-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsc_hvg.m
320 lines (269 loc) · 9.91 KB
/
sc_hvg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
function [T, Xsorted, gsorted] = sc_hvg(X, g, sortit, plotit, ...
normit, ignorehigh, ignorelow)
% Identify HVGs
% HVGs selection - This method uses the CV^2 on normalized count data to
% analyze biological variation.
%
% REF: https://www.nature.com/articles/nmeth.2645
% Input X: Brennecke et al. (2013) uses DESeq's method for normalization.
%
% USAGE:
% >> [X,genelist]=sc_readfile('example_data/GSM3044891_GeneExp.UMIs.10X1.txt');
% >> [T]=sc_hvg(X,genelist);
%
% See also: SC_SPLINEFIT, SC_VEG
if ~isnumeric(X) || ~ismatrix(X)
error('Input X must be a numeric matrix.');
end
if nargin < 2 || isempty(g)
% g = strcat("G", string(1:size(X, 1)))';
g = "G" + string((1:size(X, 1))');
end
if size(X, 1) ~= length(g)
error('The number of rows in X must match the length of g.');
end
if nargin < 3, sortit = true; end
if nargin < 4, plotit = false; end
if nargin < 5, normit = true; end
if nargin < 6, ignorehigh = true; end
if nargin < 7, ignorelow = true; end
%if nargout > 1,
Xori = X;
%end
dropr = 1 - sum(X > 0, 2) ./ size(X, 2);
if normit
%[X]=pkg.norm_deseq(X);
[X] = pkg.norm_libsize(X);
end
u = mean(X, 2, 'omitnan');
vx = var(X, 0, 2, 'omitnan');
cv2 = vx ./ u.^2;
if issparse(u), u = full(u); end
if issparse(vx), vx = full(vx); end
if issparse(cv2), cv2 = full(cv2); end
xi = 1 ./ u;
yi = cv2;
removedidx1 = false(length(xi),1);
removedidx2 = false(length(xi),1);
if ignorelow
% removing genes with the dropoff rate >= 0.95
idx1 = dropr >= 0.95;
removedidx1(idx1) = true;
end
if ignorehigh
removedidx2(u > quantile(u, 0.99)) = true;
end
xi(removedidx1|removedidx2)=[];
yi(removedidx1|removedidx2)=[];
m = size(X, 2);
df = m - 1;
% b=glmfit(xi,yi,'gamma','link','identity');
% cv2fit=glmval(b,1./u,'identity'); % OR cv2fit=b(2)./u+b(1);
% if issparse(xi), xi=full(xi); end
% if issparse(yi), yi=full(yi); end
mdl = fitglm(xi, yi, 'linear', 'Distribution', 'gamma', 'link', 'identity');
cv2fit = mdl.predict(1./u);
b = mdl.Coefficients.Estimate;
methodid = 1;
switch methodid
case 1
% this code follows: https://github.com/tallulandrews/M3Drop/blob/master/R/Brennecke_implementation.R
% and pages 7-9 https://media.nature.com/original/nature-assets/nmeth/journal/v10/n11/extref/nmeth.2645-S2.pdf
minBiolDisp = 0.5.^2;
cv2th = b(1) + minBiolDisp + b(1) * minBiolDisp;
testDenom = (u * b(2) + u.^2 * cv2th) / (1 + cv2th / m);
fitratio = vx ./ testDenom;
case 2
% this code follows https://github.com/MarioniLab/MNN2017/blob/a202f960f165816f22dec3b62ce1c7549b3ba8c1/Pancreas/findHighlyVariableGenes.R
% cv2fit=b(2)./u+b(1);
fitratio = cv2 ./ cv2fit;
end
pval = chi2cdf(fitratio*df, df, 'upper');
% OR 1-chi2cdf(fitratio*df,df);
residualcv2 = log(fitratio); % log(cv2)-log(cv2fit);
% fdr=mafdr(pval,'BHFDR',true);
[~, ~, ~, fdr] = pkg.fdr_bh(pval);
T = table(g, u, cv2, residualcv2, dropr, fitratio, pval, fdr, removedidx1, removedidx2);
T.Properties.VariableNames(1) = {'genes'};
%i = ~isnan(cv2);
%T = T(i, :);
if sortit
T.fitratio(T.dropr > (1 - 0.05)) = 0; % ignore genes with dropout rate > 0.95
% disp('NOTE: Genes with dropout rate > 0.95 are excluded.');
[T, hvgidx] = sortrows(T, 'fitratio', 'descend');
%if nargout > 1
Xsorted = Xori(hvgidx, :);
%end
%if nargout > 2
gsorted = T.genes;
%end
else
%if nargout > 1
% error('SORTIT was not required.');
%end
end
% T=T(removedidx,:);
if plotit
%[~,~]=maxk(fitratio,100);
% figure;
hx=gui.myFigure;
hFig = hx.FigureHandle;
hFig.Position(3)=hFig.Position(3)*1.8;
%hAx = axes('Parent', FigureHandle);
hAx1 = subplot(2,2,[1 3]);
% tb = findall(hFig, 'Tag', 'FigureToolBar');
hx.addCustomButton('off', @HighlightGenes, 'plotpicker-qqplot.gif', 'Highlight top HVGs');
hx.addCustomButton('off', @in_HighlightSelectedGenes, 'xplotpicker-qqplot.gif', 'Highlight selected genes');
hx.addCustomButton('off', @ExportGeneNames, 'floppy-disk-arrow-in.jpg', 'Export Selected HVG gene names...');
hx.addCustomButton('off', @ExportTable, 'xfloppy-disk-arrow-in.jpg', 'Export HVG Table...');
hx.addCustomButton('off', @EnrichrHVGs, 'plotpicker-andrewsplot.gif', 'Enrichment analysis...');
hx.addCustomButton('off', @ChangeAlphaValue, 'xplotpicker-andrewsplot.gif', 'Change MarkerFaceAlpha value');
h = scatter(hAx1, log(u), log(cv2), 'filled', 'MarkerFaceAlpha', .1);
hold on
% scatter(log(u(top100idx)),log(cv2(top100idx)),'x');
plot(hAx1, log(u), log(cv2fit), '.', 'markersize', 10);
%plot(hAx1, log(u(removedidx1)), log(cv2(removedidx1)), 'xr', 'markersize', 10);
%plot(hAx1, log(u(removedidx2)), log(cv2(removedidx2)), '+r', 'markersize', 10);
%plot(hAx1, log(u(top100idx)), log(cv2(top100idx)), '^k', 'markersize', 10);
%[~,i]=sort(fitratio,'descend');
%xi=u(i); yi=cv2(i); yifit=cv2fit(i);
%
% scatter(log(xi),log(yi))
% hold on
% scatter(log(xi(1:100)),log(yi(1:100)),'x');
% plot(log(xi),log(yifit),'.','markersize',10);
% plot(log(xi),log(yifit*chi2inv(0.975,df)./df),'.k');
% plot(log(xi),log(yifit*chi2inv(0.025,df)./df),'.k');
xlabel(hAx1, 'Mean Expression (log)');
ylabel(hAx1, 'CV² (log)');
legend(hAx1, {'Data Points', 'Fitted Curve'}, 'Location', 'best');
if ~isempty(g)
dt = datacursormode(hFig);
dt.UpdateFcn = {@in_myupdatefcn3, g};
end
hold(hAx1,'off');
hAx2 = subplot(2,2,2);
x1 = Xsorted(1,:);
sh = plot(hAx2, 1:length(x1), x1);
xlim(hAx2,[1 size(X,2)]);
title(hAx2, gsorted(1));
[titxt] = gui.i_getsubtitle(x1);
subtitle(hAx2, titxt);
xlabel(hAx2,'Cell Index');
ylabel(hAx2,'Expression Level');
hx.show;
end
function ChangeAlphaValue(~, ~)
if h.MarkerFaceAlpha <= 0.05
h.MarkerFaceAlpha = 1;
else
h.MarkerFaceAlpha = h.MarkerFaceAlpha - 0.1;
end
end
function in_HighlightSelectedGenes(~,~)
%Myc, Oct3/4, Sox2, Klf4
[glist] = gui.i_selectngenes(SingleCellExperiment(X,g),...
intersect(upper(g),["MYC", "POU5F1", "SOX2", "KLF4"]));
if ~isempty(glist)
[y,idx]=ismember(glist,g);
idx=idx(y);
% idv = zeros(1, length(hvgidx));
% idv(idx)=1;
% h.BrushData = idv;
for k=1:length(idx)
dt = datatip(h,'DataIndex',idx(k));
end
end
end
function HighlightGenes(~, ~)
idx = zeros(1, length(hvgidx));
h.BrushData = idx;
k = gui.i_inputnumk(200, 1, 2000);
if isempty(k), return; end
idx(hvgidx(1:k)) = 1;
h.BrushData = idx;
end
function ExportTable(~, ~)
gui.i_exporttable(T, true, 'Thvgreslist', 'HVGResultTable');
% Tdegenelist
% 'Tviolindata','ViolinPlotTable'
% 'Thvgreslist', 'HVGResultTable'
end
function ExportGeneNames(~, ~)
ptsSelected = logical(h.BrushData.');
if ~any(ptsSelected)
warndlg("No gene is selected.");
return;
end
fprintf('%d genes are selected.\n', sum(ptsSelected));
gselected=g(ptsSelected);
[yes,idx]=ismember(gselected,T.genes);
Tx=T(idx,:);
Tx=sortrows(Tx,4,'descend');
if ~all(yes), error('Running time error.'); end
tgenes=Tx.genes;
labels = {'Save selected gene names to variable:',...
'Save HVG table:'};
vars = {'g','T'};
values = {tgenes,T};
export2wsdlg(labels, vars, values, ...
'Save Data to Workspace');
end
function EnrichrHVGs(~, ~)
ptsSelected = logical(h.BrushData.');
if ~any(ptsSelected)
warndlg("No gene is selected.");
return;
end
fprintf('%d genes are selected.\n', sum(ptsSelected));
gselected=g(ptsSelected);
[yes,idx]=ismember(gselected,T.genes);
Tx=T(idx,:);
Tx=sortrows(Tx,4,'descend');
if ~all(yes), error('Running time error.'); end
tgenes=Tx.genes;
gui.i_enrichtest(tgenes, g, numel(tgenes));
end
% answer = (@(x){questdlg('Which analysis?', '', ...
% 'Enrichr', 'GOrilla', 'Enrichr+GOrilla', 'Enrichr')}, 15);
% if isempty(answer), return; end
% switch answer
% case 'Enrichr'
% run.web_Enrichr(tgenes, length(tgenes));
% case 'GOrilla'
% run.web_GOrilla(tgenes);
% case 'Enrichr+GOrilla'
% run.web_Enrichr(tgenes, length(tgenes));
% run.web_GOrilla(tgenes);
% otherwise
% return;
% end
function txt = in_myupdatefcn3(src, event_obj, g)
if isequal(get(src, 'Parent'), hAx1)
idx = event_obj.DataIndex;
txt = {g(idx)};
x1 = X(idx, :);
if ~isempty(sh) && isvalid(sh)
delete(sh);
end
sh = plot(hAx2, 1:length(x1), x1);
xlim(hAx2,[1 size(X,2)]);
title(hAx2, g(idx));
[titxt] = gui.i_getsubtitle(x1);
subtitle(hAx2, titxt);
xlabel(hAx2,'Cell Index');
ylabel(hAx2,'Expression Level');
else
txt = num2str(event_obj.Position(2));
end
end
end
% Highly variable genes (HVG) is based on the assumption that genes with
% high variance relative to their mean expression are due to biological
% effects rather than just technical noise. The method seeks to identify
% genes that have a higher variability than expected by considering the
% relationship between variance and mean expression. This relationship is
% difficult to fit, and in practice genes are ranked by their distance
% from a moving median (Kolodziejczyk et al., 2015) or another statistic
% derived from variance is used, e.g. the squared coefficient of variation
% (Brennecke et al. (2013)).