forked from victoresque/pytorch-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
78 lines (65 loc) · 2.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import logging
import torch.optim as optim
from model.model import MnistModel
from model.loss import my_loss
from model.metric import my_metric, my_metric2
from data_loader import MnistDataLoader
from trainer import Trainer
from logger import Logger
logging.basicConfig(level=logging.INFO, format='')
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('-b', '--batch-size', default=32, type=int,
help='mini-batch size (default: 32)')
parser.add_argument('-e', '--epochs', default=32, type=int,
help='number of total epochs (default: 32)')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--verbosity', default=2, type=int,
help='verbosity, 0: quiet, 1: per epoch, 2: complete (default: 2)')
parser.add_argument('--save-dir', default='saved', type=str,
help='directory of saved model (default: saved)')
parser.add_argument('--save-freq', default=1, type=int,
help='training checkpoint frequency (default: 1)')
parser.add_argument('--data-dir', default='datasets', type=str,
help='directory of training/testing data (default: datasets)')
parser.add_argument('--validation-split', default=0.1, type=float,
help='ratio of split validation data, [0.0, 1.0) (default: 0.1)')
parser.add_argument('--no-cuda', action="store_true",
help='use CPU instead of GPU')
def main(args):
# Model
model = MnistModel()
model.summary()
# A logger to store training process information
train_logger = Logger()
# Specifying loss function, metric(s), and optimizer
loss = my_loss
metrics = [my_metric, my_metric2]
optimizer = optim.Adam(model.parameters())
# Data loader and validation split
data_loader = MnistDataLoader(args.data_dir, args.batch_size, shuffle=True)
valid_data_loader = data_loader.split_validation(args.validation_split)
# An identifier for this training session
training_name = type(model).__name__
# Trainer instance
trainer = Trainer(model, loss, metrics,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
optimizer=optimizer,
epochs=args.epochs,
train_logger=train_logger,
save_dir=args.save_dir,
save_freq=args.save_freq,
resume=args.resume,
verbosity=args.verbosity,
training_name=training_name,
with_cuda=not args.no_cuda,
monitor='val_my_metric',
monitor_mode='max')
# Start training!
trainer.train()
# See training history
print(train_logger)
if __name__ == '__main__':
main(parser.parse_args())