-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbig_op.v
1167 lines (1004 loc) · 49.6 KB
/
big_op.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
From iris.algebra Require Export big_op.
From iris.bi Require Import derived_laws_sbi plainly.
From stdpp Require Import countable fin_collections functions.
Set Default Proof Using "Type".
Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi.
(** A version of the separating big operator that ranges over two lists. This
version also ensures that both lists have the same length. Although this version
can be defined in terms of the unary using a [zip] (see [big_sepL2_alt]), we do
not define it that way to get better computational behavior (for [simpl]). *)
Fixpoint big_sepL2 {PROP : bi} {A B}
(Φ : nat → A → B → PROP) (l1 : list A) (l2 : list B) : PROP :=
match l1, l2 with
| [], [] => emp
| x1 :: l1, x2 :: l2 => Φ 0 x1 x2 ∗ big_sepL2 (λ n, Φ (S n)) l1 l2
| _, _ => False
end%I.
Instance: Params (@big_sepL2) 3.
Arguments big_sepL2 {PROP A B} _ !_ !_ /.
Typeclasses Opaque big_sepL2.
(* Notations *)
Notation "'[∗' 'list]' k ↦ x ∈ l , P" :=
(big_opL bi_sep (λ k x, P) l) : bi_scope.
Notation "'[∗' 'list]' x ∈ l , P" :=
(big_opL bi_sep (λ _ x, P) l) : bi_scope.
Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps) : bi_scope.
Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P" :=
(big_sepL2 (λ k x1 x2, P) l1 l2) : bi_scope.
Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P" :=
(big_sepL2 (λ _ x1 x2, P) l1 l2) : bi_scope.
Notation "'[∧' 'list]' k ↦ x ∈ l , P" :=
(big_opL bi_and (λ k x, P) l) : bi_scope.
Notation "'[∧' 'list]' x ∈ l , P" :=
(big_opL bi_and (λ _ x, P) l) : bi_scope.
Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps) : bi_scope.
Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P) m) : bi_scope.
Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P) m) : bi_scope.
Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P) X) : bi_scope.
Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) : bi_scope.
(** * Properties *)
Section bi_big_op.
Context {PROP : bi}.
Implicit Types P Q : PROP.
Implicit Types Ps Qs : list PROP.
Implicit Types A : Type.
(** ** Big ops over lists *)
Section sep_list.
Context {A : Type}.
Implicit Types l : list A.
Implicit Types Φ Ψ : nat → A → PROP.
Lemma big_sepL_nil Φ : ([∗ list] k↦y ∈ nil, Φ k y) ⊣⊢ emp.
Proof. done. Qed.
Lemma big_sepL_nil' `{BiAffine PROP} P Φ : P ⊢ [∗ list] k↦y ∈ nil, Φ k y.
Proof. apply (affine _). Qed.
Lemma big_sepL_cons Φ x l :
([∗ list] k↦y ∈ x :: l, Φ k y) ⊣⊢ Φ 0 x ∗ [∗ list] k↦y ∈ l, Φ (S k) y.
Proof. by rewrite big_opL_cons. Qed.
Lemma big_sepL_singleton Φ x : ([∗ list] k↦y ∈ [x], Φ k y) ⊣⊢ Φ 0 x.
Proof. by rewrite big_opL_singleton. Qed.
Lemma big_sepL_app Φ l1 l2 :
([∗ list] k↦y ∈ l1 ++ l2, Φ k y)
⊣⊢ ([∗ list] k↦y ∈ l1, Φ k y) ∗ ([∗ list] k↦y ∈ l2, Φ (length l1 + k) y).
Proof. by rewrite big_opL_app. Qed.
Lemma big_sepL_mono Φ Ψ l :
(∀ k y, l !! k = Some y → Φ k y ⊢ Ψ k y) →
([∗ list] k ↦ y ∈ l, Φ k y) ⊢ [∗ list] k ↦ y ∈ l, Ψ k y.
Proof. apply big_opL_forall; apply _. Qed.
Lemma big_sepL_proper Φ Ψ l :
(∀ k y, l !! k = Some y → Φ k y ⊣⊢ Ψ k y) →
([∗ list] k ↦ y ∈ l, Φ k y) ⊣⊢ ([∗ list] k ↦ y ∈ l, Ψ k y).
Proof. apply big_opL_proper. Qed.
Lemma big_sepL_submseteq `{BiAffine PROP} (Φ : A → PROP) l1 l2 :
l1 ⊆+ l2 → ([∗ list] y ∈ l2, Φ y) ⊢ [∗ list] y ∈ l1, Φ y.
Proof.
intros [l ->]%submseteq_Permutation. by rewrite big_sepL_app sep_elim_l.
Qed.
Global Instance big_sepL_mono' :
Proper (pointwise_relation _ (pointwise_relation _ (⊢)) ==> (=) ==> (⊢))
(big_opL (@bi_sep PROP) (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_sepL_id_mono' :
Proper (Forall2 (⊢) ==> (⊢)) (big_opL (@bi_sep PROP) (λ _ P, P)).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Lemma big_sepL_emp l : ([∗ list] k↦y ∈ l, emp) ⊣⊢@{PROP} emp.
Proof. by rewrite big_opL_unit. Qed.
Lemma big_sepL_lookup_acc Φ l i x :
l !! i = Some x →
([∗ list] k↦y ∈ l, Φ k y) ⊢ Φ i x ∗ (Φ i x -∗ ([∗ list] k↦y ∈ l, Φ k y)).
Proof.
intros Hli. rewrite -(take_drop_middle l i x) // big_sepL_app /=.
rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl.
rewrite assoc -!(comm _ (Φ _ _)) -assoc. by apply sep_mono_r, wand_intro_l.
Qed.
Lemma big_sepL_lookup Φ l i x `{!Absorbing (Φ i x)} :
l !! i = Some x → ([∗ list] k↦y ∈ l, Φ k y) ⊢ Φ i x.
Proof. intros. rewrite big_sepL_lookup_acc //. by rewrite sep_elim_l. Qed.
Lemma big_sepL_elem_of (Φ : A → PROP) l x `{!Absorbing (Φ x)} :
x ∈ l → ([∗ list] y ∈ l, Φ y) ⊢ Φ x.
Proof.
intros [i ?]%elem_of_list_lookup; eauto using (big_sepL_lookup (λ _, Φ)).
Qed.
Lemma big_sepL_fmap {B} (f : A → B) (Φ : nat → B → PROP) l :
([∗ list] k↦y ∈ f <$> l, Φ k y) ⊣⊢ ([∗ list] k↦y ∈ l, Φ k (f y)).
Proof. by rewrite big_opL_fmap. Qed.
Lemma big_sepL_sepL Φ Ψ l :
([∗ list] k↦x ∈ l, Φ k x ∗ Ψ k x)
⊣⊢ ([∗ list] k↦x ∈ l, Φ k x) ∗ ([∗ list] k↦x ∈ l, Ψ k x).
Proof. by rewrite big_opL_opL. Qed.
Lemma big_sepL_and Φ Ψ l :
([∗ list] k↦x ∈ l, Φ k x ∧ Ψ k x)
⊢ ([∗ list] k↦x ∈ l, Φ k x) ∧ ([∗ list] k↦x ∈ l, Ψ k x).
Proof. auto using and_intro, big_sepL_mono, and_elim_l, and_elim_r. Qed.
Lemma big_sepL_persistently `{BiAffine PROP} Φ l :
<pers> ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ [∗ list] k↦x ∈ l, <pers> (Φ k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_sepL_forall `{BiAffine PROP} Φ l :
(∀ k x, Persistent (Φ k x)) →
([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ (∀ k x, ⌜l !! k = Some x⌝ → Φ k x).
Proof.
intros HΦ. apply (anti_symm _).
{ apply forall_intro=> k; apply forall_intro=> x.
apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepL_lookup. }
revert Φ HΦ. induction l as [|x l IH]=> Φ HΦ; [by auto using big_sepL_nil'|].
rewrite big_sepL_cons. rewrite -persistent_and_sep; apply and_intro.
- by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
- rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
Qed.
Lemma big_sepL_impl Φ Ψ l :
([∗ list] k↦x ∈ l, Φ k x) -∗
□ (∀ k x, ⌜l !! k = Some x⌝ → Φ k x -∗ Ψ k x) -∗
[∗ list] k↦x ∈ l, Ψ k x.
Proof.
apply wand_intro_l. revert Φ Ψ. induction l as [|x l IH]=> Φ Ψ /=.
{ by rewrite sep_elim_r. }
rewrite intuitionistically_sep_dup -assoc [(□ _ ∗ _)%I]comm -!assoc assoc.
apply sep_mono.
- rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
by rewrite intuitionistically_elim wand_elim_l.
- rewrite comm -(IH (Φ ∘ S) (Ψ ∘ S)) /=.
apply sep_mono_l, affinely_mono, persistently_mono.
apply forall_intro=> k. by rewrite (forall_elim (S k)).
Qed.
Lemma big_sepL_delete Φ l i x :
l !! i = Some x →
([∗ list] k↦y ∈ l, Φ k y)
⊣⊢ Φ i x ∗ [∗ list] k↦y ∈ l, if decide (k = i) then emp else Φ k y.
Proof.
intros. rewrite -(take_drop_middle l i x) // !big_sepL_app /= Nat.add_0_r.
rewrite take_length_le; last eauto using lookup_lt_Some, Nat.lt_le_incl.
rewrite decide_True // left_id.
rewrite assoc -!(comm _ (Φ _ _)) -assoc. do 2 f_equiv.
- apply big_sepL_proper=> k y Hk. apply lookup_lt_Some in Hk.
rewrite take_length in Hk. by rewrite decide_False; last lia.
- apply big_sepL_proper=> k y _. by rewrite decide_False; last lia.
Qed.
Lemma big_sepL_delete' `{!BiAffine PROP} Φ l i x :
l !! i = Some x →
([∗ list] k↦y ∈ l, Φ k y) ⊣⊢ Φ i x ∗ [∗ list] k↦y ∈ l, ⌜ k ≠ i ⌝ → Φ k y.
Proof.
intros. rewrite big_sepL_delete //. (do 2 f_equiv)=> k y.
rewrite -decide_emp. by repeat case_decide.
Qed.
Lemma big_sepL_replicate l P :
[∗] replicate (length l) P ⊣⊢ [∗ list] y ∈ l, P.
Proof. induction l as [|x l]=> //=; by f_equiv. Qed.
Global Instance big_sepL_nil_persistent Φ :
Persistent ([∗ list] k↦x ∈ [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_sepL_persistent Φ l :
(∀ k x, Persistent (Φ k x)) → Persistent ([∗ list] k↦x ∈ l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
Global Instance big_sepL_persistent_id Ps :
TCForall Persistent Ps → Persistent ([∗] Ps).
Proof. induction 1; simpl; apply _. Qed.
Global Instance big_sepL_nil_affine Φ :
Affine ([∗ list] k↦x ∈ [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_sepL_affine Φ l :
(∀ k x, Affine (Φ k x)) → Affine ([∗ list] k↦x ∈ l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
Global Instance big_sepL_affine_id Ps : TCForall Affine Ps → Affine ([∗] Ps).
Proof. induction 1; simpl; apply _. Qed.
End sep_list.
Section sep_list_more.
Context {A : Type}.
Implicit Types l : list A.
Implicit Types Φ Ψ : nat → A → PROP.
(* Some lemmas depend on the generalized versions of the above ones. *)
Lemma big_sepL_zip_with {B C} Φ f (l1 : list B) (l2 : list C) :
([∗ list] k↦x ∈ zip_with f l1 l2, Φ k x)
⊣⊢ ([∗ list] k↦x ∈ l1, if l2 !! k is Some y then Φ k (f x y) else emp).
Proof.
revert Φ l2; induction l1 as [|x l1 IH]=> Φ [|y l2] //=.
- by rewrite big_sepL_emp left_id.
- by rewrite IH.
Qed.
End sep_list_more.
Lemma big_sepL2_alt {A B} (Φ : nat → A → B → PROP) l1 l2 :
([∗ list] k↦y1;y2 ∈ l1; l2, Φ k y1 y2)
⊣⊢ ⌜ length l1 = length l2 ⌝ ∧ [∗ list] k ↦ y ∈ zip l1 l2, Φ k (y.1) (y.2).
Proof.
apply (anti_symm _).
- apply and_intro.
+ revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
auto using pure_intro, False_elim.
rewrite IH sep_elim_r. apply pure_mono; auto.
+ revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
auto using pure_intro, False_elim.
by rewrite IH.
- apply pure_elim_l=> /Forall2_same_length Hl. revert Φ.
induction Hl as [|x1 l1 x2 l2 _ _ IH]=> Φ //=. by rewrite -IH.
Qed.
(** ** Big ops over two lists *)
Section sep_list2.
Context {A B : Type}.
Implicit Types Φ Ψ : nat → A → B → PROP.
Lemma big_sepL2_nil Φ : ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2) ⊣⊢ emp.
Proof. done. Qed.
Lemma big_sepL2_nil' `{BiAffine PROP} P Φ : P ⊢ [∗ list] k↦y1;y2 ∈ [];[], Φ k y1 y2.
Proof. apply (affine _). Qed.
Lemma big_sepL2_cons Φ x1 x2 l1 l2 :
([∗ list] k↦y1;y2 ∈ x1 :: l1; x2 :: l2, Φ k y1 y2)
⊣⊢ Φ 0 x1 x2 ∗ [∗ list] k↦y1;y2 ∈ l1;l2, Φ (S k) y1 y2.
Proof. done. Qed.
Lemma big_sepL2_cons_inv_l Φ x1 l1 l2 :
([∗ list] k↦y1;y2 ∈ x1 :: l1; l2, Φ k y1 y2) -∗
∃ x2 l2', ⌜ l2 = x2 :: l2' ⌝ ∧
Φ 0 x1 x2 ∗ [∗ list] k↦y1;y2 ∈ l1;l2', Φ (S k) y1 y2.
Proof.
destruct l2 as [|x2 l2]; simpl; auto using False_elim.
by rewrite -(exist_intro x2) -(exist_intro l2) pure_True // left_id.
Qed.
Lemma big_sepL2_cons_inv_r Φ x2 l1 l2 :
([∗ list] k↦y1;y2 ∈ l1; x2 :: l2, Φ k y1 y2) -∗
∃ x1 l1', ⌜ l1 = x1 :: l1' ⌝ ∧
Φ 0 x1 x2 ∗ [∗ list] k↦y1;y2 ∈ l1';l2, Φ (S k) y1 y2.
Proof.
destruct l1 as [|x1 l1]; simpl; auto using False_elim.
by rewrite -(exist_intro x1) -(exist_intro l1) pure_True // left_id.
Qed.
Lemma big_sepL2_singleton Φ x1 x2 :
([∗ list] k↦y1;y2 ∈ [x1];[x2], Φ k y1 y2) ⊣⊢ Φ 0 x1 x2.
Proof. by rewrite /= right_id. Qed.
Lemma big_sepL2_length Φ l1 l2 :
([∗ list] k↦y1;y2 ∈ l1; l2, Φ k y1 y2) -∗ ⌜ length l1 = length l2 ⌝.
Proof. by rewrite big_sepL2_alt and_elim_l. Qed.
Lemma big_sepL2_app Φ l1 l2 l1' l2' :
([∗ list] k↦y1;y2 ∈ l1; l1', Φ k y1 y2) -∗
([∗ list] k↦y1;y2 ∈ l2; l2', Φ (length l1 + k) y1 y2) -∗
([∗ list] k↦y1;y2 ∈ l1 ++ l2; l1' ++ l2', Φ k y1 y2).
Proof.
apply wand_intro_r. revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /=.
- by rewrite left_id.
- rewrite left_absorb. apply False_elim.
- rewrite left_absorb. apply False_elim.
- by rewrite -assoc IH.
Qed.
Lemma big_sepL2_app_inv_l Φ l1' l1'' l2 :
([∗ list] k↦y1;y2 ∈ l1' ++ l1''; l2, Φ k y1 y2) -∗
∃ l2' l2'', ⌜ l2 = l2' ++ l2'' ⌝ ∧
([∗ list] k↦y1;y2 ∈ l1';l2', Φ k y1 y2) ∗
([∗ list] k↦y1;y2 ∈ l1'';l2'', Φ (length l1' + k) y1 y2).
Proof.
rewrite -(exist_intro (take (length l1') l2))
-(exist_intro (drop (length l1') l2)) take_drop pure_True // left_id.
revert Φ l2. induction l1' as [|x1 l1' IH]=> Φ -[|x2 l2] /=;
[by rewrite left_id|by rewrite left_id|apply False_elim|].
by rewrite IH -assoc.
Qed.
Lemma big_sepL2_app_inv_r Φ l1 l2' l2'' :
([∗ list] k↦y1;y2 ∈ l1; l2' ++ l2'', Φ k y1 y2) -∗
∃ l1' l1'', ⌜ l1 = l1' ++ l1'' ⌝ ∧
([∗ list] k↦y1;y2 ∈ l1';l2', Φ k y1 y2) ∗
([∗ list] k↦y1;y2 ∈ l1'';l2'', Φ (length l2' + k) y1 y2).
Proof.
rewrite -(exist_intro (take (length l2') l1))
-(exist_intro (drop (length l2') l1)) take_drop pure_True // left_id.
revert Φ l1. induction l2' as [|x2 l2' IH]=> Φ -[|x1 l1] /=;
[by rewrite left_id|by rewrite left_id|apply False_elim|].
by rewrite IH -assoc.
Qed.
Lemma big_sepL2_mono Φ Ψ l1 l2 :
(∀ k y1 y2, l1 !! k = Some y1 → l2 !! k = Some y2 → Φ k y1 y2 ⊢ Ψ k y1 y2) →
([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢ [∗ list] k ↦ y1;y2 ∈ l1;l2, Ψ k y1 y2.
Proof.
intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2].
rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
Qed.
Lemma big_sepL2_proper Φ Ψ l1 l2 :
(∀ k y1 y2, l1 !! k = Some y1 → l2 !! k = Some y2 → Φ k y1 y2 ⊣⊢ Ψ k y1 y2) →
([∗ list] k ↦ y1;y2 ∈ l1;l2, Φ k y1 y2) ⊣⊢ [∗ list] k ↦ y1;y2 ∈ l1;l2, Ψ k y1 y2.
Proof.
intros; apply (anti_symm _);
apply big_sepL2_mono; auto using equiv_entails, equiv_entails_sym.
Qed.
Global Instance big_sepL2_ne n :
Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n)))
==> (=) ==> (=) ==> (dist n))
(big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
Proof.
intros Φ1 Φ2 HΦ x1 ? <- x2 ? <-. rewrite !big_sepL2_alt. f_equiv.
f_equiv=> k [y1 y2]. apply HΦ.
Qed.
Global Instance big_sepL2_mono' :
Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (⊢)))
==> (=) ==> (=) ==> (⊢))
(big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_mono; intros; apply Hf. Qed.
Global Instance big_sepL2_proper' :
Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (⊣⊢)))
==> (=) ==> (=) ==> (⊣⊢))
(big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_proper; intros; apply Hf. Qed.
Lemma big_sepL2_lookup_acc Φ l1 l2 i x1 x2 :
l1 !! i = Some x1 → l2 !! i = Some x2 →
([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢
Φ i x1 x2 ∗ (Φ i x1 x2 -∗ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2)).
Proof.
intros Hl1 Hl2. rewrite big_sepL2_alt. apply pure_elim_l=> Hl.
rewrite {1}big_sepL_lookup_acc; last by rewrite lookup_zip_with; simplify_option_eq.
by rewrite pure_True // left_id.
Qed.
Lemma big_sepL2_lookup Φ l1 l2 i x1 x2 `{!Absorbing (Φ i x1 x2)} :
l1 !! i = Some x1 → l2 !! i = Some x2 →
([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ⊢ Φ i x1 x2.
Proof. intros. rewrite big_sepL2_lookup_acc //. by rewrite sep_elim_l. Qed.
Lemma big_sepL2_fmap_l {A'} (f : A → A') (Φ : nat → A' → B → PROP) l1 l2 :
([∗ list] k↦y1;y2 ∈ f <$> l1; l2, Φ k y1 y2)
⊣⊢ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k (f y1) y2).
Proof.
rewrite !big_sepL2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap.
by f_equiv; f_equiv=> k [??].
Qed.
Lemma big_sepL2_fmap_r {B'} (g : B → B') (Φ : nat → A → B' → PROP) l1 l2 :
([∗ list] k↦y1;y2 ∈ l1; g <$> l2, Φ k y1 y2)
⊣⊢ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 (g y2)).
Proof.
rewrite !big_sepL2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap.
by f_equiv; f_equiv=> k [??].
Qed.
Lemma big_sepL2_sepL2 Φ Ψ l1 l2 :
([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2 ∗ Ψ k y1 y2)
⊣⊢ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ∗ ([∗ list] k↦y1;y2 ∈ l1;l2, Ψ k y1 y2).
Proof.
rewrite !big_sepL2_alt big_sepL_sepL !persistent_and_affinely_sep_l.
rewrite -assoc (assoc _ _ (<affine> _)%I). rewrite -(comm bi_sep (<affine> _)%I).
rewrite -assoc (assoc _ _ (<affine> _)%I) -!persistent_and_affinely_sep_l.
by rewrite affinely_and_r persistent_and_affinely_sep_l idemp.
Qed.
Lemma big_sepL2_and Φ Ψ l1 l2 :
([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2 ∧ Ψ k y1 y2)
⊢ ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) ∧ ([∗ list] k↦y1;y2 ∈ l1;l2, Ψ k y1 y2).
Proof. auto using and_intro, big_sepL2_mono, and_elim_l, and_elim_r. Qed.
Lemma big_sepL2_persistently `{BiAffine PROP} Φ l1 l2 :
<pers> ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2)
⊣⊢ [∗ list] k↦y1;y2 ∈ l1;l2, <pers> (Φ k y1 y2).
Proof.
by rewrite !big_sepL2_alt persistently_and persistently_pure big_sepL_persistently.
Qed.
Lemma big_sepL2_impl Φ Ψ l1 l2 :
([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2) -∗
□ (∀ k x1 x2,
⌜l1 !! k = Some x1⌝ → ⌜l2 !! k = Some x2⌝ → Φ k x1 x2 -∗ Ψ k x1 x2) -∗
[∗ list] k↦y1;y2 ∈ l1;l2, Ψ k y1 y2.
Proof.
apply wand_intro_l. revert Φ Ψ l2.
induction l1 as [|x1 l1 IH]=> Φ Ψ [|x2 l2] /=; [by rewrite sep_elim_r..|].
rewrite intuitionistically_sep_dup -assoc [(□ _ ∗ _)%I]comm -!assoc assoc.
apply sep_mono.
- rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2) !pure_True // !True_impl.
by rewrite intuitionistically_elim wand_elim_l.
- rewrite comm -(IH (Φ ∘ S) (Ψ ∘ S)) /=.
apply sep_mono_l, affinely_mono, persistently_mono.
apply forall_intro=> k. by rewrite (forall_elim (S k)).
Qed.
Global Instance big_sepL2_nil_persistent Φ :
Persistent ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2).
Proof. simpl; apply _. Qed.
Global Instance big_sepL2_persistent Φ l1 l2 :
(∀ k x1 x2, Persistent (Φ k x1 x2)) →
Persistent ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2).
Proof. rewrite big_sepL2_alt. apply _. Qed.
Global Instance big_sepL2_nil_affine Φ :
Affine ([∗ list] k↦y1;y2 ∈ []; [], Φ k y1 y2).
Proof. simpl; apply _. Qed.
Global Instance big_sepL2_affine Φ l1 l2 :
(∀ k x1 x2, Affine (Φ k x1 x2)) →
Affine ([∗ list] k↦y1;y2 ∈ l1;l2, Φ k y1 y2).
Proof. rewrite big_sepL2_alt. apply _. Qed.
End sep_list2.
Section and_list.
Context {A : Type}.
Implicit Types l : list A.
Implicit Types Φ Ψ : nat → A → PROP.
Lemma big_andL_nil Φ : ([∧ list] k↦y ∈ nil, Φ k y) ⊣⊢ True.
Proof. done. Qed.
Lemma big_andL_nil' P Φ : P ⊢ [∧ list] k↦y ∈ nil, Φ k y.
Proof. by apply pure_intro. Qed.
Lemma big_andL_cons Φ x l :
([∧ list] k↦y ∈ x :: l, Φ k y) ⊣⊢ Φ 0 x ∧ [∧ list] k↦y ∈ l, Φ (S k) y.
Proof. by rewrite big_opL_cons. Qed.
Lemma big_andL_singleton Φ x : ([∧ list] k↦y ∈ [x], Φ k y) ⊣⊢ Φ 0 x.
Proof. by rewrite big_opL_singleton. Qed.
Lemma big_andL_app Φ l1 l2 :
([∧ list] k↦y ∈ l1 ++ l2, Φ k y)
⊣⊢ ([∧ list] k↦y ∈ l1, Φ k y) ∧ ([∧ list] k↦y ∈ l2, Φ (length l1 + k) y).
Proof. by rewrite big_opL_app. Qed.
Lemma big_andL_mono Φ Ψ l :
(∀ k y, l !! k = Some y → Φ k y ⊢ Ψ k y) →
([∧ list] k ↦ y ∈ l, Φ k y) ⊢ [∧ list] k ↦ y ∈ l, Ψ k y.
Proof. apply big_opL_forall; apply _. Qed.
Lemma big_andL_proper Φ Ψ l :
(∀ k y, l !! k = Some y → Φ k y ⊣⊢ Ψ k y) →
([∧ list] k ↦ y ∈ l, Φ k y) ⊣⊢ ([∧ list] k ↦ y ∈ l, Ψ k y).
Proof. apply big_opL_proper. Qed.
Lemma big_andL_submseteq (Φ : A → PROP) l1 l2 :
l1 ⊆+ l2 → ([∧ list] y ∈ l2, Φ y) ⊢ [∧ list] y ∈ l1, Φ y.
Proof.
intros [l ->]%submseteq_Permutation. by rewrite big_andL_app and_elim_l.
Qed.
Global Instance big_andL_mono' :
Proper (pointwise_relation _ (pointwise_relation _ (⊢)) ==> (=) ==> (⊢))
(big_opL (@bi_and PROP) (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_andL_id_mono' :
Proper (Forall2 (⊢) ==> (⊢)) (big_opL (@bi_and PROP) (λ _ P, P)).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Lemma big_andL_lookup Φ l i x `{!Absorbing (Φ i x)} :
l !! i = Some x → ([∧ list] k↦y ∈ l, Φ k y) ⊢ Φ i x.
Proof.
intros. rewrite -(take_drop_middle l i x) // big_andL_app /=.
rewrite Nat.add_0_r take_length_le;
eauto using lookup_lt_Some, Nat.lt_le_incl, and_elim_l', and_elim_r'.
Qed.
Lemma big_andL_elem_of (Φ : A → PROP) l x `{!Absorbing (Φ x)} :
x ∈ l → ([∧ list] y ∈ l, Φ y) ⊢ Φ x.
Proof.
intros [i ?]%elem_of_list_lookup; eauto using (big_andL_lookup (λ _, Φ)).
Qed.
Lemma big_andL_fmap {B} (f : A → B) (Φ : nat → B → PROP) l :
([∧ list] k↦y ∈ f <$> l, Φ k y) ⊣⊢ ([∧ list] k↦y ∈ l, Φ k (f y)).
Proof. by rewrite big_opL_fmap. Qed.
Lemma big_andL_andL Φ Ψ l :
([∧ list] k↦x ∈ l, Φ k x ∧ Ψ k x)
⊣⊢ ([∧ list] k↦x ∈ l, Φ k x) ∧ ([∧ list] k↦x ∈ l, Ψ k x).
Proof. by rewrite big_opL_opL. Qed.
Lemma big_andL_and Φ Ψ l :
([∧ list] k↦x ∈ l, Φ k x ∧ Ψ k x)
⊢ ([∧ list] k↦x ∈ l, Φ k x) ∧ ([∧ list] k↦x ∈ l, Ψ k x).
Proof. auto using and_intro, big_andL_mono, and_elim_l, and_elim_r. Qed.
Lemma big_andL_persistently Φ l :
<pers> ([∧ list] k↦x ∈ l, Φ k x) ⊣⊢ [∧ list] k↦x ∈ l, <pers> (Φ k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_andL_forall `{BiAffine PROP} Φ l :
([∧ list] k↦x ∈ l, Φ k x) ⊣⊢ (∀ k x, ⌜l !! k = Some x⌝ → Φ k x).
Proof.
apply (anti_symm _).
{ apply forall_intro=> k; apply forall_intro=> x.
apply impl_intro_l, pure_elim_l=> ?; by apply: big_andL_lookup. }
revert Φ. induction l as [|x l IH]=> Φ; [by auto using big_andL_nil'|].
rewrite big_andL_cons. apply and_intro.
- by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
- rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
Qed.
Global Instance big_andL_nil_persistent Φ :
Persistent ([∧ list] k↦x ∈ [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_andL_persistent Φ l :
(∀ k x, Persistent (Φ k x)) → Persistent ([∧ list] k↦x ∈ l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
End and_list.
(** ** Big ops over finite maps *)
Section gmap.
Context `{Countable K} {A : Type}.
Implicit Types m : gmap K A.
Implicit Types Φ Ψ : K → A → PROP.
Lemma big_sepM_mono Φ Ψ m :
(∀ k x, m !! k = Some x → Φ k x ⊢ Ψ k x) →
([∗ map] k ↦ x ∈ m, Φ k x) ⊢ [∗ map] k ↦ x ∈ m, Ψ k x.
Proof. apply big_opM_forall; apply _ || auto. Qed.
Lemma big_sepM_proper Φ Ψ m :
(∀ k x, m !! k = Some x → Φ k x ⊣⊢ Ψ k x) →
([∗ map] k ↦ x ∈ m, Φ k x) ⊣⊢ ([∗ map] k ↦ x ∈ m, Ψ k x).
Proof. apply big_opM_proper. Qed.
Lemma big_sepM_subseteq `{BiAffine PROP} Φ m1 m2 :
m2 ⊆ m1 → ([∗ map] k ↦ x ∈ m1, Φ k x) ⊢ [∗ map] k ↦ x ∈ m2, Φ k x.
Proof. intros. by apply big_sepL_submseteq, map_to_list_submseteq. Qed.
Global Instance big_sepM_mono' :
Proper (pointwise_relation _ (pointwise_relation _ (⊢)) ==> (=) ==> (⊢))
(big_opM (@bi_sep PROP) (K:=K) (A:=A)).
Proof. intros f g Hf m ? <-. apply big_sepM_mono=> ???; apply Hf. Qed.
Lemma big_sepM_empty Φ : ([∗ map] k↦x ∈ ∅, Φ k x) ⊣⊢ emp.
Proof. by rewrite big_opM_empty. Qed.
Lemma big_sepM_empty' `{BiAffine PROP} P Φ : P ⊢ [∗ map] k↦x ∈ ∅, Φ k x.
Proof. rewrite big_sepM_empty. apply: affine. Qed.
Lemma big_sepM_insert Φ m i x :
m !! i = None →
([∗ map] k↦y ∈ <[i:=x]> m, Φ k y) ⊣⊢ Φ i x ∗ [∗ map] k↦y ∈ m, Φ k y.
Proof. apply big_opM_insert. Qed.
Lemma big_sepM_delete Φ m i x :
m !! i = Some x →
([∗ map] k↦y ∈ m, Φ k y) ⊣⊢ Φ i x ∗ [∗ map] k↦y ∈ delete i m, Φ k y.
Proof. apply big_opM_delete. Qed.
Lemma big_sepM_lookup_acc Φ m i x :
m !! i = Some x →
([∗ map] k↦y ∈ m, Φ k y) ⊢ Φ i x ∗ (Φ i x -∗ ([∗ map] k↦y ∈ m, Φ k y)).
Proof.
intros. rewrite big_sepM_delete //. by apply sep_mono_r, wand_intro_l.
Qed.
Lemma big_sepM_lookup Φ m i x `{!Absorbing (Φ i x)} :
m !! i = Some x → ([∗ map] k↦y ∈ m, Φ k y) ⊢ Φ i x.
Proof. intros. rewrite big_sepM_lookup_acc //. by rewrite sep_elim_l. Qed.
Lemma big_sepM_lookup_dom (Φ : K → PROP) m i `{!Absorbing (Φ i)} :
is_Some (m !! i) → ([∗ map] k↦_ ∈ m, Φ k) ⊢ Φ i.
Proof. intros [x ?]. by eapply (big_sepM_lookup (λ i x, Φ i)). Qed.
Lemma big_sepM_singleton Φ i x : ([∗ map] k↦y ∈ {[i:=x]}, Φ k y) ⊣⊢ Φ i x.
Proof. by rewrite big_opM_singleton. Qed.
Lemma big_sepM_fmap {B} (f : A → B) (Φ : K → B → PROP) m :
([∗ map] k↦y ∈ f <$> m, Φ k y) ⊣⊢ ([∗ map] k↦y ∈ m, Φ k (f y)).
Proof. by rewrite big_opM_fmap. Qed.
Lemma big_sepM_insert_override Φ m i x x' :
m !! i = Some x → (Φ i x ⊣⊢ Φ i x') →
([∗ map] k↦y ∈ <[i:=x']> m, Φ k y) ⊣⊢ ([∗ map] k↦y ∈ m, Φ k y).
Proof. apply big_opM_insert_override. Qed.
Lemma big_sepM_insert_override_1 Φ m i x x' :
m !! i = Some x →
([∗ map] k↦y ∈ <[i:=x']> m, Φ k y) ⊢
(Φ i x' -∗ Φ i x) -∗ ([∗ map] k↦y ∈ m, Φ k y).
Proof.
intros ?. apply wand_intro_l.
rewrite -insert_delete big_sepM_insert ?lookup_delete //.
by rewrite assoc wand_elim_l -big_sepM_delete.
Qed.
Lemma big_sepM_insert_override_2 Φ m i x x' :
m !! i = Some x →
([∗ map] k↦y ∈ m, Φ k y) ⊢
(Φ i x -∗ Φ i x') -∗ ([∗ map] k↦y ∈ <[i:=x']> m, Φ k y).
Proof.
intros ?. apply wand_intro_l.
rewrite {1}big_sepM_delete //; rewrite assoc wand_elim_l.
rewrite -insert_delete big_sepM_insert ?lookup_delete //.
Qed.
Lemma big_sepM_fn_insert {B} (Ψ : K → A → B → PROP) (f : K → B) m i x b :
m !! i = None →
([∗ map] k↦y ∈ <[i:=x]> m, Ψ k y (<[i:=b]> f k))
⊣⊢ (Ψ i x b ∗ [∗ map] k↦y ∈ m, Ψ k y (f k)).
Proof. apply big_opM_fn_insert. Qed.
Lemma big_sepM_fn_insert' (Φ : K → PROP) m i x P :
m !! i = None →
([∗ map] k↦y ∈ <[i:=x]> m, <[i:=P]> Φ k) ⊣⊢ (P ∗ [∗ map] k↦y ∈ m, Φ k).
Proof. apply big_opM_fn_insert'. Qed.
Lemma big_sepM_sepM Φ Ψ m :
([∗ map] k↦x ∈ m, Φ k x ∗ Ψ k x)
⊣⊢ ([∗ map] k↦x ∈ m, Φ k x) ∗ ([∗ map] k↦x ∈ m, Ψ k x).
Proof. apply big_opM_opM. Qed.
Lemma big_sepM_and Φ Ψ m :
([∗ map] k↦x ∈ m, Φ k x ∧ Ψ k x)
⊢ ([∗ map] k↦x ∈ m, Φ k x) ∧ ([∗ map] k↦x ∈ m, Ψ k x).
Proof. auto using and_intro, big_sepM_mono, and_elim_l, and_elim_r. Qed.
Lemma big_sepM_persistently `{BiAffine PROP} Φ m :
(<pers> ([∗ map] k↦x ∈ m, Φ k x)) ⊣⊢ ([∗ map] k↦x ∈ m, <pers> (Φ k x)).
Proof. apply (big_opM_commute _). Qed.
Lemma big_sepM_forall `{BiAffine PROP} Φ m :
(∀ k x, Persistent (Φ k x)) →
([∗ map] k↦x ∈ m, Φ k x) ⊣⊢ (∀ k x, ⌜m !! k = Some x⌝ → Φ k x).
Proof.
intros. apply (anti_symm _).
{ apply forall_intro=> k; apply forall_intro=> x.
apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepM_lookup. }
induction m as [|i x m ? IH] using map_ind; auto using big_sepM_empty'.
rewrite big_sepM_insert // -persistent_and_sep. apply and_intro.
- rewrite (forall_elim i) (forall_elim x) lookup_insert.
by rewrite pure_True // True_impl.
- rewrite -IH. apply forall_mono=> k; apply forall_mono=> y.
apply impl_intro_l, pure_elim_l=> ?.
rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
by rewrite pure_True // True_impl.
Qed.
Lemma big_sepM_impl Φ Ψ m :
([∗ map] k↦x ∈ m, Φ k x) -∗
□ (∀ k x, ⌜m !! k = Some x⌝ → Φ k x -∗ Ψ k x) -∗
[∗ map] k↦x ∈ m, Ψ k x.
Proof.
apply wand_intro_l. induction m as [|i x m ? IH] using map_ind.
{ by rewrite sep_elim_r. }
rewrite !big_sepM_insert // intuitionistically_sep_dup.
rewrite -assoc [(□ _ ∗ _)%I]comm -!assoc assoc. apply sep_mono.
- rewrite (forall_elim i) (forall_elim x) pure_True ?lookup_insert //.
by rewrite True_impl intuitionistically_elim wand_elim_l.
- rewrite comm -IH /=.
apply sep_mono_l, affinely_mono, persistently_mono, forall_mono=> k.
apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?.
rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
by rewrite pure_True // True_impl.
Qed.
Global Instance big_sepM_empty_persistent Φ :
Persistent ([∗ map] k↦x ∈ ∅, Φ k x).
Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
Global Instance big_sepM_persistent Φ m :
(∀ k x, Persistent (Φ k x)) → Persistent ([∗ map] k↦x ∈ m, Φ k x).
Proof. intros. apply big_sepL_persistent=> _ [??]; apply _. Qed.
Global Instance big_sepM_empty_affine Φ :
Affine ([∗ map] k↦x ∈ ∅, Φ k x).
Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
Global Instance big_sepM_affine Φ m :
(∀ k x, Affine (Φ k x)) → Affine ([∗ map] k↦x ∈ m, Φ k x).
Proof. intros. apply big_sepL_affine=> _ [??]; apply _. Qed.
End gmap.
(** ** Big ops over finite sets *)
Section gset.
Context `{Countable A}.
Implicit Types X : gset A.
Implicit Types Φ : A → PROP.
Lemma big_sepS_mono Φ Ψ X :
(∀ x, x ∈ X → Φ x ⊢ Ψ x) →
([∗ set] x ∈ X, Φ x) ⊢ [∗ set] x ∈ X, Ψ x.
Proof. intros. apply big_opS_forall; apply _ || auto. Qed.
Lemma big_sepS_proper Φ Ψ X :
(∀ x, x ∈ X → Φ x ⊣⊢ Ψ x) →
([∗ set] x ∈ X, Φ x) ⊣⊢ ([∗ set] x ∈ X, Ψ x).
Proof. apply big_opS_proper. Qed.
Lemma big_sepS_subseteq `{BiAffine PROP} Φ X Y :
Y ⊆ X → ([∗ set] x ∈ X, Φ x) ⊢ [∗ set] x ∈ Y, Φ x.
Proof. intros. by apply big_sepL_submseteq, elements_submseteq. Qed.
Global Instance big_sepS_mono' :
Proper (pointwise_relation _ (⊢) ==> (=) ==> (⊢)) (big_opS (@bi_sep PROP) (A:=A)).
Proof. intros f g Hf m ? <-. by apply big_sepS_mono. Qed.
Lemma big_sepS_empty Φ : ([∗ set] x ∈ ∅, Φ x) ⊣⊢ emp.
Proof. by rewrite big_opS_empty. Qed.
Lemma big_sepS_empty' `{!BiAffine PROP} P Φ : P ⊢ [∗ set] x ∈ ∅, Φ x.
Proof. rewrite big_sepS_empty. apply: affine. Qed.
Lemma big_sepS_insert Φ X x :
x ∉ X → ([∗ set] y ∈ {[ x ]} ∪ X, Φ y) ⊣⊢ (Φ x ∗ [∗ set] y ∈ X, Φ y).
Proof. apply big_opS_insert. Qed.
Lemma big_sepS_fn_insert {B} (Ψ : A → B → PROP) f X x b :
x ∉ X →
([∗ set] y ∈ {[ x ]} ∪ X, Ψ y (<[x:=b]> f y))
⊣⊢ (Ψ x b ∗ [∗ set] y ∈ X, Ψ y (f y)).
Proof. apply big_opS_fn_insert. Qed.
Lemma big_sepS_fn_insert' Φ X x P :
x ∉ X → ([∗ set] y ∈ {[ x ]} ∪ X, <[x:=P]> Φ y) ⊣⊢ (P ∗ [∗ set] y ∈ X, Φ y).
Proof. apply big_opS_fn_insert'. Qed.
Lemma big_sepS_union Φ X Y :
X ## Y →
([∗ set] y ∈ X ∪ Y, Φ y) ⊣⊢ ([∗ set] y ∈ X, Φ y) ∗ ([∗ set] y ∈ Y, Φ y).
Proof. apply big_opS_union. Qed.
Lemma big_sepS_delete Φ X x :
x ∈ X → ([∗ set] y ∈ X, Φ y) ⊣⊢ Φ x ∗ [∗ set] y ∈ X ∖ {[ x ]}, Φ y.
Proof. apply big_opS_delete. Qed.
Lemma big_sepS_elem_of Φ X x `{!Absorbing (Φ x)} :
x ∈ X → ([∗ set] y ∈ X, Φ y) ⊢ Φ x.
Proof. intros. rewrite big_sepS_delete //. by rewrite sep_elim_l. Qed.
Lemma big_sepS_elem_of_acc Φ X x :
x ∈ X →
([∗ set] y ∈ X, Φ y) ⊢ Φ x ∗ (Φ x -∗ ([∗ set] y ∈ X, Φ y)).
Proof.
intros. rewrite big_sepS_delete //. by apply sep_mono_r, wand_intro_l.
Qed.
Lemma big_sepS_singleton Φ x : ([∗ set] y ∈ {[ x ]}, Φ y) ⊣⊢ Φ x.
Proof. apply big_opS_singleton. Qed.
Lemma big_sepS_filter' (P : A → Prop) `{∀ x, Decision (P x)} Φ X :
([∗ set] y ∈ filter P X, Φ y)
⊣⊢ ([∗ set] y ∈ X, if decide (P y) then Φ y else emp).
Proof.
induction X as [|x X ? IH] using collection_ind_L.
{ by rewrite filter_empty_L !big_sepS_empty. }
destruct (decide (P x)).
- rewrite filter_union_L filter_singleton_L //.
rewrite !big_sepS_insert //; last set_solver.
by rewrite decide_True // IH.
- rewrite filter_union_L filter_singleton_not_L // left_id_L.
by rewrite !big_sepS_insert // decide_False // IH left_id.
Qed.
Lemma big_sepS_filter_acc' (P : A → Prop) `{∀ y, Decision (P y)} Φ X Y :
(∀ y, y ∈ Y → P y → y ∈ X) →
([∗ set] y ∈ X, Φ y) -∗
([∗ set] y ∈ Y, if decide (P y) then Φ y else emp) ∗
(([∗ set] y ∈ Y, if decide (P y) then Φ y else emp) -∗ [∗ set] y ∈ X, Φ y).
Proof.
intros ?. destruct (proj1 (subseteq_disjoint_union_L (filter P Y) X))
as (Z&->&?); first set_solver.
rewrite big_sepS_union // big_sepS_filter'.
by apply sep_mono_r, wand_intro_l.
Qed.
Lemma big_sepS_filter `{BiAffine PROP}
(P : A → Prop) `{∀ x, Decision (P x)} Φ X :
([∗ set] y ∈ filter P X, Φ y) ⊣⊢ ([∗ set] y ∈ X, ⌜P y⌝ → Φ y).
Proof. setoid_rewrite <-decide_emp. apply big_sepS_filter'. Qed.
Lemma big_sepS_filter_acc `{BiAffine PROP}
(P : A → Prop) `{∀ y, Decision (P y)} Φ X Y :
(∀ y, y ∈ Y → P y → y ∈ X) →
([∗ set] y ∈ X, Φ y) -∗
([∗ set] y ∈ Y, ⌜P y⌝ → Φ y) ∗
(([∗ set] y ∈ Y, ⌜P y⌝ → Φ y) -∗ [∗ set] y ∈ X, Φ y).
Proof. intros. setoid_rewrite <-decide_emp. by apply big_sepS_filter_acc'. Qed.
Lemma big_sepS_sepS Φ Ψ X :
([∗ set] y ∈ X, Φ y ∗ Ψ y) ⊣⊢ ([∗ set] y ∈ X, Φ y) ∗ ([∗ set] y ∈ X, Ψ y).
Proof. apply big_opS_opS. Qed.
Lemma big_sepS_and Φ Ψ X :
([∗ set] y ∈ X, Φ y ∧ Ψ y) ⊢ ([∗ set] y ∈ X, Φ y) ∧ ([∗ set] y ∈ X, Ψ y).
Proof. auto using and_intro, big_sepS_mono, and_elim_l, and_elim_r. Qed.
Lemma big_sepS_persistently `{BiAffine PROP} Φ X :
<pers> ([∗ set] y ∈ X, Φ y) ⊣⊢ [∗ set] y ∈ X, <pers> (Φ y).
Proof. apply (big_opS_commute _). Qed.
Lemma big_sepS_forall `{BiAffine PROP} Φ X :
(∀ x, Persistent (Φ x)) → ([∗ set] x ∈ X, Φ x) ⊣⊢ (∀ x, ⌜x ∈ X⌝ → Φ x).
Proof.
intros. apply (anti_symm _).
{ apply forall_intro=> x.
apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepS_elem_of. }
induction X as [|x X ? IH] using collection_ind_L; auto using big_sepS_empty'.
rewrite big_sepS_insert // -persistent_and_sep. apply and_intro.
- by rewrite (forall_elim x) pure_True ?True_impl; last set_solver.
- rewrite -IH. apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?.
by rewrite pure_True ?True_impl; last set_solver.
Qed.
Lemma big_sepS_impl Φ Ψ X :
([∗ set] x ∈ X, Φ x) -∗
□ (∀ x, ⌜x ∈ X⌝ → Φ x -∗ Ψ x) -∗
[∗ set] x ∈ X, Ψ x.
Proof.
apply wand_intro_l. induction X as [|x X ? IH] using collection_ind_L.
{ by rewrite sep_elim_r. }
rewrite !big_sepS_insert // intuitionistically_sep_dup.
rewrite -assoc [(□ _ ∗ _)%I]comm -!assoc assoc. apply sep_mono.
- rewrite (forall_elim x) pure_True; last set_solver.
by rewrite True_impl intuitionistically_elim wand_elim_l.
- rewrite comm -IH /=. apply sep_mono_l, affinely_mono, persistently_mono.
apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?.
by rewrite pure_True ?True_impl; last set_solver.
Qed.
Global Instance big_sepS_empty_persistent Φ :
Persistent ([∗ set] x ∈ ∅, Φ x).
Proof. rewrite /big_opS elements_empty. apply _. Qed.
Global Instance big_sepS_persistent Φ X :
(∀ x, Persistent (Φ x)) → Persistent ([∗ set] x ∈ X, Φ x).
Proof. rewrite /big_opS. apply _. Qed.
Global Instance big_sepS_empty_affine Φ : Affine ([∗ set] x ∈ ∅, Φ x).
Proof. rewrite /big_opS elements_empty. apply _. Qed.
Global Instance big_sepS_affine Φ X :
(∀ x, Affine (Φ x)) → Affine ([∗ set] x ∈ X, Φ x).
Proof. rewrite /big_opS. apply _. Qed.
End gset.
Lemma big_sepM_dom `{Countable K} {A} (Φ : K → PROP) (m : gmap K A) :
([∗ map] k↦_ ∈ m, Φ k) ⊣⊢ ([∗ set] k ∈ dom _ m, Φ k).
Proof. apply big_opM_dom. Qed.
(** ** Big ops over finite multisets *)
Section gmultiset.
Context `{Countable A}.
Implicit Types X : gmultiset A.
Implicit Types Φ : A → PROP.
Lemma big_sepMS_mono Φ Ψ X :
(∀ x, x ∈ X → Φ x ⊢ Ψ x) →
([∗ mset] x ∈ X, Φ x) ⊢ [∗ mset] x ∈ X, Ψ x.
Proof. intros. apply big_opMS_forall; apply _ || auto. Qed.
Lemma big_sepMS_proper Φ Ψ X :
(∀ x, x ∈ X → Φ x ⊣⊢ Ψ x) →
([∗ mset] x ∈ X, Φ x) ⊣⊢ ([∗ mset] x ∈ X, Ψ x).
Proof. apply big_opMS_proper. Qed.
Lemma big_sepMS_subseteq `{BiAffine PROP} Φ X Y :
Y ⊆ X → ([∗ mset] x ∈ X, Φ x) ⊢ [∗ mset] x ∈ Y, Φ x.
Proof. intros. by apply big_sepL_submseteq, gmultiset_elements_submseteq. Qed.
Global Instance big_sepMS_mono' :
Proper (pointwise_relation _ (⊢) ==> (=) ==> (⊢)) (big_opMS (@bi_sep PROP) (A:=A)).
Proof. intros f g Hf m ? <-. by apply big_sepMS_mono. Qed.
Lemma big_sepMS_empty Φ : ([∗ mset] x ∈ ∅, Φ x) ⊣⊢ emp.
Proof. by rewrite big_opMS_empty. Qed.
Lemma big_sepMS_empty' `{!BiAffine PROP} P Φ : P ⊢ [∗ mset] x ∈ ∅, Φ x.
Proof. rewrite big_sepMS_empty. apply: affine. Qed.
Lemma big_sepMS_union Φ X Y :
([∗ mset] y ∈ X ∪ Y, Φ y) ⊣⊢ ([∗ mset] y ∈ X, Φ y) ∗ [∗ mset] y ∈ Y, Φ y.
Proof. apply big_opMS_union. Qed.
Lemma big_sepMS_delete Φ X x :
x ∈ X → ([∗ mset] y ∈ X, Φ y) ⊣⊢ Φ x ∗ [∗ mset] y ∈ X ∖ {[ x ]}, Φ y.
Proof. apply big_opMS_delete. Qed.
Lemma big_sepMS_elem_of Φ X x `{!Absorbing (Φ x)} :
x ∈ X → ([∗ mset] y ∈ X, Φ y) ⊢ Φ x.
Proof. intros. rewrite big_sepMS_delete //. by rewrite sep_elim_l. Qed.
Lemma big_sepMS_elem_of_acc Φ X x :
x ∈ X →
([∗ mset] y ∈ X, Φ y) ⊢ Φ x ∗ (Φ x -∗ ([∗ mset] y ∈ X, Φ y)).
Proof.
intros. rewrite big_sepMS_delete //. by apply sep_mono_r, wand_intro_l.
Qed.
Lemma big_sepMS_singleton Φ x : ([∗ mset] y ∈ {[ x ]}, Φ y) ⊣⊢ Φ x.
Proof. apply big_opMS_singleton. Qed.
Lemma big_sepMS_sepMS Φ Ψ X :
([∗ mset] y ∈ X, Φ y ∗ Ψ y) ⊣⊢ ([∗ mset] y ∈ X, Φ y) ∗ ([∗ mset] y ∈ X, Ψ y).
Proof. apply big_opMS_opMS. Qed.
Lemma big_sepMS_and Φ Ψ X :
([∗ mset] y ∈ X, Φ y ∧ Ψ y) ⊢ ([∗ mset] y ∈ X, Φ y) ∧ ([∗ mset] y ∈ X, Ψ y).
Proof. auto using and_intro, big_sepMS_mono, and_elim_l, and_elim_r. Qed.
Lemma big_sepMS_persistently `{BiAffine PROP} Φ X :
<pers> ([∗ mset] y ∈ X, Φ y) ⊣⊢ [∗ mset] y ∈ X, <pers> (Φ y).
Proof. apply (big_opMS_commute _). Qed.
Global Instance big_sepMS_empty_persistent Φ :
Persistent ([∗ mset] x ∈ ∅, Φ x).
Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed.
Global Instance big_sepMS_persistent Φ X :
(∀ x, Persistent (Φ x)) → Persistent ([∗ mset] x ∈ X, Φ x).
Proof. rewrite /big_opMS. apply _. Qed.
Global Instance big_sepMS_empty_affine Φ : Affine ([∗ mset] x ∈ ∅, Φ x).
Proof. rewrite /big_opMS gmultiset_elements_empty. apply _. Qed.
Global Instance big_sepMS_affine Φ X :
(∀ x, Affine (Φ x)) → Affine ([∗ mset] x ∈ X, Φ x).
Proof. rewrite /big_opMS. apply _. Qed.
End gmultiset.
End bi_big_op.
(** * Properties for step-indexed BIs*)
Section sbi_big_op.
Context {PROP : sbi}.
Implicit Types Ps Qs : list PROP.
Implicit Types A : Type.
(** ** Big ops over lists *)
Section list.
Context {A : Type}.
Implicit Types l : list A.
Implicit Types Φ Ψ : nat → A → PROP.
Lemma big_sepL_later `{BiAffine PROP} Φ l :
▷ ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, ▷ Φ k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_sepL_later_2 Φ l :
([∗ list] k↦x ∈ l, ▷ Φ k x) ⊢ ▷ [∗ list] k↦x ∈ l, Φ k x.
Proof. by rewrite (big_opL_commute _). Qed.
Lemma big_sepL_laterN `{BiAffine PROP} Φ n l :
▷^n ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ ([∗ list] k↦x ∈ l, ▷^n Φ k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_sepL_laterN_2 Φ n l :
([∗ list] k↦x ∈ l, ▷^n Φ k x) ⊢ ▷^n [∗ list] k↦x ∈ l, Φ k x.
Proof. by rewrite (big_opL_commute _). Qed.
Global Instance big_sepL_nil_timeless `{!Timeless (emp%I : PROP)} Φ :
Timeless ([∗ list] k↦x ∈ [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_sepL_timeless `{!Timeless (emp%I : PROP)} Φ l :
(∀ k x, Timeless (Φ k x)) → Timeless ([∗ list] k↦x ∈ l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
Global Instance big_sepL_timeless_id `{!Timeless (emp%I : PROP)} Ps :
TCForall Timeless Ps → Timeless ([∗] Ps).
Proof. induction 1; simpl; apply _. Qed.
Section plainly.
Context `{!BiPlainly PROP}.
Lemma big_sepL_plainly `{!BiAffine PROP} Φ l :
■ ([∗ list] k↦x ∈ l, Φ k x) ⊣⊢ [∗ list] k↦x ∈ l, ■ (Φ k x).
Proof. apply (big_opL_commute _). Qed.
Global Instance big_sepL_nil_plain `{!BiAffine PROP} Φ :
Plain ([∗ list] k↦x ∈ [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_sepL_plain `{!BiAffine PROP} Φ l :
(∀ k x, Plain (Φ k x)) → Plain ([∗ list] k↦x ∈ l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
Lemma big_andL_plainly Φ l :
■ ([∧ list] k↦x ∈ l, Φ k x) ⊣⊢ [∧ list] k↦x ∈ l, ■ (Φ k x).
Proof. apply (big_opL_commute _). Qed.
Global Instance big_andL_nil_plain Φ :
Plain ([∧ list] k↦x ∈ [], Φ k x).
Proof. simpl; apply _. Qed.
Global Instance big_andL_plain Φ l :
(∀ k x, Plain (Φ k x)) → Plain ([∧ list] k↦x ∈ l, Φ k x).
Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
End plainly.
End list.
Section list2.
Context {A B : Type}.
Implicit Types Φ Ψ : nat → A → B → PROP.
Lemma big_sepL2_later_2 Φ l1 l2 :