forked from cathy-kim/Pelee-TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorNet.cpp
executable file
·245 lines (211 loc) · 8.57 KB
/
tensorNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include <algorithm>
#include "common.h"
#include "tensorNet.h"
#include <sstream>
#include <fstream>
using namespace nvinfer1;
bool TensorNet::LoadNetwork(const char* prototxt_path,
const char* model_path,
const char* input_blob,
const std::vector<std::string>& output_blobs,
uint32_t maxBatchSize)
{
//assert( !prototxt_path || !model_path );
// attempt to load network from cache before profiling with tensorRT
std::stringstream gieModelStdStream;
gieModelStdStream.seekg(0, gieModelStdStream.beg);
char cache_path[512];
sprintf(cache_path, "%s.%u.tensorcache", model_path, maxBatchSize);
printf( "attempting to open cache file %s\n", cache_path);
std::ifstream cache( cache_path );
if( !cache )
{
printf( "cache file not found, profiling network model\n");
// if( !caffeToTRTModel(prototxt_path, model_path, output_blobs, maxBatchSize, gieModelStdStream) )
// {
// printf("failed to load %s\n", model_path);
// return 0;
// }
bool load = caffeToTRTModel(prototxt_path, model_path, output_blobs, maxBatchSize, gieModelStdStream);
if(!load){
printf("failed to load %s\n", model_path);
return 0;
}else{
printf( "network profiling complete, writing cache to %s\n", cache_path);
}
std::ofstream outFile;
outFile.open(cache_path);
outFile << gieModelStdStream.rdbuf();
outFile.close();
gieModelStdStream.seekg(0, gieModelStdStream.beg);
printf( "completed writing cache to %s\n", cache_path);
infer = createInferRuntime(gLogger);
/**
* deserializeCudaEngine can be used to load the serialized CuDA Engine (Plan file).
* */
std::cout << "createInference" << std::endl;
engine = infer->deserializeCudaEngine(gieModelStream->data(), gieModelStream->size(), &pluginFactory);
std::cout << "createInference_end" << std::endl;
printf("Bindings after deserializing:\n");
for (int bi = 0; bi < engine->getNbBindings(); bi++) {
if (engine->bindingIsInput(bi) == true) printf("Binding %d (%s): Input.\n", bi, engine->getBindingName(bi));
else printf("Binding %d (%s): Output.\n", bi, engine->getBindingName(bi));
}
}
else
{
std::cout << "loading network profile from cache..." << std::endl;
gieModelStdStream << cache.rdbuf();
cache.close();
gieModelStdStream.seekg(0, std::ios::end);
const int modelSize = gieModelStdStream.tellg();
gieModelStdStream.seekg(0, std::ios::beg);
void* modelMem = malloc(modelSize);
gieModelStdStream.read((char*)modelMem, modelSize);
infer = createInferRuntime(gLogger);
std::cout << "createInference" << std::endl;
engine = infer->deserializeCudaEngine(modelMem, modelSize, &pluginFactory);
//free(modelMem);
std::cout << "createInference_end" << std::endl;
printf("Bindings after deserializing:\n");
for (int bi = 0; bi < engine->getNbBindings(); bi++) {
if (engine->bindingIsInput(bi) == true) printf("Binding %d (%s): Input.\n", bi, engine->getBindingName(bi));
else printf("Binding %d (%s): Output.\n", bi, engine->getBindingName(bi));
}
}
}
bool TensorNet::caffeToTRTModel(const char* deployFile,
const char* modelFile,
const std::vector<std::string>& outputs,
unsigned int maxBatchSize,
std::ostream& gieModelStdStream)
{
IBuilder* builder = createInferBuilder(gLogger);
INetworkDefinition* network = builder->createNetwork();
// builder->setMinFindIterations(3); // allow time for TX1 GPU to spin up
// builder->setAverageFindIterations(2);
ICaffeParser* parser = createCaffeParser();
parser->setPluginFactory(&pluginFactory);
//builder->setFp16Mode(true);
bool useFp16 = false;
//builder->platformHasFastFp16();
//@Seojin to fp16
//useFp16 = true;
DataType modelDataType = useFp16 ? DataType::kHALF : DataType::kFLOAT;
//modelDataType = DataType::kHALF;
// std::cout << deployFile <<std::endl;
// std::cout << modelFile <<std::endl;
//std::cout << useFp16 <<std::endl;
const IBlobNameToTensor* blobNameToTensor = parser->parse(deployFile,
modelFile,
*network,
modelDataType);
assert(blobNameToTensor != nullptr);
for (auto& s : outputs) network->markOutput(*blobNameToTensor->find(s.c_str()));
builder->setMaxBatchSize(maxBatchSize);
builder->setMaxWorkspaceSize(16 << 20);
if(useFp16)
{
builder->setHalf2Mode(true);
std::cout <<"Use FP16 Mode:" << useFp16 <<std::endl;
}
ICudaEngine* engine = builder->buildCudaEngine( *network );
assert(engine);
// we don't need the network any more, and we can destroy the parser
network->destroy();
parser->destroy();
// serialize the engine, then close everything down
gieModelStream = engine->serialize();
if(!gieModelStream)
{
std::cout << "failed to serialize CUDA engine" << std::endl;
return false;
}
gieModelStdStream.write((const char*)gieModelStream->data(),gieModelStream->size());
engine->destroy();
builder->destroy();
pluginFactory.destroyPlugin();
shutdownProtobufLibrary();
std::cout << "caffeToTRTModel Finished" << std::endl;
return true;
}
/**
* This function de-serializes the cuda engine.
* */
void TensorNet::createInference()
{
infer = createInferRuntime(gLogger);
/**
* deserializeCudaEngine can be used to load the serialized CuDA Engine (Plan file).
* */
engine = infer->deserializeCudaEngine(gieModelStream->data(), gieModelStream->size(), &pluginFactory);
printf("Bindings after deserializing:\n");
for (int bi = 0; bi < engine->getNbBindings(); bi++) {
if (engine->bindingIsInput(bi) == true) printf("Binding %d (%s): Input.\n", bi, engine->getBindingName(bi));
else printf("Binding %d (%s): Output.\n", bi, engine->getBindingName(bi));
}
}
void TensorNet::imageInference(void** buffers, int nbBuffer, int batchSize)
{
//std::cout << "Came into the image inference method here. "<<std::endl;
assert( engine->getNbBindings()==nbBuffer);
IExecutionContext* context = engine->createExecutionContext();
context->setProfiler(&gProfiler);
context->execute(batchSize, buffers);
context->destroy();
}
void TensorNet::timeInference(int iteration, int batchSize)
{
int inputIdx = 0;
size_t inputSize = 0;
void* buffers[engine->getNbBindings()];
for (int b = 0; b < engine->getNbBindings(); b++)
{
DimsCHW dims = static_cast<DimsCHW&&>(engine->getBindingDimensions(b));
size_t size = batchSize * dims.c() * dims.h() * dims.w() * sizeof(float);
CHECK(cudaMalloc(&buffers[b], size));
if(engine->bindingIsInput(b) == true)
{
inputIdx = b;
inputSize = size;
}
}
IExecutionContext* context = engine->createExecutionContext();
context->setProfiler(&gProfiler);
CHECK(cudaMemset(buffers[inputIdx], 0, inputSize));
for (int i = 0; i < iteration;i++) context->execute(batchSize, buffers);
context->destroy();
for (int b = 0; b < engine->getNbBindings(); b++) CHECK(cudaFree(buffers[b]));
}
DimsCHW TensorNet::getTensorDims(const char* name)
{
for (int b = 0; b < engine->getNbBindings(); b++) {
if( !strcmp( name, engine->getBindingName(b)) )
return static_cast<DimsCHW&&>(engine->getBindingDimensions(b));
}
return DimsCHW{0,0,0};
}
//void TensorNet::getLayerOutput(void** buffers, int nbBuffer, int batchSize)
//{
// /* *
// * @TODO: Get the layer with name name in the network
// * */
// std::cout << "Came into the image inference method here. "<<std::endl;
// assert( engine->getNbBindings()==nbBuffer);
// IExecutionContext* context = engine->createExecutionContext();
// context->setProfiler(&gProfiler);
// context->execute( batchSize , buffers);
//
// context->destroy();
//
//}
void TensorNet::printTimes(int iteration)
{
gProfiler.printLayerTimes(iteration);
}
void TensorNet::destroy()
{
pluginFactory.destroyPlugin();
engine->destroy();
infer->destroy();
}