-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluation.py
executable file
·72 lines (63 loc) · 2.89 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import sys
from metrics import recall_2at1, recall_at_k_new, precision_at_k, MRR, MAP
import numpy as np
import codecs
def evaluation(pred_scores, true_scores, samples=10):
'''
:param pred_scores: list of scores predicted by model
:param true_scores: list of ground truth labels, 1 or 0
:return:
'''
num_sample = int(len(pred_scores) / samples) # 1 positive and 9 negative
# score_list = np.argmax(np.split(np.array(pred_scores), num_sample, axis=0), 1)
# logit_list = np.argmax(np.split(np.array(true_scores), num_sample, axis=0), 1)
recall_2_1 = recall_2at1(np.array(true_scores), np.array(pred_scores))
recall_at_1 = recall_at_k_new(np.array(true_scores), np.array(pred_scores), 1)
recall_at_2 = recall_at_k_new(np.array(true_scores), np.array(pred_scores), 2)
recall_at_5 = recall_at_k_new(np.array(true_scores), np.array(pred_scores), 5)
_mrr = MRR(np.array(true_scores), np.array(pred_scores))
_map = MAP(np.array(true_scores), np.array(pred_scores))
precision_at_1 = precision_at_k(np.array(true_scores), np.array(pred_scores), k=1)
# ndcg_at_1 = NDCG(np.array(true_scores), np.array(pred_scores), 1)
# ndcg_at_2 = NDCG(np.array(true_scores), np.array(pred_scores), 2)
# ndcg_at_5 = NDCG(np.array(true_scores), np.array(pred_scores), 5)
print("**********************************")
print("results..........")
print('pred_scores: ', len(pred_scores))
print("MAP: %.3f" % (_map))
print("MRR: %.3f" % (_mrr))
print("precision_at_1: %.3f" % (precision_at_1))
print("recall_2_1: %.3f" % (recall_2_1))
print("recall_at_1: %.3f" % (recall_at_1))
print("recall_at_2: %.3f" % (recall_at_2))
print("recall_at_5: %.3f" % (recall_at_5))
print("**********************************")
return {
'MAP': _map,
'MRR': _mrr,
'p@1': precision_at_1,
'r2@1': recall_2_1,
'r@1': recall_at_1,
'r@2': recall_at_2,
'r@5': recall_at_5,
}
if __name__ == '__main__':
# pred_scores = []
# true_scores = []
# with codecs.open('/home1/liuchang/projects/sticker_chat/code/early.txt', 'r', 'utf-8') as f:
# for line in f:
# parts = line.strip().split("\t")
# pred_scores.append(float(parts[0]))
# true_scores.append(int(parts[1]))
#
# print(len(pred_scores))
# print(len(true_scores))
# k = 10
# if len(sys.argv) > 2 and sys.argv[2] is not None and sys.argv[2] != '':
# k = int(sys.argv[2])
# evaluation(pred_scores, true_scores, k)
pred_scores = [0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.5,
0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.5]
true_scores = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
evaluation(pred_scores, true_scores)