forked from jinyu121/DW2TF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
112 lines (91 loc) · 4.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from argparse import ArgumentParser
import os
import tensorflow as tf
from util.cfg_layer import get_cfg_layer
from util.reader import WeightsReader, CFGReader
def parse_net(num_layers, cfg, weights, training=False, const_inits=True, verbose=True):
net = None
counters = {}
stack = []
cfg_walker = CFGReader(cfg)
weights_walker = WeightsReader(weights)
output_index = []
num_layers = int(num_layers)
for ith, layer in enumerate(cfg_walker):
if ith > num_layers and num_layers > 0:
break
layer_name = layer['name']
counters.setdefault(layer_name, 0)
counters[layer_name] += 1
scope = "{}{}{}".format(args.prefix, layer['name'], counters[layer_name])
net = get_cfg_layer(net, layer_name, layer, weights_walker, stack, output_index, scope,
training=training, const_inits=const_inits, verbose=verbose)
stack.append(net)
if verbose:
print(ith, net)
if verbose:
for ind in output_index:
print("=> Output layer: ", stack[ind])
def main(args):
ckpt_path = os.path.join(args.output, os.path.splitext(os.path.split(args.cfg)[-1])[0] + ".ckpt")
pb_path = os.path.join(args.output, os.path.splitext(os.path.split(args.cfg)[-1])[0] + ".pb")
# ----------------------------------------------------------
# Save temporary .ckpt from graph containing pre-trained
# weights as const initializers. This is not portable as
# graph.pb or graph.meta is huge (contains weights).
# ----------------------------------------------------------
tf.reset_default_graph()
parse_net(args.layers, args.cfg, args.weights, args.training)
graph = tf.get_default_graph()
saver = tf.train.Saver(tf.global_variables())
with tf.Session(graph=graph) as sess:
sess.run(tf.global_variables_initializer())
saver.save(sess, ckpt_path, write_meta_graph=False)
# ----------------------------------------------------------
# Save .pb, .meta and final .ckpt by restoring weights
# from previous .ckpt into the new (compact) graph.
# ----------------------------------------------------------
tf.reset_default_graph()
parse_net(args.layers, args.cfg, args.weights, args.training, const_inits=False, verbose=False)
graph = tf.get_default_graph()
with tf.gfile.GFile(pb_path, 'wb') as f:
f.write(graph.as_graph_def(add_shapes=True).SerializeToString())
print("Saved .pb to '{}'".format(pb_path))
with tf.Session(graph=graph) as sess:
# Load weights (variables) from earlier .ckpt before saving out
var_list = {}
reader = tf.train.NewCheckpointReader(ckpt_path)
for key in reader.get_variable_to_shape_map():
# Look for all variables in ckpt that are used by the graph
try:
tensor = graph.get_tensor_by_name(key + ":0")
except KeyError:
# This tensor doesn't exist in the graph (for example it's
# 'global_step' or a similar housekeeping element) so skip it.
continue
var_list[key] = tensor
saver = tf.train.Saver(var_list=var_list)
saver.restore(sess, ckpt_path)
saver.export_meta_graph(ckpt_path+'.meta', clear_devices=True, clear_extraneous_savers=True)
print("Saved .meta to '{}'".format(ckpt_path+'.meta'))
saver.save(sess, ckpt_path, write_meta_graph=False)
print("Saved .ckpt to '{}'".format(ckpt_path))
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--cfg', default='data/network.cfg', help='Darknet .cfg file')
parser.add_argument('--weights', default='data/network.weights', help='Darknet .weights file')
parser.add_argument('--output', default='data/', help='Output folder')
parser.add_argument('--prefix', default='network/', help='Import scope prefix')
parser.add_argument('--layers', default=0, help='How many layers, 0 means all')
parser.add_argument('--gpu', '-g', default='', help='GPU')
parser.add_argument('--training', dest='training', action='store_true', help='Save training mode graph')
args = parser.parse_args()
# Set GPU to use
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(args.gpu)
# Filter out TensorFlow INFO and WARNING logs
os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
main(args)