-
Notifications
You must be signed in to change notification settings - Fork 0
/
PacDev.tex
921 lines (603 loc) · 29 KB
/
PacDev.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
%\documentclass[handout, 8pt]{beamer}
\documentclass[8pt]{beamer}
%\usetheme{Singapore}
%\usefonttheme{serif}
\input{preambleBeamer.tex}
\usepackage{comment}
\title{The Controlled Choice Design and Paternalism in Pawnshop Borrowing}
\author{Craig McIntosh\inst{1} \and Isaac Meza\inst{2} \and Joyce Sadka\inst{3} \and Enrique Seira\inst{4} \and Francis J. DiTraglia\inst{5} }
\institute[UTran]{\inst{1} UCSD, \inst{2} Harvard , \inst{3} ITAM , \inst{4} MSU , \inst{5} Oxford}
\date{PACDEV, March 2023}
%\setbeamercolor{section in head/foot}{bg=darkcrimsonred}
\setbeamersize{text margin left=11pt, text margin right=11pt}
%\setbeamertemplate{section in toc}[square]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\begin{frame}[c, noframenumbering]%{\phantom{title page}}
% The \phantom{title page} is a kludge to get the red bar on top
\titlepage
\end{frame}
\section{Motivation}
\begin{frame}{Motivation: Private paternalism}
\begin{itemize}
\item Many institutions —firms, schools, financial contracts— restrict choice using built-in commitment mechanisms which help workers, students, borrowers overcome self-control problems
\begin{itemize}
\item Loans with fixed repayment schemes, homework due dates, etc.
\end{itemize}
\item At the same time these firms hide these forcing mechanisms and don’t market their commitment features, potentially because demand for them is low.
\item Laibson (2018) argues that clients that benefit from commitment may underestimate its value, and that in such cases private paternalism (i.e. allocating them to commitment) could be beneficial.
\item \textbf{We study the (a) benefits of imposing a structured repayment contract on financing cost, (b) whether there is demand for such structure, and (c) whether non-takers of such a commitment product would benefit from taking it.}
\end{itemize}
\end{frame}
\begin{frame}{Context}
\begin{itemize}
\item Pawn loans involve borrowers leaving valuable liquid assets as collateral in exchange for an immediate cash loan
\item The loan is overcollateralized (loan is 70\% of appraised value) and collateral is liquid.
\begin{itemize}
\item The lender approves loans in a few minutes without income or credit history check $\rightarrow$ used for emergencies.
\end{itemize}
\item Because the loan is overcollateralized and collateral is liquid, the lender may gain if the borrower defaults on the loan, especially if the borrower pays towards recovery on the way to default.
\item Among those that lose their pawn (44\%), 48\% paid a positive amount towards its recovery and on average paid 42\% of loan.
\item This happens in spite (or because?) of 74\% of borrowers reporting a 100\% subjective probability recovery ex-ante.
%\vfill \item 13\% of borrowers are classified as present biased using the simple standard question.
\item In such an environment, one may ask if putting more structure/committment in payments may help borrowers recover their pawn.
\item Not only that: Will the structure/commitment be demanded by all (or most) people who benefit?
\end{itemize}
\end{frame}
\section{Context}
\begin{frame}{Context}
\begin{columns}
\begin{column}{.45\textwidth}
\begin{figure}[H]
\begin{center}
\caption{Pawnshop}
\includegraphics[width=0.95\textwidth]{Figuras/empenio2_.png}
\end{center}
\end{figure}
\begin{figure}[H]
\begin{center}
\caption{Appraisers inside a pawnshop}
\includegraphics[width=0.95\textwidth]{Figuras/empenio9_.png}
\end{center}
\end{figure}
\end{column}
\begin{column}{.45\textwidth}
\begin{figure}[H]
\begin{center}
\caption{Waiting for appraisal}
\includegraphics[width=0.95\textwidth]{Figuras/empenio11_.png}
\end{center}
\end{figure}
\begin{figure}[H]
\begin{center}
\caption{Lost pawns which are for sale}
\includegraphics[width=0.95\textwidth]{Figuras/empenio3_.png}
\end{center}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\section{Contribution}
\begin{frame}{Methodological Contribution}
\begin{itemize}
%\vfill \item A context of particular interest to behavioral literature: the demand for commitment in financial contracts (Laibson 1997, Bryan et al. 2010), and many more.
\vfill \item Key quantity in debate about paternalism: impacts on those who wouldn't elect to take the program versus impacts on those that do. \begin{itemize}
\item Oreopoulos 2006: effect of mandatory high school laws.
\item Fowlie et al. 2021: defaulting customers into variable electricity pricing.
\end{itemize}
%How do treatment effects relate to selection?
%Broadly speaking there are two approaches: the structural approach and the reduced form approach.
%The structural approach combines instruments with a generalized Roy model and uses behavioral and statistical restrictions to extrapolate the causal effects for different sub-populations
%The structural approach allows both selection on unobservables and selection on gains at the cost of modeling these channels. In contrast, the reduced form approach assumes that there is no selection on gains after conditioning on a set of covariates
\vfill \item Large literature TE heterogeneity: \begin{itemize}
\item LATE-and-reweight: Aronow \& Carnegie (2013); Angrist \& Fernandez Val (2013). \alert{Assume no selection on gains}
\item Structurally model selection: Walters (2018) \alert{Need their parametric models to be correct}.
%TUT and ATE implied by LATE-and-re-weight differ sharply from his model-based estimates
\item MTE: Heckman \& Vytlacil MTE; Cornelissen et. al. (2018). \alert{Need instrumental variable with rich support, and separability of observed and unobserved determinants of TE.}
%\item Brinch et. al. (2017) - discrete $Z$ but under some additivity restrictions on the MTE curve
%\item Mogstad, Santos \& Torgovitsky (2018) - No parametric form assumption on MTE curve but only partial identification.
\end{itemize}
\vfill \item Our ``Controlled Choice'' design point identifies a number of relevant TE with mild assumptions
\begin{itemize}
\item Because we have two forcing-arms and a choice arm, we can use one IV to get at ToT, and a second IV to get at TuT.
\end{itemize}
\vfill \item Consider winners and losers from paternalism.
% \vfill \pause \item Three-arm design: Control, Choice (voluntary takeup=ITT), Forcing (universal=ATE). We illustrate how to use standard exclusion restrictions to point identify:
% \begin{itemize}
% \item Treatment on the Treated (ToT) and
% \item Treatment on the Untreated (TUT), also
% \item Average Selection on Gains, Average Selection Bias, and Average Selection on Levels
% \end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Treatment arms}
\label{treatment_arms}
\begin{itemize}
\vfill \item Randomization at the branch-day level. Analysis at the pawn level.
\begin{itemize}
\vfill \item Control arm (1770 obs)
\vfill \item Forced Commitment arm (1954 obs)
\vfill \item Choice Commitment arm (2580 obs)
\end{itemize}
\vfill \item The existence of a choice arm allows us not only to measure if there is demand for such a contract, but who demands it, not only in demographic terms, but in terms of potential treatment effects (which include unobservables).
\vfill \item This design is innovative and critical for our purposes, as it enables us to explore whether or not forcing people into a structured payment contract could be more beneficial than allowing choice for a significant fraction of them.
\end{itemize}
\end{frame}
\begin{frame}{Data}
\label{data}
\begin{itemize}
\item Administrative data: 1 month before and 8 months after the experiment ended
\begin{itemize}
\item Unique identifier for each client and each pawn.
\item Value of the item, money loaned (70\%), date of pawning
\item For all payments: date and amounts
\item Fees incurred
\item Whether the client lost the pawn, renewed the contract
\end{itemize}
\vfill \item Survey data
\begin{itemize}
\item During experiment, we asked clients to complete a 5-minute survey before going to the teller window to appraise their piece and before treatment status was known to them.
\item Demographics, proxies for income/wealth, education, present-biased preferences, experience pawning, if family or friends commonly asked for money, cost of going to branch, the subjective probability of recovering, the subjective value, etc.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Main outcomes: financial cost and default}
\label{fc_outcome}
\begin{itemize}
\item We are interested in measuring the financial cost of borrowing, which very saliently includes the cost of defaulting on the loan and losing the pawn.
\item We will measure loan default using an indicator $\mathds{1}(\text{Default}_i)$, and the cost in pesos using the following definition that capture borrower outlays:
\end{itemize}
\begin{align*}
\text{Financial Cost}_i =& \sum_t P^I_{it} +\sum_t P^F_{it}
+ \mathds{1}(\text{Default}_i) \times \left(\text{Value}_i-\text{Loan}_i + \sum_t P^c_{it}\right)
\end{align*}
\vspace{.2in}
\: \: \: \: APR: equivalent yearly interest generated by sum of payments:
\begin{equation*}
(\text{APR})_i =\left( 1 + \frac{\frac{\text{Financial Cost}_i}{\text{Loan Value}_i}}{\text{loan term}_i}\right)^{\text{loan term}_i}-1
\end{equation*}
\vspace{.2in}
\begin{itemize}
\item We \alert{will not talk about welfare}, only financial cost.
\begin{itemize}
\item Welfare would depend on reduced liquidity, anxiety from monthly payments, cost of going to branch, etc. We don't observe these.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Experimental integrity}
\label{experimental_integrity}
\begin{table}[H]
\caption{Attrition table}
\label{attrition_table}
\begin{center}
\small{\input{./Tables/Attrition.tex}}
\end{center}
\end{table}
\end{frame}
\section{Main Results}
\begin{frame}{Main results: ITT}
\label{main_results}
\begin{itemize}
\item Takeup of commitment in Choice arm is only 11\%.
\item Financial cost reduced by \$204 pesos (20\% of mean). That is: charging fee + structure \textit{decreased} cost.
\item Default decreases by 6.5pp (15\% of mean), APR decreases by 11 points, from mean of 57\%.
\end{itemize}
\vspace{.3in}
\begin{table}[H]
\begin{center}
\resizebox{0.95\textwidth}{!}{
\small{\input{./Tables/decomposition_main_te.tex}}
}
\end{center}
\end{table}
\vfill
%\hyperlink{several_def_cost}{\beamerbutton{More}}
\end{frame}
\begin{frame}{Intermediate outcomes (1)}
\label{mechanism_appendix}
\begin{table}[H]
\caption{Intermediate outcomes}
\begin{center}
\scriptsize{\input{./Tables/mechanism_pres1.tex}}
\end{center}
\end{table}
\vfill
%\hyperlink{intermediate_outcomes}{\beamerbutton{Back}}
\begin{itemize}
\item \textbf{Speed of payment:} The first payment of the forced commitment contract occurs 14 days earlier, increasing the fraction who recover on the first visit by 7.9 pp. Conditional on recovering, they recover 28 days faster.
\end{itemize}
\end{frame}
\begin{frame}{Intermediate outcomes (2)}
\begin{table}[H]
\caption{Intermediate outcomes}
\begin{center}
\footnotesize{\input{./Tables/mechanism_pres2.tex}}
\end{center}
\end{table}
%\hyperlink{intermediate_outcomes}{\beamerbutton{Back}}
\vfill \item \textbf{Separating those who will not pay:} Commitment contract decreases fraction of borrowers making a payment and \textit{not} recovering by 7pp.
\begin{itemize}
\item Actually, among those that default, those in the forced commitment arm are 14pp less likely to have paid towards recovery. They also visit the branch less: as if the commitment contract makes them realize they will end up losing pawn anyway, and stop paying early on.
\end{itemize}
\end{frame}
%\begin{frame}{Intermediate outcomes: forced-commitment}
%\label{intermediate_outcomes}
% \begin{itemize}
% \item \vfill \textbf{Speed of payment:} The first payment of the forced commitment contract occurs 13 days earlier, increasing the fraction who recover on the first visit by 7.9 pp. Conditional on recovering, they recover 28 days faster.
% \item \vfill \textbf{Separating those who will not pay:} Commitment contract decreases fraction of borrowers making a payment and \textit{not} recovering by 7pp.
% \begin{itemize}
% \item Actually, among those that default, those in the forced commitment arm are 14pp less likely to have paid towards recovery. They also visit the branch less: as if the commitment contract makes them realize they will end up losing pawn anyway, and stop paying early on.
%\end{itemize}
%\end{itemize}
% \vfill
% \hyperlink{mechanism_appendix}{\beamerbutton{Details}}
%\end{frame}
\begin{frame}{Using a Double Exclusion Restriction}
Our 3-armed experiment + dual exclusion restriction allows us to estimate:
\begin {itemize}
\item Treatment Effect on the Treated (ToT), as with standard IV on one-sided non-compliance.
\item Treatment on the Untreated (TUT), symmetric instrumentation for \textit{not} complying as compared to forcing arm.
\end{itemize}
\vspace{.2in}
Assumptions:
\begin{itemize}
\item $Z \independent (Y_0,Y_1,C)$, achieved by randomization
\item $D = \mathbbm{1}(Z_i \neq 2) Z + \mathbbm{1}(Z_i=2) C$, i.e. \alert{being assigned to a contract has same effect as choosing it} (e.g. used in compulsory school attendance and returns to schooling lit).
\end{itemize}
\vspace{.2in}
Prop:
\begin{itemize}
\item ToT := $\mathbbm{E}(Y_{i1} - Y_{i0} | C_i = 1)$ is point-identified, and equals $\frac{\mathbbm{E}(Y_i|Z_i=2) - \mathbbm{E}(Y_i|Z_i =0)}{\mathbbm{E}(D_i|Z_i=2)} $
\item TuT := $\mathbbm{E}(Y_{i1} - Y_{i0} | C_i = 0)$ is point-identified, and equals $\frac{\mathbbm{E}(Y_i|Z_i=1) - \mathbbm{E}(Y_i|Z_i =2)}{1-\mathbbm{E}(D_i|Z_i=2)} $
\item Also identified:
\begin{itemize}
\item Average Selection on Gains $ASG:=ToT-TuT$
\item Average Selection Bias $ASB:= \E[Y_0 | C=1]-\E[Y_0 | C=0]$
\item Average Selection on Levels $ASL:= \E[Y_1 | C=1]-\E[Y_1 | C=0]$
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{The ``Controlled Choice'' Design}
\label{cc_design}
\begin{itemize}
\item Recall that under one-sided non-compliance (no always-takers), LATE=ToT.
\end{itemize}
\vspace{.2in}
\begin{figure}[H]
\begin{center}
\centering
\includegraphics[width=1.0\textwidth]{Figuras/tot_tut_intuition.png}
\end{center}
\end{figure}
\vfill
%\hyperlink{identification_randomized_choice}{\beamerbutton{Identification}}
\end{frame}
\begin{frame}{On avg. those that do not choose would benefit: TuT $>$ 0}
\begin{itemize}
\vfill \item Commitment increases financial benefit even for borrowers who don't choose it.
\vfill \item APR, FC ToT>TuT, but cannot reject equality due to large s.e. in ToT.
\end{itemize}
\vspace{.2in}
\begin{table}[H]
%those who are most likely to benefit from it and those whose outcomes are most adverse under the status quo.
\label{tot_tut}
\begin{center}
\small{\input{./Tables/tot_tut.tex}}
\end{center}
\end{table}
\end{frame}
% Despite substantial treatment effect heterogeneity, most borrowers would experience higher financial benefits under a commitment contract : $F_{\operatorname{TUT}}^{-1}(0.72)>0$
\begin{frame}{If commitment works, why don't people choose it?}
\begin{itemize}
\onslide<1>{\item Need to learn about it}
\onslide<2>{\item Discounting}
\onslide<3>{\item Present-Bias}
\end{itemize}
\vfill
\only<1>{
\textbf{Do people learn from Forced exposure to the program that they benefit from it? }
\vspace{.1in}
\begin{itemize}
\item Small sample (small power): focus on those that, after being either forced to commitment contract or to status quo, come back within a few months and are subject to choice arm.
\vspace{.1in}
\item \textbf{No learning?} We don't find that being forced to the commitment contract makes them more likely to voluntarily chose commitment later.
%\vfill \item Are people learning? \hyperlink{learning_table}{\beamerbutton{Table}}
\end{itemize}
\vspace{.2in}
\begin{table}[H]
\begin{center}
\small{\input{./Tables/learning_exp.tex}}
\end{center}
\end{table}
%\hyperlink{learning}{\beamerbutton{Back}}
}
\vfill
\only<2>{
\textbf{Can impatience explain why not take up a contract that decreases overall cost?}
\begin{figure}[H]
\caption{Financial cost for different discount rates}
\label{fc_discount_rates}
\begin{center}
\centering
\includegraphics[width=0.50\textwidth]{Figuras/discount_effect_tut.pdf}
\end{center}
\end{figure}
\begin{itemize}
\item Commitment contract imposes up-front costs for later benefits (collateral recovery).
\item Requires an interest rate > 4,000\% to make NPV TuT insignificant.
\end{itemize}
}
\only<3>{
\textbf{Standard behavioral angle:} compliers are sophisticated time-inconsistent, non-compliers are a mix of naifs and the time consistent (who don't need commitment).
\begin{figure}[H]
\begin{center}
\centering
\includegraphics[width=0.65\textwidth]{Figuras/hyperbolicity_strata.png}
\end{center}
\end{figure}
\begin{itemize}
\item We have a survey measure of time inconsistency taken at baseline.
\item Effect of forcing commitment should be entirely among the time-inconsistent. Is this true? No, but PB measure may not be good.
\end{itemize}
}
\end{frame}
\begin{frame}{Possible Behavioral explanations : TuT \& ToT by groups}
\begin{itemize}
\item The TuT effect is concentrated on those that say they have 100\% of recovery. This is what we would expect if the Sure-confident don't demand because they think they don't need it (but are wrong).
\item Also on those with no PB (as measured by us).
\end{itemize}
\begin{figure}[H]
\caption{TuT}
\includegraphics[width=0.5\textwidth]{Figuras/tut_beh_partition.pdf}
\end{figure}
\end{frame}
\begin{frame}{Understanding Heterogeneity with a Causal Forest}
\label{HTE}
\begin{itemize}
\item We use (Athey et.al. 2019) GRF to estimate CATE (causal RF), CTUT and CTOT (instrumental RF).
\end{itemize}
\begin{figure}
% \label{choose_wrong}
\caption{Mistakes in choice arm}
\centering
\includegraphics[width=0.65\textwidth]{Figuras/line_cw_apr_tot_tut.pdf}
\end{figure}
\begin{itemize}
\item Use Random Forest to estimate ToT, TUT conditional on covariates.
\item Those making either choice make mistakes if benefit of other choice is higher.
\item $>$ 70\% of non-choosers would have seen some benefit from assignment to commitment.
\item $<$ 20\% of choosers made a mistake.
\end{itemize}
\end{frame}
\begin{frame}{How well can we target paternalism?}
\begin{itemize}
\item Why be paternalistic to everyone if we have a strong ability to predict those who lose and we can assign them to control?
\vspace{.2in}
\item Standard targeting analysis, except need to consider covariates carefully given context.
\item Private sector lender, competitive market, part of attraction of pawning is no application!
\begin{itemize}
\item Only use readily observable and non-falsifiable covariates.
\item Cannot use any behavioral covariates for which truthful reporting becomes non-incentive-compatible if incentivized.
\item Cannot use choice and then compel compliance among non-choosers in a commercial context.
\end{itemize}
\vspace{.2in}
\item Which leaves us with:
\begin{itemize}
\item Age
\item Gender
\item HS Education or above
\item Ever pawned before
\end{itemize}
\vspace{.2in}
\item We call these our `narrow' targeting criteria, while the full set of covariates used in the RF are `wide'.
\end{itemize}
\end{frame}
\begin{frame}{Comparison of Targeting Performance: Hit-Miss Table}
\begin{table}[H]
\caption{Type I \& II errors using targeting narrow rules}
\label{hit_miss_rule}
\begin{center}
\resizebox{0.95\textwidth}{!}{
\small{\input{./Tables/hit_miss_rule.tex}}
}
\end{center}
\end{table}
\begin{itemize}
\item As seen above, even RF with `narrow' variables results in very modest increase in targeting efficiency relative to universal paternalism.
\item Logit performs very poorly because it makes symmetric Type I and Type II errors and hence assigns many to control who would have been better off with commitment.
\item \textbf{Takeaway:} In this context, with these variables, targeting paternalism relatively ineffective.
\end{itemize}
\end{frame}
\section{Conclusion}
\begin{frame}{Conclusion}
\begin{itemize}
\vfill \item Laibson has spoken of `veiled paternalism' in contexts where principals desire reliability; here we have a case of `veiled non-paternalism' where features encouraging default might be embedded.
\vfill \item Novel design to study essential heterogeneity: ``Controlled Choice''
%\begin{itemize}
% \item Combine ``Controlled Choice'' with MTE: Can we extend results of Mogstad et al (2017) to use our ATE, TUT, and TOT as additional inequality restrictions that constrain partial identification bounds for MTEs?
%\end{itemize}
\vfill \item APR reduced by 19\% in the commitment arm
\vfill \item Mystery of low take-up combined with large TuT seems best explained by sure-confidence among pawnshop customers.
\vfill\item Ability to target paternalism using objective covariates is poor; even using RF without cross-validation gains from targeting are small and with logit actually makes things worse.
\vfill \item Suggests mandated commitment-based contract structures in payday/pawnshop loans as a form of pro-poor regulation?
\end{itemize}
\end{frame}
\appendix
\section{Appendix}
\begin{frame}{Appendix}
\vfill \centering APPENDIX
\end{frame}
\begin{frame}{Difference number in pawns}
\[Pawns \: per \: day_{jt} = \alpha_j + \gamma f(t) + \beta_b \mathbbm{1}(t \in MB)_{t} +\beta_a \mathbbm{1}(t \in MA)_{t}\]
\begin{table}[H]
\caption{Number of pawns balance before and after the experiment}
\label{num_pawns_bal}
\begin{center}
\small{\input{./Tables/num_pawns_bal.tex}}
\end{center}
\end{table}
\hyperlink{consort}{\beamerbutton{Back}}
\end{frame}
\begin{frame}{Histogram of payments}
\begin{columns}
\begin{column}{.33\textwidth}
\begin{figure}[H]
\caption{Status-quo}
\begin{center}
\includegraphics[width=\textwidth]{Figuras/hist_payments_sq.pdf}
\end{center}
\end{figure}
\end{column}
\begin{column}{.33\textwidth}
\begin{figure}[H]
\caption{Forced commitment}
\begin{center}
\includegraphics[width=\textwidth]{Figuras/hist_payments_fc.pdf}
\end{center}
\end{figure}
\end{column}
\begin{column}{.33\textwidth}
\begin{figure}[H]
\caption{Choice commitment}
\begin{center}
\includegraphics[width=\textwidth]{Figuras/hist_payments_cc.pdf}
\end{center}
\end{figure}
\end{column}
\end{columns}
\hyperlink{treatment_arms}{\beamerbutton{Back}}
\end{frame}
\begin{frame}{Costs fall from Forcing by multiple measures}
\label{several_def_cost}
\begin{table}[H]
\caption{Effects on several definitions of cost}
\label{table_robustness_fc}
\begin{center}
\resizebox{0.95\textwidth}{!}{
\small{\input{./Tables/fc_robustness.tex}}
}
\end{center}
\scriptsize
%\textit{Do file: } \texttt{fc\_robustness.do}
\end{table}
% \hyperlink{main_results}{\beamerbutton{Back}}
\begin{itemize}
\item \vfill Significantly reduced costs even when we include:
\begin{itemize}
\item Subjective rather than objective value of pawn.
\item Travel costs.
\item Valuing lost liquidity using the interest rate.
\item All three at once.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Do borrowers value Forcing as measured by repeat business?}
\vspace{.2in}
\begin{table}[H]
\begin{center}
\footnotesize{\input{./Tables/repeat_loans.tex}}
\end{center}
\end{table}
\begin{itemize}
\item Client forced into commitment is 20\% more likely to come back again and pawn.
\item Not mechanically from having recovered the pawned, since also pawn other pieces.
\item Not within the life of the loan, but after. So unlikely that is a liquidity story.
\item Conditional on recovery (endogenous), ``effect'' twice as big.
\end{itemize}
\end{frame}
\begin{frame}{Distribution of financial cost (\$MXN)}
\begin{figure}
\centering
\includegraphics[width=.8\textwidth]{Figuras/hist_fc.pdf}
\end{figure}
\hyperlink{fc_outcome}{\beamerbutton{Back}}
\end{frame}
\begin{frame}{Survival Graph}
\label{interpolation_censoring_imp}
\begin{columns}
\begin{column}{.45\textwidth}
\begin{figure}[H]
\begin{center}
\caption{Ended}
\includegraphics[width=1.1\textwidth]{Figuras/survival_graph_ended.pdf}
\end{center}
\end{figure}
\end{column}
\begin{column}{.45\textwidth}
\begin{figure}[H]
\begin{center}
\caption{Recovery}
\includegraphics[width=1.1\textwidth]{Figuras/survival_graph_unpledge.pdf}
\end{center}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Censoring}
\label{censoring}
\begin{table}[H]
\caption{Bounding censoring}
\label{bounding_censoring}
\begin{center}
\resizebox{0.9\textwidth}{!}{
\footnotesize{\input{./Tables/censoring_imp.tex}}
}
\end{center}
\scriptsize
%\textit{Do file: } \texttt{censoring_imp.do, censoring_imp_pr.do}
\end{table}
\end{frame}
\begin{frame}{Interpolation on bounding censoring}
\begin{figure}[H]
\caption{Significance area for Default}
\begin{center}
\includegraphics[width=0.75\textwidth]{Figuras/frontera_sig_def_imp.pdf}
\end{center}
\end{figure}
\hyperlink{main_results}{\beamerbutton{Back}}
\end{frame}
% \begin{frame}{Contract terms}
% \begin{figure}[H]
% \caption{Contract Terms Summary}
% \label{PaperSlip}
% \begin{center}
% \includegraphics[width=0.65\textwidth]{Figuras/TicketLenderP.png}
% \end{center}
% \end{figure}
% \end{frame}
\begin{frame}{Identification of treatment parameters}
\label{identification_randomized_choice}
\begin{equation*}
Y_i = \mathbbm{1}(Z_i =0) Y_{i0} + \mathbbm{1}(Z_i = 1) Y_{i1} + \mathbbm{1}(Z_i = 2) \left[(1 - C_i) Y_{i0} + C_i Y_{i1} \right].
\label{eq:potentialOutcomes}
\end{equation*}
Viewing $Z_i$ as an instrumental variable, the randomized choice design can be interpreted as a \emph{pair} of RCTs, each subject to one-sided non-compliance. \\
\begin{itemize}
\item The first of these compares $Z_i=0$ to $Z_i = 2$. This setting is identical to a ``randomized encouragement'' design in which treatment is only available to those who are encouraged: $Z_i = 2$. Under this interpretation, those with $C_i = 1$ are ``the compliers'' and it follows that
\begin{equation*}
\frac{\mathbbm{E}(Y_i|Z_i=2) - \mathbbm{E}(Y_i|Z_i =0)}{\mathbbm{E}(D_i|Z_i=2)-\mathbbm{E}(D_i|Z_i=0)} = \mathbbm{E}(Y_{i1} - Y_{i0}|C_i = 1)
\label{eq:ToT}
\end{equation*}
\item The second considers $Z_i = 1$ to be the ``encouragement'' and compare the outcomes for these individuals to those with $Z_i = 2$.
\begin{equation*}
\frac{\mathbbm{E}(Y_i|Z_i=1) - \mathbbm{E}(Y_i|Z_i =2)}{\mathbbm{E}(D_i|Z_i=1)-\mathbbm{E}(D_i|Z_i=2)} = \mathbbm{E}(Y_{i1} - Y_{i0} | C_i = 0)
\label{eq:TuT}
\end{equation*}
\item Because non-compliance is one-sided only, LATE=ToT in one case (since treated=compliers+always takers, but there are no always takers, as they cannot take without being assigned) and LATE=TuT in the other.
\end{itemize}
\hyperlink{cc_design}{\beamerbutton{Back}}
\end{frame}
\begin{frame}{Honest Causal Tree construction}
\label{honest_causal_tree}
Given a dataset with an outcome $Y$, covariates $X$, and a randomized condition $T$ that takes on the value of 0 for control and 1 for treatment:
\begin{enumerate}
\item Split the data into subsample $I$ and subsample $J$
\item Train a decision tree on subsample $I$ predicting $Y$ from $X$, with the requirement that each terminal node has at least $k$ observations from each condition in subsample $J$
\item Apply the decision tree constructed on subsample $I$ to subsample $J$
\item At each terminal node, get the mean of predictions for the $T = 1$ cases from subsample $J$ and subtract the mean of predictions for the $T = 0$ cases from subsample $J$; the resulting difference is the estimated treatment effect.
\end{enumerate}
This is then applied to a causal random forest by using bagging or bootstrapping.
\hyperlink{HTE}{\beamerbutton{Back}}\\
\end{frame}
\end{document}