-
Notifications
You must be signed in to change notification settings - Fork 430
/
AllegroHandDextremeADR.yaml
443 lines (394 loc) · 14.4 KB
/
AllegroHandDextremeADR.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# used to create the object
name: AllegroHandADR
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:16384,${...num_envs}}
envSpacing: 0.75
episodeLength: 320 # Not used, but would be 8 sec if resetTime is not set
resetTime: 8 # Max time till reset, in seconds, if a goal wasn't achieved. Will overwrite the episodeLength if is > 0.
enableDebugVis: False
aggregateMode: 1
clipObservations: 50.0
clipActions: 1.0
discreteActions: False
stiffnessScale: 1.0
forceLimitScale: 1.0
useRelativeControl: False
dofSpeedScale: 20.0
use_capped_dof_control: False
max_dof_radians_per_second: 6.2832
max_effort: 0.5
num_success_hold_steps: 0
actionsMovingAverage:
range: [0.15, 0.2]
schedule_steps: 1000_000
#schedule_steps: 300_000
schedule_freq: 500 # schedule every 500 steps for stability
controlFrequencyInv: 2 #2 # 30 Hz #3 # 20 Hz
cubeObsDelayProb: 0.3
maxObjectSkipObs: 2
# Action Delay related
actionDelayProbMax: 0.3
actionLatencyMax: 15
actionLatencyScheduledSteps: 2_000_000
startPositionNoise: 0.01
startRotationNoise: 0.0
resetPositionNoise: 0.03
resetPositionNoiseZ: 0.01
resetRotationNoise: 0.0
resetDofPosRandomInterval: 0.2
resetDofVelRandomInterval: 0.0
startObjectPoseDY: -0.15
startObjectPoseDZ: 0.06
# Random forces applied to the object
forceScale: 2.0
forceProbRange: [0.001, 0.1]
forceDecay: 0.99
forceDecayInterval: 0.08
# Random Adversarial Perturbations
random_network_adversary:
enable: True
# prob: 0.30
weight_sample_freq: 1000 # steps
random_cube_observation:
enable: True
prob: 0.3
# reward -> dictionary
distRewardScale: -10.0
rotRewardScale: 1.0
rotEps: 0.1
actionPenaltyScale: -0.001
actionDeltaPenaltyScale: -0.2 #-0.01
reachGoalBonus: 250
fallDistance: 0.24
fallPenalty: 0.0
objectType: "block" # can be block, egg or pen
observationType: "no_vel" #"full_state" # can be "no_vel", "full_state"
asymmetric_observations: True
successTolerance: 0.1
printNumSuccesses: False
maxConsecutiveSuccesses: 50
asset:
assetFileName: "urdf/kuka_allegro_description/allegro_touch_sensor.urdf"
assetFileNameBlock: "urdf/objects/cube_multicolor_allegro.urdf"
assetFileNameEgg: "mjcf/open_ai_assets/hand/egg.xml"
assetFileNamePen: "mjcf/open_ai_assets/hand/pen.xml"
# set to True if you use camera sensors in the environment
enableCameraSensors: False
task:
randomize: True
randomization_params:
frequency: 720 # Define how many simulation steps between generating new randomizations
sim_params:
gravity:
range: [0, 0.6]
operation: "additive"
distribution: "gaussian"
actor_params:
hand:
scale:
range: [0.95, 1.05]
operation: "scaling"
distribution: "uniform"
setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info.
# schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps`
# schedule_steps: 30000
color: True
dof_properties:
damping:
range: [0.01, 20.0]
operation: "scaling"
distribution: "loguniform"
stiffness:
range: [0.01, 20.0]
operation: "scaling"
distribution: "loguniform"
# schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
# schedule_steps: 30000
effort:
range: [0.4, 10.0]
operation: "scaling"
distribution: "uniform"
friction:
range: [0.0, 10.0]
operation: "scaling"
distribution: "uniform"
armature:
range: [0.0, 10.0]
operation: "scaling"
distribution: "uniform"
lower:
# range: [0, 0.01]
# operation: "additive"
# distribution: "gaussian"
range: [-5.0, 5.0]
operation: "additive"
distribution: "uniform"
upper:
# range: [0, 0.01]
# operation: "additive"
# distribution: "gaussian"
range: [-5.0, 5.0]
operation: "additive"
distribution: "uniform"
# schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
# schedule_steps: 30000
rigid_body_properties:
mass:
# range: [0.5, 2.0]
# range: [0.5, 1.5]
range: [0.4, 1.6] # change when runtime API is available
operation: "scaling"
distribution: "uniform"
setup_only: False # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info.
# schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
# schedule_steps: 30000
rigid_shape_properties:
friction:
num_buckets: 250
# range: [0.2, 1.2] #[0.7, 1.3]
range: [0.01, 2.0]
operation: "scaling"
distribution: "uniform"
# schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
# schedule_steps: 30000
restitution:
num_buckets: 100
range: [0.0, 0.5]
operation: "additive"
distribution: "uniform"
object:
scale:
range: [0.95, 1.05]
operation: "scaling"
distribution: "uniform"
setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info.
# schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps`
# schedule_steps: 30000
rigid_body_properties:
mass:
# range: [0.5, 1.5]
range: [0.3, 1.7] # after fixing the API expand it even more
operation: "scaling"
distribution: "uniform"
setup_only: False # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info.
# schedule: "linear" # "linear" will scale the current random sample by ``min(current num steps, schedule_steps) / schedule_steps`
# schedule_steps: 30000
rigid_shape_properties:
friction:
# num_buckets: 250
# range: [0.2, 1.2] #[0.7, 1.3]
# operation: "scaling"
# distribution: "uniform"
num_buckets: 250
range: [0.01, 2.0]
operation: "scaling"
distribution: "uniform"
# distribution: "loguniform"
# schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
# schedule_steps: 30000
restitution:
num_buckets: 100
range: [0.0, 0.5]
operation: "additive"
distribution: "uniform"
adr:
use_adr: True
# set to false to not do update ADR ranges. useful for evaluation or training a base policy
update_adr_ranges: True
clear_other_queues: False
# if set, boundary sampling and performance eval will occur at (bound + delta) instead of at bound.
adr_extended_boundary_sample: False
worker_adr_boundary_fraction: 0.4 # fraction of workers dedicated to measuring perf of ends of ADR ranges to update the ranges
adr_queue_threshold_length: 256
adr_objective_threshold_low: 5
adr_objective_threshold_high: 20
adr_rollout_perf_alpha: 0.99
adr_load_from_checkpoint: false
# raw ADR params. more are added by affine transforms code
params:
### Hand Properties
hand_damping:
range_path: actor_params.hand.dof_properties.damping.range
init_range: [0.5, 2.0]
limits: [0.01, 20.0]
delta: 0.01
delta_style: 'additive'
# todo: double-check values. Do they multiply?
hand_stiffness:
range_path: actor_params.hand.dof_properties.stiffness.range
init_range: [0.8, 1.2]
limits: [0.01, 20.0]
delta: 0.01
delta_style: 'additive'
hand_joint_friction:
range_path: actor_params.hand.dof_properties.friction.range
init_range: [0.8, 1.2]
limits: [0.0, 10.0]
delta: 0.01
delta_style: 'additive'
hand_armature:
range_path: actor_params.hand.dof_properties.armature.range
init_range: [0.8, 1.2]
limits: [0.0, 10.0]
delta: 0.01
delta_style: 'additive'
hand_effort:
range_path: actor_params.hand.dof_properties.effort.range
init_range: [0.9, 1.1]
limits: [0.4, 10.0]
delta: 0.01
delta_style: 'additive'
hand_lower:
range_path: actor_params.hand.dof_properties.lower.range
init_range: [0.0, 0.0]
limits: [-5.0, 5.0]
delta: 0.02
delta_style: 'additive'
hand_upper:
range_path: actor_params.hand.dof_properties.upper.range
init_range: [0.0, 0.0]
limits: [-5.0, 5.0]
delta: 0.02
delta_style: 'additive'
# todo randomize fingertips and hand parameters independently
hand_mass:
range_path: actor_params.hand.rigid_body_properties.mass.range
init_range: [0.8, 1.2]
limits: [0.01, 10.0]
delta: 0.01
delta_style: 'additive'
hand_friction_fingertips:
range_path: actor_params.hand.rigid_shape_properties.friction.range #.fingertips
init_range: [0.9, 1.1]
limits: [0.1, 2.0]
delta: 0.01
delta_style: 'additive'
hand_restitution:
range_path: actor_params.hand.rigid_shape_properties.restitution.range
init_range: [0.0, 0.1]
limits: [0.0, 1.0]
delta: 0.01
delta_style: 'additive'
object_mass:
range_path: actor_params.object.rigid_body_properties.mass.range
init_range: [0.8, 1.2]
limits: [0.01, 10.0]
delta: 0.01
delta_style: 'additive'
object_friction:
range_path: actor_params.object.rigid_shape_properties.friction.range
init_range: [0.4, 0.8]
limits: [0.01, 2.0]
delta: 0.01
delta_style: 'additive'
object_restitution:
range_path: actor_params.object.rigid_shape_properties.restitution.range
init_range: [0.0, 0.1]
limits: [0.0, 1.0]
delta: 0.01
delta_style: 'additive'
# Observation Params
cube_obs_delay_prob:
# chance of adding an additional delay on top of the inverse refresh rate for cube pose
init_range: [0.0, 0.05]
limits: [0.0, 0.7]
delta: 0.01
delta_style: 'additive'
cube_pose_refresh_rate:
# inverse refresh rate for cube pose (simulates camera)
init_range: [1.0, 1.0]
limits: [1.0, 6.0]
delta: 0.2
delta_style: 'additive'
# Action Params
action_delay_prob:
# per episode the probability that there will be an extra, stochastic, delay on top of the previous delay per step
init_range: [0.0, 0.05]
limits: [0.0, 0.7]
delta: 0.01
delta_style: 'additive'
action_latency:
# the number of steps per environment that the action will be delayed for
init_range: [0.0, 0.0]
limits: [0, 60]
delta: 0.1
delta_style: 'additive'
# Affine Transformation params, to encode a transform of ax + b + c to obs or act
# for each of these:
# _scaling is the params of coefficient a (sampled once per episode)
# _additive is the params of coefficient b (sampled once per episode)
# _white is the params of coefficient c (sampled once per step)
# ADR does not directly generate the distributions but rather sets stdev of gaussian
# noise on each (refer to OAI paper appendix on randomisation.)
affine_action_scaling:
init_range: [0.0, 0.0]
limits: [0.0, 4.0]
delta: 0.0
delta_style: 'additive'
affine_action_additive:
init_range: [0.0, 0.04]
limits: [0.0, 4.0]
delta: 0.01
delta_style: 'additive'
affine_action_white:
init_range: [0.0, 0.04]
limits: [0.0, 4.0]
delta: 0.01
delta_style: 'additive'
affine_cube_pose_scaling:
init_range: [0.0, 0.0]
limits: [0.000, 4.0]
delta: 0.0
delta_style: 'additive'
affine_cube_pose_additive:
init_range: [0.0, 0.04]
limits: [0.0, 4.0]
delta: 0.01
delta_style: 'additive'
affine_cube_pose_white:
init_range: [0.0, 0.04]
limits: [0.0, 4.0]
delta: 0.01
delta_style: 'additive'
affine_dof_pos_scaling:
init_range: [0.0, 0.0]
limits: [0.0, 4.0]
delta: 0.0
delta_style: 'additive'
affine_dof_pos_additive:
init_range: [0.0, 0.04]
limits: [0.0, 4.0]
delta: 0.01
delta_style: 'additive'
affine_dof_pos_white:
init_range: [0.0, 0.04]
limits: [0.0, 4.0]
delta: 0.01
delta_style: 'additive'
rna_alpha:
init_range: [0.0, 0.0]
limits: [0.0, 1.0]
delta: 0.01
delta_style: 'additive'
sim:
dt: 0.01667 # 1/60
substeps: 2
up_axis: "z"
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
physx:
num_threads: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU
num_position_iterations: 8
num_velocity_iterations: 0
max_gpu_contact_pairs: 8388608 # 8*1024*1024
num_subscenes: ${....num_subscenes}
contact_offset: 0.002
rest_offset: 0.0
bounce_threshold_velocity: 0.2
max_depenetration_velocity: 1.0 #1000.0
default_buffer_size_multiplier: 20.0
contact_collection: 0 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!)