfNxdpDtOoIa1LPDLYuWN0ZdtP6w8LrAENKlPPMvPd8n+aJULLQUcTO4s8UNFN9ZU+4Hxac/gnKPcc5S7HeW+Z3Tasf2BwPjBjvrsgnLfZY10xCwcSSkWRw3z44ZurPFDg9+scJsVfmAp5p5qz2PnkeogsffsijQeLg38l8QeF+XytUpdxzIxrg8hsHZ1nfUkubB2UFnbZyklKB+XReyaz632PrnV5nJw9FhA5RDEPDXnVnufKAXWBqrKo7Q03PuRgAHdqJxYBamIpFKY7G635uJ8QIia0kpRZN+BEta6RHww7Lc1e+2AaVfRektEEVFL2VmVE7uariBGRTcvoIiUo46y9ow2Go5szziyMeP2zQPu2t7jaTu7POPYBY7vTBgdm1PeNife3tDc5mlOBdxmItTCxLix+FmSWX1PJsutqry4b1hKjGMhLIedZkP8lkePHKOqo4uWg64iRM252Yi9yQDvBajsLWR/+KgJSYm6F5HRVYWnykBtXLVslQ2DwlHoyKjs2B40lCZgdMQHzcIVfOhgh6mveNqxi8RtR6oioZbXxo1zR40RVkYATDbu29xbYxCWyilJkhtG/BGP3wjEWnwvqhNpWioTaiDH2ehujVTLW+198mhzs0HMjZ6PlOd5reaKVmivec1rrvgOX/e6113xdX/lVy6VObzpTW/ixIkT/N7v/R6f8Rmfwf7+Pj/8wz/Mj//4j/NZn/VZAPzIj/wIz33uc/nt3/5tPvmTP5m3vOUt/Mmf/Am/+qu/ysmTJ3nBC17Ad37nd/KP/tE/4p/8k39CWZYP99APO35kMU5no3mfPpZTx7LZXEwrax6KlKjOzGi3NvEjg2lz0SMsiy3VwmFauZ3uAmFYCHjZMSQrHpliLrGTfqAY39diz03kccqCcHSD9mhNt2mIZmUq1NlgqEPCVwp/wrI4tkV5sMHw/in6zEWSD1IyuZ5KpnKESr+wX0v1UmYN0/bFlTFBNuKTImlQ4Qdgm0Qxz+DtQHpszFy6afx2TbtViMGzy6xWDeWBAJekFd2WxY3U0iCKMrih9MMUi0gs5Pblvs+StAJ3YoPyYLoCVYDo3no/jEaV5er1CqxSxtarkLUCXYrszlqJkjYGjCYNa/zOkMkR4N4r/ve5bnOrvU/W51bxwMDVAZP1637jve++HptzU1PHboSM7PSWNEFP0pRnH3zSdX2sK5lb7X0SnMHkVLG0sJhW4TbjcvGrghLD+9QQR7L41XPNfF5xZChndlMSb0ihI8Oiow2WRfZ7ALioUcCwkM+2c82YNlgq4yFCiPI56DtJKDMDvyyI1FoKLmNSnJ8PARgUnkHhqK1nuDmRssymYq4gTApiIeljSYPplHy+KpFaiRdmxbjIE8gS4Ql0W6KeU30ql9fEpAhRixROJYyOWBMpikBVeIxOhKgobWCjavFRM8sx0Y0zIllLCpu9MFYLGwUspXWFkT6ZmCp80BgtIG9ctAw3G+bnpMyvT05TaxYXFfJzcAqdT3z1vTGpSCSSgM9KYspU7vEhaHQZOLI1Y6NqOb2/wXyxdvy5iXOrvU8eaW7mYv7xRPpei3nR694LzV+/4Y/7WPOK//y9PPCcv3vF1/+xuz98373jNc/h1a97L7z5L/ObX/3p/PybVn/7O1/0Rv77bwrb8+o7X3DFj3NFDMwf/MEfXNHXH/7hH17xAz/c7O+L5+TIkSMA/N7v/R7OOT77sz97eZ2P/uiP5u677+btb387AG9/+9t5/vOfvyzVBHjpS1/KwcEB73rXu67q8bWLqJALJvs9U1WyGO7P2q/FDKucUqYP5gzOO3wtt0tWE0sjX7UlVQYVsh/DSYSyH2ncUGEXidHpyPCsJ5TSh2L3FxAjaXPEwQtOMnn6iKTBLiLVfsA4kaQNznnKacA0UhipouiS/UCx/1GbuGfchqpKYYqMZlmCqTIgK4sVYFHZY2NtTliTL3W5VKsoSANpYbbztOwECKVEgqbCkAqRwIVCMT+mcWNLd3SAWTjsfgtWy3WigCDbiG+m7/mq9gLaJdxIo11CpUSoFcUksThZrnXSqNVzMkZ+7rcdsl9Ir6KXtcryOnmeymap2aAmbY7xtx9h8vGnuPfzjvPQp4648LG3xhmzy+dmv08e71wPGVl/n0+EVTlkZK5uTm+9awlebuW52e8T3xlcMIQo5v1qF6rzBj2TGF9Sn+qlxAuDLI7DfsmkLamtY1R2S8P+fluzv6hZdAU+aIlcBkZFR20cu82QC4shrbfsNQMePNikcfJZacuArR2DYUuRZVadt8JsBCN9MUpka/tNTeMtrbfU1vPRx87yrFNnGZ2YSXeMlg4VN0r4GrpNYWRSb4IPSCGmkyhiFcUf03fJ9BHKyivUQhOiQqvEsHDY3P1i1wo9U1LUOVK61MKm9IWfKSnqwlPYgAuGew92ODcfoREwZFRkVMg+LI0wWr1Xcu5LNgbiuzGNQreKrGJbpo+p3rqSE9i0y2mXNkmviwaiIi0sKSiUhvFGwz13nOejbz/D7eMDdqo5JzanbG7dmnKjm/0+uXzWgcvl3TDXG9S8cfi5vHH4uY/rtn/yBvFtbP4fX34tN+kpMY/0uvXSvPX5ji+48pi1K2JgfuM3fuOK7/DxToyRV73qVXzqp34qH/uxHwvA6dOnKcuS7e3tS6578uRJTp8+vbzO+puo/3v/t4ebtm1p21XL+sHBAQDlmSm2GBDLEXa/JcWcTNWb5tclS8aIcbxQ0DnK+3ZJ+gjtdkF5oFBeQIZKkqoVBwWhtmBU7o1ZpbeYJkor/QVH/cABqunwxzfZfa5E2Y0f6EhGUe6JFK3brjLzEuVxQiTU4sMxTcSPDIsjmsXJCt0dwdx/jmVRZdSr6ODOSfHmuqTq8uStEAQAgbATWcZQzMSYLwVdonmOlUF7uY9YamwTKacaNzbCMu0L8xNLCSlYHDEUs4RtxAcTKgEsPrMwvXnUjSyhkJSYaFYAUv5xcsTzesy0tRJWUJSXllPGtEpXAwE2ZYE7ucX+s4d0mwo3huZ4ZPiAXvYX3EpzK7xPbpW5FuCln++9+7nXjYl5qsyTAbT0c0u8T5LCOU0TCulfsbLwhbwwTgJedAduK4GNhHFCtZrdi2MGhaeyntIEZp2c0TY6kVLCaPlMLoywKV20KJWorWdvPmDelKSo0CYue36LQuRoErUsyVytSlgdJXIY6LoCrcKyh8YqKcesjefunV3e3xnSfCSpXVp6XdCgHCQjnTA9G5OMIhiIQcCLdsLCqIjIrJxCO4XLkre5K5i3JS5IgloMBucMWifa0qBcuZTHbdYt3ktAQs8ihaRw3uCVZjdqhllatt+Kl2ij6hgVHQtf0Aa7ZG2W3TVpJRlDy+X9cdoPEqmI6FaLjEyBnRpUALcVUE6TTGI0ajg2nnFyMGFgHC5p5l5S0wbFrZdCdku8Ty6b65k8djg3fvoghn//2ffwil/90DW975vqgVmfV77ylbzzne/kJ3/yJ6/7Y33Xd30XW1tby6+77roLANWJ/Mk0HjVrckKXhy6jxD4JDGRRvIz0jajZgupDFykmgXa7oNsqpBhTSbJZshq3VRAqgxvJh/BgN0gaWaWozjfU9+6hpgvixoDd546xTWJ02hErjZ0HdOtRLlDudxQHLXrh0Y1DL8Rbo7tIqGTxX87kw3n/WSPCHceEpYhJtvlykOJ99oNkuVjf+5JHmKawBDqq8xQzAR3aJUyTMC5i5i6zTvI858cM1V6knAQJMKgs+IhuHL42DM9nj8ssUO45TBtptzTSE+OpL/oc5SmdA6ZLhHItyqUv8uwnBHkerltGSC8jk/vQgrIQH09mmqbPO8FDnzpi97ly8Kp2E6P7NPXFRDm59Q44t8L75Nm/+WWP+z6vBQvz8t2fu6bgpZ9DJuaR58kEXuDWeJ8oG0lREZ1GRVjcljCNYnS/pj4Hw4cS5S5LXwy+Z/ATaW7ZnQ1ovCUlxbAQNqbMxZRGR0kls46Ym+cnXcX+omY6q+mmJSGzF1pHtJam+6XkykZSgvm8YtGWdN4sY4hNDhFwwTB1JRebEU2wlDrwjBMXUHfPpTdlEJdgRft8gqkQM7wfCDPTbkNzTNHuCFMfq+wDimBnimKicM4Sk2J3OmTRFvLcSmFjdE5sG5cdG2VLbT079YLNqmFrtGBz2KBUonWW/dkAFwyzRSUsVRTPS9MVuGBovPTHzLqCLpilfI0i5thk2bYwkOcQqnxyzitJERsE4iiQ6pDT2yJuJ6A3Hfp4w/aJCU/fucjxwZQuGi60I84uNqiNZ6NslrK/W2luhffJo831BjIn7/hOAH7zSz79mt7vxQ/dd03v7+HmX//nVdjS977wpdf98R7v/NEPfdTy5zMPvPZxM1wPN48LwLzjHe/gH/7Df8iXfumX8oVf+IWXfD2e+fqv/3p+6Zd+id/4jd/gzjvvXF5+22230XUde3t7l1z/zJkz3HbbbcvrXJ6O0f/eX+fy+dZv/Vb29/eXX/fdJ/9sSWuJCXYBtchnCkIUEAMrALDWIZIWC1KM4jWZLaju36M+34mfZWRpj1WEoaSLJaWWMqloRUJQTAPD+2bYcweoRUsaD5jfs0mxSIweaCgOHPWZBWbaSUKaC6iFIxZGpGp1gd+uxfy/aVFRGB2h8oW+n985hEEti/teftWDGO/X4pnX2Jl++udqzCVsx+KoZnFUpHHlROKPw0hAWyw0fqDpthVurJndVjA9VUha23ZNc2JIGGjsLFCdX1BMHbr16DZSTiJ2FrEzR3WhodyT2Gc7E1lZKFmByH771dp2r7NksBZKkF9brVHWkMZDJh9/itOfbOi2E3aqaLfBjRXFLOGGCje+tQ44t8r75InOOgB5PLe9nnMIYj58nmzg5VZ5n1gbUNlMkQqJkR+eTmx/wGMXaekV8aOEXmiJ9G01FAk9lpNm87ak8fKZ3UvG6tIt5VEAc1cuvSqzRUVwGjWXz+2iCMSoKUtPaT0Klsb3oggo5FAwLB3D7H0ZlR1bOZJ52lS0QQojLzZDrI7cfnSftOFh0xFqWfwnk4R9yV+hBj9OhFoS1kItpn/t5BgYS9CdeICcM1TGM6o7NoYtO8MFO/VCnqeJbA4bjtYzTtYTNoqWcdESk2JcdlQm4IPBZVYpRsWw7hjXLa23SyDTdZZpUzFpKmLUdFki1zgLUY7FySBsTO6+6Ysrtcsgpi/ejApUQu10VEcWjMYNJ48c8PSdCwxthyaxVTTcOdzjWD1jZFu6uMb43CJzq7xPHm5uRHTyxd+9shKYd33NUd7U/LPrvDVPjfnuN/9lIPtd9HM5+jdeC8BnbP7BdXm8qwYwP/mTP8mnfMqn8O53v5uf/dmfxTnHu971Ln7913+dra2tq7qvlBJf//Vfz8/+7M/y67/+6zz96U+/5O+f8AmfQFEU/Nqv/drysve85z3ce++9vPjFLwbgxS9+MX/8x3/M2bNnl9d561vfyubmJh/zMR/zsI9bVRWbm5uXfAGgNbG26GlLapoV42AkzSp1sphOi6wt6hfNGeCkGFEHU8oPnmPjPbvyp4Gm2yrwQ0OoFKHW0pdyEKguOoYf3Mc8eEFYHqNp7tiEBKMHGknqMsL/x9rSHR3itwakyhArw/TuAd12QbdRcJu+vQABAABJREFU0BwxLHY0SStMF0kKygOPbSPz44awM1p5QfqAgl4+ts7I9H4XWDEx6zKslFCTGaOzQWQCWuGGlvZoSbtT0G0XJKOWBzI3UMxPKg6eCfvPKHBbBSpBMQnYmRNA5iNhUBBqkw2fDj3v0LMW7SLGRZJVRKuoDiK03Yp9UZeBrrVulyXg1OJVUkUh0r8jW5z/5OM8+KmGck8xPK0Ynk0Mz4gPJxSKdgeaY7cGA3OrvU/e9xk/ATxxA//VgpGHSxu7lefJ3sXyZPG69HOrvU9SUnSzkrQwssAvcxqXlUW8diKnqs9q6rOaYiq9ImbfECcF84OavQtjzp7b5PTeBmcnY7rsV1l0BRcXQx462OTBC1tc2Bszn9W4RUFyGrYcg2HfQh8Ylo668AyrDqUShYlsDhp2tmZsZF+Mz/0yvdckJEVMitZJcMC0LfFRMy5bbO1JTksM8SDhxolU9GxM7lRxuRxTpVWaV5YFhzoRK2mwT2drdpsBpzYO2KwbaivSL52/XBCzf0xKfEFWPC0+atpgMDoyqjuRyJmIzkDB6Mg4d8ukpPBeL+Vqdq0kVGKs5Us8SdIHE4sMapDUOHu+oLhg0fMMNBOMBi3bg4atquHB6RZ/tn+UA1fz0GKTe+c7NMGyCAXb5Zyt+tbQJN9q75N+1tmWR2NefuK1z7vyJ/sYc+aB116z+zqcGz9XnRP7L/7Fv+D1r389r3zlK9nY2OB7v/d7efrTn87Xfd3XcerUqau6r1e+8pX8+I//OD//8z/PxsbGUju5tbXFYDBga2uLr/3ar+U1r3kNR44cYXNzk2/4hm/gxS9+MZ/8yZ8MwEte8hI+5mM+hr/9t/823/M938Pp06f5ju/4Dl75yldSXWWPR9ys0RHYO8ieir5HxQrA0BnQrN9vypIrpcAnkrUo5+DCHoPOUW0MiQNLLMWfYtqAnjv0vEXNmxV4sIburqO0O5byIBBLTSwq2iMF9QWFmXZ0OyVus8IsCpqjlnIS0a14XiTVS+EmBh2SyLamDjeSl3hxasT4zB4pJmFS+uLLfsG/DlSsla8QJTISoFBLuVaKkcHphumpkSSHjcQTk3T29LTSAxONodtUmEbkAqMzIhULtRF/UOeJdUEqDGGQL4uIjyZCKi1q4VBWDhZuqNj6YJbzWbuSjOX+mku6b6xasTNtu0xcC7ft8MBnbjC/IzJ8ULNxb8Q4YVyKeaLaE/DlhxqeeJDKNZlb7X1yLacHJT+98/mP+vf1udWBy1NhnkzApZ9b7X3ipwU2WinlrRJmLp+BKibUlsaPxBdTTEWyNDwtfSOmUyyO2+wdVIRBot22dENPY0vxh0SNLTwxaFxj0TYSGyudI0PPcNyidUQBO8PFsuRy4QsJFcimdqPSEhQlpACyDw2oTIC6xeeFvo+axovES5uInliUV4Qtj+p0lvuSWQoyq5GLLfPHdkTAgfby3LUBO1VMFjXHhzPOT0cMK2FWXN4WowWsRJSkkKWSELV04Xiz6oDJ8rqUZXIblTA1U5WWyWtNJ7KbGtmgGCU5LNmEbkR+HcqcpmYSQsWIws/uy+PEKqGCQtvI07cvslU07LsaBuCiYbcZYFTCRU2RQwk2iharbg0Ac6u9T+DKwcv6dZ4NwHP4q8uQ3B+gfd17qXh4b8256QUA3vLMz+f18d2cuOqtvPHzZCzyvJH+pasGMB/4wAd42cteBkBZlsxmM5RSvPrVr+azPuuz+Kf/9J9e8X394A/+IACf+ZmfecnlP/IjP8JXfdVXAfD6178erTUvf/nLaduWl770pfzAD/zA8rrGGH7pl36Jv/f3/h4vfvGLGY1GfOVXfiX/7J9dPeUXjcacPZAW977d3udPZK1Q5Mb39TP+OaZyuVjOpne0gd199P4UrdXKixHF5C7X0fJVFoRjm8xurzCdAJrmaEGzrQm1wrQW5bPHpbZZthWxczkYFtOAilAdgFlEtIsi1xoXaBep9oX1uUR6BSzdnf2iv+9/6VwuddQrn4+yS9ZDKYU9ewBphK9hcD5STCPdlpEEsS6StKGYksEAVHsJsxAJnEEiq8OohASx1JLSVij8UGMai3JBAgYQQGPaSDlNVKenJJ+BSx+soHJBp/Mk78Xfsnw+SOJYXZPGA86/YMzsrsDWnxpGZ4PI1ZpAMRX2qvCRWGlUAHuLAJhb7X0C1z4++UrZmEPwcv3nyQhe4NZ7n2y8p8CUmuaEsC/FRKFSImnF7JQillDtIimSQUqBi7l4/lTQWWYlq+fZ7Zb5neBNTr7SidBplEkok2QRbyNYKCrPIDfPWxPYrhYMbYdPmlJ7dqo5k64mIvHDIakloAlR2I7GF8JuqERdtXTB0HnD3AkAUEo6UZRXYBM4SRYDYV1iIV858IuYP0uTzs32WmoA3EZEe0WzkCuEqGmdRatEYQK19RLzvBgzcTWV8RypZvhCs9/WkqAGWB2Xfp/SBoaFw6jIwlUMq47WWYxOAupUEgDkLG1bkBqDIgcPaAiDRCwyS5ZjopUTZqY5mgibAYLizqP73FZPON+NaIJEW5+ZjFnMK6raURWioNAqsdcO6Ba3RqrlrfY+WW9dvxaL3/bdwuz86X96FUdv/28Pex1pnr/9CT/W9Z4nG3i50XPVAGZnZ4fJZALAHXfcwTvf+U6e//zns7e3x3w+v6r7SpebyR9m6rrmDW94A294wxse8Tr33HMP//W//tereuyHm+LecySPLHxTXPkp1tO7YpZg9cxFD2Z6kzhIQaRJaz0l2YsR4irpSxuwskCPGyNm94yFOTnwmIVnclchscqzhB9oki4JpcLXiqQsdh7RPpIyKxKtwi4iposoFwmVQgWJKo5GDoqrMk75IFV9YSOsJGK9fKwHN1W1MvAnCS5IQdLZjv3xggsfOwClpHgzJsrdljAsUD6yea9Hu8TB3XaVHobIzrSLxDJvh0/4DUO7ZXADhWkNKpVEK8DLzFyWxAXU/pTUg5f+tUlRtqmPTO6fR/QCXoyGwjJ75g4Hz4By1zA8LyxRt2lAgWkF+AHQRtgwzE/dGh6YW+198kRM/E9knozg5af+/a/clD6Yxytfe7KCF7j13iejhwLhaMJ0UEw1OkRIEGolxYnjxOgBhXYSJy+R8QJaShVRBwhbEyCficFtJPwwiQclKpLvEyRB1QFjZYEeE4xKx5FajsnnmjELV3BiOEGrxEFXYZYSLTG0G5WkIDIpxmVLEcQnkrLZ3eb4ZaMjo0FLO6jkcKgTSSWSFa+LaWThv+r3ymleWU6mO0gFS9+JH0TSpOC+vW2Ob0xJSdF4i9ERFzUhSmT0wDq0SpxdbNAG8bT0UjMArSODwrNdLzhZT7jQjphQZTAjz83ouARJs0lNnBbSyePV0uuyKq0EXyQpGzXIvj/q0bVna2vOMzfP4zIo3C4j5xZjKhtg2FLnMASAyni2qgVt/PDI2Jsxt9r75FpOD4AuX/j/n8/6NI7y8GDmVp91FmbduH+j5v981qfxr97/Pz/s8lfr5/L6+OHJnTcyRe6qPTCf8RmfwVvf+lYAvviLv5hv/MZv5O/+3b/Ll33Zl/FX/spfueYbeCMnuT6oPq6ihfWli1i17hHpGYvLp7CXAqBFI8lYMawkY1pBjMSdTfafty03m0ZCqWmOV4RKsfP+jvFDnsURzfyYQSWodwPlJFDtirbXjS2xkE6Z3WcXHNxT0Ryv0D7lYkyN9gkz98vuGlWVqNw4rzKjojJLocoSVRTye1GspFnr8jKjST5QfOgcw7MRX0tggQo5IllL8lq04vnRHobnhUXRnbBGACol3IZldkfF7rMLTv9/HPvPRpLUlEK3Ad0GYmUJtWH4oX3xJoUcRtD7XIxZ9dX0+1+bVfCAMbjbtjn7Iis+TJPwtcKNTG6N1iLR2LK0O4UEHxzXNLffGgecw3lygpd+nuxemMN5fGMXifFDntHpSL0XpPS30pguUe2qDEwkXbHaD5lJ70NIBLwko+TE0DSy9YHI5p9BfV5DJ0WJeuBRRQSb0CZRDzo2Rw3bg4bNSiRLMbdKWh2ZuYouSL8LsJSP9SChtp5x2XKkmjGyHcNCPDMmg4PSBFLK0cdRkepc1hxEKubGicWJxPxUZHGnpznl6bYjbkva7kFilom5A6dRqFahG83eA5ucPRhLD4yOuLxtw8KxXS8wOjJzJRcXQ1wwbAwarI5UhWdYOrYHDYPCMS5aXrBxHx+79SBP37yIzWEHXZactd6waAri3GJm/XFevqkk2zQ4raguSjdMGCSihW47oopINXA8Y+cC28UcHw2FivgksryT4wlHR+J3qUygMoEuGua+ZOZuEUr/I2CeSjHML3rdex+2L+VWmEfazzeKObpiBuad73wnH/uxH8v3f//30zTywfjt3/7tFEXBb/3Wb/Hyl7+c7/iO77huG3rDZx3E9AcVpZHqYfk5JY9yXnpS7GVSMrX2e7FWvLge/VtXzJ++STGPqJBodgw6SDLZ1p877MSBguH5LKXqsslwEXLcsZRWqqRot7Xk1yfRU6M0diGxxOVU2BqUkm31XrahKknDmjQoCeOKWGrcyGLnger0BDVbSA9OL9m6xPAfSc6x8acX2X3BUWa3WYZnPSqB2zB0Y42vpZhzcDFSTMXXEwaFGPe1wm1aKehsIm5TQ5CDha8VlQI/Fianj5EW9uWywIEeKIYAJhdzxpSPjlK8iVLMb69JuvfYKHydz4zOE92GJhoYng9i4q81gwsRdWC5/zr8ax3Ok3PefO+/e9jLv+jur7vBW/LocwiYbpHJzG7fSh9KiYg3k0C1a0hGUx1EiplcR+UELPECSuyw0BQibyoXAR000WhIlsXtwCCgbaQceoyJWB0lRaxc0EXLxWZISIoiswEzV+KTXmuuF5aj8xYXNcOio9SeLlq6aGiDpcmFlxtVi1aJaVfSdX2aJZLItd0xuKuhbQuiNwyHLaOqY94VTC6MUAuD30iQJWeqVehOdoz2ilBHlNPMLw6ZjxbLUktgCcQuLob43O9SW0dIwqSkpJadNV00+Ki5v9uhUIHtYkEXDRElHhhvme6PCF6M+ElDqiTuOlQStmAWUjAdC0XalLAB5SCNAqYMDKqO2wf7AHxwegSrIhtlw4X5iEEhC82UxK8TksIHw958QDPx1/1f7nBu/bn/A+e5o/zR5e/vfuPoJm7NtZmb5dW5YgDzcR/3cXziJ34if+fv/B2+9Eu/FACtNd/yLd9y3Tbuhk/wYItlslXyXhbE1q4kS8bI5Zm1IMV8oGGNEWBtwR/FPxKinOUJAaoKVVc0Tz9GKBX1BUe3bTG5U0V3OQLYKDH/L6Joab2ktnRbBcVMzszZxaqxPhaKYpEwXcLOPDqI/CzafARVShb0hSVuDpk9fYP5MYN2olfWXgyMfmQxzykpJ4mtD8yxD1wkdZ1IznqAlp+v2j1g+08s5160zfy4ld4aq5id0tgZlBMx9UNOobQa7SPaBUgWu4jYieO4h4ttiZ2DXQQO7q6o9wO+KlAxMXzvBVJfgmXW2LG+rqbMr1sUL80yFlpr0rBmcVTjn7Wgqhz67VuoCL5SFLNIdRCkKHMN/JUHEbu4Nc96fKTNzWRfHgm0PNx1Hg3I3Cwp2dXMk1k+ditOMoATiWwYaJKRhEiVxO/iF2r5ub08higggekkyETl1C4VE77W+Eo+y00HutHEKqI0WBsprTARAD4ZFr5Ydp3EbGxXWTLWp3j1D2mz/2XuSlyUWOMQNV32wewMZ8SkmLuS1smyQVWBauAY1i2lDWiVGFUdm2VLZT0zV1KawJ3P2MfqyMIX3Ht+B++MAIY9iSUzrUIFkXHhDLs7Q8qtyRK4bJdzzjdjAWdFRxcNe82ANvfHhAi78wFKJXww7C9qzi/GS+9PTAqN+ISariAGQ2wMdiEpaoQcTqNFbp2GicVJRXEA5b5Ce0O3HSFIp48LhoFxnCwO2BsPuX+2jVaJzbph0lb4oNmsZR/EpOhUIib7YfVrh3N9p2cH/taZv3+Tt2Q1+kWvgvf9j0f8+wP6o3g2z7xxG/QE52aXjl6xhOxtb3sbz3ve8/imb/omTp06xVd+5VfyP/7HI78QT+rJsjHVMyW5S0R8LOGS61wyl5j71zwwIV/ey7EQ30ssNYMz7bITxs6yhyVCt21FlpXk4NduadxY42t5ybpNi+qEuSnmkdGZwOihSLnvqS7KQazbyv0BLqHnHcRIGlR0dx/hzKdsc3CXZXg+UE2i6H8DjM4ExvcHqv2EGynOfOKYySfcTrz9OFSlgLa1559CRJ/f59gfHuAHMDtVMLvNYFoBL7aJtFuGbtOQrFpKJPywIBZK5GJWU0w9x3+/Zft9nRhdDfha40aKrT/Zg4PpKnCgc2sGfr3ax8vI5Cx1U3oZGa09hINSStwaqA5kv3UbAvCKqfiG3FDTjTXdhibUt0zP60fs3Org5fLrP9ptbgQzcsi+3EKTWPZ+JS2pW/3JJBWhmEgAi+6yz0IpKU5MclvIXV65zysZJYW+Ldip9KiQjemFCVizYlUO2prGW8Zly3N2znJ0MGdQOI4O5mxWzbKsEqAwYnovTWDhCnbnA/bbGqUSW1XDuFxFEQ+sY1g6ytIzGLUM65YjwwV3bewxLBw79QKlEhcXQ/YW9bIwUpPYKhc897YznDq2jy096khH2vCESoIK5LkpFueHnN7bZOZKrArsdUN2mwGbVcOoaHMyWWRYdRwZzTkymrNZtxRGYpPHVUcbDBNX0QTL3JccdBUX5wNm84rQacxugfa53wVQSfZlshK40G0lQg3FNGHnOZEsl2pWNjDxNZNQ85zRGe4e79KEAquiSPCqbhn7XBmR3WkFw+rwhNjNmB87+QOPfaXrOCee8/jCAn5o94PXdkOucr7mz2a8zL/yMa/XMy/XCsgc/ZFPvuLrXvEK7dM//dN54xvfyEMPPcS//bf/lg9+8IP8pb/0l3jOc57Dv/yX/3IZxfeknpjEgO9WLENyfTRjQhkt39fb3/vrrTE0pPjwAEdpaYEf1MyftikGcqMItRG62iqUT0zuLpncYWiOWPzAsDiqCVUGOU1ERTlrtzhV48YaswiYNmFb6UvxQ0NztIAkxvdiFiSWuK5YPPMoB/fUlJPE8FxE+WwanUUG570AoP2Q02IkUWZ+zLD3vA1mz7uNNB6uEr5iWD41c2aPk7+9T7ehmJ9MmFa6btxIE0oBBtEqus2CxW0DDp5W5jOPSTpyagF2YSB+n6Rh9FDL8f9xBk6fk32e/TfLuGTIoQgr4Jh6sOi9XB7Ed5Q0jP7ckv5oMy8IUi77lICDdsfkM6QJN0TAVXFrmPgP58bP1YKXK73t9QQYh+Dl1hrdiSnfdDGHrpBZdEm4qvcCtgnYRRCJbAYqKubc3t6fr3OvloJQqmVRZBhGTBUYDVu2Bg2jsluCjTYYtqqGU8MDjpdTtEpUZiVh0jl1rDBhaYIHMbkrlZi3JfttTRvs8mvmShZeTMSFCYzqjlHpmLQV9022WbiCg7Zmvub1aJ1l0lVMXMXUVSx8QWU9tx854NSxfYqBk8AbJOlLeYXdN7Rnh9x3bofzi/FSNnbQ1uy2Q1pvl2Dp1PCArbKhDQalEkcHc47Uc6rMKD002+RDF3e4sDdmNqlxswK9V4j/KGbZXlDS01Pk7YgKlBRvJq2odiViGa9JThOi4sDVvGtyij+d3SaSPBWWHpeQlKS2BcO0q2i8RamE1avj5eHcuHkyJ3kNm7/O/R84f8Mf92Ne+fs3/DEfz1z1KebRaMRXf/VX87a3vY33vve9fPEXfzFveMMbuPvuu/m8z/u867GNN2yS9zneOC9cjUHVlUQoqzVWpshn901OHtNKpGbrpYp9N0kf6ZsX38po4njI7KSh2VY0R8qc1iIApTlWsP9smDwj0m0oYqEYnI/UexHbRAEBG2bJ2lT7YSk/KCbSVp+0SKO0S0Sr0F1ExUh3+yYXn1vQbqvl7ZOBYuoZnOkoph4zd5g2MLgQqC9Eimmi2o/Uu4F227D/wpOk245KEECxSsRIzqHP7XHb2w8YPSgAoI+itE3CNgIi2m3D3jMtbqwwrWxrc8QyPWWZnSrpxpp6N3L0j6aUHzgrzItSK/YrrO1frVZ+o/WI6Nz5smRnjJaDfiVnL+vdRDeWv1X7QeKdM5AxToDd4JzHNoec/82cm8G+fOO9H56q8njm0diYaw00furf/8oheLkFxziR/kajUF7YclgBErVG2OsgKYgqpOWxQPmUr6uWDE67JX1f7dFEGgXK0nNiPOX20T5H6xlHqjkbRcPJ4ZTNsqENlotuxNi2wrD4gr1mgFFxacaPSdHmZnqTY4iLLAlrvXhgGm9JIH6YpChtYKtuGFjHqOwodJTG+2CW16kLT1V4GmeZdSXTrmLqSnbnA2JS3L2xyx3H9rBHG2IpRv/umJw8043C7Vec2dvg/Fw8Aj5q9uYDWm8ZWMdm0VAZT0RRW89m2TJzJecWIy7OB5yfjji/u8FiWhG8JrYGPbWZuZIktISApp6JiWUijCIxl1u6sXTYmAbMTKMWhulcmJ0e+In3xi5BS9+z03nL3nyw7NFp/VWHvh7O4Szn4RiOeX3tUuDOvu4FnP9XO6i7vumqb3uzQOITekc961nP4tu+7du45557+NZv/Vb+y3/5L9dqu27KqKpCoXMkb74wsBY/nJkYl6VKSa0kZT14WRr+8/e+U6VnK5QibFa4saKYiUxLe9FCq5jYf7pmdF+iOoBq3xML+Zv28nfT9LHNUO55lJffQy0Mh2kjWIVqkfb6AszckQrD7FSJnSVpSu6kvFEHOUD6gaGYyxk6M/dEqxmci7hNS7nnSVYAx+w2Q7O9zfHfN5jTu5AcqXPiGQLMA+c5dXHK4hlHObinxA8V9cVIuYi4oUjCYiHyidkJg3HgB3KA2Livpbx/F9U6cE5S4VT2s9i1Tpp+f4ewkup1Is9bAk2jMysmL+TgQiSUhvIgEUrZBsjlm42wV8qDaQImxyn78hDAHM4Tmzff++8e1htzLTwxh6Dl1p5QaAxyKEhGTiolJSd3TCfewKTVUmamcvYISUz8ppNUSpDyR1VJKIozilCCKiJaJ1ksR4OPhqHtKFGMzIIL7YhzixHztuTISOKUXTCEpJh01XKhHbJJ3weNUrnZvuywOrK3GGCzxGzhCuln0ZGBFTnUwDqO11MmvpKiy1Aw7aolmAEweRtDkk6UEDXnJyOGRcdW2aCP73JvOoI/KIWBmYvxx0414WDE+dGAczaiBnIMHW8uODcfsSgLfNQsXEFpAtNgmDbiQQlB470hzApRH4QMWkwGiLD63YgPpgeUiSTHByXf7VzhNiOpiKioiEH2dakDbbAEHZaMFghQ8UHj8/5tsmcohDXEejiHc5Xzjte+hRddB7P8v33+X+A9AA8TifxY80hRyjdqHjeA+c3f/E3e+MY38tM//dNorfmSL/kSvvZrv/ZabtsNn+S9GOx79iQvjlMnH9aXSMdApGb5dr03pE/JUpczMcZItK/W6C5QX0wUi0h5EGiOWLoN8V5oD6MzkWrPST/KUKRNyselzMq0wqygQHeBOLCYNuI2jPg9XFxK0oqpx0wauts2mN2m2bgvYFwSvbWCdkOjvUF3iWg1caMUk30b8vOQokm78BQKipmm21A89KmbnPothXnwwnL/EIIY7Z1j8M4F9X0bNHdt4TatRDrXKh8QoJxKAMHwdIvdnaNmC1LTQudWBxgQAGjMCrz00dVGg48rFkYLQ5NCQOWgBZQmxQg+YBcxN1uLDMN0wgiZNhJLzeykYfxgIFayYDAuUkwONcsfSdOzL09EPvZw82ggBrgqIHMIWp48o32EEmKhhYFBTipJM714W0Ilclm5gVqekEpGbsfaMUdlT40bIX4Np/FeCh0bXzAsOnw06OxuGRctXZSSxklbkZIShsUEQv4ZoHFWRAImYnSkyjHGRkkwQG09Lpil6T8ktYxmboJltxvQRUupPbVxHKRa+mRUklJKHSlM6vMJqAov5Y7NgI2q5Y7RHht3tPyJPonbr7ALQ1ISVJBminBgUNHgB5ZkYLpVMKlCltkldBGxRSAGTeiMgJUEeI1uNLrNJx9N9tp4sqcol2oWUoas5nopJ0tlJBSgjcZtKAZnNPN7hB0KnaYJlmeOzzENFeeaMTF35zS+YJGgLp34LXVk3hU0XYHrbo0iy8N58s7wmeNH/Nu7f33Y/3TF9/fHH7z7CW7RpXOj08iuCsA8+OCDvOlNb+JNb3oT73//+/mUT/kUvu/7vo8v+ZIvYTR68kfBKaUElBTSMZJS1iTn+GFAFsnGQEjSpQK5mFJ8IesgR/wYOSe/KEVmJg+EbYVV6TYMoVC4sSIaScHq2RjIAEKLT0YlAR6hWp0tiqWh2yhWJYyIUdQPjSR8XViA87ixFZP/QSBZRbulsa14adpNQ30x4AcG7USrHUvx5YSBRrfyuNolhmc95VRzcI/h3AvHHC00xYfOrRLCrBXPiXNwYZf64j6Dqsz7dO0MVAYmqe1kX8HKhA+kzq0CA/pEtx6oGL0y9INclmOt+9dIrhMhalTnKC92DM5b9p4jxtjRgyJxUyGBTWzc50laQgWW/w/zQwbmcK7NPBKIgVsHlNy2/7zDJLJrOL18DACTP2v6TpZZPkEU5bJeJkYhPsieeU5W5V4t+dyKhcZtJMJASjG9N3ReZEsAMdM5tfGUxi9TuC4uhsQENjfcN22F0TE33sdlglehI5XxXFwMMTqyUcnn+jwYXNByvignmRUmMC5afI4u1hisDlTW03pLYT2Dwi2N7DEpdpsBKSm0jrTOCsvTDRnajnuO73J+MGJxZgeA8kA8kmlT5HM6yHG4uKhJRoMGP4pEk+iMFXQXEWF8FG8LEZHjAcqtAhR6T5Hu8r4vUpb1iZEfndALg/LgR4n6nEI1hlRF6DQX5iMORgNGtuXpowu4ZJj4mofmm8tyzVlXMu8KjE7UpSOYQwbmcJ74/NDuB/nxe3b5zYOPf8zr/uA/+A5eH1/OD/6D7+BtwPN5FgCvuec/8Pp49VKxR5ubkUh2xQDmr/21v8av/uqvcuzYMb7iK76Cr/mar+GjPuqjrue23fgxpscbIkda64JRWSqmBrUsrtc8F6pcK3zMMcl4LzK0XlqW8idrIWWKKiTsNKASDM4EMAo3tMRSWJOk1PLVSQbsIuYzdppYaEzTt6ApLn60xQ/h6LsCKgOgYpZNoZ0DrWm2TW51TviRMBES4QnVnuivk1G4sSEMNKFQdGNNqGF4LlLMPSrHO7uxQQvu4MLzhxxVJyj+7PSqCFTnM01JksESgHNLQ/2yD8dmaZ1SaxI88RWp3juEWfMVaZa2LW2gVKveHWtlabCeBNczN22HPWjYfp/BD2rmtyXcCLoNjfYlpos0WyYbOpPonV3EmxUYPZzDeaLzaCDmcJ56k7RCB2HLY6FRJhdT+nxiqtBZLpZPlERhwS8n+nuPZCwUzVHwW0GM7wpiZ9AKauuZu4KDpgKE5QCoTMBHjfM5JCUmJm0l4CGnY8UEpQ2UVlrsnzE+z/3lNpOuxugokrBcKhkRCVlhApWRvhifY5pr6+iCYatcMNclZTatl8ZTagEwe81AggKSorSOBFxYDJnZkpODCScHE/7X8U0G90sxsnZQTMVQH2w2+XfiSyFBqAyhhlit+nJIAnZIEOokBZoJTJej8g2rgAS1SiJDJcJITmj16wAVRTWwOJko9zTtKWF+9icD3m1PcvfGLs8YnWdTNcx8xbhoOVbP2OsG2bwvpn+lJMb5cG7c9Avqm9VRcr3nL379b/E73/8pN3szLpn/9G8MX/6qG7e/rxjAFEXBm9/8Zj7ncz4H83Dt80+VWZd8xf5TLtP6SWjwvv8FuDQuWSvQ+W+9xAmyXyOSVET5gJ477EIKGoupR3eBZDQFHr0bCAMrSWNaY+Yes8jxwykRi5JyX24TS5GXVfuJ+Z2JZlvnKEqN9onRg61EJ48H+AHYhcKPDJM7xQvis3yhZ2yiheaIpt2WluhuK6GDophqaqXEW5MS43vnDM8IC9WcqJjcXbO9v40+vyv7qQcVIUu8YsglMGuFoCb7h5blnqxFImdwtvQfSbqLstmc3+/r/rY+yPPsX6u1MIU+aEDNFhSFYeP+Aj8wzJ7dcc/d57nQ3c74AXAjxfBcIFpFqDUqGFI4jFH+SJlrZd5/rLmRIGZ+/0kAhneeueLbHLIw13ZEOpsLE7WmmEtUfj8qsZIqawlcIccpp0KvDPxG/HoqyKI6KVBlxFYeH8T/6IPG5KjfXi520IgfxXuDMTkkICkWi5KYFINBx6jqlte3KrBj5wzHHQ+1W0xycpj4Y+S2ISnmrmBgHbVxlIV8XjfB8tBsk3HZURnPuGgZ2ZaBcRRKfCI+abpgOT3boOkKKdnM7MwZNhgVHRunJkzSBsXMEgZkNqXfYbIf/CB34XgIKtFzWyrmeGlRheEHq/0GAgbDMJKqiCoDtgwEr1FAUXmUAu8MfmFJRSIYAT+6U5iFgqhQQ49rLA88eIT5sYLKeD5m/CAv2LiPi37EuW6DJlh2anCF4fx8yLypiKG9Qf91h9PPi1733uzTuNlbcn1m2Pz1a2rkf6T5rm/6b3zFL17Zdf/TvzE3bH9fMYD5hV/4heu5HbfGrJ/6CuHSVDG9VjamlYCbPmUsL8yXzExffLmejtXLzJQSViSf7QeIAyuSNBdxmyXERDFzmHyGSQWRC2gfKfdakhEWppcXANRnNCqJLC1aRbUfxFviPKG2oKCYR0Ip4CRamN8lZV2j0wEVwA318m/YfMYqSsllLDV2mrfbRyjMUhahkmL2zE02JjPxsajLFv659LOXi2HVKlGs723R5pLC0BSiAEVrUYOacGyT7khNKDV+IPHO5YH4lEwTMDOHnsxR07lI93qQ3b+mzqMP5ow+pFBxBKrkvoPbqC0sjgnTFA6kgNOPoD5vKO8/9MDczPnGe999U3tgrtdcLxDTA5YrufzRQM0hiLk2E0slJvy1w0rS+VyOFb9LMopUamKZg1xckr8FYaqjzovuUmLdTQt2ovEbUc7dOEPTFdSlW5ZYWh2ZtHLSp7QB34mp3ZhI560Y3Dspk7QjkY+ZHDrjk+HBdouJq5n7ki6aZQHmvCkxRlLKNqp2adK3KmJ1YKNo2akXuGjyfWm6aNm0DZX27LkhI9ste1wKGygQr0xKiouzIWGguX3zgEndcro5gWkVplGYRpiYaDN7ZSEUkipZ7onEbrmPVT5mGemV0QH8MOG2A2azYzToGOR9VZqAYEiFDyLHszbQAMFGOYmVIBqDI6K8InUanPhl9veH/GlxAoCPHp3GqIhLmhP1FBcNbTRMXUldeDocf379/t0O57J5x2uew3/6N0/sZPt/eJO8tv/P537RtdikJ8W8Wj+Xfzd/ev7t56/o+sAlZv7+sq/4xTfzxwCPbN15QnOY67c+MYDOvpaYxFvRm8ZTXLEzMS3N4kuTOZJ8dYnhHFaSKRD/TNehCku53+E2CpSLLE7WmCZSHji0i5iZw0xb4qBARS3+luwfUWhUEL9Ku2UwTkrQ7HxFqytyatlCzviE2qKCdMi0m0b6YSYJP1SSSuYSdhHoNkqqg0R1kJjcKQt507EsYIuloduy+FozuUdz9J1ueUZscdQwPLGNue/sypTaR0vHIOCl966EsNpHgeV1gKVsTFmLqmv8nUdpjtV0mxq7EM9OtJKiFk3WjCfx7KjtCt1sYuYdat6ippK8k2JEaQ1thzkfGPlIUpuoYGiOyrk7HaDZkefcHgtUFw3zk09hpvFwlrPOvlxrA/+NmkcCL491/athZw7n6iZphfYJPPkzMUk3TO57QYm/USKSV9KylLLULLL80gH0XMoVw0ARjSaUmhQTztjsZQlM24pkPUX2W4TMviglSWDeG7wT8GLKKJ0l3rBRdUtT/zp4mbuSJsf/xqCJQVOO5xytZ+J7ycAnJo3JLEtl/LLIcREKzndjSu1ZhIIjpXwmb1UNc1didORoPcOqyP8+fTsxG9/HRUc61hEulhL3rwXEaN/vW5aln9plq4tBjn8945IALUAnbjt0IZ4fpRIhKmLUGB0JUdM4S9dZrI1oHakHnfhqANfabLmUYyedzjHMkbSwnDm3RessZzY2JAVure/FJ81W1XCkmnMhXnZi73AO5yk073jNc/hyeMKg8WrmEMCsTQpytEghrsz4Wq3ikQ0ZrASUzrsupg+TLQErNkGXq8v7xXvbYeaO2Z0DuepCyin7RJqiE2lVrCzrjczESBhbzNytmplzQVp9MYkp30CxiFQPTqFpwRhM4wlVzeykxS6kk8UNFfNTieFDIplCyQFgdkxj54lYwuBMot5LzI9pMfvvFHk7FbN7AioUbH5I2BvTJZoTNcP9MartSE0rrEtYMVir/SXsVvL+Ei/RUo5nLWxvMn/aNiokiqnHLhR25ggDixtLGo0OCVzC5PjnZDWxMoTBEI4OsdMRZtKg9iarAAEP+mDO+H2JanfI5O6KdluSfQqfKHclcaaYJfZOXNN/r8M5nGs+VwtcHun2lwOZ2/afB3DIxDyBSQqUS/I5BfhhLj22GtXFZXxyLLLZvwLtsmlfK1SQaHdyhL3pIt3YYmdyQimMJco/IEliG2XLTJXM25KqEON80JHWGokUDjqfT1tF/aek0Iqlj2VGuSxkBNhf1MSk6JyVLhVnloCmixarAhu5PHPiK2rjsDrSBbNkZqyKXGhHdNFysR3hgmHmSrpg2KhajlUztu2c+8fbaJWwKlIWnvHmgsnckpQGG9GNorqgs/dFoqaTJkcecwnTpaW7GV8n/JZnsNGKhyfKlXzuawk5oSz2CWtB07V2uX+MSQxGLWYz4r2hmVawMJJaVmVpudPsXRwznVdUlZdS0ULUBgPreM7mWc634+V+O5wnx/QswtXOu399iP7iP7rGW7Oa9/0fd8Av7y5/P/o3XsuFn//O6/Z4/+r9/5PvuoLrPRZwkZS0a8tkHZ4SWJs+9WqZOtaXIeZEsqU3I64nYK2xK86TOieL9v57264Ss9aYGDVdUB4E3IaY683ckzS4DUt3dIDfqtELj1kI1R0GBSiFmXVi/EyJatdj54F6LzC44DFtpFhEhh+aoScziRAOAT3vUCHRHJUPfDE3Qn1OsXFfIClYHLG4kVqCl8WJyOKkaK/rvYhdRKpdRzEJVAeB0YcMxVTOJGovbEizY4ijWp5nTOKFiTmO2q59eKs1o34PAPt9ay0c2WL2nCP4kaGYOnQbKPZblAsonygmnuqCw04cxdSJdM4F7KTFTlp0FzCteITciTFpZxMQJiZ5D51DzxaUD+xx5H/vcfJ3puy8N1DMpORy80Oe5oiiO/oUFc4+ieZ6e1NulPfl8rkWTM8TBS+X39fD3V8PZA7n6qc/yRStSMmilS6S3rgv7Epmy5OckEk5Hl8t4/gl6t00Ukxs28x4lNlsXkaIium8ZtJJspjqJVomYFRio24pbKBrC9pZic8L9LCwS2O5j5rGWyatNMeHqJm0VU4nk0W9MgmlE5N5zdRV7DUDHppt8sB8iw9Oj3B6tomPhsYXxKTpomFgHJt2we2Dfca2ZbcZEFEkxKcToub0YoM/nZyksp7NqiGiiEkzqjqogkRG14FYyrEp5XVSLBJ+KAXFybD0yiiff04QygRFWkroUlQoYJgZp5Tk99J6BpWTBLHMXikFrrO0bUGzKFEqMd6eQy2ezhQVuogoI6llvrNMLwx54IEjfOjCDqcnG5yZj/ng9CgX2yEuHDL6N3q+/FXhsa+U54+b91/HLbm+842//99u9ibclDk8JbA2yXs52xOjdIksGtBaWAInWtnlQhvAp1XUrxYtlVJK4oG9XwIh5bwwN310cHKopqM6MycWI8xCGJfFcZGvFTNFMppUGdS8Q7URO5M+E6whDkuh1HMRWp9alrSRUIDJHNpOQFVM6P0Zo7Nb7I8kaaucRlqjOfIhR312Qbdd0W2U6A7choCcYgp+INGSowedAJ+Mv9oNSSGzc6Q/Jhez+YHCb1fo6SIXSa4BgByz3LNbyffJO3HFZmkFGyPmT9/GzgN25tALByERx/k5Nz73v0AyWpLDOg/5LKd2CdUGVIwkq3FHhvitAXpQYM4fkObNEsQoo1HTObos2Hpol7g9xu0McGNLuZ/YmB/i+6fyXA5enkzysWsJXi6/30diY+CQkbmaMU1ElWkZ2wvCtqRK+l2W4CUECWnJi27IyWNmLfZXiYyqT9pKBsiAIgXoZiUHZc3OcEEw0tJSGWGmZ4tatsfKsSslJexLEG9LTFDmZDCtJKjmoKlYtCUhKHxTkFqNqgQAuM6y8AUxA5BpV9EFKcDcawdUxrNRNtTGY1TiohtRas92uUBvJqauWrbSq1wAWWqP1ZGDrsZFQ2U8O/WCdFJxJm7Tl8hEk9AoVJRAmVjKicHUp485QEEoJf6Y4y2DQT4JGDTGRqrCL4Gb1REfNWmNgYlBC1PjITqDLgPYSIyalBSDjRZfG3xrCa1BLYx0zFQBNTfYmcZfLGjHgYMqcnE0oqocql1cx/+2w3mk+fJXBV70uiu//h837+dzP/PJC2Ye7/zu036CH7/3+j7Gff/6P8MPfRQ/++bz/N/fAPGnPg745cd9f4cAZm2U0SjV14Ah4EUpYVL6n5NIudA6f1ck51eLcIAUl9Io1a/6U5QulBAAQ3IOc/GAaljgR5ZoFN2mojxIKJ/QrV8ezNA52N5o4qDIkZoat6Ox80ioxMBf7nvKB/ZgfyrPoTey+0B9riOpkmIaCAPN+AFPud8RK0uymsGFgK8lpUxFGJxWxBK6MaiTAqzq3T4GWbTI7bbCtuJrsY0UQy6Ol9i9AWYyy0lkfpXIZqRUDSU+nqWnqN//dU13xza6i5iFxxw0Igsbl4TaygFdBbBagg3IWf5Otivl55sqQyIbTKdC5cfKorbH6M5J3HNfdpn3DymiO0d1MKcCRmWBKyKHy7WbPzfKzP9Fd3/dDQUxt2qs8sOBmH4uBzOHDM0jj86x9SBgxA00tomoSO6gkuugxcC/ZPVZSxoLiVjqZUKZ9ivfB176S5RJpARdZ3G1pszRyQdtTWGCSKeSwtqIMXHJRlSFZ1x1FEa8KzEpGm+ZdwXTeYVbFCid47zKiC4EYVkbaL1dmvFBzPBdMMyCocnHwrKe0QbLQ/NNQtLcOdpju1gwdVWOGJa+lJHp2Cga9t2A/XbAwDp8lOdxYjRlb2NAu1eTbCIMEslnliWJDyaaLO+GzP5LfLLf9hzZnhGjxgWDUpFR1WFz/81o3NF4y6IrWLQlKUGKCt/mOwty7C5KT1l6YtRLCZqxkZQCflqgOoVSSpKXNbKNRT5OHljcwtBVJXF+uNy6GSPSpufy/1xj+dLhXP08nMzsPUf/Ghs/A5/7mcB7P433HXn5Fd/f4TtqfbJcjNiDjUzjK7UsqgRWYAYuPeisxysbs5JH9XO5BM0H7Jl94l07+KFl4z6/+lAeWPTCE0cVuvGS+pUSsbT4kaXblNhjkqaYBooDhz13AJNZfgwBSvJzxDSebqPGNhGziNkkmlAhUl4MhGGBG5YUE5GabdwvvhxfKxbHJZ2sT/6qDgLzExa3AfVF5GxiSpgu0W5r9NPGbJ7bg+RySluU770fJoRlJHVfGoq1hNt22H9ajW0T4/sCqZSENz+S6ONQKXQw6C5RHDhMG1ALJ/cbQgZHubzMatGY59dNd4EwriBso/cm0k/TAyitoIskFWC+kNf7YILShxKyp+LcLNnYtZrrxb5c7RyCl0cf5RPKsjxGGJeERVHga7CNdMGomFYnq9Zui+1PfpFLjCWIJRlplzcHhjBWYsFMCje3nO0M9VBO2gwrR+st1kSMFqbFBUOMGpvTxEJSFMDcFczbknlT4p0hLix6ZoijgK69BA4ESd/snGZWlWwNGgkJSAprAs4bQlIYpVmYgovtkDKDo7mz3D/bZqtcUFvHs7bP0wS7NP130bIIRZaP5WRN4xjZjqI4QhsVuhWvph9JGphpFCmXP6sgvpdQiczMH3HsnJhw1+Y+k8z4WB0ZFh3jQtQATRAWiRI6b2magtgZ6AFM3q/eWTmsRCU+oqgwJjIYtrgi0IQButGoVlIFksq39VqKMp2ChZKS7MO54fPlrwrXzVj+99/zSfBs4CfgZxhcl8e42pHY6CfnMe6B5/xdaK78+ocAZn1CIIVVV4nk3idhU+IamIFVCplWKLMyPS79Ms6jCitAppeQ9ZOLLVPbomKkPFui/JD2SE5Ay9Yk5Q2hNujOQ0TkUCNDu2kwXWL8UIeZdpi9qbAIzpF6QBXWvCdao3enkMbMTljqfQEnyeT0r+zjSUailrVX2Llcx7RqyQ5N79CUIzkApxxnqT1C2ReKchqZl4rJXYbxn22iTl8QKVlSK6Dg1vZjZqMoC1RR0B0doIOAptntFcOzUu7ZbeUStlIeQzxArHplrBGWJ0SUc2ilCEWJbv2yKyZZjZ47wmaFSgl1cX8Vdd2HB6QoQKYPFvCHB5xbZa4FC3MlwKVnRG4UE3MzWJieXXk0IHSYUnZtRjv5HI2tRtu0NO7rzCD05cLJKMidLyqBboMAkwg2lxYnrfBGYZqEtYpYKWKZPTOZLUj7JfOFhSISx5qNYUNpwlKyVZhAZUMusUwcLGoOgLa1BG9IQZE6g2r0ssVeFvV66bfBJHzUVMZTmMDcZemzDeioGBTiZSm1Z78bSMqXt7ioab3l2GDK8XrKwBj2Xc3pxQYAc19S6ICLBqNE2qVJnNiYMj0/koj/WvwwqdOoqIlFQnm1ev5avDG6DgxLh0+ajaKlMiJRq43DqkhEsfBS/Nl0BSFIF4wy+fNfJfAaHIROo7Ve6vtSlMjlUGrKwuO2OlJTY5qcJJCQ71k4ofro7OIylHo4N2y+/FWB/8Sb8dt/GZCz/rD/hO5TTOkPP/GnPg6+7Oay6483hODJNIcAZm1SCIBeMimpZ0z6eOS+0NJ50FpADObSuGWtRDZm7XJRvZSOqdwdU9hlV0ryAXVhj3K2wEw38FsVfmSIpcZZTagUsRhiZ55u21LueQYPzCQmuGdbUhKZm/crpqjvYkmR1DQopRg/0LH7nAr2wA00ZmyxjUK3EsssZtNeZy3pX8kq7Cwwv61geqem21KU+4n6XKKYJ8ppICmFH2qUT5QHwuC4IwOq/Vp8RJcBgSUoXErcPGljRCg11V4kltKD0J+tNG3CjeSydlMzngZ0F6RHobZErdCNW0n8fMDsL0hV/vcOCUWEkNAa3M6Aou1gt1tJ3PpSTJDXzK4YuMO5NaYHIFcDZB4v23Kj5WQ3cnqJ2PDOM4/J5jyanOxwHmMU+NpgurhMIlPZw2IXciKmTxyDnKqYQU0sRDa2VBG7SLdlabYkhcuPwG1Hko2yZo4K5eSz2+xLbH47t4Sjirp2yy4XoxJJJRpXEYKmbQoBLa0RcAKoTuUyyFzc2GrKXY0b6xxZn5jZmouFZ7Nusocl0BnDwhUkJBRgXAQG1nHQ1hzMxIejdaLxlpmriCimnZz8MyoxLltcNExaCSOYdhWlCUsvj1mo7HkBTCIWWTq2ZktVEZRXYvwHpl0FeXsSMCwcLpjl76UNmBxMoFRCGVBVwNiIPyhRQZG8lrJLk0hR9rG22XOpEkURaAYR0xrxJ6kchw1LwJosq5Ojh3NTRpiY31j9/v4tuAvg26/6vh4JvHzc599xQ2OEP9LnEMCsT/Z3pBD64H65OAMWYK0lvgc3K2CzvKxnNNpOwJA2oM2y5DI5t7p+iKSkYeLQ0xnV2YqqLEhWmInldjlP+UCERbNMF0tp7QOxl7n1zEu/XYHM9nTU9+5R3CHZwOU04saGWGhMZaRrBkkUS0oRBppqN0Ar7EV9UUvrcQnFLGHaiF0EYiGxZtpFtE8U84gbaxbHS6oPqkvBS2an1Foa23Ifao1diJnVYaUrwUV0oXEjqPYi1W5H0oowMPhRQXHeoWKOvI4QS4tZtLLvANV6sIakpDTOb9WkIgPH8QC1P4XoL93GHmQezi07DwdKelDzZJeHPdbcKvKxw3nsSUo8LtEqUOJzSTpLd30u8U1rC96MGZJRKzO/EkADUszYbSma4wm3EWDDYW0kdMKcqHFAKQhzi5obCOCmJW5WQqdRA9EBK5OILh/PogK/kqqRhCkIRUJ1Gt2IDKqYCqjRTszxbW2YzAVoiAyrI0S9NMU3vmAPlj0ym6OGwgQ6b2md5awfo7NEV4tfnoT01rTOUhWe2noOupoz0zHYiOkUaa5xZYLse0kqs+dK9g9AGAV2xoslWOljo41KtJkJ6h+ntIFx1RKi4mAyJLQGOk0ap+X+NyO37Lvpi0j7QIQ+WUwNPWGuMZ1agphL/xmQbT6cGzaXA4lHSiS78OZ/Dl907EZs0uFc4zkEMGujrEUpuwIGvVEfVsb9ZT+MXsqgUkor/0vPfhiN0gVqPCKc2MaPC9E1ZzmTSgnVRexBg9qfCqiJidQ00GQRoF57A2q1YoSCGPqX/pu+h2YNEFzSsVKU8vPBlCN/VDN95piQ5Qrz45pypqn2PKZNLI5pVEgMLkRiZYhGttU0gcrHZfSnCnIQTkphFp4wFJN90hBqRbMNqZToZ/xKQreU4/UgC8Ba4qim27QUE085cUQrZ/vszC/BFSlhD1pUrOQMZWXQ807kc1qL76UqxDsTklD4WmfvUCGpZS6ifCTWFjsekvYOVmECxpA6t5K3mcuPQodzPedTXfuIf/tfRfWot30yA5ebISM7BELXf5JZHS+SklSyZAXIqLhaDIP83PsM+75EegteZri7DU0swG1E2HbYImCLQD2QdnvnDe2iQE8MqUoknVCtQbUisYpekcooiVlJgIt0qUgMMCYtjesAGGExgk4sTirsTDG+D2yTmJ8raI8WXPxoYXhmTYlSIlFTKuGCxkdNSArnDVUh5ZaLrpBWgajpGll+mCKgdSLGmpSTvqYqUQ865vkk3mirYX7SYqdZ2laIlIxOCxtTQsqsCLUEFLTeMusKuux/USrRdAXWSrx05yyLRUmICqMTxgZ8a1CDgC08bEAcKqpKTjimpGibApKUW7rGonRCZ2AShzEH1MgLviwiDRLKENY7zw7nhs86oHkivpjfe/2/g3zbh7ufJVB61Q/wY8Bf/6XH9TCXzBNJ67rVpGTXMq76EMDAErA430BlSK0UQCqlSCqtpEkJVAYSypQrwALg3QrIqATq/8/en0dbkp3lnfBvTxFxzrlDzpk1UgJkZJlJXRos0d8CQ9llsMEYbAtst8XQSBhJ/iQsM9gLYWgbRIOBBgPGdAth3EZuPkt4WBjhljA2RkhCCIEEyJhBVZKqsiqne+8ZYth7v98fb8Q599aYmZVznWetXDfznDhxIuLmjtjPfp73eR1sTehObtBtQLEz0x4u1pImYbmq1h525OOHVL04v8A8cr63gjnoGv2OXsEZYAqHtM0+25Ognlvpu9yjq1LWM+RLGrFI12EefpjSHWV2+4hcGGRuMOci7LS4VFDNrMYhx0R9yJKdMDqjBfNiUGIgQjcJWJt1wl+3mBladGpGlA9aUmGotx1havtD7JRMRO1jo1a3DpzHYIiuo8s1SKbzUJyviUEVIjtLiLPUG550tCDsdRohLRGXGsgZqUqINUYy2QpxqyAVlrDbId4iLuGnC+gyqXBIcOSJw1zo+mXPqEt4wypZSsTUHfj/8WzH1boOLzn7KABxd/eq7P9y8VfufhX/4sM/eL0P4wB29659sMTDv3ucU3/y0afdbj1OFMN1SJ3G5oodVBRDxqhVrC+VkGxU9bZD3xgQjC52gcbFG619abxjMRLcI9AtMu12R4tGEWsMsIBpYNxH1jcO0ystYgVaVgs7w6/K0AfK2N6+ZnBzS/YaUaxkB1IQiF4fTYtM9VFgarkwMnSHIC+0wN6Ug4vBQC50/63te6qhtTT9PN60GZMMyZtlLDSiBfoYaAvHrrOQDKa1IDUxGXKTdUFx8GhFg4n6jLaNRebC6RzU7qVnjw86blJMvWHCkOf6/GxHHuMyuRWgAQPNIpFTxhio24SxmZwcqevJ33BMGWIQKKLOAfrriNUAAO2TphJTtvWB/x/Pdlzt6zCvn3z/P/Emy7wWvu5b+vvp69Qm+6s/kJg3j/9c3OtI9RTZDfzEm+wBNedvvC7xE2+y/B9fNwfsap89fv4vbnDyTVCnxLwTcjsjSYtk/XuzmJPbGdNmRq6FWGfiXscHJn+e/wXgrv+ZeQ3TZoZkYfrTn0Ez+b94wfd/LS+w8Na9z2TRLjD7zjflKXO7Or+feJMOuqkkUq3vDdsM2J3Xy2v2v9g/5Cfn9zDfm/L7d/+vxL0vZV4//jMXi8bNn/L3sR+LfruL+f9hZD2a+MM//EM+5VM+5Xofxho3KB588EHuvPPO630Y1x3rcbLGU2E9ThTrcbLGU2E9ThTrcbLGU+FixslagQGOHDkCwAMPPMD29vZ1Pppnjt3dXe666y4efPBBtra2rvfhXBFcj3MSEfb29rj99tuvyffd6FiPkxsf63Fy/XGrjRO49cbKepxcf6zHyY2PG32crAkMaEQisL29fUv8pxuwtbV1S50PXPtzulVurFcC63Fy82A9Tq4fbtVxArfeWFmPk+uH9Ti5eXCjjpN1Vdkaa6yxxhprrLHGGmuscdNgTWDWWGONNdZYY4011lhjjZsGawIDlGXJt3/7t1OWTx3VerPgVjsfuDXP6WbDrfY7uNXOB27Nc7rZcCv+Dm61c7rVzudmxK34O7jVzulGP591Ctkaa6yxxhprrLHGGmuscdNgrcCsscYaa6yxxhprrLHGGjcN1gRmjTXWWGONNdZYY4011rhpsCYwa6yxxhprrLHGGmusscZNg2c9gfmRH/kR7rnnHqqq4iUveQnvfe97r/chPSn+y3/5L3zxF38xt99+O8YYfu7nfu7A+yLCG9/4Rm677TZGoxH33Xcfv//7v39gm3PnzvE3/sbfYGtri0OHDvG1X/u1TKfTa3gWiu/+7u/mRS96EZubm5w4cYIv/dIv5SMf+ciBbeq65tWvfjVHjx5lY2ODL//yL+f06dMHtnnggQf4C3/hLzAejzlx4gR/7+/9PWKM1/JUnjW4WcbKrTROYD1Wbjasx8l6nKzx9FiPk/U4ecaQZzHe+ta3SlEU8uY3v1k+/OEPy9d93dfJoUOH5PTp09f70J4QP//zPy//4B/8A3nb294mgLz97W8/8P6b3vQm2d7elp/7uZ+TD37wg/IlX/Il8pznPEcWi8Vymz//5/+8fNZnfZb82q/9mvzX//pf5VM/9VPlK7/yK6/xmYjcf//98pM/+ZPyoQ99SH7zN39TvuiLvkjuvvtumU6ny22+/uu/Xu666y555zvfKb/+678uf/pP/2l52ctetnw/xiif/umfLvfdd5984AMfkJ//+Z+XY8eOybd+67de8/O51XEzjZVbaZyIrMfKzYT1OFmPkzWeHutxsh4nVwLPagLz4he/WF796lcv/51Skttvv12++7u/+zoe1cXhsQMp5yynTp2S7/3e712+duHCBSnLUn7mZ35GRER+53d+RwB53/vet9zmP/7H/yjGGPn4xz9+zY79ifDII48IIL/8y78sInrsIQT52Z/92eU2v/u7vyuAvPvd7xYRvbFYa+Xhhx9ebvNjP/ZjsrW1JU3TXNsTuMVxs46VW22ciKzHyo2M9ThZj5M1nh7rcbIeJ1cCz1oLWdu2vP/97+e+++5bvmat5b777uPd7373dTyyy8Mf/dEf8fDDDx84n+3tbV7ykpcsz+fd7343hw4d4oUvfOFym/vuuw9rLe95z3uu+THvx87ODgBHjhwB4P3vfz9d1x04n+c973ncfffdB87nMz7jMzh58uRym/vvv5/d3V0+/OEPX8Ojv7VxK42Vm32cwHqs3KhYj5P1OFnj6bEeJ+txcqXwrCUwZ86cIaV04BcAcPLkSR5++OHrdFSXj+GYn+p8Hn74YU6cOHHgfe89R44cua7nnHPmda97HZ/zOZ/Dp3/6pwN6rEVRcOjQoQPbPvZ8nuh8h/fWuDK4lcbKzTxOYD1WbmSsx8l6nKzx9FiPk/U4uVLw1+yb1ljjSfDqV7+aD33oQ/zKr/zK9T6UNda4obEeK2us8fRYj5M11nh63Ozj5FmrwBw7dgzn3OOSFU6fPs2pU6eu01FdPoZjfqrzOXXqFI888siB92OMnDt37rqd82te8xr+w3/4D/zSL/0Sd9555/L1U6dO0bYtFy5cOLD9Y8/nic53eG+NK4NbaazcrOME1mPlRsd6nKzHyRpPj/U4WY+TK4VnLYEpioJ7772Xd77zncvXcs68853v5KUvfel1PLLLw3Oe8xxOnTp14Hx2d3d5z3veszyfl770pVy4cIH3v//9y23e9a53kXPmJS95yTU9XhHhNa95DW9/+9t517vexXOe85wD7997772EEA6cz0c+8hEeeOCBA+fz27/92wduDv/pP/0ntra2eP7zn39tTuRZgFtprNxs4wTWY+VmwXqcrMfJGk+P9ThZj5MrhmsWF3AD4q1vfauUZSlvectb5Hd+53fkla98pRw6dOhAssKNhL29PfnABz4gH/jABwSQ7//+75cPfOAD8tGPflRENM7v0KFD8m//7b+V3/qt35K/9Jf+0hPG+b3gBS+Q97znPfIrv/Ir8tznPve6xPn97b/9t2V7e1v+83/+z/LQQw8t/8zn8+U2X//1Xy933323vOtd75Jf//Vfl5e+9KXy0pe+dPn+EOX35/7cn5Pf/M3flF/4hV+Q48ePryMvrwJuprFyK40TkfVYuZmwHifrcbLG02M9Ttbj5ErgWU1gRER++Id/WO6++24pikJe/OIXy6/92q9d70N6UvzSL/2SAI/784pXvEJENNLv277t2+TkyZNSlqV8wRd8gXzkIx85sI+zZ8/KV37lV8rGxoZsbW3JV3/1V8ve3t41P5cnOg9AfvInf3K5zWKxkG/4hm+Qw4cPy3g8lr/8l/+yPPTQQwf288d//MfyhV/4hTIajeTYsWPyd//u35Wu667x2Tw7cLOMlVtpnIisx8rNhvU4WY+TNZ4e63GyHifPFKY/oTXWWGONNdZYY4011lhjjRsez9oamDXWWGONNdZYY4011ljj5sMtQ2B+5Ed+hHvuuYeqqnjJS17Ce9/73ut9SGusccNhPU7WWOPpsR4na6xxcViPlTWuF24JAvOv//W/5hu/8Rv59m//dn7jN36Dz/qsz+L+++9/XHTdGms8m7EeJ2us8fRYj5M11rg4rMfKGtcTt0QNzEte8hJe9KIX8U//6T8FNJLvrrvu4rWvfS3f8i3fcp2Pbo01bgysx8kaazw91uNkjTUuDuuxssb1hL/eB/BM0bYt73//+/nWb/3W5WvWWu677z7e/e53X9Q+cs584hOfYHNzE2PM1TrUNW4yiAh7e3vcfvvtWHtzi5XrcbLG1cJ6nBzEepys8US4lcYJPPOxsh4nazwRLmWc3PQE5syZM6SUOHny5IHXT548ye/93u894WeapqFpmuW/P/7xj6+bVK3xpHjwwQcPdKq9GbEeJ2tcbazHiWI9TtZ4KtwK4wQufaysx8kal4KLGSc3PYG5HHz3d3833/Ed3/G41z/v1FfjyzH1PcdIhcW1mVRaZqc8JoONUJ2L+DohxoABP+vIwZFGDj+LAIiBbiMgTreZ/I/zcO4CpAhZwBowFqwFEUwIUBXkyRgZebKziLfEscNGwS10v7lwiDUYEcQaxBn8XocRIQeHSRmTBdNm3O4MmhaJafWdXacnKlm/X7L+23kQAeswzoIxMCppT20TJx7bCfXRgO2E0SM1ALZOmJQwScgjTy48OVjEGuLIYUTwi0QqLEYgBcvkD85jZnMkJoy1SM56bMNxwOp6BK/HnDKytUEeB3Jwy/MGwOhxYECCxXS6H7H6vsmC320w8wWyaCAlcE6vw7Di0/80ISCTERQBROiOjZlNEu9/x3exubl5pf7r3VR4snGyH7/0ui97xt/zZ37wbZe0/Su+8N8+4+8c8FP/8S8943286W//zStwJPAtP/Yvr8h+AH73Xb/ztNv8yc+/spOH9Tg5iDu+8x8w/uTEpGoJNlH6yDh0eJNokidly/l6TMqr1WcRQ8y66hijxftMFSLOZNrkuHB2g5Pv9Bz+jdO6fVXSHR6xOFHQblqyh8UxQw4gpZAqIZcZjOA2OkIRqYpI6SN1F+iSo2stOTnSNGAXFvECAra1YATbGYoLBj+DycOJ6mxLDpYcLCZlcrC02w4yuE5oNy2uEcoLiQufEtj75Iw/vmBjo6Zweh2sERZdoImemC0pWUT0duxcxhnBGMFZIQvUbcC7TOETxgjzpqB+YIPt3zeIgaMfmuPPzTExQhf12WH7Z1nO5O0N4iSQKkdzyLP7HEdzRJAguBNzyiqSksVaIUb9aQy0tddjWzjczGE6g6sNrobyglCdy4RZxjWJXFj8LOLPTOmOb9AeKhAH9SHH9E5DPZnx8W/7x+tx8gT44nd95oF/f+3f+lN8x23v587vqQD4lZ/85wD8X//qTn7yP33RcruPfXPNJ/2pu7n7M7+XB37r75H+1sHam3//+b91Ud83bPtEr18snuy7LgWX+v1f/Wd/nu981bfxxh//3/jOV33b8vW7/sr7r9jxXe41eabX42LGyU1PYI4dO4ZzjtOnTx94/fTp05w6deoJP/Ot3/qtfOM3fuPy37u7u9x11114X+EmW7iiwjqDTAy2NLjKUZ3LmAzBOELTkAtHLh356IhipyUnh4wL/F5LGgXSRAlMmCY4cQS/14CJOokGnUgDGCABi4xrZpjxCBlX5LGHUGGc4LuOOPa4DDkYxBtckzECtvS4RYeZJey0n6S3nRIXLMSsX+IDIEjKGOP0xm5tT6aGybzFFAV4Rzq+jRyuqOZRCUPnCdOIGY0Ra7AhY+sOMlhvScFhSocYSJseP88EG3FilWCMPfaw4OqM5K4nLqY//wi+J1EGEIdJFowHI1BnJUZlSRp7TFYCZ7Jgyp78GAOF4Jq04mV7NWanBgER15M2gz6d++uf+xKwZGCvxbgIzhHme4SR7Xd988vbV3KcDHjfN7/8ihzb+7755bzoe/71RW8/kI6v+5L/97K+7yf+3X2X9bknwg++7muu6L5e94NvviL72ty49pOk9ThRDOMkyJhis6YohWAd3jmctxgjpK4gZcu4sLTJYY1QuESXLXUbALDJYW3GOIdzGZ8sIXumf3LMkY8ewT7wCKYRQp2pFgYJev/tDpU02476iCWODOKg24TYCN0403qBMmNcRjoLyWCiJSRDaC30j6rJJ4TxmUSzpffw6lyieqTFdOh9mYQ4Qy4sdlwQK0voMqlwOIT2dsPs0zPVqTmTkVB4jzWOTEEUQ1VlbNL7sDFCyhZnM6XTG3jTv+eMEOclKVlSiBQ+UQRHM6moWhidTYwerSEKZIO0QFODNZjRSNv0nVsQFhmpSkZzi5mM2BtZmkrIzrKIYJ3oeXmD8YmcDVI4zNTjsmXzYcvGJxKuFcSBn2fKRxpMG/Xae8F0YMXjFgYfHLaJTHaErQueve0xH+fWGCdw6WPlqZ4nYcMd2HZiC5x3y9dNsaGvm60D2zrvCIWnHG0SCo/d997bXvyBJz32x06uv+y9L1i+/mXvfQFve/EHlq/t399jX3u677kUPNG+nw4Ts4Uri+XPAeEx1+Fy9j1g/7W62P1ciWtyMePkpicwRVFw77338s53vpMv/dIvBdRb+c53vpPXvOY1T/iZsiwpy/Lxb4ggZViu8LsmA5bqfCYVhrDI2DYjwWFjBmNIhWdxslKlpM7EjQLbZWzbT6YtpJEnhIDEXqHpIsOvRlJW1WNQSRY1JibchT1GFypkXCKFR5zBpoztQJKqG7busNMGM6+RukFgn6rioP8+JEPTKEFx6Hc5p2QnoRN7wFQB6ToYVzRHK31GAWIMxU6H7RLZWwzo6ltnMRbiRiCVDj/tEG9xta7gkcEvWnLpcXUmVR7nLHT06go9ael9jgOZ8P3VGY4/JUzK+JSxbUmudCXNNkmVlyiQ+/POGdsk7F6vQA2qEyB1gwn+4HcN1ysBhUNS1u91DuYruftmxxUdJ1cBl0pi4CARuRgycyWJy42OO198Fx9774NP+f4aj8eVHicGVQ9amxkFva/Z/sYaXGIcWgC67MhicFbvRylbqqJDxNB0nkVyxGRVubi7Y/dTNzn00YeROiLTGebcBcyowowq3DnHKCbyoQ26wxWpsHSbjnZiiWNLKgxxDO226CJYB6422A5MBj8Xxo9kyvORsNtQnTbEjQI/bbGLjlx4TM6YLkFwWJModiNxVICArwXbCfO7LOZIS1lEcrbUraUMEWdVYemypUsWEYN3GWsEZ4TgEjFbKh/pksPbTOEjndFrFJMlZQteqM5nqk/sIc5iRFTBd+oEIIuq/d4hdQ2zGbaqMFsbjB8tyT5gkmHh9bjTVtSFLCckp4tdZu4IU0vYMYzO6jXx8w4xBjdv9fklAknUkdBFEMGe26PYneucogi4eoS5kK7g/9Trj0sdK9fyeXKp2D/hfuyE/5kSgIvB1d7/lcJwnZ7seK8UmbtY3PQEBuAbv/EbecUrXsELX/hCXvziF/ODP/iDzGYzvvqrv/rSdmTUnmQ7JR+2ibBVIt7gFxnbCSZm2q1AnFhsJ1SPNnRbBSZmxBlSaRHrEQc2meWNFO+Wk2bjHNJ2KxVkH6RplxNoszfDzNWyNX7UHzhO6kY/m7NO0kWUkAxKRttBSoiIMtng9Yae9AFpUlrZyHpLmXQdpqpI22PEQdjRyX+aWFV+rB5DsdPiFlGtbN6SCkuqDK622C7japXTc7CY7BCnilGceEJZ6LHngbjkg2He3i/PYzhWrIG2xYjgmhY7rrCjoA+tLJgm6QM1Zsx0rgpUqxMDhvOEx5CX3k62n8y1gLOQstrYbjFcsXFyA+LZRE7WuLq4UuPERiUiUcA5Q3CZ2KryMgod1ghdckv1ASCLkhy1laki4V0mZYM1amuKpWfv7sChw9twYQ/jPXQtMl/oYs9kDCljHz5LeTaQD28w+pggzhC3KrpNXaSbnXLEkX5fcwSqs0L2hvGjOlG3bVJCIAbb6cLdQF5IwwKQquFuESn2nD4LgiFWqvw4n8hiWNSBokh4l/E2M0SfViEybwpiUmXKGCFmJWp19NSdJ7hMGSLeZWKyOKvbzarE7FSgejRgkiCmWy4M4hzSNVDX+lyPUZ8J0xl2vqAC/GwTmypca0klNF0AA9kLrjaYBK41SsrmKt6n0mLEq3UZSBslbtZiYiYXHpxBRgUMBC9lpArk0pPdTR/4+jjcyM+Ud/hdfvxXP/eyJtWP/cwT7eNaT9YvF5/zH3+dt734hVdsfzcS2bolCMzLX/5yHn30Ud74xjfy8MMP89mf/dn8wi/8wuOKy54Wff2HTXrzSaOAESHsRVwdabcLcuEwWRg/1CwJiW3zckIfJ4EcLOF8h1hDGjlyMEoqoJ80R0wRVhP0LIjoa0om/AHyIXWjx+YGud3oeyLgvd60Rfq6HAuSdD/WYLKmOpguLj+7nLDbfIDEGF+As8SNgG0yftoiwdG6gji2FLt60x5qTHLhyIXDzxNpZEmlJRcWN4+I179j9MafgyVVSriM90q8clblo78uxntVqVJG0J84C/3DnZQgRkzd4LxXwtXXEQ3nJDGyNFO3vfpSWGShRNBUJdI1mKpfCRq+35rVtXeoBW9/bc4tgCs2TtYArqx9bP8+r5SNbK2yXB6u1DgJe4a2dSAGW3XkXk2xRphJwFnB2bwkMs5mYnK0Ue/zbVTSYo0siY2zmWLc0m0WyKTC1r0KUJXQtksLMcO9VIQ8LsjeUnz8PC44cAaS4BdaD9JuWowYtv+gVZv0Xr/4kzOmSeAF47XexYhg2kEZz5iUsYA4fQ4A+BpSaegmBmPUHgZ6mFnA27wkKQBliGQxBJfokqOOnnFQMpKzpRXDqOgIPtIat1RwpuOO+cmC0bkR5RmHbQv8Izu6oJcF4xxYg3RxqdBLSqTpDHfW40UYbXi6SSBMwc9UmYpjQ5iha2tRVakwFcpdrTHNweIWEbEWCZY0KdTW3C+AmixK/tA6TKw+C217az1P4MZ/plxpknGzkJbrhcF+d61wSxAYgNe85jVPKvFfNHpFQazBdBlrEzR6MxJjCHsd4izi1duaJoF2K/QEBsiCqxNiUPUG1HZVOqQqYV7rpDh4MAYzrMh0cWUj62+6au1ShcYM3kbvVcmJSWXyqoS+4B91u2GSqArRtKrmWK3dWZKWYf/Wa7GjQ0nMQJCcI1YOm4Rceb0WSW/OcWwpz7S4Rgv4uyNqTwh7HcWFSC4s7ZYjWINfRNpNtZaZBOLRVblxiZktloTOhN62FqMSsJR7MrFvtWqwA+wv+u/Jn+TeIhDj6voNJMa5npyJqi/G6gplVa4sZKDXJexXuG7+iMsnwxUZJ2tcFfKyf99XisSscXm4EuNEDDgneK/PgpQNAnTJYcUgknE2E3rbmAHEZkBrYlK2SE9eYrLE6PA+4X2mKdXaK6MSGRVIcGpjElHrqzGwOdZnS8zkcdBnTtKaD79o8Rdqwo6nPjEiTi1h2um93hnEGIwYculVffGWbisQphEHek/tXQdYtW/ZOpEOBWyCnCCNlHyNi44q9M/DfQpLEkPX17nYJckxxOSY99dwUiqZkn6b4XoFlwhFpNsWmk1HeaYvyzFGF+nGo9UiYBakf/YZ55Auknd2MW3HCPDzbdrtQLdhiaWh21ASEkdqq/NzYfJwpLjQLu3lpkvgjNqYjVku6om3yzJLCkc6NsE1iVQ62vLWU/Vh/Uy5GXAlicWNROJuGQJzRZAybq8he9unWvWrKIPXt08Di5MxcaPQG70FGwUzTLyzEHZVUjZdIo8LUrD40mOGibfklWKQekUCVE1xVl8rSwgeGZVLC1ouPFI6xKnq0G4X+F7KRtBVni4jpzZwdcI/sgu7U1gcJE7LYxhUhyFQIGekn8iLNWqNS4LJMDrTYduMnXfgDGmzwsaMjbnfJuHmHSbpdekmuh8b9cGUe6tcHhfYgZwMisn+JLJlcf8+UjXUwli/2m5JTMJBtWRQVIaaokG9MXb1b9M/YVJa/s50//sKCa3B2FvzgXMlcKUK+NdY41ZFnAhlb5lKYmijJ2eDtVrnYYdSv2wPWMjKEEnZEFCyk/ellFmr96pUCfWpMX5REseOxTGPrwWTBBs3cHWfDrZpaTcNvobi3Bh7ZoeiX6iLh0eYpAEp55/rmJ3cAIEw13t+KqE5ZLAR5qf0tY0HAod+3+kzzmZsGxGrZMp2Cb/ItFuO5pChO5QYWcH3BC32NS+gStJAXoJTm1ndeaRXmrI4rIGyUAJTR48zwjh0OKP7cy4z306025409tiYkUpdBKaLarFeLPQZY61a30JQEpMS0raY3SkheEwek0OJjUKYKxlaHLWMzmaKCxHXkzjpSQuAiT3xHJSXTp+BufLEcVA7ue/DZmImbt66C2NrXD6uhSXr33zsS/ny995Y5ONKYE1g9sM7EFkmXdm6W96khpUm0BuXiRlXZ8LuSm7PzmO7hB2K+4YIx0InzcZ7JLWqpBirhCX2CVz09q6ygOBJm2OaEyNyoUXqqdJVrhQMxW7C1wkjkJ3Bz9SyZVs9LoIljhz5jkMURYAz51ckAPrksX2/eufUimWVNNhOVRuxaEF8q1YBN9W6m1QG2kMBE0XT0My+/dJbzAT8PCHe0Gw7YmWVzAwqybBSZi3SNEo83L4b/FAcmZ8gMczYXnVJKxveUM+SU59I1tfSDJHLbp+qs59EWqOhAbIiUSYE/Z24fYRmjQN40ff865uCxPzGb11cEMP/9Jk3ZnHpGjcv4oZQiFqkumRZNEVPYBK5V1ecNdCrLbGf3FubydmS+sm8MULXekxPfIwRpmVm9x5PmHmabUOqwC+MBpoYMMkRJ4Z2S5UQMrSbh6jOb2ESpMIwu0PjgG0HOWhSWX1UsAlN00qG7DWKOR3tsD5zYVxiY8HojMfPE9Xp+erZKOpA8MHgFw67sHifSGIQMXTJqvrU28q66Ag+EWwmi5KAlO3SQudsXiaRZTF02RLEYDHMuoJ6UYCBVGg6p9ZV6jNUjMF0EVNV+xa6emXeVtj++WG8R7qIm7WUFyzZGQ2I6TJhL+Fnah/X4iOt17T10C7BYHImbo/U/dCTuFR5miOedmIJC8E1ul+T4hP8L1njamIgB8PEfaiLedXLfhmAH//Vz6X4rhfw1p97M/e/9Yf5xr/5imXdzBOpFsP+hs8/Fm/59gf5mW/7U1frdJ4xrrXF62pjTWD2o+lgoqtYcSMgweIvaBGgrTVOWILr08kgB4eLXR/pyzIFRazFpIT0pMA1qhaIyLJIHG/7AnO98RrvkM0JeWtE3CyWkvTKV5w0vrjQ8ADTZZzR9+JEU8rCbqcPrybhu0zcCMzv2WIUHOahM3qDX6oZKDHIWldCCMvcfL/Q/apvV4lSqlS9yYVDvBIUI2pZs11Wv3TMeFCbnVH/b9wI5GDIHkZnEm5nsQwfQGSZzIYdCF6fAub3qS2gxwl6vSQjw7Ng6GnT74PBLpdlaTNbLnUOygusFJkBA0na95r49fC4EXGxpORy9rkmMpeOf3f+pXzJ4YvrUv9sgt+1LPYqqqIjuAxlS5ecpmwldyC7JAsE3xeGZ7OsCRGbaTolL94ntZUBJhriyNBN0Hu56EReRoZ2S4gTIW932DLhQ0IE9j7JsQfk8wXVw5bFHRGsYBoLFsQK45MzABbTEskGWospM5uH5qRkqYGzL3GM/6Bg80FDseOxddTi9pjVAWCh2Mts/75l50RF2Z9XzmqDc0YYhQ6KbmkdG+xhoOuI+2GNEHobXhZDK44m6r3ZTS026vmbfoFLnIFJBU2HqVuMm6yeB20DTh0NQx2kaTtMyhRNp/Uqo6CuCxH9GdNSqcI58E4te0Cu/LL2MxBJ3tJt6rH5WlgcMdSHAuNHM7a59Yr4b3S86mW/zI//6ufyDr/7lNt92XtfwOwPV595lYf7X7x1Wd/5Dr/Lr//CN/MP7vuxi9r+WqSc3apYz9D2wxpM02GbRBr7JYkAvSmaJGCFXGjyll8kctEX1nd5SWSkdJhaMH2h+vDZZZF60VuTUr/a7xwyrohHN+i2NATA9k0ZU2HJxTABh/J8pw0bTZ8M4w3ilCTZNqq9rLd/tVseI8LskzbYmC5gZ4opCyUJg3Vqf/PKnLUAVKpl08w88rhZh1t0tMfGmig2j72X2sBIG2jaRV4pJg5VsaLog63nEWGv0+8YSIsxy1qVA5nfRdBtrFsSG7LTWpl9QQagnukDcdBZVpa0gQQNapixShwHlUYe80CRrBYzi6pgW2sL2Y2Gq0FeHrv/601ibqb6l3em/w+z3fXK8hPBLyDNPLNxyea4wRqWtSDORqSPTRYg7EvnskaTtiofmbUB51SRWdrHkvZuSSWIA5O02Byg24D2VMSOIqOqw1pZ2tac1SCBWTIsrOhEPhsNWhkl/CgyLju80+absVdMCh+pQqTudLrQ2IK4oW4Avd/q88gImHlHsavPx5GFC8koOXMZY4TgkxbhD+EF2RJ7UjYEFcgysEAonZKfynfL92ZdgTGCD4kuatpZu+UwqaKKavVCBBkXmODUldBpyM5S5fceGVcH2JJ4C0mwiw6aVkmL0/AC6kbDcorQ25q1HlXGAde7IeLIIxbmx1T9MknraLpNmN3hcI+sp1s3Gl71sl/mJ//i63jVy36Z7/+XP3XgvUGtGbYD4GUXt9+f776WL3vvrwG3nm3rauFy1KH1iNqPLNBF/G6NhDFiDGlSaEG+cUiAuFWSKlVBsjeATvRtl8ml3iyH+MnBWyVGb45muNFrNAuSNUVMNkbEw2Mk9P7gNuPmKlvr6s7qJpuCpZhHTNNHHG+UuP57culJI08OFrGqCJkE2RvSsU3czlTJi2Rt+jVEFtPbx/p+K27ekSqPGIiVI5WapNZNHMVOJI09rs29CqMKjOkSWD2GHNTOFkeObqJ9B0bnEn6vwdS95W74PmuV5A3kZ8B+21hfjLmMihZBhvf3EUJjDBQj3XfX6Wdwy88g+3L4h4Qz6InMvkQ2V5A3R6TxPlK1xnXH1SYvl4LX/eCbr0oh/81EXtZ4alRnhXTC0pQl3msvE2fVGmX6dDHXF7MPRKbrm1oCtMkpyTGCK7plmlfT+mXPFoxawGzUv6dKKLdrykK73Q8RzKC2rUnRMSo6FpuBnI1a2URra/xSAbLL7QuvRGvRN9ecVC3GwOyYJ348aAPHftEoe4vt+3DFSp+LUjuaLmCNEqPhnAe4PqRg+E6NjVb1qfKR0kUWMTDvCg0zyJam8xrNvFNRdBCr3u7cidq8vNW459SnqHX6LJWqwCS/WqyDvgFlb/HuElJadVAYA01vBY99+mZWKzVZe75IWfSWbdfXfVpNX9swzG8TbARxQns04bdaFsdXPcnWuDnwwP+35h+/7z3X+zBueQwK1KWSmDWB2QdpGrAFdmeGd448DuTCkSq/jEWMlcN2gp9qHxc3bUgTLVwf3Em6AuSQwtNtFdgo/Y1+n23KWC3YLwNpe0R7uMDPk9rDevJjm0gu1OdrW6E43+LmGm0shScHt+xdIwYwmsOPBVdnivMRrKHdDrTbBeMiaEMv63QyH/sbe8qreOWcMbOaYAz1qfEyFjJ7Q9hLuDb33l/R1Jvc1wwFCwKz20vEot2KLfg6M3o0UT481XS0QYYfUsKs1R4vxoC3WpA/qC+9eiLWLKNBAbUBBJaF+qYqkY0x3VaFFH2KXBbcrMPu1cvUM2m7ft/mYNLZoM6A/uy90t1krcA8FW6WOpirhStNYtbk5dZCsZeZAXbX04wDdpwpfLdUWrKoVUz6CXzKhroNGCM4l5fkBjR62Pcd6lPUaGYjYKISGCOqvqRJZlREvEt9opddpn4NccxVT0rqzuPdoAjp/gdlROFoOq+2NVELWAiRlNRW1hyGbsPjrT6rTL8OZJvYRzQ77NxR1wHbk7Y2G6oQsWL0PI2QkyNl7QPjgXHoKF1k5DsKF0nZMk2OeVPQ9IX+9U5JeDTgGkMu6IMKPGm0qT3LjPZzC9OAkZE2Wp5F/KN7mJg0rMa7vvWAIY09cVSRvSEH7VsmTvvZlDuJ4tGFOiqSYJpVjattIpKFdLigm1jaLUN7SFUxUIUM0MADd+vFKK/x1LjR1Jcb7XjgYJ3Sl733BXzxuz6Tf//5v3VRn10TmP0Y6kCaFrczw8iYfKhCrPY8wYDtaz60eVenySO7DQwWM4AkqkSMNBmF3Csw1qpyMNR2GINsjGgOq2VFBhuVoKtHXaY4MwfGALhZs1R1UtX/6nriZNBeK27oSTNYqRKUZxJxs1Clou4TyYZJuzV9Ghga62wMBrDzBtdUYMDPOtLII8aQndEeL6IPCD0PiFsBRKOSbRJsFPwsUVxosDvz5XEDehxd1JQ1a9TCBtpXwHtVT5a1MW5foljSfzun1rfCIUe2md2ztbxuoOQtjh3dhsceKrFxi3B+gb0w1Z46bXewLkb6CzjU0/QPtThep8Y8Ha4VibmW6sv1sJGtycuthzDLjE4b2kOGxpfUJ5SUuLJd2qUGKIFYKRNFb7UaFJkhyazpPLFxVDOD6W+R4iEW0BzN+GMLSp+WgQBDilnuSYl3niOjOcElCu+XBGrorbJspNmTnyyGoq8/mdcFXef7vBNDtyWkkdqXTdZ6EfGrWphyJ1GeCyw2PY3LiBhy1u/LQRWiykdNKfMHY5adtex1Jbmt6JJjWpcadBAt3U5J+XCgPL8iCPVRw+KEI3tHDsLWH2iaWi4C2UE3sVQXLJNpgYiQJiXddoHtMqmwdBuW+UlHcwg9rwrM4ZbcOGgtYXeL8oyhPC8c/fAMt1tj5jWm7ciTEWEamZ9wdJOeVBqjxoZWsAuLOyqkW7CR5ZXCrVoH8tgQgSfD1Tr/V73sl/nOf//fr/h+gQN1RffHy6sX2n/Ol3P+awKzH0OsL2CaFrsLRdMRD42XK/vAsgsvRov6TRsRnFrFghZnxo2CXFj8LGpCSZdUgi40DcVYi2xO6A5XiDfLJle2y6seMq32RkmVpZs4/Kzoe7JowaJGPatkLk73MUQ8pkrrX+xC62Js20ckL61ZCY2m6a1Uog8Yuk4JRUoUZ2ZI4SEJMlGCMkRHmwQYaLc9YapJZbYTxknwC42TdLMW2g4zSPDBa+pYFUiTEiksKeixG4HifIOdt5jpXPnEoJAMUcugvgnvMVVJd+fR3rYnmnjmjKpXWQMIYh94kAtDc3KCHxeEh87rMcQEXXswaaxXxdSqJitCusZT4tmsxDxTFeZSiMv+71kTnhsfJgtHP9zw8EuUDHcXKqZ9zQdofPDQVT64tOwHA2qt8jZT+VV90bwL+tna4WpVXaRP4YobQjocGVedRjD3JEb6FDRgaVWLorUt+9WfLIYOJVJDIlrMdqn8xGSXNrhFU/Rf3tdkRiFVHpdEE7q6iBPBB0t1xrO4zdJOCyU7TvdnjWBgdRywtIilbJm3YRlYIGKoFwWpdUg2mFYL91MJqdKUtbiZEZ/BCWHScW6rws0so0csfqYLVAvjMHETv0ik0hLHlm7sSQFSpYEIqRLi4QhRF/LcOMIY8rZhNinoNh3l7ohit6B6yGJ355iUsF1m/EjCZMf0DkO3qc8Ok/SRlbNZKzDXCU+WGHYtcCMRsydLYttPPgZS8lSE5MkCES7ms1cal0xgYox8+MMf5uGHHwbg1KlTPP/5zyeEW8BusywC74u85wtM0+KzIKOCXHmyXyVepcpjSo+tddU+bhSk0uJr7UA/RDC3m4HRPGpe/LD67z0y0kJ7jPZLsV3G1ZFhcU68NqlMpaU629e8jL1GGy8iEi1pHPpanD4RLGb1ATMED2S6QyXZGYqPRWSID24ijKo+Ung1UR+aPJqFqj0mZqTw2FbjoF2baQ4Hqkd0RXz8Ma1psY1GORep79QsWk9k0uqmnbfHNMfHxJEle63N0dz9TLPh6DYcflYSdiv8o7sr65d1fdJOH3M8GbH41OMAFOdr/KxvHmYN3UbQ2Gp6T3RPfHJpaY6WSHGU4oFzmLpBslrwNK1Mf+ciGhpgcsauCcxF42qSmBup9uWJ8HQkZj/ZGLa7WAJyNRtmrnG1YagemnLsQ47Zo47miGFx0jI7ailHXV9jopay0NeHjHsL18h3VK6jToGzi7FOpntSYxuL7cspxOqfHGC8vdCeKr0drY1em1+6jHcJb6Dov6f0EaKn661boITKoHkovldM6jYsbW05G8rQT8yt4BerRo7GgElJF6zmtfZiiZnyghB2HCY6ui1P3tbzFlb1L0NTy6YJxM7hXKarPYjBFklLVqLBuKz3bAvtVn9fP95SjFu2y44yRK0vAmbjhnldsHe8wJ0NjE5rEuZe5bCd66Om1XrWHoY4EmynBCZsNlgrvRAvy+sTT2jPmYcOB1wdOPR7hzn8eyVu2qgTo06MH1Hrcbfd1yZ1BmkMzTzgzeKa/u+72fDYyf7d/0d1HY/myuF62La+9Wt+h+9+8/MPvLafeHz5r/7WgdeHsIIhpODp4qIfi/37Hv4+xFE/FYb3L5fkXTSByTnzxje+kR/5kR9hZ2fnwHvb29u85jWv4Tu+4zuw9ia33fRxvdpg0q0sRjlj5y15e0SuNGVlSAJLpaM95Nm709FuwpHfs5QXIjYJaeTwi4Sd1ssIYNAaEPFa4B6mGVcnct88UypPnAScUyI0erjWRlgbhUYYJ0EqtV/lwmq9xyJhu6TF9Dnj9lJfw+MhC2lD61uWikPfSHOZ1DUkgUX9PNZi2g6ixkGrKqR9bia7zZLYDGSJJLi9mVrC4r6Ur77WJR7bpD4xoj7sKPcSYSbaXyZrhv8QyQywOFVROUN41GF2p6uI5bbDeEd711FyaSnOtZgmIZUqYd1WAbDcL71SlQqLGIOfJ7qxJz/nGOXHLmB2ZaXyPBZdXFnk1rgorJWYpycbV4q4XCoRAvjMf/7EVoLfeuWfuOh9rHHxKHYaxFhGDy3ws4JdKZjfBtW4xfWr8QN5KWxCp94w8h3HyymboWYWS2ZdwazV5K2Ura7qR60zzJuGXArZS98gM2O8xjQrmTEUPlF4rSVJYph3utg42MUGUmONLPuuDElgxghtE8idxQat6Vk21pRe6Y9ZBZnhGWKMxhfLBF8L44cs7TZ0CDJ3tGg/HOeErlOLXM6WtBcwrSFacAtNr0wTR64SOEGShVb75+Rxxh1u2Bzr4kYZ4rJhpqAEbHtjgd2cszgS2D08oXg44GfamNPVev3iGOpTEbfZkYA091RFUkLZW/hSUuVoXHbsmZL2EMTGMb0r0ByasPGJEZt/PMfPIk1V4lrBNuiiW+/WpnEktza8PB1uJMXiSuBSitKv57mX7/iXvOOPhVddwX3uP+93+N2rosxc9Ij6lm/5Ft7ylrfwpje9ifvvv5+TJ08CcPr0aX7xF3+Rb/u2b6NtW77ne77nih/kNcVQzA7LCbhp2gPZ792GRgTDYKkaFBDwNXRjS5jqjdJE0ZqU3ZkW8S+LxQ1YS5hmwrS3jHVZC/SNIY4cceQwovYoK+DnHXEclt/bbToQqM505MIiySz7sWiqikZK2iSU5zUacpnItSxiz8vCdekT0rTBF9AowbE7U+zUIkVAxqVekzYu4ymlCLr6lnvi8BhSkDcq6hMj4tgSFhkT0QhqpxGeOVj8Imu/nKzNMbvNAGwQUtLkspS0WH9zTLutvWXaQwVF/x0yRE8L2Dbh6ki3VZIKixHtp+PnHa6x1McK3LENfM6YpkPaPhmt7cBYJUo5M35gLfk/G3G59S8DmbgccrEfl6K6/ODrvuaivufJyMv+937rlX/iwN8vBl/g/iv/7vxLL2rbZxtMFmQUcLMW2yY2vaXdDEztBDYjo80abzOjPiKY3lqWxXC+HbFIgYzh+GhKlk1265LZrCLsWcJcLVy2A7dQdSFGR+vcMnnM2szGqKFwOiHHJbqBoACl0zobb7R4v8v9861XHAqPNpU0oj1hgLYO+pzpLH4BzeGAazJhL5ImAVu3S/Xdn5ky7hLl+cD0joJUGfzUk0tPtxGIlWBrgySDa6FcaD2n2FXCWmoscaIkTaxAEMw4UY1bRmVL0ZO1rq/XAZbhBd5lumwoQ+TQ8SmzSUn7wBi/MNRHhVwJeRzZOD5jVKj1blEWFD6qSrQkcVoi2UZVh6pxSyws9R1Qe2F+u6edTNj+45Ywi7ja4RcaLtBtZUw22IVFpreGonC18bYXf4C/ffdnLnu43My4VPXlmSoS+/FMrXPP9POPtZo9FZkbftdXLUb5X/yLf8FP//RPc//99x94/Z577uGVr3wln/RJn8Tf+lt/6+YnMLAqGoc+btGpNJ4ybJZah+INfpY0aatJuEaTS1KpRY25sIjXGOPyoXkfV4yqCX3He20OCeINsXCEvY5uU6fkQ7Y8aHF/txW0maU3dKNAu+HUdhaFOPG4JmkDySGZzFvSWC1t3ZZn43/sU83MvqaRQ6CA3UfaHlvgnhJkq7HM3cqTLX2GvqkbvTaD8uLdksRIWdCc2qCbWMK8JxidFn1agVQpSSOpAiM9qdH46ALbbuDOTZVoVIXGTfeH2m45TF4RuiHeOvQdmW2bEK/XJntVt0wSXJ2pT5QUxWGKT+zoumeM2sG5vyaSjao/a1wSns0qzIBrQVwe+7mn+s6nIi9Ptt1n/vP/ftEkZt3E8olhFhETektVVeBnkUN/YBDnmT5H8If6hsi9jQogimVWF0tLmTeq0ABM5xVp4ShbJS459DYlr5P+jVGztDs5K/i+rqZNjtTXu3ibGYUOZzJJLBa1SA31J87mZRPNLrllvHJ2FusS4Ehzj5tZXANxZKge1UTOVDnsZoVLGdNFTNtha08aB2yC8qwSlZjAdJY0FmxrsC24/pxM1ML8XEAcoWlrHRgHUglho2U0avEuMeqDAFK2dNEDadlnx5g+grrvpzMOHeOy5eFo6R4pSRuJzZNT3L7eNCk7qqJ7/LXra4KyKBkyRpDC0JWa5jb3JWcPWZojJUd+L+I6wUaDq9Um3R3O2IVh44+u9f/Amxd/9oGf4h3+hy/782978Qd41XUWvJYNMa9hTciVwv76mKdrAnop+xx+J8M12b/vt734A5es1Fz0r3hvb4/bb7/9Sd+/7bbbmM1mF/3FNyRyAud7G5lD6GN6h068o1LTVrLeZNNIV8zEW/y0oziXlpP/5nChRY5na8x0oValocP8AAup0vhhk4U49qqYdFnJSZOWhe7dpqM5pJ+1Sfo+L+AXqlrEkafdchQ7jvJsDWgNTt70lOc67Pl+Mj4Qi65f9TNmVfPjnE7goxb+D403zbJfDLo01qeGmXafQtH2+xvUK6MNNvPWiMVRT3VeyV634cjeMnpECNMO2ya6rQK/iMvAgfqkRjGnwtIcrxjVnfa9MYZuwy9TxgZonKjQOcjOYDuHq6PWAzUJshIis1kSB0tfJ8SJwx7dIHyiL+YfAhyG31FaKzDPNlyvJpY3Yq3LpaoxaxyEBEeugqZQjgJu3lKlzMbEsjjhmM9LVT4KS9HbyECTuBZdoI2OwieMEfYWFe20wE49fqH1fXFkyE5vybaDRRsILqmdyiW8zXTZ0kadzAc/9GHJjH1Lm/2yUH8RA4sukPtC/4FQGSPkZJFoiRJg6vEzdRhkD64R3KKjOT4me4Of6T3f1BF7fhfyCJOEYjexmQSb4MxnOFwDZqbkxSaWtjgjghjT906DXIha5LYi1WbDuGoIfdzzYL3bHxE9qDAxaW1P5ZPW+6ABBUePTHm002QxEYOxWusjola7gaw4qyRu2OcQ+TygDJFx0TFvA40PhHHL7C6HyZ7Ro0Kxo4uXYQZTsbRH07JuaY2Lw/1xiy/j8pSIKzXpvl64kkrM5eIrX/EA7/ipq3MdB6KynyBdjs3sogtWPu/zPo83vOENnDlz5nHvnTlzhm/+5m/m8z7v8y7py2842NXkmwPxvkmLEruI222wrdqdTJT+j1q1hqSybkMbPZZnatwjF6Drll3vgSWJsIuIWJYqDFYz6DVRLGHbqA+/3qYWR6Yv9h+kGXDziOsVjVj2PWG8JU0CuXKEWaT86FmkbpREWackqvcqL897fyPJvjHksj/MQF4GxKST+z5djCxqjxvqn0SQIpAPbzC7a4JrBb+I+EXSeGeBOHG029oITIw26ByaiokxZK9pZ93Y0h6bIGVQZcdoXLVrMtXZDl8nrf9pNdo6e0Oz7bSY3/cpbUCYRdptz/ykp9322JRxdSaNPfnQhpKy/vcuKfe1QesamMvBi77nX1+Tz1xpXA/y8oOv+5orQl6uJgG6WAVnjYNIfR8pKR25cKoAZ8G1QnnOIJ+omM7LvgeMpUmeOvrVqn/ftHHWFNSLAjP1FOctYVeozidcA74Wwp4wesQwOzte1oL4vu9K7lUIY0Sjkvs6kTopWUliWcRAlxxFbykbUPYRx9Zl6CzmfCCct5TnDH6mBENbDPheNTHL4Jm8UUBZYNoOv1tTXGgJc31uFrvgZ1DsQpgKtu3JS99vTEy/KNUnXeZxYuPwnCObM6peARlCqI0RNoqGE5Mph6sFZa+caN3PKtltICKHqwWHj+1hRpGuc8Se4HXJLptppv611PfPGQcNCBgS27r+91N6JTHVSGua/PGavedGFsfVClcf1aaWrjG4hWV658Ho7DWuDa63AnKzk6mrhRd+/+OfK5d6rS5agfln/+yf8UVf9EXcdtttfMZnfMaBGpjf/u3f5vnPfz7/4T/8h0v68hsOR7cxu82yK7zkvqFi4XWy7h2mbijO9elfhXbgDTta1J4LRx55ip0WO22xZ87rZLgnQ0t1w2uXYDdrcc2I5pASG9tJf5NPy8aZ4g1x4ggztanZVptHukabadqYycZh20y5l8jBaJ2MURtaeOAMslisEtZg9XMgLY6DfVr2EZbh+Ml9PZD3aqvrG3mRep+w9zDEJDtL2h6x95wJcWQYPxqxTSKNPLbTxpRilWzlkQerscc5CnHseg+04Gt9oO3eU3Bkvomdtpq4NljXBLU2kLFtojofiWOLbYRUOfw8Lvv1pElYRlrarieeRsiFpT06JliLO7eLaVollSk9eYH/sxyvfdXf5Id//F8+5TYXayW7GOLyP31medWTyK4XebnS+7ta8cqXYilbQ9FuBfzcqXrvNdHR1pHR6RakYHqHY8+OOScGY1d1Jt0irP6dDCZkpLGEudqSfKM22O0/apid0kbJ2RvmZzzz44FDI1XgF12gS5bgMoXvm2BmSy1hWaw/vCa9yqD/NsTkloX/bR2wc4ttdTJuUm/5mgmpNCxuq4ilwXVCt+UxyRN2WtLhicbi1x1OhEIgV46Nj/UKflaLVaw0EjmOVdWxiT6yH+I4Ux2pObYxo7CJWVcsFRfprXfeZGaxWFrgjBg2fVw28Mz7oqKd7zi1uUfTedomEK30ypTWzmSBLjqiscxdpnCJrr8++xPT6k6nTs5mqhBpo6OsOnxI7OUx4495XI0Wzxgoz9hB4F/jEjAUtv/MT93NV77igQPvLWs03je88v/w4//rjVcz80wI1GNrQm6lgAOAf/Kjn87933D5NrWLJjB33XUXH/zgB3nHO97Br/3ary1jlF/84hfzXd/1Xfy5P/fnbvoEslwVSHbaMd4ZJCfICWn6+N7kMW2n/t6pkhByXhICO0z0Y0Ry1p4yWTD7aiu0uWTSfiuLBtdk4nGHyRBLQ7GX+5oXtauJUdJChvJsq2kv3ugEPGVycLTbQW1RTW8Ps1CeWWDP7mqBurHLpLEDPVVsn4qW6JO+LNK0+vpgLbNuVfhP/3eniWYSE8S0UqqMQTZL0vaIC8+dLD3aYTf2tgCDX6hSkkqDyYZ2M2g9TKu2sFwYXKsPRtv1NT4jQ3OkZLyzwMbePpfUYofTVDbbJopziexGempRlDD1gQZuHqkWkfL8aiXUtobcOVLp6I5ogaU7vweLWi12+THK0xqXhP0k5kZQWJ4M18s2tsatjVwYIq5feEpIcKRxwO8sGImQyopuYpmPSpaSgoBpNWnMt31Ruu1TsxZmuZ1bRNxegz8UyB6KaWbzjx3nDm9y5JMXOpE3oon9vSWsGxSG3mY19GJJ0G+rMc3ioO48deeZzUtk5gkzg42GYleVkdGZjOuk70OjHeuLPVW1c7B67637GbuziHOqbluzJCiDHTvM9Dunt/epn31yl1hBxontyYKR75aqhzVCE/3ymK3Jy/OBPtnNpgOWMmczOTma5JmElq1xzdnW07We4Pct2InBWln+XYCYHN6potNGTSUTMcz6oABBAxScy6rUHF+wyGMmDziO/E5kdtJRHzOU56/G/7JnD37mp+4GuCWK+y8XN4K17GrgcmttLqnMyVrLF37hF/KFX/iFl/xFNwUs5M0xrm5XNSLLCbsg/Y2StgXrtPH7MMmHVUH8oGzY3pLUtGpRGmoqjKoxpmkpPzEl+026iTbngj5hbENJTXG+peg0Wcz2kcW5L6gXZ4kTvyxq93XC77W4c9NV4thwXCKaMGYdkPT4hsS1lCBpWAAAQ6F+EVbnJ1rfIyKrepe+c730hf7G6QOoOVpSzDLtxFLuJuLY4eveImDUChdLQ3k+0204PW9j+8Qw0Vjl3j5golBMM6my5KrA1Yk4cn3RvlrO/CyqRSMLvk6aEGdX5zNYEuy8AxdXlj9rkcovbXtmu8TWraowfaraGk+MN/ydr+H7fujpV/vXxOWJcbUsX2sV5sZBdlrzZ/pkxCHqXe3BiclDLX4RcK2nOSy0xxKEjKktrja41mCbVSIXgGuUrIjXe9fo4Zr2UEG75ajOC4d+y/NAdZRDR6aMim5ZCwMQbGbRBbxLuL4Xy6BSDFhZqhxt60l7geKcw7VG61b6+GZxkIwuMvk641qj99+9FtNlVby7hJnXSFlgCq/33yyM6rRsATD0Aus2NX3T1UIqDDlok8rx4QWVj8s6FE+mzRq9PNS/AJQu0iWnBAdhEcOB2pjh516jY36jaNkJiXpekMVQ9HUydeeXoQmA9tJJvWJktLh/2FfsbWc5m6WCZYxQhEg+vmAmI4odx+YDkdE5C7vtVf4fd2vibS/+AG/j0ia4w4R4UD+uZDH6jYBrTeKu5vW79/Wv4v0/8OOXpVRdck7De9/7Xt797ncfaGT5spe9jBe96EWX/OU3Guy0gc1SJ+51vSIvw6Q/RiUi1q0sYVlWTRYH4uI1EeUABitWSquJf4zYvRnlmUAqx7hW95HDqoM8zmBaJS85aMF/3FRvtWtUGakebfFnphr33Fu9sFZ7ueQMQ5PRlDDeIV1WW1waUsP8vp4t+1S0QbEZiFlKvRWtJzU9sVteJ2OI2yMlBBaqC1qb4mcRV0dycOTCUuzlPmbS4lqh2dJ+N2GmipNbZMQZYmUpz0eMZLqJoztcEXZqMCWxcjRHAiYJ3UaBX2SKCx0I+N1aozr7Bp4BdOXPW10V9Bq8gDHa32aijToBpAzayFJkGWu6xvXHlbKRrdWWZ4Y1ibl4iNeFGtda/B4g2qyYJFrY/vEdwtlAeWFMN/Gce77H9nUtqTC4RqguqAoNUB/SRa7ybIftEmkS8BdqRrMGvxizOFFQ7mSq/1Fy/h5DOjZjs2qWSsQktLi+aN0YWdbaGCPLyXjKlrZ1dDOtuQlzg5ur8hMrQCCXugglDmwLfqGEppgabCwxfVPmoe0AO3uq9BzdIFeO7Axp5PTzjWBjohsFxAPZkEZKXuJm4sRkQRZDHfUZFvt7cnCJJnmiWIJNy/qdLIZMb4cTg0XAoIlqfR1QyhasqiW1FLStpytcb0kD5xMpG1Je1Q8Nag8WCt8hYtSGFvUcvU+IGLrk8DYzrlqmRy3zU2Oq87qNWzuSnxEOTHBfDG/j8RPed7xMJ9lvY+txE+Lh35cbDHCpuFq1N7cSERtwuX1iLprAPPLII3z5l385/+2//TfuvvvuAzUwr3/96/mcz/kc/s2/+TecOHHikg/iRoGJEdMl8uYIO18sa2HoGq3vGOxWEpFodeI+2LAeWy+R0rIIXnr1A+kVj4EE9PHM/qHzTLpMc2Kk0clpaGlmSaWSpZyFVFp9mGWt3fAzYfTADmbRIItaSUsRkKJAxqVaFiqPW3RgLXbeQtNiGq1jkSzQtatktCyqtBir5zUoLcjKgsZgmeuPf38TTO/61DRtzglq5RrqeQD8tMMkr/GSmw6xhnJHQwjEGlVgCrXNDYqU7TJ+3vcHiBnbJPK2p7wQ8bNIfbxAjKHdDpgMZlMnqSYJxV6nD9+tguwM3hrcTo1JCSkdphOKC43a2ipP3CgIswLqZq3APAl++Mf/JW/4O19z0SrMlcJAPi6HyDybiMtjVZj9/V2uBNYk5uJgouARZqccUDL6WMTPOmzTkTZKZFySC+3lVVxoOfI7aIR8oWEkxV6iuNAuFWM/Cxrw0iXstKU9tIlpC3Kl99HJgwuaoyV+bhn9ccFe44inphQ+4Z2mdg29TUSMlmcYYdEGcjZ0naNbBKgdtrFqD6uEVAl5nFQR7yx2rhHKam3rlaJOa1a6kd6Dy71MBdh5CfNamxsDpssYq+ecvcHPNQwnzDNpV2tgmkNGe770GGxgubd0ZTGwr4ZHFZG8THFbxNAnjyWa6Fl0gSSGYDNlX9NijFAVHTsG2t2SWX+NUrYUPlKGSOitd1mM1hNls6/DQB+M4FYpZoDay1yfWuYT3VZm9x6roQXdupHl1cbFTIIvR9G5HNz7+lfxXT/8vU/43n5F41In7teaiMG1IU2Xcz0uekR9wzd8Ayklfvd3f5dP+7RPO/DeRz7yEb7ma76GV7/61fzsz/7sRX/5jQYxBtN2xKMb2LKApu3rWPLKoixRJ+ukVXH7YA0rAjSN/mEVx2tgqbosJ/+DvSlqPYx7VBg1HfXtm8QNh5+m5U3eZllapHKwhL0O9/BsFRLgnUYej0pkUhE3S3CG7O3SamUymI2AiWMAwrm5yvtzoyqLMX0mnUPqBlMUK8WIPpHMuVWfmCyQVZEyg/UsqjXAZLVsuTphG42gTuMC26m9K5eCeEs7saQKfOU0DtpoLKiNQpgmip3YN7TsH2BFb/tydlmIb5tI9Ygo+Rhr07W4EfoYToNb6Lm5Omk8dd1B3xOG1D8kYwZvyUFjPWVUYKcO1rGXNyQuhcg8GXH5rZ/7+EV/32d+6R0Xve2zBeuI5aeHOCUii2MGP7dM5g20DmIf0iKC6TJ+qtYiv3BKXC4kclA7re2y3qvqDr9T6zMqJaTwFOdq3LRBFl7VjpwpLhhGZxwpQJg55tMt5kciYbMhZbOs4xjUgiVpsYI0DrfjsJ3R+OKtBGXCWGFj0ix7rMRkl8pD13q6bMnnCkafcBR7aJdMLMUFSzw6IdQNMiqxMdNuluTQB79kjco3yeHqTLlrmB9TcmQ7Q7epitBQSB+TYxQ6Qp+m1iWnhfkmU9hI0cceV75T1SYFjBHtqbNPuTF97xgRQznq6JwQo9Pym94OlrLVRLO+H07pI5PQsoiBvbpckint16PXpEuOlLQZdPCqwszuNMz8mOqMpXFrRf9GwtWyRX3yK+8FfgaAt3z7g3zVd9z1uG0e+72Xo0A800aTtwIumsC84x3v4L/8l//yOPIC8Gmf9mn80A/90C0Qo2z1oZIyUmpDSVMEZFAirIEuqRoDqlzsL86P/cQ+eLVY5aT1JIPqMuxjwEBqnNOam7MXqNqOvDnWGOQ+ljkXSkSK8x2ujrhHd5RcDba0IiBVSTw6IVUeP221wH+70voP1G4mRlWJXDra4xPEblCcmWHP7WlSWQ9TFGolW6aUOYzvj3+wjFmjx96flzStWq+6jGtlpUgZjdnUwk6Hn2kyGFlX8MJMsB3Eke3JixIYMWgvGoE4VlXHtYLJGbfoiBO1eZk64mcNdlxgpKQ5FEiFoZgmXJNptwtsEo2b3tN0Him8EkI1gWNnDVIG8vGKiMekEnvWrmKh13gcvu+H3swb/s717V3ydLayJyIvl0JcHvuZNZFZ41LQbhlM0toR1wpSekzMqkZMF/pcKD3iA3ESyEEXUdpgcXUCMarQFE7F+1nXR+sLaaPE7dWY2QJiAUWguX1jqdKLMfi5MDptqMXTCZyfF310o8H4jDQOslFFpdZu9wA5CGk7YitdRJOok33vEk3nl00xU9JmZD5E4hGYjxzNBU951mrDyrEj7DbL3mCpdMSx3lPdIvfWM0O75XFNXrYHsJ0+GxBNSMMlxqGD0C0VkWATwaqNDKDN+jOLpXDxQF3PJLRkMTTJ40zGuUyDJ0f9TFo4GLEs3u96daexmcp3hJCWNrY2Oa2FsZm8z2I8qESSLc3CIZWhCJGq7IhHGtq2wt/kbfLWuDq4XPvUGpdAYMqyZHf3ydnq3t4eZXmT2zSChwRu2k+KvNrGjOuVE2P7QvU+1Wvo2t5FTPDLyT6gqoY1q3/Lvt4igzKzL7p4aTObLXBdxJ2DUAStY2m1ieNQmD9Y20zfu0TGFd2JDcQYwm6DaaM2USsscWypHtUVPtsq8XBzJWRpEqhv36QYF/iHziN1f97LmOWerBlzsL5nUGCsJpWJXdXRuDpiUu9XnjhsocX5NgquTpqgltSXPDqflg+tRem1p4CHWFnslicvMrnQgn6ptBLfxIyZ1bgNJZjxUKUWOdSegFErQ7PVe5MbIZxtteg1OLCWuBG05qVLuLZXn2Jm9NCc9lCp9THBw4rTrbEPFxOjfK1wKdawyyEvj/38zUJirraNbI2nh1gIexn/MUMqDGlS4uYtiN7Xc+HJ40C3oQs8Jquq7AflOmo8fJoUmKSLN4DGyIsghUcmI72vJcE1iVRauol+H/R1hWcNgsdGKHZ6m9axjOkMfrFqJtlu6+7jWDBFRrLGO5eTlkPjBZPQMusTwJwRTCHM64Ku9Tif2Dy+gONw4dAGUFDsWcZ1RGZzmM3x3tIcU7vvEP0sTmtphp8maV2NJlhqoXw50sL8jKotpdPrMPRjafCIqFIyeCUq32ERjlUzshh2u4pg07L+x/bKTIoWOktygrWWoowElwj7esgM6WxJtDePK3JPctQ+5lzCWVVkyqojRkvXOXyfbmadEDcTeX/j5zVuCNwft/gKbrwmwmtcHC56ifnlL385r3jFK3j7299+gMjs7u7y9re/na/+6q/mK7/yK6/KQV4r5MLrw6GLyEgnyMvwduf2pYzllaICmJFG8CphsQd7qvSvm6rq7Vd9D5OhkWRZgPdqNzNGV/1jgrbD7M10hW1Ra7RvjKveJAM5qkq6oxN98O00WueCdoGOY7Va2S5h592yzgQ0EcwtIq5JdBuBePKQKi/Li7FqUqlKiyaqLa/H8njdvs9k7IUZrsmkkSbMdBPH7DbH7JSnPhpo+wACk9HVvT42MwVwnRKObkMjpVNlSaXVYs8ofZx0xiwaitN72DaRS0e3XZEr7ctjO22U6TqN6Cx2tBmokiZ9YPpppwk4pSdt9oTFr84xjdyKtK3xpLgRVJhrjWdKggZcraSwNW4gaB052aFKdKn3lWVxuzPEkS40idc6mPJsrfHwg8XYW2zd4fZ0YQr655TRmr3u6IQ0KcgbhTZRHlviSGV3G7UbfHlOGD9sCHtKVnwNYc/ia1WHAJpDQiogTnRxSTq7PAfbd703RpiElrKvEXFWGFctziecE7zLjMuWwyf2mD+3Ze8uS3tyAtubGGsxsxrbag8b2+ZlTzBEvyfsJWzSBSgjmrg2nVXsNSXTrqBLbtmPxZu8bM7ZJUebNSI5Zkud/LLoP9hElKFJaKBJnmlbMmsLFm0gNh6TDTSO2HhyNv256bO+SZ5FDJpqhhKZRRtI+6xmxsiygWhwiRD0j+l71aRosQuL7R4zL1jjuuEdfnf5Z40bC29zH7vobS9agfn+7/9+cs58xVd8BTFGin6y27Yt3nu+9mu/lu/7vu+79KO9gWDrVtsLA2IttiqRQWlxdlm3vq+SD83rlVV9i2VfhLLTOhHrVGEJYUVAnNOi97JQS0HbrdQa0M72WTCmV1xSXiWfAcarmpCObZEqR3G+Vq+0COIccaxWKrfI5NJhgVTpuVk0UjgHp7YFZ2iOVZi0jXv4vFrmrFsRlpwOkrIuaqSK2xdGIBlwmC4SztVkr4EEqbSMzuRl1LMRodvwWo/SgV+oguNaCItMdvpAs0kfwEOkcjFPFOcbzLxWErM3x6dMvPsQubIasxzUc+5aUdtYLaTCat3QjqowbrcmjwtS6XCSMLX0zTeV3LgmqZIT00FytsYSN4r6cim4UsTjZsETEaS1CnNtYSOk0miqmFlZgTEOkzSVMY20ca9tRZXxnDXJsbD6CGk1yRFnyKFfYOq5xaBmiIX6sGV6tzaENEnwc206aSMa9vJoJo41PYwIYRclOR3EEX0zYYFDLVI7JocXS6vUkcmczdAQxS6JQxKt+Zi1Bdsb9ZJMGMC7zOFje+x+9pjzexUndsdY7/rkR30mgMe1GVcnTO6vC32TYdE45fKcYf7AiEezYXtrTucy8y4QXGIjtMs45bJvuAlqOZvnYllUX6et5bHW0eNspo3a42YxL7GPFv3vSWBhqYGq6PR8gmDFMI9eFRubidlS+LRMM2u6VSjCUFeU0j5rWTZI7fALg6xTlG8Y3Gqxys9WXJKF7Md+7Mf4nu/5Hn7913+d06dPAxqjfO+997K1dWt4+EzSRosDGViuwvc/JcaVpQz6mOUhpN/uIzsZ9aPtm+R7uwwDWKot+/897CMmTAh9hLEsv0tjm/dNrIMnTrSJpUkDeTKkrYLZ7YFubDBZlZhY6YPUzzPVXoN4LRI1SZTQdH2h/cYYzu2szsl7PY6UtfYleLB+dbz9T+M9EhPGWtyFKSXQHa4wTgiLpBYuB36W6DY8qbKEPfVYp9ISFhk/y9gkhFlfcDmLFOczRsB0CXt+Cm2n3yOiSsz5mvrUGFerp7o+oik4btH3zAmWsKNJZNlZ8pExbtEt64FMGzXWVPq6nJHHNRG6bqW4rbHGPlwpK9nrfvDNl9QP5mK3fyp1Z01irh1yAGkNKUB2BjH0anBS+1ipwSyptIRpn9KV1IZrmz6xq1slOBpJS/UmVY75MUccGRYnhW5TkDJjosHv9pP5QuOITVQiU+4IfiF0Y00NMxnCXKiPWLotwAnluCOVcVn8XobIyHdsFQuCyWQMixSI2XK2nlD05KFLFhGH7RtNepfZ2pwzvadi8siY6qyHpOfqmkwcW3Jh8DOtVUz9IpSNet1M3+wyzAzNoyVTl/EhYe2+KGRYkqa2r1sRMbTRUQclHW3UmhWAug1YKxqbvAjYRwuqs/p78c6QSqHdsCyaAucyhU/YXmWRvvA/i8YrGyNUfqXUZLRBaNs6UuewTvvBdK3HzpXArAWYGwPxef877/wfX39Jn7nahOdy6mDWJOwy+sBsbW3x+Z//+VfjWK4/jEH6pBAzEJehGWS2qwlt3mctSkkn9MN21qwm+3ZV82KMQbLGKg89U5ScDNv2d7eUV+85pylooOpLXavS4/V9KUNfKJm17sVa8kRrAoppJnvH4ohBrJKV6kIiTKPW1TQdpjM4q4WiqbRQAKc2KdoOmS9WfV+GSGhnVX2xjzkHMpLQepioqo3LGTurNc7ZW1Ll6aP58Qv1eNuoD2gjBWHW17AARac9b2wTl/HPZjrvVRGLcaLHQ4c7fYGi9HRbhfZZiIKfJfw8EjcCpu+LYxcRvKXdLpCgD0/t3yOYLpJDuWx+afdqJYtrC9kT4kaqgbnZMZCNK9XY8lpa09YJZE+NVBokQVf2dXzWaB2LteRx6BUQIcRE2G01DZEhvcwu/d1m331IgjZ8bLc885OGOBHEg58ZpOnTJhOkkfSLNBomkAuz6npvDHEM5a5QneloNwrcwpAqjVIuy05jlXGUIbKIgTOyQeU6KheZuJYFg0VrqEexfe+UFbEILjG9Z8b58xuc3LF0h5RkhGnEz40GrowcxW6HNJBGjnbT0I37vl2tNs70U0N+cEzrhFwIUmR2i4wrE94ncrLLZpUihtQ6ZkXS3jPRYn0GMaSm96Y1Dje1lOf1O0Cvk2sN4jztdIJ4gTtgo2po+vhj7xKFT4AmogWbKfpGoU3UBpjR6zkWhRb+x9oTFv3i2DpF+brj3/3Rx+EL/+/rfRhPiMslMffyqmf83V/1HXfxjlc8cOC1n/mpu5/xfi8HX5buvOhtL2lInTlzhje/+c1P2Mjyq77qqzh+/PilHemNhsfWrvQ3I528P/FHhs702uclK9GxBvWarfY5FN4LokEAVhUYk/Iy/QzpE8z6Yk1Z1KvviRFCgSkLTQwrCvK4wM+TBsuUYfWgy+CniXErtFuOVEC7YWg3HH6eiJOAGXud1Iv2VjGFxbaZbsPjjm3hPtFpn5gYNbzA9DY5Rx9gkFZ1QL5veDk0xhRBZgnqBjuvkarQh3HfK0YjmDMEr/0NLtTa68Cp8iVBOz+bRasBBjEhTfv48ADR1bfwR6exdxyjOaq1SGHaaX+ZT0yRkSb8mJyJVUEuLMlpnxkTRZfOvFNSU3oNIdibIV0LKT6j/05r3Bi4GvaxK13Qf7HEY/92A+m5VNKyVmGuDWxUlcNkre2zfR1emqiFVWyvuDRJ+3KNglqHAbfoMLFveinSW1y1r1e36ZmfsEhAbWJ7GhggQ7/iQif6AHkktEYozzhMNKTCUkzVYgbg5xGbCiVYBkxvhdoYaexy6CfnKVu67GhzZB4L6uSXE/cBzq663sfkcDYzGbXs3J2YfVwPLgWD2AKToRsbEEOYqn13ftxRH1M7sW2VVBgBm4xafcVqQlqltqxMoCmHRUV1eNvaYgWyD0pKOkMa9de0seRCayNN1DADUwyLauAWcOQTqlA1hy3zzYoydHiXaKMnZ0vd2r4mSJtm2t42BlCFqCEBfZrb3nQEtcUtzLLmc43rg/+z+HlGf/c3Lvlz//h971n+/VoqHpfbI+ZicewN5x/32qUQlqt5Ld7mPnbRJOaiCcz73vc+7r//fsbjMffddx9/4k/o6tvp06f5oR/6Id70pjfxjne8gxe+8IWXd9Q3AtoOyrEqMcasmm/ts4wt/94X9ZvBFDYoEgOcWdXG0Bftl0G3GQr9RVYEp1J/swSHFB67u1ByE6PexbFaxN+0mNEIjCFuluqVbhN5pBGdEtzST5wLQ7GTmJ/0VOczxVTrTcSAyQaXdfVuUCpso2kqi5Mjxost7NkLWgM0NLY0fXTyUBMzxDhL/3NQnAaVqY9cNrOFkrSBwCzVrVV/HVJSYjckuqW+LsjaJaEz1iI59cECPVFqWigC7uNnqNpDNCcmNEdLigsdMgqq/MSMWEu35RFjcIOlzUDaLPu6nIB4y+gPz2lvHudYktA1bjj89V/eBOBffe7edT6S64d1EMCNjfHphA+ZbmRxjWiEvDGqLqcMbU9eYu57uxhy6VU1hj5cpBf+rcbKdxuenXs8zVGdeLtWHw9iodvMmuQ4yrhNreM4ujUnZcOFjQkmV8SxwS+g3E24RpBgCTOhmxi16hohJcu8KbA2U0dN7IrZ0iTHwgSskWVjyKE/C+htueibQdadVzWniIxvm3Lmszcpz1r8AsLC0E56AlWvgmVS2SsuNVoHGZVomdinlFklWFiNehYDZtEvopn+szO1oZmodZQAceRIleAaQ+7XBG3qSQUQplDsCWEuTD62wHaZc8/fIJUl52ee8sScquiIvbo06tPFNIXfknrS1ka/LNyv20C3V1Ccd9io6ousHyfXBe/wuzzIrzzhez/5F18HwCNf8VPX8IieHJeiwgwE4u/z967mIT0phuO80kTmqigwr33ta/mrf/Wv8s/+2T87EP8Lqi58/dd/Pa997Wt597vfffFHeoPB5IypW50cj0rtzQI9CUmrv9t9tRHD5D73USr24LUxzqr6YgxSFZiuX9U3BhmVOgkPDrEWLHSHKj7+uQWjh7c49SvnsOf2VlYz6AlDn5ffJuLI9eqFKgi2iVjAzRMmF7hGPcY2ZZWxh0L1lDWmUwTbeWyb8TsLbCyJkxGzT9liczrXjvT0353iKo2tP29pO01QG/rGGKP1MGl1jSSm5TUz+1PMBqsdGlpgvF/Z6dpued6SlciJbrhUhZbR1P175qGzjKY18dgmeaQrZiZlEGiPVpgouJi1Fw7603aJVHltnvnIHuzsPT60YI0DuNb2sYGsPNV714PI3Eyxyo/FM1Vh1vaxp4dYo+SlFVyj/cWGhSacUZWlSUip/Vi0TlDva8YYbbRrOZAV2m1YZncIaSS42mjTyaDpYWkzYceRUdWxPVmwVTTcvXGe0kY+VN3GR9tjVA8UtFsGmyzFbh+v32laWZpkSp/I2WBtJiWLLVRVqTuPQfudVEFrZOrOL8lL2Te5dEZwLpG89omxRji8MeMTdzqKP97or4sSL5s0MdJkwbVCsScaN11qAplJKMkyRp9ABt2+A4PRW7SB7EXJjVHrnJkbxp+QnqwJ2+cz8xMW7eGsdr7se9WlFUZnMiYLftE/E6c1Wx8N5KLEJEfNmHoccUWmKLUXzVB7k/qam+AyTXTE6GgWgTwNuJnFtqr0aCrctfhft8bF4kH7eFLz//7wI9z32hMHXruePVqeSokZXrsSFrKnwv7vvtFqbi6awHzwgx/kLW95y+PIC6i68PrXv54XvOAFV/TgrjXEGGToe9J2+/qh5FXzSlhymSV5gdUE3vsDNTLL/i5D2phzuuJkLeKVdEhwzE+VdBNLKqA5kUilo/kfG1R1h2laaPsJPn2QQAiIs9pXRcC0kXZzRH2s6NNdnCa8pEzY6XTSXujDxjZRV/dEH1xx5HDOYLZHpLHHRCGNLen4Nq5pkbbtCcfQ3NKuzpd918KZJSEx3iExKTEZ+tV03bIHjl7HNFyknrhYjZUeyMv+KONB6dnXPFNJjKyCBnJCZnP8fIFsTkhHtTeOeP09hWnUfgtJcKINPQe1qnhkijm3g6R9IQlubVp+OnzfD61VgJsVAwm5VCKzJi8XB7Fgs9bl2U7TIGPlcE3WZsONhpFokpg2LTYxYztVytU6Zpd1fADNtkGC3rdN1lX9OBbi4cjhk7scHi8oXeRYNeXO6gK3FTv8QX2cE+M9mjscj0yP42vLvLCIKdj+/RniSuIEzCjSNZ48CxQnElXRsVk2LDqNDY7J9Y0k9VbvrKhCD8v+Kt5mxqEluMAoRJIYnM0c2Zpz7vYJo0cM3cgQ5npd9B6vQS7ZadhALNRaJ07DD3Kh5yl9atrAZIwAYlSk7+1zuRTCnmHrwQ630F46RoTyQtB+ZJ26BbqJwy8yqTL4ecZPtc2A6TSmv/yDBcf2tmmOj9k942m3S+IYkq8485zAkUNTrBFmTdEHB2g4QDsrsLuectdgW9OnrqltTdZrYtccTzbh/j8Pnef+i5yLX4oq8lXfcRe88mKP7olx7+tfxf0/cNCi9WTHcO/rL4+8XC4peyoidT3IzUXP0E6dOsV73/tenve85z3h++9973s5efLkFTuw64LgtS7DGez5qRKN5WR532Q6FDphLoJOvN2qt4uIrFQXNJ1LC/WzKjB9kb4UgTQuWJyqmB/XCODmMCye03LP3Y+y9//cjpvHvi+NXTXBTGlpu3LzFrPZN0GL4GeRVFoWRz3lrsZv2lb6h4EGFOjD0S5FlaFfDAbEFhr7udB6lN1PmXD4zC60LTQNZjRSNcX0Be7WYYr+2lijRC2EVaPOPohgsIEZ73silFbkxTk9p6papZ3RE7/+PaCPpE4gaZXyNtjaht9PDxHB7M3wbYcEj4xLsEruTGbZPFPVqYTdmWN2p6v/B8uwhlUC0BoHMfR/udoE5qnUl8dut1ZhLg/7CclTkZk1cblEWFg6jNvcExUlJhrC4kiFJ408bhHJpcMt4vJ+SscyQStulrTbnvqIWXaqz4XaqOJWImy03Lm9w93j8zTZc7zY47MnH6UyHQ+129QpcH5vDKJ9acTC4rhl86OuL+y3SL9AZeeWplZGsOji0jql5MX0JgDTRyf3z7n+OJ3NVK4j97Uh1ghdcnibkXsWtM0YV0McGcpdPf522zM76WgOq73NNRqA0G6pVQyriomN+jMXgu20AN8t1A4mRhPXMBAryMFQPNpqipszhC7BdqW1QtZQ7EZsm3G1IVyoMbMaGRXkKiDjCrM3x53dYzRtCHsbLE6UNNuWbsMwp+LRU46w0ZKiQ7JRBa2xFI96tb1lvcapRFWjZGBNYNa4SNz7+lfBD1/ENpeJywkMeDpcDyJz0QTmDW94A6985St5//vfzxd8wRcsycrp06d55zvfyU/8xE/c9H1ghn4gJvXF621vIZPHLJ/kpK+1XR+TLJiezAwNKg9MvgdI7/c1Bikd7ZGCR19gaY9k3FQtZH/rhe/md/dOkR9O+N36oH0spQOKg92Zk++c6EPRGkzKFLsdJgphHvHnF5qwtVlpp+Z5b4/r95erQB755YRerMYc26Rxy+2mJR7fwtcNkrOSl95eZYpCiUmyUJVLgpa3xz256RWeOmK6iKmbVQE/g62sP5YYV8qV9Nc8i6auDfBeSddg1eu3wbJqrmnd8u9iHczmAJg9R3G+IFRFb+ULmKWy1em5DaEEQ2y1s+s+ME+C177qb16T77lY8vJ0+MwvveOq9oG5VBLzFV/65Iljb/2566toPZEqsyYulwdXC6HNah+LGiGMAddbt/D24AcGQTtnzH7fmDHMTxWc/xOWOF6p3mmUYUsot2tObE/5tM3TPG/0EJ04jvgpfyI8wtk85p7qDP99eoIUHXk70mSvqWXGkEvH6KE54Z4twulAnGRsazC95XfWFLTRkbOlrT2+0B4oMVu8zUviEqwwCh2li+x1lao2fW1IFkPpIyeO7PKJ2wPVo4Fug2WfmvkJRyp1gt9uQ3M0w7GGsuqwYvrmkkm72/eEqescbeMwe56wYwkzJXY5QNwQ5sc9xTmPS0nDYIwhZJQ0Vh4/0547QyKnlAXSh+vkUcDKCHN+F5My/nRi8zRsBk93YoPpuZLm44HmUEFAiZP0NjY/UxKGgW6i6ssQ5pD39Yle4+rjB1/3NfBPr/33fkX5+VRXYD9PVCj/ZKTl77/28XUw/+B/f5h//E2nrsCRXBoeS4yuJqG5aALz6le/mmPHjvEDP/AD/OiP/iipn5w757j33nt5y1vewl/7a3/tqh3otYKJGTNbrOpfJK8K9IeajbJ8vL1pIBkDhh4vRVjZoYqAFJ5cOOJGQX3I0d7dcvftZ+my5Tlb5/jI9CQf/vlP466H9zRiuNlnZbMaaTxM0k3KvQzuMHPR+pcsVLMOO2uW9TxijT4s+67LBhDnlkWhYtWHbNvVOZgshEWmOV7hHyl0sm9Buqw9akDTuzbG5HFJfduYbqJWMddkUqFNJX2tVgA/z1SP1rizWtNjYHn9hkfyUrkaznd/UECMy1CAZcPP/alvWVhWZcLBOpYsyHwObdurQA6zaKDrljHVwIoI+b5ydq3APCWulvpyOcTlmagvV5vgDHgq4vJE21xPMrMmLc8c2UHYTWofK9QyHGYR23SqgneJPrVflfGB0GT64JYeIrQTQ3MyIU4VEgzYzY47TlzgxHiPzdDwvNFDfHb1ALV4DtmGj8ctPljfTZMDZxYbOJ8w40wHmBhAYHpHwVbMVOcz3YYljQxpnBkXeu9bNIF2XqDRXgbQDvOlT6vH0r61PWuEJnqavmkkfT8ZbzKVj2ycmNEcOUSxo/HOrobFMYNNML8jYQ61bGzWjIqOLllc3/fFmdWzwgBN9CzaQDd2tFVJPqfKh6sNcSwsjhtGZ0pGnRIYgtfrnjN5CLoxfc3RpNTY5iZC0ze0Tn19ZW9/NvMaukg4Y9lIQrkZmJ3yxJGhLvvjygeL9U3SIIFUiR70Y6YIa1w9vMPv8ru87orv92LTt+pf/Ikr+n2Xq5Z86IdeBrzlihzL1cTlqjeXZPJ/+ctfzstf/nK6ruPMmTMAHDt2jDBMaG9yiDGYRYPU/Ux/mMgu08T2pW4NpMTYZV2QiGCsXZGXgeRYvVFKcKRR4PRLJsSRSuLPves0n33kY1zoRmSx/NePfjIbj8iSuIg1WkOSsta+eL+sJzF9/4DmcE+ojNbD2HkLXdR6nqCpNgLgzDLxhb6R5fKmmsE12n8ljh1xZFdCx8YY27TgnJ4fQPCkY1vM7p5gOyGVhjDNuDZjm0QuHTmoNS5ZQzex5GKEO1JSfXyK3ZkqYbDa3FOSJugAqyditpjSrxp4gpLHIYls2NY6ViELqxAB450GAAzbpoRkwexMH0c4jfeIyUv7mPEeU6w1/yfDjVT7cjHk5clIypWyfz2VCnMxxOXJPne9FZk1Lh9hnntLGGTv1LI6bZGif+z2zxDb9bUaKZO9xaU+YWvYkej9VVxv1xI1BBgLJ8Z7fO6R3yeYyKcUj3DEtnw0VjyaPI+mLRzCg/Vhzs7GtHVAot7Xc68MzG4zpLKiOpepzgntYUOaCDFabRrpMpIN1mX8KOLcvnCWpY0s4/cF24x8t1Re0tCdfkjwKjrOnExMPqH1nrM7DN2WkKrM+I4pRyZzgku9Ba3se8u4JZEBJUmFj3iXkMowDYmZH2E/ESh2DSZrEMD8hKO44DFtgZRBn4uAq7VBdC79klialGEumJS035j0KvyAImiD6emcEBP+gqd62NGcHLMbPak0NEeUrOSgJCYVkCYJqkwSyIvu6vxHW+Oa4N7Xv4r3/8CPX7M45f3E5ZnYxQZ88ivv5Q//+fufcP9XE0/0HU+mLB35T8fhQxe/78uqUg4hcNttt13OR29omC4i86aP7+2XTIbEq2F1f1lEvi8VbOhGPzSr3E9g0PjLFamBvU9OvOyFH+Hjs20OV3Nitvzh3jHunFzgs+/4OL99/HmrupEu6g3VGN1v31RSPdId/vQO7aETqsL09SO5DNg+ChpntNu8c6RJ0Ief14JR8VogmsNQbGhxXcZOM2IDJgriDXmjwJ7fV7TvHenoJjvP3dCoyv6BOhTE44xGMtdp2bdFm7gJ3WZgfs8WxYWK8PCOnl/uicMgeLiVdeuAQuL9iry4Pp5HpFdL+spSY/smlBmJrNSbYqjyFKTtVoEAfdyziGDKgnx0i7RR0m146qKDq78wf9PhVmpiebWVl8slL4/9/JrI3HwIux2GgjgOiDfQootP3qz6uyxVYk3AolcHcljFzefCEcd9j5NarVJpLMtSvedXH+OT/Q6VgU+kgkfSJveEM5zyF0hi2ClHbFQN81mpa1JJk7iA/r5viCNDdS7Tbjq6LYscMzinaourIiEkQoi62CSGNlmc1W71G0VLsGnZA8bZTCDRJUcdvfaTcdr00dmMjBM5qNqzuCNiNzs2N2o2Kl047JIj9ZbtVX9nQ0zaj8YawdqMs8KkaDkymnOuajjdHsHPe0eBwPQug2srNh/UZ6EzYOcddneh1zVMdN+lxYg2TjYxk7dG2kB5qqrL8rnXB9eYTm3RUgaKc5YtKYkTh42WxQlDu53JhzvKSUswWh8UoyXKOobsWuBqkIthgn2tJv3QN6nsC/qvVNLYY21lAym7kXApfWDs02+ywgc/+EH+0T/6R/zoj/7oUoEZsLu7y9d8zTN7WF93nLvQqwLmgFULUElZViv0gN7YYkS6vo5isD+lBF3vsV2qMD2ZCZbxJxzWZN7wnHfwVSf/G9YIHzt3iN94+E7e87ufzMbH+tSZpUVNf01Dk7NlI0mAuqE4V/dqhyOXTpWW4MDr6hI9kbFtwjaROPbEiTZEi2NHKgyLY55225NKhz+/YPSxGWEe1QpWuhUB8458aIPFbRMtUiy0sDL1aoVt0vI8yYLba/AXFvi9Blt3hJ2WHAw7nzqiu+PQ6ryG+pO+MSgxQtOsrjPoa11ckZrBVrb/95ETdL0FoGn0z/7f5/D7NXbZ08cUgXzncfbuvYOH/+fD7D6noj7iV4rQGtcMV6ru5YnwmV96xzUtuH+m5GWNmxuuidTHKuYnA9nroo5po8Yj93Yx2/QNK0ETsLqk8e5NxC06JFjaba/NMKeGsNcvNm0mDh2acbhYcDZtEAxUxnLctRx1U367vov3zD6VnTShyw5nRIvNh7T/1mCiWTawbLYssbIUu0J53hA7XURyRtic1IQQ8TZjeyuXdwnv9N/OqAJTucjYt1Suwxlt9AgQk6NLdrk/EzJ798Du8zqqYwsmGzVliGQxy88ULnFoVDMpWrxLOCv4Xv0ZtknZ0CZHFsOhasGxOy/QHhJcC8UO+DlM77DMTxQ0hzW107T6XJZK+36ZKPrs9IbcK2MSXL8gt28hzVnyxhjZGCPe6R/nMF0mTCNhmij2BD+HfCgy2mwYVy3jqsFaQbIlp/UD5Xrgk48+54ru70qoIReDgYhd6e/7zn9/MKjlfZ9eXtH9XwyuFAm8aAXmF3/xF/niL/5invvc57K3t8cb3/hGfvZnf5Y/82f+DACLxYKf+qmf4s1vvslXCgfCMdy8sqzqYBKrGODh/f0d6WG1ZNRbuhBZWrjEWuojBd2m8Kv/7fmce+GEv3bqfXzd0V/hTLvBL7/v+Wz9gcN1uW9m2SsLQ8xw1EZow/cNE3n/6C71SU3Z8gu1IdhWbW6273sCehM2PQHLwWrzs7EhFVBMhXbDUl7obV0pqWNu6FbfQ8qC+V2b5MJQ7mRslxFv8AuDazNp7NVP3MdVSnDQJXLhSGNVQcIskQrD9I6S7ekW7vQFbUg51LwMKWPBr8jLvutrjFumlR1Qbrq+T81QszTYy3JaEVBjexLj9He5WdLceYjmcKCd9A3nao34lOnatLzG5eFKk5e1nezmg+kyrk7IIdunH2ak1Oa6OVj8FFXKg/aBwdqVPSyr9bibeOpDljjR+oo0FrrNjJtEtqqGTxqd5Vzc4Hfaw7yk2uWkLbHs8GjcYieNmKaSh5ptVTQESAZEU7JcrTZm0xeWZK/9WboNMFaWSgfoSmeXeiIkhpQtzq4UmaZv4li4yDwWdNlReiUlKWvvmNJH5p3W3sRJJmw3jKuG0De/bKOj8AlvM5tFg0XYaSsqr8+5lC2F05u975toAiSxlC5yx+YOO3dX5J0NTd/MhnYTFscs1bl9Koq1pHGhJ5XBLxK21ZYDEpw+L3PGNK1auZ1FRmX/TOyfx8FjRDBtJFde456d9uShtaq4eMtiXhIvFJjOIm6twNwseKKi+FsJf/+1f4/v+uHvXf77fZ9e8qIPNdfxiC4PF70k8A//4T/kDW94Ax/60If44z/+Y77pm76JL/mSL+EXfuEXrubxXVsMCsegogw/YWXdWm4ry34lxrtlHYwZOs6XhRa5e4eUoU84gdMvtnzTl72d8jl7/NHZI2Qsv9nczl86+gGe9+kPUh8VwizrjXN/UMC+DveqHKRVbU7bMf7ornYunkWtQQlqDzNNIldaN2Nj1pWlvv4l7CWq8wnbQXk+svHxFlcn0jgQtyrq44UW5oOSkVFJPLqBeHB1ptjpKM432CaDgcUxTxzZZRhAKh258sTDo6XfeFhtDHP9ubhtokX1g9946C+zLMzvieCysN+ulLBlcln/7yIcjFYeVJfhd+j98n1TBPKhTWbPO8b8RAECvs4Ue9p0rjzTapfsNda4QXCjKTrF934Wxfd+FuF/+/TrfSg3JpIQdlvtxO7o6xq1aeLwR4xZJl+aNmJnDbbVgv76WMX8hGNxou9CnzQYAAdp7rFGeE75KM8tH+bB7igf6Ty/3jh+tb6DYBJ3l2c52034g51jnNudIDOPnTrs3OJqg2vALfR+ZzsNWzFJSUzaLZjNS+o2EJNDxCxrXqzNxGRJ2ayC09D36xQo+hqWmC0CBJcJNmMZwlsMMkmEoMpKN+yrbwrZZUubHG3W2pmhhsYaWVrLhmhnA0vlJorl9iO7tIeH57ieSxwZuokhjT25KkibpfYAs4Y40QVJ26ZVv53YtzoYFcio1Cj+oIqLBA9FII8LumNj6ts26LYC3abj7GcJ87sjprF0s4K6DviQMJMIfghBWONq4kqoFU9FXm51YnMtcO/rX3XFVKWLVmA+/OEP89M//dOA1np80zd9E3feeSd/5a/8Fd761rfyohe96Ioc0HXFEI1MX5A/hF0l7WFivF3VxOxryLiKBF5ZA3TFXzS9a1RBn2d/9LeF7/2UP0uzW1J9rOA7974Y+2jBxoOG0ZnMJ310gT8z1djhuOqXIiLLfUqWA0lZUifM6cg4w+LuTVzdWxKy9hrIpcPvNNrfpicQ2Rus1wdnWGivGNPHFNs20h4d4WcJsU7jnFOGsWdxW4VrstoQGrVjuSYTJ05XoLw+bF3d1+2kTBp5cjDa8Vm0OVkcWWzUztLp8Cb2wVkfS+1WNS1FWCW/DdegJ5nGuZUdbKhhyV3fiLIPVhgCF7KA3ReFLbrvxd2b5GAYPdrhmqT1Pr5vdDnroF1czf9tazwB/tXn7l2Sjexy0seuVerYrYbiez/reh/CzQWvwS0AKfRKi7UalDJyQKHF+1lIo4CtI1JaXfTZDCyOe2a3G22EKGCiAS/YhSEny6wtePfup3K82ON8HPNru59CaTUmOYvhfDviE9NtzpzfJNUO1xMXDITpQF76UACrJMs3Qp5B9QlPuuBo74ZyQ++DSwJjoPBpSUyczUxc95hT16hlg9aAGCM0yTNvAxKN1uEYLchPPfnJfdNL6Av1bWKjaFjEsHw/ZbsU3GVZJyOUvboxDi3cXhMfGmNbVZW6LSFODNV5j585tVoXah8Tg9qbdxfLOklxBhKqxDiraZ51t+wRR1zZu3NpqQ87pndaOL6gLCM5WUajFtfHTHufmGYDs8e4Cda44XDfa0/wrtde76NY42Jx0QSmLEsuXLhw4LW//tf/OtZaXv7yl/NP/sk/udLHds0hKYPXCbExpk+/yqueLsGrXckaVUCWCVj79tF2fRf6qJPoZSPLBCaw8UBN+ZYKBMKe9ilx9Z4mpMSkHt2hlmYIAYhxNbFP6N/31+r0x2fPXmDkDLN7Ngl7/aTfGMiQK683ZCP4RcS26q0e6jzabU+YJvy0z8aPQho7TAYzb8AY0vYIt8gUOy1u1moUqDPabbr1FFONT04jh3iLn0Vy6bEpYzslPOKspp2Vhm6sX16fGjN5OKwULmOVcAzJa4O65ayGJPR5/dLF5d8N/e9rqBcSOZCqDOi18h4TAvHkNu2mU4scLB9ottUJhW06YrnuA3Oj4pk2rVyTmIvDmrRcPsQZ8IZiL2nRfN+DS6whjSxxYjEJygudqtbOkEtVlbuJo90whBmaqlUJcSzkKiNlJmw1bJYNHzh7BwY4Ndllr9XuE03yzNqCWV3Q1AE5V2Cj0eaPnVmFrngDrWCiKi+StcmvbyBMDcWOYW9csgeMxg3BJc1ESbYvos80SYlYlx2lizRpNaWwRq3TMTlaI7TRs2gK/XKnpKZL9gB5KUMk9KlmY99S9A+ooe6l7etpCp8QMXTJ0mVLkzyli2yEhruOn+fjx0eU5/qwgqz9WGKlC3ZpQ2teXBKKnRY7bR7jdOidAk0LZYEEj4kJ8Q7oiajRIIY4spz7U4buZIt3wqjs6NLQ2Fr3OSo60qalTmsL2dXCk63of1Me8f+7yH184998xSUpLFc7jexqqz3jF197RfBilJfvfNW3wY9e3P4umsB89md/Nr/0S7/Evffee+D1r/iKr0BEeMUrXnGxu7phYZxdTZ5Bay3gQHyxppCZlZWp70Cvik3fx8Ra3b5f6ZfgaW/f4uyfrNh9bmbyoOXUu2e4vQaTsyotgIlpVQPS16rIPpvYQFSGonzd1i2tZrJYYD7esREz83u2EBvIwVKercmFwzgwzmDajJekjdWs2sHcQov7c+m1n0yXyYVn/LG5RkuPK+IkEKZRiYi1SLCkcVAvsGg9TX3EYrJldFZjkW0U3Dyq8jLymDZrjCWqAqXCUB91jA9vwaPnV8SsE3D013FFbExVaq1L7xEfCvJJaWVD67ddYrCVmX77ItAcKbFR7Xq2jy9tjgXCXqTb8hSVI3b7GmmucU3wVOrLMyUtj8WVJDH7wwGuptVrXQtz8yBNAs4Y/DxhomC6hASnFjHj1ba60AWTXKgEItao+nLU0m2qOpIqodsQ8kaiOlxzZHPGXZsXeMHWg8xzwe/unaJNnoxhrylpo6ONnpwNknSS4hoNAHA12A78Qsh9z5Ks61pav2GgPJ9oN7TJZHnOUZeB2ggbkxo/JJPZ4flkaPpC+vj/Z+/Po23L6vpu+DO7tdZuTnP7ukVVWTSFohhbwmBojD4gIEYD+iSK5LWJEcVXiYIm9gaTR33zRFFMFN8Yw4vROEzMQzQjMRp0SEyIQWITsAOkKYqq255uN6uZzfvHb6619y2qubfq3rrnFuc3xhnn7G6tudc+e635nb9vEzUhalzWqTTeyjhSdhaLihAEvNjKiztXMKIPTYpCJ8pMP5t3BRrR1BQ6EFHs1iOWrUOrRLuGBbRKhKhpkM7TVlHzgVMdbr+QhTMvrICiX9TLGlG3W8vCoVag7SqHJwg9XIUoBjN957/zKC9ByEkrYmGYnTV0JzqOnTxYARYTKaxno2iovXR1QlSE4khTeRjrPU91nP6JW3/++njriXRYu1511RqYV73qVdx330Nf7F/+8pfzpje9ic/5nM+5pp2/7W1v44u+6Iu4/fbbUUrxlre85YrHU0p83/d9H2fPnmU0GvGCF7yA97znPVc85/Lly7ziFa9gc3OT7e1tvvZrv5bZbHZN4xgqPqjFm3IHwKzRwobnCthQ1grIIFPNercuo6XlbA3NU7a48KkVi6ckijvmtFuyOpdKk93CzODAlUaSat+7m6let5Eds3DFlW5avYmAtZlWluDiDuP3XMY0US5MZe6+pDTkDSQtmTFu5nH7Lclp8cQ3cmJORlHseeyFfXEem1TZSUesJlVKqE5E/MFpTBMoZhHTigC+dzZbP7Zm4dG1lw5HF3EHAbuU53bHx6v3qY10uwZDBH2FfqW/X2VNkASOPagT5rNb2aBlyqA05/REJ+BJjknCXa4lgLMyFLueUGmaY4/JZfy616H7ntygejTq2I1wKOudyZ5Id7KjujF16L4nUbQVvaEKgJ43mHmHXUbsIlJeqsXSPp/T2i0JSOwmCpMpUKGEOI6MTyw4s3XAUzcvc1u1z1i3PLW8wDMmF5i6ht3liIu7Uw5mI2JUBJ8X4IpEKBOxEKBi2oQKa9SxPj8zu0kWuy26I3csQHlNTIpFLVHyRkeazrJoClov+hTpjGS6XNRYFXEmUGQBvjzX4msHnULpKAYAQIzShfFBD2CoyxqYNljaaJh3BV0U6+YuGJpOtDnAQFOzapVHY0ZeGj2NdJfcXBbT/MThx7KQpWufM9rydTgk+en/XzKFWYVIKpxoYioBJCrINTAWgE0YnaicX0k3YbCUVioxKTpG5eHJgTl035XHUQ9e1W/ec8Df+ukPXfN2brXJ+61WN8K97aoBzMte9jJe//rXP+zjX/EVX8Fv/dZvXdPO5/M5n/Ipn8I/+2f/7CEf/8f/+B/zhje8gTe+8Y387u/+LpPJhBe96EXU9Wpl/BWveAXvfve7+Y3f+A3+w3/4D7ztbW/jla985TWNY6h1/UUuZXJWSA9i1kMsjb4ip0QZLTxaJY4ycTKiO73B/scV1CcTG38B9h0bVJdgeabk3hdusfPJW0OwWTJaclFSypqXQGrWnCF6TUc/We8n8P1Ev3criwn2Dijef57q/hmx0LTHC2Jhcg6BvBe79CSt6DYKfGUIlbTWuw3pqpQfvAw+kJwVCloiZ7pIRk3/35OM+OzbeaDcTTkULTB5oMMedBKuWXtUDvKKpRHxpFLYZaSYJWJpUM6tuiTrwn1YifH7rpNWV9oj9w5jIJ0aa+Xz6IFQf1trUlUQrTjxtFtiKd2cGcv7MEKt8JWm2TwctpeH7ntynesrfnvjhtonH9XHRh2274k9aNBL6RZrLzkvqunQdYtuI36ih3NnqHTOe9E0x8TNylei30ga0InTmzOefex+nrv1fk66GXWyhKS5u7rIJ2/cx1O3LzEeN4ROE6MiBgUzh9sxFPua8hJUFxPlbsItRP8SjSKU/fVDKGQqREY7Imqf3JeYvs+gPjQivm/KA/ceZ9EUKJVwVqyUO29oOjsI7JVKRASEdMGwbArmexWLgxLmcq2zdtXBiXFFHzMqMS0ajI6DMH/Wlhw05WrbcRWg6Uxk5Do2CrlOLr1j6Z2YBeT4tt4qOlrRaOpOzG6IUTLRymy0UxpSZeX3WMT7wCoOof8BVBfoJpZmO2HKwGZVU1nPyHVsj2o2y3qwndb5PU2L9jH9H92IOmzflcdaj3VS/Bf/rx/k77QvGW5/1zd/+2Pa1ov85pMG+NxIytqNsp6+qUvMX/AFX8AXfMEXPORjKSV+7Md+jO/5nu/hr//1vw7Am9/8Zs6cOcNb3vIWvvzLv5w/+ZM/4dd+7dd4xzvewWd+5mcC8BM/8RO85CUv4Z/8k3/C7bfffm0DSuKmJVqXVQhjHpCAmDYvXfUUrmzLq0pZnepDJwHCRsnOx4+4/FdaPvMZH+D3tp+BPtbwlz/ug/zuX9zNbaf2KEyg/ienGL2/kSDKKBQyFfSqg5BS1tqILmQt3StP6sNq4h9zFkpS0j26r6a6VBFuO0aoLKGSCbtu8wqSk25EuyH2kc0xy/TeJfa+y6RWrI2VNYSxlaDL0qABtQh0WxV+YghlXqnLVLLoFMX5Fr30dJsFpg7o1kt3Z2QhJBanLHv3wKnfF5tn3cac8/Kgk/xgV51vh/5qtAZu+hToXg/Uf5bGyHHzHgiklM0YFjVuFvATec9iPKCG9xFKnbU8h8M15tB9T56k9XBdmEeimT34NYfNKexjqQ7b90QtGvTIkZyWxan5UmhIKVFcqmmObxAqKwYiWmyWm01FNCtKl59E0ihgxp5nbp3nMzfezyeWq//Hbd1yr9/kwI54wfTd/MGJu/g3938Gf3H+BFwssTn40s4RtzGfBt2f9mA66bz0mph2qplohTsIlGOdaW4JU2vGFwI6aC594jGav3TA9nRJFzQqWysvmkJskE0Q3Ys3NK2l2augU+DFwplRD37kecoGRkXHdiVmAdJF8YMOpstdmbx+xqRaXSMq63E6cKqc0TjL/YtN9poKv7BUDdmcRrpZyYi5jIpgZquFQRWSXMOzwU0aQEpenMwB0qS80FhYojP4UV7wikKXs1kX1FdMCqMiZc6vKQ+RjfJh+648lnqoSfHf+D+vzijhaT/3Xbyq+Ov8l6tWyDxy9SDmP9t93vn6n37CsmI+1utwLDE/RL3//e/ngQce4AUveMFw39bWFs997nN5+9vfDsDb3/52tre3hy8QwAte8AK01vzu7/7uY953artM17qSAjXQtrRaAYnezhdW9r0pkYxmcXvF5U+NfMLH3U9lOu75hPt49lPu5+7xJdJewc5/vY0PvO+MOMw0be6gxMFtDG2gzCFDfYdhnVaVNTd98vwwqQ9BNDP5BJyaFv2++yje9wDu3D7lpRrdBqLJhgUBRhc6Nt47Y/ud57D3XrwyxDNGUl6p63LOi9+s8GPD8rghOCUuY02inSp8fl5zqpL8g1asnOO4oNss6DYdKibcTOGrflUsSNfJFfIDK5vkXvOyDtLWuzD95xayEnXdAjvFK0BoalqIKVM3cgBnEvBlGrES7SaaZICrOxfe1LqZ35PrUbdC5+WhaGZHtLNbq27a98SvMkZQSqz1qwLddIwutOgcXulm3XD+DqUEBEt4pUaXgWc/5X6et/k+nlacpyByQjec0A27seBSmPKe5gy/Pf8E6uTYLpfEqLEzhZ0pdLvSvmSZhizaKAE3ZLBkFynn0CjsvGN8rqO67Bmf79h+X8vkwzXTvzjgzDtapr8x5fIfnOLy+U32D8bs74/YvzTh4oUNLu1OuXRpyv75Ke35sVg3NxoVFclFlI1YE6icZ6NqmJQtI9eJ6D8L+lPW1PioGdmO0q6uRz0tq7QeZwIhava6ipgUI9tJaGZQw/k95stzMorkNDpECGmgjiUjnZWUA6BTlW2TnSVVjrgxIm6MByvl6FYMiGJfkfYK9pYVXdYANd6y6AqW3hGSvIe+M3Qr1K1+TXki6uG6Lv3973z9T/PO1/80//p7P+mJHNahrXe+/qdvyHYPB8n/IeqBBx4A4MyZM1fcf+bMmeGxBx54gNOnT1/xuLWW48ePD895qGqahmaNmrW/v+YkEdMg5k9tJ393/oqJMrCiL7lCOh42p9XnNrM/vclH/ip83Cc8wE494r0PnGJjukQr+ODuMbbfpdn8YId6JxSXlqTCiQPZWvaLUKCczKO9h7A2jh5EsSZ0X5usp5SkK9SL/7WSjsqlFrM/Q6dE4dxAO0shoqqStFwKUIji2JWSUApEQ5OtmbUSyldMFHPhciejUDFR7Yp4Xzz1JdBSxUQsLclp/Ehj2ki5F6l2Au2GoRsrVNOHhPUUPT0ch94gYQBxhtXfg02yEkey/vG+K9XbXss/ByrrjfTunNEFx/JUQRhp3L4YDdg51CcsWIWpDz+CuWnfk4/R+lgDLe23/+GTwonspnxP1hbAdN1JJthkQhg5/MRil5LXhdPYgwackYWT/jUe7ELho+ITN+/n06sP8RfdSf53dycnzAynAu9tzjDWLYtQ8vu7d8r7mG8QvaZcSOeh76K4RcI2kaTkXK0SJNQQZOnHCjsXAUfSGjvviFaTrMbVQc75IaK7xMa9nnJXM7ujYHEmEY55UKBqQ9h1sk2bsAuN8iutTZzIdSRGPTiLpaTQKtFFI9kx2cnMR82iK3Am0Hg7PD9EjTUBZwJGRZpg2WtHOB0Gy2WUAEC0dJmm90XMMg56pOSMGOhkN7GBFp7DKQFUjNmspu/qJwmzROyUu5EiVKCXmvlBRWE9Lndb2mCGbkxpQgZjt4aI/0Z9Vw7j9eQX3/Kz19wtudbJ+I12K7sV6kZ1pA5tB+ZG1g/90A+xtbU1/Nx5552rB4fV+njFfVdY/Ma06gJkylPqOqF8eQ/Osjhb8tRPvJ9PP34v+4sKPjhm/vsnOHjnSdSvHWNyPmLrQHlugV6K4wk+CMgwKyvgQbAfwkqHk/Uhg8VwijI+pYfJujJ66KIMOp1MN0udrPalUSkrT7mDkxaL1XvPz1VZ62PqgJtJVkoYi4MOCtxBwDQCWpanLHYRMU0GHgpIGbwYTVLSqenGEqQpF5kkwv+Dft9pNea4BuT6Yx6CCPR7+ty6BqgHlSleoX0ZOjXeS2ZPkBVRu7Ok3PHoNhFLjW4CpglUlz1untCHp+N/U+oRvydHdVPqyIHs8NXDfU9U3QhtzIu9exoVJJfpuJVB1x3F/fu43RrlI3rWolvQAWyWGiQNtgicdDMckXvbE+z4Cb+/+Dj+5/xpLGLBXhhxrt2kDpZziyl78xEpdyCSOP9iGgkP1jm0Ugdyejz0tsqmyaDGZEOXHH5sFqvuULIaP5FFoMlHGk68u+X4H0N5zmIvW4pLmsmHNdN7NXahsXOF9kLNTQZUEUBByKAlRE1hAk4LGHkwDWvQwuQgy9J6SuuZFi0bRcPUNRQ6oJFt1d5Stw69ENARDdmJbM0mua8cWqmygU7//vq8npQXJKMTd7he8K9SIjmdQV8ilpG0sBzMK7ogRgMbZYPTkbp1zFthFPj4sW3L/7F8Pem1Muudm+/65m8/VPqZG9UluZF1aAHMbbfdBsC5c+euuP/cuXPDY7fddhvnz5+/4nHvPZcvXx6e81D1nd/5nezt7Q0/9957rzwQ0wqokDsbZEpZX/3kHrJbVrGy6O1BTdNS7Hp2FiMutFPS/9ri9DsiZ/5n4Ox/b9n8gBdubhfRs6UEZbU5pbkXr2dNTarXRPxtd6VoHWR/fdcoZACUx5LW9TI9Dav/SRE1W5Dmi/yeetASV12LvnPhA2avltyAHHYZC42vNGEkwn8VYOMDNe6gIxTit6+7SCwNoZTgsHbL4kuFm0XsIhAKjYowub+TC33+DPocnnX75AGEZNtqOf5qRRcbPr+wAjdr7mPy2ehByE+M6IMl9kAAaCg07bGCpMDt1lSXW9z88K+Y3ZTvyU2q622jfFRXV+23/+HNHsLjrptzPZEVftWvvGuN6gLaR4q9DrMzR7UdsTC0J8eEjRIVe8G5TL5R0B0U/NniDPf6LbbMnJA0u92Ii82UnW7MH+0/hT+6dDuztmTeFDRLB1ERRoloViBGdwm38NhFQHf5nKkgFrKwZJeymBRdXmyq8rUlgfYRe9BgFh12HjBtRNcdbr9l40MNp/4gcvzdUF1QjM/F7MAm+SvdRqQ7FglbnuQ1aWHx3mBUosqApBe7Oy1gRjJnElZHSuOZFO3w3M2yZmQ7NImYFM4EfBKa1u5sTD0vsDOF8mQ3Ndi729BsC2tALz2qCxBFjI+X8fYunf3fGDG8iaUh9YuK+djoJrBxb0t5SSh6qtF0OxV1KwYCTgdK67Emiq111gTdCnWjviuH7XryU//vf39T9ntYQMu3PPfbbvYQHnddM4UshMCb3vQm3vrWt3L+/Hnig9qiv/mbv3ldBvbUpz6V2267jbe+9a186qd+KiAtx9/93d/lVa96FQDPe97z2N3d5Z3vfOeQT/Obv/mbxBh57nOf+7DbLsuSsteWrFXKXQFAKFVKJsQDkAlxlfAOMtFfzx7pwY0xFDs13e+c4L9+/AYnP5Jws4Db74iVYXlSnMpMduViDSDJ5LtZTd5TBGVXhgJrv5VSg81zynoXZQypbYVOlQ0BgCu6SCp3MVjrcgCoqiItlittj/ckLHQdeu6ADeoTBtNourHGLSIE4RYvTxhMazNlDEIlK1Ugovh2qmWVr03EQqFmuQOToDw3Wx3PECQ7x3sIafDWT9mLXzkLzkorP+e/DMct/y9ekQezfswGvVDKH3NAN55Qqkx7g/ZYwaiR3AZbH34AczO+JzejbhXw8otv+dkjIf8hrJvyPTGG5IqsicwhlUAojSzuTCuUj4SJY37WUe4a6hNqsDcOVRqyWf587zS/P7qbZ1X3cdzOed/iJD4a5qHgvtkWu/MRhQ3UtSPVBqJCBdG46E6E6r1dssrW8bZJhKjEVjkmEbprCCMtk3glXRrtE7oRO+ieftbnhGkfsbMW3QRGyPlTRah2Avy57M+PNQd3GJa3aUIlAcPdphXggjiW9QGYpfEUJlCZmj1GLL0TrYsOA8gZ25Y2WJbeYbLTV0yK2luapcPcX2KWIrCXjhI0JxIqasbn3DDpUV2Qbopd0ZVBqGOS/YIs8fbscS/Wz7Ew+KnDHXQUe4l2S3SUKWi6zgzuY1Z7NquaeVsQc8fpVqgb9V05TNeTvm40fezh6kV+E16/9vd6vf7GUa4eqT7jW7/+luvCXDOA+bt/9+/ypje9iS/8wi/k2c9+9mo1/DHUbDbjve9973D7/e9/P3/wB3/A8ePHueuuu/iWb/kW/tE/+kfcc889PPWpT+V7v/d7uf3223npS18KwLOe9Sxe/OIX83Vf93W88Y1vpOs6vumbvokv//Ivf1wuGP1EP4UwJLtjjEyae5cr89HNqx7oAJjLM2773YKP2BE7nxQ5uLugulhgl4nZnYrN9yexFs62ySiVQ7PWqGDeZ2vnNTe0/rezWYAvE/n1dPphzFqvuhn977wNxdrn1utmurWwTAAntCushc5T7HbMzlrJB4jgZhHTRuoTDtNKerSbg12IE9vypEFFEYz6iszBFtev+e0lycD0vga1eyDUrt45rNfv9J9Dn8UzUMkyNS751XuKUY4BrDpHIYh7mbPZxY0MDI1sU2sIiXLHU590+JHCNJIVkIzKfOebX4f1e3JUT2wd0cceuQ7b9yRpmRiruoVpJWHCKREKcX7spquJS7OpabY0KogOLxbkMBEgKB7Y3eS/umdQH3OcdAc8c3KeOjqWwbHfVvL+65IUNaoMpE6TTEIlOVcDWdsiAMQ0Ee010YLyUMwixX5HN7FyznZi2mKMIiSwRnQlpJxt03jpSqwtYKqUJEOm8cTKoRcduvWESUG0E3Snmd0FfjtQucCyc4xch49yvu5zZLTquLCcUugw3F8WnrG90qGytF7cv7LAf14XpCCBndqLMUHffSLC8kxi7+kF4wtGqM8Lj+7E5bPvyKDztdgYFCGDmfx5Oo2uO0DE+H5ihYrnJKcHoFs6Fp1j7Fqsioxsh1WR/bYcbKYPQx2278q11pHL11HBYwAwv/iLv8gv/dIv8ZKXvOTRn/wo9Xu/93t83ud93nD7Na95DQBf9VVfxZve9Cb+3t/7e8znc175yleyu7vLZ3/2Z/Nrv/ZrVFU1vObnf/7n+aZv+iae//zno7XmS7/0S3nDG97wuMcGoIpiNZkP4UoQ0a/YqN6RTMTtQ1ckRop7dzj73xXnP73i4B5Pt6kxS4XfCkzeHgdbzeEiEDMXN4UrOiODyL6frGfa2NCl0QrIfo5ay/OcFYjSeekirWtFeqrbus6n71I8BDDrc1nsuT02J5Z2w2DaJDSCJhCNE0BzsDIZkE6MEfAyguqyCP2jleyXelszuhxxH9kTs4SykK7L4DKWx9K/7/VuS29ycAUgM8NjarBQtivKnOpX1dIKhJYFqvPoNmAag69kYtEcd/hKEdrDAWAO+/fk8dQv/NWDR3Uiu1W6L0/muhXE/IftexI3R0RVoptOus+15G65uZcMkU3N/CliVRxKxCksSBdEMlnkOmP3DW094Y/nBZeWY+7c2KUyHWfKA6yOnB2JQHhvMSIGReo0JOnAqMigSYxW5d9aOifLmFPqFWYZMLOWUBq6qRFbZy+LTf3vNHXoLqLrkAORV9co3QWS1QMFS/fnziTdnXIvUO4FVLTsP91QM+KB1rIxXeJsYKNsGDlhIvSABsCZgFVip2xVZOZL2mAojGw/othvKvaWFSkp1NxisrNa0gIuVAC7VIQqsTijCKWl3NGUewa7CNhFJ+POzmwqJQGOSQ+WytpHsZo2BlN7tI9Eqyn2LSopkk4or1AHlt1qzFYlIiatEhtFjU+avXR4XMgO23flWuqRwMtLLnw/H7hK/NR3G64GDN1qnYlHKvP7Xw48/yEfe8ezS972jffw2m9813Xd57Uc62upawYwRVHwjGc847rs/HM/93OHyehDlVKKH/iBH+AHfuAHHvY5x48f5xd+4Reuy3iU0SjrBvvhKwBC35kIAVi3ikEm2upBE3+toe0oP3CRO+4v6E5N8RPL3tMc6oOa0Qcv5wl1XPOZXzlq0TuLZT2L6hsIIa46A1rJhL0HKVUpLmEpQXZQS1mgmFLKrixqBWjIE/41DYmcuHtL5j6DJUDXoWKk+vA+3L5BsiJ6RylMl7DLiKkDfmIlxb7S1NuaWMD0I1EuzDERCoUfaardyMYfXxIdjlakul4dx37JUGlZESMHiVoLMWSHs7g6HqwBmYh8Vr2b2xB22YMaua1yV0lpcQAKYysp1PuBdsvSjRWJw7Fidti+J9e7eoByK1gqX03dCBrZUffl0euwfU+iM8RMd01G3LxioYlO40eK5ph0XEhg2pz9YuVHe9GQoBSxbwHsW86xzc7BGKWgKjr5sZ5L8zGLg5IUldDHlkayuUJeuzHZ6r6NElQcEsVuJxb3ToCHrj121uFHeqCd+bEioojWiPi/iyuhO9BHBiQjxiwqX0NiYdCZnhVLi/LyuvGFSLdhqJPBR1jYwLGNBSFqtBExvlaJke0I2UK50H7oxlgVwDAI+xedY39ZEaNiuV9RXTSo/vJdMHRPSGCWcj5f3JaYP0URSo2bGSYfLhhdjth5xB10mCZnr6UIVg9UaNXrKVOS/LCJuMbpDnQjQFR5RVfb3IUhjznidCCl4rr8X12POmzflaupz/jWr+fM83+Ec2997SM+73Vv+AHuusrtHda6UVkyL6++hH9fP/rzbhSd7Hq/r2sGMK997Wv58R//cf7pP/2nj4s+dijLWNR0Qry8K5P/sCaqH2hL6QoAAZIgn7xkr6SejtV2Ihp3DhUixb0NRYiM3l+JsHNRQycrTqlpVjaO6y5oubOD0aRmzUmstzeOoAq3yjwJYdWd6OlWkF3LxBKSvGqW2nbVrelf12tMMggaPt2UMsAwKKAoHbOnTYmuwCxDdrFRdJuObiJUiFAp7CLBkiEFOTjwlWK0E9n4k8uwuy/Xlx5QmDVgGKMc05ydMByTdUvrmAah7HC7ByzrXaq+69LfNmb12XYe1Xrcfks0JWGkhePtFeHhz+9HdQNqvdPSg5lbtftyPUHMYQEvt0IX5jCV9gGlclBvJ6Yl0SqaLcPijCZpMMuV+1d0Qt1KWmhd0QFLsPOcUaIh7GqiK9AdHIwTe4VoCc1SUx3ka4/KXYcadCs5X0lDs6EZPQDlhex8uaih8+jJaKDn2ktzxktPrCzJarpJQXKSXq+SsAz8NNspNz53YWIOYWawJtZtkGuN1jkkU95vcRCYfETRbitUp2l3Sw5sQI1Xgny1NrGuTIfVkVlXElFYJSCnCZb9tmTRFMSoWOxXmEsO3YIfQbudCNMAJslPVBAUeqGxC4VZyk8YJQ6eBt2GYXReY+tADDk6QEl3ahD1ay3gzGqSUbSblm4kj+taKHbRJagNe4sRjMHpyBLHrCsI4Uk2X3oC67FMen9OCYL88q/4P1F3PoNvvfC/eN0bfoDXfQE87ece+bWHoeNyswMxP+Nbv543/sabAG5IV+Z61DUDmN/5nd/ht37rt/hP/+k/8Umf9Ek4d2Vb9N/9u3933Qb3hFfXES9elr/XJ/30d6khIwZYdQF67UrfNem7Nb1+xXtS1wmY2Z8Nj6ecwTJQmzQr0NF3Qrq0ct7qOwtZw5JCXKUFp5V7Vx9uqfJ7GKrv9vTABYYxKGtJQOo8yhi53ds0G5e7IYZU15jzO4xHlsXtFd3YoUMiVMI77gWoZpkoDqTzEq0iFLJStf2+huK+XdTBXN6LMQLIRiVpOiKMneQN+CQXyC5idg5IvUtZn62QKX0q08QGvVJYObJhDKnNwv6+m9brlLRojlSMqEWNiYkyJtrjFe1JcUdzi8Mv4n+y1q0KXNbreoCYhwIv39i+6SGf+5PFVz+ufV1NHYGYq6/l6TFVDi+Uc5lBOY2vFO0W2EUGKUplkb2IwVUW0A8rSEnoZaaR54RKtB1JCc3MNArViVWyaTOASQJedPaHiUa2q31E7y1QPkCTF7GWDThLytbzqgtoq/GVodzxxEKud36sCaXG1JFQWbFX9hHVazuUEipWb0+cr5+6DehW9D92JgNq7i/YuyehWs1ib4RSMC4fpHExHpttlCNKwiC7MY23NN7gvcF7ja8d9ryAunYz4Y95quM1IxuwOfSysIGmE4vl+nKF2beYhqz3gfpUopsqlqcqdAfTjwSqS90A2mJpxZ3NKEIhQKY+pmm3FcmILbVECyjUXDPfHeFMoCo6GX9SgyHNUd2c+tH65rqePZZ6IkHMt33bqyEDljf+xpv4hs//6isevx5dmZtOIdve3uZlL3vZdR3EYakUgkzWY5S/c/WaEmC1yr8uCu/thwsDrIEXeoDQ05ckHJMQpXOybs8sO1p1G+CK7Qzhjb2bWO6WDM5iawYCvaC9p49hzABsYOXSNQj+82NqLXiNEFZdqJDdzDqxaE7e495/js29LQ6euU27obFLGUcoVuFpzabG5XTn8XlP+ZEZem8mnSclNLl4fAO/XRFKgx8L59g0kW6i8aOKbgLjC1NGDzS4S3NZNfRB3NL6468VyhQryp+1K1CYj8cAXPr30ndjMpBTTYvZgzJB0hXRKeIRgDmqx1mPFcRcC3B5qMdvJJg5AjFXV7YOGK+JRTZYMTpTuRjoXSjpGIhpiHRNUgYvA5O2b6RHhCLcKmIBbr7WcYkCakKRF5GSCPaF4iRdmvE5CaM0A712TYTfedHoayXgBjBGYWIiFmbIPenzv0KpCZMCvehEr4i4eiWlwOYFvgipNJIDZhW6ieAjbr9ldMGyOCtgzOw76kuOxamW6fYCl/UthQ3sNaK5CFGzaB31ssA3VoZvI3Hu0Evp7oQS4qmWje0FpQ0U1tPlQEmjErZsOT5ZsJguOFhWzHdH0GhUVKgmd2Qq+Tz2nUF7cQ/VjdDs2i2LCmI73U40i9tUdtZURCMfku7kA4kzw74bsSgKxlWbwcvh0FTeSnWYaV5PVD1WEPNTP/vJvO0b73nM+z3z/B8ZAE1fn/GtX8/HnTjNBy+dvyYwc6M+x2sGMP/yX/7LGzGOw1H5hK6MGVb01YPpSSCJ7nkCnroOVZUyMe5T7TPoUFrLKr/Rq4lyL5LP9ye/Nunu6U/AkEYPKwOB3GlQxgj1qg96VOpKxzStV/zWh+gkDR2LfttXULfSQCcjrShmK31OtleOCbU/Z+NdHXFzhN8oSUZhlkKZMLXkHZidhXSJljUpA0NVVWA0/uwx5neMCE6hA5gm4hbiDlPsJroNl0PToD5d0h4rcDOP3W8wl51s03tS0wJxBbhil40H9Mq9bN1O2RhxINNu1ZXKF3C9D1VKNCcq6o1bw7f/qA539WDk0YDMI1HFHg28PNzzbxSQOQIxV1FJdBM6pDwBdtTHjWhcstAcTaYlZbmjz5Sy7N7Yd1qSA98n1xsBPzqDiZTdynrReurNGHsSQAYYy+NiqmL2R5i9fN7rF9j6a1vhZIGtbjBtR6ocYezwlSEpMSBojrsMmizWKslVCfka4yQ7RTpKmjBytNsOP9KUu6BLgwqJ0cWOyb0F8zvkPdolxI8UHCwMFDG/KVBlgKhIrUZ1GjPTwggrJUBSN1lHpBPheMfxEwc4I12bLhhCVHR9F0xHfJSgya3xkjKbBrTeMt+vaCkodzTKQzeFnY+32JllfCHQbGraLYWpwU/Aj8FP5HMKeSwqCRDqAWecOTpfsH/MMBq3hD5M86iO6klQ19KROTQi/r4uXLjAn/3ZnwHw8R//8Zw6deq6DeqmVYwoa1auVldMerVMfJ0jHt9gefsG0SmUF+qXm3nxyp+1qC7bI8coE2XWVrbcWnfAe9RotLJLDmGl5wCZmPcOYwA6SqcBVpbBfi3/pd/OeqV0RXdm6MKsd2/yxL8vpZQstK3R5VLTSNeoL61IszksFuj9GaVSK0pYT4vrV/r6CgGVKYftnSfoNpxwqyNU5xuS1di5BHomo7Fzn1cRxdIzFIq0ZWm3LG6rwu0InW3YR0wo24deGogB4uq2chqcE03RqBSrzGxjrdpuAKB6b0GZEl1aA31HdVSPsx6rluVawctDvfaxApkHg5T1UMsjEPMopciBxQGspt3UHNwl2SzRyUp/GEs+SzKJWCXMTOMOFG4mj6MYAE8oIIwSoUriUIaAFd3I725bNB/Kr85b9kBT7KocKim0p3TPBpN7LWbeZBfNNIRtJmdIpUOFIGMPCbdbY+eGUNlMEZOwRu0Tqo0yYVdKXLzMms7DrMCMzQtbSSnxZKkDx/68xS0KLn2ygC+7VNj7bQZ+kCyEUm7roAbDg2Tzqb0xAv5cIm56No8tqJyXzBVE6J+SIuTfOikKGyhMIETNZtVQ6EBEsRjVXCindO2EYk9YBMpDuw3ttsGPRUukNsCPE/5URzFp0Toxcl7o10lRLwuC12iTCLVBzy08UDKfOtJsLZT6qB5z9R2JM8//Ef7jX5vekNX9Xv/xnHcdjs/sZuth+vqR5rm8gfcPt/sxrQOU/u93PLvkGz7/q/mR5rlM3vYqvv+HL/G67zjBN3z+V3Pm+T/C+T//yOMezzUDmPl8zjd/8zfz5je/eQixNMbwlV/5lfzET/wE4/H4cQ/qZpVyNjtd5U4DyIS8cLC1QXdmk+WZgnaSBZhtGlr3zZYhGoVtxhR7AirczOfEeiMApxP7SUKSlrxW+LEbsgF0lzBLj91doGZL6dh7D4VdZZr0td45ybQyZSXkcRC6xyTdoPUQy2LlsqasHTo+qtfv9J0LvWZd7CxqVNGn2a/siNcATr+K14dJKiWBms5dSXOzlnB6i+ZkgW4TfqRzuKUhWQXzfNFvpItS7jSEyuLmQJKAzFAqmmOWbnPCpAvoS1FMCQqXQaBe0cM0qNGINCrpTm7QbUpXJ+lMsch2oe4gUF5u0PtLiBG9aKmOFsyO6ibX4wEvD97O1YCYRwMk/eM9kGm//Q9x//DZj3t8T8Yydc4W8RGzaHGLEhU1YQTtZiS5hD21ZFyJ45bWkaZx1BdG+JnGT6J0H1zEzI2kym9F2OjARsIiX769RrUKyogugoCeTkNj6LYD0QpNyh0I5WlxWhHtiI0PygKT7iK0XpwlFy2UjlQ6khfHS9VIp8IAxIhpIrEQF69kHM2WoZ1q2k2FH0NxAOVupDiIQrlykj0TrYKxRTcBlcDtN2x+MOKrinZL0W30LaVMr4uI4L5h0PL4MQQLJAE8fpKIo8h4e8mo6FCAUQly6GU0atDM2Axclp1D5cebYMU8QEdOb884fzc0942xM43tjRVsygGfkbAZcBsNYxfQOuFMwOiE0RGrI6Oiw5lA6y37tqJVoPctdt/A/tGC2LXUw03YP+Nbv55v+7ZX83O/f/1W9A8LQHikOsxj7AHfNyDApa8zz/8R+I+/dMP2e80A5jWveQ2//du/za/+6q/yWZ/1WYAI+1/96lfz2te+lp/6qZ+67oN8wkobmdw7C8qutCPHt9h79nG6scLWCbeUlSm7iIRKRJnRSVhjfVxTTJ0AnMaholhRmtpicreh5ziHYiXebI5JXkrSJW424cQfN5QfvIxaNqvOynp3I63ZAadMU+tF/iCTeEMGIgqlomxnPQdFZ4G+9wyWzbDm3IWAgj5Usy+lVqBKr624xbTq5theZ9MJ5c45SIl4bMry7ISkFXbhMY2szNlZS6gsobJQGux+jZ61xGkhXRnAT53kErQJU0ei0yyeusmkaVEHYlwwgJeUZL9VSTi5yezu6UDJsMuEm0WhWiQBMM22ZXnS4pZjRg/U2IszzMXZDf13e7LVC//mta2o/PovPbbAs4faz2Pd1mGu6wVerraupZtS/N+fMoCY7nsPnzvNYajoNClplInEkaPZNNQnI3Hbs3F8jveG0nkmZTuEHFbOU5cdIWi2q5aU72+9QatEVXS4LGyfTyThvXSe/XmFUnBiY87p8QGFCcSk2HI19863uTCfsPve44zOadxMOh5+Ymm2DNUlj9uJhJETwGUU0WkoDKGssIsu20AL48AuArFVxFLjR+I6ubhNHL2IohHppprJfYoin2d7PU8opCNDSsRkMPstx/8MmmOOvadauimEIqFbRbLIeJDxQr7sFUmARZHwmwG3XVM6T4ia2NPskqKwHqMSpfUolQhRHrMZbCiVhg6N0ZHtasnoVMf7g8F/pBInylEaAEw63jGaNkyqdgAszgRStnQOSTF2HUoltsqa46MFs62Cc9Um8YEK2x65kF1tXetE/Svu+W+89xdr+Kvfx/e/+vu4OzeKLzc/x1N+4d/y8r//Wl5T3cnGK7+GN757i69bPJMP/bOfYe/H/h7/uv53/Nzfejb/6rnwf1dfwtf89so6+rCl0z/cWJ5oYNPrYK5HfcU9/41feM9n8S//6vfRPEhz82h1zQDml3/5l/m3//bf8rmf+7nDfS95yUsYjUb8zb/5N29tAAMru12jxIlrc8LiqVsEJx2X6rInGkW3Ie3rUAq9SXux3gXoJorxhSjiSaCYR9FxHBMv/egU0WbXmK4/Iauhy9BuwcVPLjkVj1G+/6LQ0LxQnRJkelTuEmm1okn1lK3s7CV99iQbJVPC+udBTrpf09r0GpxeBN9vL/jV40qvnrdGOwNkfDmMMnVxoIulvK20OWH5FLHHrS61qFayAVSUvAAz7/DbJaAI0xKz6DLtQISp/cVTd7JfP1HUxwzF7VsU72tQZKvrLgg1z1n8qU32nzFBBbHwRCFiUsDOI8nKxdouImUbqY9Zdp85ZlspuP8qDNOPCrh28PJYX/OxUjcCvDxSF+axUMHWQcxRfXQpH0FbmlNj5mcLDu5UmNvnTKqOcdFhqoaYJ9BOR0rrKY2cw3zUaJWwOjLvChpvKa1n0TnaYFAqUWa61KRomRQCdqaFUF7Wwx7Pjvd5yniP31lUdPMJplH4SlEfs0QHizOOkc5mAUbCHHUbRHjfyQJTNzU0xyztVIvDWV6Mi04NAMXtC80rlEKzqk8ooX5lPY8faaIB22SXx1nAxYTqIuVOx7TQQ4inWwTmpw3NcemSS4ik5OOYVhHLSDjVsrm5FBBYrMAegFKJNshCnVbSKQnRopVcQ5tgMPn+woQhbwbgthN73Dez+M7ip3EwLnCjjknVUth8nUHMBQAW7YpenZIiZK3NRtHgTu7yYbap04Oul0f1kHWzuwwP5cB1PWv9/R0mcHSt1QOPm1nX3NNcLBacOXPmo+4/ffo0i8XiugzqplXMHYU+k8Qa/PEJdhGodsJgY6lDws3DkPmiO7nfLRLlblrZXyrJPVEeqost1W6g3ItM7u+wdX5eEm7t6HxifF5AT3UpYerEwR0lcVMoeanrVjqVB1sCQ86CWTtBdu1KfN9Tw/rOS28Q0HdQ+p/Y398HWa7VkL0SBtrZAGiGbaorAVIGUmo8Ih7fYPHULeoThlApSXzeKqhPFviJpdssaE9UcnxboX/FwoiOKPWWoQF30NJuOxZnS3bucYRCsThdkDYnUBbZTU26Pf7MFrO7J0MKtPYJ3WRRbaHRXcDOOpRPuJnHLDy2jvgKLv6lEcunHn98/09H9YTVkwkM3cjOy0Nt+/HoWI40MA9fsTTMnzJi956Cg7sUzcmYPVU0XdD59J/1GVn53QTLvCuovWPWChXj7HifuzZ2mLiWadFSWY/Tkcp6NkrRcZTGM3ZiQ1wHN2xvpx3RBJm4n9k+oD0ZaDfAjxTzs5rFac3ijGb3noL9uwr2nloxP1vQbbhMPUu0WwXzswWz2w31ScX8rGL/bs3e0zQHdyoWZ8QVLWUQVO4JmOnv010iGmEcoKCdSMixabLOJtOqRxdaJh+umX5oSXWhppgLSHIHiVN/1IqAfiSi+bDl2dhccnyy4PRkxlZRUxo/WBUXWoCJVkLvUoAzcXAkS0kNGZel8VSmIybp4GxXS8xGh/YMdtbJRaqyw+g4gJYefIZskZySol4DMiDdnpOjGU89c4nR6Vt8fvQE1M0GLw9V65Soq61/fd+7gY9+P492+7HWzQJCP9I896bst69r7sA873nP4/u///t585vfTFWJxeFyueR1r3sdz3ve8677AJ/wUkrE9VVJKhztlsMdeNyBR0WbhfvSDUiFdF6iUbiFgA83B+013VihYs4/8RrTWuws0G1aYmFw84RKkVBoilkceMJurrNdJpIGX7oHWSErsV9OmYum1/vzK93HunhdgFk2J8jOMylEoYcZI90dbaBrrrSLHkAJ8ngfrklaWRGvC3PCWh5OtltW1pKsoT0xZnnCYhq5bBzc4TBNyu5jchwh5xTkdOj+8wiVlXDJuoMobmXthth62ibRTTSLu7eY/HG9CvocVyzPVNhlxNQRPzYCjrokbLleXBvBHbSEsSWW0iGrdhP1McXsjsfscXFUR/WY6ommjV2Pcv/w2Uc0soeoZssye4YhjKA+7ZmenTEpW2JSVNZTWo9REa0SXTT4PDHuKUkAjbdEKzkomsRWsaTQgTqDkv5vnwxWBWLSFNYzsUJL87HAJ82BLyWX5MRSujCtzotCkh3TbCvsIne6gyJpK4tvEeoTanA3C2USZzTL0Bknym8/kg5JsStGBUkLaKkuh0GE3xsDdBsG1YmtMqVQn1UXMc3KhbPYD2x2iXaaj8VxaI8HUhU5dXaP46PFANQiAiJGtqOLhmXvPLYGVmzucsWksElRWo/OWhitEoXp0CEyth0nt2dcHI1IRcSMPdWovSKnxqg00NP6z6p3PQMBNzo7ofWdnUl1Zc7NUT05qwclP/9jhh/9oNx+1ncY/uSHAz89/VK+fvbLN2S/V4CYxwC6bsW65hnaj//4j/OiF72IO+64g0/5FFl9+8M//EOqquI//+f/fN0H+IRX1k5gDHE6IpRaztZa+LvaJ2KhSFpT7nSUl6QTo8SGhGQ0JEezpXFLoT8lDbOzEvgI0pUp92V1yTQCXkhQbxtsnbB1FK1HUL2bZLZKXuumRL0Kv+xF9SlfEFzBEISpFaqosq4ni+xjQlUZIHRe6F1NFsH32woB9HqeSriyK+O9hF46u9LmrB9DIko70rgibk9ojlnhXVeSbizvMw3v3y6CONiEJDqYlMQmFGi3BUQm5QhjS7spnaTqsrT3QwEHd1jG7ytgWYNzhGMTklFUFxvx6ldIIFuCdkNT7mQaQAZKIf/WXo5/uavpjjr+V1VPpu7HzaybAV6OOig3rqJThBKSTmATlfNUWY9hdcTpQGVE39dFQ8g6CgWDJqYJlt12RGU6fNIUajXp9tEMeo5eK2LzNjWJLhmZrOtI7R3ztpBOQb4maQ/FQRbXIwJ5AB3AT7TkuBhxQUtW3L7a4wG92VGNWgmSbA1xadEzg24VxZ7Qo3UL5U5vciMLR6HUKAMkhV3GYWFKNQENqCZIlszIoVovpipThx85Ln9CQXsyYE8sqaqOrapmbFvq4GiCxWkJrbQZEDbe4kyg8Xag6PVgZ+JaGi2v6V3IfJRrik+GNka2yppzmx5decaTms2qwerIonOkpDAqMXEtI9tx0JViBGACKdlBh9NFTT/FWnaO5kGxb0f15KnecevB9azvMHzLP30pP8ZbHva1D3byuh5j+VipawYwz372s3nPe97Dz//8z/Onf/qnALz85S/nFa94BaPR6LoP8Amt9Qm60cSxE95tSMQcChaMot7WRAvuQGFqSYyPpUU3nuQMbqZQwQyiRz8W3rBdJrGeDNKa95UijeXvvEhDtNBsmBxkJvzgIUPGGlJc5/nmcMpItnl2WdifBf9GE7enNCfHtJuyooYCXyq07znFiWonMP6zi2IY0HbS0ek1NEpBynbE6w5kSqOKYu14mdUx1AZVFrL/rTGLp4xoNjW2SfhSqHahUEDCV5p2qokuH0urcDNPqIxQx7TcVj6KVkYrQgZ8vR3p6HKk2dSk0qKVWF7Xp0dyobYKMxctTfSGdtvSbGmKA00YF+hGDrwOabDEbjeMpFaHIxuyj5X6wX/wjQ/72Hf9g5+84fu/FTsvR/XINbtD46f5/OwiI9cxdu3QbYmZOjZ1DSfMnP22YtaWeeIr1UXN0rvhufttNQCYpXfMfSGJ9SoydQ1aRVyexOt8n88diUXrCEGjWzl/kkSH6UcQCwab4qDJFtDZnnma8Kc7ymnDZuEZFd0gYNcqEaJmZzGiaS2zrRHFZYP2Cj9W2GUazu0qCIgBpMteaDwOoxQqZStnkxfZlEI1AeMMwSlmd0XUZktVdZyazpnYljZamiBTmD7tPio5TiMrYnrtEpo0UL9i5nePbIdVsujmo6Wy3bCdOjh80lBEylGX6Wci1ncm0AUz6GoK49nKx7t3NzO50wNkIJWNBW74f9ytXYeRPvbg6sfYWyxfC1j4nY97K+++9KWov/IppP/6h4faVexa6ma+j8fEkRmPx3zd133d9R7LzS9rhSoFA5hJajWhtcu80rUlicp+ajBNROfnxsJKcFkbKNqAn0rgV3Wpo7qMpMzXnpGPxNJKuNl2PgFbabH7Sk76oVBMz3nM3nw4oacYV/bJMZFSuMJ5TCkltsnWkjbG1HdsMj/j6CZCE+irPqmwMzCdqBNnt1kWp25j84MN5XvO5WDIteqF+33eyrphQH+senDT62lSIhWOpBXRCBWhm2SnnR0xQjCtdJqSBruI6DYSS00sNO2mxRQaN5MLQXusyKBHVgjdPNBOzXBVkIutAedIhROgNlLSWankGHcbdrDAjk7RTS0OATlJK+JIulrljqc5btHt0SXnVqnH6kL2SMBl/TlPBIg5qidXRQOmRqjEczkH2WzP33hLtyY6H9uWzaImJjVoVrosQu9fA9KpiUlR6IDTgZAE4GiVaKNhu1iChmk+4c99wcyXNMGigG7pMFnXYWqwdWJZKKJLGK9wC7L1sfy004Q/07J9fM64bBm7DqfDYEHsdMC67Og1VjQbCw7OVMzOT6jut0zvlXO78pHoDG4WxDcmCTjyE0O3YdBtogSh9SqF36xIRoCNHyvCNFBVnnEh+2+jYb+phq5Kr0tRKlEaj8subFO3pI12oHkZJV2awnjq4Dhoy8E4AaDQnpjEQMEUEd8ZtBYamuiMIl00jGzH2LZoZNFrZDtiUoycdL+cCczakpBpZA/+HI/q1qw3rrlkPRi8fN43/Cp/8W++lvpT/z7wwUfczv/12jOcnP46Xz/75esKAG5G9+VmgrCrAjC/8iu/whd8wRfgnONXfuVXHvG5X/zFX3xdBnZTSimxAU4yIddtzkjJrXTdJczCM30Alsct0SjqUwXlZQnwMnUgVE7CupRMkokQSsl4kZOxxTQxe+irwaksGmg3RdehO9F2lBeX9OGKYoUsHRcJmsyC+yhBlam3Dc7OWzufOCVaKGYJeymRjMoOMAm7VOjAoHHpbZ1nTyloN5/C9M934PIe9GGevU5mLWQTWOlrjF7dTjm801nSuKQ5WYnWZZSwB1Bd7LCL7LSTj0W5I8AnFppQaJbHLbaOgomMIhSabiJ21dVuoHqgIZSGtGUESFZyIVYxgjXgLKFUFAficlafsviRohuJY5ybS/6MOwh0G5b6mBlWHKcfaVBdlMyEozWzJ3VdDXhZf+6NAjFH3ZcnZ6kIqhENoWoVy86xXS2H1fvaW+atOIzFUrFZCC2qi0aAgYpE1AAYQCbKvUNZoVe03crKxBlExO+yLnLhCw7aEh81y9qhLxRy/u/ANCtbfxUl3d6n7CRWQbcR4WzDnSd3OTmaXWEO0AUjIEyZwVLYKAEyretYTjqa49JZdwtDsQ/dWDO6IOf/5DTRaEKpiSNNLMFPHCRHsnLOB8nSWdyWsJst01FDZT1NsIP9MQjdTquE05GUFF1cuY/FNZDojBxTqwXcWCUUspA0bVh1YXz2bNbZxa0HRf37tDoytQ2l8SyDY68ZDc8pdGBsWyICRHtTAWAAUUd1VOv1ZOjC3Ky6KgDz0pe+lAceeIDTp0/z0pe+9GGfp5QirGshbrWKUboPWoEP6FkNjGk3xLu+iAndBqrzgWLX0BwrOLjD4KuC6rKsLOkQUSRCaVabLTTaB3xl6KYGNw90Y03SCj+SC0Yxj1SXRQ9S7gfG9y0xF/dXwvwsvFdVJTQvsi3yevdlXFHftc3e0wq6qaLcSbQbKhsLQDmP2HkYqG3JipVmKGWfvtTMbzMsTp/k5O+XmPsuSkDkuqtYnyUDoNeslvvcmBDBIeL7SSHAICXKPdm3aYLoToKAFuUDWmm8E/BmmogpBGCJJaem2ZY05nJPLsrRaaEcBPAbZEpEdrMBkhVammkTzabw0FUWmsZsElNd7MQC1Mpn0E0V43MxJ0XnzIPuCMDcCnWt3ZdrAS4Pft1RJ+aorrZUhDAWCpn2itmyhA2hKZVGcktC1MMyych0HC8WTF1DGy21FyrTgye+K9G5H0COaD/EYcv7ggvNFB81TbC0wXD5YEK3U1E0oBsGo5hmUxbb3EwRnFCYwzTRHQ+MT825Y3uPjaLmRDlnpx0z60pC1My74sruh45oRG9T2MB42jDrDJ017DzTsP1eKA4kBFMvPXQaZTUqShxBN9aE4zIdcYuIXQRZ8KsMoYKi8NjcVYlRY7MLW5ftkK2OlMbjkxZtS36uT1kvabrBlloj3aqY9ED1sjqgSRQmDB2b4A3GBpwJTFxDTBqfuzOl8QNgHNluuN9msFlqz5nRAftdxdI7umCusHk+qluvPuNbvx6uMafk0eo1H/czPPNnLN/w+V993bUwHwt1VUsCMUZOnz49/P1wP7c0eAGZjBstnYQQwAeqSx4VE91U0t/DxBEqix8Z2g1NyHaUe3dbZk8pOLijpDmWAxfzBFh4xEbSi52I9VEK06XcORBhZbkX2PxgzeT9BwJemnZF08oak+RXmSwpJdBaKGObU5o7BbzoDtwssf90yakhyYS9vNSgW8lRCZUexJu2TsNYxxciysPeM6ekzWnuquQu0Nq+h7BLpa/szGQDhDQqWZ6paKeGUGjMMmBqL/bJE0sYW+FEVwZfGRGNAt1EZ0OEFcWgPqboJkpc2bTKmQJGtEk5nFIlofCB5C9on4bsgPGFgJsnmmMqO5/1NsqJbizCfrtI2EbuDzmgredrH9Uj180MkXyiwMv1ev2D62Z2X44E/De27BL6xHgS1Acl867A6sjYtmyXSyZFOwRThqSYmIbjxYKREYrSdrGkMCJQ73UeRRbqFzpgdcBHzW47Yrcdc6GeMutKDtqSy8sxO4sRF3antPdNqB6wmFoNtvRJZwPLtXWaMEp0Jzy3332Rp5+8hE+aOsiqz8S2g5OXM71+RKNUwmmZ6JfGc3ayz+2b+2yfmKG3W5oTkb2nazmfjw3NmTHdRiGsgNxpiU7CoAHMMuIOWrG4TxAmgaroqLJrmDOBsWvFPtp6Rk66UuvOY5ok3RYVBqBhdWRkuuHY+qRpgxkeb9ec4AC0ThgjeTt9yfFf3R6Zjs1iOXR7Fr6gDnbVBULAzsSt8mOO6qHrMEzcm+952s0ewmOumyXef+N1BnXXUtc8Q3vzm99M0zQfdX/btrz5zW++LoO6maWsHTJPVNvhDlpMk3CzRLOl6aZWAr5CkmyRBuoTicVZRX1c0W4olscMyxOWxWlLGGl0K5qWZtPQbGuaY6LD8KW4sVS7geIgUF5usDtL9N4cfADnRP+SdS7KaJRSqMKhtBaqlhWw0J2acu4zS0KlqHYj1W5OM85Wl7qLJCedJN3mCb5W2EaCyhYnLTokgsv0MmDxtGMoa1BVJc5msAIr1grYWwc1xgzHLo5Fs9J7/0en8dN8gWkF/GgfRVtUh6yREUqYCmJ2EAothgNdDkerVkBJbKcFqFW74kamMoCOhR327RYCcvo8HhBrz3ZD020Yyr3A1gdaNu7zqJBoti3NcUdwagB4R3X46td/6fabCpyO6qgerYqDRLErHeAwku7w7lJW5IWOFdlwjVCbdCQmzTIU+GjYsPUAZDZdzdQ2TF1DkYXjlfG4fKKOWWdx0JbsNxX7TcWyc8ybgv2DMf7iiGJHo7ss1Kd3GpPFn9ykGHQpdqPjxGiBVYEQNbO25N75MUJSnKkOOFHO2Spqxq6ltDI5H9tWOhBKbIidCTgbcIUnjQP16cDOMyy7Ty84uNPSbltZdDJyntVeKNpknSgp0W0UzM5a9EbHqOgkr8XKb6ul8xSipgsCPGpvB4G9zcdGq0Rlu6Hz0kVDlzRttIPxQe9CJp0XORhtMCgdidk0p42Wtn8sWnaaMcvg6KJh4YsBQC26goO2YpadySJq+H1Uh7v++B2/c7OHAKyAyGd869d/TDmKPZa6ZhH/13zN1/DiF7946Mj0dXBwwNd8zdfwlV/5lddtcE94xbBmVSyBjnpnxmjq2L+rpDgQT/pQOLQXHUV0UF2USbpdJtFYLHJrPYvO24kkHkcrrl+mRroiuwFTB8yiQ7cBNa9RnRdr45jHABCCCPhjEoexvvoOjLPM76jQHUzvC1QXpXNTXZL05OAUi9sKTJswjYzbjxTNpsIupQPjx6CiACvTyfOWpyzVbSfQH7mQj0+2be5/r1fW6fRgK0wyWAnS3UlW0WwIfc4uJEAyFgZMBjdlpjIs5EIvFDtoN+Ti5uZQzARsxUJjl5luh+iHhG/egyn5LHwlupdinhhdDowuSYcHBaOLHbqNIuBXolWKVuFLRXkQSJUeulJH9ej16790+xNip/x4QMv16p4cUcmO6mqq3AkURGa3a7pNhdq37LoJzkRiocCSQYmct0amGybXx92cDsRVTAeaYLMI3GdqlKbuZMJdB3HjaoJYMXfe0HrDYm+E3rO4uUK3DJ0XEoPVsQrQHM9CGCCearnjxB6ahE+GsWtZdAU79YguGjZcTcwakSoDqWPlAk1iHophbGPbcnI8p7KeelxTd5aD6Rh7vmD8EUW5C34knXfpqoNbSNAwSpGsZn7WcXC3ohx1jF0n+TiZIqaRLouPmsZbjI6MnYCbntrWg5g6d2aiFnqY6F9EyK9Vog6y3cp01BmUKMCYRNfKFGllXa05aMthLJXphm2GqOmixhk17Lt/rY/6o0Iuj+pw1PF/8R/4OYAX37wxnHn+j/CK927lW1ZsmW/ecG6ZumYA04vIH1wf/vCH2draeohX3EKltCTYK02ikxR47yk/mNjyx1ieKainmlCqwZVMBygvSQeg2ZIQynZTUe5GtFfZOjniK5mQ6yCvKy816MajawErqm6l6+I9aE3yAWWS0MT6oMkYSG0Q++LCCWBQilhZurFifD5SXeqIRW8QEHGziBqv0bNipJ1qFmcVdg6xSKgljC4J5cqPVp2HUMDyjgnTB/eDcTUAAJGBSURBVC6RfNYG9fqXni7Y2ye7dUtlTTcRj39xV8tgz0iWTnG5RTUdyijAEK0S+pZV1NsGN4/oIM4vo0tRDBLaiG4TyxOWaJGuCxCcotgPmCai2m5wbNM+UR7Ie7LzKF2eLgLFsOIYKoNZeJRWhGOOZlOjQ14JrESPc1RXXzcSxBy2bksPho6AzFE9XGmfsLtBFlI2NO1WJM4d+yMJgO6tka0Kg1ZjYsU97EI7pRycxhQzX9IGQ+gF5lnH0XcfuqBpvaVtLcEbwtKg5hY7U5hWDbRcnbFKMiLUDw3YuabbiKQiYatOwhnzfpqwcvBadm6gW5nsqFWZjkl2PDvw5dokv6IJljIHdo6dobSBi3ETPlLQbmh8VVAfl46/O0hM9jxJKVQXiIVhflbjpxHt8/69E+qYCaINyhqWXsQfkxpoZP3MZt2uug8D7XUqQO4YtSx8MXwms7Zg3hT4zhC9Gp7bv9+YFAdtOeyrMt1ApausHzJpZPtBDHJS+VEeOEf10fVEWvJ+yjNfBj8JhzW98FqoWR+rnZqrBjCf9mmfJvQlpXj+85+PtauXhhB4//vfz4tffBMh7PWoEKCscqJ81q+EiFrWFPdewh5MKU6PWZwWBzKVoNyJw8Wh3I/4UfZ8VyKMV4GBsgVQXG7RrUcf1AJc+sR7H6DrZPXJe0iRFESon9bHZwypE296qpLkLMvbJ0QrVskq5TwTD6qT7bebJUmtxJF6qmk3QHeK0aWcjDzRlHsBtwA/kmya4iCHbFYltG3uvGQLZZ+pbV3ueuTcGaUdhDjwmaudgB9Lh8XWSUBfJ+AnVBbdBuyioz5VoULCLoWb7WYBPzJ0U42b9+J9ASZ+rFYgpFR0G4ZiLwPAbGzQi/bFXc0yeUBRXmowbaTdFB2OaSMo6KZiZGBa0cH4kabdUBT7R1ecw1CHDbys163WjfnJ4qtv9hA+ZkqFiKs7xgqSshzcrWkNNB+ect5NSKPAZHvJ1nhJZT1tBiOFCbTBMEN0G3VwzDvpbqSkqL0dbINDVNKFaBztwok4vtXYucYuFCYL9smife3FyMRX4jrWnIBQBVKRUFVgY1IzsS06u5gtcYTcXdBGQh9722EfNT4ZlsExsY28jsQSyUPprYxDFCMCoyOTY0v8pMDWmRY8hliCOwBdB1KhUV0kTRzdhlwLYtQYJdobqyOFFgvk0njGtsWqagBavUNbv29AAE8GMigoMriIa12UHgClpGi9IQRN6DQpyHFusxWyNmmgy3XRSGdMxeHzsPm4tUFMAsRgQfRBWl8zY/9jsp4IEPPPf/nt/L3bnnlD93G96h3PLnnOuz5atnFU1wBgevexP/iDP+BFL3oR0+l0eKwoCu6++26+9Eu/9LoP8AktrbJdcE65z9bBKSpU3aDPtYx2Z5QfGdOezunyRhE1dFOFnSdUDoi0TcLUCTv3mGWHXuRslSBZLirEoVtAWu1rEO2nBIqhy7I+LlUVq+dYw/KEIVTiZhatnCTdvtDImg2HXchEPWnETe0gUl0UDnK7IR7K5W7EHUi4mCXSjTXKCj0rVQXMDBByByaL90OQTlCIw3tLJqK0jMW0EmIWjaLdFB1KO9VEO8bNPfUJx+icACPTRJYnLabNlLMc/qV9GrQvPSjSrehhJNQy207v1Ssg6AVA6UyF622wm5Ml5eWWaBXLk1Zcx4yYBpgmYaMc86QU1U6EIwrZNVcPNh5vJ+Z6g5brLb4/qqN6tEpG0Y4c3VQzuhxIxjBTilCBWirSgWZea9pjlumkpnSeRVcMdr2Nt8PEul7/u7N4L65WcukwpKCgMahGo33WuijptpiO7IQm538Ve+2LdNRVUCQT0S4ycn4QuOucNu90EEe0qIW6lbtGYyvGAntdRURx3M2xOvL++QlAAE5YAxRaJbFZnibsQq4RKkG0iVCJeyQRUmmIToNKJJtQQEgCYvqOU2+EUOjAKNsfb5Z+6FIVWsBOr0/popEMGB0HkNNGi1ad5L6QqINjr6mIUdN1hlQbVCnv0eo4ZO1opQejgIhCq8hWueTCcjpk8nRxZQ7gtdDc4pGN8qGo133HCf4xf37Nr3vn638ablKn4wjEPHRdNYD5/u//fgDuvvtuvuzLvoyqqm7YoG5a9cCll5k8RGikalp056n2ZpSjUkT0znDwjE3cPOL2WpLVmNqj50128IooH+TvnL1CXE36SUn2EwKUBartSFoE8cnnMfTAxtrVNrQmjpwkKVtZYes2jGTORIduxbbST4yI4X1icVuBContv/AkAzvPtLSbCRU05Z4S4KMU7kDjx4ZkNLEq0Fp0IqS4oo31B6oX8xsj9EIfqM4vmd81RgVw80i5JzbHizOO+rhBBQEX9akC3TnpGgHdSKOdAAndysW2D6XUXgBNNxKtCkCyMLm/RV3eWx1HLftsNjXdWFPMEu5A7KOTVZg6CrgqNNQBs/DoLuLHBt1Idowf6Uw5O6rHUo8EQB4O3BzmTssj1a3ShTnqvjyx5UeGVMmktdj3RKvoJobZUyUQ2bQKt29IB2P23Ig4ilBGtAsUlSd4TYya0bjBe0PbWLl0BEVqcohvApJCBYVuFNqrwcExuoTyYuRiMjXWNHJ/r3kBRfTQVtntBagHvY1QoKzNHfNM2ZraZrAKnoeCWSfUsYlpGZmFaEmMaElSppT17mWV8yzGskCVtAxDt4p2E+qTBcW+uH4CKK/QtSYcOOJphc7ZKj0lbK6KIX+mp4dtFvUAUNYdxXzULIPDmYDPuWU9HS8mRR0cS++G3JZuv0S1GqpAypoZEMvoJoO7LkgGTh0cOiZCFFezwqycz+ZdQQLqzpLS0fXkaut6dWEmb3sVu6fk71f80Pfwjl/9h49pO4eBonUYQczkba+6qfu/Zg3MV33VV92IcRyOyhSy1LSSsdKDirXHU39baagbcelKia39Rb5frQTtsAIeIIJ7rVe0q8HBSw+AhKYVnZHRQiXruxv9yU+pFYgBYmEySEiEEtqJpphHmmPSebFLj11E8dMvVdakKFSMojXphEpWzCJmKe+t2xBurx9pmg3NRv8e+ve0rn8JkeQ9qiyg7eT4uALdhtz9kNfqNmIXHdOQ8GOhfIWRpTlmaba00N8CWC8dGFMnTB1wczlGzTGHzh2dYpZwi4ivBNQUH94hxRygqRSqCQMNbHwhSvozCEgKCSwUBwG312HmHXFkiUqAjZ13RKtx+4lOHV1wbkTdqkDlkepWATFH9cSV9onFSVlA8VXOI9kR45XF2YQfR1RU6FphFwqWhmgMKjnaMok9fIDZ2IGLQg8LCtWJbiQWiVRG0IlkI0lrks9AphMgoyL0BlgqrPJfSAxdmb7bbUzMXR5NG/TgdgbivFUoCWks+/yZPLHfLpZMbINWkS4Ztt2ShS+IVg00rvVQyaTTsOCmQ2YsLBBKbwJSQneR6jKi8RyLw9g42yWDaHCWnSMmRdXrYEgD9W3WldTeYXRkZDsmrqXRFo1oK1XfQcngZdaW7CxGGB2ZL0pUp0FDasQQoTCehS9ooxkczUACPbtg6KKWEM0gVDmfNFZF0tpzwpGL8jXVI4GYZ7zo03kd8A2f/9W88TfexGf+le/iG/k5sUH+1b94SDvkH/5vr4Sv///d4FHfnHrOu5pDAbKe6LpmABNC4PWvfz2/9Eu/xIc+9CHatr3i8cuXL1+3wd2U8l6slENgRZnKE3ZXSPI8QAq5M5M7ErOFBDP2lK8eZPRdHKNJRhzDcKvDrtoO6ia7ngUR7cd0ZQq8VjIEpcVgoO929A976CaSMK8S7D3VQoTp/UIV6MY62wJDc0Kx/d7A7KwhGUM3BVMzaHGS692/DNEK7SwZhVZKRqS0gClroe1kHEavgFbWRun9BSpOUF7oYcoLXcssvXCctZIOj1aYVqhq1WWPXQSiywnNVqGiIpRiRa1CAif5OclAsR8Yve8SarYgxUSKEn6m50tCsU0YKUKpqC5nZ7OJJS++YRcBM+/QrSeVBt0GQmUIlZWxOo231/z1OKrrVL987KVX3P7SnbfclHHc6PrJ4qufkCyYh+q+tN/+h0dZMDewioMO98HVrFX7xOiCZ3QJyh3L7CmG5R0e5TV0AjqUySL5RudOSsInTazyNSApkk3EzcB4a0lKiqroMDpRd5blsiA0hriw2H09uI0RhwaLjCUkTKMG62QVFL41knNiPLOuxOqANYFpBi0jI1StJljmvmDD1ZTGi1hfe2LSNNEyMh0brmHWyYRqXbfSeIOptWgdTdbiFMIocDOPaqPY6/vI9COOpA3NSTioS5wWQBCTwmawACuHsIjksHRR3kcXV0YEvWNZafwq5DIHcs7bYqDlLb3DX6rk2LuEnhkOZiPqLUdlumyV7FB5v2EtnDJkENMDtd7ooA+wNPZoQexa63rrYV71A6/ndPGVTL760nXb5sdqfc5PvudmD+HaAczrXvc6fuZnfobXvva1fM/3fA/f/d3fzQc+8AHe8pa38H3f9303YoxPXBkjE/T+73W6VB/eeMXz9fD8oWPST3q7DspCQMHmhLBZ0Zwo6cYaN4ugRdORtMLNAsXlGnPpQGyUgdR1EPWKzmbMatsYcSJD8l1IcnHs87VUEAexeluxf5fDT2Dy4UQxSzQn1EAn81YJeAkwP23QXSGmA5nO5cdCG1MhyXtTGnTKF9IkQEzlC2uPDEBA3rKmemDB/K6p5NAoCEZhFwKyQiU0MruIqJQkebmTi1eyCj/RqKAxTZQQUJutkUfZDGAWqD64AwdzUjYXUEqJ6ULdsHFvQ1KVaGpa+dx0IZQ6FZPYVqckrjc+gtWgFX6kKfbjR33UR3Xj68Gg5eEee7KCmRtVR9Sxm1OqjegmokOkm1h8pTE6YerI+Lyn3NfsdpaQF05DmYgu53Y1YJrcHRmR6bGQKk+12TCuGgobcFmbYXRkUmj8qGbeFCzGBe3YEXYdKum8LWEBA6vuDCuqWVxY0WrksMw2SjbY1LZsWLFPntiGQst1yKjExDQ0wXK5nYi9cUi0uUNTGU9Egh8rIwCnba1cr9qsc6yEKjY+F1Btzzbo82AiowuK+R2aunYsnGejbAZ62EbZolSi0AGl0hD22efjTJwsrtpMMTOZtr30jsZbQs7PqTtLXTu6pUPtO0YPaPwk0R2L6E7hDxwXFhO2ypouCDiqW4fW8QpjTkA+3xzs2WWXuBCVAB59pKl8LHWjRP1//nc8H3/pP8G/e9d13/aTtSZvexXfebMHsVbXDGB+/ud/nn/+z/85X/iFX8g/+Af/gJe//OU8/elP5y/9pb/E//gf/4NXv/rVN2KcT0wpJRPxPgum76JkC+OBDqbXQE0I4BM4J52bnmZVFiRn6e48QXOiGATofahkdH2HAQlP3J5SnBwxuncfNVugvAKjSD6u9hmC7AOGsahlx/hCYH7W4CtwCyh3hU6WFIwuJtpWKAc6JMb3J+a3a9wssfHhMIzLVzIW3YlmJpQiureLhN45IJFBWgwrkAdrFLeeZqaBSIoRc26XiVLM75wQSktSUO5ptE+D5kX+jtKVsZp2KqLX4BRhoijmsu1iX54/2elwlxfonRlpscgmBxLw2VPvsBZ3cYE9U2KaRHSiSSrPL7NA1BBKg81uaKoLMHHi1Dbz6EWH3yqPgiyfoHok4PJIz3+yAJkb1YU5Ai43t7QXs5akFXYptNZkhCplFh4VItV5Q8yi9XZTtIoqJfaeprKJiwCNNA5UGwJcjo+XOB3Yb6oBvFgViUrhTODkdI7ZOADgg9Pj1MUYFQwqKEw2h1FJFqZMrXBGdDJpadnbqrhUTganMYDL7XhFmUqaqWk4Wc7Y7UY00VIaz4Ev2W1H8r5VYmqbIQul0GJ73Ic52oUsoGVjL+wyU8msFnObJN12d+Ahgdt3LA9KLraW+aRgY9RQWS/6kxxeWeaUe+n2hCy2Xwnt10FL3clr6qVYJafaYA4MxUKofKPziXZL0W3L4l5x0XJ+sok5mbNgMoixCqxZWTKHbGedYOgCVdazTA6lAk08up481nrn639a/si/n9M/8K6bJ6x/ouvR9C83g0b2aPt83XecYP45P3XD9n/NAOaBBx7gkz/5kwGYTqfs7e0B8Nf+2l/je7/3e6/v6J7gUs6JRkJLPolQtljRxkA0Fn23Jeor7JbRagAxaVxRP2WTxRlHuS+uXuV+wM5klSqMpPsiuotA0or6mKHdPMbG+yzm/B6pbVFluUYtW9PKgDhotR2jc0vajcmgCelGAl6qnZhBiVCpDu4wQidALhoAZQ7TbI45dJfwE0M3VnRjsIvEaCdme2IjY9DZjUznDpVm5Z7Wd2GUFj1KCJgLe2wsO5Z3brI4bamPG4qDVXujm2jAEFwxpEJHI7S48QUJ5TSzRkI+fRhCPlPMADOEVbjnmoOb2p8z/UDB8uyIbipuca5b+xyB5ISGl6yWTkyCWGjCiUoMFI4YZIe6fvnYS68axHzXP/jJQ+1E9nhAzOMBKkc0shtXqg4Y8gnXKEb9ok3j0W1Oiq87aYsYRXlBDyHAy1MjooWghcari8C4ajg5XrBR1NTBkYDKdkxdQx0cEUWTJ/TOiDvXXcd3eMB5FrNtdKtycG8GMDkTRndgGkXyUC8d87agqAImaz1q7zhRztlwNXvdiEZFrG5wKg4OXqfLGQ+kDRG0kwYXs8p0jEzHXjfi0nJMjIqiQYxZJmLCUj2QKHc6dONz1higsw31zDO5z9JtWMJYs9xzLCYjpscWFNYP9KxePD9yHfM1KldMckx6iljbWOLCojqN6hSmURR7kommUqZMW3Cz3JVyEk/AhZKd0YjtyZJp2ZAKoaAlBLhYHVEqDR0Y8v1dzochqaMOzFEd1XWua56i3XHHHdx///3cddddPP3pT+fXf/3X+fRP/3Te8Y53UJa3OBI2etVjV3oV3BjXJucp06nIHYmUXcT0mmjfWRZ3b+PHmnI/ioXvlsIuFWUnAvtuJOAoVKLzMHWk3BcL39lTp0wjmMv7g6h/NUYzaGtU3ZJGJXrRMnnAUZ9wRKuodiWscna7kcDNRcJ0Agoki0VW3+rjMgblI+VOx+KM0NJ8KR2bbkNx8g/n0mVa75P3ts4pii4oZTvoIIJStBH3NK1QPqBmC0bv6xh9yOK3RsTKDIDJLns9S0/tkswct1ujd2cCWHoAlylicpxj1uMk2Ve+naIXAGMt9vwexcQxP1uIe9lWJROH3gDBaXT+7cdmCK5UUY7J5P75jfgvO6rrWNcCYm5kXQ8B/zoQuRowc706LEcg5saU366yhb0iBTC1JzpNckZorwBBoWIYzEUIieA0oYBuKjQmpp6q6tgo28EyWOfQxJA0PhrmXUEXzCAa93kSX9mOO7d3+ZOnVPjFaNXVCfJjmoRqxU4/lAm8Zl4XpKSYlg1VKRkpE9vgVBhCK5fBMQ+iN9EqMjIdRe64xKRog8XqQB0cCy9OZZcPJvhzY6a7EjAcCsl/2fpAM2SWDVcZJSYEuvEUs8jonKE+rVEdsKuZLzaYjQO0QmtWRcRWHUUR5HKsE11n0DoRoyJ4g19YzJ6lWCp0q9ByKLELoSfrTq6Pva2+/4BhcVYMB9y+pv7gBpfu0GxOaoyOA0jqtS795xKSgmCovaXpLJ03tK2l2zlS8d/I+tuX7+WtP/1VfOJ13OY7X//TPIeVA9jNEspfrftY/7wbPc718TznXQ3v4E03dH8PV9cMYF72spfx1re+lec+97l88zd/M3/rb/0t/sW/+Bd86EMf4lu/9VtvxBifuLIG6i5Twx50smnz/UrLY4VbTaZBxPu5urPb1CcM1U4gK98ZXYqMLnSoVsBFs6XZ/JAX4aIXPrCpRQOyrAoWd02YHixQbSfbTomkWTmA5ewY5S1JKdzlJconDj6uBBRuEalPGpanE6NzCp/yyTlAtRvQXWJ/0xKtot2ykhGTIDjJsNGdnNTNuV15n2mNKtYHWka9AjK9uF/lf6mcqZNyvo1q5H57aReAsijkePfgbK2zsjJRWKuYSL5b6ZKslX3HBLH/rPIYvSfFhAqB8r3n0e1J2k2HHxusAlNLSKb2ScwEpm5YjTRdxMxa9KIl5O7iUV1Z7/mcf809b3v5ddnWtdLHHm4bVwNiDnsXZr2eaPrXYwUx7bf/4Q0YzZOjFreVuAcSupMOO4hrZLSKovGivYsR1eeBhUQYOaHwjqA9GTBbrYRLli3TopEE+qAHMbnOeoteF7JspTNj1ybVzgS2t+ZcvsNSfdiJ7jEJgBldlH23G4puA1SjqZcFWidGrmOrqLEqUmpPmUWWXRJ61IataaLloKs4iIaJbTmerZWXwWFVpI2GvXbEuYMp9W7F6ILGLhPNttgo94wAcdNMIuCPkYQWR7EkOV5unmi6bESQFKpV6NpiGgEjYZSIpmBpJDsGw9DJIYGZaapFtuJvV92WaCVIk6UsXJX7geJyjkJoLLFw1McTsUy4maI9P2Z2W8LZQGHDAF501uA0mV7Wa2uWi5LgNWlp0PtP1H/eUV2PevAk/clez3jRpwNXJ85/sKXz9QB3D+Uc92h1zQDmh3/4h4e/v+zLvoy77rqLt7/97dxzzz180Rd90TUP4DBVOLmJ7Q5ktT+EKy2M1yfNsAqazJP71GtTNicsbq/QHuptQzZuobrkcZcXoDWT+y3j8wo76zDzFtV64rTKq3MaU4v9cHfbFsX7G1IPnmIihS4HWFrJl2k7uQAajVl22GXB8qQmaWl/VxeUrLJ5OWl3U4WtNS5Ett/X4ccaX2rcIpKMdGcWJw2hgJP/c0febw9WQNzXQIBDD1yMEQCi1QroWbvWtUkkFdeCQhWpbiAJWLmiqyLLZ3Jfv+/1gM9ef9PvZ91oIYRVlo+KpACKDveB85hjm/jtivZYIWCxCfiRJWmTrUUTbtZh9mvUwUJMGOKDQNRR3fJ1I0DMk8U+uQcjVwNkjoDLo9fuMzSFckw+NEeFSBgXoESYH0uL8a0YpGix7A1jx/JMxfyMpt2MuGM1o6qjdJ7NsqYyHXvtSGhiUdN6Oe8pRAsTooAbgNKKsL1PoJ8UHc2JBe3FzUwlA3sgxi+hBLRQpezC4OuS2bYEZW5XE86O9ohJse8roYypiFOBgMZk96/dZkQbZTxtFDMA+duwt6xYzCuKc5ZyB6IDPybre8RIRbpCcRDwq5SEJowADT9WhFEkjhL4PhMsO7d5MEuFskk2qsVxUyVZP9QB7EwNJjemZaAr6wDFnrAAmm3F6LJCt56oHXYZKHcszXHwo4RRCrenabopyyqiJh5XejESKDwKaFpLjAqloKstHLhBc1RcOgqyvN51IzsND5W78kR1OB5v3Yhu0XqQ50MBuue8q+EzPv/at/s5P/kefuHzP2u13Xf9y6t+7eNm+T/vec/jec973uPdzKGoUFqoSphngUhPIeu7C/2E2rgrgyX72pyyvGtrWG1rjmnKncjoosfOPckYMApTy4qcbgOqzff324vZDz8m/NThJiMBKH0HJmow2a7ZZk2MD6hlgw6R0TlLKCv279ZDizwpYXaJ936inSpsA2qZCE5W31QWGMaRXNyO/XmN3tmXFTCtSW2zAiW90UEO+bziWPXubSDPG0I3lWwnB3SK6H5NeK8UqYtCP4tRwEN2eVNGk5r2yq5LD2yUJrUdqnAr2t9apdyp0hd3KHYt7lxJGpckrdFNQPmIXnaoZbPqAnmf7a+PRJdH9cj1ZAEv6/Vo3Zgj8HJ1VZ/1zOYV1QWHqb3kiuTzU7vtcFphFm0+jynaYwUHdxgWT0nEbc+06ob0+l7P0YvpSxMojYCUECUnBaB0HqPTIGpPrPQh06rh3FbAHViCg+aYEgvn3nfmstC2TKOprWVRlFwYTSi0Z2kdpQ5sZvGkUKXEorjQnu1ySZERQhEDjbfsNRVNZ6lbRwyKaiaLabIPcHMxnQHEXj/l42NE59luFTTHHRc/WdFtBXFhs1Guf0szgBLTiB2zIAWIZEfOCCYIwCE/rJt8UPLB0Z38tgvY/GCHXQT8Zpnt/mF0KZKUZnFWE6ok+sxOYRcGLhv8pCDpRFNG2f7MkGwiVTHTA2VXxY5hcv+VkRNHJfVbzyr4vD+5dY7NYQcvfT3nXQ0/cp229dpvfNewzWutPuzydd9xYrjvdd9xglf97f99xfMey7avCsD8yq/8ylVv8Iu/+IuveRCHpZLTpMKhmnaYTEOQCXIPVNaDLAlDd0CVI5o7tuk2jAQnJhHIq5gwy4BpAs3pEaES9zE3k8mzKh2xspIRA/ixyRc0CZKMkwqzP1uFWhoNjSeVpezXexH1+4AC7EHD+AGD7izdWBNdXm3SEMp8gnfQdIZupPGVIhSKxRlDUjC+EDnxv+fYey8OWp+BJtZ3JHL+S9+FSW0UENIfH2dXoK/zgz11IlPRooYi58gk8fZX60Cw32/W1KQYVt2b9QpRtEBKrfbTA6pe2J87NUkbCC3UNXomQZ1oDXFFtUi+p+fFTEM78lK+kXU96GPr23qiBf1PRvDS1xFIefzlthr8ZEq3ISYiykd0jJg6iVlIqQmjEabJAcJjTXMcuu2ALsIwz/bBMGtLUlKMbCdp8jltXqskOScZ5NTeDrSm0nqx/c2i8sp61MRDshQz8CNot0UL4sdCKSNCcqBrBfeXPNAdY3Gi4OR0zrFywTI4Nl09uHtZHdg2CwJZixMKdn3JvCuGDlE9K3DnCqqLfUtE6Ml2IQtquhMaWywkjytWjuXpkt1nGNpt0aCYWgvNV2sJ8LRCu05BTF/6axxIZ0bF/H7SmjhfCV0s6WwhHeUY+LE4j/XlxzLubmKxi8ixP+8YXXLUxzSLM4rmZA4gbaHY0YRRIni5tppW4Q2oTuN2NWap2HpfpNzv8M2RBuZWqb7b8MJP+lF+/d2veUL2+cyfsfz53/no/5Frmdi/49kl351+iP9LfSffnX4I+NnrMrYbeRx6Dc1zHv2pH1VXBWBe+tKXXnG7t6x98H0gQZe3aqmYiFtjzLIR563+/vXJtfroNrCqKsJtx2i2HcWuzxSlPPnNlIHmRIUfafxIuL+j84FkNX6rFA2MygDKKnSzmji3p0aMzhuhNFm7psMJWbQeBtkJXULvLyhbj12MaI6X1McMoVBD1oBpZF/dRMTr3URWnzbuC4zvq3Hn9gaQNnzOQTpCWCWc4sCqy5Kft+qK5OPjvYCtslyBj7R6PLWZopWDPvucGWUNKfbmCfnLHBMUTp7ba3BUHgu549MDl0xrk+2sAaaQOzhKC33NWvCNjLEHPv0445X/20d1/et6gpfHUo8HxDyZgctRXb8yLrB4SqS6ZJmck/Nsbx9vZx2hNHRbjqStBAkrRTdNqJHv17CwJmJNGDQtdbA0IesJdZSASdvRZU9iZ2Qhy5lAiJqQ1CA21yphSy8TeC8TfN3KglaxI+5boQSzANVJd0Mlxz6TIUByq6iHbcWkGJmORjm6pDm33GS3GQ3i9bp1dK3FPVAwvl9J939DwpWrywlbJ4r9gN2vBZiMLN1GQX3SMbtdU58Szaap89xilPAbAcqIMlFMaBqNXmriKIJNqIWh3NEoL/QwyC5uHiQYVN6v8mBbATKhEvqY9hbTGkwrNv+6E0MZ3QSKA02566l2LPMzBj+GbjORTJJOT63EGCHBxjlNsZco9wWsjs4t5dJnjgDMw9VD0bWu5jU3qh5p2w9Hz/qjL/k2pi/feVz7febPPHZS1O9976+T/p8bJ+O4GhDTmx709VDHqQeHv/eaZ/J7+b7HqjG6qqMV11ai/8t/+S/8/b//9/nBH/zBgTr29re/ne/5nu/hB3/wBx/TIA5NReg2C/SOg7pZWTqaLFbvdTBrXRhlNPHEJsuzY7GCbIOsJHURP7E5RT5iaunGqCgrb35i0b3zSg607FeQVJKWuqkDzQlxBhtsizFXTPyVc4MzmtJCxVKLGhMio0WLqSfUJyyt0riFgJfooDkuJ9zt9wY23jtDHywkRDNrT64Q7vfAqa9ecwKy3yJ3NILQvvoxYS1pY0ysCsJmQXBC8bJzyUDQsxZVN6j5cnASS/05XqvVPvu8nX4famVfPWhgVFqNV6tVN2W9UpIPWasVRW2Nd01Y237Oszmqh64H/o9/z22/+dev+XU3G7is12MBMTcSvPyNV774YR/7N//fX7th+z2qG1MpKcxtCy4WFf5dju2/ANeKhjEWBj91tBtZvB5gcVoTNjxF5YlBX+FupXpr3qQHtzGA0kChPaXxNMHSBiPPzU5kXdDEqOl0xOgkhAHHEJhJdtyqLidCoaiPK2JJ7nZkwfvMchCnLBcl+xsLRs4zce0QHgnifHZ5OSZEsRdeLErC3KEaTbkv1LR2QxELsNnc0XSiI01WE0srC27HjXQ5TiSiTcTjHjfpsC5gVGK77ChyZylk2rPkwAQab5jtjml0DstshEatPehGDYBGt2BqcAuhUKOEgnZwl6LcVWKhHKDc6YTSppXk9iQxPSh3NPVJx+KURsXcSUqgO/lUxuda7KJbfXatRymF0UcA5nrVzaZxXS+NyaMBlquZ2K+P460//VXwSvjuT3w/vPsXAXje074Y3v31/PIrPg/3h//9cY33WjsxDz5O/fu5XqYI1wz3vuVbvoU3vvGNfPZnf/Zw34te9CLG4zGvfOUr+ZM/+ZPrMrCbUv2kuJ+Q9xbKmtWkPa/OD12ZqmR5xwa6k0BGALPo5KRsFdEplBf6gMq5L9Eq/FgTjca0ifJyN3RtTBPRjSdMHKGQtjmFy/SpFXDA2hV4SUm6ID0lShtU51Gdp4jg9i1+WhAqIytQVjH9SKLYaaXj0vm1SXy2LO7BwOAuplaTepP/9l6OgzaiU7EWVRR0d53k4K5KWupNwo8U0UjOSijANA4/AtQEU0N5ECl2PeWHLqNmi/xRCABadYHWgIW1K8H/ekfMZPodrOhu/X09ngkrkDNk1xjzIGogH/33UX1UXSuIOUzgpa8ekDwakLkRwOWRAMsjPfcIzNwa5VzAVh1h0zC7yzC+aHAHHSSIpSaUiuUJTTcVCle7HalOLBlXTZb4pSEkEcDoiEpq6K4AzLuCpXfEnIdidRx0L01nh9c5Iyn1KYMWyC5cpVgZq5iwDWzeKy6Z87NiAqOCwh1AXFr0ecvlkw6z0YloPY9NXPXFtrlrLGlm0bXG1QrTKmyduz1dwtYwvS+gUiIUWlgJGyWx0MxvMyxPKxZ3eMxWR1W1lM5zbLykNJ6ld8OxGLsOHzUbRUOhPTEpDrqKzaqhOWk5WJTEIAYG3dKi9yx2rjC1GiIFhF6WJOCzk8yd5elEN1WQNO4gazcXEsGZtOhp3KLFzlomH9YClHx2S/ORZETP1GtbVUryWBfAHnX2H6keSxfmZtbDgZjXfccJ3vuf/9d12f6j1TueXfKqH3g95/7bb/P/XOP23/dV9/Ouv30/91/j6671c7qRn+k1A5j3ve99bG9vf9T9W1tbfOADH7gOQ7p5JR2SRCosqp8gpyiT355mFEXIn0JEWUOcjiVrZdbJiSwmkjMCFrTCzoPY9VqNSgnTJlKdgYzrAykVZinhZkkr9KJDdRG2S1kl6ztg3ksnJmeuJLoBeCRjUCHIuHJ3BkB3QuUyFxWpLEQz0ncdfKZkDUGZayfYwSI6rjpQgw6oz3tRA3jBWuLZ48zvHDM/o1ncptj8C6EJTD7S0W4LTUIF8JUCNEmLpXO7oam3C/RTbsO0ia0/3UNf2pdOULdayWKtCTR0xEJYUdN6ENKbDaw7lPWfI2Q6XCkgpwdH6++/d1drb52T6WGvwwhe1msdoPRg5kZ1W64FuDza64/AzOGuzmdKrIZuLJ123YWcQ5KIBcQC/DiRNjsK53Em0npDYSNGR4xKlMZTmQ6fDE2wAliipg1mADNGRyrr6dZuSzq8GUIWYzAUjYjXwwiiEnARrZxck1KUe4FQGBa3CStABYVOCR0U5sAQgmJJkSm88jgJVKuwmUqF6m2KpbNDFMG+myWiU5g6YerI8qRFJUc3Vuw/A/wkYLY6JpOa0nkmRcuZ0QGl8XxkvsVOPQIEwFRWQMzSjwZN0Mh1HB8tuHMz4JPhwmLCjh3TKOiMFaqXz5rQYnVBEYAl77+bJpanFaPLBncgWlUyTTr1xjRGDwuWxIgKGcz5KDk/rnfGXPtnWFt/PKpbpx6p6/BInZh7n/O1nP8/ngFfcmPG1etdHm+pl/0qn/Fpb0d9yfdfdVfpidQGPVJdM4B5znOew2te8xp+7ud+jjNnzgBw7tw5vv3bv52//Jf/8nUf4BNaanUS187lMMZM2Vq3DYY8OS6IY4dphB4GDGL8UIq7Szc12DpiluJSkhQUOy166UmlIRlNKOXM1osYVUoCWhKYhV9pULKbFz6tOgjrZUzOXpEVo8F+2CPApvOr9xnCIFJXOp+U12li67QtH1fgRUlw2LAdrUjTMcunn+DgDsdoJ1LuJUKp6CaKYgbuoMXUnuZESb1taDekbb/xYY9dyqqVrRPNhqY5plmeOsbxPxlTvfe8rF71AZYpZrCxNh5nV+9T2XxxMdmuOVsqk+T9990Ww+oz7S9ID37PayDwqD626mbRxI7qyVUK0CaidCK6RDeWwFwXEyl350MJIYvSTREZly1aJUonie7OBEa2Y7OoAYheUt+1SjTeZocy2Z9ViS7bJvf0ql7oH6MmRgiNkQ5QIdei3k44lAJCbCO5K+OLgW7DEkqZ2Ecr2pViTxPnOlvPZ4dLLz8qryXp0IMi0Zf0onnTyPa7iSKUBrsUCnVwioM7Nd22x262jMcN47Jl7Do2XENpPFZFTo1mjGzHQVcysh3bxZI6WNpoM5CRXJw2GNqMFqZFy9bJmnvNNvXeBmGcsLV0l3AyLj9a6WR0lkAOdO7+uisHU36nJIDFR3ECjXJf0nqV6aOUPJ7BTdJHlOSrqatZ3b/Z9LEnom7GMfiNu74K+MXrvt0bWdcMYH72Z3+Wl73sZdx1113ceeedANx7773cc889vOUtb7ne43tCS3QoilhZjDHQriwuxe4kgc6icHLnwhlCaQT0dJkPvGlpNo0I9g2MLyR0JxcsEqj9KCAlJGKZ7ZSjtKBVJxPoVFi5HdOqE5QtgekkSHOgfSkNTUNaC7lM61Qp71HOrfJk4IpuS4oBuvZKClZP2VqfyPcaEpDnGQMbE/Y+7TTdRDN9QEI526nDHaRsGwrtsRIVEu1U027J6ltPLyMm7DyQrKzcjS8m/EizOOPw47NM33WOdDDL3RZWNs25YzJocGJafUZwhUsaJneJlJZj1x+XHoz271WrIdMmhUCKR5zlo7p+dQRePvbK6ijrPEuFXSbaTSN5Xwbaqc7W9goVxC455WT3wgRK4xnbFqsjhfaSuZIUEUXjLdEEpsaz0AWzRly/VlQxlTUvOUslKRpvoNXS1VeSh6K8dCJCBeVuHEBFdKIf6cYyyVcJVAeqXr23pGU7ultN+DFyeSxnCbtILE9qiv3E+IJcm+wyQLK0G5qkNd1EsbhN0ZwJA3gpbGDsOkrjKYznoCuxOrLlloxMx9i2RMRAACR3ZmxbCh1YejfohJrcnZoULYUNLIuEP9ngRyXlJU2yDK5oqhNdTLKrblS7oVFRtKrEJMyFbPEsrnJkgBJWpjJRCYhrA6oL4pSWr6mqOwIwj7duFnj5kv/5aXzn3/7jh80/uV7juhq61Qs/6Ue59Gu7nHjx/+e67HO9fvytX8t/uP/D7H7qr/CSR3nuYaD8XTOAecYznsEf/dEf8Ru/8Rv86Z/+KQDPetazeMELXnBFGv2tWLrxGB0GHmtP1RqoSDEvzxgG7YQKEd1GQqUJI83ilCVaqHaj6F/aRLSKbmpw+35wJHMzj+4CZtaSjEY3njhyAmCSiO1DZSh26pWF8nrWSn973VwAVuNdp4NZu6JipbXOzbB0Z1eT+x7g9OGUkEM9w2qC31tHj0ccfNIpFqcNx94jPu77H+doNxTT+yIqZSvonp5gsguPgupyJJQKnTtW4jYTcQcd5WUBk7M7Sy591lmO/cEu6oELeVz6irb8YKGcx51SgrpBGSPaIGsFkKQ0cLZTStAF1HpmzTrFTCsUBnWUA/OI9VhE/B+LdSOBy4O3fUQpOzzVi/BTImtBokzcTcKXinYzJ8j3ovqg6IJGKclx2SxqJrZlpxlTB0ehPQtfDNkwdk3k36fCd0ECKH3UpJRyLoyAmrqTdMeYJ+5Jg2tA+4Qfix7HjyQEMhmhj9mlTOzJDQS7zDRoI8+LFlACguwi4ZaJbqwoDhLVpY5qR2MaAUV+JODNLiP1Mc3ylCYU0JwOpDIwndRsj5dsFTVT19BGw7FiwV43wmYg5nTA6kAdHD5pfJKOU38snNGDVkarRED0QM4G7rrnHNOi4SNbm+xUWwIcvRI6XwOmydZviiG/RWUdrM7dlORyZluUY6JCWs0VtCY5JUCnp31rTaxkATC1Rwtij7duREDj9ahePH+19eI7fuDKO/7alP94Fa974Sf96DWN67HW9h98MfFPP/vRn3iT6zF5timleOELX8gLX/jC6z2em1rddolukZORs7BklULf55tAphmtBN46RGigOWbxFUM3AWSVS/tENAo/MeguESqNO0hEq9EIb5YgQr8wKRA7TSt86VkzuHsNupQUxZ64By9wJQ1KrdG9YljRpUDyUXzutvSAqBe8r3Ugeq1P38lIbYsi069SQlUV9VNPsvt0S3VZAFezbYUukO0qg1V0YwgjTbmTXXRGCmq5AAYN3USMDHQnZgZ9JyqVlnI3MDtrOffZx7jttwNc3F1lwfTdlf499O+XiHKigRmMFrI+qH+u6rtHa5VCzFS1DGweiqJ3VFfUY3UiuxF1tRkwT/b6G6988RGIOSRVWk+TxfW+SrSb8vfBnRrdQrchz+s7HLG2xKgxyqNJWBVZBpmM+6gBS5fT7nsr40VXUFqxUvZJ4/JEPsQyd2DSIB0ModdcSrNa9RkqVQYjDkKlBneygRoWE0kpYQ2wopOFAvxEXusOoJglqh1PpRXRynZ68GJnHaEQl8xQKZptRX0ySaZLGbFjz0bVMHEtZ0b7LINDK8mWGZmOkemwKhCTpo12MDfoj5PP1Dmt5Da6P2biUtaDvsp0fMKJ87wramb3boo7WZuPiZX1vfIylLsJNxedjs7ifJUyOAlyTFWQ44IRjU9SkKwI91Un7Axxmyswy7XFwaO6ZevhwNNbr2Ebv/cl127f/8JP+tGc7XLNL31c9b3f8yz+4T96aGOum919gasEMG94wxt45StfSVVVvOENb3jE57761a++LgO7GRW1ErF9SMRxhdrZu/IJ3dqkPq2J9io5jO1EY1qw+3IRKfcCuk3oIL7y7ZZF+4jd6UApoRLY3IGoLKb2wgkeGZJV2EUQi+G+29KDmF7jofvfaqXV6R50ooxJgFd/X9fmCf+KIpZ8WnXPDCtXs5hAZfDSgzelhI62NWX3noLxOem0LE47VEyUu4liP6ES1McVfgTFgVhWJg3xQEBdN1KUBymvPIKbBcyyk4tDCHJBd5pqV1brdj71BMff3pDmyxWFLDDktwgAWXWWUi/MZ+UYN9DqyJ2bNTpd//4H8GIMhKMVs6N6fHUzaGNHIOZw1LwtUFpjTCQUQo0VC/tEMmBnCrNQpMFcyxCSorRy3tltRyy9o9CBJljKnCPSC9ZL43NHItIGw8S26GwxZnSk9nYANG0nO1Gd0NfCCHGU79eDCvAj0eLoVhbg7Fxh2mwyU4s2JroVxSo6EeXbJdg6UV3scPsNsRADm14/EgtNzNe56BTNppG8mVoCJ8PxyIntGZtlzdi2HHQVl5sxIWlmpmTqGppgmdiWJhpq74goZl2ZO00KpexAtbNOOjSNt6SksCYMxyEmxenqgGeeMPz+QYU6qNBeEUmSHZPBpGiBZKGNGAVk9guNKZHILAQYOvfR6NyZMkSr8VNHqBTdSFPMDGl+62bkHZY6jN2Xq6l/deYn+VcAXPuiv4j14bVfcSfVz1/vkT16XWt36YmsqwIwr3/963nFK15BVVW8/vWvf9jnKaVuaQBjuogKWXTnjGgr2ky96qlbsNKFeI+eN3S3jUFBMY/YhVDKVBIhv2mjmGTFhF2KhXI0hlgo3CxQn3D4kaQhj8+3Iq0pDconivNz2VfhVkL7SZFdtAypF7DHLNCvG1kR6jsvPZjpRe4xZa1HXGk+MOK4BgOgUYVb0cdSlEl9b6ecEilGmrMbYim5FG1LcFDuJ9wiDpk2owswv11T7kTcTE7ebqYYPbAgjBxoaDccKGg35V/R7dYkYwljydABqHYii1Oa5u6TlO95QFr5fYu+t/I0Mv7egW2gh/VOZVqh1m3Mev2LVtJVWj9GWkCaekz9yY+tutouzJfuvOUJdyL78bue9ZD3/90P3cJW70d1y1SMWtjGNtKNI36s8ROhcOkgovZuI6G9Qjeineiy9XEbDcE72mDYD9JNaTI9DERb43SgyqBm6hoKHZjYlmWmV/W0q1lX0HmD9xrdKLppJEwjWGkbmLHHOk9hIlonvDd0naHdKzAzg5sriqgwjeTV9IY1fRo9gJsHyUBzhlgazNJLhkpK6DbSbTpioVkeN9QnlHQ7cgikLQO3TQ7QSqhui1AQkmbROZadG1zU6iCdlzrY/397fx5tW1rX98Kfp5nN6nZ3+moOlIA0BXaAUDDUvFhvocEYE6JDX9+EKAk2RYaK12sAMY33SkZ8B77GoNE7ImXuG+WKATWEEJBC0CugIASrgBIF6hRVdfq999qrmc3TvH/85lxrn6Kac6pOs8+p+R1jj3P2WnOt9cy59jPn/D6/3/f7pdhlqVwHqTz1k4rUeFzQ5KYmpNJalpglcSh8wtmqz+F8hyMHtnngbLbQ8bTaoGoEg+OxuVbv1ry0HRCiX12Y/hhFSC3zwzmzg6Lz9Bm4QcT1A9EGVK3RZ5ILW6p/kmIvaCseDm+Mb2bfN/wmZ/7iVbz5Ncf5rmP38s7/8Xvn9dq9uk9XO84r6OKLX/wi+/btW/z/kX6+8IUvXNCHv/nNb+aFL3who9GIgwcP8l3f9V3cc88952xTFAW33347+/btYzgc8spXvpITJ06cs82xY8d4xSteQb/f5+DBg/zUT/0Uzl346rkpvFRfcoMfJMuqRLsiv1sf0uSTqHmJqQI+VaRbjnSrIj1TkGyXpFsVydmCdLtCVx47qYUcWdW4nxjKFU2xrinWFfXAUo8s9UCTTBxqewJaowZ9yDP8kf0UTzvI5GuvY+sFhzn10oNsfsN+tr7hINsvOML8a24kXn8Q1c9F15ImS22Mfsj4YUlSYEFoYut41uzvovqjVRNoaVBpys4NKa6vqIaabNszPO7onapJt2rSzYp02zE4XrP2N57hAxX5yTnpdi39xS5g5jVRKeb7DLMDhmooDj1uJaNeyXA9SzJzZFsOOwtk48jWMzLisL8kGrttj5N08V3Fqlo6xrVk09rlNrud5PyuVbFdxyzGCOneYDB7bZ7sNTy0feyXjj77EclL+3yHaw97bZ6IdXEgTRykQZy/mlOvmSvsDHSlCDZK4GIFxWZO4ZYtUkpFErOsHLe6Gh8Vkypj6lKqYAhRLSo00IRbWkcVDHUbajlPCGmE6wpWDu+w//CYQ9dvcnjfNkfWx1y3Nubwyg7XrW9zw/4tDhzdJH/amOppc6ZHA/ODCp+phT5Eqjat1TKgFG6UiFGNj+K0aTRmWkk3QZAqTrE/Ug8j1VqgOuBZW5lhtacK4ih2tuizU2b4xiZ6WguhKXzCzMn/XZCfxPjFslTfVgyMiPkBcuMYpiWJ9mgitTdMqowHZ6tMfcpXrZ5GHyjweWzc4KAeQL0SmRwxDTFRuIGQpag1WDEfwChCagi5pV7LmV2fs/lMIWfVKFKtBuoVT8wCqu+JKzX1vr1xrt1r8+SR8HDVlstJAs7Hovgn/183cua9P33JxnC1VpzOB3/+3IxP/NL/ygve+Sv8+XMzPv0fnnnB73FFk/o+9KEPcfvtt/PRj36U97///dR1zW233cZ0Ol1s8xM/8RP81//6X3nHO97Bhz70IR544AH+/t9fGmt773nFK15BVVX86Z/+Kb/5m7/JHXfcwc/+7M9e8HjcwEoLmdslzGsF8UYvbYx3ayhiJDsxJWpwA7FFphF/tys2al5jJiV2pyTdLEl2GreuFXFC0S6SzKS8Xo00vZMV9tSOfE6W4veNmD3zIDvPGDE7lFAPtOhjvPRPay+i0NlBy9bNq0yed4R4ZL8EXSq91ILAcvywvLG3dqkPMQ8T5LjbSjIGYi/D9aRtIJmFRsApK3BmWmF3SlSUljlJcw7SaqcgHQtxiVpRrVrqgdgtFxuKYt0wO5gyOySl92olERvquSc/68Wa+eBo+T20P221pXEWU2kq+9Q6j3kvrXe7T65aCaFpjoFKEvnJM9hYxT3tCOOvPXLBf0OXAnttnuzGXtHAwGMTl4fb9lKSmSvpOnY5Pvv46t0cX72bz6987JJ/1vlgr80T76V9yeiA2rHkJ+VG3w+XiyZtq5brSzutGRvG8xyrpHKgGxKUW0c/qUkaQb4PGh/Fjcw3LWU+KjarHpM6E+vkqKi8wXlNWVo5ha/WC6evhduZdfigKZ2l9q39cMnh4Q43rG1x/cEt7I1Tyn2BakVIS0hEB1NuiI5GV2FRbVFe9J0YRbQK30ua87+QHVMq0dY4uaZk1i30KyAkrSVq7X5pIiuptJgZJWGdpbPM6gTfVKVCVNRRjoXd1TIWmrY809hPayJzn5Bpz/qKBCe3FRgVIRlLBSUYZMGtCalES3dEzGQB0w1Tyn0ZZ5+ZcfIFmulRx/yQkLJwoKJ/aMrho2e56YZTbOzfIRntjRX4vTZPHoqLndb+eD7/YuSr7MbFfr+rHe8/+ir+zrd8cPH72/7i1wDR+rzkZ7/qvN/nvJaYX/e68w+sectbzt8l4b3vPbdP+4477uDgwYN84hOf4Ju/+ZvZ3t7mP/7H/8hv/dZv8bKXvQyAt73tbTz72c/mox/9KC9+8Yt53/vex2c+8xn+8A//kEOHDvF1X/d1/NzP/Rw//dM/zb/8l/+SNE3Pezy6aSHzuRVhPohYvrXZbRPpQVqtrAUf0OMZvdM9ZgdTMg3R6oUlszIarUEXTiovtVgou4Gm7ou1ZjKV9rJy1WCLiN2eS5vUyoCdZ64RrLSb2blcHHyuCQZ6p7xYFSvVtJ5Jmd/1FNvPXGE4SEnuPUWsa5RpuqPbyoRBWq2UIrZBXUbxUE6rWArhRRhvCL0UFNiZmBNoJ6nKuvALlxblxN+/WFckOxafG5KtYtGeFxMjAaBFbNzJRAQJkG35pr3MkI6b1OZckexE5odS0i/ZXRbXepdLXFzax0CjF9Lyxm0lRqdLa2WtAQNZSsxS/GqP+XU9zj7TogKUpoD/et5/PpcMe22ePF5cijaytvryRIjILx19dtdWdgE4vnr3lR7Cw2KvzZO6TKg9GBUxc8Xql2qSqWXrmQbT3JulO2In3wr6tVNMzvbZzirW8jnBCAkJDVmpGoKhVSRpbsjbm/1x1WO7yrENyRkXOSGKZkYpyAYVw16JbVqqnDdUSDXHBy0uZkFD83nt5+zviT7lWOqY1atoJzkwxMZC2TSLb2sZ2dmaaJug5syKec1aSn66QNdBMs9Uo3/xMoZ5bRfC/NZRrPIGq4OQlyYPxyppcZP2uUAwnhBVQ+xkn86WA0CqMbmtsWFJFnWybEPTRMpgWMkLziqws0bMr8DO5DtRUQjmYkGzzX8JkZAaWWhL1dKMwStYrxitzFlpDAnW8xlWBQZJRVIZvnjefz2XDnttnlwoLqUTWfa/fYHb3vh/Pe7XT357na2d772II9q7eLxtcX/+3Iyt8cUZw3lVYD75yU+e18+nPvWpJzSY7W0RzW9sbADwiU98grquufXWWxfbPOtZz+Lo0aN85CMfAeAjH/kIz3ve8xahmgAvf/nLGY/H3H33w19oy7JkPB6f8wOQnphgtwvRq2yXxBCWjlWhWcVvV/LbrBWloKpJ79ukd7qmXEvwPUs0ulnRkdWb0Etwowy/kja5MY11cClOJ1FDfqZm9Nmz6J05fmPI6RdsUI60uHP5SHamJD85Jxk78jOOZOZIt2ry0wX5mZpsy5NtOmwRcblifijDH9lobtRZZp+0mpeqFotmpXe1VcVzf7yXbapaqi+N9iSZijDf1GKLrHwkZMuqVEg1tgikk0g9NNTDZcZMSMWkYL5hSKaR/knP4KQj2wkkM+kVr/taCI2CemDxiVhcBrMkkPJmXr6Pql5+R0rLY9aem20T4uK7A+S5Xk59ZJ0zLzrAyW8ccfZZluJgaFZGL+zv93LhSs+TvYKLQV5adG1lj4224nK14ErPk+Alj6WsZUFEMmBgcL+SzBEj6y3ZVsTOVaObjKjCcGZryKSSm7TUeHxjjdxWEdoKg9GBtGm/clGTas92kXNqMmBeJZR1QoyKNHX085LMusWYKmeYVQlFLYGYPmjK2i50Nm2AZEsunrq+Sf/p25QbEZ+KhXLUUA8VxYal7ksWmpk310etcEPD7KCl2J/LMbEKO2kqHl5hSqjcMohyWqeUThbNWmIFUkmZuYSJk+rSMC2lOtM8H6PCxaZVzhu2y56I/aNi5lJ2qhytAitpIQQpmMV+RR0bEta0xfXFxt/OA6aUylJIJLBS16KnrFYSig3N9DpFvSIEFQWrqzOuWxlzw2iLQ/0xG+mMTDus8vSS+on+SV8SXOl58mTBt7396y5o+6uhfexCx3ix9+m8KjAf/OAHH3ujJ4gQAj/+4z/OS1/6Up773OcCcPz4cdI0ZW1t7ZxtDx06xPHjxxfb7J5E7fPtcw+HN7/5zfyrf/WvvuJxVdVgc3EDmxZy8w7LzJW2/co12okQgUxE9NM52b1n4egG5VqCrqNoPoI4m0WrqVfl8XogN/q9TY9PNSFT9B6YY7ZmqHlJWB+y+ewhtohkW46QaZKxQ5cO5QLpdrW4QCgv7VkhMZJHk2miFkMBgO2nD1iNEXP/6SX52t1GBo0d80NsmmHRJqdUU8FoWtFU5UimAe1aDYoYIOi5I6QGkHDP2X7D4ITHVE05P7OYokAXNeX+Hv3T0kqnfMTOPdVaQrEuVaj8rGvsOqXCoz2YKuLTXeOO8dz9aElNXS2MDJRJiLtzc+wui2Wjmdx8kLPPtJT7Iv0HIduMmEKTbUUq9p6N8l6YJ8/48Pdx/GW//7jGfzGqMLs1LxeTeHSVmEfG1URcYG/ME20D3lvKeYKNMD2kGT4YMJWX60BfS/ttEeidkPPY7LCmWgv40xmn7YD10YxEBzLjyW0tzlxVSmI8PVtjdUCrwLzOqIJhXidMi5S6Nmgt5680dSia2LCgqZyI4rUSXQjGLwI0h5knaUI0AcogAcKZlZvwr953is9+tab+qxXsrLGI1lDs0+gq4gYWM3OQGHzPUA00xT7F7HDC6L7mmqGaaocWI4AYFblxHJ+ORDfU/ISoFi1uK2mxyMGxWmyTh4nBWTErCCjGZb5om2vF+yEYSi+tcS5qMuMovYUErK7ExazXXjcll8f3JLdHhPsRXXn8ICE2Ftb1Sko9MlQrUO4PYgWdBoYHpzxz/0l6phbNTdRsVT020hmltWxy6avcF4q9ME8eivNZ2b9YVZgf/vq/ZuOdT/htvgJvu+1/8LJfv/jvu5dwIdWX9rv6wK+9ivd86E7e9B8uzhiuqAZmN26//Xbuuusu3v72t1/yz3r961/P9vb24ue+++4DGpGeUqjao+bNl+ODVCBguYK/K0MkzufEEIhOLI+zL2+Rn64IicINLOX+DN9P8bmVHuC2GGCl7SuZePr3TbGnxqh5SRz2mD1lhWQeGdxfkIxr8hNzzKRCudCMrSYkhmg1IU9wa7mI/1csKkhFRwWpiqgAsxv60MuFmLR6mLYKsZu8mF3VmRbtvi6qUFLlmO/TzPcZlI+kO2J/7AcJUYs9tOtpqjVFPdRMDydMjiTUQ4tbyykO9vE9jZ16stNzkkmNLh26DKQ7ATsN2GlNdqYg3RLbZzuVi75PkXG2aCtI7bh3C/thlylB891qjbKGOOyz8/VHOP5iQ7UWsRNFuSariclUwtjq4d7z7d8L8+SJ4pWbv/e4c1sudd5LV4n5Slxt5AX2xjyJQVFXlrCTSGBiDf0TJf3755i5VO/TaUBXkdH9jtUvVKzfExh9SWOnmnKSUVSi8VAqLsTriQ7ERtvhgmanzpnUKWenfbYmPcoipd7J8M6QJLKokyWOtLFnzhJHL3EMsop+VpEnjv39Kft6M1ayglFSspHNSLW0aCkVcUEvQjSvWxtTbzjqQSQkETQUGzA7ojj9vJTNZ/fYfFbO9k0J20/T1CtSbZpcp6lHCjeQ3+28cWKrDalx9JKa3Mq/w7Skn9Rk1jFIKvanUw5lO6wmBRupjG01mzNKSpSKlM5SekMdNLkV8X6IitJbSmeZVglb85ztMqf2hsobZi5lWqXQhlnW0tpmJ4rsbFxk2ITU4HqWcj1jfjhn8+kpZ27WzK/z+HVHdnjGdU85wzP3n2RkSzFQMI4D6YRRUmC1R6uAUeER/4auFPbCPHm8uFZdveI7H5vkXW3IXvtU/q//su+iv+/jsln6+Mc/zu/8zu9w7Ngxqqo657l3vvPC6exrX/ta3v3ud/PhD3+YG264YfH44cOHqaqKra2tc1YDTpw4weHDhxfb/Nmf/dk579e6ZbTbPBRZlpFlD8PetSbkFj0piUWxDEY0TV5K7SThvSrEajg2cbxNJksMATWekM5LkjN95kdXcT0NUTJSfKaktSxEsnEgGTuSM1PU5hi0hsRSXL8CEQb3S6XC9xKoIiG3+J7FzB26coTMMDucku54olKUaxqXKYbzgC089dCQjR0oy+yAob8+QE9njZ6nFfEr8bDfHdi42yq6rTLppgKjrfQB70wZnPSUI/H7r/uWkDbVkjpiZ16CwYzkvRT7FfUo4voJK8ek9znZ8dhpjaplPL6X4HPTPFejZ1XzXI6pA3VmCVaRjQOU1bL6oh5CunZlu0iYjBNnsSqIQN8Y4qq05519LvROquZCKjk11UjhE0W5DmWytyowe2WefP6bf1te9wQF/BdajXk4t7G9jHf8+nuvqJD/ieJqJC6wd+aJfiBHZTl5KYtV0gKrJSPXLluUlI/YqbQXqSD288MHLNNDKeNnrDHeX5JmjjRx9FLZrvaaaZXivKaoElxtcHMLToFXYCS4MUZFYjx5I2K3Sc2kEiLSszVZU8GwKuAaAXxua1aSAhc1U5cSG3F86Sy5caxnM/KNgno8RDmFcoAWa+hoYHawMbGJkvllSki35fzqM4VPxfGLKNrH+lSP7f099uVTiia4MzfNfgZpCwuIFkZCLSvmJsG5lMLLLUxmHb5OJGCy2e8AJNozDWmTFbOs6rQ6G+c1KqhmwQ/MXNrbsnGQ7gAnsQA+U4vuBp/LvsWeZ//BMSt5wXo2owqWU8WQ1CxNCVpHtBVbMs32FoHZK/OkxeMhJI+nEuN++td5/u9/jt98zS/Az13wRz4h3HbzI2vEP/ttH+PZ730RsMP7j76KF971m1dFG9mj4bab30Lx/b9yyd7/giswb3/723nJS17CZz/7Wd71rndR1zV33303d955J6urqxf0XjFGXvva1/Kud72LO++8k5tuuumc55///OeTJAkf+MDSPP2ee+7h2LFj3HLLLQDccsst/OVf/iUnT55cbPP+97+flZUVnvOc51zQeMJKDgHYGktFIvhz2o5otCQqy5a6kUYnQpT2rBgj1DWc2aL316cZfX6H7GyJnYk+JT9d0T82pf/Xm6RfOoUaN0ILa6hu3Ee5btF1IKQaN8ooDmb4YYquHD7XFIcyyv09ptel0sZVBiELWlGtKuqRISSadKexbW6KR/Mjg4Urmdz8N/+2N/xt8GNLcKxtxP5NBkybOaMUMQR6xwvqIRQbhvFTLeWqWEJXQ/HMt/NAMFCtSL9377hicCKQbtVilhAiqnKEPCFkFt8zqBClXcwFSTZOLWpeo6oAEeq+Ij/b7NCikhTOrRK1Y14QTKAsF9+jP7LBfX97H2e+PtI7pRgdCwwf8Nh5pH8qMLovkG8FEdnukQLMXpsnFxOPVY1pn39o29heJy9XO65G8rLX5sngy4r9n4oc+JRj/Z7A8EFPsiOW+gB26jEzt0h0V7U8n56e0n+gYOOzJRv/U5H+dY/qvgE72z3ObA05dXbE5tkh2zs9trf7lCf7+M0Ms2UxE4MKCtJAkjqypObAYMr+3oR9+ZRRUpA3lRilIon2BBSFt8xdwk6VMakztqreV1gz+6gWls39vEQ1Iv6QQMii6AZnUllpHTKJ4ublciWhxSFiCzA1VKtiX5yeMZye9QEYlzmltxJE6UUb01ZSALQK1FECPytvqYPBR40mkluxjm7dzFLjFz9Z4sgT0f+0ttKlt1SuDWiW8aooOhifKso1Sz1KmF6fs32TpRwp5hsan0HUEdN3HBmNuX6wRao9a+mM3NYUPsEFw7jKGdc5Z8oBU5+S672hgdlr8+T/8dlqQV4e7Qb/kfDCu0rU3/8XvPCukjtf86xH3O7O1zyLjTcVF/z+Vwq33fyWa7bKdLFwwRWYn//5n+cXf/EXuf322xmNRvzSL/0SN910Ez/0Qz/EkSMXZjt7++2381u/9Vv8/u//PqPRaNE7ubq6Sq/XY3V1lVe/+tW87nWvY2Njg5WVFf7ZP/tn3HLLLbz4xS8G4LbbbuM5z3kO//Af/kP+7b/9txw/fpyf+Zmf4fbbb39Utv9wCEZjTo4lxb1Nt3cOsVuRIMTowzL4EaARES5ambwXEqMNbG6jtydorXaZATRhkLEhRFpDmuD3rzC9LsNUcvIt9iUUaxqfK0xpm15ccUiTtq2w8NZPJl7EoGMw84Cug7RrDRN0Hci2pepzTusVfEV44yL/paqFsBi9tB5WdlH1UEphT44hDnA59E4HkkmgWjVkWx5dBaI2JBNZkXN9EaqaubTAGcSy2g9SucClWtxdEoXra0xhUbUXS2pAO1mpTCeR7PiE6JaEcVFpURpqR3RO9C2L/UFskvOcOOxx+uuGTG/0rH7OMDjppV2t8CQT6YFOXCBkWi7Ge6Rlea/NE7j49snn2xrWEZdLj6uRvMDemyerX6wZjGtCohfhjnpWEXJLsW7JtoWwhCbdHcQFSykRwytXsXIvZGPL1jMMc9LF5QYdqVMLQdqeiI2eREE0gWxQLW7ae7amb+sFIVlNC86UA6ySSsR22ZO3bIX83rIVewuBfGK8hEkiFZFJnRGCxmdSVopm6SBpioidgetLpWVBYlLZOe2RRcIAuhZSYwo4e2qFQ8MJviEYrQtaZoR0nCkHBBSpdgxNSdLoXtrtjA40PpuYRqyfak/hLcO0ZFanKBVp+0XqYBgXGdPNHulmYxgTxZgApMVbRXEiq0YK15fMnumNEd+LhCxw475tjvS2CVEvMmy2yh6TKms0Q42bmvJsVzlltTdyxfbaPNmN9919/o63j/j674D/fY8sPj5RCIl5HbfdfKVHcuG47ea3oP7gY/D4Td0eExc8o/7mb/6GV7ziFQCkacp0OkUpxU/8xE/wspe97LxEWi1+9Vd/FYC/9bf+1jmPv+1tb+Mf/+N/DMAv/uIvorXmla98JWVZ8vKXv5xf+ZVlScoYw7vf/W5+5Ed+hFtuuYXBYMCrXvUq/vW//tcXumskx04RHXLj2+a/QHMz3LQqhbDMIYHlKv8i2R4JiDS7qhs0WgwfFmn2aAO2cVgZDZg+ZYj2kXTsMHPHzo1i0WinEdfTRJ3iU4XLFVFZ7CygG299aNxd5gFTBVQdJHDMi1VxMJI1swzjbMT5bWAjLAXwbTWjJTfn2EiL41f04s62/y/nnHluD5SS4M0QSTdLfF98/1eOOXQdGR+1S/cwpFokVaZmHC7iRoZy1VD3FKY0qJgSrBAvM62bDBmP2p4QW/LSfjcxyJiMfohmR5zIlJEK0vRp64y/CtJNQ/90wM4D1Upj61kK8QOgDDAyzI7sjbPgXpsnz/jw9z3ufXkiuBrJy5VqI3vHr7/3sTd6GFyt5AX23jzJzszBZOgqYsYlqnFwbB0qqxVDdqppQ96VtRW1XljRJ+MSO6kwZY/pEUO5KjfTPo9Ei7Smtd2ySST0IqSBLHUMGytmrQJbVY+5SzjU26FnammfUho8VMGIs1mTPZMZx1o6pwqGwidoIk5pqW4g7VnWiFNjSMD1pfriM6gHjZtaLiJ9cRtbHhMR7jftZaUQBp+DPZXw4L4VblzbovKGwiUoFambig8OUpOCha1gKINUZ9pWsbrZh56tGdqSg/kOLhiO+xGp9njjGgLkcVEzqxO2xwPMpkVX0tbcVo1UaxiTKeqBGC0oD9Uq1GseFAwOTnnm2kn2JVM8mkR7TpcDcuOIiVqYJLS20OvpjEm1N1rI9to8udh4392v4327fr8W2rCuJB6tqvVIuFxjvmACs76+zs7ODgDXX389d911F8973vPY2tpiNptd0HvF3dqLR0Ce57z1rW/lrW996yNu85SnPIX3vOc9F/TZDzueugaVLLNS4BwSAqCMWQYnhiiVit1p7rB8LGhp0psXy8DFFlpBCIR9a2zfvIapI8kk4FNNPczwmWL98xVRK8ZHLbqGfDuQb3oJvhxXhMxQDy3aieh854aEdMeSbYvbS0gki0a7KM4w3kslKEuW1RS3qyXLLtvEFsdkt2lBvXQii86T3HuK/sEbqEYaN7DihpaKLiZavctFTHqKTRnQlWTFRGSFq1qRYM7pIc3460rsiZTepsZOFbqUClPIJEdm8IUt0Sb5xoygqhfHW7UE0gc5/toIiQwe0oT68BonX2CJKhKN2EyD2Jr6TEwHtBdnt3TLMTugKa7bOyX/x8LlnCdXAlcjeWlxtWthrhbstXmiXEARiVZJgjt6oTc0VaAcGUJmm+R6aZuVyj/NOVi2VT6QbVYkE009tBJkbKBY18wOR3w/gleEPJLsn5NlNRuDGT0r568Qm0q2ikxcRmh6Y1t9SYyKOmiSxDMwNbmt2UinTJ3c+FXekhpPbhwuSoUmNJoe34+EfkAXkoficyFXfhjAtkHOBl1o0m2xTVa+CfCspDJTWyE6W/evYE1gX3+KabJsrApSSTI1VgV26owqWPq2YpiUzF2CVpHMuIaEeQa24nn9LzMLGVZ7jhcrBNQiQ8d7zaTICGdSemc1PpfFxraKZOeR/skKn2qKDYsbyvjKDfk+9KDm6ftOcyDdaYI2WRCtYVI2ov24OOYhKuY+oQh7g8DstXlyqfHCu0p43VdfcSLwcBi+7f/kq1ZP8Om//79c6aFcFFzuY3zBBOabv/mbef/738/znvc8vvu7v5sf+7Ef48477+T9738/3/qt33opxnhlsJvEtJUYpRHVu/w/RoeqRfei7ENaydSu35O2z1ada/2bZ8xuWiGZiZCzWDdoL85kq1+ssTs1KOifbi5AlbiKmXkjrvcSWqmiiPhDwrIMrnQTjqlJJ1KtQSkZq3Myhiwl9nNiL8UPM0KqqQdW9DrHd1DTeRN06ZfHY3HyC8S6ZvS5s2x+3T6mhy39kw4VEYvJocblCltEemcDycQTUi2pzLVHaUW9YokabBGoVzR4sbF0uSJT4IZSyQmZlna57cm5J9/dRNJ7MIlUW9pAS6Mb3Y9idl1O1HL8tFO4PGIqybKpRhIM2j/tJfMy1/TOBNTY8uVL8KfV4erE7x77tYd9/B8c/aHLPJJHx+OtvnS4yGjOVar2UlUxCuVkEcfMAzYRUxfJFtEo76EJOo56+R7KR5QP2KJGV55kalB1oH/coHzK1nMicRAwKxV5VjPKywV5KZ0loEi0J9Geyhs0CXlTkdBEXJQMlhgVWoUm5NFSN65nC92Lrci1xwWN84aYRPGAyTysO/p9yWZJrOhOEiM38se3R8xODCj6CrOjSXYUtkA0ho2QP2ZgJ4YzZ4YM0mqR8xKiYl82xarAmbLPtM7oNe1wbftYK5i3KlD4hKlL+XK1Qa5rVu0clxqOB02qHYVP2J7nlEWCnTUdEClAxBRCYkwl9smk4HpKvgsDvhdRPc9gVPDU4Rn2JxPumR3CNfbKk1oI30PJS+ETxlXOZLo3CMyTFe+7+3V7gsS87Nc/97iqGh2+EudNYO666y6e+9zn8u///b+nKEQI9cY3vpEkSfjTP/1TXvnKV/IzP/Mzl2yglwXegW2F7mKfrIyW1f62UmGMPK6UaC1iWIa/h7jUXSxu+IPoR3yQlTXvIctQeUZx0358qsjP1FRrFlNHTCFaF4BoFCE1mHlY5KFEA9VqQjJVIoicR+qBRtdScUnmEVNF7NShvbSfBdsQJqXkhj6xhJU+05tGzPabhRBTO3GHcQOL+eqUdCey+jcz7P1niVUlLWctQWv2V22OWfuM5dQL1pgdsAyO1wSrmB7R2CmkO2JHCdInHa1GuyAX7Wix84DdqTng4GyZNiJQz/hoRr7tcZk4uPX/6gyxbARtZld1rC1+pc33FkRLs7CF1prYz5nv07iny+qk/sgqKoDLFMk0kI29BGXuIn/pOGDne6MC82THlay+PBJpebhtHo3IXA1VmKu5fWxPQikR57e/x0asH0S/iFLossnlipFoxeqd2kurcvsyq1GuqWaEiGpNUEIU98cskK0X9Bry0oZd1l7yXmgCIVsiAyKGD9EsyEl70+2iYebEjczFpXXyMClxweCionCJdK71PHZ/xcawYJgJ4dAqMkrk/mBaZygVefbBE7j9ksNy7+Y6kzN9VGFItvWyfatW4CLqgYyTgyH5Rs1aNkcTGdmCuU+bKtCUgIRTVt4sXL5CVASlmLuEuUsY1zlr6ZyeqRdEZ+ZSxmVOUSXUOym9qeh3pAIm/8YEyjWYH0rFKXMeyTahXBMio0wgT0SHs9+O2c56fH5yEKs9a9lcWvOCoW8rrPaY5rjKuHZ1YHR4UuLot3wH8LlHfP7syv8BfO9lG8/jwRvjm6/0EBY4bwLzNV/zNbzwhS/kn/yTf8L3fq8cYK01//yf//NLNrgrhubGWLWVkiZLJEaxplxs81CcI+5vb6RZBkR6v2jHCqMBIdX0TpT43EAEOw3oJrul3LAkOwpTBXxPU/cUtowSGllGqhVLfrJE+UgyC9gCXK5Jtx125vGZplptnFvqiJ5VEAKxl1Fft8qZ5+QEq1i5zxG1ohxpVIDBCY9PFcEqqpHixAuHrBzO6d87xZwdy6JZGwoZItEH9Olt9n9Kc/KFK0yPJNRDaRVIdyK2CJSrBlNFTCkXXQDXT6TFzSjMXJNMHAf+whONwvekRcLlmrqvOPCxTRhPloYDvg3j3FXp8q0ytLF8ThoFftMSpx34cUrc77AFZOMIUaovppL2PdfX1H3duOtE1GIZtMOVwl4nLw+3/SMRmctBYrrqy95BbFwro1JiWa/khlk1+SK2yb9qt8M2YvL2uiMu/ixayWIEPDoI2XF9Q7UKdlQz6pekjVVyz9YL6+GRLVlP52zXOYVPpMVJNUn0zi5shUEqK22blYuavq1YSYumCiN5KkY3RArIV0pG/YJRVrKezSh8QoiKnVqyVuqgMQ2pyU3NRjpn7dCc06sDHhivUOxPKLZy0tNGiEyQgMvi+IAv60i6z3Mgm+CiYbvOGViR4O/UmRgQWN8EecrxmbmUQVIt8nFmLkGrQBUskzpju8zZmeeU84TkjF2QFjtVje6FhfNkuaKxs0A6CZhaUa4bQhbQStzNxi7nhFtlv50wyTMeLMSBNTWeEMWSmgCZrcibYMtEdxWYK4krVX3Z/M3/DKOvvejvezmIRPi5f/Swjz9Rs4WLhfO+Q/vQhz7EzTffzE/+5E9y5MgRXvWqV/HHf/zHl3Jslx8higC/XlYZYi2VlxgjyuiGxOwiL+12uyo0xPDwBEdp0AbVy5k9dUUE5EbhcyM381ZK1ztHU3auN9J/2zPM92l8JhUCWzThWolifiSnHmrM3GPKiC0D0Spc31DsSyCK8D2ZerElzjPmT9vH+Ck56Y7YBisnrWnpNNA77Ui3Hdm2J2oIqQgyZ/sNWzePmN58mDjsLx2+wlL7Y05sceij21QjxeyQkJVs7BciyLovlaBqJWF+uMf4qSkhkSqS6xshcYDvaWb7DVHD4MGSA398Ao6fkmNuG2c0Y84NrNxFHGNLFp2Txxt76Khh8EVL/PRKE/AZF4JN7SLluhEyVUXqPoRE8mA6PDlxoeTlfF97KQlGR172FsTFqnEY87FpBwuLsGTbhhOHIO1jjeuVWmRcqXPea9F+rBW+Z5ketsyPOFZGM/b1p4zScqEFAVjPZuzLZhzKxlgdSLXkk7imNcyqQG5EmN86eLVVlNqL25gLGheXpGbuhKRY4xn1C1bzYlHVGSYSHlk3JMioiG8skF00jVOXITWeo2tbfNXBMwwPTajXJc3eVI02ZqKZPTjkS5vrnCkHlN6Sm5q5TxYamNR4hknJ/mzKajIHINViPrA/n7CSShXobDng+HSFEzsjTm2OmJ7qo0+mKNec+2sxE2jNbojiihYVVCODcpFs05HsgKo1YW6ZVQk7Luevpof5m+IAZRAdzszJolnb3lYFw9SlFD7B6EBml5bUHTqcDz50ah/F9/8KL/v1R67aXAp84/f/rcf1ustNbM67AvNN3/RNfNM3fRO//Mu/zO/8zu9wxx138C3f8i08/elP59WvfjWvetWrHjHA6GpBdI5oGx0FgDGoRr/SkhallGhaWlviKCV6xUNCFY2Rm2drl65jUZyywrDP9JAhGtB1igoiHidGiv0J28+Aehiwc0UyU/ROh4VTVrAKl+vm90i2LRbKEQmHjEYRjLRGqRAJVjU2y4HquhXOPjtBeUjHUmWIBtJtR7rdXMBKh4qW3hkJ9/JNm1UyC5RrhvobDrFyzzb6zHjhSAZigKBPbXH4I5qTLxwREiWkTIEthCxEDeWaYXZIqj39U7Lf5YbB5VIlUTGSbwYG982wD5xtjBXEvloIya7j27rDgXwX5zy3q1xvpKLjM7lY5ZuRaqhJdwLZttw4uEyjXVyMy84C9XmIHTtcOlyJ6suPHfvsRXmfR6vGXOxKTEdc9ihcAB2JWouupV3sUuLCRWhcJFttpI+yvVKwy1pZXiTkJWrRzZRrlukRhVmr2N+fcbC3QxXs4uZZ28jAVmgVGLveopWq8kIiclMv2sdy46iCofQWq4IEPiLn1oJkYadsVaAMVioqiSNpqj25qc/RfbQC/HZ1tPaGKSku6AU5MjpwfX+bjWzGF/OS4/evE02CcmILrWrNjhpxTAd2+hmjpFwYCIAEXRoVF6RsNZlTBdsQhpytokfhLEVtKctEDu84Jdkyi4qL6CGR1uFEfnwu1v/aKYoUQmIYPBjkWntG4+aK2Woqrmc64oLBNs5mrb7INoSuCnbRgueDpnTdgtiVwl7QvlwqbLyp4MRFLOw/XvJyJXDBPTKDwYAf+IEf4EMf+hB/9Vd/xXd/93fz1re+laNHj/Kd3/mdl2KMlw0qy6TKsrA7DkuHsaaiIkGVbmmH3D7fkpdWB9NWCFqnrOAXFyG/klEPhSDUA4Xr6UVVYPsmzeA+OPQxGN3vQNGk2wd0LZkvtgjYIpBt1piZE2cvLVbKuhI7YDsTtzIVI2ZWExPD9EiKnUaSSWwqDWrRxlUP7eKvwcwcug70TtVk40B+RuyQTRmZHdCcfNEa/vC6kDOtiFUt+TfOYe4/zZH/8SDrnyspVjXFhgjkTRmkEjMQ739dRaYHDcW6oVqRYzG6r2TjoydY/bP7scdOEudzOb4Praq0JNH7ZYhoc5wXRNPsIpNA70wg24T+8SgtchL43Fh9SvVKV5F0y9E7XZE0AXMdOjwRPFI15mKQjnf8+ns78rKX0bSNqUb7ggsNSRFhv3JhWVkJNJWYXe1irrnGLOyXlVRwolj8ukFE64DR0iYlmSNSVRlZ0QtuVn3uGR9ks+xLwGLUTXXA4oOmDoa5SxZDDih81GRGQiFLLyYARofFawESLZbLGmkPS7WjZ2pWUqnIpAutzdJOuA2mrIJhUmVMfcooKXjO+gkOHNmm3u8IqVRA7EzRe9Cy9cV1vvTgPu45eZATkxFbcwnY3C577NQZp8shp8shm1WfE/MRD0xWOT4ZsTXP2Rr3mWz1qSYp7kwPVSmpM+0iLtG0hEUWt+xcHne5ZNkU61rCoa1sYwtFNU+ogmmqXUFIjAqkxqPV8prTHqvaG6Z1SuX3Rg5Mh6sX/59/9vg7Ax4Jb3jnXbz8TSMATr7s6ef1mt2E8EqSwyc0o57+9Kfzhje8gac85Sm8/vWv57/9t/92scZ1RRCdE4F9Wz1pAh7jQ26OF2jby9rwRJYWheqhlZi2KqA1uvLkZyPJPJCOPcWGpRpJir12MDgRyLZqyUfpS2uTcmHRZmVKqaygQFee0LOYMlCPjOg96rBoSUsmDrNTUB0eMT2sGd3nMbVcUKOCcqTRzqCrSLCaMEpFZF/6Zj8kaNLOHYmCZKqpRooHX7rCkT9VmAfOLI4P3ovQvq7p3TUnv29EceMq9YolJGqRxmxnkE7EgKB/vMRuzlDTObEooaqlGtWiquXYtS16bdim0c0KZ1P50kI2o/eoxmgBpYkhgPPYeaAemsaoQFrFom6qWqlmesgwfMATMmFxpg4kO52I/8mEtvryRNrHHg6/e+zXHrESA1xQNaYjLFcRYiQaJQ5jtZxPY+tWiVRm2iwwDFKJCWF5nWntlJUsMi1zYqTKHjVEL5WT1gErNZ5MO6z2JCosnLl26kz0LtqTWYfbVVWpgiGlqZ6ogNXyOq3CwqLYBb3QtQD0k5qkzVRxaeNSVtMzNVtIMGZua+rGoattM4u7gic3iz4hKm7sbfLiQ1/iL8yNPNhbJUx66ArsBEypqbdzgoEzoz4xjZwd1qSZw9qlXXGIiro21KUlRkV0GiqNKjW2VOgaiFJZMZWQkWDBJyzc0EwljmghA98DgtwgFauGZAbzg803V0o+zsiKPmirsZteSYpFVWuUlNimEjWuclzQzKtOU9nhiUP9wceAZ37F4294513wzieXu9njJjAf/vCH+Y3f+A3+y3/5L2it+Z7v+R5e/epXX8yxXXYopYSUNC1iMTY6icZ+GJCbZGOkxJ+2y/hxoQvZTXJiKywHVJIuW9OUCPK1i1Qjg08U9VARjJxUdb0Uu6sIQYtOpl3J85laOJ+F1FCNkmUII1KJcX0jDl9n5lA76qFl8KAQpmgV5arGlqKlKVcM+VmP6xl0HeTknooux/c0upTP1XWkf9KRTjTjpxhOfcOQfYkmuffU0iGsaZmLdQ1nNsnPbtPL0uaY7hIxNsQkliLMjCAkpa10VfWCFC4c3Vqi0rbuLYJGw8LWuv2OaCswQaOqmvRsRe+0ZeurQfnI4AGpPikfwUZGjZmBz5YXGTXrKjAdLg4eicTA3iElh7dv7pzILgV2uY8t4BpXyl16l6gUJAbll9u3QcWLNrPGjtn1IOSRUGmKRoyvVcQFzURnYnm8q81qrpJFRUATF8n0mXGk2qNUJFGB3NSspgWniiEhGAa2WlRlQuNm1pIGgL6tqLzFRY0NQnqsDtTekBsnP7ZeEKKtqi/712hEZi7lVDVkI53xzLWTDJKKz5+9nuyswc6brJiGrOmyDVm2uF6kSiNhIMGSBCVVrFqDiehaoZxqKitqoXkBqbi4RK61yrPoPAixCd4MTZtfEEJTD2TBCwXBRnCKM/M+O/2cNTvjaO8sdTSMXc7pcrgwAmhb9kCIpX44XWyHDpcQ/+OtPwhvBX5u56K/90MrL7fd/JaLooGZ//fzpyUXRGAeeOAB7rjjDu644w7++q//mpe85CX8u3/37/ie7/keBoPBBQ90z8GYlm+I/mVXFoxqWsVUL5eba7PrRjdNllWWxiYZ51CGZWtZbBKXEysnRx+xE4+K0DvhwSjqviWkUjWJSi2+nWjAzqW9wGeakGhM0ZyNjeLssyyuD/vu9qiGACVTL21pVQ1aU6wZEa77iBtIJUKslyHbkrYzaSUz+J7GJ4pqqPE59E8Faalq7J3roUEL7+DM8/rsUwdJvnBcSAss9ScxiE4GoK4XgvrFxdhaaa1Tu/RDQQIpVdOeBmaXrkizuNpoA6la5u5YK9eN3U5wbeWmrLDjgrXPG1wvZ3Y4Ug+gGmm0SzFVoFg1IqD1EVNIBcaZ7oLT4eLh0UhMh2sQWuyPYyJmLYsgy+ZSEBtHyraNTMVINEacyDQskhWbU140mtCz+MzgM0VMAoSGVFhH4SzTIMRkS/WwOtDf5coVGwH/tKmYaFgk3qfaE4DcOJ7WP8XAVGzV0q61Vcm/EamgpNYt2sSsCmhbU3nR1YSoGSYlhRLHs7YaNDRtRUIzUwlVsCgVKb3lxGyFmUtZTQqetnKaY0fWCTtDVBDikO4oXC7HQTkhGb0aacfOE4JtFv68PC/HVP71qWhbWsF+aIhLSKNY5iNEBUWTo6aIJjat24pQN/ECmcJOYX5IXnNmPOCz5hBfNTrD0/qn2J/skKgRZbAkjVaoPT4APmoUy1a9Dh2uJbRkpiUxl6ut7LwJzLd/+7fzh3/4h+zfv59/9I/+ET/4gz/IM5/5lWWsqx67W75agXhzUxxjRMEi/wVYtJkBTYpy81zb4gRyg+0DUQWU8+hZjZ1LQGMyaTQsRpPg0Jse37MiwNcaM3OYubh1ESMhSUm35TUhlfaybDsyuyFSrGm0l7K7dpHBA6UIRYc9XA/sXOEGhp0bDOk44jKz0M64vvT5Fhuack1EjtVqRHtFMtHkSoGVfu7hsRn9E1KFKg5m7BzNWdteQ5/elOPUkoqF3bJvQmB2BYKaxu54Ee7JLkvkhpz55vvQ4u6irBHS0x7r9rVOchNi+13tMlNQiVw01HROkhhGX05wPcP0GRVPOXqaM9V1DO+XVbb+KU+wCp9rlDdE35X8nyy4WOL9x8LlJDGzL8vdVv+GE+f9mq4Kc/EQlSImhpCYxaq8Lp1UYnZrY2BRXVG1nBNjaNrGHgofF9UBANNz5wQ65k17mI8KC8zqlLpp/xK7ZDmtFs7igyK1nn5SS0ZM86aJ8lyXbRGQBHmtogRi7vqcOhghKMYxMG2VRvHgfJVUO1LjGNiSFVswNCVGBTJdUwbL3CacmK9QRrsQ9IvjmSG3NUc3Nvmbp1rqcY/QHANbsNChKN+4tXlgHiFTi8qJrqPoW2guOUotQkFDKkYu1Vog9j0q8xgbqGcWnEYPa4wJ1DspqtCYmUbVSq6pc7kW6hq8hmqe8EAU6+SBLdmwE27KTpLrmm3XY+x6ZNqxYuecqkZUs1V6HX+5IriWBfz/7+nn+P8N9lbb2O7jHb/zRfD9n7hkn3XeBCZJEn73d3+X7/iO78CYazSQabfGxftzXcX0sm1r4X6122UMlpWZNvhS6WXoYttmppRURZrVfoDQs9KSVgfqlRRCJJnWmAg+M41wE7QLpFulrMQlmmjVQi+SnxCnG+1EH5Nte9GW1A6fW1CQzERIr7xcDGY3KpIxDI57lEcyUJrnsJJITGhWrVKNnTTjdgGaVUW5mCimT1thtDMVHYt6yI1/E/rZtoth1VKc3+a2aHNOYGj0QYiitahejt+/QrWR41ON64m9czoWnZIpPGZao3dmqMlMWvfav9H2O60dejxjcK9ChQGolPvGh8ktzPdLpcmPJYDTDSA/bUi/3GlgriR+7Nhnr2gOzKXCpSIxLWE5n8cfjdR0JOYiwTSal0ZjAZxrjxzkPBWtJmrTBFQ25MZ7Iruus1rOs22VOJlE9Ezj+4Z5lTBIK/LGpneQVEzq9BwRufOaxHhKb8QRq25am6yQmt3C+7NuIETDJwsCo1VkXGTEqMisY9RYJrfOZUlTZVlLJQ/GKqm2zH3K0JRoIhOfkzXsQitxMFvPZueI2zWRQ/0xyfWeu6c3YMYGO9X0TkI6lhy0JptTNIwO7Fz0jG3VJSrpWpAqimxXj6Ba97BW0xuUZIlDNW5qbAgpi02LnOuXzMuEapbihxY31qTbQl6SHUVINcElVHPLcS3VK60iz+idINM1WuUcSHcwKjA0BWPX41BvB99PL/7fWIcOexz5f/5RuATmA3ABBOYP/uAPLskA9hSCB90sk4Qo2opWNB7DsjoT4kIsvhCZ0zhf7Racw7JlCkQ/U1WoxJJuV9SjBFUH5odyTBFIxzW6DphpjZmUhF6CClr0LaENENMoL3qVctVg6ohyIoxvhYoKITJqLroUn0toly0C5YqEZqY7EddX2GkUF665pxqlZONINo7s3CA38qZqSu5Wid5m1eJyzc5TNPvuqqG5kMz3GfoH1zD3nVyseGEa3UrwQl5a7Yr3y2PkWWwDLNrGlLWoPMfdsI9if061orFz0ewEC6aKsjqXqMZowKDWMnSxgplVqFmJmszkKwgBpTWUFea0Z+ACUa2gvKHYF+WoeijWZZ/L/Z7srGF26Bol6h3Owe7qy8UW8F8uPBJ5eaztL6Q60+EC4Ru3MRDtSoyy+NM6j4G0kjXWyCpEOR+yq72sITQREfgTlnbvuoYws8xsRhzMyG3NpMrQKpIaT4yKOmic14sAZh80tTNEwOrQ2PtaEepHCb/ccTmlt9SNRmXuEslzKRNiUNjBbJH5YrU4b2kiVgcSFTC2wrfkKWomPiNRnrHrsS+dALCaFkJ+tOe63jZ9XfHp7esBSFRgI5uydmiHLT1E1wkhVQTXZLTopi0stjkuy3YwaI5nbBbilFgjl4cceliTpI48lYWp0HRYmMYlrXIGo8XZbdArsTYQRzBfyfC9FDtT6EphSkVI5XiWs4QH7AoA23WPgZFFOqs9hsDMp2gVWE3muKy82H9hHTpw9udy+L+v9CiuDDpfv12IPoAKsvq/cIJRS3tkQ0NWPEo3hy7Er2hbApbVBJ0uH29v3ssKM6uZ3iBuLXYumS2+aelKKmkjCJldrNwpL3aafmgxs1qEhkahZyK6z89GEeUbSOaB7IEJFCUYgykcPsuZHrLYecQWYqE8OxLpPygtUzSrVtP9GjuLhBR6JyL5VmS2X4vYfz1pxqmYPsWjfMLKvb5JMY4UB3P620NUWRGLUqouflnBWh4vqW5F587REi3a8ayFtRVmT11rVhsddq6w0xrfs9RDK9aXPkIdMbOmamM1ITP4Xh/29bGTAWanQG3tLA0EHOjxjOHnI9lmn52jGeUa1ANIXCTdVPROaJJpZOvgRf3z6tDhouNCicsjvf6hRObw9s0AXSXmCUI1AZZRQ0y0kJkm5wUjFW6MnMtj1OCXiyYL8mL1rvbbpgIOoMHsaDwpO2sp/URungtnFy5hPshnVt5Qe4MPCqUisWkrsyYsbI5bx6yZSxfBlmfmfWpvmJUp1SSFoCjXZIxV6zDWWDbvuBwQZzMfTVPVcWTaMfcJZbB8cbYPFwyFt1TBspIUrNo5R5ItHsxX2akzMiOWzEdWxhRVQuEVUVnSsaJ3Mi5Dll3EtIel0bFE3fwo0a0U+yPlYUd/3wxjgjiURTkGWgcqJ9dx32iJYowLvZD3WsjMqECtzKkqSzHJUDNDTAIq98SgmG73uLc2HN8ZMcxLVrOCvpXvIjeO63tbTF3GLHQ9ZFcCl1OTAfALo6+9bJ/V4tnvfdFFfb8/+89/xIsvYnbm//LLPwS/zEUP5OwIzC60rlet65iyibQ5eS+/ey8al4X7lVremDcWvm1miQp142JWnht82WyrJnPS8YB6ZEjHHjNz+NxQjywq9jBzh5476ZNODL6XYGYVZionRhUlIdhUgVxLK1dIFEZB/94pemcqlQdAzyqUjxT7FIMHpAzvc8hPKUb3SYbMfEOMAFryMj8YCIkm3YnkWwE7D+gqSMuagsG9lmTSrATGiMs1xbohH+SYqm5c3PzSLaw1OoDGTawR6nvfWCCzEOOzscr06euERNF/YN44oDVJ1Ykh2ZGMlkWOAnJRV/OaaBS+lyyqMuHgkEQp1OZYLJXbYwKkZcXGZkboJUyv71EPhLj0Tjs2vzqh2reLkHa4IrjUbWSXS/vyUFyMNrInSl4e7r0ejsh0JObxYaFxUUpE/EYTTRC3LFgI92nMVVRLalqy0ugGF7oYJXb6sWcJtrlRNxFVKrZ3+vQSWcgRgb60fZVRWsciMCtTam+aApDC1YZeKiGUrStYe3Ofak/pxRildoZinsqgdWRWSiuUayo0IGSm1bBINcZTB8PIFoxMwYadAvA3kwOkZtmh4KLmTDVk2/UWVZzSWzSRYVLSyyqKJMMPAq7W+FTJwhUshfeNwEhFqcpHI4+7PlTrgWSlxBjJrSmqBGUjvaTRCgXdXJojSnlcQyC914SgcHWCNhLu2ctqBr2Szc0hFKKRVDoSC0MZMiqdMnYDTvQ866tTBmlFZpYtc5XvTGE6XBp89ts+dtFJzKXAna95Fnz/nRft/ToCswvROUlLDkGyROaFCCuNhlouAoubcAAXl1a/WpZ/lFLS1+zckgjVTio3rXVwrFFFRXZiRkgGmLlcoOYHZIUmmTYXu8ygZhWqDNip5JlgDaGfErXClEIoWteyqI2YAuzMoKyEVIWI3p4yOLnK9kCcttJJoDSajXtr8pNzqrWMapSiK6hHInpMJuB6kWhg8EAtbWHN+bcciQuZnUkgZUjELcb1FG4tQ0/mEgjqdhGAxma5rW5F11yEQlhWs7SC0YDZTWvYmcdOa/S8Bh8Jw2afC7ewII1GS0945WRFk8aCuvRiQWo19UYft9pD9xLM6TFxVojJQKNXUpMZOk1YfXCTsDakXu9RDy3pdmQ060T81zIeSl6upvaxi0leHvq+j1SNga4ic0FwAdWUCCIi2kdrYqJ2BVgGVB3RPi4Ij2ryY0TEr86puESjCUYTUiEvgNzIn83Y7uXsH07RQTckxOG0ZruUyojWgQSaCgPYRK5lISoSI1bKbWr8tE6Z1yKyn01z/E4CVlzP5vOUSZ1htacKhnGdL6oWhbf0bcW6qRd6l7NuQF9X9EzNU4dn2KlzNhtns9aS2RDk/SqDiwYXNan2HBhM2R73iXMjxCQFVYJyYvzicoW2sanAyLXL5Yp6BeZHHL2DM3qZLPqFoLEmiO6lgdEB1VRl2mMRQmPlH5e5NVpHfFSoqFhdnTHPE6p5QiwMdmzke8kidqLRPuHMasrZ1Yo0d5zKBvTSmmrSaSqvFC53FabDIyP/zz/KL4zga/7oo7z+jw7Dzz3+9+oIzC4oo1FKL/SWaCEk0Yfl/9tkZK2bfxWxdsubcIAYFq1Rqr3rj0EqMd4DhljXmLNjsn6CG1iCUVQrinQcUS6KW01cjgPE2Sz0EgkySzT1usbOAj4TAX+67Ujv34LtiexDK2R3nvxURVQpycTje5rh/Y50uyJklmg1vTMel4tLmQrQO64IKVRDUIeEWOWbrQ2yuMGUawpbSnuDLaS0Pz+QYrd6mJ1p40Tmlo5sxjQtFKLjWWiK2uOf51TXr6GrgJk7zLiQtrBhis9tE+bmwWoxNkAWKdvqTNs3HjOzEMDaSXPxyixqbYiuarF7bsMum+NDDOiqJhvPyIBBmlAnge527crjcon5/8HRH7qsJGav2io/HIlp8VAys/v3DufinNwXpQhWo0OjobRajFta0X6rcVxUlOOi6tKGXyofF21Sdg66lGBgVMTMNJPTcqOcW7fQr6TGk+hA4SxGRyCgo8IYT2o9o6wkae2QjbRPld4yLjKmOznBNf1YurkYNaRp6lIy4/ChyeaCRQUHJPfEak+IitPVkNJbDuY7DE1JFezCEQ0g0zUrtgBgU/dJlV8EbR7oTTg5GrJViNlBsKCCGNFE01ShbBvwKa1kPhensXRfwf7RFB8V8ypB60A/cRL2aeTfuUuY1wmzKlmMva7swhFA60CaOhIj7Xg+yP1BmjqMCcyqPgTQoc3racbhFGEnoTqVUdo+m71AmBYX6S+rQ4evxKdP/RBfc+DqWYRrsfGmAr6jL21mwPrOPwbecF6v7QjMbigt7U6hJRvNxUSpRVAlsCQzsHyMh9grG7PUx7Rob9ZD01blPPbENuHGdVzfMrrPQWxEij2LnjvCIEMXTly/YiSkFjewVCtie0zUJBNPMq6xp8awM20+Q4iS/D9gCkc1yrFFwMwl80VyYQLpWY/vJ9T9lGRHWs1GXxZdjssV8wPiTtY6f2Vjz+ygpR5BfpaFJaipIuWaRj91yMqpLYh149IW5N9WD9O25MGyvc5a/OF1tp+aY8vI8D5PTMXhzQ3E+thnCu0Nuook4xpTetS8XrT5LfrLA2B1k6cg35uuPH6YgV9Db+1IPk1LoLSCKhCVh9lcvu/xDkp3LWTXIq5U29jFwqWqvlwoOvJyHli0g0k4cbQi1o9aoQhEZPHpHAfM3SL/hWOZ/CNBw5F0J5BtGuqhXC+0U5jCcsqusLI+I7WeQVpRB4NWkWRBGAwhRKlE2GXL2dSlzOqE8TynLC31ToY9a1E2EvI2VAViGnGVYafMMHmgCgaLwigJr/RRYXSg8oa5TnDBUAfDxGUUU8t6Oqdnap7SP8vUZZTBolWkjoYyJOdUZRLtWU3mbAxmbG/3JURSK3wGupLcF3HIXAr7fRrxvUg8VHJgdcL+3oRpnZHogNGNW1oimTQuaJzWOKNJ7dKZDRUJQRMqAyqSpA7fLGx6L5UmYwKDvELvj0yrEXbcWC47UF5BBDM3EqLpxZTB7Tb36XDN4C0vXwPWrvAoBE+2SlNHYHbDe+Kiv1bK8DFGqaaEXWQGli5kWqHMLnvEIK+hdqjECpFpW8haNMGWsSxRIZCeTFGuT7nRivyaFTdn8LlBVw4C0g41MJQrBlNFhg9WmEmF2ZpIFaGuiS2hatzSsBa0Rm9OIA6ZHrTk20JOomncvxodTzRitaydws5kG1OqRXVocr0mHYgGJjaLVNohTi+JIp0EZqli50bD8AsrqONnpJUsqiVRqHcdx6YaRZqgkoRqXw/thTRNr8von5Rwz2q16UtO5TOkd5zlRd4aqfL4gKprtFL4JEWXbpEVE61Gz2r8SoaKEXV2e2l13ZoHxCBEptUqdRecPYOLUYU5H+LSVkQuVyXmSlRh2urKoxGhzqXsIqC5VijXVFmsltZgJZb4Cw1MXFZb5NSvUKVf5G5Rh10By9JGa+eGbFMTrJIKRJTPsydTxrUmGVVUPcMwL0m0kAuAxPgFmXFBMy4yfNBUtaWuDX6aoKeGpFCYucLnLBLtfQpBBWIqN/u6F+nZmjoYfKO1wYt4PzeOTHumLhV3s6goQsKp0rCWzlixc1bsnLHrMfUZU5+xVfUW47LN4lFfV3zV6Az32g2UU/gEOUYKKBviYpbVmJCCHwZ6eU1iPFWw9GwtLXVGTAVS7XFRU/iE0lsKZ6mcWZCnNPU4F6lqLfqWJIGs3uV+rQjBkBhPnjiq/XPCzgA7U5hKClamEC1ObC/7AdxgudjZ4criztc88eyUZ7/3RRSPknFyMT6jw6OjIzC7EL0H9KKSEtuKSWuP3AZa1k56mb1HYc61W9ZK2sasXdxUL1rHVJMdk9hFVkp0HnVmi3Q6x0xGuNUMNzCEVFNbjc8UIeljp45qzZJuOXr3T8UmuK22xChtbs4tK0VtFksMxKJAKcXw/orNr85gC+qexgwttlDoUmyZg1X4VC0yapKJI1qFnXpmhxMmN2iqVUW6HclPRZJZJJ14olK4vka5SDqWCk690SPbzkVH9BAisCCFixY3RxwN8Kkm2wriMOPjwjDAlJF6II+VK5rhxKMrL4LW3BK0Qhf1ssXPecz2nJg1f94+ogjgI1pDvd4jKSvYrJYtbm0oJsh3ZpcVuA57Ay0BuRAi83irLZe7nexyom0R699w4jGrOY/WTtbh0bFo/2rbjkNEBS+VbxcW27S1FxUjMTTtZEYtQy4Ts3AzAwhW4/rNIleEYj1gKrVIm+/dmxBtwmStx/RgSZI6QlhWDQBKZ/BeM59kxLlFVQpdK6xXYss/VZha2rWCheystGb53FBXim09ILGe9XxOiIpB44A2rdNFBUUr0bWEIHkxZeP45XbZF09diguaEDW5rQlRiQuaisx0ysBU4maWOthWmBLqFbG+b7sVgEYfIy12qCiBlN4wiRlKRWovlah+UknFJywJS24dZW0bFzLRyhjTOC14hS8NtYoYK99ZCIok8U3LWSRJPPM8Yk/L+NqKkKrESEDa3oTYdLhyeN/drwPODVrceNOFtfWd+YtXXdQxXWw8maov0BGYc9HoO6L3yzMjS8IC7EqJb8nNktgsHmsrGmUlZEgb0GYRchnrerm9D2KfuVOjJ1OykxlZmhCtVCYW46od6f0B5oW4aTVtWAu0bW5t5aUdl6ep9lTkx7ZIrhdv4HQSqIeGkGhMZiRrBtBOhKS+p8k2PZRSvcjP6sUqXDKNmDJg556QaCAuWhuSWaAeauYHUrIvqXPJS1OdWlhU7z6GWmPncnGvseLKUwd0oqkHkG0Fss2KqBW+Z3CDhOR0jQqN5XWAkFrMvJRjB6jSgTUL9x63mhOThjgOe6jtCQR37hhbktlhz+LhSElLaq729rDHwl5pH+twHtAswoolnDIsW8JarQsshPstotbn/L543GrcKGNyQ0o9UNRDqZCEfiD0gTRApbFbhmRHkYw1tcqofYaZK8p+ZD7wYsVcaaKOKKcwpaRAqiBhzVGD78nvuoL8dGT0ZS/W9WVkfsBy+usS5qsJ/aTGBb3Qw7TWzS0JKbxl5lIS7dE2UgXDrE65369J2GVD31zQzF2Ci2Lv3LM1VgfGLqPwCYn1uAimBOeEVGnDksQ0MQC+HzCjmmEupjGlNyRNNUerSOGkTc1HReUsSkX6SY3Rkbo21POEWGnS1RKCVMSS3KFNQGuxYdZ6Ker3rtFdblSEkzm2YKHPAWl1c/2mJW7cMZgrjUe7wX/2e18E3/TE3r8lSY/1WR0E7fF6X9PEdNvNb+HOz52f/gU6AnMOlLUoZZfEoBXqw1K4v8iH0Ys2KLFcbrQebfXDaJROUMMB/uAabpiIMLNpZ1IxoqqAHReo7YmQmhCJRQFFsyqgdycxq2VFyIugf6G/aXNodhGCczJWklT+P56w8emcydOGeKOIWjE7oEmnmmzLYcrIfL9G+UjvTCBkhmBkrKbwZC6gAo12RlYRo1KYucP3RWQfNfhcUaxBTBM5Xm7ZQrdox2tJFoC1hEFOtWJJdhzpTk2w4jBmp25BrogROy5RISMk4tKmZ5W0z2ktupcsEe2Mj9Jq0ATIhTQR17I6oFwg5BY77BO3xkszAWOIVb1sbzPdBedy4qX1Iwe9/d9J9qivvZqJy5VoI+uI0GWA1kJOGitl5YKQE++lwmx3LZJZvbCFj4lp9JVN61hoLOF7lmrNMt+v8Zms7BcHHWZUY6xkktTKoqKhPBDQlUIXCjuXqoryCu8UwUaUl4qNECipGshClJLARifEwA0i2ZaYCiQTjx2X5MchmQ3ZPr7GA1+fkKSOcZFhVCRvbJmndUrhLTEqJnW6EO1vz/PFPhdV47ppPaYhB75xBJvaRNqzvBgDGB2YbgTsTPSYIZE8MuXB52L9H2wkWrkmVg2xmJcpWkdMo4GpnMXogDWeWZFRlZZiWIhddGlhbFEGXN1cmzKPTTxaR2KEqkzk33lCdJKfZnJZAKvW5PgRm++ssbo2c0W0kXpXp3mHS4+WQDycLuTxakUWN9w/1jzwBoDXPeq2P3V071RtfvJH7wLg+T/xrVd4JIInSvI6AgMLwlK7AjJDLCUAUilFVHHZmhRBNURCmXRJWABcvSQyKoIysDKgPjSkHkK6PZUMF63xAwmEBKjWDeHAmlQvNueok5tNK5iBupTPaCo4LVRqiFW5q+2pKanr2KTc02TUWIgeiKioiXWNOn6czOxjel2PkCriTKHOOtiuMD4ln2qxQ3aeYk0TTKR3WgTzUSHEIEbqgbi6xEosodUUsApUj+w+8esvVg3JRDdDrIVMuErGrBWEGoxFoXCmpg4FxEBtId0scIlUiPTUE42mGFr8vpRkpxYL6egwvoQQiHkGrkDFQNARt5LiU00yrolWE43HTuZQB3xqiIkhDAxqq5YreHTSTN1ak3qP8/U5fx9Pdlyq4/CiM6cAcOPxJXn/x4t/cPSH+E93/3+v9DDOwXjn8htLHP/sAQ4/+9RjbtfNE0F7HJwvG+fEZSVmUW3RNBkxSJUcGvMRRfR1o42haYlSeG1wFkodyY5V6KbFNnlQUexTqGCFhIw8oSrwSUBNNLpUVP1IzKWNKbi4IEUg768LhR5DuqXonwqYMqLriBtoXKZItwJx6oiTCtfY36fHHIM6p0g0k/0GVVkJ5OwbdNNqpXWK0oG6SDBJQBtPPUllv0xEzQ14Rcw02IBKArGUx0g1OjUYa4lB4yYJyU5J7RW+hBAj3jaeLQ6CbrSnY6jLwLgUN7FYKEgiJpWDGWqIwcilcUuj68h2PwET0dOAriuiibgqoEs5VtMZ2MzjZgmqlNYy5RRm1lg59yCmDjWP1F6c4WIi1S3lgFpuCWLjtNbNE8GlPg67qyHvu/t1vOxZP7/4/WXP+vlznm8fm8x2cP4r28rqiX/Yx88H/89jv8nLnvXz6Jmnqia879VPBYrF+5Ym4HxBKGu884xnBdNQ4XzBSzfuh//0g7zvP4H7nsBkDvUrvpZ/C0DBPFSsvGGLB2+tCWG8HGO9A7vGO54VFNOKlz3r57nzc2/gE7/4a6y+8tvZ8cv9aj8T4Bu+98W4//WLhMe5z+eDOz/3hnO+k4fifP4+VOxmE1/4whd42tOedqWH0WGP4r777uOGG2640sO44ujmSYdHQzdPBN086fBo6OaJoJsnHR4N5zNPugoMsLGxAcCxY8dYXV29wqN54hiPx9x4443cd999rKysXOnhXBRciX2KMbKzs8N11113WT5vr6ObJ3sf3Ty58rjW5glce3OlmydXHt082fvY6/OkIzCAbgT6q6ur18QfXYuVlZVran/g8u/TtXJivRjo5snVg26eXDlcq/MErr250s2TK4dunlw92KvzRD/2Jh06dOjQoUOHDh06dOiwN9ARmA4dOnTo0KFDhw4dOlw16AgMkGUZ/+Jf/Auy7NGtWq8WXGv7A9fmPl1tuNa+g2ttf+Da3KerDdfid3Ct7dO1tj9XI67F7+Ba26e9vj+dC1mHDh06dOjQoUOHDh2uGnQVmA4dOnTo0KFDhw4dOlw16AhMhw4dOnTo0KFDhw4drhp0BKZDhw4dOnTo0KFDhw5XDToC06FDhw4dOnTo0KFDh6sGT3oC89a3vpWnPvWp5HnOi170Iv7sz/7sSg/pEfHhD3+Yv/N3/g7XXXcdSil+7/d+75znY4z87M/+LEeOHKHX63Hrrbfy+c9//pxtzp49y/d///ezsrLC2toar371q5lMJpdxLwRvfvObeeELX8hoNOLgwYN813d9F/fcc8852xRFwe23386+ffsYDoe88pWv5MSJE+dsc+zYMV7xilfQ7/c5ePAgP/VTP4Vz7nLuypMGV8tcuZbmCXRz5WpDN0+6edLhsdHNk26ePGHEJzHe/va3xzRN42/8xm/Eu+++O/7Tf/pP49raWjxx4sSVHtrD4j3veU984xvfGN/5zndGIL7rXe865/l/82/+TVxdXY2/93u/F//n//yf8Tu/8zvjTTfdFOfz+WKbb/u2b4tf+7VfGz/60Y/GP/7jP45Pf/rT4/d93/dd5j2J8eUvf3l829veFu+66674qU99Kv7tv/2349GjR+NkMlls88M//MPxxhtvjB/4wAfixz/+8fjiF784vuQlL1k875yLz33uc+Ott94aP/nJT8b3vOc9cf/+/fH1r3/9Zd+fax1X01y5luZJjN1cuZrQzZNunnR4bHTzpJsnFwNPagLzjd/4jfH2229f/O69j9ddd11885vffAVHdX546EQKIcTDhw/HX/iFX1g8trW1FbMsi7/9278dY4zxM5/5TATin//5ny+2+e///b9HpVS8//77L9vYHw4nT56MQPzQhz4UY5SxJ0kS3/GOdyy2+exnPxuB+JGPfCTGKCcWrXU8fvz4Yptf/dVfjSsrK7Esy8u7A9c4rta5cq3Nkxi7ubKX0c2Tbp50eGx086SbJxcDT9oWsqqq+MQnPsGtt966eExrza233spHPvKRKziyx4cvfvGLHD9+/Jz9WV1d5UUvetFifz7ykY+wtrbGC17wgsU2t956K1prPvaxj132Me/G9vY2ABsbGwB84hOfoK7rc/bnWc96FkePHj1nf573vOdx6NChxTYvf/nLGY/H3H333Zdx9Nc2rqW5crXPE+jmyl5FN0+6edLhsdHNk26eXCw8aQnM6dOn8d6f8wUAHDp0iOPHj1+hUT1+tGN+tP05fvw4Bw8ePOd5ay0bGxtXdJ9DCPz4j/84L33pS3nuc58LyFjTNGVtbe2cbR+6Pw+3v+1zHS4OrqW5cjXPE+jmyl5GN0+6edLhsdHNk26eXCzYy/ZJHTo8Am6//Xbuuusu/uRP/uRKD6VDhz2Nbq506PDY6OZJhw6Pjat9njxpKzD79+/HGPMVzgonTpzg8OHDV2hUjx/tmB9tfw4fPszJkyfPed45x9mzZ6/YPr/2ta/l3e9+Nx/84Ae54YYbFo8fPnyYqqrY2to6Z/uH7s/D7W/7XIeLg2tprlyt8wS6ubLX0c2Tbp50eGx086SbJxcLT1oCk6Ypz3/+8/nABz6weCyEwAc+8AFuueWWKziyx4ebbrqJw4cPn7M/4/GYj33sY4v9ueWWW9ja2uITn/jEYps777yTEAIvetGLLut4Y4y89rWv5V3vehd33nknN9100znPP//5zydJknP255577uHYsWPn7M9f/uVfnnNyeP/738/KygrPec5zLs+OPAlwLc2Vq22eQDdXrhZ086SbJx0eG9086ebJRcNlswvYg3j7298esyyLd9xxR/zMZz4TX/Oa18S1tbVznBX2EnZ2duInP/nJ+MlPfjIC8S1veUv85Cc/Ge+9994Yo9j5ra2txd///d+Pn/70p+Pf/bt/92Ht/L7+678+fuxjH4t/8id/Ep/xjGdcETu/H/mRH4mrq6vxj/7oj+KDDz64+JnNZottfviHfzgePXo03nnnnfHjH/94vOWWW+Itt9yyeL618rvtttvipz71qfje9743HjhwoLO8vAS4mubKtTRPYuzmytWEbp5086TDY6ObJ908uRh4UhOYGGP85V/+5Xj06NGYpmn8xm/8xvjRj370Sg/pEfHBD34wAl/x86pXvSrGKJZ+b3rTm+KhQ4dilmXxW7/1W+M999xzznucOXMmft/3fV8cDodxZWUl/sAP/EDc2dm57PvycPsBxLe97W2LbebzefzRH/3RuL6+Hvv9fvx7f+/vxQcffPCc9/nSl74Uv/3bvz32er24f//++JM/+ZOxruvLvDdPDlwtc+VamicxdnPlakM3T7p50uGx0c2Tbp48Uahmhzp06NChQ4cOHTp06NBhz+NJq4Hp0KFDhw4dOnTo0KHD1YeOwHTo0KFDhw4dOnTo0OGqQUdgOnTo0KFDhw4dOnTocNWgIzAdOnTo0KFDhw4dOnS4atARmA4dOnTo0KFDhw4dOlw16AhMhw4dOnTo0KFDhw4drhp0BKZDhw4dOnTo0KFDhw5XDToC06FDhw4dOnTo0KFDh6sGHYHp0KFDhw4dOnTo0KHDVYOOwHTo0KFDhw4dOnTo0OGqQUdgOnTo0KFDhw4dOnTocNWgIzAdOnTo0KFDhw4dOnS4avD/BzY15GrCO755AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAKqCAYAAADlgruKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hU1f2H31unz2wvwLL0LiAIqAEFFbGLRrH97BpjLNFYojGxJJZoTGyxxRiNGmM3GrtgQ1FREJAmdWnL9jb9tvP7487MsgK6KMY27/Psw8y955577nDPzPncb5OEEII8efLkyZMnT548efLk+R4gf9sDyJMnT548efLkyZMnT57ukhcwefLkyZMnT548efLk+d6QFzB58uTJkydPnjx58uT53pAXMHny5MmTJ0+ePHny5PnekBcwefLkyZMnT548efLk+d6QFzB58uTJkydPnjx58uT53pAXMHny5MmTJ0+ePHny5PnekBcwefLkyZMnT548efLk+d6QFzB58uTJkydPnjx58uT53pAXMHny5MmzE5AkiauvvvrbHsYXcsoppxAMBr/tYeT5AdGnTx9OOeWU3Pu33noLSZJ46623dto5vg9zK0+eHwLfp7mWFzA/QB588EEkScr9qapKz549OeWUU9i0adO3Pbw8P2LWrl3Lueeey6BBg/D7/fj9foYNG8Y555zDokWLvu3hfaNMnjy5y7zc3t/X/fFIJBJcffXVO3UBmee7y+e/771eL4MGDeLcc8+lvr7+2x5et3nppZe+NwunPP97Pv30U4466iiqq6vxer307NmTqVOncscdd3zbQ/ufUltby9VXX82CBQu+ch8/lLmmftsDyPPN8fvf/56+ffuSSqX44IMPePDBB3n33XdZvHgxXq/32x5enh8ZL7zwAscccwyqqnLCCScwatQoZFlm+fLlPPPMM9x9992sXbuW6urqb3uo3whXXHEFZ5xxRu79Rx99xO23385vfvMbhg4dmts+cuTIr3WeRCLBNddcA7iiKc+Pgy2/7999913uvvtuXnrpJRYvXozf7/+fjWOvvfYimUyi6/oOHffSSy9x5513bnNhlUwmUdX8cuXHypw5c5gyZQq9e/fmzDPPpKKigg0bNvDBBx9w2223cd55533bQ/yfUVtbyzXXXEOfPn0YPXr0V+rjhzLXvh+jzPOVOPDAA9ltt90AOOOMMygpKeHGG2/k+eefZ8aMGd/y6PL8mFi9ejXHHnss1dXVzJo1i8rKyi77b7zxRu666y5k+YuNwvF4nEAg8E0O9Rtj6tSpXd57vV5uv/12pk6d+oVC4/t8zXn+d3z++764uJi//OUvPPfccxx33HFbtf+m7itZlnf6A7L8A7cfN9dddx2RSISPPvqIgoKCLvsaGhq+nUH9QPk+zbW8C9mPiEmTJgHuYhLAMAyuvPJKxo4dSyQSIRAIMGnSJN58880ux40ZM4Yjjzyyy7ZddtkFSZK6uP08/vjjSJLEsmXLvuEryfN946abbiIej/PAAw9sJV4AVFXl/PPPp6qqKrctG6+xevVqDjroIEKhECeccALgLr4uuugiqqqq8Hg8DB48mJtvvhkhRO74mpoaJEniwQcf3Op8n3fVuvrqq5EkiVWrVnHKKadQUFBAJBLh1FNPJZFIdDk2nU5z4YUXUlpaSigU4rDDDmPjxo1f8xPqOo6lS5dy/PHHU1hYyMSJEwHXmrItoXPKKafQp0+f3DWXlpYCcM0112zXLW3Tpk1Mnz6dYDBIaWkpF198MbZt75RryPPdYJ999gFct80vmkuO43DrrbcyfPhwvF4v5eXlnHXWWbS2tnbpTwjBtddeS69evfD7/UyZMoUlS5Zsdd7txcB8+OGHHHTQQRQWFhIIBBg5ciS33XYb4N7Dd955J0AXd7gs27qHP/nkEw488EDC4TDBYJB9992XDz74oEubrHvde++9x69+9StKS0sJBAIcccQRNDY27viHmudbYfXq1QwfPnwr8QJQVlbW5f0jjzzC2LFj8fl8FBUVceyxx7Jhw4atjrvzzjvp168fPp+P8ePHM3v27K2+Y7P38hNPPME111xDz549CYVCHHXUUbS3t5NOp7ngggsoKysjGAxy6qmnkk6ntzpXd8Y0efJkRowYwdKlS5kyZQp+v5+ePXty0003dRnPuHHjADj11FNz8yT7Gzd79myOPvpoevfujcfjoaqqigsvvJBkMpnr44c01/IWmB8RNTU1ABQWFgLQ0dHB3//+d4477jjOPPNMotEo999/P9OmTWPu3Lk58+SkSZP497//neunpaWFJUuWIMsys2fPzrm8zJ49m9LS0i7uMHnygOs+NmDAACZMmLBDx1mWxbRp05g4cSI333wzfr8fIQSHHXYYb775JqeffjqjR4/m1Vdf5ZJLLmHTpk3ccsstX3mcM2bMoG/fvtxwww3Mnz+fv//975SVlXHjjTfm2pxxxhk88sgjHH/88ey555688cYbHHzwwV/5nNvi6KOPZuDAgVx//fVdRNmXUVpayt13383ZZ5/NEUcckXvwsKVbmm3bTJs2jQkTJnDzzTczc+ZM/vznP9O/f3/OPvvsnXodeb49sg+qiouLgW3PJYCzzjqLBx98kFNPPZXzzz+ftWvX8te//pVPPvmE9957D03TALjyyiu59tprOeiggzjooIOYP38++++/P4ZhfOlYXn/9dQ455BAqKyv55S9/SUVFBcuWLeOFF17gl7/8JWeddRa1tbW8/vrrPPzww1/a35IlS5g0aRLhcJhLL70UTdO49957mTx5Mm+//fZW3zPnnXcehYWFXHXVVdTU1HDrrbdy7rnn8vjjj+/QZ5rn26G6upr333+fxYsXM2LEiO22u+666/jd737HjBkzOOOMM2hsbOSOO+5gr7324pNPPskJoLvvvptzzz2XSZMmceGFF1JTU8P06dMpLCykV69eW/V7ww034PP5uOyyy1i1ahV33HEHmqYhyzKtra1cffXVOTf9vn37cuWVV+7wmABaW1s54IADOPLII5kxYwZPPfUUv/71r9lll1048MADGTp0KL///e+58sor+dnPfpZ7KL3nnnsC8OSTT5JIJDj77LMpLi5m7ty53HHHHWzcuJEnn3wS4Ic110SeHxwPPPCAAMTMmTNFY2Oj2LBhg3jqqadEaWmp8Hg8YsOGDUIIISzLEul0usuxra2tory8XJx22mm5bU8++aQAxNKlS4UQQjz//PPC4/GIww47TBxzzDG5diNHjhRHHHHE/+AK83yfaG9vF4CYPn36VvtaW1tFY2Nj7i+RSOT2nXzyyQIQl112WZdj/vOf/whAXHvttV22H3XUUUKSJLFq1SohhBBr164VgHjggQe2Oi8grrrqqtz7q666SgBd7nshhDjiiCNEcXFx7v2CBQsEIH7xi190aXf88cdv1eeXkZ1Xb7755lbjOO6447Zqv/fee4u99957q+0nn3yyqK6uzr1vbGzc7liyn+nvf//7Ltt33XVXMXbs2G6PPc93h2193z/22GOiuLhY+Hw+sXHjxu3OpdmzZwtA/Otf/+qy/ZVXXumyvaGhQei6Lg4++GDhOE6u3W9+8xsBiJNPPjm37c033+xyX1uWJfr27Suqq6tFa2trl/Ns2dc555wjtrck+fz9PH36dKHruli9enVuW21trQiFQmKvvfba6rPZb7/9upzrwgsvFIqiiLa2tm2eL893i9dee00oiiIURRF77LGHuPTSS8Wrr74qDMPItampqRGKoojrrruuy7GffvqpUFU1tz2dTovi4mIxbtw4YZpmrt2DDz4ogC7fsdl7ecSIEV3OddxxxwlJksSBBx7Y5Vx77LFHl+/i7o5JCPf7HRAPPfRQbls6nRYVFRXipz/9aW7bRx99tN3ftS1/P7PccMMNQpIksW7duty2H8pcy7uQ/YDZb7/9KC0tpaqqiqOOOopAIMDzzz+fe8KgKEou0NJxHFpaWrAsi91224358+fn+smq/HfeeQdwLS3jxo1j6tSpzJ49G4C2tjYWL16ca5snT5aOjg6AbabvnTx5MqWlpbm/rGl7Sz5vFXjppZdQFIXzzz+/y/aLLroIIQQvv/zyVx7rz3/+8y7vJ02aRHNzc+4aXnrpJYCtzn3BBRd85XN2Zxw7m21d55o1a77Rc+b5Ztny+/7YY48lGAzy7LPP0rNnz1ybz8+lJ598kkgkwtSpU2lqasr9jR07lmAwmHMnnjlzJoZhcN5553VxN+nOff/JJ5+wdu1aLrjggq1cgLbsq7vYts1rr73G9OnT6devX257ZWUlxx9/PO+++25uvmb52c9+1uVckyZNwrZt1q1bt8Pnz/O/Z+rUqbz//vscdthhLFy4kJtuuolp06bRs2dPnn/+eQCeeeYZHMdhxowZXe7liooKBg4cmLuXP/74Y5qbmznzzDO7BKufcMIJOe+Uz3PSSSflLJEAEyZMQAjBaaed1qXdhAkT2LBhA5Zl7dCYsgSDQf7v//4v917XdcaPH9/t72afz5d7HY/HaWpqYs8990QIwSeffNKtPrbkuz7X8i5kP2DuvPNOBg0aRHt7O//4xz9455138Hg8Xdr885//5M9//jPLly/HNM3c9r59++Zel5eXM3DgQGbPns1ZZ53F7NmzmTJlCnvttRfnnXcea9asYdmyZTiOkxcwebYiFAoBEIvFttp37733Eo1Gqa+v7/LFnUVV1a1M+uvWraNHjx65frNkXRe/zhdl7969u7zP/qC1trYSDodZt24dsizTv3//Lu0GDx78lc+5Lbacfzsbr9ebi5PJUlhYuFXMQ57vF9nve1VVKS8vZ/DgwV2SYmxrLq1cuZL29vat4giyZAOks3Nq4MCBXfaXlpZud9GXJevK9kWuPztCY2MjiURim3Nu6NChOI7Dhg0bGD58eG77F83rPN8Pxo0bxzPPPINhGCxcuJBnn32WW265haOOOooFCxawcuVKhBBb3aNZsgIkey8PGDCgy35VVXOxhJ/n8/dPJBIB6BKzmd3uOA7t7e0UFxd3e0xZevXqtZWoLyws7HaJgfXr13PllVfy/PPPb3Vvt7e3d6uPLfmuz7W8gPkBM378+FxWmunTpzNx4kSOP/54PvvsM4LBII888ginnHIK06dP55JLLqGsrAxFUbjhhhtyPzpZJk6cyKxZs0gmk8ybN48rr7ySESNGUFBQwOzZs1m2bBnBYJBdd93127jUPN9hIpEIlZWVLF68eKt9Wf/ZbHzW5/F4PF+amWx7bO/p7hcFqyuKss3tYgfiUHYGWz5JyyJJ0jbHsaPB99u7xjzfb7b8vt8W25pLjuNQVlbGv/71r20e83mh+33luzKv83x9dF1n3LhxjBs3jkGDBnHqqafy5JNP4jgOkiTx8ssvb/P/++sU8N3e/fNl99WOjunr3Ke2bTN16lRaWlr49a9/zZAhQwgEAmzatIlTTjkFx3G+tI+dwf9yruUFzI+ErDCZMmUKf/3rX7nssst46qmn6NevH88880yXxd5VV1211fGTJk3igQce4LHHHsO2bfbcc09kWWbixIk5AbPnnnvmF0d5tsnBBx/M3//+d+bOncv48eO/Vl/V1dXMnDmTaDTaxQqzfPny3H7ofPLT1tbW5fivY6Gprq7GcRxWr17d5anUZ5999pX77C6FhYXbdCX4/PV8FbecPD9O+vfvz8yZM/nJT36yTdGcJTunVq5c2cWVpLGx8UufrGatlYsXL2a//fbbbrvu3relpaX4/f5tzrnly5cjy/JWT8bz/DDJCvbNmzfTv39/hBD07duXQYMGbfeY7L28atUqpkyZkttuWRY1NTVfuw7XlnR3TDvC9ubJp59+yooVK/jnP//JSSedlNv++uuvd7uPz/Ndn2v5GJgfEZMnT2b8+PHceuutpFKpnNjYUhl/+OGHvP/++1sdm3UNu/HGGxk5cmTOhDpp0iRmzZrFxx9/nHcfy7NdLr30Uvx+P6eddto2q4PvyNOZgw46CNu2+etf/9pl+y233IIkSRx44IEAhMNhSkpKcrFbWe66666vcAUu2b5vv/32LttvvfXWr9xnd+nfvz/Lly/vkpJy4cKFvPfee13aZbNLfV645cnzeWbMmIFt2/zhD3/Yap9lWbl7aL/99kPTNO64444uc7U79/2YMWPo27cvt95661b35JZ9ZWvSfNl9qygK+++/P88991wXy219fT2PPvooEydOJBwOf+m48nx/ePPNN7f5G5GNSRw8eDBHHnkkiqJwzTXXbNVWCEFzczPgip7i4mLuu+++XKwKwL/+9a+d7ubU3THtCNubJ9tazwkhcqnKu9PH5/muz7W8BeZHxiWXXMLRRx/Ngw8+yCGHHMIzzzzDEUccwcEHH8zatWu55557GDZs2FbxCgMGDKCiooLPPvusS9Xbvfbai1//+tcAeQGTZ7sMHDiQRx99lOOOO47BgwdzwgknMGrUKIQQrF27lkcffRRZlreZwvLzHHrooUyZMoUrrriCmpoaRo0axWuvvcZzzz3HBRdc0CU+5YwzzuCPf/wjZ5xxBrvtthvvvPMOK1as+MrXMXr0aI477jjuuusu2tvb2XPPPZk1axarVq36yn12l9NOO42//OUvTJs2jdNPP52Ghgbuuecehg8f3iWQ0ufzMWzYMB5//HEGDRpEUVERI0aM2GkxCHl+OOy9996cddZZ3HDDDSxYsID9998fTdNYuXIlTz75JLfddhtHHXVUrlbQDTfcwCGHHMJBBx3EJ598wssvv0xJSckXnkOWZe6++24OPfRQRo8ezamnnkplZSXLly9nyZIlvPrqqwCMHTsWcBNkTJs2DUVROPbYY7fZ57XXXsvrr7/OxIkT+cUvfoGqqtx7772k0+kudTPy/DA477zzSCQSHHHEEQwZMgTDMJgzZw6PP/44ffr04dRTT6WgoIBrr72Wyy+/PJcWORQKsXbtWp599ll+9rOfcfHFF6PrOldffTXnnXce++yzDzNmzKCmpoYHH3yQ/v3771QLdv/+/bs1ph3ts6CggHvuuYdQKEQgEGDChAkMGTKE/v37c/HFF7Np0ybC4TBPP/30NkXZD2au7fS8Znm+dbLp7D766KOt9tm2Lfr37y/69+8vLMsS119/vaiurhYej0fsuuuu4oUXXtgqLWuWo48+WgDi8ccfz20zDEP4/X6h67pIJpPf5GXl+QGwatUqcfbZZ4sBAwYIr9crfD6fGDJkiPj5z38uFixY0KXtySefLAKBwDb7iUaj4sILLxQ9evQQmqaJgQMHij/96U9d0jcK4aaVPP3000UkEhGhUEjMmDFDNDQ0bDeNcmNjY5fjs3Np7dq1uW3JZFKcf/75ori4WAQCAXHooYeKDRs27NQ0yp8fR5ZHHnlE9OvXT+i6LkaPHi1effXVbc7XOXPmiLFjxwpd17uMa3ufafa8eb5/fNH3fZYvmktCCPG3v/1NjB07Vvh8PhEKhcQuu+wiLr30UlFbW5trY9u2uOaaa0RlZaXw+Xxi8uTJYvHixaK6uvoL0yhneffdd8XUqVNFKBQSgUBAjBw5Utxxxx25/ZZlifPOO0+UlpYKSZK63I/bmlvz588X06ZNE8FgUPj9fjFlyhQxZ86cbn022xtjnu8mL7/8sjjttNPEkCFDRDAYFLquiwEDBojzzjtP1NfXd2n79NNPi4kTJ4pAICACgYAYMmSIOOecc8Rnn33Wpd3tt9+eW/uMHz9evPfee2Ls2LHigAMOyLXJ3idPPvlkl2O3d19t7/u7O2Pae++9xfDhw7e69m19vz/33HNi2LBhQlXVLimVly5dKvbbbz8RDAZFSUmJOPPMM8XChQu3Srv8Q5lrUmbAefLkyZMnT548efL86HAch9LSUo488kjuu+++b3s4ebpBPgYmT548efLkyZMnz4+CVCq1VUzKQw89REtLC5MnT/52BpVnh8lbYPLkyZMnT548efL8KHjrrbe48MILOfrooykuLmb+/Pncf//9DB06lHnz5uUKfOf5bpMP4s+TJ0+ePHny5Mnzo6BPnz5UVVVx++2309LSQlFRESeddBJ//OMf8+Lle8QPxoXszjvvpE+fPni9XiZMmMDcuXO/7SHlyfOdIz9P8uT5cvLzJE+e7vF9nCt9+vTh+eefp66uDsMwqKur4x//+AdlZWXf9tDy7AA/CAHz+OOP86tf/YqrrrqK+fPnM2rUKKZNm0ZDQ8O3PbQ8eb4z5OdJnjxfTn6e5MnTPfJzJc+3yQ8iBmbChAmMGzcuV9jOcRyqqqo477zzuOyyy77l0eXJ890gP0/y5Ply8vMkT57ukZ8reb5NvvcxMIZhMG/ePC6//PLcNlmW2W+//bZZUX5bOI5DbW0toVBopxYxyvP9RghBNBqlR48eyPL321iZnyd5viny86Qr+XmSZ1v8kOYJfP25kp8nebbFjsyT772AaWpqwrZtysvLu2wvLy9n+fLl2zwmnU6TTqdz7zdt2sSwYcO+0XHm+f6yYcOGblWI/y6Tnyd5vmny88QlP0/yfBE/hHkCOz5X8vMkz47QnXnyvRcwX4UbbriBa665ZqvtkytORfX4SfUpwdZlFMPB9sjEK1QkB2QLvC0WaspGSBJIoMZNHE3B9imocQsAIYEZ1BCK2yawqhVa2sC2wBEgSyDJIMsgBJKmgVfHCfgRPhVHkRGqjOVXkC2BknT7dXQFIUtIQiBkCaFIqFETSQgcTUGyHSRHIBkOSkcc0gbCsjvPaZruhQrHPb9w3PeKCkKArCApMkgS+DwYFRGsgIpsClLFGrIp8DWkAJBTNpJtI9kCx6fi6CqOJiNkCcunIAmBmrSxdRlJgK3JBFa3IsUTCMtGkmWE47hjy44DOj8PTXXHbDuIcBDHr+FoSu66AZDccSCB0GQk0+1HyO5+yRGoHWmkRBKRTINtg6K4n0P2iU/mX0nTEAEf6BoIgVniJx6wmffq9YRCoZ11632v2N482ZI3Lzjya59nyq3P7FD7kw987mufM8s/Xz78a/fxx7P/byeMBC67+5Gd0g/AsjeWfmmbofvs3MVDfp505dk5VazQ+pB0dOK2h+drduGkAR8SlFMokkNvtZmo4+WjeD/WJ4uwhEypHmdxawVN0QB9ilvoE2jFATYkClnfWsigkgY+ayxj/+rlHBJZQE81we9rD+CjDwehRmWUXToYWV5Lh+nFrxoMD9by78924/Rhc5joW8mCdBV9tUY0ySbmeClWYnglG1PItDg+GuwIa1JlJBwdR0g0GkFa0gFqmgsJeE0kSdDcEiQQSnFsv3lM9K+gt2qw3tL5R8MkNifDrKypAEDWbRxLIVCQJBnXkWSBojj0KGpnc1uYkD/N9KqFbEgW41UMCtQEbZafhK0TtbzETA+mI5O0NDyKxeZoGL9m0tQSRGrwMnRsDcPCm6lJFLOytYSDei1lUvAz1ptFLEn0Yn5zFa1JHxcOnsUYz0ZabS8djoewnCYlVO6q3Yd1bYWc3P9DVidL6eNrYphnI8+2jKU2WYBfNdgcC9PUFsQRErrHojwcpcibQJUcVNlm3qYqjISOpDh4fCa3jHyC4VqCtZbKFauPoK4lTL/yJhKmjseK8dZRD+Tnyec49eNjkc+fi/qPiXz092kAfBq5gZNeTnDOylbuHFjIQwf6WfRUZ3awyzc8xIW/vo9Fv53EW/v/h89eug2Aa3ueS79FF7Nm5M0UnlfGBU+9zD9f/Td/PmEjt5/wAefOnUNrT4nCTV0jJ37zdpSJZ97F/z1oMWBhHR/vp1F19r9z+/922i38rv09Foy7lI7fNvD2SSs5682HcvsP/PRw/jnmesrM4Ryxzx95r62zEObcs+8g+sidVPdrA2D10b/lN1X3sO8VY9n1RFf83f9cAacf3sbQmbBsP/jZh38D4I/3nYBa3fldHv7dOPY9+iz6XzyW92/rPP+nj77Lqrve44nTPuDTW2wAZoWGcOGv7+Oh5/4LwHuPxQH4ybEBADp+28Behz9IVfnT/Lf3h7m+Rn90U+713vV9mX9cK//5yJ3T609byMznVrPxw4O5f/8k/67pn2v7u/b3APBOPReAf847OrdvbNUxzJ68jisfe4GbzRJudx7hJ0GD6reDHN3+K8rGuP2c0GcpJzbtz4utu3drnnzvBUxJSQmKolBfX99le319PRUVFds85vLLL+dXv/pV7n1HRwdVVVWoqhclEEbRvciKhAhIyB4JxavgbXGQHNAkBS2dxtEVHI+CU+xDbzdwbAXh11GjBrZPww64AkaL2VBWhBpNg2S5i2hwF9IAEmADSQclHUfy+xB+L45fBc2LpAhU08TyqygOOJqEUCWUtIMkQPaoKEkTKW4jxzKLdMN0hQsyWI57ElUDBMJ2kCTFXbjLckZMZRfzMpKug6pgl0YQhV68CcsVDKaKFrOQfH6ELCFrDnLKBAdkVcbWFCSPgpDADqmoCQdNtlCE7AoMv4pcKFBSDsIxM8JFyly/BWpGREmAUJBsGSQVJAEpxxVGHg+2X0VyXAEnOQLJkxE/kgS6QEnbnbosmkJqT4EAIZSMaJMAV6wB7jgAbAmiBpJigaKgJaJoPjnT9fffvL0z50mWj359zE4Z20e/PoZxNz7e7fZZ0XHmYTO/0vnue36/r3Tctrj1gtN2al8X3PqPndJXKPi/XyTl54lLdp4sVAbRKJcxIbKGBfEixvRtxvEFmNk6nNpYmOlVi/Braao8SQrtZlbEy6gzyvjZsI9ZlSqnt6cZBQdTKAx22mnq0UyJFqWs0GZB20Dq5HIOL13AsLI25vZQkTdqyD4PpQU2i2p64tVNJvXcyKljFzLE18ZSqz+rzB74PCpjvesoJkGRbGEiscYswIuDZPo4uPAzPkr2Y6CnjjXpcqK2l9JCm5StkrI19GCaykCUZq2Up9MVeEyTzakIyxNl2I5MQZVN2lAxEn5koVBSEscpTlNbX4CVVInJUNXTfRC20BxIsxUAC4qlOLIsCOgGvfUYHZb73bystYKSYDveUJLhkc00pEPM3dQb4fPx39pxVBZ2oAd1PkwOZZE5gEpfB8OLN/FWSwGJtJ9nOn7CmoKN2Mj09jTzQONwNrZHKAvGOHr4cgb7W4lYgoCcZpkxkEhEYkqPhaxOl9O4uZRCjyDoSVHsjRPRUtTEiugZaCNh+TBTBUiaQPFbePywTqsi4N3EW9Fh9Cg1SKqCVoqxFYm2pA/4YcwT2PG5sr15ogd1ZFVGC+lMvPBNABY/qhB4ch9CY55FV2Ukr0Iou2YCKkdM5/zLlzGoqJay6GWUTZrAnHeXEZB16kffzlW1D3FSaFcUVSEUDqJrAcJ+Lxf0nwDAmMkBznj/nVx/IUVB9gXxqBY+yY+u6XgDnYJJlsPudlVGC0jIchhvyJfbH/SH8IR0vKaPkCzjk/ycXzWD2zc8ge5R0eQQHtV9EK35VIL+EJIsUXFIBICzvB2oyCya8iewwa8FGHJGb5SwjCKFiVw7lMEf3MNnXhlvyIdfC+AJ6ZSbI6nXFrHbWftwzxiH3S86kd2uqeCkq2/nkNh6Vv5uGi03L6HiqRqUsLue0VX3Xy0g4ZP8BGQ9tw3AJ/k7P5dwEL9mcPyeUZ78oAeKx09Y8RIKB/GoCrIczrU99/ElzLxgDQ2azD9XXcyY+UtZtFsBAAs3/Yfwv2BO9a/ZEwitfRRJllDCMl7HxzuRcQC80zoOTYoC3Zsn33sBo+s6Y8eOZdasWUyfPh1wfStnzZrFueeeu81jPB4PHo9n6x1CIDxa7gm/knYAGW+rg61LaEkH2XAQmoJsOSBJ2LpKstzrWkpSDlZQRzYdZCOzmJbB9qlomoawMhYa0yL7XyNsx7V6ZK0kyRSSZaO0RfG1eRF+D0JXEYqEbDvIJgjbtW7IKRM5lkZKpBCpNAK2sKookDkfwoF02hUoCu65FMUVOzbuwh6QvBrCNMHvJV3sRcqs7YUkobebyKaNo8pIgKPJSKaMJIMV1LA9CmrMRKgySkqAABxQkwaOR0VJOdheFUWRwSRjXSEjWjKTJysm1Mynkx2/bSPZDqrtIBseHK+G7VWQ07ZrebEEOJnrdhzktI0czVigslYnQKTSSJra9VzZz8sGdAVhO+55FQUSnebu7zs7dZ58A+yoiIGuQqQ7YmZnCpfvOr3GV7Fx7oYv3J9na3bmPBnh2YAUbGaCp46Beh0FskFKKCyNVaLIrjBREPjlNFVaCyN961ljlDG7bRCtho8WX4CkrTEqtIG0ozHSvwFbSMyKD2FjXSEbkqV8Eq7iyKELmDzsM9b2KmZK+Qr2Cy1mZHADDWaYk8NLmZ0qoc3283TtGHoE2pnkX42CIOpotDg6muTQ4XgZotdTaxWy0qggYXt4JzqEd+v7EdLTpG2Vcn+UkcFNLJfLcYRMi+FncyJCQ9S1UKSSOlZKRdZt+lU20eLzEfIYnFk9m41GER8FqlnRXMoR1YsIKilitpe+nkbqzQjL4pV82lxJ0tCQJcHRfT9Bk2w02cYpkKn2NRO1vQzy1tHf28DChh4sX1+BSKpssBQUxaHIlyCopVnZXoosOfxqyCwANMlmjGcD1apKk2NQpTWzqriC/YJLCUkWLY67UK01CwkqKXp7bAKyQaEaZ2RxLbWJCF7VpESP41MMGrUgPsUkqBr0rG7GFhKGpeDTLOrNCK81DcMRMuf1mkm83MM/aie5/RvaN3DHfnvs6Fzpzu/J+3cd7L4o+AjzuLe4Y/4RcNxbXdpc0+uG3OtpHUuof+h8Pn7+eXi3s834Q97m1TtPg/B9PPO3nwK3AnCtNB+Aove/3dxV/w1eyx8u6sOrp55I6oS7ctt3m30JSw6AI1f9jGf+PomFl13I2My+uS/sTWT3zj4O3cPkxNTpAMz45JfMnbGQM9Yey8i+nV4R1RWP84ube3LBoiU7dfx3T0zy5r5rYc3A3LZf33Q4TZ6H2BcwWmpz4gXA8+4GWv5xLJEp9zLjhCe26m9ahzu+U/ot5qiGg7o9ju+9gAH41a9+xcknn8xuu+3G+PHjufXWW4nH45x66qk71pHkuifJpis+5LQFYQ9ClVCTDrIpkCwHI6xhBWRkU+BtTGOGdSTLQSgStkdGyCpCAdmWXHcmR4Cq5BbNkqIgDLPTCrIFIm3kFtBSNI6UcJ9U+RvVLuMklXaPdRx3kS6EK0iylgzDBNtGCOEqWU0Fx7XAAEi23elGlnEpE6aJ5PViR/wIBbR2d/FvB2TX8iO7Y9DbDZSk5bqyqTK2LmN7JZSUjGw6KCkbR5ddkeMoCMW1GFkBFc2ju2N3ssLF6ZrMW1Vz15EdK7IEhoEkBEraQPZ7kX0aQpFdK0zaRnIcJMtBiiVcC5RhuMdmrxM+J14y7mRbijkDUGSwHdeN7QfGTpsn30F+TOIkzzfLzponrU4QwwyxRulgk1VIWE7RYIVYHy0k4kkxwreRDWYRXtmkzopQobbTQ2tFC9uM9q6jzipgTnQAy+KVKJJAk2wSjs6K9RWItExBZQfxpM5r64dQ4E9y08AnGaEJTGxgI58lduNT088uegO9VT+TBjyGVwK/rBB1bOKS4L3EAHb3rWZBvJon6sehyg5VvlZkSZC0NQxLZXVLGNuSqRrYynD/Jkq0GFHbiybZlHuitAX9eGSL2Zv6EXMknA6NZIlGz3AHBXqCRYkqNiQKaU4FkID5bVVMKV6BKRSWJXsQURMU6XHKAjH0kEVDIsSshsF4FIsDy5Zg6gpLo5VYQqZIjbPZiFAcSJAyNJJpBbtDx/HaNMSC+FUDTbGpT4aRww6T/TWYW6xVi2SV4XoDi5K9WW6UM86zCQVBT7UNXbKRcYg6PhqtEGlHo9rbzNhgDZ/Eqmkx/PTxJxkYbCCoplmbKMawFXqHW9kUi2A5Mh+1VlPkifPe6v6c23A8Xt0k5E0T9qSQpW930fxN8F35TdntsMNYc0HXbdPO+Qf/fhiWv3Lr/3Qs3eHQ2G/54/AhlNx1FX3nuO5bs8Vhuf17/HQglyzsbN/+22Wc9Nddea5tx87zt8Tv0Z4ewaiFsHBUcCeM/KvR8o9jARh/WuJL215wxkr+c9OXNgN+IALmmGOOobGxkSuvvJK6ujpGjx7NK6+8slVw2ZeSif+QbQfJtLF9GpIQaFELJWVhRHQcXUFyBP7N6ZwgkQ0nt6C3AhqOJqO1mghZwvYpOJrkigrILJotJF3rXKA7AiHcba6YULuID5FKu2PLmFAlSXL3CQGq6lpzhMjE5cggbLcfWUJy3KwOkmnljs0t2GWni4iRVB0UGSuoIacd1JiB0BQMRcfyy+gdrvtbNsbE0RUcXUFN2Ng+Gdsj4+gySsJCqO5rJNdry9FkbK8ruCRVdYWX47iWj8znIqmqa6WyHQTuvygyOBmFY9tgWUipNIqquoIrE0eUvSZhWRmrjuSKOABdRiRdISh5PQgzjeTNPAnKnl+WOj97BdcFb8vYnB8AO22e5AF2rvvYln3uLDeyvJXlq7Gz5skgrZ6NikKRnCIqp5if6EO77SPsSdGR9rIoWUXC1mkwwvT3NrDGKGVeezVDg3XUqQV8EOvPKzVDGVzagF81kX0OdekwwpQpqIhycPUSkrbG4rYerPq0F6dFT+HAPks5pWgOn6aqeHPTQN7cNJB+hc38tteLVKsyflnDFgKv5OAICVMo2Ehoss2EwrX00xtJCY1/1U5gc0eYgMdA0y2chiBz1vRnZVspAP0jzexRsJpyrZ2FThX9fI28lhqMaNXxtMrUmmVszljhHa+DJCSE141XXGaqRPQUvX0tjPSvZ51Rglc2kRGkbI3BBQ20Gj7WdxSSEiqNRojlzWUIIZGwdDa0FaAqNqahEi6LoSo2YW+aQZEGfIpJXSpMa8rPE3XjCPQwGKbX4SBRbxsUKQq9VR9Tgkt5vn0MFWo7CcdDgZzAEAqKJNFohVierGTmusFYlky/0mZW1JZjx1QSQ3TCehKAMeH17F2wgo1GEWtai2nv8FMWiDEo0MB79MdIqSiKgyI7bI6GCGttO/lO/fbZ2b8pe/zixZwV5v5DA/DoR3BoILd/2hsb2fOkrY+7650PKOFsLt74d27udQYAL+51Djx8O580nseupXd8pfHsCOXmSO79/WpmfEk7afdmRo7vyXUzz+bVua8zcu9bib5zAQBLDnDb+AKXAA93Oe6hcz8hcu3Q3PtDUvtQ+CXnKhm2L+1A5Hfl8Hx8Ry5npzJlVl/XYrMdbmk4nROXHMrPTglyyauPdbvfH4SAATj33HO3a+LvNhmLgpAlJNNBlm1IC2TDDdrXoiZCkRGqgpy2sAMaRljLCBjAESgpGyHhWm/AdbvyKAivBxIpd1GsqSBJSEpG1JhWpxuZonS6V2UsNJIn44upqq4lx7KRFNntMxPwj+vthmQL1wqRNlxrjuzG7uRES7Z/WQXTAgVXxGQFkqJgeRVkW+B4VfezsF1xZPllPE0GStoN4DeLvNi6jBY10dssHF3GCCtosoSatDBCrmuZZINQwfJKCL8HKZ7MCTpJy7itWZYrwGwnIya2eFqVsWJ1CfrPiD/h2Eiq4gqX7OeXFTGKkhFnwrW+SLLrjub1dLqQgfu5aFtauL7/KS63x06ZJ3m+EfGyZd87S8Tk+WrsjHmy1ixB6Aovx0YgSw4OEg3pEEEtjSwJUo7rLhWzPdSbEea29qHc18GSaCUPvbEXBQNaqIhEWbK5EkkS7DJ0E62GH1QHy5FRJIc+3mZWq6U4QYtkQuepebsxs2ww4yvXMaXnSqZFPmWDWcyrsRFsNiIkbY3Lyl+nh+qhWjU5KrSYAlklFVrC/GQfmu0gm4xCdNlml7JaivQE/asaeTq8KwWeJE3JAPUtYeJpHZ9iYgmZxU2VLNJ7YqU05LSEFpWw/AIlLSEkCPfvoKPDR3lJBx0JL1N6r6Kfr5H16SJarCDrkiUU6zEKPQkCikHcdn/veodbaTJDvLehLwGvAQjStkpluIMiT4IPVw4m3cvmyMHuo2pFcggqKcYEatAlmw1mEctSPbCRGO2pxURiZqKcPloTo3SHQMGHeCSbeiHTYIfYYBYD8H5bfzbGCkilNBxLZlVdKbLsUFLVSrmvg2pvC0VqjJTQWBivIqymKPQnURUHVbLZkCrEMWW8az2kBgMhGFm6mSUbI1/rfvqusjN/U96/62Ae/fsZDL+4F0tu3sjwi7tmoTpxyaGs3sZxw2/cjSEbznbf7OH+0zzyDLQJt+fa/OzBn8B+s7/W+MZ+cDsHXHgVu2Xej99rHnPfGctt751EYFxfzrpyJLz4xX2ID4o5/u2Q60oP2MnO2J43HvoZvVrO4Ygho3hyaQ9uGvgAM9Z4eaLf2V36OHHuim6Pebj5f/zmggpGcE+3j+kOU2b15aEvb9aFxw+5gl8//ULu/fFtl3NFn/P5u/4SACuqZ3L5hoeAEd3q7wcjYHYKtoMSTeOociarlft4XjJt0BTkTDYwK+DHCuoIRULIIFsCKbvwdgRah+G6M5k2jl/H1mRUj4qUXXgLp9NiYGcsEuBaUxTZ3ebxgKYifJ6cC5qjqwiPglBcq4MR0VFTGROCAEd3XbhERRAlZaM2dEBHDJJdhVNuDFmrQzY4znEQmYW8kCXXNc4WSA74mkxkw0FOmKBI2CEvsuUgW06mjY2SMJFs93MxA24/ciYQ08m4yjl+HTkrTrIWky0zkeWC+7cQVdlYGFntbJcTJlpXa0nWopKNKcpabyS5872UCeS37dz/mdt/5xcJsoQk//DcyHYWOyuAP0+eHyotToBecopnmgciSw6q7FAXD9Oe9NLR6qel0k/vUCuNqSAvLRiLWhVnnaeQeMKDp1mmVS+kLWKg1njxNki8XDCc2uYIUlRFXlTAQ227U1rWQSzpoaA0hiMkOkw/liPz+rKh9K5sYaCvnsODnxEVEs9FR/J+Sz9aHJ2FiUL8UpoyJUaTDW9Gh/FhSx9ihodoykP7xggETfr2bOK1tiFYK0NsqEpREInj9RnEOnx8LFVh2grxFh8tHttNZGlJeFoFQpZRExDt63BYn095du1I6jYX0qeqkYZ0kKStsaipBzWhYhwkmowAPb1tLOuoYF1LIaah4vGarGktxjBU+hS3ENTSOQtMwueKnOCrQeaV96ZfsIk1sRIcIVHujTI6tIGIkmRxqoi5rX1IlM9ntGcDi5O9eKV1Fwb4G5gWXEyxIlhj6XwQG8Ccxn60J720t/kRloykCHyhFL0K2mlPe2mP+/jA6MMyXwVjSjYwu7YfbW0BJEUQCSVobQ7R/kkJjgaBVongRod0s4/GUE/qxoaxFuSXW9virEn/5b6hxcw56j2kfQ7ebrvrgq302mKxb7X0hrL7AXj1D1Gknn/n/E1n5PaPP+Rt+pw/mWd/91aXfoo2fD1XvlcWX8O1vM1vx5/Ow955AAQu6PuV+7tiv7u54obzcu8nOU00LZ21dbuDPuboISdyfeb9Yc5k6n81ihW3ugL+1fBwKtk6o+cS7RGuD3/9TJn2S9P5Q49D+c2sr555tO+Rt/DEka6N6gqAVcsAqH/pv5QfdCgA/2npnniBvIDpiqqAELlMV3LKRLIyT/qVzngVyXLjLZSUg9aRibVwHBxFRTZt5ITR6cbkOBlXKsl1kbIN15Iiya5gsTIZuMi4d3l00FTskJ90mQ9Hd4PUba+MJAS2JqF32KgpG0mAo0iocddlSzbccaHJWD4Fp2cBuq5BU2unCIBM5rEt/usVxXXFkl3RIJuu1UbIuAHxhoNkOygxN+7G9mgYBRqSJdxsaNIW/ZJxMROgJmyEKpGOKFhe2RUzWSuJJLnXK8uIdNoVHsoWlg8h3D9nGxnDJDljdbE73fCy8SyOnclIlomlyaZcVraw6mwpImXJTRogOkWUpGnu/8kWWU/ydGXcjY9/L0TM/EXdS8QwZuT/JllBnh8PATnN4mQvVjWXMKS0nkHBBiJaiqWinKjso3Z1KQ3FQWRZoHXIpFMaRoMfwibSLjFETEfENIxKE6NERkp6kRUHNS4T3OQQHQXtMR9mvY+k36a6dxNBbxpdsRlc0sCBJYsZ613HSitIWEozwb+afQLLGKDZpEQHccfDarOUgJxmSmgpuwXWELV9rDNKeDM0iLCewhESheUJ5id0RFqhrS2Ak1aQdIe2uhCoAgwZRxFgylghB8unIFugpgTIMKepH9FWP5rPZFNzhPV1lThhi2BhgmV15fQoaqfUE2NxWw8AysIxNjYWkk6rJEwPTkJlrVaMrlnoqo2q2AT1NFJFimjCR0vST78gjC+s4ZXaYaxpKmau0hvTVBhRuZlKXzsyDjVWMSvjZWyMFfDGykG83XMgl1W/xCi9iRpPKSW+GJYj06H48AZSFAUTDCxopLevhadXjybV4iWlCpIBjY9Eb/oXNjM/6icSShBbWIzoaaDG3YeakgW25noveJsg/mkIK/Dl/v8/Ru6dfSjyz+bw7zUN3PHUixz3RhkAfxlcyCF7y5RfHKX+5hD8t/OYBbtEOb7NLaC5ZN0VXD/mOk4b+CuSZx/ExRv3ZvzotzlrlMOr2zhfS5W0lYh58E9DoebLx/rbgr27vJ/7ztgu79fc+Rx/PGk0UnwAV55wPOefNIPjcDOfRR57h/Zj99qqz+tmno13xQxog31O+hvJ+ED63DsGgL4rX6F80BK0CSP5654mf10OLIcXvD/hT6FmBm18iUFHbWJW4EX2XUiXAP4DRlzFPGDje+VEXnkdnv/y6/s8l1Z4OTqTOGDOIe8yBzh09/dxBt9A8ew/73B/a5+5kF8/vQcD65u5bubZMGCo++8W7DPket5Y/ptu9ZcXMFuSNiEgkGyBFdQQmozalnLjYlJuOmGhKZnsZOBoCoplZlL64sakCPfpk2TbiIwoUNKutUAIkQsSR5UzAeauBUBSFUQogBP2YYX0XJyJmnBNCmrKdtMX627yAMl0UCR3nxVws5RpHSZIIKVtVNPBCmok+oTxaQrS5iZ3gZ+zZuAKA8eNK0HTXAEjSahJt19Hl5ENVyjZXtd64+gKQnUFiiRclzXZdNzYFstBBdfNTnLrsFhBDUeTcFTwNdko7clc8gGEyGVmQ84KvEwWMHULawu44wT38xIOIqvHsjVtMn2QdZdzRM7NLCuscpYX6LTIZMmKpC22CTU/Pb6LdFeUfJU+80Jmx3m+dQ8OK+xelfofE58lKymJmOxX/RkfNlSTsjU2tUeIJzzQ4Vp37To/ZtCCPmn6VDazXi4iHEqSTGsoPgtbUvGFU3g0i2jcix3XkMIO9eMlJg5eyZKmClp8HrSgQX17iEggic/jCo857QN4sXEXditYzxHhT6iSY5QrOibQQ0ngVRO8nQxSICeIC502O8B7HQOpS4YQQqIuHmbDpmIkWdC3VyM+1aQ+FqKlLYDXZ5CMBhGOoKBnBylDQ5IElqmQKvWjpCQsr4SnSWLVikq0gjT9yptoTgRo8nqRO1SMgMrwys3oik1jOoim2FiOjE810XQLr27SEfWDkDANlXRcR/cbSBI0SrDvgM9YUlTJHmVrWdJeyQFVnzK0Xy2vtQ3n7ZoBGPV+5qd6U1IcpVSP0UtvYWOsgN6hFoq8cVa3lHDT+gM5ovwTxnprOLrPcmRgfrqAGrOUedFq+vmamOBfTeHgOA19w2xOR+jja+aoyDzmpar4eHU1LbURCjZLmL0FiWoLZIEcV3A0Gb0D0iEwChxCle3f6v34XWf6Zzqv7rOQfz5zNouedC0rRQ8+Tq8rb8F88ELgIB7d7T/syU8Z/WmIWTGN+obTubDscT44YwDBt24imVkLz31hb9atvoOWmW/l+v+k8TwGjdpIcuGEnIh5+F/rOfGE3js0zmvb3uaJgctZ1HhWblu5OZKTj3yYq/YN8+I/XaVw3pEKV9x7Im//ciARoP3YvVgQfYMAMLz6OlZPrcGr/4IrfvMrrpt5NiuOvxlwLTAvRoaTnjIL66BXmPa7rinxpx1/PofcGuGwxGT6Xvocd4w/nRlXHIx53Fs8dPVbnHS16zb3yuJraAoPZzj70v6HemDHg/hvqktx90Qfu5Ukd/jYLcnGv7yWupNfA0fO3ZXxRyW4+6kHeGa/T7hu5tnUv/Rf/nZuX/bH+uLOtiC/QtsSWUJKm8hpG9uv5kQEuBYYyRYgCxzdzbylJm0cPRNYbzo5ISM8ClJKIGUC1bPH5oLU9Yxrkp152q8oCL8XqziIGXaTAMiZooy2LuPonYUbPa2mW7BRklx3MVVCKK5Ikg3LdS/LuH8ZYRVJCOLVQYKxJLTHkDy6KxKyrlNbFq90HDfwXXhzRTMdn4oSN1GSJkaJ380olrDcApaKBD63gKacdDotJgquFcsS2B7ZjcEBtKjpniMrWiQpF6vSJee3rrltZCUnbHAUN1Zmi0QGAEJIXdNBO6LTJS0rgrLWMEl2hWPWSiO6PoVBOK6LmYxrBQvnXci+a3wT4uXz/X/bIub7FP8yy55EvKP7Pzg/Nl6rH4pHsYindXoG2xlTvpG0o7LA05N4uxfFY1NR1IHtyAQ0g+LCGBFvipiuk0jr2F4T287UbdDc7I5oDoXVUSxHwbIVSirb8WkmKUuluS1IiT9OD18Ha2LFlPuijPBtoN4OssKo4Cc+N4LgveQgalIltFl+UiGNBfHexC0Pn7WV0SPYTtSUCOppBvfZTKW/A59i0mF6UUMOsaSHkC9NQgmA5lBV0MbSjZW5r1mzxEaNKtgeCdsr0JsUrKSP5lAAR8CooesYX1hDnREmbnmI2zoFeoKmVJBN7RE3cYBqoyqO+wxLdXAst/aY32uwa9kmHCQ+qO1DUSBBixFgc0eY61cfhCMkyvxRRlRuZoHVC8eSaW4N8rGvN30rGzmsxyL2Cy6lzgrxD2UStbEILzeN4GlrDMMjm9k9uJpGK4QpVDTJockMMj/ZB1Mo7B9eTLMdZIhezyBNx2YjUwav4M0PR5Asg0Aohe2XsUwFS1ex4jpqSkIo4ITsXB2QPNsm+qsZTHvjCY5vc9+vbv4FvP0CfY+E9W+/QP9i8P/pLhbsEmX0pyGOH1MNuEKn76WvcM24t5lcOIzyoYtyfRZ1nElL2C0quWvpHaz7xSKCDzzMC9NjADnxcsoly7jtnC8e35bWly3Fy7Z4cP6NPLT6EfaZ+jhVv/wz/aatpP23Z7H3iypL1n3IknUfss+6x6l/6b/MOOglOAj2uPlwdhs2kDsyQiYiAvy013+AEynqOJMUbrrlVx+9nQkXQD1/4NVHAdxUys8uX8iMf/8Srt56PF83iP9Po+pg7sivfLx4w7WonPWHyYx6O80vIvW8+vrrnD11Ks/wCVfsdze77TGUWU+NpPXUW7rdb17AbIkjwLRQO1IIzY+QJOyA7gbkSwpCAyvswfa6VhBHlQB3oS+bDo5HQbIcZMPuXDTjhnQIVUZynE7XKUlCOG4WMRH0YRX6EZr7Q6UYDkrCcuvMeOScSAK3or2esJDSmRTHQQ9K5jyOR8X2qTia7JqxhUCywVEl7JIQSnvMFS/CAUt0piwm4z6WqbeiJExsr4qQwPIq2B43k5oZUNDbLWy/imI4GSuMa4GRTBtkdwyO5rqzWT4FMyBj6xK+Fhs1mkZKZVzusueTZVfkZcVPli3dxjIZ2XKpooVAZPdvIQglSQLd5/Ztmu4xKLljEHZn/9kMZ5ARMltkZFN0nJAP2//DKDj2Q+GbFi87wgW3/uMbCeT/PomXPF/M+4192RwrxolrIAvmbwyjlyUY2aOWPXrWME/thZWJ0TMshaZEAMuWWb2plPLSdmRJEE9p2DENw69SWhQlVNRGQzRIR9xLW8AtpJe2FAxLIehNYxsKa5qKUSUHv2pQG4/wqL07RXqCRc09cHpLaJLNglhvPm6oQldsAkqa2mSEgGpQ4otRG4uQNDWqIy20pv2sjxXSO9hKWEuxMVZAeSRK2lYoqHQtL30CzSxXyvB5Tfweg2Y5iFQsMNIqkiywOjTQHTriXgZXNNCUDDCXPuiKRWvaT8LUqAq1EdTSCCER8aRQZQcBjO27nh6+dgb66lkW70HaUfHIFk1GgI6mAIX+JJ82VxLypt3YopYAm6RCxg2soaQgRsLQKPCliBoe5rQP4MiSj+mh2DTaDrUxN6hel23aHYVX1w/hLXUgqmJT6o8jI1heX4ZlqvQoaWOmOoTmuJ87RvybtDAokC3GhNfxhn8olglmzAMS+ANpzJSKFnU9D4RMzvCf54s5vu1y7hh/OpNLXbFX3X8kG39/F9bjI+EXne0W7BJlwiudD5qePe7u3OuW8H0UdZy5Vd/Nv72EVzdOZ9wvU5x4Qm8e/tf6rzzORPB2Zhzw0y9sc1L/C/nLwOUEj25hHh8wgLOY1/AAP1lSTeSCm3hi4HL45UD2zsR/vH/tczxZdCflbW9z/jbqEJ8752H+uueJAAxsrWZl4TrAtdiAaxlatPVhX5vdSpK8uZP6Gn9aAjSYNnUql/ecy8uLXoMCcm5ks4BeN3r5ZJ/u9ZcXMFsg0mmQdeT2OKqi4Pg1HF3B9qquKMFd0MumQI25dVyUWBo74AauZ7+khCqDUBC6ihnWkS2B0BQ3i1bWbUqS3YB9j4Yd8WEU6qgJ23UPy4gfOW3h6DpIIBsCvdVASbipjYWu4mhKrnaNkABJwdZdC4KSctBbLZAljIiGEdHx6xoilXLFgci4jkmSmzQgm17ZcZDiKTRJIlXhWlwkxxVrWtRGMRyE5G7DFkhOJmZIk0FAvIcHIYNiCIQMasrB12jjqYu52dHkzHmyWcJk2a3xIkmgym5Aftb6krGeCDmTEjnr0mWkQSMXqC95PYigHzPsReiZLHKOQImbyNFULuuZMMxM31LXTGdZ6wy4/2aymJmBvAXmi/i+xMF8U+xsEZMXLz8sTEfGSap461SMsIPjdzCSGhuiBaw0NNqagig+i2hdCBSBJ5LCthR8gTSF3iRrY25FbF9RkkGljYT1JI6QWVtXgj/guolFN4YRiqCgRwea7CBrDl7dJGlprGsuo2dRO82pABujBfQKtVGqRvkg1p9lbeX0ibSwvqOQRa09kSRBwtJRJYeU5X7PNiXdKtwb2gpY11CE12uiKTYlwTi9gm2kbJV5n/ajrZePoD9NRShKR9qL2aETLIsT8KVRFYc21UePog7XxcyRGVzQQHM6QHvah0818SgWliOTsjX6FTdT6WvHcFRK9BhjAzWsSZeRdtzv4l7eVpZEK1nWWE5VVTP9w018VFdFPKVj2zKS6kCrzsdrqikoiOPVLAq8SSp97ewaXE+V2kbUEZhCpcQXo9QbozEVRJNtSoNxJhTXYAqFDsvLhnghQkgM67WZ5bXlOLU+lKTEDeGDubz3i7wdG0VISTFh2Grq4mHCnhQrG0qRJAEpBW+zW9C5fd8kIX8aM/3DzW75dak7qg/7Lz8HVt3CwScfxsNl7qJ85DMGG1cv5NDfvM9dF5zI6KMOAWBZxTBeejdI+cVRxn5wOz+f92c+PEBn7gt7M/6QkazrWMTet60E4NnfuecovvZPHLnfHxn0x43wQg9OPKE3zw+5DYDnh3zx+Hr1343p145jfuhTevU4FLcU4yM8edt77HHbRdSvWAXANbM6uKbXZHrOPYT7jx3HDOD9J4voeOAfMKCV9b9McdC8P/PG68fQ64wz6X93ko+XruT9jHVn98IH+KDfqSx/Lgzsz5+WnMW07YxpYGs1C9+tZbZc8qWpm7fFPlM7C0eP/eB25u1+Ps8uX0j9uxM5aOJ1XdpesrCC8zOv//vBHhw8+Iv7fmvzzUyuvHir7Zf3nMswqricuQDcOnJ/pvJPrtjvbvz9g+z+3J926BryM2pLsnEgaQOlPY4Sd60FQs7UPPG46YXljLuYnDKRTBulI42cNFHjplu93hauNcSvupm6DMe1wMhy10xXkoQI+kgXuk8SRNaNSoBkO0img96UcIVD2kGJdz6Btr1u3MuW8SiOJqMYDnqr4Y4lU8/G05RyA+izrmvCyaRoVnKphoVlZ+qs2EimhZxIo6Qd1KSNpyWN3mGhpB0cRcLRZSyvkhN3jiqTLvaQLva4qZIVN/uYp9XCvzGBZ32rm7I5i575nD06wqMh+bzg9bhJDbwe160uG/8iK1tkFMtYUBTFdX3zeqCilPiIChJ9whiFOmZARUgSpl8lVe4jVRUhPaAcpySC5Pe6597S0rOlK1n2nBkLmeXPT48vY9yNj395o53A/9L68m1YevLi5YeHIglwJDwtoKQlpLQMHRptMT9tm8JIqoOuW3iKXP9yI6VRWdzO8PI6yn1RBpY10qO4nd16rmePojX08rYRMz2EQwkGFDUxINSEp1HB06hgCwlHSPgDKXTVptQXwzJVSn1udrLaFaWsaC7lljX78cq6oYwq2kS1vwXbkWmIBantCNOR9hI1PaRNFduR2NBQyLKVPYlHvQyoaGRcj/UEPAalXrdPAF+tyrvzh6LIgo60l02bC5EMNyFBv8JmpvRYScBn0D/chCwJ6qIhVneU0MPfTp9QM2lLpT4WYlMsQlvKh181GBtaR5kniinc38rl8XJMobA+UcjLm4bx0bJ+hH0pTqt+j+HBWgYUNWFZCulWL/17NjJ619UM6lWPTzeJp3RkBAubevKXRfty8sJTOPyTMzl37nGsaCpjRXsZq1tKaIwHKfdFWREr4936fqyJlrBLQS2qarN0UwVmq4fwwFbMQodl86s5e9EJ1KYLaLECTC1aSt9wMx1pL5apEGv3oTcr2LpE21DBtIHLCHvTtDZu47F6HgDeXngrj1/8Du/tN4WF79ZSOuUcSqecw6Ij3WxznzS6WbpmrLmb89TXAWiaGWXJAfDhAW6bdatd+8PcF/ZmxsohLDj2slwGsv8cXkH6jwl8oz5ELf0XAIv0czn1Pndd8smdp+Zev/TuFVuNb+Pqj/nrcXcz55B3u2zf47aLOP2xjwC4at8w0z2x3L4nBi7niYHL2eO2ixj92B9z29943X3ot1Hvxdu/dCvZX9v2NpOcJn4+7888uGYET9x4NG23vcX9x44jUv9TUie47mMf3vq7Luc/4t9dA+C/iMErKvD/ye3n8EeP543Xj+HDA3TW1R1DdYX7O77nCxO/tJ9Dd++Mdzyp38ou7/dctx/Jl/++dWC++DfSPtdzw6bxXV6fvl8B4MbEZBkdHdfta8pbYLYkm9YXkNIGcgfoaROrwJ97sg8gpzoDyoWmIBkWAsV1FdMUZMAK6ji6jBq33Pospo1wHLeApWW5rlOhAGahF6FKyIa7eJZNp7OGjOHWRrG9MmZAQY3rmZosboC8m+rZTQggFLcPOe2Ozfa68S9y0o2LkY1MiuSca5YNOGBkXKmE48aTmKYbE2Pb6E1xhK6CLRABDQS51NGSDUhgRFS0mJupTDYFflugJt2UykrcAMNEsjIFMDXVzTrm1bADHoQuY2vu2CUBemsaOWEgxRJIkHEBw7WI5DKQOTmhY/YqzrjtCTfjmSK51ivHTUBgZRIeOLpEujyA6tfRNre6Y7BsMI2umcYyVjHXVc1N5pDny/kxW2K+rhVmR4TLlufJC57vPg2t7oJVTQpkQ0LyCvQWBTsWhGILkVRJKwLhSKA69CpvZXBBA+WeDjTJpkiLk/TrVHub8cgmaSeE4SgMKHKfTvsUA6PAwVMVozIUJWlphLxpqkJtbIpHEA0ePhLVOGkFVEFbW4CU32D/vstZHy9kWX0FsuwwuLSB1S0lNLQHsS2FXXptoiERotWUwZHQPBab2iM0JwKkLYWiYjebVoWnnYXhgfg2KfgGmPhUE9VjYyUVLFOhf7CJ/t4GxpQHKdLjNGpByouj+BQTXbbwywZRr5eA5mZOq41F2BAt4Jn0rsQMDwXeJLXJCAs39WSxr5K2liDeYBp/UYKm9iCz2wbxWVsZsiQojcRIB1LUR4PEPDqtUT9+r0H/kmaCWpq0WYjZ4aEtqYElgy2RtCU2pAopDCcYXbqJTYkIftUglvLQkfCSNPvRo6CDpliAwdXrqfK1Eq/00JQOYNgqn3WUUV3exEajCBlBwtSwohoVvVtoaC1Fcty00klbo0+4Ba13jI3f2t343eeyNfN4jylU1RzJZmDUbgVU7xWn19z7+c991/OJ8hjwE+6wpgLwu3t+wmPHuJ/oL0p+yWS6LpqndSyBeX/mnrEXceAea/Bc5oc//ovH9rsIgGNnKjAL2n93BFQU8NfGiZxb+i7rf5mi2K3XyqZr5vDs8oWMaXiR+WVbp3juteYDzrjtPcis4UdN7MFVwB7HjoOBy+m99yFUR6/jjP3+ydEll7HPgH/zxmXHMe2wp+mbyWy84vc/BZZ0HXvToXzSeDgblo0kPOEmzp3jFrWccMEfAOh3zuGsufO5Hfp8yy+OUs4luff7TH2c5T9/lOU/h2duPxjWH0z1xb/JWWPGfnD7Vn1UnfkafBpC/uxybrz0OSp/fjGHZqxlAHOqZ7LvsMfocwfA8cT6vEiwZuvP7fqH/wPAWccbcPzZzOMDbt/wBI+yjheu7X6tnvwj5i3JBoFblmuNSCSROuKoLXHU9jRK0soJBGQJ26tiBz04fh3hVbGCOkZYwwpqbjawTApmI+RaHCRJct2YwI198bmB9lmLhWw6KKlOS4VQZYRHwfbIeJszMS9+FWQJOWkhJy3XMqS6LmSSLVyLTyozTtutT2OFNMygimRanfVfTKtz8Z6NL4FckUcpmUZKGq6gEMIVWJIbn2N7XWEmp238GxNobWm8dXG09hS+zXH0hhhKNAVpIydeAJyIn2S/ImL9I8R7eYn18JAuVBGqRKpQJV7lJ9krhNmjCBH0I2U+M2Qlk9Y4k8Y64CM5uBwroKJG03ha0shpCyVlYWsyZkh1U0CbIhfU72gS6WIPRnUxeD1IqpJL55xLvywysTiKguQ4yHkB022+SUvMdyn2ZVt8mZi44NZ/5P4+v+3LuPWC03J/eb5fOLV+5IDpfhcZbkV6oQiUpASOhGRLCEfC4zPpV9XIAZVLGR1aT0RNsEdgJb8oeYerK2ZxWGghAz11lOlR9i5ZSXMqwGdNZaxLFOGELCoLOij2xqkIdKBIgsZkkA2NhehtMqLZg5RUCFTEKSmOUhaOUZcKI0uCgWWNHNBnGX7VZFT5JqqK25jYbzW7FaynwJt0jfQBE1W1KfQnCXtTeFSbmngR79dVU6m1YRVYFKy0aWgPEjd1rLSCFLQQlkzU8pJwdEo8MQrVBOXeKPXJEO2mF79soMk2hqPQlAyyuL6SupYwm+sLWFlbxubGCDUtRdTGIpgplURKxxtM07uoFSEkdu21kSHBzQR1tyjomJINzOgzj18PfY1bBj/B3n1WkUzrrGkuZmOsgKEl9ZT3akXzmagBE19JAietIByJ/oVNvL22P46QkCVBVUEbU/t8xoTSGjyKRXkoSl08zJL2ytz/7bK6cjTZ5r+bRnJUZB5Hl3zE8OI6AqUJin0JHL+dKYgNzekAo8IbclarPNvm4xOLeCnjDDX+0HW8xAzqbw6x8aTb2W32JZx6xCMAOQvMwdac3LF3Nd3GW61uHIx++QvUvfwY916SZtHazroo62+5j6cOPR6AKx92q11Grr2Xg8UM+tW1YSUreXXucH4+r2t64C3FSyJ4Ox9/VsPMm1zhdMqYX3PNrA4Kz1jGi/98nh4Lu4qK3f++inV1x3B0ybrctqqaI7l28JN8cvliXn3+p6wdeACvhoczZEwxl57oJhVomzOQNcOeJDzhJqb/ZA9e612cO35ga/U2xcur4eFbvdee7qypsu6d63OvN/bbnXm7u05hb4cOZdj5r3Q59tnlC5m3+/ms6nc9nydrDQNX0Pz3gz22agMQ6/MixY90Dfx/vceF7ljqjuFw7WmuO+thWqueY2yHm6t51ooGet3o3WZ/2yJvgfk8GTclt8Ck0uli5DjICQMn4sPxulnIspnAbI+CUaAS7aVghKBouYynzUK2BbZPQU3ayLFULgUwuDEgQnUD3LWYg5KycTLFM4VXxQpoKIoMEvjqUkiW4xbPVCXXIuJ1s6Q5uuzGeyRtZNN2g+kdByVqZ2J4VHAEdtCNb8mJlkwhzVymrmwmMMs9HllGMkyw3HTQrlXIrXMT6EgjWY5rnbGyBSQFSjTufmlbW2T5yggCqyREqsxHqlDBE7XR4q4okhxwNCmXkhkgWeHFq0hojQpSR6wzxbJhIqkKRlUxjkdGbzGQ0jbC61rCzLBrSs72S8ZSZesyQpJQEzamX8XpW4JnYxtSh+i08nwe03IFUJ5uk7fEfLnI6K7l5Mv6yu7fEUvMyL9tu3rzop8N6nYfebqPr07CHGjRMtYi9JlrwTYK3DouepOC0y9J77IWegdb6e9vpMEMsTJRRkhNoUk2VWo7tzbtTokWY4yvhoSj02wEsR2ZslCMhOV+321oLEQrtynwJHPxK44lo0XB9krQN4Gm2PQOt9Ka9rMxWkBAMyj1xVgZK0NG0JQMoCk2A/0NNJsBYoaHIdWbXbc01cCvmixprMCjWYyMbGLJst3ZXF2A5LVxNAVpSYhN1R78kSQnDPyY2nQBdakQUEGb4cMbNPHIFqat0JwK0OwJYDgqG6MFJA0NWXZwhIQkC2TZ/d6NN/pJ+nWUeg9WLwdNs1m1uYzy4nZSlsbaZCm7Fa2nJlFMoZZAk2yWJHpSEW5jgL+BqsGtLI1WsrCuB2FPiva4j6qSNjpSXmJJD95IGr83TXMqQM/idvYvW8Zgby2vt48ganpZHy9kQ3MBAV+a0kAcv2pQqkdpSgeY0LsGTXKoLGxntVlMoxUmanowDIW0reIvTpAqi+B4oD4RZLmnknV1xdu7VfIAM9/ry0H9nqD/Wxewpr2cI3Hdip7/y6Uc9quburQdWrc08+qAbfb13BtHAPD+XQcD7+G5zE9vzsRKzqfIWgAZa801J810PUlqV3Lp7gug9xKY7/ZxyiXLuC4I1Xv9hvnLO60Ifz3ubv7v2PN446gjeXD+jew25i0OvcQ1wdy3QIIFz/NiAVy7Ei49sTf7PudaYkc/9kfaf+tmLwtc8icu2r+Ol6NXATDooji86d4fWwqRWYdHmd5p4GD355+iedJFufcLdjs8Z4aY1rGkSxD/tI4lvLHF++q9tl1bZcqsvjjjO/d/eIDOta+8zW+XL+RZIBOuAsCG+/Zn8z2LOOP9Gzjjfdjwz4s5qd/K3P59hz2We511b3ud9Wy8cRK89hDgplS+8dJFnJ6xBl3CvQDcM/YiTudYTqk8kP92Mx1B3gLzeSTJXdTLnQtwKW241pRMjIoZdMWDkFyXKkfPWAZsUFNg+mXXKiJLbrHHhIXUEXeD+HPB4m4RRy3moMUyLmOm4wboSxKWT3EtBoU6jkdBKDJqwkTKVLYXioQZdlNVuoUs3fNl67FIQmTSLYNsCzytJqSNTJyLtcX1ObnAdWFZ4GTiYRzHbW9ayO0x1IZ2tPoO5JTl9m9YyAkDOZ5CMm0k286c2+5i0QFwgl5SZT4sv4yWdJAscrVmkNzYHTXpoCYdJNstjmmGNMzSICLgc2NiHMcN1i8MY0Q0bF3GKNCxQx4cTUFkUk/LhisGtY40CDcNtZQpqqkmTPQOEzOkYJUEXSuPrrtiTlHczGSOG+wvxRL410f/Rzddnu8SXzWN8le1snyeHbG2dLft9sRLdl92/5avu8O+SvfN/T82fE0Cs91DYUUHsZEpJFtCKUljFltYfoHH61rVl7eWsTZRwvL2cuqTITYmCthsFBCSHU4s/IA3mgbzbnwQJWqMHp42TEdmdOFG0rYKjoTV6GVNg5t5LMueA9YQG5XCLDcZ33s9VQVtyJIgoBnU1hdgCZkJkbUE1TTlvg4mV6xkl8JaVibKUGWHsCdFfSxIVcDNDtaYDOL3GNRvKuTxxWMhY0zoVd5K4xhAgHe9jpHW2Ce4lKsr3mB4eDOvrxxCylYp0zqo9jXRP9JEz4BbD2VjvICyQIyf9FxL74I27KSKE9MIBZM4toRkynh8JnaZG4vav7SJwkgcv2biIFGkxfm4pTefbO7JvNbePFc7iscXj+WaVYcxu3kgz2/YhZStYtsyG9sj+Dyu1eeQqsVomoVtS5T4E/QKuJ/NnNZ+pBwdj2wRUNOUemMYSY22tgBRw4Mu2yyLVtCe9hFUDQ4qWsT6ZCGNVpjXW4Yxo/wjBlU0okgO6ZROqsyicCkkXitn9lu7oNbma0xtj4uOuzP3evXkUwkGryEYvIbyi7f9G7ysYhjahO2n9T18n2cBGHpCp4v4+lvuY8pst0Dk7090BUeRtYCTd7ubI27fL9eu7mV3Ef7gn4bmtj04/8atzqEdrnN7rxGMaXgRcONYDj75MMCNE/nwAJ2fNtbl2rf/9iwi197Lbg+3dOln8oNd6wPNOjxK+z5uvHJW/PzfMDfj2QeHHcW0Zdfm2o7+eNtuZA9d7VpXIr8r3+b++pf+u83tW3LEkFG8X7uR28cvyomUPZTrOeP9d7q0+2vjRB5a48byzFp6LAD3zT1+m30Oml8LwP3HjqP4xZ9y/ZhCCj2X5fZfH67jp0O3/qy3R17AbIstg7ydzI+CYSKlTFfQ2AKhSm6BSkegJi08rSaRGpPIWhtfi+XWivHKbhxMWyKTrhjXmpCpeO8WhwShSphB1c18FdKxfSpKynZjSVJu1i8zrLlCRpUwIxrJEs2tw4JbyFJyhFtAUlMQmoLjVbGDOpZfJV2ooTVvUQVYklxRsGVCAVnJpBEWXQs/ioxLnWm5cUHtceSOhJsO2ch8HqlMemTLdkWA3HlbCY9OuiKIGXBFipLKpF12BLIlXKuTEEhWJuZElkAC2yuTLtaxi4IIr+663Hl1N910ZthGWMEMa+5fQMWIqFgBxc0CJ0m5IpxK2natMaaNbLifaarMg9GrEOHzIOm6667m0TODduv3SB2dAXl5usf/Kqj/u8zXES5fxVXsy47priDZst2OiJh8Ectt4683KJ2j0toQYkjvOnw9Ymi6W+hQqIJ0yl2klPtjbEpEEEKiPe2lPhHi9Q2DuadlD/5SP5W4qbOooycrk2WsTZbQFvfRYgRY11iIEjTx9YwR8Bk4QmJUSS2jizdS7unAF0wj6zZz1/dmXWshhq2StlQiBQkmFNcw2FPLzyvfZP+CJaQdlTWxEtZ2FLOgpReGraCrNuPCa5kQWUu5v4NCbxJfYRInrqGETN5uHIjpyIQGtuHoAr0N7BYPM2PDWWdpNBohJNlhY7SARbFeOEImoBgUaEnaTR8hzU1v3GK42dZIu5apttYAnuU+CJn4PAaFxVH8/jQb2goo8iWQERi2giI5DInUs2evGlTJwbAVJNnN/rZsUwWxpId17YWk27ykTZWUobGmoZjn1u2CXzfpV9ZMoTdBmSdKSEsTMz3Mjg7i7c0DcIRMm+FD81pIinDdwpCojUUI6Smqvc14ZYODij7lk1g1zakAC+LVnNRjDsf3+ND11DZk2gZBolLgaXFjR/Nsn6lNd9Kwh2uRiO77IW/dPAuAw351E3PeXcaeE4ey8aSt4zKy3NV02xf2/8rCYbnXI6u7Oh+F9juf1kwsR8WBx6K2/Zy/Hnc3VsE9gOsqlhUnW7LrDSOwZriB778t2JsX//k8gy4YtVW7Q4Nds3p5J3+Qe7168qkM+2C/Lvsjb5i51xe9v5KGV/7G/bfdCpBLpbwtFvzzLQAefaoQIFPAMnOeindYkjVYDXDFWXtNp9AIjN6LwOi9iPR5dKt+s4Us37d/g/zZ5QAUz+50tXu/tmt01/8170P5oAG0H7sXALXHupanR4o7bUKnXbo//7mvClYty227Yr+72RF22IVs7ty5vP/++9TVucqyoqKCPfbYg/Hjx+9oV989HBsUNeNGpiDIpOm13PoowudBcoRbrFIB2+d+IwlVRo2Z6C12bvGfLtRBgKc5hRRLuq5K2QrzWWR3oY7IVK33qwg1Y0mwBHLazgW6myGFdIF7rGyLTJ0XUJOuiLJ8KkZYQW9X8DSnADcGxwmpeFpM5NbMYjxjGRFmZoJIUmdhR0Vx68RYbuB/tvCmlKsXgxtEn41FMTqf+JGN7cm6qElugU0n7CNZrOJttREymEEFR5XxNQi0mIls2JhhHTUT0yMUmVS5m4rZ1mXSpV58KdOteyO5Qk9JOVj+TvElCZAsgamAo0jIpoKSspAtB9I2OLgFNUMerKxLnymwAgpycRCtNhPMn03gkP0/sre4vjw/Cr6tIpbfxRiXrIjJu5h9NRpHeyhda6M1aXzmKcdJqSAJZK+NUAV9yptpigVI6G5mMgCWhEhVmsh+i1mbB+FRbEYUbmawv47VqVLeXjMAM6bzZnQwms9kdNVGVjaXEot7MYoUUmk/suSjORVAV228kTixhJdom58Nik3a1BhRvhkbmcWpKqK2lw9b+gDgVUz2LN2ER7ZoNgO8t7kvi+M9mRhewZhwpmZGKbzRNIQV9aXUfNQLu8LAEzAwexn03qOBWG0J97+7F3OG9qNAT3Lc0HkUqnGaTPdJcj9fI1Hby6poCZs7wkQ3hdlQWIhjykiWhBkWeAMGqR4a/lCaRMpDKqaDJeMrTOJRLdKWSsLUaTX9RC0vK9pKqQq10TfcQiKtI0uCksIowwrr+WBTNeGyGPv3Xs6r64fgOBJpU2XfXiuYFPqMFjvIe+0D+XRDD3SPhSwJBhU24JFNSrwxapQidu21kV3DG/DLBis9ZdQmI6xKlLEiXs5BRYs4pHABKzum8p/VI1lQ3IsLql7n4KGL+aixN3WbCpHiKkpKItT4LdyE3wPKPtO44vC7OXLurvS+zYs4HPSqVxj78gHUPxfiQ/lsKs8bmRMxAPvVXsdMruCIPwyi5rNt9yve+A2c4D7NV9t+zs8evAducV3Ppl87juwjmupfPsQKjqKwoSQnYqyCe7pk1wJ48un9OKHX/Ty7/Pzcto8+KQDgs91/Dh8sBODj++vYu78b0/GTf9zEvOVPwxlu+6wL2RlYvCx9ebattQMPgNUf81rvYt7a4yAmXDCPxH81phVfy6tDf/ulx38ZkT6PQoN7PfEF79C0dJab/GA7POz9BU/QVUCFo/Xs0YMurmQ5obKuS1P+r3kf6qf8F/50KAC7zb6EjRkj/jgNPgZ+99zp/OHw+7s1/m4/E2hoaGDSpEnsvvvu3HLLLbzxxhu88cYb3HLLLey+++5MmjSJhoaG7nb33UTuXHwjS25GKnAX74qMZFpuymTDQUk7rtXAEm48iCrnMpWZQbfQo6cphdLQBqaZq3oP5ESEnLTcpzIZKwyyhKNJmYxiNrJhgZPN/CVh+aRMsH827S8oCQslY9GwPJmaMKqMHdBwvApa3MKzrhmRSrsiKhsQn0kVnLvuLQtJZtIt5+rDZMVLlqylJRug7wjXPS5reRECoWs4hUHiVQEUw7VSqUnbrR8jwAooGBHd/ewkt0Cn0FzriZCkjAue645nlAQQHg0yMUlZNzNvs4mast34H8NNbe2oEumIghnUcNRMljZAi1sYEZVEuWupkW0HJeVg+1WcgqAryjL/78J2MrFB+RiYr8JXscJ8Fyw334Z42VkB+t+kANoRa0yeTvTdW2gboKIkJISQ8BakKK1sp6KkHZFSWLW6gviSQhqXlpJq9ZJOaDhDY4wbvoaiwrhrNbBUlrRVELW9zFo/CDOu0a9vPb5QCstQKPbEKQnG8fvTpGyN/sEmzu3xBof3WMjlQ19mt/INVBZ2UF7exsCiJgYUN1Gix9mULKDeDLMsVsGm9gh9gi0kLJ1XNgylw/KyZ2gV5cEYUcuLKVRMoRCS3QdjLUk/6aiHwCYJbZOOsyKI3KyRMDUCoRRqgcGy1T3oML0UqnHG+dYQUlLYQiblaCQcHdNR6KgLobbLOIaC3KgjNIFSmsLnMQj27MAwFFKNPpRmjfKerYzpsZFyb9R1nQOqvC309LYR8aT4cFk/PqjpQ8Djups1tYZI2hrVRa0UBRJ83NybAl8Kx3F/8xa09mJRsjevNI9gzsY+OIZCRUEHumyTsjXWxotxhEy/kmbq4mE2pIoACKspNsfDbE6GCahpXmndhcuXHEGpL0bAa7CqrpTXO0ZQ5W1hRFEdweIEQndIF5LzmMjTlQWhj3Jpd6fPGEfi3VWYf3V/t8XhB2E/MIKNY+6n/uyPeHaXh/hFyS+Z2cNNdVxz+7aLSUoigLSPG4C+7ownuz2WwoaSXFrmz3P0T2fyr42nkwhu3wq0JT/5x028cdSRXLHf3TybdtOaRa69N7d/2mFPb/fYWYdHOdKj03flK/x5D9c96+HxnQ+SthQvo953v/tfDQ9n9MmTufzu3rl9bxxdxxWxwtz78XWuRWT11JovHf/jA/+z1TZ7TvWXHvdFrBjTg/+8uX+XbctWTs/9fT798pfRbQHzi1/8Atu2WbZsGTU1NXz44Yd8+OGH1NTUsGzZMhzH4Zxzztmhk3/nKI64T98Vt/aIyAoPRXEX6xl3Kb0liRozUdKupURvS6O1pZCTbspkvd3AUxtDXd+ASKQQQnSKIctyhYTtoMQNlLQgXaCQjrh/kiNQ0naucKZQJayAgha38bbaqAl34e1ttfE2pl0rg+MGrnuiNo4mYfndxbtsOOhrGhHRjPUlK1Cy/2bGkasLk2ULwSJsNzOXsB03RiaT0IBMvIx7vHA/N00FXUNoKnbER0e/AOmIjJrqTO8smwLZxo0hUiQcnwqym/bY2SKDmOQItIQbjN/RR8cuCSFkN7bI9ipufJEAR3ELd8qGjbfVQks66B02ttf9LIUsoSRd65BkuwYk2ex0WROKhFHsxy4Kg65lsp65om27Af4/cs476/++tE13Bcm4Gx//0rb/C2HxbYmX73J/W5IXMTtObEUhzk/aSQ9IIQwZXbPYrWwDP+21AF9JAt96DW9zJiOZ7uALpvF4TJY1lhNP6ZQFY6iyw6bmCPfN2ZtYXZBAUZJib5zSUBzhSLxf24d1DUVYtkx9LIQsCZanK9mQKmJevC+Wo5C2FXoG2xkQaGS3wnXUJsOUeGK0GAE+ravE7zEY5K/DFjJ9ClrceJDoANa1FPJeTV+WJHoSUZLYyNwxfwrJZ8rp8YqCt9XBv0kivAqCNTIpU2VQcSOFkThyTGXJ2h78bdlEZkZHIEsOtekClsfLWdJeSWMsgOS3sAICYcooVQnKq1vQPSbJtE4i7sVs94DXQalKcEL1R0wsWMnUwsVoik1TNMDbTYOoT4dZtroHJRUdzBg6n6mVy5GAYCBFh+llaLiOPiH3mhwhYbZ5sZaHqfmoF+2Wjypfa6Z8gMSmpgLWtBbRnvZhCYUFdT2p7QhTEeigWI/hkU0cIRHUDGRJ4JEtVnWU0N7mpyXtZ3TpJoSQmLlhMM9sGE276UUICTVikO6bJt4r/3uyLUZHx/HxiUW59xdP8fKhfDbv27/h7qHjOe+Ih6m7c0/G3Om6KR0s3ExlRdYC1t9yX5e+shnKhBTPbTvqn9MBaP7tJSzcY9uuvYM2P5Wzvkx4xeiyz5hQvU33sS0Z2Lr1wn7e8sacYElvHkXk2nu7uEgtvd2tRzNil8u3Onbf50I8kza22p5l4bu1udd7rXU/uy+ynABs+ttY5la48Sueyue77JPnnt/lff1L/2Xf50L0VTsrVt4+fhGnjPm12/6zy2kta+pidQHYuGtn8crl9jUMzYigQtzf1zf3XQvA5Xf35h83vZZru/K/g1huX8Of/71jGqLbLmSvvvoq77zzDoMHb12Cc/Dgwdx+++1Mnjx5h07+XcPx6ghHcSvGKxLCscGxEWn3aYBkq0iGiWRaSDEVyXbcRXxGEMiylEvDLJzMgt8RSB7dfaovMm1t2623knSLRVqlCpIDlkdCj2ZjXlx3NSFJyIZb28TTbCAJV9S4C3AHR1MwIprrFpXOuIfJ4GlKIjd3IAwjE9vidLpJZQWMnMmKZpPJ9CUj0kYmDiXjWiZnspUJAWReK0pnsL9ld4ozSUKEPNgRH20DAzgayCZoHW49GyFJqEnXUmJ7JCRHwghpbjyM4bqFObqEYghsj+SKHUtg+STSRR787UlkK+M+Z7sudihuVjbZsNFbbBzF516aJbB9biFRJAklYeFNWnhaFTfpgOPWZnBMBdujYBa5qfuU1igkUxnx+jnLU54dYsusZN8FC8v2+LbcxvL8sPE0Svh0kz69W1iyuiexqJd3NvRnZaSU0ZWb+MhQkRf6Ca6XcOo8RAfJ6A0qeruEAqwuC2GVGniDBhSkGFTh+iAlLJ29y1eyzF9BTXsRCeElldBJJXXelgeQLNOoTUZoTgUo9CSIeFKUeWNE1ASmo5KyNZ5bMBrFZ6EoDprsUJMqYUJxDX7ZwK+keWbjroT9KWIpDxtTBcxr6c265kJ8AYO2IR68ja43QbrEwd+/nWhLgJCtsKbVzaQkl6WYUL2OVW0lPLZiLJIkKAnFKfAmWdVQgrM6iJxZfcjlaZx1ARorFTepS1oB2xV22FASibE+XURETbLZLGBdYyGlBTHWtxUQN3V69Grh6Kr5lKpRVqXKObzXQtfdK1mOLAn6+xsJqSlWRUsxqlppMosI1ih83Nybw3ss5JiB83laHYVXsyjxxyn3RTEdhdJQjIaOII3JIBXeDj5qqabEG8OnukkEnlo4BkkRDOzVQJEnQUBNc8Yu71GoxnmpYRc+3dyDPavW0pgOsqkjTFNL99PD/hh5veQceOJOps/o6lp1x/E3A3fzEjO47oizeeLu26HiCQBe7f84Zx52Zmdbayo6L3Q5/iNTY+Pqj+EQOPffZ/PX41wRMWjzU7zGvluN48MDdGYseJgnRp+IM/iGLvuO/ulMCtOuWElvvhm4lpF/2I25T/u7tPvz6gqu4MScYHmJGYz47QIu3f2src63+NMbGLKdCIzRj/2RnsuLYWnntkuL/8FNzZ0Pq97p28Jgti6SumjtM7Dr3tvueDtM61jCPWMv4ucH/ZmS3feFLeL1z5/bmTTBGXwDxbP/nAveB4g89g57A//qcytUzmWIclVu38fHr4LUKq6642TuvSTNDWev56o5G6l3QnC428Y4dO0OjRV2wALj8Xjo6OjY7v5oNIrH8z1fCMjghPxuwHj26Xt28W47GSuEjYjFoT2GiCUQsbjrnpVKI+IJRDLpioZsTIgsuaJAOJ0xFZLsCpq0a6kJ1FlocQdvW8ZsqkiYIQUzpLoL83YTvc3IWWYkw3FjchQZK6DmgtrVlI23MYlvTTNyY5vrugbuuYXorKmyZZC+omTG1lnEE9Nyx5+Lj5E7r0W4WbqEZecq1wshOq0zkltvRY87yCZ4Omwsv4LIpHsWElg+CdMnuS5cHtdtzvHI2B73PI4m5QplSpZAj7m1ZxyvjpKycwU1ba+C5XPd4RzddT9TUzZazEJNWrm0zNn0+3LCRImlUeKGm27ayridaRK2R8aKeNw4p6wrXDaBQ56tuPj87j3t746F5dtizEjPDy7mJW+F+Q4hQ8cnmdS5powT1Yi3+li1vowO08vZI9/BGhslWSawddBaVNSkRLLCwQwLHFXgC6UZWl7HoIpGvIrJ+rYCVjWU8HzNLvTwtXPTkKc5YugCduldy9g+6/FpJm9uGEi74SOip6jwRSnxxolZOp9Ge/Juc3/WNhUTKo5TFIkT9KfwqBZxy4MjJJrNAAAji2pJmyqJmIdPG3pQ2xFG02xKgnGk8jTJoSlS5Q5ChkTCQ1FpBwW+FMm0TmxpEU6dl4t6vMozuzzAiYPnUhJy69QcVPop1cWtmGUmdomBbIPZ5iW8GkSrjpNSkBQBjoSclJF0m0EFjTQZQZ6pGcWjS8ZhtnmxHZmQN03c0AlqBhtSRdSbEdKOiibZeCWTIb7NLOuooDZdQEM6RFBLs2vpRuTiNKliwfollTy0egIL23sysmwzZ/R7j9EFGxkWrGWvwhX0CzXj0Sw02ebtjQMYHtlMWE3Ty9/GyMgmzhv3JmftOpu9S1fikS0cIVGoxvksUYHhKKiqzScNPZERtLYEc5nb8nTlD4ffn8vM9da9D3Np4hYA9u6zF6MXu8HtWdeiLS0YdQ2Bbp9DeelfHLr7+znxkqVFHc26204C4J8fd7ovPTHajfNoPboF/cPPBXJswciK33YRLx0hN+vXRf3reKdvC9NWH0PR6Ys5iCfQDtf5+/BOm0Hi3VVU1Rz5heNecOxl3D5e7WKN+eueJzJqYg+ALyxm+e9XLuC8Ry/mtAFum+K7vvzzmrf7+V3q4Ky1ugYYfZHIaD92L1ZPreGEwy8AXAtMlvI5iyifs4gnl/2zyzEvHnJB7vX99x1Dv6VHf+kYt6TbAuaYY47h5JNP5tlnn+0iZDo6Onj22Wc59dRTOe6443bo5N815FimYJ6uucIla23ILvqtbCFIpdPqkHPHcjpdsrYUCVlsp9PikV34WxZyNI6nKYVsuUUiEW5mLtkUrjBRJCTLQbYcHE3GUWW3MGU4UxNGCLyNaTwb2vCsaUSpb3PFhyyDpiGpKpLXi+TzufEj2do2mTiXXNpoJRMHo8idaYVzhS6ztV7szqKP0Lk/+zlJElbE58bxyOBtczN+qXELJW4ip92sYHrUFWuOLqMYAiMokyp0+xKShJJ03CB7r/s5qAkHBJiFXtRoGjUjYtJFGmZAJlmuYxTqCMVNiKB2pDJFPmW37otPxQpq2CEPQpbdOBtVBkVy69tIkluoEzKxNqrrEid3e3rk+YbZWUIjK1ryVpevRl7EdJ9kpZvGfsnaHqgdCt56FUyZgo88LF3Sm09jPTly4EICo1owCgT+WgnZADtkIw2NIZWnMQ2Vlc2l1HaEqYuHEUIi3e4lFvfy3ILR/HbldFbHSphe/gknV7xHoSdBoT9JXUeITdEIqmQjSw4JS0eRBAlTZ3jFZoaUNNA73MrgokYcIbGyvZT1ySJkSfBozTheXDyC1o0RZEVQHopSEY7i1SxaEz5KizoY1nszaqVbsNExZVpbgmzYUEyq2QcO6O0yF610XX0OCS+kd6iVmvYiWqwgA8ONFJZGCRUmsHWBFkljBiWE30ZKKIiUgt6s4GmRkVp0VreXsDkRpq0liJVWKKjsoMiXIKgZtHX4qYuG+KipGhuJnp5W3mkeyMMbdmdtJu7AFhK67D6ca0wFKYrEMYtsHK9D0GPQy9/GxIKVeCWDnp5WlsZ6cO+qibSbXgYVNzI8spk9etSwpL2SN9YNZFFLD17bNIQ5rf1ot3w0mwGilofP2st5p3UQLWYAv2qwe491FPqT1MbCqB4LyWdt9175MfO7TzvT5o7oP53zHr14qzanX38Ao2STyZWd+44ZP5bTL9nagpJl+pTXGFz78nb3Z1MpA6yoPAqAW9d3XUCPLTt1q+NaPV0FzeAP7qHyPxFGvX8aF/Wv46L+boKr3Z64ilEnXE6/g99h1xvcgpKTz+oMgB91wuUMO/+E7Y4vy/pfpmi53z1+2vipAKwsXMfeT/Zn7yf751zIflvQaW3Z9ZwH2PXVIu44/mY+meaKw2z8S3e49MTehIynttqu/7dvt47/v+Z9APh40p/c8ZTesVVRS4CSl9Ks/G9nbM8Rf5jMrHlvdnuc3V6h/eUvf+HAAw/k2GOPpbCwEJ/Ph8/no7CwkGOPPZYDDzyQm2++udsn/i4iWRaSaeOEfF1iYUhnhE3WimIarlUlne4UJJ+Pl7BthGGCmamvsqUgkmRXBDgCDBN1cyuBmpjrFibc7GGy4SAbAtujYPvcwpZmSMP2u4UpnYwbmW99O1ptK7RHM8JFQvg8OEUh7PICjL5l2OUF2JVFiKKIW1fFl7m+TP2XHBn3N8AVW0YmBsh2Oi1RWTe47Pi3LIKpKpmsaRJq3E1yIFsiF88DoMbMTE0WG9sjYflkPO0O3hY3M5hiODi6G6gvZ2reyKaDmnCzmEmWG0/jeCQ8bRb+urTrViZJbn0Yr4IV8uDoCpIt0NsMpEyxUSug4vg1sAVSOhPTZDrobWnUhOUmSgjqCG/G5S9vgdkmd9zrVkTurhVmZ/F1hMePSbR83gqzs7OI5UVM93A0B7PAIbTYgx1wcHSB2qagpAWBGoWPanujyTb37PIIV09/gj5HrUad1IK3KIVpKsiKjeNIpD6L0N7up8wfZVR5LVW9m7DSCnKHStJUcYTM8w2jeKppHKXeGGf1eYdj+s+nPeYlbnkYHtzMIaWLqPS00yvYRrEnji6738ltho+Te81hQmkNlpB5bsUuNNZH0HwmSsTE509jC5nN7WEKfEksW6a5Lcjy2nI0zcZblKKwKAZtOlqTRrgiCn0TpPqkaU34WGWGURBc3+sFHh/xANNCnzIisJGyYAwJcAosLEMhXuUQKEoi2RJqu4LWISEU8PaOEvak2NwRRqRlggVJSoJxRhdsZGzRerw+A9uRSVkqCdtDQE5zfs9Z/Kbfi/wkuIIzes5m/4IlFOluGYGmZJDe4VZ69mkiVBGlLemlTI/yVutgXmsZwZMbx+JTTIr8SVrTfmKmhypvC0Wa61p2cL8lTKlYQUUwyvDwZp5YNoZNqQJCahpJEhiOwuZEGF22iVs6PtUk5EkzoLwJScrHwGyTNSuoOsNmUr8wvmPG5jY/PnfeNsVMltY+XWuZfL62ydt/+x2f9TiQI/4weZvHHzvzzxRZC0j/sbPExPlvxru0uatpa7e/rAtZls92/znhiu7XLvkqFJ2+GIBX57oxPpOk5zmp5m9s+LuSs0pd2/Y2AEPrp3PcAbfyybQWRk7urDHzeeEVGN0paKL6UV329Vt6NK1lTdy0z8F0l32eeib3+pHiNxiiXEXgH+8BsPKjVwBIT6wC6JJooKPIlSHnzv8la15dwb5jp3T7nN2OgfF4PNx9993ceOONfPzxx9TXu/mlKyoqGDt2LOFwuNsn/a4iJAnJMLGKg8geHdJGrrhj1p4ihOUu1smkTM4u8MG1aqTTOcGTTccrQWfBSEe4x2aC5oXlxsMojQJf2iTVI4QVVFBjrpXBUSVkR7gLcse1zmhRE6UujtzUmsmYpbgpj30eRMCLFfKAIuGocs7VSnJACmpIlmvu1FoSSIkUIpGxLElSRs4qiFTaLfAod2YgE7aDlLXSZK/bsdzsbNkEAJbtBtc7bmpjJWW7VhfbwfbryKaNZAkcj0CoMkZAxvaC6lXcdNCShKO48StazEZvtzBDWvYTxNFl14KiyLlAfDlt4W0Q2F7VTa0sCayg5hYZVSWUpHttSsp201OnTFBl14Us42KG5YAq42juE1Dh05FjCnSmYs/zHSIrROYvSne77edZ9J9N3T7fyOk9u932x0I+xfKXo7cqWH1sEAp6s4yjgrdFwtEFvkaB8VaEjT0KeVMeRlBJ8ZPiVTgMZOmmChTFwbZlnJiGJyqRNBU2x8OU+2O5ivVKRZLhJXWU6jGWdVRQ3xbCdmTe3dAPr25SFE6wORmmPhXCrxp0GF52K1qPKRSKtTglWoy57X1osYO8tn4IbS2B/2fvvMPkKuv2/3lOnT7bd9MbCSlA6BJ66CBdQRAVFEF5laJiRxSwIfiqYMeC/CwovBKwUEOQFnoJJKT3bLbv7PRTn98fz5RdkkDCixJ9c1/XXDtz2pxzZs/Mc5/v975vhCYRukq9b2zI0xIt0FVIqjDIgQbK/VFEzCeeLOP7OkEgGNjQQLRPw02HeL7OHmM6WbRxDMWizYcf/TDt7UO8Z/yLfDi9iIEQTBHQZBfp0RLoAwbCF/htHp6no5cFqVWqSt91mOTUict4oW8cjmtgNThYho8fanQ7KcZHB1TbmmeSjpTJBzbl0GS528HekXWM1h26A4vFzmgSuoMbGLTFcnREchzQsI57Nu3JwMIOFrWMYVlfG9m+OEbMpzcXJ2Z7jEkOUfAtOowhdCSvDo0mrru8lu1gfaaB1zZ1EJQNorrSxJR9k7JvknMsegtxDhm1hv3T64hpDi/mx7M6Fnvzf5r/o/jFxQ9z/IF6TXKxaf+Ld3gbXz7mJ3zjIWg/6RQefHAxh3/rC7BZtZD/V+ZF1jJ5m+t+M78PtwM3zY1z/v7KjezXFxlYrN7q8o8cuT/fuuJprvv4E9vcprZgPDlrbw74PnDikQAUmuvfly//TulrYjft9obH9am2IczukYGej8lTsdt+w5ePOZ9vPHQJ+0+4nl80DDIKRSK8cx/h3D/Auz/238zrOpw7z5/HqUsvf8P3GY6Nq57jAHPLPJs3wsPvPRO4jdK9v4BheS8AX+y9mv9GaZXWTp7KhF+cxcef/y4LL/8u1tPrOLSxyPfOV85qnddvfwVmh3NgUqkURx111I6u9u8BTasEVYbISqihsExVSQE1cPcC5bYFqvVquDjfrwzsTUO1kYWB0pNUqy7VbVRRJTW6rkTj/RkirkeYjCkb5Iotc2gpImINeuhlH713SJGraluaZSIjNn5znCBiYORdJfBPR5AqFxLdCdTzQBLaOm5rHKklsPoKaAM5ZKlU2y2VTq/VrZV1HWEMa5kLKuRNaLXjko6r2tW8EN2V9YqUgNAyCE2NIKpjFFSlg1CZDZgFieaBH9Uq5IVKRQWVRSPBj6mqju5KRBiilzwV3iklouxjFBy0mIWQNk6DSWAJrHyA7oS4aQstkMpuOqdsQKVlKEIoAT9EKzhI2yRsjeBjIAIbrV/b1UL2Brjxpl/9yyswr8e+e9lvSGK2Rl52hLi8fp1dRGYXdgTeWIdkM5TaTZJrITcJIr2S0AKjLIl1+zy2djJLG9roz8ZxixbSV45kY1sy9OXjlKXAmeHR0lCgdyBFT3+KqaN7mDSmj32bNjDKGuKV/BgGy1EKjkXM8nAcE0MPGZPK8skx81nijCGplXm5MI5RVob1TjOakBRDi7Jv8uNFR+CVTIQeghQII6QhXqItliNtlUmYDovcUSQjDkXLoyFWonsoydyJK/BCnQ1tDSyLdhBdbRO8lmS5JpnQNsChrav4R/dUNnQ3cnuwHw/FZnBY60pyQQRNSBK2S7GgAs2aOzK4vk7Bj2MPhRRG6YiGEk9snkxzrICuh4xrzLBv4wYCNJqMAq/kxlBwTSwjYGqql4Tu0GEOMdXspTeIsyyMUAhtFpfG4ocaU5M9OKFBKbB4uGd3uvrSWBKW9HQgJZhxD00PcRwT1zFpjhUYKke4s2c/Tmx5laNbljLgxxlwY4ShxgET1qEJSWchTdx02K95PeuKTXQPjSJqu/Q4STJelCmxPl7sHavybHZhS0yexkcv17npL4/w3MLXOPyhS/jGQ5ew6EvPbHOV4UGU6Rs+xLi/L+V+I8vnjlMmPmd963bW/eBDNPa08OnYOk4ufYHVMz/BG30Cq+c9zDVfV5qPwbY+PnxLC7/7IVsM/p/peJRvnP19rrv2vzmw63DsUVfy89NCLv6TEq2Hc9ejLVAVhqR7Z6260TVwKWN/OtJKeXvx8fYkk5ecxepV85i85CyOP/V/eLRnJt946BIenTTA/lRcyCadiXfQIwD8aZ8f8KcmCM6fh/ONv8DWHadHwH3XBKhkbN55/ryag9uKK26D96sOq788NYdxe36SbdVJoid+FJ55/1bn2Y9vALV7LLz8uxy1/DUeZySxX9N+L7ClWdjWsEMjtL6+Pr7zne9wxhlnMGfOHObMmcMZZ5zBDTfcQG/vf0BKU4WY6FUtTCUvpe6ypakqRJWMVMiL9Px6VaKqC6m2Yg3XkVS3U2lPE4aBGFbBEEIgCiX0gSzWhn5iK/qJrxgg/loPicU9WGt60Df2KsOAIFTrahoyFsHrSBJaOmbWUVUGVMXCj+voFRc1lUwv0YseetFDSKkqPmObEYm42q/qo3qMpqH2u3p8VbtkUZ1WsRuu5Kbo5bp43o/r+AkTp9kmtJStszRUexgCooPKGtrKV6o8GoQG+BENL2XgJQz8qIYIlGhfifpDtEyhJub3GyKEsQrZ9FTPudTBSemUmg2CqKbIm1HJmbFN/KSlngtU1o4Q4IdENxeVtbKh1UnqLmyB7bFR/ldhuKbl9Y/X462Ql7dz/X8l/tltZLvw5pBlnfxAjNCWmAVIrBPYuRCnQVBs1RiaYjJ9VA/ZUoQw0Eg2FLFTDqbt0xQp0J7KYUdcEokyQkgs2yMsGfQX49i6z7JcO4/2T6WzkMbUQiKm+s3Ze9xGkhEHDcmt3Yfyx/X78XJhHM/3jePOTfvydO9E5q3ei4e6prNozVhlI+xoyJKBLOskEmUsPaCvlKCzkKa3lGB8Q4ak5ZCMOLRG83iu+n5cn29kTGyIz7/rPvY+4TXc1gB3aYo1nS00GgVOH/MSdx32E86b9By6pqyUS4GJrfl0xLN46ZDQgoFsjKGhGLEu5VBpD0rosWmOFdiYacD3dXZL9mFqAbOiG9nN7uZDbU+wf/sGIobPgyum85sX5/DbroPY5KfQRMhzxcnc3vMuXst20OsmiOkuiwbGsDLbwobBBgC8pEQIyUmTlnDa7ouY2dHF6OYhxrcNEEiNQtkiovt0e2mKoUWI4MCGNZw+eRF7JDuxNZ8hJ0KjVWLfxDr6y3GckknM8jBESF85wfOZ8Ugp0AbMd+pfcafGD79zBBt+ofONZ58G6kL9vb6prLle2uOhEcuPCe9i0TqfIy6+js03fIxjZy3l3PPX8+UD3gWAeedIa+UqPnPujzjukfkMGHuz/+4TWbJ041aXA3jxgm23yR5/4LE8e/8nea193hbzhpOXX31TJdrf89+fA+rJ9d/9wycYuupjHHjJL4kd+sbVlyoO+NJ1nHHdkRzwpeuIneLxjS/O5CSUE9t5R6fpHntlTQNz5/lb7lfVPW1HdDBQbzOb+v0P1aadctBC9nJ/uEPbqaLaQnaA6W3THEG/a+FWp28N201gnn32WaZNm8ZNN91EOp3m8MMP5/DDDyedTnPTTTcxffp0nnvuue1+450RoWWosETPR0YrXH04EamK2auVkwpEtNInqYl6IOJwaAIRiVTarxShEdUgSduqi8aFUHf9/QBcD5ErIAolKJWVtW81Q6b2XjpEbLzmOMKXGEMOWlG5VUhTx4+pVivNC9CKXi0XBVTOil7y0Z0AL2HitzeoykvtZNRDKlWlRdSNDKAehlkN5wQIK+TCCQmiKrPFi+sURukUOgzKzSZu0qy8P8pNTKhqTGCC7oHhSLyEspQOIsqZTFbaypSddIgoOVjdOTQ3ILR1vHSEMGISWroK+ZSgexIRgjWkwkAVaVLZM0beU7kztqGE/YYGRv0Yg2jF6GBXDswbYmeowvyr8XaRmCu+v/U8gl34z0F8lUl0tYU0JMkNSquX2U2nMNHHaYTiKJVNEoaCSNSlMVaiJVXANAPWZpoo+4b6GgIsPaAlWSDSUCZXtFk/2Mi6wUbKgUHcVHqT3p4UmXyURRvH0J+LEzE88r6NLiQJ3WF2cyfT0j3ETJfWZJ6hkvrd8gsmSBCOBmbIuycsZk7LGsYnBxFCMliOMiaWwdIDoobHi+vHkUoW6Sol0bWQpFlms9eAJiR7zljPtIPXMmFUPz96+UheyI7nT5kDODn5Cl+beDfnNT9JQnfYXEox5ESxx+Y57MhXOHfG8zQ35RGB+t7WAonmCxKmQ8x2aW/IESJI6GU2us0sKo2jN0hRCkyCUKOlMUc8XWJNpomFhanMz83ixew4bN1nj1Qn7XaOVYVWpqT6OGnUq+zRsZlUskSQDJBS0O0kaTSKNFol9mjazIx0NxqSKS39zE5tYEWxjeWFdpbl23FCk31i6zA1nwazyNhkhrHRQV7ITyBTjBJPlnF8g2UDbQD0FBL0r2rC6t9V0d8aJi79EE8cU7+f/42HLuHLx/yERV96hpvff2PNiayKjesO5i89z/PdP3yCpy6cyWdXZTn2lfOZEsQw77yFyz79Eq98UWWirAsv5OxjPgOo0Mtpm+/k6v83BzHxSmJL/3ub+7TPrdPoP0ytN/SVM2h0JtS0L6vvX46QdUcv726XD9+ypUHDeZ88kKOf27Jt7YAvXQeAk13J1Anb57o17rvXjSARoKyZAT609ucAtcBLqJOm4fjDhw6q5cAMR3igCua88/x5rPrtPrXp+hcn1fJhnpm8dVL4VnHn+fMYKKcB+MVTLwDQdmYLdw38gIPufmy7t7PdV9Sll17KWWedxYYNG7j11lu5/vrruf7667n11ltZv349733ve7n00kt38DB2Lmhlt5YuLzUNEbHr1Qhdq7V7KWeyClmpJrZX9S01J7Jhg3tNV2GWpllvIdN11fplW0o7U7U0rhAbGSrb5mqgovQDRXpC1dYlNNXiFLSkCCI6WtlTug4pkbqOH1OtVEpzoiNtHT9h1eyGha/yZkJTBUg6LRGCtnRNt4Omq2OrVFlGwPPrRGa4mB8Qno85UEYvhRglFfQZ7Qux8pX5UuIl1DnTPIlZ8NHdEN1FBVcGgAQtoCbiFwFY2YBIbxlRLCsSkyti9OWRAoKohps28ZI6QSVHRvMlZiEksJTVtPBDpKGhZ8sglTmC1CvVIE216EldoDsBRt5T/wfDydku1FAV8f874d+pevJ2YGsEaVcV5l+L0AKzAMIXFNstAksQmiA89Rvgdngs7WynVLDxfZ31S9vZtLoFUw8Y7EvSuaaFwmAUXUhKnkFvNkEQCCzLJ2p5BKFGIDWa7SKaUNbDvmcQhhqBr5F1I6zqa6azp4Gn+ycyI7aZw9PLObX9ZfZs7GRCwyBm1EOL+IiET9vUPjpGD7K+1MSioTEs6WtnTW8zfb0pdCHZK72JPRo62XPsJk4d/yrj44PkXZvOUpp/dE+lt5TAEAER3UNKQeBrPL58N+5ZuwefWHkOH3jqo1y75lSWZEeRd21Gx4fYo2MzpzWrAUzJNZGGoDBKo3cfpRV6YdUEMtkYUcPj/mUz+NPa/ZjfszvFwGKc2c+0eA8d8SyakGhCMtCV5ndLDuDFzDjWZRuZEuvl9IbnOSCxmumJLqbEenFCk6ThkOlPoBU1itkIm4tp1pWbiOoegRQUAov2WJb2SA4nNHlu8zi6y0m6i0n6vATPFCazvNCBV8kweKBzOk90T8YPNUoli76NDfSvbqSvqAa6eklgbTuF4v80vvLCwxzykNI9VO2S7zfqJ2t4BebY/1fgfSu+AcCSNas44EvXsfHaDA/uqex5j192JH9re569vnkgEy/7H049+gxePOcLTAlUm9K6H3yIaz+4kGfv/yTHH3gsxz0yn2/m1aD94gPrd/5/89wlaMu+yEnXKgLy878qctDoTOC+971vRFCmnVJVlGrlBRQ5+d4Lk5m//9Y1NAAfuOB9b3pu5p+W2+Y8pYH5CWddfAJ/OW49AF99ciPfumT9Vpef9Z2Tt1qBWXLTCUA98HM4zNMsnuuL0njqGxvgLOxU1ayjZ97+hsvd9NW/MOuqW5nRfTrHvnQdjw/G+OXoK/ncV77GeaddwUG/XPKG678e201gXn75ZT71qU/VBdvDIITgU5/6FC+99NIOvfnOCFFNlveqrlvDUuuh7ihWzUqpCvhBEZpQ1v+GQeV5ZZAvhGoTq1ZfhmssqtOMSoXGNFXrWlWHAhVnrGFkwlTuZEYpqAzE1XaClEVhtImTUnkypRaLoSkxys0mflRHc3xFYqRKo9cCiVEKCGIWMlHpR6wSrSqhCUJ1zJqot5VV9xtlWFANttQzeeyeknJV8yVmzsfMhxjlEKOg9j+IaOhlZY8c2BpmKcQohEQGfZIbA4xiiJn3iXWWsQdczIyDNpiHagaN76tKzKDStejlECurSJUIqVgxh6riUvCVFsfQ8JpiiuRV9EDC9cEPEX6IcJQJgeb4KkNHDvtsd2EXKninqjDbu/wbLbeLxPzrIIUK8hU+lBsFTiMYBYhv1CmP9dAjAbquvgNLQxES63QaX9HJ9CRBgjWgfgvSUfUdF4aCaMSjIVqmNZ5nYtMAUcOj4FvEbJeGljwHTVrDSbu/SjJRosEqMaWln2lju1mzsZX7e2fS6yfp9tKsLzSRskr4nk7o6DQ25knbZZqjRZVYH+jk8lFS8TLTJ2xmwI1xXOoV3tf0NBeOfox9YmvpKqdoiJTIezYRw2P3dDeh1NiYa8APNaJxB+nqfGnGfTTaRQJfY2VnK0s2t+OFGrOTGziiaTmr3Tb+sm4PinmbzB4+wcFDMLpMGA/Uz1+okfcsRrUMYRk+XUNJ/rF5Nz6/7D3ctuRANuXTFB2LqOWBLuloytJfitE3mGRNsYWbNh/Lt5eewLpSMw92T+f/vXYgz3WNQx80MPOC6DKb9QvH8tj6KSzLtrE218zyTCsNZokTGl8hkBoTGgdJmA6jYmpgndZLmFrAxmIDs1KbaY0VCKXAMnxkKBAx9ZvT25Vm8PlWYpsFZmFXRX9r+NHzl/HlY35C99gr+fIxP2H/E67nufs+v9Vl9z9BuX0d76eY+gslWzj2lfP5/vybuOg7jbz4xVd5d89+DI67m/ufeZDffWsaKz7ayl0bs9z9jWuYcPlttW1NnD+G8/Y6ku//VmlXWpZERjiSAaz/3htXHqJLVfWiSmKq+N4L9crLBQ8eyuFfGbvFunf8+XnM07ZU5VyymxpbHX13kqPv3jKgEuDL31ID/ePO7uRj7/d5bN7/APCd6742wuGrmFD71+hMYK+Oq1jU9fUttjXzsvu2+h7vPv9UAPZvKW11/nDMGT3y+C468PdbLHPWjPO57JpTRkxb9+g3AWWyANSI7PZiuxv9Ozo6eOaZZ5g+ffpW5z/zzDO0t7fv0JvvdBBCZYmgKgVAzYWLUKsPaMNhX0RBAJpRX04TddthrVKdMQxEpaoihlda1LdzXRQPat3qPF2vhUsKXUOWy6rSU8l/kbaJH9MxsyHC9ZGaRhhXTNnKh4SGTqlJqGqSlEQyKuQRTUM4HsIT6JoKgQxsDSygI4nleshiSe2X0FQVqKK5qZGY4cdAiAxQehhftZnpYYhWKCNjqkUriBgIqX7UjZJyJ9P8EOEFCGmpO5WeOr+WpzJvNEftq1Z0EflipSqiIXSp9gcPvTuDZRt4KUtVdXyJUQgwij5+wkRUqmJayQdDw01bSFMjtCqua1IiPJ/QtEFTLW1arqzI4q4Wsq3i0o994N+yCrMzoko23q4Ayn9la9ouMvTGsLLgpwABbloQRCTsmScWcXh3xzoWrN+NYnecSI9BYEsCWxGc1BKT3JSAwIKO0YNMSvWzPt9IGGqMSmUpehYpq0yLVaDBLBLTXPZIdpI2iuiEBGj4HTrtVpaY7rCy2MaGZAOLV4yl4FnMaOhm/8Z1BFLjCaaQaC4yp2MdKaNEMbRYOtTOHg2d9OQT2IZPdz5BU3ORXj/FotI4Wow8+0bXcGzTEsaZ/dw/tCfrik2sLTSze7KbznwKCRSzEfAEDw7OoreUQNMlmh5iGAGtsQKv5MYSImix8mRzMYQGreMGyZdswn4LkfKVnaWQBKFG0TXJZ6PIQFDMRMHTMDM6rXO66QV6MwnwBBs2NoOroed1FvTPQtohwtN4qD+ByBnYfTplU6IZqjoW61Jta84eATPSXdiajyYkTUaB5wsTuXPpPjQ35Jmc6KOrnKLPTdBmZZkU7aXJLBBIrZK3I/GlRmtTjqjpsclK4w1EkAaq8rbrfthWoe19KvBn/nLcer5x9iU8x+f5ccM+HMpIEf/ZD1xGVaTwoSX38J2PSs6/BVZ94UL+9u1fsuqLRY5cdgWLgJsPUw5fd6w5BC58jjufeITcFQfw4We7RmzzlLb9uIzDALj9mM8g/KuAwdrI+Jf9NzKZo4jlL+O3t8OHJq/gXG4igwE7YNL16HUbYVjmZPibk+DS5ThnHgM3fZg9T0yy9M8j17lHe4RTwyP5Xk+avSv+MRdefgU/PPiDI5b7wsCZI9rHQJGmXw573XiqzeA9DuW9D2e/r93E8wddNmLeI8+aNI2bzxefTPD4URrB+9Zw9sfuQn/oTB64+0aOM1bwrj+dxgfO3nZw5nDcsg0RfxUf+poiVueddgUvfgd+sOdS5p7+FY7guu3afhXbTWCuvPJKLr74Yp5//nmOPvroGlnp7u5m/vz53HLLLf/2OTBbaFcq1RA1eN/6KlKqLBchKiGVYUXcjj5im7JSSZFIZQSgqQqMCMKa+5myQjFq+SOyVK6/j++DaSFsSzmGWRZhzMIoqnDI0DbrpCsEIx8QcyVuSiewwE0I3ISOUQzw4yYiZqhBfSV3RlRE9l7CQG9JoXd6yGoujNCUh73Q1GHJsE5uquepWpmqkBpZCKDsoBXLyIilSn3VClNYIW6mgTQ0jExZtXjpAuEFSFNHdwWi5CJc1c4lHbduJFAzD1D21uaabrQxLTjNqqfbzHtITWB35pFRUx1vGOJHLEJLI9AFmquqQ4Rq/6WpNDF62UfkCkjPhWBX8Nh/Av4Z7WOL5m16W13J3kp1pUp6dpS0LLp42q4sl38BdFcSAGFEUm6WWFnBcZNf49j0q7xYnIjrmES6DfQy+BFwGyRBBFKrJKVWDd0V9A/FGYzFyDk2LYkCGzINxG2XA9NraTGyWCKgQS+ioX4z5udmAdBuZel1k6wtTCBhOnxo2jN4UufPa2ezRHaw19gNlKVJ6OoYyZCsbxMimBbrohSYbCg1ko6WaYnmWZ9t5NkN49lcTJG2SsxtXs5SZzQvF8YRSXo0mkUey06htydFbqzNxPQAScOhMVJi+cKJLHh+FumxQ+w+upuUWVZCd99gvd/I1FQvLWYey/bwPR3P1ynlbHRX0NExiAS6B1JkixHKBQs75pGIOoQSLCNgsLudl5dMUG3HjgbREHzQyhpBIkB4AlHWkIZEZE2i3RpGEby4QAugMMnDzJvoDhSLNrbmk9AdVhVbGNDivNI/igltA+zVsIleN0FXIYVt+GwsNJC2SjRaJWYlNtFsp+iI5rA0n0ajyKpii9LW6BK/QacQi1Da/uD4/5O4Z965rHnl2zy38DXGPPfzEfM6Hj6NrOzlqPLhzPylqsLE5MHA72k7swUOhEl7TgAWceUlP+GEP93MHtdeyrZ9zOq44gP1xPjP7f0euiJP8ZvXybm/O2cqL044gV/P/jQfvuWymm7klpcEF+297RudL//uW+xfcSd7+HNPMnshHHjJL7dY7qvXvJf9/99neWTlw/xx8C6mfaYA31Pz1HEp/PIH34c/vm7lG27me6Q547ojVYXq1PXcfMvdXPqp07i5UkC6/uLxXHzyCn7YpPOXv/+FP/5hHgfdpKo4Y9Y2sU/re2jbJ8NzF19HBLgCON7/CRwJsDdHH5PlB/59/PaR0/B3O5g7frDlseYffQkqkp78jyaT+MS22+eGY5/Pwdf+/nnuyu65XcsPx3YTmE984hO0tLTwve99jx//+McElYqDruvst99+3HrrrZx99tk7vAM7FVwP7JiqxAiBqOhhRLUlbPjziqhfVBNiqhWJKnRR18ZQEe3bVa2LVq9eVAlORJUSpakjLQMtW1Lkxq/chUJTIn7HRUSjKvU+WXX3CgijFZ2HqbQdAKElsIYCiu0GkcEQK69apKQAEQr0UCINapUKzQnQNUGpPUqslELrzyCrhgVapcWtGsIpRF3rI6uaH6N+TNUQ0CBQRgSaVicwtepWPV+HIFDEzvMRZqWi5XpqvQqhE5qGHNaOh5SK2Fgm+qY+Im4DTlscp9nGynjIqKkqP36I1JSzmRQCvVRxJRMQJO2KLsdEGhrR1QOqRU3XqZHQXdjp8P5/qNL674/Ydo/wfzp2GQHs3HAaBYaAaEeexniJzu4GTml4kSXlsTzZr1pMvITETUtkkweaxC8aFAuGam/1wTQDhtzKjRktoJCN4EYMJts9rHVbyAcRbM0jrZfYL7KWgm+jiZCY5jIh2sdoO8O+sbW8yx6kK4C/mbNYt76F++w9mJrsASEx9JBZic1schpYXuxgZVYl2EcMj55ikpZYAUsPKHomrdE8B0RX0x/GCeIaa5xWXhoaS8k1aWzOk7Qc0maZldkWZjR0s3xSK8aaOJneBHHbJWWWKfkmZd+g5JqcNfp59ousZcOEJgbcGC92jkUISE0bZGpDL89tHkc4aBMMRjGBKYdupjufxAvUd3NgSxKrDUrtofpN63Dwe6LIZhfdUHk26XiJ7o2NJFZp6FWD0TJoLgg7JDfTRcsbWGbAumITfqixaMNYxrUNkLbLyjzAcGizcuhC0u8oJrIx10C/GWfFUCt+qHFkxwqW59tYGzTTV4rTPZDCLxmKXDU7BJEyu7Alkvt9n/2tGbyyCo68dYiX98wCb6ylGI6eP/eR/Hb99Y0/uYSrP/4yAD/8vMdt21hvOCafvmU0yFevGmnle/PtR5CaXRe9V1ElMeHc9Xz+gVZueJ3Z3HNnX1MjMaD0Ma9vObvmq3fCSjjy2f/hku0zJmPPnxYYYB6osHvu+soj7A/89mPj+fKf0rBs5PJXv3I9Z13+ST69+/W87+B9Od14gQf/6wqG1qpqycC9p/JA/gbmP3koAJfOvba27tdLq3lh9bs58Jq5fCb5Muy+7fwb4E3Jy9KP38n0nyp76ccHYxx6891w/p6svn851zx1C9exJcnbGnbIK/Z973sf73vf+/A8j76+PgBaWlowzf8Me0ARhoiyqwbHUVtls0CFhAT159qwWnDNTliivqlGVnGErqnqixDIiIXwKnf1hUBGbTUIN3WkpoEGXkOETUdYRLtSdDw+gDaQq7eaQYUwKAKguQF+VK9UL1QFQXN8NEAvBojQQndUHooWhCp7pSJUF4HSfWhSonkGmhtiDJXQfBs/HqUwJUUyX4SyA5W7ewR+3Y2tctzS9ZTwv6rXEULpYYZpg6Qf1M6ZGO5iVm21A9VeZxj1djrXqx23DBWRk2rBWlUIGartVOaJzf1E82X8liRhVIlZlaYJ3OYIwpfofqiycFB/NS8giBhK9N+Tg6FcnaDtwlbxr24fq5KVN5r3ThCZt7sK86/E/7YKs6t97M0hAsCAxniJwUKUvSZu4i+ZfXhlcDTd2SR+0YB4QKS1REdDFi/QGcjHKPpxpKGqw7s1ZMmUoliVVi5Z1nEDjUKoWoXHWgNMtzZTliZL3VHsHutis5tmn9happp9bPDTzBvcj1eivXw4vQgpBS1Pmrw6OJnFY0ah2wHtiRybnAZKgUXOtym4FqEUDA7FOXTyKk5uepkXixN4pGsqlubTH8bJBHHWO82sLTbTU0wiKm1e/aUYG4fS7NG6GUvzOWnqEp5MTqJ/MIHjq+FGwTWRUuB5OhPNXgrSwpMa42KDjNttkIJvk/GiLOodRb43jvCV+YGVESxZNB7hC6QtkXaAFlF9yZE+FRTqr4vRugR65hjofTrlDp9YxMEcMNAdCCyVNSZ11dKVesEmckIPvf1JdD1k7VCTsjzWA3pzCXxfIxUv82JmHFMTPYyPDhBIgSlCMuUompCYuk/KKrNXbD26COlylI1zXzZOaAtEl02QFITlXdb820Lbwmto+8z/bHP+/nNmsPAxGw6AJRdW9DGRR0ldP8QdK87iIn7JmhNOZQKLWLL79yke9WSlQrN9WD3v4a2SmCo+/GwcAZz/8kjnsg9NXsFtq1X71hmD3+H64z5XE/P/NQR2v4Vzz1/P/tsgJfafH2LmZXDHn78IwFqvxES6OfruJPHT9mM+OQhu5Mxt/Os03X46A9xM07j5PPCn0WAofdCXly3h5ltUu5fzjb/Ulr/joz+EwxzmBfAD/z56nl3Iw5HrFSmBGnkBSC1orT2/38hyWxNMWxzjlIO2eZpG4KIDf79FK1l1WpW8fGG3wzhO6+N7j3eqSlLkUbJs/2/5W7qiTNNk1KhRb2XVnRpSCKRZsQd2vbrWRYYjc0GqOvoqeYH6AN4wRmhkpJSV6oulKjq6rqyMNQ1pKNIhTZ1ih40X1wgscNoCAlvHWZkgUvYQjgtuWHMIk76PME2krqlcFQnC9XGTUcotlnL1KuvoZUVUzCFPDdotddeqKuJXoZ3gR3V0XSDSUYKYgfAlQUwjaE2jOy7SdSuEo2oqoNWPl2HnQhc1QiIMHekHiphUKk7S8+qmAFDXDclqOKambKWr5GW4lXG10jMsPFORGFkjMYQBslDEKJaQyThBc0J9pob6nMy8T2hqiECiy4o7W6VaZfXkEQNDyGCY+5i+6wfnzXDjTbuqAP+uqJKQHSUyu8jL9iGwQUahqz9NOGgxkCjihjpx0yUINOJNJcJQkIiqbBU3MJBApxXFTDlEIx59+TimEZC2yxSdFLWCPyEnJRZjImnXLUI89rELeDKkNxAUpUFOmhwRLRLyIj/vPJzJVi/dmxqJjBcEjS46EDg6K3taGB8f5OW+0Xi+zpSmPmKGy1O5iSzqHcXMRCczop2sTCphe6+fQiPECQ0ybpSGSImhUgRDD9CFZFpzL6MiWTYUG9k90c0Ro1ZSaLNZnWtmTDTDSq2FomNiGCqrZVFuDIs2j6YtlSdiePQW4hRKypkNAEO11hXHB6BJRKgjjRA95hNaIWyKEOmTBLYAKQhMiYiqVmR7s0GxwUabnCdrx9EdgTUokBqUWyHSAxHDZ/aEjSztaad3cxo75XDujOcZZWb4weKj6O1Ko42SJAyHFjtP3rPZXEjRHC1yUNMaJtm9rHFaWVnu4OXMWBKmw0A5ThhoCE0SmqDndUR5V0V/a/jz8y+RnTuXhT84ge9uyI+YN9yB7MsHvIvE2nczfr5y0ip+8kmeSqY56tI7gAsBuGluHEZ/GbiRoniSgQ1fgOi3eTO8nrz8+oACqc9HtlhOe6bePhY8qaZVW8jufumHaMDU5Z8GbuRkDY567SIuGVZ9qaIr8hRtc0bXXk+PTmNpaTlHlQ/nTPtuht50jxU+8MzX+O2B8wEl6P9Fw9mkHvoWN99yNye23MnDH1PubM43/sKMG+5i0/4Xk51bz2w8wPRqz6/XlQvbwsds5hzmkJ3bS2pBa+Vvig7qzmsvP97J8DP29cw/INEGJ9anbU0H8/ppf5v6EgCvLFek5VPTzmH9DR98/WrbxHa7kPX09Ix4/dJLL3H++edzyCGH8N73vpdHHnlku990p4WpQhqlbahKzPC0+eF35M2Kc0TV/rgaTFmpRIlq8KMm6vkuQajIEajBvGUSxCyKY2L0z4pS6NDJjRf0z/GYOKWb9ErQi75qudK0YQGTouYEpxddRUxMDalrGAUfzZeUmg28pCJKIlBOY8omWKtkwWi1oko1LyawNby0hZfQ0SrLZ6fEIVKxz3Ocig20Xicvmo6wzFrQpRBCLWOayrhA19Txm6bS+ww7hhp5qbTe1XJyKpUbKeVIlzat0npWdXaDeltb5ZwO1xuJXAFj8yBGTxZjqITuBJRbLLykgR838KMGCNCdALMnhxgY9pUhw4qe6XX20btQw5WXfeRfkgHzRtWXt7Lc243/BHvmRRdPqz22Z7ld2D64zSFuY0g4YGE0lzm6YxlNtnI5GtuUYUx6CNv0yeSiDDlRQpT7l3A1vKxNzHbxAp2Sa2JpATHbRYv64GrcuulgVnjNPF0ex1DoEhUWOoKBEJJayB6WYKqhBif72wN8e8I8ev0kkyd1M/rQjczabRNzp6xg1qRO4lGH1blmsoUIbYk8Y2MZjmpcypjmIfZv34ApApr1PH6oYYqADmMITxr0uQmyTkS1hDkmQ7kYph7QXUzy97UzcUOdJ/smY2s+9746i558gjWFZtrieVoSBeaMWcuS/CiW97diGgHr1rayqquVgQ0NOEMRkvEye+6+gYP3Wcb5Rz7Ku/ZaSaKtgDGqiJlyiUQ8onGHwoSAoWkqV8csQGAL9C4LPxES7Rb4qxM4OZvI+Bza5DzF0SHlthCnOaAwVjJYjNJolTCNgGRLAdvyuX/TDOZ17c2sjs2ctvdLNERKZNwotuYzNpZhUmqA/RrXE9NU7tqc+Ap2j2wmRPBKzyj68qrNrCldQG8tEzT6aN6uqv7WcCy3MnFyNwCf+XNii/kPrP7bVtc7YB/ldPXXH47hrz8cw696lDBj/fQbOeCy/QDo/vyDb2mfvteTpmXZwbQsO5i+3Z+kb/cnt1jmo4tHamRveUl9vhd21rXgH/r0Y/xkpRrTTLrvHkA5ljX2tNSWGW6/vHrmHay8q67/OfruJDf3HTfiff76oCIaD99cz5C5s9dkr+v255QHlNbl4pNXMO6g2cz33sN87z0AzN6/oUZefvLoSm6fO3fEdq8/rpfWxX8H4C8p5VBwv5Fl4WN2LTSzitmHjh7x+qqGI3gh38Mp2Zdr0+zHN2A/voE3wiv3jqy23DXwA3592PaHbW73LeZRo0axefNm2traePLJJznyyCM5+OCDOeSQQ3jppZc49thjmT9/PocfvmNJnzsVKnkgIqiI190KO5Whss+qIgzUNNerWSYLy1Q6jspAWuh6fZBehawESQqBtHXcJovefTTcphA9r1rIPrT/Ql7LdRB2BRiVzJJa+1gQjKg4aENFwrFxRVQ0gQhCrKynrIuLPsZgSTlsJSMQSPRipT2usr0wYhJGDRX+CEgNjEKgbJWLIW5Sw29NYZQdlUvjB7X2KmFZimAEmiI5QYiMWITpWIXcVCo8ZR/h+YiyUxfwU20rq+yL79crV7JyzkOpXNeqMAxFuqqtepVl0Khn0mh67bnUdCiowYLI6ViDFmbEqrTymYhaZcurZO4E9YpO1Qp7Vw7MVnHpxz7wL3mft4uU7HX6mH8q0djRVrJzTt828bt93jtb0dpaVWYXaXlriG3QKE2XxDbqHHnQUt4VX8WC7mms72wmknCY3NJPMuKQL0RqOovJDS69sTSioKMLiVM2icUcmu0ChhZg6QHjEoP8V/sCJptlHi6OZSDUaat8VcWEJCIEGhqNurLED4RkCJcAjfZojsnxPlYWWpkW72Lv5HoW6LszOjrEmNgQiwc66HMSuDGjpjOJaS6ZIMaURB8tZo5MEMOTOgXfYqAQo1RUFsebe9OMTwzSYuW5c/1+vFQch2V7RA0P3QqxjIBN+TQHtK6nFFhMivaxptRCOlqm7Bt4TSUaE0UmTRyg3c5yfPoVmvUCa70WIppLuznEXslNHJ98ha4gxe+65zDgxNhYKdTHbI/iEy2ICOguhL7Aj0OkX1CI63gxg7bGHH2AMxhBi/v4SeXs5kn1N2a4rOhvpS+ToLvQiHA0cjM2ccOUO9GRfL/7GFYMtTI2keHJvsloSEXa8klcXye7OQlmiLBCEqkSUgrCQNDekaFv3Ttzk2Vnx68PO5zU6iQpP8VxZ3fCvJEk5rcHfo3VyQH1YiaMR+kr9vzue3ho9Jdh+vu5cY+7WfLx62D0lxm/9ErunP0Iz/xyf3j5rTmJfqptiCN+8DQALaerVjTBVcxuP4kXUbkp4YE31YIe3whVW+QqwrnrManbJ0+Pjvx+PeSyj9C9wQFn69u7/rje2t/dfwYL5iU4tflapvxiBss+dgU/v+VuLr3oNG6+5W5+/tep2F8+BfgL6etmcdb7P8ns8744ogrzmeTL3HLPMWRzvdwI/OIjZ3PPvG9xz4DNr/adi3bKbaSZBTdvfX/O3HhH7XmV+AA4h45703MD8JG2y/kUyt75jKbLuf77i2G/7Vp1+wmMHNYu9LWvfY0PfvCD/PKXdaHNFVdcwTXXXMP8+fO3d5M7JYQfIgqluv5FhnWBflWzYdtbtjdVSUYV1eqBZdbboSwTaRmElgqVLDfouONdxo/uxws1JqUGWJZvZ/Hfd2dcV05ZDDvDWtk0ZWlcHaSLQIVFBhEdUZRK/xJKIgUPreDU9DxSEyppvnJBCEDqOlLX8BIGUkOJ+N36MYhQYpZCnNYIRo+lBvsaSC+sVZowdGQiRhizKY+K4cVVpUp3QhXaZgiMskTqYBRDIr1l9H6l6RFQz9apvmdVL1Q93uFGAb5fMwVQAntGur6FcqRP5XAdSyiRxSK4bqUKpCNKDnhezaYaqBMhw9hVgdkO/LPax94KcfnfaGD+2QSnijciLltb5p0kM7tIy9sAAfH1OlKD/ZNrCBAMlSLIso5ISgqeRV8ujl8y6MvHGR8fJEQQbyhRkFECKQhDQaEQ4ZX+UZQ9g5jlcUBqHdkwQiBL7Gl3ktYCQiS2MBlrRPBkQFG6JLDxCVjuSUYbgjMTr9GgFxnwEzxbnsCLjGdmcjNF32J9oYkDG9fS6yTIuFFWlduYmBqgu5TiJTGeveIb2Ce2jga9yCq3DSc0GXKi6FpIOlUkW7Zpbc6xNtfEUr8NHI1AQjxdIGJ47D9xHRtzDXQPpJhfnMZpk19hXbmJDYUGpqV7WJ1rYWpDLwenV9Fq5FjnttDpNxKisdptpd0YottLs6rYwppSC93lJAc1rmFm2yY2tDfzWnEUK7Kt9I8KoMFDuhp6xiAwId4pEb6O1xNn01iLeEuR+Oghdm/qJe/bxAyXvGfTFs2xb2o9hzevIKa5eFLn6aFJPL1+IjfGjuPrY/7Olzru56vhSTyxcgqhpzNtQheZcpR8ySYZK6OVNKzNBl5SEm8dIpOPERZMRIskHPfmeRr/V7HwMZvs3F7eizdi+gOr/8ZnHp3LuecrArN2dTufrBCYXx1lA6raUQ1jBPiFNZcDL6zYiF22nSPh7cTL3X+HCTdtdd5v/3Qa//jmvK3OmzvnMpwzlzD4ixlbzFtykGqT0xbAJzZM5LG/f42r/vASf/5/39/qtro3GBRGeTyeuZb2/z6CQz6hxPYdTYphXHzyiq2u97df38PGh3/I11G/dR87qoeTnyvyiIRLDlcind5ZJ3Ehf6it8+Cev+H4rW6tjj+PVZWg4URmW/hA/1H8tvnh2utTsi+zZ8+h/Lb778xuPwmApft9G7jgTbcFO9BCNhyvvvoqF1100YhpF110EYsWLXorm9tpIIVAlBxkuWpVYtQ1G2JY25IM66REaLWWrqpYv0ZeqiRH05CGjjR1gqhJ18FJut5lUxitMXVcN+9qXcseTZuJ6h4vbRpDtEfWiIvURK1lSvoVEb1hqPfyA8ysS2hqtRYqIUEruuD5SNNARm2VhRJK0AXS1JC6DpUgy2orGSHoTogIwY+ptrJQF4SmIKyGW+o6wrZrWpWgNU1uVjOlsXH8mIaZD4n0e9j9LpEBn8hggOZLkODFNYpjohSnthA2JOutZNXWu1DWSXKl/Q6hIWxrZCXEtkcaJWhCza9Oq7axaZXt6sPWDQJlOjCUr5OVCmrtbdUcIMNARLfsgd0FhZ1J+7I95GVbFZK3S4T/RgTonNM/sl3kZWvr7cK/L8y8JN4ZUpjsMeAnKISqLQwjREpB3rFxHROz12RofZoWO0/aLKn7Or4gYbmkU0WiMYcD29bznkkvc86E5zgjuZiUVkYXggmGIC40itLFFDqBDHGkRzEMcKTPyy6MNXzSmsU6P8qi4jg8qeNLjadWTmKUmSEINRatG4MjDTQkmXKUmOYyNd6DG+qUApMAjf4gwQvFiax3mllZaiPvWYxryNCRzDEqmSMINUqeybhkBqu5zLRJXTRES2zMNZD3bE4Z8wp+zsR/LcXjPVPod+IsWzuKzaU0ccMl60Z5eGA684dmsqzYzj09s1nltlEMbPaObGRucgn/1b6AT7c/yPs7nsaTOj9ZfyTdXooPNT/BJ8YvYO+9V9PQUEBYIWZOI9YjsbMhqfUB9iDEV5sUhiJMberj3S2L2Cu9if5ynGW9bbzYNZY7N+zLXzbvxeOZ3djkNBJKjdZ0Hj/U+WN2Nr2hzdfH/J3vHnQH+01dy4yGLvZu3sTZ015gYnqAMKJ+Q0NLkrBcdm/r4cwDnuP63f+H98989p3+l9wpMfaxycw5zGHazC0H3lccfRnnnr+e4ycKDvjSdXzsKCVluOzWP7Nx/7vY7zuq9WzmZfdx+9y5nPPQd/mou2NhiFvDpS0PbDFNGvUQyEeO3H+L+cMzUj53zcYR8xYsvAn7zw8x+uW76Rq4FIBx591G4qzjmPnUMSPayADO3gp5Sd83i4dnbBms+UT/1QB0DVxaq7psC/PWfJmXxrfx4EsX0fDgaVza8gBG5uO859qJI5brnXUS556/fpvbeasYTl5AVWxeuTfHtBc6AVj12312qIVshwhMLpcjm80SiUSwbXvEvEgkQrFY3Maa/x4Qnq8CHKsi8qrjVSjrIZav18QM02FUwyrrG6wQG10bRmogNzlgn1OW0HLcJhojRfxQY3WuBV9q7D1mE6VWUbMPFp6vwiOlRFQqMNJRfbd4Hkb3EEJCENGVNbAuCG0TbAtpKWtg4foILySIKMOAMGoQ2LqyGA4loSlAQGBraEGImffRHdVGJgIIE1Y9qwbA0AmakwxNTRAaqtIiBTVBPLpAcwLMnIfd5xDrcoh1uUR6VUWoODGFO6EFGY+qtrJqhk4QbNF2J32/fu4NQ1VFqi1eVXIpw2FVG60SQllpeYN6i1qFzEjXQ3qeWk7X1TpSqoydMW3408ZQnD2O7H7/ng5T/2z8J4VYLpq36Z9affnfkpC3Sn524Z1HYSx4CUGspchfNu/J/MxMQimINZbwfY3+viR0RtAcgTQlab1EQneY0tKPOWiweShFwnYplSxszSMf2DihyTo/RkFamAhsoarhQ2FAMXTRhUZCizDKSDAQunT6jTxZbiUXuvSHcdrNLBOsPoJQIxJ36fOT2IZPJOZSDk3GxjLkyjavZEezsdxI1omQ82z+MTCNRfmx5AObgm/TWUwTSsFrGztwAoOsaxOEAksP6C/HmT1mE/s1rSdplhnIx8i7NhOsPqLNJbyxLhs6m3hhzXhEUacrn6SvFMfSfVrsAnHd4eW+MawZbObB3pm8mBnHs6WJzM/N4sniVNb5jTTpeT7Q8AwXjnuMiOaxyBnHOGOA8fFB8oUIWq+F2xhSbhb4EUFgCuJdAZF+icgZqhrkpRnw4phaQFsqj6kHGFpI11CSx5dN5a6Vs3mlZxSb+9IsXLwbP33xcL6y+gx+0Hs45dDksjEPcXByBaPtDBtLjSztayPWXmDi0Wv5yNxH+MLEv3Ns6xJszefPg/vzhyUHvMP/kTsn/qxvHOF4VcX7b6i3Kv/s4Tbu+OgP+dnDbSOWmb1/AwA9Hz+dZ7567tu2T6/XnQCkr7urJuBfN3g4v5n96e3a1synjgHg1mMfB2D0y3Wi02jVj3HvZ+vPj747yR9+Uyc1Q/5l/OIjW8aUvHzOW2vnvujMr3PMK3uwdnU7hzYW6f7ekq1+BjuCQ876Ei1/W7pdy0ZP/CjREz864nUVe07s2doqW8UO2SxNm6baCqSUPPfcc+yzzz61eYsXL2b06NHbWvXfAwMZEKYiJa/Xr1QGxSMglVZGVnNPoN7mVG11quaeVCoE0tSIdepoIuTKSfejI5mfncnGgQZ6cgmyfXHaNsp6sCXUyIMMw3pgZoAalJcdrIEyblOE0NRBA72SBwOKVAg/VKTCDRChxG2wFdGxNEJDEFiCUouBWQixcgF2Vx496xKkLEotFqGt1/NYDJ2wIUFpVBypQaADEgJLYJRUlky10iPKAXrOQVStonWBGUpKHRGGdouS1gXW2j5F+qr5MlDJfxGKuFVb8KAWlimlROhW3U65SpykBBnUQzaDynaqeqRqe5plQqiplrUgRFgmQUcjxbFxcmMN7CFF3GRxZDl7F/75+GeK8avVln+V8H4X8fi/DWvmEGfssZB1pWYeu2822U2jGZoKQcqnoSNHZjCCNCWhDdgB1VSsBquI1xDQFHGY0diFJiRR3aPbSXFs6lW6/Abu7t+bqWP+TqPQadRjpGRIiCSQIXqlWyAiBA8PzeD8ZpXZMNvq4+GhmYw2BxmfHMAJdFaXWrA0n2mtvTihwYAboyOZY9/0BtJGkVYrR6+rrklb89k7vo7FpbFoImRKopdF1hj68nFs02diwwBzmlYz5MdYX2qkzcqyWm8hCDTWbWrmq4On4PVG0cqCIBZCLEDGAsanBjG0kCarqFzNYkUMLcSwXfZvXAegXL4KreQ9mxes8fhSww81jmtZwpAf5W+bZvHX2F6MjWWYObqLRd4YDMunaEQJDZ0gIrGyGk6DRJqSvmyc+7tn0pVTx1YqmwSdMQYjIWgQ3WDgJS2CCUV0PSQ0Q2QoWN3dwvKVo7jL3od0Y4EZLd3MTm3EkxqeZ9DRkOXCMY9TliZJrcwB0dWclnBIajr77fPadjbG/N/CgQe7dOylRPILhulfPnzbsYBqGwM47B8NPHZEZsS6qo1M4ba2N9ejbC8+svBbrHrdtKGvnIE2/o4tcmC2B9qC8Xxkwfv51Td/z3mfPLCmgUleWk+peeFz30SrFI9+uWcMcLDfczKbHoT5wY0crV/JX0OoNmpN+f04unZgH0obPwGjrwTgfStOZ373VRx7PFxw71KOde8jO3cuF079IL9c8f+Yt+bLMPnNz+fyWapoMW1xjCfu+Ca3X7KeP31wJk8cdzWHNF+7zfUuuHcpP+HxEcTliTu+CRNe5Qj9KuZt5zFtN4FZsGBkWe71Nspr1qzh4osv3t7N7byotn0NJyRVHUyVNEB9/vBEehjRylTdlgglEpCaRrnJwktKnnxiJgP7xzm741kuan6cPjfBP56dSWqVju6FlTDLSmWhajNcJUtiWEsZYPRmKbcrC2WjFBIamtKzSIlWyT0BVQkSFRIWmhpSAy8mCCyw8hI3oWFnfOUYFgQQolrAhvE2aVsUxyUJLYE9FKJ5IdIQGCWB7oYEMQOpCTRPaVekqYMXEFo6QUzdLTQLAYElyI+xSedT6N0ZVVWqal50Tf01jZFWzZXzK4RecyurkTlQhEfX65qlantZGNQJqNAU8dFUKx5JG2dsA06jiRvXVOWpLNF8icy/jrDuwi5sJ95u8nLO6R95xwX+u7Bj8F5u4MlRkxkoxbCGILXeR3cNhqYaFFI2SBSBCSCWKtPnJfBDnc3FNKllBt1aI2HzZnKOxfJ8G3nPxmoJ6A8SZNwYubDeHusTEEiJKVROV4gkqVlc3f4Iy7woZekSEYINpUaOT79Ck1UkV4qwLt/E9HQ3Lw+M4d6VM/FKJkIP6col2b9jA01Wge5yklAKxscHAWgx8tjCZ1WxlXW9jSAFsUaXKYk+IsInaQ1wYHwVD2T2pLuYxDAC4s2qLdsb41NckwJTYtg+6WSJlzeMxTADhJDEIy695QQfmvAUntTxpM7yYgeBFGTdCA1WiQEnRm8hgevrNNsT6LCzRAz1W/jYxskkIg6j2jLkyzalZoFbjhIkQqShExoSIgF7j9lEZz5Nqax+kyIRj4IAM6s0S+k1IblxGt4kycET1pDzbCbF+1mVb2HVQAt+oJHpTrKwL8FCdypmg8O0UT2cO+oZCqFFLozSGyRZ67byQnYCRzQs5f7BKcDL7MIbo/8QBz57Rs2Z7GNH9eBv+Az84y988kcLRywbkwdTFIr8/PATc7aY/1ah2sW2nQtTz4PZPtIUzl2/RZsYwPrvalw9cwm3njgNnoILHlnKmXsv4NMz1Fh66Gt/5fRD5nCmbQE3cbIG51fWzf9oMpzDCKJQFe8Pf6997m/iqWHvOaVLtWjtm2jjC/m/QeJMvv3Tr8AfH+ejv/oTH/vqBi645kaO1s9mflB3VJt76VoW3Dyx9npdeCEXFeCeBx7g5rZ/8AKqctX9PbYgL99qrb/+QP9RfIDHt+u8vRm2u4XsiCOOGPGoVmOquPzyy/nsZz/7tuzUO4Zq+1e1ilL9C+rO/7BwRkJZazUThl7TwYhq4rxtKZG7oSNtU+lONOg+UONzZ96FPSnHmv4mQjReckZzWvOLTN9jA+VmiVkIlQZmuFHAsIR7oVeqFVKqAbnrEVuXRfOlslJ2ApV3EkqEExBGlN5E80PV6lXRv5i5QOlUPLAHfRKbXPRyQBAz8VMRyq2WEuaDIiNRG785gTRAL4dYQx7WoIPmhCCg1GLgR7WaGUBg64QRA78xSmgbhJamqkGAWVR/S6PiSlRftUauWTRXhfkVIjisRaxmc1xzLqu8tsyR1spVw4PqZ2gYtfnCMgkbkhSmt1Bss0CCUQ6xchLdkdh9LrqzS8S/CzsPdraKjnXDbKwbZmNet8c7vSs7JewMpKwyA0NxjJJUro5R8BpColGX3advonnCII27D9CWyhNKQcaL0pePYw0p7WCrlSMMNVrsAueMeoaXyuNZVuygPZJDY+TNHVsYmEJHFxoagk7fISJ0ppolWnWbmDB5b9tzdBg5Go0ik5v7iRkujYa6i2qaAbKsoxsh2d4Ej67ejYwXY5+GDbRG8vQ5cQb8BGVpkDaKlAKT5nSBeMwhV7Z5rGsKP1p8OP+96Ghu6zqY+5bPZPNgCtcxGZseYnQqi+/rSFNyyKwVjGnJEISC5oY8sYhDuWCRL9nEDZf/6dyXBf270+OmaDIL/GPtbmzINLB6qJnufIJUpExLokBCd+gsN3Bk2wr6SzEMLWRqQy+TUgNk++OEmxR5QYLXEBCkAoSAJb3t9OXi7Nbeh5e3yA3EiXVqCA+kJik3aMS6JIYRYIgQNzQYYw9yePMKjhu/lBlt3bSMHmK3id2IqPqdaLBK/HjNEax3W3ghO4E7+w7gb9178vi6yfy9fy8ybuxf/S/4b4clH92P5idsZtxwV23ailn/YH5wI9M+ekpt2nH9V/Krrx9J+11aLbDy7SIv24Ph7mNOduVWl6kO4qsi/f/+w9dq8+bOuYw/X1nfxtLSci64dym3njidaQ3/YO6mI5m76UgA/rq/soIe8i/j/I920T5upH53ayhNv4zLd7t0u47lryFM/OPjKigUuOCacXSPvZLpa+8csdzPHm7jNwMBt9xzDGd/T30+f3zmeUoNzVza865tbn/RSRfwxd6r+UC/IoTW6Hkj5l9wb73tbMoHXuRzs9du137DWwyy/I9F1RqZSpZI1ewqUCGSwtDqbUvDAhnrlsBSuX1B5Y6/VO5d0QiYyvK3+RXJDVOOxcnaRDZaXJs7Ba3XIrFBEO0LmbCuhNGXV7bDfl0TIqsZKVIiQznCKUuWA0S3TyyE0vgkermSeh9KpK0T2jrGkIPUFYkBCA2BZijLaLOksmJExaZYc33c5ihGIUBqurJzDkKIGZRGRdAd9YOgOT5oynXMj+tK9G+okDC9XLFbDkKCqEFoCjRPIiSEulBExwcvoRE0JtE2FCq21Hpd02KZdee36jmokEyhVyyTK+ddSokIvUoQZcVYoWq4EErQhllhS7Xt0vgkoSmI9nroToA0BKFRCboseODuco35V+P3R+R2qI3srbiP/atcx/7TYN0w+80X2oUa4l0BGSfK6OYhujriWDn1/WgOasgxYGghcUvpGZsjBZzQoBwYjGvI8Oq+aSJNZUZZQ4xryHBgcjUHRNbTG8Y4LLac58sTebo8kQnGRu7Mj6ZBL3JiLIcOeDIgJGS8EWMwLBETOrnQRUcwxezlseJUsn6EPVKdbCw30O2mKPsGTfEiBREjlAI0SeDqdJeTTIr2MT3excpiG4sK48j7FqMiWSbH+ygHBsuKbRQzUYpRH6RgdEuGmOEyc+xmCp7F2q5mVvc3E7U8XMdAmhJb8wlCjcZYCVv3WTfQiAzV9/NAOcZgMYrjNPFSMI4jpqxgVGO2dl51TafgWniBxrPBBOZ2LCemO7RGCwwIyaqhFs4a9wLPp8ZhLrbIT5aYraVadQkBvq/juQZduSSiYKA7guT6kMJoDVDdBbFen4G1SR71p5BOlNiQaKLNypE2SqwbamIoFyVqeuhWwG4dvTy/aRxT23pJ6yUKgUVHJMu7Uqt5MT6eA5NreNbreAf+C/+98Im+f2x1+tH6law54VTm5ffhA6f9gJPnQ35lE4fb/0VRvJ9awus/Gb++yAA+zfn8d22andqt9jycux4eGTtinZlPHcOSgx7it433ktsvy4pp7+eBL9zImX+6iUG3vtwXjlRjxxv/5HDelx7hrJ93QMMgZzydJX3fLH7xEUVizpnjMxf4wsCZW93HSy86rVaBCZ7th0vgoP3PZ0HFV+DQxiKPD8aY/5UJNFLXm8w5zKmRGIClE98LwyowqQWt3G+o6/B4PwXPbPneVRI2HHv9/Va+NUxe43aePmJ+25O3w3X112et2gvYOil8PXYRmGGQQQiGGhALIdTrMKxnupiGalfShKqAVFuUhm/D9Sop9L4aRBuGGnQHAQiTxPoy9q0RkGDm1J0vvZxTzmF+gKgaCFSrDwxzH6u2Sw0fvFe1NkGA1p8hqgsKE5OYucqgXwgIIYwYqpVMSIySj+ZquGlloQzgpg3MfICRDxUB8CVBTEeEIIoOCEGQjqKXQqwhF73gqkBMXaCFEs01sPLKPjmIKkMBo+AT2gZaEKJ5ivBIXUN3QkJb4MXUm5c7YsS7zHqFS2iKcARh/TxSsVmufh6aQHp+7bmg8nlVzBIUoXndBxwEKmDTNPHb07hJXbXIQaU6pKykRSjRHA/f3pUDs7Pif2ObDLtIzPZiF2l568iP0vEKcYaycYQtyUwTNB/YRRyYkBykxc7zbO948mWbhOVQCkySpsOgo2NkNeIvJbg9uR9T0n0sLo7hmdxk8r7FwelVbHSbODSxnL7QpdtPc2RsLUOhQEewzLN5qjSVkxKL6fSTLHc7eDyzGyc3v0xKK/NSbjwv9IxhalMfGhJDBJhaSN6xVLivHjJ2XB+hFLRHcnS5KRK6Q1R3GWNnWF5o59GuKaQsh6xrYxkBTtRnbEuGtliOFrtAKTDJlKPs0bSZ5kiBnmKSsYkMmyMpglB9Rw8Wo2hCUihECAoGWlHHaChRcE1S0TIiCueOf5aDoqsotxn0BimeyU8m48d4YtMkyo5JLh9lVbKVqfEepiR6gVYSpoMndfYc1cnzY6ciDYll+QS+ztjWQbqH1A0SP2NRfi1GzAPNAy+mHrEuiVmU5EebEIIQkmmNvewe62KK1c1at5WGaIlcsT7Yi+geM9q7iBkei/JjabEKDLgxJqd7CBIaY8xBZLLElh5SuzD2sck1Dcyi1rX0HzKViT85mFuvaiQz9xpuevfe3LzyEk5mEx847QeMn384f/3uZE7+zGoebf4xMRkC/5rqy4dv8flpz71cPeF6bjCjfDZa4oY3WWfPE5MsGYQpP/e5Y5oiPsNJTxVLJ76X/h9+k+glm5nbdxznnv8AR9+t/lfvuLiLNDfxm1908FTyIg5tuBpmjSR7q367Dx2Xwc23KJOAy3e7lEuuGeDnz/1G6V+AheMf5lAgc+zd9L/SSCNwsgZ/fWykKVf7xhsBZRpw/1rJ2tXtXGBkOd5PkZ3bS2pB64i/7cBpsTM55N0jyUsVX+y9mpM1VZW6/4KbOP5WVX264N6lPH/iAbxSWc7+xgfh0/e8yRmt4y3ZKP+nQugVh7GKja8wDIRlqTv/VV1F1YFMq+ssqu1PQq+uq6mgR8NQ2S+2hTuuka5DGln9nggD002sjIuRKWMOFNGyJUVe/IpWY1jrmBzWJlbT3QhRC9Cs7ZeUyFIJsamHxMohgqiGlzBxGyw0xyc0NEJLtXQJN8QoeujlEKOsrI9jm8uIQBLaBlKA5oWEliC2saispaM2ftzEzPuKiGga0tTwExZh1EBIpacptmlkxxs4DTpe0iCI6hAoHVAYVXxZL/uY2QDdVcdYbtaRjal6VatazaJibzzcVjlSudDCSlhmZTqhROha/VF1HdN1RTwNA0xLvbZMnCYbzVfteloQIjVBucUisDVK7TbOqCRecuRFvQv/fLxR9eX3R+Rqj7cDb5eF8uu39c9s9drZ2sh2YdsIohA1fSZ19OGnA5wOn4TpUnQsXutrZ2WulUw+Rn4wxoZMA6YI6S0neHnxBFpfDGlY6dA7mGRKrI+0USKuO4yPDnJYbCUfb1pIJohx7pIP8dMXD6cQatzQdwjf7X8XX11zGnds2Jey1FnltnHLqkPZVGhgotkHQINZxNTV3Z28b9NoFtG1kMH+BASCVLyMqQdMTPWjiZCVuVYe7d6Nl/rHsnBgMkmzzMzGbnypoQnJlKY+JrX3c+KoxeyXXk/GjTImkuGAlnW0W1nihkvMdGmx82zsb6AvH2fIi1Aq2mS7E0piGvcJEz75vjheoDO7uZMzx75Eg17kpz1zuWdoX3r8FLbm01NOUHZMvO4oQVeUhasnce+mmWwqN7BHupMx0QxDfoy0WUbzBcaQTqlkEQ5adPanKectDCPAHNKJ9ErsQUmkX6L5KDfOqLphZuVC4psETsFiUyHN7zccyPc2HMfS0ijaozkCX6fkmbQ05ugrJRhyozyzbgJPbx7P4kwHz26cwPzcLBblx3JH3wH0+buCLLeGyPo1I143P2HzyAEqPf6i4iG16d57L2L8fKXfeNo+Y4vtnLfXkW95H359vlKWHPqwui7+0vM8pVvrGpi+3RXB+mnPvVx88gqu3fPzAIz5Zd1RLPjWyOOoYuIfH+eCDadx4v6fqU0b3nY2+3bl6nnOHRFOi53J0XcnR7RVfbw9WWspO/+jXRxfuo5HT3xiuxzIfvLVJoJn+zF6RhoSLegaYvHn/lp7fbyf2mLd4S1kqQWttWWqbmU76lr2p/KcLabdeuJ09rtspL341fdsuS/bwjtKYB599FFOOeUURo8ejRCCefPmjZgvpeTqq69m1KhRRKNRjjnmGFasGOkVPjAwwHnnnUcqlaKhoYELL7yQfD7/1naoqrOo7UClAlDVZ4zQwCiyIaqZLFRazap2yboGpoE0dJwxaXr3jlAcI7HGFnDTyh1M2iobpuZUJiUyqlLt8X2k59UH8FXCYlbct4ZXYKotbUZF9N43SGzFgMp1kRDaleqLlCqoszJgFxLMvI+ZdZGmRmhVbJgt5RhmDfkYvVnlPBaPqLYzx1fbkBLhKRF/YGroToCVD9FdJYCvOpsNP7d60Ucr+6rC4YWYuQCjpJb1mmL149QqpKNmiKCN0K9Up4uq+9swi+TaR+f7qnJV0zJVWs80ZWkdmsp9TZ0TiTlQVgGcER0r4xNENJzGnaNAudNdJ/8kvFnr2D/DoWyv08fUHrvw742d7ToJDegdShA3XLSkh57TObhlNadOfIW47bJ03Sh8T0czA4pFmyarwIZMA9FNBpEBn9w4m1AKWswcxyVf4bOtj3NZ81PsZhpEhOCY2EZ+Pv13/GjO7+nQ4YLGJzm74Vkum/AQX93tLzRoPmPMQc4Y/zJnjn4Ri5B7Bvfh3rUz6R1IEtU9YoaLLXzGJQaJJFw1gA8FY+MZsm6UfidOwnT4wPinOX3My3xk9GOMsoaYlejkXc1rmZLuI2k6TEwMsK7czGY3jaEFtSDItFGku5TkiJYVhFLgZmx0LeS1nnZCTwMrJJ0u0tqURY8GSouohXSVkmx205RDk72T60nqZTa7DYy1BtCEqqgYrWXCSIhl+xzSvpq0WWJ5vo15y/firlV7sTbfhFEUxDoF9qsxEmt0vLL6Ts91JfETIaEpKDcpIxupAVJ9bn5EYA/62BmJyJqs29TChp5Glna2syzXTigFB0xYh234zGzspiOeZfX6NkzL58QJr3FI62qOnricUVaGBrPErEQn68vNb+n/6J+Bne1a2RYaz5rKxvl7116vP/pRAK4eNY87Rity036XGnP9btEj/+v3u/WrGwDoe10loWWZ0tl8vO1Efv7XqUSXKieyTReeBijik3+PMrb63DUbeWJYTtr1x/Vy67i70f4wMuR900ev4n8WfWnEtGr2yumpwdq0M20LM/gfzOB/+M0vVBviBQ8eul3H4466mlN//GG04FtElv6JXzz1AgDf3fhe+k6y+XXxFG6Pf6i2/JzDHOYc5jD54v1qZG64nfPW8Hoic8sz7x/xuppTU8W8W/804vVwwf8hZ32JS4sHbdexwTtMYAqFArNnz+ZHP/rRVud/5zvf4aabbuKnP/0pTz/9NPF4nOOPP55yuVxb5rzzzmPx4sU8+OCD/PWvf+XRRx99625ow/UXFQhdq9zJr5yq4SGWujYiyV3omtJtVMIsw3gUry1JdoJFuUWSXA3Gs0ki/VBqt9lwXJrBPdNIS32pSl1TuS+yEuoYBEjHqe9fVdMxohIzLMSx6lYWShjKYa3pIbI5T2hpuE0WoaWqNbKi0zFKPlITeEkLP6ITRJStspc0EVJirxsAP0CahqrcSLUPsmqpXD0lukAKgVEIsDOSyEBIZCAg3uVh5DwVrln2ESV1FyC0dfy4MhYwSiFWXhLaleDJagVsuHAf6mL8anZLtSpTFepXHcZAVWoMQ30eVSJUfa1pyIhFaAhEqFrn/LiB0x5Tx6GDNAR+RMNJ7RwFyp3uOnmb8f5/JP+p9sm78H8DO9t1EpqSwNfJOFFkICAUOKFBo1GgdyiB1m+iGwEdrUPYEY8VuTZyQ1G0QGVyZXaHeMzhns2zWZCfSW+gkRAmtjBJaxFa9DizrCgnxBwa9RjTzAizTIsTokWa9QJXbTqJpFZiZnQT8zbvzWdXv5fHN03CdXUmj+pj1VALbqAz6McwRUjE8tCTHuPTGWYmOmm2C4RSsGqwmbs278PqUiv/yE5ns5vmgZ4ZPNS5OynDIZCCBrPIpGgvo6whEoZLPrBJ6A5Dfowg1FhXbubh9dNItucx9ACnbGFEPKJJh45kjv5MAjviMmFiL/u0bcLQQv66ag++/eIJ/Gz5odyxeh+eHZzAPzLTiBsuph7gZS3QJEJIluXa2VxKU/RVdcXQQ/rycUJD4scgsVFiZSWUdPR+E3NQR3MFbgOEFrgNAs2XRHslZkFSbtYIbA0vJtAd9ftqRzyCnElXPslzG8bx9OqJbFrfTM632Tu1kWRTgY50js3lFCsLrawvNjLox9lUamBxfjTdzs7zHbczXSsrz5PbnPfzKyfwwJ4fBhgh4h+ONWe+PY5WkcjI6vYzmwpbLGOndmPjhLr171GXKlPjyRfvx8mfO2+r263mv7x+O1Wc+NM6gXh9/sz801S3wQPjmznvgVkAtI/z+c5Xx24RlnnP9M+PeP2DlTcDcOd143BHXc0J3x4pym/5u8PJnzuPcwq3seK/pnK8nyK1oLVGSOYc5jDwyzc3aMnO7R3xetR/fXjE60Oar+XkylDqif6r+UnFgewStiRhT9zxTX504Nfe9D2r2OFbzEEQcOuttzJ//nx6enoIhwc3Ag8//PA21twSJ554IieeeOJW50kp+f73v89VV13FaacplnvbbbfR3t7OvHnzOOecc3jttde47777ePbZZ9l/f5WMevPNN3PSSSdx44037ngujVQCP6V1qRCB4eRA18ANQKhUe9XupYT9wla+3vhBTbsSJG0Gd48ycJjL/rut5bmG3dAaHQ6csI6nV0+ko3UISw8o39hKdI2DqGhu0DVEoNUrCFJWtDZKF1Lbp6rAvVqFqbZehQFIoapHm8pE+iMEHY0EEYMgogbsmquqKKGpqhFuUkcEEqfRILGhhLFpAOkqa2Nh6AQxg8DW0G0dDRDFAC8dwY/rBLZABKiqjITQFFg9LlrJx0tZ6OUAzfVVdSdqQCApthoMTYXWF5XNs+aqqhOeO/IzqdlVV14H6thGkBstrM+rLl8lelpFL0SAlBUzhmIZMx/gx9UxK+MBUTuOwNYqWp5/jTDwzbDTXSf/odhWFeaNtDKvX2dXi9c7h53tOvEaQmJ2UNNcBGmfFwbH8YUJ9/Lj/X/Hij07WOO0MuDGeao0gb5SnLEdgwymoqyfEeGDez/JGakXaNc9dCFo0+O1bZtC3+p7zn31PXx0wmMcFF2HrQXoSDr0IfZq2MSmcgN+qLHn2E4e75xMsWwxNd3LplIDnYU0mhZiR1w68yleNMYzJpqhu5zE8UycwGBxpoNxiUGiusfhLSt5ZnAintTYM7mJTU4jpgjo82OUAhOI0WQWCBFMSfXxwD/2ZtI+m4gbLuXAqP2EjUsN0ldKYFo+R09Yzu6xLgb9OAm9jCYkG3MNuIGOlIKE6RBKjajuUHIsMCSaHTBn7FqOaFjKUBBnnNXPreIQMk6Usm+Q6fDwyjpuWqvcgAO9LAgN0EuCSK9EaoLQovb9bzgSqak2as2XxDcICtKiFAiQgoM71rDAm0q2pCyYl/R00FNUn/G7O17l8YEpxAyP3mKcYtJi//Ra8kGEv3dO3qH/n38mdqZr5ZknLdhr6/MuvnEdh3mTYLefsPwXf6Gx/Ytc+ehn+RZ/Zl6LWQl3vGSHjv31mHRomtMveBw4gsSzm2vTj/jy01ss++uff5HrD76Py957GNGlN/HKx+Pw09tYuXgebPgM2oLxSsg/DB/50vtHTLtl6iIe2PPD3PHn50cs99IBv+VDY/bh4mU3c9LuykFs7ep27ourdrP2a3z++5J2ur+09WH7qUuv55DjRv7+WJuvxR11Ndbma+GLI5cPfr0Hj5mKoKz++fPcb6gK1AXXjAP2e8MWsar+BVQFJkr/VpezH1cVLWbUp111UQNfvyUD1EX/T9zxzdr8L4/5f8Cx23zv4djhW8yXX345l19+OUEQsMceezB79uwRj7cLa9asoauri2OOOaY2LZ1O8653vYuFC5Vga+HChTQ0NNQuIIBjjjkGTdN4+ukt//m2F9L1Ku1aI1ugam1bmqgTiaqdL9Tte6VE6hrF0REG9g6ZPmEzEd1j6vRN7DFmMxNj/cghi8HHOli7qh0hUW5lVaexitsYmg52RYdRrTAMb6vSVYJ8NXm+NqgPAqWZ8VR1SDou2qpNWKu6MLuz2P1lNDcg1CuGBQFEez2SK/M0PN+NsaGvMuivHnuI1NUA36vkvPipCH5Mp9SkE5hCuYw5Ejch8CvLOa0RRIh6r4hBGLPwUhZeykSEEjOvUpJDQ6B5KqAS01IPqNske37F1GAYSRtehal+bkFQMToYZoEtwxEkVDouhBK7v6yCOC0BUpEv3ZFIHby4hqwEdO7seCevk7cD/w6Vl621me1qO/v3wjt1nZSGIgSBwIz4tI8dJKL7XLP6FP6emU0xtNEJmRDtx/N0MsUooxNDhKFgVHuGmOay1O1AFwJbvPlPtS40/j7rD5yW2ECDBpe2z8cUATHNw9BCVmeacQOdxZlRFMsWvq+zvtDIcxvG4YUaUgo812AoH2VjvoFQCmKGS0OsRMJyaI4UiOoefqhz1/rZrMs0Yms+83umc9+qGdzdOZsneidT8C1arRwL+ybxp+X7ct/Tsxm7ICBuKHLUk0/QnsgRt1zKgclgMUprskDBtymGFouyY1hZbKfNzrFvywb8QKOvN8mqwRbihkODWULXQ/RIQCTq0uskGGMOclR8KZu8RpZsbqcpUlAObxroTQ5igjLM0UoakX6BlRXEugTRAUlic4A9KPESishoPpgF9eUf61Vt0UZBYG02iTSXODb9Ki2JAlrGxG4o4zoG6za04Ps6zwxNpODZvNbfRu9gkowXQ0cS01wGi/8eNsr/6mvlwIPVTcvivUqUPrylCeAx82puXqlIyu0zDmPzJ5/lgmvGMfvwBbXpbxf++KrSY3zv/KuYfLrSwCw+XWliAN5/zoU1PczSie/lc3u/h6mLj1A5NcC3Hwn5zlfHsjDYc4ff+7Neiak/HtmmN+rO63lgfL310G8zt7n+IZd9BGfzjSOmuaOuHvH39fjNz/ag/xDVMjb54v0AVU1a/XN1vNm5vVvVx7ye3HSfETLnMNUt9LOH25i5ThEj59BxPNr8YwDOjqj/neVLpvLb5odrlZiWvy0dsa0Xlk7Z5jG+Hjtcgbn99tv505/+xEknnbSjq+4QurpUxmh7e/uI6e3t7bV5XV1dtLW1jZhvGAZNTU21ZbYGx3FwhrVmZbN1i8aqGByhKUcxXVMDaO11d+Or7UumpSoeRiWtvpJb4rel6DwCJkzvYrAcZWVXK8lECU3AukwjDa9qpNZ5iOfB6i8hLVM5kA0T8KsWKFONo30fgmH7USVRVITu1SyUynwppaoKVcX/mlAVlX4XPZtHkxLLNGttZzIIEREbWSpVRPHKsUtKiQgqYZiyYs2sCdXyFUqsQohRVARHhJJIJkRqajmkCrQUYcUcwNTwoxq6G2IPhUQGA9ykjhcTCCcYlulSISvDjAyErtVJnE79ec0mWShHsur8alWqanut/jkQFb2RlikQ7TUptVoEUQ0z6yMkGAUoNxtgCPTyzs9g3rHr5P8o/q+RFvezL/9HOJG9E9dJ08QMZS1JaShCJOVwYNs6OktpNrw0mnWtLVAwaJk4wDGjlyEEJCIORzYuQ0NyYMMaDoquoiAtTAQxYY14z76gQFFKWjSLdb5PRIQ06TovOnFimkOz5qAjeao8kVAKNpUaGJ3I4oY6edemJVUgkAINiV826RtKIEOB7+lEYi4t0TyGFmJpAYYWEtE9htwo/eU4mpAM5SN4eYt/yN0oOyZBoNE9lGRySz8zkl3kfZt1PU0YK6N0LJY4KZ2Bcoze7jQIieMZtCYL9BXjCCGJGB5Pd07gRWMMxbLFbm19HNWyDFvzeKA8nRkTN9NkF/FDnWXZdmK2S8x2KXsGGpKrV5zGhOQgIQJNU5WbiekBVguJ0ELCQCdMhciYT9bW0VIexbxJtqRhD6jwytCS2P0CvwQiUM6UgS0QPlg59dvgzgoohxY5x1bLrE4o7UyLRypWxg101vY10ZgsYtseBd/i1cJoTBFS7I++5f/ffyX+WdfKtq6TKw7vhQz8evBp+P3TnFO4jec5gIn3HwX8esQ2btzjbtjjbn4bfJTjPiH4ziff3t/oy3e7lC6e4lO/+TotPUuBIWbNA9rU4N5O7faGrmOXf/wKNrV+hs0/fqU2bXp0Gkt4aKvLf2F/nf85bB0/e7it5ug1iuu3WO6B8c0c90Q/MHbLjQyDPepKoG4sUK3A/GHlHzh3t5Hak5/cfBH8bCELH7PJvzSLOz/9jRHz7zeyLHyMmnUyKLH//RU3suGoEprfnbbtytvfPjydd/96Kc1P2PxkWEjoo9eNbIX7/lF98NgbHmYNO1yBsSyL3Xbb0gLu3wnf+ta3SKfTtce4cePqM2t368MR00ZY/IayXgWotDxJz1MtX74PpkFxlM2kmZvZt2kD2WIE1sUovNhM7vkWxH2NxHtCjHKA3V1EK3mqfcwPFMnQ61bANcF+ENR1OBV9SM1iWIZq/4RWG6wLXatVUWo6nUq7mfRUhUlGbaWJqVRwZLFYP/bKsqKi9dHLAWZeZaUEMUNVJwSYuQDdUaSl1GpgFEN0p0I8BCAr5EXXkEJVaryYCtJEKKKjuxItV31vWd/ncBiRq57zIFAC/Wr73HANUJVUynCE9qVWqfF9ldkTBIggxBgsYQ/6aK4ktDU0J0B3AiIDPmah4krzfxhveJ3swjuC2+f96s0X2oV/Kd7oOnnf1BeYNrGLQ8evZo+40nYEaZ+GpjxGc4kgFKwstBL4GpYecFB0Nfuk1xMRHvvYIUdGPBJa3Q3Rk6qXNiJ0YkIQ0yx6wxi/HJzDc06CbBihy09jC4iJgA4jQ1Ivq8qJ1OjOJ0hYDjMau9GFZHMuCZoKbEzEy2hGSClnM1COs6HYSMaNUvRMhtwomVKUpOWwd+NGJrf1QyiwTZ+I7ZFKlAhDwW7JXhqNAqvyrQRZi8R6SKwv0T9b4AY6+oCB0WtRzEbY0NNIb3eaYiHC6u4WinkbL9A5bMJqjml9jYSu9BZOwSLv2qzJNrGpmKbkm8xu6eT0cYu4YLen0URI72CSl7tGkzZLWJbPbg19dESyWDGPaMQjEnUh7kNZR0hBLO6Q7MhBq0NprEe5w8dtDAhsJebXKpb6bkLgpgVWRpLoDHDKJotK4xhY0kJivUZ6GaSXgcgZBKFyZYtHHSamBzh03GqObFrGaHuIlbkW0Hb+G2L/TGzrOnm0Rw2QP/H+z9WWPeDqL7H2+C3lCL8NPspvg49uMf1/i/sfOgJQZOO3t+0DUGlPU+jb/Ukue+9hrDxsHUd86fQR6/zt1/dwevciTu9eBKgKxBd7r2b/swb4yMJvAfD9i7f+vf3Hr9/FH74ya6vtWmtXKwLZPs6vhVcO171856sjyczrqy/Dce5u59aeVx3Ojj76kdq0y19Un8UF14yrVV9AtZTlVv+h9vp+IzvivFQRzfTXtDA76k72etz0oxe2e9kdJjCf+cxn+MEPflBz3vpnoaNDuS10d3ePmN7d3V2b19HRQU9Pz4j5vu8zMDBQW2Zr+OIXv8jQ0FDtsWFDpU8vlHWiQqWyQaWlrIrq4B4qbllW3V65SmocFyvjM1iM0usmkC+kaXs2pP2ZgFFPuqTW+io40gvR8iVE2VWVkjBUhCGUUNHUyPIwEb/rjRStg3q/atUoqBCgyr7I4XqZahtW9SFDRL6ILBQrx1QlLWG9alGtXPgB+lAZaahMGUJJaGn4EY0gqoT/IoDk2jJmziOwVECm5oWEtk5g68pIIG3g2wIzH2IUAwJLQ4QQ3+whCqXaZ1DN4akd4zBrazRRy4WpEZZq61wokZVq0uvdx9Rno9WE/IQhWq6EkVMENLA03EYLKcDMlIkMuJiF1wfJ7Hx4R66Tdwhvl33yLuwY3M++/E7vwv8a78R10t+Z4vbl+7FpKE2rlWMoiKpslbGDtMYLHDFpFRPSgxR9C6FJSp7Jw4UZ5IMIjwzuzjrfZTAsMRSWa8RFQ7Dez3NNzxz+XpiAJwNatSIHxlcx0RhiIEiw0ung8dI4/lGazGO53QmkwJcam3NJ8sUIhhayqZimKVpkfEMGw/KxjIAg1DBNpTHsL8SwdZ+UWSZi+ORdi0w2Rm+xrsMRdkCuGCG3KUUmE8frjPPg2t15fGA3ugpJjIyOWZSU22y0yXl6B5JE+jTMIYEoGuhGgBHx2Xv8Bs6Y/jJ7TOikOV7ErLiYLSt28OPXDgdXoylSZEJykLZojuPbl3Bey0LazSEG/DhuaJBOlmiMl8h5EQr5CG6o40udxmSRUArCUCA9jcQag8aXNZzX0uSzUUJHR5R1iARgqN8RN6XamtEUeSm1qZtsRinA93SW5duJdalgZi2A6ECIXhYUHZNGq8TEhgHGRDJsLqVZUhxNTHfoL8ZB//cgMP+sa2V7fk9uP6u8RQvZcLz0Wi/HfaJvh45nR3Dxr5SD1l/3fxBj3HdrVsoLH7M59sff54JrxnH/az99w200P2Hz+FH1ofWBY+Jsfu/nWfzCD0cst/KwdSNeZ+f20vxE/WZFakErTd9U52j5mk8DirRUnchej6tfUZWbi09esdX5zRe9yn9xaS1o8i8pVVnPJ9X5/vPNz/HQzT21R7XK8sev38UvPnI2+eSHyCc/xB0/v2+LbXefETJ376s47+7Orb53/yHOiL9vF3aYwDz++OP87ne/Y8qUKZxyyimceeaZIx5vFyZNmkRHRwfz59et57LZLE8//TRz5ig/6Tlz5pDJZHj++TpjfPjhhwnDkHe9613b3LZt26RSqREPYAQpqw6Cpecr4Xct2HKYsH84kYAR5MYaLOM93sxjS6YR75SY+QC730F3Q5U+b2voFVcuhhEkGYTIsqOIRbWaUCU1w/JRamGbFV2O9HxkECB0XZEYqKXWA2qZEe5mrmoXq5IWQEQidXImK1bOQYgsl9EqBKPcrOM0GhTa6yGYUheUmpXQP6yQkiCiE9oaQUTDbTDIj7EoN6jgyNASCL9SgZFgd+fr57NSaappe6pVoyBEVjQ9mEY9syesW1jLyr7XbK8rx107d5VtqkqZ0glpjk9gK1Gn1MBttGpBnkZ55ycw78R18k7g34W87KqQ7Jx4R64TKSjnLQq9Me5Zsyc6EjcwMLSQqOGxqZhmyI2SMsu0pPM0RYv8ZfOePNU3iZc7x/BUaQIbfYN1vklf6FIMXdb6RR4s7MZ5jU9xVGwtGoIGLaTDGCJAsLzUQbeXwpU6rjR4vHsyCzIz2FxUJKMpVSBhOAyUYgyUYqzPNBCGGhHLI2p5qhLTWCQdLTMx2k+IIFe2KTgWwYDNQDbOumITq7paIW/ir0rQ/LxG+qkI6aWC+D0pVt0+jZ5VzUR71e9kaAqcvE2YN7EHJfYgWK1FDpm4hlljNnNM82vMiHYqS2fdJ+NG+cPGA1hTaObgsWsZM6GfxZtGsbmY4l3pNST0Mtkwgil8QimI6B57t25i7+ZNdJeShI6OH+pYms/E9AD5njhBoEEI8U0h7U8MMOYfHg0LbYw+E6MgMOwAUdbQPPCjEFjgpnRK7RK/IaDcrOEldYSQ5D0bPwp+TKA7kvwYndCSFHviLFg1lVc2juH5/vFEdA83NHhxaDwJ2yGafHsHb/8s/LOule35Pbln3rmcU7gNgGtuunaL+d89a9aI1+OXXrnjB7gV/OR9auxw6o8/zLwWkwuuGYe/4TNEL1BVoDmHOfziI2ezZvU3t7p++6dm1p73H+LwWU+Nl341RynnFz5mk1rQynUPJLZYd2uVizv6JgDw3WVXAJA2bqrNO/+jqkXvd8ctrj0HZdc8HE5+2+1cn//BezhwTP1mxLn3Xs5l1xzCxj6n9gBVTQKVUfOewXnIl08c0VJWRfeMg7eYNuq/PlxzRkstaOW4n3XS/IRN/yEOZx9yAD/5xN0jlj/kLGUp/aGl20/0d1gD09DQwBlnbBki9FaQz+dZubIe6LNmzRpeeuklmpqaGD9+PFdccQVf//rXmTp1KpMmTeIrX/kKo0eP5vTTTwdgxowZnHDCCVx00UX89Kc/xfM8PvnJT3LOOef8r5yVqlUYGQS1ZHd0HTHc5UrfkvtVKzYA+kCejqctOo0og7NCchMtIn0WRkmSHydIrZHKWrhim4wQyDCsazuq+g29khEzvE0KVItUKNU+CW1EOn1tnzWtXs2o/q1sQzBM01PVzXgVvUyVxJiq7QrDAM/HynjkRxn4EWVBbOZDdDek3GyiuxIvrmMWwCgqJ7ZSi44IITQEfgTMosRwlOtXYbSN1CGxyUFkcqq1q+ocVtXvVD+HahZPrZWs0hon/foxhaE6B1CvHAWBci8zjYqLGxXCqattahoEEnvQp9xi4kfVD5IfN5Wmp3oe3mHsrNfJLvxrsYscvTF2tusk1lqko10J6DUkm5wGhlxVAcl5NqYWYGoBTVaRpuYiiwZG0zWQwrR8gkAQ0TxcNFo1h7V+gi7hMRA0c2RsJS26TkTYhEhW+Ak8qTPV8Di94XkGggRPF6Ywye6hPZZneaYVSw8wbZ+hQpTFTgfFok1zQ55yySL0NSKGj637ZIsRXMfE1APygY2GpCVRYKgcQY7JYerqO9EfsrAGNIyiQHdCNA90T2LlAkQ3aJ6BkFKFIvsSoUmkFSJCHTsfku2M098eJ6J7rCi102wWWNLbTrFoo48KmZzsZ3x0gPWlJkqewZiWDH35OPdsns3eTRspWhab3Qae6x/P3LbldDoNGFrAjHQ3a8qjiBkuT3VPZHxqED3h42ZtsELyY010r7GyXyB1iVHQcHojICSldolRFAQRQVloBPEQPa+hlyXCh7Bo0GCVKLcHpJcpB85yC4TxAAJBUDYwox6DxSj9hRgHjlrP7oluJsb6edlrZuv3xv/12NmulSrsRCelzMhpP/r9d2AfZc377LU/rYVZAtzxh/+Ca97y29Xw3+UNwEQAvnTpZwGYPMxFuWXZwfTxJL/nu9vcxgX3LuXyj19RC7n8mP8YzwDtrz3J1GGaka4fHcxeQHZuG/D/trqts1rWcUffBD74zHKuPOQA1UI20tyM8x6YNYLAXBo5kpvLj2x1exfl/8yfPzWt9tq/4Vzmfg4Gr7uW2yqKkIO+NJIM/oEKqVoAqz/1Mc5tWsz//Ab46gayD/dy4dQPbrUaMxynLr0e+GKNpDU/Ac989VwOvOYPXPKj00b4x1WdyP7rCzfwizfcah07TGB+/etfv/lC24nnnnuOuXPn1l5/+tOqTHb++edz66238rnPfY5CocDFF19MJpPh0EMP5b777iMSidTW+d3vfscnP/lJjj76aDRN4z3veQ833XTTFu/1ViAsqz6YD4KRJKJarRFVRzIlbq9WRUQYYm0YZNSTgp59I+Sm+ngpDb0k8NMB8YWhapvy/HqlJJSVQMthbVGV95ZBWB+sV9rGatUfTQCVDBtNU8uZhqIowyoztf2vtroNrx5VqxRbIWbVXBaje4hU3MBN6uiuRHdDNCcg1E1FaHJ1kwEl3tcVeYlCZEAJ/UNDZb+UGzSiAyFm55AyS7CtWjVJ7V9lX6rHLbTaZ1GtlI0kZHptnqhZKBv1ljlRMQeoHjuAbSE8H80N0B0dP6IspZ0mEz8iCNydg8Ds7NfJ/wa/PyL3pk5k/y7Vl/9k/DuI+Xe268RZk2QgUWbuuBW4ocHDG6eRGYhjxTxs2yNuu6Qshz43jqX55Mo2QpM0xksMlSI8m59MJhonrjnc278n0xNdnJd+jlbdwBYmngxY6bssLOyFrXnMNF/FkzoLcjN4YP10Thy/BEML0IVkRkM3J3QsoRhabCw1sjTTRmu0QH8mgXQ19m3awMRIP/eKWby2fAxBXGN6dDMx3cXQAnZP9bA630xfMU5XIaX0HBp4SUl2soaZBSurxO5mzsNNq98EKyfpn2FgxUr46+MElsDKStLLBEvaOhDAhsYGhgpR4hEXI1FiZXcLK2Ure4+ziegeY1JZTmp9BVMEDARxlhc6WNA5FU1IWmIFluY7GBPNkPMj3PvcXpg5jVd6RlFck6KnOYV0dfSYT0tjjsFYjM4JERpf0QksgV4GOwNBVGAUNLyERC8DUjlUamWBURQYZZA6pBebPJ2ciOYIzJwkMEFqEiPhIQEZCOyIR2OshBPoPL5uMmObmzBEyGDxrf9vv93Y2a6VKn49+DTn8AkAvnrZ1Vx84zq+eUE7f6t0sR5w9cfpZglD39gdOvt41zX/O2vqIz78bh65AaY1XcYK7gFg6VVJTv3xhzl59Ugr35ZlB3MT76m9Tj3cCW8Se3PgmDhzJ1/FihlTaX/tyRFVltSCVs66+AR+uWJLEjP/tBz8Epye84ElXLDhNF7kthHL/O64xTxA3aHs3evP4IQ2WKBv26ns9XjpK3eziFkjyMv87tM5un0edttvKu9fh7/hMxjjvsuFUz/I+646gzt+fh/Zub10M7IC8+3j382pS68nd06udqzZub0c0nwt3d9bwp+eeLa27He+OpaffHUtAC/kR7YlvhnectR4b28vy5YtA2D33XentXXHhTtHHnnkG2pphBBce+21XHvtlqXEKpqamvj973+/w++91ffTNYRh1uyHRxCEamUiCIBhHvwaaqD9eptLTQPXw17bx9jNFl5rAj9uMDTZRKzTiK4bqAyoFemotYtViUTVWazSJlW1/ZdBWK8MVNrCRJWkRGzlEiYlVBzUpJS1YEwRVtapEhoqA/5hbWloDLNkrmawBOB5iDAksjELo5NIQ4neEQLdkxilEL0c4McNlWIf0Sg3aIQWJDpDtABkKAksgR/ViGRCkkv6lQ5HE8hyuX4exXDtS2U/dK1iqxxUHM7C+vlgGJEJUZ9V1c2tFnY5LAAzCFS1zFNVGCPnqJwbS2BlA9y0gRcTyOFVqncQO9t18najSlD+HSyVtwe3z/vV254Hs6v68ubY2a4TaUiCUGN1vgU/1Cg5JkJAxPZIR8uUfYO0XcINdDoiWfZs62Rttpm2WI62WA5b83l0cBoDTgwv1BkTzfCK20abniMTxihLk93NHubEV7DabWOFn6DXT5HWS7Ql8iwaGsOStaORgaBrIMUp015hXGSAaY1dLMu0sWRzO37eRIv6NJpFYprDvo0bGBwfxdRCWo0srUaWQGqEUtBbSDA4FGfa6G5y7XmyIoHZb1Aa5RMaBroLA7ubWFkDL6G+xsuNAqclJGoGuJbKV5EaRAYluQ1RwtFlssUI+47eyDFNS3ilMJZ716h2nFAKDm1YSYeRocMYohjaLMnszaZimiAUHDZ6FY1mkT4vgSkCFnZOxBrQ8aOSfHcCYiFCCtAko1syxEyXgaE4IuEzOBsaRw/RZPr09KWQgUbjwxbFDoGXkIhBcNOCIB5i5A3cFEihY+YksWdiBBFlvW+WJEiNMBCEno5mBkRMn4FiFN/Xmdreix9qRHSftcWd5/ttZ7tW3gx7z2jlZ1/9IY8vUWGW1fDK8UuvZP30bYvXtwfRsT/ib5X78h/eeCz38H5uOD7FP54budxNT71nxOvsUaP5ATeP3NbSm/jdFV/nvO9fxc+mX4Y96koWPKDGxnP3vor99v4Yz3/vZ7Xlt0ZeQAn4qzWbzz/QyoVTp3AWirRcJiSgdDAr7/p5bZ0FL32d64/r5YS2y1kxzIkM4JbEmTRf9GrtddePDmbsZ1XWzO1nlZm4zw856EtXqva9BMR/cCiXqXdgY5+Dv+Ez+AVlFf2zh9u4cGrlHAwLsfzip/blj4U6Icudk2PBS1+HM0KoLPeB/qMo3Vt3ILvmS19QT755cm1a27KHgO0jpjtMYAqFApdeeim33XZbLcRS1/X/z955h9lV1d3/s0+/fXrLTHpCgFBDEQLSFAQUEVDgVUF84VXxJ4JYEEFFEBEVVF6xgPiKIIiAiGJBaUoRCBAgIb0n09vt99T9+2PfOzMhCSYICpr1PPPk3lP2KXMzd6+zvmt9OeOMM7juuuuIx98cWedbhW4gkgmi4VE1+Q8nmOrHypbkZgQCVAd5WfVUyFo5lucr07hpIsIIa4OLFUbE1jiqOWSpAr7yvkjXHSsj2ywFrarsoGtId0KSWC3eOAJhmeM9T8JwXJ2olVtB1UMTIaslU+r8vHG1prZfFCGqpWlSTpi+S1klGDoCsGyTwvQkkWmhl0OQIIXAT5v4CQ03oxE6AqMkoVztO2kIQhMCRxAbiUgtGYbRnIqIrhEKfQIxjCJ1T4VQEdW1ezIx0jqqEkAx4X2NsExUqWqqS+29ro//bv0A4QWYOY9ItwljGiKSaIGo3aqd+CdhotJSIzNvVvXltSQxbxTy8mZQYd5I0FtLlEsJVtNIGGr4roF0VVJVtuxgm8rDsXK4qZry5eCHOmm7Qs51eLQyg2npIQ5sWMuSQhtNZh5H+GwK6rlh46G8tWklXcYwz5enUIosRsM4m9x6do9v4tDmlWSDGGvTDfi+ThRq/HnDLuhaREuyQK5ik0pUaG0dZGZqgBE/Trs5yhGpl0jpFRYX2rml7yCmxIcZ9eMsGm7DNgLmdnZzWttTLGno4HfG7gz59SDAawpVoIsZIbs1IlMSmRAkIEyFlEs20pD4KUj0Stw65ZWMJTxs02djoY7lsTZius/cth6yboxNhQxPW9PYPbmJReUudBHxu9W7E0WCj839C3s4G9jk15MNYjw2MJ3R/hT6tDLS0xFFg1hbgbpEmZTl8qFJj2OKkF/a+xFJwZKBVg7pWA3A2ngjm3Jp6pY7hGaCwrSQyNCJTImR9qDPgAiSPT5SQF430Suge5JIh9CRRAUTBNjpCnWxMv35JJ5r0l9Mcu6MRxgIUpTyU1n5dz4z/8k4+uODMIEP/c8317H8pVnM3u3Mbe7zcvJy6f9eyO2v8viz3r2WaW5im+vPe8tdW5CYbeGqhyOuu7GFDbcqf8is61eQY4Aj9r4EgHkXKCJTe89DcOf6H3L6hIDfhv9exPCP5/LAA4fzt8/M5b1bOc7Ti2D/uarD/eXv68ca/fvndvZPX+TWM/cguW46rUse557HbM7fZ1z5+L9j5/ChTy7lnMLdvN34Bnd89Q5O+6WDfF41Pk1PbibHAK1pjd32vpiXvnQlP8t9mrt+eghG1yGkf9S8ma9nIsmpT/yIOz/1Vb7ScyK73fgMXHkIWt2v+NLFv6WlSmL6d3nbdsco7zCB+dSnPsUjjzzCb37zG+bPnw8oY/95553HhRdeyPe///0dHfKNA98nGhxWrydO+qktEuPmcRhXAWrelZpqUlNrav6VIED6viIzucLY+pqhfqy0SWOcdNSUEF+OJ2/VlIWqh0WGkfLQwNgYQogxA7yoXsMYampPjbjA2DkIw1ASuB8gdF29r8U062ZVDdGRlQp6/wjxmEGpw8GPm2ihJHQEWqBM+VIDvSyx8kp5iQxBaIHmQ90qF2vTKCJfVNei64qQxWxkMkYYN1WPmUCiuQHCj9BH8shaSlmtuWi1pE9Uy8TG/ErheCIbuo70qgEFNTWt5lPSlOdIRBGiVEGPJHYk8RocvCb15WqW3vgm/n9XvFmJy0S8FiRma+TlXO//trrt9daH/qFjbQ92kpgdQ12mSMr26B7KEPk6ieYSQkgMLWJ6nepeXSw45AcTCCtC0yXrZD1T6kfYJdXH9NgAU60BCqFNKVQJRbqI6EqoeOSBMEWPlyFEo6eSJpIaM5x+VpWaiek+5ZKF7fjs2taHpQfsmuplSb6NeIPHtMQQMd2nwSjy+Mh02uwsM+hnr9h6skGMB3tmsyFfB8DgSIogZ2HOCPlbYQbPDnZh6CH1k0fI5hJoWoSv2zjdBghwBgVuo8TefZRyySaoGOhljUpTRLhOUGkU2ENQ7ElidmYRQrJwtJOCZzMrM8BQJUEYaWwqZViRbWbjYB2dTaPs3tbD3pmNdJgj5KMYj+Vm8df1M3DLJpoTYJohTqJC+5QchzSuohRZLMp2cO/g3uyV3sih9SuY56xlaVM7njQYCRJEUmPJpjaCA+MUpkSIeIDMeIQlAx2IbEmiL0J3Q0JTo9KkSs8CR33XiRD0tI8QkkrRYo3XiG37ICT1TpkF+Wn0u0k25TL/ok/hmxezd1vBSdcu38y/8Up4/qJPwz3br8g0OecA91Le+HFe+B7sBliXf4Xy/x25mcn91eLqL3XyobNhxbmzOMK+hIcWXsFDj8zh3YddAMAz1/6QFefO4rl3PsHpM1VAQaR/nv9+scBaWmlu+Snv0c6k68K5/9B5fPKj53NLeDZ3Pj6fG89UTTY/eFaFxHkt8Fh2q/uYyYc49+qXeM/nnkaeeSx3/fQQ1u+n5mHNi3/HrbkKXLAvX7vsYrhgX04+81FOmfwRQBGXeXt/hNjoEK2olDKAKz/UyoGfe5pHkt/Z7FgtExSYe5qOBFZv13XtMIG56667uPPOOzn88MPHlh133HHEYjHe9773vakJjAxDNVmPxhOtgDFPCTD+lH+iKbyW5GXpwATyQo0g1MqXVHNMwkgpJxPjmdWBxtUG2GycseaNtZ40VbWkFjgwMUCgZmivlY+h62PEBsZTusYM/9V1wjQ2O/aYChVGqoTLVxHNMggw1/SRzmbIz67DS2kYZXUeoSXQPUCCm9YwSxIhId4fYHcX0LIFpTwJVSYXNaQI6hxCWyeIq14xuhvhJzSCmIOfgPhAklivizlUVMpVECJL5fH7rwmEbo2X/BnGOCms3o8x4lK7lpoaUyVywvXQs2BLkJpDZAqinQRmJ/5BvFoSsyPEZWvrX08ys5PEbB80XZLLJ8gXYgSejjAibNNnRv0QOc/h6TVTiMU9ZKBVH14JpCYpjMRZhyqh6qlkeFafghsZ1JllXjIm8bfR6Ty5dDoLmro4snM5i0Y7WN3XRFAxIBA8EZuGjASZuhK24xOGGsXA4r1tC9jX3sCfjV25dd3+LOpuR0Yalu1TLto8t66Lm+yDOWrqckWcMsM83z2JSsECX6NukcFaWunPJSl3J5m9+0aMWIRlhKQtl+XlNtCg1B5hlIRqfAxEoUAzQ6xhizAmiQwwSuAnwBzRKBTqGW1JEEu5HDp5FV5kcEjzKoa8JIYWMtUZZG1jE3HNI0TD1nzuGdiXF/vbKQwmQJOYCY9k3GWflk0kDJe0USEbxuippDm8aRmLC5PotIa5eeNB/Nzfn67UKIfWr2C/+GoOSyxlbmIjf+7alawXY+WKdoIgQnNCIl9DD8BLaYS2jZ0NifVJrEKEm9YoThJIXRJWdLo6hxgpxSgVbDzXJBbzKPoWS7Kt1SjnHQ59/Y/DA30ncvrKh/nF4ZsvF7PmA9cA8L8fP4jWX2msOenR7Sohe+DAF0mxHwC/2GhxaqfHeVcoM/7H1im7eKzze9z0cAN7XfVN9ubdABw871c89xpc02n2kdzuqjSzI/a+hNt/8SCx0SFeuPgtAMy98xKi0d054NfLeerds/n15/bgBp4YVy92HyD9rWZ45/n/0HnoZy3irb9XosPHXvzENrczw7u2WLbXVd/k/Xc6/OyA2Xw62p3HfzgfUCl1Dy28gvu5e2zb3BEDpB9q5qGFV5CuUx6dO6zfcbZ3HH/+0tvItvZxXeNMGDoEgGj0PfRffNFmJGZ7scMEplQqbdGhFaClpYVS6Q3kUns1qPYHEbo+9kRfvLw8CVRH9+oEXPo+wrHVxLgWUVwlHULT1FN+XRufKNdM8tXlMpgw6a6VP8F4N3oYDxCoKg1C11XpVa3RoxCbJ6Zp2nh961aUpDHFojb2ZqVbcqycDDleYjbuz6nGK0cSkSuSWuQTpWMEKRupC/RyhAgleiVECyL0kZJSicoVZJUYCscBXSNor6fYGSM0BVoIuhthlkL0UoA1KvFTJkFCBwmVFhuv3sIsBBg5F33YVGMGAdL1gGiccEV+NXhAG08vmxinrOsqgUwzx1UpP0AAWg4cKXEbHSqpCfdlJ3biVaJGRv4ekXmlUrG/R162tf3rRWR2kpi/DxkJpBQILQIpkIFguD9NqWIT+DpR3kRPVth3xjoOaVjJylIrLwx3MFSI43kGBc8mkoLRSoyyZ9KULJI2ymTMMvXNeerjZerNEnvWb2LFphaEHpFqKFPIOwhdIoQk8HX8rM2aoIl8u8PvC3NZXOigJaFim1f2NeFWLKSrgxUihOSRjTNYnGxjfvNqjpy7lFWVFh7pmclAqQl0Sdz2KcVDKoFJ0bMolG0qlomTcgnneERlk6g1JOp1qI+rB02lko3uQWQJQkcidQhjEj8lSa7TqEiLcih4IdHB/s3rVRNLC0qhxbO5ydSZZVaXmnhpoJWU49I3nAYpaO4YZWgkSVfTKDHDZ8BNUg5N8oHDQCXJhtE6VmebsI2AabEm9m9cR8YoMeinuK9vD550pnFI3Ur2ja1lMJPiqZGpqowgEERCB1clreWngDMgxjw8bp1GqVVQmerR1JJjVv0Ak2KjbCjX05dMsXGgnkrZYveWXqbEh1mRb2b10LZ7Cf0n4w/yIxzHLWPv6/e+i/8uHMHdF2y+Xc+0PvqaX+L/HQZrTlLzm4t+9IUar9kC+583D4Dm4evZ87/3AL7P5M5P87HBgzniVKWG3PRwAx8+XFXdqH8/DJcPbfNcV933yk00v7PyOsonqjjgT8y8WPU9WXjFWMxw270XcdoJcOm3L+WXLW/nrmzIrQsqjHTeybnOKWPjnDj/IM5p64Dl6v383y/gHVdPofVXGpkvLHvFc9gaSt98K+EFs2m54Wo4dsv1P/zGL3nLy5bNP/qj3MHN3H3BbF72q+AtF38aebxSZfba9WBAhQDMu+AjpK9Vnp9aYMG8Cz5C/f/9iLsSJzI6/Vju+tQhfOKaL/DYhPFq5OWG5Ek0fOVD231dO0xgDjroIL70pS9x8803jyVSlMtlLrvssrGM8Dctoghh6OOpVptNejU18TVNooYU5Y4UkVntZ6KBWQjQ3BCt4CH8ajxyFKmJMqiEsiBUSk5NHQgCRCw2HpcchuN+DlAT81rCGIAWKaUBxiODg2DsvayNMxFSbqbOjKkwE9Wb6sS/BiEEsrq8RqKk6yrVqAZNIAtFKJXQcgVsIcZLwmplcTUjfQ1hiDDVGF5XI37KRPOVl8fpd5GGhlFUDT2lrmEUA2Xw1wWhLQgtgcwYeBkDM+NgjqhytrFjRBJhaOMKWRRCNP5emBqYpvIUxWykro/FWAvPHyOgWraELSW+3PnEbCdeO7xaL8uOkpet7ftqiczLScrEppY7Scwrw7RCXAmO4+NpEncoBoakMuKgJwJ22WUT72p7gT2cDaSFy+HxZTS0+gyEFr1hmk1+Psp4mwABAABJREFUA09kZzA73Y8mJHvEN2KKgBmZfo6qe4lnitMIpfLU2DGfo6Yu54DUKhzNJ5IaXeYQjxZ34ZaV++P7Og8Oz2FRbzvuhiSNs4coVtR3yZTWIfpyKcoli+lNavLWX0zyq1V7ko5XeEfHEk6bsoA/x3elv5jE9dX3SfdwGj9rgyGxGgPa6nLsWtfHgv4uyp5JpQ2KnkWx6CiVpzVCahDENNx6iTU63n/LzArCzpCKZ/Jo93S8YDaVskV9poihq+VBpFEYilPpr8OsCLzZZQplm0SygqmF9BVSGHrIWrceQ4vIFWKkk2WG8gmkhNvy86iPl3lv57Ok9AqtsTxPd09myVAbk1J7MDfTzXHNL5I0XPrKKYaLcUYHkxhFMMqqkiCICSoNAi8jkVNL7D95Ayc1P0uXOYQpQkoZVeb3UMuuDHlJeispioGtmpXab4xUyzca3uXsDROmCX5BpaP97+de5GvXPgtsOa+85/+eoPuFOZstu/r/jZvbJ2LPFeNVQevnfJOvPXo3h3yvQumQxznkQ228dPtx7PfTDWS/ugvmvuOm+FW3tJL7emWHriV8egiLr+C1f5HrVl7J1289g4FrFvHnz5yM/8Aa3nF2mX2v7mPh/rdwxsx9GNnj99SUjJfOVoRrTQgf2fBe6r4T8Y6rR7jx+tnEfjUEROhHfoXsg19kT+szsOJD2zyPWe9ey0MLz6adF8eWlX7/CACfvfTL8L4h9i0PUaNC8WMPg58/Cah45pfjUPFTLv6vM1gC7InN3678Jm/Z69PwqUPGtjll8keUYnTEFQAc+1nVqHO/d19H6X1H8eE7zoSZ8PgF52yWCP19VCDDxziEcwp3c1PvGrho2nbd7x0mMN/5znc45phj6OzsZK+91JfX888/j+M4/PGPf9zR4d5QEKZRTbqqKg2gJuSWCZkUfmuacquFl9CUz8NTk2+pg5vRiXSB4caxsopUmIWg2rFeVwTHDxFBBKFEmmpiHcRNhJSElobmS/RygDFaQhTKCFQPFCxjvKdJDROVk2pZmTAMRZBqRvdIKjWoVnZG1fRf9c0IwxhTfETNv1NTLrQJ0cWmgYg5Y93sx+OIJxCcsLpv1XMjhEB6ngo4mFjmZhiELRncJgvNkwQxTZkhLR1pCCiCCCXCVSqKPeISOgZmERVt6ajsfbfewE8nSPgh2lCkQgkss0oCtfHyMA1ELIaM2fhNKfy0UnXUkzT1RE0LJGY+xB520XJliCK0koez08S/E/9i/CPk5eXjbA+J+XuEpLa+RmS8zzyPefk/Vp/97wpTDwlkhKFFGI5HqsvFC3Ta0zmOalmKHxksKXbwZHYaB2bWsKLcygxngGWlNtJGmfmp5fy/1rX4UiejuTgiIhuZDEVxdrd6sUTIJr+eJcUODCOkt5LiD94eHN6wjFNTqwBo1hey69xN/DW/C6N+nJZ0gfWNFiPZhCo5i6BSZ2DqISLhoglJTz5NJMHQI3q76/m/jfNx6irEHZfWZIE1g41oOQPf1VT3+kDgBzqWFpLzHUbzMaY1D2M3BEyOj7DEacUNDPo6DDQhCQaUt8AsSFVKloQgrv7Yxm0PXUjyUmClSuzdvIlyaLI214AbGLj9JvaIoDDbRxfgewbJmMumbIa2dJ6ybzK5bpSlm9qIhiyykcCyAxrTRXoHMxT6E9wl9qEtkcMQEXOa+ziicRmPjcxkZbGZmU4f72h8kcdys1gStpF3YgQJ0D3QKlBuFcj9s5wy/UVsLaDJzLOk0oEmIl4oTQZU6d/C0U5mpgY4q/1RFpW7cCODJV7Dv+aD+AaH734MzRp/byYfwi8cwYNtNpu8MxmTIf4BPJD6GEflX9nekPnCMk5a2s7FCz/AtBu/SN3315M9cbzn4ckfu4cZx9+4mQpT63p/7NF3bzFeDc2fmsvpz8+FJvV+4f5Kbfpi+z3M/FUbK95+OU2otLfdbnyGA369nF3iN+AsOYfPcfxmPVHqj+hl8hNrmNxwHr+q9gs9d97J8MxXuLByM9fxMNd8rBW4kiMuu5i9nzqHpybsf+fj89FuewDYeyziGOC76wTnf9iG61TS2UQS85vkd7hj6lcZ/uR8Gs59jI994gY+WP2Tf8o1X4DT1euaWb/1Vxp974lY9VuPU2/4Ifr1x6lSvDte8faPYeX7JZ3bt+mOE5i5c+eyYsUKbr31VpYuXQrA6aefzvvf/35isdiODvfGgqaryb1pgDDGvSMNGbJzG/DjAqOiohNFKDFKEaGjETiCyFTNGisNGlbSVATHNRGRVB17KwZ6VW2QAhDKLyJC1T/GrVf9UqRmYxYSNL7kYq8bRpTdcWVlorohJ8QBy2qZWs3kD2oSr1MlIgIhqh3oJ/ZB0aoG/SAYj2yGCcldKFJQa6pZgxDjpEobV4xU3HNVzTFqPhtfldyZJkhJVJ+k3J5AagKjFKC7quTMKHiEjkHoGGDrGLkKWsEjSlpKlQGCpElkCDRPolciIlOjNC1NwvUQeRVcMEZepFTHdWzCpjSFqUkiQyB19TTNLERIHZCKwLh1BuUmA7McJ9ZbwRgsoA8WXteP278bjn5f9w5tf/8dr67h2daO82rHeiPjtSIv24sdUVOsb+w1RmL8Sxf9na3/M2HoEZlYmYTlETc90laFmO5jiIg71s4j7VTYo76bk5qeVelibj2PDM9i2aDqfr2+tYETmp4jH8ao00t0+/UcGl/OLFOZbvewejnQ7sVPLuHClgdo0HU2BvB0ZQprfI0Qwa+yB/DHjbuyf+t6PtT8V36hH8jk1DCPr56B0CR2ymN23QDFwGJDvo6ib2HoITMyQyQMl2eNLgZ701QGYrhhnNH6BHWZIpldyjTESpQDk+FinELBYeNohsnJEQ6btoq31y9icbkTDcmDo7MoZx31lD0U2CGU6yNEqCN1iZ+KiGIRFEx6B1pUU0gJejJghdNMU6xAz2AG0eNg5wVeWqLHAzQ9JBHzGB5NomkR69x6kIJ+kcSJeYTtAbquHp7FTR/DDImyDtmygxASL9TRheRP0W6MujEmp4bxpEE2jJE2KkxOjaBrET1mmpG8Da5GuiPPWbOeAKDZyNOs55jnrOWR4hyWF1r49KQ/4IgQWwt4MdfB14eO5Yi25Rxet5TeWQYb/yWfxDc+bg5O4RZ+sF3bHpx8HIBvHbSIC594fR+erL7nQaafqGJ/7/r+iRx25uYpZD/6rcoTtnq+wheuKzF8mVJsYodrLJnZQ/Iy6Hr/zWw6+5IdPnbrM7/mNPtI5l1wJFx2MXDFZuuXD3+XE64/j2m7fwWe6Rpb/vEvfkad17s3H+9/3rmCH70PLjqjkauAZY84nPG3n3DDZ8e3qZGXW49eDMCXTvocfG8N3icvB+D7P38e3juuwt/5qa8iz3yUaxfPY69dD+b5iz7Nz3Jw6WOPw24f2eFrBnjoFfw5L8er6gMTj8c555xzXs2ub3zU4nZ1oZK40glK0zKEplJcnOGASBf4KR00VGmTLdACFb0L4CcE8YEIzVdPlaxipHwc9TqaL5VB3ADdBd2H0FLLaiqDl4HBPWyao3rsNYOqDC1QpU4SquVRVZVIE+NlUrWSrWqylyqhktT0WaFP2A6qne4neG1qHpyaCb42XhiMrxfa+HYTys4AdX7VZpTSj8bKxWR1LJlOUJ6k4nGdIQ/hRUhDxRZLQ0Mv+gR1NiAIkzZ6yVcET6iyZBFIjFKI5qvjBglBpV7H6shgrXIRVKOu/VCV5pkGQXOa3MwEIgQrH4IAzVX7G8UIaQgiU8MoRdheRKXeYHR2nDohoGfH5OP/ZOwoeXm1+/yn4PUgL6+kwryaUrCJJGYntkQ2FyNlCXRNqTA5z6EgbFYPNuJYPm5gsHCok1mxPgB63AxBpNNVN4omJG9reIlJxggbpCIjqyrNrHcbqDdKRAh63Qy7xHupSIMX85N4Z+PzdPv13Ne7B2GHxpHxlVzY+CSHJJfzi8ED2OA3clh6Gb8e2pv6TJGKbxBFgmJgMVRJoAmJH+poQrJytImpmWHePfkF/pacRs51qAQGCcvDD3XeNelFSpFFr5smSms8sGwXhIDV+UZsPeABsRtP9UxRyVwFG90JiQIBJZNKg0SaEj8pCdMB5oiBiDSIVLpXGOnYgxqRbbJRSN42dykbG+roH7EwKjqlrhDbDJjT2k8xsKiLl9kwUI9lhrhlk1jCIxWrsFt9H+uL9RQ8i/58EtMM6dxvPf2FJOv7GmhvyrKxr56hRJyDO9eya6KHPe0NrA8aaDWybCrXUW+XmD55iCc2TqU1k+e49kX0eHU0mXl+PbA3G/J1YyV1sxsHWFiZQjaM4Wg+U+LDNNpF7u+ew4xpfXxu0h/43b/yA/kGxhnGnRx89+9JfnbG2LJa8tjdF8xGzNpyn9ebvMzuqACbJ8ed95a7uGXfd7P+Uws5vvlCTrnmCzzxwQb89pDrrr4Z6uB9nz0DPnoePDy+X+U9vdzizuLs3+WZdOMV2yQ0B/x6XG16eM2pHDNVzdWWD3+XDx31XfZnNuvuvwG3UT3kuO3S3bkNlXK2NcwNZvIU0HnlU2z85ls56wcPAQkeeO9C/hRrhCufAk5i5X4/41sLzufD3bdz69GnbTbGTy4/lt7UKrq+ogq/OmcoKen/fenXwK/pvG8F+33ycv6Xg+HGx/nNPe2862Xncd25WzHeMF4+9mqxXQTm3nvv5dhjj8U0Te69995X3PaEE074h07oX4ooBMNSBEFTiWBBQwKjFOJIVbsrNYEWSsxiONbzRfMlUhcqcStUDbAAEBDYAjsrsUc8EBYiUF3qy82G2l9KRCiI9UsMV1KpEzhDSmDJd9qYQ3G0kYJSMl4W3zxGNGCcqNQUEd/b/Nr0akIaVBs86hD64+lqtTGENk5M9AnqyljvlbAqITFOaGqKR7Vka4wgVRUhYRpE6TjlziSVeh2jIgk9HRkzCGIaZjEcO76QoFeUFyiydESofERSgOaH6JWAcluMIKZRbNWwcpJSi4U5kEAUy8iKO6b2BK0ZCpPj2NkQEaIaYEYSLZQEMR2z4CMqEj9lYXoBIogwYhqVep3BPWMknAZY9Wo+SDvxz8bR7+v+t1FhXk/lZWsk5h/xsewkMduGXzbJFw0MPSJheiRNF0NEVIoWjuUTSsGe9b3Msnpp1Iu8UOjkoIbVDAcJ/rRhF0ab46Q0j2Yjx5PFmbyr7jna9AI3Dc1nwEtSCiy6y2kyVoWFfZN4dPlMpnQM0Rwr8NDIHJ7KT6PNzvFitoOOmGpK+ePetzI9McgKvZmMEVDyTLJuDE1IvMBgSmaYFqfAswOdrB5tZF5mHZPio/QVuhgeTSDrimTzMW4Yno9phhhGSNJxQUJ7JsfKZe2kO/Is29hKVDbYZWY3IwMpoqKFXu8Sn5zDD3RmNQ6zsq8JQp3Ar32vSfSKhuYrpTwyJeGoxTR7gO/t+nNubzuQOxPzSDcUidseu6V7WJpvZeVwE13NI5ze+TR/GZlNXznFyjWtFCo2xZwDUiCMiHjCZVI8S4NdYiCRZLSsKkYcy2dFthlNRHRaQ7QZWRzhYzWFPFOcyqCXxDBChotxrn/8SKZO62fdpiZaWrLETJ/WeAFLD+grpXjamEY+sFk10kRrMs/UxDCNsRLXrTySmc56mGBW34nNkTxpf2B4i+Wn3vBD7rhava6pL/8MLO92mNDoHqg2szz3lfe74+qbef/qszA/+sohQMuHv8tMvrXN9dPS17F8GNbkPsG0alfLp0eW00Idv/nKZwC4q76PWy/cA7q37H6z4tdT2W+8ZyS3zOnhrJdts8B42QUCZ7/0MDfudvhmy07723E89goK2aErD+avMx/n0Y87W11vz70Ud5FScW6bdRLzuW2Lbc4pbLsMb1vYLgJz4okn0tvbS0tLCyeeeOI2txNCEIbhNte/KSCEMtc7NtIy8TImZj7AzAeIyKga95UaIC2lvES6wCwpxcUsghZo+HGBiKr9TwIN3TMwCiF+2iCydMyiRMiI0NKwCpEaN5KYRdWDRESobvC2+bIoZKHil2W1Fk3TxzvXh+O+j4nmdaJwjJQJTXlYZBip8jBdV+qOpoPvbh4XPZGUaPp4c03keBTxRGNOOKEfTjVuWRgG0tDxGuOUGw10VxGufKeJ7spq+pi6jwBaEKF5IZGpjf0+QsdQzSUrPkQqrcxLaSDAcCV+QqM0NUPipcp4o8+4Q7nVwShH6JWIIK4r8ulLVS0XSoQfQgRm3iOMG0S2UsicUUmlXlDofFUC5U7sxKvGP7ts7LWAefncnWVkW4ExbBImNPSqn3LXVC8jfpxkpsxRncupN0o0GAW6g3rW+s202TkWF9rZO7WRvVq6cSOTgTDB/bk9mJ9cToeeRxeSmO5TCixOaF7IcJik30vzwZnd/GbTnuQqNrmKjZSCimfSkCyRq9g4zQEdep5ZyX5CqeEFOl3pLIGj4Yc6bmBgGQGGFjHqxcgWY1TyNr9kXwaHUiqlLBAMemmEoa7HDTQqpRhunUEs6TJYSCCkINefRE8ECCdkemqI1YlGopiGE/PYo6WHUmByWttT3CwOZnlPC1pjBYTEfCGJMySpNKhUSq9OgiH56ovHknA8ihWLXad1M1yOMyU9QlJ3Obn1WTbWK29JIXSYk+zlpcFWCDQMLcJJeGiaREpoTJRYnW+kOVZgz7pNFFI2i412pmcGWZ1tYpd4H5OMERa7naS1Mhv8Bu5atA+yZJBqy9OQKNE0vUiu4jBl0iCGFjE1OUyDVVS/bxHhRjpT4sP0lVJEUjAz3kfCcGmP5Xhh45aTxZ3YHCNf358WHgLg4Pbf83jPscrUf/3NY9s8Xjj4NSUyP+p/AJjNgjO7uLLqt7F6vgL3fGiLbW+4doTZB6Z53+Eufcts9jx9MU9w6Nj69332jM2IS9f71XmvGvopXzrjc2yqSnBnzNyHWObtcPBnNxv/+CdvYoHRSN/R53DB7s9w1Z1HMG3DtknOdc5Mbui+nXN+9W5u/+zN29wO4KIzNtB3pXp91C/3Zt/yEPt/8UzO5RP0XQkzj4abOk7jsUU/gJcRmLpJJ9NwbpxTrz+Xx/jCFmP/v6/vwak8zsjb63nXiT28NZGFG36ozvHcY4FjaTxnEUM3zOX0FXdvZuKv4YbkSZxTuJsL33s+3HDfK15LDds1Q4smNEOc+PrfElXvBLpOlIwR2hpIQ5WLWZoiLJZAahr2iI89pJQYIdW+UtdAmrgZDbOsyp+kBoV21fARVDd6O6f8MLqryAsSKnVKnTAqkfJ6hGJM7FBRydG40T7Sxptf1kz1MoIgAtMab4SpCYTlVH09VZN9JBFOlSD4gSrvcqsm+NpYYQjaxH4qtXK0KoJANb00jXFvzsR7SITQTGTcIapL4NYbKoHGEcr/UpEYFTl2/UYpROoCQql8MFKiVQ/n1SkSKYVJGDfw0uoPhDOsSvNCC/KdBvFVFpQrYJqE9QmkLnAGXaRQYlJkaapEL6Vhj1TLzapEKaz+qwXq/tujGv6/+Uf9tcLOUrDXBv8K8rIzRez1g14UOCts+vU0LYkCpdBiY6mOhniZxdl2pieHyBglNCL2dtYx6Kd4cv1UBluSHN/6IiNBgivXHE+9XWJNsZF3Ny9kf2c9ByVXUAhtnsrPoM3OognJHWvnMb99NXvEN9LnZ+j10nSXM8xO9rO61EQpsLgjux8jfpxGs8jIUApdkzTESrihQe9IirpUme5Cho199ciSgVlXUeRr1IS4UsW7Jg2xd+NG9kpsoNEo0KAXsAi5Zehg2uws5vSQfi/FqkIzm/IZ3NAgGXepj5dpdIo8+eiuiK4Sjydm4Yc6tuNjGQFeYOAlJG4ksHLq73CxS9IxeYjujQ3IjKBSsFjutnLYjBUc0/Aiw0GS5ZU2lf4VWjzYMxtLDzH0iMP3XsKpTU/xbGkqi/IdbCzUMS09xMK+ScQMn2fLXQwV4yRsj0po0hAr8ce+3dhUV8eaYiPLBlpIxyt0to6wYVMjnmdQtkxGCzEOnbKaFdlm/FBnz+RG4prLRq+BdidLn5tmWa4VQ4tojeUZCRIUAxtTCzmoZS0L/tUfyjcwXvrDHHY7eSlcroz8XQB/x6lw3wNPcC7HvSbH3++nGzhpb/V64aW/5uB5H+LUob6x9XucquSMFYnxNNbPdZzG/qf9BM6D85gE73xgszHnfW8+fz7nMb7eHeOXN719bPnQO67g4D8o4vsEqqpptxufUUlkLW/nPuB/LpvP9JcFgvVedwPmPVfyrsZv8JuvfIaHe77JbjfmmN+oQgD2vfpinvjg9oVFPBtrZP+tLP9J5xzmA4/d/wOYCRTm8J4r/4vPXn4PH7igsln8McCM42+ERSfwgQsqfOCRNfzp4kb4jvLp6dcfB+cyRl62hY8xnmb23j038r3tuoJX4YG5+eabOfXUU7Fte7Plnudx++23c8YZZ+zokG8cTJyg6xpR3ETqoIWSSFOydqgLKnUakQFmXqBXVMf4yDbQ3ABp6pgFoQyKhopZDuIaQirzuBZIRKh8H4EjkHH1WqvaTCID3JQOQpU8CX9Cs0VDR0bjZV1jzSkjqjHPZtXYXzX86xpRXRK3KY6XNggcMVbWpgUqPU0LJM5ISHzZoAoM8Hyl6NQ8NEKArMYRT0wgExrCmhAdUgsGiFR5mrAtdfxMnNKkGG5aw3Alga1K7UJLAJLA0fCSGpFZvZeGwCwEhI6OkCopzCyo8i4RqcCDsEr4NB8iE2LDqqmYtA00oSKvKy0xRR4NgV5UXpoo0PHqDNyMhpXXCOMWmqtuvBbKsUhsL6UjIsYI5078++PKL2+7LuDiL1//uh//zai87MQrwxkBQ5OEaxxerHSxprmBSZksQ8U4Od0mbVV4QXZiawHZMEG/n6I5U2D3TA9TrQEWFydhaiGOHjDsxllS7mB3q5vpxjCT7WF8qbOL08NoGMefpKMTscZt5oXsJHoLKTKOihfuio2wIt/Cz5fux8mzF/JQ32xSdSWyhRjDo0kiX0OWdQbyNviC+AY1LWiclqcjmaW/IQ2R4B17LWLv5HpmW72ECEwREkmNUWnTZmfJBjFOrltAKuURNgpuGjqElflmbDOgP59kpBTDKAmkHjHsxcl5NpqQaEIltlVMiHQIbSi1gTQlI4U4wpBUcmq+EYWC9cV61iWb2OTWE0Q6moh4oncaUzLDzEn1sTTfyppcI8/Gp/JstouOWJYmWwWyZGIVBksJZtcPsEd9N21WjmezXfQWUgz0ZSgHJroWUSlZpGIuU9NDRFJg6iEZq8LMukHekl5FhzPKi9kOlpXaGPbi9JTSHN6ygj43jRfpmFpIdzFDQvfod5M4us+64e3NVvrPQv8NamJ/8BWXUr/31p7Nb4nHCwfzy0Pmc+zC16bG+3+OXc7/tBzFlSyn/H9HcvC8XwHwi8ZWple3+VrpN/yg67/Z/4QjefyHD7Nq6Kf8/v+dz9cvvp0HLho39zfvtZSB5+ewZGYPz6xsp55p/LIlB6g+MWfN7GEJPbS99AAHXfMVTrkmxsP/q/b9ZYu6F9/yV3HhKTNwl1gc/6ejueHsU/jcnx/nN0D9n0ag6oGZiOsqD7MvF3Pr9J8AV/K2D6u+jLFORQeuurmLs1hK35VF9m0cYq+hgVe8Jwt+/Qk+uPudXJhfxNntAwwzn9+d+3L6olQpgFuudbC+cyn1fdfwl2Jmi+1uet9PVZQyMPD8HK7jSj4282K+z6Ps+fHPcODXd7wNyw43ujjrrLPIZrNbLM/n85x11ssr7N5kMAxVKgVjZEYKNaENLdVt3qga8qUuCJI6kakr1QWILBXBrHkhVtZTCVuRxBnySW1wsUcCnAGX9KoisT6PRLePVYiUdyYCESqFQkSSSIfYQICeLSrVRAhkFI0rHVHVMA/jBKfWh6UaPlDepZXhPesYmWVRqdcIYoLAEVSaBV5KEJkQGYJCm8HgIW24s9sU8RAv+1jUjPs1v02tL44mxnvl1HwvtWVSIi0TqQkiXaiSuIRAGuCMBMQGA6xsgFkIMUsRRilCr4TKVG9peGkDLz3+pMOrtyi1O/gJDS0EO1dr+Fk9xRAVGW2aSMtURC0mCE2N0DGQusBPGWMR2JEp8JMGkW0QJtR5hjGd0FTqjBZKNG8ngXmz4NX6X6788rmvSF5q2+zETuwoghhYeUm8V6JnDUoFm/0a1mPqIWXXwgt11hUaeFtmMaYIWF+s5+3tS5mfWsEGr5GUUeG97c9wYGYNBzasZZo9QE7arA4aeHR4BitLLfQHaTxpsKlcx6P9M/jd+t1Y0d/MPs0bOb7tRfaMbeAdmRfI+zYdDVkW5ToYyCeYP2kNmWSZ0NPQBiysQZ1UcwGzoUJl9zKlroD+bJK5qW5O2f05bpj/U/6n6RHmOWvpMnJMN7LMMgrsZRV4q5Pnc42LuaTlcf5ams01vW9nhdfCwakVXNB1P0d3LMV1DYplG29GmaZ0ES8yKFQUKQkjgRCS0FYeyPxuHsZuOfSUj+8ZSLcWMiNpacpxRPNyUlqFtYVGluVaeKxnGiXXZHFvO+vL9WzM13FE63J0EXF000skdZd9k+uI6T4NTpGOZI4ZiQHSRgVdRPQU0wyNJGlozpG2K8xvXo3lBISRxh6pTbxr0otMTw2xpLeVSAoczeeE9HOc0PI8b80sZdRTHiKAGYkBTmxbyIcmPUZzrECdWaLeKjHsJljftzNG+ZVw9yWX03pxYrNlp1bLkGp4vHDw2OvPPPobrn9wv1d9vHOPXMD1nxoZe//bNjXRj33oQSYvuo5De36x2fbLDlBla3fd+yAAMxrPZN8n1mwx7vKnd0xnu/NTqtlr4zmLWGA08t2BD3DiH7tY9VsPe9cc33j0cDrW/Q+ffJu69pG31495YExLEaP9v/hRPuEczvwvPs5zspln3nETf74pPnaMq27u2uyYb62qIbV0sceu2rIs7IO737nV831r+jmgGlbwMtw15cYtln3i+t9v9v62WSeNvb5upappO+R744FJp6z6zVaPuzXssAIjpRzvTj8BGzduJJPZknW9qSCEigGWyuOhedUeKdVeL5ov0UsByV4oNxhEuqDSbGEPq2aLeiUkdEykUEpHZAqIILRVjxchJUHcQHcjQltD6mIsqSzSwUsrX4fmK2+HPVgea66oopDF2P2XtfSwSDWqlLXY4Gry1shuSSIDrILEGFIhA5GuxjXKqsa45nGpxToXJll46Ukkl4/AcBZqzTxrPpmX/95r/hpdG38vq807TQMZt3GbHOV1iUmMPDiDPkZJEa/avbBHVPhAZGmElka5wcCoRErw0QWhpeEnVFy1Mxri9LqEto7M6IpIOmBUJCKKwNDBNAhtgZVXKWeVZoMgJvBjKjHOLKr+M2Y+xE8ZVOqrilcIyW4X4UeY+eo93ol/W+wIMbnyy+e+bkrMTvXl3xd2LsIsC0SoMWra9FQyHDFpBS+MTmKwnGRTfx0/0g6j1cmT9WLEdZdmPYcpAjrMEf5WmEmPm2FjsY7JiQZ64nWEUqPZKRDTfRzhMckcYVWshd2SPRySXMZar4lGo0AxsvlJ93zSppochJHGonUdTGkfotMe4SWzDaEpH6JREspf4/j4QYSIeZSG4/yhezeunH03XXqB5702FpU76XbrGPbitNh53lm3kH3tUUqRxwo/gylCPtzyF+ZaLmt8jYdLu5DUK8zt6CGQymuzYmMLw4U4vmdgmCG+r2MYIdR7lDUTzQnR9QjDDPC7E5AKmDd7LSNunJjhc1/37pQ9EyEk2XycVKLClIYRenJpXuzvIG57LCu0kjIr2Fodj/VMY2Gyk5JvUfJNjp60lHZzlP9dejit6Tx9Qxk0TWIZIZuyGeqsMnHHZWhtPT8LDlB9aQoxOppGOaBOTVgHwhQbvQZCqbF/wzpWFZtZX27A0EL2iasGfqNejGn1A6wuNpFzHYS28/vklRAbHeKuyy4eKyb6xTkfIfvVXTiLbU9or//UCOdeUw/A5KWf3uZ2qW8/Df+tiMUBF87iqCf34Kbgj1SYsdl2e/YuZZcZi5gDfD6/ef+Zh3p+vNn7x6eO8sHd7+SB3TePVv5HMeOdqrLl2YOmseTCHmJ39tC9x4/4y/KZnPbxzzBC/Vb3+5bzOAce/wAfPnzLIASAqx/OsmQmHH/Wn3iUI8aW/6RzDjc+OPSqzvXqBd9lwR0L+EW11K903wnQ/MpBFT9/rosvH/3c2PuXrs/DuZD48SHMOP5GFp4zBb69fcffbgVmn332Yd9990UIwVFHHcW+++479rPXXntx6KGH8ra3vW17h3tjIoqUFyQIIAjRCuoPv5fSCGwxpq44/RUyq8vorqTYolHssIhMjdDWVTlYGCk/R21YS6sqAjpug4mfNnDrDdV7pFGnUqejhcrTYeUkTjYks6KIPpgb86jUjPfCccYbQ+qaKhcTypwv4w7lGU0M7p2k0iBUIlpKVAMC1JepPRwQGwpwBn3sbKjaydgCoxKh+VBs0+k/pImoq0WNHQTjqo+uVwlV1cw/VmImxw38tQQzIQgTliIGUmJnI2L9PkY5RJoqzQ1NIIJIlejpivTpboTuqS9VESry59YZIMHOqrEjU0NIlfgWxCCsxlKLQK2XhipL8xMapWaDcqMiP0KqkjNQREpEckypKTdV+9YIgdQ1Vf4nd37hvBmwo+rL9qgu29pvJ3Zie2EPS9yM+u5IbQqI4iFrCw38acMuRFLwX11P8a7dXiRtVhhwk5R8Ex3JpqCefa1B9rf7+VDDE7yn8RkunHI/e6Q20m6O0mkNs2dyIwenVtBoFPClQbs1ii4i/rf7KL708Elctuxd/HF4D5Z2tzLqxegeyTCQS2KYIQXX5v7eXakE6vll0O5SaY1wfYOU4xL4OkGgY2cq7N7Qwx+yezIcWTxfmkw+dNBQQQIPrp/NuU9+gOuGD+BHwwfxbHkqGyoN/GL4QL49NI+lXhvHJF7CjUwqocmu6V4AMnUlztzlSWa19+NYPrtN6mVmyyCHzV6B0VwmypkUsjHcnE0UCyESLNzQyaTEKO2xHGGkUapYDPdkMM2Q/do2cGDDWvZt3UhrKs/R7UuJ6T4HpNawX3INzYkikRS4oU69UyaueaT0CnNbe4ikwHY8LNtnXtNGiiWbF/vbyRdiJCbliSKNKXUjtDZmGSnFcITPn0d2A6ASmcR1l0f6ZrE+X08+sDm6bjGzzAEqkclgKcEtGw/Ei3QanBJdzSPb/KzshMIz1/6QO65WZvRTb/ghmS8s22z9K5n318/55g4d68N/OWaM/EzEry7+OaLrQj7Wevlmy/cLhtgvGOKk3LcBZbh/JZx+57g357q6V26iCfC/n3sRgFW/VQmy/3d+H39supxdT/n77RweKqu5z9eufZaPfOa9XHTGhrF1D7x3YZW89ABw30/ezl/O2Tx05bH7f8B3Pq4mR+d/t32L8fXrj9tMpdnzsd+z3/v2Y8Edm6tNL1fMXo5z+QT/tc+GLZbf2NM8pgbtfcO6VxxjIrZbgamljy1cuJBjjjmGZDI5ts6yLKZOncrJJ7+2TPSfjqp/YqwDfRDiDAUUO0z8pMD1jDGvRGhreCmNMCYoJgRuWvVxEZHEKkZonlQ9X3TlnfGT6il/aEJYp6P7oPtqAh3pqlTNzoaYxQBjtIKWK4HrjXtLdB3CaLxsTKuqMboOVfLidmbITrfQfNXlODcD4r0CsyBxBn30SqC6z0uNIDaelGFU1LliQ3wgopLRyM5OUp+vKCUmCjc36df6wESaUjyoJpPBWACCjNmUWx1CS6B7EjMfoFeCarNKreoFkoSOTmRqBAlVoucntGogglK9QlunUi/QPeUPMsuq7C2yNEV8DE0liklVwqeXFJHRgmqAgg7xgZDA0Sh0ahhFFaMcWRqaF1FJ6yDBKKkY68hSqlYQ0wi1Ha6w/I/E/Xd0/MuM/K+GvPwjeK2VmH+l+rLTwP/6QuoQ6AJnVKVNCg9iho9jBoyWHXr8Ot5V9xxDYZKFxSns3raJScYIuchhXRBjilGmQYNZ5iBdhsZu1hCjkcHv83uwstTC/MwK9ra7KUUGvXqG5V4bOc9BT/kMjyZ5ojyVMGexJNtJerlBpUFiuILhORp6Q6S8HU6AV1QPmjzPIFexiaRgdssARzQvoxA67BNfR0UaNJl53pFYQkoTLHTrmBEfYGG2Ez/SqTeLZIM4mpAMuwlW5psZScd5ujANTUimJ4dwIwMhJLYZYIqQfes3kEs5LMu24kU6a4YmE22Ko+lQ11VgZCSJEBIGbWRBJ5iiE0Q6k9PVBpNlkygS/PmlOaTrS9hmQLFioYmptMby5COHQuhgVFPgGmMlkqbLfd270xhT/gAv1AlDjVTcZXpsgL27kszLrOeJ4em8sKaTRKZMJTTQhaQ+XqbHr2NybJhnS1PJBQ59bpq3tS2l180wPTbABr+BijTp8zNMzQxzUvMzAIyGCX48uM+/7LP4RsdJV1zK3XXjKW1tLz3Ad669g/Oab2EjB/Cec38CvUtf02Pe9NY/UtnvAAA69lzKp08sU3j2O9Xz+Znqe/Koah6556fvgypxgapxnfR2H+sTox8D4OF7PsXhJ17DWRu3fi3r4x8EBgGY3noZAEvudHjSnrnZdnt+XJWQvfC9b7Dnxz/DySfcx/CfHuaZa3/Ikd//zNh2z6zoZyA1m+bnL8Thk2PL9xoaIHP3EXz7PEVqftI5h/PDRcAuWz2vt9wzmY9NPp6fV23PL8w/Fu+Tl/OBCyo88/Fp8HW1/Df3tHP2U7lt3gf9+r8fuHBNcubf3aaG7SYwX/rSlwCYOnUqp556Ko6z9bznNzvGyrEA4fmYeQ/dVQqAm9EwKgZmQXkk7GxIpV6j2CnR0gJ7WDWnDC0dLVDKg1lSXeP9hEYQ0/BSSmmIDUZVQ7uabGu+xMx5aCVPkZcwAtNUCkiVxIhaqZZlKF8MgKEjbQu/OUnffjZGWU3YI1NQatPGmkBqfoQ0NYQXIWSEZqpyLcONiHRBqcnAKkaEZrW8DChNryeRK4BmKnP/RMXFqH50gmDcD6OPk6IobhFaQhEYXyqSkjQRgUTz1LlrQUSkaxiVkDCm4Sd0pKZK9bRAElrq6aXmK2OnFAKzXC25q6pKZkGOnbeokqzIMlRIgASrKIkM5f0RVe4XWgIvpaF7Ajsb4gwHhI5GZAil9qBIZRRuWSq5E28M/Lv0fNmJf1+UWgUNm2rBLWAN61hawMmTFxLXPHypMxQmqdNK7J1Yx0avUaVZmepJfc0o3x3U86xr80Kpi5PrnuaY5CJ2cRrxpM5AGOPFShcbvQZ63Azrh+sJ8yZ62kMIqf5dH8MalZh5MCoR+SjGYINNfGaWwFMPcPTmCqGv4fsGb5m6ln3T68mGMfaJr8OTOjqSWVYvC90OZln9DIRp3ppcyky7j2Yjx0CQZg9nI6u8FvZOrOdgZx2rgwzPlqfyQP8cQqnRn0/ytq5l9NgZQgSri02sGGkm7VToy6YIVqSwigI/LRneUKfKqTMeWkXgt/gYWkglNCn4NinLxZk0SMYqs2akkSDSaIoX2b2xl6znYIiIkSBBuzlKJAWtsTy7JbsphTYJ3ePp3i4MLSJm+XQ1jhJEGjcsmY9j+Yy4cVaubUWzQ6JI0BLL016fo99NMc0ewJMGlgh4W2oRPx54KwD9bpK/bpqObQYMjyYJyzr7z1nDcJCkFNn0eBly1b4zO7El7r5kXO3oOV+y4dwrOO/vlCLtKJ768X4c8N/jisGH/3IM/IUxH8zRJ6W5+1lFpmo47/4fAYypLndlQ+6b/Cu++c13AjDz01ua6V8Jr0ReaqiVkNXwpP0eDnRVqMA0+zr2ftaExhbWDfWPERmAB5d/g/2uWU5oPsNVN3cpFSb3bdbNu3Krx8me9BB0zgGontOWygvA2e0DcDQcKn7Kx1C+l9BUxPyWax24toc1V5/BRcynYemH+Xv1X+G5v4OV6lj332xy2t8mM/vo58aW7XvyLfzmilccYgw77IE588wzd3SXNw+icEJUsWroqI0UiCVNcpNtrLzES2qElokWqKf0kQnOoCIlRlkqj0VJTbJV0hZ4CaNqmFepX3oFkOCMhuiVEL3ko3kholhB+IEqG4uq5wAQhsrAH0lV1lWDlGob06DY6aD5kNwU4gx6ICXOkI5bbxCaglKbhe5JdFeddxBTqpFRVgpMEAcRKYO77qvtys0GTlsjWnc1raIW21z7dyKqPp1a88qwGjWohYqcSUPgpnTMYohRCjEKPpGlg65KwgJb3UOzpMiNH1fn4qVUYppZBKsQqTSxaqBCZApsFNkQEQi3pk6p30XgKN+LVZTEhkNiQ+AntCqB9NG8CGkI5VmKlLIT2AI7HyIdbcyftBN/H/8sFeYfIS6vVQnY6+mH2Yl/H4RxSRATgIYWQLwbFr4wne7pGT449UmmmCM8np/JrFgfU61Bptv9aES0GVl6gwz3Zvdln/g66vQSXdYwOhHPlqcSouFLncWFSby/6Qn6/AxL860UfJty1sEY1Ql0EytRobI+RWqDIIhBen0AAvwhgTMoGM4kEXZIsqFEGGpIadJRn+WI+qW8VOqgxcrzRGEmw16ChOHSW0kzyRnlcWZiaBHDVpIp1gBL3Q6yQZzdYpvIBnHmOWtZHWT4fvcRBJGOoUX055Ls0tTPqB9nanwIU4S0OHkWViZR8Q2iSD1wiixJYqOg3KwqFqJcDL0iiJyQwUqSQjW5rClWwNAivFDnbV3LWDA0mbRVIe/bjLjKvPyO+hfxpc4edd0EkYYjAjb4DWws1qn1XUuYHeulwxhhIExzX3xPlg61sHG4DjQJEmY1DbI218iqbBP5is2Qm6A9lmVDsZ6kuQf9pRQL3C7yRYcpzSMkDI/J6RHWZRvYPdVDj1+HKULWFBuJ2942Pyv/ydj73LNYeP1PgM3Jw2uN6278Bif/n0Pq+6p66NwjF4yFAHx08lWcdMWllL89k9j5l4+dy92XXM4nrTNZYDQyvX8TJzc43JQ9hfM/8Hm+fcuXXvNzfNf64/j+qpu3IDGgiMxpHEnfvHdTuf8GplSTyBT5+wgAR8Q06jc+wkUT/PWtn3+Avq8dNfY+c7fyv2RPeuhVneNthdM4PXk7+71P3bsFdyxg2oqbOZVXLh8DmH30c5x59WP8lFMAOPoMn7M+dtfY+ktGbucPq34OHL5d57LDBCYMQ6699lruuOMO1q9fj+dt/p9yeHjrBqI3BYSmOtgLDYkPUYQIAux1kkxQT7nVopLUCG319N8oRyoRaygaU2hEBF5aYI9GaIGoRidHBI6akGuh2s8ectHcAK2iyIqoeBCE1aaSGjIIEbpUalCt0WQUIr1QxRdbpiIMQhA5Bn5cEO+PcIZ8IqsWEBBhFiJEXLENP6EhoggvqVFqFxhF9YUhyhAbUiVXQUwQGYp4hRaUOxMke4eQgTeeOAab+2JA9Z6pQdfwE6r5ZGQIRFgle7rqpWMNewjXR+gC0IkMocq3DEGlTscsKl+MlILYkPIT6Z4qyys3GkQGOKOK6ISmwMqFKvHN88cS27RAYufVNRnFCKMSqkhqLGT1lENHRy8FCE0Q1pu4aZVwpvkSHOXH2Yntx+tJYt5oikuNDO0kMjuxLQTJkEIXaK6GWQDdlTi9OgN+Ez/X9ufEzufZP7mG1W4LG70GHM1nebGFmO4zUElyYP1aRsM4o2GctliOlF5mNIyz3m1kRb4ZTUi+uPLd9GeTeGUTwwqxUy6uAGPApLKhgfpuWS3NFUSWUJH1uiC9IaCy2qS8S0RhJI7QJLoVsl/jerrMIRrTBR7Lz6LdyrJPfB2rXaWsdBgjLChNZ7rdzwOju7FMayNCkNBdTBEwEsRZ6rWrErHMBkwt4MmRaYSRxoKFM2mfOUA5ZfLM8GSyroNbNtF6HKL2ClFDiAgEZk4nNqB8jZVmidscMru9n1X9TXg5GztTYc+GTQx7CSJN8OxwF9NTQ5RDk6FKAlsPmJxQT9UXlTvJBw6hFDyZncYL/e14nkEUajw70sVoEKccmuyR3ES7k6Wra4R+N8XT3ZNpThXoLqQZHEgjJThJj3e2vMB6V5U6rSs04IaqIeiAGdDsFDiobjVd1hAbGhoZDhIMeUna7CwZs0JTfOcDsW1h3gUf4Zlrf8jdl1zOSVdcSu/Vq+j6wL3IW074h8fe/7x5fA8YLpU57y338ZPqQ/gaecme9BA/WH8R998M7y+cDigCUzuXx+IfJPZfJzMxdHj4yi19KQ3nvpvH7v8BbS/9Y+c7450Wrc/8eovlB7q/Ypp9HQC3uw/yOU4DFNH6evftfH/fK8CHwc7DaNr4yJgKM5G81K63RmJeCdO/ejP3/eTtNJz7GKz86Fa3+XbzIr693//yC5R/56QJZXZbwydmXszy6/dhNs9tdX299QHcB3/6d8+thh0mMJdddhk33ngjF154IZdccglf+MIXWLt2Lffccw9f/OIXd3S4NxbCEGynakivxiiHEaJcwdowhJFPYrXEKbWoBDIhwR6Jxjwbdi6qPnFT5U52LkSEoHnRWKd5a9hD8wK0fEURl1rH+yAE31epYEEAMkKGqmxMTjw/XUf6PgLAsZGmQbkjQWSA7qmyNRFICED4anwvbSOr6oZRCtGSGl4KNF8QG1JeFD+hKQ9OCYKY6k1j5atNNh0bPK+qvCjSRBAp8uJXVY9q3xmhmRBW9wOckZAgrhQWo6K+TDVfkZ/QMdC8EKPkU2l2EKHEKKvGn2YhJIjp+EkNs1gz7ytiEsTFOAmxBX5Kx8pWCaCuqVCDSJXOqXQ1g0SvwB5y0b0IL63jJwx0L1JPJJMqtUz3lA+mVupn5XaWkL0R8EYjLxPxZlNjrrc+9K8+hf8YOM0lfD2OVgERqTAVM698icU1bVy/eyMfPfhh5sY2sNpr4aYVBxFFGnu2dnNQw2qOSy5isdfGX7JzuGHVfBriZYJIY4/6biKpsWygiVI2RqqhyMyWQdJmhaFKguXFVoyy8mR6aUHoCIyi6r0lQpVIqZdDrKxBKRQQKhU6FJJWM8dqr4UOc4S9E+vxpU4xsun3U0TqW4eXCu00mXlGvBjLh5qZ29zL0S2LMAn5TPOjLPUT/KDnCI5uXMyScgeV0FQxw6EgZbkMu3Hc0CBXcoh8HcODWKoCqQqFXIxShyC5XkOvQJCMsFqUd6UhXSTTPMRwOc5+yTXoQvJsYQpBpDEjPkC/n2J9vp7e0TQ9uTTeJINyaPLkxilEkSAMdKJIEE+4VAKdJqfI032TKZRtWmbmmeoMcWB8JZeufg+aFpGr2GTzSs1xkh5v6VrLslIb60oNlAKLE9sWYoqQlF6mFNksKXew0avnkeFZZL0YfqgzWEgwt7WH1aONlLLhK31c/mNxk/cI59hv56QrLuXW5G28v1BTFS4FA9peg2Ncd+M3aIjH+O7fToaqn/7cI6vlZEdOZsNWmtjX1KDJpZ9x6+1lLl391tfgTP4+Vv3WYxXHQlKloPUufBZ2Xcfwj+fylt8WyLKU02feh9zwLZ65VqkeXz93Fk0bH2Gkdd7YOBON/K8Gq79wBvykZ5vri1duYsrNLSy+/avw9RM4dOXBXLt43t8NN3gljHi3cObH38vC7fxK3WECc+utt3LDDTdw/PHH8+Uvf5nTTz+dGTNmsOeee/K3v/2N8847b0eHfONAE9W44GqX+2p0sIwEouKi9XnERgvY3XG8lmp3eV0QaeAn1ZeEqDaINFyJXpEYxQC97KOVqkpVqHq5iDAaUwuQ48ca67UilcG/prJMPC/hWOPbGDrlRp3QUaljkaHUFjOnysjclIlRUhN1qYEIFTFxBg2EVCVaoBQjMx+q8iwi/LiGMKoBA44FBR0IqwqMHA86sMzx5LEwQuoRQlPnonuSyFR9YLy08qF4SY3IiGMWAyqNJrE+RYx0N6LcZKgEMl+OpbhpgSoFA8ZIkeapfjmqqWU1djpbGSeCgSJQWrUUrhaD7TbZ2MMekSEoNxnE+yKkrkIDdFdiVFPJpBA4IxHsLCHbYdTIxj+qxLzWpGVngthO/LPRlsmzUUsRDtnoAyqu3k9CvF8SG4rwEyY/b92P3Zs7KQUWp01/loxRYobVX/W3JJhj9fG4NotpdcN0xLLkAwdNSBzDxzJC7KY8b+9axrJcK33lFIaIVCLM7nmceIWBTXUkV5hYOXDTStGOTMhPtvDT0NyWpeyZOGaAG+hscut4e2Yxucjh4dE5xHSPA1OreUtyFRVp0qAX+Fjbg6z1mzG0iKn1IzRYJW7pfQu7p3toM56hTS/yP22PANDtqZQnISRGa4k1A43s0dGNoUXkbYswoREkDeJVc39Jd4h08BMgYiBCgdcfZ5XdhOsbxE2fIzpWMNvqY6nXTi6IsUemG1MLKIcmCdOjpTXPxnwdT/dNpi5WJpMoowuJF+pYekh3bz2aFbIq20gQakxpHOao1GImGTkatJC5dd0kzEYcPaDHSZMtO9hmQEz3OTi1kpDZLB5t5y8js6mzysxLrmUwSLEk18YuqT4a7SIvdnfgZW2MpM8uyT5KgcXSv7xxH8T8K/Fh6zB0YN1QP7FLVnLSFfDXg/MceklKbXDJ9oWdTF76aUrpc4jnbthi3dL9P03LI5eT+n4TAPf83xMcPWH9RydftdUx777kco77bYHno7mw+o+A8r2s/Gb/jlzi38UHvnsl9530GTquuZjLqXpkPj++/kdfeozj95jJFS+u5+G9wd41B7uew35dFzK59DNOG+pnitE4Fgrdd2WRQ1cezIcPH+b0eS8/2jiufjjLZw/P8Pmv/57r2VKV+UnnHC5ky+aVAGfefSecoUrBzmu+hRXevRz/5LhidsfVN3Pe4Q8w8PC3tnn8zx6egaeH+FZRUZER4IvHb384wg4TmN7eXvbYYw8AksnkWFPLd77znVx66etXv/hPQY241GwmVcWDSCKlei1cD80PcLIF7JitTPSmTn5mGrMYYWY9pKGhVwK0ojsWMSyCUL2u9l4ZM+HX1B5drypAFsLzkZrqwSKDcDy+GJR5vjaGphHFTIKY8teICPyUrnrORCaaF6G7EUFCV2b4QFJqsxChpG51gNRhZLaBl5aIUMPOCkV8hMDMawRx1aQzciw0TVTDxqIJZv1aQpo2FjYghFDpbf1lipPjiBDMYoSdlYggotRqUmnQEaEiF5VmC81X5n4AP6ahmYpIaJ5ERGIs6lgLFKHxY8qrAiANSPR4iOHs+H3U1DHdtIYf17AKEjOvmmRKQ6BXVFRzZGlQCdFLAZofEcR1NFf1jgliWrXkbCdeDV6JgGyL3LyRlZZXwptFhdmpvvxzMVhM0NKYI+vEcHNqMqa7SrkfnalTmu5Dd4qnig5hWecFo5PJHUMc3LyajFEmlBrPZrvoKabJlmIEjTqjbozd6nvxQh1Ni/ACgycHptKXTWEYIU3JIs2tWfZp3sjMeD+3hfuRH2lARKpflpAapY5aHzLIlxzckkmhov5uFjpsHOEzJJO02jkOSS5nrjXEMl/1eFvltXLHwAHkfAdLC3B0n8WjbfSMpFmfq2eG3Uc+ivGdF47g3bNVWUmzU2CXVB8PbZrFSE+aTekMrfECTfESk9I5NsXT7N7US8G3KXkmlfUOWqh4mF4W+I0hkRQkHI9KYPCX3hmsKjTRU0wzJTXCkJfk6cIUDmxYy+q8mqCe2PUCEYJeN8MDa2eTjLnMb19NbyXNrLoB/rJiJu2JHCNGnOmpITb4jfQGGfa0NwGwb90GptkDJDSXDV4jPV4GNzJYUumgt5JmemqQxcPtLHFbmTZjAE1ELO9rptkukPUdHNtn2swhkqZLr5vmxSWTyfT7/4JP4Rsf9pFnEjx221bXzbvgIzvUoX1r5AVgztPf5KCjDoLHNo4tO/FDB/HAgS9y/VvfwX7XfJgFn5oNQPnbKgXr/QWlwty6cm9OnrmQ3VAEZvimbadsvVpcvRZ2B7o/dSXZuV8FYO/qur7bf07raf/FyRe/n9039FK5/zuIKnGp4fMX7AvA8puu4e70+XDVPhzKtj0ufzlnEbUMyrM2LuXq1HUkKW+x3YUn/HiLZTVc9Nn57LdgEsUr1f8ZecsJiK2U/d145Wrix3Ztsf9nD89w426HcxZ3ceOdH+bsU5Ryk1972TaP+XLscE5sZ2cnPT1KVpoxYwb3338/AE8//TS2be/ocG8sVBWFWgnXGKmIwrGGktL3ka6LrLgwkkOM5ND6hsk820t8WT9mXxZr/SD6QBZRqqgf1xv3jGiaUgkiCZ6vJv5jHe41cD1kFKnEsbDqifF89br2A2P7RJZeJQmS0AYvoRGZArfexE+ZCCnHFJjQVipI4GgqHawi0XxVSmYVJHpZje2nTEJHJ4hpuCltvB9KrZHlxPMIq71zDAP8AFmpID0VSqC7Et2LEFIlj5kFn2S3R2wowMp6GKUQqSnvkJ9S12G4EqNSVa9KIc6QR2zQwypEWLkQzZdYBUmiP8TORcT7I6yNIyrkoKpWCTccKwMzSxFWVpW5iUBCqMiRlQ+xRjz0nIeIJFIoYmMWfIyCT6yvgr6TwLwuuP+Ojq3+vJmxU+HZiZejPZWjOV6kNZPHaw3QK4J4r8RNC7y0RCvomDmdMGuij5jIks76Za38YtE8fvT8Ifz4gSN4YeMkBFAq2Dy/bDLrl7by55W7sHBNF36ok3Rc/Ehj97YempLFsWOvzjfxfK6LuOUTZEKMkuqtpR4EqfCWyAS3bCJLBlpRR4sF6EKy3GsjlAJf6jTreRwh2MvKsYuZJa2VMbWQ6clBpsSHmZ3sZ37zaua09vPBqU9Rp5e4p2dvpjSPMD+1ghYrR0z3qTdL7NOyCaRgWnqYd7U8T8YuU2eVSNkepojQhEQXkrCzgu5CrF+iVwTCCdGEpFixGCnEcX2DJf2t9PTW82J/O4/3TGV2up9WM8v+DetotEu8kJ/EUyNTWTzahhASISRBpFMKLJaPNqPpku5ChjDSqDNK3DewBy+WuugPkxyTeZGjUy+S0soUI5uUXiapu7y3/mn2ia8lpvs0WwXcwCBheywttPNcdjKmqb4THT3A0EO6EqMs7m1nZa4Za1DHzewsSd4a0tFsnKNVJ8RaGdmhj6c46YpLmdLYwvvOj/jV9WcBcMO1ytvkHFbhAV11kx8rBZuAicuO05NMf8uX6ZMnsmx+J9GGDImLJ/GnjvVq27/8gWvvbGfeBR/hpCsuJXb+SmLnrxzb//2F0+lfrh66PXnx05xx3Od5rXHkU+OekMyiL/DkJKWl3DH1q1y7WEkon79SzcO+/eQ3sXfN0Tfv3YBSiX5+80Yev7+Owc7DOCn3bTZpu/CJuz9K4ryLAbjtk5v3oTni1Hu2OIdC7yun5H3MPGOz97uuHE8t++7ABxAfuBfYvp43oNSfmVcq4nX2KTdxw7UjfH7mRv5wwKbt2h9ehQLznve8hwceeIADDzyQT3ziE3zgAx/gxz/+MevXr+eCCy7Y0eHeeAgChGFUJ+i1kqnqZN20FJkBkGFVmakSnUJJNWaslXzVlJKaiqNrSF0lhmGO33bh+VBxq6lnoTLtR3LzLvCaUKcgVI8aWVM7aqsD8BOqw7yQkJ1mQATJnmoPmrg21uzRbRTUrQwptOtIXcdPgl5hzIujmkyCl9KJDFV2JnWBJoQ6I6EpcmcYiljpepVs1WKd1bVpuRIiSiACVR4mAlWupZcDhB8hNaEUHq3a40UHZzjAKIXVpqAq1lhEgtDWlBoTSjBVLLPUwcqFxFYNIQolZCSRUajIUrFMaNURxgShLXCGq8lmCYNaErVRCtGLPpoXIG0dzQsJHZ3QMdS5mhqBscP/PXbiNcJd9Sdu9v7kkXv+JefxeuN660P/lF4wW1NfvM88v7MXzOuIbCVGOlOhPZ5jtDVGcbAepOq1FRkqat8ZUWqIlwS33iC1IaLcFCMywB6RDGsxvHQJsibEQ6Qp0fSIM/d+mkOSy0hpFSwiNoUZTEImGTkGwgTLvTYWFiazS10/oy0x3LoMIgIrK7Fy6gFObo7EsgM8X4Okz8z2AdYX65kd7yUrYyzLtfIj/zCG3ARtTp4zmh7lsNgGDottQBeCFX6MZ8vTeGdyMatTGTb4jUw1h3lvxzP8YWB3uoxhmvUcOpJ86PDhlr/w17rp2HrAYJCiFFgUfJu46WFoIS1OgfVGPel0mVKTg+YLvExEXV2RUsUiCHSa6/M4RkBoa7S09DFUSdAezxFEOouKnbiRwaPrp1PJ26QbimhC0lU/yi6ZPvZNrqPNzrJQ66QxVmKfug08OjCDZ0e66MuneKm3jcHJSfZLr6VOL/FCqYu45pExSsR1l5uH5rO+WM/BDatZV2mgIVaiN58iH9g8u24yMoK1hQZGSjHKrsWTPZMRQtIcK7Buepkg2ElgtoVMOIfT5n6es/NbNkP/bscaDipcwv03M5a8BXBUuIhFC1cBcNNJS7kd8LpX8PYvnL/Z/j/5yP4cdtbxHHTQ3uzy2EYiMjx66gfH1jsnf5LJ+8E5F9Tz0cnjCWQ1vGdpCxu/fCTylhP45W19BPNfm2s+prSKHLcCsPTRX9L9qW+MrTtw06qx1+6SNM6hZ1P5640AXHTpMj566xPcdtpZgDL735q8jUMWH8XJGZ2ulbtyNd/lO/sewyef/SMf/+62CUWtueU/ghqpvOveBzn5hCO3WH/2xdP5+QTP/sQY5afqxpPczh+Yy7cv+AgXuZfAU9t37B1WYK666iouvlixulNPPZW//OUvfOxjH+POO+/kqqu2Xkf4poGuqwl67fXEZbquJu6bba+NbT+mmNTg+9X+KBoynSBor6e0SxPZuQ2UptdTmllPYdcGcvu0Ud6jk7C9AWIOwjQRtlU1y2tjpnR0XflNqv1WhKV8MJqvEtC0QKJV/fQiVE/XKnWCoV1NhndTZMQqKFJUKyeTQpEXzYdii47baOGlTET1MoO4qI4nFWkS1X4voMiZaYzfA10bv2dRCOUKTm+JIK6rVDRTNc+UmiqhiGxVRmaUIsxiSKLXwygGaL4iIUFCw0+pppd+Sset0wniuopBBoxCSGz1MOSLKvpaEyrwIIyg4pLa4OIMSuWp8SL146uSOqOsYpyFVMqLCKoXrAmCmK7M/zvFl3867qo/cexnR9btxCtjZ+nYvwZFz2Jjvg5DC5UC0OHh1qu/n7orlScxAqkJ8tOhNDmgUq+R7I5oXOyTWeuRWaExPJpExkLMhEddR44v7/VbDksuxRE+v8/txZ+Ku3HfyN5cs/5ovtt/JPdl96JRL3B03SL2Ta+jNZ2n1BUQmVBuEfhJ1Z/LyOnEHQ+hS3QjIpAa7bEchdDhpUIHyweameIM84G2v3F03YsMh0lGI428FNhCI6xOHyKgWS9Sp5eYYkgOcNZQ9G1+m9ubgTCNJiJ2jW3i6fJ0dF0yK97P6nITo5UYccMj5zo8PzgJNzQIQg0v0PHafUZ3C5C2ZHQ0ge8ZRIFGoWITRhqndi3gPS3PcVTrMmYl+ymGFl3OMOsL9fi+TjxTZkbDIPu1beDQ5pUcmFpNJTLZJ76W01ufojM+CkC9XcLRAwpFhzDQyZhlnhidwdOFaQSRxkynj2YjT49Xx6pcEwXPpsEoABBIDT/QGXHjNDfkmNQyShhp+KGOWzbxfYP6ZAlDRExrHSKyd3oqt4ajHvrsZu8X3bhhizjluy+5nLsvuZx1Q/0svuE+Bj/54hh5qfWQWT/nm/Qe+Wt+9sQR5Mt5AE563xfYGlrFPZu9n3fHTG6888Psd83ysWW3JlVZ24I7FnDXvQ8CcFP2lFd5ldvGMaVVWyzTfaW6vH+egb1rjvMPH+/3ctXlqtnkZX/9byp7f47jflvg2K+fCID4wL1smLkEgOQ3fsTGL399i7Ebzn2Mh36htp+oogD87cT1m73/1r3/TXbuVzdb/tG1Mzh9xd1j7w/5XoXb5dIx8jJ9l6dpe+kBAL77W6Wm/Nc+44EC13Pd5scoGhwwehnFKzfRPeVHHCsf2eKct4V/+BHzQQcdxEEHbX+N4hsaQqiJeK0XTE1FqUYYj5d6VSfqtY70gQTTVMpNrczKtpCmgd/ViNtojRnQa00lI7OmMIBbZ+DWJbGaYsQ25BCFEiIQoAvk2ORalbOJmipQa7ZZ9okPhBTbdQIHzBLYo7La+BFigxLPU80ptVAS75EUOzTMgiS1MRw7r8BR56L5yjNTKzczShJtJI+kmogWheMkD8aVl7EyMw2IkFGE3jdKQgiKXQlC20AKsLOaauxW9byo15FSZQwNL2niJ5ViFCYEVlGNbeXU9okRH3O4hDZSQJZK1bIxDSEEUkpFJA0Dc7CE0Wqju6qJpl4JsPvLSFsnMnVCW8eopqEJP4SEqZLaCgFaySfI2GNx0jvx+mJHSUlt+38XVeb1UmF2Epd/LU6atpDHinN5dMVMkuky9Y15sq0WWqATG4jQiqpXmK+CrjBHdGWw79RI9EBoGZTaJelUiTChceK0F6hEJtOtfvKRwxS9xHkNC1gRmKwstTAn08f+yTU06zl+l92LZwe7+MDkJzl38sP8WD+Eda31FHIOZo9FbED5S7KjcSgYRAMWG9bE2TQzQ2KGS8Ysc1DnWg5OrMCTOqNRnBnmEOsCZcrvDnyeLU9lv/hqitJgQ1DHguI0FpU76bSGKQcma8uNtFuj1OklKpFJJDVS8QoLc53kPAdTD/Eig+FCHMfyiRBkc3HVWNMJkKYgCjTwNTAiTCfAMQNsI+C29fvTlshxSMNKTBHSZBToMEegBT4++UHq9BJp4bI+qCdCI6WVWVjck8EgRa+bwRDqb/8hDStZXW5mpdPEbi29rC/Ws2akkf3aNnBy4wKGwiTd1V4unYlRIgSz7F5SeoVGs4jZHJLUKzyf66IUmOxbt4FKZPLn7l0YycfJ2BUKvs1QMY7m7vw+2RFMbG5Z86Vk5a84fv17xiKOa9uc8M1zee+VKur350c08fu7Opi2/7bH7pMnAtDxwH4MoySVs0+5ib5r7uStN/6CRxY/OBYoMBG//+hfWXBjI9MnjnXNnbR+6tUTm9wPboX/3XxZctk7wJ7Hi9/9DR8Fhpqe46JLz+XgtXUAdKUTFPPH0L+8m+Q3fjS23/m/dXjbgR/G/OHtNHx82yVhR5x6D8PXz9+qApM96SE4epdt7nucvXkqwK4r2+EqOOiar3Ch/STdU/bnkMtzfPd9yox/W0HFPe/Dd7lu5ZUsv3+fLcacqMTcNGX1No/9cmwXgbn33nu3e8ATTvjHc7v/VRCmqTwSmupPokq2GC8bA+Wx0KtlXJG2WdwymhgjMTLuUJmUptRqYudUqpedCzEKIVooCWMqRUuvRBjFEKkJKvU6Xrqe1CoDvT+L9DyEbU8oLdPGzPuAStDyfGJ9ZbxUgsBRRnc/psiLMxJVSYkqpcp36mjVMDSj6teyq8003XoTzZcECR0/rr5UjZIkNhJV44l1dQ5aNY1MqypSGuPpabX6LKEhqiVx+kCWVNmn3JWm1GJQadCx8uPyhlJUdEJT9WeRuion0wKID6imnHrBVU0+g3CsyaeMqgQzDMebe05IcBO5Ism1FuX2GH5SpcWZ/uYxltJUZXjS0JQSIyGyNMJGRwUo7Kwge0PjrvoTt5vEXPzl69/QPpV/hMT8I0RlZxnZ64dyaBEzfJoa82ScCqPlGGgSLyMwykL1BfOUN9EZgNSGCDcNlUZBpUHDT4LfWWF6/RDTEkNkgxjtVpYVXhs/XPtWjm5fQpORp8/PkPVjpI2K8q6g8976p9g7sZ7vLDuSwzpXcljTCu4Pd2WDrxN0QHHARoQgXR1iIVEywFplEy5P8kexK5+e+ycajQLXbDwaQ4Sc0PI8Nw3Nx9YCDkiuRiPCFCEvVSZxaHwlTxVn8KtVe7JrSx+/zc9lcDTJjMwg2TCGIwJm2b340mCgT4UBSCkQQpItO5TztvJbhgaWHVAZddCcAN0MaWvOEjd9ukfThKGGZQQEkcZJnQvZN7aWXOSw2mvh0eGZHNawAlvzGQ3j6lhARZo4wqcY2cyJ9fDI6GyWj7TQt6keq88gjElEKAgyAYkODw1JR8caustpitVo5FE/TrOVZ06yhydHprHCbaNOLzHZHqLBKNDt1zM1PkQucMjoZTQkUzPDTE6PMFBOsqy3lUSqgj28k8BsC30PXAhzt+0tqXlSyt+eyZTGFqZccSnrhjZPAlt/wN94NPHOHTpu91ELcK7/JDdHymOTnftVMou+QOvbFnLcUd/i7ncm+aR1Jj962xT+cDe83zsezvC5/+ZJTG2bC1vpZ9K721HUr9xi8VbxxKe+yEHXfGWL5dMHPwmTHgUUednbO4S9f/MCAGunF6GaI3DyCUfCCXDn946n9ahv8cM/n8c733kif+Q09j/tJ5uN2XpxgsHOw8hyHJlFW1emoNro8gfq9VkblwLTeXLSDI5etO3rWHrRcuZ9bw3d7Xdstvz05O1jBAZUH5hPXP/7LfY/YPQynqr7El866XOU8y4XXHTttg82Ads1RTvxxBM3e1972v3yZaAaXb5poWvjpUO1cqlIVpPJqpNzWS2noqpIyGqK2MtKq0pT6wjiGnYuUhG+1S8t24+UwT6myFHoKJ+HXomwcyrCtzAtSTICfTinTP0T73UtkSwMERUPGbPRSh6JXpNKo0lkCJxR1ayy0KGrhpslie4rUqB6saiysEqDOgcRRNgjPqVWVZYW2Eqx8VOCpueL1SCDCedQi3WWkfIFyaqBPoxUB2NNV+lpmkAEIaJQIrbKJ7beIMjEiBx9jDAZ5ZqfRfWsqfXMMUcraKMFRVhqBE4IRRShekyt+vsIx97LSIUiCMPA6M9iJUyK7ZZKL8s4aN64khaZGlr13yCujzWuFJG6J4mecVPsTrwxsSMk5vXEa5FCNpGIbA+Zea0Ulp0k5vXBsyNdDAT1CCGJmz6GHhImIsK6AKlZ1b8z4DZFSENiFlTDy/TaiHKThpWVlDXJUCVBbzHNgc1reS7XxWPBDIYKcR4ZmMWxrYvJGCU+0/EHFlYm87uhPVmbbeCEzhfpsEbQtIjluRZIq5K2Kc2qXn1l0IqV8njb1FU0WEXarVF+2bYvPSuakQWL9V4jfxzanU25NCnb47cDezI72c9bU8to0Av4UqfLGuLB7K7cP7gbAO+ftYAGo0C+3mG32ZtICA9P6nQH9SwoTWPEj0MoGFzTAKHAmVTANFTcWGOmiK0HhIGGMCNkqBHpkq7UKBmzTMLwCKTGSCXGYCHBynILM+1e2owsk40R9o2tZZZRoCRhU5gkkur7+unyNJ7PddFkFxj24vSV0vihBr4guQFCW8PKSSqNJos727hk9n2ktQo/GziYLyx8N5YVUMjG0AYswkREvKXIpkKGeU0babby5COHET/BwtFOmpwCYUwQISgFFl6oM1qKoRsRhVwM2bazLvmV8H+LvsbZU8bfz7vgI6w6s4f/2u2ksb91h6w7imeuVepLrQdKDZOfegsvTwL+ftPjHHbW8Zstm+h/qeFni0/hg7vfCSgSk9WXkgnnMO+Cj3DmWd8dP6fjruWGvp9x8C+uIjnz1aXKtV6coO9KNbfYGnmZiD3Oexf58z/EMwd8klsmX8Q3Vz7Kc4e30Hz4hZz/W4dvA4Vf3g98h31eXM/Xp/6E85jE5dO+xKPcvsV44bm/Q7/+uFc85gJOYS4vctndX2fSVctYcPZsTrriUp5vOp11Q/0cx+jYtrUEMkCVuS1TBMY59GxOT255/Msuvoi+c4scsECpRjXl5X/+vI7v963hmY9P48HbzFc8v4nYLgITReP/8f785z/zuc99jiuvvHKsdOyJJ57gkksu4corr9zuA78hYehQ8aulYcHm6zx/3JcSBiqtLBy/LzUCB+C311Fp1HFGQqrOd2JDEbEBH+EpcuFmNNLrA8xCgAiqzcUqEVoQUXYsSpMTJPMlhOersaWqmd4shSwIEIGBFAJzuIwIJPkpNqDStypNOuUWSaxPEEhFXkQIzqhK88qlDSJD4GUMVY8tITRVEpjmg1GW6H2j6jrlhFKxWkPLSBsnMjVzv6h+pKo9dWS1v41w1XJjaBQA27LU/a6RswnKyniIwgREEhn44+lwhqGOHUmIar+rmnknQEYSEYbYK/vRvCa8tEkQ1zEE6BXVJFMLpAoTSCrfjxSg+xF6wUMreYTViPCd2Bwr3nobs/5y+msy1mvhadleEvNGV2Em4p9d/vVqSYz3medfh7P594Af6pTXp7CGNbLzInZt6qMvnoGcie4q76FegUoLSCei3KyjeZLcdA0RgpUVmHbA7Ew/zw9OIm1UyBkuJzU/w73mPpzSvIC3xQZZ5JkMhClmWP1sTDawYriJvwzOZK/6TaRsj4Jn88fVu3LU1OVsLNWR9Rw0O6SzcZQV2WYmp3QyehlLDxGhQO+z+NWaPbGNkJgZMK9xPW/PLKZBL3DP6DxGgzgd9igZvYwpQoq+TczwcTRfmfNDi9DWWOxN4mdrD2RqZpiU4ZL1Hcykhx9ZOAMm5YQDdRWEEZEtxnjG7cQvmuixqmeoZJDzHNqcHOXAxDYC9mrsxhAhMd3nwdxu9FbSLBloZa/WTSQNj42lOoKo6pPUIuamuzG1kP5KiqFKgsFSnHwhBk5EfqpOrF89sGp4yUd/Ls0VFx7PPs0b+euaGQSDDq4pEa5Gcr2GURIUOzP0tiX4w0iKTKrEsV1LqDdVWMDykZYx4jRUjjOcTwBKbTK6bVKLKqzf5qflPxvnD8zl282bP+Kf0tjCM3v/kOu5d6yEDB7g/RNKx2plZLWUsCNMj4d8i2lX/RcA8d/tyiPH3bcFiTnkFyqCuHJzgkUwRl5qOHDTKpa2zaH1qC17mGz8yXGcc94Hue38zzH76Of+ofKxl6MWofzZwmnc2/M+AJ454JPMe+o7wCeBQ3j20qf5/eccAJ6+/Sx21WHeLUcxwCLOe2ISAI/evOurOv7StvH7NClaRsvsDp6ea/O16rJnrv0hfO7Uzfa5/2ZFOL59+3z2X6Tmc/vzC066YnZVpdoc+vXH8dP9/oczF4yXvl17Zzu3ffgk1t68iN9ccfkW+2wLO2ziP//88/nOd77DMcccQzqdJp1Oc8wxx3DNNde8uZtYAmFTWhnoDWNccYHxSbNpTVhWnXhXG1NKKdVPOkGpw0ELoFKn4ydVHLEzFGAOl9DLPoken/oVHvaQizlcxhwsYBR99LKaiKt4Y4nfllEhAMGEdDLfR3pKlZFBCJ6PcD2EH6KXfYyyxM0ISi0akQnOgFBNGkuKvPhJFaMsNUHdKh+jEhEZQkUXexF2LiI0BX5CUL9wVJGEGnGb6H2J5DipqcVNgyJ6vjeu2kSqD44MI3UNQVVRqbjIfAEqLrJYRno+0q/GSkfV7V1PXW8QjJfx1c7B88d/N5pQP7XzqZ6bDCPwfcy1/cQ25LFGPYK4TpAw0P2I0NHx0+o/n4gkZsHHHCii92cRIzlVOrcT/1Z4Pfq1vBl6wGwPvM88v92EZEe2/U/FhvVNRPEQKwfZ0TjPdXfS2FBA6hIvLQktlfKou4LYepNEj6TcKvBnlyl3BGT38DljzlNk/Rhlz8SNDN5evwhLhAxWEtzS+xY+sOrdXLj8vVy24p3cOngQA16K3Zt6OahxDToRb2tbytHtS2jN5Bn24jTaRTJWhcjVybs2/bkkL/Z3cOPC+fQ+Ngl7UCPeKyiuzuAGOqd2PcMu8V5eqkwikhoZo4wbGky2BlnvNrCu1MChzSuZlepndbmZUmgxJ9bNc6WpPDS0Cxm7Qspw6aukeHrpNGIxD6ehQmWST6KhzJyWPlLpMlIKEraHHg9ASAwzpKkthyYkawuNNMcKWFpAIbB4ZrCLYS/BJHuExf1tBE/V80x3F6vzjVhaQNZ18COdVidPXPdYm29gyWAr5UD9rZ8/bTVH7raUoN1DL0v8OPQdYKKXA4qPNfN072QCX5Ul2/06ekVQ6lClf0FMYtVX1NMuYNSPs6bczKGNKxFCUgkNjm18kTDSVLu2hSmSj8ZpflbiJ3aWkO0ojvttgZOuuJT3F07n5JkLiZ2/coy8PD1Xte2YaPj/8o/+tF3jPnrqB7eqxPwlN+7PuOyiRi67qHHs/X0HfhiA/uXd3Hb+zUC1meNrjKVtx/O5tWfx9tNVnX/j4D44h57NL49RD99OPHWYH65969j2j333JpYbT7HceIq3nThA0/Stqzo11Sc893c89IsTeb6xmecbm8fWT7z2lslLxl5/6aqhsXv+8Lk3bTHu+vgHufuSy/naaeNhDJ+68Rc8kbyCfR7esuHnPg/3b6ECLb79q1xz9qmb+Z62Bztc5b9q1Srq6uq2WJ7JZFi7du2ODveGQmgb4NhQrBpEaiVkNXWhNpnXzc0bS9aQTlKenEFWy8nceg17JCI2GGAUA6Sugy7QK8rzonkhwqsur40Xge5FEEmCpImZiCGiaFyBiTTQq3HNRtUTE4SIsosWRsT6DELbITdVQ6vN8YWq7FLNLiVeUmC4IMqS0BR4KVXGBhDFlPejfnkFbSSnyrE0Dem56lpr5XRhNNbkc7N7NTGtTdcmNN0Uapxqg05VhjjBeC8E0o9U+VkUKcJSTTgTujbea6amumhizMAvPR9hmZunpFVRI03a4AjWqIHZZyPjNlLT0NwQEURoZR9RdsdVoCrJQt/5hbMTr4x/F/IyEX9PjdlJXLYPqeYiRdfCLErs1Q4icMjbSfQZFaKkT7jWwagIrBEVoBJaAiSEBQM947Pf1HVsdOvRkFhGyFRnkOEgiSYk64YaOGrqcga9BIe0rqbJzNNs5AmlRqNR4O7BfSn4Nu9oXsygn2Jaeog9kptYUmzHMXy0gsFoLs7MtgFKvkUupwy/zqBEd8Ee1ijJDA/Uz2FGcoCpzhC5yOFnKw6gs26UF60ufKmTMStMtgbxTYONXgOtZpZ8FGPX2Cam2IMsLk3C1gKG3DhTJg8CYOsBNIAQks74KIHUybkOg4UEYcEk2VykMVEibVfoLyZxfYOmZJH+fJIw0ihmHYZyCV5Kt/KWjnU8dYC6Py2xPDPigwyWk2wcVkrMhmIdU1PDrJGN9P6tHaMkWHyoZI/GHmRFxyyCWYrIT9MYmJeg8aWATbvGkZ5GYqNOvE9SaRQqFEcDMyco52z0eMDIcJKHvJmk4xXceoO05VIJTW7rOYDBl5rQy6pFQP1KD2vEJZi0w8+L/yOwh38Qw0Q8OuUB2g/fjR6AApzXPY2r91bbfP72q8dUgL/d+wsuNGfwpXAO+3EnCziFv336en7WwBZKCygVhl+q18vmdzKxQwXA3MphAIQbl3P2KTdtZjLff5HLsy8bb3LpZ8w+RU2ufsqOqy81IvFKKP+/+/nNGUvg20NbrJv/51t57G3vB6Ch+4MMo5SMb5yxgYVfU5HJf126lMv++t8AY/dtIll5OcJzf8d8fgfAVVc/BrOB6HdbbKcvfC9fO24NAEej7sHk0s9YgPodfX6uzf6LXADuvdGi+NbEFmM8d/h4FPaSmT3surKdi4Zf2ua5vRJ2mMDsv//+fOpTn+JnP/sZra2tAPT19fGZz3yGAw444FWdxBsF0tSQlolwvbHJNIRqglwjKuFEJSAcM7ALO4bbWYef0jELqnTMHg0RkWoQqbshbkuM0FHpY2ZBTZ6FbRI5huoRAwRxvToxhyCmESUc9FyhOqmO1KTeDZC2rY4bBGPNMQVg5F3ivTqab+DHlQojdfXHN7TVuJEJrq/jxzQCR0Vqllp1pFA9ChpfLGJsGBzz+oyViUUTVJYaeZER0qs23qzdH9MYJ31+MBZFLamWokUaWNU+MjJSCWcTiWDtuFVPjYzCsZK0zVBVv4QQ48epEaqasb9a+ic1HUIPKhW0QrXGUtNgQnmkrCkuVbIqJ6zbidcer2Uk8r/C0P/vSF5q2ElS/nFMqRuhaERkrQ6sUYgsiPfBUIfO9Kn95Oodik82YY9AsUPiZcBv82lqyXH61AUsKbazOt/ImoFGwlDj3r69WDXQxJTGYSY3jNBmZ4npHqYIiWsenjSYbKoJz+TYCG9tXspL7iR6vTSWFrAgO4VZyX7azVEWTW5HCPW3silWIGoRDDgBI60xhKchkz7GgMmLz0yjd06K5CSX9e5c5neuZma8nzXlZvZMbKAtneW50hSeHp7C+9oX0GZk6Q0y1GklIqmxd2I9v+rfhxE3TktcRduWAotICgqezepCE36oU/JNiqMxEqtNzLaQaekhuosZyp5JflOaQr1DPO5iGQElAe6oQ/dwjIHRJNNbhmiP51iVbeKpDVMINiSILEmYLjDqx2iP5/jQ5Mf5yrL3kNioMbSikZ54kV1mb2KZ6KDjAZ3MSjDKEaUmHX2jjj0rX/VpCtw6iVES6BWwhyVaYCKkSXFyiG8HjOTj/HV0BrbjUyraRL5GepNGep0q1Y50QaXZQRqvzjPxn4Qjf7sXJF/i1uRtPMnFXPbX/6aYP4avnfZZ7r7kco77bYGrF34d5s0gqy/lOD9Gnwi2Od6pG27+/+ydd5xcZb3/38+p03e2l2Q3HQIJIaRQA9K7XgRBEFEExYICoqIoXq+KiIgo2PFKEZHmtYFIb0JogQSSkEL6JpvtO7PTT3t+fzwzs7sQIEH4Ee/N5/Xa186ceebMOWfmzDyf8/1+Ph9u/PR8+MTkNxwzGvumvs1q/sIZP1GhjZUqz903zKDUoSb0l2ZW8/3f7aZu334V3z/9Eo7+2Pa/txUNzO+f+wvbsrzqXd0F08GffRdwOBPXnU1x3dmcWrqQJRY8Ua50fBq4+b9bOKhcJFry/WOq61iw6BKOuGv2mPW+GK7nhdzVPDnlOH7+of/E3kM5ASxCZc1UcHAAiy7ejXnXjDz3+Huy/OnEGFyu7KXPzI60kN8auw1+MpVl/z1ilbyhe5kiMsvOofUnIxeC29fswVF//Fi1gtX5nx10/g5SlymjsNHOctuDHSYwN9xwAx/84Afp6Oigvb1dbURnJ9OmTeMvf/nLjq5up4IIJEFNBL1QGtM+NGZyLV5/FUWEQvgttZSSJlbKU3qWsiAcoYIgS/UhvLCGF1buM+FeH2loeDW20sCIMoEyBFppZOLsNIYJ9+oqV8YwRulw/LJo3a/KTnAl2nAe2/Ew8mFKdTbFWh3fUleQoJw/IMCNKvG6GwUjD/EtPpEtRcyedJWkVc0afFURwhCq6dBnTCaOEGJUVaR8fDxPkS3bHiEfcuRx6biKEJWDPis5M8LQkUHFPKH8xRRIlYHj+yMaHFHeFsoVnwpxKetx1HpGESa/XMERGrJYriZ5pZH8msr2Vyo8u/Cu4r3Oc/lXSMz/ZuKyC+8cLN2jJppm4z4NJF+0VCtvQZJYarHObQFdQodLoR3wBeiSULzEMeNXMOhFeam/DU1InIEQIuaxpreB9voUTeEMRd8k44fod2JEdYdmc5hl+RYeKOxJSPf4YMOLvFIaxz+6Z9I1nGBGUzdh3WVVtplIwmFWcxfL+1ooeCaW5hMxHZKxPGkhaYjnGMqHyQZRhKPRs6GOO7Jz0PWAfcdt4unByWTcEHNjG+j1EjzavRsR02FNsRlCoBHQpGf5fd8BbMrUMVy0yeZC1I7L4wQGmpCUfIOugRo2u7VM7+jG0n0amobpd5I4eZtFW9vJZ22CoqFc0gKBJiQRyyXcMsSUmn6a7Qyu1GkyM/S6cWzDQ9cDHFsirYDN3bXU12d5X3IVIeESHZ9hKBHCjrikSyH2rO2hbmae5+MTkF0hGhZDZgJEugT5iTp+WAKqO0FzQXOVGU5oUL2PXkhHNkmSsQJRy6HGKrDCayEwBU7cplCv4UZVmLTmgt7/xhPt/8tYaj7NuOJ+LNs6F+Jq2ZnZM7gAyGVGJuUHd+/Fwu6PcF9wJrhrubMXaIJPXtrM0FF/ZOaj3+S7+/2Oq14e0dLc62ff8vWXhR6vVmFe+sy5cM77Xzfm7o57ef+mkbanSzOr+Wzzd1lz/+kUF0+g7nNL397OvwYfeDHHE1NVKOTEb7jopyp24s++i2c2wH3/1c8PZy1g9qzP8vuXfwmjInS+NLVn1Jraq7fmFNRFjRfD9XxK+wR7L+rjn6cdD6vga5coC+lX//Rzpp18PnWfewpQpOZLH3a5ZTHVNrpvz7Th9qs4s0ygHvidSXH2V3mgfEH41k8qYnMyYy2wrzl1GVOv+w65xEg15onhfWiMTAGU+1vhJ1PHtAduL3aYwEydOpWXX36ZBx98kJUrVwKwxx57cOSRR44Rsv9bIgA3YaENmVAslduiUJNczxsRj4+qwghdI6hPUGiNYA+5aI5PYOnlPBWjnCIfoBdVNUYEKmXeixpornLekqayVJYVF2IJesFT9sb1Zd1NxbYYfczEX5hm1RlNaKoVS+SL6H5AOO+gF6MU6w0coWHmFXkJTCjVCYQPyTU+8TVZtEwe4ZarPJ43VrhfIU4VVAIrQb2uVa5o+Krtq7JNGAYyHiEIWfgJC99ULV5GzkP4AVrWQRRLiFyh6iQmK9/xFV1L5XblmJeJ24hlcrmVTYzS5GhipJoyGrKcUKmJkRY1Pxhpc/NHrb+cZ7ML20b34X+l5ZH/2OHnvdfEZTTeDol5N8nLqecd+4aP3XX9fe/a6+7Cu4MX13ag2WHVrjXTQ8/paK7ATkGo26BUF6ivLVMiQz52vERLcpisb3Pf2j0oZctXncI+0tOY2tRPTzZOIAWm5rOo2EGqEGJW41Z63AQHxtfgxHTWl5pYUWzDlxphw0UIyYud45ncNMCarU28ZI1jn7bN1EXz+IFW1YYkrBLpXJhsySKbCmP1GnhhCTY4PSrH5InCVHYf18OBDet4dGg6fYUYM+u2Mje2gfnhDQRSsNxp44/peQyWoiqVvmjilQycQE03LM2jgEkwZGMOadRNyzM5NsB9q/dERDw8x8BNhYg25Ug2pvmP8S+xX2Qt9VqBOs0nFWiEREAAZAKTGs0lHZj4dYI6zaEoNfLS4M7Uvty9diY9bg3NZpojOlazf2wtv928gDXrWqgNFdCEZO/2zQw0RunvGYfmqyBoN21jNBYpZcKEBgRWWoUi+5aaEzix8m/Tyhi9tRHMtEaXJwh0iR+RCENSaBS4MfU7pRcFcleu2Bti4rqzmTnvWi7dCsTKV/nbzuDS26+CE07i1tgLHPyHe3nwhr341pV/4NIrJJyjKiK3XfQ7rrp6BRsMmHfJRjKnZHb49ZeFHmf2vG1rXnOfcbhw8v3MuGQ553Vs5Esfdtl9YCpfql/DLYsnEFryA27fX41tf0BVFfZgx6ttLzWcwfGZ+/nopif5fcfX+NEdJhUzYX3JqdCkbJVnz/qs+n/p/dxwWo7fqsxI5hQGmPNdFX7z2W98jienHAfAhd0zuOqxNIdd81s+ctsQT847jtvv3J+tRyf44CfnsX7JI8w8/k5GWyg8P9OGY+bAlQN868oBvv21er5/+iVsipzFoot3q+qOeld30TT7q4SW/IAzs2dsk4DcdePtHFKKclD8fp4qReHIM+nI38Ix+bU8jwraOTi4l+dn7gVQbUHbHrytpAshBEcffTRHH33023n6zovKpLgyIa+I0DVGpcyXAyQrVZmQTWF8HM2V1UR3Pe8iDdUqFpgC4am0d1HOfQkMgRfRCHQN3ZHYg261aqOXArSShx818S0NEZS3x/OAEeKAYYyQFykVeay0RGk6wvUQrocVgDls4MUs/JCuclYMQaxLYg05quLieqMm8WXDgAoZqLqLiZFJvV6+7XnqOGi60qkYBsKycDsayHSEQKiKjxcWBLrKWfEt0EsmXhgQUVWWzwRYKQ970yAimy+/FYoAjVSBRhELw1DbJOXYipiujwSJVtrdKssq303+CMmpZteMNiEYvb5tVNt2YQQ7SmJ2JvJSQYWQvBWReTeIy5sRljcbu4vM/HtAGzYJFS0CU2J25HAcncDXydaZ6Bkde1DDSkG+VRIkHDxPZ+tQgnQhpL7GJIiijhQSLaEmRJm8zVA6iqb7xKNFHM/gqQ2T2H/CBgbdKBNCAxyXeIlBP0bKj/CSGEfUdsgMRukaTuBnDWTOZn2sjlzJopC3sUMu8XCR/qE48VgBy/AhEOhFgZEVFNp87AGdcI/E7Q2z0mtlxYZWDNsnFi1yYIMKnluYn8LibAcHJV7lyPhy9ols5H/MuWzK1JJ3TJpDGQq+qTQ8hTCiJAgNCJ5ZOB0/6aGnDGStR7S2QGPrAJ+d8BgtRpppRhYXiAuNvkCQDmzaLZei9IkIF10IOn2bhzMzyHo2LXaayVYfF9U/ybl1T7G01Mri/ARarTTXrDmSvi1JjJjLqq5mDNPniImrOax+FT+a0IKe1chMAi3mounqtyLSE+BbqgqjlwJKNRpeROAmAqwhDTOlEdkq0DyJFxGUJAhPEJhgDwnMjETzJc6uwv42serQK9hf3MV3fnQbJ3/k6uryTZGzgKv4fnw3yO4GEfjsOUupKCiuunojAPPK95clTuWgDb+BG4Eb/75D2zCz+D5Y8Ajek4fDDUq4fu+JMZ6fafPj46/isg9cBsDVa57kqsWncXkH7D4wlcs74PIlI+u58qqn+Nol8LUTh7iP1wc2bgtfnrqAT/Mkl2ZWk8scw2xg9pony4+eCsCPj78KaxHc/blbue2ie9nQvYyJLTPZZ0svc747nw/ecDxr+CxLgb1uuPtNX8+YvB/eumfHLlvwCKDz7JFqZ45/SBGW0JIfUJz9Vdbc/yKXHjOHz55zFsffk2XT6i5+2fNNyHyTb+32W4A3rJ5cevtVY0jJGWftDQ3jxozpyN9SbRPcEWwXgbnuuus477zzCIVCXHfddW869t/ZiUxVSCTSMhCVCbIM1OS30mYUKCG/9AOEoRPEIiprJeuieaqVSZq6IguawMj5yq7X0BBSXcWRxTKRMSuBlAK94KE5ZXF/3kW4ASRthGREp+F5qhJTzlyRuFXiIXUd4ftqu8rVGQDNVa1cer9A2pbSjFSqDp5fzZSpuJxVUbWIDkYqUFUdUCXvRVTJC4ZB0FpHrj1Crlkj3yJIrJMYRUm0y8VJGur4+uCFBKAhNWXp7MQ1ikkLbVwLuiOpWZlGGxhWlSB31JWM0RewKhUx3x9pTauQkIrZQKU6AyPvI5Tb4WxFcirkaPT+V2yhne2/ErALb46dkbyMxmiCUiEz71a1ZUeIy1s9fxeZ2XkR2AGliI8IBCEtwOuLERmXxTV8nCBEEBEYBZ3QgIDBMIEOxRkFCDkUB8IgJCLhEI2V8H2NrZk48UiJRCjNcDGkvsa0gEQyy7ATprcQZ+1wAy8Nj2fvxGbWFRpYsq4DI+QyuaOXxnCWV4B4qITr6wSBVtaV+IQMj4baDBHTxfV1tLRBrFOqqr2uE+1Srmm+BdZGG4TEi0rSls3N6f0JRRwSkSLzGjtpMdJoIqDPi7MpU0v3YIL2xiHWZerpz0aJ2g7tiSGm7dfHcy0TCAZsRFHHjwTE6vKcv/vjHBNdBUBGGnT6NoHUWOm08s/UbtRZOZaHtzI3tJE63UUHWvQcH0y8yHjDQ0fwohPn7txuNBnDzLa7mG718HxxAh2JIeY1dXJ+46OcseQcsukwhuYTSA27OU/RCKMVNQJXwwNMX6A7KpfHC4GVUe1gVlri2xqxLeo33Sj6lOI62QkSp9lFTxkgoNgSENpqENss0eQuBvNGiD7xWV765QAn/1PdT8thOvK3wAkn8ciJL5Ga/TdA5b+wBH58PPx+7y8R7bkfUM5dp17xGfKJT3HXwydw6hF/Z9KVH6Hnc4fxzH3L+OodX33T1zefWor75OHV+6de8RnVMgVc9oHL8D+SULqNOVEu7xjJKdnjkRmA0oPcGrutHLi5hpPv+SZXsYxb1/2Rm0/+EIuMeh458SX4XTtvhG8d/FuC7AK+9sTr59BfvFe1bf25XHWq2BOPFsRvL15LXirQf3E8V3ppHnnsmzx15JnkpjZx9sGHM/5Uyfe/PoFLE/3AVvzsjTTt9gm+tdtvVSXsYCjO/irwevJx8uXfhNuvqlZs/nTZd7ntlpc4+fIP8MQNn6XipfaP/fepjn/HNTA//vGPOfPMMwmFQvz4x2+ckCmE+LcmMJWr91IINNMshzGWW7YqE+LKVXkZgG4RREz0kmoPA6pifN9WIZFuTMcoBuiFQOlhBFhDDlrBQ9o6UtfwbTXJDixdOZNJqUiLBD3vjWhQym5eeHKkgjAaul7OXgnUXL9sMICHIjauN7Kfvl8VqQtNGxvGCWPbtrxghLwITZGXyno0gYxFKEypJzPeJDwUYKclvq2smK0smBkHvehRqrcpJnWcuDITiG/2MAoBUlc2zqW4RqlWo9BYS92KCKE1vcqooBJgKYMy2Ri1PaYxsp/CKFdV1HFAaGVSItX+V6otOiPvacUp7bX7PIoE7sL/LbxXbWK78L8PMu4RipdwPR1pSvIZG6FL9IJGYEp8ExBgD4KbAE2TJEIl7AkD6EKSd0wSoRIt0WEmRAZJuWGGnAh516R3IIFu+KQGYmzNNCEjPsmmDOlSiIFilBq7QCRRxCkZTI4PENYdFpfGY2gBqVQ5o8RVv1N77LGaQGqEdRdT8+lM1JNvtqhf7lOzFtyIUKHLPphF8KKqOiM1id7qcFD7eg5NriSuFbhrYF9WpZoYyEYolUzCYYct/UnclA0SwhOGWLx8EpGmHH7ewMxoeG0OB+22lo81PcU0c4h1Xg2m8FnnNHHn1nl8rO1pupxaOsKDBAg2O3XMDm3ClZAJNHwEw9JmjWsw1Syyn53jAHsDW32HVGDRbrh8KLaJXGAzP7yOotRxHAPD8lmeaoUkzB3XyXPeBFxszLCL7+o4DT7ZNp1CsyTcrdq8Q2mfYo36bRCBxAsJ0pMNNA+kLhFWgDaugFgXwcjpJDZIzFzA4F7v3edwZ8aV6w/lP7/fQ7v0WLllAUedUWDlo8/w4TVnMHP2B9j6GJx5+TfHOJFV8MTwPsyd1lTNgQE49Yi/8/KdF8K6Pp65b6QxasYf92X5h56j7eF5dB2xqLp8ZvF9pC5+kvMmXcpl96kL9Jv2fYa7Gy7h1thtLPtIgmKinw/eMEIgKrhqA1z6kKowhF+zbX+67LuEgef/+8cMfuhcNj1yNav5nzc8Dvs9NJun94+NWfbj46+qkheAD95wPD+/R5GXtj9d9YbreisYk/cDVrzpGD32CWAjl19wE2Th8guArmMY6DqGJuVhUH3sL93XjrxHoyopf7rsu1AmJRUSc/Ll38Re9Tdmxy9kifUk/9h/H+4//Qtvbz+2Z9D69eu3eft/G5QORRCEDHRdB8cpt04JkOUJr1YWhVOuXJg6vq0r0uMqQuAmDEoJXQn2dYj0STRXtZMhQQwHiqT4ksAu2ykHqgVNuGoCLS1D3Q/kSCWokqPiqiDNatuX0KBUQo4KuZSjW6U8D2GaSjhfISmjqi0y8FV2y+gWrErL1uiJfEVDAmqcrkM8SnqfJtyoRqxbhXI6MRMzo1rvpAZOrY3wJU5Mw6kR6EVZbS8jkBg5H2moH8dIv8QLa+SbTbxIK7FlPSovRtdHKmGVYxHIEQ1OIEfeIxjjkoZerhIJTR27ynGpkNHKvmrlfXI9pO8jg12iy11457CLvPzfQqw5S9GvoZi1aWsZos/XcNI2EtXta2RVi3CkR4KE1EyfZLRIdypONFyiIZJnj9oepkZ6mWr30OnW0ZmvxdJ8WqPD6EIyXLSxbY+2CcMMOzbpXJh4qESNXaDGLBIPF8lrFkNOmBW5ZvVTIgWaEWDbLvmeKMLVePLVqciSjpUoURvPk2jIkY949GsRQoOSmvUugS4Y2MvEi4IbD4hs1Qj3QiGVYGtDgheNCcSMElvyNfRnokgpaK4bZnqylymRPm5YdgBic5ih5Q3Ur4L0tAQiFmBmBF7OIGkWqNdz/LjvMBJGkZnhzTwyNJ3W8DCm8Mn6Nhvy9VzSdh+9foyiNHih1MidPfOZU9OJK3WOjC9jlRtmrdOEK9X0ZqubZF5kPS8VOvhQYjEDgc3juens1tzHQXVrWZ1rpuCbJMwidTU5CmGHumiejV31SCNAeDqRrQIjL/FDQEaFQktdUKxTRjiF3YvInIE1pCM9DdfVsCR4EUmmQ0N3dPzQrgrMtvC1SY/xaXk/r96pMkOmPnI1iAXc/KEO7lgy4nZVyRmpTujvBS5VFYi50968EnHAAbNZ+dAH0B8aWTbvhD9VbydPqamSF4DdvvJX2lqf5dcXH8JB3EpouKHqnPVafPOyPeD0JQAce/tsAC69/Cq+eGCG0HAD85eVuOJDcPLwT7iSN67AvBb6klP5olot37vgYLWdt8+Bc46AGx7e7vVsC966Z2FqYsyymmXfgEMff91YwW+RnMuz0x9katcx/PKGvfjWlQME2QXAuXz0HjjpxAsRjLSSHXv7bO4rH5NLb7+KP5WXP/a5G6AL9LVP8sK+FwJw/+lf4Ph7lNlCzR0H0XvYmTx8ziWv245tYVeT/yhoJSWcl7oYIS5lUftrNTAV7YTwAzQnwA9puAmD9JQQ2VYD3ZVonkqzDwyBG9PRSgHCl8qRLG6r1rGsg+b4aAWlmwEUARHgh3S0kjdioVx5fV0fuV8JeRzd3uX7arnnlW2EddWKVRH/V55TGQMjk/vKstG6EF8FZlZbrSrW0ZEw2RmN5Jt0Yl0umivJdJgUGgRWVmKnFRkp1Bvkm0ykDsJT5CU0GODbgsDWquRFLwZYQw7RLUVinSWcuMbAQa3IlsaRbakQkTKqFsplzY6UUrmMuV7V2UwRkqC6Dikl0vVGjgWMVHd8ZdksKgYJu/CGeDsi/v+LOPW8Y9818lJZ97v5Grvw9hAxXZLJHFqfRfdggr3HbaGhLY2wfUSgxOKg8rm8qMBIOkyqHWBiwyBh02OoGGagFMEUPgN+jIVDU3h1qJGUEybjhmgI55ha18+0+j50LaC3P0GpoDQmXqBhaj4nty/h/ROXEdI9ciULt2DieDpBXwjf1zDrihhNBcY3DxFvzJKIFnF9DQns09GJmJ9maGaAk9Ap1ukU6yW+rX4D3ShoniS5xmPdQ5O4+4H9+MPy+aRLIWpjeQ5sX89hLa8yI9ZFPrCQvtKRxDYIYl0eka2C0FYdKwNEPRJGgTtT+/Ly4DjiepFpVg+fa36U2fFOpls9nJZ8nmPrl9LrxwhpLj4aq4utRAwHXQTsE9kAwFqnibQf5aVcO9euOoxXMq08kdmd1blmnilOYLLh8JnkSn4w4U8siK5SLWmDrSwbVNbS42rStEaGEZrESBmKtEgoNgi8kCAoi/GNglpuFEGWj6WYlkWzfBWDEJX40YBCh0upTmKldk233gg3imP4/Ynq9i9v2IvHX3qMILuA/NS7eeTEl8hPvbv6970LDiY03ABAs/gLbQ/PG7OuyPBvyq1dCjfPOw8A/0ilY9ntK38d8xzzqaW4B42Uxy4/9gJW//A/mL7gVPY/XLmgVcjLbkcv5rJNqq19zddVQsw5v/8lz8+0eX6mXZ20A4SGG/jmZXvw/EybJ6YvrC4ffRuUrmZb8GffxfcuOJjvXXAwydvnjFk3QMey+6u3N0y+aZvr2F54o9rnap5zqrdv+ucjSFSezH4rj6K+Tb3mqVd8hmemdwBU3zcokzkYs63zl5WqxA7g+4fkuPyCm6jv34fZzgIe+9wN+Nkb8bM3MnSCQHDLdm/3dlVgLr744u1e4TXXXPPWg3ZSuEkbzUFN0E0DCpQdq7SRfBMoT4RHvow0P4ASlGoNvBDVCTmA7qgv+UAXeFEdzZX4IQ0zIwkMDQ2U+N+XCNfHj1ogBG7MUHqYbKnq7lUlLTJQ9sSjidXoNigxqt0r8EfapUDlo3jlakslfLIieB9VgahofSqVDOk4CMrtV1IiQiGKkxpITTEIDSrCVUoaSK1sCKaDbwjcCPhhDXtIvb4fFlC+euVr4EaVkYHmKjODSiVK2gZ2yifbatCzoJaWx33oT40Qjkp1pbIPlf0lQJhKA1M1WijrgypjRaV6NArSD8qtaj6icmx29Sy/Kd6uE9m7ge3NgPnfjlPPO3aXLmYnQTofoj6myIqxKsJL+jhikSKG5eOXjRMDG5yEwI1DEAh683FaosPETKW/M7SAXy09mKktfXSmkoRMj5Du0jWcoGCZxKwSmwZrcUomyWSOcYlhEmaRceEUDWaGXifBlkKSrlwNtulBSSdiuwQDGsbmOByYojZSoCmSobOrjtyQSRDzwRcsKVi4RQNCAf17mUS7JLFOgRRQaAKEyhbTPEFss8SNCIbtEGZDirxrUgoMFg12kHeVk2blupOZk2TbDIpNkshWQWaC5MSZL9NkDbM0M55PTfgnxcAkJHxSQZhn05M4OLIagFn2Fl4oTqDeyJLyI+R9i/GhFBuL9dToef48MBdDBOQ8iwOS66idlKfWyPHicAeTIgNk/BDXD83ho8kXqNcFLg6akBzUvI6XhsbRk4kzo3kdJ9S8xJpUA0NbQ0gDck3qt0ArCUDHjYGTlIT6VZcFjka4zsUyfApGgG9r+GGXxpqcIpexBJHVu1zItoXO3AlMifyTj96j7ucO+SXk4RP3/YEbj/0I+6/cVB173+lLqtksj+y7D3AZ37jvPM4/Yuw6a64SNJc7gc/44/HcS6H62IrFz9N+zdeZvuBUVj55V5W8XH7sBdUqTMdz+7PyybvY654o85eVeL6cC/OtFmVJfNkml7OBp/eP0XbNCpbwSx5OfZtjH6jlvtOXcB+qGqPFnuRbVwLZBWXi8mEAbn5uiHNGuti2iV9nrqUi/P1M2wLOP/BaLj/9JmpvXwznHMEzQNvM7TzIbwFjwSPwmhjHox+6oKpNGY3PnrOU8//4Hb540yss3P+oMY8ljx6qkpXKe/XUkWdy0ek3APCVzC388Imz+ErmFq4TQAauWfs3Pjp8E+sarmW3r/yV395/+vZv9/YMWrx48Xat7N/dRjnQhBLb+5IgEkIMpccOcEdN6suTW+EFyJA6jE5UQ3fAGFZEw077aI5yIBGexKkx0LwAY8gFIQhMrVp1ESEDveghAokf1pGGwMj7ymLYL0/UKySmovHQKv/FiFanso3VnZKKeFWWuU55wj/SIiY9OfLe6Yy4mgUSRJm8VMibEKodrSZGappFpEdZgeabTEQgsVMSa1giJBTrBF5YCR/NvERqEGQUqXPDAjsjCUx1JdLM+ugFVxE531c/7qZGKBVQrNUYml1P3dMlZK4w0kLmU81vUQREVvdZVqpFjDjGVdvqKH9WR7XTVfa/Sl50HfxdLWS78K/hvaiK7CIxOwfG1abZmmlG8yAwJU7OwrE8DNPHtQPcuIaRVxd1nAYf2/YwdZ+BYpSpiX40EbAln0RKQcEzKZUM8jmbqOVQcg3yRQsSYJseUxv7SVp5BktR9k50UqMXCAmHGr2ArXk4gc7LW9oIbzEY8GoxIhIvCmEhGcqH6RuOEUsWKIU8TD3Acw0QksamYTxfI52rRV8viHZ7FOp0Cs3ghySFBoEb0dF8SXyLR2aKxuz6zSzq68AJdDKOTc9gAj9rYsRcnEaPgbCO5glER46MFSVodGgPDZL1Q5zcsIiQcFmUn8yv+w9h6VAbGzY2Ymo+e8c7WZSeyPRYN5udOvaJbGDf2Dqezk5lt0g3m0r1lHwDTXc5pfEFxhlD+AieL0xmxUALq4eamFHXTWsozcJCO3vZSjexPN3KrJotNIRydA0neHGwnZxv4wcCOa5I3rTRWwq4KRs94ZJuVpV5EfLxh20KU0vUNWTwfJ36SI6UFqZ/KI5lu+zdsIUNmXqC2gxdc8KUu2x2YRTOOPC/ebBpb27N1QKKuABMXrQP2ocqrUoKFfICcPxDnfiHv1Z5Atc9cwoX7D9Wa3JSxxl8/ZX9OOWar1Npg1/55F3Vx/3Nq0FTJAbgjguWcQqH81/573Pxf9/BbeVxFa3NIYnFPPnrB9EWP8mf74Uzbr+RLy3pBrp57TfvvSfGuG3Lcs4YN4Pj73mSIHvHGFL2Wrz6M5j2ebh48Uq+ecIefPfyFeQOgZ83XUjt7bD/RHhmw+uft3Qb+TWjMbn/QuC/3nTMG+Gj94xUWipVmNc+ljx6iOGFy4EFJI8e4vTBCVz2wJe5/PIvq/1qrocHXuYjR4+tsFw85QNcIE8GYPUP/4MvL3ychxjrUvZG2C4C8+ijj27Xyv7dobsBwldtXtLUlbbCKbtgVVq3YEQX4nlouRJuSwQEWLkAI69ayoRUQn7dCZRJViAxCspCOdB1AktgZn2K9SZeWJXWI72OktbYOsKTWL059VqWOSK0j1plFy0dWRGwB2WBfrGErGhiRpOZisg9KNsOa8GI5gNdOa5BldAIyxzRishATeordspSIoOAUmsc4YFZUNoW3wR7WGLmg2qmTbgPcm0a9lCAmVVVHjMrCHfn8cMmaODETRDgJNRH0UwVkbqBH1EZOgChoYB8o0ZpYgP2q90QBFUDAsqkRehq+ysObKKilam0wmkCMdrGrHI5UBOqqjT6GGmKpIntOjv+b2N7qzCnDP3l/7sT2bUde2xz+YWb3ly8uAu78E5g80ASERbISQUkEA25tCWGWdfTgJks4ZUMRMbCyIFWFPiehqEF9GejbDFqaA5n6MnGScTzGFpAPFrE1AOG8mF0PcDzdFL5MONq0jTaWcK6y5zEJlqMNCHNxRQeA16MBjPDGc0bcYIDWTpsgyERjQXeP3UZMaOEG+icXvscAPnAxBQ+PoKVpVbygc3fevYm32aRScUZ2lPHiytnNWtAI9fho+fLF+4KOmZGUGsoK/zefJzDWl6l0GjyWNdUcgUbu8GlELbwA0FH3TCDIZepdf00G2mimkOnU0+bOUStkeOl4fG4vs6Ejn4+3fQYDjrrCo0siK7GFB4L89N4tG931vfXM74uRcE1+Y/xL7FnaAs6kpVOK7PtTur0LGHTpS2WJm4WqTNyNBrDbPES7GUN0RjK8sjW3ZhcM4CUAj/QaLQyTEoOkonk6YokyKXDCF8QuBqJlgyG7pMejmJmoWQEZHIhkIJeLYZteiTieVKDMTZk6ukaTjClboDohDSb38PP486KlqsXwVXw5+4sfzn1r9wc6+DMNTV860Ppaohi1Yb39tl89/KR7+9v5XvZlmFy8y8e5a+TGwGwJp7ECzNvZd9NFxH6WIbi76KvGx/aWIJJI/f/tGAry2d9Fl7+JZDjzK5LueO0o7j8zgv4mng/lUubZ+2zEf3Tw+QGn+Wyy67m7IMP59h/nsmZ95wL98D9P7qEY2+fzfhTO7hty3JuKdcCnpnewZ7bqMBoMUWILl0i+daVp/Hdr9Xzo6lncv6oHJg3wl433L1NEvPrf36AtH8L6xquZf83XcMIbh1Yz5n1k8Ys+1j3RdzSsle1pWxbqJDN4YXL8bM3MiPbxDcv24NjAS7s5CNHz2LKtetYe+FkAM6sn8Tc567lM/cqV4Cvff7r27mFCu9pU+b3v/995s+fTzwep6mpiZNOOolVq1aNGVMsFjn//POpr68nFotxyimn0NPTM2bMpk2bOOGEE4hEIjQ1NfGVr3wFz9vxq+d60VfVl5COHzVHqhKVK/KVK/ZlsbuUElEooTvKJ95KeVgpB2ugiJkuYaUczMEiVlrpXIysq8iRIRABeGGdUkKjWKtRrBW4UQM3buBGNcysh0hnQdMQ0QiEbPzWBopTmsju3UZqXgt9BzUxNKeB1Jwm0vNaKcxqR45rQkRCShNjmSPaGO012w8jJAWqhEZWHM/K+1ut/miiHGipIyyLzHgLLyJwYhp22ifW7RHuc7FSLtaQg5X2iHa7JNf6xLocQr0FrLQLQlWt9IKLFIJCvU6+UceJaXgRHS9h4yZsvLCBmfewUx5GPsAelqSm2chYZIRojLY9Nq3qeyUdZ8QxrkI2DWNkzGgnuYq2BsYcMyklWDsHg9nZzpOdDa9tH7u2Y483JC+Vx3fhfx92tvNkeksP+3ZsYsHktRiGT6losiVdg1dOrtYsH80Vqs24JHALJp0DSRxPpy8XwxABh49bTdx2KLgm7Yk0TdEsddE8U+v6iYQcTN0n61poQjIvvp7ZoU28nG/n26+cyP2pvej3EoSEy0angVXdTZiJEvvtvo6fzr2Nrzb9k0/VPsspyUW4UmOl08xat4l/5nfjN72HsrrYiiYkV0z8M+fuuZDYvH7sqcM0dgwhbWVfXzMhjTVtmGC3HAPHFGFGhrX5BnqH4mxc18Sf184iZpSoixSY3tzL9MYedNNHMyRFT32/9ubjPJOZyh2983k5184f++fx+037sbyvhY74ENNq+vjdwEF8e90HeGDddC5d/UEuWf0h/jkwjXQpxKSGAWrtPDPqtjI/rEyGJpuDTLZ6qdNd9g9v5JMT/slHmp5BJ0ATAS8VJlCUJj5wYt1LJEMFWkNpDhy3HjfQaDCyvK/uVdqiaTxPRxZ1iHnMm7qBI9tXMaV2gMAXOLUQijgYRkAsWiRmO0ypGaAmXES6GpsGa7EMjz0TWzm4Yc3b+FS/89jZzpOuqcqB6pSpS7hl8YTq8jPX1GzX8y/58oTXLVs1by7T65RG4+Z551XDH3cEM+5LEtu633aP/3ZEGQmcec+5GD84HOMHh79uzH8Gfx9DwLaFM26/ke9/Xc3VvnXlAMOfvK56/1/Bj/72xsRje7Et8vL3667muGcWM7xwOWd1L+XP3Vn6r5rHjKw6HqecdsEYTcx398hWb9c85/D+X5xZvX/lz66g8+TtNzp4WwRm0aJFXHLJJZx++umcfPLJY/52BI8//jjnn38+zzzzDA8++CCu63L00UeTy+WqY774xS9y9913c9ddd/H444/T1dU15nV83+eEE07AcRwWLlzIzTffzE033cR//ud/7vB+eVFDtZB5FXcvoSa5FbvdStvRaA2FlNg9OaQGXlTZIqOX25HKwZai4KJnSxiZEtZQCTNTdutKaEhDaWTMPASmwIlrhHsdjL6Meh3bwq+Pk9+9icy0OPlmEzeqKX2MDyIAzZd4tiDfZJCaUUN2r1Zka4MSoQttRAsCI9sPIxN7wxjRh+jbCHKsWDgDyAAZtvHCyonFzCvyZuR9NMdHzzkYmRJCqpY5qaEqUp6qRFnDirhITeDUGLhRZbdcrBMUa3XyTRb5ZhM/JHASprKhLviEBn1lzdwUH3kfKn+VakvZWUxYltqniuDf90fMGEYfB9OqHgNhmuovZENdDd6UVob3bt3hz9C7gZ3tPBmNnUUDA29NXLY19t0kM++lqP7/x2t31yynu2Y5rya2nSvw/xs723myV6KLtel6Ptq4kPP2fIrvzv0rddE8ZqKE75UzwMrW+iIALWXAyhiFTIj+7gRb8jVMsvuY37CR3ZO9TIv3Um/naI5kyLk2XqAxnAmjC8mM2BYmW70UpcnWUg2tiWEKvsWKnPoO+0fPDNrq0lw862E+1fI4TXoWR0rSgY6OJBOEmGF1s5e9hffHlvGZpkcZbw1yx5Z53Jbaj0YjwxemPkIsVCJkeERqC5TGOURth6ZElpltWzli2kqmNPbzUs84pBQ0tg+RiBRZnGpn3dYGtmRq2JKtwc1bSAnD+RDZVISSZ6AhGShGGXQiLO1t44Cm9Vyw+6OMC6cAiOolWiPDtNenaI5k2bO2h31rNxC3SiSsIgfWrqU9NMRqp4VVxTZecZp5OjeNlU4tG9wkAL/oPIy/PbQfG4pKAP5Aai+6fJs9rW5OaFZ2u7bmUWMXcaVOj5tgQ6aO4lAIrKCcNCDpKSV4pbeF3cb3sPtha5nR3M13Z/2NT0x5BtvwmBLtY05dJ5Mn9XDPvr/k+pm/5+jEMhalXj/Rfi+ws50nQLn1CC65904uufdObp2a5vxDT3jduNET4TX3v8jZBx/OVVdvpO3heez9q7H9eed8Xj1/5e/m8a0rB5h0xUO8enr8LbfluSu+zzmRED+8Os5/yNeTkNF47eN/Pf9H3P8jRVCCu2YBqqry/a+LKjl78ENjScCVh4zNVmxPjFSIzlxTwyX33kmQXcBn2hbwVnhtiOWCtf8g7auWraseS2/rKWPw58fe94aP/a7lJ9XbM4fv4viHOqk9+uo3HD8arzbXV29/5OhZYx778edG3NAiX5jOwMaPbNc64W0QmNtvv50DDzyQFStW8Oc//xnXdVm+fDmPPPIINTXbx5gruO+++zj77LOZMWMGe++9NzfddBObNm3ihRdeACCdTvPb3/6Wa665hsMPP5y5c+dy4403snDhQp555hkAHnjgAV555RV+//vfM3v2bI477ji++93v8vOf/xzHcd7s5V8HrdxCFpjayJGx7bHOV6NshkXZpUwbzhPud/FC6nnS0AgsXf2FDKStI/xyq5OrLJS9qIYbERgFSbQ7INLrKSJQlBjpgmqTSkQZnt1MZlIUqYFRCLDTPrqrAjfDfR5W1kcvqsBIEShrYi8sSO+ewJ3cgrAtVSnStZEQTKGpfbLMEcIiyhqbysS//CcMo5ydotrIhGkiwxYIMPLKnEAE4FsaSJCmrtrvPIlvCvINGm7MwKkPoxdcjHQJDE2NCRQJMopKNyPLh9ZO+WiuxI1qaK5ESIkfUonGhWZrVCaNGNknXVe3K9sOZb2QNpbgmFZ1P4WhqkkiHEImYnhtdWT2aWXTBxrZelCUgZk7Rw7MznaevF28G0L7yjr/FSKyqyKzY6gQl50NO9t5MjO8mZjl8OPOo/l790zazQGm1PQTDTtYIY+6mhyBKauGL0ZBYKUEYsgEV2Plyx08NrQ7s6ObaLaH2ZivY2s+wbMrJ7PmpfFIKQiFHfZr3EC7OQjA34b2YVl/K+MiaWbEtjArtpmF6SnUh3J8a/LdDHoxBvwYqSDMPdnduTc7k5/2HMHy0jg2eLW8WOygzw8TEj6bSvWcNf4ZTkk+z30DM/nxqiOJWg4HNK1nn9YthJNF0oUQcatEYyjL6nQTq7sb8Z6tJbQkQn9/nP6XmhgsRLBDLkPpKMP5EGbYpSaRJwgEaJJJyQE255NkSjav9DXTHM9gCp98YKMJSdoN4UodTQSYmk9zeJhJ4X4Oia1kXCTNrPgW1uSbmWT38WqhmTZziFxg87vV+/K3oTnU6znqjSxT4/14SY/uYoIeN0F3MU63V0OXH2dtsZGUG2FzPknSUoJvV+pYmq9yz4QkWlNkcybJwuenEyyuYWq8nymxPqKGQ1wr0GgMc1jjas5OPsvhNa9watsLNOg67YbLVHOYruyOzY/eLexs58kb4cGP3s+3rhzgW1cOjFk+f1mJ+ctK3LJ4Ajf98xFO/K8/vOE6vv7Kfhz3zOJqK9o/7rj5LV/31Z/BZy771g5ta+iuS/nJDSPakL8bP0c79WUA6uZfUn39Ch786P28ElOpNq+tyHQO5zhzTQ1n3H4j97wwkysPuY6zupdWHz/knF+y/0QYOl0J7LtO3j7L4R3B6Paxwb//6XWPz/zk66skiQNnbJN0Xv9xRaAqxOUPD7w85vH7m6wx9x+a/9J2b+cOE5grrriCH//4x9x9991YlsW1117LypUrOe200+jo6NjR1Y1BOq0YYl1dHQAvvPACruty5JFHVsdMnz6djo4Onn76aQCefvpp9tprL5qbm6tjjjnmGIaHh1m+fNs/sqVSieHh4TF/AFZPFiNdVHqVdAkZBCOOVUH5Kn7lSn4la0UIcFysziHC/S6lpIkfNpC6hpAgpHLVCsImXtzGT1jl3BglXtdLEr0YqICsAZf4ikG0TAG/Lkb/vDpKcU25c/kSe6BEqLeAOewRGvAw8x5WyiXUXyQ04GKnfOwhD6OowrUKzTZ+a53Sz8BI9klF8+K4I1bD1bYqOfbP99UYx1XVl7L2xMwpYb7uKltk4UsCe6QqFVgaRjHAykrcmI4bG8mYCSxlUlCo0zFzkkivT7TXw84EmPkAL6LhRjRFaAS4UQPfFCAg0Efl1MCIHbTjjrxHQlPLKuSrQjoDWX3vAPVYOITbWsvAfo307htncLpBsSlA+GCMXJDaqfBenyc7C94J8lLBLhLz1thZicsb4b0+T7638jg29tWyfPV41m1oYklxAl25GiK2Q6RcyXBaXXLtEj8kcWMSIy+pWSUwMjp6QfDs0qnctnVfZkS2MCuxhYRVJFpbIIgEjKtJc/ykV5gW7iEXWNzafwCLetuZ09TJwTWreC41iV+uOJhGK8upjYu4ue8gAH7beTAXLv0wv1l7EIvTHUyK9LM8N45beg7kvoGZ/Lr3UK7pPop1+QZCwiUf2ByUXMuc5s3Mqeukwx5geqwbXQ8ImR6TY/3Ymkd/Noo3EEYEgARrQwi9JOjqrqXQH8HPGkRsl7b6NDXhImHbRTMCHN9g3VAd6WyY/Vo3kXVssr5N2g8z3hri4No1ZNwQKSdCXy5GzrPpdhKsc5o4OLmaCXY/STPPZqeOQSfKrza+j5+tO5T8cIhBJ8Jat5GocJgQ7ifZkqEnH2dpqo3dYr20GGmK0mRauIc6K0etVWBcOEWdkaW/FMMJdBU0GnVoiOXoS8ewBzT8kGRRXzuPdU3lhe7xXLbqJH62/jDiepE2w2aO1c/88Hp0BDWaRVzTmVwzsM3Pz3uN9/o8GY3oE6rVq+aOg1j9SdUxcdY+G6s5IZX/oMTxAAc8k2VbqDn3Gq7Y81nO+/LfmXFf8q0PxNvA18SI5uSic45hbXw9Fx7xWzzz72Rbn+W4234NwFNHnsl/BiNqnTX3v8h3L1/Bob84h3uPbB/TqtaeiKKd+jLavIu4ePFK/tyd5dapY6sn/9h/nzetfjxz1H9tc/lrqx8w1kK5gsMPVUGUg3//E3UnjFTejntmMR/rvgiAz+1zIABHJBXZW3vh5Dc1J6jgmytib/p4zeGpt1xHBTtMYNauXcsJJyiWZVkWuVwOIQRf/OIXuf7663d0dVUEQcBFF13EQQcdxMyZyhuuu7sby7JIJpNjxjY3N9Pd3V0dM/okqjxeeWxb+P73v09NTU31r71dsUnhuCClcgPLFcdO3mHECQzGZogEASJXwN44iJnxKSVNnBpTidmFcjaThoZbY+LbOm5UTfTDQ75yI7MFdn+R0KYUIlsgiIcZ2iOGUZREu10CW1MtWiUP4fpYaQdzuIRW8NCKLlpBERzNUfaNUlOGAgDpqVH8cQ1lsf9rJvAVeOUclYr+pZKHUoaqNPlVkiMcDzMXoHnK/lgvSnQ3QM+75aqT2s98g46dCrAyvjIwsA3wArSiixfSifSXNS45HyvlopcCSjVaOSfGIzTogVQtdpoPuiPxrVG9oHJUa1vlPZGBclorGxlUCWjFtMAylY6nXGnKzmhi60FRhvZQoZv2kCTaqREalFiZnc9GeWc4T6Y9ccY2x28P3okqzClDf3lHyUsFu0jMG+PfibjAznGeiCeSiLVRrB4DpOCWDfvxamczupBYhk9bLM1uk7oxpmXw610wJMV6gRsT6EXw20rEmrOs7m7k7/2zWJtvZGq0j0Pb1zB12la6M3EW9k7i95v24/oNh/B010SG0lGWD7Zyw6YFPLNmEsdNeoX5sfX8dWA2TXaGjcU61vfVkcuFyORCbM4m6S7V8GLfeDZnkvQVYvhSkPMtLM1jXamJOwf35cVMB1vyNbhS5/HB3SgGJvmsTSAhppd4ausk7HtqaHpaEN0qMbOSwJR4sQC9xyLcaSDsgP7NSQZyEWrtPL4U+MMWAYLjJqzgpN1eJmqUSBdC5DybiObQbKZoM4eYk9jIPslOvjTtQc5reYwja5bTbg4w2+5EJ6DBzNBsptkt2sNxrcs5pGUtkUSRp1dO4Tedh/DfPYdw8+r9qYvmeX/rUmJmiWNrXmZpsZ2UHyUfWOR8m/HhIQadKD1uDQGCuFVCs33ckkHXQA3OUAgRgDvOIZUNM9iboDGWoy02zA92+yNnJF5ho+ew1KlleamNTi/gz9kmFpViLKh99Z38iL8j2BnOkwrO2mejslAG0h9+ilunKhH/1GPmcNY+G3l+ps23v1bP8zPtqlXv/ad/geMf6mTFhkNe93rp317M3TfMeN3yCv7nzuve8DGA9zlKUG4seASAD9/5IAALPn0uV8q7t/mc824+ix9NPZP/KNwLQP6C39D36B4sujQ0ZtwZ42aMGBOUMbn/QoLsAjqHc3hffYRg0U946sgz+fWGQ8ZUcJ64QZG8StvdtrD/g//1pvs2GnOXnbnN5f/Yfx/qTjiZsw8eS3D6NnycZf/dOWbZrQPruUCePKZS9Fr84YGX+dW8+VUB/zuBHSYwtbW1ZDIZAMaNG8eyZap3NJVKkc/n3/aGnH/++Sxbtozbb7/9ba9je3HppZeSTqerf52d6s2QmtK5CNdHFMofLj9QJAZGCMCoDBFZKCCDAOkpy2N7c4pQv0NgCryoQanBxo9Y+CFDkZlKMcAQIJV9cKQzh9E3jCiUkLEw+QkJzIIkuqWIOewS6imgZx2EF5S3zSUwddWqFjLxkiEl/k8YiEBVdFRQmmory4+PQDikJveV9qsKifG8UfbMo6ozFVT2tVqFUlWOQr1GoV61xlkZZX/sRxVpC0wNL6zhJAVuTCPXYpJtNXFjBl4yRLEpgh/WMHI+dn8BM+uilTy0UoCVCTByAUbOxR4oYqWU7bORU21lvsUIiaxs/+iq0mhhP4wyJSi/t5qGMHRkLEJmn1a699dxkhIjKyglwY0JzJzKNHBjO58t+M5wnvyrGE1A3s5z303sIjGvx78beYGd4zyRhkqs9yMSK1EiajmYYZe+4Rh+oNEeHqI5MoznaehWgCgJvKjESUqslEDrsygWLKJhh0Wd7Ty5bgoTQ/0AjI+mMHSf4UKIiOmQKdoU8jaJeJ4tnfVsXNfEvCkb2T3SzT0DezPshMl5NqtSzRw7dQW/2O/3fGefuzl1/Iu02GmSoQL7NW7g4okPcGTtK0yO9LNfzXp0ob5HX00pR6fHN0+l1sozM7yZZDJHEGg81TeZofXKAte3BOE+j3B/gNSVfXTH3C04tQGypGHWlCiVDHrzcQQQacyxb+0GALYWE2TcEE3xLAfVvMpku5fpVg9TzD4ajWE2FerIBTb1WoEp5gDz7Cx1ukunW8dLmXaey0ymwcgwM9yJKXymNAzQNm6QnkyM5zZ1ELZcNCFZlJ7AHvFu6rUCf+/bC1cqHRBAk6mqAr7UKPgmEcMhES9QV5sjFHYwk0VqDuqhpjZHEAhmTNnCxRMf4McT/4c9zSKZQDLBsJhiDvF4ajobvVo+GOtlPztHjfb250fvFnaG82TqzQYLx4/VPdTccRB18y/h2ofPZcnLv6T1e8+y5OVfsuTlX1bHJJd84HWv8bNjV465/5UvZ95we0457QLO7LoU86ltT7oft64AVIvTysHXVxY+8sJRfOSFo/jT707nr+f/CICHT1ZOYTf98xEi133qdc/5wl2/4s9rV4wJdpzcfyHeVxVJOvOec7nyZ1cw0LCYK3+mXr/5K1/a5vYd/dAFb7hvO4q9f/VbOp7bn47n9ueOC9ScvvGw15sNzHa2rcP5xeKF/P26sRWhJ3/3Lf75+K8ASDVm+cjRs/jMouffclvm/+CNdTivxQ4TmEMOOYQHH1RM9NRTT+XCCy/kU5/6FGeccQZHHHHEWzx72/j85z/PPffcw6OPPsr48eOry1taWnAch1QqNWZ8T08PLS0t1TGvdceo3K+MeS1s2yaRSIz5A0DTCEIGWraELBZHKg56OS/FUZNpWSiq8ZVJc5ngyCBADGexNvQRXzWkHgprODUmXkTHtwV+SFN5KcM+9qBLZEMavWtAVXl0jeK4BEiIbikqpy5d2fsGIQOnPoJXE0baOoGtk+0I4yRNnLhJsU6nUKvE/RXrZmvYwygF5Bt1/NroiBakYlBQ0faMrshU9C4wJpm+WpGREpHJEe31ET5ITeBGDEr1FqVaEydpInUV7iV1lfeSbxYMT4H0ZBO3xkRIMDM+Rs5VhMwL8MMmfkhXmTAZFy3voOVKaG6A7gZIQyUg28MBlJyR6ot4Dekale1SJZya0ioJ0wRdR9bV0L9/I10H6VgpQaRbEOmVRHqUDsc3BaVaKDbsXBWYneU8efUQ5Yr/rwr4d5SMbMttbGfGv3sWy79by1gFO8t5UqqT6A0l6qYP0FaXJu+atNWliYVLFF2D5elWVg81Efg6Qb+NURDYKUGoTxDv9KldLogtjJBORfBdnb3bN6MTsCFXR6ud5rj2Fcxr7eTophUcNG494xpSpNJRInV5xk3sZ0Z8K0uyHVXdSKOVYXwsRb2Zo9ur4W/9swE4IPoqJ7cuZmO+jvtTe/HU8DSmh7toNIaZF1nH0cllRE0V+DipdoDOXC0DfozDx71KezKFlIJoe4Zsh6CUFKSnmGTadfxYgLQks2s388HDn8WsKfEfu7/M2Xs+i214ZIbDeJ7O+nwDOc/GC3Tel1zJNyfdw3RrKy16mlQQ4rH87mT8MBoSH41uP8ZvBg5mUSnGwkI7W0q1rBhsZlOulucyk/jLwFx6Sgn2SHRj6T5R22FS4yAHta6jxiqwvK+FrGfT7cfoytaQ8cOsyLWyKVfLbZvm88S6qfzPxr1JlcLkPYtCyaQ9McRxE1Ywrj5NbahArmCh65LPjn+UBaEhTAHPl2qIaoJBv8SNQwewKVeLI3XSgUOP7/GDFe+dqce2sLOcJyf95gj2W3kUwV2ziD7xWaJPfBZ5bWqb6xiN1Oy/AUoTc/tfbtjmmDWLXtzm8q+8/Jfq7Z9fvwQYEf2f/6Nr2ffrl77l628Ll3xHEazao6/m7o+pY3r6dc9yxAcVMb74yp9Rf4KaG75wrbJYvvXE31b/nv+B0n80TryZr9/UC8CM55Ncs8/0173WtrJgtgfbahkDRWI27fsMWuz1ds3bclSr4OHUt/nREy3s8R1zzPIFH/s2v1i8kD888DLJvjdvG3u72G4CU6m0/OxnP+P001VS5je+8Q0uvvhienp6OOWUU/jtb3cspUlKyec//3n+/Oc/88gjjzBp0ljf6blz52KaJg8//HB12apVq9i0aRMHHHAAAAcccABLly6lt7e3OubBBx8kkUiw55577tD2BImQyjhKDZfbqfwR++BAQllLImx7RDdS1okglTZGSgmuCwMpwmv6ib+awR4sYeSVPiXU7xDZlCOyZghrQx9iuCy0MHSc9npKtQaaGxBYGl7cpthk48csNMfDD2kUm21KDWFybZZq4yqpK13K1UvgxnUCU1NtW1kXUS4eFVqjVVcyNfkv/69M+CvBj75qa8MwymL/cvtVJXNGCGQQEO4u4sagWKczPNGgVKMsoZ2YhtSFahnTVcq0XoRwtyDaE2ClXGWWEEiE4xGETALbwA/riECqdjEvgACkZSAKLsIJQIIbEaqtDEZVkoKxVaLKNlvmCLEplarvo99aR+fx9QzsIwn3CeKbAmJdPkZBEukLiHcGhFIBegnYSQowO9t58k7iraoxlcdHj3m33cN24d+z6rKznSduk0s8VsDUfbYOJSi5BpqQ6FqAbfgMFiLkHRM/ayjyMiiIdQaE+wOsYZ/oVo/YFh9jq02QM3lx7QT+p3tO1QlLFwHTIr1sKNbz6IZpbFrdjLE+RMhymZbs4+mBSawdbsAQAR9reIpj4ktZkHyV8dYgaT9K0Te4vXMuv+w6jLu65hLSPcbZKWJ6iR6vhjt75vPb7kNYlJvErNotTI33cUTDStqjQ1y/egH9Toz9a9czmA+T64oT7gMrowxZzJxEz2igS/qcGE/3TiLwdVJuhGeGJmHrHm1NKeoSOcK6yx7RLlpDaabbW2kzMgwEUZYUO7i1/wCufeoobth4IBnPJpACU/g4gcG9qb1ZmJmKF+js3bAFTUgCqbEpW8umbC1rsw1kSzYDKTV5SrthnMDAMnz6nBjP5qbSEMlhCo8Xe8fhBRoxq4RXMDD1gKRdIOdatCQzFH2TnGeTLoTYMFCHZfnMH7+RRj3Dk8VaunybTBBmg2eRl9DnxAikICRcHCmJCLBN9+1+tN9R7GznyfzVmzn74MOrovcKLvrZSdXbr/4M9vvbMcye9VnmLyuNcSOrwP9IggeOvI6/vXzZW77mtB9luP7jt3Dn+rd2vPpM2wJe+syIc9iJvzqpSnYALnryquptZ8NfAFiqOVVtSAVLT8yx+of/wTPTOzj2mTnMvfAq7jt9CZ3H9lTtifdqPfB1r/+V4p84ce4ynjnzmbfc1h1B6wPDfCWjBPaf/uEIuT71is+8bmzPD1WF6arjT3vdY+LCJEckv8WK/3z95/vih3bb4e266dIHt3vsdgddzJo1i/nz5/PJT36ySmA0TeNrX/vaDm9gBeeffz5/+MMf+Otf/0o8Hq/2TtbU1BAOh6mpqeHcc8/l4osvpq6ujkQiwRe+8AUOOOAA9t9fRfIcffTR7Lnnnpx11llcddVVdHd3c9lll3H++edj2/abvfzrEOgaeu+wSnGvpNt7HkqIoYIQpR+MBD8CBGUOWGll8n1FYjQdhtJo6SyaJkaZAZTDIGWZEGnKDcxvSJBrs9EdddW/WG9STGr4IYFeMhBeWeMSMsptWwFG3kcEEjPrIwKwh0EvBGhuoNq1YiaaG2CnVdVnTOsVvC68sZr/4riKsOjaiM5HGNWqhxACo3cYZBQvBOH+ADMb4NToykHMCZCajplVVRgvAnZKohdUC5yOsqz2oxZICCxNubSZAi+ioRcNhOsrS2pA8wL0kjIEsLuzSG+EMCqL5zIhcz2k5yl9S3V/UI5joRAyFqZ/doxcu0/NSp1or6/a1Yo+ZlZVr0wvILA1JeIfa47xnmFnO0/gnbdP3t5qzC7i8u7j35G8wM55nniBRnd/DXLAxqk18QONg8at56WBNnoGR+xDhQuhfmVLX6xVF6H0oo8f0kishXyLQaleY6XWgqZL/KIOrgZWAI6GntEJpQSFcR4h06PByjIulMKVOhHNIamV2ODVsrLQysRQPyHhcmzjcnrdBLbm0lmsY3mqlaJvkHVtFpYm0dNXQ1PDMJqQeFJjQmSQej3LkBPB9XQee2V3Xmpoo7giSc0WgReGcL8kNOjhJHT0osbQngbPbpqI5+gIXTI3voGXtXYW9bYjpSCQYGsuSzIdZDybfGATFR7/GNqbJQPj6EvHaOsYoMYuMik6wDS7m0X5yQw6Ed7f8Cq+FGx1a1mTb8LxdebGN5B2Q8yt2cTybCvj4mmOb19OjV6gGJgU/HHMbNjKvMQG/rBpPul8mIX2FIaGYkgpcH0da6tJj1fL+HiKkmcwmI3QlMiyqK+doZ4EesRjt7Ye5iQ28VBmJlnfZkO+nsnRfpLxHEnN4bT659gQbyShFXm22EYmCNEcy/LGCoH/f9jZzpMP9y5n6jFzxiybveIYfvL5v6jbsz47pnWsgmNvn71NIvOBWZePuX/p5GPZ96rf8/CfE9Q/qi7EH/fhjzO55s3drtqu+Tp0Xcqvup7khjtHJtX3fOYvYPymev+x+hGiN9qJ7OHUt19HYr71kzW8MOlk5v7kKl649hJWyh/BTb3ARTx76id4OPVt9sKib8PHme0sYBxwcM9KxjbG/Wu4/uO38Lly0v1vT/k9HqoyxJt4TNw6sJ469iHILuCgh1Rr2fO3PMovFtv86Am1zinXjoxf8LFvA/Cxpi8CX9mh7Tt95XH8Fzdt19jtJjCPP/44N954I1/60pf44he/yCmnnMInP/lJDj744B3auNH45S/Vh/LQQw8ds/zGG2/k7LPPBuDHP/4xmqZxyimnUCqVOOaYY/jFL35RHavrOvfccw+f/exnOeCAA4hGo3z84x/nO9/5zg5vj7mpD+mhJr6V/BcoT4bLrUpBMJJDAiNX+avJ9qiASH1UdYOyFsMPqmn2aDoYaoIexKPkJsTQfIk17KEXPDLtprJVzkm8sIbULHxL4IUEUhgY+QDNC5AVZy9DVT10J0C4Ab4tEL6yKg50JYQfCeNUFQtRCWyEkRaxSjWjQm5se0TAL5VxgfSVO1vD0gIDM8MghAreDCTWUAk/YiK8gMQmD82VDHcYI+5hqGqRqjKVt8OTeHGdUo2OGxboJR0hLQJDES8955Zb4nxEOouskJfKeyMDtU0Vy+TKfgTKiUzoqoKUm1LL8GSwhnQi/QFGIcBJKJcZvaSIHwClAOI6+dadowSzs50n/4qI/1/BvyN5uev6+96TPJi3277270peYOc7T8xek0wopFwaDYlheZQcg33j61iXqWfrkI1WEAhbopcE9rCPF9LwLXDiGiKqqXysOkGhzYOQj6ZJLNvFjBYZHoxCScNM6XjRgMI4iV7jcmTrKmaFO0n5EZ7LTKIjNsBat16RlpqlrHWaiGglZthdPOTN4JVsGz2FOPWhHFOjfUR0h5XZFo5oXc2C2Gpa9GE2ebWsKbXwTHYKcaNEMW+BJyg6JnpRUKwDNxGoLoCkjox62FGHsOXh++p3zsla+GjMjm0i61m80NWO6+r86cW5GFGXj854jpBweb44gd0j3WgiIKjXmBndzKAXY2WumSc01UrTnUvQVZMk64dYm2skkILBQoStbpKDa9dwYmw5oZrF9PiqrWWDV89z2cnEjRIbsnX4chLZoo2mBSq3Jmsw5MURRoBs9hC2T38hRlsszfh4CsfX6cnHEbZPQ22GybEBWow0fxqaw8mNqk1pt9BWAHwp2NsaZi9rmEwgadYL5KXO381pO/wZejews50ndzTNYDarxyw74tM3s+zhc/HMv/Pwrz8OTz8DHIN9+To4SU2+X0te5i8rcWXtxdToF/JXzuI/fg73bvg2rY/adHIu/Y8uZN/YRXTeu33bdWbXG7eRff3s75JHtVodOnAES7j/dWOWag5rP34Lv/7Vfbz0mXP5nzuv44VrL+EbzQ9w6090bv7QIG0bzqVrYkDv+QFNp0JT4Sj2aj2QHCNtXCulqn689KtnSZ0u4Jk5r3ut7cUvFi/k2ofPhQ9uv6Nozw9/RN0JJ3NFTycPztuXp46cw0EP3cqtP9H50ce23S44N/sRXoi9sb31m+HJzS9s99jtJjAHH3wwBx98MD/96U+58847uemmm3jf+97H1KlTOffcc/n4xz/+hr2PbwT5WjesbSAUCvHzn/+cn//85284ZsKECdx773Z+Kt9se1wXhDmS4g5jSAiAqGhEKgTHNMamucPIsqCcJ1MojgQuVqAJCAKC+iTpGUl0V2JmA3xLw43Z+Lag9lUHqQmGOww0F0LpgNCQr4Ivhx0CW8eNGWieEp1nxptYGQM7rRzCAlMFRmqeRM97I9k1tjlSTfFGtWQZI21i1WMy2rTA9autW9LzMTf2EWkajxPX8KKGsou2dOW+ZmgEhkDqAs0De1hVUTTHV1kxCBV2mVDBnLlmjeHZJYwei/CQhpETaCVVYQpsAz+kE12XUtokv2xGUHGHMw1EhUD6gTr+mq5IZOCDZeK2JOmdZyCFROrKZhp0AhN8W5kOaL5EagIr5ZFv1Ci27Twl/7fC/8/z5L3AvyN5qeC9IjH/17CznSd1yyRBl4nUQXMg2x7DzMIvou9j/+YNvFpqp2ExZDp0dEe1yAoJRkFdcEpP0SnWS/waFy3iIdMW5oBGocnEyWoQCxCewG1xwNVoaEszu3ELLwx1sCLTwoTIIB+oW0zKj9Ltqcl+TC+S9UM8OrA7epNkda6ZBitL3CiS8UIMuFHmRjcw3hrkn6ndeJLdmBddz4AXI6YX6bAHcS2df1qT8YKKLb7EqfXR4i4NjWlOGv8Se4U2E9FKdLm1vJxv58Et0xnoD3P1k8fS0j7IPg1bmFQ/yIbBOpJPGSANFjYrd6KuUg1HJF/hwMirbPGSJLQikXCJA6OvoomATreeZ42JbCw00GKnOaPpGVxp8MvioQw4MWaEN2MK6PFNctKkUS/gS43p4S52C2tsyu7L0t42AinI9pZDA02JyOs0TU6Rd0wyW+P0ZaIk7CIdkSE25OroS8WQBZ3DW1dzZu2zTDJ05oT+xr3ZGZxbtxAAH0GyPHVIBcoMoFGX9HkGz62a9LrPyHuBne08eeicpTw06v7zM8dWcB7rfI77Tl/CY7c/t82KC8CVT53HEZ++GT59M3Az85eVuG3LciZMvJCNG66l/oD9OeWA/fmfO39SbdeaXI7lOf+82civ9o2psrwV8toIwZg15wK4YWz+SeQL08n/dCX5n65kTtLmxgM/Su3fJZ/heaCWn3AIB5wKt8xQbmZf7j2CxYx1Kvv+ITnOPvhwxn3vNzxz5jPcdtH1PBa/gSXW6zUq24sX7v0isH3kZeYaj0fLt5+d/iBHTIf/uqmh+vhPXjiE8y44C4C13FJd/onHDqHtxO+97W1M3r/92uPtJjAVRKNRPvGJT/CJT3yCNWvWcOONN/Lzn/+cb37zmxx77LH87W9/29FV7pwYTWIqlRihAX71tpQewlW6F2G8ppVMjLpvjgpeHG39G7LJT0pg5gOELynW6mi+ciarWe9iZFwQEOkvt1I55bDKgl+2O1ahlUIKSkmNwES1ZBlq+4yCsiW2sqpagxBqWz1PbYNtISMhZNjCj9kEloYbNZRepzuDyBUQQoy0bI0R/AdI1yW+cpCh2fXkWgwivR5CghvXcWIaXkgFc4YHA8ysT2Bp+GFTCfc1gZswVEBnMcBNaOAL/LAiF7YAL6YqORUbaVV9eY3hQIVI+j7o5WDOQKpoa10r634E+bYQUlPHT/MEXkiiOyrLxolrBDpE+n0l4g9phAcCxLDB5nfho7UL/57446Zfb3P5hzo+/f95S94c/+7mAf9bYJQCrK0epYT6Xg8NCkIDAf3LG1hul7CHNOKbCiBsAl3gJNTvghdR1fNivSSIBCr/atjEGlLVGYTESmsUGx0ICSaO6yduldgn2UmtkSNqlNiQrWdKqJdXSy0EUmPQi/Jk7xRm12/m/cnFrCs08I+BvTiufimz7c2sdJq5Z3BvhpwICzNT2ZivY3MmSSlpMMnu4/6BGWzJ1uB4BtmCjdcXRhqSorBontNLa3SYOclOGowMB0bW0uklyQc2ST3PQfHVfGHWQnpmmFyx5Xi8QCNuFBkqhsmlQ5T2ACst6F8xjtxUC9vwaLHHU69nqdezLC22M83uroZbPj08ldWdzcyZ1YkvNVJ+lF+sfx9dm+twJuiEdYeDQ1uYZAbcmJ5MUs8z2+4kJ00G/BjHtSxjUXoig6UIKzfHCbXmMA2fXC5EjV0kGSrwajZEfijMFitBo61yRua0b2aoMYImJG26JCDg3uwMIpqDKSAVGESFR7dvcH92BusLjewfX8MsewuDfgwzsnNcENvZUbEX/mj5/lndS7mP11dcKrjyqfO2+XyAm/95Js9M7+Dn132Kf5zxac7qXsrvytfZ75vxJ45dfjL/Kl5+8TrYRgUGYK+zj2Ovk4BehzXU7dB6j3tmMZcfewUoMzK1n7fu2LZ94dp2fjr/Nzz8/Osd0bYXz/znw+z3wJf5WPdF/G7/nwBw0ENqQ7bVJvf+Q2/mBY5526+XOkbAHds3docJzGhMnTqVr3/960yYMIFLL72Uv//972/9pJ0ZvgdGReiu7JNFJZ2+UqnQdbVcCKW1kMqyGBhxvtIZNeEPlH7ED1Q1xvfBthEhm+KkBnxLEBpwcZIGejlTRXPKFsC6ILB09EJQrmRIpA5OjYmZEypwszCSWB+YArMg0R2JkfPQfNV+FhhlwiSEmtCbBkEiQm5SnHyDjuZCYILmgW8pfYq+m4WVkdSszWNsGUQ6jmo5qxC08v6KoWGSrxj0zUuSbzRUbo0hyLVqGDkl6tRL5f0RIA0NzQvQXB+kgVEIMDIujR4MliyMPBgFn+EOm1Dax7NNRCCJrB5AlspfTPqo6lil+GWV37dAaWmqttCahoyEKNRreFML2LaL9nQNIgDPFpi5AHvYV0GZo8ifNRxgFHb94OwMeC+rL29EWrY15s2IzL9DFebfuX1sZ0VgVKoqAXpBkRQzIyh6Rvl7V6OU1NBLEiRIQ+BFVMUm1C/wQzqg44ck5p7DhC0Xx9Mp1RrQHUErafTGYwxbNusGZpOMFJDAgU3rcaXB7Rvn0RTN0hzKsKBpLaXAIOVHmRXbTEi4TDT7iGvqS3R6tJt+N0ZnoZYt2RoGUjEOb1WtPbMSWzi4dg1pP8wda+fgNxaQgYbv6CxoXscpyUWYwsdHMNmApNZPLtDoCyJ0ubX8KbsH/W6cc1qeZG9rgIXFNu4t7EmyLke8bZCI6dA5lGRyTT8d4SHmRtaT8qPMtrtoi67ikfxUNjt1xPUi+8Q2UtjdxNY88oHFY6npCGDvaZ3EzBJbCkm+svlEWkNpOgu1WJrHX5x9+NS4x9nL6mVxfiJH1y3jW0+ehFbr0BDPUfQMhh2N1etaqW0eRvqCcLLIBye8TI1e4HF3Gl3ZGobyYbZGa8jIgFbN5vzkWrJBiUcKbTyc3pNT6p6nTc/Qbg5yYmwp67w6ev0YvV6ciU0DrH/PPon/fuh/dCHJo+GWlr2AJdsc8/xMm/kHXT9ye1mpWsFZfdcsDp1/Lofm1DrOuu3X5XW9u1h60z/G3P7y8Ufwiylb+NzacfxiypbtWsdv/usfRL4w4jy2T+mDPNq5B0c88VkaP+nxveWn8+TExbxVbOSHr5sJjI0/WFBK8IspK/jc2nHbu0tjcPnlXwbg9AP6ePCBWv6H64Dat7WubeHDvcvHVOTeDDtso1zBE088wdlnn01LSwtf+cpXOPnkk3nqqafe7up2LpTbxkSlUlLOElE6Fn/MmDEYI+4f7fBVXu771XasIB4lsDTCPaVqJoyRK2tYAnCShmrLkhI/rFGq0XBjGl6o3E+cMBCOqtyY+YBoj090a4CV9rAH1cTbqVH8VHMlWt6BIECGbZyOOnoOTDLcbhDp97EzAZoLwodoj09ss4+dlrhRQc/8GJm5bQRtjWBbirSN2n/pB2j9aRqWDOOFIddqkmvR0UuKvBjFgFKNjpPQkYYiXQBexCQwhQreNDTMrEfjiyWSrzoIqYiaF9Jwo4KaV1IwnB0xHHDcUQJ+beQYVy2T/REXtXJLnOaBP2whpcAogj2sjpsTVwTPzCrdkBtRTmpOXMMPve3TYxfeIezs5OW149/sOf8/KiO7qi87D/SixMz4hHtdzKxHZMAnsUE5Q27tSRLfpH4XvBA4cYHml7O7PAj3KTcvKw2J9RIvIhlXk2ZKbT+xUAnL8tAcQaxTMKVhgP1aNjG/bROz67cwt6GToxLLKEqDhkiODzUv4vymR/hgzQucWvscpvCYYW/BR+PFwiS6vDBrSs3sHtrKOHuIomdWnbueH5xAvxdHQ7Is18bCgck4joEMNAJfMK29h5OSLzAQROnz48SFS176ZAKdktTp8xK8L9zJJxJrOTK+jD8PzuGPmRnMD3Xxk1l3cNaU5wikYNX6Voqb4jy5ahqDbrRMNCbwcF65GK0vNfJoz26sKzSytthEWHf50/q9mRXp5PSGZ/jBbn/k7LanGBdOcUjtatam6/ln9xS6sjXKpSy5mW43yf253Xl2cCL/TO+OvcXCDrkUPQMpBXbUQTga2bxNfX2WmmgBW1O/pZqQHNC0nmn1fXy44Vla9TABAdmghCk0lhXGE9Yc7kvP4vb0fJJ6now0ubXnAO7o34+l+XaGS6Ftf1B24XUYnZNSqbyMXlbB6GqL9qkLeX6mzZr7X2TN/SP2yUctSgLwu5aR9rF3G3udfdyY+7+aN/9tr6tCZD7WfRHX7DOdK85uAmBB/PQdXpd9+maetIer5OWFq776hmMf7VRk7yu3fBiA6eJLXNGjyFDFVCF59BDJo4eqz+mcr45vJf/l7eCXiw/a7rE7VIHp6uripptu4qabbmLNmjUceOCBXHfddZx22mlEo9Ed3tCdDoFUAnwoEw0f6XoIy1KtV7pWFbBXUW4rq1ZrKm1N2yI4QlMp8OEQuYkJvIiGUfDwQzqBKVT4ZCkg02FRqhFEegV22qdQX3bFKipCgFRtToXWEIEO9pCHNDQQQfkKnk4paWAUlR2nCKSyJQ7ZFCbVkm8ysDLKslh4IJBYuXKAZEG1euUbDQJLXT3MN+g4sTihwQiR1f2QyZWrTb7SmgB6T4rmZyRbD05SaJLENoM97ONGNXxLZbgIP8BJmEjDIt+oYw8rIb0X0ct6nAA/rJFvUOuMbi1hdqVhMIUwTaQxSm/k+yOVrur7wIiYvxrQqeyhpQbR9QZ+V6Ic8KmueApf9ZuXanU0D3RHUqoRmHmhKjm78H8SO0peXvvcN6rGvJuVmF3kZeeCHP0z4QRYKQ83ZhDYYG20CQ24CCmx0xInLvAtge5IQoMSvaQq6pGeAKmBmRW8umIcDZMG6e9LoHdb6C7kWyXNoQz9pSifbHkCXQQUpclfhubSX4oyv3YjB4c3UKfr9Ps+K90G7kvNIutZ7FezHk0E9PpxJtm9/Kl/DiknQkdkiMG6CFv6khRcJYLP+jaduVqawxm6w3GkFERsh91resgEYVxpcGvvfKbFetkj1MXvug4gZpaIGyWog3HGEGudJo5OLiflR3i+2EYusJhqd/PRjme5wT+QUr1BPm/z8Lrd6C7EmRbvo8VIEdUEC2KrmRddjyN1Aqnxcr6dSbWD9Lg1HBzeiAa86rSwtZjguMTLfHva32jSs2hC0udH+W33IezbvJans9MYLoVIWEW8iCTIW5QKJqGIg215uAkH2/YougaWhKcHJ9OVraGnO8n++66nFFVTpvVeEV8KHsrtQaMxTKuV4tza1Sxz6hnwY3R7NQz4McaFUzzZM5ls0cZduIvA7AgaDjsQD9XVsy3yUkHlsW/wAN8dtbwymf5G8wNcFfo7Xyn+qfrYD0MncwVXI7/ax/1N1ls2PN1x2lF8+A00Msd23MqxNLxueeQL05mSmcTV96oqzL+COs/h2VM/wZcGTuPjfJyPf+nj3Pyjm/+ldc695Ad4k9V27z4w9Y3HXXgVx9z+UwC+csQkOOInmHfmOBr4j8K9/DV8fHVs+/M7FqWyLbx4xz+3e+x2X2I+7rjjmDBhAj/96U/54Ac/yIoVK3jyySf5xCc+8b+DvKAE63J0NoquI0K2slAWo6oyZiUjpSwc14SaNI8OVdT1kUpAJUtG1xC6RhCLkGvWKSYFxTqrmuOChGKDSXoaZCYHOHFBYArC/SqbxCgGBIbAievVqo2d9qstbGZGpdVLTbVGaa4kMASaEyCCAKctweAeJqWkqD5f6mBmPcI9DmbWQ8+76CWf8IBPaCDAzErssnlAKamTntOMbKlH2JZqR6scO9dF60vR8vQw0S4ITLXtUlSIlyIRpaROaoqBGxPoJbWtxTqDbKtBrtXCiWmEhgLqX85ire1VlRchRqpf/qjjq4kRvdFoi2hdH6nAAOgaUgffBr0EoSGJE1OP2Wlf2TuXiYzuqjyYcJ+HUdy5giz/r+G9qL5cuOn16cNvB29WjXmnicZd19+3i7zshHASOn5Iw7c0/Iia+BoFn9hGiZUWeFGdQBeEhgL0ovr+MbMS4YMbExh50HyVpWUPCmLrddKLG9B7LewhobR8bSW2FhJEDYfn8lNI+VHmWP18oHYxR9avYEFsFY26waDv86pbz18G5rIq3cSG4XoeHdidh/unszg/kZBw+XDjcxzfuJR6S03895nQScIuEtOL9DlxujNxGqwsk2sHcDydmXVbue/VPbmhewG/23oAR9St4KDoaiaa/VzScR8fbnqeo2qXU5Qmj2T35KnhadwzuDchzWWd04guJNduPJLZoU18Z/e/ccKE5dTW5JDroixZPIWXhsYxw+pFAzY4IxPEkObSYQ9Qb+fYUKznwdxUru47lBs2HsRe8S2YwqPbq6HbT7CkOJ5F+cmsHFBXrQ+Lv0JLdJihYgRrUoaG+gzS17AMn0w6DEAiXKRUMkiGixxQt46pyX7wBEuz4+gtxrmtf39+0nsEL5baOTiymlxgM93uIlSeI+gE9Lg1tJsDxPQSEdPFdXVKjQG7sH2oVF1SD4xtTTr29tlVwjL69mjc/M8zAZgw8cIxE+ofhk7mQ6epuWqFzIgfNP7L2/q1XAs3/OyN5ROVFrLtwcPRv/OT4W+84eMf/9LHGX/f16v3u06+ZLvW+6fjmrZr3GtRe/TVnD44gcbDVhD85lpOeOLnmMs8DmtfyoN1BjOeT/KlQ5QN9/zb42/rNV6L7hXb/55sdwXGNE3++Mc/cuKJJ6KPdtP6XwRh2wjKVZbKLvqMsh9WDh7CLbcqyVEJ9RXyUhX8l/9XMlWCyjiBn7BxYwIzp9q0NE+guaoqkJ6kEe2U2MNgpz0CUz2meepxvVipOICV8hCeuu+HVCuUXgrAEIiS6qcOTNDzLtLUybVaGDlZrTS4EYHmK6cwL6xj5lX1Sc97BIZGuC/ATRhYKQ9pKMKRa9EpJpM0vqijdw+BdJGOqzRDgL6ln9bBLIXJ9QxPsPAigtBggFUIcCOqJSwwwcxIck06ugteGPQixDtLWJuHECUXXLfsClfWsxijMmkqx9v3R1r1HNWeVyWauqb0OmXL6PBAgG/pWMNSVYTK3EtqqtXDKAUID/Sij162U/asXQRmF/41vFE15p2oxOwiLTs37LTKpApMDd8QCF9SaDQJLKVxCcq/MWbGxwpr1dZZoyDRXVTYbwCaIwhVtI15gRcWGAVJZu8Ch01ew/iyZmSd00RIc1jnRWg3UsS1Ao9n9+ClgsuSzHia7QxpN0TUdNi9rocma5h2c5A/9s5lRbaFvkKMjtgQKwab6e1LkJhYpOQblAKTV4aaqY0U6CzUsrSrDRkIFm6ZRF1Njj3iSmC/vtTIFKuXDW4DmgjocZPU6CqoudlMo4uAVnOIPi9Ovxtnv8haDmlcw3c2vp/TWhexf2wNL4bbKe6RojmeJevY/LT/UFqtNM+nJnBa8/P0uEmK0qDfjTM/sZ6JVj91epaXcu2kCyHazUFcabC62MoD+Zks72thSl0/u9X3oSNp0bPMT25kq1NDWzTN5lySVChMrmAhBi2Mtjz96RjxaJFaO8/6grJo1rI6a9MN7FHbjS4kJ9Quod1I4UqNfi+Oj8ajmSTzous4MbqVdbayVJ5k90IjrAo3s3Cw9b36KO7UOPKGvXjonNcn5PQ/unCbwv37Tl9SzYB5LYH55mXqotcZ42ZUl936k6Vc8dg3ATjiAwu2a5vO+fwJb0pKRuPQgSM454ceF50Da+PbVjltr97kiNwJ7NV64JuSmM3HXsGXjz+CpfyOYx4+mNBdl+LxyHat/80Q3PU4Uyeux3lu/zHLDVc5rF2zz3R6DvkM5z70efYKbcIcPAbaQHzwbtjw/X/59Su4+69vEkjzGmw3gflf4y72JpCepwT2lepJeXIsy3a9Y1rHoNpuVg1PZMSiULy2EqPrqt1K09Acn9CgxCyoFq9inYETV9oLzYNoT4CdclU+SkRH6uX2qlC5XaukKisI0ByfIGyglwLcuGrF0txAVT8Mlc+iZ4o4LXFyLRrxTh/dlUihqiOluIbm6WiOJDA0grilRPYlv7wfKmjSKHiYAsychhMXbD0oQetCgd41UD0++L4S2rsu4WUFQp1xiu01uAmDwFQZNoEJRh6srDIgiHSXMIbyiFwBWSyB46pqVAWOq45dhbxUwjZ1DbxgpAqjqQqN9H1E2WgBoSGDADwfoxDgxvSyUYFq1ZCayn8JLI1cs06syyewVWVGdwPMzC4R//8lVKov/0r72LbwZiQG2CEis4u0/PtAaqrKInxZ/f4pNGi4UTBzoLsSo+DjhfWyg6TAzMvyd6TSN6KBmRdIDZAQ6Q3IdOgUmgShsMOmXC3LB1t4WNsd2/CYU1fL3OgGQlYPLXqew2Ov8OveQ9krvoVSYGJpPg12jhqjQNqLkPdtir7Jwck1pCNhTM1Hq5MUHJOca9GXjZLxQ0xKDLIlV8NQMYLva5w543ke6JqOH2gcFltBUZr8z8A8fpY5nE3DtbyvdY2qPmhKozDR6sMvN3wk9TxDWpS7U/twVGIZA26Ubz9yEjcfez3fmfQXvrHuZLxAwzY8lgyM50XZzmEtq0lqeR7MzmRqpJcZ4c10mIO0GRmKUuej9Qt5X2IVAEuL7bwy3MJQKcKc5s0028PYmseD6RlMDveVAy1NmuwMhgjYMlRDoT9CuF+jUGMh8jrFVp+1gw0sXjeV+t0GEL6gs7OemXVb2Te+jrhWpNuLM80c4syaxbzi1HJv717MDG+mKH2Wljq4u39vDq1dxX7RtewT2UBP20GvkVPvArBN8vLCtZcw9/SRhPvXEpnK/TdyJqvgyqfOU8f8Me9Nx70W20tevpXv5duRJgZfnQnAlMwklpZjJ+NfPY2l479D6r5mBv5eu90kZunWhfAGTU3t9zXTeWwPAKG7LqV46vfxvvoI2ryLYN3by2e7pvmLXPL0N3DK9+de8oNtjjtx7jLye9qcOdPn6Bl3cMXJ10Cbeqz+hCEYhN0H/sGq+uO2+fztxX3//Ajw++0a+y+5kP1vgxBCkRLTUKJ9qa6AibL9MKAmyboOvkRYlcv4I0n2o0mO9ANAERlhWqrNTL0QRklVVZy4jm8K3Jgg0JULVqUaA2UCoSk3GiEV8fBtUW0bCywdJ26OhDCinG+8iK4cvgYK4Kre6+hWRZikISjVaBjlPutSQic0qH5INTdA89R6A1PghzW0knpdzZVEej2srMbwBJ2+OTHqTQ1zY9+IQ5hhKM2J68LAEKHBNGHbKh/TUSX0MjGRJXXaSBgR4QPScUcMAyqObhWiomsjgn5Qy8q21pX3SI0JINAQjos16BDuN0jtpoSy0S7V4iZ8CYYk3ukhNWUqUP085HdVYHbhncFb6WJ2BrSkZ+xyInsH4SR0gjoNOxUQGDqZ8TrFJoleFJAF39KqmVkAZqFsemLrBJYABG5EWeT7tnKINApQbJBIATHTY11XA+Gow3ETX2FVphlb89joNNBoDGOKgD8M7k/Os+h34xwWX8EeoS6Seo5Ot55BL8bCocn056NQD7VmjpDwmFG3mVMbngfgu2tO4NGe3ejPRjF1n5JrYNvqwo4faJi6zxavlqeHp9JsD+NJjZJr0FOKUxMtsNmpY/fQVnKBjSU8pli9mMKnx63hT+v25uXEOI5rWcaZBz7Nw5kZfCCxmNm1mxn2QmzM1pF3TerDedJemN/1HsSG4ToeXz8FwwiojeWpsVWVyPV1BnMRHEcnGS8wmIoRuBp+q8ZAKEq9nWOgFKWzUMtQKQLAjORWSoFOTbSAUzIptgj1g+sLSkULR0gSazWKkwyCSMChM1exb3wducDmpcIElmTaOb7uZWbbXTTpWd7f9BJJPUdcs6jXs5zUsJjpVje9fowX8lMRYtfvyfbi0ut3LFNwWzh6xjVQybC/4WE45wjMp5ZyRplHvBPfurW3L4ZzjqFu2jJgHGvj66sC/qbLnqfnJiV0V25g/zoq5AXgr+Hjmf3DYxj3SyWw/8r1kzjrvB0z0nog8wVoVvOsb8xYxfeW/wMmjjyeeqCWy5efxKr64+icfy4Ttu7HlU+dxwM1YcTDD/Fg18UcNfd+KKrxb5e8fPn4I7j63ocBWP7LB6Fj+563y2ZpNEa3xun6iCh/dGtSWAnxxCjNRZXIVJ5v2yCU3kVUkuArFRnTQAo1iTayPnbKI7G+QMPSArWrXepWephZT1VIyvbHUgfdCdCLASJQupGK1TK6YHC6Qfd+FoEuqpbJZs5HcwOE44KmUUzqSE29rm+rSo+yXlYWn5qr1u3GdEq1JsV6g2ybSbZVx4uq9gbN8dGLQfn11csP7BXBndg0Rg+jKk3lY+F5yJKDzBeQuTwym1P/HUeRnMAfOTajWvBERTs05j3RqkGaaLqyTq5UYAxDHWvTGKNhIvCh5GAMF0m+WiLWqcifG4X0JI1Ck6WMAxoNinU6blhpg3RXWVfvwi68U3inKzu7sJNDA98WOHGNXKuOUwNGThDZqkT6nq1cGQNDVYQDA5yYNiL+l+CFBV5I6fe8iCQ3TuKFJYEtyRZsdNOnVDS5e81MBgsRAinoLNYx4Mfo86OUAoODa9ewNtvA73sPYMCPscFpZLNTR8YPYWgB72tdQ78b47Z181iWa+PyV47nv7ceTJuR5utT7+XAxnWcNe05ju5YyazWLsYn0/hSI2R4WLrPNKubj9YvZEFsNQ1WliPbV6ELSYfVT0hzaTcHmGIOMD+0kRY9j45kn/AGTp78Ekc2r6DNHOIzdU9zZvI5bhk8kMe6VGJ9zCzRNxQnZpbIeTYbhutoimTw+sK46+IMZSNsGKijs6+WvuEYuZ4obsZmYHU9NY+HEIMmg7kIG1O1PLJkT17tbyDr2nQPx+nPRukq1JA0C7THU9TW5Ai15titowe9sYgdcojHCuSbJbbh0zalD0ME3N41n1+uPIQ/bJrH05snEtcK2AKmmpIPxdezIFTEQGd3c4ADw53YwmdZsV19HHYRmO3CsbfP5oHlF2/XuNf+r9xW5GUEgwdfCMB9P0q/7e2647Sj3nLMlMxIWOnodrLbL9jvbb9uBQ9HX18V6poY8OmnL+XS61s467ynOKq4Cuu02/j2yx/mjguWcccFy0ifdxuHX7+Seb85nJ4fRvC//BR7HfExnBeW81jnc2/4eoe1L+Xy5Vdx9Rc/xe4D/+CjX1gMKKH+uQ99nkuvb+FQ93i+/I07uO/0JTx/eoYXYn+oPv+V2I63leV/upK2oy/c7vG7KjCvxeiWr6BMUsoTbCklAqr5L8BYu2RNgFZ+rNLiBGW9RoAUAcLz0fIuRkEFNJpZT6XT6xomHtqQjx821A+bpqHnPfRC2X5YSgLTwkqr5wSWai+z05L8eEkxqaH5oJc0NE8S7Sop6+RYGC8MRkG1NGTGKy2IZytSU6nYBAYU6zRKSYHwwamRaL7AzGpKoGgIhJTENuWJ9KgqVLHJJtMRIplOovUrO71qVoxfbvEK/HIIzKhAUL2sH6qGezLKErniNFZ+PzRLPc3QRxEYMfJcz1f7WXmvRpkpVIiVyBUwTZ34ZhMvrJOb5jCho58Bp43YFnCjgkifT2AI/JCG8HWkv4vf/1/BOyXefyu8WSXmnUZ+czMAkfE9bzFyBLuqMO8c3Ihq0812qO9T4YOVAs0FNy7wLSiVTVwCXeDGBUZeormKyCDVOtDAzAJSVKvwmisodUcgEEQ7VLJ22HQpBQbdxThuQuW91Js54nqBGrNIzrewhMeL2QlkvBD7JdYxvm6QJ9PT0JDsVt/H5HA/iY4iK4ZbeKXUymSrl1ozR1wrkvFD7JPoxI3r1OgFEuXqxyulcUy2emnRhzkp+QJ3De3LlEgfm5wGWs0UmUCJ40PC41W3kTZjiBYjw2k1i1jpNHNbz778w5zFhkwd46JpsgWbhFHkhNqXWNH7QZ57dRKnzHqRack++ooxpCkxuwXB8gT+tDwAxbRNqMdAL6oWZXs4IL5eIyvj5OtdkDA+maY5nKHOznNAci3TrG7GGcNs8GrprKsnrhdxpc491ixqrQKBFGw+MEe6FGJLZz0t0WFaI8Os7W7E1H2aElkCNALAlQF9gaQofXY3IS91GrUAXwSclniZHt9i73ERHn5vPoo7NSoamBeuvYRvND/wlm1hL1x7CXMvvGpMG1lFEwMj5OWB5RfzwEGK2Bx+PSz5IQydvg+wDmCbIZZ//mM/sO3qT7TufGDbTmRvhdqjr4brDn5bz90eDM25mztOGOKoq0YuJF8VUoTnkhkn8N9fMOk+4UMsm2qgX30Qr3rjmPYrZSzQ/+hCCEHjYStg+e482HUMR7Xdz/F93yJ8/Sy+ez08d+lx1GxJMm/OIYTHzeGYRzYzvsXEDF3I1d+DL38D4Fqu+eSHufUn6qLzKaddsMP7EfnCdFJ7/6NaOHsr7CIwozFa4+L7Y13FtJG2LTUp10ZcxsoTc+m4Y4MvR7tjVdrMhFBVEamqIQBB2FAtaW6Am7AgkJg5F12Cb+sIX1kna16AlSohdY3A1JCGqOpFQj3lKomnrujZaV9pS1wPP2SAADMf4FvqxzQwIN8uMIch2u0r55uIVn0MA3RHQKBCLgNLw8iWt9sLwNRBVy1YQgpyUxLEMzmlYxGvmfiXQz8r7WIYYsRRrJLbouljAkOlHyiiaBiIcAi/IYFTF8K3NLywsne2hpVOSS/66DkXLZNHZPOqda9Suam8p66HNpwnulEggigIi87hFkIGFBo0/BD4wyqA04tCqF/H2rxLA/Ne4sJNK97THJh3C+8WiakQlu1Z/makZheJeWfg2wIvCYEpwQAjr8KIS3UCc1h99w/ubmANS4wiEChzFSQU65VWRmrgRySRvCDcW87HCitSE9gaUoPsYAQ97LHJqaU+lCNiOGx26jCFz5LUeJ4dmEiqEMLxDLxAo97O0WBlGfRivJJt5ZkNE5k3YRMTIoPU6Hkm2b1szNfRYqTp85WzkCYk/+jcg7DpcWjLq8wKb8ILNDqiQzQawyzKT2ZDsZ4P1T3P6bXP8kJxIlGtxMZSA/1enDNqFuNL8I0hAqmx1GmhXs/iIziuYRl7hTr5W2gOgRRsrU0wPbyV2XYvR0xYzX0PzeOR+ml4vk5+ZZLokMBOScIDAUPFiDKF8SG2WVJoVgYHnl02agkE0hfUjkszJdHPvvF1tBhp1QZW7OBvhQZeHW6kOxMnHiqRDBXYlEpSLJq01Q0zq24LgdR4yjVY1d+Eqft4RYNUKYqT0FmUn8Si/CROq3mBQT/En9Nz+Xrj0/T5USYYeXJ4RIWGj+CugXls98zs/xiOnnENl14PDyxf8oZjKiTl6kVjU++PnnEN951+MUfPuAbtm7/jvtPHVm8Obd+XxzqfI8kcTr/uWdiG85h12m1AA+/73RwOv0T97l+38T+4YMJfq2NO/NVJ1dt/mFsmMje89b5V3Lm214nsrXBE7gSOKr7E6KPwhwdeZtotAzBH5c1c9LOTuGSGEt/fd/oSmDOfed89morP9MynPDYeSzXj8sGuY7joZ9dgzZ3BUdxP+NOz3vD17/hkgYsS3/t/7J13nF1Vuf6/a+12+pk+k0khAQKEJjWIqCggTVDEq4INbAiKgIoFvfar2K4F8aooKMJPQBRQFAWlqRgIkEBooYX0zEwy7fTd1vr9sc45M0MCBAwl4Tyfz3zmnF3WXmvPrHPWs9/3eV5+R5lP1a7iO4njuci7jLOBE0a2g1+vZocfLmse/4qMz70lb7PH13HEGFyxece2HjFPRsMpDExkpZHS1LTjrUdnwggdBBNFFRtpT42Us8luWXpS2DiOTUX7KMYdN4t5ESpqHS5h1mkK8J1CgFUy0ROhtNGlBJF5H5tULmUL/LxFnBCIyDx1kiGGYNSJjKgaXUqcsOt1ZFTTPtktmiJpTkkjQ41TjhDKFHhsf1RhV+tDDgyhUbZAuRa1Ho/CDhkGDkwSpg0x0hKqnRZxT5tJtatbSxubactoYvxgwnY6js090mqCKKq4XlfGpI0Jz0WkU8Rz+ijt3sf4ThnCtEWUkqh6fRZlCZQnUZ5F2J4gmNlOOKcP3d8FuQxC1mvDNLQ3foC1oUD6iSLtD8ek1kmCvCasC+Zq7Ya8+F0xWkKld9t022thKiZHX7bWNK+nIi9Pd/yzPaeFZwdTyBLcMSPCjxOGvIQpEMrYyyOg0icIMmbhHTvGnCV2IU6AtiGc6VPYUVGYC36HQNtmv4gE7pgg9bhLXHJw3Yh98ytoc6pc8cQ+/Ht0exJWSDlwcSyFEJqsY74TRoI0T1RNSlVXW4kOt8I9IzMYiTLUlMOqYhvLwy4GwjYSImJd0EbWC3CsmOtXz2NV2EmsJbtk1rG4MptXpx/mg13/pM8q85finiwqbEdZeYxGKZZVu1jk93Hh6IEMRHn+XZlLWvq0yQpKS9qsCvfUtuOUjgWc3LGAdWM5Hqn1cWetnx63SNgZUb29i0rFI+oOkaEhh1oKcssV6bUaKzBRrSgBtQ7B6K5Q3MMnu9Mo/dNHOHrWgxzZtoSxOMVSfxo/Wn4IA36ew9oe4Ki++/n8rtexV+caTpy2kH37VvOa2cuIlORP9+/JbWvnMDaSJp+sUSwlIRIknvDQWlCME1z26L4sqs3gkaCXecm1rI5gTKWo6BgFrFeatIhYX828uP+QL3Hc8MAnpriKHb7b9zZyGTvy8r247JJ7n7adJ6ePffagC/j64OGMnbCI63tc9GfWb/K8NftOFfrf852ouW3wOynOW/Hm5r5Xf3jzC2LeeULxGY8Z/E5qs9t7Kky+Vz84/Zop2z/46ZAjL9+Lb952CkdevhefGZzO/TtOjV883HkUf1t7BHuoX2yy/erPlgDwjl8kp7ikNSypR284u1n0soHf//Y8wJCYzcXI9W2bfWyLwEyCjpWxA27UGoG6XfIke+S6pfIUrUUjbWkyGmlmctIiWGuzYPcDrEpIkLcJs47RoMSa2DN1AWRgUquUZ9fV7fUKzWGMciQiNLVftNWwWIbEiMb2jemAW1J4a0tQ8yFWWLWI2BOU62Itu2YslCvTNFHapEwZtzMo90r8rEC5kBzU5FYY0qMcgd9uwpOxJyhvFzMyz6kXqDRPDms9CXQuY2rnwIQIv3EfwdzHhkPY5Pvc2Ne4d53tVHabRphxTBXrwZDUuirJ9QFuUSEjjYw10lf1NLsIEWmUZxF0pvBnthPN7Ea3ZQ2RUcr8RDGyUCHz6Di9d9boeNA4AinL1GFwR6HtAYk3pgm2jK15Cy08b/hPichTnd83vht947tt4owWNhdRUuCUJsxYZCiwquDW1zO2r0mvU8QpTZCvR18ExI5AhqBtTexpOjtKWH0Vwt6AyvSY8nRFZdcaQZupH4MGkYiplDyuXbMn5cjDcyJG/RTFMMErutbQnxkn7QXcsXo7/r1mDosGZ1COXNq9Cju2bcAWMYGyCLXFE34Pb5z+AP32KG1WhbneAINBjlf3PM5ubQNMyxbIyiqRkgz4eeYl1jIQ5blk5EBuKu9Eu11mj+xqDko+xl7pleydWcke7gCH5+5jJM6w0u9gOMrwz8pOrAo7mOsOMd0Z4cfDr8ZC8729riRvValph7xVpW/GCFYA8foEomYhNHUHTaP5TI7Ube9TkFtu6uiIWRX2n7ucPXrWcsLMu0nIkG89fiRXrtqHe4szKfousxPDDEcZVtU6WFKZRTV2eKTWxy7pAXZIrac/M85+Oy5nen4cy1UMLulFLkuy4w4D+Nv7JL2AhAw5eNbjZK0qu3jrmO1sYFXUxl9G9+Di8T350ppjeO8DJzEQZ3jbtLtepP/ErQNHXr4X6mvvbb5v6GAa2pbXzZy/yXMm/558/uG7fY/Dd/seh9xvqsb/9YR7GDthEVeccX/zmAaZCX474eDVdvk+vP/0N250rcnRmKfCWe83JTEve+92z3jsZFyy27XP6vhNYfjPpmbOtbec9JTHfPagC/jrCfdwVHA1YIqFdr3+VQAMuBtnO7zz8KeOxICprQPwgU+b+9578c2AEf8f8Mcj2LV0zrMcBZy29+YbEbQIzCQ0FtxN17FGMcS6I1lTm6EmO2DVF+ZxjA4jdBCahXnjt+9POGaJiWNFqYpbiAmzlqnvUonQEsKsTdCZJMonkNUIq1p3fEmaCI1VDkBrU8F5NMKuxCTGYpLDEZavcKqK1Ioyslg2kYc4RlYCRKypdU7YccYJSKwXZFfFaAHVDpswbXKwlQvVHkW11zijJcYUdlXhjYY4xRivEJNeYZmia8os/JUlqLVbqHTCjFNpo4VRdTvqyWRGmEiMsO2JSFfj3to2dOQp79RBlLZwSiHSj3HGfUPcIo1TjPCGQ+xiiFMy1axlGGMXfeyib8wGfKMRCnsy6PYcYCIxOoogCJHlKu6aMTruHaN3YYn2R2KcsilymVsRUesQBJ2twmMvNp5vbcoLpX15MrZEpGdLRlCejsi08NxgV00BXxlC0B6jbHDKGm9M41SMk5g3psisMJFu6kV/tQVBGwQ9EfGsGhnPpyNXoa9vjM45o4hen1nTRqAtIGiHoF2jQ4ke8Rgpp1hXzfHq3mV4VsRe7avpdMqsK+dIOSG1dWkqJY9CMcmjo92UI5cHN/TiiBjPini4ZF7nrSr31mZx8bpX8Yt1r+H+eg2TIT/D3m2r2MVbx2nb3UK7YzQos50Rjmu7m6MzD/Oq1KPs4q3DEzF7eatwRMylY/P5R2kX5roD7JFaze2FHVhR7WJpaRr/ruzA9WN7sENiiFVRjqEoyz2FGdw0Oo+RKM2H5/yT3KEDJGcUscclYcZ8TjtVjVNRVNvNNrT5EQqUkqwstBMpi/vL/ayqtdObKlKqeeySHuA1/csYidKMxymSVshj5W58Zb6j1vhtLClOZ6iS5Z7V09lQSdOeLzPtFQOEs3zGqkk6u4rs1b0WgN3Sawi1zdqonaX+NM5ffQjraxl67XFWl9roSxdZE7bz27X7v/D/hFsJ5Bd+zdcHDwemRlAm62E2JThv7J9MXJ7chv2OKvue+W0O3+17rDpykBOmv765r1HI8tWP/6W5bf/DFzYF+B/74UxGHt2d3k9V+NOp1zSP+dfPJgpk/uCi6+n58YuzlN6UsL+ByRqhxo++6issuWYNfz3hHjbc/G+Ouuxn7P7Y1MjTffKDzdfti44F4Bsn93Di6/bjuIfd5r7VR35jyu8GLv75d5qvT+7avLo7U/u9eXbT0CIwU6CjCB0rU0tECHS1Zha8UhiReByja775Hcem/kmDzEgBUiIaeg+tJ4hQvV4MQWjE/GGIqAV4gxUsX2NVTcSl2u0QJUxhSW1JtGeZtDE/xB6vIqoBIozRjoWWpmilFvVaLzVVF4lGyGIF/MCQqihGjpdJDyljCa1NhEaG0LE0JL2qjDseoS1TXC1KG5tmpySIkubLNDVQH2edf/lZCxnU09YCQ2KswBSIjNo8tGNPcWkzJ/nGkSyK6ql0Yf1+T0rbkwKyaSpz2rArMam1VWQ1xCr6aFuiPBurFmGP+1iVABHXU+qqIaIWQaSQtQh7rIY9WsEu1NBCEOWTxP2dJjJUJ1a6VEEUy8ihUex1o+TvWkvHvWNkV/poKXDHNdknWtNjW8aTycvWlD72fKV/PV00pkVmnh2cqnEbs2oap2BhV0wKmFtUKBvCtKTWbgxV3DFNlBT4OUGQE4RZRaKtRkdbme5kiVm5UdoTVXozRXo7x8m4PtN6x6j1RcR9PjvOHiQ/ewwpFdtnhpnmjrNbfh37ppczP7MMP7RZ9ngvqdUWDHvINQk2DOVYsrYf145ZMjYdP7bZPr0BR0YsKs5i8fgshsoZ7n50NqOVJNcu350la/u5e3QWA1EeV8TslFjHkupMVkVt/L/hV/HOB9/LzaVdSYiQ9SrFd9cdwQ7uEB9oX8hav41rxvalzarw0Z6b+GDXP3hn9wJiJCNBmqvW7c1AlKeokuyVW81dAzN5qNTHWJxiemacV05fgVMSeKMmTSzImqKeUVqQHAR33ETl3YJGRYJSzePR0W5uXjaX29fOZsmqGcztXM927gb2SK0mb1fY0RsgIUNcGZG2fRaPzeTmVXMZKOcYHM8SVh2G1ucYK6RYtaYTXbIZHslQuKeT9X6Gh4p9XLV2b77y4DH8et2BXLd+D9YWcgxVsiws7sBhfUs5dfotvCa5nK5k+cX+l3xJ4+sHGl3JDQ98gm/edsp/3N4hFxi90bmnDKCv+kpz+48vuIffnDpz8/o0eDgdc++va2Qm0Eghy/R/dqNznm30ZUvgyZEStfQSYOM6OUcFV7PncRMEYTLZaODTtTfysR+a+3PShz4FwDU7BxsdNxlPJjGT23q22Of3m59q2RLxT4KwJELIRtZWk5DoWE281tqkIjXSkqRAhxFCTrqVWjUX8IJJaWaOXY80WOgwxBop4KUcorSNsswXl1vQiEgj/Yim66KUGIWnRCUdtBQoRxK2S+yKIvaMgN8dj3DXjMF4yYyhIWSPYhLrA7RwcUoxcVKSWRPhjgcoz0bbkuRwTJSoF15TkBwwaWRBBkSvSR1LjMZNxzAZgd8msH1Tk8WumcKQ1W4XeyyJVSzXnciiCUc2yzJ3Q0hEw+ltEoERiQTB9DZkoLCqEVahZohLxiVO2MbWWMRgS2NsgEklkKHpl66PV3sWGvPaLpmJpzwb0ZZBBqGxb24Uu6zfH7RCBiFeoYIHpF2H0FG0pMwvPl4oMf9/zfrwC0piXkhHsmeDyurepxT5TyYxA/kHWqTmaeDnBE5RYAVgFwXeqCbMCAqzTfTaKWuCjCBKSlLrFWFaIGOTCqUcSLgh3ekSUmiSVkgQ2zy6oQutBaOlFFEkyfSW6MmWcGSMEJq0G7JkpJ/uviJ5u8rfRncjaYWEsUWys0rZVXjpgDCwEZEk6YWUfZeuVJkZ6RIAeauKLRTr/BQbHugmNSKI961Rrrjoss0Dxen8xnklq4tt9GfG2TG9nmV+LyNBiuFimt+t2JvHuntYNDSdkfU5lBa8ruNh1lbyvKJtNX32GNvZMWWtuMfvJCFMlsF2mRESMqRbFGizKuzTt5oDckYMvH/bcn7xwEE4yqRTa9c8aItS5r5qaaJbtm9q7lB0SHaW2L1rHdm+GgO1HEMpkxN8Z2kOB2QfJ0bymN9HxqoxLVHgiXInvYkidEAQW/S1FVhvZQgCi2QiJE6E+DWH2b3DPFbr45Fb5+BPixCOIpWrUQ495ubWE8QWg8Usi4en05lsJ9QWQ16WQph4cf4RX+L4+/vvm6LfOH7h3hCa35VlmtT2gqvmGwvfIy/fy+yvo/S+92zUXoO43HTKLhxywVK+M+96vjavBF2fZ/pBn+LHG74OLIH/gtt+916+tmBqatgb+q/nHQ8cB9xH9RvLGPvhTJxL/wXAyJtm8SrO4N/9Rtvx5dvfxdmz9uCb+lpSb/oFt/9x89TnnW8c3cy7s3n4zQ1LppCY3xy8se7myMv3IrX9hFGVici8he/d+28A3vSVdfzxS9N4w0jEG/qvB0x7P1r0limRnrNn7QGsBuCowqfY7aBP8Y3jd+dzV93P+zmRH2/4Ol84PMPZr7mCQy6Yzz94rNnHBp4pNW1z0SIwk1FPF0M1yEY9f7khTG+mjdXJDExs40n2ypY1kR7VwJNT0KIYe3AcNbOdKGWTXRWBNqJ4lbSR1QiV9pC1yLh+aY1ybaK0bYqk2YCWOKUYpxBiry9Asf6URxmiZF4bHUyQTWDXFFbV1DgRSiNihTsSE6ccwpSLUzSpZtnVxkAgSgiq3cadrOH85RViKj02YRYSIxiXMa2xAo3fJpGzM+TWj4EOJ7RAtm1cx+r3oWFJ3Sgaim0T97UzPjuB7Wsyq2K0axzeorSxPo49gYwtZKBxCiGWHyOqJqpFHNfJkXFOw67XU6j/3WQQE2c8iNuQY0UTDWoQKCkgUGgRQ6Vq/t6FIkK2Usi2RbxYaWNbCi8V8X2LvDw93KLG8hXJAKo9NkJBekAxtpPEqjYKFhudjFtQoCVWoJGhREaScqWdhzqypLsrdKQrDI1niFaliVMKp82ns63Eru2D2DKmGCYouAnGq2aRvGB4Dm1elTE/yT7tq5jXPUgQ2wSdFlJopNBEStLmVpmZGiUlA7JWjYcrvXQ5RVaV23h46XS67zfmLx1HDDNaS7J2ZSfdfYa0jPlJgtjmoOwjPFzrp8crsu/0VTy4oZf1tQzTcwWqvsuSwX6mJcYphh6Lx2ZSijyuRHJs22J2cdcxplK8vn0pvx/Yh8XedhyafYAHa9OxhSLUNnmrzB6JVdzauxMPTkvhtwtSa01tnDBDvQAxuAVTiDhKgcgHtCWrrK9leKTWzZum38d23Rt4uDaNXmecFUEX41GKUFvcN9bPjtn1jPtJtkuNMOynkJYmVBaWVDgOWFJhSYVIatJ2wL7znuButT2iKnFyPkFgUQpdOt0Sd9VmUiwlCSKLWElurO5M2GuRsp/+KfbLFcfetCfh0MT7q+YvhoWGnDR0MA3S0iAyjW03PPCJjUT7AAudOznkAvP6c//4N9WfwUnLTXXEH73tfez9ttqUtLEGzp61B5+b9Ppra5bRMe3xKcdU1yxrVqBvIDVj0ESNhs379xw0CFdverw7f3ce3zzqTr79JFflG9N/5tDys49YbArvvDVLLblj836t3md/ztg+4q3/XgKT7uWa//kTTGSMNUnM39YewZs24zp/yX2HE2/bj5OAVxxW4itvd/lo1+f58byvU/3ZO/j2jl/nyMvmUnrfe3jnq65l4Vtex7d618BPH90i42wRmMmIY3Q8UatECKN9EZaccBqr61h0HCMagn5rIi+wqZcJIyP0tyyTQja5IKOumwX4PkIp3CEXEaXwOxoe3vXoTWQRJ6y6AxmEHSmitIWfs7ACTWZdgFUKsMZKJooQhugGoYonaU+kRI6WQGco99gkxusFMS054fyFKZjpVBQyEtgVc4zli2Z0qDRd4qaNS46268LUiKbw1C0pKq6gONMisyyHGBhGWBKtxQRRCCfdx3o0CtdBOA5BZxIZG9JU7vdIDQnClE2QN/cuds01jAaICYc32zJRnlghwhApBLHjIv2oWStG2xJZCYlzHkJrxMj4hNV1IwVQK0NkGulv0dTc0BZePGyJKMzmEJdGROSFisS8GFGYRnTl6YjQc6kh08JUJDdEBNMSaEvglCDMmGiMUwDLB4TArmncogJBMxU3ORyjbIvkEAzvJakUPfyag4pN/RcEuF5EyjGRi4fHelk3mkPV61a158vYUlEKPRJWxPogS5dXpsMpk5IBFeWSkCHjUZJZ3gjjcZIlhemsKraRckIeK3TzxEPT6L5bklofsfr1Nm/peoQ7RucwmM7Tnqgyyxsm31Ph1g07MRancUTMdG+MfTIr2FBL0+5VmJ4YI1KS3mSRkTDN8oFOMpkas1Kj9HnjPB700mmV2Mtbyz7eCG3TK/yzuBPnrTmMSFkEyqLbLbKadn6z9gBe0b6Gx/u78NemUY4gyGm8MaPbFJHRd1Z7NcrRaCWwhOKQrodZOD6bCx84kL1mrCGIbWAmUiiGKlnmtq1np9wQSgt6UwVSVkDeNfVtbBnT7lWoxQ4FP8GaB3uh2+fBWh/9neP0z97A2rUdhFWHZLbG+tEsVxT2wS96oKEaJtiuY5Q2t8pOyQG62wa55kX7b3zp4tpDzJP54xfuTeaXl8DGWv0pxKVx7MTvS6ZEYkzkBT4zOJ13dX6Xo/kSHV89jr/85cMcddnPOODKX8LbgXPbuEH9ght+C9/++C5U1yzjuyvvY6dP7swj+Xl8d+V9VCdds2GjvGZf837p4bty6QWSyw+6gLt/+Gn+xljz2MXe1Tzx7yJzMFG/L/zvcnZ7VTcXvvVSvs3XN3kfthR5aWDG9H2BxRy/cG/OwKxl3nVWDCzmm7edwvzb9ufWOy8E5rH4ra/lTV955ujRHicfxf6HL+S++usTf7UfAE/sW+T6/DzecniGqx+4jON37mZG/zGkOJAvr/0TZ9d9kd9z0CBDh+wC+xgCc+0PHuC8U20+/f2lwLN36Wsl+U9CQ4/RiKTo2BRIBJruY0hhtktZ3/8kEboUJhXNdQ15UNpEGfRE9AHLMgtnIdFRjBgew101TGql0aMgTd2VMOsQZiz87hRRLkHQZmOXY9oeKpC7bwPuY+uwBoahWjPaHD8whKSxMAczjloNUQvIrAlMDQENYVISZmxTgwaIkhbKFoRpWXcWM2J5pxSRXRWQHFZGXJo35yfWa9oeVrilGKekkDGIyOQfawlhRxKRTBgyF0VT7KR1oyZOw8ktitAJl9iVeGMKr6CwAm1q3AiwfFOlWsQaPyeN+1gQIyKFTtjEaRdtS7AttG1BFGONV801tTY1diKFCGOkHxG2J9HpZL0IZt3OuVEUE+r1aaypFtgtvOg4c+VDzzp60jjn2Z73Ukzt2lJ4NuTkpRLt2RoRpoxWUYaa/LIQLcHPi7qDpEl/tavGxl7EGrcQ45Qi3NGAzJqI9GBEZoWFs9pDrEwihjy0Bb2zRuhIV8i7ZnlVi2yk1GgtyGaq7NIxyM7ZQZQWjNRSJpoy3sOgn2MozPJIqYdYSxwRc+vIXK5a/goeWt+LIxXz8oN0J0tYFRN1H9rbYb9XPcxjlR6Wru8lDiQrhtu5bPX+PFbpIWGF3FaYyxWr9uWa1XsiUXQlyrw6/yg7JgZJWCGhsrCFQggoFROMBCnGoyR3Fubw19E9uGDk1fzvhoO4Ymh/rntkNwbKOQbKWbbPDHN47n7uG+vHloqxMElQs9HpiNLOIeF2viF9NcisjWl7LCS7DNwxCVoQKou/DO7GikI7tm2+f1eOt3H/avP4/L9mLuLugRk8Uuhhych0piUKhMqiGjsEymJloR2lBSk7YIf8Bujy0cMe8UCSwX/3E8YWe+ywGso21bJHWHJRj2VwBxwIJcJWKC14YH0f37j6rfz8ki27QN1WcfzCvblq/mJDZp4CV81f3PwByPzykinHf/YgE36pJXdsbjvqMvNQahfxyea2r7x90sNn4LN/MUYLI1+85hn7uea273DTKbsAcM4FU4tfHvi5W5/x/KfC0sN3ZfpBn3pO51bXmJTLe1+R4b0/fTvHL9yb0/7LpGtNJoGfPegCFjp3cvCv92lu+8qSqRbIk7HHyUc1X995g2GY9/3qL9x/06kAHHnZXK74YJX2Rcfy5Vf+PwC+vPZPVFYsAOCIj140JYVs5sfGADjvVJtLf7Q3e9oTLnDPBq0IzGTU9R06jk0eV2NzGNV1KEyqEl//bVlTyQlMRDT8wJAhaYG0mkUudRhOHB8rtJZQDJGlMt6Qh+c6ZiHuOhP9CiPcNcqQlbq7mJ68wG6kuTVIVaNfMfVoT0Bi5RjO9B7ACPnDjIVyJJZnIUMzBhmZSs9xUuKNxuCb6EViRCIjU3/AKZvUCLtqbJ2hXqsmMq4wYUZS7XbxloupUYx6dEpMcmNr3kMpsasxQmlC7LpttEI6pqCbN6bwRgOTLpC0iNIOzoYQoZRpT4Fybayqb+4dIPzIkBohEJEiyifQTr02TCaJGC+Biqb2UcgpupwWXnrYFBlpRGe29vSwZ0KLUGw9iBOCOAV21Tz0ccrm4Y6OjfW8lnUHR1dgVRVCYwryBjHakfjtDqkB83kqQ/A7NXF7yIzsGK6MmZka5cDMYxzclmAwyrMhzDISpNkuOUxc//6qhg5BbFH2XQbGs3RmKvRnxrmv0M8jw92USwnmzRgg4/iUQg+FIG0FxClFkLeozgrJ2j4rSh0k3ZBkd0g1cBirJHmEHsYqSeiAWdlRVhTb2RDlSFoh68I2Bvw8h3c9SFEluHNsNioS9PaMM1jNsq6SY+1InkyqRrnq4ZddhAA3FbChkCaoOSyW09k5NUDOreHKiINyj3KrtyORZXyU45JNmDJmMso2WiJtCfyuGNuLsIViQyWFUpLAd1hTylMoJRFCs2TVDJasnk5ccHHbR1B2SEoGdNhlSrFHOfLwQ5ta7LBjaj3TvTE6di1z/1g/CsFAIUusBOXQRbb7OEtTBDtVSWxwsKua9GqLOGGzfNksgnaFtE3WQgubRoO0TI2sTGx/OjT2N1LJDrlgKYdwCgxCovoYHV89DoC/nPhh1NJLOPjjN/Oa8SSTq8mMfPGaZvHGf57xkae81sibZjF+ytdhMVz8vxfzOe5vXnNTmH7Qp+CfP5yybbF3NTDjKa+xyw0PcmP6z6Q+ZsjRDsU5zX1jf3w9HArfvvYV3Cef2oHs+kNmcPFVS5m/Zn96z/sScMxGx8wP92en8d/wNWbz6QWf529rj+CPX5rG4re+lo9fnuGjXX3MeuQYFqQPhl+Z8X6Xy/njfb9lDln29t/C7of8FICHdxrgoLs6WXPbd/jG/+7OadtNI7j7Ab7MnwC4e7cVvGP6Llza+3/c9YUb4Npv8Y2PfYYzALiT+eH+7PxIH/NPnctnD7r5Kcf1ZLSm1CQI20YIe4IYNIT6MCHcbyy+6zqYpp6jofVoFL60JEI6iEyauKeNKOMgIt1MZxJaIwKFXaghxkuG1CiNrtWgVqtfY1LaWSPyAyZCMCmtrVmHZhIh0FE04QTmuOZ1oUTHkgSlHTLElikEVumWuGWJNxZh+Zpql0TEpsqx8iyUZfpq1WK8qO5kpswTQxEZFzSrGhGnjMjeFGwT1NpAu8b6mWgiha6ZjtcgWQC2jUonCHI2TjHCLYYoWyI02OWoSa7QGrvgI5SHcoxLm6wEJn1OSqN78RyjnYm1iS9KWdcOOWhLIkKFiBQqYWNnUuixwoSZgGWhg3Aivc2aELy18PzjoPCpi13d5jx9Jd+tmbi8GGlkLSL0/MOuKpwRZepu1UmIW9JoaSLKYPQbyjY1YrSCOOWgkrap9xVrvHGNiCXKBeVqEnmfTq/MsmIXHW6Fm8bncfeGmYyWUlSLHh1dRUbbkhzTvYRUt89tckceWDMNsTKJMy4oFvLcl5tGkNfEWYW2NA8sncm8nVfjxzZ3DMxieq4A2YjibAFacMutexL3BOTby6S9gM5UmTavyvz8ctYFeXZLrWEwzLNrdh0PV3p5aLSXezf0k3JC7hmezs5tQ/R4Jfp7x5idG8GRMavLbbhuxMj6HJYXY7mKZMon6YaMFZM4XkSsJAvGtmdtKU8QW/R6RcLAJpkKUEpQiwRBh4W2JUFeoAVEaY3s9HHciIFilmzCJ1lPtRsczpuvSkujQol0FF0zxpiRGqMcu/x7w/bMza1nbTVHLXbIJnwGSxnG/QT3iBl4dkQldBgrJ4kiiyCwKRRTeF5IkNZIqansV8F9MIU7bvxm0AKrItGWcetsYdOYTF6evH1z0dDLZJy9Oe9Um/T4bzjuIvMd/unvL0Wyf/M17zeFGV/5yZ05DsF13V/h6J8t4dLe6Vy1Q4YjL/sb501aHv/iiQUcA7zfP5Fv1N9/asm9HHKZZ8gSRnfzOg6d0qc1t32HDjU1yrO3/xbgzs0e132/mtDqvPVQU/ByU/bJkyMc3772FfSG8O6PLeaMn04lL837HMKcu7NcxDAXsd+kI67mFqeTNbcNs4bvNKMvJ/3K1JdppMUZIjaBi95pBEAnffIk3jl2DlwIr/zkzs391/AQqR0yfO6q+8n80qT9TY6afX7BG5pOdJuLFoGBJmEJoxp4Ftr3jWOWEGgxyQ5Zg6gTCWG5UwtcRuEEkREahAW5NGFvhjAD7njZ1HCRkjjtIOrnBe0WqrvNRC9Gq4ihUbPglxaE/kQxzElkRrgWOvAnpT1pjDVYvVZNRD3dzQYdAxqhpbFvHhjAszop9ydRrkBXBGIkgvEAK3ZJlKWxpoxiam0SZWmSG4xgXgsMMdCaMO0gpTIL/lqAKAO2AJHEWyWJXUEtb+GUZL2LoSETkaljY8T1IVg2AkFkhYSqBloR2uCO1ogcEyGS5RhtSWoZm7jTxSmGxkJaR1ixbyyuEx5ENYRWKKmJciYlzSmEaFuirRi7VIVQEbsW2rFQaQsxFppcDh2ZapbWhIYoisMp/x8vdzxf9+GAYVNMLCoUnpf2nyv+a9aH+fUDP3ixuzEFheILvwoaeKibvnmbrl49Ga15YtC4D74dYMWS0AVlCXQVapbRuYSeQCoIkpiU3pRGRBDnBEFeoGxFtS9GRBDmawgtEF7AzOQQ7eEwb849yjx3HWXt4GWKDDlZdpxhlNChsrh9oJ956bUclb4Dp2s3Fg7PQQy7aAsqbTGywyDcCx8AAQAASURBVJCARCogqDn4xZDRmkMQRVhumWximDE7iz1go1WIjjSjQx4jCQdECmG38XhXmpxXY+fpy9hJPk5aBuxop8mkt6fPLTAUZtkQpDk+cRfbO0WCJNS0RUXbrHPbGMzmaJ9VxhUxFe3SY43ja4d/Fnfmbyt3oVYM2adrKTtmkzgyZjexhvHpgnuG+ykHLhm3TKXNpeI5IMBJBggB01IF9u1cxbzkGuY4G1gZdeK1Rdwwuhul2OOAtidY67fR7RYpREm2YwM7JIe4V8yiXZTod3M4IqboeTgyZjjMMC+5hn+N7UQ6EXDjwFx0LJnXP8Cc9DA7JIe4Pb89q4rtjFRSVPKaakaQXCNRVdBKE7bFqETr+2QynnwfwtLGmQ/H3rSxW1VDM3PsTXty7SFLOGSXb3DT0s9x7E17Uv7ICYSly7lraBe08yBhGS5+V4kvnDGXL/0+4NqTFYtyO3O1epjoQ7ujM5odOr7A4Yd8k9IPP8Frb/8e/3jlJ7hq/mLsxz7IhmPewoKTv85tpa+xdG+IOmt8+kpTkPTc1M68tvxIs1978go+8v/O5+ZjX00QlNBKs2zvArvc3MF+/++rlL5/NaVKkaAYUIxj/GJAPKmYt1+ZMHmIY0UcRMSFqZ/3px27iB9csfuU8/5VcChi3v/sn8cSfjLgtKMf5DeXzqUYx+yWPIGlq77GQ6/Yhx9csTuPHrcLC/yvY/34US6Z6/DOu10u+tetJM48kNoPFxCu+gk9v/knr/9SjbOu/QK7fGQJ62Yp4oJit9PewHUPXs1/nz6LRTftywM/+Ru7nfYGuv5X0hPuxjvfbbQuv7m0ivzpO/gXDsl+E0Hq/9QRnD94DUd982t8qTQT70e/Yuy9J5D+v8u5jdu5bQ8ov/cEYPEm/z82BaFbs4lly5axww47vNjdaOElilWrVjFjxlOHfF8uaM2TFp4OrXli0JonLTwdWvPEoDVPWng6bM48aUVggI6ODgBWrlxJPp9/kXvzn6NQKDBz5kxWrVpFLpd7sbuzRfBijElrTbFYpL+//5kPfhmgNU9e+mjNkxcf29o8gW1vrrTmyYuP1jx56eOlPk9aBAaQdYF+Pp/fJv7pGsjlctvUeOCFH9O28sG6JdCaJ1sPWvPkxcO2Ok9g25srrXny4qE1T7YevFTnSctGuYUWWmihhRZaaKGFFlrYatAiMC200EILLbTQQgsttNDCVoMWgQE8z+NLX/oSnvf0Vq1bC7a18cC2OaatDdva32BbGw9sm2Pa2rAt/g22tTFta+PZGrEt/g22tTG91MfTciFroYUWWmihhRZaaKGFFrYatCIwLbTQQgsttNBCCy200MJWgxaBaaGFFlpooYUWWmihhRa2GrQITAsttNBCCy200EILLbSw1aBFYFpooYUWWmihhRZaaKGFrQYvewLz4x//mNmzZ5NIJDjggANYuHDhi92lp8Q//vEPjj32WPr7+xFCcM0110zZr7Xmi1/8ItOmTSOZTHLYYYfx6KOPTjlmZGSEd73rXeRyOdra2vjABz5AqVR6AUdhcO6557L//vuTzWbp6enhuOOO4+GHH55yTK1W46Mf/SidnZ1kMhne+ta3Mjg4OOWYlStX8sY3vpFUKkVPTw+f+tSniKLohRzKywZby1zZluYJtObK1obWPGnNkxaeGa150pon/zH0yxiXX365dl1XX3TRRfqBBx7QH/rQh3RbW5seHBx8sbu2SVx33XX685//vL7qqqs0oK+++uop+7/5zW/qfD6vr7nmGn3vvffqN73pTXrOnDm6Wq02jznyyCP1K17xCn377bfrf/7zn3rHHXfUJ5544gs8Eq2POOII/ctf/lLff//9+p577tFHH320njVrli6VSs1jTj31VD1z5kx944036rvuuku/8pWv1K961aua+6Mo0rvvvrs+7LDD9OLFi/V1112nu7q69DnnnPOCj2dbx9Y0V7aleaJ1a65sTWjNk9Y8aeGZ0ZonrXmyJfCyJjDz58/XH/3oR5vv4zjW/f39+txzz30Re7V5ePJEUkrpvr4+/Z3vfKe5bWxsTHuepy+77DKttdYPPvigBvSdd97ZPOYvf/mLFkLoNWvWvGB93xSGhoY0oG+99Vattem74zj6yiuvbB7z0EMPaUAvWLBAa20+WKSUemBgoHnMT37yE53L5bTv+y/sALZxbK1zZVubJ1q35spLGa150ponLTwzWvOkNU+2BF62KWRBEHD33Xdz2GGHNbdJKTnssMNYsGDBi9iz54YnnniCgYGBKePJ5/MccMABzfEsWLCAtrY29ttvv+Yxhx12GFJK7rjjjhe8z5MxPj4OQEdHBwB33303YRhOGc8uu+zCrFmzpoxnjz32oLe3t3nMEUccQaFQ4IEHHngBe79tY1uaK1v7PIHWXHmpojVPWvOkhWdGa5605smWwsuWwGzYsIE4jqf8AQB6e3sZGBh4kXr13NHo89ONZ2BggJ6enin7bdumo6PjRR2zUoqzzjqLgw46iN133x0wfXVdl7a2tinHPnk8mxpvY18LWwbb0lzZmucJtObKSxmtedKaJy08M1rzpDVPthTsF+xKLbTwFPjoRz/K/fffz7/+9a8XuysttPCSRmuutNDCM6M1T1po4Zmxtc+Tl20EpqurC8uyNnJWGBwcpK+v70Xq1XNHo89PN56+vj6Ghoam7I+iiJGRkRdtzKeffjp/+tOfuPnmm5kxY0Zze19fH0EQMDY2NuX4J49nU+Nt7Gthy2Bbmitb6zyB1lx5qaM1T1rzpIVnRmuetObJlsLLlsC4rsu+++7LjTfe2NymlOLGG2/kwAMPfBF79twwZ84c+vr6poynUChwxx13NMdz4IEHMjY2xt1339085qabbkIpxQEHHPCC9ldrzemnn87VV1/NTTfdxJw5c6bs33fffXEcZ8p4Hn74YVauXDllPPfdd9+UD4e//e1v5HI5dt111xdmIC8DbEtzZWubJ9CaK1sLWvOkNU9aeGa05klrnmwxvGB2AS9BXH755drzPP2rX/1KP/jgg/qUU07RbW1tU5wVXkooFot68eLFevHixRrQ3/ve9/TixYv1ihUrtNbGzq+trU3/4Q9/0EuWLNFvfvObN2nnt/fee+s77rhD/+tf/9Jz5859Uez8TjvtNJ3P5/Utt9yi161b1/ypVCrNY0499VQ9a9YsfdNNN+m77rpLH3jggfrAAw9s7m9Y+R1++OH6nnvu0X/96191d3d3y/LyecDWNFe2pXmidWuubE1ozZPWPGnhmdGaJ615siXwsiYwWmv9ox/9SM+aNUu7rqvnz5+vb7/99he7S0+Jm2++WQMb/Zx00klaa2Pp94UvfEH39vZqz/P0oYceqh9++OEpbQwPD+sTTzxRZzIZncvl9Pve9z5dLBZf8LFsahyA/uUvf9k8plqt6o985CO6vb1dp1Ip/Za3vEWvW7duSjvLly/XRx11lE4mk7qrq0t/8pOf1GEYvsCjeXlga5kr29I80bo1V7Y2tOZJa5608MxozZPWPPlPIeoDaqGFFlpooYUWWmihhRZaeMnjZauBaaGFFlpooYUWWmihhRa2PmwzBObHP/4xs2fPJpFIcMABB7Bw4cIXu0sttPCSQ2uetNDCM6M1T1poYfPQmistvFjYJgjMFVdcwSc+8Qm+9KUvsWjRIl7xildwxBFHbGRd10ILL2e05kkLLTwzWvOkhRY2D6250sKLiW1CA3PAAQew//77c/755wPGkm/mzJl87GMf47Of/eyL3LsWWnhpoDVPWmjhmdGaJy20sHlozZUWXkzYL3YH/lMEQcDdd9/NOeec09wmpeSwww5jwYIFmzzH931832++V0oxMjJCZ2cnQojnvc8tbB3QWlMsFunv70fKrTtY2ZonLTxfaM2T1jxp4ZmxLc0TePZzpTVPWtgcPJt5stUTmA0bNhDHMb29vVO29/b2snTp0k2ec+655/KVr3zlheheC9sAVq1aNaVS7daI1jxp4flGa5600MIzY1uYJ/Ds50prnrTwbLA582SrJzDPBeeccw6f+MQnmu/Hx8eZNWsWr+t7H7aXoja7i9iVWIEi9iTlPhuhQEaQGImwazFaCBBgl0OUYxEnLexyBIAWEGYctGWOST82CiNjEEegNEgBQoKUoDXCcSDhotIpdNJGWRJtS6KUhYw0VtW0q1wLLQVCa7QUaEtgF0OE1ijHQsQKoTQiUFiFMvgBOoonrhmGZsBametrZd5bNmgN0kJYEoSApEfQlydK28hQU+t0kKEmOVQDQNZiRBwjYo1K2ijXRjkSLQVR0kJojV2NiV2J0BA7kvTjo4hyBR3FCCnRSpm+NfoBE/fDsU2fY4XOZVApB+VYzXEDIEw/EKAdiQhNO1qa/UJp7IKPqFTRVR/iGCzL3IfGE5/6b+E46HQSXAe0JuxKUU7H3H39N8hms1v6X3CrwFPNk8m4+azj/+PrvP4HVz2r40866g//8TUbuPgvb/6P2/jmae/eAj2Bz/7k0i3SDsBDNz34jMfMO2TLVkxuzRODxjzZ7v8+iZV22aV3iPnty6nGLm/JLSYjFWujJAXlUVJJKtohL6soJIG22BBnWe13cP/YNJJ2yH5tK5jpjjAU5bhzfDZ3PTobUbZAgsgG2KsS2GWBFhBlNHFSoxIKOxswo3uUUuBx3Mx7me1sYFwlWR108Gi5h5xdZef0IKG2sNDcXZjF/QN9zGwfoxK6OFbMqvXtxGUHWbWwCwJvTJBabz5nY0dQ6RXUdqkyq2+E5St6cIZt3BGB5UOchKBNE2UU2lX09I8Ra0nCDsknarS5FbZLjhBryfYJo5nYEGUZ9HOs8/PMTI6ye2o1HbLMXZU5bAiy7JZZTVr6fPfBN1AbTKO9GHfAAWU+x+OMQoQCp2De55YrirMk8d5FVCxAC5QWZNI+YWzhWDF+aJFJBhw1/QGqsYsjY0JlsdbPY6N4ZLybQjVJreygCy5WWZIcEnhjmuxKHxEpgjaX5NoKA6/K4R9QQsUSsTpJmIuxcgEqtIjHQtZ+tvV90kBjnpx7x0eoXh1wYWmEwp/24OTf/4zqdl+acu4V+w3wjrv6OPHviea2o0738TLrmu9fd9HVzM5P1d5c9ctXEfqn8f3vfIzbHx/jgXedQfr/Lmf1Z2q8+qcFrvrlq7hyhyVc9J5P8v5L/nfKudsfOb7RGOYe9REe/cv/sef3fkP1b//a5Dhfd9HVXHvIkub7Y2/akw+8dzfeXjuYzx6wliMP+w1ve3xP1pw/8b33wQ0/4YnVf+NrNy/h3nmH8+lTuwFIvuHVzet8+6frAXiw+yp2Xf/sv3d/1zfAnBlv4H/Wf5G3j5/Dl5a3c9lhNQaX/ASAc+6tUJ32eZLrvs4jf/0pteP+h8Q1/03tuP8B4I6OXwNw8EWPMPN9q7hUHMrvPnMhANef+f82ut6TxzgZh95zPCMfup81e/2Y6Qebe/X7f87gG18f4ZED1/GPR7+6WfNkqycwXV1dWJbF4ODglO2Dg4P09fVt8hzP8/A8b6Pttp3ASuew3ATSEui0QHoCK2GRGFEIBY6wcHwf5Vooz0J1JnHHA1RsoVMudjEgTjrEaUNgnFIMPR3YRR9EZBbRYBbSAAKIgarC8suIVBKdSqBSNjgJhKWxw5AoZWMpUI5A2wLLVwgN0rOxqiGiHCNL9UV6EBrigoRImYvYDqDRsUIIyyzcpayTqcZiXiJcF2yLuDuPbk+QqESGMIQ2TilCJFNoKZCOQtZCUCBtSexYCM9CC4izNnZF4cgIS0tDMFI2sl1j1RRahXXiIurjj8CukygBaAsRSxA2CA01ZYiR5xGnbIQyBE4ojfDq5EcIcDWWH0/wsmINMV4DDVpbddImAEPWANMPgFhAMUBYEVgWTqWIk5T1prf+8PaWnCcN3PmZd2yRvt35mXew/7eu2OzjG6TjQ2/6+3O63s//eNhzOm9T+MFZ79+ibZ31g4u2SFvZzAu/SGrNk6mIyaJVgnEZMeYUeXPPImbYsCpOEscp0kCobLIiYijqpKJcOqwSB7prqOkh9u8ZINaChAxxhaIcWLwh+wSLls8jt9YhzEAUpoh6FHJcknsCalIQuJoIDcUUa1MJvETIoNXHOjWNnVID9KUCZKrAvunltFll0iJgWKVRqRRLi9sxrLoYW58FLRChwNYCicBKgKvAixROOSZKSlIrBEMdHtUZEXaUJlmVCAdwIehXxGmFcBRCCQInA0BNKjpSmlyqSl86oMMqUVRpRqM06UTA9pkyO4oiKRkwzxtlIGpjulejXSmWlHai1y6g3RROlCJ2NJYnkIHAKQNVCDNQ2yHGG7IQaY0rBIVQ0tFbIIgsyuNJipUMTiqkr2uMNRty5NpC/ESO9X6WXdKDlGKHgVovSTtkfbkXXbKRvkR7GhlLREagAMZt/KxFrU0Q9qbxFFTKDtpTpHwH6WuicgppaWRs0qe2hXkCz36uPNU8SWQ8dALe/NU3wfcg5pu4wPw77mXhAa8A4D2PzAEgnUoCcPhZy0jkACYIzc7TN/BkX6oTP3Y7l553NqmchZeR2FaCaw9ZwkeCXxED0vsLmaSFm0uSSZo1wY7HjNXP3jh9afBfP6XvtZ8gdVQaIRMb7W/045V/P43PH2aIgZOxSEsXIZMknASZpMVuN7+a3XZ7NTc88AmW/HRnHu84HzrgyOM/AJilCkDtxrv40SWFxh0EYN/KiZDe5KU3iT96t/Am/3XYWQc3lyRXk9hxknQqhZsTHPiPV3PX0QvIJC1kKkUqaZFy0oikTdJJs2zmyQDM5CYAFpx+HAvYDxcQMsH7Vi/lis8cBMC8x6YB8KrrrubN33sTC+9+iLsWPLRRn+ysg2VbSDfNnJ0u5WeXfBVccHNVdlowjX90bd482eoJjOu67Lvvvtx4440cd9xxgMmtvPHGGzn99NOfXWNaoz2n+YTf8hUgSYwqYlfgVBUyUGjHQkYKhCB2baq9CRMpqSmijIsMFTKoL6YlxEkbx3HQUT1CE0Y0/jQ6Vibq0YiSVGuIKMYaK5IcS6BTHtq10ZZAxgoZgo5NdEPWQmTJR1Rq6JqPhklRFQvq10Mr8H1DUCzMtSzLkJ2Y5mwRCQcdhpBK4HcmEPW1vRYCdzxEhjHKlghAORIRSoSEKOMQexZ2KUTbEqumTW1XBXY1QHk2Vk0RJ2wsS0JIPbpCnbTUZ2uDTNj1u9PofxwjYoUdK2TgoRIOccJC+rGJvEQaVH3cSiH9GFmsR6AaUSdA13yEY0+9VuN+xYBroWNlrmtZUJnI193asUXnyfOAZ0tiYCoR2RwysyWJy0sdM+bPZPXCVU+7v4WNsaXnSSLrc+S0B9kxMUBaBFQ0dEqfPssnLy1CPYaFoKwHWBubBUpCxPSJCt1WmTGVINQWY3Gabru+kLE0mTUxhe0s3IKg2iMJeiJGEzbuGMhAoDpiRDoimfIplxI8Vuxi5Ug7K7va+a++u/Fth5p2KKokq+JO/j6yKyN+ispIiqoXg6UhqH8PVgR2WaBc8DvArkqUY/YFaYEMBesH8iRHJXYFRKSp9gmUoxGJmHS+ii0V86etoNstMS+5FoCZzjBtssbaKM/qSic15bBTYh09VpHhOENRJXg06CMlfbrtAv8q7EQ1dvCVTRxLJGBVTeQpTpoHYpYPVg3soqQ2I0RLBxkBEqZliwyVM5SCNKJqEcaCATuHZSvSToAnI3K2z6OVHtZVcqwc7ABAl2yzltVg1cz3nwzBCjWlaTZh1vQhzIJdgfRyizAniZOasDs0D81shffE1q97mYwtOVcGv1Fm4OgfMvPVexKWXv+0xx5+1jJO/OFpXHbmT56x3UXhF5hx6D3N97eu7+Tsh/u59OM7AbDraVXe/6ElrL5vJ95y7Svp/dztG7XR99qzmq8H/vEDUkcdTOUvtwLwyqTH7VWfwy7/Lf+++MdTrvXr2adwzW/v3Ki9PU99GDCRqMN3+x7v70kwP0rV967b6PgzTurhvIuHmq8baGx7JrzJfx2/bt+Jwr1z2WEmXN/fBWNTj5n56j3hvI3H3sCgPm6T29+3eim13/8QgI+uOQCug/dfLLnhhylKe49w1wMT5OX4hXtz2n/tyTnTF3L9Dldw/MK9WX0xrFz9IY56vfmuOv7tY3zums9t1rhgGyAwAJ/4xCc46aST2G+//Zg/fz4/+MEPKJfLvO9973t2DQmTniRDQz6kH0HOQ9sCu6qQoTbh4pxDlJbIUJNY7xPmXESk0JYg9iRa2mgLZCxMOpPSYFvNRbOwLHQQTkRBJkH7QXMBLYplRMWkbKXW21P6Sc035yplFulaG0LSiGQEIcQxWmvDZB0blInAAIg4nkgjq6eU6TBEJBLE+RTaAmfcLP7jtPnC0tL0wR0PsKqRSWWzJbEriRMCqyaRocKqxShXGpKjLLRlIkZR2sbxXNN31SAuauqDDttujqPRV6SAIEBojeUHyFQCmXTQljRRGD9GKIWIFKJUMRGoIDDnNsYJTyIv9XSyyWQuACwJsTJpbNsYttg8eQni5UROWnh+scXmSSSwLMWjlR5CbZGWPo4YQ2mBIxQJoQi0Jisl47FJ4+q2AlZFKdrsiGLsMhaneNifxvbuegJtoZAgNVaoUQ5oG7wRgbJtVEJTnREjq/XPO0tT3JAGCR+ZeTOr+jqZ7a7n+rE9+OujuyKk+T6KQgtVdBDpCFGVaECWLUQMWoJVJzJhXhHYGi0twJAFZUOYNQ+s7DJ4owoE1GJhIhaWIuFEFMoJ1lXz5OwaCREy0xlmbdTOsqCHYpykwy7RL0MSIiTQFt12gayqUtMOK4JudvbWckB2GcVUgpT0GZydY4Gag/tYkiip0bYGBXEC7IrAHRXYJYcoo/FGBOJRlzWdebIJH5QhZLpqUyMBSrA07KXgJ0jaIQPFLKVSAj3sgdTgKVACqyZwigKhITWgCHKCWodA24bQyBCCvEk1zy4390ZLh6ArBstkDGxr2FJz5cTfHc0X3/cK4F7ARF+e8ZwnkZgfveZcPvbPc5qvAd74px+wz26D3PYoLBs3Wp13+k9Q+f5lpJ74HLc88N/Mv/UzHP+NS7nz/WmOqbd1ds+3+O7QZ57y2odd/lv+fsLbeejIO8gDpfe9hz25nZFDTVRmdOYfmFlv7ZafXcJpfOcp23rtSCdH7XgdVz/29MTtC9es5byLpxKaZ8Iuo68EwD51DeefO51fUwXgG8s6nvHcRadM56DDzevEW8/kvkWvZO4TJ045pvb7H3LdLR/mz3Pv4ewffZhPFe+lI/sK4BI65t5P5fpejhn7Mp3n/YFj3z6Ln/zuTt5SeB1v4XXMfHvMaepnvOHHF7PfVf+3WeN5MrYJAvOOd7yD9evX88UvfpGBgQH22msv/vrXv24kLntG1PUfMlaIMCZOOgitcYoRVi0iyLso10IoTWqd3yQkMlDNBX2UdlCOxBkN0VIQJy3ztKrhVm1ZoCKE60ws0JVGa7PNkAl7CvnQNd/0rZ52JoQw+7QG2zbRHK3ruhwJOjbtSIFQxtVBhFHz3OaCXaopJEbYLliSKOMgfYVdCtCORWC5RCmJWzDpbw2NiXItlGthV2LipCT2JMqVWJUIbZvXmLRjlCOJE4ZwCds2xEspE/mo3xdh2yZKFSs05jeWBFVnOHEMUYSo+Vi2bQhXXUfUGJOOonpURxgSB+BKdNUQQZHw0KGPSNRD2Y3rSzFx7y1MCt5kbc42gC02T1oAtmz62OQ2t1QaWSvK8tywxeaJrXHtCFsoKsplVdDJQNjGg5V+tk+uZ//kMgCsWLM0mMYOzhADscfjQQ9LfZs/r9+DTq+CJyPuHJvNuJ+kN1VAjjoU+yVhVmMFgtg1mbayJrCqFlqCyiuUbyELNvlHBGfqd9LdN85YMQlaoFekQNcX2a5GxqCEbaSZZQttmYiGOy7xhk37cUI0v1NkhCFQ0izc41jglDWinhnsjoG2BLVIMjycQZdt7q/183imk8H+LJ6MSds+7XaFrFWjwy5RUw4DURs9doE0Pm1WheVhFx12iYEojyU0WatGTTl0uGV0bL6HZARaG4IRtGm0pbGrAm8ULN9EjuwKFJa14c8skeouUyFNYq2NjG2ilEb5CVaPeEjftKnrKyN3VGJXLBNxqYKMNcoWxK4gyNeJXVYjA0gOCYJc/bySxinFRCkHbVnI0EIG205Ev4Et+Z0y79GNScueA0tZ0rfLc+rbHjt8k5VnwspP/TezZvyc7fODvPFPPwBO4INLT+Q3nnnS/5Ydb+YnvzM6jGMWTW2jEX057PLfcsvPLmH7cw9u7vt9tJR3jH2BC3/+Dk6rnclPfvQhvn7NR59VH2944BNk9tybO99/IJfusnH05bli8aEj7H1jB2+79SquPPh4vnrudL54zhp2PLKDMz61O1fWh3Fo7zU8fGb/U7ZzzE+P4/K1/fy57SxOfsKkbm939+c4ZJ+J+/CH2pm8/+IPMOuXl/AT4LuLbufLpJr733PKbVy3u3l93Nv3573Lf8LxC/dmJvvzhpUXA7Dsz69l+zf+g6ve2wbXbP44twkCA3D66af/56kw9YiClgIRKqSMwdfIwIj2nWKItiTatpB+RJx2CHJOncAASmPVYrTARG/ApF15FjrhQaVmFsWODUIgrDqpCaOJNDLLmkivqkdohOea42zbRHKiGGFJ02Zd8I/JdkPE2kQh/MBEc6TR7jRJS6N9aUMYgYUhMQ2CZFlECct8UCdscy9iQ46ilMTbEGD5RsAfdiSIXYlTDHHHIpQrCXIWjhTY1Ygga1LLRGy+EKKEQKc8RLnaJHTCqaetRZEhYLGqk4lJT6vqUawpov86+dMqRtiWIS6N+9cgMZZVJ2faRF+ENOloCW8ihQzMfXEmR7i2rVD/ZGyRedLC80JeJre9pUhMC88NW2KemDQlxbCfIm371LTDHYXtWV/LYEuFhSIhQ1LSp6ZMSpdDREV5SKHZUM0wN7uefw1uT8KOGCxkeXR1DzqhUK5E26BDsAMQsVm8i8hEZKKsNIKVHp+xLgGBZMP6HFpDW0eZ8UwClCEv2MqQjkzADj0bGKmmKNU8LKkorsrhd4FVMg+jREPCWav7wmTAKQqsmkPsAlpj+Rq7otG2IPRiOvJldKdgZm6UTq/CoW0PUlBJ7i9PxxExHXaJrKwSa0GnVaOsPALdzmxnAz1WkUXV2XTZBabbo5S1S1l4KC2h5KCFSSNTDkY/Kc11/XaFU5J4I4ZUoSExJLFX5qhM01gzqtQUuMMWuj1EujFqxEMGgiitzPciIH2JDCD2DIGxKxBmNNVuQZQw7+Okwi5boM39sXywAoVTjkivs5CBpNY1ce+2NWyJuXL6uV/m8zXJLYn9eO9fkyxt3/iY+PrjgOs58YenTdm+03fzPHL2OD9P3caHXnMuJ1/4ZuAP5H5+BgAP/uQVsKjGSvLMMtlOHPbDR3ndhw3JOucHBzB4hXnA+adsJ2fxexb+qcJr+RI7fdccv3L1h1j9lUN599p+Lu03KZBnP3Ym7scL/C36FMd//xH+Fn2K+ccAT0z07ar5izl+4Xvgb3s2t92zcDkzUu107Z5vbjtv/btJHUUzNW1z0Egne6ZozNtuNUL6/X/5CHDmRvvvOnoBHA0s2mgXAJf2ryU1dBKXnXkuqaMOBt4Niy5l9efmE19/HMd//xouP+1KZvEevryo0hz3CcftvVFb1/z2TpgP2+cHee/yC5rbRy7cndd9eG8W/PueZxz3ZGwzBGaLIFZYRR9ly7qrlfnEEWEMjoWsu4FF6RRRxkVbwjyBijSisfBWGqcQmHSmMEalXGJHYns2orHw1moiYhDXIxJgoimWNNs8DxwbnfSaKWjKtdGehbZM1CHIu9i1+qeiBuWaFC7dl8GqxdhDBSiUoDqVODX70Ig6NAwFlELXF/JaCpMaF2uEguSGEBkoZCUESxBnE8hIISNVPybGqoSI2NyXMG3akZEhCqqeKqdSLrJBThoRk8lOZE1x/yRS1dDCSHviuCYxcaZGSxpfEg1NUSN6I+TEe1EX8sdx829m2rcm/hekQMhtL41sS2FLCfhbaGFbhbY0nekKc9LDxEhu2bAzCsGe+TXESGIkffY4WVmlLCsE2mJ52MV4nGKGO4LSgntGZrBuqM1EG3wLkYwgGeMWLII2gVUFb0wTuwLlCqKUJkprnIJFlBJoW2O5MbEGxlxIxBw3ewkrezvwrIi9MivxlcMd43OQQvHQcB9pN2DET+O4EaItQCtBZNuIUJhUsaqFXdYkxhTjcyzsqvmcD/KCMCXIrItNlF5CXLXZfrthxvwks9KjKC24ZsPeLBvrpBo4HD37QXaW6wi1zQ7uEEWV5NHQLCwtNEWVoKYcpjujJETIUn8aN43sQqQksi3AWZ4kzGqCdoVVllg1gVUVhFkIska/adUgtT6mbFkoC1JrBWUrgRMIoozGGnSJ2iOsmiD2NFggQoH0BU7FEI8oBVEGnDKEGRP1ijIa5YGsSbwR83fIrYqxatoQq0pEZrXGqbjUum2cyraXQralcPwRr+eWRBmAy/7rOsLS65tpZE7m5qfVxTxy9oRbmCEvcOsvErDMpHOt+9GHuOQu8/qq+Yu585Pv5YSfHAWcycrVFQZvu5V3//ZsLn37d5vtnPGJe7j9kVdNuc7ZfIu+Hjh7cr+//whX1fU0E/qX/wbgokNfCxdewFXzF8NCeCNLuAs4mndOafeq+YvpqwduJutrnoyvHWciJQ3CMpm4vH3ObwD47RPv3OR5J7/m+1x58BXwV/jux29hyaJNu5h9u++bfHnt1G3vXtvPIfd/mV12SrLwYGMysOJzC3j0kcu455rVcM1+vO7D72H7/CBf3qeXLy+qcPzCveEbU9s569AzGJlvQjHf3flJF6nfh44P3A/svsm+bQotAjMZtgVaN52uZC1ERPUn/daEXkVERm9h1RROoa61UApl2cgwRlaCiTQmpeqpVMKkSMWBiaQIaQhLVHfgop7e5bng2MTZFH5PEuUakXqckAitiR2BW4ixazFCg7IEdtmkbMnA9AtHEiUt1PQ2XNeBDaMTJADqzmOT/vSWZVKxpCENMjRRGy0xgvhAIWKFVTK6m9hzCNocRKSNG5qY1C71FDMNdiU2T8PyFlFCGjLTiJIIYcYrJdr3DfGwJkU+tDY/ahOOYULWoy7xRBpeQ8+i4rojWV1L07BctiZFdSaTSCmMaYCeIFHCcczfxJpEaFqYgv2/dcVWQWIWLdm8tI199nxqt7UWWnhOcBVtXpUnyp3s07aK9rYKXU4RgA1hloQIiRHESBZXZwNwb2EG0xLj5K0KZd+lEjjoSJLI+kSehe3E1EouVqCNsH7SMxarBkGHIrSMKxdgyEfNJpH18QUctOMydkwMckT2PgBq2mF52EWXV6IYJpiZG2VOepieVDu2UDy0oRchNAUnSSrlE4Y2VTeJXbHJrYiwa5ax0rcEYRpQguSIxPYVcc2CSLBkXT9+1WHFcAd+2aWto8R4IcUeM9eyZ2oVaembKJR2GItTdNtFAm2zNmxnPE4i0Sz1+7ljfA6zkqMc372IxZXtWOr1EqWSxC7Y3VV0pyQaSiAio1XxRowmxm+HKGURZjRBmyaxXpJ/2Dx8rPZK/O4Ya9w26W9SN4maOyawy5pKnzDmORKCvIl0qcZXgwZvVJBfHhGmJN6oceYMczZh1m06huaWaarJbcN97PnAeevfzTv4WfO9k7mZhaXXs+fApmsvNTA5GrOTvp4PfeAPhrwAB3/QRFW++JvXcstlH+WTJ/6Yq1jMH076Nb/gMgDmH5OCY45i/NwH4BxY/bn5nM18eGTja03WxJzd862Jvn2/sdWkTV1+2n6c8JO7mH/MXfCTX/F/7smGxGCE7JvCGd2Xct76d3NG96X0X2y+iyYL9p8ODfKyKTRIz/EL94aBqftOj4Y550nHf3rgs8AXm+/fvXYivezy0/bj/b8a56Jv38Cya1YDr+FQ62yOvr+LtYVXMpr/QzMC435j43Fe8bfv8IZnGMvIhZtPXqBFYKbCDyGtEbEmyjhoR2KP1YwupmbshLVj1d3JQDkWVhTWLX0xmhSt0VIi4hhdJwWWb6IFWuumSBxb1gXmJgIgbAudTaNySaKs29SZ2BUTUrBr5qmWdI15gAgVVj0mHaWNS5lTCE2Y34+xQ0WUcajMzpF0LMS6DWaB34xmYIiBMroSHMcQGCGwq6Zd5UpkENfzn030RrkW2jYf8EKblDUZKqNtiRQ2mDQ7YeqwRBkH5QiUDckNMdZ4tWk+gNZNZzZkg+DVXcDsSdEWMP0Ec7+0Qjf4WKOmTb0NGulySjfTzBrEqhl5gYmITAMNkjRpm7Zb0+OliM0lJc+lzRaRefb44+iBvKl901XqX84QUvPohi72nraGLrtIqG0qymXAzyPrFo/FOEmbrLBzYh2xlqTaAu4Yr1vGegEjpRR900aZli4w6qdYM5yHWDC2k8DvDRG+xPItohSgTCqZSilUTiFsbezhBSS9AMtS7JFdwxN+N6uDDlbVOni40MO01DjTEgW6UhvYJ1dGacmqajueFREpScKJeNWcZeyQ2sDKagcLxGxKYZrO+wXeqKLWIbECjXIhSpnPem1JZKxxhm2qIkm2p8T27SMoBK6MeEJods+vJSFCsrJKWoTEQmDZmqE4y6Cfp6YchsM09432s0+HcSmqxg73V2dw7eO7k04EDHfGaFsjag6JjI+YWaSSTiECiVOaeADld2hUwkRGwpxGuQK7gtGurLHwOxVxSkO67hRaswjzAoSgNr3uJKbBHrdQrkZlYrA19gYHZ6ieuq00YdquZ2SAtoUxuPEEcQKiTbvutvAUaBCEZ3IlA3ifvh4wEZjL3mrSpHo+ZgjM6Mx/8v5P/4HP77yWRUt8fuPN4dpzXgPA+NV7kX/LPc/YfoO8nN3zrea2TWlzLpwhgLu58FrBF39zO1cX9mC/q/6Pu47/yMR5b/8GM/40VdR/19EL+Kbv0bBKBqY4jz2TcL8ReVl86Mgm9y/49z28hRO4evvLm9vOtztZU3991fzFfPmnO2903psf7AQg8/Hr+X/XX8CeRxzD2340UVxy5Frze+YHY0avf8rucWP8XY6V5z31Ac8RrRXaZEiB8EOkHxOn7CaJABOBEbEGqVGucd6yqzHKrQvrQ9UkMtqzEDWNqAvVG+c2Repu/bFZXH/ab1noVIKoM0OYMyYAsl6UMXYlym0swMEbDU3BRiFMupgt0JYhSTKITHpZPf0ryNkIrSlvlyFTqsJ4CeG5hiQ0UqcmF69UygjfdaJZNFMlbaxyiFUNCbpSxlGsEjWfupE0BTRlVU1ETCxMFCvSxJ40GhzAKYbmGg3SIkRTqzLF89t1zDHSahIblGW0MpOMDMCIN6fYQSs9kZLWIEGNaJiQhjg2ojSTdTZgjlXSkDvHJs61Usheang+yMuT23+xSczWpH+5MX4N5UL0zAe+DCGdmGopxbpKjnXpNlIyYJozyhq/HVtEFFWCTrvE+jhHrCWWUIxEaSItKcUeSSfkgBkreGikl3LoMVJOEZZdpBcTzKqTk5ohDCIyC3PdFtLeUaI9VWWomEEKTSbhUw0cXDtiR2+QsTjFI7U+NgRpir6HJMe6Sp6dcxMLpJnJUQCOnX0/073RZpQkIUOWJPqJuixGd06TXxZR7ZGIqolEhBmjOZG+ptpprISFFxNFFik7YLiWZlp2nL22W80cbz2htlgTtZOTNWraoaw8BsM8sZb4yqYYJehOlkhaITulh8hbVWa6w9zZvh2PLJuGjAQ6HaNrFrVyGi01MhOiLAsRG/G9tkAoUScextxACyPGtysmsuKNSGIPoopExGDXBNIHtwB6tUPQZnRC6bUCv0MQ9voIoRHKQUSYh4e6/n2hdD2d2xjtRElJpVdQ7mjNk83BVR+rceXBx/PLe48wG+ra/sRbz4TfHf2U56056TJ+5dSg7RCz4RLz60eXHM2bjruMQ+7/Av9TeSW3/PAGAFZ/5VD4+C1TGxl60vsnYVNEpoHEr5N89Bvw488Z4vTVdxoHsPSx+06MrZ5Odt6HXsnxC/fmqvmL2e/AebzJfx1nnNTDZ/fU9H9y/ZR2N8dxbPGhI5z4u6NZzHVTtv+6fSfeO/oI9qq3E8387SbPbfTh/RfD+fWQzKm9Wd4DvO2w+/jmPd+CS2Dlmd/imt/eSffgxm0suf5PU94Hn1s8JQrzgxs3j7wcv3BvnvhomcV3biIEtgm0CMxkKA1hhF2ooZ0UWgjitGsE+cJCOxDlPOKE+XBStgDMQl+GCuVZiEghg3hi0Uz94Y0tEUpNpE4JgVbGRUxnkkTtKbRjIglWoLAqkakz48kmSQJT0d6tRAi/bnGc8bDq11GeTZy0UY5ESxMREjHGNaUrizVeMuRFK4j0hGUx9fSxer0VqxISJ2xT2TlhEXvGSS1MW7jjEXHKxgpUPQpjIjAijEGaPijHpLNFSYswLYldQXIkxi76iFo95a5xPSkNyWuQnwYmp43VHdmaVtG6YeWJITp1QiiEADdp2g5Dcw5W8xz0JBVlw+EM6kRmkiOb5aKySeJUK+T/UsLzTV6eDc76wUXPi5B/ayIvLTw94qKL63s8QRdpJ0CimZs1i5G8VUVpyfKgC0fEDIU5UjKgoly63DI7pgZJWiEjQYpYSTw7IpPw2WPeOpYXOlj7aDd2VeKOCdxxjRXASLdGK4EQ2lSbT/gMDLRRLOcQ+QAdS5YF3TgiZppr7Jx7vCI5u8ZdI7N4rNhFm2NcwaZ7YzgipqJclJbEWnJnaXseKhiNjMhpNsxNkF8GTsHoJL1Rk+Ls5yTpgQhlS5yiwG8ThIFNoCxe0/0YeyZXopDUlMOKoIs1fhtJKyQhQzwR0euM0+8YsuRkI2rKZa5r7tv6OE1ZeYz7CawxG6ck8F0L7RirY7tkEUcCp6tGYa6FDASWb3QxRuwv0ZbGqkoQ2uiErIabqLFIVq7GzyhEPqC23sMtmO9TtNG5CCUIdgClJa4viFLgd7rY5RhRLzYt4nomR8oidoUhUakWgXk6XPKeT/GeS57abnhz8cXf3M5X3/nKph7mymtWs9fbb+fuihGNr/7Kobx24Zeec/vfX3o89ExEiJ7JJa187d0bbTtj3Wu4ho1rxNz1uSt5k/+659y3TcFYKV/1lPu//vfTuLqwBxcN/ZBKfdtPB4tc9t01vO6d7cA3yfzfmeR+fgbves31wMkA/L/rV3DcDfsT91emtFfp/yrwzefU1z8fcxa7bvf1zT6+RWAmQfs+SBc5Xsa2LFTKQbkWccI2pASzoJehxi6ZOi5WySdOG+F6IztJ2xK0hXZtwpyLjDTasYyLViNtSkgj2Pcc4nySoN3FrsTNpzYIgfQjlOuCABlo3NEAq2KsjbVroxyrWbtGC0BYxK6JIFg1hTsagRQEeYcg75JyHXStZsiBrqeOCWFMAxr2ykohyjUcIaj1mYiLUIasOcUYK1BoUfe0r4fN45SNcCRoKPd79doBGi3BrimS62O8gZJxR5P16zRcwqQ0NV6EAFsaQX4j+lKPnmhZt0RupHQFPjg0hfoi4aEzKcJcAu3WXeSUxiqHyGKt6Xqmg7DetpjqdNaIzoD5XXcxC9OtCMzTYWvRwTxf2NIkpkVeti1YZVM4WAy7LPV66G4rsWsupsspUYwT5O0KFeUyGqVZWe1gXSVHLXJo80ythmrsoLRkTtswu2XXMZpJobTgvto0pG9qnaQGNV5BUe4z1sdexifpRGgtWD+Sw3IV6fYCthVTKKZ4sNRPqCyeKHRQqCZ485z7mOUN47fZhNpiljfMdGeEsTiNIyIeqM7gsUoPNz+2E0JoHDcydWOUhGyEiCX55QHFma4Jeteg0itwKhYIcAqCoGITS81wLc1AIo8np3H3+HYMlHPs2j7AnOR6KrGHU0+JDrVFSvrMskfptUKKWlBRNjVt84/SLvx7w/YMLu/Akppab4wIJTKysCqGrNhlC18m0OkY1aaIyzbuhnrkXoPsrxKtTZoHi66C2BAXGUDUFWInIlIpn3LFI24PCZVjdDUlQbXLCPpVYMaH0DhlKE2zSA8KkoM1lOtiBQq7HBInLWpdgqBNkcwEL9a/4laBb3zpUuafeQHsdwocDOnB6/mfI8/g44sfBuDcZX9lyaKjeXTOZc16JIe/92SmX3wia04ympaTL3wzX63r2H/1gT8AhtDcnTNFGv87cTuvfdte/OPKrzznfn58l6tg6CrO7psaham918xbPjf1wefPU7fx3knvr5q/mJUH1piFySmc9cMEn/jZB4BrueVnl/Cmky982uuLx41+Te+wx7Pu++nnfpl/XDl1266H/INd+QePYwNfBWxOvTPLe86ezv9bdh9LFp3HmtdcxoLbF7KgXuuy+MiDdA/CtYefwLE3zGq29f6LJTv2Xg9PqkU52XGsEXl6Mq5Wu/GbUy/j3+7u0IrAPAc0dCB+gDVeRugUqi1hfPVd84El65oPLQVWNUSEMVbBN4Wq4oZIXJtIRNJGRsrYVdrSRBsaC3Mw5CGTxG83KSu6kUalQcQKESrcDRUa4jCr7DejOnGi/qerEyeBqbViNWrSNFKpYvA2xERZ10QqanVHssaiXYq6G5gpfIYQxo2y4mP5CRDUP4httBAoS5gaL9oU/DTjgCjngDZWyTLWyEhjl2PcMR85Xmn2GzD9CCPjsiaFSWEDU0DStk30pKmNsSY5isXmvWWZ1DfXQnfkKc/ONe8bGPJmRJs2ss1DRjmc0SpyrGRq6gThVF2Mrt/Ahp6mHiGLUtuunfKWwgtFYl7I6MuLkUbWIi/bHuyixJGCzBgUdIpBJVme7aTLK/HQeB9zc+uZk1xPu10mn6lyQG4ZobYZDHN0OUX67HEKKklCBPTYRR71+0yKWSzrgnJNdpWmlpeM7RbR1l/AsWN6UkXWlvLkshV27NhAJXIZqyUZqdgUQ4+eRIlYSYLAZnmlk2rs4MmILqdERbmUlccKvwuF4Ia1uzBSSNPfNcaBPU9w7+h0Hl7Rh7QVwlbESZvUygLKzlLrtBEKStsZN7IwIwhyGlkVqAysGc6zfFkP2BrpxeRzFfq9MTqsMr32OK6IiZHMdtZTVEnGVJKUjLizNouRKMOCse1ZuHw28bgDtkZ1B0Z4X7WRRUNQorQmTivaZo5RKKaIfQtchRXYKMdoYNTqFO64SSmL0qA8jbI0HTuOsV1+hHXlHOuG2sjnK4zVMghl3Mn87X1CW2M9kcAZdAg7I+IEhGnjuDaWtbArDmFG4hZMTbgoWY/eCKhVWg/ENgcn3XUBwfJrDCGoZ099f++dWbLIpCHd9aYx5v7Q6F5++etfmQN+bdLNGqSlIeQHWHfIP7jxwdNpq1zAit334R9XbloncsY3/sl5n3vNZvXx+v4ueJqA2gdWT2STXHOPsQ5u4PiFe7PyzFrz/S0/u4TvnXwhZ9zcw/eeRF4aKWAN/PivrwVey+lzf4x4/L7NIjFL22+f8n7Gl25k+zf+g/PtTqZffCL8yRCbc5buzLm7PMysHyamRMK+3fdNjsvvz55HmMKc1/z2Tt713pMpzMsAXcT9FVZ/5khu6PwEh/d+DzAi/ovO/3OzjY4P3M/PrzLubGdd4QEbE5ji9gfxx8pB7Pq9Daw5/6kjRpPxrAnMwMAAd9xxBwMDxtKgr6+PAw44gL6+vmfb1EsPDVtfQPgBsgCuHxK1pZpP9gFkbUJQrh0LEURoLPNEx7GQQJRxUa7ELkemPksYo5UyBSyjyJCZbJqwPYG2BTIwpEaGaqKGTGBqo8QJSZi2sMtuvSaLEcgbq2djCKAt04b0Td/ihNG/yKrRxcigbpHcTM2KAQVBPZVKK6MnCUNDKOIYd0MZ7doQa3TaEJSGdbSIAQFB3sYpGacyGWpSscauGktlqxxAECKiegFMxzauYwmHOO2hXUnsmL4LDe6oj6wEiFLF8IlGhKRhtQwgjLZFJDzCGZ31tD1tHM8sYaJXyhgQRPU8ZOUK/N40dsrFWTdq+hDFEAZTncbqUTGTqqYnCGkLT4uXcyTmP43CPBviMvk6LcLz0kdiBMLp5sl+eqWkkLe5b2garh3RnS5TjR0G/DzTvbF6LRSzqOm2CwDMdQcZiHOMxWkjdreqrAvyWJZCJUztkVqHJEyDiASxFnR4PpXIpeyb2mGRkmQcn4KfoL2nyD75Vbwq/SjdrnFDC5XF0mIvxTDBnm1rmO6NsTroJGX5lOIEea/G3tuvoc2uEGqLWEucZEhPW4lqaBOmPPADnFJEtdtGRkaPE7um0GWc0lgVARtcwrxEeIodZg7RnShhy5jxKMkM1ywoH/N7ibVkhd/FQJDj9sHZ9GWKPDHSQa3qElVsCCXY9c/lgoNVkUTdAW5XhZ2617NzbpBq7LC60sZaOyaMJVFs4a92scsCvyuGSBJmIE4p8+AqE7HjzCHGqkmGKlkG1ufRJZuxWhYn5xP3x8ydtp4Vw+1M7xinfVaFe1bNwF6VJGqPCAKb1DpTMLMw20HE4BZihNK4hRh3XFDtBcveRgvB/Ie4afBGZiz6KzcMJLiB6/nzMWdx6y8SXH7afnz3K4a8gKln8vDHb+HEHz7cFO2/T1/PL8URzd8nX/jm5j6AR864Ec44iMTyTlgI0/70Rdrr7mSjiz7NjC/daLQwsFnk5ZixL/Onti9P2fYG+zv8LfpU8/1k8rLwTxXgQ8BH2BT2O3Aey4BP/MpEYA4+8FRuXfBTDj7wVPb9cMj3Tr6Q89fP5fTuR6ec97bD7uPKvz+7CIy96u2cf87xwAP8dqiTyYqY137gy9wGvBb4n/4zYNlaXvu2Dn736jdjHb6Saw9fCcAJVyZ41xHbAWCtNQ/W4/4KR99j89i0t3HWORP3ZskiQyo/OW83AM56/9M/FPxQ5SA6Pncyp37uJD68uWPazOMol8t8+MMf5vLLL0cIQUdHBwAjIyNorTnxxBP52c9+RiqVeoaWXsJoisDrIu9KFeEH2Eqjky4qYaPsCcerOGEjPBtZM0/to4xL7EnsWr3oV92COcg6JCsRQgiTxiSF0b4kjdAeYXz0ZaiwapFJB8NEbbRtKtwnhuual5RtrI2rETqSxCmnrsWpO4JFCiZZP4tYEbZ5KEvgro7QDftgP4Jkom4pPDHhGkUeRdVEe0Sk0K6NDIwdtBUo/HaHxJB5Ip5abcLi0jdWzm6sEUG9kGQYmfo4dah8Cr87RZSUKNtoc2SkcSoKP2MRZizssodTSGCvL0ykfknLCOsbNsfpJNUduwFwR2vYZeN6hhSEGcfYVoOJENWJj/IkfqeHdjtxV44gaj5aWRN1cTB/c62NaYBQCtkiMJuN55PEvJS0L5vCM5GYyWSjcdzmEpDns2BmC88vMmsihrfTaNuk1IqqRdoLKFQSrKh5rBjuYF7vAHOTg/TZ46SkT6gtHg962ckdYKYdsp09zLjawLDySEmfXZJrWdbdxcIVeZBQ6TPta0czq22MackCq8pt7Nw1xKifojtRYs/Majq7ShRUkr0SK3g06OPA9GOm/ozyeG32YVLSxyVmIM4zFJmI9vJaFzvlhpidGOae4gwiZTE3t57tsxtYUeog6YQMddZLC4QxMoJynyDMaZxyXfcRCoQSaGGiLgjwI5u15TyRkqxz8iwamcmqDW2o2CKuWhA1tIkwnM3U07U0WBqZCE1NnKJD5+xR9u9dSb83xk6JdbgiphAn2NNbw8p8O/8s7sy6Wp5IS+6a6xEOJLBLFlEuNtF6DSIVM3/uE9w/OI1a1WVcGlLTN2eYObkRZqeGqSiXvF2lFLqsGcmz1w6rScyOeCTfzfpV7YR5RQVJap2gNAvsssAbt3AL9e+4oF5LZiT5Iv0nvrRx7SFL2O/AeYylTqGtckEzevK6D79nynEPf/wWliw6j8R/Pb2YfzLu+8yneeA0U6GxNv8cvgosWHICAO37wOiiQ5vH/lq9D4D3yl8+ZXsN8nLE2g38re5y3CAviV8nm2lkiV+bv/VrMb+XfeD+KRbB9z3+WWbxA8AI3M869Azs1x/LN//Sy4Ft5phGNObJ5OX0uT9uvp5soXz0H3bjPU8S8X9jWQfwSq48GK76xs5w8MNT9v/PkabY53//dUJk/99/PY/le36TWT+Es352Btcd8wAA//unX05J10uP18Nj4zD94mM5n0PZFK578wO8ZdkJzYCVvert/Hr2KVzz2zunpJL5Qycx/Yp5fKzySuBXm2zrydhsAnPmmWeycOFC/vznP3PYYYdh1Z9cx3HMjTfeyMc+9jHOPPNMfv7zn29uky9N1O16TYFJayLFSClkJUDlk6iEcSFrOIHFnkXQZlOcYRFkoWOpxBuLkLEmTlrY1RhZqjUtgMFoQLRtBO5OSWHVYlS9eKZO2ERpB8syRCg5UENEyhTPtIWJiCRM+pVypdF7VGNkGBsxvVJYxbiu4bFBaeKM0bc0Iw71QppNp66GE1hkzkdKRBBCZOygTVTI1LlJF/wmsWmQJWKNVSyblLBokstXXesSdWWp9SSptVt4xRinrE19mYbosW7JDFDtS5CwBM56C1EoTVgsByHCtghmdqI8iTsSIPwYnTCRsDBnnjo22qUeqYpdiRYCuxITpmzUnC681WOIgp6I8jwZYTSRItfCZqEViXlmsrGliMuzJUIAe16w6bziJafstNlttLD5SK2rUFuTptYh8MY0iUGLykyHpBeQcCLyXo1dcwPM9QZIiBBHxOSETzaxgm7p0y6ThDqmIgIsNKG2ces6EZ2KiVS9+rsCLE3OqTFYy+JaMevKOaqBw+7T1rKDO0RK+sxkmDsqO/J4rZtdkuuY6Q7TbRWx6rm3jd9tVpmK8tgluY51YRu3j83BlTG2NNfOWD4rhjtIegHKg7gri4gU3mhEpdsl6gwpCwe3IPDGTIpzmAUdG2KydjiP48T4VQcdmu84OxGhYoFwFU42ICi6WGM2sWMhakakLyt1nc+0CtmuIo4VMxKkeGislyXJ6bgyZixIUut1ub88nU6nzGEdD3JPeRbZdI1CjyAedRGBQETmoV+it8yqYhtdmTJOvsCrux4n1BbV2KEQJVkfZFle6sCPbEaKaY7d8X7mJgcZC1Ps1jnA2kSVJ4Y6CWwPGdjIUBAnNGFa4o3HxkhHGRc0Z7RVV+ypcNeCh+j4/mt45YWdfHvhufTtdSZ9nAmTaq8sWXQevxRHwO+P4KkoxuToC8Bbp9/NzQd+mY99eDp/+rfNH685kf8BdumYxehTVJ7/T9AgLg10zr6F/73so7zuw+/hqnp22FXzF+P1gPWLXmAFYOqfnPi1B7jymtUceDLcuuCnG7Vt0sfg/Ec/ytsOO5V/Lvw/9A4/aZKY6978AJfVnddO/N3RLOX2jdp4OvzPkWcYxzFg96EzeeiPl3OodTb/O8lg7H//9Et4m3n9yWPet8l21h3zVcZevTfzPnssB3+wxq2/SHD19pebc4ETrvQp5+G4t+/PVU9KJVu265UEC56HQpa///3v+fOf/8yrXjW1OqllWRx++OFcdNFFHHPMMVs/gWmI2aG5ABd+ALaFdsz2MGMsgqGRUtWIgBgRY5iSOCVRD6dro0kplI2IvykWFyAlTknhlOopY6EyAn0hiJIWUdJCaJMeJTXYlZAo5TSvG2bNF1hiQ4hypXkyVa/HghDG2tk2fvzeaAh+MOHI1RSxq6ZwXdcd0nQUmzqXviE4cryELEm066BTnrknQWSuE0Zo10HEhvgIxUb2xCqToNaTJEpJnKpCRBgLasvUKFCOxK4qUy9HmeKYYdYBMjhxbJzL4tiI9bMpgrypLRO0ubj1a+iG9bQGGcRYtYgw5xG7EqFNPR27EmL5klqXi9WVwVYK4YfooC6uDEIQ0hAlpUitVLTw8sNz1b80yMRzIReT8WyiLj846/2bdZ2nIi+T9y05ZacprzcHh1r/5I+jB27WsS83yKJP26MBQ/t5hBmBW4DxtVlEOiKV9cl7NZQWLCjPZZa7gcf9XuanHychQpSW9FoxITFroyRjylgf9zgF7ly2HaIqUakYtEBWJESCRWtmEEcWXe1FZmbH2Cu3ml0Tq5vEKCUj9kk+wVxvgA6rRK1u+9smA1ICahr6rHE6rBrLwg7urc6iErv0J8dZXuokUBaRWyW0LfyKQxhaZKpQ7U2QGPJxR33yyyXFHWysWWWiJ9Jkl0GQq6cUFGx0UhFXLVQsms5hCIgrHiIQaFsTeBb2qE1mpcDvcPE7FCARkdnvVx1eOXM5o77J9pBC058cZ5/0ciyhqdWrezbMAKZ7oxw160EeK3dzjz2dcDSBiCds+HdtH6Q/McZuydVMt0cZjjOsj3JYQnHD8G4MFTMk3ZC+tgKejHiw0s/ioeloLWhLVbFsheioUSOBVbIQMRS2B2U5pAdj0kMRQZuDLr7g/4JbHQ76+818fv5iPhLQTCFr4LdDQO/mtdOIEky/+ER6FnyFK+plqto/amqYLB0xKVG7dMza5PnPFk8mLgBWuC9jj+7LB/aD72xCtD4ZX//7acD5HHVhjDo53dy+9kaf/kMnvo9eN2MPblltRPwjJ78D/Nfx7rX9zJzU1qp/LeGyV8PeN3Zsdv8bkZjP7jVBGNkLfvfqN3PNb++sF7h8Zjz0zWuZxxeZVj98shbpk8e8D3f2cXA6PHHwO5hz6xXs9+F/cteCh5rHPG+FLJVSuK77lPtd10WpbWTB1xCNg4lGYBktR6wg6xkdii2wy7Fx2vJjY9XoK2LP1GRRrjQFtmLw1lXqdsWYaEK94r0pDmkKXkWuhVMMCbPmHls1U0ASjLg/zDmmmKUtCJMOQcYyaWeRJkrbWH5sCkg2nMlsSZwyKW1hzibz2PjE+MSkopENQwE5ibQ9WeAex6CkeZoUTijXtF13dqn55t40Ii+21SQx2nPx+zKEaYlTqROMUCGURmqIE4akEZsIjK6TGmMf7SKDDNZIyRCNhGvsputdDXIWQk0Quoa9taPqLm5BjLbNvVG2iW6JWGPVFLUeD9dtx107jgCjs2nUyNHK2JEWSlvqP+plg5dzFKaBF4K4PPm8p7vm05GXpzpuzwse2WwS0ypi+dRIrCmQ7+hkZBdJlAJ3xCKQUHMU68sZlrud7Jpdx73lWSStkGV+L1es2pfRcpL37rSQxyo9JK2gaTO8rNqNXJMgTitwFdQsU1QRmN01wo7ZDcxLr6XbLjDLHsERMWMqiZSaUEvSIqTPqeAIiLVPVgqMahNqWlFQCRIiYq4zzHb2KA+HPQxFOcqRRzV2SNs+gbLRvkVqSYL0QEyUlERZB2fMJzFYpfuuNEMHJtH5GC0tEiOaWpfAKgkCLbBq5gcslKNJrhfELliB0c8EbRaJ9cbFMvY02tPoZIwOBToZ4yVCqrHD3OwQe6RWMd0ZJStrrI+zDIRt7OatIUYy3RmhplwqsceeqVVM90aJlOTeaAZKOGArdu0dYLvkMLPcDezhrqOibTqtEm1WhTZZo6OnxN+93XhgbBrtXgVf2Uxzx9m3dzVSKNqcKn6Hze2DsxmqOiglEKHACgR+u0AoC6+gyKxR6FLLRvnpMHLh7lz94Dz2O3AeACf85K6miH8yfvypC7j05+t4+5zfNB3KJqNBXsBoYP5nyY+e8ppLR1b+RyTmDfZ3+OdFX9xouxVO1H55fN+3bbTfHzqJD15U4PP7HwDA5w/7CQC/nn0KYDQx3zv5Qq66/mbu+vJD/OqfH4eV58GMn7Pg949y47cexXr/23n7F3/D24Fz2LPZ9qcHPstlXMcXf6n47XFP3////ut5TfLyZMz40o2s/teh7LRo8wtQzvvssZvc7s6e2pE5t14BmFQ6r8fcj+eCzbZZOuaYYzjllFNYvHhjJrl48WJOO+00jj12053fatCo9q5iUBodm0KURPUogDIL70ZhxjgpUZ4kStrGMWwkIDno446FzRxbb7iGKFVNqlL0pA8wCXFCEiXqDiop2+g36poYqxIhI4WWEGYtyn0etXa76WwiNNhVE7WIkjaVaR5+V7JJYkRkiJQ3EiJH64vxelRJh+HU8WpT3FLHppilDsMJy+d6zRai2LiHKWXuRRCanzCCmj8R3YE6ibJQuSTVTtuE02NNlJLUOm1iR2LVIpxCgIjBqUTYxQC7GKIcYxQQJSR+d8JEfepthhkbqzaVKAtt7peyjAtanLCMqUGksPwYlCFEUdaj1pXA8hVOISZKW0SdmQlr50Z7tm3S6eJthJC3sNl4sYpYvhS1Lnte8Mhmk58WNkZ1uzZUwiW9ukpqUBMnNDISpFbY6KEEI6NpRvwUNeWQs2vM8dazOminK1mmv63Ahfe/ir8v3o211Ty9ToHhIMPV9+2NXRE4BYm1of5AMTZpWm1ele2SG/CVw/ooxwP+dIoqQawloZZINCkZkZWCDmnTJiUVrSlqRYzGErCDM0pehmSlICsVCRHSZpXxZMT05Bjzs0+wrpJDVC3aHotIDEco2xRcrvYnqfYnSa8NyS21EJGg2iNMBEaYemjJQUlqQJAcBHcckusFmTVmgW9XNHZNk9hgjFcq0zRBT4S2FfjmO2/vnVbgODFJK2SP1Cpek1zOTLtAQsTEWjISpylrlx67gENMqC2muWNs7w6xb2I5r+18lI62MumeMpnOCkOVLCuqnVw3vCe3Vuby27H53Fqax/Kgi1BLpttjHN9+N5+YfQNHdd3PHqlV5K0Kb+y4l3d1LaDDLjNUy9KVKiMshbY0KqEI8hrlmu8mbQlSa2ukV7YeiD0TJj+N/z/35GakZFPYFHmZjHc6b+FDlYP4YNI83Dn6ZxP1WCa/3tKYTF4eOG3RJi2DAY6oa80ArrcLXG8XOG/aP/nzJQ9xqHU253/6r9y14CG+8eUJA4DDPtbDjY+dCsAHL9p0YcrL/svoYH573Ks2uf/J+GHNaep/fvvEO5vbG+YGp5/75ea2gz9Y45nwg4umpvE9mbxMxpuOu4wzvnLQZvVzU9hsAnP++efT29vLvvvuS2dnJ/PmzWPevHl0dnay33770dPTw/nnn/+cO/KSQCMKIUydkAl73xgsiQgjrIKPDEy6k4h0/cekajWcysKMKfTobahhDY1BGDar3gPNRb6sRk2LRW2baypH1B3FYmQQGQvmeppalBR1sX8jNANWJcKqRzQir14TxpbEaQeVsHDKEd6KYXTNNyRKWkb3UrcKbo57ciHJemHIZn2YRvSogSg2i/uoQYC0IXpyojCkdh1Ue4byzDRWoLGrEXbVOLOgIUpbBHnX3DthCnRqxzL3UQiUbUhMmJIEXWm055jIjjB21ZavSAyH2LXY6H8CY22tbIGft4yY3667tAFOOSLI21R6bYK8jYwVVk0Rp2xUW8Y4sdX/7jpWdW1QSwPzXLD/t654Qc7Z0ngxyMsPznr/FiEvzycBapGY54bhXR3KszNIPyL/eIBdFsSuxh2HrkUC54kEj6zu5R+DO3Lv+HT+NT6XhAyZ376cw3qWcviOS3nvgbdxVNf9PFzp5boHd4OSjd8VE+aVidCL+k8sWFFoZ1Wtg2KcIC195noDFNRECodCMBCnGY4F6+OIVbGkqCxiDRWtWR+7LA27eDDsYjgWhBq6rSI9VpG9Myt4bXYpf16/B8s3dGBXBYkhHxnEZFf4eMM+YVJS7rWo9Dp03VcjtcYizCkKO0fEGYUVCJJDmrbHIvIrQrKrFakBhVuI8caUqcOSMGSs1glhTiMiiSxbIDX/n733DrOkqvP/X+ecCjd3nu7JAzMDQ46CoKykdURxZU0LuGsWVkQBBfm5ggnDFwFBVvkaEd1dQdZVvmuAMQCKSM6ZYXLqns7dN1U65/fHqXu7exIzMMig83mefvreW3XrVtUNdd7n8w77HrSKg1rWkfVsByYjI+pG4mLokjEZEfGq7Ar2dEbZ1+tjvjvMbHeQac4YI0mOEMU8b4ADO9fTXRonihQbBlt4ariblaPt/GlkIff0z2NVvZ3IOBRlRE7EdKsyezpDdDhlqtpnKC7gipgeVeGg7GryTkjOCdlvzoamtsYUY6KSIfGh1iEY2StL2LFbxL+l+plaO+X+l+67h3tfdyntH3h8s9/kM+dm+chltktxyEH/hysP2ZsrD9nbamPSuvOy09jjDz/hI1/O8JEv28//USfewK/PtMDiK8f3vpSHwwGXfhWAo898C8c89/FtrjsZsF332TV8bMMxrHhsFR+89sbmsn/73DUA3Pcft00BPY2a9dnfAxPApf2sOzltO00OtlU3rjh9CqCBqZSwrdW571/cBDHbAi//ee9NzD7ifSSuBZNLUvfFHantppC1tbVx880389RTT3H33XdPsVE+6qijWLRo22mkr4jqaEGMBc1UeKPTQEXPsYN1RyHqAd5Q6v7l2Zl+dzRIux0KnXXwRkNkOUQODNvBcAqGTKKt1sRxbOJ9JUQFWYJWC2xkZB25VJA0gzONI4jzCrdiaWoytOGRKrBhmjLWaKGQocYfT9CusDoZYWlo7uoBTK024bAGE/8boEUxNadlEmBp7D861QM5ju3ApGGbpFxi4TjQsElWkqQly/geeeKsINcfI4OEJOsgIxtMaaQFWzrrgLS2xzq2ycVGWvG9U7cBmmPzPNqrRWQ5tI5rDeqaAa0kEo0MEzLDMXFOIgNDklE41biZ15Pkrb2l0PY8i9jYxGpPEnbkcKVEDY0hgtCCyiTZusD/b7w+euY/8+/f/s9trrO9VLLtAS6HHui/5E5kLxd42dnbe6nslXeEUra7bMkIhvdSIArkV1corPUYXQDV6QbvWcivAxllWFPtYrg7y4zSGOORz2iYxZUJ7X6V1dU2flfbm/Ub2hDllHJcjMEIdChwxiwNCwMDw0XiTsUsb4g9vY14JJRknVZZwxUaV2jyIuTJsIfBpMCy+jRmecPs7a+nN25hWdBNi6qxp7+RB4PZPFvv4ZGRWezfsp4Wp8rdY/N5dM0sSn/K0PZsaOm+SuCMBmm4sXXdqrcJ/DFFy7IEp6oYPTAm31ElHG5BRuCNRDjDNZyunDVYUYIoL9GuDYlUoSBq0Zh8DJFEdIVcdPjNHJBZw8P1ueTciL0LfeRlQEZoMgJapMer/FHbSUISYagbcEVCUdZQGB6pzcWXEYeWVtFXL6KUJutHHNm1kqfGeuj0y+SdgBn+KE/XpjOU5GlRNeZ7fbgiSa2s6+RkgMIwoj1GkhyV2OORdTP5u3nL0Puv5omnZ0Nks2Pq7RNzxKaydQr+33K9NZnF4Uft0xywL45LvOOAN7A8HYbkZvXR/oHHWfv5E3h66JTm8x565P/j3YdsLud/zQXXc/2XD6PlmU8zuv+XOPYP7ax8836c+PWlXPCpNwB3ctfXOxh+8oXv8/nTLt3m8u/fX+eyDz/RvL/EGZsCPk495f3ccJP9rX73yu+wxLm8uezsr76BxcdMBSrvPeZKljhjfD2+ZbPXWvv5E7jxvaezaPjVTRCzrfLmnQIbb9riskXDr+bR4VdPyY45+6tv4GnuZtHwq7e53U07L1uqcOVNTVDzz0ec0nz8a8Bp71kN287w3Kx2OAem0Xn5ayyd8TBa2cR4JTA6AZ1ggtS+N3GalClRtiDE0qnSjkpjoB/HGK0t/UobxCRthQ2XTGzeSi1ABZq4SyE0xL7AG9ep5sW3WS/CghY0+INpcJcj7AA80WhXEba41uksSHUnEvyBGnJwzArUhWw6jU3JVJGpK1pC6vQlMUFoHxeTgiOb1LD0trKOZia2tLJmp0oITNEnackysjCPdu1F3B2zBgFGCJya7ZQkvrXXDIuu1cOENnxSewIVGhLfBmXK2BBnBUG7T260hoxNmkNjbOaNsq5sMkzwhhK0srNcMjYWMKWGBqoak6nF+MPKamG0QYYCHSkSXxG125kFNTwOtfpUit3uekE1GcTsCh2WrdXLRRvbXX/dlWQg6tIMC0W2V9G6tEbiZ6l2C6rTwalAfq3BG3UI17WyrNSCTMAZtwYwz3RrjG+DIJURlp6U1VBTkNHonEaMK9wx+/sbqgzPTJvGgfk15EXIiM6SFyE5GaMw+ALW6CxronbuHtmTohMwxx9kfdzGUFxgvt/HTHcYVyT8bmQ/1tdKhFrx8MgsVo+0Mt5bBFeT+ILyTA+nlpq2dHp24iwjUHVDZtRew+KMRAUGt9+lrPO4EiozBLkBB2cURKRRQNDq4gSapK6opWN8kWDBSzbhpEVPclhmFRXj8sD4XGYVRjgkt4qZapSMgFzKbHCFpckp7HUtxNCjAooiYnnczl0jezIvN8ii7HpiLUkSifQi2twqJc9SY0ajLAtyG+kPi6yqdbJ/3nYHtJG4Imae209v3Mqfynvxq1X7EUQOrpMwo32UGZkRFuQ2Mv2QMX7/zN6YQBK2GfxBO8kX5dldW6nl+/437ftOiLj/+zu30P6By/nS7z7MFdd/xD7++akK/qNaP7+lTVFpmbbFx9971BM8+Oo7ARh+ct4L3tfLLi/CVzd/fM29P2D2EZaKddXvr6Z7k45CA8ScesrmE1eL4xKnMQF4fjTvDLrXXr7FjsvW6um2uzntp29kya13bvdz/pIVrrxpq8u+8twsPrXAOrFdf/F+273NHQIwYRhy0003cdddd03pwBx99NG85S1v2abI/xVREnQxh6qHdgALkwbsBtMQv4QhyNR0sjHIhwlBfKOzIVNKUhBailJDUyFsN0YEIf76MtopEuUlMpXIGCWIChbUeMMhXmSdxWRqWaxTQb1RkjjvNEXtTj3BGQ9RQ+UJx7HGfhljHcakAqzGp+m4liSQWLMAwOpcwFLJGsdnEnssxli3rsZ2hbSPJQlCWYpX0OHjVTRhXuKPJcQ5hVO3XRUtLBUu9gX+sCYqKHvcQqaOYcbaKqdBmSI2eGVNkpHojIeqJ8RZlYr2LeXMqcRoT6Vdm8Q6xMmJ4zEi1clUI1DxBOVPSkzGadL2RIuPrIe2C5O6qu2uLdf5H3s/l1/9/LP9u4HLluulonzt7sLsOqVdyPRLtAdBu0+2t0rLshCReATtgto0yPYJCusTwlFJlLeTN9nBxP6mC0WUN8QFG6qrQoFIFCoAoRXagag9QWcETtk6X665byZXzG1nVtcwswvDnNj2JK/KrCYnDQOJyy2jB3L/4ByO6lzBdG+UoqzRkYZojiQ5loXdzHP7aXWrPD48nVXLpyFrqeZSGoyW1LoNYUkw7SHb+RHGEPjKJtIbcMcTVKipdCuGDk4gkyCkIS5KomkJQ6HHjF5FVHStfb4x+IMRYV6m3XlQdUGSh2yxzupqG7dW9uH2wb2Ylx/khM4naZVVRnSWbhURGJvdoqwdC65QSCS+gKqJQGr2dIZ4U+ejAHSoMge1rWP5xg7K1Qz3D89FCs0bWh4j0xoxwxmnmndYHbcxlBS4p7KAGd4wr8pYy9uMO0Al4/FgaTZjQYZ5pSGyKsIXcVMfs3pmG89WZ5AoTaglTkUgHbG1j8rfdLX9y90MfX9/2j/w+JTHr//hHK6bdzZgWOKMccc8WBz7tH/gcb79/SsBeC9w2iVPUDp4y9te/K8nseRbN/O7cxYCC1n0sBXsb6qtaeSg7PX6bbuFXXZ5ccr938YXMJlUtebeH7Dm9XD6t9Zw3ZfW8M5Pv5N/lBaYfOl3H2bJG8b4AecCE4DmR/POaAZFTq7JHYnJHZxzGGsu/8TTb+WE6rHQ9vwdkp1Vt+37CR786v5TbJS31n356mc+DFhaWaMmd2Eatbi6jMWPwolfn5p583y13QDmueeeY/Hixaxfv54jjzyS7m6Lhh966CG+9a1vMWvWLG6++WYWLFiwQzuwK5UsB1D07cC9Xp8AL41BfxxbICLVBCVMm4mQxQZwcRy7/uRqULGSZGLgH8fI8Qr+gEvi51Ch3YZ2JxLkUQIRWvCiXWn1I0WrUVGB7Yxk+kOcgbK1e06pXkhps1y0BtdN9yFBOAoTaUuLSxquYc6kzJZJsqhGx6YBzJIkpaKloCYFds3zJARxS7Ypws+MWG2KU4lR9RjtKrQn8cY1Tk2kwZiGoGSNC9yK7TipmsYoO4PnD8cIo4nyiqgtgztaB+ETZxRBu4tIDFHBzgY2zBOcsTrad5oBni5gpEA6ElmPwbEhoQhh823yNqgTwPiuFfEbA3q7JWK76yWunUUj291teXG1G8Rsf2nXIANwqhDnJNp3UJGm4/EKowtyjO4pqXeCNy7JbYxRoabW6doBfGDI9RqCFkGgBdo3ViuYT+zveiRst2asodsEo0AGgmDUY71qocWrU1J1HgunM02NkxERh+VX8qrCcrxU9J6RIYmRrI/aeKbaw9pqK89snEZ9zLfaGj+x8WE1S/ECiLoioljS5ygwAqdmJ4m0azsnY3NdskOa3EDC6LjC7aoSBi5yXBLlEuIMaN8hyUjcSoKIBXFOEZYEMrLHEucM2c4qxWyAxDCeZNi72Me8zADaSP5cWcj+2TX0JTVCJLNVQE4qMsIhmUT9jYzBBTyhm90TgD38fgCMFvRVC5w+5372dIcY1y6JEUhhmO8OUpJ1ZjjDjOssS6MuXBHTpcZZ5G/gY7N/z8a4yL3j8xmJsqwPWqlqj/vG9qASeRyy7wqe3thNWC8QlkBX/2IfvVdUvU5dxIedMfghLJ70+OK4BBfDO854A0zKjd/Uave9n5/dBAJcfQLday/n7W9eyNOvWQ3vh3/mFK6/cw2nvWZ2E7h85fhefvjwETvtGK4vn8qxsx/nvZ9PDY2vhSXvWY1565EscaxLY/X4o7jus2tgE/+A7rWXA++c8tgNK0+ccr8BXr70uw/DGyx4Gfr+/pz3+W6WzPgj3Pl6nv4LgphNa7LupVGT71917ZIpIOarn/kwn/zC/23e7z/UXtu/vPw/+dcdoJFt9wjtwx/+MAcccAB9fX3cfvvt/OQnP+EnP/kJt99+O319fey333585CMf2f5X3gVLxDEiStDFrNV0NAboQTpwMtoCkSi0XZUgSIHL1DR7wGoowsjmpMRx2uVoDPRl0+mMMMLZMEx+ZdnSwgy22xJqZGhIfEWStcGWUdElydlgSp3SyLKrR3HXD8PouO2MSIHJ+uj2Ikl3K+Ee00i6W0mmt2PaWzD5LCKbHl+a/9IsPckpTQq7PW3sMTdoZA0aXGP/J4dgOgrjSRJX4FSsyYGMTVPPA+CUozSTJSHxBXFW4o9qMkMJMjKoUKM9K9SXadaOjDRO1VpWi1gjgwTtC/yRmFxvYGllQhC2uCQZRVz0bUcmMXgjISING43zDjrnQmIQKfgTkcYbCZp6mbjgYTIp5W93B2aL1dC/nP+xv6xz1qEH+i8YgLyY577SatPuzs4GHLtF/dtXMhKELQZv3BAWhP39UVaL2PpMhbZnNG4FxucI+g926XuVT7Xb5lbF2ZR+VTZ0PKFpf8zgVAS4Bu3b64QMBWgLlIyAxDNoz4CAGe3WNv+Z+nSerU/nwdo8epMWiqpGfzoYalUVKtpnmhrHlxFPjXbz5PoehDC4uQgiax3mtgXQE9C9cACRj212i6MJZkUE3TGVeTG1GQlhu6benTA2H/peZYcW7qjAGEGpWEXPrYOB/IaJzo2qWuAW5xXatWDIqYA3bJ8/LV/mNR3PcVBuNUNhnkC7hEYx1x+gJOssi7r4Q2WR1bvQoJIpIhI0mqJ0cIWgKAWtMqBDlSnKGgdnVnPMvOVoLVHCcOfIfH46eig/HHwNERJtBBLDDGec2c4o+3q9HOD1Ms8ZxkNTFBFdapwNURt5x44PVlfbWLJ2H+7vnU1rpsYe+UEWdA3A9DpqToWwfff1ZEtVue6f+Yf2n291+X9/x+o+rvvsGua8/xzaP/A4c95/zpR1TrvkCbrXXs7oW0/itPes5j1fOIRF7XOaf9+/v86K1/1T8+/U5ByWzOjc5n5d9b23bfHxPW46nss3XsjlGy9k9uqLWP/LJbzu9vc19/EHJ5/Lae9ZzesHvwbA997/Tr73/nfyk7ceiXngiuZ2rvvsGr7y3Kwt0sRaLtmPxfNsx26yuP3wN0zV3uRm9TVvNwItd1ZtDxh66v/8onl7MkDZUl117ZLm36b15q8cQzU8infLH2xm6rCt2u4OzJ133sm9995LqbT5yS6VSlxyySUceeSR2/3Cu2IZIRBhRNxRQPoeBGGqY9E0mr/GxHawTjIhbm9QwzzXgpoU8AjHnl4Bza6L1Z8kTdG8ia0eRvUbskFEfUaRuKBwygkYK4qU2jQpUtqVuOMRqrcyYRLgKJvrkvUx+Qxx0Qcl0I5sUq2EBlFwEbEN/3KHqohqHVMVFrQIkcJZhakHCM+b6BiROpIpNZETow1o25ESDepZnGCkFXMKY00EZJAgEk2S85CRpXdp32AcSZiXJBlwMsraQQuBVla/4pYTvNE4DbS029deSvtSsinEl0FMZqMhyTjEOQXCEBdcTOrspmr22FQ9QUYaWY8gzYQhSUFnrMGRaFcgQzBZD1lWEL1Un7Td9WKqAUS2pyOzNdDy6E3rtvv1Djxl5nav+7dSOxp4+bdYKoCw2xCWJN6YpcY6oSbJu7hDNVqeHkXoEtVpiup0Q1TStDyrbL5YOkHlVm3Ib+JL8usF2nOIWjXaMyR+qonxNUZpHC8h6c2S2eCwKphOZmaZDr+CFIY3tT9CjxqlN2khLwMkmv64xP8OHMyKsXb6NrbgZmIcN0EIQ1R3LHjJhkR1h0whJOdGZPIhoePiejFzO4ZIjGTZ2i6MK+0cnoC4YK3rx2d6lFZq+mZlqXs+e87dyLqhFoxyCTp8ZGBQ9RjjSmrtLnEOMv2GlhUhlekuffMy6E7Bbf1782R2Bk8NdTMrO8ye/kZcEdMqa9SNy55eP5mGoSYSjSYjnOZtgKqx17FWWUMKQ0YkvLH9Uf6wfAFD5RwbBlq4V8/DxJLafh575Xt5Y+FxWoUmpySB0TwZlhjTGdZHbYzrDE+Xp1NJPBbk+5mesYAxyDo0RgvzMoPsnevFkzEPLJ2HinZrKrdUv+W9vOOUN3Dd7MNZ8vmxLQ7oF8cllnx+jDvfbe+XxYeAr09Qqy6GZvrL9+GDzhhtN00GRQ9wuvuP5N98GN/57J2c8fnX8H02N5l59jeHwBs2NwaYXMmMKhfdcjXXl0+1Dxz7A153+/umgJP3HvUEU/tJm1fXsXb5EmeM723SgYnXfKIJ3J5PB/OBD/2Er733+9y44nQWAYuP/9I219+V67O/uJPLklnbvf52d2BaW1tZuXLlVpevXLmS1tbW7X7hXbKktLPyicb4Vs8jPHfCHljapPuGtoVGl8akHYqGQN51wPenAADEpG00qkHNUspqbgZHyKwcIreqgqonlhYgLdVKu1aI7g/UcNcOTnE4w3MxhRzxtBJhR84m0ZdDMLa1D5ZuJlItjVGCsCtPfY9OTHc7Ipud0kESnjdBJdMGhGyCMbSxGpnGvqfHZQKbZi8ijQrNpDwY0J6DdiVRybPObdLOHBppaWMqMMRZSZi3Nshg99soOxuZZCVhyc7QCa1Rtcg6ihmDqMc4w1Xc0TpuJSbxJEGLAgkq0IQtHnHeQcQaNV5HRElqM+1Z22YhkJUAWY/RntUUJXm/ScHbXVuu7dG/vNT1fB2VLS1/9KZ1OwReXuhzdtfuqk3XJAVNWAIVGsKiQsTadoTzHqIekdsY4tQMKkiF3gX73Eb32qnY64fQhsywprgKsusV/oBEl9JueSgRgx5JXxad0UQFg4wheq7IsrFOxmOfx2uz+ENlEXeVF3Dv+J58a+2xXPbs33PXowsZHM3jZmLiUFEb9wkDlwVzNtIzd5CoYnlj9ZEMfWNFOosVioUarYUqBTdgem6U1+71HG8+6BH8UoBwtO3cAKN7a8b2lKiKxBlwWfXwDPSyAvUOQa1zIrJARLoxR0VuMMEbqiETe1wj9SwLiv2sr7RQC11OKj7Knu4AeWGvN6FRKKGJgAEdMqrrJMaQGENgIuomJjKairZBnlIY+pM8K6NWnqrPQIfKivmlwUQSMe7w+FAPP1tzMGviVka0ZDw1c9nfG2eR10+PO4orEjr9Moe1rGKf7HoOy6/k79qeRSMYKOeJEsWD43NYWuvGkwkkAm9wtwZmS9X2L3fz++Rylqw02xysL45LfPdHl2z22NbW/dyfP02w8T18a8Fvyb/5MBYNWEvgM9LckQ986CcUP/e/zedsLdCxUR/4wa0c+DWfx95v8w5PK9zAaYUbtrju+l8uYf0vt+3K1X/7FVz2lVu47rNrmpkuvz7YfqfVxhkpdW7LNZlG94HDJ1Q4k93DJt/e2XXIjD254pdbBnqbdmL2mffHrW7n1UuO4NVLLJVv8fqBHd6P7e7AfPCDH+Td7343F198MSeccEJTA9PX18fvf/97vvjFL/LRj350h3dglyrXgQRUOZ3ZdRww2rpsNQbyDQpYg05mNCaKEa6TWhKnP8xxPDUg0UzKFml0ZiZZF5tUZE+lhopi1BC4KXgSYWQ7JKkwv2HzLNLsEpPLEE0rYITAHQsQYYxJ9SZxTpLptz/2MrRdI1W1rYUk71KfUcTLeTgbhjH19LibNsuJPSdCTNX3NDow0jqVmQaYM3ZGTST2ohfnFdKz4nwZG1Q9nVlMLM0hO5w0M21qvoORoB0bYClLDrrWoJOByVglvog1olJHFSzAjFszqJo9nsaF0CgISva8O4HBHQytaN9VICVxwbWalyhBhWn3KdZkN1QJW32rj3EdqO3kz9dfSW2PjfJfqnaEFvZiQcijN617xXRjNhXzP3rGXrupX3/hkqHABBKhwakZtIPVMvqKKO/gjEhkkCAjKKw2ZPoluQH7m9gwFjHSBhKjrYNjZgiigiJoBWKJDCTGMTg1+zupPYURoKoSowyrnpvGKjmNe+OFkAhMJrHTltLgFex1IZuJGBvM4+YijBbkcgGxlgwMF0ELemYOc0jnOhZkNzIQFSgnPg8PzuLglrXUtcv+WUv56J1Rohp7PL2uxzKNJdQygmxHjThSxMM+oqwIWg3+EEQFiVN3iTPWOt8dA6dqJ8by6wKcsQxhori7bx77dfTygdl30K1qRAj2dC2tZmMSMaJzPB22EaHoUWO0yxBXQEYIGqQtJSBEUk3s74VG0hu0QNkhrCsyHTW628cYqWZpy9RY3t/BPZX5JPnlHOQN4AtJZDQZYVjo9tOjRhn084wnWYqqRqussjTsIdaWfhZqxRODPSxq7yPvhKhcjFPfDWC2VCfMEZx65p088+zDfHo79A+bamA2rUZX5lML1vKV52ax+ht3cw6nwCb45OvjN/GTzzzMrM/+PrVXhm/+W50vvqEh8j+PK59+K+ct+hlfr7u87T1/4qyrn+RfV36aL//4YgD+8eg/8Drex5ZqxslTB/KvueB67rzsNA649hf0/uh2AC44Fh45//Vc99lPADB78b9RmPt7kmmbU+q2lpNy9JlvYfTO178k+pfGNjcFQw+tXw7Ar/cfoOFJvDUh/1Mr/26zx859/2IWtc9h5DR7v/X6HgD+M1i4Q/u33QDmC1/4Avl8nssuu4xPfOITzcG3MYaenh4uvPBCPvnJT+7Qi+9qpT3Hzh5FMSbnI4aZ0IQ0Oi0wQQdLS2QzE4ClCUomaWKkQLgZ22VJHctEI0jScyHRqWg8DYOMrQOWCEILDFKKl5msyWiAI88l6sgjYoOqhsggag7W45ylWskosZqPlFYmdJolU7PHFhVc6G61ICYM05MxEVJpc1e0vfA1jjMFd5PPA1ojRyqoFp+oqMCkCc2d0vr/jzd43bG13zQpbS8xJC6oyNLHghaBjAWYtPMU6lRLY8+RqAV4fePEbTmSrIP2FCpI0J6ygMgXqMiglcAbtWGgAuu6ZpTAKUfEBReRdtJkNbTnPQ2yTLJqArTtrq3W5Vdfu91uZH8ttbNAzLlXXfuShk/urpe/sn2CREuiUgpeEvtba5T97U9KGcb2yFGdLuh4IkIGmrDFISopVN0QZwSJJ3CrELTY37YoLxEJZAYgySrbiY6F7eAYa1svYpt3VZmbkOuukCSSsD+HN71CHDmW3wtEfVlUKBhf1YLU4LXVyOcC8n7Imo3t6BGPbHeFPUpDzPKHAWhzK7gy4dDONeyfXYsrYura497KnmgjOL7zGfYp9fLYyAyeeXYmzogiHCuSWzgCQFKSmEF/glVQiwlaXbQjKK2KU+qvTKnBArOvoCtf5uT2R8jIkIyADIacVOj093meO4CHpm4cEgTrkxyRcehWZTqUoSBc6iakqn1Co1gft1GUdWqJi4gFmV5FzfMJc3V8N+KA1vUM1XIMRnmerM+kQ1ZoV9Zm2QUSBEUZUjEeKOiQFVxhr5fTc2MkWtLi1ZmZH6XVrfHY8AzcpVmKa8p/2Q/gK6R++qUjOe2aU9j7kZO2uV77Bx6HH27fNhuD/cULStz9v1t2wlzME/BwK79+yxPcBhw1Zy2LgJ+887esPmI/vLPrCODKp98KwNJ5l/Dvb/0WS8NL+NzZn6b/9itY/8vNgcrkzsvk2//9unZmAI+9/82sP99OwP7Tz+7hwWnrcYADT1vM0G9vt49f9I/85Itb1gVt2nX6R/kE193xetSdPyN5zVu37wTtYG0JHH3i5PdZDczJO+91rjt/lMVsv3X0DtkoX3jhhVx44YUsX76cvj4rHurp6WGPPfbYsb3cRUvWQzD2lBgpkRkf0+i0KGmNxRQTNDAhsH69ZkLfIplkoaysTkQq22Fx3YlwRKWs6N33EHFiBfONbg1YsKINQqQdl0RPOJ8BwrHdhKSzRJJReMOWHoUxGKWIcy6JZx29tK+QQJKxxyaxlsLaVWhXopUg6MwgkhZU77A1H5DKHkMcWzAzOegyikGljmU6PSlGAwoRxbhDdbSTtfQvX5Id0E2rZ2EMUcGxepQInJrt4KgQ3JpGq/RCnFgw07BU9qoJ3nCAqNYtiBmv4iSaeE4rOiOtzbJrKWgqNMjEoOqGxJNWNzRquzBqrI7OeSS+QpkEUTdp+KYFNw2qHfEke+zdNaV2le7LjtTfGgVsS1bKu7swf9nSLjg1CFsM9TZJdtA6STr1BGcsIC76hCWBESADjTdYB5ml2uXgx5ooJ4kKgkqPIugAGULQZkjaQ+Sog/EMqiJRkcCpggohzlh8EmcACVGkiMZ88DRB2YdQgrbuZaX1gmqPQfsaVZPMax+yFKtqHseNCTwHpTT7FjdwdH4pORmQFzEtMmE8Fb+viUtU8Dkkt4pud4w9/Y10u6OMRDmecaYjE4U7IhgvFpHVlPbmasqzBaoukPWYsCCtS5dnc2S0qwhbPVQIAxtaGG/x+Y7+O3wn5i3THqZuXF6dXUZOxDwZzKRVVZFoVgTTWB+00OrW2MPvp+INkhEDhCLk4WAaI0mOgbjEn4bmExvFY8tnUlwtaVsaMxh5jOazdLaUycmQeS1D7J9fx3yvj6IMiYwkJxKGtMe4ztCuquRFyLjOMqjzuCSExmFaZpx2r8pAmCfUilri4UgNGtxy/Lyfmb/FavuXu3nbf7yaLz07favrLHHGuPax41gcP7DF5V/63Yc5/A2Xct1n1/C7zo2sfOhsPtnWQvvA49y27xu47CubB0Be/8M5nPae1ZygzufZU1bw+m+uYt//+BwA+338Av7nh69lyUrD3z/2Hi783p+hehVf+epb+KeLLuaJr10GaSNoMkjZFMxMrnPfv5gbN0597CdvPdJaT8ze8nPaP/B4s+N0/y0X8ukT/++WVwTUu35EspWslZ99ee+tPm976tX/YPVCWwOD2xNiCTD/yPM55F138Hc/+TI807PZ8rvPPhSu2v79ekEk/z333JOjjjqKo4466q8GvDRKJGlmStRw3ZqUWg8TjmJRbEFHMqkr0qCaNf7rZGKQn+auiPTPzvZPOv2Nxxop865rKWIN6hakzliThICudSdzaomlZUnSmT2PygyXoCSIiopap8fo/Bz1Dpc4q5BBjHFs5opI7GDfqSUkOQ9TsCL/JkhraF8SbY9ZCkuvmhReCdawoBFsqUbK+Btr1lUtNrjjMW5Z49R1k9OdZCSqrm2Xxpe4NY1T0WSGY4prE5yqxi3H5NbX8YdC3JEAOVyGMEpfJ7admGE7M6bqGm/MXiCEBlXTyMjqfZxKbLU4jiRqz1mQJ2wYpghjiK02SAQWTMkghiia6Ljtrt01qXYWGNrRvJbtXX9b6+0W3f/lKs5YLZ+MBFEh/Z3UBqccIcfrBO2285AZMCQZRVLymk6UYUmiHduBCTogbNHUZiYkpRjpJeicxuQS4o6IoDshzkFtmqG8ICY4okxyYJmeuYPM7Rqmc8YoIpBNbYoMJIW1AhUYO7EkIS5oyqFPLXbZozSE78X4LXUWdvSzT2Y9c50x9ncNeziKLuXTk87tuCKhQ5XJyIgEwUPVuawKOnlVaQV777mBaGZIdd96GsQsEVX7xCRrJ7WSrEvQJohKhti3k0hhq2dd1iIDsSDsz/Hc+i7WjrbwQHkedwwv5H/HDuF7g6/lj4OWclI3Hqtr7ayrttLuVFgddPCzgcO5sv84zl/zD1zyzMn8x7qj+K8Vh/NUXw9PruvBW+dRWp2Qf26YnnvqhIMZRqtZVtfaeWJjDwpNjyojMVSMQ9Uo2mXIDGcchSEnI4qyRo8awxMJ2ggqsU8l8ajGdoZ9OMyybG0XpRWWXr27Nq+PfXyia3DaJU9scZ3X3XDcVp//Rm7kzhOPsxbFwIkfncYn21qY/rbLWTxP8Oj1S/jae7/PBw7P8IHDM/z7tJv492k3MXDB1fz7tJs4peO1ABy8+ga81y0CYPzUOzi5+nOu/+EcfnvAD+k/NLDuZf+dQRx0M8AWNS7Pp3vZmjbmwNMmgM/b55y5xedecf1HeMcZb9gilezj131gs8deCkpZA8hsT137jV9x7Td+tdnjP/3YPVt9zmevem6H9meHOjBPPvkk3/jGNzYLsjzqqKM4++yz2XfffXfoxXe5EgKTDsxFA7g0RPhaTgxo9SRqUZKAdCbWk2LCdlhOaF5ESgETjfDIpq6ksW4KGBI9sUwpC5jAdl/qddvpcexy47vEOYU7pq3uRUp03nJ8vbJGO4pau8BIC1YyI4mdBZISEUSISKCkQHuKxJfgAT1FvDDCVGsTuS9JkrqQyQkQM/kY0JgEq4eJbddGaY2s1DE5qylJMg4iNRVwatadTMYaESUI4+FWUg0L4EV2plIGdl9lNUSUq2lXRCKUsftDhOobwfMdopIHZkL46lRjSxNLc3FkLQZHErZ4GFfajB1JClZjtOs3wy/leN2Cxd0Usi3WrqSBeaVXA2zsLDrZSxViuaXaDYa2XU4VRMbSurQLbtlONBkliDsLBCVrIe+PWJt47dhrT64vot7uoB1hqWehBUEaUOMOsRGIQGI8jfQTjKupzdbgGtq7xji8ew3LxzuRGHwnRuU0A36LBTCOwShrY2wkaM9gXA2ubuo3Hu2bwfSWMUbrVhz8+9F9Ua2aPd0BWmVMUUjqRpMR0CWr9CUFirLGbHeI9bQxmmTRRuCpBMoOlCKEFsR5g8lYPY+IrWUyAsIiJL7BqRuMFCRZiTca2+OuWSMXrT2Gyy439x1Arr3KA8EchNS4bsLPzKGsHG5jvK8ARvCENxMSAdJAJBGZBBNIRlsyROM+3kaH7Igg22/IDNhJSH9FP5m+2SRdkkri0VmokCD5r+EjeXB4NtOy4/xz1110qAoKgy8SijLBZZwISUZESGHoqxcpOAEFJ0AKw7pKC34uwijfXot212Z10OH3ArO44vqPsHje5svtgP04fnLvlrsvAMUjLgV+BJACmc/w8f85n48DnV/6Atd89yMcvNoK7t9895n84tXfBuCrl17IJy+8tHm7Uee++n2s/sC3eNdXLuId6g1ce2g/YsZBHHT5bxj67e0UnrGamYZAfUs6j8n1s9c8ANv4aT500ZP84ORzSaadnQZ63okz+wpOWPMJ/nuTdTelkC1JM3Q4hxdU52QiYHNB/o6AlUa9qXDIFh+ff+T5LLvn8imPjZzWO+X+e75wCLB5p2xbtd0A5uabb+aUU07h0EMP5S1vecsUEf9vf/tbDj30UP7f//t/LF68beu4Xbom06Sg2Q2xg/ctP6WRTC+EoKlclAKYcFlprqcNBmONAKTtwIhEN93PMKmDWap1MbX6xOvEMbgewvcwtRp4Hjrn4VQT+wPvuxOgS4NTTsiFhrCkSDwIC4KwoHCqCXHeReQcO6hPc2eEJ5GhJio4qM4San2EaeTCCIkQKU1OMeG61tC/OGngZSMY0xhMJYF6gKzWMRnPtvoaHSadAjfXwTgSZ6TedEcTUYJxlU2droXWwCBOrMvZpuYBxhpWuiv6kDM7CTrsBdctRxgp8NeXMVnXHq/WxBkP7UkSJZCh7Q6h7f4bNw2aq8eI8QomCiHZPWP211AvBX1sZwv6X0h3pQF6dhS07KaS/WXKqWEnhbABj95oSJx3Cdp8K2CvGbIDNnzXODYTC8Abi5sUWhViA3cjgdACt2yIcw5hC8R1l3iaQfl29h9gdDzHI2om1dClXnfJZ0OKmcAO6DMaYoHJapKMSrvNYKTCGNgw0MK0jjFacjXWDrXSUayQUTFjUYbPP3kyGS9i37Y+zu/5DY35n4zQtMoay6IuxnQWVyQUVB1XJMzJDfNkew9JzQHHkGQMIpJQiNCOJM641Lt84oJ1YZOx1Vmq2kTn2xuRIG0HSsQC4xjqNQ8TS4QjiMoej43OsrTjfIwOFQQSWWycV42fi4hchzhwEKHEHbddL39UU+9wkWEBd/0wbc9oejtyrC+1ECaKlfVObutdyNzSMO1elV+OHMy+ufUs9HvpkFW0FuREwrh2qRiPme4Qx3Y8y0BUoMWpMRTneXD9LIq5OiIp2Ayg3bXNuv7i/abcb3QbMm/fOnj5Ne/knziMb986rQlMAIau+C5LvnUzXPcwh62eSHgfu7QOm8hLGiAGoHbFoST3n07XvqfzPQ+WcDX64C6c2Z/gkfPhO6MtnNFiAcvzARdIwcukWrwxZMk0r3n/oMt/ww84F7DuY3TA0vASZnXezso1E+fhovAtfHLGtM0ADcB7L2/hukNHOe09+/Hrt2y5i7W1umPeUo5ZOSGe9+adAqNbdzA7dNGTPPj+d25x2UPHTuNXKZ3s/We/aYsdmE3Px0W3XA3A7COA77xEAOb/+//+Py688EK+8IUvbLbsc5/7HJ/73Oe44IILXtkAJozAz9lOjBBWmwITLmSTb6eiftHwf2x0JBqlxIQ2hlS077t2ndQ9zC5PAU7GfqCNqzCegxyrWXATx6noUmLiGBOE1vZYiDSwUSLDBJ21VsHGVVYkiuUUe6MJ1W6HzLDGK1uKlBEgtEBpg3FodipkkKCkoNadJVcrIQdHrAZIyAmDgkYIp0g7TTIFblJMdJwaXSZtIEkQldqESN5RE52NZCJfhySxwK7h6JakuiApm4BOSImZRMfDGAtsPBe1boBM2EowLU/Q4eONRJisazs/scZISVRyMEKgatZK2QhIin6qy3ExjiS7fMhS1JSiCUJ31y5Xp/+hCMCPXzf+Mu/Jy1d/yW7L7trxUoGBOohE4NRBRAn19ixxxlJm/eEYZzwkybvolE5spCDOKmJfEBYEQavVtzgVu73skEZGhr4jrIAfI5jdNUwl9GjPVumv5NmzZZChIEc16/HmmY+y0O+juKDGb8YO4OZV+1BeW8IICDoMMgFREUS+QNccwlihpGGf7l7m5IdRaApOgC9jAu3wqtIKRrVP3bh0qzJKGKQwzHSGycuAivZ5pj6dx4JZ1BKXI+au4vH+HspjWcS4j6iBLoLKJgjtUm9VJFmDPyCJctZgJvEEie8QFQRuGaKSpQW745IobzADPqYYkyuFVMIscsRBaJCRi18WNn+nxU6CxTlDvcvaOLesESAg15fg1Gy3Pixae39VzpHdGNHyjM+abCcqF/NbvYi92zdycscjrI/auHd0HvvmLG1uY1KgxxmnX/v8obKILmccVySsrHfgioScDLlnfB61oSw1J8O01Jxgd225xo7r564f+nzvjDc08092pL6bv4XSbV0suSMV78cl4CLa73qcR89sgQOPbq77h5//sNl5mQxcNq0lpf22uuw7o5dyRsuFW12+vXXQ5b9p/n/k/NcDNAMwj3zT7/n+/ZcDt7Dhts/Cd+BVl1oNSjP/ZpP69VueYPStJ9Hys5s3W3bC/Xty4KGLeXrolG3uU/+hAdy29eWL4xLvYOsWz+e+f/F2a2Ka2/zXk3jv5S079BzYAQDz7LPP8q53vWury0877TQuvXTrH4ZXQgmtEfXQDo6zvnUNgxSETMpzkZO0EY3BvTbYaaCpXRyhpO2+CIHJeIgondUXApP17SDcVRhpZ5qi1gzrXueR7S3R86ch5ND4BNUMUsBgAYAME+KsSrsXtoMggxgJqGqC0B4qSFCBRiZWSNgUqidW9yGNQUYOMtQ4ozVk7BPns1TmlyiWq1APoGFGmcQTbmzpcZswshkxDb2OEFYPM0kbZOKkec5Ew9XNcSaodljTAuE4E3S6MGoet9EWyBm7YrMr1LSmTpeJDYNky3XiziI666B12uEyEHZkrFNbrBGJQWP/yyghyTg2PHPjOIyOb25asLum1F+aPtYAK9ta9nIAmVeSrfKm9WK7MLvpY89fRoHUBqEF/rD9/YvyksSHfF+CqsYYJYmziqBVEWcEbsUgjNW+jM+DJKfJrZMYRTpIt3pFGTpozzR/ml83/TleVVhOVfs8W+thZnaEt7Xez95uQE5aW/tWeS+/W7sXTlnijxi0JyyNzAU1rjDT6xgjKNc81osW5uSHOSi/mh5nlF6/hUcqc/jJusP5dvUYDpi2nrd33k9V+3Q5Y2RExCO1ObSoKuXEp8Wp4YqEmb7tXtzjzGWg6tguSl2RaIGModYt0BnbzS/Pkuk5Au0bvBGQMWg31YAK8EYFIhHoEY9q2YGstYVWFUFmyP5mF9YmhEWJP5oQtEiGfAcZWwDojxm8scSGIivwRxO0K6w2EiitiglLLrUexZCGO9cvZPXcNgpeQMmrk5MBI6nL2ZOVmdw7sgfTM6Mcml0JwEH5NdSNy/JaFw8vn4PXEsCzeRvUvJuSvMV6azKLJXeMcdQxAYsngZemk9g2smEa63zzu/vCgqmPb+t52wIujVo89gSz9Wv5Xnp/+vTHWfzLq7gLuOi0tzTXmz++ZR14Q+vy1jsP2+brzPrchcTL76GHsPnYJ75yCyeo81k877UTAZ3Y43rw6X353W83suSjY/zg5HPhl9a9C2DfK4+nFJc47ZEnOOegx7nq2iXNXJbfH76c3799CSfcH7AY6/h22ntWsxiY9dnfs/bzJ3DgoR8jF/fBMc97epq19uCR5u2uYz/BVee/fosgZv6R5/PpfzmOy67v4ey2f+OiSTj1us+u2WEHMtgBADNv3jx+9atfsffeW3Yz+NWvfsXcuXN36MV3tTJCYBq5J2E0KQ/F0p2a1dDRN8ALTAzgHWeKRqaZ79JwG1NpkKOUGMeCDuMqqj2+vbh5EExLSHxF8FyBTD2ydsqhboZJmji2jmZK2lwVAyKMCYtZ6p0eKtSoukLVLVBxRyM7aPdsR6Eh4rehnRBnFUoJREuWJOcgYkOSkyRdLaggtNbKjgNJw1RAThwvk86FEk1AIhyFiRMLTBp5NVE0YQoAE7ohY1LgIsH3JsDLZCvjRqdHyAnqmph0zlO3NFOp4lRrmGKepMNm4xjHvk9uOUa7EpEYlDFof6Jb5W0sI4ZGMckk9zG1QxKxv8n6W7JQ/murBgjZUSCzG7xsX4VFgcpYV8X8hoigK0fi24G4CmwXGGWdFqvdkqAVshuFzXrJC6JpIcQSjEQF4NQhzgoQirhgEHtUmNc+yvtm38mxuZW0S4e6SRjPLicjoFNlcUWOxGjGdJ11cScjo3ncPcuMqAJu2ep0oqL9jdWBYmRVK8bTvHn+4xyYW8M8t9+6cKE4sriMDfUWVq7qotruccPGIxmLMszMjTDDH2VlrYOFuY3sl1tHlxqjN26hVVWZ7Q4xOzPEjeYQhle0gQBvUOHUrdU92oIU7QrCkkH79i/O23OnsxpVCglqDmrIxR0XaGVQNYHuiFHFEFPPkXjWiU1FhsyIxhuJceqSao9L4oNT03ijMU49IVLCmseMBpi8Q1RwcGoJ3mhEfr0ibBHEZRdnXLF+vBvtgGgPqMYe+5R6qcQ+jkz4h86H6XLGyIuQ1XE7Ve2zst7Bzx45FIQhrHi09Auc+m7w8nx11x0TmV7bA14add1n1/Dx776GQ53vbrZsSeclwOWbP2k763f/vpF5fIOVD53NF9/wMW4uHtVcNn98D5YVV2z2nBknL2b9L5eweKMFJJPpYptWz7uPZe2PLqXn3cdOefyKp/4Pv95C3M3v/n0j7Zs8dvfZh/LqbzzInmccxpWe4fMHLYDBt7DvlXexz0GfZsmtf+RDhwq+++B/c8L9ewJwzMqF5Gb1wfdhMbDkh2O8Rx3Cl51lLHGWPu95/+/v3MInTt5y/s3Watk9l/MlbgPntM2WHf/pe1h88dY7XlurHcqBOf3007n99ts58cQTNwuyvOWWW/jxj3+8wzuwS5XrWF2GEsjhsgUazcHypMG069kBs+fagbeayHYxxkx0XbDuXFaor20HJhXpG88lyXnUejJUu6wFcNAGtT1C5s3pZ/zGGahqbClXkZwIwUySJu1KVUNE0abcixicSkziS2odDv5Yggy11XqkwlGjJDJKbLenEWmT5sUgwEiPxLeBaUYJxubnaRsYgzCEIEBks7abItLZJKkQHs38FCEEuO5EUGdqRNCggQnHSYFQMgFelLLHlEmzdNLOjT2PapI5grKdEZM6uzXoa41OyaahoOMVnDDCuA4m54O04K4xiwmk3akEOVpFjE3y6G+aNUxyfNtdU+r8j1n9xUsNYLbVfdl0vd1dmBdWkwHJtsDMbuCyYxUVDVHJkNsgkJFmfLaHUwV/LLHdcNcO0N1yQlh0CKbFyNDBH4EkAyiDqArClgk7eSMl2jHIQCCVZp/WPma6w2SEwBUKVyhywuALBzUpo8sXDp5ImNYxxtzSMA/qWYS9ORASp2YBgS47iI4AYWBZuZORKEu+LaBdbqSuPVYE0wi1Yq89eqknLmvHW/FUQs6x3YvECGZ5g8x3NyKFJkLxTH0G7U6Zud4AxgiMZ5AVhXZhaF9BVLK6FyOZMBbIpEYDpYhiqYYB8n5IUHAYcfMEORdnTKJCSAZ9nJllat0hGI+2J0HVDU45JMkosmvLtOZbqLVbEBEVlZ3gC7S9vmO1RlHB0tayAyGtz9WQSYbKdIfEh/p0jWoLiMddnlw7nY75Fd7S8RAL3X5yImF53EKIQmG4b2wuf1q6wNpVOxoiSZzFdoRGdlPItlQPfnBPil7apbjG/tvWALqRUD+ZavbIle8B+afN1p3+thcOXgD2PudZ+p88g/a/h6/XXR79+JesY9jnFzbBy7LiimYXZllxBWziMtbQvDQAzeTHgc3AS6Pe+Hgnb1s6jeP1tXDnY1OWnfjRac3bT638O546+VxYP7VtckbLhZBqdC4G6LmaY1ZaTUpuVt9mr/ff37kl1ddsXxdk9K0nMYOTGJ/SI7LV6L5YfcsSlt1zOYs3hkz2GFv8ryex5Fs303XsJ4Av8F19LR+SO2Zms90A5h3veAczZ87k6quv5oorrtjMhez222/nqKOOep6t7OKV5oGIJBWvhymFzGg7bdYondjHwqhpmSxSMNOwSJ4y+G6UMSkoEhhfEbZ79B8iCds1qmwpZO8+/C6eGu9B9yY4Y/Wp9LEkmdJxkKNV9Ky8TWuWApFovLHIWhdXY5zhmnXYKmYgsUGXCNHcns646KzTHNAbCU4lsbbKVU1YlMRdJZx6gNHagpeUXiU8zwKTRELGbwI03ZJLwU3a4anHiChG1IMJAT8NWlm6L3E80bky6TnXxrquNcpxLOhqUPXSdZrhmmBBTnrbSAWVKgBiXOENe7gZL6XyuYhmZyuyx9YwJWjYViu5OwdmK/XRM//5L/I62wtenq8OPGXmS5oDs6Mg5tRTtv4jfcNNL29Ha0tdmd3A5YWVjARaQMsqO7EUFQT5vgR/KLKOVAISTyEjTZIxqJaQeEQRtFqamRh3UDU7uRQXDElGEBU1/pwye3YM8ck5tzDXGSMvBQXh4gtLFUNsZX/QvH7G00Rasb6thbWhQ1L3EZGlu6EMZtTDeJqN1SKPrp1J/8wCR7at5Lb+vZidHyGjYqaVBuitFRHC0D9WoDNbJtQOc7LDzHSHmevUeDJq4aHqPEbjLOuCVjrcCnt19HPfaA4Te4iaQLugswmqGGFGstS7NEkpQeVjOtvGOX76sxyYW4MUmmlqnNVRO3kZMpLkWFafxm/XLWJgQwth6FBorVF1NPXeLMIoCkGCjC09u7C6ilPNICNNvcMhbHHwhyMyA5G1zndkmrkD4JHrDfDKmnBc4A+DcRRqesQ+M3t5pnca92+YTX+9QC12cYRmqJZjrJLBdRMq/TlkVYFnEDUHndVERcPYXEku2vpM/N96fWb6TU0B/9hx/ZRu63re54wd188HHhvm0NMW059O6v/L0F3N5WtZs1P27cGvTrRCPnjtbPj8k/xsEoUMpoKYLdWm4GXTevJfPgfAvv/xOcSlXdx4TDqWPvo84Pjmenud+UfgC6wOfwrA29ceCcC97zyyuc7qnqs3235Ds/P+s98EwBLnqikgcUvOZlsCkZtaOC+OSzDH3p58XXs+HUwDvDTq2LO/stV1t1U7xJE5+uijOfroo59/xVdwiVgjKrUJ/YvREwL9hmbD9zenNzVARqMaGS+eO0GH8lyMZ5Pj44JHvVURzgmZM2OQSEv2KA3xTLmbJ369N7N7x63FcDCJyiatpXFjkC4SjVOzjjKiaqz+RRsylQhZCZp6HiMFOBKC9BgBoxRGSaKCg5E2n0CGE8cgtMGtaYKuDM5Gzw72JZhII9z0QukoTCGHzvnUp+eI8pYqpgJN4tlQSaduswacqibTX0cNWk2PgIlsncZrNjpXjeOdbBQQx01TgGbg52TXN21sZ6hRk3Us2mCqVQjDtAukELUAoqhpUw1MACHHSbe9uwOzrXqpui8vBLi8mO7LSw1wGrUt4LKldV5OMLMbtLz4EhpanoVMf8jQoqzV2Y0nGEcgKzFSimbQrlMVCD+iVvAJ2pSlQtUlQtvtJB42PFjAP+91HzkVkJMBRSkoSg9nG4Yj65IqRSGZpsrM9/voi1sYLOcwFQeRgAoFUcFgHINILKVrbV8bHe1lck7EQ2OzyTkhXd44BRUwGOXJORE5N6Kja4CuTJlYK7pdS6WqG4iMw3R3hDanQmQUM9xhcirgmdI0RmKJGLaDeRFIdOyj8xqns86i6Rt5e88DtKsyJWk1JxmR0Cpj9nTHSAyMGwdXxEzfY5SV0ztYUelg7Xgr2faI4ZkZyygwHvkNEXHBQ1Uj/OEQIwVOThFnJL62hgk6b7PR3KomykvqrRLtZBibJ9EO5DYaWpZqyrUWnjjAY17PIKs2tvPE8EyE0pa5EEmIBboYWZtqL7Wpdg1Ia5RT3SOi0mHgxr/Qh+8VVI+f9zHee9Ds5jz+ZCrZlko+3M9PD7wGHqvy/QNy8KGHuOsOn/3+PNpc57w3aq789QvveB103g9tVwdYfN3Hmo/veYbtFM36+Tu5eMlnOPMy2w06uWMNdKxh2eBEImWj67Kl7svkumb+OvjzhzhrmZ0EW3L7B2m5JF148/9OWfc7F7dtcRuTU3Lm9H5sMxDzxdo65tQ+xm0Lz+OaGdMY+uW2dUKL49Jmy7eUP7PEGWN8+fX89GP38L5fXgW/hEdOPnerx7rgF1+Gf4TV4U/ZB3Beeyu9x8JI8VAAfrr6fKrjNd6939a3Mbl29zQnlRECUQsw9XSk36A8wQSVrKHFaIASIW3XBZpi/SZ4aYAcKTGOwriKJOvSe3SR3iN9KjMkC2f3cWTXSvZv30BWRTy8bibZjaYJXIwUzdBIE6ciesexrxUnuGMh2k0dvoTVw8hqCFFs6VPZ1H9eG1AC40qMUpAGWTaoZGhQgUZoiHOWVqaVsOn2jXBLpRC+39SqJF0tjO/XQW1WnjgnccuazGCEPxiSGYrJDNtZMIwVr1ZnZqku7ES3Fu15Td3KhOvaY50MCFP6nvC9qZ0Q359qlCCFXd54TAi7PZluV016bpJY04HR8gRYSatJb2vkADkOIpt5QZ+jv4XalbQv2wNettYh2Vn0r20BoFNPef92gZctPW93vXLLLUPbc3WigkN1hs09cSoxcS6lHGtDkpEkGYE3CnGsMMoQFa02MTMgULXUNRJIihrjGfbNruOAzBo6ZECbzOILdwpdbHIlRlMUEikECYLVYSfDUZ7ahgLuiELVBaUVmmyfQIQCIwxqzMFUrSNZOfIJE8Ws3AgJko1RkZEoR2wk8wpDHN2+HFdo9sgN0KIqbEyKRAhaZZWiqtHljBFol5KsM8Mdprtov6vahahk7CAfKMwe47373c1hbaupaJ9fDB3CVWv/nqs3/D1X9v49d9dncnfdfld7VMLf51ZyYv4pXld6mvdOv5NXd6/kuBlL8eaPUZueUOuSBO2OFes71qlTRgmZgRC3oolKDv0H5xncP0vQqlCBwRs3eGVDZjgm229IsobKDBtCmt1oKNyXZfnybpTSuNkIMejBiGsp3q5BOQlogZEWDMq6QGZjivsN8q9H3c4bDn/kpf/QvQLrm08d3Bwoby3IcnJ98fAxhpftyfr/6OeuO3zuusPnqGMCShdmKF2YYcP/nM8nP/DJF7VPDfBy+vL30Zb/Duc9vZ53vuZVdD/1ZwC++o83cukHd85kfgO4NGrxsd9j8bHWOuA3J31qyrIzLhl+Qa9x2wmW7nbc0iu5cd6XOGblQsrFd28RlDT3I31PljhjU96X7dElbakaWqBv//wAnNfe2ny8593H8vgdLo/f4XLlE4fxzacO3u5t7jSV8lNPPcWb3vQmli9fvrM2+RcvEcWYapDa9wpgkuNVY3a/KSKf5ArWSKNvhFVOBjBgwzGbj8H4nglHH/4M6yottGWqxFqyfLyTWfkRDp65jse6Fk3oRqLYBjgKYbebhkoiBUQRTt8oYes024VJ9SPad5GpFTRK2LR5pUjyrg2TdKS1U3asbaV27RUy8SUq0siyxkgXERuMI9AFDzk8SbTvKJKOIqMLC8gEO9skaAriUcJaMteTZm6LkQKhDVHRpTqvhDeSwe0dtcendZotk74Rk0DHlA6J49iuSIPiRbpPRjcBGkKmIZQaEzPRvfHSrpE2mDCaMARI7Z6NMQjfQ3eUSAo+UcGh7kXw0k/Mv+LqrynE8qXuvLxYENJ4/stNLdtdO15uxVrTV+dmkBFkhhLivNM0FjHC6i/MpMsLgFMTJB5kBwyuYzsF5TkG4ycIT5MYSd241m1yK8ClUUpICtJnIKmxJu7i/uG51GIXf6PCrUBYsvuZ79UkvqI6N7YBkBp8N0amOzYSZSkoO7EXGYkjNI5MWB+0sneul253hJKs06XG6VaSoqixMYkYSXJsCFuo6/kUVR1Haqgrm3MzLohzEtMesW9XHxujItPccdYFbYzHPkP1HH3VAm2ZGkuGDqCvXuQ6I5ieHWNOdojXFp5hnjuENoLXlp6lPy7hOQlV34Y4VztlylBwEDqy7Aop8AcDwhaPuABBG9TLklyfIDOiCQuSKFTk+pMUeBqCVoE7DsW1CYUNivKMAuW5GuOkFGYNGAjKPsJLMJGDyCbssXADH5r9RwC0kTwYPT8t6m+x7nn7sVPuP98A+ZM/fydwFZ9584XN9ZfcMcZ+fx7lgiVjXLb4cjb8z/k7Zd/umLeUAnDrtz9E6bYPMuf95/D4U3/mm989hJM/9zEwcLX4Gb+c1HmZXNsS8D9fNUBMxAGYC/thvu1YcNzbXvA2AcQPy3zuh0s4ks/ZfXwex7Yt7tvk9efY69QPTj7X2kKf/3pG33oSnDxBIVtz5lnM/rYVOPX+6HYAOlNqXO+Pbm/qgD54yVXU4pB7tnM/dhqACcOQVatW7azNvTw1NALCtYPeTfUr6aB4ShmrlTGN3BOYoDk1qE6N3JO0Q2BcSW69QgrN+XssQWH4/di+rB1qZeN4gbGBPNPWGprBltDUkxitJwIzE+yAvh7gDdUJ2zNoV1lLyTQPBiyoELG2oCJMENoQtvoYJdCeRDvWsrPW6eBWNN54gt9bRo2FJCWPWqeH9ieE+DgK3VqgNj2PkZAowEDiCeutHyTNTo+oJ6jxANGwilYCVxtqPRlGF2RpUQJv5YC1SW7ky8AEgIziCQoeNMMyrcDfmwCXDeBkjBX5N/QsSbqdhh6pQU/zXNDSUtYSjfBckp42qrPyjM9y8Ee1FcxWo5368dpdz187S/eypWp0W/4SdDHY3UH5Wy/twNrjCxgJ+fUGbzwizjpW85J1rNYSC2K0A2HVRdUkiW8dtmQEQZuldCV5TbGzQke+iitibh4+iJmdf3zefUiMJjIJj4Qd/GZkfx57aA+Ma2gZAH9MY4RExobMYEKlx0NVJLojYp+5Gzi4dS3TPNtB8WVEToasC9twRUKLUyMxEiU0ORngiYRWWWWuE+HiUjcJC90BVgm7/iOjM+nKlFk32oI3pJqCfaYFnLzocRZmN9LtjtChyvSoMksLXYx1ZOhxLC1oROd4rt7DLRv25b7R2SzPd/DAyBxO77mHRV4vnkioag9tBJ0zRxkZ7kBoS9FzKgnaV6jEsgGcsTpCG/xBh1q3IS6CHgS3rFObak1m3TiqViDJ+NQ7DHEe3Iok1x/T/lSMP+xaylkXJFlD1KUhlBgX9tp7Pcd0PceB2dVMU+NsTIr0JyXa3OpL+XF7RdcSZ4zcEYJrWP286x5xxw/tjUUX8sb3PgXfs9SuC5bc1Fzn3GMv4CcvYD/20o/xCIfyug+eQ/dTf+auO+xgfem4DXpcfe3Xec/0ApnrlzCLiS7CGT/8F77znv+YooNpiPy3pY2ZXNfMXzelG/Oa638JwO2vOQBxaRdnbSN25rYTVjD/iV9skT62tfrpx7/EWTcLDvLr28x9mVxbAzo33HQtp57yfh69fgnfGZ0GxwQsvulauOlaljhjfOHMCU3lrM9dyNrPWRvr+E/H08nxxH+i2ZV5+tRPwb3bx7XcbgDz8Y9/fJvL+/v7t3dTu3Y1aF+TAUlDB9MADTCxfHIiPUyhMjW2JbTBYB1k6u0eUdHw5zv3ZejwPO/suY8PdfyJgbDAH+7bl9IyhYp0GmaZdhYaNsMNsCQmUcoAp3+Merd12XJqGu1Iq2cxBpnmnoDtBIkUhGlXYiREOTvb55UNYUHij8QgJSKxTjmykVaflvE9qrOLaE/gj2pkpDGOwKkJVKhJco5NeI5sl8i4CqIE7SmSnO2CuJWExBOUZ/q0lEuovhEbSNnQvDRcxlxnc+98KRBCNd3KpnRuopRi19AsNehlOpkAoEJa4CMtFY+iTzCrlaDNJcxLVGBw6jbkzJQ3Aay7a3dtZ+1s8HLqKe/f3YV5hVVhbUz/QoN2wV1qUNWYxLWaPe2kQcISMALtgxhz8UZsZybbb8gOJIzOV0Qlg99dZU7rCBkVsTycRmQk7SoCtq0XUEKCgQer87h7w1wKKyX1Lts5qHVJZAS1DkVuoyHbb4hzklo7JFry+NgMpmfzZFVEm1NFOYa1tTZa3SquSFhW7cJJOzR5GdDt1YgMlIlwBfQlPjkZcEBuDQfnV7Mq6GR5oZNVos1qewzM7BphKMzzYDyHrJrOYYWVRK7DQrefFj9BASNa0mEqzHMHOCi3isG40BTz/3Fsb24KD8GTMbMyI7TnqwxVcrgLxqk6BbIDEqdqrfPJOXaCLYoxIkOSEYgY/EE7+Sa0QdWN9esxhuyyAbKzZhC0gdCCeieEJZfMkEZFBlO33TGnLDDSJS4mlDoqhFrxq3X7cWNwCHk/ZHCkwKIZfazduO33andtfx266EkAfn3dPjSi0y9bPDG4/klH94va/vLvPABnHMae+wDX2PtLHDuA//mGL3Ff+Tme5rUAXDNjGg+zOVDZ1GZ5cqdhcl0zf2JCTVzaxfTjPs+G2z7LnaedzI3HHMU7Hv7fpk74mi10X+Y/8QuW7ffm7TquBpXsrNv+h9vqb+Pjxz3L1247cbueuyNdmjOP39gERYvjEr/Lngjnwn2znuazP38Mft7BNz8xsf5kSll+6fZ3mLYbwHz961/n4IMPplTa8kGUy+UtPv6KKq3TlrCZGOw2ghVT6pZonDGdOpVJgXBtl8UYM0Ef823r0DgqtWa23ZG+IyQXnvJzvvbkCawYbEf3SB4OZvCWjofo27/IspG5tC7TVgMz2ShgUsK9aGSqgB2IhxG5VWNU55ZwKjEYm/mi6jEiSNAZO9snY22pXqn+xRm3M05Vx8EfjskkBlVPSHIuRgrqXR5xRuAPYcGI7xN3FDAOqLrGHY+RQUxU8kiyqtnFcceTlJKW0rMK9lxoT1praE/ipi5ntel5CoPjiFhiYj2RL9MQ5qealCZgaQRYggUgYTQRLDrZMAHsezf5vWxYUQuB8Fx0a5HqHiWinESFBqeuUaGwfOjhkIhNunC7a3e9jLWrgRjvsoMAMPWE6OLHX+a92fXKqSeoutWVOHWN9hTCQOxLZGQIWxzCvP19C1qt7kVGoNOudtAqkbHA+AlR6DAzN8JwmKOcZDit4x465fbRU3zh8MG2B+l2R/niun8g01kjqBXRLhTW2OvL+GwHpwpuBeI+j2fj6RS7yuScECUMw3GOp8o9dHoV9sz2ExmFIzRZFTLdHaHHGaVf+/ypsjdSaP48PJ9q7PG+GXeikcx3e1Fofjx6OE7VmgbEpYS9WzcyHvuUlHWcjIyy+hmZUDWCdgl5qRmNFa6wv8clVScxkoyMmOGPMBJmOb3rHurGJTKKZX4n2kgeX1lIKdISrxrZ62GUIKKYJOuQZMAdF+Q36CYNWjQMLn0XOThidZyRwqlYI4WoaKnW3pg1pxEJRAWDdg25aRU8JyFKFK7UdOSr/N2054h6FHtle7nbzGC3CmbrVb3XcP2ft50F8pXnZgHw4NP7AvCRDz0Et0H2vbfyplf3NNf71d29L2gfnpUHABNifYClZy1k+Xcm1nnVvxzHWes3gvgZANdgLY3fVDiEX5UfmrK9yaBmU/CyNXH/hts+27z9j7pMipO2CF5eSP34ex/k9A9aetqPhz/JT39UmxIC+kLrkhl3sPDiazGnvJ9zD1rMt4+zTY277vD52rG3sN//PRSeggvikMu2kAUDsPqIu5tmU9tT2w1gFixYwHnnncc///OWLVQffvhhDjts24mju3w1rJFp5JCkDyc2w0Q4coK2NCmQccIS2Fi3L0hn/I1178pmwLWzXh2PGS6b//cEYz6ZtR5fGH8zst+jsEaQHdDMXVXDGShb2+F4Ii/FGNPcptFmilOWqSeIvpichtqcIqpuB/RCG4yv0L7CGQ1svk2cdmAcgXSsZbRbs1kxIrUplmFM2JHFqSQYqaydc6Ih51CbnkEF9gdfBhbAqUAT55UV/Ts23VnVU91OYukS2hXIyCAMaCWIsxIZQ1SQJG1F5JpKakutJjQtnjvh/NY4B6nbm1CqCSCbGhYdpUGUqbFCw3BBGwtyGlbYxm67NqeIdgXZ/igNlhNoJw26rEQQ1l7KT9vu2kL9+HXjO0QjeyHuY38p17G/tmoAlt21feUNVMmvbaHeYSdFGjpBk14iYl8SZ61IPOqw153Et85jlRkCpy6I89YZLJ+vc1RpGf1xkZMLj+GlOStVHVI2EW0ygysUidFoDK5QRCZBo5FIJLDIX49qCQkqHrkIvDFLc0sygup0Q3G5pXX5QwJn3CVqdZibG6LdqfBcdSJ3ItAurkjIqpBK7DMQF5ntDjISt9EXldgr08urWlfSompkZMiaqJ17qgv43/UHUl9WwvEMcWvCjHkDzMiMMN/vYyAu0aIsPa43aSFB0J+UOMjrRQMJAowiIyIG4wJDSQGFYf/sWv6h9DAumqpxOKX1AR7OzGVJ/37IUOCVE0RiiHNWI+pUQ3Q+S1S0F/fSSk1mMEH7AqdurzNaSXTOReWyZPoDVC2PSMCJwBmy72OcE00Ak2QNTncVpTRvnP0Eq2vtDAZ5tBEckrO0+jVhB0VnUizA7ppSDderTWuJM8ZRx9gRbem2LmZ97kKuToEDwKF3+Jx2yROULszw03/dl7d/68mdsj/ji60rVv/bpoZj3nH0OMf8R7G5XyfMemdzWQO8HHT5b3jk/Ndvts1NOzDPZ6285PYPsrpc44OTqGo7u05v+yq//9Br+RRb12ftecZhXH/x0u3a3hJnjB9wLmDfr8Z5+vpt8M6Vn+Y1nU/zzQvPgSvgI1d8HYBvfuKc5vPn3PtqanEIbJ+WfrsBzOGHH84DDzywVQDTCHF8JZdJNDh2QCyEsPe1nsh0cR1LV5LC0pIaFKXJ2wijNIU+toPoZpBlAsKlsLqOf10GDLjjlhOr6uPWOSxOEI0Uej3RSWi6jzXoUpMH7w2tTZIgB0fIKkFlXtF2QbDOamiaXRiEwanFyFAStjjNi2nY4uCWE5yytgAgNiQ5ZVv91QCEIGnJomoabzREVUIbiKkEUhtk6OCVrX1yklUYR+JUYrTvIBONjCzgMUqiAo32BVHOvni9J0e+17XnGyxAlNpmyzTOI6nNcuP9kAITxc3bgvT9SjtgFtBs8gYnCTgOwnWJu1sIi8pS5LDdIRFbK2mhDTKIiP3dOTC7ar3Y0MrdIGb7ajdoeeFlXNtxEY3Z/dQwxShBWLL5LkJDnAVRV8gUVNSmGeKSxh2SJFkboliru9wxshfLxzt41Z4rOMizjIe+JOT60cN4XeEp9nWrDGnNiPZQxCyLunimPh1Xxvx6w/5UQg+xJot0DG4ZvHFD4lsdo5EgY4gzNs2+tFIzVCzwx8J8OrL2OjUnP8zhxRWMJ1ker8yg1a0xHmd4rjqNxEj2zmzgba33kRcxvUmBkSRPb9RKRkREOBzYvo7VmW4iJUAaxmoZfvTgq1kwZyP/0PMoi/z1jOssTwfTkZ7mIK+XbuWh0RRljcQY+pKYvBeyLM0uS4xkfWwBT0ZEdMgq872NVKJD0L518RTGTpzJKJ0A9Bzc8YSW5QJVtzRomaSTV9rY9bRBl3KoakSuz76WUzNEeUHYLghabQcmyWpkZ8DcrmFcmTDNHaNF1Th82nIyIqJHBVS0pEuNsXTwwJfng/gKr2sPupBzr7Kd58HOh3gXtqvxpvAOfnX2uehfPMKHgKO8Y7axla3XTd/9F0750H9MeezBd7yH133wHIppJ2b5dx6YsnzPMw6Dp/7Mff9xGw/rbXfFT/jZa4kBlt++1XU+csbBFOYuAqC86mnAptM3qFXXzF/HWbf9z07rwgBcE9/A7z50J3ddum3Qt/Ca7QMvC69ZyhIH3vfLqxj9Jfx09bc56j0W5L3+K9/kJvbnzoHPw6eWQOcEcJlMH9vR2m4Ac8UVVxAEW+/tHHTQQehNs1BeYSWUnBg8g9VaYAGEaNj+Cjnx3+hmAr3t2KQ5JlLa9dOZfuM6hDNKDO6TYWyhJr9G0nNXxQrctbadFkDEyYQGJKVJWWtmOdGdSNJ8E9XQi6gm1czUaoh1EYVYU51XwkgX7Ur8wbqlLygQSiBCjWMSEt+GZ6q6RtVi4pxjAUcQIyON9hxya6vWWjqXIc67uGVLGzNSYlxJknObF4goJ6i3S4SWZAd1elG03G9hQGcdRKhRdavdaRgI1DsUubYS9A9PALPIgErtjc0EsBEZ32pdtD3PDbtlksS+f803cxNdUuM9kzaPJ2j3bS5DRSMTqxsKOl3c8Zio5OBlFHG0e8bsL13b6r68WNCyae1MEDPZjvmlFO/vajSy3bX1Mq4NrwxbDFFBAjb7K84IVGQpSXFOIBNwxwQqFGQ3amQgGd0XtA8YyOYCKuMZim6d/Vp72dcbpySz1mFMaD7R8TgSSWAkFSO5ceQI/rBhAUHkUHmqjWyfoGVFDC2KztAwtK9oTtyEJRso6ZQFTl0jtCAqGqrdEu1o+vpbMJ2C/dp7eWZ0Gr21Im1ejfHYJ6siJIZ2r0K7U6bHGaE/KfJg2MFsb5CirFE3LspocgSMRFlU1XaYdE5QGc0iR132LA5wUHYVrkjIyYBjc88wy4kpSh8HRWBiCkISENOpIiITMagrRMZhMC7wUHUuI1GOo0rPUfTqSDQLSv30zisSPVTEH7bmNSJK0FkX7TvEedUMcNZueq1Q1inTDeOmo6eoBrgVQ5SzTp0igbBkiPMG46b6n1zAeOCTcWIUmgV+Lx2yRoJIneIM99X25J7+uX/hT+Arq77wi2fhJHu74Yx11DEBfOMqljhX2QXfmFh/YVxi6Vnw9m/cSunCDMdc3cqv7u6dQiXbUn310gv55IWXNu9PBi+dl30MSIX7LJwCXK777BrOunlO8/43v3sILIBbv3Qkx3/6nmbnZUvdl+2pSz99Axd+6VSi11ga28fG3sI13Er8p+M5Kx3kVy84C4DcZde8oNeYXGc5p7Lg+s/w6GfXwMUvenNbrN/88Gfw6amP3dT6WeA0PnLF1zno0XbOYqqN9DlvfhLu3b7tb3cOTE9PD3Pn7twv4B//+Efe/OY3M2PGDIQQ3HTTTVOWG2P4zGc+w/Tp08lms5x44oksXToVDQ4NDfGud72LUqlEa2srH/jAB164Hkdv0kEyaQdgUx0GNIXhopHJQko1a2hglLTaF0cRzGyh/+AM1ZkGb1aFsCWlEvg2G6bpVGYMJmtT7YljTBTZAXwjC0YbcFP3rckdmAalrQGaBobJLR2yuS4GtJ92X4yxVpKJTmemwC3HuGMhxpXWM18JtGcdw7zRGKd/zDqP5TOWdhbEdhvGICI7e5W4EhUkeGWNCq0AvuFsNvncqmqMrMfNWS53PMGp2XWj9tzEcUqrG5owREiPrwFE5IRtdSMXZ0reCxZ0mtS1zDrDpRckaS2ttWvBkz0nBneobgM4MwpvJCbJSIK2nWbS96Jql/uevET1fNSxl8Kh7MBTZjb/dtcru3a170nY6hNnrEai2W3ukNQ7BVHeUrcsbRecqsCpWGcwFdoMkbg9whRjDu5ex0mLnuRDHXfwuZ5b6UjBC1iRvi9cXKHICo8ZKqHTHUcbQS1wccZF2v22v8vCgAoEKrBam8SDJJPaOAvQns1niUrgjUpMTTFayfLkcDctXo2DWtZxTOuz/HP3XSzKbmB6ZpSiqtOqqjwRzGJl2EW7UyYvQvIyoEuNIdG0qiorxzqQEcQFjSqFtLRV6Fg4yGtKS9FGUtU+rbJOu4oY1Yb+JKBmJmg2rpBkhCAvBS6JtWiOWul0xzmq9BxP1Wbwq7GDeTKYyXNjXeT8iNH5lmlAYp0wte8QtnoYCWbyz3vqyp9+UCyAMVaD6QQap27wRxNaVgZkBoUNAK1JUIaDutcxLV8m54Ys8jewyOsnk+p1AgMKw8GZ1XRmdx0Xsl3tu7L0LOvyNZbqJo46JtgipeyTOrvZY296dQ/H/GH7wMvk+uqlF/LVSy/kiNEfNv82FaovjkvNx977+dlU7zX80xGHcdH9Jd7+tSyvufl+wIKYt38ta22EsV2XE3722s1es2Eh3ChxaRcfOePgzda79UtHcnXp/233sbzQeuMzt/LGZ3YeRa1xviafxx8X13LTh08AGuBl59XLGmRZqVQ46KCD+OY3v7nF5V/96le5+uqr+da3vsU999xDPp9n8eLF1OsTM+Pvete7eOKJJ/jtb3/LL3/5S/74xz9yxhlnvLAdmqy/SEuoNCukAWImh1gqOSWnRChpdRtpmKXOZ4mmFRmb61HvtBxj574imUGodfuseX0Lwwe0YDz7S2qUtLkoqSEASYKZ3PVqaDoag/XGAL4x0G+4lWkDo+N4KzaS2VBGe5Kw3UN7tltjUp2OU4sxUhAVPeKMIslYW+WoaLsq/qohiBOM61gKmiHNdJEThgekYEwInEqCP2LIDGkyQwn53ghnPLLt+3qMqFmet/YVcd52tJyaxisbtJ8GTza6JEJMBZQNMNLoOjXCLlN3tqZQH2ynxnHs+9EAQo37UmIyHtqxg4ewxSHOOwTdOXscCowjiDOSoPSyfj2atct9T3Zynf6H4ktqn7y7/jZqV/ueiMSQHTDISJD4EOclYREqC0Pq7YJsvybbr8n1WQcwYaDWrghLAhEL0AKhDGNhlkMKq9jDUbRNAi+blhKSTpXn5MJjzCkNk6wokEa3kGQlKgKMDZEcnQ9hq+0q6DQ8M87Y64j2NNox5NcZis+6OPcWGftjNw89sQd/HtiTLmcMTyT0uKNM90aY4w0ghUah6XLGyIiIjIholQF5GVA3Hjf2H8GaVZ1ERYMpxCya0ccR01dx4oxnyMuQjIjoVmW6ZEwupQxHBvqTmEdDxaOhYlVsGNWG0Bh64xYSI5nlDaEwzHP7+bvC00Ra8VRlOmP1DF35MuGCGuOzHIwj0Y4kKrrEWZuDph2BcWzXRWzqtqks08J4Dv5gRGlZBW8kQsSGzKAhu1HilCWqrOirljisdTWv7VjGAtcOukMjKYqYnABXwGxnjOM6n35Bn6OXona178pkmtJh553JcQdfxL999AJKt3Xxbx+9gH/76AWcMhDx7NAY//bRC1gcl/jfFetetObFOedsTvWPb/4ddt6ZUwbfpw7N5bDzzuTfPnoBX/jFs7z92Rv5yb22K3PR/SXO2+8Brr94P66/eD8WXrOUL3Q+gjjsE1t8rZ53H9vUwGxJ//KRMw6mvOpp3DsfY/Gx38O987EXdWzbU/OWv5fsl70mgNyZ9fY5Z/KVKx/k9PFZO33bjXpZp5hPOukkTjrppC0uM8Zw1VVXcdFFF/GWt7wFgB/96Ed0d3dz0003ceqpp/LUU09xyy23cN9993H44YcD8O///u+88Y1v5PLLL2fGjBk7tkNG28hj15kAApPBgZIQJpbU3KBwpba8InUda4ROAiRFn+G9swwdE3L4gpXc37oA2RZwxNxV3LN8Hj1do3gqoX55F9kVgZ310ZZCJhI50UEwJtXaWF1Ic58aAvdGF6ZhJKATMMJ2j9bVyQxmSHraSDIOScYO2GVouyjatd2IsKgQiSFocyisqeGsG8KE1tpYOIok59igS18hAVFNiFoyxHlF4tsZqQaVTLsCb2OIrFmHMlVPkGFsuztZOxtW7XIYXQhdD1mbZxnarhPRJl/spl11ej+xxzYF3DRcyBp6oMZ7qZQ9b3EMJBiTmjFU67jlhDhvj9kaD4jmcSS+TLU8Ysc+Py9R7XLfk7/S2loXZls0s02fszv75eWrXe17YjUvlnakXUGtw+aECE8T7FNjRGZpe0bj1qz7YVgS1LqtrX3cFvOa/ZfS6tZ4Z8c9tMo6rnCfN7gSwBOad3bfx+N7TKdSyOFvVKiaZHRvyGwUxAur6AEfb8xqHI0LUVtMeZZrQzUjiXYhzgqbm1IFGRnigmLp2mn8wHstsVbML/TzqsIKDvLt90OTXvcQKAyu0ORFxOOVmTy4fhZeS0CSV8zqGubo9uXsn11DhyqjMLTIgLzUtEgPJQRFCZFJkEiKsk41ZTlIwBOCed4AAOujNhZlN7C/F+ELwzR1H/81/GqmF8esg5qbUJlh8Ec8GySateGWRgl7uU+7UoBlFCTWTlkYG3sAVrspIk19WhanZi9E3qhlDhgJveNFnvCnc1jLajwhqBroUTBuICMkRSGpmoROtXMpsC+mdrXvytbqsPPO5IErv23vpP9jGXGQ/AYXz5+67o50XxoVf/0bFH5lveHqv7GC/dfcfD93nnQ4733z9XAPPHDl4Rx23pkAvPHU/8sXz1rIRfenu/TEVOOqWmsHXzhrIbfzqS2+3pJf3mH39WPn8613HcWH+K/mssLcRVz5xGGEP74AgPlfX85ijuH3I5/nkmVl/jR/y+/Xi6lf6GUcAVz8xZDD/EnneifVA1d+m6VnLeSUSY9tzYHshdSuMcW8hVqxYgW9vb2ceOKER3VLSwtHHnkkd911FwB33XUXra2tzS8QwIknnoiUknvu2d4sz83LhFFK15pKgWrStqSYABJGTziSiQmwY5SkOiPD0MGaRXM3kFERCxetY/+ZG5iXG8SMegzf0cPKZd1W6BmEaQdFN93GkAr81Du+0WGYTKtKNTeN5PnmoD5JrGYmst0hE4TIZevwlvXi9o3hD9aRYYJWqWFBAtn+iOJzZVof6MNZM5AO+hvHbn/wE18QpTkvcSlDnFPU2hWJK6zLWGAIC4I4XS/oyiA09rUyDjrnEZU8opJrucZlQZyxM2EysgGVuJ79g9QAwUxoXiaDtMldmMb7liSp0UGDNpY0dUrN9yUIQRv8wboN4vTsRVoYY52CFER5iUmtTHf1ejm/JzujXgmdly3RzHbTzl5Z9XJ8T3SqgWlQszDgVKDl3gxm2KPeqRmZL4l9QWY4RsaQuKA9Q/fsYRYVehmJsmgjmetYZ7FtVWI0idFMVx4HeBt43z53YzxN0JVQmS2QgbUB1oM+7rjEqVpw5Q8IVFmhQsgMWitnjAUtKgSnasgNaAqrwV3t89ADC3jkudn87JFD+eozr+espadx8Zp/4MbRw/nR8FH8cuwgrt54PB9eehofeuJf+NWfDqPwiyJRb45kzGXNxjaG4xytqsqIzrE6bmdIZ6hoiZ7cBgFcocgIRU4IXGxXBkgF+zXmuQNsTIqsTxLWxjVWx21M88bo8ssUHdt+irpixudY7Y2RNrsl8USa+ZVgBMhQo6KGQ6fN4tEZyzzQWQeds9csDKjAkB20XTN3XDA2kGfFSAdr6u0MJoLIyNRMwUEKgSsULoK57uAOf4Zejno5vitXnWsnfo47+KLNlh123pkUl3+ved8552yWP/dDlj/3w+ZjL8Q22XuX1aqc9cdbOOuPtzQfv/Okw1l61kJu/upcrvuFHWzfENzKnScdzhcPH2t2i/73N7/Z4nYXXrOUW790pKWVXX3kDu3TnScd/vwr7aQ67vd7MOPVV7P2a/cgvvlr9mr/2EvyOttrAvBCatcg+W+henvtB7K7e2ogUXd3d3NZb28v06ZNm7LccRza29ub62ypgiCYYkgwNjaJa6lNU8xvwsjejuIpA2Vggr7kerbj4aRp9WmAZTytxPrXwdxFvQzXszzX20WxUEMKWDXSRuvjktKqCPEAeIM1jOdaB7JJ2S+WAuXacXQcQzJpPxogiklC90mDdWOM7Qo1xP9S2I7KYIgaKyONwXPdJu3MJBqR8TG1mgUK2jp2mZQPLNIUY6Gts4v2FUIbvIrGqVqAI7QhM2LF+/bH3gZaCm3QvoNxJXFWokKNP6rJDCeERUWUE4hgUmZLw7igoS1KDRKaIE4xcbtpkyysI1ljeaMr1bC9th8ORKo3kiMVsv0utS6PJCtxx6zRgFOBeocDjkDVd30E87J9T/5G628NtIQXPPJX4UT2cnxPxua61LoMUXtMdqOLWzFUZoFTE7gjEu1ZOlfDISvKQ707weQTZhRGeW3+WfbPrmVvd4yCyG319ROjiUkY1SG5FORoBONJBpTB+BojJUILZIilPtUFcd42s50q5NZLWlYkRDlBebZI3dEEbsXgVQxhXpLvTcgMCcbmKbTrEWcNI7VWhj3NyljwgNoDXI2biYkjRbFUY3xdiZl/NBSWjTI+t42oBSjBmlobD/rzCLRLTobUtUu/qjNuhlEYFrgJLgqNpm4SXCEBTYSlkDUqRPFobQ53l22QxWH5lXQ54zyUzKHdq9oDjK1RgYg1bipDkQmoILHUMd924EVkLNj0rXuccayDZ5xRqEDjVmK0IwlLArdsyAwZ/BEYyLgMZ/M84fewvr3IuqiNA/11rEtaKIoB2hXUjWZt1AWs2er7uKvUS/Vd2dr35OCz3gfAefs9wFc2wQRX3XM5wZf/EVYv48K0G3NDcCsXt97CU53PNdd7Id2XTeuGINWCpHSqvn2O5rQFv+Kw867gva//EFxz+GaD8eCp0qabAeD6i/fjtEue4CtXPsgNwa28983Xb9UO+bvldwFw5xwLXi780qlc+ukbXvTxbKuO+711cnv/I5fyzBFn05HqYK5/iV7vidYN3HTWW7hu9lRdzyMHDsGyF35N3WU7MC9lfeUrX6GlpaX5N3v27ImFzdl6PeWxKRa/2kx0AVLKk4kiS/mKY3AdqtN99th3A4e2r2GsmoFVOSoPdTD+QCfiljbyGzVOPcHvqyJrkaWPxYkFGWrCCrgp2E+SCR1Oqg9pWgwbbfdPyOZgXSjZ7KI0dTop3cxEtsNksr7l+aYdHFOtThx7uq5ItT6qnuCWbVZKknNsd0KAO56gAgtaal0OTlWjghR4CMCk4EVJjLCdmihngzRJrUVVaJDjjdc2E/usJwG5xjlPEivQb9DnJmuAGqDS6Cnal2anJo5tZk+S2EyA4Rr+cIwMDdqXyCBBBQmZoRi3YpCTmlB/i7XN78nuellqtwPZrldb+55445aKJLKWdhTlBUF3TFTADpRn1IlzhqDFagiFBuMY3FzE+nILM5xxDvd7aVf+ZtSxwESsiMqM6hqBiYmMfY0Ew4iOGdE+v1i5P+5GFxJhwUsEbhVkaIMkw2JqD1y13QQZGsKiTXNUgdUDysh2LRDglu1vozdqKK7S5NeDUQaZjZvHSCyJQ4WpOgSPttJzh6D4+ABJ3sOpgVMR6CGPe57Zk2erPayqd9AXldBINsYlhpICrTIkIxyUENRNjAYUAo3twFSNYIYK6FKaPZ0y72q5n7e13s+pbfcyzx1gbdhOq1djdbWNJJGQSQhbNWGrg6pp3HKMU02v59ICG5PqYVIWnLXVj1KdpxCIWKMqEUIb4qzAH03IbQwprahSWCXQIx5r+9v4xcghrAimMaKzzFSjjBuHVbFgfeIxpPMv3YfwFVDbcz351Hk2f+WG4FY+dd6h9N3wY+beuIq5N64i/vo3OOy8M3n7t57kkos8Llm2kZ/+6747bf/ubXkPpy341ZS/xr40OjFbqoaQf9Namnd54MpvN0HPN9/+Gdbc8z9ccpHHq0tXAxa83HnS4VM6L5vS0l7K6tvnaK648G4Asl/2OPxrz+60bU/W1Rx23pnWZtnfuT2THQYwSZLw/e9/n9NPP50TTzyR448/fsrfzqqeHouo+/r6pjze19fXXNbT08PGjRunLI/jmKGhoeY6W6pPfepTjI6ONv/WrElnRbSZACqknQ1SSlmjGoN7SN2yvAmL3gaoCUK8kZjhapb+sIB5sIVp92m6702Y/ueQ0srYBkdGGlmuIeqh7ZRobQGDNpBqakx9kog/jKaK1sG+XqNrlKQAKN0XM1kv06BhNf6MRpSrmEo1PaYGaNETXYvGRTNOUKP15owU2qA9SZyRJFkr/BcJFFfWcccjEs8GZMpIo31F4itrJNDiEPsCt6xxqgmJZ9v6+Q0RolJrvgeNHJ7J9slNEJLaVtvzLyboYs33L5kAN5Pcx+x7I5tCfrRGjtdwxi0ATTxJ2OZhBLgjdTJDIW5l17cFf1m+Jy9T7Wwb5d21fRVe8MjLvQsvul6O70muNyS3XsCoS5wBoyCzzkXE4JYFDPjErQm1bkHQ5qBS+Z8xgtFKlt4kz6o4x9o4IDAT16C76wkX9R3BB5eezvrY0JeE/OfYfH4wcjAfWPFmTn3y3fz7hhMZX11C1exvtqpbMCIjQBhkCKpu3chkbCebap2KsEVgHBAx1qnMs25lXlkjY9tpVwE4gSEzbPAGFLriYAKJO+TgbXQwUaodCQUqtIY31ekZZHrcqiLJFAMckRAkDt3uGK/KrOKE3LMc5A3SqRR1E7M+DhjXCS4CiSQnFO1S0q0k7dIjJ5QFN8I6fWVEwh3VvbjhucO4e8NcNlYK6EgiynbCbXyWwjgCmXb7tWsn1VQ9QdWSCTE/pBQ6jVaSOCctEA2t6Y0KDE41sQBHG7IDGmJBNhcwxx9i78wG9nbHqBiXqnYZSnIsDbt5rPzSiZl3Zr1U35WtfU8evuYHzZyXr1z5IACn+sc3ReCn+sdz4JfvxjnnbB648tvc8boRDvyyHXQ3QMaLqYYD2T1nr8SsuYL7P74X9398L65/7k34+1jK2Kn+xNj2n444jO/mb6HvHzW3/qKNB4/aY4vbvf/jezVvX/eL07jyp9P5P5fsPWWdTe/DhBZnct2+4bIp9+c/8YsdOsat1a+8Y/jIyY8z2PkQPy18mSt/Op07jt7519mGtmZxEHNBfD0HjXxup2x3h+HQOeecw3XXXceb3vQm9t9//4nB5E6uPfbYg56eHn7/+99z8MEHA7bleM899/DhD38YgKOOOoqRkREeeOABDjvMotZbb70VrTVHHrl17qHv+/gNbcmkMmlXAFJLZGEHxE0gk+iJhHewA/3J2SNmoivgDdeJ/tTBHXsX6VxvcMsJ7liEzihqndapTKWuXEwCSHbwHUwM3o0G4UwYCkz6L4Ro2jybVO8ilMKEoaVTpYYAwJQukki7GEzqcgCITAZTrU1oe+IYgwNRhKy4QJF6h0IFkigncasaEutCVutQqNBJKWOQZJTtsmBF8WHB8opVaNCeQJTTDowBv688cT6TxGbnxDEkBiEmaGRojXAdcB1EgyKWgslG6Kg9B5tkwDTOWVMvZJpyUxnEJL5IaW8QtnlkU2qBU9/1AczL8T15OeqVAl5uuOna3UL+XbBeju+JO1ijsL5IrdsOgJ0qtD5nbZJjX+CNCoJWhyRrCEqSKGeteU0lSzi9zlBSsBbEMmBUh3Skocn7eCEXdv2J0Q7DHCfLXYHiq799M4VVNhxTRvDgjG4cbDCmN+agHcgM2N/SbK9A+yBDq3ORsTUySXz7XFUTZAcsQDESvLHEWjDHBjcIyanUxl4bOh+xE1QYUJEhygrKdY8obyisMYjEYDIuQUmiHciv1zhlSWWu5KD8Gg7IrGGeY6lvIxoiQBtDhKEoBRmhSDAoIXBxcdN0YolEI5p2xS0yol/7/Hl4PnPahnl2wzTyuQDpaowWmPaISuIhQ4+OpzTatxNvSgrc0cRqHrW9RsiwMell/yeupZghBIlnry1hi4M3FkOscQKNW1ZUxjPcPrgXr25bwZ7eRirafiaGkgLrozZGo80tgHfFeqm+K9tzPRGzP8Gtv2ijdJtNhn/gym9z2Hlnsu/n/23Ken3/qHn63f/Mrb+4kR2Jr/zDz3+Ic84aYKL703Aye+Qal9vPupZjsYPthdcshWsOb+5Ho76bn9DLHHfwRdRan1/4brswqd7zz+mD1xy+1X3XnXtxQ/ttLD7arnHs9AueV8Q/p3fHNSzr7/4Y61nG609Zzf6PLuSBI84B4PaDr+XYa3b+deyWjV/nDdPO2Wnb22EAc8MNN3DjjTfyxje+8UW/eLlc5rnnJniMK1as4OGHH6a9vZ05c+Zw7rnn8sUvfpGFCxeyxx57cPHFFzNjxgxOOeUUAPbZZx/e8IY38KEPfYhvfetbRFHE2WefzamnnvqiXDAaA32TJM1kd5Syg+aGy5XavHnVADoAaqhMzz0e650sw/tpxud5ZAY8nJqhPFtQWmGstXBqm4wQGK0ntB0N/YZKM2Im06TAUqS0aQ7kJ6fTN/dZyoluRuN/ug3BJODZ0M1Ek8Iywfo/xrGlYUUx3khEebpDnOYXuGWNCjX1DhcVGqK8wq2AU7VObLVO63KjHUGcAbdqcAJ7sazM8DEKCusCxMi4pXY1nMMa+p3G+9DI4mlSyVJqnIknjklrew5gonOUJNa9zHVSFzdSYKjsNqWExOAPx9Q7XeKsnV2L867V9DTOw8tcu+r3ZHf9ZWs3fWzbtSt+TzL9AU41R9hiUDWBP2pBQ3FtQJxRVKa71DoFRtkJHRkIZCSIgIr2UWjqRrE08pFujTaZpUXagXBn+pP2YG0euQ0S46SdlG6DiCHJGNthCCww0R74o4bsUEJYkHhlTVicuI4lnv1ddyoCf0TbEOK6boYRx3kHpxzhjdkJN+PYLLHGJJh2JTKWyOXWmCU7mOBUE4xjzQxkCPn1ERiXkVGf1WEH+/nrCI2hbmJ6E5/IKGY7VTqlR0TCuI5RQpCZdLlKjCEhIUqtKRtHkBcxM7KjrKeFpOqQaxunUvXBgBl3EAlUZhuiUobWpQm59XWMN3kC0qTaTdO08tdueowSjGcn6Br0aVlPbPRBYt83XXd4al0PsZbsndlAhyqzwB0jMMOscUZZnd11AMyu+F3p/D8u1/Mmjjv4eP6pcljTrnhy/e+KddxOw6n0P+k9NoT57FAGzP877SJKF2bo/uztzP1ND6ee/na74Eqed9DeyKkB6P65BL7cdEfb2XXYeWfCPZWXZNuNerOcT3Lwf/PwTXOmPK4efgd3HP0OjvnzCzfZ2R7xvu3E/M8Lfo0dBjCe57FgwYIX/IKT6/777+e4445r3v/4xz8OwHve8x6uu+46PvnJT1KpVDjjjDMYGRnhta99LbfccguZTKb5nP/6r//i7LPP5oQTTkBKydve9jauvvrqnbJ/wvMmBvNJMhVENISEouFIZsXtza6I1nhrhpn+Z8HGQzOML4yJShJVE8QtCfm7tKVNRXFzpofGj6dJpnRGmiL7xmA9pY01uzRSAGmGjZR2PdexECWKbRdpslakQXWbrPNpdCm2AMwaP+ZO3yilvENYVKjQoEKNDBK0ci2gGZ8wGbCdGGXBSxYyQ5Z+oB2b/VJvlWSHNO76UWuW4Hu269J0GUv3pXHck7stDZODKYBMNZeJpoWyM0GZE6k5QOPYAXwPEcXIMEEFijhjLaWDdpc4I0jCXQPA7OrfkxdTP37d+PM6kb1Sui9/zfVKEPPvct8TCaoS4VShNs0QFQSZIXBqqSVwbHBqpmmhrF37tCRr0KFqApiH63NYG7bTn1vNkakmxmHCkazHGaWyMMQZdJEBGGlwAomREGchbDXEOdtNyfRLSqsgLAoST5FkJqhl2oPEh8ygwa1Y85WooHBqGpGk5gC+QsTGakaEmGLuouoR7jj4jg1EdkcDRJQQF+1kVbZfoz1rUV96yuFH6miWzNyHOaVh8k5I0anzxtZHqeg6GRE1xfpFoZBIZEMHQ8K4TvBEmnSPBXy3V/fivv45dGUr5Ntr5NyIUqHG6MYMIhHEbTF4mqhTYoSLU/UwSuCk9DEZaqt30RoijYh16sRmqWTCU/z/7J13uGVVff4/a63dTrv9ztzpw8DQe0dEVFQUG+pPEQ222EKiosQuUTSWaFQsMTGxE3skogYjiiKogEiTzhRmmD6331N3WWv9/lj7nHNnGIYZYBDIfHl47j377Hb2PbP3etf3LX4tpTDuYYXAKkHSF5AVXOeLVKBTyXQcMZpVGFQ1NuqQksioyBZb4seO4+Jj7t8KDjwc+5l7YN2ntwEv7S4MwHd6n7SDLVey7LfP4yB2rEWZXae+6NUAzPxTCxp0wQtso//47srn3m8AfuOlZ/G0Kz/APW85jgN+/BQOvvDT3PDZL1OYGufgC9/3iFoQz/7Me6L8FwZceWSD33M3n/jIS8kbbZ3SR/4QeOQ7MTd89st8b+5/8b+v+H/Q55Z96Wkv4dzfPDQQs9sA5vzzz+dzn/scX/ziFx82feypT31qZzC6oxJC8OEPf5gPf/jDD7jOwMAA3/nOdx7WeXSOpyTC8zv2w9sAhHZnQmuY9fBwd9BZepHOcglJSrhmjIWbAtLhMlnJY3qZj1grKaydyAfUDnR0xOdtINF2Fsv1LG0HTatNtzMghRuwt0FKFDqXMGshd1Cz1oEia61LW5aiC2jIB/yzNCRIZlkytzNYNKQpwhii9TMwv4L1nOgdIVCpxWsaVEuTlTyXYh9JWn3Oaae80SA1WOO887OCJJoyVO4YdzocKbCtVvc6itnal/w8lMxtlXU+S2a614NZQMbg/lZtN7dO2GUb1LjXIu8qCSnxqrHLuQkEwYwm6fVIiwLLw/t+P1L1WPt38khXG6A8HiyVd6X2BI1sb/flweux9u8kHSiA9VGxdbbFTUehFcaifUna4+4zAI15Fl3RYMAfaFGJXJdjS9rLknCMmSzi99Xl/NfosRzdcx/TusBkWuSEymq2pL0cd8C9XH/7MsLNPjKDtOKMVdJeB2iwAplBVrK0BiQytTlgce6Rqm7dBJMPXtPZylspsKLdmZF4dY3IDFnJhRrLxCATjY6ctT6eRIfOidNKEOUArxpjPad1NL4zBgjqFr9hSSs+46UylTDmGYN3ojAkVqGEcxpTQFGqbeyjU6sx7fdyelnVaH4wfSw/W38ofVGTsh+z/9BWJlolMiMxgcnz3SxkErSgNWy473kS2ZBU1noUtxpK65vuM3sS1UwRSd7pFwITSDcpl1pKG5okvS4OIO6TtPolVllEKrGZZHSywl3D85DCsm+whSkrUcKwcnL4EflePRL1WPu3sn1tk/+S1x0f/BhcCJ+OT2DmnacDcOHnH/j8HqwOLH6dT8e/7LwubbmAv5n7Ed503u/4n3ecAnQBzMzTRnnalc7ief8vXM9343/q6GKafYPcv1f08OuGz36Z1wLHfORNwH89rH05zUyXYpZemsCRTptz7bK3wk4MRq881z17Hgkg8/6P3wEXnYIsPps3v0JzzZfc8ocKYnYbwPzud7/jN7/5DT//+c855JBD8H1/m/cvueSS3T6Jx0wpD1EuYSam3OBfzxLVd2hLdhsAAS5B3mYue8W26VhJ6kTjvo/QhmBdTKANhXsjN8vTaEGat+LjuEMj28YFLe/soCQ2nuUk1rY3NiACv5t5onW3O9GmW0HuWuasNNG5piRJut2a9nZtjUkOgjrDd2tzgKEQQBD61JaVMX6AamrXoheCtMcnLUniXomOBF7DQtPRGown0D5kkaAwaajcOQFTM84iug0o1CxgaIy7pkI4i+r2NZltaW1yAChmvW4DltldqnbXpf1aqe7fNs0QSYY/k2BUiC5INxuXifal2luPUs3utLTBzOO1+/JIgpjHCnh5PHRhHkuVVDyiTSkiKxBMu/DDtCRQiRvQNwcdtcqvWoIpQaYV6XCKNZJWy+crq09mph6xYGCae9cPU+lr0GiEXLvxQPwZSVa2/LT/SFAW6Wu8SY/CqLvHJn0gM0Frbga+c9PyN/vITIDNQUo71yQBv2Eor4PaQte50aHsTmwJULkeMK34WE+gmtrZ6QfKgRXrtJAmkF0xvABM7vIlHXVOaIjGU4wniMZ8WuMhy5ePstgfR2JQwjBlAnwZE+T3+ZbNUAi26Iw1WS+DssFCz51bag13p7386N4jiVOPUpCwcmqIOaUaJwyvIZIp04sKHFzcSGoVP918OKs2D5MJH1nKmL/fFJsX9qD/VCKc8tGBxGs6N0rrSbKiwng5oyAzWD+34U8tzX6P5rCkvsABJJkItBboTHLVhn25qzyXkwbv5dTyXUhhWNw7yY2P/tfwcVWzhe+zQcwNn/0ybW+ud1Yvhn+4GICLVv2Ev5u1/a5QyXre7bpITzvyA2T/1g2yfM3p8N2/ey5X8l5Kn3ky//GZJ/MG2c2n2b4rMhtg7QhwPdT6zc3/SA8Pvq99b/8pt37j5/Ca3Q+4PGy/qzns23BtDmruOuS0B1759iu465DTuPpJ1YdFKfv6k/6KlQ+yzptedCu0dn2fuw1g+vr6eNGLXrS7mz0+Kk0xYxPu99mDftqLRCcjBuh2AdralXbXpN2taetXsgybpg7MzNQ679s8g6VDbZJ0QUe7E5LarvNWu7OQa1isNk5DA519CCE64ZYi/wydand72sAFOucgPA8L2DRDKOVet22alZ93QxS21UJtnaRY8GjMj0iLPlJbdORm+FyCMaimJai6zovxXLq0TKFvVUywYQpRrbvPopQDZIUQWy6gi36HptBOQFaTVWzbpawdLppT+kROE+volXTXkQ2lsLkgU7S7aW2dknSaI2EMotFCGUtoLMlARDLkBhh+Y9a121uPaj1egcvseiRAzI7Ay7nJN3a47peC1zysY+1K7QUxu17NIUVgQ/ymy1JJC4KsKGj4Er/muhtCQ2mzBquYKYOa8shiibCC0ekQBNzbCLCJRBtJVvMpjkuKm539fNLjYby2qN5ZIlshiMYdUMmKCqskGGcaAI66lpTd/VpmriuURZKgaginBM05gtaAIpyyBFUHcrA5EFGuUy0TAVhn1tKWhRiLamqM70wLrBDYUFFfGDmdiIa4V1EYdffVaMriT0lWzAxza2EhFdni4GhDR5hfNZZEaAzQsoJRXaQiW8xVKQbB6gx+UTuc/918CADz+maYaUUcOrSJZ/Tfwb7+VooyxccQCEPdehyzdA0ziyO+P3YCN4/Op+gnDPdX2bg8xKoAkcGcG13eixA+JnA6GCtAF9yzwwQu6LjVJ0gqYEKLVRbVdNfZTgVMTYRM9Zc4afBeWtZnVTyH+6b7H82v3+Om/vu1I7zo69tmx8w8bZSn4ToeK85dzuEfu5Yb+gY55u1v4o3fPAeAL3rndMDLQe929LHnnjiyTahl8/lH8vJX/D++951uB2PhlvGc9uVCMVt59sy//+7ZPOc1v+apf/d0vvD+Uzvrt8HJjZeexdEvzIHFucu56LzXcWTyZJ76pdc9ovSxtoFBu2747Jdh7uDu7eRrV8Dr7g9K3viRSa78yKdY808n7vKuZoObNojZHcC24tzlXPnF95IB/NMuH3aXarcBzNe//vVH9gweQ2W1doN1Y9zvebU1JUB3ln+2KLxtPxwoYBZ4oQ0Q2vQlF46JNq5zMtue2R2o222AbfbTCW9su4nl3ZKOs9gsA4G2oL1NH0OpDrCBrktXR/Cfvyd8b5tjd7pQOnczS51Fs80y/Hu30DPdS3X/PpKKxGvmji2BcHagFuIeid9wWQjFrRnhxhpyuuY6T8LR5MxAhawvQoeKrJjbWsaGtCTJChFpCYqjZQqbY/zxuutcZdq5pbWvvxQIFXQpf57XBYX59egAl/ZnaXdjciAn4gQ1DaEFKyOMLzB7Aczeepj1UEHM7gCXHb2/J8HMXhCzayVTiPtzvWDLkhYUfs1Sny9Iy856HuuADoBfFa5djcSEkBXzTK/8NlSXBUQi8VpQ3pji1zJ05HSGadn9dN1jN8A2vhPkCy0IZhxYEsZSGDe0+iXaF0STGr9uaPUrdOjE+zpQ1Be6LJhwxpmcOI1LhmopsqLfEbhb5ehiMrPOZVJbZ8OsHVXOeJK4R1AcNYSTGVlRoSOJ0A6A+XXJqtsW8JWxfo5YsIFFI+OURIKfzxFGQuALyRCK+SphVGes0yHfnziBX647gNr6HtRAzLzBaUKVcf7yX3JCtI5IgBICbS0pbj6wV2rWW8EGU+CQ8kae2X87RRmzOevjur5l/LZnP3TDI5gOKW/KQEBzQOK1LFnJ/Y1cZpggiyStQUFrXgbKgrTowCB8gw0k3qiPnvL57t3HcOu8+STGoxgk7K3714WF51CY+me2vMjQ85thZp42Ss9vhrl8//k8K1/n4Avfxw3Amz/ddTj7u+xirpi6kI8cVOvYDC/5mw/wX995Nv/vFRcCUPjpzdxw/CKWzzreMW9/Ezf0DUI+CD/m7W/i442fsk/8a1743adzw5dWcExOD5s9UD/6hd/v7OPl4dO54bNf5spzn+zAVt6hebj1QMCg+eU/wyff/ZD3O+dfJLwEolfVuXXlKZAbIfgvDHZ5H//41m9w7L2n8f7n35Hnueza5/2f4BSuffHv8lfu50nn/k/n5+//WSGLz+6s/6qfN/jqLp7TQ06VGR0d5e677wbggAMOYHj4scPvfMiV54MIpToz+mJ7ehK4RPd8AG7TFBGFbmDcTrXPQYeQ0s3yK9kdKLdF8vlym80adLfpT0AnjR66BgJ5p0Eo5ahX7aBHIbZ1TJOyy2/dQSep07Fo73sb6pbt0MmwXYpZV5+T2ysbi5ipU7ktxfQUcqGmQDWNezi1NDIzqMmG6xI1W9gcGIooAiXJ5vVTX1hA+yJPRjb4DY1qZARTjiOdlZxFZ2tOSNIfuBCymRg14bt9Zhk2TgDTBVwmzY0HZNe9bLadslLOgUz63a5UmiEAOQORtcSDEa3KrOuyt/bWQ6w2GHkwILMzqtiDgZcHWn9PAZm9IObBS2YWEwkI3O8qtfh1S3OuIulxgEJHlpkDNKo3JQhTjBHEUxHBqIcOHeXKa7puCpnEFjRJRVGb7xNWVceePpp29szGF3gtQ3WRwvhgfEtQd8nxzkTAUl7bQAcl4oWCpOW6zXG/RDcspS0ZxVGBVZK0AjVPogPfuYflmSl+3QUbZwXlJqzawcWqHchp0aEkHGthAoWKXZfHa2lMIEnLCr+u0b7Aa0A4KYlVgZv0IjbXn8PiyiRP7ltBUcb0qBYr4rlUZIs7GvO5cWwRnjTct3HQ5c2EBqkMQ4UaTxu8h2WByyZZnRXZkPVzQ30f7pwZocdvsbQ4zlPKd/GkaCMHB5sxCDSCxd4kkUi4Ui/HK2bM7OcjjJfHATiAlkXuOVSYNLR6pcvuGTQQaYJiylCviwIwVtCIA2ayMt6UR7K5yKaeHnxpGK/vwCBnb/GzWy+g50XdycJ2B+K9xeez4txfA073cv7b4d9fffF2Wy/jFc8C8uVrnuraKR+9dRqAxbd94X7H2576JYvP5r3bvTd7nRXnLu8I+tsUsvb754fX8Rue33nv4YKYB9r+8DMXcNF5uz8R9ub5T2bFF2HFk44GyMHLQ6tj7+12Yk6PM74767o8UJ388z/x3J+ezbtOLnaW7XvC1fzbd2YFg86HL//3Q3Nb220AU6/Xectb3sK3vvUtTE5PUkrxqle9ii984QsUi8UH2cNjuIxBeKrrarXNoFe6ga/vYwYqNOdXnMVi5qhffi1DxhpZSxBpbo9sjBsog3Moy7Tr5LS7A1mGKBS6dslad/Uc4AbmbYcxAGlcpwG6lsHZrPyX9n5ml7XbdGc6XZjZ3Zt84N8uIYSjBMyiy9k4dl2jdkmBrdWh0UDO1AiF6FLC2rS4tpC+XVojcs1UsmiQtOI7XrSBaKsTe3p1F+hplcSru+AwqwQ6FOhAYHs9kl4PvzfCn3R0ts4xjEV4stshMxpM97XwJfi+0xQVQqxSHRtrkaQdACqnG4TWktq9D5y99cjVQ9Wy7C542dG2DxXIbA9SZoda7gUxOy8VW2wEaUHQ6vPwWhavZUkqlmR+SrGvyT4DkzxrjsuhGPGmqZuQr619EpuLvaAFwjckNR9vymPu4gmSTNG7uEXBSxlrlJiuFUhqAWrCR1c0opiCESxftIF9e8a4ZuNSGrf24zVczosOBCJOXeZVjyWc7HZ4WgMCHTq7YatcMygtAUaig4Cg6hFUHV9M5JlpVjnXLiucbsZK4ayGBVhPkvQFmMB1LrQvwYIOIC14zvylbokHBLIpyVoe6+4dZn00wO/NfhBLREFjWwqkRYQa2/QI+lsujLOQgYW5fVVGClX+XFtIUbrg56qJKEo3yzwYusFRahWbs14WedMEwpBYSdUESGFomJCn738Pocy4oX8h42IOqiWQMQjrgJYOXEettn8KAobnT3HE0EaOrNxHn2ow4k0BMKVL3LR0CVduXs6GjQMYK1DSkOlHNoX8iVJ/c+q/8dN//CTHvP1NHHPk/UHAvbrOhWcezqd/Ci996lt2uq+lV7r33/jNc3jf14/nvkPfwvBXd7zNfdu8cj2aF//jnM6SSz7wEQAu+McEcrH5DZ/9sqNR5d2Hjzd+yteOSDnHwnkXfa0DcL5+6j9w+JkLduXjb1M7A0H/ufg99F1zLou+/KVtlq865Pk73efyv4P6iZ9n47W7nxOzo1r67ms54Sen0zzoSlbwVF7z/O/y++cc23n/5J//iU985AB63zUDMXxj0aW8M+tu/ynPgZd2mOUtfR/iTS+6lS//92EAfOs5xW5WzoPUbv+Lesc73sFvf/tbfvrTn3LyyScDTtj/1re+lfPPP59//dd/3d1dPmZK+F7udJV3GsANyAMfeiukc3tozg1ISk7o6Bxl3M0+7lUYJfDiIsG0+2v5tSxPrFcO4KTOxQVtsb4bWGdFH2EtOnDOMKqZ4U01ELUmApeBQuB1M03aNbtzktPKhOdCHjtCd2NdN2h2iGXQdVkTntfp+Ii2fqfduZCzrIt9D1GIOmn2XTviWQBH59u2wySFcIGavr8tzc3z0HN6iYcCZGLJCjIPt3QpydRz+kHsuijhZIyOPPw67uEXOapD3O+R9pQopRo5bpwpQeDnIFB26WESRKGALYSkQxXSHtfVsdKByjb9wa9qwokYOdMEY5CNhGiviH9v/YXr4YCX7fezKyDmwQBJ+/02kEneeQv+Rw592Of3RKy0LCk0DCCJByErCRpzFXZ5jRMWrafixZS8mEikzPcnARhQNQ4d2MST5tzLaT0O2KyIR1jTGmRRNMFkVmI0qXB4aR0rmnNJrWJrXOGGtYsZ6mkghGVZ3zhvGPktvtA8t/9mfr3wYC656Wj8UT+3E3Z5JCZwesW0JEhLEA9a6qFFJoLQnQ5WQdIHSa/ArytE5mhwPWtNRxuSVFRHL5gVBBQUMoOkN6A+ojDKOZClZT+njVmXC9Y0+HXQoYeqCBqBh400YSlBSkNjskC5r0FtpoDVAi/QpLEiqQWQ20SLYkZf1KSkYuYVpolkyrCaoWFD+mSDQ8L1pNZjQ9bPLyYOYW3jcL5WfzKhyhgu1HjWwG2cWFjLM0t3c3C0gd/VDuDPcj7pUEqqBbKpCCYd8Ep6LXpRiwXD05w8dzVHFddycLiJisgYUIqG0URC0rLTDKoa+4SjRPukfOW+J7Nm8yA2bj7aX8HHRbXBC9CxJf75+y6FGC74x//liv++HDbCS485ntNe9Fyu+O//ecB9rXmq67i8bzulw6tv+QzfPOIdD3ouV887C4BTNjm62DFvfxPvu+of+B4OjBz7mXt4O5s45oQ3cY5Nea/oTupedN7rwHZlAdt3a3ZWs80BHgjE/Okd+3P6977Ayqe8h68tKzH9yR7ec825/Otx8yi86fAOjW7lxxbw9ufdxr/MeRuX3Xg0Zxx9I9eugcX322PuRpbXrtLJ1vzTiazBdbhYdCnQYMXcQTbvu4b3XHA3/xrPg3ftxNZsVt3S96FtXt9+b4Ozxkd22exitwHMj370I/7rv/6Lpz71qZ1lZ5xxBoVCgZe97GWPawCDVG5w73sgvK52ZKCX6UMHSIsCr2Xxmy5h2GsYdCTJIscHziJoDUiCsu8ATuwjjCUrClTLzTgJk9Oc2/aU2tlVxv0uL8XKEL9WYvCOmHDtBKIZdzsrs7sbdpYdsM1pam2RP7hBvCIHIgIhjNvP7BwUmQv0s6xr2QyznLtwoKAdqtkuIbqgqk2rg9zuOe/meG2dTeood74P1mL6yzTnlbBS4DUyVOwoZ14tQUceOvIgVHgzLWQtwZQD15UBsrKP8QQycQFrxpc09umhFCeIqjMu6IAXa91xoxA91ENtaRnjORtPr2nxa8alL1sHYOI+j+aQh98sUtjcwhurocZqe/Tr9kSrZ71s426tf/kPHlrg2Y6O81D39ViuRwq87GrtTjcl+NQRHRCTXnDbnjqlx3W1Q3zjfkHSa0kGNP0LpnnyyH1U04ger8n1Y0vYWOrlyJ71GARPLt3DCwZuYl0yyHJ/nCGlWOZP0CopGsZHIxjXZQAGvBr7+qMoLP4CByAklkgYBpQitYb1WUzZi/nAyT/jjsZ8LvnTMQhboLjZoJqC1oB7DiX9FgzYwGCEQEcSmQhE5j6HSvKOTB+kFUE8EGI8cnoYZFVBUDN4LUttvnJ6Gy1pzBNEo9Zpcjx3PcrrE8ywj1ECmTmjgHDGWU2bQBL3+ySRRYYW3S/xfI0WEiEtaIGsK0zoPu++C0bZWi/jCU29ECKFYWVrLnP9aW7LFtLv1VEYVrXczPpos0xmJCOlBmfPuZYFappb43mM6zKL/XHm+tMMFWq05nlMTpfIjCDpBTtkEf0JhyzaxOvnX8Vib5JemTJtfEZtyNospGV9Dg3GiS0c4M8wrOq0rOLj+17C13ufzH1jBdb+Rb6Jj+068tzXdgbshalx/nyAcyJ7xbMOZ1/gBXe9rbPuyJd/zhVzdl+buivgZXZdPe8s3rphE59fkFsZ5wAjPGiG8vQ1vHflCQw863SO+WQPAOed8Pc897uXsnzLOKd/7ws8HTh61Uu5cd8f8vKJJaz4yLPvB0qOefubWDI4h7XjW/l0fAKfPONlbLnifJYMzunoc7avsetuY+gEOPzMt3DsZ+4hBN7ZuoQv5u//92UvI5qllP/X/zmO266ZpOcrv+O+kc+zePMDd2F2BGY2T7yF4Lq1DDznJ9use9ZBvZ3fh3/xz1xwZxk4lGOaz+T739r1a33E1Id42hX7cNFLXg3AIfsUsfMm4fsPsmFeuw1gGo0Gc+fOvd/yOXPm0Gg0dnd3j71q2+0q4Zy4eko09ulF+67jEk1kGCVIKwqk89HXobsRy8wN5tOSEy3K1E3hB3XXdm/1K+e/74vuzT8FHbhl7S5D0gtjh4UMm37Ce8ccDS1zVCcLOT0q7xJJ0aVJtSlbubOXo1DlFjLklLD2epAn3c/S2rQ1OG0RfHt/Ouu+L2R3Pb3djcTaThilTU2HLmbzfdmeEs0FzoYvGk8QickzAqzz3q+nZH0hINDlENVIHcATzt1MZBavoR1FATej2epXBPN7CVbFCHKr61Q7ap7vkQ33MLNfCaEhqGpndxm77b26wXoC40u8hiFMDK1+j6n9i/QJAZt2w8/v/3jtLnh5qNv8X6k9AV521oV5KFSw2SBmb92/ZGJJBgRxn8tlUT0pI5Uq02mBoaDOzZML2TzRw3QzYn5hmqf33EGfbFIkpuUFuSmlpSgsioyrW8tZ3RxmJitwTGUNVROhsCz1x/hzaxFKWHyRMUdVqdoGxnos8TR/O/BHAJQw3LbffFbNLKKyzpmrGB+sB+GYwHpglSKYEQRTEE5ZjAdJn9PgCOE6NsazZCUHaKR29sGNEQimFV7ThWGKDLISxP3GPR9TidSQRZD0ebT6JUHVhWuGVY3IIJzKrZpL7nmUFQTT9R6yhTE2lSQtD29GkQ1k+JWY3nKLZ8y5i61JhdGkTEEmRCJlONpCScaM+NNsSJ3zV1nF9JcanD5wOyPeFApLy/r8rHoEm+NeDiptZLk/zhHBOBrJr9WB3FQroHpSbBls3efIxes5c85NRCLlj619+PHmIxlrlNi/f5RWTg/bpzTO4nCCJxVX4AvDIi9F24RXDf2ea1jA5Y/2l/BxVMd+5h6+e0DXRvnwEQkff/ih6c85aTU/v2bZbm+38qaLOONnF7HlivP5dHwCT/3S6zjjtE9z2cuPZeztb+KGM1/X7Zb8AV7+9jfBZ7/MF9/2If7uc/Cp172Yd7YOBf6X5Rf8L0sGL+Dzl/wvb32xE6yvHXd6LbHofFjpxO1LBuc80OkA23ZzZltObzh3W3ryT80qFm9+K3/z3LcCK5mdAfNw6sd/cxpn/usVfP/O6e7CuX/PnObDp9u/6UW37vY2uw1gTjrpJD74wQ/yrW99q5PK2mw2ufDCCznppJN2+wQeU2U0eIEDCNI5gmUDJbyGJrKQFXKOr7b4dd3JfJGpCwHzG050mfS2uyCQhYJw2hJOJiCcTaNMDc3hPPzLWoQWFLZavNjS6hNE4+7hUF0Y4o8XkZM118nYzr65AzSgC1TaHZF0O8cTlTukgdtGKtBp112tvQ8hu8BEzequdLJXdN5Cogto2h2PnLLVAUh5R0j4HqanSHNhmVa/wmtZdKKwBY+sIPHrunN8YUG1nBbIBAqhnY7ICpCpRrUymiMFsoKkPlcSzFgacwL80RKi3sS24k63J5vbS21xkXBadxx4MBapLVnBpSqLliWtBPhJhsgMXkHS6leMHV6gFA3AqofyRdpbj3Y962UbnzBdmD3ZedkRiHk4Opa9IGYnJRwFS2Ygh2L6expMxxF33rMAkUlOPeYODurdwkk9KxlWMyhhCIUmRDOaVfiDXcJh4QZA0jA+JxdWckbpTm5JRvjB1uO4edMCDpyzhcGwwbp6H1JY9u/ZyuJwgsu3HsSC4jSHlDcykZV488A1LPLHWblpGBtYkpJExtCa66hg4ZRAJKBa7pyFcRSvtCAR7duzD1nRYooG6xlkUyGrwj3nSpa0x2A9izejUAnoCExFk/qSeEDhNdw12XqUR9Kv6b3H0dGoG4Kmzo8hkZnFaxmCKqQln+lygBqK0YkkG0wJKgkHjWzh+XNuYZE/zgo1wusGf89cZVAI6tawUYcYK6lIR9taFIzjoxnxqqRWsln3sDntY59wlEML61nqjQOQAsdEa+gZanLn6Fyaxj3TyiNVnjZ4D1dPH0BT+ywoTLGsPE6kUo7uuQ+NcJ0woVkebuauZB5TusgZpTsZUApfaOo6fPS/g4+DuvlLju/1p3fsz2t+7uyQD/z1Q3fc2r4eCngBuH7Lmo4JwN9+7P3wJbjsea77Ofe0Tzswk7+GbcHFBz7/Gt751m9ss782YGkd+W62XHF+Z5ko3n8dcN2op/0u3OYYD1Tnh9fxZk643/LZXZdq8P+oJA8vEPPMf71ih8sru9F1eWf23Y4O5uHWbgOYz33uc5x++uksXLiQI45wD75bbrmFKIr4xS9+8Yic1F+0hHDi+ijEBj5Jr49fzfCrGcJ4uXDfdQNs4DovRgn8huu4+HWQmSQtCoTJ808yiUo8vJom7fEwgcKvW4Q16EAS1NxDRBhnKymMe4CkRYEN/e2skIWzX7Y5F02qrgpTd3Ufs8XrGN0BZUI6DYvVxtHDlHLdHakgjbe1i54NSqSiE66J7VoRzxbm6Fl5OLndsvA8rKdIBos0B72OY011oUuodu5j7joCyMylO5u2j6YQ6Mhz9qCtFIxzK0sqEgR4sSUtSRpLeynd0eoGfRYjmnMjvKZBtYzLQ5DCgU2T62zSPPm6mqCLHiZ0HbJoytLqF9QW7hVd7q1Htx5t2tgjUf5HDt1LI9tRCdeNb87TFKOUnqiFLzWioFk8MsrZQ9fSI12Xt24D6iZkQqSMqAbLw830ySYt6yadlvluvVAojg43s7p3Lc8d+jMj3hS+0Khhw4pkhLXxEH+cXsqi0hTHVNZw+djBrJwY4vCikyybROENt2gOF8lKFhMaUikIZrrmL0ZZWoOCpEc5EOK7ibmsZDH9KcWeFtYKPE9T3VRB1RSmlD8HPIu2AhMLVCwgFVjP0pxr8BouPyaen1IcaFCNe/AazvHMrypKmyxe0zhqtXH3/9YQhBOSlu8jrCAYblApxjx/zi3sG2xlP3+Go8MpIuEm6DQut6ZlfQZlk5b22aorzFFVijImtZJhlRCJSZZ5E8RWoRFs1j2Mm4w+2aRPJkQyZd+BMe4encNgucHiyiQDXo1QZhxS3sALy7eRIoiEJRICicutmTY+vTJlVNVYnczh7nSQZUygsMRm29DvvbVtnZyDl+0ruG4W8W73Mxvv14G5YrCf08Ynd7rN0tUrGD7pmWy5zYGVrV87n2M/0+16XPa8Mhed9zre+6Qq+sgfcnPwO35+4lE859qbcAqdt/Gca/OdXevcu04k5b+echjP+tVb+X9X3cobP/ybDpCZXXNP+zRbrjifp/3OAd5j3v4m5p726c77DwRo/vuyl3V+b/3oi2z92z0bA9GmkX3/zmnOOqh3265MXtVXfYa3HP3ffOO8q7dZxnd2vM/zfvRNPvvcv9rlc9jtEdqhhx7KihUr+Pa3v81dd90FwNlnn80rX/lKCoXC7u7usVe5dgKlMOUCOpSuxy5xQvvMYgKBlZJwMiUcd50YYd22VkmwPnGvxG86+pOVUJvnAh/BJSWHM04Po2IHXrDQ6lO5U41xWg8tOs0OZ5VsukJ7I7vhl21RvTWQGfCDbhCmFIggynU9ucjeWESUA4Q0c/SuOBfBt/elNcjZeSptOlpeWeZCL32vq82ZfQ0xCOljixGmr0Tc7+V2lMLpX3JHnvbn9xoaqwRo63Qw1iLzwyV9DkRa4aOLHkmPe9hGE6bjalNd6FFcFUCzBb6P7i9hlSAai10+gXABZFhIKpJwMqeb5UBJ5z/bs3/hlCTdGwOzS7WXCvbI1F8CvOx1EdtzpVpOsG4Dw8K+Kfbv2cpIMEOgNMvLW51zlXKuWWsyxQ2Nffjd6L48d+Q2qjriyeW78YWmZXxWW8mMiTgwmMQHTi3dRSQ0RaGpSMGoFiwLtnJqYTVpn8gpUoq+uQ3+UNyPLWkfP9t8GMSShYsmWTcvcrSwRGJD4yjNCQQzgmjcUp8HzfnaPUcy93wzJWcZvLBvmsXlSQoqQS6yzPGr3FGbx1irxKLSFHdOzmXD2kH8mkcwqUjLFl00qFgRDxhklNFTbLF1XkBc8532RimicRBa4Dedw1lckaRl6/JxcPqcNPE4ed87Oa6wBoUDDy7oUtOwlqIQlITkQL+Oj6BXzhCJlF4ZU7U+RZGhLRSFRgkoYfKQTBjNelgWTdOykpsaS7jptn0QqaS1X8KT+5xd7JN77uHgcBO+AB9Ln3RDKI2lIg0pGQaIhGapP8aGrJ/V6QDzvWmWhKOP/pfwcVTtrss59VdycQmecd7n+dVFjwz1aXdrzbLlmBxcbLnifP7phasYXf45Lt6/1gEQVw0t4OnvmgFO53LvZTznV7t+rm0gA3DMf83jhuN/x7sug0+e4YDKbMCyKzV0wqFsvWcjc/bvshDm/Itk698a7hv5PAD9Ezvfx/gp5zN49e4dtw1adgRedlZvfsVxXPOlHb937qX/xud48i7t5yFNMReLRd7whjc8lE0f2zV7gK4kpug7CoC2GOkE4FoJWn0S47ngMdVyifEm9JBxhvUVfk0gtHPVEpklK7pkYq9pkZlFaKf7yCKBLco8fCw/BQ/iigLhKE8inRW26Cms6dK6OuGUhtzm2c+F/bngX0lMX5l4qEjS45FFokNrk1mb3mCJJjXFu8ecYUCS5pHOuYZGCLC5HfFsBzIhEcEs14q2MYBx9DQRBu74vUUaCwrEPRIvtmSho9rpQAAuATopS4yfX0tPdALahHVOYX7N0buEcYYHOgd8MnW0hsKEIe6R2NBDCmd53ZpTcODRE6i609KYTJH0ecS9kqAq0cUAGbsLL7XtWGInFZcu3Qace+uJXx/70LkP+N77PvQAd9pHsB6PnZe9tfPyaxlqzKCqiolmkdVyCFOSLC5OMhJOY6xEAiUhWe7VWN5/HQdFGzsi/Zb1Sa1Hy/oYI9EI6kZStT6bs142Z31sTXs4qbQChWW+V6UiBS1rqRqJL4zb1kpa1mPjTA9eb8K84gxr+oeRUx4yBWskwYx7PukAwmmDFZLWPLChhoJTUR60z0Zes+D3HBJsJsqBk48LmhztvYFp41OUGasHB9i8tJf/WPNkNt8xB68pSH0wCqJRSTJiKfopQZjRSiXelgDVFHhNQzShCaYTWsOhc4pUlrTHIozAYvF8zZBfIxKaKRNgSGhZiwSKQhCJdhfGEgoPXxiU16RhYVDEtKzqMKPbnRMfy7CqUpFNJkzAr+sHccnqI/Bqimw44YihjZxYWM18zz0rEmtzkCKQSAxupssXkj5pSCxIMnxpmJFNSjLGx1AU6fZfkb01qzadeilLPnkk3+djcMKSvxh4efUtnwGc8P+4uUsBGP/xefDObbsfl3zgI1zCRzjjZzU+kU3DU53t8n9+YhRz/Ofvt1/5x7d2lss/dj/bRlaxcmgBR26Ez/31Ev5041X88z9/nk/HJ7Dp/Sfwzztmbd2vvrasBNk0HPpmvsIHH8Inh8k5Y/RvHdrl9dtdmI895UmdZft++ec73abyrXfwKe9sjuC5nWXn/eibu3mmrnYJwPzkJz/hOc95Dr7v85Of/GSn677gBS94SCfymCjPc1Qp6ICZtk2kMLi0eQP0SqwSZGWFig0yX9cEHkI7ClSQaLKy70LGxlOiCVzKfCujkBlM6GF8SdLn/gTGc8nMWSTyB4mgvCVDTddd10QIrDFd+2RjsVZv4zwmhHC2yZ6HrRRpLeyhPtcnLbnZtXa1hgReDVRqAUFtxKMxPELP2phwxZY8GHJWtYX7bb3NbMOA9rVqgxspOuvawMdKgVHCUeJK7jyjSWeEoBLXabISvIZBJgYTOieapMdDBRK/lj80+oMc9DjhqF/XJGXV9ifIswsU+D428B1QKwjXWYncNU4rXscC29l6evg4kGOlwBRcVyuczIgHPGSyF8A8Xuqh6l92Blxmr/NogJi99cQqYcCvafxaQKA0gcxYVhhFI1gSjFGRCVUjKSnw88H3CdE6nPEylGSXmgTu0VO3Htc19uOKsQOZTiKksFzaOpzAyziwbytP6l2JRnJiYTV9IuOEaA0AX773FOobKmBhfG4JNe5jlXOzdE6ZTruZ9FlmlrvJJRsaCn0t0sTj9Yf9nrN7byLKnzUSQUUGSCS+UJQlpFYzaTL6ZINxUeaIwY0cfPIWfnXTIXhTCq8pMCGYrRGbwwppqqDl9DJWAcIxEuoLItKiJCu4Z6IpGHeuwFBvjcXBGH0SIhGjLdyV9DOo6vTJBCM12lqKUqGEQKHolZJeIEUTW4PMQZePIkWzPnMAry/PkBlQdWpbSzCQsmzRKMdU1pAgqRrLPBVghEEiUTmASXMihPujQyhAIZgwGQu8GTSCFekQf24uAvbqxR6o3vsxyw3HPwWAW/egX9uD0ccAVs9ZwA9v+CMvPQaOm7uUg556Ie+8+hLAUbq+fuo/dFfOXPfhPz+xex02c/znO0Bmv5+9hMsA9rmCMz56HZ/GuZKdw9pd7sZMXP4LLi59m02nXsq8i+7Nly7ZrXOaXemlCewg97JNF9um6/KUh3yY+9XEk94PO2YT3q92CcCceeaZbN68mTlz5nDmmWc+4HpCCPRsKtHjrYRwNsDWDchlkmek5FkvMrWoRkZ5MzQHPIwStIYDwgkXtqhaGh35WOE6HcYXYFzAl0wtwlqyooeKjQv9UqLjVGYUJD1O1yFTp+0Ix5qdcEVnhew6Li5oMhfcGxdUadu2wbnz1uTBZYwHQc3ijTuTAaPcfr2mQGo6Gpe2rXNtQUDSs4DyPZMwMQ3tMM+2TmZWyCbQ1dco2X1t8/BO38MWQ+KhyGldChavCtFYitdwoKR9LcJJB3xMINGBpDng4bWMw0RKoANJWnJ21dGUJtoco0OF7VUOSEbgtSzCGPAU+B46FARV53LWGvbICoK04Bzj/LrLn/GrmrTi0erPO14ayhtjRGrwq/k13ltP2NoV8DJ73T0FYvZ2X56YpQOJshBMwoa1g4z1l1heGeVplTvxRcat8XxmTIEe2eTAYDMHBZK5ygGC1GoMhlGd0bKSijQ0rGBAZjyjdCcHhBvpkS0nDrcBDROiESzypiiJjF4piITHhLF8b+NxbL53EJm659I9K+fhazACTGgQmSAtgwksWUUjShn9/TWq9QhjBJ8+7gecXpxmfQYbs4gNWT++yBjxppnSEUoY6iZkXTrIsDfDUn+MZxbvY3mwmRXJCNOHRty8biF6bdHJJ5uCxnQBWhJ/RiFj9zxKygIx4pNUBM0hp70U1nVhVG+C72vmlWa4N57Dj23AmtYQx5dXIzEMq4SiEKTWovLnlLYWX3Q1osYKikJ1wEfDpKzTknvSOSzw3KB2WBkW+JOU59SpzziTok1pH6NBhaVe0gFFsgtZ8IXCYND5hF4kPCSSotBooVmd9TKli6R2u5DpvbVNnfKHCi//2RJO/PBpD77yHq6Xvvbl8NHr+PyzBd+4+uu8buPp2HVO5zf3tE9DNr3bgGX7mgzXUvrRF++3/CtewOsvPJZ3XfYDNh3VFebvSPvS1sdsvWcjA88qUX/Khcz7+At36fgPhTK2p+s3p93LgdVdX3+XAIwxZoe/P+HKGNd9kAIyjay1gCJJRSK0JTAWmWiirZpgShH3B1QXKrIoIJrQjtakDQKLDmeJIgOJzDRZpEjLCr+uSYvO0aw9yxTUDdFE7ggzoyluaKLGZrrC/Fx4L6LI0bzIbZFnd1+KEa3FfUwvC0jLgnDSklREbiwAYd3g1XWH2mY9QavfDfbDGU0WSuojisacIYZuClEbxlxA5GxXsXaWDICcZbXczo3RBnyc+L4UOGBgLeG0O7aKtdOdaAdaRKaRQpL5sjMDpwL3QBPagb+4zwPrqA3gnGqEzYWlFWfjibUuJJQ8AbrsAjLjHpdALQwd21BwQMr4Auu5v0FaFhS3GAc+lXTXKN0LYB4Ptbvdl90BLttvt7cTs7d2uYQzC/GaFlVThHMzhnxHVYpExqJoho1Zhd/V92dA1djf1vGFQiIIhYfBMqycvgIUxmhKQhIpS0VOklrwBQQiZcrU0VawNutnc9ZL3YT4QvPjzUdyz50LkbHAlDSipYg2+bkDmcX6FpEJdMFilaNqBVHKSSNrMQie238zTwonSK1kQEo0LQbUJjbrEi3rc2X1IFY3hhgIGhxU3MS+/mhO74I+mXBitJbhkRl+6B/PFWOHohqOTi2nPBDk+hf3CGnME8QDjh4cDxq8uuvc4zvDmr5yg33LY4wmFW6ZXsBNK5Zw5ClrOTAYc741OEuZiO5EWxtYdGleqkP78oVkQGYcFmwiEoaSFITCOZedsnA1U0mBpcVxTqvcziJVw58FWmR+DIPbd8tmxNbQKwNC4ecA1J3TMm+a+aqKV6o/Ot+7x3ElX3oVsGGH722fRbKn6ptHvIM7blrCu7iOsxccwkfXfJ7f3zaf/c7SzD3NZcO9s3UJR+yoPbFdtWlj4by/J6XLbBk/ZVvx/tbCL5nTfCYAA1nC+eF1nGNTLr/pZZxz1FouvmkJZ/xsx7l0lz2vzLGfuYdfX3kBpd9vazs9518k9YvuzYHKX4aSt7t1e/BG4Le7tO5ua2C+9a1vcdZZZxGG21oCJknC9773PV71qlft7i4fO5UPXjsJ9JkmGs+oz/dJy4I48TpaCR1KkopEFwT1kiDucUBBGEtQN8jEuswX5bQzadnN8msfdJ9CpTmFS7juixUQTmv8eoY31ULONCBOutoSpUDnYZTgslasRSgFUmKLEfHCXqaXBcgU/JplZl8obhb4NUs0lqJamUuft5Ks0AVYXsudKyEURw2tXsn0/mX6qy3XiTF6W5F+OwfGSNfxIHcmg44Bgi2ENOdG6EC49OVqhmpleVilzLVAFh0pjC/JShKvaUhLMjdEcA82HSpa/QKVOH2Q33R0OxNIp03yHLgU1lH4VANEZpBZbqCgoDiqySJJbaHEqzsbZRNIZGJo9TgamtdwNtYmcF2trCDR8uF7m/9fqMt/MP8vJuR/tMDL7O0fSRDzl+y+7BXw79lSiUGlGcIGmMiSZgqFzcXnmmEp6AuqDKubiIRGidB1DNrbQ+e1tgZfZhgMEmeSorBUpEfDalIrmTLumfz76eXcuHUBE5t6kTUFygnwURZ/RuDP5PkvjimWaw0tumCQPSn7zRnjyT33sCzYyjIvAQS+UBREQI+EDI1PjT4pWT74B/whgcoH9L6QtKxhbebznYkTKXsxRZkwP5rCRgY5I12YcEOgI4suWrKwN54YAAEAAElEQVSy6wKJkRbZpohgSmIiA02F8SxRb8zyOaOcPLCKJcEYo1kP88Mpjjh2A/v7W6magIrIyBnGjh42C6ioPMBGzWIQOOob9EmoGkPDKnyrAYMvNEuicX5974mMD5ZYEE5SDUY5OhgjzLs6ZlZ3XuLoaL5QaGuZtk0aRufn4rQyyjo90t7aedX3mwNjOwYwe6pO2fR9rp53FgCLb/sC9x36FgCX+/KzGlv88wD4evRNXvbbezvbjZ/y487vj1Qn4/f/7P69n2NT5r7zfAa8dzHvwmM55/1w8U1dOlgb1IDrwnxtWQmWfYRbf3//8XfpvH3g6vstfkLUbo/QXvva1zI9vQO7tGqV1772tY/ISf0lS3heJ/NEJCl+NUHFFr9miXsladnDei4LJpzWbiZr0NKYJ2gNCNf+7lc0Bz0aczx0QSITp2mJexRxnyTudzqMLMyFi1OaoKoJJ2K8ySZyug6ZBt93+pd2noqSCCEQgY+Q0lG1PAcW0uEyW44N0ZEgmjJEUxaZiE4IpEwN1neDfZnkA3wp8GKD0JbGkANn2s/pZUBjWT/CU4gocs5m0O3GeJ4De7MAFUp1rp0pOs2KDtp0OklWdjdwmTgnNJkZpy1q6Vwj4yhhQjuzAx1IZziQunC0LJo1s+aLnGNuiaacG5nIQZYJvM6x/YbFeIIscvbXkCdPVyRpRRFOa3rXJFQ2ZAhtifs84gEf7QuMtx1lbm89ZuryH8x/wuS+7K0nZmUFRVpx9xLZEhgjqOqIu5J5aAQai7aWYWWoSEFqNdren+GgrcHgqFEFEVAWIb0yolcG+ELhIxhWDtDc0lzMHzctZnqmBEZQXjbN0H7j4LnJMq/h7sd+Hbxm7u6lQBiBV1VIaZkbVTkuWsewjFmZRtyYVJg2CeOmSWzdTXS+F1KUPgMqpCh8itL97wtFJBQH+XDu0FUcX1rFrdUFXLV1P8ic3hHruuZ+LQcqPRmmojGJIpiSeA2QsezoYtJUUfQSyqpFYhUDXo0TSit5Ts8tVGTaMT3Q1hJsR3OWyA61q/0ayIGgRGNJkWzIevhdcxHXtoZZnczhnvpcpLQIYRn2ZljmTRDlwMjtR3T+b+9vwiTclgquafVxd9pDijMWCIU7arRXxL/TevE/XsDYdbeh9/8jB++z5VE77uzslTZ4iW7+J874WddxbMsV5/Pa1qsBiP/+ADadeukjfh5bC79k+QUu9PJi4fO60gh3fmLHkoyzFxyyTSbNe7ze+61TOm+fR/wcH2u12wCmrcHYvtavX09v7/0v4uOqjHZWxe1ugzbIyRqFsRTjCYKqJSlLWgM+SY+z8zU+RGOi4+JiZgEAHQjSoqA56JFUJFnkXL/8qvOqjyY1wXRGONoi3NpAjddc5yXNcqpWO99FY9PUndvsa28t5HqT+sIImUJ5gyYaSyhubDH/9zHlTRoroDESEPf5pL0BzTkhzSGP6kJFq1e5AX4R0oLTmcjMomJLc9hDjwx2uz7tbJj2z1kPBvSsLo0Q6FIOVrTr7lhPEPflgE5bgunEuX6Rg5tQYDzwWgaprRNxRg4QCuseuIVJB7ZM4Lo1KjaEVeNAmgERt8GU+1sApAX3wC5MaPpWZUSTFr9hKYylRGMJKtYI7ZzcjCfIQmcu4EDfXgrZrtajBSYeDnB5uN2XR3o/e+uJXarlrOF1AVRLEM+EfOeuY7l4/YmsSFzitsoHuD5OEJ7hQExquwMXJWQ+WJY5Zcndl6ZNQtUk3JoWWZEW+NHUsfzHn59MdUMPANFgk3o9Ymz1AGrKo+e2gNJG5zRmfAjHBCKV5OwqhIV9R0Z5/uDNbNZFLqsfxH9PH8No1sMl1f359NjJ3JvpDgiQ+X++UHi5LqT9OkWTWMlhwRhvHLmSDy77KS878Y+kI4kDMRKyyN13bVNBJgjWhhS2WqIxS+/dgsJmgdACqwWtzOe+eJBBr4bCMKJqLPMSJDBHVUkRNCzUjaVl9TagRQnREdwDHcpXajUKwXylOTCY5LhoHQcGo0QyZVOzB2sFfWGTKV1iRTpEPf+7pFazKmuyJmvQtAmxTamajNTCoIw5Ihjn4KDKgPTwhcRYy9qsyKpk5ynr/9frkg84F68rFl/7IGs+siUWOTrXKZu+z//75pmM/vWhnXM542c1Pr/gK4DrjpTO24eBLGG/o87b4wDhJfEFnd/nffQ6zjnKGRvM1sJc9rwylz2vjK59/UH3tz1t7S9ZR0x96AHf+8o3/26X97PLFLKjjjrKzf4LwWmnnYbndTfVWnPvvffy7Gc/e5cP/JgsIV2CvZBYUjAGkWWEay29WT/NuQGtskSHouNKJjWE464DEPe6EMqkRxBOGWQmcutkQxa5rovUbrtwPEbGGbLlgIpoJa7rkmWOEpZphLJOnN8OmjQam2hnXxz4DswIgYk80qKguNUQjaeYoG0QYPBrBlF0N+60JBHGkJQljXkCr+6Em6IJhXFHucoK3c6DDqC5sER58zg2y7VBbf1LG6y0KW7+bEtlSVpy4ZPOXc1RsoxywtZgIkHEKUIJwAEoL3brtvoUft2BGGsFhXHjDBISR8trDnoYD9d1AbQvCGY0KjaIJO04tsnMElbdZ/LqxnV5UgMEtLWUOlKoRoaQAt3vE/dIpM6BS+T0OHtr12tPUskea92WNojZq4nZWw9YMs+8aljiPpAzHkkm2SB6WTdvgGq4kWGVP0fzealpk3T0HP0yQiI6OouGSXM9jHMmuyMdYkqXuHjDiWyc6aE2U6BYjin01tFGMLmxF39CEeRaksJWdy+1ymWTqRinY9QCmdPz5xVnmO9NsjHr57cT+/Ok/lU8vbiem+M+pnWR3nx2zsPRqNodCCUkWEOGppV3afqkoSgVy7waVSOZSErMnTvN2PgQSY/FRAbVm2ImAlRdUlnr9ELhtMtWS3okrWHB0NAMR/WtI5IptzSWsCzcyrByqpaGVfxs5kieVrmD+aqKQaCsduGe+bmlVqOxGGtzipumZS190nXBfCEZEIJWrltpGZ97Ns6lp9Jg9dQg66onsqQyycj8y+mTmpbVbNYljJUUxQwV6eXifpvT/hylLrWGCWOQQJ+M2TfozvTvrR1XO8SR5XvuGPdVz+Ql+93M9VvWAC6c8spzv8b54VYuuWrlNuvO7nLM++0LgUenq7H8gv8lA4ZO+Hu4Cja9/4Sdrv+p6MV85bgPwu93vt/Wj75I9JJdBwi7Ww9mofxI1y4DmLb72M0338zpp59OudxFgUEQsHTpUl7ykpc84if4qJbWEEZ5onxuo6wNotkiWDeOVy0TzCnSmOMcyISFcNJ0NBvhjCEr5G154YTxQtOhbAEEEwkyyZDVlgMu7W5GpiFNnStYloE1WO2E+nb2+SmFTVN3a45CrO/RnF/qBJEJm+eZZCBSt/+kJ8QK8BsGr6GRZUlSAZkKCuNOi5KWpNPgNCAruGyaoJqHbEYhJEme8ZJbKGc5tS3Nux557oyQPuh8O1yXKSu6DovXcknLMnUPQR15yETjNVJaw1EueHUPV7+mHQWjLPHrbfG+AyZZUXRBSChIK4pgOgeAubFBW7Tv3NU8SpsF4XiMSgxJjyIteajEOIpC2RkZqMTpYLKCJKkIgpm9FLLHQj3WwMvserwJ+78UvOYvfQr/Z0r7kiA1FLcKdKCILehUkegi/3rbU/jV3IM4degenle+lUg47YWhSzsyuaFywyasz6BqQsZNiQVqmg26l5saS9FWsmG6l5GeKgcObeW4vjVcvuVgVq6di2xI141uQTjpdIIycS6U4aQLUsbkIcwAAo6u3MegjFkWbUHPuZ7Dwk34CAKhOba4mkAIaiamKP1OlyMUbhihhETlXY6GSalaQUtrtugCt8cLWF0dZHSigtQCM5RALDGTAcUNLqYgnNZ4LaeD9FqWcFITTPkU/ZSGCdiS9CCxxNbj1MI6WhY2ZD0M+VVGVI2KNKzNiqxIe1jmj7HM06TWcEca4QvNiIrpFc5Cud12MtZStQZtoWUlJWm4ob4UXfNoBgFaC/abO8azBm9nWMZUjTMKWOrV8IGK9JyNtDNUZlQLUmHwhWVjVqBlfSqyxaiu5DbKtz56X8DHYZ1234lcf0EVvlfZY8d4Ze3sDngBcvByHTd89sv3W/eYt7+ps/zmbD9O5tFz2X3zB7bNcpmtgdm+Dj9zAW/d8Po9fUr3q4HelzEx/YNH/bjt2mUA88EPuou5dOlSzjrrLKIo2mMn9RcrKXK74DzlPrcOtkYgWjFyS0Jhqka4sUgyJ0+XVwIjIS0LvLpF5AGRXmxRLYtXz1DNFNnIp7hyiprQptMtwHaP1aFlWcdZbndZZp+XiILuOp6iOajQUe6Z77kHiD+TgLXEFR+v4QbqVjpXnKBqiMY8hIWk4jyUwymDX9WOnoUhLUqElxsMRAHUFKDzDoztGh0EDrC0P5tVBiHduajEUeqMEiQ9ToeSlCXGK+LXM1qDPoUtDhip2NAc8lC5+YHN08ZkZjvalzYokonTw7hQy9x2errVBYKZA1AydVS4tg12PBQSTiQYT9Ac8pzrmHKmASq2eMZdcysE0aSBvRSy3a422Hi4nZhHGrTspX3trUe7vKbGlpxeMprI74WDjjaVzITcY+awcaaH3/fux8mDK3lt758pCp9QeGQ4qpLMOweRMEwhiETKXckIf24s4oaJxRgES/onOa5/LXfX5nLLzCImGgWEtNiBlGzGQ6bOqCQtCAoTBr/mHBytBJTFIDB9BhtpFgXjFAUUhc/R4UZKeZdivlelanzGtWC+l9OxRNvhy2KsRiJQQhIKHyklLdtkwqiO7XLJT1DKkPZqvECTpRJ/SiI0eM2cPhwbTI9ypjhNi4rhvq0DNFKfTCtOGrmXk0orKUpFZC1Hh1McHU6hEPjCo+S3qHsNZ4iJm+Va5jWoWkElz35xDmQ+NZsyrgUlCRUpiHL90drGAAQGKQ1aK54z53aWBVtpWIUS+eSbhQnjM2U0g0pTFj7TxtKwPtNGsSqdw8a0j17V5OTCKq6r78vvtj70TI7/K/WdFSfDR2DO32vedv2FfG4HovSHW23BfrteeszxXPbZv+G47dbb3rb43375DT542jjvuuwHXPL+Pzzi59UuL3UBjx9/Sp33XlUCHIXssi8dskvbX3jFDJ/86aNj0LI9eGlnxDzUetoVu9fh2m0Xsle/+tW7u8njp9rApW0Es4PQSBEnyDQjmq4RFkInovcV1f168OsGfzrBehLVypD1OM9xMYhMd3UjQszSt+TdHqXyDlCASFKsdIJ4m+Xn0AY2ntfdh5SYgk9WcA5dwkBaUS5zxvjIxOlEspJyYvjM0hgJENrStzrDKpjc3yPpsQgtCaeFAz5C4FclWVFhlcREAVKK3GzMdGlj7QvVFvMr5fRRmSba2qS+uIjQ4NcN4bSzOW7M9WkNKIR24KI1HCBTv6OHSQsS6TsgIRNn69kOpZSZAzRpwWlVAKwHpU0JYmK6ex2lO2bcI0mLkqBm8avOPtp6AtUyDlwFEloa1ciQqSErKmTssmOygswpZ3vrodTOAMgDgZvHcqdlZ/V46cLs7b48uiWMRUdOjB7OaBAK4wu8hnNejOcIqlZwW7XI2ql+ftu7P5FKed7wn9FWMqFL3FMfwVjBpmYPB/VspsdrsSXpoamdxnCsVqIYJlwzvg/jjRJzy1V6ophmOWCg3GCj7CPpUQTTzJrEctpENIjEdbNVTZJ5lsSqjlvXXBV0bJ17ZX5/tuR6EgHItmdLp1ukcKYDsU1pWRe8WZFNIpkwHNa4PZsHgFSOdp0MaKx052d8gdDO/j4pO82o0JDNBCQVxZLeSapZxKfWnM65i6/EFxnHhVtx0nhLe86+HbZprHVGCUAxb8fXbEooJDqfSVfCuu4LljHtI4XlztG5+IUUpQylKKFX1UmtYkU6zFJvnNuT+Yx4U9zRWkjLejy9dCeLvJTbkznc1lyELzPnZBaMobBc31rCz9YdSllN7dHv2xOh2t2OuafVeI8HnHopS647co8fd+UvboQFOwcIH/zEOPN++0IuLkFpN6hk4by/3+3z+eDh3+fvPvehbUDMbFOBB6oLr5gB4F3Pv2WPg5g79Xd5Sflj3NF8ZLuK31zyUxh98i6tu9sARmvNZz/7WX7wgx9w3333kSTbprZPTEzs7i4fO5VTyGycuIyVNqiY9b7tCNUltGLn0mUtvTONfLnoBE8C2wrdpXT/t2lXHQcv2QEkxElujywdlazd3Wi70wjRBTGACVQOEiw6hKQkCeqGuN91XrxmhtcwZJFChyLXpAiEMU5rkjoqWVAzqKb7bGnFPRyzgiSuSCrtz9D+TLP1L7m1swgDSFJ3ffwAmei8++G2lYnBa6SUtSUrOsqXLnjE/R5xr3T0Nw1e5jowqmVRLWcrDRD3+8i8oxPULH7D5IYDEKyfxJo8QFMIRKw7NLDiqMGv5YGkmXVTZx4EVY0/naLqKabgYYQDNl49xXgSf8aSir0AZk/U4xWo7KweLyBmbz16NXZ4RLEhsQLKmzKKWzNUrEgqgvpCl3fiBxnlQkwpSJiJI+oy4CtrnoyvNFONAlPjZUp9TdJU0UgDppsR9WbAYG8dXxqiIGVJZZLEKNYnfUy1CjRTj7jlkxUlvb0Naj0hYdXlcAlt0aGPFc5kxioLyqIrFlVJmcjK3Jr0cGxYw88nqBw1zAETJYSjjgmNl7/vtDBym2wUpy2BksioeNOUpGFNz1puHxxhS6ufcrHF5FgBKywyI3fldDoahJuoEgZMTjaI/AwpLKOtMnMLVf5Q3Y8bJxZxUN8WalnAM/rv4JhoHQs9aBlDw4IvLFWjSK0kFJoxq6hbn5JImTIFgI6D2WhWYSyrcFdthNrmMkv23cp4vUgpSBjLehjxpnlStIV1mc+fG4tQRdMJEy2KjBvjAb628RSWV7ZySuVuSjJmQ9rPv695ChboiVqM8NBnpp/I9cwfbOSXL9v2mdAeqK+YO8gPrnPsn1e/+NX860u/ucN93Fc9k8WVH3PZZ4/hjLffcL/3n3PSasZWP73zejaF7Jn7ncRVZ8/l/R+/g4++9+AHPM8L3zPIoa9fxLtf+tRd/WgPuS7881mo619LdPM/8ckz3s05R63lsgU7By+z65EEL8kJS9g88RbedvK3tumuvPS1L2d1Ogzfhfdd9Qc+9pQnPWLH3NXabQBz4YUX8pWvfIXzzz+fD3zgA7z//e9nzZo1/PjHP+Yf/uEf9sQ5PrqVZc5KWWu6lKl8wO4HLhMFwOq8M5N3JGoNF8zYpny1QUa7i6MkVjnHMPzuZRdJCq3YgRetnWjf2G1T4KVwpyBcRo1tdzvab2eQllzCvLAwvY8HBsqb8gyaosxtgSEeFPSt1NTmKaxSpGVQLTpaHOs7s4GkojCee7BYJZBCuDPKxZp4HiSpOw8lu0ArN3eQMw2EKSEyRw8TmaNrqWaGSI0L8SwqrMwzXhREExleQ2N8iQ6lA1tGoENnRS20BV+gUotVEMxoCqvGEbUG1lis0QhrkfUmOuhDFwQ6FEQT7tzSkofKffe8hkbVU2SSYUOFTDQ6UujIc+fqSzJvt/957K1HqH7Uf+Y2r18y+eO/yHns6fpS8JpHJQtmR92X5J237M2C2YPVnGvJhMtbsZ5HcaumuDUhmpQEVQ+9WtEa7GGmD8aWxPQPVsm0ojpTIIhSdKYQ0lIfKyJSySYgbXm8+shrOb1yKwOqhcKiEbSsIl0oKYqM1dkANzWWcu3EPow1Skz1uByswqYUf8s0yCGyoqTlKVSrK+o3mWBT2seR0X0d8DK7OhqX7aSB268pEUTCQ0mnnWkve2bpLm4cWMLETJEk89wzLc+jkSmkRacVSsvknSpLWgbZkmyd6GGqXuCY+esYCBqUvZhQZYzFJfYrjdKjWmgE07kb2KgusCHr54b6Uo4vr2apN06CJBIZW3UZlU9OVU3EzfXF3Do5n9UrR5DlFFWXrF09B6Sl2Qz4Xbgv5eEWDRty9cz+1HRIUcbMUTWmTIFV8RzuaY0QeSnLC1tIrcctzRH+OL2Uk+eupqJaTKZF7hsvPOLfsSdCve+DS/nYod1cweNuizu/L98yDkvfyhk/q/FqLn7AfSyu/BigA16Om7t0G5Dy82uWAWvutx3AL1deww8P/SM39L7sAfffV3Gdw1fWzqb/oj88KhbFuvZ1im8Y56XZ2gdd99sXKX59kcuo2ZOdl7MO6joN3/YtQfFsWPWm58BVD0yp+8Z5ey6EZrdHaN/+9rf5j//4D5773OfyoQ99iLPPPpt9992Xww8/nGuvvZa3vvXxkfa5w1LKDdDbv8+mS0nR7YJ01ped9Tsdk/agN00hDBwo6CmheyLiwZC0KPFrBqS7SVsp8GuaYKKFGq8i8u6MTVMXFNlha6nuvlHOiQyX74J1M1Yyb+gI7RzEWn2CmcU+WQlK6y1BzRIPig6dLPOEAy8a6nMUMg0cvSCnc2VFRxsT2rrPJmTuWoMDZ76Xd5zya9Euo6HZItrcoL647MSjArRyDyVhnQOY0BavYRDW4jWcS5jMDNYTZCXp6ASxIS07MOU1LVkhNwOoaaK1k1CtY3NzASGEM11oxVTWxVgROU1N4v5uMnCUOmEsMnFgxwqByAx4EqQgK0iCGXO/P/Xe2vO1PWh5oPeeqGBmT9Ve6thfpqyELALrW2b2dam6Knb3o+JWx1wojCoaczwmigETcS8iNEjf0FNqUfRT1q4ZRjYUMhGEC1LO3P/PnN13PQMSonbIJU6XaGxGyxoOC8ZY6k0y5FX54l1PhcAQ9yh6kwxTjGj1ey53bCanfbUEacVS6W1yVHEtFZkQ5/SrinBOkbtTbZvn1iwraF9IFJrJpABWkCSeowenYH1yMxX3fGhrHb2WJZwQiEzSiAJkv+FJvasY9qocGW7kRT03clcyQsv6FEVMJDSr0x5+WzuQyazIHL/KkaW1jKhppLBEaCKhKYppGtbjrmQeVV0gMR7VOMSbVtCTYAF/SpH2Z/RWGqwYH2bVxKkcPbKeybiIFC5FpmU9ZkxERTY5rXI7c/wZtqY9rGjOZSaLOLlvFUUZc288zJygympbenhfqCdorXx1xpH/6XPP6zP2/4rH9YeG24AYcB2ZhcAZH17MeYd+jemXP4XxU85nZOALABxcOIy7Lpvm385aA7AD8HL/ek/88s7vNxy683Ocqm4CBmkd+W5KR523m5/wodWPN3+OS757L/9zNjw3+9udUsheeZ7m2xddyV+/6yI+db1zJLv76iM44JRbuPvqIzgCF7bZOu+LD/u83uP1ove5hGPvPQ2Aw2bO56dH/miH61a+9Q7+tM8VnXUf6dptALN582YOO+wwAMrlcifU8nnPex4XXHDBzjZ97JcQbiCuTbfLYG3HwrhDB5OzQI3WkFnwfde5adOswgDre6SLBokHg85NuR0qafx2hwEXnthXJhgqUFg3g6g1EJkAJbCZ6R5Ta3cM6JyLaKYURzX1eYosAr8B4ZSjk1kBhTFLkrhsGqktxU2W+nyJX7NU1uvOeWWROxeZOs2MDp3o3mtY5GQVSw7SjO6CPJhFcWvTzJzDizUGtWWKkhDUF5XQoYcVEE5LRw/IQZL73biujCdJyj5p2XWMdEkQ1N2+gxm3fmkyxZ9oICdr2EYjNzlwAZ9t6h2ehz/WwJsbomKL8Z0mKdzaxIYK4yt0qPByNzSRaig5WoVfy5CNlKw33Btk+SjVzoDLztZ/ogCZPdWF2Qtc/rIVTgg8JWgstKQDGTP7eQjj4dddDpVM3ERWUDeEE4qs5RFUXdjj6FIfWUrBgulNMVrwjgOv4LBwPfOVIrWG1BrkdplsFemhsVQNDHg1/ubAq7i5uphf+/uT9vRSXmdo9UtKG2NULJFZ4MT8ef2pvg/jYZnTSys7oZCOOrbzyDine8lI0cTWUGyDK2vxhcBHUTWSlvZJmz5CWmQqMGVD2qeZXq4wviGYkmQlJ973Gs4ZUiUCfEPa9BnLKhwcbaAoQMqUo6P1pFYisWgrGFANnla5A4VhkdegZd1naBiPzbqHoozZmPZzW3MhU2mRUKb8fsM+zIyXoEcjjaDtY10abnDs3HX8acsilLQUVMq+/WtZGEwwoqZZlc6hIpsMqhot65NaRVEmzCnMcF88yKakl9WNIYaCOr7QTLSKj9yX6wlUP1i2niO305S8+B8v6GSxzK7LnleGn9XgA3DZ867g2xe5sehdl+0+Pe8T4feALpD5RPg9hr/qXp9/7m33W//jL3/Xbh/jodZzs7/lzJGDeM0pT+dtpx3Nyl/8rcuB+VkNcNfhjFm/gwMxV55b4ivv/+AD7rddDycT5hPZNJ982p1w72nc8J+jFN8wzlE/ugq6eJB7n3QC+/zhOoBdAi+937uK6Zc/ZbfPZbcBzMKFC9m0aROLFy9m33335fLLL+foo4/m+uuvJwzDB9/BY7iE7zuNhMxnnUTeLjd61kqi220xchu7ZaTogBhbjGgt6KEx1yecca5e4YzGq2mXeF9w3Renu3C+961+RdLTT2WVh9o6jU0SRBjOopbN0sqAc9BKUgpbmiSVUkcTkrpJLqJJk4MSR6WqLlQdv3+v6X6GUxrV0k5jklqykiItCtIieA1LYdLk9sTKnYPM3chk3qGSdN3T2l0YIZ0eRWvU6DSVZkpzUQ+NOR6tAUVQ7bY30pIEFNp3+SxWOTqZzKA46kI5VS1G1FvOCCF1uTnW5ABTa4SXA8pZDm5ipk55TUBzXoG07Nzi/HRbC0TrOxqe9aTrxFgwgUQPRs5AYS+D7DFdP+o/c5dBzPs+9KXHtBPZwwExDweo7KWR7bnyq+D5lnBUEg+CarhMLONBa8DDeC7o2ASOQlXaCH7NOoMR5dGaL9z9SVlOPngly4PNFEVGw1qmDKQ58qhIjY/LH6mbjNjCsBKcGG3gslqZg0qbuKF3IZNLfbCec4hsJBg/chNlngVhqU4X+J+1hzBQanDYvutYpGLnhJbThpWQpFZ30uh3BGyMtdSNZQqNwlIUoBA0bMoPpk7i7vVziSoxUhoaWd5pmfARGgggGci75ZmgNSRIei0mMIiWgnLKJWuO4I7BeZw3/3KW5kGWDes+f1Gq3H2smbuShaRW07AaRco9acRXNp3CjasXY1OJV8wQ0pBORfiTiqxsMC2FP79BOhUhM8nq6hC1RoTOFHrYne+wN4NGsMCbBCC1Hqn18IWmpBr0qQaTWQltJUuKEzS1T8MEjNZ2XcPwf6l++bL5fOzQkP2/4vHBT4xz4XsGdwhe2jW7C/HK8zQXPKv2sI7fBjKzXw9/FS777DGdTtCF7xnkg58YJ7r5n+Coh3W4B63frDuS3/B7Lr39ALh9Ayt+cSPfuPrXvOaUp/Ph6/7ARX/3Y/5qy7mAA1TXHxpy8S/OAeASHnl3tOC6tSz81lv53L+8inPqr2TT+0/gqB9dxQR/R/EN4wB85vi38o7vfZ53DlzCsZzWAS/feObveM0vnSC/ePav+MLxf82iN1zO4ckX+XNw/zwa/4UBr/3eW/ncLp7bbg/RXvSiF3HFFVdwwgkn8Ja3vIW/+qu/4qtf/Sr33Xcfb3/723d3d4+tUt1UYkeXyoMbzazBubWdZHqhpNPA2DbooUOtaiztIytKwhnjLHx7hfPfT53APi04cKQjp/NQLUM44yx8a/uUKRtQEzMdUX/3HFVHWyNaCbYQIhsJpc0+rUEf4wmiKRdWWZvv/PW9hkWlDhS4LBZHC2sNuHMQmSGcTGnMdbS0LHQdm7QiGLql7rpMZtY5tG2drXG6IJvbQWvjKGZSOfc0KRCZRtQaFFalFO7zyHoLmEh1AJPXbOtZ2tQul5njT7WQUzUHWNoALqeIuetscj2OdcfKX1uTOQDjeXhbpwlKPvV5gXMv642QSbeTZnyXzWx857jWDq4Uxl2T0qb6nviW7a1HsHYHxOzJeiQE/LOByK6AmUeqw7IXxOyhkg6YFEYtwuQp8L6j5qqWmzBJewRZ5DK8/DqEVY0OJNYDf0qS9hoG5s7QyHzWpMPcbkLOKN3DgBRUjWZAKSIRIpHENiW1GYmVrE5Dbm4tRiPZEPdx4OBWrq8VaA0qTGCp7us8u6yyZEWLjQxoSSvxmaDIdY39uA44rrCa/fwWkVCURbQNeGn/zHKNaChcJkrLNolwnZdIKFpWs1ErxtMSdiIkHbYoJVwGTaSROVtIZM5UQKbOhl+HOHp07IxnTBow2fD444p+/v7QPuaXpzm8soFnVG5jWMZgNFNGMmEiRnUP41mZaV3kzvo8YqO4c3yEaiOfZE0k/toiMoXerTm9ulcydYDATDoFkJkss7LunolCWX6/fhknLVhDv1enTzWIRErVRNxYW8KiaIJIZETCeaIVZULLelRooTD8dst+NGqP7wnePVX/8QnJce9xX4Lrc6DAA1CldkSj+sjlZb59keK8yi073Oa8034NwEVXPJ1/+e8qf/uiB86YeeZ+J3V+/9wVfw1zu/f1Nog55/TBDmDYE/W0RTcD8P5DYoafdme+9CA2XnoWG+cBbNup+NwVfw3guiCz6lWbXsa3TtnxNdlZrf+nUzoAZGTgC3z0qoNhqZOGfJUr+PSh9+fbveOPn2di+gcMHnIC3HvdTve/7j+exeGv3jGVLb004Tv/eRYcduMunetuA5hPfOITnd/POussFi9ezDXXXMPy5ct5/vOfv7u7e2yVp6CV5tSwbNv3kny5kO69wO8OpsGJ9/NK5/XRGlREk5pc+U5h3FAYTRGJAxdxr6Tnvgy/liEyl3uiWk4D0owCGotLlKsNRJK6fVvrWv1tB7A8O0ZkHlYI/IkmIrNUl4SAwG8YWkOK5hxLYYsgsw68CA3RlEamlpkeNwuY9HrOXtOC9l2GjUyd5kRtmXKfsy0KyU0GHLiTXSDTFvfnoWbtTB2b59uI2C33xqcACIPAXe82OJvVWemaKMwqY7FZ2tUleZ47trFg2n+r/ByzDGssQmvClVuRyRBJj09WVHgCVMuFZMrMOjOBsu+yYgSo1KBqCbKRoKf3usbsqFY85bssv+rsR2Rfu0sfe6B97AqIeax3YWbXo03/eqggJnnn7j8g/69UfaFFjgqCqqW83hL3idz10d1jhbYY5bq/KnED9lavIq2ITnZVcX6Nw4c3ce/MIH2qTkU2qUjF2kwwLDMi4SFxoZcNq2lZiK1is+7lptpiRsIZDiutp6ZDDlqwmTvX74PMBNWF7hgqdlb0pghYiJs+rWrIxd7xWCtYfuBmikJ3wiqhC14MFoNh2iSOMibohFsqITDAFp2xLuvBFxlX3rscb06TqJDQWNlLcVzSXCiRqaNtyTpkBbCexeYgRsUO1GjpgIwaaWHqRdbfNZd1xSH+GC7l4sLxLByYopYEbB3vwTQ8RCyxvqUyUqXV8qmUWkgBpUKMUoZ4LKCy1lIYc8YxXjWmb7xKUJ3P+KGQlS0iFqgJH92jsbEg3hjyq6mDuHVkHqfOW8nicJyGCejxWiwLRtG5u4HEMODVWBsPsTnu5YaxhWy9exg1E2//FdlbOAoZOBey426Luf49g1z2AOte+J5BLpylkWnTqORRa+F/H15u22zwAmDuuphX/LbCd06tdpZ9+Lo/8Jl/CRh6WEd64Jq8/O8ZftqdmLsu5qO3/4j3A794+Vs4/XtfYP4Lvw/A/OwBNn7h3/KNq3/deXn5wN1w9RGc/5uP8ytO2eEm46ecz+DVnwZg/TFnsvhueO5NDb592GI+3PgDK161AN677TZtet37P+5ev+20r/K5K/6a8764nhX7XcttO2gCFc/+1Tav292Xdu7L9MufQu/3ruJZz3sn77vzXuDdD/Aht62HTZI56aSTOOmkkx58xcdB6aEevLTqZvu13tbCePagGbpBk/ng3ra1KT0lGvMjZAatPoVyEzJE4xn+RAOkpLTJo7hV4NVSVD1BJBmmHGF8ifUlquXsh9ORXoJ7Y2wbPBmL1WkeYOm5fJkkRRgDSqKaKV4zoDkksVJgfIhGhbMzzhxAScsCryXxtaFvVUpWlGShxG8YrHLdmcaQQgcw9MdJ93nbYAWc+xo44NAGLko5ACJFF+h53qyujcUKMysoVGBbMVgHVrbpqlgLUrpl7WPPDvhsUxbax5lttKB1N8tHGKwGQYq/Ziuqv4esLyLpDxxYjDVZwcNK16USxuLXUtRMC1FtOBMGsx2I2luP+9oTIOaJYp/cBiO7AmT2ApcHLx0asiL0rc6cZXJT0hyQ+HULFlTqZv6zkkC1LMaHuE+Q9LmuiIkMBw+OMR6XeMmCmzgsGMMHFB4Tugg0GDWaFckgq5NhVjbmMOjXWRqNsW+whaPK91E1EffGw8wPp9nU7MVKiy4b2OzRdok3viUY8/CrgsZ8DUXNxHSJfeaOs8SbxCAxWBSQ5vd/g+nQyUIhqRqXfdKuurHckowwoqbZnPVyQ30p2cYiYk5MdVOFaKZLPUsrlmDGGcZIBTqn71rtOkS42zlWQloPCGKBLmn8ckIWe+gVZVYt9LFaIKd8gppjNaQ9hjT10KkiyTwGSw22zpRpbi1S3iRR7Zy0giLpLVGZrNN75zTTy/rdOU0LwjWQlnwQLmut1i8Ym6zwO7mM44Y9DiuuZ3m4hYODLUyZgJJw44NLZ45kc9LD/9xyGCgLPRnhur2ayh3Vy1Yv5OMXXM6xH3lWZ9n1uSvZ9mL+9uvvbrgdgDN/eCQAPz7q0t065sWn/4Bvrfosv1x5zQOu88m3H8jCG6/n8jfN54e3XEbrR19k/devZuF+Zz3gNg+nJi93eTHnffFM4Ezef8jdgANpH77uD7wfB04+evsBAATH7Fqw5a9u6cLB6CUOOLRBS7teWjuBW/hnAORL/8w5rGXFUQs4eyfZOPc+6QSe+90G97we/nPul/hPvgQ58+8Vv213uT79gNvPrm9/8Y+cC8wLDr+fpfbOapcAzE9+8pNd3uELXvCCXV73sVY69CAKoZ4LRNoUsnZ3oT2gVv62wZLt6inTXNyLzelkcb8knDRulqeeYZUCJVAtp3mRiUYk+fL2/gyoxICxZGUfv1RwAKXdgTESVG7X7OWamEwjmjFSGwpbPHQYMbNUInPwZIVjdrmwS0tSFngxiKZF+4Kk4m74AKbgHh7997SQkzOOjiUlNom7oKRtdJCHfG5zrdrubeDW64RuCrefPKDTie5nCe+FwKbuCWaNceAhd3kTSmLjZNuuSxvYCIlNUkTgd2l/s8rmnSo5Nkkw5eFvCbHFECslMtaIzCCbKaIZd7tAWZbbX+994OytndcTBbzMrgfrxuwFL7tWajAmsUWndWxqlHIaxaQi8OsQVC1SWby6xXqQ9Dqre6vARIahRVMYBIf3buDgaD29UrExszRsxqpkDn2Rs1fVCKazIonxKKqEI6O1pFZxYLiJW1uL2JAVOLG8iuJgzK29i0BZZ13vOQfKcEwSjbtJMx0qspYk04I1DHLdgqWUiqsZki7npWETfFzYZShcXlgkPHypiG2WmwoYUiwHB1vwsfyh0c+dMyOEi2ooZWgYSPolXk1AJUV7itR6yBiEEZjAQOaeW+TzhEY5mp2a9LAKRNHNyC1ZMMb6oJ++cpOpyRI2sOhIOP1RXdCaipCFjNpYiWZOH1N11Q1FrrjJr8aQgsPmUL5rgmAK4gEIpi3lDS7kuDXk0xyQlFb71PeDLfTyq8YBXO0vY6jY4JThlWxNKtSzkOk04ub7FrHvyChhT0w8VsCfUfjVvR2YHdXlhxc5ajscsT1wmV2u6+K++z9+6aXc9i3Bv//vQ7cNfeZ+J+0UyAAcc2DA78Fpcz4Ab93weuq5bfHDra885Xu84PrBzuvPPOMlPPemBh+9/ecAHPuRMudsuJ3XsIC/fsoJ/MPnNnPl20bgO9vu56pXXMKnjnkx72xdAsCnohe7N94DXzluW2H/u57fvYd/8qdH8MOXXMcRF8EXR5/M0+lSwL59keKV5+14Ivf5+12LuelwflR7Hx3kktd3Tq3y3Q23c8ylZzHBtqGUi95w+f32dcTmV8DQ13jjh3/zgPTBHdUuAZgzzzxzm9dtx6ftl4ELuny8lvUlNvARcdIZTIN2A+Q2UJkdZInudAdEWCBe2EdaUS440TqBvDDWPbxiTTyngI6c+5hfc4NnEfqYyHMZMUBWVPnA3AVJmlKEmql1Qy2VhDjDhqE7bpY5UX/mGtheNaa4WSFTj7QoMT4dn38duv0aH+JUkRYkWSTQgaAxV2EFFEcNg7fW8daNdbQ+HZpYuyOR57+0uzA2MQ6EtK+P73VBX5p17KktORXNSAjyHBnrTDfFbCDYPm6uqbFGd7s3s0sbpwUSonucNqBqC/vzTo2VCnQCrRay5h68SAmme+OzWZueZ3Ia2l4v5T1ZjwR9bPa+Hm1B/xMRvLRrL0h5+CWVwSxqkZRDosRgPEFpS0Zj2CMtg9+QeC1Daaulnt9/k16LCQ3Diyc5bHATq2aG+MX6g7itMp+nDt3NJeuP4hWL/sjSYIyKTOmVgl65gf39rcz0hJREgsKyUfcTiZRQpq5LEGyhTzVYsGgcTxo2bp6H0NC7CuJ+R3MTBlqxIBoVtOb4JKWM7244npv7FvPs3ls5OpxAW0tRui5QN7gSUrQLrySPFsg7NX9oLeHiVccjpWHxwCSbZnrwAk1SMNimcgAl0ogJ58DWNnDB5KYqCkQGuj9FCyj2NUkTj95ijLGCqUYBz3fHstrxoE1ksA3lzBGqCtuSqIEEOxpiSpogBpmQh3lK/LrGr1uSsiSZ30Pf6pTaUg8dCUzgaH9+zaBiC5tAaJ/6Ykk99Gi0FFNmgJUsxEQGfIMIDEz7rNyyENUSlCcFWcGFTe+t+9eH37s/9d2Y977seW5AD7A6vQJ4Bm/+/tKOhfKuVhu07Ay8vPgfL+BbbxjnbacdxbLT4fOz3vvqp67gr9+5Z+yB3/CFAle9wv3+pwsu5ylPOYH/eEuTr171Zy6+CRqrahT3dQP9q15xCcExh7B8zamMf7ifr3b28q3Ob23/tHd99i4++fYDOXb9lfxp4VMBOIm3Q+6C/NUcvJgfHo586Z8fELwAnL3gEL590QNbrJsfHs4NRxXZJ6eUfeF4p9X56nHH89fX/3Gbdc85ai1nL3grZ/zsdTu9LtvXLgEYM2sg96tf/Yp3v/vdfOxjH+tQx6655ho+8IEP8LGPfWy3Dv5YK2EspreIasbOeau9fPbgegd2kiKK0CP9xH0+wVSWU5TyayZcEGQ8GJEVJFnB2WQWtmqsJ8l6Q6eBETmA8gQy7l7vZLhAYatylCbPm6XD0bloXXdkJ6QWOdMgTDK8RoF4IKTVr9CBcIJIQMXuWGnJidfTEngNqGzQFDe0XNBZDtI6QFW7jhBebjGp2SYTRwgxqyuSX58sc2ArDLvgw3bft0lO0cqDPts5M8JTWNM2T8gBi7EQ+G7dtgZH5OdC3vFpA5ec1ub2Mwsw6byDI6Sjr3keZLE7xzbwaZ+n2fug2dP1SIKXh1IPB8Q8kYHL3nrkKmkEFMsZEwdHzLlRYSWolqE4mtHqU2SRIIsUWVGQlgRpj8UUDd5gE20EV69ZRqmQkGSKjaKHS5MjOGnOvZxSXMmoLtGyil4MkQBkijaCug1Ylw6iraAlfCKRMOjVSK1ixkQsrkxy44aFZL0G2RIYX+DXLMZzAcGqRW48I0nLIfckI9yzZoS79pnL6xb+jjmqysFBFR8LQpNa3bFzjoQiFD41E3NrMsSH7noB07UIYyR6JiBY4hJrsk1FCmMSmUFWCrA9KWm/xipH59XFXGOTCmxksMWM/p4G1gpOnn8vBsFz+29GW8mULnJrYxG3Ts2n1ghJdYg3pbDSgnFdGOsLGDJk+bJ0YcJ0xSfpVfh1UC03sefXLUmPR2FTk967y6RlsNIBqXAyQYdusDZ4h6GyTjG9zKe5UOMNNTFaUohS0lQhpSWu+nhNQTDpDHGEBr+x97myozp1w/9Q+85yPv2lQ3doXzy7zvhZjVeu7GX5v20AYPVfw7/PMbAdeHnjVumWP8T65NsPBOCYvxrmo0/6LP+5Knadn+eVuf7QkOcf9TngK3z1U1fwrhNvZuXzfsR+P3vJQz4ewOC89wHwnsm7OOb80/kt7+DUTZ/h2I88q0OZa1f7Ohy29D6SG25n4MNnMk4/J/z7G7ZZT5/xStRl3+68vu6N/8H+03dCZS77T0P/9z8Dm37fee/qn34DcDQyYBuAsiMw88rzNNcf+kku2cHncetX+astTrD/jFvfibnrYk58neWrV13HKc9/De/5+XFMXP9Jbrsp32Zl7wPqn3ZUu62BOe+88/i3f/s3nvzkblvo9NNPp1gs8sY3vpE777xzJ1s/xstA2hMgJ31oxTktCjfIzbKuDmZWF0YoiRnsoTmvSDiZIhONCVSep+LlKfIG1XLdGGFcynxW8pCpc96yeaBl249fWFDNzNkbDzoXlI5tMWqbgb/w/Y4zmpCOiiUaLZQ2FBoJqlWiNeiRCInfcODF+BAPOJFk30pNZWUNWW24EM1ce7KNcL8NnNqlul9qm2WOvgX5OcnOOeF52EoREwXongDtO4qXV88Q2iBrCaIVI+rNjpOYbTdZpOges5230z6G6NpXdzQwwnbPV4puN2V2Wev+yFJ0KWradGluetb+8zybvbXj2vz0Sxn59Qt3e7u/NHCZXQ8FxOxJ8PLSNz77Ad/74b//7x477t7aMyWkJYl9gszZJcvMzfhjoDCuScuSuCLRgbv3ZyVDecEMPVHMhvUDyEgzNVFiYKjKSLnKuQt+gy8y6tbjd/X9WRyMcVx0H8PKhVnOVwlTJmNU9DDszxCg0QhWJCNc2TiIXq/JlmYFYwRWWkwEtUUC1RQEVdeVCCct4bQhCwVeQ6AHQEWae0cH+Xj1ORwyvJm/mnMNy/wJBvLnVUUGOD9HuCdN+MbEyVy9eV/GtvYglIEZH1HJiFMPAURbJKWNlqwIRkmaRQmhJusBWU4RRmC1wCrJIfuv5xnDd7Is2Mpib5KFXoYvZIfGltoJXlheR3VIw35wd9rLHa2F3NmYxzUblzI9VQQriHxN6llGFk8AsFX10Ah9Cus96BFkZUtpvTNU8JohYdW5YwprkbFGthwf2/gSfyZ1wv/YozGqaA6XXRBnyZIVLDZwvDcduMeSyCCcxDEz9tb96m3vfTpRYSlXLL4W2Dl96LLnlfnwBZdz9+BzOGD85zS++wyYY3jj1u7E8sMBLtAFLwCvfvHFPKuQwqEhbRLWBz8xzubndUNJx085n/1+9uBaj/FTzqc/XnK/5a+/6uVs5ZcAHHP7EpJNt3Mqn8k1Qc/i2xcpzl5wSAfE3DLynfznvwL/AwuBF77hfvvVZ7xy28/1kQ9xwr9/iP/4yIe6C2f9/ttFwLnPBEB+6ZdcfNMSznnpn7n4piW8cmVvB8xsD2R2RvcDp48BB7qufJvrCl180xIu/vBv4Hq3zuwsm92p3QYwq1atoq+v737Le3t7WbNmze7u7rFV7UFxe0DetlCWdAft+ex8pysThTQXVpCpC2QEUI0U6zmqmPEFInNp7yLPfTGeICtKjJKoxBJOpJ2ujYoNMs7QJR8dSCe0DPycPjWrXed5XfBireuCtClRUiHSDJFmBAb8GY+sHKAj5fjVnqC80RJMJq7jkmazBvG5ZXEbDHTcxUR3UK/y37PMXQepnE7F8xBBQLp4iOriCITr+GQFgVFuJksHoGKfrACIkpvxqxqCqYzwvglErZH/KRwA6naBZgELz+sK/md3xJTqBom26W7tZe1/F7oLcjrZNUptRw3k/r/vrfvV7oKYxxJ4aVcbkDwYkNkTwGVngGVn6+4FM4+PUr5GeRoduXtgNGUwobs/iQyCGY3XNNRGPJIegQ0sPVFM6GWEPTFp7BGVE6wVHN+/hopssi4dZDN9LjDRq6KExQBRft8rScOR4UamTMD1zX24qbYYAGMlhxQ34EtN2vRRDYkua7KCxCpLPOjsi1UsaIx4ROOWnlVQSwKyQ+r4viZOPa5ZvQ9/XLuESrnJkcMb2ac4xlHFNUzpEvfGw6xqDHPb2DzGxyqQSCzSidgtTG7uAS3oaTkXtsKEQRhF2uuhR2KsZxACenobLB8c5dSBe3hq8R7mK0tZhrjhikdsU5QQSCRhfo+OlLuv98k6J4UrML13wzy4JQn41LrncOuN+xDUBJvlIKKQz5IFhubCDJEI1FDMVL+PN+mR9AbI1GJ8QatPIVMf60tMronUZZdZJjIojmmiSYFVgqTkdJlWCOJ+Z6Lj/s6WoGa6rIy9tU0deMYLWPKd04ATuYydD4i/u+F2+LcNvOELBd7++oUPuN7DATFH/e3XuelfXss3L+laJUeX/TsAH13zeX5/W9f97ML3DHLcp67g2d97DYdf9I3O+vKPb8Uc/3kerIJ/Msw78I8soQJUOHXTZ7h78DnbrLP/VzyuP9Tj1KecwIv/8CouvfRMXvjCNTvc3yc/8iHedcGHdghetq93XfChzvIDDv8GhwyeyyV0dT0fvu4PcB2c82ZYfp3T4/zDCU/ijJ+5Tsnugo3Z9tezf29fy4dSuw1gjjvuON7xjndw8cUXM3fuXAC2bNnCO9/5To4//viHfCKPhXIdEosNPER7gGyNG/y2aUbGCfmtNghPYcpFl7VSS5GZozJZXzmwIAVeXTu7Xk8irAsps60cyPjtQEqBambIJBf3N1JEaqAvRFi6Oo0sc52YPHPFknaAh1UKobU7r7w7AyBTR+VSYwIbBk4z0u46ZLqTKWPb1Kx2dSyiTbcD1dEBtfNeRAe84HmYeQPUFxWpz5U0RgQ9qy1ey1LamJL0ee76asgc5wErnaVzUpG0+gLkghFUYum9axo5PuM6QWk66w8064/V7ohp3aWmtUFI22xgtkNZ++8IOR0udCCnDY5mf/62u1qyV3T5SNVjEbzMrtkApQ1m9lS3ZXeAy4NtvxfMPLarVEhotcpYaQlmNFlRkhYlQdWQFSQqthTHXTBw2qvQVrBxspd4OkKEmsFKncMHN9Lv1dmc9QGwr7+1k/6+LuthHaCtxCCJRIpGsC4d5PKxg9lY66USxkgsk8nhrN46iAo1mABZV0jd1UgaD3RkoAe8piScdK6UcSaJrU8YpShPIwRMbOrl1xt7nf1x4STCKCVu+c5dzTOUeps0/ZAwSojvreCNeiAsMhb4M05v0xxQ1BdAVtaQSlRBM3dwmhcsuJXnVG5lkTIUpZtMlAhim7FJJ9yajFCRTQ72p1FCUBSqk08TCh+JwGBJreaIIOHry/6brwwexsUrj4fYJ0sVfb11qvUIipC1fISwFAabNEWBuOoTzDibaaEBC0YJdKRySrj72wpjIRMobcE6YwSApCwxtZwUIBxYC6oaWg/kf/t/u27OBii96Xf88ncPPhw9e8Eh/OmCbUXgs7svj2R9aSzisJXuGfDqF36fc1gLnMb0P67ktg/sBzjXLLie/335zRx+YnfbXQEvAMm7JWs5kZU3XcSVbxvht4Xnw+vhgPGfA11XNvGin8J3XuxCLh8AvDzcuuQ3DcCN6c1vnsnd7Td+uIUVb3aUsnNYy8U3LeHb+03z7Yt2H8TsqLbP9dmd2m0A87WvfY0XvehFLF68mEWLFgGwbt06li9fzo9//OOHfCKPicpnsawQSN/PwxhzytZs22DIB8cBpuijYkcPAzpifB26kMi0rPBaBtU07uYnIJhMkM0MGyqskh1urQmUcyaz1oEWC6qRdTUouZsXme12EGaXUnn2inFj/bb9cIYDNmnW/Zxad0TqQuaUrNk0sdm0rcx0wYuQDry09yMFtlykue8g1YU+hUlDOG3RoeN1BzXwqwmqlREPhrT6FEnFcY4r6zO8psEqgdeyxBVJ3C9pDvczcGeRaOVWZ1TQDrC0Jgcbs87H97qfU3h5V0Xlds25pTLWff52t0XR/Zu2ndK2/8yzQODe+r9Vfyma2N56YpUfZkSBZWp+ijA+ft0jmtTYMuQSEvfcsF0K2XS9QG+pSSFM2H9wlIJKkVgOCTcwV9WoSIMBKiZhXdZH3YTc1FjKqsYQC6MpjimtIZIJVV3gaYP3kA4ofjV6IJOtArH2wApMKvE0iMSJ5sENthHO6dJWMmYOUPTeoShtMqSVAsEk+DVLJCHpEcgy6NCiI4sx0Kz6yJZ79qWVjGw8wgYGG6bITOA1IJjBMRVyS+SsCMmgcQ6YnmHJ3HHOWXgtpxRWM6QUCskWHXNzPIfnFKv4QjGkFEcEmxlQirIodq51hqZlMxpGU5SKogg62TW+0Ly+91ZOP/J2/mHtC7lryxxaiY9ZX0QPpggBnq/JUoVInTZHxRavBVLbjt10+xmvmsaBm5xeJjKD9VwEQlr2nAupgGjcoAOBzCxeNUXv1VbusK65/j954b2f5tVvPotXb2Cn1r0AK968gLcX//iA77cBzY66MH/7ogovuOttcPrJvOCut/GTAz/X+TlbzH/U334dboEbeBIAQ96/8Jt1RwLwyZf/DS99j8eZ3/iC05wc63hQR7z8mO6A/lr34/pDv80PL70O/4UBzzjv8+x3+tGdY1zwgYPYn31Ycum1zD/iHTzlW6/gCuA9J/87s8HLcbfF/H/23jxOsqo+/3+fc+5WW1ev0z07y7AvooIKqCAqy9flK6ImahTjGkWj4BIlaojmh4kkoiYk7qKJfpNoIFGiCIiiosgSkH2H2btnprfa73LO+f1xblV3wwAzMAOD6ef16ldX3bpVdetW3XvPcz6f53muP/VRd8luRVcPs+akZ3HvT/4HeHwVmN2BnSYwa9as4eabb+byyy/nzjvvBOCggw7iJS95yYIwx6cjnA5FYCIPpRQkSd46JZyrirEgc1E4eeXCV+hQOdKTugMm7fOI+5QT7CsobnXleeMLd+GqGUdStMWEuZ2ycS1oIs0dVQLP3Td2rhKUWwKTuiDNXtuXkBDH2Hkhl3Z+q1SWIXx/Lk8GFlRbrNGQJgtbsLotW/MH8l0NCbj1lIJKidlnLiEtScrjLpQzKfv4ddd6ZyUkAyFC5y4vVZd50G0vw1i8psZ6TpNT3GbJCpLWqE9WXEr51glsvZFXW5izac4rJj0NjrFz3xEscElD5VUiId2+6+6XLhntflYpepk2VmusWZwxW8SuwyJ5+d+F/mKbLduWEGz16AwbspJg5H8U0aTGhAK/pl3VXXhkRQ+qKasGpyl6CUUv5bDKRkb9WQ4LN7DSSwmFZFMmUcJSFJpB5cT5zyiu4xnFdUgMHeuzNeujZQIOiDYzo4vsVZ5iTUWTWcX6iQHEdOAsipUL1ZSZwGQgtDv3x4HEeobWmMRvCkQG5U2aaCrDeIL2sOceq7trWlaUxKMZpi9DeG7yTM56GCNpby3CcEq21GDuiajeb+gMznUekAnUSIdKuc3y0gwr/UlmTMCMgaYNaJmQw4ItQAGJoCgCivNGLQZLw8RIIUitQQNTWjMr2swYjxkT5dksHkWR8Yal1/BPyfFsrZfRJYNQFiGcVsnMBPgzEtVxVRYdgPYFqiRRiWvxNiqPBNCm17EhE00WeuhQ5R0GkBUFXtuRH5lZVDtFP+HUvd9PHH3UH/GTE+7kxJNewRd++jb+38bbHpXEfPPMAW7+eZXDj58F4KhnzgBw3Y39vduPhAsurvOTg3Zsu350/rP5P2feAMBPLplrMf5A5XcEF/6ak//t37j0D/6A6/JgzfVHvQ34yoLXcO1wR8A18J2C4u63zz1mLvoRy1aew1hyB+tzogQLrYu7eThdTP/BWb3bA//2uR37IE8A+983CfNI135f2sin2MhdQwu39bp54aJPJh7XISWE4MQTT+TEE0987JWfRpBxhpLanVi7xKU786+Uax8z1s3g57P5QhtkYtCRRBckrREP4+H6nX2BSJzDS1pW+LWs50jmNzJkqlGNBKskMs4wBd8RGOvE9jpSBNOdOQvl+Vkr3fvzzQVgbnvnz/Z43lwrlp1XuelZDntzg/suwemGU0Ie6qnnBvhd6+higfohI7SWKAbucfXz2mqfpCIobzQIm1tBe3llS4HIHHmJpgw6FMi8YiW0c+jx6ynhlCOTjZUhk8cuZeCmGcT41ny75FwrGMxZKOfbba2FToxQymmDPM8REusuVL11Uo2Yn1kzv8VMCgQKsZgD86h4PCL+/43YncTloa+92FK252CmVaCvr83MsI83q0iHU+orAoZvzSABmTgbfusJdAA2kWyq9bG0UidSGauDbRwcbmZEZjyYhUzpMh3rs9KbwheGikgxIiMSU2gELRMS2ZQNyRCpVXSMzzJvmhdXbyeSCb+oH4gXaDLABE5s7tVdSGVWdC1QWcVA4FqEk2HNdKDQBU26QSIzDx0IvNjSt1aTFiQ6cK5l2X2KrKBojQpMaJGJcO8hIa1CcbBNGoXOIhnICoJ4AGxBI4RFSctoWMcXmvXZIAcHE6yUKQNSIymi8smmbk1c5+dtk2fOFJEYBBUp2aY1W3XIVc0DaeiIF5XvYFQ1SJHs62/lPw/6V749eyD/qF+IMYJkMiIY6iBrLpsm7YMsE5Q2W6fhjLoGO67t2QgBVhLUMownEb4iLXvEA4pOv0QXnFFOZ0AR97sKjFUVmG092T/BpxV+8Z79ADdIfrQB8ZK//ysOf9/He/d3hLg8FN/7gnPeeuWd73/EdV6xZQr1se0/ptmb/+aN8C14BW/k+k9czb9/cAkPJTDz8dCKxYmvc/8d8VmI7uc/6taY4r5lXv3e/3xY7suuxF03v+Vhyz74m3t6tz9w8ZkArN5ruVvwPbeNYvKHwIk7TV6+83nF/l/zEKf+kCM/feICorYzr7VDBOaLX/wi73znO4miiC9+8dF7+/70T/90h998T0PaHyIT3ADd96DNXAp9N98E8jajub5LqQ3EEA94ZBG9agK48C2ZWYwSZCWFTC06kvh1i/Gcd4vIDGiLSDW6FIAQvVK0bMQ9d6+eLsUaZ0/cJS+wsA1KzGv3MnquXQpcPkqWV1u6hKgreJ9XgehqfbqVDJskCPL2K2sRUURn72Fm9vWIphzhivs9rMx7fxVoT5AWQRdcPzWALgjoWKwSaAlpyRkZyNSZGXQrUTb0CGc0jaUeE88fYOwqDdtm5rJgutWV7mfofl4MwncamJ7RQq4P6q4rutWjebDa5K1qObHZXoveIhbg8TqR7Q7saAbM7zte+86TF0nMHoIoSNl7YJabmxFipgBGkBUhKzq3K18JjCdJKs5i2ZVFYEujTGYlK/1J+mXGrzvLqJuIui7QsR4rvanee+hcGJhahUYQyZRl/jSTukxFtemTHUoyJrUe+0fjFKMDqY8o2BxilMV4FiEFpqwR9dx+OBOITLkWs8Biy5rpgyTltYrCpMFrufZmgLBuCWbdOTkrKoKaoj0sXSWiJNARCKNoFiJk2dIZEKjYEg8Ikj4LRqAzyVCxyUv7bmW5anCg38RHUJROz5LhctW6JGaOvFi0tVSlc+r0haJjM6pS0LEZ+4UT3B8voWkD7kqXcGQ4TklIFJKDow2M9deQwvLAlqUUo4S6VyLts6T9GpEJoimJ37Q9M55UCqdhVU4TozrSEapOhi5I2sOS9qjFazgBf2OlIC1bVCxI+hSV2xZNYbaHv33lp7j4lx+EV76aG9kGwE+/fDocu30ysGUeedkV+MGBX9ju8kve5UjOKXvNJcN//gfbn7S/62bY9F+vonhMmdZ9OyZKP+H95/Did33LfdZHwMn/egSDS+/jomO+/Yjr7G6cf+ODnPnM83nJLR/mJf+wkXv+ZDn7f82NrT5+yEd65GNniMePX/8ufvx6gP/kj977HhZ8A6M73sK9QwTm/PPP541vfCNRFHH++ec/4npCiKc1gTFSOLG9tphihJieXbhCOm9Qnw9uRWawkduNSUmiEvBq7gQbzmpkYl0fbWZJqh4yM3jTKQiB8SXWyysQkYfqZC4NuaCwnsBraWcx3K22dElMV+Mhu//FnFZnfhUF3ODen2eDnCb5gH+uRcxmdq79TzHnamas64tOEkcKwNk0+z62WmZmv4DihKu0tJb4CGMJZyxBzSIsdAZdgFdQdx74VoKpO1KXFgRh3TqnFu0sJlU7dUROaxdi5kuiGUNnQDJ9xBCDv4mxzfZcC5mml9/iCMhcZcl2hfnMOcb12urIKzfz2um6n79HXpQCvdhCtognhqeibWyRxOwZKAcJG+r9KOV0K6Ij0ZElKUmsEsjUnTOtwBmUWGi1QsYGazx/5D5S63F7MsT9yQhFmfDTbQeytV2iuCphpT/JkGqwVfcRCVdd75ctqjJmr0KDND8VFgVMaJ/7sn6ure9Noxm5zmMAZdGDGaKhUKUMUU4RqcTGCtkWyFSQDmf0DTZpRiFNW3AtZUYSzmq8lkFoiw5cflkwnVBYH+Pv00fc5yr1xgMZC7wtATKPAsuKjrzosgZlKVU6HD30AIHQPJhVWabqrPQkqdV0cLqWJaq4gLgYDB5OvD8XqGkpisC1JxOzVbfYJ9zCjC7Rr5pM6IBBmTCqPEZUk/2rWxjym9xfHkEIl8FDS0JgsELSWAXGU0TThqQsULEzOlCp08ZYKRCZJe0LaYwp2qOWZDgj7XPObgCEhqylEJmgXZLwwyfzF/j0wPin/5S+axV/M7qRD1z6GuzFr+DFFz/y+uce4LJizr7r0J1+L6eBWbhs5t2r6P+ndYBrMTvj1AofPPCLnMKfsmXgP9gyf+XT3/WIr/2Gq+GZH9wL4DHzbKCrdYG/Bn6+/lqOXzlngnXUrTF/ffU7uXWNx0XH3Puw5+6q9rEP/uYe/u7o/R51nTOfuVfv9rOf+RvsSedy99szxoODGH7RMfx05XNYed3Xue5rO0ZkvvN5xVA6vGDZv/jberd//pGLOf6zOyb62aEpgQceeIChoaHe7Uf6u//++3foTbv4zGc+w1FHHUWlUmHJkiW86lWv4q677lqwTqfT4YwzzmBoaIhyucxpp53GxMTEgnXWrVvHy172MorFIkuWLOHDH/4w2UNT23cAKjVOd5IZrK/m7JRhrnVrvttVliGbMWnZc7NPTUNpPKOwJSWoZcjUohLXziWMxWvnFsqRIh70QUBnyKexIqC5PCKrBOgo76XNLMGWpnuvwEcEAcLzEH1lRLGI6KvAQB8sGYLBfkSp4GyVAx/8YGE4o5gbqPe0HvM0H0LN039oPZfrAmCNG9T3zAss1hjipRVEBn7bzVDpAFRiCRqaoGHw2obCVoPMIJw2+A1NUNOUxjUDt9ep3t8hmkwIagaZuQCxtBo63UzgoYsuQwcgmjbEVUG81zAi8N3n9LxckK96eTwo1auuiCBAKOk+S16pEUr2/nrfpVKO4AW++5+/pvB9RLiw//Spwp52nMzH+An/tUPrPRUVki+sOmi7f4v4/cSedpysv3+ERjukGCXopTG2rDHdyKwQhLZ4bXe+tAIwgiDIOHb0foa9Bp/bcCIf/N1r+OHGw/n+xmexsV7lqJF1+EJzc3sVG7MBmiakKGP6ZYsVXptlnmBUhSxVAYNSEglJUWYMKTcrnLU8lDIU18zy+iN/y1ue/WtOPfY6vnX01/nO0V/lq8//Fl8+4ULOfeX/47gTbmZk2QyFIGVssEa6JKW+l6A1otCBdJoQX5JWFDqUeNsayC3TyNhiFHhtSzRpiYc1XktQ3CzwOu7zCy2QsUSEmjWD21gazFCUMctUnZI0tKxmq85YmwluSQZcmxuatk1Irbv+GiyxTdmiW9RMp7cc8lwcr85hwTiHhRtZrmapm4hZ42MwrPEkrxy8kRdW7mKflVtpdQL84Ta6mlG8N6D/Vg+MMxrAgjCQFVwEgcysE+a33SRZa8ynPWbRYR65UMnAt6hWPjnZnxCtqlM5YK5y9lRiTztO/v273+Rz499j5XVf54qTv8+Rnzr7Ede97tCQs+869DHJS1fA/84tktb/ewn/uC3aqW36uzvdRPyS6dMe9ve9b5zI975x4nYfO2vstfzk55c9zCnt0fDid32LT//VHfx8/bWsvO7rC1rN/vlq5wr2izdsLyryyUGt4rbhisPO44Ybj+YLP30bb1j1SV74j/fw/hd/nZXXfX3B+if/6xGP+FqXbvjkdpf/UTrc+3vm4Y9s0PBQPKWysquuuoozzjiDo446iizLOPvssznxxBO5/fbbKZVcUNCZZ57Jf//3f/O9732ParXKe9/7Xl796ldz9dWuvKe15mUvexljY2P8+te/ZvPmzbz5zW/G933OPffcndoe1dEI6WEi5ayNhXCVctlVPM7ToOT5JKIdoxJDUlEEMxleK0O2M1ACFSh325MYXyIyF25p8nyXrKCI+yRpWSBTi9/08gAsQXE8Rsw2QEpEIQJr0f1l0oGIrOgMApKyxOvkQkHtbDrDiSZypuHS5uebKkgF6LntN9ZVa7qtVDmhsYlBdAf21sy5d3Vb04REBAH1FYGbSUvdbJzMnBhfpu5ibD2J3xD4bY9wOsWrJ5jQIx4MEJlBtVOyckB7yGXTODGpQpgQKwQmkPitDJVIdCAJa4KZ/UKWbC4iZutzGT3gCIof9KpRvYrRfBOCrtlBmix0kusaA8CcjohcJxPsGarLPe042dPwUHL0WCTlC6sO4v3rnsaBu4vYLva042TJqmmeu9rN317aOBg76c4nMoNwxrgg4zzMWBcsqpKypK/BlrhCW/uMNyo8e9l67pwapd6KqBQ7PNgYYl1zgGYasqmvnyPK61AYBlWHSAgi4SGRpKSEwsNgqBvJde29GQkaPHP/tbxs5BYOCTeywmsTCEGYB0MCtGyN1FpmzCyrRqZoDgf4QnPp7OH8zO7HeDKEVQqER2UDtIfctai4RaP7i9iRCmlZ4rctftPgtTT1fQLSsiWcdhNdfsPpbeKORC9LGQjaLPFqBBimTMSssfzHzJHMpEVWFyZZE06wTU8zYyS3J2N0rM8x0VoGlWJtJjDWZ1SlhMLZLSshGZAFqrlbpsGQWs2MqZFaSK3EF/CMYBvbtM8RAxvwpeb+LUPgG4rjlsrGFOMFzpVNupbopCrQBWd6ILVAlhRp0ae2lyQeSxGhRnkWnbjsG100HH3gfWxqVjl4YJz+ZJJbdskv/YlhTztOLv/iy3lrtIzbfnARfzaxnO+u+xT7P8LQ9Li2zy8OuJUXfvfVPP/Zd/eWX3dj/+PbGY+ACy6uP2zZGadWHnH91qsuBFwM56nH/hX8w6u4/hOX5WGUjw8fPfYrvP/za7iqkHLI0Hs48m1jXP/18cf9ek8Um7/0twC8/8Vf57tvz9gfj098/CDeNL7wV/3j4FQEN233NW77wUUQHMRXj2px9eT2ycy2b3xmh7dph0ZoZ5111mOvlONzn9vx0tally5sc7jwwgtZsmQJN9xwAy984QuZnZ3l61//Ot/97nc54YQTAPjmN7/JQQcdxDXXXMPznvc8LrvsMm6//XauuOIKRkdHOeKII/j0pz/Nn/3Zn3HOOecQBMEOb09W8lCpzIXmXfex3HUsF5s70co8DYW1hBNN4mofWUm5sKpc/N0NthTtFBW758lEo4u+Iy8DCus5jYzfwjm6FATl9THe1rp7n8BHD1WIhyKSPoVR9GwdpaZHXrJQkC3xaA9XCWoVihsayIkpbKZdyOR8VzKR9yt0xf/zXL2EmleU6wZXGgu5EB9rsIWQrABex+K3nFVkUHM5Nqrlsmmy/oi46mMlyCSvakUQ1FKscG5vSdUjLYleDgFCkRadUNJvG4zvnh/MZnlLmk+6pEJQa+Rtc12CpubpYRzB6n1fmjmXsa6DWnc/yMC13Xmes5JWCpTEFiOygSL1QWDdDv98dhv2tONkPvYUDQw8NnF5pHV3F5l5Kl3Hnow2svGqS4au2wb71Z67W99rR7CnHScr+ma4dXopr11xA7eOLGWyWKQxUSYrOC0JUpBWfeI+heoI0pmAWiWkNJCwT2Erx6y5l6KMubawL1uTMvsUtrHUnya1Hjc2VnNPbYTxdgVG4AWFezFY6iYhtZaiVEjIKxlVZrMiL6ncxuv6r2NlHvoYigCTnxNTtEu3R+BLSSQsQ6rD+kzTLxNe3Hcbw36D/xBHsMkfREc+XkuRRU7XgxC0lxVIyhLtC4Km04qE4w3KDw5S2xfaSyzFcYFftzkZsKSJR8XvsNKboml9SiLlyuZBGCs4vv9ORlQNJQx1KyhJwwsKm0msJRCCltH4SErKUJQPt7zvtpZJFFJIIqFJrWXKGMAwKCVrrU9BpRzWv4m77luGaCm82KLamnDatThb5TQwVkJSAawknLEkZY/mCkFSNXjlFCENg30tKmFMK/WZaRb4yLJLkcIyIjOu2Dq607/p3YE97TgB+PZ95/NsVgPw5dbeXPWpN8Gr/+Jh633y22/gqt9tfzx61DNneOCY57L3r3+7U+/9UGyPvOwMPvAPrwJcu9WjkZi/vvqdfPTYr/RarrpXC3vRX3L9J8/lqFtjolVv4shPwXF3/vMT2qYngr66q7zdcOPRXHHy9yHX7Oz/tW9x6R/exKdzw4HrDp03AXzRX/KT52hOXvEprjs05MhPnc0NNx7NVZzFWWOv5YfU+fTPPsSlr+kD4OrJT1JYcQEAKz6+47+dHWohu/HGG3fo76abbtrhN94eZmed5mRwcBCAG264gTRNeclLXtJb58ADD2TVqlX85jfOs/s3v/kNhx12WC9UE+Ckk06iVqtx22237dT7y9QgdB4w2d0zYegGw91Z+3k2wyJ3KZO1FoVtKVnknmc9iQmU+4s8bKgQOtdjpM5COStJ0txqsTRuKG7JnMNLx+LNtsEYbF+J2hGj1PcuYSV4bUM4q1Gpa0krbM0IGhrVsb1KjIpd6vPsAX2k+4whwsBVipScC8EUOSEL/DnCInKNjeflDmvuTzy0Vcv3sQXXZ+y1nDmBMKADCRasr7C+a4HTvqA17Lzxk6ECqp3izcbgSbeOcSTI6zjdTK5hJZzRyNSSlqTLDbAWHbkLX3s0mJdJI+Y+k1LudnfbIdcLzVWTkCJvr3OfU3h5q1khwvaVyZYNUn/mUta9coTNx5aYPHTPzIF5qo+Tx4vd0UbWfc0n0hq22Fa2cxiv3tYjL3synurjZKpTZO19S/jCzS9i83QfhSBFdqTL3dWWuN8jrroKhjAQbFM0bx7kR7cfws+3HcA1jX25obU3be1TVjEt42yF72wvZSopckB1ghcN3c0h4QbS/IJ1ZXsZn9nyIu5KPWKbIYHV3jRvHriG54QdVnsWjeWezOeKdj+3Jj51k1E3mlmTsEkL6kbTsYZxreiXCYNSskzVeUZhLc8eXs/+e42TDaakZUE4ayhtMi6kM3KOk2HNEG1LnWFNKaD6YIZMQcW5ViXIqxr5XNpe0TbuS0f4VfMArmnvw4pgkuP67mS/YByD5JbOSsZ1iY4V+AhGlGvtjYSkXxoqQmKs08W0bUJsUwyWtk1o28SZAACRUKQIOlZRkQIpBApLUSbUsggRu66BtCio7RWR9DkzHu0DBqwHupg7WQpoLRV0xjJMURMVEpb0Nzhl+e2ctvR/OG3FTXzzWRdySOBxeBAxrAr4Ys/UVD7VxwnAmWckO7TeR4/9Ch98z618OteadLGzLmSPhkertDwSiv/5FgD6H9if4z5wGcd94DJKHz6PswrvecTnfPQhJgWX/uFNAJySXMyhb3cZi38zuvEx3/vrYxt2ensfD644+fv82cTy3v0u8epua9c17SfP0dxw49GcvOJTAExe+md891tf5kNfu4wffvpkXnSGI4jzycvjxQ5VYH72s5897jfYURhj+MAHPsCxxx7LoYe6/sbx8XGCIKC/v3/BuqOjo4yPj/fWmX8QdR/vPrY9xHFMHM8JjWq1GgDBRAPPL2CCEt5sjDW5M1VXND+/ZUkp117lC0hSgvXTWDlI3J+n+GaOZAjrXLVMwUdHHiiR58bk1sGxRXWMS6WfTIk21hCdhGykj+mDXEJpeWOCVYJgJkEmmqQ/zCsvxr2PNujI6XBUx5CVFO1BSXs0RCaDqA1b54IqjZyzDk5SF7w5v6Xqoc5bWjsCBK46YdxFyG86YT7OUdIZH4QKmbnXMIHE6xiChiQtK1dlmnWVHxM4k4L2oMJvWryO08Ho0BGWLK/CdMWtaclD+wKEc3/pbpf74eQWz/Ntpj3PtYr5wcJwSmPn3NXAEZvAJx2tMrtfkaRPkJahM2IobpS9fu09CXvCcbKnYFeQly4W28oeG08H0tLFnnCcrL17DFkUmI1FwknJzGECU86IBwOK2/LBvCfIIkdg/CZ4DUHSjLiZ5dxbGWZ5dZYVpRn2Lm6jrDrc0x7lnsYS+oMWY0GNfcIJFJYpXWTGGCKR8tzK/RgruaqzhPXJECeVb2eF8knRxNYwY+C69j482BlGCsshhQ1M6TKbk342d/qoJYXeZ3nrsl9yRLiFfgl122F5OENc8agtD2ndOkppPEVHXSt8i0xxLmXChTnHQxFICGqCtGJpjUJQd8TAbwrSTPDr6X0xVpAZxVuX/ZKWCTFCklqFLzKW+dO0TMiDxqelGqz2nGlB3Rq0BZ1XkZQ1tCw0LfRL931UpaKr6NRYtBVUpavcACzz2sTWo5mF2MCgI0FakSRVp3mxnui1kOnIYnG340FBPGTAMyAh7vhs6fikY4rjivewxg8BiS8U2hpaNiG1fTv0230ysSccJ+AGuS88+W+4nnPhDW5AfPK/HtEb1HfRrVp88D23ct2he/PnBz/ACe8/hyu/cM4CEtMNs+ziPcMdPr+dbfr2Fx7FLeBxYGbvu6kc9Jf5vb/k7s9Dcd/RHXYmA9eCxSq47tBz4V3f4nro7ZPmeR+m9OHzduk27yh+dNWVcJyryP3ZxHI+mi+/iAce0fZ6e5qXdzznu3z12jc8IeLSxZ7R5A+cccYZ3HrrrfzqV7/a7e/1mc98hr/8y7982HKRpOBFzg2s2XGDd5gbHHfbr7I8Ed5YIARjEM024dopWOVIjEwtwWwKxjmbWU+SVv28suBm9gvTGh1ITCgobGqjZlqIdowZKDN9UBmvYwlnMkwo8WsZMs4QmSGYTZyYvhuolRmMr1weTegG/0HTndRn15SoWovauM19jq5r2Xx9TJY93KYZem1yrtKke5UPkWT4TUc63PrOAEG2M0ygABfu2RpWlCa0MzIATOihOh1kJyUeLlDcluUEzAkik36fzoDC69heaJpVuWhSO5MAHczb7m6QZxddotLVuRiNUL4joN3v0JtnsawkjUOWMHWARzxkKW6GcNqiOnmLAA8hc3sA9oTjZL9fvH6HxfsPxWnT/8l/DLzqCW3X/ErOrqyeLJKYR8bTibzAnnGceE2JiZxg3QRgjETEiqQPsM55MYs8hLUEM65VSRhLUBPYeyKaqxRJpUFBpbR0wH2tEbZ2yqwqTdPWPg0d0jQhdV1gUpfpVy2We9OMebOsT4e4qnYAbx36Ff0StpmEulGk1mNQpRxfvJt69CDXtffBIBlUDYwvURhkYZr9o83sFThnoE1ZASkMkdCsCKa4bmY1Srj2Kh1KGmMewkJ5Y4qwoGINBuI+ie2XWAVeC1pLLUKDCUEX3MB/aKjBpkaVV6+4iYOjjUQi5d+3Pof9Slt4fvku+mWblV6N/rwpoih8lPBpmZSmtVSkoGMt27RPx3r8urUfh0brKfnT1I0PpKTCMGssMyagaQNKssEmLRhVhvVZkdmsgC+dI5ouGWQiMQFzk3MG4kGLDlxEQNIHybBG9CV5UT8j6fi88pCb+fDwtZSFE4wbLC2TsFm7Ktag2vFB7JOFPeE4eemfXgJfeScffMNK/s9xJ8BVV3LDjUfzVxzNpSxsv+pWLboD5hMPhn0+88fsw1p+R3WH28dOuPsO3vLjOx97xXmY31p25jm3wO+O6S2bX7Wp3/EXfOWtLrRlfpbKI6Erer/0D2/ijR/QHPCJowEQp85Z1n2uzaNWcx4vnEB/x4j159r/yBV8H1hYGVp/1NtYfxRw7Fc46b4/6C3/66vf2bv91WvfsOD2wWsP5eryE9t2eJwE5vrrr+ff//3fWbduHUmysPR30UU775bw3ve+l0suuYRf/OIXrFixord8bGyMJEmYmZlZMBswMTHB2NhYb51rr13oWtB1y+iu81B87GMfW6DrqdVqrFy5EiulswlONaId98jLw9Lec7cuANtu90Txotkm3DCDTPvoDAdOsO8Lghlnm2mFwOZWv8ZznvJ+QxNNtFBTDcg0tlygtboPv20pburks1ra2Qsb44IutUVXQneC9V01Iy156EjiNV1LmVWubU0YQWtFkcpUBLV6PoCfsxgmy9yybrvVQ11Eup9V5TbN1rXNtYecZXRxS4bfzNw2lXxE5jJesoIk6RcETUkncBWn0jhYEZFWfEwonOlBPc5bzgwyVgR1gUwsXjN1xCxQZEUPr6kxSpEWxFyLWHf7xbyqUtd5zRpAzWl/uoGZMm/zKxdpHDTIxFHOEttrCOJ+NysY1Cxp0fn+70nYU46TJ4ouAXk8RGZ3u5ktkpiH4+lGXvaU46SbBaYjA0j0rI9fl5jAuVNmBUladJUXYZyzlZWuZSmogfV81kZDLC/NMt6pcEjfZo6u3setzeW0dREpLFNZmZXBJB3rU5FtxrMq98ajTKdFDi1tZFSlXNNZQknGKCyjqoG2MCg1I6pDRd5JJDS+AG3BFy7qKxISKQQbMtiY9dGxPoHQrPQnedHQXVxuDmZi2NIZVNT3cu1hlQ3gNVJULc6NayLifkFrqaG8ThBtk8SDBqFBdiS6pFHS8Irlt3BS+TbqJuC+dAkHlzdzZPF+RlSTQZkRCUFVOlLQ1bX0SUVZWlKrSW1CzYZcNH0k2+Iyy/xplnsu48UHpgxsyvq4qbOKiuwA4/SJmLrR/La1hsR4BDJz3tK5/bEOIS1bsAKZumBKUzBQztDCYrVECFgyVOPAgS28fPB3vKQ4QVUWFoRs+kKxr1/uLduTsKccJ/967jF8GLjqwDfx3es+xf857m1wqWtZ4tPb3/bubP9l/76Mt7/8N73lXQ3Mwde49rfbn3fFDu2Lrn3yI+Htt/+crx18/A69FiwkLn31CVqU+M7nFV9u7c0vzl5oi/zjILcMvuhUrv/kuTz7mb+h9OHzOPJtbj8uEO7PK74c8tmXc9tHLtnhbXqiOKvwHrgKRzLn4covnAPAia87Bzizt/zS1/Txs1/dRfz8lbzjOXMpnPPJzBPFTicr/eu//ivHHHMMd9xxBxdffDFpmnLbbbdx5ZVXUq1Wd+q1rLW8973v5eKLL+bKK69k7733XvD4s5/9bHzf56c//Wlv2V133cW6des4+mjHUo8++mhuueUWtmyZc+u+/PLL6evr4+CDD97u+4ZhSF9f34I/AKTERB6yEWM7nV5rlVB5XkriMlRsO+8t6p6U8kG/NQZRaxA8uJXKXdPuoYIkqfpkRYUOBTqSLi+lpgmnUooPzqI2TUKSgpJ0lveBhdLGDqqdYpULVDSRRzJUJKsWsKHChIrGqgJJv09S8ekMKtoDEisFKnFOYEEtw4uNs70cKM1pQboGBd32sfltY129C+StWXphG5a1iHqT0haN0GClIC16xEMB8YBP0u87sqZcqT0tCFqjgtq+MLuPT1r1ERb8unYkJdWIzKALPjpSrrWgniJbCbIZI1ODSg3WE73+auJkrvoyn7zAgmwXjJ2rOGnj7JeVwg5W2fa8ETYdqwhmBMVxQXGLpTjhdDjadynRneE9owKzpx0n97zw/wFPXMC/s2RkZ93Gnmo83bNYni5aly72tOMkK1psYLCBxa8Lll4l6b/DzQGlZeU0I75AaEt5Y0LlwRaFbRnFrRnljQnVewyVGyOuvnl/7psaZolf48BwEwcXN/HW0V/yksptHBw5i+CmCfn3rc/hL256BddPr2a/wgSHhK43fl9/kr28WZ4RNBjqDtAh15OY3G5ZMGt8poyHL1yIZCQ8KlLTJzusT4fYmA4wJNscW7iXowfvJxtJmTxckCxNSSuuBdiEimS0xOyBfWQFF2TptQRJtevmZUmrGplBMK2Y2DjAf244nM9sOoWvbjmOEVXjzf03cFQ4yzKlCYTAFxKJ6DmMwVwWjMEQCUmA5qXVWzl1+H84MBinKjX9MmPKKC6uHcFNnVWMeHVmdZE+EVORKXelQ/zL/UexLS5x69RSiCVqxnNW1xZ0yZCWLTJz7d62qPHCDOUbSCRSWl44dh/vH72CV5amKYuQ2KZMmjabdYuWSXuESwlJVe4ZPcl72nHy8ddfwvCXn88NN7rX/uixX9kp967XXXI0r7vEPXfbBXN20DtKXrroVlN2RMR//jmHPerj9Tv+gvodcyYEpckPwc9G+Vz74SGN13/yXG648WhuuPFoxKk/5IYbj+YXb7iIs9/8hifddeyRKkYX/s/fbHf5dYeGnPD+czg9PpIT3n8OLxqf4wDBC87iRePVBeRlV2OnKzDnnnsu559/PmeccQaVSoUvfOEL7L333rzrXe9i6dKlO/VaZ5xxBt/97nf5r//6LyqVSq93slqtUigUqFarvO1tb+Oss85icHCQvr4+3ve+93H00UfzvOc9D4ATTzyRgw8+mDe96U189rOfZXx8nI9//OOcccYZhDuZ42H6IqQBZmp5y1E3R8VzBEPmhGb+61qbu1wJyCzW8xBpCpMzFJKUsFLEFDxM4PQpKtbIVopsxYhWZ448eIpk5RDxgEdQ05hAYvyQeNAnmhSoRkIyEJD2hai2T2fII6gbZOw0L87VS5DWlbNUrmu8Rkpacl9xe2mJ8sQM1lhXSekGX3YH/POJiufNq8rkn9OfazuzxlAY79BYWnLOYSU3i2hlrumJXQ6MUYqkT6A64DUFpQlNMJM6omIsIskwkY/1FbqQLzM4HY1xeTCinSI8ZxCQFgXVB9N8f3luW3M90lyVKP/OPDFXnYnjnuOaHhtg4/EVWssNxU2SyjqDSl3FxW9ZwhlHvrKihMdnzLXLsacdJ7sSj1WN2R7J2dOJy+8Dnk7EpYs97Tgx1RSJT2G9R/99huJEQlZQ1PbxSYtOAO+s5i2q7SbBZGrICh5YNxklE4g2ecyICl/jWA4Y3kIgM+4MltLWPhtb/dTiiA2bBxHTPqasKa5ImMrK+EJTlIqihEiESCSxTUFq/J5DF6RY6sayRZeZMUVUMA44N7O6UUhheF7hPjrWEZq6gV9OroFUoIsG0fSwyrL1CA+/5pGV8pwbCza3MrbKVZcAiAyZFshE4JcTJrZW2a9/K68evp7nR00MHhpLx7iJqZbV+DJDCYGxFolg2nRoGkvHSpSwVKTrBInULFJYWlYQCYsvDKFMOSxaz5B0LXYawaQJ+WntYAJPE6mUTeuG8Gedy6cOc6MBz12PvJYlnBJY6ZMOg6x7CAGrlkzxxoFrOMBXNEzMei0ZzyosUYbVniYU7trbrb74Ys+owuxpx8m9p2c8s+lcu4589VwGyovf9a2dep3KCz8PN56zQ+t228e+c+JtvPGyQ3bqfXYWP1wyyPG8jzec/i6Ou/M9vPDcNfzi7Ht54blrAPggAK497O++u54PvmElZ7/ZVSkuuuoszv327iMAO4q3POvPuORdz+fjh3ykt+y6Q0N+mjuSrf/Iy/nosV/hheeu4Yg3z1VYnFD/DbuNxOw0gbnvvvt42cteBkAQBDSbTYQQnHnmmZxwwgnb7XF8JPzTP/0TAMcff/yC5d/85jd5y1veAsD555+PlJLTTjuNOI456aST+Md/nGOxSikuueQS3v3ud3P00UdTKpU4/fTT+dSnPrWzHw2jJGpLzaW4d9Ptswxwg2JBnvg+f8bf5Gfl7mA5F70jFUzPImcbSCl6AYsYJ3J360j3F/jo4T6ay0JU4k74nSGfTr9ERwIVe4jMOo1L5CG0Jag7j31hXBuaMBDWQLVdvkBa9sjKPjI1hLOu6rOg9Qpym2g7N+jvZsQkaR7qOK+lTHi9qocQAm9LDWyJLILCNoPfMCRV5RzEEoOVCr9BTgYgnLGotmuBUzjLal0KwOJycfL+hawoUR0PkWpnMIAjNCo2BA1LON7AZjlx6RoriDygM81cu5/nzfs8OMexKMKWC2w7okxzpaZ6p6K0ReM1DV5H4zfcgMHPDCaUCA3eHkJg9rTjBHa9ffKOVmMWycvux9ORvMCed5yIhkdh1mf4toxoIkY1YwJtkUcOkZQFlbUpMnFaQpFqkBLZ0QTWERmvrcmKimhKodd6pOVBrt2/H2+0RToTIVKB0DkR0a5iMDg2y1RcZPXwNpapGJVf4mXebOELRRnpHMqEwEeSWsM96SDr0iH6VZOm9Zg1MeO6SN0U2MefQucWkR0ruCcdIdYeKHcdUx036RMPGLKSyCvzLttLaIGVFh3mWV+JQMcS61l0aJDCsmzJDFNxiY4JmDUJv43HaJqQjvEZ82fYz59E2ZQyfm++zUeghKUkukJ+d92syBRfQEVIQuGMC15TuZWSkMwYQ1Fm1I3PPckY/3nnM/CDjGsbq/G3eYTTguYqjQkUXhNEMme0oHNNjDfpk1UzKqMN3rPq56xUhrWZ5pL6YQx7NQ4JN1GVKb5wLnCxzfL9ZvjqthcC/77Tv6NdjT3tONlv6j848rMPr7j89Munc/L6ax8m5H8kXPnOA7nstmV85tiP8OevX8KzH3j4OjPvXsW3mRPu727yUr/jLzie9wFON/IPW/IZ4S8dsP0nvHcv/gH4yK9+wI+DU7nhxqO5/ruf67WTPVWoVUb5+CGOcF35zgM54St38omPH8Slx36Fv776nfx8/bWc/K9HcMua9/C2cfjB8BVw0a189LoiP1iyD7x292zXThOYgYEB6nVXYlu+fDm33norhx12GDMzM7RarZ16LftQx6vtIIoiLrjgAi644IJHXGf16tX86Ec/2qn33h78dVuxGbnWxcy5js137zJ5C1b3TNolM91ke8gDIu28nBKcFkObOacvqcDLy+GVEs3V5TyMMkO1M+orfWer3LRkBYmVATpwjjVWeHgtg8wMVsydZL22QSUuHE2HAqGdVbFRLmvGWQ0LumUV4Xlz30G3RawXbJmTmzCcy1GxGrLMkTghGL6lzeShBRACv5E5Aep0jC76iMzQty5DppbaKm/OPQzXdiZTkwv+QWSWrKKIq07jomKFsAHGc8RLNdO8JU4jZhvYLnnpfjfzAze726+UcxzzPLfc92juO0BtH9e6UNzmqkRJnwIBKnbED4DYQEXRWrpnaGD2tONkv1+8/gm/xuPB05G8fO8rlz4leTCPt33t6UpeYM87TvrvkJSahmAmc1VlKRGzdYqbB925xVq8jnbayDwsWGbOyh8pkNai1Nz5GpygPAg04WiDxoRTwcrYOTRiYWa2xMtX3cYR4QZiC7+NSxzsz1JQARkaiUQKUEKgrSXNLYYP8Cd5VjiFthZfCHyhKIoWvmhTFD5TJiHWlk1ZhStnD6KV+oi2wkYG67kWK100CCMRuIwX1XEGLOnKGD/MsA+UnLGBDwjXXpdOR2xsBkxVO1zTty8HBhN0jM+MLtIyAccU7qcoLCDYZpJcDxPgC8mgkKzPDP3S4AtDINqEAipSURauCuCjMCJmxpiehXLTBmxK+9FTIUv3m2XLbBkTWlQs8JoSHVlHDK0gHdQ0pUIXLLaUITqK5asnOXOfKzgm2kRRhiwTmj+u3kpZhkg8wMPgqj/adlv2Upp6z5gR29OOk+M/e+p2l3/02K88aqr7Q3HZbU5f8+z3f5ZLN3ySZTPudW/5cZ1v3Xg9Pz3hRXzk2wV++uZfPOFtfjz4xIv+lk88wmO/+bNrADj6b1yF60X7fY1S55Ok6zfhr6RXkVkxPtfltLv1L3939H4LWso+8PxXctPaca7M779p/BaOz4X6x698Dn8fHtlb1257CWtu3MQPGOwt++q1u74Ss9ME5oUvfCGXX345hx12GK997Wt5//vfz5VXXsnll1/Oi1/84l26cU82bJqC8HOdSF6teIiQW3Q1Il2C43tzg/8uustMbp3S7rjXUXMXIkeKDGaon9lD+lGpxW8YdCBJyyE6FAzck2CloLbKQ6YQzRqiaZd679cSTKhIy567SBQF9RU+Qd0jnHWzei58y11EVCuby64J/blqSpcIdNvGuvqY7j7JsrntTuecyGym8ddupbhkBUlFkpW8nujeSue8NuciBmHNVVFkop3xAAJhLUmfT1qSNEcltSNivImAwrTEawpk7CpMJvTQkaJ0/4zTJmnjtiNJe/tbdAmkNm7/S+VIpNHOKnmsny1HelhhscqSRW5g0HXSyQoSqZ2zWzCT0RqRdJalu+iXtYgniqcjeeniqSIxi3hq0X9PjK9c9hdZPvmVpFQfSKjvHZBWfYLpBBN5mIIH2iLztl7jK+JBd25MSwIduJaz8oOSVtrnhPCRxRRcFKWMBQPLZzl55R0cUtjAVl2iIjsc4M9SkR5bdIvfJUM8N5ymLN3g3mBQCJQQlKQlFJIUQ1H4+EKBTKgbjS80kRAs8zIGbY2XVG/jhm0rkYlANj10aNEVTd+SBsPlJmv6trJPYVtvP0hh2BgPcLl3AO2NZWxo8PsShLRYI7Dri3QaHrcMLuO+yhCRTHlBeA/9MsttkN3APxQaYy1bddwzGuiXhor06FhNSbhsl7IIe1oZBZRliKaDAXwM0OGyiYOxynL44CaumN0f41uM5/Zj2mcwvqsYaR+y/u7kniNdzx15kFOK2whF0S0XUM5NBlKrkQgMho7NiK0hFBKFwGPPaCF7OuFN47fweKZiTl7xKb7zecUHz61xybuu5lxu5XnnbcSzf94LTGxvOANwbWS7E8e+cBlX/2ITwWZXnUqWPtw+uEtcLjzlwN6y0+njgDdcw5+/5WW8bXzFw/JengwRv3Mpm8NLr+9n5Ts+zHrexre+eh78+g8594BbAXgJ8H//74MccnqDb9y4abduVxc7TGBuvfVWDj30UP7hH/6BTseJ0f78z/8c3/f59a9/zWmnncbHP/7x3bahTzrmk5huJUZIyGesEBJrM0SauZwU7yGtZGLefX9e8OJ8698opLV3H37LILSlM6CQ2tlrVh9I8eopCChuy1upkjyssp1bOGsXWimsIO6XPfGh8dz2eW1DXJUEDVetQQi3rVnmtiEMsMUIWwjQ5RATSNKSh9fShON1RLPtcnC6LVsLBP8Gm6ZU7pxi+oghmmMexS0ZwkJaUSRlSRa5YM7ClMFvOF2PLvhOuC8FaZ/nAjo7hrRPgnYzd1kkCAVkZVfJMaF07XKzjYWzR/OJpNag8mBOY91UpXLBmwhBa1mElV2NjSCLLCpxWTZJRWIUFLdpJ+KPJIVJg6h5PDkRUYt4OuD767683eWvWfWuJ3lLHh1Pd/OA3xeIzAAWqyQ2VKAlhAH+VAehA1rDHn4jc1kjRmAD54JpfOkcJlWel9KwhNpZ6he2CYpbFc2lkuYKC9IihxJMKnnNXjfxjOJaOiZgpVdjWLnBf4pmQvt0rE/HGlLT6VVaIqFctSXfZiXcZFVqNS2jmdABkPQ0JW4dQzXssKk/Q6eSvfad4IVL7mXfcIJjCw/m76tQQriKDwKD5YHhq/irZafwqxsOwlhXYUrbPqJgsOWMB7YOcUXfIbxm8DrWeJLYuoBKem1jihYpqYUUiPLlLatZn/kURcaQMigSCgQoIUntXIilxuKjKImERhKwcp+t7vMoA30ZSb8k7bOYwGB9gWxLRCqhmiI8Q1+lTehn/J/+3xEKr0eSum772hpSqzEYWlYjgbqxTFrL7+Ll3Da1cxrhRcAbVn2SN/IXj73idvDGD2hOPOTL3DX0Yd6w6pN43/nzXbx1O4arf+EG813iUlhxQY88PRrecWuNt3xvE7fe7AoDbxt3TnED//a53bSlj46TrlWcMnoZb8p9BU74yp3AOVwBrDvqGP7r5h0LI30s/P0BL+AtD+7YujtMYA4//HCOOuoo3v72t/OHf/iHAEgp+ehHP/oYz3waQWfg+T1nK5tlbkDseXMtS0q55UI4rYU19LR5XecrxbwBv3H6Ee1879EawhARhXT2HkYHgmgyJen3UKlFdZzWBdwFzAQK1Ta9PBSrIKn6+E2XGeC15xLrjZ8LQhOL18yQ2rWfGS8/0wvhBvS+h+kr0ty7QmtY9WwiZQY6cPoUtX9AULdU72vhbZzCJolrOesStPzziuka/bd7bD2yn9aIR2k8xXiC5lKJ14Sg7kT94Nx3rCeRmXHW0NbDaxu8espIBlNxgNcCr62prQqJZjVZ6COMpXj3JLYbgqXmVce6xa8g/95M7gXatYWWEluMaA9JsjVtwjBF/qaKMJCFAr9pCGvaBWXOI39BzeC1FyswewKeyurLI5GW7a3zaETm6VCFeTq3j+2JMIFyE0XaYnwFnkVUSwitKa/vitzduVlYiyuluIqw19FEkwlZpDB+rhHEaUuSsiAesMhEYPosUZQyPNzk0MJ67o9HWeY7B0yF6LWILfMyBtU4Srg0+1C6qkAoXMyjzF29nJYkD4YUgmUqycmCsyRWQpBaj4P6xkn3UhzQt4UjKw9wQvF+lqoCUOiFNyohF9gHr1A+X1p5BT8buZZ74jG+88BziKOUhldAAAOVFjNpgZYJUWLOwauL2GaudUxBy2jq1pBaSIxAI6hbn62pT8uEVGSbSCSMqISlqoBEEubkbKMuUw073L1ujOFCg9DPCAaazLQUwaRCFyW6YJzxQF9KudomyxS1eoFqXwtt5Rx5gYfcFigUVaGQSAwd6sZwf7yEevOpM0t5ukK8+vGRF4ATD/kcH67/jvO+eh5L6r8D78DHftIuQPE/3wJA61UXPuyxC085kHff8j7e0biIr5Zf/Yiv0TUZ+OpDslKOPudZXHXgm1ix6sklw83zPty7/c9jh2He6fZl541OF/W5S1/Df/3fBwE4fc3fcjXnPinbtcME5qqrruKb3/wmH/zgBznzzDM57bTTePvb384LXvCC3bl9Tw3ygbHoVkq0m+W31iLEPF3MQ7FA3N8dSDMXENl1ysLpXkwgKUzE6EiBBa9pkNrmwVkeft1ZIuuCJC0IvNi60MjYkvR5RFtihLb4LYPXgSySBLMZXkujQ0lSzQWcqUW2EjAGWwhJl1WZPDjCeIK+9RlWCuKKRBgoTWh04CyLk4pg4qgyfWMRxbVN1FTNtVrPS7232iC3zTJ8k2TLUX00l/qkZYGKHXnxOoa4qlCJRcXWmQkAWdF3LW5KoNoSv5Ex8j8aqwS64MLPskiSFgUjv52GWmPOcEB3wzjnVbq0Acyck5qf9xvnLXEyA10LsMMZXgfCmgXrqi8uj8eQFSVpUSKs22fCzl2YFvHUYE8nL9tb/5GIzJNBYharL3sOhHXna2HcuUZoA9piQ0Vps+6REuMJjO8hY4OwopcZJrDI1OI1E6wvHZkJBDoUWJXb+3YUw+Umhw5sZkYXmdUF9gvHqUrRE7b75FUWYRaI+bs2xN1lAKk1TBjoWMWmbJDV3jQVaXoi+LuSQX5Z259nlNZxUvUWDgumGVQh2gZs02026YB+2QYgFDChAw7wDQURUJQBqdU8P5rmuGiG5x18H+eufxm3TJUgkWydrKCN5PLgEFZ7vyIQhqUqwBeKB7IOLeOxt+/a3opSEVtDVXa3PUMhqJuYCR3zYDZE04T44UZGlXEOZhgmdMx3tr2U/rCNbSk62kdJS5K5qpeOQLUFIFEdQRp4xJEjec/d+0EGgxZ7+TNoW3gYQQN6FSdwVs+hkCANx5Tu4cG9Sty/u35si3gYLrvtLD686nR+8uk6sA986Kndnnc0LnpcYvZuW9nV3zuX/7r5I6zAtY89HmxYt5mdUaF89dA+vnXvhwCne+/qYJ5d/x3nVZ7BfSc6V7L/y4OPa3ueKHZ4hPaCF7yAb3zjG2zevJm///u/58EHH+S4445j//3352/+5m96VnxPaxjrBPjpXJXBpnnGi7UIJXMSM4+8dNebV6HBmu0THCFBKkQhorVXnxOQK4GOlBvMewKRWeqrAurLFZ1Bj6ygaA9JdOgqBF7HOF2IL2gvjUjLEtXWqNjixS4vJSsqOkM+WCd895suGdlGIe19h6itjgjqluJWg8hca1rQNBS2ZQSzGeGsxkowgUBYaA0rZg6p0DxkDFsuzjl8mTntj5qYYfSaWZKKoDXqyEpY06QliQ4EadFVgpI+n/ZYgdpegctAMNZl5ESO2OmCpDWssBJKm2NGfjkB41vdPvdyZ7SuXTLkpghzF5FecGWWueXahXZaCaUHPOzNfXnApyOKQjuDg3hAOTKVWNIiGF+4qswi/ldiZ8nLjj53dxKMRfKyB0KCVRLRJTBKoMsBqqPx6ykis3NEJnCBx8JYdx7Pz4nWl/k5UhJXFDqEcFLk1r6WgwfGefPwr3heYS2vq97AocEk4CowkfAIhUdRBoTCz9ub0l5rVRd+XjEAGJRQERkHB5Ms8wQVqWhaQ8u67VkeztCnOhwRzhAJibaWu1PLV6afw1XNA7kvHeDOdJjfJcOM6z46VmOwaGuQ+TZJJGv8Dn+x6gesXrGNfdaMs3Rklm2bq/xi8xr+YsMr+H7tmb0KUkVYlnkZRRG4yoa1FIVrVYuER1G4CSsNjKqUZwTjvKCwlmVK0zIpv+mE/Kxd5rMTL+byOw5ifb0fQkMgNaGXoaSBSKPLGhPg/ivwpyVpIyCdDRkOGwwFDaZ0RIZeQF6UcFWZLnnJcK1kPgofwXXtvbmnPrx7fmOL2C66SfAnfaJC9UO710DhodWWz//gRL7y1l0rWJ/fonXbRy55RP3L6yvn7JL3++fXL1lw/4Ybj+akaxV/NrGc8yrPAOCQ0xvse9ln2feyzwKw72Wf5Vvh9bvk/XcEOy3iL5VK/PEf/zF//Md/zL333ss3v/lNLrjgAj7xiU9w8skn84Mf/GB3bOeTAptlWC/XUQAohcj1K13SIoRwmpauLbF1ab2Ch4QqdrNJPG/Odcw6pyxTLtIcVVgFMg3cBUs6fUxn2Gd2P0jLBq8t8FuCwjbTc8oyniCLZH7fEs46C2WLC4e0SmCUa40SxmI8kdssG5JlfUwd5CO0S3qWqWtJC2Yzgll3EZVxhrAehUmBMKDzNiu/ZYj7FemzRum7axY5Wes5koEzQJBbZxj7jWTLURWMLxwpE+B1HFmwEuJ+RWvUVXuKW93njgcVWeSqJMJaomlDaX0Lb9NUbqzg7KsdIZm3f7vucOC+iwWPzTNMUK6io0NQMUTTlqQsCeqGcNYRnCyUzs403y6vZUh3wK1lEbsPT0X15f3r7tglr/No1ZhdXYlZJC57Joxyk05WCUidJsZKiQ4VWSHPFDP5eV2LXPNikbiqjJWu0rJg3dTiN8BvQWdIgGc5pLSRkshQWCpS4BzpXS3AQ/VanFKraVlNx1oUGRKBj6LbA90lC5FQKOnayaa0Rgly9y9NNZhkpTcDQFEoZkxGKFyL2h/1X0tiJWP5qbdjXchkCjSMa/911s2uIlQVitVeh+8f9B1+l/Txd+tOYnNTMTlZxliY7JQ4rnQnB/ixI0pYGiZmq7FoK1jm2d4MbGo1qXWVolB4+DZl1ljWap9JXeIbEy9gOGgyFs4yNNQg8jIGRuokRmHBdVYk7roqMpz2RboYAAx4MwopLANek5qJgIc7rmprek5v2lpim7FeSx5Mh/nhxsMZibbu4l/YIh4NHz32KwB86K5lXHOKszI+4u1f56avve2p3Kydxlt+fCcXnnIgn/30OQuW//Prl+S2xSt2+XsOXfB2zEn9sOZvOesnMxz37e9C4Z/hToi+854F60bfeQ9rbhzkvpsTDv3Qx7n3j3b55jwidprAzMeaNWs4++yzWb16NR/72Mf47//+7121XU8JRBgikLklb75QM89+OK/EpHkLk52XUN8lLz3Bf/6/m6nSrVYIge4LScsCv2lJSwKZCdeyZCyze0tK6y1hDcLZDOO7x9zg2qI6XdtmCGayXCjqhOfGE05v4glEjEuv90G1UqyvaC4N8Jqu9cBVGgQyv3BmBYXfclUk1cownqSw1ZD2eQQzTmiqYktzTNHp72fkfxRqfBpsik1SpxkC1MZtLJ1q0N5niNrqgKwoiKYMQduQFp2jjvHBr1uaSxQqhawAqgOV9THBhmlEnEKa9siLcx2bl0nT3d9az2XYJK49r0c0lcyrYu6LLEwadKAIata1yLmuABe+2XHVK5GB6mhUbqecBYsEZhFPDN9f9+XdRmIWicueDRUbUBahXBXGBh5pX4AOc0JiXaXXTdyATNykE7GzT7Zy7k9mFpEZVEdiPEUWukr3yLIZjojWUpWalhWsz3wioQFNUbqB/R1xwIwpsszr0DIRRZlSVBofiRKClkldcGRvwkaTWkskJGCJhKBjLeM6ROVtaSPKCftnjWJQQlUGhCLrVVdaNqEiPFJr6FhL01pHhHJBf4qmLEKqMiK1mmcFdQ7qG2fbfiWeObKBrZ0yE60Kn91wMonx+ONlV/OscBMjStEvNRJLJPxey5YUdoFpwGadcHV7Ly6aeDYAt6xfRqnc4YjRjfRFHTxhKIcJ7cxn22wZpQzerAcGgllna21CizQCAoP1LG3t82BnmEHVoGNrlIVa8H27KpPt2VRLBHUTcHN7FScvvR1abf7zyfnpLSLHiYd8jq+cEvMf2Z2c9iRpYHYEj6Z/2RFc/b1z2QfYB3aZeH7ogrdzIX/DsksqbAJ+1fkkp9PH+fFdwMOJy0Pxfw8PeOWW+3kyLQYeN4H5xS9+wTe+8Q3+4z/+Ayklr3vd63jb255ezPahsFnmBPbd6kk+OLa5Xe+C1jFwrWb580TXXji/CIiHVmK6VQEpkYkmmrL4bUNQ03QGPZKKJClLZAalCUM449oLsqJrbRKZ6bVZqdhVVhAgE40peKjYkFacaFSmpteS5jcyVL1DMlahOSaprNeo1LrsAQFxRSIzhUwsxpOYSuBE9rHOP4drbfDaGb4AvylJKoLNx/ax9NcCtWmyt3/Q2gnt05TCrW2i9RU6K6ukfR7Gdxk2xgevBUHDGRAUx2O86Rai2cZ2YkjSnrAVcARQqTny0g3bVNJZk3a1MNK1i1mtEbnRAkJijYFM47UNaVnlRgWuVczKfPYzkDRHFeVNGpMPLlRq8OuLIv7/TehWX55I+9j28GgkBtgpIrNIWp4+sEqAEojU5Odvj7Si0L7Ab5ncJl5i1JzdvEgN1nMtZzLWuX7PuCDjToqJfJpLPdqjgqw/Y6ZW5PyNJ5IYj5GwwWuHr+NZ4RRlEfSyXmZMkUikpLmmz59n59uxGSmuktG1Jpa5XiTFEgkXGjlpBPckY/SrJiOqjg90rKUqNb4IkAiKeQtVN7xRY3s6nCgf1BeFcg5d1pIJjbY2NwawvGf4F7yi/yb+feo53LV1CVmmSLWi2Qn4/2qn8Lylazlt8Dr28WYBMCQUhaJuMmaMZMpE3NJZye2tZVy9eW+MkRTDhIGojZSWxsY+fjVbYHTJLFJYAqWpBDFBkGGtwGsJVBuKE64zoLVSY0Ig18dsblc5vLqRMW+WSLjr/XwBv3mITXIkPA7w26zuv561WZEb44UtOYvY/Tj8or/lmlPe9zDy8rwjT+dnTzOL0bXPfBWrb/xPAI597dkAvOH0d3Hst77MG05/1xMS9g9d8HbOj+/izPAANr38DwBceOZvW7T/7QauOvBN/M1X7uTKd26fBK667tdc+YVz+Nxt/wq7Nxt0AXaKwGzatIkLL7yQCy+8kHvvvZdjjjmGL37xi7zuda+jVCrtrm180iCEcKQkbxGzNtdJ5PbDgBskKwXaIoLuNP5ckv18kmO7wnJA+MFca5pwgnyZWZL8gpaWBUY5F6xuNQZyAiGdTkZYRzx0KHrOZyZQJBV/LoQR136QFZVz+JpsQ5qRlj1Kmx1hsp4grkq82Glp4j5FNKXJCgqZGmTmXtf4TlAvY/e+MrUUt2QEDUlttWLrs8oM+RJ/7dY5h7C8Zc6mKUxOE03NUgiDfJ/OO8HnxMTGbvbAgiMp3UpXkvZIYc/RrUtUuq17vaBR07O17n5Hbh0DRiKSlGAqobDNY2Z/ENpS2uRa3IS24FkquZlBd3YUQLQWKzCL2DV4JBIDew4pGZs9ZNGJbBfCSoHxnLLESkFa9jCe0xWKLM/hMhZ8p32x2ulhrAdoZwBgJe4SYi264JNWfIzvrhOi4M53xgpWFac5ZeB3HB3N0JW2plZTNxnLvFkioUmtZKXnJmVa1lI37vkpgkreMeAL6QT3wrVrdUnIrImo6wiFYUQ5Qa8EUusG7qm1uTHAXDima0+DqqDneCYRSFxC/f1pyoQus8avMaJCfFJGwxa3FDdzRbo/xkji1KO/1KbWjvjVxr25cdtyQqXpZB5x6uEpgzaCdhyQpgqTyZ6tcVBIqUQxsfbQqdsnYTFlIGozG0dMNotYKygEKY12SFZwAZbGAxPguhymFDq0mMDSznxUfuGtm4SqjJhfg5FIECbXwbj3KwofRcZW3cdNjVXANbv0N7aIR8fNr/4QEPfuP9ntY8nST/byX3YF3n3L+/inw/6+d/+WLd/lDae/i5M+UeGza87ZqdfasG4znPdhTn7G7Zx3yb9xHvDeqRsAKPyBq1yef/rHuQ7X+njlOw/MDREcTkku5sfBqZz0iQorP3sJp3MJS+ov5Tz+8Al9xvfd9csdXneHCcwpp5zCFVdcwfDwMG9+85t561vfygEHHPC4NnCPhVL0JlGUclWUfIZF5K1iohC5wbWaN9AN/LkqS26TTJa5NrRua5nNPTJ9DyvcINpraISFwoQGJUiLHiZwVRMrRO/bsQq8tsuK0aHE+BLV6YZrCaYO9MiKMHSbRuQEyG86lxuRpCAlnX7lhOvakpVcJcJZL0M441LorRKkZYUuSLQvSMoSHUFxq8FvZYjc3jktK2RetZw8rMiQWIJ//7gjLTCnP7HG6WQA0rQnqO/l4Xh5a52Ypx8yLpBSeF5OZtQ8XZGk5zshFQRiLnfH85x8cr4rTLdyEyd4tQ799yiyQkRrzJKWIKlIZBagEkOnqtzAQltUx1VgMrUo4l/ErsOjkZhF/P5BWIvJyYnQFhOKXJOYt/0WlMv0gtytzN2UsXaCf+hlb4nueVNCOGtJqoJOrBCRIyH3N4a4MdyLW9sruWF2FXuXJvGFJrWK0/qvIxKaitRoC1uNx4yJ6BMxFZlSFBYNxBYG87YoiaBPRpRze+UVXpuZYBtjqsagSnPnMVc98XD6EHCkqVud8FCEeAuqFN3PCrDa89jHjwFnL9wN2HxJ6Q6uW72aG8dXUK8VAGhsLoOEZktiPZd9E0YJceqRpQprBZVShzj16DRCvDAjCDISrTBWYBOFaguyVLFxtkqceCQdnzj2Ga423PcxmpAtgbQcYHxDYaNHOON0oM0VhnvXjrJ26wDXjOzN84Yf4NS+/+GQwO0rJaQL/8wpzXxiYzBoK6ln0RP4NS3i8eCy287ixNe5HJZrrv/Wgsdu+OJRPPtPr9vt2zB47np34zOH7pLXm09inv/ZtzD7twk/+XSd7+Yf719ecA/qR99Z8JyPfOIc9x9YevrHOf6Qv+JGvsy1/1GEO+FHx53As18fw59cDcBh2S+5liLFOz/HccBVB75pAXkB+HFwau92V/C/7fTn8o0tL+JLfGyXfNbHwg4TGN/3+f73v8/LX/5y1PxE+d83zG/56grE80GxtRYBvfwXYE6DAe6/zB/rtjhBrtcwWGEQmUa2Ury2C2j0G5lLp1cSnww5rdEFzwnwpUS1MlRb9Kw4jR8QzLrnmMC1l4WzltYKS6dfIjWo2AnSS5tiZ51cLpAVwGsLspKivsJpQbLQuX11KzbGg86gJO53AWpJ1SK1wG9IIiGctsZayutaFCdcFaqzJKS+KqJ/th+5zeUP9LJienbLOg+BmRcIqnL9UC/ck3mWyPlFvac/cg4iwlOO9HT3dfe5mXafs/tdzTNTEL6rkolmG99XVDb4ZAVFc7+E1au2MZkso7wR0pKguFVjPIGOJEIrrF60Uf7fgl0l3n8sPJkkprXBpSgXV0zs8HMWqzC7DkYJ5+pecOdjK0TPAdF6ucuhsdh8wl6HEpnkVWHp/ltwIcR59V3GhjCzJCWf9qgi8X2mOiXGSjXWdwZoZiGB1Iz6NTrGZ1kwjbGSKR1RMxEPpiPc3lrGfoUJnh09SIWUupHEVhHmLV1dMtJ11HLhjA5FmblrAa4lrAt/HvHp4mHEJYcLgRR5TorhW7XVbE76Oa58J88IHJl4Vt86lLBca1ZRnykiihoVaHQaYn1LVEiIOz4D1SZRJcNXGm0kW7MSpWqbxtYSadOnU05YPjRLaahFUxWg6WMKCUcs38hYVOPg4iZaJkBhkcKwLh7if6ZWMlEvUy+X0QWPYFoQTknaBYmqWAaiFvc1R/iJPJRi302s9gLUIxi6SgQFEXBcYTOjoxN8//H+mBbxuPG3J7wIgOdf/xZ+9ZELef5n3/LUbtAuRvVDAWf/8wOce0tuVPCBZ8Bl7rFPfOlYPv0nV3PfiR9h6bqM4w/5qwUtXp/40rHc8P9CR16AQz/kwuhbwKHzbKe3F7t53/ofAyB+AJYDaP/bDQz9wVV8mCM47xuf4Utv3XkS87WDj6eVNnd9kOXT2V1shzFf46L1QlcxOde21XO/mu8yBnOVmW7wpZBzoYvdNjMhXFUkn+0HMAXPtaSlhrQvAGPxmynKgg6Vm42z7kIWzMROYOhLl+Cck6doIu+bzpw+JpzVTluSZujIAwF+y6ADR06MB62VAr8GpXGN0LgMlPwxPFCJAONCLk0g8Rr5dmcGfGcBLbRFWEFz3z4q9abTsTz0wpWHfnbbxfBy8tIlOFq7isq8wFCrjSOKnocoROjhPpLBCB1IsoJrwwhqTqekOhrVTJH1FqLRcq17XZLd/U7TDFlrUVorEKYEImB9bYzIg/awqzTpmgvgzEoQbVMEGxY1ME8l3r/ujqc0B2Z3YXeRmC5h2ZHlj0ZqFknMroOr6oIOnBOi1+m6PRqsUCRVz+VjWdvTzGAsRknwBUK7yrhIDTLJUJ4kqfoEDUthXNKoSOpxQD0e5tilD3Di8G0s96YpyjTPchngisYhefiioaUDQplhrOTuZJSNeSl9X38rFWlI0RjrHMiKIqBhYqQQzBiPmomYMQFFEfeqL5KHhzp2QywfCUrMtXmB5LXle9lqLJGwpAhGFOwXjrPSn2JDs5/711fw6oJkRFPcpIgmLYg+QgutwSKdFBdC7IP1IC5ZSrPuGtHYR1IrdShHMboiOWDJFk4euZX9wnGGZAspLDMmom4i7onHiGRKqDKUsJRHmogllsZsAWZ9vFlFnBS5wx/FWMEtW5Zy99goJwzcwamlzfhC9Yjcgs8KVGXEKq+9y35Xi9hxvOyeI3q3u+Rlzb9cBt9wy9542SF858Sn1/nuoa1kV37hHKqnntm7/4uz7wXgpdwLZwNnv5ONwHUX/SXi1X/Bq699Jo0/fhM3V4B3wrbL/5bW3nPhk6eu+RkX3/uiR92GfVeewtv+6Xa+/u6DASie9kvIfklr73M5bMnBu+yzPhqekAvZ7x2MBpnrWox12oquaNyaueqMsT2xeE9kjnO+WiA4h7mWKXD6mSRB+B7BbEJa8RGpoT0aoTqGoJYiU4NqpqhGjCn4CCOdviXXjwgkQju9SlxVqNQiMieMl/mJXJC7lrUdq9aRh9AuQybuc6GZQd2SFYVzJUstXluTVALCmiWsWeor3EBeJY7QGE84vU3VI4sk9dWSoVtTEK5Puz2kKC7pR63fQi//UeW6FaMdeelqV7Se20ea3jpAr21MeB4iishWDNEZjkj6JF7baXaM51zUjBLuIm+dZkf0h8hOH6qVIFoxouGsLq0xCCkhTlDbNKXMYEUfQis6Q9btVQ2dAfeZ42FNOKVojf4eVxoX0cP86suuFvA/WXgk8vJY6+9MdWYROwepLTIxyBRST2GEayGTebuY19JYT5EVBF7H6WKMJ5HaXTOscqUZEwiEJzGBIh7waA9Jl+M17gKNZ8tFoihlyG9yYDBBxyoUlo5117IHWsPsW9xKbD32jbbgi4y6cYn3JZkQyYSKTFG4hPtWnsEcKYMUIs+T0aTWY306REWM0y8NCpW3R4neQL2bjfLQgMdHIjS+UAyoIgPKPSe2Th9zoL+NW5IxRyZG20RrSwjjIVPovzdxJjVS0LfWomJD0u+GMtoXpCVJ3I+r6od5jkwYc9LyO9g3nGDfYAv9MiYSmhkTEImUoZxcpIFHIwsJZMZUp8Tm6T6EsjCYkLU9SAWNeoRp+hSGW6wqTPGb2hpW+pMc7DcZVtvXAkvmgkUX8eRi/d/9Gys/+AdP6nte++OX8pxTLn/S3u+a67/F8zgfgM7QCx/2+ImHOG+wkz7Rvf3PCx4f3vZy1u09d/+xyEsXXfICLCBAV3zgfnj56h3d/B7efvvP+eJ+R+3w+osEZh6sNiCMm/3vkg4p5uyRFTlZ0QiZ7zpjH9a2BMxVE2Qwt7w7eI8TVCulucL193ptZ5+p85YuP3GtVSb0ejNVQlswBl32UK3U5aoogWw50X00ZZ0oX4HfNoSbGtCJQSlUJ0OHEc1RD69t8TrOQrm11FLc7FqmEE5r0xyWeC2LCaAwYYlmLK1h6cT+A36+nYLmao3QPn1rXfVGJZbOkojibBkRJ9hO7Koueq6CNbe/XHXLZtkCLVGvHc/zoL+P1l79CG3xGxleW+A1U3TBIy17LkNHW0gtKrd/tp7EhApdKMJQEa9RQtU7iJn6nIFABrLWonyPJZwuUl8VEvdDWgI/swTTgsKExG9aZhZNYxaxh2NnicsjPf+hRGZs1vUZLFZiHj+yUOFpi8VVvbunQJf75RwQw22azkiIDgVB7Kot1pPufD+nBXcBmAVJUpE0VkK0TVKYNBS2SGp9EdUDagz7de5JR/BFRkkkzJgiTRPy0oHb8IVmUpd5IB6h6rVY5s8wpBo0TYi2ko5V1I0kQTIkYwbz65vKB95bdYG18TDLgmlK0uAL/xE/9w5XYbaDMNfPDCvNwcEE7cynXOpQHysSzAiKWyyqnQEeCNvTgurATY51uwzSkiDpt4SlhOV9NV6+5GYA1iXD3BeP8utt+1DxO0Qq48jqWpb504xnVRSW1CqGwhbTcZHj976HrZ0y62sDbGtXkR2JkT54BmMEGzoD3DE9ylTyIv5wyW95QbStp+UxGDo244FUsv9iKPKTjr+++p1c+c4Duey2s/jG9yJO28HR7s8vuovjX/300nf/0Z1L+eHHzuSgS5/L8IcqruoyD5fddtbCBc8BuJEP3bWM+2dHWXfE+x/X+x772rO5+nvnPuz2eZVnsOYhy3YHFgnMPHRdr7quY8LzXZuT1u6+1k7j0nO/EnNXpdzCtxumKEyau5jFC4Mv83VFo01QK5FWFEFNo1oZOlKkFQ9hC6h2hmxnrrXAV+iCj2olqKYr+QtrCaczVGKI8n5p4wuUgOLaJrLedJUHQLYShLZ0hgSlTc7dRkcQbRVU1mtXQRl0RgBd8tJeYjC+m+mLZgxe2yAT41rWBJTWevgN59ImrSWLJJ0BRVSKUEmau7jpObewrtEB5G5iuVBf69wCmZ4Yn8EqzTUDGF9Q3NTOHdDcawlf4dcz17qWGSduxbW1iXaKVQJd8HtVGbOkjC8EYrrmLJW7+wQI4oTB6RBT8GkuL5CWHHEpbMuY3t8nGVo4i7iIJx+7u43sydK+PBS7oo3siZKX7b3W9ojMIol5fJAm17soQVaQqMSgOnPXDuM7S31n8e5yvITB2eXnBgAIR3gwkFQUnSGBjiydEUt7VKBikIlgfFuV+0dGSK3i7tYYrxq4gTE1i86NSLbqPkoyZtiv09IhU1mZGV1kxKvhA5OmwO/aqzkg3ES/TLg+LtIv20yaEuNZP1uzCqlV9KsWxbx1zBdqu0TlschLd535yNB0bIbKNTQKwaCE5w49SDiSceGWYxDWx7vXEA+FqMTkcQGSpOq5qnyMu7YFAl2w6Iqm4GsOr25kVhdY3xnkR3cdim55FAdbHDDSYWunzP+IVfxa70PRS9i3uI3MKm7aupxmJ6ARhwRehqc0a/YZZ8NUP76f0WpG7DMySZ/X5qCBCfr9Fv81+SzM0E2s9KbwhaEiMiIBValRIsR7jH2yiF2Lc9+0NxDTt89nOC1f9quPXMiX3voxfvixH/Mn++2e933Du8/bPS/8GHjFZ06Bz8D4TTv+nPNuexdn7ECl5NpLWjzn5cXtPnbsa8/m2597AcfOu3/sGuC18MEV34cz4VjgHc/57o5v2A5ikcDMg80yrJBukKsUtt0BKV2VIM0LwN1BOEBm56x+peulEkI4e+AsmyNCaeYqN13rYJsiOgnhRAvjl5wTjRC0R9yslt90QVo2VIhWgogNXtPlmeApTDHAShdaaeWca5mVypkC1FsQJ45UGYucbVLaUmW25Jy2goYhVpLBtSnRljZJf0hSCZAJpBXhqkANyAoWq6C0KXVtYTlXiyvOhcxr4fJjfJerkhUEWX+IbLTzIMl5F6ncZrlb3bJZfiE3Zq6aJQVUSrT27sdrabxmimynoC2mnH/mTpbnv7hwOGFBJJmzHSW3oI41wrg8hXSwSFYtIAs+alsN2+o4k4FcryQaLWTgU908jekvkw4USMsewayl0lq84Pw+46Hk5enUPrYryctDX/eRqjGwWJHZGVgBaItKM2TqIVN3PpWx0/5ZT2CEQmQGv5G36frk4ZXO/cp4LsTSSoirktaYxUQGUwAbGlJAtBRia8jP+vZjrFLnmKH7iWTKPn6HolCszSzjmWRT2k9DR7R0wGRaoqBSZrMiVa/FFbOHMOC3kGKMb0y8gJJK+D+DN3NDcy8aOqStA26ZXMoNpVXcNXgfr6z8jjEFdWuoSoVCsD4zKGFZphQFgh2uxGhr8FAUhexlqWhr8YXl2Mrd3NjaCzKJWdWmMVGksMUgM4nXMcjMTZ6pxCKs60rIioK0YsA3DJeb/HTz/kzXi8STBYg0zz34Pl4wcA+RSNmWVdicVJlKipS9hAfbQ2xqVgm9jJmkyGQzwBqBCjVysEa5EGMshFHCdKfAz+r7UasXUZ4mqQfcNLqMRiuiGCV86MDLOSpaR0VYUqu5Od7+AHARux6Xrzqd0Y9cuNPP+/lFd+36jXkS8C8HbuaP7lzKqWt+xpZnTtA45HMPr7o8BCce8jlWXf1bXvEIBOaHH/uxI0Xz8CePIM7fd+UpwC859rVn88EV32fF/7yNDc/6eu/xD674PptffDnf/dZjX2O/8KbfwU8eczVgkcAsgFASIeQ8faEjJFabudvWtXIhZf5fYNNsbhAOYE2vNUp0R/3WuEqM1oDCpilqqkZY9MlKHkYJkj5BULMutCzOEHZuO8A5m5mC7/IFfEk6IPFaBh06AX8wmxFsnIHZhvsMXSF7pom2JlgR4Dc0uiApb8wIZhNM6GE9SWFSk0XOpUwYKIwLTABJGcSoI1bRdNcGGWQGcb/Ai13p3uu4i2x7JMCbKaDqzdyJLJtzZFP5/JpwOp6epqi7/6OIZHk/MjGodoaqdVxbWDlAR57rCRcaPNmzGbWCXnXG5p/XhgqbG1l6DVexMqGH6C8jk9TZPXfDLvP9gzXIJCWstQiBUuCT+obF4dpTjydLzP+aVe96UknMnmqrvD0S08VDycz8+4tYCOPLXgSF6riKgY4UuqDcREtmXOsT4HU0ViiEhqwkyELR0/sZ5QiNzCx+U5DkVRXrgyho8A2mo5itFRkottFW0idiQiHZqjNuS5ZT1wWKuWB/2GswkfZhrKDqtdgYD7BPYSsV2WFWF3l2dS2zWZFf19dw88xyJJZaEjI5U6bRCdkwW2X90kGe33c3NzT34sMjv0JbS8sGYKEuElJheu1gPqrnTtYlMw/VzKi8BdvgXM9a1jmi7edPcq3dl2V7baOTejQHChQncmOZzOlgutlmfiMjqebXYWUpDbQp+QlTzSJCwNhek+zXv5Vn9a3jwHATkUjpBD6TYZkH4iXUdcTt7TEMAiksfZUWceoTeBl9UUys3TVlsNgmi2I2T/eRdHxsItFCURlusro6zQNmCE8ZNiSDrI2HGU/6kMLyu42DwD/u1t/cIubwSG5jf/TWR3/e/Paxn190F8e+9my+dvB/9MjNo7WXfeWt3+VaXrrT2/pU4LLbzuJDFy2DB365QL/SxXzysr3qy7GvPZvDTqm4O69d2LPWJS8rXnwTG356BABLf/pSXv291exKef8igZkPIV27k+mSjbw9SYheUCUwR2ZgbhkPsVdWak4f00V3sG7ytqpM403MYlYOkBU9KuuzXniZKXjIdoYphchO5ly/rMUEHlnJI+lztsdYid/Q+LUUb2sN6s38PRxRcrcNqpORVCK8jkG1c2cbYxHaEExpdNEnLQb4dddqVtngdDlZJGiPOHeyrvNXWNO0lnikFYimcC5j1qISS9wvkXuV6ds6AzbNXdqM+9/Vw3Rb8mCuvc7z0GMDzO4V4cWW8nqNDZzDW1Zy1sc6FEitkInFr6WoWCPaaa/Nz5Ej55yGJ3N7Uve9yUSjyyHofuRM3eXTdAmUFJAYrNDQarvvu1ZHyMUWst9HPFVtY7sKu6v6srNYJC+PDqfPkE6Q7wkMLr+rPeLjxRa/YZHaTVipdsZ8jbcVMq94C1Qeegwugysedm3AldGGa4cVljj18D2NLzUGwbju48HMZ0YXmcrK+EIz4tUoSbcMYGkwS0W2eWFlC2Oqxm3JMn49u4ymDrhlfCmddRX8ukBHUD5gGuVpOu0AEwpWF7bxrGgDzwg3UhSKVh5eOa77mDEpQ7LFqEqoSI+WdY8ZaylKHw/Vq7zMh8E6G2ckoPGFYFRKXlS+Az0mebA1xDWFIWb3lhTHLUHDuLw0oDmmiKYEWSRIqtC/aoZnLNnEqsIUL19yMyNendQqfKFZ6U9SEhm+MNwS93PhxmOJVEozDSn5MY0koBp2kMIS+RmB0pT8hMhIt6+1R6oVA5UWk7pMGivIBEnicd/UMK1WiAUuXv8MAKbrRZQyiKS1m35pi3goXrruW1y+6nRgxwXpTxQHvfy/eeclb+DtS7c+Ke+3PVx874s49rWXU/7mP+c6l4U48uiDuP43C69/2yMvj4Zjc7Ly7c+9AIDzLr+Jw06p8KW3fqz32KvPv5sffuzHwHEc/vNrWHPjYO/5O+JwtqNYJDDzoTVWz2WVCGHdQFvJHlHpivt7LmRSIFQw9xrGPYc0Q/ieIzLdFrIu8mBLG8cIYwi2BIisSDzYFUbm1ZtMoSOFTDIwuHaokiLuU6jEUt6coBoJaqbhqghpiu0SqtwtDc8DKZHTDbBlmks8olmT92bn7l+5jscqZ7UsM4HXcuuoWPSqQ43lkqDkNDDWaSiRGSCc+0vQMLQCQX2lonx/H2J80rWSWTFHFNJ5+zGvRhH4CN8nGSogtSNNzWUhxS0u3DOpun2nA/ceLtiNuVwZT7kqjzaINEUKgfYDZJz1smKsJ5GtFN0XIqxFTM3OWV13zQOscUSmq1Wa7ya3iKcUu6IKsyPEpVsRebIqMU9FFaZbXXk0IrToUvbEoWIDnsAKdzsrSGQKKnXZL1a4qoqK3blaZAaEwGtr1x7sCZKKcvrDzNIe9tABWN8gEkmrGWEtKE9jtMLzNGU/5oHWEANek5X+FCv9STrGZ69gGxXZZlKXSazHQYVNjKgaQ8pNeP2ofjg/2nQI45NVdKyQNY/+OwTFbYb2kGSyr885eiWSTiaoqjb9EjrWoBGEQtIvEzR1tmo3K+vPiyVoGc2MkUQmZoVXgLy17KEkBiBF5y1kkkh4HODX+FprCCkMeiAl9j2KE8LloXW06wgY9XL3MUFrVcaKUpNVhSn+sHodKZIpXWTGFPFFxv3JElb6k4yoNv2qycqSy8qRwmXgDERttJEMFxrUkwghLM00oJ36LCvPEmuPgp86EwAvY208jDWSLFPEkwWEEVDKSLVk34FJhotNVpWmmZyR3Pnk/PQWAYyefQ0Af/KNax72WFf/Mva+dzD+91992OP3HvnPrLn+Tb37j9Za9rpLjoYhuB54T+XPePayXz+xDX+CuPp753Lkudfy6zMuYPyCYxY8Np+8XL7qdDafFPK1d/5VL/9lZ3He5TctuL/2ma+Cra7V7IccwTe2fIGXnXwEU8fdDB9+H0PPuIqL7z2Fe585xdj73sFBlz6Xwy/6W75w2J1UT72J2YuPYONVh+/w+y8SmHmw2s2YdSsptlsx6dojdwMt0wykdCQGtdBuWQrXNuZ5vUF1r3VM5NkxvtfLSrGZRkzOEDTbqEaFrBqSlRQmkKSedH3QfhGvmZH0ewQzGYWNTWcT3K22WOva3LJsrlLU7Tu2BtvpIISgvDFhev8QZiAtSFTZw+sIZOxsmY0n0IHoZdT4jQzrCbympjXm01ghSaqCYNYSbbX4LUvQ0FghyIoSkVmCmqvgpIMFwtnI6YgeQgR6pLDX4pZhKyV0IAlnjLMN1bZnGKBiS1pyy+I+SbmhkYlGZAYbeRgpkJ10rsUv06jZNjbMf97aIjCgLVJCOlDAjxOYTuZa3LqhmOC+M2+uAreIPQNdArIzRObxVlue7HayJxPdFrHiionHrOY8WjvZIh4dzlHMnU/9mRgrI7JybrlvuhNAcwN4l6llIHbifwCv6c5h1hPEfT7xsAHfTZLppgeexTQ9RCbx+5pU/JgNzX6uTA7EWEHZj1ldnALgwHAz+/qTLFF1mjbAF5qLZ5/NDx48lMZsgf6BJqNDs2weH6B6p6B6f0J7iU9rTCASgWj7mNAgpgO+et/z2byynxdVbmelarBJF+lYn6YJmdJl9vKmiYSiYzV1Y9lqQh5Mh1FYpsw2VnopVRn0hPsdo7krLbCf77K3JrRPKDQjJHR9Dwoqt+0X9MwNZGYwniSsuf3YHlbIcooQlnsaS7ggeZGrSLUrTLQqJJnHvgPbeMXw7+iXG5jUZeppRKgy9i5Ncl9jmKl2kYKfMtkpYa0gVBmeNAwWWmRWUfFjNtarFLyUpcUa6Zii1gmpj1dQLYkJLVYLZmsl7tSKZj3ittYKvPWLE2JPJibOfR4fW35t737xFe63deiHPs6ffOMzT/j1f5qexocemJt8OvLog7j2uL/hebyAL37uCM781iVP+D0eL37+vTW8+sa7+ccLtv/45atO55++fzPbrqjv1u24ZPzF7D10GS3c5PzkH93M7ccAJ7vH7zj5t+w4XXk4FgnMfOT6Dqs1c2Emc4QFmJcS3yU3c8Smt6xb0YgTR4akAql6IZc2TefW1wZrJdRTZKNJuCUkDHys5yoTve1KM4KNBtod56aVt2H10G1z61Zeutulyas9CdG6Gfzlzhs4aBjSssL4EhUqlzUDvcRoXZCE0xpiV72IpiQyAx2A33Te+15buz5vLDJ1s4R+yznqtEcCwgfFQvKSV6d6FtXz96GUeG2NMJYUz13MU4P0JWkJwhlDOJ1gpUAXFFnJx9+WIkxueW3ABB6qHbt9B4g4A0+5BOzMkFUjrJ8Tx3IBMdsAky3cxi7JXMQei+2Rki6pebq3hz0W9pT2sUXsGIzvKrxKCmRqsPl1RGgwvkBkEmlM7lim5yZRDJjIXZ6zgsvfao8KdDkjLMf0l9soadDGvd6Kygz7l7cAMJtEANy5dZT2TMQtA0tZ0tdgeWmWpdEsTR0ylRRZWxug1opoN0Js22NaV5jOBP42j9IWg9fKiCYFacHHSkVWsIBrJ56+a5B/6zyL28aW8t5lP+21Z9VNgcPCDVSlJrUShaAiYasBlffI3ZOMcmci6c+rP2OqxlZdpWN9NJIpXaZjfBKrOCLawJjSvGbkejamA/y8vB9iQ0BQd8RFD4So2FWsdCDxGxbT9lg7OUi9EtIqBDwwPUiaKZQyRH7GRKvCF+49gTj1KAQpS0oNQuWuAYnxKAUJ1aDNlparJI2VWhRUSlv7lFRCUwesrk6RGI/EKNqpR6cdEA21kWsr+E2wQmE9sLLAwFRuMDO7GIz8ZODyVafzseXXsnlzyJ9ufgHf+ensgsfvW/9jPvzSI5j83XGktxzBOxoXse8/3c59l5/6qK+74txr+eLWP4KL7nKi+Ys+xmV/8pbe44O1dzDV56o5f3rWTfCMXf3JdhzzW7a2h5eu+xaXv+b0nWrl+uHHfswPOYJ0xfv5uw2v4bzLb+KS8RdzaXAZ/zC4MDPvkvEX8+5cHvMPgwpON7zs6qs4+F8Ohz9ylubdatDf/h1cvup9vPTv/o0TD3kul311xzVEiwRmHoTnIYQ3Rwy6Qn2YE+738mFkrw3KWS57c3kxQoKSCOkjyiX0kn6yso/IbK+dSViLSAxerYOYbThSYyy204FOJ3+PeT8KKeYqQtoJ+nv6m24OzTxCsCBjxQ/c7VqDwZsjGvuW0coJIFsjkqApCWcyVGxpD7sMgsKkwYQKo9y2qo4mzIybOTS2Z2NshUC1M3TRieytBB0JOv1gA9/tr2yuha7XjtclWQCehylFJH0efj0jqKcYzzmMec2sR66wFq8WI0yI8Z1Lm2wlrn1OSqd7CX2nndHWdeJJmWuHfOdalhpEZjCRh1cuYmdqc2YCSmGTdK69TS169z+ZODaNH/Gxq/3wUZ/7dCYuT0Ub2SIR2v0Q1gVZAmQl35mtaIuMXUWlW2FGOucxYef+izRFtVxLWTxQpjmmiEc0q/feyptWXsMNjb0AuL8+xGSrREf7/Gx8P/qCmL0qkxzddx8riqu5ZmIvpmbKrGsN8mBzlHCLQqYCq8D4lmBGsOKejLhP0Rn0aI1ZRD5/Z0KFX0/pv8+gw4jOsEADab8TRPYVOyTaY0i2KQpNJGAvr0HdKFpWUBKuxWzKKB5MhwEY82aZ0UWube7L/c1hNrf6eM7wWqqqjS8zYJSN8QBVr81B0SZ8DJNacH+8hLtao2gt8a2baEsryu2vzCJjQ1qUPSvlkb4GLxq7m0YW0swCWqnPbKtAkimaIiBOPeozRSpj06wqTjOTFrhtdimzccRsq8AWUabdDvA8zVSjSClKGCo2aciQRhISeSmNJGTLdAVjBSaTpG0fucTgPeiIlN+yqNTi1zWtUZ/tdMstYjfgY8uv5fgLZ7mZS2jtfS77PsJ6+66E57z8biAPZHy3axM78OVv4Wt//y7WzAt2/MfgLd1b/OMF3WrLwte77LazOPLohd0Bz3j2c5nYiRrDR9e8gL++95ePvs6b1/PX317Ju29536Oud+8zpx718Zd3TuC6bzj9yyXjL2bD2U40c9GZ+7PixTctEO5fe8mcfutPR/6FtSOvYu24u39yciKXjDuC13289x5jP+3d/u/9boLL4UM1d607MZdQXnbbWbx03bd6t3cGiwQGeoQlzToQKmzsAiCFEFhh51qTLIicSAgVzBEWgCydIzLCglDQVyIdLZOWIZhtugwXKdElv9cikAwozEi/q15MtxFbpvNWMAVp7N4jr+B0IQKFTeJ5bU8uTR7ZTbknz6jxXGgkFmElNk0R4+OEaojmsgImENiWQExlMJugdEDUlM4OOdN0+iVGWQrbnGC+awuKtaQlHymNG/B3EkQT8ASIAuF6iQ4EnarCb8h8E1NHJrLEbbMUYFJQHgJBplJS0wFrSD0IpjtkvqsQyabGKkmn7KGHAvx66nrEbYbSMRiDjULIOghrMNKS9QVuRq6WYj2JVRqv0YbUoAOF9RWmpBAzqetJsBkYBWpOQ5TpdMHv4387dtd+eO6kEz1mtdpuef3Hi9esehffvu3zT/VmLECt/uSPgsbvGGHsoMcWpi4eJw6964lJMEY6Ab8SkOEyrRKDFtJlvgiLwiCCXAMDoASmqIj7PWRmMSomIUOVGgyxjd+OL+P2mQFWVqYpmVkqwQyNVoiK4bnVu9hPTTA+2889kxXCtI5vLa2pAt4MiOkM2YGsBCoFOtAKrTv/aoHpWCzQDsCGGk9rMBly2mILAqstJtAgLRMbfIZWJNw3U6AkUkZUm7ZV/Ky1H6FIGVYNbm6vZHW4jX2DLQzLFmksiUzG0dzMXlE/q8qTFEVKy/oobZHCcLAKWKoa1GOf3zaWsDWrstzfTEHOsGkg4A72cdsXgUwBkWE8QW3A0hmCSmWaF/fdSLGTMiJjDuq/j6YJafZHFGRMRXXYklZZuXKSbbpMJFK0L/lNa1+GPMtEUKGVBnTiCocMb6KRhhxe3chP1h/EISObCfHYMF0l1ZqVpU2sKM1w45YVDFRbPDg7Smo9rIBoa4pKjLP1D0Ns3Fnw+/jfjt21H96x8bnwUrj14ktJau3e8sLav6S9+i96/x/YcDl7r3gp3z5Q8OY7LW/957/j419+Kx/gdKDDl+79GRwOd/Je5idDnnDguTAN05ULF7xvd3nb3M2XRn/Ne1LDTddfzgUbP86nXlkjqbVppQZrOli7/WudiVO3zkMeb6WGTifBmk7v/0PR/aw/+NgaXvmZe8n0w9fp4j9XvJ6/XPr/0Wi7c87x1ct47VnjnHLOSzFJE91qk9TmJnCPeKHghtZz2HLN1Xy+diozF9/HR99+PX/9tSM55PNNLtj6T5wx8m4GD72aa191GGf+4UYAGm3Nq27/JwBmLr6Pvy9ew9ZzLXzhy9x43d2PuH2wY78PYRePJu6//3723feRePoi/rdj/fr1rFix4qnejKcci8fJIh4Ni8eJw+JxsohHw+Jx4rB4nCzi0bAjx8liBQYYHHT9guvWraNarT7FW/PEUavVWLlyJevXr6evr++p3pxdgqfiM1lrqdfrLFu27El5vz0di8fJno/F4+Spx+/bcQK/f8fK4nHy1GPxONnzsacfJ4sEBpC5sLJarf5e/Oi66Ovr+736PPDkf6bflxPrrsDicfL0weJx8tTh9/U4gd+/Y2XxOHnqsHic/P/svXm8XVV9/v9ea+3pTHdOchOSECDMiiAiAt8iKogiVtS2SmlrHYoDavniSC0i2lYcypefs7YO2FpFK9IWwWrBEZlEqMokYUrIcJObO55hT2ut3x9rn3PvhQw3IYEknIcXr9x7zj57r32Stfd69ud5ns/egz11nsjtb9JFF1100UUXXXTRRRdddLFnoEtguuiiiy666KKLLrrooou9Bl0CA4RhyMUXX0wYbjuqdW/BvnY+sG+e096Gfe3vYF87H9g3z2lvw774d7CvndO+dj57I/bFv4N97Zz29PPpppB10UUXXXTRRRdddNFFF3sNuhWYLrrooosuuuiiiy666GKvQZfAdNFFF1100UUXXXTRRRd7DboEposuuuiiiy666KKLLrrYa9AlMF100UUXXXTRRRdddNHFXoOnPYH57Gc/y4oVK4iiiOOPP55bb731qR7SVvGzn/2Ml7/85SxZsgQhBFdfffWc9621fPCDH2Tx4sWUSiVOPfVU7r///jnbjI2Ncc4559DT00NfXx9vfOMbqdfrT+JZOHz0ox/luOOOo1arsXDhQs466yzuu+++OdvEccx5553H4OAg1WqVV7/61YyMjMzZZvXq1bzsZS+jXC6zcOFC3vOe95Dn+ZN5Kk8b7C1zZV+aJ9CdK3sbuvOkO0+62D6686Q7T54w7NMY3/rWt2wQBPYrX/mKveuuu+xf/dVf2b6+PjsyMvJUD22LuPbaa+0HPvABe9VVV1nAfu9735vz/qWXXmp7e3vt1Vdfbf/3f//X/uEf/qE94IADbKvV6mzzkpe8xD7rWc+yN998s/35z39uV65cac8+++wn+UysPf300+1Xv/pV+7vf/c7eeeed9owzzrDLly+39Xq9s81b3vIWu2zZMnv99dfbX/3qV/Z5z3uePfHEEzvv53lun/GMZ9hTTz3V3nHHHfbaa6+1Q0ND9sILL3zSz2dfx940V/aleWJtd67sTejOk+486WL76M6T7jzZFXhaE5jnPve59rzzzuv8rrW2S5YssR/96EefwlHND4+dSMYYOzw8bD/xiU90XpuYmLBhGNpvfvOb1lpr7777bgvY2267rbPNddddZ4UQdu3atU/a2LeEjRs3WsD+9Kc/tda6sfu+b7/zne90trnnnnssYG+66SZrrbuwSCnthg0bOtt8/vOftz09PTZJkif3BPZx7K1zZV+bJ9Z258qejO486c6TLraP7jzpzpNdgaethCxNU26//XZOPfXUzmtSSk499VRuuummp3BkO4eHHnqIDRs2zDmf3t5ejj/++M753HTTTfT19fGc5zyns82pp56KlJJbbrnlSR/zbExOTgIwMDAAwO23306WZXPO57DDDmP58uVzzueZz3wmixYt6mxz+umnMzU1xV133fUkjn7fxr40V/b2eQLdubKnojtPuvOki+2jO0+682RX4WlLYEZHR9Faz/kLAFi0aBEbNmx4ika182iPeVvns2HDBhYuXDjnfc/zGBgYeErP2RjD+eefz0knncQznvEMwI01CAL6+vrmbPvY89nS+bbf62LXYF+aK3vzPIHuXNmT0Z0n3XnSxfbRnSfdebKr4D1pR+qii63gvPPO43e/+x2/+MUvnuqhdNHFHo3uXOmii+2jO0+66GL72NvnydO2AjM0NIRS6nHJCiMjIwwPDz9Fo9p5tMe8rfMZHh5m48aNc97P85yxsbGn7Jzf/va3c8011/DjH/+YpUuXdl4fHh4mTVMmJibmbP/Y89nS+bbf62LXYF+aK3vrPIHuXNnT0Z0n3XnSxfbRnSfdebKr8LQlMEEQcOyxx3L99dd3XjPGcP3113PCCSc8hSPbORxwwAEMDw/POZ+pqSluueWWzvmccMIJTExMcPvtt3e2ueGGGzDGcPzxxz+p47XW8va3v53vfe973HDDDRxwwAFz3j/22GPxfX/O+dx3332sXr16zvn89re/nXNx+NGPfkRPTw9HHHHEk3MiTwPsS3Nlb5sn0J0rewu686Q7T7rYPrrzpDtPdhmetLiAPRDf+ta3bBiG9mtf+5q9++677bnnnmv7+vrmJCvsSZienrZ33HGHveOOOyxgL7vsMnvHHXfYRx55xFrr4vz6+vrsf/zHf9jf/OY39hWveMUW4/yOOeYYe8stt9hf/OIX9uCDD35K4vze+ta32t7eXvuTn/zErl+/vvN/s9nsbPOWt7zFLl++3N5www32V7/6lT3hhBPsCSec0Hm/HeX34he/2N555532Bz/4gV2wYEE38nI3YG+aK/vSPLG2O1f2JnTnSXeedLF9dOdJd57sCjytCYy11n7605+2y5cvt0EQ2Oc+97n25ptvfqqHtFX8+Mc/tsDj/n/d615nrXWRfhdddJFdtGiRDcPQvuhFL7L33XffnH1s3rzZnn322bZardqenh77+te/3k5PTz/p57Kl8wDsV7/61c42rVbLvu1tb7P9/f22XC7bV77ylXb9+vVz9vPwww/bl770pbZUKtmhoSH7rne9y2ZZ9iSfzdMDe8tc2ZfmibXdubK3oTtPuvOki+2jO0+68+SJQhQn1EUXXXTRRRdddNFFF110scdjn/HAfPazn2XFihVEUcTxxx/Prbfe+lQPqYsu9jh050kXXWwf3XnSRRfzQ3eudPFUYZ8gMFdeeSUXXHABF198Mb/+9a951rOexemnn/645Icuung6oztPuuhi++jOky66mB+6c6WLpxL7hITs+OOP57jjjuMzn/kM4BItli1bxjve8Q7e//73P8Wj66KLPQPdedJFF9tHd5500cX80J0rXTyV2OsrMGmacvvtt3Pqqad2XpNScuqpp3LTTTc9hSProos9B9150kUX20d3nnTRxfzQnStdPNXwnuoBPFGMjo6itWbRokVzXl+0aBH33nvvFj+TJAlJknR+N8YwNjbG4OAgQojdOt4u9h5Ya5menmbJkiVIuXdz/e486WJ3oTtPuvOki+1jX5onsONzpTtPupgPdmSe7PUEZmfw0Y9+lEsuueSpHkYXewnWrFkzp1Pt0wXdedLFjqA7T7roYvvozpMuutg+5jNP9noCMzQ0hFKKkZGROa+PjIwwPDy8xc9ceOGFXHDBBZ3fJycnWb58OacMvx4vLBOvGEIHEpUadChpDHsIAzKHaCzHizVWCBDgNTKMr9AlhdfIAbACsqqPVW6byqpxGJsAnYOxIAUICVKCtQjfhyjAVMrYkodREutJ8rJC5hbVcvs1gcJKgbAWKwVWCbzpDGEtxlcIbRDGIlKDmmpAkmJzPXPMLHMnbI07vjXud+WBtSAVQkkQAkoh6XAvecVDZpZ40EdmltLGGAAZa4TWCG0xJQ8TeBhfYqUgLymEtXgtjQ4kwoL2JZUHxhGNJjbXCCmxxrixtccBM9+H77kxa4PtqWLKPsZXnfMGQLhxIMD6EpG5/Vjp3hfG4k0liGYL20pAa1DKfQ/tJz7Fn8L3sZUSBD5YSzZUplHR3P7f/0CtVtvxf5h7GHblPJmNH5//qic8thdcftUObf+6l/7HEz5mG1dc94onvI9L3/pnu2Ak8P7P/+su2Q/APTfcvd1tDn/hru2Y3J0nDu15suQT70dWIsJqwsELRjmstoEze+9kuZcSW0vTSMZNxEjeiy9ymjakaQI251U2pTXWJ73kRlJPQw7t3cimpMqvVy/Dri8RjAuCaWgtsFQfhdJmjZWCtCppLRA0DklRoabtcO3paeEpw1QjJEt8bC6RvgbcJVAIS970IXf3LAIDBrACb8yjtFFQ3mQIxjUqNXj1FJkZrCcYP7xGfamgvMHi1y3CgkoNSY8iHhDUj0hRYY7yNNYIDh4e5YDKZpaG41RUTGp8YusxkZWpqARfahLj0atiFniTVGTCHc0VrGn1U1I5Le3xs3sPgUwSjCmijQJhIZiyCGPBFqcwriltaNAarjB1gI8OQEfQ2j8jqCVkiQdWIJQBC6VqCoAUFiUNjWaAMRIdeyBAeAbb9Kjd79F3f4YXa0RukUkOUuBtmiJd2s/okSXSPihtskwcZlCDCTpTyIcNj1z6kX1insCOz5WtzZML3riCK0vP5tQHXkdySYvl7z95l4zv4Be7xe+3D3yUTT/5AHd+7qud90779jr+5MGlfOslZ/G7H1yFfeBH3P/8G/ib8UN4zbFnbnffH3k046KlPpeU30zrqju57pDX0PtnH93mZ9rH/PaBj/KjP1nyuPc+8KtbuPsn3+Sf3nk8a396FK+RV+zEWT8eV5rXAfCs047coc/1XPFeJv6+ydjvTuLQQ/bb7vbZJdfwn8+7k3P73sXV9/0Xaz+z7fv6ad9e1/l5NP0mf/WpWzjnnQdxVv6X/PgvD53XPNnrCUwQBBx77LFcf/31nHXWWYArTV5//fW8/e1v3+JnwjAkDMPHve55EarSgwoipBLYikCGAhUpojGDMOALhZ8kmEBhQoUZLBFMphitsOUAbzpFl3x0xREYv65h4QDedAIid4tocAtpcFdaDbQMKmkgyiVsOcKUPfAjhLJ4WUZe9lAGjC+wnkAlBmFBhh6qlSEaGlkvFulp5ogLEnLjDuL5gMVqgxDK3bWkLMhUezEvEUEAnkIv6MX2R0TN3BGGzMOv54hSGSsF0jfIOAMD0pNoXyFChRWgax5e0+DLHGWlIxhlD9lvUbHBmqwgLsXNUufgFSRKAFYhtAThgbAQG0eMwhBd9hDGEThhLCIsyI8QEFhUomd42XSMmIzBgrWqIG0CcGTN/WMp7vBawHSKUDkohd+cxi/JYtd7f3l7V86TNm5732t2ydhue99rOO5jV857+zbp+Ks//J+dOt4//eep299onrj8/Dfs0n2df/lXdsm+atUnf5HUnSdzoWohwitR7c94xuJx/rD3Lg70MpSQhNbSCwzYmIVGM2VDpo1AkbDcNjGMsjmvMm0i1ib9HFzaxG1TVfZblrB+rJ9KA1QGwQiYCuQSeh+KaQUBsi7J6yGZn1MearpzkGVSIKgJZEkRBDmetKS5QilDs1FCKumugxLIBMEmDx1ZSk1JFFvC3OCTQyTwGyCURUc+tidCVMGX4CuDSi02EOghRbrMEg3lpI0qQa1FOcyo9QiW9sQsCWKWeOP0KTfGaRORWQ+NIBIZfbJFn0xpWI+0PMZQpvn11HJCmeP3++gpH9ujyJXAq0MwaQimNUioD3uI3OCvSxAthZkKaC6U5P0WGXh4VZBlgdaOoAhpqfRqjIWD+jdTz0LuX98HuUS2rcISymMBA2tzorq7vwptsGEAUqAq4MkIFUV4CkqxQayRNGwZsyjF1+5esy/ME9jxubK1eRIGErPyeyz//dfhb9llq9LVN0zxkR9WgSWccU2dJWd8mmvPrALwoz9Zwo8Ae8izWBJ9j7OPH+PQm17Onx6zhnd9/xcAfPE1Z2xxv8esupQfevCysXfxieo3efaHQw497+Wccc0HOvvfEvxyD+VIPI68AIx7V/Pu58EpcZUX3XoXlO4Cgif6FQDwF3yTK/0GfvnLAJ0xnnFNfYu/t3HAQQHf+Mk3OOfBPrj1Ll5zwze4+NLNHPHDdz7uGPLWd3LDe8d4Fidy4uo38Zxfn83rtzMuv9zTOf43Llek3tm8qLyMX73qUGB+82SvJzAAF1xwAa973et4znOew3Of+1wuv/xyGo0Gr3/99r7Cx8BabOh3nvCrxACSaNygA4HfMsjUYH2FzA0IgQ48WosiVymJDXk1QGYGmRaLaQm65OH7PjYvKjRZTvuvxmrjqh7tKkkrRuQaNTFNaSLClkNs4GGVQGqDzMBqV92QcYasJ4hmjI0TLMyqqigojoc1kCSOoCjcsZRyZEfjFvaAiHxslkE5IhmMEMXa3gpBMJkhM43xJAIwvkRkEiEhr/roUOHVM6wnUbF7CoYBr5ViQg8VG3TkoZSEjKK6QkFaihtEm0x4xbfTHr/WCG3wtEGmISby0ZFCJtpVXnILpjhvY5CJRk4XFah21QmwcYLwvbnHan9fGggUVht3XKWgOaPX3Rewy+bJbsCOkhiYS0TmQ2Z2JXHZ07H0uct49NY123y/iy1jl80TYfFrCWcsv5sX1O5mQMYoISgLRVVIlBBkVtMrczKboUQDAB+BxtK0G1iTl/HF/gQip89vsrw2zqOVhXgtiUotXmxIK5KsKmguDDC+oLxJEw94WOHRSqrITMDi2D0ryiSlakI1SrBWkBtJkvggLFE1JdlQprROUVlvqWzIaQ0qvES7azpgAolKDCbwkJkm6/HRkUC1wGsZpAYE5JEgq0I+mFH2NH5fi5OXPcCiYIrnVB4EYD81ySKVoYQgtZZEJvgCIiGQQGwtiYWayDksWE/DhDRz3z08kwZt3XdsJUgt8BvGqSOkIJy2WAV5bwlvrEHVWIxfwosFyZRHPFnFLmtRLic0jMAk7oFWyc+pZyH1NERnEptJ5JRHMCHx6zBwX4ZqGWSaI3KDDTyM55QU2UAZ40sqGwyNYYkOBaplqawRTHs+0fi+dT+BXTdXTqj/7W4aocO1Z1Y545o6Z1xTn0MyxKsuZvHlcxfKX3zNGbzshoiPf9Cdw5IzT+fe4Zfxd8t9jll1KXesfD/33FDm2vMv5triMxs+eyLXfnbnxzdy40/J4r/myDt+yV3P2TXEpY1bh3/GHy/8e7bs4Ns6Jh/+U4766wb8f+73K194Dpe8f5ArX3jO47b93d+u5P+uOpZzzte4d+enJmj/vXwDuPaXVc75lOVXOzDGfYLAvOY1r2HTpk188IMfZMOGDRx99NH84Ac/eJy5bLsQTp4kM0c+ZJJDT4j1hLs4ZxaRG9Ien7wikZkl2pSQ9QTuYqYEOpRY6WGVu6haKdxi2VOdRbNQCptmM1WQWbBJ2llAi+kGoukkW+VN3pxxEifus8a4Rbq1jpC0KxlpBlpjrXVM1vfAuAoMgNB6RkZWSMpsliGiCN1bxirwJ93iX1ekq/xIN4ZgMkW1cidl8yQ6kO4mFktkZlCxxgTSkRyjsMpVjPKKhx8GbuymTVzM3Cw8z+ucR3usSAFpirAWlaTIcoQs+VglXRUm0QhjELlB1JuuApU6OQDt84THkJdCTjabzKWAkqCNk7HtY9hl82QPxNOJnHSxe7Gr5onNJb6vebg5yC/Eobygdjd9so4UEoMBK/GFIhQ+mdU0bXG9ZaazwQLV4pmRI6IjWS+hzLnRM6hEYHz3cMlKgQ4FSZ90l9NcUt5oKY1CVlEEU5YxXcIKCFpgTMTIYBVquZNPAWwKYUoy8KiltiYl3NhCpjlevYSO3OI+ryh0KJG5Je0PkKlxhCa2gJNxqdjdB7OyQEcQ1hxRips+G+MqR1bWcqA3Rp80+EKgkGTF+YYCAiHwEUghKDRsZBYWqJSTSg8QLMxJrUd9v5A7s2V4oyEyFXhNi8ycFEw1cyLcQ7asN8CbaOKvG6OHAZLBkPJGyMqSyaky9UMkfpRjpGWyHmGNZKOsghXu72/Up/YgVNfnqMTgTySYkqvuWF9hfInMNGlvgAkkWPAbmtImkBryUKBLoFoCr/VE/lXumdhVc+XCb32c/1zyvt00SofZxGV29eGYldPcC6x/0T/yrrHDOOOLt/OPB0u+8aZP0fPPrtrwx//wFvjCl/m31R/mG8G7+ONvn818FumzCdO1Z1Y7hGd7+Gnt5Tx/+r925PS2iuduOBk2/DfXvuk1c6osbfKwtd8fOx6AY950BXev/BQAR/zwnRxzoJO5HbPqCs45X+/QuGZ/L1D8nXzyzTu0j32CwAC8/e1v32qJf94o/B9SG0Sm0SUfYS3+dI6K8+IipRDGUl6fdAiJTE1nQZ9XfIwv8cczd2MpKYwv6IiRlQKTIwJ/ZoFuLNa61xyZ8OaQDxsnbmyF7EwI4d6zFjzPVXOsLXw5Eqx2+5ECYVyqg8jyzmc7C3Zp5pAY4QWgJHnVRyZO52x9RaoC8rIkmHL/QNseExMoTKDwmhpdkuhQuhtaM8d67meEU20ZX6IjR7iE5zniZYyrfBTfi/A8V6XSBov7EyXBFAxHa8hzRJygPM8RrsJH1D4nm+dFVUc4EgcQSGzLEUERhdgsQURFKbt9fClmvnuFk+DN9ubsI9gl86QLYNfKx2bvc1fJyLpVlp3HrpgnQlkCT1PPQnyhUbjryahJ8YFe6Z60JjZjwuSdzymgaWGTLpGiiI3Puryfn29eSY8fIxKJDgRJv0AY47yAmSWPBFZCadwQThqaC929quehFiqNSGsCmYHxLDJV5JMSoQVCQzgBMrX4DXftTBaWAHetd3Jl6x5iCcjL7npsfEVak8gcRMsitPsfAVZB1msoeYYk9jENn4cmBlhSGuYPyvcDBlUQlRBBKMBYi8biCyfb8oXCF5rMGgzgS81x0SNsNiUmB0rcMzKM9kJUy6mz295UqwRCW6Q1WIl70KcN/roxTLSAvKQIpzR9D8B0GlE/KEeUc5gKnXLAgteQVCacr6e6PsOfSLCFN1W23P1Nl3yEsST9Aa0FHip1ygMvNoSTGq+paS3wiQcVpU2CcHLHFnh7C3bFXLn40s3ow9/Ic9/65V00KofHVlza2KKM6qptBwycu+rL/Op8DcyfiGxvHACvPesN3EiDwb9/Nd/5xf389sdv5DW7iLw8dgyPxWPHNJvErD33eah7nscnP1XljGs+xaabfsT/fut2jnjujIRsR0nLtrAt+d3WsM8QmF2CoqJgpUBkBik1JBaZugujP50VFzGFTHJ0xSft8QsCAxiLijVW4Ko34GRXocJGITRjtyj2PRACoQpSk+UzMjKlZuRVRYVGhEVJ0fNcJSfXCCXdPouLKk7t5m4i9aaTTyUpSOfd6ZCW9v6lB1nu7pZCzhAkpcgjhdQWE3nuu9COHOVlSTiaohJn4M8GInQg8aczgokcE0jSHoUvBV4rJ605aZnQYD0nK7DlENFodQid8AvZWp47AqZNQSZm9VctqlhzTP8F+bNGIzzliEv7+2uTGKUKcmZd9UVIJ0eLwhkJGbjvxZ9d4dr7Iy672L3YHeRl9r53FYnp4qmDH2VICa3cVXNj6zOifTSCPpmCSfGFoP2YJBICX0iMtTStQSMI0DyYL2Rd2s/vNyxwdkUrsAqsdE/4AVTiSAzgqhCxIRoTxP2StD9AZRYdSvKye6CkQxDGWQx1ydIsudcnA0AoTGgQRiBygdfwCMfccbyGxWuBl1h0IDAeCA1ebB1xsKA9QV4RWGGR0iCVoTTU5NCBTSwMpumTOWWpMNaSWUdkfOEedkkEmTVIYYmEB1aRYdDW4gvBAmXQxDR1iCg0zl7TjUc1MnTkYX2JDhXBWOxk0NZ2HmoFI3VYVKW5KEDmlr5VGq/pkQx4lDdYRO7Il0pA5oZoXKNacxdpbWm18SXWE9SXunuHF8/ayOIUA5klmLKkNYFph8908Tgc8cN3UvrUriUvPz3laKrcuc1tZi/Yxasu5oxr6mz4bLWQQRUL6qu/whnX1FkIfOPyd3DIP3tcfOlmAM5Z1cu7MfzX5v/Gfu/lXHzp5jkL8cdWGbaGnot+xtjXNvDSB9/JEVR24my3jtK9rmJy7ae2XmGZjcdWYtrk64xr6nz876tw87YJ2ZOJLoGZDW1Q0wnGk0WqVZHSkmnwFbJIA8srZfJqgFXuiZfMLaK98DYWfyp1cqZMY8oB2pd4oYdoL7ytmakY6KIiAa6aoqR7LQzB97ClsCNBM4GHDRVWuapD2hvgxcXF1Tp9sswMdriKijXeximYqkNrLnHqjKFddWgHChiDLRbyVgonjdMWYaA0miFTg2xmoAS6FiFzg8xNsY1GNTOEdt9LVnH7kXmhnS6kcqYcINvkpF0xmZ1E1jH3zyJVbS+M9Ga26xATf261pH2vaXuK2tUbIWd+F4WRX+vO35nbv5r5tyAFQu57MrJdhV1l4O+ii30VfqAJPHhG3zoW+ZNsyntQnmWRqpNaJ58tY4mExC/IS2w1k8aiESgsUybiruZ+PFAfIpsKkaUcW9IY30Mltligu+NZ6UhJVhYII8nKksZSQWOJh18H40PWY7EHOa+N0QqdumAT6Wuslti0MPJ7FoIcawVpqIrquUDmUFkjCKcNKrG0BiTRlEHmlqwkyUuuOiRyULHAGMmhwxuJVMYpA/ex0JuiYSSbtCKzikWqRV9R0VeF90djyaxFFRdzA0RCIoVgVGvW5b0A9FebjMU9yMydczoQuQqQdd+FKXlYIfCsRTU9dH8NkWm8iYSgpEh6FTaE6npNzyOuemQ9gfGdjFwHwnlePUEWBqjMIFKDCRQYSdajaA0osqqgst7g113VxSrh5NOpIRzPkKklrfnQ5S9bxZG/SnlwF6+Hn/+TOzms3Duvask3Llf86fIP8jLc4rz+m6N5aPOxPPMFX+a3P34jv/3xGwF4P38Ep8MzAX34G/n64X/En59zIZy2ke9UbwGgNLGZF/winPcCf+pNnwIOBuC1va/lW5Pf2vGT3cXYEol57Ps7gscGBuwqdAnMbHgKrO0kXck4Q+TFk34141cRufNbqNjgTxVeC2MwyhkbZTOdkTEZU0iphJNI6dRVUoR0hCUvErgo5F1hAL6HrpVJFpYwgTOp60girEX7gmBKuwhHC0YJvIYracvUjQtfkpcUZr8+gsCH0fEZEgBF8tisv3qlnBRLOtIgM1e1sRJniE8NQhtU3fludOiT9vmI3Dp5gZi1XwqJmcVdzD1B0qvII6ed7lRJhHDnKyU2SRzxULMqH+2nZmYLiWFCFlUXPSPDa/tZjC4SyQovTfupl5pV1ZlNIqVwoQF2hkQJ33d/J2oWoeliDo772JV7BYn59W/mZ5x99lFbT1vrooudgdaCapAwkZWJrU+faNInW1Sku874UJAXSWYNEyanaQXauuugFIYJU+amjQcgRREPLAEj0IEgmC5kW+37QGzJys4Tk/R55GWIF+aISk6qrDOqZxLqAV4579yibCIxqUTkAqRFVHOksphcYHOBrGWYLAAsumppWEVQl1TXpuSRi9cXRUJmVnGSMr9u8VoCYwSPjPdjrKDXj1kSTTBQc4uZQdnCFyCFmEn6wmAQtK+8GouPIMOSGkNsFft746wNxqgFCRMZICCrCiZX+PhNSzDt/KpWFh5UITDVMrrigwgQxhJMpEBAa9AjK0GYWlRqsBnIzHkrvYbz1WQ1F6OsskJKJyU2kMS9irwkCCYs5ZHU+WFS7VQaSmAihS58MeWNBt2twGwVn333ibz0C7tmXx9+yz/ywS+8i1cc/0s+uHKSTiVlK/irM47nne/5I77Y/BfgX3ho87GcfeO/8zyAG1fxDC7kd3+7kmf83Sq+/4OXAvAIB/Oyl1zX2ce3f7QQwG3z3iLm/6pLEK+6eLvjPWdVL4fech1vOWYV9/FSmHzdTpz149GuvABFGhuc3H8BJ994LgDvP+lL293H1qoxO4Jl79p964QugZmNJIOKuynkVR/rS7yJ2PliYhcnbH1VpJM5DbDKsyLS15WMsRYrJUJrbEEKVOKqBdbajkkcTxYGc1cBEJ7C1iqYnhJ5Lej4TLymewrVTleRgQsPEJlBCfdeXnEpZf5U5vLqE42XGfKqT3NFDyVfIdaPugV+p5qBIwbG+UrwfUdghMArSuYmcBdkYUFHrnpjAoX1RFEid5I1mRnnbckNHrgLuHB9WPKqj/Gd1KA0qlGTrU74ANZ2ktmQbYJXpIB5s6ot4MYJxR3XYNt8rN3TptgHbbmcsR2ZWZtYdSovMFORaaNNkma9Zr3u9NgTMV9SsjP77BKZHcd/jp/AH/bf9FQPY4+DtYLReoUFUZ1l/maWe+P0yowiTRdfuAW6xCKFICqqLhNWMG19YuszoSsc2DuKEpa1lT50QTTysqu2eE2nArAehbFfkPRDa2kOyoJnsJnEtgqC0pMhhMXoInkrd9dOrydFeZpylLKkZ4rNrTKbJ6pkqcLUfdRQQhhmSGmpiyr1pR6VDQK/6SLuZepIg4vBt3gxhGOCxApaLddPRQrDAeEmekRCWeZEwjL7EZESYibVHvdAyaWx2Q698YUhs5LRvMZkEpHVLOGEk5EJDVlFkJUVXgsq653KwHgSUXX+1axHIVNLMJnhN3Kyqup8f3lZueqRcfddaQtlhcsoII8UqojvzyoeSV9xj05spweaLrl7hg5kJ1whK0viQYlpdQnM1nDM1w7ZZfv64BfeBcB/3HIi136kym3PCDnud4+/Zzznqs+xdvV5AFz131fzl78YYP9f3M8zgd+94PH7/d3fruTdZ7yIe8y7t3rsZ732WP5t9czv81nwf2PlJEe89BAW3v977nhwRzK45o+LXlzn9ncCzPThOfkfVtI87AJ+9aq3bfEzW5O/za6mbCmKefb2l954Lp+9anKL+9kV6K7QZkMKRJIhE40uex0SAXSMgUiLCVzyltfSrpwMiMx0iIwNFSK2iMKo3v5sx6QeFNIkXTztVwpbjsgHq2Q9fpFs4hbfOpCYoL0Ah3A8cw0bheg0ErPKkSSZ5k5eVsi/0h4PYS2N/atU6y2YrCPCwJGEtnRqdvNKY5zx3Uadppmm5KEaGaqVkQ6VXaJYM3cNLJWAkmugKVtmpmKicFWs3OmuRcEj/OnMHaNNWoToeFXmZH4HvttGqg6xwSjnlZkVZABukTAnDtrYGUlamwS1HzUK6Yhju0oz22cDblsjHbnzPXRPV0K2p2F3kJfH7v+pJjF7k//lev0HNKby7W/4NIQ1gjj1ebTeR7bAIxQaX0Bm3XOWDOYs4P0inSwQBmUtFZFyUDDC2nI/6+I+rBbusiVtQWAEKnHmfZVajAfNxZZ0UCMijc2Fq7gABAbrwX4LJxiuTJEbxX0bF5LGHtYKhDSUwoxqmFL2UkZthWolJi85hcGSnikGwiab4ioPTEW0hgXNBR7lTbm7xlu3kG9XgLzEohKL1oJa1cVv7R+NFedpKAtLUMQlG2vJhMZY539pWEPTCvzCHaRmfWc+FoThkXiQDQ8NUmqITgVIFreX5rC7N1TXgmrMxOhLbbDCIy8LhPbwGjnBZE7S72GUcHk2SuA3NF7D3eNUIyHKjAuiCT1UnKNDRTygsJ6rNAGolu6sC4R1QQd+Q6MDQdojiIfcOXSxdSRTqwh7Vu6y/bU+fQgXvaMO6wYf996yd72GtavP4z//OeA73/oGf8zxRUVl1Tb3eQ9bJy8A//ut2+f8/gxW8Yzn3cnHbz56q5+59swqR7zzDRx21Pc55sAruOPBXVOBaaNdfeGHdKov28OlN5671QrNyf2OBF3L40nJyf0XbFGyt7XXt4TJf71wu01B2+gSmNkwFrIcbyrG+mWsEOhK4Az5QmF9yHtCdOSqIMYTgFvoy8xgQoXIDTLVM4tmnKXDerJIjCmkU0JgjUsRs9USeX8Z67ubjUoNqpm7PjOh7JAkcB3tg2aOSIrIzWqIKo5jQg9d8oqnQa4iJDQYT6CHaqjJuiMv1kBuZyKLKeRjRb8V1SzMkMVTJx2qQh6gCCZzdNlDpaZjVJSZ8/sg3RhcKd2QlxRZxWmiS2MabzpBxIXkrn08KR3Ja5OfNmbLxopEtk5UtLXY9vuzCKEQAoKS23eWuc+gOp/BzjJjthPOoCAysxLZVICpldDl7hOzPQm7m7zsCM6//Cu7xci/N5GXLraNdCLChpINYz3csWh/KjJhmTdBWWhC4ciLxHk/sqLaIHGVmUUqpWkFsfXo9xpMeiXKtYSBSpN1m3vJpxTBpEsFa6OxWJDv3yIMc4wR5LHvLnmJBGURgWG4MsVB1VHKMiVQrueJFJbNrTK+NBw1sI6jqmuIhlKUsIxkvfSqJtMm4tdTy8m0otrbYrrpMb1cURp1KZzCur5pxlNoH/yGRWaQj5ZoSHddL6uEFf4ovVJTKaRzGkvSfsgE6KL3S2YlqviewD2f8gU0jGRN3stN61YgY0kwhfN/es7jEw8KkkGDyAVZzVVXgskUXfbIyh4yt+i2rCxUyNwSjueF1AxMVdEY9kh6fbIeCMcrnb5m4ZSh5/4EBWRlyCOIRouUzcCpDmTxYM9rGUTuktvySCATyBbumylkeypK7/g9rU8fAq9+/Htv0rfT+NYdfKdYf3+negsfe+9/8L6Pv2KXjuFZrz3W/XDztre77sPXcfq/n84h/+xxxwt33fErF18AP9zxz21LXjYf6dmThS6BmQWbJCAD5GQDTylM2ccECh15jpTgFvQys3h118dF1RN0xRnXO2ZKT4JV2MAj63FpJ9ZXLkWrLZsS0hn2Qx/dWyLtD1zZOivikYVAJjkmCFw6S2oJxlNU00Ub28DD+KrTu8YKQBSaW+lSaILxHKQg7fVJewPKgY+NY0cObCEdE8KFBrTjlY1BNGJ8IYiHXcVFGEfW/GntdMLCvYa2CFN4hnyn9W0sCbES141ZukjJ0iZNuKHu0tFkcZx2SpiUrseLEOBJZ8hvV1+KG5uVRSRyW9KVJk5AXhj1RRRiq2WynghblO6Fcak0cjrupJ7ZNCv2LeYmnbWrM+D+LFLMskq3ArMt7C0+mN2FXU1iuuRl34I3qdAVD1lLuXtqmAGvwXBliki6e4kSAoUgtpppY5m27vqmsERCk1nJtClRlikHl0ZoLfVRwrJutA9hQMUWlbmHSPGAIF6i8TyDMQKjFUIZgnKOP6DxlcZaQc13DwHumFjGqs1DPHvxGg6pbGTIm2aBN82wN8GAjDEIfGFY4/XwQLqI7294JmvHe9G6fZ2EvGrRJekSKD0X0axSQ1ZWLoErtfgTEjMkiKIMY52MrGkFTWtR5JRnEZTMQoZAW3fsmnRNPzWWaaNJLNzQPJR/X/tsJifKCCCrUVRUiujmqqtESSyNRYpw0ikAhLFk1UIuF7uHbq5Pmbu/xAOKtEdQ3x/yssHWcqRvSDaGhJtl4fGRpNVevLiQyhVx0V7DUt8vIJh2pn0hBVY7WR2ALrntgv59sBHMLsSurL60MTR6Jsf9bu6Ce/HlAh5+/La7mrzA7IrM0dvc7lV/cj+NP/k+v39TDg/u2jFc9OI6rU8fwtDomY97748W3bnVxpHbqsLATPDBe478IsdcN8I552vef9KXtvo5ux1P0OLLBevPt3z70Y9t95za6BKY2Wj7QJIUNdlA2DKmL3KJJoFyRKLwfFgpUK0MkWnUVAJtiRmAtq4SUfKQuQFTVGCkdJWDtrdDCGy1RNLvJCu2LaOyILRBZIZgtAmUAVCNpFPV0VHxV1cQJ4G7wKp2T5q2lEpDOKrJa4GrVMRFIll70S5FkQbm+hYgBAKQzQSVRCDAa2ToItHFKOF6vFgxE9spIO/xwbqoZKktMrd4DU0wkSAnm51xA24cWe5S1qRwEjZwDSQ9z1VPOt4YNStRTLvflXLSt0BhB3pprOjpfG/gyFteVmRVD9kXIvMe/PEWcqLueuqk2VxfjG1rt4sqTFEha/c76GLreLJIzJNZfXkqZGRd8rLvIRwXGOmRppK71TDNPOBZ+z9CWU6hsPQWBnYszg8icmLrFvC6IBBLvEnKMmFMV1kf9DGVRxgt8HJI+5ynzwSC+sqcaLCF52n6yy0WlqcZDBsMh1NkRjGVl7h/agEDfoNe1eLkwftZUp7kqMoahv1JlnjjVIS75gbCRTgDNEzIeF7hyL71LC5PcseGpdQnShBqsl7n74hGNDIBEynXk6WmXEPNDIIpQUsrkgS+v+EZXJUfzVGD63hebRWHhespq5l5rYSTk0XSNa9MLcQ2Z11e4q5kP26dPoCfrz4IYwS26SGNS1XLerW7fivbyTjWyjJ5iE9pRGKVT3kkc7HPvsBvFPdH66olzYUeE4dBvl9Cb2+TZhyQ1gNMrBChJV6kwQriheDVBeF40ftGO7la2/OZ1twaQRiLahnX1Fq470GHoPNuKMyWEL7yZPgMtA575xzj+a7CbA/MJeevZPm3n7dNH8tTgY/8sMoFf3LlLpOPDb3Go3EJvG9kP3jLP/Ie4LNXTbL6pCP44BfeRTK1iv/7yxuBG7dKOLb02jcuV9zxUtekdM3ombxnyJGXQ/7Z49Ib39jxu1x647m86M1XwJuv4LOnnzWvMZ9d/RYLb7yeD31zFLhqXp/ZYQKzYcMGbrnlFjZs2ADA8PAwxx9/PMPDwzu6qz0P7VhfQCQpcgqCJCPvK3ee7APIeMZQbn2FSHMsyknFfIUE8qrrzOs1ctefJdNYY1wDyzx3ZKZWIeuPsN7M0xqZmZkeMqnrjaIjSVZReI2g6MniLpIu6tkFAlhVGCkTNzYdOf+LbDlfjEyLiOSONEsDBtJCSmWN85NkmSMUWhOMNrCBB9piK46gtKOjhQYEpL0efl13TJxlbfFaLlJZNVJIM0ReNMD0PZc6FvnoSogNJNqXnf4BwXiCbKaIerPwghaMpB21DIVz1UNEIdnSwUK2ZzvxlcI6sbQJJHkReGACQbKoglcO8NePuzHkGrJ0btJYURVzUjU7Q0i72CaezpWYJ1qF2RHiMvs4XcKz5yOcsKRlgWpKknrII2KA/+h5Ns+orOW50UMMSI0prnFKCNfrpP00CigLV6XIRErkjXNIFPHjicOBopdLAGmvIOm3rhEj0FOKWV4bZ3lpjMXBJL2qQdOEPMQCjh1YzdGVRzguXIsBNldCpk3EtCkxocso1SASmtRKosK42CNjnl+5l3ItY0NeY6R5OmutIIl9ci3II9fsWWQaG0j8qQyvxy3kvcQQbRLEayLSRSmP0oc1AjloCYQmEtqFTxbfl7agEUxrj426yrq8n5umDuKuscVsnq5gLWSphy2CB8zCFN1SiMgRGOUZFg9OUk8CciNphiH1SkDaqzAqwHigIzCBIBcuGTPplWx+lqW2/ySNRsTkZNk9CNPFX0LVSbWDUkYyGZGGgqxPoFoSry7Iqy72P9rsZGbTSxVe09L7oLvnBXVDNu18MDrtEpgt4UMv/hrwNY77wPd4yS7ed+OSyzoVmG9crlj1ME86eRn4x89x25u3HCSwu7Dsti9zL5fxwS+8iw+/5R87ry+/8W54pouEDl9yS+f1i1582YxXhi1XX9593xK++N0yZ4y+kNGha3jfyH4sv+oPOGbZv3Pldwd58DuLOK5/Ebf+2G1/62vfy03Vv8Nbw5z9wpbJ0WVvcmuID/3wL/nQZ+Z3nvMmMI1Ggze/+c1861vfQgjBwMAAAGNjY1hrOfvss/niF79IuVye7y73PHRM4IXJu9lCJCmesdhSgIk8jDeTeKUjDxF6yNg9tc+rATqUeLFrytWOYE5rPqVmjhDCyZikcN6XkjPaI1y/FJkZVJx3dM3Wc00qdSiJNheel7Lnoo1bOTaX6LJfeHGKRLDcwKzoZ6ENWV+IUYLg0Rzbjg9OcihFRaTwzEK93eRRtFy1R+QGG3jI1MVBq9SQ9PtEG91kLD/qPC0ycVHOgbaItGgkmeUuxaWA6S2TLCiTl6TTLHsCmVv8piGpKrKqwmuE+FMR3qapGemXVE4s3o45rpRorVwAQDAe4zXcky6kIKv6LraaorFbQXxMKEkGQ2wwSLB6DBEnWKNm+uLg/s6tdaEBwhhkl8DMG7uTxOxJ3pctYXskZjbZaG83XwKyOxtmdrF7EY0ZqIHMBU3fIzZw4/oDuKc8TLBfTlk+RFlY5wfBeTACAbG1REIQCkUNCEXKqPaZ1BWOqK7j4cUDrH94CQhI+i35QE4Q5iwfGGdJZZL9ogleULubSGTE1slgjys9RFnkLFCW2Dq51rBK6JMp2k4TCYMvOv2QCYRg2lhqMqYscqatTyQzXr3k19zdt4SbR1Yw0ugvGmoK1xOsqPxb5R66qcQQThl6H5CMRz6ZsijPcN/UQgwC3SPZzxtnQ97Lg8lCNmcV1rT62dDooRokjMclNo31YDKJ9A26pcAIvGqG9Q2VSkx1YYI2kqW1CQ6qjgJwSLQBjeSmyYO4de1y4mrAaCXEn5JEmyHpUZ3+ZJOHQP+BY4yPV7GxojTQIs8lxjcsGphiv+okm+MKNT/hPrGQeCrEr6ZYC0nqoTaExAsMKpF4TUtaERjP+W9U4qTXKgGrLKLRFbxsC7f9/St5zskrueslrofLrkDbA3LyP6zki014/a3P455dsuf5Y+xdb3ucjA0eTxIue9NrOO7PX8Dz+w/ovFa691O0DnvnFvf7kQN/xkUPntz5/ROn7M97fvIIxxx4hZN2ffoQSu/4Pf+2+sOUvjDJX8767NcKEjMbF724TuXiC+ZUUdrju/TGcxnlGp776iZ/fd0NXH6mJF79L7zm3CZ3sIhBJRl87VcB2KxNx390IIsZGu3lfSP78W+rPwyL3rjFc5+NH/7iZ1t8fUuYt0bmr//6r7n11lv5/ve/TxzHjIyMMDIyQhzHXHvttdx666389V//9bwPvMeiiOu1ui2zKiRGxrj+LsLlu2dVj7zqoyNF1hvRWF5h8zNCNj7bJx5wNw2pLbqk8FoaWY87EcDuANaRk0AgE4uKiwpC5por5rUAXQ4woUdpQ4w3nZKXXWd740ny3tARpki5BJimRmYakWmE1qjpBJlqTOCBcVplzKymlUUjTdeTxhEqIQS0PSiASDNHZHJXFZKFPK3ySB1vOkElGpE5qRvaosYbiHoL0YwRceoqL0VwQb6gh9biCs0FrjLkNwylTRnR5hyR204kM0BrOCIb7sX2VN3YpEAEvquQ+D7pskFM6KpbItGd7zLtCzv9cFRs3PeubeEREnhNTVb2iA8YwtYqnQQ42ilss5HlMxK5LuaF4z525VM9hKcM8yUk51/+lXlte/n5b9gmedne+1vCUV/6/Rb/72L3IJjMqWzQTm40K9G9ngY8lCxgXV4js0UfFCEIhaQsFL1SURU+VRFSFSF90qMsc5b44/SqFvUkBCtIew0mcsmYPZWYwahBIw+o65DMesTWZ1A2WeFNsszLGHbKLpfwJaBXKpYoxRJPMKAUNamoCUkkBOms6OIRXaVpQmLjY6ygLFOSzENNKhcSE6riIZdGNhKshLhPklYVwkAwbSmtl4jNATpVjDVL3DG6H9/beAxf2HAKn3v4FH4zvR/3TA2zZroPgPG4RCMJkEqDtOhEIac80AI/yDFaUJ+OaCYB062Q8aTMI80BRpMq0yZiPK+wOJzkJSvu4dClI5i+DF2ypL0u7KC5UDK9TJINZYxt7MFqAdJiraBSSlm2YJxAaabSiEwrRlsV8kzhlzMW9U1TLTu5mV3awlQ18QJXORMWTACNYUVekngtgxc7P6g/2ZUkbw//51UPbZW8HFh/yw7vr3HJZZz8D85b0zzMpWcdLj+50+PbWVy6lfSvS288d857t/2LK18cc+AVANx18uP9IO332uTlE6fsD8B7fvJIZ5t/W/1hAP7ggENYc9zjycpf/vbLWxxP45LLOu+1/SyPHftFL20CcPmZsSMuau6/60ElKX/usM57dtG1XHrUP7HgnkVO0jbr3B+Lb1yu+OWH528Cmvcjge9+97t8//vf58QTT5zzulKKF7/4xXzlK1/hzDPP5J/+6Z/mffA9Em0zO3SaKYokBU9hffd6VnURwdCWVLUrIODFkJUlft11LRa5dZ6UqYYz8XfM4gKkxK8b/HohGcuMM+gLQV5S5CVnhnSZ9OA1M/Ky3zluVlNOPz2auRQULTr9WBDCRTt7Eqkt4XgGSTqTyNUxsZuOcd0WCWk2167PZeIIjpysI+sSG/jYcui+kzR3x8lybOAjtCMrwvC4eGJTjYgXlly0ZMsgclwEtSqSX3x3oVeJAeOaY2Y1H6jia+2Sy7R2Zv1ambTX9ZZJ+wKC4hi2HT1tQaYaFedkPWEn1tJrarxmhkok8VCAGqriGYNIMmxaJKOlGQiJTTOEMZRXG7p4+mFn/S9tYrKjVZbHYkeIyeXnv2Fex9kWUWm/95tzD5nz83zwIvVz/nP8hHlt+3SDauUEIymtgQivLtG9MD5ZQXma26L96fcaDFTupWZ1pwu9Kf5EFJ3prWXM5EybgE15jUldZnSkh0iDKRtkUyKaijRXPDg5SJJ5RAszfJGzRE1Tk4ZICMrC76RVVsXc67M/6+GNG4PBoGmbCn2Rs7kgMbdNHcB4WmJipIafuuaZeaQQmcFLMkScEo5rkhWei3nOnB8yGrWE44LWopCJCR+xIKGZBMSJjzWCsUa5CJmUZImHaXr44x4yBc+HvGyxvkVUcuJGgB/lHLxoEytrmwA4oryOg4IRKiLFF5rNusKEKRMbn2VFfPOqaAH6wTKtxdqNbSDBA/wgZ7/+SZQwRCqnP2wSyBxfGKbykDxUpEYxVGqwqDTFprjKhvHF6EwhlUWWczIL08rDq4OOLCoRtIYk1XWGYFoTbfZhqptq+WTjD9cNclg554vNA3j1Uf8AnPKkj2HgHz+3Q9t/8lNf4d3vdPeA7x7h8Z6Nc99fc9wbGTrO/Tx65ZYj7O948HV85Lqf8Q8P3QmX7OiIHZH5xuVf5o6hawBHSo65ZoQ/Xf5BPviFd9Hc8V3yc+DnRbPSysUXsOy2x5Ooc87fsaS+eRMYYwxBEGz1/SAIMGYfWfC1TePgKggo5+XQBmqh86F4Aq+hXdJWolGJQCXOuKcSJ7eynosxDtc3i7hiXDWh6HjvmkOC9QR5oPCnM7Ka+45VrNt+RKwQZD2+a2bpCbKST1p1ZXCZW/KKh0qKDsDtZDJPostO0pb1eFRXTc6cn5jVNLJdEZKzSNtjDe5ag5GF1nlmwliv6MkSJ+67yQvpnac6JMaGAclwlawi8ZsFwcgMwlikpaggubABUVRLEBTx0QEyraLG6o5oRIGLmy6GmvYohJkhdO14a98UKW6pxnruuzGeLKpTFhUb4oUhQdBPsG7SSc7zHNo9cqzBGoGYmulA28X88HT2w7TxZBCXx35uW8ecb5Vl9nZHfen38yYx3SaWW4Fw0trqek1e8UgWF7H6Fh6d7OW3paUcGGykJjYCtpBwWR7OqzyYLsQXGm0FFZlSkQlSWNYmfcgpj7xsUQ2JagqyXosFesOYgxds4v/0/J4DvUkq0snQFAI1q9u9fMw6WjKbwLjreygkPpY+mdKwBk2Tikw4qLyJO/OlrhJSn+lF1q7CAJTWN4gHe0h6JH4DyhtTZOa7JpFWEo0KmpMlphb4EBjIJVngQyrxJxTKQNgQBFOQ9kBWNdhqDkYgjMAawTFLH+V5fQ/yvNIDDKi48As5L5GPYIkaJ7bjrNNlenTMq4d/zffVM7kzXYbcHGDKhnI5IcsVoZ9zaM9GTu27iykdsdCbJhIZC1SDzEoeyBawJnOS+bJMecBfCEugmQdkRiGFZc3mPhJbKnyvLhXUKNfHzW9oaqs1YjKji23jnPM1R04czKv+5P7tbju7b4x3xNHkd98JuP4vpXf8nrtO/hjXHfH/OOXIv+OM0Rdi592JZNdh1Znf5bsj+20xfatd4dgSPvmprxR/Filis2Rk7xvZr1NtGXqNx8dYy9Br3Ny7+JUn8bJ37seB532Zf3jHE6uu33vtJKVr3fe5/Jr13HvtJB98Qnvc9Zg3gTnzzDM599xz+fKXv8wxxxwz57077riDt771rbz85S/f5QN8UmE0KK+QkSksRUxv7vqj2FKIMK5pllU4WRbOq+LVM4Ix3bk7JP2By47fHCPqLWdIb3eYb0OCjlz8sDCWvOy5iklmHDlJdMfontUUSZ/7rNS26PMCXstVLfKSR9qjCCYV4eYYcB4cU/MIxzLkeLEYbxOLrLiYCjHj+VHKLeBzZ/xvN94UnX4xOC1EUTIU6SzCmhb7a1evhEtnMT0lWoMe0bgje1nVSeBKGy1+PUOmmqwnwGvlncCBeJGLYtaBJFkQUYoz1/dGCLKq10kZa0NYV+nKFBglkJlCxbnzAyUajCNEohaStyV9mSWvKORgFX9dYeZvS+faf0d6HyHkXcwbT1UTyz3R67Kj1Zgu5qK5OKI2JvHrOZV1krTmoyOPvGbQSzT3Ty7gjtIKFqppIpEzoDImjEdcPJT52eQhbE4qPH/gfvYPNnF3cwnfv+cZRBslXgwqxiVrBZIk8akMJOxfGqVPNWlfufzCIq+tBWGQyA5hUUKi7dxrnHKdMl1VRkBGSkPDmK4SG59er8naei94Fr9eSKa8mWRM0VtBNBMq6zKaC0NaQ5Jw3FXYdejhN5x8OBpzEjMdeZQ2G+ctteA3TdG9HuIBQWt5hlfLMA0f4RtqfU1asc/z+h7kxPL9HOrn+PhFzcjOOuccJSwDNqZPJizxxokWZQRKcysrEHWfJPUwWhIFGRuTKmvSQaZ1xLA3SSQyeqUmEIZeuY5l/mamTUQkMlb4m3hZb8amvIeb6wdx5/hSauWEZDzqNBnFOu9TVilI2+YcMdaNUd5RtGVjD1a/MK/tW58+pPPn9//goyQbX8evgEtv3F0j3Doqz/sjDvzjJv9z2mlb3eaxMq0t+UI+8sMq7z7M3R8++amv8MnZQW3Fz98zR/La4ffyjtf+lE9/6vm8Y+NLdmmq28LL/ow/vfwf+diitTQuuewJ769xyWVwxpf56KqlPOeFL+K01Vfs1H7mTWA+85nP8Kd/+qcce+yx9Pf3s3DhQgA2btzIxMQEp59+Op/5zDyjA/ZUyJnFN7KQU7UrEGGAyHLUVOIu1GamiZiryLhmYRjIywqVGvyJBLVxArKs0/Ue6JAI2cqxMuhUYYQF47unTKqVI9Mc7QUdmVpeEgTTjtxo38VvqmYOSqClIA8FfjvmOHQNNv1GTrB6zMUHS9Hpbt8hJO3zNnom6SvwXSKbNp1EsjloV1qsddUWY13CWnvhby02DDA9JRpLy6jU4rVcs7C8LMEK8orCKkEwnrhEHV8icjdmK5wR0konx1NDFcJm4o5VBAuoxOBPG1RWxFQrgZUeVkLSqxC576pYmcEqid/ISfp84n5FNC4IJzKIXSiC6qsiJ+oueUYWfXHCANrSsi52CDtThdkT/DNPBXnZVcRlvlKyncGOVGO6mMHmZ0jEgyHljRnR5oxoLCx6lkialRJ5rviFdxC+0CwNNrPcH6MsEwZVg0Boyn0JCotGcGvjIK69/wjsWIjUrnGjn0E4YdAlSWMgZLSvym+n92OJP8HB/uaOh8W0O9qj5ozvseTFYJk2KQYoozoVG4VFW0lqFf+14Sg2jvUgEkl5xLiGjdo1s8wrHiZQ+EoQrp0kWraAZEAwtX9AedRVv8O6IRhPMZHCS7zC5G5dSqYnyEsSlVoaiyXxQgu+JW84Qtc3UOd5ix9hIi2xIhilT6b4+EXVZaZnl0TgC4XB4JPRsBptBEcG62AI1tV7WbNuAKXc+edGsqlV5eHSIC0TcGBYZVA1qEmFjyJUmj6ZMWYSGtbDF5o+mbJM1elTDXq9FvfWhzEWxtb0YQOLNpKkTxBMCeI+hchBTXdTyLaEq5eezVmPfrPz+11967mLKhe9eNsKiLBnJaPx0QC8+LKQX78ErltkKd1wEacc+XckG+dGEl+48lG+euIWdrSbcOJVJ3HqyQciVm+99wnMrcRszdzersg8FpfeeC7XX1sGfsQ7fn4hQ6Nn8t57Xw33bqF75xPAr264np+97bO7dJ/3XjtJ+czDntA+5k1g+vv7ue6667jnnnu4+eab58Qon3DCCRx22BMbyB6BwV7EVNLpCm9N0VAx8Nyi3VOIOCEYK9K/ArcI9ycTV+0IFKbkEUymyHqKHB13FY2i10mnuuF5ruN9I0UlJZI+d2GTmUvkUonuNM60nlvs+w0nU5Opax6pEtdMU+YGIxQyNYTT2nX+LftOQx1r/NWj2FZrJmENZv4szhPFXBP7LMLSHj9Fbr7wPCerK5pttuMmhedBOyZZSXRviekDKuQlQXlTjkw0uuQhM9c4zErXgNOUPJAu9tjklrzsuicLY/Fil+IytSJgoFlD1lP3tK8tXbNglERikKkmGs/JyxKZWHSk8Jp5p1+PrvgI7QpIMrMuOEBYTCBJB8v4UqLGphBJipXuO7CP8fJ04fCON/8Zn/7iv25zm/mSmPkQl2cfFe72JLK9mbzM3l+XxOw5sB5MHiQxXkBlfUp5RNNYrFChoPL7gOYSxWiU8kt1IItLQxxeWY8UhvVpHy3tkxiP8bTM5rjCpnqFfLRE3z2i07gSoLomxqoI4/uM9NQYiJoMqjrlwkPTrky045pnksYkmZ37YKppMyaLe0MqcqaNZJOpkFnFmmyAn20+mAc3DuLdV2ZwlfN2yNxdS61y1/Pcl0gdIFsZ5U05OvKwHmQV6e5ZTY1qZchMk1U813bLOCm0Vq5rvVGCxlKDXNKCpo8s5fzRkXdwUvX39KkmD6YLXUWl0FhLJL5oV5qKdgSumxm+kFSATOSsMVWODNbxqqV38JXWCWgt8X3NUQvXkxrFcDhJJHIWeFNMm4gxPUUkNDXpOZIknAS6IvLOsRWW2Pg8PDXAomqdfIliaqSKLhl0xeDXPcJxi/WKBtddbBGze7XMxut/+a989cQ/6/z+g0Uv5yUj/7XtfbEJcei6Oa+1ScHIJ8oses/OODh2DB97738gXnUFvGp+2+9sd/tjz064/s/L/P3V53HKT35F494nXh3ZEg47sJdfz/r943d+l/ce/cRJUvNt9/Kzw4DdXYFp4/DDD+fwww/fqYPt6TBRgDXKdYxXAms0GI1Nivhe7blkrixH1B0JwZgOIZDthX6eY41xPWWMRczyVrjmktr1W2klqMSQL3Bpxox/FwABAABJREFULXnoKizO8+LkalY40oKBcHOKsEW1JrcIbTC+Iu31nSwqKeRhEsLRFnLzlDOoC9fnpSOTahMYWaSiafez8CQ2Sd3rbWmZVDPGf4qflQJjXC+VXM80ohQCWwvRvSUmDq5gfNfEy59yAQFWCLyWawKqQ1dpSmu+u4GlThZmAoFKLTp0jTJlbslLgmQgpDzZQuaFfE47iR1KgLbIVBOMaYwquVPLrSNMRaCBauZErZxwXDkvjLHIVGAyhQ4V2UAEgBqfhlbsJHZmxwxlXczFbBKzJ1RYtoanSjbWxb6NbDBHhxlW+nixh98wBJOuAi0zixWK6ayP+xZHPBgMcqu3HG0kaeKRxR7SK+LwjcAmitJ6hcwsKqNThUn7AvympTRiGV9UYrS3wsa8RhZsBmvwRdv34jww2loyNJk1ZNbiC9HZRiEoC4sGRrXPlA15MF3InY3l/PTRlUzX3bXVyyGtuYp3UDeoQkpshcAq91DJhD7BeEpVCupLFEmPoPaoC5hptwewChfcYnFqgsRghYcJwIQuBU0GmmNXrObsvlsYUhnTRhKFaxlWCTUhC2/PzMM3VZyLtgaJIBQ+vjDENiE2PpHKWBGMsqDaYM2mfoIwJzUKTxiaOnS3OCvJkDStoiJNpxJVFoJIaaaNZV1e4pqpo3mwMcRIq0Yz9emLWjxz4XpGajVWPTiMSCWtRe6BXTQpMH6XwGwJL7h0Bbf+zWv50XLmSInafUlGPlHeqhH9VQ+fxKmXH8jVfLvz2my/yWOlWe8/6UtzCNGuRv+/um73l+62IzhsqVKzO5qA7unYIQKTpilXX301N91005wKzIknnsgrXvGKbZr89wpIMLUyKk5nPCKdBbvFtrMw0xSkcorb9iIf5kQkd4IApHCkQMkZT4Vw1RiRpITr6hivRlZx3X2hSBhrR1COpwSZu/DLor+LKQz1VknyitcxtXuxxptOUWP1mcSx9risdZI4qYBCLtZOXNMatLsBAdA26gf+zPlZ5++x1s74XYrO9W2ZnVBO4pUMhgQNQ1qRhFOavKzwYvekzQgnhctDQThuyKrKnbeQRWKYdTK6olGmyC1B3aAjiYkCVKzJS6ow7SvnP2rkmEAVVRvtEuLkzPnYIt5SNjNQ+cxNVEps5GF89/RQ9IbIOHVVmCJVrYst493vfMNWy9qz0SUuW8bu8rx0qzB7DkQsEVKSLNA0xhU9q921TFiJDiCYgnBckG4soyPItEuyLDdAJZbWAoEOXSKZX3fNEmWOW+zHoFJIeqWrSguoPaBYWx7gx32HszodYmU4wvHRGmrSpZAZDGMmZ5MOKAtLICxl14IZjSWzrkeML2B13s/Ppw/luoePoNUMsFpgY9ePK+u15DWoPeh8HiqBvOTSLq0QztRf8lCNFNEfILR7qKbDmWu2inNXES/eaydsGh/ySCBjd9Gu1GIilTFlQ7QWLFApfSREwlVXJFsmBW0igzVIFDXpcZA/zrTxGVB1Du3dyEPrhtBasrbeS9nPOKl/FQcFG1nhTwAQCYu20CRDIYiEQmNJhSYSOYuDCTKrWFYeJ++XhDLHl5oX9N/LV7MTWbt6kLzXUh80CBPQM9UlMFvCj9//MK/4VKHg2UbFYuQTZfiC88W0PTF/8/zV3L4o5N+vPo/f3vldLrnr5bANv8ulN54L72nS/69nMv5n1+zCs3D41DVrWbf8QwBcyMV8dNVSLlz56Lw/v63+KLPR3ub2b4ZwLbRe+BH4wl/s1Ji3h9I7fg8/OJ6T7z2P278ZcvErTwJcFaaNJ1qNuejFdT5+53cfJ/vbHuZNYFatWsXpp5/OunXrOP7441m0aBHgDPxf+MIXWLp0Kddddx0rV67csZHvQZD1BGqhW7jH8Qx5aS/689wREalmJGHGzjRZbBMXz3Pbz0ZbiqX1zMI/z5HTDcJRHx2W3ZMsazH+TAd5lECkjrwY3xkd85rT+6qiB0q0KcUbrbu450LqhZQgJcIY8At9sNYIT2Ez42Rxup0a5nUio5md6d2u2LSJmdaFFK0gNQWx63xPQpD3lhwhkBBNaGRq8Bo5Ks4xvsIEkmDa4LVE0RjTkvS4xp9+w90AVcs4OUIkCcdzhDVkFUXWH+FPxiBC8kiRDPgIbcmqAV7LEExkYMGbijGh12ng6VM0W/MkMs6hXc4XApnkUHGNOgFs6LtGltaC6d5w9hTsKhlZt9ryxNAlMfOH9S0yFpiSq3i3ZVTVtSmtBT6JcpLW8oglnDQEkzlpnzcjE4490h5X1cC6hX5ecg+48jKE45D2CLyWa5qZZhI54fGbTYu5Ry3ihYsDlvmbiUzOEuX8fLF1Uqim9YqoZE1snUtmwgTcHq/g9un9+fXGZTQTnzxXrgKUyU7He7tfjpCGSb+EigXhZh9hwZ+2BNNF42HAG63jN3JU6qFDV1lHCmSaI+O800xSaFelyGpOPgxOfleKMvbrnaTPb9EnY/pkTrl4KKWxyCLyWT7G27Ml+EIxpCyp1URknNJ7D//jH4rOJcYKjupby9HRI4W/pd0gT3TCENoVLAnUJAQi54zKPUyXPTbkNX4XL0MjaOqQ1ekgnjR41Yx80j3UnV6ZE6ztNrLcEv4kfj4fXvTrOT1CZsMt1r8EP3S/vx6AGQlzu3eK23bbx9pa8pd9XRVxxc6njporzgDgj6tv5NLWP/H+3/wViy8XPOeFL2Lx5V/nrKsO4vM/W7XVz88e03xJDLjzOe0D5/OqP7mf697ydV66m0jMr19yCydzHhe/8iTee/Sr55CXJ4o2MVp55H9x1ufv5u8vPGLen533Cu2tb30rz3zmMxkZGeEnP/kJV155JVdeeSU/+clPGBkZ4cgjj+S8887bqRPYUyDyHJFpTK3kPB3tBXpSLJyscUQkS11VJUkK4jK3mz3gPBRp5vqk5HlR5Wgv9OWMaT7N8NaPU3m4PtPQMTfI1CBTiw4VuuSRV3yymo8uu8aUppCRlVZP4q8bh8lpVxmRAlsKMQM19KI+0gMWohf1oRcPYAd6sZUSolScX9H/pYNC/gY4spUW4QPazMjI2jK49vgLaZoo4pNdaprAaxhEEfPc9vMAePWs6Mmi0aEzbYaThmjMJYOp1GAC4SRixQ1OZgav6VLMRG6QicaEgnAip7whcbIyIUh7XWPRvBa6ioy2BBMpIjPoUDmTadkHbTsNMEVmCCaSjl8mrwbYqJD8dSswW0Tb/9LOqn+y8Oyjwp0mIE/ks3sbHlvd2dWEo9v8cv6QuSBa75oNJ73uwY7MDdFYjl+3GFUQk0iQ9LsQEhU7ouA3DeWNhv77M/pXZVQ2aKJxS3mjprLWUt6U0/NITjhlEBZUaum7VzB91yAAv5tawpVjx3PF5pP47+aB/Dzej4ezPtbkfWzSNTabEg/nvdyXDXLV9LO4+JFX8Ol7T+EXaw5kbKJCcyoibfpgBF45p1xLsFpgtCDPFGYwI12QM31YxtThGY2lgvpSSVqTxP3OK6nqKXkZmosLWXBa9CljJr1MZk7uazzR8Siq2L3XE8QcX3sQH0Nj1gMlhcBYS2Y1OfpxgQRbgkLQJw01kbGfN86zl6/BJIp6HPLrsWV8ffQkvjtxHLG1GMAvGotGQnXS3NqBCGWh6JOSPpmjhMEXmqYOuWVsBf+z/lCqQcIxy9fg9aZOSZBJmsPdPjBbwpv/+0Mce3bCxxatfVKO1yYHJ/zyHCrP+6PO6ze895dUnvdHhD0r+f8e/F+ATkzzY/Hjg/8v//LaY+j/1zP5/x78Xxp/Veb0005jycOS1W9wcvSzrjqIq1bcyFlXHQTAW09eyY+W71iFYUewu8jL7sbPDvssjUsu48/vejnyx8t36LPzfiRw4403cuutt9LT0/O493p6evjIRz7C8ccfv0MH39NghUCkGflgFRkGkKSFj8V0VLbW5m6xjp4xt7elYYHvSE1BeNqpXAI6VRfnP9Ed07zNnR9GbbKUkox4SY28qvDqGoqISmlsRyJlfIk/naE2NGZCAjzlIo9LIbYSkddCUALjyY7UShgQVR+RlwHwx5qIZoxtCkdahCjorMLGCSII5qSVuUQyNdMnxlgwriIl2tKzXGOluwkJ627EMnER1LocIDMn7zKhS21LKxIdgRcpFwctBEY5/4pf1wSTedHQ0u3fBIXsS8mOEV8mOdFG6+JJywqEJa/62CLZTbXcualYu3jqOIOiJwy6IJ25AU9ifIFMwZYCZF1BN7Z/j0SbiMynIrM10vKbq+d/szzqrC0/GXw6oxuxvH14kwpCXLNeD7wUwkmN9iUq0dQe1bSGArKKJO538tnyJoMJ3bUonNRO/qpnqvKeMMjEPehqp2Cq2BT9rSTRZktpTLK5tZCR5X08MthP4GnkYsuzKw8zTQlf5MTWY8pE/HL6YH629iCm6iWkNC4hMlXYTIIRyFJOuZowWGkyEDWY7ClR8jK8Qk49kZR4dFM/JpPESzLiXKBDj8o6MH0VsE4Kl/UY6ovddd4ql+CZlwTRZnddTvt88sgla0YTlrgusUBFpazL+jjI30hNpmTWdBpv+h2/i8XbCjeYHRWtcZ6fQBgGZMwp/fdxiziQJPZZ0+pn9YYBhLIsftYER4RrOS6cJJJeR6aWWecd0lgSoGEsGYKajHlmtIaGDWiaAGMFZZXS7zXoD5rcvG4FrU19qG6K8hbx6WM38Ic7tm59wrhw5aNceuMZwA1bfP+9R7+aZOrxFZP4uy5p9zfH/CVvvvQg1gNvvuPnwClcdfZP4EK33dsu/5ct7vdXN1zPR1kKgBhxVZs2oRoduobTTzvNycJ2EFd9e369c/ZkNC65jD9cN8hHduAz867A9PX18fDDD2/1/Ycffpi+vr4dOPQeCCndU3ltsKEr/YrAd69DsXA3HW8L7SqNLSoUbYO870EYzo0rFrP20Ub7qZFSznOzeYLo4THKjzQ6T+GsdFIr4zsjejjawn9085yEMwIfWy2TL+whHSy7TvT11MkO2je5xEUKi9zdQNIFFeIDhrCLBhCl0pwKkgiCGSmZsSDkTESysc4j0x57cV42cRIFkRknFWjvT4AJPIwvyXoCl9wmXRSOlU42phJLXpKkFdF5KmcFrheNdf120h5VREwbVCtz+mlrEXGON97En4zxG7nrHdPrtNoqMaS9AXnFc9HL0zEi067JZyXA+sqFJDQSZJxjAucp0pWwI8HrYsuYj/9ld2N7FZUtvf+bq9fuEHnZ2c900UXeq8l7DMa3mMIeKlMXAW886YJFxjJUYkkGYXoFTC1XZBV3XaJI53KhKrjeIkVQi/YFrSGPeECRl9yDKnDysnAsZ8GdOb13BkxPlkhzxYa4h982l3FPvISfTx/Kdzcdy5fX/AHX/v5IxjdXUcrgee7Jkx/lDA1PMbRkEtPwqY+X2ThVZTqLeM7gav5gcBUnD97Ps/oe5aCeUVYu3sjBy0ZQlRyUJR4yTO8vGH1WjfEjexAaolFJz+rcVVtCN16/afDqKSJ3vV90IAinXHVKZs7raRD0qha6eIhVkx6RUEghCt+Owf1nt1iF6ZAXazvBBamVJFYxmtcgk+44ucSkCt3w+Z9Nh3Pl6PFsMnZOUpsSglB4+MKFIbgW15YFMmGlP8UKb5zFwQRVleALzYCqc1T1UYaqDYxniSa6Ff0t4R23DwPzT+K69MZzd0kl4/0nfYmLL58hKcddfhlHXbble4q54gxOW/f/+OIxf0BQv5Z3XnISi1s/4Kb3P8Di1g/Izv7JvI65+g1R5/9/OXJumtonD13H7d8MdzqRbHfjZ4d9lvgLD3PbG/7PbjvG9V/cTR6YN73pTfzFX/wFF110ES960Ys6HpiRkRGuv/56/u7v/o53vOMdOzbaPQ2+BxpUvXiy63lgi14o7YV8WwLWlpNZg81yhO8VkcSFHjfP3Y2n/bs1M16TdmVmVnSxLUz2NFqoLEeNgV+QJ5G6Jo5tY3475lko5+Ow5YhsYRUrBP5UgkhzbOE3ycuSaJMjFzJ1VSPVdKUFXfGJl9QIygHe+nHXKwZmxSxr9520e760/T3tCox0SWW2TeasLcyZznOTVxQycOZ8mVtUrF2CmnbG1NK4k40BtEInnzAe5JFE9niYVltOBjZypk6RG0QjRlXdiiDvi1Atdz4iM470KUh6Ch12YvE3p8607yuQkrzqO89LplFpUX3KDaX1TdK+0PljfA+6T8y2iPnEKD9Z2BFZ2BMlIb+5eu1eU415rJn/N+ce0pV+PdkQFuu7PlQqbhvWXWCIDiW+cVJhlVpqj1jSmqA0avCaBmFtxxSvmjmy8D9aJVyIiXTXORW7xsYqLhbqRfVG5pbeh3L8RkhrQcSdlT5uj8Aqi8xcpdtvCIIYwhzqBylUT4YpYvEnbUTWDCAwBJWUlx5wN8+qrGZFMEpFpKzN+5g2Jcoy5YDyKKHM8JXm4bEBGqpEXJYYX1EaKWRiqVMT6MA1avanM/Kyuw+aSKEDV7kPJp03prTJsrke8sDkEDUv5sjwUXqlxhchukhP09aSkLuKiM1c7xdr56SSteEadDpnaiAMiVU0dYA/odCxxNZywlpCGvv0+K4R9LTxyWROKGZimWVBJGtS4FvtpGbF8SaBskxZb/qYziOmdcSA1+A5g6t5cHABOuhKyLaEv7vn9SyMDwPmF6W7qxf4H7/5aLjZSbwAKhdfwKEn3MhNJ34DgIF//ByMngnMVPw/vugbXAr8zRUb+dspzbK3VTngczvmofnzu17OIxfOVIC25M2ZD977L+Oc/56d+ui8Ubn4AvfDyH48c/zf+fG2khKeAFyTzPn//c6bwHz4wx+mUqnwiU98gne9612dxbe1luHhYd73vvfx3ve+d4cHvCfBBB5kwvlWyiFinBlPSLvSAjNysAKiFM0Qlg4pmeWJkQLhR67KUhgchSi2DXzQpjCNG/fUP3cJWCJJHTEoJF52tiejTY4Cn2ywgsgtqpkik6yzWM/LTnYgM+08H4WsTJjCJNpy55ZVfVjU50hMu3ljO0LYFM0qMa5e1z7PgtzN/h4wBjnRQPWGZDXlbhiBpDUkkRkE087E6tdzhKGoEDlCo31cPGhuSXoFMncdoY0vUKkpvDTuOxKthGBkmry/7LTTgUIlGhO4mFFCgcosRgmCyRwMCFzqmlUCr56RV31EUUmTzdR970UDU11SM6Sti63ik5/6yrzTyPYV7CoSc/7lX9ltSWRd7BnwJzyMlORli45cWldWU7N6p0iyqkdeEoRTmqA+0xxZFXHzVglEy2JC0ZGSqVgTteWvEmRiEGamsqEjifFAZYVfZsQS96lOdH0wbcjKkmg8R0eC5pAkGFOY3hTlWaQyzvuSC3oW1nnWorXsF07Qp5pEIkNhGVR1DvI3s8LfxIa8j/vixYzHJY5YuIFV3hD1ZoidqCAzS7QZpg6EsSMU5Q2W6jp3/5HaeRCNcr1fwimDLB5uhVMGORJiFgpyq4hETmJdJcWdtgRh3O+WokKlZxn7Z3rDAJ2KiQFSK9EIVrcGAOi9T9DYz0f2xnhBznN6H2Ek60EjiK3BL8hRG20fjC8kWbvvjBBEQrPC38SgqvNIOkSvatKnmtyer4DWrPVDF3PQ+2cf5UfLX8eZC6/Y4RSqXYnP/2wVn5cAdxWvHO3++OHsra4AlnD1Wd+m/rEfMv3Fy/la9Qq+MlDZ4ePNJi9tJN+5gR8tf90OVWJOW30FR7KY5T/4Nusu+Afyu+/c4bHMB+8/6Uu87yqXZ/1P5RtZbByhOzN+4W453nywQ7EY73vf+3jf+97HQw89NCdG+YADDtgtg3uyIePUxZ8AVkpkFGLblRYl3eMbxYwMTLinMq6po5xJJOtEKCvnE5HKVVh8f6Y5olLO9B4GiFw7w7yauUjaor+MEEXFRZuZ5DNAeK6aoId60JEiGHfyKKzFKkVe9tGBS/QyoUICOnLnJnGRwsZXGF9ilCAZihC6F7Vh3IUPSOXOIc8dmZnd6DJzUgFUEUZA++KsEFmOPxZjvJKTf4WS0qjpRD0La8mqnvOjZOC1XAVHpeC33M0M6/ocyHwmUjloaoLxBNGMHYmZbuJpQ768DxNJd9P2nQRNpbZ4KmnRgXS+oUlXhVFTMaYcoEOFshoR26L5plsstKV25LPisbuYgz2l+rIjeLpJwLYUpdytwjy50KFFpQITWfISBJOuAiNyV4GwviLtUWQVgUoEpdEUKwVpj6tG5xUXF288F6uvEuM61SfSPdTJLLrdU8W0CU9xja0oEg/Ko5pwk5Pcuqh+SziRUdIWoS3TB5RAgNcQVHob1MKE0XqFPFOIUHP4ghGe3/d7jgzXski1XOVBSNpPoxfZFsOqybA3QW1ZzIBX587ycn64+jCaEnQkXFW9J8dEEplJgilFMCbwplNkM8EsKbtxG1ukrTkip1IYnarwK72MQJ7IEeV1nFR6gIb1WKJaBEIwYaBWNJjUQKGwo1cKfDSqqI6MmZyGkUyaiI26xq2Ng/jl7w/Cz6Hv/hSvGbBpSUS1v0lmFQNeo4iXLv4urUUVVZ+2J0ajC1JkCRGEAgZVgx4Z44scg2RzXiWzCkqatNatwGwJ77h9mP+u/ohrToPTnurBbAfvvm8JJx3cz4/Xn8Bzvng5Ny2/gZtY9oT2+eIjL+P9J10wpwLzRKpMk189n97XX/6ExjQbJ997HrfjlA7iVRfzns+fQ+3BG2HFc3bZMXYWOyXyP+CAAzjhhBM44YQT9hny0obQRc+UrJ261ZZTFU0i24liWe5Ih571VKUtNWv/afTMIr/ouyKK/93T/llff/u1dpd533cSsbZ0C4pkrFnxzL5LJ/Na2smypNuP7gloLPFJelw0ZWsoYPKgMvGgT15SyCTHes40KrRb7HstjS4H2Koz+XdIWtv7oo07ZymcvGpW80pwgQXtxpZqok64seVS1XKLP53j1w1ebPAabvw6kk72UJAcv2XwGoZoPKf2qMZrGvx6TnldTDiW4k8kyPE6pFlxnNxVYsZduV/FhmDKVZSEcU8wZeb8Pl4jL4y0kmyg7EheYY4VaQ658waJxJEpmeSQZd0nZl1sEbuKDO1ov5b5br+t7bqm+ycPwoBMBTIp0sdS91DGizUyyUl7fPJIdvyAWcVzTX4DQdrrfjYKTNA2vbvKijAWjJNkGV8U/VUkpvCRtPoVjcWCeEgwcaDH1AGRi7JPLToQNBeFRSPfnKzkCFLaZ9FGMNGKaLUCbC4Jgpxn1NZxZLiWA/2YJV5Ir4yoipCqCCmLgLLw6ZWCisjwRc5I1ssjzQGGa9PoRQn1/Q2NAzQykUQjrv9NXio8PdpiSwFpzZE4K12VKa8o8kjiNQR5rpisl7hl4/7cWV/Oza0D+HVrBet0yP1ZiQkToIExo1iV9XBvNsRmE/JI7nNT3MctSYWfxn38oHEINzQP5X/qR/KDiaP4xcaDsImk9jCEm5r0PtDCG/VJU4/fNxbx880rmTYRiYWm1TRtRma1k6LhqjAKgcRJyFwiGp1wBIMktYrMKh6oDyHqHkV+ThdbwCcPXcd//+hHT+oxL73x3M7/Lz7ysjmvb2lbgE//wUc7r920fMsBADuKgwY/x1tPXskjF97AiVedNKeZ547g5vd9o/Pz5FfP5y/+d/9dMj7YOqH64YUX7bJjgCNLO4KdDiZft24dX/ziF1m1ahWLFy/mTW96E4cddtjO7m7PgBDYYmEu2sSlbcI3cmZB2/aItN+X3sx2UszEDssZz4soJGCi3Tyy4ytpb1sQBm1m3lPKESZw1Zc4dpUez71vQ5+8rPCnjPO9SImpOKYc1A3GU7QGBFY6shJNaPx67nw1SYbIBEoKTKDQoYQAGK4RpBm22Zrp+6J1kUImZ0jM7HPAYDXOD5O7qo0yBtmIsWXnKdGR10nO8VounUzmBpFphA3wG4WHBQgy1/NGJm6sspki6s2iKiIRyrrxkKFGJghCj6wnAOtMr15D4zVzJxMr+uLIVg6eJO0NsL50PXYkBVnNMX7YaX4pp2NHFrsSsi1iT/LA7O1ok41dJSfbXU0st4QuGdo2VFMgIpCZqyL7LYtMDVYIdDUgr7j+V9Gk6ZjbsRBMG5c+mbtwExVb8sLq5bWclFYUfWEAR2ICgcwhK0umVwh0ySIT0IMUUfU+/nSO13RxzTJxLQPalW5dMUgB41NldMNnYHiSvlJMVcVMmYjUtohtTlnMNKue7TXxhWGBN820yah5CfuXxxhtlhlLe121XqtCSgfGd2oAmWqsdoEErg+YLqRwbr9eA5qTATowjGrJD8cP4yfBShb1TvPogoHiuBolDHdPL2akVSPJPXylCVVOZhRSWEKV4wnDkvIkD0wN8dCmAbKpkN67fPrvbSLiDL+Z0LOqxPhCn4frA8S5x+/TYR5IFxJbnyPDtRwRTONbg2ynoKGI2rftQjK+SfegrSSzioYJeShZwKqxIZcoupf3+d5dGNz8EuBrnH7aaXxynj6YXYHjnncPt918OPdf/QD2rDJfb5zLXzz8pa0u1i+98VwufuXuGcurHj6Jq1bcyC9fdSOX/vG5HHt2skNE5vKjXszt3wxJvvPInNefaDWmcvEFnHbS3HEMHvXxLW5b/txhNN92704fC+Anb30fXDj/8543gSmXyzzyyCMsWLCAu+++mxNPPJEFCxZwzDHH8P3vf5/Pf/7z3HTTTRx11FE7NfA9ArNlUtCphrjF+5Y/0u5ML4QoeqTIgoy0NVMzXiGMxWJdEIB0FRihTSf9DFskmBVeF9uKZ46T5+AHiDDAtloQBJhygNfUCAsm9GdIlwGvrimnlrRHoQNIq4K0qvCamrziI8qeW9QXfWdEIJGpIat6qKEe1LoM2+4LIyRCFDI5xUzqWtv/4hUNL9uNMa3FNjTECbIZY6PAlfraFSZTEDffw3oSbyLupKOJTGN9hUoFopW6AINcu5Szx4YHWBdv7T80gtxviGTQ5a/79QwrBeG6Orbku/M1hjwKMIFEK+EWAbl7komnHKkJPRdCMN3AZinoWT1yuthrsTvkY7va0L8z1ZU26dlR0tKVkj05ELnznFjrfB2uCq0xSpL0+s6jV3fkpd2oEgkyNqjENXdUqnjoExu8lkG1NHnF61Rj2rJZmTlfSVYRpP3aqXqVk2+lA5aJAz36V1nKD04g8yoyzsl7IrzYIovLXDPxsdqFpTTjECUta+IBjJVkKGoy5mCvzpAqdciLEoIIxYDMOSwYYdoEjFWrTOuIRdU642EV2/SwkUGnAtUSJL2CtM/Dq6fI3MmLZebUAHnJRf6r1KJSiNZ76MiSLzX4oRvoVBxy06hTfky0ItLcLWMGK01amcd4o0RfpYU2rkllJUhJteKRiX4yrbBG4k14VNc536QtBcipJj2PZCQDIauDAWrVFmvTfh5t9fPsnkeYMhG3JQEHemMsUK76kpATCo8MXaShwQI1xbQpdVLTfrV5OWnqIfKufGxr+NCLvwY4L8ePlr9upysQO4JLbzyX61Zdw1HnHM5xD6TcdnOT/T58D7N7orYbSrarL+8/6UuEC12nzKB+LRlzS2q/2n8Zz3lkzU6N56oVNzoSw4088KPD4Jv38vVzHKGaD05bfQWcBJecv/VG8m0jfuOSyzo/LznHvXf/IZdx2Tc/xEX3ThVGeoctkbn3n/QlvmeOnPPa8h98m9EH5zXUrWI0Ppr9T94xP828CUwcxx3/xt/8zd9w8sknc9VVV+F5HsYYzjnnHD7wgQ/wX//1X9vZ0x6MNIOw7CoxQjhvCsykkM3+uTD1i/ZTqHZFog0lZrwxFKb90HfbFOlh7v2C4ETu8Yz1FTbwkFMtR27y3DVVQWLzHJukLvZYiKJho0SmGlNyUcHWV51ITRMIgklNc5FHNG4I6rqjLxZGoIzFenQqFTLRKCloLSpRbvUgN084D5CQMwEF7Sacoqg0yYK4STFTcWpXmYwFrRGN1oxJ3lMzlQ09018HrR2xaye66cIXJGWH0AkpsbPkeFjriE3go9aOEqV9JAsrJIMhwUSGLfmu8pMbrJRkPZ5L9Wm5KGUrQNfCwpfjYz1J6cExJ1FTCubR4bmLpwZ/+tMaAP/2/OmneCRPHZ7MaksXOw6/jqvqei4tLJgu0h8j6SRl2uI13QLeClEErthOZ3qrhJNStZw8VrVyRKIxgSQbUs787uMaROZglKS5xCIGUqwRmIrAC3Oyls9UL5ggIBgvo5o5VgisJ/EbBh0IvCkJw2CtACMoRwkLK3VKKmP/YJQ+2aQmUyIhi9hih7YnpCyVq8KoGF1exZ3x/rRyn/7+OmNZD0gL1sP67jvJSsKlQiZ50cDYES4r3fdgFHhNQXWNJS8JGiLEipDWYE5a9pmul6hWYlpJQDwVImJFK+4hmJB4DZjyejHF5XvzQoNKBNFGQd5nqa2HaNziNQzWc9+DVZJwc8zQbwQb/TJTh8PPNq6kP3TBBY+kC2iagAXVafpsQhNLrfgukkKZEQpomBCNoCJSfpcu48GHFyJ8g7ROUtjF4/GhH/4lH3rx15yMa/p/n7TjHnX6mez3wD2c+On13Hbc4Zyx+E2EC9/UCRLYlg9lUEn4pyaNv9p1usCrVrhkrz9r3Ms6mDd52R4+fud3ecNhH+Hgc17IT//4AZ7/+wtY95htHKHp4dizE27/5gWMDl3DJw997Fbzw2h8NEPRnTv0GfOC1Qzwn4wOnbpDn9spCdmvf/1rvvGNb+AV/ggpJe9973t52ctetjO722MgjEHEqVscl0KXGgYFCZnVz0XOuhK1F/fG4tznc5+0CCWLJ3ACGwWIrHjcJQS2FLpFuK+wUroLe1/E2ucHlDb0MPyLMeTY9IzUDArCUCSxpNo9scpdVKcJnTRAAqqpESZAJRqVGKQ2TmvdNqpr5/uQ1iIzD5kavMkWMg/JKyUaB/VQqzchTqB9u9L5TBpbcd42zVyPmLZfRwjnh5nlDbK57nxnop3q5nkzUjtcaIHwvBk5XZp1ztsaR+Ss27BTFepEUxfvifWbKdVj8qEapuRhTFHhspAORi6pLXdN3wzuT5lpJ2fILf7GaZicfnxoQRdz8GTLx9pkZVvvPRVEZm+KVX4snmgVpisf2z6ExiVkWQimXOJW1hOQl2VBXESnObHxnE9GpYBwvsC0R5FHAr9hZvrCpDk6kuhAoAPIegR5GfII18S3V0PDA2UJail/fvitSCy/HDuQu4PFrKfCgjsSSqNTyGqAVT7GF/hTAmOka2Cp3c+LommOKT/Cft44UhgmTATEZLlFYdnf00ghUIhOjxWASOTUZIs49xgot1hwQINHJ/poxAoxrTCeI10mkIjQw0ssQrtqkusHJslLIDMX5mIV+NMuZlmHyt02PMuklphEISc9/LogHHdSvfKISzMTxhElqSUycfsKJgRe0xYhCZJo1N3jbRiAEEQbW9Qe9pj0S6w2gg1hD6nxiFTGs3vd0/Wxghk1sDStpCY1fRKaVrBJ96Aw3J8P86+rjgMBQjrPpYof90+kC1wF5tIbz+XYs/93t1Zf2j4XedHXGR26hiWcyW03Hw7vgOO4h2vX31Ns+QfudRyJmV2FmY1P/8FHecNhO9J2cX64afkN7M8L+fqKuRWYdkVoNh772olXncRpl/8z71z7psft9zf/fQ1fPnQdX+Z6OOkxbxa/nzbr523hlfIufrT88Sb+Hyx6OS8ZuRNwRAbYLpkxL1jNJ//fbfzZ677Oa3dQRjhvAtMxn+MIS29v75z3+/r6GB8fn/eB90RYIbDtvidpNqsfipM7ddD20bfJC8ws4D1vjkem09+lnTamikaO0qXHmNDD+ormcEhWcSbHZKFGh4pkVZUozlyccmo6zSRtnrtEMyVdXxULIs1JayXioQCVGlSsULEjKv5k5hbtgbvwtk38rmkn5CWFUgLRW0KXPURu0WWJXtCLSlIXrex5oNuhAnLmfJn1XSjRISTCU9hcO2LS7leTZTOhADDjG7K2IC4SwmCGvMyOMm5XeoScka6JWd95kZZmG028Zgtbq6AHq50njUiBX88xvnRdq63FhDPVqmBjHTE2idWz0sfUTlvEnjZ4OkUo72tok5AdJTJd8jI/5GUQIQgtqK7Pycueu8b7gjA25GVXpZaZ87rkoXA9YLRAl6Rb5PtOQqYSjYwzF1WfuIcyrUWCtN/AUEJbwbxgoM4xCx5lSTjJs8qreX60kVB4PKO0hsvSF7Nm8zCbs5BFzT7SvoA8dNUgYSCNPcgFSMtzhtdwSt+9HBFsoCING3RIbHzuzXtZl/VzYLCRstxEWRgUkOEshZEQ7O9lDMiHiVcERCIlsx531PbnR9mhZFmJvCQducMpDvJIoBKLMIK4XxIPik71xCpoN/HUkSMe7bK9LXrWmN4cMRHgT7kgm6CuixAAjYoFWdWFHQST7l7itwyiCEEQuQFt3b0LEJmmujbFeAGtRolk0HJP7CGVZUOjh4f6hziksoH9g1F6ZMwCNY22gtQaJkxIZhV3tfbj2/c8G133EanEGEHQEoQTXU/lU4GvrziXtf9zLfudei9vGyjxH39cA2rwwD1s7fHTT9bcyg9ee+dW9zl04Ie55Hs3sm7FKZ0mljsrH5sv2kRqWx6d09pk62F4ODyToH4t7z36ckbjjyBu+BmwdYnZtva9JZy2+gp46xWEC6/g7cOKD/1yB0+owCmf/xj83/fxyf8HX97BGO15r9CstRxyyCEIIajX6/zmN7+Z43dZtWoVw8PDO3TwPQ6+53wZSiDH645odBbLsxbTfuAWzIHvFt5qpreLtXam6oJL53JGfeMqMIVJ3wY+uhzQGo5oLnARwEk/tA5IWbF8E9PfXoJq5k5ylcmZJphad2RXqpkiaq7LvcjBa+ToUNIa9AinNDI1zuuhbRETLJGZdtWedkubol8MAqwM0KHAa7mng1MHVegfnYI0hSRBlEqumiIKg7tUiIBO/xQhBPj+TKPOIoigLQMTnlcQIT1DXpRy5xQVvXSKyo37HtWscATlKiO2SHZry9falZLHNgWdbuClGdb3sOUQpCN3wtBpnumqUxo52URMzWpC1QlrmJX41sUcvPudzn+xuwnMtqovj92uW4XZOcwmJNsiM13ismPIeyxULKURgT+lSfs8jCfwEltIlygkwAbtO6+iCd3DrXZFxpm/BVnVw3olVDNHZQbjQ9rrqupCWkwuGRqc5qxlv+GM2m9Y6uXUZICH8wWu8Mc4uHcTq71F1Pc3eK0y1XUahLseVh81NFZ6iNBgLaxv9fBQaQFHh49SFoI+mdI0IZn1GFDuWtk0HlrMXCMHlSUSCl8oIqE5pXw/m3SJ2PoM90/wy9IKxms+ee7TWiARNsQKaCwRBNOgYkt9GeRl4xp1hhYbtKv/oggDcBI3tHDVIt81L856DNm0pLZao1qGYKyIzW9lGL9M3K8IpzV56KKkZWKRBWlB4loPVH28aUuwuUmlJDGBh8wETREhlzfYOFGlmfrIYcOBwSaWeRNEQtOwHtMGNuS9XDv6TO5YvQxd92f+IVjISzPhBF3MxQsP+weOPfu+3bLvS288F84BMXIG+z1wD/8xz8+dsuy5vGv5szoVofbC/vkLNvPa4ffy/AWbkRfdyiG7KUr4kQtvYAlz/SCzq0CP/fnYsxM4O+E9n1/FIxe+hAc2v41HVnyOE04/E7iAk81J8NGP8Lz+s7j/moVb9bbsDJKNr3PjGTkDuB+Yqb489meYqcjc9ob/wynLnsvffGE13H0e8Jc77IGaN4H56le/Ouf3lSvnMrmbb76ZV75yN0U0PFko+oEIXZjX00JCZg2dDmNQLKRN0bvFeWJEQWbaEclzFt9tWFuQIoENFelAwKZjJOmAQdWdhOwvnnMT90wPYzZovKl4rnxM6zkVBznZxCytuPhJKRDaEExlLrq4meONt1zCVi0C7RpdIkRnfybyMSWvs6C3EryG7miz05okX9CDFyeuz0CuO/IqEQSOmGgJUdghaKa3XJCbosIT54gsR8TJjIGftqysGEuez1SubPGdG+tS19rwPEe62lK9YptOc01wJKf42UoFjSYAYloRjAf4UVBI+XxEp7KVuXNrhxK0Y6uV7PaB2Qre8eY/e1KOM1/ysj0cddZ+u7UPzI6SmNeetfXEsW9d/dRWtLZUlekSl52HVZbKene9yiMBtoh4Tw2iaDyJFORlVylI46InlQSVWGcdLKS/SZ9PsjyivlTQXJkWvhIBiaLW3+TiQ/+LE8MxQuHhi6jTfDGxGcYKpDDYksbmkrzsIYztPKwig9Jqn9b+KVjB79cv5MHRQSYPLHF0ZTXrsj4GVAONpEe2ABcZHFuPmkzxhXH9xYr/fAFlkVOTKWvTfioyYbg2zfhozUnkStBc5OKbs5rGhIq0x2L6M6TvKkzVWsyCagOvMI9MpSFprsi1Ikk90maA1QKhDGYooy59/CmJzJVLnxSQ1wL8ae2CDhLrHrhZXB+dxKWeiUyT95ZI+vzi3pniT+V4TY9oTBONSSbjCioXTPaV+XEz5I7aUmphQm/QYl29l/HpMlJa4noAqQRlEZ79/9l773jLqvru/73W2u20W6fcaczQQVBAh1BNYgUhRoxB5bGbSKI/W6wxsWBMokmsaEw0RUP00VjyEI2KJmIECSKg9CIwMEyfuf3UXdZavz/W3uecC9O5U8D75TUv7j1nn7332eeevdZnfT8FawQiMJiyoL3oUPwFHv715sbtbPFq86b56K/Rs87kx1vP4f+c+fvc+NMTOf3Mu/f8IpxD2XR9lG8OX8SLpq7sPv6DO99GuORfOOWNv81z33Ur375+3k8ZcK5kW2QPqHzjHdey/GVOF3PFmkt53QvP4c0fPIdLLzuDz192Az94T++11Uuu4hQAfpvb88funU546l//Ca+8/xhe+pFfzPv5FuDn9Fc8g+/VT+ctR7+F/334U3PeT6HxKQwEJv5+mG9yH3/8n4MM1AbZUr6OLXnezN7WXgOYV71q962d971vfv2gD1WJzCCa7Z7+xZqeQL/QbITho+lNBcgoqsh4CfweHSrwsYFLjs+qAZ0hRXJEwhHLJ0iN5MiBSe5tLOXO7x7Pqq11ZzEc91HZpLM0LibpQjtnGh0pRMs6/YuxRM0U2Yy7eh4rBXiyyB5zHXmluknQjkLgLD6718FY/LYhXhzhbQ/cZF+CTQ3Cz1eXPIWtljHlkM6yMmnFUcVU7IShxhN4HYtV4LUM0Y4OasJpegR0r1/RWO92ror3228UkGVdU4Bu4Ge/65t5hEqyX8diLLbVgiTJu0AK0Y4hTbs21UAPCHlevu+FDszu6kB1X/YHuDyW7suBBjhF7Q647GybQwlmFkDL/FS0QxLOZqQ1hczcxNkq0aVFWYUL7wXiYUfPldqBl6DugnyNLxDSWSQ3VgraK13nRCjLyqWTPHXRBpb4dVaoGaoynJMaD7BDx8zaKplRYASy4yhcOpQEM86JMh1QqLZEBAYxEZASkAWa67cfydXpsZw4up0nVbeghKElA9YE4zRtgC80GkHRb1BCIBEYHJ1sSGas8cdRWC5cejv3bBjD+havBcmgJR00oAWdpRlqIMWXhuOWbefMkQdZ4s+yxJslyjNmwInkN6fD3DB7FHdPLmWmWSJu+9i2As+iI0k84KjBMslt9Rsp0aTtrXsFAq+ZIjKD8RVWOcBjPNAlhayGLvy4ZQinMkrjlnDWp7VYIrTETlXZsSxivKSpDrXQWrrgT2mRXm5wkEkXLVCUsGQDCyr+ndU2GfIH+wBe1p51Ijddv2cg8kP9dLBf4Ke5qGNvwUtRQ+MTvPvccdgFSHnPip8h/niMv8wn5w9MvIGjRz+7T8fYVRWT/dU8k2+841oALl92Le989/0s+/CH+MfnznLsipuZ+IfP8iJu3vMOVwD/cgl//5btfOqB78zLOe6s7P1buz/fmPqccu5yghvW8+3rfbgEkjNWs/49V/PU//kTnnvNW3n1J58OAXz+PTfwlOu+R/k7P+S004/jFzfuHa15geTfV1YIRDvGdvKZfjGR7bqJ9bluFaBEyK42yFqLkLIHXgqQI53LifUVuuSz7YyKEylmcOyqbZw6spHptISxkmvXH0V1u+0CFyuF05Bo47QvntfVk4hM488mxMM5oBJODyNbCaSZ0/P4bqXNAuQuL+69uWyYrp2MARW7/JWsrMhKsnfDr5aRcQJKufcH4HvoRQM0j6jkGQYCv2G6K1smVE6c6gu0FKQViQlKqJGQaFMDOdNwgEE6Q06rTTfXoKsrMk7kOSfAMwx7waDFtlLRM1nomQgITzkDgGJbrbHGImYajwKcwvOwwnTpY8LzEMFCy39XdThpX/YGvOwKpMwX/Wt3XZi9AS67et2h7sgs1P6XbAtqm5xZSHvEw285Sq8O3Y1OZpYskCAsftMijMwzUgAEwUyGLrnJtQ4knRFJZ7HBeq5D8YzjfskfLP0RR3kJNRkg8R4FXgAqQnJfPMYvtq/Am/aIdjg9iEwtXj1BNROsV6O83dJoeUgDIpFYYdkxUyUIMnypaWin8VgRTuGLjEikRCIjEppIWECQWo3MadcKQSRgsYyJBKzyJxgebjA1NYLxIa1Z5HCClAbP15ywZBujYYun1R6iY33uai2nEUZoBIu9OiOqwZg3w9H+BE+ONrBheJSbm2vY0hnk5k2rSGKP6ZN9/ClF9WFJNGUJGhodKWTmxlKvrdFGYoUgXur0OKUdCSJzdtI6kKjQy40UBFlZUdraQjVTVBwhMg9hoLTDuVQ2VwYkwxpR1s5tTFmENOhMQioRuS310Fid6QVjmJ3WUhPv0/YFeFl71olzfi9q7VknsugtIS+6fZhvPnmK/9N8tKB9d7VOvIY1a368RyrTyOzrOOEjd/FtgEuYN/DSXwV4ecYrv81Trvsel//v63jRZ/6Q/eUmHPviJXyGy3jjhy/jzVuePi9dr119DgC3/mQz4HM2zmb6KcA/3/M+fmfN1byxozi+/CLEuU/muR92ZgizwNvuO5ZXcJABzN13382FF17IunWP0Qz6EJZIM2wrzu17BdDneFWs7ndF5H2uYEUafRFW2Q9gwIVjdh+D+lGas9fey6bmIMNRi8xI1tUXsbIyzakrNnH74hN6upE0cwGOQrj95qGSSAFpirdthmRoievC5PoRE/rI3AoaJVzavFLoiu8C0DzpbDo9mbvgiK7zjUoNsmGw0rXTrScw1QA51Sfa9xR6tMbMsVVk7rRjBV1BPEo4S+aO7ua2WOkcd9KaT2vNAMF0hL91xr0/kwOHYsVK9QbhOR0Sz+uBF5WHJlibd0tyIaaQeQilwWb0ujdBvkZoLDZJe4YAud2ztRYRBpjRAXQ1JK16dIIUDvzC/OOunkghlge687K/4OWRr18AMo+/Km+3VDcmxMM+aUUQNMgpxG6xTMXuhqc62nUM4t4YoUO6hiNeSyNjg9ASmQooZ4SllJOqmznKS1ikKrs9jxTLv244k6lNgwQJ1DYYKpti50SZGsR0nSBwFN7qAyGtFfm92AiiMCX0XSjkkmDWvS+ZEImUikgpy4yysES5G5kjkAlkLu3vWMs2XUIKw7pkCYvKLabNCEI7m2SrNGGY4UlDpDKeVnuIEa+BwjLmzaCRdIxPx/jcn43xnalTmErKRCrl7MEHOH/wNjoDPsuiGW4cX836xhJM6BYXpXYLdCZwwNCZ22SolgsCTcuS9iKJ9kPCGUcnay9StJYooinjbPYjQTIUIiyojmHwoYS0pmgsU+hIoFqgQompZJhMOB62dN2e8uImxy/eTtlzFL4bJxcfwL+2x29dtPEr87q/kdnX8RfbtsI2mH7yvnO8PnfO38AKWLti552eePur+NEVJ/Kezcfzuef+Os/4j4/zcK41m++66fq7uwAB4NMX/+G87Pcz77nM/fDbjx3A9F+j7s9HP3q7N117LPG6MznzrzQP8Ru8+XPnsOk5f8pxp2/nG1d8sbtd0pqFlxyxV8eeNwCTJAnr16+fr90dmpqcBuG7Se8j9Su6tzrfLeu0MrbIPYEezamgOhW5J3lXwfqS8maFFIZ3HPl9FJYfzj6JjZNDbK9XmR2vsGSjpRtsCV09iTWmF5ipcRP6Tkww2SEZiTC+Agkqz4MBBypEZhyoSNxNOhkKXchZ4MSiOhC0F3n4TUNQ14RbG6jZBD0Q0F4UYMKeEB9PYYaqtJdVsBK0wjnEBMKlRMfadXp8iehoVD1GFFbRSuAbS3ssYuaYEoNKEDw07rokRb4M9ABkmvUoeNANy3QC/6AHLgvgZK0T+Rd6Fp3vp9AjFfS0wHfdHeXAjgh89NgwrZUV6is9whmD0GBb6bz+eS3Unmu+dC87q6JDcjDoYvDYwctCPb7Lb1ji4YCkKgkaFhXn5iEd120WWU5ZzlxHJcgbiWkVZOJyYowv8Oqx61TbABWDtoK47bMlGexaF++qtDVsyHw23j5GbZNk5O6U8n3jXTt/W46wSYqanCWQMPigR2dUYlbGCAuLqk1qfsyxle2sCca7dK6KSAjzzkskBL6Q+DgBvxISbQ1l6dPRMROmQtOENHREO/MROqePDRiqUcpQqcOiUoNfH/4lZ5cfYEhmaAstq5A5DSBFsjWrUdcRVRXTNgEPxot5crSB4/0ZVgz/lEGvzT9vHcFon7Qm0dMCETmmgQv7dAtdqpmAtUhdJhl0VGdhwWsb/Nxi2a9nqFiSVhXxiBuDSuOp+5xmMsKScwy1wpnjdAYVMsrwwxQhYGTJNM8Yu48jwgm2pwP8fHoVUi1QyOazHjm5L2py4B/4g6+6rsX5u+J/7WG/e7XN8PG84jSfM89p8/HjI/yv9BzJ5qPOeviZPHDSG3jnplv5AfCpBz7LZ7hs3vb//vccuHHwFV96U/fnR35G4+vez2Vn/wVPPvr5PG3lHTx0xf4fZ68BzNve9rbdPr9jx479P4vDqQraVz8gKXQwBWiA3vP9ifTQoz/llC6s7VK4rJR0RgLSmuV/r3sSk2srvHjsRl43+hPGkyo/vvFJDDygUKnJwyzzzkJhM1yApfx4RXfC2zFLZ6lz2fLaBuM5ZxusRea5J+A6QSIHYcZ39plp2eUJBA1LUpWE0zmtS2vHmCvS6vOyYUBrVQ0TCMIZg0xdGJjXFqjEoMteHkbmukTWV5C6xGNddl0Qv6nRgaCxImSwMYDaNu0CKQvNS+Ey5ntzrZrz6yuE6rqVzencpHlOTaFZKuhlRvcAqJA5dU25z7IWEq8cIh72SSoSFds8ndpiGwsDzkLtX803eFmgkz3+ymtbGmsURsHABu3oS4HMRewKm5h8nDBYD/y6RWqLlZJwxqLamqzkEy8u01rsMXMMmNAghMVqyXMG7mCRKu3xPCZ0hep6ydB9KZXbNmGmpqFcQlTK7l4fBpBp1ESdYLREZZMiPTYh7gRMNsuM2wprh9dTk+0cwGgUlhQHVLpZzjnjQPct9JWl4ihvkpb16BifJeU6W5MxZw9d0pSDlGoQEyjNeFajZXwqImNESkYEKCQai7GGxXKKVd5NXTCjhGHalCEDX2iOCMYZGmoybap0RiQylQQzFr9l8TrGMQ+8HjsiiwQmH84Le2a/6QYTr5UhZwxZqUxnSOK3XQaNlQ6A+i2XvaZDgdcBEUv8wQydKYwWjJsq34lPYkm1wVSnRKMdkiZ9bIKFmpfaE9j4m6/XeefFB25RDODzl90AXzl/XsELuDyYlz/c+73bNZmn+rMPr+DP+Dfe+OHL9gq07U3tTJ900/V3czbncPmya/kDzpyX4xS11wDmU5/6FKeeeioDAwM7fb7RaOz08cdVGeNcrQrQImQvWDGnboniipncqUwKhO+6LF0NDLg8E8B6Krdmdt2Rbb8mefdF/4+P3/UsHpwYwYxJbomX84LRX7Dt5BoPTK9m6AHjNDD9RgF9CfeiyFQBNxFPUsrrZ2mtHsBrZmBd5ovq5MnNkedCGzPXFre5/sWrG2RqaXke4VRGpC2qo9FlHysFncUBWSQIJ3FgJAzJRqt5srTBr2fIOCMdCNAl1e3i+HWd0yByelbVXQsTSGcNHTiBZFKTtJdVqE7UEZnEZqaXL1MI81V+PQvAUgRYggMgSdoLFu03TAD32fV/loUVtRCIwMcM1WgdOUBalqjEDXIqcZkEwVRCyiO6cAu1UIewDjcQE/yN87qxHU36vjsO8dkcfuW3NM3AdVTMFrfSX1B1hbXokkTGzklR+8JpZDJIKxaVOOv7tCyZXS1pLrfo4RSMYGiwxWCpwxLVwBe7d+0xWH7RXuOczDxnJCMC39nWK+Xoyda6xaI4AaC83TB55wDRybN0Eh8hLNuTGhuCUdb441REir+TWPmWSdFYysKnYVO0tfhCEAlLTSZ0gu0kxiOYEbTHDH41QRuJJw2rSlOUZYJGEApyJzWVvwdDh4wIyaiyJDZDebOkVjJtnE3zctVChZv59RUPcJ08ikmvQttE+Pm0RMbWBT5LR63WtdDR+mYhmioWw3CLdqnriol2itcymMUSG0NScyY1OpRkkUD7AplCWgM5End3Ual1OGJomsVRg2cP34UvMu5ur+Dah5fzOOeoHNDaW3H+3tTZ3zgHvsU+g5d3nzv+mM6jeslVXP6B6+Yl4PLG1OfZM9v5wV9+lDP/5B1sAvQ5756zzRGXPrzzF+9l1d/4XZ7xnm9z0/W7zofZl9rVdbt8xT/y3JM+zlun7uKlnzuel7/qCmD5Yz7eXgOYY445hj/6oz/i5S/fuYXqLbfcwtOe9rTHfEKHtAprZIockvxh7TJMhCd7tKW+QMaeJbB1bl+Qr/hb595VisB3A9Xo7Za/Ofo5xLMh0caAP6s/H7kjoLpBUBo3rF7fxhtvONvhrJeXYq3t7tMaO8cpy3Y0YltG2UD7iBqqkwvRjcWGChMqvJnY8ayzvAPjCaTnLKP9tsuKEblNsUwyktESXlNjpXJ2ztpA2aO9LELlQWoydgBOxYasojBK9BKlO7luRxt0ycP4Apk67rFRLnFZZpBWJXq4htzQzG2pVU/TEvg957fiGuTie6FUF0B2NSwmzYMoc2OFwnDBWAdyCits6/bdPqKG8QWlHSkq1k7v4+VBl80UkvaB/GtbqJ3U//2N+j7RyPbHfexguY490aoALAu1d+U1M2obNK0lqtsFx7p8LBm7e6FMDVmkco2FRViL33Cp81a6e6kVTi+iPYuNBWO1OiNhi016kEXZOBUhuxN+mbdDDJbYptyR+KxrL6J+pEHFitLGKrLVdvfUhLxLLTFDVeS0yz6TmaX6sGBydciypdOkWhEbj2ldpukFjIgWGkHL+GiZEtkMhaVTdPeFIRQSg6VpDeuzAXyR8ZPm8dyzZYkbuoZTSlHKqoEpnrvoLpb7UyxRdUZUh2gXYncpBL7zCiASGl8YyrJOTTigpETCxcM/o6pivjK9FmEgnDZ4HWepjHQ0ahsq0gGfrJTTngsX/nx8sp5EV3xkoglmU7yOh8xw7nBtp1cyVYlVICzEy5x7mhCwdvXDZEayvDTDUaUdnBRsBuD+zhjLSrMH8K/t8V/zBV6e8cpvc/u1v8uT9+O1f/UT53X9rL1IUHjR1JX8K8/q/l695CqAeQEvAKf7KW/+rwu4/DnvmJf97axqn7mAH334+Qds//31itN8rgP+UC7iH8/9XPfxd/z+0Xz0Hx/Yr33uNYBZu3YtN9988y4BTBHi+Hguqw14bkIshMjdr0wv08X3HF1JCkdL6jpg9e0jSfMU+sxNortBlhqET/XhDuEXI7Dg111OierUnXNYphFFCr3pdRJslvUm9pp85SzraXXy85MT05SUoLmm5rogOI4uhm4XBmHx2hkykSSDXtf5Kxn08Bsar2EcAMgsuqwQBkQrditPgyUXEjaTO9dIpz+RxiITj6Dh7JN1SWE9idfMMKGH1AaZOsBjlXRuZ6FbXQTojJWpbPXd9QYHEKXpOa8VJglKOh2QUq4jlGbdnwX555V3wBygecQHrDV4HsL3yZYOktScOw247pDInJW0MBYZp2ThQg7M4VqPNbRyAcTsXS2AlsdQxuK3DEFdIixukcgCcb7Kn6/2G8/dhwpDFb9d2MhDNJVPmH1BRwtEJtFG8uTaJuq6xH80TiS1ilX+JGv8cQDqJuLG9pFcN3EMt998JJWNkrGHNZWNLdT2qW4nnyxDGB98j6wa4Dec+2RakVS3ZMS3R4xHVRYPNtjQHGYmLeEPa3w0gdBIYdBGEAmNxqCAmsw7J1aTYpg0HpuyYSKR0jIBemsZKhbpGzqxz20bV7A4arB8eIpBGeNjMQgMBtmdnkgi4aGtJSbDRyCxJMWClLDUjaVjJSOyw1PKD/PdgScxPRDgt0zXjEbFOl9Q87FKEE0YpHY06cKlDGtR+RgAIFsp4WzoFvoaGqEtadVDB7lLWQSqkhFFKSPlNr85fC++0JwQbqYmExbLjJaFU8rruZunHNQ/v1/VOu4ProHPfWOfX/fuc933Z1+A1Cu+9Cbeec79AJz5J+/gp3/50e5zD76hyod+cTxDX/xvPn788D6fz++/6Hf4FvDp6Bje8LQX7fPrD7f6zuUfBXsxf/qfZ3Dkub3H9xe8wD4AmI997GPE8a7t7k455RTMI7NQHmcllOxNnsFpLWCOfbFzIRM9KlOeQO86NnmOiZRu+3yl3/oeyfIBJk6MmD3WUNkgGbu+6QTuxrhOCyAy3dOA5KtZtrBwLroTOs83UYVeRHWpZrbdRmxKqWaG1poBrPQxviSc6GAChVAglEAkBs9qZ+eZc3pVOyMrew5wxJkbWAOP8saWs5YuR2QVH7/haGNWSqwv0WUfYQtXF0FnRCKMpDThhKoys6hW5jovJQ+RO8EAXQOBzqiiPDwAO6Z6wCy1oMivYw/YiCh0WhfjrrNzgXNUP1HQzfJtu1U4xYl8+8AnHgmRmcVvGqR2uqF4kY9fz0gHPIJIkaV9QZoLdVBqd92XxwpaHlnzCWL6LZQPpHj/cKORLdRuSrguivFw3CIpEJkFX3StfSEHNtr930uM62iXVR5oKdAhWA+XPu8ZTh9dz29U7mG116YsFcZaUixbteL2eAVf3Hg2D928Er8uWHa3ZuDuCezDrhNghUCM5pMpazEDZfejLyHw0aEgLUM4I6huMuxYVmZCWip+wlSnzMPxKKPK8bLGvBkQsEOXiETGiEzAZKTM1XpUZMy0LvNgaxQAXbYEQYbnaYwRHF/exrH+OBVpiIQgFLJLH1PC+ZlpK5CiEPRrfAFgSBFMGsUOXWFItlmkUo7zt3Pc6A5+3gpJamWCGY3ILCJx5jY2t/f327YLVIQm79Lkn5V2xjMiTpGJxQSOOua1NcmAJBl04CmtWaJSQuRnLK/M8KRoE0Oyw2KZEQmJLzwiaxhTC92Xg1VH2S/wzeHL94o+tunoE7l8mbMq3t8O0N+8/hhe/+s9CtZrz8qZSPOUF/k3r9zAg3fOz752Vm/e8nReyfx0v/qr3165MvEO4OsAXHfNZo783/k5htzzJq7GxsZYvXr1/Bw1r2uuuYbnP//5LF++HCEEV1555ZznrbW8//3vZ9myZZRKJZ797Gdz3333zdlmcnKSl73sZQwMDDA0NMTv/d7v7b8exzyig2TzDsAjdRjQFYYLz+t2nqzus1BW0mlfPEW8YpAdp0a0VliClU2SQecOZkPlRO6FU5m12JJLtSfLXNaL5+VOWtKdn5+7b/V3YApKWwGaxqco3zeJio0DDmHefbGOByy04wILC34jw59N3E09kLk7mRs8g5kMb8escx6rRHmaceb2YS0idSJ+7UtUrAkaBpWHhxXOZv3XVrUyZCdzHY7UaWW8tts2HSn33qd0uqGeIUL+/gogInu21c7pzZtjvQwOdNrctcw5w+WgNM/pMb4DT+6aWPzJjgvgjBTBdOYC0YYPj5ikw+57coBqT9SxA+FQ9pSLVnT/LdTjuw6374mVrnNilbPwLWhkRedZGBe8mNbcfUYlBpW61X+vo0mris6worFS0FyTsWj5DKec8DAvHrqRk4OURapEVYRUZcigDFiuNEOqyf33LWP5tZqx62MG7p5GTEy7bLM0hVKE9VyIMWFAOhShK4HL7CoHJFVBe0yQ1CTCQGWjRN9f5Zf3L2MmjjBWMGtKDKkWsyZiXbKEn7eP5M54OeuzATbokEntUzeKjhVOp6LL1HWJuyfGHBtgwIGX5QOznDK2marq0LIe2oKPwEehrcXQG4+VcPbMvlD4KII+mpnEEomUTXqQzTpk1jpdkBBQXynJyq7rX9j5p1XPARZy2lgRBVDo+/N5gPFddpvMP5MCUBpPIDSoGLIhzRHDU5wwso1TBjYyJDtURNYzNMAihWBEJoxFhw+IOdy+K/NVnzv7GIY+c9Zea19e+dDnuen6ux8zfe3G1OfDJ9zb/f3ufxvc42ue+j9/wlP/5092+twDE2/gq8GlXP6c7/LgnW99TOe2pzru8mfteaP9qPm4rnuqvQYwB6KazSannHIKf/u3f7vT5//6r/+ayy+/nL//+7/nhhtuoFKpcN5559Hp9FbGX/ayl3HnnXfyX//1X/znf/4n11xzDZdeeun+nVC//iIvofKskALE9IdYKjknp0Qot4rlJtkSUymRLqkxuzqgs8hSWwfejTWiCWgvDdnw3EGmnjyIDdwAZpV09pa5IQBaY/u7XoWmo5isFxP4YqJfuJUZCzN1gge3E21pYAJJMhJgAtetKZxYvHbmbui1gCxS6MjZKqc111UJ109CprG+5yho+SqiLSyVi0uinDDSa2rCaUs0aYgmNZWtKV49dVzvToZoO32RCRVZxXW0vLYhaFhMqBC+3+uSCDEXUBZgpOg6SdEDcFnWE+qD69R4nvs8CiBU/C4lNgrcIGQcdS6reMRLy+59KCd2zSJJPHBIvx7dOuy+J/Nc/+fHtQNqn7xQvxp1uH1PhAXVzgN6ba5JlJCVJMmAxJ+O8ZsZKjbIxGCUgBzk6FCRlgXxsECXLGogYdXAFBeP3cRRHpREQGxTDBaJwEMxLEucEU6wYs04xhOojkbMNp0WMQoRpRIMVN0Y5XvY0FGpdOgMWNKB0C0m1QzaF3gdQzBtqWwSDNzls23zENduPZqHOot4OB1lazbE+ngRGkEkU5o2ILUKKSwSi8r/NU3I97afxPjmQUzJgLAsqTU4fXQ9awfXM6oalEVGRTo7ZiXEHEczbQ2p1WRo0jzePrEWJSASlkAYBmXs3M5MSN1EbKgPYY0gXmTpDLtwZh0q4pGQLOqBHytETu3LQYsn3CJeqLrh015HE06leC0XQ6AS52ymOs6hs535nFTdwlmV+1jtWUakJCx0STjANSQlz6zdtV9/RweiDrfvynzW9Bv33Tp5f+riS8/v/lxM1P/m9TsXw7/t3inedu/UnMd+/pt/yc9/8y93uv3Ro5+l8ZXzefN/XTBPZ7vrUtf9O1esOfCf24Vvfgcv/9/38vL/fe+87fOQLjE/73nP43nPe95On7PW8slPfpL3vve9vOAFLwDgiiuuYOnSpVx55ZW89KUv5e677+aqq67ixhtvZO3atQB8+tOf5oILLuCjH/0oy5fvo8tBYQnpez0g0A8OlIRE5yNTTuHKbXlF7jpWhE4C6FrI1PElJp+esPaYh7hp6BjkcMyvrV7PDevWMLZ4hkBpOh9dTOlBFyyGcRQyoWWvg2BtrrVxupDuORUC96ILUxgJGA1WuO7Rpg7RRIQeG0ZHHjpyE3aZuC6KydvpSc0JTeNhj+qGNt6mSWzirI2Fp9BlzwVdhgoJiJYmHYzIKgoduhWpgkpmfEGwPUG2nUOZ6mhkkrmBoeSBts4W9FhY/Au3MimTPDQ0TeZ+Jl276vx37d7bHHBTuJAVeqDis1TKXbcsAzTW5mYMrQ5+Q5NV3Ht2xgOi+z50KHMtz87FpAe7DrvvyRO0dtWF2R3N7JGvWch+OXR1uH1PhO4t8iDo0si0D40VknAmwp/NUB13L9aBRCaarBYwu8qnfiQY37p/HY8XL72J51U2U5XOOrkqHh2eV5MBA2GHDUcryrUSg3oU1U6R0i3mmHLuWmYFItVgIaso2qPSUY4DkKnrzutQEg87oXtYh+GbfbY3F3GNNPw8WEWkMtYOr+f00joUlkhk1GRK2Hfb7AjDz2dXc9+WJe4aRJryQIcjqlOcVl7PmDfNkIxZrCyRUITC7xoRAN1MGZnzu6RwrmSF0D+1lpqUVGWIRFCRs/w8HnN7EJasZEkGJJ2Owm9KspIgqBtH3xPkutDi83JjmBXk45ijWBfGLsaXeI0UlVjCGdexKW/02Lakxv0DSzi5tAFFB18oQtGbWhksSghWqMOn4324fVd2Vc896eP84M7dR3hAj650zLWLDsj+d1YP3j7XU64AMaf/1b/tFhBMXZkyfJG/0+dee9bTuGfTuXSuqPCby97Jt4CzN7+ZMz7/Oj5x2f7YEuy59Dm/w7envsDFnM/XP3/VATnGgarDY4l5J/Xggw+ydetWnv3sZ3cfGxwc5IwzzuD66x3Cvv766xkaGup+gQCe/exnI6Xkhhtu2OW+4zhmdnZ2zr/+skma07XmUqC6tC0pekDCmp4jmeiBHaskreURk6caTli9hUilHHvCJk5esYU15QnsTMDUtWM89MBSJ/CMk7yDYrpuY0gFYTHgmB5IgTzA0WluiuT57qRea6eZKcLK4gT5wCaCB7bib5slnOggE+1W/IxroZd2pNTubzB08za8DeP5pL947yZfqROkec5LNhCRlRXtEYX2HVVCxpakKsjy7eLFkROqJs7K2ZQD0oGAdMBHGOe247z4BTJ1AZX4gfsHuQGC7Wle+kFafxem+Ny0zo0OCtqY7uqUup9LnICxhBMdF8QZiK4zkIotVkFacQ4zfQyGw7YO5fdkPurx0HnZGc1sgXb2+KpD8T0RmUGHLm+ryMZSrYzBBxOCOkwd59NeGiBTg1dPug5YaU3RXCVIj4jJahoTGk45egPnlTcxKHed+1Lkr/x/q67Gnj3D5JNg+rgyrVVVzKJBbLHIljMEyJzzosgsMrVYIYgmLNF25xipYoPXskRTlvKOjOoWTW2dZOvtS7l3/Rh3bR7j3x86hY9tPI+Pb34uX546kyumz+Ars6fwkW3P4q3rL+Lt636XHz9wLKWbypQe8hENjzRVBDJjhTfFiOwQCY1CIJFd8KL6NIxKyC6FTObbRUIRCUVZKnwhMRimTJutOqQm2wyEvU6B0O4+rzo5xTnN6dTa5e5AQSWzjkqWByMXn5sV7jGZmO62Knahz8EstCdL3D+7iLs6K9A5WDH0KHC9c97dX+jhUwfqu7I/48kP7nzbTsMq++tzZx/D60TK/X93LPc/fcvevMVuvfu2/8fas07c4zF2VrujR73yoX1PuH/tWU/j9dfcxqce+Ow+v3Y+6kCCl+Zoz9zgS2f/+bzt9/Ag+e+ktm7dCsDSpUvnPL506dLuc1u3bmXJkiVznvc8j5GRke42O6sPf/jDfPCDH9z5k8Z2xfw2Sd3PaTZnogz06Et+4DoeXp5WnwdYZksG2PwbsPqErUx1Sty/dTG1ahspYP30MEN3SAbWp4ibIZhoYwPfOZD1Zb84CpTvboNZBrrvPAoQRZ/QvW+ybq11XaFC/C+F66hMJKjZBtJaAt/v0s6sNogoxLbbDigY59hlrUVo0725OxqEa7ELYwmaBq/lAI4wlmg6T5k2Fqzo8odN6GF9SVaSqMQQzhiiKU1Sc1QJEfdlthTGBYW2KDdI6II4Re/nrk2ycI5kxfNFV6qwvXZ/HIhcbySnm5R2+LQXB+iSxJ91RgNeEzqjHnjCUQQO8zpk35Nf0fpVAy3JO299QjiRHYrviY484gFJPCQob3cdj3hJCR0JjHL5MNoXiMzd84wSZGWP9oiisySDjssOG1kxzR+u+B+qcueZL9oaGjZmYwbTJuSO9iqaE2U8oDMqML4imI1Qs9J1XXKalAhc3pfUltKkJZzM6b6Zjxc7161oSuJ1DMZ33enShMGEErk5pDMSML1acXccYC3cat13QymDUgatJe2JEpV1Potui6mvCsiqknBlxo5OlXuSZZwQbGFEdUixSHpApmvc8ohywMAgcVQzrKZjNZMmY1L7REITqSaNJCSth/htARKyyI1FwaztZqKZIvJAiW7XpQArVvfu/caXDnxmphuAWQSQ+g2LbClmOyG311eQDt4GZETCI7W621EymC4t7nCvA/Vd2d/xZHdA4eJLz2fTb7+U33jeP/FNprh/H/ddOI8diDr9r/4N6HWHvrJuO68962l8jJ/yrY+/izcs6vDiMz7I9KufzdfW/AU89Kfd9/qVZe88YOe1s3r+D47IJfYHrl7xpTfxBy95BaefDOw7vttpHbYdmANZ73nPe5iZmen+27BhQ+/J7mq9mfPYHItfY3tdgJzyZNPUUb6yDHyP1rKQI5+0haeObGC2FcH6Ms1fjFK/eRHiqmEq243j1m5rIdupoxtk2oEM1bMC7gr2te7pcHJ9SNdi2Bp3fkJ2J+tCyW4XpavTyelmNnUdJlsKnSYm7+DYVqv33vNtRa71UR2N33Ardrrsue6EAL+uUbEDLe3FHl7LoOIceAjcwBx6jk8sXKcmLbsgNwRdTrGsF8e2vXM2fUCuuOZaO4F+QZ/r1wAVoNKaOdqXbqcmy1xmj3Z2mt5Um3Aqcy4zoUTGGhVroskMv9nLB/hVrd1+TxbqkNSCA9nhV7v6nuhIkZVAl5yluy677BHVsQzfnzJ0n8Fv54tQeT5XVlG0lwgIDCiLKGW8cPVtrA0nu85cqdWM6yZ3Jy0ezhpMmTYbM/jP+lP4xKbn8uUH1iKbCr/h6F/Gh2TARw8EbrLuK3Q1wJQD5xSZGoJZjUqd+5kOnMFJVnbHS6qSeEAhU0tQN0TjlvJWQ2UzMO2TdDx0pshSRdIMSGKfVjPE3jHAwD0+o3dlWE/ityzhpKAxXeLeHUvYmIzQsb5zGMuvpd6LKAaJzDNv3P9rMmBQKlZ6GWNKc0tnJduma4jY7TUZhPZSaC4PHOsAp32xOXCRuhdZ4J50nbAii6c4OVHYKwuB39DIxBI0DMGUpNUJGe9UWZcF1E1Pq5NaTWwzOjaj+UiToF+x2tN40q8p2ZdqbziXv715/+h577nneN5zz/EHVGxeiNlvS57Ow593muZlb/oEt/zldwEHdP7m9cd0Ac/BrtHXvYHLl13Lc0/6+AHXwjz3la+e1/3tcwdGa80Xv/hFfvjDH7J9+/ZHWSdfffXV83JiY2NjAGzbto1ly5Z1H9+2bRunnnpqd5vt27fPeV2WZUxOTnZfv7MKw5Aw3MlqlrHOhT4HCkVnwxZdDOit+Bf6Cql63QBjIXCJxsF0xlSrxI5KFfvzQZbco1Gxc9+yUmAC4Vy8Gm0HXpLUZc4U4vUwgE7s3GOKCXqSProTlFsrCyXzTopGBIH7uehcaNulk7k3ZkEYRKPl9q9kTlvr62r0gSEyjZrpkAzVIA+7NIEki6S7+bcNQkPtoQ7CQmssROXhmCZUXbCTVhVZKCiNa7yOJh7yndPNlhTRbLtOUwFacmDWPQ/Z+zsTJgd3BWAptErG5jSynIggcvVsl3Ymu0J+jEHW23iRT1YqoQOJHQ4IphL86Q4yC0gHD39b8EPyPTlENd82ygu1d/VE6MIciu+JMI6+ZCUYz4ETv+n0F9Yt4Lv7juf+qcTd71QbRNPDljQWyY93HMuzq3cyKDUGw4/bZb647dncN7WYPzz6Gka9Bn9x7wVM/nKEcFISTkHVh/I2Q3l7io4kXlN3DQJMoDCeRKo8MFO4wMx4yKczrOiMCsIpEFrkYAaCprMclhl4nVzI3hSUtiraBOjBFOlZyITro7QVwRREU5ZgNqW1JMAq1+H2dgQML5tC5hSrQBgi4fW6Kn2lrenSyVQxNuXlDAzcc2n++IbM58ubziSZcvRlHVmysgEF9UxhpcfA+hiZ5sAxd6G0UrggY192uzEuSkCiA+l0StpFCwhj8dqOgq2koLTdMt3y0UayORtmSG5jsVBd8NK0htjChqwGzP37OhzrQH1X9jSevPTr0T53AZ7/gyO4/TQ4+uavw9Nes9eve5a6dh+P9NirObiEyoy7Zkc+2Tn6Xl96ETtrRxy7bWK/aG37WqOvewMT//BZ3vOqr/DhE/6BywfgmzMX8aKpKw/I8X5wxRfh0kNIIXvLW97CF7/4RS688EJOPvnkbsjgfNeRRx7J2NgYP/zhD7tfmtnZWW644QZe//rXA3DWWWcxPT3NzTffzNOe5ry3r776aowxnHHGGft8TGt7gj6rDUK4CbHINS7usT7dRZb1uiLQ61woRTDVIf3JKNceX2PRZteO92dTTKRoL3JOZSp35SJJe7vQBnTcu1FbA8KbM0kv/i+E6No82xygCKWwSeLoVLkhADCniyTyLgZ9XQ4AEUXYVrun7ckyLB6kKbLpAzU6owoVS9KyxG+5YE2rBO1RhUq8bkCbjlTX2UWHkqTqBgaVe+qLRt6BsRBua/Sup9YuOyfLQFuE6NHIMAbhe+B7iIIipnXvuuVgek4eTP816+qFLIXJpYwzdChy2hskwwGl2OUGeJ3DH8Aciu/JoajHC3j56pX/vCDkPwzrUHxPVKzxOqDarvPstXRXYyHABSMa53pofdXV3LnQS7DS0XYbScDntv8m7xr7PqPKcmqY8L4V32Hd0hFGZZMfN08g++4ijvvJJEI7u99ssIRqJMiWW6AylbAblqysoz0JaxEmQHUyhFXEoY9RoIOcSiWdK2PQsASz2k36jSCou8fDWY1aJyltl1gVIjIHdNKSez6a1q4j30yBACsgqFvKmwSzx4UMei1We7MsVl63u9Svg9npNc1F/QC+UGhryHLqWdMa7kmWYRDdRTMTGtfNMoLOUkcHC2d9gmln50+u0dShcsYGumAG5HRpgdNDQm7AING+c26TicFra8JpiZgK2DJY49sTp9IZvpOllc2YfPxTQMcq6ubRpguHYx2qMWV/Js2Vme1MrvsDNnz3Qs7fy+bBoQAv0KeLGQFwBgC7A2w3XX83B5qw/J1LXgBXf5/fPdIZ1bx5y9OB7Xxz+MCAmJv/8iyqXDhv+9tnAPPVr36Vr33ta1xwwWO3d2s0Gtx/f4+1+OCDD3LLLbcwMjLCEUccwVvf+lb+/M//nGOPPZYjjzyS973vfSxfvpyLLroIgBNPPJHzzz+f173udfz93/89aZryxje+kZe+9KWPyQWjmOhbrbvJ7ijlJs1FJ6Z/kpxXAXQA1GSDsRsCNnslpk4y1NcEROMBXtvSWCUYeNA6a+HcNhkhsKavC1LoN1SeEdNPkwJHkTK2O5HvT6fvnrOUXaDT/X++D9E/SBS6mbQvLBPAd7QrPA/SjGA6pbHMI4vcyp3fMKjE0Bn1UYklrSj8Jm6gFoL2IoUwzpoyi8BvWbzYuX41l4dYBdVNMWK67qhdhXNYod8pPocii6dLJcupcTbrvSdj3DWAXudIa+de5nu5ixs5MFRun9J1p8KpjM6inN4RW7KKsxcVxXU4xHW4fk8W6uDWAn1s93XYfU+sJZzRxIMeWSjybovTknjNDNXOsL6j1hZdEBO4yT8CyCRCC7ZPDLB9YoDfGLqXCyoPMiwjhiUs96Yw1vKRyaNYdFsLOdXIacE+qpVTmyMf0UmRzRgyjUhS13mvlMAYvJKPasYIEyAGPVTq8k28nAYczhpk6joOOsyZCZl19tCedFTcdt5NCt39U2YCo5xFvtfSiCRDB87pMZrSZCXFdD2iZQJaVtGx2onfcSGWMBeo9HdhiueKxwuhvM7/f0vzCDZNDSISifVzGp6yWCNyFoBl9gjFAFBZ3+jGClhPdillItd6Cu3GCtelcvb/MnetNL7Aa2i3UGdAtQRJ4nHfzGKOLC+lVdqALwQ1GSBtRt0aGvbwATCH3XdlP+tFU1dyo3wJF/1Lda+2P5Cal8djnRM2Gfrif8OKow71qexX7bMGJggCjjlm517X+1o33XQTp512GqeddhoAb3vb2zjttNN4//vfD8C73vUu3vSmN3HppZdy+umn02g0uOqqq4ii3o3gy1/+MieccALPetazuOCCCzj33HP5/OfnRyEkgqA3QdZ6LojIgyfdcwaM7gVaZhl0YoINUyz73w7lzZJ4SUb9KMPsUZAs0lS2ZohmO3fY6nPOsrkNcr8LWC6y7+pACrpa0aWRogespHTn7HuIwFn12WIiXmhBin30V9GJ6ebe9AVD5rks3rYZBh5OiaYM5R0alRhkrDHKDWB+vXfORSfGeIKsBNGUQWbud5U4tzKvbfE3zzizhDCY6zJWnAs5nax4z7hujLWPAGT5+Vpre2YGfh5wWVyrPHy0W2GASDNk4nQ8WGcBHY/4tJb6xMNzwzEPVR3u35PHUnvTWXm8dF+eyJW889ZDfQp7rMPteyIy48KA287dUEfSMVpzYxOZGpcQby02p5IZJTAeWD+/B1qwMwFm1ucT9zyLL0yfysasTWxTWkazLvN48P8dTfDgdmwUONv7NEM2Yider4Wki6uY0Kd1zAjJ6lEHcjzlOt3KdR1kK8FraIS2lHZYvLajiWnfidazinL0KuU0IdZzmWHd92qcu5fInN7Hbxnn+tVKsaHvOu2zebdcgtwS8ZV1a3n3Q7/D3089jbuTgJZ1FDmD7YKXXVUBXgwuI8YA/906im/d92Ta05EDIVZA5hCJCDS2pDFDGfWjNRMnKnQ5IB0ISYbCPJzSolKT2/5rRKyd3bKlO/bLxPTeh+fCjq1yHbOk4zPZLHPLzEo264CWtXSsGxPLwtIxO7fOPRR1uH1X9re+8fDnAHjnl37Ku88d5x/srq/xu88dP+DBio+n2vSqr3BdXOE7l7yA9qZ1XBlXEec+mTOO3ETrwmfxry//9Lwfs7j+N//lWfOyP2HtXqjm+upjH/sY69at4zOf+cwBo48d7JqdnWVwcJBnDb0Czyv19CL99KOiM1HoX4oqQhfzybcQwk2uPRfUiKewYUC6uEpW8Zg5yuk+ll4zjmh1cl2L7IrTu/bM/dqaIqiRPhpbfuzid6s1IgohzbpASig5R+xe0N9smjmdTC7+7+8czdGV9HWbRJ52bwerdJbXsJ7zxEcI2ksDvLbBn0nJKh46cvqY9qjEBFDd3ON960AgtfPfH7hjAjHbcJ2nAmT185wLN7RcvzLn9/7rUXRmis/L9+a4uXX33RcAWrwfwgBTKxEvrRAPKoJZTTLoEQ8IbKvDLV/+U2ZmZhgYGJi3v7fHaxXfkwNVu7JUfjwCmPmmkR0O3Zdd6WBsR5O+746F70lexffk189+H74Mqa+O0L4gmtH4sxqpHXAxvux2NSAHOAK2P1VhjmuiM4VJJRgBsURkAjGScOzy7czEEbOtCE8ZxNXD1DY6k5VgsoNIXdfD+srdqwX4jYzOIqdDKW2NUbFGpJp0OMKf6iCaHdLlg3RGA2TiOi5pTRHXlDNZ0S64sdCFONtlcocv2aVd6cB1513XxuDXU6wUNFeE+E1n9tJcqkgGBY2jM1asGeekkS28dckPGZKGqAiA7FLKHm2r/EjwklrD1e0x/uq+85hplPA8TbsZYmPlNJuehdR1s8hcB0xmgtI2gUyhvN2ZGPjNDBkXIEugWinpcERnxMdrObqYTLTLDCt76EDSWqLQAdTXgB5L8KKUWqXDW469mpPCzazyUrS1dCx8actJXHbGDxe+J3nNx3hy8aXn865ht4/XX3MbWz79R/zk1N9gnfj9R207nwBm7VknHhQwtPasE7kyru4yB+aISx/e731/8tx3cfHRDsB+9eIOn7hpgovCBi8/4yxW/ctkd7v5pJKtPetEqg9dyOLn38GDt6/naX/y6NDRpDXLF15yxF59T/aZQvaTn/yEH/3oR3zve9/jpJNOwvfnIt5///d/39ddHj6lPES1gpmc7k7+u6L6Lm3J9qhFUgAuQd5mLnvFFnSsJHUTf99HaEOwISbQhtKDkZtAtzqQOu2LjeMujWyOC5o2IN3k3cZ9TmKFvbHBdVmKzBOt54CXbidDCJflklOm3PklvW5N8bpCY2LyDkdxXazFdjoOBAFB6NM4qorxA1Q753ULQTrgk1Yk8aBERwKvZaGdt989F+CWRYLSlKF29yRMz7rGf6Ez6geGxrhrmoPA7jXpt7Q27py7DjIFiCmoft3Oi537u1K9zzbNEEmGP5tgVIguyVysKtD7BO0X6rFWP1ApwMzjEbzA/GphDgfwAk8MMf/BrKysCGcy143wRLfDK5NcTO8JTCC73Qu/ofMuB6QzYX7jdPvyZhXlLYJkvMSGu1ZjPPBaIFsQTbvucbdD7UlEKroBwVlZuUWmliGpKTf+JI66bKVAl3y8ZgfVyhDDvntdrJGBJLS5TkfSCz7Os2Osl2sHrVuQEhqMwi1QFedSOFF6QK7tiaYtftOSDCi2D9Y4dXQTdetjTMaI1PjCUbceWf3ARVuXt6KxrM8Un1j3bCanqxgtSGMPGyuCgRidKRCWpStmMVYwMV0lbfuYjqQ+bMEztDcHlLf41DYKvJbCa2bITtrTVFrwOj3wYj2n50wGJMmAIBkAqyw0PMLBNqlW/Gj6RCZrVc4u38eQdHQ+Y58YC76HSxXgZf3/90xW/+3V/N2vP4WHn/NdjpxyYpgf6qcDML1o9DFPwg8WYHlk3XT93fDU07u/3/eZGzn2jafv5hV7Vz+9+vucefWz2PAq9/s5wDd+fTkvz5/f8KoRvnSDAxffvOciWhc+i1d86U2P+bjvGv1nPvvQNxl5/ld58PbH3oXZZwAzNDTEC1/4wsd84MOy0hQzniPP/kk/xUOimxED9LoAhXalyGMpujWFfiXLsGnqwMxso/u8zTNYHG3MOkJfATpkvv/Udjs7KNUFOYK8+1J0i/J9FB2gHvjqa8Ub47o9BXCB7jkIz8OC684o5X4vbJqVn3eYFLbTQW2folzyaC2PSMs+Ult0JJBZ7qUvQbWd5abUOXgJQKYw9EBMsGkaUW+696KUA2SlEFstocu+y5jJLDLOEKlBTdWxzbZ7D0W4aE7pE9LruY/lAK1wZEMpbFIMQsVMIH+9dJojYQyi1UEZS2gsyUhEskh2aRALdWjq8Qpc+ms+QMzOwMsbki/udNvPBq9+TMfam1oAMXtfaUVhWuA1NF4rIx4NuxNgI12nQsUG1dbORlmAMIryJp9o3Ke1zKI6IFOB14LyDoNKBOG07ea0BJMdRCdz4KIcOGAinCmAlRKZaKQvEFZQ2tQg8iRyto0tBehq6Lo+eNilA85iWQo6I5K0KlGJC/ctQh9VbIhHfBfwqBwgcwGdjiJnJciMLqWqWJSLR3uLnFlJ4Dc1ekjhtQXtVLE9rvK/rWM5NtzK0nCi6ywGhdOYmANe3OOGSZ3xH40T+dHE8UzUKyAsUsFArcVopcWpwxsZ9lpE0i0UrmsvJlySopFcu/koJrcPgBYkoxqv6TG7ysNKGLkHgpxqrIMeYNORcyCLR3ziAeksskMwQS7Wb0jSVCEE3DG+jKm4zKplk+BP0LE+P5s68uD84f2K1Nc/fxVfB27se2zDq0bgk+7n+RTr7wy8HCxQc1E41yL6sYKYlZd9lC+FDT7znst2u92ZzzwPcGDnutZ3+ORbX8uXbrh+v95zca3+euK1sAbgvfzxv72V/3qMzOR9BjBf+MIXHtsRD+OyWrvJujE93Qh0NSVAb5W/XxSuc21FoIA+8EIBEHJQI104Jtq4zkmf+1h+oF63AebspxveWLiJ5d2SrrNYPw0sF7TbQqeT08fmdGegJ/gvaG++N+fY3S6Uzt3M0gSExGYZ/oPbGJgZpH7cEElN4rWLG75AJYCFeMB5/wsL5e0Z4eYGcqbhOk9CgOdhRmpkQxE6VGRlJ2hVsSGtSLJSRFqB8o4qpa0x/kTTda4y7dzSiusvBUIFPeqZ5/VAYX49usCleC9FNyYHciJOUDMQWrAywvgCswBgFuox1v6CmH0BLjt7/kCCmQUQs3cltUXnCzyqEaOqPioXw0vtbIlFx+SdCYP1FbKjGb4/IR5UYBR+w1Iezx0mNXgdQWVDCznbRszUsa02olKGUoTMdH6vU+jBksve8iTCgmo6kCSSDNFoYQZKZFXfdXgsxKMBRS4XCNqLJOGMRcUav5GRVdw9VSbWCfJzowErXVcJch1MZjFCIDPbc0QLJX7TohKTWzi7DBavDbatuHvHUu4dX8LasQ2MLb2apSphSLr7taOSufHKYJgxCTu05PuNk7h6/Hju3bwU5WmyTOH7mhcdewvPqN3FYtVkSGZIoG4kgTCUB2DaSDbrGsuCGa6tHYMUlmYasGlkkNZECVHOUHHI4IPOjCatqi4VudAwxQOS9pKcUVCx6LLFBAYkmNjDtDzikk8n9fh4+9msrk2RWcmGmQXa2IGoQ5GfUkziDwaIuen6u9l46T/wv8svn5f9bbzsHXxmH7Y/85nncWbfzz+9+vucEzb36brfdP3d+MEs7xq9k8/e/E3uvfTP+f1XboBzX8Lkt1+6SzrZnmqfAUxRO3bs4N577wXg+OOPZ/Hixfu7q8On8nwQoVR3RV88kp4ELtE9n4DbNHXak9yeF62xOegQUrpVfiV7E+XCvSx/3GZ9k+6C/gR00+ihZyCQdxqEUo/KTJnjmCZlF6zsrJPU7VgU+55D3bJdOhm2RzHrJd7n9srGImab1O5I3WBYC7FKoNrGrdZ1NDIzqKmW6xK1O9gcGIooAiXJlg3TXFlC+04Xo2KD39KoVkYwbUlrPlnF2Yt2loQkwwF+I8ObjVGTvttnlmHjBPL8HqsNwuR5OUL23MseoWcSUoL0e12pNEMAchYia4lHIzq1w0PEv1CP7yrAyJ6AzO6oYnsCL7va/kABmQUQs+cSmm6yO+AoWto6cpQEoyTJSMDsEYq06rrXpe2W8g6dZ2xBWHedFh1J53zV1MjppqN/tdoQhpjRIYQxmNB1OkzJo7UsQofODUylluqGDsniCl4jQc02MYFHWlGojkEmGuO7cOKgrhEahJGo1JLUJMYL8FqOQhXMAjjxfxfECJw5QU4dk+52jN9IEdriddw0owBvhVuZ0ALZUjSmS/hRxi+2r+AzPIsV0TRrKw8SiZSyjNmRDZBaxfpkEf+9/QQAHh4fRkpL1vawkWBsdIbfHLuP3xq4hZVeGwNMG4/7kiXc1l7FEcEEi71ZTgq2szZscLz/C55RvYsdusZ98Rg/LR3FDbNHYVNJcwUEDQ+VeF3as0p9korMncwE8YglK1nndCZBRBqhDMozGGVhxqclLc1ZJ3o3VtDuLIwn81HzDRqKvJX92Wc/kNnffexN/ehJr+Q7l7+U/znhLt70s38CXCfmiNuW7vZ1b/zwZXzmPZdx39e284y7rmDjZe94zOdy5jPPg+v2Tipy8aXnoz5yN98cu51/fvG/wPRa7vv2cRz7/F/yj+d+jq9fuZFnKfYLvMB+AJhms8mb3vQmrrjiim6IpVKKV77ylXz605+mXC7v14kcFmUMwlM5RUs9YtLr3LmE72NGarSX1zC+ay0jnUhSxhrZSBBpbo9sjJso41rtItOuk1N0B7IMUSr17JK17uk5wE3Mc50NANK4TgP0LIOzvvyXYj/9VRgKdH/NQU9/96YQ++clhHA2+n10ORvHXVczdy4C22hCq4WcbRAK0aOEFbS4fiE9uK5OrplKVo2S1nznXGMg2h47Y4Cm4x5bJfGaWZ5FINChC1Wzgx7JoIc/6MSnavtU7xjGIjzZ65AZDab3u/Al+L7TFJVCrFJdG2uRpF0AKmdahNaS2n026Vuohdpl7a+WZV/By85eu79A5pEgpd+NbAHE7L68lsu0Mr4kHXXjoopT0rLH9DEBs0eBd1SDsaFZGnFIO/GZ2F4hvcdDJpBWoLVYIlMP4zkqbmuRQpcWIWNLOFJFl90iT1JV6EBgfOgsEnRGLNZz/4JJid8MyEqSSqJRQiBTjbC5E5p29+C0LBBW5Wnz0BmUuZuXwSqFDiP8VtZ9XhjmWA/LxHW0pTGoWKNmO5hy4ATxcT5XiA06VPn2lmi7JI0D0qUwk5X5abyGwM/4njqRRisiDFPi2CdLFUoZ0qaPDDWm4YNv8Cspg7U2S8p12tqnaQNmTELdBEhhqMk2p5XXUxYxA7KDxIVeRkKwxksYU+OsUDMYK/nlksVMT1ZJRjXNMY+g7rQ61oO4ptAh6EjQWGXRSxOEMni+JopSlg/MsqRUZ8CLmU5L3Du5hJlGRJoEbJ8cwA8yktkFDcy+VgEMPvOey9h46jQfeckn5zwO+wcaRn7vju7P64Cj7rqYiy89n69//qr9Os8D3ZF5xZfeBF+Ciy99EdCLMPnkue9C//GJnFNe3qV8AfgP3kx65NNY96SvA3fyrfJ3eMY8no8+53f45nC8W23RN4cv4usf+QWD193Ka79p+AmvAOC3tpzYze68+KKVwFf5+pUbOequi/cZyOwzgHnb297Gj3/8Y7797W9zzjnnAE7Y/+Y3v5m3v/3t/N3f/d2+7vKwKeF7rhNSdBrATcgDHwZrpEsHaC8NSCrS6TwSm9/EIR5Uzvs+LhPMOFDhN7I8sV45gJPmXGdtsb6bWGdlH2EtOnd2Ue0Mb7qFaLQR5JbMgdfLNCmqv3NSuJF5LuSxK3Q31nWD+kMsA7/rsiY8r9vxEYV+p+hc5P9HO9AlSlHPDawAYP0Ap3BPK4SPQrhATd+fS3PzPPSSQeJFzu0mK8k83FJhPQHNXBAauy5KOBWjIw+/CVgXkKlDQTzskQ5UqKQaOWGcKUHg5yBQ9uhhEkSphC2FpItqpANuwLfSgUrH27b4dU04GSNn22AMspUQLYj4F+oQ12MBL4/cz96AmD0BkuL5Asgk77wV/0MnP+bzeyKW8QVBarBKEA/7YKG1NGDbGbDqpC34mUc78dk+W6UcplgL/lCH2RMisFAda9BoB0zPBngzCqssupYx3VD4dYlqO0dLrwmdJdBZkoGEYLhD6GuyTOJ5hmSpx5aoTGWTwG8EqEYNkRmyqEfZlanFKElnyDlzeR2DiJx2sTMkkSkEDUNadQtowaxbbHOAxFGrVGyctbIUyHbmbIZHoxwYOS2M0D19jN9ylvqdTGBUgFWWzrAkC924phPFYLWNJw1tGSClIW0EmJYHhQNaqgi9jCcNbGVt5UHGVIMRqanJNmUhMF7SdQGbzHNnJjPFDl0jEimLVZMRlfKC2m3Iow1XVU/i3vuWu1DjAQc4spKgvRh0ZNGhRdc0A0MtnrHqPp45cBdLVJ2lqk2KQGHZqsvcMrSa66ePZrxTYf3ECJ1WADrbxV/KQu2s/uKhy3n+LS/iaS+uAd9j5S1Dj9JtqOv+HZ0/tvHU6TnPfeQln+SP/+2tAPzuEX8A9IT/4VnD/Oa3p/j+og+5jX/9KQC8690v4fXX3LbfIORgaGIqn7yF+z4Dr/qdf+WGB0/jjCM3ARNwze2847+38+TZt/PZ5cfw9KPexW2XLWHtt/+Hz9w0zcZbhub1PFb8yyX8lEsom3N57V89u/veb7tyE1f/z/t4Xf1tXHzdyr3a18UXrYSLrmfy2y/l+W85n70VquyzjfKiRYv4xje+wW/+5m/OefxHP/oRL37xi9mxY8e+7O6wqK6N8sir8bTs2fAW2pGRQWZOHiEtC7xO7v6lLV7L5JbBLtgqi9zNLqhbB3Bi11LPygLVAZV3G6wAckthoZ0TTDzs8lKsBL8Bo3fFhOsnEe3YgZiiiu5Gv9Wx7QNbQjhtTR+4QQjQxonyH2mZLEQvc6bfnKDYdwFSim0KCly/UQH06GwFjctTDlSAo9z5vnOjGR2gdcQAJhCEk2k3h8BrJOioZ3/szXbAgKkGLh0ZyKo+acXLVwydIw4CKveMI+rNXhfJ5nQ+z0NEIXrRAI011Zx7DV7bWXxahaM+ZJZ4yNEF/LaltLWDN95Adxr89/q/XbC9zGtPtpfPffHmfdrfD762f4FnOzvO/u7rcK75Ai9F7QnA7Gs35ZHZMAvfE1fF9+Ss536QUuLRGQlIapLWUkFzjeaEJ23g4alh4o5P1vQJBzsMVdsIYTlt0SZqXod6FnHR8M2MeXX+t3U0N84eyabWICcMbuPWyRVsm3EufdVSTORlnDi8lQGvQ1OHHFPazpOiTSxWdW5sH8lPpo8llBk/XncMQz8sEdYt1YeaTJ9QRcWW0njatb5ParI7vqXVwmjA2SILC9oXeB3jFp18p3VRHTfeBTOpS7Uve6iWGy/aYyWML1AdQ1Z2KfbRlEaHgqQqu9bLacWNm/GQ6JoBmAAaqw2m5BbZvFpK1vJAC1Q1QwjLouE6TxndzK/VHmRItTgh2IYvDDVh8YVA5V6aTWuoG4lBkFqJRrBUJQRCMKHdNjMm5JbOEXz81mcjf1lBlyxeQ2ACS7IigVTiVVPOO/ZunjF4N6eGm9EIJnVETSb4wqCwSKAiBVu14pbOSh6Il/LNB06lNalZ/3t/vvA9yWt348ltV27i26d+k2ftgSJ1oOqNH75sDhh5LJ2VA6mTKfa98amn89MrnXX0vSbmeBkiTvke4CyS3/5brzkgxwcom3OJr38bz//CP/Omn/0Tx8uQ/7r1Jfu9vwNqo9xqtVi69NF/VEuWLKHVau3r7g6/Kux2lcsKsQMVWkcOon3XcYkmM4wSpDUF0qUP69DdyGXmboRpRVDe4Va1AIKmE2p2hpVb6fJdWJmKQaWgA/dY0WVIBmH8ySGLzTDhg+OOhpbltpeQ06PyLpEUPZpUQdnKnb26mSn0ifeL7SAPdezT2hQanEIEX+yvWDkqujLFdv2hkODOL8vyrBnTpYvZfF92oEJ7hRt4o4kEkeRpzsZiPYlqpmRDISDQ1RDVchzqbjpyZh0XO3XHzSqCzrAiWD5I8ECMILe6TrWj5vke2eIBZo+pILTjdyNA5nQGr2mwnsD4Eq9lCBNDZ9hj+rgyQ0LAls58/mU9oWtfwcv+vuZXpeYbvBT73BWI2R8qWPA3pzwuAi4PVRlf0B4Icmt5QeO4lPJIi40zgwhhkcrgVxNKYcpRgxOcMrCRE6NNDMgOvsg41ndGJRdU72W5P8V/eyexvVNDG8mTlm5lvF1lUanBkZUJxpMqbR2wNJilqjpI3GT6guq9XFC9l7pRzKQRt685Fu8eUM2EaEqTlWSvg5LYfByja9OsEmeBXLgyennnWmjwksI5zS3CycRly6CVo4npPNxSu1wZABkIZGrQkcKLnfVyNKUpHIajKeEc1TxBWpHIRNIacwtPuqnccDeUOrKAb3jG2H0cHW0nkikVGQPgY9GAD8h8rIsQKGlQQuBjkUKQWsGkgR2mTEUkrPbajFR+ybfGTuHebSVMNcMEHqolUKEmqMVceNSdXDh4K2UZc186yqyJUFhGVYPEKlIUq7xpKmgWy4znlB/iadEGOBqusmtYf7D/CB+Hde3ZdWD2UJ/GnHosAGS+gNDu9r3y5zdy8Z+P8pL3vpDPjkdsWnspt125idf+1bP5zG9dNm/H212tPHot8PrHBF72tfaZ5H/WWWfxgQ98gE6nN7lrt9t88IMf5Kyz5idd85CVycXyRSaJp8hGKngtTTSlUXF+o9YWv6m7mS8ydY/7LUs47fjBAAgnABQZROMJ0bQmnDFUtqR4nXw7627ipe2W8nYHeqIJt6pVXxliBhx32qbp3A4D9Jy1IM+C6QMUadIT3xfUsKJbUhgEFOYAxT9TPG56Dl5FdbNXdM9ooAA03X2KuQApB1KiXMKM1GgdOUhnVKEjgQ4V6WBAZ1FAVvFIBwKS0SgfCB39ywTK6Yis61rJVOPXE5Ihn9aykKljfXQgaC0JsAMVCIPcTc11e7KlgzTWVAhnNOGMS1WWsUFqm4exabxGisgsfiNDtTK8jiGLYPwpJdpHjjy2v6eFOmj1RAJDBwK87G7fj0XHsqCB2XWlFdkFL/WjHViJY5/GdJnmTImVo9M8ZeUm1o5tYEVpmuOjLazxJ1nu1Vms2mhrCYWkJiRr/El+d+RG3rr8Bzx/xW0AbJ4Y5L6Jxdw9O4bE4klNQ4e0TMBd8QoeSBfz83iMW+IllIXmqYMbSAcsUgOZJhyPSapOY0guxPc6Fq9jkBl4scX4dN3GdCB6OWee07+o2ODVU+c+5kmyaoDMjKNIC/JUe4MV7r7uz2paS3yyUOI1DSo2CGPxOhqvownqaW4EA+GUZvi+hMW3GspbBH5DYAOLH2UctXyc5x97By8auomzS+v4jdJ6zginONJTLPdCRmRAJFS3A6MQeUimxBeFqxkMSXiy3+J431CTHjVhOXt0Hf7yJiiLHU5IRzOksKxd8TArwik61qdlQkZUg6P9HRwbbGeVN8saf5pj/QnGlKZjLS0LkZAc6Sl+e+AXPHlky8H/I3yc1qHsvgB7tBg+HOvrn7+qqxH6xsOfA9z7+II4bzevmr/a+MBNB+U4/bXPHZhPfepTnHfeeaxcuZJTTnGD16233koURXz/+9+f9xM86JVTqkQUYgOfZNDHr2f49QxhvFy477oBNnCdF6MEfsuBD78JMpOO92vy/JNMohIPr6FJBzxMoPCbFmENOpAEDeP2ayx+M2/h56JKG/qPsELOKWI256JJ5TYGBzxy3Ue/eN0Bs9ycQDoNi9XGaUaUct0dqSCN59pFd0EJ7vkiXBPbsyLuF+bovjyc3G5ZeB7WUySjZdqjnssVAOorfVRsc/cxdx0BZFa44sju51H477twMce1TmpugPRiS1qRtNYMUrmr0wv6LEe0l0Z4bZPTF1QvsyCnSIhUO7eceoIue5jQdciiaUtnWNBYud8mfQu1UPtVBxK8HKjyP3Qy6fvu2POGv2KVVgSiLGiutNihFKkMK4Zn6WQei8tNnrnoHsa8GaZ1mcVenVXeJJHQjEg3uQ6FwkehpOBEKTE42/3l6laeHG3knpFl+EKzyp9gVDXoWJ+mCUmtu2+t8cfZkI2wOR1mjT/JIr+ODQ1JRdFZPYQOXRCj15Z4se0GDps84yWLBPGgo3SB03pa5bJPECAyCGY9VCdAWAhnnQ40aGiMJ5CZwgpBPCi7i3rhtKEz7GykEbnWJRD5WGC72TjgwiOzSCE0xMOQDBn8RW2iMOXCsds5s/QAx/gaHw9fKGR+EIMFYVAoUuvGJ1/Ibr6M68K4Tk3xO0DHug7+M6p3sX71KP99x4mgLLKSMTLY5NnDd3GEP8lS1WC5J9xnIwTaSpQISa2mYzWRUITCEltDxxogY0gaVpcmDtSf2hOiLr70fN58x9e55v9+gcuOezWfHlK84J/SR233Gnvw55mXfOhOvvK+k/bpNYVRwP88f5inXLQCwInqrz+ZSz50J8A+73NPdewF32AL1/HGtS6S8sp/hPd94Dnz4j62q2rJn/DTuMKbfvZPXHbcq3ntNw9e/MQ+z9BOPvlk7rvvPr785S9zzz33AHDJJZfwspe9jFKpNO8neNAr106gFKZaytvrnqOLBdIBlkBgpSScSgknXCdGWPdaqyRYn3hQ4rfdoGAlNJa5PABwA0M427tZG98NGJ0h1V0BM55AatFtrTur5L5uipG98MtCVG8NZAb8oBeEKQUiiHq6HuO6KyLKR6U0Dz6LcxF8sS+tQfbnqei5XZksc6GXvtfTw/RfQwxC+thyhBmqEA+7kLAscqt47n3a7vv3WtqtBGoXGIa1yPxwyZADkVb46LJHMuAGvmjSUfN0APWVHuUHAmh3wPfRwxWsEkTjMVaAEmACR5VIapJwKqeb5UBJ5/+Xmbv+4bQkXYiB2at6InU/DmUdCvCy0EE5cJVWBXYI9FhMUEpZNjzLry1az8pgikHV5KRwM5HQpFYya0MeShfhi4wjvClqMkVKk3dG+hapgCHpsTac5EnBBD5ulb9jDS0LoXCelUoIJDAkt3KUP05FZLRMgNCC1jIBws81mA5oWQVWuAW3aMZghVtAay+xZJU8qDIwCC2wocGvxfi+JraCLJNIaZmMPexMQLjdx2+CakM0bZyds5+L94ckugRxyY1tXscdx1OOTm08QThDd0ErGVRkkSCrWrwlbayFJbUGp0YPs9xr4xPk77Xn8CURyNy5UwrZDb90z8nutp7IwU5fRUKyymtxTHk7P+ycjDUCrxZz5tKHGPUaLFZNFis7BzR5fYyL4hhOf6OZthl1a5DAgGrP29/WE7HefMfXufnX3sJlx32Si179Ykae/9VDej79oGVvgcYn3/pafvr+H/KDd36H99c+DsDV/+Med/VxeOtrYeJjvPWT/9w9xs4Azb6CnEs+dCdva/wZ1/AsAK78x/8EOKDgpagzn3ke/n/czMMHEbzAfubAlMtlXve61833uRz66p+gK4kp+1jlAsmMzHm4StAZkhgP/LpAdVxivAk9ZJxhfYXfEAjtXLVEZsnKzo7Sa9s84MvpPrJIYMsyDwDLTyG3bCy4xSLtC1v0FNb0btTdcEpDbvPsXLiEp7oCfDNUJV5UJhnwyCJHFchC0U1MlpklmtKU7x13hgFJ6gbLQkMjBNjcjrjfgUxIRBD0Xa8+Mb9UiDBwxx8s01pRIh5wq3xZ6Kh2OnCchSySJFWZCz0t0hP4jQwdOatNK93vIjNdrrXOAZ9MwfhQmjTEAxIbeo7zrCSdJSUHHj2BajotjckUyZBHPCgJ6hJdDpCxu/BS264ldlJTCEMXcC7UE7/+8rI37PK5P7nsswf8+I/HzstC7b6MD6ZkkZ6lFKYEUnNctJWjg+0MyTaLVEpNKnwEhg6p38pX7B0AUQiMtcRk+PQ6CBJJJGCHNhgEi5UhEpKalHnwI6RW4wuFIqWGZkJLftkaQ6QCHTnaMiIHFeByWYxFaoHXNJgwd+CqWFgcYzseMso4ZvkOzl60jpXBJCv8KSLhVsibNuCuzgqunTiWu284ktRJHfHuFt37dLFoVd5qupN9v2Xx2m4B0MuDg8PJGBO6bk57kUu8z2oZobQoZThpaAtH+bNEQuALNQegqILSXJQ1SFQXqPQDnUf+rhCkGKaNx2RWcdLRTHDc2A4uGvo5TwrqlEUeVt1XSki0NTlwoe9zskT559jBcKS/fR/+en616uJLzyca/n2IK4cFeAH4/kN7P/5ffOn5nFNezkf+76fZeNXfAt8FTtjta954wl+z5CHbBSqPrH3tznzlfSfxoyVN1MVf7oKXg1mfP+pPDvox9wrAfOtb3+J5z3sevu/zrW99a7fb/vZv//a8nNghKc9zVCnoghkrehNar20cWBiULmG4qpwFZb6tCTyEdhSoINFkVR8rIJpIiSbdCpfqZJQygwk9jC9JhtxHYDy3GpZFAq/tJvjVbRlqpum6JkJgjek5fxmLtbrnPEYOaHLdia2V6awcoLnUJ62ASnpvs7NI4DWcKxoIGmMercVjDKyPCe/blgdD9lUh3C8M6/oNA4prVYCbQk9jLTbwsdJREoRxK30A0ZQzQlCJ6zRZ6QYvmRhMKDGBJBnwUIHEbziAkQwHOehxgWl+U5NUVeFP4ELjlALfxwa+A2ol4TorkbvGac3rWmAbX5BWPXwcyLFSYEquqxVOZcQjHjJZADCPl9pfF7LdAZf+bQ4GiFmoJ1hZEJlAJxJPGUpeypg/zYhqMSQzAuEAii8VEo9QWELb62Q7epLF4CbHBoPGYqylbg0bsmFSFBOmw5DsUBEZg1J3dR9uQi2Z1hlfmzmdq+56EpXNEtWGoKGRWpJW8vO0DsQkVUlnRJFWBc1VYCoaMsnq1Tt4xtJfcm71XiKRUpMJY0oT5oBhxswyKpuUZcKdy5ahNkRYBTPHguoIoh05NawwC9COmSATC9b9LIzN6b5ebnUvyMrQWWQh0mSpRylsc0JpC2UhKAtnEpNaZ87iodDWzAExxc+7ipDUOWA02Px6WSKhMQX1wcJTBjexypulLDzC/JgF8Ok/lsy9nXvPCSIUGkvdCBrmCcBQOYD111MznFOucOUXv8Zrn39o6Q9n/vajhei7opF98q2v5YbRt/PMJw/xxqv+dp+Oc94awb9++Tvd37+y76faPbc3fO8ILr4fnn7UX8Dmv97PPe1fferWkxk49aAeEthLAHPRRRexdetWlixZwkUXXbTL7YQQ6H4q0eOthHA2wNZNyGWSZ6TkWS8ytahWRnUrtEc8jBJ0FgeEk04IqToaHflY4TodxhdgQIcyt6G0ZGWv651vleg6lRkFyYDjCsvUaTvC8XbPMlmIbsfFBU3mgnvjgiptYRucO29NPamK8SBoWLwJi1UCo9x+vbZwQs7CHSy3dW6sCEgGVlD95RRMzkAR5lnoZMTc1auuvqawVs51MkI6K2pbDokXRY7fXLJ4dYjGU7zcYrO4FuGUAz4mkOhA0h7xnFWndEJRHTgxbBYJomlNtDVGhwo7qByQjMjtrQ14CnwPHQqCunM56yz2yEqCtOQc4/ymy5/x65q05tEZVt3VyOrmGJEa/Hp+jRfqCVt7A176tz1QIGah+/LELWGBVNKKfUxN4OfuVL4QdKwlwSJtQlkESMSjtBxSgOkK0RU+gIDQWk4PZ0jze5S21mk75kzeBcbCfekw/3rnr+FvCPFnLZXtxi3ieBAPCaqbLGlJkpahvdgNBs1VBgadbufXj72f1y+9GoCWCdmhB9A0iESTHTrknng5v2isZnN7gMwqjhibRC+RbNg4CokkFZAMScIZkbtugmhb/IZxuWh518jpQCXGc6HF7h9kAxo/ypDKcOzoDmqqQ2otDVJ8myGFINx3P6JuZbmO03W9PMoipqpirLKowYRlwQy+YM5n88hOT68LI3rPufVBWiahbnxmFgDMLuvrn7+KG9/9Epb91+0sft4JXMNdh+xcHpknAzsHL5d86E7OmPgYz/zND/Fn357iX7/85X0+VgFelpxzAduv+y7ZCX/NK1524X5pY47sPJOPnbWJ4/7q6ehz9vnlj6kGTl1xcA+Y114BGGPMTn9+wpUxrvsgBWQa2egAZeeNry2BschEE23XBNOKeDigvlKRRQHRpHa0Jm0QWHTYW/MxgURmTpCYVhV+U5OWpVthKrnOS9A0RJNODxLOasqb2qjx2Z4wPxfeiyhyNC9yW+T+7ks5onPEEDNHBaRVQThlSWoiNxaAsGnwmrpLbbOeoDPsJvvhrCYLJc0xRWvJIhb9IkRtGndZLv2uYlnWo9rJPqtlY90ylzbOv1IIdCVwwMBawhl3bBVrpzvRDrSITCOFJCtca2KDChzAEtqBv3jIAwvhTL5a5ktE7t6W1UAm7hxE5p63nqOlqcQSDwh06ECosI7KAA5IGV9gPfcZpFVBeZtzy0FJd43SBQDzeKh97b7sC3B55OsWOjELtbcVzLrugg49zLCkmQZ0rI8vBJFQRAJaVtMyGiVTQuF3J8DFZBjoUqDmUqUEPpKw6MyIfCHMWlIsdWORaNZlg3xyw3NgS4TQzizFaxmyUtGJdqL8tCzIKhCPunwsMRITRBlnrnqI1yy5luUqJhCCuolZxaxLtEcwoavc015GKFPOGH6IlcEkd7eXc8fMcuQqy8nDW/j+fSfCbIksAoRjFxSMAJF3X4wnSMu5MUvb5FEDTjsjqyk6k5RKCctLM9R1RCvXnC5SkkjMncY8sguzp5KPAD+REJxSfpiBZXUWVZscH26mNscE4NH71l3q39zuT2Y1ZaGoyZRh2dzrc/pVrNP/6t/4Pz+uceHHa4fsHD72n1/g7bxmj9t94+HPsfpv/4zTrnoaXPVlHis5cPt13+3+/K9f/g7sh2kAwM++9xyO/r0LHuPZPH5qn5ctrrjiCuI4ftTjSZJwxRVXzMtJHbLKJ6/IXJSeaaKJDGFcqFc87KErPjryyEqKpCbRJUFzmWRmjUdjRUB9ZUg87DsRfj4BtgrSqsIEAu07sT5CoFKbdw6c2D+c0Qys71B5sO7AS5z0aFq5xqQbailz/YuUjjI2UCVe5cCLTMFvWGaPdjk1WDdhDydiZKJzH3630gWue1Gca3mHQWQwc1wVO1DNuyp5F6jv2N2wSyHndmZyAwRbCmkvjUiqCh1IVFujOpmzT6546LILpNSRIosUWcX9KaYVmRsiuOuWVRSdYRd0lpZzqpcnyErKaZPycEphHYUPQGQGmeUGCgrKOzR+0xIP99xunI2ydYOmBa9lnW1o4HIRuvkIC7XHOpQhkgcLvMzX6x9Zh7L7siDgP7AVzlqiKReGKKVh22yNaV1G5Z2WUPgMyoByTlvuX71XQs7551b/5/7nC5UL2N1rCterCS24PRnjiulf4/33vYC771uBTFyYMuRjAjiw0HKdGEfVMphFCXY44YixSV5x/M94x9gPOMFvMiQ9RmWJNV6ZlV5ITQpGJJwZ7eCdi3/Cu5dcy4sHfsFvlNZzydDPeP6SW5nthNwxtYyolCATSIaKe7hjHFjpxsV4UNEelUwfB81lLhRa+y6uwISWwYEWRy0f5+KjfsEzB+7izNK6/PiPBi/7Wkr0KF/dxxAsVrOEfsZo1KQiY+QjjAJ2tp9HVk8XoygLi3kMXaJflfqj7x7ayfcP9Ud3Sh/rr4svPZ+NH7+B6+LKvB//FS+7cI/bXHzp+bt87rN8ej5P57Cvff5GveY1r2FmZuZRj9frdV7zmj0j18O9hOd1M09EkuLXE1Rs8RuWeFCSVj2s526u4YxGxtAZtbSWCTojgqQmaA8r2qMerSUeuiSRiVt1igcU8ZAkHnarX1ko8NqGaFoT1DXhZIw31UbONCHT4PtO/5LrXISSCCEQgY+Q0lG1PAcW0sVVtq0N0ZEgmjZE0xaZiG4IpEydN7/QFpnkE3wp8GKD0JbWIg+pbT5wuGvROmoY4SlEFDlnM+iBFc9zYK8f1CjVvXamHHRpAI5OJ8mqOX84ceBHZsZpizo618g4SpjQzuxAB9IZDqRulTCLegOIoxs4oBZNO261yOmLJvC6x/ZbDuQUeTzgbDuTmiStKcIZzeBDCbVNGUJb4iGPeMRH5yuAC3V41g++tvyQAqeFWqi9LZVCmniEfsqkrjJpTNfeV1uLQjyqC7CzKihMxT8PhYfCF4pIeEigZeHWeAW/aK3mB1tOYHymCtKBKMgT7n2nP3SmMpCVBVnFYioaIS3SNzx/2e28cOAXpFZyYzxK3WRkaDI0EklZ+ERCUe77V5OCipAMSs3Tyw9w6TE/4ezF6xgsdUiPiMnKLnw4y6m8OpI0lyriIUE84haivLbrlusQtC/QgcVaweKowRHBOEtUnZpM8RFzrJHnXO996L4A3e5WbFNaNqFpDR3rEyhNpJzex89VNHvat7am+2/OOQEd6+/Tef0q1vO/8M8cd8LTD+oxP3XryYDrvpy3RvDTb/3bo7YpuiGXfOhOXvLeF3LD6Nt541W7F+nvTxWUsq+87yR+52en7XSbr3/+ql2e369a7fPyRaHBeGRt3LiRwcHBeTmpQ1ZG91kVu0BHOdWgVPWZPSIkqDuRow58ZOZ0FMaHaFzkrW/rNBatnJeci86TiuccaTzn+qU6uK7ItEZ1NKqVuhTjZgeRZs7a2OTnAKC1E/Ab6xzGiio6ML5Hc2WETKG6SRONu85NNKFc18gXtMYCVGJRsTvvrCSIBwRe23VgsjII44CVSt127cUe0dgocvOO/Prkts3F//sr1+kUYEtXcrCSpzFbTxDXHH3Oa7kASRMoUDm4Cd019HMnGkexg6TmHNP8JgQNB7ZMILs0gxC3micMiLgAU+6zyCKnewmaltKkpjThOjwIKI2nLmDNE442ZhyNIQsFYV1jI9ntSi3UnusHX1t+UOyUHwtoma/uyQKVbKH2psIpjZEWvw7NyYiGtHxn65OJlqU8s/JLVnsqp4Lt/cS2oJcV/wcnYp80CT9ur+Y740/h1q3LSRMPYyRBmCIbHiqBYMb2OtPSaQE7I5AMQjpgECVNtdbhxMXb+I3KPaRIfpkuIRIp00bSsTGLlUdJKELhPcqCuBC4lzG0TMrTy/dTjx5mkd9g3ehiviefhP1lyXV92tBaJF0kQZ4pU9koclcygxWStCIwNSeoHwraVGTCiOoQCpfrUjiuFeWE+Pu+6CQRGAoqmUEB98TLkcKyNKxTERlmH6dK/TRAA9StYCI7dNSox0s9/aIXcfYnvsZrzz14UoVsw9vhlNfgrfoYX3nfSbsV0mcb3g68kLeccgfsu+Rlr+viS8/n67/2aKCyqzrvq5+Gv76Ca7/xvQN3Uodh7fW38rTTTnOr/0LwrGc9C68vBV5rzYMPPsj55++6tfW4KCFdgr2QWFKXAp9lhOstg9kw7aUBnapEh6LrSiY1hBOuAxAPuhDKZEAQThtkJvJVLkMWuQm51O514USMjDNkx4EV0Ulc1yXLQEpsphHKOppYETRpNDbRzr448B1gEAITeaRlQXm7IZpIMUFhEGCcULLcR88yhqQqaS0TeE0wgUW0oTThBras1Os86ADaKytUt05gs1wbVOhfCrOGwj7Z77dUlqQVFz7p3NVysKdclk4wmSDiFKEEoDCecPQtT9AZUvhNg9Ru5a00YZxBQmKQiaU96mE8ly8AbpUumNUu0TlJu45tMrOEdfeevKZxXZ7UAAE2P2UdKVQrQ0iBHvaJByRSO7MGol6g2kLtXR1IEHO4dVsKMLQAZBZqV+XXE0wQkUUe/rRED0um2yWumTqONcE4i+UUVRnOmXTvTr/Rv6qvrSFD0zIptyZVftJ8Cv/+0Ck02yFZojCpQrQVSTuksllSGrf4TSfel3kQc1jPqK9Sua2ywCQSKSxPG1xPWWTMmJDj/O2s9nRuDiAJhf8ojU7/+WprSHPa86DUjMg2teqd1MsB19WOJE1KyDQPxRR0GQJeB0oTBr9lCCcTvJJCh4ELLpaGp1Q2MOZNo61ACdsFS1BYRve0LPuqgVFC5oJ7Z422w3hcueVU2qnPpvYQEyZkRKaU+rDRIzUvj+y4PBJkRsIy6tX3+px+VWvzC/+cJZd+Fba8+KAd8+ufv6oLXnZX53zvJjYDK2954ICf01eueSY//L2PMvlPJx/wYz2ea68BTOE+dsstt3DeeedRrVa7zwVBwJo1a3jRi1407yd4UEtrCKM8UT7Xr2iDaHcINkzg1asES8q0ljgHMmEhnDJdzUY4a8jyu5wVThgvNF3KFkAwmSCTDFnvOOBSJN5nGtLUuYJlGViD1U6ob/vPTylsmrqhIwqxvkd7eQXjOatkYfM8kwxE6vafDITYvLvhtTSyKklqIFNBacIitEuzD2c0fguyksumCep5yGYUQpLknZfcQjnLqW1p3vXIc2eE9EHnrwOiKU1Wdh0Wr+NW12Sa0yciD5lovFZKZ3GE0Bav7bjRfkOTlRRpVeI3C/G+AyZZWfRASChIa4pgJgeAubFBIdp37moela2CcCJGJYZkwOlwVOLyCNKqMzJQidPBZCVJUhMEswsUssOhDjfw0l+Pt27MZ4NXH+pT+NUpC8FsigkF4YRHYzBk0gh+3grZ2LiA0xet5zmDd3JGOIUvZFfEvzNBeAFYCupZag3rM8UD6Rj/suVsJttl6o0SQhpMy0N0FOGEJJyCcMZpLWXm3CgLvCQy4wT8Q86GWIaaVxz9M55XvYNVnmQVKRKJ6loHyznnB67r0d8HUUJ26VYdm9CxLg9l2pQ5cniC24eGibQg8QV+w3X6vY5jJoTTGV4zw0qB9ZwJC1owXG5TUx061qduNRXivuObOTSyrtmBfTS42DP9y420m7NBHh4fRinDltaAe+87YZ30VwFWii5Q/+/aWrSFlgl2u4+Fguuet5aNTz2dD33wwAGYT916Mm855Q7e7h/dfWxvKVgf+dDx8McHHsAA+wVenv67z/uV6sLsNYD5wAc+AMCaNWt4yUteQhRFB+ykDllJkdsF5yn3uXWwNQLRiZHbEkrTDcLNZZIlebq8EhjpUpe9pkXkAZFebFEdi9fMUO0U2cptV7TLchHadLsF2N6xuqJ9a91AIwrA0DsvEQW9bTxFe1ShI+dmZjx3k/ZnHY0srvkuIEzkXvvaAZNo3ENYR9EC1zHy69rRszCkZYnwcrFlFEBDATrvwOTifa1dJ0ib7nuzyiCkOxeVWOcmowTJgNOhJFWJ8cr4zYzOqE9pmwNGKja0F3kuIyDNB1rcwFZoXwpQJBOnh3Ghlrnt9EynBwQzB6BkToUrbLDjRSHhZILxBO1FnnMdU7KbgeAZd82tEERTBhYoZPtcBdh4rJ2Y+QYt8y2+X6iF2lPJWCNthmp7+A1LaZOibQLMEs1MO+IHD5/AAyOLeXjJ7Zwaredk34VP+kI9SkcR24zYZqRYdmjJVl3jR/UnsakzxC+3Lcb3NVnbARcnerQkQwav5aiwWegySoxXjAPCUXihm6VVqiQs9WeoSUMoXGeosBjelUanADT94KCf2lW8gyHZ4ujqOLfUjkLXFUhHC/Y6eS5M5u77MjPoktcXWyCJM4/bWqtoRiFnltYxKHt2xhLFo6WKu++K9P/eO093EVI0NzSPxloI/QxtJAG9rBhj9V51zAqgWTjHdaykYZ6Ac6YDUO984Rf5mw88B4APffC/5n3/bznlDgCqM9cDe5d4f8mH7uRh2vzdh5fz5pl/BODt6+7kY0cdOO1JdsJf493zrr3aduS+ZwLOROvywd/vnuMTvfZZA/OqV73qQJzH4VEFcCnuvzsJjRRxgkwzopkGYSl0InpfUT9mAL9p8GcSt3rUyZDNOHfwMohMu5/z7BVMb9KPte44WkMYIJIUK50g3mb5ORTAxvN6+5ASU/LJSk5fIwykNeUyZ4yPTAwqNmQV5cTwmaU1FiC0ZWhdhlUwdZxHMmAR2vn0+7PONtmvS7KywiqJiQKkCyRw+qCCNlZcqELMr5TTR2WaaHub5hFlhAa/aQhnnM1xa6lPZ0QhtAMXncUBMvVd1whISxLpOyAhE4swohtKKTMHaNKSyAdksB5UtiSIyZnedZTumPGAJC1LgobFrzv7aOsJVMc4cBVI6GhUK0OmhqyskLHLjslKMqecLdT+1O4AyK7AzeHcadldPV66MAvdl4NbJlSYwENmlvIOg4oloGgFEXbAddbv3b6EX+54JksGGpyx+CEGVZu15XUYJH7uOtI0IXd3VjCoWvhC83AySiML+emONWwdH8ROBSQCVCzQpcJK3mJLGj0V0FrqKFLRFN0sMJlY50TpA76FTJBlkqYJ57wHbxcRkHvqZkgEkZCkGJrWbbvIbzB8xBSNqVGsB7ru6MVWCkrjbpGtWIArTFpULNg+VWP7UI1fr92Dj2FSG3zlrk2/FqcHanbdLdkZaDEYtLXENqNuDd/ZeBJZ7DHd9tHDgglTZqWdJSbNjRTUnNf2d3uK/RbApdjvhmwQtZArtldV6FDeEryK+sAq/njqHv5WVThr6IN854VvhX/ev/1e8B8n8d0X3NkV7T9v4mN878zTeHhtm+uet3a3r314bRuA9a0fAQenA7PknAv4i888yJ8+++/26XXjf3svvPzaA3RWO6+vvOXvuORTrz+ox4T9ADBaaz7xiU/wta99jYcffpgkmZvaPjk5OW8nd9Arp5DZOHEZKwWo6HveFr8LCZ3YuXRZy+BsK39c9ATt0AMe4AT3UvZoV10HL9kFJMSJM0pQ0lHJiu5GceMVogdiABOoHCRYdAhJRRI0DfGw67x47cz5/kcKHYpckyIQxjitSeqoZEHDoNo5PaHmKANZSRLXJLXiPRTvqV//og02yxBhAEnqro8fIBOddz/ywSUxeK2UqrZkZUf50iWPeNgjHpSO/qbBy1fiVMeiOhq/6a5RPOwj845O0LD4LUMWOVATbJzCmjxAUwhErLs0sPIOg9/IA0kz6/JnPAjqGn8mRTVTTMnDCAdsvGaK8ST+rCUVCwDmQNTjFajsrh4vIGahDl7NHFNmZLPrxITTFtVRWOmhS4o48AgqCVGQEvoZrdTnhh1rUNLw83AVrSwgUimtLGBJqc66mUWMlFoYK5iNI0aiFvWOAxtyxI3Buq0QnsW2FSgLRpDWLGkVhu+G6ibXfS70gMlwgIqB1C0SSWmZyirUjWSxMkjUbjNP9lRSCCIEY0qjZcba8jrGV1T59/tG8BuOBmw8pxO1Ht2uu5V5eHHJWS4LaZFY6rrEDllmsWzRsiktaymL1An6cze2/hDQogqAkhaBlbnrW4omzTU7dSvoWMV/N05mx4ZhCBwwsdZl3aR2hkGZj4t9Xal+3c0jHzcYJk3CuPZ5KF3MA+3F+/T386teN/3Hm3jg4s/C18e48OM10nf07I2LLsPTf/d5vIE3cdN/vImPpbsGFp+69WS++wLXeck+5eQP1/EBGuft4CMfOp7P7iF35YibSjy8ts3q8jPgIHU3tl/3XV6x5o3AngHMV953En/z1NMP/En11cZTp4nf9EF+Y8MK4HcO6rGL2mcA88EPfpB//Md/5O1vfzvvfe97+dM//VMeeughrrzySt7//vcfiHM8uJVlzkpZa3qUqXzC7gcueR7A6rwzk3ckGi0XzFhQvgqQUXRxlMQq5xiG37vsIkmhE+euZ9qJ9o2dmwIvhTsFIZ3BQNHtKJ7OIK04VxlhYeZIDwxUt7hBIi3L3BYY4lHB0P2axjKFVYq0CqpDV4tj/cL9S3XpBlYJpBDujIR0YMrzIEndeSjZA1q5uYOcbSFMBZE5epjIHF1LtTNEalyIZ1lhpQs1MwqiyQyvpTG+y2AxnkAYgQ6dFbXQFnyXn2MVBLOa0gMTiEYLayzWaIS1yGYbHQyhc7vOaDJ366l4qHw89loa1UyRSYYNFTLR6EihI8+dqy/JvH3+eizUPNU3hy+a8/uLpq48JOdxoOuzwasPShbMzrovyTtvXciCOYDVGRE0REA4k09sY0Nle4YXK1pTAWkloKNgeiyD0CB9jbWCdYnM6cNAIlk31CFtBGz2h0DAmUc/yFlD63jOYkNNtunYgNj4aASpVdw4vYb7JxcxNVElG8wQoaE1FRJNK6LtMTry8GKNjA1+3RKOK9IBixAWX+yeMgZ7b1Ps08upMcLwJH+GG7yW0y9aNzbJzCKKxTglkL4zoNGBo/0KA1miuH1iGTviKi9fdj0DfkzHpnPO0GAwOJocOApXimZSa5Rw2cqaHrlCCUHTWFIE2kp2mDLfnj6N/3f3qYhEODBlIUk8tqVDdMJNtGxCMerOpcm5jktqncW0RqOEILUaBdRkypBqMpHMf27IE7mue95aLvnQndhrfgo4StmbjxuZs8213/geX/lduPj7n4Vnnkf6kQto/Sw3kfj3nhakoI0BvP2ff9rbQQofePP1vO7sgMljP833X/qmnZ7LV953Eud876Z5emd7Vz+8/w959QfZrStafx15xw8B+LOD1H1ZecsQDwBrN/4PVC8/KMd8ZO3zDO3LX/4y//AP/8CFF17IZZddxiWXXMLRRx/NU57yFH7605/y5je/+UCc58EppdwEvfi5ny5VhDfO2V52t+92TIpJb5pCGDhQMFBBD0TEoyFpWeI3DEjXJrdS4Dc0wWQHNVF3NsqATVMwsu+Oq3r7RjknMly+C9YNBDJv6AjtHMQ6Q4LZI3yyClQ2WoKGJR4VXTpZ5rlwM6GhuUQh08CZDuR0rqzsaGNCW/fehARp3UhgrQNiIgdXqm84MRraHaKtLZpHVB0lW4BWAq/lQJaOHI3MaxmEtXgttyooM2dtnFUkQktUbFwIqJdbI5dyM4CGJlo/BfUmNjcXEEI404VOTG1DjBWR41cn7nOTgaPUCWOdbbW1WCEQmQFPghRkJUkwax71US/Uga9HgpZdPfdEBTMHqhaoY4emgoYlLQvSkoffspR2GGTq3MAG1rsFmXhQEUx7xCPOytjWMtdF0fm9N3FWXcI3CGk5ZvkOfnvRLRwbbGNEJlRkjy6VWMuMURwbbmPD8Cg/HDyB2x5agY0V8ZClsUyRhSWsgtp6l71lpevA2+GYSpQw4jVQwubOXmoXBLI9lxLSTfat7ArtlRBEMs2NbSCLIMg1h17LuA65xYUexwqvY4l2KGZHfdIBRTvzGZAdQqGp5eGfsTXE1uB3l/M0LavpWEvdKJo2JBKaWhECVmxmC/Ai2JANck3jBP7j3qegOwoCpyGSoSYIMm5rrEQKwzPL9zKqXBxlAWAKqhjQ7eq4/bvg0UhIOvlgIsUChWxfq+iKfAXgPz4BfIJrP1Ln9Wzm6TdZ/uGHH6DzzU/xgudtY9t3b+HyX05ypRzeJyH7B8tL4BZ47+UX0PjeWbukk133vLWs/vHBs8J+1jF/74It37fnbS/50J1M3N7gR1dWef+Xns5H/4+lJX9yQM7rgX/6I7aeN8Lq33Jg72NnHcurv3cPMD+TpvDl797rbfcZwGzdupUnP/nJAFSr1W6o5W/91m/xvvftxZU+nEsINxEvsmCKLkpuYdylg8k+UKM1ZBZ833VuCppVGGB9j3TVKPFo0BWgF6GSxi86DLjwxKEqwaISpQ2ziEYLkQlQApuZ3jG1dseA7rmIdkp5h6a5TJFF4LcgnHZ0MiugNG5JEhdOKbWlvMXSXC7xG5baRt09ryxy5yJTp5nRoRPdey2LnKo7l0klsUb3QB70UdwKmpnz0rfGoLZNUxGC5qoKOvSwAsIZ6VbdcpDkfjauK+NJkqpPWnUdI10RBE2372DWbV+ZSvEnW8ipBrbVyk0OXMBnQb3D8/DHW3hLQ1RsMb7TJIXb29hQYXyFDhVe7oYmUg0V3zm1NTJkKyUbDBeCLA9S7Q647G77JwqQOVBdmAXgcmgrmjD4nut2twYkUvuo2BmM+HXddQXz2lDe4dLnET5Z5BaPrAcYaFR8VCnjGUffx0WjN3N6OEEoJJFwFDLdvffCYiVY7Y2zOdjGYm+WleXj+MXECjbLEaZrCtkWBNOS0riHV09RSYDqgM0kndTj2unjiETK4vImwv1Mud8ZxUwJgbRwb2up26bkuuguWsCNB9YrmAbkAceGcFoSblckixVbZgZ4OB1luTfTBVbFSJRi0VZjgI61dKygLDQSixIWJZwny6Tx2KErbEhHmdZltiRD/PfG45ipl/n/2TvzeDmqMu9/zzm19XbX7BuEzSCggKCyCIgzIIMyiqOMIy7jzKsO4Ab6vuroOA7vKK8zoqAyOqPouOGKu2yKgrsGRCSA7EnIcpPc3KXXWs457x+nqrsTEkhIQoJzn3z6k3u7q6tOVd+uqt95fovZGBFNSJJBg5EORBoj+P2mBTzUGGHhkgmeLtZTkYKOzTDWEgoPJQramsFYixSiC2Tq1jBlfOq6RFnFzNSj18sfg8oF8Jxf9EDEa54D8GE+CfzqO1/hTYeMsGD5BcBf7PS2/Xf8gA+lUP7WGv4hXPeYupg9Xa98xZndzs9jjaU4Zn4wDcDbviT4l3N373he9PcvYHxS81fvORzG4bq3DTPrwrfxjom7uXGj4Au7aTvxF/4fnLNjfaedPkMtWrSIdevWsWTJEg488ECuv/56jj76aH77298ShuFjr2AfLuH7TiMhXT6Jo2zRo42B01gU3RYjt7BbRoouiLHliM7CAVpzfcJp5+oVTmu8hnaJ9yXXfXG6C42Vgs6wIhkYpna/h9owhU0SRBj2Ucv6tDLgHLSSlNJYm6RW6WpC0pIDL9GEyUGJo1LVFylkLlnynCaNMA/TjId951ZTUW7WsAxey1KaMLk9sXJjkLkbmcw7VJKee1rRhRHS6VG0Rm2cotZOaS8eoDXHozOiCOq9C1xaccJW7bt8FqscnUxmUN7oQjlVI3Yhn5nuhnxakwNMrXvhnn0ObmK6SfWhgPb8EmnVucX5ad/nCFjfEQKsJ10nxoIJJHo0cgYKMwyyfbq+MfyiHQYx7/rnK/ZpJ7JdATG7AlRmaGR7rmRmsb5AJi4sUgfg1wtXROG8WLTFS9xlx286IXsWSTrCdeizMniljKcsGOOlo7/hYH+iq/NIrUbnVOOedbG7sZ6rJH9Wfph53hSzgzpfmjqGRAQYq0hr1nXucdrJLBJ44z6dis/tmxZQUinPilZTlRZ2MlOlsA52P+djy7sVd6YVfrb6AHeOD8CfdtcNocF6TvfixPuWeFDSniXpjAhMYElbASaTXPng8dwxZyH/MOsmZitLlK9bY7v0rnI+71ToUDpWM2XgJ62D+Mb6o3lofAQpLbNrDRKtmJysENxforTeohJLY4kk9izWCFpaksQ+9VbE8tGl1GSbp/hTdKwmEgKfvI2VjyHFdq9DibU0jSTJYdYD9VmP46/of1btaqL8b849DpY/Y5fW4ToXB24TODyRIv5Vx7R3CLxAz0nt6xfD6aecxnU/uf4Ry5TNiTvVlZk6+wz++0cLmf3nZ7Pxhqu5/j/v5mkvWshVeZ/i9m+tYfNXLmMz16F4KYesPpF3vOUXvPYbu9aJOdf+iM/s4LI7fYv24he/mB/96Ec861nP4o1vfCPnnnsun/70p1m1ahVvfetbd3Z1+1Yp2euCCdkLbjR9N+c2p1ORdyRs7iJWtPJzalVr/yGysiScNs7Cd1DgtQVh6gT2acmBIx05nYfqGMJp105vLK1SNaA2T3dF/b0xqq62RnQSbClEthIq6306oz7GE0STLqyysUC5mayWRaUOFLgsFnfh7Iy4MYjMEE6ktOY6WloWuo5NWhPM+n3TdZlM3xgKW2drnC7I5nbQ2jiKmVTOPU0KRKYRjRal+1NKqzyywRImUl3A5LULPUtB7XKZOf5kBznZcIClAHA5RcwdZ5PrcazbVv67NZm7KHoe3oYpgopPc37g3MsGI2TS66QZP89e9p3jWhFcKYw7JpV1zT3xVzZTu7F2BsTsydodAv5+ILIjYGZ3dVhmQMyeqSwSBALCusuuSiuCoOE6LSolt7Z3gcOF26JMLLbsrgNWQHO/jLlDDaSw1E2JlZnm6UGDstgyU8QlvjsKViqcON0AC7w6R5UfYu3SQX67fgkTawfJZqXEQz7RZmeyolJLMCFozQpoB5qfr13KiQOLIVrNAi9EPYoeZltViOaLzgQ4YPVQMp/OqhoqdtdCr+WuSSpxIcY6EjkTQNBYJOjMy5wZgQRSBQbG1g3x3YeHue/g2cwt1Tl56I8cET5MWWQoYWgZj6b1WZ8NsTGrsSoe5eHOEK0sYEOrxuZmmSyTpI2A1uoa0QbJ6BpLeUOKTBz7QCWSVt3pQ01gSeYI1KDmZxsOpKY6RJU/sthzpj2pNXRsRiQkush8AWILiZXUrU/dRPymvpRV60e2fcBmapfrJ+c5a7JVb3kGL//6zndftq7q1C8Znf8uft733MsvXgHLgSfoVPkX/qcBthjDtuqEa5bz+u/+GoBV325z3Weu5z0P17j/02/lNdfcvdO5MJ1rm1x1xtlcKeGSFfvBR27hspPrfImFj1j2k/OfxVXvOYyf7Ma5wS+I5+3wsjsNYC655JLuz+eccw5Llizhl7/8JQcffDAvfOELd3Z1+1Z5CjppTg3LtnwtyZ8X0r0W+L2baXDi/bzS+UN0RhXRhM499l2ifGljikgcuIgHJQOrMvxG5trnyoEYmRnaUUBrSYVqvYVIUrdua91ET+EAlmfHiMzDCoG/uY3ILPX9QkDgtwydWYr2HEtpTJBZB16EhmhSI1PL9ICH8QTJoOfcXixoP7fZTJ3mRI1Nuv0saAG5yYADd7IHZApxf0E7yDN1bJ5vI2L3vDc+CUAYBO54F+Csr7PSM1HoK2OxWdrTJXme27axYIrPKh9jlmGNRWhNeN8GZDKLZMAnK7vMANVxIZkycxaeWdV3s6ICVGpQjQTZStA5PXKmtqx7T7qKg29++W5Z187Sx7a3jh0BMft6F6a/nmj61+MFMcnbf78HRvOnUVMHKIY2uK54da1Gh04YrpK86yBdVhXg7O5LjlYcDwiyCmQVGJhfJ049Vk4M4y/IiHLXrUJ74eVOYb2wRoGxAoOgZQ0KODLcQDSynLb2+enaQQCm91MgAjep1bYIK/DHfNJKQpoqfrD5CKJZKSNqY3cbj1bbykPR1nY7IB1r+er6YzEVjUw9SmO2G7DptQ1WOC2mFU7cLyyolkRXnMZTdNxkmw0NIpbcv2EWD6kR7to8t+vO1koDGnFAqhXGCKIgRQropB6eNHQSnyx1r4VrAobvNkQTKTI1ziWzHmO9ClTBbzgL/7QskE1FGnlsmK7yjfRINi+o8IrhXzFPaUddA3whccbYBudVZtFYJrMyNzeW8cM/LiOq1HffH9dMdevlF6/gzy9ezE+ff81uAS/gdDEXtX4M9LofV73nMF5+8Qp+/vDFnLBoz8sl7vjlBTvUkfr5Gcfwj30GA7POfwr/AfzDO9dyyUeO4/LBlbxj4u4t3nPVX/2Au170AX61/L8BeO/bvsh1P7me0085jVvOWcnK1tN45rfhaj673Q7Q017UAzT/+MKnccnFv+Q8LqDDZTz4+RZLX1nubW8HbZanb1tDdMiO64x2mSRz3HHHcdxxx+3qavaJ0rMG8NK6m+3XeksL4/6bZugFTeY397bQpgxUaC2IkBl0hpSbaQOi8Qx/cwukpLLOo7xB4DVSVDNBJBmmGmF8ifUlquNmxtJ5gwQPxtgCPBmL1WkeYOm5fJkkRRgDSqLaKV47oD1LYqXA+BBtFM7OOHMXhbQq8DoSXxuG7k/JypIslPgtg1WuO9OapdABzPrNhNvfAqyAc18DBxwK4KKUAyBS9ICe5/V1bSxWmL6gUIHtxGAdWNmiq2ItSOmeK7bdH/BZXCSL7fQbLWjdy/IRBqtBkOI/tAE1PEA2FJEMBw4sxpqs5GGl61IJY/EbKWq6g6i3nAmD2QpEzdSTvvYEiPlTsU8uwMiOAJkZ4PLYlYwYsrqguiZz3V2L6/R2nNOiCQRe04UH60DSGZKkFUFrgSWbnaCiDFIPKQ0vO+h3HBFsoCYFEp+WSZFCoND4KOe6ZY2jMVmLLwSREN0U+DmqwaJoEjyD8A3tORavLQmmHYVMJlBZLZiqligtaHD/1Cx+GR3Es8L1VB9DyV/Qxkx+bSgsi+vGuXClwK3xPFbcvRjZkYgMypsM0XiKyJxGsZhAM76gM+wMDPyGe96UDTZ03X1VztDSI409klTS3lxiQ2cUWzKgc52pFohE0IrcMS8spVVT4rUE1Q2CaNwQNJw7po6c66VMNf5UQmt2GaMEfsMSTDrdZnuqRHuOT6cScLN0nZijyg+xvzdBWfSofJFQtKxmTAc8lM7iYyufy5rxQbxA09o4E2S5rXrelR/kR6/dscDG/jrhmuX863dvh3W/5s1fv+Ox37CTtV/5uSzZSpNTZNS8/OLDmcMPdvs2AS57kwukXLX01B1+z79+93ZGTjudS4aX8Y6Ju5n64ICj0+V1yfAy3veVeVxyznpufOl6GHoBbz/lWYwe8RXeecQQ8Co45TSecceFXHTea+kHbjtSPz/jGJ6T//x6LuNXy/+bpa/c8VyYO7z73A/HwM/P2HEa4Q4BmO985zs7vMKzzjprh5fd10qHHkQhNHOBSEEhK7oLxQ218rcMlixqoEp7ySA2p5PFw5JwwlDalOE1M6xSoASq4zQvMtGIJH++WJ8BlRgwlqzq41dKDqAUHRgjQeV2zV6uick0oh0jtaE05qHDiOn9JTIHT1Y4ZpcLu7QkVYEXg2hbtC9Iaq5tD2BKTvsxfE8HOTHt6FhSYpO4B0oKo4M85HOLY1W4t4Fbrhu6Kdx68oBOJ7rvE94LgU2No58Z48BD7vImlMTGyZZdlwLYCIlNUkTg92h/fWXzTpXcNEEw6eGPhdhyiJUSGWtEZpDtFNGOe12gLMvtr2dE/DP16PWnAl7667G6MTPgZcdKzOvQaZQpjbtJF9VxdOJ0wEPFLp9Kxtp1vkPpjFPKYJUlrMYoZbBW8PR5azmx+kdGlMLk4EBj8fO8EW0tEokvcKJ1nJAcIBFO2D5LpTyz+gBfCZ+BtQKZum2p2HVg/JbL3+rMUrRrEWmquLZzKGcM3M6IineIRlZQx4ruUCWnVf26M5dLH/hz8AxWSBe4XJJ4uY1+LiFx+V+JQWiFdW0MbGiR1dRlP2uBjhWio6BZ6Bddp0ROFzpInGubARUrsopT5KimojTmaHqqY0mrgqSm8Dqqu22rIsJNMV5s6cwSBHUIpzVZ2wGcdFBipGLD+ABfbj+Da8tPZVFtkoXRJMfX7mNSl2mZkM1ZhZs3HkQn89g4UaNUSpjeUCVcPTMhtq0amfcvO6z12Fap217Ki74u+danvrebR7Z9Tc5V7zmMNwevBuDBU/+LpTf+r922zWd+4ZcALD9j1WPSx/rrhrWn8w7u5pLhZZw5uwaMsHz8KwieDcB7z1kPwKlfmwfALYDg2Xzg5l9xzOg521nrztchq0/k5ZftnAPa4dlB3Z93Zp93CMC86EUv2uL3wvFp6+fABV0+Wcv6Ehv4iDjp3kyDdjfIBVDpD7JEd7sDIiwRLxoirSkXnGidQF4Ym9tCauI5JZd+7DnrZJEZROhjIs9lxOBm6NyNuQuSNJUINd3ohVoqCXGGDUO33Sxzov5MIwCvHlNer5CpR1p2ScuF24sO3XqND3GqSEuSLBLoQNCaq7ACyhsNo39o4q3e1NX6dGliRUciz38pujA2MQ6EFMfH93qgL8269tSWnIpmJAR5jox1FxjRDwSL7eaaGmt0r3vTX9o4LZAQve0UgKoQ9uedGisV6AQ6HWQjvzpKCaZHA7RZQc8zOQ1txkt5T9buoI/1r+uJFvT/KYKXomZAyq6XMYLObIN5QEDkKFAqdlbwnSFFeaPFhAodSbKSIBmA9kINtZRylCCEJck8GlnIj+tPxRd/AOBgr0FZFsGNsqt/cWw0081eSXFCcwP4CA72NzI42GJysoIOLe254LUclS2acBbzpQ2SrBKQzbPE0vL5jceTzPo1R4eT1GTwqHSyQrSfKwuJMdwWD3HJvc+n3g4hkai2oLRBYKUlqToaL8IBCKwbS1oVxCMaFMjhGJMoTFu5WTgrurFsSPewRWYOoFKB6gh0ZDG+xXq9+5Rw0mI8B9q0Y1ojjKMRC+s0S6riUdqQ0JjvuiUunsASTFqMJ9ElSTysaGWS5kSJNXoUlOWawaeSJJ4bjLDolpcbAAnSqZBwgyIa2+r6NVMAjP/XLVTPeaTo/NHqhGuWc8nFT0EfeTsXL6rDfYO7fVxvmvoU9uLDgV03F9i6XvXJi/nc6x9JQ7vzklegr/8a//jCp+0QoCuA3y2HX8q86zZzw+mn84y1+3HFGz7LfuXndsHLo9VV7zmM1+caolOueO3O78xWddF5dwBDnP7lj2Kvfgn//jeWq4Cjnn4Jdx20js43Lusu+/Jrrkbd9lJ+c+5xXL10+3S17dUOqfOMMd3H9ddfz5FHHsk111zD5OQkk5OTXHPNNRx99NFce+21O7Xxfa2EsZjBspvp7ztJb3FzLeQWrwGIKELPGyYe8gkmM+cs03buXjI1WCWIRyOysiKtuIuV19JYT5INhlglscI5YFnP5ZIInTuZzC71hPue5372g66w3mba3YQbBxbkdItw3TTV1W3KGzO8tkUmrvsC7gIqE0tagfZsSWueo5pV1mvmLG8y/Jv1eOsm3H4Vuh5t8k6U6DMr6OlihBC9rkhB5yrARhhC4DvwU1C8wNHijM7BUS9nRng5VU/28RZMse99HZZiLEpt2XUpxuSpHsXMWEiTntC/E2MzjW21sWmKNaZrOuDGOQNc9nTtTvDyeGpXwMe7/vmKP2nwMlO7p0yisHNippZK0rJz2VKxJpjOCBpO85LWFJ0h5/yYVS3eaIfqYJs49Wh1QuYN1Dm4uoH5wSSpVSxWDWrS66bJF45k/VW4b4FLnfcRTmCO4Kg5a7CxQlcNOnDUYpnhAoATQzhlGXgA5IYQnSluHVvEp9afxPJ4hM06JrYZ2potHoXrmBICJQQtm3JTZ4gLV5/JFWtOZbJRot0Mu3cbwbTFb7s8MGFwgZE1BwyacySdWRZb0VjPYFKJUAZ8J1JUtZRoQZOjj7qf5z/r97zquJ/z58f9nnlP3QCzY4xv8y4MyFgQbvCIxjyssqjExQwY3+1zof9Rcf5I3DVMtVIGVuUW+5nFaxoqGzTVhw2Vhy3RRokc910nSFm8UoZShoFqGz/IGB5o4VfSPDNN4E0rB9zGZ64r26r/+1LLaZs/yb3nHbzD7zn7wdegj/xa9/c90X0BOGb0HFYd097ma5cl/82nrt/Ma154FQ+e+l+7vK2/eNq53LD2dP7xhU/b4fdccvFTugYG608f4bqfXM/9f/82nv68O3jdVy7jpKXnM3TcRzlp6fls+vgfWdn6MYel5/Klk+t86eQ6h6Xncp03Tfyff8UpV7x2t4Z1XvfXb+SgL1zP1AcH+P68Czjsr/+Ru170AR78fIujnn4JV735Pzjr2jG+vvyCxwVe4HFoYN7ylrfwiU98ghNPPLH73Omnn065XOZ1r3sdd911104PYp8pA+lAgJzwoRPnN7S4G+cs6+lg+rowQknM6ADt+WXCiRSZaEyg8jwVL0+RN6iO68YI49rRWcXL3Wec1WZ/K11YUO3M2RuP5m4zhW0xqgcGlHLWzzkAENJRsUSrg9KGUitBdSp0Rj0SIfFb1gElH+IRgdAwdJ+mdl8DWW+5EM1ce7KFcN/ztgQJqgcubJY5+hbkY5LdMeF52FoZEwXogQDtOwDiNTOENshGgujEiGa76yRmi0kq2QeWirydYhuiZ1/d1cAI2xuvFL1uSn9ZJ7LsApVu5o/tBXIW68/zbGZq27X+1G8z78a/3On37W3g0l+PpxOzJ4HLS1/3/O2+9rX/fHJPDv1PrKCSoEKBDiGtuHOZip3bodfUbmJr2CMedp3yZDRjqBzTaEZksWLu3CnizGNhOMn+wUaOCKbx++YcHUjpgRhfqLwLQw5uwAhD3WRsNopJE2EQiFBDIl33wgPVsMg47zTUDX4bjPKYCkPSKGVtY5BvjB/D8tI4J1bu4alBnbLodYCK0tZyRyr4rw2ncdfEXDZMVvF9TTwRQe6yZr3cIKbl6HQIiKuK5gJHXc7KFl2yyLoHxp2Bq3Mb1GbHLK5NclBlI4dE6zgkGMMXmkho6iZgRW0h6RLF7c3F3D89i6k4YuPmGmJlhOwIZCKoL3aZO37DdqlzwubW/R5YKbFKILKAYDrD+D7WE/jTGdYTyFRhJQR1lX+egrSiMEGA8cq0IwfIpipV93kY8OvCAae6xW8+edkpe7JWfOEU5vmSg7+9doeW/8l5V3ILl3Z/35PJ83++4DqeefFAV9+xdb1hySVky0aAx08hO/OfS3z/n7cNkraufqrdCdcs5z/KCwA4aen5AJz9gsvBMcW4+x3u/6etdwL+s//98nwtg3xi1Tu66zzgdc/gn+Z/iw+NHs4zL34KHO/MJvrzdh5vXRG8hit4Dbd/aw0Av7rwc/zHER/lFUvW8sW/XMArvr2WywDO+O/Htf6dBjD3338/Q0NDj3h+cHCQhx566HENYp+p4qa4uCEvLJQlvZv2nKLU7cpEIe1FNWTqAhkBVCvFeo4qZnyByPKuSp77YjxBVpYYJVGJJdyc5sJy18aXcYau+OjA8YUJ/Lyj0deV8LweeLHWdUEKSpRUiDRDpBmBAX/aI6sG6EjlJ2tBda0lmEjwx6Yc/ap7E59bFhdgoOsuJno39Sr/OcvccZDK6VQ8DxEEpEtmUV8SbUGZMMq16XUAKvbJSoCooDoQ1g3BZEa4ajOi0co/CgeAunTFfmDheT3Bf383TOX0O+jR3YrnimuH7oGcbnaNUltRA3nkzzP1iNpZELMvgZeiCkDyWEBmTwCXRwMsj7bsDJh5clQQZlgZkFYtZrNAZpas5M4pQueAYVrTHpW05llkJSXVilq1DVU4YHCc+dEUI16D2areTZuX2yBO9IOYQosS24zNxtC0HqmVDIiYkkrBCKxw17W0IgnqlnhYkQwodJDrRFJLNKZoDYV0Oj4bJmp4/lJ+PHQITxncwKHldewXbGRItaibiPXpEPd35rAuHuSW9YtoTJah6ZFpKK93N/66ZPGnBX5b47Xc+TatKUcZGzWYkru2Wt8gUokNNacefjcvHL2NI4L1jEiJn5+TXbaMQOIm+I4KV6OtZar6R+pzBHcns9msq/z84IP54R8OpXpPgMhc/owOBZ1R8DqCaJOzkTa+IKm6icS4FhA0DElVIDOJpwTGl44OngeRWinxOha/5fQ22nfr9ZvueqcDF0aKhXDKEk04GvlMbbs+9/J38tONr3nMm+afHl/n/570WezV1/PMh2s0v/pvRLfuXnpXUZ1rm0y+65PwVWDR9pfz7v7fvHTWSq6a9ZUtnl/+wf045n+vfNRtvPIVZzJyL7zyFTDKRE6/2n4n4pKLn8L//fJH3S9Tv2TTZ/7Ix2edzI/esd23PGb96B0v4WQ+zxuW3AG44/+vP/wH+DN2SZvUX/2OZa94IP9/BwHro9VOA5hjjz2WCy+8kM9//vPMnetSdcfGxnj729/OM5/5zF0e0N4s1yGx2MBDFDfI1rib30JfYZyQ32qD8BSmWnZZK40UmTm6kvWVAwvSuczIzGI9ibCuTW07OZDxi0BKgWpnyCQX97dSRGpgKERYejqNLHOdmDxzxZJ2gYdVCqG1G1fenQGQaeYcyjYJbOioZ6LoOmS6myljC3vkoro0KtPrQHV1QEXei+iCFzwPM3+E5uIyzbmOmjbwgLPJrKxNSYY8d3y14xqDc5iJJjVJTdIZCpAL56ESy+DdU8jxadcJStO+D6jvwyo6YlrnvGPZAyGF2UC/Q1nxOUJOSQsdyCnAUf/+F+5qyUxy8u6qfRG89Fc/QCnAzJ7qtuwMcHms98+AmX23Ij9DlWImbA2ZWPyGcdlfoSScTDG5SYgwFpm5bkOWSbQOGKq28KRmcbSZA4INVETmhPtiy46HRm+Rt1LoUFI0dWvoWNd52ZgNMK6r/GrdftjMmbZY35IMgjCSZAi8huvOA5TXW4Jp6NR9TC1FdxTUEjY2KmxqLOVmcyDgTpuB506sk+NVRFshYkE4LdGBJdokGLk7zbUtEpW47pPXStElj9YcRWu+RVcNBMbRxbSkOmea1x/yM86u3kVZKqqiTIambhJSa4GMmvScaUGu+fGEYI7ymIVlrhpnTG9ksT/Ooc9ex3VLn8q9KxbiT0nSKqSDBhkLjCcZeMhFG7TmOzBSXu9iDXSYZ6JVPYS1pBWF0A7sGF9gE+uAqHYW0F7HdrU0wjiKGgb8lrOKJttSNzxTrj712i8z+NVDHCXsF4++7HN+UeP0N32Us//9cvzbjmJoD4EXgOj5FTpA9P79d2k9r3zFmXz+i9/v/n7yh09lPy7m5A+fys/POOwxQcLLL16Bet3HMXd/Ht4JLz5+Te/F4y/nR7xkl8ZXVH9X5mfhNOeOnQdcyb+ed+Vu0cbsidppAHPllVfy4he/mCVLlrB48WIAVq9ezcEHH8y3vvWt3T2+J7byC4EVAun7uS4ip2z12wZDfnMcYMo+Knb0MKArxtehE22mVYXXMai2u3hZAcFEgmxn2FBhlUSH7ibbBMo5k1nrQIsF1coeqUHJbK+D0F9K5dkrxt3rF/bDGQ7YpFlvP7XuitSFzClZ/TSxftpWZnrgRUgHXor1SIGtlmkfOEp9kU9pwvGodVgEt4FfT1CdjHg0pDOkSGpulq/2cOYyAJTA61jimiQelrRnDzNyV5novg3OqKAIsLQmBxt94/G93n4KL++qqNyuObdUxrr9L7otit5nWjilbb3PfSBwpv5n1d6iic3Un1ZlWhJIQzag6Yx6qERRHsvAF4jMnddMUGgKQSp3HnrKnA2UvYQjaw9zRLSaAREzKDVlEXRT7QuNi7aW1Go6uYVx1EfrioTAl5r1WrExq/FwMkKjFTrthgV8Q1YxyFSSDDiHMBM4mjEI/CYM/17SGY3wGyCsT1aqkAWum2I8R5FqRRavJZj/QD6mQBA0NZ0hidcxTiRvLH7TvW6VwCpJVlJ0RgTpkEaUMrAC6RueedCDvGn+D1nktUmButFUlcu8GZQRqdU5fU1sYSigrSFDuxBNBEu9iKVewsH+7RwQbuAnQ8v49i1HUX7IJxmx+PV8ki8DlYBMIJhyelCZGLLQdzQ3nLkA1nXNhAGvbbqTky4c2S2XDgaOeZFANGGQ2uLXNaqdoWe0lduss1b+AzeffR6feu5dsAOn3gPPrvG8t3yD8ecftcfH9uGfzeat73qIE164Jcj4yXlX8oGTmlz312/k5Rev4Kr37MfXNm315rMgW/ZBwHVpsmUf5JWvOJOfn3FY7rTl1vdYHY6r3nMY577uPMbXvZ//+MACTuL83beD26kT4wHesOQS7j3vYA6+Yt/Ve+40gDnooIO4/fbbueGGG7j7bsetO/TQQ/mzP/uzLcIcn4zldCgCE3kopSBJcuqUcPknxoLMXbTIOxe+QofKgZ7UnaDSAY94QJGVXChXeaNFpm7WBgti2jiQoi0mzO2UjaOgidRdiGzgud+N7XWCcktgUhek2aV9CQlxjO0LubT9VKksQ/h+L08Gtui2WKOdyL2fglVQtvpv5AsNCbjllIJahamj5pBWJNX1LpQzqfr4dUdRsBKS4RChLUlVkgwKVMd26WUY6/jgntPklDc5mkVrrk9Wnk/1jjFsvZF3W+jZNOcdk64Gx9jeZwRbuKSh8i6RkO7YFceluPgV+1qYAqQZVmtsNyBzpmZq12sGvPzPqpKf0oxLCCOIZxniUcB6rus86COM7dKEdQhKGeYPT3PM8EqGvSZHRKsZlW0GpWZIeoTC6wrmuzQyYdw8DKJrnQwuIR6csL4mOwypFptkDZ0n2iOARDpb56rFlAxpflkTBjpzLXaTpDbh3Lu8FgRNQ1qW6AB05PShKnWAx28Z/KbBek4or9oaoXthwa05LizZ69g8d8sBGR3hwilz965lC8Z41dxfUJMJa3VIJDT7eYVJgKMzh3lY8rbc0CQSndtMT5kOHevc2SKRsqy0jk2HV/m5PgSvrpCpuz4hIGg4BzYvdq6hUjtqWVp22hws+E2DMHkcgbWo1CBSR/nGOBdTmRpkJpEZhJsde0DGGtVOe9fnmdqibhz+W+Y/9y6O+sbNbPzyR5n93Lv4wtzt3zRP/vKN/GZNjQP38LhGr303HwPW3PxO/pXbedul9zC64DoAPkCTt564kbc+/E88f9H2u0De3f8b3vO/H/Hz1nXMpfew/MJDHnU8p23+JJXj9zx4KeoTq97Bj4BjDnLdl8ca396oxxVkKYTgtNNO47TTTtvd49mrJeMMJZ24sgtcipl/pRx9zF0tutoJoV2Kr46cxWJrtofxIJp0XFmRWIwnSKvKiQFzRzK/kSFTjWokWCWRcYYp+Q7AWHdR0JEimOj0LJT7s1aK3/vNBaA33n46mOf1qFi2r3PTtRz2ejf3BcApwikhD/XUvRv8wjq6XKJ+2GxacxTD9yYATO/nk9QE1TXGtdPzdGlwYkmR22ZGmw06FEhVcMJdToJfTwk3OzDZWBwyfsJ8hm+bRKzfmI9L9qhg0LNQzsdtrYVOjFDKaYM8zwESaxHC9pZJNaI/s6afYiYFAoWYyYF51Ho8Iv7/ibUngcvW656hlO07NdEsISJ3XrYC5PwOrU1lyhtt3qEXZKFAhwITaTxhkcIy7DVZ7I+zv9egJiShcDoPg8tY6dfA9PJfthT3O3m/wyoVkTHbm2ZtOoxQzhnLlPJuiG/JSgZRyrAlgdVukg0BaccnGXS/G8/Rf6PNhVbQaSmTqrvpx1qsAhn3utl+XSO1Ia14dEYEwVRulSycXiQeVMRzNHhuLHPnTPG6hTexwJtiUGrmCsOgjLpdJ9g2aNnitRzgKASpTUhzCevR4WbmqWmGVIuznvc7Lrn7+TTuGHHmCevcOoOmJdqUumBN5cbqtW23g1QwKNznKbpzeSbwsJ5ElxRJzemIgroLycyqfu4uKtEzGpht1uhJ90CuZTpt8yf5HSdtd9kTrlnOmZeexYF/9+EnZGzve++fA8s56hs3MzrSZPZz72Ljjw/dYpmf7AaK1WOBg3PTWUR3XMh/HvZmNn38j93nf7X8v/ngT6bYfOU0I68d2KUxPFqFh07vsXXvSu0QgLn88st53eteRxRFXH755Y+67Jve9KbdMrC9UelQiExwN+i+B216KfRFvgnkNKO+i4g2EEM87JFFdLsJkLemM4tRgqyikKlFRxK/7nzlJTjxv7aIVKMrAQhBWvWcHqYRd929uroUa5w9cQFeYEsalOijexndo0uBy0fJkp79sLE9wXtfB6LQ+hSdDJskCHL6lbWIKKKzdBaTB3pEmx3gioe8bqKyVaA9QVoGXZKEE277uiSgk3OMcxGpSlyIWrg57XaibOgRTmoa8z3GThxm3k0aNk327JmL7kqxD8X+YhC+08B0jRZyfVCxrCi6R31ltcmpajmw2RZFb6a2qMfrRLYnakczYP7U66Wve/4MiNlHqlpKkCXJpihE1X2ENGQl13kwXq6REM7YxPoWKS2+1ExkFWZ705SF6HYbDIbUuv/D/Ca+Z6EsQZiu/iV/pltloYlEihQGPRUgfNvrwuRNdRsrl2Rv+1ZpIRkgv5Y5E4JoQ9vZ/geStOyhwt55MoskvsmNaHI2gpWOeaCS7jDxm4a0KmnPFlBLQQuCcsJLF/+Oo8MNREKgkFRluAV42ZEqAI6xlrLwQabUjSWxlgVexiLvYVJrWXnAcq4YPwWMoDPsbp6DafBLiqTmumJG4eyeje0eF5k6CGmLya18Ms8EEh1I0orEazuGhQkUWclpX5OaQiczFLLtlbn788B+3d+3pwuJ79pzN+n9dcF9R/Hyw8Pu74eddTaHsZEV37gZuBmAFd/JXzwcPnTF4bkAf9dr627MMZfew4rvnM0t56zkHXctgFOfy9tu/PFu2daO1N//1ZV8fsVfccyl9wD7VidmhwDMhz/8YV7xilcQRREf/vD2ka8Q4kkNYIwUTmyvLaYcISamtlwg7bupz0/aIjPYfJYtqUhUAt60O1GFUxqZWKS2jlo16CEzgzeRgnDOJtbLOxCRh+pkjlZQUljPZcWIZtvRwaTogZhC4yGL/0VPq9PfRQF3c+/32SCnSX7D36OI2ZyPDYCi52pmLIgcvBTgTQhHRxusMnlwQHnMdVpacxwlIpy0BNNOzNgZEWQlCOpOyGglmLoDdWlJENYtxncXSL/h2uxoi9Aundr4kmjS0BmWTBw5ysgvY2yz3aOQabr5Mw6A9DpLthDm03OMs30cZNGfaWN6+98FL0qBnqGQzdSu1d6gjc2AmH2jrBUIYZGBRlcUtu0jBwzxgCQZEAR1S1YCXQJCjRCWWHuUZcKQbLkuAhqVA5WWTelYy5CEUPhdOllRhZhf5W6VOn89yWfTfjO5FJEKbGARqXDWxgDKIlLpuiPKds1SsrJ1mhgJZrMk3STxy77LjIk10pd4bdHtsPsNTTCZuJt3T2JCletdBCq3LPZbLuMsLQuSQQtG4EcZz9nvAf6seidBHrw5KN3NY2r1I7QuO1LuPQIfSZTv/6SBuUoyKANOr67gh0sOZfXEEPFIgExAWMHkkIcOIRp3HSdhwWvj6NAad70WdAEaxjo6OI5WZoWjyWGdw1o84MBQVoZ4J8HY/6SSy17J75bB3V98C8v4yHaXKyhcp73lAc69ez6vura0R8bz7/f9jE+99yQ2/vhQZj+3Fw1y2FlnA04bA/DWEzfyBd+JXz4EuwXEbA1eAK77yfWIkW8AH9vl9T+eWnr0ldx911u6v9973sG8/KDvc9V9Z3LwFffulTHBDgZZPvjgg4yOjnZ/3t7jgQce2KmNf+ADH+DYY4+lVqsxZ84cXvSiF/HHP/5xi2U6nQ7nn38+o6OjVKtVXvKSlzA2NrbFMqtWreLMM8+kXC4zZ84c3v72t5Ntndq+A6VS1/YVmcH6qmenDD3qVr/bVZYhmzFp1SMrK4KmobI+o7QhJZjOkKlFJY7OJYxzIjGeIIsU8YgPAjqjPo1FAc2FEVktQEceOlSIzBJsaLptBT4iCBCehxioIsplxEANhgdgziiMDCEqJWerHPgu6LLQgEjRZy1se1qPPs2HULLvpl33cl0ArHE39V3zAos1hnh+DZG5GSrjOdtIlViChiZoGLy2obTROC7whHEXt2lNZb1m+M46gw90iMYTgmmDzCzJgEc66MLObOChyy5DB5wYMh4UxPvPQgS+288i1DMfWyHQL7orIggQSrp9yTs1Qsnuo/tZKuUAXuC7//N1Ct9HhL0ZmL1Z+9r3pL/Wn/rtHVpub3RILlty6DYfM/WnWfva92RqukQ78Z04X4KY9rGeJam5tHknDM91GEYQdwI6mcdcf4oB2WFlpvhZZ5gxnTFpspwOJrtWyf0lkXio7iMUPlHevYmEQCNZ1xpw49DC6U5GYxhKENUMOZRQmt9gZNEktXl15u03TnW/KfRQhvUtadXSWChpLAxIyx5COw2I18z1IrEl2tjG2ziNSDUmdI5dXjMjqbib+GjSLV/oH6srwXYUQwMtFkSTKCza2m6HKbWa1GoyHp16VQRqbl0SSSQ8atKjLBVl0QN8B3mSv130c5bNGSM7uEVnrsZ4zoWtutpQWee26ez/cxDnC2d4qQsxv+05jyqBFa6zhoV4UNGY7/JtGosEjcUQz943Ovr72vekqI0/PpTRBdc9qv6lMXgc608fAdhj4AWg866HODedxfvKc7jg1yczdOthWzzeV57D+8pzGLr1MC749clc8OuTOWHRe3ZrECQ4MLP8wkM4/ZTT+LfJHnj591Ofu1u381h1YjzAsld8pEslO/iKe1l+4SGPG7wUwKy/Tv/yRzn9yx/leVd+cIfX87g0MLurbrrpJs4//3yOPfZYsizjXe96F6eddhp33nknlUoFgLe+9a18//vf52tf+xqDg4NccMEFnH322fz8587HQWvNmWeeybx58/jFL37BunXreNWrXoXv+7z//e/fqfGojkZIDxO5mSMlhJvDkgLoo1zlOhBrLaIdoxJDUlMEkxleK0O2M1ACFSj3syedj3zmwi1NLtzMSm6GJq0KZGrxm15OKRCU18eIqQZIiShFYC16qEo6HJGVnUFAUpVdUaTULlMgHGsiJxvYTtwDLpAn2+ve+I113ZqCSpUDGpsYRHFjb03PvaugpgmJCALqiwKysiBJpes0ZU6ML1PjZDaexG8I/LZHOJHi1RNM6BGPBIjMoNopWTWgPeqyaWQKMlMIE7oLQSDxWxkqca35cFoweXDInHVlxFS9l9EDDqD4Qbcb1e0Y9ZsQFGYHabKlk1xhDAA9HRG5TibYq1+Pbu1r35N9rbYGR48FUi5bcihvXvUkDtydqW3WvvY9qVY7VEuSA0fG+f30fpTWKTpzNMYXlMdcNkg8IJGJcPQtXNdmUpfZIGsoYVBYmtajYy2R0EgsKU5vWBYOqECPTlZ0KhSgrSASYGzKL5sHU/ETBhdPMVRuM7dc59lDDxCJlAOCDUQyZUh2nO2yLlM3JR5IZnP3vPlsjKvcv2mU+mCFrOxhfIGOykSbE5dTBvhNlyVmBstktRAdSvx6hki1y4AJ6YIALJTGNToUjAOHDG/kaaXVlIWzhDbWssm06VioSUEZnzQHMT3a3CNLW9PbfyG7x8ATCoNFyZ4lvxKCk0urkfMMm9qn8nA2jOoopLZOyN/RqEQi05xCl4duAo6FoE3uPmYxoUdSUyRVSTwsML6iuRDSAYuNstx61GDjZKf+fvZU7Wvfk5W3ncv7nn0jnOh0rtfhZvx/vp3lbzls5ePd9R2ux2vP/KH0fi7aTdkp/XXLYSthxX78ed/f8BNdG398KEufu/3PZWdqaxra6UW2zU7WDt2hXXjhhTu8wksvvfSxF8rr2mu3pDl89rOfZc6cOdxyyy2cdNJJTE1N8elPf5ovfelLnHrqqQB85jOf4dBDD+VXv/oVz372s7n++uu58847+eEPf8jcuXM58sgjufjii/k//+f/8M///M8EQbDD48kqHiqVudC8cB/LXcdysbkTrfRpKKwlHGsSDw6QVVzKMoW/fx5sKdopKnbvk4lGl30HXoYV1nMaGb/lTu5ZSVBdHeNtrLvtBD56tEY8GpEMKIyie9GQmi54yUJBNsejPWuQYLpG+eEGcmwzNtMuZLLflUzk5OdC/N/n6iWK/YSupsTlphTqRYMthWQl8iAv40SL0y7HRrVcNk02FBEP+lgJMsm7WhEE0ylWuNnHZNAjrTinNucGo0jLLh/GbxuXhCwhmMpySppPOqdGMN3IaXPFFUX16WEcwOp+Xpqey1j/rKUUIANHu/M8ZyWtFCiJLUdkw2XqI8CqHf7z2WO1r31P+mtf0cDAYwOX7S27p8DM3nQdeyJoZOsHVwBQtw0Onn7WHt3WjtS+9j3xlKEVRzT9FAJDVrYII/DalnDK3din1fxaEUtsCZQ0TGVlZnvTHOGvY8qEbNZlAGarJgBTmUQjGJIJI9KJ1gtb4f5OhMEikWw0lrqOeMbwKs6YM921Zp6lUgIhmDTgY4kE1K1mnoopi0meFa3lj6WHuD+Zyw84gnusIG5VkZkkrShKY043KBOL10jR5QBdUs5ZzVqyiodvLCaA1nyB9RQV66hmVgoa8xWiHONLzUJvAiUgFJLUGjQQCeeu5kwJxDYDPPtrWzSzfkDXOy7uGNWkxzxviqGozRo5hN+0lMY14USC7KSYnAFgRZHrYrGeQHvOcdQqQToQktQUE4codATJsEYmwuXaKItfi9lv9gTHjqxk9XjEl3b4r2fP1b72Pfnfh10DOLbDgu99JZ+d/8h2l5fLXgnA5NEr9mgOzOOtD6X3c8EOuIrtTI2vez/wyd22vsdTLz5+DZ+/9bXskNf1o9Qxl97Dsld8hC/MvYIPXXE4h511Nmdd9anu67az42YXO0Qh+93vfrdDj9tuu22nd6a/pqac5mRkxLUIb7nlFtI05c/+7M+6yyxbtowlS5bwy1/+EoBf/vKXHHHEEd1QTYDTTz+d6elpVqxYsVPbl6lB6DxgsjgyYehuhouTY5/NsMhdyuR0i9KmlCxy77OexATKPSIPm7fTAURq8pO7JC27i1llvaG8IUMHLg/Fm2qDMdiBCtNHzqW+tOIsKNuGcEqjUte+Lm3MCBoa1bHdToyKXRLw1FMGSA+YhwgD1ylSsheCKXJAFvg9wCJyjY3n5Q5r7iG2pmr5PrYUgACv5cwJhAEd5BxqX2F9R4HTvqA1S5JWPZLREqqd4k3F4Em3jHEgyOs43Uzh8BJOamRqSSsSmTqOsY4Eft3Snhv0ZdKI3j4p5X4uxg65XqjXTUKKnF7n9lN4OdWsFGEHqmQLRqgfNZ9VZ81m3QkVxg/fNznLe/t78nhrT9DIinXuCjVshla2c7V+cEUXvOzLtbe/J5mWTE2Vuf/h2WAgWxRjpXWTWeCs9ssCYUE1JXYyYHy6wncePoIbJg7nD8l8HkpnsUG7dOxIaCKh8YWhLDLKgi2skw2WDE3DxjSs20hsU1IrOa56L68a+jV/U/sjy/wmNZlSN5KNWhIJixLQstAy7tya5rqOp/hTPL9yD29c9EPOPeS3zF62iebSlMYSS3tuRGfUR4eSrOKTVj3Siup241Xs7PGNgnTAkJXJr3GORtaZJZCeYU5YJ0GxWfsY68I6K0ISdalkhjTPuVFC7rQepqgC5Mn8ny8UAyImMxKTuO6LzCyyU9gfG2RsuvRvK934EW5SzoSK9qhHfZGifWiH9MA2tqLRg5ry7CZ/9YzlfO6Zn+GLh3yZ/zP715wx8ofHNe49XXv7e3LN7P35zpwD+M6cA/jEa9/Jv9/3Mx68dfuuXuems/jqze2d2sYTXR876Hec/uWP8qErDt+p922LgnbMpffwtU/+9e4a2i7VrpoolA+scmX5hRz1jZv5yXlX8s6m4qyrdoyGvq3aoQ7Mj3+85x0PjDG85S1v4YQTTuDww92Hvn79eoIgYGhoaItl586dy/r167vL9H+JiteL17ZVcRwTx72U9elpx+sLxhp4fgkTVPCmYqzJnakK0Xw/ZUkpR6/yBSQpweoJrBwhHvIJpvOgslzgJzKDKfnoyAMl8tyY3Do4tqiOOzlG4ynRmmlEJyGbPcDEoVUAqmsSrBIEkwky0SRDYd55MW472qAjp8NRHUNWUbRHJO25ITIZQT28sRdUaWTPOjhJXfBmP6Vqa+ctrR0AAtedyIWfftMJ8xGueyK0xYTKcYJzVxavYwgakrTqLmr+lOv8mMCZFLRHFH7T4nWcDkaHDrBkeRfGCpydZ8VD++7CUaRXd3VIJrd47reZ9jxHFfODLcMpje25q4EDNoFPOneQqYPLJAOCtAqd2YbyGonX2eafz16tfeF7sq/U7gAvRc3Qyh67ngygpah94XtSb0SI0GIShZr0kAvbpJEirUjCOngdgz8tsUMCFQtAEjcD4jDlrom5LC1tYlEwzoH+OJHIkECKyEEM+Dl4KRzKip+Lejhrs1pXiUTKseE4VRFgMDRNRt34TJoSHevji4yO9WmakEBobo8jlLAMqSYL1RRzVcrTg2lmq98zPrfCd6eOQLccjVnFLpm+M+qjYucm6U8l7rrgS7TvjG38aZcfI3LXMxUb/CbEWrCyNcKtwf4cEGxgP2/rNEBXhSHB1h0meCStTHczcLYNdIrlDVCTKZFKUaEmHgycM5wtOZqYsfn11ebXp3zSreWoY52RkLQqMAEoz5DFChlojj1gJRcuuI4DvIRBGQERLZtQN/uGprK/9oXvyVeOWc/P3/FlAF7b+i5nvesLLPWXb5Oq9PMzjuH5wGkvW8uFl36CG2+9iYff9cxt6mFuvPUmTj365Mc8Bnuq3leewwVrrwZ2vRNz3pffy1Hf2PUx7Uo1v/c9lr1iGtj57tLWzmpn3RFz2NLLdnlMj28qYw/U+eefzx133MGXv/zlPb6tD3zgAwwODnYfixcvBkAkjv6kOhmi2ckdujJIct5h4QQG7qa4a+lrEM024crN+HVNPOSTDPouGFM4ZzPrSdJBHx0q0oqb2S9NaOdGFgrCTR2iVZOIRhtTKzFxaBWvY6msd61sr6WRseMUB1MJ/nSMbGfITopsp+4kmxh06G7+gzz1eOqgCnrhLNelMHkQ5tYgJctyPUhOFytyX/JynSbdBToiyfCbDnTI1KI6TtCpWmnedXL72ZqlCCcNQV07A4PQg8wgOylZpChvyggnM7ymJphMUbEhHpR5TkxGtDkD61r3UjuTAB30XayKIM+itHb7UehcjO5ZJhemBYEPUuWdJUnjsDmsO6HCxKEOiIUTlspqSbTZEtT3DdFlf+0L35ODb375417n7ujCvGTiW7sVvBQ104nZfj2ZwAvsG98T3fQxTR8yd05O6wGiI0kHnM1+MK0J63k2isw79NM+9UaJqXbELzYfwPWbD6dpQnxhaFlFx6o898XdgBtrXYcCTWyz7o3+ykxwa7yAIdlhsYopC0VsM1pWUxGSBV7GXNUAoGlCIpGyxNvMiGpwYLCBY6NVHBuOs8jLiIREIVisDC8cuo395mzGlAzNec42uD0qqC/JAU3H5ajpkufMbSoKmUE0DiawxAOCdMAZtPjTFpMqJuMSC/wJlgVOA9EyursfvpCEwiMS3nb1Ly4fx6L7OjWwJdjZWuhvcsOAjlUMB23HoPbdNUBHEh3lJguAynPeCrc140s6s0MaCxStuYL2XINOJcOjDd5z7Pf52JLvclQgKQuf1GoaJsZYy1J/2+Bsb9a+8D15xxu/2rUFXvaKj7DiO1dvdx07KpK/7cjf7fqAd0N97KDfbVOwvr36+RnHcNWaLc+1yy88hL9/3+7V1DyeqrzgBY/7vQV4eer5twJw2NLybhnT41IpL1++nK9+9ausWrWKJNlSmHb11dv/49teXXDBBXzve9/j5ptvZtGiRd3n582bR5IkTE5ObjEbMDY2xrx587rL/OY3v9lifYVbRrHM1vXOd75zC13P9PQ0ixcvxkrpZl5SjWjH7hSqzSPT3nO3LgDbbndF8aLZJnx4EpkO0JkVOMG+LwgmZdelxOZOKMYTqMTiNzTRWAu1uQGZxlZLtPYbwG9byms7Dpik2tkLG+OCLrVF18J8lst1M9KKh46ka913LFY52powgtaiMrXNEUzXXXfC9CyGyTL3XEG32tpFpNhXlds0W0eba4+6mbXyhswJOLVFV3xE5hxZspIkGRIETUkncB2nynqwIiKt+ZhQONODepxTzgwyVgT1nFPdTF3nKlBkZQ+vqTFKkZb6QGQxftHXVSqc16wBVE/7UwRmypzmVy3TOHSEsWOdJbbXEMRD4DcFwbSz+Uzlti+Ye6v2le/JrlYBPr4x/KLH/d49VTOdmEfWkw287DPfk0wgpLMrDiYl3nonCi+osjqSxDWBiqG8XqBDiIchiTyamWC1GGKDX2X18CiRTNnfa+ADKRBbUFg3p4YTvoO7+X8gKzNpyiz2x6kJdz6vm6writdYJDBbWSpyHAAf19Hxc7DiiwCJJLU9YOQLyX7eNH+94Ld8rHEKzclhZCZIK5AMWWSqML4gnJL5xJaBSKJ9NzEkMoHx83BjlSfcJ5JDBjawv7+JsrCkONlihEAK0c2B8VCP6Kgo2AKwxDbrdqAKilhxXdjactrk/zSCiaTkKGRZns0DYEFHAmEEJtdsphVJWna6JR1CPGpcIKi0VGox71h2LX9RHiMUEZLe2EPhYbDMyzVM+0rtK9+Tr8df5L9PfS43GGdIcdF5d8B27IgLcfz1X13Ar5Z/gHe8aid3ei/Uxw76Hc/Of75qzQpevvDRdTuP9frerKO+cTN385YdXv6YS+/h3+/7GeCc3RZ874W7dTw73YH58pe/zPHHH89dd93FN7/5TdI0ZcWKFdx4440MDg7u1LqstVxwwQV885vf5MYbb2Tp0qVbvP6MZzwD3/f50Y9+1H3uj3/8I6tWreK4444D4LjjjuMPf/gDGzZs6C5zww03MDAwwFOf+tRtbjcMQwYGBrZ4ACAlJvKQjRjb6fQ6Dsq5WdnEZajYds4tKm6a85t+awxiukHw0EZqf5xwL5UkyaBPVlboUKAj6fJSpjXh5pTyQ1OoteOuy6MknYUDYKGypoNqpy4wy1pM5JGMlskGS9hQYUJFY0mJZMgnqfl0RhTtYYmVApU4J7BgOsOLDa3ZCj1c6WlBCoOCgj7W35Ep9C7Q68T007CsRdSbVDZohHZBZWnZIx4NiId9kiE/9/53YZZpSdCaK5g+EKYO8EkHfZcHUNcOpKQakRl0yUdHymXC1FNkK0E2Y2RqUKlxXGpPEE4biJNe96UfvMAW2S7djpN0oEv4vqP+jQyy6dmzWXuCIpgUlNcLyhss5TGnw9G+IB6Gzqx9owOzr31P7j3pKmDXBfw7C0Z21m1sb9eTPYvlyaJ1KWpf+54II7CBQaYQbYLZt8aM3JUi09ySN7+JD+qW4XsThu/NCCcFsqkQmwOmN1fYNF7jS2ueydUTx7BZ+3QsNI3Ez09zqbU0reHezOennVl8buoo7o4XUBFJrpkpgIlgtvKIhMIXrjtQkwGz8kdNepRz6+VQ+HgofOEeziTAietrUnBq+T6es/B+0iHN9IGGzlyDrhjSKrRmSwdQcsth8s5GWnUddKEtnUFJFgmn/4klP11zIJ/d9BzuTIaRwJD0KEufcg6itgVeiiq6MrFNmTIJkyYj3arTkuHsmAvQUlTHav4QL+SusXmIptNtqth0Oy86cNdTr6MRmcUo6MwWNJdo4kPbmKEMWUs55el3899HfYa/KI8hkTRMTGzdPYEv3NglgiG5bxBe9rXvycdLLwPgqs7Vj2qhvHW9921f5PgNDtDc8Ve1HX7f3qjzks9y1ZoV/N1Jj8/s5G0HnbibR/T4qvKCFzwmfeyYS+/hqjUruPbhf+Kic1LedtCJnLb0Ms666tvcYHyOqUe7bTw73YF5//vfz4c//GHOP/98arUal112GUuXLuX1r3898+fP36l1nX/++XzpS1/i29/+NrVarcudHBwcpFQqMTg4yN/93d9x4YUXMjIywsDAAG984xs57rjjePazHaY97bTTeOpTn8orX/lKPvjBD7J+/Xre/e53c/755xPuZI6HGYiQBpiczjUVRY6K5wBGfgLaIh/E5pQrISCzWM9DpCmMT1JKUsJaGVPyMIHTp6hYI1spshUjWp0eePAUyeJR4mGPYFpjAonxQ+IRn2hcoBoJyXBAOhCi2j6dUY+g7kSGWUXlrl6CtO7EiEFd4zVS0or7iNvzK1THJrHGuk5KEXxZ3PD3AxXP6+vK5Pvpiy5dyxpDaX2HxvyKcw6rOE2MlbmmJ3Y5MEYpkgGB6oDXFFTGHFVMR8rxi5MME/lYX6FL+XOG3Fvf5cGIdorwnEFAWhYMPpTT+TyvRxnbokuUf2ae6HVn4rjruKbnDbPmlBqthYbyWkltlUGlruPityzhpANfWVnC4zPm2u21r31Pdmc9VjdmWyBnXwcufwr1ZAIuRe1r3xMxmEAWEkxKamsz/IbrKvsLPIwn8Bua0jjOhKWRYlSA17REGyVZ1ZIGChsI1k/V6GRLyIxiwGtTVTFKGKQwTKQV1sWD3Ds5m4Gww2GD61gaupvKisioSQ+JRImei1d/l0IK93sRfplanVPUVL5M3kmwDgz4QqKkYcDrOGvgwGAzQbDRQ2gwIbRHJEJLhHWTWJ1Z7pyqYheOqdoClUAyaLGhYXq6hLdQM6Ra1KQ76Xpb+IZtu7Q13a5L4Vxm6Oll+kttYXZg0Nay2cBtzSXEzQCvIQmnLTKxJAO5bqeh8acT1HSMSEPiYYXqCErrFa2apDTQ4bSld/O22T9hRAZsMhkbdcCINIwoF0Ca9g1lwjwyq2Zv1L72PXne5esQUnD2Lz7C8h03vOWi8+7g2ocfYtH7NzH1kZv53PPfxqL3/2av6l4ereb/669p3d/Y7uuFTuSYS+/hqvvO5OUHfb/7+75Qze99b6eCOt/91XO56JyUOz9+NLzhwD0ypp0GMPfffz9nnnkmAEEQ0Gw2EULw1re+lVNPPZX3ve99O7yu//iP/wDglFNO2eL5z3zmM7zmNa8B4MMf/jBSSl7ykpcQxzGnn346V1zRQ+lKKb73ve/xD//wDxx33HFUKhVe/epX8y//8i87u2sYJVEbpl2Ke5Fun2U4IYZAkCe+98/4m3xWpbhZzkXvSAUTU8ipBlKKnhbDOJG7W0a6R+CjZw3QXBCiEnfG64z6dIYcF1fFHiLLNS6RCxEL6gavpRHG0dCEgXAaVNsgU+P4x1UfmRrCKdf12YJ6BblNtO3d9BcZMUmahzr2UcqE1+16CCHwNkyDrZBFUNpk8BuGZFA5B7HEYKXCb5CDAQgnLartKHAKZ1mtK4G7MAbSubT5gqwsUR3P5Qfk45WZQcWGoGEJ1zewWQ5cCmMFkQd0ppmj+3le3/7gHMeiCFstsenIKs3FmsG7FZUNGq9p8Doav+Fm2/zMYEKJ0ODtIwBmX/uewO63T97RbswMeNnz9WQEL7DvfU/sZECp4TF0nyHclDiabCvBb1mSqiCYhmAyc7b41gnbK2OGaEKgQ0dZAkl7ziDr5lRZv2kQ5WmskehEgbTYjgLfoAJDaV7KsNeirkssC8aYpVTuvCW3yInRVuQWy8VNfeH2taV9qbamu5wSLr8ltYaONczy60hfY43AaoUOoLm/xgqLV1eYwGl7EGAqGSKVkAnwLCIWeE1BMlsjShnKM9wzPYe7q/N5ir8acLbOSogukOnPeCnKaV9612KFC+30RQHYtty/olKrmTIJ36s/jR88+FTkJh9/2on2Ee6aJTNHgZOpQeTAI8mpY1nVIqRl2Zwxnj/4B1IL63TCRl1ikdemko+zY103SCFIsfyisz+wgb1d+9r3BKB1f2Onui9FPX9Rb3vHdI5nEb/Z7rKj176b8ef/38c1vl2tl73F8P5Nzla/vxNz9i9exZnZ+az99jk8446f8amx87j7i/C+9/45zxz+BeAoWH9x3Zt4xumXw9P+314ZPzjh/UU7sNydHz+al1/Y4JhL72HYfoXsDQdyym+v4SfHnsE7m7vX2XWnAczw8DD1eh2AhQsXcscdd3DEEUcwOTlJq9XaqXXZrcXk26goivj4xz/Oxz/+8e0us99++/GDH/xgp7a9rfJXbcRm5FoX03Md63fvMjkFq+hcFGCmEIlDHhBp+3JKcFoMbXpOX1KBl8+I1So096vmYZQZqp1RX+w7y8mmJStJrAzQgSCLBFZ4eC2DzAy2cKLxBF7boBKDSA06FAjtXFNMfkJ2VsOCoq0iPK/3GRQUsW6wZQ5uwrAn4LfOuMBq58426w9txg93ji1+I0MYSzARo8s+IjMMrMqQqWV6iddzD8PRzmTq9C0AIrNkNUU86DQuKlYIG2A8B7xUM80pcRox1cAW4KX4bPoDN4vxK+UcxzzPPe97NA8cZvoACCYU5U2uS5QMqDwZ2l2sAIgN1BSt+fuGBmZf+57sioh/V+rJCF6+9p/X7pU8mMdLX3uyghfY974n1YcUtUlDOOGCjU3oIdspfsPQnOchVhmEyTOwpEDFmmiTo8sKY2nPDogHJF4TsqYkCzxsKJAqF/wLC4FBeAbdUdTjkIfjYQ6K1jMkM4yVtGxKKDxC4W0R8kh/6CMOIBRajX6xfPGzxInpnR4GyjLBtD1E4PJOdE07xkIm0JEFz7p2iAXRcbrDaJNEB5Z0xGBSgShlWC0BzdrpAR6eNUpsVxIKSWwzfJyhSwHAtnYX69eZdMcrBD5qS9pZDsQgd2xDU7eC76x9Glrn69IgUzdJKIzquojqUKGjCtP7R7QWCOJRDYMpi+ZO8JK5t3J4MM6QdLdRizyDpNTdjrYOEPkoJJr99xER/772PWk/uH1t0L3nHbzDae/LLzyEfz/vSiaPXsGFJ3+Mgedfz8PPv4dF7/8NI68dgCNfAvyOI287apfHvLMVPb/Cz956CFetWcGw/QpX33Qh7/7quZybfgH4CsNnnU3nrIc4N50FL/sCz597Beclz3Tdi9Mv56nn38qnXvER7rrkFD7zlJ884eP/WThN8/Ad76xdtWYFr/7SSznLsc35ybFn7JFx7TSAOemkk7jhhhs44ogjeOlLX8qb3/xmbrzxRm644Qae97zn7YkxPmFl0xSEn+tE8pPfVkJuUWhECoDje1s4dgG950yeJ9Pu5A5mfSdbKcAYzOgQU4cNoVKL3zDoQJJWQ3QoGL43wUrB9BLP8ainDNGES733pxNMqEirHjJzFKj6Ip+g7hFOOYcw4zvxocwsqpX1smtCv9dNKYBAQRsr9DHFMcmy3rhT3c1gsZnGX7mR8pxFJDVJVvG6onsrnfOa8RzPW2YQTrsuiky0Mx5AIKwlGfBJK5LmXMn0kTHeWEBpQuI1BTJ2HSYTeuhIUXlg0mmTtHHjKNzhfA9RAEht3PGXyoFIo51V8rwhNhzjYYXFKksWOSBnfFyOQUkitcVKZy7Qmi3pLNh7qbcztWU9GcFLUXsLxMzU3q2h+1KivlNIoa0IplKykofxpZvICSUZLpAY64ITZequKcZ3HWxhoLTSR2gfE4KOLDq0MJogpIVUsqg2yfOHbmeJN4HDRO5mvrjJT63Ouynbz1IpXn9EWdNbDykb0gEHWKZ8hLDYyIAAUc0ISymLRiaZX54ilBopDKubw9zlLSIc87CeQVeAKR88i4kESeJxZ2M+d1ZqLPamqUmBxOI/xjEuaHESS5h3XrbWzCghMbkGpqiH0iHWT9ZQypBZgUxyt8vM2foL6yYF8RSTBwdMHm6g6hwYli1ez5sW/4iTojqh2LabkkTh5QYLAAqPSMxcT3a2lv/jt+CKHRe1v+2gE1m+6LXce97BvPzAWfzmY7P4zcDxXKRS5v/rr/nFnOXcyE0ATyjV7CNXXsdZR7yM+f/6az6x9mEADuISPnvztpc/5tJ7+M3H4OKL9ucvPvQmzn7vk8CtALj24X/i7JMv5Zh/fRHPvehofnz13Xt0ezsMYO644w4OP/xwPvaxj9HpOBH7P/7jP+L7Pr/4xS94yUtewrvf/e49NtAnvPpBTNGJEW62qPjZ2gyRZi4nxduKSib6fvf7ghf7rX+jkNbSAfyWceLGYYXUjns7+GCKV09BQHlTfpJO8rDKts7tjl1opbCCeEhifBwly3Pj89rOljhouG4NQrixZpkbQxhgyxG2FKCrISaQpBUPr6UJ19cRzbbLwSkoW1sI/g02TandvZmJI0dpzvMob8gQFtKaIqk6oabXsZQ2G/yG0/Xoku+E+9LZaVrp8hDSAQlaoEsOXIQCsqrr5BQ20q77spXhQAEktQaVB3Ma6674ygVvIgStBRFWFhobQRZZx3NuWZKaxCgob9JOxB9JSuMGMe3x8B7405qpJ2d9fdW2k5D/asnrn+CRPHo92c0D/lTKa2tMGDgtiBAIaTGBh9DuBjkZUIRTTtAvtER7uAkb5XSDwbQzSgFnw1ze6KjC8YAkHha050BmBNYIZDXlWcMPstCbBKAmVW497LoXW7twbV2PFg7Zbz+shMC3giXBJoZmN6iXI8IwZfHwJFU/5sjBhzkoHGNZsJ4RlSKBQAjqxvLT+QfwwTtOg4kSsuMcvnRoUcoQ10Nu3zCf70dP58zB33NM6NgcqdWEW42tGE8/hcxgumBmW+U6Sb3Xl7cOIGn7CGmRxmWyCQM6UngNnYdRS0wgaM0HOZQghEUIy8mz7uXEaIpQBFsct/7j1HvOEtuMjcbykbVnAFdud4wz9cjaWUeuQmDuujbu534Nyf/9/Od49yufeDDwlx+/iLe+f4qfACev/ThiwdMfdfmDbr6EUy6fw6D6Cq/5+9/y2UMvABzljG/u+fFuXT/8l3O5+8C3sKOZNu97759DY3yPjgl2AsA87WlP49hjj+Xv//7v+eu/dqmgUkre8Y537LHBPeGlM/D8rrOVzTJ3Q+x5PcqSUu55IZzWwjoaANBzvlL03fAbpx/Rxp0/tYYwREQhnaWz0IEgGk9JhjxUnqkiE7dCq4QT/7dN3smwWAXJoI/fFHlCcC+x3vgCv21RicVrZkjt6GeFfz1CuBt638MMlGkurdGapXJXHGchqQOnT1GHBAR1y+D9Lbw1m7FJ4ihnBUDL91dMTDN0p8fGY4ZozfZcbo0naM531Ieg7kT94OxDrSeRmXEzjNbDaxu8esrsDDbHAV7LXfinl4REU5os9BHGUr5nHFuEYKm+7ljR/Aryz804LU3XFlpKbDmiPSrJDmoThinyl4MIA1ko8JuGcFq7oMw+8BdMG7z2zIzZvlB7s/uyPdCyrWUeDcg8GbowT2b62L5YOpAIJVxquy8xQiAq7nxWGnPnciscuLHKdV9E5s5fJlDuHJ4ahHFddtU2mEDSGcyDfhUgnR5jeKDFXG+K9XqA/b0JVDdx/rHBy45ULzRSIoVg/2ATZ+3/B0KRYRAcU36Qo8PNlIUiFD7gIfP+icEyKA2nlh9gwZFf4dJVpzHeqrBpbADRUSRTIShLlilWtkZYES3kmPDeLUwHZJ+ovwAu2vZoYcX/qbWYnDbn9D9iC8qZwbqMnKnFiIkAExlUbjagA3cNkEhEZrCBJKlKdOgu49I3WCOpqg6h8B9p6yzkFpUl49EAAQAASURBVDQ3p9txWpz1usxYc992yvpTrK6N77/CX1z3pr0CXgCW3nIHp6y5zv3yGOClqJ+8aQPwIQB+f/p83rP2OVx9/Oe4+/xbubK8e+2It1fPnHSa9j/7p7dy9xffst3leiDxCwCcm87irKu3FUW6e2uHff1uuukmDjvsMC666CLmz5/Pq1/9an7605/uybHtvcpb/aLolOQBj07HordYZovaQtzfp4EpskgKpyyc7sUEktJY7ACGBa+Za1gMJEOeo2VZiy5J4kFJWpVkkfvIkgEPkbjOjd8yVMY0lXWGYCoj3OxuvJNBh09lapGtBIzBlkKSJSOMHT/E9GKP8iZNWHdWn0JDZUxTfVgTTlnSimDs2Cr1ZyzALJgNYeBAW9/+W22Qm6aYdds0WQma832a8xQqduDF6xjiQUUyoLrcboCs7GN84YI3PYnfyJh9a8zQvQnCuot7FknSimDwzkmYbvQMB5K0T8Ave8e4a5mcU92E7FLiZAZ6OsBagdeBcNodt6Qmc0cgpxtKy+6ildQkOto3bC//J9e+Dl62Xv7R3vNEdEZmui/7Tok8hBfoprk7Zy5JWDf4LUe7spI8gDin3voCE0isJ8gi514pYwdeijI+LlNGC4IgY6jUpm6c/iISGonscxsT3cfOVH/4Y/FelwtjWKga/PXgb3nV0C28ceR3PK/UIhSSuslo2QSDoW0TNugWDRPjoVioyjwrmuYd+13DRQffwLOWPYAYSMAIkBZjBLetXsSPNi3jvlTQsGnXPa2wQ87YkgrmxiZzjY6zgfaFJEXTsgkZeovOyITp8MWJZ/Pg5Aiy4667OrCkVegMye71wGtlTg+jQXVErtVxuqMh9eha335g4+E6YYtVg6NnzfTz90a97aAT+Yvr3sTVN13I0X8/a6+N4y2vPf1xv/flB32f+07aslnw76c+d1eH9Jj1m6H3ctCbp3nv+27gqvvO3K4jWr+18s++Oc535hywx8cGOwFgnvOc53DllVeybt06PvrRj/LQQw9x8sknc8ghh/D//t//61rxPanLWCfAT3tdBpvmGS/WIpR0//envxfL9XVo3HTNNi4WQroU+FJEa/8BJyBXAh25ADDrCURmqS8JqC9UdEY8spKiPSrRYQ5yOsbRDHxBe35EWpWotkbFFi92AtCsrOiM+mAdDcFvamdLHIW0Dxxler+IoG4pbzSIzFHTgqahtClzAGhKYyWYQCAstGYpJg+r0TxsHrZa7jl8mZ72R41NMvdXUyQ1QWuuRcUu6yatSHTggIHxBMmAT3teien9A0edMNZl5ES520xJ0pqlsBIq62Jm/3QM1m90x9zLndEKu2TITRF6F6hucGWWuee1C+20EioPetjbB/KAT0cnE9rdZMTDCqtcuGhadrQO7e/cBX+m/nRqZ8HLjr53TwKMGfCyb5aV7twttAVrySqem+lPbQ/YGNvNzgIHaOIhHxOIvBMvscKdl7KScMJ/CxjBkpEJXrPoF5xa/iNPDzYxKHvCe6CreXk0mti2alvLF50PX7ggzCHpURZBF9iA031oa9G5k5jfZx5QFSHHhC1OLK3mpbOXc9yBDyKr+YTbxjLpdMB9m2dx2difcWs8ku9HnstiLdravv0S3UfRbenf79S6sRocjWudbvG1+jJuXHMIU/UyJjcbsIHTE+mSIC0LEKBLHqqjiSY0qgM2lniewfM1dR3Rssk2KWNba2+K8Rgg6KZkztQTXb96+0K+4G/i1k85I4Xbb+vs5RHtXB108yUAnHWEy8x5beu7vP/aE/b4dn8WTnPel9/LBRcdzcsP+v4OveedlVfxtPV7VvtS1E5PMVcqFf72b/+Wm266iXvuuYeXvvSlfPzjH2fJkiWcddZZe2KMT1jZLMvtjfMbV6UQUegslEVfV8bPZ/dVLhyXwlHN+kMVi2ySwtI3v/kWSmKqZZpzFZ0hQWckcBeu/CLXmeUzdTDUDzAkNYHxBaVNhmjS4HWMAwE11e3ahFO6S2Hz6xqZOiG63zSOVuaJ3FnFkCwYYPOhPvGQ6L7fKvAbGaWxBL+RoVopKtaUxjXRuMFvWMLcPCAeUkwdPRc7bxQRBo6OVhy7NEVunGTeL6eprHUX2iLMzOtYvI4DEfGQYvJAj7QqULEba2fEozHfozk/IKlKognD6O0Ngvs3uM6LEL3ul+47vlL09Eb9FtF55ku3O6OkowiELosgmrAkVfdaOKWdvXMOZFTqgF1pY4bX2TeCLP+n1t7ovrx51V27ZT2P1o3Z3UDja/957Qx42QfL0cMcFRgcgLFK9p0bXXdYxS5/RBTN/b7wkMKMRWYWv5XlYYsWmfS2c8zIKg4L1jIkDTXpEFB/7snuqIK2JZGUpaIsBGXhEwofiSAUHqOyxCxVIhQ+ofCoipBhGeELlYOINA+VNIzIgJNL6/jbuT/lPcd8n0P3X5dvSNCYLvHrh/fjc2PHc1dimDYdUqu7+5Ra3aWPye6/HlVO5eYFCtfFWafb/C7x+GHrACayCu3ERzd9R9uTFrTABO6z0iWRsx2UC1yeTvBagBZEQUopTPCF3tYh2qKK7lVsMx7O2vwhmUcr23t5W//T6+1/fiRP/Y+9PYpdqwLEFPW2I/56j2/zxHiAE2MXODr6l+/honO2T6svujAHLt4zjmPbqp12Ieuvgw46iHe9613st99+vPOd7+T7398xhLavlghDBDK35M2f1PTZD+edmDSnKlnRo5QV4KUr+M//LzJVim6FEOiBkLQq8JuOpiUz4WbjjGVqqaSy2hJOQziVuYtX2pulU53CtjnPEMjc7zpyHQ4VG/AEIsal1/ugWinWVzTnu6A0mZF3GgRSuxm+rKTwW26GSLUyjCcpbTSkAx7BZIb13IW2OU/RGRpi9q0KtX4CbIpNUqcZAtSaTczf3KB9wCjT+wVkZUG02RC0DWnZUcKMD37d0pyjUClkJVAdqK2OCR6eQMQppGnuCpfrWby+TJrieGvdo+oljp7XBZpK5l0x90GWxg06UATTFh24MUAevtlx3SuRgepoVG6nnAUzAGamdq2+vuqT29TG7A5NzAxo2bdLZtbFZ+HOxdYIsooii4Tr/ho3wVR0g7HuHO+0jnmSvRBIY10AcqxRSiIzSGuQDhlUKWNpuJFB6ehWxrqwSW1tHlJpuw5c/XbEO9qN6bdV7mpO8m1srTEB+pQqeVlD/zyptpYUS2pTqsLnuLDNU/0H8BdoLm1U2bxmCKZ82g2PX7WW8r8mXsmho+t59Zyfc0QwTVUUuppe+OaWts+OOrcyy/hF+wDubs8ntYrlG5cwXq8Q+BmtegjCYn0HYGxgMNZR9rTvQpd14K6JwXgHv2VRTUXgaUp+yoPxbKYq91HdRqRFf1em6PzUrYcvMhZGm3fomM/U7qvRv3wP/3bDbXzv809uh9z+KoDM8svn8MH/tfvW+830QX5/6Zu3eO7pF17Gv91wG4MvvJpvvbhnIFCEbm5dE+Ic4Le7b1CPUY8bwNx8881ceeWVfOMb30BKycte9jL+7u/+bneO7Qkvm2VOYF90T/KbY5vb9YqtZ7UKelkRnkjPY11s3YlRyln7SolMNNFmi982BNOazohHUnPaC5lBZcwQTqYuH6XsqE0iM12alYrdhQ8BMtGYkoeKDWlNuQtearqUNL+Roeodknk1mvMktdUalVonHBUQ1yQyU8jEYjyJqQVOZB/rfD9c0KTXzvAF+E1JUhOsO2GA+b8QqLXj3eOD1k5on6aU7mgTra7RWTxIOuA56kPkgIPXgqDhDAjK62O8iRai2cZ2YkjSrt0o4ACgUj3wUoRtKgmZ6XVhpOvQWK0RudECQmKNgUzjtQ1pVeVGBY4qZqXLfzGBpDlXUV2rMWFOT0gNfn1GxP8/qYruy67Qx7ZVjwZigJ0CMjOg5clTBQgR2l0TCrv2gqoqcttkpOtYYx2o0bnWRRhHOZOZdbkkqcYEITqEeHYGgcGkkrvb86mpNocF69nPE48Ir8xypxOnHZHsjBamWLbIT4mtIbGWmtjG3ftjrAOkIyzYlI61tEgpC5+yVDw7WsnrD/oZv559ADeuWIboKGwm2bR2kJ+uGWTFgnkcOXstzxp8gAODMQ7wpvBFRiAEHWtpGsnqbJB7k3nc3ljE8rHFNFoRvq/pdHx0w0e0FbFnsSWNt9l3YZttmU9iFZ+VG2k8KElqAVXlrlu6ltGMA4wVjHhNBuVj73/RmVqgUlI7jS/m7PAxm6ndUz897fu8/fozeWs4q0sf+1Opn7xpA94nIwDeol/EG76+P3d+/Ghu/purWf6/btzh9Rz/A4dKjgc44m+7z6944dXAP7HihfChr/jcWLmWgYWzgS01L1uDmftXX8PmiypwAlww/C4+NvH+x7+Tj1E7BWDWrl3LZz/7WT772c9y3333cfzxx3P55Zfzspe9jEqlsqfG+ISVEMKBEt9zon2b6yRy+2HA3SQrBdoigmIav5dk3w9ynB7DARnhB45m5jaEF7sLU1JTaF+QVgVGOResohsDOYCQTicjrAMeOhRd2pgJFEnN74Uw4vzrs7JyDl/jbUgz0qrnRP7TGuu5NrkXO3pCPKCINmuykkKmBpm59RpfoEsSGds8m8BS3pARNCTT+yk2Hl1l1Jf4Kzf2HMI8z2lO0hTGJ4g2T1EKg/yY9nGGc2BiY8eFsNAT4QM2SXuGAYWjWwFUlOwJ+sE9l9taF5+RW8aAkYgkJdicUNrkMXmIu6GorBW5fanjQddWZ1jpTAW6fw+tmQ7MTO2e2h6IgX0HlMybOmzGiWw3lslF+cW1Q0dOqC+M0x0inMbQCKdpETqnmcm8K2Ndkx96/zuBf+9Jm0mMFezvb2KBsoQi6AKGwglLIrsUrF43xTzCNWu7+4HTnrSMpmDV+nn3w2C3CMV8tCq2XZMBvs2oG82USZilFIu8kBdW7uF55XtIreSnty2DjkQmEhkLNvsD3Dg2wO/mLERJS+hlaCso+26SqZX61NsRSexhjES3ncVbogUiEUSbFEKDCRyQrKxx19yskk9kJcLl7WhIBtxnZD1ox5671kpLux0Qxx6r4hHGtCHyNOoxWPiOziZp2oB7W7Mf8xjN1O6vAxefwYdXX8PJjO7toez2yl7fYcELnDnAJyYe4g3n38q956Q9d9a+uvC5H+Pqmy5k1idPRL7UZeBce/Vb+eyif2HWwzfxs2M+yA9eUOWYS+/Brv4QouUz55AFAMw5BKDNM976em758JYTfHb1hx6xrXc9/+dcXY92675uq3YYwJxxxhn88Ic/ZNasWbzqVa/ita99LU95ylP25Nie+FKKrsGJUq6Lkp+YRU4VE6XI3Vz3aS5E4Pe6LLlNMlnmaGgFtaxopfted1bOa2iEhdKYBiVIyx4mcF0TK0T307EKvLZzHNOhxPgS1cn/QpVg8zKPrAyjKzQiB0B+UzuxepKClHSGlLsoaktWcZ0IZ70M4aRLobdKkFYVuiTRvnAWkhGUNxrHv87tndOq6nKwx48oMyrm4D+w3oEWcJ0mcPucZQ6cpGlXUN/Nw/Fyap0QfRQ8pysShXYI1acrknTpCFJBIHq5O57nLo/9wsqicxMneNMdhu5VZKWI1jxLWoGkJpFZgEoMnUHHeRbaojquA5OpGRH/TO2+ejQQM1N/muU6KyJ3VhQYD7x2LtoXeZclv7EvlinO0+AkGt3fjaO8dq9R0lIa7LAwnCTAkGJpmJiONfhCEAmFxmKsRQqB2upy30932h6QUX26Tg1EAqI++ti23lOsb7vGAdatR0nnMOYLRWxTRlTICPCXo7dxx8L5TIwNIFpQeVggH/KxStAZHKW9JKU2t0Ec+2xIFCbNr9tWgBYI7YChSAXhZonfgNJGgw4EOoC0KrAe6AiSWRp8Q2rce2VL4jcEqi3wm66LFk4ZvM0eOnLX6Z+uPYCHW0O8aeEPOSE02xTu9++rjyUSKaF8bO3MTO3+uvqthwCHcPLsL+ztoeyROvaMw3nDV/xuF+RD3MPf/xUc81+nEix8I8/+tzV8+uZf8+mbX8kE8O5hH3640r154C0wDcv/+RzgCsB1V7Z2G3vlUSu558Q10IBzx84D4O4vvgW7+kOPADQfaH6OFS+8D770N3tyt4GdADC+7/P1r3+dF7zgBSi14+3jJ131U75MfjLKT+DWWgR081+ALe2SpQCZv1ZQnCDXaxisMIhMI1spXtsFNPqNzKXTK4lPhpzQ6JLn+NFSoloZqi26dALjBwRT7j0mUPkJ1tJaZOkMSaQGFUtkZqmsjZ11crVEVgKv7TjY9UVOC5KFzu2r6NgYDzojknhIuJmoQYvUAr8hiYRw2hprqa5qUR5zXajOnJD6koihqSHkpgl3nApQoXOKl9G5mrUvEFTl+qFuuCd9lsj5ib6rPwrc27xcnF8c6+K9mXb7WXxWfRfdwmhANNv4vqL2sE9WUjQPTthvySbGkwVU10BaEZQ3aown0JFEaNW1zpypP/3aXeL9x6onEsS0Hp4LQHnR2A6/Z6YLs/uqEO87t0UHPoRxQKXoosgYZ6WshHMT7pt/ERbX6c8sMsmcDpAc0GQCKoZOK2BTWkXnzl++EPhdsXsBPBxVrUMGuC61j+paFO8opSy2EAqQYvvApajHes3kTmYAm3SbW5NZLPM3MVd5LAvGeO7Ce7k2PZRWWkHFgvImg1Hu2iasT50qIpVgQFgByl1DVNNtN5gURJssfrN3QNtzBMmgJatprGdRtZRSmOJ7mtDP0EbQ6oTELR/b8gg3KoQWBHXw6wJthHMT8zTrmgP8snkwT/VvY5Z6dPaJLxT7ex1OG7yD/9qhIz1Tu6tu/pur+cfXXMYHmp/j2qv/NAHMt8//EBd9/CI4ZwUvX3hYDmTu4VPDcOe/reGp59/KZzvvYfzbF/OJiYf4BPBPzzqeH7ygus31HXPpPSx7xUe46YPj3Plxp2v/Sf7ac64/k40N9/PoX74HgNMvOIfrDvwK4IJH3//P57H0f52/53a4r3YYwHznO9/Zk+PYN6pf46L1lq5iskfbcjflsucylt+YdzszRfBlvztWQTMTwnVFCltNwJQ8d6FKDelAAMbiN1OUBR0qhDbOdjMzBJNx7mTjRIeFXiQak4icL208QTilnbYkzdCRBwL8lpuFEtpR1VqLBf40VNa7xOe0LLuv4bm2OsZlDphA4jXycWcGfGcBLbRFWEHzwAFq9abTsWx98cpDPwu6GJ7oOYoVuS1SbREYarVxQNHzEKUIPWuAZCRCB5Ks5GbYgmmnU1IdjWqmyHoL0Wg56l4BsovPNM2Q0y0qKwXCVEAErJ6eR+RBe5brNOlpF8CZVSDapAgentHA7M1686q79moOzJ6qPQViCsCyI88/GqiZATG7p4TNNS64SSKjHA3XCtE9T6dVdy7DOqG/jPNrSb/1sgSkzK8FuBv1liQLFSjLeFph0pSYrRLKOU1M0QMxBpgyBo0gEtZNRgkwVhAK2RdSuX0gE9uMxEo0llq+7M6YAWxdLpfGnaNnqRInRhMY69a1yIOTB+5m5ZwRbtm0FKsg2phgPYHX8SiNC0obPSj8AQxI3etuSQ1+U+M1NTI1tOYFTO+naD4lJqwkzKp0eOacVRxaWctsbxpjJR3r82A8m7WdIe7YPI/xySpx6JOMKFRTktUyRMPDepbN0xW0lnw5fgbDhzR5UfVeRmVpm8dCCbeXwzLiIH9GxL836s4r4NraW/f2MPZoffv8D/Hlb13Z/b1fk7L8wkPgQoCvcMxjrOek9x/E8o8fzehfnsk3y3/Hi1+05et3XrHt9y2+6BwAvln+O+TZJ8M4nP3zZ7DhkzfB53Z6d3a4dsmF7E+ujAaZ61qMddNhhWjcml53xtiuWLwrMsc5X20hOIceZQqcfiZJEL5HMJWQ1nxEamjPjVAdQzCdIlODaqaoRowp+Qgjnb4l148IJEI7vUo8qFCpRWROGC9T3EWPXPjZdroUHXkI7TJk4gHl8mHqlqwsnCtZavHamqQWEE5bwmlLfZG7kVeJAzTGc+nQyaBHFknq+0lG70i7QWztUUV5zhBq9QZscR4vrKWNduCl0K5o3TtGmu4yQJc2JjwPEUVki0bpzIpIBiRe22l2jOdc1IwS4Oc88kAhhkJkZwDVShCtGNFwgWPWGISUECeoTZpKZrBiAKEVnVFH4ZAaOsNun+NZmnCzojX3T7jTOFPd6u++7G4B/xNV2wMvj7X8znRnZurxlUyty/GC7rlRGOuMRJTEqJzyZBxYEVnRqc4dIv38Zt1adORyYLoCGQsbO1XujhcwWzWpCYPMOyspmhTLpIH1usqobDOSt3hM3vXudycDtgtKNJaV2Qg12Wa27GCE3SUQ00uqdzf4g6KEtoYMjbSWZcFGBv0OeJb2HMcQ8KdT7KCH19SU8pBQK3M9Ee6QFNTqovuVlRXTSxWNg1Pmzp1iUW2SZbUxDi89zJBq0TQhC/1xFJaDg/XUKyVmB0/h7spc1jYGGVs/hC66PAAGslRhYkUSKm6p78cSf5xjws0M5pbR2/wbQFDZVjbcTO3ResPw/nx/4W181nM6j5nafv3F9xo0bj8ScEDlxXx6p97/7Vf3kMo7K69imApzvnsyc9ePMzZvz+TCzACYvrLagDBu9r8AHVL07JEVOVjRCJkfOmMfQVsCet0EGfSeL27e4wTVSmkucsnJXtuFU+qc0uUnjlplQq87g+c40AZd9VCt1FESlEC2nOg+2mydKF+B3zaEaxvQiUEpVCdDhxHNuR5e22WypGVBa76lvM5RphyNAZqzJF7LYgIojVmiSUtrlssuiIf9fJyC5n4aoX0GVrrujUosnTkR5akqIk6wndh1XXSvg9U7Xq67ZbNsCy1Rl47neTA0QGv/IYS2+I0Mry3wmim65JFWPawCqS2kFpXbP1tPYkKFLpVhtIzXqKDqHcRkvWcgkIGcblG91xJOlKkvCYmHIK2An1mCCUFpTOI3LZMzpjEztY/XzgKX7b1/ayAzb+owgJlOzC6UDiVe14xF9IxZDFghUIkhiDOSIc9Z4CeuO1NcegrKWY966+x9TQAmtLnDC6xtDDIx5GhMTusitkirj4RlSHaoSY1BkFiLwuIjUOicyrVtEKOtwWBZmfnc2tqfBcEEB/sPPqr+ZUdr23obkMIyV2leOuu33FQ6iHi2ojnPp6wEMrH40ym65JYNpjJkakiGfFRL4zUSEIKs4hMP+0wtVcRHNzhk9ub8+Fg2pxU+ufEkhsMWy2pjPG9gBTXZASvxRcaw3+TA6iaMlcw7sM4DEyM0Jssw7SETiVEeeJa4E/Cj+57CHSPzOWvhHzir9nv28zxCseVtVa/DNVNPZB1z6T18YuIhVpxzNVxzx94ezh6vxRedw+oPfeVxv79x+5E8OP4MRl/0+N7/l//9KtJOYcP8ZlgIP3jmM/jaXVcD8Ivpf+P4gbc/7vFtq2a+U31VuF51XceKMMTckayrzTD9Dlh93ZU0wyapu2kv/o/jnmNWXydGNNoE05q05sT1qpVhJaQ1j2S0RDYYIdsZqu1oTLrku9CzZuLyAqwlnMjwWppoUlMaz1CxwW8byiubyHrTWQhrjWwlCG3pjPYSnHUE0UZBbbXGCmiPeKQV0QUv7TmG9lznjBZNGry2IZxI8euacFpTWanwG86lTWauG9IZVphK5PbTWKeFMbkdtdd3Uhd9Qv0CABbH1vNgZJDmISNkFYXfSJGxxp+KEalGZBa/nhGOp3j1FL+ROupcqvHqMV49RiYaFTuNUDqnih12QUzWGDemJEU22wRrJhn5/SRzf9Ng+B6N33QhlwMrMzojgmT0kUnLM/XE1p7WpjxR2peta3d0enYVvGy9rm2trwAyM7XzJYzNOyeg806xzHJqmXBdbdc1sLlGJheXh4KsLNGhRAcSE0h0SZFWPVpzJfFQwUsTiI5i83SZB1uzaBkfY61LoMeiEFSFz6BUjMgMCWzUkimjSIHUWjSWjs1IrSbDPYrQyZZJaNiYB7MOv2ofyL2tOXSM30233xXw8lgVCY/Dg3EOnLuJYE6LzqwcMMUG68luCLMOJe05IfGAOz664pPWgi54qR+WEEUp00lIZiV3bpjHjx86mEBqltXGmB9MsT4b4s54Ifckc9mYDbAhGeC2iUXcuXYed66bSxz7BOUEMZxgysbpNY2gUung+5rIy7inOZcrN5/Ab+KIe9IODRt37avBdWC8PXi8ZuqR9YmJhwA4+BNrut2XF8z70R7f7keuvG6Pb2NbdcL9Fb74kcfHGjnp/Qfx4PgzdnkMfnRZ93HKmk/xwX/6B8DZKd/7hoW7vP6ta6YD01c2y7BCgjEuS6TdASldlyDVbh5F905KZLZn9Ssdl0oI4eyBs6wLhESauc5NYR1sU0QnIRxrYfwKqu06Lu3Zjr7mNwVWSWyoEK0EERu8psszwVOYcoCVLrTSyp5rmZXKmQLUWxAnDlQZi5xqUtkwyFTFOW0FDUOsJCMrU6INbZKhkKQWIBNIaw7k+A3ISharoLI2dcAnx19xzbmQeS3Xvje+mz3MSoJsKEQ22nmQZB8AyG2Wi+6WLWgSxvS6WVJArUJr6RBeS+M1U2Q7BW0x1XyfO1me/wJWSUe9SDIoXHtSi4g1wrgLXTpSJhssIUs+atM0ttXpghihJKLRQgY+g+smMENV0uESadUjmLLUWjMXnD/l2hq8PJnoY7sTvGy93u11Y2CmI7Oz5dywDMJI100RIDLcDbgU6EC6CazYuUCaPuG/lSB9Z1RipQsqjodAVww2NKAFSEsWe/xs5QEcVl3L3Nrt1KTIM0h8l1BvDYEQNI2lY90NTqolUlgqNs/3QuPn3ZuONXQs+AIeyKr8obOYH21axl1j86jPCynLmOdXVjIsIwwGD9WlhBnsdmlUO1quuyMZkh5/u+jn/Jd9DmsGakwv8QinLX7LdGl3WVmRloUzXwkEyYBPUpM050vqT0kZmTNNphVTzRIbkxphmPK8/e/hxIF7mOdNMa6r1E2ELzSRSFHCYKwgM5IsUdhE9VgQkUaUMmfuYqDZCtGTAQ+uL7NydIRyOeYX0VIiL+P581bwl7XbmdvHMLgjKe3ScZmpna9737CQgz+xhss3nsub/kRdyPrruz95NX/xvcu3K9DfVi2+6BweHN99Y3jpoWfztbuu5ucHNrvPHXvG4YADMn+zcpg/jp7B36aH7/K2ZgBMXwklEUIW5ysHXoRwnZTiZ+uoXEiZ/y+wada7CQewpkuNEsVdvzUuC0VrQGHTFLV5mrDsk1U8jBIkA4JgOnediTMn7szHAc7ZzJR8rBQYX5IOS7yWQYdOwB9MZQRrJmGq4fahELJn2okgRYDf0OiSpLomI5hKMKGH9SSlcU0WOZcyYaC03lEVkiqIuQ5YRROFDbKbSYyHBF7sdC1ex/GR27MDvMkSqt7MnciyniObyqWlwul4upqi4vhHEcnCIWRiUO0MNd1xtLBqgI48x2sWGjzpjA1wNHCZunHZfH9tqLC5QNRrOOMAE3qIoSoySZ3dcxF2mR8frEEmKeF0ixCoBD6pb5i5Xdv79USJ+f9qyeufUBCzr9oqbwvEFLU1mJnp0Gy/jBLdPIZCq2h8lz9VZH0VWg0XTuy6Mzp04Yo61/t5HWfgomJLNK5cd6akHYAxAuo+acNnRWMBp1buoiIzfJzNcWwz6iajlXsBKCwd67FaD9IxPrO9aSoiYa5qo0Se+QJMGZ+HslG+O34kBsHaxiA6k0zEZW6aXMao1+BZobvrqckAY22XtqateNzdGSVcZk1qNRLJU8N1lLwUE1qSQYGfT5plNbd+qS3RpHOPDDenGF8SD0jasy2qmhJ47gNIM8XckWkOH1nHcwfvYn9/E2WRMaJapFbSsR7jusrGbIA1nSEacejMEsoZRjutESa3u1YGayS65SFSZ7uc6YhkgaZcaxBnHr+eWEokMmqqzVg6CMDysTnAA4/ruMzU468LS+dx9Bm3sfSo81nB+Vz+/ilO4VO7fTsfufI6FrzgdO4/7IW897Av89PTvs9zrj+T9604e7dva3v1wlP+my9y+Q4vv/iicxj/1vcZfdGZu20MBWXsm+W+YPtPrAHg5Refw6x/Po9/Tg9n5KH/wI8u46nnwY+v7mlk5owdwhp2jPI3A2D6K6eLYQqwkXOWhegGVQI9MAO959jKXlmpHj2qqK0paJnGG5vCLB4mK3vUVmf5zJxzJpPtDFMJkZ3MuX5Ziwk8sopHMuBsj7ESv6Hxp1O8jdNQz1GvcUDJ/WxQnYykFuF1DKpt+vIGDMFmjS77pOUAv+6oZrWHnS4niwTt2c6drHD+Cqc1rTkeaQ2izeSBbE6UGg9J5P5VBjZOgk1zlzbj/i/0MFp3LamL0FA8Dz1vmKn9I7zYUl2tsYFzeMsqzvpYhwKpVZcHrWKNaKduvVrn4Mg5p+FJF/6Wf24y0ehqCHoIOVl3+TQFgJICEoMVGlpt93lP1xFyhkL2p1h7iza2u2pPdV92tmbAy6OX1yk6xbmAX4FKDElNYUUvD0Zqiyy6NEXeS64HQfSoaCIzeC2L3xToQdd9AbDSogZT2tpnVTZMTW4gVJqWSUmtpWUhsZJIOCeypg0Yz6rUVBuFJRKuCzOuBWt1jTs7i/jO+qfx8OYhOuMl/AmF8S0msjyUjVIfCTmwvB/PCsf73M40aY7W/Jy+1t+Z6a+dATcLlObFc3/Hhw4apb26Sm1VriFSebddg9fSZJFyVLtAOlfJ+R2Wzd/AoQPreXplFUpYFIbZ3jSLvWlqwhIJZ3SwXsNGXWJtOszmrMrK6WGmGhGlSkwlSohTDwskiUfS9hHSgmeh4YGwlNY7jWg2XuP+uWWsZ1kdjPLg7BHacUCSeERRSmODfcz9nandXw+OP4OXrv8+D/7XTVy+8dw9sg3vt8OA6zS85rtn83aO3CPbeaz67k9eza333r7Dy49/y4Gs7bmL7Uq9uPVpvn/wbSRrPtp9zlHcPgl598VpZi5jea3D+689gatPuGWntjEDYPpLa6zuZZUI4bQvQskuUCnE/V0XMikQKuito9DLpBnC9xyQKShkReXBljaOEcYQbAgQWZl4JHdAy6VJIlPoSLkMAIOjQ1UU8YBCJZbqugTVSFCTDddFSFNsAah0n/ZESuREA2yV5hyPaMrks3+5+5fsXWD9lkFmAq9lcmqD6HaHGgslQcVZcFp37kZmgHCzhUHD0AoE9cWK6gMDiPXjjkpmRQ8opH3HMe9GEfgI3ycZLSG1A03NBSHlDS7cMxl0x04HbhtOA0RP3Oop1+XRBpGmSCHQfoCMs25WjPUkspWiB0KEtYjNUz2r68I8wBoHZIq2f7+b3Ezt1dodXZgdAS5FR+SJ6sTsjS5M0V15NCA041K269W1QMbdbGeRy+cqqGTgOggyMYjMuEUteG1n/2s92aWSASSDHsZzXWc8C5mjUVncqWttc5BbWktRwnAw49REnguDxRdu/ZHQVETCgcEGRlSLmshQApbH87hm4gh+sWYpUljSTJHEHuWVHtWHLfGwJB6GmIBJr8yULlE3liHp8mfAOZt1rEEJQxmF7DO2yeh1VUK8xwQxRTenLHyeU76fK6vHs7ZUBiHRUU5zbhn8KTeRlUUuE01HkvZcy+BQiwOq45wz8mtGZUxiJVMmpCxTZ2AgBKHwkGgUlkld5s7WAnzhQFit0mGo1AFAG4G1go6WlKoxSeyjjWMi2IomGVQMPOjMdDqbJFlZ0J5tYTb4nibLJLOqTerrdpzWM1O7XsdcfBpXvaHHodi06GROuc11Xq4+4Rbewund14L9X0Ty0Lce13Y+cuV1XQvjL3/rSq5as4KfnvSs7uvvPezqJ7QL86GDn8MrdnDZm//mal58xc65je1MFeAlWPhGkjUf5RVvcd+vL37kDjj4OXzuhX/Fa6J/4rQ/TPH0D12Gd9r9LPvGgaz52I6tfwbA9JXVGpD/n733jresqs//36vscsrt0xhm6E1ACNI1itEBLF8jdjEqGqOxSwwmKj8x0S+WaBQ1ijFRY8xXRSISYwMBFQsKjAhSpMMw7U657dRd1lq/P9Y+594Lw8wduFM5z+s1r5k5Z5+91z73rr33sz7P83y6lRTXqZh04pE7DS2zHKT0JAY1O25ZCi8b07r7UN2Vjomid0ygu71SXG4QmycIGy1UvY98ICKv+NWkTEtMJLBBGd3waTXhRE5pTcPHBHeqLc55mVueT1eKOjcIZ3HtNkIIqmtSxg+LYAKykkRVNbotkImPZe7oiDv9B4J67rP3G4bmkoD6Mkk6IAgnHfFGR9B0hHWDE950KnJHOOUrONlwiWgy9j6ihxGBLinsStxyXF8FE0qiCYsNfX8ZJz1ZUokjq/jXkn5JtW6QqUHkFhdrrBTIdjYt8csNarKFi4pfb+MQWDAOKSEbKhEkKYyn0xK3TlNM8D8zPV2B62H3QIeAbA+ReazVlp0tJ9uZ6EjEystGt1nN2ZqcrIetw/sSAVdIxkLIKsU1r+j9gvXXuc7CmI/MdwgnIbPYVHYJjNX+Id1GRTgAYEvGP0hPhqzVA9wQ7M9NE8s5vG+U/aIxhnWdEVVnWNVZohKGpSEWLQxtmlZzRfNwvjd6LPdtHEEWFZ3USLirwsi9UN7oQ2Sc1AR1iMYV7ZEK39NPxh4seGb/HTw1Guv6ZppOIXGgTOGFkVgsbZdTs4bMQZ/M6JMhmtlemU5al5eQ+SCCWECfcBw2uJF15UFMGCEz4cMQcr+Q5ZSPmzZKkAxIsiFDoA331Uf4snsGzx36A4HI2Zj3EwjDEeE6yiIlIWfMWtbkQ9zZ3oc7JpdQT0M2bOpHKkdmFI16jJSOvK0JShl5rsjb/r6ihxKEtKRPMqSbY8obLKVNjrzkDaNTt42AgGhMsK6vQt/aZAf9pvWwJdz4gSu5u/j3N+uv5NDmwdx/sDeq/+t3nwzvfWz7vfc+32H+jZ8r0by3/oj37aXH8OVrb+ENM0jMzsT//uwc/t9FX+uShUdD+eAqL2p+mSPf+uj9XeaCRXaQDXKi+2+At/+2wb+cXOGv69/hvPPeyaFf/Nysz3SJDP8NL7uAqR+fwWsPbfELSlz9J5fN+dg9AjMThb/DGTMd2M80YQFmdInvkJtpYtN9rVPRSFJPhqQCqbpNLl2WTW9vLM5JqGXIeoNoQ0QUBjjtKxPdcWU54RoLrXY3Xcy5GQ/YHZlbp/LSGZehqPakxKsmCPb12cBh3ZJVFTaQqEj5GydFtr4QmJIkGjeQ+OpFPCaROZgQgoY3neqWwQY+1kxmFpl7g2VWlbQWhkQPiNnkpahOdSOqZ36HUqJbBmEdGdo3yMwsMpBkFYgmLNF46o2vJUVeCQg2ZQhbRF5bsKFGtRL/3QEiyUErH02aW/KBGBcUxLFaQkzWweazx9ghmT3sttgSKemQmj1dHrYt7C7ysR7mCFH8MUX6GML79hzYyJvVZWZn54FKgSuukcL6h3QTStrDgtqBFjOUE1ZTrJHkLY2KDbLfsHzBBINhi6ks5o6pJfx4/ElI4ajGCYvLNQ7t28iCoEbdxNTziDtrixmt93mlsxM4B+3JCDWhWXiHo/pQUkh4NWHD+tQ06yvhjfVlrgoP56EFQxyxzDe5lsAMB6mvzAiLKZLRJq0ic5KmszRdwoBUBCgsnqzYbiqaI3PQdpKKzCkLwakD97KyfxlWR90mn04JTKR8iptxOC0wkf++xyaqtNKAapBwZ3sfBlSTzGkCkVOzMXfamLvSJTzQXsCAbpFYzVDUZP1UH7atEZWMJAlQylIpJ6SRQkqHlhZrJGGUIaUjTTWmrWgsBd2SxBMGmVt0W9D/gCOayFGtnNaSGFfrNUbe2bj4ay9k8+XrGTnr5dx4+Q8A31n+grOeT3bFco5992dmVUfuve9VHHzQN7r/Dw84iz990Qj/9o4WF238bx6aWIw41LJs42V8+drDOHvfLctoz973KC+X+t//5j9f8NIdeo5bwrbICxTVl+aXH7d8bO3+X0I/9HKWxK/ENn/Meee9k7/71If4n3M+yx3XlPn6Tf8MJ+8P+F4zMwMG/uJcA+ceVfwb4JGEcGvoEZgZEFojhJ4mBh2jPkwb97v9YWRXBuWcm/a/dKofSiJkgKhWMIsGyauBb1BWyJmEc4jUoqfaiMm6JzXW4dptaLeLY8xYoZJiuiJkvKG/67/p9KGZQQhm9VgJQv/vqTrDt8TUD65ilMBJQXOhJGxIf6FNHK0FXodd2myxkcIqP1bVNkS5Rdjipmqcr4AIgWrlmLI32TsJJha0B8GFPvqZfFpC15XjdUgWgNbYSkzarwlqOWEtw2qfMKYbeZdc4Rx6KkHYCBv4lDbZTL18Tkrve4kC752Z0cHae4cCn1qWebmGjTW6WsZNTE2HCSiFS7NpeZvqNR7bmXha9ugrlL8Koq1+dk8mLrtCRtYjQjsewnmPhpM+7tcTAIcsrqEUrVyAYpGl8x+HaucI4/x1LpCkA5rJwxwjh23mySPruHtyIe1cUwtipLTEYUaSa+6bHKEUZBw1uJ5GFvLQxiFqE2XWmmFujpYhpUMIh7USm0lcLtCbA/ru93LgCoCDaCL3jTPLGhNLTCDIqr5Cn1fAaUegDVpY2k4xIA2hEGAtNaep2RwpM1TRAHLSOmo2RArLZlPmj2mFPtmiIhNikVM4GImFoWkDDII+mQKWzDkmTYl2K0RFgjwrGhmHApkLXOCT3FzR2BNtWTIyyamL7me/aIx1qQ8sUMIicaySwwCsSYeYyMvsG41TMzGrpoZoTMVgBGYqxAi/oDmZaJAOpYuQglyiyhZjfFIZAtIFhmy9Rrf9/VPmDt0wnlgFkjwWyGbvfrIzcOMHruTNx93DC1Z5idjIWS/nwJGVHPiGJTO2Wgm8ltYl8Hes5K4rlgPLgV+wbL/fU/7jpyi94niO+ikMvKPBecC6C1/U/fQ6XsTZF275+B3y8MbPlfi3d7R2xCnOC95deis0p6OTj3yr/3suhCZf/u3uv8+ufotLuYxzF3qi9slPwiIGeeNX3wn8FTz4twBUFl5NY+OzAe+FmQvJ2hZ6BAa6hCXL2xApXOIbQAohcMJNS5MciIJICBVOExaAPJsmMsKBUNBfIVtcJatCONnwPVykxFSCblOzdEhhFw766sV4C7FhvJCCKcgSf4yigtOBCBUuTWbIngq3pyx61eT4aozUvmkkXpLgsgyxfj2RGqGxtIQNBa4pEGM5TKYoExI3pI9Dzg3tQYlVjtImrzN2Ak8MnCOrBEhp/QN/O0U0AC1AlIgekphQ0B5QBHVZDDHzZCL3fWy81C0DpREIcpWR2TY4S6YhHG+TB75CJBsGpyTtqsaMhAS1zMeOuhxlErAWF0eQtxHOYqUj7w8xofTdm7XEKYOutyCzmFDhAoWtKMRE5kXlLgerQE17iHKTzfr9eKJjR30PJ2/eCEA+NbVD9v9Y8dL9/pr/vO2iXT2MWZiq7fxgifV3LGTJkzZuc7vePPHo3k9M4nu7IDBaQOYN6DJ1XQJDbn2FxYFg2jODBIH18clKkkgwxpLWU25tD9BIBFqlSGOIg5woyxHG8qT+jaRWc9dolQfXlxC0UdrgkAxFTYZKTRKj0cKydmqAVisitzmZlT7/RBd/hhxB6JAmQyYOoyV5LsiVIM8ctm1oT+VMSsfvogUs1pMMyIS6jXgoH+pGEiscA7JFSWYo2rSc4v6sisYwSYnFKiUWghRFLDJqTpEi6BMJG53mHltlysY8WC8TM0VtgSTUgqDmCHOH6PcSY9XOyZUkswqXJRwd38cys5axqTLa1YlUihYGhaXP+KaWp8gNrJFD6JahnAlss02sHW0VYnOJM4IgznC5oFJJqE3FXWX25EMKcokst1GBIctDphYHNKqCcBLKG72k20ifRpdnDkQy6/fjiY4d9T3Ukwaf/M0+3D0s+GrzAD6iXgkTr+Qvml/nH5ZdzlebBzziM0p8kv2Hf88bXvVN3n/5W9FrXwyfzvj9slc85nH88CVf597nLCWvfZxGswlAlqW846iX8LnbvjNr218sPYenr/3adu3/2RtTrl4YbvG9f/uY5I3v3fq9Im9bvq5eyYUnnIw97O3kNf+6nYPS8chnvog//jt881VeZn3N737MJ+56LeKpR8MC+MxBr+1u+87/+jvW7fdVLhn7LgTA3z2Hu9sv2eYx5vL7IVxvNnHfffdx8MEH7+ph9LCb4qGHHmLZsmW7ehi7HL150sPW0JsnHr150sPW0JsnHr150sPWMJd50qvAAMPDvqS8atUqBgYGdvFoHj+mpqZYvnw5Dz30EP39/bt6OPOCXXFOzjlqtRpLly7dKcfb3dGbJ7s/evNk12Nvmyew982V3jzZ9ejNk90fu/s86REYQBYG/YGBgb3il66D/v7+vep8YOef095yYZ0P9ObJnoPePNl12FvnCex9c6U3T3YdevNkz8HuOk8eW7vcHnrooYceeuihhx566KGHXYAegemhhx566KGHHnrooYce9hj0CAwQRREf/OAHiaKtR7XuKdjbzgf2znPa07C3/Qz2tvOBvfOc9jTsjT+Dve2c9rbz2ROxN/4M9rZz2t3Pp5dC1kMPPfTQQw899NBDDz3sMehVYHrooYceeuihhx566KGHPQY9AtNDDz300EMPPfTQQw897DHoEZgeeuihhx566KGHHnroYY/BE57AfP7zn+eAAw4gjmNOPvlkrr/++l09pEfFtddeywte8AKWLl2KEILLL7981vvOOS644AL22WcfSqUSK1as4O677561zdjYGH/xF39Bf38/g4ODvOENb6Ber+/Es/D46Ec/yoknnkhfXx+LFi3irLPO4s4775y1Tbvd5m1vexsjIyNUq1Ve8pKXMDo6OmubVatW8fznP59yucyiRYt4z3veQ57nO/NUnjDYU+bK3jRPoDdX9jT05klvnvSwbfTmSW+ePG64JzC+9a1vuTAM3Ve+8hV32223uTe+8Y1ucHDQjY6O7uqhbRE//OEP3fnnn+8uu+wyB7jvfve7s97/2Mc+5gYGBtzll1/ubr75Zvfnf/7n7sADD3StVqu7zXOe8xx37LHHut/85jfuF7/4hTvkkEPc2WefvZPPxLkzzzzTffWrX3W33nqr+/3vf++e97znuf3228/V6/XuNm9+85vd8uXL3dVXX+1uvPFGd8opp7inPvWp3ffzPHdHH320W7FihbvpppvcD3/4Q7dgwQL3vve9b6efz96OPWmu7E3zxLneXNmT0JsnvXnSw7bRmye9eTIfeEITmJNOOsm97W1v6/7fGOOWLl3qPvrRj+7CUc0ND59I1lq3ZMkS94lPfKL72sTEhIuiyH3zm990zjl3++23O8DdcMMN3W1+9KMfOSGEW7NmzU4b+5awYcMGB7if//znzjk/9iAI3KWXXtrd5o477nCAu+6665xz/sIipXTr16/vbnPxxRe7/v5+lyTJzj2BvRx76lzZ2+aJc725sjujN09686SHbaM3T3rzZD7whJWQpWnKypUrWbFiRfc1KSUrVqzguuuu24Uje2y4//77Wb9+/azzGRgY4OSTT+6ez3XXXcfg4CAnnHBCd5sVK1YgpeS3v/3tTh/zTExOTgIwPDwMwMqVK8mybNb5HHHEEey3336zzufJT34yixcv7m5z5plnMjU1xW233bYTR793Y2+aK3v6PIHeXNld0ZsnvXnSw7bRmye9eTJfeMISmE2bNmGMmfUDAFi8eDHr16/fRaN67OiMeWvns379ehYtWjTrfa01w8PDu/ScrbWce+65PO1pT+Poo48G/FjDMGRwcHDWtg8/ny2db+e9HuYHe9Nc2ZPnCfTmyu6M3jzpzZMeto3ePOnNk/mC3mlH6qGHR8Hb3vY2br31Vn75y1/u6qH00MNujd5c6aGHbaM3T3roYdvY0+fJE7YCs2DBApRSj0hWGB0dZcmSJbtoVI8dnTFv7XyWLFnChg0bZr2f5zljY2O77Jzf/va38/3vf5+f/vSnLFu2rPv6kiVLSNOUiYmJWds//Hy2dL6d93qYH+xNc2VPnSfQmyu7O3rzpDdPetg2evOkN0/mC09YAhOGIccffzxXX3119zVrLVdffTWnnnrqLhzZY8OBBx7IkiVLZp3P1NQUv/3tb7vnc+qppzIxMcHKlSu721xzzTVYazn55JN36nidc7z97W/nu9/9Ltdccw0HHnjgrPePP/54giCYdT533nknq1atmnU+f/jDH2ZdHH7yk5/Q39/PkUceuXNO5AmAvWmu7GnzBHpzZU9Bb5705kkP20ZvnvTmybxhp8UF7Ib41re+5aIocv/xH//hbr/9dvemN73JDQ4OzkpW2J1Qq9XcTTfd5G666SYHuE996lPupptucg8++KBzzsf5DQ4Ouv/5n/9xt9xyi3vhC1+4xTi/4447zv32t791v/zlL92hhx66S+L83vKWt7iBgQH3s5/9zK1bt677p9lsdrd585vf7Pbbbz93zTXXuBtvvNGdeuqp7tRTT+2+34nyO+OMM9zvf/979+Mf/9gtXLiwF3m5A7AnzZW9aZ4415srexJ686Q3T3rYNnrzpDdP5gNPaALjnHOf+9zn3H777efCMHQnnXSS+81vfrOrh/So+OlPf+qAR/w555xznHM+0u8DH/iAW7x4sYuiyD372c92d95556x9bN682Z199tmuWq26/v5+9/rXv97VarWdfi5bOg/AffWrX+1u02q13Fvf+lY3NDTkyuWye9GLXuTWrVs3az8PPPCAe+5zn+tKpZJbsGCB+9u//VuXZdlOPpsnBvaUubI3zRPnenNlT0NvnvTmSQ/bRm+e9ObJ44UoTqiHHnrooYceeuihhx566GG3xxPWA9NDDz300EMPPfTQQw897HnYawjM5z//eQ444ADiOObkk0/m+uuv39VD6qGH3Q69edJDD9tGb5700MPc0JsrPewq7BUE5pJLLuHd7343H/zgB/nd737Hsccey5lnnvmI6LoeengiozdPeuhh2+jNkx56mBt6c6WHXYm9wgNz8sknc+KJJ/Iv//IvgI/kW758Oe94xzt473vfu4tH10MPuwd686SHHraN3jzpoYe5oTdXetiV0Lt6AI8XaZqycuVK3ve+93Vfk1KyYsUKrrvuujntw1rL2rVr6evrQwixo4bawx4G5xy1Wo2lS5ci5Z5drOzNkx52FHrzZDZ686SHLWFvmifw+OdKb570sCVszzzZ4wnMpk2bMMawePHiWa8vXryYP/7xj1v8TJIkJEnS/f+aNWt6Tap6eFQ89NBDszrV7onozZMedjR688SjN0962Br2hnkC2z9XevOkh+3BXObJHk9gHgs++tGP8o//+I+PeP2ZS16Pjsq0D1iACSUqtZhI0liiERZkDvFYjm4bnBAgQDcybKAwJYVu5AA4AVk1wCm/TeWecRibAJODdSAFCAlSgnOIIIA4xFbKuJLGKonTkryskLlDtfx+bahwUiCcw0mBUwJdyxDOYQOFMBZhHSK1qKkGJCkuN9PHzDJ/os764zvr/680OAdSIZQEIaAUkS4ZIK9oZOZojwTIzFHa0AZAtg3CGIRx2JLGhhobSJwU5CWFcA7dMphQIhyYQFK5dxzRaOJyg5ASZ60fW2ccMP19BNqP2VhcfxVbDrCB6p43AMKPAwEukIjM78dJ/76wDj2VIJotXCsBY0Ap/z10VnyKv0UQ4ColCANwjmxBmUbFsPKKj9DX1zdfv3p7FB5tnszET8998eM+zp9ddNl2bX/Oc//ncR+zg6/96IWPex8fe8ur52Ek8N6L/2te9gNwxzW3b3ObJz1rfh8eevNkNvb/wt9iRBUVGo7bbzXH96/iGeU72U8bhBCkzjJqFOvzfgSWlotInULhSNBsyAZYnQxxb30Bg2GL9c0+Vq0fxjYD9JRi4G6QGZQ2ZQjjMLHCakF7RDJ5CJiRFKEcOJDKgXDYTOHy4pqnHc4KEA6pLTZVxesWpS3OCWwukWMBlVWSgfsygmaOyB0yM5A7XCiZOKxCa0Qw8IBBJf4aLFNLOqBpD0vGT8jQUY4QDh0anrn8Hp5UWct+ehOJCxi3FRo2YiyrooVhSDfoU20kjgVqCuMkv24cxtr2AKnVTGUxd65eDFagRkP6HgDdgmjSIGyhiLcQNHJUO6O9sERjsQYBKoXJQyFbloADZyQIB04gtEVKh5TFuVsBDmymQDp/q6hr+u9W9N+fITOLzB0it6AEwWidZN9+Jg4JMaEgmnCMH+0wQxnkErkuZ9VHPtybJw/DtSODjJWey3t/fQ0fe+qzeO+vr5mX4530oR/xhkO/xml//5lH3ebl9/wVAG/90vP50Pfu4II/fxIf+t4d3fcPvXzLixYAz12R8Y2fVXjVMxsMvurlPPfSV9O6v7HVMf384+961PFM/td0JeuNp2yk77WP/3s4rzHI25KX8uw3fp0/zc/Y6nfxcPxu4RA/eu8S/u+/rGLFlw/2Yyy/jg1LPw7Aay4d5usvG+OY9AW4u77F30zcyNv/5418av9386vF7+f8v71ja7ufhcn/eh9/Nfw5/n3sHfzq3nGe98Evzmme7PEEZsGCBSilGB0dnfX66OgoS5Ys2eJn3ve+9/Hud7+7+/+pqSmWL1+O1jGq0o8KY6QSuIpARgIVK+Ixi7AQCEWQJNhQYSOFHSkRTqZYo3DlEF1LMaUAU/EEJqgbWDSMriUgcv8QDf5BGkAABmhZVNJAlEu4cowtawhihHLoLCMva5QFGwicFqjEIhzISKNaGaJhkPXiIT3NPHFBQm79QXQAOJyxCKH8g7uUBZnqPMxLRBiCVpiFA7ihmLiZe8KQaYJ6jiiVcVIgA4tsZ2BBaokJFCJSOAGmT6OblkDmKCc9wShr5JBDtS3OZgVxEcX556ALEiUApxBGgtD+5tK2nhhFEaasEdYTOGEdIirIjxAQOlRipnlZrY2YbPsblVMFaRMUd3S/UeeGZwTUUoTKQSmCZo2gJItd7/nl7fmcJx3c8PevmJex3fD3r+DEj18y5+07pOONf37VYzrev31vxWP63JZw0bl/Oa/7Oveir8zLvvqqO/8hqTdPPLrzJCohRYkFSyY5bskmnlW9n/21oSwVCkHmBGVnWewmSJ0ko4nCEQiLcYJJO8YGs4mbmhlllfCHmmbCwdS6GN1UiDLopiNZFhO0HJXVLdKhENlS2M2SejVCLm6jtMFagckVMhC4TCJCi1QOm0lPYiyoqus+zNtcoDcHBBn0rYLyRkN5IgMrcYFCtdvYKCTvi6AvQoeCkByhHCq1uFDQXBTQOATCIUeeRPQPNVk+OMWy4TZHVzYzKNvEokEgxgCo2YDMKQJhiIWhLAwVKUidY6j/LtbkQ1w7eRglk/FgQ5HUI+y+gnpF038fhBOZP7YUpAMalWcENYczISYPaA9J0hIEDnI0wUCKySU2UX6hcaiFlI6RSptGGjI2UcXmAqkkKIeYChi8V9D/UI7OwSmBygwyzxEtg5AhabmMHQ5wGkobDfJeSX15mWShobrZLyDuDfMEtn+uPNo8qUrBF04oofol59/6M9Q8ZUut/OTz+dm7X77Vbb59yL/z6tG3ctopt/D8Ay7lsheewtHv8u9d/oEKR/eFs7a/dfx4jh5ayeo1K/nPy6D+wtfwhQE44l0/oPVPWycvwKMSCHeZJ3YvWXY5i8+rMfIlQD/+7+GzA1Pcc8goVx/4Sl6y7PLt+uxTNo7z6lefzRtfmQL+3DVwhnoBAKOvhDMASsCxr+RbfJLvfbINd3+EZ/5u2+TlWbdezDVHvwWAgVd/FHfZP/Ka00f5r1d/EZjbPNnjCUwYhhx//PFcffXVnHXWWYDXVl599dW8/e1v3+JnoigiiqJHvuEcLgq6K/x+NUkSj1tMKAhaFplaXKCQuQUhMKGmtTj2lZK2Ja+GfmUmLR6mJZiSJggCXF5UaLKczo/GGeurHp0qSauNyA1qokZpIsaVI1yocUogjUVm4Iyvbsh2hqwniGYb105wMKOqoqA4Hs5CkniCovDHUsqTHYN/sAdEHOCyDMoxyUiMKJ7tnRCEkxkyM1gtEYANJCKTCAl5NcBECl3PcFqi2n7VDwu6lWIjjWpbTKxRSkJGUV2hIC3FRO2QCV18O53xG4MwFm0sMo2wcYCJFTIxvvKSO7DFeVuLTAyyVlSgOlUnwLUTRKBnH6vzfRkgVDhj/XGVguZ0uXtPx7zOkx2A7SUxMJuIzIXMzCdx2d2x7KTlrL7+oa2+38MjMd/zJKymnLbPPZxauZth1SYWklhoJJJIQOQMZQzWOaRwKASSAIDEJSxULZo2omEjSipjqNxiSvShGwKVOnTLkZcgKwmSkQirBfHmjPZQiK4LbFYiLVuo5gSlDCslLrAoZT1xCUAI51txW4EYjSivkVTWW+LNGaYk0U3r72UChJTIdnFd1pKsojGRQLVBGOfvGQ7SfkVzicAsaaOlJa4anr//bRxRWssR0TpiYRiWOYNSA34xKZM5kBMIiURhERgckYCDgikMAuskkTRobUlMZ+HNIYxf1FPtHBNrZO6v7y5ShBsbCFsmL0U4JaiMOYJawNRREA4k5AJsqrrrZ400pJ1pTCrBCERLEa9XVNc4Bu5tYwMJDlTbIDLjnxtCjamEIKG00dFcLMhjQXmDoTLqmDg4INy099xPYPvnyqPNk6nXfwXu+t8dMsYz4rfx72y96vBfi7/AfwH//IWjGdMhHzzmEr73wX34/p9fwXlnXMJ+p/0fxl73CpbtO01eTspO5L1P+xJwEwBX7vv4xrnyplP5yAv+nqfdmHHP49vVI/DdYyNW3nQq5aeN0hnvNsfzmb/j+Hf9ExuedQjDV/pq/tFDKznnv4f52ktnb/vHM47ko29aD8Cy390w53F1yEsH4sUfnPNnO9jjCQzAu9/9bs455xxOOOEETjrpJC666CIajQavf/3rt29HwsuTZObJh0xy6I9wWqBbFpn5cnHaH5BXJDJzxBsTsv4QkVucEphI4qTGKZBGeDmTdaBV96FZKIVLs+kqyAy4JO0+QItaA9H0kq3yRj1rnLQT/1lr/UO6c56QdCoZaQbG4JzzTDbQYH0FBkAYMy0jKyRlLssQcYwZKOMUBJP+4d9UpK/8SD+GcDJFtXIvZdMSE0pMLFBticwsqm2wofQkxyq/UpVY8oomiEI/dtshLnZ2mLfW3fPojBUpIE0RzqGSFFmOkaUAp6SvwiQGYS0it4h601egUr9qQOc84WHkpZCTzSRzKaAkGOtlbHsZ5m2e7IZ4IpGTHnYs5mue2EwhpWNTWuXedDEjsgnSIGdc8AKhCPAVAIud9fkIzYDMODQcZcKWWBWNkPcrHpQLCWp4AtO0mFCR9QuEUwjjkLkirDkG7/IP+HlJMnVwiDMhKgfdEGR9DheCKA4Z1gRhDaprDOX1TfREC5zDViJMpEAJ8r7QP7gnBjcQ4YTABgLddOi2QyUWmVtMIGkPSNoLDWEpQylPmMoq5YBwEwfolEhIAkKUEBjnsNiCuEiUEEgkFoEs3usTkkODSZ49eDsNG7GxXeXmyWWIqQDdkAQNf/3HOnQ9RRiH0wJTCgiaKeFonWooaS4KKG/MUfcbdCti/GiJWpAg45ws1SRO0FYB1kiEAFHT9N8tGXgwQ7U8QbJBiGpmXckyEtoLY2zoJWfxuPH3PSHIKhKVOuLNFtWc/fPdGzBfc+Wbr92fo3fA+K5sf35O2638zN9BBs/8FhxbTeCfH+CZ7/wMn7zQl2Oy607nfV9awhHFw7wnL/ODF19/HMevvo7vrD6Lqz52H/cc8Kt52zfAv3/nMr5wboXmg3MLIQE4/l3/BMCVt72bK/eFGz9wJf/55m9z4ak/4fz/Pp2vvdRXTVevWUn1qyv52r7H89l9/31exz0X7BUE5hWveAUbN27kggsuYP369fzJn/wJP/7xjx9hLtsmCv+HNBaRGUwpQDhHUMtR7Zx0IMSGCmEd5XVJl5DI1HYf6PNKgA0kwXiGkwJTUthAeFIBxUNzjgiD6Qd063DOv+bJhJ5FPlw78WMrZGdCCP+ec6C1r+Y4V/hyJDjj9yMFwvpUB5Hl3c92H9ilnUVihA5BSfJqgEwsup7iAkWqQvKyJJzy8reOx8SGChsqdNNgShITSWwoUc0cp/2/EV61ZQOJiT3hElp74mWtr3wU34vQ2lepjMXh/0ZJsMUN3xjIc0Q7QWntCVfhI+qck8vzoqojPIkDCCWu5YmgiCNcliDiYiWoc3wppr97hZfgub3rhjNv86QHYH7lYzP3OV8ysl6V5bFh3uaJcARBTssEKCyRMARCkjnTfUiXRS3eMrubgXGOrLg4BcIyYSrcWV9MOw/ACEwMWUUQj0FYs1gtSPsESEE8YYjGDe0RBQ5GbmsT1mOyssBJKG8ypJXpa7PKnF+gy/29TmSGvD/GaYnToivZNZG/Dufl4j5kHCYU6JYjaDq/XSH7sAG4qkEIiMOMJAtomhCFJUB0q1DgL72dKgzQ/U4kCikcoJAYAmE5MX6IjabE6NAAd1YXkU4GyBR04o/vr+N4tYD09yeEgCwn2tAiGdTkJYlKDEN3JUSTIZuPKZEuzL2M2IG1AtWQVDYJ+h6ylDYmqOa0vzWopYjMeE+qkqRDIc1FGt3yFaigYbwfx0Ay6O+LlbUptlO52oswX3Pl7P98EJ41/+M75N1HsGoOl9POAzvAhVe9hQv/+uvFa/80a7vHW2nZEv5h7fe55y3HUNr3IC47YHz+DwD87qEGPI7ciBM+fAYfe86b4IDj+dpLx/jjGd4/eeVtHdIyt8rOfGOvIDAAb3/72x+1xD9nFBUFJwUis0hpIHHI1Jv2g1qGUxKnFTLJMZWAtD8oCAxgHartS+0y8RcrmRlspHBxBM22fygONAjhDZYAWT4tI1NqWl5VVGhEVOgwtfaVnNwglPT7LAz/eLWbL+PXm14+laQgvXenS1o6+5castzfN4ScJkhKkccKaRw21v67MP7GlJcl0aYUlXgDfzYcY0JJUMsIJ3JsKEn7FYEU6FZO2uelZcKA05DHAleOEI1Wl9CJoJCt5bm/+Rlb3IRm3NCLKtYs039B/pw1CK08cel8fx0So1RBzpyvvgjp5WhxNC0hA/+9BDMrXHt+xOWjYV7mSQ87hLzM3Pd8kZgeHhvmY54EUY5AMZXGtF1AhqTpjH8Yx0vJOuVni+0SGovDFLIyCzRtwIQpc8fGxbRaoa/W6M7CkK+CqNQR1vzrJvKyr3jMkAz44JNo0tDYJ8AJ0G1JWhXI3GFiUVzjAQEm0uSlmKzfdgmOzATBlEC3IRorFu1yH5IiHL76kloffFN4M03JhwM4B5Uw49DhTRwcb6AiMqIZ5KUD2RVV84jXO+ROIhmWEkmLBUGNailhPK8QTeIJWGr8vRAve1ZTKUp5j2dnAa88mpIOaiYPjChvMFQfaqHSmPrSwBMQC05C0HDoxBBO5l6SnNtC5eAQ1uK0JOsPcVrSXKS7lSyg+32qtiGagLwsyfo0It87vC8Px3zMlfe/7sOczY/maUQeFx1zBufe8qHt/tz5Ky7e6vvPuvVinr3+Fu6/7G8Ye90rOH7qFFb2/4bjp07h6iXHPEIatS0Mf+gsXvWuIT7wxSOhOr/Vlw7+/TuXcdm7Hp84bT6rTvOFvYbAzAuMRdUSrJZFqpVfAROZgUAhizSwvFImr4Y45Ve0ZO4QnQdv6wimUi9nygy2HGICiY40ovPg7ex0xcAUFQnw1RQl/WtRBIHGlaKuBM2GGhf5VR+cIx0I0e2ihODAhl7C5ZZUUW2D3jAFU3VozSZO3TF0qg6dQAFrccWDvJPCS+OMv6iXNmXI1CKbGSiB6YuRuZcM+G2ML6sb/71kFb+fjhbZFlI5Ww6RHXLSqZjMTCLrmvtnkKqOF0bq6e26xCSYXS3pVFQ6q3Gd6o2Q0/8XhZHfmO7PzO9/ehUQKRBy75ORzRfmy8DfQw97K5S2gGJ5ZZxB1aRpA9oyp09IFF46JYV/SJczKhAzkTrHZlvh/mQhtYmyX9cRDqfBKf+wLVOHTDuSXIEJBcII8ljSHpJkldgTFAfpkKN+ZIaQDpcV10blENri8mIhTHT+FIZ+4chHBOSSZl1SWS0pb7AETUtakYSTnZRM6RMx1TQ5kdJx4oIHeXJlNSfGD7JQWSAgc/5C3alEbQuBKHwyGDIEochZXK0xYUYQeUd94BfbvB9SgpY4gSc1WmHLAaqZEaeGrFSitUBhg5h4LCWaEDjh7+c28ItyKIFqZIjMEyNhXFF50dhIY0NJa0RjNZQ2W0/ejPNjkMLfg1sG3VS0FwQ+DKCHnYYVFx3ExPf+DPjGdn3uwqs8AemQkg6uuP4nLHvaKD//3S+4qP8TvH3ZaXAVcBI87caMHzzjGA76wrPRR32K0z5z9zaJUAd/9+k/cub+F7L4yJfAp07brrE+0dEjMDOhFTjXTbqS7czravGJIx2/isi93la1LcFU4bWwFqs0MjPIZjotY7K2kFIJL5Eyqa+kCOkJS14kcFHIu6IQAo3pK5MsKvmbQu4wsb85mEAQThl02yAcWCXQDS/ZkmmhAw4keUlh9x0kDAPYND5NAqBIHpvxo1fKS7GkJw0ys92VKJkYv19jUXXvuzFRQDoYIHKve+6GRRTSMleU8XXT4LQgGVDksfRkplMlEcKfr5S4JPHEY+YF3jn/x24hMUzIoupipmV4HT+LNUUiWeGl6UQuqxlVnZkkUgofGuCmSZQIAv8zUVt+qOgBTvz4JXsEifndLXMzzj7lmJ0TVtDDEwfGCELtH9QrMqEsM8pCEAmNEh2Z1PSqvMV1fTCdv5tOcGtrOWvagz7+WHlSYWKHTL2HRRjX9W6aUGACQVpRJEOCxnILA5m/9GUSisQx52ZUA1KJyzrXSU9mdGiQypK2A7CiK3AzVUtjOchUEo0bZEQ39MYGAqu9kkA3nT8WsK49wEjQoB2txjiDLcoVXQnZo1RfOuhUYTJnSJylLByxyAhlXlSAAOHDZETufCqncz5wxhUxx1HYXdSSqaGyLqW1KCTpl+iWRjdydCstzsNf92U7997WUCOywrBvbXEvARNLTAjxuCXelJKXlV9QNIWSQ0ts8d0ENUOmt36eT1S8+e1vZtWfNThw5fwmJx79rC8yCKyZw7bP+Mgh3Pjl9TQ+8R5Ou/7rLFjRx/FTp/Dyv/g2pX0P4tbvPZdrDzyezcDRywzv4d2Unnw8ANcyBgceRcDPeOhvf8ZHRt7AVaU/donQtojM5X/p2BTnrB7pkZftRY/AzESSQcWvoOTVABdI9ETb+2LaPk7YBaqbdW8DhcqzItIX70lxDiclwhhcQQpU4qsFzrmuSRwtC4O5rwAIrXB9FWx/ibwv7PpMdNPfAHXb+Pji0IcHiMyihH8vr/iUsmAqAwEiMejMklcDmgf0UwoUYt0mfwHvVjPwxMB6XwlB4AmMEOiW368NJTL1RMnEvnpjQ4XT/gIunL95ysx6b0tu0eBldsJLDPJqUNzYoLTJoCZb3fABnOsmsyE7BK9IAdMzqi3gxwn++3IW1+FjnZ42xT7oyOWs68rMOsSqW3mB6YpMBx2SNOM1p3vTY3fEXEnJY9lnj8hsP743fip/PjR3g+gTBk6Q5opI5izV4yyUeSEb8x6XQCgsbtYDvMR7ZAwOg6Npi+AUmSMC66sm1ntMbOAXmVzo/SlWQV6C9rCgtcxAJUco6/uYpJ1rZFHhVsVijXI4JGF/QhxlLB+coD9oU1IZqxuD3Du6ANMIEIFFlVOEtGQiorGfoDIqkcYvroVTXkLc8TsKA6KtkEOOsaTMeKmMws0gbrL77y1h5vfSIXbT5A425v08ODmETARhzfefMaHElbzv1CeBWk9ikmKB0FhMOUCmBt3IKG0EszTEah/eYyPtU/aVl5DbQCGFwJQ1MhEILcH4e7yNFWnF9zjTTevviUJ4+XXuCaUwzu9bCtJ+RVv3FsS2hAdPq/PGX57N1fxgXvd70TFn8L59r+dZt17wqLKuGz9wJZ9a8RJglG/895MA+PJnxuEz4/z11W/i6quP8RtOAOxDUPrZNo97/uu+zHl/FgPwib5jt7n9CW9YQnXF1+G8bZ9TD7PRe0KbCSkQSYZMDKasuyQC6F6QkA4b+uQt3fJGPgCR2S6RcZFCtAutrLXdz3ZN6mEhTTLFar9SuHJMPlIl6/chALJIODGh9OkmAAKi8SL9RAgvF9MCpzxJkmnu5WWF/Cvt1wjnaOxfpVpvwWQdEYWeJHSkUzObV1rrje8u7jbNtCWNamSoVka6oOwTxZq5vzgrASXfQFO27HTFROGrWLnDRLKrDw5qmT9Gh7QI0fWqzMr8DgO/jVRdYoNV3iszI8gAipXEmXHQ1k1L0jokqFMNE15W0K3SzPTZgN/WSk/uAo3p70nIdjfsCPLy8P3vahKzJ/lfrjZPpzG195mT5wPOQTsJuKe2EDXiiIuUrUfDTL9HB2WZsziYZFNW9bKvoqrhlCcOCDCBwAlI+wSThzrMYObJTi5xufKVEOkrIkFfSqmUopWh1vAPWaIES4cnWV4d54jKKMvCzWzK+xkOGyws1VnX7KcSpCyM6oy2+7g93Yc8l9SWKfrWmG4FRhiHKSmcBN1y6CmJWOoIlWGfcJKoWHCbmTQGPILETROWabRdTuYsqXNkDu5tL2RsQz/VOkTjeSFdE5iSJBlU6Laj8mC9SCMrGkYXC1o26lRYDOXRjLyqyKoa1TaozPpG0I2ke04inQ6GEZnBRgHtkQATQzRZeDlz58liKCF33pdUxErnsaSxRJKoRydsT2S8ap8dEyLz4Tf/itZbG/SvfuR7P159AS8+7VNccdp32bzseQC84VKA2+HXPtEy4GeP+dif/GkRGsRvufD+t2y1CvMn5zyTv3vBzVxYfcyH2yqWXXD6nOVsexp6BGYmrIMsR0+1cUEZJwSmEnpDvlC4APL+CBP7KojVAvAP+jKz2Eghcm8m7D40Q1eHK6ydlk4JgbM+RcxVS+RDZVzgL+gqtT71RBQra+H0yo0JJGEzRyRFxHE16q5k2UhjShobSJz0FSFhwGqBWdCHmqx78uIs5G46sphCPlb0W1HNDBP71ag8VpjIJ6llFUU4mWPKGpXaogrjKzAiMyD9GGzg5Wx5SZFVJCYUlMYMupYg2oXkrnM8KT3J65CfDmbKxopEtm5UtHO4zvszCKEQAsKS33eW+c+gup/Bmen9dxLOoCAyMxLZVIjtK2HKvRvO7oQdTV62B+de9JUdYuTfk8hLD1tH1g5wgeL+TSM8tGyYpWo9gbAEQm1RPtUhL0oIb3AREGAYVnWGdJNyNcGUMlpTMUaAzH3gjJMCG8DUQSCWtgmEwxiJkAYdGrJW0O0yf8TSUfYrj9OvW4wm/QwGTQAimTOgW5xQvo/legqFQwJj1gfIZE5xV7qY+5NF5FZy51370lriqIz6CogTolsFyfsUOnGolsQYycZmhTXVQVSfI0BsMYFtJnHLnOmGGnRjlotAg0mreCAf4qoHDwcrKI86pLHksY/rb44o0gFBedT3a3PKqxVsSXfvx51DOe0rSOGkD5DphACkCyLy5SXSSqGCaPuY6Gg8I1w3hbCWPPKqgqBukKYgMRZ0yyslRO66FZis7H8+Wf/DFsx6AOAb60Z5I3D4XUu487D187bfzW/dcmPJv3rrXbz4tKdw/r++hmsPHJu34z0aVvb/ZqvvP88tBW7eZcffk9EjMDPgkgRkiJxsoJU3/dlQ+cZYaSHXihUyc+i67+Oi6gmm4o3rMy+MOIULNVl/6EvKgfIpWh3ZlJDesB8FmIES6VCIbhovDyvIj0xybOhTZ2TqCMdTVNNHG7tQe61u0bvGCUAoTOgrCKptCcdzkIJ0ICAdCCmHAa7d9uTAFdIxIXxoQCde2VpEo00gBO0lvuIirL8QBzXjOx0L/5pPZCk8Q0Vzr8bSCCd9jwInQbctpY2GaH3dp6PJ4jidlDApfY8XIbzpMjfT1ZeieuKk8JWhjqQrTSCgq2kWcYSrlsn6Y1xYpMhZh2pkyFq7m3rm0qzYt5iddNapzoD/u0gxyyq9CszWsKf4YHYU5pvE9MjL3gXR0Khhg3NwY+NADtCbiYXpGtIfTl6yGQssFot1rjCsGxYENQ4d2Ugti7lnKkbYTjqkl5HVl0nyBSnSCIQURHFGf7nNokqdUOZYJ0it5qDqJg4tjbImGaJlAk4eWM+IqrNETzAs2yxUjrg7PkmfzGg7x+3pEH9sLWVdMuAHGFhsIEkrgnDKv6RaOcIosj6FShxBHZqpZtyW+X2wjInhkIUywzgH4uFdb+j2gzHd1LHCJyMsxjka1vHD+tH875pjaE7F6M3+ftBcHJFWBXlJkAxBXvEy7mgyRrdM16dq4uK8EgOOaSl0brGxIhsImDgooLmvIxs0iNjgEolsKnRDUhqNCQ6MENZL9Wwg/GLmVE5W1eiWD7Ix5QDpQGadRTxPYPKRjB4eif1/7ksP9de/Bn71iXnf/8PlY9+44ik855uHcu3IjicvAI2Rw9hazPBzln2IH6++gNG1/8vi82rzeuxlF5wO5/1kXvc5Ey++/jhWvavNiz78TH7+rkO58rZ3P+59vuCaY/jfZ90yp217BGYmOj6QJEVNNhCujB2MfTJJ6FfEZOH5cFJ4s2BmUFOJ182ajknc+UpESfv4RVtUYKT0lYOOt0MIXLVEMuQlK27GCpEwFpFZwk1NoAzgy9rFNiYufnQFcRJ47bHq9KTpSKkMRJuMb0IWBtAuEsk6D+1SFGlgXg+NEAhANhNUEoMA3cgwJe0blynhzYnOm0b9eUDeH4DzUcnSOGTu0A1DOJEgJ5vTq1/gx5HlPmVNCi9hA99AUmtfPel6Y9SMRDHj/6+Ul76FCjc8QOOA/u73Bp685WUvC5CDETLvJxhvISfqvqdOms32xXRaMHf8NEWFLC/3UmO2hZ1FYnZm9WVXyMh65GXvQzCmyBcBAq5ccwQLghov7buVqHiAf3jyWKfa0On/YnCUhWNY1dlsqoTKkLS071cCPgJZCZIBQePgjLAvJQgMhy3YwDNG7mZQNRlWdZSwbMz7WZ0OsywcY1jVOTjcwDHlMoeGowzKlGEpZzWSBE8oFAKFY5Gq84y+O/mtPJh1zX4f5RxAOihgvX9Yx3lyoBKLahnCSUVtKoT+lAc3DPPLJYdTKz3IElVnWBrKUs3yBFksmbNIIcicJcOCyxiz8PtkKT8aO4Zf3ncwOjC4tiKcFCSDUBsQtPbJEdWidYFy1JdIkpGQ0nrN0N2ScCL1PpdAFOoGinskZH0B9X01jWWC5MC2l0wY4de3AocdzEj7BekCich8wlswJXDSgVP0Gy8ZS/sV5dFOjLWv+gtbRDNrEGrv6is2X/jjfqOcsQbG+v9t3vddeu7gLA/MP3/haFYe9SCbRw6b92NtDRdetXUZ2eue8ve84/oFcMEdrP7Q4yccyy44nZX9v+He1x/KlbdNH/fHqy9gZb6A0eAWfv3SX1F+Qca179++eOULr3oL3/3Az+j/t3fynbs2cOZUHz9/l3/vWbdezPue9xuu/0qZ8eX/w9BDL2Rl/2+47KRHJ3CPBz0CMxOdWF9AJClyCsIkIx8sd1f2wWtn/Ube1C/SHIfyq2GBQgJ5NcSGEt3IfX+WzOCs9Q0s89yTmb4K2VCM0wKZFsksmZ3uIZP60raJJVlFoRthd9VNWFdEPftAAKf8PmRS3Pxi73+RLe+LkWkRkdyVZhnAQlpIqZz1fpIs84TCGMJNDVyofapKxROUTnR0p29AOqB9GT21yMxRNq67EqUaKaQZIi8aYAbap47FAaYS4UKJCfzYhYNwPEE2U0S96flEp0LSiVqGok6vEXFEtmykkO05n3imhK9eWR9AkBeBBzYUJIsr6HJIsG7cjyE3kKWzk8aKqlg3779DSHvYKp7IlZjHW4XZHuIy8zg9wrP7Ix6DxkSIq+ZMTJX5z3tPZvCwJk8v3cdipdHi4c0bfbXBOoFhmjxYJxlRdQ6pbGR1bRCMQLb8qn7SJ6gdCLqSIYTjiIWjrBi5gyfHDxEIQ4il7TRtGXJINMryYDMH6SaxkDTc5k77sFkwzpvtvdRLECPZXxsWqM2sykYYjFroOCdPJHlZdivyTglUO/eRzlIQtBzxWk1bW1Q558oNT+LGaH9esnAlT47WETsfVNCpxXjS4kitZcxqxkyZ37UO4NfjB3Hrun2KtSZBlmpw0Ny/WOQKp4lBuZoghCORAdkSyAYVyYim+pAmqPuFtaAui8hkQd6nGDtSUz84g8ChtMNZhzPKE0UBCFClHCM0DokLLUnVQS5JR0A4TTRhMYGgtjwiaFmisQScQzclQUMDApf2TPyPhqsrP+CKZBnvvCtm+D8u4bqPPP5ErtJzB2n9aIIbBz15ecZHDqF92NNZ/as2pZ18u7p6yTFbff/lN70LsmMeN3lZdsHprP7QT1jZ/xsWn1dj8cgXOOOoTwGeIP5/L7sUgBODjBMD4Mfwgf3OAeD0VV/b5v7POOpTrOz/uq+4vKLFaX/xdfQlf8tTgg/zhedN0bjrPbznJ/4cbnnxeYz1/xvP/I9JXnz9cTuExGw3gcnznNtuu431671WccmSJRx55JEEwV4gt+mawAuTd7OFSFK0dbhSiI21j4kEkMKThEgj237VPq+GfvWl7c2VnQjmtC+g1MwRQngZkxTe+1LyRnuE75ciM4tq53QSLjtRjCaSxJsLz0tZ+2jjVo7LJaYcFF6cIhEstzAj+lkYSzYYYZUgXJ3jOvHBSQ6luIgUnn5Q7zR5FC1f7enESMrUGxRVakmGAuINfkW8vNqX52Xio5zDmabHLO8aJwHsQJlkYZm8JLHae3Nk7gialqSqyKoK3YgIpmL0xqlp6ZdU/i7biTmulGgdshCAcLyNbvj0G6QgqwbeSAm+QlQQHxtJkpEIF44QrhpDtBOcLbo0G4tPVBA450MDhLVdbXMP28aOJDG7k/dlS9gWiZlJNjrbzZWA7MiGmT3sWJQ3WNygpLVEkxnB+GTEt/tOIF2ieXb5LpZpNcsL0iExsvCfICAQlmHVJkVRNxGRzlH9KTRiTADtBYJ8OCPShoMWbuZPh+/hyfFDHKS9tyUDjMtYqlsEQFkqAryvRQrfLFMKQYCalRAG01HOnYqIAo6I1tIcDLlvYoSNtQAs3Xh80a1q+yJGWLP0PSjQzZDG0Y571i/EGUFf0IZBOCIcJRYpNRuw2ZZZnw+yOh3mwfYIm5IKG1tVVm8cwhqB0pYwyjHSgnDokRxVVDSslRy4YDOH9G2kqhL2izYzacrcMLE/t6zel0SHpCMSPSkZuEcQNIseZYmlvlRRPySDwCK1pVROMEaSSgjCnFLk728DpTYbpqo0J0rI0OCKQIS0ETL5JEP1PkW8yZGX/DdotURmBmEdOvFeVDXZWy9+NNw2uI53Xr+E+utfQ/u238NHHv8+Wz+a4KJjzuDTPJ8f8nJu/PJ6Xjj4C0qvOP7x73w7sa3mlp/d13e0P+OoT6FvWwbA/s94/5z3v+yC04HC7/JJH0d97+a3cvDIFxjr/zdODDIOfpTPXnaAb575lgMO4QvnvobKez5B8976I7Y74dQncdqH7+aklx7DJ/oOpfrVr9O+Cqbe+Fl+xgBHLhrgxE98C/Ay09vbF/A/tZfw4e/8ivj/vYYTTm1z43V3bPNc/mvt8xlgniVk1louuOACPv/5zzM5OTnrvYGBAd7+9rfzj//4j0i5h8tuirhe32BSTUuMrEU2U+xACRv7FLJOEpiJFOmgprZMkfbB8B8l0UTuIyZLCt0yyHq7GwEM3gPitDe4B3WLahsfP5kZXKzJKwFKeSJUWt9G5NY3z9TCV0RiL7+yofR+j5bxF8wiq17VTOHh0WAdpqqKDPtiFahopNlN6uokgeVF1r2UiDSD3MdB+6qQ73NTmUq6xKZDljAOVWsUBsYZKV+F1yVf0Ed7UYn2kCKqGYKG8/1lrNcSdyKZAVpLYmIlCDYqxFR9OmI5zRBakS4fwUaScCxFJAYX+0pY1l/cmIv9dmQCJvQrbrppyMoae+ACotUTiCk3XeV5OLJ8WiLXw5zQq8Rsm2zMF3HZXiIEcMyX7tri67e8aefKKZ4oCOqGyjqfxNiOLMSWehqxsrY/BwQbGZAT9MlwlpRMIgqT/7TkdrFKqNmUskwp6QxnBC502LDTA8VRijIGwxaBMARiuklkAARSdgmKKa53FkssNFJs+X5t8b6TzFmy4jNtB9ZJYpERKINoK1QyI6TGFH3IhPeXCOOIpizCSVqbA8yAQISWuyYXMZmVWF4ap6oSNqZ9RDLjodYQD9UGAai1YoRwCOG6ooF22y+SamVJWwE4wYHLNhJIw77lSaoqYUFQp0+1GVRNqiNtRqIGd04s5sE1I+RGUztAkpcDdNOTiqmDQJZybKawuSRNNc4KVNG/p9Mvp5GGpEmADA1RKSPPJdZIZGiwRtBYJghq/j5mtb+HlTYkyGZGUNcIowgme6EwW8NlJ93EURPrueiYMzh3Hvd75J3n8sPD4X+yl/CJzx+LOPO387j3uWFbErIODh75AjecGrDfZ+I5xSp3Ki6dyk0nz61DXgBe9OFnzrmy89aLvs45+y7ha6yfRWKex7fZwAf51Yo/44qPvJ8FK25h1bvaeDPylnHkouW8j+vhfwN+/uEalfc8xDM+csg2JWsDr/7onMYK20Fg3vve9/If//EffOxjH+PMM89k8WL/VY2OjnLllVfygQ98gDRN+fjHPz7ng++W6JjZofsALpIUtMIVDa6yqo8Iho6kqlMB8TeUrCwJ6gKZUzTWyhFTDW/i75rFBUhJULcE9UIylhXJKUKQlxR5SSGcl0dJB7qZkZeD7nGzPgUO4k2Zz+A3otuPxUc+2m7SSjSeQZJOJ3J1Tey2a1x3RUKay43vc5l4giMn68i6xIUBrhz57yT1Tb7IclwYIIwnPsLyiHhiW41pLyqRlyVByyJyn9ZilSi01BLd8p2Msb45ZtYXAFUCY3xymTHerN9XJh3wvWXSwbBYSwTXiZ52IFODaudk/REm7GT1G3QzQyWS9oIQtaCKthaRZLi0SEZLMxDSEyVrKa/qaZafiHis/pcOmXgs5GImtqfqctG5fzmn4zwaeZn53i1vOmzWv+eCZ6tf8L3xU+e07RMNQTMnWpNidYhTmmS/hLWbBxhrlOnXbRYN/YYDg5yqeKS0aHYql8WgqZuIzChsU3urngXdcKgJDQthtNXHeF+FCVPmAJ0SiWnioguS1OmlaLtG+S0/VD/8ytd00HaK25J9ua+1kI0TVWQOYc37B2VmfOPHNEe1Le2RAN2y6JZFOMfgHxVZJaS90PFAupDRwT7u0ItJM02eKXRgMB1vT66wLY1s+PubLVlkJfPEIrDkmSaIc05cvoozhm9FCcdCNcUiVacscwIcbSeZtBH7BuM8qbKOy9xxrF4/RBJqkoUQblZkAxY5kuByidD+3mFyRamcUAozhuIWuZMY6+/Zw0s2sk95ivGkzB9HF5G0FOQStMWWYfwoRXWVJKg7rPb92aJam2AiobIuwKS9BbFt4bbBdbzv1Ot51Y1n8Y0TLp+Xff7sdQPAWk5f9TVe9fM+luZ9/EE/fV72PRdUNt/F+SvmJp+6+Fr/cL8fx816/cFrP8LTrvopqz/0ky5pAbp/L7vgdH7+rkOnqy0FeZm5zfbgnH2XcNsb4Nr338PwG25lw+0vY7/PxBw0cC7frP0D9wJ8bu77e0/fP/DWH/bzB308P/ni0zh91dfmTOq2hjkTmP/8z//k61//Omeeeeas1w844ADe9KY3sf/++/Pa1752zycwMG0aB1+NQHkvh7HQFxXZ8gLdMD5pKzGopIiRjHxPFhtKnParPNG6ZhFXjK8mFB3vfXNIv1qVh4qglpH1+Udy1fYNJMGb+7P+wDez1IKsFJBWfcMsmTvyikYlxjeQ7CSTaYkpe0lb1q+p3jOjaiZmNI3sBArIGaTt4QZ3Y8AWXY2z6Z4PrmjMJdqJ/246lRetuiTGRSHJkipZRRI0C4KRWYR1SOeTYYTzYQOdjtIIivjoEJlWUWN1TzTi0MdNF0NN+xXCThO6Trx1YIsUt9TgtP9urPbVLWGcv8EuigjDIcK1k/4WnufQ6ZHjLM4KX/3pYbvwRK7CdLAziMvDP7e1Y26NvDzadsd86a45k5heE8stQ7VydJJQWS/JKgHpkMYKSIXj9+PLOLR0IAPyLmI93R/FYmnajAlrmbQBgbDUbMxmWyF3iskkRiQSmQnCCQiaoBJBbiVDUZMDo40s15OUherGNXdIiioWz4yzj3itA+Ns0ZfFM6SgGJN0DomjT7ZIbEBWD4lrknjcLzyJ3HrpcJqhaymMBCT9kvJoRnlNimrHZBVJNCFpbw5pLNO0+r0/FCPIXYBIJMGEJLAC1QaZQ3vEYcvOB8wAeaIQyvGiJ/2Bp/fdyVHhBiIBsRAEQhIQoIQgc4YlLmFYjTKs6sTLM74lTuShDUPYRJEugGDAS1NNLgkrKUftsw7rJEcPrGWfcIIDwo0APJAuZEPWz6JgihFV575kEaHKeag2yGSjRJ5LTKCwTlA/wFFZpdAticwhkt6n2v9gG9Nu7ehfub0ClydVzjzh8scdq7z/4Gd436kf7MqWLrzqLdzGf+1U8rL8nz/M72964XZ/ruMXOeHUJ3FikLH/M97Pz9/1VuBQLvnmGXDo2xj78tHTH1hxDxde9Rb++ZuXcuLdZwGw/u5XsOTQSx7z2I/6MRz1jEO4BNjvMzHtk97HN2+ceEz7+mbtH7r//vSqQX68en+es+xDj3lsHcyZwNRqNZYuXfqo7++zzz40GlvO3d5jYA0oXcjIFI4ipjf3/VFcKZpOFVFgSv7i77RE1zPCMdN9+E+GQnAQbW4j6i0vVep0mO9A4puROS91ysvaV0wy68lJYrpG96xPkQwW2l3jij4voFu+apGXNGm/IpxURJuLJkq5xfZporEMOV48jHeIRVZEOgox7flRyj/A597432m8Kbr9YvDLfkVqmEhnrNOlxf461SvhG2za/hKtEU087sleVlVYLSltcAT1DJkasv4Q3cq7gQPtxT6K2YSSZGFMqZ35vjdCFA3HfMpYB8L5SlemwCqBzJQ3k+bWV5GsJ0SiLyLvSPoyR15RyJEqwdrCzN8JcOj8jEyvAvNEw65qYrk7el22txrTw2ykgxGqKQkaOeUNClDkFUVjP8X6uI/L5Z9QWZpwenkVkZDEQtO0GQ3nycvK9v5MmjKRzIhFxn21EUbXD1Jd7f0W0aRBty3tjQGtRFPWKYOqQSy8NX8meZmJh5OWh2Pak6NQGIxz1Jxmwsa0XcjKTcsglVTWOOLNmU/zEgIXFsExzYygZqgfHiBc4FPJ2gYbCOJxQzQp6FstyMoBedEMUhoIpwy6npANBLSHFLX9JGZpgtaWvOUX+6pDTZb013j+wM0cFEyxQIbdWOqZ45dCEgjLYpEzKBsslHcT75fx7eAE7rhvKYQWqXxvnDzRxbqdI1Yph8SjLNXjHByMEwk4NNhMrVgoK4ucQ8NRnlW9nVX5MD+bfBI3bdqXsakKWSxxUlI/yGG1pv9Bv5CIceiJNqLVnJffq70dy353AwwCE499H88dFQxd9VPOXzHtuTh/xcW86ud9j3d424VvXPGULfpJ5oobr7uDG7v/KyKKb3vkdi++/jjev3oJv/ry7fzgL5/P8+/5weMiLzNx0O0v4zurXwmX3cEy9nnc+7v5xgk+u+xozrtzKZ88fO3j2tecDSvPfOYzOe+889i0adMj3tu0aRN///d/zzOf+czHNZhdDjn98M2seF8DSiKyHDWVINPOqpMr/nipViepLKv6Ro/RpjZqwwRkWbfrPdAlEbKV4yTdKgzSxzz6RDGDTHMfwVzI1PKSKMz+ndIMqGbuuwdbRx4VPWG0xFQCbKwIGjnRg5tx7cSTKKk8iSqigrvnPbORZNEYstsfpkNeOsiNf7gv0sWwzsvjOv4n53BhgB2q0lheQaUO3crRLW9qxEFeUaQDof/uhG/Q6QLlv0chsNqnnWVlSbqggosCX9kRXlutEku8OUO3jff/pD7a2mpBMqC8mV8XKW1A0MhJBzTNxZp0QCONRbUtpqyxg1VPyoqfuzO28Ab1Sv6PBSd+fPsvnI/lM/ONXUFeLjr3L+eFvOxIAjTXCk4PszF+aEg6GCETQzRpCGuOaMwRbVI06xH3bxrhirGj+H0yyKixbDQJDeet84GwjOg6S4NxJvMyv5w8lLtWLyZcE9B/v0G3/EJaMJUTb3ZktYhmHvJQOkLbbfm2bty2F2Qsjhwzq7mkASZszNpsiO+sfQrr1w2hmpLqmhzVNj750lofchOHCGsprWsQTjnSqqC5T4TILeFURjSWUVndpPJQi75VKUN3p/Q90KL/zkmi0SbC+Rj8ZFDS2tcglSNv+EacS/YZ59WH3MDrlv2a5XqKPiG7fqGgqDgFQqGK1yMRUBYhVREwKC0nxw/w/MV/oDTQ7p6vlA6kw1rJ+kY/E2mJjbl/yB2QgmEZslQpDgkMy3VGn7QsVCn76xanxGt4yfANPGPJvRywYAwd5aAdRJbWUkPSL0gHI0x/2LuXbAUvuGbLCV3H3lznomPO4PC7lmz18/u+aSXLNj+DzYfdw7E31yk9dxBgi/Kk1b9a/IjXdhQ2v3puRvTHixdffxzfWX0W4I3/z7/nB/N+jJcsu3xe93fzjRP8QT8dd9k/Pq79zLkC88UvfpHnPe957LPPPjz5yU+e5YH5wx/+wJFHHsn3v//9xzWYXY6RAcRU0u0K72zRUDHU/mFdK0Q7IRwr0r9C3/03mPSmdhsqbEkTTqbIeorcNO4fhgsy1K1uaO073jdSVFIiGSwabGU+kUslpts402lBXlEEDS9Tk6nPlleJb6Ypc4sVCplaoppf5crLgY9+bBuCVZtwrdZ0whpM/90hLYrZfVpmEJbO+LGFH0hrL6srmm12ehIIraETk6wkZqBE7cAKeUlQ3pgjE4MpaWTmut2jnRK+Q7L0scc2d+Rl5atL1nc/tlowdUDIcLMPWU994lpHuubAKi+8kKkhHs/JyxKZOEys0M2826/HVAKE8QUkmRXEUzhsKElHygRSosamEEnqSaUxj27wf4LjHX/9aj73r/+11W3mKiWbC3F5yjHRDk8i21XkZb73t6PilbdHUtaDR9oHU/tr+gq/ikocWUUiU5DrYvJlLe7YvIQv5aexrDzBEaV1SOFYkw6xOa2yIakylcZsqFdJMo1eHbH0V77HV2uBr3boqTbljZponWb1voPcGi/jtPLd3SSxDrwsTGCc3aJsrLNN4rJuhHPmLBPWMmZD/tBezg9Gn8w96xYSrglYeLP10fXCX4dd4CvrFCmdIjOUNxoaixRZyUugVdsirV+wEsab/YXxjZs7kue8okn7JFOHWORQgmlqRGT46+N+wamVu1mu6igBZSGIhEYitlpR6pCbPqlpupynl+/mgYMW8J1bj8PkCq19+hiAlpbBsEWfbFOzJWp2HCXz4jiQ4ZPYQiEIEMTAQXqSw+L1/DI7iLiUYnKJTRQuskweJiht1gR1i54Qs++xPWwT3zitxlFXlXnLS4/h4v9mTnKydukQbrzuJm48fMvvX/v+ezhzB6eQVTbfxaaratx43fb1V3ksePH1x7H4vBpXPXBfN01svnFikFEZmGSZfPzVl5m4dfzZnPmt/8Orfv5JvnHaY2vgOWcCs3z5cm6++WauuOIKfvOb33RjlE866SQ+8pGPcMYZZ+zxCWQ2DnFW+Y7xSuCsAWtwSRHfazQizRBZjqh7EoK1XUIgOw/6eY6z1veUsQ4xw1vhm0sa32+llaASS75Q+e6+kSCs2cLz4uVqTnjSgoVoc+pvFlr4B3BjsYEiHQi8LCop5GESok0t5OYpb1AXsps0NquniixS0QxF0pfEJal/vSMtk2ra+E/xb+UTzVxuIDfTlSohcH0RZqDExKEVbAAy86uETgifBNbylRITCYQVpH2B98OkXhZmQ4FKHSbyjTJl7nyH5eGI8mQLmRfyOeMldiifyiZTQzhmsKrkTy13njAVgQaqmRO3cqJx5b0w1iFTgc0UJlJkwzEAarwGrbaX2NmHVZ562C7MJDG7Q4Xl0bCrZGM97N1o75NjFkfk5YBozCGL3lLhlEAlgkYUszmT1JoRt4l9uEodjrW+z4nJJViB0NanjrU0g2t8VRr831YJTDkkqGVU1mg2HNDPndEiRoer7K+nqwwzAwFgNmGZCYstiI+l6QwN67gvH+C6xqF85/4/YXK8Uuh1oblQYsKQoGmLuHq8R1NOqwfi0RYqiWgu1N4D2eg0J55u2NxZqOtU700kSAYkbjBFOIEu55x+6B85e+AmhqVGEpJhCJiutmwNSviMt8wZJBALw/GVB7hq4HAmJ8tFSKYlawU0s4CJtETTRmzMoRZq+jDdeOkYRSx8qELDWdaaiLX5ELc3l5IZRRzkxMN1Gu2Q5kQJWzVsOkbTf78knAxxeXurY30i49H6hJy/4mJ+UvQpAe9reXDiXd3/7/umldzYN8aJwLMuXcLmkeexta73HZz3ZzGf/OmO+Xl8Z/VZPOcVt8N2Noh8rKj8W5MVtx0E57LDSMz13ynz0S95Mdv7/vuEedvvbX/3fY4eeh7w2J4PtiuYXErJc5/7XJ773Oc+poPt9pBg+8qodjrtEek+sDucKErwaQpS+ct/5yEfpg3xncqGLCRJSeolSh1PhfDVGJGkRGvrWN3nV+aK67tTgqzqSU04nhJm3iQp8+nce+EcTknyiu6a2nXboGspaqw+nTjWGZdzPmFMKsD48XUS14wB48MCAOgY9cNg+vyc9/c456b9LkXnelcY/YXyEq9kJCJsWNKKJJoy5GWFbvuqihVeCpdHgmjcklWVP28hi8Qw39W40yhT5I6wbjGxxMYhqm3IS6ow7XvJmW7k2FAVVRvjE+Lk9Pl0VgllMwOVT0v+pMTFuivbEwMRsp36KkyRqtbDlnHeO/+ST35226v9PeKyZewoyVevCrMbobjuNPb14S6lUVAJBE2HVRBOCmQe0R6OyctACkEC5bpDptBaLDAR6CaoFsTjRURx99rmMGWNE6DaoNZGrCkP8IOhY+kb+i2LVYtBqQmE6qaQ5YWnpdvjBdmNV7ZYsuIe9kAeclXtaC5/6BjGJqrYXKBCgxCOdGGODTXiHoGwkjA13g/aaZGW+HAVkVnv5ywq31ZJUL76IlNTNIn0ZEw2U1wlIC9J2gsESIeUlgMXbeZPqquIi2t5IBQK8aj+nkdDIBSDUlJzlgOCTRy+YAO/3XgQiQ7Q2iC0RUlLf9hmaTDOoGoSC0PmHG2XdwmTKZI7O66bWGQ8ubKaoeVNJvMSo0kfg0GL66ID2bSxj3RxzqYFApWWqN66h3uEdyCOnzoFrmeLJOYTp3yUNYcdz6tuPIvbfv4GBm+Go7JX840TLue0N32YK1dczOEf+is+e1qNuTwIty5ZyWvaN3MsO+YaPPKDl3Disbdz5r2voLL5rh3WhR7gLS89hve/5ize+ov3wAE75hgPXvsRjuL9/L+rJ/nFGT8gvvidlN7y63nb/63jz+Yn+8V84pSPcuW3H91nvyVsd2el66+/nuuuu25WI8unPvWpnHjiidu7q90Osp5AX+Qf3NvtafLSeejPc09EpJqWhFk33WSxQ1y09tvPREeKZcz0g3+eI2sNok0BJiqjUr8PG0x3kEcJROrJiw284T/v8x4VlfjKSLwxRW+q+7jnQuqFlL6Xi7XQaTJqDEIrXGa9LM50UsP0jJ4tM1a0OhWbDjEzppCiFaSmIHbd70kI8oGSJwQS4gnvTdGNHNXOsYHChpKwZtEtUTTGdCT9vt9N0PAVJ9WyOCXIY0k0niOcJasosqGYYLINIiKPFclwgDCOrBqiW5ZwIgMHeqqNjXS3gWcAfmVQS2Q7B+2DFxDC97ep+EadAC4KfCNL58Du2RXFvQnzJSPrVVseH3okZu4QlRxXdzgFVoHT/hoXb85JhjSZEARN3yslqBl0IycbCJCJj6MPGxoT+mupCby/L6sorAITgzSC2vKQeNxQGjOkazVTS0N+P76MxGpeOPQ7Dg0mCcgZkD7d0mIxOGzHhykcmaPb7+XBvMRvWgdz6UNPYXSsH5tJnBVgBUaA0pagP8X2ZYyXIlRLEk4EyAziTZKg5T2OKEGwsQEuIisLggaF2d83PfaJkKFXKBjvn8xLChMIv+AkHWGUc2j/RhbpqW6qGvAIedxcIBGUZUDbJJRlximD93G9PhDT0pRHEiqlhCOHRjmiuo4jo3UEWPo6MaAz4Ks+gsAZDhIpS9RmlupJBlWTDXk/tugbs7haY7Iek9kQERvGnxQRrIsf42/S3o3Vf9/m/Bsu5sXXH7fF96/89lL4NpzPTE+L/3fntU4jyLlgwYo+7roInqGexrVmfioWm199C/cdeSl/e/bnufl/D+Tm//WLSE/9/p+yZJEnrus3VOblWA/Haa99G41flHfIvsH7am7IAkaA+Jm/mVfyAnDsCYO88ODv0P+zL2x744dhzleCDRs28PSnP51TTjmFT3/601xzzTVcc801fPrTn+bkk0/m6U9/Ohs2bNjuAexOELm/sNq+kvd0dB7Qk+LByVlPRLLUV1WSpCAus7vZA95DkWa+T0qeF1WOzoN+QQKsr2bodeNUHqh7WZjz6WEytcjUYSKFKfnGlllfgCn7xpS2kJGVVk0SrB2HyZqvjEiBK0XY4T7M4kHSAxdhFg9i9hnGDQ/gKiVEqTi/ov9LF4X8DfBkKy3CB4ydlpF1ZHCd8c9sgqlVkZom0A0fciBzNy0TAHQ9K3qyGEwkyEuSaNISj/lkMJVabOiN+rLotSOzQm8ti+8mMdhIEE3klNcnXlYmBOlAgIkVeV/kKzLGEU6kiKLZaF7R2HIAxiEK8icySziRdP0yeTXExYXkr1eB2SI6/pfz3rlzk7Oeckz0mAnI4/nsnoaHV3fmm3D0TP1zg8BhIx+ln/U72iP+4VY3jU+PBLKyQFgvic36A0wkfXU5kr7PS8tR2pjTtyajMpr5flmpI5xyhDVLNFlIckNBPGYp3x5z75qFPNAY4TtjJ/LNyeO4prU/d2WO1SZjwuZMWsOYtYxZy9rccX8m+WV7MRdt/lPOv+9FfO2eU1i7agQzFeIShQwsYTUljDOsERgjsbnEVXPy4YzmwSn1I1LGj3JMHijJyxITKd8MODFkVUFtuQ+4kYmPssfiE8tyi8i8f1Q4UJkjnAQ3ERIow8KwxkHBpkeQlk71ZS7BBNOfkcRCEgvDQeEGBofrIB2tZkSaa25cv5yfbjycpg3ok5ay9N6ZWGiUELPGEAhFWQQMSEUsDH2yxYiqU1IZmVMc3jfK0w64HxUbsIKszzJ1wKM3/XsiY9nHY158/XH87F+//qgkZj5x2Uk3cdi5x3Kt+RUjq38IeDKzvfjFGT+gdclKbvjIB1h97408869fw8r+38za5tf/55fdf1941Vvm/fwu/u9b+MLzpuZ1n1vCiUHGQa9fySU/+cS87/vmGycYuuRTqB/+P/a98Uvb9dk5V2De+ta3Yozhjjvu4PDDZzuk7rzzTv7yL/+St73tbVx66aXbNYDdCU4IRJqRj1SRUQhJWvhYbLdY7VzuH9Yx0+b2jjQsDDypKQhPJ45XQLfq4v0npmvoc7n3w6iNjlKS0V7aR15V6LrxTby0QFrXlUjZQBLUMtT6xnRIgFY+8rgU4SoxeV8ESmC17EqthAVRDRC5Z+rBWBPRbOOawpMWIQo6q3DtBBGG0xUjikQypab7xFgH1lekREd6lnsNtLAUaTKmuGFZTDlEZl7eZSNv2kwrEhODjpW/oQuBVd6/EtQN4WReNLT0+7dhIftSsmvEl0lOvMFhYu2jlYUjrwZFd2iBavlzU23j5QztDIqeMJiCdOYWtMQGApmCK4XIuoJsR/2m9fB40CEic6nIPBppueXyNXM+3jFn7TvnbZ8o6EUsbxvOSlAO8B3acRBN+oWToO5JTEc2mwz7a1Y4ZYoIekEwlfsFLeODT4Tzf+O8zBh8IInTIBPQbUvQdISTEX9o7sc9Cxag1EHsPzTOixbfxKHRegZlm8xJGi6kaSN+1zyAazcdwkPjg2SpJk8VLi8e1EPL0qVjHDa4kX3jCQJhWN0eoqITrBNsSPrY2KqydnyAtK0xw9AcBOFCBu6FcLCC05KsAumgo7ZfSHWtKGRjgjxWqKbvBWMqgQ9oAaIpi2xJpLQM6CbWCS95c7Jrn5mJLQUTbAkWSyAkZZFzQDDGs5fdxWVTf4LJJC1CTFNTr8V8b/A4njNwC8eGLSIRdMmST2azxTGn/90nHAfpSayeZETVabiQtg1p2JDNyyrcvnofnBHkcc/EvyX88qtf4s/e8Zadesxr338PF550OrcVnPJ4vYmTnrFtX0zrkpW8/7Wv4qrGv3NzbZS7LqLbTHsmWdkSPveqTwKwZJH//8MrMhde5b+D7WnueNlJN3HCqU9iZzys3JAF3PbmXwHbT/bmirdO3MT527H9nAnMFVdcwbXXXvsI8gJw+OGH89nPfnYviFGWflXeWFzkfy1FGPhKCvgH98z4tC3w0quZ5vy8eLAPtJdYWeP9JJ2qS2cfHXRIjVLec7N5gjjNsH1lf0EvYplt6IlIOJ6h2jlq46QnVx1ZWhjg4oh8pIKJNbqeeoP/QOzL8Xi5mStSX2ykSBdWcLJKuKmBHKv5pLICIgy9lKybUqYQRbpMVzImhR97cV4uSb30KvMrhN2KlAAbamwgMSWFbvhKR3E/Img4ZAZ5SRbkhaKigu9F4/AreoE39wtrUa2MvOJlXqKdoxsJshwiXEQyGGBCQVg3qMSSDoRI43zcdM1fnFyouyt+5BbZSHBRgF0Yk6MRJkJultOx0D08Ap/87Fd2egXm4diWrGxL5GV7iMvDP9MjMj1sD5wRSCEQmUDXBfFmh24Y31g39NdC1RJk/ZrWiCCrCqJxQTzu+4AhBQ7fD0tYhyjkSU77yk1WUj61cmasftvS/4AlrCkmD+qneViLh8QgP1JHc1d1CcO6QdsGjKb9rG4O8sD4EHmucE6gA4MqErnCICcKcvrChJLK6FNt9gnGOblyL0v1JE0bMGVj1uZD/GFoGffWF3Lbmn3IW5rG/jnJkCKtVgla/voeTgrKG31F3wb+viaMQ2SmqDgpv4CUOawSOO2jjesmJhCWziLW9vhetgSDl8y1nWIiK2NTv+hlc4kIfAPjn64/lKYNOWjhz4iVRdKRrgk6ohVTSMQVwldqitQ2o2vUbEBbagJheOGi37O5VWb96CLisV6q5ZZwwB9fy6p3KcauO5rLvrzt7eejgztME4Uz74X/vPfTXNNez7JXn8Dw8qsRH/2b7nbn/VnMK05/D5f85BOYX7+K/+9ll/LOdf+Hfyr/Df/vat8g/OZTt893+NTv/ylveek5s3wfj/Wc3rnu6dxyxfdpvHHHycjAV2H4MZx/wSv511+fxm/l/JPOLwxuX4VqzgQmiiKmph69VFWr1YiiPVyiEWgwoOrFQ5HW4KxP2bIOhCyM6nJaTuYsLssRge4+7AO+qiHF9P/djN4incrMjFhFV5jsabRQWY4agyAMvI8l9U0cO8b8TsyzKHqXuHJMtqiKE4JgKkGkuY+1DH05P96YAkXiixSopidkphLQXtpHWA7R68Zx7eK8uzHLBVkTYra/p1OBkT6pzMlpH41q5wjjlzXyikKG3pwvc4dqG5+gZrwWujRuuj1tWpH2yToa8lgi+zW21ZGTgYu9I1bkFtFoo6qeYOaDMarlz0dkhclVQdLvv3edOILNqTftB8prrauB97xkBpUW1afcUlrXJB2MvD8m0NBrnLxFzCVGeWdhe2Rhj4W8PPzzewqJebiZ/5Y3HdaTfu1sCMD6RZmg7v92UhQP8EWUsPMP7fGY945EUw7dtv5zmU+k1Jn1zY6dK6rqEif8/nXbdfti4Sgi6CHeDGHN0hiNaS4u8btF/fx+aDk2F7i2QsQG6oEXA1iBWOiv/dYIolLGkr4aqVUsr0xwWHk9Ty3fzUKZ0CcFsVC0XZu2a7GvnuLQcD3r+wb5bvAU/rBhH6bGy+ShZeLwgIG7BSoBE0FaVZQbvkWAsH4hzVe//b1DOIdMfBKZyAVprtiUVanZEMge0bByJjpSsq1VYoxz3uuDIHOKda1+5KRGGDAVS7ygRbsWYaykZQKazocbaDFjv8VxAqHo6DKirrQso0/kGJFjEFgnqUjvrVlbWkBeejy/THsvPvC7a/ir103AdUdvc1t47A/6j4YrDvbG/yWL4EUffiY//xK4932a9/zmfQBc/5Uyf8vnsV/7HP/fy07mwht+y9nnrOKE2jCCv9lu8gK+WvOzF9zPJT95H1c+zvHvDPIC8OIHnsYVP/kJHMUOIS+PBXNeYn7FK17BOeecw3e/+91ZRGZqaorvfve7vP71r+fss8/eIYPcWbCh9j1GshxXKgqDHU+IUjNSxux0RQUQpcKcJ8V0Q8SZkAIRx4X8quhh0mkkGYWgdeFJEX7VPzeQZohaA9FoQavto33zfLo3SYccxRHZSAWRO/Rkgmx6suIC5XuiZA6ZGWTTd0x2RQVIWIdq5ajEkFUD8sWDvvLS/TKmm1T6SotPVOt+H93xzripWIucaKASiynJrum0sY+isUTTHglIiwACYfE3XOGrMSYAlXnCkVV9pLSJZaEJp/DSOC/nayWEozVkarCRIhuIsbHvyyMz/yCgMt/oLZz0zUA9afLSDF3PfN+ZSGP6CsKip8/RlNQ0aevhUbE7VGF2Nh4vCepgRyWF9bD7QNQVIhfdhZms4nt65WWNLOSrNlKYUBI0LZUNtuv7C5o5nZRjmfqFmY7kVbUt8aSlui4nqOUEUxmq3Ykj7kjLLLph6H8wZ+HNOcM3S0o3lei7KWbhrzUDN8Qs/qVgwe8klVXS57doQxDlDFabWASpUSyLx3lK6QEGZUqlIC/eS6IYliHLNCzXTfbV4xxQ3sxz9r+DvqEmKjbkg4b2AoFKHHnVUd9XYkMfRCM68l0lMKWgkPv6hswyc4ST3mvzQH2E25J9yZztSrb8x/z9t9Nws/Mnc4bMGYyzs/5YHBmGtnNkTtJ2AePtEjIT9N8jiNf56GoZGI5buJqRoIFxgqxo6tnZz0w80pfjPTaD0tInMvpkytJgnGXxOAhPzHp4JD78lGfxza/txxV6x3s5tob1Gyqcv+Jirvz2Uq789lJOX/U1Tl/1Nc5fcTHnr7iYM/N+AM4+ZxXf+Mdvc8vPBh4Teekg/N8DeU37Cwy/4dbuax0Z2fbg9KP+SOXfmo95HHPBsgtO5/RVX+OTh6/docfZXsy5AvOpT30Kay2vfOUryfOcsHjYTdMUrTVveMMb+OQnP7nDBrozINupr88DTkpkHOE6lRYlfbCYYloGJoqSsnPT/hbJjAhl5X0iUvkKSxBMExClvOk9ChEFYelWa8B3trcOIYqKi7HTyWeA0L6aYBb0Y2JFON72vg7ncEqRl72USrUsNlJIwMT+3CQ+UtgGChtIrBIkC2KEGUCtH/eSOammCYs1s0lZlntttyrCCOiQO4XIcoKxNlaXEA4fH7rJdqOehXNkVe39KBnolq/gqBSClsUqr/GWxpOWTqRy2DSE4wmi2fYkptZEG0u+3yA2lj5muUjqUanvuaDaDhNK7xua9FUYNdXGlkNMpFDOINquaL7pyY1KjK/k5GY2Oeuhi92l+rI9mC/isadgSwSpV4XZ+dD1wv8ifSNLHEU1OsfqInkr8tescDLHCTAl3xQyL6vieuYXg3TLYgNRVGd8NdopgXACKwXJsE8tiyZNIckVBA2fcBZFkqDh0C1HvDHBBf7hu7EkRCUCmyhklLNseIKBsEUoDUcuXMefVW9nqWoyrBSx0N045g4iNLEylEWbPx/4HU0bER+YceXaI1jfGKa9yGJDSTacIYwmGfSJjzIzyFYOxpH1+Sj7oG0xhbdHGMhSze3rFjORnMLxhz7IMp3S10lTK+6jD/ekdJpwPrxa07RZtynnA9kCfjr5JNauHiZMYeD+jKAZsPFgRVTOKKmMAd1CCe9f2hIk4hF9dJQQBAWpqUhL5sC6jvSaXgXmUfDAEf/JmTf07+phzAkfXXMS73vPtbzuKX8/b/sM//dAzrz3FVxx8CWc8JyPM/yGtzH25blVo2Zi2QWns/pDP5m3cW0NrYufOu9pZI8F2yUhu/jii/n4xz/OjTfeyOjoKOBjlI8//nj6+/eMX8BtQRif6tIhA91V+OJvl+fTkjIoYpaLi1yn10u354uZ/ZCvZyh4O9WWmf/v7CM3iCAoIoxd91g+GWvGg3Xg08l0q0h2kfi4y/6QxtKgSLjxlZg8Fui2QzctcS3BaW8eFcZ5QpMVRvtqGcYmp89Jaz+OThJZoEHq6fEWfwutcblBSImaqBMB2VCMUI6gZbyES4FuGLKqxsSSoOaDCkwkCVoW3bBI4wga/nsJGjnhuPVG1swgx+uQZv44zvlKzHib9pIyqm3RLUd7OPBdr4uUH09eMu/FURI7XEa1sq4fSKT+Jipc4cspaVSSQ5ZNV9x66GEG5ktKdu5FX9mufjBz3X5r1Z0eidl5UG2Jyormk67w++UOmfnFqbwakJc9OREWTFzE5we+D5jV/rMd74sNfDNgab3EzCnvkbHaL0S1hyRZ1ZvF0wGBDUAYSTSmCBsOE3q5WjYQEEz5e0vaJ0j7QUYGk0sWl2ocUN5Mn2pzQvk+lusmA1JRFuGjSrisc8RCMShTFI5I5OzfP86GUj8GaFUNsqWorCnipKXw19wiOCYv+cWnYMogivNCgM0kSlk2N8r8PllOJB6g7RIUEAuJFALrHFIIEmepWUfbKcoiR4mcthMYJ2g6zYTtY2Pezz3JYn4/uYy7Ny9EtBXDtxdJnrUym59cxu6X80B9hMmoRK0a0CdSlPTytZm9Zzrk5eFVGIOj7Sym8Nm0nfcbyURiSr2K/pYw/vVTdvUQ5uyrsWs/R/mPT+HpZ32PX1z+nXk7/s2nfoUz74Wf5Ecw9hiqHH/QT0et+DP2f8b8E5izfv07zlwx+/n+oNtfxjr+hqd+6TJ+/aYXz/sx54rt7gPT39/Ps571rB0xll0PIXBFHxTRIS6dZpBWTj/Q2hkXImP8A72ZUcLvPOzLac+LEAJnrb9oqxkSJdvZtiAExk6/p5RPQQNffWm3faVH+/ddFJCXFcGU9b4XKbEV7wkI6xarFa1hgZOerMQThqCee19NkiEygZICGypMJH2cxpI+wjTDNVvTfV+MKVLIpK++yIedAxZn8H6Y3FdtlLXIRhtX9hItE2uE800ldcunk/kITYNwoe8TkBUG0sz3vJGJH6tspoh6s6iKSIRyfjxkqNEJwkiT9Yfg/AOCbhh0MyevBr73gHN+tU9L0oEQF0jfY0dSRCnn2CDqNr+UtbYniz0J2RaxO3lg9nR0yMZ8NbbcmdK0XgLZ1qFrwt8CBN7IXrc+TEULnPCmdaAbqWwiiTAW3bS+uWPRC0wm/m8nBCr1Efu5VMWilY9czksSmQEWmksEecVhNdjQV6Hlah/JHDRtEcHvqzdZn/D9acKcMMzZrzTGk0prOTjYwELVoiwEakZk8ZY8JrKoeAxLQ0DK0nCcYCBn9cJB1o4O4jKJDS0m0rSHBGFNoVoamfp7m9UCq71H0993FboFpJJcKbK25isPPo2fDxzOweWNHBhtZHmwGYC2DchQ3NQ8gD/Wl5BahRYWKRyBNDTykGYeIoVD4rh/fJipjVVwMHyLZPC2CcgNerJN/31lxhcEPDgxxGhY5e6hxUzoKUZkk2GVsEDOJnEzAwW8zMzRtIamg9RJGk6zIe/jjonFQFfc0cNughNOfRI3XncH5925lMlz/poLr9q2v+bf//LlNI94Nx8Y/gxnXD6/43Hv+zQ/e+XlwFu3+7OtS1byL1/8PRd/Y/7Gs+yC0wEeQV7OzPu54oYpOAX+/S8vm78DPgZs15TatGkTX/nKV7bYyPJ1r3sdCxcu3CGD3Gl4uHdF+4uVf3jf8kc6nemFEEUamSzISEczJaa3sw6H80EA0ldgOk28utWeQHf7j7jWdKSfy3MIQkQU+sSwMMSWQ3TTIBzYKJgmXRZ03VBOHWm/woSQVgVpVaGbhrwSIMraP9QXfWdEKJGpJatq1IJ+1NoM1+kLIyRCFDI5RRFgYKZ9QLpoeNlpjOkcrmGgnSCbbVwc+nWqoleMj2C2EGicluiJ9rQcIjO4QKFSgWilPsAgN77vzsPDA5y3UQb3jyL3XUAy4r1IQT3DSUG0to4rBf58rSWPQ2woMUogUx/DjPXjd4H3xKh2jqg1cFkKZkaPnB72WOwI+dh8G/rnSjxmbtchPdtLWnpVmJ0DYQuvX2GsD2q5r3RHCiH99Ud3qutSAK7wgHgprVMCYfz9QyWuG0vvlEBYiY0kWUWRVgROFbKrfmgvNrjAIjKJCy3tRSCspLraUVpdJ13gq9CtfSqeOGSQW3+czCkmTJkJVWZYtbH4JpcSgxJe3rtlEiPpkyGByDkyWsOYrrJ+4QDXJIcxsakKsaW12BFOCBpLFEFDoacKObDzYxCmIGy5Q7UcelKTG4Go5NTaEdfX92PVwBC/VgcxHPl45bGkzOZmhXorohwnWCvJrURLi3GCNNUoZTFGkiUamypEKok2KvofTMmGSuhAIdKcyqgl/WPExIGKcKjNHe2lPCgXcGxpFSl1GjZjicopy2DGWYtuvLLFkuHJS4Ykc4qfTjyJ9RP9IEA1ex6Y3QUnnPokLrzht5x/6sl87ZeXcu7//Tz//M23bVW+deFVb+H3375/h43plp8NcOxHf87wG27llC/fzg95+Zw+d2beD+8Hvng4N5z7bi58+au5/KlP2eK2yy44nROe83EAbvzx3z9CctaRoZ3169/Bc+j6frZ0zOE33Mqzga+c8krO/7Zf0Fy332Nn6V9eshpxwHmcyZvm/Jk5H+2GG27gzDPPpFwus2LFCg47zK++jY6O8tnPfpaPfexjXHHFFZxwwgnbP/LdBWkGUdlXYoTw3hSYJRnr/rsw9YvOKkynItGBEtPeGArTfhT4bTpGf+emCU7stb0uULhQI6dantzkOR0RtctzH1dcKoEQRcNG6c3sJe1JQKC6PQJsKAgnDc3FmnjcEta938QJnzyjrO8h0KlUyMSgpKC1uES51Y/cPOE9QKIgZUJMN+EURaVJFsRNiumKU6fKVEQui0bLk7QOgelWt6b762CMJ3adRDdT+IKk7BI6ISWu00CzQ5SSFMIAtWYTcTpIsqhCMhIRTmS4UuArP7nFSUnWr/0qZkfSJsD0RYUvJ8BpSem+Md+bRymg54HZXfGqn/cB8I3Tart4JLsOvSCA3RvhFOjAYSKBbjlUM8NG3u+hEu/TE6mPFe6Y2mXmjewU13CnQKbORy63vdzVlgNMSZJWJcmAJOsr0hsrDrtfi3IpJU0V1iisEVgraBxocUozcG9AMJl0iUM04WOLW7nCGMNo0sc+4STDqk6fcARIgm30WFFFKqdEURaSQ3XCWjFBVSecsOQhrp44HJdLskGDsIpwCkykCiLmK1Ai98mUwnrvYlh3VFb7yn39QJiSJZwVrDESIeA+N4JSljQJMLnE5ZL2phKyJQknJLkAlUBgIauAakNlzMvoyhstupUjjMNEEpkqZNGbZ/hOR1DXTBwb8aPVR7KoUmfB4hqbTZWKTIjFeqTIC58NgPTeG+cwOBpW0ixKLXenS/j5nYfiEoXKIZrckb9tPWwPHvyrSzn7yFWop17KNw8+l9/mh27zM+evuJiXvek5O3Rcm28+DYCnXfVTfrhi+z779jEDi+D8E0/mwl//rvv62ees4ptf24/Ln/oUVn/oJ5zAxx/x2WUXnO6rTyvuAeBidq4l5OAr/4mPALee83KYQ5R2B3MmMO94xzt42ctexhe/+MVZ8b/gqwtvfvObecc73sF1110396PvZhDWItqpfzguRb43CxQkxEz/W87wRnQe7m3RqexhnbaEkr76IgQuDhFZsaovBK4U+YfwQOGkBAnZYMya00JK6/tZ8ssx5FhtWmoGBWEobnapIS+ponrhKwgyyZGAahqEDVGJ74cizbRuWhXNJUVukc4hM2+s1JMtZB6RV0o0Du6nr96EdgKd9BeTT6exFeft0swnqHX6xgjh/TBm+jtyuel+Z2JmillHaocPLRBaT8vp0qx73s56Iuf8ht2qUDeaunhPrNtMqd4mX9CHLWmsLSpcDtKRGJE7VG79Sh/+b5kZTKx988wNNZisPTK0oIdZ2NnysQ5Z2dp7u4LI7Emxyg/H463C9ORj20bQcNAHCAin/L2hQ1Zk5ivOOE9arBY4PSNWv6jAmFCim3bW9ai9MKSxWJH2C9JBRzZgcXGx2JZJGmmMEBBXE561/900TMgfxxexXg+xYaLKyB1twocaqKSMyDVCOGxLIysJw2GTAdWkT2SUpSJA+coL+HSvwiQPPMLQD15WFQlNn0wZUC2qlTaTB8fcNrqE5liZrOoJW16WuCjABQqR+8pTXtaYWJEMSPKSJ33CCoIJRSYdGEGSSYJKhnUCkyvyREEqUXVFvMHL6EobXeGltOSxpD00/d11eoylVe+7icY7TZz9zyWczCmHkvyugI12iImBMpfa46kGCX82cicHBZtQNicAAjHdCyYQkqY1jJp+Gi5kTTbMv97zp7hMQmDRTe1/B3rYZTjhsi/wov4/cMv7r+cnhf/83P0/z9n3XgSAeqp/beFTb2XjG7bfRD8fGDn251z48ldz42MI9D3zpNP5+ZfO4pZ7z+Hypx7LDZmvFL7i7ozLi3O75NDLufjagpzMJEgFcdkejH35aC4F/krDM4/6v9zygRv5v5/6Im9Yv2y797X4gUOYnPgKY0VPnLlizgTm5ptv5j/+4z8eQV7AVxf+5m/+huOOO267Dr67wQmB6/Q9SbMZ/VDsdPNK6HKZLnmB6Qd4rWd5ZLr9XTppY0p5uYCUOO1JhwsUzSURWUViQkgWGUykSO6pErczRJJCWjzgUwQJBIHvB6B9yo1Ic9K+Eu0FISq1qLZCtT1RCSazojxfNORKch8d7BzCQF5SKCUQAyVMWSNyhylLzMIBVJLi0v+fvTePk6wq7//f55y7VVVXr9PdszMsw66g4IKoAVEJGiOKG8aIiVESd6Px+0sUE4MxiUsIYohGTRTXGDXExCUoYGQTBQVlUbYZGGaYmZ5ea73LOef3x7m3qnqYgVl6FrAfXvOiu+rWvedWdd17Puf5LEkOOIpwS9k9X3reCyU6gER4CptpB0yKvJo07WTguPdRF29SDlyks5UuwEuvlXHR6ekJz3QgxnaNBozGNpp4zRa2WkGPuGwc67nPya9nnQmEsi6HoOhWBVvriKlZrO4xSVCLpOVHq49+fLEL8FitAoTsLpBZBC+7VlkJKDuQEk2m6Mh1XwpTEltSqMyAtujQR4cSr6Gd7buTFroAS+3ClUXqOsfGc0L91phFD6WUBtuOItXyGRyuc9L4gxzXt5ETowd4UtjAR3Htkgp/2noF9UN8wtmAoamIrKycO1oCpM62uKV9ZnWZQBh8upqP2Kak1gCG1Fp8BGU5X8ReaEJC4TGuBGf13UaK5NhoI98NT+A7jeNcMGcokYkDEiinR5TO/Z94QNIalZjACf6zsnNu82bya7FQpEYgIo2QFoxAxJJoQlKasBi/0H86sOK1nTumVYJg1i2iyay4t5Bn5zhWQmFFHcxp+jaBX1fU1pS5jyUAPFgb5LqBIzhl8D6eXFpHRaRUZUooLAGWTTpgczbAne3lfPn2p5DV/fwYAq8hUO1FU5gDUcOvv43DXvgj7vv2s+HcX/Kdr/4J0dXuuX+8/807fM3oZw8MiLn1lH/lvGFIvvJmYPfzbq742vLcivl5/PtX3kzjv2/mKUdfCMApDzyHf/7Rwp/TmVk/f7PB2T8v/59/57vAWSe/a5df/6aZn3PpG1/KsreesdvH3uUZ2tKlS/nJT37C0UcfvcPnf/KTnzA+Pr7bAzioyvecLkMJ5HTdAY3OZLlnMu0HbsIc+G7irbrZLtbabtcF587lhPrGdWBykb4NfHQ5oLU0ojnqVoPiIWgdmrBm9QS1ry1HNbM8l0Z2QzC17tCuVDNBVF3KvcjAa2ToUNIa8QjntLOrTNwN0K3oSWSqXbeniLTJ82IQYGWQ0x3c6uDc4RWGts1BkkAcI0ol100RppNpIwI6+SlCCPD9blBnbkRQ0MCE5+VASHfBi1LunKKo63ZGDvzy54DcklqD1V2Xt4LWVnw+eVlrEbUGXpJifQ9bDkE6cCdyC1Ig705p5GwTMVfv/h10zBo0i7XjKvJf9jWAeaTuy/bbLXZh9qx6AckjgZlF4LJ7lfQLZAmiSadfSasu70Qmxi1cKYExEqk1OpTowNnAi3xCjbWOXpXnd+lygA2cPbIJQA84O3tjBFmiGBhq8LI1t/A7/bdymAeh8PGF8+5d4c2xcnCGu4MqjRWSvk0lVMug2g4klR7yEOPuurgt7WOzLjMgW1SFwEPhC5Wn2BsSa51XjbXoXBtTAJlCH6OQHOJZ6jbF2FnOGrqV/6seTj0pEw9bkn6JTEOsJ2gNO5e0LBLMHSZIBgzWt1jfOLt+K9z/i/l/7upmjQMh1rNkZUsyIOh7UOPXMoQBE0jCeorQEA9KgprrdHk5kLDCubwV90aMRTUTZJxh/DJWSAbvEsyaMmZNi6m5MrWWM8nxRcax0UZCq5kxHqlV/CpZxvcmj+fWTSvIWp7jr1kBwqJLDrgt1v6vlwy/nW9NX4x6BnzsK28mesae7+tK/VHO+N67uexd+/ZeE/z3ocydPkH/1TvXlc+dPsHo7d/hrde4wM2TKqMsHWtwyavhir9+Mi96ylXwFPjld5u864a74egTYP2+Ge97n/vPzJ3+1zxn7O3869aLH/b8theELPlOPO+xO//sJRzzkf/kkld/lM/97O953x4cd5cBzLvf/W7e+MY3cvPNN3PGGWd0wMqWLVu48sor+fSnP/2Yz4Ep8kCEzsXrSU4hs/mFqCij3WNJmtskW0QOZoqAynmT76JsHiQpBDZUJMMBE0+SJMMGVXcUsteefAN31pZiNmsncuylj2k9r+MgZ5uYlRVn+ywFQhuCuRSRWfxmhjfdcg5b1Qi0uzgjRGd/JvIxJa8zobfS2RxL7eyWk6okG+3Ha8dYYxx4yelVIggcMNESorAD0MxAOQc3eYennSHSDNGOuwJ+ClpZPpYs63aubP6eG+tc14ryPHcDK6h6+TZIuuGaUnV+tlJBw4U7iZoimA7woyCn8vmITmcrdedWmBIUttVKLubA7KTeev5r9stxdhW8PFo98ewV+zQHZndBzKvO3rnj2FcvP7AdrR11ZRaBy56VlYCA0pSBnBJWhDgK4xwTC+MVHbiuii7l7mQWwum0myOiBEm/T2PcY3Yt6FUtPGXJWh5ZphgdqfGOw6/kzPJG+mSIRMwT22sEkcqwyrmTJQMewUxGOKcxniCYhVamuGnLKpS0jAVztO0GjvVniYSkYV2uSdtKlACFJSbDFxK1E62gLxTlHHWMyAaHDk/xy8kyWdUQD0iE9kgrgrTPAbLaoaBXthDSYlOJ8g1hmKKUwVpBHHsdXY/NXCAmAggN8RjoQBHMSFSSsxwEWOnl1tW5oUKx3pVZpHa2/TLW+bZukVI2YvxaQFoJiB7K8FqKuVoZHUG73/Bzs5JfTY5RDlJCL2NbvUI7dnSdNPawWiB8485DC6RnSQYN3sAiLXl/1+hnb+NbwL1fHOfw12zp0MT2tNbfN87rc7nMk7d+m5+NvXCvx7izuuGacIePD7/+NqdpWfdunvDJE/nXD18BwL8CvMiZDJz20x6L5yVw8mmz3MuP+N6Dn+S3V/71Phlv/9WjzDEBvJzv8sxH7MIU4OW7N32MPzz8It73crgq+hH97J4R2C4DmDe/+c0sWbKEiy66iEsvvRSdT86VUpx00kl87nOf4xWv2DXXhIO5RGYQjVZX/2JNV6BfaDbC8OH0JrNde7jIeAn8Lh0q8LGBhwkUWV9Ae1CRrE5YvXyS1EgO7Z/i1/Vxbv/OUazaXHMWw3EPlU06S+Niki60wWsZdKQQTev0L8YSNVJkI+7oeawULmk+B8ACsEphlSTt81zWgLEu8bl4H4zFbxni0Qhva+Am+xJsalxGDTj3rr4yphzSXlYmrTiqmIpNZzXRa1uX/9I0RBNt1KTT9AjovH8FEa3TuSrOt9coIMs6pgCdwM9e1zdj8ztUXr06FmOxzSYkSd4FUohWDGnasakGukDI8/J9L3ZgHqn2VfdlT4DL3nRf9jXAKeqRgMuOtjmQYGYRtCxACQhmHSXJeLn2peiGO9MxjBJIKxHGif2TquuwqCTvuoSOMqbahrQiqa8WZMtjBKAzyaqVkzx/2Z2sDrZxQujAy/Z5LXXT5pb2SjbV+/FnJf3rctvmSOHXNTqQgCKZCUmCjCTxuKu5lKpsUxGO25WgOj+XKYxl5tfO3ckSfGt4zpJfcdv65c5W2Re0RgTtUeeeFo9YWOJuUMMDDU4e28ARpa0Me3UikaJzV6+aLvFQMsDPpldx/+QwSdvDpAqUJRvUtEc8dKiQKfgti1ESv24IarkWNHELiH4tRSbde4SzlPaRWdBxxPRabkEwmEmIpgOaYx7NpZJ22sdsYJkODd6Ae090JpHKOrdOBVLl9zYBQlh0NaO1dFEDsz/r5W/8bS5Iz+Gy02sczhULuu9LnvW3nHbvN+CUF/KxU9a6Dsd+qAK8vPcpT+PUm5/Kqa+6kVO5cZdfv/UnYcc+el9U0TGaY4Ljn/cWbj3lX3niabP8H9/nX5/+Kv7h12/gI9+/hdev/SYfvvAXXDj+RPiz3+VvXvEabsB1leayGiuvOWyXjrdbJP9XvvKVvPKVryRNU7Zt2wbAkiVL8IsJ7WO8rBCIVoxt5zP9YiLbcRPrcd0qQImQHV2QtRYhZRe8FCBHSqdX8RW65LPlaRWyEsgM1q7awonDDzKTljBWcs39h9G31XaAi5XCaUi0cdoXz+voSUSm8ecS4qEcUAnHr5bNBNLM6Xl8z1EQwK0CdgIqXTZMpy1vQMUmF1gqspLsNjr6ysg4AaXc+QH4HnpJP43VFWTqbr5+3bicglhjQheuZnyBloK0IjFBCTUcEm2sI2frDjBIx5y22mUfAF1dkZGI0OsGeIIDj4UTWbGtVHRNFromAsJTzgCg2FZrrLGI2frDAKfwPKwwHfqY8DxEsLhitrM6mLQvuwJedgZSFor+9UhdmF0BLjt73YHuyCzWnpeKobLFXZeykkIlzm3LRHLexFmkLoRXZKB9R2uS+VqKlS6UV1hLWpHEY25/pu7ztCfewzuWfZ+j/DjvukQ7BBEay09qhzOxaZDBhwTlLQlp1blBqrajGqu2R7DVIxtWJI2Aazceyn39I6jlhqXeLGUZo/IbQiAMvnDC9e5/Yoc5MUoIqlJQxXB0+BBLltSYeGCI1rhFhxazJEV4Bs/XjA7UOWpwK88ZupNV/iQzuowSBoXFF1kOqDL8PsMLB27hV8uW8/P6Idw9N8o9D41iWh71wzL8WUV5k1s8QwinsUltnsfjnDdlnIEBU1LuPpcbLMQjIV5ToyOZ5+sogsk2YWawMgLrUdrqgGfQkDRHy7RHLXrAgRQVaoQwmExitXDB0oDwDenwoi3/QtYjUaxesuy9rPvlNznjad+Aa3dvv4cM/YirLnn5Dn24+q8e5eVrnRPZ750xwK3549N8HYAhXrZ7B3uE+swfvoK5uydYc9gWzlDv5kr9Uf7wPc/nO194Hqfe/NQ92ufNm2JO3fRU/sa7kXPPe2CnltELUf/xR5+A45r0f2054djnOTPr50xeCcCPqwP80b/+iivPe4AzvvduPvOH38Jb9TE+B6TtOlyza8fYI5Wy7/ssW7ZsT156UJdIM2wzzu17BdDjeFWs7ndE5D2uYEUafRFW2QtgwPFrO49B7TDNM07+NRsbAwxFTTIjua+2hJWVGU5csZFfjh7d1Y2kmQtwFMLtNw+VRApIU7wtsySDY64Lk+tHTOgjcytolHBp80qhK74Lk/SkEy56buXP+K7drkOJSg2ybrDSR2QW6wlMX4Cc7hHtewo9UmV2bR9S43jIgo4gHiWcJXNbd3JbrBQIY0mrPs01/QQzEf7mWXd+JgcORcNDdVcQ53VIPK8LXpTEtYRs3i3JrUeFzEMoDTaj270JcpBtLDZJu4YAud2ztRYRBpiRfnRfSNrn0Q5S2PcL84+5ejyFWO7rzsuegpftX78IZB57Vd5iKG1JSAZ8dCRQbXc9tbnFvkzdNUikBq+pCeqSpM9RqhBgfJdX5TWzzsKTbAvkcIbxDU/q38BRfsyQKj/iOJpGc+X6I/Gmc7fF2TYqdnocKwXeXJu+h3yM79E4QhJUEtptn62yj7bx0QgUhnKOqnzhnLcksuNQtrNKraZmLBrB1qxKJUjYpgVZ2WJKBj9KUcqiM8nyvlleNHILS9UsAzJmULZRWFIrSfIOzN3ZEA0Toq1ghT/N2pHNTAz0853KE/nZlpXMbK6iQ+deJjO3KCd019VNtTNE2yIyg+4LSQZ8/EaGUe5emFQV8YAiC13ApzAeKnYRB15TU8ksWUmSlt0CX2mbQViJVZAqBVGGlAZjJV6o6a82kQLiTDE7s0fTrcXag/r80e/g8NfsgZUXcNUlL3/E5//jX75HOHYu7zjjbfzjle/kD2/42z06zqPVNZd/gzUv6ubOnLlGkD7heQuy73PPe2BB9rOz2h5YxlvPA+B/D/93Jr95KX/zd7fwu8P/SYWTeNEVq7l5Uwx82G1rk10+zm6pym699VY++MEPcumll3Y6MEXNzc3xh3+4MGnSB6ymZvKugJhH1QIclcl2V+gBN3nOMmya6ygK+pPWkKZuYt7pwuRgxpeUNymkMLz70P/ldePXIYXlwalBfrZ5JTfeeRh9D1o6wZbQAT+26BoUQZIA7Zhgqp13OxQmVK7T4ivwnNMZOZCRiUbGGVnZI6t4pFWPrKzQgaC1xCMZcO13b7pF6cEGfjNzVLBQdQGYpzCDfbSWVbASdOAyCHTerZCx7pwnxqJqMd5MC68WI9sp/myC8QWzR5RIVwx2z6vQn+TBoGQZxHH3fQb3WJp1QU1BK+v9PIyGNHGfVxy7f72fZ/H5CtnJ9BGBj1k5Su2kFWx+5hBzh0a0h71uR2ix9lstlO5lR/XEs1fsV8H93oKXxXpsV1BzwcAmcLkvyFykb6y7PvZeX4TrthgfdEQeTGmdo2QzRVhnCmAFTlthoKYjNHanxwcHIL7TOAL/x1UG74TRn9eRD07gb5rGm2w5ynRmKG1u0f9AhndbBYDRwTqBp5nVZVLrEYmMqrAMSqgKlw1TiPcL97Htuy/F4w3rsSmrsiUbIFSZA2cVjYg0KqddDfY3edbQPRwbbOEwv81SBcuVZrmyrPQy1ngJy1WTpWqWUTVHJFMSqxiRLZ4RbeLtS3/ACw+5HREaTNlgAuc2JowzkzGe6Gg9ZZwhMkNW8aiv8GgtCdAl6VzLYoPfNPRtSglnLWlJkgz6ZBWvY3/t1114tEotKrGo2OmKbCUjCNy9yQs0q8emOHXZOo4Z2YyvNOjFjv5C1s66L3OnT/Cqq6/myvQcznvm83drn/d+cZz+q0cfUTy/fZ12w3d26xi7Wq+5xoltzlwjeNEVq7l2ZuG0K7//hY8s2L52p+ZOn+C04z7I+INdvfw7znjbHu9vl6doV1xxBU996lP56le/yt///d9z9NFHc/XVV3eeb7VafP7zn9/jgRw0VawoKZVrX/K8kQ71yus+n9O56L1wF9vllC6sE2wCWClpDwekVcv11x3LPz94OluzKm8YuZanr1pPbUM//bcFqNRiA891VIzt2gxn+eQ97wLZHDx5E3MYX9BeEpCVPNKBkKwakvUFDsj0doLyn40vsRLSskAHoBJL0pcHqkmJ0M7OUxZp9XnZMKC5qooJBOGsoTSR4TcN4ayjj+myR1bycqtoB6SsEE73Uw0xocJvaLyWpb4iRC/p72pqhOh2V4x1rnB2uxu0FHleTC+Yy39Os27IqJK5q5xbPevNnJmndRmsEh+5lMYhfcT9ChVbvLbT//j1RdvLxdqzWmjwsgiGHnsltKW1xCMLhetmCxxQEYIsckJzk3dBdOScIMM5i18Hv25RscEKlw02e1iJ2WMz7BK3OmmN4OTKOgZk9KjjuKu9lMomw9Cvm8h1m7Czc5CkCOvsma0QiFQTbWnRt9GSbSrTTj0accCvGkvZmA7hF7QxutSxXSlfKIZlxrBqMurVGA6bWGXBsyAtUhoqUcLK6kyHpuYsmn0GZESfDBmQEQMyYFR5HOG3eUIwzROCh1jrbyO1kqaFisg4ubKOUrUNniEeBB0K0rJEB9LR90x+LzbOfTMeUGQlR2+2Qjg9UuqCNL1GRuXBFl7bGQ5Y5e6ZWUkhjCWYdfeS9pAk7RPokiGsJGSpImv7ZIliW73C5nY/d8+MMrWtilgEMPulXnX11Xz19NM5w/8Gn79297Qvh79myy5tV3QUoBs+udD1/j++dd7vL73k0b/ru1O//4WP8MqnnrSg+3y0WnPYFu7/2BP53F9u6Ixhb8DULgOYv/qrv+Ld7343t912G+vXr+c973kPv/u7v8v3vve9PT74QVdFh6PoohT/hy51q7Ot7eSVCE91dDCiSJwPAydy95QL7FLOc3/LUyXveel/Eh5aY93kMAbJLfFyXjzyc44+fgPtERfAJeJ0vlFAT8K96xzorjYnSSnfP+dWkBqZ06D4riUuYo2JHNCSmbsh2lz/4tc00bRGphBOZ/RtTFBtjS77ZP0R7dHACfPBgZFSSDbSh/VAtQ3BbEowHSNjAwJ3sy7JjhmADhUm8siGSi6BOpCIzD3nN93/W8sqTlSvCrcd2e1YGdsFgh1hv+x2wjrOZfnvgT/fWrnouhSfoed1nheBjxms0jh6Cc2xwGUNtA1Bza2ohdsSVLwo4l+sg6cONhATfOQEgo+cgH/hgQl9O9jLmZm4RSJyiq2j7joNfBapTnfcCkFQM24BpekWUawnyPoUtdUhc4cKZCVFCIvnaY5ctYW1/sTDBPvb16xp89/3Hk95S+om70oh+irYUuj0N8Y5oVlPIuMMlVhKWySzc64Ts25uhJ/NHcKmbIBmnja/M+qYtmbeP9PRzAhGZcbRwUMMBi2EFghpUZ4hyxSVIOEJA5sYVM41UvZ0drr/pHM1Ez5V6TGiLIPSUJUpEhiQgmODLTx9xf2oknYUNU90XMdk6mhjxb0h6wtI+iReK++g5DRqbG7kY11QdDir3b2h4ayuTSBIKx46khjlQFJz3CKXxKSJR9r28KKUtSu38qwV9/HKsZ9y/qHXcMiKSWcLvVj7tH7ww+fy+qEv7zIQ2b52J/tlX+pHAI68vcyZawTfvOQmvnTl7D45Ru0n/2+f7HdndeYagbfqY7zsH97LH89ctdf722VS5u23384XvvAFwGk93vOe97By5Upe9rKX8dWvfpWnPOUpez2YA16FNTJFDkn+sHYZJsKTXU1MTyBj1xLYOrcvyCln1rl3lSLwneXvyC8tHzn8ecRzIdGDAX9dexFyIqBvg6C0zXDI/S28bXVnO5x181KstZ19WmPnOWXZtkZsySgbaK2udgKzhLHY0NHKvNnY5dvkAMJ4Auk5y2i/lYel5TbFMslIRkp4DY2Vytk5awNlj9ayCBW7dHsZOzqWig1ZRbl8As+JUFU71+1ogy65ADeZWkTuvJOVJDKDtE+ih6rIDY3cllp1NS2BP69zYnsspYVSXTpYoWExaR5EmRsrFIYLxoLsscK2bt+t1VWMLyhNpKhYO71P7hakGikkrX3517ZYO6gv/1Ztt2hke+I+tr9cxx5vFXzkhAM9hMdUqXZGacqQRd2JdBGeKDKD9d2CTqG/kJnFSonfdBP/LFJoX2CUc+pSnsEYyVh/neMGHqJmAuqmjS/UPCqXwdK0CU2j+YdtzyK9r0przFLZaPBKUWcYop12qMEm9Fx6fdNQ2SjQUYnsuAwhnAalbX1qRuFLjRGGDr9WGOg59vbVthkzBrSVPJAN8+vZMaywKN+gPM2yoTlesOw2nlxaz3JVo9zR13RpaTqnbUucFlWhKANaWMqAj8JgGJaaly/5KRNxH7dNHUJalu59w91zFCBSDZ50gc0Wgtn8fVd0AIxVAh05baSKNV5bIWONry22JTCBo2u7DhpkYynSuPEesXorA0GLw/u2cWg4wQpvmhlTxlcaWVoU8e/reu5pP+CyNW/kyvQczvC/8egvWMBaSAE/wIfL7+S7vJ0nfLLB0ccsbPflQNQ3hs7m68C1M3/NWGNgQfa5ywAmDENmZmbmPfbqV78aKSWvfOUr+djHPrYgAzqQZbUBz02IhRC5+5XpZrr4nhOaS+E6IB0HrJ59JGmeQp+5SXQnyFKD8Ol7oE34uQgs+DW34qTaNecclmlEkUJfdB/IhezFxF7jfu7V6uTjk5MzlJSgsaaKX8sn/UI4t5XIcXgRFq+VIRNJMtDVeSQDHn5d49WNAwCZRZeV4xA3YxACPeDCz4LZBNVIXCCmEkhjkYlHUHf2ybqksJ7Ea2T5jdEgUwd4rJLO7Sxv7wO0l5apbPa7HS4hHeAonNeK7paSziRBKdcRSrPOz4L88yr0QtbOc1UG3HvleQjfJxsfIKkqR5GDvDvkrKSFscg4JQsXc2AO1trb0MpFELNrtQha9qKsE34XK2G2uI7pYpIsERZEYtx1VruugUpsh/IUzmqsFKhUkFqBSSXaSJaGszRswD1phsaiccLxORNxW3sVN80ewoP1QSauW8boXYa+B1p4kw03jsDv5oHl3Ze0zyNIXbfBbxnGbrJs9vrYcrSllfr8vHwIc2HE0eFDrBEJPgYpBMYKfAEFmaMXRMU2ZdZoNmRusnJXexn3bxlxi3l5bau7Tk9VtqlIQ5TT0wx2XndJIjodnR2VxmKA5d4sTx1azy/91aT9Ar8JwjqGgNB55k7kpj3hnFuIE9blxBRV5PQgBbKVEc7kVv3WIrTLkBE5IyIrg4oyfF+zfGiWc5b9DF9oDg+2MqyaVERGJDJOHHqQh/oO3cM/pMXanfru69/Ou/zd11XUz1kGr9+917x2/b8w/O3bgJt51tnncM3lCwea3tA8lScc93+MnPB/wL4BMGuDb8Oua+b3uC5b80a++vwHuHK95fe/sHDnsssA5sQTT+Tqq6/mpJPmc+Ze9apXYa3lvPPO28krHzsllOxOngFR3Hh67Iud/kTM08YIIfKOTZ5jIqXbPl/pt75HsryfyWMi5tYaKhskS29ooGoxwhjXaQFEpl3HQcmOWYDtoYkVQKWgHbhtVYdqZlstxMaUvszQXNOPlT7Gl4STbUygEAqEEojE4FnXEkc6OphqOXG/CT2XJ5MaTOBRfrDprKXLEVnFx69nDohIifUluuw7LrV1VIn2sEQYSWnS5HagFtXMXOel5CESg2q7lSjjCXQgaI8oykP9MDHdBWap89MXRacJnPA+CrtaFyk7gny07tLQ8m07VdDKRL594BMPh86Rp2GQ2mA8SbzEx69lpP0eQaTI0p4gzcXaL/VI3Ze9BS3b10KCmF5zgH1J9Vq0Vn6MVSeLCpcPkjlNY2+MirDWJcIL8FoGv5aBtZhAYQLpFoUClyeCsJw48iBPKa3jKH+OARmQotmmNde11vD1LSdz+wPLkBsjglnB6B0ZfXdNw9ZJt9gWhS5QOHXHyKrOgt96Tq8oNHipG8Pw7ZItQxWyYcXt1WX0DbVZ7U9RMzG+sEQIJJBaB2Z8FEoItLUYDGl+3dZWMqX7uKO2DN3wEIFBSkO1HDNYajHq1RiRMeXcmtmZA3Q7Oh1zAGuQKLLcrlLl26RoarnN/rDMeGr5Xi4bfCrxUIXyQw4wyszpfUyg8k67c3jr/Qw63THj/m+lQFqQmSEruVgAmRqyPkVSkQgDWcUSRSkrB2d42sh6nl66j7LMGJZufL7wqMqMZ1V/zQ2lpfviL2yxtqsfLLd87MKP864Ldg3EFML93QUvRU199ni+MXQ2ff/6Na4Z3rN97KiGeBlrb1/P2Kt2PedlT+qR7KgXqt7QPJUv/8dWZp+3gG8Qu6GB+ZM/+RM2btzxzf7cc8/lc5/7HM9+9rN36+A/+tGPeNGLXsTy5csRQnD55ZfPe95ay/vf/36WLVtGqVTiuc99LnffPT8waGpqit/7vd+jv7+fwcFBXv/611Ov13drHJ0y263w2LwDUEyM52lgHNgQnudABjnVrHDrykXk1lPEKwaYODGiucISrGyQDOR86FDlbmGq48BlSy7VvnA3E4VuoyNsD+a7aRUJ8p6X08osbJumfPeUs5C0jh4gdH7jzIwTbkqXGePXM/y5BOtLTCCxygnurRIEsxnexJxzHqtE7qKfO7gIaxGpQaYG7UtUrAnqBpW4lnzhbNb73qpmhmxnrsORGvyaE/PrQJAOl7vnKZXrdnUMEeQ8/UrxuMg1QXjePOtlcKDTFvoXYzufXZHTY3wHntx7YvGn2o6zHimCmQwdSeKhg8P28qD7nuyjejTq2L5wKCucyfanO9li7Zs6GL8nVrp/UrvrotfK3HU5s3hNjVWQlRXGF4g8i0umGhW7LJLmqEftEEFrdYrWksGhBq8cvpEnhQ2WqBKh8IiER1nA4cFWJJb+G0qs+W6b5de26LtjG0xMOev4vEQ7cfcJpUj7/dz8RZJVPLJSbiggIZzRDNypSKdDbt+8jGsm1/Kz1hp+mSxlQgdMaMn9mc99mcemzDJrEmZNQtOmNK2mbQ0NI7k7Wcp98Ri/2LIcPIvwDFIZVlRnOW7wIaqynVs1iw4dbkdVAJkieQaY58LWtIJZozBIfF9jAktWphPSXJjYZFGe/QLI1Lh7Y7FGZixSm063xioBunAzc536tOwMF1Rq0SXLQLnFcQMPcVzpQQZkSlVY/NypTSIJheRwf5JjB/dMl7Ev6mD8rixEjX72NgC+PXbzo2478frjmXj98QsyeT9n+nJOeZZzTb3ir5+81/ub5ut8fkozduGH93pfB0M94ZMNPvW8Sznm8j9f0P3uMoB5yUtewkUXXbTT51/96lfPcyXblWo0Gpxwwgn80z/90w6f//CHP8zHP/5xPvnJT3LjjTdSqVQ488wzabe7K+O/93u/x+233873v/99/ud//ocf/ehHvPGNb9ytcXSqV3+Rl1Cy62oFzAuxVHJeTolQ0uk2hHCT5EqJdKzK3CEB7SWW6n3g/bRKNAmt8ZANzx9g+gkD2MBNlK2SLhfF2lzzorGFlTB0NR3FZL2YwBcT/cKtzFiYrRGs20r0UB0TSJLhABOofLXNnYvXcvkCaTVwfOvIpT6nVddVCe+fgkxjfc9R0Cx5povLqCn+emwuQvUamnDGEk0ZoilNZXOKV3MWoLKdIVruJmpCRVZxHS2vZQjqFhMq50ZWdEl6hfvQFeMXXafc5awj1C9yXcB1ajzPfR4FECp+lxIbBbmdqaPOZRWPeLycZwXgxLORJO4/OHyUD7rvyQLXq/+vuk/tkxfrN6MOxu+JTNxikUyNMwXRltZYQGvUx59LETrXI+aZW1BcH33iAUV9paC1IsPrS1HK8Mzl97HWb1EWAanVHVpVWSrW+i1et/w6kkHyHK4MUW+662G5hChH7p6Vd6Ft5LvAxkAQVyVpnyKpuuue9iV+M6O8RRNt9Ug2VrjjwWX8291P578nT+T2eDkbs342ZMPUTERsFTUraFtLai3aWjQQW8W2tMq3HnwCjW1lZwGtBUsHa5wyfB9P6VvHCm+aQQmh8OZpeXRPZMH2xgAGg8Z2ujAVIakKS80ETOo+0tTdI9M+123Jyop0IKC9JMCE+QJYfn9xRgbkwiCBURKT21xb5Wh+qpW50M/MdcuKbo11WIYTKg/wlHAjy72QYRVSFgElEeALRSQ8RpXhrMFb9vjvaKHrYPyu7G2NfvY27v3iOABXnf/ojrgF2FnI+q01z+aWv9s7V7LPT2me8MkGvzv8nws0qsdvHdAl5rPOOouzzjprh89Za/nHf/xH3ve+9/HiF78YgMsuu4zx8XEuv/xyXvWqV3HnnXfyve99j5/+9KecfPLJAFxyySW84AUv4KMf/SjLly/fvQHlXFmndemGMOYDciAm0W4ppqBwCSfsF2Fu15uHTgLoasj0USWmnpVw8hHruWnwCORQzFMPuZ8b71vD0tFZAqVpf3SU0ro4t012FDKhZbeDYG2utcktg4sxFQL3ogtTGAkYDVa47tHGNtFkhF46hI48dOQm7DJxXRSXHyNIqgqhLfGQR9+GFt7GKWySOCG+p9BlzwVdhgoJiKYmHYjIKgodCscNzqkRxhcEWxNkKyPtD/K058x1d0oeaEtz1GN2LYz+3K12ySQPDU23I2QWYK0wBNPu3OaBm5zy19EDFZ+lUu59yzJAY21uxtBs49c1WUV1eOdWis556DCnbZQODtvLg+578jitnXVhHolmtv1rDjansN+kOti+J1IbdO70VTgzWilIy4LGcoHXDvHrGiskMl/xF9qSlj3iQcX0MYJkREOk0ankt4+9g7eM/pARWUIJ2aMRUYTCWdE/OdxMPGKoHVLGiw2VeNC5b2W6myOmFDbwOgtZVkFWEbSUJCs5sxXju2580icRGURbJGaqRP0QxS/85UzEfYyEDZ5cfYA15Ul8UQjtIcoXkhrWkCD5+cwqJmf6kKUML9AIYTlqcAtPKq1nhTfHsNT05ZN9iXhYngx0xfwFuOk1cvaFwBOKfkDT5IEsIwg0jbIhK0uySGLLjhpmFYQzjjmAdCY2Vgks1t1GjO2K+YXA+sLd1zL32XmNjKDuFvqktgQzijjzeCgdoh090AFg29Pe+oTPSm9ut/5+9mUdbN+VndWu0Jt+8MPn8tlrLuZTXxzbY/exhahinP/Ozdz9pqt5TunJpF/4V6552Yk86+u37NI+pvk6h73xg8A7ecInG/CqfTfeoi647t37/iD7qA6OJeYd1Lp169i8eTPPfe5zO48NDAzwtKc9jRtuuAGAG264gcHBwc4XCOC5z30uUkpuvHHPeYM2Sbs5JEUZ26VtSdEFEoWdL3T5ztZilaS5PGLqRMPRhzxEpFLWHr2R41c8xJryJHY2YPqapay/d9wJOeO8ra9Nx20MqSAM832aLkgB93OuuSmS5zuTeq2dZiZ13SEbJ8h7NxLcuxl/yxzhZBuZaIzKDQs0lCZSqvfUGbx5C96GbfNDPI1xotNQkJZdxkvWH5GVFa3h3CnHF8jYkvQJsny7eDRCGGdHaSIPUw5I+wPSfh9hLH5dkEU5HznVruvkB93slsImudC89IK03i5M8blpTSfks7DA7s3wsRYbJ2As4WQ7D+IUHSGnip0bTVpxvv+PkhF3UNSB/J4sRD0WOi87opkt0s4eW3VAvifW0cZU2+kvhDbIOKNvU4rXhOm1LjxYJaZj2S4y19lujUriVQlU3HW4XI3549EfcqgX7XCCDy60EiA4pM7sYdJdm/tCTCXsCvcDP7f3d3b1RTfBCvDalnDGIjWY0FGMZQblLZa+jZa+By3BJp/JbVV+tWmca+49gs/c/Qz+btNZ/MPm5/GlmafyX/Vj+PfaWj42+TT+9IEX8+67XsEv1q9A3lvCToXoTCEELA3nONyfZrmylKXq6F52dm7gQEzxvC9U518BZQyW1MKYqlEKUoQRhNMQ1LU7t1ntNI+Jo1aLzOb0MZvbLLsFuI5Zpcztr6XTCMlEI7Qh3JYQbUvx6hqvAbP1iJ/PrWLClHc6ZiUEZWke9vzBWAfTPWVX6F0fPPdEPnXVGCs++18Ldty9rSd+6Mfc/rNPAPD+ZZdz+lvXP+prnnX2OUwc9wLOfe47AXjv2Tvujj0W66m/U+aIL+5eJs+u1MFB8t9Bbd68GYDx8fF5j4+Pj3ee27x5M2NjY/Oe9zyP4eHhzjY7qjiOiXuoWXNzPSsjxnbE/DZJ3c9pNm+iDHTpS37gOh5enlaf55ZkY/1s+i045OjNTLdL3LN5lGpfCyng/pkhBm+T9N+fIm6GYLKFDXznQNaT/eIoUL6bR2cZ6J5xFCCKHqF7z2TdWuu6QoX4XwrXUZlMUHN1pLUEvt+hnVltEFGIbbUcUDDOscva4uZrc4GjdfaRYR7o1TB4TdPJFIhmnHhfGHcnkKlz0zGhh/UlWcmFioWzhmhak1QVaVkgYt2T6ZKDlUJblBskdECcovtzxyZZOEey4vmiK1XYXrs/DkSuN5IzDUoTPq1Rl8LszzmjAa8B7REPPIFqH/wI5oB9T35D6zcNtCR/duvjwonsQHxPrBBYJchKzp5dtTPS/pCsJMFCWnULKJ1rqhIo4ei48TBIz2AShV9OOfuwX3CYxw5zX7Q1TJsW36yv5fLNJ9LeVMHvs6QNQdofuOu0zZ2zAOtJ90/kuTTS5aR4bee+lWVuUUemBq9tEDbX5yRQvV/QSEOsCjEVQ30cfh6vxOY2wp6vCf0MbQWtZkhW84k2+ozcrqkvV8xGHuXxNg+0hpnpD6jKlLDHuQxrHhHEFNUr8s/QxFZ3TAOqsk2SKbw5SWnCdET8XivDa+E0LdYFU4IjVDzMBVoU97Cc4gc5fay7ofElwZyl3vK5Y2KcH1WP5mnhL5GozufSey4H7WrxdrWvviv76n7yq5e+lCsvOY3o3/59t1537xfHYR8J2FuDI/TnP3/lAtdJOj8HMd+85CbGfv87AGz9wgv4cvqfPPHc27nvX26mP+uHq+Hkb17K31z+Zk5l3y8wXnjqR7n46ken3O1NXRq8zp2TuYTvyLcu2H4fK9+pBa2//du/ZWBgoPNv1apV3Sc7q/Vm3mPzLH6N7XYBcsqTTVNH+coy8D2ay0IOPfYhnjy8gblmBPeXafx8hNrNSxDfG6Ky1eC1NeGWJrKVOvpYph3IUF0r4I5gX+uuDifXh3Qshq1x4xOyM1kXSna6KB2dTk43s6nrMNlS7kCTd3Bss9k993xbkWt9VFs7uoMn0GUv5wuDX9MuMVpCa9TDa7owNshXsmwOXlSeduw7+2RnQ+luEiqxyFpxbNsds+kBcsV7rrUT6Bf0uV4NUAEqrZmnfel0arLMZfZot5LmTbcIpzNkYjGhdLzxWBNNZfgNi/wNt+1/xO/JYh2QWnQgO/hqZ98TXfE74b7FIo6OJKptGLw3Y/hOtzBkhejoMaznkuF1ZF3DOdAsHZ7jZQM3URKuM62tYda0uDetsy6tc2/W4r/qh/P3N53Jr29ZTTipKG0RBHO5XsQT6JKPKfmYwENXArKK72jBjnmGSkD7grTkKG5pJbfZVwKdG574DUNpylC93zJ8h6H/XoGp+aSxh84kWaJozUbMzpapz5SxG0tU1vkM3WXcaycN/pRHuxXws80r2az7SazNc192niXTW726mKI8VB50KfEF3JuOUpsrodquwx8PKtKKJIuUM57JjWwKMxrIxfo9ZQsamRSOTpfbKCOcyQ0AErwWqCmfVjPkJ9NraJoUg+2MU1tDajWp1SQH/3rYPq19dT+Z/PTxfPXpu2/Ne/hrtuxz963eet0Huuf7zMH3s/ULL+C2l32Qc6YvZ+2ld3Nm1t95/qpLXg7AdV992n4b376um176JgA2n7hw2qODFsAsXeosB7dsmc9p3LJlS+e5pUuXsnXr1nnPZ1nG1NRUZ5sd1Z//+Z8zOzvb+bdhwwb3hLFdoELe2YB5Di6dyT3kbllB16K3ADVxQjCTMd0sMZH0YX82wNhPDeM/0Sy7PqF/fea85lODrLecK0ySusyZQryea2psu0fEn6TzRevgjld0jXQOgPKx2F69TEHDKv5Zg6g3sY1mfk4FaDHdrkWxepRp1GzbiUxznrAJHLdYlxwfWGiorm/j11K3qqid05gJFTp0dqDJgEcWCvy6wWtqdOCsKCsPpYhGq/MZFDk8vfbJHRCS21a791906WKdz093wU2P+5j7bGRHyI8xyFoLr+YAqA4kyVCAFeDPtImmEvzGwd/yPyDfkwNUC22jvFi7Vsmf3Xqgh7DXdSC+J2nZo7VEEg8K133OtYed7ClFNwEeUInLJfHaBtUSxVoOs62IX8QryNBoa7g3a3HB5mfz8ltfz8XbTuOy6afz4V88n+jOEgN3CUZvyRj7aYMlP50i2tzIzQKMC1/0pbsmB4WOA1QKMnVjiQck8YggrQjSkiSLBNajI14XptupUW2Itnow52NqPrblIVoK21bISZ/Kg4LKRkt5S4IOBTKDcEqQtj2UNMzoym5/jl1KlpzX3UjRtK3mwazEJ9Y9B2Z9soqlsULQGpFkYW4MY0GkGtlMUO0MGevOwlXRcRGdf+6cTSCwogtmjC8c+MksXtsQTko8X5MZySYtiG3aGVuRhzNlMu5LB3f7fA9E7avvyr66n3zurKO5fP3bXI7LLlThPjbx+uMX5Pi7Uv1Xj3Jm1s9XLjiO2172QV73gVV8a+olvH/Z5Tvdfn/VlmOewdzpE/vlWJ/7yw1864qFo5LtNoDRWvPZz36WV7/61Tz3uc/lOc95zrx/C1WHHnooS5cu5corr+w8Njc3x4033sgpp5wCwCmnnMLMzAw339y1zLvqqqswxvC0p+0cuYZhSH9//7x/QMcOGehMgm3qMmC6wZY9wv5eIAHzwE0w3Sa9doRr7jiSyiaLX9eEkzEqMS59PpSo3JWLHoBktcG2Ywcsim5CAWoK/Qd0wzZzXY5NM6zWCKUciIFOaj3gtpnnbpY4ulgBWgARRV1wZnMrZ22w7TYyBxjtEUU85NEY74ZgWiVojTihv8lBiY4UJpToSJIMetRXBLQHXXCkCQQiyzswFsIt9e77mXeaOtqeomukDTbX9OB73cyeYuVSG6eBgfl5MLLnvcv36TplTick4wwdukRlKyEZCjpBnl774AcwB+J7ciDqsQJeFjskB2cdiO+J19bINJ8EK2c1r2LXdfFaGr9pO4skxpO5C6KjdRUhvCZVNJohn7n/Wfw61bRswqCElw7dzG+vupPDowkeag/g/6yPFVc3GL9mmr47tuHdtQE2TyAabfzplnNBa8TOcSs1eC1nNmOls24Oa24CbwJIK5BFjvqWlUAmTh8jM4tMLH7TIDOIZg3991oG7lAM36JY8hPFiithxf9Kxm+EoXtS+te38adaeC2DTC3RNou3NSBOPWo6opKbERTdl12hj/WWEi700lhL01qub65lw8YRhHb7yyoW4znL46wsSQcCsmrYcf4El/NCHl4pjO0GWRb2ybqgmeWfj+fAkEoMftMQzEDc8tlcq3JN8wimTPawTlHbCjbrwd06twNV++q7sq/uJ3c8/Qe8/kHLkgvf9KjbFi5lB7KKbksBaHZWV13ych688kSeXZndp+MZv/P6fbr/3hq78MNcvsRfsP3ttgbm7W9/O5/73Od44QtfyPHHH99dDd+Dqtfr3HPPPZ3f161bxy233MLw8DCrV6/mHe94Bx/84AdZu3Ythx56KBdccAHLly/n7LPPBuCYY47ht3/7t3nDG97AJz/5SdI05S1veQuvetWr9soFo+jCWK07ye4oheh1uVIPv9AWHRsANVVn6Y0Bm7wS08cZamsCom0BXstSXyXoX2edtXBum4wQziWm0HYU+g2VZ8T00qTAUaSMdWMScl46fWfMUna7GcX/832I3nZ9oZtJe8IyAXxHu8LzIM0IZlLqyzyyyN1g/bpBJYb2iI9KLGlF4TeK9GlBa4lCGEdhyCLwmxYvdq5fjeUhVkHfxhgxU3PUrsI5rNDvFJ9DkcXToZLl1Dibdc/JGPceQLdzpLVzL/O93MWNHHAqt08pQVvC6Yz2Ep+sJFCxJav4TtNTvA8HuA7W78li7d9aBEePXAfb90QmhsoWQ3vQrdp7Te20g9Yi24Yw174UdrzGE9hAklQlOrCYWEEq0dZj48Qg31p2Iq8dvIlxFfLUsM1RI9ejgTubyxhYZ/BmHA1XpJmjpYUhppybwGT5hNpavLk2JvKRicbKwFGAlSALJaptUe3c1lmBXweVWPy6owkXDl2qbTCBwG8avDi/fwgHhrB0ApKFyWlXvgNL0awhnFIkicdU1kfNGnyrkT2uXbsDYpy1siHFoi1cP30YJBKhwa8JspIFCXG/IO4XCCPxm4ryZpFHDHjYMA+D1hZROLfkms5eQFPQzLJIolpO0yRChdey2LpHWlX8orGKJ5fWM650hxbnC4Uio20WbuK2t3WwfVf2pl459BKe/85/46UXwZk3fJ8/uud5+/X4j9W68NSPcsXnvwnnud/3R6DlQtduA5ivfvWrfO1rX+MFL3jBXh/8pptu4vTTT+/8/qd/+qcAnHfeeXzuc5/jPe95D41Ggze+8Y3MzMzwzGc+k+9973tEUZfv+KUvfYm3vOUtnHHGGUgpOeecc/j4xz++12MDEEHQncxrPR9EFN0aUTiSuZtR0RURxhBsmGbZ9YKtT46orc1I+yWqJcgGNJUbjKNNpVm3U2Ks26/toUXlx7badCfrOW2s0/2RAsgzbKR02/megyg9nZnO+AuqW+8qUdGl2AEwK3JZvC2z9Fc8kqpCJRaVGGSsMcp3gKbWNRlw4n3lwEsJoil3kzSey35pD0pKUwZ/06wzSwiDTjfJjS8fS3HeQnY+i6JTNh+Qqc5zomOh7HUpcyI3ByjOHSAMEGmGTDQqVmSRm2jEwz5ZJNDJwQFgDvbvyd7Ul3+r9qhOZI+V7svjuR4LYv6D7XsiMuNCcX03cXWCeeEslY1zvbK+mygb3wWKmECgQxxQiCXCCIgctek/7nsS06vK/OHIdazM79xTxuPK7z2Jw2+dcAs/tYZbDBIuA8uEzi5ZZIb6YX2Osruhked5iY4xi2pr/ECSlhWlbTmVSkNWwpnSlGROIaMzme/oRvLrca/JlsjcPrAWXfYxnlscMr7T5jRmQr714BO4o76M145dx5PDGcrCJxS7NiUpOhyxzUjRJNbyP/XjuPnXa0BYTOAAmLAQD1lEf24U4FtkJon7Q8bqKSZUGCWR2iBjgxW581hON0PQofgJ7YKgvZbMqWWKpF+542hBknjcsGkNh5YmOMq/jUh4FCSXsoBIpg87jwNVB9t3ZU9r7vQJrnjBN/nEC36JGP8u/7vlbO79q/Gd2ik/libo/VePEt6+b8T1p7Vv4kpO49//eBXP56VsOeYZjN95/T4HMRcnn2frhe9h7MKF2Z+wvbypXajly5fzwx/+kCOPPHJhRnAQ1NzcHAMDA5wx+Pt4XqljPzyPflR0JnonwMU2xQS7ADDWum6MEM6yMgxIR/vIKh6zh7nJ/viPtiGabUcfk7IjTu/YM0vV7cb0UNXmAZncXMDR2zQiCh1g6XEx6xW7izzF3qaZA2e5+L+3czRPV9LTbRJ52r0d6KO9vIr1JF7duaa1xgO8lsGfTckqTqiaRZLWiMQE0LfJ8b6tcK47UrubQf9tk4i5uus8FUCxcBYrfjbFWOT833vfj6IzU3xevjfPza2z754A0OJ8CANMtUQ8XiEeUARzmmTAI+4X2GabW770XmZnZw8ofepgqeJ7sq9qZ0DmsQhgFjoP5mDovuwMwNi2Jr3gtsXvSV7F9+S3nv4+VFAiHvaRqXULPNC5LqVVHxMIZGK7dr0Kaqs8Zo/U2D7tNIcC0AIygaymLB2dxViBEpbQy5j5jxX0r08Jp2Lk+s2dRSQRhaQrhjvXwvqqEjoUVDfEiNRRk9Oqh2ob/FpCe0lEWnXukjpwYn7jg2q7LoxK8w6LcOCmaFboqFi0yhfxcmt+52KmMZ4k6fdQsSErSZqjktZSQXpkkyWDdX5n5W28fvAmytKFPnp076+PZhndtAmxNfx3/XD+/pYzSVs+QhmsEYiGBwZsaEALhBVYaRFaIFuS0hbHJKhsNpS3pAQTDaxSoPKwZ2PRFZ8sUvjNDNnKcpqd0xKlfR61FR7tEUHziAS/nKIzySmHr+PCFf/DqPLwhUJby6xJ+O7Ect7w5J8tfk/yWoj7ycvf+Nt4qz7Gn4++lKe8/y8YevlarnjCH3CG/42HbXvvF8cfUwAG4BefPIoX3n0iL71k900Kdlb/svUfuHyJz2f+8BUArHnSJ3jjL8/i/csu568fOrujyyl+fiSa2+7W24PzeMsfXc/4ndfvNH8mtgmfTL+yS9+T3e7AvOtd7+Liiy/mE5/4xF7Rxw7KUh6ir4KZmulM/jui+g5tyXapRXnnQ/i+W/VK0o7Nok1SN/H3fYQ2BBtiAm0orYvcBLrZhtStyNg47tDI5rmg5Z0dlMTGPU5ihb2xARH43cwTreeBl04XRwiX5ZJTptz4km63pnidMYicmmat7ZLMrMW22w4EAUHoUz+sD+MHqJamCP1K+33SiiQekOhI4DUttBy1wHgC7TtudWnaUL1zCmbm3D1Q6y6gKMqYfCXRgcDOe9JraW3cmDv5OwWIKah+BdApwFjxu1LdzzbNEEmGP5dgVIjOHYNkJoq3arH2U/UClQLMPBbBCzjAsVAg5mAAL/DY6MIcTKVDhZ9oVOy5rkUemKva2onClXP3QoDMO9pZSZJFoFqSrGQgE4hUEG1VlDdbmuMeM3eUyCruGiVjqMR58KSgG6hsLTbw8ywTQTIQ4DcNWUnl1zeTu5/hAFJm8GspJnT28Z4AmcrO/UxYt+hUZKOIrHtxlGmhFXEaGlGsRVkcALNgVdfpy2+C3GiZHoiYVoYN7SG2aJ8lpCgpkGLnjmSOMmZJrcZgaBrNL5MhLrrzDNKG74CglghloD/FauHWFwtQYwVIi64IGqNgtSArBWg/YCAX5stEO1t/3NiltshYI1LnWiY8iVaSeEARDwtayzQy0BgjERJu3bKcG0dW8ZRoA8N5W6ptYVaXFvgvbLHuqxzCn593LXefcAxfurXNy1Y/gycC4AT6o5+9jdNufDf/8S/f47EIGZ/4x7/m5W88FFg4APPGsT/lL94aceTwx8g2vIv1P38LT/zwj9nyEsPr1x4OG97FZ+/+Auc/53IA7n7TWn7xleM4Z/ryvT72syuzvH/Z5Yx9ZmHCM3cbwFx77bVcffXVfPe73+W4447D9+fzOr/5zW8uyMAOSKUpZtuU+7l30k/xkOiKx6HbBSi0K0UeS9GtKfQrWYZNUwdm5uqd5wtBfYfaJOmCDpnvP7Vd5y2lOiBHkHdf0p5VvULYn4vVRX4OnTKOYtYBLtAZg/A81/FPM4RS7vfCpln5eYdJYdtt1NZpyiWP5vKItOwjtUVHzmVG5Hxu1bIENeNC0TyBDpzTzeC9McHGGUSt4c5FKQfISiG2r+ToBqFyN5I4Q6QGNV3DFi5lRbhoTukTOU2so1fSXUc2lMLmCdii6OoU3SbpNEfCGESzjTKW0FiS4YhkiTMi8JsHv4j/8VqPVeDSWwsBYnYEXt6UfG6H214avG6vjrUrtQhidr10ILFaIlMXnqhLxUKMxQYOSPgNi9fUyNTkLleCaNLiN6AmPIQBrybw6xDNGHSgKE25jnYwk+E1MweKYo2IU2wU5GBJORqxsWRlhfEFpS1tvIaHqieYyHeASuQLTCV3XZSp0ygK467fQCfYUaaGtNqdMghbbEtu6OLcKB2lKj9VJdB57g24e0FQN8RCEkxL4iGf++vDXFM5kmeV72J4u7y1IkuloIwZLAZDbDM2a/jq7NP47/uPpzGdg4NUIsoZXpBRrbTpj2IqvjO1aaQBFT8h1h4PTg3Srjl9UGtFhi4rmstKyBSG70gJZhNEZvJ7lyTQFhsqrLHEIyHtQUU8JEn6LTawnTU0P8iIY4//nT6emf4yzyrfQ1VqpkzAtTNrgesW5o9rsQC4+aJPcUK8Fs6Ftasvf9jzE68/nv/Y/8Na0Prs3V/gyvZp/DA6+dE3fpS69s0Rf9v8b17YhG//UxtwpgZv/NyfcgGw/Dr3+wW8m7H8T3X81Ov5+p9u5evnncXLVp+/V8d/86vfwzUPnc0neAbXvjnimf/U3qv97TaAGRwc5CUvecleHfRgLau1m6ybrqMV0NGUAN1V/l5ReOHkFSigB7xQAIRCk+HCMdHGdU6S7Tixvd0GmLefTnhjkUmTd0sKw4F5NLBc0G5trqnJ6WPzujPQFfwXtDffm3fsThdKG0fhSp1Fs80y/HVb6J8doHbkIElV4rVy3/tAoBLAQtwv8ZsuNKy8NSPcVEfO1l3nSQjwPMxwlWwwQoeKrOyyYlRsnG9/KSKtQHmij9LmGH+y4TpXmcY2W933XwqECrrUM8/rgsL8/egAl+Jcim5MfucRcYKahdCClRHGF5hFALNYe1l7CmJ2B7js6Pl9CWYWQcwuloCspFCxQTUTrAqdtXyRI2Jzp7JEIzKDDRSqbahszkj6FTqSiAxKk8YFScaW6saMyv11RJIhak13r8rzvLC2A15MJcKGymk8Aumsm0UeLKydDT7WWTcLY7G+u/Z6TU1WUp28Gr+RIRJD2u+ozzJ1i1UIMCrXixSno+joRkSn++/smWVm886P7Wzj16HdVqybGOGfp57FnYcs482jV7NcZR0tjBICk9+3DIYJHXN/Vubbsyfxoy1HsGnrIDZz5yICw6FrtnL62F0cGk6wyp+kX8RoBL4wVERGzfhs1ANcNXgs1289lDj1qDdDkiggXeH8k1U7YmCdM6PJKio/RxdGihAkfYr2iKS53JKOpQhpXZCnsCRtD5NJrr//UH4WruSHo0dx0sD9rGuN8vMHVu7XP7/flFp76d0Hegj7tPqvHmXpW6/nlXyKZ93zDK45Yvddwy489aNccN27+dvmfyPPPZb/fv6uBzJfcJ0DM9dc6Chgm163hQ959+7y+/6NobMB+PGHPsoXbtvKq8Ln8EzanXGN/6fkjWN/utvnBHsAYP7t3/5tjw70mKg8H0Qo1VnRF9vTk8AluucTcJumTnuic5G41o5HCwgp3Sq/kt2JciGSzx+3Wc+ku6A/AZ00eugaCOSdBqGUW9Aqgh5zDUyv+1hH2rSDTlKnY1Hsex51y3boZNguxaybeJ/bKxuLmGtQvS3F9JecNaUSqJa7Qaq2RmYGNd10XaJWG5sDQxFFoCTZsiEaK0toP88jiA1+U6OaGcGMJa367gZioT0WkgwF+PUMby5GTflun1mGjRPAdAGXSXNtkuy6l22nZxJSgvS7Xak0QwByDiJriUci2tWHp14v1mLtbhVg5NGAzCNRxR4NvOxs+30FZBZBzKOXMI5+JLRBtjO8PASx6FoIY2mP+NRWRmQl1732GhDMWdI+1x3x2y53RftOVB7OpIhG2y2oWQuBj604eonTbQCepDVeIh6UJH3uWNG0QS8NXdBwPcH4Ms/hsqi2ISsrpLaoWPecACRV31k+112OmAt+9BxYyXU77lxtp+tSlExNh2omDMjYoGRh5GJRsUDVFIkMkaWMGzevJtbP47i+TRwbbSQSKb7IqJkSiVXcl4zxX5tOoJ15bJuuojOJTSQiMEjPsHxkllev+AknRfdTlhmplcyYkM3ZICOqjlINlnsZh3hTrF1yDc8buJ31yRKunVnLHdvGmd5WRQaG2qEGrE9pyrlo6gDkUIgJ3NibY5L6IQZdcRQ/awV4FpQDQGhBUg/IEsXtdin1NGRLvYpu7/Z0a7G2q7nTJ/jxke668/xPbTrAo9l/9U9f/jCvHnwJ//73a3kl1xNcfAHPOP/Fj9iVecsfXc+rwufwvo9dy5WcxoVn/JAL/u3dsJdT+OWfG+cXlQh4dABz7oW38+pLbmL4L14H8X8B17ExOQ/4FF+Nr2LLMc/g2A/Mj1858zVX88ldHOMef6MmJib49a9/DcBRRx3F6OhjSxy1wzIG4amuq9W8Sa90E1/fxwxXaS2v5oFWjvrl1/NQrHqCSHN7ZGPcRBl3oReZ7t54jKOWiVKpa5esdVfPAW5iXjiMAUjjOg3QtQzOss7vtthPbxWGAp1f8xtKb/emEPvnJYQzk+yly9k4dl2joqTA1hvQbCLn6oRCdClhBS2uV0gPrquTUw6TVSOkVb/Dn462xs4YoOECPa2SeI0sF7YKdOj44nbAIxnw8Aci/GlHZ+scwzh+cqdDZjSY7u/Cl+D7TlNUCrFKdWysRZJ2AKicbRJaS2p7QN9iLdZe1p5qWXYXvOzotXsKZLYHKb2hlosg5pHLa2cI4a7HuhqiI5dsn1Y9GuOS+iGgV7apVNuY1CNNPHTNx59SeA036U8QRNNuf9aD2qoQuWwMmVrC6SrWE2RlSdLnrlVZKIhHBK0xgy4biAyipei7T+E1LP0PuOu8TAxJ1VkAg+swJGWJ5wsXUBwKkj4PlcfHWwFeI0M1HGsgy+lwJqDrZpZnfAGIzB3D+C4wU2XuOq9aGuFLZCrIIkF1ncB6Po2VHtNWcG3zMH7sHYJShizLj2EEWeqBsOi2h/Q1JlGQCVRfRhCmKGVYWpljxKujETSNhxSWqkyI/G2URUZFGiQCKQTjSjAqpzk+mOQJ0Qa+VXoyl7eeSFIPYDCjtdRHZoLSpAErMKEg7lfEg4K5IzRiOEFogfINQZgyWm0wVq4RqZSpuMK9E0uIWz6NWsQ6M0yrESJaB4er5WOp5k6fYPw/JWdfshmAq5/9RSr2WBrihfzXq902L/6td+7Rvkszkxz7gb/gb5v/zdPvupXTT3wfV9/ywYNS6O/0J5fzif/3Ka75dPfx09o3UfmTaebe+5dcdPtJnPziSwBI66fzuivfyvvOPA/94NtQKz/O6Se+j2cuEIPxNes+y7mX/A13TX2cmy/61A63OfW7N3HXFR/nj2fa8J7X5o92t/3EZ54B0OnGgDMYiEffAnxll8ax2wCm0Wjw1re+lcsuuwyT6yuUUrz2ta/lkksuoVwu7+4uD5oSvuc6IUWnAdyEPPBhoEo63k9rPCCpOBtFlbiLslUQDyiMEnhxmWDWgQq/nuWJ9coBnNRRBdCuZY8UZGUfYS06kMjUoloZ3kwTUW85y/0sg8DrZpoU1ds5KdzIPM8BpLRrR2yLfJgCrAR+x2VNeF6n4yMK/U7Rucj/j3agS5SirhtYx464B+AU7mn534QQApskzuCgl+bmeeixAeIlATKxZCWJSnJnF09AI7erjF0XJZyO0ZGH3wCsC8jUoSAe8kj7K1RSjZw0zpQg8HMQKLv0MAmiVMKWQtIlVdJ+19WxsrA1dSnTfk07F5+5FhiDbCZEiyL+xTrAtTfgZfv97AqIeTRAUjxfAJnkz27Fv3D/JVo/1komrnveXOYcwNKSYOqJlvKaWULc5DxJvM66lShlpOOGNBOI0Jm41A/3UTWBsIqsarChQbQkwUyATAUyhaxs0RHossEfbSG0dMteVkCUUTvGI9ji4zc9ZBKhYpPTfYUTpluL8RzY8NoGFTtgpH1oDymklpRzZ1qhc0c1CZlWeXixMyEA97PXdm6ROsyNAIQlGfCQqUWm7n5QmtKUJiGtSKySNERIMixJpO0Ib4QyCGkxiUJ4BlKBMcp1O3wwmUBElmetvI/TBu7kKH8rI8oiAb/jYKZJraVtXYOqZtw9zwA+cIjX5LVDN6CONPzvg0cztbWftM/SGnX3Nx0KaqslyYBFlzU2MgRBxskrN/D84dtY7U+x3KuhsGgEm3WFK4eO40dbj2DrXB9x2y062mgRwOxO3f2mtVzx/32TLx76XZ547u0AfOJ5zwBWALcArsvw9uA8wOk7AI4cfhsAd03Nt3S++aJPdTo4L/3pyznhhnXc+n8RtXVP5fu8gb+4Bb7PG/bHqe1xvWz1+Xz9gU9x47fh+k/9F884/8V8/8Qf8dWL38vHP/Jx3vbW48lWfY1LvZu4lc93XmdG1nL1iR/kAhZGPF9Qvl5WmeVD7zx/Hoj5+gOf4oS/+yjjHz6EC67bPY3LsR/4C378hggu3bXtd9tG+fzzz+cHP/gBn/jEJzj11FMBJ+x/29vexvOe9zz++Z//ebcGfDBUx0Z5+HV4WnZteAvtyPAAs8cPk5YFXrvruOI1TW4Z7MSXWQRZSRDUbJ5wTC6iFM6KMu82WAHklsKFs0s85PJSrHTc4JE7YsL7pxCt2IGYooruRq/Vse0BW0I4bU0PuCmyamyWPdwyWYhOF2eeOUGx7wKkFNsUFLheowLo0tkKGpenHKgAR7nzfbAWM9JPc3U/JhCEU2keGGnx6gk66tofe3NtMGD6AkRuB5b1+aQVrxMsVmQnVH61zeUfFF0km9P5PA8Rhegl/dTX9LmgOAVey+K1TIezLTNLPOihffBbltLmNt62Orpd5wf3/9Oi7WVej2Z7+fxX7F5L/4qv7Vng2Y6Os6f7OphrocBLUY8GYHa3m9LbjQEWvyd5Fd+TZ572l4SpR1r1qa3yaS4VtJZnVJY20FoipSFuB3h+hhAQ+BnL+ucYK9VIjMdJA/dTlW1+NH0k982OMDFZRSqLTpTTXADS11grCEspUhq0lhw5PsFTh9bzpPJ61iej3FJbTUv7/Hj9Gvxfl4kmYeS2Ns2lAcGcxmtp0ornuifWBVACZBVnZlI8VlxzhXEARmjXKTe+dDqbpAiuxNk0K0Ha57kOTNuQ9jn6XDSdYfIcGZW4x9uDEq/lcmKsIA9AdvfD9qgg7bNkfRbZFug+gzfSxhhJta/FcaOb+d0lP2e1N8Vyr0UkBD4CX7goSYNBY4nz+2QBayKhkEiaNsUAmzKP61pHcNEtZzi6VyIJJhVZyWKXJB262smH3c9zR+7kjPJdDEuJxqK2c01rW8MGHfKD2vHcMreSm+49BNtu8cAbL1z8nuT1SPeTcy+8nWtn/nqv7IO3XvAevnnJTdz2sg/yqvA5PO3vT8Hvu3qXXnvhqR89KDsxu1In5YAiHPs8L33ryXzqqrGdWhYvRH1y8DlMHPcCvn/LG3jeiZ/mrPfc3+kE7Un93x9Jbrn033bpe7LbAGbJkiV8/etf57TTTpv3+NVXX80rXvEKJiYmdnvAB7rmARhympSSiDDE9ldoHjZIe1AhLJS2uYtvWlX4DU1SVWSREynqQJBUHee4PGGQqXtrpXbCxfaQci4vvsB4DuB4sUUH0ByXqBiwkAyA14TRW9uE67Y5fU3mqE42y5iXDVPYAxdgpOiOeF43M6WoYvtiua+HNuYGKjo2zfMoYB1ntJyaVWxXCOI7+7fzxlKAJWstIgiw1TLNQwawShDUUkRiXMiacTxxEWuyQecMI2ONaqZYX7kbmgUdeRhfdlbwsopHe0jRtykmuHdrB2TZNHXUPN8jG+1n7ogKQkNQ086yNM47h7HBeqLDB1eJoT3kkZUEg3e34KEJrrz34sUbTl6PdMPZXfCy0PV4AzALDV6K2hmI2VMqWC+IWfyeuCq+J6ee/pfY4T6SPkl9haB1TBvpGaSwjA3VkMJSa4cYK1g7MsGRfVtZHU6y1J/FFxlrvGkioWlYjx+3DuPyzScyG0dsm+1DCIvOFMrTlCO3UDRSaTISNXhS/wZOLt/HYd4sVSkwwISW/L/1L+WOX66m/KBi+TUNkoHAaXQyJ+o3nkBHgmBOd665VtDpsBQOY8YTXTE+OVUskPNADdaZt2T5gpNMDFnFw/gCv5aRlZUL9cxcR8YKt5AEdBeoAmcsMHtogAlyN8sS1I+Jkb5BSsvZR9/Kaf13MqpqVETGsNT4QqB6AAzQATHucdV5PLWa2Gad56aM4U33vIq7Nzg3JjHtY5XFG20jpOXZa+7l5SM/4XB/mlA4crcSwhmIAtpafCGIhEJjqRnNPWk/f3f/Wdx7f4X7Xvehxe9JXju7n5z0zvN5zpF/RvL2BUo73MO6OPn8o290ENfdb1rL+J3X8+MjT+Db//a8fXacZ1dm+dDrxrn5ok/xn+a4vXZL26c5MM1mk/Hx8Yc9PjY2RrPZ3N3dHVxlNHhBd5LuKbLhCl5TE1nyNGKB1Ba/oTsCRpm6ZGK/6S7yyUDBB3Cc5HDWEk4nIALHDU4NrVEv5w67YK3SVosXW9qDgmjS3ThqK0P8yTJyuo5N04fZN3eABuQgo8doIE3mn5vKHdLAvUYq0GnXXa3Yh5BdYKN6VpU62Su6x1dTdOlanRwbugApB0vC9zD9ZVor+2gPKSdKTRS25JGVJH5Dd44vLKi20wKZQDlgI13GgUw1qp3RWloiK0ka45JgztIcC/AnKohGC9uOO92ebHyA+uoy4axG6NwZx1iktmQlhV9PEW1LWg3wk8ylLJck7SHFtieWqETDcO+e/CEt1v6u579i0+MGxOwr8FLse3sQszc6luAjJzysE7NYruJBD1uVtJcImoelKGWRwuIHGZ40PHF4o/tdaJb4dQ4Nt7Lam6IqEzSCAampSsUSLH7pHlavmsQXGVfOHccdc8u4d2oETxqWVmssieosi+aIZMoR4RZGVQOAWWMJBQxLzTOG7+N2fxUydfegYCYhXhLiF5Ria+dpYgpgowPRyZMRxjonskBiPPAbxoVbSoGMHXVZGBdeiXHAReRumM5Omg6VzMs1ITIznWBNrEu7t0oiY41VkmjG0B6WJAPQHjV4oWZseI4TRjbx+8M3MCozIiEJhYcvgs77b+hZoLMSP78vSbqLbr5Q+KKrG5Ui4czxO7h/coi4HiLHYmwqMVbw5BUPcurA3YyoBhIIdtDpQdAJr9S4z+9JYYO3rr6Sj9afzX375C/t8VNzp09w1vPv53pm2HvT4N/MKnJb3r/sb1zeynX7DrwU9efvfDInxGt51bueOU/Tsq9rtwHMKaecwl/+5V9y2WWXEUWuvddqtfjABz7AKaecsuAD3O+VU6pEFGIDn2TAx69lbnXJeLlw3wkWbeBWkIwS+E3XcfEbIDNJWhYIk+efZBKVeHh1TdrvYQKF37AIa5zHfN24/RqL35C5Qw2kZYEN/e2skHOKmM25aFK5jcEBjwJE9IjXMboDyoR0q2NWG6cZUcp1LqSCNJ5vF90LSmROVdMFp6AIyuzh9eqePJzcbll4HtZTJCNlWiMeKnY3yNpKHxXb3H1MdFbfZGaQiXb0sPzz0JHLM5DtFIzrnCRVRx/zYktakTTXDFC5o90N+ixHtMYjvJbpuOxYKRzYzCmAInVJ134tQZc9TOg6ZNGMpT0kqK9cdI1ZrP1b+xK87KvyLzye9ILbDvQwDrpqLVGIqqB+iEZGGcrTPGnlgyyN5lgRTvOU0joikTJnIiKZMijbVEXGoJSAxRdep1twhA9H+E0MhqP86/l1/wDrx0bRSJZ6M4yoOhWRohEMyoSygEhIGtbQtIKqsBxf2oCspKR9Hs0VJVTbOvZA4jSdWPIsGlwwcZ8k7ndABQtZWaBDZybg6M4Wv67w6z4ys5S25U5mbetuTTn113iiI+6XiXWLWC2L57vrcVZSrqteABjtFrKK7BxhoLFMkAwbWBLj+5qzV97K8yp3cIQn8UUJiUDlC3y6QxVTndyYeSClh+6lRBfMaGuIhMeZfbfz6zXjfP/OY5DSYKSgWmnz4tFbOC7YxLhKGVYhDrbMp44ZbG4U4DpUBoNEcrS/jaeNrOdH++Dv7PFSJ73zfM4f3sq7zzxvQTJPDpZ66Qcv4Jvv23/dpCd+6Md8+RPPZiz68P453rm3M/NPIc8pPZmL3v5krvmn3bd53tPa7RnaxRdfzJlnnsnKlSs54QS3cnfrrbcSRRH/+7//u+AD3O+VaydQCtNXQofSXbGlCyaTudOKlZJwOiWcdJ0YYd1rXfvcJx6Q+C13IbcS6sv8zgU9iwThXO7KEjvwgoX2oOtOeG0XoCW16DQ7nFWy6QrtjeyGXxbULWsgM+AH3SBMKRBB1NX1GKdvEVF+4U4zlwMT5yL4Yl9ag+zNU9mOjpZlLvTS97p6mN73EIOQPrYcYQYrxEMeVrpzt1Lk52k75+81tUtq1tZpYaxF5odLBh2ItMJHlz2SfncziqaME/YHUFvpUb43gFYbfB89VMEqQbQtxgrXTCqyD5KqJJzO6WY5UNL5/2Xm3v9wRpIuxsDsUh1o+tjjpQ4EeFl0Edt31Rq36DEDAynKMxw+to0XjPyCI4MtlGXKqMxQQqBti6aFGRNQw0PZDB+QQiCtBWE6XQOJZFgGnBDMcZQ/iwJ8IUjzTrzrRASovNvgW40yGRpIrQcC4hFDc1QhEwjqLkCzAA06FKBB4LSZ7RHhxOsBZIMZSAtGgG+QocZISzOTYARTbYVqSPyaJJiBykOGaDJFZnTdyQwYHxJfIKzESgeiVOKeN55wVF/rfk6rirQsSQcMcqyNMYLR/jrPKN/NIZ4mFG4RtReI9P6MNUjUjp/bQUkky5Xl2QN3cUVyPJkV+KWUU5evY6k3w7BKqUqvA162B0AFoJE5VS22hhSNBJb4j/1w3n1VJ73zfL4aX8W/LPmzgwa8vD04b49oZN8YOpt/+PL7Or9vAU797ovnbdO+4tMcMjL2iMDmpR+8AGC3wc+X+5+9X9/Dwk3spcA1l+w/8AJ7AGCOP/547r77br70pS/xq1/9CoBzzz2X3/u936NUKi34APdr9U7QlcSUfaxyK0lGOgG4VoL2YN4+rwlU2yXGm9BDxhnWV/h1gdDOVUtklqwsncd/ywV5Ce04xVkksGWZB3zlQ/AgrqpOGFintQ5OGG+6Kz6dcEpDbvPsXLiEpzoCfDPYR7ykTNLvkeUBZFkokJnjM8vMEk1ryr/e5gwDktTdZQoNjRBgczviXgcyIRFB0PN+9Yj5pUKEgTv+QJnmihJxv8SLLVnoqHY6EIAli5wFqPHz99IT+PUMHTnNkZXud5HlgWtSdDIRZOpuhqUpQ9wvsaGHFM7yuj1WcuDRE6hG6sLbMkUy6BEPSIKaRJcDR3uADhccCUlVdTIcFus3oz70V2/a6XN/8Ve7aImyF/VY7Lws1iNXVrXQn6J8Q7WvxVOG7+ekaAPjyqAQhCKY1xkYtympNWhERxSeojFW4Isu9UkJQVUEKJOisfhCOuF6j7ajKF9AWVqmtGZzNoBpeUjtrp3OidHdZ1Ts8rusyLWBSpD0K+JhS7oyxhqB9AzlvpjDhyc5vG+CtaUt+ELTtj7TWYVrtx3OfVtHiLeVaI9ZTODhxQrVciDJaxpkauhfl2BzxzOZGgdeDB1tYzATY0KPrOLRGFO0R8EsiZHAQH+TFy6/jWP9NmXp82j1aIBl+zIY0o64x2ITyeGHbONlwz/l+KBGuQccPuqxrOv8+EAkNCu9qd0ay29KnfimPwDgdS/6Cv/4w/fyRfZcuL+Q9ZY/up6Ld+PS//UHPsWXL3uQ6obP8sIbH8Uyf0Bx4VvewUvZOUDZk67N396zkpV//pvjCrlHHJlyucwb3nBw283tUXmeo0pBB8xY0Z3Qei3jwMKAxCpB1udSlmW+rQk8F1qWaIJEk/X5zsVyMiWacm151c4oZQYTOkF6Mug+AuMJhHYdCq/lJvh9WzLUbMN1TYTAGtN1/jIWa/U8Ub4Qwtkmex7xolXNAACroklEQVS2Wqa9sp/GuE9aAdUjiWkvEXh154oGgvpSj+boUvrvjwnv3pIHQ/aUyOlohd6m1zCgeK8KcCNFZ1sb+I6SoJyxQVpx4yxcaFTiOk1W4m5uicGEztEm6fdQgXQBakAyFOSgB6TGGSj0qY6Q1AlMFfg+NvAdUCsJ11mJ3HucVr2OBbbxnUOOjwM5VgpMyXW1wumMeNhDJosA5rFSe6p/eSTg0rvN/gAxi/X4Kqusa5ZnEiUtS7w6A1ITCbeCr0R3tV4Jma/aa3R+Xe2dKPeK0cGJxdvWkAJYjY8DKpHwHvaa1BruSJfwhfVPQ80pKg/IjqFJcf20yi1u6ZJER5KkKplZK0lGU4QVDI3UedLYRp4xcA8r/GmGVZ0RGVN2DRs26ZAhr8GNpUO5tr0WOeXTXmLZFjgL/L6N7vpuZb4wpDVWqE7nB0DlwZcmUBhf0h72aKzK0+5x7+PKgVmeVr6XsvTxUCghO5SxhayqbLkfjOAZI/dxhD9HWQSEPe/vo4EjJSTGOgpbzQoeygYXfJyLtW/q2jdHXHzRrifNf+h143z5sgc5OZvkpmVn79LrLvjHC/jGrOZDf/UmLnyHAyutwZE9Gu9LP3gBr37tStTKjzM9cw2w73UvB0PtEoD51re+xVlnnYXv+3zrW996xG1/93d/d0EGdkBKCGcDbN2EXCZ5Rkqe9SJTi2pm9G2G1rCHUYL2aEA4lVtCtjU68rHC3QyM71aWdOgyXoS1ZGXPefCHDgQVTmVGQdLvdB0yddqOcFura5ksRKfj4oImc8G9cUGVtrANzp23po/tw3gQ1C3epDMZMMrt12sJpKajcSlsnesrApL+FfTdNQ1Ts1CEeRY6me1Xngp9TeFElutkhHRW1LYcEi+JnNalZPFqEG1L8ZoOlBTvRTjtgI8TjEpaw57LIpDuxqoDSVpxdtXRjCbaHKNDhR1QDkhG5PbWBjwFvocOBUHNuZy1R52zWFpygZh+w+XP+DVNWnVOZggHgvo2xYjU4Nfy93ixHre1K+Cld9t9BWIWuy+P08plhGhBoDRlGRMJQShc58BgSK12XRhr3ITYgtdzmTXbXYM6VDIBwypE5xPk3ue2rwkt+Pj9z2XruhFKk5KB9ZkT4oeu+x1NpWSRQkeS+gqFDqGxwmCXtBHAkSu38KZVV7PGn8JYQdt6BPkxmxbuTke4sXE461sjbGv3IQONGYYslmRLLO2GIulXjP9Uotou3FImBq+tEanBBO76m0UO0FjPmba0RiTpcIpfTjFGEkYJpw7fmxsUeO69WSDwUoAgD4WPwCBd7oxvWBlMdTpcu9vRkQhiq6kZnzn9GGeo7KO65dJ/4+R/uAuY40/GL+RU/uaAjudftv7DLgOJbwydzY8/9FE23raVc7Iv7vaxzhlwC+bH/eskt//hCKWZyT0CMX+/6avcyrvRD76Nb//b/qVxAWx4/2pW/fUD+/24uwRgzj77bDZv3szY2Bhnn332TrcTQqB7tRCPtTLGdR+kgEwj622gTFKVCG0JjEUmmmirJphRxEMBtZWKLAqIphxvV2qDwKLDLjXABBKZabJIkfY5++W07BzNspLrvAQNQzTl9CDhnKa8sYXaNtcV5ufCexFFjuaFy1yZ130pR7RXDzJ7WEDaJwinLUlV5MYCEDYMXkN3qG3WE7SH3GQ/nNNkoaSxVNEcW8KSn4eojdtclkuvq1iW9dgqb2e1rHDj9XHi+0rggIG1hLPu2CrWTneiHWgRmUYKSZZnuqjYoAIHsIR24C8e9MBCOOtuMsaXLnxNQ1YFmXTdawCs527MKrHE/U54KoyzBTU56yDalrrMAc99BmmfoLzFOPCppHuP0kUA81io3e2+7A5w2f51i52YxdrVCiYVRvnogYxaO+RXrWU8r3IPAxRCcgnC5ABEdkEMvUL0HdOVyJ915pBqXmfGYGhbdx+e0IIvzTyNu+5bhjBQ2WSJtiUuu8XPdSe+pD2iaI5J6ms0NrAQGHxfc+zyzfz+sht4ejRBKCRNk6FJc8tgmDIBm7MBIplyeHmCY/s2EUjNr7eOEQufJUtqTGwYIu2zNEc9+ja67r5z83RZMTp01/60IpEZ+LUM3acwAfSe/qqhGWdEgHVdKuHet0d+j/asBmWT6kCLwNOs8bflmTF7dhxfKMoiZcyfW+BRPn7qpj89kpPeeT5//s4nc9Exb92rHJG9qQ3vX81Zn/hHvvko2538D3fx/73sal7T/zIu+McLeNteRsa8dO4fWf0JB1y+u4cg5u++fjqn/n8HBvxtOenFrGL/f2a7BGCMMTv8+XFX+eS1k0CfaaLJjMZyn7RPECdeRyuhQ9dm1yVBoyKI+x1QEMYSNAwycXaTLrAL0j63yqR90IMKleYULuG6L1ZAOKvxGxneTBs514Q46WpLlOqEUQIg826MUiAlthwRrxxg9rAAmYJft8wdDuXNAr9uibalqHbm0uetJCt1AZbXdmMldPk17QHJ7JF9DNXarhNj9HyRfpEDY6TreJA7k0HHAMGWQlrjUZ727ILPVDtDRx46krkWyKIjRxfIKhKvZUgrMjdEcF0vHSraQwKVOH2Q3ypcbaTTJnmyQ0MwgYdqgsgMMssNFBSUJzRZJKmvlHgNZ6NcBK+1+x0NzWs6G2sTuK5WVpJouXurbb+pdcXXlh8wIf/+Ai+9r19IEHMguy+LAv59W+E0WCSNiiTNFHfOLaU2rFiWX3qd3a7odFl2KkTPa3uqVDGhLl7ftu7e0DSaDTrk7mQp/73tBH5y7xrUnEKmAhW7hSuR09S8tls0iwclzWUWMZRgU8Xw6BxnrbqT3+m/hcP8NgMywEPRpyBDUzMJCBiUGYd560mxTGqBEpanlNbx7eoJ/OedJzIzV0aUMkwqiIcU4ZzXsc23QpCVFGlVITNL0ueMb/xaTqnOAGkJwowjl2zl95beyBOCbVSF7GiH9gV4kUIQiZShcou+IGZQtvao+9LZH5KKNPjiMby4u59Krfw4Jx9x4ET8f7/pq7wqfM4jbnPSO88H4JB/uooLSgtnIX9yNgnAK9+xhVfuwevtho8t2Fh2tw4U4Nztb+Rll11GHMcPezxJEi677LIFGdSBLOF5ncwTkaT4tQQVW/y6JR6QpH0e1nNZMOGsRsbQHrE0lwnawy7IsjWkaI14NMc8dEkiE6dpifsV8aAkHnI6jCwUeC1DNKMJappwKsabbiFnG5Bp8H2nfynyVJRECIEIfISUjqrlObCQjvax5eQQHQmiGUM0Y5GJ6ASSydRgfdkJFZOZE8R7uXizucSBM+3n9DKgedgQwlOIKHLOZtDtxnieA3s9gAqlOu+dKTvNig4KOp0k63PtD5k4JzSZGactautcI+MoYULbPBhUOsOBFHTo9EFFOdtpB9SiGedGJnKQZQKvc2y/aTGeIIvyGyLkgaOStKoIZzUD6xOqGzOEtsSDHvGwj/YFxlv4m+NiLUxd8bXlj5vcl8V6fJYwLpBYtiXWCrY1K9ybjhDbdN52ErFLE3El5Lx/va8HMNaJ9X+ZDHFt4ygue/AUbvz1YciJgPJGSWmLcIs0nuuAy8Qt/LQHFe1h0EsShAShDKctv4dXDP6UUdViQssOOHLHk1RlQFn4hMIjFB59wmdUWQYljKs65wzexAuOuo1Vo9N4gcZGhvaIpb5Muet8rjuMBxVZ6Oi9wpBTrXO3sgBk5K7pTxtaz9HBFqp53su+KIMlQxPnRgq+0gQyoyyzndLzHq062qYFHuvjtfSDbyO4+IL9ftwN71/NW/7oetZeejc3X/SpR9z2q/FV/PmF7+H7pT3TqzxafXjoYj70V2/quJDtSr3uRV/ZJ2M52Gu3v5V/8Ad/wOzs7MMer9Vq/MEf/MGCDOqAldHOqrjoNmiDnK5T2pbm9o5ulag97JP0Oztf40O0TRDMOZcx0wMAdCBIy4LWiEdSlWSRc/3ya84jPprWBLMZ4USbcGsTNVl3nZc0y6laRb6LxqapG1uvDsVayPUmjZURMoW+jZpoW0J5U5vl18X0PeRSlZtLA+JBn3QgoDUW0lriUVupaA8oN8EvQ1pyOhOZWVRsaY166KUj3a5PkQ1T/N/2UKx0T5dGCHQlByvadXesJ4gHc0CnLcFs4ly/yMFNKDCeWxGU2pKW3ViSqrOo9htQmnZgywSuW6NiQ1hzKc7CgIgLMEUnkC0tOQBVmtIM3psRTVv8pqW0LSXalqBijdDOyc14gix05gIO9C1SyHa19heY2Bvgsrfdl4Xez2I9viuaMgQ1i1cTtOsBE5NVrph5AhsyQ9wDCLYHJLtbsc2Y0DFXtZbyoc1n8v9uP4dLfno6d921HBJJabMknLZUNhm8prtemkDhtbXTcQ5L4nFNUE4JwpTDV07wosFbGJQZDevRtoqa0dRtjMHiC4WHyoMjVQfEDMiIARlwiOdxiNfizMFfct7K6zl+xSYqI02SpRmtpZb2kHTU4GEvD8l0C1JhzeC13DVephbjgZQWKQ3L/GkiofGFMz/YVdC3O2UwaGtJrGVDOsJMq8RQ0CISe3cfMFjaFhomXKCRPj6rAA7av3m/HXPD+1dz7Zsj7p/cytpLH120f/I/3MXrXvQVxo75wj4b0zkDim/Mar77lnfs8mviO/v5reMeuXP0eKzdXsooROTb14MPPsjAwMCCDOqAlZAuwV5ILCkYg8gywvstA9kQrfGAdp9Eh6LjSiY1hJOuAxAPuBDKpF8QzhhkJnLrZEMWydyBxb0unIyRcYZsO6Ai2onrumSZo4RlGqGsE+cXQZNGYxPt7IsD34EZITCRR1oWlLc6330TFAYBBr9uEOXcjaYiEcaQ9EmaywReA0xgES0oTTrKVVbqdh50AK2VFfo2T2KzXBtU6F8KsFJQ3PxeS2VJWnHhk85dzVGyjHJZOsFUgohThBKAA1BuZVDQHlT4DQdirBWUJp2lp0ocLa814mE8XNcF0L4gmNPOBjRJO45tMrOENXdOXqMrGIUAmw9ZRwrVzBBSoId84n6ZW4xaiJweZ7F2vfYllexg67YUIGZRE7NYO6vSZErmRURTkmTcZZ78em6M/y0fy4v6bmOlEHg9GSWPVttTyAyW2Kbcl8E1zWP43H2nMLmtio0lIpN4NYnXEFQ2GadBbOamNNYtoKl2hvECkgGwgSFLFFE15fnjd7DKm8PHUcQcZaubfQJ03L96s1AUoK1Ak+ELwVp/klXeDLUlJdZWJ/iWfgJJrUJ7RKISd69EOPq0Si2qbfBaGtXOSKueC9S0Lrz58GAr5dxKumsn3XUg0z36oT2pwjFMo5k1ih/NHUUr8ZlOSrStyDVGu/5ZbV++gFG1mAPzaPV3Xz+djfIoXnPx3SRv3/fhj7tjVXzSO88nPGb/6Zh2RYtTVHjMHOf+8JsHjQX1/qpdBjBPetKTHH1JCM444ww8r/tSrTXr1q3jt3/7t/fJIPdbaQ1hlCfK5zbK2iBabYINk3i1PoKxMs0x50AmLITTpqPZCOcMWcld4K1wwnih6VC2AIKpBJlkyFrbAZeim5FpSFPnCpZlYA1WO6G+7R2fUtjU2UoShVjfo7W8gvGcVbKweZ5JBiJ1+0/6Q6wAv+luYrJPklRBpoLSpNOipBXpNDhNyEoumyao5SGbUQhJkme85BbKWU5tS/OVxDx3RkgftOkIRKNpTVZ2HRavbR3oS92NVEceMtF4zZT2aITQFq/lsgn8unb86D6J3yjE+w6YZGXRBSGhCzsLZnMAmBsbFKJ9567mUdksCCdjVGJI+hVpxUMlxolH+5yRgUqcDiYrSZKqIJhbpJAdDHWwgZfeeqwJ+y8NXnegh/AbU34twfNSrPBpjntk44Z1m5dwyabTuWr10bxm2Q08PdrIeE+q+84m4doaMnRHpK+xbNOa9dkAn3roNO6eHGVmog+MQMSS0kOK0lZLWDOEMxkycZ0N6JqgWOHMS9pjGhFqhITzjriRl1R/wbgK8pBN22P3/OgAQQmJj6IMzJKQWsnhwVYikTI+sIb7ZyKSlsCv5ZpRDdJaVJLfJ2ON8dwiYVEjlSbDsk20A43QvrBRbliPBxpDJImikYa7fO6PVApo20Ui2aOV3fAxDnv+T2H9vjtG4Zh17ZsjuGjP9nHVU5+Ez/MXdmA9dc6A4qbd2D6+s5/fXfY1XsFr99mYDsbaZQBTuI/dcsstnHnmmfT19XWeC4KANWvWcM455yz4APdrSZHbBecp97l1sDUC0Y6RWxJKM3XCTWWSsTxdXgmMhLRP4DUsIg+I9GKLalu8RoZqpchmnq2SU9SENp1uAbZ7rA4tyzqBf9Fl6R2XiILuNp6iNaLQkXMzM5670PpzCVhLXPXxmm6ibiXOTa1miLZ5CAtJ1XkohzMGv6YdPQtDWpYILzcYiAKoK0DnHRjbNToIHGApzs0qg5BuLCpxlDqjBEm/06EkfRLjlfEbGe0Rn9IWB4xUbGgt8VC5+YFV+U0zsx3tSwGKZOL0MC7UMrednm13gWDmAJRMHRWusMGOl4SEUwnGE7SWeM51TDnTABVbPGPzFUFBNG1gkUK221WAjb3txCw0aFmkfS3W/i5ZjxFBShBKyg/5NHwfM5ogpOW+yRE+Wn8+v7XsHl44cCtH+HOMqrDjhbL9xDy2GU2b0rSWGeOxOevnusaR3Flbys8eWIVJFGTOhhkJWdmS9gkqWzRePcX6zllRB+7/HVv/SGBDg+cZgjBl3J9lUHZ1JnIP6FNdgb0LcCw6DyeNPMD9G5ZgBaRVkV/r3cKb13KLfDI16FDlP4OUBmMFE6bMoKxTlg+nju1N56UobZ0bnMHwy/Ya7t7ibKVm44jUypxetnOA+Uj7BUiBmvnNWh3fk7r5ok9xzY0f5eVP+iW/f/EFvGL9e/niRQv7vv3xhs/ybZ6HWPUu4JH1Ljuqv7vwKK566oIOaYd1cja5yx0YgA/f9HFu2i3YszAVXHzBfumW7ah2GcD85V/+JQBr1qzhla98JVH0OPwyFsCl6BTvIDRSxAkyzYhm64Sl0InofUXtiH78hsGfdSnDqp0hG3Ge42IQme7qRoTo0bfk3R6l8g5QgEhSrHSCeJvlYyiAjed19yElpuSTlZxDlzA4R5fUIoyPTJxOJKs4oaTMLM2lAUJbBu/LsAqmj/RI+i1CS8JZ4YCPEPg1SVZWWCUxUYCUIjcbM13aWPFGFWJ+pRy9MNNEW1s0VpcRGvyGIZx1NsfNcZ/2sPP7V7GlPRogU7+jh0lLEuk7ICETizCiE0opMwdo0pLTqgBYDyoPJYip2e77KN0x435JWpYEdYtfc/bR1hOotnHgKpDQ1qhmhkwNWVkhY5cdk5VkTjlbrD2pRwIgOwM3B3On5ZHqsdKFWey+7P8SqcavZQysF/hNxWwWko0ltFsBzXrIt1vH8cNoLWuHJjih/0GWeDVW+ZNEMgUkxkrmTMQvWqvZlrpFw02tASZafTywZRjT8BwHy4CwAhtpaDsL4vYSS7pZIrOg09EwnnMiE5khLXskgyDLGdYKjJHzdBpKyEckTT3SZF4iqEqBMZp23i4vqZTBJXVqM4Mkg+DXcydknHWyjLVjJWgHxFSMG1PiM5H1c6zf2OtOyPZVAAyDpWlSZozhM+tPJakFoCxzXsSErnCo12ZHni67Ql0zGCZ0QEM/DudM+6CedX2Vk552Pl+M/4VX8IrO49f93Xv3yiZ4w/tXu/33lZm75xlcvPrIXX5t4Tz2dxceRfSsP4KH+1jtk3rpBy/YZZrbL049C762fwHMTf/1Vp6xHv79Defzyk/vPhjc29ptDcx55523L8ZxcFROIbNx4jJWClDR87ztCNUltGPn0mUtA3PN/HHRCZ4E5gvdpXT/CtpVx8FLdgAJcZLbI0tHJSu6G8VqnBBdEIMTYzqQYNEhJBVJ0DDEQ67z4rUyvKZxQWWhyDUpAmGM05qkjkoW1A2q5c4trbpWd1aSxFVJtTiH4px69S+5tbMIA0hS9/74ATLReffDvVYmBq+Z0qctWdlRvnTJIx7yiAeko79p8DLXgVFti2o7W2mAeMhH5h2doG7xmyY3HIDgwWmsyQM0hUDEukMDK08Y/HrO/c6sCy/wIKhp/NkU1UgxJQ8jHLDxGinGk/hzllQsAph9UY9VoPJI9VgBMYu1/yoZ66NUM6hmQuDlHXKlqNkAvTzGCzKEsCSZ4raJpdwzs4SynxJ5KfUkxALGCnxp2FaroHWuZYzdbdvGCowAz4JnsZkEI7CeIRs0YAUzaz3CGUk0aQjnNDKxeC2NTDRpf+gYA1oiZN4psAq9QAG+vpBUpaEsEoblJPTdxcbxQf7v/gFE6sKfZdZ1xCwYBy6cWLqFuUyQaUXNRLStpWw1SghMfk/q1eTsqHoBisHMA0CFaD/NnccmtOSqxnFsvn8EQg1WkGWSGVPG0HzYPh/puMV2sc2o25R70+Xc3dzLsJDfoLr5ok/xZ/98D/BeXvPONj94w3X886fb3HzPoZz0T+s6XZntQU0BUnpDFV/4B9/nk6tez5aTXgzAc3kx3N4FJY/mOlZsc9I7z+c///A7wEsZuG3/GA3sahcmPGaOV/zwI/tVA/N3H76O5/JWvhivRawFDgB9bbcBjNaaiy66iK997Ws88MADJEky7/mpqakFG9wBqSxzVspa06VM5RN2P3CZKABW552ZvCNRb7pgxoLyVYCMooujJFY5xzD87tsukhTasQMvWjvRvrHzU+ClcEMQLqPGFt2O4ukM0opLmBcWZg/1wEDfQ3kGTVnmtsAQjwgG79HUlymsUqR9oNp0tDjWd2YDSVVhPEc7s0oghXAjEi5wDc+DJHXjULILtHJtlJxrIkwFkTl6mMgcXUu1MkRqXIhnWWFlnvGiIJrK8Joa4zuXGuMJhHFBZzJxWh18gUotVkEwpyndO4moN7HGYo1GWItstNDBILok0KEgmspvzhUPld9vvKZGNVJkkmFDhUw0OlLoyHNj9SWZt2/sOhfr0esbQ2fP+/2c6csPyDj2dV0avG6/ZMHsqPuS/Nmti1kw+7BaS3znmtV2GpQgSxlMDNGMx9xMRDxsSTU0BzSEhrpvENIBEZtK0AKkRfWlmFRitYTMTfSHxudYWq2xrDRH1W+TGUVDB9TSkLsmR2k2InQiaa2ypFUPkQmsVAR1Q+p5+HVHlZUabCKxnrtGVmULtUDuXpHwULig4jKatUxyeHmCH/oWE9lONwhyfWOSd9V92dWSppJ27PODqWOpyja/VXqIMn7h1o/BIhEP64QUmqFe++eiivNrW40BEmuZMh7fmD2JL9/+FPde+bn9v5FsTIdIo62EwnYXEnk4eCmAzfaPS0BhaepFF7LdqY/8yRHcm1sJP/CtC/n4sqNY8fVf861nLefa/8hzRz7xDVb3pMA/UP59wmPmWMUl3PRfLhDzA2d/i5NffMkOgxY3vH81f/7Ap/jbi34G7BqYORhrQB9N+5rPAG/Zb8d8lvkOY3o533roFXxtzd+QsP9pZLs9Q/vABz7AZz7zGd71rnfxvve9j/e+972sX7+eyy+/nPe///37Yoz7r5RyE/Ti5166lBTzLl5uG9nZvtMxKSa9aQph4EBBfwXdHxGPhKRliV83kFtHWinw65pgqo2arCHy7oxNUxcU2WFrqe6+Uc6JDJfvgnXUKplfq4V2DmLtQcHcap+sApUHLUHdEo+IDp0s84QDLxoaYwqZBk5UmdO5snJOTdDWnZuQIK0DU9Y6ICZycKV6LtpGQ6tNtLlJY3WfsyQWoJXAazqQpSNHI/OaBmEtXtO5hMnMYD1BVpEILVGxIe1zYMprWbJSbgZQ10T3T0Otgc3NBYQQznShHVPdEGNF5HjWSZ5qHThKnTAWmeiOkFVkBjwJUpCVJMGcedhHvVj7vrYHLTt77vEKZvZVLVLHDkx5LUva76FDiUoNIjHIxLkmDt2VX2NDl4XiLOYtWSWnz2pnEmM8C5XMdScMoCynHnMPvzNyK2v8bQyrNn4nyFIyZSKuHTyKW+dW8qvJMaYn+8gGNI1VilYsCWYlXtvSl7M4hQHRlqiqIfAfPtnf0ypcvQoLGoUgFDCgWu64GozvdJJCd/NfgHzRyxLOQHvOw/YlPFgf5M6+5Twj2oQRXUcwk/uDSSTG6s5jbZvRNJqmLbQ4bt++EBQpPG1riS1s1H1cMfcEvnbnk8nanutoCRDS4vua2xsr+GmwmadFc0S5NshD7ZQ+Nr9DI8C6zlYzWxTx72516VPu/w9xJCf/w12sffF63jFxPAA/X3oYXHo8A7e9l5PWjvGVN3+DW48fZOsTXgj3AXwv///O6wXvgtsvOY2n7LMz2fcVPeuPuOmCP9vnoZIb3r+aV792Jdd9HWbVr3jHaX/G76w9jWeefCdfv2n/ASjYAwDzpS99iU9/+tO88IUv5K/+6q8499xzOfzww3niE5/Ij3/8Y972trfti3HunxLCTcS16XYZrO1YGHfoYLIH1GgNmQXfd52bgmYVBljfI101QjwSdAToRaik8YsOAy48cbCPYEmJ0oY5RL2JyAQogc1M95hau2NAZyyilVKe0DSWKbII/Ob/z957x8l11Xf/73POLVO3q1rFRW644IoLtiFAbGOc0Ak8tAABEhw6BDB2Ep5Q/EDA2EmA8AA/8hACwZRAwNgYjBs2bmBcsNxtyZJ2JW2fdss55/fHuXdmVlZbSSvJZD9+6bXrmTt3zr2zc+/5nO/38/lAOOHayayA4mZLHLuVNqktpQ2W+lKJX7NUn9TtcaWFPEjMaWZ06ET3XsMix6exZCTN6A7Jg64Wt/zuIwGDNQY1MkFZCOrLy+jQwwoIJyUytW3Ni/vduKqMJ4krPknFVYx0WRDU3b6DKbd9eTzBH2sgx2vYRiMzOXABn3nrHZ6Hv7mBtyhERRbju1XQcGMTGyqMr9Chwsvc0ESioew7p7ZaimwkpL3hfJDlXsL2iMv2tv9DITJzVYWZJy77FirS4EFr0EcYS2E0RWSGJarlFlK8giKcBPukm+gK4yrNQrvrVmOhx6bnSvxiwsBQgxcsfYA39d/CQCa0VyKY8Z4Ho3mG/zvWVu/h1wMH87P+Z/DI2BATgdPPtLQgGPHwa5LChMarKYIJiVloSVLF6uZSTi0+QUXa3TAN7joH2f1QoQiE5sm4H5G6bgCZglfPLPCzjDMrBTLRzsHTKOIRSb1UYIOAH0THclr5IY4JpgjFTDKQZK1leUtYI+uU0AjizAZZIxhLCwzrXoaTXkaSXh5vDvKb4WVMTxYJHynQu9YydQjoggQr0IWEX29YyeaozMIDrmSVr51jnNh65acbLv8lZdJY1iYDe+BszgPgjvc57crr8wf+3f0478c1Nj64nr+48GA+fu7nZ73fo955HY13LuK+f3oufxn3bbUa863aq/nLxw/ZtYHPEnd4gzwxunGntr3y/AofOX0anvvAnI7ppgsK3HnRP/D9i9z/n/S5B93n8dM7OGNO33nrmDWBGR4e5phjjgGgUqm0Qy3PP/98Lr547yeo7kkI33caCenySVzLFp22MXAai7zaYuQMu2WkaJMYWyrQOqCHxiKfcMq5eoVTGq+mXeJ90V2sne5CY6Wg1a+Ie/qpPuKhNk5i4xgRhl2tZV1aGXAOWnFCcaRJXC23NSFJ0ZGXwrjJSIlrpZpeppBZx5/nFsIIJzSqpZ3GJLGkZUVSEiQl8BqW4rjJ7ImVG4PM3MhkVqGSdNzT8iqMkE6PojVq0yTVZkJzeQ+NhR6tAUUw3VmhSsquwK59l89ilWsnkymUNrlQTlWLEPWWM0JIXG6ONRnB1BrhZbfaLgc3MVWn8nhAc0mRpOLc4vyk63MErO+aCawnXSXGggkkerDgDBTmO8j2a3yv/yU7TWIu/Psv7NdOZLtDYnaHqMy3kc0ddKiQGSlJixITSPypGOtLjOpkdZHZvQtt0aHM9CBOC5KUBUEpYaCnzkuW3c0fVX7PkFIoxFbtjQ2GUHis8mB55WGOKzzBT3ueyX8mJ9CcKoCwxAtTzEOuzTicMqRlSa0RQCnm7skDuL20gqXldW03sVkdszWYrOriaiNZdQSnMblp5GDALeSpZsdt0srs+ht6CO1ajPOQSxFJ0lgxEZf5t43P5ryBe3he6Ukqwu+MUeTtWwKsojdbZCzYlGlrGNYh35s4mRuGD2GyXkQpQzFIaCUe05vLVB4I6Hlc4zcMVnnEPRIdQqNaYEorfp8u5s7BlQyohxmQHol175VXYjrnv3Ps2loia4it+3zWTvXN+nzOY+cxqVYDPXz83N1bRD/qndfBZ1/Cie99+wwSc+el/8qSz++9Rc3WcR+CX7x/p7f/1IWCz1/3GX7++18x/Izn79Z7D7zjVwA8J74QgHL1alo3foXLLq3O2C4nk5/477vRx92NevN56HdcuVvvPRvMeoq2bNkyNmzYwIoVKzjkkEP42c9+xgknnMDtt99OGD7NezyVhPxaJGQnuNF0Tc6tbSfTCyWdBsbmpId2a1XjwD7SkiScMs7Ct1fgNQVh4gT2SdGRI11wOg/VMoRTri+5dlCFigE1NtUW9XfGqNraGtGKscUQ2YgpD/u0Bn2MJyhMuLDK2lLlAjcbFpVkK14tl7UitKU14MYgUkM4ntBY5Fbz0tBVbJKqYOh3dVdlMl1jyG2drXG6IJvZQWvjWsykcu5pUiBSjag1KD6SUFzjkfYWMQXVJkxeM9ez5K1dTtTpT7SQEzVHWHICl7WIufNsMj2Ode+V/b81qSMwnoe3cZKg7FNfEjj3st4CMu5U0ozvbv3Gd45reXClMO6clDfU5+KvbB57ELMhMXOJPSHg7yYiO0Nm9lSFZZ7EzA3iXomKnWbPeBZdEKjIVX9lYrDZLUNqpwfJM7aSqsIo57w4+QxNQRmixKMkYxKrgJRiV+VlpvZDIIUTrJeEz6Feguq5i8YhAdeuO4zN63qRpZTmIh+ZOg1iMGkJ1vvogzRrJvr4hjmVYw7+Hof7yVMqHTuDfPKuhGiTq5ZNWZv2sX5DPzIVBOOula2z+CUgcYuAFucC2RoSJD0WGxpnVmAFv3rkEG5dcyC/OPARjixv4IzyAyyQHUuoaesxbQLWJoOsT/p5oLGItfV+GknA5lqZOPLQWmJaisaUR2GTZPET7v6HhLQgKYwbwilBUhIE0x4Tz7QknuaHG49jwdIpTg430iuD7Fhnmgl0H3+CZtpY1qZ9/Gp0FeMbZ07+5rHncN6Pa0yymhtedeYe2Z9Y/n6+OHLxU1rKNrzHwnv2yFvsFHZFkzN2zXX86hLDHxXlrO2NX3HSP/PeV2zgHx++yZGW217JmTfnf7f/uc3XPfcLb+bZP72DU9Y9Muvx7g5mTWBe+tKX8otf/IJTTjmFd77znbzuda/jq1/9KmvWrOG9733vXIxx78FT0Eqy1rAt+oHj7HEh3XOB35lMgxPvZ0iW9NEaVBTGdebr7xLli5sSROzIRdQr6VmT4tdSROpWolTLaUCahYDGijKV6QYiTty+rcVKOg5gWXaMSD2sEPhjTURqmV4ZAgK/YWgNKZoLLcURQWodeREaChMamVimejyMJ4h7PbfSZUH7LsNGJq6HW41MuOO0Xa1ieaClkR0ik4v7sx7hPFPHZvk2InPO8UYnAAiDwJ3vnJx1VVY6JgpdMBabJh1dkue59zYWTP5ZZWNMU6yxCK0JH96IjIeIe3zSksIToFouJDN3v0krvsuKEaASg6rFyEaMzqqL85iJh876Fofe8Jo9sq/Zto9tax87Q2L29ypMN/Z2+9eukpj4g7+bg9H8YWDyYIlaK1GxJZxwlXfXQuaubdbPcr20Rem8BRfSgkdSgtagwBtqEkc+UlqWB6OURdLWYcDWXbAkAgNoa5FCcLCX8tr+XzORFPnZhl5MKmkNWayUlNe7BS1/WhBP+sR+ymObBrl58SEsrj7IoFS7nLOis2T7hk1oWcv/GzndGRMA5Q2WcMqgWppubbxREuu7KrxqWvwpZ+JiAneDsokkbnjcumEFd3kH8Ou+g6h6EeNxkemkwGi9RKIVSaJQypCmCp0qd9tqeIhI4k1LqsOC8rDBryeolnGVIA26xxnfeE1LMG2dQ+dGj9gzPLRxAf+SPo+3LL+R5xXXUxVBV5WpU62SSDSaxBqGdYnrpo/kd48uQwaNp5yjecBx73gTd33h/9vl17/s4xez5sH13PCqF+2xMd3wqjO575+e+5QqDMDk0Z+g996P8t6+n3HpxNyFWY7MovqS4y/jPkTTEB45xc3AJSf9M/q4K1B3vRKgrVHJwzx/dclHCY+cYtGdP+Rd6w+Cu2BF4xtcvhSeGO3jzpt3nnR/4r/v5kcnlHnFSf/Mped9eoYT3M5i7d+uYOHHHt7p7WdNYC655JL273/2Z3/GihUruOWWWzj00EP5kz/5k9nubr+CHurBS6bdar/WMy2MuyfN0AmazCb3Ntem9JRpLC0gU2j1KVSmGCyMpvhjDZCS8gaP0kaBV0tQ9RgRp5hKAeNLrC9RLXejSxb3EjwWYXPyZCxWJ1mApefyZeIEYQwoiWomeM2A5pBrQzA+FDblvv+OoCQVgdeS+NrQ90hCWpKkocxK5+5m1hhS6ACGbht3x5uTFXDua+CIQ05clHIERIoO0fO8rqqNxQrTFRQqsK0IrCMrM6oq1oKU7rH8vbsDPvObaf4+3UYLWneyfITBahAk+I9vRPX3kPYViPsDRxYjTVr0sNJVqYSx+LUENdVCTDecCYPZgkTN42mPuSAxfyj2yTkZ2RkiM09cdoyk1xDVJOVhdx3x6qmr+kYaXfQwvmi3UQlrSUoeUb9ieoWgtUQj+2KEkUilOWfl/RwTDDMgJRKPFKfFoEuDkbdvte2ChQuBVEKwQKY8q/oYPy8cgTWCtC9Fhwp/ylVC/BqU13i0ej08P+W68cM5NBzmtLBJaQudzZboft+88pBYQ8PadnPbra2l3HLfKjAC1RSUNmm8hkG10hkdDsJYdMFdz4PpPCpA0qoKZEEjlMV6hmYjpK4Fmzf2QJJZMBsByjqSZAFlkQ1FuFmiWm5/LmAZ/LojlDJx1S9n6exCnicP9vAazvTGa1l6HhHUWyHNgwQPNRfyNXEG5oCbObmwliGl8FHOlQBHXhKrmTQxa3XIP214Ab99chlECju5/fP4PxWX3PFxzmXXCMx5P67RAr5441v27KC6sCWJ+dxf/Bkfe8+qOSMv3+95j/tl8rOzet2V51e4/UN/Ruu7S9DH3cQHVjlVykf/5FguuQsuPe/TvPTgkwA4aPNvOfGkf+alD1/BR488lpETX8zl/JDvf6EKN+/auJ/7hTcD8NLTp/nI9IOztnS+6YICZ/zvNVyWfGunX7PbXf6nnXYap5122u7uZr+ADj0ohFDPBCJ5C1leXcgn1MqfGSyZo6dCc0Wv62EGon5JOG4obk7x6ilWKVAC1XKaFxlrRJw9nu/PgIoNGEta8fHLRUdQ8gqMkaAyu2Yv08SkGtGMkNpQHPHQYYGpAyUyI0/WuXFmYZeWuCLwIhBNi/YFcdW1sQGYotN+9D/YQo5PuXYsKbFx1CEludFBFvI541zl7m3gtmuHbgq3nyyg04nuu4T3QmAT49rPjHHkIXN5E0pio3hm1SUnNkJi4wQR+J22vy7YrFIlN48TTHj4IyG2FGKlm0iI1CCbCaIZdapAaZrZX8+L+OexffyhkJdu7KgaM09edg6mqIn6IJh0i1JYi7AWXXCaPK+hkZHG+pKk5NFY5NFcKGgt0niDTaS0GCN4xpIRntf7+/Zk2WBmvE+3BgPcJNq1NEl84SohJak4prAWL9AkLQ+Uc/3Kqw1ey6JagnrdQ1Qsj4wP8cPwBA5d+EsOEN5OVWESq9FYEps7gzncES3mE6tfiEgkIhKEEwIZu+q3CZUzcPFlFsbpFgaNl9n+9wvifuOIiQCswGrp1hGtgFgiYgESbDd5kdnvxgViFsYsxTGNDiQqzjQ2vsBWlGvfsxapwa9p/GlL3CMoD2tntx+7tr/WYoUNBI+ODPG55gt45tB6Tu15hAXeFAvVtPssEGzSA9xRP4jHG4P8Zs1ylGeQDUm4bk/YIvzh4e/+5iGeXb6DX73wpFm97sT3vp2RX7yfwtlvdbqVvYw/bo5yTXFwzva/q5bOhTP/gtXrzuCLIxfzV6/4B7i/hw9f/ACL7oQfHLExMwbw+dmFgpFf3EqBY+nVR/D9i2Z3/rcFfdwVXBndycA7YOwLz97p153xLy0ui/9tVu+1UwTmRz/60U7v8E//9E9nNYD9CdaX2MBHRHF7Mg3aTZBzotIdZIluVwdEWCRa1kdSVS440TqBvDAW1dSoSBMtLKILzn3Mr7nJswh9TMFzGTFAWlLZxNwFSZpyATVV64RaKglRig1D975p6kT9qUYA3nREaVghE4+kJDG+u0lZiUtjFs6+MkoUSVGSFpxYsrFIYQWUNhkG76njrd3c1vq028TyikSW/5JXYWxsHAnJz4/vdUhfkrbtqS1ZK5qREGQ5MtZ1EYtuIpi/b6apsUZ3qjfd0MZpgYTovE9OqHJhf1apsVKBjqHVQtayvm4pwXRu/jbN2/NM1oY276U8l9gT7WPd+9rbgv4/RPKSY56k7BkkPdnCE06oLiMNIbR6A4JJC9bpHqM+xfSBgtYBCSLUKGVRytBbanJodSN1EzJtNIEwVHDidYl4SvZJtxYjRy5sX6oiDhwa48E1i8CCKWuslK4CbSGcthTX+DQPtkx7Idc8dgQHFkZ5Tc/dDKnidkX9zuXLXXt9IYmsYbP2ubFxGP/3odNpPNRHeaNwZGLUGRcYX2ASCZ67J6rYuXM2BzwaSwQ6hOayBFlKEVpijcBasDlJyQ9VgZXWkRabPYd73hQNSUUSjkMw6apOVoAuulBnK929UWqBlS4oubTZZYLZrsNVLSisV8QDgsTz2BxXuW7yUK4Xq/B8zaLeabSRKGmYaBSZnCy5zzaRJKmk9zFJ6ZE9Z1P9h4RLbrqcD4jZhXzmIZSFs9/KNcfsudaxbnyqehifXX8Q7w9vfcpzf/f5h/H/fs9XYO7wBtvC+Nng2T+9g0/8993A1fz8rb/iez/6B/7x4TLhc6eI7u8B4L1X/g2velUP73r1Ady4ejUf+aRFH3cKH832cfvRISffG23zPXYWz/3Cm7n9Q3/Gny75Du/6fYvLf7yOH30l4N8ffPVWt7/jh+/kE/99N58+71Vw/hwQmJe85CUz/j+3rN3yMXBBl09XCGMxvSVUM3LOW/nj3ZPrraxEiUIBvbifqM8nmEizFqVs8itcEGQ0WCAtuoAuK6G4UWM9SdobOg2MyAiUJ5BRZ+IcLyhS3KhcS5PndelwdCZa123ZCYlFTjUI4xSvUSQaCGn1K3TgbgYAKnLvlZSdeD0pg9eA6jpNaV0Lf2SyTdLan7N2FSE8t9LlcmC20P+0qyLZ+UlTR7bCsEM+bOd5G2ctWlnQZ54zIzyFNbl5QnbBNxYC322ba3BENhayik9OXLK2NrefLsKkswqOkK59zfMgjdwYc+KTj9PM/Nuex57HniQvu4LdITF/yMRlHnsQVpBWNdMrPVQiEdqnsLmFbKZ4DYXxBcIqWgM+rUFJa0mCX43aTvxDlTrHDT7JceU1HOCNAxAKuVXysi3kDmDgklNOHXqMBx9bnAn+bLt9VmZZLIVRgS74xCsMyjP8ZPhoQpnwx+XVLFWKUPgz3jtvH5NIfBQJmscSyQ+nTuSaDUcQa8X0xgqlMUE4kWkroyxnJb/veRKrIFWK1oBieqWgeYDLvpGlPBctE2lmh1zsa1EuxFTCiHocMDZRQUfZdTyVbjtrUZMutFMXBEa5xUYTSmRi3aU/ciYyMrLOEQ6ng6xsyJzRMmOZ0iZAKKSWNDwfW9SksQJlMVawuVYGIEkUUlqEzNxJY4E/pvBalnAyYR5bxyNv3MDLBi/uyn3ZNm4/OoRrvg4veglHzRF5Afj3P/8yt33yU3zpmq9vNR/mwr//AjeePk1haohrXrF7LWynbzyJcvVqLvw/s7u3nPS5BwH4xH/fBMCfLvkOH/rnN7HuwMNZO3U5f/nNWzjigJtoffcr6OOu4DvfmUI/eAVn3GX51IUCeBWf/+Agf3fJ6B4hLzlO/j//ybN/egeX//hkPvT4m/jWe87hpOs28jcnzXSI+9Djb+I7D5zMp8+b5srzK7N+n50iMKZrJfrnP/85H/rQh/jkJz/Zbh275ZZbuOiii/jkJz856wHsVzCQ9ATIcR9aUdYWhZvkpmlHB9NVhRFKYgZ7aC4pEY4nyFhjApXlqXhZinwmVjQWYVzKfFr2kIlz3rJZoGW+UucsJlNnbzyY9c3mtsWoGRN/4fttZzQhXSuWaLRQ2lBsxKhWmdagRywkfsPdMIwP0YBAaOh7WFN9uIacbrgQzUx7MkO4nxOnHKqzNGXT1LVvQTYm2R4TnoetljCFAN0ToH3X4uXVU4Q2yFqMaEWIerPtJNYOTpai85553k7+HqJjX93WwHQrQaXoVFO6Ya37kKXotKhp02lz0137z/Js5rF1DD/vhyy+9sWzft2+Ji7d2BUSM5fk5ZVvO3ebz13x5avm7H3nMTdQlQSrApJeQ+0Ad3H3Gx6qkeJPJ1hfEvf4NIck9aUWWU7bbWOBn3Lc4JMsCSY50N/EUtVgQAaZs9fWW1uVkDPayZyY310nI5vSshCKFBEYbEtB6nQfKnFaEKFdqxUIJssBdmFEI/H5ycgxPN47xHHlNRwTrmO5MlkGTZdxjdVMm5Rrmyu57OHnMTZZRk8FCC2oPK4obzComHaIck6crHKi+aSsSIrCVaGWOMGmSCWm5iOrCaqcUC23KIcxA8UGJ/atoddrsNibpG5CfldfTlMHbGpV2NQsM9UsUJ8uYOuK5mILRuBPBxQmNTK2qJYhy9QkLSsXoikFMnaZZMFESlJ1rX7BZOw6JESA15IUNwqSio/xXHeDLgTEhSLgpDAGCLTAeBavIQgmwWua+dvJNnBrVOLvvx7w7J9/mu/vxPZ/9eZ7CI+cmrPKSzfUXa+kfhZw75u3+vyl532ao4/7VwZ+fgONvtlpPnKcvtG1bp38f7bt8rU13H50SP3hm7g++CTlG9Zy5QuW85ePH8IkN/CXjx/Co0OXAfBoBDzrePeiZ32y/fOUn3f2dfOy/8XtR4f83SWju0Qktoa8JfA9fA34GgBLThLOyS3De7LHN7Br7zlrDcx73vMevvSlL3HGGZ3YmnPOOYdSqcTb3vY27r///l0ayH6BfFKcT8hzC2VJZ9Kerc63qzKFkOayqrsBZKGTqpFgs7K48QUidWnvIst9MZ4gLbksABVbwrGkXbVRkUFGKbrsowNX3ifws/aprpq253XIi7WuCpK3REmFSFJEkhIY8Kc80krQLosbT1BZbwnGY1dxSdKuSXxmWZzfCNvuYqIzqVfZ72nqzoNUTqfieYggIFkxxPSKAgi3wpUW3eqXsKADUJFPWgREGdWCcNrdMMI1Y4haI/soHAHqVIG6iIXndQT/3auQKmu/g067W/5Yzmd0h+S0s2uU2qI1kKf+Po+nYLYkZn8iLzlyQrIjIjMXxGV7hGV7286TmacJhFuJN6ELFhYa0qIHOkudNyBjgw48koG0rUM8aflaDq+McHzpcQZVjaWqQVWKGbbE20I3iTFYEqtJ0LSyxxKrXDUDEInTScrYtU4JASqxBFNQ2ChpFHxGZYWRuJcH/YX8rHQEK/vHObpnPYcUNrLAm8IgeaC1hI1xlfunFrNuspepDVW8SUWgobBR0PdI2s7CkSnOUCZ1GWVIaA141JdIokFLvChGeBYbS6xvOPCgjZy7+Pc8s7iGpd4kCktJaBYoD4lsk6iXVR5FY5k0lnW6wh2Ng3m0uYDbNq5g86YebCSpLfeJezyCaYvxIZy0BFPauVEqiKsKlUj8KdFuuVZNXNCxsfjTKX4N0qJCF6TT8XigA9kJ5myaLMtMEFclVjrtjVfTkM4zmK3hB8//C7xyhSvOeQfsQAdz+9EhjFzMr9aU4Zi5HddZ37mRS8G1Nn1h6wTm+xf9A+89fZo7n3UD4FrATkpHd7jvO7xBvln5FsX37LzjVo6XfdzlLb7nxBfzif++m17O4soX3DDr/eS48gXLee/Xf89fvfkevvjhQfhxje89fNwujW1H6CYvewKzJjCPPPIIfX19T3m8t7eXxx9/fA8Mad/BVUgsNvAQ+QTZGjf5zduMjBPyW20QnsJUSi5rpZYgU9fKZH3lyIIUePXsAulJhLWo2GJbGZHx80BKgWqmyDgT9zcSRGKgL8xudB17YGQ+ITdYkjbxsEohtHbjyqozADJxrVxqs8CGgdOM5FWHVLczZWzempWjbRFtOhWotg4oz3sRbfKC52GWDFBfXqK+SNJYLOh51IlDy+sT4j4vS5mGtOAEplY6S+e4Kmn1BcgDFqNiS+/qSeTolKsEJV1l9+6Fx7wipnWnNS0nIbnZQLdDWf45QtYOFzqSk5Oj7uPP3dXiPVdS/Z+O/ZG8dKOboORkZq6qLbMhLjt6/TyZ2X9hUokMLCJ1q/CF8RSZGEyg8GoxNnAr/17DIiIJJVDKcEBxgmXBGAvVNAtUk6oUFITqEudvHVsGKubkJbKGMaPYpMv8cuQwiCR4Fivc9dgqQVzJc1nc64sbLeDRakkILFpa6sAjepDHx/sRHEWqJc26600W0sLGkHBM0r/ZoiIwAYSTrvvAKuFspFt5y5q71rb6fSYPkbQWaWzBIHyDNYLiQJOzD1rNmwdvYqnSVGVAYmHaaDTQsppStsAkkVRkiETQKy3LvIRn+PfwaDng8NIqbuxdxf2bFlETZZJxj5qymKKl+qCignMkM74jHM7MwBkuGCUwvkSXsny0ssIKgQmcAYDMKldY47LVUndcScW1B1qR5a7VNF5To/U8gdka/vaq+3iocicAv9qJ7Vs3foW3fWfV3A4KePdvruZTF75ph9udeXOVl513MSelo08hL3d4TuTf/fgff/er8Iq3zJognPfjGgDv/aRr/zr76uO4fg8a2/3JmvO48gXLOeXnx3Hmiis56XPu8V3R5OwtzJrAnHzyybzvfe/jG9/4BosWLQJgZGSED37wgzzrWc/a4wPcq8hWc6wQSN/Pwhizlq1u22DIJscBpuSjItceBrTF+Dp0IZFJReG1DKppnB5GQDAeI5spNlRYJdGhm2SbQDlnMmsdabGgGmlHg5K5eZHaTgWhG0pl2SvG3Ydy++EUR2yStHOcWrdF6kJmLVndbWLdbVup6ZAXIR15yfcjBbZSonnIINPLfIrjhnDSosMsRboG/nSMaqVEgyGtPkVcdWYC1SfTbMVK4LUsUVUS9UuaC/oZuL9E4eGNzqggD7C0JiMbXePxvc5xCi+rqqjMrjmzVMa648+rLYrOZ5o7pW15zF0kcB7/s7Cv2sTm8YcFawTKM6QFQ9wriauK0nCKCSRCG4R1E13jA5luoq/c5OTKoyz2JlmkmvRJib8D3UuuQwGeQnAUgpa1bNJlVkdLWD/mBL1ICx6kZUHckqQlgUyzlqhAIAwUN1uKmwQ6yCo2VqELJXQAScVVkXo2O9G8TC3lEYOMU0SWd5NUFSrq2CJb4eyic5fOtKRoLFS0FmnoTRAW/ELKUUs28JalN/LMYDPl7Ng9FJ5Q+EqRWN1+bEsTA3cOJFUZcHwgOdp/iOeUH+Cb5VO5qXgw68WgczsLDX7DXftlZBDadTt4Tad5yU9jUlWoOGv1FiLL8bGoJnjNzIjHuiqNsLhMMe0qW5UJjT+dIBtuEc5seb+eBwDDHziJRdXn8tn/9HnZxw/Yrg7m5HsjTvrcBvjOjXsstHJbGB36LbBjAgOuErO99rfu5y4EuHf295jXH/8Ey165An3cFZzy87mVa/zJmvM47IM/ZNU5J2xV/7O/YNYE5mtf+xovfelLWbFiBcuXLwdg7dq1HHroofzXf/3Xnh7fXoXToQhMwUMpBXGctU4JsNmEV2aicLLKha8yZxPRFgEmPR5Rj3KCfQWlTS4Qy/juYi+mjCMp2mLCzE7ZuBY0kWQhZ4GXldltpxKUWQKTuCDNdtuXkBBF2K6QS9vdKpWmCN/v5MnAjGqLNRqSeGYLVt6y1T2RzzUk4LZTCqplJo9fSFKWVIZdKGdc8fGnXeudlRD3hwhtiSuSuFe4Fa6svQxj8eoa6zlNTmmzazVoLPJJS0uo3DuCna5l1RY6Ns1ZxaStwTG28xnBDJc0VFYlEtKdu/y85De//FilaGfaWK2x7YDMecxj9zFPXv5nwS8kCOGBsDSXpWwOFAtsSDCREvcXsJ50Czp9AlvWKGk5om8jh/kb6ZUJA5ltshLiKZP1bSEnMib7L3cGi61iLK2QNALwsmukb2gssm0nMuO7TBQTuIU2mUA4ZZx7Je56rUNXfQgmyXJSslYw60wA3ATfYCXtPDMrBUnZVdxl6taZVCxJSpLmIusqL0agAs2Ri0d47eJbeYa/mUAINJaS6Dp2C1LIbZK5XPfj8mgSEmuoCsOJ5ccY6y+TaMWmdX3IUR+joNUvKQ0bRCPFr8q2jXOuzUkDgV+XWbXFIFPnHCesRbUcWcM4fYsNFWnBkVKZWsLNTWQ9q+ILgZy/n2wVB3/p/yDi87n0rlfy3le8npd9nG2SmJM+9yD/+PBNPOvCj8z5uBZ98P3wW/jYhwe5cs7fbfs46XMPsuQTN3Hts2avO91VPPiZF7PkrC9uU/+zP2DWBGbVqlXcfffdXHPNNaxevRqAI488khe84AUz0uifjpBRipKu3N0mLvnKv1KufcxYt4KfreYLbVwfc0Gii5LGAg/jQWHCuL7i2N0UkorCn0rbjmR+LUUmGlVzAkEZpZii7wiMdWJ7XVAE462OhXJ31kr+/93mAtAZb3c7mOd1WrFsV+WmbTnsdSb3OcHJwykhC/XUnQl+bh1dKjJ91AIaCxX9D8UATK30iauCyjq3MpUWnRYI3OqeSN0NojDmbowyDzDToFoGfzohHHNksrY8ZPTZS+i/awIxvCkbl+y0gkHHQjkbt7UWWhFCKacN8jxHSKxFCNvZJtGI7sya7hYzKRAoxHwOzHaxKyL+/4mYS+Ky5b7nW8r2H6SRj/QU+BaEITrA0FjnE0yALirSgiDqlUR9FulrgjBhSWGSXplkbWMeHjuuAqtcp0iHwOSZLMZaEgst6zOalN36kyVzkxRYH6fPMbjKOBD3ugwWr4HbUGa6FZ1dp20W8th0+ka3UOUW6Lymu+9Z6Rb0hHauX1GvIJy0yNxY0he0BiTRQo0I3YX3kMWbeOeyn3O4P0lVKhSCoghmEBUl5DbPSL6dwhGZyKYkaJSA0wvr6BlssbSwigf6FnHr6oOpL3NC/OpaD6+p8ZoWFRviHq9NVGRiswqUce12woISGCGQsdO4WOU5R8+qIupVWAmljSkiNdjAa99vbTJ/P9ka3rfwIlShwqV3uRT4HaFcvXruBwWsuvx/w5lf5e8uGYU9JGzfVVz63SV86sJXzXnlZUtcH3yyrbnZGYe4vY1dCrIUQnD22Wdz9tlzk0S6r5D0hcgYN0H3PWjSSaHP800gazPqXFSlNhBB1O+RFmhXE8Cl/srU9dOmZeUuiAWJP20xnpNkitQ4YWei0eUAhCCpeO4mUIva7l5tXYo1zp44Jy8wsw1KdLV7Gd1plwKXj5Jm1ZacEOWC964KRK71ySsZNo4RZO1X1iIKBVoHDTFxiEdhzBGuqM/DZm6XVoH2BEkJdFESjrv310UBLec+oyUkZWdkIBNnZpBXomzoEU5oaks8Rs7oZ/H1GjZPdLJg8upKfgz58WIQvtPAtI0WMn1Qvq3Iq0ddsNpkrWoZsdlai948ZmBXncjmAjubAfOHjle+7dx5ErOfwAtShOeTJtL5j4Sa1kDgFruCLHagALps2rkvSRY+ouhUXfLWqPzn1ioP+XbdzmMAGotGoIRBIyGViKKztBdTPjIS6AB0yYU3Cg266ETtuuiE7DIFv2YpTFr8ms6cLGVbN5LnpRgFfkMRTrrFKJGvk3ku/wWRVy4scY+isUggSikYQd9AjVcuuZMTgmlCEcyq6rQ1KOFsnSuAJMEAJ4VjHO7fyvpqibI6i2vTI8EKov7OvSAtSppDEtVyds8yysiHEAjrqk3aF1hPuM4LCWTkLS1I0gKEUxav6RZCTeAjtMGEHum8i/JW8an/WsTlf9uLPu47tI77UPboUyfLtx8dctHSq7lyzZ1cdNNF/OCMj8/ZmJZuPoXTz/wqGx9cP0MDct07nGvWc7/w5vbv+f/PFa57x9f4+Flfp3zXxjl7j+3hmZu/xXk/X7tTDnF7GztFYC6//HLe9ra3USgUuPzyy7e77bve9a7tPr8/w0jhxPbaYkoFxPjkzA2Srkl9NrkVqcEW3GmMyxIVgzflbjRhZtkotXWtVb0eMjV44wkIJxC0XlaBKHiuJG0suqiwnktqFvWmaweTokNico2HzH+Kjlanu4oCbnLvd9kgJ3E24e+0iNnUdqpnio6rmbEgMvKSkzchXDtab4WJQwNKI+5G1VjoI4wlnLAEU64/ujUgSIsQTOMsnCWYaUfqkqIgzNxgRJaArJqJI3La9RMbX1KYMLT6JePHDTJwS4StNzstZJp2fosjIJ3Kks2F+XQc42yXiFLkeqJs+/z42+RFKdDzJf957B72RdvYPInZPyCkpViKmI4UNnLX+bjP0hz0SCouHDEtgi26Ri9jJKmR+MKFQcJMYT5kFRZrdjix94UCq3FqSIu2kicbfYjUJdmjBfiWeEBjPQueRQQ6y+DqskeueaimQKYiW1yymTzE6UFlAmlm2unXoTDuTGuEdsY1uZZEpu76LzKdTdQriPuNO0eViJcd+Dv+uPwwJelMAXam8rQjuDYzQQmfBE1iDQuUx1JPw8Ib+O2SAxgfrVBf4hbewklDq99pNAtx3rrt9mUVkJARFvdTF2X+oTjNK67tzq85/WpaDd09P3ELdi01L+LfGsLpg3j98b9lw/Gn8HqeAOBjW4Qq3n60+7u46PI/5+PvYk7JC8D6oVu57cvfYcNHT2HJwx2iou56JU9esYaTVj2I+u4SwCXPX/eOr7Hho6fwmgOO2uNjUXe9khcG72aSXXca211c+YLlcO9M04Hm552Rwly4le0sdorAXHrppbz2ta+lUChw6aWXbnM7IcTTmsCoxDhxpXZOYiLwXZI7dFq3oKMLSVNkPSJZXAIBQd3gNVxLmbDuoqZi40yyjHXldU9glMIEAr+maQ36pEWBTKC0MXbSmlAhUkuwse7eK/A7QvtykLloKWwuYDeZQL8VYXNNTDeZyUXuxmZaD9PRfKCc4xq0CY0I/E77mDVuUp+3KViLNYZoSRWRgt902hbtu5Unv2HamTbFTVBfKgnHDX7NVXn8mqA43EAXfZAQV30QEPe4P0V/ooVVHrrktW8KhXFDY4EkOnCI8KFhMKZtQJAv8wnlxp87sLXbw3KnMikQ3QLXfAIghasqdZ8j6Uia2KX65P8s7GwV5uXj/7XXncguW3HkVh9/95qnsdX7PJ420KnCWmdPbHNpYdEQ9Ts7+2Da4LUExBJbEDTrASNRT/v1kU0xmEzAP7ONamvobqHSVmTVF43KZuEPji5wE/I4c78M3ERbBAahjLslSI21AqkMOlVoC2kgaaUKGXkUSpLScEIwGWP8PK1eoWJLaWOMNx27CIBQIVKDSgxJxT0vDKjYkBYlIoXCJklzQDBQbnB08UlKQqCtdeQrP4fbqTrtCK61DqSwKAQKnTm5SY4OIt6y6mYua/wRtRU+aUkyeK/rBKg+aQkmU+c6plwbmc3uo85gh4ykZQuYnnsflVhoOHF/UvVoLFDUlwpUDBhI5xfEtor3vf7XfPmcE3j46t+w7JUreO8rNvDFLbbJycx177iCj9xQ5s7LH+bEOXQiu+/cCcr8FXz0N2z46Cldz6wB4P1/lvDkn63JHus8v6fS7LvxiXedyUcvv5Fr8yyXfYSPvWcVt5xa4apX3wXsWeJy4+nTgCODs6lm7dRV4bHHHmNwcLD9+7b+Pfroo7Ma9Kc+9SlOPvlkqtUqCxcu5CUveQkPPPDAjG1arRYXXHABg4ODVCoVXv7ylzMyMjJjmzVr1vCiF72IUqnEwoUL+eAHP0iazv5ioVraVV8KCl32O1WJfEW+Wx+S5ZOIZoSKDToQBBMpwURMMNrCn4wIJmL8sRbBZIyMNV4tyVamnMtLWlREPZJWv6TVL0jKHknVIylL/FqKmKyBlIhyCQoheskQrUMWUnvmUiZOWsymZy9k/IQhJk5YyORJS2geuxx7wEJEqeB0LYHf0cbILcYPHZICbUJjc8ez7Hjb1R8pskBLhQgCppcFpCVnvxlOairDKcVNCcFEQjAeE0ymlIcT+h7RVNbHFDY2CSYT10aQGlQzwQpBc1DRWKCIK5K0pEh7QpKekLTo4TdSwokUr2EIpywTh4bYSqlDNLptj/2g/VnZOO44xuVk0/M623Q7yeXGBzDjnFlrIdg/GMz+9j3Z37Bl+9hlK47cJnnJn5/HHx72x++JydqjkBbbUFjPTXwrT2pKwwmlEUMwqrBaYK3g8akBRnTAtElp2ISW1TRMQsPGzhY5+7dlZWZLqMy9SyEIBVw79QxqU0V3x5cWrydm5cpNPPfY1fzVSddx4Uk/5bJTvsWnTvwBHzz+Z/zV0Tfw/ENXs3TZGOVFdZJlMZNHaWrLnNZTF5zJjFfTBHVDcXOCqjtbfyuF0z1K4RbU8jFlpi3CQFBzmhLpWQ7sGeVQfxMFodq5Limapo1J0Zko32z1HzDj922dh1D4FEXQdnMriYAXV+7npYffja2ktBZodCAojGuCyRSvniJjV4ExnkAHrk3MeM5BUybWbZM6owKR6VatcotxU8s9Jo6A5sExtYNTaoclNA7cP3rI9rfvyee+cSoPX/0bAJ68Yg3v/7Ptn6dPnVWf9XvMFhdfdCQXX3QkL7bPm9U/6FSL9iTufNa7WXXgYzzvtt/u8X3PBv/w8blZ/Pv4u77OJ97lXOW+uvrWnX7dPp2hXX/99VxwwQWcfPLJpGnKhRdeyNlnn83vf/97yuUyAO9973v5yU9+whVXXEFvby9//dd/zcte9jJ+9SvnGK615kUvehGLFy/m5ptvZsOGDbzhDW/A930++cnZCZ7SsodKZCY0zysXmeuYylfs6ThwAVhLOFIn6u0hLStUlAU9QjvYUjSTrAfYOY7pku/IS7/Cem41x284YWNaFFTWRnibpt37BD56sEo0WCDuURjlBJcAUrvfpbakoSBd6NEc6iWYqlJ6soYcGcOm2oVMdruSCddW0J7Yd7l6CdXFafPgSmMhE+JjDbYYkhadx73fyMjblMuxUQ13E0v7CkS9vnOeiU3WagfBlCMuVgriXo+k7NxerASEIik5txq/aTC+e30wmWYtaT7JwirBVK1DqgDX95brYSQiCDqfl6bjMtYdhSwFyMBVqjzPVbiUAiWxpQJpf4npAfIFl32K/e170o39RQMDsyMm3dvOVUVmX7qO7Y02suHe+wCYtjUOnTplB1vPPfa374mUBq09YuG5+0ZRIxoe5RFNMOEMXQDCcUEy4CP7YqLUY3W8BD9cx1KlaVlLYi1KQK902pjEghICY+0OrJUNvpBsThVPNvoYHKihhgxHDoxwRHmY44uPs9ybxCDwhaEgLNqCL6AgBNOVe/lN31Junl7FNWsPZ9qWaC4UjGmfYMqjf3XL3e9qGq+eYJXEBC7/TMamfXxpQRD1SYqbXSaMjA227BENuBblHi9iQGokARLp3NOs3Wpop9pGa93OVGhyA4BcK9QnPY4qPokMjsc2FMJY/HqKqidtq2evaTCBIy1Cu1Yw47vjw1rSoocuSuqLnBV11GcRRhIPaWyo8Qop1aEm/aUmtUnNk7P5A5oj7G/fk6j6GMte2dOewL7xzG9uc9sNHz2FVyy5lU9w5pxqMr5/xoZdet1RV/W5X5aNbHe72WDz+u8Al+yx/e0O/urN98AezIW57h1f4wOrzuAjN9wEuO6txf94x06/Xli7Y6Xy+973vp3e4ec+97md3nZLbNq0iYULF3L99ddz1llnMTk5yYIFC/iP//gPXvGKVwCwevVqjjzySG655RZOPfVUfvrTn3L++eezfv36di7Nl770JT70oQ+xadMmgmDHST9TU1P09vZy5ll/S6B9dMFDakPw4AbXqpRPgLe4aArPy1b2PaIDB2ksDCgPR8hIty2ZhbbIOEW2UqwnsVKiewKaCwJafS44y6+79rKoV6ESS+XhSUQjgjBg+vA+jOfazaxy+9MF6QSTNeP6cYVw9pahQEWu19hKQeXJFv4Tm7BJMjNLJT8Wpdzj21s1yYlPZlUsPIVZ2M/I6X0EU85VRqZO3OlPZWGe1mJCj9qyAq1+Qe9jidtmotVuzzOBIhoIaCxQmTuZI2Ney6Uju/YyRTCl8espUb9Pq1cR1A29t65zVZbuz6XbNrl77HnOS16JkZ3WMiGzm14YYMMA3VukubTI2OEewkCkWjzyqQuZnJykp6fnqedmH2Fff08eOutbVL0SMHsCs6fbyPLqy+5WVeaCxOxr2+S5IjA5ccmRE5j574lD/j05+OsXomWlrSsJqxHp2jIrr3QrzHGPR1Jy1+3aMkE0pPEWNlk6MMXpCx7l5X2dG3mfjBlSrqKSJ9DnwZZbZqGkaFo2pSA8pk3Mb6I+bqgdwZHF9RwaDKOw1G1AgGaBarYJi3u9pSBc9ozGEllD3Vhubq3kh5uO464nDyCZKBBuVCy9IUamLudFtbRrj/YlXlMjE4P1XAWmsThg8mBJz+OG0nCCjDW1FQVGTrWI/pg3HHsrFwzcTiGrlGwNWzvObsy2xSzPzrktEvzl715HfX2Vpb+E4nCEqieYkk/c66MiQ1pS7RBmYZwhj99IMUoSDXi0eiWTh0E6kIKykAqC3ohTVjzOny24jUP9URSWH40cwgdO/tX89yRD/j35v5dI6sN/zlWn/oaPXn4jhakh/u6SUa7chvPXq8dW8qJ3fYCfXP6PfK3R2nMnYg/jvnMnqJ/1xVm1RG2tBe28H9fo/c9nc/6J97LiOxP7tJVs1YGP8dr36B1vuB2c9+Marz/eaZ1+eMFnn/J8ksR87yf/vlPfk5361v/2t7/dqX933XXX7I+mC5OTTjQ/MDAAwJ133kmSJLzgBS9ob3PEEUewYsUKbrnlFgBuueUWjjnmmPaXCOCcc85hamqK++6beaPNEUURU1NTM/4BBCM1vMmW06tMRlhjOo5VRrsJsTZOOJ9nrQgBcUKwdpzi5oSoz0cXPaySLuDKOlctU/RJqyG6J8hyYzJLysiiWs43vzCaUL1/DDndRA9U2HzSAFFVOncubQlHIwobm/hTKYXRFL+REkwkFDa3KIwmhBOacDzFa1nSgqC5KEQvGehM1PPsk/ziHyeOvAjZ1VZlZ/7T2m0TJ676kmlP/LoT5qvEtlenTNipSplA4rUMQc0lEyeVTsaMCZxJQXNA4dctpY2a8saUcNrgNwxpyWUEWAEISMoe2nerYCa3Ns5bv4x2n0ecdD4jId1jnjcz28bY9mcHuOeKBZIl/YyesoCNz6oydoRHa6Frb/DmvlK9S9jX35P9BXuKvOypffyhY7j3vqeQl/0Z+/p7ksbueigECN+QJk4snlTd9d+fTl1SfWwJpiAYV+hEMd4ocsPIKlbHS2hZjz4ZEwpXfcmRkxdgRkuVwdKyKZE1PJyk/Lh+EL9tHsgLe37Hc4pPcKAXUxIpxkpiFKMmZMJ4TBvLhIGWhWlrmDCpS723lj4pOae0hvct/RknLH8SUUzRAZhAorPck7Sk2qJ9r54goxSRVWFUZPGnXUCmzW4zKrIII/DDlMQqGta2M2t2BrvqTrbl6wdki55iC6ucljPp9UkGCjQXhm6h0BNOJ6RxoZeJwW+kWCloDfk0hiTNRYJ0YQzS2WEfdsgGPnPCd/nY0iv5o8IUB3kFeqUgslsnZ/sa+/p7svThf+Knpx7Ph294F5+6UPDgX6R87MOD2xzvtwee4N/Pd7+/uVTY9QOfYxx1VR+fPu9Vs3rNtvQzXztx/5iMfGPxMbv1+m+tu4+er7yLl1zx4q2Sl9lip1rIfvnLX+72G+0Ixhje85738OxnP5ujjz4agOHhYYIgoK+vb8a2ixYtYnh4uL1N95cofz5/bmv41Kc+xcc+9rGnPC7iBLyCcwOrt9zkHTqZK3n7VZpVZYwFQieirzcJnxiDFQNEfT4ysU7zYZyzmfXcxVEmlqTsbmzFcY0OJCYUFNc3URMNRDPC9FcYP7KC17KEEykmlPhTqbsppIZgMm73Ggvt2rOMr1weTehasIK6IxqTq8r0Wotat7lDvtptZBnS9Kk2zdBukxNCuOPN9DQiTvHrWagXZAJGg2ymmEABLtyzMaQoj2hUnGUUhB6q1UK2EqKhIqXNLvhSaGc7Gff5tPoVXstSGEsxnsAqFwomNajYtu1H3fvamceRk5okbhsZCOVju3NzvC6LZSWpHbWQscM9okFLaQOE4xbVkoQTlngWN9S9hf3he3LoDa9h+Hk/3KXx7wkxf7fmZU8Sj8tWHDkv8N8Gnk7EBfaP74lJFFLmHsNOWK9SQatP0TueoGoxuuiTVAoI4ybJpu7T9DXaSK4YPoln9j3Jq3rvIBTORQsgFK7NiozEdIdXamtJrOH3cZVf1o7EF5pnlR5huddAAXVjKUvLSjFFy0oa1iOxEimgJCy+ECgEfqYdyaGt5XA/4vWLbubRiUE21T0aCz0K467bIK1K/IbBn3LXYBMo0pLnCI4Hft2iA0iqLjPFSvCmne5nLHFtS90EDWgTNNgxYdE74cy2NRgEy6sTrA/7SYuu/S2pOk2m1BahJTLLcsujEXTo8l6ml7sgzrQvQQgo9Td582G38OLq3SzzQsBpISKb0LKWflWb9fjmGvvD9+Qe/xYuuvyLfPxdX+fPj38Cjr8bvnLCdsf9kRvKfIoP0H/2P+7Uce4rfPe4Qyjt5j5M7QxevuouXvtw7x4Z0+7gtF/X2JW6fq4LuvjG19LHCbzpurP2yHh2bxljD+KCCy7g3nvv5dvf/vacv9dHPvIRJicn2//Wrl0LgJXSOY0kGtHMmLA2nRarfAW/K0PENptYY5zWpN4kfHKCwubYrUqVPaKhEF0K0AXPaT/yYkC2suPXNKW1dbxNU4hmhK0UaazswW9ayuta+FMJhZEmqhYjUpONLXEOMJ7EFHzSvoIT//d4Lgk5S0cW2gkmG8tKUCw4YpKL+vMqRDd5UU9tk2sfa7sK5aoczUFJc1AhtCWYdvbHuuxngWaStCiJ+wRJRVJf7FNb4pNUPNK+Aq2FJXRR4tU14eYmfs2t2MnIOGeeusGrJ4SjLYIJZ/vs1XUWKkZH35KPv7uq1C3shy5TguyzlRLhKWylxPTxSxg+VRH3WbyaIOqDpCLw65akJEgqM2+o+wP2h+/J7uLl4/+1y7ktc533Ml+JeSqebuQF9o/vifAMSHc98kc9elZ79P/etcliQBd90oqPiizhuHV282OKpB7Qavk8uGkBV649ioeSBTSsQApBmFkjapuTFovJ/kuspmETfhf3cGvjEEKRclC4iYWqRmJhRHcqAFUpWKxguZew3EsYUIpeGdArC/TIAkUREAp/hp1xKDyOCTbzypW/QfXFNBYJoh5FUha0+iRxWZKWlbvX5ddo4bK+hIZw0mI80AVXYTchCGHp8xoUhGgTJtOlVVRC7tB1LUe3wcGOTA46GiGDsQIi1TYfMJ6zjHYtcS7zRcUGBDQXBGw+OmDzcZLpI2PSoQSkpVCJ+KsjbuANvfewwiviofBw7nGh8BmQAav8TTv8W9rb2B++JwBrXtUHwKpzTuA1Bxy1Qyev537hzbzux+737334Ij7zj9X9uhqzu+j9z2fv6yHsMrpNDV4/fA9/8tx/22P73iUR/x133MF3vvMd1qxZQxzHM577/vdnL63667/+a3784x9zww03sGzZsvbjixcvJo5jJiYmZqwGjIyMsHjx4vY2t91224z95W4Z+TZbIgxDwnArThFSYgoeshZhW61OMKLK8lKS1CW8xy1nNWzdKlieyWKNQUzVCJoR/miJ5ope0qIE6zJSdChca5mxhFMGfyrFH60jxqdASvA9Wgf0gIXyOlep0EUfYospeOiih2qmyDjFhIrG4oBgWmOFE0mmoaDSNHgtTVJRhFMpCGfnWOovI+uNTDeSu5EJJ3LvlkF1W0XnVSaZVWCkSxUW03XKGzVRNVuxKnmYIKuWJBavoZ0wX7m8l9aQIKla0pJPzxq3kuVPO+GnSNx4dNFHF1T2XIJsxNlzBWfFGXoYTxBOGYjiTvVlS21SV7aLC5NJnX4nNohCCEphe1173tjRUNwo8Jq0tUNxVaB9QdQPkb9/VWD2l+/JQ2d9y71uNwX8s63GbM1tbH/GFV++ap/rYHYHT0fiAvvP98QmEuGBmlL0PAb9q5suD2TIWcgbT5EWJV7TUNgcU5jwkbFHw/gkvYpWr6RVD/jyk2fxRwse4GXV39ErTbtCkmSXp8imTFvD+rTIfdGBbEj6kFgW+ZMc4m+kJFM0gkUqwc+u/SXhtx2/YGZL2pbEwEMhhSWxml6pOL9yD7evOJA7RlehQ0U47q7pKqtUkPmlyNRCUyO0Ii2BSkBYF25sAjCBxaaKuycP4PbqIGcUximJoE2adlaYn+t+EptZ9QtHHvKqzLb0MonVrE+r3Du8BBG5/Ddwi4tSg1a47oKmRkUG3edTO0AyfXiCqqSI1LU1H3fgWv58ya84vbCJqgyIbNIeQ67dkQiWevtXBWZ/+Z5cc/Kx/MU5H+HqA47i6lmM//X//k5uvyvk3p5bYWgWL9zLaDy5iNJuiPrfeOY3WfXxE3jwxD04qL2Ab35ecdhXPOpnfZEvrb/JPXjdnn2PWVdgvv3tb3P66adz//3384Mf/IAkSbjvvvu49tpr6e2dXYnLWstf//Vf84Mf/IBrr72Wgw46aMbzJ554Ir7v84tf/KL92AMPPMCaNWs47bTTADjttNO455572Lixk1J6zTXX0NPTwzOe8YxZjcf0FJxR1cSUq0gYPaPtiExLIsKwoxvJBeLWtWdZayFJYHSC4sObqT40TTgW4TWcPqWwOaa0pk7p4XGCxzchprLeRk8RLx8k6veQicEEkrQa0loYoisBMk7RBUlrUUg0VKS+NHBtXJHJXLwEca8rfxtfEkxnts1Z8ai5pIzw/c6Y85/5hD8PfswJjue5bfIMmDxzRgisMRSHWyQVaA0opg70iHqdJXRckVglnHuLgrhHoFpQHBaURwzBRIJMjBNFximm4GNCD110QkmZWmcEYMAGHqKZIGKXV5CUBIWx7IDalSQzs0qUj7lNMIEoan+OeskAa88bZPR4S3GToLrGUFmv8ZqW0iZDda2hMGHaydH7A/a378mexI6qMfnzW7aN7e/k5emOpyN52d++J6qgEU1FYaOkuiZBNRO86Qiv7rKynOuVu057Uy2CqYTCmKG0XhBuUti6h40Uj20e5NuPncinR/6YL42fyDXNJdwalbktKnBDq8oVtVX8v4mT+I+xU1ndXILE0us1ODQcZqXXZIEULFWKARVSlQFVGbQn2HmVQG7jYpdXQPJQSB/FYgVDYR1b1LQOSNAFKG3SbtIfCOKqT2sooL40YHp5wPRKweShlolDJZMHS5KKMy6wngUr2DBd5YHWUqLMHSx/351BYnObZZvl3nQqU/BUsX/+mNMKae5pLac5WcBrCvw67dw2AL9u3H20qdsVmbgKoqCxFpRveP7hD/CJFT/kecUxCkIxaWJaWSXI5fg44peiGTf7hy3//vY9+V+nPwdzxbG7ZD988r0Rk88KuP9vE8Z/9oFZv35v4bwf7zp5NVccy8UXHcn/W/z5PTegXcTffX7nsl9uPzrksK94/N0lo6w77K1zNp5Zf6M++clPcumll3LBBRdQrVa57LLLOOigg3j729/OkiVLZrWvCy64gP/4j//ghz/8IdVqtd072dvbS7FYpLe3l7e85S28733vY2BggJ6eHt75zndy2mmnceqppwJw9tln84xnPIPXv/71fPrTn2Z4eJiLLrqICy64YOtVlu3AKInaOOVS3PN0+zQlS8NCkCW+d18UTXahzVuZtHYkRioYn0RO1pBSdJkBZGGQNiNEUjqr5KEe6ktDVOwuvK1Bn1afRBcEKvIQqXUal4KXtW0ZvIa7sPo1jTAQToFqGmRiXLtWxUcmhnDSVX1mtF7BU8Ib2/kvceIIi8qqSwDCa1c9hBB4G6fAlkkLUNxs8GuGuFcRTmQ2mVLh11wVJi1BOGFRTdcCp3CW1bocOJ/9IFv98gVpSaJaHiLR7TYEmRpU5AwBwuEaNu0QxnalRUhIUmyaOn1L+3hwNsmFArZSZPNxFerLNb2rFeWN2rWrtTR+TWKlwE8NJnQtD96OjVT2Cva37wnsefvknW0Nmycuc4+nI3mB/fB7sjGkPKEYujsm3Nx0Lb1x6q7PZQ+/nueNuMUj2UwpDwvCKUVhXJFsUCQVwfRBkmTQ45e1w7BWoDyNMS4gU6eKsBDTX24yUGxwbO86fJlyXOEJDvebVLNk+27Hsu5JfW4tDFuf7HdDIklISLCsLIyiihrd8Jy5ii+YWumMa4IJQXOhoLXIYAoaWUmwWhAtANv00IGHTMCWNEJYWrHPrycO4qTSo5wWZkKTndC0zDwOgbGibb3c7Vq25XEZLA0bc29c5ZtPnIyc9JCRwGbtfu2cl6ZBRa4LwSpBY6GktTRF+QaTSg5ZupFXD/2aPmloWEtsbdYK5xzcWjYB6xznpo3l5uahwPrtHtPewP72PXnLEbkF+665W73n81+Dz8PtR3+AH179G2pLbqV0uZs0f3PVZHu7j314sGNzvB/hW+tmXm/NFccCTjCfh0Z++IZ37ZX8m+1h1YGPzWr7iy86ktc/3Mt/X/fGORrRLlRgHnnkEV70ohcBEAQB9XodIQTvfe97+fKXvzyrfX3xi19kcnKS5z73uSxZsqT97z//8z/b21x66aWcf/75vPzlL+ess85i8eLFM9rUlFL8+Mc/RinFaaedxute9zre8IY38L//9/+e7aHhr9mErdUztzHdmbzn7l3gCEius4DOKn872R4XELmFNbHVBhsn2MT9667omGqZ+soKUluCqRR/OnHkJRB4dUtalEQDgctNKbr8FJFXKrKhGE+gWhYVG0Ri0KEgLToHLqOycn4expkJS9s20HngpZJtW+g2uQnDTjUGXJUpiqHZYuiepqtSCIFfSwnHU4IxZ2soUkPPmpT+BxOCSdtxD8NVi1yVSWFChUgtOpREvYpmf9ZHXQlIq4HT1QiXZB1MaRfumZOX/LOxmU4pDxx1fxjup+e54/Q96of0M3Wwc/spbTZ4TUPco0iLTsujIo3UFhm5fufGkv2jBLO/fU8OveE1e+S4ZounI3mZ6yyWPf2+T1fyAvvf96R3tWDwXqflQwis767HUlunC0kyy/lAYUPXZuxNRBRGmlQfb1Ie1hRGLYWNCj3tkzR80kgRN32S7J9JJEnsMTzay1izxERSYoE3zVLVyNrM3KSwe0KfV1W2JAg70ptIcutmWORPtm99jcWG0aMFtcMS6ssNU4dAc4nGFDUoi2l62KaHrXvgGVorYppLNTLQ6FSSJIr7Ny3id82VRNmEPw+v3B46Y3Lj8rMgTGczLWdslyOviEwbzb9tejabRqtAJ09NaHevyTWkVgqS3oDplQWmDwS/r4U1gkULJnn9Ab/mmGCKARVSEooFKqRXFiiJAB9FQajMDEFSloKjwnU7/bczl9jfvid7CiffG7HqnBO4ftMdbHr8jfz0NW/n7J+/i0vSSU75+XFc+YLlfOYfq/tsfDlR+da6+7j96JBzv30c3/y8wlxxLP9242sZ+cxn+bcbX8s3Fh/DpsffiOUtnPfj2gwSduez3r1Pxr7qwMf46WvevlPb3n50yMUXuXv1XJIX2MkcmG4sW7aMn/70pxxzzDEce+yxfOQjH+E1r3kNt9xyC+eee27bku/phNyP/PmDb8ITflfwITM1FbYrpT7/3fc62+fuXu1WrIwQ5C1MXeL/PDzRDPYxeVQfKrF4DVe+NoFgeplH/0MxVgqmVrgVq8KkQbWc+5c/FWNCRVz1kamlOahoDUiCaUs4aRDWpQg7YSKUNkQEa0edfsTrVFNmEC0vIy5JJwnXdpsWRFGndUtIRBgwdfIy4qqktNE5pKmWdsQkkO4mbaE5IAmnLIXNCcFYE10OXNXFWOIen6TsgsCmjovwRgIW32acdXTqWs2sksS9PuVHJ2DjaMdwIM7G6XvtKpKNE6dPyqtnUiAKBZIVC1h7Tpm04LJr+h50YlodOIccK90NzEpBMJEyelTI+CHTPPnuv9vvfPv3FfLvyb7A3iQvfwiZMHuTwOyvOTD7Cvn35KzTLyZMlKu4++4aKhsxaU+BicOK9D4auVyvonJttYlx1RgpEJEmGSgQ93g0hyRJSeA1LVZB1CfQBUh6DGJRCwGkTY/jD32Cly/6DUcEG1juJZSEareK5dgd++Fca9IwCf/f5NH8023Pg1i6CrhnIXG/y3JKWEhY0jeFLx2BGpmuMrGhx20bGDDC2Q57Bj9MMVpy6oGPcdHSn7JUuXFvLedma2PaEtsK9gRHYCKb8Ls44M9//WbSpoc36lNaL6g+6QJGo34PlbiOAZlaNh8dUltpYEEEAg5espkPH3glp4XNtqnCtpBmVQVtLb8Z0zznmHXz35MMe+t+cu63j+ONZ36Tb/x2JQMn/w1fTr435++5JV5600Xt339wxse5/3tv5MiXb1vM/oq7HgFg4OS/Yez2TwOugvTw1b/BXHEsDz9+0DZfOxd4Tnwh6w576w4zYG4/OuThq3/DN367kp6vvGuX3ms2OTCzbiE766yzuOaaazjmmGN45Stfybvf/W6uvfZarrnmGp7//Ofv0oD3S+SBj9CpuAhJu8wpJNamiMTpXoS3RStZV8UCP5/0i5nWv4WQxkE9+A2D0JZWv0Jq50zW+1iCN52AgNLmrCweO1cx1czE9dqSFgXCOhG/8XEtWZ4bnwvHlAQ146o1QrixpqkbQxhgSwVsMUBXwox0eE6vMzyNqDezoEvdFYCZ812DTRKqq8cYP26Q+mLPkRhL24YyLQi8lqU4ZvBr2uUGFH3npCYFSY/LRfBahqRHghboosuwCQWkFd9ZRIfStctN1pjBt7uJpNagfGe4YKxbQlMy0/0IGksLWOnOn0wFacGiYpdlE1ddMGhps8YK55JTHDWIKW+/SE6ex/6B7675160+/ooVO7cytbewr6o+85gJmWiMHyAyy3sA6zutHxbSkkK1DMYXgMzajAUY8Box/lgLGfnINMAq8Kc01hNEve76On2QIFkgsIAMNM/sXccx4ToGZEpFBBkJ2HNVZCUkJrv+Dng1gnJMLHy8UFMpt6gWIlZUxzmmuo5V4QgH+ptRWKSwjOkS3z/gRH726BHETR+UxaYSa52Vchor7t20hGt6j+BPKvezRPk7HPuOKjTbw62NVejx0BGuBLyG019aT6JiV4lBCHRB0FpgMb0pvufe7/ShRzktbFKSM3uMt2zN09YgkTRszGat+deNzwP+Y5fHPI9dx6pzTuAf3vpujjxu75MXAMFXOffXJ/D3f76ZpZtPYf12yAvAzcv+F9e87mouvuhIhv7ob3hResFeGunWUT18Nd9YdAxw1za3yTVMTzx+GWf1b2/LPYedJjD33nsvRx99NP/8z/9Mq+XahD760Y/i+z4333wzL3/5y7nooot2sJf9HDoFLxe6u7YkkbdV5ZUKpdzjQrjWJOssiwE3cc51F92J98LLckhwE+0wRBRCWgcNoQNBYTQh7stWfVpO6wJglcAECtU07TwUqyDu9fHrTgTqNV07gkwsxhf4TYuKreut1q79zHjZjUAIN6H3PUxPifpBVRpDCpmA8UGmoAOnT1GHBQTTlt5HGnjrxrBxjPC8TvBldrxifIq+33tsOqmPxgKP8nCC8QT1JRKvDsG0RUXZ8QiwnkSmBplosB5e0+BNJyxIYSwK8BrgNTVTK0IKk5o0a60oPTiKjTJrRdVVHcsXBILsczNOS9Ou0kiJLRVoDkrSVU3CMEHe0oswkIYCv24Ip7QLyuwif8GUwWt2KlHz2HfYl61j2yItW9tme0Tm6eBI9nRuH9sfYUKFlBJSg1XO3AThtHl+w7XNytRm9voWJG5CrwSm4CMSt7DlNbSTYSYGk117nbbQttfC+vvqHF7YQFmkBEJkrVR7jrx0T86lECz3RznrwEfwpabqtTiyuJ5TCo+zQFmqMsiqJ256YbAkXovq4K84vDTMvz/xLCZqJVpTIbapiBOJ8A3aSG4cP5TF3iTnl0fJc262zHjprqa0x9R1rInVT6ncdGt/1qaGazcfjkgEtpC1jUlIQ9nWwQjtgpzTgsL4mSW2sFgjKcl4RkbOlu/R3apnrEYhWKcrrG/s+xyP/4l4/fA9/OJf38Lz334ZvLxvn4zh+2dsgDN+wtt2cvv1Q7fCVX18nw2QfI/7zv0qAC+2z+Nli4/hH75yP1e+YPncDXgLrLafBbYfYnnxRUfyxjO/yS9vvJbPFF7GXVw85+PaaQJz7LHHcvLJJ/MXf/EXvPrVrwZASsmHP/zhORvcPkM2MRb53SHLErHWIoTtbLMlZoj784k0nYBIrdvtWKZaxgSS4kiELiiw4NWN68M1EA14+NPOf14XJUlR4EVu5U5FlrjHo7DRtSD4DYPXgrQgCSZTvIZGh5K41328MrHIRgzGYIshydJeRp9RwHiCnrUuVTiqSoSB8ohGByJzXBGMnFyhZ3GB0hN11NgUgixbJRPJW22QmycZukuy8eQe6kt8kopARY68eC1D1KtQsc3Sl935S0u+89hXAtWU+LWUBb/RWCXQRelu0AXXOrHg1nGYqnUMB3QextlV6dIG592ZWT772epY5pwmU9BTAXYoxWtBOOVuUHHVrbj5NUNacvkEwrpzJuy2WxfmsXewv5OXrW2/LSKzN0jMfPVl/4IwtuNmmGn58CReZBApGCWci6R11ymDqzgjAmTk2nHzebouZvcO31UGyLqaC6WYQ/s3MZAFJUpoi9m7sbvp9UCWN2NYqqZ568LrGJQRA1JSkj6SsJ3hkgdsGkyWheJxbGA52HuAvoMb/Ka2kts3r+TJkX6sdieo3gi544kVeMJwTPgTlim/K/fGOYd1E5UtCVo3STFYzFaIzKRp8U+bns/9axeDARFJjAdJVSAT8BuutVhklSZhnClBY1CiShYjDP1efbuubd2QCELhc6BX49lDj+xpF9l57AQOePD/Il95Cpf9wuMvPnYSz7rwI/t6SLsE+dZ3c9+5l/EPTPDH/34O/3LdT/ZaK9kFz30Rp65es91trnr1XbxxHfz5mc+D2/fKsHZexH/99ddz1FFH8f73v58lS5bwxje+kRtvvHEux7b3YawT4CedKoNNXOXFWotQMiMxXRevfLuuCg3WbJ3gCAlSIYoFGgf2EPcoUMKlFWeBWSK1TK8ImD5A0RrwSIuK5qBEh+6G5bWcLsT4guaSAklFZj71Fi8yWE+QlhStQR+sE777de1siQshzUMGmVpZIJh2tsEida1pQd1Q3JwSTKaEkxornRZHWGgMKSaOqlI/ajG2Uuo4fJlOP6QamWDRryeJq4LGIkdWwilNUnZmBEnJVYLiHp/m4iJTBwYY31WR0pJyJA7QRUljSGEllDdELLhxBIY3uXOeGw0oNTOwsos42pwspql7PLOHthLKj3nYu3uygE/bTr+WqSXqV45MxdblFPguD2Ye/zMxW/Kys6+dS4IxT172L1gx8/ohjEVY0JnLodAWmRhkkusVXYUaQAeSpMdHF6T7V5QYJUiLkqQsSItgPYvVkoMGx3jDops5JhhnSClKohNYuS3B/q7C2RZDIAzLVcSQUlRkiIfCYNDWznAC64YvFD2ywPnlJ3nH0A38xcobOXblOvxCio0lZixETwbcvXEJXx17Nk9k99QtRfhbw5bHZzBENiHFBVtGNmGdbvDVieO4evWRmLqPMOA1BNZzTpk6dPbOxsN1LviuDdtrgJr00KlEa0nDBEQ23eo4tjau/DwU5M69Zh57Dud++zjAVS6+nHzvaUtejrqqj48u+hlHXdXHUVf1sX7oVo4Q7+c58YVz+r7PiS/k/INettPb/9uNr53D0TwVO12BOfPMMznzzDP5p3/6J77zne/w9a9/nec85zmsWrWKt7zlLbzxjW/cZoDR0wU2TbFepqMAUAqR6Vdy0iKE6IjGVaYJsc5ieUaoolJu8pwL5qUjNkJJTKVEfZHCKpBJ4ITq0uljWkM+k4dCUjHOm74hKG52rlgqMhhPkBZk9v+WcNJZKFtcOKRVAqNca1TuXe9slg3x0h7GjvQRGoIpV2WwCoLJlGDS3RhklCKsR3FUIIy7qPt1g98wRH2K5IRF9DwwiRydco5kGWGwSYLcNMHiWyQbT65i/CzFWGQrWsbdoKM+RWORq/aUNrnjjgYUacFVSYS1FMYN5bUNvPVjzrFNOPtqR0i6zq8UHRtrJbd4rqvEr1xFR4egIiiMW+KKJJg2hJOO4KRZO0c+Lq9hSGbnbzGPPYx9UX3ZUwL+7VVj9nQlZp647J9wRir5QouFzOHK+BLjC7zYtR+rlsFKOotelkwvSfsarjJL37TsIRPlqjlZ0O6Zgw/zzGCU3izfpTvJfk+gu6ohkfgYqhJKQhEKv91OpZBotrA/tk/dj49iiVKcV36CFcvGeHDhYr6/4XgeeGgpIpVMby7zE3MUvtC8qf8WlqhgRstWit4qScr37x6TaFJaJqZhLavjfq6ePIUHphc58pIITCGrsqQC47trv1HQ6pd4LZCpbt/OjW8RVmC1wFiZkbXtWz3nVaNJ02J13M89taW79gHMY7dwV3ATA3f8hlUnnbCvh7Jb+P4ZGwC479yJ7JHLqL713TA7d+OdxouqXwDAbl7GxHGf5iqczuXke6Ntvubj932ah86cm/FsDbNelimXy7zpTW/i+uuv58EHH+SVr3wl//Iv/8KKFSv40z/907kY416DCENXZckny/kKPrRvLi6oMlvdz93GoENech1MXiHInbKMbgv4dU9IUnEEwa2myXZVYPIgSXktLLoVquvSjid9w63U+TWN1zJ4LUM4nqAaLkfAyixBOHY5MF5Duwm5tahGgvUV9SUBXt3i12xWaRDtNq6k4rX/GlTDZRUUNyWEU4bCaIpMXFWlsUCy8ZQ+9OJ+R84y5y+0xqYpat1mlly9gf7VkUuSHnACeRUZV4kpC6e3iS31hYpWvyLuceeiujZi4Ncj9N62Dm/NRmyz6c7vllWV/K6idSdENDvPbaKpusgkUBw1hONQGrauRS5bpLQyO7+RcZWoiZTi5hi/kbaTmecxj13Ftqoxe4J0XPHlq+bJy34MkXacIMn0L7rkucq2zkTjuZwvy/lSkcZraLxmitdMkbG7lvvTMWq6hWqk6BDqyzTWN3hhyqpwhKr02qL9PAEe3CS6+99s0U1eEqtJ0CQZK9maScDWrJm3hMGQoCkJn5PCBi+pPMRbl93I0pWjWGURkaK+scx//v5E/vLh1/DJzSdyX5xSM5Ebg9VENnHtdlsEVhosKZrH0hY/qK3k4xufw1sfejV/fcdr+MG9x7F6/SJnIBAYrG867X2Z74tVzijNeE4TgwDrAVn+jpCwLuqjYbfuxrTluY5swpiBaVOc9bmfx+5j6I9OB3jak5du5FWYo67qazuZvfS51+/2fs/7+VrCVz4PcOTlgcEXArR/7oi8ANgf/Akjn/ksnzzr9N0ez85gt6JhV61axYUXXsjKlSv5yEc+wk9+8pM9Na59ApumTmCfV0+6rHmBma1j4IhM9jqR2QvnLlliy0pMXhWQEhlrCmMWv2kIpjStAY+46lLsZQrlEUM4kSBS115llUCkpt1mpSK3KocAGWtM0UNFhqSa5Qwkpt2S5tdS1HSLeHGV+mJJda1GJblwFKKqRKYKGVuMJzHVwInsI50dhwua9JopvgC/Lomrgg3P7mHJzQK1frR9ftDaCe2ThOK9TQprq7SW95L0eBhfkBYccfAaENScAUFpOMIbbyDqTWwrgjhpO/YAjpgo1TFRyG2slRPHtrUw0pFNqzUiM1pASKwxkGq8piGpqMyowLWKWZlVtQJJfZGisl67/nNAJQZ/el7E/z8JefVld9rHtobvrvnXbVZiYHYWy/OE5ekD64kZbWTGl+hsUixj6xZIpLuOWyXa7mRWCVe9MSCwCG0QUYJoJdjBEnGPgN4EtKRciijImMQafGGQqO0L3nciIHJrcC1ZKXVraFhBn9y6zmZr2DI8UyLRODJUEB69QnF6YT364F/w075jue7+wxDTHmnN5+HGIh5+bBE/X3o4Rw6McEbvQxwaDnOgV6MgNKGQJNbQspYRHbA6XsJd9RVcv2EVY5NlTCKxLYWIs9Y85Syf/fFMHxo74xoVCUeeDKAhLQniHkEyKUiqYMvO6tka6PFalITaqfMokfRJTZ+qk5qnCv/nMff49d/+grc19vUo5gY/FNdy/kH/RnTRwbCbov7LfvEW98tHzubz/Bfwdr7xy7/Biffv2ubrzv32cVz16ru45Fdv4xfAC656BS868odcfNpuDWensMsE5oYbbuBrX/sa3/ve95BS8qpXvYq3vOUte3Jsex1CCEdKshYxazOdRGY/DLhJslKgrcsbgaxFzOlCukmOzYXlgPCDTmuacIJ8mVriqkL7gqTiAieNlwnITU6EwEinkxHWEQ8dirbzmQmyLJikc4MwmQ7Gaxq80SYkKUnFo7zBESZnxSnxIqeliXoUhTFNmuURyNTt1/hOUC8j974ysZQ2pgQ1ydRKxaYTKgz6Ev+JTR2HsKxlziYJjI5TGJukGAbZOe1aAcyIiY1id66gndsCuDyXPHMmd3TLiUreupdXuaRp21rnnxF5BcZIRJwQjMUUN3tMHOZ6z8vrXfVJaHdDq2ZmBjrs3JREY74CM489g22RGNh/SMniyaPmncj2IIwnsVlYsZUCHbhWVmfE4lb/hbWY7JonwN0uFDylC0wI8FTXPgRogRAWH40UrvKytQqIa2UyO004tvZ6bS3T1jBtFBpBSTxV47Kj/eRwihlBy6a0bEpBeAypIueUhjk5XEcgU372m2MQUX6/hJENfYysGeCmnkMICwl9pSYW6C80MVZQi0PGG0UatRCrJTZ2RBEtkC2Jagind9TOQj8czcwTpNNBYiHqF3hN93tahLRsiXsExsuqPKnb5+PNQUZ0Sij0Vt3IchgsSgh8K6ibkOHGvgtR/J+KF6UXcNQtH4U/oApMN15sn8fvN38D8dIX8CJcteQI8X5W28+y9uS3cN3a2zjt17UZr+nlLPRht6EefBb6sNs46wsPccM7DmXzL28GnBg/x7nfPo5PjJzNJy47mw8+/yCeB3zmF49x4rs/PWOfd172N5z47E9z93+tgxPn+KC7MCsCs379er7+9a/z9a9/nYcffpjTTz+dyy+/nFe96lWUy+W5GuPeg1KdG4dSroqSXXhF1iomigU3uVZdE93A71RZMptk0hSh6LSWWQNI8D2X9KstXk0jLBRHNChBkrUX+LXUrdzl83cFXtNZaurQiQtVKythK8HYER5pCQbv04iMAPl17drS4gSkpNXn8geEtqRlV4lw1ssQTri2M9dKptBFifYFcUWiC1DaZFxLVWbvnFQU0vEORo8pMSgW4j867EgLdPQn1jidDLhwTN1po8NaR3aMzpzCOoQDmVlUSwGoLl2R89dpv0cgOrk7nudup91tEnnlJorxplr0PaRIiwUaiy1JGeKqRKYBKja0ehXCus9FtVwFJlXzIv557Dlsj8TM4w8TOugiDdIRGdU07QUqcItUVtDWi+TtxGRhxEJn7crZtVOk2a++obfYoiwjVOb6he20VUkEKa7lSmMpCA/JrlUBnOYDfGEYEJZQFHfZGCDPkymJoD1OgIoIKXmW1wzeym+XL2PT2n5E5LoSik8EFDZb4p4S9RWG9UMhNlast7hQzPxEGoEwAtUS+FMSrwmq6e51uQtca0iQVEAXLGmPBmUz3RGIprs3Ct3Zp2oKSCWi6DQxv9u4lC/4Z/H2oRs5zC8/5diALAPGaXGkEARCE6p5Ef++wDXrz2HVvh7EHOIZb389v//XbwBkQZOOXJz77dv4+H2f5vrD3sfSF//nU173E+9fgLN4/zvuhXfcO+O5PPzz3258LavtZznsKx5nn/RGlt/+VVYD3/y84rCveHzo258nBj54NDzv3i/Cw3Drn14Nf/oZeNlNc3vgzILAvPCFL+TnP/85Q0NDvOENb+DNb34zhx9++FyObd+gu+UrF4hnk2JrLQLa+S9Au80McD9l9lze4gRugq0NVhhEqpGNBK/p7DL9WqZhURKfFDmu0UXPiTelRDVSVFO0b2jGDwgm3WtM4NrLwklLY5ml1SeRGlTkBOnl9ZGzTq4USYvgNQVpWTG9TBFMWdJQtbUzaUlhPGgNSKI+t1oV91qkFvg1SUEI8FxrQ2VNg9KIq0K1FoZMryjQN9mH3DzuzlNOKtp2y5l6Na9iCel6wrXuCvekyxI5I2c6+zyywDDhKUd68nOdvzbV7jjzz6rLTEH4rkom6k18X1F90ictKuqHxqxcsZnReCmVdU6LVNqkMZ5AFyRCK6yet1H+n4I9Jd7fEfYmiWk8uQiA0rKRnX7NfBVmz8FmCyBWik5FPSMnOnB27SK17tKoBEaKdgaYs192rCZfeLJqC/IhLBvGe5gwJTRRJt7vXLOcA5dFYzHZT4TGWLvDhPutYdq6a++A3H4a986gu3qTopk2MQWh8IVipTfFmYsf4QebjodIEoxJeh/VhBMpzQU+KhY0pwsYz2ICMJ7NFp8EMnI8prBZEI5nXQ49grQkqC+1WN9gihokiFAjpUVIi5QGKS1pRWFihU0daZFNp+EUWmBSx4BSI/nN2HJuLh/EMvXkUwItoaviZA0F4XGoP8oLFq7ml7t95uYxGxz6pXUcyud4m/9ffDnZNyGWewPPePvrn3Kdv+rVd8G3/4arXn0vvOMooOPK1l1l6cadl/0NdvMLeGD4hfzE+xf+eCzlv9+wDN4AcDV3Hbmss/EbYCGXAHDc/edw15FX88mll+BtehHPWXASz//+GfxijknMThMY3/f57ne/y/nnn4/a8kL6h4JujYvWM13FZKdtq+1+1e0yBp3KTB58KWQndDFvMxPCVUWy1X4AU/RcS1piSHoCF3RWT1AWdKiyFTiQqSGYiLDKVWGsJ9p6kcKIRFh3wTaeIJzUTluSpOiCBwL8hhPSC+1a1RrLBf4UlIc1QuMyULLn8EDFAowLuTSBxKtl404N+M4CWmjnzlI/pIfqdN3pWLa8MWahn3m7GJ7oiPPz3BapZgSGWm0cUfQ8RLGAHuohHiigA0ladPbOwZTTKamWRtUT5HQDUWu41r38bzT/TJMUOdWg/IRAmDKIgLVTiyl40BxylSY95QI40zIUNiuCJ+c1MPsS715z/z7NgZkrzBWJyQnLzjy+PVIzT2L2PKwS7TbcnNBYKTAFp4EhK7DkV878up7fI6wQbtKdGoQFUom1EGnJcNJHEo5S2KJgnGtNTNb+VbcxVanwcURhNnqYhtU8FC+hT9VZrKZ2OyRzRsgkEill2z1tQClOrjzGz/sOZ7rWgzBQ3Bgjo5SCEoQTgvKwzIhgx+3SSginNDK2qDjrWCi4SIHacoNa2gArCH3N8v4JTh96lFWFEbQVKGHZlFZZ2xrg7okD2DDZQ2M6xEiF6bUIZZzbqGdotXzW1Ab4pjyFgw/ayAlBi4osbPM4FZIlynJyYY7souaxXfzje9/K+M8+AGfs65HMHd5c2vrf35ZEZVvEBRx5efAVbwTg8C/9lOHvvQ+Ak7+9M62PN3Py76okzzyde7Ny13OXfJBfnPbinXjtrmOnCcyPfvSjuRzH/gGjQWa6FmOdtiIXjVvTqc4Y2xaLt0XmZM5X3YJz6LRMgdPPxDHC9wgmY5KqS1tuLiqgWoZgKkEmBlVPULUIU/QRRjp9S6YfEUiEdnqVqFehEotInTBeJjiCgSMyoul0KbrgIbTLkIl6XDBaMG1JSwKvbp0LV1MTVwPCKUs4ZZle5ibyKnaExnjC6W16PdKCZHqlZPDexJXlJTQHFaWFfai1G9vOOqhMt2K0Iy+5dkXrzjnStLcB2m1jwvMQhQLpskFaQwXiHonXdJod44GKLUYJ8EVmNKAQfSGy1YNqxIhGhKg55Z41BiElRDFqs6acGqzoQWhFa9D1Dkjt7DPTMkRDmnBM0Vj0B0rU5zED3dWXPS3g31vYFnnZ0fazqc7MY3awArd4k2W8AG3XK0dMLDboaGRyUiOTmS1mxleoxF0frSfRQde+UsGGpI8xQ1vUnpOLPEhy2ho26YAFKkbtIvGYMHB3czmHhCM8w5/cpX1sD05LotDWUBBwTLielf3j3DNcJem1xL0+xQ0xKtLISOPVXfdBTv7SkkIY8CdjpyvyJLqgiPoU0ystLIwQAnqrDZ6z5GHOrD7Agf4Y4M6bwqIRJGXJ4739PB4v4JaJQ/jthgNojJawkZdZVwuEABMpNtfK/PfE8dD3W54ZNKmIcJuE0BeKUMR7/LzNY/v4+bnfZfxnH+AVryrz5okCX2u09vWQ5gRfa7T49m7uY7X9LD/1arwovYDrl7xv1q+//dXTwNWM/+wDHH+fq9T8wy0/pPmvd/PJr1+8m6PbOnbLhewPDVYbEMat/uekQ4qOPbIiIysaIbNTZ+xT2paATjVBBp3H88l7FKMaCfVlzlrRy3qiddbS5ceutcqE3oy+aIxBVzxUI8ksHwWy4UT3hTHrRPkK/KYhXF+DVgRKoVopOixQX+ThNS1ey1koN5ZYShtcy5RzwoH6kMRruNJ8ccRSmLA0hlxuQdTvZ+MU1FdqhPbpecJVb1RsaS0sUJqsIKIY24pc1UV3Klid8+WqWzZNZ2iJ2u14ngd9PTQO7ENoi19L8ZoCr56gix5JxXMZOtpCYlGNrGrjSUyo0MUSDJbwamXUdAsxMd0xEEhBTjWoPGQJx0tMrwiJ+iApg59agnFBcUTi1y0TC/fon9c85rHHMVvisq3Xb0lkFk+6loP5Ssyuw3huwUZkVsqi7QQGZERFNjVJ2V3PhKbtSJZDGDqtt2QLST5Ot6GdkH91bTHTVR/U1m2SS0IwIGNKQqCxaLQzEsiyZnaUZZKi+X28iNvHVtLoDTiz+Phun5ttQQkJFlZ6mtctuYWPrltMqkOag4pgMkDEBtlKScsuqFm1Unev9D2CqRSZOi2nLnnUF/mMHwnigCa91QblIOHogQ2cWnmElvUZ0yX6ZJOCtBSEQFtLIjSL1RSFMGHB0BSn9D7GrZMHcdfwAdQ3lhF1hU4FIjRMTRf5wf3HcfuClbxwyX2cU7mXVb6lKGa2lOWtfL7Y+uczj7lF/9n/yCk/uplfnPWxfT2UOUXuBrYruPOyv+E6/0qO/94NrOeGXdpHXqlZHL+HBwaBj4B85d0cdTsc90GPa992BAOH3rv9ncwS803+Xchdr9quY56XVQecI1lbm9Gd8yK7qitJio0TN2nPf0ZRxzGrqxIjak2CKU1SdeJ61UixEpKqRzxYJO0tIJspqunamHTRByFQ9Ti7KVrC8RSvoSlMaIqjKSoy+E1D6Yk6crruLIS1RjZihLa0BoVbCbSgC1DYJKiu1VgBzQGPpCza5KW50NBc5JzRChMGr+lyZ/xpTTilKT+h8GvOpU2mrhrS6leYcsEdp7FOC2MyO2qviyuLLqF+TgDzc+t5MNBL/bAB0rLCryXISONPRohEI1KLP50SjiZ40wl+LXGtc4nGm47wpiNkrFGR0wglCyvY/h7AVWJsmkKcIOtNgnUTDPxugkW31eh/UOPXXchlzxMprQFBPDh/w9nXmGttyt7SvmyJPVHp2V3ysuW+tra/nMjMY/bIW3oxrnIMGUmhy5VMZPoYAYiO1XJS8ZwuMXCLMib0MEWfqFeSlnJHTIGIJVNJgQlTJMmE490i/lD4VGVAn5T4QhJZQ9K10GawW82H0daQWM2UafG7GL698Vk8PjrAumYfYybo2DLPEULhc2phHQsHprDKOuF91XMVqHLgzGyycxP3+m3Sp0NF3BcyeZAjL8niBKkMC8p1Th56grKKGE57KcuIAdWgKt39tWUtLQstK5g2BUZ1hQdbS3i8NciicIpjF61n5cEbkUMRWIFtKaR052CqFfKzkSO5ZP0L+fLEM7ix5bFBN2jauE1eABp2fr14b+KSX70NcBPrvZVLArQF9fsCucZltlhtP7vHxjAcHMlwcCRffcE/s/6HfwbAXZ+ZGwOL+W9UF2yaYoUEY1yWSLMFUroqQaLdJTufaAOktmP1K10vlRDC2QOnaZsIiSR1lZvcOtgmiFZMONLA+GVU01Vcmgtc+5pfF1glsaFCNGJEZPDqLs8ET2FKgXOziQxWdlzLrFTOFGC6AVHsSJWxyMk65Y29TJad01ZQM0RKMvBEQmFjk7gvJK4GyBiSqiM5fg3SosUqKK9PHPHJ+FdUdS5kXsPlGRjf5aqkRUHaFyJrTRcImnbdGDOb5by6ZdPsBmhMp5olBVTLNA7qc2Fu9QTZTEBbTCU75laa5b+AVZkQNk4h6xWXiUVEGmEM1pMkAyXS3iKy6KM2T2EbrTaJEUoiag1k4NO7YRzTVyHpL5JUPIJJS7Uxz+//kLEleXk6tY/tSfKy5X63VY2B+YrMrOBkE0id5YuYzLY3L8hLgfXc/8vYtqvgGKd3sQiM7xbQROhhPUFcFeiSQXgGmwiQlij1+F1zJcu9eyjJTkq9019AYsHP8lJi66oNkU0he9wXCtNd5cHQMAkta7iyvoqfbj6a3zyyEhtL7vUW84PyiSwf/DWDsth+H+hkzuyqO1kOlXUzDEiPdxx0Pf8Y/TH1sX4mD/TpWeuMDvI8nbQo23b4OpDYgqJ2gMfE4RY7kDAwOM2Ccp2Dq6MkVtHvNTgqXMdyb4peKUgsNCxoBConfsJgrERiCaWbeA2FNap+i2MH1nHjukOY2NBD2nQdEuNxhalakXVeL3c+sQLlPZuVg+Ocs+j3PK98PyWZMm18vrzxOcC/79a5mcfscO3bjmDhtR7gMgp/8N3NvPQVQ3P6not/8lHYB2aT3z9jAwClWbzmkl+9Df93NzM8B+N50Q3/wu2vnua3ySc4boHHtY5P8ifPdeGb/33dG3f7PeYJTBeEkgghO2tL0hESq03nd+tauZAy+ymwSdqZhANY026NEvms3xqXhaI1oLBJghqbIiz5pGUPo1xwVjBlEalFRqkTa2bjAOdsZoq+E3/6kqRf4jXcxVxYSzCZEqybgMmaO4ZcyJ5qCptirAjwaxpdlFTWpQSTMSZ0q1rFUU1acC5lwkBxWGACiCsgFjliVRjPbZBBphD1CbzItUl4LRcM2VwQ4E0UUdP1zIks7TiyqawDWzgdT1tTlJ//QoH4gD6XSN1MUVMt1xZWCdAFL+t51uBJZ2xANkFI3Lhylx4bKmxmF+rVXN+xCT1EXwUZJ87uOQ+7zM4P1iDjhHCqQQiUA5/EN8xP1/Y99paY/xUr3r5XScz+aqu8NRKTY0syM1+h2Q6yy7YVboIttatUW+GcstrOZKlBGrCeyKo1mS5GCbTnhP8kLlzYzwP5LE5UrgWb6mXury/hpNKjLFUtwi2CLA0GjXV2vggM0LKGxEJZWkIsPgqVt1GhGdbwm2gl/7bmNIbHeqDmIQS0mgG3jh7IzeXHeEFxMxKJj5pR+dnVsMwt4QvFqYUnWNk3zj3FPuJeAWtdhk7co1xbngW/rpGJRSaGuMdzmWoljRdoDh3YzMrSGJHxOCAc5/BwAyu9KapS4Av3AVUFxNYSWWhZxXDay4QuUVIRvV6DgkgYSXrZmFQpyZiD+kf5feQTjRXd55CCqXlEFXc/SZseD9YX8cjIEFcvegaplYw3ikyPzVf09yaufdsRPO/Lq7kXj/GffYAfnPFxmEPysu7ElL++7O/5o3+6hw/ddj6vf/YI3/jVIprP+sKcveeWuP97b+TOy3hKTsu28Mu1x3A2N8/ZeFxb2Q0sju/njW+FYw5cw6dPywwHrtt9PdI8gelG1i6GyclGdoMRoh1UCXTIDHQeYwt7ZaU67VE5tmxBSzXeyCRmeT9pyaO61q2KWemcyWQzxZRDZCt1rl/WYgKPtOwR9zjbY6zEr2n8qQRv0xRM17P3cETJ/W5QrZS4WsBrGVTTtJOfhTYEYxpd8klKAf60azWrPul0OWlB0Fzg3Mly569wStNY6JFUoTBGJlS1qNgS9UnkgRV6Nk2ATTKXNuN+5noYrduW1HloKJ6HXtzP5IEFvMhSWauxgXN4S8vO+liHAqkVMrb4Uwkq0ohm4vardUaOnHMannQi2uxzk7FGV0LQfciJaZdPkxMoKSA2WKGh0XSf99Q0Qs7fcP4Qsa/axvYU5qr6MlvMk5ftQ8bG3WHzNaxM95KW3TVMpo7UiNRZkFkrEamr1hhfuAgslQcuik67sujsEwut2KepfTalPTT8OhJJKLy2fkV3VVckkGSTdYmbuEtcqGbNGNanHvfFy/j6k6ezdrSPZH2Zgd8JZOrCHScPLbGxGPPT8WN4ZnANA0plGTS032e2DmfbPH9IhpTiuUMPcPfAAaT1EKucIyaASpzm02toZ4AgBDoQNBdZ/L4Wxy1bx7mD93JCYY0bF4aqNG0nNiUEPpaGTWhYwZguMGrK3FVfyUjUw7LiOL2qyeJgkgXeFBNBiWlTZCotMjlQ5NEJNxHzxjwqTwqMrzA+iNQt8AE8MbSctGQxRYsYnRfx721c+7YjEBf7fKbwMtad+PcccOeen/K+7KYljP6kn//gbq5+9Tu5GvjQ9/eN3ubIl/8b939v5ysbVwVjfG4OxwPw25efxdEPn861bzuCn913wFa3ed3IO9j0S7dI2XvS7/KC2Q4xT2C6oTVWd7JKhHDaF6Fkm6jk4v62C5kUCNUl2sv1MkmK8D1HZPIWshxZsKWNIoQxBBsDRFoiGsgc0LIWAJEqdEEh4xQMrh2qrIh6FCq2VDbEqFqMmqi5KkKSYHNCpbu0J1Iix2tgK9QXehQmHTmxKnP/ym6MVjmrZZkKvIbbRkWiXR2qHSAJys75xXqO0MgUEKB9QVAzNALB9HJF5dEexPCoayWzokMUkq7zmFWjCHyE7xMPFpHakab60pDSRhfuGfe6c6cD9x65MLYtbvWUq/Jog0gSpBBoP0BGaTsrxnoS2UjQPSHCWsTYZMfqOjcPsMYRmdxYIJ2bvs15zB57ogqzM8Qlr4jsrUrMvqjC5NWV7RGheZey3YcwZNcpZ8JiPRdCmYv1hXE5MLlNPjiLZNVKkYmzydeBBOEsmKOFodMxKosUFitd1VtryVhU4uFoEQf6m1mqYqrStFPiDabtPmYQGAElLL4Q7ccfThQ3No7ku2tPYKoVUpssIsYCeh8UlIdTkK5dK96omOqpMNLfw4gu0icjsuZqEjSJNRQwhMKfEZmpuwI2t5denyPftiA8nldezVd7Tqfe49PqVQSeG7PXcPcC2dKkVR/jCZqDkmRRQn8p4tiedTyn+CgDyrXIJWT5NwiUEK7VThgSYxnTRe6OlrMx6eHRxhCNNGA8LtIfNKn0tjjAHyMQGoVhTaOfDRM9mRkDWM9S2mgpjCaYbGxpSbnWNiPRgUAXQIztnvX0PHYNC/7ofj7pn84/sOdbyC5/4sX88djNvP8bv+TQrsdfGP+AIZzuZm+0re0K7rj4Z/yfRd/Fn4v+sS3g/+5mnvdl+Nmzt/78vy/atSrVPIHpgtUakO1Kis0rJrk9ch5omaQgpSMxqJl2y1K4tjHPa0+q261jIsuO8b12VopNNWJ0gqDeRNWqpL0hadmJNxNPokOB8Ut49ZS4zyOYSCmuqzub4LzaYq1rc0vTTqWoK0jLtloIIaisixk/LIQJSIoSVfHwWgIZOVtm47kVrPyG69dSrCfw6prGYp/aMkncKwgmLYVNFr9hCWoaKwRpya0eBlOugpMMFAknC05HtAURaJPCdotbiq2W0YEknDCYwLVcWOnIkoosSdk9FvVIKjWNjDUiNdiC5wLgWkmnxS/VqMkmNsz+vLV1a4TaIiUk/UX8KIbxuNPilodigvvMvE4Fbh77B3ICMhsis6vVlr3dTrY3kbeIlZaN7LCas712snnsAC730OWxJ5bUl+ii6jhL5vlhedClEG4RJiM0Qrsqjs0nxQVBWsRNmq3Tv9jQkEQeD25YSGIUvtD0qgbL/VH6VIOC0JRFSihwYcS4qgtAw1juixfwq9phXPXEkbQin7gegBYU1vr0PWQIpl11w3iuXbm6RoD1ua+6hH8Nn8srhm7nlHCUxFo0rvhtcDqcLcMqWzZ1BEcoQuFvk8i0296sRQnBApnyzEXr+dXmQ4l7lVtga7mWMdXSyNSgA0lSkdQPAFVIKQZOnL9el6jKJgaYNpZQANn4EE7rM6J9ft08hO8/eTyTzQLNZoDWkmIpJo48zEGCslpOU/ssCqfYWK/QnCy4dUbPYIqSqEfiT0u8lsaorCMhsoTjnUW+VM9X9Pc2PvW2YS4FfnTyKGND/5ub/ulveekrdm+fL7tpCa8fvofh4Eg+/I4vb3Wbq159F68b2XvGAd34xGnX7HCbs4/6HCcefwtc9QoeGPwqw8HsFwev/pc3c84FX9vhdsd/z7ma3ebfzstuO57vP+u3s36vbWGewHQj03dYrbuM+zuEBehKic/JTYfYtB/LKxpR7MiQVCBVO+TSJklne22wVsJ0gqzVCTeGhIGP9Vxloj2uJCVYZ6DZaruL2a7WAPI2t7zyko9Lk1V7YgprJvAPcN7AQc2QVBTGl6hQuawZnKOYFQJdlITjGiJXvSiMSWQKOgC/blGRwWvqrF/b3UxkavEbhqQiaS4ICB8XM8lLVp1qW1R3n0Mp8ZruZpnguYDMxCB9SVKGcMIQjsfOvaeoSMs+/uYEYTLLawMm8FDNyJ07QEQpeMr1oKeGtLeAzfvLK0XEZA1MOnOMOcmcx36LrZGSnNQ83dvDdoT9pX1sHjuBXBLSDvzNsqtw5MT40qXA///t3X9w1HV+x/Hn5/vd7+6GhN01JCREyJCqHbVYR1Ew2j86Zw5ER9F6/YPRaq2VU6A3tg7TWk89p51By2hv9Dxr506djleZ0Qp6Dlop8RcWUGgQAQdxFMMBASGE3ST74/vj3T++yYb1kDgYk+zm/ZjJDGS/2f28k7x2897v5/P5euEbYCaQYlNjRIbeQBELcSxytRb90z2IBli2EEQDJDDEqlziUZfqSIFDboLOfC0f+C0cyibI+RHq4n2cWdVDg5PGMgG9fjj1aVdmGp8caaDg2WR7Y+Gaml6b2FGbyV+Gz+WDjZWdDZ8To2mo7oLswTibnJlk3Bh/MONVokaKW5rmEGLGx8YUNxRwxafb9+kXG4uAyVaWWitacpYIwmlog2t28hLgiCFuLBZM+ZjN1TMxgYPlhxsjiGFgh88AuxDgihVuggD4gUUucMgEVXzl5wYew6Iggm0FdEuB7iBCl5dkr1vPwUKKr9I1uIUIftYGW+hPxzGRgAN9SZKxLNWRAmmviirHJVXXS38uSuBbeDmbzEyw8xGqD4brYsMLQhuc/vC1Mp+0sbP6hthomfdH4cQoOdLGrM9e4m9/soR7/x36Vi5n69OtQHj1+se/XMjNf9NB7aud3HygieebDnzjfe6f7ZF9ejs/7J5PV/Q87lly6i2Bn2/4Jc8Dv/m5TdUHS0ZtLczzTQeGXcj/5s6/45GGxbS/vIP5S09vZsOG3APMZyb3P7qXvpXLeazrxVMef8WW8O/el0/r0U5OG5gTmEgEYyJDjcHgQn0YWrhfvD6MVZwGJSJD618Gz37YFsZyMDXV+FNTeDXO0FznSLjo3hQCIukc5nhv2NQEguRykBtY3GSd8A6VZYbOCPnhgv7i+pvB69Cc0BCUXGPFiYb/TvdSuz1O71k1+LZBLEN/vUW0zyLW42HnhWydhfGFqqNBuH2nHY7VzvnEvCCc9hBI+ILsBYgx2FkPf1K4yF4s8OOGXAokGm79jDc0ha44HW+wyQKIRAiq4xQSEZyMRzTjEkTCHcYifV6xuUKESDqPCWIETrhLm9VfCKfPWVa47iXmhGtn/IFJ3pY1sHbICXctcwOMFxDEI0RqJiE96aHNBGwbKbhD09tsPeU/mq5w89942/tO7JRfW86Ny1hMI9NG6PtnJFzPIgzskDXwh63lhc+dwMDzqAys4Tjha73ghOcwQ+4Mh/RZAU5tjmRNjnRfHMsG3wi+Z5E3EQ70JujzwunM9fFe9qWT9Byv5tPAIJ6FiQw+jxJuBRwYKISvEVW/ixDrAScjRPv8gW2eww/LBwinQokFXtXAH+iBodeNkRGHRiuPQ/h+mSvQ7fsD09jC+z/i++xxp+BjOOrVkJMo58YOkDB5HBMQNz4+4ZqUgLBs24A/MNXtk2wTXu/AayjhlGUrZkE2fPPK7veIOgY75+D7hsmxPNOiPRTEZo9bR7WVJ24G3jgkR15s9vtJ9ru1uGLT41aFzUtvBJzwGjsCSGDz2YF6EoksTsRHxNCfd5gUc7EsodBvgyW4qQC3OjzDVlyzNDDOwLHJJw0RT19PRsPD7y+mfTH89z9leKThJSDcJvjWO+A/O4Ep4XG7X4IZ/Jp3boGuV8/jvxqvh9/BIw372XF2hFmfecz48Nfsu/R2AHZsj/B8w8nXcAynevlKjrxTPQLVjZy/P3Qmzrc4g3Iy71/isOnR3aw7MJ++lcv57K7HuQ549cFpJz3+/kf38mf/ewt3/+J6YN5pj/nrtIGBYsPiejmI2Ug+vACkMQYxMjQ1ScAMNBLGjg41LACeO9TIGAFjQ6Iat6EGtwaix/vCa7hYFn61U9yBpnCGTVCfCs9eHMtiDh8bmApmg5sPH2PgDM4gE7WRQv6EaU9CuDXYwLVqPMKzMVYkvGgkghELcV1MVxcxewp9TVUEUYP0G0y3B8cL2H6UeJ8Vbofs+eRSFoEtVB0JF8yLIXxRFcGtdrCsIPyDP1fA9AERA6aK2L7wxS6XtHF6rYEhumEz4YXXsQmnurlgRzAYPNvFDXIgAW4EosdyeE54hsjq8xHbIlcTwZ8Sxcm44RbS4mH7eQgCJB4DL4eRgMASvEQUP2rhpF0kYiG2T6Q3C26AH7URxyaotjE9bjjPQzwIwnfeAPB9PN8t+f2Y6L6v78Pco18B4KXT38v9n64fNf+Y/9j587EeRol0ZvSnoXR9Uk/jeV8Ne5zmJFR8PfHDM8aBsQjEQCFsXvCCoTMynhAUrwNzwjRWC6wgfH0JfJuCGIK8QXoL9OQECXJEnADxDY7tExePmFsg5WQ4Xoiz60iCnm4HrDwGQTDYEu7EYizBcQKCwOBh4fZHCfqjuB4ggu9AEAHLD9eZOH3hTpe+MfgxQ8EykBbctMuxCLRXt/CH0S5qrByu2BwPJlEQGw+bGjN09qNfouwvnMHn/fUUxGa7M4X6aIYzo8eI4RG3CvhiEWCRtPrxMfhi4WGz9WA9QW+e/kk+QS78fkUDwZ0c4FgCFPDyPvZXPv60AjVeD9lej4+CeuLGoz5ynKiJYhGQs30ixscPchTcAke9Gnp6DV4mj3gu5AwmOtBgWgHxeJ7qIMvhIzUYE2BMnqPHIvh9YOLZsD7fJt0YoWDChi/SF+7MOTivzuoxBNlcye/HRPd9fR9yfQViTzzHQ97FbM3/H7O9i9lz/l/wp/+zEIAFL97M638ebmf9fsM/8s+/6OSny3x+9elDrPvRX/HbH77A4z8Of65//XQV8BuuXbcIMqe3CcPTl63ksn/Lkc7864jUN5yfOAu5tv0DfvuD7ac87lefPkTm4ltwPt487H3+iTePDZE3i/+f/Z7PH99zJlUt1fyUf4FJcN6ci7kxe4QFD3fx+j80sqzheq49u54fpLdz3xIf96N+Oqqv4mdv/iU/m/fcsI/5bX4/jGia+PzzzznrrLPGehhqnNq3bx/Tp08f62GMOc2JOhXNSUhzok5FcxLSnKhT+TY50TMwQG1tLQCdnZ0kk8kxHs13l06nmTFjBvv27SORSIz1cEbEWNQkImQyGZqamkbl8cY7zcn4pzkZe5WWE6i8rGhOxp7mZPwb7znRBgawBhboJ5PJivilG5RIJCqqHhj9mirliXUkaE7Kh+Zk7FRqTqDysqI5GTuak/IxXnPy3S+Xq5RSSimllFKjRBsYpZRSSimlVNnQBgaIxWI8+OCDxGKn3qq1XFRaPVCZNZWbSvsZVFo9UJk1lZtK/BlUWk2VVk85qsSfQaXVNN7r0V3IlFJKKaWUUmVDz8AopZRSSimlyoY2MEoppZRSSqmyoQ2MUkoppZRSqmxoA6OUUkoppZQqGxO+gXnyySeZOXMm8XicuXPn8sEHH4z1kL7Ru+++y7XXXktTUxPGGNasWVNyu4jwwAMPMG3aNKqqqmhra2PPnj0lx3R3d3PTTTeRSCRIpVLcfvvt9Pb2jmIVoRUrVnDppZcyefJkpk6dyvXXX8/u3btLjsnlcixdupQpU6ZQU1PDjTfeyKFDh0qO6ezs5JprrmHSpElMnTqV5cuX43neaJYyYZRLViopJ6BZKTeaE82JGp7mRHPynckEtmrVKolGo/LMM8/Izp075Y477pBUKiWHDh0a66Gd1Nq1a+W+++6Tl19+WQBZvXp1ye0PP/ywJJNJWbNmjXz00Udy3XXXSUtLi2Sz2eIxV111lVx44YWyadMmee+99+Tss8+WRYsWjXIlIvPnz5dnn31WduzYIdu2bZOrr75ampubpbe3t3jMnXfeKTNmzJD169fLli1b5LLLLpPLL7+8eLvneTJr1ixpa2uTjo4OWbt2rdTV1cm999476vVUunLKSiXlRESzUk40J5oTNTzNieZkJEzoBmbOnDmydOnS4v9935empiZZsWLFGI7q2/l6kIIgkMbGRlm5cmXxcz09PRKLxeSFF14QEZFdu3YJIB9++GHxmNdff12MMbJ///5RG/vJHD58WAB55513RCQcu+M48uKLLxaP+eSTTwSQjRs3ikj4xGJZlnR1dRWPeeqppySRSEg+nx/dAipcuWal0nIiolkZzzQnmhM1PM2J5mQkTNgpZIVCga1bt9LW1lb8nGVZtLW1sXHjxjEc2en54osv6OrqKqknmUwyd+7cYj0bN24klUpxySWXFI9pa2vDsiw2b9486mM+0fHjxwGora0FYOvWrbiuW1LPueeeS3Nzc0k9F1xwAQ0NDcVj5s+fTzqdZufOnaM4+spWSVkp95yAZmW80pxoTtTwNCeak5EyYRuYI0eO4Pt+yQ8AoKGhga6urjEa1ekbHPOp6unq6mLq1Kklt0ciEWpra8e05iAIuPvuu7niiiuYNWsWEI41Go2SSqVKjv16PSerd/A2NTIqKSvlnBPQrIxnmhPNiRqe5kRzMlIio/ZISn2DpUuXsmPHDjZs2DDWQ1FqXNOsKDU8zYlSwyv3nEzYMzB1dXXYtv17OyscOnSIxsbGMRrV6Rsc86nqaWxs5PDhwyW3e55Hd3f3mNW8bNkyXnvtNd566y2mT59e/HxjYyOFQoGenp6S479ez8nqHbxNjYxKykq55gQ0K+Od5kRzooanOdGcjJQJ28BEo1Fmz57N+vXri58LgoD169fT2to6hiM7PS0tLTQ2NpbUk06n2bx5c7Ge1tZWenp62Lp1a/GY9vZ2giBg7ty5ozpeEWHZsmWsXr2a9vZ2WlpaSm6fPXs2juOU1LN79246OztL6vn4449LnhzWrVtHIpHg/PPPH51CJoBKykq55QQ0K+VCc6I5UcPTnGhORsyobRcwDq1atUpisZg899xzsmvXLlm8eLGkUqmSnRXGk0wmIx0dHdLR0SGAPPbYY9LR0SFffvmliITb+aVSKXnllVdk+/btsnDhwpNu53fRRRfJ5s2bZcOGDXLOOeeMyXZ+d911lySTSXn77bfl4MGDxY/+/v7iMXfeeac0NzdLe3u7bNmyRVpbW6W1tbV4++BWfvPmzZNt27bJG2+8IfX19brl5fegnLJSSTkR0ayUE82J5kQNT3OiORkJE7qBERF54oknpLm5WaLRqMyZM0c2bdo01kP6Rm+99ZYAv/dx6623iki4pd/9998vDQ0NEovF5Morr5Tdu3eX3MfRo0dl0aJFUlNTI4lEQm677TbJZDKjXsvJ6gDk2WefLR6TzWZlyZIlcsYZZ8ikSZPkhhtukIMHD5bcz969e2XBggVSVVUldXV1cs8994jruqNczcRQLlmppJyIaFbKjeZEc6KGpznRnHxXZqAgpZRSSimllBr3JuwaGKWUUkoppVT50QZGKaWUUkopVTa0gVFKKaWUUkqVDW1glFJKKaWUUmVDGxillFJKKaVU2dAGRimllFJKKVU2tIFRSimllFJKlQ1tYJRSSimllFJlQxsYpZRSSimlVNnQBkYppZRSSilVNrSBUUoppZRSSpUNbWCUUkoppZRSZeP/Af1fx4e3ZO9lAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -80779,7 +80779,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4345f4f5", + "id": "b99a6f07", "metadata": {}, "outputs": [], "source": [] diff --git a/cosem_starter.html b/cosem_starter.html index fd21cafe4..fe88716c0 100644 --- a/cosem_starter.html +++ b/cosem_starter.html @@ -158,6 +158,61 @@

Full Example

Available COSEM Pretrained Models

Below is a table of the COSEM pretrained models available, along with their details:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Available COSEM Pretrained Models

Model

Checkpoints

Best Checkpoint

Classes

Input Res

Output Res

Model

setup04

975000, 625000, 1820500

1820500

ecs, pm, mito, mito_mem, ves, ves_mem, endo, endo_mem, er, er_mem, eres, nuc, mt, mt_out

8 nm

4 nm

Upsample U-Net

setup26.1

650000, 2580000

2580000

mito, mito_mem, mito_ribo

8 nm

4 nm

Upsample U-Net

setup28

775000

775000

er, er_mem

8 nm

4 nm

Upsample U-Net

setup36

500000, 1100000

1100000

nuc, nucleo

8 nm

4 nm

Upsample U-Net

setup45

625000, 1634500

1634500

ecs, pm

4 nm

4 nm

U-Net

Notes

diff --git a/notebooks/minimal_tutorial.html b/notebooks/minimal_tutorial.html index c631e1b40..4dbf5ba4f 100644 --- a/notebooks/minimal_tutorial.html +++ b/notebooks/minimal_tutorial.html @@ -605,13 +605,13 @@

Visualize
Creating FileStatsStore:
 	path    : /home/runner/dacapo/stats
 <xarray.DataArray (iterations: 2000)>
-array([0.65979844, 0.61128896, 0.58934087, ..., 0.35486192, 0.37893647,
-       0.34515283])
+array([0.78323734, 0.73412889, 0.75879186, ..., 0.59049326, 0.35759771,
+       0.4338592 ])
 Coordinates:
   * iterations  (iterations) int64 0 1 2 3 4 5 ... 1994 1995 1996 1997 1998 1999
 
-../_images/861cf92042db801d4447df36db45bb7b2c06c0dc7e6752090fa59dd6078fccd0.png +../_images/f0b777515a067bf92625a6b5c7fc1d6f53803b2d1d4a45eb577f801db4d909da.png

diff --git a/searchindex.js b/searchindex.js index 97a1d6c20..a98f32f4a 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API Reference": [[184, null]], "AWS EC2 Setup Guide": [[185, null]], "Architecture": [[192, "architecture"]], "Attributes": [[0, "attributes"], [1, "attributes"], [3, "attributes"], [5, "attributes"], [6, "attributes"], [7, "attributes"], [8, "attributes"], [9, "attributes"], [59, "attributes"], [71, "attributes"], [74, "attributes"], [83, "attributes"], [87, "attributes"], [90, "attributes"], [116, "attributes"], [118, "attributes"], [120, "attributes"], [121, "attributes"], [136, "attributes"], [143, "attributes"], [150, "attributes"], [151, "attributes"], [154, "attributes"], [156, "attributes"], [157, "attributes"], [158, "attributes"], [159, "attributes"], [163, "attributes"], [165, "attributes"], [166, "attributes"], [168, "attributes"], [169, "attributes"], [170, "attributes"], [171, "attributes"], [175, "attributes"], [176, "attributes"], [183, "attributes"]], "Attributes:": [[67, "attributes"], [70, "attributes"]], "Available COSEM Pretrained Models": [[188, "available-cosem-pretrained-models"]], "Building the Docker Image": [[189, "building-the-docker-image"]], "CLI": [[186, null]], "Citing this repo": [[190, "citing-this-repo"]], "Classes": [[2, "classes"], [4, "classes"], [11, "classes"], [12, "classes"], [13, "classes"], [14, "classes"], [15, "classes"], [16, "classes"], [17, "classes"], [18, "classes"], [19, "classes"], [20, "classes"], [21, "classes"], [22, "classes"], [23, "classes"], [24, "classes"], [25, "classes"], [26, "classes"], [27, "classes"], [28, "classes"], [29, "classes"], [30, "classes"], [31, "classes"], [32, "classes"], [33, "classes"], [34, "classes"], [35, "classes"], [36, "classes"], [37, "classes"], [38, "classes"], [39, "classes"], [40, "classes"], [41, "classes"], [42, "classes"], [43, "classes"], [44, "classes"], [45, "classes"], [46, "classes"], [47, "classes"], [48, "classes"], [49, "classes"], [50, "classes"], [51, "classes"], [52, "classes"], [53, "classes"], [54, "classes"], [55, "classes"], [56, "classes"], [57, "classes"], [58, "classes"], [59, "classes"], [60, "classes"], [61, "classes"], [62, "classes"], [63, "classes"], [64, "classes"], [65, "classes"], [66, "classes"], [67, "classes"], [68, "classes"], [69, "classes"], [70, "classes"], [71, "classes"], [72, "classes"], [73, "classes"], [74, "classes"], [75, "classes"], [76, "classes"], [77, "classes"], [78, "classes"], [79, "classes"], [80, "classes"], [81, "classes"], [82, "classes"], [83, "classes"], [84, "classes"], [85, "classes"], [86, "classes"], [87, "classes"], [88, "classes"], [89, "classes"], [90, "classes"], [91, "classes"], [92, "classes"], [93, "classes"], [94, "classes"], [95, "classes"], [96, "classes"], [97, "classes"], [98, "classes"], [99, "classes"], [100, "classes"], [101, "classes"], [102, "classes"], [103, "classes"], [104, "classes"], [105, "classes"], [106, "classes"], [107, "classes"], [108, "classes"], [109, "classes"], [110, "classes"], [111, "classes"], [112, "classes"], [113, "classes"], [114, "classes"], [115, "classes"], [116, "classes"], [117, "classes"], [118, "classes"], [119, "classes"], [120, "classes"], [121, "classes"], [122, "classes"], [123, "classes"], [124, "classes"], [125, "classes"], [126, "classes"], [127, "classes"], [128, "classes"], [129, "classes"], [130, "classes"], [131, "classes"], [132, "classes"], [133, "classes"], [134, "classes"], [135, "classes"], [136, "classes"], [137, "classes"], [138, "classes"], [140, "classes"], [141, "classes"], [142, "classes"], [143, "classes"], [144, "classes"], [145, "classes"], [146, "classes"], [147, "classes"], [148, "classes"], [149, "classes"], [150, "classes"], [151, "classes"], [152, "classes"], [153, "classes"], [154, "classes"], [155, "classes"], [156, "classes"], [160, "classes"], [161, "classes"], [163, "classes"], [165, "classes"], [166, "classes"], [168, "classes"], [169, "classes"], [170, "classes"], [171, "classes"], [172, "classes"], [173, "classes"], [180, "classes"], [181, "classes"]], "Config Store": [[192, "config-store"]], "Configs": [[194, "configs"]], "Create a Run": [[194, "create-a-run"]], "DaCapo DaCapo GitHub Org's stars": [[190, null]], "Data Preparation": [[192, "data-preparation"]], "Data Storage": [[194, "data-storage"]], "Datasplit": [[192, "datasplit"]], "Docker Configuration for JupyterHub-Dacapo": [[189, null]], "Environment setup": [[192, "environment-setup"]], "Example Tutorial": [[190, "example-tutorial"]], "Exceptions": [[161, "exceptions"]], "Fine-Tune Cosem Starter": [[188, null]], "Full Example": [[188, "full-example"]], "Functionality Overview": [[190, "functionality-overview"]], "Functions": [[0, "functions"], [1, "functions"], [3, "functions"], [5, "functions"], [6, "functions"], [7, "functions"], [8, "functions"], [9, "functions"], [10, "functions"], [12, "functions"], [13, "functions"], [59, "functions"], [71, "functions"], [74, "functions"], [90, "functions"], [155, "functions"], [157, "functions"], [158, "functions"], [159, "functions"], [162, "functions"], [164, "functions"], [174, "functions"], [175, "functions"], [176, "functions"], [177, "functions"], [178, "functions"], [180, "functions"], [181, "functions"], [182, "functions"], [183, "functions"]], "Further Configuration": [[189, "further-configuration"]], "Helpful Resources & Tools": [[190, "helpful-resources-tools"]], "How does DaCapo work?": [[193, "how-does-dacapo-work"]], "Installation": [[191, null], [194, "installation"]], "Installation and Setup": [[190, "installation-and-setup"]], "Introduction and overview": [[192, "introduction-and-overview"]], "Minimal Tutorial": [[192, null]], "Module Contents": [[0, "module-contents"], [1, "module-contents"], [2, "module-contents"], [3, "module-contents"], [5, "module-contents"], [6, "module-contents"], [7, "module-contents"], [8, "module-contents"], [9, "module-contents"], [10, "module-contents"], [11, "module-contents"], [12, "module-contents"], [14, "module-contents"], [15, "module-contents"], [16, "module-contents"], [17, "module-contents"], [18, "module-contents"], [19, "module-contents"], [20, "module-contents"], [22, "module-contents"], [23, "module-contents"], [24, "module-contents"], [25, "module-contents"], [26, "module-contents"], [28, "module-contents"], [29, "module-contents"], [30, "module-contents"], [31, "module-contents"], [32, "module-contents"], [33, "module-contents"], [34, "module-contents"], [35, "module-contents"], [36, "module-contents"], [37, "module-contents"], [39, "module-contents"], [40, "module-contents"], [41, "module-contents"], [42, "module-contents"], [43, "module-contents"], [44, "module-contents"], [45, "module-contents"], [46, "module-contents"], [47, "module-contents"], [48, "module-contents"], [49, "module-contents"], [50, "module-contents"], [51, "module-contents"], [52, "module-contents"], [55, "module-contents"], [56, "module-contents"], [57, "module-contents"], [58, "module-contents"], [59, "module-contents"], [60, "module-contents"], [61, "module-contents"], [64, "module-contents"], [65, "module-contents"], [66, "module-contents"], [68, "module-contents"], [69, "module-contents"], [70, "module-contents"], [71, "module-contents"], [72, "module-contents"], [74, "module-contents"], [75, "module-contents"], [76, "module-contents"], [77, "module-contents"], [78, "module-contents"], [79, "module-contents"], [80, "module-contents"], [81, "module-contents"], [82, "module-contents"], [83, "module-contents"], [84, "module-contents"], [85, "module-contents"], [86, "module-contents"], [87, "module-contents"], [89, "module-contents"], [90, "module-contents"], [91, "module-contents"], [92, "module-contents"], [94, "module-contents"], [95, "module-contents"], [96, "module-contents"], [97, "module-contents"], [98, "module-contents"], [100, "module-contents"], [101, "module-contents"], [102, "module-contents"], [103, "module-contents"], [104, "module-contents"], [105, "module-contents"], [106, "module-contents"], [107, "module-contents"], [109, "module-contents"], [110, "module-contents"], [111, "module-contents"], [112, "module-contents"], [113, "module-contents"], [114, "module-contents"], [115, "module-contents"], [116, "module-contents"], [117, "module-contents"], [118, "module-contents"], [120, "module-contents"], [121, "module-contents"], [122, "module-contents"], [123, "module-contents"], [124, "module-contents"], [125, "module-contents"], [126, "module-contents"], [127, "module-contents"], [128, "module-contents"], [129, "module-contents"], [130, "module-contents"], [131, "module-contents"], [133, "module-contents"], [134, "module-contents"], [135, "module-contents"], [136, "module-contents"], [137, "module-contents"], [140, "module-contents"], [141, "module-contents"], [142, "module-contents"], [143, "module-contents"], [144, "module-contents"], [145, "module-contents"], [147, "module-contents"], [148, "module-contents"], [149, "module-contents"], [150, "module-contents"], [151, "module-contents"], [153, "module-contents"], [154, "module-contents"], [156, "module-contents"], [157, "module-contents"], [158, "module-contents"], [159, "module-contents"], [160, "module-contents"], [161, "module-contents"], [162, "module-contents"], [163, "module-contents"], [164, "module-contents"], [165, "module-contents"], [166, "module-contents"], [168, "module-contents"], [169, "module-contents"], [170, "module-contents"], [171, "module-contents"], [172, "module-contents"], [173, "module-contents"], [174, "module-contents"], [175, "module-contents"], [176, "module-contents"], [177, "module-contents"], [178, "module-contents"], [180, "module-contents"], [181, "module-contents"], [182, "module-contents"], [183, "module-contents"]], "Needed Libraries for this Tutorial": [[192, "needed-libraries-for-this-tutorial"]], "Notes": [[188, "notes"]], "Overview": [[193, null]], "Package Contents": [[4, "package-contents"], [13, "package-contents"], [21, "package-contents"], [27, "package-contents"], [38, "package-contents"], [53, "package-contents"], [54, "package-contents"], [62, "package-contents"], [63, "package-contents"], [67, "package-contents"], [73, "package-contents"], [88, "package-contents"], [93, "package-contents"], [99, "package-contents"], [108, "package-contents"], [119, "package-contents"], [132, "package-contents"], [138, "package-contents"], [146, "package-contents"], [152, "package-contents"], [155, "package-contents"]], "Prerequisites": [[188, "prerequisites"]], "Requirements": [[189, "requirements"]], "Retrieve Configurations": [[192, "retrieve-configurations"]], "Run": [[192, "run"]], "Running Docker Image on AWS EC2": [[185, "running-docker-image-on-aws-ec2"]], "Running the Docker Container": [[189, "running-the-docker-container"]], "S3 Access Configuration": [[185, "s3-access-configuration"]], "Start the Run": [[194, "start-the-run"]], "Step 1: Import the CosemStartConfig": [[188, "step-1-import-the-cosemstartconfig"]], "Step 2: Configure the Start Model": [[188, "step-2-configure-the-start-model"]], "Step 3: Create a Run with start_config": [[188, "step-3-create-a-run-with-start-config"]], "Stopping the Docker Container": [[189, "stopping-the-docker-container"]], "Storing Checkpoints and Experiments Data in S3": [[185, "storing-checkpoints-and-experiments-data-in-s3"]], "Submodules": [[4, "submodules"], [13, "submodules"], [21, "submodules"], [27, "submodules"], [38, "submodules"], [53, "submodules"], [54, "submodules"], [62, "submodules"], [63, "submodules"], [67, "submodules"], [73, "submodules"], [88, "submodules"], [93, "submodules"], [99, "submodules"], [108, "submodules"], [119, "submodules"], [132, "submodules"], [138, "submodules"], [152, "submodules"], [155, "submodules"], [167, "submodules"], [179, "submodules"]], "Task": [[192, "task"]], "Train": [[192, "train"]], "Trainer": [[192, "trainer"]], "Tutorial: A Simple Experiment in Python": [[194, null]], "Visualize": [[192, "visualize"]], "What do you want to learn?": [[192, "what-do-you-want-to-learn"]], "What is DaCapo?": [[193, "what-is-dacapo"]], "apply": [[186, "dacapo-apply"]], "config": [[186, "dacapo-config"]], "dacapo": [[155, null], [186, "dacapo"]], "dacapo.apply": [[0, null]], "dacapo.blockwise": [[4, null]], "dacapo.blockwise.argmax_worker": [[1, null]], "dacapo.blockwise.blockwise_task": [[2, null]], "dacapo.blockwise.empanada_function": [[3, null]], "dacapo.blockwise.predict_worker": [[5, null]], "dacapo.blockwise.relabel_worker": [[6, null]], "dacapo.blockwise.scheduler": [[7, null]], "dacapo.blockwise.segment_worker": [[8, null]], "dacapo.blockwise.threshold_worker": [[9, null]], "dacapo.blockwise.watershed_function": [[10, null]], "dacapo.compute_context": [[13, null]], "dacapo.compute_context.bsub": [[11, null]], "dacapo.compute_context.compute_context": [[12, null]], "dacapo.compute_context.local_torch": [[14, null]], "dacapo.experiments": [[67, null]], "dacapo.experiments.architectures": [[21, null]], "dacapo.experiments.architectures.architecture": [[15, null]], "dacapo.experiments.architectures.architecture_config": [[16, null]], "dacapo.experiments.architectures.cnnectome_unet": [[17, null]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, null]], "dacapo.experiments.architectures.dummy_architecture": [[19, null]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, null]], "dacapo.experiments.arraytypes": [[27, null]], "dacapo.experiments.arraytypes.annotations": [[22, null]], "dacapo.experiments.arraytypes.arraytype": [[23, null]], "dacapo.experiments.arraytypes.binary": [[24, null]], "dacapo.experiments.arraytypes.distances": [[25, null]], "dacapo.experiments.arraytypes.embedding": [[26, null]], "dacapo.experiments.arraytypes.intensities": [[28, null]], "dacapo.experiments.arraytypes.mask": [[29, null]], "dacapo.experiments.arraytypes.probabilities": [[30, null]], "dacapo.experiments.datasplits": [[62, null]], "dacapo.experiments.datasplits.datasets": [[54, null]], "dacapo.experiments.datasplits.datasets.arrays": [[38, null]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, null]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, null]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, null]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, null]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, null]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, null]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, null]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, null]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, null]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, null]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, null]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, null]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, null]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, null]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, null]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, null]], "dacapo.experiments.datasplits.datasets.dataset": [[48, null]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, null]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, null]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, null]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, null]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, null]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, null]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, null]], "dacapo.experiments.datasplits.datasplit": [[57, null]], "dacapo.experiments.datasplits.datasplit_config": [[58, null]], "dacapo.experiments.datasplits.datasplit_generator": [[59, null]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, null]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, null]], "dacapo.experiments.datasplits.keys": [[63, null]], "dacapo.experiments.datasplits.keys.keys": [[64, null]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, null]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, null]], "dacapo.experiments.model": [[68, null]], "dacapo.experiments.run": [[69, null]], "dacapo.experiments.run_config": [[70, null]], "dacapo.experiments.starts": [[73, null]], "dacapo.experiments.starts.cosem_start": [[71, null]], "dacapo.experiments.starts.cosem_start_config": [[72, null]], "dacapo.experiments.starts.start": [[74, null]], "dacapo.experiments.starts.start_config": [[75, null]], "dacapo.experiments.tasks": [[93, null]], "dacapo.experiments.tasks.affinities_task": [[76, null]], "dacapo.experiments.tasks.affinities_task_config": [[77, null]], "dacapo.experiments.tasks.distance_task": [[78, null]], "dacapo.experiments.tasks.distance_task_config": [[79, null]], "dacapo.experiments.tasks.dummy_task": [[80, null]], "dacapo.experiments.tasks.dummy_task_config": [[81, null]], "dacapo.experiments.tasks.evaluators": [[88, null]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, null]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, null]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, null]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, null]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, null]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, null]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, null]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, null]], "dacapo.experiments.tasks.hot_distance_task": [[91, null]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, null]], "dacapo.experiments.tasks.inner_distance_task": [[94, null]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, null]], "dacapo.experiments.tasks.losses": [[99, null]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, null]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, null]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, null]], "dacapo.experiments.tasks.losses.loss": [[100, null]], "dacapo.experiments.tasks.losses.mse_loss": [[101, null]], "dacapo.experiments.tasks.one_hot_task": [[102, null]], "dacapo.experiments.tasks.one_hot_task_config": [[103, null]], "dacapo.experiments.tasks.post_processors": [[108, null]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, null]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, null]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, null]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, null]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, null]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, null]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, null]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, null]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, null]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, null]], "dacapo.experiments.tasks.predictors": [[119, null]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, null]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, null]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, null]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, null]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, null]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, null]], "dacapo.experiments.tasks.predictors.predictor": [[122, null]], "dacapo.experiments.tasks.pretrained_task": [[123, null]], "dacapo.experiments.tasks.pretrained_task_config": [[124, null]], "dacapo.experiments.tasks.task": [[125, null]], "dacapo.experiments.tasks.task_config": [[126, null]], "dacapo.experiments.trainers": [[138, null]], "dacapo.experiments.trainers.dummy_trainer": [[127, null]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, null]], "dacapo.experiments.trainers.gp_augments": [[132, null]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, null]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, null]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, null]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, null]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, null]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, null]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, null]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, null]], "dacapo.experiments.trainers.optimizers": [[139, null]], "dacapo.experiments.trainers.trainer": [[140, null]], "dacapo.experiments.trainers.trainer_config": [[141, null]], "dacapo.experiments.training_iteration_stats": [[142, null]], "dacapo.experiments.training_stats": [[143, null]], "dacapo.experiments.validation_iteration_scores": [[144, null]], "dacapo.experiments.validation_scores": [[145, null]], "dacapo.ext": [[146, null]], "dacapo.gp": [[152, null]], "dacapo.gp.copy": [[147, null]], "dacapo.gp.dacapo_create_target": [[148, null]], "dacapo.gp.dacapo_points_source": [[149, null]], "dacapo.gp.elastic_augment_fuse": [[150, null]], "dacapo.gp.gamma_noise": [[151, null]], "dacapo.gp.product": [[153, null]], "dacapo.gp.reject_if_empty": [[154, null]], "dacapo.options": [[156, null]], "dacapo.plot": [[157, null]], "dacapo.predict": [[158, null]], "dacapo.predict_local": [[159, null]], "dacapo.store": [[167, null]], "dacapo.store.array_store": [[160, null]], "dacapo.store.config_store": [[161, null]], "dacapo.store.conversion_hooks": [[162, null]], "dacapo.store.converter": [[163, null]], "dacapo.store.create_store": [[164, null]], "dacapo.store.file_config_store": [[165, null]], "dacapo.store.file_stats_store": [[166, null]], "dacapo.store.local_array_store": [[168, null]], "dacapo.store.local_weights_store": [[169, null]], "dacapo.store.mongo_config_store": [[170, null]], "dacapo.store.mongo_stats_store": [[171, null]], "dacapo.store.stats_store": [[172, null]], "dacapo.store.weights_store": [[173, null]], "dacapo.tmp": [[174, null]], "dacapo.train": [[175, null]], "dacapo.utils": [[179, null]], "dacapo.utils.affinities": [[176, null]], "dacapo.utils.array_utils": [[177, null]], "dacapo.utils.balance_weights": [[178, null]], "dacapo.utils.pipeline": [[180, null]], "dacapo.utils.view": [[181, null]], "dacapo.utils.voi": [[182, null]], "dacapo.validate": [[183, null]], "predict": [[186, "dacapo-predict"]], "run-blockwise": [[186, "dacapo-run-blockwise"]], "segment-blockwise": [[186, "dacapo-segment-blockwise"]], "train": [[186, "dacapo-train"]], "validate": [[186, "dacapo-validate"]]}, "docnames": ["autoapi/dacapo/apply/index", "autoapi/dacapo/blockwise/argmax_worker/index", "autoapi/dacapo/blockwise/blockwise_task/index", "autoapi/dacapo/blockwise/empanada_function/index", "autoapi/dacapo/blockwise/index", "autoapi/dacapo/blockwise/predict_worker/index", "autoapi/dacapo/blockwise/relabel_worker/index", "autoapi/dacapo/blockwise/scheduler/index", "autoapi/dacapo/blockwise/segment_worker/index", "autoapi/dacapo/blockwise/threshold_worker/index", "autoapi/dacapo/blockwise/watershed_function/index", "autoapi/dacapo/compute_context/bsub/index", "autoapi/dacapo/compute_context/compute_context/index", "autoapi/dacapo/compute_context/index", "autoapi/dacapo/compute_context/local_torch/index", "autoapi/dacapo/experiments/architectures/architecture/index", "autoapi/dacapo/experiments/architectures/architecture_config/index", "autoapi/dacapo/experiments/architectures/cnnectome_unet/index", "autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index", "autoapi/dacapo/experiments/architectures/dummy_architecture/index", "autoapi/dacapo/experiments/architectures/dummy_architecture_config/index", "autoapi/dacapo/experiments/architectures/index", "autoapi/dacapo/experiments/arraytypes/annotations/index", "autoapi/dacapo/experiments/arraytypes/arraytype/index", "autoapi/dacapo/experiments/arraytypes/binary/index", "autoapi/dacapo/experiments/arraytypes/distances/index", "autoapi/dacapo/experiments/arraytypes/embedding/index", "autoapi/dacapo/experiments/arraytypes/index", "autoapi/dacapo/experiments/arraytypes/intensities/index", "autoapi/dacapo/experiments/arraytypes/mask/index", "autoapi/dacapo/experiments/arraytypes/probabilities/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/index", "autoapi/dacapo/experiments/datasplits/datasets/index", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasplit/index", "autoapi/dacapo/experiments/datasplits/datasplit_config/index", "autoapi/dacapo/experiments/datasplits/datasplit_generator/index", "autoapi/dacapo/experiments/datasplits/dummy_datasplit/index", "autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index", "autoapi/dacapo/experiments/datasplits/index", "autoapi/dacapo/experiments/datasplits/keys/index", "autoapi/dacapo/experiments/datasplits/keys/keys/index", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index", "autoapi/dacapo/experiments/index", "autoapi/dacapo/experiments/model/index", "autoapi/dacapo/experiments/run/index", "autoapi/dacapo/experiments/run_config/index", "autoapi/dacapo/experiments/starts/cosem_start/index", "autoapi/dacapo/experiments/starts/cosem_start_config/index", "autoapi/dacapo/experiments/starts/index", "autoapi/dacapo/experiments/starts/start/index", "autoapi/dacapo/experiments/starts/start_config/index", "autoapi/dacapo/experiments/tasks/affinities_task/index", "autoapi/dacapo/experiments/tasks/affinities_task_config/index", "autoapi/dacapo/experiments/tasks/distance_task/index", "autoapi/dacapo/experiments/tasks/distance_task_config/index", "autoapi/dacapo/experiments/tasks/dummy_task/index", "autoapi/dacapo/experiments/tasks/dummy_task_config/index", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/index", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index", "autoapi/dacapo/experiments/tasks/hot_distance_task/index", "autoapi/dacapo/experiments/tasks/hot_distance_task_config/index", "autoapi/dacapo/experiments/tasks/index", "autoapi/dacapo/experiments/tasks/inner_distance_task/index", "autoapi/dacapo/experiments/tasks/inner_distance_task_config/index", "autoapi/dacapo/experiments/tasks/losses/affinities_loss/index", "autoapi/dacapo/experiments/tasks/losses/dummy_loss/index", "autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index", "autoapi/dacapo/experiments/tasks/losses/index", "autoapi/dacapo/experiments/tasks/losses/loss/index", "autoapi/dacapo/experiments/tasks/losses/mse_loss/index", "autoapi/dacapo/experiments/tasks/one_hot_task/index", "autoapi/dacapo/experiments/tasks/one_hot_task_config/index", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/index", "autoapi/dacapo/experiments/tasks/post_processors/post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/index", "autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/predictor/index", "autoapi/dacapo/experiments/tasks/pretrained_task/index", "autoapi/dacapo/experiments/tasks/pretrained_task_config/index", "autoapi/dacapo/experiments/tasks/task/index", "autoapi/dacapo/experiments/tasks/task_config/index", "autoapi/dacapo/experiments/trainers/dummy_trainer/index", "autoapi/dacapo/experiments/trainers/dummy_trainer_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/index", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index", "autoapi/dacapo/experiments/trainers/gunpowder_trainer/index", "autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index", "autoapi/dacapo/experiments/trainers/index", "autoapi/dacapo/experiments/trainers/optimizers/index", "autoapi/dacapo/experiments/trainers/trainer/index", "autoapi/dacapo/experiments/trainers/trainer_config/index", "autoapi/dacapo/experiments/training_iteration_stats/index", "autoapi/dacapo/experiments/training_stats/index", "autoapi/dacapo/experiments/validation_iteration_scores/index", "autoapi/dacapo/experiments/validation_scores/index", "autoapi/dacapo/ext/index", "autoapi/dacapo/gp/copy/index", "autoapi/dacapo/gp/dacapo_create_target/index", "autoapi/dacapo/gp/dacapo_points_source/index", "autoapi/dacapo/gp/elastic_augment_fuse/index", "autoapi/dacapo/gp/gamma_noise/index", "autoapi/dacapo/gp/index", "autoapi/dacapo/gp/product/index", "autoapi/dacapo/gp/reject_if_empty/index", "autoapi/dacapo/index", "autoapi/dacapo/options/index", "autoapi/dacapo/plot/index", "autoapi/dacapo/predict/index", "autoapi/dacapo/predict_local/index", "autoapi/dacapo/store/array_store/index", "autoapi/dacapo/store/config_store/index", "autoapi/dacapo/store/conversion_hooks/index", "autoapi/dacapo/store/converter/index", "autoapi/dacapo/store/create_store/index", "autoapi/dacapo/store/file_config_store/index", "autoapi/dacapo/store/file_stats_store/index", "autoapi/dacapo/store/index", "autoapi/dacapo/store/local_array_store/index", "autoapi/dacapo/store/local_weights_store/index", "autoapi/dacapo/store/mongo_config_store/index", "autoapi/dacapo/store/mongo_stats_store/index", "autoapi/dacapo/store/stats_store/index", "autoapi/dacapo/store/weights_store/index", "autoapi/dacapo/tmp/index", "autoapi/dacapo/train/index", "autoapi/dacapo/utils/affinities/index", "autoapi/dacapo/utils/array_utils/index", "autoapi/dacapo/utils/balance_weights/index", "autoapi/dacapo/utils/index", "autoapi/dacapo/utils/pipeline/index", "autoapi/dacapo/utils/view/index", "autoapi/dacapo/utils/voi/index", "autoapi/dacapo/validate/index", "autoapi/index", "aws", "cli", "conf", "cosem_starter", "docker", "index", "install", "notebooks/minimal_tutorial", "overview", "tutorial"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["autoapi/dacapo/apply/index.rst", "autoapi/dacapo/blockwise/argmax_worker/index.rst", "autoapi/dacapo/blockwise/blockwise_task/index.rst", "autoapi/dacapo/blockwise/empanada_function/index.rst", "autoapi/dacapo/blockwise/index.rst", "autoapi/dacapo/blockwise/predict_worker/index.rst", "autoapi/dacapo/blockwise/relabel_worker/index.rst", "autoapi/dacapo/blockwise/scheduler/index.rst", "autoapi/dacapo/blockwise/segment_worker/index.rst", "autoapi/dacapo/blockwise/threshold_worker/index.rst", "autoapi/dacapo/blockwise/watershed_function/index.rst", "autoapi/dacapo/compute_context/bsub/index.rst", "autoapi/dacapo/compute_context/compute_context/index.rst", "autoapi/dacapo/compute_context/index.rst", "autoapi/dacapo/compute_context/local_torch/index.rst", "autoapi/dacapo/experiments/architectures/architecture/index.rst", "autoapi/dacapo/experiments/architectures/architecture_config/index.rst", "autoapi/dacapo/experiments/architectures/cnnectome_unet/index.rst", "autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index.rst", "autoapi/dacapo/experiments/architectures/dummy_architecture/index.rst", "autoapi/dacapo/experiments/architectures/dummy_architecture_config/index.rst", "autoapi/dacapo/experiments/architectures/index.rst", "autoapi/dacapo/experiments/arraytypes/annotations/index.rst", "autoapi/dacapo/experiments/arraytypes/arraytype/index.rst", "autoapi/dacapo/experiments/arraytypes/binary/index.rst", "autoapi/dacapo/experiments/arraytypes/distances/index.rst", "autoapi/dacapo/experiments/arraytypes/embedding/index.rst", "autoapi/dacapo/experiments/arraytypes/index.rst", "autoapi/dacapo/experiments/arraytypes/intensities/index.rst", "autoapi/dacapo/experiments/arraytypes/mask/index.rst", "autoapi/dacapo/experiments/arraytypes/probabilities/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit_generator/index.rst", "autoapi/dacapo/experiments/datasplits/dummy_datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index.rst", "autoapi/dacapo/experiments/datasplits/index.rst", "autoapi/dacapo/experiments/datasplits/keys/index.rst", "autoapi/dacapo/experiments/datasplits/keys/keys/index.rst", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index.rst", "autoapi/dacapo/experiments/index.rst", "autoapi/dacapo/experiments/model/index.rst", "autoapi/dacapo/experiments/run/index.rst", "autoapi/dacapo/experiments/run_config/index.rst", "autoapi/dacapo/experiments/starts/cosem_start/index.rst", "autoapi/dacapo/experiments/starts/cosem_start_config/index.rst", "autoapi/dacapo/experiments/starts/index.rst", "autoapi/dacapo/experiments/starts/start/index.rst", "autoapi/dacapo/experiments/starts/start_config/index.rst", "autoapi/dacapo/experiments/tasks/affinities_task/index.rst", "autoapi/dacapo/experiments/tasks/affinities_task_config/index.rst", "autoapi/dacapo/experiments/tasks/distance_task/index.rst", "autoapi/dacapo/experiments/tasks/distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/dummy_task/index.rst", "autoapi/dacapo/experiments/tasks/dummy_task_config/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/hot_distance_task/index.rst", "autoapi/dacapo/experiments/tasks/hot_distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/index.rst", "autoapi/dacapo/experiments/tasks/inner_distance_task/index.rst", "autoapi/dacapo/experiments/tasks/inner_distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/losses/affinities_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/dummy_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/index.rst", "autoapi/dacapo/experiments/tasks/losses/loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/mse_loss/index.rst", "autoapi/dacapo/experiments/tasks/one_hot_task/index.rst", "autoapi/dacapo/experiments/tasks/one_hot_task_config/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/index.rst", "autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/predictor/index.rst", "autoapi/dacapo/experiments/tasks/pretrained_task/index.rst", "autoapi/dacapo/experiments/tasks/pretrained_task_config/index.rst", "autoapi/dacapo/experiments/tasks/task/index.rst", "autoapi/dacapo/experiments/tasks/task_config/index.rst", "autoapi/dacapo/experiments/trainers/dummy_trainer/index.rst", "autoapi/dacapo/experiments/trainers/dummy_trainer_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index.rst", "autoapi/dacapo/experiments/trainers/gunpowder_trainer/index.rst", "autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index.rst", "autoapi/dacapo/experiments/trainers/index.rst", "autoapi/dacapo/experiments/trainers/optimizers/index.rst", "autoapi/dacapo/experiments/trainers/trainer/index.rst", "autoapi/dacapo/experiments/trainers/trainer_config/index.rst", "autoapi/dacapo/experiments/training_iteration_stats/index.rst", "autoapi/dacapo/experiments/training_stats/index.rst", "autoapi/dacapo/experiments/validation_iteration_scores/index.rst", "autoapi/dacapo/experiments/validation_scores/index.rst", "autoapi/dacapo/ext/index.rst", "autoapi/dacapo/gp/copy/index.rst", "autoapi/dacapo/gp/dacapo_create_target/index.rst", "autoapi/dacapo/gp/dacapo_points_source/index.rst", "autoapi/dacapo/gp/elastic_augment_fuse/index.rst", "autoapi/dacapo/gp/gamma_noise/index.rst", "autoapi/dacapo/gp/index.rst", "autoapi/dacapo/gp/product/index.rst", "autoapi/dacapo/gp/reject_if_empty/index.rst", "autoapi/dacapo/index.rst", "autoapi/dacapo/options/index.rst", "autoapi/dacapo/plot/index.rst", "autoapi/dacapo/predict/index.rst", "autoapi/dacapo/predict_local/index.rst", "autoapi/dacapo/store/array_store/index.rst", "autoapi/dacapo/store/config_store/index.rst", "autoapi/dacapo/store/conversion_hooks/index.rst", "autoapi/dacapo/store/converter/index.rst", "autoapi/dacapo/store/create_store/index.rst", "autoapi/dacapo/store/file_config_store/index.rst", "autoapi/dacapo/store/file_stats_store/index.rst", "autoapi/dacapo/store/index.rst", "autoapi/dacapo/store/local_array_store/index.rst", "autoapi/dacapo/store/local_weights_store/index.rst", "autoapi/dacapo/store/mongo_config_store/index.rst", "autoapi/dacapo/store/mongo_stats_store/index.rst", "autoapi/dacapo/store/stats_store/index.rst", "autoapi/dacapo/store/weights_store/index.rst", "autoapi/dacapo/tmp/index.rst", "autoapi/dacapo/train/index.rst", "autoapi/dacapo/utils/affinities/index.rst", "autoapi/dacapo/utils/array_utils/index.rst", "autoapi/dacapo/utils/balance_weights/index.rst", "autoapi/dacapo/utils/index.rst", "autoapi/dacapo/utils/pipeline/index.rst", "autoapi/dacapo/utils/view/index.rst", "autoapi/dacapo/utils/voi/index.rst", "autoapi/dacapo/validate/index.rst", "autoapi/index.rst", "aws.rst", "cli.rst", "conf.py", "cosem_starter.rst", "docker.rst", "index.rst", "install.rst", "notebooks/minimal_tutorial.ipynb", "overview.rst", "tutorial.rst"], "indexentries": {"--channels_out": [[186, "cmdoption-dacapo-segment-blockwise-co", false]], "--context": [[186, "cmdoption-dacapo-segment-blockwise-c", false]], "--criterion": [[186, "cmdoption-dacapo-apply-c", false]], "--input_container": [[186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false]], "--input_dataset": [[186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-id", false]], "--iteration": [[186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-validate-i", false]], "--log-level": [[186, "cmdoption-dacapo-log-level", false]], "--max_retries": [[186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false]], "--no-validation": [[186, "cmdoption-dacapo-train-no-validation", false]], "--num_workers": [[186, "cmdoption-dacapo-apply-w", false], [186, "cmdoption-dacapo-predict-w", false], [186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false], [186, "cmdoption-dacapo-validate-w", false]], "--output_container": [[186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false]], "--output_dataset": [[186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-od", false]], "--output_dtype": [[186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-validate-dt", false]], "--output_path": [[186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-predict-op", false]], "--output_roi": [[186, "cmdoption-dacapo-predict-roi", false]], "--overwrite": [[186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-validate-ow", false]], "--parameters": [[186, "cmdoption-dacapo-apply-p", false]], "--read_roi_size": [[186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false]], "--roi": [[186, "cmdoption-dacapo-apply-roi", false]], "--run-name": [[186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-train-r", false], [186, "cmdoption-dacapo-validate-r", false]], "--segment_function_file": [[186, "cmdoption-dacapo-segment-blockwise-sf", false]], "--timeout": [[186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-t", false]], "--total_roi": [[186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false]], "--validation_dataset": [[186, "cmdoption-dacapo-apply-vd", false]], "--worker_file": [[186, "cmdoption-dacapo-run-blockwise-w", false]], "--write_roi_size": [[186, "cmdoption-dacapo-run-blockwise-wr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "-c": [[186, "cmdoption-dacapo-apply-c", false], [186, "cmdoption-dacapo-segment-blockwise-c", false]], "-channels_out": [[186, "cmdoption-dacapo-run-blockwise-co", false]], "-co": [[186, "cmdoption-dacapo-run-blockwise-co", false], [186, "cmdoption-dacapo-segment-blockwise-co", false]], "-dt": [[186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-validate-dt", false]], "-i": [[186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-validate-i", false]], "-ic": [[186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false]], "-id": [[186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-id", false]], "-mr": [[186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false]], "-nw": [[186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false]], "-oc": [[186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false]], "-od": [[186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-od", false]], "-op": [[186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-predict-op", false]], "-ow": [[186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-validate-ow", false]], "-p": [[186, "cmdoption-dacapo-apply-p", false]], "-r": [[186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-train-r", false], [186, "cmdoption-dacapo-validate-r", false]], "-roi": [[186, "cmdoption-dacapo-apply-roi", false], [186, "cmdoption-dacapo-predict-roi", false]], "-rr": [[186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false]], "-sf": [[186, "cmdoption-dacapo-segment-blockwise-sf", false]], "-t": [[186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-t", false]], "-tr": [[186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false]], "-vd": [[186, "cmdoption-dacapo-apply-vd", false]], "-w": [[186, "cmdoption-dacapo-apply-w", false], [186, "cmdoption-dacapo-predict-w", false], [186, "cmdoption-dacapo-run-blockwise-w", false], [186, "cmdoption-dacapo-validate-w", false]], "-wr": [[186, "cmdoption-dacapo-run-blockwise-wr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "__attrs_post_init__() (dacapo.experiments.arraytypes.intensities.intensitiesarray method)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.arraytypes.intensitiesarray method)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig method)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.__attrs_post_init__", false]], "__augment() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.__augment", false]], "__augment() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.__augment", false]], "__enter__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__enter__", false]], "__eq__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__eq__", false]], "__eq__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__eq__", false]], "__exception (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__exception", false]], "__exit__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__exit__", false]], "__find_boundaries() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.__find_boundaries", false]], "__find_boundaries() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.__find_boundaries", false]], "__generate_semantic_seg_dataset_crop() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__generate_semantic_seg_dataset_crop", false]], "__generate_semantic_seg_dataset_crop() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__generate_semantic_seg_dataset_crop", false]], "__generate_semantic_seg_datasplit() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__generate_semantic_seg_datasplit", false]], "__generate_semantic_seg_datasplit() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__generate_semantic_seg_datasplit", false]], "__getattr__() (dacapo.ext.nosuchmodule method)": [[146, "dacapo.ext.NoSuchModule.__getattr__", false]], "__getitem__() (dacapo.experiments.datasplits.datasplit_generator.customenummeta method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta.__getitem__", false]], "__hash__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__hash__", false]], "__hash__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__hash__", false]], "__init__() (dacapo.blockwise.blockwise_task.dacapoblockwisetask method)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.__init__", false]], "__init__() (dacapo.blockwise.dacapoblockwisetask method)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset method)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.dummydataset method)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset method)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.rawgtdataset method)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasetspec method)": [[62, "dacapo.experiments.datasplits.DatasetSpec.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit method)": [[62, "dacapo.experiments.datasplits.DataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit.datasplit method)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit_generator.datasetspec method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__init__", false]], "__init__() (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit method)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.dummydatasplit method)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit method)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig method)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.__init__", false]], "__init__() (dacapo.experiments.datasplits.trainvalidatedatasplit method)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.trainvalidatedatasplitconfig method)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.__init__", false]], "__init__() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.__init__", false]], "__init__() (dacapo.experiments.starts.cosem_start_config.cosemstartconfig method)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.__init__", false]], "__init__() (dacapo.experiments.starts.cosemstartconfig method)": [[73, "dacapo.experiments.starts.CosemStartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.start method)": [[73, "dacapo.experiments.starts.Start.__init__", false]], "__init__() (dacapo.experiments.starts.start.start method)": [[74, "dacapo.experiments.starts.start.Start.__init__", false]], "__init__() (dacapo.experiments.starts.start_config.startconfig method)": [[75, "dacapo.experiments.starts.start_config.StartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.startconfig method)": [[73, "dacapo.experiments.starts.StartConfig.__init__", false]], "__init__() (dacapo.experiments.tasks.affinities_task.affinitiestask method)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.__init__", false]], "__init__() (dacapo.experiments.tasks.affinitiestask method)": [[93, "dacapo.experiments.tasks.AffinitiesTask.__init__", false]], "__init__() (dacapo.experiments.tasks.distance_task.distancetask method)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.distancetask method)": [[93, "dacapo.experiments.tasks.DistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.dummy_task.dummytask method)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.__init__", false]], "__init__() (dacapo.experiments.tasks.dummytask method)": [[93, "dacapo.experiments.tasks.DummyTask.__init__", false]], "__init__() (dacapo.experiments.tasks.hot_distance_task.hotdistancetask method)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.hotdistancetask method)": [[93, "dacapo.experiments.tasks.HotDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.inner_distance_task.innerdistancetask method)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.innerdistancetask method)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.__init__", false]], "__init__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__init__", false]], "__init__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__init__", false]], "__init__() (dacapo.store.weights_store.weights method)": [[173, "dacapo.store.weights_store.Weights.__init__", false]], "__init_db() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__init_db", false]], "__iter__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__iter__", false]], "__iter__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__iter__", false]], "__load() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.__load", false]], "__name (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__name", false]], "__normalize() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.__normalize", false]], "__normalize() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.__normalize", false]], "__open_collections() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__open_collections", false]], "__parse_options() (dacapo.options method)": [[155, "dacapo.Options.__parse_options", false]], "__parse_options() (dacapo.options.options method)": [[156, "dacapo.options.Options.__parse_options", false]], "__parse_options_from_file() (dacapo.options method)": [[155, "dacapo.Options.__parse_options_from_file", false]], "__parse_options_from_file() (dacapo.options.options method)": [[156, "dacapo.options.Options.__parse_options_from_file", false]], "__repr__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__repr__", false]], "__repr__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__repr__", false]], "__same_doc() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__same_doc", false]], "__save_insert() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.__save_insert", false]], "__save_insert() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__save_insert", false]], "__str__ (dacapo.experiments.datasplits.datasplit_generator.customenum attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnum.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasetspec method)": [[62, "dacapo.experiments.datasplits.DatasetSpec.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.customenum method)": [[59, "id0", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasetspec method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasettype method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.segmentationtype method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.arraykey method)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.datakey method)": [[63, "dacapo.experiments.datasplits.keys.DataKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.graphkey method)": [[63, "dacapo.experiments.datasplits.keys.GraphKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.arraykey method)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.datakey method)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.graphkey method)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey.__str__", false]], "__str__() (dacapo.store.config_store.duplicatenameerror method)": [[161, "dacapo.store.config_store.DuplicateNameError.__str__", false]], "__traceback_str (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__traceback_str", false]], "__typed_structure() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.__typed_structure", false]], "__typed_unstructure() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.__typed_unstructure", false]], "_axes (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig._axes", false]], "_axes (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig._axes", false]], "_device (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch._device", false]], "_device (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch._device", false]], "_eval_shape_increase (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig._eval_shape_increase", false]], "_eval_shape_increase (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig._eval_shape_increase", false]], "_grow_boundaries() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor._grow_boundaries", false]], "_grow_boundaries() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor._grow_boundaries", false]], "_gt_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._gt_key", false]], "_gt_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._gt_key", false]], "_gt_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._gt_key", false]], "_mask_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._mask_key", false]], "_mask_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._mask_key", false]], "_mask_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._mask_key", false]], "_member_names_ (dacapo.experiments.datasplits.datasplit_generator.customenummeta attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta._member_names_", false]], "_neuroglancer_layers() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset._neuroglancer_layers", false]], "_neuroglancer_layers() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset._neuroglancer_layers", false]], "_raw_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._raw_key", false]], "_raw_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._raw_key", false]], "_raw_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._raw_key", false]], "_spec (dacapo.utils.pipeline.zerossource attribute)": [[180, "dacapo.utils.pipeline.ZerosSource._spec", false]], "_wrap_command() (dacapo.compute_context.bsub method)": [[13, "dacapo.compute_context.Bsub._wrap_command", false]], "_wrap_command() (dacapo.compute_context.bsub.bsub method)": [[11, "dacapo.compute_context.bsub.Bsub._wrap_command", false]], "_wrap_command() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext._wrap_command", false]], "_wrap_command() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext._wrap_command", false]], "_wrap_command() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch._wrap_command", false]], "_wrap_command() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch._wrap_command", false]], "activation (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.activation", false]], "activation (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.activation", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.activation_on_upsample", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.activation_on_upsample", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.activation_on_upsample", false]], "add_iteration_scores() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.add_iteration_scores", false], [145, "id5", false]], "add_iteration_scores() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.add_iteration_scores", false], [67, "id23", false]], "add_iteration_stats() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.add_iteration_stats", false]], "add_iteration_stats() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.add_iteration_stats", false]], "add_scalar_layer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.add_scalar_layer", false]], "add_seg_layer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.add_seg_layer", false]], "affinitiesloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss", false]], "affinitiesloss (class in dacapo.experiments.tasks.losses.affinities_loss)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss", false]], "affinitiespredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor", false]], "affinitiespredictor (class in dacapo.experiments.tasks.predictors.affinities_predictor)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor", false]], "affinitiestask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.AffinitiesTask", false]], "affinitiestask (class in dacapo.experiments.tasks.affinities_task)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask", false]], "affinitiestaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig", false]], "affinitiestaskconfig (class in dacapo.experiments.tasks.affinities_task_config)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig", false]], "affs_weight_clipmax (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.affs_weight_clipmax", false], [77, "id6", false]], "affs_weight_clipmax (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.affs_weight_clipmax", false], [93, "id33", false]], "affs_weight_clipmax (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.affs_weight_clipmax", false], [115, "id5", false]], "affs_weight_clipmax (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.affs_weight_clipmax", false], [119, "id27", false]], "affs_weight_clipmin (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.affs_weight_clipmin", false], [77, "id5", false]], "affs_weight_clipmin (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.affs_weight_clipmin", false], [93, "id32", false]], "affs_weight_clipmin (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.affs_weight_clipmin", false], [115, "id4", false]], "affs_weight_clipmin (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.affs_weight_clipmin", false], [119, "id26", false]], "annotationarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.AnnotationArray", false]], "annotationarray (class in dacapo.experiments.arraytypes.annotations)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray", false]], "apply() (in module dacapo)": [[155, "dacapo.apply", false]], "apply() (in module dacapo.apply)": [[0, "dacapo.apply.apply", false]], "apply_run() (in module dacapo.apply)": [[0, "dacapo.apply.apply_run", false]], "architecture (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.Architecture", false]], "architecture (class in dacapo.experiments.architectures.architecture)": [[15, "dacapo.experiments.architectures.architecture.Architecture", false]], "architecture (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.architecture", false], [67, "id4", false]], "architecture (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.architecture", false], [68, "id4", false]], "architecture (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.architecture", false], [69, "id4", false]], "architecture_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.architecture_config", false]], "architecture_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.architecture_config", false]], "architecture_type (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "id0", false]], "architecture_type (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "id19", false]], "architecture_type (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.architecture_type", false], [20, "id0", false]], "architecture_type (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.architecture_type", false], [21, "id8", false]], "architecture_type() (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig method)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.architecture_type", false]], "architecture_type() (dacapo.experiments.architectures.cnnectomeunetconfig method)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.architecture_type", false]], "architectureconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.ArchitectureConfig", false]], "architectureconfig (class in dacapo.experiments.architectures.architecture_config)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig", false]], "architectures (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.architectures", false], [161, "id6", false]], "architectures (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.architectures", false]], "architectures (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.architectures", false]], "argmaxpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor", false]], "argmaxpostprocessor (class in dacapo.experiments.tasks.post_processors.argmax_post_processor)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor", false]], "argmaxpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters", false]], "argmaxpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters)": [[105, "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig method)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.arrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig method)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig method)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig method)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig method)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig method)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig method)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig method)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig method)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig method)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig method)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.sum_array_config.sumarrayconfig method)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.sumarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig method)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig method)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.array", false]], "array_identifier() (dacapo.store.array_store.localcontaineridentifier method)": [[160, "dacapo.store.array_store.LocalContainerIdentifier.array_identifier", false]], "array_key (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.array_key", false], [147, "id0", false]], "array_key (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.array_key", false], [152, "id14", false]], "array_store (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.array_store", false], [181, "id5", false]], "array_store (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.array_store", false]], "arrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig", false]], "arrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.array_config)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig", false]], "arrayevaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator", false]], "arraykey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey", false]], "arraykey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey", false]], "arrays (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.arrays", false], [151, "id0", false]], "arrays (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.arrays", false], [152, "id6", false]], "arrays (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.arrays", false], [161, "id3", false]], "arrays (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.arrays", false]], "arrays (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.arrays", false]], "arraystore (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.ArrayStore", false]], "arraytype (class in dacapo.experiments.arraytypes.arraytype)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType", false]], "attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.attention", false]], "attentionblockmodule (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.simple_config.simpleaugmentconfig attribute)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.simpleaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.augmentation_probability", false]], "augmentation_probability (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.augmentation_probability", false]], "augmentconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.AugmentConfig", false]], "augmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig", false]], "augmentconfig (class in dacapo.experiments.trainers.gp_augments.augment_config)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig", false]], "augments (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.augments", false], [136, "id6", false]], "augments (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.augments", false], [137, "id2", false]], "augments (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.augments", false], [138, "id27", false]], "augments (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.augments", false], [138, "id17", false]], "axis_names (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.axis_names", false], [46, "id3", false]], "background (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.background", false], [32, "id2", false]], "background (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.background", false], [38, "id9", false]], "background (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.background", false]], "background (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.background", false]], "background (dacapo.utils.pipeline.expandlabels attribute)": [[180, "dacapo.utils.pipeline.ExpandLabels.background", false], [180, "id13", false]], "background_as_object (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.background_as_object", false], [77, "id9", false]], "background_as_object (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.background_as_object", false], [93, "id36", false]], "background_as_object (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.background_as_object", false], [115, "id8", false]], "background_as_object (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.background_as_object", false], [119, "id30", false]], "balance_weights() (in module dacapo.utils.balance_weights)": [[178, "dacapo.utils.balance_weights.balance_weights", false]], "basedir (dacapo.store.local_array_store.localarraystore attribute)": [[168, "dacapo.store.local_array_store.LocalArrayStore.basedir", false], [168, "id0", false]], "basedir (dacapo.store.local_weights_store.localweightsstore attribute)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.basedir", false], [169, "id0", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.batch_norm", false]], "batch_size (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.batch_size", false], [127, "id1", false]], "batch_size (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.batch_size", false], [138, "id10", false]], "batch_size (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.batch_size", false], [136, "id1", false]], "batch_size (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.batch_size", false], [138, "id22", false]], "batch_size (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.batch_size", false], [138, "id1", false]], "batch_size (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.batch_size", false], [140, "id1", false]], "batch_size (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.batch_size", false], [141, "id1", false]], "batch_size (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.batch_size", false], [138, "id4", false]], "best_score (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.best_score", false], [181, "id10", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.best_scores", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "id13", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator.evaluator attribute)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.best_scores", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "id1", false]], "best_validation_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.best_validation_array", false], [168, "id1", false]], "bestscore (class in dacapo.utils.view)": [[181, "dacapo.utils.view.BestScore", false]], "bestscore (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.BestScore", false]], "bg (in module dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BG", false]], "bias (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.bias", false], [114, "id0", false]], "bias (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.bias", false], [108, "id21", false]], "billing (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.billing", false], [13, "id9", false]], "billing (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.billing", false], [11, "id3", false]], "binarize_gt (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.binarize_gt", false]], "binarize_gt (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.binarize_gt", false]], "binarizearrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig", false]], "binarizearrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.binarize_array_config)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig", false]], "binaryarray (class in dacapo.experiments.arraytypes.binary)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray", false]], "binarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores", false]], "binarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores", false]], "binarysegmentationevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator", false]], "binarysegmentationevaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator", false]], "blipp_score (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.blipp_score", false], [84, "id1", false]], "blipp_score (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.blipp_score", false], [88, "id1", false]], "bokeh_plot_runs() (in module dacapo.plot)": [[157, "dacapo.plot.bokeh_plot_runs", false]], "bounds() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id3", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id3", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id2", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id10", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.bounds", false], [88, "id20", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.bounds", false], [87, "id8", false]], "bounds() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id4", false]], "bounds() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id54", false]], "bounds() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.bounds", false]], "bsub (class in dacapo.compute_context)": [[13, "dacapo.compute_context.Bsub", false]], "bsub (class in dacapo.compute_context.bsub)": [[11, "dacapo.compute_context.bsub.Bsub", false]], "build_batch_provider() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.build_batch_provider", false], [127, "id4", false]], "build_batch_provider() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.build_batch_provider", false], [138, "id13", false]], "build_batch_provider() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.build_batch_provider", false]], "calculate_and_apply_padding() (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.calculate_and_apply_padding", false]], "can_train() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.can_train", false], [127, "id5", false]], "can_train() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.can_train", false], [138, "id14", false]], "can_train() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.can_train", false]], "can_train() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.can_train", false]], "can_train() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.can_train", false]], "can_train() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.can_train", false]], "chain (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.chain", false], [67, "id6", false]], "chain (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.chain", false], [68, "id6", false]], "channel_names (dacapo.experiments.arraytypes.arraytype.arraytype attribute)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.channel_names", false]], "channel_scores (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.channel_scores", false], [82, "id21", false]], "channel_scores (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.channel_scores", false], [88, "id22", false]], "channels (dacapo.experiments.arraytypes.binary.binaryarray attribute)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray.channels", false], [24, "id0", false]], "channels (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.channels", false], [28, "id0", false]], "channels (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.channels", false], [27, "id2", false]], "channels (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.channels", false], [33, "id0", false]], "channels (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.channels", false], [38, "id20", false]], "channels (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.channels", false], [71, "id3", false]], "channels (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.channels", false], [73, "id7", false]], "channels (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.channels", false], [73, "id0", false]], "channels (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.channels", false], [74, "id0", false]], "channels (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.channels", false], [79, "id0", false]], "channels (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.channels", false], [93, "id10", false]], "channels (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.channels", false], [83, "id3", false]], "channels (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.channels", false], [88, "id47", false]], "channels (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.channels", false], [92, "id1", false]], "channels (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.channels", false], [93, "id50", false]], "channels (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.channels", false], [95, "id0", false]], "channels (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.channels", false], [93, "id41", false]], "channels (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.channels", false], [116, "id0", false]], "channels (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.channels", false], [119, "id5", false]], "channels (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.channels", false], [118, "id0", false]], "channels (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.channels", false], [119, "id46", false]], "channels (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.channels", false], [120, "id0", false]], "channels (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.channels", false], [119, "id40", false]], "channels_in (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.channels_in", false], [19, "id0", false]], "channels_in (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.channels_in", false], [21, "id12", false]], "channels_out (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.channels_out", false], [19, "id1", false]], "channels_out (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.channels_out", false], [21, "id13", false]], "check() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.check", false], [71, "id4", false]], "check() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.check", false], [73, "id8", false]], "check_class_name() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.check_class_name", false], [59, "id28", false]], "check_class_name() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.check_class_name", false], [62, "id31", false]], "class_name (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator property)": [[59, "id27", false]], "class_name (dacapo.experiments.datasplits.datasplitgenerator property)": [[62, "id30", false]], "class_name() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.class_name", false]], "class_name() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.class_name", false]], "classes (dacapo.experiments.arraytypes.annotationarray attribute)": [[27, "dacapo.experiments.arraytypes.AnnotationArray.classes", false], [27, "id0", false]], "classes (dacapo.experiments.arraytypes.annotations.annotationarray attribute)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray.classes", false], [22, "id0", false]], "classes (dacapo.experiments.arraytypes.distancearray attribute)": [[27, "dacapo.experiments.arraytypes.DistanceArray.classes", false], [27, "id6", false]], "classes (dacapo.experiments.arraytypes.distances.distancearray attribute)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.classes", false], [25, "id0", false]], "classes (dacapo.experiments.arraytypes.probabilities.probabilityarray attribute)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray.classes", false], [30, "id0", false]], "classes (dacapo.experiments.arraytypes.probabilityarray attribute)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray.classes", false], [27, "id11", false]], "classes (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig attribute)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.classes", false], [103, "id1", false]], "classes (dacapo.experiments.tasks.onehottaskconfig attribute)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.classes", false], [93, "id22", false]], "classes (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.classes", false]], "classes (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.classes", false]], "classes (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.classes", false], [121, "id0", false]], "classes (dacapo.experiments.tasks.predictors.onehotpredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.classes", false], [119, "id16", false]], "classes_separator_character (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.classes_separator_character", false], [59, "id25", false]], "classes_separator_character (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.classes_separator_character", false], [62, "id28", false]], "cli() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.cli", false]], "cli() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.cli", false]], "cli() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.cli", false]], "cli() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.cli", false]], "cli() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.cli", false]], "client (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.client", false], [170, "id2", false]], "client (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.client", false], [171, "id2", false]], "clip (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.clip", false], [133, "id2", false]], "clip (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.clip", false], [132, "id12", false]], "clip_distance (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clip_distance", false], [79, "id1", false]], "clip_distance (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clip_distance", false], [93, "id11", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.clip_distance", false], [83, "id1", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.clip_distance", false], [83, "id36", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.clip_distance", false], [88, "id45", false]], "clip_distance (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.clip_distance", false], [92, "id2", false]], "clip_distance (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.clip_distance", false], [93, "id51", false]], "clip_distance (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.clip_distance", false], [95, "id1", false]], "clip_distance (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.clip_distance", false], [93, "id42", false]], "clip_raw (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.clip_raw", false], [136, "id8", false]], "clip_raw (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.clip_raw", false], [137, "id5", false]], "clip_raw (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.clip_raw", false], [138, "id29", false]], "clip_raw (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.clip_raw", false], [138, "id20", false]], "clipmax (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clipmax", false], [79, "id6", false]], "clipmax (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clipmax", false], [93, "id16", false]], "clipmax (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.clipmax", false], [116, "id3", false]], "clipmax (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.clipmax", false], [119, "id8", false]], "clipmin (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clipmin", false], [79, "id5", false]], "clipmin (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clipmin", false], [93, "id15", false]], "clipmin (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.clipmin", false], [116, "id2", false]], "clipmin (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.clipmin", false], [119, "id7", false]], "cls_fun() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.cls_fun", false]], "cnnectomeunet (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.CNNectomeUNet", false]], "cnnectomeunet (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet", false]], "cnnectomeunetconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig", false]], "cnnectomeunetconfig (class in dacapo.experiments.architectures.cnnectome_unet_config)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig", false]], "cnnectomeunetmodule (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule", false]], "compare() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.compare", false], [88, "id17", false]], "compare() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.compare", false], [87, "id5", false]], "compare() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.compare", false], [145, "id8", false]], "compare() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.compare", false], [67, "id26", false]], "compute() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.compute", false], [59, "id29", false]], "compute() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.compute", false], [62, "id32", false]], "compute() (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss method)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.compute", false], [96, "id2", false]], "compute() (dacapo.experiments.tasks.losses.affinitiesloss method)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.compute", false], [99, "id5", false]], "compute() (dacapo.experiments.tasks.losses.dummy_loss.dummyloss method)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss.compute", false], [97, "id0", false]], "compute() (dacapo.experiments.tasks.losses.dummyloss method)": [[99, "dacapo.experiments.tasks.losses.DummyLoss.compute", false], [99, "id0", false]], "compute() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.compute", false], [98, "id0", false]], "compute() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.compute", false], [99, "id6", false]], "compute() (dacapo.experiments.tasks.losses.loss method)": [[99, "dacapo.experiments.tasks.losses.Loss.compute", false], [99, "id2", false]], "compute() (dacapo.experiments.tasks.losses.loss.loss method)": [[100, "dacapo.experiments.tasks.losses.loss.Loss.compute", false], [100, "id0", false]], "compute() (dacapo.experiments.tasks.losses.mse_loss.mseloss method)": [[101, "dacapo.experiments.tasks.losses.mse_loss.MSELoss.compute", false], [101, "id0", false]], "compute() (dacapo.experiments.tasks.losses.mseloss method)": [[99, "dacapo.experiments.tasks.losses.MSELoss.compute", false], [99, "id1", false]], "compute_context (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.compute_context", false], [156, "id2", false]], "compute_output_shape() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.compute_output_shape", false]], "compute_output_shape() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.compute_output_shape", false]], "computecontext (class in dacapo.compute_context)": [[13, "dacapo.compute_context.ComputeContext", false]], "computecontext (class in dacapo.compute_context.compute_context)": [[12, "dacapo.compute_context.compute_context.ComputeContext", false]], "concatarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig", false]], "concatarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.concat_array_config)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig", false]], "config_file() (dacapo.options class method)": [[155, "id1", false]], "config_file() (dacapo.options method)": [[155, "dacapo.Options.config_file", false]], "config_file() (dacapo.options.options class method)": [[156, "id7", false]], "config_file() (dacapo.options.options method)": [[156, "dacapo.options.Options.config_file", false]], "configstore (class in dacapo.store.config_store)": [[161, "dacapo.store.config_store.ConfigStore", false]], "connectivity (dacapo.utils.pipeline.relabel attribute)": [[180, "dacapo.utils.pipeline.Relabel.connectivity", false]], "constant (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig attribute)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.constant", false]], "constant (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.constant", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.constant_upsample", false], [17, "id7", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.constant_upsample", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.constant_upsample", false], [18, "id10", false]], "constant_upsample (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.constant_upsample", false], [21, "id39", false]], "constant_upsample (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.constant_upsample", false], [21, "id29", false]], "constantarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig", false]], "constantarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.constant_array_config)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig", false]], "container (dacapo.store.array_store.arraystore attribute)": [[160, "dacapo.store.array_store.ArrayStore.container", false]], "container (dacapo.store.array_store.localarrayidentifier attribute)": [[160, "dacapo.store.array_store.LocalArrayIdentifier.container", false], [160, "id0", false]], "container (dacapo.store.array_store.localcontaineridentifier attribute)": [[160, "dacapo.store.array_store.LocalContainerIdentifier.container", false], [160, "id2", false]], "context (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.context", false], [114, "id1", false]], "context (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.context", false], [108, "id22", false]], "contingency_table() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.contingency_table", false]], "control_point_displacement_sigma (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.control_point_displacement_sigma", false], [130, "id1", false]], "control_point_displacement_sigma (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.control_point_displacement_sigma", false], [132, "id2", false]], "control_point_displacement_sigma (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.control_point_displacement_sigma", false]], "control_point_displacement_sigma (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.control_point_displacement_sigma", false]], "control_point_spacing (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.control_point_spacing", false], [130, "id0", false]], "control_point_spacing (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.control_point_spacing", false], [132, "id1", false]], "control_point_spacing (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.control_point_spacing", false]], "control_point_spacing (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.control_point_spacing", false]], "conv (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.conv", false], [19, "id2", false]], "conv (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.conv", false], [21, "id14", false]], "conv_pass (dacapo.experiments.architectures.cnnectome_unet.convpass attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.conv_pass", false], [17, "id25", false]], "converter (in module dacapo.store.converter)": [[163, "dacapo.store.converter.converter", false]], "convpass (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass", false]], "copy_key (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.copy_key", false], [147, "id1", false]], "copy_key (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.copy_key", false], [152, "id15", false]], "copymask (class in dacapo.gp)": [[152, "dacapo.gp.CopyMask", false]], "copymask (class in dacapo.gp.copy)": [[147, "dacapo.gp.copy.CopyMask", false]], "cosemstart (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.CosemStart", false]], "cosemstart (class in dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart", false]], "cosemstartconfig (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.CosemStartConfig", false]], "cosemstartconfig (class in dacapo.experiments.starts.cosem_start_config)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig method)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig method)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig method)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig method)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig method)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.create_array", false]], "create_array_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_array_store", false]], "create_compute_context() (in module dacapo.compute_context)": [[13, "dacapo.compute_context.create_compute_context", false]], "create_compute_context() (in module dacapo.compute_context.compute_context)": [[12, "dacapo.compute_context.compute_context.create_compute_context", false]], "create_config_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_config_store", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_distance_mask", false], [116, "id8", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_distance_mask", false], [119, "id13", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_distance_mask", false], [118, "id10", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_distance_mask", false], [119, "id56", false]], "create_from_identifier() (in module dacapo.tmp)": [[174, "dacapo.tmp.create_from_identifier", false]], "create_model() (dacapo.experiments.tasks.one_hot_task.onehottask method)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.create_model", false]], "create_model() (dacapo.experiments.tasks.onehottask method)": [[93, "dacapo.experiments.tasks.OneHotTask.create_model", false]], "create_model() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_model", false], [115, "id13", false]], "create_model() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_model", false], [119, "id35", false]], "create_model() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_model", false], [116, "id4", false]], "create_model() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_model", false], [119, "id9", false]], "create_model() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_model", false], [117, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_model", false], [119, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_model", false], [118, "id7", false]], "create_model() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_model", false], [119, "id53", false]], "create_model() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_model", false], [120, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_model", false], [119, "id41", false]], "create_model() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_model", false], [121, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_model", false], [119, "id17", false]], "create_model() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_model", false]], "create_model() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_model", false]], "create_model() (dacapo.experiments.tasks.pretrained_task.pretrainedtask method)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.create_model", false], [123, "id1", false]], "create_model() (dacapo.experiments.tasks.pretrainedtask method)": [[93, "dacapo.experiments.tasks.PretrainedTask.create_model", false], [93, "id26", false]], "create_model() (dacapo.experiments.tasks.task method)": [[93, "dacapo.experiments.tasks.Task.create_model", false]], "create_model() (dacapo.experiments.tasks.task.task method)": [[125, "dacapo.experiments.tasks.task.Task.create_model", false]], "create_optimizer() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.create_optimizer", false], [127, "id3", false]], "create_optimizer() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.create_optimizer", false], [138, "id12", false]], "create_optimizer() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.create_optimizer", false]], "create_stats_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_stats_store", false]], "create_target() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_target", false], [115, "id14", false]], "create_target() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_target", false], [119, "id36", false]], "create_target() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_target", false], [116, "id5", false]], "create_target() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_target", false], [119, "id10", false]], "create_target() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_target", false], [117, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_target", false], [119, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_target", false], [118, "id8", false]], "create_target() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_target", false], [119, "id54", false]], "create_target() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_target", false], [120, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_target", false], [119, "id42", false]], "create_target() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_target", false], [121, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_target", false], [119, "id18", false]], "create_target() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_target", false]], "create_target() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_target", false]], "create_weight() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_weight", false], [115, "id15", false]], "create_weight() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_weight", false], [119, "id37", false]], "create_weight() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_weight", false], [116, "id6", false]], "create_weight() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_weight", false], [119, "id11", false]], "create_weight() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_weight", false], [117, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_weight", false], [119, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_weight", false], [118, "id9", false]], "create_weight() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_weight", false], [119, "id55", false]], "create_weight() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_weight", false], [120, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_weight", false], [119, "id43", false]], "create_weight() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_weight", false], [121, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_weight", false], [119, "id19", false]], "create_weight() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_weight", false]], "create_weight() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_weight", false]], "create_weights_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_weights_store", false]], "createpoints (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.CreatePoints", false]], "cremieval (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.cremieval", false], [83, "id10", false]], "cremievaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores property)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.criteria", false], [83, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.criteria", false], [88, "id44", false]], "criteria (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.criteria", false], [85, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.dummyevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.criteria", false], [88, "id5", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores attribute)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores property)": [[86, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluationscores property)": [[88, "id8", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.criteria", false], [90, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instanceevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.criteria", false], [88, "id56", false]], "criteria (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores property)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.validation_scores.validationscores property)": [[145, "id9", false]], "criteria (dacapo.experiments.validationscores property)": [[67, "id27", false]], "criteria() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.criteria", false]], "criteria() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.criteria", false]], "criterion (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.criterion", false], [71, "id1", false]], "criterion (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.criterion", false]], "criterion (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.criterion", false], [73, "id5", false]], "criterion (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.criterion", false]], "criterion (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.criterion", false]], "criterion (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.criterion", false]], "criterion (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.criterion", false], [75, "id1", false]], "criterion (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.criterion", false], [73, "id3", false]], "crop() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop", false], [17, "id35", false]], "crop_factor (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop_factor", false], [17, "id31", false]], "crop_to_factor() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop_to_factor", false], [17, "id34", false]], "croparrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig", false]], "croparrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.crop_array_config)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig", false]], "customenum (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnum", false]], "customenummeta (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta", false]], "dacapo": [[155, "module-dacapo", false], [185, "module-dacapo", false], [189, "module-dacapo", false], [194, "module-dacapo", false]], "dacapo command line option": [[186, "cmdoption-dacapo-log-level", false]], "dacapo-apply command line option": [[186, "cmdoption-dacapo-apply-c", false], [186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-apply-p", false], [186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-apply-roi", false], [186, "cmdoption-dacapo-apply-vd", false], [186, "cmdoption-dacapo-apply-w", false]], "dacapo-predict command line option": [[186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-predict-op", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-predict-roi", false], [186, "cmdoption-dacapo-predict-w", false]], "dacapo-run-blockwise command line option": [[186, "cmdoption-dacapo-run-blockwise-co", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-run-blockwise-w", false], [186, "cmdoption-dacapo-run-blockwise-wr", false]], "dacapo-segment-blockwise command line option": [[186, "cmdoption-dacapo-segment-blockwise-c", false], [186, "cmdoption-dacapo-segment-blockwise-co", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-sf", false], [186, "cmdoption-dacapo-segment-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "dacapo-train command line option": [[186, "cmdoption-dacapo-train-no-validation", false], [186, "cmdoption-dacapo-train-r", false]], "dacapo-validate command line option": [[186, "cmdoption-dacapo-validate-dt", false], [186, "cmdoption-dacapo-validate-i", false], [186, "cmdoption-dacapo-validate-ow", false], [186, "cmdoption-dacapo-validate-r", false], [186, "cmdoption-dacapo-validate-w", false]], "dacapo.apply": [[0, "module-dacapo.apply", false]], "dacapo.blockwise": [[4, "module-dacapo.blockwise", false]], "dacapo.blockwise.argmax_worker": [[1, "module-dacapo.blockwise.argmax_worker", false]], "dacapo.blockwise.blockwise_task": [[2, "module-dacapo.blockwise.blockwise_task", false]], "dacapo.blockwise.empanada_function": [[3, "module-dacapo.blockwise.empanada_function", false]], "dacapo.blockwise.predict_worker": [[5, "module-dacapo.blockwise.predict_worker", false]], "dacapo.blockwise.relabel_worker": [[6, "module-dacapo.blockwise.relabel_worker", false]], "dacapo.blockwise.scheduler": [[7, "module-dacapo.blockwise.scheduler", false]], "dacapo.blockwise.segment_worker": [[8, "module-dacapo.blockwise.segment_worker", false]], "dacapo.blockwise.threshold_worker": [[9, "module-dacapo.blockwise.threshold_worker", false]], "dacapo.blockwise.watershed_function": [[10, "module-dacapo.blockwise.watershed_function", false]], "dacapo.compute_context": [[13, "module-dacapo.compute_context", false]], "dacapo.compute_context.bsub": [[11, "module-dacapo.compute_context.bsub", false]], "dacapo.compute_context.compute_context": [[12, "module-dacapo.compute_context.compute_context", false]], "dacapo.compute_context.local_torch": [[14, "module-dacapo.compute_context.local_torch", false]], "dacapo.experiments": [[67, "module-dacapo.experiments", false]], "dacapo.experiments.architectures": [[21, "module-dacapo.experiments.architectures", false]], "dacapo.experiments.architectures.architecture": [[15, "module-dacapo.experiments.architectures.architecture", false]], "dacapo.experiments.architectures.architecture_config": [[16, "module-dacapo.experiments.architectures.architecture_config", false]], "dacapo.experiments.architectures.cnnectome_unet": [[17, "module-dacapo.experiments.architectures.cnnectome_unet", false]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, "module-dacapo.experiments.architectures.cnnectome_unet_config", false]], "dacapo.experiments.architectures.dummy_architecture": [[19, "module-dacapo.experiments.architectures.dummy_architecture", false]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, "module-dacapo.experiments.architectures.dummy_architecture_config", false]], "dacapo.experiments.arraytypes": [[27, "module-dacapo.experiments.arraytypes", false]], "dacapo.experiments.arraytypes.annotations": [[22, "module-dacapo.experiments.arraytypes.annotations", false]], "dacapo.experiments.arraytypes.arraytype": [[23, "module-dacapo.experiments.arraytypes.arraytype", false]], "dacapo.experiments.arraytypes.binary": [[24, "module-dacapo.experiments.arraytypes.binary", false]], "dacapo.experiments.arraytypes.distances": [[25, "module-dacapo.experiments.arraytypes.distances", false]], "dacapo.experiments.arraytypes.embedding": [[26, "module-dacapo.experiments.arraytypes.embedding", false]], "dacapo.experiments.arraytypes.intensities": [[28, "module-dacapo.experiments.arraytypes.intensities", false]], "dacapo.experiments.arraytypes.mask": [[29, "module-dacapo.experiments.arraytypes.mask", false]], "dacapo.experiments.arraytypes.probabilities": [[30, "module-dacapo.experiments.arraytypes.probabilities", false]], "dacapo.experiments.datasplits": [[62, "module-dacapo.experiments.datasplits", false]], "dacapo.experiments.datasplits.datasets": [[54, "module-dacapo.experiments.datasplits.datasets", false]], "dacapo.experiments.datasplits.datasets.arrays": [[38, "module-dacapo.experiments.datasplits.datasets.arrays", false]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, "module-dacapo.experiments.datasplits.datasets.arrays.array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, "module-dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, "module-dacapo.experiments.datasplits.datasets.arrays.concat_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, "module-dacapo.experiments.datasplits.datasets.arrays.constant_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, "module-dacapo.experiments.datasplits.datasets.arrays.crop_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, "module-dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, "module-dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, "module-dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, "module-dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, "module-dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, "module-dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", false]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, "module-dacapo.experiments.datasplits.datasets.arrays.ones_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, "module-dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, "module-dacapo.experiments.datasplits.datasets.arrays.sum_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, "module-dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, "module-dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", false]], "dacapo.experiments.datasplits.datasets.dataset": [[48, "module-dacapo.experiments.datasplits.datasets.dataset", false]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, "module-dacapo.experiments.datasplits.datasets.dataset_config", false]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, "module-dacapo.experiments.datasplits.datasets.dummy_dataset", false]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, "module-dacapo.experiments.datasplits.datasets.dummy_dataset_config", false]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, "module-dacapo.experiments.datasplits.datasets.graphstores", false]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, "module-dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", false]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset", false]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", false]], "dacapo.experiments.datasplits.datasplit": [[57, "module-dacapo.experiments.datasplits.datasplit", false]], "dacapo.experiments.datasplits.datasplit_config": [[58, "module-dacapo.experiments.datasplits.datasplit_config", false]], "dacapo.experiments.datasplits.datasplit_generator": [[59, "module-dacapo.experiments.datasplits.datasplit_generator", false]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, "module-dacapo.experiments.datasplits.dummy_datasplit", false]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, "module-dacapo.experiments.datasplits.dummy_datasplit_config", false]], "dacapo.experiments.datasplits.keys": [[63, "module-dacapo.experiments.datasplits.keys", false]], "dacapo.experiments.datasplits.keys.keys": [[64, "module-dacapo.experiments.datasplits.keys.keys", false]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, "module-dacapo.experiments.datasplits.train_validate_datasplit", false]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, "module-dacapo.experiments.datasplits.train_validate_datasplit_config", false]], "dacapo.experiments.model": [[68, "module-dacapo.experiments.model", false]], "dacapo.experiments.run": [[69, "module-dacapo.experiments.run", false]], "dacapo.experiments.run_config": [[70, "module-dacapo.experiments.run_config", false]], "dacapo.experiments.starts": [[73, "module-dacapo.experiments.starts", false]], "dacapo.experiments.starts.cosem_start": [[71, "module-dacapo.experiments.starts.cosem_start", false]], "dacapo.experiments.starts.cosem_start_config": [[72, "module-dacapo.experiments.starts.cosem_start_config", false]], "dacapo.experiments.starts.start": [[74, "module-dacapo.experiments.starts.start", false]], "dacapo.experiments.starts.start_config": [[75, "module-dacapo.experiments.starts.start_config", false]], "dacapo.experiments.tasks": [[93, "module-dacapo.experiments.tasks", false]], "dacapo.experiments.tasks.affinities_task": [[76, "module-dacapo.experiments.tasks.affinities_task", false]], "dacapo.experiments.tasks.affinities_task_config": [[77, "module-dacapo.experiments.tasks.affinities_task_config", false]], "dacapo.experiments.tasks.distance_task": [[78, "module-dacapo.experiments.tasks.distance_task", false]], "dacapo.experiments.tasks.distance_task_config": [[79, "module-dacapo.experiments.tasks.distance_task_config", false]], "dacapo.experiments.tasks.dummy_task": [[80, "module-dacapo.experiments.tasks.dummy_task", false]], "dacapo.experiments.tasks.dummy_task_config": [[81, "module-dacapo.experiments.tasks.dummy_task_config", false]], "dacapo.experiments.tasks.evaluators": [[88, "module-dacapo.experiments.tasks.evaluators", false]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", false]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, "module-dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, "module-dacapo.experiments.tasks.evaluators.dummy_evaluator", false]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, "module-dacapo.experiments.tasks.evaluators.evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, "module-dacapo.experiments.tasks.evaluators.evaluator", false]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, "module-dacapo.experiments.tasks.evaluators.instance_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, "module-dacapo.experiments.tasks.evaluators.instance_evaluator", false]], "dacapo.experiments.tasks.hot_distance_task": [[91, "module-dacapo.experiments.tasks.hot_distance_task", false]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, "module-dacapo.experiments.tasks.hot_distance_task_config", false]], "dacapo.experiments.tasks.inner_distance_task": [[94, "module-dacapo.experiments.tasks.inner_distance_task", false]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, "module-dacapo.experiments.tasks.inner_distance_task_config", false]], "dacapo.experiments.tasks.losses": [[99, "module-dacapo.experiments.tasks.losses", false]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, "module-dacapo.experiments.tasks.losses.affinities_loss", false]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, "module-dacapo.experiments.tasks.losses.dummy_loss", false]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, "module-dacapo.experiments.tasks.losses.hot_distance_loss", false]], "dacapo.experiments.tasks.losses.loss": [[100, "module-dacapo.experiments.tasks.losses.loss", false]], "dacapo.experiments.tasks.losses.mse_loss": [[101, "module-dacapo.experiments.tasks.losses.mse_loss", false]], "dacapo.experiments.tasks.one_hot_task": [[102, "module-dacapo.experiments.tasks.one_hot_task", false]], "dacapo.experiments.tasks.one_hot_task_config": [[103, "module-dacapo.experiments.tasks.one_hot_task_config", false]], "dacapo.experiments.tasks.post_processors": [[108, "module-dacapo.experiments.tasks.post_processors", false]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor", false]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor", false]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, "module-dacapo.experiments.tasks.post_processors.post_processor", false]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, "module-dacapo.experiments.tasks.post_processors.post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor", false]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor", false]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", false]], "dacapo.experiments.tasks.predictors": [[119, "module-dacapo.experiments.tasks.predictors", false]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, "module-dacapo.experiments.tasks.predictors.affinities_predictor", false]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, "module-dacapo.experiments.tasks.predictors.distance_predictor", false]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, "module-dacapo.experiments.tasks.predictors.dummy_predictor", false]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, "module-dacapo.experiments.tasks.predictors.hot_distance_predictor", false]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, "module-dacapo.experiments.tasks.predictors.inner_distance_predictor", false]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, "module-dacapo.experiments.tasks.predictors.one_hot_predictor", false]], "dacapo.experiments.tasks.predictors.predictor": [[122, "module-dacapo.experiments.tasks.predictors.predictor", false]], "dacapo.experiments.tasks.pretrained_task": [[123, "module-dacapo.experiments.tasks.pretrained_task", false]], "dacapo.experiments.tasks.pretrained_task_config": [[124, "module-dacapo.experiments.tasks.pretrained_task_config", false]], "dacapo.experiments.tasks.task": [[125, "module-dacapo.experiments.tasks.task", false]], "dacapo.experiments.tasks.task_config": [[126, "module-dacapo.experiments.tasks.task_config", false]], "dacapo.experiments.trainers": [[138, "module-dacapo.experiments.trainers", false]], "dacapo.experiments.trainers.dummy_trainer": [[127, "module-dacapo.experiments.trainers.dummy_trainer", false]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, "module-dacapo.experiments.trainers.dummy_trainer_config", false]], "dacapo.experiments.trainers.gp_augments": [[132, "module-dacapo.experiments.trainers.gp_augments", false]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, "module-dacapo.experiments.trainers.gp_augments.augment_config", false]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, "module-dacapo.experiments.trainers.gp_augments.elastic_config", false]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, "module-dacapo.experiments.trainers.gp_augments.gamma_config", false]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, "module-dacapo.experiments.trainers.gp_augments.intensity_config", false]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, "module-dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", false]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, "module-dacapo.experiments.trainers.gp_augments.simple_config", false]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, "module-dacapo.experiments.trainers.gunpowder_trainer", false]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, "module-dacapo.experiments.trainers.gunpowder_trainer_config", false]], "dacapo.experiments.trainers.optimizers": [[139, "module-dacapo.experiments.trainers.optimizers", false]], "dacapo.experiments.trainers.trainer": [[140, "module-dacapo.experiments.trainers.trainer", false]], "dacapo.experiments.trainers.trainer_config": [[141, "module-dacapo.experiments.trainers.trainer_config", false]], "dacapo.experiments.training_iteration_stats": [[142, "module-dacapo.experiments.training_iteration_stats", false]], "dacapo.experiments.training_stats": [[143, "module-dacapo.experiments.training_stats", false]], "dacapo.experiments.validation_iteration_scores": [[144, "module-dacapo.experiments.validation_iteration_scores", false]], "dacapo.experiments.validation_scores": [[145, "module-dacapo.experiments.validation_scores", false]], "dacapo.ext": [[146, "module-dacapo.ext", false]], "dacapo.gp": [[152, "module-dacapo.gp", false]], "dacapo.gp.copy": [[147, "module-dacapo.gp.copy", false]], "dacapo.gp.dacapo_create_target": [[148, "module-dacapo.gp.dacapo_create_target", false]], "dacapo.gp.dacapo_points_source": [[149, "module-dacapo.gp.dacapo_points_source", false]], "dacapo.gp.elastic_augment_fuse": [[150, "module-dacapo.gp.elastic_augment_fuse", false]], "dacapo.gp.gamma_noise": [[151, "module-dacapo.gp.gamma_noise", false]], "dacapo.gp.product": [[153, "module-dacapo.gp.product", false]], "dacapo.gp.reject_if_empty": [[154, "module-dacapo.gp.reject_if_empty", false]], "dacapo.options": [[156, "module-dacapo.options", false]], "dacapo.plot": [[157, "module-dacapo.plot", false]], "dacapo.predict": [[158, "module-dacapo.predict", false]], "dacapo.predict_local": [[159, "module-dacapo.predict_local", false]], "dacapo.store": [[167, "module-dacapo.store", false]], "dacapo.store.array_store": [[160, "module-dacapo.store.array_store", false]], "dacapo.store.config_store": [[161, "module-dacapo.store.config_store", false]], "dacapo.store.conversion_hooks": [[162, "module-dacapo.store.conversion_hooks", false]], "dacapo.store.converter": [[163, "module-dacapo.store.converter", false]], "dacapo.store.create_store": [[164, "module-dacapo.store.create_store", false]], "dacapo.store.file_config_store": [[165, "module-dacapo.store.file_config_store", false]], "dacapo.store.file_stats_store": [[166, "module-dacapo.store.file_stats_store", false]], "dacapo.store.local_array_store": [[168, "module-dacapo.store.local_array_store", false]], "dacapo.store.local_weights_store": [[169, "module-dacapo.store.local_weights_store", false]], "dacapo.store.mongo_config_store": [[170, "module-dacapo.store.mongo_config_store", false]], "dacapo.store.mongo_stats_store": [[171, "module-dacapo.store.mongo_stats_store", false]], "dacapo.store.stats_store": [[172, "module-dacapo.store.stats_store", false]], "dacapo.store.weights_store": [[173, "module-dacapo.store.weights_store", false]], "dacapo.tmp": [[174, "module-dacapo.tmp", false]], "dacapo.train": [[175, "module-dacapo.train", false]], "dacapo.utils": [[179, "module-dacapo.utils", false]], "dacapo.utils.affinities": [[176, "module-dacapo.utils.affinities", false]], "dacapo.utils.array_utils": [[177, "module-dacapo.utils.array_utils", false]], "dacapo.utils.balance_weights": [[178, "module-dacapo.utils.balance_weights", false]], "dacapo.utils.pipeline": [[180, "module-dacapo.utils.pipeline", false]], "dacapo.utils.view": [[181, "module-dacapo.utils.view", false]], "dacapo.utils.voi": [[182, "module-dacapo.utils.voi", false]], "dacapo.validate": [[183, "module-dacapo.validate", false]], "dacapoblockwisetask (class in dacapo.blockwise)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask", false]], "dacapoblockwisetask (class in dacapo.blockwise.blockwise_task)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask", false]], "dacapoconfig (class in dacapo.options)": [[156, "dacapo.options.DaCapoConfig", false]], "dacapotargetfilter (class in dacapo.gp)": [[152, "dacapo.gp.DaCapoTargetFilter", false]], "dacapotargetfilter (class in dacapo.gp.dacapo_create_target)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter", false]], "database (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.database", false], [170, "id3", false]], "database (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.database", false], [171, "id3", false]], "datakey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.DataKey", false]], "datakey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey", false]], "dataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.Dataset", false]], "dataset (class in dacapo.experiments.datasplits.datasets.dataset)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset", false]], "dataset (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.dataset", false], [47, "id1", false]], "dataset (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.dataset", false], [38, "id4", false]], "dataset (dacapo.store.array_store.arraystore attribute)": [[160, "dacapo.store.array_store.ArrayStore.dataset", false]], "dataset (dacapo.store.array_store.localarrayidentifier attribute)": [[160, "dacapo.store.array_store.LocalArrayIdentifier.dataset", false], [160, "id1", false]], "dataset_type (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig attribute)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.dataset_type", false], [51, "id0", false]], "dataset_type (dacapo.experiments.datasplits.datasets.dummydatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.dataset_type", false], [54, "id10", false]], "dataset_type (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.dataset_type", false], [56, "id0", false]], "dataset_type (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.dataset_type", false], [54, "id18", false]], "dataset_type (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.dataset_type", false], [62, "id34", false]], "dataset_type (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.dataset_type", false], [59, "id5", false]], "datasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig", false]], "datasetconfig (class in dacapo.experiments.datasplits.datasets.dataset_config)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig", false]], "datasets (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.datasets", false], [59, "id11", false]], "datasets (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.datasets", false], [62, "id14", false]], "datasets (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.datasets", false], [145, "id1", false]], "datasets (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.datasets", false], [67, "id19", false]], "datasets (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.datasets", false], [161, "id2", false]], "datasets (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.datasets", false]], "datasets (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.datasets", false]], "datasetspec (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DatasetSpec", false]], "datasetspec (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec", false]], "datasettype (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType", false]], "datasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplit", false]], "datasplit (class in dacapo.experiments.datasplits.datasplit)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit", false]], "datasplit (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.datasplit", false]], "datasplit (dacapo.experiments.run.run property)": [[69, "id10", false]], "datasplit_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.datasplit_config", false]], "datasplit_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.datasplit_config", false]], "datasplit_type (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig attribute)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.datasplit_type", false], [61, "id0", false]], "datasplit_type (dacapo.experiments.datasplits.dummydatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.datasplit_type", false], [62, "id6", false]], "datasplit_type (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.datasplit_type", false]], "datasplit_type (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.datasplit_type", false]], "datasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplitConfig", false]], "datasplitconfig (class in dacapo.experiments.datasplits.datasplit_config)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig", false]], "datasplitgenerator (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator", false]], "datasplitgenerator (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator", false]], "datasplits (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.datasplits", false], [161, "id1", false]], "datasplits (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.datasplits", false]], "datasplits (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.datasplits", false]], "db_host (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.db_host", false], [170, "id0", false]], "db_host (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.db_host", false], [171, "id0", false]], "db_name (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.db_name", false], [170, "id1", false]], "db_name (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.db_name", false], [171, "id1", false]], "default_config (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.default_config", false], [33, "id2", false]], "default_config (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.default_config", false], [38, "id22", false]], "default_parameters (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.default_parameters", false]], "delete_after() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.delete_after", false]], "delete_after() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.delete_after", false]], "delete_after() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.delete_after", false], [145, "id6", false]], "delete_after() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.delete_after", false], [67, "id24", false]], "delete_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_architecture_config", false], [161, "id19", false]], "delete_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_array_config", false], [161, "id31", false]], "delete_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_config", false], [161, "id7", false]], "delete_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.delete_config", false]], "delete_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.delete_config", false]], "delete_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_datasplit_config", false], [161, "id27", false]], "delete_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_run_config", false], [161, "id11", false]], "delete_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.delete_run_config", false], [170, "id6", false]], "delete_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_task_config", false], [161, "id15", false]], "delete_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_trainer_config", false], [161, "id23", false]], "delete_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.delete_training_stats", false]], "delete_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.delete_training_stats", false], [171, "id8", false]], "delete_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.delete_training_stats", false], [172, "id4", false]], "delete_validation_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.delete_validation_scores", false]], "deprecated_start_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.deprecated_start_neuroglancer", false], [181, "id13", false]], "detection_threshold (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.detection_threshold", false], [81, "id2", false]], "detection_threshold (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.detection_threshold", false], [93, "id4", false]], "detection_threshold (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor attribute)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.detection_threshold", false], [106, "id0", false]], "detection_threshold (dacapo.experiments.tasks.post_processors.dummypostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.detection_threshold", false], [108, "id0", false]], "device (dacapo.compute_context.bsub property)": [[13, "id10", false]], "device (dacapo.compute_context.bsub.bsub property)": [[11, "id4", false]], "device (dacapo.compute_context.compute_context.computecontext attribute)": [[12, "dacapo.compute_context.compute_context.ComputeContext.device", false]], "device (dacapo.compute_context.compute_context.computecontext property)": [[12, "id0", false]], "device (dacapo.compute_context.computecontext attribute)": [[13, "dacapo.compute_context.ComputeContext.device", false]], "device (dacapo.compute_context.computecontext property)": [[13, "id0", false]], "device (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "id0", false]], "device (dacapo.compute_context.local_torch.localtorch property)": [[14, "id2", false]], "device (dacapo.compute_context.localtorch attribute)": [[13, "id3", false]], "device (dacapo.compute_context.localtorch property)": [[13, "id5", false]], "device() (dacapo.compute_context.bsub method)": [[13, "dacapo.compute_context.Bsub.device", false]], "device() (dacapo.compute_context.bsub.bsub method)": [[11, "dacapo.compute_context.bsub.Bsub.device", false]], "device() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.device", false]], "device() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.device", false]], "dice (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.dice", false], [82, "id0", false]], "dice (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.dice", false], [88, "id23", false]], "dice() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.dice", false], [83, "id12", false]], "dilatepoints (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.DilatePoints", false]], "dilations (dacapo.utils.pipeline.dilatepoints attribute)": [[180, "dacapo.utils.pipeline.DilatePoints.dilations", false], [180, "id6", false]], "dilations (dacapo.utils.pipeline.randomdilatelabels attribute)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.dilations", false], [180, "id9", false]], "dims (dacapo.experiments.architectures.architecture property)": [[21, "id4", false]], "dims (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id4", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.dims", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.dims", false], [17, "id15", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.convpass attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.dims", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.dims", false], [17, "id27", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.dims", false], [17, "id33", false]], "dims (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor property)": [[115, "id10", false]], "dims (dacapo.experiments.tasks.predictors.affinitiespredictor property)": [[119, "id32", false]], "dims() (dacapo.experiments.architectures.architecture method)": [[21, "dacapo.experiments.architectures.Architecture.dims", false]], "dims() (dacapo.experiments.architectures.architecture.architecture method)": [[15, "dacapo.experiments.architectures.architecture.Architecture.dims", false]], "dims() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.dims", false]], "dims() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.dims", false]], "distance_loss (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss attribute)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.distance_loss", false]], "distance_loss (dacapo.experiments.tasks.losses.hotdistanceloss attribute)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.distance_loss", false]], "distance_loss() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "id2", false]], "distance_loss() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "id8", false]], "distancearray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.DistanceArray", false]], "distancearray (class in dacapo.experiments.arraytypes.distances)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray", false]], "distancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor", false]], "distancepredictor (class in dacapo.experiments.tasks.predictors.distance_predictor)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor", false]], "distancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DistanceTask", false]], "distancetask (class in dacapo.experiments.tasks.distance_task)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask", false]], "distancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig", false]], "distancetaskconfig (class in dacapo.experiments.tasks.distance_task_config)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig", false]], "distribute_workers (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.distribute_workers", false]], "distribute_workers (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.distribute_workers", false]], "distribute_workers (dacapo.compute_context.compute_context.computecontext attribute)": [[12, "dacapo.compute_context.compute_context.ComputeContext.distribute_workers", false]], "distribute_workers (dacapo.compute_context.computecontext attribute)": [[13, "dacapo.compute_context.ComputeContext.distribute_workers", false]], "distribute_workers (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch.distribute_workers", false]], "distribute_workers (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch.distribute_workers", false]], "divide_columns() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.divide_columns", false]], "divide_rows() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.divide_rows", false]], "do_augment (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.do_augment", false]], "do_augment (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.do_augment", false]], "does_new_best_exist() (dacapo.utils.view.bestscore method)": [[181, "dacapo.utils.view.BestScore.does_new_best_exist", false], [181, "id8", false]], "down (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.down", false], [17, "id29", false]], "downsample (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample", false]], "downsample (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.downsample", false], [44, "id2", false]], "downsample (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.downsample", false], [38, "id12", false]], "downsample_factor (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.downsample_factor", false], [17, "id28", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.downsample_factors", false], [17, "id4", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.downsample_factors", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.downsample_factors", false], [18, "id6", false]], "downsample_factors (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.downsample_factors", false], [21, "id36", false]], "downsample_factors (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.downsample_factors", false], [21, "id25", false]], "downsample_lsds (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.downsample_lsds", false], [77, "id3", false]], "downsample_lsds (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.downsample_lsds", false], [93, "id30", false]], "downsample_lsds (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.downsample_lsds", false]], "downsample_lsds (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.downsample_lsds", false]], "drop_channels (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.drop_channels", false], [147, "id2", false]], "drop_channels (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.drop_channels", false], [152, "id16", false]], "ds (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.ds", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.dt_scale_factor", false], [118, "id2", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.dt_scale_factor", false], [119, "id48", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.dt_scale_factor", false]], "dummyarchitecture (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.DummyArchitecture", false]], "dummyarchitecture (class in dacapo.experiments.architectures.dummy_architecture)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture", false]], "dummyarchitectureconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig", false]], "dummyarchitectureconfig (class in dacapo.experiments.architectures.dummy_architecture_config)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig", false]], "dummyarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig", false]], "dummyarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.dummy_array_config)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig", false]], "dummydataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset", false]], "dummydataset (class in dacapo.experiments.datasplits.datasets.dummy_dataset)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset", false]], "dummydatasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig", false]], "dummydatasetconfig (class in dacapo.experiments.datasplits.datasets.dummy_dataset_config)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig", false]], "dummydatasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DummyDataSplit", false]], "dummydatasplit (class in dacapo.experiments.datasplits.dummy_datasplit)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit", false]], "dummydatasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig", false]], "dummydatasplitconfig (class in dacapo.experiments.datasplits.dummy_datasplit_config)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig", false]], "dummyevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores", false]], "dummyevaluationscores (class in dacapo.experiments.tasks.evaluators.dummy_evaluation_scores)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores", false]], "dummyevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator", false]], "dummyevaluator (class in dacapo.experiments.tasks.evaluators.dummy_evaluator)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator", false]], "dummyloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.DummyLoss", false]], "dummyloss (class in dacapo.experiments.tasks.losses.dummy_loss)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss", false]], "dummypostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor", false]], "dummypostprocessor (class in dacapo.experiments.tasks.post_processors.dummy_post_processor)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor", false]], "dummypostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters", false]], "dummypostprocessorparameters (class in dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters", false]], "dummypredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor", false]], "dummypredictor (class in dacapo.experiments.tasks.predictors.dummy_predictor)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor", false]], "dummytask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DummyTask", false]], "dummytask (class in dacapo.experiments.tasks.dummy_task)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask", false]], "dummytaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DummyTaskConfig", false]], "dummytaskconfig (class in dacapo.experiments.tasks.dummy_task_config)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig", false]], "dummytrainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.DummyTrainer", false]], "dummytrainer (class in dacapo.experiments.trainers.dummy_trainer)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer", false]], "dummytrainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig", false]], "dummytrainerconfig (class in dacapo.experiments.trainers.dummy_trainer_config)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig", false]], "duplicatenameerror": [[161, "dacapo.store.config_store.DuplicateNameError", false]], "dvidarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig", false]], "dvidarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.dvid_array_config)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig", false]], "elasticaugment (class in dacapo.gp)": [[152, "dacapo.gp.ElasticAugment", false]], "elasticaugment (class in dacapo.gp.elastic_augment_fuse)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment", false]], "elasticaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig", false]], "elasticaugmentconfig (class in dacapo.experiments.trainers.gp_augments.elastic_config)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig", false]], "embedded (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.embedded", false], [181, "id11", false]], "embedding_dims (dacapo.experiments.arraytypes.embedding.embeddingarray attribute)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray.embedding_dims", false], [26, "id0", false]], "embedding_dims (dacapo.experiments.arraytypes.embeddingarray attribute)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray.embedding_dims", false], [27, "id9", false]], "embedding_dims (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.embedding_dims", false], [81, "id1", false]], "embedding_dims (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.embedding_dims", false], [93, "id3", false]], "embedding_dims (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor property)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.distancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.embedding_dims", false], [117, "id0", false]], "embedding_dims (dacapo.experiments.tasks.predictors.dummypredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.embedding_dims", false], [119, "id0", false]], "embedding_dims (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor property)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.innerdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor property)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.onehotpredictor property)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.embedding_dims", false]], "embeddingarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray", false]], "embeddingarray (class in dacapo.experiments.arraytypes.embedding)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray", false]], "empanada_segmenter() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.empanada_segmenter", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.enumerate_parameters", false], [104, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.enumerate_parameters", false], [108, "id14", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.enumerate_parameters", false], [106, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.enumerate_parameters", false], [108, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.enumerate_parameters", false], [109, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.enumerate_parameters", false], [108, "id7", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.enumerate_parameters", false], [111, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.enumerate_parameters", false], [108, "id10", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.enumerate_parameters", false], [113, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.enumerate_parameters", false], [108, "id18", false]], "epsilon (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.epsilon", false], [118, "id5", false]], "epsilon (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.epsilon", false], [119, "id51", false]], "epsilon (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.epsilon", false]], "eval_activation (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.eval_activation", false], [67, "id9", false]], "eval_activation (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.eval_activation", false], [68, "id9", false]], "eval_input_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.eval_input_shape", false], [67, "id8", false]], "eval_input_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.eval_input_shape", false], [68, "id8", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture property)": [[21, "id1", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id1", false]], "eval_shape_increase (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.eval_shape_increase", false]], "evaluate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.evaluate", false], [83, "id4", false]], "evaluate() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.evaluate", false], [88, "id48", false]], "evaluate() (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.evaluate", false], [85, "id1", false]], "evaluate() (dacapo.experiments.tasks.evaluators.dummyevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.evaluate", false], [88, "id6", false]], "evaluate() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.evaluate", false], [88, "id12", false]], "evaluate() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.evaluate", false], [87, "id0", false]], "evaluate() (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.evaluate", false], [90, "id1", false]], "evaluate() (dacapo.experiments.tasks.evaluators.instanceevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.evaluate", false], [88, "id57", false]], "evaluation_scores (dacapo.experiments.tasks.task property)": [[93, "dacapo.experiments.tasks.Task.evaluation_scores", false]], "evaluation_scores (dacapo.experiments.tasks.task.task property)": [[125, "dacapo.experiments.tasks.task.Task.evaluation_scores", false]], "evaluation_scores (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.evaluation_scores", false], [145, "id2", false]], "evaluation_scores (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.evaluation_scores", false], [67, "id20", false]], "evaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores", false]], "evaluationscores (class in dacapo.experiments.tasks.evaluators.evaluation_scores)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores", false]], "evaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator", false]], "evaluator (class in dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator", false]], "evaluator (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.evaluator", false], [76, "id3", false]], "evaluator (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.evaluator", false], [93, "id40", false]], "evaluator (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.evaluator", false], [78, "id3", false]], "evaluator (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.evaluator", false], [93, "id20", false]], "evaluator (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.evaluator", false], [80, "id3", false]], "evaluator (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.evaluator", false], [93, "id9", false]], "evaluator (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.evaluator", false], [91, "id3", false]], "evaluator (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.evaluator", false], [93, "id58", false]], "evaluator (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.evaluator", false], [94, "id3", false]], "evaluator (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.evaluator", false], [93, "id48", false]], "evaluator (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.evaluator", false]], "evaluator (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.evaluator", false]], "execute() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext.execute", false], [12, "id2", false]], "execute() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext.execute", false], [13, "id2", false]], "execute() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.execute", false]], "execute() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.execute", false]], "expandlabels (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.ExpandLabels", false]], "extractor() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.extractor", false], [115, "id9", false]], "extractor() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.extractor", false], [119, "id31", false]], "f1_score (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.f1_score", false], [82, "id20", false]], "f1_score (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.f1_score", false], [88, "id43", false]], "f1_score() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.f1_score", false], [83, "id20", false]], "f1_score_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.f1_score_with_tolerance", false], [82, "id17", false]], "f1_score_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.f1_score_with_tolerance", false], [88, "id40", false]], "f1_score_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.f1_score_with_tolerance", false], [83, "id32", false]], "f1_score_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.f1_score_with_tolerance", false], [83, "id46", false]], "false_discovery_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_discovery_rate", false], [82, "id6", false]], "false_discovery_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_discovery_rate", false], [88, "id29", false]], "false_discovery_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_discovery_rate", false], [83, "id17", false]], "false_negative_distances() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negative_distances", false], [83, "id50", false]], "false_negative_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_negative_rate", false], [82, "id3", false]], "false_negative_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_negative_rate", false], [88, "id26", false]], "false_negative_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_negative_rate", false], [83, "id15", false]], "false_negative_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_negative_rate_with_tolerance", false], [82, "id4", false]], "false_negative_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_negative_rate_with_tolerance", false], [88, "id27", false]], "false_negative_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_negative_rate_with_tolerance", false], [83, "id29", false]], "false_negative_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negative_rate_with_tolerance", false], [83, "id42", false]], "false_negatives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negatives_with_tolerance", false], [83, "id41", false]], "false_positive_distances() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positive_distances", false], [83, "id38", false]], "false_positive_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_positive_rate", false], [82, "id5", false]], "false_positive_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_positive_rate", false], [88, "id28", false]], "false_positive_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_positive_rate", false], [83, "id16", false]], "false_positive_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_positive_rate_with_tolerance", false], [82, "id7", false]], "false_positive_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_positive_rate_with_tolerance", false], [88, "id30", false]], "false_positive_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_positive_rate_with_tolerance", false], [83, "id28", false]], "false_positive_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positive_rate_with_tolerance", false], [83, "id40", false]], "false_positives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positives_with_tolerance", false], [83, "id39", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.file_name", false], [46, "id0", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.file_name", false], [47, "id0", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.file_name", false], [38, "id3", false]], "fileconfigstore (class in dacapo.store.file_config_store)": [[165, "dacapo.store.file_config_store.FileConfigStore", false]], "filestatsstore (class in dacapo.store.file_stats_store)": [[166, "dacapo.store.file_stats_store.FileStatsStore", false]], "find_components() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.find_components", false]], "fit (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.fit", false]], "fit (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.fit", false]], "fit (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.fit", false]], "fit (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.fit", false]], "fit (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.fit", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmap_inc_factor", false], [17, "id3", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.fmap_inc_factor", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmap_inc_factor", false], [18, "id5", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmap_inc_factor", false], [21, "id35", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmap_inc_factor", false], [21, "id24", false]], "fmaps_in (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmaps_in", false], [17, "id1", false]], "fmaps_in (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmaps_in", false], [18, "id3", false]], "fmaps_in (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmaps_in", false], [21, "id33", false]], "fmaps_in (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmaps_in", false], [21, "id22", false]], "fmaps_out (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmaps_out", false], [17, "id0", false]], "fmaps_out (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmaps_out", false], [18, "id2", false]], "fmaps_out (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmaps_out", false], [21, "id32", false]], "fmaps_out (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmaps_out", false], [21, "id21", false]], "format_class_name() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.format_class_name", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.forward", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.forward", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.forward", false], [17, "id24", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.convpass method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.forward", false], [17, "id26", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.downsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.forward", false], [17, "id30", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.forward", false], [17, "id36", false]], "forward() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.forward", false]], "forward() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.forward", false], [19, "id6", false]], "forward() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.forward", false], [21, "id18", false]], "forward() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.forward", false]], "forward() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.forward", false]], "fov (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fov", false]], "fov (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fov", false]], "frizz_level (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.frizz_level", false], [84, "id0", false]], "frizz_level (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.frizz_level", false], [88, "id0", false]], "gamma_max (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.gamma_max", false], [151, "id2", false]], "gamma_max (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.gamma_max", false], [152, "id8", false]], "gamma_min (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.gamma_min", false], [151, "id1", false]], "gamma_min (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.gamma_min", false], [152, "id7", false]], "gamma_range (dacapo.experiments.trainers.gp_augments.gamma_config.gammaaugmentconfig attribute)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig.gamma_range", false], [131, "id0", false]], "gamma_range (dacapo.experiments.trainers.gp_augments.gammaaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig.gamma_range", false], [132, "id8", false]], "gammaaugment (class in dacapo.gp)": [[152, "dacapo.gp.GammaAugment", false]], "gammaaugment (class in dacapo.gp.gamma_noise)": [[151, "dacapo.gp.gamma_noise.GammaAugment", false]], "gammaaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig", false]], "gammaaugmentconfig (class in dacapo.experiments.trainers.gp_augments.gamma_config)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig", false]], "gaussian_blur_args (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_blur_args", false]], "gaussian_blur_args (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_blur_args", false]], "gaussian_noise_args (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_noise_args", false]], "gaussian_noise_args (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_noise_args", false]], "gaussian_noise_lim (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_noise_lim", false]], "gaussian_noise_lim (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_noise_lim", false]], "generate_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.generate_csv", false]], "generate_csv() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.generate_csv", false]], "generate_dataspec_from_csv() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.generate_dataspec_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.generate_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator static method)": [[59, "id30", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.generate_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplitgenerator static method)": [[62, "id33", false]], "get_best() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.get_best", false], [145, "id12", false]], "get_best() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.get_best", false], [67, "id30", false]], "get_datasets() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.get_datasets", false], [181, "id17", false]], "get_ds() (dacapo.utils.view.bestscore method)": [[181, "dacapo.utils.view.BestScore.get_ds", false], [181, "id7", false]], "get_model_setup() (in module dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.get_model_setup", false]], "get_overall_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.get_overall_best", false], [88, "id15", false]], "get_overall_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.get_overall_best", false], [87, "id3", false]], "get_overall_best_parameters() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.get_overall_best_parameters", false], [88, "id16", false]], "get_overall_best_parameters() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.get_overall_best_parameters", false], [87, "id4", false]], "get_right_resolution_array_config() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.get_right_resolution_array_config", false]], "get_runs_info() (in module dacapo.plot)": [[157, "dacapo.plot.get_runs_info", false]], "get_validation_scores() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.get_validation_scores", false]], "get_validation_scores() (dacapo.experiments.run.run static method)": [[69, "id12", false]], "get_viewer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.get_viewer", false]], "gp_to_funlib_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.gp_to_funlib_array", false]], "graph (dacapo.gp.dacapo_points_source.graphsource attribute)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.graph", false], [149, "id1", false]], "graph (dacapo.gp.graphsource attribute)": [[152, "dacapo.gp.GraphSource.graph", false], [152, "id21", false]], "graphkey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.GraphKey", false]], "graphkey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey", false]], "graphsource (class in dacapo.gp)": [[152, "dacapo.gp.GraphSource", false]], "graphsource (class in dacapo.gp.dacapo_points_source)": [[149, "dacapo.gp.dacapo_points_source.GraphSource", false]], "graphstoreconfig (class in dacapo.experiments.datasplits.datasets.graphstores)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig", false]], "graphstoreconfig (class in dacapo.experiments.datasplits.datasets.graphstores.graph_source_config)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.groupings", false], [32, "id1", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.groupings", false], [38, "id8", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig attribute)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.groupings", false], [42, "id1", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.groupings", false], [38, "id18", false]], "grow_boundary_iterations (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.grow_boundary_iterations", false], [115, "id3", false]], "grow_boundary_iterations (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.grow_boundary_iterations", false], [119, "id25", false]], "gt (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.gt", false], [54, "id2", false]], "gt (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.gt", false], [48, "id2", false]], "gt (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.gt", false], [55, "id1", false]], "gt (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.gt", false], [54, "id14", false]], "gt (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.GT", false], [63, "id1", false]], "gt (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.GT", false]], "gt (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.GT", false], [64, "id1", false]], "gt (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.GT", false]], "gt (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.gt", false]], "gt (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.gt", false]], "gt (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.gt", false]], "gt (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.gt", false]], "gt (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.gt", false]], "gt_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.gt_config", false], [56, "id2", false]], "gt_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.gt_config", false], [54, "id20", false]], "gt_container (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.gt_container", false], [62, "id37", false]], "gt_container (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.gt_container", false], [59, "id8", false]], "gt_dataset (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.gt_dataset", false], [62, "id38", false]], "gt_dataset (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.gt_dataset", false], [59, "id9", false]], "gt_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.gt_key", false]], "gt_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.gt_key", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.gt_min_reject", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.gt_region_for_roi", false], [115, "id16", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.gt_region_for_roi", false], [119, "id38", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.gt_region_for_roi", false], [116, "id10", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.gt_region_for_roi", false], [119, "id15", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.gt_region_for_roi", false], [118, "id12", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.gt_region_for_roi", false], [119, "id58", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.gt_region_for_roi", false], [120, "id5", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.gt_region_for_roi", false], [119, "id45", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.gt_region_for_roi", false], [119, "id21", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.gt_region_for_roi", false], [122, "id0", false]], "gunpowdertrainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.GunpowderTrainer", false]], "gunpowdertrainer (class in dacapo.experiments.trainers.gunpowder_trainer)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer", false]], "gunpowdertrainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig", false]], "gunpowdertrainerconfig (class in dacapo.experiments.trainers.gunpowder_trainer_config)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig", false]], "hausdorff (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.hausdorff", false], [82, "id2", false]], "hausdorff (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.hausdorff", false], [88, "id25", false]], "hausdorff() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.hausdorff", false], [83, "id14", false]], "head_keys (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.head_keys", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id2", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id2", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id1", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id9", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.higher_is_better", false], [88, "id19", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.higher_is_better", false], [87, "id7", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id3", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id53", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.higher_is_better", false]], "hooks (dacapo.store.converter.typedconverter attribute)": [[163, "dacapo.store.converter.TypedConverter.hooks", false]], "hot_loss (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss attribute)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.hot_loss", false]], "hot_loss (dacapo.experiments.tasks.losses.hotdistanceloss attribute)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.hot_loss", false]], "hot_loss() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "id1", false]], "hot_loss() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "id7", false]], "hotdistanceloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss", false]], "hotdistanceloss (class in dacapo.experiments.tasks.losses.hot_distance_loss)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss", false]], "hotdistancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor", false]], "hotdistancepredictor (class in dacapo.experiments.tasks.predictors.hot_distance_predictor)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor", false]], "hotdistancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.HotDistanceTask", false]], "hotdistancetask (class in dacapo.experiments.tasks.hot_distance_task)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask", false]], "hotdistancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig", false]], "hotdistancetaskconfig (class in dacapo.experiments.tasks.hot_distance_task_config)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig", false]], "id (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters.id", false], [110, "id0", false]], "id (dacapo.experiments.tasks.post_processors.postprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters.id", false], [108, "id5", false]], "in_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.in_channels", false], [17, "id13", false]], "initialize_weights() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.initialize_weights", false], [71, "id5", false]], "initialize_weights() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.initialize_weights", false], [73, "id9", false]], "initialize_weights() (dacapo.experiments.starts.start method)": [[73, "dacapo.experiments.starts.Start.initialize_weights", false], [73, "id1", false]], "initialize_weights() (dacapo.experiments.starts.start.start method)": [[74, "dacapo.experiments.starts.start.Start.initialize_weights", false], [74, "id1", false]], "innerdistancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor", false]], "innerdistancepredictor (class in dacapo.experiments.tasks.predictors.inner_distance_predictor)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor", false]], "innerdistancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.InnerDistanceTask", false]], "innerdistancetask (class in dacapo.experiments.tasks.inner_distance_task)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask", false]], "innerdistancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig", false]], "innerdistancetaskconfig (class in dacapo.experiments.tasks.inner_distance_task_config)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig", false]], "input_resolution (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.input_resolution", false], [59, "id12", false]], "input_resolution (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.input_resolution", false], [62, "id15", false]], "input_shape (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.architecture property)": [[21, "id0", false]], "input_shape (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id0", false]], "input_shape (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.input_shape", false]], "input_shape (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.input_shape", false], [18, "id1", false]], "input_shape (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.input_shape", false]], "input_shape (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.input_shape", false], [21, "id20", false]], "input_shape (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id3", false]], "input_shape (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id15", false]], "input_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.input_shape", false], [67, "id7", false]], "input_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.input_shape", false], [68, "id7", false]], "inside_value (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.inside_value", false]], "inside_value (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.inside_value", false]], "instance (dacapo.experiments.datasplits.datasplit_generator.segmentationtype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.instance", false], [59, "id4", false]], "instance() (dacapo.options class method)": [[155, "id0", false]], "instance() (dacapo.options method)": [[155, "dacapo.Options.instance", false]], "instance() (dacapo.options.options class method)": [[156, "id6", false]], "instance() (dacapo.options.options method)": [[156, "dacapo.options.Options.instance", false]], "instanceevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores", false]], "instanceevaluationscores (class in dacapo.experiments.tasks.evaluators.instance_evaluation_scores)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores", false]], "instanceevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator", false]], "instanceevaluator (class in dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator", false]], "intensitiesarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray", false]], "intensitiesarray (class in dacapo.experiments.arraytypes.intensities)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray", false]], "intensitiesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig", false]], "intensitiesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.intensity_array_config)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig", false]], "intensityaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig", false]], "intensityaugmentconfig (class in dacapo.experiments.trainers.gp_augments.intensity_config)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig", false]], "intensityscaleshiftaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig", false]], "intensityscaleshiftaugmentconfig (class in dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig", false]], "interp_order (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.interp_order", false], [44, "id3", false]], "interp_order (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.interp_order", false], [38, "id13", false]], "interpolatable (dacapo.experiments.arraytypes.annotationarray property)": [[27, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.annotations.annotationarray property)": [[22, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.arraytype.arraytype property)": [[23, "id0", false]], "interpolatable (dacapo.experiments.arraytypes.binary.binaryarray property)": [[24, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.distancearray property)": [[27, "id7", false]], "interpolatable (dacapo.experiments.arraytypes.distances.distancearray property)": [[25, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.embedding.embeddingarray property)": [[26, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.embeddingarray property)": [[27, "id10", false]], "interpolatable (dacapo.experiments.arraytypes.intensities.intensitiesarray property)": [[28, "id3", false]], "interpolatable (dacapo.experiments.arraytypes.intensitiesarray property)": [[27, "id5", false]], "interpolatable (dacapo.experiments.arraytypes.mask property)": [[27, "id8", false]], "interpolatable (dacapo.experiments.arraytypes.mask.mask property)": [[29, "id0", false]], "interpolatable (dacapo.experiments.arraytypes.probabilities.probabilityarray property)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray.interpolatable", false]], "interpolatable (dacapo.experiments.arraytypes.probabilityarray property)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.annotationarray method)": [[27, "dacapo.experiments.arraytypes.AnnotationArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.annotations.annotationarray method)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.arraytype.arraytype method)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.binary.binaryarray method)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.distancearray method)": [[27, "dacapo.experiments.arraytypes.DistanceArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.distances.distancearray method)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.embedding.embeddingarray method)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.embeddingarray method)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.intensities.intensitiesarray method)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.intensitiesarray method)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.mask method)": [[27, "dacapo.experiments.arraytypes.Mask.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.mask.mask method)": [[29, "dacapo.experiments.arraytypes.mask.Mask.interpolatable", false]], "is_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.is_best", false], [88, "id14", false]], "is_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.is_best", false], [87, "id2", false]], "is_zarr_group() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.is_zarr_group", false]], "iterate() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.iterate", false]], "iterate() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.iterate", false]], "iteration (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.iteration", false], [138, "id0", false]], "iteration (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.iteration", false], [140, "id0", false]], "iteration (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.iteration", false], [142, "id0", false]], "iteration (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.iteration", false], [67, "id10", false]], "iteration (dacapo.experiments.validation_iteration_scores.validationiterationscores attribute)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores.iteration", false], [144, "id0", false]], "iteration (dacapo.experiments.validationiterationscores attribute)": [[67, "dacapo.experiments.ValidationIterationScores.iteration", false], [67, "id16", false]], "iteration (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.iteration", false], [181, "id2", false]], "iteration (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Iteration", false]], "iteration_stats (dacapo.experiments.training_stats.trainingstats attribute)": [[143, "dacapo.experiments.training_stats.TrainingStats.iteration_stats", false], [143, "id0", false]], "iteration_stats (dacapo.experiments.trainingstats attribute)": [[67, "dacapo.experiments.TrainingStats.iteration_stats", false], [67, "id13", false]], "jaccard (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.jaccard", false], [82, "id1", false]], "jaccard (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.jaccard", false], [88, "id24", false]], "jaccard() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.jaccard", false], [83, "id13", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.kernel_size_down", false], [17, "id5", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.kernel_size_down", false], [17, "id17", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.kernel_size_down", false], [18, "id7", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.kernel_size_down", false], [21, "id37", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.kernel_size_down", false], [21, "id26", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.kernel_size_up", false], [17, "id6", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.kernel_size_up", false], [17, "id18", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.kernel_size_up", false], [18, "id8", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.kernel_size_up", false], [21, "id38", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.kernel_size_up", false], [21, "id27", false]], "kernel_sizes (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.kernel_sizes", false]], "key (dacapo.gp.dacapo_points_source.graphsource attribute)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.key", false], [149, "id0", false]], "key (dacapo.gp.graphsource attribute)": [[152, "dacapo.gp.GraphSource.key", false], [152, "id20", false]], "key (dacapo.utils.pipeline.zerossource attribute)": [[180, "dacapo.utils.pipeline.ZerosSource.key", false], [180, "id15", false]], "l_conv (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.l_conv", false], [17, "id19", false]], "l_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.l_down", false], [17, "id20", false]], "labels (dacapo.utils.pipeline.createpoints attribute)": [[180, "dacapo.utils.pipeline.CreatePoints.labels", false], [180, "id0", false]], "labels (dacapo.utils.pipeline.dilatepoints attribute)": [[180, "dacapo.utils.pipeline.DilatePoints.labels", false], [180, "id5", false]], "labels (dacapo.utils.pipeline.expandlabels attribute)": [[180, "dacapo.utils.pipeline.ExpandLabels.labels", false], [180, "id12", false]], "labels (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.labels", false]], "labels (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.labels", false]], "labels (dacapo.utils.pipeline.randomdilatelabels attribute)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.labels", false], [180, "id8", false]], "labels (dacapo.utils.pipeline.relabel attribute)": [[180, "dacapo.utils.pipeline.Relabel.labels", false]], "latest_iteration() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.latest_iteration", false], [169, "id1", false]], "latest_iteration() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.latest_iteration", false], [173, "id4", false]], "learning_rate (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.learning_rate", false], [127, "id0", false]], "learning_rate (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.learning_rate", false], [138, "id9", false]], "learning_rate (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.learning_rate", false], [136, "id0", false]], "learning_rate (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.learning_rate", false], [138, "id21", false]], "learning_rate (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.learning_rate", false], [138, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.learning_rate", false], [140, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.learning_rate", false], [141, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.learning_rate", false], [138, "id5", false]], "limit_validation_crop_size() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.limit_validation_crop_size", false]], "load_best() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.load_best", false], [173, "id3", false]], "load_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.load_weights", false], [173, "id2", false]], "localarrayidentifier (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.LocalArrayIdentifier", false]], "localarraystore (class in dacapo.store.local_array_store)": [[168, "dacapo.store.local_array_store.LocalArrayStore", false]], "localcontaineridentifier (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.LocalContainerIdentifier", false]], "localtorch (class in dacapo.compute_context)": [[13, "dacapo.compute_context.LocalTorch", false]], "localtorch (class in dacapo.compute_context.local_torch)": [[14, "dacapo.compute_context.local_torch.LocalTorch", false]], "localweightsstore (class in dacapo.store.local_weights_store)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore", false]], "logger (in module dacapo.apply)": [[0, "dacapo.apply.logger", false]], "logger (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.logger", false]], "logger (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.logger", false]], "logger (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.logger", false]], "logger (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.logger", false]], "logger (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.logger", false]], "logger (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.logger", false]], "logger (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.logger", false]], "logger (in module dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.logger", false]], "logger (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.logger", false]], "logger (in module dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.logger", false]], "logger (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.distance_predictor)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.hot_distance_predictor)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.inner_distance_predictor)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.one_hot_predictor)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.logger", false]], "logger (in module dacapo.experiments.trainers.gunpowder_trainer)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.logger", false]], "logger (in module dacapo.experiments.training_stats)": [[143, "dacapo.experiments.training_stats.logger", false]], "logger (in module dacapo.gp.elastic_augment_fuse)": [[150, "dacapo.gp.elastic_augment_fuse.logger", false]], "logger (in module dacapo.gp.gamma_noise)": [[151, "dacapo.gp.gamma_noise.logger", false]], "logger (in module dacapo.gp.reject_if_empty)": [[154, "dacapo.gp.reject_if_empty.logger", false]], "logger (in module dacapo.options)": [[156, "dacapo.options.logger", false]], "logger (in module dacapo.predict)": [[158, "dacapo.predict.logger", false]], "logger (in module dacapo.predict_local)": [[159, "dacapo.predict_local.logger", false]], "logger (in module dacapo.store.file_config_store)": [[165, "dacapo.store.file_config_store.logger", false]], "logger (in module dacapo.store.file_stats_store)": [[166, "dacapo.store.file_stats_store.logger", false]], "logger (in module dacapo.store.local_array_store)": [[168, "dacapo.store.local_array_store.logger", false]], "logger (in module dacapo.store.local_weights_store)": [[169, "dacapo.store.local_weights_store.logger", false]], "logger (in module dacapo.store.mongo_config_store)": [[170, "dacapo.store.mongo_config_store.logger", false]], "logger (in module dacapo.store.mongo_stats_store)": [[171, "dacapo.store.mongo_stats_store.logger", false]], "logger (in module dacapo.train)": [[175, "dacapo.train.logger", false]], "logger (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.logger", false]], "logger (in module dacapo.validate)": [[183, "dacapo.validate.logger", false]], "logicalorarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig", false]], "logicalorarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig", false]], "loss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.Loss", false]], "loss (class in dacapo.experiments.tasks.losses.loss)": [[100, "dacapo.experiments.tasks.losses.loss.Loss", false]], "loss (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.loss", false], [76, "id1", false]], "loss (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.loss", false], [93, "id38", false]], "loss (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.loss", false], [78, "id1", false]], "loss (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.loss", false], [93, "id18", false]], "loss (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.loss", false], [80, "id1", false]], "loss (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.loss", false], [93, "id7", false]], "loss (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.loss", false], [91, "id1", false]], "loss (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.loss", false], [93, "id56", false]], "loss (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.loss", false], [94, "id1", false]], "loss (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.loss", false], [93, "id46", false]], "loss (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.loss", false]], "loss (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.loss", false]], "loss (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.loss", false]], "loss (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.loss", false]], "loss (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.loss", false]], "loss (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.loss", false]], "loss (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.loss", false], [142, "id1", false]], "loss (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.loss", false], [67, "id11", false]], "lsd_pad() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_pad", false], [115, "id12", false]], "lsd_pad() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_pad", false], [119, "id34", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsd_weight_clipmax", false], [77, "id8", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsd_weight_clipmax", false], [93, "id35", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_weight_clipmax", false], [115, "id7", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_weight_clipmax", false], [119, "id29", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsd_weight_clipmin", false], [77, "id7", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsd_weight_clipmin", false], [93, "id34", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_weight_clipmin", false], [115, "id6", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_weight_clipmin", false], [119, "id28", false]], "lsds (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsds", false], [77, "id1", false]], "lsds (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsds", false], [93, "id28", false]], "lsds (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsds", false], [115, "id1", false]], "lsds (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsds", false], [119, "id23", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsds_to_affs_weight_ratio", false], [77, "id4", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsds_to_affs_weight_ratio", false], [93, "id31", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss attribute)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.lsds_to_affs_weight_ratio", false], [96, "id1", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.losses.affinitiesloss attribute)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.lsds_to_affs_weight_ratio", false], [99, "id4", false]], "makeraw (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.MakeRaw", false]], "makeraw.pipeline (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline", false]], "mask (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.Mask", false]], "mask (class in dacapo.experiments.arraytypes.mask)": [[29, "dacapo.experiments.arraytypes.mask.Mask", false]], "mask (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.mask", false], [54, "id3", false]], "mask (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.mask", false], [48, "id3", false]], "mask (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.mask", false], [55, "id2", false]], "mask (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.mask", false], [54, "id15", false]], "mask (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.MASK", false], [63, "id2", false]], "mask (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.MASK", false]], "mask (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.MASK", false], [64, "id2", false]], "mask (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.MASK", false]], "mask_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.mask_config", false], [56, "id3", false]], "mask_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.mask_config", false], [54, "id21", false]], "mask_distances (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.mask_distances", false], [79, "id4", false]], "mask_distances (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.mask_distances", false], [93, "id14", false]], "mask_distances (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.mask_distances", false], [92, "id5", false]], "mask_distances (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.mask_distances", false], [93, "id54", false]], "mask_distances (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.mask_distances", false], [116, "id1", false]], "mask_distances (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.mask_distances", false], [119, "id6", false]], "mask_distances (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.mask_distances", false], [118, "id3", false]], "mask_distances (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.mask_distances", false], [119, "id49", false]], "mask_integral_downsample_factor (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.mask_integral_downsample_factor", false], [136, "id7", false]], "mask_integral_downsample_factor (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.mask_integral_downsample_factor", false], [138, "id28", false]], "mask_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.mask_key", false], [148, "id2", false]], "mask_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.mask_key", false], [152, "id2", false]], "match_heads() (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.match_heads", false]], "max (dacapo.experiments.arraytypes.distancearray attribute)": [[27, "dacapo.experiments.arraytypes.DistanceArray.max", false]], "max (dacapo.experiments.arraytypes.distances.distancearray attribute)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.max", false]], "max (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.max", false], [28, "id2", false]], "max (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.max", false], [27, "id4", false]], "max (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.max", false], [38, "id16", false]], "max (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.max", false], [39, "id2", false]], "max_distance (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.max_distance", false], [118, "id4", false]], "max_distance (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.max_distance", false], [119, "id50", false]], "max_distance (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.max_distance", false]], "max_gt_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_gt_downsample", false], [59, "id16", false]], "max_gt_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_gt_downsample", false], [62, "id19", false]], "max_gt_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_gt_upsample", false], [59, "id17", false]], "max_gt_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_gt_upsample", false], [62, "id20", false]], "max_raw_training_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_training_downsample", false], [59, "id18", false]], "max_raw_training_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_training_downsample", false], [62, "id21", false]], "max_raw_training_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_training_upsample", false], [59, "id19", false]], "max_raw_training_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_training_upsample", false], [62, "id22", false]], "max_raw_validation_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_validation_downsample", false], [59, "id20", false]], "max_raw_validation_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_validation_downsample", false], [62, "id23", false]], "max_raw_validation_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_validation_upsample", false], [59, "id21", false]], "max_raw_validation_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_validation_upsample", false], [62, "id24", false]], "max_retries (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.max_retries", false]], "max_retries (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.max_retries", false]], "max_validation_volume_size (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_validation_volume_size", false], [59, "id26", false]], "max_validation_volume_size (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_validation_volume_size", false], [62, "id29", false]], "mean_false_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_distance", false], [82, "id9", false]], "mean_false_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_distance", false], [88, "id32", false]], "mean_false_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_distance", false], [83, "id22", false]], "mean_false_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_distance", false], [83, "id52", false]], "mean_false_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_distance_clipped", false], [82, "id12", false]], "mean_false_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_distance_clipped", false], [88, "id35", false]], "mean_false_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_distance_clipped", false], [83, "id25", false]], "mean_false_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_distance_clipped", false], [83, "id53", false]], "mean_false_negative_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_negative_distance", false], [82, "id10", false]], "mean_false_negative_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_negative_distance", false], [88, "id33", false]], "mean_false_negative_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_negative_distance", false], [83, "id23", false]], "mean_false_negative_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_negative_distance", false], [83, "id51", false]], "mean_false_negative_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_negative_distance_clipped", false], [82, "id13", false]], "mean_false_negative_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_negative_distance_clipped", false], [88, "id36", false]], "mean_false_negative_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_negative_distance_clipped", false], [83, "id26", false]], "mean_false_negative_distances_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_negative_distances_clipped", false], [83, "id48", false]], "mean_false_positive_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_positive_distance", false], [82, "id11", false]], "mean_false_positive_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_positive_distance", false], [88, "id34", false]], "mean_false_positive_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_positive_distance", false], [83, "id24", false]], "mean_false_positive_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_positive_distance", false], [83, "id49", false]], "mean_false_positive_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_positive_distance_clipped", false], [82, "id14", false]], "mean_false_positive_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_positive_distance_clipped", false], [88, "id37", false]], "mean_false_positive_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_positive_distance_clipped", false], [83, "id27", false]], "mean_false_positive_distances_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_positive_distances_clipped", false], [83, "id47", false]], "membrane_like (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.membrane_like", false]], "membrane_like (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.membrane_like", false]], "membrane_size (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.membrane_size", false]], "membrane_size (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.membrane_size", false]], "mergeinstancesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig", false]], "mergeinstancesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig", false]], "message (dacapo.store.config_store.duplicatenameerror attribute)": [[161, "dacapo.store.config_store.DuplicateNameError.message", false]], "min (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.min", false], [28, "id1", false]], "min (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.min", false], [27, "id3", false]], "min (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.min", false], [38, "id15", false]], "min (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.min", false], [39, "id1", false]], "min_masked (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.min_masked", false], [136, "id5", false]], "min_masked (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.min_masked", false], [137, "id4", false]], "min_masked (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.min_masked", false], [138, "id26", false]], "min_masked (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.min_masked", false], [138, "id19", false]], "min_size (dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.dummypostprocessorparameters attribute)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters.min_size", false], [107, "id0", false]], "min_size (dacapo.experiments.tasks.post_processors.dummypostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters.min_size", false], [108, "id4", false]], "min_size (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.min_size", false]], "min_size (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.min_size", false]], "min_training_volume_size (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.min_training_volume_size", false], [59, "id22", false]], "min_training_volume_size (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.min_training_volume_size", false], [62, "id25", false]], "mirror_augment (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.mirror_augment", false], [127, "id2", false]], "mirror_augment (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig attribute)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.mirror_augment", false], [128, "id0", false]], "mirror_augment (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.mirror_augment", false], [138, "id11", false]], "mirror_augment (dacapo.experiments.trainers.dummytrainerconfig attribute)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.mirror_augment", false], [138, "id7", false]], "missingannotationsmaskconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig", false]], "missingannotationsmaskconfig (class in dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig", false]], "mode (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.mode", false]], "mode (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.mode", false]], "model (class in dacapo.experiments)": [[67, "dacapo.experiments.Model", false]], "model (class in dacapo.experiments.model)": [[68, "dacapo.experiments.model.Model", false]], "model (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.model", false], [69, "id6", false]], "model (dacapo.store.weights_store.weights attribute)": [[173, "dacapo.store.weights_store.Weights.model", false], [173, "id1", false]], "model_configs (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.model_configs", false]], "module": [[0, "module-dacapo.apply", false], [1, "module-dacapo.blockwise.argmax_worker", false], [2, "module-dacapo.blockwise.blockwise_task", false], [3, "module-dacapo.blockwise.empanada_function", false], [4, "module-dacapo.blockwise", false], [5, "module-dacapo.blockwise.predict_worker", false], [6, "module-dacapo.blockwise.relabel_worker", false], [7, "module-dacapo.blockwise.scheduler", false], [8, "module-dacapo.blockwise.segment_worker", false], [9, "module-dacapo.blockwise.threshold_worker", false], [10, "module-dacapo.blockwise.watershed_function", false], [11, "module-dacapo.compute_context.bsub", false], [12, "module-dacapo.compute_context.compute_context", false], [13, "module-dacapo.compute_context", false], [14, "module-dacapo.compute_context.local_torch", false], [15, "module-dacapo.experiments.architectures.architecture", false], [16, "module-dacapo.experiments.architectures.architecture_config", false], [17, "module-dacapo.experiments.architectures.cnnectome_unet", false], [18, "module-dacapo.experiments.architectures.cnnectome_unet_config", false], [19, "module-dacapo.experiments.architectures.dummy_architecture", false], [20, "module-dacapo.experiments.architectures.dummy_architecture_config", false], [21, "module-dacapo.experiments.architectures", false], [22, "module-dacapo.experiments.arraytypes.annotations", false], [23, "module-dacapo.experiments.arraytypes.arraytype", false], [24, "module-dacapo.experiments.arraytypes.binary", false], [25, "module-dacapo.experiments.arraytypes.distances", false], [26, "module-dacapo.experiments.arraytypes.embedding", false], [27, "module-dacapo.experiments.arraytypes", false], [28, "module-dacapo.experiments.arraytypes.intensities", false], [29, "module-dacapo.experiments.arraytypes.mask", false], [30, "module-dacapo.experiments.arraytypes.probabilities", false], [31, "module-dacapo.experiments.datasplits.datasets.arrays.array_config", false], [32, "module-dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", false], [33, "module-dacapo.experiments.datasplits.datasets.arrays.concat_array_config", false], [34, "module-dacapo.experiments.datasplits.datasets.arrays.constant_array_config", false], [35, "module-dacapo.experiments.datasplits.datasets.arrays.crop_array_config", false], [36, "module-dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", false], [37, "module-dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", false], [38, "module-dacapo.experiments.datasplits.datasets.arrays", false], [39, "module-dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", false], [40, "module-dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", false], [41, "module-dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", false], [42, "module-dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", false], [43, "module-dacapo.experiments.datasplits.datasets.arrays.ones_array_config", false], [44, "module-dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", false], [45, "module-dacapo.experiments.datasplits.datasets.arrays.sum_array_config", false], [46, "module-dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", false], [47, "module-dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", false], [48, "module-dacapo.experiments.datasplits.datasets.dataset", false], [49, "module-dacapo.experiments.datasplits.datasets.dataset_config", false], [50, "module-dacapo.experiments.datasplits.datasets.dummy_dataset", false], [51, "module-dacapo.experiments.datasplits.datasets.dummy_dataset_config", false], [52, "module-dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", false], [53, "module-dacapo.experiments.datasplits.datasets.graphstores", false], [54, "module-dacapo.experiments.datasplits.datasets", false], [55, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset", false], [56, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", false], [57, "module-dacapo.experiments.datasplits.datasplit", false], [58, "module-dacapo.experiments.datasplits.datasplit_config", false], [59, "module-dacapo.experiments.datasplits.datasplit_generator", false], [60, "module-dacapo.experiments.datasplits.dummy_datasplit", false], [61, "module-dacapo.experiments.datasplits.dummy_datasplit_config", false], [62, "module-dacapo.experiments.datasplits", false], [63, "module-dacapo.experiments.datasplits.keys", false], [64, "module-dacapo.experiments.datasplits.keys.keys", false], [65, "module-dacapo.experiments.datasplits.train_validate_datasplit", false], [66, "module-dacapo.experiments.datasplits.train_validate_datasplit_config", false], [67, "module-dacapo.experiments", false], [68, "module-dacapo.experiments.model", false], [69, "module-dacapo.experiments.run", false], [70, "module-dacapo.experiments.run_config", false], [71, "module-dacapo.experiments.starts.cosem_start", false], [72, "module-dacapo.experiments.starts.cosem_start_config", false], [73, "module-dacapo.experiments.starts", false], [74, "module-dacapo.experiments.starts.start", false], [75, "module-dacapo.experiments.starts.start_config", false], [76, "module-dacapo.experiments.tasks.affinities_task", false], [77, "module-dacapo.experiments.tasks.affinities_task_config", false], [78, "module-dacapo.experiments.tasks.distance_task", false], [79, "module-dacapo.experiments.tasks.distance_task_config", false], [80, "module-dacapo.experiments.tasks.dummy_task", false], [81, "module-dacapo.experiments.tasks.dummy_task_config", false], [82, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", false], [83, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", false], [84, "module-dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", false], [85, "module-dacapo.experiments.tasks.evaluators.dummy_evaluator", false], [86, "module-dacapo.experiments.tasks.evaluators.evaluation_scores", false], [87, "module-dacapo.experiments.tasks.evaluators.evaluator", false], [88, "module-dacapo.experiments.tasks.evaluators", false], [89, "module-dacapo.experiments.tasks.evaluators.instance_evaluation_scores", false], [90, "module-dacapo.experiments.tasks.evaluators.instance_evaluator", false], [91, "module-dacapo.experiments.tasks.hot_distance_task", false], [92, "module-dacapo.experiments.tasks.hot_distance_task_config", false], [93, "module-dacapo.experiments.tasks", false], [94, "module-dacapo.experiments.tasks.inner_distance_task", false], [95, "module-dacapo.experiments.tasks.inner_distance_task_config", false], [96, "module-dacapo.experiments.tasks.losses.affinities_loss", false], [97, "module-dacapo.experiments.tasks.losses.dummy_loss", false], [98, "module-dacapo.experiments.tasks.losses.hot_distance_loss", false], [99, "module-dacapo.experiments.tasks.losses", false], [100, "module-dacapo.experiments.tasks.losses.loss", false], [101, "module-dacapo.experiments.tasks.losses.mse_loss", false], [102, "module-dacapo.experiments.tasks.one_hot_task", false], [103, "module-dacapo.experiments.tasks.one_hot_task_config", false], [104, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor", false], [105, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", false], [106, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor", false], [107, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", false], [108, "module-dacapo.experiments.tasks.post_processors", false], [109, "module-dacapo.experiments.tasks.post_processors.post_processor", false], [110, "module-dacapo.experiments.tasks.post_processors.post_processor_parameters", false], [111, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor", false], [112, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", false], [113, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor", false], [114, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", false], [115, "module-dacapo.experiments.tasks.predictors.affinities_predictor", false], [116, "module-dacapo.experiments.tasks.predictors.distance_predictor", false], [117, "module-dacapo.experiments.tasks.predictors.dummy_predictor", false], [118, "module-dacapo.experiments.tasks.predictors.hot_distance_predictor", false], [119, "module-dacapo.experiments.tasks.predictors", false], [120, "module-dacapo.experiments.tasks.predictors.inner_distance_predictor", false], [121, "module-dacapo.experiments.tasks.predictors.one_hot_predictor", false], [122, "module-dacapo.experiments.tasks.predictors.predictor", false], [123, "module-dacapo.experiments.tasks.pretrained_task", false], [124, "module-dacapo.experiments.tasks.pretrained_task_config", false], [125, "module-dacapo.experiments.tasks.task", false], [126, "module-dacapo.experiments.tasks.task_config", false], [127, "module-dacapo.experiments.trainers.dummy_trainer", false], [128, "module-dacapo.experiments.trainers.dummy_trainer_config", false], [129, "module-dacapo.experiments.trainers.gp_augments.augment_config", false], [130, "module-dacapo.experiments.trainers.gp_augments.elastic_config", false], [131, "module-dacapo.experiments.trainers.gp_augments.gamma_config", false], [132, "module-dacapo.experiments.trainers.gp_augments", false], [133, "module-dacapo.experiments.trainers.gp_augments.intensity_config", false], [134, "module-dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", false], [135, "module-dacapo.experiments.trainers.gp_augments.simple_config", false], [136, "module-dacapo.experiments.trainers.gunpowder_trainer", false], [137, "module-dacapo.experiments.trainers.gunpowder_trainer_config", false], [138, "module-dacapo.experiments.trainers", false], [139, "module-dacapo.experiments.trainers.optimizers", false], [140, "module-dacapo.experiments.trainers.trainer", false], [141, "module-dacapo.experiments.trainers.trainer_config", false], [142, "module-dacapo.experiments.training_iteration_stats", false], [143, "module-dacapo.experiments.training_stats", false], [144, "module-dacapo.experiments.validation_iteration_scores", false], [145, "module-dacapo.experiments.validation_scores", false], [146, "module-dacapo.ext", false], [147, "module-dacapo.gp.copy", false], [148, "module-dacapo.gp.dacapo_create_target", false], [149, "module-dacapo.gp.dacapo_points_source", false], [150, "module-dacapo.gp.elastic_augment_fuse", false], [151, "module-dacapo.gp.gamma_noise", false], [152, "module-dacapo.gp", false], [153, "module-dacapo.gp.product", false], [154, "module-dacapo.gp.reject_if_empty", false], [155, "module-dacapo", false], [156, "module-dacapo.options", false], [157, "module-dacapo.plot", false], [158, "module-dacapo.predict", false], [159, "module-dacapo.predict_local", false], [160, "module-dacapo.store.array_store", false], [161, "module-dacapo.store.config_store", false], [162, "module-dacapo.store.conversion_hooks", false], [163, "module-dacapo.store.converter", false], [164, "module-dacapo.store.create_store", false], [165, "module-dacapo.store.file_config_store", false], [166, "module-dacapo.store.file_stats_store", false], [167, "module-dacapo.store", false], [168, "module-dacapo.store.local_array_store", false], [169, "module-dacapo.store.local_weights_store", false], [170, "module-dacapo.store.mongo_config_store", false], [171, "module-dacapo.store.mongo_stats_store", false], [172, "module-dacapo.store.stats_store", false], [173, "module-dacapo.store.weights_store", false], [174, "module-dacapo.tmp", false], [175, "module-dacapo.train", false], [176, "module-dacapo.utils.affinities", false], [177, "module-dacapo.utils.array_utils", false], [178, "module-dacapo.utils.balance_weights", false], [179, "module-dacapo.utils", false], [180, "module-dacapo.utils.pipeline", false], [181, "module-dacapo.utils.view", false], [182, "module-dacapo.utils.voi", false], [183, "module-dacapo.validate", false], [185, "module-dacapo", false], [189, "module-dacapo", false], [194, "module-dacapo", false]], "module() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.module", false]], "module() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.module", false]], "mongo_db_host (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.mongo_db_host", false], [156, "id3", false]], "mongo_db_name (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.mongo_db_name", false], [156, "id4", false]], "mongoconfigstore (class in dacapo.store.mongo_config_store)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore", false]], "mongostatsstore (class in dacapo.store.mongo_stats_store)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore", false]], "most_recent_iteration (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.most_recent_iteration", false]], "move_optimizer() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.move_optimizer", false]], "moving_counts (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.moving_counts", false]], "moving_counts (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.moving_counts", false]], "mseloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.MSELoss", false]], "mseloss (class in dacapo.experiments.tasks.losses.mse_loss)": [[101, "dacapo.experiments.tasks.losses.mse_loss.MSELoss", false]], "multichannelbinarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores", false]], "multichannelbinarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores", false]], "name (dacapo.experiments.architectures.architecture_config.architectureconfig attribute)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig.name", false], [16, "id0", false]], "name (dacapo.experiments.architectures.architectureconfig attribute)": [[21, "dacapo.experiments.architectures.ArchitectureConfig.name", false], [21, "id6", false]], "name (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig attribute)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.name", false], [31, "id0", false]], "name (dacapo.experiments.datasplits.datasets.arrays.arrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.name", false], [38, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.name", false], [54, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.name", false], [48, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig attribute)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.name", false], [49, "id0", false]], "name (dacapo.experiments.datasplits.datasets.datasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.name", false], [54, "id6", false]], "name (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset attribute)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.dummydataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.name", false]], "name (dacapo.experiments.datasplits.datasplit_config.datasplitconfig attribute)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig.name", false], [58, "id0", false]], "name (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.name", false], [59, "id10", false]], "name (dacapo.experiments.datasplits.datasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DataSplitConfig.name", false], [62, "id2", false]], "name (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.name", false], [62, "id13", false]], "name (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.name", false], [69, "id0", false]], "name (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.name", false]], "name (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.name", false]], "name (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.name", false], [71, "id2", false]], "name (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.name", false], [73, "id6", false]], "name (dacapo.experiments.tasks.losses.dummy_loss.dummyloss attribute)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss.name", false]], "name (dacapo.experiments.tasks.losses.dummyloss attribute)": [[99, "dacapo.experiments.tasks.losses.DummyLoss.name", false]], "name (dacapo.experiments.tasks.task_config.taskconfig attribute)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig.name", false], [126, "id0", false]], "name (dacapo.experiments.tasks.taskconfig attribute)": [[93, "dacapo.experiments.tasks.TaskConfig.name", false], [93, "id0", false]], "name (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.name", false], [141, "id0", false]], "name (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.name", false], [138, "id3", false]], "neighborhood (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.neighborhood", false], [77, "id0", false]], "neighborhood (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.neighborhood", false], [93, "id27", false]], "neighborhood (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.neighborhood", false], [115, "id0", false]], "neighborhood (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.neighborhood", false], [119, "id22", false]], "neuroglancerrunviewer (class in dacapo.utils.view)": [[181, "dacapo.utils.view.NeuroglancerRunViewer", false]], "new_validation_checker() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.new_validation_checker", false], [181, "id21", false]], "next() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.next", false], [136, "id10", false]], "next() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.next", false], [138, "id31", false]], "next_conv_kernel_sizes (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.next_conv_kernel_sizes", false], [17, "id32", false]], "node() (dacapo.experiments.trainers.augmentconfig method)": [[138, "dacapo.experiments.trainers.AugmentConfig.node", false], [138, "id32", false]], "node() (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig method)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig.node", false], [129, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.augmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig.node", false], [132, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig method)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.node", false], [130, "id5", false]], "node() (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.node", false], [132, "id6", false]], "node() (dacapo.experiments.trainers.gp_augments.gamma_config.gammaaugmentconfig method)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig.node", false], [131, "id1", false]], "node() (dacapo.experiments.trainers.gp_augments.gammaaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig.node", false], [132, "id9", false]], "node() (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig method)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.node", false], [133, "id3", false]], "node() (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.node", false], [134, "id2", false]], "node() (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.node", false], [132, "id13", false]], "node() (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.node", false], [132, "id16", false]], "node() (dacapo.experiments.trainers.gp_augments.simple_config.simpleaugmentconfig method)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig.node", false], [135, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.simpleaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig.node", false], [132, "id7", false]], "non_empty (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.NON_EMPTY", false], [63, "id3", false]], "non_empty (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.NON_EMPTY", false]], "non_empty (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.NON_EMPTY", false], [64, "id3", false]], "non_empty (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.NON_EMPTY", false]], "none() (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig method)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.None", false]], "none() (dacapo.experiments.tasks.onehottaskconfig method)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.None", false]], "norm (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.norm", false], [118, "id1", false]], "norm (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.norm", false], [119, "id47", false]], "norm (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.norm", false]], "nosuchmodule (class in dacapo.ext)": [[146, "dacapo.ext.NoSuchModule", false]], "np_to_funlib_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.np_to_funlib_array", false]], "num_affinities (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss attribute)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.num_affinities", false], [96, "id0", false]], "num_affinities (dacapo.experiments.tasks.losses.affinitiesloss attribute)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.num_affinities", false], [99, "id3", false]], "num_channels() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.num_channels", false]], "num_channels() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.num_channels", false]], "num_channels_from_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.num_channels_from_array", false]], "num_classes (dacapo.experiments.arraytypes.arraytype.arraytype attribute)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.num_classes", false]], "num_cpus (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.num_cpus", false], [13, "id8", false]], "num_cpus (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.num_cpus", false], [11, "id2", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.num_data_fetchers", false], [136, "id2", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.num_data_fetchers", false], [137, "id1", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.num_data_fetchers", false], [138, "id23", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.num_data_fetchers", false], [138, "id16", false]], "num_fmaps (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_fmaps", false], [17, "id2", false]], "num_fmaps (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.num_fmaps", false], [18, "id4", false]], "num_fmaps (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_fmaps", false], [21, "id34", false]], "num_fmaps (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.num_fmaps", false], [21, "id23", false]], "num_gpus (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.num_gpus", false], [13, "id7", false]], "num_gpus (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.num_gpus", false], [11, "id1", false]], "num_heads (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_heads", false]], "num_heads (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.num_heads", false], [17, "id12", false]], "num_heads (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_heads", false]], "num_in_channels (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.architecture property)": [[21, "id2", false]], "num_in_channels (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id2", false]], "num_in_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id4", false]], "num_in_channels (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.num_in_channels", false], [20, "id1", false]], "num_in_channels (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id16", false]], "num_in_channels (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.num_in_channels", false], [21, "id9", false]], "num_in_channels (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.num_in_channels", false], [67, "id3", false]], "num_in_channels (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.num_in_channels", false], [68, "id3", false]], "num_in_channels() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.num_in_channels", false]], "num_in_channels() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.num_in_channels", false]], "num_iterations (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.num_iterations", false]], "num_iterations (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.num_iterations", false]], "num_levels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.num_levels", false], [17, "id11", false]], "num_lsd_voxels (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.num_lsd_voxels", false], [77, "id2", false]], "num_lsd_voxels (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.num_lsd_voxels", false], [93, "id29", false]], "num_out_channels (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.architecture property)": [[21, "id3", false]], "num_out_channels (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id3", false]], "num_out_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id5", false]], "num_out_channels (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.num_out_channels", false], [20, "id2", false]], "num_out_channels (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id17", false]], "num_out_channels (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.num_out_channels", false], [21, "id10", false]], "num_out_channels (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.num_out_channels", false], [67, "id0", false]], "num_out_channels (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.num_out_channels", false], [68, "id0", false]], "num_out_channels() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.num_out_channels", false]], "num_out_channels() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.num_out_channels", false]], "num_points (dacapo.utils.pipeline.createpoints attribute)": [[180, "dacapo.utils.pipeline.CreatePoints.num_points", false], [180, "id1", false]], "num_voxels (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.num_voxels", false], [115, "id2", false]], "num_voxels (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.num_voxels", false], [119, "id24", false]], "num_workers (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.num_workers", false]], "num_workers (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.num_workers", false]], "offset (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.offset", false], [46, "id1", false]], "offsets (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor attribute)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.offsets", false], [113, "id0", false]], "offsets (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.offsets", false]], "offsets (dacapo.experiments.tasks.post_processors.watershedpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.offsets", false], [108, "id17", false]], "offsets (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.offsets", false]], "onehotpredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor", false]], "onehotpredictor (class in dacapo.experiments.tasks.predictors.one_hot_predictor)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor", false]], "onehottask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.OneHotTask", false]], "onehottask (class in dacapo.experiments.tasks.one_hot_task)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask", false]], "onehottaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig", false]], "onehottaskconfig (class in dacapo.experiments.tasks.one_hot_task_config)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig", false]], "onesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig", false]], "onesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.ones_array_config)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig", false]], "oom_limit (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch.oom_limit", false], [14, "id1", false]], "oom_limit (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch.oom_limit", false], [13, "id4", false]], "open_from_array_identitifier() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.open_from_array_identitifier", false], [181, "id16", false]], "open_from_identifier() (in module dacapo.tmp)": [[174, "dacapo.tmp.open_from_identifier", false]], "optimizer (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.optimizer", false], [69, "id7", false]], "optimizer (dacapo.store.weights_store.weights attribute)": [[173, "dacapo.store.weights_store.Weights.optimizer", false], [173, "id0", false]], "options (class in dacapo)": [[155, "dacapo.Options", false]], "options (class in dacapo.options)": [[156, "dacapo.options.Options", false]], "orthoplane_inference() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.orthoplane_inference", false]], "out_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.out_channels", false], [17, "id14", false]], "output_array_type (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor property)": [[115, "id17", false]], "output_array_type (dacapo.experiments.tasks.predictors.affinitiespredictor property)": [[119, "id39", false]], "output_array_type (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor property)": [[116, "id7", false]], "output_array_type (dacapo.experiments.tasks.predictors.distancepredictor property)": [[119, "id12", false]], "output_array_type (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor property)": [[117, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.dummypredictor property)": [[119, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor property)": [[120, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.innerdistancepredictor property)": [[119, "id44", false]], "output_array_type (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor property)": [[121, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.onehotpredictor property)": [[119, "id20", false]], "output_array_type (dacapo.experiments.tasks.predictors.predictor property)": [[119, "dacapo.experiments.tasks.predictors.Predictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.predictor.predictor property)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.output_array_type", false]], "output_resolution (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.output_resolution", false], [59, "id13", false]], "output_resolution (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.output_resolution", false], [62, "id16", false]], "output_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.output_shape", false]], "output_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.output_shape", false]], "outputidentifier (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.OutputIdentifier", false]], "overlap_measures_filter() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.overlap_measures_filter", false]], "p (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.p", false], [154, "id0", false]], "p (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.p", false], [152, "id13", false]], "padding (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.padding", false], [17, "id8", false]], "padding (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.padding", false]], "padding (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.padding", false], [18, "id11", false]], "padding (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.padding", false], [21, "id40", false]], "padding (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.padding", false], [21, "id30", false]], "padding() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.padding", false], [118, "id13", false]], "padding() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.padding", false], [119, "id59", false]], "padding() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.padding", false]], "padding() (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.padding", false]], "parameter (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.parameter", false], [181, "id3", false]], "parameter_names (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters property)": [[110, "id1", false]], "parameter_names (dacapo.experiments.tasks.post_processors.postprocessorparameters property)": [[108, "id6", false]], "parameter_names (dacapo.experiments.validation_scores.validationscores property)": [[145, "id10", false]], "parameter_names (dacapo.experiments.validationscores property)": [[67, "id28", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.argmaxpostprocessorparameters method)": [[105, "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.argmaxpostprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.dummypostprocessorparameters method)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.dummypostprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters method)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.postprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.parameter_names", false]], "parameter_names() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.parameter_names", false]], "parameters (dacapo.experiments.tasks.task property)": [[93, "dacapo.experiments.tasks.Task.parameters", false]], "parameters (dacapo.experiments.tasks.task.task property)": [[125, "dacapo.experiments.tasks.task.Task.parameters", false]], "parameters (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.parameters", false], [145, "id0", false]], "parameters (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.parameters", false], [67, "id18", false]], "path (dacapo.store.file_config_store.fileconfigstore attribute)": [[165, "dacapo.store.file_config_store.FileConfigStore.path", false], [165, "id0", false]], "path (dacapo.store.file_stats_store.filestatsstore attribute)": [[166, "dacapo.store.file_stats_store.FileStatsStore.path", false]], "path (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.path", false]], "path (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.path", false]], "path (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.path", false]], "path (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.path", false]], "path (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.path", false]], "plot_runs() (in module dacapo.plot)": [[157, "dacapo.plot.plot_runs", false]], "post_processor (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.post_processor", false], [76, "id2", false]], "post_processor (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.post_processor", false], [93, "id39", false]], "post_processor (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.post_processor", false], [78, "id2", false]], "post_processor (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.post_processor", false], [93, "id19", false]], "post_processor (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.post_processor", false], [80, "id2", false]], "post_processor (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.post_processor", false], [93, "id8", false]], "post_processor (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.post_processor", false], [91, "id2", false]], "post_processor (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.post_processor", false], [93, "id57", false]], "post_processor (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.post_processor", false], [94, "id2", false]], "post_processor (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.post_processor", false], [93, "id47", false]], "post_processor (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.post_processor", false]], "post_processor (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.post_processor", false]], "postprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor", false]], "postprocessor (class in dacapo.experiments.tasks.post_processors.post_processor)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor", false]], "postprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters", false]], "postprocessorparameters (class in dacapo.experiments.tasks.post_processors.post_processor_parameters)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters", false]], "precision (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.precision", false], [82, "id18", false]], "precision (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.precision", false], [88, "id41", false]], "precision() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.precision", false], [83, "id18", false]], "precision_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.precision_with_tolerance", false], [82, "id15", false]], "precision_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.precision_with_tolerance", false], [88, "id38", false]], "precision_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.precision_with_tolerance", false], [83, "id30", false]], "precision_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.precision_with_tolerance", false], [83, "id44", false]], "predict() (in module dacapo)": [[155, "dacapo.predict", false]], "predict() (in module dacapo.predict)": [[158, "dacapo.predict.predict", false]], "predict() (in module dacapo.predict_local)": [[159, "dacapo.predict_local.predict", false]], "prediction_array (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor attribute)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.argmaxpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor attribute)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.thresholdpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.prediction_array", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.post_processor.postprocessor attribute)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.postprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor attribute)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.thresholdpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.prediction_array_identifier", false]], "prediction_head (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.prediction_head", false], [67, "id5", false]], "prediction_head (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.prediction_head", false], [68, "id5", false]], "predictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.Predictor", false]], "predictor (class in dacapo.experiments.tasks.predictors.predictor)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor", false]], "predictor (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.predictor", false], [76, "id0", false]], "predictor (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.predictor", false], [93, "id37", false]], "predictor (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.predictor", false], [78, "id0", false]], "predictor (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.predictor", false], [93, "id17", false]], "predictor (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.predictor", false], [80, "id0", false]], "predictor (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.predictor", false], [93, "id6", false]], "predictor (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.predictor", false], [91, "id0", false]], "predictor (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.predictor", false], [93, "id55", false]], "predictor (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.predictor", false], [94, "id0", false]], "predictor (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.predictor", false], [93, "id45", false]], "predictor (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.predictor", false]], "predictor (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.predictor", false]], "predictor (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.predictor", false]], "predictor (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.predictor", false]], "predictor (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.predictor", false]], "predictor (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.predictor", false]], "predictor (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.Predictor", false], [148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.predictor", false]], "predictor (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.Predictor", false], [152, "dacapo.gp.DaCapoTargetFilter.predictor", false]], "prepare() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.prepare", false], [147, "id4", false]], "prepare() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.prepare", false], [152, "id18", false]], "prepare() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.prepare", false], [148, "id4", false]], "prepare() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.prepare", false], [152, "id4", false]], "prepare() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.prepare", false]], "prepare() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.prepare", false]], "prepare() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.prepare", false]], "prepare() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.prepare", false]], "pretrainedtask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.PretrainedTask", false]], "pretrainedtask (class in dacapo.experiments.tasks.pretrained_task)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask", false]], "pretrainedtaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig", false]], "pretrainedtaskconfig (class in dacapo.experiments.tasks.pretrained_task_config)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig", false]], "print_profiling (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.print_profiling", false], [136, "id3", false]], "print_profiling (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.print_profiling", false], [138, "id24", false]], "probabilityarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray", false]], "probabilityarray (class in dacapo.experiments.arraytypes.probabilities)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray", false]], "process() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.process", false], [104, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.process", false], [108, "id16", false]], "process() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.process", false], [106, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.process", false], [108, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.process", false], [109, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.process", false], [108, "id9", false]], "process() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.process", false], [111, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.process", false], [108, "id12", false]], "process() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.process", false], [113, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.process", false], [108, "id20", false]], "process() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.process", false], [116, "id9", false]], "process() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.process", false], [119, "id14", false]], "process() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.process", false], [118, "id11", false]], "process() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.process", false], [119, "id57", false]], "process() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.process", false]], "process() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.process", false], [147, "id5", false]], "process() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.process", false], [152, "id19", false]], "process() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.process", false], [148, "id5", false]], "process() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.process", false], [152, "id5", false]], "process() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.process", false]], "process() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.process", false]], "process() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.process", false], [151, "id4", false]], "process() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.process", false], [152, "id10", false]], "process() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.process", false]], "process() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.process", false]], "process() (dacapo.utils.pipeline.createpoints method)": [[180, "dacapo.utils.pipeline.CreatePoints.process", false], [180, "id2", false]], "process() (dacapo.utils.pipeline.dilatepoints method)": [[180, "dacapo.utils.pipeline.DilatePoints.process", false], [180, "id7", false]], "process() (dacapo.utils.pipeline.expandlabels method)": [[180, "dacapo.utils.pipeline.ExpandLabels.process", false], [180, "id14", false]], "process() (dacapo.utils.pipeline.makeraw method)": [[180, "dacapo.utils.pipeline.MakeRaw.process", false], [180, "id4", false]], "process() (dacapo.utils.pipeline.randomdilatelabels method)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.process", false], [180, "id10", false]], "process() (dacapo.utils.pipeline.relabel method)": [[180, "dacapo.utils.pipeline.Relabel.process", false], [180, "id11", false]], "product (class in dacapo.gp)": [[152, "dacapo.gp.Product", false]], "product (class in dacapo.gp.product)": [[153, "dacapo.gp.product.Product", false]], "provide() (dacapo.gp.dacapo_points_source.graphsource method)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.provide", false], [149, "id3", false]], "provide() (dacapo.gp.graphsource method)": [[152, "dacapo.gp.GraphSource.provide", false], [152, "id23", false]], "provide() (dacapo.gp.reject_if_empty.rejectifempty method)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.provide", false]], "provide() (dacapo.gp.rejectifempty method)": [[152, "dacapo.gp.RejectIfEmpty.provide", false]], "provide() (dacapo.utils.pipeline.zerossource method)": [[180, "dacapo.utils.pipeline.ZerosSource.provide", false], [180, "id17", false]], "psi (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.psi", false]], "queue (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.queue", false], [13, "id6", false]], "queue (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.queue", false], [11, "id0", false]], "r_conv (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.r_conv", false], [17, "id22", false]], "r_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.r_up", false], [17, "id21", false]], "random_source_pipeline() (in module dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.random_source_pipeline", false]], "randomdilatelabels (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.RandomDilateLabels", false]], "raw (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.raw", false], [54, "id1", false]], "raw (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.raw", false], [48, "id1", false]], "raw (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset attribute)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.raw", false], [50, "id0", false]], "raw (dacapo.experiments.datasplits.datasets.dummydataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.raw", false], [54, "id9", false]], "raw (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.raw", false], [55, "id0", false]], "raw (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.raw", false], [54, "id13", false]], "raw (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.RAW", false], [63, "id0", false]], "raw (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.RAW", false]], "raw (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.RAW", false], [64, "id0", false]], "raw (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.RAW", false]], "raw (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.raw", false]], "raw (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.raw", false]], "raw (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.raw", false]], "raw_config (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig attribute)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.raw_config", false], [51, "id1", false]], "raw_config (dacapo.experiments.datasplits.datasets.dummydatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.raw_config", false], [54, "id11", false]], "raw_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.raw_config", false], [56, "id1", false]], "raw_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.raw_config", false], [54, "id19", false]], "raw_container (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.raw_container", false], [62, "id35", false]], "raw_container (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.raw_container", false], [59, "id6", false]], "raw_dataset (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.raw_dataset", false], [62, "id36", false]], "raw_dataset (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.raw_dataset", false], [59, "id7", false]], "raw_max (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.raw_max", false], [59, "id24", false]], "raw_max (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.raw_max", false], [62, "id27", false]], "raw_min (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.raw_min", false], [59, "id23", false]], "raw_min (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.raw_min", false], [62, "id26", false]], "rawgtdataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset", false]], "rawgtdataset (class in dacapo.experiments.datasplits.datasets.raw_gt_dataset)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset", false]], "rawgtdatasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig", false]], "rawgtdatasetconfig (class in dacapo.experiments.datasplits.datasets.raw_gt_dataset_config)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig", false]], "read_cross_block_merges() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.read_cross_block_merges", false]], "read_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.read_roi", false]], "read_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.read_roi", false]], "read_write_conflict (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.read_write_conflict", false]], "rec_forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.rec_forward", false], [17, "id23", false]], "recall (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.recall", false], [82, "id19", false]], "recall (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.recall", false], [88, "id42", false]], "recall() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.recall", false], [83, "id19", false]], "recall_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.recall_with_tolerance", false], [82, "id16", false]], "recall_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.recall_with_tolerance", false], [88, "id39", false]], "recall_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.recall_with_tolerance", false], [83, "id31", false]], "recall_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.recall_with_tolerance", false], [83, "id45", false]], "register_hierarchy() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.register_hierarchy", false], [163, "id0", false]], "register_hierarchy_hooks() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.register_hierarchy_hooks", false]], "register_hooks() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.register_hooks", false]], "rejectifempty (class in dacapo.gp)": [[152, "dacapo.gp.RejectIfEmpty", false]], "rejectifempty (class in dacapo.gp.reject_if_empty)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty", false]], "relabel (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.Relabel", false]], "relabel() (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.relabel", false]], "relabel_in_block() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.relabel_in_block", false]], "relu (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.relu", false]], "remove() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.remove", false]], "remove() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.remove", false], [168, "id7", false]], "remove() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.remove", false], [169, "id4", false]], "remove() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.remove", false], [173, "id7", false]], "repetition (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.repetition", false]], "repetition (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.repetition", false]], "resampledarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig", false]], "resampledarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.resampled_array_config)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig", false]], "resize_if_needed() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.resize_if_needed", false]], "resolution (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.resolution", false], [83, "id11", false]], "retrieve_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_architecture_config", false], [161, "id17", false]], "retrieve_architecture_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_architecture_config", false], [165, "id8", false]], "retrieve_architecture_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_architecture_config", false], [170, "id12", false]], "retrieve_architecture_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_architecture_config_names", false], [161, "id18", false]], "retrieve_architecture_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_architecture_config_names", false], [165, "id9", false]], "retrieve_architecture_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_architecture_config_names", false], [170, "id13", false]], "retrieve_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_array_config", false], [161, "id29", false]], "retrieve_array_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_array_config", false], [165, "id17", false]], "retrieve_array_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_array_config", false], [170, "id24", false]], "retrieve_array_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_array_config_names", false], [161, "id30", false]], "retrieve_array_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_array_config_names", false], [165, "id18", false]], "retrieve_array_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_array_config_names", false], [170, "id25", false]], "retrieve_best() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.retrieve_best", false], [169, "id6", false]], "retrieve_best() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.retrieve_best", false], [173, "id8", false]], "retrieve_dataset_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_dataset_config", false], [170, "id21", false]], "retrieve_dataset_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_dataset_config_names", false], [170, "id22", false]], "retrieve_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_datasplit_config", false], [161, "id25", false]], "retrieve_datasplit_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_datasplit_config", false], [165, "id14", false]], "retrieve_datasplit_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_datasplit_config", false], [170, "id18", false]], "retrieve_datasplit_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_datasplit_config_names", false], [161, "id26", false]], "retrieve_datasplit_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_datasplit_config_names", false], [165, "id15", false]], "retrieve_datasplit_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_datasplit_config_names", false], [170, "id19", false]], "retrieve_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_run_config", false], [161, "id9", false]], "retrieve_run_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_run_config", false], [165, "id2", false]], "retrieve_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_run_config", false], [170, "id5", false]], "retrieve_run_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_run_config_names", false], [161, "id10", false]], "retrieve_run_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_run_config_names", false], [165, "id3", false]], "retrieve_run_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_run_config_names", false], [170, "id7", false]], "retrieve_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_task_config", false], [161, "id13", false]], "retrieve_task_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_task_config", false], [165, "id5", false]], "retrieve_task_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_task_config", false], [170, "id9", false]], "retrieve_task_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_task_config_names", false], [161, "id14", false]], "retrieve_task_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_task_config_names", false], [165, "id6", false]], "retrieve_task_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_task_config_names", false], [170, "id10", false]], "retrieve_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_trainer_config", false], [161, "id21", false]], "retrieve_trainer_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_trainer_config", false], [165, "id11", false]], "retrieve_trainer_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_trainer_config", false], [170, "id15", false]], "retrieve_trainer_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_trainer_config_names", false], [161, "id22", false]], "retrieve_trainer_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_trainer_config_names", false], [165, "id12", false]], "retrieve_trainer_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_trainer_config_names", false], [170, "id16", false]], "retrieve_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.retrieve_training_stats", false]], "retrieve_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.retrieve_training_stats", false], [171, "id5", false]], "retrieve_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.retrieve_training_stats", false], [172, "id1", false]], "retrieve_validation_iteration_scores() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.retrieve_validation_iteration_scores", false]], "retrieve_validation_iteration_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.retrieve_validation_iteration_scores", false], [171, "id7", false]], "retrieve_validation_iteration_scores() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.retrieve_validation_iteration_scores", false], [172, "id3", false]], "retrieve_weights() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.retrieve_weights", false], [169, "id3", false]], "retrieve_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.retrieve_weights", false], [173, "id6", false]], "roi (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig attribute)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.roi", false], [35, "id1", false]], "roi (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.roi", false], [38, "id25", false]], "rotation_interval (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.rotation_interval", false], [130, "id2", false]], "rotation_interval (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.rotation_interval", false], [132, "id3", false]], "rotation_max_amount (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.rotation_max_amount", false]], "rotation_max_amount (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.rotation_max_amount", false]], "rotation_start (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.rotation_start", false]], "rotation_start (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.rotation_start", false]], "run (class in dacapo.experiments.run)": [[69, "dacapo.experiments.run.Run", false]], "run (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.run", false], [71, "id0", false]], "run (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.run", false]], "run (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.run", false], [73, "id4", false]], "run (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.run", false]], "run (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.run", false]], "run (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.run", false]], "run (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.run", false], [75, "id0", false]], "run (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.run", false], [73, "id2", false]], "run (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.run", false], [181, "id0", false]], "run (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.run", false], [181, "id9", false]], "run_blockwise() (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.run_blockwise", false]], "run_thread (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.run_thread", false]], "runconfig (class in dacapo.experiments)": [[67, "dacapo.experiments.RunConfig", false]], "runconfig (class in dacapo.experiments.run_config)": [[70, "dacapo.experiments.run_config.RunConfig", false]], "runinfo (in module dacapo.plot)": [[157, "dacapo.plot.RunInfo", false]], "runs (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.runs", false], [161, "id0", false]], "runs (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.runs", false]], "runs (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.runs", false]], "runs_base_dir (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.runs_base_dir", false], [156, "id1", false]], "sample_points (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.sample_points", false], [54, "id5", false]], "sample_points (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.sample_points", false], [48, "id5", false]], "sample_points (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.sample_points", false], [55, "id3", false]], "sample_points (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.sample_points", false], [56, "id4", false]], "sample_points (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.sample_points", false], [54, "id16", false]], "sample_points (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.sample_points", false], [54, "id22", false]], "sampling (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.sampling", false], [83, "id35", false]], "save_ndarray() (in module dacapo.utils.array_utils)": [[177, "dacapo.utils.array_utils.save_ndarray", false]], "scale (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.scale", false], [133, "id0", false]], "scale (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.scale", false], [134, "id0", false]], "scale (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.scale", false], [132, "id10", false]], "scale (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.scale", false], [132, "id14", false]], "scale() (dacapo.experiments.architectures.architecture method)": [[21, "dacapo.experiments.architectures.Architecture.scale", false], [21, "id5", false]], "scale() (dacapo.experiments.architectures.architecture.architecture method)": [[15, "dacapo.experiments.architectures.architecture.Architecture.scale", false], [15, "id5", false]], "scale() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.scale", false]], "scale() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.scale", false]], "scale() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.scale", false]], "scale() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.scale", false]], "scale_factor (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.scale_factor", false], [79, "id3", false]], "scale_factor (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.scale_factor", false], [93, "id13", false]], "scale_factor (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.scale_factor", false], [92, "id4", false]], "scale_factor (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.scale_factor", false], [93, "id53", false]], "scale_factor (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.scale_factor", false], [95, "id3", false]], "scale_factor (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.scale_factor", false], [93, "id44", false]], "scale_factor (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.scale_factor", false]], "scheduler (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.scheduler", false], [136, "id9", false]], "scheduler (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.scheduler", false], [138, "id30", false]], "score (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator property)": [[83, "id5", false]], "score (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator property)": [[88, "id49", false]], "score (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator property)": [[85, "id2", false]], "score (dacapo.experiments.tasks.evaluators.dummyevaluator property)": [[88, "id7", false]], "score (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.score", false]], "score (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.score", false]], "score (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator property)": [[90, "id2", false]], "score (dacapo.experiments.tasks.evaluators.instanceevaluator property)": [[88, "id58", false]], "score (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.score", false], [181, "id1", false]], "score (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Score", false]], "score() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.dummyevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.instanceevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.score", false]], "scores (dacapo.experiments.validation_iteration_scores.validationiterationscores attribute)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores.scores", false], [144, "id1", false]], "scores (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.scores", false], [145, "id3", false]], "scores (dacapo.experiments.validationiterationscores attribute)": [[67, "dacapo.experiments.ValidationIterationScores.scores", false], [67, "id17", false]], "scores (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.scores", false], [67, "id21", false]], "seg_to_affgraph() (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.seg_to_affgraph", false]], "segment_blockwise() (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.segment_blockwise", false]], "segment_function() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.segment_function", false]], "segment_function() (in module dacapo.blockwise.watershed_function)": [[10, "dacapo.blockwise.watershed_function.segment_function", false]], "segmentation (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.segmentation", false]], "segmentation_type (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.segmentation_type", false], [59, "id15", false]], "segmentation_type (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.segmentation_type", false], [62, "id18", false]], "segmentationtype (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType", false]], "semantic (dacapo.experiments.datasplits.datasplit_generator.segmentationtype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.semantic", false], [59, "id3", false]], "serialize() (dacapo.options.dacapoconfig method)": [[156, "dacapo.options.DaCapoConfig.serialize", false], [156, "id5", false]], "set_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.set_best", false], [88, "id18", false]], "set_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.set_best", false], [87, "id6", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.set_prediction", false], [104, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.set_prediction", false], [108, "id15", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.set_prediction", false], [106, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.set_prediction", false], [108, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.set_prediction", false], [109, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.set_prediction", false], [108, "id8", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.set_prediction", false], [111, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.set_prediction", false], [108, "id11", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.set_prediction", false], [113, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.set_prediction", false], [108, "id19", false]], "setup() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.setup", false], [147, "id3", false]], "setup() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.setup", false], [152, "id17", false]], "setup() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.setup", false], [148, "id3", false]], "setup() (dacapo.gp.dacapo_points_source.graphsource method)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.setup", false], [149, "id2", false]], "setup() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.setup", false], [152, "id3", false]], "setup() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.setup", false]], "setup() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.setup", false]], "setup() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.setup", false], [151, "id3", false]], "setup() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.setup", false], [152, "id9", false]], "setup() (dacapo.gp.graphsource method)": [[152, "dacapo.gp.GraphSource.setup", false], [152, "id22", false]], "setup() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.setup", false]], "setup() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.setup", false]], "setup() (dacapo.gp.reject_if_empty.rejectifempty method)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.setup", false]], "setup() (dacapo.gp.rejectifempty method)": [[152, "dacapo.gp.RejectIfEmpty.setup", false]], "setup() (dacapo.utils.pipeline.makeraw method)": [[180, "dacapo.utils.pipeline.MakeRaw.setup", false], [180, "id3", false]], "setup() (dacapo.utils.pipeline.zerossource method)": [[180, "dacapo.utils.pipeline.ZerosSource.setup", false], [180, "id16", false]], "shift (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.shift", false], [133, "id1", false]], "shift (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.shift", false], [134, "id1", false]], "shift (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.shift", false], [132, "id11", false]], "shift (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.shift", false], [132, "id15", false]], "sigma (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.sigma", false]], "sigma (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.sigma", false]], "sigma() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.sigma", false], [115, "id11", false]], "sigma() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.sigma", false], [119, "id33", false]], "simpleaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig", false]], "simpleaugmentconfig (class in dacapo.experiments.trainers.gp_augments.simple_config)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig", false]], "smooth_values() (in module dacapo.plot)": [[157, "dacapo.plot.smooth_values", false]], "snap_to_grid (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.snap_to_grid", false], [47, "id2", false]], "snap_to_grid (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.snap_to_grid", false], [38, "id5", false]], "snapshot_container() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.snapshot_container", false]], "snapshot_container() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.snapshot_container", false], [168, "id5", false]], "snapshot_interval (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.snapshot_interval", false], [137, "id3", false]], "snapshot_interval (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.snapshot_interval", false], [138, "id18", false]], "snapshot_iteration (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.snapshot_iteration", false], [136, "id4", false]], "snapshot_iteration (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.snapshot_iteration", false], [138, "id25", false]], "source (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig attribute)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.source", false], [37, "id0", false]], "source (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.source", false], [38, "id27", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.source_array_config", false], [32, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.source_array_config", false], [38, "id7", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig attribute)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.source_array_config", false], [34, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.source_array_config", false], [38, "id29", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig attribute)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.source_array_config", false], [35, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.source_array_config", false], [38, "id24", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.source_array_config", false], [38, "id14", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.source_array_config", false], [39, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig attribute)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.source_array_config", false], [40, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.source_array_config", false], [38, "id23", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig attribute)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.source_array_config", false], [42, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.source_array_config", false], [38, "id17", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig attribute)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.source_array_config", false], [43, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.source_array_config", false], [38, "id19", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.source_array_config", false], [44, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.source_array_config", false], [38, "id10", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.source_array_configs", false], [33, "id1", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.source_array_configs", false], [38, "id21", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig attribute)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.source_array_configs", false], [41, "id0", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.source_array_configs", false], [38, "id26", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.sum_array_config.sumarrayconfig attribute)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig.source_array_configs", false], [45, "id0", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.sumarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig.source_array_configs", false], [38, "id28", false]], "spawn_worker() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.spawn_worker", false]], "specified_locations (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.SPECIFIED_LOCATIONS", false]], "specified_locations (dacapo.experiments.datasplits.keys.graphkey attribute)": [[63, "dacapo.experiments.datasplits.keys.GraphKey.SPECIFIED_LOCATIONS", false], [63, "id4", false]], "specified_locations (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.SPECIFIED_LOCATIONS", false]], "specified_locations (dacapo.experiments.datasplits.keys.keys.graphkey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey.SPECIFIED_LOCATIONS", false], [64, "id4", false]], "split() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.split", false], [98, "id3", false]], "split() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.split", false], [99, "id9", false]], "split_vi() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.split_vi", false]], "stack_inference() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.stack_inference", false]], "stack_postprocessing() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.stack_postprocessing", false]], "start (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.Start", false]], "start (class in dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.Start", false]], "start (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.start", false], [69, "id9", false]], "start() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.start", false], [181, "id15", false]], "start_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.start_config", false]], "start_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.start_config", false]], "start_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.start_neuroglancer", false], [181, "id14", false]], "start_type (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.start_type", false]], "start_type (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.start_type", false]], "start_type (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.start_type", false]], "start_type (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.start_type", false]], "start_worker() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.start_worker", false]], "start_worker_fn() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.start_worker_fn", false]], "startconfig (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.StartConfig", false]], "startconfig (class in dacapo.experiments.starts.start_config)": [[75, "dacapo.experiments.starts.start_config.StartConfig", false]], "stats_store (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.stats_store", false], [181, "id6", false]], "statsstore (class in dacapo.store.stats_store)": [[172, "dacapo.store.stats_store.StatsStore", false]], "stop() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.stop", false], [181, "id23", false]], "store_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_architecture_config", false], [161, "id16", false]], "store_architecture_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_architecture_config", false], [165, "id7", false]], "store_architecture_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_architecture_config", false], [170, "id11", false]], "store_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_array_config", false], [161, "id28", false]], "store_array_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_array_config", false], [165, "id16", false]], "store_array_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_array_config", false], [170, "id23", false]], "store_best() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id4", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id4", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id3", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id11", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.store_best", false], [88, "id21", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.store_best", false], [87, "id9", false]], "store_best() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id5", false]], "store_best() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id55", false]], "store_best() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.store_best", false], [169, "id5", false]], "store_dataset_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_dataset_config", false], [170, "id20", false]], "store_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_datasplit_config", false], [161, "id24", false]], "store_datasplit_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_datasplit_config", false], [165, "id13", false]], "store_datasplit_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_datasplit_config", false], [170, "id17", false]], "store_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_run_config", false], [161, "id8", false]], "store_run_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_run_config", false], [165, "id1", false]], "store_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_run_config", false], [170, "id4", false]], "store_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_task_config", false], [161, "id12", false]], "store_task_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_task_config", false], [165, "id4", false]], "store_task_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_task_config", false], [170, "id8", false]], "store_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_trainer_config", false], [161, "id20", false]], "store_trainer_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_trainer_config", false], [165, "id10", false]], "store_trainer_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_trainer_config", false], [170, "id14", false]], "store_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.store_training_stats", false]], "store_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.store_training_stats", false], [171, "id4", false]], "store_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.store_training_stats", false], [172, "id0", false]], "store_type (dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.graphstoreconfig attribute)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig.store_type", false]], "store_type (dacapo.experiments.datasplits.datasets.graphstores.graphstoreconfig attribute)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig.store_type", false]], "store_validation_iteration_scores() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.store_validation_iteration_scores", false]], "store_validation_iteration_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.store_validation_iteration_scores", false], [171, "id6", false]], "store_validation_iteration_scores() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.store_validation_iteration_scores", false], [172, "id2", false]], "store_weights() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.store_weights", false], [169, "id2", false]], "store_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.store_weights", false], [173, "id5", false]], "sub_task_config (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.sub_task_config", false], [124, "id0", false]], "sub_task_config (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.sub_task_config", false], [93, "id23", false]], "subsample (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.subsample", false], [130, "id3", false]], "subsample (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.subsample", false], [132, "id4", false]], "subsample (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.subsample", false]], "subsample (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.subsample", false]], "subscores() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.subscores", false], [145, "id4", false]], "subscores() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.subscores", false], [67, "id22", false]], "sumarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig", false]], "sumarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.sum_array_config)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig", false]], "target_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.target_key", false], [148, "id0", false]], "target_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.target_key", false], [152, "id0", false]], "target_rois (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.target_rois", false]], "target_rois (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.target_rois", false]], "targets (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.targets", false], [59, "id14", false]], "targets (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.targets", false], [62, "id17", false]], "task (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.Task", false]], "task (class in dacapo.experiments.tasks.task)": [[125, "dacapo.experiments.tasks.task.Task", false]], "task (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.task", false], [69, "id3", false]], "task_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.task_config", false]], "task_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.task_config", false]], "task_config (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.task_config", false]], "task_config (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.task_config", false]], "task_type (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.task_type", false], [81, "id0", false]], "task_type (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.task_type", false], [93, "id2", false]], "task_type (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.task_type", false], [92, "id0", false]], "task_type (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.task_type", false], [93, "id49", false]], "task_type (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig attribute)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.task_type", false], [103, "id0", false]], "task_type (dacapo.experiments.tasks.onehottaskconfig attribute)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.task_type", false], [93, "id21", false]], "task_type (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.task_type", false]], "taskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.TaskConfig", false]], "taskconfig (class in dacapo.experiments.tasks.task_config)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig", false]], "tasks (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.tasks", false], [161, "id4", false]], "tasks (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.tasks", false]], "tasks (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.tasks", false]], "test (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test", false], [83, "id7", false]], "test (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test", false], [83, "id33", false]], "test_edt() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test_edt", false]], "test_empty (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test_empty", false], [83, "id9", false]], "test_itk() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test_itk", false]], "test_mask() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test_mask", false]], "threshold (dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.thresholdpostprocessorparameters attribute)": [[112, "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters.threshold", false], [112, "id0", false]], "threshold (dacapo.experiments.tasks.post_processors.thresholdpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters.threshold", false], [108, "id13", false]], "threshold (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.threshold", false]], "threshold (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.threshold", false], [118, "id6", false]], "threshold (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.threshold", false], [119, "id52", false]], "threshold (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.threshold", false]], "thresholdpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor", false]], "thresholdpostprocessor (class in dacapo.experiments.tasks.post_processors.threshold_post_processor)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor", false]], "thresholdpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters", false]], "thresholdpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters)": [[112, "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters", false]], "tiffarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.tiff_array_config)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig", false]], "time (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.time", false], [142, "id2", false]], "time (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.time", false], [67, "id12", false]], "timeout (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.timeout", false]], "timeout (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.timeout", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig method)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig method)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.to_array", false]], "to_ndarray() (in module dacapo.utils.array_utils)": [[177, "dacapo.utils.array_utils.to_ndarray", false]], "to_xarray() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.to_xarray", false], [143, "id2", false]], "to_xarray() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.to_xarray", false], [67, "id15", false]], "to_xarray() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.to_xarray", false], [145, "id11", false]], "to_xarray() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.to_xarray", false], [67, "id29", false]], "tol_distance (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.tol_distance", false], [79, "id2", false]], "tol_distance (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.tol_distance", false], [93, "id12", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.tol_distance", false], [83, "id2", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.tol_distance", false], [83, "id37", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.tol_distance", false], [88, "id46", false]], "tol_distance (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.tol_distance", false], [92, "id3", false]], "tol_distance (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.tol_distance", false], [93, "id52", false]], "tol_distance (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.tol_distance", false], [95, "id2", false]], "tol_distance (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.tol_distance", false], [93, "id43", false]], "total_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.total_roi", false]], "total_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.total_roi", false]], "tracker_consensus() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.tracker_consensus", false]], "train (dacapo.experiments.datasplits.datasplit attribute)": [[62, "dacapo.experiments.datasplits.DataSplit.train", false], [62, "id0", false]], "train (dacapo.experiments.datasplits.datasplit.datasplit attribute)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.train", false], [57, "id0", false]], "train (dacapo.experiments.datasplits.datasplit_generator.datasettype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.train", false], [59, "id2", false]], "train (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit attribute)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.train", false], [60, "id0", false]], "train (dacapo.experiments.datasplits.dummydatasplit attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.train", false], [62, "id4", false]], "train (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit attribute)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.train", false], [65, "id0", false]], "train (dacapo.experiments.datasplits.trainvalidatedatasplit attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.train", false], [62, "id9", false]], "train() (in module dacapo)": [[155, "dacapo.train", false]], "train() (in module dacapo.train)": [[175, "dacapo.train.train", false]], "train_config (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig attribute)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.train_config", false], [61, "id1", false]], "train_config (dacapo.experiments.datasplits.dummydatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.train_config", false], [62, "id7", false]], "train_configs (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.train_configs", false], [66, "id0", false]], "train_configs (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.train_configs", false], [62, "id11", false]], "train_run() (in module dacapo.train)": [[175, "dacapo.train.train_run", false]], "train_until (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.train_until", false], [69, "id1", false]], "trained_until() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.trained_until", false], [143, "id1", false]], "trained_until() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.trained_until", false], [67, "id14", false]], "trainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.Trainer", false]], "trainer (class in dacapo.experiments.trainers.trainer)": [[140, "dacapo.experiments.trainers.trainer.Trainer", false]], "trainer (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.trainer", false], [69, "id5", false]], "trainer_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.trainer_config", false]], "trainer_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.trainer_config", false]], "trainer_type (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig attribute)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.trainer_type", false]], "trainer_type (dacapo.experiments.trainers.dummytrainerconfig attribute)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.trainer_type", false]], "trainer_type (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.trainer_type", false], [137, "id0", false]], "trainer_type (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.trainer_type", false], [138, "id15", false]], "trainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.TrainerConfig", false]], "trainerconfig (class in dacapo.experiments.trainers.trainer_config)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig", false]], "trainers (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.trainers", false], [161, "id5", false]], "trainers (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.trainers", false]], "trainers (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.trainers", false]], "training_stats (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.training_stats", false], [69, "id8", false]], "training_stats (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.training_stats", false]], "trainingiterationstats (class in dacapo.experiments)": [[67, "dacapo.experiments.TrainingIterationStats", false]], "trainingiterationstats (class in dacapo.experiments.training_iteration_stats)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats", false]], "trainingstats (class in dacapo.experiments)": [[67, "dacapo.experiments.TrainingStats", false]], "trainingstats (class in dacapo.experiments.training_stats)": [[143, "dacapo.experiments.training_stats.TrainingStats", false]], "trainvalidatedatasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit", false]], "trainvalidatedatasplit (class in dacapo.experiments.datasplits.train_validate_datasplit)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit", false]], "trainvalidatedatasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig", false]], "trainvalidatedatasplitconfig (class in dacapo.experiments.datasplits.train_validate_datasplit_config)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig", false]], "transformations (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.transformations", false]], "transformations (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.transformations", false]], "true_positives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.true_positives_with_tolerance", false], [83, "id43", false]], "truth (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth", false], [83, "id6", false]], "truth (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth", false], [83, "id34", false]], "truth_edt() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth_edt", false]], "truth_empty (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth_empty", false], [83, "id8", false]], "truth_itk() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth_itk", false]], "truth_mask() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth_mask", false]], "type (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.type", false], [156, "id0", false]], "typedconverter (class in dacapo.store.converter)": [[163, "dacapo.store.converter.TypedConverter", false]], "unet (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.unet", false]], "unet (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.unet", false]], "uniform_3d_rotation (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.uniform_3d_rotation", false], [130, "id4", false]], "uniform_3d_rotation (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.uniform_3d_rotation", false], [132, "id5", false]], "uniform_3d_rotation (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.uniform_3d_rotation", false]], "uniform_3d_rotation (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.uniform_3d_rotation", false]], "units (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.units", false]], "up (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.up", false]], "up (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.up", false]], "update_best_info() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_best_info", false], [181, "id18", false]], "update_best_layer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_best_layer", false], [181, "id20", false]], "update_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_neuroglancer", false], [181, "id19", false]], "update_with_new_validation_if_possible() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_with_new_validation_if_possible", false], [181, "id22", false]], "updated_neuroglancer_layer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.updated_neuroglancer_layer", false], [181, "id12", false]], "upsample (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample", false]], "upsample (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.upsample", false], [44, "id1", false]], "upsample (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.upsample", false], [38, "id11", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.upsample_channel_contraction", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.upsample_channel_contraction", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.upsample_channel_contraction", false]], "upsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.upsample_factors", false]], "upsample_factors (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.upsample_factors", false], [18, "id9", false]], "upsample_factors (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.upsample_factors", false]], "upsample_factors (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.upsample_factors", false], [21, "id28", false]], "upstream_tasks (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.upstream_tasks", false]], "upstream_tasks (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.upstream_tasks", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.use_attention", false], [17, "id9", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.use_attention", false], [17, "id10", false], [17, "id16", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.use_attention", false], [18, "id12", false]], "use_attention (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.use_attention", false], [21, "id41", false]], "use_attention (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.use_attention", false], [21, "id31", false]], "use_negative_class (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.use_negative_class", false]], "use_negative_class (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.use_negative_class", false]], "users (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.users", false]], "users (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.users", false]], "val (dacapo.experiments.datasplits.datasplit_generator.datasettype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.val", false], [59, "id1", false]], "validate (dacapo.experiments.datasplits.datasplit attribute)": [[62, "dacapo.experiments.datasplits.DataSplit.validate", false], [62, "id1", false]], "validate (dacapo.experiments.datasplits.datasplit.datasplit attribute)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.validate", false], [57, "id1", false]], "validate (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit attribute)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.validate", false], [60, "id1", false]], "validate (dacapo.experiments.datasplits.dummydatasplit attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.validate", false], [62, "id5", false]], "validate (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit attribute)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.validate", false], [65, "id1", false]], "validate (dacapo.experiments.datasplits.trainvalidatedatasplit attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.validate", false], [62, "id10", false]], "validate() (in module dacapo.validate)": [[183, "dacapo.validate.validate", false]], "validate_configs (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.validate_configs", false], [66, "id1", false]], "validate_configs (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.validate_configs", false], [62, "id12", false]], "validate_run() (in module dacapo.validate)": [[183, "dacapo.validate.validate_run", false]], "validated_until() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.validated_until", false], [145, "id7", false]], "validated_until() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.validated_until", false], [67, "id25", false]], "validation_container() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_container", false]], "validation_container() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_container", false], [168, "id6", false]], "validation_input_arrays() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_input_arrays", false]], "validation_input_arrays() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_input_arrays", false], [168, "id4", false]], "validation_interval (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.validation_interval", false], [69, "id2", false]], "validation_interval (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.validation_interval", false]], "validation_interval (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.validation_interval", false]], "validation_output_array() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_output_array", false]], "validation_output_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_output_array", false], [168, "id3", false]], "validation_parameters (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.validation_parameters", false], [181, "id4", false]], "validation_prediction_array() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_prediction_array", false]], "validation_prediction_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_prediction_array", false], [168, "id2", false]], "validation_scores (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.validation_scores", false]], "validation_scores (dacapo.experiments.run.run property)": [[69, "id11", false]], "validation_scores (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.validation_scores", false]], "validationiterationscores (class in dacapo.experiments)": [[67, "dacapo.experiments.ValidationIterationScores", false]], "validationiterationscores (class in dacapo.experiments.validation_iteration_scores)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores", false]], "validationscores (class in dacapo.experiments)": [[67, "dacapo.experiments.ValidationScores", false]], "validationscores (class in dacapo.experiments.validation_scores)": [[145, "dacapo.experiments.validation_scores.ValidationScores", false]], "verify() (dacapo.experiments.architectures.architecture_config.architectureconfig method)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig.verify", false], [16, "id1", false]], "verify() (dacapo.experiments.architectures.architectureconfig method)": [[21, "dacapo.experiments.architectures.ArchitectureConfig.verify", false], [21, "id7", false]], "verify() (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig method)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.verify", false], [20, "id3", false]], "verify() (dacapo.experiments.architectures.dummyarchitectureconfig method)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.verify", false], [21, "id11", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig method)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.verify", false], [31, "id1", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.arrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.verify", false], [38, "id1", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.verify", false], [36, "id0", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.verify", false], [38, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig method)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.verify", false], [47, "id3", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.verify", false], [38, "id6", false]], "verify() (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig method)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.verify", false], [49, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.datasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.verify", false], [54, "id8", false]], "verify() (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig method)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.verify", false], [51, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.dummydatasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.verify", false], [54, "id12", false]], "verify() (dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.graphstoreconfig method)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.graphstores.graphstoreconfig method)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig method)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasplit_config.datasplitconfig method)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig.verify", false], [58, "id1", false]], "verify() (dacapo.experiments.datasplits.datasplitconfig method)": [[62, "dacapo.experiments.datasplits.DataSplitConfig.verify", false], [62, "id3", false]], "verify() (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig method)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.verify", false], [61, "id2", false]], "verify() (dacapo.experiments.datasplits.dummydatasplitconfig method)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.verify", false], [62, "id8", false]], "verify() (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig method)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.affinitiestaskconfig method)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.distance_task_config.distancetaskconfig method)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.distancetaskconfig method)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig method)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.verify", false], [81, "id3", false]], "verify() (dacapo.experiments.tasks.dummytaskconfig method)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.verify", false], [93, "id5", false]], "verify() (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig method)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.hotdistancetaskconfig method)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig method)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.pretrainedtaskconfig method)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.task_config.taskconfig method)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig.verify", false], [126, "id1", false]], "verify() (dacapo.experiments.tasks.taskconfig method)": [[93, "dacapo.experiments.tasks.TaskConfig.verify", false], [93, "id1", false]], "verify() (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig method)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.verify", false], [128, "id1", false]], "verify() (dacapo.experiments.trainers.dummytrainerconfig method)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.verify", false], [138, "id8", false]], "verify() (dacapo.experiments.trainers.trainer_config.trainerconfig method)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.verify", false], [141, "id3", false]], "verify() (dacapo.experiments.trainers.trainerconfig method)": [[138, "dacapo.experiments.trainers.TrainerConfig.verify", false], [138, "id6", false]], "vi_tables() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.vi_tables", false]], "viewer (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.viewer", false]], "visualize_pipeline() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.visualize_pipeline", false]], "visualize_pipeline() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.visualize_pipeline", false]], "visualize_pipeline() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.visualize_pipeline", false]], "voi (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.voi", false], [82, "id8", false]], "voi (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.voi", false], [88, "id31", false]], "voi (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi", false]], "voi (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores property)": [[89, "id2", false]], "voi (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi", false]], "voi (dacapo.experiments.tasks.evaluators.instanceevaluationscores property)": [[88, "id52", false]], "voi() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.voi", false], [83, "id21", false]], "voi() (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.voi", false]], "voi() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.voi", false]], "voi_merge (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi_merge", false], [89, "id1", false]], "voi_merge (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi_merge", false], [88, "id51", false]], "voi_split (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi_split", false], [89, "id0", false]], "voi_split (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi_split", false], [88, "id50", false]], "voxel_size (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.voxel_size", false]], "voxel_size (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.voxel_size", false]], "voxel_size (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.voxel_size", false], [46, "id2", false]], "w_g (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.W_g", false]], "w_x (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.W_x", false]], "watershedpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor", false]], "watershedpostprocessor (class in dacapo.experiments.tasks.post_processors.watershed_post_processor)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor", false]], "watershedpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters", false]], "watershedpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters", false]], "weight (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.weight", false], [54, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.weight", false], [48, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig attribute)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.weight", false], [49, "id1", false]], "weight (dacapo.experiments.datasplits.datasets.datasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.weight", false], [54, "id7", false]], "weight (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.weight", false], [55, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.weight", false], [54, "id17", false]], "weights (class in dacapo.store.weights_store)": [[173, "dacapo.store.weights_store.Weights", false]], "weights (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.weights", false]], "weights (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.weights", false]], "weights (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.weights", false], [123, "id0", false]], "weights (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.weights", false], [124, "id1", false]], "weights (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.weights", false], [93, "id25", false]], "weights (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.weights", false], [93, "id24", false]], "weights_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.weights_key", false], [148, "id1", false]], "weights_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.weights_key", false], [152, "id1", false]], "weightsstore (class in dacapo.store.weights_store)": [[173, "dacapo.store.weights_store.WeightsStore", false]], "worker_file (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.worker_file", false]], "worker_file (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.worker_file", false]], "wrap_command() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext.wrap_command", false], [12, "id1", false]], "wrap_command() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext.wrap_command", false], [13, "id1", false]], "wrap_command() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.wrap_command", false]], "wrap_command() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.wrap_command", false]], "write_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.write_roi", false]], "write_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.write_roi", false]], "x1_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.x1_key", false], [152, "id24", false]], "x1_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.x1_key", false], [153, "id0", false]], "x2_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.x2_key", false], [152, "id25", false]], "x2_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.x2_key", false], [153, "id1", false]], "xlogx() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.xlogx", false]], "y_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.y_key", false], [152, "id26", false]], "y_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.y_key", false], [153, "id2", false]], "zarrarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig", false]], "zarrarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.zarr_array_config)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig", false]], "zerossource (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.ZerosSource", false]]}, "objects": {"": [[194, 0, 0, "-", "dacapo"]], "dacapo": [[155, 1, 1, "", "Options"], [155, 3, 1, "", "apply"], [0, 0, 0, "-", "apply"], [4, 0, 0, "-", "blockwise"], [13, 0, 0, "-", "compute_context"], [67, 0, 0, "-", "experiments"], [146, 0, 0, "-", "ext"], [152, 0, 0, "-", "gp"], [156, 0, 0, "-", "options"], [157, 0, 0, "-", "plot"], [158, 0, 0, "-", "predict"], [159, 0, 0, "-", "predict_local"], [167, 0, 0, "-", "store"], [174, 0, 0, "-", "tmp"], [175, 0, 0, "-", "train"], [179, 0, 0, "-", "utils"], [183, 0, 0, "-", "validate"], [186, 8, 1, "cmdoption-dacapo-log-level", "--log-level"]], "dacapo-apply": [[186, 8, 1, "cmdoption-dacapo-apply-c", "--criterion"], [186, 8, 1, "cmdoption-dacapo-apply-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-apply-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-apply-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-apply-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-apply-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-apply-op", "--output_path"], [186, 8, 1, "cmdoption-dacapo-apply-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-apply-p", "--parameters"], [186, 8, 1, "cmdoption-dacapo-apply-roi", "--roi"], [186, 8, 1, "cmdoption-dacapo-apply-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-apply-vd", "--validation_dataset"], [186, 8, 1, "cmdoption-dacapo-apply-c", "-c"], [186, 8, 1, "cmdoption-dacapo-apply-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-apply-i", "-i"], [186, 8, 1, "cmdoption-dacapo-apply-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-apply-id", "-id"], [186, 8, 1, "cmdoption-dacapo-apply-op", "-op"], [186, 8, 1, "cmdoption-dacapo-apply-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-apply-p", "-p"], [186, 8, 1, "cmdoption-dacapo-apply-r", "-r"], [186, 8, 1, "cmdoption-dacapo-apply-roi", "-roi"], [186, 8, 1, "cmdoption-dacapo-apply-vd", "-vd"], [186, 8, 1, "cmdoption-dacapo-apply-w", "-w"]], "dacapo-predict": [[186, 8, 1, "cmdoption-dacapo-predict-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-predict-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-predict-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-predict-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-predict-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-predict-op", "--output_path"], [186, 8, 1, "cmdoption-dacapo-predict-roi", "--output_roi"], [186, 8, 1, "cmdoption-dacapo-predict-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-predict-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-predict-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-predict-i", "-i"], [186, 8, 1, "cmdoption-dacapo-predict-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-predict-id", "-id"], [186, 8, 1, "cmdoption-dacapo-predict-op", "-op"], [186, 8, 1, "cmdoption-dacapo-predict-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-predict-r", "-r"], [186, 8, 1, "cmdoption-dacapo-predict-roi", "-roi"], [186, 8, 1, "cmdoption-dacapo-predict-w", "-w"]], "dacapo-run-blockwise": [[186, 8, 1, "cmdoption-dacapo-run-blockwise-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-mr", "--max_retries"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-nw", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-oc", "--output_container"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-od", "--output_dataset"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-rr", "--read_roi_size"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-t", "--timeout"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-tr", "--total_roi"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-w", "--worker_file"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-wr", "--write_roi_size"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-co", "-channels_out"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-co", "-co"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-id", "-id"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-mr", "-mr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-nw", "-nw"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-oc", "-oc"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-od", "-od"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-rr", "-rr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-t", "-t"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-tr", "-tr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-w", "-w"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-wr", "-wr"]], "dacapo-segment-blockwise": [[186, 8, 1, "cmdoption-dacapo-segment-blockwise-co", "--channels_out"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-c", "--context"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-mr", "--max_retries"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-nw", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-oc", "--output_container"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-od", "--output_dataset"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-rr", "--read_roi_size"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-sf", "--segment_function_file"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-t", "--timeout"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-tr", "--total_roi"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-wr", "--write_roi_size"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-c", "-c"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-co", "-co"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-id", "-id"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-mr", "-mr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-nw", "-nw"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-oc", "-oc"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-od", "-od"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-rr", "-rr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-sf", "-sf"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-t", "-t"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-tr", "-tr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-wr", "-wr"]], "dacapo-train": [[186, 8, 1, "cmdoption-dacapo-train-no-validation", "--no-validation"], [186, 8, 1, "cmdoption-dacapo-train-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-train-r", "-r"]], "dacapo-validate": [[186, 8, 1, "cmdoption-dacapo-validate-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-validate-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-validate-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-validate-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-validate-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-validate-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-validate-i", "-i"], [186, 8, 1, "cmdoption-dacapo-validate-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-validate-r", "-r"], [186, 8, 1, "cmdoption-dacapo-validate-w", "-w"]], "dacapo.Options": [[155, 2, 1, "", "__parse_options"], [155, 2, 1, "", "__parse_options_from_file"], [155, 2, 1, "id1", "config_file"], [155, 2, 1, "id0", "instance"]], "dacapo.apply": [[0, 3, 1, "", "apply"], [0, 3, 1, "", "apply_run"], [0, 4, 1, "", "logger"]], "dacapo.blockwise": [[4, 1, 1, "", "DaCapoBlockwiseTask"], [1, 0, 0, "-", "argmax_worker"], [2, 0, 0, "-", "blockwise_task"], [3, 0, 0, "-", "empanada_function"], [5, 0, 0, "-", "predict_worker"], [6, 0, 0, "-", "relabel_worker"], [7, 0, 0, "-", "scheduler"], [8, 0, 0, "-", "segment_worker"], [9, 0, 0, "-", "threshold_worker"], [10, 0, 0, "-", "watershed_function"]], "dacapo.blockwise.DaCapoBlockwiseTask": [[4, 2, 1, "", "__init__"], [4, 5, 1, "", "max_retries"], [4, 5, 1, "", "num_workers"], [4, 5, 1, "", "read_roi"], [4, 5, 1, "", "timeout"], [4, 5, 1, "", "total_roi"], [4, 5, 1, "", "upstream_tasks"], [4, 5, 1, "", "worker_file"], [4, 5, 1, "", "write_roi"]], "dacapo.blockwise.argmax_worker": [[1, 3, 1, "", "cli"], [1, 4, 1, "", "fit"], [1, 4, 1, "", "logger"], [1, 4, 1, "", "path"], [1, 4, 1, "", "read_write_conflict"], [1, 3, 1, "", "spawn_worker"], [1, 3, 1, "", "start_worker"], [1, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.blockwise_task": [[2, 1, 1, "", "DaCapoBlockwiseTask"]], "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask": [[2, 2, 1, "", "__init__"], [2, 5, 1, "", "max_retries"], [2, 5, 1, "", "num_workers"], [2, 5, 1, "", "read_roi"], [2, 5, 1, "", "timeout"], [2, 5, 1, "", "total_roi"], [2, 5, 1, "", "upstream_tasks"], [2, 5, 1, "", "worker_file"], [2, 5, 1, "", "write_roi"]], "dacapo.blockwise.empanada_function": [[3, 4, 1, "", "default_parameters"], [3, 3, 1, "", "empanada_segmenter"], [3, 4, 1, "", "logger"], [3, 4, 1, "", "model_configs"], [3, 3, 1, "", "orthoplane_inference"], [3, 3, 1, "", "segment_function"], [3, 3, 1, "", "stack_inference"], [3, 3, 1, "", "stack_postprocessing"], [3, 3, 1, "", "tracker_consensus"]], "dacapo.blockwise.predict_worker": [[5, 3, 1, "", "cli"], [5, 4, 1, "", "fit"], [5, 4, 1, "", "logger"], [5, 4, 1, "", "path"], [5, 4, 1, "", "read_write_conflict"], [5, 3, 1, "", "spawn_worker"], [5, 3, 1, "", "start_worker"], [5, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.relabel_worker": [[6, 3, 1, "", "cli"], [6, 3, 1, "", "find_components"], [6, 4, 1, "", "fit"], [6, 4, 1, "", "path"], [6, 3, 1, "", "read_cross_block_merges"], [6, 4, 1, "", "read_write_conflict"], [6, 3, 1, "", "relabel_in_block"], [6, 3, 1, "", "spawn_worker"], [6, 3, 1, "", "start_worker"], [6, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.scheduler": [[7, 4, 1, "", "logger"], [7, 3, 1, "", "run_blockwise"], [7, 3, 1, "", "segment_blockwise"]], "dacapo.blockwise.segment_worker": [[8, 3, 1, "", "cli"], [8, 4, 1, "", "fit"], [8, 4, 1, "", "logger"], [8, 4, 1, "", "path"], [8, 4, 1, "", "read_write_conflict"], [8, 3, 1, "", "spawn_worker"], [8, 3, 1, "", "start_worker"], [8, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.threshold_worker": [[9, 3, 1, "", "cli"], [9, 4, 1, "", "fit"], [9, 4, 1, "", "logger"], [9, 4, 1, "", "path"], [9, 4, 1, "", "read_write_conflict"], [9, 3, 1, "", "spawn_worker"], [9, 3, 1, "", "start_worker"], [9, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.watershed_function": [[10, 3, 1, "", "segment_function"]], "dacapo.compute_context": [[13, 1, 1, "", "Bsub"], [13, 1, 1, "", "ComputeContext"], [13, 1, 1, "", "LocalTorch"], [11, 0, 0, "-", "bsub"], [12, 0, 0, "-", "compute_context"], [13, 3, 1, "", "create_compute_context"], [14, 0, 0, "-", "local_torch"]], "dacapo.compute_context.Bsub": [[13, 2, 1, "", "_wrap_command"], [13, 5, 1, "id9", "billing"], [13, 6, 1, "id10", "device"], [13, 5, 1, "", "distribute_workers"], [13, 5, 1, "id8", "num_cpus"], [13, 5, 1, "id7", "num_gpus"], [13, 5, 1, "id6", "queue"]], "dacapo.compute_context.ComputeContext": [[13, 2, 1, "", "_wrap_command"], [13, 6, 1, "id0", "device"], [13, 5, 1, "", "distribute_workers"], [13, 2, 1, "id2", "execute"], [13, 2, 1, "id1", "wrap_command"]], "dacapo.compute_context.LocalTorch": [[13, 5, 1, "", "_device"], [13, 2, 1, "", "_wrap_command"], [13, 6, 1, "id5", "device"], [13, 5, 1, "", "distribute_workers"], [13, 2, 1, "", "execute"], [13, 5, 1, "id4", "oom_limit"], [13, 2, 1, "", "wrap_command"]], "dacapo.compute_context.bsub": [[11, 1, 1, "", "Bsub"]], "dacapo.compute_context.bsub.Bsub": [[11, 2, 1, "", "_wrap_command"], [11, 5, 1, "id3", "billing"], [11, 6, 1, "id4", "device"], [11, 5, 1, "", "distribute_workers"], [11, 5, 1, "id2", "num_cpus"], [11, 5, 1, "id1", "num_gpus"], [11, 5, 1, "id0", "queue"]], "dacapo.compute_context.compute_context": [[12, 1, 1, "", "ComputeContext"], [12, 3, 1, "", "create_compute_context"]], "dacapo.compute_context.compute_context.ComputeContext": [[12, 2, 1, "", "_wrap_command"], [12, 6, 1, "id0", "device"], [12, 5, 1, "", "distribute_workers"], [12, 2, 1, "id2", "execute"], [12, 2, 1, "id1", "wrap_command"]], "dacapo.compute_context.local_torch": [[14, 1, 1, "", "LocalTorch"]], "dacapo.compute_context.local_torch.LocalTorch": [[14, 5, 1, "", "_device"], [14, 2, 1, "", "_wrap_command"], [14, 6, 1, "id2", "device"], [14, 5, 1, "", "distribute_workers"], [14, 2, 1, "", "execute"], [14, 5, 1, "id1", "oom_limit"], [14, 2, 1, "", "wrap_command"]], "dacapo.experiments": [[67, 1, 1, "", "Model"], [67, 1, 1, "", "RunConfig"], [67, 1, 1, "", "TrainingIterationStats"], [67, 1, 1, "", "TrainingStats"], [67, 1, 1, "", "ValidationIterationScores"], [67, 1, 1, "", "ValidationScores"], [21, 0, 0, "-", "architectures"], [27, 0, 0, "-", "arraytypes"], [62, 0, 0, "-", "datasplits"], [68, 0, 0, "-", "model"], [69, 0, 0, "-", "run"], [70, 0, 0, "-", "run_config"], [73, 0, 0, "-", "starts"], [93, 0, 0, "-", "tasks"], [138, 0, 0, "-", "trainers"], [142, 0, 0, "-", "training_iteration_stats"], [143, 0, 0, "-", "training_stats"], [144, 0, 0, "-", "validation_iteration_scores"], [145, 0, 0, "-", "validation_scores"]], "dacapo.experiments.Model": [[67, 5, 1, "id4", "architecture"], [67, 5, 1, "id6", "chain"], [67, 2, 1, "", "compute_output_shape"], [67, 5, 1, "id9", "eval_activation"], [67, 5, 1, "id8", "eval_input_shape"], [67, 2, 1, "", "forward"], [67, 5, 1, "id7", "input_shape"], [67, 5, 1, "id3", "num_in_channels"], [67, 5, 1, "id0", "num_out_channels"], [67, 5, 1, "", "output_shape"], [67, 5, 1, "id5", "prediction_head"], [67, 2, 1, "", "scale"]], "dacapo.experiments.RunConfig": [[67, 5, 1, "", "architecture_config"], [67, 5, 1, "", "datasplit_config"], [67, 5, 1, "", "name"], [67, 5, 1, "", "num_iterations"], [67, 5, 1, "", "repetition"], [67, 5, 1, "", "start_config"], [67, 5, 1, "", "task_config"], [67, 5, 1, "", "trainer_config"], [67, 5, 1, "", "validation_interval"]], "dacapo.experiments.TrainingIterationStats": [[67, 5, 1, "id10", "iteration"], [67, 5, 1, "id11", "loss"], [67, 5, 1, "id12", "time"]], "dacapo.experiments.TrainingStats": [[67, 2, 1, "", "add_iteration_stats"], [67, 2, 1, "", "delete_after"], [67, 5, 1, "id13", "iteration_stats"], [67, 2, 1, "id15", "to_xarray"], [67, 2, 1, "id14", "trained_until"]], "dacapo.experiments.ValidationIterationScores": [[67, 5, 1, "id16", "iteration"], [67, 5, 1, "id17", "scores"]], "dacapo.experiments.ValidationScores": [[67, 2, 1, "id23", "add_iteration_scores"], [67, 2, 1, "id26", "compare"], [67, 6, 1, "id27", "criteria"], [67, 5, 1, "id19", "datasets"], [67, 2, 1, "id24", "delete_after"], [67, 5, 1, "id20", "evaluation_scores"], [67, 2, 1, "id30", "get_best"], [67, 6, 1, "id28", "parameter_names"], [67, 5, 1, "id18", "parameters"], [67, 5, 1, "id21", "scores"], [67, 2, 1, "id22", "subscores"], [67, 2, 1, "id29", "to_xarray"], [67, 2, 1, "id25", "validated_until"]], "dacapo.experiments.architectures": [[21, 1, 1, "", "Architecture"], [21, 1, 1, "", "ArchitectureConfig"], [21, 1, 1, "", "CNNectomeUNet"], [21, 1, 1, "", "CNNectomeUNetConfig"], [21, 1, 1, "", "DummyArchitecture"], [21, 1, 1, "", "DummyArchitectureConfig"], [15, 0, 0, "-", "architecture"], [16, 0, 0, "-", "architecture_config"], [17, 0, 0, "-", "cnnectome_unet"], [18, 0, 0, "-", "cnnectome_unet_config"], [19, 0, 0, "-", "dummy_architecture"], [20, 0, 0, "-", "dummy_architecture_config"]], "dacapo.experiments.architectures.Architecture": [[21, 6, 1, "id4", "dims"], [21, 6, 1, "id1", "eval_shape_increase"], [21, 6, 1, "id0", "input_shape"], [21, 6, 1, "id2", "num_in_channels"], [21, 6, 1, "id3", "num_out_channels"], [21, 2, 1, "id5", "scale"]], "dacapo.experiments.architectures.ArchitectureConfig": [[21, 5, 1, "id6", "name"], [21, 2, 1, "id7", "verify"]], "dacapo.experiments.architectures.CNNectomeUNet": [[21, 5, 1, "", "activation"], [21, 5, 1, "", "activation_on_upsample"], [21, 5, 1, "", "batch_norm"], [21, 5, 1, "id39", "constant_upsample"], [21, 5, 1, "id36", "downsample_factors"], [21, 6, 1, "", "eval_shape_increase"], [21, 5, 1, "id35", "fmap_inc_factor"], [21, 5, 1, "id33", "fmaps_in"], [21, 5, 1, "id32", "fmaps_out"], [21, 2, 1, "", "forward"], [21, 5, 1, "", "fov"], [21, 6, 1, "", "input_shape"], [21, 5, 1, "id37", "kernel_size_down"], [21, 5, 1, "id38", "kernel_size_up"], [21, 2, 1, "", "module"], [21, 5, 1, "id34", "num_fmaps"], [21, 5, 1, "", "num_heads"], [21, 6, 1, "", "num_in_channels"], [21, 6, 1, "", "num_out_channels"], [21, 5, 1, "id40", "padding"], [21, 2, 1, "", "scale"], [21, 5, 1, "", "unet"], [21, 5, 1, "", "upsample_channel_contraction"], [21, 5, 1, "", "upsample_factors"], [21, 5, 1, "id41", "use_attention"], [21, 5, 1, "", "voxel_size"]], "dacapo.experiments.architectures.CNNectomeUNetConfig": [[21, 5, 1, "", "_eval_shape_increase"], [21, 5, 1, "id19", "architecture_type"], [21, 5, 1, "", "batch_norm"], [21, 5, 1, "id29", "constant_upsample"], [21, 5, 1, "id25", "downsample_factors"], [21, 5, 1, "id24", "fmap_inc_factor"], [21, 5, 1, "id22", "fmaps_in"], [21, 5, 1, "id21", "fmaps_out"], [21, 5, 1, "id20", "input_shape"], [21, 5, 1, "id26", "kernel_size_down"], [21, 5, 1, "id27", "kernel_size_up"], [21, 5, 1, "id23", "num_fmaps"], [21, 5, 1, "id30", "padding"], [21, 5, 1, "id28", "upsample_factors"], [21, 5, 1, "id31", "use_attention"]], "dacapo.experiments.architectures.DummyArchitecture": [[21, 5, 1, "id12", "channels_in"], [21, 5, 1, "id13", "channels_out"], [21, 5, 1, "id14", "conv"], [21, 2, 1, "id18", "forward"], [21, 6, 1, "id15", "input_shape"], [21, 6, 1, "id16", "num_in_channels"], [21, 6, 1, "id17", "num_out_channels"]], "dacapo.experiments.architectures.DummyArchitectureConfig": [[21, 5, 1, "id8", "architecture_type"], [21, 5, 1, "id9", "num_in_channels"], [21, 5, 1, "id10", "num_out_channels"], [21, 2, 1, "id11", "verify"]], "dacapo.experiments.architectures.architecture": [[15, 1, 1, "", "Architecture"]], "dacapo.experiments.architectures.architecture.Architecture": [[15, 6, 1, "id4", "dims"], [15, 6, 1, "id1", "eval_shape_increase"], [15, 6, 1, "id0", "input_shape"], [15, 6, 1, "id2", "num_in_channels"], [15, 6, 1, "id3", "num_out_channels"], [15, 2, 1, "id5", "scale"]], "dacapo.experiments.architectures.architecture_config": [[16, 1, 1, "", "ArchitectureConfig"]], "dacapo.experiments.architectures.architecture_config.ArchitectureConfig": [[16, 5, 1, "id0", "name"], [16, 2, 1, "id1", "verify"]], "dacapo.experiments.architectures.cnnectome_unet": [[17, 1, 1, "", "AttentionBlockModule"], [17, 1, 1, "", "CNNectomeUNet"], [17, 1, 1, "", "CNNectomeUNetModule"], [17, 1, 1, "", "ConvPass"], [17, 1, 1, "", "Downsample"], [17, 1, 1, "", "Upsample"]], "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule": [[17, 5, 1, "", "W_g"], [17, 5, 1, "", "W_x"], [17, 5, 1, "", "batch_norm"], [17, 2, 1, "", "calculate_and_apply_padding"], [17, 5, 1, "", "dims"], [17, 2, 1, "", "forward"], [17, 5, 1, "", "kernel_sizes"], [17, 5, 1, "", "psi"], [17, 5, 1, "", "relu"], [17, 5, 1, "", "up"]], "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet": [[17, 5, 1, "", "activation"], [17, 5, 1, "", "activation_on_upsample"], [17, 5, 1, "", "batch_norm"], [17, 5, 1, "id7", "constant_upsample"], [17, 5, 1, "id4", "downsample_factors"], [17, 6, 1, "", "eval_shape_increase"], [17, 5, 1, "id3", "fmap_inc_factor"], [17, 5, 1, "id1", "fmaps_in"], [17, 5, 1, "id0", "fmaps_out"], [17, 2, 1, "", "forward"], [17, 5, 1, "", "fov"], [17, 6, 1, "", "input_shape"], [17, 5, 1, "id5", "kernel_size_down"], [17, 5, 1, "id6", "kernel_size_up"], [17, 2, 1, "", "module"], [17, 5, 1, "id2", "num_fmaps"], [17, 5, 1, "", "num_heads"], [17, 6, 1, "", "num_in_channels"], [17, 6, 1, "", "num_out_channels"], [17, 5, 1, "id8", "padding"], [17, 2, 1, "", "scale"], [17, 5, 1, "", "unet"], [17, 5, 1, "", "upsample_channel_contraction"], [17, 5, 1, "", "upsample_factors"], [17, 5, 1, "id9", "use_attention"], [17, 5, 1, "", "voxel_size"]], "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule": [[17, 5, 1, "", "activation_on_upsample"], [17, 5, 1, "", "attention"], [17, 5, 1, "", "batch_norm"], [17, 5, 1, "", "constant_upsample"], [17, 5, 1, "id15", "dims"], [17, 5, 1, "", "downsample_factors"], [17, 5, 1, "", "fmap_inc_factor"], [17, 2, 1, "id24", "forward"], [17, 5, 1, "id13", "in_channels"], [17, 5, 1, "id17", "kernel_size_down"], [17, 5, 1, "id18", "kernel_size_up"], [17, 5, 1, "id19", "l_conv"], [17, 5, 1, "id20", "l_down"], [17, 5, 1, "id12", "num_heads"], [17, 5, 1, "id11", "num_levels"], [17, 5, 1, "id14", "out_channels"], [17, 5, 1, "", "padding"], [17, 5, 1, "id22", "r_conv"], [17, 5, 1, "id21", "r_up"], [17, 2, 1, "id23", "rec_forward"], [17, 5, 1, "", "upsample_channel_contraction"], [17, 5, 1, "id16", "use_attention"]], "dacapo.experiments.architectures.cnnectome_unet.ConvPass": [[17, 5, 1, "id25", "conv_pass"], [17, 5, 1, "", "dims"], [17, 2, 1, "id26", "forward"]], "dacapo.experiments.architectures.cnnectome_unet.Downsample": [[17, 5, 1, "id27", "dims"], [17, 5, 1, "id29", "down"], [17, 5, 1, "id28", "downsample_factor"], [17, 2, 1, "id30", "forward"]], "dacapo.experiments.architectures.cnnectome_unet.Upsample": [[17, 2, 1, "id35", "crop"], [17, 5, 1, "id31", "crop_factor"], [17, 2, 1, "id34", "crop_to_factor"], [17, 5, 1, "id33", "dims"], [17, 2, 1, "id36", "forward"], [17, 5, 1, "id32", "next_conv_kernel_sizes"], [17, 5, 1, "", "up"]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, 1, 1, "", "CNNectomeUNetConfig"]], "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig": [[18, 5, 1, "", "_eval_shape_increase"], [18, 5, 1, "id0", "architecture_type"], [18, 5, 1, "", "batch_norm"], [18, 5, 1, "id10", "constant_upsample"], [18, 5, 1, "id6", "downsample_factors"], [18, 5, 1, "id5", "fmap_inc_factor"], [18, 5, 1, "id3", "fmaps_in"], [18, 5, 1, "id2", "fmaps_out"], [18, 5, 1, "id1", "input_shape"], [18, 5, 1, "id7", "kernel_size_down"], [18, 5, 1, "id8", "kernel_size_up"], [18, 5, 1, "id4", "num_fmaps"], [18, 5, 1, "id11", "padding"], [18, 5, 1, "id9", "upsample_factors"], [18, 5, 1, "id12", "use_attention"]], "dacapo.experiments.architectures.dummy_architecture": [[19, 1, 1, "", "DummyArchitecture"]], "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture": [[19, 5, 1, "id0", "channels_in"], [19, 5, 1, "id1", "channels_out"], [19, 5, 1, "id2", "conv"], [19, 2, 1, "id6", "forward"], [19, 6, 1, "id3", "input_shape"], [19, 6, 1, "id4", "num_in_channels"], [19, 6, 1, "id5", "num_out_channels"]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, 1, 1, "", "DummyArchitectureConfig"]], "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig": [[20, 5, 1, "id0", "architecture_type"], [20, 5, 1, "id1", "num_in_channels"], [20, 5, 1, "id2", "num_out_channels"], [20, 2, 1, "id3", "verify"]], "dacapo.experiments.arraytypes": [[27, 1, 1, "", "AnnotationArray"], [27, 1, 1, "", "DistanceArray"], [27, 1, 1, "", "EmbeddingArray"], [27, 1, 1, "", "IntensitiesArray"], [27, 1, 1, "", "Mask"], [27, 1, 1, "", "ProbabilityArray"], [22, 0, 0, "-", "annotations"], [23, 0, 0, "-", "arraytype"], [24, 0, 0, "-", "binary"], [25, 0, 0, "-", "distances"], [26, 0, 0, "-", "embedding"], [28, 0, 0, "-", "intensities"], [29, 0, 0, "-", "mask"], [30, 0, 0, "-", "probabilities"]], "dacapo.experiments.arraytypes.AnnotationArray": [[27, 5, 1, "id0", "classes"], [27, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.DistanceArray": [[27, 5, 1, "id6", "classes"], [27, 6, 1, "id7", "interpolatable"], [27, 5, 1, "", "max"]], "dacapo.experiments.arraytypes.EmbeddingArray": [[27, 5, 1, "id9", "embedding_dims"], [27, 6, 1, "id10", "interpolatable"]], "dacapo.experiments.arraytypes.IntensitiesArray": [[27, 2, 1, "", "__attrs_post_init__"], [27, 5, 1, "id2", "channels"], [27, 6, 1, "id5", "interpolatable"], [27, 5, 1, "id4", "max"], [27, 5, 1, "id3", "min"]], "dacapo.experiments.arraytypes.Mask": [[27, 6, 1, "id8", "interpolatable"]], "dacapo.experiments.arraytypes.ProbabilityArray": [[27, 5, 1, "id11", "classes"], [27, 6, 1, "", "interpolatable"]], "dacapo.experiments.arraytypes.annotations": [[22, 1, 1, "", "AnnotationArray"]], "dacapo.experiments.arraytypes.annotations.AnnotationArray": [[22, 5, 1, "id0", "classes"], [22, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.arraytype": [[23, 1, 1, "", "ArrayType"]], "dacapo.experiments.arraytypes.arraytype.ArrayType": [[23, 5, 1, "", "channel_names"], [23, 6, 1, "id0", "interpolatable"], [23, 5, 1, "", "num_classes"]], "dacapo.experiments.arraytypes.binary": [[24, 1, 1, "", "BinaryArray"]], "dacapo.experiments.arraytypes.binary.BinaryArray": [[24, 5, 1, "id0", "channels"], [24, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.distances": [[25, 1, 1, "", "DistanceArray"]], "dacapo.experiments.arraytypes.distances.DistanceArray": [[25, 5, 1, "id0", "classes"], [25, 6, 1, "id1", "interpolatable"], [25, 5, 1, "", "max"]], "dacapo.experiments.arraytypes.embedding": [[26, 1, 1, "", "EmbeddingArray"]], "dacapo.experiments.arraytypes.embedding.EmbeddingArray": [[26, 5, 1, "id0", "embedding_dims"], [26, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.intensities": [[28, 1, 1, "", "IntensitiesArray"]], "dacapo.experiments.arraytypes.intensities.IntensitiesArray": [[28, 2, 1, "", "__attrs_post_init__"], [28, 5, 1, "id0", "channels"], [28, 6, 1, "id3", "interpolatable"], [28, 5, 1, "id2", "max"], [28, 5, 1, "id1", "min"]], "dacapo.experiments.arraytypes.mask": [[29, 1, 1, "", "Mask"]], "dacapo.experiments.arraytypes.mask.Mask": [[29, 6, 1, "id0", "interpolatable"]], "dacapo.experiments.arraytypes.probabilities": [[30, 1, 1, "", "ProbabilityArray"]], "dacapo.experiments.arraytypes.probabilities.ProbabilityArray": [[30, 5, 1, "id0", "classes"], [30, 6, 1, "", "interpolatable"]], "dacapo.experiments.datasplits": [[62, 1, 1, "", "DataSplit"], [62, 1, 1, "", "DataSplitConfig"], [62, 1, 1, "", "DataSplitGenerator"], [62, 1, 1, "", "DatasetSpec"], [62, 1, 1, "", "DummyDataSplit"], [62, 1, 1, "", "DummyDataSplitConfig"], [62, 1, 1, "", "TrainValidateDataSplit"], [62, 1, 1, "", "TrainValidateDataSplitConfig"], [54, 0, 0, "-", "datasets"], [57, 0, 0, "-", "datasplit"], [58, 0, 0, "-", "datasplit_config"], [59, 0, 0, "-", "datasplit_generator"], [60, 0, 0, "-", "dummy_datasplit"], [61, 0, 0, "-", "dummy_datasplit_config"], [63, 0, 0, "-", "keys"], [65, 0, 0, "-", "train_validate_datasplit"], [66, 0, 0, "-", "train_validate_datasplit_config"]], "dacapo.experiments.datasplits.DataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id0", "train"], [62, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.DataSplitConfig": [[62, 5, 1, "id2", "name"], [62, 2, 1, "id3", "verify"]], "dacapo.experiments.datasplits.DataSplitGenerator": [[62, 2, 1, "", "__generate_semantic_seg_dataset_crop"], [62, 2, 1, "", "__generate_semantic_seg_datasplit"], [62, 2, 1, "", "__init__"], [62, 2, 1, "", "__str__"], [62, 5, 1, "", "binarize_gt"], [62, 2, 1, "id31", "check_class_name"], [62, 6, 1, "id30", "class_name"], [62, 5, 1, "id28", "classes_separator_character"], [62, 2, 1, "id32", "compute"], [62, 5, 1, "id14", "datasets"], [62, 2, 1, "", "generate_csv"], [62, 2, 1, "id33", "generate_from_csv"], [62, 5, 1, "id15", "input_resolution"], [62, 5, 1, "id19", "max_gt_downsample"], [62, 5, 1, "id20", "max_gt_upsample"], [62, 5, 1, "id21", "max_raw_training_downsample"], [62, 5, 1, "id22", "max_raw_training_upsample"], [62, 5, 1, "id23", "max_raw_validation_downsample"], [62, 5, 1, "id24", "max_raw_validation_upsample"], [62, 5, 1, "id29", "max_validation_volume_size"], [62, 5, 1, "id25", "min_training_volume_size"], [62, 5, 1, "id13", "name"], [62, 5, 1, "id16", "output_resolution"], [62, 5, 1, "id27", "raw_max"], [62, 5, 1, "id26", "raw_min"], [62, 5, 1, "id18", "segmentation_type"], [62, 5, 1, "id17", "targets"], [62, 5, 1, "", "use_negative_class"]], "dacapo.experiments.datasplits.DatasetSpec": [[62, 2, 1, "", "__init__"], [62, 2, 1, "", "__str__"], [62, 5, 1, "id34", "dataset_type"], [62, 5, 1, "id37", "gt_container"], [62, 5, 1, "id38", "gt_dataset"], [62, 5, 1, "id35", "raw_container"], [62, 5, 1, "id36", "raw_dataset"]], "dacapo.experiments.datasplits.DummyDataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id4", "train"], [62, 5, 1, "id5", "validate"]], "dacapo.experiments.datasplits.DummyDataSplitConfig": [[62, 5, 1, "id6", "datasplit_type"], [62, 5, 1, "id7", "train_config"], [62, 2, 1, "id8", "verify"]], "dacapo.experiments.datasplits.TrainValidateDataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id9", "train"], [62, 5, 1, "id10", "validate"]], "dacapo.experiments.datasplits.TrainValidateDataSplitConfig": [[62, 2, 1, "", "__init__"], [62, 5, 1, "", "datasplit_type"], [62, 5, 1, "id11", "train_configs"], [62, 5, 1, "id12", "validate_configs"]], "dacapo.experiments.datasplits.datasets": [[54, 1, 1, "", "Dataset"], [54, 1, 1, "", "DatasetConfig"], [54, 1, 1, "", "DummyDataset"], [54, 1, 1, "", "DummyDatasetConfig"], [54, 1, 1, "", "RawGTDataset"], [54, 1, 1, "", "RawGTDatasetConfig"], [38, 0, 0, "-", "arrays"], [48, 0, 0, "-", "dataset"], [49, 0, 0, "-", "dataset_config"], [50, 0, 0, "-", "dummy_dataset"], [51, 0, 0, "-", "dummy_dataset_config"], [53, 0, 0, "-", "graphstores"], [55, 0, 0, "-", "raw_gt_dataset"], [56, 0, 0, "-", "raw_gt_dataset_config"]], "dacapo.experiments.datasplits.datasets.Dataset": [[54, 2, 1, "", "__eq__"], [54, 2, 1, "", "__hash__"], [54, 2, 1, "", "__repr__"], [54, 2, 1, "", "__str__"], [54, 2, 1, "", "_neuroglancer_layers"], [54, 5, 1, "id2", "gt"], [54, 5, 1, "id3", "mask"], [54, 5, 1, "id0", "name"], [54, 5, 1, "id1", "raw"], [54, 5, 1, "id5", "sample_points"], [54, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.DatasetConfig": [[54, 5, 1, "id6", "name"], [54, 2, 1, "id8", "verify"], [54, 5, 1, "id7", "weight"]], "dacapo.experiments.datasplits.datasets.DummyDataset": [[54, 2, 1, "", "__init__"], [54, 5, 1, "", "name"], [54, 5, 1, "id9", "raw"]], "dacapo.experiments.datasplits.datasets.DummyDatasetConfig": [[54, 5, 1, "id10", "dataset_type"], [54, 5, 1, "id11", "raw_config"], [54, 2, 1, "id12", "verify"]], "dacapo.experiments.datasplits.datasets.RawGTDataset": [[54, 2, 1, "", "__init__"], [54, 5, 1, "id14", "gt"], [54, 5, 1, "id15", "mask"], [54, 5, 1, "", "name"], [54, 5, 1, "id13", "raw"], [54, 5, 1, "id16", "sample_points"], [54, 5, 1, "id17", "weight"]], "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig": [[54, 5, 1, "id18", "dataset_type"], [54, 5, 1, "id20", "gt_config"], [54, 5, 1, "id21", "mask_config"], [54, 5, 1, "id19", "raw_config"], [54, 5, 1, "id22", "sample_points"], [54, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays": [[38, 1, 1, "", "ArrayConfig"], [38, 1, 1, "", "BinarizeArrayConfig"], [38, 1, 1, "", "ConcatArrayConfig"], [38, 1, 1, "", "ConstantArrayConfig"], [38, 1, 1, "", "CropArrayConfig"], [38, 1, 1, "", "DVIDArrayConfig"], [38, 1, 1, "", "DummyArrayConfig"], [38, 1, 1, "", "IntensitiesArrayConfig"], [38, 1, 1, "", "LogicalOrArrayConfig"], [38, 1, 1, "", "MergeInstancesArrayConfig"], [38, 1, 1, "", "MissingAnnotationsMaskConfig"], [38, 1, 1, "", "OnesArrayConfig"], [38, 1, 1, "", "ResampledArrayConfig"], [38, 1, 1, "", "SumArrayConfig"], [38, 1, 1, "", "ZarrArrayConfig"], [31, 0, 0, "-", "array_config"], [32, 0, 0, "-", "binarize_array_config"], [33, 0, 0, "-", "concat_array_config"], [34, 0, 0, "-", "constant_array_config"], [35, 0, 0, "-", "crop_array_config"], [36, 0, 0, "-", "dummy_array_config"], [37, 0, 0, "-", "dvid_array_config"], [39, 0, 0, "-", "intensity_array_config"], [40, 0, 0, "-", "logical_or_array_config"], [41, 0, 0, "-", "merge_instances_array_config"], [42, 0, 0, "-", "missing_annotations_mask_config"], [43, 0, 0, "-", "ones_array_config"], [44, 0, 0, "-", "resampled_array_config"], [45, 0, 0, "-", "sum_array_config"], [46, 0, 0, "-", "tiff_array_config"], [47, 0, 0, "-", "zarr_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id0", "name"], [38, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id9", "background"], [38, 5, 1, "id8", "groupings"], [38, 5, 1, "id7", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig": [[38, 2, 1, "", "__attrs_post_init__"], [38, 2, 1, "", "array"], [38, 5, 1, "id20", "channels"], [38, 5, 1, "id22", "default_config"], [38, 5, 1, "id21", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "", "constant"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id29", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id25", "roi"], [38, 5, 1, "id24", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id27", "source"], [38, 2, 1, "", "to_array"], [38, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "to_array"], [38, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id16", "max"], [38, 5, 1, "id15", "min"], [38, 5, 1, "id14", "source_array_config"], [38, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id23", "source_array_config"], [38, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id26", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id18", "groupings"], [38, 5, 1, "id17", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id19", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id12", "downsample"], [38, 5, 1, "id13", "interp_order"], [38, 5, 1, "id10", "source_array_config"], [38, 5, 1, "id11", "upsample"]], "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id28", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig": [[38, 5, 1, "", "_axes"], [38, 2, 1, "", "array"], [38, 5, 1, "id4", "dataset"], [38, 5, 1, "id3", "file_name"], [38, 5, 1, "", "mode"], [38, 5, 1, "id5", "snap_to_grid"], [38, 2, 1, "id6", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, 1, 1, "", "ArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig": [[31, 2, 1, "", "array"], [31, 5, 1, "id0", "name"], [31, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, 1, 1, "", "BinarizeArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig": [[32, 2, 1, "", "array"], [32, 5, 1, "id2", "background"], [32, 5, 1, "id1", "groupings"], [32, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, 1, 1, "", "ConcatArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig": [[33, 2, 1, "", "__attrs_post_init__"], [33, 2, 1, "", "array"], [33, 5, 1, "id0", "channels"], [33, 5, 1, "id2", "default_config"], [33, 5, 1, "id1", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, 1, 1, "", "ConstantArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig": [[34, 2, 1, "", "array"], [34, 5, 1, "", "constant"], [34, 2, 1, "", "create_array"], [34, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, 1, 1, "", "CropArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig": [[35, 2, 1, "", "array"], [35, 2, 1, "", "create_array"], [35, 5, 1, "id1", "roi"], [35, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, 1, 1, "", "DummyArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig": [[36, 2, 1, "", "array"], [36, 2, 1, "", "to_array"], [36, 2, 1, "id0", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, 1, 1, "", "DVIDArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig": [[37, 2, 1, "", "array"], [37, 5, 1, "id0", "source"], [37, 2, 1, "", "to_array"], [37, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, 1, 1, "", "IntensitiesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig": [[39, 2, 1, "", "array"], [39, 5, 1, "id2", "max"], [39, 5, 1, "id1", "min"], [39, 5, 1, "id0", "source_array_config"], [39, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, 1, 1, "", "LogicalOrArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig": [[40, 2, 1, "", "array"], [40, 5, 1, "id0", "source_array_config"], [40, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, 1, 1, "", "MergeInstancesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig": [[41, 2, 1, "", "array"], [41, 2, 1, "", "create_array"], [41, 5, 1, "id0", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, 1, 1, "", "MissingAnnotationsMaskConfig"]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig": [[42, 2, 1, "", "array"], [42, 5, 1, "id1", "groupings"], [42, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, 1, 1, "", "OnesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig": [[43, 2, 1, "", "array"], [43, 2, 1, "", "create_array"], [43, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, 1, 1, "", "ResampledArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig": [[44, 2, 1, "", "array"], [44, 2, 1, "", "create_array"], [44, 5, 1, "id2", "downsample"], [44, 5, 1, "id3", "interp_order"], [44, 5, 1, "id0", "source_array_config"], [44, 5, 1, "id1", "upsample"]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, 1, 1, "", "SumArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig": [[45, 2, 1, "", "array"], [45, 5, 1, "id0", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, 1, 1, "", "TiffArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig": [[46, 2, 1, "", "array"], [46, 5, 1, "id3", "axis_names"], [46, 5, 1, "id0", "file_name"], [46, 5, 1, "id1", "offset"], [46, 5, 1, "", "units"], [46, 5, 1, "id2", "voxel_size"]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, 1, 1, "", "ZarrArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig": [[47, 5, 1, "", "_axes"], [47, 2, 1, "", "array"], [47, 5, 1, "id1", "dataset"], [47, 5, 1, "id0", "file_name"], [47, 5, 1, "", "mode"], [47, 5, 1, "id2", "snap_to_grid"], [47, 2, 1, "id3", "verify"]], "dacapo.experiments.datasplits.datasets.dataset": [[48, 1, 1, "", "Dataset"]], "dacapo.experiments.datasplits.datasets.dataset.Dataset": [[48, 2, 1, "", "__eq__"], [48, 2, 1, "", "__hash__"], [48, 2, 1, "", "__repr__"], [48, 2, 1, "", "__str__"], [48, 2, 1, "", "_neuroglancer_layers"], [48, 5, 1, "id2", "gt"], [48, 5, 1, "id3", "mask"], [48, 5, 1, "id0", "name"], [48, 5, 1, "id1", "raw"], [48, 5, 1, "id5", "sample_points"], [48, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, 1, 1, "", "DatasetConfig"]], "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig": [[49, 5, 1, "id0", "name"], [49, 2, 1, "id2", "verify"], [49, 5, 1, "id1", "weight"]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, 1, 1, "", "DummyDataset"]], "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset": [[50, 2, 1, "", "__init__"], [50, 5, 1, "", "name"], [50, 5, 1, "id0", "raw"]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, 1, 1, "", "DummyDatasetConfig"]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig": [[51, 5, 1, "id0", "dataset_type"], [51, 5, 1, "id1", "raw_config"], [51, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, 1, 1, "", "GraphStoreConfig"], [52, 0, 0, "-", "graph_source_config"]], "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig": [[53, 5, 1, "", "store_type"], [53, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, 1, 1, "", "GraphStoreConfig"]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig": [[52, 5, 1, "", "store_type"], [52, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, 1, 1, "", "RawGTDataset"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset": [[55, 2, 1, "", "__init__"], [55, 5, 1, "id1", "gt"], [55, 5, 1, "id2", "mask"], [55, 5, 1, "", "name"], [55, 5, 1, "id0", "raw"], [55, 5, 1, "id3", "sample_points"], [55, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, 1, 1, "", "RawGTDatasetConfig"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig": [[56, 5, 1, "id0", "dataset_type"], [56, 5, 1, "id2", "gt_config"], [56, 5, 1, "id3", "mask_config"], [56, 5, 1, "id1", "raw_config"], [56, 5, 1, "id4", "sample_points"], [56, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasplit": [[57, 1, 1, "", "DataSplit"]], "dacapo.experiments.datasplits.datasplit.DataSplit": [[57, 2, 1, "", "__init__"], [57, 5, 1, "id0", "train"], [57, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.datasplit_config": [[58, 1, 1, "", "DataSplitConfig"]], "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig": [[58, 5, 1, "id0", "name"], [58, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasplit_generator": [[59, 1, 1, "", "CustomEnum"], [59, 1, 1, "", "CustomEnumMeta"], [59, 1, 1, "", "DataSplitGenerator"], [59, 1, 1, "", "DatasetSpec"], [59, 1, 1, "", "DatasetType"], [59, 1, 1, "", "SegmentationType"], [59, 3, 1, "", "format_class_name"], [59, 3, 1, "", "generate_dataspec_from_csv"], [59, 3, 1, "", "get_right_resolution_array_config"], [59, 3, 1, "", "is_zarr_group"], [59, 3, 1, "", "limit_validation_crop_size"], [59, 4, 1, "", "logger"], [59, 3, 1, "", "resize_if_needed"]], "dacapo.experiments.datasplits.datasplit_generator.CustomEnum": [[59, 2, 1, "id0", "__str__"]], "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta": [[59, 2, 1, "", "__getitem__"], [59, 5, 1, "", "_member_names_"]], "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator": [[59, 2, 1, "", "__generate_semantic_seg_dataset_crop"], [59, 2, 1, "", "__generate_semantic_seg_datasplit"], [59, 2, 1, "", "__init__"], [59, 2, 1, "", "__str__"], [59, 5, 1, "", "binarize_gt"], [59, 2, 1, "id28", "check_class_name"], [59, 6, 1, "id27", "class_name"], [59, 5, 1, "id25", "classes_separator_character"], [59, 2, 1, "id29", "compute"], [59, 5, 1, "id11", "datasets"], [59, 2, 1, "", "generate_csv"], [59, 2, 1, "id30", "generate_from_csv"], [59, 5, 1, "id12", "input_resolution"], [59, 5, 1, "id16", "max_gt_downsample"], [59, 5, 1, "id17", "max_gt_upsample"], [59, 5, 1, "id18", "max_raw_training_downsample"], [59, 5, 1, "id19", "max_raw_training_upsample"], [59, 5, 1, "id20", "max_raw_validation_downsample"], [59, 5, 1, "id21", "max_raw_validation_upsample"], [59, 5, 1, "id26", "max_validation_volume_size"], [59, 5, 1, "id22", "min_training_volume_size"], [59, 5, 1, "id10", "name"], [59, 5, 1, "id13", "output_resolution"], [59, 5, 1, "id24", "raw_max"], [59, 5, 1, "id23", "raw_min"], [59, 5, 1, "id15", "segmentation_type"], [59, 5, 1, "id14", "targets"], [59, 5, 1, "", "use_negative_class"]], "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec": [[59, 2, 1, "", "__init__"], [59, 2, 1, "", "__str__"], [59, 5, 1, "id5", "dataset_type"], [59, 5, 1, "id8", "gt_container"], [59, 5, 1, "id9", "gt_dataset"], [59, 5, 1, "id6", "raw_container"], [59, 5, 1, "id7", "raw_dataset"]], "dacapo.experiments.datasplits.datasplit_generator.DatasetType": [[59, 2, 1, "", "__str__"], [59, 5, 1, "id2", "train"], [59, 5, 1, "id1", "val"]], "dacapo.experiments.datasplits.datasplit_generator.SegmentationType": [[59, 2, 1, "", "__str__"], [59, 5, 1, "id4", "instance"], [59, 5, 1, "id3", "semantic"]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, 1, 1, "", "DummyDataSplit"]], "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit": [[60, 2, 1, "", "__init__"], [60, 5, 1, "id0", "train"], [60, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, 1, 1, "", "DummyDataSplitConfig"]], "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig": [[61, 5, 1, "id0", "datasplit_type"], [61, 5, 1, "id1", "train_config"], [61, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.keys": [[63, 1, 1, "", "ArrayKey"], [63, 1, 1, "", "DataKey"], [63, 1, 1, "", "GraphKey"], [64, 0, 0, "-", "keys"]], "dacapo.experiments.datasplits.keys.ArrayKey": [[63, 5, 1, "id1", "GT"], [63, 5, 1, "id2", "MASK"], [63, 5, 1, "id3", "NON_EMPTY"], [63, 5, 1, "id0", "RAW"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.DataKey": [[63, 5, 1, "", "GT"], [63, 5, 1, "", "MASK"], [63, 5, 1, "", "NON_EMPTY"], [63, 5, 1, "", "RAW"], [63, 5, 1, "", "SPECIFIED_LOCATIONS"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.GraphKey": [[63, 5, 1, "id4", "SPECIFIED_LOCATIONS"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys": [[64, 1, 1, "", "ArrayKey"], [64, 1, 1, "", "DataKey"], [64, 1, 1, "", "GraphKey"]], "dacapo.experiments.datasplits.keys.keys.ArrayKey": [[64, 5, 1, "id1", "GT"], [64, 5, 1, "id2", "MASK"], [64, 5, 1, "id3", "NON_EMPTY"], [64, 5, 1, "id0", "RAW"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys.DataKey": [[64, 5, 1, "", "GT"], [64, 5, 1, "", "MASK"], [64, 5, 1, "", "NON_EMPTY"], [64, 5, 1, "", "RAW"], [64, 5, 1, "", "SPECIFIED_LOCATIONS"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys.GraphKey": [[64, 5, 1, "id4", "SPECIFIED_LOCATIONS"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, 1, 1, "", "TrainValidateDataSplit"]], "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit": [[65, 2, 1, "", "__init__"], [65, 5, 1, "id0", "train"], [65, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, 1, 1, "", "TrainValidateDataSplitConfig"]], "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig": [[66, 2, 1, "", "__init__"], [66, 5, 1, "", "datasplit_type"], [66, 5, 1, "id0", "train_configs"], [66, 5, 1, "id1", "validate_configs"]], "dacapo.experiments.model": [[68, 1, 1, "", "Model"]], "dacapo.experiments.model.Model": [[68, 5, 1, "id4", "architecture"], [68, 5, 1, "id6", "chain"], [68, 2, 1, "", "compute_output_shape"], [68, 5, 1, "id9", "eval_activation"], [68, 5, 1, "id8", "eval_input_shape"], [68, 2, 1, "", "forward"], [68, 5, 1, "id7", "input_shape"], [68, 5, 1, "id3", "num_in_channels"], [68, 5, 1, "id0", "num_out_channels"], [68, 5, 1, "", "output_shape"], [68, 5, 1, "id5", "prediction_head"], [68, 2, 1, "", "scale"]], "dacapo.experiments.run": [[69, 1, 1, "", "Run"]], "dacapo.experiments.run.Run": [[69, 5, 1, "id4", "architecture"], [69, 6, 1, "id10", "datasplit"], [69, 2, 1, "id12", "get_validation_scores"], [69, 5, 1, "id6", "model"], [69, 2, 1, "", "move_optimizer"], [69, 5, 1, "id0", "name"], [69, 5, 1, "id7", "optimizer"], [69, 5, 1, "id9", "start"], [69, 5, 1, "id3", "task"], [69, 5, 1, "id1", "train_until"], [69, 5, 1, "id5", "trainer"], [69, 5, 1, "id8", "training_stats"], [69, 5, 1, "id2", "validation_interval"], [69, 6, 1, "id11", "validation_scores"], [69, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.run_config": [[70, 1, 1, "", "RunConfig"]], "dacapo.experiments.run_config.RunConfig": [[70, 5, 1, "", "architecture_config"], [70, 5, 1, "", "datasplit_config"], [70, 5, 1, "", "name"], [70, 5, 1, "", "num_iterations"], [70, 5, 1, "", "repetition"], [70, 5, 1, "", "start_config"], [70, 5, 1, "", "task_config"], [70, 5, 1, "", "trainer_config"], [70, 5, 1, "", "validation_interval"]], "dacapo.experiments.starts": [[73, 1, 1, "", "CosemStart"], [73, 1, 1, "", "CosemStartConfig"], [73, 1, 1, "", "Start"], [73, 1, 1, "", "StartConfig"], [71, 0, 0, "-", "cosem_start"], [72, 0, 0, "-", "cosem_start_config"], [74, 0, 0, "-", "start"], [75, 0, 0, "-", "start_config"]], "dacapo.experiments.starts.CosemStart": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id7", "channels"], [73, 2, 1, "id8", "check"], [73, 5, 1, "id5", "criterion"], [73, 2, 1, "id9", "initialize_weights"], [73, 5, 1, "id6", "name"], [73, 5, 1, "id4", "run"]], "dacapo.experiments.starts.CosemStartConfig": [[73, 2, 1, "", "__init__"], [73, 5, 1, "", "criterion"], [73, 5, 1, "", "run"], [73, 5, 1, "", "start_type"]], "dacapo.experiments.starts.Start": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id0", "channels"], [73, 5, 1, "", "criterion"], [73, 2, 1, "id1", "initialize_weights"], [73, 5, 1, "", "run"]], "dacapo.experiments.starts.StartConfig": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id3", "criterion"], [73, 5, 1, "id2", "run"], [73, 5, 1, "", "start_type"]], "dacapo.experiments.starts.cosem_start": [[71, 1, 1, "", "CosemStart"], [71, 3, 1, "", "get_model_setup"], [71, 4, 1, "", "logger"]], "dacapo.experiments.starts.cosem_start.CosemStart": [[71, 2, 1, "", "__init__"], [71, 5, 1, "id3", "channels"], [71, 2, 1, "id4", "check"], [71, 5, 1, "id1", "criterion"], [71, 2, 1, "id5", "initialize_weights"], [71, 5, 1, "id2", "name"], [71, 5, 1, "id0", "run"]], "dacapo.experiments.starts.cosem_start_config": [[72, 1, 1, "", "CosemStartConfig"]], "dacapo.experiments.starts.cosem_start_config.CosemStartConfig": [[72, 2, 1, "", "__init__"], [72, 5, 1, "", "criterion"], [72, 5, 1, "", "run"], [72, 5, 1, "", "start_type"]], "dacapo.experiments.starts.start": [[74, 1, 1, "", "Start"], [74, 4, 1, "", "head_keys"], [74, 4, 1, "", "logger"], [74, 3, 1, "", "match_heads"]], "dacapo.experiments.starts.start.Start": [[74, 2, 1, "", "__init__"], [74, 5, 1, "id0", "channels"], [74, 5, 1, "", "criterion"], [74, 2, 1, "id1", "initialize_weights"], [74, 5, 1, "", "run"]], "dacapo.experiments.starts.start_config": [[75, 1, 1, "", "StartConfig"]], "dacapo.experiments.starts.start_config.StartConfig": [[75, 2, 1, "", "__init__"], [75, 5, 1, "id1", "criterion"], [75, 5, 1, "id0", "run"], [75, 5, 1, "", "start_type"]], "dacapo.experiments.tasks": [[93, 1, 1, "", "AffinitiesTask"], [93, 1, 1, "", "AffinitiesTaskConfig"], [93, 1, 1, "", "DistanceTask"], [93, 1, 1, "", "DistanceTaskConfig"], [93, 1, 1, "", "DummyTask"], [93, 1, 1, "", "DummyTaskConfig"], [93, 1, 1, "", "HotDistanceTask"], [93, 1, 1, "", "HotDistanceTaskConfig"], [93, 1, 1, "", "InnerDistanceTask"], [93, 1, 1, "", "InnerDistanceTaskConfig"], [93, 1, 1, "", "OneHotTask"], [93, 1, 1, "", "OneHotTaskConfig"], [93, 1, 1, "", "PretrainedTask"], [93, 1, 1, "", "PretrainedTaskConfig"], [93, 1, 1, "", "Task"], [93, 1, 1, "", "TaskConfig"], [76, 0, 0, "-", "affinities_task"], [77, 0, 0, "-", "affinities_task_config"], [78, 0, 0, "-", "distance_task"], [79, 0, 0, "-", "distance_task_config"], [80, 0, 0, "-", "dummy_task"], [81, 0, 0, "-", "dummy_task_config"], [88, 0, 0, "-", "evaluators"], [91, 0, 0, "-", "hot_distance_task"], [92, 0, 0, "-", "hot_distance_task_config"], [94, 0, 0, "-", "inner_distance_task"], [95, 0, 0, "-", "inner_distance_task_config"], [99, 0, 0, "-", "losses"], [102, 0, 0, "-", "one_hot_task"], [103, 0, 0, "-", "one_hot_task_config"], [108, 0, 0, "-", "post_processors"], [119, 0, 0, "-", "predictors"], [123, 0, 0, "-", "pretrained_task"], [124, 0, 0, "-", "pretrained_task_config"], [125, 0, 0, "-", "task"], [126, 0, 0, "-", "task_config"]], "dacapo.experiments.tasks.AffinitiesTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id40", "evaluator"], [93, 5, 1, "id38", "loss"], [93, 5, 1, "id39", "post_processor"], [93, 5, 1, "id37", "predictor"]], "dacapo.experiments.tasks.AffinitiesTaskConfig": [[93, 5, 1, "id33", "affs_weight_clipmax"], [93, 5, 1, "id32", "affs_weight_clipmin"], [93, 5, 1, "id36", "background_as_object"], [93, 5, 1, "id30", "downsample_lsds"], [93, 5, 1, "id35", "lsd_weight_clipmax"], [93, 5, 1, "id34", "lsd_weight_clipmin"], [93, 5, 1, "id28", "lsds"], [93, 5, 1, "id31", "lsds_to_affs_weight_ratio"], [93, 5, 1, "id27", "neighborhood"], [93, 5, 1, "id29", "num_lsd_voxels"], [93, 5, 1, "", "task_type"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.DistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id20", "evaluator"], [93, 5, 1, "id18", "loss"], [93, 5, 1, "id19", "post_processor"], [93, 5, 1, "id17", "predictor"]], "dacapo.experiments.tasks.DistanceTaskConfig": [[93, 5, 1, "id10", "channels"], [93, 5, 1, "id11", "clip_distance"], [93, 5, 1, "id16", "clipmax"], [93, 5, 1, "id15", "clipmin"], [93, 5, 1, "id14", "mask_distances"], [93, 5, 1, "id13", "scale_factor"], [93, 5, 1, "", "task_type"], [93, 5, 1, "id12", "tol_distance"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.DummyTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id9", "evaluator"], [93, 5, 1, "id7", "loss"], [93, 5, 1, "id8", "post_processor"], [93, 5, 1, "id6", "predictor"]], "dacapo.experiments.tasks.DummyTaskConfig": [[93, 5, 1, "id4", "detection_threshold"], [93, 5, 1, "id3", "embedding_dims"], [93, 5, 1, "id2", "task_type"], [93, 2, 1, "id5", "verify"]], "dacapo.experiments.tasks.HotDistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id58", "evaluator"], [93, 5, 1, "id56", "loss"], [93, 5, 1, "id57", "post_processor"], [93, 5, 1, "id55", "predictor"]], "dacapo.experiments.tasks.HotDistanceTaskConfig": [[93, 5, 1, "id50", "channels"], [93, 5, 1, "id51", "clip_distance"], [93, 5, 1, "id54", "mask_distances"], [93, 5, 1, "id53", "scale_factor"], [93, 5, 1, "id49", "task_type"], [93, 5, 1, "id52", "tol_distance"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.InnerDistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id48", "evaluator"], [93, 5, 1, "id46", "loss"], [93, 5, 1, "id47", "post_processor"], [93, 5, 1, "id45", "predictor"], [93, 5, 1, "", "task_config"]], "dacapo.experiments.tasks.InnerDistanceTaskConfig": [[93, 5, 1, "id41", "channels"], [93, 5, 1, "id42", "clip_distance"], [93, 5, 1, "id44", "scale_factor"], [93, 5, 1, "", "task_type"], [93, 5, 1, "id43", "tol_distance"]], "dacapo.experiments.tasks.OneHotTask": [[93, 2, 1, "", "create_model"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"], [93, 5, 1, "", "weights"]], "dacapo.experiments.tasks.OneHotTaskConfig": [[93, 2, 1, "", "None"], [93, 5, 1, "id22", "classes"], [93, 5, 1, "id21", "task_type"]], "dacapo.experiments.tasks.PretrainedTask": [[93, 2, 1, "id26", "create_model"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"], [93, 5, 1, "id25", "weights"]], "dacapo.experiments.tasks.PretrainedTaskConfig": [[93, 5, 1, "id23", "sub_task_config"], [93, 5, 1, "", "task_type"], [93, 2, 1, "", "verify"], [93, 5, 1, "id24", "weights"]], "dacapo.experiments.tasks.Task": [[93, 2, 1, "", "create_model"], [93, 6, 1, "", "evaluation_scores"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 6, 1, "", "parameters"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"]], "dacapo.experiments.tasks.TaskConfig": [[93, 5, 1, "id0", "name"], [93, 2, 1, "id1", "verify"]], "dacapo.experiments.tasks.affinities_task": [[76, 1, 1, "", "AffinitiesTask"]], "dacapo.experiments.tasks.affinities_task.AffinitiesTask": [[76, 2, 1, "", "__init__"], [76, 5, 1, "id3", "evaluator"], [76, 5, 1, "id1", "loss"], [76, 5, 1, "id2", "post_processor"], [76, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.affinities_task_config": [[77, 1, 1, "", "AffinitiesTaskConfig"]], "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig": [[77, 5, 1, "id6", "affs_weight_clipmax"], [77, 5, 1, "id5", "affs_weight_clipmin"], [77, 5, 1, "id9", "background_as_object"], [77, 5, 1, "id3", "downsample_lsds"], [77, 5, 1, "id8", "lsd_weight_clipmax"], [77, 5, 1, "id7", "lsd_weight_clipmin"], [77, 5, 1, "id1", "lsds"], [77, 5, 1, "id4", "lsds_to_affs_weight_ratio"], [77, 5, 1, "id0", "neighborhood"], [77, 5, 1, "id2", "num_lsd_voxels"], [77, 5, 1, "", "task_type"], [77, 2, 1, "", "verify"]], "dacapo.experiments.tasks.distance_task": [[78, 1, 1, "", "DistanceTask"]], "dacapo.experiments.tasks.distance_task.DistanceTask": [[78, 2, 1, "", "__init__"], [78, 5, 1, "id3", "evaluator"], [78, 5, 1, "id1", "loss"], [78, 5, 1, "id2", "post_processor"], [78, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.distance_task_config": [[79, 1, 1, "", "DistanceTaskConfig"]], "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig": [[79, 5, 1, "id0", "channels"], [79, 5, 1, "id1", "clip_distance"], [79, 5, 1, "id6", "clipmax"], [79, 5, 1, "id5", "clipmin"], [79, 5, 1, "id4", "mask_distances"], [79, 5, 1, "id3", "scale_factor"], [79, 5, 1, "", "task_type"], [79, 5, 1, "id2", "tol_distance"], [79, 2, 1, "", "verify"]], "dacapo.experiments.tasks.dummy_task": [[80, 1, 1, "", "DummyTask"]], "dacapo.experiments.tasks.dummy_task.DummyTask": [[80, 2, 1, "", "__init__"], [80, 5, 1, "id3", "evaluator"], [80, 5, 1, "id1", "loss"], [80, 5, 1, "id2", "post_processor"], [80, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.dummy_task_config": [[81, 1, 1, "", "DummyTaskConfig"]], "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig": [[81, 5, 1, "id2", "detection_threshold"], [81, 5, 1, "id1", "embedding_dims"], [81, 5, 1, "id0", "task_type"], [81, 2, 1, "id3", "verify"]], "dacapo.experiments.tasks.evaluators": [[88, 1, 1, "", "BinarySegmentationEvaluationScores"], [88, 1, 1, "", "BinarySegmentationEvaluator"], [88, 1, 1, "", "DummyEvaluationScores"], [88, 1, 1, "", "DummyEvaluator"], [88, 1, 1, "", "EvaluationScores"], [88, 1, 1, "", "Evaluator"], [88, 1, 1, "", "InstanceEvaluationScores"], [88, 1, 1, "", "InstanceEvaluator"], [88, 1, 1, "", "MultiChannelBinarySegmentationEvaluationScores"], [82, 0, 0, "-", "binary_segmentation_evaluation_scores"], [83, 0, 0, "-", "binary_segmentation_evaluator"], [84, 0, 0, "-", "dummy_evaluation_scores"], [85, 0, 0, "-", "dummy_evaluator"], [86, 0, 0, "-", "evaluation_scores"], [87, 0, 0, "-", "evaluator"], [89, 0, 0, "-", "instance_evaluation_scores"], [90, 0, 0, "-", "instance_evaluator"]], "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores": [[88, 2, 1, "", "bounds"], [88, 5, 1, "", "criteria"], [88, 5, 1, "id23", "dice"], [88, 5, 1, "id43", "f1_score"], [88, 5, 1, "id40", "f1_score_with_tolerance"], [88, 5, 1, "id29", "false_discovery_rate"], [88, 5, 1, "id26", "false_negative_rate"], [88, 5, 1, "id27", "false_negative_rate_with_tolerance"], [88, 5, 1, "id28", "false_positive_rate"], [88, 5, 1, "id30", "false_positive_rate_with_tolerance"], [88, 5, 1, "id25", "hausdorff"], [88, 2, 1, "", "higher_is_better"], [88, 5, 1, "id24", "jaccard"], [88, 5, 1, "id32", "mean_false_distance"], [88, 5, 1, "id35", "mean_false_distance_clipped"], [88, 5, 1, "id33", "mean_false_negative_distance"], [88, 5, 1, "id36", "mean_false_negative_distance_clipped"], [88, 5, 1, "id34", "mean_false_positive_distance"], [88, 5, 1, "id37", "mean_false_positive_distance_clipped"], [88, 5, 1, "id41", "precision"], [88, 5, 1, "id38", "precision_with_tolerance"], [88, 5, 1, "id42", "recall"], [88, 5, 1, "id39", "recall_with_tolerance"], [88, 2, 1, "", "store_best"], [88, 5, 1, "id31", "voi"]], "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator": [[88, 5, 1, "id47", "channels"], [88, 5, 1, "id45", "clip_distance"], [88, 5, 1, "id44", "criteria"], [88, 2, 1, "id48", "evaluate"], [88, 6, 1, "id49", "score"], [88, 5, 1, "id46", "tol_distance"]], "dacapo.experiments.tasks.evaluators.DummyEvaluationScores": [[88, 5, 1, "id1", "blipp_score"], [88, 2, 1, "id3", "bounds"], [88, 5, 1, "", "criteria"], [88, 5, 1, "id0", "frizz_level"], [88, 2, 1, "id2", "higher_is_better"], [88, 2, 1, "id4", "store_best"]], "dacapo.experiments.tasks.evaluators.DummyEvaluator": [[88, 5, 1, "id5", "criteria"], [88, 2, 1, "id6", "evaluate"], [88, 6, 1, "id7", "score"]], "dacapo.experiments.tasks.evaluators.EvaluationScores": [[88, 2, 1, "id10", "bounds"], [88, 6, 1, "id8", "criteria"], [88, 2, 1, "id9", "higher_is_better"], [88, 2, 1, "id11", "store_best"]], "dacapo.experiments.tasks.evaluators.Evaluator": [[88, 6, 1, "id13", "best_scores"], [88, 2, 1, "id20", "bounds"], [88, 2, 1, "id17", "compare"], [88, 6, 1, "", "criteria"], [88, 2, 1, "id12", "evaluate"], [88, 2, 1, "id15", "get_overall_best"], [88, 2, 1, "id16", "get_overall_best_parameters"], [88, 2, 1, "id19", "higher_is_better"], [88, 2, 1, "id14", "is_best"], [88, 6, 1, "", "score"], [88, 2, 1, "id18", "set_best"], [88, 2, 1, "id21", "store_best"]], "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores": [[88, 2, 1, "id54", "bounds"], [88, 5, 1, "", "criteria"], [88, 2, 1, "id53", "higher_is_better"], [88, 2, 1, "id55", "store_best"], [88, 6, 1, "id52", "voi"], [88, 5, 1, "id51", "voi_merge"], [88, 5, 1, "id50", "voi_split"]], "dacapo.experiments.tasks.evaluators.InstanceEvaluator": [[88, 5, 1, "id56", "criteria"], [88, 2, 1, "id57", "evaluate"], [88, 6, 1, "id58", "score"]], "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores": [[88, 2, 1, "", "bounds"], [88, 5, 1, "id22", "channel_scores"], [88, 6, 1, "", "criteria"], [88, 2, 1, "", "higher_is_better"], [88, 2, 1, "", "store_best"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, 1, 1, "", "BinarySegmentationEvaluationScores"], [82, 1, 1, "", "MultiChannelBinarySegmentationEvaluationScores"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores": [[82, 2, 1, "", "bounds"], [82, 5, 1, "", "criteria"], [82, 5, 1, "id0", "dice"], [82, 5, 1, "id20", "f1_score"], [82, 5, 1, "id17", "f1_score_with_tolerance"], [82, 5, 1, "id6", "false_discovery_rate"], [82, 5, 1, "id3", "false_negative_rate"], [82, 5, 1, "id4", "false_negative_rate_with_tolerance"], [82, 5, 1, "id5", "false_positive_rate"], [82, 5, 1, "id7", "false_positive_rate_with_tolerance"], [82, 5, 1, "id2", "hausdorff"], [82, 2, 1, "", "higher_is_better"], [82, 5, 1, "id1", "jaccard"], [82, 5, 1, "id9", "mean_false_distance"], [82, 5, 1, "id12", "mean_false_distance_clipped"], [82, 5, 1, "id10", "mean_false_negative_distance"], [82, 5, 1, "id13", "mean_false_negative_distance_clipped"], [82, 5, 1, "id11", "mean_false_positive_distance"], [82, 5, 1, "id14", "mean_false_positive_distance_clipped"], [82, 5, 1, "id18", "precision"], [82, 5, 1, "id15", "precision_with_tolerance"], [82, 5, 1, "id19", "recall"], [82, 5, 1, "id16", "recall_with_tolerance"], [82, 2, 1, "", "store_best"], [82, 5, 1, "id8", "voi"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores": [[82, 2, 1, "", "bounds"], [82, 5, 1, "id21", "channel_scores"], [82, 6, 1, "", "criteria"], [82, 2, 1, "", "higher_is_better"], [82, 2, 1, "", "store_best"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, 1, 1, "", "ArrayEvaluator"], [83, 4, 1, "", "BG"], [83, 1, 1, "", "BinarySegmentationEvaluator"], [83, 1, 1, "", "CremiEvaluator"], [83, 4, 1, "", "logger"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator": [[83, 5, 1, "id10", "cremieval"], [83, 2, 1, "id12", "dice"], [83, 2, 1, "id20", "f1_score"], [83, 2, 1, "id32", "f1_score_with_tolerance"], [83, 2, 1, "id17", "false_discovery_rate"], [83, 2, 1, "id15", "false_negative_rate"], [83, 2, 1, "id29", "false_negative_rate_with_tolerance"], [83, 2, 1, "id16", "false_positive_rate"], [83, 2, 1, "id28", "false_positive_rate_with_tolerance"], [83, 2, 1, "id14", "hausdorff"], [83, 2, 1, "id13", "jaccard"], [83, 2, 1, "id22", "mean_false_distance"], [83, 2, 1, "id25", "mean_false_distance_clipped"], [83, 2, 1, "id23", "mean_false_negative_distance"], [83, 2, 1, "id26", "mean_false_negative_distance_clipped"], [83, 2, 1, "id24", "mean_false_positive_distance"], [83, 2, 1, "id27", "mean_false_positive_distance_clipped"], [83, 2, 1, "", "overlap_measures_filter"], [83, 2, 1, "id18", "precision"], [83, 2, 1, "id30", "precision_with_tolerance"], [83, 2, 1, "id19", "recall"], [83, 2, 1, "id31", "recall_with_tolerance"], [83, 5, 1, "id11", "resolution"], [83, 5, 1, "id7", "test"], [83, 5, 1, "id9", "test_empty"], [83, 2, 1, "", "test_itk"], [83, 5, 1, "id6", "truth"], [83, 5, 1, "id8", "truth_empty"], [83, 2, 1, "", "truth_itk"], [83, 2, 1, "id21", "voi"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator": [[83, 5, 1, "id3", "channels"], [83, 5, 1, "id1", "clip_distance"], [83, 5, 1, "id0", "criteria"], [83, 2, 1, "id4", "evaluate"], [83, 6, 1, "id5", "score"], [83, 5, 1, "id2", "tol_distance"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator": [[83, 5, 1, "id36", "clip_distance"], [83, 2, 1, "id46", "f1_score_with_tolerance"], [83, 2, 1, "id50", "false_negative_distances"], [83, 2, 1, "id42", "false_negative_rate_with_tolerance"], [83, 2, 1, "id41", "false_negatives_with_tolerance"], [83, 2, 1, "id38", "false_positive_distances"], [83, 2, 1, "id40", "false_positive_rate_with_tolerance"], [83, 2, 1, "id39", "false_positives_with_tolerance"], [83, 2, 1, "id52", "mean_false_distance"], [83, 2, 1, "id53", "mean_false_distance_clipped"], [83, 2, 1, "id51", "mean_false_negative_distance"], [83, 2, 1, "id48", "mean_false_negative_distances_clipped"], [83, 2, 1, "id49", "mean_false_positive_distance"], [83, 2, 1, "id47", "mean_false_positive_distances_clipped"], [83, 2, 1, "id44", "precision_with_tolerance"], [83, 2, 1, "id45", "recall_with_tolerance"], [83, 5, 1, "id35", "sampling"], [83, 5, 1, "id33", "test"], [83, 2, 1, "", "test_edt"], [83, 2, 1, "", "test_mask"], [83, 5, 1, "id37", "tol_distance"], [83, 2, 1, "id43", "true_positives_with_tolerance"], [83, 5, 1, "id34", "truth"], [83, 2, 1, "", "truth_edt"], [83, 2, 1, "", "truth_mask"]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, 1, 1, "", "DummyEvaluationScores"]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores": [[84, 5, 1, "id1", "blipp_score"], [84, 2, 1, "id3", "bounds"], [84, 5, 1, "", "criteria"], [84, 5, 1, "id0", "frizz_level"], [84, 2, 1, "id2", "higher_is_better"], [84, 2, 1, "id4", "store_best"]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, 1, 1, "", "DummyEvaluator"]], "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator": [[85, 5, 1, "id0", "criteria"], [85, 2, 1, "id1", "evaluate"], [85, 6, 1, "id2", "score"]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, 1, 1, "", "EvaluationScores"]], "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores": [[86, 2, 1, "id2", "bounds"], [86, 6, 1, "id0", "criteria"], [86, 2, 1, "id1", "higher_is_better"], [86, 2, 1, "id3", "store_best"]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, 4, 1, "", "BestScore"], [87, 1, 1, "", "Evaluator"], [87, 4, 1, "", "Iteration"], [87, 4, 1, "", "OutputIdentifier"], [87, 4, 1, "", "Score"]], "dacapo.experiments.tasks.evaluators.evaluator.Evaluator": [[87, 6, 1, "id1", "best_scores"], [87, 2, 1, "id8", "bounds"], [87, 2, 1, "id5", "compare"], [87, 6, 1, "", "criteria"], [87, 2, 1, "id0", "evaluate"], [87, 2, 1, "id3", "get_overall_best"], [87, 2, 1, "id4", "get_overall_best_parameters"], [87, 2, 1, "id7", "higher_is_better"], [87, 2, 1, "id2", "is_best"], [87, 6, 1, "", "score"], [87, 2, 1, "id6", "set_best"], [87, 2, 1, "id9", "store_best"]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, 1, 1, "", "InstanceEvaluationScores"]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores": [[89, 2, 1, "id4", "bounds"], [89, 5, 1, "", "criteria"], [89, 2, 1, "id3", "higher_is_better"], [89, 2, 1, "id5", "store_best"], [89, 6, 1, "id2", "voi"], [89, 5, 1, "id1", "voi_merge"], [89, 5, 1, "id0", "voi_split"]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, 1, 1, "", "InstanceEvaluator"], [90, 4, 1, "", "logger"], [90, 3, 1, "", "relabel"], [90, 3, 1, "", "voi"]], "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator": [[90, 5, 1, "id0", "criteria"], [90, 2, 1, "id1", "evaluate"], [90, 6, 1, "id2", "score"]], "dacapo.experiments.tasks.hot_distance_task": [[91, 1, 1, "", "HotDistanceTask"]], "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask": [[91, 2, 1, "", "__init__"], [91, 5, 1, "id3", "evaluator"], [91, 5, 1, "id1", "loss"], [91, 5, 1, "id2", "post_processor"], [91, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, 1, 1, "", "HotDistanceTaskConfig"]], "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig": [[92, 5, 1, "id1", "channels"], [92, 5, 1, "id2", "clip_distance"], [92, 5, 1, "id5", "mask_distances"], [92, 5, 1, "id4", "scale_factor"], [92, 5, 1, "id0", "task_type"], [92, 5, 1, "id3", "tol_distance"], [92, 2, 1, "", "verify"]], "dacapo.experiments.tasks.inner_distance_task": [[94, 1, 1, "", "InnerDistanceTask"]], "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask": [[94, 2, 1, "", "__init__"], [94, 5, 1, "id3", "evaluator"], [94, 5, 1, "id1", "loss"], [94, 5, 1, "id2", "post_processor"], [94, 5, 1, "id0", "predictor"], [94, 5, 1, "", "task_config"]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, 1, 1, "", "InnerDistanceTaskConfig"]], "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig": [[95, 5, 1, "id0", "channels"], [95, 5, 1, "id1", "clip_distance"], [95, 5, 1, "id3", "scale_factor"], [95, 5, 1, "", "task_type"], [95, 5, 1, "id2", "tol_distance"]], "dacapo.experiments.tasks.losses": [[99, 1, 1, "", "AffinitiesLoss"], [99, 1, 1, "", "DummyLoss"], [99, 1, 1, "", "HotDistanceLoss"], [99, 1, 1, "", "Loss"], [99, 1, 1, "", "MSELoss"], [96, 0, 0, "-", "affinities_loss"], [97, 0, 0, "-", "dummy_loss"], [98, 0, 0, "-", "hot_distance_loss"], [100, 0, 0, "-", "loss"], [101, 0, 0, "-", "mse_loss"]], "dacapo.experiments.tasks.losses.AffinitiesLoss": [[99, 2, 1, "id5", "compute"], [99, 5, 1, "id4", "lsds_to_affs_weight_ratio"], [99, 5, 1, "id3", "num_affinities"]], "dacapo.experiments.tasks.losses.DummyLoss": [[99, 2, 1, "id0", "compute"], [99, 5, 1, "", "name"]], "dacapo.experiments.tasks.losses.HotDistanceLoss": [[99, 2, 1, "id6", "compute"], [99, 2, 1, "id8", "distance_loss"], [99, 2, 1, "id7", "hot_loss"], [99, 2, 1, "id9", "split"]], "dacapo.experiments.tasks.losses.Loss": [[99, 2, 1, "id2", "compute"]], "dacapo.experiments.tasks.losses.MSELoss": [[99, 2, 1, "id1", "compute"]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, 1, 1, "", "AffinitiesLoss"]], "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss": [[96, 2, 1, "id2", "compute"], [96, 5, 1, "id1", "lsds_to_affs_weight_ratio"], [96, 5, 1, "id0", "num_affinities"]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, 1, 1, "", "DummyLoss"]], "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss": [[97, 2, 1, "id0", "compute"], [97, 5, 1, "", "name"]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, 1, 1, "", "HotDistanceLoss"]], "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss": [[98, 2, 1, "id0", "compute"], [98, 2, 1, "id2", "distance_loss"], [98, 2, 1, "id1", "hot_loss"], [98, 2, 1, "id3", "split"]], "dacapo.experiments.tasks.losses.loss": [[100, 1, 1, "", "Loss"]], "dacapo.experiments.tasks.losses.loss.Loss": [[100, 2, 1, "id0", "compute"]], "dacapo.experiments.tasks.losses.mse_loss": [[101, 1, 1, "", "MSELoss"]], "dacapo.experiments.tasks.losses.mse_loss.MSELoss": [[101, 2, 1, "id0", "compute"]], "dacapo.experiments.tasks.one_hot_task": [[102, 1, 1, "", "OneHotTask"]], "dacapo.experiments.tasks.one_hot_task.OneHotTask": [[102, 2, 1, "", "create_model"], [102, 5, 1, "", "evaluator"], [102, 5, 1, "", "loss"], [102, 5, 1, "", "post_processor"], [102, 5, 1, "", "predictor"], [102, 5, 1, "", "weights"]], "dacapo.experiments.tasks.one_hot_task_config": [[103, 1, 1, "", "OneHotTaskConfig"]], "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig": [[103, 2, 1, "", "None"], [103, 5, 1, "id1", "classes"], [103, 5, 1, "id0", "task_type"]], "dacapo.experiments.tasks.post_processors": [[108, 1, 1, "", "ArgmaxPostProcessor"], [108, 1, 1, "", "ArgmaxPostProcessorParameters"], [108, 1, 1, "", "DummyPostProcessor"], [108, 1, 1, "", "DummyPostProcessorParameters"], [108, 1, 1, "", "PostProcessor"], [108, 1, 1, "", "PostProcessorParameters"], [108, 1, 1, "", "ThresholdPostProcessor"], [108, 1, 1, "", "ThresholdPostProcessorParameters"], [108, 1, 1, "", "WatershedPostProcessor"], [108, 1, 1, "", "WatershedPostProcessorParameters"], [104, 0, 0, "-", "argmax_post_processor"], [105, 0, 0, "-", "argmax_post_processor_parameters"], [106, 0, 0, "-", "dummy_post_processor"], [107, 0, 0, "-", "dummy_post_processor_parameters"], [109, 0, 0, "-", "post_processor"], [110, 0, 0, "-", "post_processor_parameters"], [111, 0, 0, "-", "threshold_post_processor"], [112, 0, 0, "-", "threshold_post_processor_parameters"], [113, 0, 0, "-", "watershed_post_processor"], [114, 0, 0, "-", "watershed_post_processor_parameters"]], "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor": [[108, 2, 1, "id14", "enumerate_parameters"], [108, 5, 1, "", "prediction_array"], [108, 2, 1, "id16", "process"], [108, 2, 1, "id15", "set_prediction"]], "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters": [[108, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.DummyPostProcessor": [[108, 5, 1, "id0", "detection_threshold"], [108, 2, 1, "id1", "enumerate_parameters"], [108, 2, 1, "id3", "process"], [108, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters": [[108, 5, 1, "id4", "min_size"], [108, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.PostProcessor": [[108, 2, 1, "id7", "enumerate_parameters"], [108, 5, 1, "", "prediction_array_identifier"], [108, 2, 1, "id9", "process"], [108, 2, 1, "id8", "set_prediction"]], "dacapo.experiments.tasks.post_processors.PostProcessorParameters": [[108, 5, 1, "id5", "id"], [108, 6, 1, "id6", "parameter_names"]], "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor": [[108, 2, 1, "id10", "enumerate_parameters"], [108, 5, 1, "", "prediction_array"], [108, 5, 1, "", "prediction_array_identifier"], [108, 2, 1, "id12", "process"], [108, 2, 1, "id11", "set_prediction"]], "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters": [[108, 5, 1, "id13", "threshold"]], "dacapo.experiments.tasks.post_processors.WatershedPostProcessor": [[108, 2, 1, "id18", "enumerate_parameters"], [108, 5, 1, "id17", "offsets"], [108, 2, 1, "id20", "process"], [108, 2, 1, "id19", "set_prediction"]], "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters": [[108, 5, 1, "id21", "bias"], [108, 5, 1, "id22", "context"], [108, 5, 1, "", "min_size"], [108, 5, 1, "", "offsets"], [108, 5, 1, "", "sigma"], [108, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, 1, 1, "", "ArgmaxPostProcessor"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor": [[104, 2, 1, "id0", "enumerate_parameters"], [104, 5, 1, "", "prediction_array"], [104, 2, 1, "id2", "process"], [104, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, 1, 1, "", "ArgmaxPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters": [[105, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, 1, 1, "", "DummyPostProcessor"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor": [[106, 5, 1, "id0", "detection_threshold"], [106, 2, 1, "id1", "enumerate_parameters"], [106, 2, 1, "id3", "process"], [106, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, 1, 1, "", "DummyPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters": [[107, 5, 1, "id0", "min_size"], [107, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, 1, 1, "", "PostProcessor"]], "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor": [[109, 2, 1, "id0", "enumerate_parameters"], [109, 5, 1, "", "prediction_array_identifier"], [109, 2, 1, "id2", "process"], [109, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, 1, 1, "", "PostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters": [[110, 5, 1, "id0", "id"], [110, 6, 1, "id1", "parameter_names"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, 1, 1, "", "ThresholdPostProcessor"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor": [[111, 2, 1, "id0", "enumerate_parameters"], [111, 5, 1, "", "prediction_array"], [111, 5, 1, "", "prediction_array_identifier"], [111, 2, 1, "id2", "process"], [111, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, 1, 1, "", "ThresholdPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters": [[112, 5, 1, "id0", "threshold"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, 1, 1, "", "WatershedPostProcessor"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor": [[113, 2, 1, "id1", "enumerate_parameters"], [113, 5, 1, "id0", "offsets"], [113, 2, 1, "id3", "process"], [113, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, 1, 1, "", "WatershedPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters": [[114, 5, 1, "id0", "bias"], [114, 5, 1, "id1", "context"], [114, 5, 1, "", "min_size"], [114, 5, 1, "", "offsets"], [114, 5, 1, "", "sigma"], [114, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors": [[119, 1, 1, "", "AffinitiesPredictor"], [119, 1, 1, "", "DistancePredictor"], [119, 1, 1, "", "DummyPredictor"], [119, 1, 1, "", "HotDistancePredictor"], [119, 1, 1, "", "InnerDistancePredictor"], [119, 1, 1, "", "OneHotPredictor"], [119, 1, 1, "", "Predictor"], [115, 0, 0, "-", "affinities_predictor"], [116, 0, 0, "-", "distance_predictor"], [117, 0, 0, "-", "dummy_predictor"], [118, 0, 0, "-", "hot_distance_predictor"], [120, 0, 0, "-", "inner_distance_predictor"], [121, 0, 0, "-", "one_hot_predictor"], [122, 0, 0, "-", "predictor"]], "dacapo.experiments.tasks.predictors.AffinitiesPredictor": [[119, 2, 1, "", "_grow_boundaries"], [119, 5, 1, "id27", "affs_weight_clipmax"], [119, 5, 1, "id26", "affs_weight_clipmin"], [119, 5, 1, "id30", "background_as_object"], [119, 2, 1, "id35", "create_model"], [119, 2, 1, "id36", "create_target"], [119, 2, 1, "id37", "create_weight"], [119, 6, 1, "id32", "dims"], [119, 5, 1, "", "downsample_lsds"], [119, 2, 1, "id31", "extractor"], [119, 5, 1, "id25", "grow_boundary_iterations"], [119, 2, 1, "id38", "gt_region_for_roi"], [119, 2, 1, "id34", "lsd_pad"], [119, 5, 1, "id29", "lsd_weight_clipmax"], [119, 5, 1, "id28", "lsd_weight_clipmin"], [119, 5, 1, "id23", "lsds"], [119, 5, 1, "id22", "neighborhood"], [119, 2, 1, "", "num_channels"], [119, 5, 1, "id24", "num_voxels"], [119, 6, 1, "id39", "output_array_type"], [119, 2, 1, "id33", "sigma"]], "dacapo.experiments.tasks.predictors.DistancePredictor": [[119, 5, 1, "id5", "channels"], [119, 5, 1, "id8", "clipmax"], [119, 5, 1, "id7", "clipmin"], [119, 2, 1, "id13", "create_distance_mask"], [119, 2, 1, "id9", "create_model"], [119, 2, 1, "id10", "create_target"], [119, 2, 1, "id11", "create_weight"], [119, 5, 1, "", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "", "epsilon"], [119, 2, 1, "id15", "gt_region_for_roi"], [119, 5, 1, "id6", "mask_distances"], [119, 5, 1, "", "max_distance"], [119, 5, 1, "", "norm"], [119, 6, 1, "id12", "output_array_type"], [119, 2, 1, "", "padding"], [119, 2, 1, "id14", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.DummyPredictor": [[119, 2, 1, "id1", "create_model"], [119, 2, 1, "id2", "create_target"], [119, 2, 1, "id3", "create_weight"], [119, 5, 1, "id0", "embedding_dims"], [119, 6, 1, "id4", "output_array_type"]], "dacapo.experiments.tasks.predictors.HotDistancePredictor": [[119, 5, 1, "id46", "channels"], [119, 6, 1, "", "classes"], [119, 2, 1, "id56", "create_distance_mask"], [119, 2, 1, "id53", "create_model"], [119, 2, 1, "id54", "create_target"], [119, 2, 1, "id55", "create_weight"], [119, 5, 1, "id48", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "id51", "epsilon"], [119, 2, 1, "id58", "gt_region_for_roi"], [119, 5, 1, "id49", "mask_distances"], [119, 5, 1, "id50", "max_distance"], [119, 5, 1, "id47", "norm"], [119, 6, 1, "", "output_array_type"], [119, 2, 1, "id59", "padding"], [119, 2, 1, "id57", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "id52", "threshold"]], "dacapo.experiments.tasks.predictors.InnerDistancePredictor": [[119, 2, 1, "", "__find_boundaries"], [119, 2, 1, "", "__normalize"], [119, 5, 1, "id40", "channels"], [119, 2, 1, "id41", "create_model"], [119, 2, 1, "id42", "create_target"], [119, 2, 1, "id43", "create_weight"], [119, 5, 1, "", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "", "epsilon"], [119, 2, 1, "id45", "gt_region_for_roi"], [119, 5, 1, "", "max_distance"], [119, 5, 1, "", "norm"], [119, 6, 1, "id44", "output_array_type"], [119, 2, 1, "", "padding"], [119, 2, 1, "", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.OneHotPredictor": [[119, 5, 1, "id16", "classes"], [119, 2, 1, "id17", "create_model"], [119, 2, 1, "id18", "create_target"], [119, 2, 1, "id19", "create_weight"], [119, 6, 1, "", "embedding_dims"], [119, 6, 1, "id20", "output_array_type"], [119, 2, 1, "", "process"]], "dacapo.experiments.tasks.predictors.Predictor": [[119, 2, 1, "", "create_model"], [119, 2, 1, "", "create_target"], [119, 2, 1, "", "create_weight"], [119, 2, 1, "id21", "gt_region_for_roi"], [119, 6, 1, "", "output_array_type"], [119, 2, 1, "", "padding"]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, 1, 1, "", "AffinitiesPredictor"]], "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor": [[115, 2, 1, "", "_grow_boundaries"], [115, 5, 1, "id5", "affs_weight_clipmax"], [115, 5, 1, "id4", "affs_weight_clipmin"], [115, 5, 1, "id8", "background_as_object"], [115, 2, 1, "id13", "create_model"], [115, 2, 1, "id14", "create_target"], [115, 2, 1, "id15", "create_weight"], [115, 6, 1, "id10", "dims"], [115, 5, 1, "", "downsample_lsds"], [115, 2, 1, "id9", "extractor"], [115, 5, 1, "id3", "grow_boundary_iterations"], [115, 2, 1, "id16", "gt_region_for_roi"], [115, 2, 1, "id12", "lsd_pad"], [115, 5, 1, "id7", "lsd_weight_clipmax"], [115, 5, 1, "id6", "lsd_weight_clipmin"], [115, 5, 1, "id1", "lsds"], [115, 5, 1, "id0", "neighborhood"], [115, 2, 1, "", "num_channels"], [115, 5, 1, "id2", "num_voxels"], [115, 6, 1, "id17", "output_array_type"], [115, 2, 1, "id11", "sigma"]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, 1, 1, "", "DistancePredictor"], [116, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor": [[116, 5, 1, "id0", "channels"], [116, 5, 1, "id3", "clipmax"], [116, 5, 1, "id2", "clipmin"], [116, 2, 1, "id8", "create_distance_mask"], [116, 2, 1, "id4", "create_model"], [116, 2, 1, "id5", "create_target"], [116, 2, 1, "id6", "create_weight"], [116, 5, 1, "", "dt_scale_factor"], [116, 6, 1, "", "embedding_dims"], [116, 5, 1, "", "epsilon"], [116, 2, 1, "id10", "gt_region_for_roi"], [116, 5, 1, "id1", "mask_distances"], [116, 5, 1, "", "max_distance"], [116, 5, 1, "", "norm"], [116, 6, 1, "id7", "output_array_type"], [116, 2, 1, "", "padding"], [116, 2, 1, "id9", "process"], [116, 5, 1, "", "scale_factor"], [116, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, 1, 1, "", "DummyPredictor"]], "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor": [[117, 2, 1, "id1", "create_model"], [117, 2, 1, "id2", "create_target"], [117, 2, 1, "id3", "create_weight"], [117, 5, 1, "id0", "embedding_dims"], [117, 6, 1, "id4", "output_array_type"]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, 1, 1, "", "HotDistancePredictor"], [118, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor": [[118, 5, 1, "id0", "channels"], [118, 6, 1, "", "classes"], [118, 2, 1, "id10", "create_distance_mask"], [118, 2, 1, "id7", "create_model"], [118, 2, 1, "id8", "create_target"], [118, 2, 1, "id9", "create_weight"], [118, 5, 1, "id2", "dt_scale_factor"], [118, 6, 1, "", "embedding_dims"], [118, 5, 1, "id5", "epsilon"], [118, 2, 1, "id12", "gt_region_for_roi"], [118, 5, 1, "id3", "mask_distances"], [118, 5, 1, "id4", "max_distance"], [118, 5, 1, "id1", "norm"], [118, 6, 1, "", "output_array_type"], [118, 2, 1, "id13", "padding"], [118, 2, 1, "id11", "process"], [118, 5, 1, "", "scale_factor"], [118, 5, 1, "id6", "threshold"]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, 1, 1, "", "InnerDistancePredictor"], [120, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor": [[120, 2, 1, "", "__find_boundaries"], [120, 2, 1, "", "__normalize"], [120, 5, 1, "id0", "channels"], [120, 2, 1, "id1", "create_model"], [120, 2, 1, "id2", "create_target"], [120, 2, 1, "id3", "create_weight"], [120, 5, 1, "", "dt_scale_factor"], [120, 6, 1, "", "embedding_dims"], [120, 5, 1, "", "epsilon"], [120, 2, 1, "id5", "gt_region_for_roi"], [120, 5, 1, "", "max_distance"], [120, 5, 1, "", "norm"], [120, 6, 1, "id4", "output_array_type"], [120, 2, 1, "", "padding"], [120, 2, 1, "", "process"], [120, 5, 1, "", "scale_factor"], [120, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, 1, 1, "", "OneHotPredictor"], [121, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor": [[121, 5, 1, "id0", "classes"], [121, 2, 1, "id1", "create_model"], [121, 2, 1, "id2", "create_target"], [121, 2, 1, "id3", "create_weight"], [121, 6, 1, "", "embedding_dims"], [121, 6, 1, "id4", "output_array_type"], [121, 2, 1, "", "process"]], "dacapo.experiments.tasks.predictors.predictor": [[122, 1, 1, "", "Predictor"]], "dacapo.experiments.tasks.predictors.predictor.Predictor": [[122, 2, 1, "", "create_model"], [122, 2, 1, "", "create_target"], [122, 2, 1, "", "create_weight"], [122, 2, 1, "id0", "gt_region_for_roi"], [122, 6, 1, "", "output_array_type"], [122, 2, 1, "", "padding"]], "dacapo.experiments.tasks.pretrained_task": [[123, 1, 1, "", "PretrainedTask"]], "dacapo.experiments.tasks.pretrained_task.PretrainedTask": [[123, 2, 1, "id1", "create_model"], [123, 5, 1, "", "evaluator"], [123, 5, 1, "", "loss"], [123, 5, 1, "", "post_processor"], [123, 5, 1, "", "predictor"], [123, 5, 1, "id0", "weights"]], "dacapo.experiments.tasks.pretrained_task_config": [[124, 1, 1, "", "PretrainedTaskConfig"]], "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig": [[124, 5, 1, "id0", "sub_task_config"], [124, 5, 1, "", "task_type"], [124, 2, 1, "", "verify"], [124, 5, 1, "id1", "weights"]], "dacapo.experiments.tasks.task": [[125, 1, 1, "", "Task"]], "dacapo.experiments.tasks.task.Task": [[125, 2, 1, "", "create_model"], [125, 6, 1, "", "evaluation_scores"], [125, 5, 1, "", "evaluator"], [125, 5, 1, "", "loss"], [125, 6, 1, "", "parameters"], [125, 5, 1, "", "post_processor"], [125, 5, 1, "", "predictor"]], "dacapo.experiments.tasks.task_config": [[126, 1, 1, "", "TaskConfig"]], "dacapo.experiments.tasks.task_config.TaskConfig": [[126, 5, 1, "id0", "name"], [126, 2, 1, "id1", "verify"]], "dacapo.experiments.trainers": [[138, 1, 1, "", "AugmentConfig"], [138, 1, 1, "", "DummyTrainer"], [138, 1, 1, "", "DummyTrainerConfig"], [138, 1, 1, "", "GunpowderTrainer"], [138, 1, 1, "", "GunpowderTrainerConfig"], [138, 1, 1, "", "Trainer"], [138, 1, 1, "", "TrainerConfig"], [127, 0, 0, "-", "dummy_trainer"], [128, 0, 0, "-", "dummy_trainer_config"], [132, 0, 0, "-", "gp_augments"], [136, 0, 0, "-", "gunpowder_trainer"], [137, 0, 0, "-", "gunpowder_trainer_config"], [139, 0, 0, "-", "optimizers"], [140, 0, 0, "-", "trainer"], [141, 0, 0, "-", "trainer_config"]], "dacapo.experiments.trainers.AugmentConfig": [[138, 5, 1, "", "_gt_key"], [138, 5, 1, "", "_mask_key"], [138, 5, 1, "", "_raw_key"], [138, 2, 1, "id32", "node"]], "dacapo.experiments.trainers.DummyTrainer": [[138, 2, 1, "", "__enter__"], [138, 2, 1, "", "__exit__"], [138, 2, 1, "", "__init__"], [138, 5, 1, "id10", "batch_size"], [138, 2, 1, "id13", "build_batch_provider"], [138, 2, 1, "id14", "can_train"], [138, 2, 1, "id12", "create_optimizer"], [138, 2, 1, "", "iterate"], [138, 5, 1, "", "iteration"], [138, 5, 1, "id9", "learning_rate"], [138, 5, 1, "id11", "mirror_augment"]], "dacapo.experiments.trainers.DummyTrainerConfig": [[138, 5, 1, "id7", "mirror_augment"], [138, 5, 1, "", "trainer_type"], [138, 2, 1, "id8", "verify"]], "dacapo.experiments.trainers.GunpowderTrainer": [[138, 2, 1, "", "__enter__"], [138, 2, 1, "", "__exit__"], [138, 2, 1, "", "__iter__"], [138, 5, 1, "id27", "augments"], [138, 5, 1, "id22", "batch_size"], [138, 2, 1, "", "build_batch_provider"], [138, 2, 1, "", "can_train"], [138, 5, 1, "id29", "clip_raw"], [138, 2, 1, "", "create_optimizer"], [138, 5, 1, "", "gt_min_reject"], [138, 2, 1, "", "iterate"], [138, 5, 1, "", "iteration"], [138, 5, 1, "id21", "learning_rate"], [138, 5, 1, "id28", "mask_integral_downsample_factor"], [138, 5, 1, "id26", "min_masked"], [138, 2, 1, "id31", "next"], [138, 5, 1, "id23", "num_data_fetchers"], [138, 5, 1, "id24", "print_profiling"], [138, 5, 1, "id30", "scheduler"], [138, 5, 1, "id25", "snapshot_iteration"], [138, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.trainers.GunpowderTrainerConfig": [[138, 5, 1, "id17", "augments"], [138, 5, 1, "id20", "clip_raw"], [138, 5, 1, "", "gt_min_reject"], [138, 5, 1, "id19", "min_masked"], [138, 5, 1, "id16", "num_data_fetchers"], [138, 5, 1, "id18", "snapshot_interval"], [138, 5, 1, "id15", "trainer_type"]], "dacapo.experiments.trainers.Trainer": [[138, 5, 1, "id1", "batch_size"], [138, 2, 1, "", "build_batch_provider"], [138, 2, 1, "", "can_train"], [138, 2, 1, "", "create_optimizer"], [138, 2, 1, "", "iterate"], [138, 5, 1, "id0", "iteration"], [138, 5, 1, "id2", "learning_rate"]], "dacapo.experiments.trainers.TrainerConfig": [[138, 5, 1, "id4", "batch_size"], [138, 5, 1, "id5", "learning_rate"], [138, 5, 1, "id3", "name"], [138, 2, 1, "id6", "verify"]], "dacapo.experiments.trainers.dummy_trainer": [[127, 1, 1, "", "DummyTrainer"]], "dacapo.experiments.trainers.dummy_trainer.DummyTrainer": [[127, 2, 1, "", "__enter__"], [127, 2, 1, "", "__exit__"], [127, 2, 1, "", "__init__"], [127, 5, 1, "id1", "batch_size"], [127, 2, 1, "id4", "build_batch_provider"], [127, 2, 1, "id5", "can_train"], [127, 2, 1, "id3", "create_optimizer"], [127, 2, 1, "", "iterate"], [127, 5, 1, "", "iteration"], [127, 5, 1, "id0", "learning_rate"], [127, 5, 1, "id2", "mirror_augment"]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, 1, 1, "", "DummyTrainerConfig"]], "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig": [[128, 5, 1, "id0", "mirror_augment"], [128, 5, 1, "", "trainer_type"], [128, 2, 1, "id1", "verify"]], "dacapo.experiments.trainers.gp_augments": [[132, 1, 1, "", "AugmentConfig"], [132, 1, 1, "", "ElasticAugmentConfig"], [132, 1, 1, "", "GammaAugmentConfig"], [132, 1, 1, "", "IntensityAugmentConfig"], [132, 1, 1, "", "IntensityScaleShiftAugmentConfig"], [132, 1, 1, "", "SimpleAugmentConfig"], [129, 0, 0, "-", "augment_config"], [130, 0, 0, "-", "elastic_config"], [131, 0, 0, "-", "gamma_config"], [133, 0, 0, "-", "intensity_config"], [134, 0, 0, "-", "intensity_scale_shift_config"], [135, 0, 0, "-", "simple_config"]], "dacapo.experiments.trainers.gp_augments.AugmentConfig": [[132, 5, 1, "", "_gt_key"], [132, 5, 1, "", "_mask_key"], [132, 5, 1, "", "_raw_key"], [132, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 5, 1, "id2", "control_point_displacement_sigma"], [132, 5, 1, "id1", "control_point_spacing"], [132, 2, 1, "id6", "node"], [132, 5, 1, "id3", "rotation_interval"], [132, 5, 1, "id4", "subsample"], [132, 5, 1, "id5", "uniform_3d_rotation"]], "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig": [[132, 5, 1, "id8", "gamma_range"], [132, 2, 1, "id9", "node"]], "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 5, 1, "id12", "clip"], [132, 2, 1, "id13", "node"], [132, 5, 1, "id10", "scale"], [132, 5, 1, "id11", "shift"]], "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig": [[132, 2, 1, "id16", "node"], [132, 5, 1, "id14", "scale"], [132, 5, 1, "id15", "shift"]], "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 2, 1, "id7", "node"]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, 1, 1, "", "AugmentConfig"]], "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig": [[129, 5, 1, "", "_gt_key"], [129, 5, 1, "", "_mask_key"], [129, 5, 1, "", "_raw_key"], [129, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, 1, 1, "", "ElasticAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig": [[130, 5, 1, "", "augmentation_probability"], [130, 5, 1, "id1", "control_point_displacement_sigma"], [130, 5, 1, "id0", "control_point_spacing"], [130, 2, 1, "id5", "node"], [130, 5, 1, "id2", "rotation_interval"], [130, 5, 1, "id3", "subsample"], [130, 5, 1, "id4", "uniform_3d_rotation"]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, 1, 1, "", "GammaAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig": [[131, 5, 1, "id0", "gamma_range"], [131, 2, 1, "id1", "node"]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, 1, 1, "", "IntensityAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig": [[133, 5, 1, "", "augmentation_probability"], [133, 5, 1, "id2", "clip"], [133, 2, 1, "id3", "node"], [133, 5, 1, "id0", "scale"], [133, 5, 1, "id1", "shift"]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, 1, 1, "", "IntensityScaleShiftAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig": [[134, 2, 1, "id2", "node"], [134, 5, 1, "id0", "scale"], [134, 5, 1, "id1", "shift"]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, 1, 1, "", "SimpleAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig": [[135, 5, 1, "", "augmentation_probability"], [135, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, 1, 1, "", "GunpowderTrainer"], [136, 4, 1, "", "logger"]], "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer": [[136, 2, 1, "", "__enter__"], [136, 2, 1, "", "__exit__"], [136, 2, 1, "", "__iter__"], [136, 5, 1, "id6", "augments"], [136, 5, 1, "id1", "batch_size"], [136, 2, 1, "", "build_batch_provider"], [136, 2, 1, "", "can_train"], [136, 5, 1, "id8", "clip_raw"], [136, 2, 1, "", "create_optimizer"], [136, 5, 1, "", "gt_min_reject"], [136, 2, 1, "", "iterate"], [136, 5, 1, "", "iteration"], [136, 5, 1, "id0", "learning_rate"], [136, 5, 1, "id7", "mask_integral_downsample_factor"], [136, 5, 1, "id5", "min_masked"], [136, 2, 1, "id10", "next"], [136, 5, 1, "id2", "num_data_fetchers"], [136, 5, 1, "id3", "print_profiling"], [136, 5, 1, "id9", "scheduler"], [136, 5, 1, "id4", "snapshot_iteration"], [136, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, 1, 1, "", "GunpowderTrainerConfig"]], "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig": [[137, 5, 1, "id2", "augments"], [137, 5, 1, "id5", "clip_raw"], [137, 5, 1, "", "gt_min_reject"], [137, 5, 1, "id4", "min_masked"], [137, 5, 1, "id1", "num_data_fetchers"], [137, 5, 1, "id3", "snapshot_interval"], [137, 5, 1, "id0", "trainer_type"]], "dacapo.experiments.trainers.trainer": [[140, 1, 1, "", "Trainer"]], "dacapo.experiments.trainers.trainer.Trainer": [[140, 5, 1, "id1", "batch_size"], [140, 2, 1, "", "build_batch_provider"], [140, 2, 1, "", "can_train"], [140, 2, 1, "", "create_optimizer"], [140, 2, 1, "", "iterate"], [140, 5, 1, "id0", "iteration"], [140, 5, 1, "id2", "learning_rate"]], "dacapo.experiments.trainers.trainer_config": [[141, 1, 1, "", "TrainerConfig"]], "dacapo.experiments.trainers.trainer_config.TrainerConfig": [[141, 5, 1, "id1", "batch_size"], [141, 5, 1, "id2", "learning_rate"], [141, 5, 1, "id0", "name"], [141, 2, 1, "id3", "verify"]], "dacapo.experiments.training_iteration_stats": [[142, 1, 1, "", "TrainingIterationStats"]], "dacapo.experiments.training_iteration_stats.TrainingIterationStats": [[142, 5, 1, "id0", "iteration"], [142, 5, 1, "id1", "loss"], [142, 5, 1, "id2", "time"]], "dacapo.experiments.training_stats": [[143, 1, 1, "", "TrainingStats"], [143, 4, 1, "", "logger"]], "dacapo.experiments.training_stats.TrainingStats": [[143, 2, 1, "", "add_iteration_stats"], [143, 2, 1, "", "delete_after"], [143, 5, 1, "id0", "iteration_stats"], [143, 2, 1, "id2", "to_xarray"], [143, 2, 1, "id1", "trained_until"]], "dacapo.experiments.validation_iteration_scores": [[144, 1, 1, "", "ValidationIterationScores"]], "dacapo.experiments.validation_iteration_scores.ValidationIterationScores": [[144, 5, 1, "id0", "iteration"], [144, 5, 1, "id1", "scores"]], "dacapo.experiments.validation_scores": [[145, 1, 1, "", "ValidationScores"]], "dacapo.experiments.validation_scores.ValidationScores": [[145, 2, 1, "id5", "add_iteration_scores"], [145, 2, 1, "id8", "compare"], [145, 6, 1, "id9", "criteria"], [145, 5, 1, "id1", "datasets"], [145, 2, 1, "id6", "delete_after"], [145, 5, 1, "id2", "evaluation_scores"], [145, 2, 1, "id12", "get_best"], [145, 6, 1, "id10", "parameter_names"], [145, 5, 1, "id0", "parameters"], [145, 5, 1, "id3", "scores"], [145, 2, 1, "id4", "subscores"], [145, 2, 1, "id11", "to_xarray"], [145, 2, 1, "id7", "validated_until"]], "dacapo.ext": [[146, 1, 1, "", "NoSuchModule"]], "dacapo.ext.NoSuchModule": [[146, 5, 1, "", "__exception"], [146, 2, 1, "", "__getattr__"], [146, 5, 1, "", "__name"], [146, 5, 1, "", "__traceback_str"]], "dacapo.gp": [[152, 1, 1, "", "CopyMask"], [152, 1, 1, "", "DaCapoTargetFilter"], [152, 1, 1, "", "ElasticAugment"], [152, 1, 1, "", "GammaAugment"], [152, 1, 1, "", "GraphSource"], [152, 1, 1, "", "Product"], [152, 1, 1, "", "RejectIfEmpty"], [147, 0, 0, "-", "copy"], [148, 0, 0, "-", "dacapo_create_target"], [149, 0, 0, "-", "dacapo_points_source"], [150, 0, 0, "-", "elastic_augment_fuse"], [151, 0, 0, "-", "gamma_noise"], [153, 0, 0, "-", "product"], [154, 0, 0, "-", "reject_if_empty"]], "dacapo.gp.CopyMask": [[152, 5, 1, "id14", "array_key"], [152, 5, 1, "id15", "copy_key"], [152, 5, 1, "id16", "drop_channels"], [152, 2, 1, "id18", "prepare"], [152, 2, 1, "id19", "process"], [152, 2, 1, "id17", "setup"]], "dacapo.gp.DaCapoTargetFilter": [[152, 5, 1, "", "Predictor"], [152, 5, 1, "", "gt"], [152, 5, 1, "", "gt_key"], [152, 5, 1, "id2", "mask_key"], [152, 5, 1, "", "moving_counts"], [152, 5, 1, "", "predictor"], [152, 2, 1, "id4", "prepare"], [152, 2, 1, "id5", "process"], [152, 2, 1, "id3", "setup"], [152, 5, 1, "id0", "target_key"], [152, 5, 1, "id1", "weights_key"]], "dacapo.gp.ElasticAugment": [[152, 5, 1, "", "augmentation_probability"], [152, 5, 1, "", "control_point_displacement_sigma"], [152, 5, 1, "", "control_point_spacing"], [152, 5, 1, "", "do_augment"], [152, 2, 1, "", "prepare"], [152, 2, 1, "", "process"], [152, 5, 1, "", "rotation_max_amount"], [152, 5, 1, "", "rotation_start"], [152, 2, 1, "", "setup"], [152, 5, 1, "", "subsample"], [152, 5, 1, "", "target_rois"], [152, 5, 1, "", "transformations"], [152, 5, 1, "", "uniform_3d_rotation"]], "dacapo.gp.GammaAugment": [[152, 2, 1, "", "__augment"], [152, 5, 1, "id6", "arrays"], [152, 5, 1, "id8", "gamma_max"], [152, 5, 1, "id7", "gamma_min"], [152, 2, 1, "id10", "process"], [152, 2, 1, "id9", "setup"]], "dacapo.gp.GraphSource": [[152, 5, 1, "id21", "graph"], [152, 5, 1, "id20", "key"], [152, 2, 1, "id23", "provide"], [152, 2, 1, "id22", "setup"]], "dacapo.gp.Product": [[152, 2, 1, "", "prepare"], [152, 2, 1, "", "process"], [152, 2, 1, "", "setup"], [152, 5, 1, "id24", "x1_key"], [152, 5, 1, "id25", "x2_key"], [152, 5, 1, "id26", "y_key"]], "dacapo.gp.RejectIfEmpty": [[152, 5, 1, "", "background"], [152, 5, 1, "", "gt"], [152, 5, 1, "id13", "p"], [152, 2, 1, "", "provide"], [152, 2, 1, "", "setup"]], "dacapo.gp.copy": [[147, 1, 1, "", "CopyMask"]], "dacapo.gp.copy.CopyMask": [[147, 5, 1, "id0", "array_key"], [147, 5, 1, "id1", "copy_key"], [147, 5, 1, "id2", "drop_channels"], [147, 2, 1, "id4", "prepare"], [147, 2, 1, "id5", "process"], [147, 2, 1, "id3", "setup"]], "dacapo.gp.dacapo_create_target": [[148, 1, 1, "", "DaCapoTargetFilter"]], "dacapo.gp.dacapo_create_target.DaCapoTargetFilter": [[148, 5, 1, "", "Predictor"], [148, 5, 1, "", "gt"], [148, 5, 1, "", "gt_key"], [148, 5, 1, "id2", "mask_key"], [148, 5, 1, "", "moving_counts"], [148, 5, 1, "", "predictor"], [148, 2, 1, "id4", "prepare"], [148, 2, 1, "id5", "process"], [148, 2, 1, "id3", "setup"], [148, 5, 1, "id0", "target_key"], [148, 5, 1, "id1", "weights_key"]], "dacapo.gp.dacapo_points_source": [[149, 1, 1, "", "GraphSource"]], "dacapo.gp.dacapo_points_source.GraphSource": [[149, 5, 1, "id1", "graph"], [149, 5, 1, "id0", "key"], [149, 2, 1, "id3", "provide"], [149, 2, 1, "id2", "setup"]], "dacapo.gp.elastic_augment_fuse": [[150, 1, 1, "", "ElasticAugment"], [150, 4, 1, "", "logger"]], "dacapo.gp.elastic_augment_fuse.ElasticAugment": [[150, 5, 1, "", "augmentation_probability"], [150, 5, 1, "", "control_point_displacement_sigma"], [150, 5, 1, "", "control_point_spacing"], [150, 5, 1, "", "do_augment"], [150, 2, 1, "", "prepare"], [150, 2, 1, "", "process"], [150, 5, 1, "", "rotation_max_amount"], [150, 5, 1, "", "rotation_start"], [150, 2, 1, "", "setup"], [150, 5, 1, "", "subsample"], [150, 5, 1, "", "target_rois"], [150, 5, 1, "", "transformations"], [150, 5, 1, "", "uniform_3d_rotation"]], "dacapo.gp.gamma_noise": [[151, 1, 1, "", "GammaAugment"], [151, 4, 1, "", "logger"]], "dacapo.gp.gamma_noise.GammaAugment": [[151, 2, 1, "", "__augment"], [151, 5, 1, "id0", "arrays"], [151, 5, 1, "id2", "gamma_max"], [151, 5, 1, "id1", "gamma_min"], [151, 2, 1, "id4", "process"], [151, 2, 1, "id3", "setup"]], "dacapo.gp.product": [[153, 1, 1, "", "Product"]], "dacapo.gp.product.Product": [[153, 2, 1, "", "prepare"], [153, 2, 1, "", "process"], [153, 2, 1, "", "setup"], [153, 5, 1, "id0", "x1_key"], [153, 5, 1, "id1", "x2_key"], [153, 5, 1, "id2", "y_key"]], "dacapo.gp.reject_if_empty": [[154, 1, 1, "", "RejectIfEmpty"], [154, 4, 1, "", "logger"]], "dacapo.gp.reject_if_empty.RejectIfEmpty": [[154, 5, 1, "", "background"], [154, 5, 1, "", "gt"], [154, 5, 1, "id0", "p"], [154, 2, 1, "", "provide"], [154, 2, 1, "", "setup"]], "dacapo.options": [[156, 1, 1, "", "DaCapoConfig"], [156, 1, 1, "", "Options"], [156, 4, 1, "", "logger"]], "dacapo.options.DaCapoConfig": [[156, 5, 1, "id2", "compute_context"], [156, 5, 1, "id3", "mongo_db_host"], [156, 5, 1, "id4", "mongo_db_name"], [156, 5, 1, "id1", "runs_base_dir"], [156, 2, 1, "id5", "serialize"], [156, 5, 1, "id0", "type"]], "dacapo.options.Options": [[156, 2, 1, "", "__parse_options"], [156, 2, 1, "", "__parse_options_from_file"], [156, 2, 1, "id7", "config_file"], [156, 2, 1, "id6", "instance"]], "dacapo.plot": [[157, 4, 1, "", "RunInfo"], [157, 3, 1, "", "bokeh_plot_runs"], [157, 3, 1, "", "get_runs_info"], [157, 3, 1, "", "plot_runs"], [157, 3, 1, "", "smooth_values"]], "dacapo.predict": [[158, 4, 1, "", "logger"], [158, 3, 1, "", "predict"]], "dacapo.predict_local": [[159, 4, 1, "", "logger"], [159, 3, 1, "", "predict"]], "dacapo.store": [[160, 0, 0, "-", "array_store"], [161, 0, 0, "-", "config_store"], [162, 0, 0, "-", "conversion_hooks"], [163, 0, 0, "-", "converter"], [164, 0, 0, "-", "create_store"], [165, 0, 0, "-", "file_config_store"], [166, 0, 0, "-", "file_stats_store"], [168, 0, 0, "-", "local_array_store"], [169, 0, 0, "-", "local_weights_store"], [170, 0, 0, "-", "mongo_config_store"], [171, 0, 0, "-", "mongo_stats_store"], [172, 0, 0, "-", "stats_store"], [173, 0, 0, "-", "weights_store"]], "dacapo.store.array_store": [[160, 1, 1, "", "ArrayStore"], [160, 1, 1, "", "LocalArrayIdentifier"], [160, 1, 1, "", "LocalContainerIdentifier"]], "dacapo.store.array_store.ArrayStore": [[160, 5, 1, "", "container"], [160, 5, 1, "", "dataset"], [160, 2, 1, "", "remove"], [160, 2, 1, "", "snapshot_container"], [160, 2, 1, "", "validation_container"], [160, 2, 1, "", "validation_input_arrays"], [160, 2, 1, "", "validation_output_array"], [160, 2, 1, "", "validation_prediction_array"]], "dacapo.store.array_store.LocalArrayIdentifier": [[160, 5, 1, "id0", "container"], [160, 5, 1, "id1", "dataset"]], "dacapo.store.array_store.LocalContainerIdentifier": [[160, 2, 1, "", "array_identifier"], [160, 5, 1, "id2", "container"]], "dacapo.store.config_store": [[161, 1, 1, "", "ConfigStore"], [161, 7, 1, "", "DuplicateNameError"]], "dacapo.store.config_store.ConfigStore": [[161, 5, 1, "id6", "architectures"], [161, 5, 1, "id3", "arrays"], [161, 5, 1, "id2", "datasets"], [161, 5, 1, "id1", "datasplits"], [161, 2, 1, "id19", "delete_architecture_config"], [161, 2, 1, "id31", "delete_array_config"], [161, 2, 1, "id7", "delete_config"], [161, 2, 1, "id27", "delete_datasplit_config"], [161, 2, 1, "id11", "delete_run_config"], [161, 2, 1, "id15", "delete_task_config"], [161, 2, 1, "id23", "delete_trainer_config"], [161, 2, 1, "id17", "retrieve_architecture_config"], [161, 2, 1, "id18", "retrieve_architecture_config_names"], [161, 2, 1, "id29", "retrieve_array_config"], [161, 2, 1, "id30", "retrieve_array_config_names"], [161, 2, 1, "id25", "retrieve_datasplit_config"], [161, 2, 1, "id26", "retrieve_datasplit_config_names"], [161, 2, 1, "id9", "retrieve_run_config"], [161, 2, 1, "id10", "retrieve_run_config_names"], [161, 2, 1, "id13", "retrieve_task_config"], [161, 2, 1, "id14", "retrieve_task_config_names"], [161, 2, 1, "id21", "retrieve_trainer_config"], [161, 2, 1, "id22", "retrieve_trainer_config_names"], [161, 5, 1, "id0", "runs"], [161, 2, 1, "id16", "store_architecture_config"], [161, 2, 1, "id28", "store_array_config"], [161, 2, 1, "id24", "store_datasplit_config"], [161, 2, 1, "id8", "store_run_config"], [161, 2, 1, "id12", "store_task_config"], [161, 2, 1, "id20", "store_trainer_config"], [161, 5, 1, "id4", "tasks"], [161, 5, 1, "id5", "trainers"]], "dacapo.store.config_store.DuplicateNameError": [[161, 2, 1, "", "__str__"], [161, 5, 1, "", "message"]], "dacapo.store.conversion_hooks": [[162, 3, 1, "", "cls_fun"], [162, 3, 1, "", "register_hierarchy_hooks"], [162, 3, 1, "", "register_hooks"]], "dacapo.store.converter": [[163, 1, 1, "", "TypedConverter"], [163, 4, 1, "", "converter"]], "dacapo.store.converter.TypedConverter": [[163, 2, 1, "", "__typed_structure"], [163, 2, 1, "", "__typed_unstructure"], [163, 5, 1, "", "hooks"], [163, 2, 1, "id0", "register_hierarchy"]], "dacapo.store.create_store": [[164, 3, 1, "", "create_array_store"], [164, 3, 1, "", "create_config_store"], [164, 3, 1, "", "create_stats_store"], [164, 3, 1, "", "create_weights_store"]], "dacapo.store.file_config_store": [[165, 1, 1, "", "FileConfigStore"], [165, 4, 1, "", "logger"]], "dacapo.store.file_config_store.FileConfigStore": [[165, 2, 1, "", "__load"], [165, 2, 1, "", "__save_insert"], [165, 6, 1, "", "architectures"], [165, 6, 1, "", "arrays"], [165, 6, 1, "", "datasets"], [165, 6, 1, "", "datasplits"], [165, 2, 1, "", "delete_config"], [165, 5, 1, "id0", "path"], [165, 2, 1, "id8", "retrieve_architecture_config"], [165, 2, 1, "id9", "retrieve_architecture_config_names"], [165, 2, 1, "id17", "retrieve_array_config"], [165, 2, 1, "id18", "retrieve_array_config_names"], [165, 2, 1, "id14", "retrieve_datasplit_config"], [165, 2, 1, "id15", "retrieve_datasplit_config_names"], [165, 2, 1, "id2", "retrieve_run_config"], [165, 2, 1, "id3", "retrieve_run_config_names"], [165, 2, 1, "id5", "retrieve_task_config"], [165, 2, 1, "id6", "retrieve_task_config_names"], [165, 2, 1, "id11", "retrieve_trainer_config"], [165, 2, 1, "id12", "retrieve_trainer_config_names"], [165, 6, 1, "", "runs"], [165, 2, 1, "id7", "store_architecture_config"], [165, 2, 1, "id16", "store_array_config"], [165, 2, 1, "id13", "store_datasplit_config"], [165, 2, 1, "id1", "store_run_config"], [165, 2, 1, "id4", "store_task_config"], [165, 2, 1, "id10", "store_trainer_config"], [165, 6, 1, "", "tasks"], [165, 6, 1, "", "trainers"], [165, 6, 1, "", "users"]], "dacapo.store.file_stats_store": [[166, 1, 1, "", "FileStatsStore"], [166, 4, 1, "", "logger"]], "dacapo.store.file_stats_store.FileStatsStore": [[166, 2, 1, "", "delete_training_stats"], [166, 5, 1, "", "path"], [166, 2, 1, "", "retrieve_training_stats"], [166, 2, 1, "", "retrieve_validation_iteration_scores"], [166, 2, 1, "", "store_training_stats"], [166, 2, 1, "", "store_validation_iteration_scores"]], "dacapo.store.local_array_store": [[168, 1, 1, "", "LocalArrayStore"], [168, 4, 1, "", "logger"]], "dacapo.store.local_array_store.LocalArrayStore": [[168, 5, 1, "id0", "basedir"], [168, 2, 1, "id1", "best_validation_array"], [168, 2, 1, "id7", "remove"], [168, 2, 1, "id5", "snapshot_container"], [168, 2, 1, "id6", "validation_container"], [168, 2, 1, "id4", "validation_input_arrays"], [168, 2, 1, "id3", "validation_output_array"], [168, 2, 1, "id2", "validation_prediction_array"]], "dacapo.store.local_weights_store": [[169, 1, 1, "", "LocalWeightsStore"], [169, 4, 1, "", "logger"]], "dacapo.store.local_weights_store.LocalWeightsStore": [[169, 5, 1, "id0", "basedir"], [169, 2, 1, "id1", "latest_iteration"], [169, 2, 1, "id4", "remove"], [169, 2, 1, "id6", "retrieve_best"], [169, 2, 1, "id3", "retrieve_weights"], [169, 2, 1, "id5", "store_best"], [169, 2, 1, "id2", "store_weights"]], "dacapo.store.mongo_config_store": [[170, 1, 1, "", "MongoConfigStore"], [170, 4, 1, "", "logger"]], "dacapo.store.mongo_config_store.MongoConfigStore": [[170, 2, 1, "", "__init_db"], [170, 2, 1, "", "__open_collections"], [170, 2, 1, "", "__same_doc"], [170, 2, 1, "", "__save_insert"], [170, 5, 1, "", "architectures"], [170, 5, 1, "", "arrays"], [170, 5, 1, "id2", "client"], [170, 5, 1, "id3", "database"], [170, 5, 1, "", "datasets"], [170, 5, 1, "", "datasplits"], [170, 5, 1, "id0", "db_host"], [170, 5, 1, "id1", "db_name"], [170, 2, 1, "", "delete_config"], [170, 2, 1, "id6", "delete_run_config"], [170, 2, 1, "id12", "retrieve_architecture_config"], [170, 2, 1, "id13", "retrieve_architecture_config_names"], [170, 2, 1, "id24", "retrieve_array_config"], [170, 2, 1, "id25", "retrieve_array_config_names"], [170, 2, 1, "id21", "retrieve_dataset_config"], [170, 2, 1, "id22", "retrieve_dataset_config_names"], [170, 2, 1, "id18", "retrieve_datasplit_config"], [170, 2, 1, "id19", "retrieve_datasplit_config_names"], [170, 2, 1, "id5", "retrieve_run_config"], [170, 2, 1, "id7", "retrieve_run_config_names"], [170, 2, 1, "id9", "retrieve_task_config"], [170, 2, 1, "id10", "retrieve_task_config_names"], [170, 2, 1, "id15", "retrieve_trainer_config"], [170, 2, 1, "id16", "retrieve_trainer_config_names"], [170, 5, 1, "", "runs"], [170, 2, 1, "id11", "store_architecture_config"], [170, 2, 1, "id23", "store_array_config"], [170, 2, 1, "id20", "store_dataset_config"], [170, 2, 1, "id17", "store_datasplit_config"], [170, 2, 1, "id4", "store_run_config"], [170, 2, 1, "id8", "store_task_config"], [170, 2, 1, "id14", "store_trainer_config"], [170, 5, 1, "", "tasks"], [170, 5, 1, "", "trainers"], [170, 5, 1, "", "users"]], "dacapo.store.mongo_stats_store": [[171, 1, 1, "", "MongoStatsStore"], [171, 4, 1, "", "logger"]], "dacapo.store.mongo_stats_store.MongoStatsStore": [[171, 5, 1, "id2", "client"], [171, 5, 1, "id3", "database"], [171, 5, 1, "id0", "db_host"], [171, 5, 1, "id1", "db_name"], [171, 2, 1, "id8", "delete_training_stats"], [171, 2, 1, "", "delete_validation_scores"], [171, 2, 1, "id5", "retrieve_training_stats"], [171, 2, 1, "id7", "retrieve_validation_iteration_scores"], [171, 2, 1, "id4", "store_training_stats"], [171, 2, 1, "id6", "store_validation_iteration_scores"], [171, 5, 1, "", "training_stats"], [171, 5, 1, "", "validation_scores"]], "dacapo.store.stats_store": [[172, 1, 1, "", "StatsStore"]], "dacapo.store.stats_store.StatsStore": [[172, 2, 1, "id4", "delete_training_stats"], [172, 2, 1, "id1", "retrieve_training_stats"], [172, 2, 1, "id3", "retrieve_validation_iteration_scores"], [172, 2, 1, "id0", "store_training_stats"], [172, 2, 1, "id2", "store_validation_iteration_scores"]], "dacapo.store.weights_store": [[173, 1, 1, "", "Weights"], [173, 1, 1, "", "WeightsStore"]], "dacapo.store.weights_store.Weights": [[173, 2, 1, "", "__init__"], [173, 5, 1, "id1", "model"], [173, 5, 1, "id0", "optimizer"]], "dacapo.store.weights_store.WeightsStore": [[173, 2, 1, "id4", "latest_iteration"], [173, 2, 1, "id3", "load_best"], [173, 2, 1, "id2", "load_weights"], [173, 2, 1, "id7", "remove"], [173, 2, 1, "id8", "retrieve_best"], [173, 2, 1, "id6", "retrieve_weights"], [173, 2, 1, "id5", "store_weights"]], "dacapo.tmp": [[174, 3, 1, "", "create_from_identifier"], [174, 3, 1, "", "gp_to_funlib_array"], [174, 3, 1, "", "np_to_funlib_array"], [174, 3, 1, "", "num_channels_from_array"], [174, 3, 1, "", "open_from_identifier"]], "dacapo.train": [[175, 4, 1, "", "logger"], [175, 3, 1, "", "train"], [175, 3, 1, "", "train_run"]], "dacapo.utils": [[176, 0, 0, "-", "affinities"], [177, 0, 0, "-", "array_utils"], [178, 0, 0, "-", "balance_weights"], [180, 0, 0, "-", "pipeline"], [181, 0, 0, "-", "view"], [182, 0, 0, "-", "voi"]], "dacapo.utils.affinities": [[176, 4, 1, "", "logger"], [176, 3, 1, "", "padding"], [176, 3, 1, "", "seg_to_affgraph"]], "dacapo.utils.array_utils": [[177, 3, 1, "", "save_ndarray"], [177, 3, 1, "", "to_ndarray"]], "dacapo.utils.balance_weights": [[178, 3, 1, "", "balance_weights"]], "dacapo.utils.pipeline": [[180, 1, 1, "", "CreatePoints"], [180, 1, 1, "", "DilatePoints"], [180, 1, 1, "", "ExpandLabels"], [180, 1, 1, "", "MakeRaw"], [180, 1, 1, "", "RandomDilateLabels"], [180, 1, 1, "", "Relabel"], [180, 1, 1, "", "ZerosSource"], [180, 3, 1, "", "random_source_pipeline"]], "dacapo.utils.pipeline.CreatePoints": [[180, 5, 1, "id0", "labels"], [180, 5, 1, "id1", "num_points"], [180, 2, 1, "id2", "process"]], "dacapo.utils.pipeline.DilatePoints": [[180, 5, 1, "id6", "dilations"], [180, 5, 1, "id5", "labels"], [180, 2, 1, "id7", "process"]], "dacapo.utils.pipeline.ExpandLabels": [[180, 5, 1, "id13", "background"], [180, 5, 1, "id12", "labels"], [180, 2, 1, "id14", "process"]], "dacapo.utils.pipeline.MakeRaw": [[180, 1, 1, "", "Pipeline"], [180, 5, 1, "", "gaussian_blur_args"], [180, 5, 1, "", "gaussian_noise_args"], [180, 5, 1, "", "gaussian_noise_lim"], [180, 5, 1, "", "inside_value"], [180, 5, 1, "", "labels"], [180, 5, 1, "", "membrane_like"], [180, 5, 1, "", "membrane_size"], [180, 2, 1, "id4", "process"], [180, 5, 1, "", "raw"], [180, 2, 1, "id3", "setup"]], "dacapo.utils.pipeline.MakeRaw.Pipeline": [[180, 5, 1, "", "gaussian_blur_args"], [180, 5, 1, "", "gaussian_noise_args"], [180, 5, 1, "", "gaussian_noise_lim"], [180, 5, 1, "", "inside_value"], [180, 5, 1, "", "labels"], [180, 5, 1, "", "membrane_like"], [180, 5, 1, "", "membrane_size"], [180, 5, 1, "", "raw"]], "dacapo.utils.pipeline.RandomDilateLabels": [[180, 5, 1, "id9", "dilations"], [180, 5, 1, "id8", "labels"], [180, 2, 1, "id10", "process"]], "dacapo.utils.pipeline.Relabel": [[180, 5, 1, "", "connectivity"], [180, 5, 1, "", "labels"], [180, 2, 1, "id11", "process"]], "dacapo.utils.pipeline.ZerosSource": [[180, 5, 1, "", "_spec"], [180, 5, 1, "id15", "key"], [180, 2, 1, "id17", "provide"], [180, 2, 1, "id16", "setup"]], "dacapo.utils.view": [[181, 1, 1, "", "BestScore"], [181, 1, 1, "", "NeuroglancerRunViewer"], [181, 3, 1, "", "add_scalar_layer"], [181, 3, 1, "", "add_seg_layer"], [181, 3, 1, "", "get_viewer"]], "dacapo.utils.view.BestScore": [[181, 5, 1, "id5", "array_store"], [181, 2, 1, "id8", "does_new_best_exist"], [181, 5, 1, "", "ds"], [181, 2, 1, "id7", "get_ds"], [181, 5, 1, "id2", "iteration"], [181, 5, 1, "id3", "parameter"], [181, 5, 1, "id0", "run"], [181, 5, 1, "id1", "score"], [181, 5, 1, "id6", "stats_store"], [181, 5, 1, "id4", "validation_parameters"]], "dacapo.utils.view.NeuroglancerRunViewer": [[181, 5, 1, "", "array_store"], [181, 5, 1, "id10", "best_score"], [181, 2, 1, "id13", "deprecated_start_neuroglancer"], [181, 5, 1, "id11", "embedded"], [181, 2, 1, "id17", "get_datasets"], [181, 5, 1, "", "gt"], [181, 5, 1, "", "most_recent_iteration"], [181, 2, 1, "id21", "new_validation_checker"], [181, 2, 1, "id16", "open_from_array_identitifier"], [181, 5, 1, "", "raw"], [181, 5, 1, "id9", "run"], [181, 5, 1, "", "run_thread"], [181, 5, 1, "", "segmentation"], [181, 2, 1, "id15", "start"], [181, 2, 1, "id14", "start_neuroglancer"], [181, 2, 1, "id23", "stop"], [181, 2, 1, "id18", "update_best_info"], [181, 2, 1, "id20", "update_best_layer"], [181, 2, 1, "id19", "update_neuroglancer"], [181, 2, 1, "id22", "update_with_new_validation_if_possible"], [181, 2, 1, "id12", "updated_neuroglancer_layer"], [181, 5, 1, "", "viewer"]], "dacapo.utils.voi": [[182, 3, 1, "", "contingency_table"], [182, 3, 1, "", "divide_columns"], [182, 3, 1, "", "divide_rows"], [182, 3, 1, "", "split_vi"], [182, 3, 1, "", "vi_tables"], [182, 3, 1, "", "voi"], [182, 3, 1, "", "xlogx"]], "dacapo.validate": [[183, 4, 1, "", "logger"], [183, 3, 1, "", "validate"], [183, 3, 1, "", "validate_run"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "data", "Python data"], "5": ["py", "attribute", "Python attribute"], "6": ["py", "property", "Python property"], "7": ["py", "exception", "Python exception"], "8": ["std", "cmdoption", "program option"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:data", "5": "py:attribute", "6": "py:property", "7": "py:exception", "8": "std:cmdoption"}, "terms": {"": [15, 17, 18, 21, 38, 47, 67, 68, 70, 83, 87, 88, 96, 97, 99, 104, 106, 108, 109, 113, 157, 173, 178, 188, 189, 192], "0": [3, 9, 10, 15, 17, 21, 24, 25, 27, 28, 32, 33, 38, 39, 59, 62, 67, 69, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 108, 109, 110, 112, 114, 115, 116, 118, 119, 120, 127, 130, 132, 133, 136, 138, 143, 145, 147, 148, 149, 150, 152, 154, 155, 158, 168, 169, 173, 176, 177, 178, 180, 181, 182, 183, 185, 186, 187, 192, 194], "0001": [192, 194], "006": 3, "02": 190, "02834": 190, "05": [115, 116, 118, 119, 120, 178, 192], "0b8956f13d7bdfe7b": 185, "0x7f2e4f8e9e80": 164, "0x7f8b1c0b3f30": 83, "1": [0, 3, 7, 10, 11, 13, 15, 17, 19, 20, 21, 22, 24, 25, 27, 28, 30, 32, 38, 39, 47, 49, 54, 56, 59, 67, 68, 74, 79, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109, 112, 114, 115, 116, 118, 119, 120, 130, 132, 133, 143, 147, 148, 149, 150, 152, 154, 155, 157, 158, 160, 169, 176, 178, 180, 181, 182, 184, 185, 192, 194], "10": [3, 26, 27, 83, 96, 99, 106, 108, 181, 186, 190, 192, 194], "100": [108, 114, 136, 138, 155, 157, 158, 181, 186, 194], "1000": [3, 67, 70, 192, 194], "10000": [3, 194], "100000": 194, "1000000": 3, "1016": 3, "10x10x10": [106, 108], "11": [3, 96, 99], "1101": 190, "12": [0, 3, 96, 99, 108, 111, 155, 158, 192], "123": 83, "128": [10, 15, 17, 21], "13": [96, 99], "132": 192, "14": [96, 99], "148": 180, "15": [88, 89, 96, 99, 192, 194], "150": 180, "1500": 181, "16": [2, 4, 7, 59, 62, 96, 99, 104, 108, 109, 113, 186], "17": 190, "1820500": 188, "1994": 192, "1995": 192, "1996": 192, "1997": 192, "1998": 192, "1999": 192, "1d": 182, "1x1": 17, "2": [2, 3, 4, 7, 17, 21, 22, 27, 59, 62, 67, 79, 82, 83, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 106, 108, 143, 150, 152, 157, 176, 178, 180, 182, 186, 192, 194], "20": [19, 21, 115, 119, 180, 192, 194], "200": [3, 83, 88], "2000": 192, "2001": 192, "2007": 182, "2012": [18, 21], "2022": 3, "2023": 190, "2024": [187, 190], "21": [3, 192], "212": 194, "216_000_000": [59, 62], "2333333333333334": 83, "24": [17, 21], "2408": 190, "25": [83, 194], "254": 192, "255": [59, 62, 192], "256": [104, 108, 111, 113, 192], "260": 192, "290": 192, "2d": [17, 18, 21, 34, 38, 43, 59, 62, 192], "2pi": [130, 132, 150, 152], "2xlarg": 185, "3": [15, 17, 21, 59, 62, 67, 83, 85, 87, 88, 90, 96, 97, 98, 99, 100, 101, 106, 108, 143, 150, 152, 157, 176, 178, 180, 185, 190, 192], "30": [186, 192], "32": [3, 10, 17, 59, 62, 108, 114, 192, 194], "33333334": 178, "34515283": 192, "35": 194, "35486192": 192, "37893647": 192, "3d": [3, 17, 18, 19, 21, 59, 62, 130, 132, 150, 152, 180, 190, 194], "3x3x3": [17, 21], "4": [3, 59, 62, 83, 96, 97, 99, 106, 108, 136, 138, 150, 152, 157, 176, 192, 193, 194], "40": [19, 21, 83, 88], "400": 185, "41421356": 83, "48550": 190, "4d": [17, 21], "5": [3, 82, 83, 88, 96, 97, 99, 106, 108, 114, 150, 152, 154, 157, 180, 192, 194], "50": 3, "528834": 190, "58934087": 192, "5d": [17, 21], "6": [96, 97, 99, 106, 108, 150, 152, 192], "60": 192, "600": [59, 62, 181], "61128896": 192, "64": [3, 10, 17, 21, 108, 109], "65979844": 192, "6666666666666666": 83, "7": [96, 99, 106, 108, 150, 152], "70710678": 83, "72": 194, "75": [3, 83, 194], "8": [59, 62, 83, 96, 99, 106, 108, 116, 118, 119, 120, 150, 152, 180, 192, 194], "80": 185, "8000": [59, 62, 185, 189], "85": 83, "8571428571428571": 83, "873": 182, "895": 182, "9": [83, 96, 97, 99, 106, 108, 178], "95": [115, 116, 119, 178], "98": 182, "A": [2, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 108, 109, 110, 111, 113, 115, 117, 119, 121, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 138, 141, 142, 143, 144, 145, 147, 148, 149, 151, 152, 153, 155, 156, 162, 163, 165, 166, 168, 169, 170, 171, 173, 180, 181, 182, 190], "As": [17, 21, 194], "Be": 192, "By": [17, 21, 116, 118, 119, 120, 122, 182], "For": [34, 38, 43, 162, 163, 187, 189, 190, 191, 192, 194], "If": [0, 3, 12, 13, 14, 15, 16, 17, 21, 33, 36, 37, 38, 47, 49, 51, 54, 58, 59, 62, 67, 68, 69, 71, 73, 74, 77, 82, 83, 88, 90, 93, 98, 99, 100, 101, 104, 106, 107, 108, 109, 110, 111, 112, 113, 119, 122, 127, 136, 138, 140, 141, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 181, 182, 185, 186, 187, 190, 192, 193, 194], "In": [57, 60, 62, 119, 122, 182, 192, 194], "It": [11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 25, 26, 27, 28, 29, 33, 36, 37, 38, 39, 47, 49, 54, 56, 57, 58, 59, 60, 62, 66, 67, 69, 70, 76, 81, 83, 85, 87, 88, 90, 93, 94, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 126, 127, 136, 137, 138, 140, 141, 142, 143, 145, 150, 152, 160, 161, 162, 166, 168, 188, 189], "No": [31, 37, 38, 47, 49, 54, 58, 62, 138, 141], "Not": [129, 132, 135, 138], "One": 190, "Or": 182, "TO": 192, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127, 130, 131, 132, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 177, 178, 180, 181, 182, 186, 187, 188, 190, 192, 193, 194], "Then": [190, 192], "There": 194, "These": [182, 192, 193, 194], "To": [67, 108, 113, 145, 185, 186, 188, 189, 190, 192, 194], "Will": [32, 38], "_": [163, 192], "__attrs_post_init__": [27, 28, 33, 38], "__augment": [151, 152], "__enter__": [127, 136, 138], "__eq__": [48, 54], "__except": 146, "__exit__": [127, 136, 138], "__find_boundari": [119, 120], "__generate_semantic_seg_dataset_crop": [59, 62], "__generate_semantic_seg_datasplit": [59, 62], "__getattr__": 146, "__getitem__": [59, 177], "__hash__": [48, 54], "__init__": [2, 4, 50, 54, 55, 57, 59, 60, 62, 65, 66, 71, 72, 73, 74, 75, 76, 78, 80, 91, 93, 94, 115, 116, 117, 118, 119, 120, 121, 127, 138, 152, 153, 173], "__init_db": 170, "__iter__": [136, 138], "__load": 165, "__main__": 192, "__name": 146, "__name__": 192, "__normal": [119, 120], "__open_collect": 170, "__parse_opt": [155, 156], "__parse_options_from_fil": [155, 156], "__repr__": [48, 54], "__same_doc": 170, "__save_insert": [165, 170], "__setitem__": 177, "__str__": [48, 54, 59, 62, 63, 64, 160, 161], "__traceback_str": 146, "__type__": [162, 163], "__typed_structur": 163, "__typed_unstructur": 163, "_ax": [38, 47], "_build": 187, "_compat": 163, "_devic": [13, 14], "_eval_shape_increas": [18, 21], "_grow_boundari": [115, 119], "_gt_kei": [129, 130, 131, 132, 133, 134, 135, 138], "_mask_kei": [129, 130, 131, 132, 133, 134, 135, 138], "_member_names_": 59, "_neuroglanc": 192, "_neuroglancer_lay": [48, 54], "_raw_kei": [129, 130, 132, 135, 138], "_source_arrai": 181, "_spec": 180, "_static": 187, "_templat": 187, "_wrap_command": [11, 12, 13, 14], "abc": [11, 12, 13, 14, 15, 21, 93, 119, 122, 125], "abil": [83, 163], "abl": [67, 145], "about": [15, 21, 190], "abov": 192, "absenc": 83, "absolut": [97, 99, 187], "abspath": 187, "abstract": [12, 13, 14, 15, 16, 21, 23, 31, 37, 38, 44, 87, 88, 98, 99, 100, 101, 104, 106, 108, 109, 119, 122, 129, 132, 136, 138, 140, 141, 160, 161, 172, 173], "abstractmethod": [15, 21, 23, 86, 87, 88], "accept": [17, 21, 83], "access": [38, 47, 155, 156, 166, 188, 189, 194], "accord": [17, 21, 57, 60, 62, 194], "accordingli": 166, "account": [15, 21, 67, 68, 83], "accuraci": [83, 173], "achiev": [67, 70, 181], "ackerman": [187, 190], "activ": [17, 21, 67, 68, 190, 192], "activation_on_upsampl": [17, 21], "actual": [17, 21, 83, 151, 152, 189], "ad": 163, "add": [7, 10, 17, 21, 67, 143, 145, 180, 181, 187, 188], "add_iteration_scor": [67, 145], "add_iteration_stat": [67, 143], "add_scalar_lay": 181, "add_seg_lay": 181, "addit": [2, 4, 7, 12, 13, 14, 15, 17, 21, 132, 133, 155, 156, 162, 163, 189, 192, 193], "addition": [23, 190], "address": [69, 136, 138, 181], "adjavon": 190, "advantag": [79, 93, 95], "advis": [49, 54], "aff": [77, 93], "affect": 187, "affin": [76, 77, 79, 92, 93, 95, 96, 99, 115, 119, 179, 184, 190, 192, 193], "affinities_loss": [99, 184], "affinities_predictor": [119, 184], "affinities_task": [93, 184], "affinities_task_config": [93, 184], "affinitiesloss": [76, 93, 96, 99], "affinitiespredict": 194, "affinitiespredictor": [76, 93, 115, 119], "affinitiestask": [76, 93], "affinitiestaskconfig": [77, 93, 192, 194], "affs_task_config": 192, "affs_weight_clipmax": [77, 93, 115, 119], "affs_weight_clipmin": [77, 93, 115, 119], "after": [17, 19, 21, 27, 28, 33, 38, 67, 69, 87, 88, 116, 118, 119, 120, 136, 137, 138, 143, 145, 186, 187, 188, 192, 193], "against": [83, 85, 87, 88, 90], "aid": [49, 54], "algorithm": [10, 83], "align": [38, 47], "all": [32, 35, 38, 67, 69, 70, 76, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 99, 100, 102, 104, 106, 108, 109, 111, 113, 123, 126, 136, 138, 149, 150, 152, 161, 162, 163, 169, 170, 176, 182, 189, 192, 194], "allow": [3, 83, 188, 189, 190, 193, 194], "allow_one_view": 3, "almost": [26, 27], "along": [3, 18, 21, 58, 62, 67, 70, 77, 83, 93, 104, 108, 145, 188], "alreadi": [0, 59, 62, 67, 83, 145, 147, 148, 149, 152, 155, 158, 161, 165, 166, 170, 171, 172, 173, 183, 185, 192], "also": [7, 12, 13, 14, 15, 17, 20, 21, 54, 55, 56, 67, 69, 82, 84, 86, 88, 127, 138, 143, 150, 152, 161, 185, 187, 192, 193, 194], "altern": [177, 192], "alwai": [20, 21, 24, 27, 30, 49, 51, 54, 61, 62, 81, 93], "amazon": 185, "ami": 185, "among": 83, "amount": [15, 18, 21, 38, 44, 79, 92, 93, 95, 119, 120, 182], "an": [7, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 38, 39, 40, 41, 42, 44, 54, 56, 57, 59, 60, 62, 67, 68, 71, 73, 76, 79, 81, 83, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 102, 104, 106, 108, 109, 115, 119, 122, 125, 127, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 144, 145, 146, 150, 151, 152, 153, 155, 156, 160, 161, 162, 163, 164, 176, 177, 178, 180, 181, 182, 183, 185, 186, 192, 193, 194], "analysi": [83, 182], "angl": [130, 132, 150, 152], "ani": [16, 17, 21, 26, 27, 36, 38, 83, 99, 100, 119, 122, 128, 138, 140, 156, 161, 163, 180, 182, 187], "annot": [23, 27, 32, 38, 39, 42, 184], "annotation_arrai": [22, 27], "annotationarrai": [22, 27], "anoth": [81, 93, 187], "anyth": [26, 27], "anywher": [79, 93], "api": 187, "append": [119, 122, 178, 192], "appli": [5, 17, 21, 67, 68, 79, 83, 92, 93, 94, 95, 96, 97, 99, 108, 109, 111, 113, 119, 120, 131, 132, 133, 134, 135, 136, 137, 138, 150, 151, 152, 155, 163, 180, 184, 192, 193], "applic": [2, 4, 7, 17, 81, 93, 166, 186, 190, 192], "apply_run": 0, "approach": 190, "appropri": [169, 176, 192], "ar": [0, 11, 12, 13, 14, 17, 21, 22, 26, 27, 28, 29, 38, 41, 54, 56, 57, 60, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 83, 87, 88, 90, 93, 98, 99, 100, 102, 108, 110, 113, 114, 116, 118, 119, 120, 122, 123, 124, 143, 145, 150, 152, 153, 155, 161, 163, 164, 165, 166, 169, 170, 171, 172, 173, 176, 177, 180, 182, 185, 187, 190, 192, 193, 194], "arbitrari": 182, "arbitrarili": [190, 193], "architectur": [67, 68, 69, 70, 93, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 138, 161, 165, 170, 184, 190, 193, 194], "architecture1": [161, 165], "architecture_0": 170, "architecture_config": [17, 19, 21, 67, 70, 161, 165, 170, 184, 192, 194], "architecture_nam": [161, 165, 170], "architecture_typ": [18, 20, 21], "architectureconfig": [16, 20, 21, 67, 70, 161, 165, 170], "arg": [2, 4, 7, 15, 21, 106, 108, 186], "argmax": [24, 27, 30, 93, 102, 103, 104, 105, 108], "argmax_post_processor": [108, 184], "argmax_post_processor_paramet": [108, 184], "argmax_work": [4, 184], "argmaxpostprocessor": [104, 108], "argmaxpostprocessorparamet": [104, 105, 108], "argmin": [25, 27], "argument": [2, 4, 7, 59, 62, 99, 100, 116, 118, 119, 120, 155, 156, 186], "around": [17, 21, 54, 56, 150, 152], "arrai": [0, 1, 3, 5, 6, 8, 9, 10, 22, 23, 24, 25, 26, 27, 28, 29, 30, 48, 50, 51, 54, 55, 56, 59, 63, 64, 67, 69, 83, 85, 87, 88, 90, 104, 105, 106, 108, 109, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 131, 132, 136, 138, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 158, 160, 161, 164, 165, 168, 170, 174, 176, 177, 178, 180, 181, 182, 184, 192, 194], "array1": [161, 165], "array_0": 170, "array_config": [32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 59, 161, 165, 170, 184], "array_evalu": 83, "array_identifi": [160, 168, 174, 181], "array_kei": [147, 152], "array_nam": [161, 165, 170], "array_out": 6, "array_stor": [0, 1, 5, 6, 8, 9, 104, 108, 111, 113, 138, 140, 167, 168, 181, 184], "array_typ": [23, 35, 38], "array_util": [179, 184], "arrayconfig": [31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 54, 56, 161, 165, 170], "arraydataset": [38, 44], "arrayevalu": 83, "arraykei": [63, 64, 129, 131, 132, 133, 134, 138, 147, 148, 150, 152, 153, 154], "arrayspec": [147, 148, 152], "arraystor": [160, 164], "arraytyp": [67, 184], "articl": 190, "artifact": 192, "arxiv": 190, "as_dict": 163, "aspect": [81, 93], "assembl": 193, "assert": [67, 143], "assertionerror": [67, 68, 69, 150, 151, 152, 153, 154, 178], "assign": [20, 21, 180], "associ": [22, 27, 54, 56, 67, 71, 72, 73, 74, 75, 78, 93, 116, 118, 119, 120, 122, 144, 145, 171, 172, 173, 181, 182], "assum": [0, 26, 27, 83, 119, 121, 122, 182, 183], "astyp": [178, 192], "attent": [17, 18, 21], "attention_block": 17, "attentionblock": 17, "attentionblockmodul": 17, "attribut": [17, 18, 20, 21, 24, 35, 36, 38, 51, 54, 78, 81, 82, 88, 91, 93, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 113, 127, 128, 137, 138, 145, 147, 152, 162], "attributeerror": [17, 21, 87, 88], "attributeoverrid": 163, "aubrei": 190, "augment": [127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 150, 151, 152, 192, 193, 194], "augment_config": [132, 138, 184], "augmentation_prob": [130, 132, 133, 135, 150, 152], "augmentconfig": [129, 132, 133, 134, 135, 137, 138], "author": [185, 187, 190], "auto": [184, 187, 192], "autoapi": [184, 187], "autoapi_dir": 187, "autoapi_ignor": 187, "autoapi_opt": 187, "autoapi_typ": 187, "autobuild": 187, "autodoc": 187, "automat": [13, 14], "autonotebook": 192, "autoskip": [147, 152, 153], "avail": [13, 14, 67, 70, 169, 170, 171, 172, 173, 194], "averag": [17, 83, 88, 89, 157], "avoid": [31, 38, 58, 62, 67, 68, 83, 93, 126, 150, 152, 192], "aws_access_key_id": 185, "aws_profil": 185, "aws_region": 185, "aws_secret_access_kei": 185, "ax": 192, "axi": [3, 18, 21, 104, 108, 150, 152], "axis_nam": [3, 38, 46, 47, 174, 192], "b": [17, 21, 82, 83, 88, 162, 163, 170], "back": [13, 14, 162, 163], "backbon": [67, 70], "backend": 192, "background": [32, 38, 77, 83, 93, 115, 116, 118, 119, 120, 152, 154, 180, 192, 193], "background_as_object": [77, 93, 115, 119], "backwards_map": 90, "balanc": [83, 178], "balance_weight": [179, 184], "base": [0, 12, 13, 14, 15, 16, 18, 20, 21, 31, 38, 48, 52, 53, 54, 55, 63, 64, 85, 86, 87, 88, 93, 102, 108, 109, 110, 117, 118, 119, 123, 126, 129, 132, 138, 140, 141, 149, 150, 152, 154, 155, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 173, 178, 182, 189, 194], "basedir": [168, 169], "bash": [185, 191], "basic": [192, 194], "basicconfig": 194, "batch": [15, 17, 18, 21, 67, 68, 70, 127, 136, 138, 140, 141, 147, 148, 149, 150, 151, 152, 153, 154, 180, 192, 193], "batch_norm": [17, 18, 21], "batch_provid": [127, 138], "batch_siz": [127, 136, 138, 140, 141, 192, 194], "batchfilt": [129, 132, 138, 147, 148, 152, 153], "batchprovid": [127, 138, 149, 152], "batchrequest": [147, 148, 149, 152, 153, 180], "bceloss": [98, 99], "bcelosswithlogit": [67, 68], "becaus": [24, 119, 122], "been": [27, 28, 33, 38, 67, 83, 87, 88, 116, 118, 119, 120, 143, 145, 162, 163], "befor": [17, 18, 21, 79, 83, 92, 93, 95, 119, 120, 180, 189], "begin": 189, "behind": 166, "being": [31, 33, 38, 52, 53, 54, 56, 67, 71, 73, 74, 116, 118, 119, 120, 145], "belong": 192, "below": [13, 14, 188], "bennett": 190, "best": [0, 67, 72, 73, 82, 83, 84, 85, 86, 87, 88, 89, 90, 145, 155, 168, 169, 173, 181, 183, 194], "best_scor": [87, 88, 181], "best_validation_arrai": 168, "bestscor": [87, 88, 181], "better": [82, 84, 86, 87, 88, 89, 157], "between": [3, 17, 21, 38, 39, 82, 83, 88, 90, 96, 97, 99, 130, 132, 150, 152, 182, 186, 190, 192], "bg": 83, "bia": [10, 74, 108, 114, 192], "bill": [11, 13], "bin": 185, "binar": [32, 38, 42], "binari": [27, 32, 38, 39, 42, 82, 83, 88, 91, 93, 94, 98, 99, 104, 108, 116, 118, 119, 120, 184], "binarize_array_config": [38, 184], "binarize_gt": [59, 62], "binarizearrai": [32, 38], "binarizearrayconfig": [32, 38], "binary_arrai": 24, "binary_segmentation_evalu": [88, 184], "binary_segmentation_evaluation_scor": [88, 184], "binaryarrai": 24, "binarysegmentationevalu": [78, 83, 88, 91, 93], "binarysegmentationevaluationscor": [82, 83, 88], "bind": [69, 136, 138, 181], "bind_address": [69, 136, 138, 181], "bind_port": [69, 136, 138, 181], "bioimag": 190, "biomed": [192, 193], "blipp": [84, 88], "blipp_scor": [84, 85, 88], "blob": [18, 21], "block": [2, 3, 4, 6, 7, 10, 17, 18, 21, 82, 86, 88, 104, 108, 111, 113, 186, 191], "block_id": 10, "block_siz": [104, 108, 111, 113], "blockwis": [108, 111, 113, 155, 158, 184], "blockwise_task": [4, 184], "blog": 190, "blueprint": [138, 140], "blur": 180, "bokeh_plot_run": 157, "bool": [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 44, 47, 49, 51, 54, 58, 59, 61, 62, 67, 69, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 115, 116, 118, 119, 124, 126, 127, 128, 130, 132, 133, 136, 137, 138, 140, 141, 145, 147, 150, 152, 155, 157, 158, 163, 171, 180, 181, 182, 186], "boolean": [16, 20, 21, 22, 26, 27, 28, 29, 31, 38, 47, 49, 54, 61, 62, 81, 93, 126, 127, 128, 137, 138, 141, 180], "both": [54, 56, 67, 83, 118, 119, 145, 192], "bound": [82, 84, 86, 87, 88, 89], "boundari": [3, 25, 27, 79, 83, 92, 93, 115, 118, 119, 120, 122, 192], "break": 192, "browser": [189, 192], "bsub": [13, 184], "bucket": 192, "bug": 192, "build": [17, 21, 127, 138], "build_batch_provid": [127, 136, 138, 140], "builder": 187, "built": [12, 13, 14, 15, 21, 189], "builtin": 187, "c": [17, 21, 27, 30, 186, 190, 192], "cach": 69, "calcul": [3, 17, 25, 27, 30, 48, 54, 76, 77, 83, 88, 89, 90, 93, 94, 96, 97, 99, 116, 118, 119, 120, 150, 152, 182, 192], "calculate_and_apply_pad": 17, "call": [27, 28, 33, 38, 71, 73, 74, 81, 83, 87, 88, 93, 149, 152, 162, 163], "callabl": [1, 5, 6, 8, 9, 163], "caller": 160, "can": [7, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 30, 31, 34, 38, 43, 47, 48, 54, 55, 58, 62, 67, 69, 70, 79, 87, 88, 92, 93, 95, 99, 100, 108, 109, 116, 118, 119, 120, 122, 126, 127, 129, 132, 133, 134, 135, 136, 138, 140, 150, 152, 163, 182, 185, 187, 188, 189, 190, 192, 193, 194], "can_train": [127, 136, 138, 140], "candid": 182, "cannot": [0, 71, 79, 92, 93, 95, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 138, 140, 141, 155], "cardona": [18, 21], "carolin": [187, 190], "case": [67, 83, 93, 103, 145, 194], "cattr": 163, "caus": 192, "cel": 3, "cell": 192, "cell_arrai": 192, "cell_data": 192, "cell_mask": 192, "cellmap": [190, 191, 192], "cells3d": 192, "center": [3, 17, 77, 93], "center_confidence_thr": 3, "central": 162, "certain": [67, 83, 119, 122, 145], "chain": [67, 68, 74], "chanc": 192, "chang": [98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 150, 152, 194], "channel": [15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 32, 33, 38, 39, 40, 42, 67, 68, 71, 73, 74, 79, 82, 83, 88, 92, 93, 95, 98, 99, 104, 108, 115, 116, 118, 119, 120, 121, 147, 152, 186, 192], "channel1": [27, 28, 82, 83, 88], "channel1__dic": [82, 88], "channel1__f1_scor": [82, 88], "channel1__hausdorff": [82, 88], "channel2": [82, 83, 88], "channel_nam": 23, "channel_scor": [82, 88], "channels_in": [19, 21], "channels_out": [19, 21, 186], "charact": [31, 38, 47, 49, 54, 58, 59, 62, 93, 126], "check": [2, 4, 7, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 47, 49, 54, 59, 62, 67, 71, 73, 87, 88, 93, 126, 127, 136, 138, 140, 145, 170, 181], "check_class_nam": [59, 62], "check_funct": 7, "checker": 181, "checkpoint": [71, 73, 93, 124, 169, 183, 188, 192, 194], "child": [50, 54], "chmod": 185, "choic": [192, 194], "choos": [71, 72, 73, 75, 132, 133, 192, 193, 194], "chunk": [3, 38, 47, 106, 108, 109, 190], "chunk_siz": [106, 108, 109], "cl": [35, 38, 81, 93, 162, 163], "class": [3, 162, 177, 178], "class1": [24, 25, 27, 30], "class2": [27, 30], "class_id": 178, "class_nam": [3, 59, 62], "classes_channel": [71, 73], "classes_separator_charact": [59, 62], "classif": [24, 32, 38, 39, 42, 119, 121], "classifi": 83, "classmethod": [155, 156], "clear": [150, 152], "clearli": [51, 54], "cli": [1, 5, 6, 8, 9, 185, 187, 189], "client": [170, 171], "clip": [82, 83, 88, 116, 119, 132, 133, 136, 137, 138, 178, 192, 194], "clip_dist": [79, 83, 88, 92, 93, 95, 192], "clip_raw": [136, 137, 138, 192], "clipmax": [79, 93, 116, 119, 178], "clipmin": [79, 93, 116, 119, 178], "cloud": [38, 47, 190, 194], "cls_fn": [162, 163], "cls_fun": 162, "cluster": [3, 11, 13, 182, 190, 194], "cluster_iou_thr": 3, "cmap": 192, "cnn": [19, 21], "cnnectom": [18, 21], "cnnectome_unet": [21, 184], "cnnectome_unet_config": [21, 184], "cnnectomeunet": [17, 18, 21], "cnnectomeunetconfig": [18, 21, 192, 194], "cnnectomeunetmodul": [17, 21], "co": 186, "code": [150, 152, 190, 191], "coeffici": [82, 83, 88], "col": 192, "colab": 190, "collaps": [147, 152], "collect": [67, 145, 151, 152, 165, 170, 171, 173], "color": 192, "column": [182, 192], "column_titl": 192, "com": [18, 21, 191, 192, 194], "combin": [17, 69, 82, 83, 87, 88, 190, 192, 193, 194], "combo": [87, 88], "come": [160, 168, 187], "command": [11, 12, 13, 14, 185, 186, 189, 190, 192, 194], "common": [71, 73, 74, 187], "commonli": [83, 192, 193], "commun": 190, "compar": [67, 77, 83, 87, 88, 93, 119, 122, 145, 165, 166, 182, 194], "comparison": [49, 54, 194], "complet": [7, 188], "compon": [6, 76, 80, 93, 136, 138, 140, 192, 193, 194], "compress": [38, 47], "comput": [11, 12, 13, 14, 59, 62, 67, 68, 78, 83, 87, 88, 93, 94, 96, 97, 98, 99, 100, 101, 115, 119, 127, 138, 145, 156, 178, 182, 190, 194], "compute_context": [155, 156, 184], "compute_output_shap": [67, 68], "computecontext": [11, 12, 13, 14], "concat_array_config": [38, 184], "concatarrai": [33, 38], "concatarrayconfig": [33, 38], "concaten": 17, "concret": [161, 162, 163], "concurr": [38, 47, 166], "conda": [190, 192], "condit": [61, 62, 83, 182], "conduct": 192, "confid": 3, "confidence_thr": 3, "config": [16, 21, 31, 32, 35, 36, 37, 38, 39, 40, 42, 45, 46, 47, 51, 52, 53, 54, 59, 61, 62, 65, 66, 67, 70, 71, 72, 73, 74, 75, 77, 79, 93, 95, 126, 128, 129, 132, 138, 141, 155, 156, 157, 158, 160, 161, 164, 165, 168, 175, 193], "config_0": 170, "config_fil": [155, 156], "config_nam": [161, 165, 170], "config_stor": [167, 184, 192, 194], "configstor": [161, 164], "configur": [3, 16, 18, 20, 21, 31, 32, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 67, 69, 70, 72, 73, 75, 81, 93, 94, 108, 110, 124, 126, 129, 130, 131, 132, 137, 138, 141, 151, 152, 155, 156, 161, 165, 170, 187, 190, 193, 194], "conjunct": 162, "connect": [180, 192], "consecut": 90, "consensu": 3, "consid": [32, 38, 79, 83, 88, 92, 93, 95, 99, 100, 118, 119, 138, 141], "consist": [17, 21, 67, 68], "constant": [17, 21, 34, 38, 83, 132, 134], "constant_array_config": [38, 184], "constant_upsampl": [17, 18, 21, 192, 194], "constantarrayconfig": [34, 38], "constraint": [18, 21], "construct": [91, 93, 131, 132, 176], "constructor": [27, 28, 33, 38, 57, 60, 62], "cont": 182, "contain": [0, 1, 5, 6, 7, 8, 9, 20, 21, 25, 27, 30, 32, 38, 39, 42, 47, 54, 55, 57, 59, 60, 61, 62, 65, 66, 67, 69, 81, 82, 83, 88, 93, 104, 106, 108, 109, 113, 124, 126, 127, 128, 136, 137, 138, 141, 142, 143, 144, 145, 149, 150, 152, 154, 155, 158, 160, 162, 163, 166, 168, 169, 180, 181, 182, 184, 186, 187], "container_id": 189, "context": [7, 11, 12, 13, 14, 17, 21, 108, 114, 116, 118, 119, 120, 122, 127, 136, 138, 156, 186, 190, 192], "conting": 182, "contingency_t": 182, "continu": [67, 70, 192, 193], "contribut": 182, "control": [130, 132, 150, 152], "control_point_displacement_sigma": [130, 132, 150, 152, 194], "control_point_spac": [130, 132, 150, 152, 194], "conv": [17, 19, 21], "conv_pass": 17, "conveni": [160, 168, 194], "convers": [162, 163], "conversion_hook": [167, 184], "convert": [67, 104, 106, 108, 109, 116, 118, 119, 120, 121, 122, 143, 145, 162, 167, 184, 190], "convolut": [17, 18, 19, 21, 192, 193], "convolution_crop": 17, "convolv": 192, "convpass": 17, "convtranspos": [17, 21], "coordin": [7, 15, 18, 19, 21, 27, 30, 38, 44, 46, 47, 48, 54, 55, 56, 59, 62, 67, 68, 77, 93, 104, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 122, 130, 132, 143, 150, 152, 174, 176, 192, 194], "copi": [18, 21, 34, 38, 43, 74, 152, 177, 184, 187, 194], "copy_kei": [147, 152], "copy_mask": [147, 152], "copymask": [147, 152], "copyright": 187, "correct": [162, 163], "correctli": [83, 183, 188], "correspond": [17, 21, 31, 38, 52, 53, 83, 93, 126, 129, 132, 138, 162, 182, 194], "cosem": [72, 73, 190], "cosem_start": [73, 184], "cosem_start_config": [73, 184], "cosemstart": [71, 73, 188], "cosemstartconfig": [72, 73], "cost": [160, 168], "could": [17, 26, 27, 79, 93, 95], "count": [79, 92, 93, 95, 115, 116, 117, 118, 119, 120, 121, 122, 178, 182, 185], "coupl": 194, "cover": [177, 192], "cpu": [11, 12, 13, 14, 67, 70, 136, 137, 138, 140], "crash": [2, 4, 7], "creat": [11, 12, 13, 17, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 38, 41, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 67, 81, 93, 94, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 136, 138, 140, 145, 150, 152, 160, 164, 180, 181, 184, 185, 190, 192], "create_arrai": [34, 35, 38, 41, 43, 44], "create_array_stor": 164, "create_compute_context": [12, 13], "create_config_stor": [164, 192, 194], "create_distance_mask": [116, 118, 119], "create_from_identifi": [108, 111, 174], "create_model": [93, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125], "create_optim": [127, 136, 138, 140], "create_stats_stor": [164, 192], "create_stor": [167, 184, 192, 194], "create_target": [115, 116, 117, 118, 119, 120, 121, 122], "create_weight": [115, 116, 117, 118, 119, 120, 121, 122], "create_weights_stor": 164, "createpoint": 180, "cremi": [83, 194], "cremiev": 83, "cremievalu": 83, "criteria": [67, 82, 83, 84, 85, 86, 87, 88, 89, 90, 145], "criterion": [0, 67, 71, 72, 73, 74, 75, 82, 84, 86, 87, 88, 89, 144, 145, 155, 168, 169, 173, 186, 192, 193], "criterion1": [82, 84, 86, 88, 89, 169], "criterion2": [82, 84, 86, 88, 89, 169], "critic": 186, "crop": [17, 35, 38, 59, 62, 79, 93], "crop_array_config": [38, 184], "crop_factor": 17, "crop_to_factor": 17, "croparrai": [35, 38], "croparrayconfig": [35, 38], "cross": [6, 98, 99], "csc_matrix": 182, "csr_matrix": 182, "css": 187, "csv": [59, 62], "csv_path": [59, 62], "cuda": [13, 14, 69], "current": [11, 13, 58, 59, 62, 67, 143, 145, 160, 164, 189, 190, 192], "custom": [59, 187, 192], "customenum": 59, "customenummeta": 59, "cv": 190, "d": [178, 181, 185], "da": 3, "dacapo": [184, 185, 187, 188, 191, 192, 194], "dacapo_create_target": [152, 184], "dacapo_fil": 192, "dacapo_options_fil": 192, "dacapo_points_sourc": [152, 184], "dacapoblockwisetask": [2, 4], "dacapoconfig": [155, 156], "dacapotargetfilt": [148, 152], "dacapotest": 185, "daisi": [2, 3, 4, 6, 10, 104, 108, 111], "dashboard": [191, 194], "dask": 3, "data": [0, 1, 3, 5, 8, 9, 11, 13, 17, 18, 21, 23, 25, 27, 30, 32, 33, 34, 38, 39, 42, 43, 47, 48, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 73, 74, 83, 106, 108, 115, 119, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 149, 150, 151, 152, 154, 155, 156, 160, 163, 165, 168, 170, 177, 178, 180, 181, 186, 190, 193], "dataarrai": [67, 143, 145, 192], "databas": [156, 161, 165, 166, 170, 171, 192, 194], "datakei": [63, 64], "dataset": [0, 1, 5, 6, 8, 9, 57, 59, 60, 61, 62, 65, 66, 67, 85, 87, 88, 108, 111, 131, 132, 136, 138, 140, 144, 145, 148, 152, 155, 158, 160, 161, 165, 168, 169, 170, 173, 181, 184, 186, 192, 194], "dataset1": 169, "dataset2": 169, "dataset_0": 170, "dataset_config": [50, 51, 54, 55, 170, 184], "dataset_nam": 170, "dataset_typ": [51, 54, 56, 59, 62], "datasetconfig": [49, 54, 61, 62, 66, 170], "datasets_config": 183, "datasetspec": [59, 62], "datasettyp": [59, 62], "datasplit": [0, 67, 69, 70, 87, 88, 108, 111, 127, 138, 140, 145, 155, 160, 161, 165, 168, 169, 170, 181, 184, 190, 193, 194], "datasplit1": [161, 165], "datasplit_0": 170, "datasplit_config": [57, 60, 62, 65, 66, 67, 70, 161, 165, 170, 184, 192, 194], "datasplit_gener": [62, 184], "datasplit_nam": [161, 165, 170], "datasplit_typ": [61, 62, 66, 192], "datasplitconfig": [58, 59, 61, 62, 67, 70, 161, 165, 170], "datasplitgener": [59, 62], "datatyp": 23, "davi": 190, "david": [187, 190], "db": 187, "db_host": [170, 171], "db_name": [170, 171], "dbpass": [192, 194], "dbport": [192, 194], "dburl": [192, 194], "dbuser": [192, 194], "debug": [186, 194], "decid": [67, 70, 73, 74], "decis": [150, 152], "decod": [17, 21], "decreas": [17, 21], "dedic": [137, 138], "deep": [116, 118, 119, 120, 190], "default": [0, 17, 21, 32, 33, 38, 49, 54, 59, 61, 62, 67, 70, 81, 92, 93, 116, 118, 119, 120, 122, 129, 130, 131, 132, 133, 134, 135, 137, 138, 150, 152, 155, 158, 165, 168, 170, 171, 177, 178, 180, 181, 182, 186, 187, 192], "default_config": [33, 38], "default_paramet": 3, "defin": [3, 12, 13, 14, 15, 16, 21, 27, 30, 49, 54, 67, 70, 108, 110, 111, 113, 114, 119, 122, 136, 138, 140, 161, 180, 182, 188, 192, 193, 194], "deform": [130, 132, 150, 152], "degre": 83, "delet": [67, 143, 145, 161, 165, 166, 170, 171, 172, 173, 192], "delete_aft": [67, 143, 145], "delete_architecture_config": 161, "delete_array_config": 161, "delete_config": [161, 165, 170], "delete_datasplit_config": 161, "delete_run_config": [161, 170], "delete_task_config": [161, 192], "delete_trainer_config": 161, "delete_training_stat": [166, 171, 172], "delete_validation_scor": 171, "demonstr": 193, "den": 178, "dens": 194, "denser": [79, 92, 93, 95], "dep": [147, 148, 152], "depend": [119, 122, 147, 148, 149, 152, 153, 190], "deprec": 181, "deprecated_start_neuroglanc": 181, "depth": [17, 21], "deriv": [12, 13, 15, 16, 21, 31, 38, 49, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 93, 103, 126, 129, 132, 138, 141], "describ": [27, 28], "descript": [185, 190], "descriptor": [96, 99, 115, 119, 190], "design": [12, 13, 14, 15, 21, 38, 47, 155, 156], "desir": [38, 44, 151, 152, 186], "detail": [130, 132, 150, 152, 188], "detailed_valid": 163, "detect": [13, 14, 83, 106, 108], "detection_threshold": [81, 93, 106, 108], "determin": [17, 21, 22, 23, 24, 25, 27, 30, 82, 83, 84, 86, 87, 88, 89, 106, 108, 116, 119, 150, 152, 163, 169, 192], "deviat": [130, 132, 150, 152, 157, 180], "devic": [11, 12, 13, 14, 69, 127, 136, 138, 140], "dga": 10, "dian": 190, "dice": [82, 83, 88], "dict": [3, 22, 24, 25, 27, 28, 33, 38, 59, 62, 74, 87, 88, 90, 156, 163, 166, 169, 170, 178, 180, 181], "dict_factori": 163, "dictat": 17, "dictionari": [3, 24, 33, 38, 69, 82, 88, 162, 163, 166, 173, 180, 181], "didn": 10, "differ": [17, 21, 23, 35, 38, 59, 62, 63, 64, 67, 70, 97, 99, 119, 122, 182, 186, 190], "difficult": 194, "dilat": 180, "dilatepoint": 180, "dim": [15, 17, 21, 67, 115, 119, 121, 145], "dimens": [15, 17, 21, 26, 27, 32, 38, 39, 42, 67, 68, 83, 115, 116, 117, 118, 119, 120, 121, 122, 130, 132, 145, 150, 152, 176], "dimension": [38, 47, 190, 192, 193], "direct": 192, "directli": [93, 119, 122, 126, 138, 140, 141, 182], "directori": [6, 7, 8, 165, 166, 168, 169, 186, 187, 189, 190, 192], "disabl": 186, "discoveri": [82, 83, 88], "discuss": 190, "disk": [38, 47, 192, 194], "dispatch": 163, "displac": [130, 132, 150, 152], "displai": 181, "dist_task_config": 192, "distanc": [3, 27, 30, 78, 79, 82, 83, 88, 91, 92, 93, 94, 95, 98, 99, 116, 118, 119, 120, 122, 130, 132, 150, 152, 180, 182, 184, 190, 192, 193], "distance_arrai": [25, 27], "distance_loss": [98, 99], "distance_mask": [118, 119], "distance_predictor": [119, 184], "distance_task": [93, 184], "distance_task_config": [93, 184], "distance_transform_edt": [116, 119], "distancearrai": [25, 27, 116, 119, 120], "distancepredictor": [78, 93, 116, 119], "distancetask": [78, 93], "distancetaskconfig": [79, 93, 192], "distinct": [79, 92, 93, 95], "distinguish": [67, 70, 192], "distribut": [27, 30, 130, 132, 150, 152], "distribute_work": [11, 12, 13, 14], "divid": [83, 182], "divide_column": 182, "divide_row": 182, "divis": 182, "divisor": 3, "do": [17, 38, 47, 67, 143, 150, 152, 182, 186, 193], "do_aug": [150, 152], "do_valid": [155, 175], "doc": 187, "dockerfil": 189, "dockerhub": 185, "document": [170, 184, 187, 189, 190], "doe": [59, 62, 71, 73, 96, 99, 161, 165, 166, 168, 169, 181, 183, 192], "does_new_best_exist": 181, "doesn": [181, 194], "doi": [3, 190], "don": [18, 21, 160, 168, 185], "done": [11, 12, 13, 14, 17, 119, 122, 192, 194], "down": [17, 21, 38, 44], "download": [188, 189, 192], "downsampl": [3, 17, 18, 21, 38, 44, 59, 62, 77, 93, 115, 119, 130, 132, 136, 138, 192, 193], "downsample_factor": [17, 18, 21, 192, 194], "downsample_lsd": [77, 93, 115, 119], "drop": [17, 21, 147, 152], "drop_channel": [147, 152], "ds_": 192, "ds_store": 187, "dt": 186, "dt_scale_factor": [116, 118, 119, 120], "dtype": [0, 3, 35, 38, 155, 158, 174, 176, 178, 180, 186, 192], "due": [2, 4, 7, 17, 21, 150, 152], "dummi": [19, 20, 21, 36, 38, 51, 54, 61, 62, 80, 81, 84, 85, 88, 93, 97, 99, 102, 106, 107, 108, 117, 119, 127, 128, 138], "dummy_architectur": [21, 184], "dummy_architecture_config": [21, 184], "dummy_arrai": [51, 54], "dummy_array_config": [38, 184], "dummy_dataset": [54, 184], "dummy_dataset_config": [54, 184], "dummy_datasplit": [62, 184], "dummy_datasplit_config": [62, 184], "dummy_evalu": [88, 184], "dummy_evaluation_scor": [85, 88, 184], "dummy_loss": [99, 184], "dummy_post_processor": [108, 184], "dummy_post_processor_paramet": [106, 108, 184], "dummy_predictor": [119, 184], "dummy_task": [93, 184], "dummy_task_config": [93, 184], "dummy_train": [138, 184], "dummy_trainer_config": [138, 184], "dummyarchitectur": [19, 20, 21], "dummyarchitectureconfig": [20, 21], "dummyarrai": [36, 38], "dummyarrayconfig": [36, 38, 51, 54], "dummydataset": [50, 54], "dummydatasetconfig": [51, 54, 61, 62], "dummydatasplit": [57, 60, 61, 62], "dummydatasplitconfig": [61, 62], "dummyevalu": [80, 85, 88, 93], "dummyevaluationscor": [84, 85, 88], "dummyloss": [80, 93, 97, 99], "dummypostprocessor": [80, 93, 106, 108], "dummypostprocessorparamet": [106, 107, 108], "dummypredictor": [80, 93, 117, 119], "dummytask": [80, 81, 93], "dummytaskconfig": [81, 93], "dummytrain": [127, 138], "dummytrainerconfig": [128, 138], "duplicatenameerror": [161, 165, 170], "dure": [15, 18, 21, 67, 68, 70, 137, 138, 141, 170, 181, 192, 193, 194], "dvid": [37, 38], "dvid_array_config": [38, 184], "dvidarrai": [37, 38], "dvidarrayconfig": [37, 38], "e": [17, 21, 59, 62, 67, 68, 79, 83, 85, 87, 88, 90, 92, 93, 95, 108, 109, 119, 122, 150, 152, 161, 176, 182, 190], "each": [3, 15, 17, 18, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 38, 42, 52, 53, 67, 69, 83, 87, 88, 93, 97, 99, 103, 116, 118, 119, 120, 126, 129, 132, 138, 141, 142, 143, 144, 145, 149, 150, 152, 160, 162, 163, 166, 168, 180, 182, 186, 192, 193, 194], "easi": [49, 54, 169, 190, 192, 193], "easili": [58, 62, 67, 143, 193, 194], "edg": [6, 83, 176], "edt": 83, "effect": [138, 140], "effici": 17, "eg": [49, 54], "either": [2, 4, 7, 17, 21, 24, 83, 182, 192], "elast": [130, 132, 150, 152], "elastic_augment_config": [130, 132], "elastic_augment_fus": [152, 184], "elastic_config": [132, 184], "elasticaug": [130, 132, 150, 152], "elasticaugmentconfig": [130, 132, 194], "elasticli": [150, 152], "element": [17, 31, 38, 182], "els": [13, 14, 59, 62], "elsewher": [67, 145], "embed": [27, 116, 117, 118, 119, 120, 121, 181, 184], "embedding_arrai": [26, 27], "embedding_dim": [26, 27, 81, 93, 116, 117, 118, 119, 120, 121], "embeddingarrai": [26, 27, 115, 117, 119], "empanada": 3, "empanada_funct": [4, 184], "empanada_napari": 3, "empanada_segment": 3, "emphas": 17, "empti": [32, 38, 57, 60, 62, 63, 64, 67, 69, 83, 143, 152, 154, 178], "empty_cuda_cach": 69, "en": [187, 192], "enabl": [147, 152, 153], "encod": [17, 21, 92, 93, 116, 118, 119, 121, 190], "encourag": 194, "end": [168, 186], "engin": 3, "engine3d": 3, "enlarg": [150, 152], "enough": 17, "ensur": [17, 188, 189], "enter": [127, 136, 138], "entropi": [98, 99, 182], "enum": 59, "enumer": [63, 64, 104, 106, 108, 109, 111, 113, 178], "enumerate_paramet": [104, 106, 108, 109, 111, 113], "environ": [185, 189, 190], "epsilon": [116, 118, 119, 120], "equal": [38, 42, 48, 54, 56, 127, 138, 182], "equival": 177, "equivari": 17, "er": [59, 62], "error": [58, 62, 67, 82, 83, 88, 93, 94, 98, 99, 101, 145, 161, 178, 182, 186, 192], "error_scal": 178, "especi": [35, 38], "essenti": [138, 140], "establish": [190, 192, 193], "etc": [11, 12, 13, 69, 193, 194], "euclidean": 83, "eval": [67, 68, 162, 163], "eval_activ": [67, 68], "eval_input_shap": [67, 68], "eval_shape_increas": [15, 17, 21, 192, 194], "evalu": [35, 38, 67, 68, 76, 77, 78, 79, 80, 91, 93, 94, 95, 102, 123, 125, 144, 145, 182, 184, 192, 193, 194], "evaluation_arrai": [83, 87, 88, 90], "evaluation_dataset": [85, 88], "evaluation_scor": [67, 82, 84, 87, 88, 89, 93, 125, 145, 184], "evaluationscor": [67, 82, 84, 86, 87, 88, 89, 93, 125, 145], "even": [192, 193], "ever": [118, 119], "everi": [138, 140, 194], "everyth": 194, "exact": 194, "exampl": [0, 3, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 36, 37, 38, 43, 47, 49, 51, 54, 58, 59, 61, 62, 67, 68, 69, 71, 72, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 178, 180, 181, 186, 192, 194], "example_aff": 192, "example_dataset": 192, "example_datasplit": 192, "example_dist": 192, "example_gt": 192, "example_raw": 192, "example_raw_norm": 192, "example_run": 192, "example_unet": 192, "exc_tb": [127, 136, 138], "exc_typ": [127, 136, 138], "exc_val": [127, 136, 138], "except": [71, 73, 74, 146], "exclud": [48, 54, 90], "exclude_lay": [48, 54], "exclude_pattern": 187, "execut": [12, 13, 14, 67, 68, 193, 194], "exist": [0, 59, 62, 67, 71, 73, 74, 143, 145, 150, 152, 155, 158, 161, 165, 166, 168, 169, 181, 186, 192], "existing_iteration_scor": [67, 145], "exit": [127, 136, 138], "expand": 180, "expand_label": 180, "expandlabel": 180, "expect": [17, 18, 21, 32, 38, 39, 42], "expens": [150, 152], "experi": [0, 148, 152, 155, 158, 159, 161, 169, 171, 172, 173, 175, 181, 183, 184, 188, 192, 193], "explain": [31, 38, 138, 141, 188], "ext": [155, 184, 187], "extend": [20, 21, 81, 93, 94, 163, 177], "extens": 187, "extent": 3, "extra": [59, 119, 122, 160, 168, 185, 192, 194], "extra_str": 59, "extract": [54, 56], "extractor": [115, 119], "extrem": 83, "f": 192, "f1": [82, 83, 88], "f1_score": [82, 83, 88], "f1_score_with_toler": [82, 83, 88], "f_g": 17, "f_in": 17, "f_int": 17, "f_l": 17, "f_left": 17, "factor": [3, 17, 18, 21, 77, 93, 116, 118, 119, 130, 132, 133, 136, 138, 150, 152, 157], "fail": [2, 4, 7], "failur": [2, 4, 7], "fall": [13, 14], "fals": [1, 3, 5, 6, 7, 8, 9, 17, 20, 21, 22, 23, 24, 27, 29, 36, 38, 49, 51, 54, 58, 59, 61, 62, 69, 79, 81, 82, 83, 87, 88, 89, 90, 92, 93, 95, 115, 119, 127, 130, 132, 133, 136, 138, 140, 147, 150, 152, 157, 163, 171, 174, 180, 181, 182, 192, 194], "false_discovery_r": [82, 83, 88], "false_neg": 83, "false_negative_dist": 83, "false_negative_r": [82, 83, 88], "false_negative_rate_with_toler": [82, 83, 88], "false_negatives_with_toler": 83, "false_posit": 83, "false_positive_dist": 83, "false_positive_r": [82, 83, 88], "false_positive_rate_with_toler": [82, 83, 88], "false_positives_with_toler": 83, "far": 194, "fdr": 83, "featur": [17, 18, 21], "fed": [67, 68], "fetch": [136, 137, 138, 194], "fetcher": [136, 137, 138], "fetter": [18, 21], "few": 192, "field": [17, 21, 162, 163, 170, 182], "fig": 192, "figsiz": 192, "figur": [160, 168], "fiji": 190, "file": [0, 2, 4, 7, 35, 38, 46, 47, 59, 62, 93, 102, 123, 124, 155, 156, 161, 165, 166, 169, 185, 186, 187, 188, 190, 192, 194], "file_config_stor": [164, 167, 184], "file_format": [0, 155], "file_nam": [38, 46, 47, 59, 192], "file_stats_stor": [164, 167, 184], "fileconfigstor": [164, 165, 192], "filenotfounderror": [59, 62, 165, 169, 181], "filestatsstor": [164, 166, 192], "filesystem": 193, "fill": [33, 34, 38, 43, 106, 108, 177, 180], "fill_valu": 177, "filter": [3, 83, 147, 152, 170, 180, 192], "final": [104, 106, 108, 109, 194], "find": [0, 6, 17, 31, 38, 87, 88, 93, 119, 120, 126, 150, 152, 155, 160, 168, 169, 189, 192, 193, 194], "find_compon": 6, "fine": 3, "fine_boundari": 3, "finetun": [71, 73, 74, 75], "finish": 192, "first": [17, 21, 31, 38, 87, 88, 98, 99, 119, 121, 152, 153, 182, 188, 192, 194], "fit": [1, 5, 6, 8, 9, 38, 47, 150, 152], "fix": [67, 145], "flag": [17, 20, 21, 186], "flatten": 10, "float": [3, 9, 10, 13, 14, 25, 26, 27, 28, 38, 39, 54, 55, 67, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 95, 96, 99, 106, 108, 112, 114, 115, 116, 118, 119, 120, 127, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 150, 151, 152, 154, 178, 180, 181, 182], "float32": [151, 152, 178, 180], "float64": [151, 152], "floor": 17, "fmap_inc_factor": [17, 18, 21, 192, 194], "fmap_increment_factor": [17, 21], "fmaps_in": [17, 18, 21, 192, 194], "fmaps_out": [17, 18, 21, 192, 194], "fmt": 187, "fn": [82, 83, 88], "focus": 17, "folder": 192, "follow": [3, 17, 67, 68, 69, 142, 143, 144, 150, 152, 166, 182, 185, 189, 190, 192, 194], "forbid_extra_kei": 163, "forc": 192, "foreground": [116, 118, 119, 120, 192, 193], "fork": 192, "format": [0, 59, 67, 143, 155, 169, 186, 190, 192, 193], "format_class_nam": 59, "formula": 83, "forum": 190, "forward": [17, 19, 21, 67, 68, 185], "found": [0, 32, 38, 42, 58, 62, 74, 90, 146, 155, 156, 157, 158, 175, 190, 192], "fov": [17, 21], "fp": [82, 83, 88], "frac": 178, "framework": [49, 54, 190, 192, 193], "free": [13, 14], "frequent": [49, 54], "frizz": [84, 88], "frizz_level": [84, 85, 88], "from": [2, 3, 4, 7, 12, 13, 14, 15, 17, 18, 21, 22, 25, 27, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 52, 53, 54, 57, 59, 60, 61, 62, 67, 71, 72, 73, 74, 75, 80, 83, 86, 88, 91, 93, 98, 99, 101, 102, 103, 108, 111, 113, 115, 116, 117, 119, 122, 123, 124, 126, 129, 130, 132, 138, 140, 141, 145, 147, 148, 150, 152, 155, 156, 161, 163, 165, 166, 168, 169, 170, 171, 173, 176, 180, 181, 183, 185, 188, 189, 190, 192, 193, 194], "from_arrai": 3, "from_toml": [35, 38], "full": [150, 152, 187, 194], "function": [2, 4, 17, 20, 21, 24, 61, 62, 67, 68, 73, 82, 83, 84, 85, 86, 87, 88, 89, 96, 97, 98, 99, 100, 101, 108, 111, 113, 116, 118, 119, 131, 132, 148, 149, 152, 163, 186, 192, 193], "function_path": 8, "funk": [187, 190], "funkelab": [191, 194], "funlib": [0, 7, 15, 18, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 56, 59, 62, 67, 68, 77, 87, 88, 93, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 121, 122, 155, 158, 159, 174, 176, 192, 194], "further": 166, "futur": [130, 132], "g": [17, 21, 59, 62, 108, 109, 119, 122, 161, 190], "g_out": 17, "gamma": [131, 132, 151, 152], "gamma_augment_config": [131, 132], "gamma_config": [132, 184], "gamma_max": [151, 152], "gamma_min": [151, 152], "gamma_nois": [152, 184], "gamma_rang": [131, 132], "gammaaug": [131, 132, 151, 152], "gammaaugmentconfig": [131, 132], "gate": 17, "gaussian": [180, 192], "gaussian_blur_arg": 180, "gaussian_noise_arg": 180, "gaussian_noise_lim": 180, "gb": [13, 14], "gen": 163, "gener": [3, 11, 13, 17, 18, 21, 26, 27, 48, 54, 59, 62, 67, 68, 70, 76, 77, 79, 83, 92, 93, 95, 108, 111, 113, 115, 116, 118, 119, 120, 122, 148, 150, 152, 180, 181, 184, 187, 192], "generate_csv": [59, 62], "generate_dataspec_from_csv": 59, "generate_from_csv": [59, 62], "geometri": [0, 7, 15, 18, 21, 35, 38, 44, 46, 47, 48, 54, 55, 56, 59, 62, 67, 68, 77, 93, 108, 109, 113, 114, 115, 116, 118, 119, 120, 122, 155, 158, 159, 174, 176, 192, 194], "get": [49, 54, 59, 62, 67, 69, 79, 93, 95, 105, 107, 108, 110, 115, 116, 117, 118, 119, 120, 121, 122, 129, 132, 133, 134, 135, 138, 143, 145, 149, 152, 160, 168, 176, 181, 188, 194], "get_arrai": [33, 38], "get_best": [67, 145], "get_d": 181, "get_dataset": 181, "get_model_setup": 71, "get_overall_best": [87, 88], "get_overall_best_paramet": [87, 88], "get_right_resolution_array_config": 59, "get_runs_info": 157, "get_validation_scor": 69, "get_view": 181, "git": [191, 192], "github": [18, 21, 191, 192, 194], "give": [17, 193], "given": [1, 2, 4, 5, 6, 8, 9, 16, 17, 21, 59, 62, 67, 68, 82, 83, 84, 85, 86, 87, 88, 89, 93, 99, 100, 102, 108, 111, 113, 116, 117, 118, 119, 120, 122, 123, 127, 130, 131, 132, 138, 140, 145, 148, 149, 150, 152, 160, 161, 162, 165, 166, 169, 170, 171, 172, 173, 177, 181, 182, 183], "global": [12, 13, 164], "go": [17, 21, 166], "goal": [67, 70], "goe": [192, 194], "good": [38, 40], "gp": [129, 131, 132, 133, 134, 135, 138, 155, 180, 184], "gp_arrai": 174, "gp_augment": [137, 138, 184, 194], "gp_to_funlib_arrai": 174, "gpu": [3, 11, 12, 13, 14, 136, 138, 140], "gradient": [18, 21, 194], "graph": [52, 53, 54, 55, 63, 64, 149, 152, 176], "graph_sourc": [149, 152], "graph_source_config": [53, 184], "graphkei": [63, 64, 149, 150, 152], "graphsourc": [149, 152], "graphspec": [149, 152], "graphstor": [54, 184], "graphstoreconfig": [52, 53], "greater": [17, 21, 83, 104, 107, 108, 112, 178], "grid": [130, 132, 150, 152], "ground": [48, 54, 55, 56, 59, 62, 63, 64, 83, 87, 88, 90, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 138, 140, 148, 152, 154, 181, 182, 192, 194], "groundtruth": [182, 190], "group": [32, 38, 42, 59, 185], "grow": [115, 119], "grow_boundary_iter": [115, 119], "gt": [48, 54, 55, 56, 63, 64, 115, 116, 117, 118, 119, 120, 121, 122, 136, 137, 138, 148, 152, 154, 160, 168, 181, 182, 192], "gt_config": [54, 56, 59, 192], "gt_contain": [59, 62], "gt_dataset": [59, 62], "gt_kei": [129, 132, 138, 148, 152], "gt_min_reject": [136, 137, 138], "gt_region_for_roi": [115, 116, 118, 119, 120, 122], "gt_voxel_s": [116, 118, 119, 120, 122], "gui": [191, 194], "guid": [188, 194], "gunpowd": [129, 131, 132, 133, 134, 135, 136, 137, 138, 147, 148, 149, 150, 152, 153, 180, 194], "gunpowder_train": [138, 184], "gunpowder_trainer_config": [138, 184], "gunpowdertrain": [136, 137, 138], "gunpowdertrainerconfig": [137, 138, 192, 194], "h": [82, 83, 88, 182], "ha": [17, 20, 21, 22, 27, 28, 33, 38, 50, 54, 67, 106, 108, 119, 121, 138, 141, 143, 162, 163, 192, 193, 194], "had": 10, "half": [98, 99], "handl": [67, 71, 73, 74, 78, 93, 145, 192, 194], "happen": [79, 92, 93, 95], "harmon": 83, "hash": [48, 54], "hausdorff": [82, 83, 88], "hausdorffdistanceimagefilt": 83, "have": [17, 18, 21, 26, 27, 30, 31, 34, 35, 36, 38, 42, 43, 52, 53, 67, 83, 87, 88, 93, 108, 109, 116, 118, 119, 120, 122, 126, 128, 129, 132, 138, 140, 141, 145, 150, 152, 160, 168, 182, 185, 188, 189, 190, 192, 194], "haven": 194, "hdf5": [38, 47], "head": [67, 68, 71, 73, 74], "head_kei": 74, "head_weight": 74, "headless": 181, "height": [17, 21, 181], "heinrich": 190, "heirarchi": [38, 47], "held": 194, "help": [23, 67, 70, 83, 185, 187, 194], "helper": [11, 12, 13, 93, 125], "henc": [119, 122, 162], "here": [81, 93, 187, 188, 190, 192, 193, 194], "hierarchi": [162, 163], "higher": [49, 54, 82, 84, 86, 87, 88, 89, 157], "higher_is_bett": [82, 84, 86, 87, 88, 89, 157], "hold": [51, 54, 130, 132, 151, 152], "home": [155, 156, 192], "hook": [162, 163], "hookfactori": 163, "host": [156, 170, 171, 189, 194], "hostedtoolcach": 192, "hot": [91, 92, 93, 98, 99, 102, 103, 116, 118, 119, 121, 190], "hot_distance_loss": [99, 184], "hot_distance_predictor": [119, 184], "hot_distance_task": [93, 184], "hot_distance_task_config": [93, 184], "hot_loss": [98, 99], "hotdistanceloss": [91, 93, 98, 99], "hotdistancepredictor": [91, 93, 118, 119], "hotdistancetask": [91, 92, 93], "hotdistancetaskconfig": [92, 93], "how": [15, 17, 21, 49, 54, 67, 70, 77, 83, 93, 116, 118, 119, 120, 122, 145, 161, 162, 163, 188, 189, 192, 194], "howev": [150, 152], "html": [157, 187, 192], "html_css_file": 187, "html_extra_path": 187, "html_static_path": 187, "html_theme": 187, "http": [18, 21, 187, 189, 191, 192, 194], "hxgy": 182, "hygx": 182, "i": [0, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 170, 173, 175, 176, 177, 178, 180, 181, 182, 183, 186, 187, 188, 189, 190, 192, 194], "ic": 186, "id": [32, 38, 42, 90, 93, 103, 104, 106, 108, 110, 169, 185, 186, 188, 189, 192], "identif": [49, 54], "identifi": [0, 1, 5, 6, 8, 9, 49, 54, 83, 85, 87, 88, 90, 104, 106, 108, 109, 110, 111, 113, 160, 168, 181, 192], "ifram": 181, "ignor": [130, 132, 165, 170, 182, 187], "ignore_groundtruth": 182, "ignore_gt": 182, "ignore_i": 182, "ignore_reconstruct": 182, "ignore_seg": 182, "ignore_x": 182, "imag": [3, 83, 180, 190, 192, 193, 194], "immut": [105, 107, 108, 110, 112], "impact": [67, 70], "implement": [12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 47, 49, 51, 54, 58, 59, 62, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 160, 161, 177, 180], "import": [3, 17, 162, 181, 187, 192, 194], "importerror": 3, "imshow": 192, "in_channel": [17, 21], "in_plac": 182, "inbound": 185, "includ": [12, 13, 14, 15, 18, 21, 38, 47, 54, 56, 67, 68, 69, 70, 71, 82, 83, 84, 86, 88, 89, 93, 94, 136, 138, 145, 150, 152, 162, 163, 185, 187, 192, 193, 194], "incorpor": [129, 132, 133, 134, 135, 138], "incorrectli": 83, "increas": [15, 17, 18, 21, 192], "ind": 178, "independ": [17, 21], "index": [67, 82, 88, 105, 108, 145, 160, 168, 194], "indic": [10, 16, 17, 20, 21, 25, 27, 30, 31, 38, 47, 49, 51, 54, 61, 62, 67, 83, 84, 88, 90, 93, 126, 127, 128, 137, 138, 141, 145, 180], "individu": [180, 192], "inf": [116, 118, 119, 120], "infer": 3, "inference_plan": 3, "info": [181, 186, 194], "inform": [15, 21, 82, 83, 88, 89, 90, 138, 140, 152, 154, 163, 182, 187], "inherit": [11, 12, 13, 14, 15, 21, 27, 29, 35, 38, 71, 73, 80, 83, 86, 88, 91, 93, 97, 98, 99, 100, 101, 117, 119, 125], "init_callback_fn": 7, "initi": [2, 4, 17, 21, 27, 28, 33, 38, 50, 54, 55, 59, 61, 62, 65, 66, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 93, 94, 115, 116, 117, 118, 119, 120, 121, 127, 136, 138, 140, 152, 153, 170, 173, 188], "initialis": [57, 60, 62], "initialize_weight": [71, 73, 74], "inner": [67, 69, 93, 94, 142, 143, 144], "inner_distance_predictor": [119, 184], "inner_distance_task": [93, 184], "inner_distance_task_config": [93, 184], "innerdistancepredictor": [119, 120], "innerdistancetask": [93, 94], "innerdistancetaskconfig": [93, 95], "inplac": 90, "input": [0, 1, 5, 8, 9, 10, 15, 17, 18, 19, 20, 21, 57, 59, 60, 62, 67, 68, 73, 74, 98, 99, 104, 105, 107, 108, 112, 115, 119, 122, 138, 140, 150, 151, 152, 153, 155, 158, 160, 168, 180, 182, 186, 192, 194], "input_arrai": [3, 10], "input_array_identifi": [0, 1, 5, 8, 9], "input_contain": [0, 1, 5, 8, 9, 155, 158, 186], "input_dataset": [0, 1, 5, 8, 9, 155, 158, 186], "input_resolut": [59, 62], "input_shap": [15, 17, 18, 19, 21, 67, 68, 180, 192, 194], "input_voxel_s": [15, 21], "insert": [170, 187], "insid": [25, 27, 180], "inside_valu": 180, "inspect": 194, "instal": [3, 185, 188, 189, 192], "instanc": [15, 17, 21, 27, 28, 33, 38, 41, 49, 50, 54, 59, 77, 80, 88, 89, 90, 93, 94, 104, 106, 108, 109, 111, 113, 117, 119, 122, 131, 132, 155, 156, 185, 190, 192, 193], "instance_evalu": [88, 184], "instance_evaluation_scor": [88, 90, 184], "instanceevalu": [76, 88, 90, 93], "instanceevaluationscor": [88, 89, 90], "instanti": [48, 54, 55, 63, 64, 138, 140, 141], "instead": [17, 21, 150, 152], "instruct": 189, "int": [0, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 34, 38, 42, 48, 49, 54, 59, 62, 67, 68, 69, 70, 73, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 93, 96, 99, 104, 107, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 127, 130, 132, 136, 137, 138, 140, 141, 142, 143, 144, 145, 150, 152, 155, 158, 160, 168, 169, 171, 173, 174, 178, 180, 181, 182, 183, 186], "int32": 176, "int64": [67, 143, 178, 192], "integ": [17, 19, 21, 81, 93, 180], "integr": [136, 138, 187], "intend": 166, "intens": [23, 27, 38, 39, 132, 133, 134, 184], "intensities_arrai": [27, 28], "intensitiesarrai": [27, 28, 38, 39], "intensitiesarrayconfig": [38, 39, 192], "intensity_array_config": [38, 184], "intensity_augment_config": [132, 133], "intensity_config": [132, 184], "intensity_scale_shift_augment_config": [132, 134], "intensity_scale_shift_config": [132, 184], "intensityaug": [132, 133], "intensityaugmentconfig": [132, 133, 194], "intensityscaleshift": [132, 134], "intensityscaleshiftaugmentconfig": [132, 134], "interest": [0, 83, 115, 119, 155], "interfac": [73, 74, 75, 161, 186, 194], "intern": [151, 152, 190], "interp_ord": [38, 44], "interpol": [17, 24, 25, 27, 30, 38, 44, 150, 152, 192], "interpolat": [22, 23, 24, 25, 26, 27, 28, 29, 30, 118, 119], "interpret": 182, "interv": [69, 130, 132, 137, 138, 150, 152, 171, 194], "invalid": [20, 21, 31, 38, 51, 54, 59, 93, 126, 128, 138, 166], "invert": 83, "io": [8, 160, 192], "iou": 3, "iprogress": 192, "ipynb": 187, "ipython": 181, "ipywidget": 192, "is_best": [87, 88], "is_seg": 181, "is_valid": [16, 21], "is_zarr_group": 59, "item": [59, 146, 178], "iter": [0, 5, 67, 69, 70, 83, 85, 87, 88, 90, 93, 104, 106, 108, 109, 111, 115, 119, 125, 127, 136, 137, 138, 140, 142, 143, 144, 145, 150, 151, 152, 155, 158, 160, 166, 168, 169, 171, 172, 173, 180, 181, 183, 186, 192, 193, 194], "iteration_scor": [67, 145], "iteration_stat": [67, 136, 138, 140, 143], "itertool": 178, "itk": 83, "its": [22, 24, 27, 30, 35, 38, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 160], "itself": 160, "j": [3, 182], "jaccard": [82, 83, 85, 87, 88, 90], "jan": [187, 190], "janelia": [191, 192], "jeff": [187, 190], "jitter": [150, 152], "job": [11, 13, 190, 193, 194], "join": 190, "journal": [182, 190], "json": [157, 169], "jupyt": 192, "jupyterlab": 192, "jupytext": 187, "just": [18, 21, 36, 38, 67, 99, 100, 128, 138, 145, 192, 194], "k": [17, 21], "keep": [7, 23, 31, 38, 49, 54, 58, 62, 93, 126], "keep_tmpdir": 7, "kei": [33, 38, 62, 129, 131, 132, 133, 134, 135, 138, 147, 148, 149, 150, 152, 153, 165, 178, 180, 184, 185], "kept": [130, 132], "kernel": [17, 18, 21], "kernel_s": 17, "kernel_size_down": [17, 18, 21, 192], "kernel_size_up": [17, 18, 21, 192], "keyerror": [59, 147, 149, 152, 161, 165], "keymateri": 185, "keyword": [2, 4, 7, 59, 62, 155, 156], "know": [67, 145, 162, 163, 194], "known": [79, 92, 93], "kwarg": [2, 4, 7, 15, 21, 59, 62, 106, 108, 155, 156], "l": [17, 21, 190], "l1": [27, 30], "l_conv": 17, "l_down": 17, "label": [3, 22, 25, 27, 32, 38, 71, 73, 74, 90, 116, 118, 119, 120, 121, 178, 180, 182, 192], "label_cmap": 192, "label_data": 178, "label_divisor": 3, "labeloverlapmeasuresimagefilt": 83, "labels_arrai": 192, "labels_slab": 178, "lack": [49, 54], "lambda": [162, 163], "larg": [7, 17, 35, 38, 47, 150, 152, 190, 192, 193, 194], "larger": [17, 119, 122, 150, 152], "larger_tensor": 17, "largest": 17, "larissa": 190, "last": [67, 145, 166], "latest": [169, 173, 191], "latest_iter": [169, 173], "launch": 185, "layer": [17, 18, 19, 21, 48, 54, 71, 73, 74, 119, 122, 181, 192, 193], "layer_nam": 181, "learn": [17, 21, 67, 70, 127, 136, 138, 140, 141, 190, 193, 194], "learning_r": [127, 136, 138, 140, 141, 192, 194], "leav": [13, 14], "left": [17, 21, 67, 70], "len": [178, 192], "length": [17, 21, 27, 30], "less": [67, 79, 93, 127, 138, 143, 178], "let": [182, 192, 194], "level": [1, 5, 6, 8, 17, 18, 21, 83, 84, 88, 163, 186, 194], "lib": 192, "librari": [3, 63, 64, 83, 136, 138, 140], "like": [17, 21, 67, 68, 70, 169, 180, 187, 192], "likelihood": 192, "limit": [13, 14, 59, 62, 151, 152, 180], "limit_validation_crop_s": 59, "line": [186, 192, 194], "linear": [17, 150, 152, 192, 193], "linearli": [150, 152], "linearlr": [136, 138], "linux": 185, "list": [6, 7, 10, 12, 13, 17, 18, 21, 23, 27, 30, 32, 33, 38, 41, 42, 45, 46, 47, 48, 54, 55, 56, 57, 59, 60, 62, 65, 66, 67, 69, 71, 73, 74, 77, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 103, 108, 110, 113, 114, 115, 116, 118, 119, 120, 121, 130, 132, 136, 137, 138, 140, 142, 143, 144, 145, 157, 161, 163, 165, 166, 170, 171, 172, 176, 178, 180, 181, 182, 187, 189, 192], "listedcolormap": 192, "load": [0, 35, 38, 71, 72, 73, 74, 75, 93, 102, 123, 124, 136, 138, 149, 152, 155, 165, 173, 183, 188], "load_best": 173, "load_starter_model": 69, "load_weight": 173, "local": [13, 14, 67, 96, 99, 115, 119, 145, 155, 158, 160, 165, 168, 169, 185, 190, 192], "local_array_stor": [87, 88, 108, 109, 155, 158, 159, 164, 167, 184], "local_torch": [13, 184], "local_weights_stor": [164, 167, 184], "localarrayidentifi": [0, 1, 5, 6, 8, 9, 87, 88, 104, 108, 109, 111, 113, 155, 158, 159, 160, 168], "localarraystor": [164, 168], "localarryidentifi": [155, 158], "localcontaineridentifi": [136, 138, 140, 160, 168], "localhost": [170, 171, 189], "localtorch": [13, 14, 155, 156], "localvolum": 181, "localweightsstor": [164, 169], "locat": [63, 64, 151, 152, 169, 190], "log": [1, 5, 6, 8, 67, 70, 71, 73, 74, 150, 152, 182, 186, 194], "log_2": 182, "log_level": [1, 5, 6, 8, 9, 186], "logger": [0, 1, 3, 5, 7, 8, 9, 59, 71, 74, 83, 90, 116, 118, 120, 121, 136, 143, 150, 151, 154, 156, 158, 159, 165, 166, 168, 169, 170, 171, 175, 176, 183], "logic": [38, 40, 49, 54], "logical_or_array_config": [38, 184], "logicalorarrai": [38, 40], "logicalorarrayconfig": [38, 40], "long": [17, 21, 194], "look": [160, 168, 187, 188], "loop": [8, 97, 99, 192, 193], "loss": [54, 56, 67, 76, 78, 80, 91, 93, 94, 102, 119, 122, 123, 125, 127, 138, 142, 143, 150, 152, 157, 168, 184, 192, 193, 194], "lower": [67, 82, 88, 145, 151, 152, 186], "lpxgy": 182, "lpygx": 182, "lr_schedul": [136, 138], "lsd": [77, 93, 96, 99, 115, 119], "lsd_pad": [115, 119], "lsd_weight_clipmax": [77, 93, 115, 119], "lsd_weight_clipmin": [77, 93, 115, 119], "lsdextractor": [115, 119], "lsds_to_affs_weight_ratio": [77, 93, 96, 99], "lsf": [11, 13], "m": [157, 178, 182], "machin": [13, 14, 190, 192, 193], "maco": 192, "made": 83, "mai": [35, 38, 47, 67, 68, 83, 138, 140, 177, 182, 190, 192, 193, 194], "main": [190, 194], "mainli": [81, 93], "maintain": 17, "major": [192, 193], "make": [38, 47, 176, 187, 192, 194], "makeraw": 180, "malin": [187, 190], "manag": [127, 131, 132, 136, 138], "mandatori": [54, 56], "mani": [67, 145, 192, 193], "manipulat": [67, 143], "map": [17, 18, 21, 22, 24, 25, 27, 28, 30, 33, 38, 82, 88, 90, 98, 99, 163, 189, 192], "marwan": [187, 190], "mask": [27, 34, 38, 40, 41, 42, 43, 45, 48, 54, 55, 56, 63, 64, 79, 83, 92, 93, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 137, 138, 147, 148, 152, 154, 178, 184, 190, 192], "mask_arrai": 192, "mask_config": [54, 56, 59], "mask_dist": [79, 92, 93, 116, 118, 119], "mask_integral_downsample_factor": [136, 138], "mask_kei": [129, 132, 138, 148, 152], "masked_in": 178, "mass": [77, 93], "master": [18, 21, 150, 152, 187], "match": [17, 71, 73, 74, 83, 96, 99, 170, 182, 187], "match_head": 74, "math": 194, "matplotlib": 192, "matrix": 182, "max": [17, 25, 27, 28, 38, 39, 82, 83, 88, 131, 132, 147, 152, 192], "max_dist": [116, 118, 119, 120], "max_gt_downsampl": [59, 62], "max_gt_upsampl": [59, 62], "max_raw_training_downsampl": [59, 62], "max_raw_training_upsampl": [59, 62], "max_raw_validation_downsampl": [59, 62], "max_raw_validation_upsampl": [59, 62], "max_retri": [2, 4, 7, 186], "max_siz": 59, "max_validation_volume_s": [59, 62], "maximum": [2, 3, 4, 7, 25, 27, 28, 38, 39, 59, 62, 67, 77, 79, 82, 83, 88, 92, 93, 95, 105, 108, 115, 116, 118, 119, 143, 145, 178, 186], "maximum_objects_per_class": 3, "mayor": [187, 190], "md": 187, "mean": [20, 21, 23, 36, 38, 82, 83, 88, 93, 94, 98, 99, 101, 128, 138, 180, 192], "mean_false_dist": [82, 83, 88], "mean_false_distance_clip": [82, 83, 88], "mean_false_negative_dist": [82, 83, 88], "mean_false_negative_distance_clip": [82, 83, 88], "mean_false_negative_distances_clip": 83, "mean_false_positive_dist": [82, 83, 88], "mean_false_positive_distance_clip": [82, 83, 88], "mean_false_positive_distances_clip": 83, "meant": [38, 44, 93, 126, 138, 140, 141], "measur": [27, 28, 82, 83, 88, 182], "median": 3, "median_slic": 3, "meila": 182, "member": [59, 187], "membran": [22, 27, 180], "membrane_lik": 180, "membrane_s": 180, "memori": [13, 14, 18, 21, 38, 47, 160, 168], "mention": [51, 54], "merg": [6, 38, 41, 79, 82, 83, 88, 89, 92, 93, 95, 182], "merge_instances_array_config": [38, 184], "mergeinstancesarrai": [38, 41], "mergeinstancesarrayconfig": [38, 41], "mesh": 181, "messag": [16, 20, 21, 31, 36, 37, 38, 49, 51, 54, 58, 62, 81, 93, 138, 141, 161], "meta": 59, "metadata": [23, 192], "method": [11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 47, 49, 51, 52, 53, 54, 56, 58, 59, 61, 62, 67, 69, 70, 77, 79, 81, 82, 83, 84, 86, 88, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 149, 150, 151, 152, 153, 154, 155, 156, 160, 162, 163, 166, 180, 181], "metric": [82, 83, 88, 182, 192, 193, 194], "metric_param": 83, "middl": [67, 144], "might": [83, 85, 87, 88, 90, 194], "min": [27, 28, 38, 39, 131, 132, 192], "min_distance_object_cent": 3, "min_ext": 3, "min_label": 194, "min_mask": [136, 137, 138, 192, 194], "min_siz": [3, 106, 107, 108, 114], "min_training_volume_s": [59, 62], "minim": 190, "minimum": [3, 27, 28, 38, 39, 59, 62, 77, 79, 93, 107, 108, 114, 115, 116, 119, 136, 137, 138, 150, 152, 178, 190], "mirror": [127, 128, 138], "mirror_aug": [127, 128, 138], "misclassifi": [79, 92, 93, 95], "mismatch": [71, 73, 74], "miss": [33, 38], "missing_annotations_mask_config": [38, 184], "missingannotationsmaskconfig": [38, 42], "mito": [59, 62], "mitochondria": [22, 27], "mitonet_v1": 3, "mitonet_v2": 3, "mitonet_v3": 3, "mitonet_v4": 3, "mitonet_v5": 3, "mitonet_v6": 3, "ml": [190, 191, 192], "mnist": 173, "mode": [17, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 67, 68, 174, 192, 194], "model": [0, 1, 3, 5, 8, 15, 16, 21, 26, 27, 57, 60, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 83, 85, 86, 87, 88, 90, 93, 96, 97, 98, 99, 102, 104, 106, 108, 109, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127, 136, 138, 140, 143, 155, 158, 159, 169, 173, 183, 184, 186, 190, 192, 193, 194], "model_config": 3, "model_nam": 188, "model_state_dict": 173, "modifi": [132, 133, 150, 152, 185, 194], "modul": [13, 21, 67, 108, 146, 187], "modular": 190, "mongo_config_stor": [167, 184], "mongo_db_host": [155, 156], "mongo_db_nam": [155, 156], "mongo_stats_stor": [167, 184], "mongocli": [170, 171], "mongoconfigstor": [164, 170], "mongodb": [156, 170, 171, 190, 192, 193, 194], "mongodbhost": [192, 194], "mongodbnam": [192, 194], "mongostatsstor": [164, 171], "more": [17, 49, 54, 84, 88, 119, 122], "morphologi": [116, 119], "most": [181, 187, 191], "most_recent_iter": 181, "mostli": 192, "move": [69, 115, 116, 117, 118, 119, 120, 121, 122, 157, 178], "move_optim": 69, "moving_class_count": [115, 116, 117, 118, 119, 120, 121, 122], "moving_count": [148, 152, 178], "mr": 186, "mse_loss": [99, 184], "mseloss": [78, 93, 98, 99, 100, 101], "much": [15, 17, 21, 77, 93, 116, 118, 119, 120, 122, 192, 193, 194], "multi": [17, 21, 32, 38, 39, 42, 47, 59, 62, 82, 88, 190, 192, 193], "multichannelbinarysegmentationevaluationscor": [82, 83, 88], "multicut": 10, "multigpu": 3, "multipl": [3, 17, 18, 21, 38, 40, 41, 47, 59, 62, 108, 109, 116, 118, 119, 120, 192], "multipli": [17, 21, 152, 153], "multiprocess": 192, "multitud": 193, "multivari": 182, "must": [36, 37, 38, 39, 40, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 138, 140, 141, 162], "mutipl": [59, 62], "my": [185, 192, 194], "my_dataset": 186, "my_output": 186, "my_run": 186, "mykeypair": 185, "mymodel": [15, 16, 21], "mypostprocessor": [108, 109, 113], "mypostprocessorparamet": [108, 109], "myst_nb": 187, "myst_pars": 187, "mzouink": 185, "n": [17, 38, 47, 90, 157, 182, 190, 192, 194], "n5": [59, 62, 190], "name": [0, 3, 5, 11, 13, 16, 17, 21, 22, 23, 27, 28, 31, 32, 38, 42, 46, 47, 48, 49, 50, 51, 54, 55, 58, 59, 62, 67, 69, 70, 71, 73, 79, 92, 93, 95, 97, 99, 105, 107, 108, 110, 116, 118, 119, 120, 126, 138, 141, 145, 146, 155, 156, 157, 158, 160, 161, 163, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 180, 181, 185, 186, 187, 188, 192, 193, 194], "nameerror": 162, "nan": [82, 83, 88], "napari": 3, "napoleon": 187, "navig": 189, "nbsphinx": 187, "nbsphinx_custom_format": 187, "ndarrai": [3, 6, 10, 33, 38, 83, 90, 116, 118, 119, 120, 121, 176, 178, 181, 182], "ndimag": [116, 119, 192], "nearest": [17, 25, 27, 83, 180, 192], "necessari": [7, 32, 35, 37, 38, 39, 42, 45, 46, 47, 91, 93, 152, 154, 156, 180, 188, 194], "need": [17, 38, 47, 49, 54, 59, 67, 81, 93, 116, 118, 119, 120, 122, 145, 160, 162, 163, 168, 188, 193, 194], "neg": [25, 27, 79, 82, 83, 88, 92, 93, 95, 176, 182], "neighbor": [17, 192], "neighborhood": [77, 93, 108, 113, 114, 115, 119, 176, 192, 194], "nest": [38, 47], "net": [17, 21, 194], "network": [2, 4, 7, 15, 16, 18, 19, 21, 138, 140, 169, 173, 190, 192], "neural": [15, 16, 21, 138, 140], "neurogl": [48, 54], "neuroglanc": [48, 54, 69, 136, 138, 181, 190], "neuroglancerrunview": 181, "neuron": 194, "never": [20, 21, 32, 36, 38, 51, 54, 61, 62, 81, 93], "new": [6, 67, 71, 73, 74, 90, 117, 119, 137, 138, 143, 145, 147, 152, 165, 166, 181, 190, 192], "new_best_exist": 181, "new_head": [71, 73, 74], "new_validation_check": 181, "new_valu": 6, "next": [136, 138, 194], "next_conv_kernel_s": 17, "nhood": 176, "nice": [160, 168, 193, 194], "nm": [181, 192], "nn": [17, 21, 67, 68], "no_valid": 186, "node": [6, 129, 130, 131, 132, 133, 134, 135, 138, 148, 150, 152, 194], "nois": [131, 132, 151, 152, 180], "non": [32, 38, 63, 64, 71, 73, 74, 192, 193], "non_empti": [63, 64], "non_empty_mask": [63, 64], "none": [0, 2, 4, 5, 7, 11, 12, 13, 14, 17, 18, 21, 33, 35, 36, 38, 47, 48, 54, 55, 56, 57, 59, 62, 67, 68, 69, 70, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 93, 96, 97, 99, 100, 103, 108, 109, 115, 116, 117, 118, 119, 120, 121, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 148, 150, 152, 154, 155, 156, 157, 158, 159, 160, 161, 165, 166, 168, 169, 170, 171, 172, 173, 174, 178, 181, 182, 183, 186, 192], "nonempti": [152, 154], "nonzero": 178, "norm": [27, 30, 116, 118, 119, 120, 182], "normal": [17, 38, 39, 79, 92, 93, 95, 116, 118, 119, 120, 182, 192, 193], "normalize_arg": [116, 118, 119, 120], "nosuchmodul": 146, "not_membrane_mask": 192, "note": [17, 21, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 88, 91, 93, 94, 95, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 145, 150, 152, 165, 166, 170, 171, 176, 178, 192, 194], "notebook": 192, "notebook_tqdm": 192, "noth": [149, 152], "notic": [150, 152], "notimplementederror": [12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 47, 49, 51, 54, 58, 59, 62, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 147, 148, 152, 160, 180], "now": [188, 192, 194], "np": [0, 3, 6, 10, 33, 34, 38, 43, 83, 90, 116, 118, 119, 120, 121, 151, 152, 155, 158, 176, 178, 180, 181, 182, 186, 192], "np_arrai": 174, "np_to_funlib_arrai": 174, "num": [178, 186], "num_affin": [96, 99], "num_channel": [115, 119, 174], "num_channels_from_arrai": 174, "num_class": [23, 178], "num_cpu": [11, 13], "num_data_fetch": [136, 137, 138, 192, 194], "num_fmap": [17, 18, 21, 192, 194], "num_fmaps_out": [17, 21], "num_gpu": [11, 13], "num_head": [17, 21], "num_in_channel": [15, 17, 19, 20, 21, 67, 68], "num_iter": [67, 70, 127, 136, 138, 140, 192, 194], "num_level": 17, "num_lsd_voxel": [77, 93], "num_out_channel": [15, 17, 19, 20, 21, 67, 68], "num_point": 180, "num_snapshot": 192, "num_valid": 192, "num_voxel": [115, 119], "num_work": [0, 2, 4, 7, 104, 106, 108, 109, 111, 113, 155, 158, 186], "number": [0, 2, 3, 4, 7, 11, 13, 15, 17, 18, 19, 20, 21, 23, 26, 27, 30, 38, 42, 67, 68, 69, 70, 73, 74, 77, 83, 90, 93, 96, 98, 99, 104, 106, 108, 109, 111, 113, 115, 116, 117, 118, 119, 120, 121, 127, 136, 137, 138, 140, 143, 145, 155, 157, 158, 160, 169, 176, 178, 180, 181, 182, 186, 192, 193], "numer": [49, 54], "numpi": [0, 3, 83, 116, 118, 119, 120, 121, 155, 158, 176, 178, 180, 181, 192], "numpyarrai": [115, 117, 118, 119, 121, 136, 138], "nw": 186, "o": 187, "obj": [59, 62, 71, 73, 74], "object": [0, 3, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 38, 39, 40, 48, 49, 51, 52, 53, 54, 56, 58, 59, 62, 67, 69, 76, 77, 78, 79, 80, 81, 83, 85, 88, 91, 92, 93, 95, 106, 108, 110, 115, 116, 118, 119, 120, 124, 126, 127, 128, 130, 132, 138, 143, 145, 150, 151, 152, 154, 155, 156, 158, 161, 162, 163, 164, 165, 166, 169, 170, 173, 175, 180, 181, 190, 192], "obtain": [83, 150, 152], "oc": 186, "od": 186, "off": [192, 193], "offici": [48, 54, 189], "offset": [10, 46, 108, 113, 114, 174, 192], "often": [67, 70, 192, 193], "old": [6, 74, 90], "old_head": 74, "old_num": 178, "old_valu": 6, "om": [59, 62, 190], "omit_if_default": 163, "onc": [98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 188, 189, 194], "one": [3, 17, 21, 57, 59, 60, 62, 67, 92, 93, 102, 103, 116, 118, 119, 121, 143, 145, 150, 152, 182, 185, 192], "one_hot": [119, 121], "one_hot_predictor": [119, 184], "one_hot_task": [93, 184], "one_hot_task_config": [93, 184], "onehotpredictor": [119, 121], "onehottask": [93, 102, 103], "onehottaskconfig": [93, 103], "ones": [34, 38, 43, 67, 145, 178, 187], "ones_array_config": [38, 184], "ones_lik": [33, 34, 38, 43], "onesarrayconfig": [38, 43], "onli": [3, 11, 13, 17, 21, 35, 38, 57, 59, 60, 62, 67, 68, 71, 73, 74, 118, 119, 145, 150, 152, 154, 160, 164, 177, 182, 187, 188, 190, 192], "oom_limit": [13, 14], "op": 186, "open": [170, 181, 190, 192], "open_from_array_identitifi": 181, "open_from_identifi": [83, 88, 90, 174], "openorganel": 190, "oper": [17, 18, 21, 48, 54, 182, 186], "opt": 192, "optim": [18, 21, 69, 99, 100, 127, 136, 138, 140, 141, 169, 173, 184, 190, 192, 193], "optimizer_state_dict": 173, "optimum": 192, "option": [0, 7, 11, 12, 13, 14, 15, 17, 18, 21, 33, 38, 47, 48, 54, 55, 56, 59, 67, 68, 70, 87, 88, 90, 99, 100, 131, 132, 133, 134, 135, 137, 138, 147, 152, 154, 155, 158, 164, 165, 168, 170, 171, 177, 178, 180, 181, 182, 184, 186, 187, 189, 191, 194], "order": [33, 38, 44, 67, 143, 192], "ordereddict": 173, "org": [187, 194], "organ": [67, 144, 166], "origin": [15, 21, 59, 147, 150, 152], "orthogon": 3, "orthoplan": 3, "orthoplane_infer": 3, "other": [12, 13, 14, 15, 21, 31, 38, 48, 49, 54, 83, 93, 126, 178, 182, 188, 190, 192, 193, 194], "otherwis": [23, 58, 59, 62, 79, 82, 83, 88, 92, 93, 95, 104, 107, 108, 112, 127, 136, 138, 140, 155, 156, 158, 181, 192], "our": [149, 152, 190, 192, 194], "out": [13, 14, 67, 70, 79, 83, 92, 93, 152, 154, 160, 168, 182, 194], "out_channel": 17, "out_path": 192, "outer": [67, 69, 142, 143, 144], "output": [0, 1, 5, 6, 8, 9, 15, 17, 18, 19, 20, 21, 26, 27, 38, 42, 59, 62, 67, 68, 70, 83, 85, 87, 88, 90, 93, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 138, 140, 147, 148, 149, 151, 152, 153, 155, 158, 160, 168, 180, 185, 186, 187, 190, 192, 193, 194], "output_arrai": [83, 85, 87, 88, 90], "output_array_identifi": [0, 1, 5, 6, 8, 9, 83, 85, 87, 88, 90, 104, 106, 108, 109, 111, 113], "output_array_typ": [115, 116, 117, 118, 119, 120, 121, 122], "output_contain": [1, 5, 6, 8, 9, 186], "output_dataset": [1, 5, 6, 8, 9, 186], "output_dtyp": [0, 155, 158, 186], "output_path": [0, 155, 158, 186], "output_resolut": [59, 62], "output_roi": [155, 158, 159, 186], "output_run_1_1": 0, "output_shap": [67, 68], "outputidentifi": [87, 88], "outsid": [25, 27, 177, 180], "over": [7, 38, 40, 79, 92, 93, 95, 103, 127, 138, 150, 151, 152, 182], "overal": 83, "overhang": [67, 145], "overlap": 83, "overlap_measures_filt": 83, "overload": [48, 54], "overridden": [15, 21, 23], "oversegment": 182, "overwrit": [0, 119, 122, 155, 158, 166, 174, 186, 187], "overwritten": [155, 158], "ow": 186, "own": [12, 13, 14, 15, 21], "p": [18, 21, 152, 154, 182, 185, 186, 189], "p3": 185, "packag": 192, "pad": [17, 18, 21, 115, 116, 118, 119, 120, 122, 176, 192], "padded_tensor": 17, "page": [184, 187], "pai": [11, 13], "pair": 185, "panopt": 3, "parallel": [0, 7], "param": [150, 152, 157, 173], "param1": [108, 109], "param2": [108, 109], "paramet": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 59, 62, 67, 68, 69, 71, 73, 74, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 143, 144, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 181, 182, 183, 186, 188, 192, 193, 194], "parameter_nam": [67, 105, 107, 108, 110, 145], "params1": 168, "parent": 192, "pars": [0, 155, 156], "part": 161, "particular": [10, 25, 27, 36, 38, 128, 138, 160, 168, 190], "particularli": [67, 68, 194], "pass": [2, 4, 7, 17, 18, 19, 21, 59, 67, 68, 70, 116, 118, 119, 120, 122, 186], "passiv": [149, 152], "past": 194, "path": [0, 1, 2, 4, 5, 6, 7, 8, 9, 17, 21, 38, 46, 47, 59, 62, 93, 102, 123, 124, 155, 156, 158, 160, 165, 166, 168, 186, 187, 192, 194], "pathwai": 17, "pattern": 187, "patton": [187, 190], "patton_dacapo_a_modular_2024": 190, "pem": 185, "peopl": 194, "per": [3, 17, 18, 21, 33, 38, 67, 108, 109, 130, 132, 144, 145, 150, 152, 182, 194], "percent": 187, "perfect": 182, "perform": [3, 17, 19, 21, 38, 40, 67, 70, 83, 84, 85, 88, 90, 93, 103, 127, 130, 132, 136, 138, 140, 147, 150, 151, 152, 180, 194], "perfrom": [17, 21], "permiss": 188, "peroxisom": [59, 62], "persist": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 54, 55, 87, 88, 108, 109, 111, 115, 116, 119, 121, 122, 174, 192], "perturb": [151, 152], "phase": [67, 70], "physic": [17, 21], "pi": 194, "pickl": 166, "piecewis": [150, 152], "pip": [190, 191, 192], "pipelin": [69, 129, 131, 132, 133, 134, 135, 136, 138, 140, 149, 152, 179, 184], "pixel": [3, 79, 83, 88, 92, 93, 95, 180, 181, 192], "pixel_vote_thr": 3, "place": [32, 38, 42, 90, 162, 182], "plan": 190, "plane": 3, "playlist": 190, "pleas": [190, 192], "plot": [155, 184, 192], "plot_loss": [157, 192], "plot_run": [157, 192], "plt": 192, "plu": [61, 62, 67, 143, 145], "plugin": 190, "point": [27, 30, 48, 54, 55, 56, 67, 70, 71, 72, 73, 75, 83, 130, 132, 150, 152, 180, 182, 192, 193], "polici": [73, 74], "pool": 17, "port": [69, 136, 138, 150, 152, 181, 185, 189], "posit": [2, 4, 7, 25, 27, 79, 82, 83, 88, 92, 93, 95, 176], "posixpath": [155, 156], "possibl": [18, 21, 24, 25, 27, 28, 104, 106, 108, 109, 111, 113, 181], "post": [0, 2, 4, 7, 67, 76, 78, 80, 83, 85, 87, 88, 90, 93, 94, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 144, 145, 155, 186, 190], "post_processing_paramet": [87, 88], "post_processor": [0, 67, 76, 78, 80, 87, 88, 91, 93, 94, 102, 123, 125, 145, 155, 184], "post_processor_paramet": [0, 108, 109, 155, 184], "postprocessor": [93, 108, 109, 125], "postprocessorparamet": [0, 67, 87, 88, 93, 104, 106, 108, 109, 110, 113, 125, 145, 155, 186], "precis": [82, 83, 85, 87, 88, 90], "precision_with_toler": [82, 83, 88], "pred_path": 192, "predefin": [83, 85, 88], "predict": [0, 1, 5, 6, 8, 9, 15, 18, 21, 67, 68, 76, 78, 79, 83, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 111, 113, 115, 116, 118, 119, 120, 122, 155, 159, 160, 168, 181, 184, 190, 192, 194], "predict_loc": [155, 184], "predict_work": [4, 184], "prediction_arrai": [104, 108, 111], "prediction_array_identifi": [0, 1, 8, 104, 106, 108, 109, 111, 113, 159], "prediction_head": [67, 68, 74], "prediction_run_1_1": 0, "predictor": [67, 68, 76, 78, 80, 91, 93, 94, 102, 123, 125, 148, 152, 184], "prefer_attrib_convert": 163, "prefix": [48, 54], "preload": 69, "prepar": [147, 148, 150, 152, 153], "prepare_d": 192, "presenc": 83, "present": [152, 154], "pretain": [72, 73], "pretrain": [72, 73, 93, 123, 124], "pretrained_task": [93, 184], "pretrained_task_config": [93, 184], "pretrainedtask": [93, 123], "pretrainedtaskconfig": [93, 124], "previou": [72, 73], "previous": [183, 192, 193], "primarili": [80, 93], "print": [3, 16, 21, 83, 104, 106, 108, 109, 111, 113, 127, 136, 138, 140, 192, 194], "print_profil": [136, 138], "prioriti": [67, 145], "privat": [151, 152], "probability_arrai": [27, 30], "probabilityarrai": [27, 30, 118, 119, 121], "probabl": [27, 93, 103, 108, 109, 118, 119, 150, 152, 154, 182, 184], "problem": [32, 38, 39, 42], "process": [0, 2, 4, 7, 10, 17, 38, 47, 67, 76, 78, 80, 83, 85, 87, 88, 90, 93, 94, 104, 106, 108, 109, 111, 113, 116, 118, 119, 120, 121, 137, 138, 142, 145, 147, 148, 150, 151, 152, 153, 155, 158, 170, 180, 186, 190, 192], "processor": [0, 67, 87, 88, 93, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 144, 155, 186], "produc": [18, 21, 67, 69, 136, 138, 142, 152, 153], "product": [150, 152, 178, 184], "profil": [136, 138, 185], "project": [11, 13, 187, 189, 190], "properti": [11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 54, 59, 62, 67, 69, 82, 83, 85, 86, 87, 88, 89, 90, 93, 108, 110, 115, 116, 117, 118, 119, 120, 121, 122, 125, 145, 165], "proport": [83, 182], "provid": [11, 12, 13, 15, 21, 23, 32, 33, 35, 37, 38, 39, 42, 45, 46, 47, 49, 54, 67, 83, 84, 86, 87, 88, 92, 93, 94, 98, 99, 100, 101, 124, 125, 127, 138, 143, 145, 147, 148, 149, 150, 152, 153, 154, 155, 156, 160, 162, 163, 176, 177, 180, 182, 189, 192, 193, 194], "proxi": [83, 118, 119], "pseudo": 192, "psi": 17, "publish": 190, "pull": [32, 38, 39, 42, 138, 140, 185], "purpos": [20, 21, 51, 54, 80, 85, 88, 93, 127, 138], "push": [116, 118, 119, 120], "px": 182, "pxy": 182, "py": [12, 13, 18, 21, 108, 113, 182, 186, 187, 192, 194], "pyplot": 192, "python": [12, 13, 187, 190, 192, 193], "python3": 192, "pytorch": [13, 14, 15, 21, 190], "qualit": 194, "qualiti": [82, 83, 87, 88], "quantiz": 3, "queri": 185, "question": 190, "queue": [11, 13], "quick": [35, 38], "quickli": 194, "r": [18, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 174, 186, 194], "r_conv": 17, "r_up": 17, "rais": [0, 3, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 47, 49, 51, 54, 58, 59, 62, 67, 68, 69, 71, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 178, 180, 181, 182, 186], "rand": [3, 10, 181], "randint": 181, "randn": [17, 19, 21], "random": [3, 10, 132, 133, 150, 152, 180, 181, 192], "random_dil": 180, "random_source_pipelin": 180, "randomdilatelabel": 180, "randomli": [130, 132, 150, 152, 180], "rang": [25, 27, 28, 83, 131, 132, 133, 178, 180, 192, 194], "rate": [67, 70, 82, 83, 88, 115, 119, 127, 136, 138, 140, 141, 192, 193], "rather": [18, 21], "ratio": [83, 96, 99, 152, 154], "raw": [0, 1, 5, 8, 9, 18, 21, 48, 50, 54, 55, 56, 59, 62, 63, 64, 129, 131, 132, 133, 134, 135, 136, 137, 138, 155, 158, 160, 168, 180, 181, 192, 194], "raw_arrai": [1, 8], "raw_array_identifi": 159, "raw_config": [51, 54, 56, 192], "raw_contain": [59, 62], "raw_dataset": [59, 62], "raw_gt_dataset": [54, 184], "raw_gt_dataset_config": [54, 184], "raw_kei": [129, 131, 132, 133, 134, 138], "raw_max": [59, 62], "raw_min": [59, 62], "rawgtdataset": [54, 55], "rawgtdatasetconfig": [54, 56, 192], "re": 192, "reaction": [49, 54], "read": [2, 4, 6, 7, 33, 34, 38, 43, 156, 186, 187, 190], "read_cross_block_merg": 6, "read_roi": [2, 4, 7, 10], "read_roi_s": 186, "read_write_conflict": [1, 5, 6, 8, 9], "readthedoc": 192, "real": [20, 21, 81, 93, 97, 99, 192], "reason": [20, 21, 38, 47, 81, 93, 126, 128, 138], "rec_forward": 17, "recal": [82, 83, 85, 87, 88, 90], "recall_with_toler": [82, 83, 88], "receiv": [149, 152], "recent": [181, 191], "recogn": [82, 88], "recommend": [58, 62, 190, 192], "reconstruct": [163, 182], "recreat": [162, 163], "rectifi": 17, "recurs": 17, "reduc": [17, 21], "ref": 194, "refer": [3, 18, 21, 92, 93, 182, 189, 190], "referenc": [118, 119], "refin": 190, "refrain": [49, 54], "region": [0, 79, 83, 92, 93, 115, 116, 119, 120, 122, 155, 182, 185], "regist": [162, 163], "register_hierarchi": [162, 163], "register_hierarchy_hook": 162, "register_hook": 162, "regular": [79, 92, 93, 95], "reject": [152, 154], "reject_if_empti": [152, 184], "rejectifempti": [152, 154], "rel": 187, "relabel": [3, 6, 90, 180], "relabel_connect": 180, "relabel_in_block": 6, "relabel_work": [4, 184], "relat": [12, 13, 14, 15, 21, 51, 54, 93, 94, 127, 137, 138], "releas": 191, "relu": [17, 21], "remap": 10, "remov": [160, 168, 169, 173, 192], "repetit": [67, 70, 192, 194], "replac": [67, 90, 145, 185, 189, 194], "report": [116, 118, 119, 120, 122], "repres": [15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 48, 54, 59, 61, 62, 63, 64, 67, 69, 70, 71, 72, 73, 75, 81, 82, 83, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 131, 132, 138, 141, 142, 143, 144, 145, 151, 152, 160, 173, 176, 177, 180, 181], "represent": [27, 29, 48, 54, 59, 62, 63, 64, 156, 160], "reproduc": [150, 152, 194], "request": [116, 118, 119, 120, 122, 147, 148, 149, 150, 151, 152, 153, 154, 177, 180], "requir": [12, 13, 14, 15, 16, 21, 138, 140, 150, 152, 186, 190, 192, 193, 194], "resampled_array_config": [38, 184], "resampledarrai": [38, 44], "resampledarrayconfig": [38, 44], "reshap": 10, "resid": [147, 152], "resiz": 59, "resize_if_need": 59, "resolut": [18, 21, 59, 62, 83, 150, 152, 192], "respect": [57, 58, 60, 62, 65, 66, 83, 98, 99, 100, 101, 182], "respons": [119, 122, 193], "restor": [150, 152], "result": [13, 14, 17, 21, 49, 54, 83, 93, 94, 150, 152, 182, 192, 194], "result_data": 177, "resum": 192, "retri": [2, 4, 7, 186], "retriev": [71, 73, 74, 75, 161, 163, 165, 166, 169, 170, 171, 172, 173, 181, 193, 194], "retrieve_architecture_config": [161, 165, 170, 192], "retrieve_architecture_config_nam": [161, 165, 170], "retrieve_array_config": [161, 165, 170], "retrieve_array_config_nam": [161, 165, 170], "retrieve_best": [169, 173], "retrieve_dataset_config": 170, "retrieve_dataset_config_nam": 170, "retrieve_datasplit_config": [161, 165, 170, 192], "retrieve_datasplit_config_nam": [161, 165, 170], "retrieve_run_config": [161, 165, 170, 192], "retrieve_run_config_nam": [161, 165, 170], "retrieve_task_config": [161, 165, 170, 192], "retrieve_task_config_nam": [161, 165, 170], "retrieve_trainer_config": [161, 165, 170, 192], "retrieve_trainer_config_nam": [161, 165, 170], "retrieve_training_stat": [166, 171, 172, 192], "retrieve_validation_iteration_scor": [166, 171, 172], "retrieve_weight": [169, 173], "return": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 43, 47, 48, 49, 51, 54, 58, 59, 61, 62, 63, 64, 67, 68, 69, 71, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 162, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 178, 180, 181, 182, 183], "return_backwards_map": 90, "return_count": 178, "return_io_loop": [1, 5, 6, 8, 9], "return_json": 157, "return_panopt": 3, "reus": [31, 38, 58, 62, 93, 126, 188], "reusabl": [49, 54], "rhoad": [187, 190], "right": [17, 21, 59, 119, 122], "roi": [0, 2, 4, 7, 10, 35, 38, 47, 115, 116, 118, 119, 120, 122, 147, 148, 149, 150, 152, 155, 158, 159, 174, 177, 186, 192], "root": [166, 187], "rotat": [130, 132, 150, 152], "rotation_interv": [130, 132, 150, 152, 194], "rotation_max_amount": [150, 152], "rotation_start": [150, 152], "row": 182, "rr": 186, "rst": 187, "rudimentari": 160, "rule": [49, 54], "run": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 67, 70, 71, 72, 73, 74, 75, 93, 108, 111, 113, 124, 136, 138, 155, 157, 158, 160, 161, 165, 166, 168, 169, 170, 171, 172, 173, 175, 181, 183, 184, 190, 193], "run1": [161, 165, 166, 168, 169], "run2": 169, "run_0": [170, 171, 172, 173], "run_1": [0, 72, 73, 155], "run_blockwis": [7, 108, 111], "run_config": [67, 69, 161, 165, 170, 184, 188, 192, 194], "run_config_base_nam": [157, 192], "run_config_nam": 157, "run_nam": [0, 5, 155, 157, 158, 160, 161, 165, 166, 168, 170, 171, 172, 175, 183, 186], "run_path": 192, "run_thread": 181, "runconfig": [67, 70, 161, 165, 170, 188, 192, 194], "runinfo": 157, "runner": 192, "runs_base_dir": [155, 156, 185, 192, 194], "runtimeerror": [17, 21, 71, 73, 74, 147, 148, 149, 152, 176], "s3": 192, "saalfeld": [18, 21], "saalfeldlab": [18, 21], "safe": [150, 152], "same": [17, 21, 34, 35, 38, 43, 83, 85, 87, 88, 90, 98, 99, 116, 118, 119, 120, 122, 149, 152, 161, 165, 170, 182, 192, 194], "sampl": [17, 21, 38, 44, 48, 49, 54, 55, 56, 83, 130, 132, 150, 152], "sample_dataset": [49, 54], "sample_point": [48, 54, 55, 56], "satur": [116, 118, 119, 120], "save": [31, 35, 38, 58, 62, 67, 86, 88, 93, 126, 136, 137, 138, 140, 145, 165, 170, 192, 194], "save_ndarrai": 177, "sc": 190, "scalabl": 190, "scalar": [99, 100, 177, 181], "scale": [15, 17, 21, 67, 68, 79, 92, 93, 95, 116, 118, 119, 120, 132, 133, 134, 178, 194], "scale_factor": [17, 79, 92, 93, 95, 116, 118, 119, 120, 192], "scale_slab": 178, "schedul": [4, 108, 111, 113, 136, 138, 184], "scikit": 192, "scipi": [116, 119, 182, 192], "score": [67, 69, 82, 83, 84, 85, 86, 87, 88, 89, 90, 144, 145, 157, 166, 171, 172, 181, 183, 194], "score_1": [87, 88], "score_2": [87, 88], "scratch": [192, 193], "script": [12, 13, 108, 113, 185, 190, 194], "search": [160, 168], "sec_api_run": 194, "sec_api_runconfig": 194, "sec_api_trainerconfig": 194, "second": [7, 31, 38, 87, 88, 98, 99, 152, 153, 182, 186], "secur": 185, "see": [67, 119, 122, 145, 187, 192, 194], "seed": [150, 152, 192], "seem": 10, "seg": [176, 181, 182], "seg_to_affgraph": 176, "segment": [3, 7, 8, 10, 59, 62, 77, 79, 82, 83, 88, 89, 90, 93, 94, 95, 108, 109, 111, 114, 116, 118, 119, 120, 122, 176, 181, 182, 190, 192, 193, 194], "segment_blockwis": [7, 108, 113], "segment_funct": [3, 10, 186], "segment_function_fil": [7, 186], "segment_work": [4, 184], "segmentation_typ": [59, 62], "segmentationtyp": [59, 62], "segmented_arrai": 3, "select": [17, 163, 169, 187, 192], "self": [20, 21, 22, 25, 27, 28, 31, 33, 35, 38, 57, 59, 60, 62, 76, 77, 78, 79, 80, 81, 83, 91, 92, 93, 94, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 138, 147, 152], "semant": [3, 23, 59, 62, 108, 109, 190], "semantic_onli": 3, "sens": 194, "separ": [17, 32, 38, 59, 62, 67, 77, 93, 116, 119, 145, 192, 193], "separator_charact": 59, "sequenc": [17, 59, 62, 83], "sequenti": [67, 68], "seri": 17, "serial": 156, "serv": [138, 140, 149, 152], "server": [190, 192], "servic": 185, "set": [17, 18, 21, 33, 38, 54, 56, 57, 59, 60, 62, 67, 77, 81, 83, 87, 88, 93, 104, 105, 106, 107, 108, 109, 111, 112, 113, 127, 132, 133, 136, 137, 138, 140, 143, 145, 147, 148, 149, 150, 152, 153, 154, 180, 185, 188, 189, 192, 194], "set_best": [87, 88], "set_predict": [104, 106, 108, 109, 111, 113], "set_start_method": 192, "set_titl": 192, "set_ylabel": 192, "setup": [71, 147, 148, 149, 150, 151, 152, 153, 154, 180, 187, 188], "setup04": 188, "sever": [12, 13, 14, 15, 21], "sf": 186, "shape": [3, 15, 17, 18, 19, 21, 26, 27, 34, 38, 43, 67, 68, 83, 96, 99, 115, 119, 122, 176, 178, 180, 182, 190, 192], "sheet": 187, "shift": [132, 133, 134, 194], "short": [31, 38, 49, 54, 58, 62, 93, 126], "shoulb": [59, 62], "should": [3, 12, 13, 15, 16, 17, 21, 23, 25, 27, 30, 31, 38, 48, 49, 52, 53, 54, 55, 59, 62, 63, 64, 67, 72, 73, 77, 82, 83, 86, 88, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 126, 129, 130, 132, 133, 137, 138, 141, 145, 155, 156, 161, 163, 171, 190, 194], "show": [81, 93, 187, 190, 192], "shown": 187, "shrink": [6, 8], "side": [17, 21], "sigma": [108, 114, 115, 119, 192], "sigmoid": 17, "sign": [25, 27, 79, 92, 93, 95, 116, 118, 119, 120, 190], "signal": [17, 79, 92, 93, 95], "significantli": [18, 21, 67, 70, 150, 152], "similar": [38, 47, 83, 88], "simpl": [57, 60, 61, 62, 83, 132, 135, 163, 169, 193], "simple_augment_config": [132, 135], "simple_config": [132, 184], "simpleaug": [132, 135], "simpleaugmentconfig": [132, 135, 194], "simpleitk": 83, "simpli": [18, 21, 22, 24, 25, 27, 30, 33, 38, 93, 103, 169], "sinc": [10, 18, 20, 21, 49, 54, 67, 68], "singl": [3, 17, 21, 38, 41, 67, 82, 83, 88, 145, 149, 152, 166, 192, 193, 194], "singleton": [119, 121, 155, 156], "site": 192, "sitk": 83, "situat": [92, 93], "size": [3, 15, 17, 18, 21, 38, 44, 46, 59, 62, 67, 68, 70, 104, 106, 107, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 122, 127, 136, 137, 138, 140, 141, 150, 152, 176, 180, 181, 186, 192, 193], "skew": 83, "skimag": 192, "slab": [115, 119, 178], "slab_count": 178, "slab_rang": 178, "slice": [3, 178, 192], "small": 17, "small_unet": 194, "smaller": [17, 35, 38], "smaller_tensor": 17, "smooth": [157, 190], "smooth_valu": 157, "snap": [150, 152], "snap_to_grid": [38, 47], "snapshot": [67, 70, 127, 136, 137, 138, 140, 160, 168, 192, 194], "snapshot_contain": [127, 136, 138, 140, 160, 168], "snapshot_interv": [137, 138, 192, 194], "snapshot_it": 192, "snapshot_iter": [136, 138], "snapshotcontain": [127, 138], "so": [31, 38, 58, 62, 93, 116, 118, 119, 120, 126, 182, 187, 192, 193, 194], "softmax": [67, 68], "some": [106, 108, 138, 140, 160, 168, 192, 193, 194], "someth": [67, 68], "soon": [17, 21], "sort": [192, 193], "sourc": [33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 131, 132, 149, 152, 180, 181, 187], "source_arrai": [33, 38], "source_array_config": [32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 192], "space": [83, 186], "spars": 182, "spatial": [15, 17, 21, 67, 68, 116, 118, 119, 120, 122, 150, 152], "spatial_shap": 17, "spawn": [1, 5, 6, 8, 9], "spawn_work": [1, 5, 6, 7, 8, 9], "spec": [150, 152, 180], "special": [31, 38, 49, 54, 58, 62, 93, 126], "specif": [11, 12, 13, 14, 15, 21, 23, 38, 47, 49, 54, 59, 62, 71, 72, 73, 74, 75, 115, 119, 132, 133, 134, 135, 136, 138, 140, 141, 166, 169, 171, 172, 173, 180, 188, 189, 192, 193, 194], "specifi": [11, 12, 13, 14, 26, 27, 35, 38, 49, 54, 59, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 106, 108, 127, 138, 143, 145, 150, 152, 153, 165, 166, 170, 171, 180, 185, 186, 190, 192, 194], "specified_loc": [63, 64], "speed": [150, 152], "sphinx": [184, 187], "sphinx_autodoc_typehint": 187, "sphinx_click": 187, "sphinx_rtd_them": 187, "split": [57, 58, 59, 60, 61, 62, 65, 66, 82, 83, 88, 89, 98, 99, 127, 138, 182, 192], "split_vi": 182, "spread": 190, "squar": [93, 94, 98, 99, 101], "stabl": 192, "stack": 3, "stack_infer": 3, "stack_postprocess": 3, "standard": [11, 12, 13, 54, 56, 62, 66, 93, 125, 130, 132, 150, 152, 157, 180], "star": 162, "start": [1, 5, 6, 8, 9, 67, 69, 70, 93, 103, 124, 178, 181, 184, 185, 186, 189, 192, 193], "start_config": [67, 70, 71, 72, 73, 74, 184], "start_neuroglanc": 181, "start_typ": [72, 73, 75], "start_work": [1, 5, 6, 7, 8, 9], "start_worker_fn": [1, 5, 6, 8, 9], "startconfig": [67, 70, 72, 73, 75], "starter": [71, 72, 73, 74, 75], "stat": [67, 69, 127, 136, 138, 142, 143, 145, 166, 171, 172, 181, 192, 194], "state": [49, 54, 69, 150, 151, 152, 169, 173, 181, 192], "statement": [81, 93], "static": [59, 62, 69, 82, 84, 86, 88, 89, 187], "statist": [67, 127, 136, 138, 140, 142, 143, 156, 164, 166, 171, 172, 194], "stats_stor": [167, 181, 184, 192], "statsstor": [164, 172], "statu": [81, 93], "std": 83, "step": [150, 152, 185, 194], "still": [192, 193], "stop": [181, 192, 193], "storag": [160, 168, 170, 188, 190, 192], "store": [0, 1, 5, 6, 8, 9, 12, 13, 14, 17, 21, 31, 38, 47, 52, 53, 71, 72, 73, 74, 75, 82, 83, 84, 86, 87, 88, 89, 104, 106, 108, 109, 111, 113, 116, 119, 138, 140, 155, 156, 157, 158, 159, 175, 181, 183, 184, 190, 193, 194], "store_architecture_config": [161, 165, 170, 192, 194], "store_array_config": [161, 165, 170], "store_best": [82, 84, 86, 87, 88, 89, 169], "store_dataset_config": 170, "store_datasplit_config": [161, 165, 170, 192, 194], "store_run_config": [161, 165, 170, 192, 194], "store_task_config": [161, 165, 170, 192, 194], "store_trainer_config": [161, 165, 170, 192, 194], "store_training_stat": [166, 171, 172], "store_typ": [52, 53], "store_validation_iteration_scor": [166, 171, 172], "store_weight": [169, 173], "str": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 54, 58, 59, 61, 62, 63, 64, 67, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 99, 103, 108, 110, 116, 118, 119, 120, 121, 123, 124, 126, 128, 136, 138, 141, 145, 146, 155, 156, 157, 158, 160, 161, 162, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 180, 181, 183, 186], "stride": [17, 157], "string": [0, 20, 21, 31, 36, 37, 38, 47, 48, 54, 59, 61, 62, 63, 64, 81, 93, 116, 118, 119, 120, 126, 128, 138, 146, 155, 160, 162, 163, 187], "structur": [67, 69, 70, 142, 143, 144, 162, 163, 169, 180, 193], "structure_fallback_factori": 163, "structurehook": 163, "style": 187, "sub": [150, 152], "sub_task_config": [93, 124], "subclass": [11, 13, 14, 23, 24, 31, 34, 35, 38, 43, 45, 46, 47, 52, 53, 72, 73, 76, 77, 78, 79, 80, 81, 91, 93, 94, 95, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 115, 117, 118, 119, 120, 121, 122, 124, 126, 129, 132, 134, 135, 136, 138, 140, 141, 147, 148, 149, 152, 163], "subdirectori": [166, 169], "subgraph": [149, 152], "subplot": 192, "subsampl": [130, 132, 150, 152, 171, 194], "subscor": [67, 145], "subsequ": 188, "subset": [67, 145], "sum": [26, 27, 38, 45, 83, 98, 99, 178, 182], "sum_array_config": [38, 184], "sumarrayconfig": [38, 45], "summari": [187, 194], "super": [18, 21], "support": [18, 21, 38, 47, 59, 62, 152, 154, 160, 164, 166, 177, 190, 194], "sure": [38, 47, 176, 192], "sv": 182, "swig": 83, "sy": 187, "symant": [32, 38, 42], "symlink": 169, "symmetr": [17, 182], "system": [20, 21, 24, 26, 27, 29, 189], "t": [10, 18, 21, 160, 168, 181, 185, 186, 189, 192, 194], "tabl": [182, 188], "tag": 189, "take": [13, 14, 17, 22, 24, 25, 27, 30, 37, 38, 39, 40, 41, 45, 67, 83, 87, 88, 104, 108, 109, 145, 178, 188], "taken": [67, 142], "tanh": [79, 92, 93, 95, 116, 118, 119, 120], "target": [17, 59, 62, 96, 97, 98, 99, 100, 101, 115, 116, 117, 118, 119, 120, 121, 122, 136, 138, 140, 148, 150, 152, 192, 194], "target_filt": [148, 152], "target_kei": [148, 152], "target_resolut": 59, "target_roi": [150, 152], "target_spec": [115, 116, 118, 119, 120, 122], "task": [0, 2, 4, 7, 17, 21, 59, 62, 67, 69, 70, 71, 72, 73, 75, 127, 136, 138, 140, 145, 148, 152, 155, 161, 165, 170, 184, 190, 193, 194], "task1": [161, 165], "task_0": 170, "task_config": [67, 70, 76, 78, 80, 81, 91, 93, 94, 102, 123, 124, 161, 165, 170, 184, 192, 194], "task_id": 10, "task_nam": [161, 165, 170], "task_typ": [77, 79, 81, 92, 93, 95, 103, 124], "taskconfig": [67, 70, 77, 79, 81, 92, 93, 95, 103, 124, 126, 161, 162, 165, 170], "team": 190, "technic": [118, 119], "techniqu": [190, 192, 193], "templat": [187, 192, 194], "templates_path": 187, "temporari": [6, 7, 8], "tensor": [17, 19, 21, 67, 68, 96, 97, 98, 99, 100, 101, 119, 122, 173], "tensorflow": [17, 21, 190], "term": 83, "test": [20, 21, 36, 38, 51, 54, 80, 81, 83, 85, 88, 90, 93, 97, 99, 127, 128, 138, 150, 152, 192], "test_binari": 83, "test_edt": 83, "test_empti": 83, "test_itk": 83, "test_mask": 83, "text": 185, "than": [17, 18, 21, 67, 79, 83, 87, 88, 93, 104, 107, 108, 112, 127, 138, 143, 145, 166, 178], "thei": [48, 54, 67, 77, 93, 116, 118, 119, 120, 145, 187], "them": [17, 71, 73, 74, 155, 156, 163, 166, 192, 193, 194], "theme": 187, "therefor": [119, 122], "thi": [2, 4, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 145, 146, 147, 148, 149, 150, 152, 155, 156, 160, 161, 162, 163, 168, 169, 173, 177, 182, 183, 184, 185, 187, 188, 189, 193, 194], "those": [48, 54, 92, 93, 190], "thread": [166, 181], "three": [192, 193], "threshold": [1, 3, 9, 83, 93, 94, 104, 106, 108, 111, 112, 114, 116, 118, 119, 120, 122, 190], "threshold_post_processor": [108, 184], "threshold_post_processor_paramet": [108, 111, 184], "threshold_work": [4, 184], "thresholdpostprocessor": [78, 91, 93, 108, 111], "thresholdpostprocessorparamet": [108, 111, 112], "through": [116, 118, 119, 120, 194], "thrown": [71, 73, 74], "thumb": 187, "ti": 190, "tif": 190, "tiff": 46, "tiff_array_config": [38, 184], "tiffarrayconfig": 46, "time": [2, 4, 7, 17, 21, 67, 98, 99, 142, 188], "timeout": [2, 4, 7, 186], "titl": [190, 192], "tmp": [155, 184], "tmpdir": [6, 8], "to_arrai": [36, 37, 38, 39, 40], "to_ndarrai": [177, 192], "to_toml": [35, 38], "to_xarrai": [67, 143, 145, 192], "todo": [169, 194], "togeth": [192, 193], "tol_dist": [79, 83, 88, 92, 93, 95, 192], "toler": [79, 82, 83, 88, 92, 93, 95], "tomancak": [18, 21], "toml": [35, 38], "toml_path": [35, 38], "too": [17, 35, 38], "took": [67, 142, 194], "top": [18, 21, 162, 163], "torch": [13, 14, 17, 19, 21, 67, 68, 69, 96, 97, 98, 99, 100, 101, 127, 136, 138, 140, 173, 190], "torchsummari": 194, "total": [67, 70, 83, 96, 97, 99, 150, 152, 186], "total_frac": 178, "total_roi": [2, 4, 7, 10, 186], "tp": [82, 83, 88], "tpu": [11, 12, 13], "tqdm": 192, "tqdmwarn": 192, "tr": 186, "traceback": 146, "track": 23, "tracker": 3, "tracker_consensu": 3, "trackers_dict": 3, "traffic": 185, "train": [0, 5, 11, 13, 18, 21, 54, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 93, 97, 99, 100, 116, 118, 119, 120, 121, 122, 127, 136, 137, 138, 140, 141, 142, 143, 155, 158, 166, 168, 171, 172, 180, 184, 190, 193, 194], "train_arrai": 194, "train_config": [61, 62, 66, 192], "train_run": [175, 192, 194], "train_until": 69, "train_validate_datasplit": [62, 184], "train_validate_datasplit_config": [62, 184], "trainabl": [67, 68], "trained_until": [67, 143], "trainer": [67, 69, 70, 161, 165, 170, 184, 190, 193, 194], "trainer1": [161, 165], "trainer_0": 170, "trainer_config": [67, 70, 127, 128, 136, 138, 161, 165, 170, 184, 192, 194], "trainer_nam": [161, 165, 170], "trainer_typ": [128, 137, 138], "trainerconfig": [67, 70, 138, 141, 161, 165, 170, 194], "training_iteration_stat": [67, 138, 140, 143, 184], "training_stat": [67, 69, 166, 171, 172, 184, 192], "trainingiterationstat": [67, 127, 136, 138, 140, 142, 143, 166], "trainingstat": [67, 69, 143, 171, 172], "trainvalidatedatasplit": [62, 65], "trainvalidatedatasplitconfig": [62, 66, 192], "transform": [79, 83, 92, 93, 95, 108, 113, 114, 116, 118, 119, 138, 140, 148, 150, 152, 192, 193, 194], "translat": [17, 192, 193], "transpos": [17, 18, 21, 192], "transposed_conv": 17, "treat": [77, 93, 115, 119], "tree": 192, "true": [0, 3, 8, 17, 21, 23, 25, 26, 27, 28, 30, 31, 37, 38, 47, 49, 54, 58, 59, 62, 69, 79, 82, 83, 84, 86, 88, 89, 90, 92, 93, 115, 118, 119, 127, 136, 138, 140, 141, 147, 152, 155, 157, 158, 163, 175, 176, 178, 180, 181, 182, 186, 192, 194], "true_posit": 83, "true_positives_with_toler": 83, "truth": [48, 54, 55, 56, 59, 62, 63, 64, 83, 87, 88, 90, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 138, 140, 148, 152, 154, 181, 182, 192, 194], "truth_binari": 83, "truth_edt": 83, "truth_empti": 83, "truth_itk": 83, "truth_mask": 83, "try": 161, "tupl": [3, 6, 10, 16, 17, 20, 21, 31, 32, 36, 37, 38, 42, 47, 49, 51, 54, 58, 61, 62, 67, 68, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 98, 99, 115, 117, 118, 119, 121, 122, 124, 126, 128, 130, 131, 132, 133, 136, 138, 141, 145, 150, 152, 160, 168, 176, 178, 180], "turn": [32, 38, 39, 42, 116, 119, 121], "tutorial_run": 194, "twice": [98, 99], "two": [17, 21, 24, 67, 83, 87, 88, 90, 98, 99, 145, 150, 152, 153, 170, 180, 182, 188], "typ": [162, 163], "type": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 44, 47, 48, 49, 50, 51, 52, 53, 54, 56, 59, 61, 62, 63, 64, 67, 68, 69, 71, 73, 74, 81, 82, 83, 85, 88, 90, 92, 93, 99, 100, 102, 103, 108, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 178, 180, 181, 182, 185, 186, 190, 192, 194], "type_overrid": 163, "typedconvert": 163, "typeerror": [160, 162, 163], "typic": [87, 88], "u": [17, 21, 190, 194], "uint16": [22, 27], "uint32": [3, 22, 27], "uint64": [22, 27, 32, 38, 39, 42], "uint8": [0, 22, 27, 155, 158, 180, 186, 192], "undefin": 83, "under": [162, 163, 182], "undergon": 190, "undersegment": 182, "undoc": 187, "unet": [17, 18, 21, 192, 193], "unet_class": [18, 21], "uniform": [150, 152], "uniform_3d_rot": [130, 132, 150, 152, 194], "uniformli": [130, 132], "union": [38, 40, 41, 45, 82, 84, 86, 87, 88, 89], "uniqu": [16, 21, 31, 38, 49, 54, 63, 64, 67, 70, 90, 93, 126, 138, 141, 178, 193], "unit": [17, 21, 46, 180, 192], "unknown": [12, 13], "unlik": [83, 85, 87, 88, 90], "unprocess": 190, "unstruct_collection_overrid": 163, "unstruct_strat": 163, "unstructur": [162, 163], "unstructure_fallback_factori": 163, "unstructurehook": 163, "unstructurestrategi": 163, "until": [152, 154, 192], "unus": [130, 132], "up": [17, 21, 38, 44, 67, 119, 122, 138, 140, 145, 147, 148, 149, 150, 152, 153, 154, 160, 168, 180, 185, 188, 194], "upath": [0, 1, 2, 4, 5, 7, 8, 9, 38, 46, 47, 59, 62, 93, 124, 155, 156, 158, 160, 165], "updat": [67, 145, 150, 152, 155, 156, 166, 181, 185, 192], "update_best_info": 181, "update_best_lay": 181, "update_neuroglanc": 181, "update_with_new_validation_if_poss": 181, "updated_frac": 178, "updated_neuroglancer_lay": 181, "upper": [82, 88, 151, 152, 186], "upsampl": [17, 18, 21, 38, 44, 59, 62], "upsample_channel_contract": [17, 21], "upsample_factor": [17, 18, 21], "upstream": [2, 4, 7, 150, 152, 154], "upstream_task": [2, 4, 7], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 152, 154, 155, 156, 158, 162, 163, 165, 166, 168, 170, 171, 177, 180, 181, 182, 185, 186, 187, 188, 189, 190, 192, 193, 194], "usag": [160, 168, 187], "use_attent": [17, 18, 21], "use_gpu": 3, "use_negative_class": [59, 62], "use_quant": 3, "user": [49, 54, 155, 156, 165, 170, 185, 192], "user_instal": 192, "usual": [99, 100, 119, 122, 150, 152], "util": [155, 184, 190, 192, 193], "v": [152, 154, 190], "val": 59, "valid": [0, 1, 5, 9, 16, 17, 20, 21, 31, 35, 36, 37, 38, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 81, 82, 83, 85, 86, 87, 88, 90, 93, 126, 128, 138, 141, 144, 145, 155, 157, 160, 166, 168, 171, 172, 181, 184, 192, 193, 194], "validate_config": [62, 66, 192], "validate_run": 183, "validated_until": [67, 145], "validation_contain": [160, 168], "validation_dataset": [0, 155, 181, 186], "validation_input_arrai": [160, 168], "validation_interv": [67, 69, 70, 171, 192, 194], "validation_it": 192, "validation_iteration_scor": [67, 145, 184], "validation_output_arrai": [160, 168], "validation_paramet": 181, "validation_prediction_arrai": [160, 168], "validation_scor": [67, 69, 87, 88, 157, 166, 171, 172, 184, 192], "validation_score_nam": 157, "validationiterationscor": [67, 144, 145, 166, 171, 172], "validationscor": [67, 69, 87, 88, 145, 171, 172], "valu": [6, 13, 14, 22, 24, 25, 26, 27, 28, 29, 33, 38, 49, 54, 59, 62, 67, 77, 79, 82, 83, 88, 93, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 115, 116, 118, 119, 126, 127, 128, 131, 132, 133, 136, 137, 138, 142, 145, 150, 152, 157, 177, 178, 180, 182], "value_typ": 83, "valueerror": [0, 12, 13, 17, 21, 36, 37, 38, 59, 62, 67, 82, 83, 85, 88, 90, 96, 99, 127, 138, 145, 155, 157, 158, 164, 166, 168, 170, 171, 172, 173, 175, 180, 181, 182, 186], "variabl": [130, 132, 185, 189, 192], "variat": [12, 13, 14, 15, 21, 82, 83, 88, 89, 90, 182], "variou": [63, 64, 83, 88, 136, 138, 140, 194], "vd": 186, "ve": 194, "vector": [27, 30, 83, 93, 103], "veri": [79, 92, 93, 95, 194], "verif": [51, 54, 61, 62], "verifi": [16, 20, 21, 31, 36, 37, 38, 47, 49, 51, 52, 53, 54, 56, 58, 61, 62, 77, 79, 81, 92, 93, 124, 126, 128, 138, 141], "versa": 182, "version": [33, 34, 38, 43, 188, 191], "vi": 182, "vi_tabl": 182, "via": [18, 21, 116, 118, 119, 120, 147, 152, 192], "vice": 182, "video": 190, "view": [3, 17, 21, 48, 54, 179, 184, 194], "viewer": [181, 192], "viewerst": 181, "visibl": [150, 152, 162, 163], "vision": 83, "visual": [69, 136, 138, 181, 190], "visualize_pipelin": [69, 136, 138], "voi": [0, 82, 83, 88, 89, 90, 155, 179, 184, 186, 192], "voi_merg": [88, 89, 90], "voi_split": [88, 89, 90], "vol": 3, "volum": [3, 7, 23, 32, 35, 38, 39, 42, 59, 62, 131, 132, 180, 189, 190, 192, 193, 194], "vote": 3, "voxel": [15, 17, 18, 21, 22, 24, 25, 27, 28, 30, 32, 38, 39, 42, 44, 46, 54, 56, 59, 62, 67, 68, 76, 77, 93, 103, 108, 109, 115, 116, 118, 119, 120, 122, 130, 132, 150, 152, 176, 180, 181, 182, 186], "voxel_s": [17, 21, 38, 46, 47, 67, 68, 115, 116, 118, 119, 120, 150, 152, 174, 176, 180, 181, 192], "voxel_size_input": 71, "voxel_size_output": 71, "w": [178, 186, 192], "w_g": 17, "w_spars": 178, "w_x": 17, "wa": [73, 74, 146, 181], "wai": [11, 12, 13, 14, 79, 93, 95, 125, 192, 194], "wait": 7, "want": [17, 34, 38, 43, 44, 67, 68, 145, 193, 194], "warn": 186, "watersh": [10, 108, 113, 114], "watershed_funct": [4, 108, 113, 184], "watershed_post_processor": [108, 184], "watershed_post_processor_paramet": [108, 113, 184], "watershedpostprocessor": [76, 93, 108, 113, 114], "watershedpostprocessorparamet": [108, 113, 114, 192], "we": [13, 14, 17, 18, 21, 67, 145, 149, 152, 154, 160, 168, 182, 188, 190, 192, 193, 194], "web": [189, 191, 194], "webserv": [69, 136, 138, 181], "websit": 189, "weigel": 190, "weight": [0, 17, 48, 49, 54, 55, 69, 71, 72, 73, 74, 75, 77, 79, 82, 86, 88, 93, 96, 97, 98, 99, 100, 101, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 136, 138, 148, 152, 155, 164, 169, 173, 178, 183, 192, 194], "weights_kei": [148, 152], "weights_stor": [167, 169, 184], "weightsstor": [164, 173], "well": [83, 92, 93, 190], "were": [25, 27, 30], "wether": [86, 87, 88], "what": [67, 145], "when": [17, 18, 20, 21, 59, 67, 68, 73, 74, 99, 100, 145, 146, 161, 165, 182, 187], "whenev": [81, 93], "where": [17, 22, 27, 30, 54, 56, 67, 79, 82, 83, 88, 90, 92, 93, 104, 108, 136, 138, 140, 145, 147, 152, 155, 158, 160, 165, 168, 169, 192, 193, 194], "wherea": [54, 56], "whether": [0, 3, 7, 8, 17, 18, 20, 21, 31, 36, 37, 38, 47, 67, 69, 77, 79, 82, 83, 84, 86, 87, 88, 89, 92, 93, 115, 116, 118, 119, 126, 127, 128, 136, 137, 138, 141, 145, 150, 152, 157, 171, 180, 181, 182, 186, 192, 193], "which": [11, 12, 13, 14, 17, 18, 21, 22, 23, 25, 27, 28, 30, 32, 33, 38, 39, 40, 41, 42, 44, 45, 54, 56, 67, 69, 71, 73, 74, 77, 79, 83, 85, 87, 88, 90, 92, 93, 95, 103, 108, 109, 116, 118, 119, 120, 122, 129, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 148, 151, 152, 160, 162, 163, 166, 169, 171, 173, 181, 186, 192], "while": [67, 68, 84, 88], "who": [137, 138], "whole": [0, 155], "whose": 17, "why": [31, 38, 47, 93, 126, 128, 138, 141], "width": [17, 21, 180, 181], "william": [187, 190], "window": 181, "wise": [17, 182], "within": [17, 21, 59, 62, 82, 83, 88, 116, 118, 119, 120, 132, 133, 180, 192], "without": [69, 71, 73, 81, 93, 150, 152, 194], "won": 192, "word": 182, "work": [10, 38, 47, 67, 145, 162, 163, 185, 192, 194], "worker": [0, 1, 2, 4, 5, 6, 7, 8, 9, 67, 70, 104, 106, 108, 109, 111, 113, 137, 138, 155, 158, 186], "worker_fil": [2, 4, 7, 186], "worker_funct": [2, 4, 7], "world": [130, 132, 150, 152, 180], "would": [119, 122, 160, 168], "wr": 186, "wrap": [11, 12, 13, 14], "wrap_command": [12, 13, 14], "wrapped_command": [12, 13], "wrapper": [17, 21], "write": [2, 4, 7, 156, 160, 168, 186], "write_roi": [2, 4, 7, 10], "write_roi_s": 186, "write_s": 174, "written": [186, 194], "www": 187, "x": [17, 19, 21, 38, 47, 67, 68, 98, 99, 162, 163, 176, 182, 186, 192], "x1_kei": [152, 153], "x2_kei": [152, 153], "x64": 192, "xarrai": [67, 143, 145, 192], "xlabel": 192, "xlogx": 182, "xr": [67, 143], "xy": 3, "y": [17, 19, 21, 38, 47, 162, 163, 176, 182, 185, 186, 192], "y_kei": [152, 153], "yaml": [155, 156, 169, 185, 190, 192, 194], "year": 190, "yet": [67, 143], "yield": [3, 127, 138], "ylabel": 192, "you": [31, 34, 38, 43, 44, 47, 67, 68, 79, 92, 93, 95, 119, 122, 126, 145, 185, 188, 189, 190, 193, 194], "your": [18, 21, 25, 26, 27, 28, 38, 39, 47, 77, 83, 85, 87, 88, 90, 93, 119, 122, 132, 134, 185, 187, 188, 189, 192, 193, 194], "your_key_pair": 185, "your_security_group": 185, "yum": 185, "yurii": 190, "z": [17, 19, 21, 38, 47, 176, 186, 192], "zarr": [0, 3, 38, 47, 59, 62, 83, 88, 90, 155, 158, 168, 190, 192, 194], "zarr_array_config": [38, 184], "zarrarrayconfig": [38, 47, 59, 192], "zero": [33, 38, 54, 56, 67, 83, 127, 138, 143, 178, 180, 182], "zerodivisionerror": 83, "zerossourc": 180, "zip": 178, "zouinkhi": [187, 190], "zubov": 190}, "titles": ["dacapo.apply", "dacapo.blockwise.argmax_worker", "dacapo.blockwise.blockwise_task", "dacapo.blockwise.empanada_function", "dacapo.blockwise", "dacapo.blockwise.predict_worker", "dacapo.blockwise.relabel_worker", "dacapo.blockwise.scheduler", "dacapo.blockwise.segment_worker", "dacapo.blockwise.threshold_worker", "dacapo.blockwise.watershed_function", "dacapo.compute_context.bsub", "dacapo.compute_context.compute_context", "dacapo.compute_context", "dacapo.compute_context.local_torch", "dacapo.experiments.architectures.architecture", "dacapo.experiments.architectures.architecture_config", "dacapo.experiments.architectures.cnnectome_unet", "dacapo.experiments.architectures.cnnectome_unet_config", "dacapo.experiments.architectures.dummy_architecture", "dacapo.experiments.architectures.dummy_architecture_config", "dacapo.experiments.architectures", "dacapo.experiments.arraytypes.annotations", "dacapo.experiments.arraytypes.arraytype", "dacapo.experiments.arraytypes.binary", "dacapo.experiments.arraytypes.distances", "dacapo.experiments.arraytypes.embedding", "dacapo.experiments.arraytypes", "dacapo.experiments.arraytypes.intensities", "dacapo.experiments.arraytypes.mask", "dacapo.experiments.arraytypes.probabilities", "dacapo.experiments.datasplits.datasets.arrays.array_config", "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", "dacapo.experiments.datasplits.datasets.arrays.concat_array_config", "dacapo.experiments.datasplits.datasets.arrays.constant_array_config", "dacapo.experiments.datasplits.datasets.arrays.crop_array_config", "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", "dacapo.experiments.datasplits.datasets.arrays", "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", "dacapo.experiments.datasplits.datasets.arrays.ones_array_config", "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", "dacapo.experiments.datasplits.datasets.arrays.sum_array_config", "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", "dacapo.experiments.datasplits.datasets.dataset", "dacapo.experiments.datasplits.datasets.dataset_config", "dacapo.experiments.datasplits.datasets.dummy_dataset", "dacapo.experiments.datasplits.datasets.dummy_dataset_config", "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", "dacapo.experiments.datasplits.datasets.graphstores", "dacapo.experiments.datasplits.datasets", "dacapo.experiments.datasplits.datasets.raw_gt_dataset", "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", "dacapo.experiments.datasplits.datasplit", "dacapo.experiments.datasplits.datasplit_config", "dacapo.experiments.datasplits.datasplit_generator", "dacapo.experiments.datasplits.dummy_datasplit", "dacapo.experiments.datasplits.dummy_datasplit_config", "dacapo.experiments.datasplits", "dacapo.experiments.datasplits.keys", "dacapo.experiments.datasplits.keys.keys", "dacapo.experiments.datasplits.train_validate_datasplit", "dacapo.experiments.datasplits.train_validate_datasplit_config", "dacapo.experiments", "dacapo.experiments.model", "dacapo.experiments.run", "dacapo.experiments.run_config", "dacapo.experiments.starts.cosem_start", "dacapo.experiments.starts.cosem_start_config", "dacapo.experiments.starts", "dacapo.experiments.starts.start", "dacapo.experiments.starts.start_config", "dacapo.experiments.tasks.affinities_task", "dacapo.experiments.tasks.affinities_task_config", "dacapo.experiments.tasks.distance_task", "dacapo.experiments.tasks.distance_task_config", "dacapo.experiments.tasks.dummy_task", "dacapo.experiments.tasks.dummy_task_config", "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", "dacapo.experiments.tasks.evaluators.dummy_evaluator", "dacapo.experiments.tasks.evaluators.evaluation_scores", "dacapo.experiments.tasks.evaluators.evaluator", "dacapo.experiments.tasks.evaluators", "dacapo.experiments.tasks.evaluators.instance_evaluation_scores", "dacapo.experiments.tasks.evaluators.instance_evaluator", "dacapo.experiments.tasks.hot_distance_task", "dacapo.experiments.tasks.hot_distance_task_config", "dacapo.experiments.tasks", "dacapo.experiments.tasks.inner_distance_task", "dacapo.experiments.tasks.inner_distance_task_config", "dacapo.experiments.tasks.losses.affinities_loss", "dacapo.experiments.tasks.losses.dummy_loss", "dacapo.experiments.tasks.losses.hot_distance_loss", "dacapo.experiments.tasks.losses", "dacapo.experiments.tasks.losses.loss", "dacapo.experiments.tasks.losses.mse_loss", "dacapo.experiments.tasks.one_hot_task", "dacapo.experiments.tasks.one_hot_task_config", "dacapo.experiments.tasks.post_processors.argmax_post_processor", "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", "dacapo.experiments.tasks.post_processors.dummy_post_processor", "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", "dacapo.experiments.tasks.post_processors", "dacapo.experiments.tasks.post_processors.post_processor", "dacapo.experiments.tasks.post_processors.post_processor_parameters", "dacapo.experiments.tasks.post_processors.threshold_post_processor", "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", "dacapo.experiments.tasks.post_processors.watershed_post_processor", "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", "dacapo.experiments.tasks.predictors.affinities_predictor", "dacapo.experiments.tasks.predictors.distance_predictor", "dacapo.experiments.tasks.predictors.dummy_predictor", "dacapo.experiments.tasks.predictors.hot_distance_predictor", "dacapo.experiments.tasks.predictors", "dacapo.experiments.tasks.predictors.inner_distance_predictor", "dacapo.experiments.tasks.predictors.one_hot_predictor", "dacapo.experiments.tasks.predictors.predictor", "dacapo.experiments.tasks.pretrained_task", "dacapo.experiments.tasks.pretrained_task_config", "dacapo.experiments.tasks.task", "dacapo.experiments.tasks.task_config", "dacapo.experiments.trainers.dummy_trainer", "dacapo.experiments.trainers.dummy_trainer_config", "dacapo.experiments.trainers.gp_augments.augment_config", "dacapo.experiments.trainers.gp_augments.elastic_config", "dacapo.experiments.trainers.gp_augments.gamma_config", "dacapo.experiments.trainers.gp_augments", "dacapo.experiments.trainers.gp_augments.intensity_config", "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", "dacapo.experiments.trainers.gp_augments.simple_config", "dacapo.experiments.trainers.gunpowder_trainer", "dacapo.experiments.trainers.gunpowder_trainer_config", "dacapo.experiments.trainers", "dacapo.experiments.trainers.optimizers", "dacapo.experiments.trainers.trainer", "dacapo.experiments.trainers.trainer_config", "dacapo.experiments.training_iteration_stats", "dacapo.experiments.training_stats", "dacapo.experiments.validation_iteration_scores", "dacapo.experiments.validation_scores", "dacapo.ext", "dacapo.gp.copy", "dacapo.gp.dacapo_create_target", "dacapo.gp.dacapo_points_source", "dacapo.gp.elastic_augment_fuse", "dacapo.gp.gamma_noise", "dacapo.gp", "dacapo.gp.product", "dacapo.gp.reject_if_empty", "dacapo", "dacapo.options", "dacapo.plot", "dacapo.predict", "dacapo.predict_local", "dacapo.store.array_store", "dacapo.store.config_store", "dacapo.store.conversion_hooks", "dacapo.store.converter", "dacapo.store.create_store", "dacapo.store.file_config_store", "dacapo.store.file_stats_store", "dacapo.store", "dacapo.store.local_array_store", "dacapo.store.local_weights_store", "dacapo.store.mongo_config_store", "dacapo.store.mongo_stats_store", "dacapo.store.stats_store", "dacapo.store.weights_store", "dacapo.tmp", "dacapo.train", "dacapo.utils.affinities", "dacapo.utils.array_utils", "dacapo.utils.balance_weights", "dacapo.utils", "dacapo.utils.pipeline", "dacapo.utils.view", "dacapo.utils.voi", "dacapo.validate", "API Reference", "AWS EC2 Setup Guide", "CLI", "<no title>", "Fine-Tune Cosem Starter", "Docker Configuration for JupyterHub-Dacapo", "DaCapo ", "Installation", "Minimal Tutorial", "Overview", "Tutorial: A Simple Experiment in Python"], "titleterms": {"": 190, "1": 188, "2": 188, "3": 188, "A": 194, "access": 185, "affin": 176, "affinities_loss": 96, "affinities_predictor": 115, "affinities_task": 76, "affinities_task_config": 77, "annot": 22, "api": 184, "appli": [0, 186], "architectur": [15, 16, 17, 18, 19, 20, 21, 192], "architecture_config": 16, "argmax_post_processor": 104, "argmax_post_processor_paramet": 105, "argmax_work": 1, "arrai": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], "array_config": 31, "array_stor": 160, "array_util": 177, "arraytyp": [22, 23, 24, 25, 26, 27, 28, 29, 30], "attribut": [0, 1, 3, 5, 6, 7, 8, 9, 59, 67, 70, 71, 74, 83, 87, 90, 116, 118, 120, 121, 136, 143, 150, 151, 154, 156, 157, 158, 159, 163, 165, 166, 168, 169, 170, 171, 175, 176, 183], "augment_config": 129, "avail": 188, "aw": 185, "balance_weight": 178, "binari": 24, "binarize_array_config": 32, "binary_segmentation_evalu": 83, "binary_segmentation_evaluation_scor": 82, "blockwis": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 186], "blockwise_task": 2, "bsub": 11, "build": 189, "checkpoint": 185, "cite": 190, "class": [2, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 160, 161, 163, 165, 166, 168, 169, 170, 171, 172, 173, 180, 181], "cli": 186, "cnnectome_unet": 17, "cnnectome_unet_config": 18, "compute_context": [11, 12, 13, 14], "concat_array_config": 33, "config": [186, 192, 194], "config_stor": 161, "configur": [185, 188, 189, 192], "constant_array_config": 34, "contain": 189, "content": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183], "conversion_hook": 162, "convert": 163, "copi": 147, "cosem": 188, "cosem_start": 71, "cosem_start_config": 72, "cosemstartconfig": 188, "creat": [188, 194], "create_stor": 164, "crop_array_config": 35, "dacapo": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 186, 189, 190, 193], "dacapo_create_target": 148, "dacapo_points_sourc": 149, "data": [185, 192, 194], "dataset": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "dataset_config": 49, "datasplit": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 192], "datasplit_config": 58, "datasplit_gener": 59, "distanc": 25, "distance_predictor": 116, "distance_task": 78, "distance_task_config": 79, "do": 192, "docker": [185, 189], "doe": 193, "dummy_architectur": 19, "dummy_architecture_config": 20, "dummy_array_config": 36, "dummy_dataset": 50, "dummy_dataset_config": 51, "dummy_datasplit": 60, "dummy_datasplit_config": 61, "dummy_evalu": 85, "dummy_evaluation_scor": 84, "dummy_loss": 97, "dummy_post_processor": 106, "dummy_post_processor_paramet": 107, "dummy_predictor": 117, "dummy_task": 80, "dummy_task_config": 81, "dummy_train": 127, "dummy_trainer_config": 128, "dvid_array_config": 37, "ec2": 185, "elastic_augment_fus": 150, "elastic_config": 130, "embed": 26, "empanada_funct": 3, "environ": 192, "evalu": [82, 83, 84, 85, 86, 87, 88, 89, 90], "evaluation_scor": 86, "exampl": [188, 190], "except": 161, "experi": [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 185, 194], "ext": 146, "file_config_stor": 165, "file_stats_stor": 166, "fine": 188, "full": 188, "function": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 59, 71, 74, 90, 155, 157, 158, 159, 162, 164, 174, 175, 176, 177, 178, 180, 181, 182, 183, 190], "further": 189, "gamma_config": 131, "gamma_nois": 151, "github": 190, "gp": [147, 148, 149, 150, 151, 152, 153, 154], "gp_augment": [129, 130, 131, 132, 133, 134, 135], "graph_source_config": 52, "graphstor": [52, 53], "guid": 185, "gunpowder_train": 136, "gunpowder_trainer_config": 137, "help": 190, "hot_distance_loss": 98, "hot_distance_predictor": 118, "hot_distance_task": 91, "hot_distance_task_config": 92, "how": 193, "i": 193, "imag": [185, 189], "import": 188, "inner_distance_predictor": 120, "inner_distance_task": 94, "inner_distance_task_config": 95, "instal": [190, 191, 194], "instance_evalu": 90, "instance_evaluation_scor": 89, "intens": 28, "intensity_array_config": 39, "intensity_config": 133, "intensity_scale_shift_config": 134, "introduct": 192, "jupyterhub": 189, "kei": [63, 64], "learn": 192, "librari": 192, "local_array_stor": 168, "local_torch": 14, "local_weights_stor": 169, "logical_or_array_config": 40, "loss": [96, 97, 98, 99, 100, 101], "mask": 29, "merge_instances_array_config": 41, "minim": 192, "missing_annotations_mask_config": 42, "model": [68, 188], "modul": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183], "mongo_config_stor": 170, "mongo_stats_stor": 171, "mse_loss": 101, "need": 192, "note": 188, "one_hot_predictor": 121, "one_hot_task": 102, "one_hot_task_config": 103, "ones_array_config": 43, "optim": 139, "option": 156, "org": 190, "overview": [190, 192, 193], "packag": [4, 13, 21, 27, 38, 53, 54, 62, 63, 67, 73, 88, 93, 99, 108, 119, 132, 138, 146, 152, 155], "pipelin": 180, "plot": 157, "post_processor": [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "post_processor_paramet": 110, "predict": [158, 186], "predict_loc": 159, "predict_work": 5, "predictor": [115, 116, 117, 118, 119, 120, 121, 122], "prepar": 192, "prerequisit": 188, "pretrain": 188, "pretrained_task": 123, "pretrained_task_config": 124, "probabl": 30, "product": 153, "python": 194, "raw_gt_dataset": 55, "raw_gt_dataset_config": 56, "refer": 184, "reject_if_empti": 154, "relabel_work": 6, "repo": 190, "requir": 189, "resampled_array_config": 44, "resourc": 190, "retriev": 192, "run": [69, 185, 186, 188, 189, 192, 194], "run_config": 70, "s3": 185, "schedul": 7, "segment": 186, "segment_work": 8, "setup": [185, 190, 192], "simpl": 194, "simple_config": 135, "star": 190, "start": [71, 72, 73, 74, 75, 188, 194], "start_config": [75, 188], "starter": 188, "stats_stor": 172, "step": 188, "stop": 189, "storag": 194, "store": [160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 185, 192], "submodul": [4, 13, 21, 27, 38, 53, 54, 62, 63, 67, 73, 88, 93, 99, 108, 119, 132, 138, 152, 155, 167, 179], "sum_array_config": 45, "task": [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 192], "task_config": 126, "thi": [190, 192], "threshold_post_processor": 111, "threshold_post_processor_paramet": 112, "threshold_work": 9, "tiff_array_config": 46, "tmp": 174, "tool": 190, "train": [175, 186, 192], "train_validate_datasplit": 65, "train_validate_datasplit_config": 66, "trainer": [127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 192], "trainer_config": 141, "training_iteration_stat": 142, "training_stat": 143, "tune": 188, "tutori": [190, 192, 194], "util": [176, 177, 178, 179, 180, 181, 182], "valid": [183, 186], "validation_iteration_scor": 144, "validation_scor": 145, "view": 181, "visual": 192, "voi": 182, "want": 192, "watershed_funct": 10, "watershed_post_processor": 113, "watershed_post_processor_paramet": 114, "weights_stor": 173, "what": [192, 193], "work": 193, "you": 192, "zarr_array_config": 47}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API Reference": [[184, null]], "AWS EC2 Setup Guide": [[185, null]], "Architecture": [[192, "architecture"]], "Attributes": [[0, "attributes"], [1, "attributes"], [3, "attributes"], [5, "attributes"], [6, "attributes"], [7, "attributes"], [8, "attributes"], [9, "attributes"], [59, "attributes"], [71, "attributes"], [74, "attributes"], [83, "attributes"], [87, "attributes"], [90, "attributes"], [116, "attributes"], [118, "attributes"], [120, "attributes"], [121, "attributes"], [136, "attributes"], [143, "attributes"], [150, "attributes"], [151, "attributes"], [154, "attributes"], [156, "attributes"], [157, "attributes"], [158, "attributes"], [159, "attributes"], [163, "attributes"], [165, "attributes"], [166, "attributes"], [168, "attributes"], [169, "attributes"], [170, "attributes"], [171, "attributes"], [175, "attributes"], [176, "attributes"], [183, "attributes"]], "Attributes:": [[67, "attributes"], [70, "attributes"]], "Available COSEM Pretrained Models": [[188, "available-cosem-pretrained-models"], [188, "id1"]], "Building the Docker Image": [[189, "building-the-docker-image"]], "CLI": [[186, null]], "Citing this repo": [[190, "citing-this-repo"]], "Classes": [[2, "classes"], [4, "classes"], [11, "classes"], [12, "classes"], [13, "classes"], [14, "classes"], [15, "classes"], [16, "classes"], [17, "classes"], [18, "classes"], [19, "classes"], [20, "classes"], [21, "classes"], [22, "classes"], [23, "classes"], [24, "classes"], [25, "classes"], [26, "classes"], [27, "classes"], [28, "classes"], [29, "classes"], [30, "classes"], [31, "classes"], [32, "classes"], [33, "classes"], [34, "classes"], [35, "classes"], [36, "classes"], [37, "classes"], [38, "classes"], [39, "classes"], [40, "classes"], [41, "classes"], [42, "classes"], [43, "classes"], [44, "classes"], [45, "classes"], [46, "classes"], [47, "classes"], [48, "classes"], [49, "classes"], [50, "classes"], [51, "classes"], [52, "classes"], [53, "classes"], [54, "classes"], [55, "classes"], [56, "classes"], [57, "classes"], [58, "classes"], [59, "classes"], [60, "classes"], [61, "classes"], [62, "classes"], [63, "classes"], [64, "classes"], [65, "classes"], [66, "classes"], [67, "classes"], [68, "classes"], [69, "classes"], [70, "classes"], [71, "classes"], [72, "classes"], [73, "classes"], [74, "classes"], [75, "classes"], [76, "classes"], [77, "classes"], [78, "classes"], [79, "classes"], [80, "classes"], [81, "classes"], [82, "classes"], [83, "classes"], [84, "classes"], [85, "classes"], [86, "classes"], [87, "classes"], [88, "classes"], [89, "classes"], [90, "classes"], [91, "classes"], [92, "classes"], [93, "classes"], [94, "classes"], [95, "classes"], [96, "classes"], [97, "classes"], [98, "classes"], [99, "classes"], [100, "classes"], [101, "classes"], [102, "classes"], [103, "classes"], [104, "classes"], [105, "classes"], [106, "classes"], [107, "classes"], [108, "classes"], [109, "classes"], [110, "classes"], [111, "classes"], [112, "classes"], [113, "classes"], [114, "classes"], [115, "classes"], [116, "classes"], [117, "classes"], [118, "classes"], [119, "classes"], [120, "classes"], [121, "classes"], [122, "classes"], [123, "classes"], [124, "classes"], [125, "classes"], [126, "classes"], [127, "classes"], [128, "classes"], [129, "classes"], [130, "classes"], [131, "classes"], [132, "classes"], [133, "classes"], [134, "classes"], [135, "classes"], [136, "classes"], [137, "classes"], [138, "classes"], [140, "classes"], [141, "classes"], [142, "classes"], [143, "classes"], [144, "classes"], [145, "classes"], [146, "classes"], [147, "classes"], [148, "classes"], [149, "classes"], [150, "classes"], [151, "classes"], [152, "classes"], [153, "classes"], [154, "classes"], [155, "classes"], [156, "classes"], [160, "classes"], [161, "classes"], [163, "classes"], [165, "classes"], [166, "classes"], [168, "classes"], [169, "classes"], [170, "classes"], [171, "classes"], [172, "classes"], [173, "classes"], [180, "classes"], [181, "classes"]], "Config Store": [[192, "config-store"]], "Configs": [[194, "configs"]], "Create a Run": [[194, "create-a-run"]], "DaCapo DaCapo GitHub Org's stars": [[190, null]], "Data Preparation": [[192, "data-preparation"]], "Data Storage": [[194, "data-storage"]], "Datasplit": [[192, "datasplit"]], "Docker Configuration for JupyterHub-Dacapo": [[189, null]], "Environment setup": [[192, "environment-setup"]], "Example Tutorial": [[190, "example-tutorial"]], "Exceptions": [[161, "exceptions"]], "Fine-Tune Cosem Starter": [[188, null]], "Full Example": [[188, "full-example"]], "Functionality Overview": [[190, "functionality-overview"]], "Functions": [[0, "functions"], [1, "functions"], [3, "functions"], [5, "functions"], [6, "functions"], [7, "functions"], [8, "functions"], [9, "functions"], [10, "functions"], [12, "functions"], [13, "functions"], [59, "functions"], [71, "functions"], [74, "functions"], [90, "functions"], [155, "functions"], [157, "functions"], [158, "functions"], [159, "functions"], [162, "functions"], [164, "functions"], [174, "functions"], [175, "functions"], [176, "functions"], [177, "functions"], [178, "functions"], [180, "functions"], [181, "functions"], [182, "functions"], [183, "functions"]], "Further Configuration": [[189, "further-configuration"]], "Helpful Resources & Tools": [[190, "helpful-resources-tools"]], "How does DaCapo work?": [[193, "how-does-dacapo-work"]], "Installation": [[191, null], [194, "installation"]], "Installation and Setup": [[190, "installation-and-setup"]], "Introduction and overview": [[192, "introduction-and-overview"]], "Minimal Tutorial": [[192, null]], "Module Contents": [[0, "module-contents"], [1, "module-contents"], [2, "module-contents"], [3, "module-contents"], [5, "module-contents"], [6, "module-contents"], [7, "module-contents"], [8, "module-contents"], [9, "module-contents"], [10, "module-contents"], [11, "module-contents"], [12, "module-contents"], [14, "module-contents"], [15, "module-contents"], [16, "module-contents"], [17, "module-contents"], [18, "module-contents"], [19, "module-contents"], [20, "module-contents"], [22, "module-contents"], [23, "module-contents"], [24, "module-contents"], [25, "module-contents"], [26, "module-contents"], [28, "module-contents"], [29, "module-contents"], [30, "module-contents"], [31, "module-contents"], [32, "module-contents"], [33, "module-contents"], [34, "module-contents"], [35, "module-contents"], [36, "module-contents"], [37, "module-contents"], [39, "module-contents"], [40, "module-contents"], [41, "module-contents"], [42, "module-contents"], [43, "module-contents"], [44, "module-contents"], [45, "module-contents"], [46, "module-contents"], [47, "module-contents"], [48, "module-contents"], [49, "module-contents"], [50, "module-contents"], [51, "module-contents"], [52, "module-contents"], [55, "module-contents"], [56, "module-contents"], [57, "module-contents"], [58, "module-contents"], [59, "module-contents"], [60, "module-contents"], [61, "module-contents"], [64, "module-contents"], [65, "module-contents"], [66, "module-contents"], [68, "module-contents"], [69, "module-contents"], [70, "module-contents"], [71, "module-contents"], [72, "module-contents"], [74, "module-contents"], [75, "module-contents"], [76, "module-contents"], [77, "module-contents"], [78, "module-contents"], [79, "module-contents"], [80, "module-contents"], [81, "module-contents"], [82, "module-contents"], [83, "module-contents"], [84, "module-contents"], [85, "module-contents"], [86, "module-contents"], [87, "module-contents"], [89, "module-contents"], [90, "module-contents"], [91, "module-contents"], [92, "module-contents"], [94, "module-contents"], [95, "module-contents"], [96, "module-contents"], [97, "module-contents"], [98, "module-contents"], [100, "module-contents"], [101, "module-contents"], [102, "module-contents"], [103, "module-contents"], [104, "module-contents"], [105, "module-contents"], [106, "module-contents"], [107, "module-contents"], [109, "module-contents"], [110, "module-contents"], [111, "module-contents"], [112, "module-contents"], [113, "module-contents"], [114, "module-contents"], [115, "module-contents"], [116, "module-contents"], [117, "module-contents"], [118, "module-contents"], [120, "module-contents"], [121, "module-contents"], [122, "module-contents"], [123, "module-contents"], [124, "module-contents"], [125, "module-contents"], [126, "module-contents"], [127, "module-contents"], [128, "module-contents"], [129, "module-contents"], [130, "module-contents"], [131, "module-contents"], [133, "module-contents"], [134, "module-contents"], [135, "module-contents"], [136, "module-contents"], [137, "module-contents"], [140, "module-contents"], [141, "module-contents"], [142, "module-contents"], [143, "module-contents"], [144, "module-contents"], [145, "module-contents"], [147, "module-contents"], [148, "module-contents"], [149, "module-contents"], [150, "module-contents"], [151, "module-contents"], [153, "module-contents"], [154, "module-contents"], [156, "module-contents"], [157, "module-contents"], [158, "module-contents"], [159, "module-contents"], [160, "module-contents"], [161, "module-contents"], [162, "module-contents"], [163, "module-contents"], [164, "module-contents"], [165, "module-contents"], [166, "module-contents"], [168, "module-contents"], [169, "module-contents"], [170, "module-contents"], [171, "module-contents"], [172, "module-contents"], [173, "module-contents"], [174, "module-contents"], [175, "module-contents"], [176, "module-contents"], [177, "module-contents"], [178, "module-contents"], [180, "module-contents"], [181, "module-contents"], [182, "module-contents"], [183, "module-contents"]], "Needed Libraries for this Tutorial": [[192, "needed-libraries-for-this-tutorial"]], "Notes": [[188, "notes"]], "Overview": [[193, null]], "Package Contents": [[4, "package-contents"], [13, "package-contents"], [21, "package-contents"], [27, "package-contents"], [38, "package-contents"], [53, "package-contents"], [54, "package-contents"], [62, "package-contents"], [63, "package-contents"], [67, "package-contents"], [73, "package-contents"], [88, "package-contents"], [93, "package-contents"], [99, "package-contents"], [108, "package-contents"], [119, "package-contents"], [132, "package-contents"], [138, "package-contents"], [146, "package-contents"], [152, "package-contents"], [155, "package-contents"]], "Prerequisites": [[188, "prerequisites"]], "Requirements": [[189, "requirements"]], "Retrieve Configurations": [[192, "retrieve-configurations"]], "Run": [[192, "run"]], "Running Docker Image on AWS EC2": [[185, "running-docker-image-on-aws-ec2"]], "Running the Docker Container": [[189, "running-the-docker-container"]], "S3 Access Configuration": [[185, "s3-access-configuration"]], "Start the Run": [[194, "start-the-run"]], "Step 1: Import the CosemStartConfig": [[188, "step-1-import-the-cosemstartconfig"]], "Step 2: Configure the Start Model": [[188, "step-2-configure-the-start-model"]], "Step 3: Create a Run with start_config": [[188, "step-3-create-a-run-with-start-config"]], "Stopping the Docker Container": [[189, "stopping-the-docker-container"]], "Storing Checkpoints and Experiments Data in S3": [[185, "storing-checkpoints-and-experiments-data-in-s3"]], "Submodules": [[4, "submodules"], [13, "submodules"], [21, "submodules"], [27, "submodules"], [38, "submodules"], [53, "submodules"], [54, "submodules"], [62, "submodules"], [63, "submodules"], [67, "submodules"], [73, "submodules"], [88, "submodules"], [93, "submodules"], [99, "submodules"], [108, "submodules"], [119, "submodules"], [132, "submodules"], [138, "submodules"], [152, "submodules"], [155, "submodules"], [167, "submodules"], [179, "submodules"]], "Task": [[192, "task"]], "Train": [[192, "train"]], "Trainer": [[192, "trainer"]], "Tutorial: A Simple Experiment in Python": [[194, null]], "Visualize": [[192, "visualize"]], "What do you want to learn?": [[192, "what-do-you-want-to-learn"]], "What is DaCapo?": [[193, "what-is-dacapo"]], "apply": [[186, "dacapo-apply"]], "config": [[186, "dacapo-config"]], "dacapo": [[155, null], [186, "dacapo"]], "dacapo.apply": [[0, null]], "dacapo.blockwise": [[4, null]], "dacapo.blockwise.argmax_worker": [[1, null]], "dacapo.blockwise.blockwise_task": [[2, null]], "dacapo.blockwise.empanada_function": [[3, null]], "dacapo.blockwise.predict_worker": [[5, null]], "dacapo.blockwise.relabel_worker": [[6, null]], "dacapo.blockwise.scheduler": [[7, null]], "dacapo.blockwise.segment_worker": [[8, null]], "dacapo.blockwise.threshold_worker": [[9, null]], "dacapo.blockwise.watershed_function": [[10, null]], "dacapo.compute_context": [[13, null]], "dacapo.compute_context.bsub": [[11, null]], "dacapo.compute_context.compute_context": [[12, null]], "dacapo.compute_context.local_torch": [[14, null]], "dacapo.experiments": [[67, null]], "dacapo.experiments.architectures": [[21, null]], "dacapo.experiments.architectures.architecture": [[15, null]], "dacapo.experiments.architectures.architecture_config": [[16, null]], "dacapo.experiments.architectures.cnnectome_unet": [[17, null]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, null]], "dacapo.experiments.architectures.dummy_architecture": [[19, null]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, null]], "dacapo.experiments.arraytypes": [[27, null]], "dacapo.experiments.arraytypes.annotations": [[22, null]], "dacapo.experiments.arraytypes.arraytype": [[23, null]], "dacapo.experiments.arraytypes.binary": [[24, null]], "dacapo.experiments.arraytypes.distances": [[25, null]], "dacapo.experiments.arraytypes.embedding": [[26, null]], "dacapo.experiments.arraytypes.intensities": [[28, null]], "dacapo.experiments.arraytypes.mask": [[29, null]], "dacapo.experiments.arraytypes.probabilities": [[30, null]], "dacapo.experiments.datasplits": [[62, null]], "dacapo.experiments.datasplits.datasets": [[54, null]], "dacapo.experiments.datasplits.datasets.arrays": [[38, null]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, null]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, null]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, null]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, null]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, null]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, null]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, null]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, null]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, null]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, null]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, null]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, null]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, null]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, null]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, null]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, null]], "dacapo.experiments.datasplits.datasets.dataset": [[48, null]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, null]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, null]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, null]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, null]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, null]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, null]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, null]], "dacapo.experiments.datasplits.datasplit": [[57, null]], "dacapo.experiments.datasplits.datasplit_config": [[58, null]], "dacapo.experiments.datasplits.datasplit_generator": [[59, null]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, null]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, null]], "dacapo.experiments.datasplits.keys": [[63, null]], "dacapo.experiments.datasplits.keys.keys": [[64, null]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, null]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, null]], "dacapo.experiments.model": [[68, null]], "dacapo.experiments.run": [[69, null]], "dacapo.experiments.run_config": [[70, null]], "dacapo.experiments.starts": [[73, null]], "dacapo.experiments.starts.cosem_start": [[71, null]], "dacapo.experiments.starts.cosem_start_config": [[72, null]], "dacapo.experiments.starts.start": [[74, null]], "dacapo.experiments.starts.start_config": [[75, null]], "dacapo.experiments.tasks": [[93, null]], "dacapo.experiments.tasks.affinities_task": [[76, null]], "dacapo.experiments.tasks.affinities_task_config": [[77, null]], "dacapo.experiments.tasks.distance_task": [[78, null]], "dacapo.experiments.tasks.distance_task_config": [[79, null]], "dacapo.experiments.tasks.dummy_task": [[80, null]], "dacapo.experiments.tasks.dummy_task_config": [[81, null]], "dacapo.experiments.tasks.evaluators": [[88, null]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, null]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, null]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, null]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, null]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, null]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, null]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, null]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, null]], "dacapo.experiments.tasks.hot_distance_task": [[91, null]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, null]], "dacapo.experiments.tasks.inner_distance_task": [[94, null]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, null]], "dacapo.experiments.tasks.losses": [[99, null]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, null]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, null]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, null]], "dacapo.experiments.tasks.losses.loss": [[100, null]], "dacapo.experiments.tasks.losses.mse_loss": [[101, null]], "dacapo.experiments.tasks.one_hot_task": [[102, null]], "dacapo.experiments.tasks.one_hot_task_config": [[103, null]], "dacapo.experiments.tasks.post_processors": [[108, null]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, null]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, null]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, null]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, null]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, null]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, null]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, null]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, null]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, null]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, null]], "dacapo.experiments.tasks.predictors": [[119, null]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, null]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, null]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, null]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, null]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, null]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, null]], "dacapo.experiments.tasks.predictors.predictor": [[122, null]], "dacapo.experiments.tasks.pretrained_task": [[123, null]], "dacapo.experiments.tasks.pretrained_task_config": [[124, null]], "dacapo.experiments.tasks.task": [[125, null]], "dacapo.experiments.tasks.task_config": [[126, null]], "dacapo.experiments.trainers": [[138, null]], "dacapo.experiments.trainers.dummy_trainer": [[127, null]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, null]], "dacapo.experiments.trainers.gp_augments": [[132, null]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, null]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, null]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, null]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, null]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, null]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, null]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, null]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, null]], "dacapo.experiments.trainers.optimizers": [[139, null]], "dacapo.experiments.trainers.trainer": [[140, null]], "dacapo.experiments.trainers.trainer_config": [[141, null]], "dacapo.experiments.training_iteration_stats": [[142, null]], "dacapo.experiments.training_stats": [[143, null]], "dacapo.experiments.validation_iteration_scores": [[144, null]], "dacapo.experiments.validation_scores": [[145, null]], "dacapo.ext": [[146, null]], "dacapo.gp": [[152, null]], "dacapo.gp.copy": [[147, null]], "dacapo.gp.dacapo_create_target": [[148, null]], "dacapo.gp.dacapo_points_source": [[149, null]], "dacapo.gp.elastic_augment_fuse": [[150, null]], "dacapo.gp.gamma_noise": [[151, null]], "dacapo.gp.product": [[153, null]], "dacapo.gp.reject_if_empty": [[154, null]], "dacapo.options": [[156, null]], "dacapo.plot": [[157, null]], "dacapo.predict": [[158, null]], "dacapo.predict_local": [[159, null]], "dacapo.store": [[167, null]], "dacapo.store.array_store": [[160, null]], "dacapo.store.config_store": [[161, null]], "dacapo.store.conversion_hooks": [[162, null]], "dacapo.store.converter": [[163, null]], "dacapo.store.create_store": [[164, null]], "dacapo.store.file_config_store": [[165, null]], "dacapo.store.file_stats_store": [[166, null]], "dacapo.store.local_array_store": [[168, null]], "dacapo.store.local_weights_store": [[169, null]], "dacapo.store.mongo_config_store": [[170, null]], "dacapo.store.mongo_stats_store": [[171, null]], "dacapo.store.stats_store": [[172, null]], "dacapo.store.weights_store": [[173, null]], "dacapo.tmp": [[174, null]], "dacapo.train": [[175, null]], "dacapo.utils": [[179, null]], "dacapo.utils.affinities": [[176, null]], "dacapo.utils.array_utils": [[177, null]], "dacapo.utils.balance_weights": [[178, null]], "dacapo.utils.pipeline": [[180, null]], "dacapo.utils.view": [[181, null]], "dacapo.utils.voi": [[182, null]], "dacapo.validate": [[183, null]], "predict": [[186, "dacapo-predict"]], "run-blockwise": [[186, "dacapo-run-blockwise"]], "segment-blockwise": [[186, "dacapo-segment-blockwise"]], "train": [[186, "dacapo-train"]], "validate": [[186, "dacapo-validate"]]}, "docnames": ["autoapi/dacapo/apply/index", "autoapi/dacapo/blockwise/argmax_worker/index", "autoapi/dacapo/blockwise/blockwise_task/index", "autoapi/dacapo/blockwise/empanada_function/index", "autoapi/dacapo/blockwise/index", "autoapi/dacapo/blockwise/predict_worker/index", "autoapi/dacapo/blockwise/relabel_worker/index", "autoapi/dacapo/blockwise/scheduler/index", "autoapi/dacapo/blockwise/segment_worker/index", "autoapi/dacapo/blockwise/threshold_worker/index", "autoapi/dacapo/blockwise/watershed_function/index", "autoapi/dacapo/compute_context/bsub/index", "autoapi/dacapo/compute_context/compute_context/index", "autoapi/dacapo/compute_context/index", "autoapi/dacapo/compute_context/local_torch/index", "autoapi/dacapo/experiments/architectures/architecture/index", "autoapi/dacapo/experiments/architectures/architecture_config/index", "autoapi/dacapo/experiments/architectures/cnnectome_unet/index", "autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index", "autoapi/dacapo/experiments/architectures/dummy_architecture/index", "autoapi/dacapo/experiments/architectures/dummy_architecture_config/index", "autoapi/dacapo/experiments/architectures/index", "autoapi/dacapo/experiments/arraytypes/annotations/index", "autoapi/dacapo/experiments/arraytypes/arraytype/index", "autoapi/dacapo/experiments/arraytypes/binary/index", "autoapi/dacapo/experiments/arraytypes/distances/index", "autoapi/dacapo/experiments/arraytypes/embedding/index", "autoapi/dacapo/experiments/arraytypes/index", "autoapi/dacapo/experiments/arraytypes/intensities/index", "autoapi/dacapo/experiments/arraytypes/mask/index", "autoapi/dacapo/experiments/arraytypes/probabilities/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index", "autoapi/dacapo/experiments/datasplits/datasets/dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/index", "autoapi/dacapo/experiments/datasplits/datasets/index", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index", "autoapi/dacapo/experiments/datasplits/datasplit/index", "autoapi/dacapo/experiments/datasplits/datasplit_config/index", "autoapi/dacapo/experiments/datasplits/datasplit_generator/index", "autoapi/dacapo/experiments/datasplits/dummy_datasplit/index", "autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index", "autoapi/dacapo/experiments/datasplits/index", "autoapi/dacapo/experiments/datasplits/keys/index", "autoapi/dacapo/experiments/datasplits/keys/keys/index", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index", "autoapi/dacapo/experiments/index", "autoapi/dacapo/experiments/model/index", "autoapi/dacapo/experiments/run/index", "autoapi/dacapo/experiments/run_config/index", "autoapi/dacapo/experiments/starts/cosem_start/index", "autoapi/dacapo/experiments/starts/cosem_start_config/index", "autoapi/dacapo/experiments/starts/index", "autoapi/dacapo/experiments/starts/start/index", "autoapi/dacapo/experiments/starts/start_config/index", "autoapi/dacapo/experiments/tasks/affinities_task/index", "autoapi/dacapo/experiments/tasks/affinities_task_config/index", "autoapi/dacapo/experiments/tasks/distance_task/index", "autoapi/dacapo/experiments/tasks/distance_task_config/index", "autoapi/dacapo/experiments/tasks/dummy_task/index", "autoapi/dacapo/experiments/tasks/dummy_task_config/index", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/evaluator/index", "autoapi/dacapo/experiments/tasks/evaluators/index", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index", "autoapi/dacapo/experiments/tasks/hot_distance_task/index", "autoapi/dacapo/experiments/tasks/hot_distance_task_config/index", "autoapi/dacapo/experiments/tasks/index", "autoapi/dacapo/experiments/tasks/inner_distance_task/index", "autoapi/dacapo/experiments/tasks/inner_distance_task_config/index", "autoapi/dacapo/experiments/tasks/losses/affinities_loss/index", "autoapi/dacapo/experiments/tasks/losses/dummy_loss/index", "autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index", "autoapi/dacapo/experiments/tasks/losses/index", "autoapi/dacapo/experiments/tasks/losses/loss/index", "autoapi/dacapo/experiments/tasks/losses/mse_loss/index", "autoapi/dacapo/experiments/tasks/one_hot_task/index", "autoapi/dacapo/experiments/tasks/one_hot_task_config/index", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/index", "autoapi/dacapo/experiments/tasks/post_processors/post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index", "autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/index", "autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index", "autoapi/dacapo/experiments/tasks/predictors/predictor/index", "autoapi/dacapo/experiments/tasks/pretrained_task/index", "autoapi/dacapo/experiments/tasks/pretrained_task_config/index", "autoapi/dacapo/experiments/tasks/task/index", "autoapi/dacapo/experiments/tasks/task_config/index", "autoapi/dacapo/experiments/trainers/dummy_trainer/index", "autoapi/dacapo/experiments/trainers/dummy_trainer_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/index", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index", "autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index", "autoapi/dacapo/experiments/trainers/gunpowder_trainer/index", "autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index", "autoapi/dacapo/experiments/trainers/index", "autoapi/dacapo/experiments/trainers/optimizers/index", "autoapi/dacapo/experiments/trainers/trainer/index", "autoapi/dacapo/experiments/trainers/trainer_config/index", "autoapi/dacapo/experiments/training_iteration_stats/index", "autoapi/dacapo/experiments/training_stats/index", "autoapi/dacapo/experiments/validation_iteration_scores/index", "autoapi/dacapo/experiments/validation_scores/index", "autoapi/dacapo/ext/index", "autoapi/dacapo/gp/copy/index", "autoapi/dacapo/gp/dacapo_create_target/index", "autoapi/dacapo/gp/dacapo_points_source/index", "autoapi/dacapo/gp/elastic_augment_fuse/index", "autoapi/dacapo/gp/gamma_noise/index", "autoapi/dacapo/gp/index", "autoapi/dacapo/gp/product/index", "autoapi/dacapo/gp/reject_if_empty/index", "autoapi/dacapo/index", "autoapi/dacapo/options/index", "autoapi/dacapo/plot/index", "autoapi/dacapo/predict/index", "autoapi/dacapo/predict_local/index", "autoapi/dacapo/store/array_store/index", "autoapi/dacapo/store/config_store/index", "autoapi/dacapo/store/conversion_hooks/index", "autoapi/dacapo/store/converter/index", "autoapi/dacapo/store/create_store/index", "autoapi/dacapo/store/file_config_store/index", "autoapi/dacapo/store/file_stats_store/index", "autoapi/dacapo/store/index", "autoapi/dacapo/store/local_array_store/index", "autoapi/dacapo/store/local_weights_store/index", "autoapi/dacapo/store/mongo_config_store/index", "autoapi/dacapo/store/mongo_stats_store/index", "autoapi/dacapo/store/stats_store/index", "autoapi/dacapo/store/weights_store/index", "autoapi/dacapo/tmp/index", "autoapi/dacapo/train/index", "autoapi/dacapo/utils/affinities/index", "autoapi/dacapo/utils/array_utils/index", "autoapi/dacapo/utils/balance_weights/index", "autoapi/dacapo/utils/index", "autoapi/dacapo/utils/pipeline/index", "autoapi/dacapo/utils/view/index", "autoapi/dacapo/utils/voi/index", "autoapi/dacapo/validate/index", "autoapi/index", "aws", "cli", "conf", "cosem_starter", "docker", "index", "install", "notebooks/minimal_tutorial", "overview", "tutorial"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["autoapi/dacapo/apply/index.rst", "autoapi/dacapo/blockwise/argmax_worker/index.rst", "autoapi/dacapo/blockwise/blockwise_task/index.rst", "autoapi/dacapo/blockwise/empanada_function/index.rst", "autoapi/dacapo/blockwise/index.rst", "autoapi/dacapo/blockwise/predict_worker/index.rst", "autoapi/dacapo/blockwise/relabel_worker/index.rst", "autoapi/dacapo/blockwise/scheduler/index.rst", "autoapi/dacapo/blockwise/segment_worker/index.rst", "autoapi/dacapo/blockwise/threshold_worker/index.rst", "autoapi/dacapo/blockwise/watershed_function/index.rst", "autoapi/dacapo/compute_context/bsub/index.rst", "autoapi/dacapo/compute_context/compute_context/index.rst", "autoapi/dacapo/compute_context/index.rst", "autoapi/dacapo/compute_context/local_torch/index.rst", "autoapi/dacapo/experiments/architectures/architecture/index.rst", "autoapi/dacapo/experiments/architectures/architecture_config/index.rst", "autoapi/dacapo/experiments/architectures/cnnectome_unet/index.rst", "autoapi/dacapo/experiments/architectures/cnnectome_unet_config/index.rst", "autoapi/dacapo/experiments/architectures/dummy_architecture/index.rst", "autoapi/dacapo/experiments/architectures/dummy_architecture_config/index.rst", "autoapi/dacapo/experiments/architectures/index.rst", "autoapi/dacapo/experiments/arraytypes/annotations/index.rst", "autoapi/dacapo/experiments/arraytypes/arraytype/index.rst", "autoapi/dacapo/experiments/arraytypes/binary/index.rst", "autoapi/dacapo/experiments/arraytypes/distances/index.rst", "autoapi/dacapo/experiments/arraytypes/embedding/index.rst", "autoapi/dacapo/experiments/arraytypes/index.rst", "autoapi/dacapo/experiments/arraytypes/intensities/index.rst", "autoapi/dacapo/experiments/arraytypes/mask/index.rst", "autoapi/dacapo/experiments/arraytypes/probabilities/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/binarize_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/concat_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/constant_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/crop_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dummy_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/dvid_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/intensity_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/logical_or_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/merge_instances_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/missing_annotations_mask_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/ones_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/resampled_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/sum_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/tiff_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/arrays/zarr_array_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/dummy_dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/graph_source_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/graphstores/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset/index.rst", "autoapi/dacapo/experiments/datasplits/datasets/raw_gt_dataset_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit_config/index.rst", "autoapi/dacapo/experiments/datasplits/datasplit_generator/index.rst", "autoapi/dacapo/experiments/datasplits/dummy_datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/dummy_datasplit_config/index.rst", "autoapi/dacapo/experiments/datasplits/index.rst", "autoapi/dacapo/experiments/datasplits/keys/index.rst", "autoapi/dacapo/experiments/datasplits/keys/keys/index.rst", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit/index.rst", "autoapi/dacapo/experiments/datasplits/train_validate_datasplit_config/index.rst", "autoapi/dacapo/experiments/index.rst", "autoapi/dacapo/experiments/model/index.rst", "autoapi/dacapo/experiments/run/index.rst", "autoapi/dacapo/experiments/run_config/index.rst", "autoapi/dacapo/experiments/starts/cosem_start/index.rst", "autoapi/dacapo/experiments/starts/cosem_start_config/index.rst", "autoapi/dacapo/experiments/starts/index.rst", "autoapi/dacapo/experiments/starts/start/index.rst", "autoapi/dacapo/experiments/starts/start_config/index.rst", "autoapi/dacapo/experiments/tasks/affinities_task/index.rst", "autoapi/dacapo/experiments/tasks/affinities_task_config/index.rst", "autoapi/dacapo/experiments/tasks/distance_task/index.rst", "autoapi/dacapo/experiments/tasks/distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/dummy_task/index.rst", "autoapi/dacapo/experiments/tasks/dummy_task_config/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/binary_segmentation_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/dummy_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/evaluator/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluation_scores/index.rst", "autoapi/dacapo/experiments/tasks/evaluators/instance_evaluator/index.rst", "autoapi/dacapo/experiments/tasks/hot_distance_task/index.rst", "autoapi/dacapo/experiments/tasks/hot_distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/index.rst", "autoapi/dacapo/experiments/tasks/inner_distance_task/index.rst", "autoapi/dacapo/experiments/tasks/inner_distance_task_config/index.rst", "autoapi/dacapo/experiments/tasks/losses/affinities_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/dummy_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/hot_distance_loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/index.rst", "autoapi/dacapo/experiments/tasks/losses/loss/index.rst", "autoapi/dacapo/experiments/tasks/losses/mse_loss/index.rst", "autoapi/dacapo/experiments/tasks/one_hot_task/index.rst", "autoapi/dacapo/experiments/tasks/one_hot_task_config/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/argmax_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/dummy_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/threshold_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor/index.rst", "autoapi/dacapo/experiments/tasks/post_processors/watershed_post_processor_parameters/index.rst", "autoapi/dacapo/experiments/tasks/predictors/affinities_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/dummy_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/hot_distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/index.rst", "autoapi/dacapo/experiments/tasks/predictors/inner_distance_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/one_hot_predictor/index.rst", "autoapi/dacapo/experiments/tasks/predictors/predictor/index.rst", "autoapi/dacapo/experiments/tasks/pretrained_task/index.rst", "autoapi/dacapo/experiments/tasks/pretrained_task_config/index.rst", "autoapi/dacapo/experiments/tasks/task/index.rst", "autoapi/dacapo/experiments/tasks/task_config/index.rst", "autoapi/dacapo/experiments/trainers/dummy_trainer/index.rst", "autoapi/dacapo/experiments/trainers/dummy_trainer_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/augment_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/elastic_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/gamma_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/intensity_scale_shift_config/index.rst", "autoapi/dacapo/experiments/trainers/gp_augments/simple_config/index.rst", "autoapi/dacapo/experiments/trainers/gunpowder_trainer/index.rst", "autoapi/dacapo/experiments/trainers/gunpowder_trainer_config/index.rst", "autoapi/dacapo/experiments/trainers/index.rst", "autoapi/dacapo/experiments/trainers/optimizers/index.rst", "autoapi/dacapo/experiments/trainers/trainer/index.rst", "autoapi/dacapo/experiments/trainers/trainer_config/index.rst", "autoapi/dacapo/experiments/training_iteration_stats/index.rst", "autoapi/dacapo/experiments/training_stats/index.rst", "autoapi/dacapo/experiments/validation_iteration_scores/index.rst", "autoapi/dacapo/experiments/validation_scores/index.rst", "autoapi/dacapo/ext/index.rst", "autoapi/dacapo/gp/copy/index.rst", "autoapi/dacapo/gp/dacapo_create_target/index.rst", "autoapi/dacapo/gp/dacapo_points_source/index.rst", "autoapi/dacapo/gp/elastic_augment_fuse/index.rst", "autoapi/dacapo/gp/gamma_noise/index.rst", "autoapi/dacapo/gp/index.rst", "autoapi/dacapo/gp/product/index.rst", "autoapi/dacapo/gp/reject_if_empty/index.rst", "autoapi/dacapo/index.rst", "autoapi/dacapo/options/index.rst", "autoapi/dacapo/plot/index.rst", "autoapi/dacapo/predict/index.rst", "autoapi/dacapo/predict_local/index.rst", "autoapi/dacapo/store/array_store/index.rst", "autoapi/dacapo/store/config_store/index.rst", "autoapi/dacapo/store/conversion_hooks/index.rst", "autoapi/dacapo/store/converter/index.rst", "autoapi/dacapo/store/create_store/index.rst", "autoapi/dacapo/store/file_config_store/index.rst", "autoapi/dacapo/store/file_stats_store/index.rst", "autoapi/dacapo/store/index.rst", "autoapi/dacapo/store/local_array_store/index.rst", "autoapi/dacapo/store/local_weights_store/index.rst", "autoapi/dacapo/store/mongo_config_store/index.rst", "autoapi/dacapo/store/mongo_stats_store/index.rst", "autoapi/dacapo/store/stats_store/index.rst", "autoapi/dacapo/store/weights_store/index.rst", "autoapi/dacapo/tmp/index.rst", "autoapi/dacapo/train/index.rst", "autoapi/dacapo/utils/affinities/index.rst", "autoapi/dacapo/utils/array_utils/index.rst", "autoapi/dacapo/utils/balance_weights/index.rst", "autoapi/dacapo/utils/index.rst", "autoapi/dacapo/utils/pipeline/index.rst", "autoapi/dacapo/utils/view/index.rst", "autoapi/dacapo/utils/voi/index.rst", "autoapi/dacapo/validate/index.rst", "autoapi/index.rst", "aws.rst", "cli.rst", "conf.py", "cosem_starter.rst", "docker.rst", "index.rst", "install.rst", "notebooks/minimal_tutorial.ipynb", "overview.rst", "tutorial.rst"], "indexentries": {"--channels_out": [[186, "cmdoption-dacapo-segment-blockwise-co", false]], "--context": [[186, "cmdoption-dacapo-segment-blockwise-c", false]], "--criterion": [[186, "cmdoption-dacapo-apply-c", false]], "--input_container": [[186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false]], "--input_dataset": [[186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-id", false]], "--iteration": [[186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-validate-i", false]], "--log-level": [[186, "cmdoption-dacapo-log-level", false]], "--max_retries": [[186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false]], "--no-validation": [[186, "cmdoption-dacapo-train-no-validation", false]], "--num_workers": [[186, "cmdoption-dacapo-apply-w", false], [186, "cmdoption-dacapo-predict-w", false], [186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false], [186, "cmdoption-dacapo-validate-w", false]], "--output_container": [[186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false]], "--output_dataset": [[186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-od", false]], "--output_dtype": [[186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-validate-dt", false]], "--output_path": [[186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-predict-op", false]], "--output_roi": [[186, "cmdoption-dacapo-predict-roi", false]], "--overwrite": [[186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-validate-ow", false]], "--parameters": [[186, "cmdoption-dacapo-apply-p", false]], "--read_roi_size": [[186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false]], "--roi": [[186, "cmdoption-dacapo-apply-roi", false]], "--run-name": [[186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-train-r", false], [186, "cmdoption-dacapo-validate-r", false]], "--segment_function_file": [[186, "cmdoption-dacapo-segment-blockwise-sf", false]], "--timeout": [[186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-t", false]], "--total_roi": [[186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false]], "--validation_dataset": [[186, "cmdoption-dacapo-apply-vd", false]], "--worker_file": [[186, "cmdoption-dacapo-run-blockwise-w", false]], "--write_roi_size": [[186, "cmdoption-dacapo-run-blockwise-wr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "-c": [[186, "cmdoption-dacapo-apply-c", false], [186, "cmdoption-dacapo-segment-blockwise-c", false]], "-channels_out": [[186, "cmdoption-dacapo-run-blockwise-co", false]], "-co": [[186, "cmdoption-dacapo-run-blockwise-co", false], [186, "cmdoption-dacapo-segment-blockwise-co", false]], "-dt": [[186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-validate-dt", false]], "-i": [[186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-validate-i", false]], "-ic": [[186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false]], "-id": [[186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-id", false]], "-mr": [[186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false]], "-nw": [[186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false]], "-oc": [[186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false]], "-od": [[186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-od", false]], "-op": [[186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-predict-op", false]], "-ow": [[186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-validate-ow", false]], "-p": [[186, "cmdoption-dacapo-apply-p", false]], "-r": [[186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-train-r", false], [186, "cmdoption-dacapo-validate-r", false]], "-roi": [[186, "cmdoption-dacapo-apply-roi", false], [186, "cmdoption-dacapo-predict-roi", false]], "-rr": [[186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false]], "-sf": [[186, "cmdoption-dacapo-segment-blockwise-sf", false]], "-t": [[186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-t", false]], "-tr": [[186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false]], "-vd": [[186, "cmdoption-dacapo-apply-vd", false]], "-w": [[186, "cmdoption-dacapo-apply-w", false], [186, "cmdoption-dacapo-predict-w", false], [186, "cmdoption-dacapo-run-blockwise-w", false], [186, "cmdoption-dacapo-validate-w", false]], "-wr": [[186, "cmdoption-dacapo-run-blockwise-wr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "__attrs_post_init__() (dacapo.experiments.arraytypes.intensities.intensitiesarray method)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.arraytypes.intensitiesarray method)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig method)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.__attrs_post_init__", false]], "__attrs_post_init__() (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.__attrs_post_init__", false]], "__augment() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.__augment", false]], "__augment() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.__augment", false]], "__enter__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__enter__", false]], "__enter__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__enter__", false]], "__eq__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__eq__", false]], "__eq__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__eq__", false]], "__exception (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__exception", false]], "__exit__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__exit__", false]], "__exit__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__exit__", false]], "__find_boundaries() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.__find_boundaries", false]], "__find_boundaries() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.__find_boundaries", false]], "__generate_semantic_seg_dataset_crop() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__generate_semantic_seg_dataset_crop", false]], "__generate_semantic_seg_dataset_crop() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__generate_semantic_seg_dataset_crop", false]], "__generate_semantic_seg_datasplit() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__generate_semantic_seg_datasplit", false]], "__generate_semantic_seg_datasplit() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__generate_semantic_seg_datasplit", false]], "__getattr__() (dacapo.ext.nosuchmodule method)": [[146, "dacapo.ext.NoSuchModule.__getattr__", false]], "__getitem__() (dacapo.experiments.datasplits.datasplit_generator.customenummeta method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta.__getitem__", false]], "__hash__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__hash__", false]], "__hash__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__hash__", false]], "__init__() (dacapo.blockwise.blockwise_task.dacapoblockwisetask method)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.__init__", false]], "__init__() (dacapo.blockwise.dacapoblockwisetask method)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset method)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.dummydataset method)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset method)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasets.rawgtdataset method)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasetspec method)": [[62, "dacapo.experiments.datasplits.DatasetSpec.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit method)": [[62, "dacapo.experiments.datasplits.DataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit.datasplit method)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit_generator.datasetspec method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__init__", false]], "__init__() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__init__", false]], "__init__() (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit method)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.dummydatasplit method)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit method)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig method)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.__init__", false]], "__init__() (dacapo.experiments.datasplits.trainvalidatedatasplit method)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.__init__", false]], "__init__() (dacapo.experiments.datasplits.trainvalidatedatasplitconfig method)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.__init__", false]], "__init__() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.__init__", false]], "__init__() (dacapo.experiments.starts.cosem_start_config.cosemstartconfig method)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.__init__", false]], "__init__() (dacapo.experiments.starts.cosemstartconfig method)": [[73, "dacapo.experiments.starts.CosemStartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.start method)": [[73, "dacapo.experiments.starts.Start.__init__", false]], "__init__() (dacapo.experiments.starts.start.start method)": [[74, "dacapo.experiments.starts.start.Start.__init__", false]], "__init__() (dacapo.experiments.starts.start_config.startconfig method)": [[75, "dacapo.experiments.starts.start_config.StartConfig.__init__", false]], "__init__() (dacapo.experiments.starts.startconfig method)": [[73, "dacapo.experiments.starts.StartConfig.__init__", false]], "__init__() (dacapo.experiments.tasks.affinities_task.affinitiestask method)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.__init__", false]], "__init__() (dacapo.experiments.tasks.affinitiestask method)": [[93, "dacapo.experiments.tasks.AffinitiesTask.__init__", false]], "__init__() (dacapo.experiments.tasks.distance_task.distancetask method)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.distancetask method)": [[93, "dacapo.experiments.tasks.DistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.dummy_task.dummytask method)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.__init__", false]], "__init__() (dacapo.experiments.tasks.dummytask method)": [[93, "dacapo.experiments.tasks.DummyTask.__init__", false]], "__init__() (dacapo.experiments.tasks.hot_distance_task.hotdistancetask method)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.hotdistancetask method)": [[93, "dacapo.experiments.tasks.HotDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.inner_distance_task.innerdistancetask method)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.__init__", false]], "__init__() (dacapo.experiments.tasks.innerdistancetask method)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.__init__", false]], "__init__() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.__init__", false]], "__init__() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.__init__", false]], "__init__() (dacapo.store.weights_store.weights method)": [[173, "dacapo.store.weights_store.Weights.__init__", false]], "__init_db() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__init_db", false]], "__iter__() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.__iter__", false]], "__iter__() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.__iter__", false]], "__load() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.__load", false]], "__name (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__name", false]], "__normalize() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.__normalize", false]], "__normalize() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.__normalize", false]], "__open_collections() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__open_collections", false]], "__parse_options() (dacapo.options method)": [[155, "dacapo.Options.__parse_options", false]], "__parse_options() (dacapo.options.options method)": [[156, "dacapo.options.Options.__parse_options", false]], "__parse_options_from_file() (dacapo.options method)": [[155, "dacapo.Options.__parse_options_from_file", false]], "__parse_options_from_file() (dacapo.options.options method)": [[156, "dacapo.options.Options.__parse_options_from_file", false]], "__repr__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__repr__", false]], "__repr__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__repr__", false]], "__same_doc() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__same_doc", false]], "__save_insert() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.__save_insert", false]], "__save_insert() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.__save_insert", false]], "__str__ (dacapo.experiments.datasplits.datasplit_generator.customenum attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnum.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasetspec method)": [[62, "dacapo.experiments.datasplits.DatasetSpec.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.customenum method)": [[59, "id0", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasetspec method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasettype method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplit_generator.segmentationtype method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.__str__", false]], "__str__() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.arraykey method)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.datakey method)": [[63, "dacapo.experiments.datasplits.keys.DataKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.graphkey method)": [[63, "dacapo.experiments.datasplits.keys.GraphKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.arraykey method)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.datakey method)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.__str__", false]], "__str__() (dacapo.experiments.datasplits.keys.keys.graphkey method)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey.__str__", false]], "__str__() (dacapo.store.config_store.duplicatenameerror method)": [[161, "dacapo.store.config_store.DuplicateNameError.__str__", false]], "__traceback_str (dacapo.ext.nosuchmodule attribute)": [[146, "dacapo.ext.NoSuchModule.__traceback_str", false]], "__typed_structure() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.__typed_structure", false]], "__typed_unstructure() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.__typed_unstructure", false]], "_axes (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig._axes", false]], "_axes (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig._axes", false]], "_device (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch._device", false]], "_device (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch._device", false]], "_eval_shape_increase (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig._eval_shape_increase", false]], "_eval_shape_increase (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig._eval_shape_increase", false]], "_grow_boundaries() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor._grow_boundaries", false]], "_grow_boundaries() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor._grow_boundaries", false]], "_gt_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._gt_key", false]], "_gt_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._gt_key", false]], "_gt_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._gt_key", false]], "_mask_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._mask_key", false]], "_mask_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._mask_key", false]], "_mask_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._mask_key", false]], "_member_names_ (dacapo.experiments.datasplits.datasplit_generator.customenummeta attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta._member_names_", false]], "_neuroglancer_layers() (dacapo.experiments.datasplits.datasets.dataset method)": [[54, "dacapo.experiments.datasplits.datasets.Dataset._neuroglancer_layers", false]], "_neuroglancer_layers() (dacapo.experiments.datasplits.datasets.dataset.dataset method)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset._neuroglancer_layers", false]], "_raw_key (dacapo.experiments.trainers.augmentconfig attribute)": [[138, "dacapo.experiments.trainers.AugmentConfig._raw_key", false]], "_raw_key (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig attribute)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig._raw_key", false]], "_raw_key (dacapo.experiments.trainers.gp_augments.augmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig._raw_key", false]], "_spec (dacapo.utils.pipeline.zerossource attribute)": [[180, "dacapo.utils.pipeline.ZerosSource._spec", false]], "_wrap_command() (dacapo.compute_context.bsub method)": [[13, "dacapo.compute_context.Bsub._wrap_command", false]], "_wrap_command() (dacapo.compute_context.bsub.bsub method)": [[11, "dacapo.compute_context.bsub.Bsub._wrap_command", false]], "_wrap_command() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext._wrap_command", false]], "_wrap_command() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext._wrap_command", false]], "_wrap_command() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch._wrap_command", false]], "_wrap_command() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch._wrap_command", false]], "activation (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.activation", false]], "activation (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.activation", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.activation_on_upsample", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.activation_on_upsample", false]], "activation_on_upsample (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.activation_on_upsample", false]], "add_iteration_scores() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.add_iteration_scores", false], [145, "id5", false]], "add_iteration_scores() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.add_iteration_scores", false], [67, "id23", false]], "add_iteration_stats() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.add_iteration_stats", false]], "add_iteration_stats() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.add_iteration_stats", false]], "add_scalar_layer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.add_scalar_layer", false]], "add_seg_layer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.add_seg_layer", false]], "affinitiesloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss", false]], "affinitiesloss (class in dacapo.experiments.tasks.losses.affinities_loss)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss", false]], "affinitiespredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor", false]], "affinitiespredictor (class in dacapo.experiments.tasks.predictors.affinities_predictor)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor", false]], "affinitiestask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.AffinitiesTask", false]], "affinitiestask (class in dacapo.experiments.tasks.affinities_task)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask", false]], "affinitiestaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig", false]], "affinitiestaskconfig (class in dacapo.experiments.tasks.affinities_task_config)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig", false]], "affs_weight_clipmax (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.affs_weight_clipmax", false], [77, "id6", false]], "affs_weight_clipmax (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.affs_weight_clipmax", false], [93, "id33", false]], "affs_weight_clipmax (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.affs_weight_clipmax", false], [115, "id5", false]], "affs_weight_clipmax (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.affs_weight_clipmax", false], [119, "id27", false]], "affs_weight_clipmin (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.affs_weight_clipmin", false], [77, "id5", false]], "affs_weight_clipmin (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.affs_weight_clipmin", false], [93, "id32", false]], "affs_weight_clipmin (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.affs_weight_clipmin", false], [115, "id4", false]], "affs_weight_clipmin (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.affs_weight_clipmin", false], [119, "id26", false]], "annotationarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.AnnotationArray", false]], "annotationarray (class in dacapo.experiments.arraytypes.annotations)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray", false]], "apply() (in module dacapo)": [[155, "dacapo.apply", false]], "apply() (in module dacapo.apply)": [[0, "dacapo.apply.apply", false]], "apply_run() (in module dacapo.apply)": [[0, "dacapo.apply.apply_run", false]], "architecture (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.Architecture", false]], "architecture (class in dacapo.experiments.architectures.architecture)": [[15, "dacapo.experiments.architectures.architecture.Architecture", false]], "architecture (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.architecture", false], [67, "id4", false]], "architecture (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.architecture", false], [68, "id4", false]], "architecture (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.architecture", false], [69, "id4", false]], "architecture_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.architecture_config", false]], "architecture_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.architecture_config", false]], "architecture_type (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "id0", false]], "architecture_type (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "id19", false]], "architecture_type (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.architecture_type", false], [20, "id0", false]], "architecture_type (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.architecture_type", false], [21, "id8", false]], "architecture_type() (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig method)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.architecture_type", false]], "architecture_type() (dacapo.experiments.architectures.cnnectomeunetconfig method)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.architecture_type", false]], "architectureconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.ArchitectureConfig", false]], "architectureconfig (class in dacapo.experiments.architectures.architecture_config)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig", false]], "architectures (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.architectures", false], [161, "id6", false]], "architectures (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.architectures", false]], "architectures (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.architectures", false]], "argmaxpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor", false]], "argmaxpostprocessor (class in dacapo.experiments.tasks.post_processors.argmax_post_processor)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor", false]], "argmaxpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters", false]], "argmaxpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters)": [[105, "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig method)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.arrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig method)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig method)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig method)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig method)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig method)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig method)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig method)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig method)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig method)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig method)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.sum_array_config.sumarrayconfig method)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.sumarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig method)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig method)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.array", false]], "array() (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.array", false]], "array_identifier() (dacapo.store.array_store.localcontaineridentifier method)": [[160, "dacapo.store.array_store.LocalContainerIdentifier.array_identifier", false]], "array_key (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.array_key", false], [147, "id0", false]], "array_key (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.array_key", false], [152, "id14", false]], "array_store (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.array_store", false], [181, "id5", false]], "array_store (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.array_store", false]], "arrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig", false]], "arrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.array_config)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig", false]], "arrayevaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator", false]], "arraykey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey", false]], "arraykey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey", false]], "arrays (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.arrays", false], [151, "id0", false]], "arrays (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.arrays", false], [152, "id6", false]], "arrays (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.arrays", false], [161, "id3", false]], "arrays (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.arrays", false]], "arrays (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.arrays", false]], "arraystore (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.ArrayStore", false]], "arraytype (class in dacapo.experiments.arraytypes.arraytype)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType", false]], "attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.attention", false]], "attentionblockmodule (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.simple_config.simpleaugmentconfig attribute)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.experiments.trainers.gp_augments.simpleaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig.augmentation_probability", false]], "augmentation_probability (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.augmentation_probability", false]], "augmentation_probability (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.augmentation_probability", false]], "augmentconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.AugmentConfig", false]], "augmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig", false]], "augmentconfig (class in dacapo.experiments.trainers.gp_augments.augment_config)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig", false]], "augments (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.augments", false], [136, "id6", false]], "augments (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.augments", false], [137, "id2", false]], "augments (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.augments", false], [138, "id27", false]], "augments (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.augments", false], [138, "id17", false]], "axis_names (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.axis_names", false], [46, "id3", false]], "background (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.background", false], [32, "id2", false]], "background (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.background", false], [38, "id9", false]], "background (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.background", false]], "background (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.background", false]], "background (dacapo.utils.pipeline.expandlabels attribute)": [[180, "dacapo.utils.pipeline.ExpandLabels.background", false], [180, "id13", false]], "background_as_object (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.background_as_object", false], [77, "id9", false]], "background_as_object (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.background_as_object", false], [93, "id36", false]], "background_as_object (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.background_as_object", false], [115, "id8", false]], "background_as_object (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.background_as_object", false], [119, "id30", false]], "balance_weights() (in module dacapo.utils.balance_weights)": [[178, "dacapo.utils.balance_weights.balance_weights", false]], "basedir (dacapo.store.local_array_store.localarraystore attribute)": [[168, "dacapo.store.local_array_store.LocalArrayStore.basedir", false], [168, "id0", false]], "basedir (dacapo.store.local_weights_store.localweightsstore attribute)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.basedir", false], [169, "id0", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.batch_norm", false]], "batch_norm (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.batch_norm", false]], "batch_size (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.batch_size", false], [127, "id1", false]], "batch_size (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.batch_size", false], [138, "id10", false]], "batch_size (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.batch_size", false], [136, "id1", false]], "batch_size (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.batch_size", false], [138, "id22", false]], "batch_size (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.batch_size", false], [138, "id1", false]], "batch_size (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.batch_size", false], [140, "id1", false]], "batch_size (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.batch_size", false], [141, "id1", false]], "batch_size (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.batch_size", false], [138, "id4", false]], "best_score (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.best_score", false], [181, "id10", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.best_scores", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "id13", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator.evaluator attribute)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.best_scores", false]], "best_scores (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "id1", false]], "best_validation_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.best_validation_array", false], [168, "id1", false]], "bestscore (class in dacapo.utils.view)": [[181, "dacapo.utils.view.BestScore", false]], "bestscore (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.BestScore", false]], "bg (in module dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BG", false]], "bias (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.bias", false], [114, "id0", false]], "bias (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.bias", false], [108, "id21", false]], "billing (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.billing", false], [13, "id9", false]], "billing (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.billing", false], [11, "id3", false]], "binarize_gt (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.binarize_gt", false]], "binarize_gt (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.binarize_gt", false]], "binarizearrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig", false]], "binarizearrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.binarize_array_config)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig", false]], "binaryarray (class in dacapo.experiments.arraytypes.binary)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray", false]], "binarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores", false]], "binarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores", false]], "binarysegmentationevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator", false]], "binarysegmentationevaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator", false]], "blipp_score (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.blipp_score", false], [84, "id1", false]], "blipp_score (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.blipp_score", false], [88, "id1", false]], "bokeh_plot_runs() (in module dacapo.plot)": [[157, "dacapo.plot.bokeh_plot_runs", false]], "bounds() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id3", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id3", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id2", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id10", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.bounds", false], [88, "id20", false]], "bounds() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.bounds", false], [87, "id8", false]], "bounds() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id4", false]], "bounds() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.bounds", false]], "bounds() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id54", false]], "bounds() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.bounds", false]], "bsub (class in dacapo.compute_context)": [[13, "dacapo.compute_context.Bsub", false]], "bsub (class in dacapo.compute_context.bsub)": [[11, "dacapo.compute_context.bsub.Bsub", false]], "build_batch_provider() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.build_batch_provider", false], [127, "id4", false]], "build_batch_provider() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.build_batch_provider", false], [138, "id13", false]], "build_batch_provider() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.build_batch_provider", false]], "build_batch_provider() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.build_batch_provider", false]], "calculate_and_apply_padding() (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.calculate_and_apply_padding", false]], "can_train() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.can_train", false], [127, "id5", false]], "can_train() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.can_train", false], [138, "id14", false]], "can_train() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.can_train", false]], "can_train() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.can_train", false]], "can_train() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.can_train", false]], "can_train() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.can_train", false]], "chain (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.chain", false], [67, "id6", false]], "chain (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.chain", false], [68, "id6", false]], "channel_names (dacapo.experiments.arraytypes.arraytype.arraytype attribute)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.channel_names", false]], "channel_scores (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.channel_scores", false], [82, "id21", false]], "channel_scores (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.channel_scores", false], [88, "id22", false]], "channels (dacapo.experiments.arraytypes.binary.binaryarray attribute)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray.channels", false], [24, "id0", false]], "channels (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.channels", false], [28, "id0", false]], "channels (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.channels", false], [27, "id2", false]], "channels (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.channels", false], [33, "id0", false]], "channels (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.channels", false], [38, "id20", false]], "channels (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.channels", false], [71, "id3", false]], "channels (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.channels", false], [73, "id7", false]], "channels (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.channels", false], [73, "id0", false]], "channels (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.channels", false], [74, "id0", false]], "channels (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.channels", false], [79, "id0", false]], "channels (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.channels", false], [93, "id10", false]], "channels (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.channels", false], [83, "id3", false]], "channels (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.channels", false], [88, "id47", false]], "channels (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.channels", false], [92, "id1", false]], "channels (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.channels", false], [93, "id50", false]], "channels (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.channels", false], [95, "id0", false]], "channels (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.channels", false], [93, "id41", false]], "channels (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.channels", false], [116, "id0", false]], "channels (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.channels", false], [119, "id5", false]], "channels (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.channels", false], [118, "id0", false]], "channels (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.channels", false], [119, "id46", false]], "channels (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.channels", false], [120, "id0", false]], "channels (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.channels", false], [119, "id40", false]], "channels_in (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.channels_in", false], [19, "id0", false]], "channels_in (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.channels_in", false], [21, "id12", false]], "channels_out (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.channels_out", false], [19, "id1", false]], "channels_out (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.channels_out", false], [21, "id13", false]], "check() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.check", false], [71, "id4", false]], "check() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.check", false], [73, "id8", false]], "check_class_name() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.check_class_name", false], [59, "id28", false]], "check_class_name() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.check_class_name", false], [62, "id31", false]], "class_name (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator property)": [[59, "id27", false]], "class_name (dacapo.experiments.datasplits.datasplitgenerator property)": [[62, "id30", false]], "class_name() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.class_name", false]], "class_name() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.class_name", false]], "classes (dacapo.experiments.arraytypes.annotationarray attribute)": [[27, "dacapo.experiments.arraytypes.AnnotationArray.classes", false], [27, "id0", false]], "classes (dacapo.experiments.arraytypes.annotations.annotationarray attribute)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray.classes", false], [22, "id0", false]], "classes (dacapo.experiments.arraytypes.distancearray attribute)": [[27, "dacapo.experiments.arraytypes.DistanceArray.classes", false], [27, "id6", false]], "classes (dacapo.experiments.arraytypes.distances.distancearray attribute)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.classes", false], [25, "id0", false]], "classes (dacapo.experiments.arraytypes.probabilities.probabilityarray attribute)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray.classes", false], [30, "id0", false]], "classes (dacapo.experiments.arraytypes.probabilityarray attribute)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray.classes", false], [27, "id11", false]], "classes (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig attribute)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.classes", false], [103, "id1", false]], "classes (dacapo.experiments.tasks.onehottaskconfig attribute)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.classes", false], [93, "id22", false]], "classes (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.classes", false]], "classes (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.classes", false]], "classes (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor attribute)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.classes", false], [121, "id0", false]], "classes (dacapo.experiments.tasks.predictors.onehotpredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.classes", false], [119, "id16", false]], "classes_separator_character (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.classes_separator_character", false], [59, "id25", false]], "classes_separator_character (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.classes_separator_character", false], [62, "id28", false]], "cli() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.cli", false]], "cli() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.cli", false]], "cli() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.cli", false]], "cli() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.cli", false]], "cli() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.cli", false]], "client (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.client", false], [170, "id2", false]], "client (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.client", false], [171, "id2", false]], "clip (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.clip", false], [133, "id2", false]], "clip (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.clip", false], [132, "id12", false]], "clip_distance (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clip_distance", false], [79, "id1", false]], "clip_distance (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clip_distance", false], [93, "id11", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.clip_distance", false], [83, "id1", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.clip_distance", false], [83, "id36", false]], "clip_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.clip_distance", false], [88, "id45", false]], "clip_distance (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.clip_distance", false], [92, "id2", false]], "clip_distance (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.clip_distance", false], [93, "id51", false]], "clip_distance (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.clip_distance", false], [95, "id1", false]], "clip_distance (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.clip_distance", false], [93, "id42", false]], "clip_raw (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.clip_raw", false], [136, "id8", false]], "clip_raw (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.clip_raw", false], [137, "id5", false]], "clip_raw (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.clip_raw", false], [138, "id29", false]], "clip_raw (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.clip_raw", false], [138, "id20", false]], "clipmax (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clipmax", false], [79, "id6", false]], "clipmax (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clipmax", false], [93, "id16", false]], "clipmax (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.clipmax", false], [116, "id3", false]], "clipmax (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.clipmax", false], [119, "id8", false]], "clipmin (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.clipmin", false], [79, "id5", false]], "clipmin (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.clipmin", false], [93, "id15", false]], "clipmin (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.clipmin", false], [116, "id2", false]], "clipmin (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.clipmin", false], [119, "id7", false]], "cls_fun() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.cls_fun", false]], "cnnectomeunet (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.CNNectomeUNet", false]], "cnnectomeunet (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet", false]], "cnnectomeunetconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig", false]], "cnnectomeunetconfig (class in dacapo.experiments.architectures.cnnectome_unet_config)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig", false]], "cnnectomeunetmodule (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule", false]], "compare() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.compare", false], [88, "id17", false]], "compare() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.compare", false], [87, "id5", false]], "compare() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.compare", false], [145, "id8", false]], "compare() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.compare", false], [67, "id26", false]], "compute() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.compute", false], [59, "id29", false]], "compute() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.compute", false], [62, "id32", false]], "compute() (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss method)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.compute", false], [96, "id2", false]], "compute() (dacapo.experiments.tasks.losses.affinitiesloss method)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.compute", false], [99, "id5", false]], "compute() (dacapo.experiments.tasks.losses.dummy_loss.dummyloss method)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss.compute", false], [97, "id0", false]], "compute() (dacapo.experiments.tasks.losses.dummyloss method)": [[99, "dacapo.experiments.tasks.losses.DummyLoss.compute", false], [99, "id0", false]], "compute() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.compute", false], [98, "id0", false]], "compute() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.compute", false], [99, "id6", false]], "compute() (dacapo.experiments.tasks.losses.loss method)": [[99, "dacapo.experiments.tasks.losses.Loss.compute", false], [99, "id2", false]], "compute() (dacapo.experiments.tasks.losses.loss.loss method)": [[100, "dacapo.experiments.tasks.losses.loss.Loss.compute", false], [100, "id0", false]], "compute() (dacapo.experiments.tasks.losses.mse_loss.mseloss method)": [[101, "dacapo.experiments.tasks.losses.mse_loss.MSELoss.compute", false], [101, "id0", false]], "compute() (dacapo.experiments.tasks.losses.mseloss method)": [[99, "dacapo.experiments.tasks.losses.MSELoss.compute", false], [99, "id1", false]], "compute_context (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.compute_context", false], [156, "id2", false]], "compute_output_shape() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.compute_output_shape", false]], "compute_output_shape() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.compute_output_shape", false]], "computecontext (class in dacapo.compute_context)": [[13, "dacapo.compute_context.ComputeContext", false]], "computecontext (class in dacapo.compute_context.compute_context)": [[12, "dacapo.compute_context.compute_context.ComputeContext", false]], "concatarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig", false]], "concatarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.concat_array_config)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig", false]], "config_file() (dacapo.options class method)": [[155, "id1", false]], "config_file() (dacapo.options method)": [[155, "dacapo.Options.config_file", false]], "config_file() (dacapo.options.options class method)": [[156, "id7", false]], "config_file() (dacapo.options.options method)": [[156, "dacapo.options.Options.config_file", false]], "configstore (class in dacapo.store.config_store)": [[161, "dacapo.store.config_store.ConfigStore", false]], "connectivity (dacapo.utils.pipeline.relabel attribute)": [[180, "dacapo.utils.pipeline.Relabel.connectivity", false]], "constant (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig attribute)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.constant", false]], "constant (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.constant", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.constant_upsample", false], [17, "id7", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.constant_upsample", false]], "constant_upsample (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.constant_upsample", false], [18, "id10", false]], "constant_upsample (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.constant_upsample", false], [21, "id39", false]], "constant_upsample (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.constant_upsample", false], [21, "id29", false]], "constantarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig", false]], "constantarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.constant_array_config)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig", false]], "container (dacapo.store.array_store.arraystore attribute)": [[160, "dacapo.store.array_store.ArrayStore.container", false]], "container (dacapo.store.array_store.localarrayidentifier attribute)": [[160, "dacapo.store.array_store.LocalArrayIdentifier.container", false], [160, "id0", false]], "container (dacapo.store.array_store.localcontaineridentifier attribute)": [[160, "dacapo.store.array_store.LocalContainerIdentifier.container", false], [160, "id2", false]], "context (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.context", false], [114, "id1", false]], "context (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.context", false], [108, "id22", false]], "contingency_table() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.contingency_table", false]], "control_point_displacement_sigma (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.control_point_displacement_sigma", false], [130, "id1", false]], "control_point_displacement_sigma (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.control_point_displacement_sigma", false], [132, "id2", false]], "control_point_displacement_sigma (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.control_point_displacement_sigma", false]], "control_point_displacement_sigma (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.control_point_displacement_sigma", false]], "control_point_spacing (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.control_point_spacing", false], [130, "id0", false]], "control_point_spacing (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.control_point_spacing", false], [132, "id1", false]], "control_point_spacing (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.control_point_spacing", false]], "control_point_spacing (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.control_point_spacing", false]], "conv (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.conv", false], [19, "id2", false]], "conv (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.conv", false], [21, "id14", false]], "conv_pass (dacapo.experiments.architectures.cnnectome_unet.convpass attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.conv_pass", false], [17, "id25", false]], "converter (in module dacapo.store.converter)": [[163, "dacapo.store.converter.converter", false]], "convpass (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass", false]], "copy_key (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.copy_key", false], [147, "id1", false]], "copy_key (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.copy_key", false], [152, "id15", false]], "copymask (class in dacapo.gp)": [[152, "dacapo.gp.CopyMask", false]], "copymask (class in dacapo.gp.copy)": [[147, "dacapo.gp.copy.CopyMask", false]], "cosemstart (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.CosemStart", false]], "cosemstart (class in dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart", false]], "cosemstartconfig (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.CosemStartConfig", false]], "cosemstartconfig (class in dacapo.experiments.starts.cosem_start_config)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig method)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig method)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig method)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig method)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig method)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.create_array", false]], "create_array() (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.create_array", false]], "create_array_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_array_store", false]], "create_compute_context() (in module dacapo.compute_context)": [[13, "dacapo.compute_context.create_compute_context", false]], "create_compute_context() (in module dacapo.compute_context.compute_context)": [[12, "dacapo.compute_context.compute_context.create_compute_context", false]], "create_config_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_config_store", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_distance_mask", false], [116, "id8", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_distance_mask", false], [119, "id13", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_distance_mask", false], [118, "id10", false]], "create_distance_mask() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_distance_mask", false], [119, "id56", false]], "create_from_identifier() (in module dacapo.tmp)": [[174, "dacapo.tmp.create_from_identifier", false]], "create_model() (dacapo.experiments.tasks.one_hot_task.onehottask method)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.create_model", false]], "create_model() (dacapo.experiments.tasks.onehottask method)": [[93, "dacapo.experiments.tasks.OneHotTask.create_model", false]], "create_model() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_model", false], [115, "id13", false]], "create_model() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_model", false], [119, "id35", false]], "create_model() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_model", false], [116, "id4", false]], "create_model() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_model", false], [119, "id9", false]], "create_model() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_model", false], [117, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_model", false], [119, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_model", false], [118, "id7", false]], "create_model() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_model", false], [119, "id53", false]], "create_model() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_model", false], [120, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_model", false], [119, "id41", false]], "create_model() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_model", false], [121, "id1", false]], "create_model() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_model", false], [119, "id17", false]], "create_model() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_model", false]], "create_model() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_model", false]], "create_model() (dacapo.experiments.tasks.pretrained_task.pretrainedtask method)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.create_model", false], [123, "id1", false]], "create_model() (dacapo.experiments.tasks.pretrainedtask method)": [[93, "dacapo.experiments.tasks.PretrainedTask.create_model", false], [93, "id26", false]], "create_model() (dacapo.experiments.tasks.task method)": [[93, "dacapo.experiments.tasks.Task.create_model", false]], "create_model() (dacapo.experiments.tasks.task.task method)": [[125, "dacapo.experiments.tasks.task.Task.create_model", false]], "create_optimizer() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.create_optimizer", false], [127, "id3", false]], "create_optimizer() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.create_optimizer", false], [138, "id12", false]], "create_optimizer() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.create_optimizer", false]], "create_optimizer() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.create_optimizer", false]], "create_stats_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_stats_store", false]], "create_target() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_target", false], [115, "id14", false]], "create_target() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_target", false], [119, "id36", false]], "create_target() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_target", false], [116, "id5", false]], "create_target() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_target", false], [119, "id10", false]], "create_target() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_target", false], [117, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_target", false], [119, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_target", false], [118, "id8", false]], "create_target() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_target", false], [119, "id54", false]], "create_target() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_target", false], [120, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_target", false], [119, "id42", false]], "create_target() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_target", false], [121, "id2", false]], "create_target() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_target", false], [119, "id18", false]], "create_target() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_target", false]], "create_target() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_target", false]], "create_weight() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.create_weight", false], [115, "id15", false]], "create_weight() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.create_weight", false], [119, "id37", false]], "create_weight() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.create_weight", false], [116, "id6", false]], "create_weight() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.create_weight", false], [119, "id11", false]], "create_weight() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.create_weight", false], [117, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.create_weight", false], [119, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.create_weight", false], [118, "id9", false]], "create_weight() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.create_weight", false], [119, "id55", false]], "create_weight() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.create_weight", false], [120, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.create_weight", false], [119, "id43", false]], "create_weight() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.create_weight", false], [121, "id3", false]], "create_weight() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.create_weight", false], [119, "id19", false]], "create_weight() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.create_weight", false]], "create_weight() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.create_weight", false]], "create_weights_store() (in module dacapo.store.create_store)": [[164, "dacapo.store.create_store.create_weights_store", false]], "createpoints (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.CreatePoints", false]], "cremieval (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.cremieval", false], [83, "id10", false]], "cremievaluator (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores property)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.criteria", false], [83, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.criteria", false], [88, "id44", false]], "criteria (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator attribute)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.criteria", false], [85, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.dummyevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.criteria", false], [88, "id5", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores attribute)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores property)": [[86, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluationscores property)": [[88, "id8", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator attribute)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.criteria", false], [90, "id0", false]], "criteria (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.criteria", false]], "criteria (dacapo.experiments.tasks.evaluators.instanceevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.criteria", false], [88, "id56", false]], "criteria (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores property)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.criteria", false]], "criteria (dacapo.experiments.validation_scores.validationscores property)": [[145, "id9", false]], "criteria (dacapo.experiments.validationscores property)": [[67, "id27", false]], "criteria() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.criteria", false]], "criteria() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.criteria", false]], "criterion (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.criterion", false], [71, "id1", false]], "criterion (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.criterion", false]], "criterion (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.criterion", false], [73, "id5", false]], "criterion (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.criterion", false]], "criterion (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.criterion", false]], "criterion (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.criterion", false]], "criterion (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.criterion", false], [75, "id1", false]], "criterion (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.criterion", false], [73, "id3", false]], "crop() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop", false], [17, "id35", false]], "crop_factor (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop_factor", false], [17, "id31", false]], "crop_to_factor() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.crop_to_factor", false], [17, "id34", false]], "croparrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig", false]], "croparrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.crop_array_config)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig", false]], "customenum (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnum", false]], "customenummeta (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta", false]], "dacapo": [[155, "module-dacapo", false], [185, "module-dacapo", false], [189, "module-dacapo", false], [194, "module-dacapo", false]], "dacapo command line option": [[186, "cmdoption-dacapo-log-level", false]], "dacapo-apply command line option": [[186, "cmdoption-dacapo-apply-c", false], [186, "cmdoption-dacapo-apply-dt", false], [186, "cmdoption-dacapo-apply-i", false], [186, "cmdoption-dacapo-apply-ic", false], [186, "cmdoption-dacapo-apply-id", false], [186, "cmdoption-dacapo-apply-op", false], [186, "cmdoption-dacapo-apply-ow", false], [186, "cmdoption-dacapo-apply-p", false], [186, "cmdoption-dacapo-apply-r", false], [186, "cmdoption-dacapo-apply-roi", false], [186, "cmdoption-dacapo-apply-vd", false], [186, "cmdoption-dacapo-apply-w", false]], "dacapo-predict command line option": [[186, "cmdoption-dacapo-predict-dt", false], [186, "cmdoption-dacapo-predict-i", false], [186, "cmdoption-dacapo-predict-ic", false], [186, "cmdoption-dacapo-predict-id", false], [186, "cmdoption-dacapo-predict-op", false], [186, "cmdoption-dacapo-predict-ow", false], [186, "cmdoption-dacapo-predict-r", false], [186, "cmdoption-dacapo-predict-roi", false], [186, "cmdoption-dacapo-predict-w", false]], "dacapo-run-blockwise command line option": [[186, "cmdoption-dacapo-run-blockwise-co", false], [186, "cmdoption-dacapo-run-blockwise-dt", false], [186, "cmdoption-dacapo-run-blockwise-ic", false], [186, "cmdoption-dacapo-run-blockwise-id", false], [186, "cmdoption-dacapo-run-blockwise-mr", false], [186, "cmdoption-dacapo-run-blockwise-nw", false], [186, "cmdoption-dacapo-run-blockwise-oc", false], [186, "cmdoption-dacapo-run-blockwise-od", false], [186, "cmdoption-dacapo-run-blockwise-ow", false], [186, "cmdoption-dacapo-run-blockwise-rr", false], [186, "cmdoption-dacapo-run-blockwise-t", false], [186, "cmdoption-dacapo-run-blockwise-tr", false], [186, "cmdoption-dacapo-run-blockwise-w", false], [186, "cmdoption-dacapo-run-blockwise-wr", false]], "dacapo-segment-blockwise command line option": [[186, "cmdoption-dacapo-segment-blockwise-c", false], [186, "cmdoption-dacapo-segment-blockwise-co", false], [186, "cmdoption-dacapo-segment-blockwise-ic", false], [186, "cmdoption-dacapo-segment-blockwise-id", false], [186, "cmdoption-dacapo-segment-blockwise-mr", false], [186, "cmdoption-dacapo-segment-blockwise-nw", false], [186, "cmdoption-dacapo-segment-blockwise-oc", false], [186, "cmdoption-dacapo-segment-blockwise-od", false], [186, "cmdoption-dacapo-segment-blockwise-ow", false], [186, "cmdoption-dacapo-segment-blockwise-rr", false], [186, "cmdoption-dacapo-segment-blockwise-sf", false], [186, "cmdoption-dacapo-segment-blockwise-t", false], [186, "cmdoption-dacapo-segment-blockwise-tr", false], [186, "cmdoption-dacapo-segment-blockwise-wr", false]], "dacapo-train command line option": [[186, "cmdoption-dacapo-train-no-validation", false], [186, "cmdoption-dacapo-train-r", false]], "dacapo-validate command line option": [[186, "cmdoption-dacapo-validate-dt", false], [186, "cmdoption-dacapo-validate-i", false], [186, "cmdoption-dacapo-validate-ow", false], [186, "cmdoption-dacapo-validate-r", false], [186, "cmdoption-dacapo-validate-w", false]], "dacapo.apply": [[0, "module-dacapo.apply", false]], "dacapo.blockwise": [[4, "module-dacapo.blockwise", false]], "dacapo.blockwise.argmax_worker": [[1, "module-dacapo.blockwise.argmax_worker", false]], "dacapo.blockwise.blockwise_task": [[2, "module-dacapo.blockwise.blockwise_task", false]], "dacapo.blockwise.empanada_function": [[3, "module-dacapo.blockwise.empanada_function", false]], "dacapo.blockwise.predict_worker": [[5, "module-dacapo.blockwise.predict_worker", false]], "dacapo.blockwise.relabel_worker": [[6, "module-dacapo.blockwise.relabel_worker", false]], "dacapo.blockwise.scheduler": [[7, "module-dacapo.blockwise.scheduler", false]], "dacapo.blockwise.segment_worker": [[8, "module-dacapo.blockwise.segment_worker", false]], "dacapo.blockwise.threshold_worker": [[9, "module-dacapo.blockwise.threshold_worker", false]], "dacapo.blockwise.watershed_function": [[10, "module-dacapo.blockwise.watershed_function", false]], "dacapo.compute_context": [[13, "module-dacapo.compute_context", false]], "dacapo.compute_context.bsub": [[11, "module-dacapo.compute_context.bsub", false]], "dacapo.compute_context.compute_context": [[12, "module-dacapo.compute_context.compute_context", false]], "dacapo.compute_context.local_torch": [[14, "module-dacapo.compute_context.local_torch", false]], "dacapo.experiments": [[67, "module-dacapo.experiments", false]], "dacapo.experiments.architectures": [[21, "module-dacapo.experiments.architectures", false]], "dacapo.experiments.architectures.architecture": [[15, "module-dacapo.experiments.architectures.architecture", false]], "dacapo.experiments.architectures.architecture_config": [[16, "module-dacapo.experiments.architectures.architecture_config", false]], "dacapo.experiments.architectures.cnnectome_unet": [[17, "module-dacapo.experiments.architectures.cnnectome_unet", false]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, "module-dacapo.experiments.architectures.cnnectome_unet_config", false]], "dacapo.experiments.architectures.dummy_architecture": [[19, "module-dacapo.experiments.architectures.dummy_architecture", false]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, "module-dacapo.experiments.architectures.dummy_architecture_config", false]], "dacapo.experiments.arraytypes": [[27, "module-dacapo.experiments.arraytypes", false]], "dacapo.experiments.arraytypes.annotations": [[22, "module-dacapo.experiments.arraytypes.annotations", false]], "dacapo.experiments.arraytypes.arraytype": [[23, "module-dacapo.experiments.arraytypes.arraytype", false]], "dacapo.experiments.arraytypes.binary": [[24, "module-dacapo.experiments.arraytypes.binary", false]], "dacapo.experiments.arraytypes.distances": [[25, "module-dacapo.experiments.arraytypes.distances", false]], "dacapo.experiments.arraytypes.embedding": [[26, "module-dacapo.experiments.arraytypes.embedding", false]], "dacapo.experiments.arraytypes.intensities": [[28, "module-dacapo.experiments.arraytypes.intensities", false]], "dacapo.experiments.arraytypes.mask": [[29, "module-dacapo.experiments.arraytypes.mask", false]], "dacapo.experiments.arraytypes.probabilities": [[30, "module-dacapo.experiments.arraytypes.probabilities", false]], "dacapo.experiments.datasplits": [[62, "module-dacapo.experiments.datasplits", false]], "dacapo.experiments.datasplits.datasets": [[54, "module-dacapo.experiments.datasplits.datasets", false]], "dacapo.experiments.datasplits.datasets.arrays": [[38, "module-dacapo.experiments.datasplits.datasets.arrays", false]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, "module-dacapo.experiments.datasplits.datasets.arrays.array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, "module-dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, "module-dacapo.experiments.datasplits.datasets.arrays.concat_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, "module-dacapo.experiments.datasplits.datasets.arrays.constant_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, "module-dacapo.experiments.datasplits.datasets.arrays.crop_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, "module-dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, "module-dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, "module-dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, "module-dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, "module-dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, "module-dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", false]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, "module-dacapo.experiments.datasplits.datasets.arrays.ones_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, "module-dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, "module-dacapo.experiments.datasplits.datasets.arrays.sum_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, "module-dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", false]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, "module-dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", false]], "dacapo.experiments.datasplits.datasets.dataset": [[48, "module-dacapo.experiments.datasplits.datasets.dataset", false]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, "module-dacapo.experiments.datasplits.datasets.dataset_config", false]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, "module-dacapo.experiments.datasplits.datasets.dummy_dataset", false]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, "module-dacapo.experiments.datasplits.datasets.dummy_dataset_config", false]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, "module-dacapo.experiments.datasplits.datasets.graphstores", false]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, "module-dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", false]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset", false]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", false]], "dacapo.experiments.datasplits.datasplit": [[57, "module-dacapo.experiments.datasplits.datasplit", false]], "dacapo.experiments.datasplits.datasplit_config": [[58, "module-dacapo.experiments.datasplits.datasplit_config", false]], "dacapo.experiments.datasplits.datasplit_generator": [[59, "module-dacapo.experiments.datasplits.datasplit_generator", false]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, "module-dacapo.experiments.datasplits.dummy_datasplit", false]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, "module-dacapo.experiments.datasplits.dummy_datasplit_config", false]], "dacapo.experiments.datasplits.keys": [[63, "module-dacapo.experiments.datasplits.keys", false]], "dacapo.experiments.datasplits.keys.keys": [[64, "module-dacapo.experiments.datasplits.keys.keys", false]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, "module-dacapo.experiments.datasplits.train_validate_datasplit", false]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, "module-dacapo.experiments.datasplits.train_validate_datasplit_config", false]], "dacapo.experiments.model": [[68, "module-dacapo.experiments.model", false]], "dacapo.experiments.run": [[69, "module-dacapo.experiments.run", false]], "dacapo.experiments.run_config": [[70, "module-dacapo.experiments.run_config", false]], "dacapo.experiments.starts": [[73, "module-dacapo.experiments.starts", false]], "dacapo.experiments.starts.cosem_start": [[71, "module-dacapo.experiments.starts.cosem_start", false]], "dacapo.experiments.starts.cosem_start_config": [[72, "module-dacapo.experiments.starts.cosem_start_config", false]], "dacapo.experiments.starts.start": [[74, "module-dacapo.experiments.starts.start", false]], "dacapo.experiments.starts.start_config": [[75, "module-dacapo.experiments.starts.start_config", false]], "dacapo.experiments.tasks": [[93, "module-dacapo.experiments.tasks", false]], "dacapo.experiments.tasks.affinities_task": [[76, "module-dacapo.experiments.tasks.affinities_task", false]], "dacapo.experiments.tasks.affinities_task_config": [[77, "module-dacapo.experiments.tasks.affinities_task_config", false]], "dacapo.experiments.tasks.distance_task": [[78, "module-dacapo.experiments.tasks.distance_task", false]], "dacapo.experiments.tasks.distance_task_config": [[79, "module-dacapo.experiments.tasks.distance_task_config", false]], "dacapo.experiments.tasks.dummy_task": [[80, "module-dacapo.experiments.tasks.dummy_task", false]], "dacapo.experiments.tasks.dummy_task_config": [[81, "module-dacapo.experiments.tasks.dummy_task_config", false]], "dacapo.experiments.tasks.evaluators": [[88, "module-dacapo.experiments.tasks.evaluators", false]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", false]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, "module-dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, "module-dacapo.experiments.tasks.evaluators.dummy_evaluator", false]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, "module-dacapo.experiments.tasks.evaluators.evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, "module-dacapo.experiments.tasks.evaluators.evaluator", false]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, "module-dacapo.experiments.tasks.evaluators.instance_evaluation_scores", false]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, "module-dacapo.experiments.tasks.evaluators.instance_evaluator", false]], "dacapo.experiments.tasks.hot_distance_task": [[91, "module-dacapo.experiments.tasks.hot_distance_task", false]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, "module-dacapo.experiments.tasks.hot_distance_task_config", false]], "dacapo.experiments.tasks.inner_distance_task": [[94, "module-dacapo.experiments.tasks.inner_distance_task", false]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, "module-dacapo.experiments.tasks.inner_distance_task_config", false]], "dacapo.experiments.tasks.losses": [[99, "module-dacapo.experiments.tasks.losses", false]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, "module-dacapo.experiments.tasks.losses.affinities_loss", false]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, "module-dacapo.experiments.tasks.losses.dummy_loss", false]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, "module-dacapo.experiments.tasks.losses.hot_distance_loss", false]], "dacapo.experiments.tasks.losses.loss": [[100, "module-dacapo.experiments.tasks.losses.loss", false]], "dacapo.experiments.tasks.losses.mse_loss": [[101, "module-dacapo.experiments.tasks.losses.mse_loss", false]], "dacapo.experiments.tasks.one_hot_task": [[102, "module-dacapo.experiments.tasks.one_hot_task", false]], "dacapo.experiments.tasks.one_hot_task_config": [[103, "module-dacapo.experiments.tasks.one_hot_task_config", false]], "dacapo.experiments.tasks.post_processors": [[108, "module-dacapo.experiments.tasks.post_processors", false]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor", false]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor", false]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, "module-dacapo.experiments.tasks.post_processors.post_processor", false]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, "module-dacapo.experiments.tasks.post_processors.post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor", false]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", false]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor", false]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", false]], "dacapo.experiments.tasks.predictors": [[119, "module-dacapo.experiments.tasks.predictors", false]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, "module-dacapo.experiments.tasks.predictors.affinities_predictor", false]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, "module-dacapo.experiments.tasks.predictors.distance_predictor", false]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, "module-dacapo.experiments.tasks.predictors.dummy_predictor", false]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, "module-dacapo.experiments.tasks.predictors.hot_distance_predictor", false]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, "module-dacapo.experiments.tasks.predictors.inner_distance_predictor", false]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, "module-dacapo.experiments.tasks.predictors.one_hot_predictor", false]], "dacapo.experiments.tasks.predictors.predictor": [[122, "module-dacapo.experiments.tasks.predictors.predictor", false]], "dacapo.experiments.tasks.pretrained_task": [[123, "module-dacapo.experiments.tasks.pretrained_task", false]], "dacapo.experiments.tasks.pretrained_task_config": [[124, "module-dacapo.experiments.tasks.pretrained_task_config", false]], "dacapo.experiments.tasks.task": [[125, "module-dacapo.experiments.tasks.task", false]], "dacapo.experiments.tasks.task_config": [[126, "module-dacapo.experiments.tasks.task_config", false]], "dacapo.experiments.trainers": [[138, "module-dacapo.experiments.trainers", false]], "dacapo.experiments.trainers.dummy_trainer": [[127, "module-dacapo.experiments.trainers.dummy_trainer", false]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, "module-dacapo.experiments.trainers.dummy_trainer_config", false]], "dacapo.experiments.trainers.gp_augments": [[132, "module-dacapo.experiments.trainers.gp_augments", false]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, "module-dacapo.experiments.trainers.gp_augments.augment_config", false]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, "module-dacapo.experiments.trainers.gp_augments.elastic_config", false]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, "module-dacapo.experiments.trainers.gp_augments.gamma_config", false]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, "module-dacapo.experiments.trainers.gp_augments.intensity_config", false]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, "module-dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", false]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, "module-dacapo.experiments.trainers.gp_augments.simple_config", false]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, "module-dacapo.experiments.trainers.gunpowder_trainer", false]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, "module-dacapo.experiments.trainers.gunpowder_trainer_config", false]], "dacapo.experiments.trainers.optimizers": [[139, "module-dacapo.experiments.trainers.optimizers", false]], "dacapo.experiments.trainers.trainer": [[140, "module-dacapo.experiments.trainers.trainer", false]], "dacapo.experiments.trainers.trainer_config": [[141, "module-dacapo.experiments.trainers.trainer_config", false]], "dacapo.experiments.training_iteration_stats": [[142, "module-dacapo.experiments.training_iteration_stats", false]], "dacapo.experiments.training_stats": [[143, "module-dacapo.experiments.training_stats", false]], "dacapo.experiments.validation_iteration_scores": [[144, "module-dacapo.experiments.validation_iteration_scores", false]], "dacapo.experiments.validation_scores": [[145, "module-dacapo.experiments.validation_scores", false]], "dacapo.ext": [[146, "module-dacapo.ext", false]], "dacapo.gp": [[152, "module-dacapo.gp", false]], "dacapo.gp.copy": [[147, "module-dacapo.gp.copy", false]], "dacapo.gp.dacapo_create_target": [[148, "module-dacapo.gp.dacapo_create_target", false]], "dacapo.gp.dacapo_points_source": [[149, "module-dacapo.gp.dacapo_points_source", false]], "dacapo.gp.elastic_augment_fuse": [[150, "module-dacapo.gp.elastic_augment_fuse", false]], "dacapo.gp.gamma_noise": [[151, "module-dacapo.gp.gamma_noise", false]], "dacapo.gp.product": [[153, "module-dacapo.gp.product", false]], "dacapo.gp.reject_if_empty": [[154, "module-dacapo.gp.reject_if_empty", false]], "dacapo.options": [[156, "module-dacapo.options", false]], "dacapo.plot": [[157, "module-dacapo.plot", false]], "dacapo.predict": [[158, "module-dacapo.predict", false]], "dacapo.predict_local": [[159, "module-dacapo.predict_local", false]], "dacapo.store": [[167, "module-dacapo.store", false]], "dacapo.store.array_store": [[160, "module-dacapo.store.array_store", false]], "dacapo.store.config_store": [[161, "module-dacapo.store.config_store", false]], "dacapo.store.conversion_hooks": [[162, "module-dacapo.store.conversion_hooks", false]], "dacapo.store.converter": [[163, "module-dacapo.store.converter", false]], "dacapo.store.create_store": [[164, "module-dacapo.store.create_store", false]], "dacapo.store.file_config_store": [[165, "module-dacapo.store.file_config_store", false]], "dacapo.store.file_stats_store": [[166, "module-dacapo.store.file_stats_store", false]], "dacapo.store.local_array_store": [[168, "module-dacapo.store.local_array_store", false]], "dacapo.store.local_weights_store": [[169, "module-dacapo.store.local_weights_store", false]], "dacapo.store.mongo_config_store": [[170, "module-dacapo.store.mongo_config_store", false]], "dacapo.store.mongo_stats_store": [[171, "module-dacapo.store.mongo_stats_store", false]], "dacapo.store.stats_store": [[172, "module-dacapo.store.stats_store", false]], "dacapo.store.weights_store": [[173, "module-dacapo.store.weights_store", false]], "dacapo.tmp": [[174, "module-dacapo.tmp", false]], "dacapo.train": [[175, "module-dacapo.train", false]], "dacapo.utils": [[179, "module-dacapo.utils", false]], "dacapo.utils.affinities": [[176, "module-dacapo.utils.affinities", false]], "dacapo.utils.array_utils": [[177, "module-dacapo.utils.array_utils", false]], "dacapo.utils.balance_weights": [[178, "module-dacapo.utils.balance_weights", false]], "dacapo.utils.pipeline": [[180, "module-dacapo.utils.pipeline", false]], "dacapo.utils.view": [[181, "module-dacapo.utils.view", false]], "dacapo.utils.voi": [[182, "module-dacapo.utils.voi", false]], "dacapo.validate": [[183, "module-dacapo.validate", false]], "dacapoblockwisetask (class in dacapo.blockwise)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask", false]], "dacapoblockwisetask (class in dacapo.blockwise.blockwise_task)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask", false]], "dacapoconfig (class in dacapo.options)": [[156, "dacapo.options.DaCapoConfig", false]], "dacapotargetfilter (class in dacapo.gp)": [[152, "dacapo.gp.DaCapoTargetFilter", false]], "dacapotargetfilter (class in dacapo.gp.dacapo_create_target)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter", false]], "database (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.database", false], [170, "id3", false]], "database (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.database", false], [171, "id3", false]], "datakey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.DataKey", false]], "datakey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey", false]], "dataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.Dataset", false]], "dataset (class in dacapo.experiments.datasplits.datasets.dataset)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset", false]], "dataset (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.dataset", false], [47, "id1", false]], "dataset (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.dataset", false], [38, "id4", false]], "dataset (dacapo.store.array_store.arraystore attribute)": [[160, "dacapo.store.array_store.ArrayStore.dataset", false]], "dataset (dacapo.store.array_store.localarrayidentifier attribute)": [[160, "dacapo.store.array_store.LocalArrayIdentifier.dataset", false], [160, "id1", false]], "dataset_type (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig attribute)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.dataset_type", false], [51, "id0", false]], "dataset_type (dacapo.experiments.datasplits.datasets.dummydatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.dataset_type", false], [54, "id10", false]], "dataset_type (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.dataset_type", false], [56, "id0", false]], "dataset_type (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.dataset_type", false], [54, "id18", false]], "dataset_type (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.dataset_type", false], [62, "id34", false]], "dataset_type (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.dataset_type", false], [59, "id5", false]], "datasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig", false]], "datasetconfig (class in dacapo.experiments.datasplits.datasets.dataset_config)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig", false]], "datasets (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.datasets", false], [59, "id11", false]], "datasets (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.datasets", false], [62, "id14", false]], "datasets (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.datasets", false], [145, "id1", false]], "datasets (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.datasets", false], [67, "id19", false]], "datasets (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.datasets", false], [161, "id2", false]], "datasets (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.datasets", false]], "datasets (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.datasets", false]], "datasetspec (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DatasetSpec", false]], "datasetspec (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec", false]], "datasettype (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType", false]], "datasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplit", false]], "datasplit (class in dacapo.experiments.datasplits.datasplit)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit", false]], "datasplit (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.datasplit", false]], "datasplit (dacapo.experiments.run.run property)": [[69, "id10", false]], "datasplit_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.datasplit_config", false]], "datasplit_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.datasplit_config", false]], "datasplit_type (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig attribute)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.datasplit_type", false], [61, "id0", false]], "datasplit_type (dacapo.experiments.datasplits.dummydatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.datasplit_type", false], [62, "id6", false]], "datasplit_type (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.datasplit_type", false]], "datasplit_type (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.datasplit_type", false]], "datasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplitConfig", false]], "datasplitconfig (class in dacapo.experiments.datasplits.datasplit_config)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig", false]], "datasplitgenerator (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator", false]], "datasplitgenerator (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator", false]], "datasplits (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.datasplits", false], [161, "id1", false]], "datasplits (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.datasplits", false]], "datasplits (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.datasplits", false]], "db_host (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.db_host", false], [170, "id0", false]], "db_host (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.db_host", false], [171, "id0", false]], "db_name (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.db_name", false], [170, "id1", false]], "db_name (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.db_name", false], [171, "id1", false]], "default_config (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.default_config", false], [33, "id2", false]], "default_config (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.default_config", false], [38, "id22", false]], "default_parameters (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.default_parameters", false]], "delete_after() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.delete_after", false]], "delete_after() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.delete_after", false]], "delete_after() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.delete_after", false], [145, "id6", false]], "delete_after() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.delete_after", false], [67, "id24", false]], "delete_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_architecture_config", false], [161, "id19", false]], "delete_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_array_config", false], [161, "id31", false]], "delete_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_config", false], [161, "id7", false]], "delete_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.delete_config", false]], "delete_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.delete_config", false]], "delete_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_datasplit_config", false], [161, "id27", false]], "delete_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_run_config", false], [161, "id11", false]], "delete_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.delete_run_config", false], [170, "id6", false]], "delete_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_task_config", false], [161, "id15", false]], "delete_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.delete_trainer_config", false], [161, "id23", false]], "delete_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.delete_training_stats", false]], "delete_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.delete_training_stats", false], [171, "id8", false]], "delete_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.delete_training_stats", false], [172, "id4", false]], "delete_validation_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.delete_validation_scores", false]], "deprecated_start_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.deprecated_start_neuroglancer", false], [181, "id13", false]], "detection_threshold (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.detection_threshold", false], [81, "id2", false]], "detection_threshold (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.detection_threshold", false], [93, "id4", false]], "detection_threshold (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor attribute)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.detection_threshold", false], [106, "id0", false]], "detection_threshold (dacapo.experiments.tasks.post_processors.dummypostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.detection_threshold", false], [108, "id0", false]], "device (dacapo.compute_context.bsub property)": [[13, "id10", false]], "device (dacapo.compute_context.bsub.bsub property)": [[11, "id4", false]], "device (dacapo.compute_context.compute_context.computecontext attribute)": [[12, "dacapo.compute_context.compute_context.ComputeContext.device", false]], "device (dacapo.compute_context.compute_context.computecontext property)": [[12, "id0", false]], "device (dacapo.compute_context.computecontext attribute)": [[13, "dacapo.compute_context.ComputeContext.device", false]], "device (dacapo.compute_context.computecontext property)": [[13, "id0", false]], "device (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "id0", false]], "device (dacapo.compute_context.local_torch.localtorch property)": [[14, "id2", false]], "device (dacapo.compute_context.localtorch attribute)": [[13, "id3", false]], "device (dacapo.compute_context.localtorch property)": [[13, "id5", false]], "device() (dacapo.compute_context.bsub method)": [[13, "dacapo.compute_context.Bsub.device", false]], "device() (dacapo.compute_context.bsub.bsub method)": [[11, "dacapo.compute_context.bsub.Bsub.device", false]], "device() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.device", false]], "device() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.device", false]], "dice (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.dice", false], [82, "id0", false]], "dice (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.dice", false], [88, "id23", false]], "dice() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.dice", false], [83, "id12", false]], "dilatepoints (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.DilatePoints", false]], "dilations (dacapo.utils.pipeline.dilatepoints attribute)": [[180, "dacapo.utils.pipeline.DilatePoints.dilations", false], [180, "id6", false]], "dilations (dacapo.utils.pipeline.randomdilatelabels attribute)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.dilations", false], [180, "id9", false]], "dims (dacapo.experiments.architectures.architecture property)": [[21, "id4", false]], "dims (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id4", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.dims", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.dims", false], [17, "id15", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.convpass attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.dims", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.dims", false], [17, "id27", false]], "dims (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.dims", false], [17, "id33", false]], "dims (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor property)": [[115, "id10", false]], "dims (dacapo.experiments.tasks.predictors.affinitiespredictor property)": [[119, "id32", false]], "dims() (dacapo.experiments.architectures.architecture method)": [[21, "dacapo.experiments.architectures.Architecture.dims", false]], "dims() (dacapo.experiments.architectures.architecture.architecture method)": [[15, "dacapo.experiments.architectures.architecture.Architecture.dims", false]], "dims() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.dims", false]], "dims() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.dims", false]], "distance_loss (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss attribute)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.distance_loss", false]], "distance_loss (dacapo.experiments.tasks.losses.hotdistanceloss attribute)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.distance_loss", false]], "distance_loss() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "id2", false]], "distance_loss() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "id8", false]], "distancearray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.DistanceArray", false]], "distancearray (class in dacapo.experiments.arraytypes.distances)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray", false]], "distancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor", false]], "distancepredictor (class in dacapo.experiments.tasks.predictors.distance_predictor)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor", false]], "distancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DistanceTask", false]], "distancetask (class in dacapo.experiments.tasks.distance_task)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask", false]], "distancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig", false]], "distancetaskconfig (class in dacapo.experiments.tasks.distance_task_config)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig", false]], "distribute_workers (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.distribute_workers", false]], "distribute_workers (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.distribute_workers", false]], "distribute_workers (dacapo.compute_context.compute_context.computecontext attribute)": [[12, "dacapo.compute_context.compute_context.ComputeContext.distribute_workers", false]], "distribute_workers (dacapo.compute_context.computecontext attribute)": [[13, "dacapo.compute_context.ComputeContext.distribute_workers", false]], "distribute_workers (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch.distribute_workers", false]], "distribute_workers (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch.distribute_workers", false]], "divide_columns() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.divide_columns", false]], "divide_rows() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.divide_rows", false]], "do_augment (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.do_augment", false]], "do_augment (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.do_augment", false]], "does_new_best_exist() (dacapo.utils.view.bestscore method)": [[181, "dacapo.utils.view.BestScore.does_new_best_exist", false], [181, "id8", false]], "down (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.down", false], [17, "id29", false]], "downsample (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample", false]], "downsample (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.downsample", false], [44, "id2", false]], "downsample (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.downsample", false], [38, "id12", false]], "downsample_factor (dacapo.experiments.architectures.cnnectome_unet.downsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.downsample_factor", false], [17, "id28", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.downsample_factors", false], [17, "id4", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.downsample_factors", false]], "downsample_factors (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.downsample_factors", false], [18, "id6", false]], "downsample_factors (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.downsample_factors", false], [21, "id36", false]], "downsample_factors (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.downsample_factors", false], [21, "id25", false]], "downsample_lsds (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.downsample_lsds", false], [77, "id3", false]], "downsample_lsds (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.downsample_lsds", false], [93, "id30", false]], "downsample_lsds (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.downsample_lsds", false]], "downsample_lsds (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.downsample_lsds", false]], "drop_channels (dacapo.gp.copy.copymask attribute)": [[147, "dacapo.gp.copy.CopyMask.drop_channels", false], [147, "id2", false]], "drop_channels (dacapo.gp.copymask attribute)": [[152, "dacapo.gp.CopyMask.drop_channels", false], [152, "id16", false]], "ds (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.ds", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.dt_scale_factor", false], [118, "id2", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.dt_scale_factor", false], [119, "id48", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.dt_scale_factor", false]], "dt_scale_factor (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.dt_scale_factor", false]], "dummyarchitecture (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.DummyArchitecture", false]], "dummyarchitecture (class in dacapo.experiments.architectures.dummy_architecture)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture", false]], "dummyarchitectureconfig (class in dacapo.experiments.architectures)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig", false]], "dummyarchitectureconfig (class in dacapo.experiments.architectures.dummy_architecture_config)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig", false]], "dummyarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig", false]], "dummyarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.dummy_array_config)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig", false]], "dummydataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset", false]], "dummydataset (class in dacapo.experiments.datasplits.datasets.dummy_dataset)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset", false]], "dummydatasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig", false]], "dummydatasetconfig (class in dacapo.experiments.datasplits.datasets.dummy_dataset_config)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig", false]], "dummydatasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DummyDataSplit", false]], "dummydatasplit (class in dacapo.experiments.datasplits.dummy_datasplit)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit", false]], "dummydatasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig", false]], "dummydatasplitconfig (class in dacapo.experiments.datasplits.dummy_datasplit_config)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig", false]], "dummyevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores", false]], "dummyevaluationscores (class in dacapo.experiments.tasks.evaluators.dummy_evaluation_scores)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores", false]], "dummyevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator", false]], "dummyevaluator (class in dacapo.experiments.tasks.evaluators.dummy_evaluator)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator", false]], "dummyloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.DummyLoss", false]], "dummyloss (class in dacapo.experiments.tasks.losses.dummy_loss)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss", false]], "dummypostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor", false]], "dummypostprocessor (class in dacapo.experiments.tasks.post_processors.dummy_post_processor)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor", false]], "dummypostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters", false]], "dummypostprocessorparameters (class in dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters", false]], "dummypredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor", false]], "dummypredictor (class in dacapo.experiments.tasks.predictors.dummy_predictor)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor", false]], "dummytask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DummyTask", false]], "dummytask (class in dacapo.experiments.tasks.dummy_task)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask", false]], "dummytaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.DummyTaskConfig", false]], "dummytaskconfig (class in dacapo.experiments.tasks.dummy_task_config)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig", false]], "dummytrainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.DummyTrainer", false]], "dummytrainer (class in dacapo.experiments.trainers.dummy_trainer)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer", false]], "dummytrainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig", false]], "dummytrainerconfig (class in dacapo.experiments.trainers.dummy_trainer_config)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig", false]], "duplicatenameerror": [[161, "dacapo.store.config_store.DuplicateNameError", false]], "dvidarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig", false]], "dvidarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.dvid_array_config)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig", false]], "elasticaugment (class in dacapo.gp)": [[152, "dacapo.gp.ElasticAugment", false]], "elasticaugment (class in dacapo.gp.elastic_augment_fuse)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment", false]], "elasticaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig", false]], "elasticaugmentconfig (class in dacapo.experiments.trainers.gp_augments.elastic_config)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig", false]], "embedded (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.embedded", false], [181, "id11", false]], "embedding_dims (dacapo.experiments.arraytypes.embedding.embeddingarray attribute)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray.embedding_dims", false], [26, "id0", false]], "embedding_dims (dacapo.experiments.arraytypes.embeddingarray attribute)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray.embedding_dims", false], [27, "id9", false]], "embedding_dims (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.embedding_dims", false], [81, "id1", false]], "embedding_dims (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.embedding_dims", false], [93, "id3", false]], "embedding_dims (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor property)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.distancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor attribute)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.embedding_dims", false], [117, "id0", false]], "embedding_dims (dacapo.experiments.tasks.predictors.dummypredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.embedding_dims", false], [119, "id0", false]], "embedding_dims (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor property)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.innerdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor property)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.embedding_dims", false]], "embedding_dims (dacapo.experiments.tasks.predictors.onehotpredictor property)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.embedding_dims", false]], "embeddingarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray", false]], "embeddingarray (class in dacapo.experiments.arraytypes.embedding)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray", false]], "empanada_segmenter() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.empanada_segmenter", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.enumerate_parameters", false], [104, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.enumerate_parameters", false], [108, "id14", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.enumerate_parameters", false], [106, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.enumerate_parameters", false], [108, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.enumerate_parameters", false], [109, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.enumerate_parameters", false], [108, "id7", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.enumerate_parameters", false], [111, "id0", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.enumerate_parameters", false], [108, "id10", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.enumerate_parameters", false], [113, "id1", false]], "enumerate_parameters() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.enumerate_parameters", false], [108, "id18", false]], "epsilon (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.epsilon", false], [118, "id5", false]], "epsilon (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.epsilon", false], [119, "id51", false]], "epsilon (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.epsilon", false]], "epsilon (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.epsilon", false]], "eval_activation (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.eval_activation", false], [67, "id9", false]], "eval_activation (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.eval_activation", false], [68, "id9", false]], "eval_input_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.eval_input_shape", false], [67, "id8", false]], "eval_input_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.eval_input_shape", false], [68, "id8", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture property)": [[21, "id1", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id1", false]], "eval_shape_increase (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.eval_shape_increase", false]], "eval_shape_increase (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.eval_shape_increase", false]], "evaluate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.evaluate", false], [83, "id4", false]], "evaluate() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.evaluate", false], [88, "id48", false]], "evaluate() (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.evaluate", false], [85, "id1", false]], "evaluate() (dacapo.experiments.tasks.evaluators.dummyevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.evaluate", false], [88, "id6", false]], "evaluate() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.evaluate", false], [88, "id12", false]], "evaluate() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.evaluate", false], [87, "id0", false]], "evaluate() (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.evaluate", false], [90, "id1", false]], "evaluate() (dacapo.experiments.tasks.evaluators.instanceevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.evaluate", false], [88, "id57", false]], "evaluation_scores (dacapo.experiments.tasks.task property)": [[93, "dacapo.experiments.tasks.Task.evaluation_scores", false]], "evaluation_scores (dacapo.experiments.tasks.task.task property)": [[125, "dacapo.experiments.tasks.task.Task.evaluation_scores", false]], "evaluation_scores (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.evaluation_scores", false], [145, "id2", false]], "evaluation_scores (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.evaluation_scores", false], [67, "id20", false]], "evaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores", false]], "evaluationscores (class in dacapo.experiments.tasks.evaluators.evaluation_scores)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores", false]], "evaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator", false]], "evaluator (class in dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator", false]], "evaluator (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.evaluator", false], [76, "id3", false]], "evaluator (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.evaluator", false], [93, "id40", false]], "evaluator (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.evaluator", false], [78, "id3", false]], "evaluator (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.evaluator", false], [93, "id20", false]], "evaluator (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.evaluator", false], [80, "id3", false]], "evaluator (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.evaluator", false], [93, "id9", false]], "evaluator (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.evaluator", false], [91, "id3", false]], "evaluator (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.evaluator", false], [93, "id58", false]], "evaluator (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.evaluator", false], [94, "id3", false]], "evaluator (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.evaluator", false], [93, "id48", false]], "evaluator (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.evaluator", false]], "evaluator (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.evaluator", false]], "evaluator (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.evaluator", false]], "execute() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext.execute", false], [12, "id2", false]], "execute() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext.execute", false], [13, "id2", false]], "execute() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.execute", false]], "execute() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.execute", false]], "expandlabels (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.ExpandLabels", false]], "extractor() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.extractor", false], [115, "id9", false]], "extractor() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.extractor", false], [119, "id31", false]], "f1_score (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.f1_score", false], [82, "id20", false]], "f1_score (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.f1_score", false], [88, "id43", false]], "f1_score() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.f1_score", false], [83, "id20", false]], "f1_score_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.f1_score_with_tolerance", false], [82, "id17", false]], "f1_score_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.f1_score_with_tolerance", false], [88, "id40", false]], "f1_score_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.f1_score_with_tolerance", false], [83, "id32", false]], "f1_score_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.f1_score_with_tolerance", false], [83, "id46", false]], "false_discovery_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_discovery_rate", false], [82, "id6", false]], "false_discovery_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_discovery_rate", false], [88, "id29", false]], "false_discovery_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_discovery_rate", false], [83, "id17", false]], "false_negative_distances() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negative_distances", false], [83, "id50", false]], "false_negative_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_negative_rate", false], [82, "id3", false]], "false_negative_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_negative_rate", false], [88, "id26", false]], "false_negative_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_negative_rate", false], [83, "id15", false]], "false_negative_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_negative_rate_with_tolerance", false], [82, "id4", false]], "false_negative_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_negative_rate_with_tolerance", false], [88, "id27", false]], "false_negative_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_negative_rate_with_tolerance", false], [83, "id29", false]], "false_negative_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negative_rate_with_tolerance", false], [83, "id42", false]], "false_negatives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_negatives_with_tolerance", false], [83, "id41", false]], "false_positive_distances() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positive_distances", false], [83, "id38", false]], "false_positive_rate (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_positive_rate", false], [82, "id5", false]], "false_positive_rate (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_positive_rate", false], [88, "id28", false]], "false_positive_rate() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_positive_rate", false], [83, "id16", false]], "false_positive_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.false_positive_rate_with_tolerance", false], [82, "id7", false]], "false_positive_rate_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.false_positive_rate_with_tolerance", false], [88, "id30", false]], "false_positive_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.false_positive_rate_with_tolerance", false], [83, "id28", false]], "false_positive_rate_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positive_rate_with_tolerance", false], [83, "id40", false]], "false_positives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.false_positives_with_tolerance", false], [83, "id39", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.file_name", false], [46, "id0", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.file_name", false], [47, "id0", false]], "file_name (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.file_name", false], [38, "id3", false]], "fileconfigstore (class in dacapo.store.file_config_store)": [[165, "dacapo.store.file_config_store.FileConfigStore", false]], "filestatsstore (class in dacapo.store.file_stats_store)": [[166, "dacapo.store.file_stats_store.FileStatsStore", false]], "find_components() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.find_components", false]], "fit (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.fit", false]], "fit (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.fit", false]], "fit (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.fit", false]], "fit (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.fit", false]], "fit (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.fit", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmap_inc_factor", false], [17, "id3", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.fmap_inc_factor", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmap_inc_factor", false], [18, "id5", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmap_inc_factor", false], [21, "id35", false]], "fmap_inc_factor (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmap_inc_factor", false], [21, "id24", false]], "fmaps_in (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmaps_in", false], [17, "id1", false]], "fmaps_in (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmaps_in", false], [18, "id3", false]], "fmaps_in (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmaps_in", false], [21, "id33", false]], "fmaps_in (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmaps_in", false], [21, "id22", false]], "fmaps_out (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fmaps_out", false], [17, "id0", false]], "fmaps_out (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.fmaps_out", false], [18, "id2", false]], "fmaps_out (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fmaps_out", false], [21, "id32", false]], "fmaps_out (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.fmaps_out", false], [21, "id21", false]], "format_class_name() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.format_class_name", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.forward", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.forward", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.forward", false], [17, "id24", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.convpass method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.ConvPass.forward", false], [17, "id26", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.downsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Downsample.forward", false], [17, "id30", false]], "forward() (dacapo.experiments.architectures.cnnectome_unet.upsample method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.forward", false], [17, "id36", false]], "forward() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.forward", false]], "forward() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.forward", false], [19, "id6", false]], "forward() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.forward", false], [21, "id18", false]], "forward() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.forward", false]], "forward() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.forward", false]], "fov (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.fov", false]], "fov (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.fov", false]], "frizz_level (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores attribute)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.frizz_level", false], [84, "id0", false]], "frizz_level (dacapo.experiments.tasks.evaluators.dummyevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.frizz_level", false], [88, "id0", false]], "gamma_max (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.gamma_max", false], [151, "id2", false]], "gamma_max (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.gamma_max", false], [152, "id8", false]], "gamma_min (dacapo.gp.gamma_noise.gammaaugment attribute)": [[151, "dacapo.gp.gamma_noise.GammaAugment.gamma_min", false], [151, "id1", false]], "gamma_min (dacapo.gp.gammaaugment attribute)": [[152, "dacapo.gp.GammaAugment.gamma_min", false], [152, "id7", false]], "gamma_range (dacapo.experiments.trainers.gp_augments.gamma_config.gammaaugmentconfig attribute)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig.gamma_range", false], [131, "id0", false]], "gamma_range (dacapo.experiments.trainers.gp_augments.gammaaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig.gamma_range", false], [132, "id8", false]], "gammaaugment (class in dacapo.gp)": [[152, "dacapo.gp.GammaAugment", false]], "gammaaugment (class in dacapo.gp.gamma_noise)": [[151, "dacapo.gp.gamma_noise.GammaAugment", false]], "gammaaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig", false]], "gammaaugmentconfig (class in dacapo.experiments.trainers.gp_augments.gamma_config)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig", false]], "gaussian_blur_args (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_blur_args", false]], "gaussian_blur_args (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_blur_args", false]], "gaussian_noise_args (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_noise_args", false]], "gaussian_noise_args (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_noise_args", false]], "gaussian_noise_lim (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.gaussian_noise_lim", false]], "gaussian_noise_lim (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.gaussian_noise_lim", false]], "generate_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.generate_csv", false]], "generate_csv() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.generate_csv", false]], "generate_dataspec_from_csv() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.generate_dataspec_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator method)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.generate_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator static method)": [[59, "id30", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplitgenerator method)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.generate_from_csv", false]], "generate_from_csv() (dacapo.experiments.datasplits.datasplitgenerator static method)": [[62, "id33", false]], "get_best() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.get_best", false], [145, "id12", false]], "get_best() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.get_best", false], [67, "id30", false]], "get_datasets() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.get_datasets", false], [181, "id17", false]], "get_ds() (dacapo.utils.view.bestscore method)": [[181, "dacapo.utils.view.BestScore.get_ds", false], [181, "id7", false]], "get_model_setup() (in module dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.get_model_setup", false]], "get_overall_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.get_overall_best", false], [88, "id15", false]], "get_overall_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.get_overall_best", false], [87, "id3", false]], "get_overall_best_parameters() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.get_overall_best_parameters", false], [88, "id16", false]], "get_overall_best_parameters() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.get_overall_best_parameters", false], [87, "id4", false]], "get_right_resolution_array_config() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.get_right_resolution_array_config", false]], "get_runs_info() (in module dacapo.plot)": [[157, "dacapo.plot.get_runs_info", false]], "get_validation_scores() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.get_validation_scores", false]], "get_validation_scores() (dacapo.experiments.run.run static method)": [[69, "id12", false]], "get_viewer() (in module dacapo.utils.view)": [[181, "dacapo.utils.view.get_viewer", false]], "gp_to_funlib_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.gp_to_funlib_array", false]], "graph (dacapo.gp.dacapo_points_source.graphsource attribute)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.graph", false], [149, "id1", false]], "graph (dacapo.gp.graphsource attribute)": [[152, "dacapo.gp.GraphSource.graph", false], [152, "id21", false]], "graphkey (class in dacapo.experiments.datasplits.keys)": [[63, "dacapo.experiments.datasplits.keys.GraphKey", false]], "graphkey (class in dacapo.experiments.datasplits.keys.keys)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey", false]], "graphsource (class in dacapo.gp)": [[152, "dacapo.gp.GraphSource", false]], "graphsource (class in dacapo.gp.dacapo_points_source)": [[149, "dacapo.gp.dacapo_points_source.GraphSource", false]], "graphstoreconfig (class in dacapo.experiments.datasplits.datasets.graphstores)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig", false]], "graphstoreconfig (class in dacapo.experiments.datasplits.datasets.graphstores.graph_source_config)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.groupings", false], [32, "id1", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.groupings", false], [38, "id8", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig attribute)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.groupings", false], [42, "id1", false]], "groupings (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.groupings", false], [38, "id18", false]], "grow_boundary_iterations (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.grow_boundary_iterations", false], [115, "id3", false]], "grow_boundary_iterations (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.grow_boundary_iterations", false], [119, "id25", false]], "gt (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.gt", false], [54, "id2", false]], "gt (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.gt", false], [48, "id2", false]], "gt (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.gt", false], [55, "id1", false]], "gt (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.gt", false], [54, "id14", false]], "gt (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.GT", false], [63, "id1", false]], "gt (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.GT", false]], "gt (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.GT", false], [64, "id1", false]], "gt (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.GT", false]], "gt (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.gt", false]], "gt (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.gt", false]], "gt (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.gt", false]], "gt (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.gt", false]], "gt (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.gt", false]], "gt_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.gt_config", false], [56, "id2", false]], "gt_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.gt_config", false], [54, "id20", false]], "gt_container (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.gt_container", false], [62, "id37", false]], "gt_container (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.gt_container", false], [59, "id8", false]], "gt_dataset (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.gt_dataset", false], [62, "id38", false]], "gt_dataset (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.gt_dataset", false], [59, "id9", false]], "gt_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.gt_key", false]], "gt_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.gt_key", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.gt_min_reject", false]], "gt_min_reject (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.gt_min_reject", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.gt_region_for_roi", false], [115, "id16", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.gt_region_for_roi", false], [119, "id38", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.gt_region_for_roi", false], [116, "id10", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.gt_region_for_roi", false], [119, "id15", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.gt_region_for_roi", false], [118, "id12", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.gt_region_for_roi", false], [119, "id58", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.gt_region_for_roi", false], [120, "id5", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.gt_region_for_roi", false], [119, "id45", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.gt_region_for_roi", false], [119, "id21", false]], "gt_region_for_roi() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.gt_region_for_roi", false], [122, "id0", false]], "gunpowdertrainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.GunpowderTrainer", false]], "gunpowdertrainer (class in dacapo.experiments.trainers.gunpowder_trainer)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer", false]], "gunpowdertrainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig", false]], "gunpowdertrainerconfig (class in dacapo.experiments.trainers.gunpowder_trainer_config)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig", false]], "hausdorff (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.hausdorff", false], [82, "id2", false]], "hausdorff (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.hausdorff", false], [88, "id25", false]], "hausdorff() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.hausdorff", false], [83, "id14", false]], "head_keys (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.head_keys", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id2", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id2", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id1", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id9", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.higher_is_better", false], [88, "id19", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.higher_is_better", false], [87, "id7", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id3", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.higher_is_better", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id53", false]], "higher_is_better() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.higher_is_better", false]], "hooks (dacapo.store.converter.typedconverter attribute)": [[163, "dacapo.store.converter.TypedConverter.hooks", false]], "hot_loss (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss attribute)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.hot_loss", false]], "hot_loss (dacapo.experiments.tasks.losses.hotdistanceloss attribute)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.hot_loss", false]], "hot_loss() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "id1", false]], "hot_loss() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "id7", false]], "hotdistanceloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss", false]], "hotdistanceloss (class in dacapo.experiments.tasks.losses.hot_distance_loss)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss", false]], "hotdistancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor", false]], "hotdistancepredictor (class in dacapo.experiments.tasks.predictors.hot_distance_predictor)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor", false]], "hotdistancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.HotDistanceTask", false]], "hotdistancetask (class in dacapo.experiments.tasks.hot_distance_task)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask", false]], "hotdistancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig", false]], "hotdistancetaskconfig (class in dacapo.experiments.tasks.hot_distance_task_config)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig", false]], "id (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters attribute)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters.id", false], [110, "id0", false]], "id (dacapo.experiments.tasks.post_processors.postprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters.id", false], [108, "id5", false]], "in_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.in_channels", false], [17, "id13", false]], "initialize_weights() (dacapo.experiments.starts.cosem_start.cosemstart method)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.initialize_weights", false], [71, "id5", false]], "initialize_weights() (dacapo.experiments.starts.cosemstart method)": [[73, "dacapo.experiments.starts.CosemStart.initialize_weights", false], [73, "id9", false]], "initialize_weights() (dacapo.experiments.starts.start method)": [[73, "dacapo.experiments.starts.Start.initialize_weights", false], [73, "id1", false]], "initialize_weights() (dacapo.experiments.starts.start.start method)": [[74, "dacapo.experiments.starts.start.Start.initialize_weights", false], [74, "id1", false]], "innerdistancepredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor", false]], "innerdistancepredictor (class in dacapo.experiments.tasks.predictors.inner_distance_predictor)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor", false]], "innerdistancetask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.InnerDistanceTask", false]], "innerdistancetask (class in dacapo.experiments.tasks.inner_distance_task)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask", false]], "innerdistancetaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig", false]], "innerdistancetaskconfig (class in dacapo.experiments.tasks.inner_distance_task_config)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig", false]], "input_resolution (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.input_resolution", false], [59, "id12", false]], "input_resolution (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.input_resolution", false], [62, "id15", false]], "input_shape (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.architecture property)": [[21, "id0", false]], "input_shape (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id0", false]], "input_shape (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.input_shape", false]], "input_shape (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.input_shape", false], [18, "id1", false]], "input_shape (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.input_shape", false]], "input_shape (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.input_shape", false], [21, "id20", false]], "input_shape (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture attribute)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id3", false]], "input_shape (dacapo.experiments.architectures.dummyarchitecture attribute)": [[21, "dacapo.experiments.architectures.DummyArchitecture.input_shape", false]], "input_shape (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id15", false]], "input_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.input_shape", false], [67, "id7", false]], "input_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.input_shape", false], [68, "id7", false]], "inside_value (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.inside_value", false]], "inside_value (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.inside_value", false]], "instance (dacapo.experiments.datasplits.datasplit_generator.segmentationtype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.instance", false], [59, "id4", false]], "instance() (dacapo.options class method)": [[155, "id0", false]], "instance() (dacapo.options method)": [[155, "dacapo.Options.instance", false]], "instance() (dacapo.options.options class method)": [[156, "id6", false]], "instance() (dacapo.options.options method)": [[156, "dacapo.options.Options.instance", false]], "instanceevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores", false]], "instanceevaluationscores (class in dacapo.experiments.tasks.evaluators.instance_evaluation_scores)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores", false]], "instanceevaluator (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator", false]], "instanceevaluator (class in dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator", false]], "intensitiesarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray", false]], "intensitiesarray (class in dacapo.experiments.arraytypes.intensities)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray", false]], "intensitiesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig", false]], "intensitiesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.intensity_array_config)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig", false]], "intensityaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig", false]], "intensityaugmentconfig (class in dacapo.experiments.trainers.gp_augments.intensity_config)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig", false]], "intensityscaleshiftaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig", false]], "intensityscaleshiftaugmentconfig (class in dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig", false]], "interp_order (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.interp_order", false], [44, "id3", false]], "interp_order (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.interp_order", false], [38, "id13", false]], "interpolatable (dacapo.experiments.arraytypes.annotationarray property)": [[27, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.annotations.annotationarray property)": [[22, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.arraytype.arraytype property)": [[23, "id0", false]], "interpolatable (dacapo.experiments.arraytypes.binary.binaryarray property)": [[24, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.distancearray property)": [[27, "id7", false]], "interpolatable (dacapo.experiments.arraytypes.distances.distancearray property)": [[25, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.embedding.embeddingarray property)": [[26, "id1", false]], "interpolatable (dacapo.experiments.arraytypes.embeddingarray property)": [[27, "id10", false]], "interpolatable (dacapo.experiments.arraytypes.intensities.intensitiesarray property)": [[28, "id3", false]], "interpolatable (dacapo.experiments.arraytypes.intensitiesarray property)": [[27, "id5", false]], "interpolatable (dacapo.experiments.arraytypes.mask property)": [[27, "id8", false]], "interpolatable (dacapo.experiments.arraytypes.mask.mask property)": [[29, "id0", false]], "interpolatable (dacapo.experiments.arraytypes.probabilities.probabilityarray property)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray.interpolatable", false]], "interpolatable (dacapo.experiments.arraytypes.probabilityarray property)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.annotationarray method)": [[27, "dacapo.experiments.arraytypes.AnnotationArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.annotations.annotationarray method)": [[22, "dacapo.experiments.arraytypes.annotations.AnnotationArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.arraytype.arraytype method)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.binary.binaryarray method)": [[24, "dacapo.experiments.arraytypes.binary.BinaryArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.distancearray method)": [[27, "dacapo.experiments.arraytypes.DistanceArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.distances.distancearray method)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.embedding.embeddingarray method)": [[26, "dacapo.experiments.arraytypes.embedding.EmbeddingArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.embeddingarray method)": [[27, "dacapo.experiments.arraytypes.EmbeddingArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.intensities.intensitiesarray method)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.intensitiesarray method)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.mask method)": [[27, "dacapo.experiments.arraytypes.Mask.interpolatable", false]], "interpolatable() (dacapo.experiments.arraytypes.mask.mask method)": [[29, "dacapo.experiments.arraytypes.mask.Mask.interpolatable", false]], "is_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.is_best", false], [88, "id14", false]], "is_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.is_best", false], [87, "id2", false]], "is_zarr_group() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.is_zarr_group", false]], "iterate() (dacapo.experiments.trainers.dummy_trainer.dummytrainer method)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.dummytrainer method)": [[138, "dacapo.experiments.trainers.DummyTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.iterate", false]], "iterate() (dacapo.experiments.trainers.trainer method)": [[138, "dacapo.experiments.trainers.Trainer.iterate", false]], "iterate() (dacapo.experiments.trainers.trainer.trainer method)": [[140, "dacapo.experiments.trainers.trainer.Trainer.iterate", false]], "iteration (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.iteration", false]], "iteration (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.iteration", false], [138, "id0", false]], "iteration (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.iteration", false], [140, "id0", false]], "iteration (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.iteration", false], [142, "id0", false]], "iteration (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.iteration", false], [67, "id10", false]], "iteration (dacapo.experiments.validation_iteration_scores.validationiterationscores attribute)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores.iteration", false], [144, "id0", false]], "iteration (dacapo.experiments.validationiterationscores attribute)": [[67, "dacapo.experiments.ValidationIterationScores.iteration", false], [67, "id16", false]], "iteration (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.iteration", false], [181, "id2", false]], "iteration (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Iteration", false]], "iteration_stats (dacapo.experiments.training_stats.trainingstats attribute)": [[143, "dacapo.experiments.training_stats.TrainingStats.iteration_stats", false], [143, "id0", false]], "iteration_stats (dacapo.experiments.trainingstats attribute)": [[67, "dacapo.experiments.TrainingStats.iteration_stats", false], [67, "id13", false]], "jaccard (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.jaccard", false], [82, "id1", false]], "jaccard (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.jaccard", false], [88, "id24", false]], "jaccard() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.jaccard", false], [83, "id13", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.kernel_size_down", false], [17, "id5", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.kernel_size_down", false], [17, "id17", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.kernel_size_down", false], [18, "id7", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.kernel_size_down", false], [21, "id37", false]], "kernel_size_down (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.kernel_size_down", false], [21, "id26", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.kernel_size_up", false], [17, "id6", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.kernel_size_up", false], [17, "id18", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.kernel_size_up", false], [18, "id8", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.kernel_size_up", false], [21, "id38", false]], "kernel_size_up (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.kernel_size_up", false], [21, "id27", false]], "kernel_sizes (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.kernel_sizes", false]], "key (dacapo.gp.dacapo_points_source.graphsource attribute)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.key", false], [149, "id0", false]], "key (dacapo.gp.graphsource attribute)": [[152, "dacapo.gp.GraphSource.key", false], [152, "id20", false]], "key (dacapo.utils.pipeline.zerossource attribute)": [[180, "dacapo.utils.pipeline.ZerosSource.key", false], [180, "id15", false]], "l_conv (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.l_conv", false], [17, "id19", false]], "l_down (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.l_down", false], [17, "id20", false]], "labels (dacapo.utils.pipeline.createpoints attribute)": [[180, "dacapo.utils.pipeline.CreatePoints.labels", false], [180, "id0", false]], "labels (dacapo.utils.pipeline.dilatepoints attribute)": [[180, "dacapo.utils.pipeline.DilatePoints.labels", false], [180, "id5", false]], "labels (dacapo.utils.pipeline.expandlabels attribute)": [[180, "dacapo.utils.pipeline.ExpandLabels.labels", false], [180, "id12", false]], "labels (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.labels", false]], "labels (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.labels", false]], "labels (dacapo.utils.pipeline.randomdilatelabels attribute)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.labels", false], [180, "id8", false]], "labels (dacapo.utils.pipeline.relabel attribute)": [[180, "dacapo.utils.pipeline.Relabel.labels", false]], "latest_iteration() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.latest_iteration", false], [169, "id1", false]], "latest_iteration() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.latest_iteration", false], [173, "id4", false]], "learning_rate (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.learning_rate", false], [127, "id0", false]], "learning_rate (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.learning_rate", false], [138, "id9", false]], "learning_rate (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.learning_rate", false], [136, "id0", false]], "learning_rate (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.learning_rate", false], [138, "id21", false]], "learning_rate (dacapo.experiments.trainers.trainer attribute)": [[138, "dacapo.experiments.trainers.Trainer.learning_rate", false], [138, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainer.trainer attribute)": [[140, "dacapo.experiments.trainers.trainer.Trainer.learning_rate", false], [140, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.learning_rate", false], [141, "id2", false]], "learning_rate (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.learning_rate", false], [138, "id5", false]], "limit_validation_crop_size() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.limit_validation_crop_size", false]], "load_best() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.load_best", false], [173, "id3", false]], "load_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.load_weights", false], [173, "id2", false]], "localarrayidentifier (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.LocalArrayIdentifier", false]], "localarraystore (class in dacapo.store.local_array_store)": [[168, "dacapo.store.local_array_store.LocalArrayStore", false]], "localcontaineridentifier (class in dacapo.store.array_store)": [[160, "dacapo.store.array_store.LocalContainerIdentifier", false]], "localtorch (class in dacapo.compute_context)": [[13, "dacapo.compute_context.LocalTorch", false]], "localtorch (class in dacapo.compute_context.local_torch)": [[14, "dacapo.compute_context.local_torch.LocalTorch", false]], "localweightsstore (class in dacapo.store.local_weights_store)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore", false]], "logger (in module dacapo.apply)": [[0, "dacapo.apply.logger", false]], "logger (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.logger", false]], "logger (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.logger", false]], "logger (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.logger", false]], "logger (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.logger", false]], "logger (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.logger", false]], "logger (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.logger", false]], "logger (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.logger", false]], "logger (in module dacapo.experiments.starts.cosem_start)": [[71, "dacapo.experiments.starts.cosem_start.logger", false]], "logger (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.logger", false]], "logger (in module dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.logger", false]], "logger (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.distance_predictor)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.hot_distance_predictor)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.inner_distance_predictor)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.logger", false]], "logger (in module dacapo.experiments.tasks.predictors.one_hot_predictor)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.logger", false]], "logger (in module dacapo.experiments.trainers.gunpowder_trainer)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.logger", false]], "logger (in module dacapo.experiments.training_stats)": [[143, "dacapo.experiments.training_stats.logger", false]], "logger (in module dacapo.gp.elastic_augment_fuse)": [[150, "dacapo.gp.elastic_augment_fuse.logger", false]], "logger (in module dacapo.gp.gamma_noise)": [[151, "dacapo.gp.gamma_noise.logger", false]], "logger (in module dacapo.gp.reject_if_empty)": [[154, "dacapo.gp.reject_if_empty.logger", false]], "logger (in module dacapo.options)": [[156, "dacapo.options.logger", false]], "logger (in module dacapo.predict)": [[158, "dacapo.predict.logger", false]], "logger (in module dacapo.predict_local)": [[159, "dacapo.predict_local.logger", false]], "logger (in module dacapo.store.file_config_store)": [[165, "dacapo.store.file_config_store.logger", false]], "logger (in module dacapo.store.file_stats_store)": [[166, "dacapo.store.file_stats_store.logger", false]], "logger (in module dacapo.store.local_array_store)": [[168, "dacapo.store.local_array_store.logger", false]], "logger (in module dacapo.store.local_weights_store)": [[169, "dacapo.store.local_weights_store.logger", false]], "logger (in module dacapo.store.mongo_config_store)": [[170, "dacapo.store.mongo_config_store.logger", false]], "logger (in module dacapo.store.mongo_stats_store)": [[171, "dacapo.store.mongo_stats_store.logger", false]], "logger (in module dacapo.train)": [[175, "dacapo.train.logger", false]], "logger (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.logger", false]], "logger (in module dacapo.validate)": [[183, "dacapo.validate.logger", false]], "logicalorarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig", false]], "logicalorarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig", false]], "loss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.Loss", false]], "loss (class in dacapo.experiments.tasks.losses.loss)": [[100, "dacapo.experiments.tasks.losses.loss.Loss", false]], "loss (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.loss", false], [76, "id1", false]], "loss (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.loss", false], [93, "id38", false]], "loss (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.loss", false], [78, "id1", false]], "loss (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.loss", false], [93, "id18", false]], "loss (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.loss", false], [80, "id1", false]], "loss (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.loss", false], [93, "id7", false]], "loss (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.loss", false], [91, "id1", false]], "loss (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.loss", false], [93, "id56", false]], "loss (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.loss", false], [94, "id1", false]], "loss (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.loss", false], [93, "id46", false]], "loss (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.loss", false]], "loss (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.loss", false]], "loss (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.loss", false]], "loss (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.loss", false]], "loss (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.loss", false]], "loss (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.loss", false]], "loss (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.loss", false], [142, "id1", false]], "loss (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.loss", false], [67, "id11", false]], "lsd_pad() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_pad", false], [115, "id12", false]], "lsd_pad() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_pad", false], [119, "id34", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsd_weight_clipmax", false], [77, "id8", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsd_weight_clipmax", false], [93, "id35", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_weight_clipmax", false], [115, "id7", false]], "lsd_weight_clipmax (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_weight_clipmax", false], [119, "id29", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsd_weight_clipmin", false], [77, "id7", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsd_weight_clipmin", false], [93, "id34", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsd_weight_clipmin", false], [115, "id6", false]], "lsd_weight_clipmin (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsd_weight_clipmin", false], [119, "id28", false]], "lsds (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsds", false], [77, "id1", false]], "lsds (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsds", false], [93, "id28", false]], "lsds (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.lsds", false], [115, "id1", false]], "lsds (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.lsds", false], [119, "id23", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.lsds_to_affs_weight_ratio", false], [77, "id4", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.lsds_to_affs_weight_ratio", false], [93, "id31", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss attribute)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.lsds_to_affs_weight_ratio", false], [96, "id1", false]], "lsds_to_affs_weight_ratio (dacapo.experiments.tasks.losses.affinitiesloss attribute)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.lsds_to_affs_weight_ratio", false], [99, "id4", false]], "makeraw (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.MakeRaw", false]], "makeraw.pipeline (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline", false]], "mask (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.Mask", false]], "mask (class in dacapo.experiments.arraytypes.mask)": [[29, "dacapo.experiments.arraytypes.mask.Mask", false]], "mask (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.mask", false], [54, "id3", false]], "mask (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.mask", false], [48, "id3", false]], "mask (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.mask", false], [55, "id2", false]], "mask (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.mask", false], [54, "id15", false]], "mask (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.MASK", false], [63, "id2", false]], "mask (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.MASK", false]], "mask (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.MASK", false], [64, "id2", false]], "mask (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.MASK", false]], "mask_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.mask_config", false], [56, "id3", false]], "mask_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.mask_config", false], [54, "id21", false]], "mask_distances (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.mask_distances", false], [79, "id4", false]], "mask_distances (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.mask_distances", false], [93, "id14", false]], "mask_distances (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.mask_distances", false], [92, "id5", false]], "mask_distances (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.mask_distances", false], [93, "id54", false]], "mask_distances (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.mask_distances", false], [116, "id1", false]], "mask_distances (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.mask_distances", false], [119, "id6", false]], "mask_distances (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.mask_distances", false], [118, "id3", false]], "mask_distances (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.mask_distances", false], [119, "id49", false]], "mask_integral_downsample_factor (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.mask_integral_downsample_factor", false], [136, "id7", false]], "mask_integral_downsample_factor (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.mask_integral_downsample_factor", false], [138, "id28", false]], "mask_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.mask_key", false], [148, "id2", false]], "mask_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.mask_key", false], [152, "id2", false]], "match_heads() (in module dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.match_heads", false]], "max (dacapo.experiments.arraytypes.distancearray attribute)": [[27, "dacapo.experiments.arraytypes.DistanceArray.max", false]], "max (dacapo.experiments.arraytypes.distances.distancearray attribute)": [[25, "dacapo.experiments.arraytypes.distances.DistanceArray.max", false]], "max (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.max", false], [28, "id2", false]], "max (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.max", false], [27, "id4", false]], "max (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.max", false], [38, "id16", false]], "max (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.max", false], [39, "id2", false]], "max_distance (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.max_distance", false], [118, "id4", false]], "max_distance (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.max_distance", false], [119, "id50", false]], "max_distance (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.max_distance", false]], "max_distance (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.max_distance", false]], "max_gt_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_gt_downsample", false], [59, "id16", false]], "max_gt_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_gt_downsample", false], [62, "id19", false]], "max_gt_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_gt_upsample", false], [59, "id17", false]], "max_gt_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_gt_upsample", false], [62, "id20", false]], "max_raw_training_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_training_downsample", false], [59, "id18", false]], "max_raw_training_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_training_downsample", false], [62, "id21", false]], "max_raw_training_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_training_upsample", false], [59, "id19", false]], "max_raw_training_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_training_upsample", false], [62, "id22", false]], "max_raw_validation_downsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_validation_downsample", false], [59, "id20", false]], "max_raw_validation_downsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_validation_downsample", false], [62, "id23", false]], "max_raw_validation_upsample (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_raw_validation_upsample", false], [59, "id21", false]], "max_raw_validation_upsample (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_raw_validation_upsample", false], [62, "id24", false]], "max_retries (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.max_retries", false]], "max_retries (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.max_retries", false]], "max_validation_volume_size (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.max_validation_volume_size", false], [59, "id26", false]], "max_validation_volume_size (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.max_validation_volume_size", false], [62, "id29", false]], "mean_false_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_distance", false], [82, "id9", false]], "mean_false_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_distance", false], [88, "id32", false]], "mean_false_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_distance", false], [83, "id22", false]], "mean_false_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_distance", false], [83, "id52", false]], "mean_false_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_distance_clipped", false], [82, "id12", false]], "mean_false_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_distance_clipped", false], [88, "id35", false]], "mean_false_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_distance_clipped", false], [83, "id25", false]], "mean_false_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_distance_clipped", false], [83, "id53", false]], "mean_false_negative_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_negative_distance", false], [82, "id10", false]], "mean_false_negative_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_negative_distance", false], [88, "id33", false]], "mean_false_negative_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_negative_distance", false], [83, "id23", false]], "mean_false_negative_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_negative_distance", false], [83, "id51", false]], "mean_false_negative_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_negative_distance_clipped", false], [82, "id13", false]], "mean_false_negative_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_negative_distance_clipped", false], [88, "id36", false]], "mean_false_negative_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_negative_distance_clipped", false], [83, "id26", false]], "mean_false_negative_distances_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_negative_distances_clipped", false], [83, "id48", false]], "mean_false_positive_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_positive_distance", false], [82, "id11", false]], "mean_false_positive_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_positive_distance", false], [88, "id34", false]], "mean_false_positive_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_positive_distance", false], [83, "id24", false]], "mean_false_positive_distance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_positive_distance", false], [83, "id49", false]], "mean_false_positive_distance_clipped (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.mean_false_positive_distance_clipped", false], [82, "id14", false]], "mean_false_positive_distance_clipped (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.mean_false_positive_distance_clipped", false], [88, "id37", false]], "mean_false_positive_distance_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.mean_false_positive_distance_clipped", false], [83, "id27", false]], "mean_false_positive_distances_clipped() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.mean_false_positive_distances_clipped", false], [83, "id47", false]], "membrane_like (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.membrane_like", false]], "membrane_like (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.membrane_like", false]], "membrane_size (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.membrane_size", false]], "membrane_size (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.membrane_size", false]], "mergeinstancesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig", false]], "mergeinstancesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig", false]], "message (dacapo.store.config_store.duplicatenameerror attribute)": [[161, "dacapo.store.config_store.DuplicateNameError.message", false]], "min (dacapo.experiments.arraytypes.intensities.intensitiesarray attribute)": [[28, "dacapo.experiments.arraytypes.intensities.IntensitiesArray.min", false], [28, "id1", false]], "min (dacapo.experiments.arraytypes.intensitiesarray attribute)": [[27, "dacapo.experiments.arraytypes.IntensitiesArray.min", false], [27, "id3", false]], "min (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.min", false], [38, "id15", false]], "min (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.min", false], [39, "id1", false]], "min_masked (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.min_masked", false], [136, "id5", false]], "min_masked (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.min_masked", false], [137, "id4", false]], "min_masked (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.min_masked", false], [138, "id26", false]], "min_masked (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.min_masked", false], [138, "id19", false]], "min_size (dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.dummypostprocessorparameters attribute)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters.min_size", false], [107, "id0", false]], "min_size (dacapo.experiments.tasks.post_processors.dummypostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters.min_size", false], [108, "id4", false]], "min_size (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.min_size", false]], "min_size (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.min_size", false]], "min_training_volume_size (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.min_training_volume_size", false], [59, "id22", false]], "min_training_volume_size (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.min_training_volume_size", false], [62, "id25", false]], "mirror_augment (dacapo.experiments.trainers.dummy_trainer.dummytrainer attribute)": [[127, "dacapo.experiments.trainers.dummy_trainer.DummyTrainer.mirror_augment", false], [127, "id2", false]], "mirror_augment (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig attribute)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.mirror_augment", false], [128, "id0", false]], "mirror_augment (dacapo.experiments.trainers.dummytrainer attribute)": [[138, "dacapo.experiments.trainers.DummyTrainer.mirror_augment", false], [138, "id11", false]], "mirror_augment (dacapo.experiments.trainers.dummytrainerconfig attribute)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.mirror_augment", false], [138, "id7", false]], "missingannotationsmaskconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig", false]], "missingannotationsmaskconfig (class in dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig", false]], "mode (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.mode", false]], "mode (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.mode", false]], "model (class in dacapo.experiments)": [[67, "dacapo.experiments.Model", false]], "model (class in dacapo.experiments.model)": [[68, "dacapo.experiments.model.Model", false]], "model (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.model", false], [69, "id6", false]], "model (dacapo.store.weights_store.weights attribute)": [[173, "dacapo.store.weights_store.Weights.model", false], [173, "id1", false]], "model_configs (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.model_configs", false]], "module": [[0, "module-dacapo.apply", false], [1, "module-dacapo.blockwise.argmax_worker", false], [2, "module-dacapo.blockwise.blockwise_task", false], [3, "module-dacapo.blockwise.empanada_function", false], [4, "module-dacapo.blockwise", false], [5, "module-dacapo.blockwise.predict_worker", false], [6, "module-dacapo.blockwise.relabel_worker", false], [7, "module-dacapo.blockwise.scheduler", false], [8, "module-dacapo.blockwise.segment_worker", false], [9, "module-dacapo.blockwise.threshold_worker", false], [10, "module-dacapo.blockwise.watershed_function", false], [11, "module-dacapo.compute_context.bsub", false], [12, "module-dacapo.compute_context.compute_context", false], [13, "module-dacapo.compute_context", false], [14, "module-dacapo.compute_context.local_torch", false], [15, "module-dacapo.experiments.architectures.architecture", false], [16, "module-dacapo.experiments.architectures.architecture_config", false], [17, "module-dacapo.experiments.architectures.cnnectome_unet", false], [18, "module-dacapo.experiments.architectures.cnnectome_unet_config", false], [19, "module-dacapo.experiments.architectures.dummy_architecture", false], [20, "module-dacapo.experiments.architectures.dummy_architecture_config", false], [21, "module-dacapo.experiments.architectures", false], [22, "module-dacapo.experiments.arraytypes.annotations", false], [23, "module-dacapo.experiments.arraytypes.arraytype", false], [24, "module-dacapo.experiments.arraytypes.binary", false], [25, "module-dacapo.experiments.arraytypes.distances", false], [26, "module-dacapo.experiments.arraytypes.embedding", false], [27, "module-dacapo.experiments.arraytypes", false], [28, "module-dacapo.experiments.arraytypes.intensities", false], [29, "module-dacapo.experiments.arraytypes.mask", false], [30, "module-dacapo.experiments.arraytypes.probabilities", false], [31, "module-dacapo.experiments.datasplits.datasets.arrays.array_config", false], [32, "module-dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", false], [33, "module-dacapo.experiments.datasplits.datasets.arrays.concat_array_config", false], [34, "module-dacapo.experiments.datasplits.datasets.arrays.constant_array_config", false], [35, "module-dacapo.experiments.datasplits.datasets.arrays.crop_array_config", false], [36, "module-dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", false], [37, "module-dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", false], [38, "module-dacapo.experiments.datasplits.datasets.arrays", false], [39, "module-dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", false], [40, "module-dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", false], [41, "module-dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", false], [42, "module-dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", false], [43, "module-dacapo.experiments.datasplits.datasets.arrays.ones_array_config", false], [44, "module-dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", false], [45, "module-dacapo.experiments.datasplits.datasets.arrays.sum_array_config", false], [46, "module-dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", false], [47, "module-dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", false], [48, "module-dacapo.experiments.datasplits.datasets.dataset", false], [49, "module-dacapo.experiments.datasplits.datasets.dataset_config", false], [50, "module-dacapo.experiments.datasplits.datasets.dummy_dataset", false], [51, "module-dacapo.experiments.datasplits.datasets.dummy_dataset_config", false], [52, "module-dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", false], [53, "module-dacapo.experiments.datasplits.datasets.graphstores", false], [54, "module-dacapo.experiments.datasplits.datasets", false], [55, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset", false], [56, "module-dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", false], [57, "module-dacapo.experiments.datasplits.datasplit", false], [58, "module-dacapo.experiments.datasplits.datasplit_config", false], [59, "module-dacapo.experiments.datasplits.datasplit_generator", false], [60, "module-dacapo.experiments.datasplits.dummy_datasplit", false], [61, "module-dacapo.experiments.datasplits.dummy_datasplit_config", false], [62, "module-dacapo.experiments.datasplits", false], [63, "module-dacapo.experiments.datasplits.keys", false], [64, "module-dacapo.experiments.datasplits.keys.keys", false], [65, "module-dacapo.experiments.datasplits.train_validate_datasplit", false], [66, "module-dacapo.experiments.datasplits.train_validate_datasplit_config", false], [67, "module-dacapo.experiments", false], [68, "module-dacapo.experiments.model", false], [69, "module-dacapo.experiments.run", false], [70, "module-dacapo.experiments.run_config", false], [71, "module-dacapo.experiments.starts.cosem_start", false], [72, "module-dacapo.experiments.starts.cosem_start_config", false], [73, "module-dacapo.experiments.starts", false], [74, "module-dacapo.experiments.starts.start", false], [75, "module-dacapo.experiments.starts.start_config", false], [76, "module-dacapo.experiments.tasks.affinities_task", false], [77, "module-dacapo.experiments.tasks.affinities_task_config", false], [78, "module-dacapo.experiments.tasks.distance_task", false], [79, "module-dacapo.experiments.tasks.distance_task_config", false], [80, "module-dacapo.experiments.tasks.dummy_task", false], [81, "module-dacapo.experiments.tasks.dummy_task_config", false], [82, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", false], [83, "module-dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", false], [84, "module-dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", false], [85, "module-dacapo.experiments.tasks.evaluators.dummy_evaluator", false], [86, "module-dacapo.experiments.tasks.evaluators.evaluation_scores", false], [87, "module-dacapo.experiments.tasks.evaluators.evaluator", false], [88, "module-dacapo.experiments.tasks.evaluators", false], [89, "module-dacapo.experiments.tasks.evaluators.instance_evaluation_scores", false], [90, "module-dacapo.experiments.tasks.evaluators.instance_evaluator", false], [91, "module-dacapo.experiments.tasks.hot_distance_task", false], [92, "module-dacapo.experiments.tasks.hot_distance_task_config", false], [93, "module-dacapo.experiments.tasks", false], [94, "module-dacapo.experiments.tasks.inner_distance_task", false], [95, "module-dacapo.experiments.tasks.inner_distance_task_config", false], [96, "module-dacapo.experiments.tasks.losses.affinities_loss", false], [97, "module-dacapo.experiments.tasks.losses.dummy_loss", false], [98, "module-dacapo.experiments.tasks.losses.hot_distance_loss", false], [99, "module-dacapo.experiments.tasks.losses", false], [100, "module-dacapo.experiments.tasks.losses.loss", false], [101, "module-dacapo.experiments.tasks.losses.mse_loss", false], [102, "module-dacapo.experiments.tasks.one_hot_task", false], [103, "module-dacapo.experiments.tasks.one_hot_task_config", false], [104, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor", false], [105, "module-dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", false], [106, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor", false], [107, "module-dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", false], [108, "module-dacapo.experiments.tasks.post_processors", false], [109, "module-dacapo.experiments.tasks.post_processors.post_processor", false], [110, "module-dacapo.experiments.tasks.post_processors.post_processor_parameters", false], [111, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor", false], [112, "module-dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", false], [113, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor", false], [114, "module-dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", false], [115, "module-dacapo.experiments.tasks.predictors.affinities_predictor", false], [116, "module-dacapo.experiments.tasks.predictors.distance_predictor", false], [117, "module-dacapo.experiments.tasks.predictors.dummy_predictor", false], [118, "module-dacapo.experiments.tasks.predictors.hot_distance_predictor", false], [119, "module-dacapo.experiments.tasks.predictors", false], [120, "module-dacapo.experiments.tasks.predictors.inner_distance_predictor", false], [121, "module-dacapo.experiments.tasks.predictors.one_hot_predictor", false], [122, "module-dacapo.experiments.tasks.predictors.predictor", false], [123, "module-dacapo.experiments.tasks.pretrained_task", false], [124, "module-dacapo.experiments.tasks.pretrained_task_config", false], [125, "module-dacapo.experiments.tasks.task", false], [126, "module-dacapo.experiments.tasks.task_config", false], [127, "module-dacapo.experiments.trainers.dummy_trainer", false], [128, "module-dacapo.experiments.trainers.dummy_trainer_config", false], [129, "module-dacapo.experiments.trainers.gp_augments.augment_config", false], [130, "module-dacapo.experiments.trainers.gp_augments.elastic_config", false], [131, "module-dacapo.experiments.trainers.gp_augments.gamma_config", false], [132, "module-dacapo.experiments.trainers.gp_augments", false], [133, "module-dacapo.experiments.trainers.gp_augments.intensity_config", false], [134, "module-dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", false], [135, "module-dacapo.experiments.trainers.gp_augments.simple_config", false], [136, "module-dacapo.experiments.trainers.gunpowder_trainer", false], [137, "module-dacapo.experiments.trainers.gunpowder_trainer_config", false], [138, "module-dacapo.experiments.trainers", false], [139, "module-dacapo.experiments.trainers.optimizers", false], [140, "module-dacapo.experiments.trainers.trainer", false], [141, "module-dacapo.experiments.trainers.trainer_config", false], [142, "module-dacapo.experiments.training_iteration_stats", false], [143, "module-dacapo.experiments.training_stats", false], [144, "module-dacapo.experiments.validation_iteration_scores", false], [145, "module-dacapo.experiments.validation_scores", false], [146, "module-dacapo.ext", false], [147, "module-dacapo.gp.copy", false], [148, "module-dacapo.gp.dacapo_create_target", false], [149, "module-dacapo.gp.dacapo_points_source", false], [150, "module-dacapo.gp.elastic_augment_fuse", false], [151, "module-dacapo.gp.gamma_noise", false], [152, "module-dacapo.gp", false], [153, "module-dacapo.gp.product", false], [154, "module-dacapo.gp.reject_if_empty", false], [155, "module-dacapo", false], [156, "module-dacapo.options", false], [157, "module-dacapo.plot", false], [158, "module-dacapo.predict", false], [159, "module-dacapo.predict_local", false], [160, "module-dacapo.store.array_store", false], [161, "module-dacapo.store.config_store", false], [162, "module-dacapo.store.conversion_hooks", false], [163, "module-dacapo.store.converter", false], [164, "module-dacapo.store.create_store", false], [165, "module-dacapo.store.file_config_store", false], [166, "module-dacapo.store.file_stats_store", false], [167, "module-dacapo.store", false], [168, "module-dacapo.store.local_array_store", false], [169, "module-dacapo.store.local_weights_store", false], [170, "module-dacapo.store.mongo_config_store", false], [171, "module-dacapo.store.mongo_stats_store", false], [172, "module-dacapo.store.stats_store", false], [173, "module-dacapo.store.weights_store", false], [174, "module-dacapo.tmp", false], [175, "module-dacapo.train", false], [176, "module-dacapo.utils.affinities", false], [177, "module-dacapo.utils.array_utils", false], [178, "module-dacapo.utils.balance_weights", false], [179, "module-dacapo.utils", false], [180, "module-dacapo.utils.pipeline", false], [181, "module-dacapo.utils.view", false], [182, "module-dacapo.utils.voi", false], [183, "module-dacapo.validate", false], [185, "module-dacapo", false], [189, "module-dacapo", false], [194, "module-dacapo", false]], "module() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.module", false]], "module() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.module", false]], "mongo_db_host (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.mongo_db_host", false], [156, "id3", false]], "mongo_db_name (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.mongo_db_name", false], [156, "id4", false]], "mongoconfigstore (class in dacapo.store.mongo_config_store)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore", false]], "mongostatsstore (class in dacapo.store.mongo_stats_store)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore", false]], "most_recent_iteration (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.most_recent_iteration", false]], "move_optimizer() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.move_optimizer", false]], "moving_counts (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.moving_counts", false]], "moving_counts (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.moving_counts", false]], "mseloss (class in dacapo.experiments.tasks.losses)": [[99, "dacapo.experiments.tasks.losses.MSELoss", false]], "mseloss (class in dacapo.experiments.tasks.losses.mse_loss)": [[101, "dacapo.experiments.tasks.losses.mse_loss.MSELoss", false]], "multichannelbinarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores", false]], "multichannelbinarysegmentationevaluationscores (class in dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores", false]], "name (dacapo.experiments.architectures.architecture_config.architectureconfig attribute)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig.name", false], [16, "id0", false]], "name (dacapo.experiments.architectures.architectureconfig attribute)": [[21, "dacapo.experiments.architectures.ArchitectureConfig.name", false], [21, "id6", false]], "name (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig attribute)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.name", false], [31, "id0", false]], "name (dacapo.experiments.datasplits.datasets.arrays.arrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.name", false], [38, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.name", false], [54, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.name", false], [48, "id0", false]], "name (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig attribute)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.name", false], [49, "id0", false]], "name (dacapo.experiments.datasplits.datasets.datasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.name", false], [54, "id6", false]], "name (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset attribute)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.dummydataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.name", false]], "name (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.name", false]], "name (dacapo.experiments.datasplits.datasplit_config.datasplitconfig attribute)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig.name", false], [58, "id0", false]], "name (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.name", false], [59, "id10", false]], "name (dacapo.experiments.datasplits.datasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DataSplitConfig.name", false], [62, "id2", false]], "name (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.name", false], [62, "id13", false]], "name (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.name", false], [69, "id0", false]], "name (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.name", false]], "name (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.name", false]], "name (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.name", false], [71, "id2", false]], "name (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.name", false], [73, "id6", false]], "name (dacapo.experiments.tasks.losses.dummy_loss.dummyloss attribute)": [[97, "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss.name", false]], "name (dacapo.experiments.tasks.losses.dummyloss attribute)": [[99, "dacapo.experiments.tasks.losses.DummyLoss.name", false]], "name (dacapo.experiments.tasks.task_config.taskconfig attribute)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig.name", false], [126, "id0", false]], "name (dacapo.experiments.tasks.taskconfig attribute)": [[93, "dacapo.experiments.tasks.TaskConfig.name", false], [93, "id0", false]], "name (dacapo.experiments.trainers.trainer_config.trainerconfig attribute)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.name", false], [141, "id0", false]], "name (dacapo.experiments.trainers.trainerconfig attribute)": [[138, "dacapo.experiments.trainers.TrainerConfig.name", false], [138, "id3", false]], "neighborhood (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.neighborhood", false], [77, "id0", false]], "neighborhood (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.neighborhood", false], [93, "id27", false]], "neighborhood (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.neighborhood", false], [115, "id0", false]], "neighborhood (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.neighborhood", false], [119, "id22", false]], "neuroglancerrunviewer (class in dacapo.utils.view)": [[181, "dacapo.utils.view.NeuroglancerRunViewer", false]], "new_validation_checker() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.new_validation_checker", false], [181, "id21", false]], "next() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.next", false], [136, "id10", false]], "next() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.next", false], [138, "id31", false]], "next_conv_kernel_sizes (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.next_conv_kernel_sizes", false], [17, "id32", false]], "node() (dacapo.experiments.trainers.augmentconfig method)": [[138, "dacapo.experiments.trainers.AugmentConfig.node", false], [138, "id32", false]], "node() (dacapo.experiments.trainers.gp_augments.augment_config.augmentconfig method)": [[129, "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig.node", false], [129, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.augmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.AugmentConfig.node", false], [132, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig method)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.node", false], [130, "id5", false]], "node() (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.node", false], [132, "id6", false]], "node() (dacapo.experiments.trainers.gp_augments.gamma_config.gammaaugmentconfig method)": [[131, "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig.node", false], [131, "id1", false]], "node() (dacapo.experiments.trainers.gp_augments.gammaaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig.node", false], [132, "id9", false]], "node() (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig method)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.node", false], [133, "id3", false]], "node() (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig method)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.node", false], [134, "id2", false]], "node() (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.node", false], [132, "id13", false]], "node() (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.node", false], [132, "id16", false]], "node() (dacapo.experiments.trainers.gp_augments.simple_config.simpleaugmentconfig method)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig.node", false], [135, "id0", false]], "node() (dacapo.experiments.trainers.gp_augments.simpleaugmentconfig method)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig.node", false], [132, "id7", false]], "non_empty (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.NON_EMPTY", false], [63, "id3", false]], "non_empty (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.NON_EMPTY", false]], "non_empty (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.NON_EMPTY", false], [64, "id3", false]], "non_empty (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.NON_EMPTY", false]], "none() (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig method)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.None", false]], "none() (dacapo.experiments.tasks.onehottaskconfig method)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.None", false]], "norm (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.norm", false], [118, "id1", false]], "norm (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.norm", false], [119, "id47", false]], "norm (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.norm", false]], "norm (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.norm", false]], "nosuchmodule (class in dacapo.ext)": [[146, "dacapo.ext.NoSuchModule", false]], "np_to_funlib_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.np_to_funlib_array", false]], "num_affinities (dacapo.experiments.tasks.losses.affinities_loss.affinitiesloss attribute)": [[96, "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss.num_affinities", false], [96, "id0", false]], "num_affinities (dacapo.experiments.tasks.losses.affinitiesloss attribute)": [[99, "dacapo.experiments.tasks.losses.AffinitiesLoss.num_affinities", false], [99, "id3", false]], "num_channels() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.num_channels", false]], "num_channels() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.num_channels", false]], "num_channels_from_array() (in module dacapo.tmp)": [[174, "dacapo.tmp.num_channels_from_array", false]], "num_classes (dacapo.experiments.arraytypes.arraytype.arraytype attribute)": [[23, "dacapo.experiments.arraytypes.arraytype.ArrayType.num_classes", false]], "num_cpus (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.num_cpus", false], [13, "id8", false]], "num_cpus (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.num_cpus", false], [11, "id2", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.num_data_fetchers", false], [136, "id2", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.num_data_fetchers", false], [137, "id1", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.num_data_fetchers", false], [138, "id23", false]], "num_data_fetchers (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.num_data_fetchers", false], [138, "id16", false]], "num_fmaps (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_fmaps", false], [17, "id2", false]], "num_fmaps (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.num_fmaps", false], [18, "id4", false]], "num_fmaps (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_fmaps", false], [21, "id34", false]], "num_fmaps (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.num_fmaps", false], [21, "id23", false]], "num_gpus (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.num_gpus", false], [13, "id7", false]], "num_gpus (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.num_gpus", false], [11, "id1", false]], "num_heads (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_heads", false]], "num_heads (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.num_heads", false], [17, "id12", false]], "num_heads (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_heads", false]], "num_in_channels (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.architecture property)": [[21, "id2", false]], "num_in_channels (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id2", false]], "num_in_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_in_channels", false]], "num_in_channels (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id4", false]], "num_in_channels (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.num_in_channels", false], [20, "id1", false]], "num_in_channels (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id16", false]], "num_in_channels (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.num_in_channels", false], [21, "id9", false]], "num_in_channels (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.num_in_channels", false], [67, "id3", false]], "num_in_channels (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.num_in_channels", false], [68, "id3", false]], "num_in_channels() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.num_in_channels", false]], "num_in_channels() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.num_in_channels", false]], "num_iterations (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.num_iterations", false]], "num_iterations (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.num_iterations", false]], "num_levels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.num_levels", false], [17, "id11", false]], "num_lsd_voxels (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.num_lsd_voxels", false], [77, "id2", false]], "num_lsd_voxels (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.num_lsd_voxels", false], [93, "id29", false]], "num_out_channels (dacapo.experiments.architectures.architecture attribute)": [[21, "dacapo.experiments.architectures.Architecture.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.architecture property)": [[21, "id3", false]], "num_out_channels (dacapo.experiments.architectures.architecture.architecture attribute)": [[15, "dacapo.experiments.architectures.architecture.Architecture.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.architecture.architecture property)": [[15, "id3", false]], "num_out_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet property)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.cnnectomeunet property)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.num_out_channels", false]], "num_out_channels (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture property)": [[19, "id5", false]], "num_out_channels (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig attribute)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.num_out_channels", false], [20, "id2", false]], "num_out_channels (dacapo.experiments.architectures.dummyarchitecture property)": [[21, "id17", false]], "num_out_channels (dacapo.experiments.architectures.dummyarchitectureconfig attribute)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.num_out_channels", false], [21, "id10", false]], "num_out_channels (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.num_out_channels", false], [67, "id0", false]], "num_out_channels (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.num_out_channels", false], [68, "id0", false]], "num_out_channels() (dacapo.experiments.architectures.dummy_architecture.dummyarchitecture method)": [[19, "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture.num_out_channels", false]], "num_out_channels() (dacapo.experiments.architectures.dummyarchitecture method)": [[21, "dacapo.experiments.architectures.DummyArchitecture.num_out_channels", false]], "num_points (dacapo.utils.pipeline.createpoints attribute)": [[180, "dacapo.utils.pipeline.CreatePoints.num_points", false], [180, "id1", false]], "num_voxels (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor attribute)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.num_voxels", false], [115, "id2", false]], "num_voxels (dacapo.experiments.tasks.predictors.affinitiespredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.num_voxels", false], [119, "id24", false]], "num_workers (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.num_workers", false]], "num_workers (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.num_workers", false]], "offset (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.offset", false], [46, "id1", false]], "offsets (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor attribute)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.offsets", false], [113, "id0", false]], "offsets (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.offsets", false]], "offsets (dacapo.experiments.tasks.post_processors.watershedpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.offsets", false], [108, "id17", false]], "offsets (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.offsets", false]], "onehotpredictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor", false]], "onehotpredictor (class in dacapo.experiments.tasks.predictors.one_hot_predictor)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor", false]], "onehottask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.OneHotTask", false]], "onehottask (class in dacapo.experiments.tasks.one_hot_task)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask", false]], "onehottaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig", false]], "onehottaskconfig (class in dacapo.experiments.tasks.one_hot_task_config)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig", false]], "onesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig", false]], "onesarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.ones_array_config)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig", false]], "oom_limit (dacapo.compute_context.local_torch.localtorch attribute)": [[14, "dacapo.compute_context.local_torch.LocalTorch.oom_limit", false], [14, "id1", false]], "oom_limit (dacapo.compute_context.localtorch attribute)": [[13, "dacapo.compute_context.LocalTorch.oom_limit", false], [13, "id4", false]], "open_from_array_identitifier() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.open_from_array_identitifier", false], [181, "id16", false]], "open_from_identifier() (in module dacapo.tmp)": [[174, "dacapo.tmp.open_from_identifier", false]], "optimizer (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.optimizer", false], [69, "id7", false]], "optimizer (dacapo.store.weights_store.weights attribute)": [[173, "dacapo.store.weights_store.Weights.optimizer", false], [173, "id0", false]], "options (class in dacapo)": [[155, "dacapo.Options", false]], "options (class in dacapo.options)": [[156, "dacapo.options.Options", false]], "orthoplane_inference() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.orthoplane_inference", false]], "out_channels (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.out_channels", false], [17, "id14", false]], "output_array_type (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor property)": [[115, "id17", false]], "output_array_type (dacapo.experiments.tasks.predictors.affinitiespredictor property)": [[119, "id39", false]], "output_array_type (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor property)": [[116, "id7", false]], "output_array_type (dacapo.experiments.tasks.predictors.distancepredictor property)": [[119, "id12", false]], "output_array_type (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor property)": [[117, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.dummypredictor property)": [[119, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor property)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.hotdistancepredictor property)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor property)": [[120, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.innerdistancepredictor property)": [[119, "id44", false]], "output_array_type (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor property)": [[121, "id4", false]], "output_array_type (dacapo.experiments.tasks.predictors.onehotpredictor property)": [[119, "id20", false]], "output_array_type (dacapo.experiments.tasks.predictors.predictor property)": [[119, "dacapo.experiments.tasks.predictors.Predictor.output_array_type", false]], "output_array_type (dacapo.experiments.tasks.predictors.predictor.predictor property)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.dummy_predictor.dummypredictor method)": [[117, "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.dummypredictor method)": [[119, "dacapo.experiments.tasks.predictors.DummyPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.output_array_type", false]], "output_array_type() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.output_array_type", false]], "output_resolution (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.output_resolution", false], [59, "id13", false]], "output_resolution (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.output_resolution", false], [62, "id16", false]], "output_shape (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.output_shape", false]], "output_shape (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.output_shape", false]], "outputidentifier (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.OutputIdentifier", false]], "overlap_measures_filter() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.overlap_measures_filter", false]], "p (dacapo.gp.reject_if_empty.rejectifempty attribute)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.p", false], [154, "id0", false]], "p (dacapo.gp.rejectifempty attribute)": [[152, "dacapo.gp.RejectIfEmpty.p", false], [152, "id13", false]], "padding (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.padding", false], [17, "id8", false]], "padding (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.padding", false]], "padding (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.padding", false], [18, "id11", false]], "padding (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.padding", false], [21, "id40", false]], "padding (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.padding", false], [21, "id30", false]], "padding() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.padding", false], [118, "id13", false]], "padding() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.padding", false], [119, "id59", false]], "padding() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.predictor method)": [[119, "dacapo.experiments.tasks.predictors.Predictor.padding", false]], "padding() (dacapo.experiments.tasks.predictors.predictor.predictor method)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor.padding", false]], "padding() (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.padding", false]], "parameter (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.parameter", false], [181, "id3", false]], "parameter_names (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters property)": [[110, "id1", false]], "parameter_names (dacapo.experiments.tasks.post_processors.postprocessorparameters property)": [[108, "id6", false]], "parameter_names (dacapo.experiments.validation_scores.validationscores property)": [[145, "id10", false]], "parameter_names (dacapo.experiments.validationscores property)": [[67, "id28", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.argmaxpostprocessorparameters method)": [[105, "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.argmaxpostprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.dummypostprocessorparameters method)": [[107, "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.dummypostprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.post_processor_parameters.postprocessorparameters method)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.tasks.post_processors.postprocessorparameters method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters.parameter_names", false]], "parameter_names() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.parameter_names", false]], "parameter_names() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.parameter_names", false]], "parameters (dacapo.experiments.tasks.task property)": [[93, "dacapo.experiments.tasks.Task.parameters", false]], "parameters (dacapo.experiments.tasks.task.task property)": [[125, "dacapo.experiments.tasks.task.Task.parameters", false]], "parameters (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.parameters", false], [145, "id0", false]], "parameters (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.parameters", false], [67, "id18", false]], "path (dacapo.store.file_config_store.fileconfigstore attribute)": [[165, "dacapo.store.file_config_store.FileConfigStore.path", false], [165, "id0", false]], "path (dacapo.store.file_stats_store.filestatsstore attribute)": [[166, "dacapo.store.file_stats_store.FileStatsStore.path", false]], "path (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.path", false]], "path (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.path", false]], "path (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.path", false]], "path (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.path", false]], "path (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.path", false]], "plot_runs() (in module dacapo.plot)": [[157, "dacapo.plot.plot_runs", false]], "post_processor (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.post_processor", false], [76, "id2", false]], "post_processor (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.post_processor", false], [93, "id39", false]], "post_processor (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.post_processor", false], [78, "id2", false]], "post_processor (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.post_processor", false], [93, "id19", false]], "post_processor (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.post_processor", false], [80, "id2", false]], "post_processor (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.post_processor", false], [93, "id8", false]], "post_processor (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.post_processor", false], [91, "id2", false]], "post_processor (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.post_processor", false], [93, "id57", false]], "post_processor (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.post_processor", false], [94, "id2", false]], "post_processor (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.post_processor", false], [93, "id47", false]], "post_processor (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.post_processor", false]], "post_processor (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.post_processor", false]], "post_processor (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.post_processor", false]], "postprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor", false]], "postprocessor (class in dacapo.experiments.tasks.post_processors.post_processor)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor", false]], "postprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessorParameters", false]], "postprocessorparameters (class in dacapo.experiments.tasks.post_processors.post_processor_parameters)": [[110, "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters", false]], "precision (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.precision", false], [82, "id18", false]], "precision (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.precision", false], [88, "id41", false]], "precision() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.precision", false], [83, "id18", false]], "precision_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.precision_with_tolerance", false], [82, "id15", false]], "precision_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.precision_with_tolerance", false], [88, "id38", false]], "precision_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.precision_with_tolerance", false], [83, "id30", false]], "precision_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.precision_with_tolerance", false], [83, "id44", false]], "predict() (in module dacapo)": [[155, "dacapo.predict", false]], "predict() (in module dacapo.predict)": [[158, "dacapo.predict.predict", false]], "predict() (in module dacapo.predict_local)": [[159, "dacapo.predict_local.predict", false]], "prediction_array (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor attribute)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.argmaxpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor attribute)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.prediction_array", false]], "prediction_array (dacapo.experiments.tasks.post_processors.thresholdpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.prediction_array", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.post_processor.postprocessor attribute)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.postprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor attribute)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.prediction_array_identifier", false]], "prediction_array_identifier (dacapo.experiments.tasks.post_processors.thresholdpostprocessor attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.prediction_array_identifier", false]], "prediction_head (dacapo.experiments.model attribute)": [[67, "dacapo.experiments.Model.prediction_head", false], [67, "id5", false]], "prediction_head (dacapo.experiments.model.model attribute)": [[68, "dacapo.experiments.model.Model.prediction_head", false], [68, "id5", false]], "predictor (class in dacapo.experiments.tasks.predictors)": [[119, "dacapo.experiments.tasks.predictors.Predictor", false]], "predictor (class in dacapo.experiments.tasks.predictors.predictor)": [[122, "dacapo.experiments.tasks.predictors.predictor.Predictor", false]], "predictor (dacapo.experiments.tasks.affinities_task.affinitiestask attribute)": [[76, "dacapo.experiments.tasks.affinities_task.AffinitiesTask.predictor", false], [76, "id0", false]], "predictor (dacapo.experiments.tasks.affinitiestask attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTask.predictor", false], [93, "id37", false]], "predictor (dacapo.experiments.tasks.distance_task.distancetask attribute)": [[78, "dacapo.experiments.tasks.distance_task.DistanceTask.predictor", false], [78, "id0", false]], "predictor (dacapo.experiments.tasks.distancetask attribute)": [[93, "dacapo.experiments.tasks.DistanceTask.predictor", false], [93, "id17", false]], "predictor (dacapo.experiments.tasks.dummy_task.dummytask attribute)": [[80, "dacapo.experiments.tasks.dummy_task.DummyTask.predictor", false], [80, "id0", false]], "predictor (dacapo.experiments.tasks.dummytask attribute)": [[93, "dacapo.experiments.tasks.DummyTask.predictor", false], [93, "id6", false]], "predictor (dacapo.experiments.tasks.hot_distance_task.hotdistancetask attribute)": [[91, "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask.predictor", false], [91, "id0", false]], "predictor (dacapo.experiments.tasks.hotdistancetask attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTask.predictor", false], [93, "id55", false]], "predictor (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.predictor", false], [94, "id0", false]], "predictor (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.predictor", false], [93, "id45", false]], "predictor (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.predictor", false]], "predictor (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.predictor", false]], "predictor (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.predictor", false]], "predictor (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.predictor", false]], "predictor (dacapo.experiments.tasks.task attribute)": [[93, "dacapo.experiments.tasks.Task.predictor", false]], "predictor (dacapo.experiments.tasks.task.task attribute)": [[125, "dacapo.experiments.tasks.task.Task.predictor", false]], "predictor (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.Predictor", false], [148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.predictor", false]], "predictor (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.Predictor", false], [152, "dacapo.gp.DaCapoTargetFilter.predictor", false]], "prepare() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.prepare", false], [147, "id4", false]], "prepare() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.prepare", false], [152, "id18", false]], "prepare() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.prepare", false], [148, "id4", false]], "prepare() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.prepare", false], [152, "id4", false]], "prepare() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.prepare", false]], "prepare() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.prepare", false]], "prepare() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.prepare", false]], "prepare() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.prepare", false]], "pretrainedtask (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.PretrainedTask", false]], "pretrainedtask (class in dacapo.experiments.tasks.pretrained_task)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask", false]], "pretrainedtaskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig", false]], "pretrainedtaskconfig (class in dacapo.experiments.tasks.pretrained_task_config)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig", false]], "print_profiling (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.print_profiling", false], [136, "id3", false]], "print_profiling (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.print_profiling", false], [138, "id24", false]], "probabilityarray (class in dacapo.experiments.arraytypes)": [[27, "dacapo.experiments.arraytypes.ProbabilityArray", false]], "probabilityarray (class in dacapo.experiments.arraytypes.probabilities)": [[30, "dacapo.experiments.arraytypes.probabilities.ProbabilityArray", false]], "process() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.process", false], [104, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.process", false], [108, "id16", false]], "process() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.process", false], [106, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.process", false], [108, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.process", false], [109, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.process", false], [108, "id9", false]], "process() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.process", false], [111, "id2", false]], "process() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.process", false], [108, "id12", false]], "process() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.process", false], [113, "id3", false]], "process() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.process", false], [108, "id20", false]], "process() (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor method)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.process", false], [116, "id9", false]], "process() (dacapo.experiments.tasks.predictors.distancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.process", false], [119, "id14", false]], "process() (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor method)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.process", false], [118, "id11", false]], "process() (dacapo.experiments.tasks.predictors.hotdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.process", false], [119, "id57", false]], "process() (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor method)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.innerdistancepredictor method)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.one_hot_predictor.onehotpredictor method)": [[121, "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor.process", false]], "process() (dacapo.experiments.tasks.predictors.onehotpredictor method)": [[119, "dacapo.experiments.tasks.predictors.OneHotPredictor.process", false]], "process() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.process", false], [147, "id5", false]], "process() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.process", false], [152, "id19", false]], "process() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.process", false], [148, "id5", false]], "process() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.process", false], [152, "id5", false]], "process() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.process", false]], "process() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.process", false]], "process() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.process", false], [151, "id4", false]], "process() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.process", false], [152, "id10", false]], "process() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.process", false]], "process() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.process", false]], "process() (dacapo.utils.pipeline.createpoints method)": [[180, "dacapo.utils.pipeline.CreatePoints.process", false], [180, "id2", false]], "process() (dacapo.utils.pipeline.dilatepoints method)": [[180, "dacapo.utils.pipeline.DilatePoints.process", false], [180, "id7", false]], "process() (dacapo.utils.pipeline.expandlabels method)": [[180, "dacapo.utils.pipeline.ExpandLabels.process", false], [180, "id14", false]], "process() (dacapo.utils.pipeline.makeraw method)": [[180, "dacapo.utils.pipeline.MakeRaw.process", false], [180, "id4", false]], "process() (dacapo.utils.pipeline.randomdilatelabels method)": [[180, "dacapo.utils.pipeline.RandomDilateLabels.process", false], [180, "id10", false]], "process() (dacapo.utils.pipeline.relabel method)": [[180, "dacapo.utils.pipeline.Relabel.process", false], [180, "id11", false]], "product (class in dacapo.gp)": [[152, "dacapo.gp.Product", false]], "product (class in dacapo.gp.product)": [[153, "dacapo.gp.product.Product", false]], "provide() (dacapo.gp.dacapo_points_source.graphsource method)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.provide", false], [149, "id3", false]], "provide() (dacapo.gp.graphsource method)": [[152, "dacapo.gp.GraphSource.provide", false], [152, "id23", false]], "provide() (dacapo.gp.reject_if_empty.rejectifempty method)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.provide", false]], "provide() (dacapo.gp.rejectifempty method)": [[152, "dacapo.gp.RejectIfEmpty.provide", false]], "provide() (dacapo.utils.pipeline.zerossource method)": [[180, "dacapo.utils.pipeline.ZerosSource.provide", false], [180, "id17", false]], "psi (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.psi", false]], "queue (dacapo.compute_context.bsub attribute)": [[13, "dacapo.compute_context.Bsub.queue", false], [13, "id6", false]], "queue (dacapo.compute_context.bsub.bsub attribute)": [[11, "dacapo.compute_context.bsub.Bsub.queue", false], [11, "id0", false]], "r_conv (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.r_conv", false], [17, "id22", false]], "r_up (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.r_up", false], [17, "id21", false]], "random_source_pipeline() (in module dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.random_source_pipeline", false]], "randomdilatelabels (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.RandomDilateLabels", false]], "raw (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.raw", false], [54, "id1", false]], "raw (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.raw", false], [48, "id1", false]], "raw (dacapo.experiments.datasplits.datasets.dummy_dataset.dummydataset attribute)": [[50, "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset.raw", false], [50, "id0", false]], "raw (dacapo.experiments.datasplits.datasets.dummydataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDataset.raw", false], [54, "id9", false]], "raw (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.raw", false], [55, "id0", false]], "raw (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.raw", false], [54, "id13", false]], "raw (dacapo.experiments.datasplits.keys.arraykey attribute)": [[63, "dacapo.experiments.datasplits.keys.ArrayKey.RAW", false], [63, "id0", false]], "raw (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.RAW", false]], "raw (dacapo.experiments.datasplits.keys.keys.arraykey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.ArrayKey.RAW", false], [64, "id0", false]], "raw (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.RAW", false]], "raw (dacapo.utils.pipeline.makeraw attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.raw", false]], "raw (dacapo.utils.pipeline.makeraw.pipeline attribute)": [[180, "dacapo.utils.pipeline.MakeRaw.Pipeline.raw", false]], "raw (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.raw", false]], "raw_config (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig attribute)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.raw_config", false], [51, "id1", false]], "raw_config (dacapo.experiments.datasplits.datasets.dummydatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.raw_config", false], [54, "id11", false]], "raw_config (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.raw_config", false], [56, "id1", false]], "raw_config (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.raw_config", false], [54, "id19", false]], "raw_container (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.raw_container", false], [62, "id35", false]], "raw_container (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.raw_container", false], [59, "id6", false]], "raw_dataset (dacapo.experiments.datasplits.datasetspec attribute)": [[62, "dacapo.experiments.datasplits.DatasetSpec.raw_dataset", false], [62, "id36", false]], "raw_dataset (dacapo.experiments.datasplits.datasplit_generator.datasetspec attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec.raw_dataset", false], [59, "id7", false]], "raw_max (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.raw_max", false], [59, "id24", false]], "raw_max (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.raw_max", false], [62, "id27", false]], "raw_min (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.raw_min", false], [59, "id23", false]], "raw_min (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.raw_min", false], [62, "id26", false]], "rawgtdataset (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset", false]], "rawgtdataset (class in dacapo.experiments.datasplits.datasets.raw_gt_dataset)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset", false]], "rawgtdatasetconfig (class in dacapo.experiments.datasplits.datasets)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig", false]], "rawgtdatasetconfig (class in dacapo.experiments.datasplits.datasets.raw_gt_dataset_config)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig", false]], "read_cross_block_merges() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.read_cross_block_merges", false]], "read_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.read_roi", false]], "read_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.read_roi", false]], "read_write_conflict (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.read_write_conflict", false]], "read_write_conflict (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.read_write_conflict", false]], "rec_forward() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.rec_forward", false], [17, "id23", false]], "recall (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.recall", false], [82, "id19", false]], "recall (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.recall", false], [88, "id42", false]], "recall() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.recall", false], [83, "id19", false]], "recall_with_tolerance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.recall_with_tolerance", false], [82, "id16", false]], "recall_with_tolerance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.recall_with_tolerance", false], [88, "id39", false]], "recall_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.recall_with_tolerance", false], [83, "id31", false]], "recall_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.recall_with_tolerance", false], [83, "id45", false]], "register_hierarchy() (dacapo.store.converter.typedconverter method)": [[163, "dacapo.store.converter.TypedConverter.register_hierarchy", false], [163, "id0", false]], "register_hierarchy_hooks() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.register_hierarchy_hooks", false]], "register_hooks() (in module dacapo.store.conversion_hooks)": [[162, "dacapo.store.conversion_hooks.register_hooks", false]], "rejectifempty (class in dacapo.gp)": [[152, "dacapo.gp.RejectIfEmpty", false]], "rejectifempty (class in dacapo.gp.reject_if_empty)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty", false]], "relabel (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.Relabel", false]], "relabel() (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.relabel", false]], "relabel_in_block() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.relabel_in_block", false]], "relu (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.relu", false]], "remove() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.remove", false]], "remove() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.remove", false], [168, "id7", false]], "remove() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.remove", false], [169, "id4", false]], "remove() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.remove", false], [173, "id7", false]], "repetition (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.repetition", false]], "repetition (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.repetition", false]], "resampledarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig", false]], "resampledarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.resampled_array_config)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig", false]], "resize_if_needed() (in module dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.resize_if_needed", false]], "resolution (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.resolution", false], [83, "id11", false]], "retrieve_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_architecture_config", false], [161, "id17", false]], "retrieve_architecture_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_architecture_config", false], [165, "id8", false]], "retrieve_architecture_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_architecture_config", false], [170, "id12", false]], "retrieve_architecture_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_architecture_config_names", false], [161, "id18", false]], "retrieve_architecture_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_architecture_config_names", false], [165, "id9", false]], "retrieve_architecture_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_architecture_config_names", false], [170, "id13", false]], "retrieve_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_array_config", false], [161, "id29", false]], "retrieve_array_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_array_config", false], [165, "id17", false]], "retrieve_array_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_array_config", false], [170, "id24", false]], "retrieve_array_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_array_config_names", false], [161, "id30", false]], "retrieve_array_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_array_config_names", false], [165, "id18", false]], "retrieve_array_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_array_config_names", false], [170, "id25", false]], "retrieve_best() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.retrieve_best", false], [169, "id6", false]], "retrieve_best() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.retrieve_best", false], [173, "id8", false]], "retrieve_dataset_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_dataset_config", false], [170, "id21", false]], "retrieve_dataset_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_dataset_config_names", false], [170, "id22", false]], "retrieve_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_datasplit_config", false], [161, "id25", false]], "retrieve_datasplit_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_datasplit_config", false], [165, "id14", false]], "retrieve_datasplit_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_datasplit_config", false], [170, "id18", false]], "retrieve_datasplit_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_datasplit_config_names", false], [161, "id26", false]], "retrieve_datasplit_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_datasplit_config_names", false], [165, "id15", false]], "retrieve_datasplit_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_datasplit_config_names", false], [170, "id19", false]], "retrieve_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_run_config", false], [161, "id9", false]], "retrieve_run_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_run_config", false], [165, "id2", false]], "retrieve_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_run_config", false], [170, "id5", false]], "retrieve_run_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_run_config_names", false], [161, "id10", false]], "retrieve_run_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_run_config_names", false], [165, "id3", false]], "retrieve_run_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_run_config_names", false], [170, "id7", false]], "retrieve_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_task_config", false], [161, "id13", false]], "retrieve_task_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_task_config", false], [165, "id5", false]], "retrieve_task_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_task_config", false], [170, "id9", false]], "retrieve_task_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_task_config_names", false], [161, "id14", false]], "retrieve_task_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_task_config_names", false], [165, "id6", false]], "retrieve_task_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_task_config_names", false], [170, "id10", false]], "retrieve_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_trainer_config", false], [161, "id21", false]], "retrieve_trainer_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_trainer_config", false], [165, "id11", false]], "retrieve_trainer_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_trainer_config", false], [170, "id15", false]], "retrieve_trainer_config_names() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.retrieve_trainer_config_names", false], [161, "id22", false]], "retrieve_trainer_config_names() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.retrieve_trainer_config_names", false], [165, "id12", false]], "retrieve_trainer_config_names() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.retrieve_trainer_config_names", false], [170, "id16", false]], "retrieve_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.retrieve_training_stats", false]], "retrieve_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.retrieve_training_stats", false], [171, "id5", false]], "retrieve_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.retrieve_training_stats", false], [172, "id1", false]], "retrieve_validation_iteration_scores() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.retrieve_validation_iteration_scores", false]], "retrieve_validation_iteration_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.retrieve_validation_iteration_scores", false], [171, "id7", false]], "retrieve_validation_iteration_scores() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.retrieve_validation_iteration_scores", false], [172, "id3", false]], "retrieve_weights() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.retrieve_weights", false], [169, "id3", false]], "retrieve_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.retrieve_weights", false], [173, "id6", false]], "roi (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig attribute)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.roi", false], [35, "id1", false]], "roi (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.roi", false], [38, "id25", false]], "rotation_interval (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.rotation_interval", false], [130, "id2", false]], "rotation_interval (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.rotation_interval", false], [132, "id3", false]], "rotation_max_amount (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.rotation_max_amount", false]], "rotation_max_amount (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.rotation_max_amount", false]], "rotation_start (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.rotation_start", false]], "rotation_start (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.rotation_start", false]], "run (class in dacapo.experiments.run)": [[69, "dacapo.experiments.run.Run", false]], "run (dacapo.experiments.starts.cosem_start.cosemstart attribute)": [[71, "dacapo.experiments.starts.cosem_start.CosemStart.run", false], [71, "id0", false]], "run (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.run", false]], "run (dacapo.experiments.starts.cosemstart attribute)": [[73, "dacapo.experiments.starts.CosemStart.run", false], [73, "id4", false]], "run (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.run", false]], "run (dacapo.experiments.starts.start attribute)": [[73, "dacapo.experiments.starts.Start.run", false]], "run (dacapo.experiments.starts.start.start attribute)": [[74, "dacapo.experiments.starts.start.Start.run", false]], "run (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.run", false], [75, "id0", false]], "run (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.run", false], [73, "id2", false]], "run (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.run", false], [181, "id0", false]], "run (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.run", false], [181, "id9", false]], "run_blockwise() (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.run_blockwise", false]], "run_thread (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.run_thread", false]], "runconfig (class in dacapo.experiments)": [[67, "dacapo.experiments.RunConfig", false]], "runconfig (class in dacapo.experiments.run_config)": [[70, "dacapo.experiments.run_config.RunConfig", false]], "runinfo (in module dacapo.plot)": [[157, "dacapo.plot.RunInfo", false]], "runs (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.runs", false], [161, "id0", false]], "runs (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.runs", false]], "runs (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.runs", false]], "runs_base_dir (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.runs_base_dir", false], [156, "id1", false]], "sample_points (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.sample_points", false], [54, "id5", false]], "sample_points (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.sample_points", false], [48, "id5", false]], "sample_points (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.sample_points", false], [55, "id3", false]], "sample_points (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig attribute)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.sample_points", false], [56, "id4", false]], "sample_points (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.sample_points", false], [54, "id16", false]], "sample_points (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.sample_points", false], [54, "id22", false]], "sampling (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.sampling", false], [83, "id35", false]], "save_ndarray() (in module dacapo.utils.array_utils)": [[177, "dacapo.utils.array_utils.save_ndarray", false]], "scale (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.scale", false], [133, "id0", false]], "scale (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.scale", false], [134, "id0", false]], "scale (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.scale", false], [132, "id10", false]], "scale (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.scale", false], [132, "id14", false]], "scale() (dacapo.experiments.architectures.architecture method)": [[21, "dacapo.experiments.architectures.Architecture.scale", false], [21, "id5", false]], "scale() (dacapo.experiments.architectures.architecture.architecture method)": [[15, "dacapo.experiments.architectures.architecture.Architecture.scale", false], [15, "id5", false]], "scale() (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet method)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.scale", false]], "scale() (dacapo.experiments.architectures.cnnectomeunet method)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.scale", false]], "scale() (dacapo.experiments.model method)": [[67, "dacapo.experiments.Model.scale", false]], "scale() (dacapo.experiments.model.model method)": [[68, "dacapo.experiments.model.Model.scale", false]], "scale_factor (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.scale_factor", false], [79, "id3", false]], "scale_factor (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.scale_factor", false], [93, "id13", false]], "scale_factor (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.scale_factor", false], [92, "id4", false]], "scale_factor (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.scale_factor", false], [93, "id53", false]], "scale_factor (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.scale_factor", false], [95, "id3", false]], "scale_factor (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.scale_factor", false], [93, "id44", false]], "scale_factor (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.scale_factor", false]], "scale_factor (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.scale_factor", false]], "scheduler (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.scheduler", false], [136, "id9", false]], "scheduler (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.scheduler", false], [138, "id30", false]], "score (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator property)": [[83, "id5", false]], "score (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator property)": [[88, "id49", false]], "score (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator property)": [[85, "id2", false]], "score (dacapo.experiments.tasks.evaluators.dummyevaluator property)": [[88, "id7", false]], "score (dacapo.experiments.tasks.evaluators.evaluator property)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.score", false]], "score (dacapo.experiments.tasks.evaluators.evaluator.evaluator property)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.score", false]], "score (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator property)": [[90, "id2", false]], "score (dacapo.experiments.tasks.evaluators.instanceevaluator property)": [[88, "id58", false]], "score (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.score", false], [181, "id1", false]], "score (in module dacapo.experiments.tasks.evaluators.evaluator)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Score", false]], "score() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.dummy_evaluator.dummyevaluator method)": [[85, "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.dummyevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.instance_evaluator.instanceevaluator method)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator.score", false]], "score() (dacapo.experiments.tasks.evaluators.instanceevaluator method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluator.score", false]], "scores (dacapo.experiments.validation_iteration_scores.validationiterationscores attribute)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores.scores", false], [144, "id1", false]], "scores (dacapo.experiments.validation_scores.validationscores attribute)": [[145, "dacapo.experiments.validation_scores.ValidationScores.scores", false], [145, "id3", false]], "scores (dacapo.experiments.validationiterationscores attribute)": [[67, "dacapo.experiments.ValidationIterationScores.scores", false], [67, "id17", false]], "scores (dacapo.experiments.validationscores attribute)": [[67, "dacapo.experiments.ValidationScores.scores", false], [67, "id21", false]], "seg_to_affgraph() (in module dacapo.utils.affinities)": [[176, "dacapo.utils.affinities.seg_to_affgraph", false]], "segment_blockwise() (in module dacapo.blockwise.scheduler)": [[7, "dacapo.blockwise.scheduler.segment_blockwise", false]], "segment_function() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.segment_function", false]], "segment_function() (in module dacapo.blockwise.watershed_function)": [[10, "dacapo.blockwise.watershed_function.segment_function", false]], "segmentation (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.segmentation", false]], "segmentation_type (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.segmentation_type", false], [59, "id15", false]], "segmentation_type (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.segmentation_type", false], [62, "id18", false]], "segmentationtype (class in dacapo.experiments.datasplits.datasplit_generator)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType", false]], "semantic (dacapo.experiments.datasplits.datasplit_generator.segmentationtype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.SegmentationType.semantic", false], [59, "id3", false]], "serialize() (dacapo.options.dacapoconfig method)": [[156, "dacapo.options.DaCapoConfig.serialize", false], [156, "id5", false]], "set_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.set_best", false], [88, "id18", false]], "set_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.set_best", false], [87, "id6", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.argmax_post_processor.argmaxpostprocessor method)": [[104, "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor.set_prediction", false], [104, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.argmaxpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor.set_prediction", false], [108, "id15", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.dummy_post_processor.dummypostprocessor method)": [[106, "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor.set_prediction", false], [106, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.dummypostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.DummyPostProcessor.set_prediction", false], [108, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.post_processor.postprocessor method)": [[109, "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor.set_prediction", false], [109, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.postprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.PostProcessor.set_prediction", false], [108, "id8", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.threshold_post_processor.thresholdpostprocessor method)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor.set_prediction", false], [111, "id1", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.thresholdpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor.set_prediction", false], [108, "id11", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.watershed_post_processor.watershedpostprocessor method)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor.set_prediction", false], [113, "id2", false]], "set_prediction() (dacapo.experiments.tasks.post_processors.watershedpostprocessor method)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor.set_prediction", false], [108, "id19", false]], "setup() (dacapo.gp.copy.copymask method)": [[147, "dacapo.gp.copy.CopyMask.setup", false], [147, "id3", false]], "setup() (dacapo.gp.copymask method)": [[152, "dacapo.gp.CopyMask.setup", false], [152, "id17", false]], "setup() (dacapo.gp.dacapo_create_target.dacapotargetfilter method)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.setup", false], [148, "id3", false]], "setup() (dacapo.gp.dacapo_points_source.graphsource method)": [[149, "dacapo.gp.dacapo_points_source.GraphSource.setup", false], [149, "id2", false]], "setup() (dacapo.gp.dacapotargetfilter method)": [[152, "dacapo.gp.DaCapoTargetFilter.setup", false], [152, "id3", false]], "setup() (dacapo.gp.elastic_augment_fuse.elasticaugment method)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.setup", false]], "setup() (dacapo.gp.elasticaugment method)": [[152, "dacapo.gp.ElasticAugment.setup", false]], "setup() (dacapo.gp.gamma_noise.gammaaugment method)": [[151, "dacapo.gp.gamma_noise.GammaAugment.setup", false], [151, "id3", false]], "setup() (dacapo.gp.gammaaugment method)": [[152, "dacapo.gp.GammaAugment.setup", false], [152, "id9", false]], "setup() (dacapo.gp.graphsource method)": [[152, "dacapo.gp.GraphSource.setup", false], [152, "id22", false]], "setup() (dacapo.gp.product method)": [[152, "dacapo.gp.Product.setup", false]], "setup() (dacapo.gp.product.product method)": [[153, "dacapo.gp.product.Product.setup", false]], "setup() (dacapo.gp.reject_if_empty.rejectifempty method)": [[154, "dacapo.gp.reject_if_empty.RejectIfEmpty.setup", false]], "setup() (dacapo.gp.rejectifempty method)": [[152, "dacapo.gp.RejectIfEmpty.setup", false]], "setup() (dacapo.utils.pipeline.makeraw method)": [[180, "dacapo.utils.pipeline.MakeRaw.setup", false], [180, "id3", false]], "setup() (dacapo.utils.pipeline.zerossource method)": [[180, "dacapo.utils.pipeline.ZerosSource.setup", false], [180, "id16", false]], "shift (dacapo.experiments.trainers.gp_augments.intensity_config.intensityaugmentconfig attribute)": [[133, "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig.shift", false], [133, "id1", false]], "shift (dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.intensityscaleshiftaugmentconfig attribute)": [[134, "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig.shift", false], [134, "id1", false]], "shift (dacapo.experiments.trainers.gp_augments.intensityaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig.shift", false], [132, "id11", false]], "shift (dacapo.experiments.trainers.gp_augments.intensityscaleshiftaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig.shift", false], [132, "id15", false]], "sigma (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.sigma", false]], "sigma (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.sigma", false]], "sigma() (dacapo.experiments.tasks.predictors.affinities_predictor.affinitiespredictor method)": [[115, "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor.sigma", false], [115, "id11", false]], "sigma() (dacapo.experiments.tasks.predictors.affinitiespredictor method)": [[119, "dacapo.experiments.tasks.predictors.AffinitiesPredictor.sigma", false], [119, "id33", false]], "simpleaugmentconfig (class in dacapo.experiments.trainers.gp_augments)": [[132, "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig", false]], "simpleaugmentconfig (class in dacapo.experiments.trainers.gp_augments.simple_config)": [[135, "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig", false]], "smooth_values() (in module dacapo.plot)": [[157, "dacapo.plot.smooth_values", false]], "snap_to_grid (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig attribute)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.snap_to_grid", false], [47, "id2", false]], "snap_to_grid (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.snap_to_grid", false], [38, "id5", false]], "snapshot_container() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.snapshot_container", false]], "snapshot_container() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.snapshot_container", false], [168, "id5", false]], "snapshot_interval (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.snapshot_interval", false], [137, "id3", false]], "snapshot_interval (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.snapshot_interval", false], [138, "id18", false]], "snapshot_iteration (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer attribute)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.snapshot_iteration", false], [136, "id4", false]], "snapshot_iteration (dacapo.experiments.trainers.gunpowdertrainer attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.snapshot_iteration", false], [138, "id25", false]], "source (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig attribute)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.source", false], [37, "id0", false]], "source (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.source", false], [38, "id27", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.binarizearrayconfig attribute)": [[32, "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig.source_array_config", false], [32, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.binarizearrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig.source_array_config", false], [38, "id7", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.constant_array_config.constantarrayconfig attribute)": [[34, "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig.source_array_config", false], [34, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.constantarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig.source_array_config", false], [38, "id29", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.crop_array_config.croparrayconfig attribute)": [[35, "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig.source_array_config", false], [35, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.croparrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig.source_array_config", false], [38, "id24", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.source_array_config", false], [38, "id14", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig attribute)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.source_array_config", false], [39, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig attribute)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.source_array_config", false], [40, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.source_array_config", false], [38, "id23", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.missingannotationsmaskconfig attribute)": [[42, "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig.source_array_config", false], [42, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.missingannotationsmaskconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig.source_array_config", false], [38, "id17", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.ones_array_config.onesarrayconfig attribute)": [[43, "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig.source_array_config", false], [43, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.onesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig.source_array_config", false], [38, "id19", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.source_array_config", false], [44, "id0", false]], "source_array_config (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.source_array_config", false], [38, "id10", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.concat_array_config.concatarrayconfig attribute)": [[33, "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig.source_array_configs", false], [33, "id1", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.concatarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig.source_array_configs", false], [38, "id21", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.mergeinstancesarrayconfig attribute)": [[41, "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig.source_array_configs", false], [41, "id0", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.mergeinstancesarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig.source_array_configs", false], [38, "id26", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.sum_array_config.sumarrayconfig attribute)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig.source_array_configs", false], [45, "id0", false]], "source_array_configs (dacapo.experiments.datasplits.datasets.arrays.sumarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig.source_array_configs", false], [38, "id28", false]], "spawn_worker() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.spawn_worker", false]], "spawn_worker() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.spawn_worker", false]], "specified_locations (dacapo.experiments.datasplits.keys.datakey attribute)": [[63, "dacapo.experiments.datasplits.keys.DataKey.SPECIFIED_LOCATIONS", false]], "specified_locations (dacapo.experiments.datasplits.keys.graphkey attribute)": [[63, "dacapo.experiments.datasplits.keys.GraphKey.SPECIFIED_LOCATIONS", false], [63, "id4", false]], "specified_locations (dacapo.experiments.datasplits.keys.keys.datakey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.DataKey.SPECIFIED_LOCATIONS", false]], "specified_locations (dacapo.experiments.datasplits.keys.keys.graphkey attribute)": [[64, "dacapo.experiments.datasplits.keys.keys.GraphKey.SPECIFIED_LOCATIONS", false], [64, "id4", false]], "split() (dacapo.experiments.tasks.losses.hot_distance_loss.hotdistanceloss method)": [[98, "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss.split", false], [98, "id3", false]], "split() (dacapo.experiments.tasks.losses.hotdistanceloss method)": [[99, "dacapo.experiments.tasks.losses.HotDistanceLoss.split", false], [99, "id9", false]], "split_vi() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.split_vi", false]], "stack_inference() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.stack_inference", false]], "stack_postprocessing() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.stack_postprocessing", false]], "start (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.Start", false]], "start (class in dacapo.experiments.starts.start)": [[74, "dacapo.experiments.starts.start.Start", false]], "start (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.start", false], [69, "id9", false]], "start() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.start", false], [181, "id15", false]], "start_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.start_config", false]], "start_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.start_config", false]], "start_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.start_neuroglancer", false], [181, "id14", false]], "start_type (dacapo.experiments.starts.cosem_start_config.cosemstartconfig attribute)": [[72, "dacapo.experiments.starts.cosem_start_config.CosemStartConfig.start_type", false]], "start_type (dacapo.experiments.starts.cosemstartconfig attribute)": [[73, "dacapo.experiments.starts.CosemStartConfig.start_type", false]], "start_type (dacapo.experiments.starts.start_config.startconfig attribute)": [[75, "dacapo.experiments.starts.start_config.StartConfig.start_type", false]], "start_type (dacapo.experiments.starts.startconfig attribute)": [[73, "dacapo.experiments.starts.StartConfig.start_type", false]], "start_worker() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.start_worker", false]], "start_worker() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.start_worker", false]], "start_worker_fn() (in module dacapo.blockwise.argmax_worker)": [[1, "dacapo.blockwise.argmax_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.predict_worker)": [[5, "dacapo.blockwise.predict_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.relabel_worker)": [[6, "dacapo.blockwise.relabel_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.segment_worker)": [[8, "dacapo.blockwise.segment_worker.start_worker_fn", false]], "start_worker_fn() (in module dacapo.blockwise.threshold_worker)": [[9, "dacapo.blockwise.threshold_worker.start_worker_fn", false]], "startconfig (class in dacapo.experiments.starts)": [[73, "dacapo.experiments.starts.StartConfig", false]], "startconfig (class in dacapo.experiments.starts.start_config)": [[75, "dacapo.experiments.starts.start_config.StartConfig", false]], "stats_store (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.stats_store", false], [181, "id6", false]], "statsstore (class in dacapo.store.stats_store)": [[172, "dacapo.store.stats_store.StatsStore", false]], "stop() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.stop", false], [181, "id23", false]], "store_architecture_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_architecture_config", false], [161, "id16", false]], "store_architecture_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_architecture_config", false], [165, "id7", false]], "store_architecture_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_architecture_config", false], [170, "id11", false]], "store_array_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_array_config", false], [161, "id28", false]], "store_array_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_array_config", false], [165, "id16", false]], "store_array_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_array_config", false], [170, "id23", false]], "store_best() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.multichannelbinarysegmentationevaluationscores static method)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores method)": [[84, "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.dummyevaluationscores static method)": [[84, "id4", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummyevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.DummyEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.dummyevaluationscores static method)": [[88, "id4", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores method)": [[86, "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluation_scores.evaluationscores static method)": [[86, "id3", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.EvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluationscores static method)": [[88, "id11", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluator method)": [[88, "dacapo.experiments.tasks.evaluators.Evaluator.store_best", false], [88, "id21", false]], "store_best() (dacapo.experiments.tasks.evaluators.evaluator.evaluator method)": [[87, "dacapo.experiments.tasks.evaluators.evaluator.Evaluator.store_best", false], [87, "id9", false]], "store_best() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores method)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores static method)": [[89, "id5", false]], "store_best() (dacapo.experiments.tasks.evaluators.instanceevaluationscores method)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.store_best", false]], "store_best() (dacapo.experiments.tasks.evaluators.instanceevaluationscores static method)": [[88, "id55", false]], "store_best() (dacapo.experiments.tasks.evaluators.multichannelbinarysegmentationevaluationscores static method)": [[88, "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores.store_best", false]], "store_best() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.store_best", false], [169, "id5", false]], "store_dataset_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_dataset_config", false], [170, "id20", false]], "store_datasplit_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_datasplit_config", false], [161, "id24", false]], "store_datasplit_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_datasplit_config", false], [165, "id13", false]], "store_datasplit_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_datasplit_config", false], [170, "id17", false]], "store_run_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_run_config", false], [161, "id8", false]], "store_run_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_run_config", false], [165, "id1", false]], "store_run_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_run_config", false], [170, "id4", false]], "store_task_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_task_config", false], [161, "id12", false]], "store_task_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_task_config", false], [165, "id4", false]], "store_task_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_task_config", false], [170, "id8", false]], "store_trainer_config() (dacapo.store.config_store.configstore method)": [[161, "dacapo.store.config_store.ConfigStore.store_trainer_config", false], [161, "id20", false]], "store_trainer_config() (dacapo.store.file_config_store.fileconfigstore method)": [[165, "dacapo.store.file_config_store.FileConfigStore.store_trainer_config", false], [165, "id10", false]], "store_trainer_config() (dacapo.store.mongo_config_store.mongoconfigstore method)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.store_trainer_config", false], [170, "id14", false]], "store_training_stats() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.store_training_stats", false]], "store_training_stats() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.store_training_stats", false], [171, "id4", false]], "store_training_stats() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.store_training_stats", false], [172, "id0", false]], "store_type (dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.graphstoreconfig attribute)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig.store_type", false]], "store_type (dacapo.experiments.datasplits.datasets.graphstores.graphstoreconfig attribute)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig.store_type", false]], "store_validation_iteration_scores() (dacapo.store.file_stats_store.filestatsstore method)": [[166, "dacapo.store.file_stats_store.FileStatsStore.store_validation_iteration_scores", false]], "store_validation_iteration_scores() (dacapo.store.mongo_stats_store.mongostatsstore method)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.store_validation_iteration_scores", false], [171, "id6", false]], "store_validation_iteration_scores() (dacapo.store.stats_store.statsstore method)": [[172, "dacapo.store.stats_store.StatsStore.store_validation_iteration_scores", false], [172, "id2", false]], "store_weights() (dacapo.store.local_weights_store.localweightsstore method)": [[169, "dacapo.store.local_weights_store.LocalWeightsStore.store_weights", false], [169, "id2", false]], "store_weights() (dacapo.store.weights_store.weightsstore method)": [[173, "dacapo.store.weights_store.WeightsStore.store_weights", false], [173, "id5", false]], "sub_task_config (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.sub_task_config", false], [124, "id0", false]], "sub_task_config (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.sub_task_config", false], [93, "id23", false]], "subsample (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.subsample", false], [130, "id3", false]], "subsample (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.subsample", false], [132, "id4", false]], "subsample (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.subsample", false]], "subsample (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.subsample", false]], "subscores() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.subscores", false], [145, "id4", false]], "subscores() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.subscores", false], [67, "id22", false]], "sumarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig", false]], "sumarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.sum_array_config)": [[45, "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig", false]], "target_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.target_key", false], [148, "id0", false]], "target_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.target_key", false], [152, "id0", false]], "target_rois (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.target_rois", false]], "target_rois (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.target_rois", false]], "targets (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.targets", false], [59, "id14", false]], "targets (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.targets", false], [62, "id17", false]], "task (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.Task", false]], "task (class in dacapo.experiments.tasks.task)": [[125, "dacapo.experiments.tasks.task.Task", false]], "task (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.task", false], [69, "id3", false]], "task_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.task_config", false]], "task_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.task_config", false]], "task_config (dacapo.experiments.tasks.inner_distance_task.innerdistancetask attribute)": [[94, "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask.task_config", false]], "task_config (dacapo.experiments.tasks.innerdistancetask attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTask.task_config", false]], "task_type (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig attribute)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.affinitiestaskconfig attribute)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig attribute)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.task_type", false], [81, "id0", false]], "task_type (dacapo.experiments.tasks.dummytaskconfig attribute)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.task_type", false], [93, "id2", false]], "task_type (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.task_type", false], [92, "id0", false]], "task_type (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.task_type", false], [93, "id49", false]], "task_type (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.one_hot_task_config.onehottaskconfig attribute)": [[103, "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig.task_type", false], [103, "id0", false]], "task_type (dacapo.experiments.tasks.onehottaskconfig attribute)": [[93, "dacapo.experiments.tasks.OneHotTaskConfig.task_type", false], [93, "id21", false]], "task_type (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.task_type", false]], "task_type (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.task_type", false]], "taskconfig (class in dacapo.experiments.tasks)": [[93, "dacapo.experiments.tasks.TaskConfig", false]], "taskconfig (class in dacapo.experiments.tasks.task_config)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig", false]], "tasks (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.tasks", false], [161, "id4", false]], "tasks (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.tasks", false]], "tasks (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.tasks", false]], "test (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test", false], [83, "id7", false]], "test (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test", false], [83, "id33", false]], "test_edt() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test_edt", false]], "test_empty (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test_empty", false], [83, "id9", false]], "test_itk() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.test_itk", false]], "test_mask() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.test_mask", false]], "threshold (dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.thresholdpostprocessorparameters attribute)": [[112, "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters.threshold", false], [112, "id0", false]], "threshold (dacapo.experiments.tasks.post_processors.thresholdpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters.threshold", false], [108, "id13", false]], "threshold (dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.watershedpostprocessorparameters attribute)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters.threshold", false]], "threshold (dacapo.experiments.tasks.post_processors.watershedpostprocessorparameters attribute)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.distance_predictor.distancepredictor attribute)": [[116, "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.distancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.DistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.hot_distance_predictor.hotdistancepredictor attribute)": [[118, "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor.threshold", false], [118, "id6", false]], "threshold (dacapo.experiments.tasks.predictors.hotdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.HotDistancePredictor.threshold", false], [119, "id52", false]], "threshold (dacapo.experiments.tasks.predictors.inner_distance_predictor.innerdistancepredictor attribute)": [[120, "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor.threshold", false]], "threshold (dacapo.experiments.tasks.predictors.innerdistancepredictor attribute)": [[119, "dacapo.experiments.tasks.predictors.InnerDistancePredictor.threshold", false]], "thresholdpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor", false]], "thresholdpostprocessor (class in dacapo.experiments.tasks.post_processors.threshold_post_processor)": [[111, "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor", false]], "thresholdpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters", false]], "thresholdpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters)": [[112, "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters", false]], "tiffarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.tiff_array_config)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig", false]], "time (dacapo.experiments.training_iteration_stats.trainingiterationstats attribute)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats.time", false], [142, "id2", false]], "time (dacapo.experiments.trainingiterationstats attribute)": [[67, "dacapo.experiments.TrainingIterationStats.time", false], [67, "id12", false]], "timeout (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.timeout", false]], "timeout (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.timeout", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.intensitiesarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.intensitiesarrayconfig method)": [[39, "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.logicalorarrayconfig method)": [[40, "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig.to_array", false]], "to_array() (dacapo.experiments.datasplits.datasets.arrays.logicalorarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig.to_array", false]], "to_ndarray() (in module dacapo.utils.array_utils)": [[177, "dacapo.utils.array_utils.to_ndarray", false]], "to_xarray() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.to_xarray", false], [143, "id2", false]], "to_xarray() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.to_xarray", false], [67, "id15", false]], "to_xarray() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.to_xarray", false], [145, "id11", false]], "to_xarray() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.to_xarray", false], [67, "id29", false]], "tol_distance (dacapo.experiments.tasks.distance_task_config.distancetaskconfig attribute)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.tol_distance", false], [79, "id2", false]], "tol_distance (dacapo.experiments.tasks.distancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.tol_distance", false], [93, "id12", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.binarysegmentationevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator.tol_distance", false], [83, "id2", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.tol_distance", false], [83, "id37", false]], "tol_distance (dacapo.experiments.tasks.evaluators.binarysegmentationevaluator attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator.tol_distance", false], [88, "id46", false]], "tol_distance (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig attribute)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.tol_distance", false], [92, "id3", false]], "tol_distance (dacapo.experiments.tasks.hotdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.tol_distance", false], [93, "id52", false]], "tol_distance (dacapo.experiments.tasks.inner_distance_task_config.innerdistancetaskconfig attribute)": [[95, "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig.tol_distance", false], [95, "id2", false]], "tol_distance (dacapo.experiments.tasks.innerdistancetaskconfig attribute)": [[93, "dacapo.experiments.tasks.InnerDistanceTaskConfig.tol_distance", false], [93, "id43", false]], "total_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.total_roi", false]], "total_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.total_roi", false]], "tracker_consensus() (in module dacapo.blockwise.empanada_function)": [[3, "dacapo.blockwise.empanada_function.tracker_consensus", false]], "train (dacapo.experiments.datasplits.datasplit attribute)": [[62, "dacapo.experiments.datasplits.DataSplit.train", false], [62, "id0", false]], "train (dacapo.experiments.datasplits.datasplit.datasplit attribute)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.train", false], [57, "id0", false]], "train (dacapo.experiments.datasplits.datasplit_generator.datasettype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.train", false], [59, "id2", false]], "train (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit attribute)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.train", false], [60, "id0", false]], "train (dacapo.experiments.datasplits.dummydatasplit attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.train", false], [62, "id4", false]], "train (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit attribute)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.train", false], [65, "id0", false]], "train (dacapo.experiments.datasplits.trainvalidatedatasplit attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.train", false], [62, "id9", false]], "train() (in module dacapo)": [[155, "dacapo.train", false]], "train() (in module dacapo.train)": [[175, "dacapo.train.train", false]], "train_config (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig attribute)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.train_config", false], [61, "id1", false]], "train_config (dacapo.experiments.datasplits.dummydatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.train_config", false], [62, "id7", false]], "train_configs (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.train_configs", false], [66, "id0", false]], "train_configs (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.train_configs", false], [62, "id11", false]], "train_run() (in module dacapo.train)": [[175, "dacapo.train.train_run", false]], "train_until (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.train_until", false], [69, "id1", false]], "trained_until() (dacapo.experiments.training_stats.trainingstats method)": [[143, "dacapo.experiments.training_stats.TrainingStats.trained_until", false], [143, "id1", false]], "trained_until() (dacapo.experiments.trainingstats method)": [[67, "dacapo.experiments.TrainingStats.trained_until", false], [67, "id14", false]], "trainer (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.Trainer", false]], "trainer (class in dacapo.experiments.trainers.trainer)": [[140, "dacapo.experiments.trainers.trainer.Trainer", false]], "trainer (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.trainer", false], [69, "id5", false]], "trainer_config (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.trainer_config", false]], "trainer_config (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.trainer_config", false]], "trainer_type (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig attribute)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.trainer_type", false]], "trainer_type (dacapo.experiments.trainers.dummytrainerconfig attribute)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.trainer_type", false]], "trainer_type (dacapo.experiments.trainers.gunpowder_trainer_config.gunpowdertrainerconfig attribute)": [[137, "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig.trainer_type", false], [137, "id0", false]], "trainer_type (dacapo.experiments.trainers.gunpowdertrainerconfig attribute)": [[138, "dacapo.experiments.trainers.GunpowderTrainerConfig.trainer_type", false], [138, "id15", false]], "trainerconfig (class in dacapo.experiments.trainers)": [[138, "dacapo.experiments.trainers.TrainerConfig", false]], "trainerconfig (class in dacapo.experiments.trainers.trainer_config)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig", false]], "trainers (dacapo.store.config_store.configstore attribute)": [[161, "dacapo.store.config_store.ConfigStore.trainers", false], [161, "id5", false]], "trainers (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.trainers", false]], "trainers (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.trainers", false]], "training_stats (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.training_stats", false], [69, "id8", false]], "training_stats (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.training_stats", false]], "trainingiterationstats (class in dacapo.experiments)": [[67, "dacapo.experiments.TrainingIterationStats", false]], "trainingiterationstats (class in dacapo.experiments.training_iteration_stats)": [[142, "dacapo.experiments.training_iteration_stats.TrainingIterationStats", false]], "trainingstats (class in dacapo.experiments)": [[67, "dacapo.experiments.TrainingStats", false]], "trainingstats (class in dacapo.experiments.training_stats)": [[143, "dacapo.experiments.training_stats.TrainingStats", false]], "trainvalidatedatasplit (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit", false]], "trainvalidatedatasplit (class in dacapo.experiments.datasplits.train_validate_datasplit)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit", false]], "trainvalidatedatasplitconfig (class in dacapo.experiments.datasplits)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig", false]], "trainvalidatedatasplitconfig (class in dacapo.experiments.datasplits.train_validate_datasplit_config)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig", false]], "transformations (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.transformations", false]], "transformations (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.transformations", false]], "true_positives_with_tolerance() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.true_positives_with_tolerance", false], [83, "id43", false]], "truth (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth", false], [83, "id6", false]], "truth (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth", false], [83, "id34", false]], "truth_edt() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth_edt", false]], "truth_empty (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator attribute)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth_empty", false], [83, "id8", false]], "truth_itk() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.truth_itk", false]], "truth_mask() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.cremievaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator.truth_mask", false]], "type (dacapo.options.dacapoconfig attribute)": [[156, "dacapo.options.DaCapoConfig.type", false], [156, "id0", false]], "typedconverter (class in dacapo.store.converter)": [[163, "dacapo.store.converter.TypedConverter", false]], "unet (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.unet", false]], "unet (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.unet", false]], "uniform_3d_rotation (dacapo.experiments.trainers.gp_augments.elastic_config.elasticaugmentconfig attribute)": [[130, "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig.uniform_3d_rotation", false], [130, "id4", false]], "uniform_3d_rotation (dacapo.experiments.trainers.gp_augments.elasticaugmentconfig attribute)": [[132, "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig.uniform_3d_rotation", false], [132, "id5", false]], "uniform_3d_rotation (dacapo.gp.elastic_augment_fuse.elasticaugment attribute)": [[150, "dacapo.gp.elastic_augment_fuse.ElasticAugment.uniform_3d_rotation", false]], "uniform_3d_rotation (dacapo.gp.elasticaugment attribute)": [[152, "dacapo.gp.ElasticAugment.uniform_3d_rotation", false]], "units (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.units", false]], "up (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.up", false]], "up (dacapo.experiments.architectures.cnnectome_unet.upsample attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample.up", false]], "update_best_info() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_best_info", false], [181, "id18", false]], "update_best_layer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_best_layer", false], [181, "id20", false]], "update_neuroglancer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_neuroglancer", false], [181, "id19", false]], "update_with_new_validation_if_possible() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.update_with_new_validation_if_possible", false], [181, "id22", false]], "updated_neuroglancer_layer() (dacapo.utils.view.neuroglancerrunviewer method)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.updated_neuroglancer_layer", false], [181, "id12", false]], "upsample (class in dacapo.experiments.architectures.cnnectome_unet)": [[17, "dacapo.experiments.architectures.cnnectome_unet.Upsample", false]], "upsample (dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.resampledarrayconfig attribute)": [[44, "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig.upsample", false], [44, "id1", false]], "upsample (dacapo.experiments.datasplits.datasets.arrays.resampledarrayconfig attribute)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig.upsample", false], [38, "id11", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.upsample_channel_contraction", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.upsample_channel_contraction", false]], "upsample_channel_contraction (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.upsample_channel_contraction", false]], "upsample_factors (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.upsample_factors", false]], "upsample_factors (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.upsample_factors", false], [18, "id9", false]], "upsample_factors (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.upsample_factors", false]], "upsample_factors (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.upsample_factors", false], [21, "id28", false]], "upstream_tasks (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.upstream_tasks", false]], "upstream_tasks (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.upstream_tasks", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.use_attention", false], [17, "id9", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunetmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule.use_attention", false], [17, "id10", false], [17, "id16", false]], "use_attention (dacapo.experiments.architectures.cnnectome_unet_config.cnnectomeunetconfig attribute)": [[18, "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig.use_attention", false], [18, "id12", false]], "use_attention (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.use_attention", false], [21, "id41", false]], "use_attention (dacapo.experiments.architectures.cnnectomeunetconfig attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNetConfig.use_attention", false], [21, "id31", false]], "use_negative_class (dacapo.experiments.datasplits.datasplit_generator.datasplitgenerator attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator.use_negative_class", false]], "use_negative_class (dacapo.experiments.datasplits.datasplitgenerator attribute)": [[62, "dacapo.experiments.datasplits.DataSplitGenerator.use_negative_class", false]], "users (dacapo.store.file_config_store.fileconfigstore property)": [[165, "dacapo.store.file_config_store.FileConfigStore.users", false]], "users (dacapo.store.mongo_config_store.mongoconfigstore attribute)": [[170, "dacapo.store.mongo_config_store.MongoConfigStore.users", false]], "val (dacapo.experiments.datasplits.datasplit_generator.datasettype attribute)": [[59, "dacapo.experiments.datasplits.datasplit_generator.DatasetType.val", false], [59, "id1", false]], "validate (dacapo.experiments.datasplits.datasplit attribute)": [[62, "dacapo.experiments.datasplits.DataSplit.validate", false], [62, "id1", false]], "validate (dacapo.experiments.datasplits.datasplit.datasplit attribute)": [[57, "dacapo.experiments.datasplits.datasplit.DataSplit.validate", false], [57, "id1", false]], "validate (dacapo.experiments.datasplits.dummy_datasplit.dummydatasplit attribute)": [[60, "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit.validate", false], [60, "id1", false]], "validate (dacapo.experiments.datasplits.dummydatasplit attribute)": [[62, "dacapo.experiments.datasplits.DummyDataSplit.validate", false], [62, "id5", false]], "validate (dacapo.experiments.datasplits.train_validate_datasplit.trainvalidatedatasplit attribute)": [[65, "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit.validate", false], [65, "id1", false]], "validate (dacapo.experiments.datasplits.trainvalidatedatasplit attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplit.validate", false], [62, "id10", false]], "validate() (in module dacapo.validate)": [[183, "dacapo.validate.validate", false]], "validate_configs (dacapo.experiments.datasplits.train_validate_datasplit_config.trainvalidatedatasplitconfig attribute)": [[66, "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig.validate_configs", false], [66, "id1", false]], "validate_configs (dacapo.experiments.datasplits.trainvalidatedatasplitconfig attribute)": [[62, "dacapo.experiments.datasplits.TrainValidateDataSplitConfig.validate_configs", false], [62, "id12", false]], "validate_run() (in module dacapo.validate)": [[183, "dacapo.validate.validate_run", false]], "validated_until() (dacapo.experiments.validation_scores.validationscores method)": [[145, "dacapo.experiments.validation_scores.ValidationScores.validated_until", false], [145, "id7", false]], "validated_until() (dacapo.experiments.validationscores method)": [[67, "dacapo.experiments.ValidationScores.validated_until", false], [67, "id25", false]], "validation_container() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_container", false]], "validation_container() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_container", false], [168, "id6", false]], "validation_input_arrays() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_input_arrays", false]], "validation_input_arrays() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_input_arrays", false], [168, "id4", false]], "validation_interval (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.validation_interval", false], [69, "id2", false]], "validation_interval (dacapo.experiments.run_config.runconfig attribute)": [[70, "dacapo.experiments.run_config.RunConfig.validation_interval", false]], "validation_interval (dacapo.experiments.runconfig attribute)": [[67, "dacapo.experiments.RunConfig.validation_interval", false]], "validation_output_array() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_output_array", false]], "validation_output_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_output_array", false], [168, "id3", false]], "validation_parameters (dacapo.utils.view.bestscore attribute)": [[181, "dacapo.utils.view.BestScore.validation_parameters", false], [181, "id4", false]], "validation_prediction_array() (dacapo.store.array_store.arraystore method)": [[160, "dacapo.store.array_store.ArrayStore.validation_prediction_array", false]], "validation_prediction_array() (dacapo.store.local_array_store.localarraystore method)": [[168, "dacapo.store.local_array_store.LocalArrayStore.validation_prediction_array", false], [168, "id2", false]], "validation_scores (dacapo.experiments.run.run attribute)": [[69, "dacapo.experiments.run.Run.validation_scores", false]], "validation_scores (dacapo.experiments.run.run property)": [[69, "id11", false]], "validation_scores (dacapo.store.mongo_stats_store.mongostatsstore attribute)": [[171, "dacapo.store.mongo_stats_store.MongoStatsStore.validation_scores", false]], "validationiterationscores (class in dacapo.experiments)": [[67, "dacapo.experiments.ValidationIterationScores", false]], "validationiterationscores (class in dacapo.experiments.validation_iteration_scores)": [[144, "dacapo.experiments.validation_iteration_scores.ValidationIterationScores", false]], "validationscores (class in dacapo.experiments)": [[67, "dacapo.experiments.ValidationScores", false]], "validationscores (class in dacapo.experiments.validation_scores)": [[145, "dacapo.experiments.validation_scores.ValidationScores", false]], "verify() (dacapo.experiments.architectures.architecture_config.architectureconfig method)": [[16, "dacapo.experiments.architectures.architecture_config.ArchitectureConfig.verify", false], [16, "id1", false]], "verify() (dacapo.experiments.architectures.architectureconfig method)": [[21, "dacapo.experiments.architectures.ArchitectureConfig.verify", false], [21, "id7", false]], "verify() (dacapo.experiments.architectures.dummy_architecture_config.dummyarchitectureconfig method)": [[20, "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig.verify", false], [20, "id3", false]], "verify() (dacapo.experiments.architectures.dummyarchitectureconfig method)": [[21, "dacapo.experiments.architectures.DummyArchitectureConfig.verify", false], [21, "id11", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.array_config.arrayconfig method)": [[31, "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig.verify", false], [31, "id1", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.arrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig.verify", false], [38, "id1", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.dummyarrayconfig method)": [[36, "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig.verify", false], [36, "id0", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dummyarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig.verify", false], [38, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.dvidarrayconfig method)": [[37, "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.dvidarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.zarrarrayconfig method)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig.verify", false], [47, "id3", false]], "verify() (dacapo.experiments.datasplits.datasets.arrays.zarrarrayconfig method)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig.verify", false], [38, "id6", false]], "verify() (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig method)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.verify", false], [49, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.datasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.verify", false], [54, "id8", false]], "verify() (dacapo.experiments.datasplits.datasets.dummy_dataset_config.dummydatasetconfig method)": [[51, "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig.verify", false], [51, "id2", false]], "verify() (dacapo.experiments.datasplits.datasets.dummydatasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.DummyDatasetConfig.verify", false], [54, "id12", false]], "verify() (dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.graphstoreconfig method)": [[52, "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.graphstores.graphstoreconfig method)": [[53, "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.rawgtdatasetconfig method)": [[56, "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasets.rawgtdatasetconfig method)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig.verify", false]], "verify() (dacapo.experiments.datasplits.datasplit_config.datasplitconfig method)": [[58, "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig.verify", false], [58, "id1", false]], "verify() (dacapo.experiments.datasplits.datasplitconfig method)": [[62, "dacapo.experiments.datasplits.DataSplitConfig.verify", false], [62, "id3", false]], "verify() (dacapo.experiments.datasplits.dummy_datasplit_config.dummydatasplitconfig method)": [[61, "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig.verify", false], [61, "id2", false]], "verify() (dacapo.experiments.datasplits.dummydatasplitconfig method)": [[62, "dacapo.experiments.datasplits.DummyDataSplitConfig.verify", false], [62, "id8", false]], "verify() (dacapo.experiments.tasks.affinities_task_config.affinitiestaskconfig method)": [[77, "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.affinitiestaskconfig method)": [[93, "dacapo.experiments.tasks.AffinitiesTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.distance_task_config.distancetaskconfig method)": [[79, "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.distancetaskconfig method)": [[93, "dacapo.experiments.tasks.DistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.dummy_task_config.dummytaskconfig method)": [[81, "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig.verify", false], [81, "id3", false]], "verify() (dacapo.experiments.tasks.dummytaskconfig method)": [[93, "dacapo.experiments.tasks.DummyTaskConfig.verify", false], [93, "id5", false]], "verify() (dacapo.experiments.tasks.hot_distance_task_config.hotdistancetaskconfig method)": [[92, "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.hotdistancetaskconfig method)": [[93, "dacapo.experiments.tasks.HotDistanceTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig method)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.pretrainedtaskconfig method)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.verify", false]], "verify() (dacapo.experiments.tasks.task_config.taskconfig method)": [[126, "dacapo.experiments.tasks.task_config.TaskConfig.verify", false], [126, "id1", false]], "verify() (dacapo.experiments.tasks.taskconfig method)": [[93, "dacapo.experiments.tasks.TaskConfig.verify", false], [93, "id1", false]], "verify() (dacapo.experiments.trainers.dummy_trainer_config.dummytrainerconfig method)": [[128, "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig.verify", false], [128, "id1", false]], "verify() (dacapo.experiments.trainers.dummytrainerconfig method)": [[138, "dacapo.experiments.trainers.DummyTrainerConfig.verify", false], [138, "id8", false]], "verify() (dacapo.experiments.trainers.trainer_config.trainerconfig method)": [[141, "dacapo.experiments.trainers.trainer_config.TrainerConfig.verify", false], [141, "id3", false]], "verify() (dacapo.experiments.trainers.trainerconfig method)": [[138, "dacapo.experiments.trainers.TrainerConfig.verify", false], [138, "id6", false]], "vi_tables() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.vi_tables", false]], "viewer (dacapo.utils.view.neuroglancerrunviewer attribute)": [[181, "dacapo.utils.view.NeuroglancerRunViewer.viewer", false]], "visualize_pipeline() (dacapo.experiments.run.run method)": [[69, "dacapo.experiments.run.Run.visualize_pipeline", false]], "visualize_pipeline() (dacapo.experiments.trainers.gunpowder_trainer.gunpowdertrainer method)": [[136, "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer.visualize_pipeline", false]], "visualize_pipeline() (dacapo.experiments.trainers.gunpowdertrainer method)": [[138, "dacapo.experiments.trainers.GunpowderTrainer.visualize_pipeline", false]], "voi (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.binarysegmentationevaluationscores attribute)": [[82, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores.voi", false], [82, "id8", false]], "voi (dacapo.experiments.tasks.evaluators.binarysegmentationevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores.voi", false], [88, "id31", false]], "voi (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi", false]], "voi (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores property)": [[89, "id2", false]], "voi (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi", false]], "voi (dacapo.experiments.tasks.evaluators.instanceevaluationscores property)": [[88, "id52", false]], "voi() (dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.arrayevaluator method)": [[83, "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator.voi", false], [83, "id21", false]], "voi() (in module dacapo.experiments.tasks.evaluators.instance_evaluator)": [[90, "dacapo.experiments.tasks.evaluators.instance_evaluator.voi", false]], "voi() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.voi", false]], "voi_merge (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi_merge", false], [89, "id1", false]], "voi_merge (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi_merge", false], [88, "id51", false]], "voi_split (dacapo.experiments.tasks.evaluators.instance_evaluation_scores.instanceevaluationscores attribute)": [[89, "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores.voi_split", false], [89, "id0", false]], "voi_split (dacapo.experiments.tasks.evaluators.instanceevaluationscores attribute)": [[88, "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores.voi_split", false], [88, "id50", false]], "voxel_size (dacapo.experiments.architectures.cnnectome_unet.cnnectomeunet attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet.voxel_size", false]], "voxel_size (dacapo.experiments.architectures.cnnectomeunet attribute)": [[21, "dacapo.experiments.architectures.CNNectomeUNet.voxel_size", false]], "voxel_size (dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.tiffarrayconfig attribute)": [[46, "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig.voxel_size", false], [46, "id2", false]], "w_g (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.W_g", false]], "w_x (dacapo.experiments.architectures.cnnectome_unet.attentionblockmodule attribute)": [[17, "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule.W_x", false]], "watershedpostprocessor (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessor", false]], "watershedpostprocessor (class in dacapo.experiments.tasks.post_processors.watershed_post_processor)": [[113, "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor", false]], "watershedpostprocessorparameters (class in dacapo.experiments.tasks.post_processors)": [[108, "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters", false]], "watershedpostprocessorparameters (class in dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters)": [[114, "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters", false]], "weight (dacapo.experiments.datasplits.datasets.dataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.Dataset.weight", false], [54, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.dataset.dataset attribute)": [[48, "dacapo.experiments.datasplits.datasets.dataset.Dataset.weight", false], [48, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.dataset_config.datasetconfig attribute)": [[49, "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig.weight", false], [49, "id1", false]], "weight (dacapo.experiments.datasplits.datasets.datasetconfig attribute)": [[54, "dacapo.experiments.datasplits.datasets.DatasetConfig.weight", false], [54, "id7", false]], "weight (dacapo.experiments.datasplits.datasets.raw_gt_dataset.rawgtdataset attribute)": [[55, "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset.weight", false], [55, "id4", false]], "weight (dacapo.experiments.datasplits.datasets.rawgtdataset attribute)": [[54, "dacapo.experiments.datasplits.datasets.RawGTDataset.weight", false], [54, "id17", false]], "weights (class in dacapo.store.weights_store)": [[173, "dacapo.store.weights_store.Weights", false]], "weights (dacapo.experiments.tasks.one_hot_task.onehottask attribute)": [[102, "dacapo.experiments.tasks.one_hot_task.OneHotTask.weights", false]], "weights (dacapo.experiments.tasks.onehottask attribute)": [[93, "dacapo.experiments.tasks.OneHotTask.weights", false]], "weights (dacapo.experiments.tasks.pretrained_task.pretrainedtask attribute)": [[123, "dacapo.experiments.tasks.pretrained_task.PretrainedTask.weights", false], [123, "id0", false]], "weights (dacapo.experiments.tasks.pretrained_task_config.pretrainedtaskconfig attribute)": [[124, "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig.weights", false], [124, "id1", false]], "weights (dacapo.experiments.tasks.pretrainedtask attribute)": [[93, "dacapo.experiments.tasks.PretrainedTask.weights", false], [93, "id25", false]], "weights (dacapo.experiments.tasks.pretrainedtaskconfig attribute)": [[93, "dacapo.experiments.tasks.PretrainedTaskConfig.weights", false], [93, "id24", false]], "weights_key (dacapo.gp.dacapo_create_target.dacapotargetfilter attribute)": [[148, "dacapo.gp.dacapo_create_target.DaCapoTargetFilter.weights_key", false], [148, "id1", false]], "weights_key (dacapo.gp.dacapotargetfilter attribute)": [[152, "dacapo.gp.DaCapoTargetFilter.weights_key", false], [152, "id1", false]], "weightsstore (class in dacapo.store.weights_store)": [[173, "dacapo.store.weights_store.WeightsStore", false]], "worker_file (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.worker_file", false]], "worker_file (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.worker_file", false]], "wrap_command() (dacapo.compute_context.compute_context.computecontext method)": [[12, "dacapo.compute_context.compute_context.ComputeContext.wrap_command", false], [12, "id1", false]], "wrap_command() (dacapo.compute_context.computecontext method)": [[13, "dacapo.compute_context.ComputeContext.wrap_command", false], [13, "id1", false]], "wrap_command() (dacapo.compute_context.local_torch.localtorch method)": [[14, "dacapo.compute_context.local_torch.LocalTorch.wrap_command", false]], "wrap_command() (dacapo.compute_context.localtorch method)": [[13, "dacapo.compute_context.LocalTorch.wrap_command", false]], "write_roi (dacapo.blockwise.blockwise_task.dacapoblockwisetask attribute)": [[2, "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask.write_roi", false]], "write_roi (dacapo.blockwise.dacapoblockwisetask attribute)": [[4, "dacapo.blockwise.DaCapoBlockwiseTask.write_roi", false]], "x1_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.x1_key", false], [152, "id24", false]], "x1_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.x1_key", false], [153, "id0", false]], "x2_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.x2_key", false], [152, "id25", false]], "x2_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.x2_key", false], [153, "id1", false]], "xlogx() (in module dacapo.utils.voi)": [[182, "dacapo.utils.voi.xlogx", false]], "y_key (dacapo.gp.product attribute)": [[152, "dacapo.gp.Product.y_key", false], [152, "id26", false]], "y_key (dacapo.gp.product.product attribute)": [[153, "dacapo.gp.product.Product.y_key", false], [153, "id2", false]], "zarrarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays)": [[38, "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig", false]], "zarrarrayconfig (class in dacapo.experiments.datasplits.datasets.arrays.zarr_array_config)": [[47, "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig", false]], "zerossource (class in dacapo.utils.pipeline)": [[180, "dacapo.utils.pipeline.ZerosSource", false]]}, "objects": {"": [[194, 0, 0, "-", "dacapo"]], "dacapo": [[155, 1, 1, "", "Options"], [155, 3, 1, "", "apply"], [0, 0, 0, "-", "apply"], [4, 0, 0, "-", "blockwise"], [13, 0, 0, "-", "compute_context"], [67, 0, 0, "-", "experiments"], [146, 0, 0, "-", "ext"], [152, 0, 0, "-", "gp"], [156, 0, 0, "-", "options"], [157, 0, 0, "-", "plot"], [158, 0, 0, "-", "predict"], [159, 0, 0, "-", "predict_local"], [167, 0, 0, "-", "store"], [174, 0, 0, "-", "tmp"], [175, 0, 0, "-", "train"], [179, 0, 0, "-", "utils"], [183, 0, 0, "-", "validate"], [186, 8, 1, "cmdoption-dacapo-log-level", "--log-level"]], "dacapo-apply": [[186, 8, 1, "cmdoption-dacapo-apply-c", "--criterion"], [186, 8, 1, "cmdoption-dacapo-apply-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-apply-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-apply-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-apply-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-apply-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-apply-op", "--output_path"], [186, 8, 1, "cmdoption-dacapo-apply-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-apply-p", "--parameters"], [186, 8, 1, "cmdoption-dacapo-apply-roi", "--roi"], [186, 8, 1, "cmdoption-dacapo-apply-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-apply-vd", "--validation_dataset"], [186, 8, 1, "cmdoption-dacapo-apply-c", "-c"], [186, 8, 1, "cmdoption-dacapo-apply-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-apply-i", "-i"], [186, 8, 1, "cmdoption-dacapo-apply-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-apply-id", "-id"], [186, 8, 1, "cmdoption-dacapo-apply-op", "-op"], [186, 8, 1, "cmdoption-dacapo-apply-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-apply-p", "-p"], [186, 8, 1, "cmdoption-dacapo-apply-r", "-r"], [186, 8, 1, "cmdoption-dacapo-apply-roi", "-roi"], [186, 8, 1, "cmdoption-dacapo-apply-vd", "-vd"], [186, 8, 1, "cmdoption-dacapo-apply-w", "-w"]], "dacapo-predict": [[186, 8, 1, "cmdoption-dacapo-predict-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-predict-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-predict-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-predict-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-predict-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-predict-op", "--output_path"], [186, 8, 1, "cmdoption-dacapo-predict-roi", "--output_roi"], [186, 8, 1, "cmdoption-dacapo-predict-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-predict-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-predict-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-predict-i", "-i"], [186, 8, 1, "cmdoption-dacapo-predict-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-predict-id", "-id"], [186, 8, 1, "cmdoption-dacapo-predict-op", "-op"], [186, 8, 1, "cmdoption-dacapo-predict-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-predict-r", "-r"], [186, 8, 1, "cmdoption-dacapo-predict-roi", "-roi"], [186, 8, 1, "cmdoption-dacapo-predict-w", "-w"]], "dacapo-run-blockwise": [[186, 8, 1, "cmdoption-dacapo-run-blockwise-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-mr", "--max_retries"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-nw", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-oc", "--output_container"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-od", "--output_dataset"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-rr", "--read_roi_size"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-t", "--timeout"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-tr", "--total_roi"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-w", "--worker_file"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-wr", "--write_roi_size"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-co", "-channels_out"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-co", "-co"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-id", "-id"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-mr", "-mr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-nw", "-nw"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-oc", "-oc"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-od", "-od"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-rr", "-rr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-t", "-t"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-tr", "-tr"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-w", "-w"], [186, 8, 1, "cmdoption-dacapo-run-blockwise-wr", "-wr"]], "dacapo-segment-blockwise": [[186, 8, 1, "cmdoption-dacapo-segment-blockwise-co", "--channels_out"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-c", "--context"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ic", "--input_container"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-id", "--input_dataset"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-mr", "--max_retries"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-nw", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-oc", "--output_container"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-od", "--output_dataset"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-rr", "--read_roi_size"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-sf", "--segment_function_file"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-t", "--timeout"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-tr", "--total_roi"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-wr", "--write_roi_size"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-c", "-c"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-co", "-co"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ic", "-ic"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-id", "-id"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-mr", "-mr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-nw", "-nw"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-oc", "-oc"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-od", "-od"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-rr", "-rr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-sf", "-sf"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-t", "-t"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-tr", "-tr"], [186, 8, 1, "cmdoption-dacapo-segment-blockwise-wr", "-wr"]], "dacapo-train": [[186, 8, 1, "cmdoption-dacapo-train-no-validation", "--no-validation"], [186, 8, 1, "cmdoption-dacapo-train-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-train-r", "-r"]], "dacapo-validate": [[186, 8, 1, "cmdoption-dacapo-validate-i", "--iteration"], [186, 8, 1, "cmdoption-dacapo-validate-w", "--num_workers"], [186, 8, 1, "cmdoption-dacapo-validate-dt", "--output_dtype"], [186, 8, 1, "cmdoption-dacapo-validate-ow", "--overwrite"], [186, 8, 1, "cmdoption-dacapo-validate-r", "--run-name"], [186, 8, 1, "cmdoption-dacapo-validate-dt", "-dt"], [186, 8, 1, "cmdoption-dacapo-validate-i", "-i"], [186, 8, 1, "cmdoption-dacapo-validate-ow", "-ow"], [186, 8, 1, "cmdoption-dacapo-validate-r", "-r"], [186, 8, 1, "cmdoption-dacapo-validate-w", "-w"]], "dacapo.Options": [[155, 2, 1, "", "__parse_options"], [155, 2, 1, "", "__parse_options_from_file"], [155, 2, 1, "id1", "config_file"], [155, 2, 1, "id0", "instance"]], "dacapo.apply": [[0, 3, 1, "", "apply"], [0, 3, 1, "", "apply_run"], [0, 4, 1, "", "logger"]], "dacapo.blockwise": [[4, 1, 1, "", "DaCapoBlockwiseTask"], [1, 0, 0, "-", "argmax_worker"], [2, 0, 0, "-", "blockwise_task"], [3, 0, 0, "-", "empanada_function"], [5, 0, 0, "-", "predict_worker"], [6, 0, 0, "-", "relabel_worker"], [7, 0, 0, "-", "scheduler"], [8, 0, 0, "-", "segment_worker"], [9, 0, 0, "-", "threshold_worker"], [10, 0, 0, "-", "watershed_function"]], "dacapo.blockwise.DaCapoBlockwiseTask": [[4, 2, 1, "", "__init__"], [4, 5, 1, "", "max_retries"], [4, 5, 1, "", "num_workers"], [4, 5, 1, "", "read_roi"], [4, 5, 1, "", "timeout"], [4, 5, 1, "", "total_roi"], [4, 5, 1, "", "upstream_tasks"], [4, 5, 1, "", "worker_file"], [4, 5, 1, "", "write_roi"]], "dacapo.blockwise.argmax_worker": [[1, 3, 1, "", "cli"], [1, 4, 1, "", "fit"], [1, 4, 1, "", "logger"], [1, 4, 1, "", "path"], [1, 4, 1, "", "read_write_conflict"], [1, 3, 1, "", "spawn_worker"], [1, 3, 1, "", "start_worker"], [1, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.blockwise_task": [[2, 1, 1, "", "DaCapoBlockwiseTask"]], "dacapo.blockwise.blockwise_task.DaCapoBlockwiseTask": [[2, 2, 1, "", "__init__"], [2, 5, 1, "", "max_retries"], [2, 5, 1, "", "num_workers"], [2, 5, 1, "", "read_roi"], [2, 5, 1, "", "timeout"], [2, 5, 1, "", "total_roi"], [2, 5, 1, "", "upstream_tasks"], [2, 5, 1, "", "worker_file"], [2, 5, 1, "", "write_roi"]], "dacapo.blockwise.empanada_function": [[3, 4, 1, "", "default_parameters"], [3, 3, 1, "", "empanada_segmenter"], [3, 4, 1, "", "logger"], [3, 4, 1, "", "model_configs"], [3, 3, 1, "", "orthoplane_inference"], [3, 3, 1, "", "segment_function"], [3, 3, 1, "", "stack_inference"], [3, 3, 1, "", "stack_postprocessing"], [3, 3, 1, "", "tracker_consensus"]], "dacapo.blockwise.predict_worker": [[5, 3, 1, "", "cli"], [5, 4, 1, "", "fit"], [5, 4, 1, "", "logger"], [5, 4, 1, "", "path"], [5, 4, 1, "", "read_write_conflict"], [5, 3, 1, "", "spawn_worker"], [5, 3, 1, "", "start_worker"], [5, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.relabel_worker": [[6, 3, 1, "", "cli"], [6, 3, 1, "", "find_components"], [6, 4, 1, "", "fit"], [6, 4, 1, "", "path"], [6, 3, 1, "", "read_cross_block_merges"], [6, 4, 1, "", "read_write_conflict"], [6, 3, 1, "", "relabel_in_block"], [6, 3, 1, "", "spawn_worker"], [6, 3, 1, "", "start_worker"], [6, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.scheduler": [[7, 4, 1, "", "logger"], [7, 3, 1, "", "run_blockwise"], [7, 3, 1, "", "segment_blockwise"]], "dacapo.blockwise.segment_worker": [[8, 3, 1, "", "cli"], [8, 4, 1, "", "fit"], [8, 4, 1, "", "logger"], [8, 4, 1, "", "path"], [8, 4, 1, "", "read_write_conflict"], [8, 3, 1, "", "spawn_worker"], [8, 3, 1, "", "start_worker"], [8, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.threshold_worker": [[9, 3, 1, "", "cli"], [9, 4, 1, "", "fit"], [9, 4, 1, "", "logger"], [9, 4, 1, "", "path"], [9, 4, 1, "", "read_write_conflict"], [9, 3, 1, "", "spawn_worker"], [9, 3, 1, "", "start_worker"], [9, 3, 1, "", "start_worker_fn"]], "dacapo.blockwise.watershed_function": [[10, 3, 1, "", "segment_function"]], "dacapo.compute_context": [[13, 1, 1, "", "Bsub"], [13, 1, 1, "", "ComputeContext"], [13, 1, 1, "", "LocalTorch"], [11, 0, 0, "-", "bsub"], [12, 0, 0, "-", "compute_context"], [13, 3, 1, "", "create_compute_context"], [14, 0, 0, "-", "local_torch"]], "dacapo.compute_context.Bsub": [[13, 2, 1, "", "_wrap_command"], [13, 5, 1, "id9", "billing"], [13, 6, 1, "id10", "device"], [13, 5, 1, "", "distribute_workers"], [13, 5, 1, "id8", "num_cpus"], [13, 5, 1, "id7", "num_gpus"], [13, 5, 1, "id6", "queue"]], "dacapo.compute_context.ComputeContext": [[13, 2, 1, "", "_wrap_command"], [13, 6, 1, "id0", "device"], [13, 5, 1, "", "distribute_workers"], [13, 2, 1, "id2", "execute"], [13, 2, 1, "id1", "wrap_command"]], "dacapo.compute_context.LocalTorch": [[13, 5, 1, "", "_device"], [13, 2, 1, "", "_wrap_command"], [13, 6, 1, "id5", "device"], [13, 5, 1, "", "distribute_workers"], [13, 2, 1, "", "execute"], [13, 5, 1, "id4", "oom_limit"], [13, 2, 1, "", "wrap_command"]], "dacapo.compute_context.bsub": [[11, 1, 1, "", "Bsub"]], "dacapo.compute_context.bsub.Bsub": [[11, 2, 1, "", "_wrap_command"], [11, 5, 1, "id3", "billing"], [11, 6, 1, "id4", "device"], [11, 5, 1, "", "distribute_workers"], [11, 5, 1, "id2", "num_cpus"], [11, 5, 1, "id1", "num_gpus"], [11, 5, 1, "id0", "queue"]], "dacapo.compute_context.compute_context": [[12, 1, 1, "", "ComputeContext"], [12, 3, 1, "", "create_compute_context"]], "dacapo.compute_context.compute_context.ComputeContext": [[12, 2, 1, "", "_wrap_command"], [12, 6, 1, "id0", "device"], [12, 5, 1, "", "distribute_workers"], [12, 2, 1, "id2", "execute"], [12, 2, 1, "id1", "wrap_command"]], "dacapo.compute_context.local_torch": [[14, 1, 1, "", "LocalTorch"]], "dacapo.compute_context.local_torch.LocalTorch": [[14, 5, 1, "", "_device"], [14, 2, 1, "", "_wrap_command"], [14, 6, 1, "id2", "device"], [14, 5, 1, "", "distribute_workers"], [14, 2, 1, "", "execute"], [14, 5, 1, "id1", "oom_limit"], [14, 2, 1, "", "wrap_command"]], "dacapo.experiments": [[67, 1, 1, "", "Model"], [67, 1, 1, "", "RunConfig"], [67, 1, 1, "", "TrainingIterationStats"], [67, 1, 1, "", "TrainingStats"], [67, 1, 1, "", "ValidationIterationScores"], [67, 1, 1, "", "ValidationScores"], [21, 0, 0, "-", "architectures"], [27, 0, 0, "-", "arraytypes"], [62, 0, 0, "-", "datasplits"], [68, 0, 0, "-", "model"], [69, 0, 0, "-", "run"], [70, 0, 0, "-", "run_config"], [73, 0, 0, "-", "starts"], [93, 0, 0, "-", "tasks"], [138, 0, 0, "-", "trainers"], [142, 0, 0, "-", "training_iteration_stats"], [143, 0, 0, "-", "training_stats"], [144, 0, 0, "-", "validation_iteration_scores"], [145, 0, 0, "-", "validation_scores"]], "dacapo.experiments.Model": [[67, 5, 1, "id4", "architecture"], [67, 5, 1, "id6", "chain"], [67, 2, 1, "", "compute_output_shape"], [67, 5, 1, "id9", "eval_activation"], [67, 5, 1, "id8", "eval_input_shape"], [67, 2, 1, "", "forward"], [67, 5, 1, "id7", "input_shape"], [67, 5, 1, "id3", "num_in_channels"], [67, 5, 1, "id0", "num_out_channels"], [67, 5, 1, "", "output_shape"], [67, 5, 1, "id5", "prediction_head"], [67, 2, 1, "", "scale"]], "dacapo.experiments.RunConfig": [[67, 5, 1, "", "architecture_config"], [67, 5, 1, "", "datasplit_config"], [67, 5, 1, "", "name"], [67, 5, 1, "", "num_iterations"], [67, 5, 1, "", "repetition"], [67, 5, 1, "", "start_config"], [67, 5, 1, "", "task_config"], [67, 5, 1, "", "trainer_config"], [67, 5, 1, "", "validation_interval"]], "dacapo.experiments.TrainingIterationStats": [[67, 5, 1, "id10", "iteration"], [67, 5, 1, "id11", "loss"], [67, 5, 1, "id12", "time"]], "dacapo.experiments.TrainingStats": [[67, 2, 1, "", "add_iteration_stats"], [67, 2, 1, "", "delete_after"], [67, 5, 1, "id13", "iteration_stats"], [67, 2, 1, "id15", "to_xarray"], [67, 2, 1, "id14", "trained_until"]], "dacapo.experiments.ValidationIterationScores": [[67, 5, 1, "id16", "iteration"], [67, 5, 1, "id17", "scores"]], "dacapo.experiments.ValidationScores": [[67, 2, 1, "id23", "add_iteration_scores"], [67, 2, 1, "id26", "compare"], [67, 6, 1, "id27", "criteria"], [67, 5, 1, "id19", "datasets"], [67, 2, 1, "id24", "delete_after"], [67, 5, 1, "id20", "evaluation_scores"], [67, 2, 1, "id30", "get_best"], [67, 6, 1, "id28", "parameter_names"], [67, 5, 1, "id18", "parameters"], [67, 5, 1, "id21", "scores"], [67, 2, 1, "id22", "subscores"], [67, 2, 1, "id29", "to_xarray"], [67, 2, 1, "id25", "validated_until"]], "dacapo.experiments.architectures": [[21, 1, 1, "", "Architecture"], [21, 1, 1, "", "ArchitectureConfig"], [21, 1, 1, "", "CNNectomeUNet"], [21, 1, 1, "", "CNNectomeUNetConfig"], [21, 1, 1, "", "DummyArchitecture"], [21, 1, 1, "", "DummyArchitectureConfig"], [15, 0, 0, "-", "architecture"], [16, 0, 0, "-", "architecture_config"], [17, 0, 0, "-", "cnnectome_unet"], [18, 0, 0, "-", "cnnectome_unet_config"], [19, 0, 0, "-", "dummy_architecture"], [20, 0, 0, "-", "dummy_architecture_config"]], "dacapo.experiments.architectures.Architecture": [[21, 6, 1, "id4", "dims"], [21, 6, 1, "id1", "eval_shape_increase"], [21, 6, 1, "id0", "input_shape"], [21, 6, 1, "id2", "num_in_channels"], [21, 6, 1, "id3", "num_out_channels"], [21, 2, 1, "id5", "scale"]], "dacapo.experiments.architectures.ArchitectureConfig": [[21, 5, 1, "id6", "name"], [21, 2, 1, "id7", "verify"]], "dacapo.experiments.architectures.CNNectomeUNet": [[21, 5, 1, "", "activation"], [21, 5, 1, "", "activation_on_upsample"], [21, 5, 1, "", "batch_norm"], [21, 5, 1, "id39", "constant_upsample"], [21, 5, 1, "id36", "downsample_factors"], [21, 6, 1, "", "eval_shape_increase"], [21, 5, 1, "id35", "fmap_inc_factor"], [21, 5, 1, "id33", "fmaps_in"], [21, 5, 1, "id32", "fmaps_out"], [21, 2, 1, "", "forward"], [21, 5, 1, "", "fov"], [21, 6, 1, "", "input_shape"], [21, 5, 1, "id37", "kernel_size_down"], [21, 5, 1, "id38", "kernel_size_up"], [21, 2, 1, "", "module"], [21, 5, 1, "id34", "num_fmaps"], [21, 5, 1, "", "num_heads"], [21, 6, 1, "", "num_in_channels"], [21, 6, 1, "", "num_out_channels"], [21, 5, 1, "id40", "padding"], [21, 2, 1, "", "scale"], [21, 5, 1, "", "unet"], [21, 5, 1, "", "upsample_channel_contraction"], [21, 5, 1, "", "upsample_factors"], [21, 5, 1, "id41", "use_attention"], [21, 5, 1, "", "voxel_size"]], "dacapo.experiments.architectures.CNNectomeUNetConfig": [[21, 5, 1, "", "_eval_shape_increase"], [21, 5, 1, "id19", "architecture_type"], [21, 5, 1, "", "batch_norm"], [21, 5, 1, "id29", "constant_upsample"], [21, 5, 1, "id25", "downsample_factors"], [21, 5, 1, "id24", "fmap_inc_factor"], [21, 5, 1, "id22", "fmaps_in"], [21, 5, 1, "id21", "fmaps_out"], [21, 5, 1, "id20", "input_shape"], [21, 5, 1, "id26", "kernel_size_down"], [21, 5, 1, "id27", "kernel_size_up"], [21, 5, 1, "id23", "num_fmaps"], [21, 5, 1, "id30", "padding"], [21, 5, 1, "id28", "upsample_factors"], [21, 5, 1, "id31", "use_attention"]], "dacapo.experiments.architectures.DummyArchitecture": [[21, 5, 1, "id12", "channels_in"], [21, 5, 1, "id13", "channels_out"], [21, 5, 1, "id14", "conv"], [21, 2, 1, "id18", "forward"], [21, 6, 1, "id15", "input_shape"], [21, 6, 1, "id16", "num_in_channels"], [21, 6, 1, "id17", "num_out_channels"]], "dacapo.experiments.architectures.DummyArchitectureConfig": [[21, 5, 1, "id8", "architecture_type"], [21, 5, 1, "id9", "num_in_channels"], [21, 5, 1, "id10", "num_out_channels"], [21, 2, 1, "id11", "verify"]], "dacapo.experiments.architectures.architecture": [[15, 1, 1, "", "Architecture"]], "dacapo.experiments.architectures.architecture.Architecture": [[15, 6, 1, "id4", "dims"], [15, 6, 1, "id1", "eval_shape_increase"], [15, 6, 1, "id0", "input_shape"], [15, 6, 1, "id2", "num_in_channels"], [15, 6, 1, "id3", "num_out_channels"], [15, 2, 1, "id5", "scale"]], "dacapo.experiments.architectures.architecture_config": [[16, 1, 1, "", "ArchitectureConfig"]], "dacapo.experiments.architectures.architecture_config.ArchitectureConfig": [[16, 5, 1, "id0", "name"], [16, 2, 1, "id1", "verify"]], "dacapo.experiments.architectures.cnnectome_unet": [[17, 1, 1, "", "AttentionBlockModule"], [17, 1, 1, "", "CNNectomeUNet"], [17, 1, 1, "", "CNNectomeUNetModule"], [17, 1, 1, "", "ConvPass"], [17, 1, 1, "", "Downsample"], [17, 1, 1, "", "Upsample"]], "dacapo.experiments.architectures.cnnectome_unet.AttentionBlockModule": [[17, 5, 1, "", "W_g"], [17, 5, 1, "", "W_x"], [17, 5, 1, "", "batch_norm"], [17, 2, 1, "", "calculate_and_apply_padding"], [17, 5, 1, "", "dims"], [17, 2, 1, "", "forward"], [17, 5, 1, "", "kernel_sizes"], [17, 5, 1, "", "psi"], [17, 5, 1, "", "relu"], [17, 5, 1, "", "up"]], "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNet": [[17, 5, 1, "", "activation"], [17, 5, 1, "", "activation_on_upsample"], [17, 5, 1, "", "batch_norm"], [17, 5, 1, "id7", "constant_upsample"], [17, 5, 1, "id4", "downsample_factors"], [17, 6, 1, "", "eval_shape_increase"], [17, 5, 1, "id3", "fmap_inc_factor"], [17, 5, 1, "id1", "fmaps_in"], [17, 5, 1, "id0", "fmaps_out"], [17, 2, 1, "", "forward"], [17, 5, 1, "", "fov"], [17, 6, 1, "", "input_shape"], [17, 5, 1, "id5", "kernel_size_down"], [17, 5, 1, "id6", "kernel_size_up"], [17, 2, 1, "", "module"], [17, 5, 1, "id2", "num_fmaps"], [17, 5, 1, "", "num_heads"], [17, 6, 1, "", "num_in_channels"], [17, 6, 1, "", "num_out_channels"], [17, 5, 1, "id8", "padding"], [17, 2, 1, "", "scale"], [17, 5, 1, "", "unet"], [17, 5, 1, "", "upsample_channel_contraction"], [17, 5, 1, "", "upsample_factors"], [17, 5, 1, "id9", "use_attention"], [17, 5, 1, "", "voxel_size"]], "dacapo.experiments.architectures.cnnectome_unet.CNNectomeUNetModule": [[17, 5, 1, "", "activation_on_upsample"], [17, 5, 1, "", "attention"], [17, 5, 1, "", "batch_norm"], [17, 5, 1, "", "constant_upsample"], [17, 5, 1, "id15", "dims"], [17, 5, 1, "", "downsample_factors"], [17, 5, 1, "", "fmap_inc_factor"], [17, 2, 1, "id24", "forward"], [17, 5, 1, "id13", "in_channels"], [17, 5, 1, "id17", "kernel_size_down"], [17, 5, 1, "id18", "kernel_size_up"], [17, 5, 1, "id19", "l_conv"], [17, 5, 1, "id20", "l_down"], [17, 5, 1, "id12", "num_heads"], [17, 5, 1, "id11", "num_levels"], [17, 5, 1, "id14", "out_channels"], [17, 5, 1, "", "padding"], [17, 5, 1, "id22", "r_conv"], [17, 5, 1, "id21", "r_up"], [17, 2, 1, "id23", "rec_forward"], [17, 5, 1, "", "upsample_channel_contraction"], [17, 5, 1, "id16", "use_attention"]], "dacapo.experiments.architectures.cnnectome_unet.ConvPass": [[17, 5, 1, "id25", "conv_pass"], [17, 5, 1, "", "dims"], [17, 2, 1, "id26", "forward"]], "dacapo.experiments.architectures.cnnectome_unet.Downsample": [[17, 5, 1, "id27", "dims"], [17, 5, 1, "id29", "down"], [17, 5, 1, "id28", "downsample_factor"], [17, 2, 1, "id30", "forward"]], "dacapo.experiments.architectures.cnnectome_unet.Upsample": [[17, 2, 1, "id35", "crop"], [17, 5, 1, "id31", "crop_factor"], [17, 2, 1, "id34", "crop_to_factor"], [17, 5, 1, "id33", "dims"], [17, 2, 1, "id36", "forward"], [17, 5, 1, "id32", "next_conv_kernel_sizes"], [17, 5, 1, "", "up"]], "dacapo.experiments.architectures.cnnectome_unet_config": [[18, 1, 1, "", "CNNectomeUNetConfig"]], "dacapo.experiments.architectures.cnnectome_unet_config.CNNectomeUNetConfig": [[18, 5, 1, "", "_eval_shape_increase"], [18, 5, 1, "id0", "architecture_type"], [18, 5, 1, "", "batch_norm"], [18, 5, 1, "id10", "constant_upsample"], [18, 5, 1, "id6", "downsample_factors"], [18, 5, 1, "id5", "fmap_inc_factor"], [18, 5, 1, "id3", "fmaps_in"], [18, 5, 1, "id2", "fmaps_out"], [18, 5, 1, "id1", "input_shape"], [18, 5, 1, "id7", "kernel_size_down"], [18, 5, 1, "id8", "kernel_size_up"], [18, 5, 1, "id4", "num_fmaps"], [18, 5, 1, "id11", "padding"], [18, 5, 1, "id9", "upsample_factors"], [18, 5, 1, "id12", "use_attention"]], "dacapo.experiments.architectures.dummy_architecture": [[19, 1, 1, "", "DummyArchitecture"]], "dacapo.experiments.architectures.dummy_architecture.DummyArchitecture": [[19, 5, 1, "id0", "channels_in"], [19, 5, 1, "id1", "channels_out"], [19, 5, 1, "id2", "conv"], [19, 2, 1, "id6", "forward"], [19, 6, 1, "id3", "input_shape"], [19, 6, 1, "id4", "num_in_channels"], [19, 6, 1, "id5", "num_out_channels"]], "dacapo.experiments.architectures.dummy_architecture_config": [[20, 1, 1, "", "DummyArchitectureConfig"]], "dacapo.experiments.architectures.dummy_architecture_config.DummyArchitectureConfig": [[20, 5, 1, "id0", "architecture_type"], [20, 5, 1, "id1", "num_in_channels"], [20, 5, 1, "id2", "num_out_channels"], [20, 2, 1, "id3", "verify"]], "dacapo.experiments.arraytypes": [[27, 1, 1, "", "AnnotationArray"], [27, 1, 1, "", "DistanceArray"], [27, 1, 1, "", "EmbeddingArray"], [27, 1, 1, "", "IntensitiesArray"], [27, 1, 1, "", "Mask"], [27, 1, 1, "", "ProbabilityArray"], [22, 0, 0, "-", "annotations"], [23, 0, 0, "-", "arraytype"], [24, 0, 0, "-", "binary"], [25, 0, 0, "-", "distances"], [26, 0, 0, "-", "embedding"], [28, 0, 0, "-", "intensities"], [29, 0, 0, "-", "mask"], [30, 0, 0, "-", "probabilities"]], "dacapo.experiments.arraytypes.AnnotationArray": [[27, 5, 1, "id0", "classes"], [27, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.DistanceArray": [[27, 5, 1, "id6", "classes"], [27, 6, 1, "id7", "interpolatable"], [27, 5, 1, "", "max"]], "dacapo.experiments.arraytypes.EmbeddingArray": [[27, 5, 1, "id9", "embedding_dims"], [27, 6, 1, "id10", "interpolatable"]], "dacapo.experiments.arraytypes.IntensitiesArray": [[27, 2, 1, "", "__attrs_post_init__"], [27, 5, 1, "id2", "channels"], [27, 6, 1, "id5", "interpolatable"], [27, 5, 1, "id4", "max"], [27, 5, 1, "id3", "min"]], "dacapo.experiments.arraytypes.Mask": [[27, 6, 1, "id8", "interpolatable"]], "dacapo.experiments.arraytypes.ProbabilityArray": [[27, 5, 1, "id11", "classes"], [27, 6, 1, "", "interpolatable"]], "dacapo.experiments.arraytypes.annotations": [[22, 1, 1, "", "AnnotationArray"]], "dacapo.experiments.arraytypes.annotations.AnnotationArray": [[22, 5, 1, "id0", "classes"], [22, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.arraytype": [[23, 1, 1, "", "ArrayType"]], "dacapo.experiments.arraytypes.arraytype.ArrayType": [[23, 5, 1, "", "channel_names"], [23, 6, 1, "id0", "interpolatable"], [23, 5, 1, "", "num_classes"]], "dacapo.experiments.arraytypes.binary": [[24, 1, 1, "", "BinaryArray"]], "dacapo.experiments.arraytypes.binary.BinaryArray": [[24, 5, 1, "id0", "channels"], [24, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.distances": [[25, 1, 1, "", "DistanceArray"]], "dacapo.experiments.arraytypes.distances.DistanceArray": [[25, 5, 1, "id0", "classes"], [25, 6, 1, "id1", "interpolatable"], [25, 5, 1, "", "max"]], "dacapo.experiments.arraytypes.embedding": [[26, 1, 1, "", "EmbeddingArray"]], "dacapo.experiments.arraytypes.embedding.EmbeddingArray": [[26, 5, 1, "id0", "embedding_dims"], [26, 6, 1, "id1", "interpolatable"]], "dacapo.experiments.arraytypes.intensities": [[28, 1, 1, "", "IntensitiesArray"]], "dacapo.experiments.arraytypes.intensities.IntensitiesArray": [[28, 2, 1, "", "__attrs_post_init__"], [28, 5, 1, "id0", "channels"], [28, 6, 1, "id3", "interpolatable"], [28, 5, 1, "id2", "max"], [28, 5, 1, "id1", "min"]], "dacapo.experiments.arraytypes.mask": [[29, 1, 1, "", "Mask"]], "dacapo.experiments.arraytypes.mask.Mask": [[29, 6, 1, "id0", "interpolatable"]], "dacapo.experiments.arraytypes.probabilities": [[30, 1, 1, "", "ProbabilityArray"]], "dacapo.experiments.arraytypes.probabilities.ProbabilityArray": [[30, 5, 1, "id0", "classes"], [30, 6, 1, "", "interpolatable"]], "dacapo.experiments.datasplits": [[62, 1, 1, "", "DataSplit"], [62, 1, 1, "", "DataSplitConfig"], [62, 1, 1, "", "DataSplitGenerator"], [62, 1, 1, "", "DatasetSpec"], [62, 1, 1, "", "DummyDataSplit"], [62, 1, 1, "", "DummyDataSplitConfig"], [62, 1, 1, "", "TrainValidateDataSplit"], [62, 1, 1, "", "TrainValidateDataSplitConfig"], [54, 0, 0, "-", "datasets"], [57, 0, 0, "-", "datasplit"], [58, 0, 0, "-", "datasplit_config"], [59, 0, 0, "-", "datasplit_generator"], [60, 0, 0, "-", "dummy_datasplit"], [61, 0, 0, "-", "dummy_datasplit_config"], [63, 0, 0, "-", "keys"], [65, 0, 0, "-", "train_validate_datasplit"], [66, 0, 0, "-", "train_validate_datasplit_config"]], "dacapo.experiments.datasplits.DataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id0", "train"], [62, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.DataSplitConfig": [[62, 5, 1, "id2", "name"], [62, 2, 1, "id3", "verify"]], "dacapo.experiments.datasplits.DataSplitGenerator": [[62, 2, 1, "", "__generate_semantic_seg_dataset_crop"], [62, 2, 1, "", "__generate_semantic_seg_datasplit"], [62, 2, 1, "", "__init__"], [62, 2, 1, "", "__str__"], [62, 5, 1, "", "binarize_gt"], [62, 2, 1, "id31", "check_class_name"], [62, 6, 1, "id30", "class_name"], [62, 5, 1, "id28", "classes_separator_character"], [62, 2, 1, "id32", "compute"], [62, 5, 1, "id14", "datasets"], [62, 2, 1, "", "generate_csv"], [62, 2, 1, "id33", "generate_from_csv"], [62, 5, 1, "id15", "input_resolution"], [62, 5, 1, "id19", "max_gt_downsample"], [62, 5, 1, "id20", "max_gt_upsample"], [62, 5, 1, "id21", "max_raw_training_downsample"], [62, 5, 1, "id22", "max_raw_training_upsample"], [62, 5, 1, "id23", "max_raw_validation_downsample"], [62, 5, 1, "id24", "max_raw_validation_upsample"], [62, 5, 1, "id29", "max_validation_volume_size"], [62, 5, 1, "id25", "min_training_volume_size"], [62, 5, 1, "id13", "name"], [62, 5, 1, "id16", "output_resolution"], [62, 5, 1, "id27", "raw_max"], [62, 5, 1, "id26", "raw_min"], [62, 5, 1, "id18", "segmentation_type"], [62, 5, 1, "id17", "targets"], [62, 5, 1, "", "use_negative_class"]], "dacapo.experiments.datasplits.DatasetSpec": [[62, 2, 1, "", "__init__"], [62, 2, 1, "", "__str__"], [62, 5, 1, "id34", "dataset_type"], [62, 5, 1, "id37", "gt_container"], [62, 5, 1, "id38", "gt_dataset"], [62, 5, 1, "id35", "raw_container"], [62, 5, 1, "id36", "raw_dataset"]], "dacapo.experiments.datasplits.DummyDataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id4", "train"], [62, 5, 1, "id5", "validate"]], "dacapo.experiments.datasplits.DummyDataSplitConfig": [[62, 5, 1, "id6", "datasplit_type"], [62, 5, 1, "id7", "train_config"], [62, 2, 1, "id8", "verify"]], "dacapo.experiments.datasplits.TrainValidateDataSplit": [[62, 2, 1, "", "__init__"], [62, 5, 1, "id9", "train"], [62, 5, 1, "id10", "validate"]], "dacapo.experiments.datasplits.TrainValidateDataSplitConfig": [[62, 2, 1, "", "__init__"], [62, 5, 1, "", "datasplit_type"], [62, 5, 1, "id11", "train_configs"], [62, 5, 1, "id12", "validate_configs"]], "dacapo.experiments.datasplits.datasets": [[54, 1, 1, "", "Dataset"], [54, 1, 1, "", "DatasetConfig"], [54, 1, 1, "", "DummyDataset"], [54, 1, 1, "", "DummyDatasetConfig"], [54, 1, 1, "", "RawGTDataset"], [54, 1, 1, "", "RawGTDatasetConfig"], [38, 0, 0, "-", "arrays"], [48, 0, 0, "-", "dataset"], [49, 0, 0, "-", "dataset_config"], [50, 0, 0, "-", "dummy_dataset"], [51, 0, 0, "-", "dummy_dataset_config"], [53, 0, 0, "-", "graphstores"], [55, 0, 0, "-", "raw_gt_dataset"], [56, 0, 0, "-", "raw_gt_dataset_config"]], "dacapo.experiments.datasplits.datasets.Dataset": [[54, 2, 1, "", "__eq__"], [54, 2, 1, "", "__hash__"], [54, 2, 1, "", "__repr__"], [54, 2, 1, "", "__str__"], [54, 2, 1, "", "_neuroglancer_layers"], [54, 5, 1, "id2", "gt"], [54, 5, 1, "id3", "mask"], [54, 5, 1, "id0", "name"], [54, 5, 1, "id1", "raw"], [54, 5, 1, "id5", "sample_points"], [54, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.DatasetConfig": [[54, 5, 1, "id6", "name"], [54, 2, 1, "id8", "verify"], [54, 5, 1, "id7", "weight"]], "dacapo.experiments.datasplits.datasets.DummyDataset": [[54, 2, 1, "", "__init__"], [54, 5, 1, "", "name"], [54, 5, 1, "id9", "raw"]], "dacapo.experiments.datasplits.datasets.DummyDatasetConfig": [[54, 5, 1, "id10", "dataset_type"], [54, 5, 1, "id11", "raw_config"], [54, 2, 1, "id12", "verify"]], "dacapo.experiments.datasplits.datasets.RawGTDataset": [[54, 2, 1, "", "__init__"], [54, 5, 1, "id14", "gt"], [54, 5, 1, "id15", "mask"], [54, 5, 1, "", "name"], [54, 5, 1, "id13", "raw"], [54, 5, 1, "id16", "sample_points"], [54, 5, 1, "id17", "weight"]], "dacapo.experiments.datasplits.datasets.RawGTDatasetConfig": [[54, 5, 1, "id18", "dataset_type"], [54, 5, 1, "id20", "gt_config"], [54, 5, 1, "id21", "mask_config"], [54, 5, 1, "id19", "raw_config"], [54, 5, 1, "id22", "sample_points"], [54, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays": [[38, 1, 1, "", "ArrayConfig"], [38, 1, 1, "", "BinarizeArrayConfig"], [38, 1, 1, "", "ConcatArrayConfig"], [38, 1, 1, "", "ConstantArrayConfig"], [38, 1, 1, "", "CropArrayConfig"], [38, 1, 1, "", "DVIDArrayConfig"], [38, 1, 1, "", "DummyArrayConfig"], [38, 1, 1, "", "IntensitiesArrayConfig"], [38, 1, 1, "", "LogicalOrArrayConfig"], [38, 1, 1, "", "MergeInstancesArrayConfig"], [38, 1, 1, "", "MissingAnnotationsMaskConfig"], [38, 1, 1, "", "OnesArrayConfig"], [38, 1, 1, "", "ResampledArrayConfig"], [38, 1, 1, "", "SumArrayConfig"], [38, 1, 1, "", "ZarrArrayConfig"], [31, 0, 0, "-", "array_config"], [32, 0, 0, "-", "binarize_array_config"], [33, 0, 0, "-", "concat_array_config"], [34, 0, 0, "-", "constant_array_config"], [35, 0, 0, "-", "crop_array_config"], [36, 0, 0, "-", "dummy_array_config"], [37, 0, 0, "-", "dvid_array_config"], [39, 0, 0, "-", "intensity_array_config"], [40, 0, 0, "-", "logical_or_array_config"], [41, 0, 0, "-", "merge_instances_array_config"], [42, 0, 0, "-", "missing_annotations_mask_config"], [43, 0, 0, "-", "ones_array_config"], [44, 0, 0, "-", "resampled_array_config"], [45, 0, 0, "-", "sum_array_config"], [46, 0, 0, "-", "tiff_array_config"], [47, 0, 0, "-", "zarr_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id0", "name"], [38, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.BinarizeArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id9", "background"], [38, 5, 1, "id8", "groupings"], [38, 5, 1, "id7", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ConcatArrayConfig": [[38, 2, 1, "", "__attrs_post_init__"], [38, 2, 1, "", "array"], [38, 5, 1, "id20", "channels"], [38, 5, 1, "id22", "default_config"], [38, 5, 1, "id21", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.ConstantArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "", "constant"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id29", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.CropArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id25", "roi"], [38, 5, 1, "id24", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.DVIDArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id27", "source"], [38, 2, 1, "", "to_array"], [38, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.DummyArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "to_array"], [38, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.IntensitiesArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id16", "max"], [38, 5, 1, "id15", "min"], [38, 5, 1, "id14", "source_array_config"], [38, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.LogicalOrArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id23", "source_array_config"], [38, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.MergeInstancesArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id26", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.MissingAnnotationsMaskConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id18", "groupings"], [38, 5, 1, "id17", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.OnesArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id19", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ResampledArrayConfig": [[38, 2, 1, "", "array"], [38, 2, 1, "", "create_array"], [38, 5, 1, "id12", "downsample"], [38, 5, 1, "id13", "interp_order"], [38, 5, 1, "id10", "source_array_config"], [38, 5, 1, "id11", "upsample"]], "dacapo.experiments.datasplits.datasets.arrays.SumArrayConfig": [[38, 2, 1, "", "array"], [38, 5, 1, "id28", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.ZarrArrayConfig": [[38, 5, 1, "", "_axes"], [38, 2, 1, "", "array"], [38, 5, 1, "id4", "dataset"], [38, 5, 1, "id3", "file_name"], [38, 5, 1, "", "mode"], [38, 5, 1, "id5", "snap_to_grid"], [38, 2, 1, "id6", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.array_config": [[31, 1, 1, "", "ArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.array_config.ArrayConfig": [[31, 2, 1, "", "array"], [31, 5, 1, "id0", "name"], [31, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config": [[32, 1, 1, "", "BinarizeArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config.BinarizeArrayConfig": [[32, 2, 1, "", "array"], [32, 5, 1, "id2", "background"], [32, 5, 1, "id1", "groupings"], [32, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config": [[33, 1, 1, "", "ConcatArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.concat_array_config.ConcatArrayConfig": [[33, 2, 1, "", "__attrs_post_init__"], [33, 2, 1, "", "array"], [33, 5, 1, "id0", "channels"], [33, 5, 1, "id2", "default_config"], [33, 5, 1, "id1", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config": [[34, 1, 1, "", "ConstantArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.constant_array_config.ConstantArrayConfig": [[34, 2, 1, "", "array"], [34, 5, 1, "", "constant"], [34, 2, 1, "", "create_array"], [34, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config": [[35, 1, 1, "", "CropArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.crop_array_config.CropArrayConfig": [[35, 2, 1, "", "array"], [35, 2, 1, "", "create_array"], [35, 5, 1, "id1", "roi"], [35, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config": [[36, 1, 1, "", "DummyArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config.DummyArrayConfig": [[36, 2, 1, "", "array"], [36, 2, 1, "", "to_array"], [36, 2, 1, "id0", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config": [[37, 1, 1, "", "DVIDArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config.DVIDArrayConfig": [[37, 2, 1, "", "array"], [37, 5, 1, "id0", "source"], [37, 2, 1, "", "to_array"], [37, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config": [[39, 1, 1, "", "IntensitiesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config.IntensitiesArrayConfig": [[39, 2, 1, "", "array"], [39, 5, 1, "id2", "max"], [39, 5, 1, "id1", "min"], [39, 5, 1, "id0", "source_array_config"], [39, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config": [[40, 1, 1, "", "LogicalOrArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config.LogicalOrArrayConfig": [[40, 2, 1, "", "array"], [40, 5, 1, "id0", "source_array_config"], [40, 2, 1, "", "to_array"]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config": [[41, 1, 1, "", "MergeInstancesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config.MergeInstancesArrayConfig": [[41, 2, 1, "", "array"], [41, 2, 1, "", "create_array"], [41, 5, 1, "id0", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config": [[42, 1, 1, "", "MissingAnnotationsMaskConfig"]], "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config.MissingAnnotationsMaskConfig": [[42, 2, 1, "", "array"], [42, 5, 1, "id1", "groupings"], [42, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config": [[43, 1, 1, "", "OnesArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.ones_array_config.OnesArrayConfig": [[43, 2, 1, "", "array"], [43, 2, 1, "", "create_array"], [43, 5, 1, "id0", "source_array_config"]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config": [[44, 1, 1, "", "ResampledArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config.ResampledArrayConfig": [[44, 2, 1, "", "array"], [44, 2, 1, "", "create_array"], [44, 5, 1, "id2", "downsample"], [44, 5, 1, "id3", "interp_order"], [44, 5, 1, "id0", "source_array_config"], [44, 5, 1, "id1", "upsample"]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config": [[45, 1, 1, "", "SumArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.sum_array_config.SumArrayConfig": [[45, 2, 1, "", "array"], [45, 5, 1, "id0", "source_array_configs"]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config": [[46, 1, 1, "", "TiffArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config.TiffArrayConfig": [[46, 2, 1, "", "array"], [46, 5, 1, "id3", "axis_names"], [46, 5, 1, "id0", "file_name"], [46, 5, 1, "id1", "offset"], [46, 5, 1, "", "units"], [46, 5, 1, "id2", "voxel_size"]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config": [[47, 1, 1, "", "ZarrArrayConfig"]], "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config.ZarrArrayConfig": [[47, 5, 1, "", "_axes"], [47, 2, 1, "", "array"], [47, 5, 1, "id1", "dataset"], [47, 5, 1, "id0", "file_name"], [47, 5, 1, "", "mode"], [47, 5, 1, "id2", "snap_to_grid"], [47, 2, 1, "id3", "verify"]], "dacapo.experiments.datasplits.datasets.dataset": [[48, 1, 1, "", "Dataset"]], "dacapo.experiments.datasplits.datasets.dataset.Dataset": [[48, 2, 1, "", "__eq__"], [48, 2, 1, "", "__hash__"], [48, 2, 1, "", "__repr__"], [48, 2, 1, "", "__str__"], [48, 2, 1, "", "_neuroglancer_layers"], [48, 5, 1, "id2", "gt"], [48, 5, 1, "id3", "mask"], [48, 5, 1, "id0", "name"], [48, 5, 1, "id1", "raw"], [48, 5, 1, "id5", "sample_points"], [48, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.dataset_config": [[49, 1, 1, "", "DatasetConfig"]], "dacapo.experiments.datasplits.datasets.dataset_config.DatasetConfig": [[49, 5, 1, "id0", "name"], [49, 2, 1, "id2", "verify"], [49, 5, 1, "id1", "weight"]], "dacapo.experiments.datasplits.datasets.dummy_dataset": [[50, 1, 1, "", "DummyDataset"]], "dacapo.experiments.datasplits.datasets.dummy_dataset.DummyDataset": [[50, 2, 1, "", "__init__"], [50, 5, 1, "", "name"], [50, 5, 1, "id0", "raw"]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config": [[51, 1, 1, "", "DummyDatasetConfig"]], "dacapo.experiments.datasplits.datasets.dummy_dataset_config.DummyDatasetConfig": [[51, 5, 1, "id0", "dataset_type"], [51, 5, 1, "id1", "raw_config"], [51, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.datasets.graphstores": [[53, 1, 1, "", "GraphStoreConfig"], [52, 0, 0, "-", "graph_source_config"]], "dacapo.experiments.datasplits.datasets.graphstores.GraphStoreConfig": [[53, 5, 1, "", "store_type"], [53, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config": [[52, 1, 1, "", "GraphStoreConfig"]], "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config.GraphStoreConfig": [[52, 5, 1, "", "store_type"], [52, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset": [[55, 1, 1, "", "RawGTDataset"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset.RawGTDataset": [[55, 2, 1, "", "__init__"], [55, 5, 1, "id1", "gt"], [55, 5, 1, "id2", "mask"], [55, 5, 1, "", "name"], [55, 5, 1, "id0", "raw"], [55, 5, 1, "id3", "sample_points"], [55, 5, 1, "id4", "weight"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config": [[56, 1, 1, "", "RawGTDatasetConfig"]], "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config.RawGTDatasetConfig": [[56, 5, 1, "id0", "dataset_type"], [56, 5, 1, "id2", "gt_config"], [56, 5, 1, "id3", "mask_config"], [56, 5, 1, "id1", "raw_config"], [56, 5, 1, "id4", "sample_points"], [56, 2, 1, "", "verify"]], "dacapo.experiments.datasplits.datasplit": [[57, 1, 1, "", "DataSplit"]], "dacapo.experiments.datasplits.datasplit.DataSplit": [[57, 2, 1, "", "__init__"], [57, 5, 1, "id0", "train"], [57, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.datasplit_config": [[58, 1, 1, "", "DataSplitConfig"]], "dacapo.experiments.datasplits.datasplit_config.DataSplitConfig": [[58, 5, 1, "id0", "name"], [58, 2, 1, "id1", "verify"]], "dacapo.experiments.datasplits.datasplit_generator": [[59, 1, 1, "", "CustomEnum"], [59, 1, 1, "", "CustomEnumMeta"], [59, 1, 1, "", "DataSplitGenerator"], [59, 1, 1, "", "DatasetSpec"], [59, 1, 1, "", "DatasetType"], [59, 1, 1, "", "SegmentationType"], [59, 3, 1, "", "format_class_name"], [59, 3, 1, "", "generate_dataspec_from_csv"], [59, 3, 1, "", "get_right_resolution_array_config"], [59, 3, 1, "", "is_zarr_group"], [59, 3, 1, "", "limit_validation_crop_size"], [59, 4, 1, "", "logger"], [59, 3, 1, "", "resize_if_needed"]], "dacapo.experiments.datasplits.datasplit_generator.CustomEnum": [[59, 2, 1, "id0", "__str__"]], "dacapo.experiments.datasplits.datasplit_generator.CustomEnumMeta": [[59, 2, 1, "", "__getitem__"], [59, 5, 1, "", "_member_names_"]], "dacapo.experiments.datasplits.datasplit_generator.DataSplitGenerator": [[59, 2, 1, "", "__generate_semantic_seg_dataset_crop"], [59, 2, 1, "", "__generate_semantic_seg_datasplit"], [59, 2, 1, "", "__init__"], [59, 2, 1, "", "__str__"], [59, 5, 1, "", "binarize_gt"], [59, 2, 1, "id28", "check_class_name"], [59, 6, 1, "id27", "class_name"], [59, 5, 1, "id25", "classes_separator_character"], [59, 2, 1, "id29", "compute"], [59, 5, 1, "id11", "datasets"], [59, 2, 1, "", "generate_csv"], [59, 2, 1, "id30", "generate_from_csv"], [59, 5, 1, "id12", "input_resolution"], [59, 5, 1, "id16", "max_gt_downsample"], [59, 5, 1, "id17", "max_gt_upsample"], [59, 5, 1, "id18", "max_raw_training_downsample"], [59, 5, 1, "id19", "max_raw_training_upsample"], [59, 5, 1, "id20", "max_raw_validation_downsample"], [59, 5, 1, "id21", "max_raw_validation_upsample"], [59, 5, 1, "id26", "max_validation_volume_size"], [59, 5, 1, "id22", "min_training_volume_size"], [59, 5, 1, "id10", "name"], [59, 5, 1, "id13", "output_resolution"], [59, 5, 1, "id24", "raw_max"], [59, 5, 1, "id23", "raw_min"], [59, 5, 1, "id15", "segmentation_type"], [59, 5, 1, "id14", "targets"], [59, 5, 1, "", "use_negative_class"]], "dacapo.experiments.datasplits.datasplit_generator.DatasetSpec": [[59, 2, 1, "", "__init__"], [59, 2, 1, "", "__str__"], [59, 5, 1, "id5", "dataset_type"], [59, 5, 1, "id8", "gt_container"], [59, 5, 1, "id9", "gt_dataset"], [59, 5, 1, "id6", "raw_container"], [59, 5, 1, "id7", "raw_dataset"]], "dacapo.experiments.datasplits.datasplit_generator.DatasetType": [[59, 2, 1, "", "__str__"], [59, 5, 1, "id2", "train"], [59, 5, 1, "id1", "val"]], "dacapo.experiments.datasplits.datasplit_generator.SegmentationType": [[59, 2, 1, "", "__str__"], [59, 5, 1, "id4", "instance"], [59, 5, 1, "id3", "semantic"]], "dacapo.experiments.datasplits.dummy_datasplit": [[60, 1, 1, "", "DummyDataSplit"]], "dacapo.experiments.datasplits.dummy_datasplit.DummyDataSplit": [[60, 2, 1, "", "__init__"], [60, 5, 1, "id0", "train"], [60, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.dummy_datasplit_config": [[61, 1, 1, "", "DummyDataSplitConfig"]], "dacapo.experiments.datasplits.dummy_datasplit_config.DummyDataSplitConfig": [[61, 5, 1, "id0", "datasplit_type"], [61, 5, 1, "id1", "train_config"], [61, 2, 1, "id2", "verify"]], "dacapo.experiments.datasplits.keys": [[63, 1, 1, "", "ArrayKey"], [63, 1, 1, "", "DataKey"], [63, 1, 1, "", "GraphKey"], [64, 0, 0, "-", "keys"]], "dacapo.experiments.datasplits.keys.ArrayKey": [[63, 5, 1, "id1", "GT"], [63, 5, 1, "id2", "MASK"], [63, 5, 1, "id3", "NON_EMPTY"], [63, 5, 1, "id0", "RAW"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.DataKey": [[63, 5, 1, "", "GT"], [63, 5, 1, "", "MASK"], [63, 5, 1, "", "NON_EMPTY"], [63, 5, 1, "", "RAW"], [63, 5, 1, "", "SPECIFIED_LOCATIONS"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.GraphKey": [[63, 5, 1, "id4", "SPECIFIED_LOCATIONS"], [63, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys": [[64, 1, 1, "", "ArrayKey"], [64, 1, 1, "", "DataKey"], [64, 1, 1, "", "GraphKey"]], "dacapo.experiments.datasplits.keys.keys.ArrayKey": [[64, 5, 1, "id1", "GT"], [64, 5, 1, "id2", "MASK"], [64, 5, 1, "id3", "NON_EMPTY"], [64, 5, 1, "id0", "RAW"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys.DataKey": [[64, 5, 1, "", "GT"], [64, 5, 1, "", "MASK"], [64, 5, 1, "", "NON_EMPTY"], [64, 5, 1, "", "RAW"], [64, 5, 1, "", "SPECIFIED_LOCATIONS"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.keys.keys.GraphKey": [[64, 5, 1, "id4", "SPECIFIED_LOCATIONS"], [64, 2, 1, "", "__str__"]], "dacapo.experiments.datasplits.train_validate_datasplit": [[65, 1, 1, "", "TrainValidateDataSplit"]], "dacapo.experiments.datasplits.train_validate_datasplit.TrainValidateDataSplit": [[65, 2, 1, "", "__init__"], [65, 5, 1, "id0", "train"], [65, 5, 1, "id1", "validate"]], "dacapo.experiments.datasplits.train_validate_datasplit_config": [[66, 1, 1, "", "TrainValidateDataSplitConfig"]], "dacapo.experiments.datasplits.train_validate_datasplit_config.TrainValidateDataSplitConfig": [[66, 2, 1, "", "__init__"], [66, 5, 1, "", "datasplit_type"], [66, 5, 1, "id0", "train_configs"], [66, 5, 1, "id1", "validate_configs"]], "dacapo.experiments.model": [[68, 1, 1, "", "Model"]], "dacapo.experiments.model.Model": [[68, 5, 1, "id4", "architecture"], [68, 5, 1, "id6", "chain"], [68, 2, 1, "", "compute_output_shape"], [68, 5, 1, "id9", "eval_activation"], [68, 5, 1, "id8", "eval_input_shape"], [68, 2, 1, "", "forward"], [68, 5, 1, "id7", "input_shape"], [68, 5, 1, "id3", "num_in_channels"], [68, 5, 1, "id0", "num_out_channels"], [68, 5, 1, "", "output_shape"], [68, 5, 1, "id5", "prediction_head"], [68, 2, 1, "", "scale"]], "dacapo.experiments.run": [[69, 1, 1, "", "Run"]], "dacapo.experiments.run.Run": [[69, 5, 1, "id4", "architecture"], [69, 6, 1, "id10", "datasplit"], [69, 2, 1, "id12", "get_validation_scores"], [69, 5, 1, "id6", "model"], [69, 2, 1, "", "move_optimizer"], [69, 5, 1, "id0", "name"], [69, 5, 1, "id7", "optimizer"], [69, 5, 1, "id9", "start"], [69, 5, 1, "id3", "task"], [69, 5, 1, "id1", "train_until"], [69, 5, 1, "id5", "trainer"], [69, 5, 1, "id8", "training_stats"], [69, 5, 1, "id2", "validation_interval"], [69, 6, 1, "id11", "validation_scores"], [69, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.run_config": [[70, 1, 1, "", "RunConfig"]], "dacapo.experiments.run_config.RunConfig": [[70, 5, 1, "", "architecture_config"], [70, 5, 1, "", "datasplit_config"], [70, 5, 1, "", "name"], [70, 5, 1, "", "num_iterations"], [70, 5, 1, "", "repetition"], [70, 5, 1, "", "start_config"], [70, 5, 1, "", "task_config"], [70, 5, 1, "", "trainer_config"], [70, 5, 1, "", "validation_interval"]], "dacapo.experiments.starts": [[73, 1, 1, "", "CosemStart"], [73, 1, 1, "", "CosemStartConfig"], [73, 1, 1, "", "Start"], [73, 1, 1, "", "StartConfig"], [71, 0, 0, "-", "cosem_start"], [72, 0, 0, "-", "cosem_start_config"], [74, 0, 0, "-", "start"], [75, 0, 0, "-", "start_config"]], "dacapo.experiments.starts.CosemStart": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id7", "channels"], [73, 2, 1, "id8", "check"], [73, 5, 1, "id5", "criterion"], [73, 2, 1, "id9", "initialize_weights"], [73, 5, 1, "id6", "name"], [73, 5, 1, "id4", "run"]], "dacapo.experiments.starts.CosemStartConfig": [[73, 2, 1, "", "__init__"], [73, 5, 1, "", "criterion"], [73, 5, 1, "", "run"], [73, 5, 1, "", "start_type"]], "dacapo.experiments.starts.Start": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id0", "channels"], [73, 5, 1, "", "criterion"], [73, 2, 1, "id1", "initialize_weights"], [73, 5, 1, "", "run"]], "dacapo.experiments.starts.StartConfig": [[73, 2, 1, "", "__init__"], [73, 5, 1, "id3", "criterion"], [73, 5, 1, "id2", "run"], [73, 5, 1, "", "start_type"]], "dacapo.experiments.starts.cosem_start": [[71, 1, 1, "", "CosemStart"], [71, 3, 1, "", "get_model_setup"], [71, 4, 1, "", "logger"]], "dacapo.experiments.starts.cosem_start.CosemStart": [[71, 2, 1, "", "__init__"], [71, 5, 1, "id3", "channels"], [71, 2, 1, "id4", "check"], [71, 5, 1, "id1", "criterion"], [71, 2, 1, "id5", "initialize_weights"], [71, 5, 1, "id2", "name"], [71, 5, 1, "id0", "run"]], "dacapo.experiments.starts.cosem_start_config": [[72, 1, 1, "", "CosemStartConfig"]], "dacapo.experiments.starts.cosem_start_config.CosemStartConfig": [[72, 2, 1, "", "__init__"], [72, 5, 1, "", "criterion"], [72, 5, 1, "", "run"], [72, 5, 1, "", "start_type"]], "dacapo.experiments.starts.start": [[74, 1, 1, "", "Start"], [74, 4, 1, "", "head_keys"], [74, 4, 1, "", "logger"], [74, 3, 1, "", "match_heads"]], "dacapo.experiments.starts.start.Start": [[74, 2, 1, "", "__init__"], [74, 5, 1, "id0", "channels"], [74, 5, 1, "", "criterion"], [74, 2, 1, "id1", "initialize_weights"], [74, 5, 1, "", "run"]], "dacapo.experiments.starts.start_config": [[75, 1, 1, "", "StartConfig"]], "dacapo.experiments.starts.start_config.StartConfig": [[75, 2, 1, "", "__init__"], [75, 5, 1, "id1", "criterion"], [75, 5, 1, "id0", "run"], [75, 5, 1, "", "start_type"]], "dacapo.experiments.tasks": [[93, 1, 1, "", "AffinitiesTask"], [93, 1, 1, "", "AffinitiesTaskConfig"], [93, 1, 1, "", "DistanceTask"], [93, 1, 1, "", "DistanceTaskConfig"], [93, 1, 1, "", "DummyTask"], [93, 1, 1, "", "DummyTaskConfig"], [93, 1, 1, "", "HotDistanceTask"], [93, 1, 1, "", "HotDistanceTaskConfig"], [93, 1, 1, "", "InnerDistanceTask"], [93, 1, 1, "", "InnerDistanceTaskConfig"], [93, 1, 1, "", "OneHotTask"], [93, 1, 1, "", "OneHotTaskConfig"], [93, 1, 1, "", "PretrainedTask"], [93, 1, 1, "", "PretrainedTaskConfig"], [93, 1, 1, "", "Task"], [93, 1, 1, "", "TaskConfig"], [76, 0, 0, "-", "affinities_task"], [77, 0, 0, "-", "affinities_task_config"], [78, 0, 0, "-", "distance_task"], [79, 0, 0, "-", "distance_task_config"], [80, 0, 0, "-", "dummy_task"], [81, 0, 0, "-", "dummy_task_config"], [88, 0, 0, "-", "evaluators"], [91, 0, 0, "-", "hot_distance_task"], [92, 0, 0, "-", "hot_distance_task_config"], [94, 0, 0, "-", "inner_distance_task"], [95, 0, 0, "-", "inner_distance_task_config"], [99, 0, 0, "-", "losses"], [102, 0, 0, "-", "one_hot_task"], [103, 0, 0, "-", "one_hot_task_config"], [108, 0, 0, "-", "post_processors"], [119, 0, 0, "-", "predictors"], [123, 0, 0, "-", "pretrained_task"], [124, 0, 0, "-", "pretrained_task_config"], [125, 0, 0, "-", "task"], [126, 0, 0, "-", "task_config"]], "dacapo.experiments.tasks.AffinitiesTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id40", "evaluator"], [93, 5, 1, "id38", "loss"], [93, 5, 1, "id39", "post_processor"], [93, 5, 1, "id37", "predictor"]], "dacapo.experiments.tasks.AffinitiesTaskConfig": [[93, 5, 1, "id33", "affs_weight_clipmax"], [93, 5, 1, "id32", "affs_weight_clipmin"], [93, 5, 1, "id36", "background_as_object"], [93, 5, 1, "id30", "downsample_lsds"], [93, 5, 1, "id35", "lsd_weight_clipmax"], [93, 5, 1, "id34", "lsd_weight_clipmin"], [93, 5, 1, "id28", "lsds"], [93, 5, 1, "id31", "lsds_to_affs_weight_ratio"], [93, 5, 1, "id27", "neighborhood"], [93, 5, 1, "id29", "num_lsd_voxels"], [93, 5, 1, "", "task_type"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.DistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id20", "evaluator"], [93, 5, 1, "id18", "loss"], [93, 5, 1, "id19", "post_processor"], [93, 5, 1, "id17", "predictor"]], "dacapo.experiments.tasks.DistanceTaskConfig": [[93, 5, 1, "id10", "channels"], [93, 5, 1, "id11", "clip_distance"], [93, 5, 1, "id16", "clipmax"], [93, 5, 1, "id15", "clipmin"], [93, 5, 1, "id14", "mask_distances"], [93, 5, 1, "id13", "scale_factor"], [93, 5, 1, "", "task_type"], [93, 5, 1, "id12", "tol_distance"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.DummyTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id9", "evaluator"], [93, 5, 1, "id7", "loss"], [93, 5, 1, "id8", "post_processor"], [93, 5, 1, "id6", "predictor"]], "dacapo.experiments.tasks.DummyTaskConfig": [[93, 5, 1, "id4", "detection_threshold"], [93, 5, 1, "id3", "embedding_dims"], [93, 5, 1, "id2", "task_type"], [93, 2, 1, "id5", "verify"]], "dacapo.experiments.tasks.HotDistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id58", "evaluator"], [93, 5, 1, "id56", "loss"], [93, 5, 1, "id57", "post_processor"], [93, 5, 1, "id55", "predictor"]], "dacapo.experiments.tasks.HotDistanceTaskConfig": [[93, 5, 1, "id50", "channels"], [93, 5, 1, "id51", "clip_distance"], [93, 5, 1, "id54", "mask_distances"], [93, 5, 1, "id53", "scale_factor"], [93, 5, 1, "id49", "task_type"], [93, 5, 1, "id52", "tol_distance"], [93, 2, 1, "", "verify"]], "dacapo.experiments.tasks.InnerDistanceTask": [[93, 2, 1, "", "__init__"], [93, 5, 1, "id48", "evaluator"], [93, 5, 1, "id46", "loss"], [93, 5, 1, "id47", "post_processor"], [93, 5, 1, "id45", "predictor"], [93, 5, 1, "", "task_config"]], "dacapo.experiments.tasks.InnerDistanceTaskConfig": [[93, 5, 1, "id41", "channels"], [93, 5, 1, "id42", "clip_distance"], [93, 5, 1, "id44", "scale_factor"], [93, 5, 1, "", "task_type"], [93, 5, 1, "id43", "tol_distance"]], "dacapo.experiments.tasks.OneHotTask": [[93, 2, 1, "", "create_model"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"], [93, 5, 1, "", "weights"]], "dacapo.experiments.tasks.OneHotTaskConfig": [[93, 2, 1, "", "None"], [93, 5, 1, "id22", "classes"], [93, 5, 1, "id21", "task_type"]], "dacapo.experiments.tasks.PretrainedTask": [[93, 2, 1, "id26", "create_model"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"], [93, 5, 1, "id25", "weights"]], "dacapo.experiments.tasks.PretrainedTaskConfig": [[93, 5, 1, "id23", "sub_task_config"], [93, 5, 1, "", "task_type"], [93, 2, 1, "", "verify"], [93, 5, 1, "id24", "weights"]], "dacapo.experiments.tasks.Task": [[93, 2, 1, "", "create_model"], [93, 6, 1, "", "evaluation_scores"], [93, 5, 1, "", "evaluator"], [93, 5, 1, "", "loss"], [93, 6, 1, "", "parameters"], [93, 5, 1, "", "post_processor"], [93, 5, 1, "", "predictor"]], "dacapo.experiments.tasks.TaskConfig": [[93, 5, 1, "id0", "name"], [93, 2, 1, "id1", "verify"]], "dacapo.experiments.tasks.affinities_task": [[76, 1, 1, "", "AffinitiesTask"]], "dacapo.experiments.tasks.affinities_task.AffinitiesTask": [[76, 2, 1, "", "__init__"], [76, 5, 1, "id3", "evaluator"], [76, 5, 1, "id1", "loss"], [76, 5, 1, "id2", "post_processor"], [76, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.affinities_task_config": [[77, 1, 1, "", "AffinitiesTaskConfig"]], "dacapo.experiments.tasks.affinities_task_config.AffinitiesTaskConfig": [[77, 5, 1, "id6", "affs_weight_clipmax"], [77, 5, 1, "id5", "affs_weight_clipmin"], [77, 5, 1, "id9", "background_as_object"], [77, 5, 1, "id3", "downsample_lsds"], [77, 5, 1, "id8", "lsd_weight_clipmax"], [77, 5, 1, "id7", "lsd_weight_clipmin"], [77, 5, 1, "id1", "lsds"], [77, 5, 1, "id4", "lsds_to_affs_weight_ratio"], [77, 5, 1, "id0", "neighborhood"], [77, 5, 1, "id2", "num_lsd_voxels"], [77, 5, 1, "", "task_type"], [77, 2, 1, "", "verify"]], "dacapo.experiments.tasks.distance_task": [[78, 1, 1, "", "DistanceTask"]], "dacapo.experiments.tasks.distance_task.DistanceTask": [[78, 2, 1, "", "__init__"], [78, 5, 1, "id3", "evaluator"], [78, 5, 1, "id1", "loss"], [78, 5, 1, "id2", "post_processor"], [78, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.distance_task_config": [[79, 1, 1, "", "DistanceTaskConfig"]], "dacapo.experiments.tasks.distance_task_config.DistanceTaskConfig": [[79, 5, 1, "id0", "channels"], [79, 5, 1, "id1", "clip_distance"], [79, 5, 1, "id6", "clipmax"], [79, 5, 1, "id5", "clipmin"], [79, 5, 1, "id4", "mask_distances"], [79, 5, 1, "id3", "scale_factor"], [79, 5, 1, "", "task_type"], [79, 5, 1, "id2", "tol_distance"], [79, 2, 1, "", "verify"]], "dacapo.experiments.tasks.dummy_task": [[80, 1, 1, "", "DummyTask"]], "dacapo.experiments.tasks.dummy_task.DummyTask": [[80, 2, 1, "", "__init__"], [80, 5, 1, "id3", "evaluator"], [80, 5, 1, "id1", "loss"], [80, 5, 1, "id2", "post_processor"], [80, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.dummy_task_config": [[81, 1, 1, "", "DummyTaskConfig"]], "dacapo.experiments.tasks.dummy_task_config.DummyTaskConfig": [[81, 5, 1, "id2", "detection_threshold"], [81, 5, 1, "id1", "embedding_dims"], [81, 5, 1, "id0", "task_type"], [81, 2, 1, "id3", "verify"]], "dacapo.experiments.tasks.evaluators": [[88, 1, 1, "", "BinarySegmentationEvaluationScores"], [88, 1, 1, "", "BinarySegmentationEvaluator"], [88, 1, 1, "", "DummyEvaluationScores"], [88, 1, 1, "", "DummyEvaluator"], [88, 1, 1, "", "EvaluationScores"], [88, 1, 1, "", "Evaluator"], [88, 1, 1, "", "InstanceEvaluationScores"], [88, 1, 1, "", "InstanceEvaluator"], [88, 1, 1, "", "MultiChannelBinarySegmentationEvaluationScores"], [82, 0, 0, "-", "binary_segmentation_evaluation_scores"], [83, 0, 0, "-", "binary_segmentation_evaluator"], [84, 0, 0, "-", "dummy_evaluation_scores"], [85, 0, 0, "-", "dummy_evaluator"], [86, 0, 0, "-", "evaluation_scores"], [87, 0, 0, "-", "evaluator"], [89, 0, 0, "-", "instance_evaluation_scores"], [90, 0, 0, "-", "instance_evaluator"]], "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluationScores": [[88, 2, 1, "", "bounds"], [88, 5, 1, "", "criteria"], [88, 5, 1, "id23", "dice"], [88, 5, 1, "id43", "f1_score"], [88, 5, 1, "id40", "f1_score_with_tolerance"], [88, 5, 1, "id29", "false_discovery_rate"], [88, 5, 1, "id26", "false_negative_rate"], [88, 5, 1, "id27", "false_negative_rate_with_tolerance"], [88, 5, 1, "id28", "false_positive_rate"], [88, 5, 1, "id30", "false_positive_rate_with_tolerance"], [88, 5, 1, "id25", "hausdorff"], [88, 2, 1, "", "higher_is_better"], [88, 5, 1, "id24", "jaccard"], [88, 5, 1, "id32", "mean_false_distance"], [88, 5, 1, "id35", "mean_false_distance_clipped"], [88, 5, 1, "id33", "mean_false_negative_distance"], [88, 5, 1, "id36", "mean_false_negative_distance_clipped"], [88, 5, 1, "id34", "mean_false_positive_distance"], [88, 5, 1, "id37", "mean_false_positive_distance_clipped"], [88, 5, 1, "id41", "precision"], [88, 5, 1, "id38", "precision_with_tolerance"], [88, 5, 1, "id42", "recall"], [88, 5, 1, "id39", "recall_with_tolerance"], [88, 2, 1, "", "store_best"], [88, 5, 1, "id31", "voi"]], "dacapo.experiments.tasks.evaluators.BinarySegmentationEvaluator": [[88, 5, 1, "id47", "channels"], [88, 5, 1, "id45", "clip_distance"], [88, 5, 1, "id44", "criteria"], [88, 2, 1, "id48", "evaluate"], [88, 6, 1, "id49", "score"], [88, 5, 1, "id46", "tol_distance"]], "dacapo.experiments.tasks.evaluators.DummyEvaluationScores": [[88, 5, 1, "id1", "blipp_score"], [88, 2, 1, "id3", "bounds"], [88, 5, 1, "", "criteria"], [88, 5, 1, "id0", "frizz_level"], [88, 2, 1, "id2", "higher_is_better"], [88, 2, 1, "id4", "store_best"]], "dacapo.experiments.tasks.evaluators.DummyEvaluator": [[88, 5, 1, "id5", "criteria"], [88, 2, 1, "id6", "evaluate"], [88, 6, 1, "id7", "score"]], "dacapo.experiments.tasks.evaluators.EvaluationScores": [[88, 2, 1, "id10", "bounds"], [88, 6, 1, "id8", "criteria"], [88, 2, 1, "id9", "higher_is_better"], [88, 2, 1, "id11", "store_best"]], "dacapo.experiments.tasks.evaluators.Evaluator": [[88, 6, 1, "id13", "best_scores"], [88, 2, 1, "id20", "bounds"], [88, 2, 1, "id17", "compare"], [88, 6, 1, "", "criteria"], [88, 2, 1, "id12", "evaluate"], [88, 2, 1, "id15", "get_overall_best"], [88, 2, 1, "id16", "get_overall_best_parameters"], [88, 2, 1, "id19", "higher_is_better"], [88, 2, 1, "id14", "is_best"], [88, 6, 1, "", "score"], [88, 2, 1, "id18", "set_best"], [88, 2, 1, "id21", "store_best"]], "dacapo.experiments.tasks.evaluators.InstanceEvaluationScores": [[88, 2, 1, "id54", "bounds"], [88, 5, 1, "", "criteria"], [88, 2, 1, "id53", "higher_is_better"], [88, 2, 1, "id55", "store_best"], [88, 6, 1, "id52", "voi"], [88, 5, 1, "id51", "voi_merge"], [88, 5, 1, "id50", "voi_split"]], "dacapo.experiments.tasks.evaluators.InstanceEvaluator": [[88, 5, 1, "id56", "criteria"], [88, 2, 1, "id57", "evaluate"], [88, 6, 1, "id58", "score"]], "dacapo.experiments.tasks.evaluators.MultiChannelBinarySegmentationEvaluationScores": [[88, 2, 1, "", "bounds"], [88, 5, 1, "id22", "channel_scores"], [88, 6, 1, "", "criteria"], [88, 2, 1, "", "higher_is_better"], [88, 2, 1, "", "store_best"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores": [[82, 1, 1, "", "BinarySegmentationEvaluationScores"], [82, 1, 1, "", "MultiChannelBinarySegmentationEvaluationScores"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.BinarySegmentationEvaluationScores": [[82, 2, 1, "", "bounds"], [82, 5, 1, "", "criteria"], [82, 5, 1, "id0", "dice"], [82, 5, 1, "id20", "f1_score"], [82, 5, 1, "id17", "f1_score_with_tolerance"], [82, 5, 1, "id6", "false_discovery_rate"], [82, 5, 1, "id3", "false_negative_rate"], [82, 5, 1, "id4", "false_negative_rate_with_tolerance"], [82, 5, 1, "id5", "false_positive_rate"], [82, 5, 1, "id7", "false_positive_rate_with_tolerance"], [82, 5, 1, "id2", "hausdorff"], [82, 2, 1, "", "higher_is_better"], [82, 5, 1, "id1", "jaccard"], [82, 5, 1, "id9", "mean_false_distance"], [82, 5, 1, "id12", "mean_false_distance_clipped"], [82, 5, 1, "id10", "mean_false_negative_distance"], [82, 5, 1, "id13", "mean_false_negative_distance_clipped"], [82, 5, 1, "id11", "mean_false_positive_distance"], [82, 5, 1, "id14", "mean_false_positive_distance_clipped"], [82, 5, 1, "id18", "precision"], [82, 5, 1, "id15", "precision_with_tolerance"], [82, 5, 1, "id19", "recall"], [82, 5, 1, "id16", "recall_with_tolerance"], [82, 2, 1, "", "store_best"], [82, 5, 1, "id8", "voi"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores.MultiChannelBinarySegmentationEvaluationScores": [[82, 2, 1, "", "bounds"], [82, 5, 1, "id21", "channel_scores"], [82, 6, 1, "", "criteria"], [82, 2, 1, "", "higher_is_better"], [82, 2, 1, "", "store_best"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator": [[83, 1, 1, "", "ArrayEvaluator"], [83, 4, 1, "", "BG"], [83, 1, 1, "", "BinarySegmentationEvaluator"], [83, 1, 1, "", "CremiEvaluator"], [83, 4, 1, "", "logger"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.ArrayEvaluator": [[83, 5, 1, "id10", "cremieval"], [83, 2, 1, "id12", "dice"], [83, 2, 1, "id20", "f1_score"], [83, 2, 1, "id32", "f1_score_with_tolerance"], [83, 2, 1, "id17", "false_discovery_rate"], [83, 2, 1, "id15", "false_negative_rate"], [83, 2, 1, "id29", "false_negative_rate_with_tolerance"], [83, 2, 1, "id16", "false_positive_rate"], [83, 2, 1, "id28", "false_positive_rate_with_tolerance"], [83, 2, 1, "id14", "hausdorff"], [83, 2, 1, "id13", "jaccard"], [83, 2, 1, "id22", "mean_false_distance"], [83, 2, 1, "id25", "mean_false_distance_clipped"], [83, 2, 1, "id23", "mean_false_negative_distance"], [83, 2, 1, "id26", "mean_false_negative_distance_clipped"], [83, 2, 1, "id24", "mean_false_positive_distance"], [83, 2, 1, "id27", "mean_false_positive_distance_clipped"], [83, 2, 1, "", "overlap_measures_filter"], [83, 2, 1, "id18", "precision"], [83, 2, 1, "id30", "precision_with_tolerance"], [83, 2, 1, "id19", "recall"], [83, 2, 1, "id31", "recall_with_tolerance"], [83, 5, 1, "id11", "resolution"], [83, 5, 1, "id7", "test"], [83, 5, 1, "id9", "test_empty"], [83, 2, 1, "", "test_itk"], [83, 5, 1, "id6", "truth"], [83, 5, 1, "id8", "truth_empty"], [83, 2, 1, "", "truth_itk"], [83, 2, 1, "id21", "voi"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.BinarySegmentationEvaluator": [[83, 5, 1, "id3", "channels"], [83, 5, 1, "id1", "clip_distance"], [83, 5, 1, "id0", "criteria"], [83, 2, 1, "id4", "evaluate"], [83, 6, 1, "id5", "score"], [83, 5, 1, "id2", "tol_distance"]], "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator.CremiEvaluator": [[83, 5, 1, "id36", "clip_distance"], [83, 2, 1, "id46", "f1_score_with_tolerance"], [83, 2, 1, "id50", "false_negative_distances"], [83, 2, 1, "id42", "false_negative_rate_with_tolerance"], [83, 2, 1, "id41", "false_negatives_with_tolerance"], [83, 2, 1, "id38", "false_positive_distances"], [83, 2, 1, "id40", "false_positive_rate_with_tolerance"], [83, 2, 1, "id39", "false_positives_with_tolerance"], [83, 2, 1, "id52", "mean_false_distance"], [83, 2, 1, "id53", "mean_false_distance_clipped"], [83, 2, 1, "id51", "mean_false_negative_distance"], [83, 2, 1, "id48", "mean_false_negative_distances_clipped"], [83, 2, 1, "id49", "mean_false_positive_distance"], [83, 2, 1, "id47", "mean_false_positive_distances_clipped"], [83, 2, 1, "id44", "precision_with_tolerance"], [83, 2, 1, "id45", "recall_with_tolerance"], [83, 5, 1, "id35", "sampling"], [83, 5, 1, "id33", "test"], [83, 2, 1, "", "test_edt"], [83, 2, 1, "", "test_mask"], [83, 5, 1, "id37", "tol_distance"], [83, 2, 1, "id43", "true_positives_with_tolerance"], [83, 5, 1, "id34", "truth"], [83, 2, 1, "", "truth_edt"], [83, 2, 1, "", "truth_mask"]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores": [[84, 1, 1, "", "DummyEvaluationScores"]], "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores.DummyEvaluationScores": [[84, 5, 1, "id1", "blipp_score"], [84, 2, 1, "id3", "bounds"], [84, 5, 1, "", "criteria"], [84, 5, 1, "id0", "frizz_level"], [84, 2, 1, "id2", "higher_is_better"], [84, 2, 1, "id4", "store_best"]], "dacapo.experiments.tasks.evaluators.dummy_evaluator": [[85, 1, 1, "", "DummyEvaluator"]], "dacapo.experiments.tasks.evaluators.dummy_evaluator.DummyEvaluator": [[85, 5, 1, "id0", "criteria"], [85, 2, 1, "id1", "evaluate"], [85, 6, 1, "id2", "score"]], "dacapo.experiments.tasks.evaluators.evaluation_scores": [[86, 1, 1, "", "EvaluationScores"]], "dacapo.experiments.tasks.evaluators.evaluation_scores.EvaluationScores": [[86, 2, 1, "id2", "bounds"], [86, 6, 1, "id0", "criteria"], [86, 2, 1, "id1", "higher_is_better"], [86, 2, 1, "id3", "store_best"]], "dacapo.experiments.tasks.evaluators.evaluator": [[87, 4, 1, "", "BestScore"], [87, 1, 1, "", "Evaluator"], [87, 4, 1, "", "Iteration"], [87, 4, 1, "", "OutputIdentifier"], [87, 4, 1, "", "Score"]], "dacapo.experiments.tasks.evaluators.evaluator.Evaluator": [[87, 6, 1, "id1", "best_scores"], [87, 2, 1, "id8", "bounds"], [87, 2, 1, "id5", "compare"], [87, 6, 1, "", "criteria"], [87, 2, 1, "id0", "evaluate"], [87, 2, 1, "id3", "get_overall_best"], [87, 2, 1, "id4", "get_overall_best_parameters"], [87, 2, 1, "id7", "higher_is_better"], [87, 2, 1, "id2", "is_best"], [87, 6, 1, "", "score"], [87, 2, 1, "id6", "set_best"], [87, 2, 1, "id9", "store_best"]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores": [[89, 1, 1, "", "InstanceEvaluationScores"]], "dacapo.experiments.tasks.evaluators.instance_evaluation_scores.InstanceEvaluationScores": [[89, 2, 1, "id4", "bounds"], [89, 5, 1, "", "criteria"], [89, 2, 1, "id3", "higher_is_better"], [89, 2, 1, "id5", "store_best"], [89, 6, 1, "id2", "voi"], [89, 5, 1, "id1", "voi_merge"], [89, 5, 1, "id0", "voi_split"]], "dacapo.experiments.tasks.evaluators.instance_evaluator": [[90, 1, 1, "", "InstanceEvaluator"], [90, 4, 1, "", "logger"], [90, 3, 1, "", "relabel"], [90, 3, 1, "", "voi"]], "dacapo.experiments.tasks.evaluators.instance_evaluator.InstanceEvaluator": [[90, 5, 1, "id0", "criteria"], [90, 2, 1, "id1", "evaluate"], [90, 6, 1, "id2", "score"]], "dacapo.experiments.tasks.hot_distance_task": [[91, 1, 1, "", "HotDistanceTask"]], "dacapo.experiments.tasks.hot_distance_task.HotDistanceTask": [[91, 2, 1, "", "__init__"], [91, 5, 1, "id3", "evaluator"], [91, 5, 1, "id1", "loss"], [91, 5, 1, "id2", "post_processor"], [91, 5, 1, "id0", "predictor"]], "dacapo.experiments.tasks.hot_distance_task_config": [[92, 1, 1, "", "HotDistanceTaskConfig"]], "dacapo.experiments.tasks.hot_distance_task_config.HotDistanceTaskConfig": [[92, 5, 1, "id1", "channels"], [92, 5, 1, "id2", "clip_distance"], [92, 5, 1, "id5", "mask_distances"], [92, 5, 1, "id4", "scale_factor"], [92, 5, 1, "id0", "task_type"], [92, 5, 1, "id3", "tol_distance"], [92, 2, 1, "", "verify"]], "dacapo.experiments.tasks.inner_distance_task": [[94, 1, 1, "", "InnerDistanceTask"]], "dacapo.experiments.tasks.inner_distance_task.InnerDistanceTask": [[94, 2, 1, "", "__init__"], [94, 5, 1, "id3", "evaluator"], [94, 5, 1, "id1", "loss"], [94, 5, 1, "id2", "post_processor"], [94, 5, 1, "id0", "predictor"], [94, 5, 1, "", "task_config"]], "dacapo.experiments.tasks.inner_distance_task_config": [[95, 1, 1, "", "InnerDistanceTaskConfig"]], "dacapo.experiments.tasks.inner_distance_task_config.InnerDistanceTaskConfig": [[95, 5, 1, "id0", "channels"], [95, 5, 1, "id1", "clip_distance"], [95, 5, 1, "id3", "scale_factor"], [95, 5, 1, "", "task_type"], [95, 5, 1, "id2", "tol_distance"]], "dacapo.experiments.tasks.losses": [[99, 1, 1, "", "AffinitiesLoss"], [99, 1, 1, "", "DummyLoss"], [99, 1, 1, "", "HotDistanceLoss"], [99, 1, 1, "", "Loss"], [99, 1, 1, "", "MSELoss"], [96, 0, 0, "-", "affinities_loss"], [97, 0, 0, "-", "dummy_loss"], [98, 0, 0, "-", "hot_distance_loss"], [100, 0, 0, "-", "loss"], [101, 0, 0, "-", "mse_loss"]], "dacapo.experiments.tasks.losses.AffinitiesLoss": [[99, 2, 1, "id5", "compute"], [99, 5, 1, "id4", "lsds_to_affs_weight_ratio"], [99, 5, 1, "id3", "num_affinities"]], "dacapo.experiments.tasks.losses.DummyLoss": [[99, 2, 1, "id0", "compute"], [99, 5, 1, "", "name"]], "dacapo.experiments.tasks.losses.HotDistanceLoss": [[99, 2, 1, "id6", "compute"], [99, 2, 1, "id8", "distance_loss"], [99, 2, 1, "id7", "hot_loss"], [99, 2, 1, "id9", "split"]], "dacapo.experiments.tasks.losses.Loss": [[99, 2, 1, "id2", "compute"]], "dacapo.experiments.tasks.losses.MSELoss": [[99, 2, 1, "id1", "compute"]], "dacapo.experiments.tasks.losses.affinities_loss": [[96, 1, 1, "", "AffinitiesLoss"]], "dacapo.experiments.tasks.losses.affinities_loss.AffinitiesLoss": [[96, 2, 1, "id2", "compute"], [96, 5, 1, "id1", "lsds_to_affs_weight_ratio"], [96, 5, 1, "id0", "num_affinities"]], "dacapo.experiments.tasks.losses.dummy_loss": [[97, 1, 1, "", "DummyLoss"]], "dacapo.experiments.tasks.losses.dummy_loss.DummyLoss": [[97, 2, 1, "id0", "compute"], [97, 5, 1, "", "name"]], "dacapo.experiments.tasks.losses.hot_distance_loss": [[98, 1, 1, "", "HotDistanceLoss"]], "dacapo.experiments.tasks.losses.hot_distance_loss.HotDistanceLoss": [[98, 2, 1, "id0", "compute"], [98, 2, 1, "id2", "distance_loss"], [98, 2, 1, "id1", "hot_loss"], [98, 2, 1, "id3", "split"]], "dacapo.experiments.tasks.losses.loss": [[100, 1, 1, "", "Loss"]], "dacapo.experiments.tasks.losses.loss.Loss": [[100, 2, 1, "id0", "compute"]], "dacapo.experiments.tasks.losses.mse_loss": [[101, 1, 1, "", "MSELoss"]], "dacapo.experiments.tasks.losses.mse_loss.MSELoss": [[101, 2, 1, "id0", "compute"]], "dacapo.experiments.tasks.one_hot_task": [[102, 1, 1, "", "OneHotTask"]], "dacapo.experiments.tasks.one_hot_task.OneHotTask": [[102, 2, 1, "", "create_model"], [102, 5, 1, "", "evaluator"], [102, 5, 1, "", "loss"], [102, 5, 1, "", "post_processor"], [102, 5, 1, "", "predictor"], [102, 5, 1, "", "weights"]], "dacapo.experiments.tasks.one_hot_task_config": [[103, 1, 1, "", "OneHotTaskConfig"]], "dacapo.experiments.tasks.one_hot_task_config.OneHotTaskConfig": [[103, 2, 1, "", "None"], [103, 5, 1, "id1", "classes"], [103, 5, 1, "id0", "task_type"]], "dacapo.experiments.tasks.post_processors": [[108, 1, 1, "", "ArgmaxPostProcessor"], [108, 1, 1, "", "ArgmaxPostProcessorParameters"], [108, 1, 1, "", "DummyPostProcessor"], [108, 1, 1, "", "DummyPostProcessorParameters"], [108, 1, 1, "", "PostProcessor"], [108, 1, 1, "", "PostProcessorParameters"], [108, 1, 1, "", "ThresholdPostProcessor"], [108, 1, 1, "", "ThresholdPostProcessorParameters"], [108, 1, 1, "", "WatershedPostProcessor"], [108, 1, 1, "", "WatershedPostProcessorParameters"], [104, 0, 0, "-", "argmax_post_processor"], [105, 0, 0, "-", "argmax_post_processor_parameters"], [106, 0, 0, "-", "dummy_post_processor"], [107, 0, 0, "-", "dummy_post_processor_parameters"], [109, 0, 0, "-", "post_processor"], [110, 0, 0, "-", "post_processor_parameters"], [111, 0, 0, "-", "threshold_post_processor"], [112, 0, 0, "-", "threshold_post_processor_parameters"], [113, 0, 0, "-", "watershed_post_processor"], [114, 0, 0, "-", "watershed_post_processor_parameters"]], "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessor": [[108, 2, 1, "id14", "enumerate_parameters"], [108, 5, 1, "", "prediction_array"], [108, 2, 1, "id16", "process"], [108, 2, 1, "id15", "set_prediction"]], "dacapo.experiments.tasks.post_processors.ArgmaxPostProcessorParameters": [[108, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.DummyPostProcessor": [[108, 5, 1, "id0", "detection_threshold"], [108, 2, 1, "id1", "enumerate_parameters"], [108, 2, 1, "id3", "process"], [108, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.DummyPostProcessorParameters": [[108, 5, 1, "id4", "min_size"], [108, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.PostProcessor": [[108, 2, 1, "id7", "enumerate_parameters"], [108, 5, 1, "", "prediction_array_identifier"], [108, 2, 1, "id9", "process"], [108, 2, 1, "id8", "set_prediction"]], "dacapo.experiments.tasks.post_processors.PostProcessorParameters": [[108, 5, 1, "id5", "id"], [108, 6, 1, "id6", "parameter_names"]], "dacapo.experiments.tasks.post_processors.ThresholdPostProcessor": [[108, 2, 1, "id10", "enumerate_parameters"], [108, 5, 1, "", "prediction_array"], [108, 5, 1, "", "prediction_array_identifier"], [108, 2, 1, "id12", "process"], [108, 2, 1, "id11", "set_prediction"]], "dacapo.experiments.tasks.post_processors.ThresholdPostProcessorParameters": [[108, 5, 1, "id13", "threshold"]], "dacapo.experiments.tasks.post_processors.WatershedPostProcessor": [[108, 2, 1, "id18", "enumerate_parameters"], [108, 5, 1, "id17", "offsets"], [108, 2, 1, "id20", "process"], [108, 2, 1, "id19", "set_prediction"]], "dacapo.experiments.tasks.post_processors.WatershedPostProcessorParameters": [[108, 5, 1, "id21", "bias"], [108, 5, 1, "id22", "context"], [108, 5, 1, "", "min_size"], [108, 5, 1, "", "offsets"], [108, 5, 1, "", "sigma"], [108, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor": [[104, 1, 1, "", "ArgmaxPostProcessor"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor.ArgmaxPostProcessor": [[104, 2, 1, "id0", "enumerate_parameters"], [104, 5, 1, "", "prediction_array"], [104, 2, 1, "id2", "process"], [104, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters": [[105, 1, 1, "", "ArgmaxPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters.ArgmaxPostProcessorParameters": [[105, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor": [[106, 1, 1, "", "DummyPostProcessor"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor.DummyPostProcessor": [[106, 5, 1, "id0", "detection_threshold"], [106, 2, 1, "id1", "enumerate_parameters"], [106, 2, 1, "id3", "process"], [106, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters": [[107, 1, 1, "", "DummyPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters.DummyPostProcessorParameters": [[107, 5, 1, "id0", "min_size"], [107, 2, 1, "", "parameter_names"]], "dacapo.experiments.tasks.post_processors.post_processor": [[109, 1, 1, "", "PostProcessor"]], "dacapo.experiments.tasks.post_processors.post_processor.PostProcessor": [[109, 2, 1, "id0", "enumerate_parameters"], [109, 5, 1, "", "prediction_array_identifier"], [109, 2, 1, "id2", "process"], [109, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.post_processor_parameters": [[110, 1, 1, "", "PostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.post_processor_parameters.PostProcessorParameters": [[110, 5, 1, "id0", "id"], [110, 6, 1, "id1", "parameter_names"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor": [[111, 1, 1, "", "ThresholdPostProcessor"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor.ThresholdPostProcessor": [[111, 2, 1, "id0", "enumerate_parameters"], [111, 5, 1, "", "prediction_array"], [111, 5, 1, "", "prediction_array_identifier"], [111, 2, 1, "id2", "process"], [111, 2, 1, "id1", "set_prediction"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters": [[112, 1, 1, "", "ThresholdPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters.ThresholdPostProcessorParameters": [[112, 5, 1, "id0", "threshold"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor": [[113, 1, 1, "", "WatershedPostProcessor"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor.WatershedPostProcessor": [[113, 2, 1, "id1", "enumerate_parameters"], [113, 5, 1, "id0", "offsets"], [113, 2, 1, "id3", "process"], [113, 2, 1, "id2", "set_prediction"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters": [[114, 1, 1, "", "WatershedPostProcessorParameters"]], "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters.WatershedPostProcessorParameters": [[114, 5, 1, "id0", "bias"], [114, 5, 1, "id1", "context"], [114, 5, 1, "", "min_size"], [114, 5, 1, "", "offsets"], [114, 5, 1, "", "sigma"], [114, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors": [[119, 1, 1, "", "AffinitiesPredictor"], [119, 1, 1, "", "DistancePredictor"], [119, 1, 1, "", "DummyPredictor"], [119, 1, 1, "", "HotDistancePredictor"], [119, 1, 1, "", "InnerDistancePredictor"], [119, 1, 1, "", "OneHotPredictor"], [119, 1, 1, "", "Predictor"], [115, 0, 0, "-", "affinities_predictor"], [116, 0, 0, "-", "distance_predictor"], [117, 0, 0, "-", "dummy_predictor"], [118, 0, 0, "-", "hot_distance_predictor"], [120, 0, 0, "-", "inner_distance_predictor"], [121, 0, 0, "-", "one_hot_predictor"], [122, 0, 0, "-", "predictor"]], "dacapo.experiments.tasks.predictors.AffinitiesPredictor": [[119, 2, 1, "", "_grow_boundaries"], [119, 5, 1, "id27", "affs_weight_clipmax"], [119, 5, 1, "id26", "affs_weight_clipmin"], [119, 5, 1, "id30", "background_as_object"], [119, 2, 1, "id35", "create_model"], [119, 2, 1, "id36", "create_target"], [119, 2, 1, "id37", "create_weight"], [119, 6, 1, "id32", "dims"], [119, 5, 1, "", "downsample_lsds"], [119, 2, 1, "id31", "extractor"], [119, 5, 1, "id25", "grow_boundary_iterations"], [119, 2, 1, "id38", "gt_region_for_roi"], [119, 2, 1, "id34", "lsd_pad"], [119, 5, 1, "id29", "lsd_weight_clipmax"], [119, 5, 1, "id28", "lsd_weight_clipmin"], [119, 5, 1, "id23", "lsds"], [119, 5, 1, "id22", "neighborhood"], [119, 2, 1, "", "num_channels"], [119, 5, 1, "id24", "num_voxels"], [119, 6, 1, "id39", "output_array_type"], [119, 2, 1, "id33", "sigma"]], "dacapo.experiments.tasks.predictors.DistancePredictor": [[119, 5, 1, "id5", "channels"], [119, 5, 1, "id8", "clipmax"], [119, 5, 1, "id7", "clipmin"], [119, 2, 1, "id13", "create_distance_mask"], [119, 2, 1, "id9", "create_model"], [119, 2, 1, "id10", "create_target"], [119, 2, 1, "id11", "create_weight"], [119, 5, 1, "", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "", "epsilon"], [119, 2, 1, "id15", "gt_region_for_roi"], [119, 5, 1, "id6", "mask_distances"], [119, 5, 1, "", "max_distance"], [119, 5, 1, "", "norm"], [119, 6, 1, "id12", "output_array_type"], [119, 2, 1, "", "padding"], [119, 2, 1, "id14", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.DummyPredictor": [[119, 2, 1, "id1", "create_model"], [119, 2, 1, "id2", "create_target"], [119, 2, 1, "id3", "create_weight"], [119, 5, 1, "id0", "embedding_dims"], [119, 6, 1, "id4", "output_array_type"]], "dacapo.experiments.tasks.predictors.HotDistancePredictor": [[119, 5, 1, "id46", "channels"], [119, 6, 1, "", "classes"], [119, 2, 1, "id56", "create_distance_mask"], [119, 2, 1, "id53", "create_model"], [119, 2, 1, "id54", "create_target"], [119, 2, 1, "id55", "create_weight"], [119, 5, 1, "id48", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "id51", "epsilon"], [119, 2, 1, "id58", "gt_region_for_roi"], [119, 5, 1, "id49", "mask_distances"], [119, 5, 1, "id50", "max_distance"], [119, 5, 1, "id47", "norm"], [119, 6, 1, "", "output_array_type"], [119, 2, 1, "id59", "padding"], [119, 2, 1, "id57", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "id52", "threshold"]], "dacapo.experiments.tasks.predictors.InnerDistancePredictor": [[119, 2, 1, "", "__find_boundaries"], [119, 2, 1, "", "__normalize"], [119, 5, 1, "id40", "channels"], [119, 2, 1, "id41", "create_model"], [119, 2, 1, "id42", "create_target"], [119, 2, 1, "id43", "create_weight"], [119, 5, 1, "", "dt_scale_factor"], [119, 6, 1, "", "embedding_dims"], [119, 5, 1, "", "epsilon"], [119, 2, 1, "id45", "gt_region_for_roi"], [119, 5, 1, "", "max_distance"], [119, 5, 1, "", "norm"], [119, 6, 1, "id44", "output_array_type"], [119, 2, 1, "", "padding"], [119, 2, 1, "", "process"], [119, 5, 1, "", "scale_factor"], [119, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.OneHotPredictor": [[119, 5, 1, "id16", "classes"], [119, 2, 1, "id17", "create_model"], [119, 2, 1, "id18", "create_target"], [119, 2, 1, "id19", "create_weight"], [119, 6, 1, "", "embedding_dims"], [119, 6, 1, "id20", "output_array_type"], [119, 2, 1, "", "process"]], "dacapo.experiments.tasks.predictors.Predictor": [[119, 2, 1, "", "create_model"], [119, 2, 1, "", "create_target"], [119, 2, 1, "", "create_weight"], [119, 2, 1, "id21", "gt_region_for_roi"], [119, 6, 1, "", "output_array_type"], [119, 2, 1, "", "padding"]], "dacapo.experiments.tasks.predictors.affinities_predictor": [[115, 1, 1, "", "AffinitiesPredictor"]], "dacapo.experiments.tasks.predictors.affinities_predictor.AffinitiesPredictor": [[115, 2, 1, "", "_grow_boundaries"], [115, 5, 1, "id5", "affs_weight_clipmax"], [115, 5, 1, "id4", "affs_weight_clipmin"], [115, 5, 1, "id8", "background_as_object"], [115, 2, 1, "id13", "create_model"], [115, 2, 1, "id14", "create_target"], [115, 2, 1, "id15", "create_weight"], [115, 6, 1, "id10", "dims"], [115, 5, 1, "", "downsample_lsds"], [115, 2, 1, "id9", "extractor"], [115, 5, 1, "id3", "grow_boundary_iterations"], [115, 2, 1, "id16", "gt_region_for_roi"], [115, 2, 1, "id12", "lsd_pad"], [115, 5, 1, "id7", "lsd_weight_clipmax"], [115, 5, 1, "id6", "lsd_weight_clipmin"], [115, 5, 1, "id1", "lsds"], [115, 5, 1, "id0", "neighborhood"], [115, 2, 1, "", "num_channels"], [115, 5, 1, "id2", "num_voxels"], [115, 6, 1, "id17", "output_array_type"], [115, 2, 1, "id11", "sigma"]], "dacapo.experiments.tasks.predictors.distance_predictor": [[116, 1, 1, "", "DistancePredictor"], [116, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.distance_predictor.DistancePredictor": [[116, 5, 1, "id0", "channels"], [116, 5, 1, "id3", "clipmax"], [116, 5, 1, "id2", "clipmin"], [116, 2, 1, "id8", "create_distance_mask"], [116, 2, 1, "id4", "create_model"], [116, 2, 1, "id5", "create_target"], [116, 2, 1, "id6", "create_weight"], [116, 5, 1, "", "dt_scale_factor"], [116, 6, 1, "", "embedding_dims"], [116, 5, 1, "", "epsilon"], [116, 2, 1, "id10", "gt_region_for_roi"], [116, 5, 1, "id1", "mask_distances"], [116, 5, 1, "", "max_distance"], [116, 5, 1, "", "norm"], [116, 6, 1, "id7", "output_array_type"], [116, 2, 1, "", "padding"], [116, 2, 1, "id9", "process"], [116, 5, 1, "", "scale_factor"], [116, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.dummy_predictor": [[117, 1, 1, "", "DummyPredictor"]], "dacapo.experiments.tasks.predictors.dummy_predictor.DummyPredictor": [[117, 2, 1, "id1", "create_model"], [117, 2, 1, "id2", "create_target"], [117, 2, 1, "id3", "create_weight"], [117, 5, 1, "id0", "embedding_dims"], [117, 6, 1, "id4", "output_array_type"]], "dacapo.experiments.tasks.predictors.hot_distance_predictor": [[118, 1, 1, "", "HotDistancePredictor"], [118, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.hot_distance_predictor.HotDistancePredictor": [[118, 5, 1, "id0", "channels"], [118, 6, 1, "", "classes"], [118, 2, 1, "id10", "create_distance_mask"], [118, 2, 1, "id7", "create_model"], [118, 2, 1, "id8", "create_target"], [118, 2, 1, "id9", "create_weight"], [118, 5, 1, "id2", "dt_scale_factor"], [118, 6, 1, "", "embedding_dims"], [118, 5, 1, "id5", "epsilon"], [118, 2, 1, "id12", "gt_region_for_roi"], [118, 5, 1, "id3", "mask_distances"], [118, 5, 1, "id4", "max_distance"], [118, 5, 1, "id1", "norm"], [118, 6, 1, "", "output_array_type"], [118, 2, 1, "id13", "padding"], [118, 2, 1, "id11", "process"], [118, 5, 1, "", "scale_factor"], [118, 5, 1, "id6", "threshold"]], "dacapo.experiments.tasks.predictors.inner_distance_predictor": [[120, 1, 1, "", "InnerDistancePredictor"], [120, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.inner_distance_predictor.InnerDistancePredictor": [[120, 2, 1, "", "__find_boundaries"], [120, 2, 1, "", "__normalize"], [120, 5, 1, "id0", "channels"], [120, 2, 1, "id1", "create_model"], [120, 2, 1, "id2", "create_target"], [120, 2, 1, "id3", "create_weight"], [120, 5, 1, "", "dt_scale_factor"], [120, 6, 1, "", "embedding_dims"], [120, 5, 1, "", "epsilon"], [120, 2, 1, "id5", "gt_region_for_roi"], [120, 5, 1, "", "max_distance"], [120, 5, 1, "", "norm"], [120, 6, 1, "id4", "output_array_type"], [120, 2, 1, "", "padding"], [120, 2, 1, "", "process"], [120, 5, 1, "", "scale_factor"], [120, 5, 1, "", "threshold"]], "dacapo.experiments.tasks.predictors.one_hot_predictor": [[121, 1, 1, "", "OneHotPredictor"], [121, 4, 1, "", "logger"]], "dacapo.experiments.tasks.predictors.one_hot_predictor.OneHotPredictor": [[121, 5, 1, "id0", "classes"], [121, 2, 1, "id1", "create_model"], [121, 2, 1, "id2", "create_target"], [121, 2, 1, "id3", "create_weight"], [121, 6, 1, "", "embedding_dims"], [121, 6, 1, "id4", "output_array_type"], [121, 2, 1, "", "process"]], "dacapo.experiments.tasks.predictors.predictor": [[122, 1, 1, "", "Predictor"]], "dacapo.experiments.tasks.predictors.predictor.Predictor": [[122, 2, 1, "", "create_model"], [122, 2, 1, "", "create_target"], [122, 2, 1, "", "create_weight"], [122, 2, 1, "id0", "gt_region_for_roi"], [122, 6, 1, "", "output_array_type"], [122, 2, 1, "", "padding"]], "dacapo.experiments.tasks.pretrained_task": [[123, 1, 1, "", "PretrainedTask"]], "dacapo.experiments.tasks.pretrained_task.PretrainedTask": [[123, 2, 1, "id1", "create_model"], [123, 5, 1, "", "evaluator"], [123, 5, 1, "", "loss"], [123, 5, 1, "", "post_processor"], [123, 5, 1, "", "predictor"], [123, 5, 1, "id0", "weights"]], "dacapo.experiments.tasks.pretrained_task_config": [[124, 1, 1, "", "PretrainedTaskConfig"]], "dacapo.experiments.tasks.pretrained_task_config.PretrainedTaskConfig": [[124, 5, 1, "id0", "sub_task_config"], [124, 5, 1, "", "task_type"], [124, 2, 1, "", "verify"], [124, 5, 1, "id1", "weights"]], "dacapo.experiments.tasks.task": [[125, 1, 1, "", "Task"]], "dacapo.experiments.tasks.task.Task": [[125, 2, 1, "", "create_model"], [125, 6, 1, "", "evaluation_scores"], [125, 5, 1, "", "evaluator"], [125, 5, 1, "", "loss"], [125, 6, 1, "", "parameters"], [125, 5, 1, "", "post_processor"], [125, 5, 1, "", "predictor"]], "dacapo.experiments.tasks.task_config": [[126, 1, 1, "", "TaskConfig"]], "dacapo.experiments.tasks.task_config.TaskConfig": [[126, 5, 1, "id0", "name"], [126, 2, 1, "id1", "verify"]], "dacapo.experiments.trainers": [[138, 1, 1, "", "AugmentConfig"], [138, 1, 1, "", "DummyTrainer"], [138, 1, 1, "", "DummyTrainerConfig"], [138, 1, 1, "", "GunpowderTrainer"], [138, 1, 1, "", "GunpowderTrainerConfig"], [138, 1, 1, "", "Trainer"], [138, 1, 1, "", "TrainerConfig"], [127, 0, 0, "-", "dummy_trainer"], [128, 0, 0, "-", "dummy_trainer_config"], [132, 0, 0, "-", "gp_augments"], [136, 0, 0, "-", "gunpowder_trainer"], [137, 0, 0, "-", "gunpowder_trainer_config"], [139, 0, 0, "-", "optimizers"], [140, 0, 0, "-", "trainer"], [141, 0, 0, "-", "trainer_config"]], "dacapo.experiments.trainers.AugmentConfig": [[138, 5, 1, "", "_gt_key"], [138, 5, 1, "", "_mask_key"], [138, 5, 1, "", "_raw_key"], [138, 2, 1, "id32", "node"]], "dacapo.experiments.trainers.DummyTrainer": [[138, 2, 1, "", "__enter__"], [138, 2, 1, "", "__exit__"], [138, 2, 1, "", "__init__"], [138, 5, 1, "id10", "batch_size"], [138, 2, 1, "id13", "build_batch_provider"], [138, 2, 1, "id14", "can_train"], [138, 2, 1, "id12", "create_optimizer"], [138, 2, 1, "", "iterate"], [138, 5, 1, "", "iteration"], [138, 5, 1, "id9", "learning_rate"], [138, 5, 1, "id11", "mirror_augment"]], "dacapo.experiments.trainers.DummyTrainerConfig": [[138, 5, 1, "id7", "mirror_augment"], [138, 5, 1, "", "trainer_type"], [138, 2, 1, "id8", "verify"]], "dacapo.experiments.trainers.GunpowderTrainer": [[138, 2, 1, "", "__enter__"], [138, 2, 1, "", "__exit__"], [138, 2, 1, "", "__iter__"], [138, 5, 1, "id27", "augments"], [138, 5, 1, "id22", "batch_size"], [138, 2, 1, "", "build_batch_provider"], [138, 2, 1, "", "can_train"], [138, 5, 1, "id29", "clip_raw"], [138, 2, 1, "", "create_optimizer"], [138, 5, 1, "", "gt_min_reject"], [138, 2, 1, "", "iterate"], [138, 5, 1, "", "iteration"], [138, 5, 1, "id21", "learning_rate"], [138, 5, 1, "id28", "mask_integral_downsample_factor"], [138, 5, 1, "id26", "min_masked"], [138, 2, 1, "id31", "next"], [138, 5, 1, "id23", "num_data_fetchers"], [138, 5, 1, "id24", "print_profiling"], [138, 5, 1, "id30", "scheduler"], [138, 5, 1, "id25", "snapshot_iteration"], [138, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.trainers.GunpowderTrainerConfig": [[138, 5, 1, "id17", "augments"], [138, 5, 1, "id20", "clip_raw"], [138, 5, 1, "", "gt_min_reject"], [138, 5, 1, "id19", "min_masked"], [138, 5, 1, "id16", "num_data_fetchers"], [138, 5, 1, "id18", "snapshot_interval"], [138, 5, 1, "id15", "trainer_type"]], "dacapo.experiments.trainers.Trainer": [[138, 5, 1, "id1", "batch_size"], [138, 2, 1, "", "build_batch_provider"], [138, 2, 1, "", "can_train"], [138, 2, 1, "", "create_optimizer"], [138, 2, 1, "", "iterate"], [138, 5, 1, "id0", "iteration"], [138, 5, 1, "id2", "learning_rate"]], "dacapo.experiments.trainers.TrainerConfig": [[138, 5, 1, "id4", "batch_size"], [138, 5, 1, "id5", "learning_rate"], [138, 5, 1, "id3", "name"], [138, 2, 1, "id6", "verify"]], "dacapo.experiments.trainers.dummy_trainer": [[127, 1, 1, "", "DummyTrainer"]], "dacapo.experiments.trainers.dummy_trainer.DummyTrainer": [[127, 2, 1, "", "__enter__"], [127, 2, 1, "", "__exit__"], [127, 2, 1, "", "__init__"], [127, 5, 1, "id1", "batch_size"], [127, 2, 1, "id4", "build_batch_provider"], [127, 2, 1, "id5", "can_train"], [127, 2, 1, "id3", "create_optimizer"], [127, 2, 1, "", "iterate"], [127, 5, 1, "", "iteration"], [127, 5, 1, "id0", "learning_rate"], [127, 5, 1, "id2", "mirror_augment"]], "dacapo.experiments.trainers.dummy_trainer_config": [[128, 1, 1, "", "DummyTrainerConfig"]], "dacapo.experiments.trainers.dummy_trainer_config.DummyTrainerConfig": [[128, 5, 1, "id0", "mirror_augment"], [128, 5, 1, "", "trainer_type"], [128, 2, 1, "id1", "verify"]], "dacapo.experiments.trainers.gp_augments": [[132, 1, 1, "", "AugmentConfig"], [132, 1, 1, "", "ElasticAugmentConfig"], [132, 1, 1, "", "GammaAugmentConfig"], [132, 1, 1, "", "IntensityAugmentConfig"], [132, 1, 1, "", "IntensityScaleShiftAugmentConfig"], [132, 1, 1, "", "SimpleAugmentConfig"], [129, 0, 0, "-", "augment_config"], [130, 0, 0, "-", "elastic_config"], [131, 0, 0, "-", "gamma_config"], [133, 0, 0, "-", "intensity_config"], [134, 0, 0, "-", "intensity_scale_shift_config"], [135, 0, 0, "-", "simple_config"]], "dacapo.experiments.trainers.gp_augments.AugmentConfig": [[132, 5, 1, "", "_gt_key"], [132, 5, 1, "", "_mask_key"], [132, 5, 1, "", "_raw_key"], [132, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gp_augments.ElasticAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 5, 1, "id2", "control_point_displacement_sigma"], [132, 5, 1, "id1", "control_point_spacing"], [132, 2, 1, "id6", "node"], [132, 5, 1, "id3", "rotation_interval"], [132, 5, 1, "id4", "subsample"], [132, 5, 1, "id5", "uniform_3d_rotation"]], "dacapo.experiments.trainers.gp_augments.GammaAugmentConfig": [[132, 5, 1, "id8", "gamma_range"], [132, 2, 1, "id9", "node"]], "dacapo.experiments.trainers.gp_augments.IntensityAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 5, 1, "id12", "clip"], [132, 2, 1, "id13", "node"], [132, 5, 1, "id10", "scale"], [132, 5, 1, "id11", "shift"]], "dacapo.experiments.trainers.gp_augments.IntensityScaleShiftAugmentConfig": [[132, 2, 1, "id16", "node"], [132, 5, 1, "id14", "scale"], [132, 5, 1, "id15", "shift"]], "dacapo.experiments.trainers.gp_augments.SimpleAugmentConfig": [[132, 5, 1, "", "augmentation_probability"], [132, 2, 1, "id7", "node"]], "dacapo.experiments.trainers.gp_augments.augment_config": [[129, 1, 1, "", "AugmentConfig"]], "dacapo.experiments.trainers.gp_augments.augment_config.AugmentConfig": [[129, 5, 1, "", "_gt_key"], [129, 5, 1, "", "_mask_key"], [129, 5, 1, "", "_raw_key"], [129, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gp_augments.elastic_config": [[130, 1, 1, "", "ElasticAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.elastic_config.ElasticAugmentConfig": [[130, 5, 1, "", "augmentation_probability"], [130, 5, 1, "id1", "control_point_displacement_sigma"], [130, 5, 1, "id0", "control_point_spacing"], [130, 2, 1, "id5", "node"], [130, 5, 1, "id2", "rotation_interval"], [130, 5, 1, "id3", "subsample"], [130, 5, 1, "id4", "uniform_3d_rotation"]], "dacapo.experiments.trainers.gp_augments.gamma_config": [[131, 1, 1, "", "GammaAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.gamma_config.GammaAugmentConfig": [[131, 5, 1, "id0", "gamma_range"], [131, 2, 1, "id1", "node"]], "dacapo.experiments.trainers.gp_augments.intensity_config": [[133, 1, 1, "", "IntensityAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.intensity_config.IntensityAugmentConfig": [[133, 5, 1, "", "augmentation_probability"], [133, 5, 1, "id2", "clip"], [133, 2, 1, "id3", "node"], [133, 5, 1, "id0", "scale"], [133, 5, 1, "id1", "shift"]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config": [[134, 1, 1, "", "IntensityScaleShiftAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config.IntensityScaleShiftAugmentConfig": [[134, 2, 1, "id2", "node"], [134, 5, 1, "id0", "scale"], [134, 5, 1, "id1", "shift"]], "dacapo.experiments.trainers.gp_augments.simple_config": [[135, 1, 1, "", "SimpleAugmentConfig"]], "dacapo.experiments.trainers.gp_augments.simple_config.SimpleAugmentConfig": [[135, 5, 1, "", "augmentation_probability"], [135, 2, 1, "id0", "node"]], "dacapo.experiments.trainers.gunpowder_trainer": [[136, 1, 1, "", "GunpowderTrainer"], [136, 4, 1, "", "logger"]], "dacapo.experiments.trainers.gunpowder_trainer.GunpowderTrainer": [[136, 2, 1, "", "__enter__"], [136, 2, 1, "", "__exit__"], [136, 2, 1, "", "__iter__"], [136, 5, 1, "id6", "augments"], [136, 5, 1, "id1", "batch_size"], [136, 2, 1, "", "build_batch_provider"], [136, 2, 1, "", "can_train"], [136, 5, 1, "id8", "clip_raw"], [136, 2, 1, "", "create_optimizer"], [136, 5, 1, "", "gt_min_reject"], [136, 2, 1, "", "iterate"], [136, 5, 1, "", "iteration"], [136, 5, 1, "id0", "learning_rate"], [136, 5, 1, "id7", "mask_integral_downsample_factor"], [136, 5, 1, "id5", "min_masked"], [136, 2, 1, "id10", "next"], [136, 5, 1, "id2", "num_data_fetchers"], [136, 5, 1, "id3", "print_profiling"], [136, 5, 1, "id9", "scheduler"], [136, 5, 1, "id4", "snapshot_iteration"], [136, 2, 1, "", "visualize_pipeline"]], "dacapo.experiments.trainers.gunpowder_trainer_config": [[137, 1, 1, "", "GunpowderTrainerConfig"]], "dacapo.experiments.trainers.gunpowder_trainer_config.GunpowderTrainerConfig": [[137, 5, 1, "id2", "augments"], [137, 5, 1, "id5", "clip_raw"], [137, 5, 1, "", "gt_min_reject"], [137, 5, 1, "id4", "min_masked"], [137, 5, 1, "id1", "num_data_fetchers"], [137, 5, 1, "id3", "snapshot_interval"], [137, 5, 1, "id0", "trainer_type"]], "dacapo.experiments.trainers.trainer": [[140, 1, 1, "", "Trainer"]], "dacapo.experiments.trainers.trainer.Trainer": [[140, 5, 1, "id1", "batch_size"], [140, 2, 1, "", "build_batch_provider"], [140, 2, 1, "", "can_train"], [140, 2, 1, "", "create_optimizer"], [140, 2, 1, "", "iterate"], [140, 5, 1, "id0", "iteration"], [140, 5, 1, "id2", "learning_rate"]], "dacapo.experiments.trainers.trainer_config": [[141, 1, 1, "", "TrainerConfig"]], "dacapo.experiments.trainers.trainer_config.TrainerConfig": [[141, 5, 1, "id1", "batch_size"], [141, 5, 1, "id2", "learning_rate"], [141, 5, 1, "id0", "name"], [141, 2, 1, "id3", "verify"]], "dacapo.experiments.training_iteration_stats": [[142, 1, 1, "", "TrainingIterationStats"]], "dacapo.experiments.training_iteration_stats.TrainingIterationStats": [[142, 5, 1, "id0", "iteration"], [142, 5, 1, "id1", "loss"], [142, 5, 1, "id2", "time"]], "dacapo.experiments.training_stats": [[143, 1, 1, "", "TrainingStats"], [143, 4, 1, "", "logger"]], "dacapo.experiments.training_stats.TrainingStats": [[143, 2, 1, "", "add_iteration_stats"], [143, 2, 1, "", "delete_after"], [143, 5, 1, "id0", "iteration_stats"], [143, 2, 1, "id2", "to_xarray"], [143, 2, 1, "id1", "trained_until"]], "dacapo.experiments.validation_iteration_scores": [[144, 1, 1, "", "ValidationIterationScores"]], "dacapo.experiments.validation_iteration_scores.ValidationIterationScores": [[144, 5, 1, "id0", "iteration"], [144, 5, 1, "id1", "scores"]], "dacapo.experiments.validation_scores": [[145, 1, 1, "", "ValidationScores"]], "dacapo.experiments.validation_scores.ValidationScores": [[145, 2, 1, "id5", "add_iteration_scores"], [145, 2, 1, "id8", "compare"], [145, 6, 1, "id9", "criteria"], [145, 5, 1, "id1", "datasets"], [145, 2, 1, "id6", "delete_after"], [145, 5, 1, "id2", "evaluation_scores"], [145, 2, 1, "id12", "get_best"], [145, 6, 1, "id10", "parameter_names"], [145, 5, 1, "id0", "parameters"], [145, 5, 1, "id3", "scores"], [145, 2, 1, "id4", "subscores"], [145, 2, 1, "id11", "to_xarray"], [145, 2, 1, "id7", "validated_until"]], "dacapo.ext": [[146, 1, 1, "", "NoSuchModule"]], "dacapo.ext.NoSuchModule": [[146, 5, 1, "", "__exception"], [146, 2, 1, "", "__getattr__"], [146, 5, 1, "", "__name"], [146, 5, 1, "", "__traceback_str"]], "dacapo.gp": [[152, 1, 1, "", "CopyMask"], [152, 1, 1, "", "DaCapoTargetFilter"], [152, 1, 1, "", "ElasticAugment"], [152, 1, 1, "", "GammaAugment"], [152, 1, 1, "", "GraphSource"], [152, 1, 1, "", "Product"], [152, 1, 1, "", "RejectIfEmpty"], [147, 0, 0, "-", "copy"], [148, 0, 0, "-", "dacapo_create_target"], [149, 0, 0, "-", "dacapo_points_source"], [150, 0, 0, "-", "elastic_augment_fuse"], [151, 0, 0, "-", "gamma_noise"], [153, 0, 0, "-", "product"], [154, 0, 0, "-", "reject_if_empty"]], "dacapo.gp.CopyMask": [[152, 5, 1, "id14", "array_key"], [152, 5, 1, "id15", "copy_key"], [152, 5, 1, "id16", "drop_channels"], [152, 2, 1, "id18", "prepare"], [152, 2, 1, "id19", "process"], [152, 2, 1, "id17", "setup"]], "dacapo.gp.DaCapoTargetFilter": [[152, 5, 1, "", "Predictor"], [152, 5, 1, "", "gt"], [152, 5, 1, "", "gt_key"], [152, 5, 1, "id2", "mask_key"], [152, 5, 1, "", "moving_counts"], [152, 5, 1, "", "predictor"], [152, 2, 1, "id4", "prepare"], [152, 2, 1, "id5", "process"], [152, 2, 1, "id3", "setup"], [152, 5, 1, "id0", "target_key"], [152, 5, 1, "id1", "weights_key"]], "dacapo.gp.ElasticAugment": [[152, 5, 1, "", "augmentation_probability"], [152, 5, 1, "", "control_point_displacement_sigma"], [152, 5, 1, "", "control_point_spacing"], [152, 5, 1, "", "do_augment"], [152, 2, 1, "", "prepare"], [152, 2, 1, "", "process"], [152, 5, 1, "", "rotation_max_amount"], [152, 5, 1, "", "rotation_start"], [152, 2, 1, "", "setup"], [152, 5, 1, "", "subsample"], [152, 5, 1, "", "target_rois"], [152, 5, 1, "", "transformations"], [152, 5, 1, "", "uniform_3d_rotation"]], "dacapo.gp.GammaAugment": [[152, 2, 1, "", "__augment"], [152, 5, 1, "id6", "arrays"], [152, 5, 1, "id8", "gamma_max"], [152, 5, 1, "id7", "gamma_min"], [152, 2, 1, "id10", "process"], [152, 2, 1, "id9", "setup"]], "dacapo.gp.GraphSource": [[152, 5, 1, "id21", "graph"], [152, 5, 1, "id20", "key"], [152, 2, 1, "id23", "provide"], [152, 2, 1, "id22", "setup"]], "dacapo.gp.Product": [[152, 2, 1, "", "prepare"], [152, 2, 1, "", "process"], [152, 2, 1, "", "setup"], [152, 5, 1, "id24", "x1_key"], [152, 5, 1, "id25", "x2_key"], [152, 5, 1, "id26", "y_key"]], "dacapo.gp.RejectIfEmpty": [[152, 5, 1, "", "background"], [152, 5, 1, "", "gt"], [152, 5, 1, "id13", "p"], [152, 2, 1, "", "provide"], [152, 2, 1, "", "setup"]], "dacapo.gp.copy": [[147, 1, 1, "", "CopyMask"]], "dacapo.gp.copy.CopyMask": [[147, 5, 1, "id0", "array_key"], [147, 5, 1, "id1", "copy_key"], [147, 5, 1, "id2", "drop_channels"], [147, 2, 1, "id4", "prepare"], [147, 2, 1, "id5", "process"], [147, 2, 1, "id3", "setup"]], "dacapo.gp.dacapo_create_target": [[148, 1, 1, "", "DaCapoTargetFilter"]], "dacapo.gp.dacapo_create_target.DaCapoTargetFilter": [[148, 5, 1, "", "Predictor"], [148, 5, 1, "", "gt"], [148, 5, 1, "", "gt_key"], [148, 5, 1, "id2", "mask_key"], [148, 5, 1, "", "moving_counts"], [148, 5, 1, "", "predictor"], [148, 2, 1, "id4", "prepare"], [148, 2, 1, "id5", "process"], [148, 2, 1, "id3", "setup"], [148, 5, 1, "id0", "target_key"], [148, 5, 1, "id1", "weights_key"]], "dacapo.gp.dacapo_points_source": [[149, 1, 1, "", "GraphSource"]], "dacapo.gp.dacapo_points_source.GraphSource": [[149, 5, 1, "id1", "graph"], [149, 5, 1, "id0", "key"], [149, 2, 1, "id3", "provide"], [149, 2, 1, "id2", "setup"]], "dacapo.gp.elastic_augment_fuse": [[150, 1, 1, "", "ElasticAugment"], [150, 4, 1, "", "logger"]], "dacapo.gp.elastic_augment_fuse.ElasticAugment": [[150, 5, 1, "", "augmentation_probability"], [150, 5, 1, "", "control_point_displacement_sigma"], [150, 5, 1, "", "control_point_spacing"], [150, 5, 1, "", "do_augment"], [150, 2, 1, "", "prepare"], [150, 2, 1, "", "process"], [150, 5, 1, "", "rotation_max_amount"], [150, 5, 1, "", "rotation_start"], [150, 2, 1, "", "setup"], [150, 5, 1, "", "subsample"], [150, 5, 1, "", "target_rois"], [150, 5, 1, "", "transformations"], [150, 5, 1, "", "uniform_3d_rotation"]], "dacapo.gp.gamma_noise": [[151, 1, 1, "", "GammaAugment"], [151, 4, 1, "", "logger"]], "dacapo.gp.gamma_noise.GammaAugment": [[151, 2, 1, "", "__augment"], [151, 5, 1, "id0", "arrays"], [151, 5, 1, "id2", "gamma_max"], [151, 5, 1, "id1", "gamma_min"], [151, 2, 1, "id4", "process"], [151, 2, 1, "id3", "setup"]], "dacapo.gp.product": [[153, 1, 1, "", "Product"]], "dacapo.gp.product.Product": [[153, 2, 1, "", "prepare"], [153, 2, 1, "", "process"], [153, 2, 1, "", "setup"], [153, 5, 1, "id0", "x1_key"], [153, 5, 1, "id1", "x2_key"], [153, 5, 1, "id2", "y_key"]], "dacapo.gp.reject_if_empty": [[154, 1, 1, "", "RejectIfEmpty"], [154, 4, 1, "", "logger"]], "dacapo.gp.reject_if_empty.RejectIfEmpty": [[154, 5, 1, "", "background"], [154, 5, 1, "", "gt"], [154, 5, 1, "id0", "p"], [154, 2, 1, "", "provide"], [154, 2, 1, "", "setup"]], "dacapo.options": [[156, 1, 1, "", "DaCapoConfig"], [156, 1, 1, "", "Options"], [156, 4, 1, "", "logger"]], "dacapo.options.DaCapoConfig": [[156, 5, 1, "id2", "compute_context"], [156, 5, 1, "id3", "mongo_db_host"], [156, 5, 1, "id4", "mongo_db_name"], [156, 5, 1, "id1", "runs_base_dir"], [156, 2, 1, "id5", "serialize"], [156, 5, 1, "id0", "type"]], "dacapo.options.Options": [[156, 2, 1, "", "__parse_options"], [156, 2, 1, "", "__parse_options_from_file"], [156, 2, 1, "id7", "config_file"], [156, 2, 1, "id6", "instance"]], "dacapo.plot": [[157, 4, 1, "", "RunInfo"], [157, 3, 1, "", "bokeh_plot_runs"], [157, 3, 1, "", "get_runs_info"], [157, 3, 1, "", "plot_runs"], [157, 3, 1, "", "smooth_values"]], "dacapo.predict": [[158, 4, 1, "", "logger"], [158, 3, 1, "", "predict"]], "dacapo.predict_local": [[159, 4, 1, "", "logger"], [159, 3, 1, "", "predict"]], "dacapo.store": [[160, 0, 0, "-", "array_store"], [161, 0, 0, "-", "config_store"], [162, 0, 0, "-", "conversion_hooks"], [163, 0, 0, "-", "converter"], [164, 0, 0, "-", "create_store"], [165, 0, 0, "-", "file_config_store"], [166, 0, 0, "-", "file_stats_store"], [168, 0, 0, "-", "local_array_store"], [169, 0, 0, "-", "local_weights_store"], [170, 0, 0, "-", "mongo_config_store"], [171, 0, 0, "-", "mongo_stats_store"], [172, 0, 0, "-", "stats_store"], [173, 0, 0, "-", "weights_store"]], "dacapo.store.array_store": [[160, 1, 1, "", "ArrayStore"], [160, 1, 1, "", "LocalArrayIdentifier"], [160, 1, 1, "", "LocalContainerIdentifier"]], "dacapo.store.array_store.ArrayStore": [[160, 5, 1, "", "container"], [160, 5, 1, "", "dataset"], [160, 2, 1, "", "remove"], [160, 2, 1, "", "snapshot_container"], [160, 2, 1, "", "validation_container"], [160, 2, 1, "", "validation_input_arrays"], [160, 2, 1, "", "validation_output_array"], [160, 2, 1, "", "validation_prediction_array"]], "dacapo.store.array_store.LocalArrayIdentifier": [[160, 5, 1, "id0", "container"], [160, 5, 1, "id1", "dataset"]], "dacapo.store.array_store.LocalContainerIdentifier": [[160, 2, 1, "", "array_identifier"], [160, 5, 1, "id2", "container"]], "dacapo.store.config_store": [[161, 1, 1, "", "ConfigStore"], [161, 7, 1, "", "DuplicateNameError"]], "dacapo.store.config_store.ConfigStore": [[161, 5, 1, "id6", "architectures"], [161, 5, 1, "id3", "arrays"], [161, 5, 1, "id2", "datasets"], [161, 5, 1, "id1", "datasplits"], [161, 2, 1, "id19", "delete_architecture_config"], [161, 2, 1, "id31", "delete_array_config"], [161, 2, 1, "id7", "delete_config"], [161, 2, 1, "id27", "delete_datasplit_config"], [161, 2, 1, "id11", "delete_run_config"], [161, 2, 1, "id15", "delete_task_config"], [161, 2, 1, "id23", "delete_trainer_config"], [161, 2, 1, "id17", "retrieve_architecture_config"], [161, 2, 1, "id18", "retrieve_architecture_config_names"], [161, 2, 1, "id29", "retrieve_array_config"], [161, 2, 1, "id30", "retrieve_array_config_names"], [161, 2, 1, "id25", "retrieve_datasplit_config"], [161, 2, 1, "id26", "retrieve_datasplit_config_names"], [161, 2, 1, "id9", "retrieve_run_config"], [161, 2, 1, "id10", "retrieve_run_config_names"], [161, 2, 1, "id13", "retrieve_task_config"], [161, 2, 1, "id14", "retrieve_task_config_names"], [161, 2, 1, "id21", "retrieve_trainer_config"], [161, 2, 1, "id22", "retrieve_trainer_config_names"], [161, 5, 1, "id0", "runs"], [161, 2, 1, "id16", "store_architecture_config"], [161, 2, 1, "id28", "store_array_config"], [161, 2, 1, "id24", "store_datasplit_config"], [161, 2, 1, "id8", "store_run_config"], [161, 2, 1, "id12", "store_task_config"], [161, 2, 1, "id20", "store_trainer_config"], [161, 5, 1, "id4", "tasks"], [161, 5, 1, "id5", "trainers"]], "dacapo.store.config_store.DuplicateNameError": [[161, 2, 1, "", "__str__"], [161, 5, 1, "", "message"]], "dacapo.store.conversion_hooks": [[162, 3, 1, "", "cls_fun"], [162, 3, 1, "", "register_hierarchy_hooks"], [162, 3, 1, "", "register_hooks"]], "dacapo.store.converter": [[163, 1, 1, "", "TypedConverter"], [163, 4, 1, "", "converter"]], "dacapo.store.converter.TypedConverter": [[163, 2, 1, "", "__typed_structure"], [163, 2, 1, "", "__typed_unstructure"], [163, 5, 1, "", "hooks"], [163, 2, 1, "id0", "register_hierarchy"]], "dacapo.store.create_store": [[164, 3, 1, "", "create_array_store"], [164, 3, 1, "", "create_config_store"], [164, 3, 1, "", "create_stats_store"], [164, 3, 1, "", "create_weights_store"]], "dacapo.store.file_config_store": [[165, 1, 1, "", "FileConfigStore"], [165, 4, 1, "", "logger"]], "dacapo.store.file_config_store.FileConfigStore": [[165, 2, 1, "", "__load"], [165, 2, 1, "", "__save_insert"], [165, 6, 1, "", "architectures"], [165, 6, 1, "", "arrays"], [165, 6, 1, "", "datasets"], [165, 6, 1, "", "datasplits"], [165, 2, 1, "", "delete_config"], [165, 5, 1, "id0", "path"], [165, 2, 1, "id8", "retrieve_architecture_config"], [165, 2, 1, "id9", "retrieve_architecture_config_names"], [165, 2, 1, "id17", "retrieve_array_config"], [165, 2, 1, "id18", "retrieve_array_config_names"], [165, 2, 1, "id14", "retrieve_datasplit_config"], [165, 2, 1, "id15", "retrieve_datasplit_config_names"], [165, 2, 1, "id2", "retrieve_run_config"], [165, 2, 1, "id3", "retrieve_run_config_names"], [165, 2, 1, "id5", "retrieve_task_config"], [165, 2, 1, "id6", "retrieve_task_config_names"], [165, 2, 1, "id11", "retrieve_trainer_config"], [165, 2, 1, "id12", "retrieve_trainer_config_names"], [165, 6, 1, "", "runs"], [165, 2, 1, "id7", "store_architecture_config"], [165, 2, 1, "id16", "store_array_config"], [165, 2, 1, "id13", "store_datasplit_config"], [165, 2, 1, "id1", "store_run_config"], [165, 2, 1, "id4", "store_task_config"], [165, 2, 1, "id10", "store_trainer_config"], [165, 6, 1, "", "tasks"], [165, 6, 1, "", "trainers"], [165, 6, 1, "", "users"]], "dacapo.store.file_stats_store": [[166, 1, 1, "", "FileStatsStore"], [166, 4, 1, "", "logger"]], "dacapo.store.file_stats_store.FileStatsStore": [[166, 2, 1, "", "delete_training_stats"], [166, 5, 1, "", "path"], [166, 2, 1, "", "retrieve_training_stats"], [166, 2, 1, "", "retrieve_validation_iteration_scores"], [166, 2, 1, "", "store_training_stats"], [166, 2, 1, "", "store_validation_iteration_scores"]], "dacapo.store.local_array_store": [[168, 1, 1, "", "LocalArrayStore"], [168, 4, 1, "", "logger"]], "dacapo.store.local_array_store.LocalArrayStore": [[168, 5, 1, "id0", "basedir"], [168, 2, 1, "id1", "best_validation_array"], [168, 2, 1, "id7", "remove"], [168, 2, 1, "id5", "snapshot_container"], [168, 2, 1, "id6", "validation_container"], [168, 2, 1, "id4", "validation_input_arrays"], [168, 2, 1, "id3", "validation_output_array"], [168, 2, 1, "id2", "validation_prediction_array"]], "dacapo.store.local_weights_store": [[169, 1, 1, "", "LocalWeightsStore"], [169, 4, 1, "", "logger"]], "dacapo.store.local_weights_store.LocalWeightsStore": [[169, 5, 1, "id0", "basedir"], [169, 2, 1, "id1", "latest_iteration"], [169, 2, 1, "id4", "remove"], [169, 2, 1, "id6", "retrieve_best"], [169, 2, 1, "id3", "retrieve_weights"], [169, 2, 1, "id5", "store_best"], [169, 2, 1, "id2", "store_weights"]], "dacapo.store.mongo_config_store": [[170, 1, 1, "", "MongoConfigStore"], [170, 4, 1, "", "logger"]], "dacapo.store.mongo_config_store.MongoConfigStore": [[170, 2, 1, "", "__init_db"], [170, 2, 1, "", "__open_collections"], [170, 2, 1, "", "__same_doc"], [170, 2, 1, "", "__save_insert"], [170, 5, 1, "", "architectures"], [170, 5, 1, "", "arrays"], [170, 5, 1, "id2", "client"], [170, 5, 1, "id3", "database"], [170, 5, 1, "", "datasets"], [170, 5, 1, "", "datasplits"], [170, 5, 1, "id0", "db_host"], [170, 5, 1, "id1", "db_name"], [170, 2, 1, "", "delete_config"], [170, 2, 1, "id6", "delete_run_config"], [170, 2, 1, "id12", "retrieve_architecture_config"], [170, 2, 1, "id13", "retrieve_architecture_config_names"], [170, 2, 1, "id24", "retrieve_array_config"], [170, 2, 1, "id25", "retrieve_array_config_names"], [170, 2, 1, "id21", "retrieve_dataset_config"], [170, 2, 1, "id22", "retrieve_dataset_config_names"], [170, 2, 1, "id18", "retrieve_datasplit_config"], [170, 2, 1, "id19", "retrieve_datasplit_config_names"], [170, 2, 1, "id5", "retrieve_run_config"], [170, 2, 1, "id7", "retrieve_run_config_names"], [170, 2, 1, "id9", "retrieve_task_config"], [170, 2, 1, "id10", "retrieve_task_config_names"], [170, 2, 1, "id15", "retrieve_trainer_config"], [170, 2, 1, "id16", "retrieve_trainer_config_names"], [170, 5, 1, "", "runs"], [170, 2, 1, "id11", "store_architecture_config"], [170, 2, 1, "id23", "store_array_config"], [170, 2, 1, "id20", "store_dataset_config"], [170, 2, 1, "id17", "store_datasplit_config"], [170, 2, 1, "id4", "store_run_config"], [170, 2, 1, "id8", "store_task_config"], [170, 2, 1, "id14", "store_trainer_config"], [170, 5, 1, "", "tasks"], [170, 5, 1, "", "trainers"], [170, 5, 1, "", "users"]], "dacapo.store.mongo_stats_store": [[171, 1, 1, "", "MongoStatsStore"], [171, 4, 1, "", "logger"]], "dacapo.store.mongo_stats_store.MongoStatsStore": [[171, 5, 1, "id2", "client"], [171, 5, 1, "id3", "database"], [171, 5, 1, "id0", "db_host"], [171, 5, 1, "id1", "db_name"], [171, 2, 1, "id8", "delete_training_stats"], [171, 2, 1, "", "delete_validation_scores"], [171, 2, 1, "id5", "retrieve_training_stats"], [171, 2, 1, "id7", "retrieve_validation_iteration_scores"], [171, 2, 1, "id4", "store_training_stats"], [171, 2, 1, "id6", "store_validation_iteration_scores"], [171, 5, 1, "", "training_stats"], [171, 5, 1, "", "validation_scores"]], "dacapo.store.stats_store": [[172, 1, 1, "", "StatsStore"]], "dacapo.store.stats_store.StatsStore": [[172, 2, 1, "id4", "delete_training_stats"], [172, 2, 1, "id1", "retrieve_training_stats"], [172, 2, 1, "id3", "retrieve_validation_iteration_scores"], [172, 2, 1, "id0", "store_training_stats"], [172, 2, 1, "id2", "store_validation_iteration_scores"]], "dacapo.store.weights_store": [[173, 1, 1, "", "Weights"], [173, 1, 1, "", "WeightsStore"]], "dacapo.store.weights_store.Weights": [[173, 2, 1, "", "__init__"], [173, 5, 1, "id1", "model"], [173, 5, 1, "id0", "optimizer"]], "dacapo.store.weights_store.WeightsStore": [[173, 2, 1, "id4", "latest_iteration"], [173, 2, 1, "id3", "load_best"], [173, 2, 1, "id2", "load_weights"], [173, 2, 1, "id7", "remove"], [173, 2, 1, "id8", "retrieve_best"], [173, 2, 1, "id6", "retrieve_weights"], [173, 2, 1, "id5", "store_weights"]], "dacapo.tmp": [[174, 3, 1, "", "create_from_identifier"], [174, 3, 1, "", "gp_to_funlib_array"], [174, 3, 1, "", "np_to_funlib_array"], [174, 3, 1, "", "num_channels_from_array"], [174, 3, 1, "", "open_from_identifier"]], "dacapo.train": [[175, 4, 1, "", "logger"], [175, 3, 1, "", "train"], [175, 3, 1, "", "train_run"]], "dacapo.utils": [[176, 0, 0, "-", "affinities"], [177, 0, 0, "-", "array_utils"], [178, 0, 0, "-", "balance_weights"], [180, 0, 0, "-", "pipeline"], [181, 0, 0, "-", "view"], [182, 0, 0, "-", "voi"]], "dacapo.utils.affinities": [[176, 4, 1, "", "logger"], [176, 3, 1, "", "padding"], [176, 3, 1, "", "seg_to_affgraph"]], "dacapo.utils.array_utils": [[177, 3, 1, "", "save_ndarray"], [177, 3, 1, "", "to_ndarray"]], "dacapo.utils.balance_weights": [[178, 3, 1, "", "balance_weights"]], "dacapo.utils.pipeline": [[180, 1, 1, "", "CreatePoints"], [180, 1, 1, "", "DilatePoints"], [180, 1, 1, "", "ExpandLabels"], [180, 1, 1, "", "MakeRaw"], [180, 1, 1, "", "RandomDilateLabels"], [180, 1, 1, "", "Relabel"], [180, 1, 1, "", "ZerosSource"], [180, 3, 1, "", "random_source_pipeline"]], "dacapo.utils.pipeline.CreatePoints": [[180, 5, 1, "id0", "labels"], [180, 5, 1, "id1", "num_points"], [180, 2, 1, "id2", "process"]], "dacapo.utils.pipeline.DilatePoints": [[180, 5, 1, "id6", "dilations"], [180, 5, 1, "id5", "labels"], [180, 2, 1, "id7", "process"]], "dacapo.utils.pipeline.ExpandLabels": [[180, 5, 1, "id13", "background"], [180, 5, 1, "id12", "labels"], [180, 2, 1, "id14", "process"]], "dacapo.utils.pipeline.MakeRaw": [[180, 1, 1, "", "Pipeline"], [180, 5, 1, "", "gaussian_blur_args"], [180, 5, 1, "", "gaussian_noise_args"], [180, 5, 1, "", "gaussian_noise_lim"], [180, 5, 1, "", "inside_value"], [180, 5, 1, "", "labels"], [180, 5, 1, "", "membrane_like"], [180, 5, 1, "", "membrane_size"], [180, 2, 1, "id4", "process"], [180, 5, 1, "", "raw"], [180, 2, 1, "id3", "setup"]], "dacapo.utils.pipeline.MakeRaw.Pipeline": [[180, 5, 1, "", "gaussian_blur_args"], [180, 5, 1, "", "gaussian_noise_args"], [180, 5, 1, "", "gaussian_noise_lim"], [180, 5, 1, "", "inside_value"], [180, 5, 1, "", "labels"], [180, 5, 1, "", "membrane_like"], [180, 5, 1, "", "membrane_size"], [180, 5, 1, "", "raw"]], "dacapo.utils.pipeline.RandomDilateLabels": [[180, 5, 1, "id9", "dilations"], [180, 5, 1, "id8", "labels"], [180, 2, 1, "id10", "process"]], "dacapo.utils.pipeline.Relabel": [[180, 5, 1, "", "connectivity"], [180, 5, 1, "", "labels"], [180, 2, 1, "id11", "process"]], "dacapo.utils.pipeline.ZerosSource": [[180, 5, 1, "", "_spec"], [180, 5, 1, "id15", "key"], [180, 2, 1, "id17", "provide"], [180, 2, 1, "id16", "setup"]], "dacapo.utils.view": [[181, 1, 1, "", "BestScore"], [181, 1, 1, "", "NeuroglancerRunViewer"], [181, 3, 1, "", "add_scalar_layer"], [181, 3, 1, "", "add_seg_layer"], [181, 3, 1, "", "get_viewer"]], "dacapo.utils.view.BestScore": [[181, 5, 1, "id5", "array_store"], [181, 2, 1, "id8", "does_new_best_exist"], [181, 5, 1, "", "ds"], [181, 2, 1, "id7", "get_ds"], [181, 5, 1, "id2", "iteration"], [181, 5, 1, "id3", "parameter"], [181, 5, 1, "id0", "run"], [181, 5, 1, "id1", "score"], [181, 5, 1, "id6", "stats_store"], [181, 5, 1, "id4", "validation_parameters"]], "dacapo.utils.view.NeuroglancerRunViewer": [[181, 5, 1, "", "array_store"], [181, 5, 1, "id10", "best_score"], [181, 2, 1, "id13", "deprecated_start_neuroglancer"], [181, 5, 1, "id11", "embedded"], [181, 2, 1, "id17", "get_datasets"], [181, 5, 1, "", "gt"], [181, 5, 1, "", "most_recent_iteration"], [181, 2, 1, "id21", "new_validation_checker"], [181, 2, 1, "id16", "open_from_array_identitifier"], [181, 5, 1, "", "raw"], [181, 5, 1, "id9", "run"], [181, 5, 1, "", "run_thread"], [181, 5, 1, "", "segmentation"], [181, 2, 1, "id15", "start"], [181, 2, 1, "id14", "start_neuroglancer"], [181, 2, 1, "id23", "stop"], [181, 2, 1, "id18", "update_best_info"], [181, 2, 1, "id20", "update_best_layer"], [181, 2, 1, "id19", "update_neuroglancer"], [181, 2, 1, "id22", "update_with_new_validation_if_possible"], [181, 2, 1, "id12", "updated_neuroglancer_layer"], [181, 5, 1, "", "viewer"]], "dacapo.utils.voi": [[182, 3, 1, "", "contingency_table"], [182, 3, 1, "", "divide_columns"], [182, 3, 1, "", "divide_rows"], [182, 3, 1, "", "split_vi"], [182, 3, 1, "", "vi_tables"], [182, 3, 1, "", "voi"], [182, 3, 1, "", "xlogx"]], "dacapo.validate": [[183, 4, 1, "", "logger"], [183, 3, 1, "", "validate"], [183, 3, 1, "", "validate_run"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "data", "Python data"], "5": ["py", "attribute", "Python attribute"], "6": ["py", "property", "Python property"], "7": ["py", "exception", "Python exception"], "8": ["std", "cmdoption", "program option"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:data", "5": "py:attribute", "6": "py:property", "7": "py:exception", "8": "std:cmdoption"}, "terms": {"": [15, 17, 18, 21, 38, 47, 67, 68, 70, 83, 87, 88, 96, 97, 99, 104, 106, 108, 109, 113, 157, 173, 178, 188, 189, 192], "0": [3, 9, 10, 15, 17, 21, 24, 25, 27, 28, 32, 33, 38, 39, 59, 62, 67, 69, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 108, 109, 110, 112, 114, 115, 116, 118, 119, 120, 127, 130, 132, 133, 136, 138, 143, 145, 147, 148, 149, 150, 152, 154, 155, 158, 168, 169, 173, 176, 177, 178, 180, 181, 182, 183, 185, 186, 187, 192, 194], "0001": [192, 194], "006": 3, "02": 190, "02834": 190, "05": [115, 116, 118, 119, 120, 178, 192], "0b8956f13d7bdfe7b": 185, "0x7f2e4f8e9e80": 164, "0x7f8b1c0b3f30": 83, "1": [0, 3, 7, 10, 11, 13, 15, 17, 19, 20, 21, 22, 24, 25, 27, 28, 30, 32, 38, 39, 47, 49, 54, 56, 59, 67, 68, 74, 79, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109, 112, 114, 115, 116, 118, 119, 120, 130, 132, 133, 143, 147, 148, 149, 150, 152, 154, 155, 157, 158, 160, 169, 176, 178, 180, 181, 182, 184, 185, 192, 194], "10": [3, 26, 27, 83, 96, 99, 106, 108, 181, 186, 190, 192, 194], "100": [108, 114, 136, 138, 155, 157, 158, 181, 186, 194], "1000": [3, 67, 70, 192, 194], "10000": [3, 194], "100000": 194, "1000000": 3, "1016": 3, "10x10x10": [106, 108], "11": [3, 96, 99], "1100000": 188, "1101": 190, "12": [0, 3, 96, 99, 108, 111, 155, 158, 192], "123": 83, "128": [10, 15, 17, 21], "13": [96, 99], "132": 192, "14": [96, 99], "148": 180, "15": [88, 89, 96, 99, 192, 194], "150": 180, "1500": 181, "16": [2, 4, 7, 59, 62, 96, 99, 104, 108, 109, 113, 186], "1634500": 188, "17": 190, "1820500": 188, "1994": 192, "1995": 192, "1996": 192, "1997": 192, "1998": 192, "1999": 192, "1d": 182, "1x1": 17, "2": [2, 3, 4, 7, 17, 21, 22, 27, 59, 62, 67, 79, 82, 83, 88, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 106, 108, 143, 150, 152, 157, 176, 178, 180, 182, 186, 192, 194], "20": [19, 21, 115, 119, 180, 192, 194], "200": [3, 83, 88], "2000": 192, "2001": 192, "2007": 182, "2012": [18, 21], "2022": 3, "2023": 190, "2024": [187, 190], "21": [3, 192], "212": 194, "216_000_000": [59, 62], "2333333333333334": 83, "24": [17, 21], "2408": 190, "25": [83, 194], "254": 192, "255": [59, 62, 192], "256": [104, 108, 111, 113, 192], "2580000": 188, "260": 192, "290": 192, "2d": [17, 18, 21, 34, 38, 43, 59, 62, 192], "2pi": [130, 132, 150, 152], "2xlarg": 185, "3": [15, 17, 21, 59, 62, 67, 83, 85, 87, 88, 90, 96, 97, 98, 99, 100, 101, 106, 108, 143, 150, 152, 157, 176, 178, 180, 185, 190, 192], "30": [186, 192], "32": [3, 10, 17, 59, 62, 108, 114, 192, 194], "33333334": 178, "35": 194, "35759771": 192, "3d": [3, 17, 18, 19, 21, 59, 62, 130, 132, 150, 152, 180, 190, 194], "3x3x3": [17, 21], "4": [3, 59, 62, 83, 96, 97, 99, 106, 108, 136, 138, 150, 152, 157, 176, 188, 192, 193, 194], "40": [19, 21, 83, 88], "400": 185, "41421356": 83, "4338592": 192, "48550": 190, "4d": [17, 21], "5": [3, 82, 83, 88, 96, 97, 99, 106, 108, 114, 150, 152, 154, 157, 180, 192, 194], "50": 3, "500000": 188, "528834": 190, "59049326": 192, "5d": [17, 21], "6": [96, 97, 99, 106, 108, 150, 152, 192], "60": 192, "600": [59, 62, 181], "625000": 188, "64": [3, 10, 17, 21, 108, 109], "650000": 188, "6666666666666666": 83, "7": [96, 99, 106, 108, 150, 152], "70710678": 83, "72": 194, "73412889": 192, "75": [3, 83, 194], "75879186": 192, "775000": 188, "78323734": 192, "8": [59, 62, 83, 96, 99, 106, 108, 116, 118, 119, 120, 150, 152, 180, 188, 192, 194], "80": 185, "8000": [59, 62, 185, 189], "85": 83, "8571428571428571": 83, "873": 182, "895": 182, "9": [83, 96, 97, 99, 106, 108, 178], "95": [115, 116, 119, 178], "975000": 188, "98": 182, "A": [2, 4, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 108, 109, 110, 111, 113, 115, 117, 119, 121, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 136, 138, 141, 142, 143, 144, 145, 147, 148, 149, 151, 152, 153, 155, 156, 162, 163, 165, 166, 168, 169, 170, 171, 173, 180, 181, 182, 190], "As": [17, 21, 194], "Be": 192, "By": [17, 21, 116, 118, 119, 120, 122, 182], "For": [34, 38, 43, 162, 163, 187, 189, 190, 191, 192, 194], "If": [0, 3, 12, 13, 14, 15, 16, 17, 21, 33, 36, 37, 38, 47, 49, 51, 54, 58, 59, 62, 67, 68, 69, 71, 73, 74, 77, 82, 83, 88, 90, 93, 98, 99, 100, 101, 104, 106, 107, 108, 109, 110, 111, 112, 113, 119, 122, 127, 136, 138, 140, 141, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 181, 182, 185, 186, 187, 190, 192, 193, 194], "In": [57, 60, 62, 119, 122, 182, 192, 194], "It": [11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 25, 26, 27, 28, 29, 33, 36, 37, 38, 39, 47, 49, 54, 56, 57, 58, 59, 60, 62, 66, 67, 69, 70, 76, 81, 83, 85, 87, 88, 90, 93, 94, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 126, 127, 136, 137, 138, 140, 141, 142, 143, 145, 150, 152, 160, 161, 162, 166, 168, 188, 189], "No": [31, 37, 38, 47, 49, 54, 58, 62, 138, 141], "Not": [129, 132, 135, 138], "One": 190, "Or": 182, "TO": 192, "The": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127, 130, 131, 132, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 177, 178, 180, 181, 182, 186, 187, 188, 190, 192, 193, 194], "Then": [190, 192], "There": 194, "These": [182, 192, 193, 194], "To": [67, 108, 113, 145, 185, 186, 188, 189, 190, 192, 194], "Will": [32, 38], "_": [163, 192], "__attrs_post_init__": [27, 28, 33, 38], "__augment": [151, 152], "__enter__": [127, 136, 138], "__eq__": [48, 54], "__except": 146, "__exit__": [127, 136, 138], "__find_boundari": [119, 120], "__generate_semantic_seg_dataset_crop": [59, 62], "__generate_semantic_seg_datasplit": [59, 62], "__getattr__": 146, "__getitem__": [59, 177], "__hash__": [48, 54], "__init__": [2, 4, 50, 54, 55, 57, 59, 60, 62, 65, 66, 71, 72, 73, 74, 75, 76, 78, 80, 91, 93, 94, 115, 116, 117, 118, 119, 120, 121, 127, 138, 152, 153, 173], "__init_db": 170, "__iter__": [136, 138], "__load": 165, "__main__": 192, "__name": 146, "__name__": 192, "__normal": [119, 120], "__open_collect": 170, "__parse_opt": [155, 156], "__parse_options_from_fil": [155, 156], "__repr__": [48, 54], "__same_doc": 170, "__save_insert": [165, 170], "__setitem__": 177, "__str__": [48, 54, 59, 62, 63, 64, 160, 161], "__traceback_str": 146, "__type__": [162, 163], "__typed_structur": 163, "__typed_unstructur": 163, "_ax": [38, 47], "_build": 187, "_compat": 163, "_devic": [13, 14], "_eval_shape_increas": [18, 21], "_grow_boundari": [115, 119], "_gt_kei": [129, 130, 131, 132, 133, 134, 135, 138], "_mask_kei": [129, 130, 131, 132, 133, 134, 135, 138], "_member_names_": 59, "_neuroglanc": 192, "_neuroglancer_lay": [48, 54], "_raw_kei": [129, 130, 132, 135, 138], "_source_arrai": 181, "_spec": 180, "_static": 187, "_templat": 187, "_wrap_command": [11, 12, 13, 14], "abc": [11, 12, 13, 14, 15, 21, 93, 119, 122, 125], "abil": [83, 163], "abl": [67, 145], "about": [15, 21, 190], "abov": 192, "absenc": 83, "absolut": [97, 99, 187], "abspath": 187, "abstract": [12, 13, 14, 15, 16, 21, 23, 31, 37, 38, 44, 87, 88, 98, 99, 100, 101, 104, 106, 108, 109, 119, 122, 129, 132, 136, 138, 140, 141, 160, 161, 172, 173], "abstractmethod": [15, 21, 23, 86, 87, 88], "accept": [17, 21, 83], "access": [38, 47, 155, 156, 166, 188, 189, 194], "accord": [17, 21, 57, 60, 62, 194], "accordingli": 166, "account": [15, 21, 67, 68, 83], "accuraci": [83, 173], "achiev": [67, 70, 181], "ackerman": [187, 190], "activ": [17, 21, 67, 68, 190, 192], "activation_on_upsampl": [17, 21], "actual": [17, 21, 83, 151, 152, 189], "ad": 163, "add": [7, 10, 17, 21, 67, 143, 145, 180, 181, 187, 188], "add_iteration_scor": [67, 145], "add_iteration_stat": [67, 143], "add_scalar_lay": 181, "add_seg_lay": 181, "addit": [2, 4, 7, 12, 13, 14, 15, 17, 21, 132, 133, 155, 156, 162, 163, 189, 192, 193], "addition": [23, 190], "address": [69, 136, 138, 181], "adjavon": 190, "advantag": [79, 93, 95], "advis": [49, 54], "aff": [77, 93], "affect": 187, "affin": [76, 77, 79, 92, 93, 95, 96, 99, 115, 119, 179, 184, 190, 192, 193], "affinities_loss": [99, 184], "affinities_predictor": [119, 184], "affinities_task": [93, 184], "affinities_task_config": [93, 184], "affinitiesloss": [76, 93, 96, 99], "affinitiespredict": 194, "affinitiespredictor": [76, 93, 115, 119], "affinitiestask": [76, 93], "affinitiestaskconfig": [77, 93, 192, 194], "affs_task_config": 192, "affs_weight_clipmax": [77, 93, 115, 119], "affs_weight_clipmin": [77, 93, 115, 119], "after": [17, 19, 21, 27, 28, 33, 38, 67, 69, 87, 88, 116, 118, 119, 120, 136, 137, 138, 143, 145, 186, 187, 188, 192, 193], "against": [83, 85, 87, 88, 90], "aid": [49, 54], "algorithm": [10, 83], "align": [38, 47], "all": [32, 35, 38, 67, 69, 70, 76, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 99, 100, 102, 104, 106, 108, 109, 111, 113, 123, 126, 136, 138, 149, 150, 152, 161, 162, 163, 169, 170, 176, 182, 189, 192, 194], "allow": [3, 83, 188, 189, 190, 193, 194], "allow_one_view": 3, "almost": [26, 27], "along": [3, 18, 21, 58, 62, 67, 70, 77, 83, 93, 104, 108, 145, 188], "alreadi": [0, 59, 62, 67, 83, 145, 147, 148, 149, 152, 155, 158, 161, 165, 166, 170, 171, 172, 173, 183, 185, 192], "also": [7, 12, 13, 14, 15, 17, 20, 21, 54, 55, 56, 67, 69, 82, 84, 86, 88, 127, 138, 143, 150, 152, 161, 185, 187, 192, 193, 194], "altern": [177, 192], "alwai": [20, 21, 24, 27, 30, 49, 51, 54, 61, 62, 81, 93], "amazon": 185, "ami": 185, "among": 83, "amount": [15, 18, 21, 38, 44, 79, 92, 93, 95, 119, 120, 182], "an": [7, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 38, 39, 40, 41, 42, 44, 54, 56, 57, 59, 60, 62, 67, 68, 71, 73, 76, 79, 81, 83, 85, 87, 88, 90, 92, 93, 94, 95, 99, 100, 102, 104, 106, 108, 109, 115, 119, 122, 125, 127, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 144, 145, 146, 150, 151, 152, 153, 155, 156, 160, 161, 162, 163, 164, 176, 177, 178, 180, 181, 182, 183, 185, 186, 192, 193, 194], "analysi": [83, 182], "angl": [130, 132, 150, 152], "ani": [16, 17, 21, 26, 27, 36, 38, 83, 99, 100, 119, 122, 128, 138, 140, 156, 161, 163, 180, 182, 187], "annot": [23, 27, 32, 38, 39, 42, 184], "annotation_arrai": [22, 27], "annotationarrai": [22, 27], "anoth": [81, 93, 187], "anyth": [26, 27], "anywher": [79, 93], "api": 187, "append": [119, 122, 178, 192], "appli": [5, 17, 21, 67, 68, 79, 83, 92, 93, 94, 95, 96, 97, 99, 108, 109, 111, 113, 119, 120, 131, 132, 133, 134, 135, 136, 137, 138, 150, 151, 152, 155, 163, 180, 184, 192, 193], "applic": [2, 4, 7, 17, 81, 93, 166, 186, 190, 192], "apply_run": 0, "approach": 190, "appropri": [169, 176, 192], "ar": [0, 11, 12, 13, 14, 17, 21, 22, 26, 27, 28, 29, 38, 41, 54, 56, 57, 60, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 83, 87, 88, 90, 93, 98, 99, 100, 102, 108, 110, 113, 114, 116, 118, 119, 120, 122, 123, 124, 143, 145, 150, 152, 153, 155, 161, 163, 164, 165, 166, 169, 170, 171, 172, 173, 176, 177, 180, 182, 185, 187, 190, 192, 193, 194], "arbitrari": 182, "arbitrarili": [190, 193], "architectur": [67, 68, 69, 70, 93, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 138, 161, 165, 170, 184, 190, 193, 194], "architecture1": [161, 165], "architecture_0": 170, "architecture_config": [17, 19, 21, 67, 70, 161, 165, 170, 184, 192, 194], "architecture_nam": [161, 165, 170], "architecture_typ": [18, 20, 21], "architectureconfig": [16, 20, 21, 67, 70, 161, 165, 170], "arg": [2, 4, 7, 15, 21, 106, 108, 186], "argmax": [24, 27, 30, 93, 102, 103, 104, 105, 108], "argmax_post_processor": [108, 184], "argmax_post_processor_paramet": [108, 184], "argmax_work": [4, 184], "argmaxpostprocessor": [104, 108], "argmaxpostprocessorparamet": [104, 105, 108], "argmin": [25, 27], "argument": [2, 4, 7, 59, 62, 99, 100, 116, 118, 119, 120, 155, 156, 186], "around": [17, 21, 54, 56, 150, 152], "arrai": [0, 1, 3, 5, 6, 8, 9, 10, 22, 23, 24, 25, 26, 27, 28, 29, 30, 48, 50, 51, 54, 55, 56, 59, 63, 64, 67, 69, 83, 85, 87, 88, 90, 104, 105, 106, 108, 109, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 131, 132, 136, 138, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 158, 160, 161, 164, 165, 168, 170, 174, 176, 177, 178, 180, 181, 182, 184, 192, 194], "array1": [161, 165], "array_0": 170, "array_config": [32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 59, 161, 165, 170, 184], "array_evalu": 83, "array_identifi": [160, 168, 174, 181], "array_kei": [147, 152], "array_nam": [161, 165, 170], "array_out": 6, "array_stor": [0, 1, 5, 6, 8, 9, 104, 108, 111, 113, 138, 140, 167, 168, 181, 184], "array_typ": [23, 35, 38], "array_util": [179, 184], "arrayconfig": [31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 54, 56, 161, 165, 170], "arraydataset": [38, 44], "arrayevalu": 83, "arraykei": [63, 64, 129, 131, 132, 133, 134, 138, 147, 148, 150, 152, 153, 154], "arrayspec": [147, 148, 152], "arraystor": [160, 164], "arraytyp": [67, 184], "articl": 190, "artifact": 192, "arxiv": 190, "as_dict": 163, "aspect": [81, 93], "assembl": 193, "assert": [67, 143], "assertionerror": [67, 68, 69, 150, 151, 152, 153, 154, 178], "assign": [20, 21, 180], "associ": [22, 27, 54, 56, 67, 71, 72, 73, 74, 75, 78, 93, 116, 118, 119, 120, 122, 144, 145, 171, 172, 173, 181, 182], "assum": [0, 26, 27, 83, 119, 121, 122, 182, 183], "astyp": [178, 192], "attent": [17, 18, 21], "attention_block": 17, "attentionblock": 17, "attentionblockmodul": 17, "attribut": [17, 18, 20, 21, 24, 35, 36, 38, 51, 54, 78, 81, 82, 88, 91, 93, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 113, 127, 128, 137, 138, 145, 147, 152, 162], "attributeerror": [17, 21, 87, 88], "attributeoverrid": 163, "aubrei": 190, "augment": [127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 150, 151, 152, 192, 193, 194], "augment_config": [132, 138, 184], "augmentation_prob": [130, 132, 133, 135, 150, 152], "augmentconfig": [129, 132, 133, 134, 135, 137, 138], "author": [185, 187, 190], "auto": [184, 187, 192], "autoapi": [184, 187], "autoapi_dir": 187, "autoapi_ignor": 187, "autoapi_opt": 187, "autoapi_typ": 187, "autobuild": 187, "autodoc": 187, "automat": [13, 14], "autonotebook": 192, "autoskip": [147, 152, 153], "avail": [13, 14, 67, 70, 169, 170, 171, 172, 173, 194], "averag": [17, 83, 88, 89, 157], "avoid": [31, 38, 58, 62, 67, 68, 83, 93, 126, 150, 152, 192], "aws_access_key_id": 185, "aws_profil": 185, "aws_region": 185, "aws_secret_access_kei": 185, "ax": 192, "axi": [3, 18, 21, 104, 108, 150, 152], "axis_nam": [3, 38, 46, 47, 174, 192], "b": [17, 21, 82, 83, 88, 162, 163, 170], "back": [13, 14, 162, 163], "backbon": [67, 70], "backend": 192, "background": [32, 38, 77, 83, 93, 115, 116, 118, 119, 120, 152, 154, 180, 192, 193], "background_as_object": [77, 93, 115, 119], "backwards_map": 90, "balanc": [83, 178], "balance_weight": [179, 184], "base": [0, 12, 13, 14, 15, 16, 18, 20, 21, 31, 38, 48, 52, 53, 54, 55, 63, 64, 85, 86, 87, 88, 93, 102, 108, 109, 110, 117, 118, 119, 123, 126, 129, 132, 138, 140, 141, 149, 150, 152, 154, 155, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 172, 173, 178, 182, 189, 194], "basedir": [168, 169], "bash": [185, 191], "basic": [192, 194], "basicconfig": 194, "batch": [15, 17, 18, 21, 67, 68, 70, 127, 136, 138, 140, 141, 147, 148, 149, 150, 151, 152, 153, 154, 180, 192, 193], "batch_norm": [17, 18, 21], "batch_provid": [127, 138], "batch_siz": [127, 136, 138, 140, 141, 192, 194], "batchfilt": [129, 132, 138, 147, 148, 152, 153], "batchprovid": [127, 138, 149, 152], "batchrequest": [147, 148, 149, 152, 153, 180], "bceloss": [98, 99], "bcelosswithlogit": [67, 68], "becaus": [24, 119, 122], "been": [27, 28, 33, 38, 67, 83, 87, 88, 116, 118, 119, 120, 143, 145, 162, 163], "befor": [17, 18, 21, 79, 83, 92, 93, 95, 119, 120, 180, 189], "begin": 189, "behind": 166, "being": [31, 33, 38, 52, 53, 54, 56, 67, 71, 73, 74, 116, 118, 119, 120, 145], "belong": 192, "below": [13, 14, 188], "bennett": 190, "best": [0, 67, 72, 73, 82, 83, 84, 85, 86, 87, 88, 89, 90, 145, 155, 168, 169, 173, 181, 183, 188, 194], "best_scor": [87, 88, 181], "best_validation_arrai": 168, "bestscor": [87, 88, 181], "better": [82, 84, 86, 87, 88, 89, 157], "between": [3, 17, 21, 38, 39, 82, 83, 88, 90, 96, 97, 99, 130, 132, 150, 152, 182, 186, 190, 192], "bg": 83, "bia": [10, 74, 108, 114, 192], "bill": [11, 13], "bin": 185, "binar": [32, 38, 42], "binari": [27, 32, 38, 39, 42, 82, 83, 88, 91, 93, 94, 98, 99, 104, 108, 116, 118, 119, 120, 184], "binarize_array_config": [38, 184], "binarize_gt": [59, 62], "binarizearrai": [32, 38], "binarizearrayconfig": [32, 38], "binary_arrai": 24, "binary_segmentation_evalu": [88, 184], "binary_segmentation_evaluation_scor": [88, 184], "binaryarrai": 24, "binarysegmentationevalu": [78, 83, 88, 91, 93], "binarysegmentationevaluationscor": [82, 83, 88], "bind": [69, 136, 138, 181], "bind_address": [69, 136, 138, 181], "bind_port": [69, 136, 138, 181], "bioimag": 190, "biomed": [192, 193], "blipp": [84, 88], "blipp_scor": [84, 85, 88], "blob": [18, 21], "block": [2, 3, 4, 6, 7, 10, 17, 18, 21, 82, 86, 88, 104, 108, 111, 113, 186, 191], "block_id": 10, "block_siz": [104, 108, 111, 113], "blockwis": [108, 111, 113, 155, 158, 184], "blockwise_task": [4, 184], "blog": 190, "blueprint": [138, 140], "blur": 180, "bokeh_plot_run": 157, "bool": [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 44, 47, 49, 51, 54, 58, 59, 61, 62, 67, 69, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 115, 116, 118, 119, 124, 126, 127, 128, 130, 132, 133, 136, 137, 138, 140, 141, 145, 147, 150, 152, 155, 157, 158, 163, 171, 180, 181, 182, 186], "boolean": [16, 20, 21, 22, 26, 27, 28, 29, 31, 38, 47, 49, 54, 61, 62, 81, 93, 126, 127, 128, 137, 138, 141, 180], "both": [54, 56, 67, 83, 118, 119, 145, 192], "bound": [82, 84, 86, 87, 88, 89], "boundari": [3, 25, 27, 79, 83, 92, 93, 115, 118, 119, 120, 122, 192], "break": 192, "browser": [189, 192], "bsub": [13, 184], "bucket": 192, "bug": 192, "build": [17, 21, 127, 138], "build_batch_provid": [127, 136, 138, 140], "builder": 187, "built": [12, 13, 14, 15, 21, 189], "builtin": 187, "c": [17, 21, 27, 30, 186, 190, 192], "cach": 69, "calcul": [3, 17, 25, 27, 30, 48, 54, 76, 77, 83, 88, 89, 90, 93, 94, 96, 97, 99, 116, 118, 119, 120, 150, 152, 182, 192], "calculate_and_apply_pad": 17, "call": [27, 28, 33, 38, 71, 73, 74, 81, 83, 87, 88, 93, 149, 152, 162, 163], "callabl": [1, 5, 6, 8, 9, 163], "caller": 160, "can": [7, 11, 12, 13, 14, 15, 17, 21, 22, 24, 25, 26, 27, 30, 31, 34, 38, 43, 47, 48, 54, 55, 58, 62, 67, 69, 70, 79, 87, 88, 92, 93, 95, 99, 100, 108, 109, 116, 118, 119, 120, 122, 126, 127, 129, 132, 133, 134, 135, 136, 138, 140, 150, 152, 163, 182, 185, 187, 188, 189, 190, 192, 193, 194], "can_train": [127, 136, 138, 140], "candid": 182, "cannot": [0, 71, 79, 92, 93, 95, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 138, 140, 141, 155], "cardona": [18, 21], "carolin": [187, 190], "case": [67, 83, 93, 103, 145, 194], "cattr": 163, "caus": 192, "cel": 3, "cell": 192, "cell_arrai": 192, "cell_data": 192, "cell_mask": 192, "cellmap": [190, 191, 192], "cells3d": 192, "center": [3, 17, 77, 93], "center_confidence_thr": 3, "central": 162, "certain": [67, 83, 119, 122, 145], "chain": [67, 68, 74], "chanc": 192, "chang": [98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 150, 152, 194], "channel": [15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 32, 33, 38, 39, 40, 42, 67, 68, 71, 73, 74, 79, 82, 83, 88, 92, 93, 95, 98, 99, 104, 108, 115, 116, 118, 119, 120, 121, 147, 152, 186, 192], "channel1": [27, 28, 82, 83, 88], "channel1__dic": [82, 88], "channel1__f1_scor": [82, 88], "channel1__hausdorff": [82, 88], "channel2": [82, 83, 88], "channel_nam": 23, "channel_scor": [82, 88], "channels_in": [19, 21], "channels_out": [19, 21, 186], "charact": [31, 38, 47, 49, 54, 58, 59, 62, 93, 126], "check": [2, 4, 7, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 47, 49, 54, 59, 62, 67, 71, 73, 87, 88, 93, 126, 127, 136, 138, 140, 145, 170, 181], "check_class_nam": [59, 62], "check_funct": 7, "checker": 181, "checkpoint": [71, 73, 93, 124, 169, 183, 188, 192, 194], "child": [50, 54], "chmod": 185, "choic": [192, 194], "choos": [71, 72, 73, 75, 132, 133, 192, 193, 194], "chunk": [3, 38, 47, 106, 108, 109, 190], "chunk_siz": [106, 108, 109], "cl": [35, 38, 81, 93, 162, 163], "class": [3, 162, 177, 178, 188], "class1": [24, 25, 27, 30], "class2": [27, 30], "class_id": 178, "class_nam": [3, 59, 62], "classes_channel": [71, 73], "classes_separator_charact": [59, 62], "classif": [24, 32, 38, 39, 42, 119, 121], "classifi": 83, "classmethod": [155, 156], "clear": [150, 152], "clearli": [51, 54], "cli": [1, 5, 6, 8, 9, 185, 187, 189], "client": [170, 171], "clip": [82, 83, 88, 116, 119, 132, 133, 136, 137, 138, 178, 192, 194], "clip_dist": [79, 83, 88, 92, 93, 95, 192], "clip_raw": [136, 137, 138, 192], "clipmax": [79, 93, 116, 119, 178], "clipmin": [79, 93, 116, 119, 178], "cloud": [38, 47, 190, 194], "cls_fn": [162, 163], "cls_fun": 162, "cluster": [3, 11, 13, 182, 190, 194], "cluster_iou_thr": 3, "cmap": 192, "cnn": [19, 21], "cnnectom": [18, 21], "cnnectome_unet": [21, 184], "cnnectome_unet_config": [21, 184], "cnnectomeunet": [17, 18, 21], "cnnectomeunetconfig": [18, 21, 192, 194], "cnnectomeunetmodul": [17, 21], "co": 186, "code": [150, 152, 190, 191], "coeffici": [82, 83, 88], "col": 192, "colab": 190, "collaps": [147, 152], "collect": [67, 145, 151, 152, 165, 170, 171, 173], "color": 192, "column": [182, 192], "column_titl": 192, "com": [18, 21, 191, 192, 194], "combin": [17, 69, 82, 83, 87, 88, 190, 192, 193, 194], "combo": [87, 88], "come": [160, 168, 187], "command": [11, 12, 13, 14, 185, 186, 189, 190, 192, 194], "common": [71, 73, 74, 187], "commonli": [83, 192, 193], "commun": 190, "compar": [67, 77, 83, 87, 88, 93, 119, 122, 145, 165, 166, 182, 194], "comparison": [49, 54, 194], "complet": [7, 188], "compon": [6, 76, 80, 93, 136, 138, 140, 192, 193, 194], "compress": [38, 47], "comput": [11, 12, 13, 14, 59, 62, 67, 68, 78, 83, 87, 88, 93, 94, 96, 97, 98, 99, 100, 101, 115, 119, 127, 138, 145, 156, 178, 182, 190, 194], "compute_context": [155, 156, 184], "compute_output_shap": [67, 68], "computecontext": [11, 12, 13, 14], "concat_array_config": [38, 184], "concatarrai": [33, 38], "concatarrayconfig": [33, 38], "concaten": 17, "concret": [161, 162, 163], "concurr": [38, 47, 166], "conda": [190, 192], "condit": [61, 62, 83, 182], "conduct": 192, "confid": 3, "confidence_thr": 3, "config": [16, 21, 31, 32, 35, 36, 37, 38, 39, 40, 42, 45, 46, 47, 51, 52, 53, 54, 59, 61, 62, 65, 66, 67, 70, 71, 72, 73, 74, 75, 77, 79, 93, 95, 126, 128, 129, 132, 138, 141, 155, 156, 157, 158, 160, 161, 164, 165, 168, 175, 193], "config_0": 170, "config_fil": [155, 156], "config_nam": [161, 165, 170], "config_stor": [167, 184, 192, 194], "configstor": [161, 164], "configur": [3, 16, 18, 20, 21, 31, 32, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 67, 69, 70, 72, 73, 75, 81, 93, 94, 108, 110, 124, 126, 129, 130, 131, 132, 137, 138, 141, 151, 152, 155, 156, 161, 165, 170, 187, 190, 193, 194], "conjunct": 162, "connect": [180, 192], "consecut": 90, "consensu": 3, "consid": [32, 38, 79, 83, 88, 92, 93, 95, 99, 100, 118, 119, 138, 141], "consist": [17, 21, 67, 68], "constant": [17, 21, 34, 38, 83, 132, 134], "constant_array_config": [38, 184], "constant_upsampl": [17, 18, 21, 192, 194], "constantarrayconfig": [34, 38], "constraint": [18, 21], "construct": [91, 93, 131, 132, 176], "constructor": [27, 28, 33, 38, 57, 60, 62], "cont": 182, "contain": [0, 1, 5, 6, 7, 8, 9, 20, 21, 25, 27, 30, 32, 38, 39, 42, 47, 54, 55, 57, 59, 60, 61, 62, 65, 66, 67, 69, 81, 82, 83, 88, 93, 104, 106, 108, 109, 113, 124, 126, 127, 128, 136, 137, 138, 141, 142, 143, 144, 145, 149, 150, 152, 154, 155, 158, 160, 162, 163, 166, 168, 169, 180, 181, 182, 184, 186, 187], "container_id": 189, "context": [7, 11, 12, 13, 14, 17, 21, 108, 114, 116, 118, 119, 120, 122, 127, 136, 138, 156, 186, 190, 192], "conting": 182, "contingency_t": 182, "continu": [67, 70, 192, 193], "contribut": 182, "control": [130, 132, 150, 152], "control_point_displacement_sigma": [130, 132, 150, 152, 194], "control_point_spac": [130, 132, 150, 152, 194], "conv": [17, 19, 21], "conv_pass": 17, "conveni": [160, 168, 194], "convers": [162, 163], "conversion_hook": [167, 184], "convert": [67, 104, 106, 108, 109, 116, 118, 119, 120, 121, 122, 143, 145, 162, 167, 184, 190], "convolut": [17, 18, 19, 21, 192, 193], "convolution_crop": 17, "convolv": 192, "convpass": 17, "convtranspos": [17, 21], "coordin": [7, 15, 18, 19, 21, 27, 30, 38, 44, 46, 47, 48, 54, 55, 56, 59, 62, 67, 68, 77, 93, 104, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 122, 130, 132, 143, 150, 152, 174, 176, 192, 194], "copi": [18, 21, 34, 38, 43, 74, 152, 177, 184, 187, 194], "copy_kei": [147, 152], "copy_mask": [147, 152], "copymask": [147, 152], "copyright": 187, "correct": [162, 163], "correctli": [83, 183, 188], "correspond": [17, 21, 31, 38, 52, 53, 83, 93, 126, 129, 132, 138, 162, 182, 194], "cosem": [72, 73, 190], "cosem_start": [73, 184], "cosem_start_config": [73, 184], "cosemstart": [71, 73, 188], "cosemstartconfig": [72, 73], "cost": [160, 168], "could": [17, 26, 27, 79, 93, 95], "count": [79, 92, 93, 95, 115, 116, 117, 118, 119, 120, 121, 122, 178, 182, 185], "coupl": 194, "cover": [177, 192], "cpu": [11, 12, 13, 14, 67, 70, 136, 137, 138, 140], "crash": [2, 4, 7], "creat": [11, 12, 13, 17, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 38, 41, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 67, 81, 93, 94, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 136, 138, 140, 145, 150, 152, 160, 164, 180, 181, 184, 185, 190, 192], "create_arrai": [34, 35, 38, 41, 43, 44], "create_array_stor": 164, "create_compute_context": [12, 13], "create_config_stor": [164, 192, 194], "create_distance_mask": [116, 118, 119], "create_from_identifi": [108, 111, 174], "create_model": [93, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125], "create_optim": [127, 136, 138, 140], "create_stats_stor": [164, 192], "create_stor": [167, 184, 192, 194], "create_target": [115, 116, 117, 118, 119, 120, 121, 122], "create_weight": [115, 116, 117, 118, 119, 120, 121, 122], "create_weights_stor": 164, "createpoint": 180, "cremi": [83, 194], "cremiev": 83, "cremievalu": 83, "criteria": [67, 82, 83, 84, 85, 86, 87, 88, 89, 90, 145], "criterion": [0, 67, 71, 72, 73, 74, 75, 82, 84, 86, 87, 88, 89, 144, 145, 155, 168, 169, 173, 186, 192, 193], "criterion1": [82, 84, 86, 88, 89, 169], "criterion2": [82, 84, 86, 88, 89, 169], "critic": 186, "crop": [17, 35, 38, 59, 62, 79, 93], "crop_array_config": [38, 184], "crop_factor": 17, "crop_to_factor": 17, "croparrai": [35, 38], "croparrayconfig": [35, 38], "cross": [6, 98, 99], "csc_matrix": 182, "csr_matrix": 182, "css": 187, "csv": [59, 62], "csv_path": [59, 62], "cuda": [13, 14, 69], "current": [11, 13, 58, 59, 62, 67, 143, 145, 160, 164, 189, 190, 192], "custom": [59, 187, 192], "customenum": 59, "customenummeta": 59, "cv": 190, "d": [178, 181, 185], "da": 3, "dacapo": [184, 185, 187, 188, 191, 192, 194], "dacapo_create_target": [152, 184], "dacapo_fil": 192, "dacapo_options_fil": 192, "dacapo_points_sourc": [152, 184], "dacapoblockwisetask": [2, 4], "dacapoconfig": [155, 156], "dacapotargetfilt": [148, 152], "dacapotest": 185, "daisi": [2, 3, 4, 6, 10, 104, 108, 111], "dashboard": [191, 194], "dask": 3, "data": [0, 1, 3, 5, 8, 9, 11, 13, 17, 18, 21, 23, 25, 27, 30, 32, 33, 34, 38, 39, 42, 43, 47, 48, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 73, 74, 83, 106, 108, 115, 119, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 149, 150, 151, 152, 154, 155, 156, 160, 163, 165, 168, 170, 177, 178, 180, 181, 186, 190, 193], "dataarrai": [67, 143, 145, 192], "databas": [156, 161, 165, 166, 170, 171, 192, 194], "datakei": [63, 64], "dataset": [0, 1, 5, 6, 8, 9, 57, 59, 60, 61, 62, 65, 66, 67, 85, 87, 88, 108, 111, 131, 132, 136, 138, 140, 144, 145, 148, 152, 155, 158, 160, 161, 165, 168, 169, 170, 173, 181, 184, 186, 192, 194], "dataset1": 169, "dataset2": 169, "dataset_0": 170, "dataset_config": [50, 51, 54, 55, 170, 184], "dataset_nam": 170, "dataset_typ": [51, 54, 56, 59, 62], "datasetconfig": [49, 54, 61, 62, 66, 170], "datasets_config": 183, "datasetspec": [59, 62], "datasettyp": [59, 62], "datasplit": [0, 67, 69, 70, 87, 88, 108, 111, 127, 138, 140, 145, 155, 160, 161, 165, 168, 169, 170, 181, 184, 190, 193, 194], "datasplit1": [161, 165], "datasplit_0": 170, "datasplit_config": [57, 60, 62, 65, 66, 67, 70, 161, 165, 170, 184, 192, 194], "datasplit_gener": [62, 184], "datasplit_nam": [161, 165, 170], "datasplit_typ": [61, 62, 66, 192], "datasplitconfig": [58, 59, 61, 62, 67, 70, 161, 165, 170], "datasplitgener": [59, 62], "datatyp": 23, "davi": 190, "david": [187, 190], "db": 187, "db_host": [170, 171], "db_name": [170, 171], "dbpass": [192, 194], "dbport": [192, 194], "dburl": [192, 194], "dbuser": [192, 194], "debug": [186, 194], "decid": [67, 70, 73, 74], "decis": [150, 152], "decod": [17, 21], "decreas": [17, 21], "dedic": [137, 138], "deep": [116, 118, 119, 120, 190], "default": [0, 17, 21, 32, 33, 38, 49, 54, 59, 61, 62, 67, 70, 81, 92, 93, 116, 118, 119, 120, 122, 129, 130, 131, 132, 133, 134, 135, 137, 138, 150, 152, 155, 158, 165, 168, 170, 171, 177, 178, 180, 181, 182, 186, 187, 192], "default_config": [33, 38], "default_paramet": 3, "defin": [3, 12, 13, 14, 15, 16, 21, 27, 30, 49, 54, 67, 70, 108, 110, 111, 113, 114, 119, 122, 136, 138, 140, 161, 180, 182, 188, 192, 193, 194], "deform": [130, 132, 150, 152], "degre": 83, "delet": [67, 143, 145, 161, 165, 166, 170, 171, 172, 173, 192], "delete_aft": [67, 143, 145], "delete_architecture_config": 161, "delete_array_config": 161, "delete_config": [161, 165, 170], "delete_datasplit_config": 161, "delete_run_config": [161, 170], "delete_task_config": [161, 192], "delete_trainer_config": 161, "delete_training_stat": [166, 171, 172], "delete_validation_scor": 171, "demonstr": 193, "den": 178, "dens": 194, "denser": [79, 92, 93, 95], "dep": [147, 148, 152], "depend": [119, 122, 147, 148, 149, 152, 153, 190], "deprec": 181, "deprecated_start_neuroglanc": 181, "depth": [17, 21], "deriv": [12, 13, 15, 16, 21, 31, 38, 49, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 93, 103, 126, 129, 132, 138, 141], "describ": [27, 28], "descript": [185, 190], "descriptor": [96, 99, 115, 119, 190], "design": [12, 13, 14, 15, 21, 38, 47, 155, 156], "desir": [38, 44, 151, 152, 186], "detail": [130, 132, 150, 152, 188], "detailed_valid": 163, "detect": [13, 14, 83, 106, 108], "detection_threshold": [81, 93, 106, 108], "determin": [17, 21, 22, 23, 24, 25, 27, 30, 82, 83, 84, 86, 87, 88, 89, 106, 108, 116, 119, 150, 152, 163, 169, 192], "deviat": [130, 132, 150, 152, 157, 180], "devic": [11, 12, 13, 14, 69, 127, 136, 138, 140], "dga": 10, "dian": 190, "dice": [82, 83, 88], "dict": [3, 22, 24, 25, 27, 28, 33, 38, 59, 62, 74, 87, 88, 90, 156, 163, 166, 169, 170, 178, 180, 181], "dict_factori": 163, "dictat": 17, "dictionari": [3, 24, 33, 38, 69, 82, 88, 162, 163, 166, 173, 180, 181], "didn": 10, "differ": [17, 21, 23, 35, 38, 59, 62, 63, 64, 67, 70, 97, 99, 119, 122, 182, 186, 190], "difficult": 194, "dilat": 180, "dilatepoint": 180, "dim": [15, 17, 21, 67, 115, 119, 121, 145], "dimens": [15, 17, 21, 26, 27, 32, 38, 39, 42, 67, 68, 83, 115, 116, 117, 118, 119, 120, 121, 122, 130, 132, 145, 150, 152, 176], "dimension": [38, 47, 190, 192, 193], "direct": 192, "directli": [93, 119, 122, 126, 138, 140, 141, 182], "directori": [6, 7, 8, 165, 166, 168, 169, 186, 187, 189, 190, 192], "disabl": 186, "discoveri": [82, 83, 88], "discuss": 190, "disk": [38, 47, 192, 194], "dispatch": 163, "displac": [130, 132, 150, 152], "displai": 181, "dist_task_config": 192, "distanc": [3, 27, 30, 78, 79, 82, 83, 88, 91, 92, 93, 94, 95, 98, 99, 116, 118, 119, 120, 122, 130, 132, 150, 152, 180, 182, 184, 190, 192, 193], "distance_arrai": [25, 27], "distance_loss": [98, 99], "distance_mask": [118, 119], "distance_predictor": [119, 184], "distance_task": [93, 184], "distance_task_config": [93, 184], "distance_transform_edt": [116, 119], "distancearrai": [25, 27, 116, 119, 120], "distancepredictor": [78, 93, 116, 119], "distancetask": [78, 93], "distancetaskconfig": [79, 93, 192], "distinct": [79, 92, 93, 95], "distinguish": [67, 70, 192], "distribut": [27, 30, 130, 132, 150, 152], "distribute_work": [11, 12, 13, 14], "divid": [83, 182], "divide_column": 182, "divide_row": 182, "divis": 182, "divisor": 3, "do": [17, 38, 47, 67, 143, 150, 152, 182, 186, 193], "do_aug": [150, 152], "do_valid": [155, 175], "doc": 187, "dockerfil": 189, "dockerhub": 185, "document": [170, 184, 187, 189, 190], "doe": [59, 62, 71, 73, 96, 99, 161, 165, 166, 168, 169, 181, 183, 192], "does_new_best_exist": 181, "doesn": [181, 194], "doi": [3, 190], "don": [18, 21, 160, 168, 185], "done": [11, 12, 13, 14, 17, 119, 122, 192, 194], "down": [17, 21, 38, 44], "download": [188, 189, 192], "downsampl": [3, 17, 18, 21, 38, 44, 59, 62, 77, 93, 115, 119, 130, 132, 136, 138, 192, 193], "downsample_factor": [17, 18, 21, 192, 194], "downsample_lsd": [77, 93, 115, 119], "drop": [17, 21, 147, 152], "drop_channel": [147, 152], "ds_": 192, "ds_store": 187, "dt": 186, "dt_scale_factor": [116, 118, 119, 120], "dtype": [0, 3, 35, 38, 155, 158, 174, 176, 178, 180, 186, 192], "due": [2, 4, 7, 17, 21, 150, 152], "dummi": [19, 20, 21, 36, 38, 51, 54, 61, 62, 80, 81, 84, 85, 88, 93, 97, 99, 102, 106, 107, 108, 117, 119, 127, 128, 138], "dummy_architectur": [21, 184], "dummy_architecture_config": [21, 184], "dummy_arrai": [51, 54], "dummy_array_config": [38, 184], "dummy_dataset": [54, 184], "dummy_dataset_config": [54, 184], "dummy_datasplit": [62, 184], "dummy_datasplit_config": [62, 184], "dummy_evalu": [88, 184], "dummy_evaluation_scor": [85, 88, 184], "dummy_loss": [99, 184], "dummy_post_processor": [108, 184], "dummy_post_processor_paramet": [106, 108, 184], "dummy_predictor": [119, 184], "dummy_task": [93, 184], "dummy_task_config": [93, 184], "dummy_train": [138, 184], "dummy_trainer_config": [138, 184], "dummyarchitectur": [19, 20, 21], "dummyarchitectureconfig": [20, 21], "dummyarrai": [36, 38], "dummyarrayconfig": [36, 38, 51, 54], "dummydataset": [50, 54], "dummydatasetconfig": [51, 54, 61, 62], "dummydatasplit": [57, 60, 61, 62], "dummydatasplitconfig": [61, 62], "dummyevalu": [80, 85, 88, 93], "dummyevaluationscor": [84, 85, 88], "dummyloss": [80, 93, 97, 99], "dummypostprocessor": [80, 93, 106, 108], "dummypostprocessorparamet": [106, 107, 108], "dummypredictor": [80, 93, 117, 119], "dummytask": [80, 81, 93], "dummytaskconfig": [81, 93], "dummytrain": [127, 138], "dummytrainerconfig": [128, 138], "duplicatenameerror": [161, 165, 170], "dure": [15, 18, 21, 67, 68, 70, 137, 138, 141, 170, 181, 192, 193, 194], "dvid": [37, 38], "dvid_array_config": [38, 184], "dvidarrai": [37, 38], "dvidarrayconfig": [37, 38], "e": [17, 21, 59, 62, 67, 68, 79, 83, 85, 87, 88, 90, 92, 93, 95, 108, 109, 119, 122, 150, 152, 161, 176, 182, 190], "each": [3, 15, 17, 18, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 38, 42, 52, 53, 67, 69, 83, 87, 88, 93, 97, 99, 103, 116, 118, 119, 120, 126, 129, 132, 138, 141, 142, 143, 144, 145, 149, 150, 152, 160, 162, 163, 166, 168, 180, 182, 186, 192, 193, 194], "easi": [49, 54, 169, 190, 192, 193], "easili": [58, 62, 67, 143, 193, 194], "ec": 188, "edg": [6, 83, 176], "edt": 83, "effect": [138, 140], "effici": 17, "eg": [49, 54], "either": [2, 4, 7, 17, 21, 24, 83, 182, 192], "elast": [130, 132, 150, 152], "elastic_augment_config": [130, 132], "elastic_augment_fus": [152, 184], "elastic_config": [132, 184], "elasticaug": [130, 132, 150, 152], "elasticaugmentconfig": [130, 132, 194], "elasticli": [150, 152], "element": [17, 31, 38, 182], "els": [13, 14, 59, 62], "elsewher": [67, 145], "embed": [27, 116, 117, 118, 119, 120, 121, 181, 184], "embedding_arrai": [26, 27], "embedding_dim": [26, 27, 81, 93, 116, 117, 118, 119, 120, 121], "embeddingarrai": [26, 27, 115, 117, 119], "empanada": 3, "empanada_funct": [4, 184], "empanada_napari": 3, "empanada_segment": 3, "emphas": 17, "empti": [32, 38, 57, 60, 62, 63, 64, 67, 69, 83, 143, 152, 154, 178], "empty_cuda_cach": 69, "en": [187, 192], "enabl": [147, 152, 153], "encod": [17, 21, 92, 93, 116, 118, 119, 121, 190], "encourag": 194, "end": [168, 186], "endo": 188, "endo_mem": 188, "engin": 3, "engine3d": 3, "enlarg": [150, 152], "enough": 17, "ensur": [17, 188, 189], "enter": [127, 136, 138], "entropi": [98, 99, 182], "enum": 59, "enumer": [63, 64, 104, 106, 108, 109, 111, 113, 178], "enumerate_paramet": [104, 106, 108, 109, 111, 113], "environ": [185, 189, 190], "epsilon": [116, 118, 119, 120], "equal": [38, 42, 48, 54, 56, 127, 138, 182], "equival": 177, "equivari": 17, "er": [59, 62, 188], "er_mem": 188, "error": [58, 62, 67, 82, 83, 88, 93, 94, 98, 99, 101, 145, 161, 178, 182, 186, 192], "error_scal": 178, "especi": [35, 38], "essenti": [138, 140], "establish": [190, 192, 193], "etc": [11, 12, 13, 69, 193, 194], "euclidean": 83, "eval": [67, 68, 162, 163], "eval_activ": [67, 68], "eval_input_shap": [67, 68], "eval_shape_increas": [15, 17, 21, 192, 194], "evalu": [35, 38, 67, 68, 76, 77, 78, 79, 80, 91, 93, 94, 95, 102, 123, 125, 144, 145, 182, 184, 192, 193, 194], "evaluation_arrai": [83, 87, 88, 90], "evaluation_dataset": [85, 88], "evaluation_scor": [67, 82, 84, 87, 88, 89, 93, 125, 145, 184], "evaluationscor": [67, 82, 84, 86, 87, 88, 89, 93, 125, 145], "even": [192, 193], "ever": [118, 119], "everi": [138, 140, 194], "everyth": 194, "exact": 194, "exampl": [0, 3, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 36, 37, 38, 43, 47, 49, 51, 54, 58, 59, 61, 62, 67, 68, 69, 71, 72, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 178, 180, 181, 186, 192, 194], "example_aff": 192, "example_dataset": 192, "example_datasplit": 192, "example_dist": 192, "example_gt": 192, "example_raw": 192, "example_raw_norm": 192, "example_run": 192, "example_unet": 192, "exc_tb": [127, 136, 138], "exc_typ": [127, 136, 138], "exc_val": [127, 136, 138], "except": [71, 73, 74, 146], "exclud": [48, 54, 90], "exclude_lay": [48, 54], "exclude_pattern": 187, "execut": [12, 13, 14, 67, 68, 193, 194], "exist": [0, 59, 62, 67, 71, 73, 74, 143, 145, 150, 152, 155, 158, 161, 165, 166, 168, 169, 181, 186, 192], "existing_iteration_scor": [67, 145], "exit": [127, 136, 138], "expand": 180, "expand_label": 180, "expandlabel": 180, "expect": [17, 18, 21, 32, 38, 39, 42], "expens": [150, 152], "experi": [0, 148, 152, 155, 158, 159, 161, 169, 171, 172, 173, 175, 181, 183, 184, 188, 192, 193], "explain": [31, 38, 138, 141, 188], "ext": [155, 184, 187], "extend": [20, 21, 81, 93, 94, 163, 177], "extens": 187, "extent": 3, "extra": [59, 119, 122, 160, 168, 185, 192, 194], "extra_str": 59, "extract": [54, 56], "extractor": [115, 119], "extrem": 83, "f": 192, "f1": [82, 83, 88], "f1_score": [82, 83, 88], "f1_score_with_toler": [82, 83, 88], "f_g": 17, "f_in": 17, "f_int": 17, "f_l": 17, "f_left": 17, "factor": [3, 17, 18, 21, 77, 93, 116, 118, 119, 130, 132, 133, 136, 138, 150, 152, 157], "fail": [2, 4, 7], "failur": [2, 4, 7], "fall": [13, 14], "fals": [1, 3, 5, 6, 7, 8, 9, 17, 20, 21, 22, 23, 24, 27, 29, 36, 38, 49, 51, 54, 58, 59, 61, 62, 69, 79, 81, 82, 83, 87, 88, 89, 90, 92, 93, 95, 115, 119, 127, 130, 132, 133, 136, 138, 140, 147, 150, 152, 157, 163, 171, 174, 180, 181, 182, 192, 194], "false_discovery_r": [82, 83, 88], "false_neg": 83, "false_negative_dist": 83, "false_negative_r": [82, 83, 88], "false_negative_rate_with_toler": [82, 83, 88], "false_negatives_with_toler": 83, "false_posit": 83, "false_positive_dist": 83, "false_positive_r": [82, 83, 88], "false_positive_rate_with_toler": [82, 83, 88], "false_positives_with_toler": 83, "far": 194, "fdr": 83, "featur": [17, 18, 21], "fed": [67, 68], "fetch": [136, 137, 138, 194], "fetcher": [136, 137, 138], "fetter": [18, 21], "few": 192, "field": [17, 21, 162, 163, 170, 182], "fig": 192, "figsiz": 192, "figur": [160, 168], "fiji": 190, "file": [0, 2, 4, 7, 35, 38, 46, 47, 59, 62, 93, 102, 123, 124, 155, 156, 161, 165, 166, 169, 185, 186, 187, 188, 190, 192, 194], "file_config_stor": [164, 167, 184], "file_format": [0, 155], "file_nam": [38, 46, 47, 59, 192], "file_stats_stor": [164, 167, 184], "fileconfigstor": [164, 165, 192], "filenotfounderror": [59, 62, 165, 169, 181], "filestatsstor": [164, 166, 192], "filesystem": 193, "fill": [33, 34, 38, 43, 106, 108, 177, 180], "fill_valu": 177, "filter": [3, 83, 147, 152, 170, 180, 192], "final": [104, 106, 108, 109, 194], "find": [0, 6, 17, 31, 38, 87, 88, 93, 119, 120, 126, 150, 152, 155, 160, 168, 169, 189, 192, 193, 194], "find_compon": 6, "fine": 3, "fine_boundari": 3, "finetun": [71, 73, 74, 75], "finish": 192, "first": [17, 21, 31, 38, 87, 88, 98, 99, 119, 121, 152, 153, 182, 188, 192, 194], "fit": [1, 5, 6, 8, 9, 38, 47, 150, 152], "fix": [67, 145], "flag": [17, 20, 21, 186], "flatten": 10, "float": [3, 9, 10, 13, 14, 25, 26, 27, 28, 38, 39, 54, 55, 67, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 95, 96, 99, 106, 108, 112, 114, 115, 116, 118, 119, 120, 127, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 144, 150, 151, 152, 154, 178, 180, 181, 182], "float32": [151, 152, 178, 180], "float64": [151, 152], "floor": 17, "fmap_inc_factor": [17, 18, 21, 192, 194], "fmap_increment_factor": [17, 21], "fmaps_in": [17, 18, 21, 192, 194], "fmaps_out": [17, 18, 21, 192, 194], "fmt": 187, "fn": [82, 83, 88], "focus": 17, "folder": 192, "follow": [3, 17, 67, 68, 69, 142, 143, 144, 150, 152, 166, 182, 185, 189, 190, 192, 194], "forbid_extra_kei": 163, "forc": 192, "foreground": [116, 118, 119, 120, 192, 193], "fork": 192, "format": [0, 59, 67, 143, 155, 169, 186, 190, 192, 193], "format_class_nam": 59, "formula": 83, "forum": 190, "forward": [17, 19, 21, 67, 68, 185], "found": [0, 32, 38, 42, 58, 62, 74, 90, 146, 155, 156, 157, 158, 175, 190, 192], "fov": [17, 21], "fp": [82, 83, 88], "frac": 178, "framework": [49, 54, 190, 192, 193], "free": [13, 14], "frequent": [49, 54], "frizz": [84, 88], "frizz_level": [84, 85, 88], "from": [2, 3, 4, 7, 12, 13, 14, 15, 17, 18, 21, 22, 25, 27, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 52, 53, 54, 57, 59, 60, 61, 62, 67, 71, 72, 73, 74, 75, 80, 83, 86, 88, 91, 93, 98, 99, 101, 102, 103, 108, 111, 113, 115, 116, 117, 119, 122, 123, 124, 126, 129, 130, 132, 138, 140, 141, 145, 147, 148, 150, 152, 155, 156, 161, 163, 165, 166, 168, 169, 170, 171, 173, 176, 180, 181, 183, 185, 188, 189, 190, 192, 193, 194], "from_arrai": 3, "from_toml": [35, 38], "full": [150, 152, 187, 194], "function": [2, 4, 17, 20, 21, 24, 61, 62, 67, 68, 73, 82, 83, 84, 85, 86, 87, 88, 89, 96, 97, 98, 99, 100, 101, 108, 111, 113, 116, 118, 119, 131, 132, 148, 149, 152, 163, 186, 192, 193], "function_path": 8, "funk": [187, 190], "funkelab": [191, 194], "funlib": [0, 7, 15, 18, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 54, 55, 56, 59, 62, 67, 68, 77, 87, 88, 93, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 121, 122, 155, 158, 159, 174, 176, 192, 194], "further": 166, "futur": [130, 132], "g": [17, 21, 59, 62, 108, 109, 119, 122, 161, 190], "g_out": 17, "gamma": [131, 132, 151, 152], "gamma_augment_config": [131, 132], "gamma_config": [132, 184], "gamma_max": [151, 152], "gamma_min": [151, 152], "gamma_nois": [152, 184], "gamma_rang": [131, 132], "gammaaug": [131, 132, 151, 152], "gammaaugmentconfig": [131, 132], "gate": 17, "gaussian": [180, 192], "gaussian_blur_arg": 180, "gaussian_noise_arg": 180, "gaussian_noise_lim": 180, "gb": [13, 14], "gen": 163, "gener": [3, 11, 13, 17, 18, 21, 26, 27, 48, 54, 59, 62, 67, 68, 70, 76, 77, 79, 83, 92, 93, 95, 108, 111, 113, 115, 116, 118, 119, 120, 122, 148, 150, 152, 180, 181, 184, 187, 192], "generate_csv": [59, 62], "generate_dataspec_from_csv": 59, "generate_from_csv": [59, 62], "geometri": [0, 7, 15, 18, 21, 35, 38, 44, 46, 47, 48, 54, 55, 56, 59, 62, 67, 68, 77, 93, 108, 109, 113, 114, 115, 116, 118, 119, 120, 122, 155, 158, 159, 174, 176, 192, 194], "get": [49, 54, 59, 62, 67, 69, 79, 93, 95, 105, 107, 108, 110, 115, 116, 117, 118, 119, 120, 121, 122, 129, 132, 133, 134, 135, 138, 143, 145, 149, 152, 160, 168, 176, 181, 188, 194], "get_arrai": [33, 38], "get_best": [67, 145], "get_d": 181, "get_dataset": 181, "get_model_setup": 71, "get_overall_best": [87, 88], "get_overall_best_paramet": [87, 88], "get_right_resolution_array_config": 59, "get_runs_info": 157, "get_validation_scor": 69, "get_view": 181, "git": [191, 192], "github": [18, 21, 191, 192, 194], "give": [17, 193], "given": [1, 2, 4, 5, 6, 8, 9, 16, 17, 21, 59, 62, 67, 68, 82, 83, 84, 85, 86, 87, 88, 89, 93, 99, 100, 102, 108, 111, 113, 116, 117, 118, 119, 120, 122, 123, 127, 130, 131, 132, 138, 140, 145, 148, 149, 150, 152, 160, 161, 162, 165, 166, 169, 170, 171, 172, 173, 177, 181, 182, 183], "global": [12, 13, 164], "go": [17, 21, 166], "goal": [67, 70], "goe": [192, 194], "good": [38, 40], "gp": [129, 131, 132, 133, 134, 135, 138, 155, 180, 184], "gp_arrai": 174, "gp_augment": [137, 138, 184, 194], "gp_to_funlib_arrai": 174, "gpu": [3, 11, 12, 13, 14, 136, 138, 140], "gradient": [18, 21, 194], "graph": [52, 53, 54, 55, 63, 64, 149, 152, 176], "graph_sourc": [149, 152], "graph_source_config": [53, 184], "graphkei": [63, 64, 149, 150, 152], "graphsourc": [149, 152], "graphspec": [149, 152], "graphstor": [54, 184], "graphstoreconfig": [52, 53], "greater": [17, 21, 83, 104, 107, 108, 112, 178], "grid": [130, 132, 150, 152], "ground": [48, 54, 55, 56, 59, 62, 63, 64, 83, 87, 88, 90, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 138, 140, 148, 152, 154, 181, 182, 192, 194], "groundtruth": [182, 190], "group": [32, 38, 42, 59, 185], "grow": [115, 119], "grow_boundary_iter": [115, 119], "gt": [48, 54, 55, 56, 63, 64, 115, 116, 117, 118, 119, 120, 121, 122, 136, 137, 138, 148, 152, 154, 160, 168, 181, 182, 192], "gt_config": [54, 56, 59, 192], "gt_contain": [59, 62], "gt_dataset": [59, 62], "gt_kei": [129, 132, 138, 148, 152], "gt_min_reject": [136, 137, 138], "gt_region_for_roi": [115, 116, 118, 119, 120, 122], "gt_voxel_s": [116, 118, 119, 120, 122], "gui": [191, 194], "guid": [188, 194], "gunpowd": [129, 131, 132, 133, 134, 135, 136, 137, 138, 147, 148, 149, 150, 152, 153, 180, 194], "gunpowder_train": [138, 184], "gunpowder_trainer_config": [138, 184], "gunpowdertrain": [136, 137, 138], "gunpowdertrainerconfig": [137, 138, 192, 194], "h": [82, 83, 88, 182], "ha": [17, 20, 21, 22, 27, 28, 33, 38, 50, 54, 67, 106, 108, 119, 121, 138, 141, 143, 162, 163, 192, 193, 194], "had": 10, "half": [98, 99], "handl": [67, 71, 73, 74, 78, 93, 145, 192, 194], "happen": [79, 92, 93, 95], "harmon": 83, "hash": [48, 54], "hausdorff": [82, 83, 88], "hausdorffdistanceimagefilt": 83, "have": [17, 18, 21, 26, 27, 30, 31, 34, 35, 36, 38, 42, 43, 52, 53, 67, 83, 87, 88, 93, 108, 109, 116, 118, 119, 120, 122, 126, 128, 129, 132, 138, 140, 141, 145, 150, 152, 160, 168, 182, 185, 188, 189, 190, 192, 194], "haven": 194, "hdf5": [38, 47], "head": [67, 68, 71, 73, 74], "head_kei": 74, "head_weight": 74, "headless": 181, "height": [17, 21, 181], "heinrich": 190, "heirarchi": [38, 47], "held": 194, "help": [23, 67, 70, 83, 185, 187, 194], "helper": [11, 12, 13, 93, 125], "henc": [119, 122, 162], "here": [81, 93, 187, 188, 190, 192, 193, 194], "hierarchi": [162, 163], "higher": [49, 54, 82, 84, 86, 87, 88, 89, 157], "higher_is_bett": [82, 84, 86, 87, 88, 89, 157], "hold": [51, 54, 130, 132, 151, 152], "home": [155, 156, 192], "hook": [162, 163], "hookfactori": 163, "host": [156, 170, 171, 189, 194], "hostedtoolcach": 192, "hot": [91, 92, 93, 98, 99, 102, 103, 116, 118, 119, 121, 190], "hot_distance_loss": [99, 184], "hot_distance_predictor": [119, 184], "hot_distance_task": [93, 184], "hot_distance_task_config": [93, 184], "hot_loss": [98, 99], "hotdistanceloss": [91, 93, 98, 99], "hotdistancepredictor": [91, 93, 118, 119], "hotdistancetask": [91, 92, 93], "hotdistancetaskconfig": [92, 93], "how": [15, 17, 21, 49, 54, 67, 70, 77, 83, 93, 116, 118, 119, 120, 122, 145, 161, 162, 163, 188, 189, 192, 194], "howev": [150, 152], "html": [157, 187, 192], "html_css_file": 187, "html_extra_path": 187, "html_static_path": 187, "html_theme": 187, "http": [18, 21, 187, 189, 191, 192, 194], "hxgy": 182, "hygx": 182, "i": [0, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 169, 170, 173, 175, 176, 177, 178, 180, 181, 182, 183, 186, 187, 188, 189, 190, 192, 194], "ic": 186, "id": [32, 38, 42, 90, 93, 103, 104, 106, 108, 110, 169, 185, 186, 188, 189, 192], "identif": [49, 54], "identifi": [0, 1, 5, 6, 8, 9, 49, 54, 83, 85, 87, 88, 90, 104, 106, 108, 109, 110, 111, 113, 160, 168, 181, 192], "ifram": 181, "ignor": [130, 132, 165, 170, 182, 187], "ignore_groundtruth": 182, "ignore_gt": 182, "ignore_i": 182, "ignore_reconstruct": 182, "ignore_seg": 182, "ignore_x": 182, "imag": [3, 83, 180, 190, 192, 193, 194], "immut": [105, 107, 108, 110, 112], "impact": [67, 70], "implement": [12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 47, 49, 51, 54, 58, 59, 62, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 160, 161, 177, 180], "import": [3, 17, 162, 181, 187, 192, 194], "importerror": 3, "imshow": 192, "in_channel": [17, 21], "in_plac": 182, "inbound": 185, "includ": [12, 13, 14, 15, 18, 21, 38, 47, 54, 56, 67, 68, 69, 70, 71, 82, 83, 84, 86, 88, 89, 93, 94, 136, 138, 145, 150, 152, 162, 163, 185, 187, 192, 193, 194], "incorpor": [129, 132, 133, 134, 135, 138], "incorrectli": 83, "increas": [15, 17, 18, 21, 192], "ind": 178, "independ": [17, 21], "index": [67, 82, 88, 105, 108, 145, 160, 168, 194], "indic": [10, 16, 17, 20, 21, 25, 27, 30, 31, 38, 47, 49, 51, 54, 61, 62, 67, 83, 84, 88, 90, 93, 126, 127, 128, 137, 138, 141, 145, 180], "individu": [180, 192], "inf": [116, 118, 119, 120], "infer": 3, "inference_plan": 3, "info": [181, 186, 194], "inform": [15, 21, 82, 83, 88, 89, 90, 138, 140, 152, 154, 163, 182, 187], "inherit": [11, 12, 13, 14, 15, 21, 27, 29, 35, 38, 71, 73, 80, 83, 86, 88, 91, 93, 97, 98, 99, 100, 101, 117, 119, 125], "init_callback_fn": 7, "initi": [2, 4, 17, 21, 27, 28, 33, 38, 50, 54, 55, 59, 61, 62, 65, 66, 69, 71, 72, 73, 74, 75, 76, 78, 80, 81, 83, 93, 94, 115, 116, 117, 118, 119, 120, 121, 127, 136, 138, 140, 152, 153, 170, 173, 188], "initialis": [57, 60, 62], "initialize_weight": [71, 73, 74], "inner": [67, 69, 93, 94, 142, 143, 144], "inner_distance_predictor": [119, 184], "inner_distance_task": [93, 184], "inner_distance_task_config": [93, 184], "innerdistancepredictor": [119, 120], "innerdistancetask": [93, 94], "innerdistancetaskconfig": [93, 95], "inplac": 90, "input": [0, 1, 5, 8, 9, 10, 15, 17, 18, 19, 20, 21, 57, 59, 60, 62, 67, 68, 73, 74, 98, 99, 104, 105, 107, 108, 112, 115, 119, 122, 138, 140, 150, 151, 152, 153, 155, 158, 160, 168, 180, 182, 186, 188, 192, 194], "input_arrai": [3, 10], "input_array_identifi": [0, 1, 5, 8, 9], "input_contain": [0, 1, 5, 8, 9, 155, 158, 186], "input_dataset": [0, 1, 5, 8, 9, 155, 158, 186], "input_resolut": [59, 62], "input_shap": [15, 17, 18, 19, 21, 67, 68, 180, 192, 194], "input_voxel_s": [15, 21], "insert": [170, 187], "insid": [25, 27, 180], "inside_valu": 180, "inspect": 194, "instal": [3, 185, 188, 189, 192], "instanc": [15, 17, 21, 27, 28, 33, 38, 41, 49, 50, 54, 59, 77, 80, 88, 89, 90, 93, 94, 104, 106, 108, 109, 111, 113, 117, 119, 122, 131, 132, 155, 156, 185, 190, 192, 193], "instance_evalu": [88, 184], "instance_evaluation_scor": [88, 90, 184], "instanceevalu": [76, 88, 90, 93], "instanceevaluationscor": [88, 89, 90], "instanti": [48, 54, 55, 63, 64, 138, 140, 141], "instead": [17, 21, 150, 152], "instruct": 189, "int": [0, 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 34, 38, 42, 48, 49, 54, 59, 62, 67, 68, 69, 70, 73, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 93, 96, 99, 104, 107, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 127, 130, 132, 136, 137, 138, 140, 141, 142, 143, 144, 145, 150, 152, 155, 158, 160, 168, 169, 171, 173, 174, 178, 180, 181, 182, 183, 186], "int32": 176, "int64": [67, 143, 178, 192], "integ": [17, 19, 21, 81, 93, 180], "integr": [136, 138, 187], "intend": 166, "intens": [23, 27, 38, 39, 132, 133, 134, 184], "intensities_arrai": [27, 28], "intensitiesarrai": [27, 28, 38, 39], "intensitiesarrayconfig": [38, 39, 192], "intensity_array_config": [38, 184], "intensity_augment_config": [132, 133], "intensity_config": [132, 184], "intensity_scale_shift_augment_config": [132, 134], "intensity_scale_shift_config": [132, 184], "intensityaug": [132, 133], "intensityaugmentconfig": [132, 133, 194], "intensityscaleshift": [132, 134], "intensityscaleshiftaugmentconfig": [132, 134], "interest": [0, 83, 115, 119, 155], "interfac": [73, 74, 75, 161, 186, 194], "intern": [151, 152, 190], "interp_ord": [38, 44], "interpol": [17, 24, 25, 27, 30, 38, 44, 150, 152, 192], "interpolat": [22, 23, 24, 25, 26, 27, 28, 29, 30, 118, 119], "interpret": 182, "interv": [69, 130, 132, 137, 138, 150, 152, 171, 194], "invalid": [20, 21, 31, 38, 51, 54, 59, 93, 126, 128, 138, 166], "invert": 83, "io": [8, 160, 192], "iou": 3, "iprogress": 192, "ipynb": 187, "ipython": 181, "ipywidget": 192, "is_best": [87, 88], "is_seg": 181, "is_valid": [16, 21], "is_zarr_group": 59, "item": [59, 146, 178], "iter": [0, 5, 67, 69, 70, 83, 85, 87, 88, 90, 93, 104, 106, 108, 109, 111, 115, 119, 125, 127, 136, 137, 138, 140, 142, 143, 144, 145, 150, 151, 152, 155, 158, 160, 166, 168, 169, 171, 172, 173, 180, 181, 183, 186, 192, 193, 194], "iteration_scor": [67, 145], "iteration_stat": [67, 136, 138, 140, 143], "itertool": 178, "itk": 83, "its": [22, 24, 27, 30, 35, 38, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 160], "itself": 160, "j": [3, 182], "jaccard": [82, 83, 85, 87, 88, 90], "jan": [187, 190], "janelia": [191, 192], "jeff": [187, 190], "jitter": [150, 152], "job": [11, 13, 190, 193, 194], "join": 190, "journal": [182, 190], "json": [157, 169], "jupyt": 192, "jupyterlab": 192, "jupytext": 187, "just": [18, 21, 36, 38, 67, 99, 100, 128, 138, 145, 192, 194], "k": [17, 21], "keep": [7, 23, 31, 38, 49, 54, 58, 62, 93, 126], "keep_tmpdir": 7, "kei": [33, 38, 62, 129, 131, 132, 133, 134, 135, 138, 147, 148, 149, 150, 152, 153, 165, 178, 180, 184, 185], "kept": [130, 132], "kernel": [17, 18, 21], "kernel_s": 17, "kernel_size_down": [17, 18, 21, 192], "kernel_size_up": [17, 18, 21, 192], "keyerror": [59, 147, 149, 152, 161, 165], "keymateri": 185, "keyword": [2, 4, 7, 59, 62, 155, 156], "know": [67, 145, 162, 163, 194], "known": [79, 92, 93], "kwarg": [2, 4, 7, 15, 21, 59, 62, 106, 108, 155, 156], "l": [17, 21, 190], "l1": [27, 30], "l_conv": 17, "l_down": 17, "label": [3, 22, 25, 27, 32, 38, 71, 73, 74, 90, 116, 118, 119, 120, 121, 178, 180, 182, 192], "label_cmap": 192, "label_data": 178, "label_divisor": 3, "labeloverlapmeasuresimagefilt": 83, "labels_arrai": 192, "labels_slab": 178, "lack": [49, 54], "lambda": [162, 163], "larg": [7, 17, 35, 38, 47, 150, 152, 190, 192, 193, 194], "larger": [17, 119, 122, 150, 152], "larger_tensor": 17, "largest": 17, "larissa": 190, "last": [67, 145, 166], "latest": [169, 173, 191], "latest_iter": [169, 173], "launch": 185, "layer": [17, 18, 19, 21, 48, 54, 71, 73, 74, 119, 122, 181, 192, 193], "layer_nam": 181, "learn": [17, 21, 67, 70, 127, 136, 138, 140, 141, 190, 193, 194], "learning_r": [127, 136, 138, 140, 141, 192, 194], "leav": [13, 14], "left": [17, 21, 67, 70], "len": [178, 192], "length": [17, 21, 27, 30], "less": [67, 79, 93, 127, 138, 143, 178], "let": [182, 192, 194], "level": [1, 5, 6, 8, 17, 18, 21, 83, 84, 88, 163, 186, 194], "lib": 192, "librari": [3, 63, 64, 83, 136, 138, 140], "like": [17, 21, 67, 68, 70, 169, 180, 187, 192], "likelihood": 192, "limit": [13, 14, 59, 62, 151, 152, 180], "limit_validation_crop_s": 59, "line": [186, 192, 194], "linear": [17, 150, 152, 192, 193], "linearli": [150, 152], "linearlr": [136, 138], "linux": 185, "list": [6, 7, 10, 12, 13, 17, 18, 21, 23, 27, 30, 32, 33, 38, 41, 42, 45, 46, 47, 48, 54, 55, 56, 57, 59, 60, 62, 65, 66, 67, 69, 71, 73, 74, 77, 79, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 103, 108, 110, 113, 114, 115, 116, 118, 119, 120, 121, 130, 132, 136, 137, 138, 140, 142, 143, 144, 145, 157, 161, 163, 165, 166, 170, 171, 172, 176, 178, 180, 181, 182, 187, 189, 192], "listedcolormap": 192, "load": [0, 35, 38, 71, 72, 73, 74, 75, 93, 102, 123, 124, 136, 138, 149, 152, 155, 165, 173, 183, 188], "load_best": 173, "load_starter_model": 69, "load_weight": 173, "local": [13, 14, 67, 96, 99, 115, 119, 145, 155, 158, 160, 165, 168, 169, 185, 190, 192], "local_array_stor": [87, 88, 108, 109, 155, 158, 159, 164, 167, 184], "local_torch": [13, 184], "local_weights_stor": [164, 167, 184], "localarrayidentifi": [0, 1, 5, 6, 8, 9, 87, 88, 104, 108, 109, 111, 113, 155, 158, 159, 160, 168], "localarraystor": [164, 168], "localarryidentifi": [155, 158], "localcontaineridentifi": [136, 138, 140, 160, 168], "localhost": [170, 171, 189], "localtorch": [13, 14, 155, 156], "localvolum": 181, "localweightsstor": [164, 169], "locat": [63, 64, 151, 152, 169, 190], "log": [1, 5, 6, 8, 67, 70, 71, 73, 74, 150, 152, 182, 186, 194], "log_2": 182, "log_level": [1, 5, 6, 8, 9, 186], "logger": [0, 1, 3, 5, 7, 8, 9, 59, 71, 74, 83, 90, 116, 118, 120, 121, 136, 143, 150, 151, 154, 156, 158, 159, 165, 166, 168, 169, 170, 171, 175, 176, 183], "logic": [38, 40, 49, 54], "logical_or_array_config": [38, 184], "logicalorarrai": [38, 40], "logicalorarrayconfig": [38, 40], "long": [17, 21, 194], "look": [160, 168, 187, 188], "loop": [8, 97, 99, 192, 193], "loss": [54, 56, 67, 76, 78, 80, 91, 93, 94, 102, 119, 122, 123, 125, 127, 138, 142, 143, 150, 152, 157, 168, 184, 192, 193, 194], "lower": [67, 82, 88, 145, 151, 152, 186], "lpxgy": 182, "lpygx": 182, "lr_schedul": [136, 138], "lsd": [77, 93, 96, 99, 115, 119], "lsd_pad": [115, 119], "lsd_weight_clipmax": [77, 93, 115, 119], "lsd_weight_clipmin": [77, 93, 115, 119], "lsdextractor": [115, 119], "lsds_to_affs_weight_ratio": [77, 93, 96, 99], "lsf": [11, 13], "m": [157, 178, 182], "machin": [13, 14, 190, 192, 193], "maco": 192, "made": 83, "mai": [35, 38, 47, 67, 68, 83, 138, 140, 177, 182, 190, 192, 193, 194], "main": [190, 194], "mainli": [81, 93], "maintain": 17, "major": [192, 193], "make": [38, 47, 176, 187, 192, 194], "makeraw": 180, "malin": [187, 190], "manag": [127, 131, 132, 136, 138], "mandatori": [54, 56], "mani": [67, 145, 192, 193], "manipulat": [67, 143], "map": [17, 18, 21, 22, 24, 25, 27, 28, 30, 33, 38, 82, 88, 90, 98, 99, 163, 189, 192], "marwan": [187, 190], "mask": [27, 34, 38, 40, 41, 42, 43, 45, 48, 54, 55, 56, 63, 64, 79, 83, 92, 93, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 137, 138, 147, 148, 152, 154, 178, 184, 190, 192], "mask_arrai": 192, "mask_config": [54, 56, 59], "mask_dist": [79, 92, 93, 116, 118, 119], "mask_integral_downsample_factor": [136, 138], "mask_kei": [129, 132, 138, 148, 152], "masked_in": 178, "mass": [77, 93], "master": [18, 21, 150, 152, 187], "match": [17, 71, 73, 74, 83, 96, 99, 170, 182, 187], "match_head": 74, "math": 194, "matplotlib": 192, "matrix": 182, "max": [17, 25, 27, 28, 38, 39, 82, 83, 88, 131, 132, 147, 152, 192], "max_dist": [116, 118, 119, 120], "max_gt_downsampl": [59, 62], "max_gt_upsampl": [59, 62], "max_raw_training_downsampl": [59, 62], "max_raw_training_upsampl": [59, 62], "max_raw_validation_downsampl": [59, 62], "max_raw_validation_upsampl": [59, 62], "max_retri": [2, 4, 7, 186], "max_siz": 59, "max_validation_volume_s": [59, 62], "maximum": [2, 3, 4, 7, 25, 27, 28, 38, 39, 59, 62, 67, 77, 79, 82, 83, 88, 92, 93, 95, 105, 108, 115, 116, 118, 119, 143, 145, 178, 186], "maximum_objects_per_class": 3, "mayor": [187, 190], "md": 187, "mean": [20, 21, 23, 36, 38, 82, 83, 88, 93, 94, 98, 99, 101, 128, 138, 180, 192], "mean_false_dist": [82, 83, 88], "mean_false_distance_clip": [82, 83, 88], "mean_false_negative_dist": [82, 83, 88], "mean_false_negative_distance_clip": [82, 83, 88], "mean_false_negative_distances_clip": 83, "mean_false_positive_dist": [82, 83, 88], "mean_false_positive_distance_clip": [82, 83, 88], "mean_false_positive_distances_clip": 83, "meant": [38, 44, 93, 126, 138, 140, 141], "measur": [27, 28, 82, 83, 88, 182], "median": 3, "median_slic": 3, "meila": 182, "member": [59, 187], "membran": [22, 27, 180], "membrane_lik": 180, "membrane_s": 180, "memori": [13, 14, 18, 21, 38, 47, 160, 168], "mention": [51, 54], "merg": [6, 38, 41, 79, 82, 83, 88, 89, 92, 93, 95, 182], "merge_instances_array_config": [38, 184], "mergeinstancesarrai": [38, 41], "mergeinstancesarrayconfig": [38, 41], "mesh": 181, "messag": [16, 20, 21, 31, 36, 37, 38, 49, 51, 54, 58, 62, 81, 93, 138, 141, 161], "meta": 59, "metadata": [23, 192], "method": [11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 38, 47, 49, 51, 52, 53, 54, 56, 58, 59, 61, 62, 67, 69, 70, 77, 79, 81, 82, 83, 84, 86, 88, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 149, 150, 151, 152, 153, 154, 155, 156, 160, 162, 163, 166, 180, 181], "metric": [82, 83, 88, 182, 192, 193, 194], "metric_param": 83, "middl": [67, 144], "might": [83, 85, 87, 88, 90, 194], "min": [27, 28, 38, 39, 131, 132, 192], "min_distance_object_cent": 3, "min_ext": 3, "min_label": 194, "min_mask": [136, 137, 138, 192, 194], "min_siz": [3, 106, 107, 108, 114], "min_training_volume_s": [59, 62], "minim": 190, "minimum": [3, 27, 28, 38, 39, 59, 62, 77, 79, 93, 107, 108, 114, 115, 116, 119, 136, 137, 138, 150, 152, 178, 190], "mirror": [127, 128, 138], "mirror_aug": [127, 128, 138], "misclassifi": [79, 92, 93, 95], "mismatch": [71, 73, 74], "miss": [33, 38], "missing_annotations_mask_config": [38, 184], "missingannotationsmaskconfig": [38, 42], "mito": [59, 62, 188], "mito_mem": 188, "mito_ribo": 188, "mitochondria": [22, 27], "mitonet_v1": 3, "mitonet_v2": 3, "mitonet_v3": 3, "mitonet_v4": 3, "mitonet_v5": 3, "mitonet_v6": 3, "ml": [190, 191, 192], "mnist": 173, "mode": [17, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 67, 68, 174, 192, 194], "model": [0, 1, 3, 5, 8, 15, 16, 21, 26, 27, 57, 60, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 83, 85, 86, 87, 88, 90, 93, 96, 97, 98, 99, 102, 104, 106, 108, 109, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127, 136, 138, 140, 143, 155, 158, 159, 169, 173, 183, 184, 186, 190, 192, 193, 194], "model_config": 3, "model_nam": 188, "model_state_dict": 173, "modifi": [132, 133, 150, 152, 185, 194], "modul": [13, 21, 67, 108, 146, 187], "modular": 190, "mongo_config_stor": [167, 184], "mongo_db_host": [155, 156], "mongo_db_nam": [155, 156], "mongo_stats_stor": [167, 184], "mongocli": [170, 171], "mongoconfigstor": [164, 170], "mongodb": [156, 170, 171, 190, 192, 193, 194], "mongodbhost": [192, 194], "mongodbnam": [192, 194], "mongostatsstor": [164, 171], "more": [17, 49, 54, 84, 88, 119, 122], "morphologi": [116, 119], "most": [181, 187, 191], "most_recent_iter": 181, "mostli": 192, "move": [69, 115, 116, 117, 118, 119, 120, 121, 122, 157, 178], "move_optim": 69, "moving_class_count": [115, 116, 117, 118, 119, 120, 121, 122], "moving_count": [148, 152, 178], "mr": 186, "mse_loss": [99, 184], "mseloss": [78, 93, 98, 99, 100, 101], "mt": 188, "mt_out": 188, "much": [15, 17, 21, 77, 93, 116, 118, 119, 120, 122, 192, 193, 194], "multi": [17, 21, 32, 38, 39, 42, 47, 59, 62, 82, 88, 190, 192, 193], "multichannelbinarysegmentationevaluationscor": [82, 83, 88], "multicut": 10, "multigpu": 3, "multipl": [3, 17, 18, 21, 38, 40, 41, 47, 59, 62, 108, 109, 116, 118, 119, 120, 192], "multipli": [17, 21, 152, 153], "multiprocess": 192, "multitud": 193, "multivari": 182, "must": [36, 37, 38, 39, 40, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 138, 140, 141, 162], "mutipl": [59, 62], "my": [185, 192, 194], "my_dataset": 186, "my_output": 186, "my_run": 186, "mykeypair": 185, "mymodel": [15, 16, 21], "mypostprocessor": [108, 109, 113], "mypostprocessorparamet": [108, 109], "myst_nb": 187, "myst_pars": 187, "mzouink": 185, "n": [17, 38, 47, 90, 157, 182, 190, 192, 194], "n5": [59, 62, 190], "name": [0, 3, 5, 11, 13, 16, 17, 21, 22, 23, 27, 28, 31, 32, 38, 42, 46, 47, 48, 49, 50, 51, 54, 55, 58, 59, 62, 67, 69, 70, 71, 73, 79, 92, 93, 95, 97, 99, 105, 107, 108, 110, 116, 118, 119, 120, 126, 138, 141, 145, 146, 155, 156, 157, 158, 160, 161, 163, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 180, 181, 185, 186, 187, 188, 192, 193, 194], "nameerror": 162, "nan": [82, 83, 88], "napari": 3, "napoleon": 187, "navig": 189, "nbsphinx": 187, "nbsphinx_custom_format": 187, "ndarrai": [3, 6, 10, 33, 38, 83, 90, 116, 118, 119, 120, 121, 176, 178, 181, 182], "ndimag": [116, 119, 192], "nearest": [17, 25, 27, 83, 180, 192], "necessari": [7, 32, 35, 37, 38, 39, 42, 45, 46, 47, 91, 93, 152, 154, 156, 180, 188, 194], "need": [17, 38, 47, 49, 54, 59, 67, 81, 93, 116, 118, 119, 120, 122, 145, 160, 162, 163, 168, 188, 193, 194], "neg": [25, 27, 79, 82, 83, 88, 92, 93, 95, 176, 182], "neighbor": [17, 192], "neighborhood": [77, 93, 108, 113, 114, 115, 119, 176, 192, 194], "nest": [38, 47], "net": [17, 21, 188, 194], "network": [2, 4, 7, 15, 16, 18, 19, 21, 138, 140, 169, 173, 190, 192], "neural": [15, 16, 21, 138, 140], "neurogl": [48, 54], "neuroglanc": [48, 54, 69, 136, 138, 181, 190], "neuroglancerrunview": 181, "neuron": 194, "never": [20, 21, 32, 36, 38, 51, 54, 61, 62, 81, 93], "new": [6, 67, 71, 73, 74, 90, 117, 119, 137, 138, 143, 145, 147, 152, 165, 166, 181, 190, 192], "new_best_exist": 181, "new_head": [71, 73, 74], "new_validation_check": 181, "new_valu": 6, "next": [136, 138, 194], "next_conv_kernel_s": 17, "nhood": 176, "nice": [160, 168, 193, 194], "nm": [181, 188, 192], "nn": [17, 21, 67, 68], "no_valid": 186, "node": [6, 129, 130, 131, 132, 133, 134, 135, 138, 148, 150, 152, 194], "nois": [131, 132, 151, 152, 180], "non": [32, 38, 63, 64, 71, 73, 74, 192, 193], "non_empti": [63, 64], "non_empty_mask": [63, 64], "none": [0, 2, 4, 5, 7, 11, 12, 13, 14, 17, 18, 21, 33, 35, 36, 38, 47, 48, 54, 55, 56, 57, 59, 62, 67, 68, 69, 70, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 93, 96, 97, 99, 100, 103, 108, 109, 115, 116, 117, 118, 119, 120, 121, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 148, 150, 152, 154, 155, 156, 157, 158, 159, 160, 161, 165, 166, 168, 169, 170, 171, 172, 173, 174, 178, 181, 182, 183, 186, 192], "nonempti": [152, 154], "nonzero": 178, "norm": [27, 30, 116, 118, 119, 120, 182], "normal": [17, 38, 39, 79, 92, 93, 95, 116, 118, 119, 120, 182, 192, 193], "normalize_arg": [116, 118, 119, 120], "nosuchmodul": 146, "not_membrane_mask": 192, "note": [17, 21, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 88, 91, 93, 94, 95, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 145, 150, 152, 165, 166, 170, 171, 176, 178, 192, 194], "notebook": 192, "notebook_tqdm": 192, "noth": [149, 152], "notic": [150, 152], "notimplementederror": [12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 47, 49, 51, 54, 58, 59, 62, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 147, 148, 152, 160, 180], "now": [188, 192, 194], "np": [0, 3, 6, 10, 33, 34, 38, 43, 83, 90, 116, 118, 119, 120, 121, 151, 152, 155, 158, 176, 178, 180, 181, 182, 186, 192], "np_arrai": 174, "np_to_funlib_arrai": 174, "nuc": 188, "nucleo": 188, "num": [178, 186], "num_affin": [96, 99], "num_channel": [115, 119, 174], "num_channels_from_arrai": 174, "num_class": [23, 178], "num_cpu": [11, 13], "num_data_fetch": [136, 137, 138, 192, 194], "num_fmap": [17, 18, 21, 192, 194], "num_fmaps_out": [17, 21], "num_gpu": [11, 13], "num_head": [17, 21], "num_in_channel": [15, 17, 19, 20, 21, 67, 68], "num_iter": [67, 70, 127, 136, 138, 140, 192, 194], "num_level": 17, "num_lsd_voxel": [77, 93], "num_out_channel": [15, 17, 19, 20, 21, 67, 68], "num_point": 180, "num_snapshot": 192, "num_valid": 192, "num_voxel": [115, 119], "num_work": [0, 2, 4, 7, 104, 106, 108, 109, 111, 113, 155, 158, 186], "number": [0, 2, 3, 4, 7, 11, 13, 15, 17, 18, 19, 20, 21, 23, 26, 27, 30, 38, 42, 67, 68, 69, 70, 73, 74, 77, 83, 90, 93, 96, 98, 99, 104, 106, 108, 109, 111, 113, 115, 116, 117, 118, 119, 120, 121, 127, 136, 137, 138, 140, 143, 145, 155, 157, 158, 160, 169, 176, 178, 180, 181, 182, 186, 192, 193], "numer": [49, 54], "numpi": [0, 3, 83, 116, 118, 119, 120, 121, 155, 158, 176, 178, 180, 181, 192], "numpyarrai": [115, 117, 118, 119, 121, 136, 138], "nw": 186, "o": 187, "obj": [59, 62, 71, 73, 74], "object": [0, 3, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 38, 39, 40, 48, 49, 51, 52, 53, 54, 56, 58, 59, 62, 67, 69, 76, 77, 78, 79, 80, 81, 83, 85, 88, 91, 92, 93, 95, 106, 108, 110, 115, 116, 118, 119, 120, 124, 126, 127, 128, 130, 132, 138, 143, 145, 150, 151, 152, 154, 155, 156, 158, 161, 162, 163, 164, 165, 166, 169, 170, 173, 175, 180, 181, 190, 192], "obtain": [83, 150, 152], "oc": 186, "od": 186, "off": [192, 193], "offici": [48, 54, 189], "offset": [10, 46, 108, 113, 114, 174, 192], "often": [67, 70, 192, 193], "old": [6, 74, 90], "old_head": 74, "old_num": 178, "old_valu": 6, "om": [59, 62, 190], "omit_if_default": 163, "onc": [98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 188, 189, 194], "one": [3, 17, 21, 57, 59, 60, 62, 67, 92, 93, 102, 103, 116, 118, 119, 121, 143, 145, 150, 152, 182, 185, 192], "one_hot": [119, 121], "one_hot_predictor": [119, 184], "one_hot_task": [93, 184], "one_hot_task_config": [93, 184], "onehotpredictor": [119, 121], "onehottask": [93, 102, 103], "onehottaskconfig": [93, 103], "ones": [34, 38, 43, 67, 145, 178, 187], "ones_array_config": [38, 184], "ones_lik": [33, 34, 38, 43], "onesarrayconfig": [38, 43], "onli": [3, 11, 13, 17, 21, 35, 38, 57, 59, 60, 62, 67, 68, 71, 73, 74, 118, 119, 145, 150, 152, 154, 160, 164, 177, 182, 187, 188, 190, 192], "oom_limit": [13, 14], "op": 186, "open": [170, 181, 190, 192], "open_from_array_identitifi": 181, "open_from_identifi": [83, 88, 90, 174], "openorganel": 190, "oper": [17, 18, 21, 48, 54, 182, 186], "opt": 192, "optim": [18, 21, 69, 99, 100, 127, 136, 138, 140, 141, 169, 173, 184, 190, 192, 193], "optimizer_state_dict": 173, "optimum": 192, "option": [0, 7, 11, 12, 13, 14, 15, 17, 18, 21, 33, 38, 47, 48, 54, 55, 56, 59, 67, 68, 70, 87, 88, 90, 99, 100, 131, 132, 133, 134, 135, 137, 138, 147, 152, 154, 155, 158, 164, 165, 168, 170, 171, 177, 178, 180, 181, 182, 184, 186, 187, 189, 191, 194], "order": [33, 38, 44, 67, 143, 192], "ordereddict": 173, "org": [187, 194], "organ": [67, 144, 166], "origin": [15, 21, 59, 147, 150, 152], "orthogon": 3, "orthoplan": 3, "orthoplane_infer": 3, "other": [12, 13, 14, 15, 21, 31, 38, 48, 49, 54, 83, 93, 126, 178, 182, 188, 190, 192, 193, 194], "otherwis": [23, 58, 59, 62, 79, 82, 83, 88, 92, 93, 95, 104, 107, 108, 112, 127, 136, 138, 140, 155, 156, 158, 181, 192], "our": [149, 152, 190, 192, 194], "out": [13, 14, 67, 70, 79, 83, 92, 93, 152, 154, 160, 168, 182, 194], "out_channel": 17, "out_path": 192, "outer": [67, 69, 142, 143, 144], "output": [0, 1, 5, 6, 8, 9, 15, 17, 18, 19, 20, 21, 26, 27, 38, 42, 59, 62, 67, 68, 70, 83, 85, 87, 88, 90, 93, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 138, 140, 147, 148, 149, 151, 152, 153, 155, 158, 160, 168, 180, 185, 186, 187, 188, 190, 192, 193, 194], "output_arrai": [83, 85, 87, 88, 90], "output_array_identifi": [0, 1, 5, 6, 8, 9, 83, 85, 87, 88, 90, 104, 106, 108, 109, 111, 113], "output_array_typ": [115, 116, 117, 118, 119, 120, 121, 122], "output_contain": [1, 5, 6, 8, 9, 186], "output_dataset": [1, 5, 6, 8, 9, 186], "output_dtyp": [0, 155, 158, 186], "output_path": [0, 155, 158, 186], "output_resolut": [59, 62], "output_roi": [155, 158, 159, 186], "output_run_1_1": 0, "output_shap": [67, 68], "outputidentifi": [87, 88], "outsid": [25, 27, 177, 180], "over": [7, 38, 40, 79, 92, 93, 95, 103, 127, 138, 150, 151, 152, 182], "overal": 83, "overhang": [67, 145], "overlap": 83, "overlap_measures_filt": 83, "overload": [48, 54], "overridden": [15, 21, 23], "oversegment": 182, "overwrit": [0, 119, 122, 155, 158, 166, 174, 186, 187], "overwritten": [155, 158], "ow": 186, "own": [12, 13, 14, 15, 21], "p": [18, 21, 152, 154, 182, 185, 186, 189], "p3": 185, "packag": 192, "pad": [17, 18, 21, 115, 116, 118, 119, 120, 122, 176, 192], "padded_tensor": 17, "page": [184, 187], "pai": [11, 13], "pair": 185, "panopt": 3, "parallel": [0, 7], "param": [150, 152, 157, 173], "param1": [108, 109], "param2": [108, 109], "paramet": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 59, 62, 67, 68, 69, 71, 73, 74, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 143, 144, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 180, 181, 182, 183, 186, 188, 192, 193, 194], "parameter_nam": [67, 105, 107, 108, 110, 145], "params1": 168, "parent": 192, "pars": [0, 155, 156], "part": 161, "particular": [10, 25, 27, 36, 38, 128, 138, 160, 168, 190], "particularli": [67, 68, 194], "pass": [2, 4, 7, 17, 18, 19, 21, 59, 67, 68, 70, 116, 118, 119, 120, 122, 186], "passiv": [149, 152], "past": 194, "path": [0, 1, 2, 4, 5, 6, 7, 8, 9, 17, 21, 38, 46, 47, 59, 62, 93, 102, 123, 124, 155, 156, 158, 160, 165, 166, 168, 186, 187, 192, 194], "pathwai": 17, "pattern": 187, "patton": [187, 190], "patton_dacapo_a_modular_2024": 190, "pem": 185, "peopl": 194, "per": [3, 17, 18, 21, 33, 38, 67, 108, 109, 130, 132, 144, 145, 150, 152, 182, 194], "percent": 187, "perfect": 182, "perform": [3, 17, 19, 21, 38, 40, 67, 70, 83, 84, 85, 88, 90, 93, 103, 127, 130, 132, 136, 138, 140, 147, 150, 151, 152, 180, 194], "perfrom": [17, 21], "permiss": 188, "peroxisom": [59, 62], "persist": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 54, 55, 87, 88, 108, 109, 111, 115, 116, 119, 121, 122, 174, 192], "perturb": [151, 152], "phase": [67, 70], "physic": [17, 21], "pi": 194, "pickl": 166, "piecewis": [150, 152], "pip": [190, 191, 192], "pipelin": [69, 129, 131, 132, 133, 134, 135, 136, 138, 140, 149, 152, 179, 184], "pixel": [3, 79, 83, 88, 92, 93, 95, 180, 181, 192], "pixel_vote_thr": 3, "place": [32, 38, 42, 90, 162, 182], "plan": 190, "plane": 3, "playlist": 190, "pleas": [190, 192], "plot": [155, 184, 192], "plot_loss": [157, 192], "plot_run": [157, 192], "plt": 192, "plu": [61, 62, 67, 143, 145], "plugin": 190, "pm": 188, "point": [27, 30, 48, 54, 55, 56, 67, 70, 71, 72, 73, 75, 83, 130, 132, 150, 152, 180, 182, 192, 193], "polici": [73, 74], "pool": 17, "port": [69, 136, 138, 150, 152, 181, 185, 189], "posit": [2, 4, 7, 25, 27, 79, 82, 83, 88, 92, 93, 95, 176], "posixpath": [155, 156], "possibl": [18, 21, 24, 25, 27, 28, 104, 106, 108, 109, 111, 113, 181], "post": [0, 2, 4, 7, 67, 76, 78, 80, 83, 85, 87, 88, 90, 93, 94, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 144, 145, 155, 186, 190], "post_processing_paramet": [87, 88], "post_processor": [0, 67, 76, 78, 80, 87, 88, 91, 93, 94, 102, 123, 125, 145, 155, 184], "post_processor_paramet": [0, 108, 109, 155, 184], "postprocessor": [93, 108, 109, 125], "postprocessorparamet": [0, 67, 87, 88, 93, 104, 106, 108, 109, 110, 113, 125, 145, 155, 186], "precis": [82, 83, 85, 87, 88, 90], "precision_with_toler": [82, 83, 88], "pred_path": 192, "predefin": [83, 85, 88], "predict": [0, 1, 5, 6, 8, 9, 15, 18, 21, 67, 68, 76, 78, 79, 83, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 111, 113, 115, 116, 118, 119, 120, 122, 155, 159, 160, 168, 181, 184, 190, 192, 194], "predict_loc": [155, 184], "predict_work": [4, 184], "prediction_arrai": [104, 108, 111], "prediction_array_identifi": [0, 1, 8, 104, 106, 108, 109, 111, 113, 159], "prediction_head": [67, 68, 74], "prediction_run_1_1": 0, "predictor": [67, 68, 76, 78, 80, 91, 93, 94, 102, 123, 125, 148, 152, 184], "prefer_attrib_convert": 163, "prefix": [48, 54], "preload": 69, "prepar": [147, 148, 150, 152, 153], "prepare_d": 192, "presenc": 83, "present": [152, 154], "pretain": [72, 73], "pretrain": [72, 73, 93, 123, 124], "pretrained_task": [93, 184], "pretrained_task_config": [93, 184], "pretrainedtask": [93, 123], "pretrainedtaskconfig": [93, 124], "previou": [72, 73], "previous": [183, 192, 193], "primarili": [80, 93], "print": [3, 16, 21, 83, 104, 106, 108, 109, 111, 113, 127, 136, 138, 140, 192, 194], "print_profil": [136, 138], "prioriti": [67, 145], "privat": [151, 152], "probability_arrai": [27, 30], "probabilityarrai": [27, 30, 118, 119, 121], "probabl": [27, 93, 103, 108, 109, 118, 119, 150, 152, 154, 182, 184], "problem": [32, 38, 39, 42], "process": [0, 2, 4, 7, 10, 17, 38, 47, 67, 76, 78, 80, 83, 85, 87, 88, 90, 93, 94, 104, 106, 108, 109, 111, 113, 116, 118, 119, 120, 121, 137, 138, 142, 145, 147, 148, 150, 151, 152, 153, 155, 158, 170, 180, 186, 190, 192], "processor": [0, 67, 87, 88, 93, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 144, 155, 186], "produc": [18, 21, 67, 69, 136, 138, 142, 152, 153], "product": [150, 152, 178, 184], "profil": [136, 138, 185], "project": [11, 13, 187, 189, 190], "properti": [11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 54, 59, 62, 67, 69, 82, 83, 85, 86, 87, 88, 89, 90, 93, 108, 110, 115, 116, 117, 118, 119, 120, 121, 122, 125, 145, 165], "proport": [83, 182], "provid": [11, 12, 13, 15, 21, 23, 32, 33, 35, 37, 38, 39, 42, 45, 46, 47, 49, 54, 67, 83, 84, 86, 87, 88, 92, 93, 94, 98, 99, 100, 101, 124, 125, 127, 138, 143, 145, 147, 148, 149, 150, 152, 153, 154, 155, 156, 160, 162, 163, 176, 177, 180, 182, 189, 192, 193, 194], "proxi": [83, 118, 119], "pseudo": 192, "psi": 17, "publish": 190, "pull": [32, 38, 39, 42, 138, 140, 185], "purpos": [20, 21, 51, 54, 80, 85, 88, 93, 127, 138], "push": [116, 118, 119, 120], "px": 182, "pxy": 182, "py": [12, 13, 18, 21, 108, 113, 182, 186, 187, 192, 194], "pyplot": 192, "python": [12, 13, 187, 190, 192, 193], "python3": 192, "pytorch": [13, 14, 15, 21, 190], "qualit": 194, "qualiti": [82, 83, 87, 88], "quantiz": 3, "queri": 185, "question": 190, "queue": [11, 13], "quick": [35, 38], "quickli": 194, "r": [18, 21, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 174, 186, 194], "r_conv": 17, "r_up": 17, "rais": [0, 3, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 47, 49, 51, 54, 58, 59, 62, 67, 68, 69, 71, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 175, 176, 178, 180, 181, 182, 186], "rand": [3, 10, 181], "randint": 181, "randn": [17, 19, 21], "random": [3, 10, 132, 133, 150, 152, 180, 181, 192], "random_dil": 180, "random_source_pipelin": 180, "randomdilatelabel": 180, "randomli": [130, 132, 150, 152, 180], "rang": [25, 27, 28, 83, 131, 132, 133, 178, 180, 192, 194], "rate": [67, 70, 82, 83, 88, 115, 119, 127, 136, 138, 140, 141, 192, 193], "rather": [18, 21], "ratio": [83, 96, 99, 152, 154], "raw": [0, 1, 5, 8, 9, 18, 21, 48, 50, 54, 55, 56, 59, 62, 63, 64, 129, 131, 132, 133, 134, 135, 136, 137, 138, 155, 158, 160, 168, 180, 181, 192, 194], "raw_arrai": [1, 8], "raw_array_identifi": 159, "raw_config": [51, 54, 56, 192], "raw_contain": [59, 62], "raw_dataset": [59, 62], "raw_gt_dataset": [54, 184], "raw_gt_dataset_config": [54, 184], "raw_kei": [129, 131, 132, 133, 134, 138], "raw_max": [59, 62], "raw_min": [59, 62], "rawgtdataset": [54, 55], "rawgtdatasetconfig": [54, 56, 192], "re": [188, 192], "reaction": [49, 54], "read": [2, 4, 6, 7, 33, 34, 38, 43, 156, 186, 187, 190], "read_cross_block_merg": 6, "read_roi": [2, 4, 7, 10], "read_roi_s": 186, "read_write_conflict": [1, 5, 6, 8, 9], "readthedoc": 192, "real": [20, 21, 81, 93, 97, 99, 192], "reason": [20, 21, 38, 47, 81, 93, 126, 128, 138], "rec_forward": 17, "recal": [82, 83, 85, 87, 88, 90], "recall_with_toler": [82, 83, 88], "receiv": [149, 152], "recent": [181, 191], "recogn": [82, 88], "recommend": [58, 62, 190, 192], "reconstruct": [163, 182], "recreat": [162, 163], "rectifi": 17, "recurs": 17, "reduc": [17, 21], "ref": 194, "refer": [3, 18, 21, 92, 93, 182, 189, 190], "referenc": [118, 119], "refin": 190, "refrain": [49, 54], "region": [0, 79, 83, 92, 93, 115, 116, 119, 120, 122, 155, 182, 185], "regist": [162, 163], "register_hierarchi": [162, 163], "register_hierarchy_hook": 162, "register_hook": 162, "regular": [79, 92, 93, 95], "reject": [152, 154], "reject_if_empti": [152, 184], "rejectifempti": [152, 154], "rel": 187, "relabel": [3, 6, 90, 180], "relabel_connect": 180, "relabel_in_block": 6, "relabel_work": [4, 184], "relat": [12, 13, 14, 15, 21, 51, 54, 93, 94, 127, 137, 138], "releas": 191, "relu": [17, 21], "remap": 10, "remov": [160, 168, 169, 173, 192], "repetit": [67, 70, 192, 194], "replac": [67, 90, 145, 185, 189, 194], "report": [116, 118, 119, 120, 122], "repres": [15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 48, 54, 59, 61, 62, 63, 64, 67, 69, 70, 71, 72, 73, 75, 81, 82, 83, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 131, 132, 138, 141, 142, 143, 144, 145, 151, 152, 160, 173, 176, 177, 180, 181], "represent": [27, 29, 48, 54, 59, 62, 63, 64, 156, 160], "reproduc": [150, 152, 194], "request": [116, 118, 119, 120, 122, 147, 148, 149, 150, 151, 152, 153, 154, 177, 180], "requir": [12, 13, 14, 15, 16, 21, 138, 140, 150, 152, 186, 190, 192, 193, 194], "resampled_array_config": [38, 184], "resampledarrai": [38, 44], "resampledarrayconfig": [38, 44], "reshap": 10, "resid": [147, 152], "resiz": 59, "resize_if_need": 59, "resolut": [18, 21, 59, 62, 83, 150, 152, 192], "respect": [57, 58, 60, 62, 65, 66, 83, 98, 99, 100, 101, 182], "respons": [119, 122, 193], "restor": [150, 152], "result": [13, 14, 17, 21, 49, 54, 83, 93, 94, 150, 152, 182, 192, 194], "result_data": 177, "resum": 192, "retri": [2, 4, 7, 186], "retriev": [71, 73, 74, 75, 161, 163, 165, 166, 169, 170, 171, 172, 173, 181, 193, 194], "retrieve_architecture_config": [161, 165, 170, 192], "retrieve_architecture_config_nam": [161, 165, 170], "retrieve_array_config": [161, 165, 170], "retrieve_array_config_nam": [161, 165, 170], "retrieve_best": [169, 173], "retrieve_dataset_config": 170, "retrieve_dataset_config_nam": 170, "retrieve_datasplit_config": [161, 165, 170, 192], "retrieve_datasplit_config_nam": [161, 165, 170], "retrieve_run_config": [161, 165, 170, 192], "retrieve_run_config_nam": [161, 165, 170], "retrieve_task_config": [161, 165, 170, 192], "retrieve_task_config_nam": [161, 165, 170], "retrieve_trainer_config": [161, 165, 170, 192], "retrieve_trainer_config_nam": [161, 165, 170], "retrieve_training_stat": [166, 171, 172, 192], "retrieve_validation_iteration_scor": [166, 171, 172], "retrieve_weight": [169, 173], "return": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 43, 47, 48, 49, 51, 54, 58, 59, 61, 62, 63, 64, 67, 68, 69, 71, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 143, 145, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 162, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 178, 180, 181, 182, 183], "return_backwards_map": 90, "return_count": 178, "return_io_loop": [1, 5, 6, 8, 9], "return_json": 157, "return_panopt": 3, "reus": [31, 38, 58, 62, 93, 126, 188], "reusabl": [49, 54], "rhoad": [187, 190], "right": [17, 21, 59, 119, 122], "roi": [0, 2, 4, 7, 10, 35, 38, 47, 115, 116, 118, 119, 120, 122, 147, 148, 149, 150, 152, 155, 158, 159, 174, 177, 186, 192], "root": [166, 187], "rotat": [130, 132, 150, 152], "rotation_interv": [130, 132, 150, 152, 194], "rotation_max_amount": [150, 152], "rotation_start": [150, 152], "row": 182, "rr": 186, "rst": 187, "rudimentari": 160, "rule": [49, 54], "run": [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 67, 70, 71, 72, 73, 74, 75, 93, 108, 111, 113, 124, 136, 138, 155, 157, 158, 160, 161, 165, 166, 168, 169, 170, 171, 172, 173, 175, 181, 183, 184, 190, 193], "run1": [161, 165, 166, 168, 169], "run2": 169, "run_0": [170, 171, 172, 173], "run_1": [0, 72, 73, 155], "run_blockwis": [7, 108, 111], "run_config": [67, 69, 161, 165, 170, 184, 188, 192, 194], "run_config_base_nam": [157, 192], "run_config_nam": 157, "run_nam": [0, 5, 155, 157, 158, 160, 161, 165, 166, 168, 170, 171, 172, 175, 183, 186], "run_path": 192, "run_thread": 181, "runconfig": [67, 70, 161, 165, 170, 188, 192, 194], "runinfo": 157, "runner": 192, "runs_base_dir": [155, 156, 185, 192, 194], "runtimeerror": [17, 21, 71, 73, 74, 147, 148, 149, 152, 176], "s3": 192, "saalfeld": [18, 21], "saalfeldlab": [18, 21], "safe": [150, 152], "same": [17, 21, 34, 35, 38, 43, 83, 85, 87, 88, 90, 98, 99, 116, 118, 119, 120, 122, 149, 152, 161, 165, 170, 182, 192, 194], "sampl": [17, 21, 38, 44, 48, 49, 54, 55, 56, 83, 130, 132, 150, 152], "sample_dataset": [49, 54], "sample_point": [48, 54, 55, 56], "satur": [116, 118, 119, 120], "save": [31, 35, 38, 58, 62, 67, 86, 88, 93, 126, 136, 137, 138, 140, 145, 165, 170, 192, 194], "save_ndarrai": 177, "sc": 190, "scalabl": 190, "scalar": [99, 100, 177, 181], "scale": [15, 17, 21, 67, 68, 79, 92, 93, 95, 116, 118, 119, 120, 132, 133, 134, 178, 194], "scale_factor": [17, 79, 92, 93, 95, 116, 118, 119, 120, 192], "scale_slab": 178, "schedul": [4, 108, 111, 113, 136, 138, 184], "scikit": 192, "scipi": [116, 119, 182, 192], "score": [67, 69, 82, 83, 84, 85, 86, 87, 88, 89, 90, 144, 145, 157, 166, 171, 172, 181, 183, 194], "score_1": [87, 88], "score_2": [87, 88], "scratch": [192, 193], "script": [12, 13, 108, 113, 185, 190, 194], "search": [160, 168], "sec_api_run": 194, "sec_api_runconfig": 194, "sec_api_trainerconfig": 194, "second": [7, 31, 38, 87, 88, 98, 99, 152, 153, 182, 186], "secur": 185, "see": [67, 119, 122, 145, 187, 192, 194], "seed": [150, 152, 192], "seem": 10, "seg": [176, 181, 182], "seg_to_affgraph": 176, "segment": [3, 7, 8, 10, 59, 62, 77, 79, 82, 83, 88, 89, 90, 93, 94, 95, 108, 109, 111, 114, 116, 118, 119, 120, 122, 176, 181, 182, 190, 192, 193, 194], "segment_blockwis": [7, 108, 113], "segment_funct": [3, 10, 186], "segment_function_fil": [7, 186], "segment_work": [4, 184], "segmentation_typ": [59, 62], "segmentationtyp": [59, 62], "segmented_arrai": 3, "select": [17, 163, 169, 187, 192], "self": [20, 21, 22, 25, 27, 28, 31, 33, 35, 38, 57, 59, 60, 62, 76, 77, 78, 79, 80, 81, 83, 91, 92, 93, 94, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 138, 147, 152], "semant": [3, 23, 59, 62, 108, 109, 190], "semantic_onli": 3, "sens": 194, "separ": [17, 32, 38, 59, 62, 67, 77, 93, 116, 119, 145, 192, 193], "separator_charact": 59, "sequenc": [17, 59, 62, 83], "sequenti": [67, 68], "seri": 17, "serial": 156, "serv": [138, 140, 149, 152], "server": [190, 192], "servic": 185, "set": [17, 18, 21, 33, 38, 54, 56, 57, 59, 60, 62, 67, 77, 81, 83, 87, 88, 93, 104, 105, 106, 107, 108, 109, 111, 112, 113, 127, 132, 133, 136, 137, 138, 140, 143, 145, 147, 148, 149, 150, 152, 153, 154, 180, 185, 188, 189, 192, 194], "set_best": [87, 88], "set_predict": [104, 106, 108, 109, 111, 113], "set_start_method": 192, "set_titl": 192, "set_ylabel": 192, "setup": [71, 147, 148, 149, 150, 151, 152, 153, 154, 180, 187, 188], "setup04": 188, "setup26": 188, "setup28": 188, "setup36": 188, "setup45": 188, "sever": [12, 13, 14, 15, 21], "sf": 186, "shape": [3, 15, 17, 18, 19, 21, 26, 27, 34, 38, 43, 67, 68, 83, 96, 99, 115, 119, 122, 176, 178, 180, 182, 190, 192], "sheet": 187, "shift": [132, 133, 134, 194], "short": [31, 38, 49, 54, 58, 62, 93, 126], "shoulb": [59, 62], "should": [3, 12, 13, 15, 16, 17, 21, 23, 25, 27, 30, 31, 38, 48, 49, 52, 53, 54, 55, 59, 62, 63, 64, 67, 72, 73, 77, 82, 83, 86, 88, 93, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 113, 126, 129, 130, 132, 133, 137, 138, 141, 145, 155, 156, 161, 163, 171, 190, 194], "show": [81, 93, 187, 190, 192], "shown": 187, "shrink": [6, 8], "side": [17, 21], "sigma": [108, 114, 115, 119, 192], "sigmoid": 17, "sign": [25, 27, 79, 92, 93, 95, 116, 118, 119, 120, 190], "signal": [17, 79, 92, 93, 95], "significantli": [18, 21, 67, 70, 150, 152], "similar": [38, 47, 83, 88], "simpl": [57, 60, 61, 62, 83, 132, 135, 163, 169, 193], "simple_augment_config": [132, 135], "simple_config": [132, 184], "simpleaug": [132, 135], "simpleaugmentconfig": [132, 135, 194], "simpleitk": 83, "simpli": [18, 21, 22, 24, 25, 27, 30, 33, 38, 93, 103, 169], "sinc": [10, 18, 20, 21, 49, 54, 67, 68], "singl": [3, 17, 21, 38, 41, 67, 82, 83, 88, 145, 149, 152, 166, 192, 193, 194], "singleton": [119, 121, 155, 156], "site": 192, "sitk": 83, "situat": [92, 93], "size": [3, 15, 17, 18, 21, 38, 44, 46, 59, 62, 67, 68, 70, 104, 106, 107, 108, 109, 111, 113, 114, 115, 116, 118, 119, 120, 122, 127, 136, 137, 138, 140, 141, 150, 152, 176, 180, 181, 186, 192, 193], "skew": 83, "skimag": 192, "slab": [115, 119, 178], "slab_count": 178, "slab_rang": 178, "slice": [3, 178, 192], "small": 17, "small_unet": 194, "smaller": [17, 35, 38], "smaller_tensor": 17, "smooth": [157, 190], "smooth_valu": 157, "snap": [150, 152], "snap_to_grid": [38, 47], "snapshot": [67, 70, 127, 136, 137, 138, 140, 160, 168, 192, 194], "snapshot_contain": [127, 136, 138, 140, 160, 168], "snapshot_interv": [137, 138, 192, 194], "snapshot_it": 192, "snapshot_iter": [136, 138], "snapshotcontain": [127, 138], "so": [31, 38, 58, 62, 93, 116, 118, 119, 120, 126, 182, 187, 192, 193, 194], "softmax": [67, 68], "some": [106, 108, 138, 140, 160, 168, 192, 193, 194], "someth": [67, 68], "soon": [17, 21], "sort": [192, 193], "sourc": [33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 131, 132, 149, 152, 180, 181, 187], "source_arrai": [33, 38], "source_array_config": [32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 192], "space": [83, 186], "spars": 182, "spatial": [15, 17, 21, 67, 68, 116, 118, 119, 120, 122, 150, 152], "spatial_shap": 17, "spawn": [1, 5, 6, 8, 9], "spawn_work": [1, 5, 6, 7, 8, 9], "spec": [150, 152, 180], "special": [31, 38, 49, 54, 58, 62, 93, 126], "specif": [11, 12, 13, 14, 15, 21, 23, 38, 47, 49, 54, 59, 62, 71, 72, 73, 74, 75, 115, 119, 132, 133, 134, 135, 136, 138, 140, 141, 166, 169, 171, 172, 173, 180, 188, 189, 192, 193, 194], "specifi": [11, 12, 13, 14, 26, 27, 35, 38, 49, 54, 59, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 106, 108, 127, 138, 143, 145, 150, 152, 153, 165, 166, 170, 171, 180, 185, 186, 190, 192, 194], "specified_loc": [63, 64], "speed": [150, 152], "sphinx": [184, 187], "sphinx_autodoc_typehint": 187, "sphinx_click": 187, "sphinx_rtd_them": 187, "split": [57, 58, 59, 60, 61, 62, 65, 66, 82, 83, 88, 89, 98, 99, 127, 138, 182, 192], "split_vi": 182, "spread": 190, "squar": [93, 94, 98, 99, 101], "stabl": 192, "stack": 3, "stack_infer": 3, "stack_postprocess": 3, "standard": [11, 12, 13, 54, 56, 62, 66, 93, 125, 130, 132, 150, 152, 157, 180], "star": 162, "start": [1, 5, 6, 8, 9, 67, 69, 70, 93, 103, 124, 178, 181, 184, 185, 186, 189, 192, 193], "start_config": [67, 70, 71, 72, 73, 74, 184], "start_neuroglanc": 181, "start_typ": [72, 73, 75], "start_work": [1, 5, 6, 7, 8, 9], "start_worker_fn": [1, 5, 6, 8, 9], "startconfig": [67, 70, 72, 73, 75], "starter": [71, 72, 73, 74, 75], "stat": [67, 69, 127, 136, 138, 142, 143, 145, 166, 171, 172, 181, 192, 194], "state": [49, 54, 69, 150, 151, 152, 169, 173, 181, 192], "statement": [81, 93], "static": [59, 62, 69, 82, 84, 86, 88, 89, 187], "statist": [67, 127, 136, 138, 140, 142, 143, 156, 164, 166, 171, 172, 194], "stats_stor": [167, 181, 184, 192], "statsstor": [164, 172], "statu": [81, 93], "std": 83, "step": [150, 152, 185, 194], "still": [192, 193], "stop": [181, 192, 193], "storag": [160, 168, 170, 188, 190, 192], "store": [0, 1, 5, 6, 8, 9, 12, 13, 14, 17, 21, 31, 38, 47, 52, 53, 71, 72, 73, 74, 75, 82, 83, 84, 86, 87, 88, 89, 104, 106, 108, 109, 111, 113, 116, 119, 138, 140, 155, 156, 157, 158, 159, 175, 181, 183, 184, 190, 193, 194], "store_architecture_config": [161, 165, 170, 192, 194], "store_array_config": [161, 165, 170], "store_best": [82, 84, 86, 87, 88, 89, 169], "store_dataset_config": 170, "store_datasplit_config": [161, 165, 170, 192, 194], "store_run_config": [161, 165, 170, 192, 194], "store_task_config": [161, 165, 170, 192, 194], "store_trainer_config": [161, 165, 170, 192, 194], "store_training_stat": [166, 171, 172], "store_typ": [52, 53], "store_validation_iteration_scor": [166, 171, 172], "store_weight": [169, 173], "str": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 54, 58, 59, 61, 62, 63, 64, 67, 69, 70, 71, 72, 73, 74, 75, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 99, 103, 108, 110, 116, 118, 119, 120, 121, 123, 124, 126, 128, 136, 138, 141, 145, 146, 155, 156, 157, 158, 160, 161, 162, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 180, 181, 183, 186], "stride": [17, 157], "string": [0, 20, 21, 31, 36, 37, 38, 47, 48, 54, 59, 61, 62, 63, 64, 81, 93, 116, 118, 119, 120, 126, 128, 138, 146, 155, 160, 162, 163, 187], "structur": [67, 69, 70, 142, 143, 144, 162, 163, 169, 180, 193], "structure_fallback_factori": 163, "structurehook": 163, "style": 187, "sub": [150, 152], "sub_task_config": [93, 124], "subclass": [11, 13, 14, 23, 24, 31, 34, 35, 38, 43, 45, 46, 47, 52, 53, 72, 73, 76, 77, 78, 79, 80, 81, 91, 93, 94, 95, 98, 99, 100, 101, 104, 106, 108, 109, 110, 113, 115, 117, 118, 119, 120, 121, 122, 124, 126, 129, 132, 134, 135, 136, 138, 140, 141, 147, 148, 149, 152, 163], "subdirectori": [166, 169], "subgraph": [149, 152], "subplot": 192, "subsampl": [130, 132, 150, 152, 171, 194], "subscor": [67, 145], "subsequ": 188, "subset": [67, 145], "sum": [26, 27, 38, 45, 83, 98, 99, 178, 182], "sum_array_config": [38, 184], "sumarrayconfig": [38, 45], "summari": [187, 194], "super": [18, 21], "support": [18, 21, 38, 47, 59, 62, 152, 154, 160, 164, 166, 177, 190, 194], "sure": [38, 47, 176, 192], "sv": 182, "swig": 83, "sy": 187, "symant": [32, 38, 42], "symlink": 169, "symmetr": [17, 182], "system": [20, 21, 24, 26, 27, 29, 189], "t": [10, 18, 21, 160, 168, 181, 185, 186, 189, 192, 194], "tabl": [182, 188], "tag": 189, "take": [13, 14, 17, 22, 24, 25, 27, 30, 37, 38, 39, 40, 41, 45, 67, 83, 87, 88, 104, 108, 109, 145, 178, 188], "taken": [67, 142], "tanh": [79, 92, 93, 95, 116, 118, 119, 120], "target": [17, 59, 62, 96, 97, 98, 99, 100, 101, 115, 116, 117, 118, 119, 120, 121, 122, 136, 138, 140, 148, 150, 152, 192, 194], "target_filt": [148, 152], "target_kei": [148, 152], "target_resolut": 59, "target_roi": [150, 152], "target_spec": [115, 116, 118, 119, 120, 122], "task": [0, 2, 4, 7, 17, 21, 59, 62, 67, 69, 70, 71, 72, 73, 75, 127, 136, 138, 140, 145, 148, 152, 155, 161, 165, 170, 184, 190, 193, 194], "task1": [161, 165], "task_0": 170, "task_config": [67, 70, 76, 78, 80, 81, 91, 93, 94, 102, 123, 124, 161, 165, 170, 184, 192, 194], "task_id": 10, "task_nam": [161, 165, 170], "task_typ": [77, 79, 81, 92, 93, 95, 103, 124], "taskconfig": [67, 70, 77, 79, 81, 92, 93, 95, 103, 124, 126, 161, 162, 165, 170], "team": 190, "technic": [118, 119], "techniqu": [190, 192, 193], "templat": [187, 192, 194], "templates_path": 187, "temporari": [6, 7, 8], "tensor": [17, 19, 21, 67, 68, 96, 97, 98, 99, 100, 101, 119, 122, 173], "tensorflow": [17, 21, 190], "term": 83, "test": [20, 21, 36, 38, 51, 54, 80, 81, 83, 85, 88, 90, 93, 97, 99, 127, 128, 138, 150, 152, 192], "test_binari": 83, "test_edt": 83, "test_empti": 83, "test_itk": 83, "test_mask": 83, "text": 185, "than": [17, 18, 21, 67, 79, 83, 87, 88, 93, 104, 107, 108, 112, 127, 138, 143, 145, 166, 178], "thei": [48, 54, 67, 77, 93, 116, 118, 119, 120, 145, 187], "them": [17, 71, 73, 74, 155, 156, 163, 166, 192, 193, 194], "theme": 187, "therefor": [119, 122], "thi": [2, 4, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 145, 146, 147, 148, 149, 150, 152, 155, 156, 160, 161, 162, 163, 168, 169, 173, 177, 182, 183, 184, 185, 187, 188, 189, 193, 194], "those": [48, 54, 92, 93, 190], "thread": [166, 181], "three": [192, 193], "threshold": [1, 3, 9, 83, 93, 94, 104, 106, 108, 111, 112, 114, 116, 118, 119, 120, 122, 190], "threshold_post_processor": [108, 184], "threshold_post_processor_paramet": [108, 111, 184], "threshold_work": [4, 184], "thresholdpostprocessor": [78, 91, 93, 108, 111], "thresholdpostprocessorparamet": [108, 111, 112], "through": [116, 118, 119, 120, 194], "thrown": [71, 73, 74], "thumb": 187, "ti": 190, "tif": 190, "tiff": 46, "tiff_array_config": [38, 184], "tiffarrayconfig": 46, "time": [2, 4, 7, 17, 21, 67, 98, 99, 142, 188], "timeout": [2, 4, 7, 186], "titl": [190, 192], "tmp": [155, 184], "tmpdir": [6, 8], "to_arrai": [36, 37, 38, 39, 40], "to_ndarrai": [177, 192], "to_toml": [35, 38], "to_xarrai": [67, 143, 145, 192], "todo": [169, 194], "togeth": [192, 193], "tol_dist": [79, 83, 88, 92, 93, 95, 192], "toler": [79, 82, 83, 88, 92, 93, 95], "tomancak": [18, 21], "toml": [35, 38], "toml_path": [35, 38], "too": [17, 35, 38], "took": [67, 142, 194], "top": [18, 21, 162, 163], "torch": [13, 14, 17, 19, 21, 67, 68, 69, 96, 97, 98, 99, 100, 101, 127, 136, 138, 140, 173, 190], "torchsummari": 194, "total": [67, 70, 83, 96, 97, 99, 150, 152, 186], "total_frac": 178, "total_roi": [2, 4, 7, 10, 186], "tp": [82, 83, 88], "tpu": [11, 12, 13], "tqdm": 192, "tqdmwarn": 192, "tr": 186, "traceback": 146, "track": 23, "tracker": 3, "tracker_consensu": 3, "trackers_dict": 3, "traffic": 185, "train": [0, 5, 11, 13, 18, 21, 54, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 93, 97, 99, 100, 116, 118, 119, 120, 121, 122, 127, 136, 137, 138, 140, 141, 142, 143, 155, 158, 166, 168, 171, 172, 180, 184, 190, 193, 194], "train_arrai": 194, "train_config": [61, 62, 66, 192], "train_run": [175, 192, 194], "train_until": 69, "train_validate_datasplit": [62, 184], "train_validate_datasplit_config": [62, 184], "trainabl": [67, 68], "trained_until": [67, 143], "trainer": [67, 69, 70, 161, 165, 170, 184, 190, 193, 194], "trainer1": [161, 165], "trainer_0": 170, "trainer_config": [67, 70, 127, 128, 136, 138, 161, 165, 170, 184, 192, 194], "trainer_nam": [161, 165, 170], "trainer_typ": [128, 137, 138], "trainerconfig": [67, 70, 138, 141, 161, 165, 170, 194], "training_iteration_stat": [67, 138, 140, 143, 184], "training_stat": [67, 69, 166, 171, 172, 184, 192], "trainingiterationstat": [67, 127, 136, 138, 140, 142, 143, 166], "trainingstat": [67, 69, 143, 171, 172], "trainvalidatedatasplit": [62, 65], "trainvalidatedatasplitconfig": [62, 66, 192], "transform": [79, 83, 92, 93, 95, 108, 113, 114, 116, 118, 119, 138, 140, 148, 150, 152, 192, 193, 194], "translat": [17, 192, 193], "transpos": [17, 18, 21, 192], "transposed_conv": 17, "treat": [77, 93, 115, 119], "tree": 192, "true": [0, 3, 8, 17, 21, 23, 25, 26, 27, 28, 30, 31, 37, 38, 47, 49, 54, 58, 59, 62, 69, 79, 82, 83, 84, 86, 88, 89, 90, 92, 93, 115, 118, 119, 127, 136, 138, 140, 141, 147, 152, 155, 157, 158, 163, 175, 176, 178, 180, 181, 182, 186, 192, 194], "true_posit": 83, "true_positives_with_toler": 83, "truth": [48, 54, 55, 56, 59, 62, 63, 64, 83, 87, 88, 90, 115, 116, 117, 118, 119, 120, 121, 122, 129, 131, 132, 133, 134, 135, 136, 138, 140, 148, 152, 154, 181, 182, 192, 194], "truth_binari": 83, "truth_edt": 83, "truth_empti": 83, "truth_itk": 83, "truth_mask": 83, "try": 161, "tupl": [3, 6, 10, 16, 17, 20, 21, 31, 32, 36, 37, 38, 42, 47, 49, 51, 54, 58, 61, 62, 67, 68, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 98, 99, 115, 117, 118, 119, 121, 122, 124, 126, 128, 130, 131, 132, 133, 136, 138, 141, 145, 150, 152, 160, 168, 176, 178, 180], "turn": [32, 38, 39, 42, 116, 119, 121], "tutorial_run": 194, "twice": [98, 99], "two": [17, 21, 24, 67, 83, 87, 88, 90, 98, 99, 145, 150, 152, 153, 170, 180, 182, 188], "typ": [162, 163], "type": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 44, 47, 48, 49, 50, 51, 52, 53, 54, 56, 59, 61, 62, 63, 64, 67, 68, 69, 71, 73, 74, 81, 82, 83, 85, 88, 90, 92, 93, 99, 100, 102, 103, 108, 111, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 176, 178, 180, 181, 182, 185, 186, 190, 192, 194], "type_overrid": 163, "typedconvert": 163, "typeerror": [160, 162, 163], "typic": [87, 88], "u": [17, 21, 188, 190, 194], "uint16": [22, 27], "uint32": [3, 22, 27], "uint64": [22, 27, 32, 38, 39, 42], "uint8": [0, 22, 27, 155, 158, 180, 186, 192], "undefin": 83, "under": [162, 163, 182], "undergon": 190, "undersegment": 182, "undoc": 187, "unet": [17, 18, 21, 192, 193], "unet_class": [18, 21], "uniform": [150, 152], "uniform_3d_rot": [130, 132, 150, 152, 194], "uniformli": [130, 132], "union": [38, 40, 41, 45, 82, 84, 86, 87, 88, 89], "uniqu": [16, 21, 31, 38, 49, 54, 63, 64, 67, 70, 90, 93, 126, 138, 141, 178, 193], "unit": [17, 21, 46, 180, 192], "unknown": [12, 13], "unlik": [83, 85, 87, 88, 90], "unprocess": 190, "unstruct_collection_overrid": 163, "unstruct_strat": 163, "unstructur": [162, 163], "unstructure_fallback_factori": 163, "unstructurehook": 163, "unstructurestrategi": 163, "until": [152, 154, 192], "unus": [130, 132], "up": [17, 21, 38, 44, 67, 119, 122, 138, 140, 145, 147, 148, 149, 150, 152, 153, 154, 160, 168, 180, 185, 188, 194], "upath": [0, 1, 2, 4, 5, 7, 8, 9, 38, 46, 47, 59, 62, 93, 124, 155, 156, 158, 160, 165], "updat": [67, 145, 150, 152, 155, 156, 166, 181, 185, 192], "update_best_info": 181, "update_best_lay": 181, "update_neuroglanc": 181, "update_with_new_validation_if_poss": 181, "updated_frac": 178, "updated_neuroglancer_lay": 181, "upper": [82, 88, 151, 152, 186], "upsampl": [17, 18, 21, 38, 44, 59, 62, 188], "upsample_channel_contract": [17, 21], "upsample_factor": [17, 18, 21], "upstream": [2, 4, 7, 150, 152, 154], "upstream_task": [2, 4, 7], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 152, 154, 155, 156, 158, 162, 163, 165, 166, 168, 170, 171, 177, 180, 181, 182, 185, 186, 187, 188, 189, 190, 192, 193, 194], "usag": [160, 168, 187], "use_attent": [17, 18, 21], "use_gpu": 3, "use_negative_class": [59, 62], "use_quant": 3, "user": [49, 54, 155, 156, 165, 170, 185, 192], "user_instal": 192, "usual": [99, 100, 119, 122, 150, 152], "util": [155, 184, 190, 192, 193], "v": [152, 154, 190], "val": 59, "valid": [0, 1, 5, 9, 16, 17, 20, 21, 31, 35, 36, 37, 38, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 81, 82, 83, 85, 86, 87, 88, 90, 93, 126, 128, 138, 141, 144, 145, 155, 157, 160, 166, 168, 171, 172, 181, 184, 192, 193, 194], "validate_config": [62, 66, 192], "validate_run": 183, "validated_until": [67, 145], "validation_contain": [160, 168], "validation_dataset": [0, 155, 181, 186], "validation_input_arrai": [160, 168], "validation_interv": [67, 69, 70, 171, 192, 194], "validation_it": 192, "validation_iteration_scor": [67, 145, 184], "validation_output_arrai": [160, 168], "validation_paramet": 181, "validation_prediction_arrai": [160, 168], "validation_scor": [67, 69, 87, 88, 157, 166, 171, 172, 184, 192], "validation_score_nam": 157, "validationiterationscor": [67, 144, 145, 166, 171, 172], "validationscor": [67, 69, 87, 88, 145, 171, 172], "valu": [6, 13, 14, 22, 24, 25, 26, 27, 28, 29, 33, 38, 49, 54, 59, 62, 67, 77, 79, 82, 83, 88, 93, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110, 112, 115, 116, 118, 119, 126, 127, 128, 131, 132, 133, 136, 137, 138, 142, 145, 150, 152, 157, 177, 178, 180, 182], "value_typ": 83, "valueerror": [0, 12, 13, 17, 21, 36, 37, 38, 59, 62, 67, 82, 83, 85, 88, 90, 96, 99, 127, 138, 145, 155, 157, 158, 164, 166, 168, 170, 171, 172, 173, 175, 180, 181, 182, 186], "variabl": [130, 132, 185, 189, 192], "variat": [12, 13, 14, 15, 21, 82, 83, 88, 89, 90, 182], "variou": [63, 64, 83, 88, 136, 138, 140, 194], "vd": 186, "ve": [188, 194], "vector": [27, 30, 83, 93, 103], "veri": [79, 92, 93, 95, 194], "verif": [51, 54, 61, 62], "verifi": [16, 20, 21, 31, 36, 37, 38, 47, 49, 51, 52, 53, 54, 56, 58, 61, 62, 77, 79, 81, 92, 93, 124, 126, 128, 138, 141], "versa": 182, "version": [33, 34, 38, 43, 188, 191], "ves_mem": 188, "vi": 182, "vi_tabl": 182, "via": [18, 21, 116, 118, 119, 120, 147, 152, 192], "vice": 182, "video": 190, "view": [3, 17, 21, 48, 54, 179, 184, 194], "viewer": [181, 192], "viewerst": 181, "visibl": [150, 152, 162, 163], "vision": 83, "visual": [69, 136, 138, 181, 190], "visualize_pipelin": [69, 136, 138], "voi": [0, 82, 83, 88, 89, 90, 155, 179, 184, 186, 192], "voi_merg": [88, 89, 90], "voi_split": [88, 89, 90], "vol": 3, "volum": [3, 7, 23, 32, 35, 38, 39, 42, 59, 62, 131, 132, 180, 189, 190, 192, 193, 194], "vote": 3, "voxel": [15, 17, 18, 21, 22, 24, 25, 27, 28, 30, 32, 38, 39, 42, 44, 46, 54, 56, 59, 62, 67, 68, 76, 77, 93, 103, 108, 109, 115, 116, 118, 119, 120, 122, 130, 132, 150, 152, 176, 180, 181, 182, 186], "voxel_s": [17, 21, 38, 46, 47, 67, 68, 115, 116, 118, 119, 120, 150, 152, 174, 176, 180, 181, 192], "voxel_size_input": 71, "voxel_size_output": 71, "w": [178, 186, 192], "w_g": 17, "w_spars": 178, "w_x": 17, "wa": [73, 74, 146, 181], "wai": [11, 12, 13, 14, 79, 93, 95, 125, 192, 194], "wait": 7, "want": [17, 34, 38, 43, 44, 67, 68, 145, 193, 194], "warn": 186, "watersh": [10, 108, 113, 114], "watershed_funct": [4, 108, 113, 184], "watershed_post_processor": [108, 184], "watershed_post_processor_paramet": [108, 113, 184], "watershedpostprocessor": [76, 93, 108, 113, 114], "watershedpostprocessorparamet": [108, 113, 114, 192], "we": [13, 14, 17, 18, 21, 67, 145, 149, 152, 154, 160, 168, 182, 188, 190, 192, 193, 194], "web": [189, 191, 194], "webserv": [69, 136, 138, 181], "websit": 189, "weigel": 190, "weight": [0, 17, 48, 49, 54, 55, 69, 71, 72, 73, 74, 75, 77, 79, 82, 86, 88, 93, 96, 97, 98, 99, 100, 101, 102, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 136, 138, 148, 152, 155, 164, 169, 173, 178, 183, 192, 194], "weights_kei": [148, 152], "weights_stor": [167, 169, 184], "weightsstor": [164, 173], "well": [83, 92, 93, 190], "were": [25, 27, 30], "wether": [86, 87, 88], "what": [67, 145], "when": [17, 18, 20, 21, 59, 67, 68, 73, 74, 99, 100, 145, 146, 161, 165, 182, 187], "whenev": [81, 93], "where": [17, 22, 27, 30, 54, 56, 67, 79, 82, 83, 88, 90, 92, 93, 104, 108, 136, 138, 140, 145, 147, 152, 155, 158, 160, 165, 168, 169, 192, 193, 194], "wherea": [54, 56], "whether": [0, 3, 7, 8, 17, 18, 20, 21, 31, 36, 37, 38, 47, 67, 69, 77, 79, 82, 83, 84, 86, 87, 88, 89, 92, 93, 115, 116, 118, 119, 126, 127, 128, 136, 137, 138, 141, 145, 150, 152, 157, 171, 180, 181, 182, 186, 192, 193], "which": [11, 12, 13, 14, 17, 18, 21, 22, 23, 25, 27, 28, 30, 32, 33, 38, 39, 40, 41, 42, 44, 45, 54, 56, 67, 69, 71, 73, 74, 77, 79, 83, 85, 87, 88, 90, 92, 93, 95, 103, 108, 109, 116, 118, 119, 120, 122, 129, 132, 133, 134, 135, 136, 137, 138, 140, 143, 145, 148, 151, 152, 160, 162, 163, 166, 169, 171, 173, 181, 186, 192], "while": [67, 68, 84, 88], "who": [137, 138], "whole": [0, 155], "whose": 17, "why": [31, 38, 47, 93, 126, 128, 138, 141], "width": [17, 21, 180, 181], "william": [187, 190], "window": 181, "wise": [17, 182], "within": [17, 21, 59, 62, 82, 83, 88, 116, 118, 119, 120, 132, 133, 180, 192], "without": [69, 71, 73, 81, 93, 150, 152, 194], "won": 192, "word": 182, "work": [10, 38, 47, 67, 145, 162, 163, 185, 192, 194], "worker": [0, 1, 2, 4, 5, 6, 7, 8, 9, 67, 70, 104, 106, 108, 109, 111, 113, 137, 138, 155, 158, 186], "worker_fil": [2, 4, 7, 186], "worker_funct": [2, 4, 7], "world": [130, 132, 150, 152, 180], "would": [119, 122, 160, 168], "wr": 186, "wrap": [11, 12, 13, 14], "wrap_command": [12, 13, 14], "wrapped_command": [12, 13], "wrapper": [17, 21], "write": [2, 4, 7, 156, 160, 168, 186], "write_roi": [2, 4, 7, 10], "write_roi_s": 186, "write_s": 174, "written": [186, 194], "www": 187, "x": [17, 19, 21, 38, 47, 67, 68, 98, 99, 162, 163, 176, 182, 186, 192], "x1_kei": [152, 153], "x2_kei": [152, 153], "x64": 192, "xarrai": [67, 143, 145, 192], "xlabel": 192, "xlogx": 182, "xr": [67, 143], "xy": 3, "y": [17, 19, 21, 38, 47, 162, 163, 176, 182, 185, 186, 192], "y_kei": [152, 153], "yaml": [155, 156, 169, 185, 190, 192, 194], "year": 190, "yet": [67, 143], "yield": [3, 127, 138], "ylabel": 192, "you": [31, 34, 38, 43, 44, 47, 67, 68, 79, 92, 93, 95, 119, 122, 126, 145, 185, 188, 189, 190, 193, 194], "your": [18, 21, 25, 26, 27, 28, 38, 39, 47, 77, 83, 85, 87, 88, 90, 93, 119, 122, 132, 134, 185, 187, 188, 189, 192, 193, 194], "your_key_pair": 185, "your_security_group": 185, "yum": 185, "yurii": 190, "z": [17, 19, 21, 38, 47, 176, 186, 192], "zarr": [0, 3, 38, 47, 59, 62, 83, 88, 90, 155, 158, 168, 190, 192, 194], "zarr_array_config": [38, 184], "zarrarrayconfig": [38, 47, 59, 192], "zero": [33, 38, 54, 56, 67, 83, 127, 138, 143, 178, 180, 182], "zerodivisionerror": 83, "zerossourc": 180, "zip": 178, "zouinkhi": [187, 190], "zubov": 190}, "titles": ["dacapo.apply", "dacapo.blockwise.argmax_worker", "dacapo.blockwise.blockwise_task", "dacapo.blockwise.empanada_function", "dacapo.blockwise", "dacapo.blockwise.predict_worker", "dacapo.blockwise.relabel_worker", "dacapo.blockwise.scheduler", "dacapo.blockwise.segment_worker", "dacapo.blockwise.threshold_worker", "dacapo.blockwise.watershed_function", "dacapo.compute_context.bsub", "dacapo.compute_context.compute_context", "dacapo.compute_context", "dacapo.compute_context.local_torch", "dacapo.experiments.architectures.architecture", "dacapo.experiments.architectures.architecture_config", "dacapo.experiments.architectures.cnnectome_unet", "dacapo.experiments.architectures.cnnectome_unet_config", "dacapo.experiments.architectures.dummy_architecture", "dacapo.experiments.architectures.dummy_architecture_config", "dacapo.experiments.architectures", "dacapo.experiments.arraytypes.annotations", "dacapo.experiments.arraytypes.arraytype", "dacapo.experiments.arraytypes.binary", "dacapo.experiments.arraytypes.distances", "dacapo.experiments.arraytypes.embedding", "dacapo.experiments.arraytypes", "dacapo.experiments.arraytypes.intensities", "dacapo.experiments.arraytypes.mask", "dacapo.experiments.arraytypes.probabilities", "dacapo.experiments.datasplits.datasets.arrays.array_config", "dacapo.experiments.datasplits.datasets.arrays.binarize_array_config", "dacapo.experiments.datasplits.datasets.arrays.concat_array_config", "dacapo.experiments.datasplits.datasets.arrays.constant_array_config", "dacapo.experiments.datasplits.datasets.arrays.crop_array_config", "dacapo.experiments.datasplits.datasets.arrays.dummy_array_config", "dacapo.experiments.datasplits.datasets.arrays.dvid_array_config", "dacapo.experiments.datasplits.datasets.arrays", "dacapo.experiments.datasplits.datasets.arrays.intensity_array_config", "dacapo.experiments.datasplits.datasets.arrays.logical_or_array_config", "dacapo.experiments.datasplits.datasets.arrays.merge_instances_array_config", "dacapo.experiments.datasplits.datasets.arrays.missing_annotations_mask_config", "dacapo.experiments.datasplits.datasets.arrays.ones_array_config", "dacapo.experiments.datasplits.datasets.arrays.resampled_array_config", "dacapo.experiments.datasplits.datasets.arrays.sum_array_config", "dacapo.experiments.datasplits.datasets.arrays.tiff_array_config", "dacapo.experiments.datasplits.datasets.arrays.zarr_array_config", "dacapo.experiments.datasplits.datasets.dataset", "dacapo.experiments.datasplits.datasets.dataset_config", "dacapo.experiments.datasplits.datasets.dummy_dataset", "dacapo.experiments.datasplits.datasets.dummy_dataset_config", "dacapo.experiments.datasplits.datasets.graphstores.graph_source_config", "dacapo.experiments.datasplits.datasets.graphstores", "dacapo.experiments.datasplits.datasets", "dacapo.experiments.datasplits.datasets.raw_gt_dataset", "dacapo.experiments.datasplits.datasets.raw_gt_dataset_config", "dacapo.experiments.datasplits.datasplit", "dacapo.experiments.datasplits.datasplit_config", "dacapo.experiments.datasplits.datasplit_generator", "dacapo.experiments.datasplits.dummy_datasplit", "dacapo.experiments.datasplits.dummy_datasplit_config", "dacapo.experiments.datasplits", "dacapo.experiments.datasplits.keys", "dacapo.experiments.datasplits.keys.keys", "dacapo.experiments.datasplits.train_validate_datasplit", "dacapo.experiments.datasplits.train_validate_datasplit_config", "dacapo.experiments", "dacapo.experiments.model", "dacapo.experiments.run", "dacapo.experiments.run_config", "dacapo.experiments.starts.cosem_start", "dacapo.experiments.starts.cosem_start_config", "dacapo.experiments.starts", "dacapo.experiments.starts.start", "dacapo.experiments.starts.start_config", "dacapo.experiments.tasks.affinities_task", "dacapo.experiments.tasks.affinities_task_config", "dacapo.experiments.tasks.distance_task", "dacapo.experiments.tasks.distance_task_config", "dacapo.experiments.tasks.dummy_task", "dacapo.experiments.tasks.dummy_task_config", "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluation_scores", "dacapo.experiments.tasks.evaluators.binary_segmentation_evaluator", "dacapo.experiments.tasks.evaluators.dummy_evaluation_scores", "dacapo.experiments.tasks.evaluators.dummy_evaluator", "dacapo.experiments.tasks.evaluators.evaluation_scores", "dacapo.experiments.tasks.evaluators.evaluator", "dacapo.experiments.tasks.evaluators", "dacapo.experiments.tasks.evaluators.instance_evaluation_scores", "dacapo.experiments.tasks.evaluators.instance_evaluator", "dacapo.experiments.tasks.hot_distance_task", "dacapo.experiments.tasks.hot_distance_task_config", "dacapo.experiments.tasks", "dacapo.experiments.tasks.inner_distance_task", "dacapo.experiments.tasks.inner_distance_task_config", "dacapo.experiments.tasks.losses.affinities_loss", "dacapo.experiments.tasks.losses.dummy_loss", "dacapo.experiments.tasks.losses.hot_distance_loss", "dacapo.experiments.tasks.losses", "dacapo.experiments.tasks.losses.loss", "dacapo.experiments.tasks.losses.mse_loss", "dacapo.experiments.tasks.one_hot_task", "dacapo.experiments.tasks.one_hot_task_config", "dacapo.experiments.tasks.post_processors.argmax_post_processor", "dacapo.experiments.tasks.post_processors.argmax_post_processor_parameters", "dacapo.experiments.tasks.post_processors.dummy_post_processor", "dacapo.experiments.tasks.post_processors.dummy_post_processor_parameters", "dacapo.experiments.tasks.post_processors", "dacapo.experiments.tasks.post_processors.post_processor", "dacapo.experiments.tasks.post_processors.post_processor_parameters", "dacapo.experiments.tasks.post_processors.threshold_post_processor", "dacapo.experiments.tasks.post_processors.threshold_post_processor_parameters", "dacapo.experiments.tasks.post_processors.watershed_post_processor", "dacapo.experiments.tasks.post_processors.watershed_post_processor_parameters", "dacapo.experiments.tasks.predictors.affinities_predictor", "dacapo.experiments.tasks.predictors.distance_predictor", "dacapo.experiments.tasks.predictors.dummy_predictor", "dacapo.experiments.tasks.predictors.hot_distance_predictor", "dacapo.experiments.tasks.predictors", "dacapo.experiments.tasks.predictors.inner_distance_predictor", "dacapo.experiments.tasks.predictors.one_hot_predictor", "dacapo.experiments.tasks.predictors.predictor", "dacapo.experiments.tasks.pretrained_task", "dacapo.experiments.tasks.pretrained_task_config", "dacapo.experiments.tasks.task", "dacapo.experiments.tasks.task_config", "dacapo.experiments.trainers.dummy_trainer", "dacapo.experiments.trainers.dummy_trainer_config", "dacapo.experiments.trainers.gp_augments.augment_config", "dacapo.experiments.trainers.gp_augments.elastic_config", "dacapo.experiments.trainers.gp_augments.gamma_config", "dacapo.experiments.trainers.gp_augments", "dacapo.experiments.trainers.gp_augments.intensity_config", "dacapo.experiments.trainers.gp_augments.intensity_scale_shift_config", "dacapo.experiments.trainers.gp_augments.simple_config", "dacapo.experiments.trainers.gunpowder_trainer", "dacapo.experiments.trainers.gunpowder_trainer_config", "dacapo.experiments.trainers", "dacapo.experiments.trainers.optimizers", "dacapo.experiments.trainers.trainer", "dacapo.experiments.trainers.trainer_config", "dacapo.experiments.training_iteration_stats", "dacapo.experiments.training_stats", "dacapo.experiments.validation_iteration_scores", "dacapo.experiments.validation_scores", "dacapo.ext", "dacapo.gp.copy", "dacapo.gp.dacapo_create_target", "dacapo.gp.dacapo_points_source", "dacapo.gp.elastic_augment_fuse", "dacapo.gp.gamma_noise", "dacapo.gp", "dacapo.gp.product", "dacapo.gp.reject_if_empty", "dacapo", "dacapo.options", "dacapo.plot", "dacapo.predict", "dacapo.predict_local", "dacapo.store.array_store", "dacapo.store.config_store", "dacapo.store.conversion_hooks", "dacapo.store.converter", "dacapo.store.create_store", "dacapo.store.file_config_store", "dacapo.store.file_stats_store", "dacapo.store", "dacapo.store.local_array_store", "dacapo.store.local_weights_store", "dacapo.store.mongo_config_store", "dacapo.store.mongo_stats_store", "dacapo.store.stats_store", "dacapo.store.weights_store", "dacapo.tmp", "dacapo.train", "dacapo.utils.affinities", "dacapo.utils.array_utils", "dacapo.utils.balance_weights", "dacapo.utils", "dacapo.utils.pipeline", "dacapo.utils.view", "dacapo.utils.voi", "dacapo.validate", "API Reference", "AWS EC2 Setup Guide", "CLI", "<no title>", "Fine-Tune Cosem Starter", "Docker Configuration for JupyterHub-Dacapo", "DaCapo ", "Installation", "Minimal Tutorial", "Overview", "Tutorial: A Simple Experiment in Python"], "titleterms": {"": 190, "1": 188, "2": 188, "3": 188, "A": 194, "access": 185, "affin": 176, "affinities_loss": 96, "affinities_predictor": 115, "affinities_task": 76, "affinities_task_config": 77, "annot": 22, "api": 184, "appli": [0, 186], "architectur": [15, 16, 17, 18, 19, 20, 21, 192], "architecture_config": 16, "argmax_post_processor": 104, "argmax_post_processor_paramet": 105, "argmax_work": 1, "arrai": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], "array_config": 31, "array_stor": 160, "array_util": 177, "arraytyp": [22, 23, 24, 25, 26, 27, 28, 29, 30], "attribut": [0, 1, 3, 5, 6, 7, 8, 9, 59, 67, 70, 71, 74, 83, 87, 90, 116, 118, 120, 121, 136, 143, 150, 151, 154, 156, 157, 158, 159, 163, 165, 166, 168, 169, 170, 171, 175, 176, 183], "augment_config": 129, "avail": 188, "aw": 185, "balance_weight": 178, "binari": 24, "binarize_array_config": 32, "binary_segmentation_evalu": 83, "binary_segmentation_evaluation_scor": 82, "blockwis": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 186], "blockwise_task": 2, "bsub": 11, "build": 189, "checkpoint": 185, "cite": 190, "class": [2, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 160, 161, 163, 165, 166, 168, 169, 170, 171, 172, 173, 180, 181], "cli": 186, "cnnectome_unet": 17, "cnnectome_unet_config": 18, "compute_context": [11, 12, 13, 14], "concat_array_config": 33, "config": [186, 192, 194], "config_stor": 161, "configur": [185, 188, 189, 192], "constant_array_config": 34, "contain": 189, "content": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183], "conversion_hook": 162, "convert": 163, "copi": 147, "cosem": 188, "cosem_start": 71, "cosem_start_config": 72, "cosemstartconfig": 188, "creat": [188, 194], "create_stor": 164, "crop_array_config": 35, "dacapo": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 186, 189, 190, 193], "dacapo_create_target": 148, "dacapo_points_sourc": 149, "data": [185, 192, 194], "dataset": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "dataset_config": 49, "datasplit": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 192], "datasplit_config": 58, "datasplit_gener": 59, "distanc": 25, "distance_predictor": 116, "distance_task": 78, "distance_task_config": 79, "do": 192, "docker": [185, 189], "doe": 193, "dummy_architectur": 19, "dummy_architecture_config": 20, "dummy_array_config": 36, "dummy_dataset": 50, "dummy_dataset_config": 51, "dummy_datasplit": 60, "dummy_datasplit_config": 61, "dummy_evalu": 85, "dummy_evaluation_scor": 84, "dummy_loss": 97, "dummy_post_processor": 106, "dummy_post_processor_paramet": 107, "dummy_predictor": 117, "dummy_task": 80, "dummy_task_config": 81, "dummy_train": 127, "dummy_trainer_config": 128, "dvid_array_config": 37, "ec2": 185, "elastic_augment_fus": 150, "elastic_config": 130, "embed": 26, "empanada_funct": 3, "environ": 192, "evalu": [82, 83, 84, 85, 86, 87, 88, 89, 90], "evaluation_scor": 86, "exampl": [188, 190], "except": 161, "experi": [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 185, 194], "ext": 146, "file_config_stor": 165, "file_stats_stor": 166, "fine": 188, "full": 188, "function": [0, 1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 59, 71, 74, 90, 155, 157, 158, 159, 162, 164, 174, 175, 176, 177, 178, 180, 181, 182, 183, 190], "further": 189, "gamma_config": 131, "gamma_nois": 151, "github": 190, "gp": [147, 148, 149, 150, 151, 152, 153, 154], "gp_augment": [129, 130, 131, 132, 133, 134, 135], "graph_source_config": 52, "graphstor": [52, 53], "guid": 185, "gunpowder_train": 136, "gunpowder_trainer_config": 137, "help": 190, "hot_distance_loss": 98, "hot_distance_predictor": 118, "hot_distance_task": 91, "hot_distance_task_config": 92, "how": 193, "i": 193, "imag": [185, 189], "import": 188, "inner_distance_predictor": 120, "inner_distance_task": 94, "inner_distance_task_config": 95, "instal": [190, 191, 194], "instance_evalu": 90, "instance_evaluation_scor": 89, "intens": 28, "intensity_array_config": 39, "intensity_config": 133, "intensity_scale_shift_config": 134, "introduct": 192, "jupyterhub": 189, "kei": [63, 64], "learn": 192, "librari": 192, "local_array_stor": 168, "local_torch": 14, "local_weights_stor": 169, "logical_or_array_config": 40, "loss": [96, 97, 98, 99, 100, 101], "mask": 29, "merge_instances_array_config": 41, "minim": 192, "missing_annotations_mask_config": 42, "model": [68, 188], "modul": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 151, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 183], "mongo_config_stor": 170, "mongo_stats_stor": 171, "mse_loss": 101, "need": 192, "note": 188, "one_hot_predictor": 121, "one_hot_task": 102, "one_hot_task_config": 103, "ones_array_config": 43, "optim": 139, "option": 156, "org": 190, "overview": [190, 192, 193], "packag": [4, 13, 21, 27, 38, 53, 54, 62, 63, 67, 73, 88, 93, 99, 108, 119, 132, 138, 146, 152, 155], "pipelin": 180, "plot": 157, "post_processor": [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "post_processor_paramet": 110, "predict": [158, 186], "predict_loc": 159, "predict_work": 5, "predictor": [115, 116, 117, 118, 119, 120, 121, 122], "prepar": 192, "prerequisit": 188, "pretrain": 188, "pretrained_task": 123, "pretrained_task_config": 124, "probabl": 30, "product": 153, "python": 194, "raw_gt_dataset": 55, "raw_gt_dataset_config": 56, "refer": 184, "reject_if_empti": 154, "relabel_work": 6, "repo": 190, "requir": 189, "resampled_array_config": 44, "resourc": 190, "retriev": 192, "run": [69, 185, 186, 188, 189, 192, 194], "run_config": 70, "s3": 185, "schedul": 7, "segment": 186, "segment_work": 8, "setup": [185, 190, 192], "simpl": 194, "simple_config": 135, "star": 190, "start": [71, 72, 73, 74, 75, 188, 194], "start_config": [75, 188], "starter": 188, "stats_stor": 172, "step": 188, "stop": 189, "storag": 194, "store": [160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 185, 192], "submodul": [4, 13, 21, 27, 38, 53, 54, 62, 63, 67, 73, 88, 93, 99, 108, 119, 132, 138, 152, 155, 167, 179], "sum_array_config": 45, "task": [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 192], "task_config": 126, "thi": [190, 192], "threshold_post_processor": 111, "threshold_post_processor_paramet": 112, "threshold_work": 9, "tiff_array_config": 46, "tmp": 174, "tool": 190, "train": [175, 186, 192], "train_validate_datasplit": 65, "train_validate_datasplit_config": 66, "trainer": [127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 192], "trainer_config": 141, "training_iteration_stat": 142, "training_stat": 143, "tune": 188, "tutori": [190, 192, 194], "util": [176, 177, 178, 179, 180, 181, 182], "valid": [183, 186], "validation_iteration_scor": 144, "validation_scor": 145, "view": 181, "visual": 192, "voi": 182, "want": 192, "watershed_funct": 10, "watershed_post_processor": 113, "watershed_post_processor_paramet": 114, "weights_stor": 173, "what": [192, 193], "work": 193, "you": 192, "zarr_array_config": 47}}) \ No newline at end of file

0Tc=yD3k3L4<>aV(kmEz|qN%lxY}UBdo+*^v|~sBcVN z-*S(6DnKT&&E>abZn{;OMCY;H-!>t$@CFD$L!z-U5iSH2EA-Bn=)yvai9dr=IV=_} zVD>YsNP1d1)vciyR+!QsCb7NUjJ4%PP_GF$c0;VknuS1=UO>&qKBBPk7RaEl$F9uC zkJKgdhKhB`Y0+$(ywR|EJb^weQaRT)0q*_qvz7vcV?M9Xo67CRVzgH3n4O%{2x zyX{lre2-`0a=x^!Fr_vSamOy#lr)X_PW2?Bj!d(^`RY{>np7htKv(v+-a!e%xIFl} zM|DCl*yygD%Y7Dlp$OKr7EGE>Lvq`O1>cMzsT9flDVKw0rA>HUzPG`59LjyZf!%7q z){OvUOWTDeTIU_%>VhLM@M=ks`w&mE7$DA&Y+Bf7v$m&$W-3Pzua5cEz?Lf1tv;N2)pF!@$cQwt^V*E{R!-dtdxpVMiIEqB^OG%NU<3 zp3?0x`m3iu%|Awyzq%ZCyPi4b_?GSai*B^Ev%7RacZLQGvGMVjFU-d@b(=`jmoQ`I zAnm@Nn4y;UWV_cP5*BlVj|CPHVq<^}I-<{`8TP>Z<7|t-Y2J9HEsC_kYxXHLYOPYr z1u@RW%#|DoYIjMJDXtHS*j*B>?PNCoB@lU*nnr8o(~tr?N)B5Lxn?S{c_ zE;2keQabD)!#oL|Q`hiMX~6zad`b~6s=@k+jBP-b9~}}X{I}MH**JJ{U18;hl=M<* zb_g%c9P-VCG06>(en8=dU}RgI(oaPO#!yJ`7UmuU;wMIcK5VSA1P$1(cn>C<*eowCwdOkB6nVDHYhgq4R zrA3$+51!mc6kr8(fqD8I>8gRnnSr~$&+JsskSWi~sEY;$WazX?x!yIQpIeYa z3E!#a_F4Z5jD_bvqoHawU5`U5R44l!8OxSOimV{f?WEpU4ZtBnY>_sOLcwx87}i$D zH6;;l>Ed`R_!T`8)~`d}sB2=^ky1tuh<{gH5c414;jUER_o^27iZk}pNNZ3JS>4U0 zEA=Jwr;BYMV=sWAf}_CFY73PKh4NY?OuC(ky^dpjo6XPhFH-aAT|6tjZA7WQpGiQ_ zU7^l)Oi<9;8W7Eg!WQUTsL8`Y@66FfFJ9hwdztoJz6-s@x<QV3AuzxGa}><~89w~j4&`HDLd^)f=I#7V8SQ#`C^SR!mHx~-HE*SId929% z==%INFv83w_QgoE*yXbE2pqVJct@wLZN`duAN+dnX+72b);&V=euVei-Z?RW|?*CU2^q%9$@X9yo%Z z=XO>d_gvK8UQEHp6-FTTWhQl3HNz+N-+OKbUOU8VjL)VoUW32Dd(?+T zufIjtMPXK5cvWV-lN`~FLi%bZnMaC~#&YkK(Ah3LvP#a4L4PxZUN6`G&dceAzpGN~ z$1SSX5A)ZGy+#_wnB+hMk5s~LGo>fe^QP7JQ9V2mFu#?`N(IUr1&9GrC6{y-CI&Bb zLuf8DA_}@?=7KhQ!#KJ>;d0b0vg?&{27#;-IbntxnGZVB<@PsOkqo|nV#TOZMI~{n za*+Da)#7lo4cxW#$cruCaZybz%{m-y8y?ZRCT;J7uq0U_%t$D-K{7(J4ZDf;KS&1L zT|*zPW9XHU%Y@71$+QnCR%rrO^P!OMNsRbd49Vh`IOB)7cSyKe@Mv=KMCV;J=0?o^ zGf0^;8;d(C{YodsT(~ktIn_rLb!2kk6)%gEI?j;lre&_>4D&nS9B~Dmx9pOTnsBCi zG}81)O=;O#@;>%JKO&y{cI?b@Zo+30oPbLxeOZ6)HC3zbmtEh@lJ3QDYRpXK!T z;s|J>6gIwwoUlxdm@Zj2rE73Gjj^qoDG@lYW5TJzBfYwWJ#~+Xj8TOY+HL?XH7qyf z<4`G-LyoxLkYNmbWZ;PCcVZi}2z_Mm*=)w-^wE3PexG5riyOTA5(YutfQR~dMIiy)>g%{!V z0=v-pj`gG+XFR($)kb+{-5Ontz)Rpm^TVlJOSGyp*?$o3b+J*8jKwD?)&7a}Kf4ZNDLVF(6$miXYD3{)9$5si?O|b?UtM92j>9$%qX1^5ERCeq z={nxS?nPhQ^Ru`D-vy*PD44}inkhN!gdE*8oh62?KkL6ILeZBYqV}0q#!oL@^9T09 z@$%hW&Ccbl%Zk#v%gi(TYL3VCOxN~ySv~7u1f!LgY6q^z)kE0S=C_xMf6lzw6z1^Y zzh~Z`{CS)Hf+L;X5f4T?z`uKU4hLSU{fpYQxiG8xd8VgPo@HPWoL=s_6b9+Gd9rB? zNVnF$FFe>BWX(MVbEo>iT@MXTvDbgoran@a+G7#zr;vkkQK%b`W7--~JSo@&(Ih7z zvo=zzOb@}>!bB+O2)@yn;vZLM%RI;u_lrjts<@ukYc+x(`v@+Q;@t$LS0ax4k zkUOcR;k=XoDgJk|zb5)F$~NDeW+JUeLzAS5CjS&wS&%c1^Af0wGE3KNILuV3j8xjA zo`{pEN112V)1Yqp}z244!KG znHbVFbNb=h7F{jd zhi5v=yhMDTYTnBZv%yX87VkIDAaPZP;r3ng^vb%R7p|6BK~!8OSAt#T@6TrT3)xT% zgNW*&fc$xjZ?*WTb@CAbhhE#3rnJH|%~aQ<_BS+9Wceb!kCHPSzC|nd2+eb8kM&F% zzkab$J`Ad1(+G(IYchw59sC2HH60Z2Y7i}^Yc;bj_Ee|QnpO1Vt4Bmw=#SQIuKv;T zIcT&69+eUyGK&Q7v7{7m?c`-i{l&}2iMzGZb4YK&&CBlvU0vOF>8uCGe~SV!?M1{3-KPy)7u*GHJVxP z{`puwK5XEMfn0xTeFwkVZJm&_o*IyxDjv}Q!8V^{qnLEymH7MH?(`Bi=Lsd{>e2Q; zg_|B~(fuRnW&CF)lsE6C)#ug9oy&d+i7Oy>pR*s)A#@I~^=>r(@`ISZ(+B<2jzZ5{ z%kjo{tf4Q)|0uTReP+x6`{$N|eyuwyIsZ2(<4GQ8$LZD&O_*5qV6oIKvmM>1USf`&nCP67nwFOd0Uky=Y9kqjR|2mtrG>yh8x;XcLK6$(NOf^;mMv`QP19d{w zDzKiQw?~sZ-f+(S4_wZD&z0-xa4z6{zwzlA%$ww%>1geq`C!pui_-Ckv{R(qbu%ZD zkyQ(+)z=BK!SYBfd#ol~$`kYD#DXud1$O63I;yoWo(XG1W!bWnARQ5g?J(#c^Cy{F zY+4P{LS9Mt)o7WTSjwt)I3REV+1dZuzIV?GS&Z%|XONlRplBcRL<%KI&Xx``kQ-3Y zDVhKF36Ci^VTJ`@J1MEO1=4Qb8J*RN3mVSR`CGv9RFW4&N@s*O4nAV()Fo~^-KL(P#ZsOMI%1i?uaCZ7+SkV zYn;vIVfeY|1#B?dSHVO9&RA`RP8E9(kHhb{8< zcVnGL7JhA$L-WPsfRvMt(^pb;dw-YY)8q#~yN3)|{icwf$oJY-!9kat!dNMwH_2(s9v#f%+xMdzAe zq5>9AjAZ=NU1`U&z?YD46Z>d6u(#cLRUj-!;s|rF7nU$}p;Mt_8^0~G9(Ey+|E@4h z?$b~uACor;kJObP`*}ea>O2%gJZDpY z;TRCobxOqzU+ZoN?GwlAHr^vtC>VTcDdfnuxE$?R+T!{BGi(?$`Y=r;n5o^BaN2q$ zFriX^of&tXA8Re(qWFQ=BijTN%T2I2{P|V$(qPP@ z`PadfoCAbdY@<)Sb9*|8)i%R&)uoX$^5;%=&`}dF=hsl>R4#s%y?Zq>aOOw0*;hm0 zdtvN}M18pi$;@V7I$Uf1dZZ;@-Ws<;Y<4&`x%JmN1E1vPk$mH`>abINf8S>0*kAn~ zj6c|5w0yJ{_35&1Wr(PCq4Arzn`Zmy^ELUieey!nZXiaXL#I7ZWfu5dd4j?9T@KRx0?>EAOeV7Zc3zLH`&zBUnIf<_>4831>q#v+=42qDXtl(^Qqd|Xn#f3kGm0`<+3%-0qG%VO z`Abm=h|BG()cSKL>5yraKf_j+SjB4#Bn&35y#m&~o}#NA{;Y9!Xr4{75+I7uY&YJpEE_ zxF1yYW!r|UBgdwL@rtNgFP!;Qd>RjSxQ-`4d}8 z>r3(}XyT13WRhkuo@VvGsV%F8ps?ONL?B;da|-G!OVH(qb0}V(_FzhroUz+4KN)M8 z69rYqH7OHAKm&R<~^8-|sU|MN*e)?e-V6 zM$yqjp{U9YklwPw3ppJLfNa`50qcZ6$3SE;=vOx}W5ppNUDY#a@DZui<`g8)!9p{Y zSd;ldG$~`fq2IE)B;KA>+O!0cb;t*m`pg3vIH>Uc$qI=7l(%Ft$XHE VNp3-u<| zILf2FHRzo?V7;S2CNUwmwkS8{cB-o+%iO@MUzuF#!^c$m#*Urb4)2-GQ6S?8pSk-vW!-(kEO8!(!H-CN99FhCf7 zdY*Y$U^iTY6v$KDF|#!gyR*nHm2sY{2{w-nxqKtC-sFMx>GyI(wcpYj%0dmUyD6yL zXRg~=bXdoH{2J@iYh5NOZ|D9I`1mt>Nt#w{(04em=_8|?z?nm}m)GZvItiUZv+fL@ zq{g_#_o|z2B^~qYg~y*Bt5Kz0$X~18&6UDC#=X<+wiND7x10Wr#5$#Q8MCuHF6j5? z&`0woOpH_^K-PG_qXQxEEJGqx>S4Ce3UgMAV^f2-8B}+dDV~9f*b47C=?uAdbtw0$ z52W30_V#~YJp@6UzI14G?`|@8SpH(W5_-u2ZTQiS3DP*+mQ*Yj_R~_ZSgVcytF;l|!)^ zNYs3@TbqJtOD76+@O7`S2$#;pl#j0psq>%~RTHrOea%`7!T~u9UFxDCeXum4&trg% zY;5c&u4tksCSrRwpk}q>-E>`)P>$)3E1VrE!o;2Z92njW^gWHeW(?LjqP=}yurC?~SE}=&#`m1K(GlBR8&Z1Q`LaM*x4dgvZGF9%k0E_@YglBbn)=RbX5{3 zZ4Y84SA>kVr+BjAh`Cd0ndh^ac^pv>MYA%l>5f_~Rov2M0bwb+Gj?DE+>{QBqN?o4DBc0`Q+Du<=2nLAecn_o z?cNldB4bgij#<_K^oPO)j|JHFz8+LYMtAJ{t$bfKOX#QWc1-)A$NXP%b{jLUXl1r( z(oYh0{5m8G>*Hmn(CI(>ggF9N<<&wA#>A5XurXY~AxjBxKIPMd$AqYh{K@udr1uo) z=8`1)7R=Z_gy|S))+9?|8fQ5+1c@sFDIl(ovLEK`MOTS!w+`#=NqegNEO>_##Z1X) zTbm{Y?KJ}9=ZO0S_=|%OqC<2bEi@!L`%bKkWCzpV1mgc*-nII10WFY**Jy#9q(U;G zmRNgAKqQ>Azy_4&XVGo;B8j^EMmTJl_VG?`_)AGGhhsWS>>jnGB=N#C-A2GR_!!@O z%ieW6m)&L6eb;0-C*FP8Z>+al&;@?XJ)sv1>S^3mR3?zOMeSkfs+|yixV)o!%O{$x zXZVaAzRBO~UQ^Qq9p9~NwWf=7eny>>r2W(38-R(*tH~v$(68`wZ!=s5bGbeJ;LKhA z;Aww<-)M^FqXOBf-}FZKLHliI|Ltt0y&HG_Cf<8vpyN=kAKU7!0(KQ!t%KInwW+cZ z9MNa-$DPKN{?^()A^9K1=mBrGB6OYcav|@x!eMXhSiWdMe|O#+h^v_fhotm(-Jd+? z9}sdgD!&5rAI@j}>8lL6a_g$3ls>CnfBY+c$NU7W*6ovB0g>1wpPcY~kX}z4r|-Mh zZ|!WKR{W@@rlz`c1rq07Z24oH-epW5^pjh#QP#-fVrV2FA{SlM(DHG>G{S_zLV*_6iC;2vtKY!Lc@|7%+~OvrZJX9;Lq4}z-Vmr)mLEyxjtfQ zT%>FX^o;gPI#>zgIlAM2{f2{5Nfm`;xH(r)%e?gFuE=1y=A3~7dn%x4{f&yH66=*e zNP1u>v5+@E&Pkhp70>)R3ymp=fXzCKGD-M`L;%msB%#j1VqG7aR=4^5qhH4Iq6FnM z#1DJHWw1Cy3x zJIG~K9rSg(0Avl>TslkkepAyFHzyAWy~SK(6i`-L6z3J-$118dw)s8B3F0It#r=JV zlQrcOGKj$K3d-wiF=wk$PHIp=YV4fQ;D=(Vnyt3x?UIKXm#2Ijpn@K{d7B4fa-Y5A zQx`Xo!B1)VK0`#csP}^bS_fd=63@+3I5ZP;2v^l%lN2z;*gDsSVlImT(rNwy>*Mc zCybrIN*{VzLQ+&*5hOn}1(-hb3MVD7xlQAoL4F%0B&@!QX?@2`P><(5jA)9HdxuvBOOc! zX4uyI4x`~wU!jhpnl)N?YKV_BNKi!Jdz%F?qhA^d2lDaVamK)ioV_3n1ge~heHgHU z20@pYX`5{Zjwj;@lro6+nAen5B`p6Gl|Qu96IQ_Q-TNl!ERGp>mohS+2$36YXXacy zjU~3XsgmOD=-oWH`(2Np(J#{AviS2n+Qlh3_*rC>A$7H1#_^B+TT{4%B(YCJG_FtA zWdub#Z&F`S+#ijjY5RLQliTXZ;&>>lZI}i!{+D5y4%>y;KegMNJn2sJX(Cmf96%mW zPtN*j1$a~Dn#-SeKBRefMO@}R+r7y|jB7$;$lr4Ae$#}ajX(Cd{{_h!2j9@|EgbPcb9!gCU_F5z?%2}>S*;&wj5WLo&NCT`?yV>wFJEj z*Leq9Z~70R3P3miBjW#e0W|R%i&bX4;oS`Tsny(g?_lS`1oNo-!!e2Ks)bVST^3U7irP>??YC(=dnkT>%D9awp(zXnBySN zMm&(w$k%-t55<V0R6&t39CNkt`8hNC)@`wcyvxRjY z3yN%B6qMpV!Dnw;{-6z{%>`1yF^27sq^su+>ZoA>3g^T0F#c6Wby=->mhGUQ{B~16 z&%U}EWSk*JTX27T%{6_&>fKm|CSTckYsO(R{gky3A)1m~lRy+Fg2UFTU#YYJ=f7wK z0aV{@H+XA%a+1``9oV897wIInBviT61PFtYy8fagsHe%*bTzG*UkY*h)){m1c)Q{q zI_trX@FHqW(w?-yWICys2FSzdYj-dt<;OIk|K}`4GBs@Ob6g6WXt&xjI)GY*q7b(-vccpHGiow+dK2c?yx7|A<)For&$2+Nq>bQ%m^7{0=tAG1X_$->YtOoje~DbMdQ;nXGIab2Ebi>m#PL`k zT|$xIQzO%sC_bX6G&~}`CfC}e;L?{8%!{OGY8~?;51)aeBCw?fjM=P5J?KCPM_ypG zuY`P(qZYjzD}zUbyZ~n?u@g(D>Xe8OfhE&^Dgp(~rXO>e zPQFF+)pGTx%*sKA;G2X_HsiTr)^aDv>Vb!B1>RP z+jct1U3J)F0cg{fKmTRVgPML`kkM`!tXFmVv-2m`cS*Ypp43gJ$al&-)zV?Fv_15B zZQTxK=t@`O=Y?Dx@zS{dSwC(@XZ}y$5p<=+ z+~j8L@R1E}G9*WEV|$t7Nei~;(D~`;2S;a;dHZd*znYa!fA&|W0Z!gJy&+IxL;W8t z)&IM-mY+QUk>2ony8!xST!Uplwfb-VL5bPY4AG$U)%MmRn?0HN7?z6%g&JyzGog<< zZHRb?B8}7~NcGcZO!#dhixX^mmN76}TCP_%$2o+HXaM0C@FX$8Xk!EIKhA7K5+gyH z>jU!^gwVeiT3~IyizzV@r=4LWPPGJ&?wCmub2t;ik)W>cIkZU_K}2MXh8f3?-jk8c ziIO9b?Q4*m)FncL8fw!>n$&a~Ift=G2nO)1Apfug2j|2YAveXh;>9Hb@)^sD`tGEp zVtr6%Ry+~AZGl{E0s2rD(FbApQo1jsb0P%q7ZQdv`+O$t^iGsks_d&ZvziuogU8xw zWHp{vL<*$PWO}9H&0}OU5?R5bOE67_Fsm2}_iuO4v8AT;obv`1<1&hT9OZ z017rqtc1H`B-O-7tSlUz!Kv~&4*YCS<)c(2u->H=5e{i=WuDt#(M zTqTGJ^V7+;BS8;P|0W`Wj>swwfwqC(?e0udDW90inxe(Y0@CC{;5Lm?u_WVZ(x;6h zrGy@&x+Yg&l=rLW4#`mW962=0a0JDnLFXuy(g0mYcUqB039aSR5*C)JTcy?2G9W61 zU|MQMN8)gFyZ^g;QudNirl49l#?`SbxV%ZD9z_fN`i2W#N~J0y#Z;zY#vBf{MET#Q z-0x0%km7sissUI=>nU%B0aFVTe&C#ZL{JoAwTNGnM_&G&y|xpp4lx$ManO`rVJ za2&qj0C&DaVQIMxsdwGGT+iKu2GPFw;xr*}GB(jPr{-pG;QAy{G5~xjyGWc*+a`C* z`+ty`Oz)IBhPpH(_W{F*F|A7qg=lsN%X1L@Th!;NG|YUJngq~y(~=bHy%O0f_txI< zcJ~jaYG)ur*EJM7;`suMe)FTEa;o`x9v7=F6Dndh`Xe@LJY3K0xJfGft5;?+6R~{j zbiGfvi9W8)^n#`4Y-|0}<)`$SS|6_g!`|`tkJPx$r$D;Bhw1F~RMuW>5AebIuMF6& z?;$*o2=3rt|Lkd$r;I}ERIIj#hpYV-sH@uc4KF)MC*e)1kIT4lOPvL6TGod+9WD?e z(Vcq0_HSHHPEJ-XKTTP~hVOWFphk8A-mQ9E9#7q!ZmfP{(*#6@4Ce9%g^(fDwwz@p zN|NkB3p1aF1zAXk(6;9N;>=`1k2{A+YcMZ`UQjo+{cf!}WKkxbLIlB5&<1F=)_?dM~Px%5xKoKCgISNP6=sD`x_mU#OvNnUZuwFuSCP^db0 zwy689mA&^8J31V5Hb35M;sKM85tBnSve_+N>1>d=&6Ib1jSb!5?b3rRoQ zf?FW|K&5zyAQ&XvC!}EZ9ij^j*l8`ykYzKI!`(W@SlW4dLj8{wQS8nZ@RVPv76&U+ zjK~21zlHzm5m^V0aCua`VhkE+R6s^TtV6m0L?kP=KvpUCV7}DQfBP+dY7B?W#tigd zNL)n`fLbsY6-K`5LKaWdH3@{2bJ(?h32_U{OVyj7iXQB-mg@Juk|pvqxPig0yEE5W zu$bJtN6$jwVq;VoRrjIa!?Nwq(gGvui%4)Rf>miXnfdYUp^*{tDcmP=lMC+jPO0B} zv2;M9xn$^tR>60dvZQR10-iS(xuNNsed_wH!y#hucJ}zh!%`=rz1bcH$m3-_W32HB7>*hMGu&Q#*ZW->Fl5&Hw^PyB28rbvJ7UW3 z!~le_b_4nuK>ol=C*5*|Q)btPP$YlUk25h4*a=)dd_3U`br*_xpJFu^tpA^0vkR03 z904^%7sQ6#+}thz;hGERXW{}N@J=TO+iVAFMY>s4t$k$XmLv49l@>(eh4cSn?1$~R zwd$JCpw%sk=l5c@o;5M-SfhZqVvAN0Vq`00`c*W5NJa`kl$!AHWQG)sni-8al~6^Y zIwH+@aM!LY%!Es=?FWNt{fmf7spFQz5AIrTNLJU_Q#q6WteKLbe$OAtGz+v3q_1z( zKA*~qo@wQO64RwHHir*huu}L~x9Mk*il3p#6gylnKdkDqsen7R{I8a)U5`SBMY= zlQubVRUk#|&ep}_G)qvKYuU@rP$-<;-40%YR@DW8P}Z$#a-RaOlbyzY*`xBbtcZXOmg+MO9gqB!{%q&!yA&C?Mw3JxvH)tgj zmqFv81lF0K8)G|pqIg8Lb)5+hqr`?1*QS%4+JAWbmLic2MdS&>6p^F$7HKt5`6R=+ zv6kFf{uXN1%rY5iX!=>K$V->4en&XDV8*O;(DFopW+-qjNlbhE53vE>ABmPE3XKjt zWqdIt3?Rt@wnZf=LlXS9Dt63bV>KL9o0Ds}kc%qGLK1-x$a&6x#5L>&$LG@Upy!fO z9Nf^XEY&SDf{}h)ClgEZ%N`7rwsXD=b7=^wumPrU3%qKf8G{*M0S@>jx{&z;Urriw zv$-k@ZAjOKMCV}UsY~T`Tc|1MjN@2>H&l>9)Lv%|;HvyEZT0|$>Ul}Q(`)0d#g0gH z#vt8)Yuuw9(O%;hhWbhfU`I_XpR`|??%L&k&L2gc@Mqo;bh?zY7wdR~@t_Vag(rBtD+#~6PG+!@osHmF^%kWmU)RrnjM{7V;P|5ms(m~S4bFV`1>0t7#ymjJ&kW#${7av#<^bIE)ezr zPN8obeM!dR{g3T|RGAUDsn(u9H7scw!~pE7;4=@W2+{d1SVWi6$|1x`qDV+yi01FX zfKPc;=Lk4T#RdVNzGgaYB zz%pub;}|d;Ez#hy1yf&NA95%n{ba-Xy}pO2VZ|Tc#>T;Stth7e!WSnn`mcNbDErg- zE!1y0Z$CbqDxK*yb1-(nl5@(o0TXxd z`7UKUG%KRD6jAi;+oP62(edt+dV*%~ zNinWggY>LRVly7(k^=+Bat5%elNWk09ul;gMXhurw`+E+lS7&bc{P-fmfRZgqAkQQ zo~Q+{1!gkOYDPf{NPo7^AP9ckfXoYKGZWXu*6G4Q+rZG$3K3}^B2h{bucG{I_gf+& zLc4y9LU}A$*+3R8F!F8@by>;b!zB!p70%!HViT62{VM3f1K1TO>V@V9Du# zmKYoEv504*DdFxnR_tc%G8j5y=jU_YVjq-FTH@0(Pxa_(8eR8(!_R);j3N1CbWI=r z@$+sPO&wPJtG0e%;Kh2Vy`i<-%)Gg~0#-d~+UbjHH|%nm{)HMXvkS}T_i-B&Uwpwa zSLunC|5tBlXGS-Iqj}YL`iB`23 zEM*Y~9MUh17D!LgU-vftEtu!(jh7jw5isc$7Xx5~en)|aL;aMIU^;80izET)%JK$P zi9ov1P^<;kZn$yEQ~|Y+K5AnjZ8W8@g(}*UK)5Fy{nm$gx5RF0QPS=g%wO>&^UDPd z6!B0r;@DbR2}RK<>Ja5Mx@$^jV?xv>|AfXl!|L_gjdP3DZy-q*kjp=<{u+=OwX0&T z_dcEha8yHRyy#yg%%Z=B9{v8Q0H(0GfP6qS(3lXlZe|qHctjnTHCpz|8)^OJ0VKyP zkyf-9Wh!Z*D{_u7uvN$s3fwJ$srI~5v9!F=av<%#e$b&0^}gvPs{HPJtO1Nek^b}@ zJ~55(5rd?2`^B;PeYVUd-}cBUZ~Nxsupr;yZE}7ywVI~|5{z4YM801$kT`+p67{`N z4T$80aaAG^m6y1Q-&5g)GdwMVK^yFCGRjB^qM(jtMF&JyV3OP#_8=(|w@c=j@Q*3U zQCWT)qtD53YjXy%+DZ{kwuTG4h!4H58pi=k+lfXanhGtfk&{d#qV>YlwAR0)$qUMo z&iBjYs-ypa`t0$`RW_4v-FY4tn(EgHirWdHmH-kunt*F!p1v4b4bgL%?y%oGEoBEv zjl56{h8r|#!IMSP)%m?r_V$nI1g*GVec>pc_BzXde%h~P*c(qz*k@loby)|HBezKc zrFtXtD0DL_;$@5@zK~-d3c?cJ_u#}jG1x5e(>+q9mNbI}vdYVaGRKnn3AYYxWiH?1HPqcSPZ_Ph`q}ibmjJ!xZd&23w=v81wb}NMwoGHT}$sr5mvsoMST5 z{_}Gz@_ZQ+TdiX2-)%HrEB|)eo>|q~GwS+AQIjqYm$@~*C+m+Yyz zKF7sl(C|ZP6Vb$FtZ!EIs8a2^SATLeSGF~e1N56*OO_5R95ajvafkhn-3|VpcK*lh zi8JnupVQgHrBV#u{ZH6Yk>y$YAok-t=^TCiSG=e#k#n8hK60g{U%Xur+}6YuS_jrV@#)STWZ0EED38eappuE(8Qf_Ghq3&p^k4n zO-{^GxN9fVL$=`^M>j%gt_3sUE#YayoshIFQ9F_h zTgg*r*n4s-%b&%bl-V6P?A&X9APySasGUjL34D_gM`@C(%>kQC`^ntWCEFWqfEb7- zdKwahB4?2$ZC~M26&ztcQDeOi3C5Zh0U#}hb2)YC@D zLs?=Z5A6lxD8=(~<_b{NxU`r!x4q7(p(Ncq5R#?XBFZ4z;-M}xnMI*vQH!g;$+xQ#nF;HxFB|t-Dv8<)TC$g%?_u>zC^BYP2;- zqdRTKdplm^I~#!sX|2w@7eh^<`pQy`5J^K<7hl(1=9SG5wh5!j6yDK9YCpC~MlVp* z^~?Io`MGPcF5q~OM;*hOm#wEg&L%D z$&a3Ji34h3R_~RkTNipIP7~7L{Yr{P(iKKiYh~UG3bSC9m!gn%f`vIS6C3Mt7bX7D zTlikoDt!LdYbiQ>h+f{Wj7e^`|L`XJT(vZ8zdnjF%6$J7F_V-6Azp#H(u!0pAaAjV zm8Q?^sf@U)7{E9q&W={Agiv%bk480grN0nRQ!EHtLrju$$ zBz$tqr9uLZ-XV_#XLo z**2CyoXx`6GU-@xAY^~sp*Z6|qE4mX}g$c*^SR;K>ouP%}J| zc%eKj5vvjTSj4V9j@NH z)EjZC8ORCee>%3sLx|n>-*CNh?;=gIA^!<}bas_iv}&*I=OT|sLtp97a%Yp!cSTKd zctjYO&>e2vE#Do2Z$bFD9*dhFQuEngMsr@qzQAF**MD82s@FN}t0sfH-1u2Gj}mzA z)bhB0QMgumZeiR7#V6}{Dv_;i-)(1u{~LYS{^+N`YWrt^=Q7F=ivK#am`siEJm;8U zyBUjjU3eCfxpx!EFm*thfV%D~R(wj}ZX^S4fBd3(`FoMqQp|x--kK%-^#gISDAR66 z@X^k@MQFV=Z%xq2=hSi@PoUd;SGCw0eqBcQzg9Y+@oGqhV^f$r^XR%C@ff%$fW~;B zx||897tR9e=PtbVGm&$RN@|3s#YAcTcyc0_hOL$-#={6V%u$qvx)JW#n1UgPDz83{x3ERW5ocdAmJou5LaU0n(r|RC zD$OM9OqezuCWP`-nD*^#CJ2MxUNc9@nAC;gf)KSzp~ylcTn<5yI{fiBD4K&lXy`oZ z`oZusV0%F0h8vqCx0v!o3%xVMb5)g>TQl(Yb#u73eLMXY^Hn~_i z2pb$b90C~iQ8e0MUJ`QLQIP%E3i^Jbn<=ich;AvhvNYued;~#?eqi~V4xZ@#Mwr0W zH!10RFTZh$O`+-Pe&F%bdY%^WNR)7B3}hu8g_kT(UX>|koERj9itosRK(!1r zc~b8jcwW$O_}Or*B*rN<*=%D>fx2=1vJW|_`;^*rga0zKo-#kb+l#pNNYt@hDmW+C z3ye;>3&$}Vzl5Ok${$Il1L4}?Bd+t2-<-}vcdQ(T$iA;zOJJc#uqZ`B6HaE% zW((!#v$d(pb;2=lF^V%6q-LyPtQusGrfU-s4jedfRCFH`vX;6cwULK`PDzLBwu14V z`e%%6*^u=kD~3U}vjW;9a)e3|C~`@*9{xt)mLT_NDEHNW`~GdK%x>e5(|;hz;VE@z ze?kj5GJQw3EStoHSW9D zjUW-AteF8mwD#u!wZKcLlcwSL!-o#4<-iO_c%TaAyz~5dtorRfwdwj7C)M&{o|(LL zQutPJ=lSy(D5nAV#ZxZ;&~|1EcMbf2gYJH8ySKC5SJb7KUdmZ#oyCR?8@Tn>Te<%F z>$(2=>$&yTTUoz;J@0+*d%5(|OLy=vb}ndTx0Wt1H4PE5>(vNdtF?P6XR-=esV25p z^({3gvSEXJO;=%-rde+x({|1=bD|?{9Y0~!?1qJ}@@7I)1xPwA5rVdKO}B%lt7EHFSw_I~ z>qKU_m>&?Hk2z3AFNGK-74#YH3$gN*`BLH~)H%~UiCOT`-4NYH1y=@u1TCN@;uir} z*?>rI8Br`N5|b-p^yQHPf~ba@Ht~`=K_y2<^Ce~>B(Rj#wD3cup`mBXAeA|S)GO5> zO||GrU7$MwM&48Z2gAwPF4RyJ@&7yF->G`?c3^7+X;&5IUyINJvjD;u6x%HVOAwkM zJoOvkc6co9Y^PMP@qL~3OWWDBx&>1Y80<^Zxu%7}U=&?QN}fS)HbD>wEXyZqc?6+G zAT^rpBAQUv!@g$_h8lsdk#!@i>T9O6r-7&YCo&_pnZwh|Iko*|_H68ALc<_t)I*E- zh=fnu)IK^!53;`0#G;`wEa_`!O>Z-Oy(x4d*(<$?JsLXMbL=Kg9serh4`3;#CmZ;lceF0=}({)HHz5?n~Q1Im79p_ z9)T1T0*m%omi9;vCp39(^EkT8NxF+k`n&|s6ehF0(1BOUFnFMII!|;@#t$`0C5yg| z4fL;Wq_3z3x_U`qZ99eH|1`ex!owW$kkUO=?UL^|>L+V>1?JfQSKxgsz5&3JHLEz_ zOV_dS+6)iwsqA@=Uv?yaYkQu(zIh-MFZ&-(J^Bn@Jm(8c2~?ZXx*vRqYd^Sz6Ic_}wUwv{T-@0V|R+pdk zos+j(fmw3X2|zvYb2!Y?ES~F&(s=3{8{jPLRMo7bXWssX%iZ+VzcA~nTba>)I>)|r z9gh#j_~qy;`P^5&#(Ae*!9l-V@`mfb9@|Y|UViyyKJ}?j)dkzbAcWvkpZXLpz4X!! zz4^`vQB9Wjs;*nZQtP4aC|1o%sS5Z(5t>le|As;3d1a6vS4l(aH2AL4q}) zehbo3^&J<6f@s8}AzG$2o@Zjy08zuE;9JCOmxh)+2TfYTNxQ#FGEt(zDlw&{pJ`*e zS+lW~`+H~7>nG{<(yT8uk+Mqoo=)iKG&bf*+hv-gMU_||=;ZQIQt>j=Cv0ZGjd5J+ z72enMG#8G3jD2Ej=_;pah?K~CHW9;P_jEU*)YzD7zz;Q|aR=$@d}+pgG}=W1Ut?uw zD@!)FzwABSw&XxI<T#+F6n5>(qD?vH<)Biv4xv9AIrCwp1`_NGY@u8=l{KS zAkTG;LmxCS^MdFyoAnFF^4R(*EX%gBHrLGZOe+m$i4z)MA&?pq8V5<34x?gfV4c=W zm|DQbVgs{Mn`w;|2&KR>d}JsPG4-3%+m&YU`Bq|^1!iGaMSpAf(esz_ z@-aVQ{}Zm~x%)o9)n)fTLAiY$@28mh3ng1P_LcMb{`{M`=sS(P_{CRwch7zdj=P)t zpLvkqeQO#kKHAD%8?)T~jcb^2`E9jrO`Jc5^Y%KD@Bdb5S6Y@tMmUlItpDB{S018E zRrR7uVygJw3-!v&1rHv|;a?fM#kzO=`FYIKwp8U@vYQ%P9esC_qwn4_pc3HA-%@SW?vHp1bnm{9xI=uBX*j;mPI_4O^bHS@Cjw)!6LKL1nz_HQX| zb^dV789nm&E;{h{TP$(UjUrrNs+hMIzoiPkVrK%!^ zS6bA!b6pefedU7ETAKa<$B0sN$r==R28VAxv7zu;m1IT3{ZL)U$vR( zVTe{JBV(#XD~K2fseaUrl5!{0{1D*<2x+N1m7Y4kmZvgrG)L{LR&){hVx=mgA#|zs z2M@hFgJm0dDN9v#e2GyAFp55Y!bDW6Vp_=uL&Hs5NK+%UDz0l%B0Qhav_VrXZCb9Z z$l|URvaRCMkA2|ZvI?^^qDnU2t^mq^Woz0lGW5o$7y+%Z0){ga)nS2FaIf!hQ>p z@|B&XkOZMd(KX3uqsTx|%tXP{Ff%%>bGqpTdNT>|1RFLsgR7zEbr$r`LfRq1(|D*q zfyf!yeL7`Rq8X|>7VA=NYt9}4GtynynvW(VO-6y|3lq6>={__!>9NU5;|)ZR2CDM5>wef)q3wMt@Mr#V+_U&J?>Wf8=Ty_PEfSV6f4qtby zIRq|zjys=tgxnPe@Zo2>Mr`wxw*9z_!vMJbn9m^mtAN4U$oQB2H!_){h~+Qix3|NG zCa>UJZX$yLJ7CiF=ye-mSmtE-o0H(u^12=t`Jx@%s^v@&Lxkr11Q^O} zb_Fkf2Y#^UQs$oi6^`J#?b?17+f87uyz)vezW8FEfBt!nKKkeyS?TWXX8!#7+;Yn; z|ModBTWD7*)etp!-})+2sw@{FDj}6&Mcj@)Vw3iE zvQ)0WkMDzNA#6)IhFKP2%)%(DaLCX$>!d3LBOefRC2mS5u)s|S+=Px%4DjP7B4(&T zeI<8BR7Cb(!a#3Hp?7-7YA%e>l!v|0)M3f6PHw8_salz;kQ!MCpzNR(%gBhON`2J| zQ&=Hxrhzmxj7(Xzc{u%9Ki{@>5 zTV2WCN_C}5dUlkwEV_8wt}K^-0d!Xq0AWN@ZkAYC!EuvczG8k4fHbj z5pWwMK?G8(B&Ajj-4*l?#Tksn$T>DGi2@rk4a9Ai1Ji41F|t@9pg}L9p?)*w=Vk%W zZe{6pldLUFAYnRuXxcM)Qs>WWXR}0hu-DiPl%+}N>KMt8tZx${m=^1z6qsx%HIj~& zX^G}ppKavX4ddBdOp&%q%xzxIQfD+T7se4udNi6v9?MRlw2DdlW*SJ2Thhy=O^Qe=w} z$^{EM=8=dxgc2+xV6eNLmzPXXZO4uV(GYyl${Il;KzIUC){uroWKE*o8b%SkxIhb_ zFv-Kro9GS{i#E3Alh7Sj6#X>bT+q^~Ctk z?fo9QB2V#~*U7oRJ7+2{PB?*I&;B$YzU8u-ZseAi1Q+eS?Hiph|L$AtUvVdU_;XJ( zdm$Wn$uGB9?yJ|lm;L|WXL)4h!~AjZE~b5^0N+#d)Nv{N@(16CKfZ3|8*b)%q&efd zBUOd!)b-qa%iUc1snfW*Qb4-?;_+O3@(O;~r1O`*|AjyPVIBwFq^dY$);6(E>w9S1 zC&P0WUq=ME0yy6P2^BF^sOVutwIyu$^NOfnR1;#V6^SZzQP;*$5$)Smt&3K#UQ`KA zM3oYysUs}|En8CL#;@FkLQ^7s$3;Y=D)l~Db@vJgqZOTpsk9vcp(U_}0*dVhk--ov zuUe#}01*oGP$CU#l?u%X&^1A+JxZ*ULhH{UtA+(yrNylp!YM>u>m#e0AESOu)ez7i zP(}orRwppE>Q+5phagbI&hrswrK06}YP|}f6Pkt`){cjiir82t`ldc2ZUatR9H-gF z%6Q1AsVYByh}4v`nG^!ORB?~mAa zkMMswb{PTe+;AENhJa{Cp2m2I&h7?IX?T$(<*_{3uUbsJgv3otWRnM)#4j2Y3x;ZM z^}#d)hTO`H87-iYjo?NMCfhx%bz8^>5p2yPt(Vv@vX+8xqlu81<}xAL$7nmlzOl8u z%O0dFfWMiuShv1~`|LfKn(P4~G4zmGiOp87uv>eiAnU&cVW;ArOd{QgMnmC!>1aaFXWtJ)V zCS~8Cu~UUqR3_!-B5Wp>3E6mjg2H$Y3Nmh(K2W*2s;*FFBytlH9G{6GP|%PlKXw1{jC|ivI>s8b%>Yu%mQz$r5KK$KlhRRcK!8@Ke>df zKmIZRKm5GMZQEFHI3}OIWi-fFuNrCPd-Lr_keXc=y;o5sG2z_xeExw}Zg`#9+;eAN zQzJ2;^f9k*IlJbocfv|I^4b64lI=4lW6z%!7+@Z#uzT+M$|LL#{Pttx`SPFAux#Y= zSHE&SXI=hDKE3<(yzk(BIo)`H2mk8|hSsWT$-up*@<9Fu=0ABT0GH0awzlrqORITd z^}9Lnnz?)?`7-Rj?fe_yP07pBkKf7kpDKIl#|L8^dh^|I{+_J9e>vAYbqm+ACCS?w zcE~ICeeZi8?|a|-@H~&czCHk2T3Rs8{|tLT5r&Aes|LqWTV=CAg@gq4=i0DZaLrCw zqQ0p{R&j)`sp^Xm$cTmTDtGmTKt^pf2sd@4rhx`tLxfF7SVX&0bUZ$QHjt~gnn8sy zC<36l0e)1kR4-HoL34aGKraS}&_Z`q9*P!(Dto0OR2PBLeP~jmc?OyrVhokgd>cO= zr7$H$GGBzU1C_gb1b*F(t#aJb^_1|xs@D-h>0yRxgQOqS&Y2kQVpeUn1Jzz<81;5K z*Q*`33>A@+YQb7n2pOvFROX4z{Y3L+{FWqPREb%YrU~5U2*Q`>eyFl=P=7TqAcz=B z^xu<%pDFjCQIE>>>lf4vzun0*jlEVeQfa4%p2T~SE9XqIK2od1uajSygE3U#bZXH z+X3x~9Gjd5N`Xbrw<)+5p%e@b#W{5HDo$>CnHP%_c%*A8mgdtR#>oV6);rCtEjH6r zOd=|6Uj3yQ8;8>D(YhH+^Eqki5}r&>qJJ=fK#SCH;(X?`GJ)YELk)j;R~cKk#>L2j2fb6+-2XbVJ_O^_6X&q{&Qxq@G%<>fF&1J^f8e~NnJn09V^b_B7Vu56Ha9Ui&(Pz_bDFrWTis0eONv3 z;jNOGDn9&d908pF@<`{h4^3XdZL3xL))|A};rin~R}=I9H3W9Qg>%ne&;HvWCH9{m zV&-LV$Dh9lz*?`wM7lZp?j-Tk_G3Od2yW!eZT#yr-F`X)+)UHB`8@Ea(O@Wj(3h7j z;pSUZyO;Bgzton$!yM)X@B{xodY)a#!;$M1DS;Y!0Z1)qtv$cr$Z}f~Oj{h| zl!LZ;nnvKF1Ao6oD_M0~mArgmx5GG2>*ITmcdANK-Y`aJWTcdp>Wif+I=Zf`j5Q5uDAFNKonnWL z7uN_ZaM}U_TgO?MAX4@ajtg#Ba|n~Zk1$Q7uBluV3BvVplTpeomU8tf>*!@gRLmhy z4caYr*QzSwSD~HYM|E^vAktBSn1S#mK};iPO`|(5(se6@qiQOk)sL59=Ry}XLLv+u z=?99KR4Pu=^XjGmP}dE~YB;8*Y^AH@Ww@1bwbC;zJX4VvStBuo0kTlUD3*}PI6-ql zeWr%`oXosWXljT+qRWaqTcuiM_2dx)L&#v5`}GH#TH zNQt3R1Vazdg=AWDFQXz^HWVA#J<-h(qgGOAvss;MW=u50O09*WV`3O8t7TDc42w38 zrY)5xVtDix;uK2CnGFC#wbm8K2cStrs3VOKJ?0ZyA#92e>5~Mu04WGeiHNFJWP7tg zvB5^0oF{9?(H(&`D3BVITOrZ|5yNNpgpDliX{UE{8aw51?u_RdWoG!n;-l#8N~4XE zBn*cZJ5S!T*<47`94&HC(;6n(y{vIsSy}Gj<;++Tro%uvP8etiO%j@*=XFGRS4Dqo z`1A8Gk)1o2g+Dlf?{3JCm^a*k?8^tdi^SS@Gk(5u(kg!PNuElkIqK3ofC~Y*X>J@w ze;K%uqIi;l4PSuhw|O(Xp1l0}fC8z{N48i_d#2t#7Cfn@Ra?mJe(8s3z|`fR25#hJ z4UT&4A}$$LeW{`=@)T`zM%P|Xk4|H0X*oxg59dt#Zie1;j}<=f%-8tsf%5?+=>J8- z*`yx&7B}B=Hz&5-$-^I0?rhFC{=$qK?qbva7n7Y^&ul!v^lHzq*Od#~!pCgp9OjUn z+e>OeYvpf>4(iTpFF)SN@H6)H%s(K}1}E01ZA}OB`e}cg`Vs)IELWuEQ`632{S6;{ z{c799cDs=E^z@8){nAS>asK(|bI2iw@ZR^nmq#9XWV_#Vr-i9P8l`QhO3d)I`Qdlu z&5CnG)&95|Oj)T!iE8kpChGYvL8!yO%D6z+)bX39()$cMh8lUP zwBFTnaw?S@Ddk9)Hm%ZnR&{oRdRtrNoDSC;iCh6=^B_h~7GtP{?gW%uEWD(FA2;x$ z1_;od0JA5D7#Q}IA;XHE>2>zeyHLZGmwn`4k^%EZ)t9%j+}n-+1bgO17f-7_wr9Cr z*gm+;A#P(xIACEkmpQs)8BMlwIU3uPVN7}m+w{rgq6|4vLX`WLa5cQFP0V)j0-cg; zVrc;}+eM4|;A-5u>0nlP%{*Nm$57}J6&5;zfe?~f$R3tps-Xra``ZJ2d%`?={Unno zbu;?Vjm+9@6LY7mVAiBg;!%gyxn{D32yKZxV`CYPYFx^g<{|cP-+(Csn)N(>s9}nL z4r2&U8uYmdvQ9*`ggGWdxfrG%&|OUO_q8)|L!Br4CSz+p_r5xdo_vBeg=X5~d0G+$ z=8Rd(lKd!^_qSpi0qfSbvZ||E(<>q673fFs}ndmo5=Va+T=XN(IMrw5T`kyFjg{H zjM8Y8FpYp@O99*Rxqs6P=5_7Otd7l`w)aakL`r1bD7NM^HkM&hYJmM3*AvrJ?%JIA z3U-fdCPeT`&nWuxs?Dq^T|jRw6Eym0-ma?t)^IGhGI4S@0H67DVvG3?tp3|p*E?Vz z<#hGeACBR#KODoadXz9@{q!3-;IjPy=>GhJZ)u;t*OR7Y*}=3dJD9%RpQLa1C%0JU zql-ssWN&#%eZCiV*0tat`t)P`WThI@OuFwLKslB*_O#TN8E(J4dgdLhysNJNIr{D- zH}@Sk;(h-5pduO%-(1g-xwF?~uj}^bln0d7<>Hf9Fz%q)%=g~IeD6H~%-+ADMqYmM z=t^#%J9or(uRpGr*2RAZ;4dlVP;kGIW#MCXEi|)=*@uoE@%pNUBX}X-!ztO9Yt!t< zH()=$fj7b{_l~T#+%@n6etp>Xhiz{6E#^_9MzMMGX4=}?c=E|7Ir7LOIr!j%IpmN- zcyg{%Zg3W2nB+$M|OeKg#r5IwJ2$Ue0HLSD;t5OxI^mCTY_`&bZ+s5odtMZ&Rh zMN~9_2tur^r>u*MKE_~4Icy~(5J>c5r9G~)y)a@DMhzAI2uKZ#LZEDwiy>}O!*5Mt zlpU2z;|I0&Dq&fQU<8^XIYEewScK_Vh1^ssJY^r@`G~Sp7w}VUE352_@7F6=vU1Kt zsa)5pFbqYys;zpJWzeW+(r9|^xzuzhsKJ8B=~#mnX2hzr@|lQQWy`B%?gaIUPSpx~ zR}Rcpap}iC@Gp6vw~LhQb^4fpD$&@{RGV&%DW{eHYu9EW9lL=6w!3bBlUP5Cqjw63QVSWJrcv8L2QI$Eae8+c76 z8WTk(O&p-z&T@SE6`J(|YrPgCnoGMm#9qlw9G`rJt{}zly5}(9#MoFV)W>X(;u9^1 z2v%DPw#FQNfHN3Di~IOVs}ax*q@ z!<0MGk$k`V7*-6mGB%On$-c>GNJZN6NnBqiyEzGFh_FHusS;8O!a&g8k)dzhJ9Cp| zXUDG(JDk+&Bq=||ac6hJypbg4w+DWW)yV<%VkV47=_~g9?t6G>^p|1!`?+zCyIJz_ z>tOVk8Nc*O?wtJy&-`+Kc=@e4iGHeWh$DXRGypB9t5!6@Rm^Tbi5F41DdB-P)q)=1 z2vu9;D#E$zF{#@pPmhlLem&%}kI=or0cY#myZ*S|+TY!O1`FmTIJNm&rujwB zXLHZIZ*k9n&9C;Ii+0Lwq?rXbZ+(Bx+;~Urd6oD8IERjV({lsxk+#eE6w2QDjHb)E z{`-qzzwKIe`w5I3)-Lq5uYHXVe(;0*@|Sg?%@tQ%!8O-h!~FU4w|A2}C4?U$3Z=UK zMTT{OepRz!+gr9bRY^t_)#`y|*4v>h6KNTQmI{?DH|V(IUB-{@#|t$kr3P4*Z)fq} zcV}EzPFV~)!&=!iWocX;q>Dg>MFtTaQItym5=tTk53S(T^gL1%DrvrQK?p$VI#Sp0 z5(ZL3iTK_6F^EuNmO`A?2u6>k2KyRFFRWFXFmz-hMi{dxkBZ^NRi#RILKWI(2#m5s z>R=Q@BE4nwex>OVP|wz>zGqc0R6X9|MghKGGX+ordq%pxg>s}%8mJQ?!`M}U*$(`(+Q;4sarxh9VE)+zr;0ZsE?ZmXog_26NXy#*0rB-Z zQiJ`IYX}ewl_JQpjz~%ho<(0Sj$bn9%f}fXA0$K&ZzxfaQ35FlLqVYs;g$YTls$u( z<#9l29oaBKAWQ6NcaqiuLL{~@8EZuFWI$26B(U)bSnf$i8-gQtFl;R~Zp1tB5*eAA*2EE8Cw+$yW8FHfN zT1YxoBwMy=ZO*Ya*Tho44IGU?LOfj{VtDL7aUC0T4RjBrm|vX6X_H@JUAc)3g$Aaj zdsv-oVQND!2d7ujYUEhww$SM}5~8u%ZKd59qT5Tes@TGsQVZSXBnLIFVP@MVHncbM zT5%LBvaR%w3ZTJ5x*B@MATS}`DG|Po*Ar*cSc`Z|k@)B#c5mt>@7u%-m%L}w7R|A5 zYCVTHuOOzmcv9!-p-DWwej+!123%Dh+VdwBjN4D%iVv62{&zZ-f#bO8vpp_ysgfg zJLfW-GnX*4p$tzvw)x@O>r=8XvuDqt{I>h=%x*skfTjC=8@S+2 zw*@=ULN*+)zWOQ`U3AfiX%}5|5sMZrdMlgTX&{9_lpJKaYE@#?H5+1B+ma0Hq(o@7 zmaeK;zeZlFBuCSbhK@9Kf~ZN?!AZK_Wm6cfF?C!w?`mDk9!;Bx>K-p`8bh>4)`*ML zM6G2?`V|qqVW{`=1I(;TXlk_NSVT9u$RO>R~*rLl4Rn1-1TiS&Ee{VtIKpU7Z<=1Y*^ z#Wjj!q7 zIxv*4la&f;?QPW@Aj3dJx9ox41%;hS`?5XcWm^@Jw@ZZoMg-`b(?7CZT3VzPSe=Wu1JyYm+;w)P` zip`}oal<9+MtOK(I`fBSvaHz7Jw3Bo<+f1_Z1#?9WNvZ^|JA;LPq#nF`#YY-lR7_H ze z{&JjUy=}bMHI_R!?8{#^@5SSp-Pq(b5=xEMbRIv{`D1oAy`jz5$NZh|9&`u$O*34;p5yx6|A+U_eD?kE=xa`(HvvL2s*zY^4^=#&4_i_8&xt#ORcloHh zV_}F}!=)_`Y%xt5^$^HMj@*BX`NK0(K6lN=5%U%-yb1fy4>9`XyXhLZ6o7H(-A3Z9 zF(cZ@0M6bDc}d?li-%`y8Lat4|J49=4P08Qx@-&c)_j?l#<%g{OBd1b;Avdi z@&HEW|o;T^mMf zAU8Q+pHr65a@-~wBSrjBV|A_tUux_UzM#!#F+j_iK_o(@z0Z2TvMST35k>7QDC`QMU|w@Q9?;hjfeEO-e)tfk0bHt)&& z%uGTlh&7h*eU1LUBy>j59Dy_?X}v^3cbL-Bk2z?tc_>A~b}5xCY|SGd*f^odIzL81 zT9^oIp{n6SVL&l-(S=4ri!jPaFc7+Q`i(qUZY3AG^oMcU%`6kFK7vpq5_jqIlh}q& zB<4~MO~%GDRG z-QnfFF{~ME=E2^XyqFosv!#j5&&}e=;#Ai8jWp?bKG5(C7mj<3h~}}#8OJzdfbsD` z@`VUmuZ7zfQf?Ob5kX)I;#~oeeu>B#sv6{_8SvtmT0mPWkEsV3T1eMWlE;@#<*t>p zd8KC*oBPr%T)Z1UeerOmE1*7c@8%vEW?Q0{}USQ(UYx&6B zNBF|TzjJKs5^T-q&x8B(hb0HR!~c;xC;qH&9N~CX#rtolw<`ba;WqC0=nwhX!)+s$ znZ17l06iZ+ooBv!?%TFcuh*Rbq_4ZHCg5K;csReA{ps!6*374l0pQkS9|vIc%XOmD zXw{E#?`P}JkG?y}AAVCOHADVo{Nf{9#+1B#&Rc8ezUa)abIdDyuy%Djhc*`J{@#+U zeg->&L(cjVEq`0OUCTyK{3y{AKRV)d6?;zX+1e^w#SYmlO`E3L3Z#@g_uO;rv(G-Y zd5ae>X7uRM+gkPC0|OZlrXnS;*RNCt#Umha>upvQd zR2->6paT*DOJI~#mQ1zMBgz4K&OubIqIH28N=h9OhIWgR)&hwID=TCP7Cd#j$a6V-4&f zMcia@WI1~m{`vT4it($}mVcG-ei!lhzYS~V5NGVMkaeYI9=mTg*-fJvnhHV6r=cT9 zW-x*@C7})20o7Ej2CInI5YQBHn99KZ>5R+n0^G@og$y*Q!4fE%MD znPcDd2GT~6Rx3xZtFB2~^VvJTj>V<1Xd+}vqL)S182a*YY}03A!vJ%dRx{+sSYK+S z&C0S`Zy^XY)@^F$tAnTD^+wUkf*=+`EI`Hr#-|1`w2&sNs9eorMGP&(uwC|VTnC_B zz6!16J)0M-@%U214>gW!S;CMXa1jE!ZOIl7BQ-WUwar)We84V@q&v9cOY zgG8E=zHFTPyJymsQ^!^+n*^OP1|uP85Zz$lB`typMRYwRG(%)4Sl!*i@|B~w%if1{ zV}Thh-ONsH#FHAHXVB4*<-#$KQ z@(YIPUp{=>v4CnD132s-4Lo*4X2iOxjZERTwl~+KY%e~t@LQ~U-L#>voPjp}jxBOv zwg=jR@qA>#`}x&3f6sZJJg}yLNnTn{sd?dZ-$bhvkAAsl3~;dDb26JAg!#dZ9Iao; zUqh%iYEAk5IJ$OVA4(fP0i&-3;C(AjXMXop9D6)maPLx%b?+lPcPT^)9$~DL>)y5ya(*JH81M zUgZe=D&}qHF>N=2S+HPaS?={V%4^oF;o^%g-rmjayr{N)4JRa39ZZ!pKz;u3M0yy} z%2eH!2qhAbnnt0r{WXn|R?U_3D}-KiE31(?P=rU<>zbu%ds!IN38>H%@zGQ( z9!VQ#Yy(cCi5u5c<*6*ue2L7zjZt`-@=^uH=1^&CRWAI*X;K@;w87RfD zh9I@xM|TZ|rWzDdHb@kK2_Tj#)8{4dL!HgVG^u3<-C84I^Ja36#qxX`dC$gb3Fr?J zWZW3Ju-+c)6A(y=DO65Zh$N|5T;2W%%e*LM=@Jow4W&koPrpKwRU}u6urA-k^mI2b z4~*g7l{4{5CPEMC$|c#qV*^cAf$nmWPzuJ!2LWg?^4P*>Rk4+Iy^SCRu|}6Ei9RC2 zCut3EV0;x1WcH-Hn8Yvw;?1fp+Z*FkT$2J*V%R?EWQmtIjKwemgpkA|F1_UhADZwK zp49QA&hlahffQuj2n|+=0VhUpA%W}bG}{yCu(L!A^;`JZ#>pfi4x`#KH(u{=q50%k07% zqyG>GK6^&Zne1an_26E*CSeDX&NM=TqY2U8S^{QU3}bGDfOR-xL(ww()8&x6@M z(iF~JzeSrE!20iMTs?CMx1Kl+o`MS=S<0DvFW}QN)L44xYk%eRL*{U%Z2>oNvIgf@ z*3JKDGMvK*qEHp@4}Y(H?r-9$VedJmOSNe2n`q+;`M*KpOuqfoufQK4=cB*+6CeBP z1}?bfMvm6cW`0n2RGWM0S{B?qvG#ghcp(=R;GPE_;O4e}@B*rG)%`uTATQr)t-t<2 z|51E^$G7Xey&1N}Nmww(Qh9hHCp)wTe>x3+m4Quy95~ zS!*>DhF;Ubh-%`zZ7Gqvp(AZm=}t80K2YOxXWoT9DaV@rCPFk`az=An^NUR1V*}-8 ziCGAh24=WXz_5gSp;xLEQmO&D>k(U*Mf0VyQg#BBcM?j36A(s}-bC|5)#_EzznHl| z=~O(h2YnKoT=a545Hs;p5z4KW66S*ZqvA?bU$sWASu|IL`4u8KtVOJ5b6j&StGu?%k=Dvp z!-MK)Xc)Em!ZHaPk`$)5P;9e6f>92!auVH<*nKX#vrELk3p)>Xwu+8*!)&Y@W@BEr z$2+|%J04YWq`^f_?``~+obkT!~x z0+Z%+fq2XzSGIYqYYIPFd^rET=xA>1I+**G&t&sp3fD0in;v3xDvR&yNKfkTOQJwR zcjzoPaAeyG`b#kkEo5p#FOyOOWc%ZUn-qCLg4YlbqymJ1CB5zR<>Ktt-iMdB$PL7a zb!rF?q$VjhXvDfCh7n+h5H~a!V-Iq8^9qg|zmyqm-L#AzVz-Iih^YFVXs}BBc+C;4 zcUyQNJApg<4&ZOyd-C|Y$^5;4FEVcIU;QumZ-*rx-H+xcY-ZeWS8dvgS^r>ua3j+` zdP;5Das5~FtFIqP`(0Wsu=4F9FWZCR?qg1NM*J|_T&bf>~Us>PA z($aD+xOXYHo;aOp4gX;7rX!iV=|}+ny1%l59`Y~a{Ev3gK5nFbcWWq3zl_UwyL7vb z<*y-3{Nv*)C=|HhnsIcGy^`r`?;Nq*&mL~$Hv<8;+;a?Pe@}fre|+Y7N)63i+Vie$ zZhz597x2a2tNB2`B81lHc_ZduaBscsY{~~-TOHI0vYR;z*4z=LFJCWRPJ5T2$;(9xA_&x4O5QA$=XCVT3nku1+CX2u|W{+ z3z@L4gwdB*w!?m16C$e_DN-UsIl?JRmIFk$Pb`Ge_#}F{l6oIXq^%R$I>wNL)D?*V z2n~T|D9dQGq_Sc}#im$ueca|KMj=3Iy0UW)LWmiZMn%va^@E@}K4{8y%#Z6z^lzw; zFuh!{TMj~ks6l87G*2QVgt|~f#|JN=5i};zHWVth)OuahVwrX4x9T~lkW8UhER!qe zT}p`vy-E;e#aN+gxDZOvhFM`twe8aQB%vvY_Il_}fHVZ5Q3<*%c;N1GjrmvO_ebP* zsEzEcxR3p-T*v;?VBIkL%@^8*8sc3687Io<<{`Q|;#fKL{b&wq$T47OA#qFT8Ji;o zoY0^g7>sMk@an#4B28sRSwoC#$Z%kCH3vl2(;LP(EVi8I%M*FJJdp{;M()gyra>=q zVl0OacrqX)WV{h$Ff0)hI=RqAM=-_g<+0*avVMd;Qk`rpH_+{-DEkIY@gfBgBa{L( zN#N>qmy=A2_Ax!)#mZtEiwfh&`xc`jStiH(C)t%6SX{C$3U7ATk{D*jmB6BTlZNv(1;Ax_wztG#$Yju<23P7FpeXptYB1Q zwsu~1O{d^mc!9>V!35@ZEGMQrv_=aI2+69U7S0;?0?(($VJ^1FPnMXirCN0f0lu%} zxdvUiB%)xTJA&l;kiuvUP~8QwUY~)rNgnm5kWQ4?kZ7XK%8@ootQ%@#C>JGadgxZb zZXLZmziAv(+j>dsB?^H>MU{1E>9fljlQzWfOa0=cs~WtZ28_*5;h!r{ry(HHB4UPcAh?Be%q6` z!*%u7XRX=`*g7eEJ$4b8VUR%xh8hqHA=K+ItY^BIhH6*RgsOm4Ta<=x!}TgD^u8KI z8-^Nm2LT9^#QHM!tr3u5=G2`py_{3dVSa$98VFRY4-9i3tF}uGAG}w!HbH>apCPIX z3KNr+T23ioJd5Z8zT|;+5LR;X))SH((V#K@5 zdWB19if{yB{X9~!S+0H_nm~Gf?YW@xc~#636rp+D2OI<{VAC}5+tav7UA4$Tr8=an zq(vyv91q{#l>@W0;(ueC47*6o_F@-ldF#lJ((wv$hO%*lEy+w1G#}VS9GH+Cq{Ytj zZ0~sTWt)WMPzp?vro*74V`MerFD1A=xgS%~eJn1H;hEfI^1j8v=~ZlWn>aMFoW9Vd z+fQ?3Y%N2fKu565vw5mCm6H;S>GYE)- zT1eipRJgAmGIm@ap%k=7a&);V61qcFcNt@6SYBx7(XJ_^EQhRXV;KQX)Mso3=&4;G_nLQ*J12nq&TQO9T~QE*LC(J~?m z=Z=4tgQBY_w;A*XDW1tsCgaC=V$&qbj!7;bWmU43sqr4BBzl2X5~hPEb@m+9$@62U zA`OXU`2@bs*w#V1htv%cKVwmTEk?`(%>yr{9>lf4iq*|p zx0QxyiCnQh*o){MGupd|86J!BV`;Gp47f2Sr+Wwz8e_~sWU|DT9#Xq7_OZz|4a}m} zwe%k{m5Dz&m|L%EBs2FKZhH6L+`RG*9~ZT>Ma83O;B z>dS|3@%d@by<9!vdTubId^TF*hBsMf&l8g@8H6c6_qk)5B0j@OPZdiizL)+Vev{}W zo0;2p9Os_@07u`g{#Wm~xQjG5@ta?C@Ko|54sEy^W{o6!tA4u=9hbq)w0f|_;~(ZwAam^9^uN+bBXF_?e|>DEDOdZ(8v$h+aQ|A#+STn`U}QPo zPm!J5OKL&uh`;T?X|XdoZ1(DF3HI=oN>tijA)@41{H=JO5Q(Mb&{!tLrSP?N36luB)k_N5fFr zFSdm{u92=o8d?3G2m{kitc;71DPs;4(Xu5)Ui^wyV_55$9M&dQ)7=PB3(&0Xmz2m- z39+e%#L6LpsD_s?aT_c&$0sy2LQA!D2{*(jdg$d4qpYltW1Gu}KoZ&pQh?@#gq9$- zv8b%2qc(or#LWAOh-ezp)bJA)VbnlKrKc&jX=KM6I1M^p(jbWH5GWl`7*%{(FZ-C; z0Nqu`SZ>yljj4K7t6I&XVsAX$Ryk6+(85YsW@S2|MCe-mQFR^DbwxZ4158W3woIHR z8_iekdRh=7H9@(>BCs_|?KaM+BwljlMZF9Ee7sTh<@ZPAYLB-AZ$mmKZ1vjN z+Q@cc+X$i%HGL*^^x>xioDQFa=~8qoUh8XTWv-P>K1O~p#)eD-rU>aRCwO`B1X^DV zX;|sdJD6ljtdF!&BCb1(j}CHJY$YFWT1X~{aqf~2@zWO%rx0q~(02&m?SB_vU2__D zY}l8w)LG@Wam%Vh*;Hs?qS*&PgIUDX)!m)EZ_{WN(Y27l{saVqRJ@F-2TV-$qlu7} zxmF(S-i?>~$Fgu>GD)+{%*Jkfsi6tUl%_r=wfA%4sKxA;UQfo2GA5GYfR=T%TUp|U zOU!g>vGZ)~Z=f$9XUL0CD%xbb6G~zl_X!g|`Mx+_pfkI;1;&t0sbmojT6FfO zDd#N=BfuQeiS$bBK}n=vqWLH{&ZxR!W+a_sbe!+kh0`QW!^XDV*tYF7oOoi}Zfx6b zY&5oQ+jjo*d*8M4e95dyzRa0(?)&V0?E~T63`qHZ02ShiD-OKjCw9D{*;%U90xod< zlKr#>*2803ax8}e-g+Bw1zUotUD+Q~Hkm!|>vR|gLk<#K-|k=91L&GVhF{r8^*96! z?}oq8@O|d*5;vY~dNKgsy^6NnR{4!0E;5^!;%waseZ0Grlkr~vw*C5?z2hzVeTD-P z|DgYS{jah?=8)=*yF0MR7n2Poy645=y;8s~=%^TgP-4IP2}HxRy)k)+c5|cn zva2+>#fPdC&+n=2IchD;$ruk9FkT8exuHDNUI4MoeiF%aF!eEXocwvabOUG@vFS&ghc+ z)o^DZ2sC@lNYK8O_wEFzwt^KDCO@PD9`@#G3JXlba-*heR7)bt-_{r-_E#m2-pU=+ z=9tyAr$CAY{Pa<8xh&LhE=BcknaKFGd#IwUnS)scf~|A9lwV{WT4&1weR)!+NE|v1g`wGVTrDPSCGuXuEf;l88&qBj5-bpZ#4;!}t=MpaO@i8ysd!xv@kkq8(eccJmwD?O>3vO9i_`lWbH+RuQSM_;yVYu*wd`9#N@)Gu-ybWOP%ND~>R#oi zoXKxciSwwbIH*Z+%f2al+xUnYAigeRhYzP$uFdy`WQ!-eG}Y5B$y0s*A*&f`{XA}U zUQC*8^6<(oJ9g9$Q)4fA28_;b$pjJHpz8Z8MJdn5CTvf>j&uC8F0@xLaHi5n2VXpw z^lAiNmB6YA*kX9ZX&vT#Qg9qUY-UKm&Ys#IDsaJ$J$1?ROwwjoygDvK{}bPcrqEE< z$zf(gQSB!9#xOU%uCw8~12pAVABG+r&RW`MJ{g(!z2_uqc6~9tE&3aPkE17L|5h7V ztl?Om3CFj6pC=epad$yJ?l#?_z38@d72kKmhV9>?$)Dl+ybs`DTN}@Mukv*-&NpZ_ zF}|fu@0lQ-JKiDV%kBrz*rp}xZt>cK#Bq$}itq;XW|e`C-(Re|4|e~)h|RpiWg>o9 zFV+6zku`t~1_x;e4kZL$XVi~;k9f9riZg6>O9Vcs6$Cz5Z`?BXVg#}sT6KPda4eHX zH@gG8Ahq86Lyhmjj0Bhh1136%ow7bslUcq)oZQAvGNOB&K5MPoOV{UyRzol4 z5+K$p7O#UaST9BLp$KeVvC~Qa$2TV_<6S1LtJ2C)hjNMqDLGVjrLQ)}l#jwf*I#?8 zjvLvvzkdG>wSXGz8imVK%!37f#Ob;nv zmuy6=1D5IVk+%uL`YS>IWr-galr$zH+B`7a=S8p9dPF97#suMw-dmV47^R8T^-xxm zwnu>9ty=5|PXX^h7nw#H74%aL{6RrAAiRh-ff|Xbca_C(n3y@VXsPzmdyD@Zfyz)` zASIH_G@1Vo;7Eb^!T2o5l$u0e?|kb^$L`7U8(#R zZS!%z;a7<)Bgde(vO9<Ht$G)I0X82{VoElpzkeUT0^Dm{X$#ML3&Wmg6Bt zG0Fbh=>&qkIc!r3Zi^)bGY*`C)sqwbPrZyWe5_^N`*!nM}NwK^XxJk0vO&J ztb3=0KihzaT_3wJ?^Z8)>$M()+4z|~0?cz^xW9@CwoT}#$%G}74^~%nq*d1n`LzQBQJHAyB3%v=ssa1?VE;4Jg4I zkSV3XKjMfxcyoUmZl%2?JK4O#(->#0;vel4J#m0W3s+Uiz|MR;w4w?$u=iozn4G-B zZ)VY@rJYJx%Y3?{rM&LRCWOKw-X)A?Gwb4uR*xGVK7C}#fc;HpRN`W^7u5D}rIbRW zvNwWxH8hgLV_UISb=ckE!=sk@Jjd&jmXtRd#^Wm03v207V% z>V7K5?ISRW1H$gedCyKlcLHXMfO^#SrM(aIhhiLIn`?Kwiyb<0NE&k+#U=kM&+9P` z4)c-83;Y|8d0%h0{xgyEnuGmO#nbT5iWjK?|8tZkGDC&+8#y1R?WN6ozKZ3Y-{V3^ zc4t-1%)Xyq9v&Xhp+7jl5e43_*%#MQD6`#2K+mrFkregI=TrBTnuhLxMG1AX=bCl% z%;x4~hx;ApQKqBYMdMP-RoB~p6#o@p-=s*7y9o}*St&~Uy(o@Lw_j1J-~vUUym9}X zeZi$31i?~O&xOmPppRbluFYp5xpovXYbe(kX1mm}&-SW=){u>99Q>b|f1^t@6bcKR zp+RQEtz~JasK8Qln`t)D+yz=_W%UMjX-ws{lJcHT?clN|z2I+>dF2urqoS{*koZxM z$bm%pQ0E|HHC0|&IkJti1SCqy3{h=fP^|^n35}(Z;V~prV9(;TH9i8;02l-QznC+~ zCPB#3^2nfRG)=x=+9N|UTE_=q6Ax<6lt4iu>Lwg`x!^_2q>1{&@^aK{o?Di(6*UdL zAE(RWvAFb=Qx(7T$vw2i7)1RN(OE(O*erzGLkmo_d*76JqI(u;w6lGq7_TS({@0uH zmetV@qZ*iN^vyIPmUu!zo%sew7~rBfrvqt`g9$Zs6AbfoyZ7Nc^oNf}bFYDUdk}P{ z_3u*7ti=z6FV3&bLEZ`U6d1uS!!%#wb0RjM+iSGW5Z*fVob(2z96R+I;i2hEnM z%pL>#;z0Xwq5QU?9eP@KQ#+FE`DK>Ya5;I>V(8;LqeO7juo+_vXk=NbhnpUON7GsU z3{XuT^pt)CMadw{YDgPs^GhgbPF~jjg8JZu>5QZx14;Z^{G$^Cf=-a6qe?Fo9q1Uz z((xJ1&b6b>HAfYZ%rY0Is&cb!ll^qAdQlK+4Ah}SC>70sC$AzbI#v)Oy9iPj|iQYW3v|w zUsJsZEg07hX%5u?YQT@z4= zT#gD^U7WgHMpU@eKU#WyzQwz=bvHa1zLm+;9L4U5e|~Ca)C}M|vw;$>cOpnr5Pdp- z#H9Vnt^9ns16@JE&VOHugn0Dq!>BF){I2?)Li$TRrJhg&o!)f5MAumfLcg0FVqWYE zRPqz6?+h_7zCE>TUROK+m3@l757&Q>5Ypcv0#8QI$8+SEW;oEsG_Rr}!YG=nn4LaL z{;t}!Ga?u+$-r`_H<*=`b^aHTALunGxjDDj6Z)^0Cd}CfnhR~x-?>2R-|3~O;pJHj z^B0~)qNg|mGssYnKhyXPS&%o3PVeQ;nM_$wjXs8nBmNC>Yqpo;6D!%6sFl?IS;I>I z=^_@YRK*ByTQRE^;KkMY6qYqeZXv!ac$y?*(_1Vj*=rw#f3P1KVw zp7xHFcPpwkuZH=!hQKpyegSN&V!z|L4BAJwWWEqJRk$^h3x$LDns$t<3RyJFqb5uU ztNvOULvK_x2!*9aIbK90*PSL8WlkBfbdAi@XJFm{OA1#nxXi~!NRf#f%haE~51CAr z`&ST3dv|33C;d0&IEIZlN&JqMkV;6W%X2r%nuKPEub)XNRgGyEK%Td!ULNPH#1Ill z|DMR_h8TRZ{5PHYSG3RUG&!b*8JIMri=jIw<^ie#RFR-O169wE)Wf>@3qefq-yJUs zjlWnw`OgqDla~bpp;DTrhS0t-P4rC*tDB|ULu3u4DWQ#Fbk)>%O%H?G)lM*uGA!?s z0TrQ%QJ23WEFeTiq*Aok!8{rbgb4E~bzFK~sT^YkSn}U_7CUa0W3O*;Wl(xhs$A1+ zSK-0EQQVXqyg6*m)nm645!p~V%qJ*JXAdJc>x}x37%)j&)(QS=rVhb~s58<8MXgLs z*4mCiy$cr9aEz4y!`KZG3Dgo^61kTYBs-lwBf~QK>7eRGozWqlY-LkIt*rRd7Ux** zCm?`%d`224&c{Cqy}u1|=9?72(T|Vn2IbGNIe+T+hXcYhHR~C1Ap>jnaMlz~_755m zoI-oB--c?B8|sX`Vf&4H3SO>od!=J>OZ>_pJ`z(z0tBFeiufX6AN@MDJm?8rkQ>|W zluqRDD1zB$x&zwil}V0Xu>3T-qs%!7upDH1yZ+vIVvG6tTs~{$b@g76>eV*eL&vXc z0RY?doeXB<8=nooI&k#t4lRp_QRHIlX(ojEul?3BE<1*9z18c5mkAK86my(Tp1B)% zbv{hnvNX4T5~p}Wn%zZ_7Pl5u6WlyKJWotL=6)e9FtdZkV=y&2?GH!ij+NHV-wQ(> z+3QX@$jnEK3-tH(p=+tF^2nq|)Aqcp??zyg(WPHm2QtOCYloqhNvX-*^!T+^n91@h zhfG}rJUafZACGG=Qj}Q@1r?V_ZEdQ9=ANE!VJ8`fY&pBU4YYu3qTAOg@RZwjK)NTro>7joOe(2rOr$WLV#+IB*T1 z?{6ok3^r@e_P?k;YvM4T>KVQyIO94|m!#(U;Z5kJEU1LZ4(trpxVdF4*gII$ovY{- z8O_r;dzcDRh#^6m015VAA|eh3eKgm8WK6I^K`5&x?bQNSt+hv~aH=rEKtUs>0&pj55JM zhg4IcA!6zE=yd$@2Y5FmiQ;6UKRpsZXeG9`Jqb${iorFcK2|ADbs-xeL8Cs1;I#P2 zHj_#RSR?qpwY$)3E{m*u9@BO3wFM$5Yb}j7RVUE?yb6YY_qeur{+P>DX^A@G@(X_= z{QmCI&u+86XS2L# zzuG9p_Z^nK(I;d=z^91a+QSJ)#?8E9%-7I2>x;_@U%<1a>hPHD&lw1e;(s%N_arL7 z=rR@sAINtqoohp5YUDS2G56lE3s_NnB3y^Kp>iU6w7 zTDpi0m$g~&%Pp9#*TrVZlDWpA7W=(Z7E9N&KIA!Z&G(Qxz3-(Byi!vt^!i; z-jWjl%@E*MkUDN9oNk4h5|BGfx;^b)HCRgAx+uI%)y}w9Q{eHx{P>5Nv2Uh&CPk1; zB5IV7pgW}vrNW|lAjpQ|R3gj^NkqFZwiGL@2JA?MofW0ZFK9=h*YLL0+B&ksimS-J zBT@wa0KTo;At)xPj@ku17O9urcqgr(LWU9bW6>ERzM5B)HL$T#3c7-mK=7O9?MmPI zV%fT7o%iwttQ~!v{HA zGnPu@;>*)>lD4kt0OH=$ON>A6xD3-=R=vPz3-73)>U#|Ne}nnLK5K;O!(@r^ys!-cO3+OnfP#B_Sz9cNu#=EL0(4 zQ7O^dH)IVDZAE^#M3ek#BfMSwU0po>7~XD_B0_o(OLJBj&?)YLU6=ymltJb>m_$h6 zQxyN;bXo^STWN#3L0D2N#WtgHK>{IG;O28`A(?Ocl%e+Vnf?H}8-ah+ zHZaD9>BBeTjgT8$(HH~@yMR!%P*6Eu`;hwOd1YA1YlSc2b#jk<_I|PSWasfjB7da^ zSqj^a=~-j?RS)$%+-v*o`Xi$Gv-4x9W@~`3i`lZ`LfcY<7JP+&vL;yL=TfKFQ3dJ9 z_*n%*pZ%rH(PFj+{v-(I6}Q?jrmvba0Gd-P)bs@#6A#qC@*ZD(NO^WURFNm{ml_y( zPURmx*6#~2n><(WDHwBJ#?7ApA^IpfZoZo36^OLbJGr{Xq;76(=w>X<%m^tcOohF4 zU9m7SD*iULeBQp$3_R1Jic12{o^1@xn-wesy$2C%R|mzZK(hX2T^EO=?io)Ehi^#@UivX| z?&T&?o!|;>o8o=@>l|x+s_R|;s`m@$s^58bD{c4j;H}nzO0FWwhzbNtNU9BN7=*)P zvOq_j4Mg*X%aZ~*Jo`B4NaFn_ofDXZ^1C;@_wy~E8RNpPgeMvOW zC|AUE&d~qYIVVwz0`R=A8zIXsZd+U3hwLI)jYZr{Ek=PlbQXEHy}IGvL%(C*5!I{>E{oP z0%~PrVTafz^XR>`6g#~!;nfLZsCP~q^H}+0^T?E8cVyTXXq(bKnXEx$P_OP)B;t$e z#|a!vVar^a-LF>?mXJtv4udo(-9qLlT1}rpbEj@B%dirs?s;+oL9xS~%M48E{f-60 z^f1uy6T~a}`$N7BiZWaMD$-KMlaqBlW*8LudLm-{s< z&bJMXHj}WssYwi6)PM3tGFo@FR38O(AFjutts~HcYX4;^;N54<3fk8^D?Q{r_#5q7 z`CJ`oz4szY&^6!wbtcs_J9?ab7yU350}9c~ZK)oazoaWb{Ap0l8rF-c&{s;zh)~e0 zU3i(m>>TyAx1cw_WuR8mnxb5I`MjH$x|yEfYm{glz5TCh8TcL8U-mUvedd38Bi)#ds{JQ>z)i|LZu!~6NX_kQWxZ8Vxlo#`-2o#}pwA(g-hm*ZjVh_Tz}3%AjKx#=){v96tGx@+rA)@y~zWypvI zkkl1F1B#AlcUn@~?+@b8?eT4n8_5(SUnQo#fVFQ4xr!w5+gcu@Yy1j9 zCc_RIt}6%=YfM)pXY0FF0vcwZ>qg&u86y!n>BeD|7A-;m(~vJstAUsm@fd=lB+d>L zwCa;WVRR`oG>`@Bm3yo>Xsc($smhp%=}FT9m9gj5H z16rk$`5x;Apis8B`w=B0sN!zrx3_{j&dX!ZGeK2}N=>)dnp1j{xT{&+Iy{--m|2!}RLKgc)rbr^;S&L%pUNp#5EvVI zj1=fzjxwi7hELDJw5kwBq|rppiSf^GLXdqD1kS2x(4=g+|6~gK|&&rEd^I zQ^ovnyVeq$B`;?nL%g;%byxRbFV7#gUv%&F z)kzmGe61i{A87nU@UygObBTD_;WoO%r0Hsz z6v6XK0d~D%q5&4mZc{!1T7Z^|UAYd?SM&WaS>nZ$_gTBp$@%){$!RD1VcOsNq&I1@ zgx5RBU-Ae#EP^K~-DUrCA5Kxgn^9I5dx{KfPGvvs=GSo)m!UU5XvuM&eGiiRBK~Pc z=l~}0(!W8PEU-^!Lj92klD*u!YC_CSPxoMhykjKy>akNtTCH^i$MvQYIC>r@YXWI3`=s3-Yz2BDz4BYYZ zzlfzsnN27y$WVWm(X)ZQ3ciuJD}2&cw>l5 z#S>CWR>h5Kw*WFCk%k#7EqTgc5jx|MSvurkRU=fX7WiSTMY+ALbJ(i%CQ3i6tV9@P z=TsIZ+|WB^lloK3FJSw?riMn{_9d{NkxhiG4n>?e3fHaj+ff**jWBwsXegVMBch>+ zLE90?@%(ia31#$#TvZt z{tgT*QGX(E(R<4(tbsU?D4x?L>wsN}1;ltlj-=ue4}wj@^U9@>U+qH~5qI`t3oXXlPPQ~;y`W-;T)WgcI$nR_w13?id-PM&b$ zfc%evd^tyvY=;q&dp44gn5s7r>{4f_e;(r2KPse&}qH6w8m_q$y(g7~$1`J$Ck)5%CAaH={BN*#PwD#0xxDCbNtNV(j>DklZ z*TeEkbrQ|FC}q+3u!X?uhpPdh$;8`vqd--#7Wn#2=vRQ{=Iz?T_0|DGk0@A|(}~%) zRNis1RuHu0{)VjksC{jH@cYxRgWDK=CAil2)Gw?lu!|bLk$J=PxN1WDaXmp78{F%! zrnahj?L~WuElB?7affQ&eXs>#_SyBwJAzcUfF2zjuK0|x7%OK_%!9A-909hf$JOo~ zokO3WP&MtzYczji1G`w`;XnOh%e28N1Rj_st+mI$-l3jPq3RHy9CqdrZ5nY{@JfDl z5O$W{zkG2p z*QT?6tpsBtCDY3m^p?DTeYhoY*kMKkyjE+ZHtiq@A3sNQ(F@33DV)GMC;NOoLHDP2ByJX z6dwL^Z^`O2$!ic7-Q(f7NlCfXg`|C_t?0iro$QmV*n*^`JjpRM7?6HG+k;H*8I_(L zgOpk2M(PO}gbIOG+C|1B1#L53;b={0J!9&_j|q&Fwd8@`-&G*tA?=efxizP`(B&kx z0pF7kd9Y9?V(&=T-`4d~xuP^Y#Fcas@=Lgaot*De6=aN}|7k`}!XSen{V;U?dQdzN zLaGL6tQ|q33=qm(sz4KeB{VFPSnfj14Bo8FutVtaOfp6xAPVUY@i%Pf^Dqgc${^HZ z-Yy$vql^qj(P4v|sxRB_jsGiLAHHYSqiYzjE{~N39j`s^E_Wdw-wLN%0=tKy6H^$G ztz~@fH@79WFCNQNQvP=vg4S=vY`TN6m){Id)THD;ZbG@-A0%nFl1+X%qF$AC%JZ$m z*rIqkZl`iOQtA)-^ne)!T1E z9(%uR8Q>M%$UEOSo7xUy*UYtDD?5L1JE3*057QzY2E9JV)#gp$vSv$jrT<^I$J*-} z3swOc)2q1yd3<~bL6^2pEOp>_7kgV1pbZSAt9-RfCFqxUvtINYTfcjAvfY}R&Rx5> zlXJYB>A@KGC7Q^)us0p%-E3_c#**nF44yVzOB$Vrf_Xr=uzg&hMG%sX=S3svNiOQA z0rlhOk1OBqzN^lKr#ZGD!^QJZ38WyP2??~HA;CKiF!#eFLq-l_sZVchXn6ud&k|g~ zhLLqev~n)28n+a_6#b;MF+wd|bU~|fmO`!ZBSlEF23~cwS2U?m)an3*f?O4EzA&-T zKo(hju?z)=2IAAu+QJ;Z-niQIFXXm+7$aF76I?-pq)7NCGWbRURuNJs-u4he5`b`q zio-kzgN$3G0nC^R^a&wc2s0Lrmw8S4DSV;i3a$fmUrCS5d=ByD|bZ#=@xEX3ZxZ3@#&J9 ze>6|MEv#k#sIPdvJp_GzP%R__Ko0Y+?*j8wTol5B{g09oV~O5@4Z6JuPTV9~k5*^K z)=g<3`E8Tt&);|MPIfpD^6(7v*r*fNf7Zk^vPn?~sbms1CI}AuHU6$z8wKa&E-Az< z$~2JQ(&6Cr#Wxnj`R7^^4N%YN8R{7OSw!j5jWyI7JM#E!iblMG5Y>S6zOE=-EIh)2 zd137+x+?KxL12*b^lwQpVVn8|(8Xmg`dX#A#KZ8FtIEIUSKhE?`LA;kMIDl9fcABi{)}O)}5ukgV1W0EukUX`4(Y8O4Yc zlpSpfB`TZa4?x>mN?YBGAOwm!&S#euU$ZJRKhB81CNk|L{8C_Mc*6;Zb zQJ7yCK*&NG85)U*xRY{j?c!{yeXlA%&$X0v6^_@W-{b^0OxxpA=(W?yDoy$=v><{? zTtTjK`rcvRSlpzKMqFNGp)8-;C8I@-#SQ+~DxvqDEY2b?MI@FexJM!583uu)0GS)S zfGkhvg2w_{7!_Os2{&Al9y??v^G{ecGORZ^QzVJALa-w8LZc@$(=2y6iXhXDchp~5 z)iPkY%tdE)%$Lmv*v|J;Zi{x|NoThP=0J-R;-6NU zWAVbca;5|l&sMOft%iGf9gP;`x`T{UDJ6=3=*0UtGuAy^Vr+M(50i`ou`K5hp1b7H zfbZ^ozmBy2>ad zq)2jJkbm4LFZ!UC9nc0Es|o6CBISbN6@Jex^RZ*nfQS7)xAu4lYt=yaUucT~vb6Ikb3=8qS$ zY|B}FS%=F=2`p&k#9I}u7gv6kuMy7Iy+B5P#E&VCrP}u*t?|u^aqG)Fhg*k}FTLT5 zn%n34&CX;C8$ia{l;@c4@7Pr9o$^r9>h{`Tgk~Dw;mR|OSR+5u$1X@ecT6f070)RV zyQ5b^hu0v#t&lIh{_B{d+a8F}yXL9!gU;VvlXDRUU#;bR9|u=wLpUFAM=p;F`umG4 zPeiRY+*L9JN7+MGlUrswFVEdZN7s1@zYa2cH##<+p^ z5lKIq(sm&+xI9!WB<^;)XBkU4j0vKnRId*U2vmq_=~?E2?o&i*Ap~7%b=C~9o|&p4 z%)}+ZdVE3OqzaYw{fo&k&m(h!)XtTCQ3k1DYHy|8!{LR@{SQSpXfQ43s7Ulxm-5g4 z#12>)GmB$!sKulS=C^+9jhU9X9oClCs%kZFEL2b(>mPiV-f<(rZHvAy|Ms1Yt?E!^ zHt|SO6ggj2D2B|1>;?y~gW}-;n7sK+@#(A4p%p$R+JQl4YPo-)a|Jp#T|6v?e&!ij zBf7+=;*01OOO8Gs6O1CgaEBkF2us4#13a=$^>pbt_kW;5(+ba#pBeM1oJuT{FAUu; zgQ-+~gUyqpR)rC33pf4KO{&DAEKCR2i2@`Za_iXL4CI==->2CbQqy1#X2^Ll2#FIkyo@pTNY6~ zmjbw$A`92qH6#R>vCy*gD3S|dSy<7SXvSHa?it``$rYS$F7|DvMLDIC?iXOi9Dv9T z4=i?L6zQl2>BRE+!f%Oqp{&*UXj*imE_PSjo99WJ!+8(1sYjJ27Aid1tXME8qRK`i z#q0qPduYX?VQzloZb9S__+eI3`3%CYBEl*KvxU-A;1b?T;YjxlF-Y;!Gk~b2FzYuW zvIqIJ?=Kej?NaOq%wPEmI~kbuuD}0DE&bXW@4k_C`^;D9<6Em4X5~5pds5zfw%2OJWpKXDt2Z2It>^6R3JS&0`zI1JzOxak3)aK3^cjnOG`ZXA z%Kz_#MNLqs&^PYuerGw&2K7#*N*TpFan8N>z?sz)d~4 z-<|$i)1~4qbtIJY=`_V{>L^=0+nvt!;~r`8s^rjcBEom5sufn}FN1#jIiSTrU!MO? zNj~izSr9qJ-P1Q{`539HG?CelR$zYAKgTm&B7SS-T$3IZE!8tU8dBYM$@zlOzxAxT zz2$C_hwJ^iZzvhxb=|%nzy#v(K6RGCM8b=(X~hhpg2<~1FpQsxzWLN0$@?ZJJ&?D; zQAG2jDXNaLy^_?FsC#J({(}op%T}4Shf$5$tZI#g7@Ukug1M&VHAyjfXGZ-{gDP!< z@Lvngy{zm!kEyWe;^jeO8pspO(2Ps>ag(OQQ`LPk7FZ_E1bO7se1ZWPi;OZT#KfC~ z2CkUXb>EA4Vbmxv*$Sag@q~Xwc+kivIe9E=J-7e#%tC@aH*<}sv(ic9NfIs zzy#SurMzPga#B}r#xU(Fw-0tXl#&(i-G$9>iAsEaH*v8gIsP+@2qJ4{Am)OfGm~U&;@Dzdx zsW36d>n1tLa%Au+4NAnggU4lsTpbqJ5pW5|4I!=WdqVH)TRGM9RH2JC2HnrVpE7hN zHULuJ%hjYxOrwK8E&)Wsj>07RB8WXQ7C}u>SqR||QkB9%8H-f%D3ZD;>P~Ikp;*)d zROnW`OJo>#RIeB^byW*gNBBRzKVteIyeS=CM?+r*b}|?+>klE8z^=Oq1;Q5fEh@QA zW-e%mJ-2%>rD_Smx|hxEfh9xk8dNNwLyOeyZk2bQ>-TmLp1KcmkB1vzc)V8{yiYhf za~6+r>zC!M^`Mp+wB~z5R69eg*YZpcHr{!Ml0UP-wY@ave!5Zr@^JLH4V8_h!Qetj z^igH%cJu-&%40M7-KuVl{JtT*_kQ+fmcI5T&88)_t^E&I?)P)Q6)*19tRY`cLPct4 zMEZ_^w^mQ9wRL2OLPFqSUa&@NwF*HNPvw?RK}C)B!Pc!93EJRNToCg!b@r=YE?4@NEwvH7OQUF zXX=TCOauAskETVx9V#>7x%2?+ms4efv=S(BwDH>es6|GQ)VO7E_YOhOO(D&b>&vwp&84sqy1X%ox=8x)HHq3elkH!Kq{Y4O#@`$^fX(+)A6G3hK+QgWNwY zG)G32X&K;M8CApf+@ZctQN#z#NJrM0%_h>tvyU2&Ge1nYpYEBQPM~-$+5!fOF@gx< zfK)2OJkYu%L1fp?@0Anjx#3>zeOGXfS~|zM%gG1I&?|s7XR88`-IIX-vfr zxuW=}OCe(zVF?mvXd@H>a;fUMQppGhDmUVpf1eX)YN#@B(s={*ts|gs4fT|CH;de) z#JyRLOekveODq#}GAWHYDyBZO9yt)L?AE_ekbER$hFje%<8PFoMJ)vgcO)@L#dKWK zQe%sl?Nn?pxgq@+Rb|4Muv->aRvt-&Br5zvgS_gX#E*q&keAmcOT0`?G3|6_KHfaki!p(@mZ*AC!BDx1@MO^hQ@_PhAmTzwrKT zU|MzQPBrkqrt9y1;X_%jQIky$YJ2W5owA=`s~)4pQiCkE*SPtKeuNoi;~WC#jA0GC9A9CN0kV4o*Mbw-~nZH5Bq5G;q=w=sX7; zmvN-Gyl8j6*ITsi06AU89t7S88QjOlk|zXS3)cTltb6~n(tE7frpNTfaqmzzd0c%k z5DW$zZ{H>@tWnF((Kh(k0mm==@%0hbjzY=I{h@jJI#2Aio6c~(9CQQRKM2{EV)Z%@ zS@YHfom_u%9}{)m7ctm_ME5b|%86qpzuM31Y9p^X=<}fskN3*dGvqwj*lyV5@lh_LB(q^fP=cOb6=T3I-AX;2-JsXWsIl`8K?c-P{fdRZ5`tIg=aJirBHH2aAH(R(+=OQ zhzDhQfhP8Bq}~XIVT=n{dK#oYqoQ|7DMKf&aUmf}st9~V)rM#gCf7^f^XQ@J{l~G~ zupwCX45CXNnre+iQ4G!ZV71VMSwS)coYdl5v;nKa>X-pdxG6%?TJ`w_ zpDz=kFnDa|#)P%u6+Q@~(=c7mhkw*91MC|Zn3SlHDujZu86(dIC<4&4p9Ap64?E2# zy4*9|?9Uu@(e3;)Q%*tguOq*C8oUY0cpTkBq!o#dpqy*F;epHqfPwmg?1WKs2@ zRO<7tBZ-T|uMX6s`HVV0fg#tT?$rK=g(s;eI~)Pa zK;l{)h}BbvbM2*}fX`o}*-}Laf3n4DkExPM*o1*d{jBRA;cVQSzGLICy_2zj%x=w} zoH`8Hlj_90i^K9N4ulGou>Po=)bv$CcdVGenq-L91(XHfqbp;13~M(Nh(rvd0}2yN zLT+ISgVt{EN@G&oZI9{;?_sNIc@NF#;M4h3%Em2vI)qfa0O8dOJl1YJ}Hh>!@Em)&{F^LuS!o^wT)CA z1s_8iT%FcZY=E|UNfBlNeSfd0?q3@{)ogH~4 z)bM$5gnHEopTrJv?Tc7I1R+D>qKu6SUH-e=2 z>UtwfwtRv9mKZljQ<;%pJvf{8E@|F1mqt6E&31$1-dHPpPxFb9DU<3!mU7U9E7y9b zU8pzF6%s8suPgmNY>=YI5y@w665VMBt{1voME}lYG9Q!E!q9 z$F94GAL$X53WRTr5Cd}rU`pK%Q}z^ZRDONduxNsxhfi!(zf;(*oXuUAi3~PzncPYw z0-XBM!SLR+7D^qvUG*hSyd`dScqW6=uAjdjStUb%c&ifi4RHoJ!n!)DT;a5suexkp zfs{~NFO#mEhp9%#=jX;Xo%1P6cT)l}dz|k#F}~|FJDZ9~#Y%E*e%s;R-btF?L>kVA;bLXdf)=|BK}zg$paP;$tj z%)NsjleRG0D6}df8l6!`i4+2AQUXvb4Fs2u1&TjO(y*1PyNEB`>px6D_hG4ciB5E@ zsQhYxnHebd592c0I3L;zqeRO5+h)7qNE#&Qkqyh4s(EON6-1A{P60QO0LdhmMof=y z0ZkPEP2Q_U^M`L2g&WEg8QuD%^xV67vqyna@|k#5u}~O>u3j3v@#dBhL6j~ea^+c$ z`n^Hfc|L*lK~xTo%#^>Mz-7k4B#fjXKD2(WzZ>-n@J_maaIj~E82;iJRM^xdZrm}& z8{_^Wpq}$_1*?JxV;qzxh7~PQJ~ja7v^vKX4b=KWh)qZBa&7E_^TTxUZ~poyyqTX# z5&Nuo+DqBNd-r1Fvod8tD<=sFZW_Fpy-Tx4t>`dCcQ*OJPk7S8=J;L2O#-~lzmX~` z6=3Fzn006Ca_?;2a0Nb@$xi+cQ5d8vK{Q+uxyoh+r^F;X`7lxn{BmUfrb#{8&tAHt z?(9!#`teg1js4jIqs+M=wiZ;MUIn**a3^EL-{FhjF%`2R8gW3%M#uc^w-`Wxf8~Z} zC5C}YZ0@0xRFh5)BC7se9<)Z(mAq9pD3U(k=m>W(uVY{G!^LX(pm+?+Wn7cM-1dYT zNgXS;3Tbl6uCrxswMi_>SPcuItBdQYgTR>+^Z3Dn_KLbr{+LG}*N24cnEu9@Z;u@l zHEwKDo0cX|cxCPtH{?*SiP9A33V?)}=9{Kbv_T*KsLy2n5VNAs9T~4Lob{(5(W8=s zQa#z~osl;!hT^RFP{K%Rw<8TC*X!#(419(Pz4C#d!11-EAnawp`xj`|3f>L0{HCp~Uuq@p$E_qd=x5ShFYESLV;SMdKIQKo; zyPL7`1Y7o`+r`>$KZ88-T@E=@om~+{xy#shZ8194!2aC#!kP4rjPc%u;@A90@Ev8- z_nTWdOV{cK^?vWGaLtF`F)Fst#IFxSWy&2qdN+?Th6iutS!>NF(Wt4Q9d8|A0M@4S zK|T4GE^N<9NzUZk)|U^Ub~*az(_lbx#Ym@xALC#rDFSw#BkuJcctL(Xsu&fMG;&@6 zGH1ZB>I4og0*?BuD&!Cwa-1r@CoPnRnsqEV(kKIo@Pfc#mBxp1p{WrD3TxLs$hj(> zxM6Q%lHW#5+5c?}n5I3kj|fDmQ6VP*Coac7rhF8dDTn$X!iup9ff>=IQdYDq*9t`1 zE0o67h*Vv7RGVM|^5g0!t*22)N~z`)u4fAZ!3)rG+spUIsoa91g^sZd&ahfxwf~Vy zYfC463n-K_hGtdB*B~KLDPX0S>wQ3SN7rE#*DF*Va<=L%W(_WrA`u~Seqf!T6P3h| z{nOLp40S*OQIAKt`1>CgT`nSq-crn3H*U0#{?kuu-!J@{>YbIv=sVz$2kBlT2*4GA zucT6Gd(I{fc$dNa$g28cF+4_2(@YCGK<40^RS!#7dL{li^~VLcw94atL}vnXdB^^`pn*ddhbBSfepb%~#fh++{GOnL`eR8vR^dNN>z z(@ayWK+j+X(c@s}1zuXB#{)DyBoXr%9!;WY5$oJ~kb-`Z#EE%??E$*39-hTbAHxiZ zvJTm@gAfug)X|0HPtk6Sx-llFhVi69HjI%rDojp|plcC5W}1<_4X#GIBhOj0o&ccP z$kVLnnCGnJk>VVd7h3rAq(9(@5L*j)G1tM@hmPflw&fgNx0K#l1{?n+pTsvlZVpc2 z7Jjf@+a8>J9Dr{fw1^9zczqw9tiI<#rk|){fA9MKi5zz3<|$-9`mM?nwtBw87p^NY ze3?>gVux!inb||~GU$5$&1^dRk{v#F>odRRH2X;AU2r5^b}?|pX6u&^f0q-kKaXj< ze+8cD8e9JHFMdXy*Sj|#?|sjni>e3WY!&ttD$59axcKF!Z^aOq=@!)_nh;cEtX z=oS1qFUPCu0~3$OIp>^nUd^s=eAME0b)k~D(g{k_GK8j5T%6&6NEi4i9W+#FlP%B! z6}=1KCj{|<2+dbdm8@cr*UnlF_>+yLDL-G|Up%W5ivmw~}OY?`Bb>@|a`3@uQl zP7l6XRu4wUVuBvX?5MlGOBBp-&NHbu5`qP@bgXah)L#;YCP8#TH9LLofOSbv7UflQw$ER|HR}vSblR zj8cf^tK$Xd0WNauHOcuKiGz=9vaTbDG@D1R?}0AA$hQRr?#o2x$l+Q^P1l z*j_}X-e7cgoH`+(XUF8@|77ead3m+_{HNgcATO_^!n~SNu!$sQC$>a37b9f}bWN!+ zInSXWY*r68;#fXzV6bqglUcDo0D9aEL8Q}FH;N`CZ)lx* zLUVc8&CC2QOR5d8{G+s0s$qHN`pk25DYrBk!`Y3NZvMgDH|K==pV5#DmtaE5Zerx)7nolu&9fd*)UL#WrnzAlUTwd z6|1mYeIM(K^%Ojd{(KVC4C&l&J^h6w>-!pLZ_2WSXh}tHjLqDK2zeu zG}=Y(@1DbqX?=Wd(jWNUzw!h52F4l2og94k?@4}k#@Mo2^4Q%M%tp-Ga-Y|myv**X z0GlVro%fczxMkmWv;I>HIllQqPPyg_Jn_K>{PvLRuD%)S;C-Jx13r2lJUqT%}tc<(~~6l;Vlp8`%|<$gcoTMN$T!`-)Y>(Qre zHpWjbKbGFqD!RU+3cosMC@Jaxed*W0uj#yR1^a#Sa{iZt;l{`L%{}eB>t*M0-ML#a z-Y{N1_G+4VmQ|GMe`+67bYj38ANAz>Os={V)iB$av{qaq1C9T_tSVj5;K96P>{ zpjVU^D6(`!sC-0HfaZtjm4I?vj3A~_Y}K%Gl2VI>IgmgU%gBm5ruGD_848o**x3*f zq8eaE5-pSjF&(quBPtR&B8V_z8kKsT!98OnoCa9+YCcFi@z2K5@9X}zQDI(B z?ASUhF>vTh7bNW8#cN@kcAr@*rV zova>hWL{<+lj5WF6}lK6O(5%vWb-j@7@m)5h8RXj(s4mTdnU)qW$mOp@+{lfN>n!3 zWo9=c11X}SgN|5Q=H16m&7nahKq5ofBZ)jjlAhLAKqD07u z(9*C9ks3FWm_^ltL`0}=@V5D~C}g4Hmu0mUP1DCa*N5Z2kBR1WqHv6q2~BxeWEiRP zFkM&bj;4d}ZXOpsk(6lqcymqUcogwOV@^1sA5JxHSr`V=(D54Mlp76nR}rp!r-|;$ zYWkSEj{sT_p?M*Zsg3DehH1w*Ua@SNZBYvD@rp!^D%c(a?G#CZCgL>Bb&9vD$78lytJGGI$TDox~ zlYub7{kc7upIlCdo<|pwnC?>wEKX=%$Z(jX-%Insnce(m)1KriHo1z8l!A(9(vU2X ztJpZr0UdgtS;>Avso@1WUFj@=qv3}-ZeU;;0frVa>cz+wV^s1szhqwqhf*q~ED#KO zX@sG!#|<u z4rX~z3tD3Zgv5Lyi8CarG^kWcuTFv?`Ra?ul5jkV6^mV`bu(O!GbKGjQg=DI^;tI7 zD{o05beNOu<)y(^2s8{W!bx~&nnX%yOq5uiZ=^X^V9&Zu6jC;ejdrGI23ehLVwZRy zlZ+7-yPc%9G8_B`?pm}DvSg5I%hQl3(KNkCuHrCd(jbNwF*P|%gH=?&ZxP`}I#c4q z^p#RXQZO^#N5XJvkL7q_2{Vs|n>tS8 zu|+?Cml2q{Nhi~AZk$uEKbOb&!WLuyzpwAXsXWfe+v|DPi9NhEk%b$6sLt`+V}WC7 zJZBL@H_YYq6?boD;;-R`#dp_K7-z#2A4cj$CizYNfocQ|R5>@X6x=xgg z5!xC^LzRnJnj$QgKx!KHh>ty_lo%n^zEamfnz$Jav#iRWqy~j{)$kEiH+nm#{4lz! z$O{rGbxNHuDv|PfgkntWP*KUzxY0h+#+zT(O!YE?AOh1GZ-l7{gymFyJynx^BoR)P zAozhQ?{cdq_}W-u2-?JcDz$R7DuO^Yy)=z+Z_dPfNQBT#WZWUDOW@WUDuKok%KuW4 z7!^5o{YEK7>H4==IWcmov;x z_OrUwL@BViBfB3Xew;?L$jDF%U6VA#O1Pmx??{TeRGIEVhK+so$dZ9sS5f3^)P%TF z#k(dAv3KJ}_DXD^(J0WM7qAGqW$0kq>@4Q=kbW=4szNiH@)_LFAQ^Y5kC$n5iahz~ zu86J@k0)l~hdQ?7V;KQnVBjSrZX~dB>hEx|OVTlUi0+LI$c&&;uvqT4a@dR&9MkY3 z!$Feel{S_B6wMz4W(Crh83W?8NkLyKsQyW_sc_!|PjD{By(Y)s@249$X>av<;ibRk;CUb7)Sz~ zM);2M>FL)W2j?iiV0= z4&oX@D)YD&NJOZ7AAuu~arIiO+Dsw?+>{PNl{^W5LbF9fM@HjiU1QBDBdRgaX4TkV zHT>%uQC$+ZDUO#m2pln1)}{q2JxvQF&PYgn*`Nvx@O-7{)I2mofUL$5PfQ>a8p4_o z9a0Mhh*Wu+uq}1`Oq|lB7;aj_a3z7QO6@{R0FuDb@RAylS-qErz$^rWj*gHjDa1W(DCXF+>C~m*9hYlnyYTS z7Rs?mY%irFBE|^kPW=1h$}exbF5u!XU;nxv|IMhp?8Ga>8399+glimLtaP!axq(TU zEJMXOIo&30Rd_*mVrv1}FhRecqB&Dw_e>8{tpOGnCt+$Kjvg@V##vJCV0WvV>BcaV z?O}YWvy0QiXc)(zq@xqD#%<<>>?C>%DKd_V7w(FUup-~W&zJ7U$+H*oP~U7)btSTe z7{jAUB40z6bq4Y__=5NbH7#hImZu|`rN1E!k>DMBEn@HFdS+X_ga}L#5=o6wY13wB z$p$e_u3JDV?3c{ZAmXhJ2nRZNI<2yG~} zfixu}g*d{HRB~#*5ru;F#d_8yo7m*m6GS?ihS)^hvQ`194Qef&K z8LPs~x|qH#w7v8I2VL_OPPrz=!~d)H{bh@~7vJ(%ap5U5aFyba3^H@Z0Mth2~wvs*0B=kuI( z*2^pG-efQgRVoEzWJU@#p$#q7ZQiIF@}({ak~)#8E7b*vEEU15c_CKTQwdv<#2NBQ zZE&$i0-OPt^r|AUK95AVk5!12cP0W6DuqHsl1PWxK!BbtD%C^?WE71n9Z}UV590)< z)`z7UK2YAJmEk?>7@1{Jsn-Z%g1`|}ngw1;5Sb7efWmgjG;b$?d9&cv`d_a6^0}`_UTWLy#7^uef*4qNNxWC0XAMdP zoBbNrW9lJg*TM^R))g9fTV^q)2v}dN=k4uFnV(w02CtEnQQ^Jq&v0O74F@)?Wtu%e zPTH&v8hCVg1}jS~^ap7?X|SnW$D{o-_}%*5Skd3iKFu3BzU@W!jBVf@nHR|WHXRLF z7Uen^$S0UTX$_fVnb6bF1}v;Wom6uHv!Oy|_cEoffc|Wfxv6eW+5I_gnEzA$r|A*q zIcw=Ma!fa}%rXk>WfgdbP+EyC{z?F2_u0JlF(Kj$oy^|#%?+El#lNjNVgU;BWY>MaYXZSQd)(zg+`X; zT6nBy8YS0cac?{8%k^x`*KtJaa&!@Kbkj>Db(ejU>xk(-4Nj4cWR4k$0n$bVT}1R0 z(+rIyX=u)owkynUUXA4hgptM`sZG3V(u+(_4Y8!Rl}HL4&F6&lbDYrfJa5e`WzEd)FM_c=T{O*8LBke4D!V zk+;{6d0a|$FAD4 zEbN23-?`QEeQWwTpc+>2GTb%g#x0h8;`-lj_Wrh6Cyl+nZl$VeJLG%gfk~&V`ps64 zyEW{v0wbjy?@m7f8#itwli8AWy{RCCiUF3&S8RZEYiVCD_@7^D{qHASRQMx zsG^X?*!`Ea^sq=Zs+6_Z;A-;L$Zkm@1FV9?7*Zhvk*>xy%Bse==5eXTIu|BccOXahn|Fb%{xgJUD|sMoAH`+P$zxRQNz- zX@r(Wxxv7wL`v|{1)-(kCsbUuGaBObx`eil%;<_pI$%^JB8tG!!88bMft6P&XO(7y zASUo*DlyJ1s{S)(KEzKMRO+jWR|v^&7vV>k`RYC1iGN${2r;?x%jdpsO3Y66<=+=} zF2XDeM5r-p+VoU195HDHFN{uNu$*L5e;q&44x`n{ll5Z6b(dy6hbaO&%n|-pm`RVD zVPmn5$%zJf;&p^lquD7C(|sJ_G07ZZRjh^Gl06)fT*g|jiAJM9F|zqd_k7Z(njD0Y z#-eo{OlcpY(;nd^vkjpsAEHqb%3tI7_(6n-d6b6Z{God{uAF^0U3!7%y*3t=JLz`o z81~|{*m>Srw~&49QA&}=3O|D>LO$H`7v@?nYkZA|OS_QNE6nZaA&|;zvtnZl!-Y7$ zXJD8izOQ2#A=G=6H51JV(e((!4Dh=XkP4VLdo3ewoS5NrU-#~mJrf}$*?gQ-qQaDh z5qffIUhMB6ZhI^%w30F_*jgQr^-N=7vXhc;QSwcWp0t#9bCmyGdN{4=JbgnMG)-a| zA)B%p>Z~$x$7N`3JwFQ$Pxs8@&cXsj+{p;;zds9xEpL#W^1#`_)}Ii)~M6um98t=U!6} zz~rT$-sX0xZ$AzHt%$_|7tZ3SC->l{;Ez<8vDtQe_AX_Y8H<<$d_KQ<|Cxt+e!SWH z$ES|+!QJoVf!#NcR{lpZl>^)R(C}91t4{a0Y$s zY^d7F*aD*xq4`j3)9F8?iKweZjU5Ezs*kQ$302k1KUQKU#|`|o1T!HB6P6+dQetN# zV*NfwIYgQ&%?(W;f=HF<>5BB}ZiMcsFI5pL^5@nWAi>V6u_IGMNR{{~E3Qj0*X zmxd}!^Aj4SW`lC0B0oZ^k~2_5N47)HPN9CwG3~ycw{g>dW@1F5B8~ zCw5|cVGm2(jQZ|KZ3>9uA!`c_{At53L{jiyT~G0@-CiVZRv2)TlzbB%$)=#5eXT+E zxBK}}!xOxx@fj|hazA^dHqvg6(rFE|XL2J4r&iEt6!4`%yETd~BL27gD8BUYNnEz< zUHox)50-YfGU~iK2R?ow%uaD9W6;}ZBfL7-!2D(v3S z!ymGHG8|bvUz$ulbkI;i0uQdA&ACs0fa``2;77v;@oaf28!8R_V)#J5Jv5J{UK__G zUc!w`Dxt})>0SUbbtTT+_v2VTyG`n4X3HRl&0c}gTqeqy6tXegoJ|x9ArdUy z(8;94DDANvVWd&2SPb`MFwKzt+BR@t!&>%j-AHRH&(ZBmiRnHEq}H%sat+OiB9Roh zp-#P1Ca!s;^a^uZdx)gKc04TGXI|4riY1#D``gJEVk9Qzi6V_DbtAMkW*I5PaD>mF zM|K0C5}Cwxmq+?$u|8ibbQ+uzUCkrg{H*MR!ZX+Y zkUOqcX7p2U_#v4uEZc1TE1CD#&-vyK9qYq?IcALfOvJA){yC!SLO#}d`DV-a3x?P) z7~-Vdw*h6ie$gI?R~?#R~%y^wp)RzrH?IK zxR7IxIfi61IkwKSET&GK%E>3cwoLS&j;eoRtOI=z;tT~8J52nf!1atVuS95TcqxrA zCMYHZZd&zm5s}0yMrfW?JzsR?o$-_EDSv1}Sf``=p!;e99qFo6&CZ6H#Qy3L$bREKIylhOXsxi6_Rr2C?X2?#r(0tY9I5z|0y#li!aRz<#N}#&WON}5lo|Iu! z)VX3qd?2Ed(a6qDQlGCVB_;|tH|f{dlEArpjU!w zvr4V%1(Jl0PGo8X300!!C$wrHf>OOgTc=Vl&^_f3GRvy$EwVI4d<;z`ib++%rbZQty6{8$k8k!eTN$ViND5)6h$Wp3S5Yq^?9j>takHr0Vbo|SV z{I7<*{3Cd+m6(5}`m)o&|N27e5a_;JhQ@Bz5TlX7@AG@Gved%-%nJ6lyD3Emy?Tb_UK=^j zK~MP%k0yDdJe4qKu_W6`dbvTRL1MUq;W-+5L!`VNPJmZb51KsBAXl-8q+oW-07o=0 zqYygm6JJL~8Z?=C-jP^BN)s$}>zENAU}3fsKhmi;i)4d1nve{;30CHt8A-=^x-bn* zNTw%;a3cdDB(@n~ijaNlH;_v?EX%gyMLKJSCKGLnqv=rBRbXT!i4YP7ZDc_wn4%Lz zI+N4Y29srzC=&enr8%VQOW0;Wv0|Z#skFxOs&Sq4b|32#qaOp{;d?&C;U`|hSsS;0E$ibS1O@?^-g+4TOYU@d(w@25c6)wY zm5{ygy>GDR$3Mf#C)~&IpC0C!Yk$a*-~Y_mcF(NnXCO73=I1ZO;ge&__Zk`?bN3N^ z`#eQze$qLI^TS2JE?YgXx7;(Ck4-+FpI2?qFU&s{?~|AFfeR`;^YLl$b+!CA_q22N zQ@L&42mSiLAGmN$a^~ONriSe%Fkkx8mjIYLbt?kt={^Ds%rt#l@(8bb?^q52KHh zq9|?=T0#*RUn-K4G!cPB^VGR(K}4i$7?qGPrr{@aq^3&sv_KMC>glECD`Te=0<&B# zxvQ#5WsVUA$&(in*F1cwGZZGN(@N}}SjR@MQKea# z>PdagDBm5_^Q>$0LaB?B>z?MAxb(J^Co)QLkOw< zT_3|5m6&-jDiQf8#$ba@d}fxwQx9r}9Am973tlpHK3( zu4VMt8A1fBi%qN;X(sJd=*y-ER-~|s0zWMo-cYB?sWTp0Mc}vi7+OdrG%5HtDa*x~ zG)TrOvu31`Akt`x7umhBm#pVth=`FOLAyChBn7RpJi8^kDTOu(-Q(%rE(|RqX8CkA zjuJ!~H!PWtWBH7@aaOKvMYBVqNYE0?(_WvW-%T;i9>9|ZmI!!TY7svkcq;(?Zj!%l znvQJ-438!W%R2kdS;KIUq!iioco}llzB4(1(lp^gYp8D~A z9Pr=ciou8fat!>1F(1s)C#AXjSw*I5IPd-+0gS0GcV$EFoBS)j`OS9%F!R$}n(1E& zuS8yIsFje_@TC174s=zhz%=_h_I}oc#unBM^^Xx5fCra z*3G+etH;Tn^bmB;0jQqSmdXpj+3f>xG#n~^%EwT?m(Wzi{FZASxVDEiSD(Q}%%@@L zhxvQ;U*WmGgO%!7_up)C+TSKK`{?J!mhF4;E&S$+R~%vtJM4iu^UO1MbeA^|qHsb~ zv1;h3jTDF_O>&cMth~faYJ`@F7O1E6kqOSAA|*yyDvw1;O|n(e7I+DxYM584UwQ?Q z;Eaaol@Pt;qj@2sSV8!KDjSQc=Kv6f%D^8N7>?n!i4op%sZs*zDv3QQ0O5h;Va?yK#}%?3_eBU*Pgt)dp&T>Ez-sy>}s z^UAOqHK>J(oJm9ArgY3=h*1hL3OB<{u$0uT=@y>*huy_)-XB|&z7eWqTx%O#f3?{zv&73{0vL; ztrUEla@N5Z)d_SHD^a1cK1FJSAc#SFeEOvFY0^=j<%s&F zyj1F-#me(UVJ5>~f`sAHTS+s?8Rc!rgOVIWL%UwluN4z;jxxDGT45@t0GvNqSqs%#Vaip`LlpgoplL$RKu zxd;8F6bsxg@Pa+ z&B?=Sjq7gw1}FcYL+bmgdg$CE7mS4fe01_voOH#dl)pWb*!h=_oy*;qT+S!0Gg)9X zGQEEjCpS3Uls$#>Kk#|Jean|#^K*RH`s4Wis++eUF`$UdX&g!4ymwQ%{|2U1lgJeL z`v?F>#5C$RKEg#4{PnG$e}KNP9X0kobGP!pWKVkNRh{E)h0{1ac{}^PPu;r(cPwDq zikmr=S1um|n0@qfoO$(Q{FGAwIQk5qvp#m$*!oLGZs!lHehwVIUFWjH1SSkauD$kJ z?zrO))~{cW=WYI~)e%P*1tlqLS1IZT0luC`T$0 zYbY91XhZ~FT40YxXo09kCr1R1nviRu+Rq+x(cA#7qR5JLtVHP4pT(J#5p&_COFR4*#7Z^qLg(1oi z8&V}#K}--Cig<+7FXfD>oWM1~{XN=!B-g%7rTN&GW|++q6Jp z=hZbC#R#Jksz_=qWc8FoM@KIO2u%>yo49F}aHjbZ9OcK^iS5VhNn+k;ic5_Q?Ibcg zu`LA2kU|$|u7+6v-IX}KIs<+aKiBr>#Lnm0Ke>k0ZVMZ|1{}?2d9j6o&}ZDd8h8BIvOxboffXOnnk6T=FzQ!cImW5A@cp@I5tSuM>K zM3zvI^|~OvA)vC_q`XT+VI+>wB)S!{U*meZ%pn@n1s==KqTR}}PkbG#U8Ssa7$Ynw zO=r5@&jX{ou}o_tLXgm1Oc5{=#98XKs}ixy223sB$&qP<@a%9G z(^Er~LzAIO0$UH5oKR2I7nM872M(bWJei%w3;peQoM7xuv zt80XQH^tN4lW9&B=q{ug97rQ2I7yFpw!FZ4SCu-gD>UGSsv+or8PMz$IH+zlUDgmA z8X6f65)64s+UzVDvqDpR=L4~AVcrEF;hAfH$laG*&Pi8XO7GRH==#9D$XibMhsWOk zym@>N7%r7L?=AQ7lj=kG8hOc{^bkK-e-ZcJ4DT-S+c&uw*mz4Zay2Y>o^&#i_XCNP&>b{RL`cq12Hcp;ZuatUAf!WUS( zb}jeZa}Qtq;um*xxHlHU5NxMvNUz2yhY_M&!P+o{kxyc^#3{9?1TrDP9*M?08+IGD3!`Y)no(KV3)qJ_5k8 zk)}bpBSB<-@eoDv6Rtcc4sZfJRmCmVjHG@R2z#ekZ zy$CO@<0lMsFH%n=lPa}L_mmH&R_bTvc9xL65%5MMFB9=*Q)8~TKJ>3Xh5r~h%_V$2 zj#dE?sW25YuY8HcHEmqKdm|q`_+jS8Hn7@j;ieS_5k(q%wsvz+!)lI8E@H9Q#$U2? zxM9_N8scSwNMn!sZX&6%Y@mr!Hb$zU$jp{O(q@IBN`mFZR*bUpWO`{q=m?CW>b)gG zl}M?VL#(VpDHISY6*?4>Rx`(HuZ0eCguN5%@uf~Nvg!9zMCx0ImkRAPnR!OM7|Vy6 zncLjU(JhNG3HeO(qb&6k{GjIuj&5Acl5z)?&{Q$Qp&(_s47+jM&>&ZGhq-rj0*e#d7GjE!lwPJ3*(@n{u+gjMk>Ocny%>I|GgwG4 zx3!1Wqm7iZ;VXSy{$p{I_Xy|MZ|9^dF6GwbZM?rwQxz@+1KM7LV_bLRH)x2*`0n3M zhN_?b+#{>yWJgYB!&aKu*VLfNrJr%@?PV@q{nppuO#VJr{nld@$3jx2p!F_%7It07 z@Q>&6mfsf0vXs+j-iO@qEuOhnsUBZHcNR?>A7P|*-q<)3jr^|$tG{pt{G?}_>x)-z zV#>`eEWZ7#@bwcobmhTZyLjH;4L5itjCi+j=EvX5!tMM@-C+WA>#etP!wolZ{PD;0 zZkr>4Qz3iivs!CO;dbx-&8dD390! zxP~yQ0RxT&1sw>h3XB{NIJdUy=c0R($W(n`ytMM6cu9@Oh+`H5Dvc(w zK1GalH=^8Rs01=!j-|M1fhq+9#z>LoseU=Csbw{GI$Iehf`KAXTD26e7K80J+1SG# zks&BI8N~Y{q^?2(bXQ_jQ^}+dI3p44EFs%r)X2s^s>Hn3q-AG<*iQVj(U!@xQA-gH z+2{i*uHH{Vyk8O!*s;5 z#%GPaupS6(x4akSlffF^_wxYh^h4> zG*~5W>3s{kr+a8Ko}o=I@;_~l0MPBJlqVr1Mr(;R1C8v_(T$-+gW{zqSWjN|v1$rUfI=i$A<-Zclip2L1!7c#l@Gfo@o zXNu7{77E>WWsyTy9?XXiALjIVFF)Eiu6{VnXAjTt`LF+;>)BG3`AO#-E@aE*l>len zeJ7luO2N)+zJ(Ruy&V7KxMFt4)i-nA;SVtI@VB;k{Ldbqfv1P~R#8!r5#Wo*Z+|$# z4ilK(-d^_DV-En5$>dm5%Xhx>om_h9>sP<{PeF~i)NCeI#e+y9rFtz~56us7vIXpz ztxWW$PJU(@vlwA!J*1(bR|2%6I~Fl4f>6D#_Ffq?;n&n2U9T!Y7Q*w9n(DzKgK#{) z7?gRwHio7V#Y}>j^4Ew6{FJVG&O|1f7oocmK|)t%_&`!>vk;-AZgqgvVPv*}mzIc7 z!_Epte1yQvYXouCq%(3XG)+{)#-a&k{aQkrHWoG@giz^i{bh=iR1aDq48tNs{$YmNc4D!;q3T*)YLKE zw1ywounH10ubN~^L!ehwRC8o$PzljX0h%8X#C0@R^^OT*TD9bCCteL+iGXa2+`N&M zmRG`?MTOa^zWj4BSWM8;m?P`NaC2%hrn^eHADyXFn(jk)il>SWVOi$|qm#)ULmb?^ znv78d)@e-5LIX1=9?B3K%!M7=SCYALLTBvxKUKaR`A(0d$9FIz1@R!~htSU6o zQ%o}@HNudWb#nup4jyQ5rSSf!vkw)lZ?5{Z(mJsCC#k50sgXLChdtF zBSxI*sUbG_jr0Z?_Ov$vuy5T4rr84|G?xutBRyUQH!@gK>7cigW_oIn#l!6^aa)-- zV*pJ=EbnWk*)EXv9UR+d+RP!6rc1Az=EWtG$@KgGf=}TaANG-F5R@cqD;3GTK zp?z!Q1z^t8-{hd94uZ!vjx9U!LkID|fiH6XTi?Nc*L;`-pPCIo`P(W5>-`0#!rZ!Y zZ%&@Mklj!OX85LUr)<4iT)h@{2f9CXCE2-O1z_*$y1v_gPU~s^#mN`HpWQd~Qn~*- zh$?ZZ;qw>l3&8T5uHo+V`Eb=f9LlymE`K>^5w#4;voeO{4DQ~geg(v)Yi)A%j z^x66Bw_p;*E7kuQdCLiit(5)Uc;#y1$98S8|7Q=+aN}-=a~5}T{FC-lV5w; zHjnvo>~KzOXJ;opJxW%ZF=Gbz-+w;$aXl0%H-(E5hSJljirSwCi97Hj<=`al*@s;D2=8~2Q8nozB6j=asv#a7`C}sFQSD{77T>wjP?2#j#_r z&NuOVu8X+k6J$b+lIpFc9t5fImdFIRY$8hrT2V)f1?WPu+-oD00$=Jh>v@l`*xD>B&K+#D|%k>}P)SYUZ@|^TDZ4QKy%mZfNZB5yh|q*Y7m~2Eg6=}BU!qq8!U@rYq*$>SDa3JogC+f~ z^z_#AVt+f2_e^DWx}R1v%l-}PXtYbbke|d;BU4#C+J+DkAtXVhQwl7Wk2a&}lI}u= zFw&?qO58WF2QQYo=ns<|lX;P&Q!kRz$`m7;lwKyOyS%slY4(Y)C8ql{TLs*}AYpqf zEwuAob~2`^z7riiz|cdw5~D2cZD(b!8Ea6-&Fm~m-Wt-;Y@DN2C&XGA*`bf8IO&Q@ znbO$8`_7N})%9lqaKp9A+vFTp;Q?KBlOHPun}CVSj?; z@u!aUYTLj3fotzpP5%G;&t{ZH*v$YBYb}5M*eWXrtR7vUWEelp7*?m2OfBU0}niqPkiDNeBc8g z;Kx7yG3(c_=Yk6^*wNwMcnAW7VN@sRwUVjoWZkqBnE{YtRhg+0okB@9W~`Nb)s&K& zilb{tT_uKLj^B3S`A~7Isb`@w?MHI+F7TRAryx|18d+02YO4eA6RN|!kdU2bKm^I2 zY7d&YHrDLXZ4}h43@NnhNL|NIf?i?Fi=&!Mf|t^X3{`d}b%7>?IwPSea%UKdSm}C| zY}I0&)wOB45+X_<0#zO+0#&Z1mji?!AvK{C9Y^wNVPui$0ncAZ;DZ z3ke;a&@t4xni_$z!~Z>Y;x)ou^(Suj{^XH+{w3$}dgFTQL;sXsFk4e!yw5zpvlqFu^oTR}ewss)%SdSzEFw0A8B9VZ894^R1k1fP78WM6OI<&sEiv4>3?c$6E3tCw z0Zwj?#IgfCUxTF2%=Q7+7wefF?BmXdl+yre-o->*r<*?WW4vTF-7lIXj zjAzT!cxQ4kt5X>^_>D|8hk0+uGyGv-ce;#Wn)Mtyl6>g!;g-Mf*ShK0dca_iq7+yZ ze4DuGVQ3*OPJ#7CJ?V6rQj>$`3%pE3U0sn<#UcoFn(Om8MnGt5w6ydwR7ubt&k;mA zi;A7Nk-?+ur&Gz>q#KH8Lef<~$}X8c_D!y%&Caq=>!dMOVxPJVJUTFgXGgl|%cpp$ zw~fKcN%l*xrA{yLLaB?m=8-W<#C4aOhvu`sSkJ)?t65iRpdnVGH=iOO*gU&#GBSd- zg$71SG0LvRlRc9WLed;7ux@&pAlOM@wuMYMhtuYMp0o2?Hbehz#~KbQT*Cb~GnTvs za8$U6MGIE}aMMXkxgGGjSMc^PoWI%rKl#Z19Cp_69CXm$?DE(~A~HOB>IcWxJ12jV z$@{@M7u567$>RxRHN0nO3mdx}?hbm=ladg~M1cG_8hGW*|}yp2N^AH~TTovxL;ay8%OJNq8P zC!hTzAOG&Q2}P~Bc*4Y&L5b|w=ehz z7rB?fQ`>j!9adnjy6P$}zF4ukQ%^mWzx?GdeC%T%E%wkBQ*TX0VXucvLK|;e%siv2HO2@6!3F5knK?aOMNNn{m z(1} zKXL45N7n7cD`RKr*uMrv&thY~4nqr-0?^^%)~mmtx+|3@F#@Rx^3$O-IiOOnk?f9W zTycTZF+7??#zFvZL6E-8ghyRRjxX=^TMkPu#SuQg&+WyZio0>&$lhGD{%F42 zeBJomp-XflB9I#Gu^ffa;iWQm2=gVn_~f)=>0qew*8yfiR6G zB6f{!;_32qbX_tl-p}fC6Qh+Fal<3$Iy^r(2{$wdLJcp_@!EYxcMFiVWOOuv?-@ja zMxkO8MjEGfE#N&Z&v8`iGG-_4vL{JX2;y!yx;$ZQ#)6l^mE_O(inf zC%%@`Tc4scJ_3;#G&kg!)G|sKY51XzTQ>21gZg9%Lqtq#9U`)KdMdYuqaOO~X73l>xM7Pp z<-0GroVzc%oOMI}EWY7B20!`Y7oEYp3Zy1aj$fxT;v z^A8{I_j1+cs@ddafBkPNdw-7Oep}$!ub&8j_`tnvn7IUiq5%Bu#PyrK|JJ?#O?K{AH(UPEwKF(<#oc4?5BXk&+vU^FnD<9e7oVSI4_!09#2OY#g2W@|i;u{)5 zsEK&37fek>sYV!&mwHtv>a~vafdtc3%1y1z%C?ZEf#21L+h~m$&}&U4BeSM3fLmwa z)+Mo;V#GG&5QP#V5TFa>*yLK3vx%B2P;0hX_K6RK6x($I2h0-Kqq5rg5n_W9&r{7Q zwNMi8krX>L%z`AfF&sOuz)|O-`N}g>D>pMr5^W@pq?(8ph2ta-#+8?`GBXW`kWqx* zH%dYXid_jp+dvAivzlt`R`tB7*O5|X3=J=7;wP126ea{#QH^co)b@!HA9J{bHc~*A zO4YJ44IuyXMQlL%OR}SJC>TTo78};Y z*)%glVunk`EOSujS`JREz>_+oQJfj(5bFYE%I^+*o-I#hzxZm3(qKbS$AaQC7L_~c zw1z1MCTq)$v|FRp=_M+WNhCE=@d^ubo#Z?RQxEYXgW*CP$MT5~WOH%VSknoRrXUJ5 z@HH?ZOeerG18gJUw)OkdmdJ5P!%9pM(qt6qFh`&TK0f(D>huz6;j%ucCqg5om04Ka zlffWGubaUT>Tmxc4J%n)Zf2#^#BMFUtS{EHW~7n*+BR@<;{t}lB;D0sE}e-{A_TMS zUQ&96Mze_79Fo*4JfG{L6qxK=w}DDz^5^bd7|F-U*cA%C%}_Cp=I;DH*%3@^ZdvoC zWaY0oe*JsKB93d@obb(adGD1f>i6eIH1YepI+(Wqw#V+1Cj!v%zAIALQ?KFIR+a+N~oO%z# z*U#Uo0+T)IAvk)MZSH%Vy?H9Yt}EN&DmdtxuW+ILB;8Z?=a9>DeD{6IjDK4}#XaxC zce!rml`Ox1pDo6msKnefW%V|X{c>ya-5}N8yqDrd}+%lRNBQY}WP??mb)M{eqRH~Pq3o!~IS||x)Dn(1LL>R>osR=6e zI$pY-)G7nLKa2D{gl$hKEz`!#`+!Q&@_b@_WxP~^z)?nbKc>iwGZIxvi7KVacj{=> zFf^m;*Rre4G~Id=&6flT9Y3zVRE?4(HWF3iiFI`jS~ZPKt140&4<}sGiRAqS5(3BD*A+j{WMn?rG?5rSrL*uUc6Steh zT>Rzh-_Smle}u&RBSd9q8QJTHa%d4Ve3}~bWSk14%PlDfBVS4=#(-K2ugBa~rmK9zbKV17(j&5HYO5uAuYY z`lr}Cv7YZNJCegXS8`a>3hobgWrMF1bU<;yMuZ?;9bzF-GQe786E08kN3koPp8F>n zjRMzfJQ_oUoY3+-Hx13l)&dSlu0|um6d^BFCUIzdB~KM+@T*mOvTI8pzs=8Oa5Tw` z%pln?h9d%I*}eGEV4zQh0Z1tjLXs^zl=HUoTZRUf9Z(r{(3}9>3~6i55;uLiN7IC% zhGhfsWfxa^`(+4c+Z`Y_|OL zxIPh9`|E%rZP^fI2R`x0L|>2s9xE*D&M?Y0j#0oyf2JMqL5H+x@u+Wqon zpc-AiX`yT5r9-uHsYq6n$*PlcSuLlcsz}IcirC9at4dSr2;v%cE>aP`)h{jEkCeea zrpQs~D4&O3iLi4j!nZIjNiqU`IHyeg6Yq5`kt_@m6%QG+(MlePUXx0rNn{9|QPr%n z(4nh_n*AcG0#P>Xezk@5w} zs)0U?R0m^CSLtb*Km;M8P$IUoeT*;}<(i*G^{lD&%rQqRXrl#1SZV}L z2t^d3dQ7eQ`v}M0%SeSH2*beW&tfG^itUz4FUvS+-nfz$nHpO4-yp7!HLetqx+jUA zaZ~J0yfLvOBE2qB4^K879=CL+SR0I6Bk zzcb)AMMy(p7F5H_^xBAWlZKU*lr_mvB|&d7&4JBpc`nz*W5EoD3UMA8n8mTJi^&)z zKGX3B7FH(nyP-W5{J0C>gU%!te;B#z-Z`U?IWEatkxihcX@-&{$ zbw({g7hY>%)!qHBeoC0A?5Fsc97G9_`T8g0?5rtd~*|xJT`IYd0 zi@wI$Q^w!VyWk_NIVrk8tK$-yJ`vxppXwlml6gltt=eBFEs)O;J4RNY1DB>LaNSpVnY$J0UzNha^Yq)((41vLVyUW z&BZDaS`bloEJ~9TB=aSN=c}=$s+ry_g)9gVfq@hPbGVEMB>5>epwhQ0O*-WkNvuy0 zNJU;m2+pWV^U9?SB17P13{{UUAv9GInC62~mgs$>>N@3wQn6Y?%San1GBtC*sD7lX zJ#}QYzm0I!a${%|0Nb+E{jQO-3ChZNh{6O!5*hg8>2QXjjvYyeYQL+Rc_%j zEBn#BCcLys5Z5sT=oQr@QwyXD6G$rGj})N$5qiNxD|v*~i13}*94p>>8?*j$`fD=Q zYvF0xUJ~<0S79dNpI!d-YDtXunde`Jv-$UcAL^9Xr?7@KvhyN#ZR(>ho`IZ+?kex0 zUV%yrNGGD)tfP67+;j~Qf|V7RcEIdRKhF%}v zgehiN{cKD&uwuB0zYNY~ulh}-Y>$Fx^T*Y@a@5r2Y%JB0^&B)iq_c6971?Gcr*txU z8A}flp+N7m_|=*{v5k=o&*(fxgE$@bC>gzsDME_AP0a9dG+&wX zLyOSXSnN&WXKN2+YG#;};gaHEfOQ<(hSitg;mNDWqRE{&8PXJ17GP-S2iz=+&=BMR98|M$q<=f4h zKjNR#*upb=|B&mscdUdA9^m~GO2=wtWVMvABTSEne2ZyU{TBf7-|fmH$KAIDi8x$XSVG5hG}{-N@*m!lS;{Mo{3 z+}ra$0G>JElgxYSJHRJ_LwNSmr}_Qo8~~oa{VaCXVcsoAF~B0udtwp*kKVlNt2+MD zw(<*ruYxA}0vS+USA$;!C&GxzfW<@x@efxa&U!>-9`|}G_& z^~dqk{r-nD7mSy_U3+Icw|)2|*515`-&}F|7W-@qJ8a@V|NQg$&Ue1UF~=N3I-Mq+ zPIJsL$8gOx*Sxu#SOQ^FS{djKV_b28@kz63O;}c)cvl-!N-5P(Izg$!K?|T#r{gD8 z9I-PLU=Eki%RY%7pZXOZ_K=G?T*e$MU=)4yvYLpicw>p*mQf)9!Gv@&-$!~%m61UR zo{w-ngdd`peT=fi%?L^@8j%UkfKW{uONzYsNfo0kH9_4fAEOcx8A3%Ddl7anA~Xel zLQubORFQ-lahvFUiR3t`sl`o$B6_|zuG&PZ4~`5YbqzsPQK`7dd;uyhvRFoXKGLto zN=Mc0T~A$a5R8}c)y~25$A34PP(QWvsh*n*Bk+C9wf)34OY@|Bxb?K94MmqXAvVgRXVp5|5kWC`n9|ndcbTCyw5zp-GpREw*61VhV@NE@enHq z+0i)9b$8O(P(bPuFD(fzmGY>&g4lYKM31E0D)48QDR%^9_wYGm&QoOl7-i4IjSSvi zzX(f&3|11{()$)Zu8qr8dg(M`F%PGq zLS>RqqM^*3mOfJHGExc>wuc@MKu8QTq^T{3CM0VMjWov!SXw|Kuy|&$i(xOpBzuI# z{cQwK)$>eu7pwD)SXw~Vb?_sdRwqwf_gI^6V98)B<34)o2e+!k{3SQ;&$#TOMlQRkaqRtl2YwiU{^i}=cK*#kwVC5ixYXiv6<%^o5$8qy!MvKOU7P*>8hczd;ajbH*GQQ`uGRA`;yD~+G*oq44=C3 z7d(-?f_)y|vf<}G5BG1O0xiD%t6X#Tshjzpwg)?0<-cmxD(dR$wpgCYWLUd)?T!xj zhC*l?;Mh>C8boR(WHoi6HksGW%^OSBkWNyboIzI0$=rGkdn6(@7+@3wq^^T5&@0OG zqIn_0t1hpN7lH0Y5J`fhiJ6EYqG()!i8Rowam_~66BC4pvWpf*#QF?E+aWhqL#xg4 zg{tgQ%`PQgQee0s%979&cqvuJ1`x%R_oIG!1#Kj!%CR&J>AC7!YvpudG}h#EvwJl$ ztxeY^G~Es0geP6`&GY0wjb513lxj-_&(%bnDTOSVqWH zXOQ6_i6$iLh8j3(>T(9X1c$V)rpe6HY~%^0Mx#;S?!kR2_%`ooUd*7MVp@8LJ(8PP zQf$XDe6)hWXfDpowgF1MMJ}fdzs{gUcflUkD9H>D)X!l?a)7DM5V^?VXDbe%vu>0Z ztuB12lQAnywg&M{gNd6l2%eCZ^bfEG|vL)&hpyI8!DM0$}R_G=LD2&iE*S z)XBLHgM|cP!6eySq%lzze5hoP#vWuv$1H+bipWpX7?_u!@uh%G zyT*~8Mq;B*yiZbT6e<))12ZQm=WO(Nz{qfthrF4j;}zU`gS6#R2~BS6Ie@{Jn$XLt zML_*Z4{O9Fn6$&si~l3Ahkp>mL_9j>0oo7WjUIpkoYy^#tM^vheE#;U$5ep7-TMnJ zG-vRoa1Q%%Ckr@*zkT|8e%8PiN((3zhF_}J%jS17u|oyG+{$49gd3N0_9-`QW-{M@ zk;}6$8*g&yXUslDO|E{*j;k*JbA3alJY* zhajdAB^>lzp*pFK)TG`GkhZOk8w6v`F$G}cUE;kuns4C8l?o$u^~X1~)wq!fuCL?A zGy+FOYL;4cq)jf}#vlC;fGRlkG~0U+ zsr}^Y9g0sjVUIwuL*iw?Z}Vwt$#MGB1uQAHvpV0%nt?{bP~+ady;wES#FWNiCO3@G zW@m}%9;OJ1YaX67m~5&E&*az$Z*5-6OYS6ky)>2Cd%~2LjZbu09x3Vc# zAZif|H~}NAF@&cflRn0P$&1fSqjye<TZU+l=UA0(;;9W&2sR{$ zEJ>IyFzUx>kLUQ%`=-9lYW~6*KT)BLl`7BOH_V{ap(gZ~W>)k4-|ePu z-+mR}Km8Jp{@C`vw-pV{@1Oe%+p@gsUEKxK!JmB>a5xj!olSAw*_>LskR=v8QLc1+ z8o2qtTR5m(BwF(QW2);|u;>zwxNG*9^}ZOc=Y`zWJUQh!e*U5V#NI@O;Lx*G)}5AiKNku62co^+L@Rm~cFRT07vs_D>YOeT&H zVpLV6e0)4lkuBREAs=$&ap|~<5S4>ID>*a5(2+sKJfZx>6iAhUl%S1{;Bd8xk*O-P)95F+NWrniCi z`V>v!3`O50;XVnlU^W^`6%X_+Z0}yiyv+Ke}hqHJo5ZQ#WDVWmUGB zNWx)Oa~I3|S}1rXmgW;N9g?v;X(4Hd=NQU|$p%q`qtUaWjytk*(Di_Q$8F;2!O3LY z5OZT2==Bmj+PxbQ(_u}q8A6~D(4=Siecu6W%G5Djw8`c|)Q-#J1O}RrlzfA(ff_cu zwM_5m#?pNnnuh6jk~n#rMO)j+XKjL_p8;SwF6VJH#8j<}>tA@;28p>AfL=i?KQT_GA4LuLX* zx&--&I(}FJsyjh*L35QEPH0fQk6uVeHc67P0#VDM#wxJFYauWNPTZzYui-{jn6&1C z-v7oE?f=VIYCg@l;(jdKIv3(<*_qihxB$pyMkeJ4ckji*?vHR^a3;8Gxw98&f=^!B z%+OJPWagvas=^3eBdAYMXpLYGxoD10VCm&N6{DOY zAD|aiHAVy~W!{S#Xs&YJlBTj$mK7Ib33|a(_Qv&P-A%=|7=6sdUzldq8BJ)a6-(rc z=zc&r@1Pf>6zdHfp<(6~c?nD?)d_?T$u&OlHCePw9^sa&Jf1gJxL+Yo6;uK%LA|b3 zu4wqG?W?j)7zQ#PAqZLc2@Bs;EnY^>L-+w&);>Ot-qXSvkTis_u+q~<&po`;pe^A#AP(z z4vBd;$;+wd9s7ol-F5wa@7n9`!n=bP*LI-UVb!iR(?iecXs*CcL8#lHR2QhPEmI;x zK6boBOLCa3Z*$+;Jt$?%SDnH>($kpQ)K5<~P9O!Q=Ci2SL8=g9R^wKB+yn>4*Wko- z)|Z-CQEbDP8ezjl2+50`$WmCwt@NK4FpoK+-c*F>3Iy6qAHcX zXyTO&oIp)CEX|{UNibw%4r$a)%QHDPz9hmraf;!EiC^hoZ;Lg;(+`V=tJ#G!nW||{9REx+Bo zfHmt{s0|g+gkF*hb=BprRH*I4y7Aa-Iga!mwT7@F}mYNedvGQ-z${4-1 z5zMqkmnR5xi64;&LsDoIxH0uRr56QqSFYF_V&b~9nK|!TF5L>m%2)Z@&fwD9uYwa! z;?~#;9Q=oSdGLn4_|}zw;L1AObs0lxjUdcJ@9C2WeE#iEOMtLlz=S9j4g`>TYO{D3pFXKa&z+;!va98!vM zQ2c(LDn;SQGwI0R!ZG=^JdX<6IXJkN=V$H(P;Eim9=xrj3n2tYAAK}OAAR)OdHT+a z%A~k5A+LzgHAbb(mjfg#Rhf`YVSF6TmDNOdJ?|n7)hZU40^zB&cTvuL2@HW3(Fk-6 z-I3UXZnbKomjbkshaWZZEe#Qrx5x8<5#oShjF1;86?v?*L}@z0^$@Oy6@WQx;KeNb zkgjr83_+|*VhuT};^KOvCh=v%fC?F?x{HaCNxfda?Rn}rXu8s=7zVrjGpA*8;>B#5Gp6cR0= zCPbOM%}_duru)RBMI6uIsST6Zf5HX^-6#`6100uli9tU`%8&4p7)R80$P7m58cyJ6 z4P?${eXNdL$)b?Au|qELaFPC@IPq8k%kUu(=tY5%6%^Wh>;au{kHqZ_v(js2#fDZ4 z+b0$+a$tiBo?Doo!s2WP2PIzR$oO*hiEQM5%(-mJ)RK2hnnM{1zNs`kg)pKd2n`6H zSvVa(>7l0#WUWWEwm@U+0H2-k7%fJcX+{+AWu&^oa-;T?jgTn};(q z$a*#{cACjn9~ad>$+>k;v9#36;`{_!tu)uHIg-9DNsO4ws;*`X)8~kZt2wNG6+fEL zf}YjLOad+DqUq|lBGMD!TdE49mjX&P8eT-;CIYM>4Kt+?*(%UHi5C%+BnVFsm|zbH z%#1|yCC;wG{x-4d&@0$q+{Jf(bQ>psM;<6812Ef&8 zp5&^^?A+%RAumB_r#(@~Wr!+9mL{6Nk8u*9SIk3tyhPfKT%zmu6Oz%N)aO zVD_3P%a5K4z>kl=3TqME{kdDY?V@|x(7lX_Ei>6?OD}W2JD(5Ua6D`HEK7mCZn*nR zU(cAlAKtoW$1Yp&2%z)qk!oj-e@GFQ(2^feoc&eS-2Wn%9y5o}o^uw*-;-t2>MnlS z^G(QnlW*B!$wZ4=xPY!`vK?z-zZ@4WK}g+g3+ z-F0s|_TSlwOjSrE(lQX039<~-*mk;O8RF)M+T0=?j&Ic0Hw-bJ_pByEIbM5p0-suEMqT#>j{;vsb%;rnX4 z%GDVF%~h>jdcQ#0mePz=st%rC&6KIQoK;b^hz>?7P*ojJCGSO4$qR--&{{{XJwmQo zBi|xOtdkf;NwmwwNgC?-`rw5GpdmG7>FmTcib)G?TnoA*sacsu8yHrVAa~T2jL{dc zDitx`A8AdikdTVmK&3hZBkv=W+u>|Qaw_C#^!`_Dp`Go&60i$zj-8RbjK*k!QXw<% zR<&hEh|60&e;1kAc@fwFrHGFR1R*WJ>x&T?m&G-FoFGIH5f}xX(13u!Fo6!m83hPA z6bHf}BqHGujg|0yjjfqD@koh8D9vy&q`tv=Ht`qH2u4%pn z)hhew`{NuFT?If!8g%+Lfz(*(wDQl?Zq!*hmWQ`8H?)yD z-9-ml^c){dyvTUNLr3tU6X)*SZZsLg%(lCjZuRhdaRMEQA?7u8a(?5ZoU!B_vgt5} z<`YN_yE#wM2%{A>0$0NWOkbcoDwoF#ft6A1U{+e<+ZwSg>Nnje`jp~2*$EP-*+owo zAfVV15ZY=G+bq%KE(Y^Ph(7UIUi#$#C;wC3Ps?FC^0&YVC-KOMFOi!4H$dgTumpa5 zJp6v|FA?pzA5hL+r(W?H@`+Dz*TW}p>Jfiu(v=^f=W~bg%zexF>K$Kw)7LkjT8jJR z;nn-6Uhx^#G6h`rfy?kel2E#hIZ-a}7|AKw}0^mX|pB@(=LD4WFgrrS^~g_oOnm}rVbr)0f=}gppk?o+cC+=x)2%RZPz@S>_ZBQ=TM>Tpo|dJavl zB(4>>YhYhirJ5MXMktj`!eNIk{Yl)E4HCi=hFH9O5|O4He%`>$Xn1W72ko|&k2O8T zG;@e`UJa)3S?4ry=hk_AtnF#KoLV}QDEhx&+y?jXE1a22iW=;oO$^-$2gHy@Wk*w%$?R$&4B?p z^@zXo@|_pLx;~z{Z=^A5#vk`(`G=mP?csTJ9kHmod}i@|q%MAv^Cn%&W%sEI^qcm5 zhPxXs;nvt~Ec-};Vxpf9-Y`NSD!6I`T>6lzFoa*TZGXD#yM%$~|NF-be&}2_J#sax z`JXpD4*NYco2U1Wjal~Nv}5~llKEwyy+M{_6cAk zmtSxbWa07)fUaX0=sJcb@VHdj=V>sDk*=u?7L7VB^45L^5x&eUiCL-$1h}w z^(6n;e;@8Y{R?kzKelJk`t|F#dHa7GlnzA@gbZ|D2gfP5P6?3Z39nWbg;TCvm^!|# zE7IdCLf|G0N(o&F_H~H#Niplxs;<@r92N|no2ldAt|G(Ei&*`cFX7%tV+w)=!twqLjr1?u0uRZ zdY>lTs79pJE6EmY)@1zD!t&Q*{PE5n85$Hu(Z7(B`7&#wls2|5jzr+h`r zNGq{rJt{9o*GDR0m17ae5e-ftN8TeC-$JZ8OVO{Pn6+tZ8KTeEaMCss)$MC!Rf}+>M}maZOrK=5NOvkuG+d$~ zl4pDJMiuf@`QTBF10LNZ*mv2BmG3BwFKHtAfLc&J2;U7*G+5)T*2 zYZgOJm=(EZ^;04Rnh{{zF8Q7)!qs^4)v3smj+H1;8_$zy$dQkD^lK49gOZx{E`cr> z*vrI=f*TKrY}E+&LLrr4YeRw;jS0kz5?k^$^kv zRmmBtPU!CiE>#tXxzpaf5^=x*vswAj2hblHSvK#4KUHrhPpPSr7l7Tq@>kkgpXJvV zAHqT0N@%#D>YVjjeDktB;PfQ`9DDn004}}!D!zDNhR|>W^Ou#l;zMxq@K3msH?F|E z7W$G?`J!4a-@D*owVk)mfpd<48y?>7^=u2?x@Tc(V$8CdW#529AAj9g!EceA%d^uT zWNOzj{PKpq_|}yJ1la|^xqS2oYWl{TUH82(J zgzy72C%_MBxCw*wln~ig1KpKqo=US141pWd(Mkcrm&%bWZmZU@tb^wGXa%L40Tcld z;D>ayk~d{1!h)T ztt!^hkucdAjpUnjVqGqpE6H@26dD9pR$`|W87b5os^mp4 z23SK5(Je({oh6*O#=t?X$d<;DZK)8EGO8BJWzCM1Qn`$|Ue(!55t5*~4k;zl^+t{b zj8u1gW!Wq$1_`_HhIl(7{{M?O^}J)>HS$tf_q+KTyYTi9FL0<^p*D&jf7)=Gn zHxChS%#w%}aeWO5?9Dc0!}>m|OeegoYoXr3gw#$(+>leqhV{rJQ3 z`J_uBYGZj0Y+uh|Ew3^o)I3uE_9j%B@`rH_tl{ z0RKp(W7+L1e;xB2^Qon{2aS}+EVG%OulKG>)2j+quS?co^z_VZ~EsWNK~H8ek+fnzD>R6saJf4XQp=m zRNpr!lQ|f(t@D?as>BZ9`-kMX{DPaP@85^n&H^6$+zt5I8}YL@GIWAKaLaaY_jXla zF24BU?Ox$E*Ie_~gLYE5NgK^UP0&pP3X~nIw2^!hC{Kh(zKk?KfD)8y4ZIN52|0l7 zs4w|I7kE(}&6W5e4KpJN3=IvG_}`ZZ*T;`qAOvpAPg_Qa!!)#x@T zF{<4w@JHIEK;@%&9AEG{{$cnKl!b|!%Vv!<-<>Qx)69XHZgusnM5D0qnaay9o#7w2X zGqiwTEj^g2Eq!#Rl7vi;knYkooS6b)vEUMInp zLXxgr4Yuh)Nhe~v1Opnz<~SUfqBc^XDUzYHtB%}|Nf7hF7c41QxJ3g(0sVWKM7t!h zPJt9qXaa=F7SlXIY_r6T2!`ztWLr4R1P3pHmD+xfyje(Ptg!)yN1&&6z&c!l(3Pyl$YxrT8 z#+sZWm$3wq)w^8CwuR2z2~3InlaJn`?&l8qCFJ1~_x*tzkNpVyuiR7}d*A6xs@W`$ z?7I(e8Q-|?JkCF2>^f_%5;T`PfzSBk@!U(H`q+xa&(nU**O|WHR8~HDSCzb6e(VL+ zDon?7`?K=NyV&cVDD#(l&_Qx3Bz_-`;=v_HXz03|hQ+ z@pi53-`z$z(1a4(`;s6MLJXzH4sb_J>dTW`;RVQ$I*d+KLwCR!Rz$;2`)H1GAQ7I# zsWH&J0At7nAqY&ZT6Ga21HI@W0*N2ik%qv?`^sY2FHh7fB&MSA&?^7Mh*qbvjn$o! zig;C)xlVb)Khh#5Jvs8;>5RCV1rkJ=yi~}W5UL%mCPr$SMWjbrf##b`L?E$K5^Go@ zBoyleURVhq&Adcv5M&gobHf5VBMD4(CDP3L=ml31Ip0@5?xsd46;Q0z7@A#A-P0vx zt}xO<=2OjYQ3OO*_gPk|MT|JcRom()e^y7e(^dArN?vpw{9P?%yYR2!y{L-pA~8D$ z#?_|TnrTM!ATT9P&cd-g4AaN81KhZVkyjUWoCY7;_Aqsyfnt=YiGDN@uqB^FN0Og+GJ4G@yXreQo^Bb}>7UoVJudlc$)3eDh$B!vcn z8`05xNqmb(W{Sq_`pqor>%a+gGLB8pU;;mDV#HjWMvsB8j^+tOM~;jYC1`YL4-Jy_ zL!8{Oh>&nul%LG6`wwC1P#YUIHezZ%d&fIjl%B}+ST~!UI`)ZdVBgp}p3Y8Xw@5de zO7)a{15I~1rSS#E8AJF8o-a&h#Xt+IhnkpC*G+3E&B8)Ed)Z1iu{_<%tePz}gmQEZ zCwOtNot$su2Ld^+NZz#3TMD=-8$IEYZdR3f5%TeeZ3>oxa|##iKUQmUQpXv5{gwSV<(jWkX@g(+yxOnkOzInnPeE0Gdr(bc*e(L|=%bHr*UJ9gp}PUXS8ZO>)Rnfv zDZ5}*TDM?C7vgznxe{(m1O!;Q03)wj%7j!xe%%R_Nmd{+3d%w`&~*Y!U}k-a^(J0e zmDVG@j*`~cI>M7!y*c$-mN_D{k6L9HEge}Aum@#hFRCsfSD}el?+72!pMPE6!@Nop#}73qiiv1 zXbxxS$;L^<^B7t{JX*xm1BUWpbUncHbW-^+<7(10+F8Q7%bdg}T8uOy&BYWR173^< zGs79p8*zdISvqWkArXxQ-amC2F{6YV=$u~r902*i#1uY0f|aFK@`26YdiEyYW|2w7 z8QN3Fiz{a}Yd|B{;iKov7w!r=W=2qJC@cKle4N8tUZv1z@>thYas?Z^!KDzk@B=|d z-7te8m#KCAG#hE6nnR~kPn$VJt&!uU;qkb>&V-JBKHc;f4m#@!jVy?+#uOe4^V4{= zZ+F)B*E7B@MZq=skMS?DXJ`vLl9f&?v+Yjm^ekc1r7e~wZWgICax@ylZ1EE8Wew37 z%JRt8-I!c6fRqA1&}g(WOiB)tiR9^uB*>-12wxDm8i|$+hVGLdj$&q^WCUb#A&`Pz zErxA+B;t8egE2N_>ggIzFr{vQ=!7(z-^0)2&We_+7r|BV=k6?jIrXpH9P8lBH8p(e zL+NUWV%3KC_St;*@{#ZFZ{>U0mSJ-9FCOKulN$lBCZ5C#GjCx`bnIpUwDFJGgDja&9Tt0-l-P!JgZwz-Tc=h%Q|s`PP-E z@!hZ0^P{O}a{j0sm^Z>+H{88V67%bSet@)p3+o!LW&bx_!w7C2SkIaDlg2FjSocNT z(y~{zrEFWMkj>$R%ki@}G9%l>H!s_RV*xJgAaSbO1Q0M4wR#N6kuUullTJE`RjXEw8B;74Isg3gsjsgm7K?Gp zDW}lW(=%qwrcIkT;e->2L?SdbHSv|Nd7r5wz`B32xoQ*>nA7KPJEI<{@wcJjw|$F|k6Z5thT zY<6th=-9TCd-^_{da4?y#;Dq7@3q#P-_$zMiLR^|Ngzi0=5CmyEK;ahp;U?9sszSq zw=K>-Q5hy_EjTNo%vKt(kWDdnr$s$sB@t^aA_k;D z7-x{KVO_AVBa)JRFAo-1$D1B|)2{loD8REQBc+R)aEE0iaWKMhTccdMK)!UYQ)XC- z4@!9qcl$%O{5sH%C(`-7vJqB9t?E873N28iQ@%@SIKt8$8K2Q`kHV&-HX!4vR)s)Z zpobu}sAP3S(eP!I-+X|%T7(1M*krUOXb(T-%>@^}7Pj-{?Ov^%qg|RDlHD9hH z+x}?1CVS+gtn>H@B{+Coyfi>YpSo$N*u#(n{Lp82R4jmC?4AM z0^u39YooI~kheTVVwU_n3N8Kb#`ygZfy=xEE7^YvKHZOpdwfY5WB8qS9^A`Qgl|VT zZ*p&S9W^1b&q(uDug{x3!roq+knRSXE&xSTnBm6<@h3M^j0^QZQRp|T3qIDN{#K)z%6u`4l8DT*Eykvf2Yk*EN`n-TZqnxtfq7xv<2A=(NbpcxB75e^Ka&wc`Ng zN*!DrKdLr&tKsDOvugL<3h=8{myHFSCYQ;yn%)GT-m)$)*eu^MzT5^c(`&QaGt8eQ zi|-wJ9I5pa{sd>eltEc<-*SulaudUb&i0sY!xH4e+k*`2wwv&S@FNuMY5xCSe&we- zx!C1;0Meh=QSJGq-y8S&I5c4FRY!k&`*c=)*lLc!+Tp-$?#g&Dz4_y{CUZEtl82x) z+pQN%ZsOXjKZZ=!+pN`WgkiYYKlI?vvYW(R2 z9w+$8b(H5PFwJ)dhbZt&RDI@jKP!wPtG zNn4!}6OCLiW~iLy)IQOOBp{P%?#)D7Ch?g{qHZ970uf9Rt^KWnIM@1N=bb_!*ei%kLlzF8leXvjbDnD%<2zW&D6Eh$nC8si3u!m zLdf}Y0x-kOQ$`a}UHHGr>Y-0|n>*7pe*$tY_^@Mg{sRNEm(yuxf7~Qvy(<3w`890) zbD6I6j~RCjMRN}A^%pMhx<|c6K~&R;r@&fk{N1B>TkY)RVIPkwvV@NE?UVFXn9MLfFyh6$}dPPPF3D zC1v=k2t$~z!N}}agg1$4xV6(c9lkR|fyG-cIZq4;>A8T|STfY$bVJvMw9b&H;nbUq z5(#X3c&Fi1kB!u|IC0W`%n|_+I#m)AcQGs25eNa!wX_xwv9bZXxU zqhU)y!cWPyNc$U?OM&md+Rz;4W6g=wB289F0=ZOO%+EGpRT`o;$f4($>A}MplOj)# zyFmuheasi#&EH6f8z~L)DP+ai?w!S7WhZZ;?)InoP{|n6u~ez+ z(FrxVdvQz1=Fn5^o1t~a?8f9z^N$z>Sr3Ty>vWV0V|iW5B+3Ve>8|em*NpC?;{g_o zVm-lGU&h*o97>_K2PlTNC;5MuT~6lVyQqTuX6r2K4*OI0$SNe^l$wTp5isUC|EQ?@ z@Hq0;YIr4YwTc4@c)or2uh=SQ|&PPsrF`V@d zJ0iIrhu9zl?%Ut=JPy!(zuvZ3y&i31c`v!T-Zrmp@AAIzh8_Q&ALv6?ZHQo`uZ<+s zUDQo!6xxLTw^}TVJB51r^G4*DOei`wj}AtfMU8G%N7FP*2a;HFR5O; z;)}3{xrN8Eo9HP+EX34_c7cYIi-AUiW{H&MBpnZ1l7F$N9*D8Bs1}oqAXJVR3Nf=* zrHH{=rPS4Ep5IG*BDz1^fu5^HXIh;NK!+E;6GY# z2>s!P>e&i?H2mR5yGLSaHqgvO+nf<{LcI{?HK!bC zuW_oGS>rSvOs1t`;!H8xcT|c>S8Zt3kw;x8P!KArLpx&u=d8JBH6<@FzQbPQV6_g* zcFc1TIcgXVZ zHG&;GJYAn-zIaa)yH>Pof|so?^!iVWdA;TgZ%YWa*2mQ{FQf3JYw_K z`pP~ZFa+<%9~~$vWgInCBQ6L>T+VXv<{Q4GPaRB2w1{o74ee>_go69o`t@I8SUkGW z=YQn?0$&ur_xQ1{xBKhFHE#NS|Ez*60u0bHy6Am5{`ZS!-~bV^gYWR>Evu6Gi7@kP z&dvS^fGpEiw+0e^Jr8gAJZ);G4mK_8jgO_!a$hvgA0HpD%r3?V^HgCO>FVNxFm_yn z0%rn1xvV}cnw@*g$`Ly|JIsC{ z>IxX7x~iTjF3{NEq_JwkFEqXf(!S)@|3NwER8A51eJ~UkMG$htw}-|P6*(=!^ik+- z3@KX0gJdUBv_41 zOPeShJi0>4`MpRZ9pjQ1Q*&d@4kEWPA35O)Ub4=3_Tl72 z*;!FPfq`cwt}Y@}20@bX$4aJzA4eo7k~p|OxV0!$C)x37b@2>g?=+5>O5CjCQ;Gr`rSzDsTmk@YXm?)DlxV2_}t6wzl8pK3U9L#cGm5LrtH&dN%-xMj&w=6nwU>XXl_{^vuV`X2(($| zOtf0VcxWZ6)C_dE{>w=y?ndi}c0p&uakU6PIF=c%g=Bk=H&N2(jdPVd2)Vq`X+9C9*7u+~maPkY5Yy#hzMW7P7+io@6-%@3(XX2&G~ z+zM{ul&@a{Hz1IFNv7Jrxu0;VSMGjHz1?nQIO^Y4Ar7qfEDwYq?iV=68rpjEV-nnG z^W9yUXy+ZYuKU9Gs7U0F`azId<@`HK{AASc&F|(4^NO<}oG)L>4KK)fWm)Tp`q!%a z+{igtDl@L21XLM$oK?Pj&I^9F&M(##giK2!ZGruWYQo7ueqX4rl+mhxV*zMB;aL}y z|MZ135r_mC`l`0q&ORqQ7r@cs4@_i?;a30ogF9X?Ns(kc#KFlqzqzT4&-zMM&Zp;L zqy7B()U6;VC-+d(saq$t(@IqA1U8O7EdSSV02*${EFAnBiAK*~uJDW-YI3=39F>UG z5GRhL&`@pT-E|&2Rk{0q(Jm*_hVO2E2{R>VB*0%d410|dr?ay z#Y1Gp{N*wBsmUnq!YMTU=b$`kZQ461HV3AbrHh5B7XBK5#7AMyMck*cGjJ2q9u)kO z+iG!B4w14Q2dDx9Uc`3Nn<}NwUrwsl+6Vjz0Zv-9xY(-D7K4pFEGe<2I+kNo7Di{n zN}-R6`B{(gWNT%}ILVqBIn&}E=3ELT{EkB$!}f@OBWNb5Mg2S^MrFSLk(|KY+lpxI znR3hxr%ViQQmP~XE80$lf4i|VXKjzy3{}vko3u-6XD%_lKGS6)8}tmoMLquSdR=-T zv!U|RZvX0|0WiIrST)9pt}ipWuBo@PIsy@SyH8ns;9h|Ny@CExiP z%ut5qJVRdU9^PFIIONYV`IvP!?!?^rd?U1Un1AeK<7A-}_!6L!7DALej( z`cW2j=;3#!Y-AQ;Y^`TzS(lScNKUA^@11qCLky8a1$ZXD1-7b*H27>J3NH)6Pboqn z`}0l_r@*tWWc^}JEu`m|Ky-T}H7CA#rg!SbiRCGwy zA-7dHp+kCov$^&w=Zk(= zmzbOc-2A?=o)x6zGz5Lu{G@)go>!N`8qD2voI8lW+A8Q zZpjQ~axtM3G0RhLe_D1-L?NZ6BJYiXp2!|!b1>%3qko=q$bGNCk`wwn<-8>a%-?E; zyKy}Na`yNVLZvI8NKt5&NUXTi4b!@IuzY{b5)c${vqT?R9;^FPL3jKfkdm%U7CLL7 z!k{ZK4Eqo09kkiOpo)HgM8}mdx#aDLgomHRQ?H@jazwc2(&s$<>!x*3-IPvY^qe(zqndh#~U`@`+}9@V&FnV1jy#%{O08-eIxazQH_d*7fx>FJW+ zC7~}zEm1nmsZhK$#tIY}CM*(27JQ4G8Tk)mpvx`bI|6YIe*Oz7J}$!>^juBf>Wd7Q zlBrVQfRR2plI295{RIR_GX^TKZOh%zK`wTTnfysRQAbpn5WtBsr#$dPkU8HzKILOW5FMIPBtcWuuQcT#=e}*oc84UJt>I-Dwl3 z-_<&-1`R%vP*PbrXx9SOGX-)#F*2i~MiwcW8&lGMRtTs0B^(k+P-e2LeS@d~tQ_?# zjDM0OLx`ofHr)u}#@&hsw^K_1>&#S;S0d)|@krtd!!7jAc6dq1S`dHzcNsOIPk%0Em&UEc6t2|%*!bLu+%(x= zdOV7SUC8dbsa?*3pKxog>VFyB4SD})uS3tL^n0TJe0i<`kz_Y}8JTT(o+vola?(Eh z+KzGMsu=`M_o4{g!H|TiviA!r3I~0#jQc8iuW07kjt~-fjsx0!UhB^QTx**DX`{a| zPGIc$X0KvgTT9CUFHDt&-OO7-0g;}bev!Gxb@=y2O|%ES%{oPbWb_M|&^(j~gjRDf z9fkxAf+siQpi+|M532H;6e;J7?GYj&IP*G=dt`m~A_5p|E_Mn%vEi2QzLF{))cpdF zzhq2AaXPJq)I3~bc3Z(E!|kYPN*Q!l-yn#=N(BNnP{r4H0;-ZOp!Ue*vRkF<wXGfNsSC9Y)tyAUkB0_ zcK(+TlA`29>;2!7vlC9E+~H4fQZAIqvoq&tpy$DLC6*Rvy8TFXAx|`^g^RS2PEy1? zlM#kFzZYv!ah&U*r{^5-c|0H;M1Ix4JpW9Nwi&mzF(2yo!Wi$?9@qTNJMN)eo^%XP zep-S!qn<`_mD#vh91$XerWCsw@# zqHNtwLi^owr(V6mxTl9;UH+!&jB-+L_Pbcq(tBpABJI|_Uz)r#;h+%4*a;5VLm-$b zQ4axAcWvpWN-P^QmFmZvuxZL<#V2HMNsr-wSFQu_A!qeMoF_?ZVBQPr8M1>|gh3soEBpCwMm z`XztQCzky-on{qo6)4<25F-j%ORW(_>N*!78h3RQgnpG%Hr!m>kWESXaR~LO?Sa;- z+wjktQJ~)^~DHqBcCxpJ+r=I}DE%-HkQb=qkF5}mp0c`Q%KFEA6g%b}`Xv+H4COZ_YN zD`3u#O}-HdH#n{H2e-*}C)JAWorRW{ zSycM-8+_-9+wX*L9Nn57@q&EUETdhV_PAbuR_s7k${OF#%?0=F=hc)CIlFG)0kxWu zr>7^^L9)v8h5b*uVkzlSpx5W|f2`gJX&jT~oaWXE(7iLtq(BsWcW_-TSF2cQv_yr( za{vMP_ac+VP~6he!gJUQNl2C;`7bu@a^?{{B7TfZ8a{2k>>c@STS(-G42g}G7^m`5 z1W^iyxHNP%EEsj4^=m|TW-kGq;eLt$`N9>_YBFiP8I-jsp;0ScBa=(^qo;HeL?$kh zCXU`l$%@I|Fdf@)KcXdCmaR0rp_6T@)gDb5t?t;O%=VBgsEUfM_76-Y1_E@gLNyH* z_7}#l8rf&s-ncF+>wcy&qc5j7HF9ThC=(>4ONQN{Uz(+?e6zn)3+eK6(nA+Qtgz?R z#v1j49a@OiPz{Q8OjD60gZGewWkJ__5YNJe%H5b5{XvRMiC`G|poIc)k;|*##MKf5 z>(mOyIJ6I;>Znu7uL`%cB#v$#;Lb^*pP+ZMK#g<-#D!5#V8eex1S@~@gkF(?VFFrq zxAMDH<;*F=5^)|aoBeJ(TMei6Krh)YNrq3oXThf#ft;!haQGi<`P)9jVUX36QG9x9dUrMriFGX}l}*Bi=jZW{JpBP;x97JH`REVpW!7}Wq_arWOEB6( zxE~YQV$&ACWL~qe6rSWsu3eSwg3UuI49^H`<)}|lxB;aB!7KwXR4ZB6wq#|216N8# z<85vF0;%>nrLtRbC&HelhzC`9<_hTTEbIJ{o)L+849I1^%SnQk)lqAYm)Ou-H^7_7 zaDY*>dr1E=%A}B9m*_~Vk&G41Cn?)J zi6MA}NiodyWrDCfL7cxoX;2Fo3CJRu1(_$L%^VFt6%mo?;890F)yh3x_%?1S{cGL5 zFJ^JSZTD9cJi#!$u1YPg*L=b~zO6G)pU;lV+Qv`=QYhGuMc$2@T2NQ#FG{OwQJ2+%5EN)<0VTj_gzNI#uC2p8CbtJc_H{? z-scWfo4`ZlbcdbIG@@F_N%@|F*QW7qADIMM_h96g_s7xOZkXHp&PDsl9At~vxf`VJ zL?(OG%iYo4sDf|3v;mvkp0)nl8iKvS_kS}zzvq6!=QI5;X+DCQNBO0N1tf&9va+(B z4d>~D-6+PA>grfAl3vWN>+b+*2;^}~|G!&2pZnSKwxir^*QFmiu8V3eKYu!}nx;8^ zz8o2^KW25lpCKLNcwW^?JJuAfdl5*7=LaGc6Gnpzf`XeOXj+=y`uu0ah95d-aYC0# zA)fIqxu3{11Icm>e!^Zd-nwBH-*vHD(_UHD>X|q|j|EBZ#~upHn636V@xKz_D6D6s zptWJbjNle_zt)}7aBT+3o`7WV#>`ktrIj_QYPK(0dzg80rySJBnTL~RKQy#hQ0pdUX;GKGg%Ghtf zVuFUMj*0^~JRu~`MMGfoeNAQbE7dUb?+fAx=OimbyrYE6^o)y_0!w7x3lORy)InlH zb7!H8!9yGgi02D?$5u1IW6a|TQoNV@-JU79c59fYV8Ut3< z0{eJZTZ~kS*?A37m42qocz0!E5tDdN{_%L!-Uk-~FVmlTRu+Y=BvO+Y0hpl<-DGUX zJ7g~R1w%8r5Yu*<;YY_%x-6Vs0clNc7!S>)#YFK2)(kQ%_$GW=-Ug`X1YcNdS>#}Q zKp)NG4C~hr0}C}z58I!t|6WGnc#!{YUDI@-*#HiZB>TP_*TW&scsJ3Bs?~v88``~H z%UFAT`53)lSm|i*juSR3V;ut!pS6|(C*J8Hk7%KxMv~MHKKRxZQgIsN&+d_l=1l1^ zGsz?MziV>xbHP0aj9Z!s4#_xf6wN4pY?+C6<&Mt!Cf?vlP3|=mGUwB+}$7Ec*4;c;KOFX~o zUXcqp*CNh=eOX_^sOuq#y@Tn*wiy_>o%vk4||0deu8qAfh>2~4W8Ouo=4&lhV5Trs@AJ_Eqr5) z80+uH&`nd+%dye=*LC(_*L5X~p!%!%7rZ_Pj_;V9w#zFQ6ioj{`2S*t^cu`=Y5=;b8q{Dg^L$@zwZ$q@ov3LA=t;Yl_8$wQ*@=gV^S%Ej#o(w z1Bq^+q#7?3qmRG+C4E#~gX%H*5z8$fEqJi30tp5R_bCQuyd&7p^D+5YE=uavrlbJ! z&;p&e4B%{5#=?35nS_l;H)j-8<9DGHYW>zlkJMF9gWy6QObETFiVmv;Z4;b;Q76q_ zC}IbkGkO?P90TrCc(wcIK*3o1iGpGN!jSlqyJDop4l$x;>R;J`;1dL-io`Rtu(rj?nW#mA^4L1`DHfj`#9Va{FCJM7|+ zl$Uu|@(AZo2F1sfNYSkiMq^+TM2krE%bvK;`uA}~= zW6w_CPX^ntl+xm+++*V%Ji537Hc2-vNQizfr(uZ}W)Mtl&p14)i{s-C>58PezB4n-xTDLr3er0UAa>oXq~wm~uJGmKk*rZ|aqG z95Y7ibXg+HCD{GqsjW#%-gj(I&VM8OpKOx`92LWKyu0(94d*+~Hxu1=*ENC&3W8w3 zFY&^|B_-FTFQW%+^Nyw$gA2!)w;EHsg1!h(cF!DDaceG43?Fd}CR;22x%~a(v+ioP zjN6jn^KpKaDAA;a&*K0t)B5FVoN9$&E$9o|{kiDVai8J*lE+)K7h=u0gA0U_o+-H4 zea;Zs;!YJ?8wp*#e3L5`QQ4t-wBnD)Bem6`EiU)%xUVpm%3;{f;I8qix)@}{VB7~9 z5g~|n-Gvs@h<;+5(3H;qDNrI#t*4d7X7>vtZjMz6&c4hJH*YdkEe7@VavIrP;Fa(!mVoPTWN>mW1;EZ6QVjKFl^$($+sx|0|nP zg(?=DLH!pr6lmZp*$K83kREIX<}K47v-;fp>roA|3_6q-jtx`f#D6BfCXg`kzrkWDlu*MH&D0H_B#op{TvzVP#@@Rsn z>-f+FR10!7Ll_${!6H=MH03q2ZX0n$$1qlSu@Irx0G`jxYDtsrAk*DuvXdNhq7bpu zF*6(&P*iX23|;ddhos@TIe`%Yc~ehWF9#^~$YZJ~m|Voj8JnDZ!cSQi z?Y(=`0PmUc^qdK^Rb@R z^`^5Qfwmgjd`j)Z&X0b%kiXm>(3Ve?NwlWp&NmxTxT^xrS+{nlsIF0--ZjA&A@^1t~$G$#}EskLJoc9f*Z zMz`C?!sy}Ie&E)RDo7g~f(0{DFP&O+IZ;&nxH2-)K|(rVY*FSus2vN`Z{}6cPZ5EU zmWt^S16HKfTXbMOd2@ZaRuGbvHot;xkS#GOvB^qb+$wl#C@y=lUMX+T2s)BTbfZlS z@;jvDGI^I%eE#agz7`xwCxJ*H?y{p1j-KRq=TJzniAn_n%V$Fs=qL7oEGAVUbLJj7 zi*4BVS`y4=5XKT3ZggBrH6M?d9ib4(SApXLgDIhM3u|54GhgtRW+Y{mVTC(zJ;?%I zn(?6sYj7U1S0D0SM9W}E(1F_C!=F2aO|W0N&wC~M_RcS1JOUqI9x{LNzAg{HeQ6sc zgH~1%6bHZRA;QCmfPMQI$JMk;s|{n@&4MAa0o4U0{a1mQN{e?!on+zQG+$OL131cy z*uewR)@Zo+P|y^yXOwm+E0n8JRSBe4$t&?y=F-2@G-T+(m5pbjZcVPx%$DsBKSl>D zY1yvh0y=>pZ0d%K$x4^ZHggAi0Kovus`5{V<4hq%ZOJrxx%U}>Z8N&G?GCXT7_*Ei zj+0nWYmqxIW9^d8Jt~hA4F@T{G~p$fZxZBaL@Qe$4W+(1X)%sP2l9jYzB&zG{8GdYp57{SP{?3=7# z=|`xWb>={E9PAnvB&wZm0vE2})sx_(JUDF^6%hMVY&l{`s;ilJyZhoPGenc(wu z7yyqt88*$e6^EEF)dU8uaAB2`_+g{H*>C1R3NqVvGNSFj=WryMLDWR(SYja(E%pw6 zZV+d%G3SK({d8WiLB4RT_0Bp->#It2n4cCepFcKb+TxZqbZA;{%kG+Ay#2GjJSe7R zueOhteIos`Z!D)y^~SEomRGN`ZYX1QeObO}^n7o4R>Z$U7}PYx8P_EF>xHo|T+DdJ z0W(7#9>C% zO0;>A;^|Y={_uOO$9hc~k9ZIMI;UG0^n}GfNMDWL$C+$8Q-BO(XL9$~$Cdp@Q4V$& zr1*cw)#pk7k>_+Nm(92~=|B}X#gElvVL5iqVYBZbCi@N`sadRa5v+<=!=16 z+D8_gIg$SDK?9UEoPTrZLjn zK)hBogfj|9^4ReV(A++@&*9t|D;Vv?w3^uuC&MSYMbQtp+I(!x|1(f6r}^e7oPfqk zO64j3;-yiTyf7n!LMAD?{h#U}#RB8CD9^9GFtWqk{$P5{;d$ysoEdy!TFd((V>oS& zGYGS!XtemA0J$^A;@%6~qgk}cIlQsjUzYU6Jwyi*8R+Y>lC83AZ{gObGA^EtS-za& z=J~1gt2hwK%n0^sRs0Po+FY$}@RouT_|`|;oEY%|p;yOr7J9>gd_BEySb}NQzi3H; zVdfZ?1lSedssBKJ*kwCw<(k-A`-cp2T+*LQ)iX$R*v5yS%y1{0ILQg(?+_n~FD2a; z0yH3tsOsH>cU1sTGVnn1Ho&30vN^ECcN;KhTy_FwaAlb@FoB{CBh^*^A_jEAcwn0} zGl%uFeV!LuhgZi>O&xtnB$ny-v=wrL)z4;-rj_pDLh)l3&$P;H3B+Fm9qLCQDLZ6i z^tK&;;^?m80B)XUaqE#0fAz`3_kFE;;Rp#BTfXeSNh+tgrE=3Vb_h;JHq>VwJf0s| zoqE|3a$uEy(*hA+zQ=wp#G{2fsi~d*qnVZ?+>44I)ofQhOom0 zo~ibWJ{kQPkSc8*7g5Mq{ZLTEq6AXM|#1OuKx|3MWB)Yi*Dc zd^bOE1W#@{4@&R$2L?OTZ1%%yvY?}51T__j16K zurvR)mZoako&L`8Vb%S=aJ)8!I=!e0e7&pYd2%u`u=+1!8eA{?Ngk(VrGGC^-58SB zhs27Nm8VdYcrg4X(wTu$j_~4IP4Dt;(XEn*fV`HikH6T8B07QAS`*YEG1O{25k;_4 zseIPK7)S5-hC((IQf&D~`is9soPvwBf68MmE- z_3SJVB!M;P50sQiGYO$2x*&Q3WK1D2f7#e3Dkb)!$P;ULpvuBCG3Oi#12Z+0nX>Vj z@fupYIT&Ek__e$&y_K~%BFj-4ao)fH%ae0Lon5*af z$tBDd>c*51t*2Wa>I)dI_RtWMo1TJGt8%2$9iyH37{@TsXNy>0sO# zr9`pjX6cF+M4Z}*%fOyMbiGOX@zY@``3S1WVDVKwGHaKw%?c;Tu2Gha;@Uy44XcWg z{nldI4%l7mn^(j%f44YQkgPPh77YpN;gl?o7@v z+nNdy6M-ck#X(hKk9(xi!m#q`lkA#Ud-AV?i|w>1#I?&hUe$n;)6?COEW3Y~(PSn&p8Iyd zKgM0Q+nS|V;Vk~&nH+=wRZwp#RCvM@PpEO_Dvfq^^jZxiJK73$YZ_a*brLQS73%99 zq_zm?j_^>WYv5TOK&|?0LQOPps8o(D=K0-ityEFpZIFgW#9!4`K4b|g0O2t{jExOR z_ys0cp4!p?Ed{?6s;HhEVHJ&HG0~o-mSwD7)14?@v(3rhM7YWG02dxqMwfqr^O&oS zE58>iVeun=G^IkWYc3PSQz7!uoJ<>0UfCjXfFp?id{3O+TgJ2%O0Y*NU9z8K>$fo? zEpaF2?6_w(h+t)cz2aH49lfDju_03klUxzAwEg}YX-f6!TTgg;H_lAid44g(>;r_a zMgiV+S+zTi{zF!pl`9*fi-dAHa=J%84fmgGKNMbRJ-xRL&hnv-tdw-!ebb{rybso$ ze@IMDGo%#*+eT>kRw(Mac@#>9Yx;moNs%Cw&LW!Agj|rafDH7Gb|XCaB#4tMnO{G( zj~Vv0$tUySK8mUGY&<}9!2$n;e(2$xek4n`8!2QMr()^Z{hI*oCd8%8B+yDo7SEq;D$Pu z4%S!RC4-);qzi*r?Fd9>so}Wfzk?iykgRhkV&xeq4T=<)2)8q&BmIy^$Nx- zcM1#G-(9zF9y1JNU|barN+K_U!x~j&VCu$^x`LM7ICbSnH3i+bvg6_X4TtDBZLDod z-)6#nH|z?jp{jv!a?9gLR?&Ipa;;R2X*$>AY1rN9V{82;&)&==&!u`)SqRq zD~O_$&fhgiyVr(4gOK0b^UjX*JK5WKFUZzOQpx|hym2>P$<^0EynI1-6Y>wY^* z`7%H$aMK;s@eBOS$%P}bnpC8@UJ;|P9LQKEEvCa;4$fqYLr`0INRSpHml0n^Y8OX} zinm^(ruaU{Q<1qB7;F?I<%wfL0mew20`-a=vtjyfCGWwm`bCe`JC#oz|0wlYV-$F%qUy1FaZp4Nvrtf$!=2;K1{ zz+cG;dn;|=5=@A9cyZWs#@lL5_LPx(f6ADV>SI8ekGkh}1XPtcm2^qgkPdt~8LrxG zSBv~@`Ci|;*F8Zb7OJ*?9a~Xke(20O5)#^Z<`!C|sU%axnLO>6?O1NGwsI0rn&!-h zGmtIY@g)LYOKhHi_`^9vL`C}}Aan=F zEK{w%HX13Nfl%M8+jO-w51VIW+VYZf?02 zE>D&RPKZRONR>r0Gzw3#B^GEVU4zRs>>bk&wN?4~`ObNPGo}Lg;`&U0ows>OqMA#3 z3=S;$#w@UbdlZ1d>FO#S^X*Tq&u>*-WyEM(IiAPIRkc2r*GG$u_i5H|=}b3$%&4b? zq4I~KrDbhaArs+*Y@g%nuT46zoB-?b05t`p{-U>kw)-w=$G&4{kML`57~5}ax#H=M ze3!|erMJ?(%x3EiYbCGy#cTntfT4bMr1wKDdH3C;^l?4}YyGhxR|tT>atltDGxKfe#L$$bJ%OsCxl%7Qqz`B!~#!*!@JwbU_&*XVjebp(Pw`WBi| zCFlqATV?e3v@Z=7wZJj1fV^5qV^G%8wMI6DUv1?y@wr9F7s)IA2BrL%U{tU?w`n&I^)39Sdb#as>Y z%=VId9@FvTYaxI86U}~QwcxQ08LRR|Knw*190lX_npGYvb-~RrKiNB!*bj4l51f|IrCzY&YDO6S#T;3G=avMKW!HWjwepI0}%t3oMHOnlhjfWV$F3mJLS&s>$i$~>7VYCEgC=Q&W|qaE9n&q;H&(!7Lt)rui0R73 z^6yF;bayR`pjD*7+ks_59Xlp19Mk-6Ta_)0@>h2b7hsg{#x?IA(L%7)>Ho>ml{c@2 zS?6a1<K+eVI_eolAbU^4|ER2ym3AODP<*?(Xher6T8kZN;z(*5yX13%Yuyra4^z zSnjn+VI9lb_LVWPmkhcqYeQ*W!9R;n`J|S!4HF7>CKW28+H8}DI*F=OvegE}5cJW_ zd>z6ywk6N^%hI@Jl6B@=Su4_3}loG4EdXqJJK<}jInV;g&Aab1!r8$?J2I! z^{TlhPa>q1Fq{nzwGW-IRF?}}0Qt@RID46L|6Z`&A*=5LXi+Lp`g_m^yd0XI7AynG zUe&bC*Q8>dn-$J)T)SYf&DL2{FYnOy($eC4GXbPrM_~k*Ibha%>+0OLHGlWRH=xfK zJ-4$G(5djR^$OXLQqcZ${jzz9x}29=KE}tA{=8zL>}1HMlEv8>U@6 z5nkYq1nxZ^VQl;G_#oDVyszz6u0Q-<9%x(NYV1)Y?{I85177s^7#=C&b4$S=Q%)aeDAruGpqqQA9%v1-y~S=2sf%Myu7}+=h^vAY96Hfq5hsy`vL7&W$|bW{PBf zIcafg=;4V)EEyA9U~941BYAfRA&tcxm3unqM0O}DrVT%p@R>-!Uv@=)f#)uiwLc6y zrr$+!93wB-0p4AYDmF&|v^YU!B@0owOBz$?ZMe?2A9MkGI~{>kmrd_Fl+CeNa)) z#Q5#cqB+ijfDBAY_;{of_z{<5v`p~)+Wrz9`f*5Ycg=Ntz;CLeF}`sOA)<~*@0r_g zTyuT)S9F!OD@57A$Wj2_Ef%LxXe}!K$u_cUw09JMA{xq0N>n7F;U#5T&!)vB-iXRd z!_|{(^eZw4URh^z?|Bd$XT}m*;9+PBD`mb<_wf0qa%ao+H+9sw#*_Y{^Xqfe2#53mBUt@p2F4hNlJ%OX6b zfYHlkp2LMgt+1$y<_n6n>K7^+6W{U-s^>KY!PDt+ro3)KAa(s}XvhWj(^bx{*jDwT z^(fX!yxob+!H(SpC;KbC2{`)_DxcI;p4LBp_6SwFgTAv(0PapmVO_W;LFEdxR_^w; zuPKe`={_O&ZTWwMy>(EW!Lu%$1PK9xySux)yGw9qamnH?A;I0<-Q7L7yF-xR?r!(Z z@7#0i`%c}e`v+UQTg%M6J>5MsJ>AcPk}~qj3BK8ERD-Ei8C-0$mO{j!bZ1rm0yJXg}WXZH`VUG4gZ7lqP1 z%HRBnvHbshe*0bewB7jla@z0x{sMFHe2VkT*b@B;{)HqGgEFg>>s?a$Bc%3~DVt)r z6`@m1Ghy_BRQfJYI`RfW2pQW*yL4Qx14%+!O)b4S5)8YROf;1Mr(S>qVfrbDniGc@ z{qn+A*%lX$4xjRSq(4(`I=DT!60Z{)cC&Q-_&{AeIiHwn-U4e^;8;b3lC9WBik(yF zdd>qvbu);)KGs8T9LQJYFE1asfXwLRWIm8h7ELyy8V@<{=|;-=&1SSpLpZBU ze#62XL+-pHg@wEYF=HKX0~KD{M|@{yCVGV0O-mwKiNm>H(}LxpfkwDzPZ2XvPL{TRI}vdP+4^ z6_vhvxde1SrS9MtLC#mG*^%5+G+42vczn0F+s74Ytu>JHSzx?31>1|LCV9Cb4f{^S zW^5tGRsN{geMUcd>I@ zQOR^Xb&6s6Taw@2Jc8DahCVP-UTRgt`573@0NFCn<$u%^n&D|5K_vhgG8n z?1kUby;sl!nP{@Y-FaqewyMW=sI|UvgCfl@sasdPSeHImoqVXy2_U#)Ua2A*FP;zI z{hc{>rBk)j;qn+@R~oMF+A`wWhZ!qMbdX4qY)9Q_ZD?W)bd1dTzQSUNXT5z~_UWx~ zG_z=*g4{{tyWu+z%?{LN)z)^(YcB}vUY5N2edIQd>$n}Cb;g6}8p=Zbx*R;F*?*t- z4nYygm+6t6IGU8z2Ux>Fx-SE2h$}qrP6mOT)!}JobAZAYmMw)b928K-&DY z9`sT3ZS->v=sB}#)Xb7iqG{mpDVWOF$y!D8%Vi(cxOl?Qw@mOVQT)32x7bZubnICn zSoRQ(S^<|4(wa^oAPuCUOz%kDBUwvPO={$BQ04QVFH>P3Nt9Y+Lg!gp4T18@dmjux zhSJ1gvk6H@2>{i5 zY5B`ZLrdelhoN27t%#PltvXH=VgrNAK0>!FQWZi%0cp8Z>?yNC7aKxU%^w0HJ(+{# zEon0VN?+>m9yp0}D*O!~_oE-iuyL9#`o`AcIW7kchy029fNp_#bMW9gFaFanARnWe zW3~I-6Vb3cs^+()Nu8?X0HTq_$8&2v(JtKWM(1nIMCD|rvquFX{i68Q0)wmCz*lRcsDBD3 zI$m)?90V8u4r%71+2HC2Re=*0OvBz%Mc(I*nqYi~;6d1(H1fu+S&jlkQOLD*_AG-+ zK7T=*)WO*_N|Z&|rB8*av55VPbwuC#gv?zXe?atREcKXc)#!QSxgaN>_S7^@?)mLv zf)|??->TNscT6FFeKvsU_7;@sIz4R#@SN5i#^T4MG!GA4YF8PT&TYHCLm^5U7@!}e zVqF{-G49SB>j0)w#8ui1dtATza5qZ0_Ycf%5NcE^%M~}spexqBi#t7&P~xKN1RD+ck6tK;B7v? zA?Ne;2*fn@Ef#oBSc+^)*!69VZOmg_JG*S7VXEpsNUX}1QyD?Ep(g)S`pDR=*=8dD zL*1u*<}ajahr|!Gk3HAZR}2!uP;9AMiUqUBI1~gc(NTmPbBJk$Is5!KBFjFSGM{F9 zWXkp-6RjBQW@BI6q?t={9D_%sg12}Js+66AG(%i#ei3H{ub&>^CEo~iD!Pb%NaE>dZ! zoF$2n#CX5ex-2eMHt-QGFYi)Io?DdbMinV4`Ca-g3r|2}}-Yja_BSYAe1381P>@GsC=RebV8vk_pD zY(+DcHRlJo1_1b$^3(5qbKa>aTA$cHbtioE_RFX8cHtyubjE4;U;vq(=$1mTVSH|n zOyC0+2<2s`!AZuf?C=M(30@@H8Zqj6esN@Mx01uv5=R9{LUsX5yY3baUBdI>r+XxZ z&*(&~MlehxPV{{P309vTDb}BP8LldrfCGRUi@;+9ADziR1n}c6X}k(pe~Zf`7|0CJ zRs8p3u_-S$444iDwnXXDtg;Qfk*YkllkaFv>89QfL|}xsjc5%Y&-j*{;UydXOkR3# zka)e)b$asixgOfj*+{d1Cy4zA$G4ItIaoXU`{4D4<~M#Z`a*1KS3d3pwcJu3ysd&EUX>)nfo{%u*F>7!CeFo|E*T*!{vr{ih=njmaIvzHIelbe6fz(#U z{FT&@OG=492rntoTYmqMR!tP0%#Eq{6MPI~phan||098h*g2wmE;_LINL++}mnNjB z@&JgXS<31n3Yz@*z)HBOb2P}tM6|)c6hypoO1qyHtnLjD;Up=PEy4gH+dGulvwI^N_j{U6{I~i#xm|xE{|Q!Jp_FcEg+=IwZICtgXtpnQ^o9Q zVr#Fib!`kxP>^PPI^f2nkCQaHE_JR_X(?$hstn>tr)*Uw`bh;7HnD{v0*!{l_JZ`# zOY>tkOr+RgaHU-q;#&W2k38-AEMBrJ+&M-_2~y&z)|*+r8D@yP`R3{;#xH)& zo?uz$PmY@2_lRfT4Zq5UlORz!qLZN=C#XwUZAy~Gv=goAObo)(s-Q06sQfxHgycV| z87?Uhh$l7XvT-?L3Yd(YbIZg}mMTT+xrA>Q%3Gh9HZ;Y)F>a5w-A(z5n!;&>ic0be zz~==b>o#MH)5iIS*9mpe6lCuQYrm=w?JY*j#$drcaBMueq5zm6-H4)@XiX;KJpbfj z!{n8SJ&AHf-+&6ltA0AG6~?ygMFcTWr7&liqd)nVl&jJR+cSXYQO5!Su!IVECjRz> zWfw+CIn8lz#PRKzCrh_Z1s~JcgXnGr=^luWqW!@v0hh#$S}GRm(4RB)IIO-v&S1_( z%CeGAPj+591Aqnd(CR0f-~ecS{O|d^sFVaWG4SY1@iHoOKz-O(*0S$#esgXk?3(i% z{w2?D;=jI8hsI3-2&jFzFJua3?ta38eOa@Pj~?5zH;>8`SndvPVgZ3so0WdK?MBidPZsGg zo7bgvh#|q5XAZOA3TIEvDY($rc1$Q!ybb&kiyG6P&471tV6-V*?!xpw${?P z7;;i!Cw2xINz>VPkaq!~ftsz*LoiA1j_cmk#WkA*qHJuqKA|MDX1Q5 z5XiD`U;VBGH6NHS8jffDR$fzln5|pCxIKR`@e4!Qc=r9r8LOw(^44X2>hhE#5GPIi z@smFVdvGxok-So0+0U;wFrhy}p*rr$mMWnxOR1=O6ot@~(4Y!RuwbHvEOG*F#^hK| zZ~iPiz1B={vxpy99%cJXb&*A*0>Kg5-=-D^ispinH0p#%++sKNSgP+;6tK{ z19?n}5%G1y-?cncmbfD2#h19pGsn>AWbS7p&E%ag63x9`^`w> zSQG(1N4Zg`1*3r=ss{lZ8bJ=F@GJ8SN@)g$y<(blLz#{&Zkpw&h4G7Fj|)%aIRA{* zPpZ;peT{+qh%b}k`Ko=6PgJMtgAWSWJ@w-8vBe(V7^Yw1DU~zDmokZxmle2*5dUmI zwZMxkSogBkbNc*f$Ps!9Avr}H%wLfH*-lXow`X-4*#4l$tSwUDy6UuQZA3#MY0$X9 zR#im8sOb7q$6pj+{#kVhWsRA%Cki#N-Jcq1WNDN%dxjE*#cT_ocOaeIg;?Q7BXRnn z>XNc@GMrD4(5hKiFyvV>(QUJ=u7lm5VDD>M3&&F3%RYe@PbW_lbt!H;d%6Im)N)WK zs>Dw=#c%R5Y8pBr2u(fwq^wvWEOYU_rN+3Uy$sMj94I8ldQ%b$aCYU%#~PC$wI%6t z@-~x&nr4!e>3T5Y$UbZ!zHK_)!H<7?(Me@{NTmh-}F*swV&#T zVP#}j%3<&48n@#kq0-lCemH};2}*A5%`379nxvMnl{-4ZWco>u5MpwOgS25CM$r!& zaA=v7E2us;ApAb4R9fq$Y@4Neot5PBSonpv+~{A!)vw}D}6ppHUchE^! zI=&f`o#Z~;P#$S0S5SO_1y!z*S|6-wFy7w$9?fXKcF|2)*c^)Axq8pxfX#b#)zN$s z>zUPQ+5z?N0W&kE+P%cikkD;=}IKQTy0u6wSF7#cYNK^$>aS)x3+2CHeuaz zKO+-rAimGx__gX?k$LX47F?lKh?Ck{vfx;nIn0n~TGtugLzK%%MK^t^i=58xOI>1h z{%B&TQWkH%IDdKzJ8l&2Kt{sWU{F6_tr^%CJa89r_(Mm<&01FJnpj=4A$SQj{@9ql z&5SOdc9uWu$WDb9=8dT1ClXDjUt^Ri|**x>BM_1ws7@E3GUa7jF0rCuH7?oh8I ziNq^fKhtm8)`h7oY|2xpwHgoJw+=IeFlck7NZpkVSl&k4ZVYC>T9}4@R3Aie`rC)s zJ1SfCfR^ZV4TxNKbX1ao)k-Xb z+SLlc12F0zE}tNC&4}5YKg;Jm%0_mcl{CKcp%4nfI`WbU?F z-=?4c-d6$fPuGvE&uu%w2ZlH+iHqauUBiwP@0nh2TW#J^y{^v$L2KaBf%jW~Pb^*| zWQ}xt-|J-PlrKKKTbuJPj{@!QH=N&{Du$<%i+Z%qImwwBf#my1w-XcH+SP{1qX&7T zhsi>-iH4^1oA^Pmf2Ml;<=*a_9lK#@fJ?`l+6VY%Tyx&`>x-huz8@tO5Ep)mY0vAP zm*YQ>-w7`UNtYU&ChG8@(i`vhaFOd_#>m((*5ns!B$)eJNwrkdawvEW=P~!}!x2cG zkWvHOx0}utxy(XBK;k8#I>BG+5=+iiLZ(o9%H^k0$VMom=V8jUUA?4JVItHJgsfG6 zyR-FF_K^)3$Mzy8R@s$?&V{nnYI4K`aY?9u5-TrpR#>th_##z~X`<0@@o^p@jmg%b zIstB;K)hj*E025t%|&f1B9N;es|qPj-zX*5dW7yJfxNgur`V|{T-7o!K-ro1XxKy| zSt`8xG(<{cdwqq&X@~lJPB^~NPKJ0U%6`CGbd4lJHT)t_^u#z=m1Vx%6bppueUb|v zgZ9cphV^7QxWh9fVde=Xf{EFsIZI{cIm6F$H43?tG)}Ljc1Y1dRz608%&6!AF>+*r zZAah=yxmzE#q!N%C6qEFhw3lZ3^n9G8eoe|5#-s}jo^Ugw!ekPC36-Il{3YBKN9zC zfD*=q7SMzI*pXm?n`kKH#l3;kVlCy59j6mi6>3^%z5)S7;7@rt=U9>zk=p|!OZ@$RpT0I8)--=#TW>5DrJF&3> z(DkFFCFWi$#7T_y_-O#Xrt+z=r6taL#vXb;{CL`-9I)s0n*FdQ>Ph058 zd$r}pYeD+jWeTBwcJs}0Xx7w`T$Uv@A7mWt1a zp9>|FD2|Od$hp8LS#r9WYk{wkG|!ojwg?-ip5;6a(Wr%8oh?<$Ls#=r?*%Qk@4c8D zP!EL9TXGTve=^n;)gER`7TKa67bhuTP2M(hj}IR&!|LMKGWyN5e8q6@-Rj^{*@bauXAMpnZ-=u$yNqtly z!SO(>pbS>((1#bc=zB2=E{1aZg-&MxQj_m1SUE)^mot*Km995Wsb?1KBd8)N{YVl% z9T|{VXiRB`41M;HkQ7LgQhH!p#1B_>RAiwr+ zhPf#bq}{l_*9;1lZ15@@Q>vVkZ zp9_;%1?%7i>$UFO7)$0c;5~=fzi`0sYSuOqE=FpxaNr9zE(>&gl$4;OnJ~V5pbH$q zKJ#(n$V(twWZ1|cw|;K%bi#m8CeY|RiPs#AJ(5!ww|(i_(zu-XyfHdnpeG$1eM{5t zx`_W9;S7n;!eB_dE5dr`8*oxE=(n zd-2?$X1cM5S-OUTfuAahTONfx-B4<7rm}W49;EA<*zTX765>Bq#Sb?5R0oQ|)8nO`@pd2QKVm(dKJ5 z6r$?YViOE2H5bL*`UD1rdh0g0fIF`?nO{8q_~|zJATD4yz^m2L(VcZ0dCPJ;Khd{S zw4_&>JodjOc}Z^{f5y=p{)*`J6WHX9_^z!JV`6now-mu=S3Su%K1VS&2W_PDI9@-o zxpCn;o>y6$P)tb?kKXvYMBvR-|B#TlHvM+P_cBvRX#DRQy>@CNds?m5%mL|f`VpY=kvf%^rgG|_d8x+;vs&W05DLv8i-!VPuLe%IMGlp`% zNOFv_xQa@N^&Z-y_#uZt{=VTb$*wL%R?jgDmK`8hSQ=Q+>@$=F+5C_ukIp$vs*KX` z#K5^;VMqxn;=`Rz6o$^J0e?qpE8ifj7l9_$&-wW|UoU7%xjui4Q9z%H`Q3N?=>ks1 zSYJxA*8JDV(RvZuBOo$}$IsgNdzPE~kP6C%P==UL>%|mfFtByaC7Z}(kw@VV?3 z<{HUYwO-`22vgbXw6e_AX#`uHDLF~GBrbJW<1csOKs4ZqQpcfsnOh=!HX)>xxJurT z94KX`SKbV9pzH`CaS}q(xoJSx1e?Nq3Ns-gQ}BOa4_fZ%GKJ*mpO>Abg@)Bn}H<}|{9=kQylll9!AlcNe!FU$N%IP32qZYKhr-}}#1 zpL_kzMnfyBCETZ~eSAc`&ufymxT9FWB9<=u4%I!BW_C$4vAOXov3j|?y3xN}cek1L zq^$yef@*rVzn6;7@fR<*IskBH#B-r((vl9oDee99&rBW8T?`W zCc*jTQg+s@SE>)_>9d@tp!Q87bxdZR`RT`U=*{AuqNUSp#mk6o*L_EgKa_Za#zAeOZ;KGRcVR$*4ZRxv_ zMD`eh`R+K?saz~iJ3RKf3@Xz&J#;^gT(^Y!n0c6lyXc0YW*^H42ix3w+tB>wABkKA zSVc(2Rg6M4Z}F1YxhDF!_;S(mhKp$G^K)FtGNi@t$+m|jP9!8Pr6?80TO5wDSLm%=R4so0V}gWg z&KJBI4H8HFYK25aO{8RjELvdowjMwt(x@`jDBiAV3DSXOM8EV7Yv>PCQ=8vL>y%FmA7LJ>UJ#-RTQpu& zSJ78_`fG`$5Q~DU`O83=Sxmd38-lHV0<++-z-d|XB0pfZkQo>%7Wq?RGBbPXDJeMQ z%$+Ve=hB1pOEtD9v2PL z)}G&}@ipfp-8R6_Izp9pj>i7>DI_1D4kQR0G*b!Xs}ysvSv7XCUt}&+Y47x=?jl?Y z>R)%kOZEQo*?P7nfMkxty=;siL~U)Q4HZ#AcB=_a#aiArok_Ig19LN!YA~0K-_YlJ z^0M+OQ{WUfo>sUq=<)~Gt(hZ2-#i^%7;{@WR7q!zb73-a`8NDnx=}WQ>7*z+k>VRh z;x{e?O%)^Q04b{(m+sE%%+2o&{JAvt4g$i4%CLGoe^6ZK%~a^fzmSA!N`EgulUuTm zsm*$$z5_r<*Xt>_ruv@C_80>L0@K-?n7+=;5V1tqa`Ih-M2J0qfXm?J-uZO>>xmkIFmu5q6wWH&Puy^vbIi~WY_AlV9(pxW$9Z$*FF{N=Drh40)H#s z^*_a(?WVpzqRN?svrCU{ED-!o*dH3*Q}NjFblWehG~LqCA8hhi>{cZFL$YmyoID&1a^h1i6NAa~Movt(!znw~ zbiyOW`RQX#!dP9B^o5l4rim_2grkKhuQCnlK|q9hjTjTT;DQ&2VEy($-UOMlycGi5 zAD=q6J|L^E`jfnw-VZg{>H!&wP^7>E=$ueWOT~P#$V4G?s{19ffnz9UdhV^40P5t! zZ)hwiOX!Z_yJ2Qd#cXga;7up~55D*7RnVJQC$ z0$hTN!dwW#<|x>>GvChcrM`aYiI;A# zE3t~A^(DlSK*YLl=)r&9nG{NiR@4ON5IjA%Hie%eCB3!mQ|=+<195VLM3h=j0`5 z{4c4$LgimEA)EEZMwny5f(AXbI8#OEkJTIYN0(HTVfj(i`<{qolQar@spDclqVL8= z6K^ZWYOTX;+sBdz9G25G#yE%&&^lfBiOwE$>cnaj);!&EfDb+Vc_sFlk|$;}i&;i- zDK=EM7QXT_V-(qojX8nCy;*3Nlw@bm)RHr?NL6CjO=4o0#;^PoSWh3=1Pj?0mKDS*g7Ai*)4OzA` z=dGf}OuMRkvX4w#kXQTvjjjyR;u1)MBjk$iFe@hxwl$ zQc)LLXTPZby_&fEpXU^*WZ*9WYjP0Ar_3o7he1Ekdlg5FkX*vzGyWfl+ z**Q2AOO>E_j;0ZX;g7AW&@Fr7&tR{^zbm3+agW=WXYzYVN!Gr0CS+-h?;go+(SZ2i&Z`(XJtpn1L2zdp}*c~0WU zq};{$a_->bsm6)fd8^VnzR2lL*ofwCX*h7>?bnajWe1+3ljy^=%;hpm?IQ^Yp^E?%)-9kby$MI;(@^644tljA8O!DhRvt-$MRL3f?&p*8uVqKIhJba4K` z5}Fib>KRDNs8LpH{|XK2a{!c%6TB+v>0O>`R=;tX_L4IP-H&ANgo$mE}2!}OUoQv0hi+)()! zxvw9;8mXX|*{J@44vxhb!SJ`#a>ZaZb}vGU(L;~MQ+WenBuA@`ObM13cbVhp;KRymJ-}RuvOXBpKPtxV5+@T3$*)i1Sun) zHIYb30u+||EHQ0mtLf`)h0#C}8sqE@9PBP60WhF^LgYru=|hta7_&bUEy`%9N4J*c zB^XQe?FU?ryP}gk9y46~%bE8oa;GaQZX7#11t_P>ILL+J>dJwsFSSVYzbC_5f8|U2 zHk1tv==b3?A#KN#tWEzIOAWp;6f+A5s9O;&mm>+}tB2~SlQ@vl7-}IPk)mH;{c@s| z)kH^iCR|xH>eApJ10@h7R-Th1kkJONw%FXh@u?pY8wISXCy%0+-R-8%dy*(Sk&m?V zyi@T~Kuc>9=hRjQh`>;xqlQCL59E=#V(eWkPV+Y#?##cO2mWd{w(za=G~t9E;f5a3 zYMg|3bUX7o!#y5M46R|3R;rsm44#=F-g4M;* z0)%BdeKjJR?BA`fA6~l582+C5Ve_dR7!40O6_UgHkL2R;LXH@l=HM4VQS%xGy+9va zP4^O93dR2Ry+<9u@I0x;8R3|(mDF@ljxx3Tj0Z#BqfSNdX6Q}0(fm~L@)AqmCiF+$ z{-vj*#p=yi)GYIp#<;=S%g3RYt61tm-#a2ypAvFcoA10wEZ0g_n3uzQjaBX5Gri`U zb-v6JaHIz9d)Ut{dyVIIv(#-L>?WX8!wd)>T6D55Uy6EWdRH}4?hTH5T}Xuh>Pg+wT;=sndPf435%gBM-3I8yxt+b^a|)*0-M1 za|M;bZW6izX3S*n7M~|loinY35=8!@n%b|7vnMnbCU+fAJ|2h(O{laZreM!{0aWF(<- z>T;PFR-zp4;UpvH0J2^erLHMs7O@mLX|=5v;VH~c<1D<8fQVy=t`D9;mp{cBQn5k9#Jn!)l?l(r6NZbsWX{}Pb|+=(6zH)l~i((l7V(wGL@;3h2&L}wy~=&OTDoQ<1(uATBiHy5>PL{AOe>r z@vB}gqFm0#mxt|+Q)L*T#gID44i;V{_X!JF@(_M>r9T+W&B$^+Y;#_xUXsO?4TpPO zrkY(2_-08Tg&FEJ| z2hh`GzJS@#G(tc3xHrhxiysemqw@}ZjWTP+@8n6;%xbsJ$E~-M7b(JP#f(vN#MVdZ!CRC1!Z|XSRS6i+pIB`EPfWyXV7ks@ zp5(&JyqsGLv`&C9h9_7qwYeyQYMY4UkDNJ*HtDATy<*}4*}yrfh|2kF^)dsH%8C~0 z6$FI{6Lm#}R*)GA@su*#7UW*@o^y`aU@T+-K1*LBHKh7sVzX%oCx+2us#TI$U*Sm2 z6twjWG3t1A8 zfM7HlBapeuK~0Z;$`8|=Uv?xN{0n)Iry*5M{T>&3Qv@K$eq>E{EicLMqXYV7NFc+ zWGjrA#_FtH@DVjU+%4*pJUMUT97N8rGbbi&MQ_~5pF9VXGjM;$Fqe(mHh=FMdcsS@ z1hs^kj8Gm1hNH)E>5G+P%ZQU3 z`?X*{<3yVtN-f0(T)c_2DjC^4kq{>|J=THb7@R!3winOdyRq>Kb6a*vdY2&zFKAip zfmg`;U~D%RF>)s?TFMZTFrsQ|G*vf!spti%l9CgR-`-3Cyx(8UraqOCOefkO+ZfFz z%jsvfdpk}~jhdu)a06?_%>$V0jN}^s?eLsYyw>-c{hTuZ+u(6HgB#(u^B;q)gDm>3 zne{{62GKxL#%J7pd2NFCzada~5bYa+0CLoZuhnn|oEBH4j3@Oc8sNcMt+Q z`$%2WJI3b3IKiTKSL)PJ`>m4dg@fwda2zS#KXbhayf}-Z-wV%DAZHwZ#_LIMtJCdc z!mQcIC#~GWD2iim`dSxw&X&hW`8qO}WSQTOO~T<9wr&Y2MCpA+w$AN>pbJy=vNJLM zx_E(9g3sc0R{A{rGL!!*ADQay^BXr+!6_{a!_SYx=t~}s8^+3g1Sk>7f_WH0>sK-A z7o!$cI9-V?$QWcCf2bBVBXA%S#F^XjoLx*T*D2A_KGZ2jY1_CMqeNM7j&j{*5{Cbq z81tC4i9|C7&jn=xzhyYPW{0}G82_JfXnY8qoPruK0akY%5A{8za;1<4q%qmg%MY|J z((wf~h2h3lwkW2SvAE%e`f%{fQ>jd+LpV zZ+g0E8Vb*?<&tg`Kb2G4?46zEe%OGQ&~rIM^C4UB8h8$Pq8shX66m!H_THDj%3RdB_RFsSq#>w>C#OjHC+R= ze>l1%Euf$cePU5GoZnP5Nza64wv3d|Entti$}9epY_48he6`$h6>DtIB1>%mof-Xf z1{ASv9psDQx(B9p%~6M6F0!WPHH+h7G2^TWygdBr8Td^7nE|^=u3)_2FE>%QG&Ib| zSrw?eQ{Ddd9h^NbTup4}zYXGROs%*DOWQvhDK(FqrcW`b#iScS5WHkT%^G95dhrLY zj$9;#2kt<#Tw_d(ErGrfr(!(FcH7;$PIM`Yg5BviO#gn&-^E`RdK&&s<=a)Nl|-~I zsj}LX3~FP4vDopm2}`CIVb9D!3L+5hsnJmrWpzA}_jEWVmgO=@0^7~bOxgpVRo;fa z_!o?}SX*G$UlSQ&Gx%tPFs3snF}@0HuEe2-Iq*6*cqAW)w&k&=;`4NNZv}b9%^(W? zwg$fwyu0mEHUk^rlR<%@K+t;6&$zA$+k&bZCvY&2wbzr3YV^(8+(dihi&UL~=M}8L z)%(Q$9>_o*DSk?(&gT46+uGW1pZD{!_)cH;0-2a>ETwSJi?I-2Nph1x3X^*7a~$>l$r|SZ%RIr0TkdG`ysE7vzA-(WwhD z9Zjt1Mc{2;`eU(09tyAlGlK?HgS-qFEXLz7G7E8MUC=CCU^610EYmmZa93Bb?>at8nR%aRpvp-W#s zB?9-~FFoqNF#JC9O>WB?JfURX->6sUz%@2pb~kbtR(xGu*)Y_>MYKr+t*lhjzkO|N zV79g1UdE~UulF5ugR>6A*8ivVfBiJ#)c@alu>7Atf|2__L-;qC>iKMO!~f4ffu<^; z89hH;10~nV%XQ{)Qe<2JW~*ki-B#G2f}%dbw@buG{yWX5=VxRQyK(kKx#g;cy)c6p zlG#Fe(iAy|C8MBAfSX-`+swqo-?igdZ^waqWo6}|`?G*h$v2OWl16rCE&H|aZ_jb# zW`~D|Tg}^%+gm||nGSLl>f3pQuT&Ws832LI`qM%a3l|sHZgK*x#?=64XUsPmaezl6 z>uIhiIQJj`Z)6l&XH<7Naqmn0-pE4W0-xnSLVA5chd0DJGK?W|R{>nfpYuF7M+ zEcH2$YNqYHvrXWny7%U9f7q?_qFzy3YwHd7e){##D07{`1vZVw0{2{J>q;AWKx2W& z-Ab8GrL1tTCBLYpV7lI)TqJxwkW4$@=301teSHD|xxJA+8{FNl#8hMsJ39qlGtRw= zT5N4>>I zwp}gE%i9*muTu%Fo8Srig}@X1$8`gr$=g{ksj;zc1UPJNQ$9c=HsTS3x?WGg zfWvV4(a7Hki52d=g;(0ZjXIwcS<^ z@NEASUKFsv|5kXTYhbeJ+clRcV8+ljbbkZrH(xq$3K(lFrb+ZKLpALBkR@$Q^cF?n z7|nsP0Qs%|d`kcZ2VzCbOix&dtq6qUzt({T#t~o`fEb7c?~SE+oq!0p>i`7uu(dV} zZ8yt*+Xle400#;zf$kRL2^jivON=g`-&6szLO>PA0lz!DMp3X+-HQPF{SzvUZ}8sR zYXjV=A;ZkVB4Tb%DH6QjF-dQOKc%fohjDm*E;&-ctGWDdTVn9v?zx739M$d4u>k06 z36C$$y>=co`7165(jaq3M~7-7Fn_g9hcoh-j=+KltOQ=W0SEeUs~>><3VVUd=|b>7 zAOHBzI{~r*=_FHLob1a0pDt{wxvx#iD48aq_R}2^vL5;B7-NiCEX8S;!h()*=wl-bY;js8RBch4o|07>=Dv45Nbx29|*eN=Pg8LhU z(1NiT9;tDJ%nH?_1UCvjl=6&-MTA~Nh+fDP5^wCyc3!Xp6n;Mp^|VY%C;QV!)cf8V z`7BVtgsBqs=UvTldk7*qL8NT_5Eyx0?bKHh%afl`#owmY2>)Wyjjja^pk_URx3~_R zP;@`nQ=G^sD*%MFube|>bvjQ5c4ghF<8i~ykLBC%+sEy1pEdZ)wiS7f5Z^D^aho3) z!EaHk4||s9>!0}jCf{~u=w}eRMLGE&!UxBAO-9w_zK^5+8sJ+#dlv{va9J*J4SqZw zEg4_{57SeSqFd*YLG3E5NYktkGnP@2`86&fnQNW8+PyEa#kvgn*wQ8+Mlzx8HamK8 zxbpMh0yP&uhoG0rP?k*nFpx~y>{aqmV0m$w@;u{JHtpBOJX3(=VO?@9e5VVGmY{S! z)BPKwoW|;@HNE8iR|xMh8^S!4Rxb6i(%aKM)6ZHB)o`D{a?#pg0dtU~(joesO9@LE z*ngMS!!FQv4cTv3G~GX29@P|WMeXJ$3fWq^2Vt1fs=fuiQ8p6Edid^3Udj>@Q2FFo zetkVA7g_6R#g1P)rkB8N15QwdituLH}q`=hDA;C8r(|ED6u_5DQJ z&^oe9pqiRa2reGOWJbWqW=oUV$09}=8jt<;V`)toDM-Y$W?>SP=VsELCc-XVagq(k zpsp2*hvEiGJ&_?qrvAy1w6g*WQ8ltfs3g*lQo|#i99HA-k)}R)P-MZU@z#4r2$Y%b zIVf4Ik8fvW>EDxex4EKtl1%mT=xcm3wo1%a~)|} zCFJg$#@ZveMJ9M1eXrTS_Yu7Xzpw0Y{cBU#b0~K283bO5Lu_~DT-WDKo+PMFBt?Aw z3ik9;Tu2wZ?708^Rd6e0-gn!YlW}X^J?Q#Swe6!+=hpoAvDb6a@kh7nXBrp1_meJH z-$l;ubZqdZ?}BekQ&d)OQeuih$I~}KE+qP|^W2a-=wsq^jPiKsJsCuZg&)IveZ_d^B z{bMI4Mjy=KMl_c3-lwun1$X?K-oe^XGSlnv z-EVpaN1tFf9&GtGR=l@E^Z!o}U0q$^sOFuWoutdaz`%#cN83Bxnfn`F`@+kX>^`aE zx()C-o%c6`OozdN(FQIqpGA5rZrxI6k}; zQ38Mo`m6!^90+Kbe?|Y@M3@S4wp5-HJ16iAT|W>Ug36m;Y zP{qXvF9|CU+Dcw%K+OolhBdOgiSCXuz*F9 zMr4PAXEP0pKSnCG31SA9ql~^eI}nF*U`rv8ziBXnXVL?M*V1;KBL@*#0+~nnqany7 zsDY$`E>|3unDkiE`gQY^l0^Z(@tXeICcbAAc&Yntty#I)$0^zuv44Aa?%107c3*Mk zwpV`nt9iX$V4M9I7}+ABy*dfoD`7R2SROW3pc>$a#dL(~;XFfZwo*qehde?xCs=0F zKx{;LR#c$FU4;zUVO@4g^mL6yxD*fs=NMdotI-m5y9zs_MYh z&V`^u%_fgHnJA z%2IPHW$08$>2v1|P%ElfiWRb+0{WiPnRz0JsjwJla7+oUj62i|b*WO4+zOWI^EOfC zl8D_{Qz+v6`>4QFp;#2wiH30+5G|u=z=IX$W`U!5X~*{^Ba-3dsEcZ?qu6kq4%UP} z05OlgDY|okNk*amS`3mrCO+*Lx()F?055DTX@FQB$gu54m1wmr;#0{js>=AUHRU32 z$W!YACm2gh6PvlxmS7Li8Q&V-MP5l0UKh}O)m=0 zlunS$VEY?0616z9#pz>tqc2c=-JDD4s)9{~f^%vAu%GNF5IsX+7UrK=FCmRVlt`Kd zo?bL$$I+Xy>E^`-%nd=Oe7Kn7Uvm<0?~LvXfTR_}2wo0%zRZ#Z595IwY>$V>Z5`#9t~e&RPzPtC;J(DFJ1@_|j*`-uP>WJq#yic070J#?HrgDG zflMBdgP>>m;=--~Yd6e)-_;lnBW7^H`?^L-e%w@?*Bni4d!fKy`-XL*^EN5wUQ`8| zYD;iTWo6SJnx}fB={Pv6x@j>+`?=U|@vfdhN1bH+Un->tmG@b$_ z$c2m~6%<6dkLZQ&Mg>?$t}KzYRflk66ZBwLlSQJip_LYv;Oh|1Zdx$64wPAW?3_RG z18zlv@n}qT@{xZz_6xt&hj#(6ReUz2h(0kjtHkrL6)6Oly@QP9yVdr6hyGaS1BaAY zYbvCVE^n^Yiyn{N|1p;~GN49U#bs_J3!jk2V>y~JdF)q}@9YhZt}i~8BtCaOXo6g2 zViME>S7CLL%H^M+V4xG`3klAvg4Dptgpd**dj7vmRU<4KumH8p4fxBtu>D=)2)kq~7KS5af!$F)w-jRxvxj_Jm%AcT< z3X#IoTzVqt(C$mC^VaE@7~0YQq)#*2HVm&(&YVe6upQPZ8{zS(#qV;8D3ZCeo{*6F zbXto|sX`!-_Cv6Z|~5RO^)ehEYSyhic#g@}0&FSaHB~J6~^IBs@ zE#%iNn36c2%ppT7=*@W1$fauT0R1=JchAd+a?RuUYN^AN{q;s!H=n!@CS!cre_+=2 zwIri})Z%l^`pFB6+}UndWN1b$j)jdEdDoa9Ua#GDcz-wWWlpZMy$xZk9Gm`n#<$xQ zJ+jr8$8VRozTN6c)x77g`9uTMVJDHifoFP)|KBRr#OzOP0>%aaD?Z= zOu&f-nY642Oz?1$!uvqNICCUODoc}283ClogRiJ-pynI2U;9n3{d02a0;D~2f5u@eeun@owt6xW7tb>@FB64G0p1^!yMiz%E{FZx3$Xc2t~ zIjRDh?(#2%RS{D_j1t%mEl^=XDkEe(W*>%@CuVqbX&5u12cdN~Ns`vl4gqgCVcYl={uoRVOMenn=zORqavHMzdddB>7Em=&sKB#a|XUT}b{7wkpEP*+?Xnk25^d${TS%p$XDGSSsJR(=Tg| z-|G2Z&I>z15p7tHR3 zFyISDhQ#P8#Jd30ap)!0`-2N?Xe8!&EHm4M>4v;eqpYF<`dJ1MWMa~P=$mf-RTWC} zzi0yN+@6-41l_QPR05J7u(Gm^{WAjJH4-SxXIp+kID%e8^x>hckcCnf-im?mDWc~DLPT0nR@ zTRbkq-aU zjB`fqkFA$dg1Q;Iz>OzLS{x3o?B8$l3a?+LML93Ht-Lqelf92DxZlyz?f0LSG3BkU zZZoYfSO3g&?$$zezqG%6``0~AMtMfTil4hf`P#GNMPyaXT#g9RH0>`_a&`MHy^pEZ zJuf9F#4p|P)CHa%1}|Zks}8#&OOZ3o`{@g7!Tb1K;g559vh|gLpw$F-&h3V1smyWS zz|{Gm_RK+#XsyW=3WXe3$OU$U5W<5V297tHHFw(W=N95?bH#`mV5 z>+G|*)#n|!(A?~o68;Lqi$Xz)_Zvq6x)oHUVk`8(+hL#3Cs-HeUyP_hJAf)&oAJ~h zK04fqF3H+Z-Dt0f^oevlStA+BHgh?x$vBB593{j7dYyexnhNE$Y#YOHom>iyhV_Ue z1zgpf(-BTFsO(jv#TH6kS9}38F{Z#%MH~|ua!1N#5m6}q=3joS#Dd6b^tm*X<29WO z%$AAmH2WVqc6lw37Mr(~1NK%GY)zW+yN$Y`qws3SODJth>Ty%me`A6x!-2`ZE%G(y z-v`VfRT_<~X~Vy!5y9$5_Jt6neKG}Vw*%#B11LzYa5Jaca*H@r1!K5T-^mQsj3EM6 z*wR}X$m=T5wF1UzlI)3K*P3Rf7^^j6!+AlrMd_xnw&`IZ zJoL9AvhR+W>xJ4tK>Ian7l{w?6m63o0=LaDY_wU77iC5eB(Xmg?@ z*ZD8qf~!;u2j~@*e}O6D@VWW3@&ozhLqiNaw{U;TSTa`4N-8pvbKdtK3o@f+fEZR^oH-w2zFQRK21r#qkQ~f{l0$5Rb~T+e?AcP_)dxEsuI|{ z@1U4GZDjIn`w^yIH8?&Twj15%lU(>1L)v#fQrGalxc7Kox%9YCW4rM-1hViq^QbR{ zI$B(_@p_wmE4MgL%E#{CHGh7zU((9?_7~aN|9(E^G|3HrzX@GS@A}?DU_4Jvy+PUO zjI=wRD9U)>b{@CYY3=mz*;s!*?w;`LzlD7^BY(dSNyY%HyO^mpedqWJtlV1vxoq>r z*$NE`=J0k}`h8r^_!t(D0*XXk6!mv`v@h%_+bFDsbgd=M7m(!!Xw=jP zu3{f}47}lL ziD-+b-^zd{5izWc$HmC>{o=#HEH9y4po7V3P~>L-W%cAUF`-X59N`n3e?1MN8SA2*P!i+yeo;TYcHY!y zy>}gGuyTwjBCYNAOWMoZ{-1NM+t5p^_q*}5WWu3>dJI zP)Gc}k-pG{bLeJD%jy5Y~?&J+ALyGuFlFH?o&~-0jgn z-gC@xpG|;OeX~eHH4RY$(}|AC0r4 z4>M5dH&g#s46TSjP$uPZCv&pB{|n=0g@Z^EUdFi7f=R^2unr112tmZ6G$8|*Ml?qm zl^`Nf6(Aq32nt)-NM*ELi;pLQsmP%&RibYYlEX$y9FsGVb^In(TKv~9;kDOB&g57k zCXKC+3@@ul;z@Ea=%t8pH{y72Z?@J-{)JH_IBLrfZ6j?c4gI2RVWR6O%b;|E9>NqPkxN-;1&AggTWA}%Gu8hb){z**0@#49u3hQR3xlJCx z+jou=zWwJwV98-HD8Ju^R6r+4BV@83rjVvmUlFXkL^_PR?@W79@tTEj7r;n1S`{gq zq$jM?yz1L&IQ&7{I9EtX*Jd`bMT>J@gw2V|_b%j?at;LNfuONy^1$cAzVb-K-Z_4Lpo^%jH9ZiXt4RKq6KL}HHh_EE)q8Lm)K}h0y!-R zQyPC1sDh|rY?tsglBx{CCsqwYVgCmRxgo?@N(jZDSaErgE2RKt&BNtw3mvvu<1MMeEyWHWNVUf)0IWX~U+3KYbLW|sCUQqdrHezr#TKNU zM#SK7&VXDuS>#;(J{#J0K!5)RToUc~iPwigxj;q5*!UvaPy5c~-``I*^gi#uGcU7l z!@b%*h&kPJ!`b^t{yj-GOZyb0~^d7zIc-)}fsJ~o|*c*-& z$abdrbY5qAdt5HqUhA#T5Iy^)>$*ub+!z=$*X=pOxj(GI!yU?T@73tzJCzv zZ8O78B!dc0S&&pN$izJ5p!;7FSp`=xQ?-b;0 z9k%bR46dU3$|E0Q$9rbQK~;z2`D=&OTQdm2CqpdLlCgdq8)HuJnAJP7ArH zD|w;>Rg~qQ974r@$I0!%41k4JTEJ(o>yVm|5jx#!S5vglleblCGq7zZ=YR&p7b(WG zFXme!o?2jZ<&gfs8>R$7g(D40psSmMIoKQioJZb2sD?4!E=J}&kw_SQ1LOo>4lYOm zhmA(p`OdMRSN;?VC2oqM!7vyVpCXTcyoJDR+Glo?fpY>p@q<{c8G5XUrm7cUlBcEP zn96yk<*4wqDDXDrV-T@IP)JfAqJ*%ka)j&Fk5z}&S*O&`wSpUBD+C;b4L+ecP6bHR zndl1mE*cIwK>Ds0R~HVt6Aj_BEH{{2p;?}0QYN`!Mk>3ki-OuVvfG&R$`Q}fKEAgb zd;e-oD8$|F4jW3o)Hr)YE>0MvU)fZ3DJ8|0A|x(Uy%mchAGQyrG(|FF70M*9*GuqQ z;q|V1lKQy9wBBGpwO8T@&)^}io5+yLWjx|S4(JMZDIZo3{AsTer;m?RLb_Gvcm(GR ztgF~^ha9C?R*cyW_*}g9d7N)g@w{l>cPF-|2Ny3l9`}`4Gq5poVK*lBGaysP?>ME;~(_5*#K{e5F-tOcKbwvGwjSgB%eg1{lW}eQZGP;A(ufzh+H&yPND= z%PtLOZQfUh_xSYIFBZw_`mXtA-6VFV`AzEHBfN?p--MWBPK*X;%Ig7>P9^;a zMAb<3Ed7eUR&i<@JDTO2m7Zx)cy8_5~1H=Oq%j z+Di~ekH{CXedf`)<@+jF3}!;pwQI#$nlD!rPGz6WYe}|>qSJ9 z9LpxB<6US6JK)Xyx1-Dq!u**#ka0&4F^TFbOLPyVOc0mvb7ddI+R@k832uZlli0AR z3vI(u+0$5g4A1HSSdfQMN$_LvOiS*~mi&K~WX;)40(Ta5`z|DB(HTF%oqL;vIbJjh zOJuv@u}__(IOZp@2P?2V{KLa!z~B>DEi+rR=l6@lrpU- zV(BULjAx}9ELou%j4g?M*YHR^gLiZVsChEf=~7fGazr+^7rPLo-5?W67xB6SD83w( zfxm$IB=@#|15FE@^T-e#N;oSN>SC5-6;?bsXh>9&{o(G5S*90pYklKZkg$U`Qid7R z??C53!4eS=ymlgzN}utxl{Bex46&^smTV~9Ex`>LV115$YLpLkq^cPH^{j60aJk=^Cc)tn0nHAr_uK!ldQH!jlGkq4( zpU(Cht-lz4&OGWEPX@h}U$LDr-=l*b_TN8QzF1Wk{D5tMmy+w*I;o!}oUwd~4!uYo zn%*a)|{6@t}NRTdyaD}zciH<-hUjoU{Ra)b>( zM+{J|WFER-cb#OKvqHv6GHqf`jDqV6<0xGbqT!2ASRxdPwn&Q$;bbphO>|{9h*6!3 z;~62JZdMxAvvTJjok(2wtCyTyD)MV*@`XPXewc*pfg{RJv!WX6kcx3VWmjT0$Y2@A z?#0svpsEJQbq>C9idT`PC`17)iRq|@@Fgh@{$SC#TNI@_oiHiMA*JXRVW3P_BqnAM z!4WgVI&Y%SZ7CM;shXCh3Bkyc?<&LN>hKte+s6T2ek9HO?BJFWJ)xu{9a1^j&M2@& z>0^o@G1)!>^WC#%Nu)#~DWq@V9kgP<1vBi2~=wE3`&$cEYA(V@4^Ug+;=-?QRjIRHVQk-VlT(8E&N^Z`g~LFhVGZ z01O%|gU>;>f_OHI{4;YAK5Yi=6+wJ@gUUx57XqY(hIV}UUBqfX06|R8E zn5n<21eK15e@E^oykZ$~&epzwmARm8yw4;ckbKJQd$^EyiP*S{e19&UiaV7V(-|dl z^$q&1>_OK0aq|;I&F@g*<%Lce2g`Hrox)HVP~tyWo9O+3bF)8#wfC_28ym9jq5fSi zsyau`Z7Wo74EPo~0`BKlulqdyE6bZ_Eex1HFFg1;eI~haj5yi=3mI82orRi{uF5Un z9X=FWJa14>6|E>!AD84awhz0X7z3}5ag*iUnp(gug=+j|+?TawQ^ z!?v{TU-HUZkh$8tWH9%EI2^HE|53p?FBa)TzwL;@TcCm7G!sgA!yw(V{A^S$sJ$j@ z@YjA}9>hc5y`WbIr52D$Vf_%8L(MP=qCj_}S((q>XgVY**&;b;f3;yz8S@0dB~_C# zF|=A<9d&#;%l;U-B&hQ2Ry6>s*UmBPw(e|MF-JD5NihZ>je>;CG|W~^6UnB>d>~2_ z_7G&s^!QNk*^O3-j7(vpyvk*W%`4r?6wsNlz}<8ptJmqst*t!Ajrb{HOp6LGr=Qv%63%e7x3&cD>| zaUV$0Ob2%1&H!c!B$cK#0s0PI#e`EzdZP<_iCJmfX@VpUT3RV)SQ88fo?`F9BzD0tn=)J>g}8PS zR27n0RxhDeGdx2H;LmH>8lX$NR&JVYha!V=11Tn}VF**&`Q5Q{h^ffHPPgYtE`p-uv}D z-_}tFi2?r^C*`v)4;iWRw8_?Wm3`UAG4`>Y{$IW0+H>l$Zw%z4_gvj!1O6T5S-qr5 z{q&pqX6krhS%AP9z0>abaf-i3)BxB-;+MeS(i?7}RT&p*M|bRJF9L7OOU)mqPv@pr z8>5iJ+4Ushkz7Y^3U;&Y&x(vaZmJEP+E0phAhn=;_Ih0Vflc?fhAQFQxXVAm zQ9SYSoK>g4h?Pw*2t*rO$d}|zDK^JKvlU=h*FyMrC`UKj7rc7DlUbi4$Mw>(FqEJTeexLQ8 zb_l=Ux*D`*l)^FTVh(i3Mw1ZZmrd`~OCfLww4exE;Bqj#8YczW1ci~k9{w0guYvYl z&YPogphkysfC?N9)nGXEAEzm$Y@-AM zOhO69mFXz#O0iM}_nwH$LsN+N?di+=U_ir=HZ07%HcjcgWC>~9`N zo?4%Ey^sCzTHa${U+>gPgA?lMt4!?R^6uqHZGMi&zsEDmt+!i}*R>hFX~~dFX~APu zS&swYxi71bf2`YqF^iiL;8(AmM~+1M%3jxvG+w=*9{Z;I>2SHO*Mxoq>b^q88iVOW z*vNIWOn6P_On+;;5lEwFk7O+C3H@u7nx*+s7hvxRxb4*&bJbp!z@jU4v z$XAGRtvXgAd3Z9{sCC|EDl_bFUtRr+=;MWCbs_Zq!=@*8f?7dm=>4dB?@xA~fj|eL z#s&ytQv1shT(K7-p_3^Am=hBlUr}9~1K?o8Ix`*+B@WtiP|N5I!IFkx z%7Sw(vJXY&(e>n95kp7ars)eD%fi18sAi_wu5mE$%mA6}4O1dwTv@Z!PE{sWXW+Xk zx=}UTeIYp|_(YLP>owVTDgCgbMtY+s6Or*^OT-N8_!k9(@d1;Vs4fvgWSTjbMH4i) z|J(_jozK$~b>usB$#ct{1nsc$Td?4qf&Qbn3r84gNn!AZ6;b@hcbN!H+VcP>S-0ep zl+>t8^w}l-zItO%CDEmnyMqQaw~G})GAFD`GOY3yRFT*mK)8lvK%bdMaiZ15&R7_I zDL}M6DR~5@7dCh&q`8w(Nn(DRZP=er-r@Sh1z&GAv-l2o>=XiYOE`k;~DnnZ+nlmW27h>I9>$P>xs_ES#ZU zwMkM%&gJn&H?ZRI#MJBh2Du*Mo`YjNO7NQ`JHkWQU~Kbp7%7&Ki!W%v|2b?>bwvVYG;7^Ra~K z=x-bCgb8w1Zd06lCf1Ne`Z z+FA&`iBo64DEE(^DPkt+b^F{q-{Dj{lmFUA_m^`2E%c8u#7yUutI76G-pMKg@)AIQ z&*rmi%*6Ffj(A#s)_-;Ht;elIs>ulu-N8>ZHNPVXyOR&_&}Ux+M&hr?>2K%8XkdYE zW~P?;%EnxG_XiG2+TIi7?Z~*$#alOg71wt;iCE%o74&3Z9|$l&1qlW=JeOBn8w>V} z^G{DtkNNt7Gy=S~zTnG`29O#8gCO-3D`e+vXNW06>hRY8c1fmPukv}9UK-Gp5?c_h*(PNlgqR36=Y z$b;I*I-MVR^kdG5*K*>kQrgGF@_H1yv)~?yh!VTg}*9`tpX2I8oCJ= z3o0^fh9it>5hdmA$I5%X59Hv;cJJsR`%EG~*`ZMV0;uECqlrdN)} z1G*gMyX!saP#eomTVO#ZT_Lf;oTG*;N!(g1s$lOlQiRE5F5|UANo4}V!0XXn-1(D7 zi!U}6H?RHq&;wt z+TpGB+We^+M5{;*=`0fodF^m33zQPx8?Y=TK=Znom{=@IXURX)tT_#|A2>SwT>$q8 zJhNZ3*_4J8X}6SPaLcrm1ovLy%_hOyLxOSpPk&b*Oe1)i=7g%xkX3D<$W|U_4g&&J z;{lsL?9_v^JC+-r?c%I1>N@6zwRp&*$P{gMYu)N6KznIIB#_Mr<*4p=s8QkS!TT!I>j-{^T=d&OAgw=rOY*EsgGK)m)caHUNWgwEEH(w0=F__BjdWz z;10S`&|F(E=5HN^ONfarG1$K!p>38oVrH~&G#qfGZT{!4_e|!Fz~Z_Nuu$jyOcT=e zr`-JRX2gDXkbr*!^|Du9e}-WQX=)qT={h>%|06!#hBVC?Hh3qe0X6^iAi8#bWl|W) zKNZEWY0<=3r+ILgR?l!>+QJ~e`tC<8KS*|DUetG8b;Yz$T>$zp%YJa>}pc5*p`|L8yZ~C?m?8B`r zaV#Qj*>`7R<7XH8OYRqo!K#+td&@6hAgyPN*OOq4pby;#txoQ~jI{p4pqdR~Y5xmG zeB1bbrK#0%i3{b~Y>ZfhT7b)*17zCsdtLzbL*bB+oBua+sqYmje^A7^13?XD@L8{8Iq#cZxPXVPJAtewhOr;RhURmZCH2# zJyOYONWzPw$s&JQ7$tond7;&PqP`ixHOfs&gCq=OT9r6a-NZzWLp(oiNu{SNL5-hRL&D13PY|b5UGLG;z23BQxo$K{@p+zz@)&A zikE2@TNGb(5#R-kZ`DM@Md3A}QGU3E4#s&9=V;mX@6BneVk0G?;*V06Bb!7B&u8y|+qX4r?%$ON{oH*E()Wne4 z&k~V<5afBRq+-P71JHxn5YA(^Y2V6C~dInW;y9TBf$hATNoD5 zL*0;MHXriFCsaA#(PF2MRlwVptq|8}A+j}vGiFUK%r~=YV5dXL%4QXa9A79tUF%Br zatzCbyS5RRAX2Q%YY&Wj^L*1@O?GJINJw90oFn}rt&>Jqq-US?geOL0@w-CV5a5i~ zS~S(cR+{H9PvdGwGAj)!r%dhAEk^CA!WwH_{#7YC8RJg6J@uw~8RQ`fA!(JJ#|nGV z(1+9N0Q-2|mZv9eM*2$pNzv2f2n5(yfEACZV!8ZkCm|NkyAFh2^KnN6zYp{jTJG3E zKfdlXKjy3V$x@FUR^|M9_HW!C7+MV{P>{>_zLNrx%#kmxZiGM2t#z%$m31X@{Eu<)`nN_>z@lzi(Gz zlkaUmzSu)A-$YG;phjP}pUZgnARyoGrTTJ`%hIvS1IGJ|pL@n!xgx8mHD32%U8bwh zQ-6|y4~P%XCn}x$b)M3qgjW#?rq2iu@2Weg9ra9`^RX2hQ0Jp`^9F}q;jfQlf&cJR z!^K>k5ywd&;W#?N|HL%SdoSY)M0)M*5*cI{EF-f*gsgIsJ!n zME{v7XBi@y0cn7WlThT3X&>xC@$qGnrJNq#*FXULY;grI1c zOp8ka5QR-H@?=#;7uqE;KFI4WMRl_)OF91T}{g$Nz0qH-G?wst7LuB zLr&`L#^4lygOlsPr#)d6DP=WiA&L51pv>F~c*A*+2|qBi8RP31&2zZf*NXAWBXq;j zK|7IAN^BOg=(`q;!vb=`?s%~bS>uV9`_1yv!ad9y>WjlB8p(t~y!7f$yY|RRFPc_u zo9bRAsw)+=6HAteZiZRIg(AmgLW?ls9Ek7qqII3YCLe!FgdvI#9t6p=*9X|0&eJCb zahDK-(z52aIG%GOWk-aobiZ|i(#lSkGiglhX)&FTb5-~cT+J^v1o8lY$48Si9%`OD z_v%dDg!8o1U-PzT^=Iv^(c89a=@EA;WbHAohB&RUQ-710T3DB-HTY>lcqBZ3j0d*S zM24YmSpbUH$gd5rh0c&Mc0g-~$P-`!GWLQER=npb)QdPewcUTSxJ$d=E zc0UZx_V(Isf4Fod_sN1zw5p}mbiwaM74N%_-6^LWJ~)Bx(=Oefnu7FAkM(f}lE1A} z1hri8-#^?=(}qrzRdT-N{}Ix|yG-{4e|KLL{?~rqt?+bP0d~FjAOAc?>H$U1XSrD~ z&5&((8H>2?%o`m$r8v#Db0a$+Ksb5*7f-Su{fEHAF9FMhwDYYGkkrNOWx0>dS=z&= z=rwolkC}LL%n>Go=X@5Alh{<}GFSF*o-u<9zwZZW_e_t^G2^Y)F}EeWd(~mRZjO6? zFIq^yy5Z_x35Un0)J$i8l$r;slsyfDKhPr^JH+?oKWGE-tW)rS0JB1S*gd? z%w2A(i3_A$b$~QKuJa_5wt&B7*lK<|2!=06OR(GI6QeP0Kz_W^V%Q%{B;&LMPBKM= zQtLuVs-)au z*n?TMb|e6Ccx{#4_hZWf%9n9>bP=__vcy4m8E?)7HIqBFhltauD~MLI={!$4r=3E` zqy|OIVp(V~}ilXF>fi6R7x_dLKuJvYc;Vz35<8vP%ATtr|+d1F8yHUbhOEu z*jovEY@`b4DyKtfYHxeAJ_&hj`iV6NoGrt6jMRyoFUyD5iEQ+mpp_cAnEY1_W;gUC zkG=*@7;z4ftXQI2rRnBwz-!+K5Yld`o`GYuKz_aOhse7}5SG98pW9|lAWV?_IOfHcgicF2W17}70WT31l33Z0ixDsh~ntFm!f87BP%qm8M-Ky znS+#MBu|q3e|7Bt{Hg?0+r6)ogDHVpVZT*5a#vwb^#8i5o-RP{e4rQsE(uZv^muKu zCc2LZ5lk(U3WZDAILtdoai6;hvLQU1DoxV@iaC>1p}5LYR8$)mB_wq^721qxL#Qws zd}2fkZ4`I(r!rZy;=XH#TOL$Gr1;fqbv!*TXRgAYv8OoU`CMG{+y^Jx{PM+0FZM~0 z60bsBwsRqTn%~Z`eAy1H{$Uh0FTZUGiUgR3?Zy^mTE($qSgK;3G=v=oZtURDSb%1^ zo)*xYDEGR#nZ5i|3pxvF)q0!YlQKmTf7J#=Ce#*4Q?4RN<2ex|q0B(~o}KRiZM2jQ3&6 zI(-BqT}{Bd0sS;_qzmEqlcNJSuj36*n)5l@#q+M86YznPF~VyfOq;CKR`Z_puDdK+ zZfo*)88JFAT+9HAPP~fn91Aaku5O~kAc#$7m;Z1y+JNP4cMIITba+J$Wy1(7ZUyrs}i5XfJNtxE1 zZ{L}NEW?${QKA%xlEkdSP(q53GNGbs60wa5E{Ox-mL$dyql2t3O3roRozR745j#S< zn+wnA?S!IQrn(hd!tKH}fQ(=>KEkr?h%QeINMWPp!szVyN<6xh_L;z$X<(`|YKcEa zKpXFCS83#j{ZGl!<1u1Qltv_ZJ zep0%&c%7bc0{<@(lQDI8Qig)`9C6W1`3_WAv%DHilog7VmZAbQa2#0;%cR>AB|<14 zoG90Lyf~Yi#5%u!!)%YJm1Mw!piEK{Koin@l7dO2_`QZz1d@FA6_bt*nIuCiwT~Ja zl&;R|2$D9bP_hPNkY2-ob_U!QJ^XQai1~?iZT`e0>K6nz);^hVMg73W1)^7x8gQ}_ z8I5&SY$IHd?Zr_wkr?wPR(^>Nb^SwSa{OGmc>sgP6HaZOFV0|| z!U9|FYGhzinq9N7uyk;{d(+*(2K!PELVs1pd1STqH=7dWS{Ai$=+tFkBUS}BB^i)P zgaP;M6r_Z$%^R&!JW-kudp%`z+P%{G+~NK2%m_m9aZpnd=Ev;&Q4ZVoaD49mp0&-2 zH%?wCq}OL*@MS(0n{$^TEw1(@PI?6Y^!w#lRDZ*w6HRWx*TZ|e)wXGyfIA#PPi5!+ zodBfo7~vfnq&LS0#(g`VC<1CjTH2L^%RBq$WbF9;TEB=t@_qxYB zhTi~CE4n9w*VZoKiL?po}h-P%-KKRXUou@WH)u1X$b65gY~bpit0WvlZXI{ONC3xeRpVbMC4N1fb4W=>tivm7TdYgJ=>tT*1A>q z`Us64)Mk1wy_-?9#9VZCG1pFZm434B4k;@I6be?LJ5+7uBp;ll&{FIJmF+OD(R%WB zsgc{Flt#0px4JL*xi_MhVJo_Mk+)mUf0uAz@%b`Z7l{)hygC0%kcr(=3m7H4Ou)HG z9(bc10sC@^pcbkk%TJMDrNW9&4)|p`PfmtbO=Tq-HH=&r$Rec|Vp2>XO?_x zGWc+SdEY2sSCb&3Lbrw=DFG)=xsIw+^F&epL?KxVKStM#7!PFkWWdGJJT1nAB&`Jh zo5X^fa1N2qX6A3N&gv$cxMC2cPCd^mBp=j*_Hx8yf1Rzi!^tE`V-mYSt(T}XEz>C| zJUFPuj9f}(or>T2M?|KKuB6@A=K5E?y%AUKrFT+H3-f6XbNV!lNHQ%=MYaw{7e%Yu z(cOCe>xNdw$X#Bff^^BcG48f6M{b%An7Hfa41T#PFdb)q(U$t#l`e09o<(J1E}5Ey z78q)!&WF0gKFqi#w}n=+wk}d{!4Km@As2}L7I;1|D>6}DLG?(F`ps>>E0P@eVlca0KoMkNw_iH=1{d zdTtM)!Tt>JFAYS;X2bMBGOW26j!%3|oEZ3eZB(+ie~-NwPFbG$`MwYGWUk{J{VdIW zKRjv)6wugDzX^;iDY@lK?~)n*FBiblXC5F~*ilF0@FHQSi9;ZP)10kLp09f@HspCd(9Y+2*| zQB)5nwq=I!(L$K)m0Ms_qCHh&vXP>;nby?e3wT3DCWu(DN1hp4NvN*%ek815YGnNt z;;h8AdMLvwgO-rVbq?c5TM>pXQyipHT4K*ituS^mUQR?~o`$1lK51ePW&V`xk?&-0)PqLhdG6)$-~qk=zzJ8}o>yw81@=H+T$TT&zZzpB15!Y$asU62NsW zn~u{)V;J2QQ)(sPLRXqsPW(WPZL4kkb6ca*wre_@e#mhVkFKkD+6Ht*N1*|U*HRl5 z?P1RP#qTR_HCI~&;8b0m|7dl0q3P8*cc#$^1Yq?GorqzE;)hjy+HuIPF5Y+}i-Z92 zxBDMmAcZoF7g{3>H+{JRG1O56e|Yed_PRJ zzNn1W2p+9klc19pzSEuY!iW<+2)m=27#RKUW}$Jnb))jr>xG=)a4}Ga2qz-I8Z=RV zaUb9}R8qQXE_>j1*;FTK9wwfog5eP##0o}(N)X9t86m!-5pJkNEB_I!9dl-muF#TdkM$oWkO+zCbVH}Joas%D{{bUG+`d&h=l92{d%JrQ zGcd@Y^Ld_r`rcc0>sHkbb>8Rm4*MRoii29#k@ai`CL<&2M&e@Vk}(+(@v7_!_H;(s z*Xv`xJIri%kZH~sBT0@B#XN6-13TB#T^c8f6dMLxcxt$tm80$aX=EYy^v`2ey`9K7 z6lFwC#B{4NdpbjOIAyBZXDBY2A@QNsAsE>! zOW3hn#J{EbnOZyL{+I5%hkIXlDeWJ4e6!!=Gv{Xc$Yr)mamYdchbs@+n=235+iGLd zy7RKr*y9gB;Uizp@R2Xu&;L;;-oUTVw7}vk$M?RJhrbH_1WJ86TqeYtUEbvJ53I@RX46U zeF~s~sg$s-)w%Cq+ypV(0x$o0?@i1;;(a8p1(Qos_r)El?WT~mwY72c%{TMZQ%`aC z-FHv1Q9kOZqgb?P+i9e)i0WuTj0Me9c%#!mMbEK=bw?rU0p3vR{^i-3es?rTyB!Lh zb?`<*WI03*4BNqQ3WiLgt=7bGY~p<-Luk(6C8XlB6Ze_#S!UtRUAPBZGt_>mVZ=OlhPATRQ82w6@1Ow#mgtTJgP8 zw*i`C^E}$CMPxa&j%y9-ngOjO5{(QKGQ%-(P9g(Cl2JI-xS7|J(Dpow*x1Bs zPZDy1@T$ygqv7KlAV3{?Bc$v%OTZ?Ex-_9_YX1PGm0^c-h(8 zd#UV|cZ5>5yKKn_hWAn+3glN;D6I7uT>#bT2JczOuLBunSX1p{xI4>?(ir2B&uEy% zl?m;BmDSZYeplO@^&8p{<&<(k4wzmW%n**shC;gOM9?BBAU7N^SH zWAk}*%`8fP%Fy;~Xz9L6;EV=oxUqHJs<#RJF-6O=1gEMPJuoKUQ6(I1K}O(>L^#7W zoUWWTSW$u~FVU_IiBzE=YSEZ{43R{1gmR8YMFQSwt>qi{fwUVdCdg%1a~zU{g)4;<(W@2y8o9r_7Cl>eDi*s`1Pe+@ToTdcXHR)I~acQh41tE(=OfS z^6%eY=duq!(Y(LJ8Jhw=PCe!Q+;Efqt$z2)@36$Vyt(Y`ufBoB$4mt(?>**9mN;X4 zJ-%hL*IN7e6S(ocr?Y7I)lCqyt@7rb0vm7I;<81DJirwydK{Xk~>e37gMYdPby0k{(XQ_4zs?))#Kz^;k8+8cRwX&?#f=s{}w+1lJbZd-ngCLa= zmY$T=P*af6=$uB3E8H>r`x~kZ&rF-ff%!G$MaYQGk{2O48KW@x0@mm(Yod1U9@&$k z6EMdgWPRMmP+VZX-^WaM7*{0xZe%~!*Ghz1@$kqjR*$qY-dhA$llX%2Ob@4)nznR$ zcH%4}P<2CQ)Lz5lj6?+nx8J3#^SBZ!GX%K-2WJ#Sq)|Z7>f!{Nq^_u?V|pep4(4v+{&NId-1DP z`w>JAu9GmMeUurQ5f&z$rt6>U0bQ;`~ElW`%Z|s|NA?) z(EfqT`O@z`%oW#v#6JG{sS5t1T0g&~O;Kr?w#CQad(;y=`06_W7=Ciz3*OhuE-%7Y zH-CK1y+2^~5tfQ|)$gySdy|er1H_zq%H|VSi{lcfF#&jfH17<$*IvHGj?32S>9)H$ z?Wb>K$*p&8_jCS|6|TH#tINLf+$=t|z&f#AfAN0Xz0Dm0Fku*S(@i&V*Ijo_>A)O) z^wGTKEpOST$o~~l5_B<#s)u#}3zG)y2GbC~gdxb(bh0tXhY3M^qq8AXN>UJ7ic&*U zA#68B1R?(VGTJE;sO#-swQ#;57HmL!l^vjD*AT)aO3Shkk$42{g4#65_6Z8>6T(qR zl(&;N*}=sArVB-sH^c=Ss;feQNE9jnp%vPJs69bv1WwsHU#_`tCRfaDXI9rRvkSwV z*!Co^%B&_Q4FieGEu#l=|KJ>s>RiEeZ~Rm-O# zYpLc^8jP0Ix(#7TFzq4R`4Pqt_{t{I8*s-HRH&(RD~1kEAd?`ZAudXyX$eE2$BbS@ zRCKLW;r7A3n3o^qgw7{vl~qP`mTnah7@OUq ztQ`xkP)H=cfU1c=YW8%7cvI)20CcD_2eqwZ`Nj^))eQF!&qWH&8(JPC(;6|u8K;_e zSRJ=9loYt9vVa-hFt5s3%iD}QKqcexU}-jEL56vyA+jpM7jaV`vwCJ5&sJxUC{3s( zPDLOcv9*uN-*mP8%iRope}CFP@c5L+um9m3uA6r@U|8aeamPGZ9Q(9?;BmhF{VM@@ zFL2r=Pf$8|%iCW3uP3qOTQ~E&a~1*%S@f_K>~E^AY2={n_4;kQgbAF$^2aQe5_aNU>I@Xk-alYf*Jn0)DXA7;rL#`po}0uzAdNAu2T21QP;$sLKw z9h`F*YcBu9({JU3>ao!F{2h{=Rk!W?2_F3F{!?s}x7L06>SsO-SXx=5CU;>PwYa*B z#gD>?U!R(J^L(}40Oq;po@4Ri#jIbyo+FPulJ0Jch97$9A-?skZ!v4uEN;H}W)>`1 zutPhrE0rtn~9Lc25@m4yZ+>AP_dF^V&EUg$ngsP zfJ@@%P@&z1b|(_#Q34TK@S^AQBi^IjAZ&loPn~ndrqldNNKZNv zakU%7Y=3FjAOmo!5a%S?cTkb0-d|=4+8iE!< zpat4DRx6lK?C*LcY`12tq1yzbKn8+f)MLGBp~b6HQgt2+r!!5BlMxYzS7}qX|5lCT}?+#Lub!IrjjO#2*qb^(#)1}5)ya#RtV?6{_@lV)vuj`z|A6kbmjmyd^4JY4 zPn>eU0baiJyAQ(~EO;6E{{Ecz`EHiX_#@o;dY=9Zf|yNfvhJl(lkZ=3?UE@V=BuCi zFrWOw|83syKh$2^zr6fE`PUtwk!|+~?ZY4bFb5oP0DXOZ+3eB>h^+5T7F1xv&+B1+K3tkrZh2IxULa5CBgktnoXl^{rg%hWV`z-lPM z$mXQPaoXi*4D@Bw>5MSK*)U9gW!cig47S@6YGi0gd_|JA!In|cCCS-fN}bZkva3gN z*AK(!xb2Kcfyw&l_997lE8!l~NV;1|rnh6-TQK=7BAXsxn*Y))J;^Ce3cEdR>@hcJ zWDOczWB(_IU^)upNfKA!RIJH?j7?L|1K^aSG?OJE@da^K;*V-FLkTi6s8FLlE7X^1 z){cxcPSsjgi&!Ir1nmp_k(gX>U}2WE@a(7&AjvA?Wy)}aUbFBpKlnCHIIYSZq{&ITO2Mg7}X zG7^L>25;OD7KHu%QC5rC`b>qkXEbgF#^(t74|eH$l~1+X=2peolzvqI}Lk8O5~qX}k31l=)}c`>ya31PdY-kmTu zANpQphZgRrz!*WPSVhmRgMs{piO!9xTHqGv72366$f?(dyVYo^8?`9T(R4Z!p|YEFf)efRZbOI5kfe}Bj7KCb)h8s@zJ z9NItdICI{A&XjddyW|PF*Iv%(TTkM&_pIhUUpRzC?Q@!c-@m`kir4*9^Y7H;9G1-J z+~$5=^}V-k@$o%wI-binUdZJeFJ$)Wi&+25CA{wT_cizN2PdD)Y42Ih>j%FE!1vz& zPQLg4ck+|B9*KG2isp8%`|KLN^4zQ~(!^RW*^kBZY{zc0xc%@qOx51xX7x31Hv%np zR&5U$dg}lDqIr8VK-p4Vb?uVo-=_8EuN*@)Jc@VAA8cmou&vte4$Pf*-pRf9-b<;p z`N=MoN?dZuB^-I=k=y;kyJ8t35Me~zQ9$}01YxRU(KMRB#>958PBI~GZ&1TL*Mgc9 z@Ce7AUIERni`AbbP0_rGtsX}88?r$}eMXVEpm53w7%PgD+B7Lr+LgHD5vsQ`VG`gd zo9mMGG5HK}(FY~aj%-q`ga%P?5wQ*ba)+vjY8_J*7PJVF!dZo>2MEub=opbYk|{Nj z6Qd1i+mR9t>RFs%q!n`tV@(8PkRTFGlJk&}rFUuHU>r%9mn0c*GRoRP3xQTvzv7k? zywNxfw6xpTUP}8?vMI!uK}=?&A;~zzIR(NH7hFv0?51k=*i=11MjBa^bHNQ`9J+AfSM?Hrzf zxL~d8$7gz!R%-fYWvP2Ud(Pd+x}g?~atS(oWMEMB7~@K6?JjW+GW~{@6(N=BE`9Sd z=uW|H{d@Cdb_P!kbu%kF%%1*6ToKbMYt)U)o?bthhM^`BjV2?U=52tgvDdLySwjj# zMkKtk{Zam~d;vq{92*8&xL41^#FE;69((0`d1K*mT7@R3B!SU98I~B+8P-Q_jOz?f zm#0%nJQn2pnVzwLF~~YJMho*YgY2E_#gj1)ES-mnc55oPRKMlDyyKKNaNX>~S@QX@ zEe_}x$0e40evCWcZSR-Ghk&n7P^&J6X8Ozb;e*Z?Z8uE@MGtVg`;X+`d>G&P?46wP z`PcA$HaD4h_BV&X8#Xrvm|V$>Di_^yHP@F$AVOlgpA>+r9pF zcVJpuTUohs`-ZlKMwiB<9g2oP z-gUtDrvL!Nq-`{+LCsRiYHkKc$gCV9x2l4wCzcibpQG&25PkoP0Om{mXo1M}@5}r3fCDR6kY=SYgu^O4i zzNg1!0-I(pB8>{oq&yhVo`ZHJQOUE;ZPLyh8fj@`Dlo)ZNtm}b$YA%|C_5XOWF=wA z&d>?1QMJfAiW!5b$2h}P+|fF2B_{DCL5l(jD$s;29&z45#2PhTM?^_#GwoU1W+9N3 z09lXGp4Aj3dA~`)+g)3(?a{xy)b)HFl`SoQ^rm$?1YTa~b9UG6s!i7<1x;826&k{# zLd4p3g!3Mv9+BG^;?xW(NQK@7``kwN+Ns#i4w(w<8xSA>&BA_Bm!@6w+3cQ)%GuU^ZVp-maH_}9IP*nOMLf7mu&Xf z*4F*ppFd5o@jZNN!EedG`7jm@SWDnD(%g{`eCQ_>Kli`Q=WH#|u~8rR!L1zlHJ``c zZ}SdME8M_og&VfG?)qOYVf`<+?aI}E`xRXFm0P&(vum1}F26q5ey7#O87Xyc%Qcxs z_kqJFR5+8}!zSO}*>%W_J-OnSTLyZYc4GFK_s6Yn=haJ&;MGekm2dI-fgRqD?e4&Q z@Pi-Z-S2)k7hilaC!BCXQv=i2*T?UF|9igp#V_*FkA8HAcVL$)*MS67Ii1;c95C9t zY&8b*4GLI;PG&SFiV?1pS`w!}%yB$5Akj?97HM>5CRrDoRAf)3hKgd;5V$FL5@BRJ zB&jgJVe>4~>=Kj95KSv!guopO5Mhi-^(JvnlIgcU_A<0xBUQDng(UA%pHalic{m$} zG4=Ggn>NddJtsm;)%P?yFw#1enFg3Mc1BGk_M#W(71Fcfd>I>5J)K!hEX^T1oHR3S zYQBS!pdA}vDN7Ez)}WJt$yg=6h&7^8M-?o zASH3ZwVIbGL4|4eDb{2+R0&&stB-LVsO{v>*I!9(kB#zQs&<4H_F_TEqc^R4#dKpf z74tuO#$LOrUw`3}p}+(Zp~0ycw1d?$`idy;;EYIQkRT%{tTtr&CAk6no7gZGG13MS zqpgEuW(cB!B4`C-i3}vhF*r5*JE=W|5umCPqYSH_o5m_RjeFyTkO)jBvD22);1%q3 zA)AR98_eV8B8(Q~asjcH3=9`R3wmY_b4cep7GyUv5EUpVJ`WGh;^3CG)V0h0Sxfoo zol&A1dpy0a$1;s2)G~r>M~ygA#KS(KtO!~S{t!e3iBorpGuAra9RsIoC&u#Y0-Ui7 zVWPOZZyx(~^zwn(chIeBL1}q%9>NL{d%c z?}bLv8?->#A*?Gh9W}b!#~7(*Y0K1D-rvDJmH8z3p_aC6)NxU^7|5GdfZnMYEeg9$>wa;PXG<(1G`W^uOGg!Do`?uWy<_ll= z0{MKN%PzZ&PkiDN&B3=ZhMt}tF1+wUKKaQ{?$C?xYNb8L&K^ZECg&rDnb3qZIxR3k z2TMz2GZTQN2}&kuVx&O08QWz^9m_-`NYZm5(Wz)W4TFrW1C|Iv3k*_$+x?z$r(>1s9Qa(quKX z=RFOwOtNYMwC%2~*5y}UyWMVNe=W7MK+L&UUHg)TPwuXlzp{OTL`$Ml3SJWXTWgg4 z?N3S>#`efjoi6BjB0>h5u*D%NDOBAMX9S5SaH|ls*x$A&FA)i31|Z2Q+lh{a?cf+| zTQ6dpcU762kn66HB$BW{hc~@K966TX3q*ZcR45o<)q>REwbjVy0`h*ynvLz~5sz$l zg*{3`%<_i;XmcyLGU3q9HSC{Viz{O4+T-5Jo@gUDzVjLODfRN$$PAu&b|%h zfQP1T91;ZUlN^z8=vHMql%XJ8>L#SBeL|yHAGcAIb!v%=hy|HmMa}aGb9H<-;(*rm z4ApWBMtPpB&!j_EXjj%|*#!~=MHx~t9w_LL6bA{lyDP-2J~>cEViD6Yy{= zzkbUT+y)#qXDy3>pS<(8tUh8tytC^F;L4}p3c%8Nm+gnlWk3II-vAx_yOV&d$_LLYYkr^M;=(H$ljl~obG%z8se!XTw z-y)f0p{%SV!ZVgzlq76c%9hXE;IG+K+vE78EvqX|n zc*B++g)tbVh;uH9XC1w?uaH2JvBxH{mcrUqXjh_@An42>k``3&ur(i$${s@;TQD;@ z=rW2yrH*AfJt;;53K7M)Lv^&1we&Avk{!@Zt7l;hQNgi#ln9)f?ck^o+?qzK^g^6i zFw?M9_NocqaDb@REr=Pf;v|}QPAfVit$ z8O)?rRgq{`1k+d_w9x9-*u(Fq;ti4!1B4>v;b0mgNsfWI#Gi)d6C1^2%V$ztEooaC zGZ=Y{=CgFRl*!4Ec`ZZipI^s(uaBY(iHsyC5{9(LxX#e7s^mq;xXv=D^SC60#$j4! zoOZ9uK$s`gidy2~NDUg?a{RoXnZLzq`8FFiYbtLrRr#<=#e<5(O&u*KzH z`rU^){0*0K-DlVEyUvZQeCTXG+15h)z~kJu?;E)6E1L&EUjM^6oc5m8oS@F<*;7{V z`fsjc-~ad=0Q-IX0{-WRuVu+f!{0yl9xnXepP_mcU-{}=_@|35=83Oe25BQ`GDz7J z%uKFx-@lj}H%@)*CvQE{T2IX0@^jih@OZQ1bpI_E^63-*@0M2t)VqE}vX!irpM81n ztv+vi>ec^X^+H<%gWD5g2{8Z2^Eu>Qckp*V`7%7yv)S^y&ps5c+W!4|K_ve@_uP}C zjyj5?jymeE2D~&%BxzYDo)OC~7on$1cu5Fjbm$)^JQ_*CGV~T4NoT|nx$K=-6@rOd(kpMYdhA>KBC$^oK zVLLOX>Kbp%ULb@9Rny4G>V2F_Y_&L!Bx=uDkSA;yrU+w*tu{ym7EH+?hA5ioxb3dp zHK}$M7~0XimhD}CTkGu>-T&n(&R8v2>jdq#^N<-ZBpF3g@|sSR zVM(GL+kpu>AZ*dpW+o)180jVGoW|r5;*N-*J0Z?NZJMFHASO7XOmbkEp1Fg}?HZK${B!#sC6&O3QBq1(n%Arp!cG;segzv@pEp--l^s`T9J#(Eg_IC|?IEpUi z)058axFVrLmC4A61i?eqxvUC0c~xlzd+)h{Xl6)t-+CIvED=@v#3XAcwUVq$&?bmV zhS;~0NMWmIUDhH4u^{Zv@!a|@){eIDKzSZ_3@_w=#}46pgRkX}gO+kqHy*2N?X0V| z((Y7P9dz)sfy247|2WQH^AB9|%*p)6x}*576^HXwUk^{N>%m*+QCgjle{Ptbd+LOP z8AhvFR@d5jVq*^qO^+%gF;t90)hOC!$P8y3g&`*+in2zJ8p9I_+6XGKPbKlF#&(8% zILxwaZ5O2#mR`NPHm{F;e4=Y`+9gkHah=!QaNJg(|3+@)&J&Nb7RA7cADzZ0+gh0Z zw#!*OPw?pVOZeJ*zt0B_&+vi6GyMCsoA~!>H!*O*)%^Rkn>eN8wE!Hv`Ubq$EdpTt z)H^u2`g5-T;T(Q@zz^v^G_dYv|D8b`bThyfH7?Jmd)b;c=D^b?fY00KoVms4UUB_L zc*hxU*dmqet?oribl!4& zy|P9-idwtCNDEdnBZ-{_k`fU_h)AHMKzoYBm*4?CMZ7S=RBIEtFG-TRkjV)UGx-?M zm;|ebiEYKnoH9ioy4Wo>zM<#^qK z#oZLLE!M82fqA7@18nRpI@wDVV!5T-4TiQ|P8CGP(z>(@ZrM&W86}823j`%=A@7e^ zn|STmYfr8(qTcSH9bu_wp#?!2P~#4<5r{xyJdN}djH{{5*5Df2yT&-YdkxFSJCPWC zCr0Ho1AdDIFpj|}Yh!FAXwP6=4X$qLHy-Vq!St3fM(b7_{QJ>;QLUOi-2qxlgUdSgeytH|{QRlw;eXRb#w|LiAF5(^P4P1L@KVrr~9CZ0_82at)6rQn~ znT9}pOFECq^|RMJ0NeO!K6KHO{NUtsNv55h272C!Gy4ioSn~<~dy{oHrI0O2GjuqI z7gXnDB4Bet{*Hi^M!l(U$QB=;f8_ZryXW#LkBywxJLUd+zHkVzd8ce!wcP;b=9_Qk zlv7UO&_fU9EpK_t6cPV#fBRbwJ@ioi-~ao6EMB~A>$qLICex&#*$uIS_borAkxVay zps8Gx0+?`FX|AUY24jr?r0u|nL^s{fFsXxCs&z57`o!zRF}NPW_b{~@cpf_E;Zzg* z1Mj;Npi6^OPRNCZu%t*l2n&L+pm3@Qao$Db96P8_b7zDnk)b9kIH=ANYJG%h0CXVGG1{mw1{%`F8dnV01jk zBWfnq(4}5?$!9}~nZOR{Ga6!n$!d~}O1sTqq{0~3FwnxZjxkztHP#Nb(ow9CQ88mt zhR;8FG8r#o-?l!^@A(al`Jar?w8|RGqAtdC7FQ$`R2^3&%*hS&WP1-u%>l=dWDFvb zP>9fuB+j_hyL{q;bzzgS)mf_AMCaQZksxgcO2h)=80s|-6HA06h{_(1jn1;P<9v(` z6$BDlY@An(pNoiGhd6K$p~M}xT`zxBQ}1w*VF7pjFm2ChdOLEgFSQURik0t9L&DC^(^#z>5x^l7UV?2xOS-+kD2Ze$96o+KvbZ`sWBAid2szKin%%> zDcB64-L=iS{^I?n+;4OnGH>5Hc=%XF?qhVo((n>yb>7a(H52FIqVO$za>lgH01d!~o*{9H0B#=eXd43trg(CXB$( z*-nfQR+|D7E@YE$r=ot*@PBM{BpRi}gf@m$wC}riozy+dE>8hY#(toUt1zB}9IIJy z6UV9OQexs56NJ|GSco*RQ6j?xowZiM##L4%iscl0qY2e+hs?0XD_e?`5g@ccX@hZS zb}D3$proMIoh4T*AqPjS21v*WgMvl~r${?ZG6il@Omv(YT_$ZHNf4FVgh<{|6P=A@ zB439jvB0k3=$53qASs)GPDqKFM90Gz3v4_WwQhh+*h(-hPtf7xjYOENYdb%&#z;w2 zaxg-mYSv2G2uO;4s>^XPjwHK$$Wqjlq6tEG*DhD5|Dg!Lk6$Xs5=9!PO(C?$TpvG^;4&dfh`%qq6!UzaD z3^D;x5k$T~*BruFp`>A-?q25Phf!z>PJl0C0`2gs(h5ekPu;k5t1?O$q%h2MhRMr- ziuQS?KAp#cS=17jBj&E+@%|plV_C$wkEnqzg32Zc?NV=5Bw2$$Ac=C;U?%YdiSG~< z1a29klBET^$e^t(r-5AmGjL({ECn^{7TfK=(rsNVxg!-y#ziIw|Sl_!u@-4;Gv6odgzpG?o@pfxsn%n%>lX&mt zEj#oa*Z~0Z?6c4Eu6Mm_tIJP2?KCdEbn736S3(J`5%tgxjt5%P?Jd#sry=Cf_ypAq zQovvVfD9AjtV+8Vwu2yp7zwCqg3ul+NKk=BCRRw;6sjjy_aTizMh-I6IHNUW>=Wm+ zROXi`ma9+?pkYRt#1n38>2aGdvKcWAy^au84>L&{Wa6ZG&P2o2&2c8Ec39H_;W!g? zx-e=Ux6u~J8M|V$E7Y{6PM3)dgJjEf;?5#E>!5Yo;W7|*WUNzLtPzPpWBXOv#Qg-0rL_{qA%`F8af4w$x{w|Cx8Rr_=~V`N0cBeglSs4C^er^Tt^ ziiDZI?OxpD%w?eJ*e*(4k!XR8q1G+X8QaY-&ywjm0__{T5s)!xH`Ra&@J0n95$F+* zYT1FTwS`s{L1xJQW*62bghh!znh>-|hI|JZTL9>f8N9K?h9WEQM-#LwtTqxTt%?at zF0~%TkcK{7Y{F= zgVz$kvw0iTyql7|#d>QpizRoAanvyZizk7Xrjyt+;q+58LMJ%=+Ag#LMrYhp_qB zC%$qEC#dsTJnyv=0iD?6dhqFe`Q2|fvgD&<{NUts;g{CE3t-_&0Ln>AHJO5zkLZO+#j$Q>-cusdsed;nDyD;v-a~RaNwaIBNz9>5LV?V)F=f8f7AZGrN=kw`*IgZP&@8RsWf8(M_IQ6>EuGwJ+GS~qCGjHBJe)X$g zvG?9vb~E_ZuYSecxpQ~u#dozbLSP!XCt)-x55>}*n$^(JH^2)_4B#DSibkfH@6vD^ zQ)!T+lo-c?4&y4SJ-)rTc@RuXNPI=`T!BnIvUbX$ZiY#kIJS;vO4?i%10swGi&^TO z9xBwRx?9Kq4H4i4zM<8hJHQG+_z=6S^T|Qs5%N_a?y0WGmxFr$@*M>YA8z&QrHE zQ>o%qYnWo5q{C+87{|U(ZaGG~5|J2`F=&6HTjgymBZfvX$t3qNwL=oIzsdSrvQYkO zs|Eh@dM+;@g3^3Tzh`Wt|qQ-IAacvKxiXddUl-X(7ZC zj6?VvGR(}4FvA~ZWvzpSxsB|XTSu1~qc?7$RaKeo4lz43#Es?`}Qx++jFP08dVAjY7T11#T^%DWl%MN?ub#v5L3^Qc-DzcMTX3X#v6%o z>XK@YOX7o5(|DsXPCX$~!kWj72AI4-N#OO{EDak55L|*+|BR)eIxCg zJa+flhw|!gJjkAB9LANN;qwPAfWf!0@0EA4&q1GN$*q6nLx&2!``~|b!u@*!aLmeu zmOk%!|L^bI!Y5ANa{kTMYS}%P^CfNr=d{h19slWj zSbXu;J6>C>9m;_@{q)nh{r1~A@x&813$ncBmRtDokAJ+wJFrWY>sVce63F4Q1scu4 z@}$AE>)8Rb=h}g{n#guB#!PfwuhyQ~Fp&<3?VLgvls zXZ*$)sA_B}SCO0u!Az1S?MhWcMA4?)ix`|rOyWyw9S;6jf(*6QdZfZpqa-p)Y`3Qo zX_Mx~AizkE#J7QIMhV8|=V==lgD`|3KxDJFn@eOmckNT~q4(k6Hc2OATPQ)qUA?z1>}y7gm!2$+p1EZs4+G z6%`Fp$&lM1kdbD5wue&%e=M=xaMupd-Eu-$bO@%!$k4$bfg}ScgQyC^mI*s~BPH4~ z$Uq>KW}ntRX1c>ieZU|G47ktj>PEudX)q^>i^K?Kd4tS%HzI{5 zLh(#}2JKFnx!wTA2#jZt6@_+TXkS58vbq-|nJ^Z}q(%d!h+?UR0rGxGP;eM=^8`5; zXH23(NCthJnPqC-AsCOgCqdN>PB|pWD6(tIwB}o=wObGo6_uUf3$(qyW3@(6!P3^U z10k)?)sRVs%5;ashx&AlY72Yd4}Ne@ieB2KxW@k5)&RPZP(PV!_Q;j*0r{uR)}8*g7Y<$k z_CDuX`ky?5_P>X(*Igd{_?N6>*yk5E!OODZie?vPS#bqy;xg9IyfgsK?eRP@Lhc^ACfy}X0zP@<{j^N2Qz2R*vy6O_S=8C=wW75w?5uA0i3cHL7eWWbZ!w zE}k0iLH8y&WA&-@u_T$&agd``^sKy1YnB3$XuPq=S{GMioZ*^v*eYfqu|byz(cGTS zxah3Y9MBsHP9?Fn%2iERl*C;noO*!K+JcvqUL`!w0+U2S#%}^N-I7beP1@n9$A~CK z)Po5DKMh)0x-W4&(YZ3|IoHOzt~JVWEa+-b_0n~k;hJDUPI}u&1(hlQVqD=3d$<`d zrSiFmW@jt1$JQ_{+u#xcgOBF+GWq;7Te#X;8TCu*Zg|(qW zQuh&&rMsaFX4J!YnvK;WkFK3b|I7kMwyos0{=Jx;A0eY+rj-WhtrZc%&_7n7Gg~Iq z4s)`@%yfsD>(qEMYT=>kJVxUz>w;D~+zNYj^mE^64ikHbnn1gtvk9sgVMemlyEI8D zLFHpQ+r~M5`m-FETZ0suX= z{A?1145osZE!C#rWz%}{Up@!GzW?z##HC%_cuYE$KKeZ1_~v?ho%u)L3#<-*3c%af z9tps`?>w@(&g!14H`{(gv-AG5-vq!C=c*|naZAo-TLO`rS~xF`OEAaYo_t+iQOZF%Y@l3g!Cw{#*vwO#_#c(i*$|kL)abu7! z5{*-{jxwTZto}tCGL;Bf37UEyBLz4Tg7g>xqZCF-qJo2wHlIL-6UQL5!L4b6t_;pb z&kpt_m`Ees^g`(qvE>0s@6E7|sl;h7oB zC@>!R4H0p{LscXE;SeJQPEHYLB)+zW2|91H(cG#g%1i34676Idnn1)pgh3@m8_w~Xn+zSZPx{w zV*Ms~X@DFlF^@IQji8&HmGE1P=Q8hh;x=! zrj@Yi_Kk2$r4YW~)T$(1EsXEiL2Xu^I24^jbR=pJg<~5N+qN~aZCf4N#v~Klp4hf+ z+nCsySg+rrdzDqrsjm9#-uo4m(`4q9QK%4hBF^t|giUScXv|s-ON(;GOR?4;S6=el z6QLIyra1^Os&Bcs-Q_tbyLo_Q;xPRkPdS)Qfed?1d2jnft;L}Edk8J*N@)k1BM=@W z(kw6GyrSN)jg%%P;F#XBLb9&?uhtGUUsciT+dU|aLBPSI+j){fbkoJHFj&+rd|JSX zmc@y&7~e)TF@YQ>hzriCig^MBvzn8IjaaF9i33gQH|`KnNtzzDM{PK=cgJzcS-DCVi4a$@m=}C2<*E{}89^wmg^@BypU@{bTSBsP z6-q(jt~XQY6^Ir*>c%b9VN-yJZPayBdG{K0T@7^S$mE zJSj5;lfkl})=xJc{LY@G61pA7YF0$Nb$+{lo=^QoIuYp3_2@ZPcNKcH1nGH;<8nTO z_LwpA2dbWcyZT+zyZRO0JuWIgz(fNZBaXjttb3jU0$sb)P8zqxUy+Gn4+qp_ z_GdCbMPQ^|btmm=p2DsiS0~@$`vW9W+U}Y? zmT!T>*;OXpki< zuKy($R+8uo;ewW-$-H7nr@^-?N&6KQDYrd#wBv{TsYKx#6gQl4YgV`nDWn*x!Y;M( z1^Z^0^ds4ZM?yI!yUbdXSFzN64Puh(pJr9}D!XF$D@@iq3R++SYD5YP6)&1>4icG% zU%KgrIx&{C2p)b6f^U=D3hqF8K!E~!NQsm)Uja0~ic!#0{7bvbs2}v?8I@^5r-9k+QXF78xGlbMtZVU^|uBb<{6r7-P zf5El*?SkS|@4KA(a8u+F09iA6lBSvcB3*CP85mVtAo zsXvqOfvV`_gl5nPHKu%!e|ew|sbCb7u%)-#R_vVV`ihlhq~I1TiOcILuMfWV+m}qR z0*VHze`+@NuG<(@^u(W8p-SvB$~*?K%w}HEH%9p@~(% zFy5I)VqsZ5OC+|mvn`Bn*~Ke{I)Nmhj4sQCjWNOnZIQ6vL6Zoth;(tw3FsJ$9u*XQ z#P?eUv&+Dh4M)naH8|oWOV1@RRdA13{gG>&%NNQSyqcO@EX26a1FOCp&aKI3KB44@ z!rO2OM{^4eKJX*14MZ4kX);kSkC?3x7Cw<$?dUBD!xJ}HBZv=axEVGK@%Mc+*xz>C z!#@}nh}bX_f&;S52_a*Ym-UX|M46wGAWaGU*aAWf=MMGPUhnm)*Fw7>uSr4yRF0T= zUJqf@k7-*hBmMz|e}gGZ^;%w>IX`A!`OJ5((_53l94}gh#LilfSx-JsZeLUbj^lX*q6f8r*V%4k1taUjLHiPMlr$ z^CcW@VYuErdOTUXSVC41T-^}K`}UUD^+wC)7beklIo6)~YQf}w{NK>Zs|wJ&iL-Y& z4;1tqS6@1a_i1qva>osX9gJ76)VQje?&jxU2ODS(*^z&wJInW!!KqAPiP=I=&*$MN zQ;6A0Y7#ZlleX^`ft!Byp%*rO`CRL%A^?~ldIr@8@h`66X7;DfEhS-BQ-QIeUk3IN z?jbJ2Zn9ZvYRitZBSX=bq13nJlggoNptQVUQ_SUx@vSs8uAJ>@u6HF@q6&TChTGQ3=M;!bh^OxRc>sG+O+-Ge5LZT3b_X(F_ge!@6AvJOBY|aRtqkVy zH?UdS{%EofA~5;@7LJg8khQvRHwz>UanCFo^Ofr#y>v%TIAOW4;)CAYg31b7%&lHx zE@wp}P{MG&m2AeG(kRM#yW7y8HRO|hZYT!0>V5&k`fJ<5uewZEeH(}H*s!mUP!9a0 zGrSrPiEdRZXz(UY;Ks}1%jA&`1TAI|!dbzxrzA?1j0KH?od;(xGE_s`yas*$K!pnyej8K+w)2aui0y15S(|GknCnkwuwMye zcGs!X4-2k^tJt}MiGO9Rvhe!RZf2)W^bA&FC!RIH^Fnw}e|zTF>1RD|`^NAUZrXo| z8!+Wcl>w0LAad9wad57GTFK74(86wLmJKz40z=0lcpt*QbXrLmg9#y8t5mZ9@)q0N z6&l3jFH3v~PJ~;($ybRMztp0IE_EifvBud;~^a1xAC`m*rFsfer8< z6~)HZx$LWxkN7Gu+_QxmY@_wrbwTJfihLC#j&(osEC{*VxKsn5y0xTtvSrG&N5y0$ z^t2Fn2lEREu+9~I2G&On-=&e?SsS9ap5N7~*X%#AjEgkps7S^E9H9@ao`>A;^uiG9 zh>zCdm<+wuDMPMeyobz-0NB2(S{@K5Yb;AUGWX*abPeY3NJHBM!ItK?v(ermZ7z7E z`-{yfzYINHa9*x0SBBEudw;@if7o4|9H>zU`kphLwlkgo@hSULu=0PaX7$H5X0`Dy zUKB?c$M1#$3fEJ--j)>myEjLhx9mY4fZH_RtjYKH_f`+pPInF~!z55?QRqbwMCN*5 zXHo&V0#=R|il%-e0<-fgLgo3}6TWBj(_8+V%l0^Aw~xr6x;~=o&9nv9u-~q@78&k8 za5)DN>&PjUCqPOAqP<())|~;kS5lRhEKnK8xq(*@kr<)YnkM98JbarcDTv0x2XRBh z6r}YEJPipNd8u~-6^&6=ihFSYvp+1cedVxfWzx>E@}9A_X=810g%DRXiP=}dZ7HEc z=*gCEP06xlJ*aq6>%cXO-iV&1%Z)D$iU`N{M2V|?VY12U96iUWId29?zKG5q83Sfq zp(1l-O8zv(l&qSO<2mQiR5BN6Ri}-Io#mD7t@Am}&F*%XSD3o7o!qxbhW}aM8Z+2c2)4_egsmlTBpE{@kDk#KqX^m6H&?iT!NIKO&z3MFzoG?esm4+g z2@Zm;d}#9-)Ptj=cx2qks9?bBYg;X>VH3A!mEqSGE5?+pZykH5xYyfR& zv_NSJnhW-(3Z+P!ikA?FQf=L4DWzv#pkSm-=A{LaTPoe&olG5JyoAgg|MV5&_*HGU zT|EOl>;ecnPNhNo{k8?!3m2Jm`B~b&q$QuDHoop}_(6b6WMjoa0B?~X-Qe$U*wg3|mdA*I{e}{sz;hTb!Ii)#MF{Ajye1u=S zB?>Q@46cU9LU-_~SI@^+yfsiMmsOizzc$Yu4i85KCRgqGoH}zm$@DYX;&#^{#DPj_ z?_@5_$$(#D?s20~0D}KcKbH_o{g;`Hw*T3aM|ulhpYP{|;mKYIa*5i;y>Rm6Uk1Ui z-?Y_>sdX9Hmz=?vs^_Uz*(^D{DbhiXc4@=dY{Enjb{BKpw9OVR+X+2n@t>lI)fp z9o_JTlcB^B><;TyjuV4fQ`b96p-#n;7#*FyAIFSl!P9*~cs@eG`rF)}YD0?9P+N*- z0j(By{lYkzxG1Y|eZdv{f&;Q@ z#1ONq#vN*yLX_FiJ)Uo&dfUL^^bM?;&92Y54!Pe+EieWKQlBqAL`VOSb-Xv?ehG~$ z2B>ABfxU@bB;t6~-5%Jmly>F0AnQ!E#x=^vbY9=SZq&Ed?S2bjIGnxqvu>;r|c8lsH;tA%a^wkG( zsC75@JxQ5{u@|>W<}H4!rj}Dh^rUBpZ)B5J*hBvl!Hce)>lwg7wC$14b~nNga;-9N z(rwgcA#J8fHI`dT7%nHrF0aaQDI_^j%E}dne1bNF`q5YZ6a6Fw^OKKrTYFh`TfyWE zZ3A;`j2OX+BBBuuM^r7I+)n%`QwAVgP07xX%eVir!VO)%nWa<#OPq!KgP>SAxx8Lv z&`}r<-WgY8ZN$ElvoyjTa{Y@MF%{j43bCU~3}wY&LUHqYL*(KOq4sd7rVWRf>~}+0Nm2E@CvufZ}r?rJxJ#mYox|1;$<$`P_Tf4Co5X(JXXpY z-Qr}Wj^;ukz|3qcvn#9jOdN;orRF8%F4rnHxWE@l$p zqCs}9Ch96EtJZ||ydWcQ!7Tg^R%&0%rX%e-BmTF+>#xxsU9wf;O zQNaVVnB5`!69Q=HMu75aLd8#PY7otZ^}kcp6KKnEXqlGhW1h9F?mBuxZs^cE3`r^j@O3IUywmo6&)K|U=&o8`d5swB z1>7xMZR`L?MIuK=qutsOueUe5+nJQSV~!lfhiUlPAi6y=O<#gQ2mgcY;i7lP^V@G&{HZPx{ch=jPloS0@5l&BTF)L|lyG@lBW_ z_AtSgkW-6zbFhKpx{lZYeJF&s!&LOj^TQP$dIgji3~zyXX{(Mnj#HH+=o`dp`9xx9 z$uU}CbAx$z;kp@sRi-|6Xn*fLmmzE=<&f%2C}m392rg zbpax4M8xMd4|6A=du?uFo7mzVz-8sNZ?3oLgc`H{xx_q7Ev(h>$|xe54XLa-hM~4p zf^(2KLXb$VjaR5u*}28ifCaQqdoJhFagQ}d|LP$>dYd2g)ZeFha;rqJo{o4@8Uo@# zJWB)#G)F$X2fx%rkn1URM^z$Z$}4wc^jU1IjDrD z_J=Wnu}{L7WF1MTaFB2{AEl{I#Cg^57bc~k3fKrBJ^TH?lEy~n*HB`c?|QIA?&xr^e(Ih`e{bl zXfr=sP(=wb*D>0M?ijT~(YYSCJB$&9>~ZQGkbn4FccH0&!PHyXtup>3X>P1NHVLOW zmjT3TW_waq*~Gkr*BD`RfGYPmz|695tHxL_gL#^uNPL;wcf*;Lv``XKt?7?!Oug%E zU)o8?3tX)Ya!0&NZ9~pU|I9B>td`2Vl3OHyx2N_~L;itZfkj=WE%hnYtMa>_SPHLm z0diiK{T^MvR{d`Ae_K;oym}C(H~7x7A%&EFP5FI0;UQnxc?>JQtlLC_rtbDEy9qjv z^kW<|g5`IeTlbYLa+RqA-!`M#t)H_B7Xu)A=(~M4g055^`W<$2t+$z1;7stf+7oEd zJI|Aq*q;<1u8*xe=K?>Dy1(dlk0_r`W`br1OH+TIKsaW|5pB+I*n_wXV``#6=-yo6 zyUq!p$~P(*7*ix?WAleB>llHCTCIJ-@!aj6T7Y$5t^MJlRM~i3%#)4-)M{2i`l7$sPO;y$^8=7hc?dGlAwB=y@(~>}}Oxdk++Zr2Yi4UW_1??ZQB1q#{pv+aw zG(;UL&MrW|NnjSS(>!sgCt#Y(1zlg|P#}pjj>_uUj!{&c480N$j#q!{F1_q%&m6<4 z$!Fw}Nq_Uar%P+D!TL%Lg>60dwHV{(2Eg91-TcT}gIJ58i=ZqF#`#V+1EXd}BkiO> zjP5uJL5pF=1u!GV*~V%@#vVHcqdmm=ZJ+b0?aJ!yO_w<* z_;bU@%fc16yP4F^Am(n3s*;pE+`U$$Q?+Cir$C72-e|4g)*-&IN|}ps!pa#UT1;DQ z**)D=K?!G?R8s$m9?4P39TV86#sf`VW|=1=X=I3?#f?nhM9@$c%SlPmS<2|dMvR#m zZl_h^ zO%=b#1^Cyaur$saMJT46G(QBXuy^`wFuniLJTo0$3J+ggy*@DXfx5k}xSOLRI|CeBG9RUfJahy{noQjAfm`OQUHPl&dX_w;4SR31 zx2Kk?eZx%NF1l5_AGembXXSC*OK;kH?1Ik2t30Rk?lUG8G5>fR{L!wrd#)TjkmM8< zkzG!%x0v>bzF#DFK90HAOh*txQMOzcW_un)((ChLA|fFo z-T_^tQ7YwPHa2ubFMZGkZG@5z3&O0{&_=2RQ0!s*g$d&#G8{HmM#)VZSdyqywgumN z2+J8z4jN%~6vb#SoOmT?Y8D8THmX;Vrg9kTpuS}A5_pcP&(-4u=}^VhpqWtN;|v51 z?Tk=OdG3bM^%{wh3YH~(45L7mXC!5X%@DT9l3=iF9=kMPiZ|{rTdMnyA$PnHVp2Yz zlr}U>a!>OZxN4A|eOu1gtqMSN)#$V~qX&O~`MO)t)7FraOeJ0>vzSy|EvVR0sGS=b zmZi)N{14a6rRFK#!D1|OYliA(oBkvLDkzUKdvIz9E*kLLO|MkZkO1j z?^1o*K*437ss-n_`zl?hd-IL-+Bv#ql|(}?)SXG`zo zKp-3hZJkcmPzZU_1~>d%?zCm3%wCL)oIH!p`2CS17lT0zklXDfchUIa@~lrkVQ=JZ zkz81@SW&@`I%Q(MCf=z^$s}^mnlBqeGT&4|OE=0Jk2(YyLmSrAq<*T!J!T^#J1?QK zELh#3(D@sCIsA(}--6PLvnJjwl$Z&UF|yezR_Dxhl&9h!zT&dQZDoCk7i;>si>dz6 zN5uSVs`XEk9OmX5looGnSd05vpYw@4eUN+10{>0INa&sN#aBFXb9(@g>k8 zwQlO*?S?%1Vf@}VdGvN(jCH>(%XAbmPsI7niCF!+dnKW$7KG#Zm^Q3H2tL_CLk(<_~ivXahjXWw?u^<8t` zhit9)BbM%j;?+()lzF2>SgX#9zZ5}m_smb0CvnZR%hk9~^Fv;axq91yIoZ#1&GxtR z%GZ_Fo?&3nR8%m}5(s)+xv40 zY#BSBTdaktLWoSr^JTP57oKJ){}JWp3|PUViX{&`n1C z@3Mg8rgrLb5)kR&jIBq26)$ec;|NF(%bY`7iZyuAp(h<@;<}QAPh#D+s85TosY*_) zY7~nK3Z}q8H0ijO?%y)2PTH>uk_hzZ3oW=zl4;ij^l<1uMshIOGQmP7V+htj1l{Wn zj3s}=)w_3enRagL6Q9 z<@-E{NX)y62`k}7eaJ5$-C%|fVw=YYA1<0Kf-N!sUxU9uX7i+*Ds*2F0ZTe zixZ&vo*OX~Pry7T75{>ALSc+b3om+p6>Qr}xmi2@s140*oWD{7BMXKKKL=KTU}~Hy z3Rk%{sN5tE#*~$cmZ*?&ax`E%MT3}BMIA5E8gE8H3l@!-fS-eGTzN%%%FfR=vvv^y zyc5H6w2Je4wuAfm2hO`G7qUP-bO7O65~C%8BKg0zBH&S&^g~4AFo}Zy&6W`n(GgZD zpk6piT!dUtME#lSIbz}=G(+^6^P{MXnobANmSdCg(GfuEL5G*8O1I!$$mQviVqY+KwUZ ztdJ6dASc^Zaoh8ja{9#qPoys+F>7r|2Xc|2@Tq)~PUVASii)b!%2e(uH;&pXtr4(Q zqz+Lsn&0W!Aew!)meGg2dHz6!Ijs=*6EtC#xnO*fGwuX!IMnO+4@{=j?aqOyJ22q= z6f&C?7H>Y5H&7!_3jHpf{-D z%Wz}Y=Q`f&cy|k(3$UnWHg7;{dOd~y|NJm$OlEQw4CcN>*Y&N=^&r|@>a&&pzE5C7 zDglmtTYN-7WpsD2`=K7o&304uA+FVL(@;{*Xyu9@Of2#f@L#yMi-?P)p z{x9&`oA0liuDckABjE8<%aLdtz7|o5%`wx}3=puS{-8t@%G9N;e8=LJE>brFn@|NX za`C+V?nVRxbmy1gl&#$kko6yqLtE-wjlP5e`bD0!1^!-G>zF|~kMpS_lxRHj!pxM* z8(R8OE_t|M&k|TA#^m|v%meOmE6d{u7E<0DQmjbQBS>rJR-M!v&D#-mWhjv(RxZ?4 z<@;551EDJ$THL?MPuB8f4M{+iA^6HuP$GvZ0DcU-vaXz0s*NZIS)@DA!kv|+ z0*Qlj5NvX`Vg1qP!%(j=#q{r?VgL^5{_0sY$>14<8lh(HNPOrpC4;}s|A&F>&qU3s zbKK+8r@ugIiRdrdBIc&Cz^7JJKJAK~DuL!0OFRD!sU246*gzX{+mN(Alr!|~BpU7*KR=qDJXCuS z4F7tmJ#HA-64!ejG7c5$0SSCHG@LPs-G3&_J4rM*|6&iAyjhJZH#{}R2i5x+jvxGx zKJlhn2G{h@0xkuQlBMJ9rh_iSmTFjryTWwpO(46wyMZ%YsHB^$EW9M47rDo_8y3j_ zU)9ys(@ZFRkyN=6$%#JK>pS$b)03gfGOL*~L4bvpKj|Q75{lf3k+5~9$$xms2Iu-S z#a+1Kl~Libs!hK$@Y2)phN8U@cIO8t%(pd8aYC)3#ksae;^BY+^`3d-bh%0y4z8G^ z*W-La=_(7#hHVn`&@uCi+tkN{r6f!IpbTjm*H0gLPbDv(7Y^Y}Wp|UAex`sC#sj|Q5D)%citAvT<^*Gi zc|}TB%XvI{^Yl{j6&b+hq%q7-xi8KbXg@mpD!Nt#St~U%@2Tbg-9fNeE7~c?$zY1~ z6Sm-%7>RGo7Z82EH2#6<4J7eek!4(HS=QUBo3KaD%V`oqd*XTS3VN9G%g?1KWiZ4C zHG{5%2wt}hmFqbEMTSw+E)W?*(4n)8hGd|HCt8+0fx~+qwXc6%CWyYC zv(=td6_+~QWd`hx%n!cK-ztANUlP~sc=8h&c;gaz9~izY=OGo{Mv*Ez#F|Z+Pmgeh zAL3V6OhnAo^V(ZVS(aHv=59fO0tZYOaRnGXTTLh_$ajw8c5tA|S*3`!GQy!TYA5$F za(X|BL9prnyTfGUMC&RhfwPn1PAu~^#Ry_dsi-hqv~>Dl9%qt&P8&L>ag`pStS_FR zNuSL_kC`*xa##x5=KKnQGI(rkNv>ZQE{G0;F}VGD4=EtrAl93whfXuchRQ#d@1+pv z?+4ZbMp{6v*DkR6qzXNY0zZStrc6Ve>pp4A71@uYy4)9Wt?Wd-4}S)=y;nr+zs`YA zr7!~9U6ief94dktEMy`Z_o%ODuHN+ncPwBh0zRDn6sPF>9U)yU0{`IagYN1N@Ab0} z^Wm~)ZW+Tk|>-O$AZMgVd6ps%pHhl2uJjZ4s?U`I#Vjx-wh{Md{I_wAzb3$ z(jw2&A#SG8S8yCd-zsad6GjoZbYwC8F58q>Q{=b_cP!1BkZ>Ek?itC*^a~iK1=WpF zPnaTjUB5@lbppwnNZ3q<-=9WzpmgBu=6XV$D4aA3MPh_1#u2DO#l@4+BaBomWCz>w z3m9Y&(K3k@Se!boljy6+v`xK==$7lcTZoXvD!3BKFdIG@n;GNC>6}KZ<^xrOynlhm z{#^F(gLr80Q~Z*+a6oJd#p1u$+!uQSR>R0~$5ID^vX7j5QIsx=nnjQ*dK($ql{T;D zAPL=sXg6Q~5xND2gqPiy_S0;Qxr0Y^@R;4>BYIJ!H1;w{JI0X}#Gy1)a{mi18HEVE zSwykmGNjWEXJZcS(Tc1N@LVU4uvd%J_B=3cx2KL^Y>;>(KZXEIShiz%^3(<1?u4=s-8pcT8bvP1Gnvx^@#eob-ZIpj~CD%h^v0FSO#4vOHg zrxi_rEhDa9V%c@y6E~w@`&aFg?Nk+FnXO#*^H9U2i40a2m_i>z!1+MM9&1CeeBj@I zuIuR@>nMu>|8%R8)uH|kx`DYAV_~-hS+#!t-d4FJ`>4OZ@qDz`xC7ni^)Aq-$=MH~ z3H0yxr+uSpFdYsw;kk%9(qXmk45;SJa;*B0Y^TXzgcC0Z|8cG8@rylfg6uu0d#Ks# zuKh;Qb9u1{x!WsWD9Hlddy9HLY?960qtg@|L+r2adY)c&SVns7{ObYgc!Cda!1%FH zuJ?9^XYlXNwlem;+s)bMn=I{q3e|Ek;oPVuAkyF_as_eAbw#(${z*-LmJAxHzX8i% ze%qXnnaSMmFP&jQadGi0m(SB>WZ3k&x4_?enjgIza;~5%6G@Szvai2Q9SJHH{hro5 zz<;&W8dqfosq@exyD@+Lq&i6DyvO4Jo_)BfB(+H>jvJ1I!~qPzwb868Cc+XZR3KaH zAmG_OD~=r-=~J&?7P7nX(rizOwG5gy^!$A-A;4FyR>1e^sF7+GtjOIyBym2u>q(ZC0#y|rb66>JQk)|c;fY|?tmI_)$tX+m(NGv*F;{(R zF-GBVrz)8OIjlE;_Pqads^xaitg{40c54cinx<~eG2{vH(lELl#+4xz)?3ces`9lb z3t)Ij=f)~OvYVIVRB}pDBD9KVQAO|$s``lJ$LtVjs>@WgDCWorZQeIuhQ~;%U`kjD z8>iHYqVayI*BkjAu>5&o+WvKmskG@L@Vey18SpoJPeagcr{LfAt?BVj+wXR+8q%*f zF7C@NHm~>A+@r)Oen#zMQ5SqlpW6X%;JRyA$6_8<+0Puw3iv)4^_ ziYv?ik7Pgy-EO-;5&;ymbmHyjO+enFqEHUHB7eeRoRI&-?o354VN}`s+gl0$&g$x_ z-U{$I-$)EzDSg~wdO<Q`N$R~?YlY29%npZ;|czc8@|B?-hy*N~hSTqRrCfrfC#0|0V< zi4j84CBIktdkl(flK+5EZ)34(GcD#Db9_ZhBv+=(a0rw@SAe z6mq2PYi!^VmV?l(Mj-Wbp&Y{vy-^Sedli-uERviG<4R?rn*3^kj4BzDYk=3!Tx@_~ zxw~z@eei#C52ps)sTApi`+%Kq>Hs%bhWmT74b?Ib626=W%Odm#gEvMak(-JE1+n@p z1`a`iqaH*OuK^s_M3@r`cm>JiW(w-beY6Zat->8g#u<25(5vcWAu_|mqFZejD7YyS z_8db`X9Mxjuf!mwZ=+n|d%$m(y|kMV;OIoycE7oG*MW-k(LmtJ^>ZYuJRE#oz_NCz zsy+B!s0Zsgz?Z2e;9CCWU29^k{A+0KDKC~g`sUc7;D(5!^{X%jI&Q->YP0+M(1*jp z@HuL+?Y?yJRVeLJz&uC(W-#=JrSo>regn<(iO^jX0q;ola&4FC%h-4v+uAFN5QA?9 zT>x(mU+m87>UwyKg%gU4u&)4gjIVvEt;etZIi8d3LAO=?(f{4cPrCu%k^M&sH9*>7 z2#^@+|NXw}a@!9L-tyOTR^a(|A2|R!@PAHQLINtG=N>2$-&Em>u0uCwHHRc&yW4fa z&HD?Y-S{6?YfTUpSu04#9Kucv)V>@xoZK5zsMQ94mf8(z@<3=ov1)NRNMABzqEsig z+_^JIgdCJ=wY-(j0d@$ua%ffC&jjyZB9MvHR8Ez+Xcr$unCNCmIgZ9?)I|(KYS)2^9kVBDBTA5kJI1)G#h=q`*29HaemI**-nf0;H zXsa@rWjd?k43YOpSv#P#c$ujJf>d`OL8m6~1iX08Q@{-D+s-z&MZWawfJGI_r&Uzf zBUQbL6qrNXBxq@uXll3@0~f6Ei`)iACXw2*+Do27mb-gKNu}<`5UY{eFV{Z>r0_^J}Od(rmzw#+45$N2<6hSTnXZSBu@V$n*MgnABE zY2SA}b#yam`kyRlKq7z+^C%P-%y{|IhyfliQ9ZgEwo(Gg1l)vM9JK>=6-&gB5i6rG zkQ6soyUJ}YZC-Pf|AC7%R%M)PTJAuGOZpQ}G_-&k5~o0lnVQ7W$!XEmBvOnl(|wqM zwGimj@$wXO*$DS?A7sC82RQ>o|44s|kU1a`jf*X1-)Kd5kb&Ep9|90IcT0@bv7DKI zQ`HowlR!jT)-o7Jg>d~4t#Sg3(bZ5JVcQaH!>YB{?a$qjpxyAN1ol1Pc0i(Nnjz3* z*t@)k4%l{38-@C-d##FGv*g1AfPKSd&C9ak=H%OM!rSk=%CbEs3$9LZW7<)R(we(&+x^*lev87 zVfHL!6~AZMZ#BoqN%Y;0UT~wv>GB_ZuI7+XsmCY>{l(1}_J#Jyg`)QKR~+L}5ZMgq z-V+d0w`Sx1<#w4GV|aqNIJ0iOxoHgIGKk3Kco@TVKf={>C*JGXt_Qp%MCln#r%|;B zbPJSpcjxf996MgOpWF{K`6qOHt`Z(SVWBo7TDDeEn0C`%sB-*(R=ejLG_KR@v zyU-O=9$L4|n=UWSeJj*s#s&9FBA+(%NNxx@4xdcf=<-?y;ROMd$;}E7UgXdZzFUu+ zc$q=*XJ;1h>niCOS2a5VvZ7IdM(HL3#LsXUHWMJUs!!!llQq&2Rp}zvv-U)!y~JTa z2Vy_@-um3MSkeG%|C`WAeX+4P%Z`+oSBGf!F;*K;n&Egv!otKY>>8*JRBcwUZC1E& zE+P=l25kj6g89@}P2IA7NaQWG8Hq-el zvVMXpa7eD10OR^X0AW!lyPw(0Y9*aZypR&>umm_TX53eGE(WcV~W-zahsMu)< z%6ZGi(C@DoFfj%8Cf?|IW7HOW>b%90K-yERvPgV}Yr9M|2?>czH4UC5kWb3iP*hbK z_UAm_2Cr1*u|E*U0|i#i0x6eb zS3@7O@cuEti7fY|-l#tq>mxYn;_Ln9r0p=)X6G9yqagM9>^u zY}hzB`^~j}46R$v@ELL?ui4*kwciIo;>~d=y24MH@y(ql&YGUL^PGl&fd@*c2WeJJ zG4{~V!hI==;j8JIh!szp@Qg3Z{t;2OXr|~$88mhDAqLpj&Zc5{aVM9OUn6m)(j~4E znWXO{Mgqk#9G&bcAlBhA$?gKH^(Yj-?XavHH2w&?WmP>`yVA6POyLS01A{fiU7}iQ zWpnu=F$ic)&J6iDdCWLEu z957cN?OEsJ@&(+TC2BgO*>RX`VI1M?7$YXT^?wIf($0*WPxEyobgru_In zS(!>=dN?%21T)Gq^No<9UsL)0)mjfJW%-T(+=M^JAUz^OBLIoebd&4CbJT0@msmtG zcS&%uWE89`GxZk3A^{s^L+^=w$#bjJsjXi;#m2y6!1Lt~BP){Sr@T0*9K&zo1@Tg5 zqR^rPZ3?$ynXYk=zO9N5hsVW5{ry~fYs6%!vo|$E;CZSQPkIXWA zfBv!H04hD^aYJlf3F{l0{3s<#z7KWDbi2K(lGB*oO!F!0V5 zQ4w3#L<$Rs7?s&mt<>mQSnAPz$P1y!ev_63N+r!;SfmTK?y7od+kAd$y=S{vVu#}x zp^W)@d0q>=U%EdDG(LN;J~Q|;6f<8NhxO44FJJ*_)+bSF`Ksft_$-;~*lHY{=kbYS zWn({d4@P4T4@|Fj;gI<8-!puSwo6+y%T1fVWnl-ETY4*z!vsdwZ~1pGvc)9 zXsU9?pqG$bU58HWi09pZOg_@vLCaUlx3Uq3;nlSY%V6-PG24)MC^fDGk=j(t>ZTUL zTa7_~G_sRRS!lDivT3pZp&7s~d}L$p4Svi%B_L5MAGX0&lTAwDPctEs*72LMF728p z=FmFqdT0zL&tz4*#`fUFr>U#fc;@}RzLE9;-169^xCzQybgYJG{~X!-(y-%dRai5} zTWVV+y`hDrxvQw3Y=?#DkET3(l!^kI9DMf|QhC&R_qdnR#LMR=q)+iEeu9Xxb$I^U ze^LK*Lry>)_^4d()-o(FS%5iG=qJ5#c+Cb9c-x~1_g8eqt{rPPVlgpHHG;YC&Z(WnOvhF)CE`dr*eheWszzn%hj{9xAwA? zKeHdbkZu6ApK?+IQRDZV2Bi)KD;Z1B_`^268Cp|5hi%)97utHf+KM+uE3V8%)-{_C z+Oiy~^v)R;7`hY}O`47jUM6`rBNFj-QqvoShPD`OeTJE9!+`$aL;OI4LtPjRo$^4P zv-1n;tAPL-@W0yH;AfZgow!Os^ntAhlNYOKbevNP?zn$K^zuPig+%Y4qd3}o*~Mtr z9@v}lj=JNzbMuntkqzbwIyJQ@;kA)6bKv#Oq&Mqv7;t`SlIa(+)vNjM_9A@NKVuba z)b~ifFF>Hmk7rsg%_P+zvoAp*%jK$}bwB|@qLzPEz=sf)_~9#V7ZfWem|if8t5?Kj zI&JIz7o3SZUf;*HNADq5?<=Cv_v1*6Y!%bAw+x!7S(++4VkzFaYn|gN_WAY_a_Nrk%qMrd7-^(n-a!u=m%sv) zpD1rjsVOY}fdIg2Ay#nHC>4YBfk9*}gu$T5;yi9N)tsPNLO!!~*%l9|D%%Wc2O{+n zy^&RPXNd@R)cF%fhMl#YGYGXsw>^03x_*WGYVoH|`SmWaJ4lBMB^jwjFiLUZrA0m! zZ|KIUOkX!O^-mo(zu!v*r;oyUdhxp&6UwHj@fXU|kkX;Zb>0p(kt;>w&2d2!G*8s( z1k(tYV4gYt=1A0-JfW*pv?w90H!{lfSw&VovzfCB)$6?b`GF&?(elysEv5A1%%)2^ zZlJ7ll+urwP1wdBs>fyVp6h)~E^t~{hHsS|wAYxrHe^F&wSB(eQo$BhshyCy`bA4I zKXYUK40<96^P(x9GG3ph3qAkxcSy)f`-)f}U_wzwRHoROi7t#%d1D-rZ#B5qZt^0}$ z)BbVCb$@#LK*=*;ntq(hIWLF%wO8_|B|+W%UAotoGS=GS8;^6rMuN z`((9qsPWKX3J++*4vfpDtbRp<~4}x`J^OSbCeD{+2>U?y2>2_@-&~KRmh3+(vHWx9zRux!iQL zLjqj$9yLK5ygt#jUBoZ8y-6?s5~q28OZxhqg4{5ZW#CHJlp_U1VsWzf`_ zB_K#E&ti&x{k$IHzY!%yMFw^14!W_C;=cN4yW09fvjHKi1Ziq&iT7rcKcraHF40w3 zvJ*XVqvk=QvoYRAtBO-W6g~{nwz?E;A+1 zLlmQBS;Q{qkJhc#RGd_lpo*^Rk;RK%FiTkpMOnv8)SX^OlU#v=x?G(xoN{&NY+*9E zSs02gV}6wXuaY^1pBhQ(wwuLO1dN%gZ(<7Q7pEz%s|kq3b?wBeO`XDO}nm2Xh00IU-&gOs{0FAXz#M zrb)z&L_bOLSJPq%|IB zVr744<$U@s92$4ElXJl^5GalRhN~pUw!{UA?MO}D{?xIkp-UD|%m=`fLQL}n zuLP22H$bREJJ<1`DA%Ympo3~zt}LX6VMhS~(KmANRVZsp%7)lHIT7J)n#$O2&&yU5 z2a3`fQwT0L#w3{Q2YXhclIeyVsbW?La}B}D`hQ4ur_^bn`p*&kmHD#2w|!wi9^Nd{ zt;O+qn<6d$?e_P4Y5Zm#9z}r>-S)(-~K2+{8jobRxKxf5Lo&VQ+ z$ve?>?e1a8*LyQr*XhNk#po2jU2^F@FCpEG{>(m6XDZ$s6wmRM!$Hh0KXf3I_laxY zr0|XVzxtD0?uP#W20{70O{it_`A72dSNuP|_nmGBW8s$Zoc85HF8^s%;qLA!4F?3ZEg z;O_0@YgfSQ?hi`d_>oDj{K%(R^G_%4@~&osn>L8q9l*BY+~r*P#rKi{{L?NUc9&|m z0nFFG{`E)p3?4&ewRVGbW8Cj~wKXL`cb0#)D7hD&@# zFG7ckteD$c#)h;c$qEr^35ug-3Y%m6@w)3=W!kx=wXeSv2o-cGf1cL`h57a90GIY> zX?J6CASdDkH4UK!D#!`E|*v+ZOPZv3`zNuz^J* z+7PvpMVIy1r%nwr4+d!y}juDR0U^KyyIiwJcf5 z{f%5^m>`QJtwBL+UIxm7wCKPfe1i=n-l&hB^7-!F$8hVs`6R}p7$oei``3kq=TMmX zXSTe^(DR#NW}Y@m&u@mgeE<18D_`f}3*W~Lz?(nabvXOG>|(B%x{!|?RO{FbFZr7f z@L%6~HvjJx7XncD>CN15{34dmI^HpFe-k(K4MIK$Kj!Uk;^U2|oJ`i0-`?BnI()4AcZU*^hlpX|U^-l2K8^+3R&`Q<;uC*S>$_dDlbB)kNo zSJk<7o@A6mf=Sk=OPv__F z|5+i6&+e@Ms-HLb>MowsLr#?$9UbNFyYB|zfCCO-c=)ly?|jIW=Yt5PIy3rWdwLSM zME86EZqpPIg>GQnPPNZLhmg|E@+;XLD7QuO`Er}h8g#emPe3P)9=Zksd8a`r<)~Nf zphqFLbxf18%WvI5C#lo1XzzO)>Xz-$$*^6DSy!Kv+bbK3n5k2_EyeT{a-pU`HH~{X zwKOs_sL6)w5;a@c92kly0wu}j^;2J1K>H$3MmG2jjcQ~BQ;s8@m7GOqYfebgAGi>* znHV+UyM1OEHckN31zaZ0jR$1cy==CfvQo~0O#0ofRGJ|GIRlZk#Dfv7%B<_MxAxXU ztTq^VFd(xts@Q{pmj_yZPXU>|Am+hKW)>3(2;A=~wfJ>QbFL!kaezWcmYD-Isy8JF zQ;ZSBQxUga)Y$Lxmbo8@z{Qfy*XYofX-T^>aggAMTtP zp~r8rv^dUF%6IXkXd?#)n=uG9g2mn>kw~~wFUKop%YPWN*D+u`3|eerf%FXI)@0`lc+p6c2uAH8)NfW^0c;eN;4p86$=&*r_` zy*GQE73VJR2>RO;viAGuhu85Np5J-z;ewb4+Wzn}7jV&eyFU^3=J`)%#TQ}4la2<+ z!OKIdWAE*DVor}UzB}u>JW!qd^FQ(2pPtRTPA+zq?R&!2{M&bC1%u9qFaP&Lb6eYO z08_8mdCObg!neNlElf^NQcCfvSG|faeBlcei^T`o!(+INL3pa`YPHRvSGs|(?_&lk zH0M{G#bV~DUw$n^#u`~m5NU3YY>XQygL5d$wCm)wy8~H&gw~SUy$_td^~lvj z)w1j^c-hgm4;9F44^n1_TJ8lgJ1-SmYy@dR(CYK>S{AQmNh+3PeoC>g$vy*(2WswI#y2nSGxD#_|0>8-`9`lzC+)_@K<-d&3)Uv zay^OXM! znG1I1<8MyPp%YqgwjzYdPU3 zr_(&>N>=bxUi19#^84o;+j;-wpZ|$ZeB=On-!%guV=p1F-%|7l`7$xxHBEhu#Yx%V- zPpnrC;H1vQ1#Pju8(3#WA7L#zaLzEQnc+<}5Va-(mw`gybu&%cHM?_?)5?VBLLNIp zcVk^QXm*HY&~;f8p4aL4h_-&G-MNsntc!gQQHVNe_FX&TSpY}p+qT0bg>ZqIzP~Na z&GXQ6dWnYuWMat*G7q0uH?p@1!fq(c?b9@o{e(t*l0{lTwl!ig9;(*$FXjf7~gh<|VWh3nyfm+kkn zDDD_m`J3| z_a^}uP&E!6*u<0O+{MCNF4J!?%z8)?-7~&o3qpVQu4ZzE*!Sp~@I8)OgmwZJbzG%QH)Nb8xhQ-_;J_&vHKL zP)e!=vZ)9r9q>weEqYOl1;f*vJa;um71wfbxQU9$7*L9a(L_ShveOKz8vBH!MEj(C z<-RAgX7eC6Za&&y!N*0l!3)r_CI0#QE`=B__{aa{ivPYGHo{AfIiAyA^jxm^@Bewg zeXV(_>$tpcJEg;`Z}|-0JmMV>dM;PbI}3nQHaWW3F>ikp@4M2*mv99s6_o_rAc&r@V)+Eh{no$sXQw z&AI&Raq}p=>F^GXZso@o@b>53#=p#Y8<*X9G-n)rBiF8h#rNA|?nai^uF}cY{L_i7 z!F9M;bScna#oR$Q@4JTgTyQu48qb4w?Znn>R^8I~p>1B@es6=b#z%J9>|(b8%#VKb zBmV2Z{)?wR^{Jg@XPj{cg+hUsz3gR=YXE~(ZgB5=AiS=2WT2PnLkCEU09j3p}yRLjjc36s;D+xC>&*;U5p z?F6D3cRMSyyBl_v9k9)5YHg7}xIw%k2OL_=<57uJ(%QWYeuu|YPGF0p+XI?EqM;@dPq)0c*yWH1_GC6eozPGcM?W7i-;dqYypRLv3jp<2f5ouW9jX#-%S? z2VmkpkLHkv-z-wt+`=2Hp~h-^^y~ISt7pAz<8G~g`41ji;MtCj^HBHoSguD3yzFZ2 zPB$g^)DayJlU{J!o;sz+b+to$<9Q9F((lz# z7*@61%=&1vOlBk_r3Pouxt0ZLnp@*}jO#Ls{c+~{(+m}AwB~tCPM64xAn64=WD)%d zhb-E}>*rs^VsDaOnKEsBMs3L2ETm<94h_bMEgay_Fs$mdtm5PQUc%RVpUiz@1=jvW zzKM_RI`Z7tb_VQ)sd4^%fO8^y#j_4)U*H9Iy{)tE$d`Z46?1l9o4PCDWp-UX?=0TB zVH2NUkXsq&03$qThVt|^ym#dZ3_R;}j`?H{0Oy_X_dNHzm$H1zIH!N_3p^b-deuw0 zao->E@`)v^_{g*G2TG24`F9H|ud(ZHW9S4p z{LHs->}T#F1m4-YgfHgr|Mz7tBbud@|JVOHj@z!8q~|NY&^F zFJyN;z1@w(+D;gyO-+X`X7hd7o)XOk&W0}Q@BwdkI#>2y(0IR6A;(?~x7nFtc9?p&_VhXLlL9?Y+9edIIB1 zyoMo646S~Tsr`%e2?3jS!_V*kct{*&t?b-M?gFNd^RQ zpUY)YJt-rVD${9!p`gyqlMC5A(Zh5zVt!$or}x}JpKMYjrsV~>DW#<-EQ*Y)TgzG9 z9A+jfa7<+lRTH7GEcM6ub88VwSbUK&M^&lX2F7|U@ic!s@J9fYFx*n8(WFd4CPX4-INCx<#*FyWY)GB+S6RjMml~Wta62R36behr`uwbV z1e@bt4k~SAxj)Vk!8jVpuhoIvR4br*QfwJ)-RH=~>p64IO++H)kF9<9@#Z5LYn0f( zf0R~E58J0S&f;)_Cly!V3&SEWMcaf|4gH>LSit3v_LuN+RL6ei9=>}(*GBp95eXlE z_@U{~IcYUNzh>EPZ@2QMi#X$F7qR7v^Z9gq0#E(Y>p0`IPjlJJk7exbZ{mhCU)SxH z`~hD6_BX+2zswik_96c6bMUFxy_k2l4h8;~7tgjt+dM&Z& zd|2tk?MnvdJkaR?+jetiTTX8{cUyY$Pt7V8Z+|!nuFXoaV!)+rQ~Wx9;{fyA5DYI_V@n_`whIt#5s+lgip`Ho5S^3pweelXm+A z9#dsBc!2{5(m8@<10}qMCbEzfa*nUI_;uaMe37XO0rMM9beZ(FyC9H-f^garP9`9n zO`}W=&EY)!%UXmM6t-Ht*wX3~MC0z^P+b_}j~9`XHP^}5&c3+=G@uJq+8vQ}JI521 zJEVczMk>&0*Ili>4h) zS#+YX1&^#C@$0&Cd|^SgoEFFg3Zb2j$O@3DMzu1UBL%X8q&`;?%vc(80{qbuqTa-| z;!d|Go7+omaglIZcN};y7O5>+!KEsTmL;tO_(_Jy3|>Lf>Q{^%UZ4~Wz^aGxMcP}B zc0KE58=o*;m_6Bf*%63&I69WSAZ8~e90f~eActc5dm2o~5qI9R0Fg;fJ?0J$>fORg zJu4YjGbmvQg(gHZnpOCNUBY4E20+pjv;G>4QoGLe;d^T0JM^2b@ZX&4(=l9EKm(3AlC%(Wo1Orp}Kck(tG78G`qqZ#q4q*k(7_pmwbW1n!8LksI!>Wu@C0>?ya z=oxBq=jdFT#y!)@BUPR@cn?=kA3#(4EGSH|tUOMnQjYGq4~=l0FrirNFoD9aTZA>}KoZp4Lqr&7D=Cb7 zfTTr%4gKw`kcG2fwmBC~s;&xCcXc1L#p@W|0cAou4U5&r(ZiH--5seQjkmRno()Q* zq7$x(?OGAf7Ut+#c{sVEu_Y}@8cTaA-O=g>eHJ5{b0fT_LA8v_Ly*FOO_S?v(meUPnxKmw zCUhOLXv)&+7t|K+6$JWo^IR6*4grj$PiJd3sh6AM%qS&+~rtO+NeF zzuM(<*zFP8p@$yIiWMvP_P4*yU3c9Dz}aV?%`0E|N(zO-?(XifSGjfqr7-0JI+U)* zE^$Kp%wht8m6C8WB^-C17-8MER!Oivaj(R0I{K59P@CrhAHgLhhciwOqhbeMu+ZvL zxl@gCS`RHc%?@XkY`Q{wBfH_3ZBe~7kQwlUZV;vvh#<;!J-Nu{47eXpy{nSBj02az~!_=l2>Ks|0B4 zbTHN;^TQ>54n$hvql+F%k9*ig6Q<*8Q(fp$TopjG1-_5&FJYA+8jD>%fp7t2SV$_8 za5ATxa2Kiji^;glrZ8w0aTwU-L^$kbl~yzF%m+jFH_POxqR!@|BP_V3xsNH9a7 zG|S6dopY6Pu32j`#SM*p_}%EfJa^BMIwsLA=HEEy7DN>5QxefkM+>b43A3xiC7{ro=izZn&FLJc7L}EkZD9s53 zGlFQ`QlAIS`Pw~4GWUElC1)ADuy2~h!ad7&aH1Rlj z-#a<3um*(#4=(6Z)3BDJ5R`=EK);TUpjXZiiIiR$Q?))tk)bUVg+>V|Ve*hn7|nWE z7ERN#lA9V!xaqci5UHfKU&537oL%gbd+y=ja1*`&A4{KfLnw`iX?JVQvgMc@Tx_}GeE#W$ zs~BDWIWFG6)&US#4K3j5@0tNl=W_35Jm*)tey(jG18~fL&EtmSf5*EngHN8}fXZyZ zvMV)o!l7)vXCrg=@3Ii){EKAk-x}^4`8)vq6Fc9>_$lWzc=hfbw+&i$1YUMlZ+^vb zT=S(JzjyAX|HkKd@-FS?Ax$wCi$&h>hBrKvO&{Aedw{Marsz8gfVLRv1mIc;T744Z zx!^I?a*6RK^pJ6e^%Z_iAhdJU5}73{x@2OnX_1*lXs7$gB7rT+JbWxa1rOqi0^ul6 zBApes=qaq}(z-g~l!n~q+0TXjx!_+(OkbIJs7TV|kwv0IYm-@<-e8F)HO0HfoMAwc z=8?|1hDHdmxgGIr2QncM!7SH`wlRQl^fVC$?)be$8Vd@gmq3~e$COlgmH!kItP3*b+m@Ugdy&c*w8}?XL;S4Q*hwX6R5h=(wIz< z^m)X+lAtQl#Q+(*3oo_pSYjs?moD7~oO|nuUmyF>xexf>`#$slciKm=9*>=uy|wf5 zYZ+?HpsI?AW|7r$2vd?QE>1EMPGhV@0wp0??$ub{e;o%!8#^NXmi0-kN6Y#cBhd)z zMpCsto3mavXMJoWoMgB6n2Jg}jLf>Ti*w9iIfv*7m}5^N^Qfs>C5njG!DfobDYlo_iB z2iUx{m;YGvWH#S12d^neeJ~25QAsjlDf%fvn9)il-j)E>6nITTG@%Km6I#QebBa`! zw8tWhz+&-y&5&Os5}GL!U`S|Liv)^75Q%md#u5q-Ul^3vq+wxD#I&sHFr(X@6Cca4 zs#1|nCQQJu>j!bk>Lc)KiflOHh@p*~SXj+`&pj&=YjcnykVp(}rpp(SK50lSNHTnB zn2}9NGRDVH6zTR~k-asmHl2DYOFnrd-{)g+!jiujczN|Lp8=fk|G2qJ0T}=BdGO9{ zyC0W);3HhZM>ykWH9nC|!&9B@@_&9}6m$IN@3&w1$G3Kt%RhEM+eTKga%cfZZiLVM z^%DMc<5m3gKYyN2$0xAq{U`9xJ7#U&ufDdd1lcqk`eweu2Oq*Ghsil(^lu&7<@MWL zn2$Z>Nu6c;e);D+-KO%bckn6iY>wc$on`0!=$pHFrml7g!2IMVKjAsgc@Dns^OK+a zWT)%C-~}&uNGI}`D9>|LDd>QiwoRlkxU_i#^h&G}WMzel4KiQX1Rg>=3RIA2va;_& z#>P{k30%s2E2EGZOz2^JNz&*31jcj8%vmJz2Z^A(B|}ZuUDreitTA2tWMi>bZ{s{B zgmAXWo`L+_&zr99Z)L>*I9|&HBKvD#{%2gdV2UckYlC56kJy;oXm&^ zJY=#Lz&u{+q3U0D23%&Z^JsvWz4gQ@VZg6x{8~VuG=a=mRv1MiSQ3m;kqK2JDJk&t z!S@N#I-Kz`lw_Bh1n$vOw;tCu_T!4N1DQ@Dq_AAtI-J1EIIwRkPwHKXMsi|dHGLxE zglG)_U%vMg>KiIxVSH{0HSS}TbF*|#nNGWz^jT(>yU8UR8VY?a(!}HShy9+jdv7Aj zpEVLeMFvPDzEG4Uq*gO&GWukLaZ%=o!Hpbz@)mw|(;;|M3a=?JA(*WZo5Koes-Wfc zGFAb?F%s$vBGRHHE4XK(DHwOIz))|E#laYT5+V_!E!>s#GpOqH$pj-c+FFWIp@cx8 z=#`RQAVm{fgUmsfk0M30K63!CFVBz}P<3isOE8eKY|$vkRMwCnsT#{X6<~xxB2hVj zNpm8E`=diBKp~hg84J7_G=dfB5Pxni0`}^~9;n{?G0P3dKLvnW_n=?fgVDzTR?k_$ z4{!J*FFgj1o4b^Qo_Zngy!sNrQM$f<>OXW>&RqB5KR>a19X50P=Q}`Vzn{H?%K-Md zf-^pP9iPUzlAXiaUGBzAT>c9#E`6I#r(Vjui|);rF4?VfnqBFo3G5*EvP~D;rt9*Q zhkTg()x?wD4?AWP-mi8Ez?^yJnQY#?nK^UjaORn3KHz#n2=r_!(c`Uza5li!4ajAZ zXQbp=FEX{LMn-uvGzUD4610W`!U-3)s9G8w`B>pP9mW@6T)>x1Ey7x|qKAr&3;j}} z<5Xr8Bt1^oAycRA2*;Y8a7AZ@>^d$kXfhYv8y8e*+qS{E^Va0SWsC8fbu<)Ffk47FweG5W>&~1(AC!{*?n#E@J`>u7DM8p$Z1^) z7Ox7?Sc=zhprm~*!bt~wOd!#Lq&eW>wT#0=N}vNtT5@*P(Ud0I9HT>p?Nts)M&Pw9 z!Wi%r_#QeG1Xbs9)*AN63WBuY9OL}D%b)S9nzZ84>d!k~8p<1EL~8J>`8D2KPuSWO z@G^VdJq2R+c3+;Dr2~nw5KO{`wS$cHmsnmILz4eI>@j$!%}~YXBO{cd9axk$q3VjM%=t^A$o1m$tRnF#&iK% z5`RV^WA{8t$^tRslT-xFA*a0*)^%Z2Z-Vb@=9Ol+H=e_fZNQq=5XYBSBQXrCgrX3n z)}r#~l(rUMbTy*J3W`E?z(>QRtkaTv(m5>f+@N+?85a1Hl;_l`&p4B!O=%yaL4~DW z(g8)X3t8}m!eG$(gkB^(B$A@gXrWo1^)jW4q;|WI>Akg0o$`kYFaOyRPW{n}W( zcU|@aHXYR!=I==R($>dpy=Nl>&ni)W%7x7P_zQRG_z#6Lwx{bir`^ke)m>kImjH}0 zW{1B&;mR1-eUJh&jjXkRB1uIev?VYWnP{S|nqW#1_XkuLDzYdbn$V8cqzwX#4rhrX z1BuKuS)@qI3cs#Ni_X!kJb%)w!JwdDA4fewsO%_V(BZ|hHA%<=WQ5(iwK;&#! zv38aWfShHu+|G^B27H|Oz7#lMU@hUaJGP3o)17DsT12LiLX!EiGXtjr_dpZcfxo!V z1M8>_;GAlN&4r~EXXA;rE+mvZ0lMr0GUFbXKrIX%+fZ;o%J>57xxYbL78JJ_2R@Z_ z*C^c!U>*;(yWN-F0WRBbx3?3sw|2RNGYj#W7FAP(b2El~M^%bM#-eD3jah}?)%RyW z)!5(G@r6Pn2!)5iGOV1w0u;t*Nt}P;OWlO{Li6Lz zM{>`d3z4zFlr*BHh&K7T1DVD87Lf^b!D5x8Y6VfsNh5192%g)2GfxU9NUdZ*N;EA7 z)Fw9T5-saJ$PVa&~nQ&sXmf?{Ze&`?16=R2@8jemar#ukk z`WN>IY0MME1CAaX4;s9>>)hiz!Q%QlP#c@un+|D9Z!=D9OWPS{T z+jq-m#MaO&147~F0Mwn+GH;sss)|>tKRVyL$8jZJdKIu?hwp8lMY5;rn@7BZJ8oLS zySR?C7aYPz*L^mrORv?KV@6-{?@`T znbUkG00UXV`Qde(V^c1_>1CXA)LJgSX$fciY{$8Dmp!k{v7fnzUtf6vrQdIBJ3Z%L zB=w8#&4J2ahLX3tb$jqe;J3T9?rv*fzV)qdan@O95r*4Z0wzhq_rCW%UiGS1?d~og zJCzS!I|=leCK}JE&-Y2of;jOyS_vIWl8QtZ1oe_2?r}gt7)ww$$i%wL7v;1wY1z&4 zYaeuK)CefYKCfMd03^)wLlgfDU2`4N)oSWNJ}y|L~su_9V%M= z0+l#@kl%E4I}=E!P4XPL6xLDrR0Bk2kXde^prAOa$s$Q@p~R~@8)XwnWMXLbI2xMQ za5mN^a9ypeAkp&Sdz=4XsLOva|1T!wf3(2M?Cl>(5c8MpzU&q7@7Yp`L8TeO2AIf_ zW(tMP#pjw~Dd-ET46B=nghq+bbqw0uL+7=&247|v3=(IOqOeq?N5g7TE15Fxnf&|d z<=nV+0TY{gku?R%3Gh)Ce@5WXe5(P2FEmS{aejU8iHr}H zSP)K94MsUS7$eNPI%ZaPUgGFzzEEgunYK+DM(5|^v@*&%J<{IVdDZuu17kY|Fng*_ z+4Oy`o_7`ii*Ne^_Z|8c0GIpnvl?6c^8omI^i5v&+j~3Pji2)4&hL*@C*$}3?Ebx< zV^ik7^Lz%pcQNn6V>##jaPduDI#?Ujfa}71ZCMGHeS}+ofB*4!>AZd5>iaEzLey@L z&|dr6*D^i51G}_pmDj%ZwU5Y2{Uu9yUMKTJBq@G1LB$roW{GB<^=Qj4aHBi&L7QstG4zyvZhVx(=BJ z-*@_#cAkoo2q6%GkC4()wLAwF(%~{&jt$X~Aeu5nQx=(sP6(t-4c2#qeVOC~d@1l^ zgV2`7kOODh&*^1AV_84KQ-~;X&Suc<#(16sd$Rx)N_DQCDLT!H4%&1&Nmh0@aG5wK zG?^KvEo$jpBjYGxLOZhq9Y|+5kh*ZRESfd5=8K$TZi%Lx8=1&KmI=JhvHga{c!Df) z_ScXnPgf*qMG;PGdehd4Vf5POx?5!teWd%iA zarYA05*Q<>>WI6Nd1wS0i?)_wWvEC&YBk#4pW&db!QiM-1rbmdA-yu9R|fb(;UgGU z4$$1vT+AOgEoOSA1V&I^HqFp}8&x?jTF0=A zS(!%Mm{gcH3FD?oY~4+Cz86xIJ_9PGD13_2{qGA!BoqhvaPH7m9A8?+tswX6La$bq0lV@Z*0$a?r)a}n3JhFP7=;hy?jq_hZO8TMva=1magz{u@K zbpCJeZ^9(pmI|(E^>KIFLy9vN2!%Upv{%Hx(|YkgUclIOx1sm{BM0xZphZi6<+$r^>R z6yphkswF8)S_3{wkF)bNK15@p#;5{HpV+k0v$2bVfMZ zBHY?Qjn`b~CCzfGRy*HCW7E`~+w5y^E#!KW`oajALV1HG8cQf{Y%%}$G38AfE1)qF z5cm0{y#dWRAOw`USGfUx5z>OwnaIqdVoP(_Lyru0yFTq~nD)+V=j5clPPPFsTM#JPTvgPTxbJn&iusjU-nMh*}P>mIm;Ne8w};JP&`HiT8< zK$-y&x51SATL7d5_rNYpX!=%VM3WZ3VJVEIL}Ljm)(GvK+>9s4LT4`EK;K>p*{;^3 z1tuO2aCx}hmq&U(d+Ui^s^zTVbpcdM5YL2s=dNS9c>Rg2NL=E!$_KbUP7t2qKul`8 z0~aM^K3JAHWy#%_rcFZCB;1-7S&hB%;&y%kU_78!Z4z0Eb|g1Fh^BM5i~5+jiqJvHlRfb(GlDO9m-c~H44Fe zr8zK|;Kp5k`Fi+uPYW``ygvRvLzNdI@c+izR&;r=9!HC z^`V_}Ipb$FKEL2Afa{Kw&fAB9EMdQ+&fDVv;U)0}o!{qu^g7Nt${8EX*1}x&yfT+P zuZ*sJ{XzG)J#FnTSw~EL=mFpR$~XURm-n;F6tbg^I?B!d3&ClpordRiH`Q8m@4ff( z>}NlFmk<1yEFoQjy^vT^Fb0ujgljFmSwGFW0j;t`hoa+3CN+fPt^*MFx)92wM-WaK zWF~U!WJ4CYu8Y)eyKp>4#u>8ZfQo1(uIrLzjuMt>gtAVY-wv8I8k=ZmUmW-j%m{&r zJkp||xYZDir)(U?M@pDMAUr0Vpqa>$dt7e%*l> zYXyaI;|vlKN6TvtdKeGabpf<52xc@YHi#tcIJU{m5?0-3^6JKQc~S!ew6&BvQm96T zkOJNB6Zc4@&Vfth^f-HK*K1Ew$sTLnmNtmltBKiL4_GqKylPnDK9DmWNhaAKdRaGb zfNHprVU<5e^LeRhlXUbP{W3x#Iy#GnNpn4nb0)hZ9b!tCxOl^fY@F$#HdCNjjw$rk z(MB-2u@`?r5#(Bu!d7=LwaR6asTikY)B>5)^XC<3nD0%pG3)2I6Z`X|{#87^xSpHi zKBje%-h6h>!_lbP9S9{PSVM-Um3L|Sq@gGk%e)#@Bbi7_%$+;U*!U1hkHtg=)th1_ z0#sd6S?lyd;k3(EOL`=&VZqSQ3`g~?Ba$h%G?uU|+{&sYo`KpRR zpsaS`p82_@R->^PYjcX5re!UC(sjXnAsG;YR<2uV8J~ML&ZVc)VD;1>>#8TRq%z6K z{LAT+nwHgU)+LOU6vYe`>E+^no74Urr7pFG31g5zpN!cz=+5--tsPf8#F6ED?ilw~ z&*UZh-OTk{)&MS?^2&3+#`)n^F1c#uHtWvra?Jbf3xP+ctFioo|0M&4PWXGc3O2p} zgq^Pcsp!Rg<+u;R?{~i6){nkO^paf%2)kPkW}*B@*DeE?w)@!4H{Z;x(0q*gB&i63nY|RU$3i{Uz{~73Lb=^`GS*VH25q5bB_(ONp}rJd z^JoSES_}4@JI1pHZ)aG>RE;wVSnAdAfr|8;jkGgVW>gDOVeo}zV^*MLeJZlWsIKHT z%C|mxU%<)MVa`18;H+=TX_gnXvx4)^g{N`*wPUg{b z*?sc|w#{;xt%2FT4nK1NZ{6_vJ$*{|tAXB^F){svNBy|%+GPOq!4JBNxpe7L&N}NX zqA1#9C-oOADRR5uJmo&O4z@-hS}}4#xUonwCr_7G0wW%iMN)y43}OnFCNVbyT>v4R$;f5>6x-PtY9loa>l!rU5Fpc*b3GD+JM`fxQ&6 z-L5v+c(|RIM;f&3rG4$KN4vbH#+IC3GMdQmg@cYZmCS_PW9G1Nrib76?#Ic4D|v12 zpD7BTP*`r4oNiA~bl-oIV^IOpkJ= zI8BR+;l8Z{G*X{TD^41@my=2>DN03TEk}n_934)f5ctBQ4-nRJPe)$bPc-lDcy6gvB^8PCAp)yk0dIL~o0h)j2NBSOs5x8&U( zrSc9?fJjoTbb@%B<>$}_HlEkrhm@FtPgZaaUBW)8&al$irGX~Ah#0IUb4 zO$lORx_cd^J7(M?NsE%8X7Q`eKH7Q$)iMrT1rk~s)yR;kAuB3m?6PCBg3Kvrd+VXp z&H%^*ft$y2r)6jLc?7$>1k=o##B$n1G>F7?vsF!!d6vYgj$7AU6?AN!du4uqw&Z#e0m!yz zOQ&0;aHa#XO=(#dyjhV=BAGB8*0?>J2Y^(LcAX4ptaRsRe1Xu;{yr%?&8X0j%>*PB z#gg7hs#(OR)|}3{i?75N8OMcNang88d(OTcwrQ+&MhQSMZ^zecN+={cpGjB3y6y{> zG3_IT<<8N$_=Oau45cWcSJg?aVnsU4Qg58wllhEzQ{2&7NXvRWy>uswyp-FMIo#G< zgfBDaWEPB}uw36-!q3(nN?A?q(eK+6q1xS!xu?~5j|ZH3DNC+9a*rQ(`_ zAN<5P^M3n6E-pc7H>hOcyuaV=^ZDT6-{_n~b-%xqJE2dWFNm;vBj&%b4lgP1$@ zcX>(qW8BevWV?#rT=G*Geey1?yW0RpYt3gr`&oYQgCB6;efN?FiK+v|{JdWi7okjeNQ21Wy9n3f-l2|F>yZ9S1Mj0VKppZjUS- zm8{*}XuH!0(FHMp2~-XeEINdwBnj$^iFl3QJha%Uc2!t_CYmz!DSx_^m zru%GZ#XTIef+Vg;D(%nE{!Fv=FS)g|2m?q`cYXW-ndrRx;kK2D!E2TwF)#-kGSQN6(zmB4Qf3hVb$eu32o7#j}^{j z#wrWSqAM0vNtwvX+?w=oY*@q3C#W1X%mEW6grklLjhDagv@mj;Y!s(0fs)9mc+-@m zVNK6kZXX<=2@@@fj2q(tzP9lcmRGiNO66`! zGG;^C&%dvE3Kr;zT8!|}XQrRX^~@h^5{P@Q|<{$pyANIsKKDw1<&PrKpx|FGW!0rbw69vHPyfc$`Bx(&8 z%-E)UwLwO^i=!k~Ima;k?qwHA3a!|I7p2Ejn5p>pQc7q@pmMd$3p~kV3dK%Eg*^ z9wezd4<)-mD>rwLGYy0(Au>k~6PcrHsb+>qjSKNCDy+;iUKB(V8D2wUe2EUF16xL* zLuW-Tv;|+FQj1j(%xDU$#u2p!)>y332y2n`COYUt7X&&KL=*1Z(vpYDefPYEM%7bf zl3_!IOf))D=*V;D>Ps?jxBq$Utw*SS)PLqSuU|6x^bfyr} zQXeZKQpqMDZF#)<$ZI*haw`L>g~Fl{w5%dsC@G4J)!6_yHI{Pi#6FBQN=)^*9IV2o z6o1P!$RV<#q~$48t1Id^nP5}e$C1%}9q=-{IvSVlq=DP7DG@}%LrJHdX)k+b=`L;@ zSi;0iktFlnGcC`fktw7_rxi-eLALNKwYjQ8lJafmQJw?rDt>c`3^aTS%?PEzJ@B zIK7mU=dPxrT1=)z?i(*W;@`0+LcQ;UOZnKL-CV)rZi_p=FW)i_OW(>FKdbR-E`Gp$ zEUx?*paWixo4a%ykn;0umH}(-w;jMQS6;&p5B(!I^uFu?_up4>ox@kw&ZhsOKRhZH z#k%%&ifN*YI_ANp2Y*_WC=fG7DOsV_Ed3!E| zX17OZ-~RTu`H%nj51#wn=klQseTcKqKAU~_-Iv1;Kb&i?y_UDW_3@GRxx-S*4ba=a z&!$UB(d~kC)|Z|2I~|kupf^n+3>+xvDWQ8J;=z!#DDi6sq`OI5De!BWV4{T@uOjm9 zj7?J)6xm^GsqVf}&WQ|{?}BwRRx)qs2<;riT780<#XeaHO6x5_%@Pla4xKFXgaa=c z>T?t_4II57r*maRM;jB`y3ZzL?plKbXTFzrobqeYE~BB@BHG-bzPRkfqXM*Y4<%up z1DMbjuVE0@;x(L0n9K~;6J#an=mfDLEjuvfH7!{oHv_0?qP3Gytz&a@0U?AlU1-Hr z*2P#6IZaLC{%$gGlsaK7GI3zX3W3NBcoL)_D@cMFbH6|J-rDoEJ!pBL_nxR=W>3{# z>eyeVtb{BA>sw~_b*Z{4cK4&=R>xc@j4B#)JSK_(6LBvhG)UjjQ)*H4Q`W8-Mm7{O z5rhj;&fNdcoZWXl0}`Tk$R$pfXlzEy8V(D_Sn5qO3NT~CF;5cep0lMGXgX!Uz8 zcWfr7eYFH>#Zu{Qa#V3G6`2s{^s9<+PLaD)ZJX!TEGuYVNEDjMqyScsB%Y%Or(k_@ zGZpuIXlot4mL;4Jh)mLm0%X78NxiEW_Np8iZsbKhH*!}pLd*ITMNA|#tJ5BSTRV`+ ztjHX{%8{kDjHqd(utaDgp(%=K8rI{kWFA#rATb`*IK-P)(34;Re@c<|XY^JYtQa3= z)x@bBJ+hw3xQG-kMW$svW=upyHaV?wJ9GRQwx&I-XwGFOi#WM&6-60yZ#>MLpvr1n zdU#)`CupsFb;gnZ>2uHPGxq6br+@l(!cWZ(+` z99%ezyDppN-_BYCumkXN|9VgS^3Lx!9J=#!oT_dD25BAnZc0a;x0|2vq1BH!e~wGO zdoTZUHas``+nrL#UU{D8+ZSEQU%%@jK6SlwB)j|SBRJrcTe$n`BRB#Vw%I!Gix2y} z-sAP6_ql{)?>!BG!)DIsr$_#1hwE0p^$z~D&lR0@AL-g{0JC}XW)3^-FaXNsawpXC zdCz+u7hG_`&NhAQmk@3su1&YgU~R|3xI+h%vp|j3kXi73*STratik~6d!&m7i3fwu zO}QN^Y5aDF0T-UwS0)%LP*^vEs5KCo041=Q=^j&ScMRy9i)f}4M>X|%iYx-Z0pXOR zlUV_UF-wxTY#OO8#Z8v_e2HJPRMzXxd1aA17nwTEj1HaX-fLLoWED#e(v0qcJeWms zYtzh}!;3WrwPlKu5Y!iy(4mJF5Kc=+56D51``x&%j3-ITK55x?jC4s5)ZM;=8Ml6E zGR2>0ASY|sMk6;lZ~>of>K&ekKi0sT8=_*1@tr0q+}gy33gatusPJ+(G?8j3Ia-BZ z%aDzftT)^nWceu7&Vb9#)_w4?(WGy8c6BWF;rw_ZrR_QY8X> zL)!Ei%PJfkZJ;PX%9Nv{^`urJv1lt8Pz|0|xdVk^k=LMQ-DhYRkIlM=qKw&?_H$cv zAya9QP^SET!#>Q6m!L-@jiBvgT^eq1?A&$yY0Dy%v=mgzzWr-i7)&strdgHFp(2|M zsv0fplUhYlCd?_!a9=#grlgnEjUk4DI=;|Mw2F`1m+J{sKUlV&Be&C(y!an4=wz|X zuFIZRhM(2o18~{%uHf4jxv}V7m+d}1?-SwofG&{vMEE_1zv^C}f9`GfTmR!Pf7fmw z#rva!w28NW4MIxJB@_QXPrdeE;oACN}}6s zF>)KbWu)kU7+Z{JE$E>!*C(8Du3q7c#;a+Ucwcbc7pJ>$zW1$uMbgtxWtE58I*m;d zL>SJZmd(=2fOF7FQVLs|B$ZM}6Oy_~E}}`3gAzxjsxDL=zkjdkeuh&T)zVI5l3KEo zA}tEiB6tl;VbbLG#LAt6%-zUj-l39o-P77#7$Kb=MQhaPG?ivbb5ReCIUcP6MNsXw zH`0;>6xw(BELJ%>narR#>OwhHEk@K^&IloOxjEM408?v(mjlXK4sK$mPI*m0b6$b8 z?A+q~bXyBV>pL2r^`z^>STKP^4@S;FVK0O1FsX{>=Y*EihLw<{R(I0qcLZ#VwbYGe3XQ^26rd0^Y|0O& zPU7zMbBQW3QW_dr-f5Ze5gG^}8OXcknV>Z!NO~3da>^xZj^K{Ld7L-@a+c;n zmJRDZe^IL3eXN4}TRd z`|L5DPSAz#8RUbX7$>^f^5-|%}bz5M{VeFH0gaU;Aw+fA?elYRkER160=^8glV3&H>;O9(i}P;JURe{MK9f+`qhvbLy{T)B8{0s2^R$ z1b;{I4dVcO=J>brj_-Y*cMe>_v7FWcFW-3P?|98Goglw>_OJND@qf*tH(bu)$rt%^ zaQ{3S|Ahgs{oY&o+%BHmZV%C3^r9DW#T8d@!U-qvmbbixzxu1c;;Uc%D)-%YA8&vA z+jn<&kF8SORANV$%7Yuttiidpon(5Uq|?CIHt3;4t!gaoBP&Y68RIN`dxi7gPo2O% zEjVzbBd7CFEkiitEPQMGlqnlf6EhuAfA<_!M_VIW3APX-8wsV&KCM9?;|ZcE7gkxD z@BH<>hDD_g6u2xFM+<8WxN{JhA)HKU%yqQ1EOZ^4v?3U~rS7^+X4W~hZJn)gx*(g| zL2KhEW>Pu#G$|07M${SJ&m`HU1lhFwUARa2UywwE~kjO z>uhp8j&;Y%Ut5zo0ONUhTc-(1KJ|Hlb1&!Uj z{5phHjSeK%1Aj`A_8JD}&d|tw)}+JSZbHr|-NS$sRE=gpDIyUfk;FD7wHb+(tWHC2 zZY@S5*%0?};NVuSuN7zwDokLh?(00etg>W9i;WCuNh|T0pvZNN{kRS|uCSW@{1%Z= zltr`+cxnI4a*b#xTqa7(Hi>YZmq;jDRA~J>EtvS8AS2A^gz)U&?keMvAvhJRVLRo&leiLdh}bRn#-{)XgTP(yHaMHrS?QW6%qnBCS=!Yld7eAAv0&PN ztNa|Z3~MYxYr>UVk;xEAk55)qcmh<*g=EUiIx~T?@3LY9sMMfp39^x(r}w(X?5I{e z<-07u>g-2kU%N{md!T*n3W#~EcVTANqfP&Ms30bJ=k7ls|F2Yip+$}gf~uvw-V*nT z-1X7jV}-UD<+{HraRc^NuOh98PIgssevQM2H*xRGAbqM%MK-BO#oA0TEHfhEA#tIX z4XbHch^=C??&YT1Vn)Il4lAvvrb7-|u$ep8?}N+))rIaDDt1=%rU+Pwn?9{-$i?3A zSSwh5;AVP6PyHJ5e8A^sRH<>JEeEF74kmIQ1a z@4+-YL@cqsr7}{b)$*y7T1Ww0UA#xY(srf1ch z7&Q}b{}tI=I0_j!7qa7Si@E+igIx9i>t6VtK`xx7k!jPY;X1@;otI&tAE{jdHKNIaP<+K|C^8VD^A(rCgZ1^&*0Uc24MX$XR`Qic?FHm}>= zmv-*U^vj<@@At0aS~Sp`3 z-qyl+_MjQML6iC5-nO+VJtZ3RBV-1xK811f_r0Z8$20{)oC7J>A8HFBt;klN}`%6UNfLMB(YLpe27Mcvop>d zKuOC2uO;!dp>I`6R+MC+#BUg^a^0E6kU|GA^v6l}dD~zGockI$;LrvxN;v=`MHlFK z-mI>T#R@YkC{$ouF<1vyw&|)^3sSme?PJdl_-s=a+Q*q~w4il2%SRZj20@CyW-F?{ zhpaCm=?@%Oj5S%o!%Eks62{`!Qq)WfQEfOA2D2TA+FOtN+7lq=iDIAJ1|z!yWcC7= z2QM8OvLf`Y&YWd(Q_>ue_;m{wRO)8_vywoyEXIepPmuJvu84^Y2M>-h9+!B@f}1!j z7{dn?9uv9CnkSA*mXdebTPFvD}i3 zFruc}ob_@;eJR<-B4SQVbyJ0Crb|6bE0$o!8OBHjI;Zbi?K(ub+c{Q3S`P?ffi7wM zazYk+=oMvFE%dQkAg6qSnqxJjJ%%*((5WKHJO)b*w$7AkZY@&YBvI|0w1Oh(Em4`Q z(|hMM)64qZIZX?~HISBk5H4%2)-M>FtnfRzjN^tq4lAx_dANmxgDp&%fRb?IgG*Zt23o=p_y~v_VU| zURpbWTli-HM7G)+>6cWWO2VFoHTBhr=DSz0wqu_r+JZyMkM+2_Wlg0#DKA6Wgov( zZ~&#kw2eQdzvZ z#d?tRI;(rDz(j_jMN=3Ahxcya;AlO)Qn4|!G;GGIWDb3ivscv!rn4f6@hGZpr5{Slc~uPHn8YOIQ>yw z(3*;ng^b!*iDph8Q+3r1MXtEXuf~vq!{$)FYl2`3;sFSzE#(a^(4ynB|P`01|Pls=Kvi0kuv9OxSiLqfWLmq3H-z7Hgo0MM&LW! z?&qpkT*9Z0c`@&7T>`+Tq8Gb2-UDAbZd+mhyPn^@hkx>?NASa!T*na?!52rL%+u*o zz`lKv;+5y^cp~@t`(2B<>2Q8jdmkO-lGk@mt@7Osw{y&;XEDLHp_Gf>aQXfAb;RaZ zz|hxt;GtWG8o7Zi}r|p-43%Y!~mh~kz@DXv+8BBwA1LQVPnH^+_ z?sNx4SRh{5M_N%XIMF(RyfD^1ykbo}r+|)}`r!m?5K6N!{irmjm6Y@tszSg>duPZ~CEo`=xTy9(ldM{^SfTCpG+6}0B~ zB&Ce+ZaAKs`xf);-dj03oIqPkQMxWrH@Ff~vE(XFeCeMb5WE1K zz2FeOebED3teYPm&J9Nu*(axzec^bg)%ogi$Me_M|8bjj&pB!>XD@gwXZ-ASJH0O3 z*De7VGixCCt6%+!cfb4HeC%T%>rlt8x#k)^@PQBTv5$Rhw+{YTD`70Aw}@)S&Uvf7 zeD>ga2X>MoiqIqd#C<-&RF+ee@@pns5M(?UkrgCa!P#UMwrZ>=$$CSlfe|@?@&q#O zUhibMKw+zLlqS!crNhy=XkB+?C!`iR(;!STyhed|Af(l=(1CD*NI=EzSZT?L*V7Vs z4XA9;6gRY7&{+=BIzUysju2jMF{#-m6GsR!t1FUUpDc4=D-65f!*<`dNlwwqgFf3i zGs06?(>71Y0gJH^_-@^{21n%QLf-Ld1DBlE=JqoSFzLL5Bc!9Rc^+i3JI6NgX`iRr z`=Hs=^+QiKqAd3`PQIM7d zX^+Je4c=fAZ3I`ZSw^XlkYtLDqK8Y9BRFZ!y_`~9$*3;TvWi{|kpN_hHiEhhSeFi> zt)L}*B9SoY)kv*k#zZWxOmgFfg=D=3*%BCE;MXk1a{bTgj9za%*D|w@%Hc z)(A;;h&QFM(t>ea80!ldGGzI(bYa4D#V6@i_;pY%H?il}ElH0@VN;XdyUV0yu+jmk za56!MZm>3ZhoQ1gF}=*ExlrQ`H8EOJh*Hv2A*Cg*`gl!2FzF0&ga*H{_qnp8I(5VU zQ2WkuKK-RbcW7TcyUzGojaRPhW%<8t0ATfB!@tilupM}L<5uaGKg9av+Ybcbn7kt4BQW#I^EB5V`bjR?!RK-7SNW?g zPO$%sTi=Pf>tarPo#m@nUB@ZUe+}>X`Eg8K|4DAUDc@#g?*r-m-b1W!sNmSWwN(*&7c!7nF`| zF>0HEzwrHzGn$Z&iX|E?lr|I^39411HRzEDiQjPG#rO~pIFV%EN=;>D4Owlt5Y1eB zvW;-R4V>Dgx?gIWWsbfD`8mnXIpKNON)ZzU=$-)WJBpWA&k))mYYCziBkIkLlbCHc zS)}M5vz@ooK8EPpS9dfp!gkMBif%V$c3JEG$WnAEYT9&ZZhF@K^E{iqwd30S^h+7} z^$T}B~7y?I~8w)P;D zff*lB$%s=A0YqCQrHz)X2u4YoMG2uM>j7C#5k_FOz$(ch`>*F2!*{YQ*vevWl7(J| zFJyJ1($R8;Bz=&{O2^j`wW<4c;nXY z#PY)dF3<%p0Iz=W#XPH!!l5B;64nPlG0x`abwf$VPdT6ce)iy6kMUE^r$1hDzvZvL z>g8o**kqjFPCt z5>BL@u8oQfGS1K?A00?1v<&>5J~gXd=XqW5Vy)|fv?)f#85>-b~^ zfl+QIO9!B0pR53glAH0X8iJ{e@V*H|t&#sJ902Nefo1^<&+7{QXLrPu>IR9n>2B?1 z?SB`#3vxQyHA-zq4dnj6@2&gQ?t+-d5_oA>8<0F0kl7Q!WoLk8XY1|-Gmno_zD9W( z9l3j8G-WWMyFZBxf*Fn1G}J~sk{*E#EIm<7=w*aGF=^}(l@qKL9N)i&ifpnj9b_|o zE-=xnqJ+f&QGVYmNyCxhMy5=__04^_skRsZVfpw0y7&m)C8O5Afk}Z zk_Cq5!VHlJ)KJV+zmGTRk@N=0)M9)=t4|?QAL~m@u8GuTmsut@q~vs& zRtVyLXQJc&&X%BNx~z=7wM`v(#tT^Tozs95xs06;h`+nxcKEjqyx|K4-v0W954hgL z0WnAY?bo^KUtY^MFX>t(N0@}H-+K**U-XU6`tpx& z#T@^69;||YGR!;hk1U}AR5*3hXSjRtIoqtW|5rS&Kh)#Yr<}lx|L`ggZIwrNJj3Hhxy2v1?kMVGZwOOctQGFe|aupk9qT|2v8Pa>=f zDYLB{$oTC*N`Y!-$Rro{H&R4upf5yNx;l+4bDfwxbH$Q&fQMBIp|v}&ygLIRQ%B`e zV*(onPBYT(I%K+&DP!Bztaf!QqD{90)zJa9^Ik*;yx@75c>~lJ6{*jaG)4qHt1Vv3 zQrei3^m*?3YRDYt0V|!Qb5fDC`U2#F5maL7y=xjdKI1w;X*%ltP+Bt;8USM2beRE*<3Zv4h!I>!lLLNGy}d;jG>|hzd2B09jW^ z-PK4M4|HUp2fU^voOG^~aVCkaPZ*^rPa_0OZ0hCL8+)Doap5GwC?#(B&RxwjlzN*q z{g5z9i0`f7jd~y~G8XtVPH)p3P}CPdR@RV8R6#R$aGDn^xRvKrZe@`&6s4O?ln7#* zu}LS~nv779O%C>_Q9@7@s*_I>3LlBUU`eg!h#=wX%l@0M3?9bCE02fRCrcH5y>+Vf z2#S!ke1xzR2AecRfw<}u%s88Ap#cj<33Q}#O1S&m3S%J?C~d(yV+4StEHSm56d)W} z3#uAg59ELQf4gqZ1}MGhcl`2q4?Y|{d%+?6>4I%V;Iq3gk7RvmEaI@0?iujv7k-~} zSPPuS^gpiTwh!zFIM*z=p8tLM%^ZGWciUY7F96BAC2Kj6l{a0)m2Vs2w}t1!>*0X$ zp95W2Hu0jL!gpTmLM|Twygb~xoNwvU6C=#WyYC+xt!P z?TdCF#O$cH&-K}z+HC;ywXc1R7rp33EMB~rMT-^zux{NtmM>qa{hV5NMCwB3l&sk_ zvDvh(%yhwvkPf`G_agjUagHnN zGrXq3DuLIs#1%>0FKG_t@?Z>dQkOxS;Ll!8i;SPls{Fjv*6NP__?CShIHN8Na^ldS@=_P`2ED)BUk#EIs?4Ym=^>C#p*W)4vF-k~UMGNhFP!6f)K zOC%xb5y&#=(4r%YG0?2~$d-HdrIn0qJi-PB8>Yxi;58ta!7&wbOXREw$)Ir#n4V$D z+;PrXcrB+CRx_j&3dt57b8|e0=M<~>LNTNiM+BQ0P>QlBcCK}Xre!l4MpKlEq6j+K zHNMcizV}v6Kk|0|VeJdKYs(y3iH})dL=UD20iLhPQiVvJHb=!4uLV-uj@@+o8Lyhg zft#FOCNhKdTm(W|_M8i;fN0#H1A)veUNuGU)mHAXuDSj{dEvdE=GAXLi&t-8r`Ejy zE8e_-w-^8TfbX{f&5pV-fBT{eFSzS%aQex-;I6mvlLJ53`8iw6f7IW89d3aecoG0Z z-oNmhbw>j5$(R2PFMW^4ncw(=)0`aZcu+^Y{Fv^5{#y6r`a{3X4==qA|Ahh1IPdf9 zclyztV_fiogV>*aSaRvL%s=8CJmp)j;0oY9C;vOM!OL;C#r%Kv-aJmSsy_dJpL6b3 zTUW2sJv+;=FQS49s30oK*X1jsCTbMp8bzbv5+!Pg=7)(Sq9!EnqKST!XdqFd2#BJh z$P$o!huOPlrnlPfa?bhvac)(2!vHfd1B2=3_3Bqw-MUqE>sH-+&vQPX=XtI_^-*`p zZberQv*x5{aqmz52Y7rHnB9S$CNOK(tl{RHZ|3sLFXzrX?*!nWgAU>)FL}v=Fvq7O zoDM}`A`hh$BuU;nC7i2@u^@9%ICPX-oL zTddKLCJS4zx-DDt2l8DF3Apu?f=Y?mXD%TvNy_6clrt&&_;uHMXC)*9AwuUaFIAU$ z&}}cnSiGjjdQOv5+-AuNlGdnCR$NN?)(LFAkyl%ovuVyNCOr*~v2))MEO1Ff=q{f5- zzouQ)U3g?g52`7v2B#@{2}LjEu*yb8{aFqRH?Y!6358@+CQ-st6q-Th#QD!CuHzZS zbw~^y>$5fMqh$gPh&D5$i|kdNVogPpS;hK^0mO9REQ*y2)s&gQWFWLV_s4<6dWP1R z#BT~j2IWnfXez^ag7&cI9;>@+T2_?AqZy_zLwIiTOwM{3BWZ6f!f;Bq)L`z3sNQer z49;~PkO|aChf2B4^3n_|{Yhp_z>I;W4QQE=!-6e90g0d}0*doSEe1=H4Xtw94* zS~Dx!%ovXu6Xn?~9z~JyhNai=Ps#CYt(VaygHRSBoL0%q1o$%&)p1o89f0-)sw7c~ zYwmBf7W%mHrxd6mPDp9SEkXU+g{-HrXd+mD0`F0S*FgLZ7Yesun``9Ejg z0KiW!nQJlrK;?G?7yg=)|Lxzn^bh`k>+)dD^+&x8_{xIUaP4qMz%}rlg5vJC&pl=? z`Vq@kp2Jvj2kUd91PiT;yLmWWO#i`Iz1su-_PHJVAWs1M-!}>KNY{Q}+Q_Ha$X!DV zxAnSt;i69_9@ilygy6&zPvpcCPkii^pGJ^zhLYNySi8ifJM*uUYacV#&EV&=`9d3H zV$hL97bL9_598tboqd5woWo06R`|87=Sb!^GGwYzjRdPCGR`ms-w_z=#P&K;1k;^4 z3+4G)E8Y9^%>`g?d*{#gc-~wqmYr9*=~)hYbA$UX!RdxmLLTa==LYy)>*!*E`XM8< zmM8}9arN`sYM-PcC~q_fn_EG9d1Xt1$Q*fzrVKh1$h=}Dv~%e3>nY)sBa@AlA(O{0 zW#Fb6#Q4^HyX0Ie7|dBH=i6yjBQjM6OSu?-IObP@Fv6ut% zsCYag{{M~Goy6s#uf5n(w&!4`RiLl0&CIZmH>*g8Q|c=MhHuRv0hu@(e(MQz05*|q zs`at7QYTUwtAlME9ByVrW;~dMOzAQm>$B3E!WV{$NHHQK5>sddEfW&ilnu!csa150 z&oXbC7guj5k_o@4ABY!dGQb2*Z0^-vNM%-ZEl^p-K;T-0lVQztpwIaZIfrt6pL6<_nHV+7_qz&=RTY?RJ=s6Orxkwjp8WtfNPe^d@shv)D-M6( z$9wm8gt$Bu-}{1d-g@Po?|;N~Ua@5g^|9?grrDeS=8f|9n{P%dW&-H^1d!%Rcy-+WI)+8-hl+yLG8pv_zgeK+3(@;0NnzDubM#1Id7WD&h;0=V!knOTey zWF>`6Ejp6;b&K(wcZ5@-o&$r%~Q)R`G{D^WJ|2xl~nr5+Q{A7Jb%4clhsvS7N^mF{Qg zeqId1cN&aHug)uVZ^+T^WjIkDMZi{2s@;PE< zf+$GYdtjEEn-OBB07j4%AuBq!D_;qWCrK*KV%e2NU`wM+W+f~AN&02RuRF`An~1tD z(6JsXy{X=N=v)|>T7^as$&_XOG?ThaMYZXZ9ZE7LwI2IN;}oLq9Y zv!wkRkqM$HiQlw6GoDlmr(so26QerP5vopxE=bzLlJ=;@Yd8UaW2GQ1TU0Da`V^Jh z7ENKchrfO0r?~i+AB0!Fnj6^$z)!z?Ivl%wGO%SHdD#{C!GT}c?($3C+Eiv zf8&Fk`ONcq$t@q|CI7IId;VlO`+v=itv-IpM|$LAXNbp-U;i$C{Ca@@qgsZf)miP!`31=)p%_1yx23>$xP=`Hr2^;GDDCKl3q9f6fB`Ha)63En@Gp)cGlvrrBLdFJb zJb&aqQtNShGQ|DK2t}Fj(`^T`wOyjPDq*ER$&hNWRre7IS6%OyEvhnRuR?<~KNS`Q zOlY6`vVN|u?@gl_xz1w%WzmBfqM=Zw3{g%Isl>(#*%ruDkPc_`4K`^;Ax&FwEoDX$ z&T71tL1>E(Tz*+FolsaGa6r6snv9Fx|SuXxPZ7A3?5FrKNqNJDT=_gClj+(x7a7#!i+A_ubNEgfI*os zsys$ill`k(81kFkUmigSm%&3zLSV2$(pUw?Q$*8-q%2UeGdfVI)5cgS5Sb2X9#joJS7eDg) z=N{m)V$Qzn(4BrSr-50xZ06mo=>Mm6fNL>3{iXM%OqtucRn^*gzBjmJgD-21TS?yB~&5B}yJ z{_g1g9(A2FpSf4>_OqY)8|+Eva`)Ra#)E?xe$g@fbmencdEM8!?rS?nWWMux#ZWrD zVA;R;+j_Tu{*jA0{Q%4euDkA9uuiAb;fyoRU}$KFa=FZDr=7;c#KeMi)~#E|%U<>}ip3&JmMr1J zAO0}eLsQ##04g<3caj;bujcHOVXk#+zS~unA)7I2*>kf`O+#rsqp&33^m+JyxjT_YW%nK~m7~-WBLkgs}qJSf$xu81H&DCs^+Ua1jE_WpX`rBaUI1-|>A zzozhgM7Xg3^r^z0cAU(|_zC~DL+d>i6_PKkI%vCpi}?M-o_3t9zkh^AJERyT=%q2X ztTElltPq5@cx`vSv;r`KAjmj&^nQlD2A|t-A|L$SYxv>D!} zUy@c7I+S?Z8ptiv$k<{Ocx_8GX^Dq5UQ1BiEbuz+^9wDIu|$NLHG|t&8q83XG0Rk) zk~FleW~t0ctnnnT9K4YiR_?%&ZgUx7{RJ zYs{xTX3=3DxlqZ#x2RS=IoY2Ot*TQwV6JlZRANs%PX7J7-{f=S-(%%U)f zio?$1h8vIO3qO4uZ&>w7Uigpq@ctKnot4*peZl%C|LYNt_*$24_~dq%|4};J`+Mf$ zk8IHJP&}owva7DTiZjkQgQJc*iY&`G`|Pth@x&9k{r1}_m0VEJnP;BKfB*M?^S$qV zk7~8bd*AzBUj6D0u(}tc`_mm2%ltJkHagqoXngUU#9M2 zY(0tJ5cqA6a5}}SCz#M99t;qfLA6t|azJ~?Wz#q@sX~|#D+DHx_^k|;NOT|xYl4~m zLY8bUB4+Dz89m?#iXZf=~-dJ?%Kz)9_Go z^jIY23#$&|{p+5_fxC;?F7~wJWXY;&p1a!3-(K1{7(40CCo+R@#<(EkJj_@ZEUJ>S zq_4r2xI$a|j5jJgd)a#KoEoLxil`JjJlGgwU2}kD8nUUcpCiiaP#6YPhe!w_;USTv zq=dr5V5l3(b?vm`fX3Q+BMy6;E2lzsB z>FnYB%U4Fyq zZQ_nZFH0E++AQ&E1Q@1F#H_LW$IOw;q(xR2CRr0suuV@hVOrG&!SEh`}zkOiu_Tc*K~TFs29ky=Qt#24_4U>n=C&k+L~@TKPdEkocNisP2b z#uVcP&XrBNmguA^&;@6DAhkf26lu|?wwELxOA(<)c@~|x>>FJ)9DU$@Y-(0Hcwn6V zWRhEU$uIqhVNW|wF8|`od26(c+kS8ne>Sn4@2>k4`#-|a^tiUqFAlhs7k>BEJpb8u z_m*FGWB=pZ8IOPqF0Map*%_x+9&!EFt1bjw4CkrG{uTVgtGNCXm*ruUj}IR`_A9*q z^J}=OkaEb-dpPoKV_g6B@yGpoPZXQK^tS-K|HWVDyKm3fACFIb{2<;mzVKK5T zH*NPdZu`MS5FEr;k7{xCD|1O2Ls9xjZ|%<$?-+5!6_;b(C3*+2BD zOSzI7RLmGhYdSJZ;yPLzSPfD+-mqF57YjkxGhQBTcNNF58!u?-UFdLscHJ`?a$rV@ zrtBCazLs?}1#9Kz$oXr%g%!ywUJO`jA*M!)LYvI4f*ci-MAh$C#RXPO<4teE-+`fD zXfh4sq>?fs#tO+&$}6F0Et%M|6BrkWA>|7(VF$<)s3__ixa$f`!>++5ZT$ERrO`6O zR}J&IC3XSw6h{-sVt9;vy%=&0>$Rm94OmiwZ+E)61V>AP1;)^l9efqVu>Tx{Cn>fkk0d5u(7 ziN^?H>fAm@Smel|0n7|$ii{80b~w*tO$y0_92A^&s{)-1eWzQ&pmh=a`7z++&OsaU z`e=FE@S&1-p!#dy>^$Ih!+E!A$1zCAZ;{i+XE*Dl>8U=bOXKQ8)giI_ACky5YCVKu z*V51AtiImYe8Bx`{k?u&rw*e3oQc~9?d;Jn1B((Z=lwC20ax$OJIwWR+K}GP>h3L< zgE>Rj+b8msfB(LK&aS7V+d~!Zzk|5HW%Z|!yJzDn>bkDrV2mQY2Yva(-^sgfMhLzCUX|xMt?%(}lUUp2 zA6vS(p#30pY7gd8@*P(&o;Nt@heWkps?vHt=ACJN<)k zTM;BYPECD7uYK@BZxQ#u?wizNh^qYk>5*NzwggwIv2(sH#X2+Uyt%POQ25{^asv)= z2cn5TS5~GR<*`Vr`lXlm2Kfr&v{q^og>$|8|IAdi9{J#7`gjJideE`@a*tcs^k_zw zkjLy)uy0jj>S*lNob+#BCEJ6`?vG9{}&N5R>FWtE2IMS#Nd;54iGod;<+ znUq)QG;1GW0z-q-n z@Al0z1Q&U0ntTst{yoIg${)XQ?Uv$FUf4XBJa}mv^n&(?lQ3d!f1LQEf~k`jFVQv{ z5zkaL-W4nA!*V@0C@S*BWic7xIX3VoB#f$k5v=A7_J-7@mwm%JZs&7)!AMBjxkL+c)hgjGbIW= z%$SiM@r+Kueuk4yv%iQBD>Wft5I3(`7;bSCchEq}XjQV^7|I3%OI9s~6VO&mhM^@hEv7P-uSVg zo9hkx&fB>Kp_iXODQX?x%iH_f(CzjI%gvdS{R;O5?d;qpXf*S>_cg#2jbCj5PX;E( z5++@7q=B!N#vT!rQFr5$2g4{@rh%XfsPHB4sv4ffb3d#|f8!|0WN~EY=g7^CYY16U zUtiEb=g*%%;}R2}ma~J5CXIV`{Ft#1yxH~wtbht$O ztmNodjE@jy)k7W@bopgB3oD+j6D;A*4S|XSGBPA|$tNR+%L9#4o^c9gg^JNU%V_yw z4yB2wp@!miz7`=`A*M89G&!ZBQ;e)5J&8Pj$4*@|N0ZXAF2v;gxg=>qe<2&3gfPVC zHKQo2<974+m7NvO80ZT^K-CGDZAy(f3z&(_sLkV(h9P8ktgrP%$&=Smk)8 zlVb9vhCCJxI_q~QEDZepgPy@u4-#wE+Ko%RL4>&nojPT{?H%IG-Z_>F&jMp!20&bm z#mVMUKYDIIEpaVJmq~J|N>WBKr#YQdT2J7GFuebuYg2`(PEsZd&c*}@p$hE${BVIw zUQLfbk{(u8ywsrF_>>uh#!M6}WX#6xKsW6eg^cMtjSsTed|Z3>(WU{uwXbIeb{YO7 z3nUTz%SG+zy4Pe(!!XGxs{7A`w zXBSV=4`=1bcv)ys919((C?lwO%(D~QB4~lm*GW#}ZeikLzE^k(&@3yd{=2B#f~{Fr zy$Qy2w?4G|Gdp~>zlc&yKbcCa!nd*DFEHtJ%-pr@Kuk=?vY(TT{PNl1^tsd`<{;*& zVFVRCniXrEK%a*k7$A7R5x~(%OGLX1)4?kA;@n=~zK87e4RG5>GDo=RJy)v_0Kw&M zTgCo&C$OUZ@K>UdjD0RM5Eu){&Hwg=e-n%Jt2ZQ3 z`U~?VwvfMQvy%2pKX$!+Iv}CWehmE_RySYjpN^Vr`K%-(u=zRzCf3TS zSOkW9xkjL!M$^K{0jBu3Sb*4)mYRe`bu;4#Y6_krHL!5z$Kd&@v2Bi4hpoC`Dj4z9 z#-&q|4X#ni{89&AylO9H(bmag9y*LV<8_Zht7%DenbT}=T~N|wyXLUeb3foq8dqJg>UPmxoNC08aUR@UOtA5e?l>NQcrptP_of=oQmMeb>2 zs-AhO!<^y25a-)mqY~L(~g51Y@XNJ$Tz9x3@x4P1G`<7I>=_v#7R?R2Pxk)K*Nlu74e{# zyjJsrHJ>tv1>cf_9o#+D9cEt)gtkh4n};25kiMt(RTHH=eeS+Z%6+-M2Bw8$#t||x zr#9$yF)SCY--!K74Hw?y1L;7GAxwN}Nddp*KWANO`?Yl3e#gt)=@3nqF*)>|X)||1 z9%G_L1c=;?{`;*TDB~HqF{<4DhO&KoAV}&z?3=Zt?{&=I)_;|7%A9KgtlYW51sv6~ zv{(gZOi&gx`t{wTI`7Am{vo=K{t1p&F{8H}P&fTk+nt0p?_1Dl)Wga8*BCZ{R96>Y zKWK47Hweq+pAO$?ujpUquk-4iwXTmP`<;f}#{qlPqqAGg4KJTOsQ;r+PIkUNcJ$hu zh~=6Z?!D)v1g|o#x1V}56<9jLOy2i#Yjhh++5ip?aa3|y+1Yw*glz2W1FNgL&iVHB zMt}AHcuxMUyHow&mSIqIUb*zW#;^l}v8)+hnY)DeX>9WM{I+`=3)qI!ljKdw8qFqK zsN&mSBv|E!E5s0dn_Ro_{$uUF5%+@IKnYBx7F7-8F|Jm_B48(KpCi4~*^`@VLbg_&qY|E&y;SmqCKS+5?)qUUPbSofZAB;0M66v;-6DG{<(Oi|medLf!Ug?etNL zCptZohF*6102T4MMzZ5bGsDx!PsIu;6lOEcy_q4uqe~b*BP^`^Y=kYZcpWH6Y(vf$$)is%C z;_WH+1I6qsi@TN498-rvVT#4Ps5(p4=C5Op+FaCMc+O~cdp+P`GkM)DZvsJ#fmk*= zyqK1N`ky7>y_}SuzIwHsqxf`$Ay)v^#y-d7yIqDq%fT>gIg-P~YkOsLOw2#9gZt>L z&bjwiV8oCQ6o>ove8)#43OTbu14MSGsk{c8>dc=(bD$)gE{Enpe=u`5;M%*plut|x z2Pe$oRlKp@ zlM2xfJLfe}d+>0l=Q-c2?WlU9$g8bW#}Q7eL$>>Q@B8iK>G}D=ZYb*ZIDCEtr7GV%9Z{1jS%yQCsv4)EcrYwxqzXc= zPeuLa6p3LS5`z(%!ByE*jQMwLd~**G-L#!pCk*t~W8;gXg;5XUVXdB@8DR!6$}e>u zC;pEqh${6Pk^sN?p)!9Z*i>#--J)85h{AcoUkmZ00np_Zf4CO^C?0;vA1R%XvaZ)R=rWhU zI@;u*-vtvEm-l8FbU9C%0BJz@V|UBpU!H1b_gJ0$pjTAtt@{R{BE#x<15JWbdb;%r z(7Eu=Q2vmwq-Je8>9N@Z%Htwg4Wlfngc#HpXazz0>}nPY8`TDpL3`#;*ehB>xojcB zBqk*}#yaTLuo%mhp?|>vme9DCr$8t<;Q6tYTs1+q7+Y=DDqnw)6JOq}gFtw_6Mq7_ z*1_}#uZt$%Bu5#1SU)aC^k4qC0YjX)0W^5IAID`&2K=7SL40g@6%5=T92OIFEOo>K zO8HuGKAzT|$s*_)$@Jc367Q2AGL6hEuIG#DQPkf@+_hJ5JjRnUm^s`pwp)MQ3?dy7 z%2KK88}oUQUXk{M=wy`B$0n_oE9UUzdd6nR`G+aM%V}NW3y=G+yWZZcm<(QL7S1B` zcCLK>Z8TYc3uD8PetJy_@uF)#2VbmX(DniMjs3KXsJ*P?l(6!JC0Lc4azWe{-HcT-4!0eTx6x{l| z@1z>9%&9e`s^Ceo2dSpd~$q|7umS8Ke9~X!(zeb!JH+X*s=Fv(CO- zT3+AH#MR#}`gRCuSyxBy6vo60_Wdq8=485h;;?X`&|a{4L>2GqkFLJkj2Sg=tgThu zX|xeaoLWq&N|C@WH*^`i5?iW3i8&L+I9qb!19oQ;D<>auysIx;Nj`;;4O$Wo^b+g> zAjsFrz+HIWFrDseMu=S}Kl-5HAcus|^xy_te-e3EDP=++RNiQK*jaB7U#7RIBy7}X z3OLya8qqF{M6LKWlJT{L=*cU{0_CBySP%rqzJwL6V%8(`6%es6DXy)$_;@21s|I}u3 zkzjkiejP5wDL-cXSq3Jxh@}D=tjqO{+FlS;@@w#)-RO8vg^f`2sbNny+vN7RsG?4~=BH}8`rq3ce#`+Af6egB`o z?_P&J*fSYeo$$Y_-mU`FUNdT&zBMg+md-P#nUBXyN-)8gHlg#`_CurD6Ocl^wC!J~ zghXJDU`p-R*yIan+V{dw>h_{|XSH{Ta!IHj{2HOz*FDHeGX(3kpe3onZmBEV)+DFI`YP!Z>}VOQbF^qUahXd~TV2BL#tiK2U1 zxnD&|i_`%(va!qo@8*wzStOb?IOJ^-aZ}I^2j$fhaGRiQfipgNIl7Pxx*&SzMMcP% zE!#Y|#@SLxb6Y?-Cd;5Cr$MI!={a2W#go4$VXVzTEu-Vt*N(@;*vc2L_>~@s)ot~W zI=4s(V3Ml`|KUfUt21W<6%uJ0T0UI!WK`m%o9tU{JM1A!;hz#sg!Rj$=>HZzB|D!d zf7MDYf5_ryKj@U*!de|I6hFa9CT47>B_>}cq4OrzAm%;AM8#`L8DqR-*-)?zPRAiW z)-#FzHi~hs=V6;P*yJ#dq~RK!0H4JT-xoh>3$l{l;NRJ-&K63prEvs0_fE?cg_Tit ziU)dc)r?`8e3OzD--|;u*62u2Nt(iwP_tf)pA{a*`|>^Eybg`CC#=3{^9@@FIcA85 z$1=v0)YS&Co9}U{^Sd<9S7%DlIz2DkWoti%l;wB6pUpWx49^@06~p&A`~ zBR@Mny9&>Nslr;nw4`62$rD_RK=0+>WAwg_P9z;F8x0KqpJVu+dCz;VmvNcQdAe?O zeIB^RcA2XM+;>ul>NcTvdp$XX;k!0{Gju{TM+AKOQG1XNx{)Nnn0c z9j(3~i=kj?--Q4@Au@(G4`)m7e`Q41E1$MW-aQQ(@jI4>r#cd*y{|ZY5w)Kb*Qq(T zEd9qIDK5J6F!FFDa``J*EBhxW_tG(@myU$uI3$3aXN&_QZ={^*{Qi~d6R051Wi-P zeB^k&Wz&bn&}a~S$^77F9&s$MQB!}~SR~3b))|~3yEf|6+==dl+BTnTF9p9jlCE^BZXQ=j$`wL@ zGk6W5{#gAcHK*TcWBdQ;{13N$!uO3F41neaaK)G@LhZ|z*cNbcDsOB$E2#W>m6Vnf zVM^n!WkrwP>=}~_yVWra!b82*$Ap-4t!E}k>64aA7B^oA@`{Auxb|#AN5V7)CRX{m z%+0J@hbDElM$q?Q%n|$I6^Q=Ls;h$I6GTfQsEQZWQcp8SpkCAZYV(DI8js-s#dI+^ zy|x-yA{sR0%Na^~;fyw@CF!qGt)Rxu^9~$FBQ7{f^!7O1C07`x(+ND$sRq=vyvATu zxE13}Wf=zt7)32X!-Y0hSQt!@3OSBto&$Uo>#~B5iEPz6#Sj&97je8Osb&`GV}2J= zf^0nufqFmFT*c!J~SP-)t88#zI2s zfvEqPS7s21Artyu^(NuE=BR9P_wOkvLxC5NV#Rss>HOlF@4V$BEGoPw1vuP*4tzZ} z5!!PM6nY+t{mf7i8nozpX|@OBdv!JpKbLw7h*v*JEj{Pmt1s0_)?*i0Icn*8U=8xV z4@A_T5V?NWaa&k-t(&^)vwO!$m<@j&tp}h4k&>(#tT_3@+dFLzq2m2xemetp^R$s>0)t6LRgIFKb-u6P0A( z!A)TlasX1Zf3b8Z6O`Cx`dzJHDE^Y2Ea;NOf_}gj5!<57^KABG0ZbZ6YBJ_d*1>;te3#FJ^Vk^a ze9gKP8E@*iP(H~Ub11)AaVl%KgqD*^N$)QByDfjx&2vHlV>Yd&W?7Pd0|sHnELW(a zpTZ?W4Wu;hj{Y&&GGvcn`Hw-7=KfD|iN{ym0*&24E2W(On}G*>DUZ{a!jWw0+zf+n zO(C<4pRQTsM2eJ?=^xMeaRiLY{AL5T)H#A=kBqXeznQ=&+L#JT-_!j{3ieo^?{h&a zAPDslS5M?6y;PG__SY3Lh=UF}g~IgB3V~gxxN9{&VB8n;c2ZP;Aa2iSz70*$UOx%D zP9DZG#43w}hMctF_dOyeQeW-YHY%YIB-))-PbM+&h~1%<5aP`%XWH7`HdTd7LrW{A z#!A7GPo#n?)p&NKO`n&C1(Zg!#J))yF&l7FbIiD^GfFV()yZ&35ed^#wd7bB;r$k~ zw&eZ-drAjw*FNRu{}a9cs}*5qYhA~?>W&Saj(krXhnj=75fvSr`5;{!ExRyBdtLB# zzRWQPtab9`GekB;+7%30gpT^Rn-)$Fe()OpF6=w9>UIPS|GqUYKtk_xr_cSZP=94} zBq%cFw>{F<>qqkbipu}=!vNd|{yOOEDwN30FVuOn-LB0^2Uk$h)T!q|8%6kD6;w^} z8LT`SJ@@%O`$e?#^zu+2H2uHqaa8p4W~;SWMc_C!%ZXZAcFd**4a1&OGN&UC>x#VA z(tJB0$oP66aK1xV3iKuooFr>0<19*AU$fUHmAyHmhof_vG^k7ws%gqM;Iqfor>`Nq z%oM&UzS(^Ab(AnnheFn=6@zQ5)jMt_M`{>`Gl2VZgoY^#Dv?;34?FObY`$=F0lB0Q zp}t^p%QY|a%wMC(b1Xm<1^%G8z8aO498QPn%wXDpGoMi+%d>JjE3{qV350-PM2kv@ z7pJ!#6&$psmCiVOvB!m5b9{KS%w2Tpa?!1+vc;BWncF}voS3~{Sh`VsJXtIggR35o zoRm2hR+}B|ej-)4T<9-fA%1kVSRaAixAWfat)qIqhdNqc1rlNv@4Fv6xKUGJIMq}< znnl!M;GdeX#gO{HNdhU|^(duHAx}c=0H;JWS_PT&4PongXSl8KF$UPvWhuu9i1QSY z7>W$O)5g3var^oLG^S-b7P=h+K{3|iZyq%&qXg;;r&{_H#fCuY9c$`MORewR%s;dL zfG6E^Q9BV!aQ|zl6qTq*>3PiG4Oh6d+Hnc7Ktw&hs#XN@CgKb4|mD(Ziw!Riv_DNao{2}k>Xc2=$Um1=Sb$i5ItylPhB{h=7 zL5G0=MMo}oVHj05vj3AVI!qd)!L6|N@{SHN0AH?;>Y_QT-!vfDK|zwCIEO+=!lX>; zug!bm=MFkTy-Z4{)7v_MdNn(qzBXlWXQQJ2=jG0*+fy*2I%p5(&S)Q`aS%%s5+>MowU2KDIAgYL|3iRu zCiGTz{om)b)l!z2kXome$Ki+XJP`n`{5+B0&u<7`BY1}Qd45ccNEyKN{sGRq%Zz%t z+6nrnqlmt{BnX_*ZGS$t-9-jHM}o=Hzkp6ZuXwWn0x_H27hxO5Tq~z<|9st<734dP z#QAE&x$j$ijZPScyTSWhU(qiBS91h|Xz1Y{k0jEtA+{XUr%$StQl5Fs(3{XxPzXyr zJwjO3WRg;vUR>Z{#WC{AQQ9z3zhpg%yl| z%PSTz=$mSr=9T@PW8NT5v_1bhM$7wM%qhV~o413!fw9_Sr`r1A1e^`wUxC9(bn90e<|b2e4eOU2}8<`wMILK>&d>h z6)&OJf#De#pagVOxh8JMK{lz+@))+HaELxTIQw;Is~O55vFTkPE+d;iM8U+_BxN!v z@%YYG^7vFW+*hD2@gkZn*bP%^-5da2Af>4QS4&@i6|=e3p{E_GL4_KD6=KCOJ|5Ccr7fPMpBVZ&BKM?D^rtPHk`dKK{3bA?3PSa7I4=V^ z?ka4(s)&icFSICOM~44Cd+%Mpd(_Xg2%T?Wkm)#_cEK6&YUVQo)v>GAb)Jf1leTBe zN&2#J-zY&{MYWYGlVO^cxw2GozrxC@en?^*A3FSG(Lfg5>~V_Q6A%3}3kQ=k)q*up zDvnFtX_|NQ%|yOqon{gX=okFm1kv$`$Tv806Ne5yQ}0>@a+`u ze!WS?{eg-4LPT2km2d}IgcZ*EAg}sI1Ls-3-H7f$d^^{|75UeQsKTG*y>lzFJ=Y#p zpJDP5RX@j#|9mFVq@EyhqG#y2o2%P+HctI}`c7oC>tog;(ro+m(dr~#8TX+>!Q^+) z#||twU%>Q^8~2F_{RZ$i)NxgH-G1)QI}PdkE-e4u6es^h%Yx6_#?H+D8IM~X0V>G1 z!Hs{ltt=y9Dr2INwom3 z%-2$@;22`x8-a-SD%EJI;pJ?2Fugf%W+(Zgb&S4b_FGYcYN*cL!PzF+6dY*EzWfM% ziy4=1-oN=yv^rbBr}9#B3ZDp1m|Zy_jSw4t;~T>c=0KlUv9ctNCSgLC{ut0~7NE8QaY2553=tsoSO8Gg=*0)0~95bA#moA>6 zEi14}ZbiJmy2IrTNg!1Zww)ivb61L3px#EIP1>@n`U4IMVmZDh`8tflf+NrAkH9q; zGAy=YNR(@2Q1f{jc;%9iXwGrFZNv#Nfb^s;2)|7+oh;cQzosbu@OBqX+rN(jEuxH} zA2$ZJ35EHfvF&PoJ4PMdKtju_O<02bS8f(O@trA;%hxo*1MbHm!^HY;h79 z@@U%S-awE1W?xsJL#z)TOV1#4H(cZs+&dVq4 zF$A~!hcn=S&|w>tiS+f>cQOD=df0xDVDa_wbmIJZ?ChrvP_f55hk8CWOdlxs9f<|P zQM+SsCU$$QvSr~Dz3_0Fmx&L*+*#S%dtOH?_J zzYI{uqkKkDthTK2vXdA~%fD9lhgn#u85sm5M09BZPq{4kYtrNw0g=CI6X4D=_O(OD z4DI#*aACDtf&Th?H6!wD!QXUkkr}N~D*p&sA{nsE@B^~>FA{UI%&C&8-`JL|4kZ&-PeV$%YZ@@*b1kF;`N0niwnU!XY+CA! zI1bC<+;NkQU92)Xj@HAy^x?~3h5k(k`1V&&#)u1shWdQt=SbI`r@%95ubQIx)G@ai zpG*+(_Qr^lx^03L57EMyqh^yYngp-<2{O-8G`maExCD<5>UxvR&PFe1zVNGK=wJzi zxu_p5_hy8`j`-eP*ZUZoG1pgb_ZJUP?J}?>U&DpVsKJB{&Tiz+8{2E)1{$-2;iajf zfccCDMkGI1~Dnzc8F6)XK7+v_- z1EbMAMVL!YMjdmbr(I7-WEg{2vz(CgjOUa<1(OELJdu_zGzan~w1Pl@qRpy}m#FL{ zOg;0p0SJy-0-e4k3u?kQmKBR0>@XG+n zG!d;iL-f4S(_JGPNW$en!pl1z#y+d4H|*19>C-NI9DcoX{*++OZ%GC=cyIBbMH@Sg zm53g5*ON%E0b@T9)Ni8YA7ij}k^qaXcUVO=s9$0yVHbetyrAh+v-_`_m^`~JsO!>Y zw>K6#ahg+6wXWo+getq_LPjYQsO`~Z89k3FZDxjRho#<1*1Nyf3cU+eMe5<`7nAbZc>+ zx8GUJM)rpde`!l{%9yGygZeJfsS$I(#DjjGIw&VzX;dEzA0s%iWCL=G8ZlXw?sR>; zyhR$`?TJ;1JIk_+7xJ4LowcGgonh=c>4S-aIkm-0Wt)Z3m?Z*Noc)*Q@^l@ACU(q{ zapV>0J#k>>{f+mzvbnnkJHOtDZq~mvzB&(D*ylz{d0he;>uONDkM8l>Hj=}4?n=+} z5>=mP9;;>DG0(27v%t+yXbU!jF4?#Eh@I^UTB6VMebPe-xu@uPM2YhGS>` zb6QTKr;97`y}~`^sNTB*=yT~EUsQW1qQl-?Oq7p5qa9C)UN6T&6ka*~Q=>WD_WxUU z^m_cbN#9mSpRc|?uZ)03D)5qc6iFS_&b_Lfvw?i|L#4impqe<<9cotLfuPU6+{*b{ zZMfh|L{NfypPifnL^k|NlOP4e6k3baNLZk22b@hO=%mq&o{c8NpO` z-iMcrQ>cFu1FF~5+p-{E=hQv)YY{+k^to6=hwr#)Q7uid6_hqCB|Z8=aVpzZnJc&} z&YfP_fFdrw0|*>ql+-KmAr?m*nexB?*|v#VKl@Qb7gdfVwvmLB|1;rcpxz)y0gEBL z2CND){egWT!cHFSid`%g1At{_r`KPfa{Di1w_4J$!?3!5sMKQRNT4(SF zv1@-EebdzW9}aY>Y;{cn(rAp33^^kgOXor9RDA_1D%0pNkap@oK=R1Zj&cJ2%_iPl zRa^@ujN)8NN1vydLP*{Iudc#^zD$^#SWrwklXw*e1u(}3+7soB&}Ji$x`4kaxHg{y zvlgLn%Y`HQ=J~)%=dQ*DlTv<;l^a8W>fLxU1IsJeuHQP}#nYdaCC7&ctgXgGx^iide{uE)xD?%4Wj>zYJ-+1{Nkn&&J+SJeCUrBJ_dD@#4mNyc>TxWu_R7jszss=V9EDuI1-FQrVe$K_!+4t)Ux! z^ti9VuEKg{`vm?CX>%tJ`rV|!-~bW0^g>m!F#2+1)c-qrQsO2E71ie`2KnzT&B#PK2+u!{{nxncbz<`sGe? z#h9-TE-F&nyi*IDJ~^5ur|H>ILUq9dMmQygieAAIrVJj`akGxtRATRlk$no(t6bI6 zMkB+Fr}z1_nxvg)t65&Yk^)N2(Cm@m&@SeusjOM~wb=O&9Nblkf-_u^X(TmEepm9b zaYi)K-tl@JzZa~JUXCGTdi1gJegy((*VGpDXC3}xA#JeMvE%_;fU&wXfMmoQpJxQN z9$M@-J{s1jMfWLA$=ZmQx$JyF1GWp4Y9;^eJo1L-yk4pokZm3qt5=KOF$W=T9v`fD z07SOaJCcU3)0&z9JaQ&+$zUHT5u~EBXnwywj|GKfDE-woDUf|zeZ01%f>{L}9c1+j zL>lCOU_>n*o;WAAl>F)Kch26VF*aY!+v=7@UUp};;aKhnoCR6Olw+a+ISRt-KSOFn zEy}eI-{Wah@Dh_72J9p25A^o1tkCb9jI9-uWlKvt%4Z90PBt3x>FZMFfHWB$##F-? z@VEs0c2G}L7WdUOlvN3+9yMhQ+`Vu~a527!TD;wA7XAWxbfk;8;ch5K%PH{jtvtLi z4c#`+xZNdRG@k)y{F^{ec)fC2V96T%^Vj!^>+Ujpe#dKp#~W*KHY%*}5+@GpILisi z&3V1?i&`sCw5D@hGS=^~;9v1+86zVif!qeB9^)YD7NV>Yid`(pthV1CUXw5evyQU} zsBR%nwleDAq{H9cnau8-A=`fb0RZpwjZ$)>5<vWUsBp&40cQc&)z0rKUgtt>6R9)xgis4JR`}3yb7eW^=p$E8E zOuxf=OEe;Dchdil|5Z<>MFM{WDDfh;`_i-irzXQiog-kLEX<{p${D?xXGQMt@%Ilx zDn{saijYgLPs5ZCK#E1zpxd|S0Ym#7mk>ac^H;fwudA_o=u8fce zo!^WNjVcv(5K9>PN?;Opy8CmEgG5ephOm4tu~}0AS)F|Ms-4}wh!j`ZI08a8f#tFB z%CoX6tHo0<2N0{x5(-()5omtiJc0Cr5p=Q4AKB1tHB(NnsEnyJtqvCoD4Y=-I2jrm zaeC|zp`_oE*GYMlHJhEQRnY9L_3tTCTWAJe2Ff@QLrPPmq?s}lH%wbt2cfO2uOI4f zhPCeMF?3{$d3#}fYr$b;i(TdRp~8UlN1?~h6}FsZ;> z-Q&OkR0K4xpPJRc+S-7bQeR@2Gk5N$Y6Ie~>M%=oXS_!cw6QDrt#-YMh^POgx0Y*b z@ZwK)>-}#|vMf8HvC>~w=e>NP50T$y-$guydKv`Ud&-T~ME^R63pbPG7psR-KZm)j z1a`3Z8}gOgtAth+o%qn8%NmM*eArEdu{4j=vzLei)TMvpv|;hOOLdBl$nG!x>{~2f zPIz7#>FIFYa1$>(wIp#p+oKQV3GpIIDo02iFQ|1@m93OyZ+!eyxj}2jZbkN;lTb#H zCsvn{4vIeBOIF(jJYxhBbGMVI97~`jtABn5pc%MVn;TXYmt_)~EQ?07GSL3Sh(Ibe zqP;b$6tC6K-F45~8YMG2UH^%O_H-$_c409-ukv_n;sw1OF!}ae@%yva`zwQa=Lor? zFE&*~ZLisWX038%y}^ky@5xL#aO5J-d%Vw;tT}E*gFz_ioPOm5L?G^;QE@) zIq)vm_uOD-0vwj;x}C=*F1P%n^XfxJkBdZyOdq7zRTv8%sjtqJ_yQd9~4q(A_#2GgmzHjIneYVGm!9az7Ts z=8-FX2nF&)WD+Kql2PXe9)+E+r=%NF59+akR(SQlwHT#V;ViN(tRS}=v6yT1fU{N9 z<~Bbwqopx0PpD=rNjD_utDTaWtwOYMPJ)zO}huYG=21t|whlDdzvvh|{n zQF7^tAUQUaIg9t`T^_)#mr=3J4U^Ufi1P77*CZ}!Kb4X}Rw-+VQ-mQ=QMK7GZlF1; zWy%4h+cyEFcY%CoQtzK)y0PQq(SL9-V+>QX+CFg7ChtQwYp1r-8ofe-{#rRlU;1i@ z^V!Q)g(%mcB~y|=@kX?>Z^jyIFm{-EVf$y&+=SBrV-{ZPDKT^j0XF0W`VrIiNx*Q#MYh*ely zvj`3AcdMg`;5MwA$g2RkQAh)e+zW4 z4m^scu_OFf5}Lfu!B*n_P2WY3?k@Iz?IrbJFjAKyeofI&1I#VhY#A$U<}jbRnfGsY zn>J?lhgLd>GVJTVmP1CJp7+&+-c;&0E;iVFF8#a@I3q7pR&rI$3%=Ic*xuUUMPEGf zuZ~HtOpIMn&t!J=uJaNB`$SKqx_+;t{GUmE`_jErz%R8h!9AJL{QhPW(%*%K$o*z( ztQ{E?!-ArtuKilDy>{Tf;Lolu->) zW-CYD%Lob;CKTMiR^jIra?Ne> z4Ox<~`|S~%Qc8LU?Zle?bOd-Z@{EMe6j5DzgMXJ>q5$?g%Tkc%wT|ddoa1c})tS24~~KRk?krvTmmOW{kZ^^;C$up->EJB;0#Ec|LVy zdlfdnfx<#H(0Z#=qOA#cbToND*~3!qePK)0t?b!MKfBTAQ;OQPEQEp+sKgm-j9b(` zcS4M)w}Y63vZ=~}17&o$I*R|U-Epefx=^IyPtJ^8PAnKDXTj(EIwp%7R{?{@kr>&B zT4tx81}@}7z7Iwt5p2y=)P;|~C~gAE1*k{lxtG0RY^}+I7vo;J1x9T2*y0;g=!w-h z(NW7OH@Edi0>j}8h=pat(>jxfw9${5jf^fbs9j#LKC7-ipcN0u?{7AiE9bw#)o?0!jUU>BWQAi&Eo?TqPa9_;SZ=+k^NOCD@s zA=wWq*XB@T)nLt>gHANnM^lzthmNk&g(<;#;+A=i7D_YUQL1@_Sfs@3l!t;wcQG{M z{P`0T@OASELNnWM+GxAsew>(m;RHS;Bl>>Y?A$Io{b7-QkN~&&x`WK~S8&q24z}sH zx@=Sdoa%~v(CWDFM3b7GcE%l`zEndq8y7y$H*Q{kiOU%OkPtl_{A!7Ofa=_f)^(sSdR zFU4`DhLlbJDrD~FrB>KdT;iO}RNDI26%{~dz_51cH5lu?d@txbpMgDG>3|I?0? z_RcP(8VzCx3Mr~$|Nm!4K3a^(JqV3F|Jwwl4^rgU}lE% zzhuu`zX_8Zua=>@>|Z-FJ(bf>aLu~m@5YRf`#zTxmqChWo7Eg%TBgPO(g&CXF=E@v z&f%RCjm1zDnVFZOfszh$qO;h+rO=)?@Y-JrEt<% z|8NtU=L^jxnhW1nbgs`rEG0EIOQUF*qeR3JYX>Ouv2exzg+7q6=*c%<63ng2s55%f z$*^})@SBd~D3f%ge+;@tSR&GcOgJS@6qnJXQI_(*IMN!@WOAaYGe#W1tpmFCr1G#j zev=OC4lo;JxIL}X(IRaQRF+LYi$6qdhRh;pS`9JO_e=)r#ICw_|0|&MYwJ3+n(i}% z*>RcN_E{qboD5a0yj&L7TIvMu5mi+btaW|GHeW&SmTe;1K-%=B#`k;Teo*f(1r1c! z2hhZe24eE+{O}%Zo&3sJ-ge(ht*Cp!$K81=k=cp}&?y+)_&oLM{k#kXrz?0=7z>oM zzjEhy7$4~R*DOL%kc7B)MH~l{eXbwpxgJwzyP4B*7S|};=%Zqp;NGiG#uwR>tV2`|^)~`hh4%)cP zmuSPJt_&b?^>T9L9~KFkOZVbzv8@#BaCd42W@Cd?O^Cr9>KeT>#?5cW)Cqs^RQP(7 zmMCMX9+pyy4K&c|RJw#q=~zx>YInq0ztoO8v40Z#o_^P9DcF$7*%tU#@2KcQLJ>2j zjWma!Ap1&XykX}RcVf60hjB^aoNq02A33H>T9ryFEGzMq*~Wj8=n&w}{eC~2ti!n$)$^gcz12OxQuMS&7lf^3=3pPg zQdcnxvnNmW?aEr2|BtM<49MFH-UadEP+VHv-QC@-xI2XxDeh3*-Cc^iySux4(c)Iz zHvQe*d;h!pB_}`6CX<=x(Nv7X1XAe7#*vh9YkI5|4u!bruz{4!ek24}K!QDG zkNpB7%3@qRpUP~+&cTpLc$fwwIof%-?vr-^na+lcHUE87(@sQWn|;^=c^c|yV7Q!e zOW=!ocJCMJ01T4pgjt{w&6`I|JaV292|lS=GHgqzGb8F|=I5{^30s#EVhIW47(Zo` z0-B?LxeXL3bb@wbkwlKyiDB!KS@#qIMX53;(^0sfxtSZ)YwLTDd;GVK+9*0 zV4VsYx$BHIJoV>g&r8vWNcS*w_2UZ`*J9w1SVH6i+<$U-nXNGQTnS&TU<$ zpLP%4auNQVnn57Ee+&!Zva3lDnC*OyMdr164LP6@o{@P z`MUW^u;ueI{RHqFonJizNhE>_4x-46x662B>cg`*Om3}N*tAO?6T+n?s0lT6Q>Nw) zUbh%@RocSVzPkqx8;hLM+hhho`${#6zaFe=B05YkdiP3|3kPLXe%9Qx-fU)BR0e+A z9Dx~lGhxEis+6K3pC^@3s%@@$rbJpB7gRRRw2M#`K=WUc-RL9Wa+!?6%;_qPjtAZ$ zeY&#z53QnR1iV3dcM{~uQ}Lm@*0`T3R}{|57(A-{*_*p{oyW~rA?TH>zfRxgcE>E~ zzrosELsQ3WDu3qk)o$*_HD`@2!z+8>Qnk$tt_(08=Cf<=_dqJx0LS{ zL!QZ?Vt|SEAgT=^SPwPt-xoMwr)`cUZ-P}DVqy_CPRjq0CuVNFbcai)ZcHFpr}W!0 zVoKSu4` zg&Qi1514UyIQINh>pqOBZW5yZm5~15^{VxcLk}bh>%FrV(~NBqdj@ZR=UhK#vt*xs z4^Qpq%I1t;h0s);u%M)Dx-9iUPlLC_p=>rrzF0_VxemM#F24}Gtkt(Zdmag#-Mc4Q z)Ep9zyL`feo8WWOt8S|@>ATg-NLae)T2k1XbL>WQ)F|BOYsN34l1pz-9YhFVymc1; zC9gyqr;Z^k|4SQ}N2LH0#R#FqCD_`cs4(=n$0O3w97QF01X&iixN5kPbb5QsF?VxK)hzhFt#PZ8!RZD>S~gBjFU=%7B#wd7 z#=_LsnGFz}!S7|(<+fy8O54H4#xR#~H3+>cPc_{7f=EUvy7(~K^P|qf;#1B$m+nI+NW$E`Vkwr} zsf5*IO9paz9G8*zcxAmUt}h%q0((~vj$puGCEb`}RWY)N{i5lzKFfNl<{HO_8G7j? zy+}$(RqkFa;Z)}(e|_ib?V_u)&7=a4R$zBU|Y3|9RNqN(jGYa>H#hJInO}-4 z-u`#83F^{t`!Xs@P|3i)J$QV=nz|~5XNd`P4z3W2tA{@6HI8o=Dr!BbX z4erZhbVpLQo|%0fYYA^DU(T~1y!+dy*ZCP=aoh$i6#S-p9_4x8GjDA@u`SMo3isD! zwfT+?2G0dt&Opp7m_!&B|PXLvh}SG}0qA*{bOcfL+PT}0chAREW^Oax4_RK(iG zmSZ$+f>Y}y5ltfWYzlJ;nIBd76apj)B3zz3bQz=~mWMQ)dZ&gNBs_4x#Sr#VGSQ<@ z8zeU>lDD0NwK-Hn)%`<}^yd%KcBti;dt|V+Ee|q5X-Q*g5DPk}l+miV5t%kBYbs_< z`pRajJP!-Xs3cEK)-KHyi&^J zF`=}4L#-QbiALSAOE=70bvEm?e26*CtJ2A#Rb?9PFNQ&u9p>TI#kurFnZAb#$w%ES zKe&v9$|1v%A7snZi72w3SLt)Flu_~}-Y;nAD!eB0!UI%Z5j#*i8( z=&dN6)9%=L71+z$KR8|xXrdh*7d3c@D`T$Fj9bOk1pgi(!)kg${LNJ$sdoNdOVKb; z#1y7GuKDX%$DC)?F z$5T)VX`7}yhE%Aw!R|&_UGW;t4DAdmkqHv15n!b<(kjA$_WxQn@Evregb{RRR{9-u z9dxiVwz;vghQJc0wOGWgTu?Je#2U8DJTf7lT{=KgaVj$s4uCrJa3ZE;ygJ>!%PmI? zBtVCv>aNp{PfF{xa;|IlsnoL<0sq0msiUf}AhH*V~Kb6pk_xZf@NXgVQTGy8v9f-}|4Gib4ZBda8<*V6coFw0tT4W-Z ze)bhnTa`&@{vDMekbsL95LT*ZXrP-yb+P5`;m%0&zr2C=lI9`0)`t1Y1MbU|@!2}l zZ#DP@QIFWOD6EM>^YacTTN@Fz-2|*Ty4)WlerY3>1o5dtIUK4;1UWEi+<_8O^;xH7 z7+g~r`|h3yz2mLZmI!N4vYrg;+>^LVJkAXT%8nG4$XQVq zCrUb?*LQTMwU@Z_&yN%xDmPQiJZ*j@c(8qf$DnjDNt-w}Y+E(=Atfz6TsAVJMrxpb zg8Mc}BGR*>pK!L^on&!W`LEA4PU;v+Ai*f@(=Pdf^T7EzGa>{vop%zJ{Rz4ouD7yW z#U{I1%?d??F^A$qoRgO|$*hPnu5Dc#&m^QdtRgN4SwKZp2(IEY0J7X370@Giv9!HG za(E?WYvTKNNz!-g^}aU8zzKV}>)yJ{<;wT($mFla6z_w|?E`K7w)ypE)&CN8qS*8S zpL|+{y5|PHZt6Nu#%rtjGx`-uTX?JWR_d3?8EN&s(D8jdpul8(pH=kVIv3Am+&@VC z(ol%?+7piBqdNGdL-m!&nIz2(ZE;a*HPo#X29h#BK65>=zI--Re z9WC%pKChw5Svt*9(!&584OZ%_J5JnMWZz@BTa9h-Y%lgZ>D(Arbxz&Rm_SZkVE!IVzVV1c%Iw!scUT(c!H}wq4I8X3 zEYT!gv#g$+jw3zF45oDSRC(wGF!08S|M=|7Z63@!!6jnE;#ADcShZiat4odyV%2R+ z@~PRFw8OWTKiAc3k}<|07f;73#9qQ7GIW>o@9qs^bsNR4$!nIn40%O0W3p7cA*d2~ zATk8d61dp(B+UkcLNJrL?ymTw7};TZTQ2r`CoF)%wto$kth?=23>{t_yXm^(JLEJhrwT^6I)OfS z)k`WfwP@X7iA;%9OtNzfE{Ix&5M{BvVRYqU63zDD0y@q{&J&4%+ zAsJ(sUbw%dgDsc4D6|Mli%hC)rrRpmf^K!7tPg|Hz=4%iKWl-;D^KfKQ3VaRi)jPx z!SVNyNtmh(D-!h+a}-%Fo=a>W+7qtdT;glsh*WcRqhuK-P#+2am*dfnKuPb~Z!a)a zs)s@|=zk!B6`hJFvV;~iX82e}xKZi1UFhg`oj4f|Lmw+*eCmAdc0VGw+c}qQ7NEXt z=GXPQjNrO&O!@YHD0sw^62x`$C!pn>6QSC7os=;q*u=5!=6t#n?B^{*cNn0-SB1?! z6%Q-r)7=?_K4-%{_Fvv_L7I+xhL=ygyFZ$KX_7JB=CP|!n-Z3^j(5-1;szj!j3 zst~C%J>U)Thp>r0W|OjPV%0I+7|P-g!eV$LhE2 za9X1Iw@ftZAU=1WjcLh}Dh`(@^F?-ssR2URyD;C&m(bX2t}$MVSrTK;{e`(&;`1Xc z5bn|tHIm9tnh_7uGi7!4n;mcY7=G;SyYP zg566{bE=4Ck9p^X8ng+%k2S5Up62!-k5`~5DdTuU<5|l694Io!h|cERWW`B)Ivqj& z9d|M^PK?4lNaJTm<5?aV43YQ|y=lCZ+n1f?M{N)+HKGR*`8|I)df!2wbHgbt&Yi;p zvoJ_)C|o5$Er|NP#^Wn>{6E|(jBD|sw^1}8wGdgt@m4lE7C$}~*JrkaC}z_Thlq{0 zkN`_eH_4Wp^-M=QjRuPG&*4D_V>Gehi)4?d`vwFnfuEJeq#8}P{iK5<6D&TCoQ{8H!I6V;)9CuH#`s}oVZU|2 zN#D|apH}T(S+#f;@}-xv$;&S#%M0q;@FpUm525IEOL)X3e~@Pm_u$IQR}Q%3e4?bHuCsDH7BB%QeEvog*831PK%4kZwQ@+hcT-c2^5 zB?ka{Eh6iY7Mm<^a*buR9maPBq+9di!X!*#@ZE8!W3!y91{vo|RyjB(e7Dv}m~!b= zM0k{XV$f3+4z)Mh@=|xYSnaAHnnU>^^&sk4#SX94b+XS~>L}4Sv1)h2!-gvk`Luag zNeI49DNkf6zNO*NlGZucw%WC!3pql%rIeZxx$OFaRUc0oEujOn$=5aD+w$?pMW3<< z+4#jMu3yqsUsI7LeX8V;2Q-COW3==#A$EFxu)aJe&?!5obM#=RM_A-cq7d*U4q5xX z`%(N7t+ys1%=IYF_3#z(3{wQj5uy2ge@UGoDuV3t*uGuusLR1tv$ZI+s*%P%*32n_ zOPe#hzbOg}%r{|oHd(b20gBUVnycrC15eJ%hZ1fk|qqOPqfW%PO@|C6Ov_HX9kIYvif;UL~|YW@;j zX^e&veHa|QI)XWf{9+;8oPW1z3BKbl0^L}Vf?~>>fKbQB=F;aH^P<`LPl&)&j@KTm z;^UofdiGEVL28B<&p#J`-_rftz2hgN&jsw%>k_%*BR>J7&wD3($MaD8(=bBQ$Kye{ z!ck6_FY9_$$>q{{i|Om&8NU-Q{l@<5KH=uX`7jt|`|u^#Q}Y>@o;w$iJn`CpMlNS} zG@@_}gicLC+a~9994Kn8(3uTImkcg|DD@yt;gCOCT806UFMKooCEY?!hUissM1$UW zF2m{{1+(_`s3@t~=x)Zw@l;*EZM|@`oF8ts4fpk63ZLsc&RkvJBN`@63Oi)yz<0ga zz_G8V|MKewH>Ui5X^1?=cpoa+O9#<@=#Bq91f4T{{vYZQB6E#5xlCA!%} zF(qS6>rH$M_)BgH*M}?0m1S5cgpHv!I=r1sB4_Jv(*s3N_O;#nQz#dtVk^|yM64QV zMGpF~132?KSOWdV5W}eM071lgTs%Xmds}k|Kh}NXeXaNzPUIy`hYY-_Rn3#L*mtHb zAyYInM#LQs@ERTg!KwI_> z%ZRJj`~*>EcY$JkPx&I&hmvo$%mmLHEf(ed`umVn3n?1Wf^tcW%E6N!Mm7^79V|$W zr^^L_ut#05(8QY!aMwj9UTEc9Bx^mXa~Z5}qw|ueD)Q}9MU_GvPRsz+TB&65S5&0NI1ufle2s_^e@$IakE$&bYdcQl ztLe^-TJde|!E&9u<4BIJ5BT=e@tObdrOtg%R`LGzbhUOepDOTo=4@06V9 zlIr%|4bao>lAwRYg+u;RgusxQ?@jX7UO=NO)8bJXx39;N{8gmh+o;QzTb-t+kd&$y ztd#DTOU}|Avy##)^z0f7NMG1gc z;Osa%Dd&1LKn@XfNIu-On%RE;3M?Sr9e*$1qtH>@8B)BRhuOvcCAkBShyyt#5!*z( zQ_(LTZj4N;k;b$bJRRMcMf~Gok4eYK|Hk{&)y0fhS7%9UMo1y*R|cfoaH*KkHO>1e zQ2NHW3&K+$(ul0VJ$pW9*dkBziPR9845DnDYX|gZkm9{0&yK+n>5#_fQUmCKs@9e$ z?TG#W9ZewouZ^a%Xo`u*3~sh23lr-gp+;7x*|4)psIPE5Z-$WD=hfC#K~>Aq%j8;M z*&)>8WZncm{G=ttIMdvb?voXgRW(@ESfp~H*IBX|*5p;*3Npo>aNfmPvrEpq(rKU& zuOsbbJTY^oxDX8nV+$)sa|juu1gEM_d3uir!89(8D8lR7^0zDHoEIkw21RlFRg%wZ zZ>USqS`en>+i8{GBO>+03w4Ync#fEjj@~2K#2a;GwfK~ZfWTOit^8qYEJIztA1SI6 ztfgCEz_eUU^5xaqOYqr0wUZ{{%cd(KZFqUBxiMpr`B()A>Bi78@kfM65kz^#r9 zR>JW5C6_yXc6U9b#B@z%EZ;6~>yNhExo`ifa=m0NCb+v!aaGu9v*UUjC*NZtK~XOZJV!HqP8B8JgBnSzjn7-!eH|P~QX+Z%m%Te42uuXeH{UPcZ2iZ7 zi?X{`@-n9=>AS3JbvSJ{do;VkL_ooK1d>nkpwd{MK@bI@Y8oABC(wmvO2J}Ie8&1o zmqp6b=dU!QLGqP8A(=SUrVSCBdX~IN@jUt0Q!K!>K<#frl?sqaQBXSP;&wG1;05fA91O@6!vXGn^Q%0_n&_d!AGWWdG zGr5Eo{CcKg7YHG|v4EVAItu^F6-^BN3Mv%hw+GPnl2z7cH{ylapEyx6FkR^6A&db!UGFpnv1`Kww0(# zHs%jg!>gVRUdV+Ey2C6gKxHjGm9D|Xfwoc*O+0q$z1;KVby@atyC^{CH*Z|Cb$=U< zSg!EE-tIcTRlGB&6RLdQkMSS6#4$R{9mXnRAfQC9Ltg}Om1j) zV?tk9uzV~5LtJM3naU=v??(;1W*OdsNzOJ$at(WV-Nv?@@KlW@(GK#x{W`Xv9C(}& zpRi5O9In5NSvvN^rc`YL3yBHxNq0;UoaMbFhN+ym^GdwBR;xq2O`9B3J}zDv zEB=a~-$CIrk@a^dqShN)S1*s-(VLBgTea7%S1K)cyRy<&=UX>@YuyE%&x{@)geyO| zJ*(ZQw*{204teSA-j2HW_6&Sz33r@w`%^C7aK9kC-sm4vie~@VX=Os1PeQ=%uyb`^ z-6c$Nn1aR^oGRAWA}wvSEQA5^XtuwBvckSKPl*!P6$UF%_NFUbeu&P# zRR}(=;ORf5d5-?=Uq0Ry)ac0W)_wk%{od|4b-g(5cCNLT=`bbBERDWtm9TI~@gv49 zZzp)kam8VB(W}dah825zSaREk-}kMNlzabHo?+!#F_Zbm76zp=9c18)WAXl50u0Y) zvfTEA63m>TE2f)KzaOZI_WC`(;kLOM)8buY(v4z-9Yb-^{o!-J`4H#!O!D4r^7ecO zAam}PZbcSp~@g?QV@*Cf)9A4e9WxF*FR$7pFJ>)1}H^+LZ!> zI=2JL<%^oF4&p1yQG^Ih%x7Hy}XpH}q%$Nug8 zcf#+7J1)QNZWFU>F832asMn9PPWKKyHShNiebD)_oU4KZdORx8L^u%%#5M^{D2e() zlZ++kYdECU)2J85+0ncjh_{Im1`y==4>8${M=j@SlyE$=eJ*V0Ky{Waxl{IYp zlOMtGzc-yQdJvF-Mk9mR268yIyk*XIyHFnwaTfyGvmxczsge#oWmUjJJkFGV< zS@XajJxT8ey92z>Gw=W29v8(r|DWpvd!9&bn5qBg^1z;PwQx$${}AGT9RyYMKZIat zTLI0GGyP9dX9x8IiuwJX&MXAS!!c+dhZ1E5dxmwI{a4}j^2=alZE{j!UDeZYRg{U~dAXNPFfDoLaJc`-6Fa$?mSKmh7E zGh_Uv%TNy-z6Ef1#2!5*xYH=&pV2#-8KhIrWYK!!x7`--Dz>c%{5NJZoz3HHKQA>~ zqe9)&8a#z}o>sM=8N4kTtO6K$yeup?swg%QE%$4n^G^a-;GT@AiLU2`}W(^7H~iJ07X~LcnV|lokwT=q|Vk2R=f2oi|5aojQH3YHR|yziJ8J{z&HZDNmxrWJwL- z@bd9l3j!T{PWl}IWqvG01b6^xc zr*_XfK#S72)K>e_W!HV1b?Ma93LqBJ8QQfSQ-CVlYow^pgOTug*1g_ubDH`2`8lNH zDIcKj?awNK*~y?>ayc5yjs!%VN?>S;`ES(oE3OQrlmGUQeg#mNg(;AV%s<7kZ96V1 z{$a`+5<=h+iiFQG!JV_Ur5`Q${y6ot;WRJ*_wMdG^N6pwezLSUJ3KL72f!hfCcL$l zQ&50lVqya8Id9%pNH%kvI;!bMHhH=^0QLafZi)yj`V(u%=i_2lcJ@I4%k+*c+Gl&H z3wW6K?hu=;b;bFB>f9DYod5banri&Elr;n>VP>_bpAf(_8@_+W=dgAQmuS5G9^uyLi-UvXCNsT?(+@zxO-oZ|4X|ckBlbkG!$LeiKOb7ZtlX~7JvD8g z8ZR3fq|<-~pzo|Kdn5d}q1{MVX$!*ECCEiM6p`QA{J z3`zQ|9`~0 zY9MD4M*VSCJL~``t*buk&<|jA?1Q7^3nE?T{_>*-91vofJEydi8kmsesi%MNd2(`c zKVHt8U7K2e2jeph{dm0|7A)OsT)Me$?#{aOzVzJq(U0`+T*ocJ`xTRGZ(m@JUAMg} z^gBJKo?ibQ?QyNH>7hfnwQRy5g-8a9RBLMB1zyrpnbag z3QXDAzn0gPe@K7#nAL8BSbMM0+=n=x9j9%e6>xy8ut`VN7Am@PPN|ujc4$Dm2i=bOFqx@IZgjOh%oBPe-3{t4^F=!}mC({+X^n;*50cnfy+&(ltERH~160Z^j#Z*Ol+x(w?YT{lTCz{>A< ze|y!BvYyiQx3Ec-W;HL5_@&CVbKG3(o-Ai_9@2AMcQxfOtPwDx=Dh!DMEhYP7?cbD zdjYC5O>h%lj(Jac(<;Rw?5t<1P6be=11^D{`areC4omiJNODL zBYJ#EE2p$f06;RJx{fEM#V+~@Dh|NtFfY%^A4K}^q)-3UrHc>?FqM3p~YJK?R*~kpCgIR z{U48DMc|NC@!sQqIf?MNxH#_Wn8-*bKE95@XZkSBiPkpQFqu`BCBV}gO*3YYar^%V$^Ii#>(t*GQhF| zYKfp>;Z*z^VYfr5dQ`_&;zN|tPNi?^L=LeQ9bVY|fCi=-ELv!FxQ=5)Bl;l?SR2$K z5|w~-E1`H}M}Ef%I!8+DDBdpi3)cg`Mj}iRX;cUq;^QBT?t`M{$!;@}=E-wIIAFM- zz$I84W^xpCHyi`wLLx@$z(zOvC}gre|9kSJPeY%hC^(j3scVN?Y8!{aS+_$jTbV%t z=cUGD0z(>Ew=hC2_C!6;XmPD?n#Wt%L%Z_iq2>tdGD0AwF>jP}N`b+gzK7Z*G$;X0 zSq{}A<=Kt*?GK?!_4RAtR8Jh21HQBs+U7tl{n~%1X_hEDab9@cmhj7Y{ z7}@P-i*`e@tM}=TQ-)QP9)8Y^&P^L+-``c|sT*08$mi~L`{Lh(ueZ2@0+!alJ zte%&qttn_avhz|y@&i&^5sVJ$90isT97k##h3rd|o%<3hilWHpn`3P#0pP zl#QZq*p^_C2?!2;j+rM1@2RTFS$P?sGRGyAmOvR;q3z9<8)La8sG9bDoy4rLy!)oY zO@Dq}?}_3khZael9|d7VoLUEK(u-BhR7Gv`eFm=zAdrYb7LuG<6C^DmHx2uwPLv3a zP-q4J69bDJDa!mOGul^AA|W@J^}i*Xm$R$T!EPVC zY)0`)loxygbM?6>&w5aJx#xM`?=AE?CAYY4C)5q{-jUq+c*TFrxE6JrthKOp-6nKr z+siK$NJ-q5J1ygFy@*|&d9fheJhWIFe!cgLx%nlib<^@7a8<6;@P{%eK3+P5v zJ((Fl3xj2gF#Z|5mlT`a_#8aZUwss+f=dfM$2r0U2|1VW-GEpm2s0N%pg+Ge{>7}2 z6vqr@)lRv#H@$+0VQ^CAXa|!_227o}0qVD34Jy85WFM;DJ?hYBE+aY;x{(-ER87@< z3%6CL$kfPQ|Hd*R8;BpKlW!)}7gyRnPT@-2R6*OBLyV)w%bvdOo*GjL9JZd@AeYgV ze*@QriN=)Y3&-(ex!`L~7SER8+fnKI_V?_T*H_N7IqxjrCk>a;E~`aK-?)V=O2<4a z;yzmC^J%xCUHkW%2L|N7EQzs!OLGW_E2%*etY)G`Q9^Mw8yw7$b==h~HY7_FZ(nrR z25i2m-RmUR_*CS`K&ry@!luISqj?a9TS9}^F^rxPr{#PjuxfLRHB%uffiso<48@(@ zP|zwuEn2TELUUXdfHnfvOM&uLOGaKAL#J4VbXzcVE6zhU9Jxv9mP z`7K4~!djO8wTcW1c;@^zEplP7{i#)~sj?4k%mf?~OS3Zyiz)5~ zFH&I*w4?k37>} zK8xJKD;+dl0dWNwSYHg7=SaOKns-cn4B_5PhW=CzL4B~R_XjqZ*EPF^wSD(+MOz}F z$5mae>vh-(r~7?~C^G-$L8krWC!UvWv{wg|11Y}f4zNg1joXW(UTXU!>`f2s#0v<2 z%4bZlD{QX>+BX=Vr*W_>=4^X;?}+YZ`yOHN?Z;70uA^RomOBQ0$9~S1$GOQb*Zr;n z7dSUdt`7a4!){oV4!b9u*O>-6lc&wB4BZ>^-0z$W8UTDgh@-@JN#Zbq0)h*2B{tLxyH`jr&qMjs|auWv0y8(%^5odJ=lE4M=$9mP%a_pD6Wh+NO^3P0@_ zS)r8(yG)IGEWUL7BN3f4JNc?oQGyz&=&zcnkdPq zHOK%`W}sw?>><1GQy-l!wIIG@6SF|ekls&}WFo#kW%^+dY=vu@PU;YV#20y#h_Nb! zyC+M7j~HbXh74V1R$B2{&QoCavCCP|PmfbWq2%M-7B8>A(L$YjFP+Ci_gjuA%Ro7U z`SpP#_Lza!ByPu9aA=J0Ojdt9tK!kt@04rTaqnm?XKL39FTsZmrNgyb#>2H;R(t_Z zl4T#4qhU^mJ;l-8?!ysYpHaQ(RrZ0xD4h`BAwtGi&!)4Tbsh@B_ixe9r!cR+7Z0=s zZpbMezOleKwb%5vxm~sYQN@$&IJMm3dQ?pD{iD+hvgJNSZR#oUK!cZQ$lJfCsAA|{U^|xuRvi8uK~4urTpIaW zV(cB%g>exSPon0rQBr$}HuZ+_>bETMdL{S_b5^xjts3byEun~GnEYchodfx;OnWrS zi~6A!@wUe3*ali$OBijFN@uyHhn^OA#Gf-B5)$fCW7f&U`LLThLo`>Eo4W=Y1?8_& zoWX`H;*AcJX18QKu@@9rvZm%rwL?&IabJGbjHyN5gohBq*q#;1>rQOY@lBs*N_tjE zfm?>xU?mldI0Vu?X_D(Z}`i^f0;0H?hUBEb+yTV%7b?=&l_ z?}b?0O^YMVC)Hxin`oV7EfF*HdiXIaN~M_wTrYBHOGTKJMYX7-J7mWHkpvs0W+7o->FIS8weG?vw}BO zwf$Us5zV(TpJcnPixg*Xr>oYkhCi;b9{W^i6n15EPuD(j15 zZbIwV`V;smZiCC27IR-lrPnO4n@Qe=7(nmA{)_9Z!hE-=UI|t3#foOh361FAoub2U zcS#CShg9@)oM6M`#)a#Mc_9ZT!Va4$(Fz)?p?FUaxaYS zh$}vg!a10T7j*Jo3`9xLh@%*QF+Tmds!wu3fHLDqTuqV-?Gvh$_4sGu&p|76!eZjo z?cQG0=3Sma2|JVbhi9ZK(Nw`ZL>YU4gi%9HLKUX!(To_{ zMW9^23F^a6pTI-hk)5=kCAH=tr}!kZ!O9YOFQPhLTED)fS`HPnyPg#&kGSM*=KFguUe>ql_BD1=>#y|!CgL{c*_AsTO+Cd~pV6Z5|XW+x<)Fs;OA~MigQhL0phW=@Dsb(5ARnI>^ zA1Jmlg`s9A!%AyI_$8QyiOn1&=ioF*d47!m0f`e4&aS>w#<^pvk=G|d%x2O|b8tZ;-hXaNh|{i1y)`pbctG*@~)n#ImE3<*%tQq1Zf_5}cFCJ17L)~BVc z`7%+dS3_Cm_gzS6n!b>9pqPQ(lY(8dD@&7|NeH`E+WPFeH4 z+5834{H3pha^F(P&>#$?A{*H%g-Ky&_)-~7ftT4!PP!j1;~QHQh;ok!>BT9+vyg{b7dqe>7t_$^<-4sY0Z1P_Az zQZ${2mwnfXikl-!%41vDpYfBYLo7N@;5I8|T8h__H1+yT;35r` z#x7+P7Whd$&S++77oiuzY-WJXIh2ZRN`F2|lAXnA-^d%lsO!}{Go4v-A+Ulbb=FiZ zY^4%9Ozr|cXdlNRx+QXIid~GP$Os(!cvZY0Yk|eyUxBrA*N0cV2N|`O-K$6v>&4fv=^w<%N7_?5IpD#rcy@ z0$!D#U*JiP*!xgZSVJnz>KB59soq*9x`w|qI5@b-<6Sp_=+Y7%&b~E7omwUeVz57n z%+quJ{s|r@fFA2c9iB339?K|~EuHvVfVFupR2vqtW59%bZIlE%YoN=vth)V6oO@mt zLxDrl7ozq30zKxmEU_i#hiMWu8^*}L=1r%l=)Sg%1>V(`p5beY_{0`I*g)q*3%|y^57oIG2dO><-JD2$p-k3hQaC~kO+dNoL3D#qtO4(*{WeM7pIrJuBfdh;q zvexVgL;0Vn=)O_xRvr5ADG`!nz{eGS(V4^97A0@e%x&M(I+l`F$ATpVs(Xi2giXRi z3_k6NE}7JR;;xRGh0kg;L_Y>qB(F3u-FRa8e*r;TmV}?Q3LPqGk-`=u(bP7;kj*9v zA0}6jjmlQ>kU1#T_TY@>_2Y-B4pBos)Xrq&87`%ak*Mm*a_hEsmh~0~X@2j| zmlA)Ojx8mxe4066)ESKHmT~`qT^*A1k-*DcvB6tyH441hy&m77+^}rycD!f&a{qo? z%XbTHaM L)!gzjSuc7=nGZc&kFASi2wBb+jk%*#}NP~iMv#_1J7lvO~ZaA$$WtD zJ(16WK!(|A?5sY}N!VVyPS_k=K?`#~d*SsThJiVwae|w$c7v}tC(|3{65St6@L}K6 z_}qG{Q?jz7h^dcY!Ze19Z^oJx$Bg?;sx&Y`>Ucp-CD195oDr>sYG2O?tSh7{Ng6Ae z$qy(qkpha=U;GVa+F>OTB;Y!NX)VVWq7V$?Q!vcC1^jzLX0LJ4z{GD>D!M%iGcja& z=7?A|8f(!kLKTrj@KraTY@Plj+&_hG@VNV>HX6W(r48y$@C(nCkB}B;U8qV2{y3r~ z=aBw#tyE7#cwTI7ju2)ff~AJdPudT9(TZe18--_-e<@8#S6fVzCn@}q2ksIq2Dk0% zOKF9bcWjIt{j!qe2_5!yXLo3k>3y%Pqo@O<)3f}R{HjqWzF8>t zVW^BkSp{pE1=T=P3 zT*NZAxQMyBeLPFI?X@<92~JXY-fshbr zhLlz~Ra@1n26tq_owhUhcF~j_`&UJshzun;N9;gncn29Q1>Hg1!jqB8xhkHFAxRK} z7xO_B%w}beHD-?YLs-XOgm!ZSfVx2NrkAlJLgUMatU!xHyaKry?PED>^ikI36KU7V zEB20o8=$J0-h17*d_VCut`QmbU47f*EnYWix;_F@Ag*9P-PWb(F0T$Z`!=BV*xYWB z9DbC^qE@%LweRs;s4<3YIefL_HphIpR!Q~RRLH#Bo2}{q6UW2P-0%gb+;(FCyA(W@ zUEdsDDr4sLH@jT(J`Du?YZO^PcsupJ8sVvIN7%}fu`xEKwYOS90yk34SUt(ya#Cb1 z7A?65$XXa)b+-(9X)Rj%iy{_`qXsx?cHa_BYBriX{hvpITbXh~rNSfFl1uz*tc|}$!B6-4 zGWwk%xWTW>hU;DxoAX60pKMw)Yrm#xWoSCnFfx6Mv-~9=Z{BI%dGU7zo!LO8j`igX zE$!>DZ*)!%;r;esRTPt$fJXmWk05B}EVFm>WY4|7W055C*aj`oZ384hL^Nd#=;};1 z-o~e_d9+_vc*D_>8lQs;=sW_ zB<{4X%L>($;_m4ViFE}Q;ggjt8I)zFrF{$D3;!2K=M)~-*GBP1ZEPD8dt%#aY)_KL zZfrER?KHNX#%z+twrzj&|1Qov^PH=>m~-~t>s{-&zKi0TOIwyj(%lymCnG`j9Ft#| zok#~o_O-aP2Ac*B!0RwBDoMcqf!L<<6c^P#5bp=RqQ#?|P|XuR3Xc}oEhBebhmbWS z%ybTc(BtPBwu2Mn;gGZ?;*!B{AG*`*v0is{W!I1SN+~i`IhOQoE~onP6L7ztcH2q3 z9-7~Hm^`*5Val|z1)sSxTP!H#Dc@bBJ#4? z>&q6-228KtniE(`C>pb!hUK|%i|w)CKP;cF`+4v2Melx7^ER~y*XYx5ZJI4$vuo@6 z_5Z5DxM<5F2Trclh82 zIdQkm^Gu>K%YO#xdtcsSd(Ebs*fUvOVnZ9@@$itk;m(xXW#tt4x{P&H{nuO!UOa&e zBbv#J2pz&DDnL3CPVXjVake@OF>JymED8yWyg97@_r{0Ka1k-)EI^&q_(erF_tkRx{VhOu}+`hlW>#z@aBF^Vx`^m~QcDPvkCMSpKR z7!P3e^H$b0>v~->yCl72FCQPTJUJdYS-(Jw%?*hm*+0QLk5<>b#H7GMy>jiiTB48Q z?RbKyP(dg7$X)#a6nL~9DR?0)*s)M86ADcu~DvXXVo@Yg*WpD+>)89@ThvqhR` z760+9myV(>QWZ6dmP2cpNB8i zRZB|0eI;GT)uUaHOU2Y4v@DP_#kc1b83@^{_Ti@`8nsT$#$Ijq}nJ@*IhZ)9M#UE>iB45!OE&h`!Q>mo-)2GZB~DKx8;!P z50bY~3G=wvlpoS=`pgxs68J3V+KhLRM3>5eTk)RP6?MZdbz)?(naIGUTu;r+^l0j``4L#;CkE7G;NJ1evzuTW45(x1Qy=GC#RN;gJPZv_ z4-ux~p@P-pm9v5yQdOIiAXx4F^He_9F$6D+nW1~E@+0t?u!!{hUd9V*EFd=8R0`RK zj0mGY@6vl)2Dm!(#c1tz>Css# zh1UFw*%^>y)=$~Ar0U^F)GZl{5qnL;2!hOH34oLCY%-OiumSG91g1%aS$z(yZqh}F zV;Q>>??qA0GCTbP;{jE6Qw7`B2ZPE)y=)6)1LGN^VA^_!zJf{np4ny~SJ_`I6m7XS zFRL_&nmz}!2(M0XhMq1?*+Ha|nKN#iX(T_+Feh)lYnKwPA04V6!d@q1n4BbV8LMl#I< zxF&14`uw9L3h6ZPv zZC}S1%^P&K#*JY)&KUer*<>b7`&r^c2BX2JP2|tib{_cQQ;RmiG*DgH-N?%BNj3a# zcM<4yy$?z3`_|l%(b;hp?uBOlh|>gPGM-te1EZGPeDAX56fGY)e)-QxW^6KngJwesH^ z^vA1k0w%|@@Di|u*(sbVz)8H|%3F)}dlh255t**qofy+U!EZ?!2>@?dVZ2ZmBvhwKI+kR_A z*FXcLjEF~} zk`dzI9>F73i+wL>3l6-ACtGDS3Yxp9#kyc=} zN~iTwyU8wxw_v5WrFgs2K3yL+oC`+t{M>gRyzjc=d{n1 z7>m?3ROkrTX%7-|2Or~zw;D7R>R*Z|p1@mT31Cyi=j%8@06~i^ck|r}SbkW$R#_}^ znLJAGv>1s`75iA;oh8^@y6({P+->VTn$+ygtl4TP&E=?J&DDR$MzHV9LGf|MY_&4T zT{edN&!YHS#{7T&{NZb_5I{NCG86{TI>845C@$&Ua?YSe+=sr~ z`GiP2GmOa$dWS&Yl%GzVayTvKQqF0a>Oqb3yManH$WCKxHzwxr)6>(5fn}%B1r#zG z%I?v5N25DT2}~!;Fpyg6xU?8toJ2gIkv2SrQSy;tdok>CP+w<7WzC{*6G7<|m^v6y zoV5YpR!rz)@)`>ZL%u>6brJjOyUAyn*u=m~xq=MC}BiS${z)EWN z2SlHHpiN1bXTwz>c2p5j6Jm(-yqGxI@@$`IvjyLEazAffBOJg3&D{u6r2coHCi2x{ zYzONee!Yv`td=sCvkC{Fm~_VyRnAm$8nsTyGTILCm0Q2R;gBM$7To4!C7a+mLSf?n zdE~)4{kw9%ZAJ`HI-0iHQ5JUbwCJ53o(4g)ctl)wFWOle^LjV@Pe4Jc+!xClFdD5I zjpDCrgth^Jg@~5XTx2eoe*iLuNNaK?S&ExUFA{=NQ?x{3pplj}f1GBX6g}gg zY(anP5`}4wVOy#bqp6sIX^{u7bros2j}zkv#p0PZ2%kXutqiedm~pRb0M!pKU=Oq` z06RBmC^|3G6r>^v#ETCNtW?U=L9byNsbG2#S~&xm&&gpK%+0>$bsWODigBKMv+$my zr!j7eF@NA+am2j#KDv)GZMf|wjPqip+3Qtn-Lok1df+_`Pdlz=wh#hpJ8I9GnVp$a zum96AP0)o#YPhBMrQlqclSqH4Qg>HqpDE)`1pL-ElMd*6y1l zz6?DlDBR}DJ?OJ z9m}Es+MK#275{MlD6T~JVhR*A&ygj8rs)a@-X!-r>#_M5BSmY$V)Gc({?W7|hmF(( zwiOD!9XA|FZHFibgc zYld(&21U_{MnaeGGE1PSfpz`5z(l%3e8`3wmzn+T=OCNaY3oQ z69gTJ17|WDsf@;60CUdeANE{^ko9~7=0EGa(4z5v2TZ^yY*KJK?7l#?mh#Kj8Y*fF zifd~fe(UpKfrO}Q5*I~e#PCEm7$TG^vS+7(3%xFBZU_c*vnOXM44sqD4B0 z3WkCitWFz*miKphkEv1mwo}ULU*pxnt58liLX~@wVDd-R^lpxR{o%9enZCVORumGk z5;~LD9N5@4ZPO0EMR;^J0-UZ^#r++G12yH9-Hy8L?5 z!8>#3!5WoYZI}opp7*&X#8Rcgu%8QQBp&|xz7NIgwS9#UV&q2apmT0C$;Xa`uD6d| zT8rdC&F4!^+x>#>e-Lpc!eMZlhXn`}B^=iCI&WI@Jgs`WH~hTsMClwZ2s>?RXKbJY zNDj4rF!k?uSg6N#o)l6@ED+3S85rNPiE;|AQWHCHA(b(<7hUP#Ysd1T^ z{8oUYj@d+INwNfm!eZhO8XXyQqX3P+G@BI2NfRp}gum)Wnh1PyrNoctDI-`Z7$OMs zM3{*}b3CDAmT(a1&il2n13w8<4cy~GELOmqIUtN*RRpjJTXT~WTns*_tuGY`Lw8ri zJqaGyi^w09>ypo8Ujok&_}(4VY}OvDZMV_T-4zrx9>P#?!Rlu=H1`UvO+)-X8+sel zLCCJ)&wW*a;8Mg}O2DDvN3w^l*YmUe5|zjD#;b0>vf+O$!b_7!(zJ;(o4<;7?DR8T zIbZpc7>x7{C>kV4Fv(y;iWo4vRFts<)zMV2$b4oC8Jts|cJIou?*Y*C(q2eZPNQi8 z$!UGRMJP~ypTzdPSM1NtZ%1h_1wvhsja)8%_oQeO!68 zgQj0>DQdC{mdF`Y6DGtI=y1?6%6G_8B{|V6gIkpnG_d-GS!`*mQo|-8c-5mgp8qC{K{I6TZDd6H{gBp*-$x8YELJEzr>U__Q`9TFS zR~2_%G(j;5A(==wM`glaQ_G#TM@fIN{kNDRts7ClzNm}oEU)c5uuDDx$t=qDtj`K! z)}$&=MOM4nC`;I~WHwBmUQ!q9Mt(b$4f|d}m65M4U4NxtjpG_plLrG^{!6s6gh2wh z1s;b_=(o^vGQb|?^H3edHo22f%WoX{vc_@LEb9$rN_UQbqS%6nNvLgZcU4=jJ^8Li z&Ys_G%B$r)lHQQec?;{yn(NK(JL&o3%HBTsX+!A+KW@?%nSQ$O#$P_R{Kd4K*LFw8 z3_l*mbqSUJTNN*x-Wg(vUL}~p{?+I7ItnJMi=I;vN?N~*+9|J}GfjG)|AgwcawHUI zIZxL}BEd`O)BdkRd&rDOihxVs#}03B{rBMjhEmpTyGjHOI4b15Pj9$A!8W~@`*ECm z;BzH_Zp+5!l0h2*fKf8`dGyq9MeF;UqSi!Dx-}S=OzFGs%81?Onv+x(%69EGu>)B& zP($$MNrpEb#dd@sVxY1|X%Xs@ez(QJc2mE}W2d32C?t^4hKb3@`>uuBFTv-9UdFiX z{#AxIab%vgE;Gh)9UIP)bFq5bYzH8LxA-EDZ($!3e9k%GSes@2^@ zH98C@MXwPwPU@rw-9(pQ=zobaQ)pMzkCNTNE&FP11K!UgAG?;3uaByBxrYkF}8ST zwl%3QR8JW;kqR5#KkP9!7+%I!w(NP#bVfdUjtg!hSWXd`89 zQ6TDd*D*0E3e9alNcSj0P4ANfif5t6SSMiRM0!kRkpS_Vf_DQK3gW`yNa{%Q)1e2# zV>trrB->!qlR)9WEIprgiGeWFzdCK|x+T<{b|n2t_6a+GV9;A0 z$(U^K52nQ+$TgGjzAgU&@zMvZ8eECCCGCTHBem%HkV#?@rz;h*K_4MB#4Wjr<5w$^ zWCc&CezOmjfcp%u2an{*k|k1{fe3SBe=34v80gR%Ljm)yp+-6wwhzYTnO4uBU6e&6 zCoP`C$Vn*od*#nBSvN(o##!r)>z6K%{+Gnt*E!M7n}*J71bDnt@BE(o zDHLay?pLnfd+oW`C@AZ2sb@!FMDfo<`-TTG`PN^gWMkUQgN5`zL3WF z4ka39#|Cl0o5$hA-_BE;bw%AC7`Ud0BB(a^@1(FS<|NuzO$xhPbg(ps`+vV$<=^JJ zL)PT$&uSDXhYM3qwU(k&x76oEvLY{XMYfvgapWJlUuK8}-a~ujU6r!cXS~L!SFZYs zSE7Ohx~rSPyQygK-HoZ1(U|%IEm;mWp+qDn&QI zVRi*P9yhp_#>T08!6wc=+ixi@Cd9QVqT+;Xj&lIFVpi~{F%970+rofLRpQ}Pv=*p* zMrdO@ZIqG1t>EhoB4IrLqy^#F?0nw6r44J1hxVm5goh^|ZLUBiU+k7jXr(*B241&0Z+ zFw%B6>y|@Gk#M5oWAEeKj<3T$%57j~&utT~^@F+C?JcK6@dI~}==zg;f23zOY6i#T za6KHfXgr_3x!*zYYRl?Vp})O^F8EwlgXxD&YtjG$T@ozUfGu>M(Zj=9_i0=K|L;nETyuWDN$r_n z9VTQu?Bcs<4QlDWuj+i;XWrb0@>Vfsr>TjHr)7|kx4(EPTv7>RskTf}=hnuas@R!l z3uIky;{&`0jK^#eQk*baNZY%m*^33n=)Kjlq;#IOMaY;F^2oRhALYzr%H+OQ{%bzE zg)|sfXS_*}S}BC3!rDH-bs#2Gy@eeH?zz|D+G9jkwx+?e?mjDzF>X0qyxDVYU}pQW zax;o612K;o`ZKU!tuP?Y#l6ygQg2`!X9>6A4zdq!A( z`o;(La)&E^Ql2Dad-@XuO6nNn0yC%eh4X1l2L)~11)NmZr##8735^GZ6tSJ=f92R8 zm6*0-X5q2REy?5A@_`&LzLDq z34rS|M8KILez6jVrD5A!KY2|RjB(ruvazyg!TFkXmQyxRUtLmIQdaCwS~WUBu0hS{ ziYK!>c8`H{NoP7penwY>9fR%^n1LXsBbMN>roQBQw9S>}&5aN4119oF;sn=0H*Ik# z%ybd&K!{j-gldknAdzenSotXE)J@;M5bq7#yc3=rK0QfHj!f|$5>hfiah51iF7gSHs(RJue#901gK%5>MZ zA1dkmm3jKj@$gB-YCjmnf5MJ8$a|@(K`Xs_K*+ift-PV!Xl9C{(Zf=6uA3`ZbbI*t zxm5@tFdVM&m$P5fr&!~qn|`H0e%qz`bY8L4T|cM;Rxv({3f}yoyA+&QC;9JRe>J)+ zVmmm!$tHEPvi*1yv-pvur&GqHYeV*Vi zgnCdLNgw2@k5g@;M>X~zar&pW!}QO*Bs{HRq}ALQcVrws8UHODy2%l;zH;uK_$Ur` zd8`h2q-Gopv)fTBU!F`cM|ciHl&)id4h>Fm{n#9|FE>Y)%_}BFf$`-#;C4ace3w+L z^_&>|CO30zw@C&#zvc9#I;OwUC(q=}7O&^|p{Y~pI*)Ct->>7fZO_Pw$Ra?AFEBm8G-CQ#EDP@@k> zCe{$0tw3$NEZ0i!qYK|0k$Le3x7V^W!BPXm^l1W5D#)o%m^>u0eH{D0tjyLk{esG1H?u$_~ZBOevu#g@IBHND!A624$Ffe$gNM|IYdsKs$SJdvm z3`m>}Yb1pX7+=+cgnx|rz`;jKI#}#h_5IKzlEj#tv5p+KSg8d39L$@QSfq-Bb8dZGi8HnMw$M^vPmN#~=DoBV z?7kGQJs(Qem#Ob>&w}AK4n|sL-#LEEgv64oWeBFTnxo?{{J{Z#tCycYRz>pc!hT%% z#fm+&aAyn^$(c~3geniWBN#FwqTr@F(i~ionlq^#>)UYqs_%2!7D;@n>lteddy;1J=+`<0YnCY;iPVIOy`i)$}zUvWg zqH4fqa&4n}gdh7q3&NtI?pNOdK3`ulu|kWR4KG8aN4tElLyX=UyVjiCuJeWtm)u7K zKAGoucLZ`)Mnfz|i`9ka;*jlM4>p6aHMnAQ&MI=rb5ln>~iNSD5+E zdbL)tt{TQohD$%&1K9%mNR6R+4vSf`2aW@dct#KsxnV^YEXtI&Z+lel`cOzvQYHwx z87HR8?Wu%cuunDS=$^eIQL84FSreC`FUqSPe5Jqyas$S(TNCGp2GJuK~k*PeE21k-Di)E!_Gxlx|B*n;X~V-2HzgHe*WNn9Bf{`BZL zdb*ZN(N%^=sbOsO6YM#>G_Zk*TUbk;ROZ|GlS;u*393v)@&#XQ?DdVy_EikmCtmKy zPLG{)=5s>YGis^@3D(5}puQ`;b7I3Vb>NJrmROz`z-l0D<|FGNKBrarJwNZ})&Br} z@JG^(oGWRhoEV{jb}VM-y(J0bc_MD?b>qZAYk!Gnhl_0&@z>-*o{kNHTHwTsb$Gb8rloA9mc+)i^tK5qckC{*>R&4BAyJ++d$O}QvZnH`qGfe;?6^Sb4;Th155zG$SPn(`;e3Jk@l_Ec4yB@gL^hGz`;49R-%cj1=g0OoBaGf zn}LpY<Ub2HWX2iS0MS;$bmGq7??Nc2R-lW5X4IQ)d0t)-qj}Xl6Gm z7YHIP;$Id$2=P|r3n!BGZyr&@h_Z~LYf~MsqL7!!3$Qv6ugY@J<6(}f8&NX?h9F}t z3q$+k=Z0#W0e+efBbw(e{`-&~akBjJ3(L!hou-u6sB%Y<;xr*+kikS5bnP8wRR1E>2yx&TS*-h{a)l3>& z`iD9tv2DIuUrDS!?(nm$=m6Q%IY3|w`OLB;IF%RqRkCS13CV*+eHRIVX9eqaMrDhtAaNti5_B&rvb-7hG0KE@rO%2E3)}(I4P!JH_HGg8K+?U zm=;=8ecp=EWQlJe3pEG45^e^sOA9ysXdHW00l7jcx;l2Cv}H-O8F(_7QC8?t%Q_%k zA<1@s9I3r_LFnH@J?l&3Jo+mu6`K(kWW-lV`(p3^q5g%wZNeMXWxM zlN^Wx+ycK8ITQ(x;wgnV%;Uxv1)rYa)<|kNuKVOm<6297k12&t@3KV9%DN`081CaH}(+%Aw(amCX&xZ3qWYTzX@ zG2`yPp24@8Esn!OG^MggL*$En2lUFrl(6$_S=8O=FKD4>KK_W z#?qfQ?Q#4TIPxZ@3+UXNWvW7*`e%6aJsNX{gtXD?cgdf0>*fe&O*G~WYib*O60niR z)NQ8vp9y&~tC?6MHp6#XAAoqjx+XxE3dWW^h(j8aw6~SMpu$Bq{{@JVg$0Y6%7jp%^F#*00V}jLh^a4AgMq`T88~;F zdUR^_kjE_iK@Q#=%B1giFiW&l(HhhsEMqe}lu*KMrf{mN&64dLx70F7ql( zde29lLOoRIbG8$LF!?Z zL{sZTw;c_-3i=+pkx;*`5`#A-8dW;~0a>QnT~E0`o_4jt@RKdXH^ZlX9IbX2+C_ag zB6`j0wYvCA5pY1$DqpvC_!`l}lKJI!4Gpc#9AG>&#jb6GfivyAIxVRiQG7qqFEkB? z!1pVY5T&dqGFY>I$ba)l5-y7A#NEUry3Lq-Eid>c+ekY|P}R|TD0&i-L`vC@dxhXr zy8x?X%(e@1Y|q9&a3wEH&puwSUTO?aUkJghBISUoJM~r)jeATXB#T2;_yMv4`vU2v zSiAe76O2~2n#5;t=MwH(hjM-Ytbb7-=jIUwzzsVGbAYfU7D%?0hDb$kq~j5vU~Nas zAq>V*3vIy~)` zm79UTl&rVE?iqpD;Mk&ji<#Pd6KxfYV7ODl!c7=u7CUqzk7X_w1xAd(EV1T%Z+nQZ zffGvW4KR2&?%}@`BqQA%ooD+xQz5cVig70-5-R06GhBWOegDn7&Q;}i$$i9ckb+IN zoOwU=8gb3m!}0s`{g4?uMlQc*HDuDL;;>hTVN6`8OiyqG%(gj+abIpT^qj=5aW6sD zE|-(qNxqn-wiG-#S-jghC$I7YJoC0v6hu_?)roMsnI+s{y&zJL_l+-ZvIM#yip z1&3A}D4#@Gix|r0#X(uKUMQctBoR}TL+~*ty5lo56d^su>!eC9{irKg3~>Jd(By|v zV*>K20-SpszBtTc6hBVl=8s8p*xl!&yk`aeWgDbpRGxFzuc3bcd<97i?oN3GM9u#& zF7!YPx%Bi9`{Thmceq8Y{#+ei(YZ*fGIb0kmBhs- zYbb#OvcEUf|IPMArXQ8kQaPISQP>jBLf>AaFYFUOepT$9l1Y2%o6dA%w?{-ZLu1gAvmJfsNwi%4X3K}f zB4G|ol@Mb{Rr7V}cifvRJ&UgR>gViKxnKR&Sz&)R6{*r*gBJm@?)vh4aN+8k(??tz zsm^5v5_Q)_U(5v3j8=?c3$8k9qIBF{2P!%iU%?g^(tdR4$1B^5rkNV&j{-+IkHV7r z1(l7Yxm#&PZZlMDHLK$eO%|U;(l0%kI{nF}!_I>TiBFdY0dM>pvA-Gw7xsK?W;r-B z(NPY&)>4t2=IpW-#Ij=hw&ajcO+HU*;2bmX=#M$iU4rFwGUb)k`T8q=JGLO+hp zM{DTcHePgb;ERfkPU67(6n)tVtp{F4B!aes&K<2ORhPWE;)ON;%r#Bem!^ra`y&G5L}QNyh-z+pF<%jvYLWp-}vw)N4|)AMOWO0XYH z_39D(wmD}MB3y*`Y=njPHLfTmcF;wwdEvmWE+&VyrKQ+7;8I#a#C@eq50Y0M=TK;d zXs&ZIn?%yKJ}Du}T_(D-{OSZhB23oOMvC0bJ6tF`pOf8O6q0|RJXVgZ89jbc^gHD4 zXv{xZTvTvMtup)m$Q|lM<)uvp~d;e2rbF;8DY2xo#-+1clLY}I^;}lGzQI( zif2ahbVp_!KA5uRWr=)Qp=qtHOsm8FggdB!8nK-;yA49g#5+K~F9i~$FT&OA7b~6_ zHc?96z%hH1S#jvsz<*N7D1_(DTS!pX>EoUVFRIsIfYOQCFBAPhNjLM4c)l?dvOWS_ za(%OWLlp$K-b9o2Pw}JNqWmU@Wn@6$$g0$+d0`W=iE~-LQi34)L9lboU*fCxfAFNtM_|$vclgM?~4Z75=^i=2>b2oj(SMQq< zN^41slvbuXVTt0(@fYrqO=*P^(1HuT{R>e~Fz#2-1nv8yVn`R8I!zwa8W~9Tk4eGoU!JUex$8LC-k$f$SSDA8d@CZEG zW*v)V=T+LSbWx$-<)iTAUg`I9xy=e@gCx;qOk_SIBVy=Kyu1H5ioC+rHXs2XxwbAm z3xl--6i@c>*#Yl5~@ zqPf$?6*|_UE(ni7=b7<2R`R*(Q47l6m$484J31)K6!MUEHo2Cf@6=>GE%wvQ&D0Ak znX&6LvtscA)nj>i8qAm7s2KG^9BN7HC#F-yfw1R44wM)Is+q`qHTHy&XVe5?x#<^3 zA3EjJwQi70e2;v9sUnMY7miO|3!-zlsdr$o=*#Bma{DT;lp^gs7~1-4lQY#(sWUiN ziDb-;i)cJ`@eN|}<3oCgOH+Al%j04+kz^kcNr|-)gg$pw7Mr@vt!~B}={~h(^So!L%{bH!k@-nJ|fx7$|?qjO(KjeNEwoieI2CGkvnAt}DuA&|`UZ zLQC$}W#~c*TdLqi3;{fw7Z9?ClbehmnMVXjOlx~XweEej>EC$>w_sv257Km zERrT(aJLNed~2b*r(WGHvvseQsDnRCf#hxL8&r1YEj zy&~Fn5EXSFKc9A3{e-{wq_`P4p-1WpZIwI<_3kX7j7)uucE+^5ASoYy`tdl~Wvo!6 z=ntQ7BD(R$+qmso{PIb8LO^j|CHR=O;~Tm+TvH%UHXo-%b@{YYNuQwP_A_Yxl!!jIrpU zKhy%Hoo%+cM#mF=BvRl2UDYY(U5a7!uftRS!Hz*}yf`k>e>ERuuzt*L^y+SW7dVHH za*;7>Rye3+oJgN?PSnH%IvjYX>#9}i2WI>n`ZwE}7!A=VN}bC>ycaM2;GU+TtN4}E zsYEfJK%7ESeLaHoGV(j4n;d;|F>>n!Kq(I6#w<^sT%FB@p=@bNMml2ZYBb-R@u@$FESsz zrV6N+*S3F2o1y^EoctHJc!DZC92_8ck7U8(c~8gTJwp@<)B#R$M+MFkNze0-)@7N_ zFLXGDz4_E@BMQ{MQ2qgaZ-h}fa1&~8LfuCMdhlO5P{d^)n=_nho%)42iIoU5qoyu)bkdJ>xeEFTMxc&OpN! zs)a1ToJ37QrcK`ukB8irsvc9pB@CfyM)Lk!!V*pJ_)o|UPK#WIh?NFl@Uxk^P$32~ z*QPdbgt0uGJh8GtYkFMqCn?)GKS@ZXd|E$X#py6b-AC)+p|pI5hbf=v66PcwYqi0m z;B?^Hs%QC?!5dYnrlXz!-xhT;M1nBCOs?hB{;;d7f~GSZ#lNK);^bn+cxtZ5 zH(U+S4%TWXjo-#29cYLJ?Ng$2_7;U`rCk4AAblj6xL`{qNW0mETJ9iq}}p zmS(Kw)c7w{-izTl|3`w{ml`)5PDiL&+Qux`51;-7N3&DExM9^0o_{=TpH)?VNpZN> z-Yog3BLTh-jz8<%!*>I}FK_QoQZd^CHroP782#3f)lC$2ePE>O)Aog)I8T|LzTI?O zu5H&%eEUyM?7XB)wRl(BC(yPb%;#hC-L~V|@U9iB!v(X+U)?ufH-^Pf1lXx1pZ%eb zml%V*>dAKh4d#B)kOg6ytR`bquI~~IMj^_#mIABG3bSMYr{Xm9hZyl=>RR4@B|HTx zQ+LE)!}R$6bY`?kuN3q|p-K!&WTx-23AXhJU^@guc2q6h{DtDb}YrZ zJ5exX+~yv#p%sdo-RUf60$jTDWi&&SRar|2^Ta~x@zGWbo=bEY8jFAKHSE-Nqy-5S zztmH>x6AZ4V-~Mf_4Bv=&6g;K#L&J$|4;FzaMBE@1?%|AAglmc=;9endKk;t3dut( z92|RooQfLsUEX!-w!@J?x2TGTyi^4@yZnm2D@r(L z1a03nOU=_i^j@n#2U?WHI8TE;?VoUdZJ{Q-H+%W-n5guu(0KWbu;})os_3An{Y#Yo z>HNzN%o@B}OBwN|9vO2iD1*YVRHhH6DhVw0+-7RYLIf2M99l3Wc)UxDw;M?q1adZ@ zY=D=|Xj}l}1>i1QebPRwKfkcH6^I6Rl0hF6Q<+cf0d&G4=#xYCQx$ zJnv92gZC)NvMK)45{jeFVmX&Oet~ ze`51d-Uxx|`P^U>_J7v{-py?2Uy13Y%Ix;}6jdw*^3`w??F;E&IrnPCj2zaVmUk26 zJx3kn5ufYe#%4pm*QTGT9-D6HbxphT>RX+a(fXp**bBHH4A(NAdhBM_ zG)6ah!0S9E1C0 z0>#$4eU*8qNTKZAMKDh13g7OHH$m~?dmLep*%f~15B}1J-$T~;Z=Q-C`tsZ!!@*FaG4-TiMlzxAC7$EKJu*&22p-2wksEn8Qjr7kqf9*kM z1z&Ig`P7#aUj8pTX z1dO$lG;c~Q*e+**4;YXc(Idytc7P57G(}9%5&uRZJ0X_vRm9Ql{cqdr_jx3xbi&Hq zb-gzA$t-vSMzh*m>iR2v_DS*8tT%d(LwwL2C{GYl(fwR#Yu9?kVntm9wb@1p@ zcze62Iep0d;r6Ky6kOuXf7uSfIj=YMr;y_d%tod%Y_TKy4*{>;WQ7%p!+fA%?}_n? z=;zYZh26A2>XM1^{{R+2>Ao)7#HDS*H*#h{+xCdG-b z{Ce(uHA#lZ1WF1_pwOX&02r^Nt0Ma?i%bnx2y`_dueknK(WL2^+p!Q#8<#$ryKoZ~ zTk^u{<+YrYRup|<07qg1fy^N*OQu%{bjczU(1R3F^*;V|j@NW?%`$N<1KO2tT`@=j z<5OjH!)IW4lD<+*RmDu1h}5=-ZBALtG^?KNHSvXEfj7;x$*6e=`D}nQE+dfdsA(m@cGnZoggwnv(%KFpO%+562JVC&5Y<^-lBXf`Q_=8YK*O zPcLSqRU^qge5DChPG%HRSVEQK3B!`|Bo9mt@zACLvZ;{XyL|fZZ6e|fznRdps>Jw0 zpNH!M#JR`s(_tP+7ZO{aBg3^E5lrJ-gKVdup@`bI?LsoXN%x?wB(sW!33(`4z^bt! zmngcI_xavk7~K34;A@|3fV=O$n-fnw zkp&ADaLh5s@cr+9pU;2(^W1dPO&oR9Q9Cv8Jp!|3QqZY}xW)UHKho|@FN7$1q{xDd zv^7&RULlOdVqFk`bQKt(O(*>fTO^njUKiVnXO5HS;0K5>z_wZt1ekJw*VG6LCiG`W zmjSP?DW{gSN1+2qtAezu@S2*u;v>qQThteQXG9>8sUfR+sG%Ozx(wUy3nL^#6f!x* zOzK+O|Kb%5FWZeVt;IGp#0jz)W23;8`q~vHQxG@b!+H{LBJQN4iA-aCg-QjYmAU|f zT)ULB$A$-37jNx9G=ki3h-A>^ulw~3D+S@YI=1Ay^EHM%3NV30E8!LaxqFg{ryQvX zJr_bS-N0rk=vh5-y4Y*6JLF@#+R(o<)s;5s*-_Hcm6AO<5V`Z5SnGTpt_rO&N|N;Y z&ZAd%0m4 zi32_QS6RvrP9XCtGS10+BD~lli_2Uy@v+*4r8MIZB`s^>0gRPoC~7k1V6V=QDs{+< z5`qZDfXq287-8B3j8&^l>xf0wI^$s#+w`!JL8k)M5+uEXw9mt+%01UD@|IN$9SVeU!{dMu1RGjNJ+Kg zk%@jXt*}PoO?Xt-Ip3r$1<0u;J&$B010kz}0czD2Ytw!nZT0i)o=2E65w|4)2YO>H zP_FutkP`}z3|*w5!2&hKv?+B`(|)yiIce%4@~(VrYxvNMzXmuj$B&l3Zl@~{JAzAZ zJeTWMUBgl59L{kMq}+CMll?w?53_rswi`;et1s_A=}UwQU8l^Tek~buOKQK`e;Lnt zWX(>E=c*MqIugT;Jn*B#;G6gI^>ZAdnh#D}eFdBZmz=-#M)GYVe&dqMIzKNt$Gvy| zA(wI4H$TKh_f8c?dWS8Mx%Z#+CBA2lob%f9AAFn92j?}^tztAjn*C4SF+a_`2}~Tv z9skDP{LSBR^2sN2)m2yFc^<|X&N=5CKJbAL@L&J+U)$N!9*i`Du<%%qUb z{<$#qi}q8fc15BMC1$)a6sG;qciR-{Veb8c;6(26jP(^Z@Q_n2M{e@mHB~`k^BkL` zF7{Z6qG6*%rW#XnQNh+%ok&d+2!csXbCE|hZV2kSqc0Xlpp3xfO@qt=cRrF|p|D8E%kPaU4jYD*V84!@48>Uu6MESN6R zA0z1`W!mC3-2&bUQ3S5oPG@?ngp*RWoIF;wazvsrfg~GJ&iwA<8bsz`l%%=DA_h{d z5txd=3v;rT&r~m%ARrhoqnbHZ2&^aZ8wMQ+yeSF8V66ZnC`SnkD|JdLWB*{3KG~!u zQz9XY*kXsaC!{QutHP)lU0%hV@&2@OpZ@+jV_6SK3)aK>?mNj!!lgncdC|bw5iTp; z_h1xwO+j^yB`*mYBE*W2)?iLr_L;7is8(WHNkBXmB4R}=?je|vcnz5HdNIZ2d-Fnr zN(9kHLEdMnt%qpb;x!D`bKiqil5lg(&~F4A{W4RB!_PLZq(5}Q1&^c)Xqtcp)oJ={ zLK91^_%4z{nGp(Tm=KMiB2s>rF5|(67b1Lvv`$jk#pCgzAO0mDdhyqsjBEOTpS0s1 zb^4j?_rN`z`04fBcHH5dvG`4d3*XcU64;gxWl%}@rzVZR+I70Xt5&#VuRm+t%Q~1h zdD$L5e&=_2!(kuc;B#KcPyhG>yvY_a56LSf8VB`It2ZG|pnbd2`AiyHao#q~T#uNxUq=Y%hneLK zvbpYjXQG|z=6N$xJ6vdi@Vps0U7B^y+ZspYtlO|t73xG&7w?Jnn<>>}@}U~0cTL|6?oXL%Cuhhl{>EvToPK<0K^JrIWXs3eWMy0LJrzV|Z;DlZES_i; zrYj%YK7__4WLXHNT;f*N6Ofl>L0m+qIkEAaPe!GHaK6B_N0CPYzhP$j!lXGmlITF7 z1IT&=c^UEu*TlD1L&F1Q32G^Se)z3OEWaE(kh_D$tf#_)I}%ExQ^;z7RX)ZS_)`L7 zq-$WQ-Or1nX^tsB!hYU3QWz#o1jJ;yMPb?B(?}suh)$0cfJo%jWQ#cW7$~<`a6p4c zC;Di_3NfuPo+Di*kciO3ODsaWYLe>*Cdo@6GZ*G!75LLGW?6^I-8MYSq?VXOAtycj zx*!~PQoZtsOEVM35hbZ5GI9F~CInv779k0eXw==~Z5V(ML>pVw9`=~@ORP464Pg(d z@rYE$vwPjs^|68(HLx_Tq$V|e5}H=9N%x>I+@BBgud9v&0YW;@rHUW-PoxW61?JKl z&*j*&|97`mU)nwwdC}Jy9lC}koXKrB9}e$;GT>GZS?e{nTeGOkebRA#j zdN}DZZx+9wHtXkY;g#|(ezg4YCjK8RdO0r{xf5_i2G}l{F)vunC;#7V{MqZi&TDs2 zMmTQ*(=ngp2up8o@0|Dh`uZ3jAD{Pu_e5ABuc2ra0t&&kW4yT<#1FgE06SEZJj^Sb1ra6MqOK$oOj zeGZ$5#xQ8;WMS`^7z)(V4!MtFg&M^xfWl1>6v&yS^ezcKLcs!%DhRf0y zvu5)!o3oHb%|6n;fIM{7AYmYlJ;((}%X5a;a7y3391(1wA`KgKNNjxW&3jpw^>bjb zk+R%GSr`K5SgaBHpO@WtwxDt&~i`gA(drAqlbt3hd89Nf&GI~dSuK3HI24{)EXvC zNM;pxwf5uN_dFY2_YtYY7(vhygcDs)r|8p(-oq8{C8z}J~e_R7<@W4H6 z?eWu3*4)YuUVGf?H?nTUDV-*kJ1ZZXFWN+ETOOU$+GOitcsM+hpnfgy zJ^FG+-^?7znSBAS+!~v!^6Wnbnrb6zUO=yN+8GUj%aii%d-~K ze&80&f$tXHYNoe~wRWcJf=lOeMt$QdFoj9q20pqR&>D_tE^raRNk6m>NLjIb6Vu;b zf@!EEC6D*OLcGaGCOPiu! z3<9hS(4oLsh@dS46P{NP zAw5H0lyc`36}@zd%8mOT)vRy?*V>hm$2J9>Zs4UE*7vaG5Tqk_!q91+ z>8ev2IoU)^&1yo`32T^@_}0Z7y!)Nbf3dp>%(kj8kKL|Yh1ogGCM4S;GhO1cW5|0f zR4k#FKP zT1+k(8l2{=WxwH!+HY9u<C?cUbrF=h|bcxvd z4EIm)%hC$QYd(4I(^?=AHpB{OED;3LpkhmX8RTW-8g+&i8?>wcq6heY|N)u(?U4Br$=9 z%mhslA(uDUI8mjU`p99!fx#x0c@soJ)36@X1~%lqTs!(q?pVDHUH51HAy~*uGvNeX z%*6{2`v;Ca`@Y?>?@Mny7tR4Oat8Z7a1Z}6&(EE*?76&a`Lj9|q4vW5`3pAl+Tr)| z`~{nl7v0JsyD3Wekqd8N33L4*v#UUl{rT9l6F58JJ)d92BNx7e2R6TrM^=1}6HY%9 zxPX(*N$}B+@Vx%Bxc{1kTlKc=43dqnbK@B~1GpcUslGh+XPBwT-1dh5!zs(2%inxq zHQaq3@RvL6ftojg`RZ4{I_LM5E9Ww~n{U3ESH5yLMKnBFDEfg2U6|L?LPBN@oepDA zETm1*yTy58L_ucS5y^8F-)&f1kRpK%73o00reh@OfI-!rgzPV#a})PW4`ViHys3Du zd`#;(6$d%l#4N42_(>@c+7L`-F1omxH75d@ByXbDl+A!w$zT#%ch!V~9+EJwu2jDerFtgIMIp3hXS zZ1J5N>r&U+@H|Jl+ETq@n@)30a3rVr*-8bCCIDhu5sU};QBX+vd_T9lF|irO3ZyXDlE&teyzC*2?L4d^gVJiB*8VA2!SB~E1C69dwg49y99xf?O!0+r{l$v^d;w*VQvNn#P2Rw8vulGoYGFce&|+P^m+|Q`Qd;7A0I39J5uW}3*?aGJ%c}bB|Gn1Q?X+8` z+-c0vK~O-4P)%Y5Ax4Zr<*}PcqCZ=#F|lAwqDic1Of*G9^wC)I5RHl^Vgv~yp!6az zFifAh{nTC7TE9Qm-shYP)45Z?`{gw+?mcIpz4zJYp1sy*eLn?j1R^k)vY@@_Q2YfR z{`Ka@?QHRC^QQUeuhFy41uIxVk zgFD|wxa40r<&D41bKi9<-@bm{PZ@BoWLsnpsC?rc*RuR&P8V~jOcu()O)l0786aapk+w;fnolbb_U;hcOy#E+p`jKDE`}r2&=k!-RgYVT( z=PgISh5vo{Q*+)=q46mU1SbA|m~V0)fBc_=4AchMQofEYdEU(4)?NdcSG{WYt)2J1 zZ+`ut4^@fGAe!x-{>7S}K)=vzgyEypZ={2m=D@UekQj?bzAogqbXM8Xlv zCrFLt$bm`jZ7k)^?;g*pt#xNH9QRS#q_Z?GCh0;uXBr(TM9Vt;i?Kw_6xocsdLAnU zc(TYIa~*l5x=GNELf|YuyVt>3{I(%p9N}#b++<&ZO%1}&SC>46t(Gz6kj}C)X~j{+ zRP2PI#uIoQi&fyY4AG7bYQkxH1az-o(OBz4$SWAKy_dC2e>?z?#qD&I7RIaxa@43LkVUU zK+F78v_lfkW~4QR%-qD;D$%7yS%nMl1>#{x&z0JNm!R%~e2p&<(pe-oRtnlHUFSq7 z%gUvbJay3qmiTp6s2Qp9L$Rx}7Igx1fZfB?Hz3<1}r6FEkoK(Qi;fAQ2cGooq;EtntTDST0<8 zJNIlD!}=Dl1<9Z#9WbngFnbht zPcCJqSt4%x*tP=Cq9aK>;Hbee$!+x;Dbb|ut$PImubCn;gYgwsIlyB)&?SYehA#ZL zWeBG-O5>Jr)~B^tBDBO#RoSsDV!WiO4zUe=yFH}I6}zDM~xKjgI2kK-3N?j5apf#ly;RtQ8p#&+_Veld~lx{39< zZWW+J$gVcXT8ogf2VM%0Bc02M^%c70v+azE6DekJ?5b^?I`m0^}|)?!CEen690S0TsLa zm8`7DO0svuua=Q<0!q2}2jF|?MFTXCsN@+20>5FpD_bU1PMqosv=pQji3v)mk&tLp z13A-hfI&J#POD8f*PyE_GEU?W^wo=hES?HMv2v0c!fMQ#%vBn~18jk{; z!t=1gbm?Ql^AN#8%YRpOIB8$@2E6PFq|6unYj<6ky#X$}dflP!$SljLb7q00hBIhAz3uwGJem5lLsU!FsMk@r>hs$sa8J z5l49mH5nlB9tBQ zQzZy8e5q+@r}0=3PT`A;NTfs}BNCcOSU`|kjm&A+3PB`bv5biXtnw!q9&Ru-HG=UW zty$!7f|Lf&*PO6q8>3;1r_~;!V}0&wEvFGiXatMBIwPvVm^Z`G{sd2sHn3rMl$)Dt z*wPu~=1r?eVvp&Qef%j!^=n$ zoz_wl@6+}Lcv*YaiF1B0YVBDkvgj=#FS>o0Z$5d7|I>W5pnZ3>PP~RSYks^(D$~g9 z>p0;fckyk2OPDwC(q9F5dB!Wh%~P)X9+&^`>v+*;{*e9UCLH_XC47dKi~5{erL_qys@J=zWgG@xliV~A9iL4v%uT#JC;{) zkO9oyci+v07hcG^b&t^u`Vf{#Gi)o)?Ry2#=Xh1D?srAxeXd|d8hsH~*$-gAg=2Of zgZfdLv)A6srsg2SQH#t-*3}oWvNFx7D>iZa;uCthku-AwjzYNo=An{E0cnc2ZH8oM ziR;4T`VkZQ$lMAVC0yFPQs|2B0?<6^Y&t!eyWohf^NmUkvSF~&wbQL9Fx3D#)hF8b z6neDA%&}Eu?zCeCT|qobI7{Y^?&h{w=^S^`non!Z0Ks&GzjemFKa&H8V#P}J2H`m! z63^>_7nO%5SetiCav`RWc?hM!X7su@LB2+4EH+7dh5)(Uv$Ylx2AI(SbTuTcdUS#m z4*bIW+Da(wqutd2VnIn)1WG?OR zSj#qDLJGsWWC@GPEvC%~LOYvet2AMl;YmZJGM-j@h!L-W!ZPN~ppkTpPsjM&pN;XI zsZ*Fr%0w#V?7;^(fABUs13t^58Ezb3&HBa?Oz0LDrFIK+CUC&encHNjmJ0$+%aZmY ziS|Rn8Am5;FH*FYD55FjZ1y8TG87^#sE%Rqp@g)iXe?9cNT6DvLW!wlm`pexwshT| z^5Q1PFWyesa}>TCCl?>UzqZG3U9|Bl^SZy0+1K$G+qS|sn11rUbG$xx&fmZaSi559 zot}96tN76sC-R=n$Md=8{yNY2kB{?kt~HzQy6O76y8r>;(-;5YyzKWg@43wV@Y|0a z!1Q0E?$1X*db>AWdo1y~Gdc6GG!O9`y!mtIu<1E}%5kS}=NngivAbQ;nuV7fu~)~Q zHvp3)3G3IdpRe5=nwp#j;k!xiBlRn~w>sY~>$Ebq$UT7`&8eU|6}cyQSHb#{@@9n; zhIbtKeH4}-&OV8alS6E;SD78Juwtb2`bNn z0S78XW*n$U+)X+e3SG!q;KZUj5VRM0_)SAl*MwUesM!QP5YS!}V8WgdA5US1s=x9_uMif@jO5htydn{t+m=c3Z5Ii*Qx+F!u4D5zFFUKELvk?aV({3(%R)WA%WqiX;eezn2^tm^=jI_D*KHPAPFc=eMr~qS6@#{dxb3qg8SGjY@2a#lY{+~z-abZclVs%Xl=6M!T|0kU zj<89Jnw%w&F!-QHXH;TV#s~|Gs!eKs%(0d2tO>@ubgqg>2=mTMBm};Y_&5Q-5)y3< zW$Dw=F%zaj(}Xm1L_6~lI;W2f7^+dqP^rVBQiER~{v~IZA7DskXbUZ?kU0$?MY1)k zQP&Yw71K5W55|jmayWZdia?)y|0Xa5CHKKl7QZRH(2bjAK3XRiUw+uruJ-9Eo#$Bz9!i^Hi3+E+gyDReLeXn@}H z{fYF@qd(=8F0AcRxU7_PMgr2B<$tex5|e8yym;(JUN`y^#*->PzVS&6JfKji$-^x3 z&O%``T!5wgctv-@+c8ULsdL%#+6Ln}XB(_V=D8=}Izb`_Va9j%nQ7VO2?PyGQk8_$ zIju`;$CxY9>hrQ;Kx3j@wV?O)9|cv+y6J^spTTN-N=M!~=a?dVH^%th=9o0xo@ zFjx=#xm6CAAqS~6Q{>uzh&_{#xW1P9y=n71STKO z3wvh2=>`+8l_6&gS*c8CNaD9$291>tfch<$y{1Ef*8ver{J{*JDU243n=0RlPhv^6 z!BnS2qaBhaeQbh-nwQ!W*!Y{T*Lml~2X0Xe;PaQ=0AD$OUcn2vJeZe1-21)THJPXS zvk$M}&-gdq_~Fa;3bgG_?M$C^)Ae_AHs^5pvTOMR&YYLy6t&j?=2M^g6sMkgDgy%p zJAJ;Yi3|w=8Nj&$<2}HLK`#J7PqLXdO8~T9&B94RR`R znFPU9Ldqk$a0|6ihp-Me5EJ~3^SZGeP5Qn&4)NI>e&x3`&A@e3%oexOUr=?0wdj&W z#?DDm`@(5tGDs^Hl{oABv@DrjEom;d=;0KMU}&(#V5!3r)xa0KckMA)e$igzoXk9D zBqIXf+14xN=*iZ)#iBR?puF8MdFKGp$+L74A0aH;lNuX>QP%k5R78rulUVtdNzqu! z!lz+Vw6*v`5D807CUk=BB*r6{5wyn)elh|&f<_Puawj#FzXwByj0nl7 zvLrS`d9$QeGHskq^K#Wfg`4^H6%TNoJc>!LLfb_6`LsmF)&)LGN3GVi(9!y4A(|={ z!*Gjssq2b~c8b?Bn8gwsLsD}lH9C}JkwE(bnL=6vITCkwQK@w}VrZJhQG;g>--RzS z?ryK(+J~3(IOnJw(AryZ{@&Et-#7=p#Xf_Vcb_}{n9iem$yHqbf$Qca;PS@Q=h-vc z`N3a)lr#V29c%*hIq#mc%@LPAyz>|DW!2yKU7qotZ*$Z2yUvH%m)g~JyL`nz^4ya? z&ReJM;-#NEo|nJs3SjwTKHgpfm}8DPhClkFKjP&t-?@eAEw|jl)1LOU$9zJEv`RRf@oO1J&s5mcKdrImELe(Z+y3t3MyP zBcQrLP#QO^Uf;$WZ#diGte2N!t?lm98au}+%XTzkTSnPH`-mEpnL6&VQ7&;=W{_4Tdboz%(9CVARZr6r_&w*h;u_@Qd!bYpKz21O zCe4E=b7O_VaKTsyatbSK>-OC~qK5GWr5!0M)=ux^|nW$J<+NFEDN=F?3478*gz_-L6D*$joHQ*`%* zArumWrD+Z8vjKdO@ssB9+_Png8@h&5N>R$HfhnH5=q{G~Q!G(+MpTDr7h-oQ1iteM zAQBp17|OCvO*o*WM8d_xKclK*zB0WQVIZ6~cpYb{jC3?=8!FNPpRAPAo(mWLe0;K= zL|1%dq6ubGypD&=aPDwzr&lsniB%vh#LJv}nh>yd^}}RFvb;3IQKcQ66l@0I{>~W7 zO0x&>ukG<)^95d>@yc&=`?bHzllSAbfAtgRb^WZpNKkmu)Rp`z&+7hOz2qu@c>yl~ zr~4^y{;vzT{5kKKm;LRmYM;4)AAR`w2WL_Z(eG3P(%oI$-tfBT4fV z`piwDyFr#3girP14&fIgu;ABSPKoN&opV^G5k(5U>2(rpmh~p~ntbIf>uGiJ^OF