diff --git a/ide/xcode/xmm-lib.xcodeproj/project.pbxproj b/ide/xcode/xmm-lib.xcodeproj/project.pbxproj index 0e73110..8c59638 100644 --- a/ide/xcode/xmm-lib.xcodeproj/project.pbxproj +++ b/ide/xcode/xmm-lib.xcodeproj/project.pbxproj @@ -254,7 +254,7 @@ path = src; sourceTree = ""; }; - 0B9FE3091AD16269007431E3 /* test */ = { + 0B9FE3091AD16269007431E3 /* tests */ = { isa = PBXGroup; children = ( 0B9FE30A1AD1627E007431E3 /* catch.hpp */, @@ -267,19 +267,19 @@ 0BF36B561AE82DEA00D81858 /* xmmTestsModelExtraction.cpp */, FA61EB661CC9797100F37E4E /* xmmTestsComplexity.cpp */, ); - name = test; + name = tests; path = ../../test; sourceTree = ""; }; 0BD1C5BF17D9E3BA0061535A = { isa = PBXGroup; children = ( - FA41CABC1C28A9D800905379 /* jsoncpp */, 0B931DBD1AB1B17B00B15F3E /* readme.md */, + 0B4909A61947718400E0D3C4 /* src */, + 0B9FE3091AD16269007431E3 /* tests */, + FA41CABC1C28A9D800905379 /* jsoncpp */, 0BD1C5E417D9E3D20061535A /* doc */, 0B9FE2C21ACF6893007431E3 /* python */, - 0B4909A61947718400E0D3C4 /* src */, - 0B9FE3091AD16269007431E3 /* test */, 0B20E08F1A9A633600E89497 /* Products */, ); sourceTree = ""; diff --git a/test/xmmTestsMultithreading.cpp b/test/xmmTestsMultithreading.cpp index 4f04591..6932347 100644 --- a/test/xmmTestsMultithreading.cpp +++ b/test/xmmTestsMultithreading.cpp @@ -90,20 +90,20 @@ TEST_CASE("Training with MultithreadingMode::Sequential", "[GMM]") { a.configuration.gaussians.set(3); CHECK_NOTHROW(a.train(&ts)); std::vector mixtureCoeffs(3); - mixtureCoeffs[0] = 3.819443583488e-01; - mixtureCoeffs[1] = 3.171715140343e-01; - mixtureCoeffs[2] = 3.008841276169e-01; + mixtureCoeffs[0] = 0.410568; + mixtureCoeffs[1] = 0.309933; + mixtureCoeffs[2] = 0.2795; CHECK_VECTOR_APPROX(a.models[label_a].mixture_coeffs, mixtureCoeffs); std::vector cov_c0(9); - cov_c0[0] = 1.398498568044e-02; - cov_c0[1] = 5.041130937517e-03; - cov_c0[2] = 1.792829737244e-03; - cov_c0[3] = 5.041130937517e-03; - cov_c0[4] = 3.113048333532e-03; - cov_c0[5] = 7.901977752380e-04; - cov_c0[6] = 1.792829737244e-03; - cov_c0[7] = 7.901977752380e-04; - cov_c0[8] = 1.306463534393e-03; + cov_c0[0] = 0.018729; + cov_c0[1] = 0.00683308; + cov_c0[2] = 0.00271096; + cov_c0[3] = 0.00683308; + cov_c0[4] = 0.00614827; + cov_c0[5] = 0.00133768; + cov_c0[6] = 0.00271096; + cov_c0[7] = 0.00133768; + cov_c0[8] = 0.00337321; CHECK_VECTOR_APPROX(a.models[label_a].components[0].covariance, cov_c0); } @@ -132,20 +132,20 @@ TEST_CASE("Training with MultithreadingMode::MultithreadingMode", "[GMM]") { a.configuration.gaussians.set(3); a.train(&ts); std::vector mixtureCoeffs(3); - mixtureCoeffs[0] = 3.819443583488e-01; - mixtureCoeffs[1] = 3.171715140343e-01; - mixtureCoeffs[2] = 3.008841276169e-01; + mixtureCoeffs[0] = 0.410568; + mixtureCoeffs[1] = 0.309933; + mixtureCoeffs[2] = 0.2795; CHECK_VECTOR_APPROX(a.models[label_a].mixture_coeffs, mixtureCoeffs); std::vector cov_c0(9); - cov_c0[0] = 1.398498568044e-02; - cov_c0[1] = 5.041130937517e-03; - cov_c0[2] = 1.792829737244e-03; - cov_c0[3] = 5.041130937517e-03; - cov_c0[4] = 3.113048333532e-03; - cov_c0[5] = 7.901977752380e-04; - cov_c0[6] = 1.792829737244e-03; - cov_c0[7] = 7.901977752380e-04; - cov_c0[8] = 1.306463534393e-03; + cov_c0[0] = 0.018729; + cov_c0[1] = 0.00683308; + cov_c0[2] = 0.00271096; + cov_c0[3] = 0.00683308; + cov_c0[4] = 0.00614827; + cov_c0[5] = 0.00133768; + cov_c0[6] = 0.00271096; + cov_c0[7] = 0.00133768; + cov_c0[8] = 0.00337321; CHECK_VECTOR_APPROX(a.models[label_a].components[0].covariance, cov_c0); } @@ -192,20 +192,20 @@ TEST_CASE("Training with MultithreadingMode::Background", "[GMM]") { } // std::cout << std::endl; std::vector mixtureCoeffs(3); - mixtureCoeffs[0] = 3.819443583488e-01; - mixtureCoeffs[1] = 3.171715140343e-01; - mixtureCoeffs[2] = 3.008841276169e-01; + mixtureCoeffs[0] = 0.410568; + mixtureCoeffs[1] = 0.309933; + mixtureCoeffs[2] = 0.2795; CHECK_VECTOR_APPROX(a.models[label_a].mixture_coeffs, mixtureCoeffs); std::vector cov_c0(9); - cov_c0[0] = 1.398498568044e-02; - cov_c0[1] = 5.041130937517e-03; - cov_c0[2] = 1.792829737244e-03; - cov_c0[3] = 5.041130937517e-03; - cov_c0[4] = 3.113048333532e-03; - cov_c0[5] = 7.901977752380e-04; - cov_c0[6] = 1.792829737244e-03; - cov_c0[7] = 7.901977752380e-04; - cov_c0[8] = 1.306463534393e-03; + cov_c0[0] = 0.018729; + cov_c0[1] = 0.00683308; + cov_c0[2] = 0.00271096; + cov_c0[3] = 0.00683308; + cov_c0[4] = 0.00614827; + cov_c0[5] = 0.00133768; + cov_c0[6] = 0.00271096; + cov_c0[7] = 0.00133768; + cov_c0[8] = 0.00337321; CHECK_VECTOR_APPROX(a.models[label_a].components[0].covariance, cov_c0); a.reset(); std::vector log_likelihood(100, 0.0); @@ -253,32 +253,3 @@ TEST_CASE("Cancel Training", "[GMM]") { a.cancelTraining(); CHECK(a.size() == 2); } - -// TEST_CASE( "Delete Training Set during Training", "[GMM]" ) { -// for (auto mode : {xmm::MultithreadingMode::Background, -// xmm::MultithreadingMode::Parallel, xmm::MultithreadingMode::Sequential}) { -// xmm::TrainingSet *ts = new xmm::TrainingSet(true, false, 3); -// std::vector observation(3); -// ts->addPhrase(0); -// ts->addPhrase(1); -// for (unsigned int i=0; i<10000; i++) { -// observation[0] = float(i)/10000.; -// observation[1] = pow(float(i)/10000., 2.); -// observation[2] = pow(float(i)/10000., 3.); -// ts->getPhrase(0)->record(observation); -// ts->getPhrase(1)->record(observation); -// } -// std::string label_a(static_cast("a")); -// std::string label_b(static_cast("b")); -// ts->getPhrase(0)->label.set(label_a); -// ts->getPhrase(1)->label.set(label_b); -// xmm::GMM a; -// MyTrainingListener *listener = new MyTrainingListener(); -// a.training_events.addListener(listener); -// a.configuration.gaussians.set(30); -// a.configuration.multithreading = mode; -// a.train(ts); -// delete ts; -// a.joinTraining(); -// } -//}