-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsaccade_detectors.py
289 lines (234 loc) · 7.95 KB
/
saccade_detectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from __future__ import division
import numpy as np
import scipy.optimize, scipy.stats
import operator
def norm(a, b):
return np.sqrt(np.sum((a - b)**2, axis=1))
def mean_distance(a, b):
return norm(a, b).mean()
def erode_consecutive(idx):
return idx[:-1][np.diff(idx) > 1]
def reconstruct_pursuits(t, gaze, saccades):
# TODO: Make this fast
idx = np.unique([0] + list(saccades) + [len(gaze)])
#print saccades, idx
import matplotlib.pyplot as plt
result = np.empty(gaze.shape)
n = idx.shape[0]
for i in range(n-1):
slc = slice(idx[i], idx[i+1]+1)
my_t = t[slc]
#print len(my_t)
fit = np.array(map(lambda g: np.polyfit(my_t, g, 1), gaze[slc].T))
result[slc] = (fit[:,0]*my_t.reshape(-1, 1) + fit[:,1])
return result
def ivt(t, gaze, threshold=1000.0):
dt = np.diff(t)
gaze = np.array(gaze)
dists = np.sqrt(np.sum(np.diff(gaze, axis=0)**2, axis=1))
speeds = dists/dt
saccades = np.flatnonzero(speeds > threshold) + 1
return erode_consecutive(saccades)
def idt(t, gaze, threshold=10.0):
xmin = ymin = np.inf
xmax = ymax = -np.inf
saccades = []
for i, (x, y) in enumerate(gaze):
xmin = min(x, xmin)
xmax = max(x, xmax)
ymin = min(y, ymin)
ymax = max(y, ymax)
dispersion = (xmax - xmin) + (ymax - ymin)
if dispersion > threshold:
saccades.append(i)
xmin = ymin = np.inf
xmax = ymax = -np.inf
return np.array(saccades)
class SplitHypothesis(object):
@property
def total_lik(self):
return self.history_lik + self.segment_lik
def iocs(ts, gaze, split_rate=1.0/0.250, noise_std=1.0):
seg_normer = np.log(1.0/(noise_std**2*np.pi*2))
root_hypothesis = SplitHypothesis()
root_hypothesis.splits = []
root_hypothesis.history_lik = 0.0
root_hypothesis.segment_lik = seg_normer
root_hypothesis.n = 1
root_hypothesis.mx = gaze[0][0]
root_hypothesis.my = gaze[0][1]
root_hypothesis.ssx = 0.0
root_hypothesis.ssy = 0.0
lik_comparator = lambda hypo: -hypo.total_lik
# TODO: Verify this! There's something wrong
# either here or in the regression likelihood.
# The split likelihood seems to be too large.
split_lik = lambda dt: 2*np.log(1 - np.exp(-split_rate*dt))
#split_lik = lambda dt: -20.0 # Works quite nicely with this. :'(
prev_t = ts[0]
hypotheses = [root_hypothesis]
for i, (t, (x, y)) in enumerate(zip(ts, gaze)[1:], 1):
dt = t - prev_t
prev_t = t
winner = hypotheses[0]
new = SplitHypothesis()
my_split_lik = split_lik(dt)
new.history_lik = winner.total_lik + my_split_lik
new.segment_lik = seg_normer
new.n = 1
new.splits = winner.splits + [i]
new.mx = x
new.my = y
new.ssx = 0.0
new.ssy = 0.0
# The hypotheses that have their total_lik as
# less than the new-split-hypothesis can't ever win, because
# the fit is always better with a split.
# TODO: Proof that this is really correct and leaves minimal
# amount of hypotheses. And also for variable dt.
# TODO: The loglikelihood can actually be > 0 with very small
# stds!
new_total_lik = new.total_lik
for si in range(len(hypotheses)):
if hypotheses[si].total_lik < new_total_lik:
break
else:
si = None
hypotheses = hypotheses[:si]
for hypothesis in hypotheses:
hypothesis.n += 1
dx = x - hypothesis.mx
hypothesis.mx += dx/hypothesis.n
hypothesis.ssx += dx*(x-hypothesis.mx)
dy = y - hypothesis.my
hypothesis.my += dy/hypothesis.n
hypothesis.ssy += dy*(y-hypothesis.my)
# TODO: Verify this! Should be correct, but
# something weird is going on. Either this is
# too small or the split likelihood is too large
# or there's some kind of horrible bug somewhere.
# Or the logic behind the parameters doesn't work.
hypothesis.segment_lik = (hypothesis.n*seg_normer - (hypothesis.ssx+hypothesis.ssy)/(2*noise_std**2))
#print len(hypotheses)
hypotheses.append(new)
hypotheses.sort(key=lik_comparator)
#print "%s,%s"%(i, hypotheses[0].total_lik)
return hypotheses[0].splits
"""
#import matplotlib.pyplot as plt
for arg in sweep:
saccades = func(t, gaze, arg)
est = reconstruct_fixations(gaze, saccades)
error = mean_distance(est, pos)
#plt.cla()
#ax = plt.subplot(2,1,1)
#plt.plot(t, est.T[0], color='red')
#plt.plot(t, pos.T[0], color='green')
#plt.subplot(2,1,2, sharex=ax)
#plt.plot(t, norm(est, pos))
#print error
#plt.show()
plt.scatter(arg, -error)
plt.show()
"""
#def idt
# TODO! Iols is a lot more split-happy as IOCS. Probably due to not
# discounting the extra degree of freedom any way. Ie. with "real"
# parametrization we get nowhere close to optimum fit.
# The "splittiness" should probably be parametrized as eg. total variation anyway. And
# we should take into account the likelihood of "random slope" arising
# from the noise (perhaps something like a likelihood ratio?)
def iols(ts, gaze, split_rate=None, noise_std=np.array([1.0, 1.0])):
ndim = len(gaze[0])
nparam = 2
if split_rate is None:
# Log of Jeffrey's prior for linear regression with known
# standard error. http://www.jstor.org/stable/2290514
# (maybe, getting any information about practical Bayesian stuff
# is horrible)
#split_lik = lambda dt: ndim*np.log(1.0/noise_std**((nparam+2)/2))
#split_lik = lambda dt: np.log(1.0/noise_std**((nparam+2)/2)).sum()
# Akaike information criterion
#split_lik = lambda dt: 0.0
split_lik = lambda dt: -nparam*ndim
# Part bik criterion
# NOTE! Needs a different optimization criterion!
#split_lik = lambda dt: -0.5*ndim*nparam*np.log(2*np.pi)
else:
split_lik = lambda dt: ndim*np.log(1 - np.exp(-split_rate*dt))
# TODO: Handle the axes separately
seg_normer = np.log(1.0/(noise_std.prod()*np.sqrt(np.pi*2)**ndim))
def segment_logpdf(h):
if (h.n >= nparam):
residual_ss = h.pos_ss - h.co_ss**2/h.t_ss
else:
residual_ss = h.pos_ss
likelihoods = ((h.n)*np.log(1.0/(noise_std*np.sqrt(2*np.pi))) -
residual_ss/(2*noise_std**2))
# Correction for akaike
#c = nparam*(nparam + 1)/(h.n - nparam - 1)
# Add the missing BIC term
#likelihoods -= 0.5*(nparam*np.log(h.n))
return np.sum(likelihoods)
hypotheses = []
best_splits = []
best_lik = 0.0
# TODO! This calculates two different errors
# for the join points! At least figure out
# what this means for the total likelihood!
prev_t = ts[0]
prev_pos = gaze[0]
for i, (t, pos) in enumerate(zip(ts, gaze)[1:], 1):
dt = t - prev_t
new = SplitHypothesis()
new.history_lik = best_lik + split_lik(dt)
new.n = 1
new.splits = best_splits + [i-1]
new.pos_m = np.copy(prev_pos)
new.t_m = np.copy(prev_t)
new.pos_ss = 0.0
new.t_ss = 0.0
new.co_ss = 0.0
new.segment_lik = segment_logpdf(new)
prev_t = t
prev_pos = pos
new_total_lik = new.total_lik
hypotheses = [h for h in hypotheses if h.total_lik >= new_total_lik]
#for h in hypotheses:
# if h.total_lik < new_total_lik:
# h.cant_win = True
hypotheses.append(new)
for hypo in hypotheses:
hypo.n += 1
d_pos = pos - hypo.pos_m
# Calculate hypothesis position mean incrementally
hypo.pos_m += d_pos/hypo.n
# And incremental sum of squares
hypo.pos_ss += d_pos*(pos - hypo.pos_m)
# Above with s/pos/t/g
d_t = t - hypo.t_m
hypo.t_m += d_t/hypo.n
hypo.t_ss += d_t*(t - hypo.t_m)
# Calculate the regression SS incrementally
# (for both independent axes simultaneously)
hypo.co_ss += ((hypo.n-1)/hypo.n)*d_pos*d_t
hypo.segment_lik = segment_logpdf(hypo)
winner = max(hypotheses, key=lambda h: h.total_lik)
assert not hasattr(winner, 'cant_win'), winner.n
best_splits = winner.splits
best_lik = winner.total_lik
#print "\t"*np.argmax(liks)+"v"
#print "\t".join("%.1f"%f for f in liks)
#print len(hypotheses)
#winner = max(hypotheses, key=lambda h: h.total_lik)
#print i, winner.splits, winner.n
return winner.splits
def reconstruct_fixations(gaze, saccades):
gaze = np.array(gaze)
idx = np.unique([0] + list(saccades) + [len(gaze)])
new_gaze = np.empty(gaze.shape)
for i in range(len(idx)-1):
span = slice(idx[i], idx[i+1])
span_gaze = gaze[span]
new_gaze[span] = np.mean(span_gaze, axis=0)
return np.array(new_gaze)