forked from ematvey/tensorflow-seq2seq-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
60 lines (48 loc) · 1.93 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
def batch(inputs, max_sequence_length=None):
"""
Args:
inputs:
list of sentences (integer lists)
max_sequence_length:
integer specifying how large should `max_time` dimension be.
If None, maximum sequence length would be used
Outputs:
inputs_time_major:
input sentences transformed into time-major matrix
(shape [max_time, batch_size]) padded with 0s
sequence_lengths:
batch-sized list of integers specifying amount of active
time steps in each input sequence
"""
sequence_lengths = [len(seq) for seq in inputs]
batch_size = len(inputs)
if max_sequence_length is None:
max_sequence_length = max(sequence_lengths)
inputs_batch_major = np.zeros(shape=[batch_size, max_sequence_length], dtype=np.int32) # == PAD
for i, seq in enumerate(inputs):
for j, element in enumerate(seq):
inputs_batch_major[i, j] = element
# [batch_size, max_time] -> [max_time, batch_size]
inputs_time_major = inputs_batch_major.swapaxes(0, 1)
return inputs_time_major, sequence_lengths
def random_sequences(length_from, length_to,
vocab_lower, vocab_upper,
batch_size):
""" Generates batches of random integer sequences,
sequence length in [length_from, length_to],
vocabulary in [vocab_lower, vocab_upper]
"""
if length_from > length_to:
raise ValueError('length_from > length_to')
def random_length():
if length_from == length_to:
return length_from
return np.random.randint(length_from, length_to + 1)
while True:
yield [
np.random.randint(low=vocab_lower,
high=vocab_upper,
size=random_length()).tolist()
for _ in range(batch_size)
]