-
Notifications
You must be signed in to change notification settings - Fork 0
/
k-proc.cc
239 lines (204 loc) · 7.59 KB
/
k-proc.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#include "kernel.hh"
#include "elf.h"
#include "k-vmiter.hh"
#include "k-devices.hh"
proc* ptable[NPROC]; // array of process descriptor pointers
spinlock ptable_lock; // protects `ptable`
spinlock process_hierarchy_lock;
// proc::proc()
// The constructor initializes the `proc` to empty.
proc::proc() {
}
void proc::init_user(pid_t pid, threadgroup* tg) {
uintptr_t addr = reinterpret_cast<uintptr_t>(this);
assert(!(addr & PAGEOFFMASK));
// ensure layout `k-exception.S` expects
assert(reinterpret_cast<uintptr_t>(&id_) == addr);
assert(reinterpret_cast<uintptr_t>(®s_) == addr + 8);
assert(reinterpret_cast<uintptr_t>(&yields_) == addr + 16);
assert(reinterpret_cast<uintptr_t>(&pstate_) == addr + 24);
// ensure initialized page table
assert(!(reinterpret_cast<uintptr_t>(tg->pagetable_) & PAGEOFFMASK));
assert(tg->pagetable_->entry[256] == early_pagetable->entry[256]);
assert(tg->pagetable_->entry[511] == early_pagetable->entry[511]);
id_ = pid;
tgid_ = tg->tgid_;
tg_ = tg;
pagetable_ = tg->pagetable_;
pstate_ = proc::ps_runnable;
regs_ = reinterpret_cast<regstate*>(addr + PROCSTACK_SIZE) - 1;
memset(regs_, 0, sizeof(regstate));
regs_->reg_cs = SEGSEL_APP_CODE | 3;
regs_->reg_ss = SEGSEL_APP_DATA | 3;
regs_->reg_rflags = EFLAGS_IF;
regs_->reg_swapgs = 1;
}
void proc::init_kernel(pid_t pid, threadgroup* tg, void (*f)()) {
uintptr_t addr = reinterpret_cast<uintptr_t>(this);
assert(!(addr & PAGEOFFMASK));
id_ = pid;
tgid_ = tg->tgid_;
tg_ = tg;
pagetable_ = tg->pagetable_;
pstate_ = proc::ps_runnable;
regs_ = reinterpret_cast<regstate*>(addr + PROCSTACK_SIZE) - 1;
memset(regs_, 0, sizeof(regstate));
regs_->reg_cs = SEGSEL_KERN_CODE;
regs_->reg_ss = SEGSEL_KERN_DATA;
regs_->reg_rflags = EFLAGS_IF;
regs_->reg_rsp = addr + PROCSTACK_SIZE;
regs_->reg_rip = reinterpret_cast<uintptr_t>(f);
regs_->reg_rdi = addr;
}
// proc::panic_nonrunnable()
// Called when `k-exception.S` tries to run a non-runnable proc.
void proc::panic_nonrunnable() {
panic("Trying to resume proc %d, which is not runnable\n"
"(proc state %d, recent user %%rip %p)",
id_, pstate_.load(), recent_user_rip_);
}
// PROCESS LOADING FUNCTIONS
// Process loading uses `proc_loader` objects. A `proc_loader`
// abstracts the way an a executable is stored. For example, it can
// be stored in an initial-ramdisk file (`memfile_loader`, defined
// in `k-devices.cc`), or on a disk (you'll write such a loader
// later).
//
// `proc::load` and its helpers call two functions on `proc_loader`:
//
// proc_loader::get_page(pg_ptr, off)
// Obtains a pointer to data from the executable starting at offset `off`.
// `off` is page-aligned. On success, the loader sets `*pg_ptr`
// to the address of the data in memory and return the number of valid bytes
// starting there. On failure, it should return a negative error code.
//
// proc_loader::put_page()
// Called when `proc::load` is done with the memory returned by the most
// recent successful call to `get_page`. Always called exactly once per
// successful `get_page` call, and will always be called before the next
// `get_page` call.
//
// Typically `get_page` will cache a page of data in memory and `put_page`
// will release the cache.
// proc::load(proc_loader& ld)
// Load the executable specified by the `proc_loader` into `ld.pagetable_`
// and set `ld.entry_rip_` to its entry point. Calls `kalloc` and maps
// memory. Returns 0 on success and a negative error code on failure,
// such as `E_NOMEM` for out of memory or `E_NOEXEC` for not an executable.
int proc::load(proc_loader& ld) {
union {
elf_header eh;
elf_program ph[4];
} u;
size_t len;
unsigned nph;
// validate the binary
uint8_t* headerpg;
ssize_t r = ld.get_page(&headerpg, 0);
if (r < 0) {
return r;
} else if (size_t(r) < sizeof(elf_header)) {
ld.put_page();
return E_NOEXEC;
}
len = r;
memcpy(&u.eh, headerpg, sizeof(elf_header));
if (u.eh.e_magic != ELF_MAGIC
|| u.eh.e_type != ELF_ET_EXEC
|| u.eh.e_phentsize != sizeof(elf_program)
|| u.eh.e_shentsize != sizeof(elf_section)
|| u.eh.e_phoff > PAGESIZE
|| u.eh.e_phoff > len
|| u.eh.e_phnum == 0
|| u.eh.e_phnum > (len - u.eh.e_phoff) / sizeof(elf_program)
|| u.eh.e_phnum > sizeof(u.ph) / sizeof(elf_program)) {
ld.put_page();
return E_NOEXEC;
}
nph = u.eh.e_phnum;
ld.entry_rip_ = u.eh.e_entry;
memcpy(&u.ph, headerpg + u.eh.e_phoff, nph * sizeof(elf_program));
ld.put_page();
// load each loadable program segment into memory
for (unsigned i = 0; i != nph; ++i) {
if (u.ph[i].p_type == ELF_PTYPE_LOAD
&& (r = load_segment(u.ph[i], ld)) < 0) {
return r;
}
}
return 0;
}
// proc::load_segment(ph, ld)
// Load an ELF segment at virtual address `ph->p_va` into this process.
// Loads pages `[src, src + ph->p_filesz)` to `dst`, then clears
// `[ph->p_va + ph->p_filesz, ph->p_va + ph->p_memsz)` to 0.
// Calls `kalloc` to allocate pages and uses `vmiter::map`
// to map them in `pagetable_`. Returns 0 on success and an error
// code on failure.
int proc::load_segment(const elf_program& ph, proc_loader& ld) {
uintptr_t va = (uintptr_t) ph.p_va;
uintptr_t end_file = va + ph.p_filesz;
uintptr_t end_mem = va + ph.p_memsz;
if (va > VA_LOWEND
|| VA_LOWEND - va < ph.p_memsz
|| ph.p_memsz < ph.p_filesz) {
return E_NOEXEC;
}
if (!ld.pagetable_) {
return E_NOMEM;
}
// allocate memory
for (vmiter it(ld.pagetable_, round_down(va, PAGESIZE));
it.va() < end_mem;
it += PAGESIZE) {
void* pg = kalloc(PAGESIZE);
if (!pg || it.try_map(ka2pa(pg), PTE_PWU) < 0) {
kfree(pg);
return E_NOMEM;
}
}
// load binary data into just-allocated memory
size_t off = ph.p_offset;
for (vmiter it(ld.pagetable_, va); it.va() < end_file; ) {
// obtain data
uint8_t* datapg = nullptr;
size_t req_off = round_down(off, PAGESIZE);
ssize_t r = ld.get_page(&datapg, req_off);
if (r < 0) {
return r;
}
size_t last_off = req_off + r;
if (last_off <= off) {
// error: not enough data in page!
ld.put_page();
return E_NOEXEC;
}
// copy one page at a time
while (off < last_off && it.va() < end_file) {
size_t datapg_sz = last_off - off;
size_t va_sz = min(it.last_va(), end_file) - it.va();
size_t copy_sz = min(datapg_sz, va_sz);
memcpy(it.kptr<uint8_t*>(), datapg + (off - req_off), copy_sz);
it += copy_sz;
off += copy_sz;
}
// release data
ld.put_page();
}
// set initialized, but not copied, memory to zero
for (vmiter it(ld.pagetable_, end_file); it.va() < end_mem; ) {
size_t sz = min(it.last_va(), end_mem) - it.va();
memset(it.kptr<uint8_t*>(), 0, sz);
it += sz;
}
return 0;
}
void proc::wake() {
int s = proc::ps_blocked;
log_printf("pid[%d] tgid[%d] waking pid[%d] tgid[%d]\n", current()->id_, current()->tgid_, id_, tg_->tgid_);
if (pstate_.compare_exchange_strong(s, proc::ps_runnable)) {
cpus[home_cpuindex_].enqueue(this);
}
}
// A `proc` cannot be smaller than a page.
static_assert(PROCSTACK_SIZE >= sizeof(proc), "PROCSTACK_SIZE too small");