forked from cathy-kim/Pelee-TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.cpp
executable file
·536 lines (493 loc) · 22.7 KB
/
common.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#include "common.h"
std::string locateFile(const std::string& input, const std::vector<std::string> & directories)
{
std::string file;
const int MAX_DEPTH{10};
bool found{false};
for (auto &dir : directories)
{
file = dir + input;
std::cout << file << std::endl;
for (int i = 0; i < MAX_DEPTH && !found; i++)
{
std::ifstream checkFile(file);
found = checkFile.is_open();
if (found) break;
file = "../" + file;
}
if (found) break;
file.clear();
}
std::cout << file << std::endl;
assert(!file.empty() && "Could not find a file due to it not existing in the data directory.");
return file;
}
void readPGMFile(const std::string& fileName, uint8_t *buffer, int inH, int inW)
{
std::ifstream infile(fileName, std::ifstream::binary);
assert(infile.is_open() && "Attempting to read from a file that is not open.");
std::string magic, h, w, max;
infile >> magic >> h >> w >> max;
infile.seekg(1, infile.cur);
infile.read(reinterpret_cast<char*>(buffer), inH*inW);
}
/*********************************/
/* Updated date: 2018.3.7
/*This is my own implementation of the detectout layer code, because I met a mistake with the detectout api of
/*tensorrt3.0 a few months ago. You can use the detectout api of tensorrt3.0 correctly by adding an extra output
/*in the deploy prototxt file. Please refer to my deploy prototxt.
/********************************/
// Retrieve all location predictions.
void GetLocPredictions(const float* loc_data,
const int num_preds_per_class, const int num_loc_classes,
std::vector<std::vector<float> >* loc_preds) {
for (int p = 0; p < num_preds_per_class; ++p) {
int start_idx = p * num_loc_classes * 4;
vector<float> labelbbox;
for (int c = 0; c < num_loc_classes; ++c) {
labelbbox.push_back(loc_data[start_idx + c * 4]);
labelbbox.push_back(loc_data[start_idx + c * 4 + 1]);
labelbbox.push_back(loc_data[start_idx + c * 4 + 2]);
labelbbox.push_back(loc_data[start_idx + c * 4 + 3]);
loc_preds->push_back(labelbbox);
}
}
}
// Retrieve all confidences.
void GetConfidenceScores(const float* conf_data,
const int num_preds_per_class, const int num_classes,
vector<vector<float> >* conf_preds) {
for (int p = 0; p < num_preds_per_class; ++p) {
int start_idx = p * num_classes;
vector<float> conf_classes;
for (int c = 0; c < num_classes; ++c) {
conf_classes.push_back(conf_data[start_idx + c]);
}
conf_preds->push_back(conf_classes);
}
}
// Retrieve all prior bboxes. bboxes and variances
void GetPriorBBoxes(const float* prior_data, const int num_priors,
vector<vector<float> >* prior_bboxes,
vector<vector<float> >* prior_variances) {
for (int i = 0; i < num_priors; ++i) {
int start_idx = i * 4;
vector<float> prior_bbox;
prior_bbox.push_back(prior_data[start_idx]);
prior_bbox.push_back(prior_data[start_idx + 1]);
prior_bbox.push_back(prior_data[start_idx + 2]);
prior_bbox.push_back(prior_data[start_idx + 3]);
prior_bboxes->push_back(prior_bbox);
}
for (int i = 0; i < num_priors; ++i) {
int start_idx = (num_priors + i) * 4;
vector<float> prior_variance;
vector<float> var;
for (int j = 0; j < 4; ++j) {
prior_variance.push_back(prior_data[start_idx + j]);
}
prior_variances->push_back(prior_variance);
}
}
/* code_type: 0 = CORNER; 1 = CENTER_SIZE; 2 = CORNER_SIZE
*
*/
void DecodeBBox(
const vector<float>& prior_bbox, const vector<float>& prior_variance,
const int code_type, const bool variance_encoded_in_target,
const bool clip_bbox, const vector<float>& bbox,
vector<float>* decode_bbox) {
if (0 == code_type) {
if (variance_encoded_in_target) {
// variance is encoded in target, we simply need to add the offset
// predictions.
decode_bbox->push_back(prior_bbox[0] + bbox[0]);
decode_bbox->push_back(prior_bbox[1] + bbox[1]);
decode_bbox->push_back(prior_bbox[2] + bbox[2]);
decode_bbox->push_back(prior_bbox[3] + bbox[3]);
} else {
// variance is encoded in bbox, we need to scale the offset accordingly.
decode_bbox->push_back(
prior_bbox[0]+ prior_variance[0] * bbox[0]);
decode_bbox->push_back(
prior_bbox[1] + prior_variance[1] * bbox[1]);
decode_bbox->push_back(
prior_bbox[2] + prior_variance[2] * bbox[2]);
decode_bbox->push_back(
prior_bbox[3] + prior_variance[3] * bbox[3]);
}
} else if (1 == code_type) {
float prior_width = prior_bbox[2] - prior_bbox[0];
//CHECK_GT(prior_width, 0);
float prior_height = prior_bbox[3] - prior_bbox[1];
//CHECK_GT(prior_height, 0);
float prior_center_x = (prior_bbox[0] + prior_bbox[2]) / 2.;
float prior_center_y = (prior_bbox[1] + prior_bbox[3]) / 2.;
float decode_bbox_center_x, decode_bbox_center_y;
float decode_bbox_width, decode_bbox_height;
if (variance_encoded_in_target) {
// variance is encoded in target, we simply need to retore the offset
// predictions.
decode_bbox_center_x = bbox[0] * prior_width + prior_center_x;
decode_bbox_center_y = bbox[1] * prior_height + prior_center_y;
decode_bbox_width = exp(bbox[2]) * prior_width;
decode_bbox_height = exp(bbox[3]) * prior_height;
} else {
// variance is encoded in bbox, we need to scale the offset accordingly.
decode_bbox_center_x =
prior_variance[0] * bbox[0] * prior_width + prior_center_x;
decode_bbox_center_y =
prior_variance[1] * bbox[1] * prior_height + prior_center_y;
decode_bbox_width =
exp(prior_variance[2] * bbox[2]) * prior_width;
decode_bbox_height =
exp(prior_variance[3] * bbox[3]) * prior_height;
}
decode_bbox->push_back(decode_bbox_center_x - decode_bbox_width / 2.);
decode_bbox->push_back(decode_bbox_center_y - decode_bbox_height / 2.);
decode_bbox->push_back(decode_bbox_center_x + decode_bbox_width / 2.);
decode_bbox->push_back(decode_bbox_center_y + decode_bbox_height / 2.);
} else if (2 == code_type) {
float prior_width = prior_bbox[2] - prior_bbox[0];
//CHECK_GT(prior_width, 0);
float prior_height = prior_bbox[3] - prior_bbox[1];
//CHECK_GT(prior_height, 0);
if (variance_encoded_in_target) {
// variance is encoded in target, we simply need to add the offset
// predictions.
decode_bbox->push_back(prior_bbox[0] + bbox[0] * prior_width);
decode_bbox->push_back(prior_bbox[1] + bbox[1] * prior_height);
decode_bbox->push_back(prior_bbox[2] + bbox[2] * prior_width);
decode_bbox->push_back(prior_bbox[3] + bbox[3] * prior_height);
} else {
// variance is encoded in bbox, we need to scale the offset accordingly.
decode_bbox->push_back(
prior_bbox[0] + prior_variance[0] * bbox[0] * prior_width);
decode_bbox->push_back(
prior_bbox[1] + prior_variance[1] * bbox[1] * prior_height);
decode_bbox->push_back(
prior_bbox[2] + prior_variance[2] * bbox[2] * prior_width);
decode_bbox->push_back(
prior_bbox[3] + prior_variance[3] * bbox[3] * prior_height);
}
} else {
std::cout<< "Unknown LocLossType."<<std::endl;
}
//clip_bbox = false, 所以没实现
/*if (clip_bbox) {
ClipBBox(*decode_bbox, decode_bbox);
}*/
}
void DecodeBBoxes(
const vector<vector<float> >& prior_bboxes,
const vector<vector<float> >& prior_variances,
const int code_type, const bool variance_encoded_in_target,
const bool clip_bbox, const vector<vector<float> >& bboxes,
vector<vector<float> >* decode_bboxes) {
//CHECK_EQ(prior_bboxes.size(), prior_variances.size());
//CHECK_EQ(prior_bboxes.size(), bboxes.size());
int num_bboxes = prior_bboxes.size();
for (int i = 0; i < num_bboxes; ++i) {
vector<float> decode_bbox;
DecodeBBox(prior_bboxes[i], prior_variances[i], code_type,
variance_encoded_in_target, clip_bbox, bboxes[i], &decode_bbox);
decode_bboxes->push_back(decode_bbox);
}
}
//
void ConfData(const float* data, const int num_classes, const int num_prior, float* new_data) {
int idx = 0;
for (int c = 0; c < num_classes; ++c) {
for (int p = 0; p < num_prior; ++p) {
new_data[idx] = data[p*num_classes + c];
idx++;
}
}
//softmax
for (int p = 0; p < num_prior; ++p) {
int sum = 0;
float _max = new_data[p];//new_data[0*num_prior + p]
for (int c = 1; c < num_classes; ++c) {
_max = std::max(_max, new_data[c*num_prior + p]);
}
for (int c = 0; c < num_classes; ++c) {
sum += exp(new_data[c*num_prior + p]-_max);
}
for (int j = 0; j < num_classes; ++j) {
new_data[j*num_prior + p] = exp(new_data[j*num_prior + p]-_max)/sum;
}
}
}
template <typename Dtype>
void DecodeBBoxes_2(const Dtype* loc_data, const Dtype* prior_data,
const int code_type, const bool variance_encoded_in_target,
const int num_priors, const bool share_location,
const int num_loc_classes, const int background_label_id,
const bool clip_bbox, Dtype* bbox_data) {
if(code_type == 0){
for(int p = 0; p < num_priors; p++) {
if (variance_encoded_in_target) {
for (int i = 0; i < 4; i++) {
bbox_data[4 * p + i] = prior_data[4 * p + i] + loc_data[4 * p + i];
}
} else {
for (int i = 0; i < 4; i++) {
bbox_data[4 * p + i] = prior_data[4 * p + i] + prior_data[4 * num_priors + 4 * p + i] + loc_data[4 * p + i];
}
}
}
}else if(code_type == 1){
for(int p = 0; p < num_priors; p++) {
float prior_width = prior_data[4 * p + 2] - prior_data[4 * p + 0];
float prior_height = prior_data[4 * p + 3] - prior_data[4 * p + 1];
float prior_center_x = (prior_data[4 * p + 0] + prior_data[4 * p + 2]) / 2.;
float prior_center_y = (prior_data[4 * p + 1] + prior_data[4 * p + 3]) / 2.;
float decode_bbox_center_x, decode_bbox_center_y;
float decode_bbox_width, decode_bbox_height;;
if (variance_encoded_in_target) {
decode_bbox_center_x = loc_data[4 * p + 0] * prior_width + prior_center_x;
decode_bbox_center_y = loc_data[4 * p + 1] * prior_height + prior_center_y;
decode_bbox_width = exp(loc_data[4 * p + 2]) * prior_width;
decode_bbox_height = exp(loc_data[4 * p + 3]) * prior_height;
}else{
decode_bbox_center_x = prior_data[4 * num_priors + 4 * p + 0] * loc_data[4 * p + 0] * prior_width + prior_center_x;
decode_bbox_center_y = prior_data[4 * num_priors + 4 * p + 1] * loc_data[4 * p + 1] * prior_height + prior_center_y;
decode_bbox_width = exp(prior_data[4 * num_priors + 4 * p + 2] * loc_data[4 * p + 2]) * prior_width;
decode_bbox_height = exp(prior_data[4 * num_priors + 4 * p + 3] * loc_data[4 * p + 3]) * prior_height;
}
bbox_data[4 * p + 0] = (decode_bbox_center_x - decode_bbox_width / 2.);
bbox_data[4 * p + 1] = (decode_bbox_center_y - decode_bbox_height / 2.);
bbox_data[4 * p + 2] = (decode_bbox_center_x + decode_bbox_width / 2.);
bbox_data[4 * p + 3] = (decode_bbox_center_y + decode_bbox_height / 2.);
}
}else if(code_type == 2){
for(int p = 0; p < num_priors; p++) {
float prior_width = prior_data[4 * p + 2] - prior_data[4 * p + 0];
float prior_height = prior_data[4 * p + 3] - prior_data[4 * p + 1];
if (variance_encoded_in_target) {
bbox_data[4 * p + 0] = prior_data[4 * p + 0] + loc_data[4 * p + 0] * prior_width;
bbox_data[4 * p + 1] = prior_data[4 * p + 1] + loc_data[4 * p + 1] * prior_height;
bbox_data[4 * p + 2] = exp(prior_data[4 * p + 2]) + loc_data[4 * p + 2] * prior_width;
bbox_data[4 * p + 3] = exp(prior_data[4 * p + 3]) + loc_data[4 * p + 3] * prior_height;
}else {
bbox_data[4 * p + 0] = prior_data[4 * p + 0] +
prior_data[4 * num_priors + 4 * p + 0] * loc_data[4 * p + 0] * prior_width;
bbox_data[4 * p + 1] = prior_data[4 * p + 1] +
prior_data[4 * num_priors + 4 * p + 1] * loc_data[4 * p + 1] * prior_height;
bbox_data[4 * p + 2] = prior_data[4 * p + 2] +
prior_data[4 * num_priors + 4 * p + 2] * loc_data[4 * p + 2] * prior_width;
bbox_data[4 * p + 3] = prior_data[4 * p + 3] +
prior_data[4 * num_priors + 4 * p + 3] * loc_data[4 * p + 3] * prior_height;
}
}
}else{
std::cout << "Unknown LocLossType." << std::endl;
}
}
template <typename Dtype>
Dtype BBoxSize(const Dtype* bbox, const bool normalized = true) {
if (bbox[2] < bbox[0] || bbox[3] < bbox[1]) {
// If bbox is invalid (e.g. xmax < xmin or ymax < ymin), return 0.
return Dtype(0.);
} else {
const Dtype width = bbox[2] - bbox[0];
const Dtype height = bbox[3] - bbox[1];
if (normalized) {
return width * height;
} else {
// If bbox is not within range [0, 1].
return (width + 1) * (height + 1);
}
}
}
template <typename Dtype>
Dtype JaccardOverlap(const Dtype* bbox1, const Dtype* bbox2) {
if (bbox2[0] > bbox1[2] || bbox2[2] < bbox1[0] ||
bbox2[1] > bbox1[3] || bbox2[3] < bbox1[1]) {
return Dtype(0.);
} else {
const Dtype inter_xmin = std::max(bbox1[0], bbox2[0]);
const Dtype inter_ymin = std::max(bbox1[1], bbox2[1]);
const Dtype inter_xmax = std::min(bbox1[2], bbox2[2]);
const Dtype inter_ymax = std::min(bbox1[3], bbox2[3]);
const Dtype inter_width = inter_xmax - inter_xmin;
const Dtype inter_height = inter_ymax - inter_ymin;
const Dtype inter_size = inter_width * inter_height;
const Dtype bbox1_size = BBoxSize(bbox1);
const Dtype bbox2_size = BBoxSize(bbox2);
return inter_size / (bbox1_size + bbox2_size - inter_size);
}
}
template <typename T>
bool SortScorePairDescend(const pair<float, T>& pair1,
const pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
template <typename Dtype>
void GetMaxScoreIndex(const Dtype* scores, const int num, const float threshold,
const int top_k, vector<pair<Dtype, int> >* score_index_vec) {
// Generate index score pairs.
for (int i = 0; i < num; ++i) {
if (scores[i] > threshold) {
score_index_vec->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::sort(score_index_vec->begin(), score_index_vec->end(),
SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < score_index_vec->size()) {
score_index_vec->resize(top_k);
}
}
template <typename Dtype>
void ApplyNMSFast(const Dtype* bboxes, const Dtype* scores, const int num,
const float score_threshold, const float nms_threshold,
const float eta, const int top_k, vector<int>* indices) {
// Get top_k scores (with corresponding indices).
vector<pair<Dtype, int> > score_index_vec;
//float n1 = cv::getTickCount();
GetMaxScoreIndex(scores, num, score_threshold, top_k, &score_index_vec);
// n1 = (cv::getTickCount()-n1) / cv::getTickFrequency();
//printf("======n==1 Forward_DetectionOutputLayer time is %f \n", n1);
// Do nms.
float adaptive_threshold = nms_threshold;
indices->clear();
//float n2 = cv::getTickCount();
std::cout<<"======n==n" <<score_index_vec.size()<<std::endl;
while (score_index_vec.size() != 0) {
const int idx = score_index_vec.front().second;
bool keep = true;
for (int k = 0; k < indices->size(); ++k) {
if (keep) {
const int kept_idx = (*indices)[k];
float overlap = JaccardOverlap(bboxes + idx * 4, bboxes + kept_idx * 4);
keep = overlap <= adaptive_threshold;
} else {
break;
}
}
if (keep) {
indices->push_back(idx);
}
score_index_vec.erase(score_index_vec.begin());
if (keep && eta < 1 && adaptive_threshold > 0.5) {
adaptive_threshold *= eta;
}
}
//n2 = (cv::getTickCount()-n2) / cv::getTickFrequency();
//printf("======n==2 Forward_DetectionOutputLayer time is %f \n", n2);
}
void Forward_DetectionOutputLayer(float* loc_data, float* conf_data, float* prior_data, int num_priors_, int num_classes_, vector<vector<float> >* detecions) {
// Retrieve all location predictions.
/*vector<vector<float>> all_loc_preds;
GetLocPredictions(loc_data, num_priors_, num_loc_classes_, &all_loc_preds);
// Retrieve all confidences.
vector <vector<float>> all_conf_scores;
GetConfidenceScores(conf_data, num_priors_, num_classes_,
&all_conf_scores);
// Retrieve all prior bboxes.
vector<vector<float>> prior_bboxes;
vector<vector<float>> prior_variances;
GetPriorBBoxes(prior_data, num_priors_, &prior_bboxes, &prior_variances);
// Decode all loc predictions to bboxes.
vector<vector<float>> all_decode_bboxes;
//const bool clip_bbox = false;
DecodeBBoxes(prior_bboxes, prior_variances, code_type_,
variance_encoded_in_target_, clip_bbox, all_loc_preds,
&all_decode_bboxes);*/
int num_kept = 0;
vector<map<int, vector<int> > > all_indices;
map<int , vector<int>> indices;
int num_det = 0;
const int conf_idx = num_classes_ * num_priors_;
const bool share_location_ = true;
const int num_loc_classes = 1;
int background_label_id_ = 0;
float confidence_threshold_ = 0.1;
float nms_threshold_ = 0.45;
float eta_ = 1.0;//默认1.0
int top_k_ = 400;
int keep_top_k_ = 200;
const int code_type = 1;//center
const bool variance_encoded_in_target = false;//default
const bool clip_bbox = false;
float* decode_bboxes = new float[4 * num_priors_];
float t = cv::getTickCount();
DecodeBBoxes_2<float>(loc_data, prior_data, code_type, variance_encoded_in_target, num_priors_, share_location_, num_loc_classes,background_label_id_, clip_bbox, decode_bboxes);
t = (cv::getTickCount()-t) / cv::getTickFrequency();
printf("======1 Forward_DetectionOutputLayer time is %f \n", t);
float* new_conf_data = new float[num_priors_ * num_classes_];
float t1 = cv::getTickCount();
ConfData(conf_data, num_classes_, num_priors_, new_conf_data);
t1 = (cv::getTickCount()-t1) / cv::getTickFrequency();
printf("======2 Forward_DetectionOutputLayer time is %f \n", t1);
float t2 = cv::getTickCount();
for(int c = 0; c < num_classes_; c++){
if(c == background_label_id_){
continue;
}
float* cur_conf_data = new_conf_data + c * num_priors_;
//float* cur_bbox_data = all_decode_bboxes
float tt = cv::getTickCount();
ApplyNMSFast<float>(decode_bboxes, cur_conf_data, num_priors_,
confidence_threshold_, nms_threshold_, eta_, top_k_, &(indices[c]));
tt = (cv::getTickCount()-tt) / cv::getTickFrequency();
std::cout<<"===nms==="<<c<<"==nms=="<<std::endl;
printf("======nms Forward_DetectionOutputLayer time is %f \n", tt);
num_det += indices[c].size();
}
t2 = (cv::getTickCount()-t2) / cv::getTickFrequency();
printf("======3 Forward_DetectionOutputLayer time is %f \n", t2);
float t3 = cv::getTickCount();
if(keep_top_k_ > -1 && num_det > keep_top_k_){
vector<pair<float, pair<int, int> > > score_index_pairs;
for(map<int, vector<int> >::iterator it = indices.begin(); it != indices.end(); ++it){
int label = it->first;
const vector<int>& label_indices = it->second;
for(int j = 0; j < label_indices.size(); ++j){
int idx = label_indices[j];
float score = new_conf_data[label * num_priors_ + idx];
score_index_pairs.push_back(std::make_pair(score, std::make_pair(label, idx)));
}
}
// Keep top k results per image.
std::sort(score_index_pairs.begin(), score_index_pairs.end(), SortScorePairDescend<pair<int, int> >);
score_index_pairs.resize(keep_top_k_);
// Store the new indices.
map<int, vector<int> > new_indices;
for(int j = 0; j < score_index_pairs.size(); ++j){
int label = score_index_pairs[j].second.first;
int idx = score_index_pairs[j].second.second;
new_indices[label].push_back(idx);
}
all_indices.push_back(new_indices);
num_kept += keep_top_k_;
}else{
all_indices.push_back(indices);
num_kept += num_det;
}
if(num_kept == 0){
printf("Couldn't find any detections");
}else{
for(map<int, vector<int> >::iterator it = all_indices[0].begin(); it != all_indices[0].end(); ++it){
int label = it->first;
vector<int>& _indices = it->second;
const float* _cur_conf_data = new_conf_data + label * num_priors_;
for(int j = 0; j < _indices.size(); ++j){
int idx = _indices[j];
vector<float> detect;
for(int k = 0; k < 4; ++k){
detect.push_back(decode_bboxes[idx * 4 + k]);
}
detect.push_back(_cur_conf_data[idx]);
detect.push_back(label);
detecions->push_back(detect);
}
}
}
t3 = (cv::getTickCount()-t3) / cv::getTickFrequency();
printf("======4 Forward_DetectionOutputLayer time is %f \n", t3);
delete[] decode_bboxes;
delete[] new_conf_data;
}