diff --git a/examples/sklearn-pipeline.ipynb b/examples/sklearn-pipeline.ipynb index 0cbc5ee..ff7d1ee 100644 --- a/examples/sklearn-pipeline.ipynb +++ b/examples/sklearn-pipeline.ipynb @@ -7,8 +7,8 @@ "metadata": {}, "outputs": [], "source": [ - "#import pip\n", - "#pip.main(['install', 'skl2onnx', 'pydot', 'ebm2onnx', 'onnxruntime'])" + "import pip\n", + "pip.main(['install', 'skl2onnx', 'pydot', 'ebm2onnx', 'onnxruntime'])" ] }, { @@ -44,7 +44,7 @@ }, { "cell_type": "markdown", - "id": "55dc0909", + "id": "896e37d3", "metadata": {}, "source": [ "# Train a model with feature engineering\n", @@ -111,7 +111,7 @@ " (\n", " \"onehot\",\n", " preprocessing.OneHotEncoder(\n", - " sparse=True,\n", + " sparse_output=True,\n", " # Assumes I have 2 bool and 1 cat feature, and I'm specifying what\n", " # values I want to drop when one hot encoding.\n", " drop=list([0, 0, \"can_not_determine\"]),\n", @@ -279,7 +279,7 @@ }, { "cell_type": "markdown", - "id": "b9a44354", + "id": "62eb8ebd", "metadata": {}, "source": [ "# Convert the pipeline to ONNX\n", @@ -337,7 +337,7 @@ }, { "cell_type": "markdown", - "id": "22e0d3c6", + "id": "ff49e327", "metadata": {}, "source": [ "# Execute the pipeline with ONNX-Runtime"