forked from PaulStoffregen/TimerThree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTimerThree.h
478 lines (442 loc) · 14.5 KB
/
TimerThree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/*
* Interrupt and PWM utilities for 16 bit Timer3 on ATmega168/328
* Original code by Jesse Tane for http://labs.ideo.com August 2008
* Modified March 2009 by Jérôme Despatis and Jesse Tane for ATmega328 support
* Modified June 2009 by Michael Polli and Jesse Tane to fix a bug in setPeriod() which caused the timer to stop
* Modified April 2012 by Paul Stoffregen - portable to other AVR chips, use inline functions
* Modified again, June 2014 by Paul Stoffregen - support Teensy 3.1 & even more AVR chips
*
*
* This is free software. You can redistribute it and/or modify it under
* the terms of Creative Commons Attribution 3.0 United States License.
* To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/
* or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
*
*/
#ifndef TimerThree_h_
#define TimerThree_h_
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "config/known_16bit_timers.h"
#define TIMER3_RESOLUTION 65536UL // Timer3 is 16 bit
// Placing nearly all the code in this .h file allows the functions to be
// inlined by the compiler. In the very common case with constant values
// the compiler will perform all calculations and simply write constants
// to the hardware registers (for example, setPeriod).
class TimerThree
{
#if defined(__AVR__)
public:
//****************************
// Configuration
//****************************
void initialize(unsigned long microseconds=1000000) __attribute__((always_inline)) {
TCCR3B = _BV(WGM33); // set mode as phase and frequency correct pwm, stop the timer
TCCR3A = 0; // clear control register A
setPeriod(microseconds);
}
void setPeriod(unsigned long microseconds) __attribute__((always_inline)) {
const unsigned long cycles = (F_CPU / 2000000) * microseconds;
if (cycles < TIMER3_RESOLUTION) {
clockSelectBits = _BV(CS30);
pwmPeriod = cycles;
} else
if (cycles < TIMER3_RESOLUTION * 8) {
clockSelectBits = _BV(CS31);
pwmPeriod = cycles / 8;
} else
if (cycles < TIMER3_RESOLUTION * 64) {
clockSelectBits = _BV(CS31) | _BV(CS30);
pwmPeriod = cycles / 64;
} else
if (cycles < TIMER3_RESOLUTION * 256) {
clockSelectBits = _BV(CS32);
pwmPeriod = cycles / 256;
} else
if (cycles < TIMER3_RESOLUTION * 1024) {
clockSelectBits = _BV(CS32) | _BV(CS30);
pwmPeriod = cycles / 1024;
} else {
clockSelectBits = _BV(CS32) | _BV(CS30);
pwmPeriod = TIMER3_RESOLUTION - 1;
}
ICR3 = pwmPeriod;
TCCR3B = _BV(WGM33) | clockSelectBits;
}
//****************************
// Run Control
//****************************
void start() __attribute__((always_inline)) {
TCCR3B = 0;
TCNT3 = 0; // TODO: does this cause an undesired interrupt?
resume();
}
void stop() __attribute__((always_inline)) {
TCCR3B = _BV(WGM33);
}
void restart() __attribute__((always_inline)) {
start();
}
void resume() __attribute__((always_inline)) {
TCCR3B = _BV(WGM33) | clockSelectBits;
}
//****************************
// PWM outputs
//****************************
void setPwmDuty(char pin, unsigned int duty) __attribute__((always_inline)) {
unsigned long dutyCycle = pwmPeriod;
dutyCycle *= duty;
dutyCycle >>= 10;
if (pin == TIMER3_A_PIN) OCR3A = dutyCycle;
#ifdef TIMER3_B_PIN
else if (pin == TIMER3_B_PIN) OCR3B = dutyCycle;
#endif
#ifdef TIMER3_C_PIN
else if (pin == TIMER3_C_PIN) OCR3C = dutyCycle;
#endif
}
void pwm(char pin, unsigned int duty) __attribute__((always_inline)) {
if (pin == TIMER3_A_PIN) { pinMode(TIMER3_A_PIN, OUTPUT); TCCR3A |= _BV(COM3A1); }
#ifdef TIMER3_B_PIN
else if (pin == TIMER3_B_PIN) { pinMode(TIMER3_B_PIN, OUTPUT); TCCR3A |= _BV(COM3B1); }
#endif
#ifdef TIMER3_C_PIN
else if (pin == TIMER3_C_PIN) { pinMode(TIMER3_C_PIN, OUTPUT); TCCR3A |= _BV(COM3C1); }
#endif
setPwmDuty(pin, duty);
TCCR3B = _BV(WGM33) | clockSelectBits;
}
void pwm(char pin, unsigned int duty, unsigned long microseconds) __attribute__((always_inline)) {
if (microseconds > 0) setPeriod(microseconds);
pwm(pin, duty);
}
void disablePwm(char pin) __attribute__((always_inline)) {
if (pin == TIMER3_A_PIN) TCCR3A &= ~_BV(COM3A1);
#ifdef TIMER3_B_PIN
else if (pin == TIMER3_B_PIN) TCCR3A &= ~_BV(COM3B1);
#endif
#ifdef TIMER3_C_PIN
else if (pin == TIMER3_C_PIN) TCCR3A &= ~_BV(COM3C1);
#endif
}
//****************************
// Interrupt Function
//****************************
void attachInterrupt(void (*isr)()) __attribute__((always_inline)) {
isrCallback = isr;
TIMSK3 = _BV(TOIE3);
}
void attachInterrupt(void (*isr)(), unsigned long microseconds) __attribute__((always_inline)) {
if(microseconds > 0) setPeriod(microseconds);
attachInterrupt(isr);
}
void detachInterrupt() __attribute__((always_inline)) {
TIMSK3 = 0;
}
static void (*isrCallback)();
static void isrDefaultUnused();
private:
// properties
static unsigned short pwmPeriod;
static unsigned char clockSelectBits;
#elif defined(__arm__) && defined(TEENSYDUINO) && (defined(KINETISK) || defined(KINETISL))
#if defined(KINETISK)
#define F_TIMER F_BUS
#elif defined(KINETISL)
#define F_TIMER (F_PLL/2)
#endif
// Use only 15 bit resolution. From K66 reference manual, 45.5.7 page 1200:
// The CPWM pulse width (duty cycle) is determined by 2 x (CnV - CNTIN) and the
// period is determined by 2 x (MOD - CNTIN). See the following figure. MOD must be
// kept in the range of 0x0001 to 0x7FFF because values outside this range can produce
// ambiguous results.
#undef TIMER3_RESOLUTION
#define TIMER3_RESOLUTION 32768
public:
//****************************
// Configuration
//****************************
void initialize(unsigned long microseconds=1000000) __attribute__((always_inline)) {
setPeriod(microseconds);
}
void setPeriod(unsigned long microseconds) __attribute__((always_inline)) {
const unsigned long cycles = (F_TIMER / 2000000) * microseconds;
/*
// This code does not work properly in all cases :(
// https://github.com/PaulStoffregen/TimerOne/issues/17
if (cycles < TIMER3_RESOLUTION * 16) {
if (cycles < TIMER3_RESOLUTION * 4) {
if (cycles < TIMER3_RESOLUTION) {
clockSelectBits = 0;
pwmPeriod = cycles;
}else{
clockSelectBits = 1;
pwmPeriod = cycles >> 1;
}
}else{
if (cycles < TIMER3_RESOLUTION * 8) {
clockSelectBits = 3;
pwmPeriod = cycles >> 3;
}else{
clockSelectBits = 4;
pwmPeriod = cycles >> 4;
}
}
}else{
if (cycles > TIMER3_RESOLUTION * 64) {
if (cycles > TIMER3_RESOLUTION * 128) {
clockSelectBits = 7;
pwmPeriod = TIMER3_RESOLUTION - 1;
}else{
clockSelectBits = 7;
pwmPeriod = cycles >> 7;
}
}else{
if (cycles > TIMER3_RESOLUTION * 32) {
clockSelectBits = 6;
pwmPeriod = cycles >> 6;
}else{
clockSelectBits = 5;
pwmPeriod = cycles >> 5;
}
}
}
*/
if (cycles < TIMER3_RESOLUTION) {
clockSelectBits = 0;
pwmPeriod = cycles;
} else
if (cycles < TIMER3_RESOLUTION * 2) {
clockSelectBits = 1;
pwmPeriod = cycles >> 1;
} else
if (cycles < TIMER3_RESOLUTION * 4) {
clockSelectBits = 2;
pwmPeriod = cycles >> 2;
} else
if (cycles < TIMER3_RESOLUTION * 8) {
clockSelectBits = 3;
pwmPeriod = cycles >> 3;
} else
if (cycles < TIMER3_RESOLUTION * 16) {
clockSelectBits = 4;
pwmPeriod = cycles >> 4;
} else
if (cycles < TIMER3_RESOLUTION * 32) {
clockSelectBits = 5;
pwmPeriod = cycles >> 5;
} else
if (cycles < TIMER3_RESOLUTION * 64) {
clockSelectBits = 6;
pwmPeriod = cycles >> 6;
} else
if (cycles < TIMER3_RESOLUTION * 128) {
clockSelectBits = 7;
pwmPeriod = cycles >> 7;
} else {
clockSelectBits = 7;
pwmPeriod = TIMER3_RESOLUTION - 1;
}
uint32_t sc = FTM2_SC;
FTM2_SC = 0;
FTM2_MOD = pwmPeriod;
FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_CPWMS | clockSelectBits | (sc & FTM_SC_TOIE);
}
//****************************
// Run Control
//****************************
void start() __attribute__((always_inline)) {
stop();
FTM2_CNT = 0;
resume();
}
void stop() __attribute__((always_inline)) {
FTM2_SC = FTM2_SC & (FTM_SC_TOIE | FTM_SC_CPWMS | FTM_SC_PS(7));
}
void restart() __attribute__((always_inline)) {
start();
}
void resume() __attribute__((always_inline)) {
FTM2_SC = (FTM2_SC & (FTM_SC_TOIE | FTM_SC_PS(7))) | FTM_SC_CPWMS | FTM_SC_CLKS(1);
}
//****************************
// PWM outputs
//****************************
void setPwmDuty(char pin, unsigned int duty) __attribute__((always_inline)) {
unsigned long dutyCycle = pwmPeriod;
dutyCycle *= duty;
dutyCycle >>= 10;
if (pin == TIMER3_A_PIN) {
FTM2_C0V = dutyCycle;
} else if (pin == TIMER3_B_PIN) {
FTM2_C1V = dutyCycle;
}
}
void pwm(char pin, unsigned int duty) __attribute__((always_inline)) {
setPwmDuty(pin, duty);
if (pin == TIMER3_A_PIN) {
*portConfigRegister(TIMER3_A_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
} else if (pin == TIMER3_B_PIN) {
*portConfigRegister(TIMER3_B_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
}
}
void pwm(char pin, unsigned int duty, unsigned long microseconds) __attribute__((always_inline)) {
if (microseconds > 0) setPeriod(microseconds);
pwm(pin, duty);
}
void disablePwm(char pin) __attribute__((always_inline)) {
if (pin == TIMER3_A_PIN) {
*portConfigRegister(TIMER3_A_PIN) = 0;
} else if (pin == TIMER3_B_PIN) {
*portConfigRegister(TIMER3_B_PIN) = 0;
}
}
//****************************
// Interrupt Function
//****************************
void attachInterrupt(void (*isr)()) __attribute__((always_inline)) {
isrCallback = isr;
FTM2_SC |= FTM_SC_TOIE;
NVIC_ENABLE_IRQ(IRQ_FTM2);
}
void attachInterrupt(void (*isr)(), unsigned long microseconds) __attribute__((always_inline)) {
if(microseconds > 0) setPeriod(microseconds);
attachInterrupt(isr);
}
void detachInterrupt() __attribute__((always_inline)) {
FTM2_SC &= ~FTM_SC_TOIE;
NVIC_DISABLE_IRQ(IRQ_FTM2);
}
static void (*isrCallback)();
static void isrDefaultUnused();
private:
// properties
static unsigned short pwmPeriod;
static unsigned char clockSelectBits;
#undef F_TIMER
#elif defined(__arm__) && defined(TEENSYDUINO) && defined(__IMXRT1062__)
public:
//****************************
// Configuration
//****************************
void initialize(unsigned long microseconds=1000000) __attribute__((always_inline)) {
setPeriod(microseconds);
}
void setPeriod(unsigned long microseconds) __attribute__((always_inline)) {
uint32_t period = (float)F_BUS_ACTUAL * (float)microseconds * 0.0000005f;
uint32_t prescale = 0;
while (period > 32767) {
period = period >> 1;
if (++prescale > 7) {
prescale = 7; // when F_BUS is 150 MHz, longest
period = 32767; // period is 55922 us (~17.9 Hz)
break;
}
}
//Serial.printf("setPeriod, period=%u, prescale=%u\n", period, prescale);
FLEXPWM2_FCTRL0 |= FLEXPWM_FCTRL0_FLVL(4); // logic high = fault
FLEXPWM2_FSTS0 = 0x0008; // clear fault status
FLEXPWM2_MCTRL |= FLEXPWM_MCTRL_CLDOK(4);
FLEXPWM2_SM2CTRL2 = FLEXPWM_SMCTRL2_INDEP;
FLEXPWM2_SM2CTRL = FLEXPWM_SMCTRL_HALF | FLEXPWM_SMCTRL_PRSC(prescale);
FLEXPWM2_SM2INIT = -period;
FLEXPWM2_SM2VAL0 = 0;
FLEXPWM2_SM2VAL1 = period;
FLEXPWM2_SM2VAL2 = 0;
FLEXPWM2_SM2VAL3 = 0;
FLEXPWM2_SM2VAL4 = 0;
FLEXPWM2_SM2VAL5 = 0;
FLEXPWM2_MCTRL |= FLEXPWM_MCTRL_LDOK(4) | FLEXPWM_MCTRL_RUN(4);
pwmPeriod = period;
}
//****************************
// Run Control
//****************************
void start() __attribute__((always_inline)) {
stop();
// TODO: how to force counter back to zero?
resume();
}
void stop() __attribute__((always_inline)) {
FLEXPWM2_MCTRL &= ~FLEXPWM_MCTRL_RUN(4);
}
void restart() __attribute__((always_inline)) {
start();
}
void resume() __attribute__((always_inline)) {
FLEXPWM2_MCTRL |= FLEXPWM_MCTRL_RUN(4);
}
//****************************
// PWM outputs
//****************************
void setPwmDuty(char pin, unsigned int duty) __attribute__((always_inline)) {
if (duty > 1023) duty = 1023;
int dutyCycle = (pwmPeriod * duty) >> 10;
//Serial.printf("setPwmDuty, period=%u\n", dutyCycle);
if (pin == TIMER3_A_PIN) {
FLEXPWM2_MCTRL |= FLEXPWM_MCTRL_CLDOK(4);
FLEXPWM2_SM2VAL5 = dutyCycle;
FLEXPWM2_SM2VAL4 = -dutyCycle;
FLEXPWM2_MCTRL |= FLEXPWM_MCTRL_LDOK(4);
} else if (pin == TIMER3_B_PIN) {
FLEXPWM2_MCTRL |= FLEXPWM_MCTRL_CLDOK(4);
FLEXPWM2_SM2VAL3 = dutyCycle;
FLEXPWM2_SM2VAL2 = -dutyCycle;
FLEXPWM2_MCTRL |= FLEXPWM_MCTRL_LDOK(4);
}
}
void pwm(char pin, unsigned int duty) __attribute__((always_inline)) {
setPwmDuty(pin, duty);
if (pin == TIMER3_A_PIN) {
FLEXPWM2_OUTEN |= FLEXPWM_OUTEN_PWMB_EN(4);
IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_11 = 2; // pin 9 FLEXPWM2_PWM2_B
} else if (pin == TIMER3_B_PIN) {
FLEXPWM2_OUTEN |= FLEXPWM_OUTEN_PWMA_EN(4);
IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_10 = 2; // pin 6 FLEXPWM2_PWM2_A
}
}
void pwm(char pin, unsigned int duty, unsigned long microseconds) __attribute__((always_inline)) {
if (microseconds > 0) setPeriod(microseconds);
pwm(pin, duty);
}
void disablePwm(char pin) __attribute__((always_inline)) {
if (pin == TIMER3_A_PIN) {
IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_11 = 5; // pin 9 FLEXPWM2_PWM2_B
FLEXPWM2_OUTEN &= ~FLEXPWM_OUTEN_PWMB_EN(4);
} else if (pin == TIMER3_B_PIN) {
IOMUXC_SW_MUX_CTL_PAD_GPIO_B0_10 = 5; // pin 6 FLEXPWM2_PWM2_A
FLEXPWM2_OUTEN &= ~FLEXPWM_OUTEN_PWMA_EN(4);
}
}
//****************************
// Interrupt Function
//****************************
void attachInterrupt(void (*f)()) __attribute__((always_inline)) {
isrCallback = f;
attachInterruptVector(IRQ_FLEXPWM2_2, &isr);
FLEXPWM2_SM2STS = FLEXPWM_SMSTS_RF;
FLEXPWM2_SM2INTEN = FLEXPWM_SMINTEN_RIE;
NVIC_ENABLE_IRQ(IRQ_FLEXPWM2_2);
}
void attachInterrupt(void (*f)(), unsigned long microseconds) __attribute__((always_inline)) {
if(microseconds > 0) setPeriod(microseconds);
attachInterrupt(f);
}
void detachInterrupt() __attribute__((always_inline)) {
NVIC_DISABLE_IRQ(IRQ_FLEXPWM2_2);
FLEXPWM2_SM2INTEN = 0;
}
static void isr(void);
static void (*isrCallback)();
static void isrDefaultUnused();
private:
// properties
static unsigned short pwmPeriod;
static unsigned char clockSelectBits;
#endif
};
extern TimerThree Timer3;
#endif