-
Notifications
You must be signed in to change notification settings - Fork 0
/
ElectricCircuitVoltageTransformerModeling.m
67 lines (51 loc) · 2.92 KB
/
ElectricCircuitVoltageTransformerModeling.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
%************************************************************************************************************************************************
% *
% Simulations for the paper Mathematical Modeling of the Short Circuit Mode of a Voltage Transformer *
% *
% - The script implements a formula that calculates the current \(i_{t2}\) based on the given parameters and input voltage signal. *
% - It defines the time vector \(t\) and sets the angular frequency \(w\). *
% - Amplitude of the input voltage signal \(ut\) is defined as a cosine function. *
% - Constants \(l1\), \(l2\), \(r1\), \(r2\), and \(m\) are assigned specific values. *
% - Impedance and resistance values are calculated for further computations. *
% - Numerator and denominator terms are calculated to determine the current value \(it2\). *
% - There is a check to handle the case when \(Zn\) is zero, calculating \(it20\) accordingly. *
% - Finally, the script plots the graphs of \(it2\) and \(it20\). *
% *
%************************************************************************************************************************************************
% Implementation of the formula: it2= (U1*m)/(Zn*Xm + x2*Zm + x1*(Xm + X2 + Xn))
% Defining time vector
t = linspace(0, 100, 1000);
% Setting angular frequency
w = 1;
% Defining amplitude of input voltage signal
A = 660;
ut = A * cos(w * t);
% Constants based on Table 1
l1 = 0.0223;
l2 = 0.0223;
r1 = 0.0125;
r2 = 0.0125;
m = 17.4;
%*****************************************************************************************************************
% Impedance and resistance values
zm = 1i * w * m;
rm = 128;
zl1 = 1i * w * l1;
zl2 = 1i * w * l2;
zn = 10;
x1 = zl1 + r1;
x2 = zl2 + r2;
xm = zm + rm;
% Calculating numerator and denominator terms
C = ut * xm;
D = xm * x2 + xm * zn + x1 * (zn + x2 + xm);
it2 = C / D;
% Check if Zn is zero
if zn == 0
E = xm * x2 + x1 * (x2 + xm);
it20 = C / E;
end
% Plotting the graphs
plot(t, it2, 'b');
hold on; % Retain current plot
plot(t, it20, 'r');